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Abstract ix

Incompressible limit and well-posedness of PDE models of tissue growth
Abstract

Both compressible and incompressible porous medium models have been used in the literature to describe
the mechanical aspects of living tissues, and in particular of tumor growth. Using a stiff pressure law,
it is possible to build a link between these two different representations. In the incompressible limit,
compressible models generate free boundary problems of Hele-Shaw type where saturation holds in
the moving domain. Our work aims at investigating the stiff pressure limit of reaction-advection-porous
medium equations motivated by tumor development. Our first study concerns the analysis and numerical
simulation of a model including the effect of nutrients. Then, a coupled system of equations describes the
cell density and the nutrient concentration. For this reason, the derivation of the pressure equation in
the stiff limit was an open problem for which the strong compactness of the pressure gradient is needed.
To establish it, we use two new ideas: an L3-version of the celebrated Aronson-Bénilan estimate, also
recently applied to related problems, and a sharp uniform L4-bound on the pressure gradient. We further
investigate the sharpness of this bound through a finite difference upwind scheme, which we prove to
be stable and asymptotic preserving. Our second study is centered around porous medium equations
including convective effects. We are able to extend the techniques developed for the nutrient case, hence
finding the complementarity relation on the limit pressure. Moreover, we provide an estimate of the
convergence rate at the incompressible limit. Finally, we study a multi-species system. In particular,
we account for phenotypic heterogeneity, including a structured variable into the problem. In this case,
a cross-(degenerate)-diffusion system describes the evolution of the phenotypic distributions. Adapting
methods recently developed in the context of two-species systems, we prove existence of weak solutions
and we pass to the incompressible limit. Furthermore, we prove new regularity results on the total
pressure, which is related to the total density by a power law of state.

Keywords: porous medium equation, tumor growth, Aronson-Bénilan estimate, free boundary, Hele-
Shaw problem

Résumé

Les modèles de milieux poreux, en régime compressible ou incompressible, sont utilisés dans la littérature
pour décrire les propriétés mécaniques des tissus vivants et en particulier de la croissance tumorale. Il est
possible de construire un lien entre ces deux différentes représentations en utilisant une loi de pression
raide. Dans la limite incompressible, les modèles compressibles conduisent à des problèmes de frontières
libres de type Hele-Shaw. Nos travaux visent à étudier la limite de pression raide des équations de
type milieu poreux motivées par le développement tumoral. Notre première étude concerne l’analyse et
la simulation numérique d’un modèle incluant l’effet des nutriments. Ensuite, un système d’équations,
dont le couplage est délicat, décrit la densité cellulaire et la concentration en nutriments. Pour cette
raison, la dérivation de l’équation de pression dans la limite incompressible était un problème ouvert
qui nécessite la compacité forte du gradient de pression. Pour l’établir, nous utilisons deux nouvelles
idées : une version L3 de la célèbre estimation d’Aronson-Bénilan, également utilisée récemment pour
des problèmes connexes, et une estimation L4 sur le gradient de pression (où l’exposant 4 est optimal).
Nous étudions en outre l’optimalité de cette estimation par un schéma numérique upwind aux différences
finies, que nous montrons être stable et asymptotic preserving. Notre deuxième étude est centrée sur
l’équation de milieux poreux avec effets convectifs. Nous étendons les techniques développées pour le
cas avec nutriments, trouvant ainsi la relation de complémentarité sur la pression limite. De plus, nous
fournissons une estimation du taux de convergence à la limite incompressible. Enfin, nous étudions un
système multi-espèces. En particulier, en tenant compte de l’hétérogénéité phénotypique, nous incluons
une variable structurée dans le problème. Par conséquent, un système de diffusion croisée et dégénérée
décrit l’évolution des distributions phénotypiques. En adaptant des méthodes récemment développées
pour des systèmes à deux équations, nous prouvons l’existence de solutions faibles et nous passons à la
limite incompressible. En outre, nous prouvons de nouveaux résultats de régularité sur la pression totale,
qui est liée à la densité totale par une loi de puissance.

Mots clés : équation des milieux poreux, croissance tumorale, estimation d’Aronson-Bénilan, frontière
libre, problème de Hele-Shaw

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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Abstract

Tra i modelli matematici per la crescita dei tessuti, ed in particolare per la crescita tumorale,
sia modelli cosiddetti comprimibili sia modelli incomprimibili sono largamente utilizzati in let-
teratura. Passando al limite incomprimibile, i modelli comprimibili generano modelli a fron-
tiera libera del tipo Hele-Shaw, in cui si ha saturazione nel dominio. L’obiettivo di questa tesi
è quello di analizzare il limite stiff pressure (pressione rigida) di equazioni del tipo reazione-
convezione-diffusione degenere (dei mezzi porosi). Il primo lavoro riguarda l’analisi e la simu-
lazione numerica di un modello che include la presenza di nutrienti. Un sistema di equazioni
descrive l’evoluzione della densità cellulare e della concentrazione di nutrienti. In questo caso, la
derivazione dell’equazione della pressione nel limite incomprimibile rappresentava un problema
irrisolto, per il quale era necessario trovare la compattezza forte del gradiente della pressione.
Al fine di dimostrarla, sono state utilizzate due tecniche: una versione L3 della celebre stima di
Aronson e Bénilan, e una stima L4 ottimale sul gradiente della pressione. Inoltre, si è investi-
gato numericamente l’ottimalità di questa stima utilizzando uno schema upwind alle differenze
finite, che si dimostra essere stabile e asymptotic preserving. Il secondo lavoro si concentra
sulle equazioni dei mezzi porosi che includono un termine di convezione. Sono state quindi es-
tese le tecniche sviluppate nel modello con nutrienti e ricavata la relazione di complementarietà
della pressione limite. Inoltre, viene fornita una stima della velocità di convergenza del limite
incomprimibile. Infine, si analizza un modello multi-specie. In particolare, è stata presa in con-
siderazione l’eterogeneità fenotipica, includendo una variabile strutturata nel modello. In questo
caso, un sistema del tipo diffusione (degenere) incrociata descrive l’evoluzione delle distribuzioni
fenotipiche. Adattando metodi recentemente sviluppati nel contesto di sistemi di due specie,
si prova l’esistenza di soluzioni deboli e si passa al limite stiff. Inoltre, vengono forniti nuovi
risultati di regolarità sulla pressione totale, la quale è legata alla densità totale tramite una legge
di potenza.

Parole chiave: equazione dei mezzi porosi, crescita tumorale, stima di Aronson-Bénilan, fron-
tiera libera, problema di Hele-Shaw
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Chapter 1

Introduction

Mathematical modelling of living tissue is one of the most fascinating and challenging problems
in mathematical biology. The description and understanding of the mechanisms driving cell
migration and proliferation can benefit remarkably from mathematical analysis and simulations.
While the former may lead to a more comprehensive view of the qualitative properties and
asymptotic behavior of the biological problem, the latter may provide useful parameters suitable
for comparison with biological observations. Moreover, mathematical models can provide new
insights on those aspects that are more difficult to access experimentally. On the other hand, the
modelling of biological phenomena is nowadays one of the most prolific sources of involved and
challenging mathematical questions, in particular regarding the analysis of partial differential
equations (PDEs). In the last decades, nonlinear and degenerate PDEs and systems motivated
by the description of living tissues have been widely investigated. In particular, in this thesis we
are interested in problems arising in the modelling of tumor growth.
One of the most crucial aspects to be taken into account in this context is the multiscale nature
of cancer development. Indeed, the phenomenon involves several processes occurring at different
spatial and temporal scales. This complexity is well represented in the extremely vast literature
available today. From individual-based models describing the process from a microscopic view-
point, to PDE systems representing the tissue as a continuum, the modelling of tumor growth
has been largely addressed during the last six decades. One of the most interesting mathematical
problems arising in this context concerns the question of bridging the gap between different scales
or representations. In particular, among models describing tumor growth from a macroscopic
viewpoint, it is possible to identify two main types of descriptions. On the one hand, the space-
time evolution of the cell population density can be naturally described by reaction-diffusion
equations. On the other hand, a more geometrical perspective is also frequently used, since the
tumor can be seen as a domain whose boundary evolves in time. This thesis is centered around
the question of how to link these two different representations, namely continuity equations and
free boundary problems, through asymptotic analysis.

1.1 Mechanical models of tissue growth

During the last decades, mathematical models of cancer growth have been increasingly applying
a mechanical perspective to the problem, adopting a fluid dynamic viewpoint. In fact, at the
macroscopic level living tissues can be seen as fluids moving through a porous medium, namely,
the extra-cellular matrix (ECM). Continuous models describing the development of tumors usu-
ally consist of nonlinear partial differential equations. The temporal and spatial evolution of
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4 CHAPTER 1. Introduction

the cell population density can indeed be described through reaction-diffusion equations and
systems. In mechanical models of tumor growth the pressure generated by the birth of new
cells plays an essential role both in the dynamics that drive the cell movement, as well as in cell
proliferation and death. Besides systems of PDEs based on conservation laws, a second main
type of macroscopic models has been largely applied to the description of living tissues and, in
particular, tumors: free boundary problems. Indeed, a more "geometrical" perspective can be
assumed as the tumor is seen as a domain whose moving boundary evolves in time.
We now give a brief overview of these two types of macroscopic models. Let us stress the fact
that, as aforementioned, this thesis is centered around the analytical challenges arising from the
problem of bridging the gap between these two different representations. Although our focus
does not concern the biomedical applications of such problems, for the sake of completeness we
here provide a brief and simplified biological introduction on cancer growth.

1.1.1 Biological background on tumor development

The main feature characterizing cancer growth is certainly the acquired capacity of malignant
cells to replicate uncontrollably. Despite the complexity of the phenomenon, that leads to
an amount of about one hundred different types of cancer, it has been suggested that ma-
lignant growth is a manifestation of the combination of six essential functional capabilities:
self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of apoptosis,
limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis [95].
Among the principal dynamics that drive the tumor cells movement there is space competition.
In fact, cells tend to avoid overcrowding, moving towards less congested regions and searching
for the space necessary in order to divide. Thus, before the occurrence of different movement
processes such as, for instance, chemotaxis, cell motion is mainly triggered by the gradient of the
pressure. Moreover, space availability plays a central role in cell proliferation as well. Indeed,
a bio-mechanical form of contact inhibition prevents cell multiplication in regions with a high
pressure/congestion. Sensing the level of mechanical stress around them, cells control their
proliferation in order not to overcome a critical threshold of packaging, which is determined by
the compression that cells experience, [37].
It is possible to identify two main phases during the development of solid tumors: the avascular
and vascular phases. Initially, neoplastic cells aggregate to form a quasi-spherical cluster. The
size of the mass is so small that these very early stages of cancer growth can be studied only in
laboratory experiments. Studying 3D cancer spheroids in vitro it is possible to recognize their
internal structure. They are usually formed by an outer rim of cells that reproduce fast and
without control, an intermediate layer of quiescent cells, and a core of dead cells. This internal
region contains cells that have died by necrosis. Unlike apoptosis, which is the natural end of
the cell cycle, necrosis is induced by the lack of nutrients in the surrounding environment. Since
avascular tumors do not have direct access to blood vessels, they receive the nutrient supply by
diffusion. For this reason, they tend to adopt a well-defined symmetrical shape with an outer
nutrient-rich rim and a dead core spaced out by a non-proliferating annulus, [40].
In order to provide themselves with blood vessels, tumor cells induce a mechanisms called angio-
genesis. Tumor cells lacking oxygen produce angiogenic factors that diffuse into the host tissue
and activate the endothelial cells lining into the blood vessels. After breaking the basement mem-
brane, endothelial cells migrate towards the tumor and generate a new network of blood supply.
During the vascular phase the cancer grows much faster and its structure and shape change sig-
nificantly compared to avascular tumors. The new vessels are usually formed very quickly, thus
they lack muscular tone and may easily collapse under the pressure generated by the surrounding
cells. This decreases the level of oxygen in certain regions which induces hypoxia. Consequently,
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angiogenic factors are secreted, neovascularization occurs and cells start proliferating again. For
this reason, the composition and spatial organization of the tumor changes dynamically during
the vascular phase. Later, tumor cells may enter the blood vessels and be transported to other
regions, creating metastasis which represent the most dangerous side of the disease.

1.1.2 Density-based models

Reaction-diffusion equations and systems are one of the most common mathematical models used
to describe tissue growth at the macroscopic level. The evolution in space and time of the cell
population density is classically described by the continuity equation of fluid mechanics

∂ϱ

∂t
(x, t)−∇ · J⃗ = f(x, t), (1.1)

where J⃗ = J⃗(ϱ,∇ϱ, v⃗) is the flux which is usually related to the mass density ϱ = ϱ(x, t), its
gradient and/or to a vector field v⃗ given by a constitutive law. On the right-hand side, f denotes
the growth/degradation of the tissue. The reaction term may depend on the space and time
variables, on the density itself, or on other quantities involved in tumor growth such as, for
instance, the pressure of the tissue or the concentration of nutrients. This class of macroscopic
models based on conservation equations are usually referred to as density-based models.
Early models were centered around the interaction between cancer cells and other chemical
species such as, for instance, nutrients (oxygen or glucose), lactate or carbon dioxide, which play
an important role in the evolution of tumors. In particular, the modelling of nutrient availability
and diffusion has attracted a lot of attention in the context of avascular tumors. As mentioned
above, until the tumor is able to provide itself with its own blood supply its evolution and size is
inherently related to nutrient diffusion, see [33, 139] and references therein. Later, mathematical
models started including also tumor cell movement rather than only nutrient diffusion and con-
sumption. The cells can move via convection [151], active motion (diffusion) [145], or chemotaxis
[122, 133], i.e. the directed movement of cells towards a chemical concentration. For a complete
review of mathematical models of avascular tumors we refer the reader to [139].
More recently, mathematical models have been directed more and more on the mechanical aspects
of tumor development rather than only environmental ones. One of the first examples in this
direction is the model introduced by Greenspan in 1975, which builds on the early models based
on nutrients availability by including a notion of pressure. In [92], the author relates the tumor
internal pressure p = p(x, t) to the cell velocity field, proposing a model that was later further
elaborated by Byrne and Chaplain [34]. The common feature of these models is that tumors can
be seen as fluids flowing through a porous medium represented by the ECM. As mentioned above,
cells have the tendency to avoid over-crowding. Therefore, they move down pressure gradients,
away from congested regions. For this reason, mechanical models of tumor growth usually link
the velocity field v⃗ to the pressure by the Darcy law, i.e.

v⃗ = −κ∇p, (1.2)

where κ represents the ratio between permeability and viscosity.
Another step towards a more mechanical description of living tissue is the influence that over-
crowding and congestion exert not only on cell motion but also on cell proliferation and death.
One of the earliest examples in this direction has been proposed by Byrne and Drasdo in [37].
The authors develop a mechanical model where the pressure plays a fundamental role not only
as the driving force of cells movement, but also as the main growth-limiting factor. As aforemen-
tioned, the competition for space is indeed crucial in the development of tumors since cells tend
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to multiply less in highly congested regions due to contact inhibition. Therefore, the authors
describe the evolution of the cell population density through a conservation law as (1.1), where
the flux is J⃗ = ϱv⃗ with velocity field v⃗ given by (1.2), and the stress-regulated proliferation is
represented by a pressure-penalised reaction term f

∂ϱ

∂t
−∇ · (ϱv⃗) = f(pH − p), (1.3)

where pH denotes the homeostatic pressure, i.e. the lowest level of pressure that prevents cell
division. Above this value cell division is inhibited due to the mechanical stress generated by the
pressure. For this reason, the authors assume f(pH − p) = s0H(pH − p), where s0 denotes the
local growth rate and H is the Heaviside step function. The model has to be closed by a law of
state of the pressure, i.e. p = P (ϱ).
The model in [37] has later attracted vast interest, in particular for its asymptotic behavior as
the stiffness of the pressure increases. In fact, a properly chosen pressure law allows to build a
link between Eq. (1.3) and the incompressible (or "geometrical") models that will be introduced
in the following section. Two of the most common pressure laws in this context are the power
law and the singular pressure law. Power laws as the following

p = Pm(ϱ) =
m

m− 1

(
ϱ

ϱc

)m−1

, m > 1,

where ϱc represents the maximum packing density of cells, are also well known in applications to
fluid mechanics. Combining the power law with Darcy’s law (1.2), one can see that the continuity
equation (1.3) actually reduces to a porous medium equation (PME) that well represents the
behaviour of the tumor cells moving through the extra-cellular matrix.
The singular pressure law

p = Pε(ϱ) = ε
ϱ

1− ϱ
, ε > 0,

is often specifically used to model tissue growth since the singularity at ϱ = 1 directly imposes
a constraint on the maximum cell-population density, i.e. ϱ ⩽ 1. At the microscopic level,
this singularity is equivalent to forcing non-overlapping constraints on the cells (particles) that
compose the tissue.
Despite having very different forms, these two pressure laws actually exhibit a very similar
asymptotic behavior as γ → ∞ and ε → 0. Assuming, without loss of generality, that ϱc = 1,
in both cases the tumor pressure tends to become more and more stiff around the value ϱ = 1
and the model can be naturally represented through a more geometrical viewpoint. Both limits
generate free boundary problems where a saturation constraint holds. Before going into further
details regarding the asymptotic behavior of porous medium models, we briefly introduce the
most common features of tumor growth models based on a free boundary formulation.

1.1.3 Free boundary problems

Besides density-based models consisting of reaction-diffusion equations, among macroscopic mod-
els of tumor growth one can identify a second main category of models. Rather than describing
the evolution of the cell population density in space and time, free boundary problems represent
the tumor as a domain Ω(t) with a moving boundary. Therefore, the unknowns of the problem
are both the free boundary ∂Ω(t) and the solution of the partial differential equation set in Ω(t).
This kind of problems is widely used in the modelling of tumor growth, in particular when
dealing with avascular tumors or in vitro spheroids, which usually exhibit well-defined boundaries.
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Moreover, multi-species models are also largely adopted, since early stages tumors are often
formed by different layers of distinguished types of cells: an outer rim of proliferating cells, an
inner region of quiescent cells and a core of necrotic cells. Therefore, several tumor growth models
describe segregated populations through free boundary problems involving multiple interfaces,
see for instance [34, 35].
Let us give an example of a classical free boundary model of cancer growth which takes into
account only one species of cells (proliferating cells) and in which cell proliferation is only nutrient-
limited. Let α, β > 0 be positive given constants and let us denote by ∂νp the outward normal
derivative of the pressure. The evolution of the pressure p = p(x, t) and the nutrient concentration
c = c(x, t) are described as follows

∂tc = ∆c− αc, in Ω(t),

∆p = f(c), in Ω(t),

V = −∂νp, on ∂Ω(t),


p = βk, on ∂Ω(t),
c = cB , on ∂Ω(t),

c(x, 0) = c0(x), in Ω(0),

where Ω(0) and c0 are given, and cB is the level of nutrients outside of the spheroid, see [80].
The density of the population is assumed to be constant inside Ω(t). For this reason, these
problems are usually referred to as incompressible models. Unlike the classical condition of fluid
incompressibility (i.e. a divergence-free velocity field), due to the presence of a reaction term f
(i.e. cell multiplication) the divergence of the flow does not vanish.
The above system takes into account surface tension, i.e. the pressure on the boundary is pro-
portional to the mean curvature k. If one assumes p = 0 on the moving boundary, the problem
reduces to a Hele-Shaw type problem (HS in short), which is a well known free boundary problem
that will be presented more in detail in the following sections.
Let us notice that the velocity law of the free boundary coincides with Darcy’s law, which means
that cells are escaping regions with higher pressure. In fact, there is a close relation between
the HS problem and the conservation law (1.1). As already mentioned, through the so-called
incompressible limit it is possible to bridge the gap between these two different representations of
the same phenomenon, namely density-based models and free boundary problems. The analytical
(and numerical) study of this limit for different PDEs and systems is the main subject of this
manuscript.

1.2 Notation and preliminaries

For the sake of clarity, let us introduce some notation and preliminary results that will be used
throughout the thesis.

Notation. Given a function w : Rd → R, we define its positive sign and negative sign

sign+(w) := 1{w>0} and sign−(w) := −1{w<0}.

We also define its positive part and negative part as follows

(w)+ :=

{
w, for w > 0,

0, for w ⩽ 0,
(w)− :=

{
−w, for w < 0,

0, for w ⩾ 0,

as well as its absolute value |w| := (w)+ + (w)−.
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Given a general set A, we denote by 1A its characteristic function, namely

1A(x) =

{
1, for x ∈ A,

0, otherwise.

Let Ω ⊂ Rd be an open subset. We denote by Lp(Ω) and Wm,p(Ω) the usual Lebesgue and
Sobolev spaces, respectively, where 1 ⩽ p ⩽ ∞ and m ∈ N. As usual, we indicate Hm(Ω) :=
Wm,2(Ω). Given a function f ∈ Lp(Ω), we often use the abbreviated form ∥f∥p := ∥f∥Lp(Ω).
We denote by < ·, · > the standard duality pairing between (H1(Ω))′ and H1(Ω).
We denote by C∞

comp(Rd × (0,∞)) the space of smooth functions with compact support in Rd ×
(0,∞). We also use the notation D(Rd × (0,∞)) to indicate the same space, and we denote by
D′(Rd × (0,∞)) the space of distributions.

Useful inequalities. Let us recall some important inequalities and embedding theorems that
we will frequently use in this thesis.

Proposition 1.2.1 (Kato inequality). Let Ω ⊂ Rd be a bounded open subset, and let w ∈
L1
loc(Rd) be a function such that ∆w ∈ L1

loc(Rd). Then ∆(w)− is a Radon measure and the
following holds

∆(w)− ⩾ sign−(w)∆w, in D′(Rd). (1.4)

Proposition 1.2.2 (Poincaré inequality). Let 1 ⩽ p < ∞ and let Ω ⊂ Rd be an open and
bounded subset. There exists C depending on Ω and p such that for every u ∈W 1,p

0 (Ω), we have

∥u∥Lp(Ω) ⩽ C∥∇u∥Lp(Ω). (1.5)

Proposition 1.2.3 (Poincaré-Wirtinger inequality). Let 1 ⩽ p <∞ and let Ω ⊂ Rd be an open
and bounded subset. There exists C depending on Ω and p such that for every u ∈ W 1,p(Ω), we
have

∥u− uΩ∥Lp(Ω) ⩽ C∥∇u∥Lp(Ω), (1.6)

where uΩ is the mean of u on Ω i.e.

uΩ =
1

|Ω|

∫
Ω

udx.

Proposition 1.2.4 (Compact embeddings of Sobolev spaces). Let Ω ⊂ Rd be an open and
bounded subset with Lipschitz boundary. Let j ⩾ 0 and m ⩾ 1 be integers and let 1 ⩽ p < ∞.
Then, the following embeddings are compact

• if mp > d, we have

W j+m,p(Ω) → Cj(Ω̄),

W j+m,p(Ω) →W j,q(Ω), 1 ⩽ q <∞,

so, in particular,
Wm,p(Ω) → Lq(Ω), 1 ⩽ q <∞,

• if mp = d, we have

W j+m,p(Ω) →W j,q(Ω), 1 ⩽ q <∞,
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• if mp < d, we have

W j+m,p(Ω) →W j,q(Ω), 1 ⩽ q < p∗ =
dp

d−mp
.

Compactness theorems. We recall two classical results on compactness that will be used in
the following parts of the thesis.

Proposition 1.2.5 (Aubin-Lions lemma). Let X0, X and X1 be three Banach spaces with X0 ⊂
X ⊂ X1. Suppose X0 is compactly embedded in X and that X is continuously embedded in X1.
For 1 ⩽ p, q ⩽ ∞, let

W := {u ∈ Lp(0, T ;X0)| ∂tu ∈ Lq(0, T ;X1)}.

Then

• if p <∞, then the embedding of W into Lp(0, T ;X) is compact,

• if p = ∞ and q > 1, then the embedding of W in C(0, T ;X) is compact.

Proposition 1.2.6 (Fréchet–Kolmogorov theorem). Let S ⊂ Lp(Rd) be a bounded subset. As-
sume that

lim
|h|→0

∫
Rd

|f(x+ h)− f(x)|p dx = 0,

uniformly in f ∈ S. Then, for any Ω ⊂ Rd, the set {f|Ω| f ∈ S} is relatively compact. If ∀ε > 0
there exists a bounded set Ωε such that ∥f∥Lp(Rd\Ωε) < ε for any f ∈ S, then S is relatively
compact.

1.3 Incompressible limit of porous medium models

Mathematical models based on porous medium type equations (or, more generally, filtration
equations) have been vastly applied to problems arising in biology and medicine, as well as to
the modelling of crowd motion and fluid dynamics.
One of the most interesting problems related to these equations is to understand their asymptotic
behavior as the pressure law becomes stiff. As aforementioned, this limit has recently attracted
particular interest in the context of tumor growth modelling. However, its study has a very long
history which originates in the seminal works on the classical porous medium equation (PME).
Before introducing the incompressible limit, its derivation and its recent applications, let us give
a brief overview of the PME and its main properties. For a complete picture on the theory of
the porous medium equation we refer the reader to the monograph of Vázquez, cf. [150].

1.3.1 The porous medium equation
The porous medium equation (PME) is a well known nonlinear, degenerate parabolic equation.
It represents the simplest example of a nonlinear parabolic equation and it reads as follows

∂u

∂t
= ∆um, x ∈ Rd, t > 0, (1.7)

with exponent m > 1. At first sight it might appear as a simple variation of the heat equation
(HE), to which it is indeed equivalent when m = 1. However, the degeneracy of the PME
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induces several properties that drastically separate it from its linear and uniformly parabolic
counterpart. The most recognizable characteristic that sets apart the PME from the HE is the
property of finite speed of propagation. In fact, it is well known that solutions which are initially
compactly supported remain so at any finite time, see [127]. This property is in stark contrast
to the infinite speed of propagation of solutions of the HE, which is a direct consequence of the
strong maximum principle. As a consequence, a moving boundary appears, separating the two
sets {x; u(x, t) > 0} and {x; u(x, t) = 0}. The speed of this boundary is determined by the
gradient of the density-related pressure, defined as follows

p =
m

m− 1
um−1. (1.8)

Indeed, let us notice that the PME can be written as a continuity equation with velocity field
given by Darcy’s law, namely

v⃗ = −∇p, (1.9)

∂u

∂t
+∇ · (uv⃗) = 0. (1.10)

The so-called pressure transformation (1.8) is frequently used in the analysis of porous medium
type equations. This change of variables is very useful in that it induces a self-contained equation
satisfied by the pressure, namely

∂p

∂t
= (m− 1)p∆p+ |∇p|2. (1.11)

The above equation clearly shows that the PME behaves in very different ways around the value
p ≈ 0. Indeed, when p is larger than zero, the parabolic part is dominant and thus the equation
is a nonlinear perturbation of the HE plus a lower order term. On the other hand, when p
approaches zero the equation is a perturbation of the eikonal equation

∂p

∂t
= |∇p|2,

which is highly hyperbolic. Therefore, around the value of degeneracy, the PME is of mixed type,
and by consequence it exhibits mixed properties. From the last equation it is possible to notice
that the finite velocity of the free boundary, ∂{x; u(x, t) = 0} = ∂{x; p(x, t) = 0}, coincides with
the velocity field of the density, (1.9). For this reason, in the framework of diffusion equations,
the porous medium equation is also referred to as slow diffusion, while the same equation for
m < 1 is called fast diffusion.

Physical interpretation

Let us mention here the first notable application of the porous medium equation and its derivation
in the context of fluid mechanics, which is due to Leibenzon (1930) and Muskat (1933). They
describe the flow of a gas in a porous medium through the following system

∂ϱ

∂t
+∇ · (ϱv⃗) = 0,

v⃗ = −µ
ν
∇p, p = P (ϱ),



1.3. Incompressible limit of porous medium models 11

where ϱ(x, t) indicates the gas density, which evolves under the usual continuity equation, and
p(x, t) denotes the density-related pressure. The positive constants ν and µ represent the viscosity
of the fluid and the permeability of the medium, respectively. The velocity field is linked to the
pressure through the second equation of the system. The closure relation between pressure and
density is given by the barotropic power law

p = P (ϱ) = poϱ
γ ,

where γ = 1 for isothermal gases and γ > 1 for adiabatic gas flows. Therefore, one can rewrite
the continuity equation of the density as follows

∂ϱ

∂t
= ∇ ·

(µ
ν
ϱ∇p

)
= p0

µ

ν
∇ · (ϱ∇ϱγ) = p0

µ

ν

γ

γ + 1
∆ϱγ+1.

To recover the classical porous medium equation, we choose µ = ν and p0 = (γ+1)/γ. Therefore,
taking γ + 1 = m we get (1.7) and (1.8).

Regularity

The definition of a class of weak solutions for Eq. (1.7) was first given in the one dimensional
case in [127], where the authors prove existence and uniqueness of solutions in that class. We
here give the definition of weak solution to Eq. (1.7) which is the one we will always consider
throughout the subsequent chapters of the thesis.

Definition 1.3.1 (Weak solution of the PME). A locally integrable function u defined in Rd ×
(0, T ) is said to be a weak solution of (1.7) with initial condition given by u0 ∈ L1(Rd) if

(i) um ∈ L2(0, T ;H1(Rd)),

(ii) u satisfies ∫ T

0

∫
Rd

(
∇um · ∇φ− u

∂φ

∂t

)
dxdt =

∫
Rd

u0(x)φ(x, 0) dx,

for any φ ∈ C1
comp(Rd × [0, T )).

It is well known that for compactly supported initial data u0, even if continuous, the porous
medium equation does not admit a global classical solution due to its degeneracy (i.e. due to
the appearance of a free boundary). In fact, for compactly supported initial data, it is not
possible to have a solution of the Cauchy problem whose gradient is continuous in space. The
discontinuity of ux was proven in [100], where for the one-dimensional problem, the author proves
that there always exists a point of discontinuity of ux(t) for each t > 0, even for smooth initial
data, u0 ∈ C∞(R). Nonetheless, in spatial neighborhoods of points in which u(x, t) takes positive
values, weak solutions satisfy the problem in the classical sense. In particular, if we lift the initial
data so that uε(·, 0) ⩾ ε, then there exists a unique classical solution, uε ⩾ ε.
An explicit formula is available for source solutions of Eq. (1.7), i.e. u(x, t) such that u(x, t) →
Mδ(x) as t → 0, where M :=

∫
u0(x) dx. The so-called Barenblatt solution is a self-similar

profile given by the following expression

B(x, t;M) := t−αF (x/tβ), F (ξ) := (C − κ|ξ|2)
1

m−1

+ ,

where
α =

d

2 + d(m− 1)
, β =

1

2 + d(m− 1)
, κ =

α(m− 1)

2md
,
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and C > 0 is a constant determined by the mass M . This profile gives the simplest example of
solution that does not satisfy the equation in the classical sense.
The regularity of solutions of the porous medium equation was extensively studied for decades,
originating from the works of Aronson, Caffarelli, Crandall, Friedman, and Pierre in the ’70s. In
[7], Aronson investigates the problem in dimension one, analysing the free boundary of compactly
supported solutions. In order to give a more precise characterisation of the free boundary, i.e. the
curves that separate {(x, t);u(x, t) > 0} from {(x, t);u(x, t) = 0}, the author proves a lower
bound on the second derivative of the pressure. Assuming that essinfsuppu0(p0)xx ⩾ −α for
some α > 0, then ∂2xxp(x, t) ⩾ −α for all (x, t) such that u(x, t) > 0. This estimate was later
established in any spatial dimension by Aronson and Bénilan, [9], and is now named after the
two authors

∆p = ∆

(
m

m− 1
um−1

)
⩾ − 1

kt
, with k = m− 1 +

2

d
. (1.12)

Let us mention that this lower bound on the Laplacian of the pressure is used by the authors
to prove that there exists a unique strong and continuous solution to the Cauchy problem with
L1-bounded initial data. The Aronson-Bénilan estimate (AB in short) is usually referred to as
the fundamental estimate in the theory of the porous medium equation and it will be further
discussed in Section 1.4.
Let us come back to the regularity of solutions in dimension one. The free boundary of the set
Ω(t) := {x; u(x, t) > 0} consists of two monotone curves: there exist ζi(t), i = 1, 2, such that

Ω(t) = {x; ζ1(t) < u(x, t) < ζ2(t)},

where both −ζ1(t) and ζ2(t) are monotone increasing, see [100], and Lipschitz continuous for
positive times, see [7]. In 1979, Caffarelli and Friedman proved that ζi are actually continuously
differentiable after a certain time t = t∗i , [41]. At this point, there can be a jump discontinuity
of the velocities ζ ′i(t), therefore the Lipschitz regularity of the interfaces is optimal in dimension
one.
A fundamental step forward in the quest for the regularity properties of the PME was made
in [42] where the authors prove Hölder continuity of both the free boundary and u(x, t) in any
dimension. Later in 1987, Caffarelli, Vázquez and Wolanski show that the free boundary of
the solution is Lipschitz continuous after a certain waiting time, see [44]. For dimension d > 1
such condition is needed since the free boundary velocity |∇p|, may blow up in finite time. This
occurs if the initial support contains empty patches that close after a certain finite time t∗ usually
referred to as focusing time. This behavior has indeed attracted a lot of attention in relation
to the global regularity issue. The first study is due to Graveleau [90] after which the solution
is named. The Graveleau solution, also called focusing solution, is a radially symmetric self-
similar solution whose initial support is contained outside of a ball. Thanks to the finite speed of
propagation, the "hole" shrinks in finite time, t∗. This solution represents the simplest example
that shows that global Lipschitz continuity cannot always be expected. Indeed, for d ⩾ 2, the
solution is smooth on its support only after the focusing time t∗, after which the initial "hole"
has closed up (or focused), [8, 11]. For more insights on the regularity of PME’s solutions in
Sobolev spaces we refer the reader to [84].

Filtration equation

In 1982, Crandall and Pierre extend the Aronson-Bénilan inequality for a broader class of de-
generate and nonlinear equations. Investigating the regularity of the filtration equation, namely
ut = ∆φ(u), where φ is a continuous, non-decreasing function with φ(0) = 0. In [58] the authors
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prove an L∞-lower bound on ut = ∆φ(u).
In [18], Bénilan and Crandall establish the continuous dependence of the filtration equation on φ
using nonlinear semi-group theory which enables them to allow for cases of φ being a monotone
graph. As a matter of fact, their paper also covers the first result on the incompressible limit,
which consists of letting m → ∞, upon choosing φ(z) = zm. The authors prove a convergence
result in the particular case of non-negative initial data such that ∥u0∥∞ ⩽ 1.

1.3.2 From the PME to the Hele-Shaw problem
A question that has fascinated many researchers in the last few decades is to understand the
behavior of the porous medium equation as the exponent m becomes larger and larger. As it is
now well known, a compactly supported solution um develops sharp interfaces as m → ∞. In
particular, the appearance of a saturated region occurs, i.e. a zone where u∞ = 1, which is closely
related to the domain of a free boundary problem known as the Hele-Shaw problem. Despite being
quite different from a mathematical viewpoint, the PME and the Hele-Shaw problem share a
crucial common feature. In fact, in both cases the flow is induced by Darcy’s law.
Before introducing the underlying principles behind the incompressible limit m → ∞ and sum-
marizing the early results in the literature, let us give a short overview of the Hele-Shaw problem.

The Hele-Shaw problem

The Hele-Shaw problem is a free boundary problem which was first introduced to model the
injection of a fluid into a laminar cell, see [138]. The fluid surface expands in the small gap
between two parallel flat plates that form the cell, also called Hele-Shaw cell, named after Henry
Selby Hele-Shaw who studied the phenomenon in 1898. In 1972, Richardson analyses the Hele-
Shaw problem for a point source injected into an infinite cell. Originally the model was motivated
by applications to plastic industry, in particular to injection moulding, see [138].
The same problem was then approached from a variational point of view by Elliot and Janovský.
In [74], they consider a finite cell and a finite source. Moreover, the injected fluid is assumed
to be incompressible and the pressure variations which are perpendicular to the cell surface are
neglected, since the space between the plates is infinitesimally small. This property is the main
characteristic of the Hele-Shaw flow. The fluid "blows" from the injection point with constant
rate Q. Hence, after a certain time t the increment of the fluid blob is Qt volume units.
As already mentioned the main feature of the Hele-Shaw flow is the fact that the movement of
the fluid is governed by Darcy’s law (1.2), where κ is a positive constant that depends on the
fluid viscosity and the depth of the cell. From now on, without loss of generality we assume
κ = 1.

Figure 1.1: Domain of the Hele-Shaw problem

The problem is set as displayed in Fig.1.1. The curve ΓI is the curve through which the fluid
is blown into the cell at velocity Q. At time t = 0, the fluid occupies the region between ΓI
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and Γ0 denoted Ω0, while Ω(t) is the area occupied at time t > 0 included between ΓI and Γ(t).
We denote by Ω the entire domain, i.e. the region included between ΓI and the exterior fixed
boundary Γ.
Since the fluid is assumed to be incompressible the velocity field is divergence free in the region
it occupies, namely

∆p = 0, in Ω(t).

The pressure on Γ(t) is assumed to be constantly equal to zero and the normal velocity of the
free boundary Γ(t) is equal to the opposite of the normal derivative of the pressure V = −∂νp.
The flow is assumed to be tangential to the outer boundary of the cell, therefore ∂νp = 0 on Γ.
Let us assume that for some function l = l(x), the moving boundary and the fluid surface can
be defined as

Γ(t) = {x; t− l(x) =: S(x, t) = 0},

Ω(t) = {x; l(x) < t}.

The Hele-Shaw problem in the sense of Elliot-Janovský [74] can be stated as follows.

Problem 1.3.2 (Original Hele-Shaw problem). Find l(x) and p(x, t), x ∈ Ω and t ∈ (0, T ] such
that

{
l(x) = 0, for x ∈ Ω0,

∆p(x, t) = 0, for x ∈ Ω(t),



p = 0, on Γ(t),

∂νp = −V, on Γ(t),

∂νp = Q, on ΓI ,

∂νp = 0, on Γ.

(1.13)

As observed in [74], the Hele-Shaw problem is actually a Stefan problem with zero specific heat.
Indeed, if we replace ∆p = 0 by c∂tp−∆p = 0 where p represents the temperature of water and
c > 0 is the specific heat, Problem 1.13 describes the evolution of the surface of contact between
water and melting ice.
As shown in [107], cusp-like singularities may appear on the free boundary, therefore the Hele-
Shaw problem does not necessarily have a global classical solution. A weaker notion of solution
is then introduced. Using the Baiocchi’s transform it is possible to find an equivalent problem
which consists of an elliptic variational inequality. Let w be the transform of p, namely

w(x, t) =



0, for x ∈ Ω \ Ω0, t ∈ [0, l(x)],∫ t

l(x)

p(x, τ) dτ, for x ∈ Ω \ Ω0, t ∈ [l(x), T ],∫ t

0

p(x, τ) dτ, for x ∈ Ω0, t ∈ [0, T ].

Let 1Ω0
be the characteristic function of Ω0. Then, w satisfies the following complementarity

problem

{
−∆w − (1Ω0 − 1) ⩾ 0, w ⩾ 0,

(−∆w − (1Ω0 − 1))w = 0,


∂νw = Qt on ΓI ,

∂νw = 0 on Γ,

w = 0, ∂νw = 0 on Γ(t).

(1.14)

This problem is equivalent to the following variational formulation for which existence and
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uniqueness results are proven in [74].

Problem 1.3.3 (Variational inequality formulation of the HS problem). Let H = {v ∈ H1(Ω); v ⩾
0 almost everywhere in Ω}. Find w(t) ∈ H for each t ∈ (0, T ) such that for all v ∈ H∫

Ω

∇w · ∇(v − w) dx ⩾
∫
Ω

(1Ω0
(x)− 1)(v − w) dx+

∫
Γ

Qt(v − w) dσ. (1.15)

The Hele-Shaw problem in a bounded domain Ω with a point source is analogously studied in
[55], where the authors prove the well-posedness of the variational inequality formulation.

Incompressible limit of the Cauchy problem

Following the work of Bénilan and Crandall on the continuous dependence of the filtration
equation [18], the asymptotic behaviour of the following Cauchy problem attracted increasing
attention 

∂u

∂t
= ∆um, x ∈ Rd, t > 0,

u(x, t) = u0(x) ⩾ 0, u0 ∈ L1(Rd) ∩ L∞(Rd).
(1.16)

Before briefly reviewing the seminal works on the incompressible limit achieved from the late ‘80s,
let us give a formal and intuitive explanation of the leading mechanisms behind this asymptotics.
The PME can be rewritten as a continuity equation as follows

∂um
∂t

= ∇ · (D(um)∇um), D(um) = mum−1
m ,

where we highlight the dependency upon the parameter m using subscripts. It is immediate to
see that when m→ ∞ the non-linear density-dependent diffusivity coefficient D(um) behaves as
follows

D(um)
m→∞−−−−→

{
0, when u < 1,

∞, when u > 1.
(1.17)

As a consequence, there exists a region in which the limit solution u∞ is constantly equal to 1
and outside of which it coincides with the initial data. Indeed, since the diffusivity coefficient
blows up where the initial data is larger than 1, the solution instantaneously collapses to the
level 1 as m → ∞. On the other hand, where u0 < 1 the diffusivity coefficient vanishes and
thus the solution "stays still" as m→ ∞. This heuristic argument suggests that in the limit the
solution of the Cauchy problem (1.16) converges to a stationary limit u∞ = u∞(x).
In [73], Elliott et al. show the formation of a plateau-like region, which they refer to as mesa, of
nearly constant density um, for m ≈ ∞, using formal asymptotic expansions and working with
radial solutions. The authors conjecture that there exists a region where the limit profile of the
solution is nearly constant and outside of which it approximates the initial data u0, although they
do not provide a rigorous derivation. Moreover, they show that the mesa region is associated with
the variational inequality formulation of the Hele-Shaw problem. This will be proven rigorously
in [45] for star-shaped initial data, in [142] for radially symmetric initial data and in [17] in a
more general setting.
In [45], Caffarelli and Friedman consider the limit of the Cauchy problem (1.16) assuming weaker
conditions on the initial data with respect to the work on the filtration equation by Bénilan and
Crandall [18]. In fact, they are the first to include the case in which the L∞-norm of the initial
data is greater than 1. The "stationarity" of the limit density, i.e. u∞ = u∞(x), is deduced upon
combining three tools: uniform bounds, the AB estimate, and the conservation of mass. First of
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all, as explained above, Prob. (1.16) admits a unique non-negative weak solution um. Using the
comparison principle, it is immediate to see that the solution satisfies

0 ⩽ um ⩽ ∥u0∥∞. (1.18)

As a consequence, um converges weakly∗ in L∞ to some limit u∞, up to a subsequence. Here,
the classical Aronson-Bénilan estimate (1.12) proven in [9] plays an essential role in that it gives

∂um
∂t

⩾ − um(
m− 1 + 2

d

)
t
.

Therefore, for any ψ ∈ C∞
0 (Rd × (0,∞)), ψ ⩾ 0, the above inequality implies

−
∫∫

um
∂ψ

∂t
dx dt ⩾ −

∫∫
um(

m− 1 + 2
d

)
t
ψ dxdt −→ 0,

and consequently

−
∫∫

u∞
∂ψ

∂t
dxdt ⩾ 0.

It is then possible to conclude that for any t > s > 0

u∞(·, t) ⩾ u∞(·, s), almost everywhere in Rd. (1.19)

Finally, the mass conservation property of the PME and the convergence of um in C((0,∞), L1(Rd))
proven in [18] imply ∫

Rd

um(x, t) dx =

∫
Rd

um(x, s) dx,

↓ ↓∫
Rd

u∞(x, t) dx =

∫
Rd

u∞(x, s) dx,

which combined with Eq. (1.19) leads to u∞(x, t) = u∞(x), namely the limit u∞ is time-
independent.

In [45] the authors also show that 0 ⩽ u∞ ⩽ 1. In fact, if ∥u0∥∞ < 1, they infer that u∞ = u0
in a different way and independently from the result in [18]. When ∥u0∥∞ ⩾ 1 they show that

u∞(x) =

{
1, for x ∈ A,

u0(x), for x /∈ A,
(1.20)

where A is defined as the non-coincidence set of the solution to the following variational inequality
problem

w ∈ L1(Rd), ∆w ∈ L1(Rd), −∆w − (u0 − 1) ⩾ 0, w ⩾ 0, (−∆w − (u0 − 1))w = 0, a.e. in Rd,
(1.21)

which means
u∞ = ∆w + u0. (1.22)
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In fact, the authors prove that

w(x0) :=

∫
Rd

(u0(x)− u∞(x))Γx0(x) dx,

is the unique solution of Prob. (1.21), where Γx0
is the fundamental solution of −∆. Secondly,

they show that u∞ satisfies (1.20) with A = {w > 0}, [45, Theorem 5.3] and therefore they infer
the uniqueness of the limit.
Let us mention that in [45] the authors impose strong geometric assumptions on the initial data,
such as u0 continuously differentiable in its support and star shaped with respect to the origin.
These assumptions are weakened by Sacks in [142], where only radial symmetry is assumed, and
later by Bénilan et al. in [17], where taking u0 ∈ L1(Rd) is sufficient.
It is worth noting that the variational inequality problem (1.21) is the equivalent, in the whole
space Rd, of the Hele-Shaw problem (1.14) studied by Elliot and Janovský, in the case of initial
data given by a patch, i.e. u0 = 1Ω0 . However, there is a main difference between the Hele-Shaw
problem (1.13)-(1.15) and the limit problem generated by the PME in the asymptotic m → ∞:
the "stationarity" of the solution. Indeed, while the solution of Eq. (1.15) depends on time and
the free boundary is a moving interface, the limit density u∞ = u∞(x) is independent of time,
as is the solution w = w(x) of (1.21). It is interesting to notice that this is not in contrast with
the dynamics that drive the Hele-Shaw flow. As explained above, the Hele-Shaw flow is induced
by Darcy’s law, i.e. the velocity field has the same direction as the gradient of the pressure. In
Section 1.3.1 we analyzed the physical meaning of the PME, which is also induced by Darcy’s
law, cf. (1.10), with velocity field given by −∇p where the pressure is p = mum−1/(m − 1). As
one can deduce from Eq. (1.11) set in the whole space Rd, as m → ∞ the pressure vanishes
instantaneously, thus the limit pressure is equal to zero almost everywhere, as is its gradient.
Therefore, there is no evolution in the limit problem, which can be seen as a "stationary" Hele-
Shaw problem.
The picture drastically changes if we set the porous medium equation in a bounded domain with
non-trivial boundary conditions, as explained in the following paragraph.

The boundary valued problem

The limit m→ ∞ of the PME set in a bounded domain with homogeneous Dirichlet or Neumann
boundary conditions was first studied in [17], where the authors prove um → u0 + ∆w, with
w a solution of corresponding variational inequalities. For both conditions, the limit solution
is stationary and the variational inequality system coincides with a "motionless" Hele-Shaw
problem.
The asymptotic behavior changes significantly for the Cauchy-Dirichlet problem with non-homogeneous
boundary conditions 

∂um
∂t

= ∆umm, x ∈ Ω, t > 0,

um(x, 0) = u0(x) ⩾ 0, x ∈ Ω,

um(x, t)m = g(x, t) ⩾ 0, x ∈ ∂Ω, t > 0,

(1.23)

where Ω ⊂ Rd is an open subset with non-empty boundary ∂Ω. In 2001, Gil and Quirós analysed
the incompressible limit for the above problem for time-independent boundary data g = g(x),
[87].
Let us point out that as m ≈ ∞, umm ≈ pm. Hence, imposing the boundary condition in (1.23)
is equivalent to fixing the value of the pressure on the boundary. Usually the quantity vm = um
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is referred to as the generalized pressure.
Let us notice that given a set Ω large enough, the case g ≡ 0 coincides with the problem studied
by Caffarelli and Friedman in [45] in the whole space Rd. Indeed, in [87] Gil and Quirós are able to
recover the same result from a different perspective by focusing on the role of the pressure rather
than the density itself. This is indeed the main novelty introduced by the authors who center
the analysis around pm rather than um. For vanishing Dirichlet boundary data, i.e. g ≡ 0, the
"stationarity" of the limit Hele-Shaw problem can be seen by analyzing the asymptotic behavior
of pm. Indeed, in the limit, the pressure vanishes almost everywhere. This can be easily seen
by letting m → ∞ in the pressure equation (1.11). In conjunction with the uniform essential
bounds, this immediately yields ∥∇p∞∥L2(Ω×(0,T )) = 0, by the following argument∫ T

0

∫
Ω

|∇pm|2 dx dt = 1

m− 2

∫
Ω

(p0m − pm(T )) dx
m→∞−−−−→ 0. (1.24)

Therefore, the boundary of the limit HS problem is actually motionless.
The central role of the pressure in [87] is motivated by the fact that for non-vanishing boundary
data the pressure pm that solves (1.23) does not vanish as m→ ∞. Indeed, if g ⩾ 0 is non-trivial,
the pressure is "forced" to be positive somewhere near the outer boundary ∂Ω. Since the pressure
gradient is no longer zero, the motion of the free boundary ∂{p∞ > 0} is governed by Darcy’s
law V = −∂νp∞. Let us also stress that the mass conservation property no longer holds since
there is a source term on the boundary of Ω. Consequently, the proof of the "stationarity" of
u∞, which relies on the AB estimate reported above, fails. Similarly, the proof of ∥∇p∞∥L2 = 0
by Eq. (1.24) no longer holds true due to the fact that the boundary term arising from the
integration by parts no longer vanishes.
As a consequence, the main effect induced by imposing non-vanishing boundary data is the
"nonstationarity" of the limit problem, which here turns out to be the standard Hele-Shaw
problem {

∆p(x, t) = 0, in {x; p(x, t) > 0},
V = −∂νp, on ∂{x; p(x, t) > 0}.

As already mentioned, using the Baiocchi transform w(x, t) =
∫ t
0
p(x, τ) dτ the HS problem

can be rewritten as a variational inequality problem. Let Ω0 be the initial pressure support,
i.e. supp (p0) = Ω0, then w satisfies the variational inequality

−∆w − (1Ω0 − 1) ≥ 0, w ≥ 0, (−∆w − (1Ω0 − 1))w = 0, (1.25)

with boundary data w =
∫ t
0
g(x, τ) dτ on ∂Ω.

In [87] the authors prove that for time-independent boundary data, i.e. g = g(x), the pressure
pm related to the solution of the PME (1.23) converges to the weak solution of the Hele-Shaw
problem in the sense of Elliot-Janovský, namely

pm → p∞, strongly in L1(Ω× (0, T )),

and p∞ is the solution of (1.25) with Ω0 = {x; p(x, 0) > 0}.
In order to obtain this result, the authors introduce a new definition of weak solution of the
HS problem, and prove that the limit p∞ satisfies this weak formulation. It is our interest to
introduce this definition since, from now on, we will only deal with this notion of weak solution
rather than the original one by Elliot-Janovský. In [87] it is proven that the two solutions coincide
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in the case of initial data given by a patch.

Definition 1.3.4 (Weak solution of the Hele-Shaw problem). Let u0 ∈ L2(Ω), u0 ⩾ 0 and
g ∈ L2

loc([0, T );H
1(Ω)), g ≥ 0. The pair of non-negative and measurable functions (u, p) is a

weak solution of the Hele-Shaw problem in Ω with initial data u0 and boundary data g, if

(i) u ∈ L2
loc([0,∞);L2(Ω)), p ∈ L2

loc([0,∞);H1(Ω)),

(ii) ∀φ ∈ C2,1
comp(Ω× [0,∞)) vanishing on ∂Ω× (0,∞), u satisfies∫ ∞

0

∫
Ω

(
u
∂φ

∂t
−∇p · ∇φ

)
dx dt+

∫
Ω

u0φ(x, 0) dx = 0, (1.26)

(iii)

p ∈ Φ(u) :=

{
0, 0 ⩽ u < 1,

[0,∞), u = 1,
(1.27)

(iv) p− g ∈ L2
loc([0,∞);W 1,2

0 (Ω)).

The authors prove that the solution (u, p) defined above is unique. Moreover, let p̄ be the solution
of the Hele-Shaw problem (1.25) in the sense of Elliot-Janovský with initial support Ω0 = {p̄0 >
0}. By [87, Corollary 4.5], p̄ = p, where p is the solution in the sense of Definition 1.3.4 with
initial data given by u0 = 1Ω0

.
Let us give a formal derivation of Eq. (1.26) as the limit of the porous medium equation, i.e. we
formally deduce that the limit (u∞, p∞) is a solution in the sense of Definition 1.3.4. First of all,
we can write the PME as follows

∂um
∂t

= ∆

(
m− 1

m
pm

) m
m−1

. (1.28)

Hence, by passing formally to the limit m→ ∞ we find

∂u∞
∂t

= ∆p∞, (1.29)

whose weak formulation is given by Eq. (1.26).
Moreover, the relation between pm and um implies(

m

m− 1
pm

) m
m−1

= umm =
m− 1

m
pmum,

from which we can formally recover p∞ = p∞u∞, namely

p∞(1− u∞) = 0, (1.30)

which is equivalent to the graph relation p∞ ∈ Φ(u∞) in Eq. (1.27). This relation is fundamental
in the theory of the incompressible limit of the PME, and, as we will show in the following
chapters, different methods to derive it have been provided in the literature. We will be referring
to this relation as saturation relation, since it implies that in regions of positive pressure the
density is totally saturated, i.e. u∞ ≡ 1. This is consistent with the fact that (u∞, p∞) is a
solution of the Hele-Shaw problem, where an incompressible fluid moves under Darcy’s law.
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Moreover, combining formally Eq. (1.30) and Eq. (1.29) we have ∆p∞(t) = 0 in {x; p∞(x, t) > 0},
i.e. we recover once again the standard equation of the Hele-Shaw problem. This can also be
inferred from

p∞∆p∞ = 0, (1.31)

which can be obtained by passing to the limit in the pressure equation (1.11).
The above equation on the limit pressure is usually referred to as complementarity relation.
To prove Eq. (1.31) rigorously for porous medium-reaction-advection equations is an involved
analytical challenge that has recently attracted great interest in the context of living tissue
models.

1.3.3 Recent developments: tumor growth models

Emanating from the early works on the mesa problem for the porous medium equation, research
began branching out in different directions. In this section, we aim at giving a brief overview of
different extensions of the porous medium equation, applications of the models obtained this way
to tumor growth description, as well as techniques used to study their respective incompressible
limits analytically.
The first generalisation concerns the inclusion of a pressure-dependent growth term, and was
proposed in [130]. As we presented in Section 1.3.2, the limit of the PME Cauchy problem is
stationary, unless we set the equation in a bounded domain and impose non-trivial boundary
conditions that act like a sort of "injection" of fluid, hence inducing a moving boundary with
speed related to the pressure gradient. If the Cauchy problem is set in the whole space, "nonsta-
tionarity" can be induced by a different mechanism, which is the source/sink effect obtained by
including a reaction term into the equation. As in the boundary valued problem, the "injection"
of new mass implies that the set {p∞ > 0} is non-empty and its dynamics is governed by a
Hele-Shaw-type flow.
Most recently, the inclusion of migratory processes, i.e. local and non-local drift terms, as a
model extension received a lot of attention. We also aim at shortly presenting the results on the
incompressible limit for models using different pressure laws, or different relations between ve-
locity field and pressure. We conclude the section by mentioning cross-reaction-diffusion models,
where a system of two or more interacting species is considered.

Models including cell proliferation

The first generalisation concerns the inclusion of a pressure-dependent growth term proposed
in [130] by Perthame, Quirós and Vázquez. The authors present a tumor growth model that
originates from the one by Byrne and Drasdo, [37]. The cells move according to Darcy’s law, and
the tissue pressure p = p(x, t) is generated by the cell population density n = n(x, t) through the
compressible law of state p(n) = mnm−1/m− 1, m > 2. As shown in Sec. 1.3.1, in conjunction
with Darcy’s law this leads to a porous medium-type diffusion. In addition, they include a
proliferation term, nG(p), which models cells divisions with a pressure-penalised rate

∂nm
∂t

−∇ · (nm∇pm) = nmG(pm). (1.32)

As mentioned in Section 1.1, cells are less "willing" to divide in packed regimes. Therefore, the
proliferation rate, G, is assumed to be a decreasing function of the pressure

G′(p) < 0, G(pH) = 0, (1.33)
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where, as in [37], the homeostatic pressure pH represents the lowest level of pressure that prevents
cell multiplication due to contact inhibition.

Their paper is seminal in that the authors were the first to perform the rigorous stiff pressure
limit in the presence of growth terms. In this case, the pressure equation (1.11) reads

∂pm
∂t

= (m− 1)pm(∆pm +G(pm)) + |∇pm|2. (1.34)

Therefore, as for the boundary valued problem with non-trivial boundary conditions (1.23), the
proof of ∥∇p∞∥L2 = 0 fails, due to the non-trivial reaction term, namely∫ T

0

∫
Rd

|∇pm|2 dxdt = m− 1

m− 2

∫ T

0

∫
Rd

pmG(pm) dxdt+
1

m− 2

∫
Rd

(p0m−pm(T )) dx↛ 0. (1.35)

Therefore, the region Ω(t) := {x; p∞(x, t) > 0} is non-empty and evolves under a Hele-Shaw
flow. In fact, passing formally to the limit in the pressure equation, one can obtain the following
problem

p∞(∆p∞ +G(p∞)) = 0, (1.36)

p∞ ⩾ 0, 0 ⩽ n∞ ⩽ 1, p∞(1− n∞) = 0. (1.37)

Let us recall that Eq. (1.36) is known in the literature as complementarity relation, and it is
the equivalent of Eq. (1.31) for non-trivial reaction terms. Once again we find the saturation
relation (1.37), which implies that the positivity set of the pressure is contained in the saturation
region of the density, namely Ω(t) ⊂ {x; n∞(x, t) = 1}. In the presence of non-negative growth
rate G (which is the case here since it is possible to prove that 0 ⩽ pγ ⩽ pH uniformly) the
two sets actually coincide. Indeed, let us assume there exists (x, t) such that n∞(x, t) = 1
and p∞(x, t) = 0. Taking m → ∞ in Eq. (1.32) it is easy to see that n∞(x, t) should growth
exponentially with rate G(0), which is a contradiction since 0 ⩽ n∞ ⩽ 1.

Let us point out that, in order to have a complete representation of the solution behavior in
the limit, Eq. (1.36) is not sufficient. In fact, the complementarity relation does not tell us
what is the behavior of the limit solution in the mushy regions, namely those regions in which
p∞ = 0 and n∞ < 1 and in which the density grows exponentially. Thus, in order to have a
full description of the limit problem, the equation on the limit density (which is the analogue of
(1.29)) is necessary

∂n∞
∂t

−∆p∞ = n∞G(p∞). (1.38)

Indeed, in [130] the authors show that n∞ is a weak solution of a reaction-Hele-Shaw problem
in the sense of Definition 1.3.4.

Let us notice that passing to the limit in the pressure equation (1.34) is much more involved than
obtaining Eq. (1.38) from Eq. (1.32). Indeed, the weak compactness of ∇pm in L2(Rd × (0, T ))
can be easily inferred from Eq. (1.35). Therefore, the strong compactness of pm and nm is
absolutely sufficient for the Hele-Shaw limit of (1.32). On the other hand, this is not true
when attempting to infer the complementarity relation (1.36). In order to prove it rigorously,
the strong compactness of the pressure gradient is indispensable. To this purpose, obtaining
a certain control on ∆pm is one of most common strategies. Let us point out that since the
pressure has "corners" on the moving boundary, we cannot expect ∆pm to be more regular than
a measure. In [130] using the comparison principle, the authors show that the Laplacian of the
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pressure satisfies an Aronson-Bénilan type estimate, namely

∆pm +G(pm) ≳ − C

mt
, for t > 0. (1.39)

Combining this estimate with a time-regularising argument, the authors are able to prove the
complementarity relation (1.36).

To complete the description of (1.38) as a Hele-Shaw flow, one should include the velocity of the
moving boundary ∂Ω(t) = ∂{x; p∞(x, t) > 0}. From Eq. (1.34), one can infer ∂tp∞ = |∇p∞|2.
Hence, at least at a formal level, the speed should be V = |∇p∞|. This is indeed true if the initial
data is the characteristic function of a bounded set, as was proven in [130] and later in [123].
However, allowing for the presence of mushy regions introduces a novelty in the characterisation
of the limit problem. As conjectured in [130], the presence of regions where 0 < n∞ < 1 influences
the velocity of the free boundary. Let us show with a formal argument how the velocity of the
moving boundary should be related to the pressure in the case of non-empty mushy regions,
see [102]. We denote by nI∞ and nE∞ the value of n∞ inside and outside of Ω(t), respectively.
Integrating Eq. (1.38) and formally applying Reynold’s transport theorem, we obtain∫

Rd

n∞G(p∞) dx =
d

dt

∫
Rd

n∞ dx

=
d

dt

(∫
Ω(t)

n∞ dx+

∫
Rd\Ω(t)

n∞ dx

)

=

∫
Ω(t)

∂nI∞
∂t

dx+

∫
∂Ω(t)

V
(
nI∞ − nE∞

)
dσ +

∫
Rd\Ω(t)

∂nE∞
∂t

dx

=

∫
Ω(t)

∆p∞ dx+

∫
∂Ω(t)

V
(
nI∞ − nE∞

)
dσ +

∫
Rd

n∞G(p∞) dx

=

∫
∂Ω(t)

(
∂νp∞ + V

(
1− nE∞

))
dσ +

∫
Rd

n∞G(p∞) dx,

where V indicates the normal velocity of ∂Ω(t). This suggests that, in the presence of mushy
regions, the normal boundary velocity under which ∂Ω(t) evolves satisfies V (1− nE∞) = −∂νp∞,
see (1.40). This result was rigorously proven in [102] through a viscosity solutions approach. The
authors pass to the limit in Eq. (1.32) and show locally uniform convergence of the density away
from the free boundary ∂{p∞ > 0}. Moreover, they prove locally uniform convergence of the
pressure (as long as the limit is continuous) and that p∞ is the viscosity solution of the following
Hele-Shaw problem 

−∆p∞ = G(p∞), in {p∞ > 0},

V =
|∇p∞|

1−min(1, nE∞)
, on ∂{p∞ > 0},

(1.40)

where the normal velocity law was only formally presumed in [130], but not rigorously proven.
As already mentioned, outside of Ω(t) the density grows exponentially, thus the external density
is given by nE∞(x, t) = n0(x)e

G(0)t. When the trace of n∞ from the set {n∞ < 1} vanishes,
i.e. nE∞ = 0 on ∂Ω(t), we obtain once again the classical Hele-Shaw flow, namely, the boundary
moves under Darcy’s law.

Let us stress the fact that, as the velocity law suggests, the density shows jump discontinuities
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at the free boundary. Moreover, the velocity blows up when the density reaches value 1. As
a consequence, if at a certain time s > t a new mesa of non-zero measure appears outside of
{p∞(t) > 0}, the pressure becomes instantaneously positive in the new nucleated region, hence
exhibiting time discontinuities.
The equivalence between Eq. (1.37)-(1.38) and the free boundary problem (1.40) was further
studied in [123], where Mellet et al. prove that the velocity law of the free boundary holds
both in a weak (distributional) and in a measure theoretical sense. In the same paper, they also
provide an L4-bound of the pressure gradient that relies on the Aronson-Bénilan estimate (1.39).

Non-monotone case

Let us point out that if 0 ⩽ p0m ⩽ pH , then by the comparison principle the solution of (1.32)
is bounded by pH for all times. Therefore, the reaction term nmG(pm) induces always a non-
negative source/growth and the total mass is non-decreasing. In fact, the monotonicity properties

∂ϱ∞
∂t

⩾ 0,
∂p∞
∂t

⩾ 0,

can be deduced from the AB estimate (1.39), see [130] for the detailed proof. This no longer
holds true if the reaction term can be either a source or a sink. A major difference in this
case is given by the fact that when the reaction is not necessarily non-negative the inclusion
{p∞ > 0} ⊂ {n∞ = 1} is strict. Let us mention that, if G can take negative values, the proof
that the two sets coincide given above does not apply.
Therefore, n∞ might be continuous on some regions of the free boundary ∂{p∞ > 0}. In
particular, this happens when the pressure gradient is continuous as well, as shown in [131] for
travelling waves solutions in dimension 1. On the one hand, if |∇p∞| > 0 on ∂{n∞ = 1} then
the boundary is expanding with a Hele-Shaw-type flow, with velocity given by (1.40). On the
other hand, if |∇p∞| = 0, the boundary might recede. In fact, since (1− nE∞)V = |∇p∞|, if the
pressure gradient vanishes, either the velocity of the boundary is zero or nE∞ = 1, i.e. the limit
density is continuous across the free boundary. In the latter case, as proven in [93] through a
viscosity solution approach, a retraction of the saturated region might occur.
It is interesting to notice that in the case of non-monotone reaction terms, the movement of the
free boundary is not only determined by the Hele-Shaw flow, but it also depends on a completely
different dynamics generated by the loss of mass.

Models including local and non-local drifts

A different mechanism that may generate an alternation of forward and backward movements of
the free boundary, even in the absence of growth terms, is the presence of a force field.
In 2010, Kim and Lei introduced the notion of viscosity solution for the porous medium equation
with drift

∂nm
∂t

= ∆nmm +∇ · (nm∇Φ), with Φ : Rd → R,

and they prove that it coincides with the weak solution in the distributional sense [106]. Using
the same viscosity approach, in [1] Alexander et al. study the link between the Hele-Shaw model
with drift {

−∆p = ∆Φ, in {p > 0},

V = −(∇p+∇Φ) · ν, on ∂{p > 0},
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and the congested crowd motion model
∂n

∂t
−∇ · (n∇Φ) = 0, where n < 1,

0 ⩽ n ⩽ 1,

where the latter constraint comes from the singular limit in the nonlinear diffusion term. To prove
the equivalence of the two models, they study the asymptotics of the porous medium equation
with drift as m → ∞. They show that the viscosity solution converges locally uniformly to a
solution of the Hele-Shaw model. At the same time, using the metric setting of the 2-Wasserstein
space, they infer the convergence to the aforementioned congested crowd motion model. To this
purpose, they assume the potential Φ to be sub-harmonic, i.e. ∆Φ > 0. While the convergence
in the 2-Wasserstein distance holds for general initial data 0 ⩽ n0 ⩽ 1, the locally uniform limit
holds only for patches, i.e. n0 = 1Ω0

, with Ω0 a compact set in Rd. Let us also mention that the
authors are able to estimate the convergence rate of the solutions as m→ ∞ in the 2-Wasserstein
distance. In fact, they find

sup
t∈[0,T ]

W2(nm(t), n∞(t)) ⩽
C

m1/24
. (1.41)

The result in [1] was later extended in [57] by Craig et al. to a model with non-local interaction
potential N : Rd → R, i.e.

∂nm
∂t

= ∆nmm +∇ · (nm∇N ⋆ nm).

The main novelty they introduce is that they are able to study the incompressible limit despite
lack of convexity. In fact, unlike the congested drift equation studied in [1], the energy related to
the aggregation equation through the 2-Wasserstein gradient flow structure is not semi-convex,
see [57]. A different approach for the incompressible limit for Eq. (1.32) was taken in [53], where
a transport-growth distance is introduced so that Eq. (1.32) can be understood as a gradient
flow with respect to said metric.
The question of how to pass to the limit m → ∞ in the porous medium equation with a drift
and a non-trivial source term has been addressed in [103]. The authors propose a model with a
generic vector field b⃗ : Rd × R+ → Rd as drift term, namely

∂nm
∂t

−∆nmm +∇ · (nmb⃗) = nmG, (1.42)

with growth rate G = G(x, t). Through viscosity solutions methods, they prove that as m →
∞ the model converges to a free boundary problem of Hele-Shaw type. Their work improves
the results previously achieved in [1], extending the class of initial data from patches to any
continuous and compactly supported function bounded between zero and one.

Different pressure laws and relations

As indicated above, in certain contexts Darcy’s law may not be the appropriate relation that
links the velocity field to the mechanical pressure. Depending on the modelling context and
the model complexity, the pressure is incorporated in the fluid velocity through Stokes flow,
Brinkman’s law or Navier–Stokes’ law. We briefly present recent works on the incompressible
limit for different pressure laws and relations.
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Singular Pressure. As already mentioned, parallel to the advances in the context of incompress-
ible limits with power-law pressures, it has been observed that the singular pressure law of the
form

pε(n) = ε
n

1− n
, (1.43)

can be used to model living tissue, see for instance [96]. Let us recall that (1.43) already
introduces an incompressibility condition in the sense that the pressure blows up when the cell
density reaches the saturated regime, n = 1. Thus, singular pressure laws of this kind are
encountered in scenarios when non-overlap conditions are enforced already at a population-level,
see for instance [69, 128] in the context of congestive collective crowd motion, and [21, 22] in
the context of traffic flow modelling. In [96] the authors are able to show that the pressure in
(1.43) is suitable to pass to the incompressible limit using a generalisation of the Aronson-Bénilan
argument by Crandall and Pierre, cf. [58].

Brinkman Law. Unlike Darcy’s law, using the Brinkman law

−ν∆W +W = p(n),

accounts for visco-elastic effects, [37]. Based on this observation, in [132] the authors propose a
modification of the above model, Eq. (1.32), incorporating the Brinkman law

∂n

∂t
−∇ · (n∇W ) = nG(p).

Different from the Darcy law setting, the authors are forced to use a different set of techniques
since the problem is no longer degenerate parabolic but, instead, of transport nature. While, at
first glance, the Brinkman law has a regularising effect on the velocity field, it makes obtaining
compactness of the pressure a hard endeavour. Using a kinetic reformulation and controlling
oscillations in the pressure finally yields the required compactness to pass to the incompressible
limit and obtain a visco-elastic version of the complementarity relation, cf. [132, Theorem 1.1].
For pressure laws of the form pε(n) = ε1n⩾1 log(n), quite recently, explicit travelling wave profiles
were obtained by [114].

Navier-Stokes flow. It is important to stress that both Darcy’s law and Brinkman’s law are, at
least, formally related to the Navier-Stokes law which can therefore be seen as the most general
relation between the fluid velocity and the mechanical pressure. In [148] the authors prove the
incompressible limit for a proliferating species whose velocity is linked to the pressure through
the Navier-Stokes law thus generalising the case without birth and death processes of [110]. The
authors use the fact that the growth rate is linear in the pressure so that weak compactness of
the pressure suffices in order to pass to the limit, so long as the density itself is strongly compact.
While the weak compactness of the pressure follows from a renormalisation argument the strong
compactness of the density is based on a compactness propagation argument introduced (and
later refined) in [14, 30, 29].

Active Motion. In [129] the authors extend the model of [130] by an additional active motion term
in form of a linear diffusion term. They are able to rigorously perform the incompressible limit.
In fact, they obtain the same complementarity relation as in the absence of active motion without
relying on the Aronson-Bénilan by imposing certain conditions on the initial data. Nonetheless,
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the restriction on the initial data can be dropped by employing the argument of Crandall and
Pierre, in [58]. In [147] the authors propose a very similar model based on Brinkman’s law,
including a linear diffusion term. They observe that travelling waves exist and analyse their
profile.

Fractional Diffusion. In 2015, Vázquez opened another both fascinating and challenging research
direction by addressing the mesa problem in the fractional pressure case, cf. [150]. More precisely,
he studies the incompressible limit, m→ ∞, in the fractional porous medium equation,

∂nm
∂t

+ (−∆)
−s

(nm)
m

= 0,

for s ∈ (0, 1). Unlike the case of classical porous medium type diffusion, the limiting profile
exhibits tails and does not remain compactly supported. The analysis is of orders of magnitude
harder since the classical theory discussed in Section 1.3.2 relies on comparison principles and
the fact that it is known what happens to the Barenblatt profiles in the incompressible limit. In
the fractional setting the source solutions are not known explicitly. Nonetheless, they are the
starting point of the analysis of [150]. Many questions remain open, in particular the inclusion
of other processes such as reactions and drifts.

Multi-Species Systems

Recently, there has been a growing interest in multi-phase extensions of the models presented
above. Instead of merely modelling the evolution of a single species, say, cancer tissue, other
phases such as quiescent cells, healthy tissue, dead tissue, are incorporated into the model. The
extension to multiple interacting species not only leads to interesting behaviors, such as phase
separation, but also raises novel mathematical challenges such as the loss of regularity at internal
layers, i.e. regions where two or more phases get in contact.
In 2018, Carrillo et al. consider the following cross(-reaction)-diffusion system

∂n1
∂t

− ∂

∂x

(
n1
∂χ′(n)

∂x

)
= n1F1(p) + n2G1(p), x ∈ R, t > 0,

∂n2
∂t

− ∂

∂x

(
n2
∂χ′(n)

∂x

)
= n1F2(p) + n2G2(p),

where the single species n1, n2 evolve under nonlinear diffusion represented by χ′(n), which
indicates the opposition to the congestion generated by the total population density n = n1+n2.
Using methods from optimal transport, the authors prove the existence of solutions in the one
dimensional case, [47].
This result was later extended by Gwiazda et al. to higher dimensions in the case where χ′ is
related to the total density by a power law, [94]. Therefore, since both species evolve under
Darcy’s law, the joint population n satisfies a porous medium-type equation with pressure given
by p(n) = χ′(n) = nγ , γ > 1.
Let us mention that in the following parts of the thesis we will use both this simple power law
without coefficients and (1.8). Indeed, the two respective equations are equivalent apart from a
re-scaling coefficient.
The existence result in [94] relies on applying a uniformly parabolic regularisation to the system
and then obtaining the compactness needed to pass to the limit. Certainly, to this end, the
nonlinearity of the cross-diffusion terms ni∇p, i = 1, 2, represents the most involved challenge.
Unlike in [47], only weak compactness is known on the single species ni (since BV -estimates are
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not available for d > 1). Hence, the authors proceed by deducing the strong compactness of the
pressure gradient. To this end, they prove an L2-version of the Aronson-Bénilan estimate which
provides a bound on the Laplacian of the pressure

(∆p)− ∈ L∞(0, T ;L2(Rd)), ∆p ∈ L1(Rd × (0, T )).

However, in order to obtain the above regularity results on the pressure, the authors enforce
a technical condition on the reaction rates, namely F1(0) + F2(0) = G1(0) + G2(0). Later, an
existence result for a cross-diffusion model of the same form was obtained by Price and Xu
avoiding this strong assumption, [135]. In fact, their argument does not rely on any control on
the second derivatives of p = nγ , but it rather focuses on directly studying the compactness of
∇nγ+1.
The incompressible limit for this kind of two-species porous medium models has attracted a lot of
attention as well. Due to the hyperbolic flavour of the single species equations (in contrast with
the parabolic nature of the joint density equation) to infer the required compactness represents
a remarkably challenging problem. In [31], Bubba et al. have established the rigorous incom-
pressible limit for the same model as the one in [94] as γ → ∞ in the pressure law. However,
the lack of regularity is such that only a one-dimensional result could be obtained. Indeed, the
authors are not able to deduce the strong time-compactness of the pressure in dimension greater
than one. This is due to the fact that the proof relies on an L1-version of the Aronson-Bénilan
estimate which only holds in the one-dimensional case. As detailed in the following section, this
particular control requires the Sobolev embedding W 1,1(R) ⊂ L∞(R).
Let us mention that, in a similar fashion, a one-dimensional result could be obtained, see [67],
when the pressure is given by the singular law (1.43) using the generalisation of the Aronson-
Bénilan estimate introduced in [58].
In 2020, [71] proposed a two-cell-type model coupled with nutrients to study the effect of au-
tophagy on tumour growth. In their work they, too, consider an incompressible limit, however
the results remains formal due to difficulties similar to that of the system without nutrients
treated by [31, 67]. The multi-dimensional case for a pressure generated in form of a power law
was later successfully addressed in [115] through a different argument that does not rely on high
order estimates on the pressure p = nγ . On the contrary, the authors’ effort is focused on the
quantity v = nγ+1 which is the power of the density that appears in the porous medium form of
the equation. In this way, they are able to directly show the strong compactness of the gradient,
∇v, avoiding the issue of the strong time-compactness on the pressure itself.
Thanks to the higher regularity of the pressure induced by Brinkman’s law, a more complete
picture on the two-species system was available earlier in this case, see [65, 66]. For early works
on (reaction)-cross-diffusion system we refer the reader to [23, 24, 97] and references therein.

1.4 Regularity à la Aronson-Bénilan: a short review

As briefly presented in the previous section, the Aronson-Bénilan estimate is a well known and
powerful tool which has been widely applied and adapted in the context of porous medium
equations. This estimate and its variations constitute very useful results in that they provide
a control on the second order derivatives of the pressure. Therefore, the AB estimate is often
used in order to show regularity as well as to obtain the compactness needed to pass to the
incompressible limit. Here we aim at giving a short overview of this bound, its origin and some
variations. For a complete review we refer the reader to [26].
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1.4.1 The original estimate: lower bound on ∆p

The original AB estimate provides a lower bound on the Laplacian of the pressure and it has
been proven in 1979 by Aronson and Bénilan in [9]. The core of the proof is the application of
the comparison principle for quasi-linear parabolic operators. Here we present a formal proof.
Let m > 1 and w := ∆p. Let us recall Eq. (1.11), i.e. the pressure equation

∂p

∂t
= (m− 1)p∆p+ |∇p|2.

We compute

∂w

∂t
= ∆

(
∂p

∂t

)
= ∆

(
(m− 1)pw + |∇p|2

)
= (m− 1)w2 + 2(m− 1)∇p · ∇w + (m− 1)p∆w + 2∇p · ∇∆p+ 2

∑
i,j

(
∂2p

∂xi∂xj

)2

⩾ (m− 1)w2 + 2m∇p · ∇w + (m− 1)p∆w +
2

d
(∆p)2,

and thus

∂w

∂t
⩾

(
m− 1 +

2

d

)
w2 + 2m∇p · ∇w + (m− 1)p∆w.

Assuming p is smooth and bounded away from zero, the above inequality implies that w is a
supersolution of a quasi-linear parabolic operator. Let τ > 0. The function

W (t) := − 1

α(t+ τ)
, with α := m− 1 +

2

d
,

is a subsolution of the same operator, since

W ′(t) =
1

α(t+ τ)2
= αW (t)2.

Let us assume that, for τ small enough, w(x, 0) = ∆p(x, 0) ⩾ − 1
ατ = W (0). Therefore, by the

comparison principle for uniformly parabolic operators we find w(x, t) ⩾ − 1
α(t+τ) for t > 0 and

for any τ > 0. Letting τ → 0 we finally find

w(x, t) ⩾ − 1(
m− 1 + 2

d

)
t
, (1.44)

namely, the classical AB estimate (1.12).
Let us notice that the above estimate is independent of any regularisation argument. Therefore,
it can be understood in the sense of distributions for any solution obtained as the limit of regular
solutions, see [9]. Let us report the gist of the argument for the sake of completeness. In order
to apply the comparison principle for quasi-linear parabolic operator we need to approximate
the solution of the PME taking u0,ε(x) = u0(x) + ε. For such initial data, the PME is no
longer degenerate and there exists a unique solution that satisfies uε ∈ C∞(Rd × (0,∞)) and
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uε(x, t) ⩾ ε. Consequently, the pressure pε = m
m−1u

m−1
ε ∈ C∞(Rd × (0,∞)) is bounded away

from zero as well. Then, we can apply the above argument and the AB estimate (1.44) holds for
pε uniformly in ε. One can show that pε → p in L1

loc(Rd × (0,∞)), cf. [149, Lemma 9.5]. Hence,
for any φ ∈ C∞

c (Rd × (0,∞)), φ ⩾ 0, we have∫ ∞

0

∫
Rd

(
∆pε +

1

αt

)
φdx dt ⩾ 0,

and, thus ∫ ∞

0

∫
Rd

(
pε∆φ+

1

αt
φ
)
dxdt ⩾ 0,

↓∫ ∞

0

∫
Rd

(
p∆φ+

1

αt
φ
)
dxdt ⩾ 0,

and this completes the proof, i.e. Eq. (1.12) holds in the sense of distributions.

1.4.2 Including reactions and drifts: L∞-estimates

Starting from the seminal paper by Perthame et al., several variations of the Aronson-Bénilan es-
timate have been proposed in the literature for reaction-advection equations with porous medium
diffusion, as well as for cross-diffusion systems.

AB estimate with reaction terms

The first generalisation of the AB estimate for an equation including a pressure-dependent reac-
tion term, Eq. (1.32), is due to [130]. Under conditions (1.33), and assuming 0 ⩽ p0 ⩽ pH , one
can prove 0 ⩽ p ⩽ pH in Rd × (0,∞). Let us define the non-negative quantity

rG := min
0⩽p⩽pH

(G(p)− pG′(p)) ⩾ 0. (1.45)

Since the equation includes a reaction term, the functional on which it is possible to infer a lower
bound is different from the one considered in the classical AB estimate. Indeed, the authors
define w := ∆p+G(p). Therefore, the pressure equation (1.34) now reads

∂p

∂t
= (m− 1)pw + |∇p|2. (1.46)

Computing ∂tw, we find

∂w

∂t
= (m− 1)∆(pw) + 2∇p · ∇∆p+ 2

∑
i,j

(
∂2p

∂xi∂xj

)2

+G′(p)
∂p

∂t

⩾ (m− 1)p∆w + (m− 1)w∆p+ 2(m− 1)∇p · ∇w + 2∇p · ∇(w −G)

+G′(p)(m− 1)pw +G′(p)|∇p|2

= (m− 1)p∆w + (m− 1)w2 − (m− 1)wG+ 2m∇p · ∇w +G′(p)(m− 1)pw −G′(p)|∇p|2
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⩾ (m− 1)p∆w + (m− 1)w2 + 2m∇p · ∇w − (m− 1)(G(p)− pG′(p))w,

where in the last inequality we used the fact that −G′(p) ⩾ 0. Since (m − 1) > 0 and −(m −
1)(G(p) − pG′(p)) ⩽ 0 we can again apply the comparison principle. In fact, treating p as a
known function with enough regularity, w is a supersolution of a quasi-linear parabolic operator.
Let us define

WG(t) := −rG
e−(m−1)rGt

1− e−(m−1)rGt
.

Then, W (t) is a solution to W ′
G = (m − 1)WG(t)

2 − (m − 1)rGWG(t). In particular, it is a
subsolution of the same parabolic operator. Therefore, we recover

∆p+G(p) ⩾ −rG
e−(m−1)rGt

1− e−(m−1)rGt
. (1.47)

As for the case G = 0, the above estimate holds independently of any regularity. Consequently,
it is possible to prove that this lower bound holds in the sense of distributions for a larger class of
functions obtained as the limit of solutions with enough regularity. Let us notice that for t ∼ 0,
the above estimate turns out to be ∆p+G(p) ≳ − 1

(m−1)t .

AB estimate with drift terms

A similar lower bound on the Laplacian of the pressure was also provided in [105], for a model
including a general drift b⃗ : Rd × (0,∞) → Rd. The equation of the model is given by taking
G = 0 in Eq. (1.42). In this case, the pressure satisfies

∂p

∂t
= (m− 1)p(∆p+∇ · b⃗) + |∇p|2 +∇p · b⃗. (1.48)

The authors assume the drift to have continuous space derivatives up to the third order, and to
be continuously differentiable in time, i.e. b⃗ ∈ C3,1

x,t . Under this assumption, following the idea
developed by Aronson and Bénilan, they are able to find a subsolution of a suitable parabolic
operator in order to estimate ∆p on one side. Once again, since for any weak solution n of the
drift-PME equation there exists a sequence of strictly positive classical solutions nε > 0 that
converges to n in L1(Rd × (0,∞)), it is sufficient to prove that the AB estimate holds for such
regular solutions.

Let w := ∆p. Upon computing the time derivative, we obtain

∂w

∂t
= (m− 1)∆(pw) + (m− 1)∆(p∇ · b⃗) + 2∇p · ∇w + 2

∑
i,j

(
∂2p

∂xi∂xj

)2

+∆(∇p · b⃗)

= (m− 1)p∆w + 2m∇p · ∇w + (m− 1)w2 + (m− 1)w∇ · b⃗+ 2(m− 1)∇p · ∇(∇ · b⃗)

+ (m− 1)p∆(∇ · b⃗) + 2
∑
i,j

(
∂2p

∂xi∂xj

)2

+∇p ·∆b⃗+ 2
∑
i,j

∂2p

∂xi∂xj

∂vi

∂xj
+∇w · b⃗.

(1.49)
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Using Young’s inequality, we have∣∣∣∣∣∣(m− 1)w∇ · b⃗+ 2
∑
i,j

∂2p

∂xi∂xj

∂vi

∂xj

∣∣∣∣∣∣ ⩽ m− 1

2
w2 +

m− 1

2

(
∇ · b⃗

)2
+
∑
i,j

(
∂2p

∂xi∂xj

)2

+
∑
i,j

(
∂vi

∂xj

)2

⩽

(
m− 1

2
− 1

d

)
w2 + 2

∑
i,j

(
∂2p

∂xi∂xj

)2

+mC,

where in the last inequality we used
∑
p2i,j = 2

∑
p2i,j −

∑
p2i,j ⩽ 2

∑
p2i,j − (∆p)2/d. Moreover,∣∣∣∇p ·∆b⃗+ 2(m− 1)∇p · ∇(∇ · b⃗)

∣∣∣ ⩽ m|∇p|2 +mC,

(m− 1)p∆(∇ · b⃗) ⩽ Cm.

Thus, Eq. (1.49) becomes

∂w

∂t
⩾ (m− 1)p∆w + 2m∇p · ∇w + (m− 1)w2 −m|∇p|2 −

(
m− 1

2
− 1

d

)
w2 +∇w · b⃗+ Cm.

Here C indicates a positive universal constant, and depends on the L∞-norms of the space
derivatives of b⃗. Assuming p to be a known smooth function, the above inequality can be written
as

L(w) ⩾ 0,

where L is a quasi-linear parabolic operator. As before, we look for a subsolution. In [105]
the authors suppose that ∆p(x, 0) ⩾ − 1

τ for some τ ⩾ 0. Therefore, p is uniformly bounded,
i.e. there exists a positive constant C0 such that |p(x, t)| ⩽ C0. Let

Wb⃗ := − C1

t+ τ
+ p− C2,

where Ci, i = 1, 2 are positive constants, to be chosen later, such that C1 ⩾ 1 and C2 ⩾ C0. Then

w(x, 0) = ∆p(x, 0) ⩾ −1

τ
⩾ −C1

τ
+ p(x, 0)− C2 =Wb⃗(x, 0).

It is straightforward to see that Wb⃗ satisfies

L(Wb⃗) =
C1

(t+ τ)2
+
∂p

∂t
−(m−1)p∆p−m|∇p|2−

(
m− 1

2
+

1

d

)(
− C1

t+ τ
+ p− C2

)2

−∇p ·⃗b+Cm.

Substituting Eq. (1.48) into the above equation, and estimating |∇p · b⃗| ⩽ Cm, we obtain

L(Wb⃗) ⩽
C1

(t+ τ)2
+ (1−m)|∇p|2 −

(
m− 1

2
+

1

d

)
C2

1

(t+ τ)2
−
(
m− 1

2
+

1

d

)
(C2 − p)

2
+ Cm

⩽
C1

(t+ τ)2
−
(
m− 1

2
+

1

d

)
C2

1

(t+ τ)2
−
(
m− 1

2
+

1

d

)
(C2 − p)

2
+ Cm,

where in the last inequality we used m > 1. Choosing C1 := d and C2 := C0 +
√
4dC we obtain
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L(Wb⃗) ⩽ 0. Therefore, by applying the comparison principle and taking τ → 0, we have

∆p ⩾ −C1

t
− C2. (1.50)

Let us stress a main difference between the previous AB estimates Eq. (1.44), Eq. (1.47) and the
above estimate with drift proven in [105]: the lower bound (1.50) does not vanish as m → ∞.
Although the bound provides a control from below of the Laplacian of the pressure, it is not
sufficient to pass to the incompressible limit in the pressure equation (1.48) by applying the
same argument used in the reaction case in [130]. Indeed, the fact that the lower side of the
inequality converges to zero in the limit plays an essential role in the proof by [130]. As explained
in the following sections, in this case another strategy is required in order to obtain the strong
compactness of the pressure gradient.

1.4.3 Variations in different norms: Lp-estimates
For certain porous medium equations and systems it is not possible to find a lower bound on
∆p, i.e. a subsolution as in Eqs. (1.44, 1.47 1.50). Therefore, since it is not clear how to bound
the L∞-norm of the negative part of ∆p, researchers have been searching for weaker estimates
on the same quantity. This idea was first developed in [94] where Gwiazda, Perthame, and
Świerczewska-Gwiazda prove the existence of solutions to the following cross-diffusion system

∂n1
∂t

−∇ · (n1∇p) = n1F1(p) + n2G1(p),

∂n2
∂t

−∇ · (n2∇p) = n1F2(p) + n2G2(p),

p = (n1 + n2)
γ , γ > 1,

(1.51)

where n1, n2 represent the densities of two different populations, F1, G2 the growth rates of each
population and F2, G1 the cross-growth rates. The pressure to which each species is subject is
given by a power law of the total population density, n = n1 + n2. Therefore, the equation on n
looks like a porous medium equation (up to a factor γ/γ + 1)

∂n

∂t
=

γ

γ + 1
∆nγ+1 + n1F (p) + n2G(p),

where F := F1 + F2 and G := G1 + G2. The fact that the reaction term in the equation is not
directly proportional to the density n is a crucial difference with respect to the one-species case.
Denoting σi := ni/n and R(σi, p) = σ1F (p) + σ2G(p), one can rewrite the density equation as
follows

∂nγ
∂t

=
γ

γ + 1
∆nγ+1

γ + nγRγ ,

and thus
∂pγ
∂t

= γpγ(∆pγ +Rγ) + |∇pγ |2,

where we pointed out the dependence on γ. Although the equation looks similar to (1.34), the
term Rγ also depends on the density fractions. Hence, it is not possible to look for subsolutions,
i.e. finding an L∞-bound on the negative part of ∆pγ +Rγ . Consequently, the Aronson-Bénilan
estimate was extended in weaker norms:
• in [94] the authors prove ((∆pγ +Rγ)(t))− ∈ L2(Rd). Although this estimate is not sufficient
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in order to pass to the incompressible limit, (since time-compactness of the pressure is missing
for Sys. (1.51)) let us point out that this estimate can be obtained uniformly with respect to
γ. In [94], the authors use it to apply the Aubin-Lions lemma and prove the existence of weak
solutions of Sys. (1.51) for any fixed γ > 1.

• the same approach was later used in [31] for dimension d = 1. The authors prove ((∆pγ +
Rγ)(t))− ∈ L1(R) uniformly in γ and successively they recover the complementarity relation in
the incompressible limit. Indeed, in the one dimensional case time-compactness of the pressure
is available.

Now we briefly presents the gist of the proofs, starting from the one-dimensional case.

L1-Aronson-Bénilan estimate

The proof relies on the following a priori estimates

∂p

∂x
∈ L2

x,t,
∂σi
∂x

∈ L1
x,t, for i = 1, 2. (1.52)

Moreover, let us assume that the initial pressure is compactly supported. Then, thanks to the
finite speed of propagation property of porous medium equations, the pressure remains compactly
supported for all finite times, i.e. for all T > 0 there exists Ω ⊂ R independent of γ > 1 such
that

supp (p(t)) ⊂ Ω, ∀t ∈ [0, T ], ∀γ > 1.

As usual we define w := ∆p+R and compute the time derivative

∂w

∂t
= γ

∂2(pw)

∂x2
+

∂2

∂x2

(∣∣∣∣∂p∂x
∣∣∣∣2
)

+
∂R

∂t

= γ
∂2(pw)

∂x2
+ 2

∂p

∂x

∂(w −R)

∂x
+ 2

∣∣∣∣∂2p∂x2

∣∣∣∣2 + ∂R

∂t
.

(1.53)

Since we aim at estimating the negative part of w, we multiply by sign−(w) to obtain

∂(w)−
∂t

⩽γ
∂2(p(w)−)

∂x2
+ 2

∂p

∂x

∂(w)−
∂x

− 2
∂p

∂x

∂R

∂x
sign−(w) + 2|w −R|2sign−(w)

+ sign−(w)
∂R

∂t
,

(1.54)

where we used Kato’s inequality. Let us notice that

sign−(w)
∂R

∂t
⩽ γp(w)−Rp + sign−(w)|∇p|2 +

∣∣∣∣(F −G)
∂σ1
∂t

∣∣∣∣ ⩽ ∣∣∣∣(F −G)
∂σ1
∂t

∣∣∣∣ , (1.55)

since Rp ⩽ 0. As explained above, the main novelty of this approach is to integrate the inequality
and using a priori estimates in order to achieve a control on (w)− in a weaker norm. Let us
notice that, by integrating (1.54) in space, the first term on the right-hand side vanishes. As will
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be explained below, this term will instead play a crucial role in the L2-AB estimate. We obtain

d

dt

∫
Ω

(w)− dx ⩽ 2

∫
Ω

∂p

∂x

∂(w)−
∂x

dx+ 2

∫
Ω

∣∣∣∣∂p∂x
∣∣∣∣ ∣∣∣∣∂R∂x

∣∣∣∣dx− 2

∫
Ω

(w)2− dx+ 4

∫
Ω

(w)−R dx

+ 2

∫
Ω

|R|2 dx+

∫
Ω

∣∣∣∣(F −G)
∂σ1
∂t

∣∣∣∣ dx.
Using the boundedness of Rp, F, and G, one can see

2

∫
Ω

∣∣∣∣∂p∂x
∣∣∣∣ ∣∣∣∣∂R∂x

∣∣∣∣dx ⩽ C

∫
Ω

∣∣∣∣∂p∂x
∣∣∣∣2 dx+ C

2∑
i=1

∫
Ω

∣∣∣∣∂p∂x
∣∣∣∣ ∣∣∣∣∂σi∂x

∣∣∣∣ dx ⩽ C + C

∥∥∥∥∂p∂x
∥∥∥∥
∞
,

where we used the a priori estimates (1.52). Moreover, computing ∂tσ1, it is possible to prove∫
Ω

∣∣∣∣(F −G)
∂σ1
∂t

∣∣∣∣dx ⩽ C +

∥∥∥∥∂σ1∂x

∥∥∥∥
L1

∥∥∥∥∂p∂x
∥∥∥∥
L∞

⩽ C + C

∥∥∥∥∂p∂x
∥∥∥∥
L∞

.

Therefore, we have

d

dt

∫
Ω

(w)− dx ⩽ 2

∫
Ω

∂p

∂x

∂(w)−
∂x

dx− 2

∫
Ω

(w)2− dx+ C

∫
Ω

(w)− dx+ C + C

∥∥∥∥∂p∂x
∥∥∥∥
L∞

= −2

∫
Ω

∂2p

∂x2
(w)− dx− 2

∫
Ω

(w)2− dx+ C

∫
Ω

(w)− dx+ C + C

∥∥∥∥∂p∂x
∥∥∥∥
L∞

= −2

∫
Ω

(w −R)(w)− dx− 2

∫
Ω

(w)2− dx+ C

∫
Ω

(w)− dx+ C + C

∥∥∥∥∂p∂x
∥∥∥∥
L∞

⩽ 2

∫
Ω

(w)2− dx− 2

∫
Ω

(w)2− dx+ C

∫
Ω

(w)− dx+ C + C

∥∥∥∥∂p∂x
∥∥∥∥
L∞

= C

∫
Ω

(w)− dx+ C + C

∥∥∥∥∂p∂x
∥∥∥∥
L∞

.

Let us mention that this only works since we are in dimension one. In fact, for any dimension d
greater than one, the factor multiplying

∫
(w)2− would be 2(1− 1/d) > 0. Therefore, due to the

positivity of the coefficient, we would not be able to apply Gronwall’s lemma or to absorb this
higher order term.

Before applying Gronwall’s lemma, we have to estimate the L∞-norm of the pressure gradient.
Let us recall that for the classical porous medium equation the pressure is always Lipschitz in
dimension one. We now show that this holds (uniformly in γ) also for Sys. (1.51); however, due
to a different argument. Thanks to Sobolev’s embedding theorem in dimension one, we have∥∥∥∥∂p∂x

∥∥∥∥
L∞(Ω)

⩽

∥∥∥∥∂2p∂x2

∥∥∥∥
L1(Ω)

=

∫
Ω

∣∣∣∣∂2p∂x2

∣∣∣∣dx ⩽
∫
Ω

(w − 2(w)− + |R|) dx

⩽
∫
Ω

(∆p+ 2(w)− + 2|R|) dx

⩽ C + C

∫
Ω

(w)− dx.



1.4. Regularity à la Aronson-Bénilan: a short review 35

Hence, we finally have
d

dt

∫
Ω

(w)− dx ⩽ C + C

∫
Ω

(w)− dx,

and, provided (w(x, 0))− ∈ L1(R), by Gronwall’s lemma we have (uniformly in γ)(
∂2p

∂x2
+R

)
−
∈ L∞(0, T ;L1(R)). (1.56)

L2-Aronson-Bénilan estimate

As aforementioned, the above L1-estimate can only work for d = 1. In fact, the first Lp-extension
of the Aronson-Bénilan estimate was developed for any dimension and p = 2, see [94]. The
argument is similar to the one-dimensional case, but the inequality on w is multiplied by −(w)−
instead by simply sign−(w). Hence, from

∂w

∂t
= γ∆(pw) + ∆

(∣∣∣∣∂p∂x
∣∣∣∣2
)

+
∂R

∂t

= γ∆(pw) + 2∇p · ∇(w −R) + 2
∑
i,j

∣∣∣∣ ∂2p

∂xi∂xj

∣∣∣∣2 + ∂R

∂t

⩾ γ∆(pw) + 2∇p · ∇(w −R) +
2

d
|∆p|2 + ∂R

∂t
,

we obtain

1

2

∂(w)2−
∂t

⩽γ∆(p(w)−)(w)− + 2(w)−∇p · ∇(w)− + 2(w)−∇p · ∇R− 2

d
(w)− |w −R|2 − ∂R

∂t
(w)−.

Developing the last term in a similar fashion as in Eq. (1.55), gives

−∂R
∂t

(w)− = −∂p
∂t
Rp(w)− − (F (p)−G(p))

∂σ1
∂t

(w)−

= γp(w)2−Rp − |∇p|2Rp(w)− − (F (p)−G(p))
∂σ1
∂t

(w)−

⩽ −|∇p|2Rp(w)− − (F (p)−G(p))
∂σ1
∂t

(w)−,

and hence

1

2

∂(w)2−
∂t

⩽γ∆(p(w)−)(w)− +∇p · ∇(w)2−︸ ︷︷ ︸
D

+(w)−|∇p|2Rp︸ ︷︷ ︸
N⩽0

+2(w)−∇p · ∇σ1(F (p)−G(p))︸ ︷︷ ︸
B1

− 2

d
(w)3− + C(w)2− + C(w)− − (F (p)−G(p))

∂σ1
∂t

(w)−︸ ︷︷ ︸
B2

,

(1.57)

where C > 0 is independent of γ. The core of the proof is still the same. After integrating
in space over Ω, we aim at using Gronwall’s lemma. However, the treatment of some terms is
different with respect to the L1-estimate. For instance, the terms including the gradient of σ1
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cannot be bounded in the same way, since for d ⩾ 2 the BV -bounds of the density fractions
and the L∞-bound on the pressure gradient no longer hold. Let us mention that for a certain
bounded and continuous function F = F(σ1, σ2, p), the equation on σ1 reads

∂σ1
∂t

= ∇σ1 · ∇p+ F .

As shown in [94], the "bad" terms, B1 and B2, can be treated using integration by parts as
follows∫
Ω

B1 + B2 dx =

∫
Ω

(F (p)−G(p))∇σ1 · ∇p(w)− dx−
∫
Ω

(F (p)−G(p))F(w)− dx

⩽ C

∫
Ω

(w)− dx−
∫
Ω

σ1(F (p)−G(p))∆p(w)− dx−
∫
Ω

(F ′(p)−G′(p))σ1|∇p|2(w)− dx

−
∫
Ω

σ1(F (p)−G(p))∇p · ∇(w)− dx.

Let us focus the attention on the last term on the right-hand side. Indeed, the other terms can
be bounded using ∆p = w−R, integration by parts, and ∇p ∈ L∞

t L
2
x. Using Young’s inequality,

we have

−
∫
Ω

σ1(F (p)−G(p))∇p · ∇(w)− ⩽
1

2

∫
Ω

|F (p)−G(p)|2

p
|∇p|2 + 1

2

∫
Ω

p|∇(w)−|2. (1.58)

Here is where the technical condition assumed in [94] is used. In fact, the authors impose

F (0) = G(0). (1.59)

Therefore, the first integral on the right-hand side is uniformly bounded. It remains to treat one
"bad term" which is the integral including |∇(w)−|2 in Eq. (1.58). In order to absorb it, we use
the dissipation term D in Eq. (1.57). Indeed, as we mentioned before, unlike for the L1-estimate
this term does not disappear. Using again integration by parts and ∆p = w −R, we have∫

Ω

D ⩽
(
1− γ

2

)∫
Ω

(w)3− +
(
1− γ

2

)∫
Ω

R(w)2− − γ

∫
Ω

p|∇(w)−|2

⩽
(
1− γ

2

)∫
Ω

(w)3− +
1

2

∫
Ω

R(w)2− − γ

∫
Ω

p|∇(w)−|2,
(1.60)

where in the last inequality we used the fact that R is always non-negative. Therefore, the last
integral on the right-hand side helps absorbing the last one in Eq. (1.58).

Finally, combining these estimates with Eq. (1.57), we find

d

dt

∫
Ω

(w)2−
2

⩽

(
1− γ

2
− 2

d

)∫
Ω

(w)3− + C

∫
Ω

(w)2− + C

∫
Ω

(w)− + C. (1.61)

Assuming γ > max(1, 2− 4/d), we can apply Gronwall’s lemma to obtain

(∆p+R)− ∈ L∞(0, T ;L2(Rd)), (1.62)

which is uniform in γ, since the constant C is independent of γ.
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1.5 Contents of the thesis

In this thesis we develop further the theory on the incompressible limit of porous medium models
motivated by tumor growth. This section is devoted to presenting the novelties introduced in
this work, which is structured in three parts:

• Part I concerns the analysis of the stiff limit of a mechanical tumor growth model and
its numerical simulation. In Chapter 2 we analyse the incompressible limit of a model
including the presence of nutrients (for instance, oxygen or glucose). As explained above,
during the development of cancers the lack of nutrients in the center of the tumoral mass
induces cell death by necrosis, generating a necrotic core. As a consequence, models that
account for nutrient availability allow for non-positive reaction terms. From an analytical
viewpoint, this turns out to be a crucial difference with respect to models without nutrients,
such as the purely mechanical model studied in [130]. In this chapter, we consider a
system of reaction-diffusion equations whose bad coupling makes the comparison principle,
used in [130] to recover the AB estimate in L∞, fail. Therefore, in order to recover the
complementarity relation in the stiff limit, we rely on two new techniques: an L3-version
of the AB estimate, and a sharp uniform L4-bound on the pressure gradient which allows
us to recover the required regularity in order to pass to the limit. Chapter 3 concerns the
numerical simulation of this kind of porous medium models of tumor growth. We present an
upwind finite difference scheme of the purely mechanical model for which we prove stability
results and the asymptotic preserving property as γ → ∞. We also test our scheme for
models including a nutrient, both in the in vitro and in vivo cases, and including necrotic
cells in the system. Finally, we numerically verify the sharpness of the L4-bound of the
pressure gradient, computing the norms of the focusing solution in dimension 2.

• Part II is focused on the incompressible limit of a reaction-porous medium equation includ-
ing convective effects. As mentioned in Introduction, the asymptotic behavior of this kind
of equations has already been addressed in the literature. However, the complementarity
relation that allows to recover the limit pressure as the solution of an elliptic equation was
still an open problem. In Chapter 4, we present a proof which is based on extending and
blending the two techniques presented in Chapter 2: the L4-bound of the pressure gradient
and the L3-version of the Aronson-Bénilan estimate. We are able to extend these results
to the case including convective effects, as well as to substantially reduce the conditions
on the drift term imposed in the previous literature. To this end, we apply the L4-control
in order to recover the AB estimate. We also prove uniqueness of the weak solution of
the limit Hele-Shaw problem. Chapter 5 deals with estimating the convergence rate of
the incompressible limit analysed in Chapter 4. This question has been rarely addressed
in the literature. In this chapter we present a simple and flexible proof of how to obtain
an estimate for the convergence rate in the L∞

t H
−1
x -norm for nonlinear and degenerate

diffusion equations including convection, in both the power law and the singular pressure
law cases.

• Part III concerns the analysis of a tumor growth model structured by phenotypic trait. We
consider a cross-diffusion model where each phenotypic density evolves under Darcy’s law,
and the pressure is related to the total population density. We prove the existence of weak
solutions as well as the incompressible limit as the pressure becomes stiff. Moreover, we
recover regularity results that, to the best of our knowledge, are novel in the multi-species
case.

Now we summarize the main contributions of this thesis in some greater detail.
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1.5.1 Incompressible limit of tumor growth models including nutrients:
analysis and simulations

Free boundary limit of a model with nutrient

As mentioned in the previous section, the behavior of the free boundary of PME’s solutions
changes drastically if we allow for non-monotonicity, namely if the growth rate can assume
negative values. In the context of cancer growth modelling this happens, for instance, if the
presence of nutrients is taken into account. The nutrients (for instance glucose or oxygen) are
brought by the blood vessels and diffuse into the tumor where they are consumed by cancer cells.
However, if the level of nutrients is not high enough, cells may die by necrosis, as it happens in the
center of avascular tumors after they have reached a certain size. Therefore, modelling nutrient
presence means allowing for cell death, i.e. assuming that the growth rate G depends both on
the pressure p and on the nutrient concentration c, and that G(p, c) < 0 for c small enough.
This type of models implicitly distinguishes proliferating cells from necrotic cells. Although
several multi-species models describing proliferating, necrotic or quiescent cells are available in
the literature, we focus on a model that only considers the first type of cells. Consequently, the
cell population density may vanish in regions contained in its initial support.
The incompressible limit for a model including nutrients was already addressed in the seminal
work [130], where the authors consider a system of PDEs including a nutrient concentration
which satisfies a reaction-diffusion equation. As for the purely mechanical model (1.32), they
pass to the stiff limit in the density equation obtaining (1.38). However, they leave open the
question of how to recover the complementarity relation, namely

p∞(∆p∞ +G(p∞, c∞)) = 0. (1.63)

In fact, the method the authors developed for the purely mechanical model does not apply in
this case. The reason lies in the fact that the fundamental Aronson-Bénilan estimate (1.39) fails.
In fact, since G may now take negative values, we can no longer apply the comparison principle
in order to bound the quantity w := ∆p + G(p, c) by a subsolution that vanishes as m → ∞.
Indeed, after a certain time, a region may appear where the pressure is constantly equal to zero
and the reaction rate is negative. Therefore ∆p+G(p, c) ≳ −1/mt cannot hold.
Our work aims at solving this open problem. We consider the following model including nutrients

∂n

∂t
−∇ · (n∇p) = nG(p, c), x ∈ Rd, t ⩾ 0,

p = nγ , γ > 1,

∂tc−∆c+ nH(c) = (cB − c)K(p),

c(x, t) → cB for x→ ∞.

Unlike [130], we consider nutrient consumption (with given rate H) as well as nutrient release
from the vasculature (with given rate K).
In order to prove the complementarity relation (1.63) we derive a weaker version of the Aronson-
Bénilan estimate, in the spirit of the L2-estimate proven in [94], whose derivation was explained
in Section 1.4.3. In this case, we are able to obtain an equation which is analogous to (1.61).
However, there is an essential difference in the case including nutrients. Since the reaction rate
G(p, c) does not have a sign, we are not able to bound the corresponding integral as in (1.60).
Therefore, the positive constant C in front of

∫
(w)2− in (1.61) is no longer independent of γ. As a

consequence, we are not able to use Gronwall’s lemma to infer (∆p+G(p, c))− ∈ L∞(0, T ;L2(Rd))
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uniformly in γ. However, we are still able to prove the following result.

Proposition 1.5.1 (L3-version of the AB estimate). The following control holds uniformly with
respect to γ

(∆p+G(p, c))− ∈ L3(Rd × (0, T )).

This bound allows us to deduce ∆p ∈ L1(Rd × (0, T )) which, together with the L1-control of
∂tp, is enough to infer the strong compactness of ∇p in Lqx,t for 1 ⩽ q ⩽ d/(d− 2). Since we aim
at proving the complementarity relation, we know that the strong compactness of the pressure
gradient in L2

x,t is needed. Therefore, we need to prove a higher uniform control.

Proposition 1.5.2 (Sharp L4-bound of the gradient). The following estimate holds uniformly
with respect to γ

|∇p| ∈ L4(Rd × (0, T )).

Moreover, this estimate is sharp, namely, there exists a solution such that ∥∇p∥Lq blows up as
γ → ∞ for every q > 4.

This control on the gradient was already achieved in [123], where the authors consider the purely
mechanical model. However, their argument deeply relies on the L∞-AB control, which fails in
our case. We develop a new proof which does not rely on any control on ∆p. Moreover, we are
the first to show that this uniform estimate is sharp. Indeed, a counterexample is given by the
focusing solution discussed in Sec. 1.3.1. We analyze this property using an asymptotic argument
and we later investigated it numerically, as presented below.

Numerical simulation of a mechanical model of tumor growth

We propose a simple finite difference scheme to analyze the purely mechanical model introduced
in [130]

∂n

∂t
−∇ · (n∇p) = nG(p), p = nγ , γ > 1.

The numerical simulation of tissue growth models of porous medium type has attracted a lot of
interest in recent years, see, for instance, [114, 112, 113, 25] and references therein. The main
challenges are represented by the lack of regularity near the free boundary and the stiffness of
solutions that occurs when γ → ∞.
We propose the following upwind scheme in dimension one

d

dt
ni =

ni+1/2qi+1/2 − ni−1/2qi−1/2

∆x
+ niG(pi), with qi+1/2 =

pi+1 − pi
∆x

, (1.64)

where we define

ni+1/2 =

{
ni, if qi+1/2 ⩽ 0,

ni+1, if qi+1/2 > 0.

The simplicity of the scheme allows us to prove several stability estimates. In particular, we
prove BV -controls on both the semi-discrete scheme and the fully discrete scheme, obtained
using Euler implicit discretization in time. Moreover, we prove the asymptotic preserving (AP)
property of the scheme as γ → ∞.

Proposition 1.5.3 (Asymptotic preserving property). Given ni, pi a solution of scheme (1.64)
with γ > 1. Then, for all i, we have

ni
γ→∞−−−−→ n∞,i, in Lp(0, T ), for all 1 ⩽ p <∞,
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pi
γ→∞−−−−→ p∞,i, in Lp(0, T ), for all 1 ≤ p <∞,

qi+ 1
2

γ→∞−−−−⇀ q∞,i+ 1
2
, weakly in L2(0, T ).

and the limit satisfies

0 = p∞,i

(
pi+1 − 2pi + pi−1

|∆x|2
p∞,i +G(p∞,i)

)
,

d

dt
n∞,i =

n∞,i+1/2q∞,i+1/2 − n∞,i−1/2q∞,i−1/2

∆x
+ n∞,iG(p∞,i).

We then derive a discrete version of the Aronson-Bénilan estimate. As frequently illustrated
before, this estimate is fundamental in the analysis of both the classical PME and the related
tissue growth models. Therefore, it is our interest to analyze whether such estimate is also
discretely satisfied by our upwind scheme. This purpose was addressed by Monsaingeon in [124]
for a tracking front scheme of the classical PME, i.e. Eq. (1.7). We manage to infer the same
estimate in the case of a fixed grid, for γ = 1 and γ ≈ ∞. Our main contribution in this direction
is the proof of the AB estimate in the case of non-trivial pressure-dependent reaction terms.

Proposition 1.5.4 (Discrete Aronson-Bénilan estimate). Let α > 0, G(p) = α(pH − p) and

wi := δ2xpi +G(pi) =
pi+1 − 2pi + pi−1

(∆x)2
+G(pi), ∀i.

Then, for γ = 1 and γ ≈ ∞, scheme (1.64) satisfies the Aronson-Bénilan estimate, namely

wi ⩾ − 1

γt
, ∀i.

We perform several numerical simulations to test the accuracy of our scheme. We test it both
for the classical PME and for tumor growth models including nutrients and/or necrotic cells.
At last, we perform numerical simulations to investigate the sharpness of the L4-estimate on the
pressure gradient mentioned before, cf. Lemma 1.5.2. We consider a radial focusing solution,
i.e. a solution of the Hele-Shaw problem whose initial data is a spherical shell. By computing
the Lq-norm of ∇p we verify the worsening of the blow up at the focusing time as q > 4.

1.5.2 Incompressible limit of a tumor growth model including convec-
tive effects: regularity and convergence rate

Stiff limit of a model with drift: regularity and complementarity relation

Besides the passive movement generated by the pressure gradient, tumor cells can undergo active
forces as, for instance, the attraction due to the concentration of a certain chemical, or as a result
of self-propulsion as in the Keller-Segel model. In the latter case the velocity field is given by
the convolution of the density with the Newtonian potential, N ⋆n. In this part of the thesis, we
analyse the regularity properties and the incompressible limit of the following nonlinear diffusion-
advection equation

∂n

∂t
−∇ · (n(∇p+∇V )) = nG, (1.65)

where V : Rd × (0,∞) → R is given.
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Figure 1.2: Focusing solution: density (left) and pressure (right). Numerical solution of the
focusing problem with γ = 10, ∆x = 0.02, initial internal radius 1.

Several works on the free boundary limit of porous medium equations incorporating advection
terms can be found in the literature, see for instance [1, 57, 103]. However, to find the comple-
mentarity relation, i.e. the elliptic equation satisfied by p∞ in its positivity set, was still an open
question. As in the case including nutrients, the main difficulty consists in proving the L2-strong
compactness of the pressure gradient. We address this problem for Eq. (1.65) with p = nγ and
a pressure-dependent growth rate G = G(p).
Under suitable assumptions on V , we prove that as γ → ∞ the solution to Eq. (1.65) converges
to a limit (n∞, p∞) that satisfies the following statement.

Proposition 1.5.5 (Complementarity relation with drift). The limit (n∞, p∞) solves

p∞(∆p∞ +∆V +G(p∞)) = 0, p∞(1− n∞) = 0.

To this end, we extend the techniques that we developed in the case with nutrients: the L3-version
of the Aronson-Bénilan estimate and the L4-bound on the pressure gradient. In particular, the
latter is a novelty in the context of porous medium-advection equations.
We also aim at weakening the assumptions on the drift V with respect to the existing literature.
To this end, we use ∇p ∈ L4 to deduce the AB estimate, although the two arguments could be
made one independent of the other. Moreover, let us stress that an L∞-version of the Aronson-
Bénilan estimate was already obtained by [103] in the drift case, Eq. (1.50), as illustrated in
Section 1.4. However, to obtain this lower bound, the authors require a C3,1

x,t -control on ∇V . In
order to achieve the much weaker L3-bound we considerably reduce this assumption, asking only
for D2V ∈ L∞

x,t and ∆∇V ∈ L
12/5
x,t .

Finally, we give a proof of the uniqueness of the limit solution adapting Hilbert’s duality method.

Proposition 1.5.6 (Uniqueness of the limit solution). There exists at most one distributional
solution such that for all T > 0 the couple (n∞, p∞) ∈ L∞(Rd × (0, T ))× L2(0, T ;H1(Rd)) is a
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solution to the following system
∂n∞
∂t

−∆p∞ −∇ · (n∞∇V ) = n∞G(p∞), D′(Rd × (0, T )),

p∞(1− n∞) = 0, a.e. in Rd × (0, T ).
(1.66)

Stiff limit of a model with drift: convergence rate

Despite the vast literature on the incompressible limit of porous medium models including ad-
vection, the question of how to estimate the convergence rate of the solutions has been rarely
addressed. A first result is provided by Alexander, Kim and Yao in [1], where the authors find
a polynomial rate of 1/24 in the 2-Wasserstein distance, Eq. (1.41). Our aim is to estimate the
convergence rate in the L∞

t Ḣ
−1
x -norm. In particular, for both the power and the singular laws

pγ =
γ

γ − 1
nγ−1
γ or pε = ε

nε
1− nε

,

we study the convergence of solutions nγ (respectively nε) of Eq. (1.65) as γ → ∞ (respectively
ε→ 0) and we find the following polynomial rate.

Proposition 1.5.7 (Convergence rate in Ḣ−1). Under suitable assumptions on V = V (x, t) and
G = G(x, t), for all T > 0, there exists a unique function n∞ ∈ C([0, T );L1(Rd)) such that the
sequence nγ (resp. nε) converges as γ → ∞ (resp. ε→ 0) to n∞ strongly in L∞(0, T ; Ḣ−1(Rd))
with the following rate

sup
t∈[0,T ]

∥nγ(t)− n∞(t)∥Ḣ−1(Rd) ⩽
C(T )

γ1/2
+ ∥n0γ − n0∞∥Ḣ−1(Rd).

Moreover, thanks to this result we are able to provide a new proof of the saturation relation in
Eq. (1.66) which does not require the strong convergence of the density or the pressure.

We here present the gist of the methods that we apply in Chapter 5 to estimate the convergence
rate. Our strategy relies on considering φγ := K ⋆ nγ , where K is the fundamental solution of
the Laplace equation. Then, we have

−∆φγ = nγ .

For γ′ > γ > 1, we consider the following equation

∂(nγ − nγ′)

∂t
= ∆(Aγ −Aγ′) +∇ · ((nγ − nγ′)∇V ) + (nγ − nγ′)G,

where Aγ is chosen appropriately depending on the law of state of the pressure. Multiplying the
above equation by φγ − φγ′ , we obtain

1

2

d

dt

∫
Rd

|∇(φγ − φγ′)|2 dx =

∫
Rd

(nγ′ − nγ)(Aγ(nγ)−Aγ′(nγ′)) dx

−
∫
Rd

(nγ − nγ′)∇(φγ − φγ′) · ∇V dx+

∫
Rd

G(t, x)(nγ − nγ′)(φγ − φγ′) dx.
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Under suitable assumptions on G and V , we are able to find

1

2

d

dt

∫
Rd

|∇(φγ − φγ′)|2 dx+

∫
Rd

(nγ − nγ′)(Aγ(nγ)−Aγ′(nγ′)) dx ⩽ C

∫
Rd

|∇(φγ − φγ′)|2 dx.

Manipulating the second term on the left-hand side in a proper way (depending on the pressure
law under consideration) and applying the Gronwall inequality, we can deduce

sup
t∈[0,T ]

∥∇(φγ − φγ′)(t)∥L2(Rd) ⩽ C

(
1
√
γ
+

1√
γ′

)
+ ∥∇(φγ − φγ′)(0)∥L2(Rd). (1.67)

Passing to the limit γ′ → ∞ we infer the result in Proposition 1.5.7.

1.5.3 A multi-species model structured by phenotype

As discussed in Section 1.3.3, multi-species models of cross-reaction-diffusion equations have
been widely studied during the last decade. The different natures of the single species equations
and the total population equation introduce involved challenges to the analysis. Existence and
regularity results for these models have been provided recently by [47, 94, 101] and the incom-
pressible limit has been addressed in one spatial dimension in [31] and then extended in multiple
dimensions by [115].
We aim at extending these recent results for a model structured by a phenotypic trait. Phe-
notypic heterogeneity plays a central role in the development of tumors. Cells with different
gene expressions can develop higher aggressivity that lead to faster invasion. An interesting
phenomenon called "growth or go" has been observed in certain tumors. It consists in the fact
that cells with higher mobility are less aggressive and have a diminished growth rate with respect
to cells with a lower mobility. This dichotomy has been analysed through a structured model
by Lorenzi et al. in [118], where the authors perform a formal asymptotic analysis to show the
appearance of accelerating fronts.
In this part of the thesis we consider a similar structured system

∂n

∂t
(y, x, t)−∇ · (n(y, x, t)∇p(x, t)) = nR(y, p), (y, x, t) ∈ [0, 1]× Rd × (0,∞),

ϱ(x, t) =

∫ 1

0

n(y, x, t) dy, p(x, t) = ϱ(x, t)γ ,

(1.68)

which in some way extends the two-species system (1.51) to an infinitely-many-species problem.
We only analyse the case of constant mobility rates which, unlike in [118], do not depend on the
structured variable y.
The main contribution of our work consists in three results: the existence of weak solutions nγ , pγ
of (1.68), the incompressible limit of such solutions as γ → ∞, and additional regularity results
on pγ . The first two results are obtained as an extension of the methods developed in [135] and
[115], respectively. The main difference with respect to the works by [94] and [31] is the fact that
the focus is no longer centered around the pressure itself, but rather on the quantity v := ϱγ+1.
Working with ∇v rather than ∇p, it is possible to infer strong compactness in L2

x,t without any
control on the Laplacian ∆p which was the case in [31, 94]. Following this approach and adapting
it to the structured case, we are able to prove both existence of weak solutions and pass to the
stiff limit γ → ∞. Unlike [115], where the authors assume the reaction terms to depend only on
a certain nutrient concentration, we consider pressure-penalised reaction terms. Therefore, we
also need to prove strong compactness of the pressure itself in order to pass to the limit in this
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nonlinear term. This issue was left open in [115] since to control ∂tp uniformly in γ is still an open
question. However, assuming to have compactly supported solutions, i.e. supp(ϱ(t)) ⊂ Ω ⊂ Rd
for 0 ⩽ t ⩽ T , we are able to prove strong compactness of p simply using Poincaré inequality
and the strong compactness of ∇p.

Proposition 1.5.8 (Existence of solutions and incompressible limit). Given n0 ∈ L∞([0, 1] ×
Rd)∩L1([0, 1]×Rd), n0 ⩾ 0, there exists n ∈ L∞([0, 1]×Rd× (0,∞))∩L1([0, 1]×Rd× (0,∞)),
n ⩾ 0, such that ∇p ∈ L2(Rd × (0,∞)), that satisfies Sys. (1.68) in the sense of distributions.
Moreover, assuming ϱ0 is compactly supported in Rd, after extraction of a subsequence, the triple
(nγ , ϱγ , pγ) converges weakly∗ in L∞(Rd × (0,∞)) to (n∞, ϱ∞, p∞) which satisfies the following
Hele-Shaw problem

∂ϱ∞
∂t

= ∆p∞ +

∫ 1

0

n∞R(y, p∞) dy, in D′(Rd × (0,∞)),

p∞

(
∆p∞ +

∫ 1

0

n∞R(y, p∞) dy

)
= 0, in D′(Rd × (0,∞)),

p∞(ϱ∞ − 1) = 0, a.e. in Rd × (0,∞).

Although no control on ∆p is needed neither to prove existence nor to pass to the incompressible
limit, it still represents a challenging and interesting question by itself. Therefore, we also aim
at understanding if an L2-version of the AB estimate holds for this structured model as well. As
illustrated in Section 1.4.3, this control was proven in [94] for the two-species counterpart, (1.62).
However, the authors had to impose a restrictive condition on the reaction terms, i.e. (1.59). We
manage to remove this assumption by performing a different treatment of the "bad term", i.e. the
first integral in Eq. (1.58). In fact, we first prove the following control on the pressure gradient.

Proposition 1.5.9 (L4-estimate). There exists a constant C(T ) such that for any 0 ⩽ α < 1
γ

the following estimate holds true

κ(α)

∫ T

0

∫
Ω

|∇p|4

p1−α
dt ⩽ C(T ),

with κ(α) := α
6 (1− αγ).

By using this result, we are able to find an L2-AB estimate which is the analogue of (1.62).
Indeed, applying Young’s inequality, the integral in (1.58), for which the technical assumption
F (0) = G(0) was needed, now can be treated as follows∫ 1

0

∫
Ω

σR(y, p)∇p · ∇(w)− dxdy ⩽
∥R∥∞

4

∫
Ω

|∇p|4

p1−α
dx+

3

4

∫
Ω

p1−α|∇(w)−|4/3 dx, (1.69)

where

R :=

∫ 1

0

σ(y)R(y, p) dy, and σ(y, x, t) :=
n(y, x, t)

ϱ(x, t)
.

Thanks to the previous proposition the first term on the right-hand side of (1.69) is bounded,
while the second one can be absorbed in the term −γ

∫
Ω
p|∇(w)−|2 which will appear analogously

as in (1.60). Therefore, we recover the following Aronson-Bénilan estimate for the structured
system (1.68) without imposing any special conditions on the reaction term (which we always
consider monotonically decreasing with respect to the pressure).
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Proposition 1.5.10 (L2-Aronson-Bénilan estimate). For all T > 0, there exists a constant
C(T ) independent of γ, such that for all t ∈ [0, T ] we have∫

Ω

(∆p(t) +R)2− ⩽ C(T ),

∫ T

0

∫
Ω

(∆p+R)3− dt ⩽ C(T ).

1.6 Discussions and perspectives

Mathematical models motivated by tissue growth and movement represent one of the most stim-
ulating sources of challenging mathematical questions, in particular, in the context of analysis of
PDEs. In this thesis we contribute to the study of the asymptotic behavior and well-posedness
theory of porous medium equations and systems motivated by tumor development. This topic
has been largely addressed by many researchers and, in recent years, remarkable results have been
achieved in the understanding of these problems. Nevertheless, this field presents several chal-
lenging questions that remain open, in particular regarding the well-posedness of cross-diffusion
systems and the Hele-Shaw limit with surface tension.

1.6.1 Existence results on cross-diffusion systems

As we already mentioned, degenerate cross-diffusion systems are particularly involved to treat
due to the difficulty of proving strong compactness on at least one of the quantities involved.
Many variations of System (1.51) have been investigated in the literature, and some of these
problems represent long-standing open questions.

Different drifts

In Chapter 4, we study the incompressible limit of a porous medium model including convective
effects, i.e. Eq. (1.65). Neglecting reaction processes and coupling Eq. (1.65) with an analogous
equation for a second species that moves accordingly to Darcy’s law and a different drift, we
obtain the following system 

∂n1
∂t

−∇ · (n1(∇p+∇V1)) = 0,

∂n2
∂t

−∇ · (n2(∇p+∇V2)) = 0,

p = (n1 + n2)
γ , γ > 1,

where the pressure depends on the joint population density. Despite major efforts applied by
different research groups, this problem remains the simplest example of a nonlinear cross-diffusion
system for which the existence of solutions has not been established yet. Although both the
densities and the pressure gradient are weakly compact, passing to the limit would require strong
convergence of one of the two terms involved. The strategies based on the Aronson-Bénilan
estimate used for systems like (1.51) do not seem to hold in this case. Only one result has been
obtained in the one-dimensional case, see [101]. However, the authors need to impose a restrictive
condition, namely that the two species stay segregated for all times, i.e. −∂xV1 ⩾ −∂xV2 and
x1 > x2 for xi ∈ {n0i > 0}, i = 1, 2.
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Different mobilities

Including different mobility coefficients, µ1 ̸= µ2, into System (1.51) increments even more the
complexity of proving the existence of weak solutions

∂n1
∂t

− µ1∇ · (n1∇p) = n1F1(p) + n2G1(p),

∂n2
∂t

− µ2∇ · (n2∇p) = n1F2(p) + n2G2(p),

p = (n1 + n2)
γ , γ > 1.

Nowadays, no well-posedness results on the above system are available in the literature. Indeed,
the whole set of methods developed for the previously presented models built upon the fact that
the sum of the two equations generates a porous medium type equation. Due to the asymmetry
of the degenerate diffusion terms, those techniques cannot be applied in this case. In fact, it is
not clear how to find uniform a priori estimates on the pressure gradient, which are essential to
the analysis of the system. Moreover, instabilities may occur under certain conditions, as noticed
in [104, 117].
In [104], Kim and Tong considered a similar model in dimension d = 2, and showed local-in-
time well-posedness of the related free boundary problem imposing specific assumptions to avoid
instabilities. They assume that G1 ≡ F2 ≡ G2 ≡ 0, and n1 + n2 ⩽ 1, and analyse the free
boundary problem {

−∇ · ((µn1 + νn2)∇p) = n1F1(p), if n1 + n2 = 1,

p = 0, if n1 + n2 < 1.

They assume that at the initial time, both the tumor, n1 = 1Ω, and the surrounding healthy
tissue, n2 = 1Ω̃\Ω, are given by patches, with Ω ⊂⊂ Ω̃. Numerical results in [117] show that if
µ1 < µ2 a certain radially symmetric solution is stable, while for µ1 > µ2 instabilities may occur.
Therefore, Kim and Tong assume µ1 < µ2. However, they notice that instabilities may still
occur at the contact interface between the two species, and thus they impose specific geometrical
assumptions on Ω and Ω̃.

1.6.2 Relation to Mean-Field Games

As mentioned above, in order to pass to the incompressible limit in Eq. (1.65) we manage to
weaken the assumptions imposed on the drift term, see Chapter 4. However, further improve-
ments in this direction are expected. In particular, it is of interest to find optimal conditions on
V under which to obtain the sharp estimate ∇p ∈ L4

x,t and the strong compactness of the pres-
sure. This would be important in view of applications to the following mean field game, where a
Hamilton-Jacobi equation and a continuity equation are coupled, and the system with unknowns
φ(x, t) (value function), n(x, t) (density), and p(x, t) (pressure), is closed with incompressibility
conditions on n and p

∂φ

∂t
+

|∇φ|2

2
−∇φ · ∇p = 0,

∂n

∂t
+∇ · (n(∇φ−∇p)) = 0,

and


p ≥ 0, p(1− n) = 0,

φ(x, T ) = Φ(x), n(x, 0) = n0(x).

(1.70)
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The model was first proposed in [143]. Due to the nonvariational formulation of the problem,
proving the existence of solutions remains open and remarkably obstinate to solve. A possible
approach could be to apply Schauder’s fixed point theorem on the pressure p, but it requires
strong stability and uniqueness results. For this reason, extending the new regularity results that
we obtained in Chapter 4 represents a possible strategy in order to address the problem.

1.6.3 Cahn-Hilliard model and surface tension
In mathematical modelling of living tissues dynamics a crucial aspect to consider is the surface
tension between different phases. Indeed, experimental measurements have shown that surface
tension plays an important role in cell-segregation and cluster formation, [78]. For this reason,
mechanical models of tumor growth that include this effect are more relevant from a biological
viewpoint with respect to the models we presented, in which the pressure is always vanishing on
the moving boundary. On the other hand, accounting for jump discontinuities of the pressure on
the interface also induces several challenging mathematical questions.
One of the most used models that accounts for surface tension is the well known Cahn-Hilliard
equation (CH in short). Models of CH type have been widely used in tumor growth modelling;
we refer the reader to [51, 79, 152] and references therein.
The model describes the interaction between two phases (tissues, or more broadly fluids) whose
densities are denoted by n1, n2. In the context of living tissues, we assume that cells constituting
the phase i = 1 are tumor cells, while the second phase represents the surrounding environment.
Therefore, we denote n = n1/(n1 + n2) the relative cell density of interest. The degenerate CH
model reads as follows 

∂n

∂t
−∇ · (n∇µ) = nG(µ),

µ = nγ − δ∆n.
(1.71)

By definition, the so-called effective pressure, µ, is formed by two potentials that represent,
respectively, the repulsion between cells, nγ , and the surface tension, δ∆n, where

√
δ is the

width of the interface in which partial mixing of the two components n1, n2 occurs.
The relation between the Cahn-Hilliard equation and the Hele-Shaw model with surface tension
has attracted vast interest. In [2], the authors prove that, in the sharp interface limit, level
surfaces of solutions to the Cahn-Hilliard equation with constant mobility tend to solutions of
the Hele-Shaw problem with surface tension, provided that classical solutions of the latter exist,
which was proven in [75]. A similar result was recently obtained by Kroemer and Laux in [108]
where the authors prove convergence of weak solutions of the CH equation to the HS model. Let
us mention that in these two works no reaction term is taken into account in the equation. A
step forward in this direction has been achieved in [72], where the authors consider a relaxed
version of the CH model (1.71), and prove convergence of solutions as γ → ∞. However, it is
still an open question how to directly pass to the stiff limit in the degenerate CH equation (1.71)
and to obtain the following HS model{

−∆µ = G(µ), in Ω(t) := {x; p(x, t) > 0},
µ = −δ∆n, on ∂Ω(t),

{
p(1− n) = 0,

p− δ∆n = µ.

In particular, it is of interest to find a rigorous way to link the jump of the pressure on the
moving boundary to its mean curvature for the model including reaction terms.
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Part I

Incompressible limit of tumor
growth models including nutrients:

analysis and simulations





Chapter 2

Free boundary limit of a tumor
growth model with nutrients

Abstract
Both compressible and incompressible porous medium models are used in the literature to de-
scribe the mechanical properties of living tissues. These two classes of models can be related
using a stiff pressure law. In the incompressible limit, the compressible model generates a free
boundary problem of Hele-Shaw type where incompressibility holds in the saturated phase.
Here we consider the case with a nutrient. Then, a badly coupled system of equations describes
the cell density number and the nutrient concentration. For that reason, the derivation of the free
boundary (incompressible) limit was an open problem, in particular a difficulty is to establish
the so-called complementarity relation which allows to recover the pressure using an elliptic
equation. To establish the limit, we use two new ideas. The first idea, also used recently for
related problems, is to extend the usual Aronson-Bénilan estimate in L∞ to an L2-setting. The
second idea is to derive a sharp uniform L4-estimate on the pressure gradient, independently of
the space dimension.

This chapter is taken from N.D. and B. Perthame. Free boundary limit of a tumor growth model
with nutrient, Journal de Mathématiques Pures et Appliquées, (2021).

2.1 Introduction

We consider a compressible mechanical model of tumor growth, where the cell motion is driven
by the pressure gradient according to Darcy’s law. The cell proliferation is governed by a bio-
mechanical form of contact inhibition that prevents cell division when the total cell density
exceeds a critical threshold. The evolution of the cell population density n(x, t) ⩾ 0 and the

51
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concentration of nutrients c(x, t) ⩾ 0 are described by the following type of system

∂n

∂t
−∇ · (n∇p) = nG(p, c), x ∈ Rd, t ⩾ 0,

∂c

∂t
−∆c+ nH(c) = (cB − c)K(p),

c(x, t) → cB for x→ ∞.

(2.1)

The pressure within the tissue is denoted by p(x, t), and, in the compressible setting, we use for
simplicity the following law of state

p = nγ , γ > 1. (2.2)

The reaction term G(p, c) is the cell division rate, and the lowest value of pressure that prevents
cell division is called homeostatic pressure, and we denote it by pH . The concentration cB > 0
is the level of nutrients in the source, namely the network of blood vessels. Here, we consider
the vascular phase of tumor growth, after angiogenesis has occurred, therefore the vasculature
is present both outside and inside the tumor. The term K ⩾ 0 is the rate of nutrient release,
which decreases with respect to the pressure. As clinical observations have shown, the mechanical
stress generated by the cells shrinks the vessels inside the tumor and affects the blood flow; by
consequence, the nutrient delivery decreases, see [121] for further details. Finally, the term H ⩾ 0
is an increasing function of c and represents the nutrient consumption rate.
The specific form of the reaction term in the equation on c is not fully relevant for our analysis,
and we only need the possibility to derive some generic a priori estimates, mostly in L2. Our
study covers, for example, the terms in [130] where the authors take H = H(p, c), K = 0 and
those in [131] where K = 1{n=0}, since the authors are considering the avascular phase of tumor
growth. For our study, only some general conditions are needed, which are detailed in the next
sections.

Motivations and previous works. Models of tumor growth, including (2.1), possibly with
more biological relevance, have been widely used recently. Several surveys are available, as [139].
Numerical schemes for the model at hand, with AP property (asymptotic preserving), have been
proposed in [112].
Mechanical models of tumor growth are focused on the effect of the internal pressure which
governs the dynamics of the cell population density. This kind of description was initiated in [92]
by Greenspan and further developed by Byrne and Chaplain, [36], Friedman, [81], and Lowengrub
et al., [119], among the others. The leading assumption is that the birth of a cell generates a
mechanical stress on the surrounding cells which start to move under a gradient of pressure. By
consequence, the motion of the cells is usually described by Darcy’s law v⃗ = −∇p. This type
of models have been extensively used to describe the early stage of tumor growth, the so-called
avascular phase, see for example [28, 34, 146]. Models of tumor growth that include the effect of
viscosity, [132, 65, 136], or more than one species of tissue cells, [47, 117], are also well-developed.
For a comprehensive overview of this topic we refer the reader to [81, 119, 134, 137].
The equation for the density in system (2.1) is based on the continuous mechanical model pre-
sented in [37], in which the dynamics of tumor growth are governed by competition for space
and contact inhibition. The homeostatic pressure is determined by the maximum level of stress
that the cells can tolerate; we refer the reader to [37] for further details on the individual-based
model that leads to the continuous one.
As explained above, this type of models are usually referred to as compressible, since they relate
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the density and the pressure through a compressible constitutive law, in a fluid mechanical
view. A second class of models commonly used to describe cancer growth are free boundary
problems, [80]. They are also called geometric or incompressible models and describe the tumor
as a moving domain where the density is constant. Free boundary problems arise also from the
theory of mixture applied to tumor growth, [38, 39].

Building a link between these two classes of models has attracted the attention of many re-
searchers in recent years. This result has first been achieved in [130] for a purely mechanical
model, passing to the so-called incompressible limit, as the pressure becomes stiff. Later, it has
been studied for a lot of models, which included viscosity, [132, 65], different laws of state, [67]
and more than one species of cells, [31]. In each case the limit model turns out to be a free
boundary model of Hele-Shaw type.

Our goal is to study the limit γ → ∞ in the law of state (2.2), and prove that the limit solution
satisfies a free boundary problem. It has been proved in [130] that (the norms are specified in the
next section and we now use the notation nγ , pγ , cγ in place of n, p, c to indicate the dependency
upon γ)

nγ → n∞, pγ → p∞, cγ → c∞,

and the limits satisfy the system

∂n∞
∂t

−∇ · (n∞∇p∞) = n∞G(p∞, c∞), x ∈ Rd, t ⩾ 0,

∂c∞
∂t

−∆c∞ + n∞H(c∞) = (cB − c∞)K(p∞),

c∞(x, t) → cB for x→ ∞,

(2.3)

with a graph relation between p∞ and n∞ given by

0 ⩽ n∞ ⩽ 1, p∞(n∞ − 1) = 0. (2.4)

A remarkable result is the uniqueness of the weak solutions of this system.

However, it was left open in [130] to establish the so-called complementarity condition, which
reads (in the sense of distributions)

p∞
(
∆p∞ +G(p∞, c∞)

)
= 0 in D′(Rd × (0,∞)), (2.5)

which follows formally from the equation on n written for the pressure, namely

∂tpγ = γpγ
(
∆pγ +G(pγ , cγ)

)
+ |∇pγ |2. (2.6)

The complementarity condition is fundamental because it relates the weak solutions defined
by equations (2.3) and (2.4) to the geometric form of the Hele-Shaw problem, where the set
Ω(t) := {x; p(x, t) > 0} evolves with the speed determined by the normal component of ∇p∞.
The limit pressure is a solution to the elliptic equation with Dirichlet boundary conditions

−∆p∞ = G(p∞, c∞) in Ω(t) = {x; p∞(x, t) > 0}.

The Hele-Shaw model is a widely studied free boundary problem. Although we are only interested
in the weak formulation, the regularity of the boundary is also a challenging issue, see [43, 77,
123].



54 CHAPTER 2. Limit of a model with nutrients

Difficulties and strategies. To handle this problem, we make use of two new estimates which
hold because the cell population density satisfies the following equation of porous medium type

∂nγ
∂t

− γ

γ + 1
∆nγ+1

γ = nγG(pγ , cγ). (2.7)

• The first estimate results from the famous Aronson-Bénilan (AB in short) inequalities for
the porous media, [9, 58], which have been extended in various contexts (see [120] for another
example). It was adapted to a purely mechanical tumor growth model, [130], and it gives the
lower bound ∆pγ(t) + G(pγ(t)) ⩾ −C/γt, with C positive constant. Here, unlike in the case
without nutrients, it cannot hold. In fact, as shown in [131], where a semi-explicit travelling wave
solution was found, there exists a region where pγ is constantly equal to zero and G is negative.
Therefore, we show a weaker, but still sufficient, condition∫ T

0

∫
Rd

|min(0,∆pγ)|3 dxdt ⩽ C(T ).

This is proved by working in L2 rather than with a sub-solution, as it has been recently initiated
in [31, 94]. This method has the advantage to be compatible with the L2-estimates on cγ and
its derivatives. We recall that ∆p∞ is a bounded measure due to the free boundary of the set
Ω(t) where the pressure is positive.
• The second new estimate is an L4-bound on ∇pγ , independent of the dimension d. In the
simple case, where G depends only on p, it results from the kinetic energy relation combined to
the AB inequality in L∞, which is wrong here. We have a new and more general way to derive
it, independently of the AB estimate.

Plan of the paper. The paper is organized as follows. The next section is devoted to ex-
plain the notation and assumptions and to state the main result of the paper, namely that the
complementarity condition holds. The rest of the paper is dedicated to prove this result. We
begin in Section 2.3 presenting standard bounds which are useful for deriving the main new
estimates that are stated and proved in Section 2.4. Finally, in Section 2.5 we give the proof of
the complementarity relation.

2.2 Notation, assumptions and main result

Notation. We denote Q = Rd × (0,∞), and for T > 0 we set QT = Rd × (0, T ). Given a
bounded subset Ω ⊂ Rd, we denote ΩT := Rd × (0, T ). We frequently use the abbreviated form
n(t) := n(x, t), p(t) := p(x, t), c(t) := c(x, t).

Assumptions. Considering the growth/reaction terms, the functions G, H and K are assumed
to be smooth and we make the following assumption. There exist positive constants β, pH , pB
(reference pressure of blood vessels) such that

∂pG < −β, ∂cG ⩾ 0, G(p, cB) ⩽ 0, for p ⩾ pH , (2.8)
K ′(p) ⩽ 0, 0 ⩽ K(p) ⩽ 1, K(p) = 0, for p ⩾ pB , (2.9)
H ′(c) ⩾ 0, 0 ⩽ H(c), H(0) = 0. (2.10)

Furthermore, for a given pressure p, G(p, c) < 0 for c small enough. This assumption indicates
that tumor cells die by necrosis when the concentration of nutrients is below a survival threshold.
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Some standard choices for the reaction terms are

G(p, c) = g(p)(c+ c1)− c2, H(c) = c, K(p) =

∣∣∣∣1− p

pB

∣∣∣∣
+

,

where c1, c2 are positive constants and g is a decreasing function of p, see [52, 121, 130].

Initial data. System (2.1) is endowed with initial data n0γ , c0γ . We assume that for some n0, c0,
the initial data n0γ , c0γ satisfy

0 ⩽ n0γ ⩽ nH := p
1/γ
H , ∥n0γ − n0∥L1(Rd) −−−−→

γ→∞
0, n0 ∈ L1

+(Rd), (2.11)

0 ⩽ c0γ ⩽ cB , ∥c0γ − c0∥L1(Rd) −−−−→
γ→∞

0, c0 − cB ∈ L1
+(Rd). (2.12)

We also assume that there is a positive constant C such that

∥∇p0γ∥L2(Rd) + ∥∆p0γ∥L2(Rd) ⩽ C, (2.13)

∥(∂tnγ)0∥L1(Rd) + ∥(∂tcγ)0∥L1(Rd) ⩽ C, (2.14)

∥∇c0γ∥L2(Rd) ⩽ C. (2.15)

Set these conditions on the initial data, we give the definition of weak solution of system (2.1)
as follows.

Definition 2.2.1. Given T > 0, a weak solution of system (2.1) is a triple (nγ , pγ , cγ) such that,

nγ , pγ , cγ ∈ L∞((0, T ), Lp(Rd)) ∀p ⩾ 1, ∇cγ , ∇pγ ∈ L2(Rd × (0, T )),

and for all φ ∈ C1
comp(Rd × [0, T )),∫ T

0

∫
Rd

(−nγ∂tφ+ nγ∇pγ∇φ− nγG(pγ , cγ)φ) dx dt =

∫
Rd

n0γφ(0) dx,∫ T

0

∫
Rd

(−cγ∂tφ+∇cγ∇φ+ nγH(cγ)φ− (cB − c)K(p)φ) dxdt =

∫
Rd

c0γφ(0) dx.

From standard methods, see [94, 135, 149], we know that a weak solution exists for all T > 0.

Compact support. Because our arguments rely on technical calculations, we first simplify
the setting assuming that there exists a smooth bounded open domain Ω0 ⊂ Rd, independent
of γ, such that for all γ > 1

supp(n0γ) ⊂ Ω0.

Unlike the solutions of the heat equation, the PME’s solutions have a finite speed of propagation,
see [149]. This means that, for all T > 0, there exists a smooth bounded open domain Ω
independent of γ such that

supp(nγ(t)) ⊂ Ω, ∀t ∈ [0, T ],

see Appendix 2.A for the proof. From now on, we consider a solution (nγ , pγ) with compact
support for all γ > 1. In the Appendix 2.B, we show how to extend the result to more general
solutions.
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Main result. We now state the main result of the paper, namely the weak formulation of the
complementarity relation.

Theorem 2.2.2 (Estimates and complementarity relation). With all the previous assumptions,
the limit pressure p∞ satisfies the relation (2.5), that means, for all test functions ζ ∈ D(Q), we
have ∫∫

Q

(
−|∇p∞|2ζ − p∞∇p∞∇ζ + p∞G(p∞, c∞)ζ

)
dxdt = 0.

Furthermore the following estimates hold uniformly in γ∫∫
ΩT

(∆pγ +G(pγ , cγ))
3
− dx dt ⩽ C(T ),

∫∫
ΩT

|∇pγ |4 dxdt ⩽ C(T ).

2.3 Preliminary Estimates

Let (nγ , pγ , cγ) be a weak solution to system (2.1). We recall some standard preliminary bounds
on nγ , pγ , cγ and their derivatives, gathered in the following Proposition.

Proposition 2.3.1 (Direct estimates). Let (nγ , pγ , cγ) be a weak solution of system (2.1). For
all T > 0, the following holds independently of γ

0 ⩽ nγ ⩽ nH , 0 ⩽ pγ ⩽ pH , 0 ⩽ cγ ⩽ cB , (2.16)

nγ , pγ , cγ(t)− cB ∈ L∞(0, T, L1(Rd)), (2.17)

cγ ∈ L∞(0, T,H1(Rd)) ∩ L2(0, T,H2(Rd)), (2.18)

∂tnγ , ∂tpγ ∈ L1(QT ), ∂tcγ ∈ L2(QT ) (2.19)

cγ ∈ L4(QT ), pγ ∈ L2(0, T,H1(Rd)). (2.20)

Proof. L∞-bounds for nγ , pγ , cγ. The L∞-bounds follow from the comparison principle and
our assumptions on G. For the sake of completeness, we recall the argument. From equation
(2.7) we have

∂t(nγ − nH)− γ

γ + 1
∆(nγ+1

γ − nγ+1
H ) = (nγ − nH)G(pγ , cγ) + nHG(pγ , cγ).

Multiplying by sign+{nγ − nH} we obtain

∂t(nγ − nH)+ − γ

γ + 1
∆((nγ+1

γ − nγ+1
H )+) ⩽G(pγ , cγ)(nγ − nH)+

+ nH(G(pγ , cγ)−G(pH , cγ))sign+(nγ − nH).

since, thanks to the assumptions on G, we have G(pH , cγ) ⩽ 0.
Integrating in space yields

d

dt

∫
Rd

(nγ(t)− nH)+ dx ⩽ ∥G∥∞
∫
Rd

(nγ(t)− nH)+ dx,

because (G(pγ , cγ)−G(pH , cγ))sign+(nγ −nH) ⩽ 0, since G is decreasing with respect to pγ . By
the assumption (2.11) and thanks to Gronwall’s lemma, we find nγ ⩽ nH and therefore pγ ⩽ pH .
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Using the same argument with the sign−(nγ) we obtain

d

dt

∫
Rd

(nγ(t))− dx ⩽ C

∫
Rd

(nγ(t))− dx.

By Gronwall’s lemma we deduce∫
Rd

(nγ(t))− dx ⩽ eCt
∫
Rd

(n0γ)− dx,

and, since the initial data is non-negative by assumption (2.11), this yields nγ ⩾ 0 and pγ ⩾ 0.
The same argument applies to cγ and then we have cγ ⩾ 0. From the equation for cγ it holds

∂t(cγ − cB)+ −∆(c− cB)+ ⩽− nγH(cγ)sign+(cγ − cB)−K(p)(cγ − cB)+.

Since H,K and nγ are always non-negative, we get

∂t(cγ − cB)+ −∆(c− cB)+ ⩽ 0,

which gives
d

dt

∫
Rd

(c− cB)+ dx ⩽ 0.

Since c0γ ⩽ cB , by assumption (2.12), we conclude that cγ ⩽ cB . L1-bounds on nγ , pγ , cγ.

These are also standard estimates, noting that

∥p(t)∥L1(Rd) = ∥n(t)p(t)
γ−1
γ ∥L1(Rd) ⩽ p

γ−1
γ

H ∥n(t)∥L1(Rd).

L2-bounds for the derivatives of cγ. We now prove the L2-bounds for ∇cγ ,∆cγ and ∂tcγ .

We multiply the equation for cγ by −∆cγ and we integrate in space and time

−
∫ t

0

∫
Rd

∂tcγ∆cγ dxds+

∫ t

0

∫
Rd

|∆cγ |2 dxds =
∫ t

0

∫
Rd

(nγH(cγ)− (cB − cγ)K(pγ))∆cγ dx ds.

Integrating by parts and using Young’s inequality we obtain∫ t

0

∫
Rd

∂t

(
|∇cγ |2

2

)
dxds+

∫ t

0

∫
Rd

|∆cγ |2 dxds

⩽
∫ t

0

∫
Rd

|nγH(cγ)− (cB − cγ)K(pγ)|2

2
dxds+

∫ t

0

∫
Rd

|∆cγ |2

2
dx ds.

Hence, we have

1

2

∫
Rd

|∇cγ(t)|2 dx+
1

2

∫ t

0

∫
Rd

|∆cγ |2 dxds

⩽ C

∫ t

0

(
∥nγ(s)∥2L1(Rd) + ∥cγ(s)− cB∥2L1(Rd)

)
ds+

1

2
∥∇c0γ∥2L2(Rd),

where C is a positive constant depending on nH , cB and the L∞-norms of H and K.
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Finally, using the L1-bounds (2.17), we obtain∫
Rd

|∇cγ(t)|2 +
∫ t

0

∫
Rd

|∆cγ |2 ⩽ C(T ) + ∥∇c0γ∥2L2(Rd),

for 0 < t ⩽ T , and thanks to (2.15) we conclude the proof of the first and second estimates in
(2.18).
At last, considering the equation for cγ

∂tcγ = ∆cγ − nγH(cγ) + (cB − cγ)K(pγ),

and using the previous bounds on nγ , cγ and ∆cγ we conclude that ∂tcγ ∈ L2(QT ).

L1-bounds for the time derivatives of nγ and pγ. We differentiate the equation for nγ and
we multiply it by sign(∂tnγ)

∂t|∂tnγ | − γ∆(nγγ |∂tnγ |) ⩽ |∂tnγ |G+ nγ∂pG|∂tpγ |+ nγ∂cG∂tcγsign(∂tnγ). (2.21)

We integrate in space using the monotonicity of G

d

dt
∥∂tnγ(t)∥L1(Rd) ⩽ ∥G∥L∞(QT )∥∂tnγ(t)∥L1(Rd) + ∥∂cG∥L∞(QT )∥nγ(t)∥L2(Rd)∥∂tcγ(t)∥L2(Rd).

Thanks to (2.17) and (2.18), Gronwall’s lemma gives

∥∂tnγ(t)∥L1(Rd) ⩽ C(T )∥(∂tnγ)0∥L1(Rd) ⩽ C(T ),

where in the last inequality we used (2.14).
By integrating in Qt := Rd × (0, t), we obtain

∥∂tnγ(t)∥L1(Rd) +min |∂pG|
∫∫

Qt

nγ |∂tpγ |dxds ⩽ C(T ),

thanks to (2.14) and the L1 bounds proved above. Then, for the time derivative of the pressure,
it holds

∥∂tpγ∥L1(QT ) ⩽
∫∫

QT∩{nγ⩽1/2}
γnγ−1

γ |∂tnγ |dx dt+ 2

∫∫
QT∩{nγ⩾1/2}

nγ |∂tpγ |dxdt ⩽ C(T ).

We differentiate the equation for cγ and multiply it by sign(∂tcγ)

∂t|∂tcγ | −∆(|∂tcγ |) ⩽ −∂tnγHsign(∂tcγ)− nγH
′|∂tcγ | − |∂tcγ |K + (cB − c)K ′∂tpγsign(∂tcγ).

Integrating in space we obtain

d

dt
∥∂tcγ(t)∥L1(Rd) ⩽ ∥H∥L∞(QT )∥∂tnγ(t)∥L1(Rd) + nH∥H ′∥L∞(QT )∥∂tcγ(t)∥L1(Rd)

+ cB∥K ′∥L∞(QT )∥∂tp(t)∥L1(Rd),

and thanks to the previous bounds and Gronwall’s lemma we have

∥∂tcγ(t)∥L1(Rd) ⩽ C(T )∥(∂tcγ)0∥L1(Rd) ⩽ C(T ),
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and this concludes the proof of (2.19).

L4-bound for the gradient of cγ. Now, we prove that the gradient of cγ is bounded in L4.
Integration by parts gives∫

Rd

|∇cγ |4 dx = −
∫
Rd

cγ∆cγ |∇cγ |2 dx−
∫
Rd

cγ∇cγ · ∇(|∇cγ |2) dx.

We use Young’s inequality on the first term of the right-hand side and we get

1

2

∫
Rd

|∇cγ |4 dx ⩽
1

2

∫
Rd

c2γ |∆cγ |2 dx−
∫
Rd

cγ∇cγ · ∇(|∇cγ |2) dx.

We write the last term as

−
∫
Rd

cγ∇cγ · ∇(|∇cγ |2) dx = −2
∑
i,j

∫
Rd

cγ ∂icγ ∂jcγ ∂
2
i,jcγ dx

⩽
1

4

∫
Rd

|∇cγ |4 dx+ 4c2B

∫
Rd

∑
i,j

(∂2i,jcγ)
2 dx

=
1

4

∫
Rd

|∇cγ |4 dx+ 4c2B

∫
Rd

|∆cγ |2 dx.

Thus, we have
1

4

∫
Rd

|∇cγ |4 dx ⩽

(
1

2
+ 4

)
c2B

∫
Rd

|∆cγ |2 dx.

and the L4-estimate is proven.

L2-bound for the pressure gradient. Since the pressure satisfies equation (2.6), integrating
it in space we get

d

dt

∫
Rd

pγ(t) dx = −γ
∫
Rd

|∇pγ(t)|2 dx+ γ

∫
Rd

pγ(t)G(pγ(t), cγ(t)) dx+

∫
Rd

|∇pγ(t)|2 dx.

Then, we integrate in time

(γ − 1)

∫ T

0

∫
Rd

|∇pγ |2 dxdt = ∥pγ(0)∥L1(Rd) − ∥pγ(T )∥L1(Rd) + γ

∫ T

0

∫
Rd

pγG(pγ , cγ) dxdt,

(γ − 1)

∫ T

0

∫
Rd

|∇pγ |2 dxdt ⩽ C0 + γC(T ),

and this gives, since γ > 1, ∫ T

0

∫
Rd

|∇pγ |2 dxdt ⩽ C(T ).

2.4 Stronger a priori estimates on pγ

To establish the complementarity condition (2.5) is equivalent to prove the strong compactness
of |∇pγ |2. One step towards this goal is to prove compactness in space using the classical AB
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estimate, [9, 58]. Here, major difficulties arise. As explained in the Introduction, since the
reaction term can change sign the usual Aronson-Bénilan lower bound cannot hold true, see
[130, 131]. Moreover, we cannot apply the comparison principle because of the bad coupling in
system (2.1). Since the L∞ bound from below in the AB estimate is missing, we prove an L3

version, adapting the method presented in [94]. Then, we show that the gradient of the pressure
is bounded in L4(QT ), which gives the compactness needed to pass to the limit.
Our first goal is to prove the AB estimate on the functional

w := ∆pγ +G(pγ , cγ), (2.22)

which is a variation of the Laplacian in order to take into account the source term, at the same
order of ∆pγ , in equation (2.6).

Theorem 2.4.1 (Aronson-Bénilan estimate in L3). With the assumptions of Section 2.2 and
with γ > max(1, 2− 4

d ), for all T > 0 there is a constant C(T ) depending on T and the previous
bounds and independent of γ such that∫∫

ΩT

(w)3− dx dt ⩽ C(T ),

∫∫
ΩT

|∆pγ |dxdt ⩽ C(T ). (2.23)

Let us point out that because the free boundary is where p∞ vanishes, it is important that w
itself is controlled and not merely pw as in the next estimate.

Theorem 2.4.2 (L4-estimate on the pressure gradient). With the same assumptions as before,
given T > 0, it holds

(γ − 1)

∫∫
ΩT

pγ |∆pγ +G|2 dxdt+
∫∫

ΩT

pγ
∑
i,j

(∂2i,jpγ)
2 dxdt ⩽ C(T ), (2.24)

∫∫
ΩT

|∇pγ |4 dx dt ⩽ C(T ), (2.25)

where C(T ) depends on T and previous bounds and is independent of γ.

We recall that in the model independent of cγ , [130], the AB estimate is much stronger and
gives ∆pγ(t) +G(pγ(t)) ⩾ − 1

γt , and the major difficulty is the control of ∆pγ which is provided
by Theorem 2.4.1. As proved in [123], the L4-estimate follows from the total energy control
when G = G(p), but this uses the strong form of the AB estimate. Therefore, we use another
argument, which is reminiscent of the energy control, but treats differently of the "dissipation"
terms.

Proof of Theorem 2.4.1. For the sake of simplicity we forget the index γ and dxdt in the
integration. We compute the time derivative of w and obtain

∂tw = ∆(|∇p|2) + γ∆(pw) + ∂pG(|∇p|2 + γpw) + ∂cG∂tc.

The first term is

∆(|∇p|2) = 2
∑
i,j

(∂2i,jp)
2 + 2∇p · ∇(∆p) ⩾

2

d
(∆p)2 + 2∇p · ∇(∆p).
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By definition of w we have

2∇p · ∇(∆p) = 2∇p · ∇(w −G) = 2∇p · ∇w − 2∂pG|∇p|2 − 2∂cG∇p · ∇c.

Hence, the time derivative satisfies

∂tw ⩾
2

d
(w −G)2 + 2∇p · ∇w − ∂pG|∇p|2 − 2∂cG∇p · ∇c (2.26)

+ γ∆(pw) + γpw ∂pG+ ∂cG∂tc.

Multiplying (2.26) by −(w)−, we obtain

−∂tw (w)− ⩽− 2

d
(w)3− − 4

d
G|w|2− − 2

d
G2(w)− +∇p · ∇(w)2− + ∂pG|∇p|2(w)−

+ 2∂cG∇p · ∇c(w)− + γ∆(p(w)−)(w)− + γp ∂pG(w)
2
− − ∂cG∂tc(w)−.

Hence, using the fact that ∂pG < −β from (2.8), we integrate in space to obtain

d

dt

∫
Ω

(w)2−
2

⩽− 2

d

∫
Ω

(w)3− − 2

d

∫
Ω

G2(w)− − β

∫
Ω

|∇p|2(w)−

− 4

d

∫
Ω

G(w)2− +

∫
Ω

[
∇p · ∇(w)2− + γ∆(p(w)−)(w)−

]
︸ ︷︷ ︸

A

−
∫
Ω

∂cG∂tc(w)−︸ ︷︷ ︸
B

+2

∫
Ω

∂cG∇p · ∇c(w)−︸ ︷︷ ︸
C

.

Now, we proceed integrating by parts the first term,

A = −
∫
Ω

[
∆p(w)2− + γ∇p · ∇(w)−(w)− + γp|∇(w)−|2

]
=

∫
Ω

(w)3− +

∫
Ω

G(w)2− +
γ

2

∫
Ω

∆p(w)2− − γ

∫
Ω

p|∇(w)−|2

=
(
1− γ

2

)∫
Ω

(w)3− +
(
1− γ

2

)∫
Ω

G(w)2− − γ

∫
Ω

p|∇(w)−|2.

Next, using (2.18) and the Cauchy-Schwarz inequality, we obtain

B ⩽ C

∫
Ω

(w)2− + C.

Thanks to Young’s inequality and (2.20), we compute

C ⩽
β

2

∫
Ω

|∇p|2(w)− + C

∫
Ω

|∇c|4 + C

∫
Ω

(w)2−

⩽
β

2

∫
Ω

|∇p|2(w)− + C

∫
Ω

(w)2− + C.
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We may now come back to the control of d
dt

∫
Ω

(w)2−
2 . Gathering all the previous bounds, we get

the following estimate

d

dt

∫
Ω

(w)2−
2

⩽ −
(
2

d
− 1 +

γ

2

)∫
Ω

(w)3− − β

2

∫
Ω

|∇p|2(w)− + C(γ + 1)

∫
Ω

(w)2− + C.

Hence integrating in time we have(
2

d
− 1 +

γ

2

)∫∫
ΩT

(w)3− ⩽ C (γ + 1)

∫∫
ΩT

(w)2− +

∫
Ω

(w0)2−
2

+ C(T )

⩽ C (γ + 1)

(∫∫
ΩT

(w)3−

) 2
3

+ C(T ),

where we used assumption (2.13) and C represents different constants depending on T , |Ω(T )|
and previous bounds. This is the place where we strongly use the compact support assumption.
At last, with our assumption that γ is large enough, we obtain∫∫

ΩT

(w)3− ⩽ C

(∫∫
ΩT

(w)3−

) 2
3

+ C(T ),

and hence we have proved our main result, that is the first estimate of (2.23),∫∫
ΩT

(w)3− ⩽ C(T ).

To prove the second estimate, we argue as follows. Since∫∫
ΩT

(∆p+G) ⩽ C(T ),

we can also control the positive part of w∫∫
ΩT

(w)+ ⩽ C(T ) +

∫∫
ΩT

(w)− ⩽ C(T ) + C

(∫∫
ΩT

(w)3−

) 1
3

.

Thus it holds ∫∫
ΩT

|∆p+G| ⩽ C(T ).

Hence, we finally obtain the L1-estimate for the Laplacian of the pressure∫∫
ΩT

|∆p| ⩽ C(T ),

that concludes the proof of Theorem 2.4.1.

Proof of Theorem 2.4.2. We consider the equation for the pressure (2.6), we multiply it by
−(∆pγ +G(pγ , cγ)) and integrate in space. We find successively

−
∫
Ω

∂tpγ∆pγ −
∫
Ω

∂tpγ G = −γ
∫
Ω

pγ |∆pγ +G|2 −
∫
Ω

|∇pγ |2∆pγ −
∫
Ω

|∇pγ |2G,
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d

dt

∫
Ω

|∇pγ |2

2
−
∫
Ω

∂tpγG+ γ

∫
Ω

pγ |∆pγ +G|2 +
∫
Ω

|∇pγ |2∆pγ ⩽ ∥G∥L∞∥∇pγ(t)∥2L2 .

We integrate by parts the last term of the left-hand side and obtain∫
Ω

|∇pγ |2∆pγ =

∫
Ω

pγ∆(|∇pγ |2)

= 2

∫
Ω

pγ∇pγ · ∇(∆pγ) + 2

∫
Ω

pγ
∑
i,j

(∂2i,jpγ)
2

= −2

∫
Ω

pγ |∆pγ |2 − 2

∫
Ω

|∇pγ |2∆pγ + 2

∫
Ω

pγ
∑
i,j

(∂2i,jpγ)
2.

Hence, we conclude that∫
Ω

|∇pγ |2∆pγ = −2

3

∫
Ω

pγ |∆pγ |2 +
2

3

∫
Ω

pγ
∑
i,j

(∂2i,jpγ)
2.

Thus, we have

d

dt

∫
Ω

|∇pγ |2

2
−
∫
Ω

∂tpγ G︸ ︷︷ ︸
I1

+ γ

∫
Ω

pγ |∆pγ +G|2 − 2

3

∫
Ω

pγ |∆pγ |2︸ ︷︷ ︸
I2

+
2

3

∫
Ω

pγ
∑
i,j

(∂2i,jpγ)
2 ⩽ C(T ).

(2.27)
We can define the function G = G(pγ , cγ) =

∫ pγ
0
G(q, cγ)dq and then

∂tpγ G(pγ , cγ) = ∂tG(pγ , cγ)− ∂tcγ ∂cG(pγ , cγ).

Using this relation the term I1 can be written as

I1 = −
∫
Ω

∂tG+

∫
Ω

∂cG∂tcγ ⩾ −
∫
Ω

∂tG− C,

thanks to the L2-bound on ∂tcγ in (2.18) and because |∂cG| ⩽ Cpγ . We can estimate the term
I2 from below as follows

I2 ⩾ (γ − 1)

∫
Ω

pγ |∆pγ +G|2 − C

∫
Ω

pγ |G|2.

Thus, we find

I1 + I2 ⩾ (γ − 1)

∫
Ω

pγ |∆pγ +G|2 −
∫
Ω

∂tG− C(T ). (2.28)

Combining (2.27) and (2.28), we have

d

dt

∫
Ω

[
|∇pγ |2

2
−G

]
+ (γ − 1)

∫
Ω

pγ |∆pγ +G|2 + 2

3

∫
Ω

pγ
∑
i,j

(∂2i,jpγ)
2 ⩽ C(T ).

Finally, integrating in time, we obtain estimate (2.24), and this proves the first step of Theo-
rem 2.4.2.
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Furthermore, this bound also implies∫∫
ΩT

pγ |∆pγ |2 ⩽ C(T ). (2.29)

We compute the L4-norm of the gradient of pγ , as we did for the gradient of cγ ,∫∫
ΩT

|∇pγ |4 = −
∫∫

ΩT

pγ∆pγ |∇pγ |2 −
∫∫

ΩT

pγ∇pγ · ∇(|∇pγ |2).

Applying Young’s inequality to the first term, we obtain

1

2

∫∫
ΩT

|∇pγ |4 ⩽
1

2

∫∫
ΩT

p2γ |∆pγ |2 − 2
∑
i,j

∫∫
ΩT

pγ ∂ipγ ∂jpγ ∂
2
i,jpγ .

The last term can be bounded from above as follows

2
∑
i,j

∫∫
ΩT

pγ ∂ipγ ∂jpγ ∂
2
i,jpγ ⩽

1

4

∫∫
ΩT

|∇pγ |4 + 4

∫∫
ΩT

p2γ
∑
i,j

(∂2i,jpγ)
2.

Therefore, we obtain

1

4

∫∫
ΩT

|∇pγ |4 ⩽
1

2

∫∫
ΩT

p2γ |∆pγ |2 + 4

∫∫
ΩT

p2γ
∑
i,j

(∂2i,jpγ)
2.

Since pγ ⩽ pH , by (2.24) and (2.29) we conclude∫∫
ΩT

|∇pγ |4 ⩽ C(T ),

and this completes the proof of Theorem 2.4.2.

2.5 Complementarity relation

Thanks to the bounds provided by Theorem 2.4.1 and Theorem 2.4.2, we may obtain the desired
compactness on the pressure gradient. This allows us to pass to the incompressible limit and
prove the complementarity relation as we state it now.

Theorem 2.5.1 (Complementarity relation). With the assumptions of Theorem 2.4.1, the com-
plementarity condition (2.5) holds. More precisely, for all test functions ζ ∈ D(Q), the limit
pressure p∞ satisfies∫∫

Q

(
−|∇p∞|2ζ − p∞∇p∞ · ∇ζ + p∞G(p∞, c∞)ζ

)
dx dt = 0.

This result is related to the geometric form of the Hele-Shaw free boundary problem (while (2.3)
is the weak form). It tells us that the limit solution satisfies{

−∆p∞ = G(p∞, c∞) in Ω(t) := {x; p∞(x, t) > 0},
p∞ = 0 on ∂Ω(t),
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where, for every t > 0, the set Ω(t) represents the region occupied by the tumor. Moreover, in
the limit, the pressure and the cell population density satisfy the relation

p∞(1− n∞) = 0.

Therefore, Ω(t) ⊂ {x;n∞(x, t) = 1}, hence the classification of incompressible model. In the
purely mechanical case the two sets actually coincide almost everywhere, see [123].

Proof of Theorem 2.5.1. Thanks to the bounds in (2.18), (2.19) and (2.20), pγ and cγ are
locally compact. Thus, after the extraction of subsequences, we have

pγ → p∞ strongly in L1(QT ), cγ → c∞ strongly in L1(QT ),

when γ → ∞, for all T > 0. From Theorem 2.4.2, we also recover the weak convergence of the
gradient of the pressure, up to a subsequence, i.e.

∇pγ ⇀ ∇p∞ weakly in L4(QT ).

From Theorem 2.4.1, we know that ∆pγ is bounded in L1. Then, we have local compactness in
space for the pressure gradient. To gain compactness in time we use the Aubin-Lions lemma.
From equation (2.6), we have

∂t(∇pγ) = ∇[γpγ(∆pγ +G) + |∇pγ |2],

where the right-hand side is a sum of space derivatives of functions bounded in L1. In fact,
since by (2.19) and (2.20), ∂tpγ and |∇pγ |2 are in L1, from (2.6) the term γpγ(∆pγ +G) is also
bounded in L1. Thus, we can extract a subsequence such that

∇pγ → ∇p∞ strongly in Lq(QT ), for 1 ⩽ q <
d

d− 1
.

After the extraction of a subsequence, we obtain convergence almost everywhere for ∇pγ . Then,
using the L4-bound of Theorem 2.4.2, we have

∇pγ → ∇p∞ strongly in Lq(QT ), for 1 ⩽ q < 4,

hence, in particular, also for q = 2.

Let ζ ∈ D(Q) be a test function. We consider the equation for pγ

∂pγ
∂t

= γpγ(∆pγ +G(pγ , cγ)) + |∇pγ |2,

we multiply it by ζ and we integrate in Q

− 1

γ

∫∫
Q

(
pγ∂tζ + |∇pγ |2ζ

)
dxdt =

∫∫
Q

(
−|∇pγ |2ζ − pγ∇pγ · ∇ζ + pγG(pγ , cγ)ζ

)
dxdt.

Hence, passing to the limit for γ → ∞ we obtain the complementarity relation∫∫
Q

(
−|∇p∞|2ζ − p∞∇p∞ · ∇ζ + p∞G(p∞, c∞)ζ

)
dx dt = 0.
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This is equivalent to ∫∫
Q

p∞ (∆p∞ +G(p∞, c∞)) ζ dxdt = 0,

which means
p∞ (∆p∞ +G(p∞, c∞)) = 0, in D′(Q),

and the proof of Theorem 2.5.1 is complete.

2.A Compact support property

We give the proof of the finite speed of propagation property of solutions of system (2.1). Our
goal is to show that, if the initial data satisfy

supp(n0γ) ⊂ Ω0, ∀γ > 1,

with Ω0 independent of γ, then the solutions nγ(t), pγ(t) are compactly supported, uniformly
in γ and t ∈ [0, T ], for all T > 0. This means that there exists a bounded open domain Ω
independent of γ such that

supp(nγ(t)) ⊂ Ω, ∀γ > 1, ∀t ∈ [0, T ].

For every γ > 1, the pressure pγ is a sub-solution to equation

∂tpγ ⩽ |∇pγ |2 + γpγ(∆pγ +G(0, cB)).

Thus, by finding a supersolution with compact support, we can control the supports of pγ and
nγ .
We consider the function

Π(x, t) = G(0, cB)

(
S(t)− |x|2

2

)
+

,

where we choose the function S such that it satisfies

S′(t) ⩾ 2G(0, cB)S(t).

We compute the derivatives of Π and we find

∂tΠ(x, t) = G(0, cB)S
′(t)1{S(t)⩾ |x|2

2 },

∇Π(x, t) = −G(0, cB)x1{S(t)⩾ |x|2
2 },

Π∆Π(x, t) = Π
(
−d G(0, cB)1{S(t)⩾ |x|2

2 } +G(0, cB)|x|δ{S(t)= |x|2
2 }

)
= −dG(0, cB)Π.

Therefore Π satisfies

∂tΠ− |∇Π|2 − γΠ(∆Π+G(0, cB)) ⩾ (G(0, cB)S
′(t)−G(0, cB)

2x2)1{S(t)⩾ |x|2
2 } + γΠG(0, cB)(d+ 1)

⩾ (2G(0, cB)
2S(t)−G(0, cB)

2x2)1{S(t)⩾ |x|2
2 }

⩾ 0.
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Hence, we have proved that for all T > 0

supp(pγ(t)) ⊂ supp(Π(t)) ⊂ BT , ∀γ > 1,∀t ∈ [0, T ],

where BT is the open ball with radius
√

2S(T ).

2.B Removing the compact support assumption

The proof of the main result of the paper is built on the compact support assumption stated
in Section 2.2. Our goal is to generalize the result removing this condition. Let us note that
it is sufficient to extend Theorem 2.4.1, since it is the only one for which we used the compact
support assumption. Moreover, let us notice that Proposition 2.3.1 holds true in this framework.
We define the functional w as in (2.22) and we state the following result.

Proposition 2.B.1 (Aronson-Bénilan generalized estimate in L3). Let Φ be a test function in
C2

comp(Rd). With the assumptions from (2.8) to (2.15), and with γ > max(1, 2− 4
d ), for all T > 0

there exists a constant C(T ) depending on previous bounds and independent of γ such that∫ T

0

∫
Rd

(w)3−Φ ⩽ C(T ),

∫ T

0

∫
Rd

|∆p|Φ ⩽ C(T ).

Proof. Computing the time derivative of the negative part of w, we have

−∂t
(
(w)2−
2

)
⩽− 4

d
(w)3− − 2

d
G|w|2− − 2

d
G2(w)− +∇(w)2− · ∇p+ ∂pG|∇p|2(w)−

+ 2∂cG∇p · ∇c(w)− + γ∆(p(w)−)(w)− − ∂cG∂tc(w)−,

as in the proof of Theorem 2.4.1. We multiply the inequality by Φ and integrate in space

d

dt

∫
Ω

(w)2−
2

Φ ⩽− 2

d

∫
Ω

(w)3−Φ− 2

d

∫
Ω

G2(w)−Φ− β

∫
Ω

|∇p|2(w)−Φ (2.30)

− 4

d

∫
Ω

G(w)2−Φ+

∫
Ω

[
∇p · ∇

(
(w)2−

)
Φ+ γ∆(p(w)−)(w)−Φ

]
︸ ︷︷ ︸

A

−
∫
Ω

∂cG∂tc(w)−Φ︸ ︷︷ ︸
B

+2

∫
Ω

∂cG∇p · ∇c(w)−Φ︸ ︷︷ ︸
C

.

Now we proceed computing each term,

A =

∫
Rd

∇p · ∇
(
(w)2−

)
Φ− γ

∫
Rd

∇(p(w)−) · ∇(w)−Φ− γ

∫
Rd

(w)−∇(p(w)−) · ∇Φ

=−
∫
Rd

∆p(w)2−Φ−
∫
Rd

(w)2−∇p · ∇Φ− γ

∫
Rd

(w)−∇p · ∇(w)−Φ

− γ

∫
Rd

p|∇(w)−|2Φ+ γ

∫
Rd

p(w)2−∆Φ+ γ

∫
Rd

p∇
(
(w)2−
2

)
· ∇Φ

=−
∫
Rd

∆p(w)2−Φ−
∫
Rd

(w)2−∇p · ∇Φ+
γ

2

∫
Rd

∆p(w)2−Φ+
γ

2

∫
Rd

(w)2−∇p · ∇Φ
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− γ

∫
Rd

p|∇(w)−|2Φ+
γ

2

∫
Rd

p(w)2−∆Φ− γ

2

∫
Rd

(w)2−∇p · ∇Φ

=
(
1− γ

2

)∫
Rd

(w)3−Φ+
(
1− γ

2

)∫
Rd

G(w)2−Φ− γ

∫
Rd

p|∇(w)−|2Φ+A1,

with
A1 =

γ

2

∫
Rd

p(w)2−∆Φ−
∫
Rd

(w)2−∇p · ∇Φ.

By the Cauchy-Schwarz inequality we have

B ⩽
∫
Rd

(w)2−Φ+ C

∫
Rd

|∂tc|2Φ ⩽
∫
Rd

(w)2−Φ+ C.

Using Young’s inequality and (2.20), we find

C ⩽
β

2

∫
Rd

|∇p|2(w)−Φ+ C

∫
Rd

|∇c|2(w)−Φ

⩽
β

2

∫
Rd

|∇p|2(w)−Φ+ C

∫
Rd

|∇c|4Φ+ C

∫
Rd

(w)2−Φ

⩽
β

2

∫
Rd

|∇p|2(w)−Φ+ C

∫
Rd

(w)2−Φ+ C.

It remains to treat the term containing the derivatives of Φ

A1 = −
∫
Rd

(w)2−∇p · ∇Φ+
γ

2

∫
Rd

p(w)2−∆Φ.

We choose a positive function Φ with exponential decay, such that |∇Φ| ⩽ CΦ and |∆Φ| ⩽ CΦ.
Now, we integrate by parts and use Young’s inequality

A1 =2

∫
Rd

p(w)−∇(w)− · ∇Φ+
(
1 +

γ

2

)∫
Rd

p(w)2−∆Φ

⩽
1

2

∫
Rd

p|∇(w)−|2Φ+ C(γ + 1)

∫
Rd

(w)2−Φ.

Finally, inequality (2.30) can be written as follows

d

dt

∫
Rd

(w)2−Φ+

(
2

d
+
γ

2
− 1

)∫
Rd

(w)3−Φ+
β

2

∫
Rd

|∇p|2(w)−Φ ⩽ C(γ + 1)

∫
Rd

(w)2−Φ+ C,

then, for γ > 2− 4
d , integrating in time we have

∫ T

0

∫
Rd

(w)3−Φ ⩽

(∫ T

0

∫
Rd

(w)3−Φ

) 2
3

+ C(T ),

and then we have proved ∫ T

0

∫
Rd

(w)3−Φ ⩽ C(T ).
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By consequence ∫ T

0

∫
Rd

(w)2−Φ ⩽ C(T ),

∫ T

0

∫
Rd

(w)−Φ ⩽ C(T ).

Since Φ is a smooth function with compact support∫ T

0

∫
Rd

(∆p+G)Φ ⩽ C,

and then also ∫
Rd

Φ|∆p+G|+ =

∫
Rd

Φ(∆p+G) +

∫
Rd

Φ(∆p+G)− ⩽ C(T ).

Therefore we recover the local L1-estimate for the Laplacian of the pressure∫ T

0

∫
Rd

|∆p|Φ ⩽ C.

2.C Sharpness of the bound ∇p ∈ L4

In Theorem 2.4.2, we have established the uniform bound ∇pγ ∈ L4
x,t, see (2.25). Here, we aim

at showing that the exponent 4 cannot be increased. We use the so-called focusing solution of
the porous medium equation, see for instance [11], which consists in a spherical hole filling which
generates a stronger singularity than the Barenblatt solution, see [149]. We consider the limit
γ → ∞, i.e. the Hele-Shaw problem, that was already studied in detail in [10] for a larger class
of operators.
Consider α > 0 such that ∇p ∈ Lα(QT ), where p is a solution of the Hele-Shaw problem with
homogeneous Dirichlet boundary conditions in a spherical shell {R(t) < |x| < R1}, for a fixed
R1 > 0 and R(0) small enough. Then, to simplify the problem, we fix the external radius R1

and let p satisfy 
−∆p = 1, for R(t) < |x| < R1,

p(x) = 0, for |x| = R(t) or |x| = R1,

R′(t) = −∇p · ν, for |x| = R(t).

(2.31)

Here, ν denotes the inner normal to the ball BR(t)(0). As in [11], R(t) diminishes and vanishes
in finite time, generating a singularity |∇p| → ∞. The power 4 turns out to be the highest
possible integrability in time at this singular time. We treat the case of dimension 2. In higher
dimension, the radial solutions are more regular and the worst singularity would be obtained for
a cylinder with a 2 dimensional basis.

Case d = 2. With spherical symmetry, we set p = p(r), r := |x|, and the first equation in
(2.31) reads

−1

r
(rp′)′ = 1.
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Integrating once, we get, for some a(t)

p′ = −r
2
+
a(t)

r
,

and the second integration yields

p = −r
2

4
+ a(t) ln r + b(t).

Imposing p(R1) = p(R(t)) = 0, we find

b(t) =
R2

1

4
− a(t) lnR1,

R(t)2

4
− a(t) lnR(t) =

R2
1

4
− a(t) lnR1.

Hence, for R(t) ≈ 0, we have

a(t) ≈ − R2
1

4 lnR(t)
, R′(t) ≈ 1

R(t) lnR(t)
. (2.32)

Therefore, there is T > 0 when R(T−) = 0 and as t ≈ T , we compute∫ T

0

∫
BR1

(0)

|∇p(x)|αdxdt =
∫ T

0

∫ R1

R(t)

|p′(r)|αrdrdt ≈
∫ T

0

∫ R1

R(t)

|a(t)|α

rα−1
drdt.

The singularity at T is thus driven by∫ T

0

|a(t)|α

R(t)α−2
dt ≈

∫ T

0

1

| lnR(t)|αR(t)α−2
dt ≈

∫ R(0)

0

1

| lnR|α−1Rα−3
dR

by the change of variable R = R(t) and using equation (2.32). We recall that we have chosen
R(0) small enough.
This integral is finite for 1 ⩽ α ⩽ 4 and infinite for α > 4.



Chapter 3

An asymptotic preserving scheme
for a tumor growth model of porous
medium type

Abstract
Mechanical models of tumor growth based on a porous medium approach have been attracting a
lot of interest both analytically and numerically. In this paper, we study the stability properties
of a finite difference scheme for a model where the density evolves down pressure gradients and
the growth rate depends on the pressure and possibly nutrients. Based on the stability results,
we prove the scheme to be asymptotic preserving (AP) in the incompressible limit. Numerical
simulations are performed in order to investigate the regularity of the pressure. We study the
sharpness of the L4-uniform bound of the gradient, the limiting case being a solution whose
support contains a bubble which closes-up in finite time generating a singularity, the so-called
focusing solution.

This chapter is taken from N. D. and X. Ruan. An asymptotic preserving scheme for a tumor
growth model of porous medium type, ESAIM: M2AN, (2021).

3.1 Introduction

We consider a model of tumor growth describing the evolution of the cell population density
n(x, t) through a porous medium equation with a source,

∂n

∂t
−∇(n∇p) = nG(p), x ∈ Rd, t > 0, (3.1)

where p is the internal pressure of the tumor, defined by the law of state

p = nγ , γ > 1. (3.2)

71
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The non-linearity and degeneracy of the diffusion term bring several difficulties to the numerical
analysis of the model, and many numerical schemes have been proposed in the literature, cf. [112,
25, 113, 124]. In this paper, we investigate the properties of solutions of Eq. (3.1), which for
simplicity we consider in one dimension, using the following upwind scheme

d

dt
ni =

ni+1/2qi+1/2 − ni−1/2qi−1/2

∆x
+ niG(pi), with qi+1/2 =

pi+1 − pi
∆x

,

and where we define ni+ 1
2

in the upwind manner

ni+1/2 =

{
ni, if qi+1/2 ⩽ 0,

ni+1, if qi+1/2 > 0.

Extension to higher dimensions is straightforward for tensor product grids and thus omitted here.
On the one hand, the simplicity of the scheme allows us to prove analytical properties which
do not apply to more complex ones. We prove stability results and the asymptotics preserving
(AP) property of the scheme as γ → ∞. On the other hand, despite its simplicity, we perform
numerical tests that show the good efficiency of the scheme for different reaction terms G as well
as for γ ≫ 1.
We are also interested in analysing numerically the regularity of the so-called focusing solution of
Eq. (3.1), whose support is initially contained outside of a compact set, see for instance [11]. Due
to the degeneracy of the diffusion, the inner hole closes up in finite time and singularities occur
due to this topological change. In particular, we perform numerical tests to study the blow-up
of the Lp-norms of the pressure gradient, which are uniformly (with respect to γ) bounded for
p ≤ 4, as recently proved in [61]. This regularity is actually sharp, and the focusing solution
represents the limiting case since the Lp-norms of its gradient blow up for p > 4 as γ → ∞. Our
aim is to obtain a numerical verification of the study of the optimal exponent from [61].

Motivations. Models as Eq. (3.1), possibly including advection terms or coupled with a second
equation, have been largely applied to the description of tissue and tumor growth. They are based
on the mechanical aspects that drive cell motion and proliferation. Describing the fact that cells
move down pressure gradients, the flow velocity in Eq. (3.1) is given by Darcy’s law, namely
v⃗ = −∇p.
Besides driving the cells movement, the pressure also controls the cell proliferation through an
inhibitory effect, since the division rate is lower at higher pressure values. Therefore, we make
the following assumption on the growth rate G: there exist positive constants α and pH such
that

G′(p) ⩽ −α, G(pH) = 0, (3.3)

where pH represents the so-called homeostatic pressure, namely the lowest level of pressure that
prevents cell multiplication due to contact inhibition.
Later in the paper, we also consider an extension of the model where G depends both on the
pressure and the concentration of a nutrient (for instance, oxygen or glucose), denoted by c(x, t).
In this case, Eq. (3.1) would be coupled with an equation on c that depends both on the envi-
ronmental conditions (in vitro or in vivo) and on the stage of the tumor development (avascular
or vascular). We refer the reader to [131] for the formulation of the Hele-Shaw problem with
nutrient and its traveling wave solutions.
As mentioned above, the density actually satisfies a porous medium type equation, which can be
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directly recovered combining the pressure law, Eq. (3.2), and Eq. (3.1), namely

∂n

∂t
=

γ

γ + 1
∆nγ+1 + nG(p).

As the solution of the classical porous medium equation (PME), n evolves with finite speed of
propagation, since the diffusion term degenerates when n = 0. Thus, if the initial data has
compact support, the solution remains compactly supported at any time and exhibits a moving
front, which is the interface that separates {n > 0} and {n = 0}.
As shown in [130], as γ → ∞, the pressure pγ of Eq. (3.1) converges strongly in L1 to a
function p∞ which is a solution of a Hele-Shaw free boundary problem defined on the set Ω(t) :=
{x, p∞(x, t) > 0}, in which p∞ satisfies an elliptic equation. The so-called incompressible limit
of Eq. (3.1) has attracted a lot of interest in the last decades and a vast literature on the topic is
now available, cf. [130, 67, 102]. The Hele-Shaw limit has also been studied for several extensions
of the model at hand, we refer the reader to [61, 60, 63, 129, 132, 31, 66] for models including
nutrients, viscosity, active motion, convective effects or a second species of cells.
The complete proof can be found in [130, 102], while here we present a formal argument to explain
the link between the compressible model and the free boundary formulation. Upon multiplying
Eq. (3.1) by γnγ−1, we recover the equation satisfied by the pressure, which reads

∂p

∂t
= γp(∆p+G(p)) + |∇p|2. (3.4)

Then passing formally to the limit γ → ∞ we find the complementarity relation

p∞(∆p∞ +G(p∞)) = 0.

This implies that the limit pressure has to satisfy the elliptic equation −∆p∞ = G(p∞) in the
tumor region Ω(t).

Our contribution.

◦ Asymptotic preserving property. In this paper, we show that, as γ → ∞, the aforementioned
scheme is asymptotic preserving and the solution converges to a solution of the following finite
difference equation

pi(δ
2
xpi +G(pi)) = 0,

where we denote δ2xpi := (pi+1 − 2pi + pi−1)/|∆x|2.

◦ Aronson-Bénilan estimate. The derivation of the complementarity relation in the continuous
case is deeply related to a lower bound on the quantity w := ∆p + G(p), namely w ≳ − C

γt ,
cf. [130]. This bound is an adaptation of the Aronson-Bénilan (AB in short) estimate, which is
a well-known and powerful tool in the theory of porous medium equations.
It is our aim to recover a discrete version of this lower bound for our scheme. This purpose has
been already addressed in the literature, in particular we refer the reader to [124] for a tracking
front scheme for which the author proves the Aronson-Bénilan estimate for the classical porous
medium equation (namely, with no reaction terms), and for any γ > 1. Unlike [124], we keep a
fixed grid and show that the AB estimate holds also for a restricted class of pressure-penalized
growth rates G = G(p), only in the cases γ = 1 and γ ≈ ∞ which is our interest for the Hele-
Shaw limit. To the best of our knowledge, we are the first to prove the discrete version of the AB
estimate for a nontrivial pressure-dependent reaction term in the porous medium equation. It is
not the main goal of this paper to prove the convergence of the scheme as ∆x→ 0, nevertheless,
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we want to point out that this estimate could be useful in this direction.

◦ Focusing solution. The solutions of Eq. (3.1) exhibit different kind of singularities in the
incompressible limit γ → ∞. For instance, the limit density n∞ shows jump discontinuities
across the boundary of the tumor region ∂Ω(t), while the pressure p∞ can develop singularities
in time. In fact, when a new saturated region is generated outside Ω(t), i.e. when n∞(·, s)
becomes 1 in a set of positive measure contained outside the original tumor region, for some
s > t, the pressure instantaneously becomes positive in the same set, according to the relation
p∞(1 − n∞) = 0. Moreover, time discontinuities can also appear when the set Ω(t) undergoes
certain topological changes, for instance when the support contains a hole which closes up at
time t = T ∗, which is called focusing time. This particular solution is referred to as focusing
solution. The hole filling problem has attracted a lot of attention since it represents the limiting
case for several regularity results. For instance, in [11], Aronson and Graveleau use the focusing
solution to show that the Hölder continuity of the pressure gradient is optimal, for dimension
d ⩾ 2. In fact, the pressure gradient blows up at the focusing time T ∗.
In [61], the authors prove that the L4-norm of ∇pγ is uniformly bounded with respect to γ.
Then, they show that this uniform estimate is optimal using the focusing solution as a counter-
example. Through an asymptotic argument on a radial solution, they compute that 4 is the
highest possible order of integrability for the gradient of the pressure of the Hele-Shaw problem.
One of the main interests of this paper is to numerically investigate and confirm this property of
the focusing solution. To this end, we perform 2-dimensional simulations with initial data given
by the characteristic function of a spherical shell. The results obtained by computing the Lp-
norms of the pressure gradient clearly show its singularity at the focusing time and confirm the
worsening of the blow-up as the exponents become greater than 4. At the best of our knowledge,
there are no numerical inspections of this sharpness result in the literature, although the focusing
solution has been deeply studied both analytically and numerically [11, 10, 8].

Previous works. The numerical simulation of the tumor growth model (3.1) is challenging
in two aspects, the lack of regularity of solutions near the free boundary, which is a common
difficulty of porous medium equations, and the stiffness appearing in the Hele-Shaw limit γ → ∞.
The numerical study of porous medium equations lasts for decades and a variety of algorithms
have been proposed. An early study of the finite difference method can be found in [91]. Further
studies on the finite difference method include the interface tracking algorithm, [15, 124], which
works perfectly in 1D by separating the computation of the free boundaries and the solutions
inside the support, a WENO scheme, [116], which eliminates the oscillations around the free
boundaries, and so on. There is also an extensive study on the finite volume method, [25, 76] and
various finite element methods, including an early study of the convergence analysis, [140], the
locally discontinuous Galerkin method, [153], and the adaptive mesh, [13, 12, 126]. The relaxation
scheme, which is originally designed for conservation laws, [99], can be extended to porous
medium equations successfully as well, [50, 125]. Besides the methods on Euler coordinates,
there is an increasing interest in designing Lagrangian methods, see for example [32, 49, 46, 48,
111]. Despite the extensive study of the numerical methods for porous medium equations, the
algorithm preserving the free boundary limit is rarely studied. A fully implicit solver is generally
needed. A recent work shows that one way to avoid a fully implicit scheme is to construct a semi-
implicit scheme by combining the relaxation scheme with the prediction-correction formulation,
[112].

Contents of the paper. The semi-discrete scheme and the analysis of its properties are
presented in Section 3.2. We prove stability providing a priori estimates on the main quantities
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and their derivatives, Subsec. 3.2.1. Let us point out that these estimates are uniform with
respect to γ, and therefore stability holds for any γ > 1. Then, we prove the asymptotic
preserving property of the scheme, Subsec. 3.2.2 and recover a discrete version of the Aronson-
Bénilan estimate for a nontrivial reaction term, Subsec. 3.2.3. We introduce the implicit scheme
in Section 3.3, and we extend the uniform a priori estimates previously derived on the semi-
discrete scheme. The solvability of the scheme is proven in detail in Appendix 3.A. We report
the results of several numerical simulations in Section 3.4. We test the accuracy of the scheme
using the explicit Barenblatt profile, and we compare the numerical solutions with γ large to the
exact solutions of the in vitro and in vivo model with nutrients. Moreover, we apply our scheme
to a two-species model of tumor growth, where both populations evolve under a porous medium
mechanics. Finally, we report the results of the 2-dimensional simulations on the focusing solution
which confirm the sharpness of the L4-uniform bound of ∇p.

3.2 The semi-discrete scheme

To better focus on the analysis of the upwind discretization in space, we start from the semi-
discrete scheme. For simplicity, only the one dimensional problem is considered. The scheme for
the multi-dimensional problem with tensor product grids can be analyzed similarly.
We suppose the domain is a closed interval Ω = [−X,X]. We choose a uniform mesh with mesh
size ∆x = X

Mx
, where 2Mx is the number of sub-intervals. Denote ni(t) and pi(t) to be the

numerical approximations of n(t, xi) and p(t, xi), where xi = i∆x for i ∈ I = {−Mx,−Mx +
1, . . . ,Mx}. Then the semi-discrete finite difference scheme for Eq. (3.1) is

d

dt
ni =

ni+1/2qi+1/2 − ni−1/2qi−1/2

∆x
+ niGi, i ∈ I, (3.5)

with
qi+1/2 =

pi+1 − pi
∆x

, Gi = G(pi). (3.6)

The Neumann boundary condition is applied so that n−Mx−1 = n−Mx+1 and nMx+1 = nMx−1. We
define ni+ 1

2
in the upwind manner

ni+1/2 =

{
ni, if qi+1/2⩽0,

ni+1, if qi+1/2 > 0.
(3.7)

Multiplying Eq. (3.5) by γnγ−1
i we recover the finite difference equation on the pressure

d

dt
pi = γnγ−1

i

(
ni+1/2 − ni

∆x
qi+1/2 +

ni − ni−1/2

∆x
qi−1/2

)
+ γpi

(
δ2xpi +Gi

)
, (3.8)

where
δ2xpi :=

qi+1/2 − qi−1/2

∆x
.

Assumptions. In order to prove stability results such as L∞ control and discreteBV -estimates,
we need to make the following assumptions: we assume that there exists positive constants C
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and pH (homeostatic pressure) such that

0 ⩽ p0i ⩽ pH , ∆x
∑
i

|n0i | ⩽ C ∆x
∑
i

|p0i | ⩽ C,

∑
i

|n0i+1 − n0i | ⩽ C, ∆x
∑
i

∣∣∣∣∣
(
d

dt
ni

)0
∣∣∣∣∣ ⩽ C.

(3.9)

In the following section we will prove that thanks to Gronwall’s lemma the above regularity of
the initial data propagates along time.

3.2.1 Stability results

Now we prove the positivity preserving property of the semi-discrete scheme (3.5), and the a
priori estimates that imply stability for any γ > 1.

Theorem 3.2.1 (A priori estimates). Let T > 0 and nH := p
1/γ
H and assume (3.3) and (3.9)

hold true. Then, for all 0 ⩽ t ⩽ T , we have

(i) 0 ⩽ ni(t) ⩽ nH , 0 ⩽ pi(t) ⩽ pH , ∀i,

(ii) ∆x
∑
i |ni(t)| ⩽ C(T ), ∆x

∑
i |pi(t)| ⩽ C(T ),

(iii)
∑
i |ni+1(t)− ni(t)| ⩽ C(T ),

(iv) ∆x
∑
i

∣∣ d
dtni(t)

∣∣ ⩽ C(T ),
∫ T
0
∆x
∑
i

∣∣ d
dtpi

∣∣dt ⩽ C(T ),

(v)
∫ T
0
∆x
∑
i

∣∣∣pi+1−pi
∆x

∣∣∣2 dt ⩽ C(T ).

for some positive constants C(T ) depending on T and independent of γ.

Proof. L∞ estimates. Combining Eq. (3.6) and Eq. (3.7) we recover

γnγ−1
i

ni+1/2 − ni

∆x
qi+1/2 =


0 if qi+1/2 < 0,

γnγ−1
i

ni+1 − ni
∆x

pi+1 − pi
∆x

if qi+1/2 > 0,

and

γnγ−1
i

ni − ni−1/2

∆x
qi−1/2 =

γn
γ−1
i

ni − ni−1

∆x

pi − pi−1

∆x
if qi−1/2 < 0,

0 if qi−1/2 > 0.

Therefore, the equation on the pressure, Eq. (3.8), reads

d

dt
pi = γp

(γ−1)/γ
i

(
ni+1 − ni

∆x
(qi+1/2)+ +

ni − ni−1

∆x
(qi−1/2)−

)
+ γpi

(
δ2xpi +Gi

)
,

where (·)+ and (·)− denote the positive and negative parts, respectively.
To begin with, we prove the non-negativity of ni(t) and pi(t). In fact, if ni = 0 at t = t0, by
scheme (3.5), we have

d

dt
ni =

ni+1/2 − ni

∆x
qi+1/2 +

ni − ni−1/2

∆x
qi−1/2
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=
(ni+1 − ni)+

∆x
(qi+1/2)+ +

(ni − ni−1/2)−

∆x
(qi−1/2)−

≥ 0,

which implies that ni and pi can never be negative.

As for the upper bound, let us notice that the following inequality holds

d

dt
pi ⩽

(
qi+1/2

)2
+
+
(
qi−1/2

)2
− + γpi(δ

2
xpi +Gi). (3.10)

Let us assume that at time t = t0, maxi pi = pH . For simplicity of notations, we denote
pi = maxi pi. It is easy to check that

(
qi+1/2

)
+
=
(
qi−1/2

)
−
= 0, δ2xpi ≤ 0 and Gi = 0. Then,

inequality (3.10) shows that
d

dt
pi ≤ 0,

which implies that pi can never be greater than pH , and thus ni can never be greater than nH .
L1-estimate. To prove estimates (ii), we compute the sum of Eq. (3.5) for all i, and we find
successively

d

dt

(
∆x
∑
i

ni

)
=
∑
i

(ni+1/2qi+1/2 − ni−1/2qi−1/2) + ∆x
∑
i

niG(pi) = ∆x
∑
i

niG(pi),

d

dt

(
∆x
∑
i

ni

)
⩽ G(0)∆x

∑
i

ni,

where in the last inequality we use the assumptions on the growth term, cf. Eq. (3.3). By
Gronwall’s lemma and Eq. (3.9), we have

∆x
∑
i

|ni(t)| ⩽ eG(0)t∆x
∑
i

|n0i | ⩽ C(T ), for 0 ⩽ t ⩽ T.

Upon using the L∞-bound of the pressure, we finally obtain

∆x
∑
i

|pi(t)| ⩽ p
(γ−1)/γ
H ∆x

∑
i

|ni(t)| ⩽ C(T ).

BV -estimate. We now subtract the equation for ni from the equation for ni+1 and multiply
by sign(ni+1 − ni)

d

dt
|ni+1 − ni| ≤

1

∆x
(ni+3/2|qi+3/2| − 2ni+1/2|qi+1/2|+ ni−1/2|qi−1/2|)

+ (ni+1G(pi+1)− niG(pi))sign(ni+1 − ni)).

We sum over i to obtain

d

dt

(∑
i

|ni+1 − ni|

)
⩽

1

∆x

∑
i

(ni+3/2|qi+3/2| − 2ni+1/2|qi+1/2|+ ni−1/2|qi−1/2|)

+
∑
i

[
|ni+1 − ni|G(pi) + ni+1(G(pi+1)−G(pi))sign(ni+1 − ni)

]
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⩽
∑
i

|ni+1 − ni|G(pi),

where in the last inequality we use the monotonicity of G, Eq. (3.3). In fact, since G′ is negative,
sign(ni+1 − ni) = sign(pi+1 − pi) = −sign(G(pi+1)−G(pi)). Finally, we get

d

dt

∑
i

|ni+1 − ni| ⩽ G(0)
∑
i

|ni+1 − ni|,

and thus we recover (iii) thanks to Gronwall’s lemma and the assumptions on the initial data,
Eq. (3.9), ∑

i

|ni+1(t)− ni(t)| ⩽ eG(0)t
∑
i

|n0i+1 − n0i | ⩽ C(T ), for 0 ⩽ t ⩽ T.

Estimates on the time derivatives. Now we give the proof of the boundedness of the time
derivatives, (iv). Deriving Eq. (3.5) with respect to time, we obtain

d

dt

(
d

dt
ni

)
∆x =

d

dt

(
ni+1/2qi+1/2 − ni−1/2qi−1/2 + niG(pi)∆x

)
.

We multiply by sign
(
d
dtni

)
d

dt

(∣∣∣∣ ddtni
∣∣∣∣)∆x =

d

dt

(
ni+1/2qi+1/2

)
sign

(
d

dt
ni

)
︸ ︷︷ ︸

Ai

− d

dt

(
ni−1/2qi−1/2

)
sign

(
d

dt
ni

)
︸ ︷︷ ︸

Bi

+

(
G(pi)

∣∣∣∣ ddtni
∣∣∣∣+ niG

′(pi)

∣∣∣∣ ddtpi
∣∣∣∣)∆x.

(3.11)

We now compute Ai and Bi

Ai =

[
d

dt
ni+1/2 (qi+1/2)+ − d

dt
ni+1/2 (qi+1/2)− + ni+1/2

d

dt
qi+1/2

]
sign

(
d

dt
ni

)
⩽

∣∣∣∣ ddtni+1

∣∣∣∣ (qi+1/2)+ −
∣∣∣∣ ddtni

∣∣∣∣ (qi+1/2)− +
ni+1/2

∆x

∣∣∣∣ ddtpi+1

∣∣∣∣− ni+1/2

∆x

∣∣∣∣ ddtpi
∣∣∣∣ ,

Bi =

[
− d

dt
ni−1/2 (qi−1/2)+ +

d

dt
ni−1/2 (qi−1/2)− − ni−1/2

d

dt
qi−1/2

]
sign

(
d

dt
ni

)
⩽ −

∣∣∣∣ ddtni
∣∣∣∣ (qi−1/2)+ +

∣∣∣∣ ddtni−1

∣∣∣∣ (qi−1/2)− −
ni−1/2

∆x

∣∣∣∣ ddtpi
∣∣∣∣+ ni−1/2

∆x

∣∣∣∣ ddtpi−1

∣∣∣∣ .
Upon summing over i, we find ∑

i

(Ai +Bi) ⩽ 0,

and then, from Eq. (3.11), we have

d

dt

(
∆x
∑
i

∣∣∣∣ ddtni
∣∣∣∣
)

⩽ ∆x
∑
i

G(pi)

∣∣∣∣ ddtni
∣∣∣∣ ,
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since G′ is negative. Hence, we obtain

∆x
∑
i

∣∣∣∣ ddtni
∣∣∣∣ ⩽ eG(0)t∆x

∑
i

∣∣∣∣∣
(
d

dt
ni

)0
∣∣∣∣∣ ⩽ C(T ), for 0 ⩽ t ⩽ T. (3.12)

It remains to prove the estimate on the time derivative of the pressure. We compute∫ T

0

∆x
∑
i

∣∣∣∣ ddtpi
∣∣∣∣dt ⩽ ∫ T

0

∆x
∑
i

γnγ−1
i

∣∣∣∣ ddtni
∣∣∣∣1{ni⩽1/2} dt+2

∫ T

0

∆x
∑
i

ni

∣∣∣∣ ddtpi
∣∣∣∣1{ni⩾1/2} dt.

(3.13)
Thanks to Eq. (3.12) the first term in the right-hand side is bounded.

Let us denote β := mini |G′(pi)|. We sum Eq. (3.11) over i and we integrate in time to obtain

∆x
∑
i

∣∣∣∣ ddtni
∣∣∣∣+β ∫ T

0

∆x
∑
i

ni

∣∣∣∣ ddtpi
∣∣∣∣dt ⩽ G(0)

∫ T

0

∆x
∑
i

∣∣∣∣ ddtni
∣∣∣∣dt+∆x

∑
i

∣∣∣∣∣
(
d

dt
ni

)0
∣∣∣∣∣ ⩽ C(T ),

where the last inequality comes from Eq. (3.12). Thanks to this bound, we know that∫ T

0

∆x
∑
i

ni

∣∣∣∣ ddtpi
∣∣∣∣ dt ⩽ C(T ),

and from Eq. (3.13) we finally find∫ T

0

∆x
∑
i

∣∣∣∣ ddtpi
∣∣∣∣dt ⩽ C(T ).

L2-estimate on the pressure gradient. We sum for all i the inequality satisfied by the
pressure, Eq. (3.10), namely

∑
i

d

dt
pi ⩽

∑
i

(
pi+1 − pi

∆x

)2

+

+
∑
i

(
pi − pi−1

∆x

)2

−
+ γ

∑
i

pi(δ
2
xpi +Gi)

⩽
∑
i

∣∣∣∣pi+1 − pi
∆x

∣∣∣∣2 + γ
∑
i

pipi+1 − 2p2i + pi−1pi
|∆x|2

+ γ
∑
i

piGi

=
∑
i

∣∣∣∣pi+1 − pi
∆x

∣∣∣∣2 − γ
∑
i

∣∣∣∣pi+1 − pi
∆x

∣∣∣∣2 + γ
∑
i

piGi.

Hence, we have

(γ − 1)
∑
i

∣∣∣∣pi+1 − pi
∆x

∣∣∣∣2 ⩽ −
∑
i

d

dt
pi + γ

∑
i

piGi,

and, upon integrating in time, we recover∫ T

0

∆x
∑
i

∣∣∣∣pi+1 − pi
∆x

∣∣∣∣2 dt ⩽ 1

γ − 1
∆x
∑
i

p0i −∆x
∑
i

pi(T ) +
γ

γ − 1

∫ T

0

∆x
∑
i

piGi dt.
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Thus (v) follows from the assumptions on G and p0i , cf. Eqs. (3.3, 3.9), and the estimates (ii)
proven above.

3.2.2 The asymptotic-preserving property
As mentioned in the introduction, it is well-known that when γ → ∞ the porous medium-type
equation (3.1) turns out to be a free boundary problem of Hele-Shaw type. In particular, passing
to the limit in the equation of the pressure

∂p

∂t
= γp(∆p+G(p)) + |∇p|2,

allows to recover the complementarity relation, namely

p∞(∆p∞ +G(p∞)) = 0,

in the sense of distributions.
We show that the semi-discrete scheme (3.5) satisfies the same property and thus is asymptotic
preserving (AP) as γ → ∞. First of all, let us prove the following convergence result (where we
point out the dependence of the solution on γ in the notation).

Theorem 3.2.2 (Convergence result). Given nγ,i, pγ,i a solution of scheme (3.5) with γ > 1.
Then, for all i, we have

nγ,i
γ→∞−−−−→ n∞,i, in Lp(0, T ), for all 1 ⩽ p <∞,

pγ,i
γ→∞−−−−→ p∞,i, in Lp(0, T ), for all 1 ≤ p <∞,

qγ,i+ 1
2

γ→∞−−−−⇀ q∞,i+ 1
2
, weakly in L2(0, T ).

Proof. Thanks to the uniform bounds (ii), (iv) stated in Theorem 3.2.1, by standard compactness
arguments we infer the convergence of nγ,i and pγ,i in L1(0, T ). Since both the density and the
pressure are bounded uniformly in L∞(0, T ), they converge strongly, up to a subsequence, in any
Lp(0, T ), with 1 ⩽ p <∞.
Finally, the a priori bound (v) of Theorem 3.2.1 yields the weak convergence of qγ,i+ 1

2
in L2(0, T ).

Now we prove the asymptotic preserving property of the scheme. First of all, let us recall the
equation satisfied by the pressure

d

dt
pi − γnγ−1

i

(
ni+1/2 − ni

∆x
qi+1/2 +

ni − ni−1/2

∆x
qi−1/2

)
= γpi

(
δ2xpi +Gi

)
. (3.14)

Since ∣∣∣∣γnγ−1
i

(
ni+1/2 − ni

∆x
qi+1/2 +

ni − ni−1/2

∆x
qi−1/2

)∣∣∣∣ ⩽ (qi+1/2

)2
+
+
(
qi−1/2

)2
− ,

thanks to Theorem 3.2.1 we know that the left-hand side of Eq. (3.14) is uniformly bounded in
L1(0, T ). Testing Eq. (3.14) against a function φ ∈ C1

comp(0, T ), we obtain

∫ T

0

pi
(
δ2xpi +G(pi)

)
φdt =− 1

γ

(∫ T

0

piφ
′ dt−

∫ T

0

γnγ−1
i

(
ni+1/2 − ni

∆x
qi+1/2 +

ni − ni−1/2

∆x
qi−1/2

)
φdt

)
.
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Hence, passing to the limit γ → ∞ using Theorem 3.2.2, we recover

p∞,i(δ
2
xp∞,i +G(p∞,i)) = 0,

which is the discrete formulation of the complementarity relation.
We now pass to the limit also in the equation for the density, which reads

d

dt
ni =

ni+1/2qi+1/2 − ni−1/2qi−1/2

∆x
+ niGi.

Multiplying by a test function, we obtain

−
∫ T

0

niφ
′ dt =

∫ T

0

ni+1/2qi+1/2 − ni−1/2qi−1/2

∆x
φdt+

∫ T

0

niG(pi)φdt,

hence, thanks to Theorem 3.2.2, we find (in the weak sense)

d

dt
n∞,i =

n∞,i+1/2q∞,i+1/2 − n∞,i−1/2q∞,i−1/2

∆x
+ n∞,iG(p∞,i).

3.2.3 Stronger estimate on the pressure - The Aronson-Bénilan esti-
mate

In [130], Perthame, Quirós and Vázquez recover the compactness needed to pass to the limit in
Eq. (3.4) relying on a lower bound on the Laplacian of the pressure. In fact, they extend the
celebrated Aronson-Bénilan estimate of the PME to the case of non-trivial reaction term, i.e.
G ̸= 0, proving the following bound

∆p+G(p) ≳ −C

γt
. (3.15)

It is our interest to investigate whether this lower bound on the second derivatives still holds
for Eq. (3.5), in order to obtain a discrete counterpart of a fundamental property of porous
medium-type equations.
We are able to prove the discrete version of the Aronson-Bénilan estimate, Eq. (3.15), for γ = 1
and γ ≈ ∞ and for a pressure-dependent growth term of the form G(p) = α(pH − p). It remains
an open question how to recover the discrete AB estimate for γ > 1 and for a general reaction
term G. The discrete version of the AB property for non-trivial reaction terms could be extremely
useful in order to pass to the limit as ∆x vanishes and therefore to prove the convergence of the
scheme.

Theorem 3.2.3 (Aronson-Bénilan estimate). Let G(p) = α(pH − p), with α ⩾ 0. We set

wi := δ2xpi +G(pi) =
pi+1 − 2pi + pi−1

(∆x)2
+G(pi), ∀i.

Then, for γ = 1 and γ ≈ ∞, scheme (3.5) satisfies the Aronson-Bénilan estimate, i.e.

wi ⩾ − 1

γt
, ∀i.
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Proof. As in [130], it is sufficient to prove

dw

dt
≥ γ(w)2, with w := min

i
{wi}.

• Case γ = 1.

We have pi = ni and thus scheme (3.5) can be reformulated as

dpi
dt

= piwi + (q+
i+ 1

2

)2 + (q−
i− 1

2

)2,

where q+
i+ 1

2

= max{qi+ 1
2
, 0} and q−

i− 1
2

= max{−qi− 1
2
, 0}, and it further implies that

dwi
dt

= δ2x(piwi) + δ2x[(q
+
i+ 1

2

)2] + δ2x[(q
−
i− 1

2

)2]− αpiwi − α(q+
i+ 1

2

)2 − α(q−
i− 1

2

)2. (3.16)

In order to consider the evolution of the minimal wi we denote

wj := min
i
wi.

On the one hand, it is easy to see that

δ2x(pjwj) ≥ wjδ
2
xpj . (3.17)

On the other hand, by definition

wj =
qj+ 1

2
− qj− 1

2

∆x
+ α(pH − pj),

and the inequality wj ≤ wj+1 indicates that

qj+ 3
2
+ qj− 1

2
≥ qj+ 1

2
(2 + α|∆x|2).

As a result,

q+
j+ 3

2

+ q+
j− 1

2

≥ max{qj+ 3
2
+ qj− 1

2
, 0}

≥ max{qj+ 1
2
(2 + α|∆x|2), 0}

= q+
j+ 1

2

(2 + α|∆x|2).

And then, by Jensen’s inequality, we get

(q+
j+ 3

2

)2 + (q+
j− 1

2

)2 ≥ (q+
j+ 1

2

)2(2 + α|∆x|2),

or equivalently,
δ2x[(q

+
j+ 1

2

)2] ≥ α(q+
j+ 1

2

)2. (3.18)

Similarly, we recover δ2x[(q
−
j− 1

2

)2] ≥ α(q−
j− 1

2

)2. Upon combining Eq. (3.17) with Eq. (3.16) and
adding and subtracting G(pj)wj , we get

dwi
dt

⩾ w2
i −G(pj)wj + δ2x[(q

+
i+ 1

2

)2] + δ2x[(q
−
i− 1

2

)2]− αpiwi − α(q+
i+ 1

2

)2 − α(q−
i− 1

2

)2,
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which yields
dwi
dt

⩾ w2
i −G(pj)wj − αpiwi,

thanks to Eq. (3.18). Finally, using the definition of G and assuming without loss of generality
that wj ⩽ 0, we obtain

dwi
dt

≥ w2
i ,

which implies

wj ≥ −1

t
.

• Case γ ≈ ∞.

Now, we prove the AB estimate for γ very large. We recall that

d

dt
pi = γnγ−1

i

(
ni+1/2 − ni

∆x
qi+1/2 +

ni − ni−1/2

∆x
qi−1/2

)
+ γpi

(
δ2xpi +Gi

)
,

and we use the following definitions

wi = δ2xpi+G(pi) =
qi+1/2 − qi−1/2

∆x
+G(pi), qi+ 1

2
=
nγi+1 − nγi

∆x
.

Computing the time derivative of qi+1/2 we find

1

γ

d

dt
qi+1/2 =

1

|∆x|2
[
nγ−1
i+1

(
ni+3/2qi+3/2 − ni+1/2qi+1/2

)
− nγ−1

i

(
ni+1/2qi+1/2 − ni−1/2qi−1/2

)]
.

Hence,

1

γ

d

dt
wi =

1

|∆x|3
[
nγ−1
i+1

(
ni+3/2qi+3/2 − ni+1/2qi+1/2

)
− nγ−1

i

(
ni+1/2qi+1/2 − ni−1/2qi−1/2

)]
+

1

|∆x|3
[
−nγ−1

i

(
ni+1/2qi+1/2 − ni−1/2qi−1/2

)
+ nγ−1

i−1

(
ni−1/2qi−1/2 − ni−3/2qi−3/2

)]
− α

γ

(
γnγ−1

i

(
ni+1/2 − ni

∆x
qi+1/2 +

ni − ni−1/2

∆x
qi−1/2

)
+ γpi

(
δ2xpi +Gi

))
.

(3.19)

Once again we define mini wi =: wj . Let us notice that, for γ ≈ ∞, we have

nγ−1
j+1nj+2 ≈ pj+1,

since
nγ−1
j+1nj+2 = (pj+1)

γ−1
γ (pj+2)

1
γ .

Analogously, we also have

nγ−1
j nj+1/2 ≈ pj nγ−1

j nj−1/2 ≈ pj .

Thus, when γ ≈ ∞, from Eq. (3.19) we recover

1

γ

d

dt
wj =

1

(∆x)3

[
nγ−1
j+1

(
nj+3/2qj+3/2 − nj+1/2qj+1/2

)
− nγ−1

j

(
nj+1/2qj+1/2 − nj−1/2qj−1/2

)]
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+
1

(∆x)3

[
−nγ−1

j

(
nj+1/2qj+1/2 − nj−1/2qj−1/2

)
+ nγ−1

j−1

(
nj−1/2qj−1/2 − nj−3/2qj−3/2

)]
− αpjwj −

α

∆x
nγ−1
i

(
(ni+1/2 − ni)qi+1/2 + (ni − ni−1/2)qi−1/2

)
≈ 1

(∆x)3
[
pj+1

(
qj+3/2 − qj+1/2

)
− pj

(
qj+1/2 − qj−1/2

)]
+

1

(∆x)3
[
−pj

(
qj+1/2 − qj−1/2

)
+ pj−1

(
qj−1/2 − qj−3/2

)]
− αpjwj

⩾
pj+1wj+1 − 2pjwj + pj−1wj−1

(∆x)2

≥ w2
j ,

where we assumed again wj ⩽ 0. Hence

d

dt
wj ⪆ γw2

j ,

thus the result is proven.

3.3 The fully discrete implicit scheme

Now we consider the fully discrete implicit scheme and show that all the properties for the
semi-discrete scheme hold for the fully discrete scheme if the time step ∆t is small enough.
Similar to Section 3.2, we only consider the one dimensional problem and the scheme for the
multidimensional problem is straightforward. In space, we use the same notations as in Sec-
tion 3.2. We denote Nk

i to be the numerical approximation of n(tk, xi), where tk = k∆t and
xi = i∆x, k ≥ 0, i ∈ I. Then P ki :=

(
Nk
i

)γ is the numerical approximation of p(tk, xi) and the
fully implicit scheme can be written as

δtN
k
i =

Nk+1
i+ 1

2

Qk+1
i+ 1

2

−Nk+1
i− 1

2

Qk+1
i− 1

2

∆x
+Nk+1

i Gk+1
i , (3.20)

where

δtN
k
i =

Nk+1
i −Nk

i

∆t
, Qki+ 1

2
=
P ki+1 − P ki

∆x
, Gki = G(P ki ) ≤ G(0),

and

Nk
i+1/2 =

{
Nk
i , if Qki+1/2 < 0,

Nk
i+1, if Qki+1/2 > 0.

For simplicity, we introduce

A(U, V ) = V Q+(U, V )− UQ−(U, V ), for U, V ≥ 0, (3.21)

where Q(U, V ) = (V γ − Uγ)/∆x and

Q+(U, V ) = max{Q(U, V ), 0}, Q−(U, V ) = max{−Q(U, V ), 0}.
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A direct computation shows that

∂1A(U, V ) = −γH(U, V )Uγ−1 −Q−(U, V ) ≤ 0,

∂2A(U, V ) = γH(U, V )V γ−1 +Q+(U, V ) ≥ 0,

where

H(U, V ) =

{
U, if Q(U, V ) < 0,

V, if Q(U, V ) > 0.

With the notations defined above, scheme (3.20) can be reformulated as

(1−∆tGk+1
i )Nk+1

i − ν
(
Ak+1
i+ 1

2

−Ak+1
i− 1

2

)
= Nk

i , (3.22)

where ν = ∆t/∆x and
Ak+1
i+ 1

2

= A(Nk+1
i , Nk+1

i+1 ) = Nk+1
i+ 1

2

Qk+1
i+ 1

2

.

Theorem 3.3.1 (A priori estimates). Let T > 0 and nH := p
1/γ
H , ∆t < 1/G(0) and k(T ) =

⌊T/∆t⌋. Then, there exists a unique solution Nk
i of Eq. (3.22) satisfying

(i) 0 ⩽ Nk
i ⩽ nH , 0 ⩽ P ki ⩽ pH , ∀t > 0,∀i, and ∀n,

(ii) ∆x
∑
iN

k
i ⩽ C(T ),∆x

∑
i P

k
i ⩽ C(T ),

(iii) let Mk
i be a non-negative solution satisfying Eq. (3.22), then ∆x

∑
i |Mk

i −Nk
i | ⩽ C(T ),

(iv) if
∑
i |N0

i+1 −N0
i | ⩽ C, then

∑
i |Nk

i+1 −Nk
i | ⩽ C(T ),

(v) ∆x
∑
i |δtNk

i | ⩽ C(T ), ∆x
∑
i |δtP ki | ⩽ C(T ),

(vi) ∆t∆x
∑k
j=0

∑
i |Q

j

i+ 1
2

|2 ⩽ C(T ),

for some positive constant C(T ) depending on T and independent of γ.

Proof. Solvability and L∞ estimate. When ∆t < 1/G(0) and 0 ≤ Nk
i ≤ p

1
γ

H for all i, we

claim that there exists a unique solution Nk+1
i satisfying 0 ≤ Nk+1

i ≤ p
1
γ

H .

The proof relies on the the existence of sub- and supersolutions. When N̄i = p
1
γ

H for all i, we
have G(N̄γ

i ) < 0 and A(N̄i, N̄i+1) = 0, which implies that

(1−∆tG(N̄γ
i ))N̄i − ν

(
A(N̄i, N̄i+1)−A(N̄i−1, N̄i)

)
≥ Nk

i

and thus N̄i = p
1
γ

H is a supersolution. Similarly, we can prove that N̄i = 0 is a subsolution.
Then following the proof in [3], we can prove the existence and uniqueness of the solution. The
detailed proof can be found in Appendix 3.A.
L1 estimate. Summing up Eq. (3.20) over i, we have

∆x
∑
i

Nk+1
i −∆x

∑
i

Nk
i = ∆t∆x

∑
i

Nk+1
i Gk+1

i ≤ G(0)∆t∆x
∑
i

Nk+1
i .

As a result, when ∆t ≤ α/G(0) with α < 1, we have

∆x
∑
i

Nk
i ≤ 1

(1−∆tG(0))k
∆x
∑
i

N0
i ≤ 1

(1− α)
G(0)T

α

∆x
∑
i

N0
i ,
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where T = k∆t. Further, we have
∑
i P

k
i ≤ pγ−1

H

∑
iN

k
i ≤ C(T ).

L1-contraction. Denote Mk
i to be another non-negative solution satisfying Eq. (3.22), or more

specifically
(1−∆tGk+1

M,i )M
k+1
i − ν

(
Ak+1
M,i+ 1

2

−Ak+1
M,i− 1

2

)
=Mk

i ,

where
GkM,i = G(P kM,i) with P kM,i = (Mk

i )
γ , Ak+1

M,i+ 1
2

= Ai+ 1
2
(Mk+1

i ,Mk+1
i+1 ).

Subtracting the equation for Nk
i from the equation for Mk

i , we get

I1 − ν
(
Ak+1
M,i+ 1

2

−Ak+1
N,i+ 1

2

)
+ ν

(
Ak+1
M,i− 1

2

−Ak+1
N,i− 1

2

)
=Mk

i −Nk
i ,

where the term I1 is defined as

I1 =
[
(1−∆tGk+1

M,i )M
k+1
i − (1−∆tGk+1

N,i )N
k+1
i

]
= (1−∆tGk+1

M,i )(M
k+1
i −Nk+1

i )−∆t(Gk+1
M,i −Gk+1

N,i )N
k+1
i

= (1−∆tGk+1
M,i )(M

k+1
i −Nk+1

i )−∆tG′(P k+1
η,i )Nk+1

i (P k+1
M,i − P k+1

N,i )

where P k+1
η,i = (ηk+1

i )γ with ηk+1
i being some non-negative number between Mk+1

i and Nk+1
i .

Noticing that G′(·) ≤ 0 and the fact that P k+1
M,i −P k+1

N,i shares the same sign with Mk+1
i −Nk+1

i ,
we have that

I1sign(M
k+1
i −Nk+1

i ) ≥ (1−∆tG(0))|Mk+1
i −Nk+1

i |+∆tmin
p

|G′(p)|Nk+1
i

∣∣∣P k+1
M,i − P k+1

N,i

∣∣∣ .
In fact, we can further prove that

I1sign(M
k+1
i −Nk+1

i ) ≥ (1−∆tG(0))|Mk+1
i −Nk+1

i |

+∆tmin
p

|G′(p)|max{Mk+1
i , Nk+1

i }
∣∣∣P k+1
M,i − P k+1

N,i

∣∣∣
≥ (1−∆tG(0))|Mk+1

i −Nk+1
i |.

(3.23)

By the mean value theorem, we have

Ak+1
M,i+ 1

2

−Ak+1
N,i+ 1

2

= αk+1
i

(
Mk+1
i −Nk+1

i

)
+ βk+1

i+1

(
Mk+1
i+1 −Nk+1

i+1

)
where αk+1

i ≤ 0 and βk+1
i ≥ 0 are defined as

αk+1
i := ∂1A(ξ

k+1
i ,Mk+1

i+1 ) =
A(Mk+1

i ,Mk+1
i+1 )−A(Nk+1

i ,Mk+1
i+1 )

Mk+1
i −Nk+1

i

,

βk+1
i := ∂2A(N

k+1
i , ηk+1

i+1 ) =
A(Nk+1

i ,Mk+1
i+1 )−A(Nk+1

i , Nk+1
i+1 )

Mk+1
i+1 −Nk+1

i+1

,

for some ξk+1
i , ηk+1

i between Mk+1
i and Nk+1

i . As a result,(
Ak+1
M,i+ 1

2

−Ak+1
N,i+ 1

2

)
sign(Mk+1

i −Nk+1
i ) ≤ αk+1

i

∣∣Mk+1
i −Nk+1

i

∣∣+ βk+1
i+1

∣∣Mk+1
i+1 −Nk+1

i+1

∣∣ .
(3.24)
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Similarly, we can prove that(
Ak+1
M,i− 1

2

−Ak+1
N,i− 1

2

)
sign(Mk+1

i −Nk+1
i ) ≥ αk+1

i−1

∣∣Mk+1
i−1 −Nk+1

i−1

∣∣+ βk+1
i

∣∣Mk+1
i −Nk+1

i

∣∣ .
(3.25)

Combining Eqs. (3.23, 3.24, 3.25), we finally get(
1−∆tG(0)− ναk+1

i + νβk+1
i

) ∣∣Mk+1
i −Nk+1

i

∣∣− νβk+1
i+1

∣∣Mk+1
i+1 −Nk+1

i+1

∣∣
+ ναk+1

i−1

∣∣Mk+1
i−1 −Nk+1

i−1

∣∣ ≤ ∣∣Mk
i −Nk

i

∣∣ .
Summing over i, we have

(1−∆tG(0))
∑
i

|Mk+1
i −Nk+1

i | ≤
∑
i

|Mk
i −Nk

i |.

which indicates that, when ∆t < 1/G(0),

∆x
∑
i

∣∣Mk
i −Nk

i

∣∣ ≤ 1

(1−∆tG(0))k
∆x
∑
i

∣∣M0
i −N0

i

∣∣ ≤ C(T ), (3.26)

since we assumed that ∆x
∑
i

∣∣M0
i −N0

i

∣∣ ≤ C.
BV -estimate. When ∆t < 1/G(0), by taking Mk

i = Nk
i+1 in Eq. (3.26), we get that,∑

i

|Nk
i+1 −Nk

i | ≤
1

(1−∆tG(0))k

∑
i

|N0
i+1 −N0

i | ≤ C(T ),

where in the last inequality we used the assumption
∑
i |N0

i+1 −N0
i | ⩽ C.

Estimate on time derivative. The boundedness of the discrete time derivative of the density
comes directly from the L1-contraction (3.26). Assuming ∆t < 1/G(0) and taking Mk

i = Nk+1
i

in Eq. (3.26), we have that

∆x
∑
i

|δtNk
i | ≤

1

(1−∆tG(0))k
∆x
∑
i

|δtN0
i | ≤ C(T ). (3.27)

Analogous to the semi-discrete case, we can prove an estimate of the discrete time derivative of
the pressure. Denoting k(T ) = ⌊T/∆t⌋, where ⌊x⌋ is the largest integer that is less or equal than
x, then we are able to prove that

∆t∆x

k(T )∑
n=1

∑
i

∣∣δtP kN,i∣∣ ⩽ C(T ). (3.28)

The proof is similar to the semi-discrete case. To begin with, we have that

|δtP kN,i| = |δtP kN,i|1{max{Nk
i ,N

k+1
i }≤ 1

2}
+ |δtP k+1

N,i |1{max{Nk
i ,N

k+1
i }> 1

2}
.

The first term is uniformly bounded in γ thanks to Eq. (3.27) and

|δtP kN,i|1{max{Nk
i ,N

k+1
i }⩽ 1

2}
≤ γmax{(Nk

i )
γ−1, (Nk+1

i )γ−1}|δtNk
i |1{max{Nk

i ,N
k+1
i }⩽ 1

2}

≤ γ

2γ−1
|δtNk

i |.
(3.29)
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To give an estimate of the second term, we recall the first inequality in Eq. (3.23), i.e.

I1sign(M
k+1
i −Nk+1

i ) ≥(1−∆tG(0))|Mk+1
i −Nk+1

i |

+∆tmin
p

|G′(p)|max{Mk+1
i , Nk+1

i }
∣∣∣P k+1
M,i − P k+1

N,i

∣∣∣ .
And then following a similar procedure as before, we have that(

1−∆tG(0)− ναk+1
i + νβk+1

i

) ∣∣Mk+1
i −Nk+1

i

∣∣
+∆tmin

p
|G′(p)|max{Mk+1

i , Nk+1
i }

∣∣∣P k+1
M,i − P k+1

N,i

∣∣∣
− νβk+1

i+1

∣∣Mk+1
i+1 −Nk+1

i+1

∣∣+ ναk+1
i−1

∣∣Mk+1
i−1 −Nk+1

i−1

∣∣
≤
∣∣Mk

i −Nk
i

∣∣ .
Now taking Mk

i = Nk+1
i , dividing both sides by ∆t and summing over i and k = 0, 1, . . . , we

proved that

min
p

|G′(p)|∆t∆x
k(T )∑
k=1

∑
i

max{Nk
i , N

k+1
i }

∣∣δtP kN,i∣∣
≤∆x

∑
i

∣∣δtN0
i

∣∣−∆x
∑
i

∣∣∣δtNk(T )
i

∣∣∣+G(0)∆t∆x

k(T )∑
k=1

∑
i

|δtNk
i | ≤ C(T ),

which further implies that

∆t∆x

k(T )∑
k=1

∑
i

|δtP kN,i|1{max{Nk
i ,N

k+1
i }> 1

2}

≤ 2∆t∆x

k(T )∑
k=1

∑
i

max{Nk
i , N

k+1
i }|δtP kN,i|

≤ C(T ).

(3.30)

The conclusion (3.28) is then obvious by combining Eq. (3.29) and Eq. (3.30).
L2-estimate on the pressure gradient. Rewriting Eq. (3.20) to be

δtN
k
i =

Nk+1
i+ 1

2

−Nk+1
i

∆x
Qk+1
i+ 1

2

+
Nk+1
i −Nk+1

i− 1
2

∆x
Qk+1
i− 1

2

+Nk+1
i (δ2xP

k+1
i +Gk+1

i )

and multiplying both sides by γ(Nk+1
i )γ−1, we get

γ(Nk+1
i )γ−1δtN

k
i ≤

(
Qk+1
i+ 1

2

)2
+
+
(
Qk+1
i− 1

2

)2
−
+ γP k+1

i (δ2xP
k+1
i +Gk+1

i ),
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by the following argument. By definition of Qk+1
i+ 1

2

we have

γ(Nk+1
i )γ−1

Nk+1
i+ 1

2

−Nk+1
i

∆x
Qk+1
i+ 1

2

=

0, if Qk+1
i+ 1

2

< 0,

γ(Nk+1
i )γ−1N

k+1
i+1 −Nk+1

i

∆x Qk+1
i+ 1

2

if Qk+1
i+ 1

2

> 0,

and moreover, when Nk+1
i+1 ⩾ Nk+1

i convexity implies

γ(Nk+1
i )γ−1N

k+1
i+1 −Nk+1

i

∆x
⩽ Qk+1

i+ 1
2

.

Noticing that δtP ki ≤ γ(Nk+1
i )γ−1δtN

k
i due to the convexity, we prove

δtP
k
i ≤

(
Qk+1
i+ 1

2

)2
+
+
(
Qk+1
i− 1

2

)2
−
+ γP k+1

i (δ2xP
k+1
i +Gk+1

i ). (3.31)

Summing Eq. (3.31) over all i, we have

δt
∑
i

P ki ≤
∑
i

(
Qk+1
i+ 1

2

)2
+
+
∑
i

(
Qk+1
i− 1

2

)2
−
+
∑
i

γP k+1
i (δ2xP

k+1
i +Gk+1

i )

= (1− γ)
∑
i

|Qk+1
i+ 1

2

|2 + γ
∑
i

P k+1
i Gk+1

i

≤ (1− γ)
∑
i

|Qk+1
i+ 1

2

|2 + γG(0)
∑
i

P k+1
i .

Then summing over n = 0, 1, 2, . . . and dividing both sides by γ − 1, we get

∆t∆x

k∑
j=0

∑
i

|Qj
i+ 1

2

|2 ≤
∆x
∑
i P

0
i −∆x

∑
i P

k
i

γ − 1
+

γ

γ − 1
G(0)∆t∆x

k∑
j=0

∑
i

P ji ≤ C(T ).

3.4 Numerical simulations

Now we present some numerical results on Eq. (3.1) and for some extensions of the model
including the effect of a nutrient. In particular, we are interested in the performance of the
implicit scheme (3.20) for large values of γ, hence confirming the AP property of the scheme.

3.4.1 Accuracy test: the Barenblatt solution

At first, we consider the simplest example in order to test the accuracy of the scheme as γ
increases. Let us take the standard porous medium equation in dimension 1, i.e. Eq. (3.1) with
trivial reaction terms

∂n

∂t
=
∂2nγ+1

∂x2
,
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where for sake of simplicity we take p = γ+1
γ nγ . We take as initial data the delayed Barenblatt

solution

n(x, 0) =
1

tβ0

(
C − β

γ

2(γ + 1)

x2

t2β0

) 1
γ

+

, (3.32)

with t0 = 0.01, β = 1/(γ + 2) and C a positive constant to be chosen later.
We compare the numerical solution of the scheme to the Barenblatt profile for γ = 3, γ = 12,
γ = 40. We compute the L1-error for ∆x = 1/2k, with k = 4, 5, 6, 7, 8 and ∆t = 10−5.
We choose [−15, 15] to be the spatial computational domain and T = 0.1 as final time. Upon
defining Nx = 30/∆x, the error at time tj := j∆t is given by

err1(tj) =

Nx∑
i=1

|N j
i − n(i∆x, tj)|∆x. (3.33)

In the formula of the exact solution, Eq. (3.32), we choose C = 1 for γ = 3 and C = 0.1 for
γ = 12, 40. In Figure 3.1, the plots of both the analytical solution and the numerical solution
are displayed. We notice that as γ increases, the moving boundary becomes sharper and sharper
and this affects the accuracy of the scheme as can be seen in Figure 3.2, where on the left we
display the error (3.33) along time till T = 0.1, and on the right we show the spatial convergence
of our scheme by plotting the following error

∥err1(t > 0.05)∥∞ = max
j∆t>0.05

{
Nx∑
i=1

|N j
i − n(i∆x, j∆t)|∆x

}
, (3.34)

with respect to ∆x and for different values of γ. When checking the spatial convergence rate, we
consider the maximal error over a period as in (3.34) to get rid of the affect due to oscillation as
shown on the left of Figure 3.2. As shown in the figure, our scheme is roughly first order accurate
in space, which is consistent with our intuition since the first order upwind finite difference
discretization is applied in space.
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Figure 3.1: Porous Medium Equation in 1D: we compare the analytical solution and the numerical
solution for γ = 3 (left) and γ = 12 (right), with ∆x = 1/64 and ∆t = 0.01∆x.

The oscillations of the error along time confirm the effect of the free boundary on the accuracy.
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Figure 3.2: Porous Medium Equation in 1D: Left: plot of the error along time for γ = 12. Right:
plot of the error (3.34) with respect to ∆x for different values of γ.

3.4.2 1D model with nutrient: in vitro and in vivo

Including the effect of a nutrient (e.g. oxygen) into the model, the density equation (3.1) is
coupled with an equation for the nutrient concentration c(x, t), to obtain the system

∂n

∂t
−∇ · (n∇p) = nG(p, c),

τ
∂c

∂t
−∆c+H(n, c) = 0,

where H denotes the nutrient consumption and τ is a time scaling parameter. Since the nutrient
diffuses much faster than the tumor invasion, it is usual to take τ = 0. The consumption term H
can take different forms, depending on which stage of tumor growth we put under investigation.
For instance, if one considers an in vitro setting, which means that the tumor is developing
surrounded by an homogeneous liquid, then the level of nutrient is assumed to be constant
outside the region occupied by the tumor, while inside it is consumed linearly, with a rate ψ(n)
depending on the tumor cell population density. The model reads{

−∆c+ ψ(n)c = 0, in {n > 0},

c = cB , in Rd \ {n > 0}.
(in vitro)

The consumption rate ψ(n) is always non-negative and vanishes for n = 0.
A second kind of models are the in vivo models, which include the effect of the blood vessels that
deliver the nutrient supply. During the early stages of tumor growth, the vasculature is present
only outside the tumor region (avascular phase), and the equation reads

−∆c+ ψ(n)c = (cB − c)1{n=0}. (in vivo)

On the other hand, if the tumor is already in its vascular phase, we have

−∆c+ ψ(n)c = (cB − c)K(p), (in vivo: vascular)
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where K is the nutrient release rate which depends on the pressure. In particular, we assume it
to decrease with respect to the pressure to describe the shrinking effect of the mechanical stress
generated by the cells on the vessels, which may cause the reduction of nutrients delivery, cf.
[121]. We refer the reader to [131] for an extensive study of the Hele-Shaw model in both the in
vitro and in vivo cases.
From now on, we assume that the growth term G depends only on the nutrient concentration,
forgetting the effect of the pressure. Then, passing to the incompressible limit γ → ∞, we obtain
the limit problem 

∂n∞
∂t

−∇ · (n∞∇p∞) = n∞G(c∞),

−∆c∞ +H(n∞, c∞) = 0,

and since it holds p∞(1− n∞) = 0, the density is constantly equal to 1 in the set {p∞ > 0}.
As shown in [61], one can also pass to the limit in the equation for the pressure, which leads to
the Hele-Shaw problem {

−∆p∞ = G(c∞), in Ω(t),

p∞ = 0, on ∂Ω(t),

where Ω(t) := {x | p∞(x, t) > 0}.

In vitro model: comparison with the exact solution of the Hele-Shaw problem

We consider the model (in vitro) in 1D with linear growth, i.e. G(c) = c, and ψ(n) = n, namely ∂tn− ∂x(n∂xp) = nc,
−∂xxc+ nc = 0, in {n > 0},

c = cB , in Rd \ {n > 0}.
(3.35)

We take as initial density n(x, 0) the characteristic function of the interval [−R0, R0], with
R0 > 0. Then, passing to the incompressible limit, the density remains always a patch, with
support [−R(t), R(t)]. Therefore, we have

n∞ = 1[−R(t),R(t)]. (3.36)

Thus, as computed in [113], the explicit solution is

c∞ =


cB cosh(x)

cosh(R(t))
, for x ∈ [−R(t), R(t)],

cB , for x /∈ [−R(t), R(t)],

and

p∞ =

− cB cosh(x)

cosh(R(t))
+ cB , for x ∈ [−R(t), R(t)],

0, for x /∈ [−R(t), R(t)].
(3.37)

The velocity of the front is
R′(t) = cB tanh(R(t)).

We perform numerical simulations using our scheme for system (3.35) for γ = 80 and compare
the results to the exact solution (3.36)-(3.37). We use the computational domain [−5, 5] and
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Figure 3.3: In vitro model in 1D: comparison between the numerical solution and the analytical
solution at different times, t=0.5, t=1, t=1.5, with γ = 80, ∆x = 0.025 and ∆t = 10−6.

choose as initial data
n(x, 0) = (p∞(x, 0))

1
γ , (3.38)

with p∞ defined by (3.37). We also set cB = 1, R(0) = 1, ∆x = 0.025 and ∆t = 10−6, cf. Fig. 3.3.

In vivo model: comparison with the exact solution

Using again a characteristic function as initial data, in the limit γ → ∞ the model (in vivo)
reads

−∂xxc∞ + c∞ = (cB − c∞)1{n=0},

with {n = 0} = R \ [−R(t), R(t)]. Thus, the explicit solution is given by

c∞ =

{ cB
eR(t)

cosh(R(t)), for x ∈ [−R(t), R(t)],

cB − cB sinh(R(t))e−|x|, for x /∈ [−R(t), R(t)],

cf. [113]. The limit pressure is

p∞ =

−cBG0

eR(t)
cosh(x) +

cBG0

eR(t)
cosh(R(t)), for x ∈ [−R(t), R(t)],

0, for x /∈ [−R(t), R(t)],
(3.39)

with a front invasion speed given by

R′(t) = cBG0
sinhR(t)

eR(t)
.

As for the previous case, we perform numerical simulations using our scheme for the system
(in vivo) with γ = 80 and compare the results to the exact solution. As before we choose (3.38)
as initial data where the pressure is defined by (3.39) and we set cB = 1, R(0) = 1, ∆x = 0.025
and ∆t = 10−6, cf. Fig. 3.4. As in [112], we notice that the scheme is more accurate for the in
vivo model than for the in vitro.
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Figure 3.4: In vivo model in 1D: comparison between the numerical solution and the analytical
solution at different times, t=0.5, t=1, t=1.5, with γ = 80, ∆x = 0.025 and ∆t = 10−6.

3.4.3 Two-species model: proliferating and necrotic cells

We consider a model including a second species of cells. Indeed, at the early stages of its growth,
the tumor mass develop a necrotic core of dead cells, which is surrounded by a rim of quiescent
or proliferating cells. The model reads

∂nP
∂t

− ∂

∂x

(
nP

∂p

∂x

)
= nPG(c),

∂nD
∂t

− ∂

∂x

(
nD

∂p

∂x

)
= nP (G(c))−,

(3.40)

where nP and nD represent the cell densities of proliferating and necrotic (dead) cells. The total
population density and the pressure are, respectively, n = nP + nD, p = nγ .
Since in this case the growth rate G = G(c) can be negative, the proliferating cells die and turn
into necrotic with the same rate. In particular, we assume there exists a positive constant c̄ such
that G(c) < 0 if c < c̄, to indicate that the cells die because of the lack of nutrients.
We use the scheme (3.20) for both the equations on nP and nD and we test it for both (in vitro)
and (in vivo). We take as computational domain [−6, 6], and we set cB = 1,

G(c) =

{
12 if c < 0.4,

−15 if c ⩾ 0.4,

and as initial data
n0P = 1[−1,1], n0

D = 0.

The numerical simulations for the in vitro and in vivo environments are displayed along time in
Fig. 3.5 and Fig. 3.6, respectively.

3.4.4 2D model: the focusing problem

The focusing solution of the porous medium equation is the solution of Eq. (3.1) with an initial
data whose support is contained outside of a compact set. At finite time the empty bubble closes
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Figure 3.5: In vitro two-species model in 1D: plot of nP , nD, n, c with γ = 80, ∆x = 0.025 and
∆t = 10−4.
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Figure 3.6: In vivo two-species model in 1D: plot of nP , nD, n, c with γ = 80, ∆x = 0.025 and
∆t = 10−4.

up and the topological change of the support generates a singularity of the pressure gradient.
In [61], the authors show that the pressure gradient is uniformly bounded with respect to γ
in L4(Rd × (0, T )). Then, they prove the sharpness of this uniform bound using the focusing
solution as counterexample.
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Figure 3.7: Focusing solution: pressure gradient norms. Plot of the pressure gradient norms
along time, from the left ot the right, from the top down, L2, L4, L6, L8, L10, L∞-norm, with
γ = 10, ∆x = 0.02, ∆t = 0.001, pH = 1 and initial internal radius 0.6.

The Hele-Shaw problem in a spherical shell is defined by the following system{
−∆p∞ = G(p∞) in Ω(t),

V = −∂νp∞ on ∂Ω(t),
(3.41)

where ν and V denote the outward normal and the normal velocity of the free boundary, with

Ω(t) = {x; R1(t) ⩽ |x| ⩽ R2(t)}.

In [61] the authors compute the asymptotic behaviour of the Lp-norms in space and time of the
gradient of a radial solution, choosing for the sake of simplicity a constant reaction term and
external radius R2(t) = R2 fixed. They show that the Lp-norms are uniformly bounded (with
respect to γ) if and only if p ⩽ 4, which confirms that the uniform L4-bound of the PME solution
gradient is optimal.
We use our fully discrete scheme (3.20) in 2D to verify this interesting behaviour. We approximate
the solution of system (3.41), taking γ = 10, which is a value that well approximate the behaviour
of the solution as γ → ∞.
We take as computational domain [−8, 8] × [−8, 8] and G(p) = 1 − p. The initial data is given
by

n(x, y) =

{
0.8 if 0.6 <

√
x2 + y2 < 6,

0 otherwise.
(3.42)

The plots of the Lqx-norms of ∇p(t), with q = 2, 4, 6, 8, are displayed along time in Fig. 3.7. We
notice that at the focusing time, which is around t = 0.428, the norms with exponent larger than
4 develop a singularity. We also present 3D plots of the solution and its pressure as time evolves,
cf. Fig. 3.8 and Fig. 3.9. In order to better show the behaviour and the shape of the focusing
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Figure 3.8: Focusing solution (density). Numerical solution of the focusing problem with γ = 10,
∆x = 0.02, initial internal radius 1.

solution, we choose to take a larger initial internal radius. Hence, we take it to be equal to 1
rather than 0.6 in Eq. (3.42).

3.5 Conclusions

We studied the properties of an upwind finite difference scheme for a mechanical model of tumor
growth proving stability results which allowed us to infer the asymptotic preserving property of
the scheme in the so-called incompressible limit. We performed numerical simulations in order
to investigate the sharpness of the L4-uniform bound of the pressure gradient, using the focusing
solution as limiting example.
The question of how to derive the Aronson-Bénilan estimate for a fixed grid and γ > 1 remains
completely open and faces several technical difficulties, due to the stronger non-linearity of the
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Figure 3.9: Focusing solution (pressure). Numerical solution of the focusing problem with γ = 10,
∆x = 0.02, initial internal radius 1.

equation. Moreover, as aforementioned, it could be of use in order to pass to the limit as
∆x→ 0 in the semi-discrete scheme. Extending our approach on the Aronson-Bénilan estimate
to finite difference schemes for cross-reaction-diffusion systems of porous medium type could also
represent a challenging problem.

3.A Proof of the solvability of (3.22)

The following theorem, which is a generalization of [3, Theorem A.1] holds.

Theorem 3.A.1. Denote n̄i(t) and ni(t) to be two solutions of the system of equations

dni(t)

dt
+ (1− αi(t))ni(t)− ν [A(ni(t), ni+1(t))−A(ni−1(t), ni(t))] = Nk

i , i ∈ I, (3.43)
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where A(ni(t), ni+1(t)) is defined from (3.21), ν = ∆t/∆x, αi(t) = ∆tG(nγi (t)) and ∆t <
1/G(0), with a super- and a sub-solution initial data, respectively, i.e.

n̄i(0) = p
1
γ

H , ni(0) = 0.

Then we have
(i) n̄i(t) and ni(t) are nonnegative for all t > 0 and i ∈ I.
(ii) n̄i(t) and ni(t) are super- and sub-solutions for all t > 0 and i ∈ I.
(iii) n̄i(t) ≥ ni(t) for all t > 0 and i ∈ I.
(iv) for any i ∈ I, both n̄i(t) and ni(t) converges to the same limit, which is the unique solution
of (3.22).

Proof. (i) We prove the case of supersolution. The proof for the case of subsolution is similar.
Consider the moment t∗ when n̄i(t) first reach 0 for some i0, i.e. n̄i0(t∗) = 0 while n̄i(t∗) ≥ 0 for
all i ̸= i0, then A(n̄i0(t), n̄i0+1(t)) ≥ 0, A(n̄i0−1(t), n̄i0(t)) ≤ 0 and thus

dn̄i0(t
∗)

dt
= ν [A(n̄i0(t), n̄i0+1(t))−A(n̄i0−1(t), n̄i0(t))] +Nk

i0 ≥ 0,

via the evolution equation (3.43). As a result, n̄i(t) can’t change signs and thus remain nonneg-
ative for all t ≥ 0.

(ii) Here we prove the case of subsolution. The proof for the case of supersolution is similar.
Denote

zi(t) =
dni(t)

dt
, αi(t) = ∆tG(nγi (t)), Ai+ 1

2
(t) = A(ni(t), ni+1(t)),

then zi(0) ≥ 0 for all i since ni(0) is a subsolution. Differentiating (3.43), we get

dzi(t)

dt
+ (1− αi(t))zi(t)− α′

i(t)ni(t)− ν
[
∂1Ai+ 1

2
− ∂2Ai− 1

2

]
zi(t)

=ν∂2Ai+ 1
2
zi+1(t)− ν∂1Ai− 1

2
zi−1(t).

Noticing that α′
i(t) = 0 when zi(t) = 0, the function zi(t) can’t change signs following a similar

argument as in (i), which implies that zi(t) ≥ 0 for all t ≥ 0. Then combining with (3.43), we
have that

(1− αi(t))ni(t)− ν
[
Ai+ 1

2
(t)−Ai− 1

2
(t)
]
≤ Nk

i , for all t ≥ 0,

which shows that ni(t) is always a subsolution.

(iii) Denote wi(t) = n̄i(t) − ni(t), then initially we have wi(0) ≥ 0 for all i. We wish to show
that wi(t) ≥ 0 for all t ≥ 0 and i ∈ I. For simplicity of notation, we denote

ᾱi(t) = ∆tG(n̄γi (t)), αi(t) = ∆tG(nγi (t)).

Noticing (3.3) and the fact that both n̄i(t) and ni(t) are nonnegative, when ∆t < 1/G(0), we
have ᾱi(t) ≤ 1 and αi(t) ≤ 1. A direct computation shows that

(1− ᾱi(t))n̄i(t)− (1− αi(t))ni(t) = (1− ᾱi(t))wi(t) + (αi(t)− ᾱi(t))ni(t)

= (1− ᾱi(t) + βi(t))wi(t),

where βi(t) = −∆tG′(ηγi (t))γη
γ−1
i (t)ni(t) ≥ 0 for some nonnegative ηi(t) between n̄i(t) and
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ni(t). By (3.43) and the fact that n̄i(t) and ni(t) are super- and subsolutions, we have

(1− ᾱi(t) + βi(t))wi(t)− ν
[
Ai+ 1

2
(n̄i, n̄i+1)−Ai− 1

2
(n̄i−1, n̄i)

]
+ ν

[
Ai+ 1

2
(ni, ni+1)−Ai− 1

2
(ni−1, ni)

]
≥ 0.

Combining the above inequality with the following expression

Ai+ 1
2
(n̄i, n̄i+1)−Ai+ 1

2
(ni, ni+1) = ∂1Ai+ 1

2
(ξi, n̄i+1)wi + ∂2Ai+ 1

2
(ni, ηi+1)wi+1,

where ∂1Ai+ 1
2
(ξi, n̄i+1) ≤ 0 with some ξi between n̄i and ni and ∂2Ai+ 1

2
(ni, ηi+1) ≥ 0 with some

ηi+1 between n̄i+1 and ni+1, we have[
1− ᾱi(t) + βi(t)− ν

(
∂1Ai+ 1

2
(ξi, n̄i+1)− ∂2Ai− 1

2
(ni−1, ηi)

)]
wi(t)

− ν∂2Ai+ 1
2
(ni, ηi+1)wi+1(t) + ν∂1Ai− 1

2
(ξi−1, ni)wi−1(t) ≥ 0.

Multiplying both sides by 1{wi<0} and summing over i, we get

−
∑
i

(1− ᾱi(t) + βi(t))w
−
i + I1 + I2 ≥ 0,

where w−
i = max{−wi, 0} and

I1 = ν
∑
i

∂2Ai− 1
2
(ni−1, ηi)wi(1{wi<0} − 1{wi−1<0}),

I2 = −ν
∑
i

∂1Ai+ 1
2
(ξi, ni+1)wi(1{wi<0} − 1{wi+1<0}).

It is worth noticing that
wi(1{wi<0} − 1{wi±1<0}) ≤ 0,

which implies that I1 ≤ 0, I2 ≤ 0 and further∑
i

(1− ᾱi(t) + βi(t))w
−
i ≤ 0. (3.44)

It is easy to see from (3.44) that we must have w−
i (t) ≡ 0, i.e. wi(t) ≥ 0 for all t > 0.

(iv) The monotonicity of n̄i(t) and ni(t) indicates that there exist the limits

N̄i = lim
t→∞

n̄i(t), N i = lim
t→∞

ni(t).

Denote Wi = N̄i −N i, we can show that[
1−∆tG(N̄γ

i ) + βi(t)− ν
(
∂1Ai+ 1

2
(ξi, N̄i+1)− ∂2Ai− 1

2
(N i−1, ηi)

)]
Wi

− ν∂2Ai+ 1
2
(N i, ηi+1)Wi+1 + ν∂1Ai− 1

2
(ξi−1, N i)Wi−1 = 0,

for some ξi’s and ηi’s. Summing over all i, we have∑
i

[
1−∆tG(N̄γ

i ) + βi(t)
]
Wi = 0.
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Noticing that Wi ≥ 0 and 1 − ∆tG(N̄γ
i ) + βi(t) > 0, we have Wi = 0 for all i ∈ I. In other

words, for each i, there is a unique limit of n̄i(t) and ni(t) as t→ ∞, which is Nk+1
i , the unique

solution of (3.22).
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Part II

Stiff limit of a tumor growth model
including convective effects:

regularity and convergence rate





Chapter 4

Incompressible limit of a tumor
growth model incorporating
convective effects

Abstract
In this work we study a tissue growth model with applications to tumour growth. The model is
based on that of Perthame, Quirós, and Vázquez proposed in 2014 but incorporates the advective
effects caused, for instance, by the presence of nutrients, oxygen, or, possibly, as a result of self-
propulsion. The main result of this work is the incompressible limit of this model which builds
a bridge between the density-based model and a geometry free-boundary problem by passing to
a singular limit in the pressure law. The limiting objects are then proven to be unique.

This chapter is taken from N. D. and M. Schmidtchen. On the Incompressible Limit for a Tumour
Growth Model incorporating Convective Effects, Accepted for publication in CPAM, (2021).

4.1 Introduction

Modelling living tissue poses a whole range of challenges. On the one hand, it is important to
identify the biomedical drivers that should be incorporated in the model, while, on the other
hand there are certain modelling choices that need to be discussed. One of these choices that,
in a way, separates the community is the type of model used to describe tissue growth. Roughly
speaking we identify the following two types of models: those that describe the tissue as an
evolving distribution in space and those that describe the tissue as an evolving domain in space.
While the first type is mostly based on a partial differential equation description, the latter is
known as a free-boundary or evolving boundary model.
The goal of this paper is to build a bridge between the two types of models by passing to the
so-called stiff limit in the population-based model to obtain a free-boundary description. The
model we propose here describes the evolution of the tissue density, nγ = nγ(x, t), and is given

105
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by

∂nγ
∂t

−∇ · (nγ∇pγ)−∇ · (nγ∇V ) = nγG(pγ). (4.1)

on Rd and for t > 0. It is equipped with some non-negative initial data nγ(0, x) = n0γ(x) ∈
L1
+(Rd). Here pγ = nγγ denotes the pressure, G = G(pγ) models the cell proliferation (resp. cell

death), and V = V (x, t) denotes a chemical concentration. In order to pass to the incompressible
limit γ → ∞ we need to study the equation satisfied by the pressure, i.e. , the equation

∂pγ
∂t

= γpγ(∆pγ +∆V +G(pγ)) +∇pγ · ∇(pγ + V ). (4.2)

While it is intuitive to expect

p∞(∆p∞ +∆V +G(p∞)) = 0, as well as p∞(n∞ − 1) = 0,

in the limit, there are technical subtleties, obtaining strong compactness of the pressure gradient
to be precise, that need to be overcome. We are by no means the first to ask this question. As
a matter of fact, there are already some promising results towards this rigorous limit. However,
all of them are borderline and just not good enough to obtain the strong compactness of the
pressure gradient. A blend of two techniques finally allows us to settle this open question. The
rest of the introduction is dedicated to recall previous results on this type of models. We will
also use this as an opportunity to introduce the tools necessary for the limit passage in a brief,
explanatory way.

4.1.1 Previous works on the incompressible limit

The question of passing to the incompressible limit has a rich history and several variations of
it have been studied in the literature. Historically, the problem has its early foundation in the
work of Bénilan and Crandall on the continuous dependence on φ of solutions to the filtration
equation ∂tn = ∆φ(n) in 1981, cf. [18], see also [127, 141].
Henceforth the problem has been attracting a lot of attention. In [45] the authors consider the
limit of the density of the porous equation but they can weaken the assumption on the initial
data thus extending the results of [18]. Moreover, they are able to show that the limit density,
n∞, is independent of time and bounded 0 ⩽ n∞ ⩽ 1. Later, in 2001, Gil and Quirós revisit
the study of the incompressible limit of the solution of the porous medium equation defined in
[0,+∞)× Ω, with non-trivial boundary data g = g(x).
In this case, the pressure is “forced” to be positive near to the boundary, and then, since the
pressure gradient is no longer zero, the motion of the free boundary ∂{p∞ > 0} is governed by
Darcy’s law V = −∂νp∞, where ν denotes the outward normal on the free boundary, see also
[88].
Emanating from the early works on the mesa problem for the porous medium equation, research
began branching out in different directions. The first generalisation concerns the inclusion of
a pressure-dependent growth term proposed in the work of [130]. Here the authors propose a
tissue-growth model where cells move according to a population pressure generated by the total
density of the form p(n) = nγ . In conjunction with Darcy’s law they recover the porous-medium
type degenerate diffusion. In addition, they include a proliferation term, nG(p), which models
cells divisions with a pressure depending rate. Thus the proliferation rate, G, is assumed to
be a decreasing function accounting for the fact that cells are less "willing" to divide in packed
regimes. Their paper is seminal in that they were the first to perform the rigorous stiff pressure
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limit in the presence of growth terms. While strong compactness of the pressure is absolutely
sufficient for the Hele-Shaw limit itself, obtaining the so-called complementarity relation which
provides an equation for the pressure in the limit is much more involved. In fact, in order to
obtain it strong compactness of the pressure gradient is indispensable. To this purpose, using the
comparison principle, they show that the Laplacian of the pressure satisfies an Aronson-Bénilan
type estimate, namely ∆p+G(p) ≳ −C/γt.
Later in [102] the authors study the same model through a viscosity solution approach. They
are also able to recover the velocity law in presence of mushy regions, i.e. regions where P∞ = 0
and 0 < n∞ < 1.
The related free boundary problem was further studied in [123], where the authors prove that
the velocity law of the free boundary holds both in a weak (distributional) and in a measure
theoretical sense. In the same paper, they also provide an L4-bound of the pressure gradient
that relies on the Aronson-Bénilan estimate, which we extend to our model, Eq. (4.1), through
a self-contained proof in Lemma 4.3.2, independently of any estimate on ∆pγ .
In [130], the authors also study an extension of the model including the effect of a nutrient with
concentration c = c(x, t). While they were able to prove the strong convergence of nγ and cγ
as γ → ∞, they leave open the question of how to recover the compactness needed to pass to
the limit in the pressure equation and obtain the complementarity relation. As presented in
Chapter 2, this problem was addressed in [61], where the authors combine a weak version of the
Aronson-Bénilan estimate in L3 with a uniform bound of the pressure gradient in L4 to infer
strong compactness. Recently, interesting progress have been made in [93] in the non-monotone
case.
The model by [130] was then extended by the inclusion of migratory processes, i.e. , drift terms
given by a velocity field, v(x, t), as a model extension received a lot of attention.
In [106] and [1], this problem is analysed through both viscosity solutions and optimal trans-
portation approaches. This result was extended in 2016, by Craig, Kim, and Yao, cf. [57] to a
model with non-local Newtonian potential, N . The question of how to pass to the limit γ → ∞
in the porous medium equation with a drift and a non-trivial source term has been addressed in
[103]. The authors propose a model with a generic vector field v : Rd × R+ → Rd as drift term,
i.e. ,

∂nγ
∂t

−∆nγγ +∇ · (nγ v) = nγG,

with a growth rate G = G(x, t). Through viscosity solutions methods, they prove that as γ → ∞
the model converges to a free boundary model of Hele-Shaw type. Their work improves the results
previously achieved in [1], extending the class of initial data from patches to any continuous and
compactly supported function bounded between zero and one.
This is also where our contribution to the current discourse enters, namely the first rigorous
derivation of the complementarity relation, that is, an equation governing the pressure distribu-
tion inside of the moving boundary problem.

4.1.2 Our Contribution

As set out in the introduction, there have been several promising steps towards establishing the
incompressible limit and the complementarity relation for reaction-diffusion models incorporating
convective effects. As a matter of fact, just like the authors of [103], we address the problem
of passing to the incompressible limit in a porous medium equation with both a drift and a
source term. While their approach is based on a viscosity solution approach, we use a weak
(distributional) interpretation. By employing a blend of recently developed tools, i.e. , an Lp-
version of the celebrated Aronson-Bénilan estimate, cf. [9], along with the optimal L4-regularity
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of the pressure gradient observed in [61], we can obtain strong compactness of the pressure
gradient and proceed to passing to the incompressible limit and obtain the complementarity
relation in the same vein as [31]. To summarise:

• We obtain an L3-space-time estimate on the negative part of the Laplacian of the pressure
which ultimately helps us obtain strong compactness of the pressure gradient. We note
that an L∞-version has been obtain recently in [105, Theorem 3.1]. However, the lower
bound on the Laplacian of the pressure that they infer, ∆p ⩾ −C/t − C, does not go
to zero as γ → ∞, as in the classical Aronson-Bénilan estimate. Nonetheless, this result
in conjunction with our uniform L4-estimate on the pressure gradient would already be
sufficient to obtain the complementarity relation rigorously, following [61, 31, 123].

• Here, we choose a different route by only striving for the much weaker L3-estimate on the
negative part of the Laplacian of the pressure. This, in turn, allows us to drastically relax
the C3,1

x,t -regularity of the velocity field, ∇V , required by [105]. In fact, our assumptions on
the drift, cf. Eq. (A1-V ) and Eq. (A2-V ), in a way boil down to controlling certain third
derivatives in L12/5

loc (QT ).

• Finally, to the best of our knowledge, we are the first to prove the uniqueness of the solution,
(n∞, p∞), to the limit problem

∂n∞
∂t

= ∆p∞ + n∞G(p∞) +∇ · (n∞∇V ).

This result is only possible since we work with weak solutions in the classical sense which
ultimately allows us to apply a variation of Hilbert’s duality method. The only related
results in this direction in the literature are given by [1] where the uniqueness of so-called
patch solutions is shown in the drift-diffusion model with ∆V > 0 in the absence of growth
dynamics and the very recent preprint [98] where uniqueness of the limit equation is shown
for signed solutions, linear drifts, and general growth dynamics. In the absence of drifts
uniqueness was known since [130] and for a special type of growth term it can also be
obtained from λ-contractivity of metric gradient flows, cf. [70, 53].

Moreover, our approach provides an answer to several open problems proposed in [103]:

• The first question the authors raise concerns the monotonicity assumption on G(p)+∆V >
0, which in our case is not necessary. An improvement in this direction has also been
obtained very recently, [93]. We stress that in the growth rate in [103] does not depend on
the pressure but on space and time, only.

• The next question concerns the class of initial data. In [103], the authors write “A more
interesting question arises with the initial data that is larger than 1 at some points. In
such cases there is a jump in the solution at t = 0 in the limit ‘γ → ∞’ which adds
another challenge in the analysis.”1 This effect has already been observed at the early
stages of this singular limit problem. The parts of the density that are larger than 1
are known to “collaps” immediately and a mesa-structure is obtained instantaneously, for
instance, cf. [45]. Following our approach, we can allow for the larger class of non-negative
L1(Rd) ∩ L∞(Rd) functions with compact support as initial data.2

1This quote is directly taken from [103] where we only adapted the notation to that of our paper.
2While L∞-data with compact support immediately implies integrability, we trust that the assumption on the

support may be removed by a localising argument in the spirit of [61, 94].
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• Finally, in [103], the authors postulate BV -regularity of the limiting density, also suggested
by [64] based on the “five-gradients-estimate” using tools from optimal transportation. Even
though our arguments do not borrow techniques from optimal transport but, instead, rely
on Sobolev compactness theory, we are able to improve the regularity result in that we
obtain the BV -regularity of the limit density for any initial data. What is more, we
additionally have an L4-regularity of the limit pressure gradient, which, to the best of our
knowledge, is novel.

4.1.3 Problem Setting and Main Results

Before we present the main results of our paper let us introduce some notation used throughout
this work. Henceforth, we call QT := Rd × (0, T ) the truncated space-time cylinder and drop
the subscript T to denote the entire cylinder, i.e. , Q := Rd × (0,∞). Besides, for the sake of
readability, we shall employ the short-hand notation

nγ := nγ(t) := nγ(x, t),

and, similarly,
pγ = pγ(t) := pγ(x, t).

Moreover, throughout, C > 0 denotes a generic positive constant independent of γ that may
change from line to line.

In order to be able to establish our result we impose the following set of assumptions which, for
clarity, are split into assumptions on the initial data, the growth terms, and the advective term,
respectively.
We assume that for every γ > 1 the initial data are non-negative, integrable, and uniformly
essentially bounded, i.e. ,

n0γ ∈ BV (Rd) ∩ L∞(Rd), 0 ⩽ n0γ ⩽ nM , and 0 ⩽ p0γ ⩽ pM , (A1-n0γ)

for some constants nM , pM > 0. Here BV denotes the space of functions with bounded variation.
Moreover, we assume the initial population is contained in a compact set, i.e. , there exists a
bounded set K ⊂ Rd such that

supp(n0γ) ⊂ K. (A2-n0γ)

Let us notice that, thanks to the finite speed of propagation property of porous medium type
equations, assumption (A2-n0γ) implies that, for any T > 0, there exists a bounded domain
Ω ⊂ Rd such that the supports of nγ(·, t), pγ(·, t) are contained in Ω for any t ∈ [0, T ], uniformly
in γ, as proven in the next section, cf. Lemma 4.2.1.
In addition, we suppose that there exists a positive constant C independent of γ such that

∥∆(n0γ)
γ+1∥L1(Rd) + ∥∇p0γ∥L2(Rd) + ∥(∆p0)−∥L2(Rd) ⩽ C. (A3-n0γ)

Note, that strictly speaking, the L2-bound on the pressure gradient is not required as it is a
consequence of the L2-control on the Laplacian of the pressure. Besides we make the biological
assumption

G′(p) < −α, and G(pM ) = 0, (A-G)
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for some α > 0 and all p ⩾ 0, and some pM > 0, to include the tendency of tissue to grow slower
as the pressure increases and starts to die when the pressure exceeds the homeostatic pressure,
pM . Finally, we have to make the following regularity assumptions on the chemical distribution

∇(∂tV ) ∈ L1((0, T );L∞
loc(Rd)),

∆(∂tV ) ∈ L1
loc(QT ),

D2V ∈ L∞
loc(QT ),

∇V ∈ L2
loc(QT ) ∩ L∞

loc(QT ),

(A1-V )

and

∇(∆V ) ∈ L
12/5
loc (QT ). (A2-V )

Note, that the additional assumption, (A2-V ), is required solely for technical reasons to establish
the control of the Laplacian of the pressure.
Under these hypotheses we are now able to state the two main theorems of this work. The first
concerns the complementarity relation.

Theorem 4.1.1 (Complementarity relation). We may pass to the limit in Eq. (4.2) as γ → ∞
and establish the so-called complementarity relation

p∞(∆p∞ +∆V +G(p∞)) = 0, (4.3)

in the distributional sense. Moreover, 0 ⩽ n∞ ⩽ 1 and p∞ ⩾ 0 satisfy the equation

∂n∞
∂t

= ∆p∞ + n∞G(p∞) +∇ · (n∞∇V ), (4.4a)

in D′(QT ), as well as
p∞(1− n∞) = 0, (4.4b)

almost everywhere.

The complementarity relation, Eq. (4.3), is a crucial link that allows us to bridge the gap between
the compressible model, Eq. (4.1), and the geometrical free boundary problem of Hele-Shaw type.
Let us define the set

Ω(t) := {x | p∞(x, t) > 0}.

Then, the pressure satisfies{
−∆p∞ = ∆V +G(p∞), in Ω(t),

p∞ = 0, on ∂Ω(t),

which coincides with the classical Hele-Shaw problem whenever V and G are identically equal to
zero.

Theorem 4.1.2 (Uniqueness of the limit solution). There exists at most one distributional
solution such that for all T > 0 the couple (n∞, p∞) ∈ L∞(QT )× L2(0, T ;H1(Ω)) is a solution
to system (4.4a).

The rest of the paper is organised as follows. In Section 4.2 we present straigh-forward a priori
estimates necessary to derive more refined bounds on the pressure. The latter are proven in
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Section 4.3. This includes both the L3-version of the Aronson-Bénilan estimate as well as an L4-
space-time estimate on the pressure gradient. Building on the estimates derived in the previous
sections, Section 4.4 is dedicated to the rigorous limit process in the pressure equation and to
obtaining the complementarity relation. In the subsequent section, Section 4.5, we then proceed
to proving the uniqueness of solutions to the complementarity relation.

4.2 A Priori Estimates

We state some a priori estimates on the main quantities and their derivatives, that we need to
obtain the main result of the paper.

Lemma 4.2.1 (A priori estimates). For any T > 0, there exists a bounded domain Ω ⊂ Rd
such that the supports of nγ(·, t), pγ(·, t) are contained in Ω for any t ∈ [0, T ], uniformly in γ.
Moreover, the following estimates hold uniformly in γ:

(i) nγ , pγ ∈ L∞(0, T ;L∞(Ω)),

(ii) ∂inγ , ∂tnγ ∈ L∞(0, T ;L1(Ω)), for i = 1, . . . , d,

(iii) ∂ipγ , ∂tpγ ∈ L1((0, T )× Ω), for i = 1, . . . , d,

(iv) ∇pγ ∈ L2(0, T ;L2(Ω)).

Proof. Thanks to the comparison principle, from Eq. (4.1) we immediately find nγ ⩾ 0 and,
as a consequence, pγ ⩾ 0. In order to establish uniform essential bounds, we construct a super
solution. To this end we define

Π(x, t) := C

(
R(t)− |x|2

2

)
+

where C is a positive constant that satisfies

C ⩾
2

d
(G(0) + ∥∆V ∥∞), (4.5)

and we take R(t) such that

R′(t) ⩾ (2C + 1)R(t) +
∥∇V ∥∞

2
. (4.6)

From Eq. (4.2) and the assumption on the growth term (A-G), we know that pγ satisfies

∂pγ
∂t

− |∇pγ |2 −∇pγ · ∇V − γpγ(∆pγ +G(0) + ∥∆V ∥∞) ⩽ 0.

Let us show that Π(x, t) is a super-solution to this differential inequality. We have

∂Π

∂t
= CR′(t)1{

R(t)⩾ |x|2
2

},
and

∇Π = −Cx1{
R(t)⩾ |x|2

2

},
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as well as

∆Π = −Cd1{
R(t)⩾ |x|2

2

} − C|x|δ{
R(t)=

|x|2
2

}.
Using Eq. (4.5) in conjunction with Eq. (4.6) we get

∂Π

∂t
− |∇Π|2−∇Π · ∇V − γΠ(∆Π+G(0) + ∥∆V ∥∞)

⩾CR′(t)1{
R(t)⩾ |x|2

2

} − C2|x|21{
R(t)⩾ |x|2

2

} + Cx · ∇V 1{
R(t)⩾ |x|2

2

} + γCΠ
d

2

⩾

(
R′(t)− 2CR(t)− |x|2

2
− ∥∇V ∥∞

2

)
1{

R(t)⩾ |x|2
2

}
⩾0.

(4.7)

Taking R(0) such that K ⊂ B√
2R(0)

and C large enough, by the assumption on the initial

data (A2-n0γ) we have p0γ ⩽ Π(0). Then, this implies that pγ(t) ⩽ Π(t) for all positive times by
comparison. Let us show the argument for the sake of completeness.
Setting N(Π) = Π1/γ , and multiplying Eq. (4.7) by N ′(Π) we obtain

∂N

∂t
−N ′(Π)|∇Π|2 −N ′(Π)∇Π · ∇V − γN ′(Π)Π∆Π ⩾ γN ′(Π)Π(G(0) + ∥∆V ∥∞),

whence
∂N

∂t
−∇ · (N∇Π)−∇N · ∇V ⩾ N(G(0) + ∥∆V ∥∞).

Since, by Eq. (4.1), we know that nγ is a sub-solution to the same equation, we have nγ(t) ⩽ N(t)
for all t > 0, by the comparison principle. Therefore, we conclude that pγ(t) ⩽ Π(t) for all positive
times. We take Ω ⊂ Rd a bounded domain such that B√

2R(T )
⊂ Ω and then, by the definition

of Π, we infer that
supp(pγ(t)) ⊂ Ω,

for all t ∈ [0, T ] and any γ > 1. As consequence, both nγ and pγ are uniformly bounded in
L∞(ΩT ), where ΩT := Ω× (0, T ).
Now we prove the BV -estimates on the density. Differentiating Eq. (4.1) with respect to the
i-th component of the space variable, xi, and multiplying by sign(∂xi

nγ) we get

d

dt

∫
Ω

∣∣∣∣∂nγ∂xi

∣∣∣∣dx ⩽
∫
Ω

γ∆

(
nγγ

∣∣∣∣∂nγ∂xi

∣∣∣∣)dx+

∫
Ω

∇ ·
(
nγ∇

(
∂V

∂xi

))
sign

(
∂nγ
∂xi

)
dx+G(0)

∫
Ω

∣∣∣∣∂nγ∂xi

∣∣∣∣dx
⩽

d∑
j=1

∫
Ω

∣∣∣∣∂nγ∂xj

∣∣∣∣ ∣∣∣∣ ∂2V

∂xi∂xj

∣∣∣∣dx+

d∑
j=1

∫
Ω

nγ

∣∣∣∣∣ ∂3V

∂xi∂x2j

∣∣∣∣∣dx+G(0)

∫
Ω

∣∣∣∣∂nγ∂xi

∣∣∣∣dx,
for i = 1, . . . , d. We sum the inequalities over all i = 1, . . . , d, and obtain

d

dt

d∑
i=1

∫
Ω

∣∣∣∣∂nγ∂xi

∣∣∣∣dx ⩽ C

d∑
i=1

∫
Ω

∣∣∣∣∂nγ∂xi

∣∣∣∣dx+ C,
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where the constants depend on the L∞-norm of G and the assumptions on the potential V ,
cf. Eqs. (A-G, A1-V ). Using Gronwall’s lemma we conclude

d∑
i=1

∫
Ω

∣∣∣∣∂nγ∂xi

∣∣∣∣dx ⩽ CeCt
d∑
i=1

∫
Ω

∣∣∣∣∣∂n0γ∂xi

∣∣∣∣∣dx ⩽ C(T ),

where, in the last inequality, we have used the uniformBV -bounds on the initial data, cf. assumption
(A1-n0γ).

Following the same line of reasoning for the time derivatives we obtain

∂

∂t

∣∣∣∣∂nγ∂t
∣∣∣∣ ⩽γ∆(pγ ∣∣∣∣∂nγ∂t

∣∣∣∣)+∇ ·
(∣∣∣∣∂nγ∂t

∣∣∣∣∇V )+ sign

(
∂nγ
∂t

)
∇ ·
(
nγ∇

(
∂V

∂t

))

+

∣∣∣∣∂nγ∂t
∣∣∣∣G(pγ) + nγG

′(pγ)

∣∣∣∣∂pγ∂t
∣∣∣∣ ,

(4.8)

due to the fact that sign(∂tpγ) = sign(∂tnγ). An integration in space yields

d

dt

∫
Ω

∣∣∣∣∂nγ∂t
∣∣∣∣dx ⩽ G(0)

∫
Ω

∣∣∣∣∂nγ∂t
∣∣∣∣ dx+

∫
Ω

∣∣∣∣∇ ·
(
nγ∇

(
∂V

∂t

))∣∣∣∣ dx︸ ︷︷ ︸
I

,

where we used that G′ < −α, cf. Eq. (A-G). We can estimate the term I as follows

I =

∫
Ω

∣∣∣∣∇nγ · ∇(∂V∂t
)
+ n∆

(
∂V

∂t

)∣∣∣∣ dx
⩽
∫
Ω

∣∣∣∣∇nγ · ∇(∂V∂t
)∣∣∣∣ dx+

∫
Ω

∣∣∣∣n∆(∂V∂t
)∣∣∣∣dx

⩽

∥∥∥∥∇(∂V∂t
)
(·, t)

∥∥∥∥
L∞(Ω)

∥∇nγ∥L∞(0,T ;L1(Ω)) + nH

∥∥∥∥∆(∂V∂t
)
(·, t)

∥∥∥∥
L1(Ω)

⩽C

∥∥∥∥∇(∂V∂t
)
(·, t)

∥∥∥∥
L∞(Ω)

+ C

∥∥∥∥∆(∂V∂t
)
(·, t)

∥∥∥∥
L1(Ω)

,

where we have used the BV -space regularity of nγ from before. Hence, we obtain

d

dt

∫
Ω

∣∣∣∣∂nγ∂t
∣∣∣∣dx ⩽ G(0)

∫
Ω

∣∣∣∣∂nγ∂t
∣∣∣∣dx+ C

∥∥∥∥∇(∂V∂t
)
(·, t)

∥∥∥∥
L∞(Ω)

+ C

∥∥∥∥∆(∂V∂t
)
(·, t)

∥∥∥∥
L1(Ω)

.

By assumption (A1-V ) we know that ∥∇(∂tV )(·, t)∥L∞(Ω) and ∥∆(∂tV )(·, t)∥L1(Ω) are L1-integrable
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in time. Using Gronwall’s lemma, we conclude∥∥∥∥∂nγ∂t (t)

∥∥∥∥
L1(Ω)

⩽ eG(0)t

∥∥∥∥(∂nγ∂t
)

0

∥∥∥∥
L1(Ω)

+

∫ t

0

C

(∥∥∥∥∇(∂V∂t
)
(·, t)

∥∥∥∥
L∞(Ω)

+

∥∥∥∥∆(∂V∂t
)
(s, ·)

∥∥∥∥
L1(Ω)

)
eG(0)(t−s) ds

⩽ C(T ),

(4.9)

for a.e. t ∈ (0, T ), i.e. , ∂tnγ ∈ L∞(0, T ;L1(Ω)). Let us stress that assumptions (A1-n0γ) and
(A3-n0γ) imply the initial bound

∥∥(∂tnγ)0∥∥L1(Ω)
⩽ C.

Before establishing the BV -bounds on the pressure, let us notice that integrating Eq. (4.8) in
space and time, we have∥∥∥∥∂nγ∂t (·, t)

∥∥∥∥
L1(Ω)

+ min
0⩽pγ⩽Π(0,T )

|G′(pγ)|
∫ t

0

∫
Ω

nγ

∣∣∣∣∂pγ∂t
∣∣∣∣dx dt ⩽ C(T ),

thanks to Eq. (4.9). Then, it holds∥∥∥∥∂pγ∂t
∥∥∥∥
L1(ΩT )

⩽
∫∫

ΩT∩{nγ⩽1/2}
γnγ−1

γ

∣∣∣∣∂nγ∂t
∣∣∣∣ dxdt+ 2

∫∫
ΩT∩{nγ>1/2}

nγ

∣∣∣∣∂pγ∂t
∣∣∣∣dxdt ⩽ C(T ).

The same argument can be used for the space derivatives of pγ and it goes through without
major changes.
We can actually gain more information on the pressure gradient, by integrating Eq. (4.2) in
space, i.e. , ∫

Ω

∂pγ
∂t

dx = γ

∫
Ω

pγ(∆(pγ + V ) +G(pγ)) dx+

∫
Ω

∇pγ · ∇(pγ + V ) dx.

Integration by parts yields∫
Ω

∂pγ
∂t

dx ⩽ (1− γ)

∫
Ω

|∇pγ |2 dx+ γ

∫
Ω

pγG(pγ) dx+ (1− γ)

∫
Ω

∇pγ · ∇V dx,

and using Young’s inequality we obtain

γ − 1

2

∫∫
ΩT

|∇pγ(t)|2 dx dt ⩽ ∥p0γ∥L1(Ω) +
(γ − 1)

2

∫∫
ΩT

|∇V |2 dx dt+ γ

∫∫
ΩT

|pγG(pγ)|dx dt.

Dividing by (γ − 1) we finally get ∫∫
ΩT

|∇pγ |2 dx dt ⩽ C(T ),

which concludes the proof.
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4.3 Stronger bounds on pγ

This section is dedicated to establishing more refined estimates on the pressure, cf. Lemma 4.3.2
and Lemma 4.3.3. Upon obtaining those estimates we will then be able to proceed to proving
the strong compactness of the pressure gradient, cf. Lemma 4.3.6, which is crucial in the overall
endeavour of establishing the incompressible limit.

The first result on the pressure’s regularity is the L4-boundedness of its gradient. This bound
was already proved in [123], although, the authors use the L∞-version of the Aronson-Bénilan
estimate. Here we adapted the method used in [61], where a new method was employed, that does
not require any estimate on ∆pγ . Unlike the model in [61], the convective term may not vanish
at the boundary which leads to boundary terms to be considered in the subsequent analysis. In
the following remark we shall see, however, that they do not pose any problems.

Remark 4.3.1 (Boundary Terms and Integration by Parts). The subsequent technical lemmas
(Lemma 4.3.2 and Lemma 4.3.3) are critical to establishing the regularity necessary for passing
to the stiff limit. Due to several integrations by parts, boundary terms occur that need to be
addressed. Since their treatment is purely technical and they are not even at the heart of the
strategy we introduce the notation O∂ΩT

(1) to indicate that the traces of the respective quantities
are bounded uniformly in γ. This is possible due to the elliptic regularity result presented in [89,
Theorem 9.11] which states that

∥u∥H2(U ′) ⩽ C(∥u∥L2(U) + ∥∆u∥L2(U)),

for some open U ⊂ Rn containing U ′ ⊂ compactly. Choosing u = ∂iV , for all i = 1, . . . , d, and
using assumption (A2-V ), it is immediate that ∇∆V ∈ H2(QT ). With the third-order derivatives
controlled in L2(QT ) the traces of all second order derivatives appearing in the integration by
parts are bounded. Let us highlight, too, that terms involving pγ and its derivatives vanish close
to the boundary by the choice of ΩT . We therefore collect all boundary terms in O∂ΩT

(1) lest
the notation blow up.

Lemma 4.3.2 (L4-estimate of the pressure gradient.). Given T > 0, there exists a positive
constant C, independent of γ, such that∫∫

ΩT

pγ

d∑
i,j=1

∣∣∣∣ ∂2pγ∂xi∂xj

∣∣∣∣2 dxdt+ (γ − 1)

∫∫
ΩT

pγ |∆pγ +∆V +G|2 dxdt ⩽ C(T ),

as well as ∫∫
ΩT

|∇pγ |4 dx dt ⩽ C(T ).

Proof. We write the equation for the pressure as follows

∂pγ
∂t

= γpγ(∆fγ +G) +∇pγ · ∇fγ , (4.10)

where fγ := pγ + V . We multiply Eq. (4.10) by −(∆fγ +G) and integrate in space and time to
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obtain ∫ T

0

d

dt

∫
Ω

|∇pγ |2

2
dxdt−

∫∫
ΩT

∆V
∂pγ
∂t

dxdt−
∫∫

ΩT

G
∂pγ
∂t

dxdt

= −
∫∫

ΩT

∇pγ · ∇fγ(∆fγ +G) dxdt︸ ︷︷ ︸
I

−γ
∫∫

ΩT

pγ |∆fγ +G|2 dxdt.
(4.11)

For convenience, let us define the function G = G(pγ) =
∫ pγ
0
G(q) dq. Thus, we have

∂tpγ G(pγ) = ∂tG(pγ),

and thus ∫∫
ΩT

∂pγ
∂t

G(pγ) dx dt =

∫ T

0

d

dt

∫
Ω

G(pγ) dx dt.

Now, we need to estimate the term I on the right-hand side of Eq. (4.11). Since pγ = fγ − V
we have

I =−
∫∫

ΩT

∇pγ · ∇fγ(∆fγ +G) dxdt

=−
∫∫

ΩT

|∇fγ |2∆fγ dx dt+
∫∫

ΩT

∇V · ∇fγ∆fγ dxdt−
∫∫

ΩT

G∇pγ · ∇fγ dxdt

⩽−
∫∫

ΩT

|∇fγ |2∆fγ dxdt︸ ︷︷ ︸
I1

+

∫∫
ΩT

∇V · ∇fγ∆fγ dxdt︸ ︷︷ ︸
I2

+C,

thanks to the L2-bounds of both ∇pγ and ∇V . We integrate by parts twice in space the term
I1 and obtain

I1 =

∫∫
ΩT

fγ∆(|∇fγ |2) dxdt

= 2

∫∫
ΩT

fγ∇fγ · ∇(∆fγ) dx dt+ 2

∫∫
ΩT

fγ

d∑
i,j=1

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣2 dxdt+O∂ΩT
(1)

= −2

∫∫
ΩT

fγ |∆fγ |2 dx dt− 2

∫∫
ΩT

|∇fγ |2∆fγ dx dt+ 2

∫∫
ΩT

fγ

d∑
i,j=1

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣2 dxdt+O∂ΩT
(1).

Let us notice that the second term on the right-hand side is equal to −2I1. Hence, moving it to
the left-hand side of the equation and simplifying the expression we obtain

−I1 = −
∫∫

ΩT

|∇fγ |2∆fγ dxdt

=
2

3

∫∫
ΩT

fγ |∆fγ |2 dxdt−
2

3

∫∫
ΩT

fγ

d∑
i,j=1

∣∣∣∣ ∂2fγ∂xi∂xj

∣∣∣∣2 dx dt+O∂ΩT
(1)
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=
2

3

∫∫
ΩT

pγ |∆fγ |2 dxdt−
2

3

∫∫
ΩT

pγ

d∑
i,j=1

∣∣∣∣ ∂2fγ∂xi∂xj

∣∣∣∣2 dx dt
+

2

3

∫∫
ΩT

V |∆fγ |2 dx dt−
2

3

∫∫
ΩT

V

d∑
i,j=1

∣∣∣∣ ∂2fγ∂xi∂xj

∣∣∣∣2 dxdt+O∂ΩT
(1).

We now compute the sum of the last two integrals of the right-hand side

2

3

∫∫
ΩT

V |∆fγ |2 dxdt−
2

3

∫∫
ΩT

V

d∑
i,j=1

∣∣∣∣ ∂2fγ∂xi∂xj

∣∣∣∣2 dxdt
=

2

3

∫∫
ΩT

 d∑
i,j=1

∂fγ
∂xj

∂2V

∂xi∂xj

∂fγ
∂xi

dx dt−∆V |∇fγ |2
 dxdt

⩽ C(∥D2V ∥L∞∥∇fγ∥2L2 + ∥∆V ∥L∞∥∇fγ∥2L2)

⩽ C,

having used the assumptions on the velocity field, cf. (A1-V ), and the information on the pressure
gradient, cf. Lemma 4.2.1. Therefore, we can estimate the term −I1 as follows

−I1 ⩽
2

3

∫∫
ΩT

pγ |∆fγ |2 dx dt−
2

3

∫∫
ΩT

pγ

d∑
i,j=1

∣∣∣∣ ∂2fγ∂xi∂xj

∣∣∣∣2 dxdt+ C.

Now we proceed integrating by parts and estimating the term I2

I2 =

∫∫
ΩT

∇V · ∇fγ∆fγ dxdt

= −
∫∫

ΩT

d∑
i,j=1

∂fγ
∂xj

∂2V

∂xi∂xj

∂fγ
∂xi

dxdt−
∫∫

ΩT

d∑
i,j=1

∂V

∂xj

∂2fγ
∂xi∂xj

∂fγ
∂xi

dxdt+O∂ΩT
(1)

⩽ C∥D2V ∥L∞∥∇fγ∥2L2 −
∫∫

ΩT

d∑
i,j=1

∂V

∂xj

∂2fγ
∂xi∂xj

∂fγ
∂xi

dxdt+O∂ΩT
(1)

⩽ C − 1

2

∫∫
ΩT

∇V · ∇|∇fγ |2 dxdt+O∂ΩT
(1)

= C +
1

2

∫∫
ΩT

∆V · |∇fγ |2 dx dt+O∂ΩT
(1)

⩽ C +
1

2
∥∆V ∥L∞∥∇fγ∥2L2 +O∂ΩT

(1)

⩽ C.

Therefore, we obtain

I ⩽ −I1 + I2
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⩽
2

3

∫∫
ΩT

pγ |∆fγ |2 dxdt−
2

3

∫∫
ΩT

pγ

d∑
i,j=1

∣∣∣∣ ∂2fγ∂xi∂xj

∣∣∣∣2 dx dt+ C

⩽
2

3

∫∫
ΩT

pγ |∆fγ +G|2 dxdt− 2

3

∫∫
ΩT

pγ

d∑
i,j=1

∣∣∣∣ ∂2fγ∂xi∂xj

∣∣∣∣2 dxdt+ C,

where in the last inequality we used the fact that G is uniformly bounded.

Gathering all the bounds we can write Eq. (4.11) as

2

3

∫∫
ΩT

pγ

d∑
i,j=1

∣∣∣∣ ∂2fγ∂xi∂xj

∣∣∣∣2 dxdt+ (γ − 2

3

)∫∫
Ω

pγ |∆fγ +G|2 dx dt

⩽
∫ T

0

d

dt

∫
Ω

(
G− |∇pγ |2

2

)
dxdt+

∫∫
ΩT

∆V
∂pγ
∂t

dxdt+ C

⩽ C(T ),

where in the last inequality we used the L1-bound of ∂tpγ . Thus, we have proved the following
bound

2

3

∫∫
ΩT

pγ

d∑
i,j=1

∣∣∣∣ ∂2fγ∂xi∂xj

∣∣∣∣2 dxdt+ (γ − 2

3

)∫∫
ΩT

pγ |∆fγ +G|2 dx dt ⩽ C(T ).

Finally, thanks to the boundedness of ∂2i,jV , we have

∫∫
ΩT

pγ

d∑
i,j=1

∣∣∣∣ ∂2pγ∂xi∂xj

∣∣∣∣2 dxdt
⩽ 2

∫∫
ΩT

pγ

d∑
i,j=1

∣∣∣∣ ∂2fγ∂xi∂xj

∣∣∣∣2 dx dt+ 2

∫∫
ΩT

pγ

d∑
i,j=1

∣∣∣∣ ∂2V

∂xi∂xj

∣∣∣∣2 dxdt
⩽ C(T ),

(4.12)

and since γ > 1∫∫
ΩT

pγ |∆pγ |2 dxdt ⩽ 2

∫∫
ΩT

pγ |∆fγ +G|2 dxdt+ 2

∫∫
ΩT

pγ |∆V +G|2 dxdt

⩽ C(T ),

and the first part of the lemma is proven. Now it remains to prove the L4-bound of the pressure
gradient. Integrating by parts we have∫

Ω

|∇pγ |4 dx = −
∫
Ω

pγ∆pγ |∇pγ |2 dx−
∫
Ω

pγ∇pγ · ∇(|∇pγ |2) dx.
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Applying Young’s inequality to the first term, we obtain

1

2

∫
Ω

|∇pγ |4 dx ⩽
1

2

∫
Ω

p2γ |∆pγ |2 dx− 2

d∑
i,j=1

∫
Ω

pγ
∂pγ
∂xi

∂pγ
∂xj

∂2pγ
∂xi∂xj

dx.

Thanks to Young’s inequality, the last term can be bounded from above by∣∣∣∣∣∣2
d∑

i,j=1

∫
Ω

pγ
∂pγ
∂xi

∂pγ
∂xj

∂2pγ
∂xi∂xj

dx

∣∣∣∣∣∣ ⩽ 1

4

∫
Ω

|∇pγ |4 dx+ 4

∫
Ω

p2γ

d∑
i,j=1

∣∣∣∣ ∂2pγ∂xi∂xj

∣∣∣∣2 dx.
Therefore, we obtain

1

4

∫
Ω

|∇pγ |4 dx ⩽
1

2

∫
Ω

p2γ |∆pγ |2 dx+ 4

∫
Ω

p2γ

d∑
i,j=1

∣∣∣∣ ∂2pγ∂xi∂xj

∣∣∣∣2 dx.
Since pγ ⩽ Π(0, T ) and thanks to Eq. (4.12), we conclude that∫∫

ΩT

|∇pγ |4 dxdt ⩽C(T ),

which completes the proof.

Building on the L4-estimate on the pressure gradient, we are now dedicated to an additional
bound on the pressure which, by itself, yields L1-compactness of the pressure gradient. In
conjunction with the L4-estimate the gradient is then shown to be strongly compact in any
Lp(ΩT ), for 1 ⩽ p < 4, cf. Lemma 4.3.6. The subsequent estimate is an Lp-version of the
celebrated Aronson-Bénilan estimate, cf. [9, 26]. At the heart of its proof is the study of an
auxiliary second-order quantity and its evolution along the flow of the pressure equation. We
define w := ∆pγ +G(pγ) and, for the reader’s convenience, recall that the pressure satisfies the
equation

∂pγ
∂t

= γpγw + γpγ∆V +∇pγ · (∇pγ +∇V ). (4.13)

Lemma 4.3.3 (Aronson-Bénilan L3-estimate.). For all T > 0 and γ > max(1, 2 − 2
d ), there

exists a positive constant C(T ), independent of γ, such that∫∫
ΩT

(w)3− dxdt ⩽ C(T ).

Proof. We compute the time derivative of w

∂w

∂t
=γ∆(pγw) + γpγ∆(∆V ) + γ(w −G)∆V + 2γ∇pγ · ∇(∆V ) + 2∇pγ · ∇(w −G)

+ 2

d∑
i,j=1

∣∣∣∣ ∂2pγ∂xi∂xj

∣∣∣∣2 +∇(w −G) · ∇V +∇pγ · ∇(∆V ) + 2

d∑
i,j=1

∂2pγ
∂xi∂xj

∂2V

∂xi∂xj
+G′ ∂pγ

∂t
.
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Young’s inequality yields∣∣∣∣∣∣2
d∑

i,j=1

∂2i,jpγ
∂2V

∂xi∂xj

∣∣∣∣∣∣ ⩽
d∑

i,j=1

∣∣∣∣ ∂2pγ∂xi∂xj

∣∣∣∣2 + d∑
i,j=1

∣∣∣∣ ∂2V

∂xi∂xj

∣∣∣∣2 ,
and thus, using Eq. (4.13), we get

∂w

∂t
⩾γ∆(pγw) + γpγ∆(∆V ) + γw∆V − γG∆V + (2γ + 1)∇pγ · ∇(∆V ) + 2∇pγ · ∇w

− 2|∇p|2G′ +

d∑
i,j=1

∣∣∣∣ ∂2pγ∂xi∂xj

∣∣∣∣2 − d∑
i,j=1

∣∣∣∣ ∂2V

∂xi∂xj

∣∣∣∣2 +∇w · ∇V −G′∇p · ∇V

+ γG′pγw + γpγG
′∆V +G′|∇pγ |2 +G′∇pγ · ∇V.

We use the fact that
d∑

i,j=1

∣∣∣∣ ∂2pγ∂xi∂xj

∣∣∣∣2 ⩾
1

d
|∆pγ |2 =

1

d
(w −G)2,

and we obtain

∂w

∂t
⩾γ∆(pγw) + γpγ∆(∆V ) + γw∆V − γG∆V + (2γ + 1)∇pγ · ∇(∆V ) + 2∇pγ · ∇w

− |∇p|2G′ +
1

d
w2 − 2

d
wG+

1

d
G2 −

d∑
i,j=1

∣∣∣∣ ∂2V

∂xi∂xj

∣∣∣∣2 +∇w · ∇V

+ γG′pγw + γpγG
′∆V.

We multiply by −(w)−, to find

−∂w
∂t

(w)− ⩽− 1

d
(w)3− + γ∆V (w)2− − 2

d
G(w)2− + γG′pγ(w)

2
− − 1

d
G2(w)− + γG∆V (w)−

+

d∑
i,j=1

∣∣∣∣ ∂2V

∂xi∂xj

∣∣∣∣2 (w)− − γpγG
′∆V (w)− + |∇pγ |2G′(w)−

+ γ∆(pγ(w)−)(w)− + 2∇pγ · ∇(w)−(w)−

− γpγ∆(∆V )(w)− − (2γ + 1)∇pγ · ∇(∆V )(w)−

+∇V · ∇(w)−(w)−.
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Hence, using the fact that G′ < −α and integrating in space and time, we obtain

−
∫
Ω

(w0)2−
2

dx ⩽− 1

d

∫∫
ΩT

(w)3− dx dt+ Cγ

∫∫
ΩT

|w|2− dxdt+ Cγ

∫∫
ΩT

(w)− dxdt

+ γ

∫∫
ΩT

∆(pγ(w)−)(w)− + 2∇pγ · ∇(w)−(w)− dxdt︸ ︷︷ ︸
I1

−γ
∫∫

ΩT

pγ∆(∆V )(w)− dx dt︸ ︷︷ ︸
I2

− (2γ + 1)

∫∫
ΩT

∇pγ · ∇(∆V )(w)− dxdt︸ ︷︷ ︸
I3

+

∫∫
ΩT

∇V · ∇(w)−(w)− dxdt︸ ︷︷ ︸
I4

(4.14)

where C represents different constants depending on the L∞-norms of G, G′ and ∂2i,jV , for
i, j = 1, . . . , d.

Now, we compute each term individually. Integration by parts yields

I1 =γ

∫∫
ΩT

∆(pγ(w)−)(w)− + 2∇pγ · ∇(w)−(w)− dxdt

=− γ

2

∫∫
ΩT

∇pγ · ∇(w)2− dx dt− γ

∫∫
ΩT

p |∇(w)−|2 dxdt+
∫∫

ΩT

∇pγ · ∇(w)2− dxdt

=−
(
1− γ

2

)∫∫
ΩT

(w −G)(w)2− dx dt− γ

∫∫
ΩT

pγ |∇(w)−|2 dxdt

=
(
1− γ

2

)∫∫
ΩT

(w)3− dxdt+
(
1− γ

2

)∫∫
ΩT

G(w)2− dxdt− γ

∫∫
ΩT

pγ |∇(w)−|2 dx dt

⩽
(
1− γ

2

)∫∫
ΩT

(w)3− dxdt− γ

∫∫
ΩT

pγ |∇(w)−|2 dxdt+ Cγ

∫∫
ΩT

(w)2− dx dt.

We continue by using integration by parts and Young’s inequality to get

I2 =− γ

∫∫
ΩT

pγ∆(∆V )(w)− dx dt

=γ

∫∫
ΩT

pγ∇(∆V ) · ∇(w)− dx dt+ γ

∫∫
ΩT

∇pγ · ∇(∆V )(w)− dx dt

⩽
γ

2

∫∫
ΩT

pγ |∇(w)−|2 dx dt+
γ

2

∫∫
ΩT

pγ |∇(∆V )|2 dx dt

+ γ

(∫∫
ΩT

|∇pγ |4
)1/4(∫∫

ΩT

|∇(∆V )(w)−|4/3 dx dt
)3/4
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⩽
γ

2

∫∫
ΩT

pγ |∇(w)−|2 dxdt+
γ

2

∫∫
ΩT

pγ |∇(∆V )|2 dx dt

+ Cγ

(∫∫
ΩT

|∇(∆V )|12/5 dx dt
)5/12(∫∫

ΩT

(w)3− dxdt

)1/3

⩽
γ

2

∫∫
ΩT

pγ |∇(w)−|2 dxdt+ Cγ + Cγ

(∫∫
ΩT

(w)3− dxdt

)1/3

,

where we used Hölder’s inequality, the L4-bound of the pressure gradient of Lemma 4.3.2 and
the assumption (A2-V ), ∇(∆V ) ∈ L

12/5
loc (QT ).

Using again Young’s and Holder’s inequalities we have

I3 ⩽(2γ + 1)

(∫∫
ΩT

|∇pγ |4 dx dt
)1/4(∫∫

ΩT

|∇(∆V )(w)−|4/3 dxdt
)3/4

⩽Cγ

(∫∫
ΩT

|∇(∆V )|12/5 dxdt
)5/12(∫∫

ΩT

(w)3− dx dt

)1/3

⩽Cγ

(∫∫
ΩT

(w)3− dx dt

)1/3

.

The last term is

I4 =

∫∫
ΩT

1

2
∇V · ∇(w)2− dxdt = −1

2

∫∫
ΩT

∆V (w)2− dxdt ⩽ C

∫∫
ΩT

(w)2− dxdt.

Here we have used the fact that Ω is a compact set which contains supp(pγ) and large enough
such that ∆pγ = 0 on ∂Ω, then (w)− = 0 on ∂Ω.
Hence, gathering all the estimates and using Hölder’s inequality, we can rewrite Eq. (4.14) as(
γ

2
− 1 +

1

d

)∫∫
ΩT

(w)3− dx dt ⩽ Cγ

(∫∫
ΩT

(w)3− dxdt

)1/3

+ Cγ

(∫∫
ΩT

(w)3− dxdt

)2/3

+ Cγ,

since we assumed (w0)− ∈ L2(Rd). Finally, for γ > max(1, 2− 2/d), we have∫∫
ΩT

(w)3− dxdt ⩽ C

(∫∫
ΩT

(w)3− dx dt

)1/3

+ C

(∫∫
ΩT

(w)3− dxdt

)2/3

+ C,

which yields ∫∫
ΩT

(w)3− dx dt ⩽ C(T ),

where C(T ) depends on T , |Ω| and previous uniform bounds, and the proof is concluded.

Corollary 4.3.4. It holds ∫∫
ΩT

|∆pγ |dxdt ⩽ C(T ). (4.15)
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Proof. The compact support assumption yields∫∫
ΩT

(∆pγ +G) dx dt ⩽ C(T ),

and then, thanks to Hölder’s inequality, we have∫∫
ΩT

|∆pγ +G|dxdt =
∫∫

ΩT

(∆pγ +G) dxdt+ 2

∫∫
ΩT

(w)− dxdt

⩽ C(T ) + C

(∫∫
ΩT

|w|3− dx dt

)1/3

⩽ C(T ).

Finally, since G is bounded, we obtain∫∫
ΩT

|∆pγ |dxdt ⩽ C(T ).

Remark 4.3.5. The proof of the Aronson-Bénilan estimate can be made independent of the
L4-bound on ∇pγ imposing a stronger condition on V , namely ∇(∆V ) ∈ L6 rather than L12/5.

The bounds provided by Lemma 4.3.2 and Lemma 4.3.3 allow us to prove the strong conver-
gence of ∇pγ in L2(QT ) thanks to compactness arguments, in particular the Fréchet-Kolmogorov
theorem and the Aubin-Lions lemma.

Lemma 4.3.6 (Strong convergence of the pressure gradient). For any T > 0 it holds

∇pγ → ∇p∞,

strongly in L2(QT ).

Proof. Thanks to Lemma 4.3.2, we infer the weak convergence (up to a subsequence) of the
pressure gradient

∇pγ ⇀ ∇p∞, (4.16)

weakly in L4(QT ). From Lemma 4.3.3, we know that ∆pγ is bounded in L1(QT ), which is
instrumental in establishing space-time compactness in any Lr(QT ), with 1 ⩽ r < 4. The proof
of this claim is an extension of [109, Theorem 1] to a space-time setting.
To this end, let us define the continuous function ψ, by setting

ψ(s) = −ϵ, for s < −ϵ,
ψ(s) = s, for − ϵ ⩽ s ⩽ ϵ,

ψ(s) = ϵ, for s > ϵ,

for ϵ > 0. Given γ, γ̂ > 1, we compute∫∫
ΩT

|∇pγ −∇pγ̂ |2ψ′(pγ − pγ̂) dxdt = −
∫∫

ΩT

(∆pγ −∆pγ̂)ψ(pγ − pγ̂) dxdt.
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Next we split the domain into two parts by defining the set

ΩT,ϵ := {(x, t) ∈ ΩT | |pγ(x, t)− pγ̂(x, t)| ⩽ ϵ}.

Thus, since ∆pγ is bounded in L1(QT ) (uniformly with respect to γ), we have∫∫
ΩT,ϵ

|∇pγ −∇pγ̂ |2 dxdt ⩽ Cϵ.

Hence ∫∫
ΩT

|∇pγ −∇pγ̂ |dxdt =
∫∫

ΩT,ϵ

|∇pγ −∇pγ̂ |dx dt+
∫∫

Ωc
T,ϵ

|∇pγ −∇pγ̂ |dxdt

⩽ Cϵ1/2 + 2 T 1/2∥∇pγ∥L2(QT ) · |ΩcT,ϵ|1/2,

where in the last line we used Hölder’s inequality. Since pγ is compact, it is a Cauchy sequence,
and there exist Γ(ϵ) large enough such that for γ, γ̂ > Γ(ϵ) there holds∫∫

ΩT

|∇pγ −∇pγ̂ |dxdt ⩽ Cϵ1/2 + Cϵ.

This implies that ∇pγ is a Cauchy sequence in L1(QT ). Up to a subsequence we have a.e.
convergence. Thanks to Eq. (4.16), the pressure gradient is compact in any Lr(QT ), for 1 ⩽ r <
4.

Remark 4.3.7. The tumour growth rate usually depends also on the presence of nutrients,
therefore one can couple Eq. (4.1), with an equation on the nutrient concentration. Then, the
model reads 

∂nγ
∂t

−∇ · (nγ∇pγ)−∇ · (nγ∇V ) = nγG(pγ , cγ),

∂cγ
∂t

−∆cγ = −nγH(cγ),

(4.17)

where H is the nutrient consumption rate. Thus, system (4.17) is actually an extension of the
model with nutrient studied in [130].
Let us notice that the proofs of the estimates in Lemma 4.3.2 and Lemma 4.3.3 can be adapted
for system (4.17) without any particular difficulty. In fact, the boundedness of the new terms
depending on cγ ,∇cγ , and ∆cγ relies only on the L2-regularity of cγ and its derivatives, which
comes directly from its equation in system (4.17). Therefore, the strong convergence stated in
Lemma 4.3.6 still holds for this model. We refer the reader to [130] and [61] for the complete
treatment of these additional terms.

4.4 The Incompressible Limit

The results obtained in Section 4.3 allow us to finally pass to the incompressible limit in Eq.
(4.2) and obtain the complementarity relation, Eq. (4.3). Let us point out that, thanks to the
uniform (with respect to γ) boundness of ∇pγ in L2(QT ) and ∂tpγ in L1(QT ), the complemen-
tarity relation turns out to be equivalent to the strong convergence of ∇pγ in L2(QT ), given by
Lemma 4.3.6.
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Theorem 4.4.1 (Complementarity relation). We may pass to the limit in Eq. (4.2), as γ → ∞,
and obtain the so-called complementarity relation

p∞(∆p∞ +∆V +G(p∞)) = 0,

in the distributional sense. Moreover, n∞ and p∞ satisfy the equations

∂n∞
∂t

= ∆p∞ + n∞G(p∞) +∇ · (n∞∇V ), (4.18a)

in D′(QT ), as well as
p∞(1− n∞) = 0, (4.18b)

almost everywhere.

Proof. Thanks to the bounds in Lemma 4.2.1,∫∫
ΩT

∣∣∣∣∂pγ∂t
∣∣∣∣+ |∇pγ |dxdt ⩽ C(T ),

then, by the Fréchet-Kolmogorov Theorem, pγ is strongly compact in L1(QT ), for all T > 0.
We integrate Eq. (4.2) against a test function φ ∈ C∞

c (QT ) to obtain∫∫
QT

∂pγ
∂t

φdxdt =(1− γ)

(∫∫
QT

|∇pγ |2φdxdt+

∫∫
QT

∇pγ · ∇V φ dxdt

)
− γ

∫∫
QT

pγ∇pγ · ∇φdxdt− γ

∫∫
QT

pγ∇V · ∇φdxdt

+ γ

∫∫
QT

pγG(pγ)φdxdt.

Dividing by γ − 1 and passing to the limit γ → ∞, we obtain

lim
γ→∞

[
−
∫∫

QT

(
|∇pγ |2φ+ pγ∇pγ · ∇φ

)
dxdt

−
∫∫

QT

(∇pγ · ∇V φ+ pγ∇V · ∇φ) dx dt+
∫∫

QT

pγG(pγ)φdxdt

]
= 0.

It remains to identify the limit. By the strong convergence of pγ and ∇pγ in L2(QT ) we have

−
∫∫

QT

(
|∇p∞|2φ+ p∞∇p∞ · ∇φ

)
dxdt−

∫∫
QT

(∇p∞ · ∇V φ+ p∞∇V · ∇φ) dxdt

+

∫∫
QT

p∞G(p∞)φdx dt = 0,

i.e. ,
p∞(∆p∞ +∆V +G(p∞)) = 0,

in the distributional sense.
Now, we prove that Eq. (4.18a) and Eq. (4.18b) are satisfied. By Lemma 4.2.1, we have∫∫

ΩT

∣∣∣∣∂nγ∂t
∣∣∣∣+ |∇nγ |dx dt ⩽ C(T ),
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and then we infer the compactness of the density. Up to a subsequence, we also have almost
everywhere convergence, both for nγ and pγ . Passing to the limit in the relation p(1+γ)/γγ = nγpγ ,
we obtain

p∞(1− n∞) = 0,

a.e. in QT .
Now, we may pass to the limit in Eq. (4.1) to obtain

∂n∞
∂t

= ∇ · (n∞∇p∞) + n∞G(p∞) +∇ · (n∞∇V ).

From the following relation

1 + γ

γ
nγ∇pγ = pγ∇nγ + nγ∇pγ ,

we infer p∞∇n∞ = 0, and thus
n∞∇p∞ = ∇p∞.

By consequence, n∞ and p∞ satisfy

∂n∞
∂t

= ∆p∞ + n∞G(p∞) +∇ · (n∞∇V ),

which completes the proof.

4.5 Uniqueness of the Limit Pressure

This section is dedicated to proving the following statement.

Theorem 4.5.1 (Uniqueness of n∞ and p∞). The incompressible limit obtained in the previous
section, (n∞, p∞), cf. Eq. (4.4a) is unique.

Proof. In order to prove uniqueness, we assume that (n1, p1) and (n2, p2) are two solutions and
let Ω be a compact, simply connected Lipschitz set that contains the union of their supports.
Upon subtracting the equation for n2 from the equation for n1 we see that difference, n1 − n2,
satisfies

∂(n1 − n2)

∂t
−∆(p1 − p2)−∇ · ((n1 − n2)∇V )− (n1G(p1)− n2G(p2)) = 0. (4.19)

For the sake of simplicity, we shall use the short-hand notation Gi = G(pi), for i = 1, 2, and
u = ∇V . Multiplying Eq. (4.19) by a test function ψ = ψ(x, t) and integrating by parts we get∫∫

ΩT

[
(n1 − n2)

∂ψ

∂t
+ (p1 − p2)∆ψ − (n1 − n2)∇ψ · u+ (n1G1 − n2G2)ψ

]
dxdt = 0. (4.20)

The strategy is to employ Hilbert’s dual method to establish uniqueness. To this end we introduce
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the following notation 

Z := n1 − n2 + p1 − p2,

A :=
n1 − n2

Z
,

B :=
p1 − p2

Z
,

C := −n2
G1 −G2

p1 − p2
,

where we set A = B = 0, whenever Z = 0. Using this notation we rewrite Eq. (4.20) which
becomes ∫∫

ΩT

Z
[
A∂ψ
∂t

+ B∆ψ −A∇ψ · u+ (AG1 − BC)ψ
]
dx dt = 0. (4.21)

Note that, by definition,

0 ⩽ A,B ⩽ 1, as well as 0 ⩽ C ⩽ sup
0⩽p⩽pM

|G′(p)|.

In order to apply Hilbert’s duality method, we have to find a solution, ψ, to the dual problem

A∂ψ
∂t

+ B∆ψ −A∇ψ · u+ (AG1 − BC)ψ = Aξ, (4.22)

in ΩT , and ψ = 0 on ∂Ω × (0, T ). The equation is complemented by the final time condition
ψ(x, T ) = 0 for x ∈ Ω. Here, ξ is an arbitrary smooth function. If solved, substituting the
solution to the dual problem, ψ, into Eq. (4.21) would yield∫∫

ΩT

AZξ dx dt =
∫∫

ΩT

(n1 − n2)ξ dx dt = 0, (4.23)

thus proving uniqueness of the density. Subsequently, from Eq. (4.20), the uniqueness of the
pressure follows.

However, since the coefficient of Eq. (4.22) are not smooth and A and B can vanish, the
equation is not uniformly parabolic and we need to regularise the system first. To this end,
let {Ak}, {Bk}, {Ck}, {uk}, {G1,k} be approximating sequences of smooth and bounded functions
such that

∥A −Ak∥L2(ΩT ), ∥B − Bk∥L2(ΩT ), ∥C − Ck∥L2(ΩT ), ∥G1 − G1,k∥L2(ΩT ), ∥u− uk∥L2(ΩT ) ⩽
1

k
,

(4.24a)

such that

1/k ⩽ Ak,Bk ⩽ 1, as well as 0 ⩽ Ck, |G1,k| ⩽ C, (4.24b)

and

∥∂tCk∥L1(ΩT ), ∥∇G1,k∥L2(ΩT ) ⩽ C, (4.24c)

where C > 0 is some positive constant. Using the regularised quantities, we consider the regu-
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larised equation
∂ψk
∂t

+
Bk
Ak

∆ψk −∇ψk · uk +
(
G1,k −

BkCk
Ak

)
ψk = ξ, (4.25)

in ΩT , and ψk = 0, on ∂Ω × (0, T ), and ψk(T, x) = 0, in Ω. Here, ξ denotes an arbitrary
smooth test function which is crucial for this approach, as discussed above, cf. Eq. (4.23). Since
the coefficient Bk/Ak is smooth and bounded from away from zero, the equation is uniformly
parabolic, whence we infer the existence of a smooth solution, ψk.

Using ψk as a test function in Eq. (4.21) and thanks to Eq. (4.25) we get

0 =

∫∫
ΩT

Z
(
A∂ψk

∂t
+ B∆ψk −Au · ∇ψk + (AG1 − BC)ψk

)
dx dt

=

∫∫
ΩT

ZA
(
−Bk
Ak

∆ψk + uk · ∇ψk −
(
G1,k −

BkCk
Ak

)
ψk + ξ

)
dx dt

+

∫∫
ΩT

Z(B∆ψk −Au · ∇ψk + (AG1 − BC)ψk) dxdt

=

∫∫
ΩT

ZAξ +
∫∫

ΩT

Z Bk
Ak

(A−Ak)(−∆ψk + Ckψk) dx dt

+

∫∫
ΩT

Z(Bk − B)(−∆ψk + Ckψk) dx dt+
∫∫

ΩT

ZB(∆ψk − Cψk) dxdt

+

∫∫
ΩT

ZB(−∆ψk + Ckψk) dxdt+
∫∫

ΩT

ZAψk(G1 − G1,k) dx dt

+

∫∫
ΩT

ZA∇ψk · (uk − u) dxdt.

Using the definition of A, B, and Z, we finally obtain∫∫
ΩT

(n1 − n2)ξ dxdt = I1k − I2k + I3k − I4k + I5k ,

where

I1k =

∫∫
ΩT

(n1 − n2 + p1 − p2)
Bk
Ak

(A−Ak)(∆ψk − Ckψk) dxdt,

I2k =

∫∫
ΩT

(n1 − n2 + p1 − p2)(B − Bk)(∆ψk − Ckψk) dx dt,

I3k =

∫∫
ΩT

(p1 − p2)(C − Ck)ψk dxdt,

I4k =

∫∫
ΩT

(n1 − n2)(G1 − G1,k)ψk dxdt,
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I5k =

∫∫
ΩT

(n1 − n2)∇ψk · (u− uk) dx dt.

We aim at showing that
lim
k→∞

Iik = 0,

for i = 1, . . . , 5, in order to be able to conclude that n1 = n2. Before proving the convergence of
each Iik, we need certain uniform bounds which we collect and state in the subsequent lemma.

Lemma 4.5.2 (Uniform bounds). There exist a positive constant C > 0, independent of k, such
that

sup
0⩽t⩽T

∥ψk(t)∥L∞(Ω) ⩽ C, sup
0⩽t⩽T

∥∇ψk(t)∥L2(Ω) ⩽ C,

∥(Bk/Ak)
1/2(∆ψk − Ckψk)∥L2(ΩT ) ⩽ C.

(4.26)

Proof. The L∞-bound comes directly from the maximum principle applied to Eq. (4.25), since
ξ is bounded and

G1,k −
BkCk
Ak

⩽ C.

Now we multiply Eq. (4.25) by (∆ψk − Ckψk) and integrate in (t, T )× Ω to obtain

−
∫ T

t

∫
Ω

∂

∂t

|∇ψk|2

2
dxds−

∫ T

t

∫
Ω

Ck
2

∂

∂t
ψ2
k dxds+

∫ T

t

∫
Ω

Bk
Ak

|∆ψk − Ckψk|2 dxds

=

∫ T

t

∫
Ω

u · ∇ψk(∆ψk − Ckψk) dxds︸ ︷︷ ︸
I1

+−
∫ T

t

∫
Ω

G1,kψk(∆ψk − Ckψk) dx ds︸ ︷︷ ︸
I2

+

∫ T

t

∫
Ω

ξ(∆ψk − Ckψk) dx ds︸ ︷︷ ︸
I3

,

(4.27)

where we shall bound each of the terms, Ii, for i = 1, 2, 3, individually. First note that

I1 =

∫ T

t

∫
Ω

u · ∇ψk∆ψk dxds−
∫ T

t

∫
Ω

u · ∇ψkCkψk dx ds

= I1,1 + I1,2.

Integrating by parts in the first term of I1 we get

I1,1 = −
∫ T

t

∫
Ω

d∑
i,j=1

∂u(i)

∂xj

∂ψk
∂xi

∂ψn
∂xj

dxds−
∫ T

t

∫
Ω

d∑
i,j=1

u(i)
∂2ψk
∂xi∂xj

∂ψk
∂xj

dxds

= −
∫ T

t

∫
Ω

d∑
i,j=1

∂u(i)

∂xj

∂ψk
∂xi

∂ψn
∂xj

dxds+

∫ T

t

∫
Ω

|∇ψk|2

2
∇ · udx ds
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⩽

(
d∥∇u∥L∞ +

1

2
∥∇ · u∥L∞

)∫ T

t

∫
Ω

|∇ψk|2 dxds,

where u(i) is the i-th component of the vector u and ∇u is the matrix with element (∇u)i,j =
∂ju

(i). Similarly, we observe

I1,2 = −
∫ T

t

∫
Ω

u · ∇ψkCkψk dx ds

⩽
1

2
∥u∥L∞(ΩT )∥Ck∥L∞(ΩT )∥ψk∥2L2(ΩT ) +

1

2
∥∇ψk∥2L2(ΩT )

⩽ C + C∥∇ψk∥2L2(ΩT ),

with C > 0 independent of k, after applying Young’s inequality. Hence

I1 ⩽ C + C∥∇ψk∥2L2(ΩT ).

Next, let us address the term I2. We observe that

I2 = −
∫ T

t

∫
Ω

G1,kψk(∆ψk − Ckψk) dxds

=

∫ T

t

∫
Ω

G1,k|∇ψk|2 dx ds+
∫ T

t

∫
Ω

ψk∇ψk · ∇G1,k dxds+

∫ T

t

∫
Ω

G1,kCkψk dx ds.

We note that ∥G1,k∥L∞(ΩT ) whence we obtain bounds for the first and the last term, respectively.
In addition, we recall ∥∇G1,k∥L2(ΩT ) ⩽ C, whence, upon using Young’s inequality, we get∫ T

t

∫
Ω

ψk∇ψk · ∇G1,k dx ds ⩽
1

2
∥ψk∥L∞(ΩT )∥∇G1,k∥2L2(ΩT ) +

1

2
∥ψk∥L∞(ΩT )

∫ T

t

∫
Ω

|∇ψk|2 dxds

⩽ C + C

∫ T

t

∫
Ω

|∇ψk|2 dx ds.

In combination we get

I2 ⩽ C + C∥∇ψk∥2L2(ΩT ),

with C > 0 independent of k. Last, let us address the term I3. We readily observe

I3 =

∫ T

t

∫
Ω

ξ(∆ψk − Ckψk) dx ds

⩽ C,

integrating by parts twice and using the L∞-bounds. Using the bounds obtained above, the
right-hand side of Eq. (4.27) can be bounded as follows

C+C∥∇ψk∥2L2(ΩT )
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⩾ −
∫ T

t

∫
Ω

∂

∂t

|∇ψk|2

2
dxds−

∫ T

t

∫
Ω

Ck
2

∂

∂t
ψ2
k dxds+

∫ T

t

∫
Ω

Bk
Ak

|∆ψk − Cnψk|2 dx ds

⩾ −
∫ T

t

d

dt

∫
Ω

|∇ψk|2

2
dxds+

∫ T

t

∫
Ω

∂Ck
∂t

ψ2
k

2
dxds+

∫ T

t

∫
Ω

Bk
Ak

|∆ψk − Ckψk|2 dxds

+

∫
Ω

Ck(t)ψ2
k(t)

2
dx

⩾
1

2
∥∇ψk(·, t)∥2L2(Ω) − ∥∂tCk∥L1(ΩT )∥ψk∥2L∞(ΩT ) +

∫ T

t

∫
Ω

Bk
Ak

|∆ψk − Ckψk|2 dx ds

− 1

2
∥Ck∥L∞(ΩT )∥ψk∥2L2(ΩT )

⩾
1

2
∥∇ψk(·, t)∥2L2(Ω) +

∫ T

t

∫
Ω

Bk
Ak

|∆ψk − Ckψk|2 dx ds− C,

having used the regularity assumptions on the regularised coefficients, cf. Eq. (4.24).
Finally, since Ck is positive, we get

1

2

∫
Ω

|∇ψk(t)|2 dx+

∫ T

t

∫
Ω

Bk
Ak

|∆ψk − Ckψk|2 dx ds ⩽ C + C

∫ T

t

∫
Ω

|∇ψk|2 dx ds. (4.28)

Introducing the notation

Q(s) :=

∫
Ω

|∇ψk(s, x)|2 dx,

we observe that Eq. (4.28) now reads

Q(t) ⩽ C + C

∫ T

t

Q(s) ds,

and by Gronwall’s lemma we conclude that

sup
0⩽t⩽T

Q(t) = sup
0⩽t⩽T

∥∇ψk(t)∥2L2(Ω) ⩽ C.

The third bound of Eq. (4.26) comes a posteriori from Eq. (4.28), which completes proof.

Thanks to these uniform bounds, we obtain

I1k =

∫∫
ΩT

(n1 − n2 + p1 − p2)
Bk
Ak

(A−Ak)(∆ψk − Ckψk) dxdt

⩽ C∥(Bk/Ak)
1/2(A−Ak)∥L2(ΩT )

⩽ Ck1/2∥A −Ak∥L2(ΩT )

⩽ C/k1/2,
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and, similarly,

I2n =

∫∫
ΩT

(n1 − n2 + p1 − p2)(B − Bk)(∆ψk − Ckψk) dx dt

⩽ Ck1/2∥B − Bk∥L2(ΩT )

⩽ C/k1/2.

Finally, we have

I3k =

∫∫
ΩT

(p1 − p2)(C − Cn)ψk dxdt

⩽ C∥C − Ck∥L2(ΩT )

⩽ C/k,

and

I4k =

∫∫
ΩT

(n1 − n2)(G1 − G1,k)ψn dxdt

⩽ C∥G1 − G1,k∥L2(ΩT )

⩽ C/k,

as well as

I5n =

∫∫
ΩT

(n1 − n2)∇ψn · (u− uk) dx dt

⩽ C∥u− uk∥L2(ΩT )

⩽ C/k.

In summary, we have∫∫
ΩT

(n1 − n2)ξ dxdt = I1k − I2k + I3k − I4k + I5k −→ 0,

as k → ∞, and therefore n1 = n2. From Eq. (4.20) we have∫∫
ΩT

((p1 − p2)∆ψ + n1(G(p1)−G(p2))ψ) dxdt = 0.

Taking a smooth approximation of p1 − p2 as test function we get∫∫
ΩT

|∇(p1 − p2)|2 dx dt =
∫∫

ΩT

n1(G(p1)−G(p2))(p1 − p2) dxdt,
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and, by the monotonicity of G, cf. Eq. (A-G), we conclude that p1 = p2.

4.6 Velocity of the boundary for patches

Let us recall that the Hele-Shaw problem is given by{
−∆p∞ = ∆V +G(p∞), in Ω(t),

v = −(∇p∞ +∇V ) · ν, on ∂Ω(t),
(4.29)

where ν indicates the outward normal to the boundary, and Ω(t) := {x; p∞(x, t) > 0}. Here
we denote v the normal velocity of the free boundary. Below we give a characterisation of
patch solutions, i.e. , the indicator of the growing domain described by Eq. (4.29) satisfies the
incompressible limit equation, cf. Eq. (4.4a). To this end, we suppose that the boundary ∂Ω(t)
admits a Lipschitz parameterisation ∂Ω(t) = {x(t, α) |α ∈ [0, 1], x(t, 0) = x(t, 1)} that satisfies

d

dt
x(t, α) = −(∇p∞(x(t, α), t) +∇V (x(t, α), t)). (4.30)

Then the characteristic function
n∞(t) = 1Ω(t). (4.31)

satisfies the limit problem, Eq. (4.4a).

Theorem 4.6.1 (Characterisation of the Free Boundary Velocity). Let Ω0 be a bounded and
Lipschitz continuous domain. Let us consider the solution (Ω(t), p∞) to the free boundary prob-
lem, Eq. (4.29), with initial data Ω0. Then, the characteristic function in Eq. (4.31), satisfies
Eq. (4.4a).

Proof. We have to show that n∞(t) = 1Ω(t) satisfies

∂n∞
∂t

= ∆p∞ +∇ · (n∞∇V ) + n∞G(p∞),

in the distributional sense. Given a test function ψ = ψ(x), by Reynolds’ transport Theorem
and Eq. (4.30), we have∫

Rd

ψ(x)
∂n∞
∂t

dx =
d

dt

∫
Rd

ψ(x)1Ω(t) dx =

∫
∂Ω(t)

vψ(x) dx = vδ∂Ω(t).

On the other hand, it holds

∆p∞ +∇ · (n∞∇V ) + n∞G(p∞) = −(∂νp∞ + ∂νV )δ∂Ω(t) = vδ∂Ω(t),

in the sense of distributions, as can be seen by the following argument. First, by the definition
of Ω(t) as the positivity set of p∞ and the fact that n∞ = 1Ω(t) we observe that the weak
formulation of the left-hand side can be manipulated as follows:∫

Rd

−∇p∞ · ∇ψ − n∞∇V · ∇ψ + n∞G(p∞)ψ dx =

∫
Ω(t)

−∇p∞ · ∇ψ −∇V · ∇ψ +G(p∞)ψ dx.
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Integrating by parts the right-hand side, we obtain∫
Ω(t)

(∆p∞ +∆V +G(p∞))ψ dx−
∫
∂Ω(t)

∂νp∞ψ dx−
∫
∂Ω(t)

∂νV ψ dx

= −
∫
∂Ω(t)

∂νp∞ψ dx−
∫
∂Ω(t)

∂νV ψ dx

where we used ∆p∞ +∆V +G(p∞) = 0, in D′, by Eq. (4.29).



Chapter 5

Convergence rate for the
incompressible limit of nonlinear
diffusion-advection equations

Abstract
The incompressible limit of nonlinear diffusion equations of porous medium type has attracted a
lot of attention in recent years, due to its ability to link the weak formulation of cell-population
models to free boundary problems of Hele-Shaw type. Although vast literature is available on
this singular limit, little is known on the convergence rate of the solutions. In this work, we
compute the convergence rate in a negative Sobolev norm and, upon interpolating with BV -
uniform bounds, we deduce a convergence rate in appropriate Lebesgue spaces.

This chapter is taken from N. D., T. Dębiec, and B. Perthame. Convergence rate for the incom-
pressible limit of nonlinear diffusion-advection equations, Accepted for publication in Annales de
l’Institut Henri Poincaré C, (2021).

5.1 Introduction

We consider the following nonlinear drift-diffusion equation

∂n

∂t
−∇ · (n∇p+ n∇V ) = ng, (5.1)

posed on Rd × (0, T ), d ⩾ 2, where n describes a population density and p = p(n) is the density
dependent pressure. The reaction term on the right-hand side represents the population growth
rate, g = g(x, t), while V = V (x, t) is a chemical concentration. The pressure is assumed to be a
known increasing function of the density. We consider the following two representative examples:

pγ = Pγ(n) :=
γ

γ − 1
nγ−1, γ > 1, (5.2)

135
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and
pϵ = Pϵ(n) := ϵ

n

1− n
, ϵ > 0. (5.3)

We are concerned with calculating the rate at which solutions to Eq. (5.1) converge to the so-
called incompressible (or stiff pressure) limit, as described below. More precisely we prove the
following results.

Theorem 5.1.1 (Convergence rate in Ḣ−1). Assume (A–L1data), (A–drift), and (A–reaction)
(for d = 2) and (A–reaction’) or (A–reaction”) (for d ⩾ 3). For d = 2 assume addition-
ally (A–2D). Then, for all T > 0, there exists a unique function n∞ ∈ C([0, T );L1(Rd))
such that the sequence nγ (resp. nϵ) converges, as γ → ∞ (resp. ϵ → 0) to n∞ strongly in
L∞(0, T ; Ḣ−1(Rd)) with the following rate

sup
t∈[0,T ]

∥nγ(t)− n∞(t)∥Ḣ−1(Rd) ⩽
C(T )

γ1/2
+ ∥n0γ − n0∞∥Ḣ−1(Rd). (5.4)

Theorem 5.1.2 (Convergence rate in L4/3). Under the assumptions of Theorem 5.1.1, and
additionally (A–BV data), (A–BV drift) and g ∈ BV (Rd× (0, T )), we also have n∞ ∈ BV (Rd×
(0, T )) and

sup
t∈[0,T ]

∥nγ(t)− n∞(t)∥L4/3(Rd) ⩽
C(T )

γ1/4
+ ∥n0γ − n0∞∥1/2

Ḣ−1(Rd)
. (5.5)

Theorem 5.1.3. Under the assumptions of Theorem 5.1.1, there exists a function p∞ ∈ L∞(Rd×
(0, T )) such that, after extracting a subsequence, the sequence pγ converges to p∞ weakly∗ in
L∞((0, T )× Rd) and the following relation holds

p∞(1− n∞) = 0, (5.6)

almost everywhere in (0, T )× Rd.

The above graph relation between the limit pressure and density is well-known in the literature.
In particular, when considering tumor growth models it implies that saturation holds in the
region where there is a positive pressure, which is usually referred to as the region occupied by
the tumor. Here we provide a new proof that does not require strong convergence of the density
nor the pressure.
In fact, the limit n∞ satisfies (together with a limit pressure, p∞) a free boundary type problem,
discussed shortly below, and the question of passing to this limiting problem has been vastly
addressed in literature. Our contribution is to provide a new proof together with a convergence
rate.

Motivation and previous works. Models like Eq. (5.1) are well-known and commonly em-
ployed in a variety of applications, for instance in bio-mathematical modelling of living tissue.
In the case V = 0, g = 0, it is well-known that if the pressure satisfies the power law (5.2), then
Eq. (5.1) is actually the porous medium equation

∂nγ
∂t

−∆nγγ = 0, (5.7)

whose well-understood properties (e.g. regularising effects) facilitate the analysis notably. The
other choice of the pressure, given by Eq. (5.3), is well-known in kinetic theory of dense gases
where the short-distance interactions between particles are strongly repulsive. In this spirit it
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has been used in models describing collective motion or congested traffic flow, see [96, 128, 68,
21, 22]. Despite having a singularity when the population density reaches its maximum value
(here standardised to 1), this choice of pressure gives rise to a tissue growth model with similar
properties – indeed, the crucial a-priori estimates are the same and the limiting free boundary
type problem is almost identical. A difference is that the singularity in the pressure prevents the
cell densities to ever rise above the maximum value 1. Taking advantage of these similarities,
we shall henceforth index the solution of Eq. (5.1) by γ, n = nγ , and consider the singular limit
γ → ∞. Each of the assumptions and properties we discuss below has its natural ϵ-analogue by
putting ϵ = 1/γ.
Let us recall that the study of the incompressible limit has a long history and it has been
investigated for many different models related to Eq. (5.1). The first result on the limit γ → ∞
has been obtained for the classical porous medium equation (5.7). The most interesting difference
from the case with a non-trivial reaction term is that the free boundary problem arising in the
limit turns out to be stationary. In fact, as proven in [45] the limit density, n∞, is independent
of time. This result can be intuitively explained by noticing that the degenerate diffusivity of
Eq. (5.1), namely γnγ−1 converges to 0 if n < 1, while it tends to infinity in the regions where
n > 1. Therefore, while there is no motion in the regions where the density is below 1, where
the solution lies above this level it tends to collapse instantaneously, cf. [88]. In the absence of
reaction terms and, hence, of any evolution process in the Hele-Shaw problem, the limit pressure
turns out to be constantly equal to zero, p∞ ≡ 0.
Introducing non-trivial Dirichlet boundary conditions changes drastically the behaviour of the
limit free boundary problem. In fact, the limit pressure no longer vanishes and this triggers the
evolution of the interface in accordance with Darcy’s law (which states that the velocity of the
free boundary is proportional to the pressure gradient). This problem was addressed in [87],
where the authors study the incompressible limit of the porous medium equation defined in
[0,∞)×Ω, where Ω is a compact subset of Rd, and the pressure satisfies p(x, t) = f(x, t) on ∂Ω,
for some f(x, t) ⩾ 0. In the absence of Dirichlet boundary data, i.e. f ≡ 0, and for Ω large
enough, the problem is actually the same as in [45] and it still holds that n∞ = n∞(x) as well
as p∞ ≡ 0. On the other hand, if one imposes the pressure to be strictly positive somewhere
on ∂Ω, i.e. f ̸≡ 0, then the pressure gradient no longer vanishes and the dynamics of the limit
problem is governed by Darcy’s law.
The same non-stationary effect, although due to different dynamics, is produced by a non-
trivial reaction process. The incompressible limit for Eq. (5.1) without convective effects, i.e.
V = 0, and with a pressure-dependent growth rate g = G(p), was first addressed in the sem-
inal paper [130] by Perthame, Quirós and Vázquez. They prove that it is possible to extract
subsequences of nγ and pγ which converge in the L1-norm to functions

n∞ ∈ C([0, T ];L1(Rd)) ∩BV (Rd × (0, T )), p∞ ∈ L2(0, T ;H1(Rd)) ∩BV (Rd × (0, T )), (5.8)

satisfying the following equation in the sense of distributions on Rd × (0, T )

∂n∞
∂t

−∆p∞ = n∞G(p∞), (5.9)

and the following relations
(1− n∞)p∞ = 0, (5.10)

almost everywhere, as well as
p∞(∆p∞ +G(p∞)) = 0, (5.11)

in the sense of distributions. The last equality is usually referred to as the complementarity
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relation and represents the link between the limit equation and the free boundary problem. In
fact, denoting by Ω(t) := {x ∈ Rd | p∞(x, t) > 0} the region occupied by the tumor, from
Eq. (5.11) one can see that the pressure satisfies an elliptic equation in the evolving domain
Ω(t) with homogeneous Dirichlet boundary conditions. The free boundary ∂Ω(t) is moving
under Darcy’s law, which finally allows to obtain the fully geometrical representation of the
limit problem. A derivation of the velocity law can be found in [130] for initial data given by
characteristic functions of bounded sets, although the proof relies on formal arguments. A weak
(distributional) and a measure-theoretic interpretation of the free boundary condition have been
recovered in [123], while in [102] the same result is achieved through the viscosity solutions
approach.
An analogous result regarding the limit γ → ∞ has been shown in [96] for the pressure law given
by Eq. (5.3). The authors obtain virtually the same limiting problem, the only difference being
that the complementarity relation (5.11) becomes

p2∞(∆p∞ +G(p∞)) = 0, (5.12)

see [96, Theorem 2.1]. Let us point out that due to uniform estimates in L∞ the convergence of
the sequence of densities is also true in any Lp-space, p <∞.
The Hele-Shaw limit for the porous medium equation including convective effects, cf. Eq. (5.1)
with V ̸≡ 0, and possibly reaction terms, has attracted a lot of interest as well. Similarly as for
the driftless case, when passing to the limit γ → ∞, the model converges to a free boundary
problem where, however, the interface dynamics is no longer driven only by Darcy’s law, but also
by the external drift, i.e. the normal velocity is given by −(∇p∞+∇V )·ν, where ν is the outward
normal direction. The asymptotics as γ → ∞ has been addressed both for local and non-local
drift, in the absence of reactions, see for instance [1, 57], where the authors adopt techniques
relying on the gradient flow structure of the equation. In [103], Kim, Požàr and Woodhouse
include also a linear reaction term into the equation and are able to prove the convergence to
the incompressible limit using viscosity solutions. Recently, in [63] the authors show that the
complementarity condition including a drift, i.e.

p∞(∆p∞ +∆V +G(p∞)) = 0,

holds in the sense of distributions.
In recent years, many other variations of the model at hand have been proposed together with
the analysis of their incompressible limit. We refer the reader to [61] for a model including
the effects of nutrients, [93] for the generalization of the driftless model with a non-monotone
proliferation term, and [147] for the model including active motion. In order to account for
visco-elastic effects, several models propose to use Brinkman’s law instead of Darcy’s law [132].
Moreover, cross-reaction-diffusion model using Darcy’s law, Brinkman’s law or singular pressure
law have attracted a lot of attention as they raise challenging questions both on the existence of
solutions and their incompressible limit, see [115, 31, 94, 47, 65, 66].
Our aim is to compute the rate of convergence of the solutions of Eq. (5.1) as ϵ→ 0 or γ → ∞ in
Eq. (5.3) or Eq. (5.2) respectively. To the best of our knowledge the only result in this direction
is given by Alexander, Kim and Yao in [1] for the porous medium equation including a space-
dependent drift. Passing to the incompressible limit, the authors are able to build a link between
the Hele-Shaw model and the following congested crowd motion model

∂tn+∇ · (n∇V ) = 0, if n < 1,

with the constraint n ⩽ 1. To prove the equivalence of the two models, they study the convergence
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as γ → ∞ of the porous medium equation with drift, cf. Eq. (5.1) with G ≡ 0. Unlike [130],
their approach is based on viscosity solutions. On the one hand, they are able to prove locally
uniform convergence of the viscosity solution of Eq. (5.1) to a solution of the Hele-Shaw model.
On the other hand, they show the convergence of the porous medium equation with drift to
the aforementioned crowd motion model in the 2-Wasserstein distance. Therefore, they prove
the equivalence of the two models in the special case of initial data given by “patches”, namely
n0 = 1Ω0 for a compact set Ω0. In fact, the locally uniform limit holds only for solutions of
the form of a characteristic function, while the limit in the 2-Wasserstein metric holds for any
bounded initial data, 0 ⩽ n0 ⩽ 1 with finite energy and second moment. Moreover, while the
local uniform convergence only requires a strict subharmonicity assumption on the drift term,
i.e. V ∈ C2(Rd), ∆V > 0, stronger regularity is needed to pass to the 2-Wasserstein limit. More
precisely the authors make the following assumptions on V = V (x): there exists λ ∈ R such that

inf
x∈Rd

V (x) = 0, D2V (x) ⩾ λId, ∀x ∈ Rd, ∥∆V ∥L∞(Rd) ⩽ C.

Under these assumptions, they derive the following rate of convergence, cf. [1, Theorem 4.2.]

sup
t∈[0,T ]

W2(nγ(t), n∞(t)) ⩽
C

γ1/24
,

where C is a positive constant depending on
∫
V n0, ∥∆V ∥∞ and T .

The main result of this paper offers an improved polynomial rate of convergence in a negative
Sobolev norm and the strong topology of Lebesgue spaces, see Theorems 5.1.1 and 5.1.2 above
and Corollary 5.1.7 below. Let us remark that the 2-Wasserstein distance and the Ḣ−1-norm
can be bounded by each other when the densities are uniformly bounded away from vacuum,
see Appendix 5.A. We refer the reader to [144, Section 5.5.2], and references therein, for further
discussion about the equivalence of the two distances.

Preliminaries and assumptions. Throughout this paper we make the following assumptions
on the components of the model. Firstly, we assume that Eq. (5.1) is equipped with non-negative
initial data n0γ (resp. n0ϵ) such that there is a compact set K ⊂ Rd and a function n0∞ ∈ L1(Rd)
satisfying

suppn0γ ⊂ K, p0γ = Pγ(n
0
γ) ∈ L∞(Rd), 0 ⩽ n0γ ∈ L1(Rd), ∥n0γ − n0∞∥L1(Rd) → 0,

p0ϵ = Pϵ(n
0
ϵ) ∈ L∞(Rd), 0 ⩽ n0ϵ ∈ L1(Rd), ∥n0ϵ − n0∞∥L1(Rd) → 0.

(A–L1data)
Note in particular that the compact support assumption is needed only in the power law pressure.
This is because when the pressure is given by Eq. (5.3) we can achieve our main estimate without
a uniform bound for the pressure in L∞, which is not the case for the power law. Having uniformly
compactly supported data allows to derive a maximum principle for the equation satisfied by the
pressure. When additionally specified, we assume further

n0γ ∈ BV (Rd), ∆
(
n0γ
)γ ∈ L1(Rd), (A–BV data)

uniformly in γ. Secondly, the chemical concentration potential, V , is assumed to satisfy

D2V ⩾

(
λ+

1

2
tr(D2V )

)
Id, for some λ ∈ R, (A–drift)
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and additionally

D2V ∈ L∞(Rd × (0, T )), ∇V ∈ L∞(Rd × (0, T )), ∇∆V ∈ L1(Rd × (0, T )). (A–BV drift)

Thirdly, we assume the proliferation rate, g = g(x, t), to be locally integrable and satisfy one of
the following assumptions

g+ ∈ L∞(Rd × (0, T )) and ∆g ⩾ 0, (A–reaction)

where f+ := max(f, 0) denotes the positive part of the function, or

g+ ∈ L∞(Rd × (0, T )) and (∆g)− ∈ L∞(0, T ;Ld/2(Rd)), d ⩾ 3, (A–reaction’)

where f− := max(−f, 0) denotes the negative part of the function, or in alternative

g+ ∈ L∞(Rd × (0, T )) and ∇g ∈ L∞(0, T ;Ld(Rd)), d ⩾ 3. (A–reaction”)

Under these assumptions one can derive several crucial uniform estimates for Eq. (5.1).

Lemma 5.1.4 (A-priori estimates). Under assumption (A–L1data) the family nγ of solutions
to Eq. (5.1) satisfies the following bounds, uniformly in γ

1. supp pγ(t) ⊂ K(t) for some compact set K(t),

2. there exists a positive constant pM = pM (T ) such that 0 ≤ pγ ⩽ pM , 0 ⩽ nγ ⩽
(
γ−1
γ pM

) 1
γ−1

,

3. nγ ∈ L∞(0, T ;L1(Rd)).

Assuming in addition (A–BV drift) we also have nγ ∈ L∞(0, T ;BV (Rd)). When the pressure is
given by Eq. (5.3) points 2. and 3. still hold, and moreover 0 ⩽ nϵ ⩽ 1.

These bounds are enough for our purposes. Their proofs are fairly standard and derived in full
detail in [130, 96, 93, 63], so we omit them here. Let us point out that to fully justify passing
to the incompressible limit γ → ∞ one usually needs to derive additional estimates for the time
derivative of the population density and the pressure.

Remark 5.1.5 (More general drift term). It is easily seen in the proof of our main results that
we do not require the drift velocity to be a gradient. Indeed, one can replace the term n∇V
in Eq. (5.1) by nU(x, t) with appropriate modifications to the regularity assumptions (A–drift)
and (A–BV drift).

Our approach is to first obtain a rate of convergence in the homogeneous negative Sobolev
norm Ḣ−1 and then interpolate with the uniform bound in BV to deduce a convergence rate in
Lebesgue spaces. To realise this program we make use of the diffusion structure of the problem
and “lift” the Laplacian. More precisely, we define the function φ to be the solution of the
following Poisson equation in Rd × (0, T )

−∆φγ = nγ , (5.13)

given by the convolution φγ = K ⋆ nγ , where K is the fundamental solution of the Laplace
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equation. Explicitly, for x ̸= 0,

K(x) =


− 1

2π
ln |x|, for d = 2,

1

d(d− 2)ωd
|x|2−d, for d ⩾ 3,

(5.14)

where ωd denotes the volume of the unit ball in Rd.
Suppose for now that d ⩾ 3. Then, since nγ ∈ L1(Rd) ∩ L∞(Rd), a straightforward application
of Young’s inequality shows that

φγ ∈ Lp(Rd), for p >
d

d− 2
, (5.15)

and
∇φγ ∈ L2(Rd). (5.16)

If d = 2, then we do not have φγ ∈ L∞(R2) and we cannot apply Young’s inequality to deduce
square-integrability of ∇φγ (indeed, this is an endpoint case). However, let us point out that, for
the power law case, since by Lemma 5.1.4 (point 1.) solutions are always compactly supported
we can take φγ to be the solution of the Poisson equation on K(T ) ⊂ R2 with homogeneous
Dirichlet boundary conditions. In this case, we know that ∇φγ ∈ L2(K).
Under suitable conditions it is possible to infer the L2-integrability of ∇(φϵ−φϵ′) in R2, which is
needed for the singular pressure law. In this case, we impose the following additional assumptions

g = g(t), ∇V ∈ L1((0, T )× R2),

∫
R2

|x| n0ϵ <∞. (A–2D)

The bound on the first moment is propagated in time and guarantees the well-posedness of K⋆nϵ.
Taking a space-independent growth rate implies that the difference nϵ − nϵ′ has zero mean for
all times. Therefore, we have∫

R2

(nϵ − nϵ′) = 0,

∫
R2

|x||nϵ − nϵ′ | <∞,

from which we conclude that ∇(φϵ − φϵ′) ∈ L2(R2).

Notice that the L1 convergence of the initial data implies the convergence of ∇φ0
γ to ∇φ0

∞ in
L2. Moreover, the uniform bounds on nγ together with the Hardy-Littlewood-Sobolev inequality
imply that the convolution nγ 7→ K ⋆ nγ is a bounded linear operator from L2d/d+2 to L2.
Therefore there is a subsequence ∇φγk which converges weakly in L2 to ∇φ∞.
Finally, we recall that the gradient ∇φ can be used to represent the Ḣ−1-norm of the function
n as follows

∥n(t)∥Ḣ−1(Rd) = ∥∇φ(t)∥L2(Rd). (5.17)

Having obtained a convergence rate in the negative norm and assuming additionally the BV
bounds provided by Lemma 5.1.4, we will use the following interpolation inequality, proved (in
greater generality) by Cohen et al. [56] (see also [54]), to deduce a rate in the Lebesgue 4/3-norm:

Lemma 5.1.6 (Interpolation inequality). There exists a constant C = C(d, T ) > 0, such that,
for all t ∈ [0, T ],

∥n(t)∥L4/3(Rd) ⩽ C|n(t)|1/2
BV (Rd)

∥∇φ(t)∥1/2
L2(Rd)

. (5.18)
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Thus, Theorem 5.1.2 is a simple consequence of Theorem 5.1.1, Lemma 5.1.6 and the uniform
bound in BV provided by Lemma 5.1.4.
By the usual log-convex interpolation of the Lp-norms we readily obtain the following corollary
to Theorem 5.1.2.

Corollary 5.1.7 (Convergence rate in Lp).

sup
t∈[0,T ]

∥nγ(t)− n∞(t)∥Lp(Rd) ⩽
C

γα
, (5.19)

with

α :=


p− 1

p
, for p ∈ (1, 4/3],

1

3p
, for p ∈ [4/3,∞).

(5.20)

Remark 5.1.8 (Finite speed of propagation). When one assumes additionally that the initial
data have uniformly compact support, then at any later time the support of nγ is still uniformly
contained in a bounded set (this is one of the fundamental properties of the porous medium
equation, see [130, Lemma 2.6] and [96, Lemma 3.3] for the model with a non-zero right-hand
side). Therefore one can consider problem (5.1) to be posed on a bounded subset of Rd with
homogeneous Dirichlet boundary condition. Naturally our results remain true in this case with
the improvement that we obtain a rate ∼ γ−1/4 in any Lp-norm, 1 ⩽ p ⩽ 4/3. In particular this
covers the case of “patches”, i.e. , when the initial distribution is given by an indicator function
of a compact set, as considered recently in [1].

Plan of the paper. The remainder of the paper is devoted to proving the main theorem. It turns
out that the equation can be conveniently trisected and dealt with term-by-term: considering
separately the pressure-driven advection, drift, and proliferation. Indeed, it is the diffusion term
that governs the rate of convergence. The proof is therefore structured as follows. In Sections 5.2
and 5.3 we prove the main theorem for the choice of the singular pressure in Eq. (5.3) and the
power law pressure in Eq. (5.2) in the absence of reactions and drift. Then in Section 5.4 we
explain how to treat the additional terms.
Notation. Henceforth we shall usually suppress the dependence on time and space of the
quantities of interest, only exhibiting the time variable in the final results. Similarly, for the sake
of brevity, all space integration should be understood with respect to the d-dimensional Lebesgue
measure.

5.2 Singular pressure law

In this and the following section, to explain the main idea in a simple situation, we ignore the
drift and proliferation terms in Eq. (5.1) and consider only the nonlinear diffusion equation

∂nϵ
∂t

−∇ · (nϵ∇pϵ) = 0, (5.21)

assuming now the pressure law as in Eq. (5.3). In this case we can rewrite Eq. (5.21) as

∂nϵ
∂t

−∆Hϵ(nϵ) = 0, (5.22)
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with
Hϵ(nϵ) :=

∫ nϵ

0

sp′ϵ(s) ds = ϵ
nϵ

1− nϵ
+ ϵ ln(1− nϵ). (5.23)

Recall that we have the uniform bound nϵ < 1, so that the right-hand side above is well-defined
with ln(1− nϵ) ⩽ 0.

Let us take ϵ > ϵ′ > 0. We subtract the equation for nϵ′ from the equation for nϵ to obtain

∂(nϵ − nϵ′)

∂t
−∆(Hϵ(nϵ)−Hϵ′(nϵ′)) = 0. (5.24)

Now we pose Eq. (5.13) for both solutions nϵ and nϵ′

−∆φϵ = nϵ, −∆φϵ′ = nϵ′ .

Then Eq. (5.24) reads

−∆
∂(φϵ − φϵ′)

∂t
−∆(Hϵ(nϵ)−Hϵ′(nϵ′)) = 0, (5.25)

and we test it against φϵ − φϵ′ to derive

1

2

d

dt

∫
Rd

|∇(φϵ − φϵ′)|2 =

∫
Rd

(nϵ − nϵ′)(Hϵ′(nϵ′)−Hϵ(nϵ)).

We now proceed to estimate the right-hand side. On the set {nϵ > nϵ′} we make use of non-
negativity of Hϵ(nϵ) and non-positivity of the logarithmic term in Hϵ′(nϵ′) to write∫

{nϵ>nϵ′}
(nϵ − nϵ′)(Hϵ′(nϵ′)−Hϵ(nϵ)) ⩽ ϵ′

∫
{nϵ>nϵ′}

(nϵ − nϵ′)
nϵ′

1− nϵ′
⩽ ϵ′

∫
{nϵ>nϵ′}

nϵ′ .

Similarly, on the complementary set {nϵ ⩽ nϵ′} we have∫
{nϵ⩽nϵ′}

(nϵ − nϵ′)(Hϵ′(nϵ′)−Hϵ(nϵ)) ⩽ ϵ

∫
{nϵ⩽nϵ′}

(nϵ′ − nϵ)
nϵ

1− nϵ
⩽ ϵ

∫
{nϵ⩽nϵ′}

nϵ.

Therefore we have

1

2

d

dt

∫
Rd

|∇(φϵ − φϵ′)|2 ⩽ ϵ

∫
{nϵ⩽nϵ′}

nϵ + ϵ′
∫
{nϵ⩾nϵ′}

nϵ′

⩽ ϵ∥nϵ(t)∥L1(Rd) + ϵ′∥nϵ′(t)∥L1(Rd),

and since nϵ and nϵ′ are uniformly bounded in L∞((0, T ), L1(Rd)) with respect to ϵ and ϵ′, we
obtain

1

2

d

dt

∫
Rd

|∇(φϵ − φϵ′)(t)|2 ⩽ C(ϵ+ ϵ′). (5.26)

Integrating in time on [0, t) we then have

1

2

∫
Rd

|∇(φϵ − φϵ′)(t)|2 ⩽ Ct(ϵ+ ϵ′) +

∫
Rd

|∇(φϵ − φϵ′)(0)|2 . (5.27)
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It follows that the sequence (∇φϵ)ϵ converges in the strong topology of L∞((0, T ), L2(Rd)) to
∇φ∞. Consequently, letting ϵ′ → 0, we deduce the following rate for the convergence nϵ → n∞
in the space Ḣ−1(Rd)

∥nϵ(t)− n∞(t)∥Ḣ−1(Rd) ⩽ C
√
t
√
ϵ+ ∥n0ϵ − n0∞∥Ḣ−1(Rd), (5.28)

where C is a positive constant defined as follows

C =
√
2 sup
ϵ>0

∥nϵ∥L1(Rd×(0,T ))).

Assuming the additional BV bounds for the initial data, we get from Lemma 5.1.4 that nϵ is
uniformly bounded in L∞(0, T ;BV (Rd)), and we can use Eq. (5.18) to obtain the rate ϵ1/4, as
announced in Eq. (5.5). Thus Theorems 5.1.1 and 5.1.2 are proved in this special case.

5.3 Power law

Let us now consider Eq. (5.21) with the pressure law given by Eq. (5.2) and demonstrate that
the method employed in the previous section remains valid. We now have the porous medium
equation

∂nγ
∂t

−∆nγγ = 0. (5.29)

Let us recall that there exists a positive constant pM such that

0 ⩽
γ

γ − 1
nγ−1
γ ⩽ pM , 0 ⩽

γ′

γ′ − 1
nγ

′−1
γ′ ⩽ pM .

Let us define

cγ :=

(
γ − 1

γ

) 1
γ−1

p
1/(γ−1)
M and ñγ :=

nγ
cγ
.

Then it immediately follows that ñγ ⩽ 1 and solves the equation

∂tñγ −∆(cγ−1
γ ñγγ) = 0.

Following the same argument as before, we define φγ and φ̃γ by

−∆φγ = nγ , −∆φ̃γ = ñγ ,

i.e. φ̃γ = φγ/cγ .
Without loss of generality, we take 1 < γ < γ′. Now we subtract the equation for ñγ′ from the
equation for ñγ to obtain

∂(ñγ − ñγ′)

∂t
−∆(cγ−1

γ ñγγ − cγ
′−1
γ′ ñγ

′

γ′) = 0. (5.30)

Then from Eq. (5.30) we have

−∆
∂(φ̃γ − φ̃γ′)

∂t
−∆(cγ−1

γ ñγγ − cγ
′−1
γ′ ñγ

′

γ′) = 0,
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and we test it against φ̃γ − φ̃γ′ to deduce

1

2

d

dt

∫
Rd

|∇(φ̃γ − φ̃γ′)|2 =

∫
Rd

(cγ−1
γ ñγγ − cγ

′−1
γ′ ñγ

′

γ′)(ñγ′ − ñγ)

⩽
∫
Rd

cγ−1
γ ñγγ(1− ñγ) +

∫
Rd

cγ
′−1
γ′ ñγ

′

γ′(1− ñγ′),

(5.31)

where the inequality follows from the fact that ñγ , ñγ′ ⩽ 1. It is easy to see that for 0 ⩽ s ⩽ 1
it holds sγ(1− s) ⩽ s

γ . Hence, we have

1

2

d

dt

∫
Rd

|∇(φ̃γ − φ̃γ′)|2 ⩽ cγ−1
γ

1

γ

∫
Rd

ñγ + cγ
′−1
γ′

1

γ′

∫
Rd

ñγ′

⩽

(
γ − 1

γ
pM sup

γ
∥ñγ(t)∥L1(Rd)

)
1

γ
+

(
γ′ − 1

γ′
pM sup

γ′
∥ñγ′(t)∥L1(Rd)

)
1

γ′

⩽ C

(
1

γ
+

1

γ′

)
,

where in the last inequality we used the fact that by Lemma 5.1.4 nγ is uniformly bounded in
L∞(0, T ;L1(Rd)). Finally, we remove the scaling using the triangle inequality

1

3
∥∇(φγ − φγ′)(t)∥2L2(Rd)

⩽ ∥∇(φγ − φ̃γ)(t)∥2L2(Rd) + ∥∇(φ̃γ′ − φγ′)(t)∥2L2(Rd) + ∥∇(φ̃γ − φ̃γ′)(t)∥2L2(Rd)

⩽

∣∣∣∣1− 1

cγ

∣∣∣∣2 ∥∇φγ(t)∥2L2(Rd) +

∣∣∣∣1− 1

cγ′

∣∣∣∣2 ∥∇φγ′(t)∥2L2(Rd)

+ Ct

(
1

γ
+

1

γ′

)
+ ∥∇(φ̃γ − φ̃γ′)(0)∥2L2(Rd)

⩽
1

γ

(
Ct+ γ

∣∣∣∣1− 1

cγ

∣∣∣∣2 sup
γ

∥nγ(t)∥2Ḣ−1(Rd)

)

+
1

γ′

(
Ct+ γ′

∣∣∣∣1− 1

cγ′

∣∣∣∣2 sup
γ′

∥nγ′(t)∥2
Ḣ−1(Rd)

)
+ ∥∇(φ̃γ − φ̃γ′)(0)∥2L2(Rd).

By the definition of cγ , γ
∣∣∣1− 1

cγ

∣∣∣2 → 0 as γ → ∞. Thus, we have

∥∇(φγ − φγ′)(t)∥2L2(Rd) ⩽ (Ct+ C)

(
1

γ
+

1

γ′

)
+ 3∥∇(φ̃γ − φ̃γ′)(0)∥2L2(Rd).

By the same argument, we find

∥∇(φ̃γ − φ̃γ′)(0)∥2L2(Rd) ⩽ C

(
1

γ
+

1

γ′

)
+ 3∥∇(φγ − φγ′)(0)∥2L2(Rd).

Finally, we conclude

∥∇(φγ − φγ′)(t)∥2L2(Rd) ⩽ (Ct+ C)

(
1

γ
+

1

γ′

)
+ 9∥∇(φγ − φγ′)(0)∥2L2(Rd). (5.32)
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Consequently, arguing as before and letting γ′ → ∞, we find

∥nγ(t)− n∞(t)∥Ḣ−1(Rd) ⩽
C
√
t+ C
√
γ

+ 9∥n0γ − n0∞∥Ḣ−1(Rd). (5.33)

Again, under the additional BV assumptions we obtain (5.5) thanks to the interpolation inequal-
ity in Lemma 5.1.6.

5.4 Including drift and reaction terms

Having obtained the announced rate of convergence due to the nonlinear diffusion term, we now
exhibit that we can include the drift and reaction terms. In fact, due to our assumptions on
the proliferation rate and the chemical potential, all the additional terms will either have an
appropriate sign, or be absorbed into the L2-norm of the potential φ. We now write Eq. (5.1)
as follows

∂nγ
∂t

−∆Aγ(nγ) = ∇ · (nγ∇V ) + nγg, (5.34)

where g = g(x, t) and Aγ is chosen appropriately depending on the state law for the pressure.
As seen before, there is no harm in assuming the uniform bound n ⩽ 1. Then, arguing in the
same way as previously, we obtain

1

2

d

dt

∫
Rd

|∇(φγ − φγ′)|2 +
∫
Rd

(nγ − nγ′)(Aγ(nγ)−Aγ′(nγ′))

= −
∫
Rd

(nγ − nγ′)∇(φγ − φγ′) · ∇V +

∫
Rd

g(x, t)(nγ − nγ′)(φγ − φγ′)

=

∫
Rd

∆(φγ − φγ′)∇(φγ − φγ′) · ∇V −
∫
Rd

g(x, t)∆(φγ − φγ′)(φγ − φγ′).

It only remains to consider the two new terms on the right-hand side. For the first one we can
write ∫

Rd

∆(φγ − φγ′)∇(φγ − φγ′) · ∇V

= −
∫
Rd

∇(φγ − φγ′)TD2(φγ − φγ′)∇V −
∫
Rd

∇(φγ − φγ′)TD2V∇(φγ − φγ′)

= −1

2

∫
Rd

∇|∇(φγ − φγ′)|2 · ∇V −
∫
Rd

∇(φγ − φγ′)TD2V∇(φγ − φγ′)

=
1

2

∫
Rd

|∇(φγ − φγ′)|2∆V −
∫
Rd

∇(φγ − φγ′)TD2V∇(φγ − φγ′)

⩽ −λ
∫
Rd

|∇(φγ − φγ′)|2,

where we have integrated by parts and used assumptions (A–drift). For the remaining term we
integrate by parts to obtain∫

Rd

g|∇(φγ − φγ′)|2 +
∫
Rd

(φγ − φγ′)∇(φγ − φγ′) · ∇g
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⩽ ∥g+∥L∞(Rd×(0,T ))

∫
Rd

|∇(φγ − φγ′)|2 +
∫
Rd

(φγ − φγ′)∇(φγ − φγ′) · ∇g︸ ︷︷ ︸
A

.

In case of d = 2, we suppose that g satisfies Assumption (A–reaction). Then we can integrate
by parts in the last term to obtain

A = −1

2

∫
Rd

|φγ − φγ′ |2∆g ⩽ 0. (5.35)

If instead d ⩾ 3, we may alternatively assume that g satisfies Assumption (A–reaction’) or
Assumption (A–reaction”). In the first case, using successively the inequalities of Hölder and
Sobolev we obtain

A ⩽
1

2
∥φγ − φγ′∥2L2∗ (Rd)∥(∆g)−∥Ld/2(Rd) ⩽ CS∥(∆g)−∥Ld/2(Rd)

∫
Rd

|∇(φγ − φγ′)|2,

where CS denotes the constant from Sobolev inequality, and 2∗ = 2d
d−2 is the Sobolev conjugate

exponent. Otherwise, if g satisfies Eq. (A–reaction”), in order to estimate the term A we do not
integrate it by parts and we use in turn the inequalities of Young, Hölder and Sobolev to obtain

2A ⩽
∫
Rd

|∇(φγ − φγ′)|2 +
∫
Rd

|(φγ − φγ′)|2|∇g|2

⩽
∫
Rd

|∇(φγ − φγ′)|2 + ∥φγ − φγ′∥2L2∗ (Rd)∥∇g∥
2
Ld(Rd)

⩽
(
1 + CS∥∇g∥2Ld(Rd)

)∫
Rd

|∇(φγ − φγ′)|2.

Therefore we have

1

2

d

dt

∫
Rd

|∇(φγ − φγ′)|2 +
∫
Rd

(nγ − nγ′)(Aγ(nγ)−Aγ′(nγ′)) ⩽ C

∫
Rd

|∇(φγ − φγ′)|2 .

Assuming for concreteness the power law pressure, using inequality (5.32) and a Gronwall in-
equality, we deduce

sup
t∈[0,T ]

∥∇(φγ − φγ′)(t)∥L2(Rd) ⩽ C

(
1
√
γ
+

1√
γ′

)
+ ∥∇(φγ − φγ′)(0)∥L2(Rd). (5.36)

Finally, passing to the limit γ′ → ∞, we conclude the proof of Theorem 5.1.1. Using the uniform
BV -bound and Eq. (5.18) we obtain Theorem 5.1.2.

5.4.1 Limit relation between n∞ and p∞

Here we prove relation (5.6) between the limit density and pressure, where p∞ is defined as the
weak∗ limit (up to a sub-sequence) of pγ in L∞(Rd × (0, T )).

Proof of Theorem 5.1.3. The relation is a straightforward consequence of the main estimate ob-
tained in Section 5.3. We inspect Eq. (5.31), this time not ignoring the non-positive terms. After
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integration in time, these terms can be bounded as follows, using Eq. (5.32)∫ T

0

∫
Rd

ñγ
′

γ′(1− ñγ)c
γ′−1
γ′ +

∫ T

0

∫
Rd

ñγγ(1− ñγ′)cγ−1
γ ⩽ C(T )

(
1

γ
+

1

γ′

)
+

∫
Rd

|∇(φγ − φγ′)(0)|2 .

Now let ψ be a compactly supported test function and consider the quantity∣∣∣∣∣
∫ T

0

∫
Rd

ψñγγ(1− ñγ′)

∣∣∣∣∣ ⩽ ∥ψ∥∞
∫ T

0

∫
suppψ

ñγγ(1− ñγ′) = ∥ψ∥∞
∫ T

0

∫
suppψ

p̃
γ

γ−1
γ (1− ñγ′).

Using weak lower semicontinuity of convex functionals and weak∗ convergence of the pressure
and the density, we can pass to the limit with γ′ and γ in turn to obtain∫ T

0

∫
Rd

ψp∞(1− n∞) = 0,

which concludes the proof.

5.5 Conclusions and open problems

We computed the rate of convergence of the solutions of a reaction-advection-diffusion equation
of porous medium type in the incompressible limit. Our result in a negative Sobolev’s norm can
be interpolated with uniform BV -estimates in order to find a rate in any Lp-space for 1 < p <∞.
How to assess the accuracy of our estimate remains an open problem. For the pure porous
medium equation it might seem tempting to attempt a calculation for the illustrious example
of the Barenblatt solution (taking as initial data the solution at some time t > 0). However, a
direct calculation shows that in this case the data is “ill prepared” in the sense that it converges
(in L1) to its limit profile with too slow a rate of ∼ ln γ/γ. It is unclear how to approach the
question of optimality in general. We expect that the "worst" rate would be exhibited by a
focusing solution, whose support is initially contained outside of a compact set and closes up in
finite time, thus generating a singularity.
Another challenging problem is to find an estimate for the convergence rate of the pressure, for
which the method used above seems inapplicable as it is not clear how to relate the quantities
pγ−pγ′ and φγ−φγ′ . Consequently, we are also currently unable to treat more general, pressure
dependent, reaction terms. Finally, it would be of interest to investigate whether it is possible to
strengthen the estimate of Theorem 5.1.1 to Lebesgue norms without interpolation with BV . One
advantage of any such alternative approach could be to allow for passing to the incompressible
limit when BV bounds are not available, as is the case for systems of equations like (5.1).
Additionally, it could allow for estimating the rate of convergence in the L1-norm rather than
the seemingly arbitrary L4/3-norm.

5.A Bounding W2-norm by the Ḣ−1-norm

We consider here the conservative case of Eq. (5.1), assuming
∫
nγ(t) =

∫
n∞(t) = 1. Moreover,

rather than the Cauchy problem set in the whole space, we consider the boundary valued problem
set in a bounded domain Ω ⊂ Rd with homogeneous Neumann boundary conditions.
We put dµγ = nγ(x) dx, dµ∞ = n∞(x) dx, ignoring time-dependence for the sake of brevity.
Furthermore we make the additional assumption that n∞ ⩾ n > 0 for some constant n.
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Consider the curve ρ : [0, 1] → P2(Rd) given by τ 7→ ρτ := (1 − τ)µγ + τµ∞ together with the
vector field

Vτ (x) =
1

(1− τ)nγ(x) + τn∞(x)
∇(φγ − φ∞). (5.37)

For any test function ψ ∈ C∞
c ((0, 1)× Ω) we have∫ 1

0

∫
Ω

∂ψ

∂τ
dρτ (x) dτ =

∫ 1

0

∫
Ω

∂ψ

∂τ
((1− τ)nγ(x) + τn∞(x)) dxdτ (5.38)

=

∫ 1

0

∫
Ω

ψ(nγ(x)− n∞(x)) dxdτ (5.39)

=

∫ 1

0

∫
Ω

∇ψ · ∇(φγ − φ∞) dxdτ (5.40)

=

∫ 1

0

∫
Ω

∇ψ · Vτ dρτ (x) dτ. (5.41)

Therefore the pair (ρ, V ) solves the continuity equation

∂ρτ
∂τ

+∇ · (Vτ (x)ρτ ) = 0, (5.42)

posed on (0, 1)× Rd with the marginal constraints

ρ0 = µγ , ρ1 = µ. (5.43)

Consequently, from Theorem 5.15 in [144], we deduce that ρ is absolutely continuous and the
following inequality holds

|ρ′|(τ) ⩽ ∥Vτ∥L2(Rd,dρτ ),

where |ρ′| denotes the metric derivative of the curve ρ with respect to the Wasserstein distance.
Furthermore, since (P2(Rd),W2) is a length space, we have

W2(µγ , µ∞) ⩽
∫ 1

0

|ρ′|(τ) dτ. (5.44)

Combining these last two inequalities, we obtain the following bound

W2(µγ , µ∞) ⩽
∫ 1

0

∥Vτ (x)∥L2(Rd,dρτ ) dτ (5.45)

⩽
1
√
n
∥∇(φγ − φ∞)∥L2(Rd)

∫ 1

0

1√
τ
dτ (5.46)

=
2
√
n
∥nγ − n∞∥Ḣ−1(Rd). (5.47)

Interestingly, a reverse bound can also be shown. Rather than a positive lower bound, a common
upper bound is now required of all the densities (which is of course the case here). Let now
σ : [0, 1] → P2(Rd) be a constant-speed geodesic from µγ to µ∞ and E be a vector field such
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that (σ,E) satisfy the continuity equation, and ∥Eτ∥L2(Rd;στ ) =W2(µγ , µ∞). Then

∥∇φγ −∇φ∞∥2L2 =

∫
Ω

(φγ − φ∞)(nγ − n∞)

=

∫ 1

0

∫
Ω

∇(φγ − φ∞) · Eτ dρτ dτ

⩽
1

2
∥∇φγ −∇φ∞∥2L2 +

1

2
W2(µγ , µ∞)2.

We refer the reader to [144, Section 5.5.2], and references therein, for further discussion about
the equivalence of the two distances.
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Chapter 6

Phenotypic heterogeneity in a model
of tumor growth: existence of
solutions and incompressible limit

Abstract
We consider a cross-diffusion model of tumor growth structured by phenotypic trait. We prove the
existence of weak solutions and the incompressible limit as the pressure becomes stiff extending
methods recently introduced in the context of two-species cross-diffusion systems. Moreover, we
prove additional regularity estimates. We show that an L2-version of the celebrated Aronson-
Bénilan estimate extends to structured models. As a consequence, we recover a sharp L1-bound
on the Laplacian of the pressure. In particular, we are able to remove a technical constraint
on the reaction terms assumed by Gwiazda et al. for the two-species model, by proving a new
L4-bound on the pressure gradient.

This chapter is taken from N.D. Phenotypic heterogeneity in a model of tumor growth: existence
of solutions and incompressible limit, Submitted, (2021).

6.1 Introduction

We consider the following model of tumor growth structured by phenotypic trait, represented by
the continuous variable y ∈ [0, 1]. The cell proliferation rate depends on both the trait and the
pressure inside the tissue. The motion of cells is driven by Darcy’s law, since the cell movement is
passively generated by the birth and death of cells which create pressure gradients. We denote by
n = n(y, x, t) the density of the population with phenotypic trait y ∈ [0, 1], and with ϱ = ϱ(x, t)
the total density at point x ∈ Rd and time t > 0. The pressure is related to the total density by
the following power law

p(x, t) = (ϱ(x, t))
γ
, γ > 1. (6.1)
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The model is the following
∂n

∂t
(y, x, t)−∇ · (n(y, x, t)∇p(x, t)) = nR(y, p), (y, x, t) ∈ [0, 1]× Rd × (0,∞),

ϱ(x, t) =

∫ 1

0

n(y, x, t) dy,

(6.2)

with initial data n0(y, x) ∈ L∞
+ ([0, 1]× Rd) ∩ L1([0, 1]× Rd).

Let us point out that the equation satisfied by ϱ(x, t) is a porous medium-reaction equation with
coefficient γ + 1, namely

∂tϱ−
γ

γ + 1
∆ϱγ+1 = ϱR, R =

∫ 1

0

σ(y)R(y, p) dy, (6.3)

where with σ = n/ϱ we denote the phenotype density fractions, while R represents the total
population growth rate.

Structured models: motivations. The mathematical modelling of living tissue has attracted
increasing attention in the last decades for both its ability to describe and investigate biological
phenomenon and the extremely challenging mathematical problems that arise from such models.
Among them, there is a growing interest towards models where the population density is struc-
tured by a phenotypic trait. In structured models, intra-population heterogeneity is taken into
account by letting the mobility rate and/or the growth rate of each phenotypic distribution be
functions of the structuring variable. Most of these models are based on Fisher-KPP equations,
hence they describe the random movement of the cells through a linear diffusion term, with a
phenotype-dependent mobility rate, and cell proliferation through a logistic growth rate. Non-
local reaction terms are also considered, as in the non-local version of the Fisher-KPP model,
[19], as well as divergence terms with respect to the phenotypic state to account for mutations,
see for instance [16]. In this paper, Calvez et al. introduce a model in which only the mobility
rate depends on the phenotypic trait. In particular, they assume the mobility rate to be propor-
tional to the structuring variable. Computing an exact asymptotic traveling wave solution, they
show that phenotypic segregation occurs and leads to front acceleration. Originating from [16],
the acceleration of invasion fronts has been further studied in [20, 27] in the case of unbounded
mobility, see also [4, 6, 5] and references therein for applications of structured PDEs models to
tumor growth.
In [118], Lorenzi et al. propose a model structured by phenotypic trait to study a phenomena
arising in cancer development which is usually referred to as ‘growth or go’, i.e. the dichotomy of
migration and proliferation. As investigated in [85, 82, 83, 86], more mobile cells tend to divide
less than cells that have a lower mobility rate. For this reason, the authors consider mobility
and growth rates which are, respectively, increasing and decreasing functions of the structuring
variable. Unlike the previously mentioned models, they consider a velocity field which depends
on the total population, i.e. the integral of the distributions with respect to the phenotypic trait.
In particular, they take the velocity field to be proportional to the gradient of the total density.
Therefore, the diffusion in the model is degenerate and no longer linear. The authors study the
creation of compactly supported invasion fronts, and show that phenotypic separation occurs in
the case of bounded mobility while the front undergoes acceleration in the case of unbounded
mobility.

Porous medium models. As suggested in [118], a natural generalisation of their model con-
sists of considering a pressure p related to the density by a power law with exponent greater
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than 1, as in Eq. (6.1). This pressure law has been extensively used in the modelling of tumor
growth, since it can be associated to the pressure of a compressible fluid. Combining the power
law with Darcy’s law yields to porous medium type equations as Eq.(6.3). Indeed, the invasion
of cancer cells can be seen as the motion of a fluid through a porous medium (the extra-cellular
matrix) [34].
The power law was first adopted for one-species models of tumor growth, see for instance [130,
132] and references therein. Furthermore, this pressure law is of particular interest since passing
to the limit γ → ∞, it is possible to establish a link between compressible models and ’geomet-
rical’ problems. As the pressure becomes more and more stiff, porous medium models converge
to Hele-Shaw free boundary problems where the density is saturated and the pressure satisfies
an elliptic equation. This limit, referred to as incompressible limit or stiff pressure limit, has
been studied for a lot of non-structured one-species models, starting from the seminal paper by
Perthame et al. [130]. For an overview on the single-species case, we refer the reader to [130, 61,
63, 102, 60, 93, 1, 129] and references therein.

Multi-species extensions. Lately, multi-phase extensions of the model introduced in [130]
have been studied from different perspectives. Multi-species models allow to study the interaction
between different types of tissue, for instance, cancer tissue, immune cells, healthy tissue, or dead
tissue. In cross-reaction-diffusion systems, the coupling of the single densities equations gives
rise to new mathematical challenges, such as the loss of regularity due to internal layers, namely
regions where two species get in contact. For this reason, the mathematical analysis of these
models presents many involved open problems. In 2018, Carrillo et al. show the existence
of solutions to a reaction-cross-diffusion system of two equations using methods from optimal
transport [47]. Their result, which was achieved in one spatial dimension, was later extended
in 2019 by Gwiazda et al. in multiple dimensions [94]. Here, the authors consider a two-
species system which is the analogous of our model, i.e. Eq. (6.2) for y ∈ {1, 2}. In particular,
the two species evolve under Darcy’s law, where the pressure is given by p = (n1 + n2)

γ , and
ni, i = 1, 2 denotes the two phases. Their existence result relies on applying a uniformly parabolic
regularisation to the initial data and then passing to the limit. To this end, the most involved
term is the nonlinear cross-diffusion term ni∇p. In order to pass to the limit, the authors prove
an L2-version of the Aronson-Bénilan estimate, which is a celebrated estimate in the context
of porous medium equations, and provides a bound on the Laplacian of the pressure. We refer
the reader to [9] for the classical result. The same problem was then approached in [135], in
which the authors are able to prove convergence by focusing on the quantity (n1+n2)

γ+1 rather
than the pressure itself. Their proof is simpler, since it does not require any regularity result on
the second order derivatives of p. In fact, in [135] the authors recover the strong convergence
of ∇(n1 + n2)

γ+1 without using the Aronson-Bénilan estimate of [94], for which a restrictive
condition on the reaction terms was needed.
As mentioned above, the analysis of the incompressible limit for porous medium models has a
long history and has been addressed by many researchers for several models. The stiff limit
for systems including two different species have been firstly addressed by Bubba et al. in 2019,
[26], where the authors use an approach based on a L2-Aronson-Bénilan estimate in the spirit
of [94]. However, due to the absence of BV controls on the single species population densities,
their argument only works in dimension 1. The result in any spatial dimension has been recently
achieved by Liu and Xu in [115], where the authors consider a cross-reaction-diffusion system in
a bounded domain with Neumann boundary conditions. Rather than dealing with the pressure,
pγ = ϱγγ , the authors focus on the quantity ϱγ+1

γ , proving strong compactness of its gradient,
thus being able to prove convergence of the cross-diffusion terms. However, they are not able to
include pressure-dependent reaction terms, and proving strong compactness of the pressure itself
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remains a open question in this setting. The stiff limit for cross-diffusion systems has also been
studied for different pressure laws and in the presence of drifts, see for instance [101, 63, 66].

Our contribution. In this paper, we aim to study the existence and regularity of solutions
to System (6.2) and their incompressible limit. This problem can be seen as an infinitely-many-
species extension of the models studied in [135, 94, 115]. At first, we extend the method by [135]
to the structured case. Adapting the same argument, we are able to prove the existence of global
weak solutions, cf. Theorem 6.3.7.
The second main result of the paper, cf. Theorem 6.4.1 and Theorem 6.4.2, concerns the incom-
pressible limit of System (6.2). As γ → ∞ in the pressure law, the problem turns out to be a free
boundary problem of Hele-Shaw type. By extending and adapting the new method used in [115],
we are able to recover the compactness needed to pass to the limit. Moreover, by restricting our
study to the class of compactly supported solutions, we are able to show strong compactness
of the pressure pγ which, unlike in [115], allows us to account for pressure-dependent reaction
terms.
Finally, we prove higher order regularity results on the pressure. First of all, we recover an
L4-bound on the pressure gradient, cf. Theorem 6.5.2, which has been introduced in the context
of one-species porous medium models, see for instance [123, 61, 63], and represents a novelty in
the multi-species case. Thanks to this bound, we are able to prove that an L2-version of the
Aronson-Bénilan estimate also holds for structured models, cf. Theorem 6.5.4. Moreover, we are
able to recover it removing the technical assumption on the reaction terms required in [94] for
the two-species case.

Plan of the paper. In the next section, we present the assumptions and the main results of
the paper. Section 6.3 is devoted to the proof of the existence of weak solutions: in Section 6.3.1
we introduce the regularised problem, obtained performing a viscosity perturbation, and we infer
uniform a priori estimates, while in Section 6.3.3, we show that ∇(ϱε)

γ+1 is strongly precompact
in L2, which is essential in order to pass to the limit in the regularised problem. In Section 6.4,
we study the asymptotics of Problem (6.2) as γ → ∞. The additional regularity estimates are
deduced in Section 6.5.

Notation. Given T > 0 and Ω ⊂ Rd, we denote QT := Rd × (0, T ),ΩT := Ω × (0, T ). We
frequently use the abbreviated forms n(t) := n(y, x, t), n(y) := n(y, x, t), ϱ(t) := ϱ(x, t).

6.2 Assumptions and main results

Now let us state the main results, i.e. the existence of weak solutions to System (6.2), the
incompressible limit and the additional regularity estimates, and for each of them the related
assumptions.

6.2.1 Existence of weak solutions

Assumptions on the reaction term. The function R(y, p) is assumed to be smooth and
bounded. Moreover, since the pressure induces an inhibitory effect on cell proliferation, we
suppose there exists a positive constant pM representing the homeostatic pressure, such that

∂pR(·, ·) ⩽ 0, R(·, 0) > 0, R(·, pM ) ⩽ 0, (6.4)
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Assumptions on the initial data. In order for the density fractions to be well defined we
need to regularize the initial data such that it is always strictly positive. Therefore we take
n0,ε(y, x) = n0(y, x) + εe−|x|2 , i.e. ϱ0,ε(y, x) = ϱ0(y, x) + εe−|x|2 , and p0,ε = (ϱ0,ε)

γ .
We say that the initial data are well-prepared if they satisfy the following assumptions: there
exists 0 < ε0 < 1 and C independent of ε, such that for all 0 < ε ⩽ ε0 the following holds

0 ⩽ ϱ0,ε0 ⩽ (pM )1/γ a.e. in Rd,

∥∥∥∥∥ sup
y∈[0,1]

n0,ε(y)

ϱ0,ε

∥∥∥∥∥
L∞(Rd)

⩽ C. (6.5)

To show the existence of weak solutions, we extend the method developed in [135] to the struc-
tured case and we prove the following result.

Theorem 6.2.1 (Theorem 6.3.7). Given n0 ∈ L∞
+ ([0, 1] × Rd) ∩ L1([0, 1] × Rd), there exists

a weak solution to System (6.2), namely, there exists n(y, x, t) ∈ L∞
+ ([0, 1] × Rd × (0,∞)) ∩

L1([0, 1] × Rd × (0,∞)) such that ∇p(x, t) ∈ L2(Rd × (0,∞)) and for all T > 0 and φ ∈
C([0, 1];C1

comp([0, T )× Rd))

−
∫ 1

0

∫
Rd

n(y, x, t)
∂φ(y, x, t)

∂t
dx dy +

∫ 1

0

∫ T

0

∫
Rd

n(y, x, t)∇p(x, t) · ∇φ(y, x, t) dxdtdy

=

∫ 1

0

∫ T

0

∫
Rd

n(y, x, t)R(y, p(x, t))φ(y, x, t) dxdtdy +

∫ 1

0

∫
Rd

n0(y, x)φ(y, x, 0) dxdy,

with

ϱ(x, t) =

∫ 1

0

n(y, x, t) dy, and p(x, t) = (ϱ(x, t))
γ
.

6.2.2 Incompressible limit
In order to pass to the incompressible limit the more involved part is to find compactness of the
pressure gradient. Our approach consists in extending and adapting the methods developed in
[115] to our problem, namely focusing on the quantity vγ = ϱγ+1

γ .
Unlike [115], we consider nonlinear pressure-dependent reaction terms. Consequently, our treat-
ment of this term is different, and involves compensated compactness results and the mono-
tonicity of R with respect to p. Moreover, we need to assume that the solutions are compactly
supported (uniformly in γ). Indeed, outside of this class of solutions we are not able to show the
strong compactness of the pressure which is necessary in order to pass to the limit in the reaction
terms. The problem then reduces to a boundary valued problem with Dirichlet homogeneous
conditions, while in [115] the authors choose Neumann homogeneous conditions on the boundary.

Assumptions on the initial data. We assume nγ,0 ∈ L∞([0, 1]×Rd), ϱγ,0 ∈ L1
+(Rd)∩L∞(Rd),

and that there exists Ω0 ⊂ Rd such that

supp(nγ,0(y)) ⊂ Ω0, for a.e. y ∈ [0, 1],∀γ > 1.

Thanks to the finite speed of propagation of porous medium type equations, we can reduce the
problem to the case of a bounded domain Ω ⊂ Rd, on which we have homogeneous Dirichlet
boundary conditions, ϱγ(x, t) = 0, for almost every (x, t) on ∂Ω× [0, T ]. Since ϱγ,0 is compactly
supported, then for all T > 0 there exists Ω ⊂ Rd such that

supp ϱγ(t) ⊂ Ω, ∀t ∈ [0, T ], ∀γ > 1.
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Moreover, we assume there exists ϱ0, p0 ∈ L∞
+ (Ω) such that

∥ϱγ,0 − ϱ0∥L1(Ω) → 0 ∥pγ,0 − p0∥L1(Ω) → 0

and
0 ⩽ ϱγ,0 ⩽ (pM )γ , 0 ⩽ pγ,0 ⩽ pM .

Let us denote vγ = ϱγ+1
γ . We can rewrite Eq. (6.3) as follows

∂ϱγ
∂t

− γ

γ + 1
∆vγ =

∫ 1

0

nγR(y, pγ) dy. (6.6)

We can pass to the incompressible limit γ → ∞ and recover a Hele-Shaw problem, as stated in
the following theorems.

Theorem 6.2.2 (Theorem 6.4.1). Let (nγ , ϱγ , pγ) be a solution given by Theorem 6.3.7. For all
T > 0, up to the extraction of a subsequence we have

nγ(y, x, t)⇀ n∞(y, x, t) weakly∗ in L∞((0, 1)× ΩT ),

ϱγ(x, t)⇀ ϱ∞(x, t) weakly∗ in L∞(ΩT ),

pγ(x, t)⇀ p∞(x, t) weakly∗ in L∞(ΩT ),

∇vγ ⇀ ∇v∞ weakly in L2(ΩT ),

as γ → ∞. Moreover, the limit satisfies the following relation

p∞(1− ϱ∞) = 0 almost everywhere in ΩT , (6.7)

as well as

∂ϱ∞
∂t

= ∆v∞ +

∫ 1

0

n∞R(y, p∞) dy, in D′(Rd × (0,∞)).

In order to pass to the limit in the equations for nγ and pγ we need to prove the strong com-
pactness of ∇vγ in L2(ΩT ), see Lemma 6.4.8.

Theorem 6.2.3 (Theorem 6.4.2). The limit solution ϱ∞, p∞ satisfies

∂n∞
∂t

= ∇ · (n∞∇p∞) + n∞R(y, p∞), in D′((0, 1)× Rd × (0,∞),

p∞

(
∆p∞ +

∫ 1

0

n∞R(y, p∞) dy

)
= 0, in D′(Rd × (0,∞)). (6.8)

Relation (6.7) implies that the total limit density ϱ∞ is saturated in the positivity set of the
pressure Ω(t) := {x; p∞(x, t) > 0}, which can be seen as the region occupied by the tumor.
Moreover, the complementarity relation (6.8) tells us that in Ω(t) the limit pressure satisfies an
elliptic equation, which is usually referred to as a Hele-Shaw free boundary problem.
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6.2.3 Additional regularity

The last part of the paper concerns additional regularity estimates on the pressure gradient,
therefore we focus on p rather than ϱγ+1. We prove an L2-version of the Aronson-Bénilan
estimate on the Laplacian of the pressure. This estimate was already obtained in the context
of two-species systems, see [94, 31]. Here, we not only extend it to our structured problem, but
we are able to remove the constraint on the reaction term used in [94]. To this end, we infer a
bound on the quantity pα−1|∇p|4, for certain values of α, in the spirit of [123].

Additional assumptions. In order to prove the following additional regularity results on the
pressure, it is necessary to make stronger assumptions on the initial data. In particular, we
assume that pγ,0 satisfies (uniformly in γ)

∇pγ,0 ∈ L2(Ω), (∆pγ,0)− ∈ L2(Ω).

Moreover, we assume

γ > max

(
3

2
, 2− 4

d

)
.

Theorem 6.2.4 (Theorem 6.5.2). There exists a positive constant C(T ) such that for any 0 ⩽
α < 1

γ the following estimate holds true

κ(α)

∫ T

0

∫
Ω

|∇p|4

p1−α
dxdt ⩽ C(T ),

with κ(α) := α
6 (1− αγ).

Theorem 6.2.5 (Theorem 6.5.4). For all T > 0, there exists a positive constant C(T ) indepen-
dent of γ such that for all t ∈ [0, T ] we have∫

Ω

(∆p(t))2− dx ⩽ C(T ),

∫ T

0

∫
Ω

(∆p)3− dxdt ⩽ C(T ).

6.3 Existence of solutions

6.3.1 Regularised problem

In order to prove the existence of weak solutions of Problem (6.2), we regularise the system
introducing a viscosity term. Let 0 < ε < ε0, and consider the following uniformly parabolic
system 

∂nε
∂t

−∇ · (nε∇pε)− ε∆nε = nεR(y, pε), y ∈ [0, 1], (x, t) ∈ ΩT ,

ϱε(x, t) =

∫ 1

0

nε(y, x, t) dy.

(6.9)

The equation on ϱε reads

∂ϱε
∂t

− γ

γ + 1
∆ϱγ+1

ε − ε∆ϱε =

∫ 1

0

nεR(y, pε) dy. (6.10)
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As mentioned above, in order to define the population fraction densities σε = nε/ϱε we have
to make sure that the total population density ϱε is always strictly positive. To this end, we
regularise the initial data as follows

n0,ε(y, x, t) = n0(y, x) + ε e−|x|2 ,

therefore
ϱ0,ε(x, t) = ϱ0(x) + ε e−|x|2 .

Before proving that this implies strict positivity of ϱε(x, t) for all times, we have to prove non-
negativity of solutions.

Non-negativity. Multiplying Eq. (6.9) by sign−(nε) we obtain

∂

∂t
(nε)− −∇ · ((nε)−∇pε)− ε∆(nε)− ⩽ (nε)−∥R∥∞,

where we denote ∥R∥∞ = supy∈[0,1]R(y, 0). Integrating in space, we have

d

dt

∫
Rd

(nε)− dx−
∫
Rd

∇ · ((nε)−∇pε) dx− ε

∫
Rd

∆(nε)− dx ⩽ ∥R∥∞
∫
Rd

(nε)− dx,

By Gronwall’s lemma we infer∫ 1

0

∫
Rd

(nε(y, x, t))− dxdy ⩽ e∥R∥∞t

∫ 1

0

∫
Rd

(nε(y, x, 0))− dxdy,

which implies that almost everywhere nε(t) ⩾ 0 for t ∈ (0, T ] and by consequence both the
density ϱε and the pressure pε are non-negative.

Positivity. Let us define the function

ϱ = εe−Kte−|x|2 ,

with K = 2(ε+ γ) + ∥R∥∞. We state that ϱ is a subsolution of the following equation

∂ϱ

∂t
=

γ

γ + 1
∆ϱγ+1 + ε∆ϱ− ϱ∥R∥∞.

In fact, we have

γ

γ + 1
∆ϱγ+1 + ε∆ϱ− ϱ∥R∥∞ = 2γϱγ+1(2(γ + 1)|x|2 − 1) + 2ε(2|x|2 − 1)ϱ− ϱ∥R∥∞

⩾− 2εϱ− 2γϱγ+1 − ϱ∥R∥∞
⩾(−2ε− 2γ − ∥R∥∞)ϱ

=−Kϱ

=
∂ϱ

∂t
.

Therefore, since by (6.10) ϱε is a supersolution to the same equation and ϱε(0) ⩾ ϱ(0), by the
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comparison principle we have

ϱε(t) ⩾ ϱ(t) > 0, ∀t ∈ [0, T ].

Therefore, the quantity

σε(y, x, t) :=
nε(y, x, t)

ϱε(x, t)
,

is well defined, and satisfies the following transport equation

∂σε
∂t

= ∇σε · ∇pε + σεR(y, pε)− σε

∫ 1

0

σε(η)R(η, pε) dη, (6.11)

where we used the notation η to distinguish the variable of integration from the variable y
involved in the equation.
Therefore, we rewrite the equation on ϱε as

∂ϱε
∂t

− γ

γ + 1
∆ϱγ+1

ε − ε∆ϱε = ϱεRε,

where we denote

Rε := R(σε, pε) =

∫ 1

0

σε(η)R(η, pε) dη. (6.12)

Let us notice that, from (6.12), Rε is also uniformly bounded in L∞(QT ) and

∥Rε∥L∞(QT ) ⩽ sup
y∈[0,1]

|R(y, 0)|
∫ 1

0

σε(η) dη = ∥R∥∞.

6.3.2 A priori estimates

Here we prove a priori estimates (uniform in ε) which are essential to prove the existence of weak
solutions.

L1-bounds. Multiplying (6.10) by sign(ϱε) and integrating in space we obtain

d

dt

∫
Rd

|ϱε|dx ⩽
∫
Rd

∆|ϱε|γ+1 dx+ ε

∫
Rd

∆|ϱε|dx+

∫
Rd

∫ 1

0

sign(ϱε) nεR(y, pε) dy dx

⩽ ∥R∥∞
∫
Rd

|ϱε|dx.

By Gronwall’s lemma we have ϱε ∈ L∞(0, T, L1(Rd)) and thus pε ∈ L∞(0, T, L1(Rd)).

L∞-bounds. Let us denote ϱM := (pM )1/γ and RM =
∫ 1

0
σε(η)R(η, pM ) dη, which is negative

by the definition of pM . From Eq. (6.10) we have

∂

∂t
(ϱε − ϱM )− γ

γ + 1
∆(ϱγ+1

ε − ϱγ+1
M )− ε∆(ϱε − ϱM ) ⩽ (ϱε − ϱM )Rε + ϱM (Rε −RM ).
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Multiplying by sign+(ϱε − ϱM ) we obtain

∂

∂t
(ϱε − ϱM )+ − γ

γ + 1
∆(ϱγ+1

ε − ϱγ+1
M )+ − ε∆(ϱε − ϱM )+

⩽(ϱε − ϱM )+Rε + ϱM (Rε −RM )sign+(ϱε − ϱM )

⩽∥Rε∥∞(ϱε − ϱM )+,

where in the last inequality we used ∂pR ⩽ 0. Integrating over Rd and applying Gronwall’s lemma
we obtain

d

dt

∫
Rd

(ϱε − ϱM )+ dx ⩽ e∥R∥∞t

∫
Rd

(ϱ0,ε − ϱM )+ dx.

For all 0 < ε ⩽ ε0, thanks to Assumption (6.5), we finally have

0 ⩽ ϱε ⩽ ϱM , 0 ⩽ pε ⩽ pM . (6.13)

Let us consider the equation on the fraction density, Eq. (6.11). By the assumptions on the
reaction term, σε satisfies

∂σε
∂t

⩽ ∇σε · ∇pε + σε2∥Rε∥∞.

Hence, by the comparison principle we obtain

σε ⩽ e2∥Rε∥∞tσ0,ε.

Since by Assumption (6.5) σ0,ε is uniformly bounded in [0, 1]× Rd, we have

σε ∈ L∞([0, 1]×QT ), (6.14)

and by consequence
nε ∈ L∞([0, 1]×QT ). (6.15)

6.3.3 Passing to the limit ε → 0

Extending the method by Price and Xu [135], in this section we prove the existence of solutions
to Problem (6.2), by showing the convergence of the solution of the regularised problem as ε→ 0.
To this end, the most involved part consists in proving the strong convergence of the degenerate
divergence term. Unlike the method developed by Gwiazda et al. in [94], this strategy focuses
on the quantity ϱγ+1

ε rather than on the pressure pε = ϱγε .

Lemma 6.3.1. There exists a positive constant C(T ) independent of ε such that the following
holds ∫∫

QT

∣∣∣∇ϱ γ+1
2

ε

∣∣∣2 dx dt+ ε

∫∫
QT

∫ 1

0

|∇
√
nε(y)|2 dy dx dt ⩽ C(T ).

Proof. Let ν be a positive constant. We multiply Eq. (6.9) by ln(nε + ν) and we obtain

∂nε
∂t

ln(nε + ν)−∇ · (nε∇pε) ln(nε + ν)− ε∆nε ln(nε + ν) = nεR(y, pε) ln(nε + ν).
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Integrating in space and in y over [0, 1] we have

d

dt

∫
Rd

∫ 1

0

((nε + ν) ln(nε + ν)− nε) dy dx+

∫
Rd

∫ 1

0

nε
nε + ν

∇pε · ∇nε dy dx+ ε

∫
Rd

∫ 1

0

|∇nε|2

nε + ν
dy dx

=

∫
Rd

∫ 1

0

nεR(y, pε) ln(nε + ν) dy dx

⩽ ∥R∥∞
∫
Rd

∫ 1

0

nε ln(nε + ν) dy dx.

Let us notice that, since nε is uniformly bounded in L∞([0, 1] × QT ), the right-hand side is
bounded. Let t ⩽ T . Upon integration in time for τ ∈ [0, t], we obtain∫ t

0

∫
Rd

∇pε ·
(∫ 1

0

nε
nε + ν

∇nε dy
)
dxdτ + ε

∫ t

0

∫
Rd

∫ 1

0

|∇nε|2

nε + ν
dy dxdτ

⩽
∫
Rd

∫ 1

0

(nε(t)− (nε(t) + ν) ln(nε(t) + ν)) dy dx+

∫
Rd

∫ 1

0

(n0,ε + ν) ln(n0,ε + ν) dy dx+ C(T ),

Letting ν → 0, thanks to the L∞-bound of nε, we have∫ t

0

∫
Rd

∇ϱγε · ∇ϱε dxdτ + 4ε

∫ t

0

∫
Rd

∫ 1

0

|∇
√
nε|2 dy dxdτ ⩽ C(T ),

for all 0 ⩽ t ⩽ T , and this concludes the proof.

Lemma 6.3.2. The sequence ϱ
γ+1
2

ε is precompact in L2(0, T ;L2(Rd)).

Proof. From Lemma 6.3.1 we know that the gradient of ϱ
γ+1
2

ε is bounded in L2(QT ). Now we
compute its time derivative.

∂

∂t
ϱ

γ+1
2

ε =
γ + 1

2
ϱ

γ−1
2

ε

(
∇ · (ϱε∇pε) + ε∆ϱε +

∫ 1

0

nε(η)R(η, pε) dη

)
=
γ + 1

2
ϱ

γ−1
2

ε ∇ · (ϱε∇ϱγε ) +
γ + 1

2
εϱ

γ−1
2

ε ∆ϱε +
γ + 1

2
ϱ

γ−1
2

ε

∫ 1

0

nε(η)R(η, pε) dη

=
γ + 1

2
∇ ·
(
ϱ

γ+1
2

ε ∇ϱγε
)
− γ2 − 1

4
ϱ

γ−1
2

ε ∇ϱε · ∇ϱγε +
γ + 1

2
ε∇ ·

(
ϱ

γ−1
2

ε ∇ϱε
)

− γ2 − 1

4
εϱ

γ−3
2

ε |∇ϱε|2 +
γ + 1

2
ϱ

γ−1
2

ε

∫ 1

0

nε(η)R(η, pε) dη

=γ∇ ·
(
ϱγε∇ϱ

γ+1
2

ε

)
− γ

γ − 1

γ + 1
ϱ

γ−1
2

ε

∣∣∣∇ϱ γ+1
2

ε

∣∣∣2 + ε∆ϱ
γ+1
2

ε

− ε(γ2 − 1)ϱ
γ−1
2

ε |∇√
ϱε|2 +

γ + 1

2
ϱ

γ−1
2

ε

∫ 1

0

nε(η)R(η, pε) dη.

Let us notice that Lemma 6.3.1 and the uniform L∞-bound of σε imply ε|∇√
ϱε|2 ∈ L1(QT ).

Therefore, the time derivative of ϱ
γ+1
2

ε is a sum of functions bounded in L2(0, T ;H−1(Rd)) and
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L1-functions. Applying Aubin-Lions’ lemma we infer that ϱ
γ+1
2

ε is precompact in L2(QT ).

Remark 6.3.3. The sequence ϱε is precompact in any Lq-space, for 1 ⩽ q < ∞. In fact, if
q < γ+1

2 , the result follows from Hölder’s inequality, while if q > γ+1
2 it follows from the uniform

boundedness of ϱε in L∞.

Remark 6.3.4. Let us recall the results already proven. Up to a subsequence, we have

σε ⇀ σ weak∗ in L∞([0, 1]×QT ),

nε ⇀ n weak∗ in L∞([0, 1]×QT ),

ϱε → ϱ strongly in Lq(QT ), for each 1 ⩽ q <∞,

ϱ
γ+1
2

ε ⇀ ϱ
γ+1
2

ε weakly in L2(0, T ;H1(Rd)),

∂ϱε
∂t

⇀
∂ϱ

∂t
weakly in L2(0, T ;H−1(Rd)).

Let us recall the notation R =
∫ 1

0
σ(η)R(η, p) dη. Then

Rε ⇀ R weak∗ in L∞(QT ) (6.16)

nεR(y, pε)⇀ nR(y, p) weak∗ in L∞([0, 1]×QT ). (6.17)

The convergences of (6.16) and (6.17) are shown in detail in Appendix 6.B.

Lemma 6.3.5. For all q ≥ γ + 1 and all t ∈ [0, T ], we have∫
Rd

(ϱε(x, t))
q
dx

ε→0−−−→
∫
Rd

(ϱ(x, t))
q
dx.

Proof. Let us define

wε := ϱγ+1
ε + ε

γ + 1

γ
ϱε.

Hence, we rewrite Eq. (6.3) as

∂ϱε
∂t

− γ

γ + 1
∆wε = ϱεRε, (6.18)

where we recall that Rε =
∫ 1

0
σεR(η, pε) dη. We test Eq. (6.18) against ∂twε to obtain∫

Rd

∂ϱε
∂t

∂wε
∂t

dx− γ

γ + 1

∫
Rd

∆wε
∂wε
∂t

dx =

∫
Rd

ϱεRε
∂wε
∂t

dx.

Now we treat each term individually, to obtain∫
Rd

∂ϱε
∂t

∂wε
∂t

dx =

∫
Rd

∂ϱε
∂t

∂ϱγ+1
ε

∂t
dx+ ε

γ + 1

γ

∫
Rd

∣∣∣∣∂ϱε∂t
∣∣∣∣2 dx

=(γ + 1)

∫
Rd

ϱγε

∣∣∣∣∂ϱε∂t
∣∣∣∣2 dx+ ε

γ + 1

γ

∫
Rd

∣∣∣∣∂ϱε∂t
∣∣∣∣2 dx,
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− γ

γ + 1

∫
Rd

∆wε
∂wε
∂t

dx =
γ

γ + 1

d

dt

∫
Rd

|∇wε|2

2
dx,

∫
Rd

ϱεRε
∂wε
∂t

dx =

∫
Rd

ϱεRε
∂ϱγ+1

ε

∂t
dx+ ε

γ + 1

γ

∫
Rd

ϱεRε
∂ϱε
∂t

dx

⩽
γ + 1

2

∫
Rd

ϱγε

∣∣∣∣∂ϱε∂t
∣∣∣∣2 dx+

γ + 1

2

∫
Rd

ϱγ+2
ε R2

ε dx

+
ε

2

γ + 1

γ

∫
Rd

ϱ2εR2
ε dx+

ε

2

γ + 1

γ

∫
Rd

∣∣∣∣∂ϱε∂t
∣∣∣∣2 dx.

Therefore, we obtain

sup
t∈[0,T ]

∫
Rd

|∇wε(t)|2 dx+
ε

2

γ + 1

γ

∫∫
QT

∣∣∣∣∂ϱε∂t
∣∣∣∣2 dxdt+ γ + 1

2

∫∫
QT

ϱγε

∣∣∣∣∂ϱε∂t
∣∣∣∣2 dxdt ⩽ C, (6.19)

where C depends on ∥ϱε∥∞ and ∥Rε∥∞. Since
∣∣∂tϱ γ+2

2
ε

∣∣2 = (γ+2)2

4 ϱγε |∂tϱε|2, from Eq. (6.19) we
have

∂tϱ
γ+2
2

ε ∈ L2(QT ),
√
ε∂tϱε ∈ L2(QT ), ∇wε ∈ L∞(0, T ;L2(Rd)).

It follows easily from the boundedness of ϱε, that ∂tϱγ+1
ε ∈ L2(QT ). Hence, ∂twε ∈ L2(QT ).

Thanks to the bound on ∇wε and the Aubin-Lions lemma, wε is precompact in C([0, T ], L2(Rd)).
Consequently, ϱγ+1

ε is also precompact in C([0, T ], L2(Rd)), since we have∫
Rd

∣∣ϱγ+1
ε (t)− ϱγ+1(t)

∣∣2 dx ⩽
∫
Rd

∣∣wε(t)− ϱγ+1(t)
∣∣2 dx+

∫
Rd

∣∣∣∣εγ + 1

γ
ϱε(t)

∣∣∣∣2 dx→ 0, as ε→ 0.

Once again, thanks to the uniform boundedness of ϱε we infer that ϱε is precompact in C([0, T ], Lq(Rd))
for any q ⩾ γ + 1. Therefore∫

Rd

(ϱε(x, t))
q
dx

ε→0−−−→
∫
Rd

(ϱ(x, t))q dx, ∀q ⩾ γ + 1,

and thus the proof is completed.

As already mentioned above, when dealing with cross-diffusion systems as (6.2), the most involved
part is to obtain the compactness needed to pass to the limit in the cross-diffusion term. In the
absence of strong compactness of the single species densities, here being the distribution of each
phenotypic trait nε(y), it is essential to infer strong compactness of ∇ϱγ+1

ε . For this reason, the
following convergence result is the core of the proof.

Lemma 6.3.6. Upon the extraction of a subsequence, we have

∇ϱγ+1
ε

ε→0−−−→ ∇ϱγ+1 strongly in L2(QT ).

Proof. For the sake of simplicity, when integrating, we now neglect the symbols dx,dt. Let us
consider the limit equation

∂ϱ

∂t
− γ

γ + 1
∆ϱγ+1 = ϱR,
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and then subtract it from Eq. (6.10), to obtain

∂

∂t
(ϱε − ϱ) +

γ

γ + 1
∆(ϱγ+1

ε − ϱγ+1) + ε∆ϱε = ϱεRε − ϱR.

We test the above equation against ϱγ+1
ε − ϱγ+1 and we obtain

γ

γ + 1

∫∫
QT

|∇(ϱγ+1
ε − ϱγ+1)|2 =− ε

∫∫
QT

∇ϱε · ∇(ϱγ+1
ε − ϱγ+1) +

∫ T

0

⟨∂t(ϱε − ϱ), ϱγ+1
ε − ϱγ+1⟩

−
∫∫

QT

(ϱεRε − ϱR)(ϱγ+1
ε − ϱγ+1).

Let us consider the three terms on the right-hand side individually. From to the strong compact-
ness of ϱε in any Lp-space and the weak∗ compactness of Rε, it directly follows that∫∫

QT

(ϱεRε − ϱR)(ϱγ+1
ε − ϱγ+1) → 0.

Recalling Lemma 6.3.5, the strong convergence of ϱγ+1
ε and the weak convergence of ∂tϱε in

L2(0, T ;H−1(Rd)), we have∫ T

0

⟨∂t(ϱε − ϱ), ϱγ+1
ε − ϱγ+1⟩ =

∫∫
QT

∂tϱ
γ+2
ε

γ + 2
+

∫∫
QT

∂tϱ
γ+2

γ + 2
−
∫ T

0

⟨∂tϱ, ϱγ+1
ε ⟩ −

∫ T

0

⟨∂tϱε, ϱγ+1⟩

=

∫
Rd

ϱγ+2
ε (T )

γ + 2
+

∫
Rd

ϱγ+2(T )

γ + 2
−
∫
Rd

ϱγ+2
ε (0)

γ + 2
−
∫
Rd

ϱγ+2(0)

γ + 2

−
∫ T

0

⟨∂tϱ, ϱγ+1
ε ⟩ −

∫ T

0

⟨∂tϱε, ϱγ+1⟩

→ 2

∫
Rd

ϱγ+2(T )

γ + 2
− 2

∫
Rd

ϱγ+2(0)

γ + 2
− 2

∫ T

0

⟨∂tϱ, ϱγ+1⟩ = 0.

Since from Lemma 6.3.1 we have
√
ε∇√

ϱε ∈ L2(QT ), as well as ∇ϱ
γ+1
2

ε ∈ L2(QT ), we finally
compute

ε

∫∫
QT

∇ϱε · ∇(ϱγ+1
ε − ϱγ+1) = 4ε

∫∫
QT

√
ϱε∇

√
ϱε ·

(
ϱ

γ+1
2

ε ∇ϱ
γ+1
2

ε − ϱ
γ+1
2 ∇ϱ

γ+1
2

)
⩽

√
εC → 0,

and this concludes the proof.

Having proved the L2-strong convergence of ∇ϱγ+1
ε , we can now show that the limit of the

sequence (nε, ϱε) is a solution of Problem (6.2).

Theorem 6.3.7. Given n0 ∈ L∞
+ ([0, 1] × Rd) ∩ L1([0, 1] × Rd), there exists a weak solution to

System (6.2), namely, there exists n(y, x, t) ∈ L∞
+ ([0, 1]×Rd × (0,∞))∩L1([0, 1]×Rd × (0,∞))
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such that ∇p(x, t) ∈ L2(Rd × (0,∞)) and for all T > 0 and φ ∈ C([0, 1];C1
comp([0, T )× Rd))

−
∫ 1

0

∫
Rd

n(y, x, t)
∂φ(y, x, t)

∂t
dxdy +

∫ 1

0

∫∫
QT

n(y, x, t)∇p(x, t) · ∇φ(y, x, t) dxdtdy

=

∫ 1

0

∫∫
QT

n(y, x, t)R(y, p(x, t))φ(y, x, t) dxdtdy +

∫ 1

0

∫
Rd

n0(y, x, t)φ(y, x, 0) dx dy,

(6.20)

with

ϱ(x, t) =

∫ 1

0

n(y, x, t) dy, p(x, t) = (ϱ(x, t))
γ
.

Proof. For all φ ∈ C([0, 1];C1
comp([0, T )×Rd)), the variational formulation of Problem (6.9) can

be written as

−
∫ 1

0

∫
Rd

nε(y, x, t)
∂φ(y, x, t)

∂t
dx dy +

∫ 1

0

∫∫
QT

nε(y, x, t)∇pε(x, t) · ∇φ(y, x, t) dx dtdy

=− ε

∫ 1

0

∫∫
QT

∇nε(y, x, t) · ∇φ(y, x, t) dx dtdy (6.21)

+

∫ 1

0

∫∫
QT

nε(y, x, t)R(y, pε)φ(y, x, t) dxdtdy +

∫ 1

0

∫
Rd

n0,ε(y, x, t)φ(y, x, 0) dxdy.

As we already proved, there exists a bounded non-negative function σ = σ(y, x, t) such that

σε → σ weakly∗ in L∞([0, 1]×QT ).

Therefore, from Lemma 6.3.6 we infer

nε∇pε = nε∇ϱγε
= σεϱε∇ϱγε

= σε
γ

γ + 1
∇ϱγ+1

ε
ε→0−−−→ σ

γ

γ + 1
∇ϱγ+1, weakly in L2([0, 1]×QT ).

(6.22)

It remains to show that σ(y, x, t) = n(y, x, t)/ϱ(x, t) almost everywhere in [0, 1]×QT . Let δ > 0
be an arbitrary positive constant. Then, we have

σε(ϱε − δ)+ → σ(ϱ− δ)+, weakly∗ in L∞([0, 1]×QT ).

On the other hand

σε(ϱε − δ)+ = nε
(ϱε − δ)+

ϱε
→ n

(ϱ− δ)+
ϱ

, weakly∗ in L∞([0, 1]×QT ),

by the following argument. Since 0 ⩽ (ϱ−δ)+
ϱ ⩽ 1, we obtain∫ 1

0

∫∫
QT

(
nε

(ϱε − δ)+
ϱε

− n
(ϱ− δ)+

ϱ

)
φdx dtdy
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=

∫ 1

0

∫∫
QT

(nε − n)
(ϱ− δ)+

ϱ
φdxdtdy +

∫ 1

0

∫∫
QT

nε

(
(ϱε − δ)+

ϱε
− (ϱ− δ)+

ϱ

)
φdxdtdy → 0,

as ε→ 0 for any φ ∈ L1([0, 1]×QT ). Therefore,

σ(ϱ− δ)+ = n
(ϱ− δ)+

ϱ
almost everywhere in [0, 1]×QT ,

for any δ > 0. Hence σϱ = n, almost everywhere on the set where ϱ is strictly positive. If ϱ = 0
then n(y) = 0 for almost every y ∈ [0, 1], and thus

σ(y, x, t)ϱ(x, t) = n(y, x, t) for almost every (y, x, t) ∈ [0, 1]×QT .

Finally, using Eq. (6.22), Remark 6.3.4 and passing to the limit in Eq. (6.21) we obtain Eq. (6.20)
and the proof is completed.

6.4 Incompressible limit

Thanks to the result proven in the previous section, cf. Theorem 6.3.7, we know that for each
γ > 1 there exists (nγ , ϱγ , pγ) that satisfies following equations

−
∫ 1

0

∫
Ω

nγ(y, x, t)
∂φ(y, x, t)

∂t
dxdy +

∫ 1

0

∫∫
ΩT

nγ(y, x, t)∇pγ(x, t) · ∇φ(y, x, t) dx dtdy

=

∫ 1

0

∫∫
ΩT

nγ(y, x, t)R(y, pγ)φ(y, x, t) dxdtdy +

∫ 1

0

∫
Ω

nγ,0(y, x, t)φ(y, x, 0) dxdy,

(6.23)

for all φ ∈ C([0, 1];C1
comp([0, T )× Ω))

−
∫∫

ΩT

ϱγ(x, t)
∂ψ

∂t
(x, t) dxdt+

γ

γ + 1

∫∫
ΩT

∇vγ(x, t) · ∇ψ(x, t) dxdt =

∫∫
ΩT

(∫ 1

0

nγ(x, t)R(y, pγ(x, t)) dy

)
ψ(x, t) dxdt+

∫
Ω

ϱγ,0(x)ψ(x, 0) dx,

(6.24)

for all test functions ψ ∈ C1
comp([0, T )× Ω), where vγ = ϱγ+1.

The goal of this section is to study the incompressible limit γ → ∞ and recover the weak
formulation of a Hele-Shaw free boundary problem. To this end, we have to infer the compactness
on the main quantities needed to pass to the limit in (6.23, 6.24). While for the first equation
the strong compactness of ∇pγ is needed, weak compactness of ∇vγ is sufficient in order to pass
to the limit in equation (6.24), as stated in the following theorem.

Theorem 6.4.1 (Weak Hele-Shaw problem). Let (nγ , ϱγ , pγ) be a solution given by Theo-
rem 6.3.7. For all T > 0, up to the extraction of a subsequence we have

nγ(y, x, t)⇀ n∞(y, x, t) weakly∗ in L∞((0, 1)× ΩT ), (6.25)

ϱγ(x, t)⇀ ϱ∞(x, t) weakly∗ in L∞(ΩT ), (6.26)

pγ(x, t)⇀ p∞(x, t) weakly∗ in L∞(ΩT ), (6.27)
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∇vγ → ∇v∞ weakly in L2(ΩT ), (6.28)

as γ → ∞. Moreover the limit satisfies

0 ⩽ ϱ∞ ⩽ 1, p∞(1− ϱ∞) = 0 almost everywhere in ΩT . (6.29)

as well as

−
∫∫

ΩT

ϱ∞
∂ψ

∂t
dxdt+

∫∫
ΩT

∇v∞ · ∇ψ dxdt =

∫∫
ΩT

(∫ 1

0

n∞R(y, p∞) dy

)
ψ dx dt

+

∫
Ω

ϱ0(x)ψ(x, 0) dx,

(6.30)

for all test functions ψ ∈ C1
comp([0, T )× Ω).

The second main result is the complementarity relation which allows to recover the limit pressure
as the solution of an elliptic equation. In order to prove it we need to infer the strong compactness
of ∇pγ , which also allows us to pass to the limit in Eq. (6.23).

Theorem 6.4.2 (Complementarity relation). The limit solution satisfies

v∞

(
∆v∞ +

∫ 1

0

n∞(y)R(y, p∞)

)
= 0, in D′(Ω× (0,∞)), (6.31)

as well as

−
∫ 1

0

∫∫
ΩT

n∞
∂φ

∂t
dxdtdy +

∫ 1

0

∫∫
ΩT

n∞∇p∞ · ∇φdxdtdy

=

∫ 1

0

∫∫
ΩT

n∞R(y, p∞)φdxdtdy +

∫
Ω

n0(y, x)φ(y, x, 0) dx dy,

(6.32)

for all test functions φ ∈ C((0, 1);C1
comp([0, T )× Ω)).

The following part of this section is devoted to the proof of Theorem 6.4.1 and Theorem 6.4.2.
Since we are not able to prove any control on ∂tpγ , it is not possible to directly prove the strong
compactness of pγ (Corollary 6.4.9) which is necessary in order to find the limit of the reaction
term. For this reason we will be able to identify the limit only after the proof of the strong
compactness of ∇vγ (Lemma 6.4.8).

6.4.1 Proof of Theorem 6.4.1

Remark 6.4.3 (Weak∗ convergence as γ → ∞). Let us point out that the L∞-bounds (6.13),(6.14)
and (6.15) proven in Subsection 6.3.2 are also uniform with respect to γ. Therefore, there exist
n∞, ϱ∞, p∞ and v∞ such that, after the extraction of a subsequence Eqs. (6.25)-(6.27) hold.
Moreover, there exists H∞ such that

nγR(y, pγ)⇀ H∞ weakly∗ in L∞((0, 1)× ΩT ). (6.33)
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Remark 6.4.4 (H1-bounds of pγ and vγ). Multiplying the equation on the density, Eq. (6.3),
by γϱγ−1

γ , it is immediate to see that the pressure satisfies

∂pγ
∂t

= γpγ(∆pγ +Rγ) + |∇pγ |2. (6.34)

Hence, the pressure gradient is bounded in L2(ΩT ) as shown by integrating by parts in space to
get

d

dt

∫
Ω

pγ dx = (1− γ)

∫
Ω

|∇pγ |2 dx+ γ

∫
Ω

pγRγ dx,

which implies

(γ − 1)

∫∫
ΩT

|∇pγ |2 dxdt ⩽ γ∥Rγ∥L∞(ΩT )∥pγ∥L1(ΩT ) + ∥p0∥L1(Ω).

Therefore, for all γ > 1, it holds

pγ ∈ L2(0, T ;H1(Ω)). (6.35)

By the definition of vγ , we have

∇vγ =
γ + 1

γ
p

1
γ
γ ∇pγ =

γ + 1

γ
ϱγ∇pγ ∈ L2(ΩT ), (6.36)

uniformly in γ, and therefore Eq. (6.28) is proven.

Corollary 6.4.5. The limit triplet (n∞, ϱ∞, p∞) satisfies

∂ϱ∞
∂t

= ∆v∞ +

∫ 1

0

H∞(y) dy, in D′(Rd × (0,∞)), (6.37)

where H∞ = H∞(y, x, t) is the weak limit of nγR(y, pγ).

Proof. The result comes from passing to the limit in Eq. (6.24) using the convergence re-
sults (6.26), (6.28), and (6.33).

As mentioned above, in order to conclude the proof of (6.30) we have to show that H∞ =
n∞R(y, p∞). This will be proven in the following subsection, cf. Eq. (6.46). At this moment, we
are not able to identify the limit since we do not have the strong compactness of pγ .
Remark 6.4.6 (H−1-bound of the density time-derivative). From the previous bounds and
Eq. (6.6), we have

∂ϱγ
∂t

∈ L2(0, T ;H−1(Ω)). (6.38)

Corollary 6.4.7. The limit solution satisfies Eq. (6.29).

Proof. Let us recall that the non-negativity of nγ , and consequently of ϱγ and pγ , has already
been proven in the previous sections. Since ϱγ ⩽ ϱM = (pM )1/γ we have 0 ⩽ ϱ∞ ⩽ 1.
By definition we have vγ = ϱγpγ . Thanks to Eqs. (6.35) and (6.38) we can apply the compensated
compactness theorem stated in Appendix 6.A, cf. Theorem 6.A.1, and infer∫

ΩT

vγφdxdt→
∫
ΩT

ϱ∞p∞φdxdt,
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for every φ ∈ C(0, T ;C1(Ω)). Hence v∞ = ϱ∞p∞, almost everywhere. Finally, by weak lower
semi-continuity of convex functionals we have

lim
γ→∞

vγ = lim inf
γ→∞

p
γ+1
γ

γ ⩾ p∞.

For the sake of completeness, we include here the full argument. Let ψδ = ψδ(x) be a convex
function such that ψδ(x) → x as δ → 0. Let us denote Ψγ(x) = x

γ+1
γ , γ > 1. Let us take δ > 0

small enough such that
ψδ(x) ⩽ Ψγ(x).

Therefore, we have

ψδ(p∞) ⩽ lim inf
γ→∞

ψδ(pγ) ⩽ lim inf
γ→∞

Ψγ(pγ) = lim inf
γ→∞

p
γ+1
γ

γ .

Since we chose δ > 0 arbitrarily, we take δ → 0 to obtain

p∞ ⩽ lim inf
γ→∞

p
γ+1
γ

γ .

Hence ϱ∞p∞ = v∞ ⩾ p∞, which implies ϱ∞p∞ = p∞.

6.4.2 Proof of Theorem 6.4.2

In order to prove the complementarity relation, cf. Theorem 6.4.2, the usual strategy is to prove
the strong convergence of ∇pγ , see for instance [61, 63, 31]. Although we are able to prove strong
compactness in space of the gradient (thanks to the Aronson-Bénilan estimate proven in the next
section) we do not have any control on ∂tpγ from which to infer time compactness. Therefore,
we follow the strategy of [115], directly proving the strong compactness of ∇vγ . The core of the
proof is given by the following lemma.

Lemma 6.4.8. Up to a subsequence, as γ → ∞, we have

∇vγ → ∇v∞ strongly in L2(ΩT ). (6.39)

Proof. Let us use vγ − v∞ as a test function in Eq. (6.6) to obtain∫
Ω

∂ϱγ
∂t

(vγ − v∞) dx+
γ

γ + 1

∫
Ω

∇vγ · ∇(vγ − v∞) dx =

∫
Ω

(∫ 1

0

nγR(y, pγ) dy

)
(vγ − v∞) dx.

(6.40)

We note that ∫
Ω

∂ϱγ
∂t

vγ dx =
1

γ + 2

∫
Ω

∂ϱγ+2
γ

∂t
dx =

1

γ + 2

d

dt

∫
Ω

ϱγ+2
γ dx.

Integrating in time we get∫∫
ΩT

∂ϱγ
∂t

vγ dxdt =
1

γ + 2

∫
Ω

ϱγ+2
γ (T ) dx− 1

γ + 2

∫
Ω

ϱγ+2
γ (0) dx→ 0,
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as γ → ∞. Now we compute

lim sup
γ→∞

∫∫
ΩT

|∇(vγ − v∞)|2 dx dt

⩽ lim sup
γ→∞

(∫∫
ΩT

∇vγ · ∇(vγ − v∞) dx dt−
∫∫

ΩT

∇v∞ · ∇(vγ −∇v∞) dxdt

)
⩽ lim sup

γ→∞

∫∫
ΩT

∇vγ · ∇(vγ − v∞) dx dt,

(6.41)

where in the last inequality we use the fact that ∇vγ is weakly compact in L2(ΩT ). From
Eq. (6.40) we obtain

lim sup
γ→∞

∫∫
ΩT

∇vγ · ∇(vγ − v∞) dxdt

⩽ lim sup
γ→∞

∫∫
ΩT

(∫ 1

0

nγR(y, pγ) dy

)
(vγ − v∞) dxdt+ lim sup

γ→∞

∫∫
ΩT

∂ϱγ
∂t

v∞ dxdt

⩽ lim sup
γ→∞

∫∫
ΩT

(∫ 1

0

nγR(y, pγ) dy

)
(vγ − v∞) dxdt+

∫∫
ΩT

∂ϱ∞
∂t

v∞ dxdt,

(6.42)

where we used the weak compactness of the density in L2(0, T ;H−1(Ω)) given by Eq. (6.38).
We now treat the first term in the right-hand side of Eq. (6.42). We add and subtract the same
quantity to get∫∫

ΩT

(∫ 1

0

nγR(y, pγ) dy

)
(vγ − v∞) dxdt =

∫∫
ΩT

(∫ 1

0

nγ(R(y, pγ)−R(y, p∞)) dy

)
(vγ − v∞) dx dt︸ ︷︷ ︸

A

+

∫∫
ΩT

(∫ 1

0

nγR(y, p∞) dy

)
(vγ − v∞) dxdt︸ ︷︷ ︸

B

.

Our goal is to prove that the right hand side is bounded by some quantity that converges to zero
as γ → ∞. To deal with A we use the monotonicity of R(y, ·), which is a decreasing function of
the pressure. We rewrite A as follows

A =

∫∫
ΩT

(∫ 1

0

nγ(R(y, pγ)−R(y, p∞)) dy

)
(pγϱγ − v∞) dx dt

=

∫∫
ΩT

(∫ 1

0

nγ(R(y, pγ)−R(y, p∞)) dy

)
(pγ(ϱγ − 1) + pγ − p∞) dxdt

=

∫∫
ΩT

(∫ 1

0

nγ(R(y, pγ)−R(y, p∞)) dy

)
pγ(ϱγ − 1) dxdt

+

∫∫
ΩT

(∫ 1

0

nγ(R(y, pγ)−R(y, p∞)) dy

)
(pγ − p∞) dx dt,

where the last integral is non-positive by the monotonicity of R. Let ε > 0, we split the remaining
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term as follows∫∫
ΩT

(∫ 1

0

nγ(R(y, pγ)−R(y, p∞)) dy

)
pγ(ϱγ − 1) dxdt

=

∫∫
ΩT∩{ϱγ⩽1−ε}

(∫ 1

0

nγ(R(y, pγ)−R(y, p∞)) dy

)
ϱγγ(ϱγ − 1) dxdt

+

∫∫
ΩT∩{ϱγ>1−ε}

(∫ 1

0

nγ(R(y, pγ)−R(y, p∞)) dy

)
pγ(ϱγ − 1) dxdt

⩽ 2∥R∥∞ϱM (1− ε)γ + 2∥R∥∞ϱMpM max

(
ε,

1

γ
| ln pM |+ o

(
1

γ

))
.

Choosing ε = 1/
√
γ, we infer that the right-hand side converges to zero as γ → ∞.

Now we show that, after the extraction of a subsequence, the term

B =

∫ 1

0

(∫∫
ΩT

nγR(y, p∞)(vγ − v∞) dx dt

)
dy,

converges to zero as γ → ∞. Let us choose y ∈ (0, 1). We denote wγ := R(y, p∞)(vγ−v∞). First
of all, there exists a subsequence γk independent of y such that wγk converges to zero weakly in
L2(ΩT ). Let us recall that

∂tnγ(y) = ∇ · (nγ(y)∇pγ) + nγ(y)R(y, pγ).

Hence, ∂tnγ(y) ∈ L2(0, T ;H−1(Ω)). Therefore, we can apply the compensated compactness
theorem, see Theorem 6.A.1. For all indexes γkj there exist γkji such that∫∫

ΩT

nγkji
(y)R(y, p∞)(vγkji

− v∞) dxdt→ 0,

as i→ ∞, which implies ∫∫
ΩT

nγk(y)R(y, p∞)(vγk − v∞) dx dt→ 0,

as k → ∞.Moreover, the above function is uniformly bounded in L1([0, 1]). Since γk only depends
on the convergence of vγ we have

B =

∫ 1

0

(∫∫
ΩT

nγkR(y, p∞)(vγk − v∞) dx dt

)
dy → 0,

as k → ∞.

Now, we can finally come back to Eqs.(6.41)-(6.42)

lim sup
γ→∞

∫∫
ΩT

|∇(vγ − v∞)|2 dxdt ⩽
∫∫

ΩT

∂ϱ∞
∂t

v∞ dxdt. (6.43)

To conclude the proof we will show that the right-hand side is actually equal to zero. Let us
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notice that for any ε > 0∫∫
ΩT

(ϱ∞(x, t+ ε)− ϱ∞(x, t))v∞ dxdt =

∫∫
ΩT

(ϱ∞(x, t+ ε)− 1 + 1− ϱ∞(x, t))v∞ dxdt ⩽ 0,

where in the last inequality we used Eq. (6.29). In a similar fashion we have∫∫
ΩT

(ϱ∞(x, t)− ϱ∞(x, t− ε))v∞ dxdt ⩾ 0.

Now it remains to prove that

lim
ε→0

∫∫
ΩT

(
ϱ∞(x, t+ ε)− ϱ∞(x, t)

ε

)
v∞ dxdt =

∫∫
ΩT

∂ϱ∞
∂t

v∞ dx dt. (6.44)

We integrate Eq. (6.37) between t and t+ ε to obtain

ϱ∞(t+ ε)− ϱ∞(t) =

∫ t+ε

t

∆v∞ ds+

∫ t+ε

t

∫ 1

0

H∞ dy ds.

We test the above equation against 1
εv∞(·, t) to get∫

Ω

(
ϱ∞(x, t+ ε)− ϱ∞(x, t)

ε

)
v∞(x, t) dx = −

∫
Ω

1

ε

∫ t+ε

t

∇v∞(x, s) ds · ∇v∞(x, t) dx

+

∫
Ω

1

ε

∫ t+ε

t

∫ 1

0

H∞(y, x, s) dy ds v∞(x, t) dx.

(6.45)

We have
1

ε

∫ t+ε

t

∇v∞(x, s) ds→ ∇v∞(x, t), a.e. in ΩT .

From Eq. (6.36) we have∫∫
ΩT

∣∣∣∣1ε
∫ t+ε

t

∇v∞(x, s) ds

∣∣∣∣2 dxdt ⩽1

ε

∫∫
ΩT

∫ t+ε

t

|∇v∞(x, s)|2 dsdxdt

=
1

ε

∫ T+ε

0

∫ min(T,s)

max(0,s−ε)

∫
Ω

|∇v∞(x, s)|2 dxdtds

⩽
1

ε

∫ T+ε

0

|min(T, s)−max(0, s− ε)|
∫
Ω

|∇v∞(x, s)|2 dxds

⩽ C(T ).

Therefore we have

1

ε

∫ t+ε

t

∇v∞(x, s) ds→ ∇v∞(x, t), weakly in L2(ΩT ).

In an analogous way we can prove that

1

ε

∫ t+ε

t

∫ 1

0

H∞(y, x, s) dy ds→
∫ 1

0

H∞(y, x, t) dy, weakly in L2(ΩT ).
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Combining Eq. (6.45) and Eq. (6.37) we have

lim
ε→0

∫∫
ΩT

(
ϱ∞(t+ ε)− ϱ(t)

ε

)
v∞(x, t) dxdt

= −
∫∫

ΩT

|∇v∞|2 dxdt+
∫∫

ΩT

(∫ 1

0

H∞(y, x, t) dy

)
v∞(x, t) dxdt

=

∫∫
ΩT

∂ϱ∞
∂t

v∞ dx dt.

Hence Eq. (6.44) is proven. As a consequence, Eq. (6.43) concludes the proof.

Having proved the strong compactness of ∇vγ , we can finally recover the strong compactness of
the pressure itself, by simply applying the Poincaré inequality, using the fact that Ω has been
chosen large enough such that the pressure satisfies Dirichlet boundary conditions.

Corollary 6.4.9 (Strong compactness of pγ). Up to the extraction of a subsequence, we have

pγ → p∞, strongly in L2(ΩT ).

Proof. Since we assumed the solutions to be compactly supported for all times 0 ⩽ t ⩽ T , by
Lemma 6.4.8 and Poincaré’s inequality we infer the strong compactness of vγ in L2(ΩT ). Finally,
since pγ = v

γ/(γ+1)
γ and p∞ = v∞, the proof is completed.

Thanks to this result, we can finally identify the limit of the reaction term, i.e. the following
equality holds almost everywhere in [0, 1]× ΩT

H∞(y, x, t) = n∞(y, x, t)R(y, p∞(x, t)). (6.46)

Thanks to the strong compactness of the pressure gradient, we can pass to the limit in Eq. (6.23)
to obtain Eq. (6.32).
Finally, to complete the proof of Theorem 6.4.2, we show that the complementarity relation
(6.31) holds true. Let us multiply Eq. (6.6) by vγ to get

1

γ + 2

∂ϱγ+2
γ

∂t
=

γ

γ + 1
vγ∆vγ + vγ

∫ 1

0

nγR(y, pγ) dy.

As already proven, vγ , pγ and ∇vγ are strongly compact in L2(ΩT ). Therefore, passing to the
limit γ → ∞ we obtain

v∞

(
∆v∞ +

∫ 1

0

n∞(y)R(y, p∞) dy

)
= 0, in D′(Ω× (0,∞)),

which concludes the proof.

6.5 Additional regularity estimates

Here we present some regularity estimates on the pressure p = ϱγ , where ϱ is a solution of
Eq. (6.10). In particular, we extend a result already proved in [123] for a Hele-Shaw model
of one species, which implies that pα−1|∇p|4 is integrable, for certain values of α. This new
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estimate allows us to prove an L2-version of the Aronson-Bénilan estimate for the structured
model at hand. The original AB estimate is a lower L∞-bound on the Laplacian of the pressure.
In recent years, several extensions in both L1 and L2-settings have been proposed in the context
of degenerate parabolic equations and systems. We refer the reader to [26, 31, 61, 63, 94] for a
comprehensive overview.
Before presenting the proof of the main results, cf. Theorem 6.5.2 and Theorem 6.5.4, we point
out that as a consequence the following corollary holds.

Corollary 6.5.1. With the assumptions of the previous sections, for all T > 0 there exists a
constant C(T ) which does not depend on γ, such that∫

Ω

|∆p(t)|dx ⩽ C(T ), (6.47)

for all t ∈ [0, T ].

Let us stress the fact that this estimate, together with a regularisation argument on Eq. (6.2)
and Eq. (6.3), implies the existence of weak solutions. In fact, considering the equations

∂tn = ∇ · (n∇p) + nR(y, p),

∂tϱ = ∇ · (ϱ∇p) + ϱR,

we can replace the initial data n0(y) by n0,µ(y) = n0(y) + µe−|x|2 , with µ > 0. Therefore, the
equations are non degenerate and have a positive solution (nµ, ϱµ) and σµ(y) = nµ(y)/ϱµ is
well defined. Since the bound on the Laplacian, Eq. (6.47), is independent of the regularisation,
applying the Aubin-Lions lemma it is possible to obtain strong compactness of the pressure
gradient in Lq(ΩT ) for all 1 ⩽ q ⩽ d

d−2 , as µ → 0. Hence, combining this result with the
compactness of n, σ and ϱ stated in Remark 6.3.4 allows to pass to the limit in the model and
prove existence. For the detailed proof of a particular case, we refer the reader to [94], where
the authors study the same problem for two species, n1 and n2, rather than for an infinite set of
phenotypic traits, y ∈ [0, 1]. In fact, the estimate on the Laplacian of the pressure is analogous,
and relies on the Aronson-Bénilan estimate in an L2-setting. The improvement that we bring
here is to prove the AB estimate removing the strong technical assumption that the authors in
[94] impose on the reaction terms, namely

F (0) = G(0),

where the source term of the total density is

R(p, σ1, σ2) = F (p)σ1 +G(p)σ2,

with σi = ni/(n1 + n2), for i = 1, 2. As shown in the previous section, the question of how to
prove existence without this assumption can be achieved using the method by Price and Xu in
[135]. However, to recover the bound (6.47) on the Laplacian removing the condition on the
reaction terms was still an open question.

Theorem 6.5.2 (L4-estimate). There exists a constant C(T ) such that for any 0 ⩽ α < 1
γ the

following estimate holds true

κ(α)

∫∫
ΩT

|∇p|4

p1−α
dx dt ⩽ C(T ),
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with κ(α) := α
6 (1− αγ).

Proof. First of all, let us recall that R =
∫ 1

0
σ(η)R(η, p) dη, hence ∂pR ⩽ 0.

We multiply Eq. (6.34) by −pα(∆p+R) to obtain

−pα ∂p
∂t

(∆p+R) = −γpα+1(∆p+R)2 − pα|∇p|2(∆p+R). (6.48)

Now we integrate in space and we split the left-hand side treating each term individually.

−
∫
Ω

pα
∂p

∂t
∆p dx =

1

2

∫
Ω

pα
∂

∂t
|∇p|2 dx+ α

∫
Ω

pα−1 ∂p

∂t
|∇p|2 dx

=
1

2

d

dt

∫
Ω

pα|∇p|2 dx+
α

2

∫
Ω

pα−1 ∂p

∂t
|∇p|2 dx

=
1

2

d

dt

∫
Ω

pα|∇p|2 dx+
αγ

2

∫
Ω

pα(∆p+R)|∇p|2 dx+
α

2

∫
Ω

pα−1|∇p|4 dx.

Let us define the following function

R(p, σ) =

∫ p

0

qαR(q, σ) dq.

It immediately follows

pα
∂p

∂t
R =

∂R
∂t

−
∫ 1

0

(∫ p

0

qαR(η, q) dq

)
∂tσ dη.

Now using the equation on the fraction density σ, Eq. (6.11), we have

−
∫
Ω

pα
∂p

∂t
R dx = − d

dt

∫
Ω

R dx+

∫
Ω

∫ 1

0

(∫ p

0

qαR(η, q) dq

)
∇σ · ∇p dη dx

+

∫
Ω

∫ 1

0

(∫ p

0

qαR(η, q) dq

)
(R(η, p)−R(p))σ dη dx

= − d

dt

∫
Ω

R dx+

∫
Ω

∫ 1

0

(∫ p

0

qαR(η, q) dq

)
∇σ · ∇p dη dx+ Bdd,

where we use Bdd to denote the bounded term∫
Ω

∫ 1

0

(∫ p

0

qαR(η, q) dq

)
(R(η, p)−R)σ dη dx ⩽

C

α+ 1

∫
Ω

pα+1 dx ⩽ C∥p∥2L2 ,

where C is a positive constant that depends on ∥R∥∞. Now let us come back to Eq. (6.48) and
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integrate on Ω

α

2

∫
Ω

pα−1|∇p|4 dx+ γ

∫
Ω

pα+1(∆p+R)2 dx

= −
(
1 +

αγ

2

)∫
Ω

pα(∆p+R)|∇p|2 dx+
d

dt

∫
Ω

(
R− pα

|∇p|2

2

)
dx

−
∫
Ω

∫ 1

0

(∫ p

0

qαR(η, q) dq

)
∇σ · ∇pdη dx︸ ︷︷ ︸

A

−Bdd.

(6.49)

Let us integrate by parts the term A. We obtain

−A =−
∫ 1

0

∫
Ω

(∫ p

0

qαR(η, q) dq

)
∇σ · ∇p dη dx

=

∫
Ω

pα|∇p|2
(∫ 1

0

R(η, p)σ dη

)
dx+

∫ 1

0

∫
Ω

(∫ p

0

qαR(η, q) dq

)
σ∆p dη dx

⩽∥R∥∞pαM
∫
Ω

|∇p|2 dx+
1

2

∫
Ω

(∫ 1

0

(∫ p
0
qαR(η, q) dq

)
σ dη

)2
pα+1

dx+
1

2

∫
Ω

pα+1|∆p|2 dx,

where in the last line we used Fubini’s Theorem and Young’s inequality. Since by assumption
both R(y, p) and ∂pR(y, p) are bounded, the second term in the right-hand side is bounded.

Combining the estimate on the term −A with Eq. (6.49) and integrating in time, we obtain

α

2

∫∫
ΩT

pα−1|∇p|4 dxdt+ γ

∫∫
ΩT

pα+1(∆p+R)2 dx dt

⩽−
(
1 +

αγ

2

)∫∫
ΩT

pα(∆p+R)|∇p|2 dx dt︸ ︷︷ ︸
B

+

∫
Ω

R(T ) dx

+

∫
Ω

(p0)
α |∇p0|2

2
dx+

1

2

∫∫
ΩT

pα+1|∆p|2 dxdt+ Bdd,

(6.50)

where Bdd now includes other bounded quantities. Now it remains to treat the term B. Let us
point out here that we cannot estimate it in the same way as in [123], since the authors make
use of a lower bound of the quantity ∆p+R, i.e. the L∞-Aronson-Bénilan estimate, which does
not hold for a multi-species system like the one at hand. For this reason, we deal with the term
B by splitting it into two parts. The one coming from the source term is easier to estimate, since
it can be bounded in the following way∫∫

ΩT

pαR|∇p|2 dxdt ⩽ pαM∥R∥∞∥∇p∥22 ⩽ max(1, pM )∥R∥∞∥∇p∥22. (6.51)

The term with ∆p is instead more involved. We refer the reader to [61] for the same method
applied to the case of one species and α = 0. From now on, for the sake of simplicity, we only
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compute the integral in space. Integrating by parts twice we have∫
Ω

pα∆p|∇p|2 dx =

∫
Ω

∆(pα|∇p|2)p dx

=

∫
Ω

∆pα|∇p|2p dx+2α

∫
Ω

∇p · ∇(|∇p|2)pα dx+

∫
Ω

pα+1∆(|∇p|2) dx. (6.52)

Computing the sum of the first two terms of the right-hand side, we find∫
Ω

∆pα|∇p|2p dx+ 2α

∫
Ω

∇p · ∇(|∇p|2)pα dx

=α(α− 1)

∫
Ω

pα−1|∇p|4 dx+ α

∫
Ω

pα∆p|∇p|2 dx− 2α

∫
Ω

pα∆p|∇p|2 dx− 2α2

∫
Ω

pα−1|∇p|4 dx

=− α(α+ 1)

∫
Ω

pα−1|∇p|4 dx− α

∫
Ω

pα∆p|∇p|2 dx,

where we used integration by parts on the second term.
We compute the last term in Eq. (6.52) as follows∫

Ω

pα+1∆(|∇p|2) dx = 2

∫
Ω

pα+1∇p · ∇(∆p) dx+ 2

∫
Ω

pα+1(D2
i,jp)

2 dx

= −2(α+ 1)

∫
Ω

pα|∇p|2∆p dx− 2

∫
Ω

pα+1|∆p|2 dx+ 2

∫
Ω

pα+1(D2
i,jp)

2 dx,

where in the last equality we used integration by parts and we denoted (D2
i,jp)

2 =
∑
i,j(∂

2
i,jp)

2.
By consequence, Eq. (6.52) now reads∫

Ω

pα∆p|∇p|2 dx = −α(α+ 1)

∫
Ω

pα−1|∇p|4 dx− (3α+ 2)

∫
Ω

pα∆p|∇p|2 dx

− 2

∫
Ω

pα+1|∆p|2 dx+ 2

∫
Ω

pα+1(D2
i,jp)

2 dx,

and thus ∫
Ω

pα∆p|∇p|2 dx =− α

3

∫
Ω

pα−1|∇p|4 dx− 2

3(α+ 1)

∫
Ω

pα+1|∆p|2 dx

+
2

3(α+ 1)

∫
Ω

pα+1(D2
i,jp)

2 dx.

(6.53)

Using Eq. (6.53) in Eq. (6.50), we finally find

α

2

∫∫
ΩT

pα−1|∇p|4 dxdt+ γ

∫∫
ΩT

pα+1(∆p+R)2 dxdt+
2 + αγ

3(α+ 1)

∫∫
ΩT

pα+1(D2
i,jp)

2 dx dt

⩽
α

3

(
1 +

αγ

2

)∫∫
ΩT

pα−1|∇p|4 dx dt+
(

2 + αγ

3(α+ 1)
+

1

2

)∫∫
ΩT

pα+1|∆p|2 dxdt+ Bdd,

where Bdd includes also the bound in Eq. (6.51). By Young’s inequality, we have∫∫
ΩT

pα+1|∆p|2 dxdt ⩽ 3

2

∫∫
ΩT

pα+1|∆p+R|2 dxdt+ 3

∫∫
ΩT

pα+1|R|2 dxdt.
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Then, we finally have

κ(α)

∫∫
ΩT

pα−1|∇p|4 dxdt+
(
γ − 3

2

)∫∫
ΩT

pα+1(∆p+R)2 dxdt

+
2 + αγ

3(α+ 1)

∫∫
ΩT

pα+1(D2
i,jp)

2 dx dt ⩽ C(T ),

(6.54)

with κ(α) := α
6 (1− αγ). Since we assumed 0 < α < 1

γ , this concludes the proof.

Let us point out that for α = 0 the result proved above immediately implies a bound on the
pressure gradient which is uniform with respect to γ. This bound was also investigated in [61],
where the authors prove its sharpness.

Corollary 6.5.3. The following estimate holds uniformly in γ,∫∫
ΩT

|∇p|4 dx dt ⩽ C(T ).

Proof. Let us take α = 0 in Eq. (6.54). Then, we infer the following bounds∫∫
ΩT

p(∆p+R)2 dxdt ⩽ C(T ),

∫∫
ΩT

p(D2
i,jp)

2 dx dt ⩽ C(T ),

and both hold uniformly with respect to γ. Since both p and R are uniformly bounded in L∞,
this implies ∫∫

ΩT

p2|∆p|2 dxdt ⩽ C(T ),

∫∫
ΩT

p2(D2
i,jp)

2 dxdt ⩽ C(T ).

Using integration by parts, it follows that the boundedness of these two terms implies
∇p ∈ L4(ΩT ). We refer the reader to [61] for the detailed proof.

Theorem 6.5.4 (L2-Aronson-Bénilan estimate). With the assumptions of Section 6.2.3, for all
T > 0, there exists a constant C(T ) independent of γ, such that for all t ∈ [0, T ] we have∫

Ω

(∆p(t))2− dx ⩽ C(T ),

∫∫
ΩT

(∆p)3− dxdt ⩽ C(T ).

Proof. We define w = ∆p+R. Hence, Eq. (6.34) reads

∂tp = γpw + |∇p|2.

Let us recall again the definition of R

R(p, σ) =

∫ 1

0

R(η, p(x, t))σ(η, x, t) dη.



6.5. Additional regularity estimates 181

Now we compute ∂tw

∂w

∂t
=∆(γpw + |∇p|2) + ∂R

∂t

=γ∆(pw) + 2∇p · ∇(∆p) + 2
∑
i,j

(∂2i,jp)
2 +

∂R
∂t

≥γ∆(pw) + 2∇p · ∇w − 2∇p · ∇R+
2

d
(w −R)2 +

∂R
∂t

=γ∆(pw) + 2∇p · ∇w − 2Rp|∇p|2 − 2

∫ 1

0

R(η, p)∇σ · ∇p dη + 2

d
(w −R)2 +

∂R
∂t

=γ∆(pw) + 2∇p · ∇w − 2Rp|∇p|2 − 2

∫ 1

0

R(η, p)∇σ · ∇p dη + 2

d
(w −R)2

+

∫ 1

0

∂σ

∂t
R(η, p) dη +Rp(γpw + |∇p|2)

=γ∆(pw) + 2∇p · ∇w −Rp|∇p|2 − 2

∫ 1

0

R(η, p)∇σ · ∇p dη + 2

d
(w −R)2

+

∫ 1

0

∂σ

∂t
R(η, p) dη +Rpγpw

≥γ∆(pw) + 2∇p · ∇w − 2

∫ 1

0

R(η, p)∇σ · ∇p+ 2

d
(w −R)2 +

∫ 1

0

∂σ

∂t
R(η, p) dη +Rpγpw,

where in the last inequality we used that Rp ⩽ 0. We recall that

∂σ

∂t
= ∇σ · ∇p+ σR(y, p)− σ

∫ 1

0

σ(η)R(η, p) dη.

We multiply by sign−(w) to obtain

∂(w)−
∂t

≤γ∆(p(w)−) + 2∇p · ∇(w)− − 2 sign−(w)

∫ 1

0

R(η, p)∇σ · ∇pdη + 2

d
(w −R)2sign−(w)

+ sign−(w)

∫ 1

0

∇σ · ∇pR(η, p) dη + C +Rpγp(w)−,

where C is a constant depending on ∥R∥∞.

Firstly, we multiply by (w)− and use again that Rp ⩽ 0 to obtain

1

2

d

dt

∫
Ω

(w)2− dx ≤γ
∫
Ω

∆(p(w)−)(w)− dx+ 2

∫
Ω

∇p · ∇(w)−(w)− dx

+

∫
Ω

(∫ 1

0

R(η, p)∇σ · ∇p dη
)
(w)− dx

−
∫
Ω

2

d
(w)3− dx− 2

d

∫
Ω

R2(w)− dx− 4

d

∫
Ω

(w)2−R dx+ C

∫
Ω

(w)− dx.

(6.55)
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We estimate the sum of the first two terms of the right-hand side.

γ

∫
Ω

∆(p(w)−)(w)− dx+ 2

∫
Ω

∇p · ∇(w)−(w)− dx =
(
1− γ

2

)∫
Ω

∇p · ∇
(w)2−
2

dx− γ

∫
Ω

p|∇(w)−|2 dx

=
(γ
2
− 1
)∫

Ω

∆p(w)2− dx− γ

∫
Ω

p|∇(w)−|2 dx

⩽
(
1− γ

2

)∫
Ω

(w)3− dx+
(
1− γ

2

)∫
Ω

R(w)2− dx

− γ

∫
Ω

p|∇(w)−|2 dx

⩽
(
1− γ

2

)∫
Ω

(w)3− dx− γ

∫
Ω

p|∇(w)−|2 dx.

Now we treat the term with ∇σ. Since we do not have any BV -estimate on the density fraction
we lift the derivative from σ∫ 1

0

(∫
Ω

R(η, p)∇σ · ∇p(w)− dx

)
dη =−

∫ 1

0

∫
Ω

R(η, p)σ∆p(w)− dxdη︸ ︷︷ ︸
A

−
∫ 1

0

∫
Ω

R(η, p)σ∇p · ∇(w)− dx dη︸ ︷︷ ︸
B

−
∫ 1

0

∫
Ω

Rp(η, p)σ|∇p|2(w)− dx dη︸ ︷︷ ︸
C

.

(6.56)

Using ∆p = w −R we find

A =

∫
Ω

(w)2−

(∫ 1

0

R(η, p)σ dη

)
dx+

∫
Ω

R(w)−

(∫ 1

0

R(η, p)σ dη

)
dx

⩽ ∥R∥∞
∫
Ω

(w)2− dx+ ∥R∥2∞
∫
Ω

(w)− dx.

(6.57)

Let us point out that it is in order to bound the term B that the assumption F (0) = G(0) was
needed in [94]. In fact, combining this assumption and Young’s inequality (with exponent 2),
the authors are able to estimate B by 1

2

∫
Ω
p|∇(w)−|2. In order to avoid imposing an analogous

assumption on R(y, p), we treat this term differently, using the estimate proven in Theorem 6.5.2.
Applying Young’s inequality with exponents 4 and 4/3, we have

B ⩽
∥R∥∞

4

∫
Ω

|∇p|4

p1−α
dx+

3

4

∫
Ω

p1−α|∇(w)−|4/3 dx.

Taking α = 1/(γ + 2), we know by Theorem 6.5.2 that the first term is bounded. Let us denote
β = (γ−1)/3(γ+2). Then using Young’s inequality with exponents 3/2 and 3 it is straightforward
to see

3

4

∫
Ω

p1−α|∇(w)−|4/3 dx ⩽
1

2

∫
Ω

p(1−α−β)
3
2 |∇(w)−|2 dx+

1

4

∫
Ω

p3β dx.
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Thanks to the choices of α and β, we have

B ⩽
∥R∥∞

4

∫
Ω

|∇p|4

p1−α
dx+

1

2

∫
Ω

p|∇(w)−|2 dx+
1

4

∫
Ω

p(γ−1)/(γ+2) dx ⩽
1

2

∫
Ω

p|∇(w)−|2 dx+ C.

(6.58)
Coming back to Eq. (6.56) and recalling that Rp is bounded and non-positive, we obtain

C ⩽∥Rp∥∞
∫
Ω

(w)−∇p · ∇p dx

=− ∥Rp∥∞
∫
Ω

p∇(w)− · ∇p dx− ∥Rp∥∞
∫
Ω

(w)−p∆p dx

⩽
1

2

∫
Ω

p|∇(w)−|2 dx+ C

∫
Ω

p|∇p|2 dx+ ∥Rp∥∞
∫
Ω

p(w)2− dx+ ∥Rp∥∞
∫
Ω

Rp(w)− dx

⩽
1

2

∫
Ω

p|∇(w)−|2 dx+ C.

(6.59)

Finally, combining Eq. (6.56), Eq. (6.57), Eq. (6.58) and Eq. (6.59) we find∫ 1

0

(∫
Ω

R(η, p)∇σ · ∇p(w)− dx

)
dη ⩽ C

∫
Ω

(w)2− dx+ C

∫
Ω

(w)− dx+

∫
Ω

p|∇(w)−|2 dx+ C.

We can finally come back to Eq. (6.55) to obtain

1

2

d

dt

∫
Ω

(w)2− dx+ (γ − 1)

∫
Ω

p|∇(w)−|2 dx

≤C(γ, d)
∫
Ω

(w)3− dx+ C

∫
Ω

(w)2− dx+ C

∫
Ω

(w)− dx+ C.

(6.60)

with C(γ, d) =
(
1− γ

2 − 2
d

)
being negative thanks to the assumption on γ. Since we are on a

compact support, by Young’s inequality we have

C

∫
Ω

(w)− dx ⩽
C2

2
|Ω|+ 1

2

∫
Ω

(w)2− dx.

Let us stress that this assumption can be removed and all the estimates can be proven in Rd by
multiplying by a properly chosen test function, see [94] for the detailed proof in the two species
case. Then we obtain

1

2

d

dt

∫
Ω

(w)2− dx ⩽ C

∫
Ω

(w)2− dx+ C,

and hence by Gronwall’s inequality, we have

sup
0⩽t⩽T

∫
Ω

(w(t))2− dx ⩽ C

∫
Ω

(w0)
2
− dx+ C ⩽ C.

Finally, from Eq. (6.60) we also obtain∫∫
ΩT

|∆p+R|3− dxdt ⩽ C(T ),
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and this concludes the proof.

Proof of Corollary 6.5.1. Thanks to the Aronson-Bénilan estimate in L2 proven above we have∫
Ω

|∆p(t)|dx =

∫
Ω

∆p(t) dx+ 2

∫
Ω

(∆p(t))− dx ⩽ C

(∫
Ω

(∆p(t))2− dx

)1/2

⩽ C

for all t ∈ [0, T ], and this completes the proof.

6.A Compensated compactness

Theorem 6.A.1. Let uγ , wγ ∈ L∞(0, T ;L2(Ω)), and let u∞, w∞ be the L2-weak limits of uγ , wγ
as γ → ∞, respectively. We assume that

∂uγ
∂t

∈ L2(0, T ;H−1(Ω)), wγ ∈ L2(0, T ;H1(Ω)).

Then, up a subsequence, we have∫∫
ΩT

uγwγφdxdt
γ→∞−−−−→

∫∫
ΩT

u∞w∞φdxdt,

for all φ ∈ C(0, T ;C1(Ω)).

Proof. Let ψε(x) := 1
εd
ψ(xε ) for x ∈ Rd and ζσ(t) := 1

σ ζ(t), for t > 0 be smooth mollifiers. Then,
we compute∫∫

ΩT

uγwγφdxdt =

∫∫
ΩT

uγ(wγφ− (wγφ) ⋆x ψε) dx dt+

∫∫
ΩT

uγ(wγφ) ⋆x ψε dxdt

=

∫∫
ΩT

(∫
Rd

(wγ(x)φ(x)− wγ(x− εz)φ(x− εz))ψ(z) dz

)
uγ dxdt

+

∫∫
ΩT

(uγ − uγ ⋆t ζσ)(wγφ) ⋆x ψε dxdt+

∫∫
ΩT

(uγ ⋆t ζσ)(wγφ) ⋆x ψε dx dt.

As γ → ∞, we have∫∫
ΩT

(uγ ⋆t ζσ)(wγφ) ⋆x ψε dx dt→
∫∫

ΩT

u∞w∞φdxdt.

It now remains to prove that the other terms converge to zero as ε → 0 and σ → 0. By the
Fréchet-Kolmogorov theorem, we know that∫

Ω

|(wγφ)(x)−(wγφ)(x+ k)|2 dx

⩽
∫
Ω

|wγ(x)(φ(x)− φ(x+ k))|2 dx+

∫
Ω

|φ(x+ k)(wγ(x)− wγ(x+ k)|2 dx

⩽ ω(|k|),
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where ω(|k|) → 0 as k → 0. Hence∫∫
ΩT

(∫
Rd

(wγ(x)φ(x)− wγ(x− εz)φ(x− εz))ψ(z) dz

)
uγ(x, t) dxdt

=

∫ T

0

∫
Rd

(∫
Ω

(wγ(x)φ(x)− wγ(x− εz)φ(x− εz))uγ(x, t) dx

)
ψ(z) dz dt

⩽
∫ T

0

∫
Rd

(ω(ε|z|))1/2∥uγ(t)∥L2(Ω)ψ(z) dz dt→ 0.

Now we treat the last term. For the sake of brevity, let us denote (wγφ)ε := (wγφ) ⋆x ψε∫∫
ΩT

(uγ − uγ ⋆t ζσ)(wφ)ε dx dt =

∫∫
ΩT

(∫
R
(uγ(t)− uγ(t− σs))ζ(s) ds

)
(wγφ)ε dx dt

=

∫∫
ΩT

[∫
R

(∫ t

t−σs

∂uγ(τ)

∂t
dτ

)]
(wγφ)ε dxdt

=

∫
R
ζ(s)

(∫ T

0

∫ t

t−σs

∫
Ω

∂uγ(τ)

∂t
(wγφ)ε dxdτ dt

)
ds

⩽
∫
R
ζ(s)

∫ T

0

(∫ t

t−σs

∥∥∥∥∂uγ(τ)∂t

∥∥∥∥
H−1(Ω)

dτ

)
∥(wγφ)ε∥H1(Ω) dtds

⩽ Cσ

∫
R
ζ(s)|s|

∫ T

0

∥(wγφ)ε∥H1(Ω) dtds ⩽ Cσ → 0,

as σ → 0.

6.B Convergence of the reaction terms

Now we prove that (6.16) and (6.17) hold. By the Stone-Weierstrass theorem we know that, for
any δ > 0, there exists N > 0 and {ai}Ni=1 and {Gi}Ni=1 such that∥∥∥∥∥R(y, pε)−

N∑
i=1

ai(y)Gi(pε)

∥∥∥∥∥
L∞

⩽ δ. (6.61)

Let φ ∈ L1(QT ), such that ∥φ∥L1 = 1. Since σε ⇀ σ weakly∗ in L∞((0, 1) × QT ) and pε → p
strongly in L2(QT ) as ε→ 0, we have∫∫

QT

(
N∑
i=1

∫ 1

0

σε(η)ai(η)Gi(pε) dη

)
φ(x, t) dx dt =

N∑
i=1

∫ 1

0

∫∫
QT

σε(η)ai(η)Gi(pε)φ(x, t) dxdtdη

ε→0−−−⇀
N∑
i=1

∫ 1

0

∫∫
QT

σ(η)ai(η)Gi(p)φ(x, t) dx dtdη.
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Therefore, there exists ε0 such that for all ε < ε0∫∫
QT

(
N∑
i=1

∫ 1

0

σε(η)ai(η)Gi(pε) dη −
N∑
i=1

∫ 1

0

σ(η)ai(η)Gi(p) dη

)
φdxdt ⩽ δ. (6.62)

We compute∫∫
QT

(∫ 1

0

σε(η)R(η, pε) dη −
∫ 1

0

σ(η)R(η, p) dη

)
φ(x, t) dxdt

⩽

∥∥∥∥∥
∫ 1

0

σε(η)R(η, pε) dη −
N∑
i=1

∫ 1

0

σε(η)ai(η)Gi(pε) dη

∥∥∥∥∥
L∞

∥φ∥L1

+

∫∫
QT

(
N∑
i=1

∫ 1

0

σε(η)ai(η)Gi(pε) dη −
N∑
i=1

∫ 1

0

σ(η)ai(η)Gi(p) dη

)
φdx dt

+

∥∥∥∥∥
N∑
i=1

∫ 1

0

σ(η)ai(η)Gi(p) dη −
∫ 1

0

σ(η)R(η, p) dη

∥∥∥∥∥
L∞

∥φ∥L1 ⩽ 3δ,

for ε ⩽ ε0. Since δ was chosen arbitrarily, we conclude that

Rε :=

∫ 1

0

σε(η)R(η, pε) dη ⇀

∫ 1

0

σ(η)R(η, p) dη := R, weakly∗ in L∞(QT ).

i.e. (6.16) is proven. By an analogous argument, we have

nεR(y, pε)⇀ nR(y, p), weakly∗ in L∞((0, 1)×QT ),

and this concludes the proof of (6.17).
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Incompressible limit and well-posedness of PDE models of tissue growth
Abstract

Both compressible and incompressible porous medium models have been used in the literature to describe
the mechanical aspects of living tissues, and in particular of tumor growth. Using a stiff pressure law,
it is possible to build a link between these two different representations. In the incompressible limit,
compressible models generate free boundary problems of Hele-Shaw type where saturation holds in
the moving domain. Our work aims at investigating the stiff pressure limit of reaction-advection-porous
medium equations motivated by tumor development. Our first study concerns the analysis and numerical
simulation of a model including the effect of nutrients. Then, a coupled system of equations describes the
cell density and the nutrient concentration. For this reason, the derivation of the pressure equation in
the stiff limit was an open problem for which the strong compactness of the pressure gradient is needed.
To establish it, we use two new ideas: an L3-version of the celebrated Aronson-Bénilan estimate, also
recently applied to related problems, and a sharp uniform L4-bound on the pressure gradient. We further
investigate the sharpness of this bound through a finite difference upwind scheme, which we prove to
be stable and asymptotic preserving. Our second study is centered around porous medium equations
including convective effects. We are able to extend the techniques developed for the nutrient case, hence
finding the complementarity relation on the limit pressure. Moreover, we provide an estimate of the
convergence rate at the incompressible limit. Finally, we study a multi-species system. In particular,
we account for phenotypic heterogeneity, including a structured variable into the problem. In this case,
a cross-(degenerate)-diffusion system describes the evolution of the phenotypic distributions. Adapting
methods recently developed in the context of two-species systems, we prove existence of weak solutions
and we pass to the incompressible limit. Furthermore, we prove new regularity results on the total
pressure, which is related to the total density by a power law of state.

Keywords: porous medium equation, tumor growth, Aronson-Bénilan estimate, free boundary, Hele-
Shaw problem

Résumé

Les modèles de milieux poreux, en régime compressible ou incompressible, sont utilisés dans la littérature
pour décrire les propriétés mécaniques des tissus vivants et en particulier de la croissance tumorale. Il est
possible de construire un lien entre ces deux différentes représentations en utilisant une loi de pression
raide. Dans la limite incompressible, les modèles compressibles conduisent à des problèmes de frontières
libres de type Hele-Shaw. Nos travaux visent à étudier la limite de pression raide des équations de
type milieu poreux motivées par le développement tumoral. Notre première étude concerne l’analyse et
la simulation numérique d’un modèle incluant l’effet des nutriments. Ensuite, un système d’équations,
dont le couplage est délicat, décrit la densité cellulaire et la concentration en nutriments. Pour cette
raison, la dérivation de l’équation de pression dans la limite incompressible était un problème ouvert
qui nécessite la compacité forte du gradient de pression. Pour l’établir, nous utilisons deux nouvelles
idées : une version L3 de la célèbre estimation d’Aronson-Bénilan, également utilisée récemment pour
des problèmes connexes, et une estimation L4 sur le gradient de pression (où l’exposant 4 est optimal).
Nous étudions en outre l’optimalité de cette estimation par un schéma numérique upwind aux différences
finies, que nous montrons être stable et asymptotic preserving. Notre deuxième étude est centrée sur
l’équation de milieux poreux avec effets convectifs. Nous étendons les techniques développées pour le
cas avec nutriments, trouvant ainsi la relation de complémentarité sur la pression limite. De plus, nous
fournissons une estimation du taux de convergence à la limite incompressible. Enfin, nous étudions un
système multi-espèces. En particulier, en tenant compte de l’hétérogénéité phénotypique, nous incluons
une variable structurée dans le problème. Par conséquent, un système de diffusion croisée et dégénérée
décrit l’évolution des distributions phénotypiques. En adaptant des méthodes récemment développées
pour des systèmes à deux équations, nous prouvons l’existence de solutions faibles et nous passons à la
limite incompressible. En outre, nous prouvons de nouveaux résultats de régularité sur la pression totale,
qui est liée à la densité totale par une loi de puissance.

Mots clés : équation des milieux poreux, croissance tumorale, estimation d’Aronson-Bénilan, frontière
libre, problème de Hele-Shaw

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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