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Abstract

In this thesis I show a triple new connection we found between quantum integra-

bility, N = 2 supersymmetric gauge theories and black holes perturbation theory.

I use the approach of the ODE/IM correspondence between Ordinary Di↵erential

Equations (ODE) and Integrable Models (IM), first to connect basic integrability

functions - the Baxter’s Q, T and Y functions - to the gauge theory periods. This

fundamental identification allows several new results for both theories, for exam-

ple: an exact non linear integral equation (Thermodynamic Bethe Ansatz, TBA)

for the gauge periods; an interpretation of the integrability functional relations

as new exact R-symmetry relations for the periods; new formulas for the local

integrals of motion in terms of gauge periods. This I develop in all details at least

for the SU(2) gauge theory with Nf = 0, 1, 2 matter flavours. Still through to

the ODE/IM correspondence, I connect the mathematically precise definition of

quasinormal modes of black holes (having an important role in gravitational waves’

obervations) with quantization conditions on the Q, Y functions. In this way I also

give a mathematical explanation of the recently found connection between quasi-

normal modes and N = 2 supersymmetric gauge theories. Moreover, it follows a

new simple and e↵ective method to numerically compute the quasinormal modes

- the TBA - which I compare with other standard methods. The spacetimes for

which I show these in all details are in the simplest Nf = 0 case the D3 brane in the

Nf = 1, 2 case a generalization of extremal Reissner-Nordström (charged) black

holes. Then I begin treating also the Nf = 3, 4 theories and argue on how our

integrability-gauge-gravity correspondence can generalize to other types of black

holes in either asymptotically flat (Nf = 3) or Anti-de-Sitter (Nf = 4) space-

time. Finally I begin to show the extension to a 4-fold correspondence with also

Conformal Field Theory (CFT), through the renowned AdS/CFT correspondence.
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مهسا به تقديم

“Questions posed by nature are vastly deeper and more fruitful than ones we humans
would tend to pose for ourselves.”

حامد اركانى نيما
(Strings 2021)

“La storia della scienza può servire a renderci consapevoli del fatto che la razionalità, il
rigore logico, la controllabilità delle asserzioni, la pubblicità dei risultati e dei metodi, la
stessa struttura del sapere scientifico come qualcosa che è capace di crescere su se stesso,
non sono categorie perenni dello spirito né dati eterni della storia umana, ma conquiste
storiche, che, come tutte le conquiste, sono, per definizione, suscettibili di andare per-
dute.”

Paolo Rossi

(La nascita della scienza moderna in Europa)
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1. Summary
In our work [1], I and my supervisor Prof. D. Fioravanti found a novel kind of correspon-
dence betweenN = 2 supersymmetric deformed gauge theory (or super Yang-Mills, SYM)
and integrable models (IM). Our basic result was that the gauge periods a, aD (fromwhich
one computes the prepotential) are directly connected to the Baxter’s Q and T functions.
Such functions can be expanded in the integrals of motion of some two dimensional inte-
grable model and satisfy certain exact functional relations among them. This connection
allowed several new results for both theories, for example: an exact non linear integral
equation (Thermodynamic Bethe Ansatz, TBA) for the gauge periods; an interpretation of
the integrability functional relations as new exact R symmetry relations for the periods;
new formulas for the local integrals of motion in terms of gauge periods. The general
method we used is the ODE/IM correspondence [2, 3, 4] between Ordinary Differential
Equations (ODEs) and Integrable Models. It allows to derive the characteristic structures
of integrable models by studying the connection coefficients of the solutions of ordinary
differential equations.
All this we showed to hold for pure (Nf = 0) SU(2) SYM in the Nekrasov-Shatashvili

(NS) limit of the Ω-background (a deformation of spacetime used to compute instanton
contributions to the partition function) and self-dual Liouville integrable model. These
may seem a very particular choice of SYM and IM, but already back then it was intuitively
clear to us that our correspondence should hold much more generally. Thus about two
years ago we begun a long and meticulous generalization and extension work, with the
new collaborator Dr. Hongfei Shu, to the Nf = 1 and Nf = 2 SU(2) NS-deformed gauge
theories, in correspondence with more general IMs, which ended up in the paper [5].
As interesting as this new kind of gauge-integrability correspondence may be regarded,

arguably much more interesting developments followed. In fact, the very same NS de-
formed N = 2 SU(2) gauge theories were found to be useful to compute quasinormal
modes (QNMs) of black holes (BHs) and black branes [6, 7, 8, 9]. This constitutes an un-
expected application of supersymmetric gauge theory, specifically to already experimen-
tally observable/testable physics in the form of astrophysical black holes as modelled by
either General Relativity (GR) or String Theory (ST) or modified theories of gravity, which
seem to vastly increase the general interest and trust to the whole subject [10].
To our wonder, as soon as I began doing research on this new line, under inspiration

from also my PhD abroad visit’s supervisor Prof. Konstantin Zarembo, I immediately
found a new fundamental connection between QNMs and other BH observables to also
the integrable models we were involved connecting to N = 2 NS-deformed SU(2) gauge
theories. Our other work [11] rapidly followed, were we showed that QNMs are nothing
but the zeros (Bethe roots) of the Baxter’s Q function - as defined in the ODE/IM corre-
spondence approach - and can be computed very efficiently with a new method tipical
of integrability: the TBA. This there we sketched for the Nf = 0 and Nf = 2 SU(2) gauge
theories, in correspondence with the D3 brane and the intersection of four stacks of D3
branes, respectively. The latter can be regarded as a mathematical generalization of the
extremal (maximally charged) Reissner-Nordström (RN) BH.
In the subsequent work [5], beyond showing the extension of the integrability-gauge

10



correspondence to the SU(2) Nf = 1, 2 theory, we have shown the generalization of the
integrability-gravity correspondence to also Nf = 1 theory. It corresponds physically to
just the null entropy limit in the system of intersection of four stacks of D3 branes.
Moreover here I begin setting up the same triple gauge-integrability-gravity correspon-

dence for the Nf = (0, 2) and Nf = 3 SU(2) theory. In this case the gravity counterpart
are asymptotically flat (non-extremal) general relatity (GR) black holes or various string
theory black holes (for instance, fuzzballs). The integrability counterpart is less clear for
the moment, though.
Finally, I begin extending the triple correspondence to 4-fold correspondence, by study-

ing asymptotically AdS black holes (exploiting AdS/CFT correspondence). In particular I
connect BTZ (AdS3) black hole and its CFT2 counterpart, to class S gauge theory and the
integrable XXZ spin chain at the supersymmetric point, gaining among other things a new
understanding of the poles skipping phenomenon for the retarded correlator in the CFT2.

1.1. Acknowledgments
Among the various collaborators I have been fortunate enough to have, I especially thank
my supervisor at INFN and Bologna U. Prof. Davide Fioravanti, as well as my hosts in
NORDITA Prof. Konstantin Zarembo and Dr. Hongfei Shu (now BIMSA). An exceptional
thank I would like to give to also Prof. Alba Grassi (CERN, Genève U.), for connecting for
the first time our theoretical research field to astrophysical black holes [6].

Daniele Gregori
BRESCIA, Italy
May 2, 2022

(Rev. Sept. 29, 2022)
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2. Introduction to quantum Seiberg-Witten theory

2.1. General N = 2 Supersymmetry
2.1.1. General Supersymmetry algebra

Supersymmetry (SUSY) is broadly speaking a conjectured symmetry between matter and
radiation [12]. It is thought to be a correspondence between fermion (matter) and boson
(force or radiation) particle, by which for every known elementary particle of one kind
there exists another particle of the other kind and viceversa. Supersymmetry helps ex-
plaining several theoretical short- comings of the Standard Model, but observations de-
mand that supersymmetry, if present at all, be broken at the observed energy scales [13].
Mathematically, such correspondence can be expressed in terms of the action super-

symmetric charges Qiα, with i = 1, 2, ..., N , which indeed exchange boson and fermion
particles. Qiα (i = 1, 2, ...,N ) are Majorana fermions. The (graded) algebra they satisfy is

{Qiα, Q̄
j

β̇
} = 2δjiσ

µ

αβ̇
Pµ

[Qiα, Pµ] = 0

[Q̄iα̇, Pµ] = 0

[Qiα,M
µν ] = (σµν)βαQiβ

[Q̄α̇
i ,M

µν ] = (σ̄µν)α̇
β̇
Qβ̇

i

(2.1)

and it is by construction an extension of Poincaré algebra. Different pairing in the anti-
commutators gives the central charges Zij

{Qiα, Qjβ} = εαβZij

{Q̄i
α̇, Q̄

j

β̇
} = εα̇β̇(Zij)

∗ .
(2.2)

It holds Zij = −Zji. On the SUSY generators Qiα it can act at most an U(N) internal sym-
metry (called R-symmetry) group, with generators Br:

[Qiα, Br] = (br)
j
iQjα

[Q̄i
α̇, Br] = −(b∗r)

i
jQ̄

j
α̇ .

(2.3)

2.1.2. Superfields

AnN = 1 chiral superfield φ (0, 12) is made of a scalar z, fermion ψ and auxiliary field f . It is
denoted in terms of spin components (0, 12). Using the superspace coordinate yµ = xµ+iθσµθ̄
it can be expressed as

φ(y, θ) = z(y) +
√
2θψ(y)− θθf(y) . (2.4)

Under SUSY transormations the N = 1 chiral superfield’s components vary as
δz =

√
2εψ

δψ =
√
2i∂µzσ

µε̄−
√
2fε

δf =
√
2i∂µψσ

µε̄ .

(2.5)
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A N = 1 vector superfield V is defined to have spin components (12 , 1) and it is endowed
of a gauge symmetry

V → V + φ+ φ† . (2.6)
In the so-called Wess-Zumino gauge it can be expanded in terms of components fields as

V = θσµθ̄vµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) . (2.7)

TheN = 2 vector superfield is defined to have spin components (0, 12 ,
1
2 , 1) and thus it is the

sumofN = 1 chiral andN = 1 vector superfield. All fields are in the adjoint representation
of the gauge group. N = 2 hypermultiplet has spin components (−1

2 , 0, 0,
1
2) is composed

of 2 complex scalar fields and 1 Dirac fermion, with 2 complex auxiliary fields and thus
it describes matter. In terms of N = 1 superfields it is the composition of a chiral and
antichiral N = 1 superfields.

2.1.3. N = 2 supersymmetric microscopic Lagrangian

The exact or so-calledmicroscopic Lagrangian for N = 2 SUSY is

LN=2
YM =

1

32π
$
(
τ

∫
d2θTrWαW

α

)
+

∫
d2θd2θ̄Tr φ†e2gV φ (2.8)

= Tr
(
−1

4
FµνF

µν − iλσµDµλ̄− iψσµDµψ̄ + (Dµz)
†Dµz +

θ

32π2
g2FµνF̃

µν +
1

2
D2 + f †f

+ i
√
2gz†{λ,ψ}− i

√
2g{ψ̄, λ̄}z + gD[z, z†]

)
. (2.9)

The kinetic term for the vector field

Wα = −1

4
D̄D̄DαV , (2.10)

is constructed through the covariant derivative

Dα =
∂

∂θα
+ iσµ

αβ̇
θ̄β̇∂µ (2.11)

and it reads explicitly

Wα(y) = −iλα(y) + θαD(y) + i(σµνθ)αFµν(y) + θθ(σµDµλ̄(y))α , (2.12)

with Fµν = ∂µvν − ∂νvµ − i
2 [vµ, vν ].

The microscopic action is invariant under the U(1) R-symmetry acting as

φ→ e2iαφ Wα → eiαWα θ → eiαθ . (2.13)

Instanton corrections break the continuous U(1) symmetry group to the discrete symme-
try group Z8.
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The auxiliary fields equations of motion are

fa = 0 (2.14)
Da = −g[z, z†]a (2.15)

and when inserted in LN=2
YM produce a term called scalar potential

V (z, z†) =
1

2
g2Tr ([z, z†])2 . (2.16)

2.1.4. Supersymmetry breaking

Unbroken SUSY requires V = 0. For SU(2) gauge group V (z) = 0 requires classically that
z = 1

2a
(0)σ3, or including quantum fluctuations

〈z〉 = 1

2
a(0)σ3 . (2.17)

Gauge transformations can take a(0) → −a(0) and therefore

u = 〈tr z2〉 (2.18)

labels gauge inequivalent vacua: the moduli space M. u and −u correspond to physically
equivalent vacua related by the Z8 R-symmetry. The gauge symmetry is broken as SU(2) →
U(1).

2.2. Classical pure Seiberg-Witten theory
TheWilsonian effective action SW is defined as the generating function of the vertex func-
tions Γ except that all loop momenta are integrated down to an infrared cut-off µ. In
particular, the low energy Wilsonian effective action SW for U(1) is

1

16π
$
∫

d4x

[
1

2

∫
d2θF ′′(φ)W αWα +

∫
d2θd2θ̄φ†F ′(φ)

]
, (2.19)

where F is the prepotential, a holomorphic function.
One can define the dual field and dual prepotential as

φD =
∂F(φ)

∂φ

∂FD(φD)

∂φD
= −φ , (2.20)

or
a(0)D =

∂F
∂a(0)

∂FD

∂a(0)D

= −a(0) . (2.21)

Similarly for vectors, Wα
D is defined relative to VD, which is a lagrange multiplier in the

functional integral for the Bianchi identity $(DαW α) = 0. The effective action is duality
invariant.
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The coupling constant

τ(a(0)) = F ′′(a(0)) =
θ(a(0))

2π
+

4πi

g2(a(0))
(2.22)

enjoys a weak-strong coupling duality

τD(a
(0)
D ) = − 1

τ(a(0))
. (2.23)

The duality symmetry (
φ
φD

)
→
(
0 −1
1 0

)(
φ
φD

)
(2.24)

and the symmetry (
φ
φD

)
→
(
1 n
0 1

)(
φ
φD

)
(2.25)

generate Sl(2,Z) group of duality symmetries.
All fields (ne, nm) satisfy the BPS condition

m2 = 2|Z|2 , Z = nma
(0)
D (u) + nea

(0)(u) . (2.26)

These states are collective excitations - solitons. For example, themagnetic monopole (0, 1)
is described by a N = 2 hypermultiplet H which couples locally to the dual fields φD and
WD. Also, the electron (1, 0) is described byH which couples locally to φ andW . Roughly in
the circle |u| < Λ2 we have only the monopole ±(0, 1) and the dyon ±(±1, 1), while outside
the circle we have also all other dyons ±(n, 1) and theW bosons (0,±1).
We remark that we are considering here only the pure (with zero number of fundamen-

tal matter flavoursNf = 0) Seiberg-Witten (SW) theory. For this theory, the Seiberg-Witten
cycles or Seiberg-Witten periods are

a(0)(u,Λ) =
1

2π

∫ π

−π

√
2u− 2Λ2 cos z dz (2.27)

= Λ
√

2(u/Λ2 + 1) 2F1(−
1

2
,
1

2
, 1;

2

1 + u/Λ2
) , (2.28)

a(0)D (u,Λ) =
1

2π

∫ arccos(u/Λ2)−i0

− arccos(u/Λ2)−i0

√
2u− 2Λ2 cos z dz (2.29)

= iΛ
(1− u/Λ2)

2
2F1(

1

2
,
1

2
, 2;

1− u/Λ2

2
) , (2.30)

We notice that they are given by the well-known Gauss Hypergeometric function 2F1. They
are integrals of the SW differential

λ =
√
2u− 2Λ2 cos z . (2.31)

Inverting a(0)(u) as u(a(0)), substituting a(0)D (a(0)) = ∂F
∂a(0)

and integrating one can obtain pre-
potential F(a(0)). This is, in a nutshell, classical Seiberg-Witten (SW) theory [14, 15, 16].
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2.3. Ω background
Quantum Seiberg-Witten (qSW) theory is essentially the effective N = 2 supersymmetric
gauge theory in the spacetime deformation called Ω background. The latter deformation
is a mere an artifact, but it is very useful to compute instanton corrections to the partition
function, called Nekrasov partition function.
The Ω background is introduced formally as follows. Some differential geometry (or

topology)’s preliminaries to understand it are given in appendix A. Given the 4D N = 2
theory T4, one can find a 6D N = 1 theory T6 whose dimensional reduction gives T4. Then
one should compactify T6 on a manifold X6 which is an R4 vector bundle over the two-
torus T2 of area r2, with a flat Spin(4) = SU(2)+ × SU(2)− connection, whose holonomies
around the two non-contractible cycles are

(
e

ir
2 $(ε1+ε2)σ3 , e

ir
2 $(ε1−ε2)σ3

)
,
(
e

ir
2 %(ε1+ε2)σ3 , e

ir
2 %(ε1−ε2)σ3

)
. (2.32)

Then one should embed also the SU(2)+ part of the flat connection into the R-symmetry
SU(2) of T6. Finally, one should take the limit r → 0 while keeping the complex numbers
ε1, ε2 finite and obtain thus theΩ background. We remark that theΩ background is needed
to compute instanton contributions to the partition function [17].

2.4. Nekrasov-Shatashvili limit and pure quantum Seiberg-Witten
theory

In this work, we will need to consider only the Nekrasov-Shatashvili (NS) limit of the Ω
background ε2 → 0, ε1 (= 0 [18].
For the pure qSW theory in the NS limit, the expectation value for scalar field is

〈z̃〉 = 1

2
a(ε1, u,Λ)σ3 (2.33)

where a is the quantum SW period. This latter corresponds also to the Floquet exponent
for the Mathieu equation:

−ε
2
1

2

d2

dz2
ψ(z) + [Λ2 cos z − u]ψ(z) = 0 . (2.34)

that is the quasi-periodicity index of the quasiperiodic solution (or wave function)

ψ(z + 2π) = e
2πi
! aψ(z) (2.35)

One can obtain in a similar way from the quasiperiodic wave function the quantum SW
dual period [19]

ψ(arccos u

Λ2
) = e

2πi
! aDψ(− arccos u

Λ2
) . (2.36)

It is common to call the differential equationwhose The logarithmic derivative of thewave
function P(z) = −i d

dzψ(z) is called also quantum SW differential.
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2.5. Quantum Seiberg-Witten theory with fundamental matter
The Seiberg-Witten (SW) curve for N = 2 SU(2) with Nf fundamental matter flavour hy-
permultiplets is given by

K(p)− Λ̄

2
(K+(p)e

ix +K−(p)e
−ix) = 0 (2.37)

where

Λ̄ =






Λ2
0 Nf = 0

Λ3/2
1 Nf = 1

Λ1
2 Nf = 2

Λ1/2
3 Nf = 3

√
q Nf = 4 .

(2.38)

K(p) =






p2 − u Nf = 0

p2 − u Nf = 1

p2 − u+ Λ2
2
8 Nf = 2

p2 − u+ Λ3
4 (p+

m1+m2+m3
2 ) Nf = 3

(1 + q
2)p

2 − u+ q
4p
∑4

i=1 mi +
q
8

∑
i<j mimj Nf = 4 .

(2.39)

K+(p) =
N+∏

j=1

(p+mj) , K−(p) =

Nf∏

j=N++1

(p+mj) . (2.40)

u is the Coulomb moduli parameter and mi are the masses 1 ≤ N+ ≤ Nf . By introducing
ySW = Λ̄K+(p)eix −K(p) we get the SW curve in standard form

y2SW = K(p)2 − Λ̄2K+(p)K−(p) (2.41)

The SW differential is then defined to be

λ = pd ln K−

K+
− 2πip dx (2.42)

and defines a symplectic form dλ = dp ∧ dx, which doubly integrated gives the SW peri-
ods [20]

a =

∮

A

p(x) dx aD =

∮

B

p(x) dx . (2.43)

The quantum SWcurve is obtained by letting p become the differential operator−i! d
dx[20]:

(
K(−i!∂x))−

Λ̄

2
(eix/2K+(−i!∂x)eix/2 + e−ix/2K−(−i!∂x)e−ix/2

)
ψ(x) = 0 . (2.44)

Let Nf = 0 and x = −iy. We get

−!2 d2

dy2
ψ + (Λ2

0 cosh y + u)ψ = 0 (2.45)
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Let Nf = 1 and x = −iy. We get

−!2 d2

dy2
ψ +

[
1

16
Λ3

1e
2y +

1

2
Λ3/2

1 e−y +
1

2
Λ3/2

1 m1e
y + u

]
ψ = 0 (2.46)

Let Nf = 1 and x = −iy, y → y − 1
2 lnΛ1 + ln 2. We get

−!2 d2

dy2
ψ +

[
1

4
Λ2

1(e
2y + e−y) + Λ1m1e

y + u

]
ψ = 0 (2.47)

Let Nf = 2, N+ = 1 and x = −iy. We get

−!2 d2

dy2
ψ +

[
1

16
Λ2

2(e
2y + e−2y) +

1

2
Λ2m1e

y +
1

2
Λ2m2e

−y + u

]
ψ = 0 (2.48)

Let Nf = 2, N+ = 2 and x = −iy. We get

−!2 d2

dy2
ψ +

e2yΛ2
2 (m1 −m2)

2 + ey
(
Λ3

2 − 2Λ2h̄
2 + 8Λ2m1m2 − 8Λ2u

)
+ 16u− 6Λ2

2 + 8Λ2e−y

4 (Λ2ey − 2)2
ψ = 0

(2.49)
Let Nf = 3, N+ = 2 and x = −iy. We get

− !2 d2

dy2
ψ +

4e2yΛ3 (m1 −m3)
2 + 4ey

√
Λ3

(
−2h̄2 + 8m1m3 + Λ3m2 − 8u

)

16
(√

Λ3ey − 2
)2 ψ (2.50)

+
Λ2

3 + 64u− 24Λ3m2 + 4e−y
√
Λ3 (8m2 − Λ3) + 4Λ3e−2y

16
(√

Λ3ey − 2
)2 ψ = 0 (2.51)

Let Nf = 4, N+ = 2 and x = −iy.

− !2 d2

dy2
ψ +

1

16
(
−2

√
q cosh(y) + q + 2

)2
[
4e2yq(m1 −m2) + 4e−2yq(m3 −m4)

2 (2.52)

+ ey
(
−4m2

1q
3/2 + 12m1m2q

3/2 + 32m1m2
√
q − 4m2

2q
3/2 + 4m3m4q

3/2 − 4q3/2h̄2 − 32
√
qu− 8

√
qh̄2
)

(2.53)
+ e−y

(
4m1m2q

3/2 − 4m2
3q

3/2 + 12m3m4q
3/2 + 32m3m4

√
q − 4m2

4q
3/2 − 4q3/2h̄2 − 32

√
qu− 8

√
qh̄2
)

(2.54)
+ 32qu+ 16qh̄2 + 64u+m2

1q
2 − 2m1m2q

2 − 24m1m2q − 2m1m3q
2 − 2m1m4q

2 +m2
2q

2 (2.55)

− 2m2m3q
2 − 2m2m4q

2 +m2
3q

2 − 2m3m4q
2 − 24m3m4q +m2

4q
2
]
ψ = 0 (2.56)

2.6. A comment on phenomenology
The missed discovery of supersymmetry at the electro-weak scale after the first run of
LHC in 2013 generated a lot of skepticism towards such paradigm, especially among ex-
perimentalists. However, testing SUSY in general, independently from each particular
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model, “is an extremely challenging task”, so the LHC results do not exclude some partic-
ular realizations of supersymmetry which remain untested [21]. Still, the observed Higgs
mass is compatible with supersymmetry only if the superpartners are quite heavy (tens of
TeV) and beyond the current reach of LHC. Moreover, extended supersymmetry models
(that is, N = 2 and N = 4 supersymmetry) are very interesting for their mathematical
richness which allow to apply them beyond particle physics [22, 23].
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3. Introduction to quasinormal modes of black holes

3.1. General context
Very recently, on 14th September 2015, the LIGO experiment has revealed the first grav-
itation wave signal of the history of humankind [24]. The enormous gravitational field
variations which produce such oscillations of spacetime itself are most tipically realized
in events of black holes merging. Thus these revelations (which now counts in more than
one-hundred [25]) are first of all very effective means for studying black holes which, in
the words of the great astrophysicist S. Chandrasekhar:

“are the most perfect macroscopic objects there are in the universe: the only
elements in their construction are our concepts of space and time. And since
the general theory of relativity provides only a single unique family of solutions
for their descriptions, they are the simplest objects as well.” [26]

Black holes merging events can be naturally divided in three phases:
1. inspiral, in which the two original black holes approach each other increasingly

closely;

2. merging, in which the chaotic behaviour is not easy to understand by analytical
means;

3. ringdown, when the final merged black hole is formed and spacetime oscillates in a
damped way swiflty down to zero.

Perturbation theory can be used to study this third and last ringdown phase. The charac-
teristic frequencies of oscillations of spacetime in it are calledQuasinormalModes (QNMs).
The term ”quasinormal”, rather than ”normal”, is used because perturbed BH spacetimes
are instrinsically dissipative due to the presence of an event horizon (the system is not
time-symmetric). Indeed, in general, the QNMs ωn have an imaginary part $ωn < 0, so
that the perturbation they describe is damped to zero as t → ∞ [27].
QNMs provide informations on the manner in which gravitational waves, incident on

the black-hole, are scattered and absorbed. Thus on the astrophysical side, they can be
used to prove that the compact objects observed are indeed rotating BHs, that is, QNMs
can be used to infer mass and angular momentum of BHs and to test the no-hair theorem
of general relativity [27]. Also on the theoretical side, such information from QNMs

“has a more trascendent interest: it provides insight, in its simplest and purest
context, into the deeper aspects of space time as conceived in general relativity;
and it reveals the analytical richness of the theory.” [26]

Moreover, nowadays the importance of QNMs is not confined to a better understanding
of General Relativity. Indeed, since many decades, a pressing issue in theoretical physics
is to reconcile this theory with the other pillar of modern physics, namely Quantum Me-
chanics. Hence the astrophysical dark compact objects we name “black holes” could be
far bettermodeled bymeans of, for instance String Theory, rather than General Relativity.
Thus argues for instance S. D. Mathur:
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“The black hole information paradox is probably the most important issue for
fundamental physics today. If we cannot understand its resolution, then we
cannot understand how quantum theory and gravity work together. [...] I con-
cludewith a brief outline of how the paradox is resolved in string theory: quan-
tum gravity effects are not confined to a bounded length [...], and the informa-
tion of the hole is spread thorughout its interior, creating a ’fuzzball’.” [28]

Thus with gravitational wave astronomy it has become possible to make progress in
also fundamental physics, testing General Relativity (GR) in extreme regimes and in par-
ticular to discriminate between GR Black Holes (BHs) and Exotic Compact Objects (ECOs)
or Fuzzballs appearing in Modified Theories of Gravity or String Theory. This is possible
importantly again by analysing the Quasinormal Modes. At later ringdown stages, ECOs
and fuzzballs produce a peculiar train of echoes, probing their internal cavity and not
only their external walls, with significant deviations from GR. The crucial role played by
QNMs in discriminating BHs from fuzzballs or other ECOs motivated renewed effort in
their determination with higher and higher accuracy [7, 9, 29].

3.2. Black hole perturbation theory
The Einstein-Hilbert action for a d-dimensional spacetime with cosmological constant Λ is

S =
1

16πG

∫
ddx

√
−g(R− 2Λ+ Lm) (3.1)

where g = detgµν , R is the Ricci scalar and Lm is the Lagrangian for the matter fields cou-
pled to gravity. It gives rise to the Einstein equations

Gµν + Λgµν = 8πGTµν (3.2)

and must be supplemented by the equation of motion for the matter fields Φ. In general
these equations form a complicated system of non-linear partial differential equations
(PDEs). However, they can be greatly simplified into linear equations in the approxi-
mation of small perturbations hµν , φ of the background fields gBG

µν , ΦBG: gµν = gBG
µν + hµν ,

Φ = ΦBG + φ [27].
Maximally symmetric vacuum solutions are Minkovski, de Sitter (dS) and anti-de Sitter

(AdS) spacetimes. AdS spacetimes arise also as natural groundstates of supergravity the-
ories and as near-horizon geometry of extremal BHs and p-branes in string theory. The
non-rotating, uncharged, Schwarschild AdS (SAdS) BH has the line element [27]

ds2 = −fdt2 + f−1dr2 + r2dΩ2
d−2 (3.3)

where dΩ2
d−2 is the metric of the (d− 2) sphere, f(r) is

f(r) = 1 +
r2

L2
− rd−3

0

rd−3
(3.4)

where L is the AdS curvature radius related to the cosmological constant as

L2 = −(d− 2)(d− 1)

2Λ
(3.5)
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and the parameter r0 is related to the massM as

M =
(d− 2)Ad−2r

d−3
0

16π
, Ad−2 =

2π(d−1)/2

Γ(d−1
2 )

(3.6)

3.2.1. Scalar perturbations

To obtain the physical quasinormal associated to gravitational waves, it is necessary to
study tensor perturbations of Einstein’s field equations. In that way, after linearization
and choice of gauge, one reduces Einstein’s 10 coupled non-linear PDEs to just 2 linear
ODEs: the Regge-Wheeler and Zerilli equation [30]. However, for more purely theoretical
investigations it is often considered the simplified though completely analogous problem
with scalar perturbations, in which the physical equation of interest is the Klein-Gordon
equation in curved spacetime [7].
The Lagrangian for a complex scalar field with conformal comping γ is

Lm = −(∂µΦ)
†∂µΦ− d− 2

4(d− 1)
γRΦ†Φ−m2Φ†Φ (3.7)

For γ = 1,m = 0 the action is invariant under the conformal transformations gµν → Ω2gµν ,
Φ → Ω1−d/2Φ. Consider a massless scalar m = 0. The equations of motion are

∇µ∇µΦ =
d− 2

4(d− 1)
γRΦ , Gµν + Λgµν = 8πGTµν (3.8)

The equations for the linear perturbations hµν and φ decouple. The scalar fluctuation sat-
isfies

1√
−gBG

∂µ
(√

−gBGg
µν
BG∂νφ

)
=

d(d− 2)γ

4L2
φ (3.9)

With a stationary and spherically symmetricmetric the perturbationdecomposes in spher-
ical harmonics Ylm

φ(t, r, θ) =
∑

l,m

e−iωtΨs=0(r)

r(d−2)/2
Ylm(θ) (3.10)

wherewe have omited the integral over frequency in the Fourier transform. The equation
for the radial part Ψs=0(r) is

f 2d
2Ψs=0

dr2
+ ff ′dΨs=0

dr
+ (ω2 − Vs=0)Ψs=0 = 0 (3.11)

with potential

Vs=0 = f

[
l(l + d− 3)

r2
+

d− 2

4

(
(d− 4)f

r2
+

2f ′

r
+

dγ

L2

)]
. (3.12)

By introducing the “tortoise” coordinate r∗

dr∗ =
1

f
dr (3.13)
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such that the horizon r → r+ is at r∗ → −∞ and infinity at r∗ → ∞ or r∗ → const. for
respectively flat or SAdS spacetime, we can reduce the equation to canonical form [27]

d2Ψs=0

dr2∗
+ (ω2 − Vs=0)Ψs=0 = 0 (3.14)

3.3. Mathematical definition of quasinormal modes
We recall the definition of quasinormal modes following [30]. A linear perturbation of a
BH is a solution Φ(t, x) of some linear PDE derived from the equations for the fields and
metric. It has the form {

+
∂2

∂t2
− ∂2

∂w2
+ U(w)

}
Φ(t, w) = 0 , (3.15)

where w here is a coordinate (the “tortoise” coordinate) such that the BH horizon is put at
w → −∞ and spacetime infinity at w → +∞. If we take the Laplace transform of Φ

Ψ̂(s, w) =

∫ ∞

0

e−stΦ(t, w) dt , (3.16)

then f̂ satisfies the non-homogeneous ODE:
{
− ∂2

∂w2
+ U(w) + s2

}
Ψ̂(s, w) = −I(s, w) , (3.17)

with the non-homogeneous term given by the initial time values of the perturbation as

I(s, w) = −sΨ(t, w)

∣∣∣∣∣
t=0

− ∂Ψ(t, w)

∂t

∣∣∣∣∣
t=0

. (3.18)

The corresponding homogeneous equation is exactly the ODEwe are going to study in the
next sections {

− ∂2

∂w2
+ U(w) + s2

}
Ψ(s, w) = 0 . (3.19)

Its solutions bounded at w → ±∞, for -s > 0, are

Ψ+(s, w) ∼ e−sw , w → +∞
Ψ−(s, w) ∼ esw , w → −∞ .

(3.20)

The solution of the homogenous equation is then found to be given by the Green function
G as

Ψ̂(s, w) =

∫ ∞

−∞
G(s, w, w′)I(s, w′)dw′ , G(s, w, w′) =

1

W [Ψ−,Ψ+]
Ψ−(s, w<)Ψ+(s, w>) , (3.21)

with
w< = min(w′, w) , w< = max(w′, w) . (3.22)
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Then taking the antiplace transform of Ψ̂

Φ(t, w) =
1

2πi

∫ ε+i∞

ε−i∞
estΨ̂(s, w) ds , (3.23)

we get the original perturbation as

Φ(t, w) =
1

2πi

∫ ε+i∞

ε−i∞
est
∫ ∞

−∞
G(s, w, w′)I(s, w′) dw′ ds

=
1

2πi

∮
est

1

W (s)

∫ ∞

−∞
Ψ−(s, w<)Ψ+(s, w>)I(s, w′) dw′ ds

=
∑

q

esqtRes
(

1

W (s)

)∣∣∣∣∣
sq

∫ ∞

−∞
Ψ−(sq, w<)Ψ+(sq, w>)I(sq, w′) dw′ .

(3.24)

The crucial point for us is that the perturbation is a sum over the residues of the inverse
wronskian of the regular solutions (3.20):

W (sn) = W [Ψ+,Ψ−] = 0 . (3.25)

Besides, condition (3.25) means that at these special points the two solutions (3.20) (in
general independent) become linearly dependent. By setting s = iω we recover the usual
intuitive definition of QNMs as the frequencies of plane wave solutions both incoming at
the horizon and outgoing at infinity. However, as well explained in [30], this last defini-
tion is not mathematically rigorous, since it would lead to diverging boundary conditions.
Instead, the QNMs ωn have an imaginary part $ωn < 0, so that the perturbation they de-
scribe is damped to zero as t → ∞.

3.4. Methods of computation of quasinormal modes
We report here two of the main methods of computation of QNMs. The first is approxi-
mate, the second is exact.

3.4.1. The WKB approximation

As is typical of normal modes of vibration of any object, also quasinormal modes of black
holes can be thought of as waves travelling around the BH. More precisely, QNMs can be
interpreted aswaves rapped at the unstable null circular geodesic (called ”light-ring”) and
slowly leaking out [27].
This intuitive idea is related to the more rigorous WKB approximation procedure for

computing QNMs. Indeed in that approach one expands the coefficient Q = ω2 − V of the
ODE for the perturbation

d2Ψ

dr2∗
+QΨ = 0 (3.26)
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around the extremum of the potential r0, which also defines the light ring. In this approx-
imation one gets the ODE

d2Ψ

dr2∗
+

[
Q0 +

1

2
Q′′

0(r∗ − r0)
2

]
Ψ = 0 (3.27)

where Q0 stands for Q(r0). (3.27) has the parabolic cylinder form

d2w

dz2
+ (ν +

1

2
− 1

4
z2)w = 0 (3.28)

So the exact solution of (3.27) is in terms of the parabolic cylinder functions Dν , D−ν−1

Ψ = ADν(z) + BD−ν−1(iz) (3.29)

with
z = 4

√
−2Q′′

0(r∗ − r0) ν = −i
Q0√
2Q′′

0

− 1

2
(3.30)

Asymptotically expanding for z → ∞ we get

Ψ ∼ Ae−iπνzνe−
z2

2 − i
√
2πA[Γ(−ν)]−1e5iπ/4z−ν−1e

z2

2 (3.31)

QNMs boundary conditions imply that the term proportional to e
z2

2 , corresponding to out-
going waves at infinity, should be absent. So

1

Γ(−ν) = 0 (3.32)

that is
Q0√
2Q′′

0

= i

(
n+

1

2

)
n ∈ N (3.33)

This relation defines the QNMs in the WKB approximation. We notice that it appears like
a “Bohr-Sommerfeld quantization rule” in the old quantum theory [27]. In particular the
QNMs turn out to be given by

ω 0 ω0 − i(2n+ 1)λ0 (3.34)
where ω0 is the root together with r0 of the system

Q(ω0, r0) = 0 ∂rQ(ω0, r0) = 0 (3.35)

and λ0 is the term corresponding to the quantization condition (3.33)

λ0 =
Q0√
Q′′

0

. (3.36)

It turns out λ0 is the Lyapunov exponent governing the chaotic behaviour of nearly critical
geodesics around it [7].
TheWKB approximation works best for low overtones n (with small imaginary part ωI)

and in the limit of large l (which corresponds to large ωR/ωI). This method also assumes
that the potential has a single extremum [27].
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3.4.2. The continued fraction (Leaver) method

The continued fraction method by Leaver has been regarded the most successful algo-
rithm to compute QNMs. It is based on the observation that the Teukolsky equation for
the perturbation of Kerr BHs is a special case of the spheroidal wave equations that ap-
pear in the calculation of the electronic spectra of the hydrogenmolecule ion. These equa-
tions are characterized by the fact that their solution near the horizon can be expanded
in power series with coefficients that satisfy a three-term recursion relation. The bound-
ary condition at infinity which defines QNMs is also satisfied when the series is absolutely
convergent and that imposes a particular continued fraction condition on the terms of the
recursion which gives the QNMs [27].
Let us consider for illustration the Schwarshild BH (with 2M = 1) . The perturbation

equation is the Regge-Wheeler equation

r(r − 1)
d2

dr2
+

d

dr
ψ +

[
ω2r3

r − 1
− l(l + 1) +

s

r

]
(3.37)

The boundary conditions for QNMs are
ψ → (r − 1)−iω ψ → riωeiωr (3.38)

The solution which has the desired behaviour at the event horizon can be expanded in
power series as

ψ = (r − 1)−iωr2iωeiω(r−1)
∞∑

n=0

an

(
r − 1

r

)n

(3.39)

The coefficients an satisfy the three term recursion relation
αnan+1 + βnan + γnan−1 = 0 n = 1, 2, ... (3.40)

with initial condition
α0a1 + β0a0 = 0 . (3.41)

and where we defined
αn = n2 + (−2iω + 2)n− 2iω + 1

βn = −[2n2 + (−8iω + 2)n− 8ω2 − 4iω + l(l + 1)− s]

γn = n2 − 4iωn− 4ω2 − s− 1

(3.42)

The boundary condition at spatial infinity will be satisfied by those values of ω for which
the series for the solution is absolutely convergent. It can be proven that happens if the
ration of successive an is given by the infinite continued fraction

an+1

an
= − γn+1

βn+1 − αn+1γn+2

βn+2−
αn+2γn+3
βn+3−...

(3.43)

This equation can be though as an ”n = ∞ boundary condition” for the sequence an and
we obtain a characteristic equation for QNMs by evaluating it also at n = 0 (so an ”n = 0
boundary condition”). In particular for n = 0 we get by (3.41)

0 = β0 −
α0γ1

β1 − α1γ2
β2− α2γ3

β3−...

(3.44)
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which determines the basic overtone ω0. Higher overtones are obtained by inversion
of (3.44) n times

βn −
αn−1γn

βn−1 − αn−2γn−1

βn−2−...−α0γ1
β0

=
αnγn+1

βn+1 − αn+1γn+2

βn+2−
αn+2γn+3
βn+3−...

(3.45)

For every n > 0 are equivalent in the sense that every solution of (3.44) is also a solution
of (3.45) and viceversa. So either onemay be taken as defining ωn. The problem is reduced
to solving albegraic equation and ssually ωn is found to be the most stable root of the n-th
inversion [31].
We notice that this method assumes that the ODE for the perturbation has two regu-

lar and one irregular singularities. This happens in particular for the Confluent Heun
equation (CHE) (see appendix D). If the ODE has two irregular singularities and no reg-
ular singularities as the Doubly Confluent Heun equation (DCHE) which will be the case
for most of the model we are going to study, then it should be first mapped in the CHE as
explained in [7, 9].

3.5. Quasinormal modes in AdS/CFT and holography
The AdS/CFT correspondence was originally formulated between type IIB string theory
on the product space AdS5 × S5 and N = 4 supersymmetric gauge theory (which is a Con-
formal Field Theory, CFT) [32]. Later it has been extended much further, so that is called
more generically holographic correspondence. In particular, it provides a method for an
effective description of a non-perturbative, strongly coupled regime of certain gauge the-
ories in terms of higher dimensional classical gravity.
Quasinormal spectra of the dual gravitational backgrounds give the location (inmomen-

tum space) of the poles of the retarded correlators in the gauge theory. This is a standard
tool to study the near-equilibrium behavior of gauge theory plasmas with a dual gravity
description [27].

3.6. From gauge to gravity and back
In the last two years, a surprising connection between N = 2 SU(2) gauge theories NS de-
formed and black holes (BHs) perturbation theory has emerged [6]. It was found first that
(Bohr-Sommerfeld like) quantisations conditions on quantum gauge periods aD, a provide
a new analytic exact characterisation of quasinormal modes (QNMs)1 and could be prac-
tically used to also compute them [6]. Thank to this and exploting the AGT duality [33, 34]
between four dimensional N = 2 gauge theories and two dimensional Conformal Field
Theories (CFTs), also the latter kind of theories found applications to BHs [8]2. For in-
stance thus were made new computations of other BHs observables such the greybody

1QNMs are the characteristic frequencies of the gravitational wave signal in ringdown (after merging)
phase.

2These CFTs are different from ours. In fact, we relate toNf = 0 gauge theory the c = 25 self-dual Liouville,
rather then the c → +∞ Liouville as AGT does for the NS limit [33]. Further investigations on the relation
between such two Liouville models would be interesting.

27



factor and Love numbers3, sometimes also more accurate [8, 35, 36]. From these many
other applications and new results followed, like for instance

• an isospectral simpler equation to the perturbation ODE [37];

• improved theoretical proofs of BHs stability [38];

• a simpler interpretation of Chandrasekhar transformation as exchange of gaugemass
parameters [39];

• precise determination of the conditions of invariance under (Couch-Torrence) trans-
formations which exchange inner horizon and null infinity [40];

• an exact formula for the thermal scalar two-point function in four-dimensional holo-
graphic conformal field theories [41].

Moreover, we emphasise that the BHs which can be studied through this approaches are
also very ’real’ (for instance, the Schwarschild and Kerr BHs) and enter astrophysics and
gravitation phenomenology [6, 29]. For instance, if real BHs possesed horizon-scale struc-
ture, forbidden by General Relativity (GR) but allowed by modified theories of gravity or
String Theory, it would manifest itself as echoes in the gravitational wave signal in the
later ringdown phase and would be accessible to future higher precision detectors [42, 7].
An explanation of this correspondence has been constructed in a rather general case [8]
by exploiting another correspondence between N = 2 gauge theory and Conformal Field
Theory [33]. However, we are going to show that it is possible to explain this so-called SW-
QNM correspondence [9] by analysing closely the Ordinary Differential Equations (ODEs)
describing the perturbations in gravitational physics. We are able to do this on the basis of
our previousworks [1, 43], wherewehave connected theN = 2 gauge theories to quantum
integrable theories, in particular the gauge periods to the Baxter’s Q and T functions. To
this aimwe have started from the ODEs characterizing the periods and developed further
the elegant ODE/IM correspondence betweenODEs and IntegrableModels (IM) [2, 3, 4, 44].

3The greybody factor, or absorption coefficient, is associated to Hawking radiation, while Love numbers
describe tidal deformations of BHs.
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4. SU(2) Nf = 0 gauge theory, Liouville model, D3 brane

4.1. Liouville ODE/IM
The original ODE/IM correspondence establishes an exact parallel between a particular
Schrödinger equation (ODE) and ground state of the Minimal Conformal models (IM) [2,
3], without masses (cf. also [45], and see [46, 47] for the correspondence with the excited
states). In particular, the equation used is the following:

{
− d2

dx2
+

l(l + 1)

x2
+ x2M − E

}
φ(x) = 0 , (4.1)

whereM > 0 is related to the central charge c as

M = β−2 − 1 c = 1− 6(β − β−1)2 (4.2)

and l is related to the conformal dimension ∆ as

p =
2l + 1

4M + 4
∆ =

(
p

β

)2

+
c− 1

24
. (4.3)

Let φ∞ denote the solutionwhichhas the subdominant asymptotic at the irregular singular
point x → ∞

φ∞(x) 0 x−M/2 exp
(
− 1

M + 1
xM+1

)
x → ∞ (4.4)

and let φ0 denote the solution which has the power law behaviour at the regular singular
point x → 0

φ0(x) 0 x−l x → 0 . (4.5)
Then, the Baxter’s Q function for the minimal models can be defined as the wronksian

Q− = W [φ∞,φ0] , (4.6)

or, alternatively, as the limit [2]

Q− = lim
x→0

[
(2l + 1)xlφ∞(x)

]
. (4.7)

Later, the ODE/IM correspondence was extended to the massive ground state [48].
Although there was already a bold suggestion already in [4], the conjecture for the

(conformal) Liouville field theory (M < −1) came only in a brilliant draft paper [49] by the
late scholar Al. B. Zamolodchikov and takes the form of the Generalized Mathieu equation
(GME): {

− d2

dy2
+ e

α+y
b + eb(α−y) + P 2

}
ψ(y) = 0 . (4.8)

The parameters b andP are respectively theLiouville coupling andmomentum and express
the central charge

c = 1 + 6(b+ b−1)2 (4.9)
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and the conformal weight
∆ = (c− 1)/24− P 2 . (4.10)

Liouville field theory enjoys a duality symmetry for b → 1/b (self-dual point b = 1). Fol-
lowing [4], we may immagine that this equation could be obtained heuristically from the
ODE/IM equation (4.1) for the minimal models, through some continuation in β = ib and
some transformation on the independent variable (crucially, the Langer transform).
However, we found the form (4.8) not adequate for the large rapidity expansion, as eα

appearswith two different powers. Wehave solved this problemby the shift y → y+α b−1/b
b+1/b ,

after which the GME acquires the modified Schrödinger form:
{
− d2

dy2
+ e2θ(ey/b + e−yb) + P 2

}
ψ(y) = 0 (4.11)

with the rapidity θ defined as θ = α/(b+ b−1).

4.1.1. Heuristic derivation of Generalized Mathieu equation

In particular, we apply a succession of transformations, the first of which is the Langer
transform: x = eŷ, φ(x) = eŷ/2ψ(ŷ), so that the equation becomes

{
− d2

dŷ2
+ e2ŷ/β

2 − Ee2ŷ +
(
l +

1

2

)2
}
ψ(ŷ) = 0 . (4.12)

Now, we continue to transform, passing to the variables ŷ = β
2 ȳ

{
− d2

dȳ2
+
β2

4
eȳ/β − β2

4
Eeβȳ +

β2

4

(
l +

1

2

)2
}
ψ(ȳ) = 0 (4.13)

and also ȳ = iỹ
{
+

d2

dỹ2
+
β2

4
eiỹ/β − β2

4
Eeiβỹ +

β2

4

(
l +

1

2

)2
}
ψ(ỹ) = 0 . (4.14)

Now we send β = ib, with b > 0, that is, give imaginary values to β. The ODE/IM equation
for the minimal models is thus transformed into the equation for the Liouville model. We
also define a new parameter

P 2 =
p2

b2
=

(l + 1
2)

2b2

4
. (4.15)

Then the equation becomes
{
− d2

dỹ2
+

b2

4
eỹ/b − b2

4
Ee−bỹ + P 2

}
ψ(ỹ) = 0 . (4.16)

A final change of variable y = ỹ − α + b ln b2

4 and of parametrization α = ln (−E)
2b + b2+1

2b ln b2

4
delivers now the Generalized Mathieu Equation (4.8). The parameter α is related to the
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TBA rapidity, as we explain below. We observe also that the initial variable x can be con-
veniently expressed in terms of the final variable y as

x = exp
[
−yb

2
− αb

2
+

b2

2
ln b2

4

]
(4.17)

φ(x)√
x

= ψ(y) (4.18)

This shows that x → 0 corresponds to -y → +∞, while x → +∞ corresponds to -y → −∞.

4.1.2. Functional relations

In the rest of this Section we will summarise our understanding of draft paper [49] by
using the GME (4.11). It has the subdominant asymptotic solutions: for -y → +∞, within
|$(θ + y

2b)| <
3
2π and for -y → −∞, within |$(θ − by

2 )| <
3
2π, respectively

U0(y) 0
1√
2

exp
{
−θ/2− y/4b

}
exp
{
−2beθ+y/2b

}
-y → +∞ ; (4.19)

V0(y) 0
1√
2

exp
{
−θ/2 + yb/4

}
exp
{
−2

b
eθ−yb/2

}
-y → −∞ . (4.20)

Other solutions can be generated applying on these the following discrete symmetries of
the GME (4.11)

Λb : θ → θ + iπ
b

q
y → y +

2πi

q
, Ωb : θ → θ + iπ

1

bq
y → y − 2πi

q
(4.21)

where q = b + 1/b: concisely Uk = Λk
bU0 and Vk = Ωk

bV0, with Uk invariant under Ωb and Vk

under Λb. We may interpret this phenomenon as a spontaneous symmetry breaking for
the differential equation (vacua are the solutions). Now we apply these (broken) symme-
tries to derive interesting functional and integral equations for the gauge theory. On the
other hand, the symmetry Π : θ → θ + iπ would not do the same job in the present case
with two irregular singularities as it transforms simultaneously U0 → U1 and V0 → V1 (dif-
ferently from [50] and [51] with only one irregular singularity, see also [52] for a detailed
examination of the two kinds of symmetries).
In fact, we will prove correct (as conjectured by [49]) to define the Baxter’s Q function

as the wronskian
Q(θ, P 2) = W [U0, V0] . (4.22)

We can say that the dependence of Q is on the square of P , because equation (4.11) is
invariant inverting the sign of P and also the boundary conditions (4.19) and (4.20) are
invariant. Notice, however, that in all the functional relations below P 2 is fixed. Definition
(4.22) gives rise to Q(θ + iπp) = W [U1, V0](θ) upon action of Λb: these are equivalent to the
linear dependence

iV0(y) = Q(θ + iπp)U0(y)−Q(θ)U1(y) , (4.23)
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where p = b/q (from the asymptotic calculationW [U1, U0] = i). Which is transformed by Ωb

into
iV1(y) = Q(θ + iπ)U0(y)−Q(θ + iπ(1− p))U1(y) , (4.24)

namely Q(θ + iπ(1 − p)) = W [U0, V1](θ) and Q(θ + iπ) = W [U1, V1](θ). The basilar functional
relation (anticipated for the massive theory by other means in [53]), the QQ relation is
obtained by taking the wronskianW [V0, V1] (= i from asymptotics) between the right hand
sides

1 +Q(θ + iπ(1− p))Q(θ + iπp) = Q(θ + iπ)Q(θ) . (4.25)
If we define the two (dual) T functions as

T (θ) = Q(θ − iπp)Q(θ + iπ)−Q(θ + iπp)Q(θ + iπ(1− 2p)) , T̃ (θ) = T (θ)
∣∣∣
b→1/b

, (4.26)

(also T = iW [U−1, U1] and T̃ = −iW [V−1, V1]) by using the QQ relation (4.25), these two
Baxter’s TQ relations follow

T (θ)Q(θ) = Q(θ+ iπp) +Q(θ− iπp) T̃ (θ)Q(θ) = Q(θ+ iπ(1− p)) +Q(θ− iπ(1− p)) , (4.27)

as well as the periodicity of T [49]

T (θ + iπ(1− p)) = T (θ) T̃ (θ + iπp) = T̃ (θ) . (4.28)

Wemake now some comparison between the functional relations of the Liouvillemodel
and those of the minimal models. For the minimal models Q− is the wronskian between
the eigenfunctions defined by the asymptotic at 0 and +∞ in x, as in (4.6). This property
is kept for the Liouville model, in (4.22), since by (4.17) x = 0 corresponds to y = +∞ and
x = +∞ corresponds to y = −∞. Besides, for the minimal models there is only one TQ
system, while for the Liouville model there are two different TQ systems. This is because,
essentially, in the Langer variable y, +∞ and −∞ are symmetrical, that is, the eigenfunc-
tions have analogous form. Accordingly, for the minimal models there is only one T func-
tion, while for the Liouville model there are two T functions. However, for the Liouville
model there only one Q function, while for the minimal models there are actually two Q±
functions, which are obtained through the action of the symmetry ΛMM [3] which sends
p → −p. The two symmetries used in the ODE/IM construction for the range β2 > 0 (mini-
mal models) are very different: ΩMM [3] acts on the solutions at x → +∞ only through x;
while ΛMM [3] acts on the solutions at x → 0 only through l. Now, the the two symmetries
used for the range β2 < 0 (Liouville model) are very similar: both Λb and Ωb act on the
solutions at y → ±∞ through y and θ. In the Liouville model, P 2 → P 2 under the minimal
models symmetry ΛMM (cf. (4.15)).

4.1.3. Perturbative limit

In the limits y → +∞ and y → −∞, the GME (4.11) reduces to the approximate equations,
respectively: {

− d2

dy2
+ e2θ+y/b + P 2

}
U0(y) 0 0 y → +∞ , (4.29)
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{
− d2

dy2
+ e2θ−by + P 2

}
V0(y) 0 0 y → −∞ . (4.30)

By the changes of variables u = 2beθ+y/2b and v = 2/beθ−by/2, we see that these equations are
Modified Bessel equations:

{
u2 d2

du2
+ u

d

du
− (2bP )2 − u2

}
U0(u) 0 0 u → +∞ , (4.31)

{
v2

d2

dv2
+ v

d

dv
− (2P/b)2 − v2

}
V0(v) 0 0 v → +∞ . (4.32)

From the asymptotics (4.19) and (4.20), it follows that the basic solutions U0 and V0 corre-
spond the modified bessel functions as

U0(u) 0
√

2b

π
K2bP (u) u → +∞ , (4.33)

V0(v) 0
√

2

πb
K2P/b(v) v → +∞ . (4.34)

In the perturbative limit θ → −∞, the approximate equations become the same:
{
− d2

dy2
+ P 2

}
U0(y) 0 0 θ → −∞ , (4.35)

{
− d2

dy2
+ P 2

}
V0(y) 0 0 θ → −∞ . (4.36)

and then we are justified in combining the solutions of both equations for each y ∈ R. The
modified-Bessel function Kν(x) behaves, as x → 0 as

Kν (x) =
Γ(ν)

21−ν
x−ν +

Γ(−ν)
21+ν

xν +O
(
x2
)

(4.37)

therefore the U0 and V0 solutions are approximately equal to

U0 0
√
b√
2π

[
b2bPΓ(2bP )e−2bθP e−Py + b−2bPΓ(−2bP )e2bθP ePy

]
(4.38)

V0 0
1√
2πb

[
b−2P/bΓ(2P/b)e−2θP/bePy + b2P/bΓ(−2P/b)e2θP/be−Py

]
(4.39)

and their wronskian (4.22), the Q function, is approximately equal to

Q(θ, b, P 2) 0 1

2π

{
Γ(1 + 2P/b)Γ(2Pb)

b−1+2bP−2P/b
e−2qPθ +

Γ(1− 2bP )Γ(−2P/b)

b1−2bP+2P/b
e2qPθ

}
(4.40)
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4.1.4. Thermodynamic Bethe Ansatz

Also the Liouville Y -system can be obtained from theQQ-system, by defining Y (θ) = Q(θ+
iπa/2)Q(θ − iπa/2), where a = 1− 2p

Y (θ + iπ/2)Y (θ − iπ/2) =
(
1 + Y (θ + iaπ/2)

)(
1 + Y (θ − iaπ/2)

)
. (4.41)

This functional equation can be inverted into the Thermodynamic Bethe Ansatz (TBA)
equation for the logarithm ε(θ) = − lnY (θ), the pseudoenergy, in the integral form

ε(θ) =
8
√
π3 q

Γ( b
2q )Γ(

1
2bq )

eθ −
∫ ∞

−∞

[
1

cosh(θ − θ′ + iaπ/2)
+

1

cosh(θ − θ′ − iaπ/2)

]
ln [1 + exp{−ε(θ′)}] dθ

′

2π
,

(4.42)

where the coefficient of the forcing term (zero-mode) is fixed by the leading order of Q
below, (4.96). This TBA equation goes into that in [49, 53, 54] upon a real shift on θ:

θ → θ + ln 8
√
πq

Γ( b
2q )Γ(

1
2bq )

. (4.43)

TheLiouville TBA canbederived as amassless limit of the one concerning Sinh-Gordon [53]:

ε(θ) = mR cosh θ −
∫ ∞

−∞
dθ′ ϕ(θ − θ′) ln [1 + e−ε(θ

′)] , (4.44)

where
ϕ(θ) =

1

2π

[
1

cosh (θ + iπa/2)
+

1

cosh (θ − iπa/2)

]
. (4.45)

Here, though, we wish to show its arising from the Stokes relations of the Schrödinger
equation: the Q system (4.25) or the equivalent Y system (4.41). Boundary conditions
must also be fixed in order for the TBA to be uniquely determined. We begin by making a
shift of −iπ/2 on the Q system (4.25).

Q(θ − iπ/2)Q(θ + iπ/2) = 1 +Q(θ + iπa/2)Q(θ − iπa/2) . (4.46)

Now define Y (θ) as
Q(θ + iπ/2)Q(θ − iπ/2) = 1 + Y (θ) (4.47)

and note that such a definition of Y (θ) implies the relation

Y (θ) = Q(θ + iaπ/2)Q(θ − iaπ/2) . (4.48)

We now use a theorem of [55], which we report here. Let ξ be a function such that its
Fourier transform ξ̂ belongs to L1. If we define another function χ as

χ(θ) =
1

2π

∫ ∞

−∞

ξ(θ′)

cosh (θ − θ′)
dθ′ , (4.49)
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then χ is bounded, analytic in the strip |$θ| < π
2 and satisfies

χ(θ + iπ/2) + χ(θ − iπ/2) = ξ(θ) , (4.50)

for real θ. Conversely if ξ is bounded and analytic in the strip |$θ| < π
2 and if (4.50) holds,

then so does (4.49) [55]. We observe that (4.50) leaves the freedom to add to ξ a ”zero-mode
function” φ, solution of the homogeneous equation

φ(θ + iπ/2) + φ(θ − iπ/2) = 0 . (4.51)

A possible zero mode function is cosh θ or exp θ. Thus, the most general expression for ξ is

χ(θ) = φ(θ) +
1

2π

∫ ∞

−∞

ξ(θ′)

cosh (θ − θ′)
dθ′ (4.52)

Using this theorem, we can write the expression for Q(θ) in terms of Y (θ), starting from
the definition (4.47), whose logarithm reads

lnQ(θ + iπ/2) + lnQ(θ − iπ/2) = ln [1 + Y (θ)] , (4.53)

which is an example of relation (4.50), if we set χ(θ) = lnQ(θ) and ξ(θ) = ln [1 + Y (θ)].
Taking φ(θ) = −ceθ as zero mode, or boundary condition for θ → ∞, by (4.52) we get

lnQ(θ) = −ceθ +

∫ ∞

−∞

dθ′

2π

1

cosh (θ − θ′)
ln [1 + Y (θ′)] (4.54)

Considering ε(θ) = − lnY (θ) and applying formula (4.48) we get

−ε(θ) = −ceθ[eiπa/2 + e−iπa/2]

+

∫ ∞

−∞

1

2π

[
1

cosh (θ + iπa/2− θ′)
+

1

cosh (θ − iπa/2− θ′)

]
ln [1 + Y (θ′)]dθ′ .

(4.55)

Choosing c such that the coefficient of the forcing term is c0 = 8
√
π3 q/Γ( b

2q )Γ(
1
2bq ) and rec-

ognizing the Sinh-Gordon kernel (4.45) we can write finally the Liouville TBA:

ε(θ) =
8
√
π3 q

Γ( b
2q )Γ(

1
2bq )

eθ −
∫ ∞

−∞
ϕ(θ − θ′) ln [1 + Y (θ′)]dθ′ . (4.56)

Notice also that Q can be written as

lnQ(θ) = − 8
√
π3 q

2 sin πpΓ( b
2q )Γ(

1
2bq )

eθ +

∫ ∞

−∞

dθ′

2π

1

cosh (θ − θ′)
ln [1 + Y (θ′)] . (4.57)

Q is an entire function, free of zeroes inside the strip |$θ| < π/2 + ε, for some finite
ε > 0 [53], [56]. Zamolodchikov conjectured that the same expression could be obtained
by taking the wronskian (4.22) of the solutions of the ODE. We have already proven his
conjecture partially, the remaining part of the proof will be given below by fixing the
boundary coefficient c directly from the equation (4.8).
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In the Liouville TBA, P does not appear explicitly, but (numerically) in the asymptotic
linear behaviour of ε(θ, P 2) at θ → −∞[49], whichmatches the analytic computation of the
wronskian (4.22) via 1 + Y (θ) = Q(θ+ iπ/2)Q(θ− iπ/2). In fact, from expression (4.40), we
derive the asymptotic θ → −∞ behaviour of the pseudoenergy:

ε(θ, b, P ) 0 4qPθ − 2C(b, P ) θ → −∞ , (4.58)

with the constant
C(b, P ) = ln Γ(1 + 2P/b)Γ(2Pb)

2πb−1+2bP−2P/b
. (4.59)

On the other hand from (4.41) we only know that Y must diverge.

Y (θ) 0
(

1

2π

Γ(1 + 2P/b)Γ(2Pb)

b−1+2bP−2P/b

)2

e−4qPθ . (4.60)

As a consequence L = ln[1 + e−ε] tends to

L(θ, P ) 0 −4qPθ + 2C(b, P ) θ → −∞ . (4.61)

Since the Liouville TBA (4.42) does not depend explicitly on P , in order to solve it numer-
ically, we must add the P dependent boundary condition (4.58) in the forcing term and
subtract it in the convolution. To this end, define the functions L0 and L1 which reproduce
for θ ∈ R the asymptotic (4.61) as:

L0 = 2qP ln
[
1 + e−2θ

]
, (4.62)

L1 = C(b, P )(1− tanh θ) . (4.63)

In order to compute the convolutions fk = ϕ ∗ Lkof this terms with the kernel, set

Lk(θ) = lk(θ + iπ/2) + lk(θ − iπ/2) (4.64)

which specifically means

l0(θ) = 2qP ln
[
1 + e−θ

]
(4.65)

l1(θ) =
C

2

(
1− tanh θ

2

)
. (4.66)

The convolutions are in general

ϕ ∗ Lk = lk(θ + iaπ/2) + lk(θ − iaπ/2) (4.67)

and in particular

f0 = ϕ ∗ L0 = 2qP
{

ln
[
1 + e−(θ+iaπ/2)

]
+ ln

[
1 + e−(θ−iaπ/2)

]}
, (4.68)

f1 = ϕ ∗ L1 = C

[
1− 1

2
tanh

(
θ

2
+

iπa

4

)
− 1

2
tanh

(
θ

2
− iπa

4

)]
. (4.69)
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Then the numerically solvable TBA reads

ε(θ, P ) = c0e
θ − f0 − f1 − ϕ ∗ (L− L0 − L1) . (4.70)

Until now we considered real positive P > 0. We observe that for imaginary or complex
P the asymptotic of the pseudoenergy is much more complex (cf. (4.71)). In fact letting
P 2 → −P 2 in (4.40) we get

Q(θ, b,−P 2) 0 K1e
2iqPθ +K2e

−2iqPθ . (4.71)

where we defined the complex constants

K1 =
Γ(1− 2ibP )Γ(−2iP/b)

2πb1−2ibP+2iP/b
, K2 =

Γ(1 + 2iP/b)Γ(2ibP )

2πb−1+2ibP−2iP/b
. (4.72)

However, it is easy to verify the Y system QQ-system even in the case of imaginary P or
complex P . The LHS of Q system reads

1+Q(θ+ iaπ/2, b, P )Q(θ− iaπ/2, b, P ) = 1+K2
1e

4iqPθ+2K1K2 cosh(2πqPa)+K2
2e

−4iqPθ , (4.73)

while the RHS reads

Q(θ + iπ/2, b, P )Q(θ − iπ/2, b, P ) = K2
1e

4iqPθ +K2
2e

−4iqPθ + 2K1K2 cosh(2πqP ) . (4.74)

In order for the Q system to hold, it must hold that

cosh 2πqPa+
1

2K1K2
= cosh 2πqP , (4.75)

which is in fact true

2K1K2 =
Γ(1− 2ibP )Γ(2ibP )Γ(1 + 2iP/b)Γ(−2iP/b)

2π2

=
1

2 sinh(2πbP ) sinh(2πP/b)
=

1

cosh 2π(b+ 1/b)P − cosh 2π(b− 1/b)P

=
1

cosh 2πqP − cosh 2πqPa
.

(4.76)

For complex P it is not clear how to do the procedure to set up the TBA as in (4.70). How-
ever, the gauge/integrability correspondence we are going to state permits to overcome
this difficulty (see below (4.307)).

4.1.5. Self-dual case

The self-dual GME (b = 1 in (4.11)) is known in literature asmodified Mathieu equation:
{
− d2

dy2
+ 2e2θ cosh y + P 2

}
ψ(y) = 0 , (4.77)
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and is the non-compact version of equation (2.34), so establishing a contact with gauge
theory (which importantly exhibits two irregular singularities). In particular, the discrete
symmetry (4.21) is an enhanced (by the covering y = lnx) version of the original Z2 spon-
taneously broken symmetry (in the x variable) of SW [57]. Because a = 0, the Q system
simplifies into

Q(θ + iπ/2)Q(θ − iπ/2) = 1 +Q2(θ) , (4.78)
while, since T (θ) = T̃ (θ), the two TQ systems reduce to a single one

T (θ)Q(θ) = Q(θ + iπ/2) +Q(θ − iπ/2) (4.79)

and the T periodicity reads
T (θ + iπ/2) = T (θ) . (4.80)

In the self dual case (4.40) becomes

Q(θ, P 2) 0 1

2π

[
Γ(1 + 2P )Γ(2P )e−4Pθ + Γ(1− 2P )Γ(−2P )e4Pθ

]
(4.81)

and the T function is approximately equal to

T (θ, P 2) 0 2 cos 2πP . (4.82)

In the gauge variables (see below (4.223)) these expressions become

Q(θ, u) 0 1

2π



Γ(1 + 2

√
2u

! )Γ(2

√
2u

! )

(
!
Λ

)4
√

2u
!

+ Γ(1− 2

√
2u

! )Γ(−2

√
2u

! )

(
!
Λ

)−4
√
2u
!



 (4.83)

and
T (θ, u) 0 2 cos 2π

√
2u

! . (4.84)

We observe that the limit θ → −∞with P finite in the integrability variables corresponds
to the limit Λ → 0 with ! and u finite in the gauge variables. Since b = 1, the Y function is
just the square of the Q function

Y (θ, P 2) = Q2(θ, P 2) (4.85)

and the Y system reads

Y (θ + iπ/2)Y (θ − iπ/2) =
(
1 + Y (θ)

)2
. (4.86)

Its inversion, the TBA equation simplifies as

ε =
16
√
π3

Γ2(14)
eθ − 2ϕ̂ ∗ ln (1 + e−ε) , (4.87)

with a new simplified kernel which (because a = 0 at b = 1) is half of the former ker-
nel (4.45)

ϕ̂(θ) =
1

2π

1

cosh θ . (4.88)
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Since a = 0 then Q2 = Y = exp[−ε] and the TBA becomes an integral equation for the
Baxter’s Q function [49]

lnQ(θ) = −8
√
π3

Γ2(14)
eθ +

∫ ∞

−∞

ln [1 +Q2(θ′)]

cosh (θ − θ′)

dθ′

2π
. (4.89)

4.2. Local integrals of motion
We wish here to compute the Baxter’s Q function and then the Liouville Local Integrals
of Motion (LIM). About Q, (4.23) says that it can regarded as the regularised value of the
solution V0 (4.20) at y → +∞:

Q(θ) = −i lim
y→+∞

V0(y; θ)

U1(y; θ)
=

√
2e

θ
2 lim
y→+∞

e
y
4b−2beθ+

y
2b V0(y; θ) . (4.90)

We can write V0 (4.20) in terms of Π(w) = −i d ln( 4
√
cb(y)V0(w))/dw in a convergent form of

(B.5)

V0(y; θ) =
e−

θ
2

√
2 4
√

cb(y)
exp
{
−2

b
eθ−

by
2 + 2beθ+

y
2b +

∫ y

−∞

[√
cb(y′)Π(y

′; θ)− eθ(e−
by′
2 + e

y′
2b )
]
dy′
}

(4.91)

where cb(y) = −φ(y) = ey/b + e−yb and dw =
√
φ(y)dy = −i

√
cb(y)dy. Hence, we write an

integral expression for the Q function (4.90) and its asymptotic series (denoted again by
.
=) for θ → +∞, by using formula (B.26) (integrating on R, the decaying derivatives do not
contribute):

lnQ(θ) =

∫ +∞

−∞

[√
cb(y)Π(y)− eθ(e−

by
2 + e

y
2b )
]
dy (4.92)

.
= eθ

∫ ∞

−∞

[√
cb(y)− e

y
2b − e−

by
2

]
dy −

∞∑

n=1

eθ(1−2n)

2n− 1

∫ ∞

−∞

√
cb(y)Rn(y) dy . (4.93)

Notice for the future developments that lnQ is given i times the integral of the regularised
momentum

Preg(y) = −i
√
cb(y)Π(y) + ieθ(e−

by
2 + e

y
2b ) = P(y) + ieθ(e−

by
2 + e

y
2b )− i

4

c′b
cb

(4.94)

thanks to (B.6): this fact is valid for any b and connects Q to SW-NS periods (cf. below the
development for the pure gauge case b = 1). Moreover, upon identification of the n-th local
integral of motion I2n−1 up to an arbitrary normalisation Bn

BnI2n−1 =
1

2n− 1

∫ ∞

−∞

√
cb(y)Rn(y) dy , (4.95)
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they are given by the large θ asymptotic expansion of the Baxter’s Q function (4.93):

Q(θ, P 2, b)
.
= exp

{
−eθ

4
√
π3q

sin (πb/q)Γ( b
2q )Γ(

1
2bq )

−
∞∑

n=1

eθ(1−2n)Bn(b)I2n−1(b, P
2)

}
. (4.96)

For instance, we can use the normalisation constants:

Bn(b) =
Γ( (2n−1)b

2q )Γ( (2n−1)
2bq )

2
√
πn!q

. (4.97)

This expansion matches the numerical results from TBA (4.42), by the formula

BnI2n−1 = (−1)n
∫ ∞

−∞

dθ

π
e(2n−1)θ ln

[
1 + e−ε(θ)

]
(4.98)

Now, we can make explicit the one-step recusion procedure (B.16) for the Rn in this par-
ticular case (4.11). We will give the details elsewhere and just give the final formula for
the LIMs

I2n−1(b, P
2) =

(2n)!!

(2n− 1)!!

3n∑

m=n

Γ(n− 1/2)

Γ(n− 1/2 +m− n)

Γ(n−1/2
bq +m− n)

Γ(n−1/2
bq )

an,m(b, P
2) , (4.99)

with the recursion for the coefficients an,m

an+1,m+1 = −
3n+3∑

k=m+1

m!

k!q

Γ(− (n+1)b
q + k + 1)

Γ(− (n+1)b
q +m+ 2)

3∑

l=0

Fl(n, k − l) an,k−l , (4.100)

from the initial condition a0,0 = 1 and where the Fl functions are defined as

F0(n,m) =
1

4
(m+

1

2
)3q3 − 3

4
(n+

1

2
)(m+

1

2
)2q2b+

3

4
(n+

1

2
)2(m+

1

2
)qb2 − 1

4
(n+

1

2
)3b3

− P 2
[
(m+

1

2
)q − (n+

1

2
)b
]

(4.101)

F1(n,m) = −3

4
(m+

1

2
)(m2 + 2m+

13

12
)q3 +

3

2
(n+

1

2
)(m+

1

2
)(m+ 1)q2b− 3

4
(m+

1

2
)(n+

1

2
)2qb2

+ P 2(m+
1

2
)q (4.102)

F2(n,m) =
3

4
(m+

1

2
)(m+

3

2
)2q3 − 3

4
(n+

1

2
)(m+

1

2
)(m+

3

2
)bq2 (4.103)

F3(n,m) = −1

4
(m+

1

2
)(m+

3

2
)(m+

5

2
)q3 . (4.104)

Since the recursion for theGelfand-Dikii coefficients is one-step, using formula (4.99) and (4.100)
is a very efficient way of computing the I2n−1, which have also been checked numerically
by exploiting TBA equation (4.42). Besides, we have repeated the calculations in the case of
the minimal models and have found the same formulæ in terms of c and ∆ (as expected).
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4.3. Deformed SW cycles
According to Seiberg-Witten theory [57], the low energy effective Lagrangian of 4d N = 2
SUSY SU(2) pure gauge theory is expressed through an holomorphic function FSW(a(0))
called prepotential. It may be thought of as constructed from the Seiberg-Witten one-cycle
period a(0), such that the v.e.v. of the scalar field 〈Φ〉 = a(0)σ3, and its (Legendre) dual a(0)D =
∂FSW/∂a(0), as expressed by (2.28),(2.30): which are functions of the modulus u = 〈trΦ2〉
(for fixedparameterΛ4) upon eliminating u to obtain a(0)D (a(0)) (andfinally integrating). The
N = 2 SYM classical action enjoys a U(1)R R-symmetry, which is broken to Z8 by one-loop
anomaly and instanton contributions. Eventually it is broken down to Z4 by the vacuum,
so that the (spontaneously) brokenpart, which is aZ2, i.e. u → −u, connects two equivalent
vacua [57]: we will see that somehow this broken symmetry plays an important rôle also
in the deformed theory.
The exact partition function for N = 2 SYM theories, with all instanton corrections, has

been obtained through equivariant localisation techniques in [58, 59]: two super-gravity
parameters, ε1 and ε2, the Omega background deform space-time. When both ε1 , ε2 → 0, the
logarithm of the partition function reproduces the Seiberg-Witten prepotential FSW [59].
The latter can also be thought of as a successive limit of the Nekrasov-Shatashvili (NS)
limiting theory [60], defined by the quantisation/deformation (of SW) ε1 = !, ε2 → 0.
More specifically, having in mind the AGT corresponding Liouville field theory [33, 34]

and precisely its level 2 degenerate field equation [61], we may think of it as a quantisa-
tion/deformation5 of the quadratic SWdifferential which takes up the form of theMathieu
equation (2.34)6 The Seiberg-Witten cycles (2.28)-(2.30) are the leading order asymptotic
representations, as ! → 0, of the two exact deformed cycle period

a(!, u,Λ) = !
2π

∫ π

−π
P(z; !, u,Λ) dz (4.105)

(in gauge theory a = 2〈Φ̃〉), as well as the exact deformed dual cycle period

aD(!, u,Λ) = i!
∑

zn∈B

ResP(zn; !, u,Λ) dz (4.106)

(the set of poles B will be shown below, cf. figure 4.7.4) of the quantum SW differential
P(z) = −i d

dz lnψ(z). Also, wemay expandasymptotically, around ! = 0,P(z)
.
=
∑∞

n=−1 !nPn(z),
and then the NS-deformed periods (modes) are

a(n)(u,Λ) =
1

2π

∫ π

−π
P2n−1(z; u,Λ) dz a(n)D (u,Λ) =

1

2π

∫ arccos (u/Λ2)−i0

− arccos (u/Λ2)−i0

P2n−1(z; u,Λ) dz .

(4.107)
4Wemay calculate the first integral for u > Λ2 while the second one for u < Λ2 along a continuous (without
jumps, and hence changing sheet) path in z and then analytically continue in u; we will analyse better
the complex structure below, in Section 4.7.

5We shall prefer this latter denotation as the former generates sometimes confusion with gauge theory
quantisation.

6In this section on the SU(2)Nf = 0 gauge theorywe use a different convention on !. To get the conventions
we use for the higher Nf theories we need to let ! →

√
2!.

41



The asymptotic expansion of the deformed prepotential FNS (logarithm of the partition
function) may be derived as above by eliminating u between the two deformed cycle pe-
riods [19]. Alternatively, we can use Matone’s formula connecting FNS, a, and u [62], still
valid upon deformation [63] asymptotically. However, we have found that the exact dual
deformed cycle period aD differs by the a-derivative AD of the deformed prepotential FNS
by ! non-perturbative terms.

aD (= ∂FNS

∂a
= AD (4.108)

Similarly, aD is not connected to the Matone’s formula, exactly in !. The precise relation
between aD and AD is given below in (4.321).

4.3.1. Gelfand-Dikii recursion

Exploiting themathematical result of appendix B,we proceed now to systematically calcu-
late the Nekrasov-Shatashvili deformed integrals (4.107). The equation to be considered
is the Mathieu equation (2.34), the asymptotic expansion is for small ! as in subsection
B.2. Hence we can apply formula (B.45) with

φ(z) = 2u− 2Λ2 cos z . (4.109)

By direct inspection of the first Gelfand-Dikii polynomials (cf. (B.18)-(B.21)), we see that
they can be expanded in the basis of the inverse powers of φ(z)−m and conjecture the
general form

Rn(z; u,Λ) =
3n∑

m=n

an,m(u,Λ)

φm(z; u,Λ)
, (4.110)

which will be proved by the structure of the recursion.
The coefficients an,m(u,Λ)will clearly satisfy some one-step recursion relation, whichwe

now find by using the Gelfand Dikii recursion equation (B.45). Inserting the ansatz (4.110)
in this recursion, on the n+ 1 side we find

3n+3∑

m=n+1

an+1,m(u)
[
−m

φ′(z)

φm+1(z)

]
, (4.111)

while on the n side we find
3n∑

m=n

an,m
1

φm+1

{
−
[1
4
m+

1

8

]φ′′′

φ

+
[3
4
m(m+ 1) +

3

4
m+

9

16

]φ′φ′′

φ2
−
[1
4
m(m+ 1)(m+ 2) +

3

8
m(m+ 1) +

9

16
m+

15

32

]φ′3

φ3

}
.

(4.112)

We collect useful expressions for the derivatives of φ with respect to z:

∂2φ

∂z2
= −φ+ 2u

∂3φ

∂z3
= −φ′ φ

′2 = 4

(
Λ4 − u2 + φu− φ2

4

)
. (4.113)
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Using these expressions, (4.112) becomes

3n+3∑

m=n+1

man+1,m
1

φm+1
=

3n∑

m=n

an,m

{[
+
1

4
(m+

1

2
)3
] 1

φm+2

−
[
u(m+

1

2
)(m+ 1)(m+

3

2
)
] 1

φm+3
+ (u2 − Λ4)

[
(m+

1

2
)(m+

3

2
)(m+

5

2
)
] 1

φm+4

}

(4.114)

We finally find the one-step recursion for the Gelfand Dikii coefficients an,m of the small !
expansion of the Mathieu equation (2.34)

an+1,m+1 =
1

4

(m+ 1
2)

3

m+ 1
an,m − u

(m− 1
2)m(m+ 1

2)

m+ 1
an,m−1 + (u2 − Λ4)

(m− 3
2)(m− 1

2)(m+ 1
2)

m+ 1
an,m−2

(4.115)

with the initial condition a0,0 = 1. We verified the correctness of this recursion by direct
computation of R1, R2 and R3. We report here the coefficients of these tested first polyno-
mials: for R1

a1,1 =
1

32
a1,2 = −3

8
u a1,3 =

5

8
(u2 − Λ4) , (4.116)

for R2

a2,2 =
27

2048
a2,3 = −145

256
u a2,4 =

1085u2

256
− 455Λ4

256

a2,5 = −693

64
u
(
u2 − Λ4

)
a2,6 =

1155

128

(
u2 − Λ4

)2
,

(4.117)

for R3

a3,3 =
1125

65536
a3,4 = −26285u

16384
a3,5 =

435015u2

16384
− 134379Λ4

16384

a3,6 =
245553Λ4u

2048
− 349503u3

2048
a3,7 = −429 (u2 − Λ4) (1235Λ4 − 4943u2)

4096

a3,8 = −765765u (u2 − Λ4)2

1024
a3,9 =

425425 (u2 − Λ4)3

1024
.

(4.118)
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4.3.2. Cycles integrals

Considering the ansatz (4.110) and equivalence formula (B.46), we have the basic integrals

Am =

∫ π

−π

[
2u− 2Λ2 cos z

]−m+1/2
dz (4.119)

= 2

∫ 1

0

(2u+ 2Λ2 − 4Λ2t)−m+1/2t−1/2(1− t)−1/2 dt (4.120)

=
Λ1−2m23/2−mπ

[(u/Λ2 + 1)]m−1/2 2F1(m− 1

2
,
1

2
, 1;

2

u/Λ2 + 1
) (4.121)

Bm =

∫ arccosu/Λ2−i0

− arccosu/Λ2−i0

[
2u− 2Λ2 cos z

]−m+1/2
dz (4.122)

= 2i(−1)m
∫ 1−u/Λ2

2

0

(−2u+ 2Λ2 − 4Λ2s)−m+1/2s−1/2(1− s)−1/2 ds (4.123)

=
21−mi(−1)mΛ1−2m

(1− u/Λ2)−m+1

∫ 1

0

r−1/2(1− r)−m+1/2

(
1− 1− u/Λ2

2
r

)−1/2

dr (4.124)

=
i(−1)mΛ1−2m

2m−1(1− u/Λ2)m−1

√
πΓ(32 −m)

Γ(2−m)
2F1(

1

2
,
1

2
, 2−m;

1− u/Λ2

2
) (4.125)

=
−iΛ1−2m

22m−2

√
πΓ(m− 1

2)

Γ(m)
2F1(m− 1

2
,m− 1

2
,m;

1− u/Λ2

2
) (4.126)

Finally, the deformed cycles (4.107) can be expressed as

a(n) = − 1

2π(2n− 1)

3n∑

m=n

anmAm (4.127)

a(n)D = − 1

2π(2n− 1)

3n∑

m=n

anmBm (4.128)

The basic integrals have been regularized by the use of the exponential parameter m.
Yet, another way to regularize the integral is to define them through some differential
operators which act on the SW (regular) cycles:

(
a(n)(u,Λ)

a(n)D (u,Λ)

)
=

3n∑

m=n

αn,m(u,Λ)
∂m

∂um

(
a(0)(u,Λ)

a(0)D (u,Λ)

)
. (4.129)

with new coefficients
αn,m(u,Λ) =

(−1)man,m(u,Λ)

(2n− 1)(2m− 3)!!
. (4.130)

Formula (4.129) can be immediately proven observing that

1

φm−1/2
=

(−1)m+1

(2m− 3)!!

∂m

∂um
φ1/2 . (4.131)
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The coefficients (4.130) satisfy the one-step recursion (simply obtained from (4.115) and
(4.130)).

αn+1,m+1 = −
n− 1

2

n+ 1
2

{
1
8(m+ 1

2)
3

(m+ 1)(m− 1
2)
αn,m +

1
4m(m+ 1

2)u

(m+ 1)(m− 3
2)
αn,m−1 +

1
8(m+ 1

2)(u
2 − Λ4)

(m+ 1)(m− 5
2)

αn,m−2

}

(4.132)

with initial condition α0,0 = 1. For example, the first two differential operators are

Ĥ(1)
red(u,Λ) = − 1

32

∂

∂u
− 3u

8

∂2

∂u2
− 5(u2 − Λ4)

24

∂3

∂u3
(4.133)

and

Ĥ(2)
red(u,Λ) =

9

2048

∂2

∂u2
+

145u

2304

∂3

∂u3
+

7 (31u2 − 13Λ4)

2304

∂4

∂u4
+

11

320
u(u2 − Λ4)

∂5

∂u5
+

11 (u2 − Λ4)2

3456

∂6

∂u6

(4.134)

He and Miao [64] conjectured the existence of slightly simpler operators. In the next
subsection, we will derive those operators from ours and rigorously proven their con-
jecture. However, we have found no simple recursion formulas for such operators. Our
operators have instead the advantage of being given by the very efficient one-step recur-
sion (4.132).
We have now two methods to compute the deformed cycles, both exploiting the effi-

ciency of one-step recursions. Using the software Wolfram Mathematica we find that the
most efficient formulæ are (4.127)-(4.128), since the computation of high order derivatives
in (4.129) is rather slow.

4.3.3. Homogeneous operators

He and Miao [65] conjectured the existence of simple differential operators in u which
give the Seiberg-Witten deformed cycles:

a(n)(u,Λ) = Ĥ(n)(u)a(0)(u,Λ) =
n∑

k=0

hn,ku
k ∂

n+k

∂un+k
a(0)(u,Λ) (4.135)

where n = 0, 1, 2... and the hn,k (k = 0, 1, ..., n) are numerical coefficients (rational numbers).
For example, the first homogeneous operator acting on the SW cycles is

Ĥ(1)(u) =
1

48

∂

∂u
+

u

24

∂2

∂u2
, (4.136)

while the second homogeneous operator is

Ĥ(2)(u) =
5

1536

∂2

∂u2
+

u

192

∂3

∂u3
+

7u2

5760

∂4

∂u4
. (4.137)

In this section, we give a rigorous proof of the existence and uniqueness of the homoge-
neous differential operators by giving a general algorithm for calculating them. Afirst step
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for the proof was already made in the previous subsection, with formula (4.131). How-
ever the ”redundant operator” (4.129) was not exactly that homogeneous of He-Miao [65],
but more complex. In fact, the number of derivatives involved was double and they mul-
tiplied polynomials of u and Λ, rather than simple powers of u. The coefficients of the first
10 of the these operators are given in appendix B.3.

4.4. Quantum Picard Fuchs in moduli parameter
The Seiberg-Witten cycles (2.28) and (2.30) are both constrained by the Picard-Fuchs equa-
tion [66] {

(u2 − Λ4)
∂2

∂u2
+

1

4

}
a(0)(u,Λ) = 0 . (4.138)

{
(u2 − Λ4)

∂2

∂u2
+

1

4

}
a(0)D (u,Λ) = 0 . (4.139)

In this section we derive an explicit formula for computing the coefficients of all the
quantum Picard-Fuchs equations (constraining both periods a(n)D (u,Λ) and a(n)(u,Λ)), e.g.:

{
(u2 − Λ4)

∂2

∂u2
+ 4u

∂

∂u
+

5

4

}
a(1)D (u,Λ) = 0 (4.140)

{
(u2 − Λ4)

∂2

∂u2
+ 6u

u2

Λ4 +
111
8

u2

Λ4 +
325
32

∂

∂u
+

21

4

u2

Λ4 +
689
32

u2

Λ4 +
325
32

}
a(2)D (u,Λ) = 0 . (4.141)

In the last equation, as in higher order equations, these coefficients show additional sin-
gularities which have been checked also numerically to be apparent ones (not of the so-
lution). Eventually, from the knowledge of the periods we can determine the partition
function by different means as explained in Section 4.3.

4.4.1. General derivation of quantum Picard-Fuchs

The action of the classical Picard-Fuchs operator on then-th cycle canbe expressed through
a commutator with the homogeneous operator as

F̂0a
(n) = (u2 − Λ4)

∂2

∂u2
a(n) +

1

4
a(n) =

[
F̂0,

n∑

k=0

hn,ku
k ∂

n+k

∂un+k

]
a(0) . (4.142)

Using the basic commutators
[
∂2

∂u2
, uk ∂

k+n

∂uk+n

]
= k(k − 1)uk−2 ∂

k+n

∂uk+n
+ 2kuk−1 ∂

k+n+1

∂uk+n+1
(4.143)

[
u2 ∂

2

∂u2
, uk ∂

k+n

∂uk+n

]
=
[
−n2 − n(2k − 1)

]
uk ∂

k+n

∂uk+n
− 2nuk+1 ∂

k+n+1

∂uk+n+1
(4.144)
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we obtain

F̂0a
(n) =

n+1∑

k=0

Cn,k(u,Λ)
∂k+n

∂uk+n
a(0) , (4.145)

with

Cn,k(u,Λ) = hn,k

[
(−n2 − 2nk + n)uk − Λ4k(k − 1)uk−2

]
+ hn,k−1

[
−2nuk − 2Λ4(k − 1)uk−2

]
.

(4.146)
Differentiating the classical Picard-Fuchs (4.139) we get the formula

∂N

∂uN
a(0) = −2(N − 2)

u

u2 − Λ4

∂N−1

∂uN−1
a(0) −

[
(N − 2)(N − 3) +

1

4

]
1

u2 − Λ4

∂N−2

∂uN−2
a(0) , (4.147)

which if used repeatedly, allows to reduce the number of derivatives in expression (4.145)
to only two:

F̂0a
(n) = χn,0(u,Λ)

∂n

∂un
a(0) + χn,1(u,Λ)

∂n+1

∂un+1
a(0) , (4.148)

where χn,0 and χn,1 are rational expressions of u and Λ. If n ≥ 2 we can write another
expression:

[
F̂0 + (n2 − n)

]
a(n) =

n+1∑

k=1

[
Cn,k + (n2 − n)ukhn,k

] ∂n+k

∂un+k
a(0) , (4.149)

which similarly can be simplified with the aid of rational functions ξn,0 and ξn,1
[
F̂0 + (n2 − n)

]
a(n) = ξn,0(u,Λ)

∂n

∂un
a(0) + ξn,1(u,Λ)

∂n+1

∂un+1
a(0) . (4.150)

(4.148) and (4.150) constitute a system of equations for the n− 1-th and n-th derivative of
a(0), which we can solve as:

∂n

∂un
a(0) = − 1

χn,0ξn,1 − χn,1ξn,0

{
(χn,1 − ξn,1)

[
(u2 − Λ4)

∂2

∂u2
a(n) +

1

4
a(n)
]
+ (n2 − n)χn,1a

(n)

}

(4.151)
∂n+1

∂un+1
a(0) =

1

χn,0ξn,1 − χn,1ξn,0

{
(χn,0 − ξn,0)

[
(u2 − Λ4)

∂2

∂u2
a(n) +

1

4
a(n)
]
+ (n2 − n)χn,0a

(n)

}
.

(4.152)

Now, differentiating the expression for the n-th derivative and subtracting to the expres-
sion for the n+ 1-th we obtain a third order equation for only a(n)

0 = (u2 − Λ4)
∂3

∂u3
a(n) +

{
(u2 − Λ4)

[
−(χn,0ξn,1 − χn,1ξn,0)′

χn,0ξn,1 − χn,1ξn,0
+
χ′
n,1 − ξ′n,1 + χn,0 − ξn,0

χn,1 − ξn,1

]
+ 2u

}
∂2

∂u2
a(n)

+

{
+
(n2 − n)χn,1

χn,1 − ξn,1
+

1

4

}
∂

∂u
a(n) +

{
1

4

[
−(χn,0ξn,1 − χn,1ξn,0)′

χn,0ξn,1 − χn,1ξn,0
+
χ′
n,1 − ξ′n,1 + χn,0 − ξn,0

χn,1 − ξn,1

]

+
n2 − n

χn,1 − ξn,1

[
−(χn,0ξn,1 − χn,1ξn,0)′

χn,0ξn,1 − χn,1ξn,0
χn,1 + χ′

n,1 + χn,0

]}
a(n) ,

(4.153)
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where ′ = ∂
∂u . Since for each n there are only two quantum cycles, we expect the quantum

Picard-Fuchs equation to be of second order, hence we need to eliminate the third deriva-
tive. In order to do this, we do for the derivative Picard Fuchs equation the same passages
as before

∂

∂u

(
F̂0a

(n)
)
= (u2 − Λ4)

∂3

∂u3
a(n) + 2u

∂2

∂u2
a(n) +

1

4

∂

∂u
a(n) = (4.154)

=
n+2∑

k=0

{
Cn,k−1 +

∂

∂u
Cn,k

}
∂k+n

∂uk+n
a(0) (4.155)

= γn,0(u,Λ)
∂n

∂un
a(0) + γn,1(u,Λ)

∂n+1

∂un+1
a(0) (4.156)

with rational functions γn,0(u,Λ) and γn,1(u,Λ). We obtain the expression

(u2 − Λ4)
∂3

∂u3
a(n) = −1

4

∂

∂u
a(n) − 2u

∂2

∂u2
a(n) + γn,0(u)

∂n

∂un
a(0) + γn,1(u)

∂n+1

∂un+1
a(0) , (4.157)

which inserted in (4.153) give the general second order Picard-Fuchs equation for the n-th
deformed cycle: {

(u2 − Λ4)
∂2

∂u2
+ αn(u,Λ)

∂

∂u
+ βn(u,Λ)

}
a(n) = 0 , (4.158)

with coefficients

αn =
(n2 − n)χn,1

χn,1 − ξn,1
∆−1

n (4.159)

βn =
1

4
+ (n2 − n)

[
χn,0γn,1 − χn,1γn,0 − (χn,0ξn,1 − χn,1ξn,0)′

χn,1

χn,1−ξn,1

χn,0ξn,1 − χn,1ξn,0
+
χ′
n,1 + χn,0

χn,1 − ξn,1

]
∆−1

n ,

(4.160)

where

∆n =
(χn,0 − ξn,0)γn,1 − (χn,1 − ξn,1)γn,0 − (χn,0ξn,1 − χn,1ξn,0)′

χn,0ξn,1 − χn,1ξn,0
+
χ′
n,1 − ξ′n,1 + χn,0 − ξn,0

χn,1 − ξn,1
.

(4.161)

4.4.2. Examples

n = 1 For n = 1 the passage (4.150) fails and the coefficients (4.159) and (4.160) are singu-
lar. However, the general procedure of section 4.4.1 can be slightly modified and we can
still obtain a quantum Picard-Fuchs equation.
The Picard Fuchs operator for the Seiberg-Witten order commuted with the first homo-

geneous operator gives

F̂ (0)(u)Ĥ(1)(u)a(0) = [F̂ (0)(u), Ĥ(1)(u)]a(0) =

[
−u2 − Λ4

12

∂3

∂u3
− u

8

∂2

∂u2

]
a(0) , (4.162)
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which using (4.147) becomes

F̂0a
(1) = χ1,0(u)

∂

∂u
a(0) + χ1,1(u)

∂2

∂u2
a(0) , (4.163)

with

χ1,0 = − −Λ4 − u2

48 (u2 − Λ4)
χ1,1 =

u (7Λ4 + u2)

24 (u2 − Λ4)
(4.164)

Using now the homogeneous operator identities

∂

∂u
a(0) = 48a(1) − 2u

∂2

∂u2
a(0) (4.165)

∂2

∂u2
a(0) =

24

u
a(1) − 1

2u

∂

∂u
a(0) (4.166)

we can write two equations for the first quantum cycle a(1), but still involving also a(0):
{
(u2 − Λ4)2

∂2

∂u2
− 3u2 + 5Λ4

4

}
a(1)(u) =

uΛ4

4

∂2

∂u2
a(0)(u) (4.167)

{
(u2 − Λ4)2

∂2

∂u2
− 3u2 + 29Λ4

4

}
a(1)(u) = −Λ4

8

∂

∂u
a(0)(u) . (4.168)

Such equations are the analogue of (4.151) and (4.152). In fact, multiplying on the left the
second equation by 2u ∂

∂u and adding it to the first we get a third order equation for only
the first quantum cycle:
{
u(u2 − Λ4)2

∂3

∂u3
+

(9u2 − Λ4)(u2 − Λ4)

2

∂2

∂u2
− u(3u2 + 29Λ4)

4

∂

∂u
− 5(Λ4 + 3u2)

8

}
a(1)(u) = 0 .

(4.169)
We need to eliminate the third derivative, because even a quantum Picard-Fuchs has only
two independent solutions: a(1) and a(1)D . Hence, expliticing a(0) and using (4.147) we obtain

u(u2 − Λ4)2
∂3

∂u3

[
1

48

∂

∂u
+

u

24

∂2

∂u2

]
a(0) =

[
7u(u2 − Λ4)2

48

∂4

∂u4
+

u2(u2 − Λ4)2

24

∂5

∂u5

]
a(0) (4.170)

=

[
−5u4 + 102u2Λ4 + 21Λ8

64(u2 − Λ4)
u
∂2

∂u2
− u2 (5u2 + 27Λ4)

128 (u2 − Λ4)

∂

∂u

]
a(0) .

(4.171)

Using equations (4.168) and (4.167) we finally get the Picard-Fuchs equation for first quan-
tum Seiberg-Witten cycle

{
(u2 − Λ4)

∂2

∂u2
+ 4u

∂

∂u
+

5

4

}
a(1)(u,Λ) = 0 . (4.172)

49



n ≥ 2 For n ≥ 2 we can apply the general procedure of section 4.4.1.
We begin with n = 2. The commutator of the second homogeneous operator with the

classical Picard-Fuchs equation gives

F0a
(2) =

{
−7u (Λ4 + u2)

1440

∂5

∂u5
− (37Λ4 + 95u2)

2880

∂4

∂u4
− 17u

384

∂3

∂u3
− 5

768

∂2

∂u2

}
a(0) (4.173)

and can be simplified to

F0a
(2) = χ2,0

∂2

∂u2
a(0) + χ2,1

∂3

∂u3
a(0) , (4.174)

with

χ2,0 =
−17Λ8 − 47Λ4u2 + u4

480 (Λ4 − u2)2
(4.175)

χ2,1 =
u (−363Λ8 − 313Λ4u2 + 4u4)

2880 (Λ4 − u2)2
. (4.176)

The other auxiliary functions in (4.150) and (4.156) are

ξ2,0 =
−37Λ8 − 135Λ4u2 + 4u4

1280 (Λ4 − u2)2
(4.177)

ξ2,1 =
u (−111Λ8 − 115Λ4u2 + 2u4)

960 (Λ4 − u2)2
(4.178)

γ2,0 =
u (−795Λ8 − 553Λ4u2 + 4u4)

1280 (Λ4 − u2)3
(4.179)

γ2,1 = −155Λ12 + 1220Λ8u2 + 419Λ4u4 − 2u6

960 (Λ4 − u2)3
(4.180)

Putting these expressions in (4.159) and (4.160) we get the second quantum Picard-Fuchs
equation {

(u2 − Λ4)
∂2

∂u2
+ 6u

u2

Λ4 +
111
8

u2

Λ4 +
325
32

∂

∂u
+

21

4

u2

Λ4 +
689
32

u2

Λ4 +
325
32

}
a(2)(u,Λ) = 0 . (4.181)

We now consider n = 3. The auxiliary rational functions of (4.148), (4.150) and (4.156)
are

χ3,0 = −11469Λ12 + 72268Λ8u2 + 15367Λ4u4 + 96u6

516096 (Λ4 − u2)3
(4.182)

χ3,1 =
u (70535Λ12 + 148050Λ8u2 + 19399Λ4u4 + 96u6)

1290240 (u2 − Λ4)3
(4.183)

ξ3,0 = −5 (1851Λ12 + 14360Λ8u2 + 3597Λ4u4 + 32u6)

516096 (Λ4 − u2)3
(4.184)

ξ3,1 =
u (62273Λ12 + 152734Λ8u2 + 22913Λ4u4 + 160u6)

1290240 (u2 − Λ4)3
(4.185)
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γ3,0 = −5u (155875Λ12 + 288266Λ8u2 + 31923Λ4u4 + 96u6)

1032192 (Λ4 − u2)4
(4.186)

γ3,1 = −39683Λ16 + 548813Λ12u2 + 514877Λ8u4 + 39315Λ4u6 + 96u8

516096 (Λ4 − u2)4
(4.187)

and put in (4.159) and (4.160) produce the third quantum Picard-Fuchs equation
{
(u2 − Λ4)

∂2

∂u2
+ 8u

u4

Λ8 +
617u2

64Λ4 + 731043
2048

u4

Λ8 +
117u2

16Λ4 + 242433
1024

∂

∂u
+

45

4

u4

Λ8 +
251u2

48Λ4 + 675177
1024

u4

Λ8 +
117u2

16Λ4 + 242433
1024

}
a(3)(u,Λ) = 0 . (4.188)

We report also the quantum Picard-Fuchs equation for n = 4
{
(u2 − Λ4)

∂2

∂u2
+ 16u

40960 u6

Λ12 + 7291392 u4

Λ8 − 61637640 u2

Λ4 + 721916729

65536 u6

Λ12 + 9689088 u4

Λ8 − 73211328 u2

Λ4 + 731068145

∂

∂u
(4.189)

+
77

4

65536 u6

Λ12 + 13694976 u4

Λ8 − 192704448 u2

Λ4 + 2338851605

65536 u6

Λ12 + 9689088 u4

Λ8 − 73211328 u2

Λ4 + 731068145

}
a(4) = 0 (4.190)

and write the coefficients of the quantum Picard-Fuchs equation for n = 5

α5 = 4u
62914560 u8

Λ16 + 35696148480 u6

Λ12 + 2044215361536 u4

Λ8 − 20435136246144 u2

Λ4 + 93217274165643

20971520 u8

Λ16 + 10186915840 u6

Λ12 + 507233746944 u4

Λ8 − 4653859998464 u2

Λ4 + 19108840832975
(4.191)

β5 =
117

(
20971520 u8

Λ16 + 13311672320 u6

Λ12 + 912813637632 u4

Λ8 − 12830541348608 u2

Λ4 + 66392092574911
)

4
(
20971520 u8

Λ16 + 10186915840 u6

Λ12 + 507233746944 u4

Λ8 − 4653859998464 u2

Λ4 + 19108840832975
) .

(4.192)

We expect, in general perturbation theory
{
(u2 − Λ4)

∂2

∂u2
+

∑n−1
j=0 p

(n)
j

(
u
Λ2

)2j
∑n−1

k=0 q
(n)
k

(
u
Λ2

)2ku
∂

∂u
+

∑n−1
l=0 r(n)l

(
u
Λ2

)2l
∑n−1

m=0 s
(n)
m

(
u
Λ2

)2m

}
a(n)(u,Λ) = 0 (4.193)

where p(n)j , q(n)k , r(n)l and s(n)m are rational numbers.

4.4.3. Alternative derivation

The Picard-Fuchs may be found also from the series which are resummation of the LIMs,
as explained below in section 4.7.3. We report here the first two of such series:

2πia(1)D (u,Λ) = −Λ−1
∞∑

n=0

[
(−1)n2n

(n+ 1
2)Γ

2(n2 + 1
4)

48
√
πn!

]( u

Λ2

)n
(4.194)

2πia(2)D (u,Λ) = +Λ−3
∞∑

n=0

[
(−1)n2n

(n+ 3
2)(7n+ 25

2 )Γ
2(n2 + 3

4)

5760
√
πn!

]( u

Λ2

)n
. (4.195)
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These formulæ are valid for |u| < Λ2.
From (4.193), we get the following ansatz for the first quantum Picard-Fuchs equation

[
(u2 − Λ4)

∂2

∂u2
+ f0u

∂

∂u
+ g0

]
a(1)D (u) = 0 . (4.196)

Applying this ansatz to the series (4.194) we get the following relation for n ∈ N

g0 + f0n− 4n− 5

4
= 0 , (4.197)

which is solved immediately as
f0 = 4 g0 =

5

4
. (4.198)

Again from the general form (4.193), we get the following ansatz for the second quantum
Picard-Fuchs equation

[
(u2 − Λ4)

∂2

∂u2
+ f0

f1Λ4 + u2

f2Λ4 + u2
u
∂

∂u
+ g0

g1Λ4 + u2

g2Λ4 + u2

]
a(2)D (u) = 0 (4.199)

Applying this ansatz to the series (4.195)we get the following relations, for the first powers
(u/Λ2)n:

n = 0 :
g0g1
g2

=
1113

100
(4.200)

n = 1 :
f0f1
f2

=
2664

325
(4.201)

n = 2 :
g0g1
g2

[
1

g1
− 1

g2

]
= −4704

8125
(4.202)

n = 3 :
f0f1
f2

[
1

f1
− 1

f2

]
= − 22848

105625
(4.203)

n = 4 :
g0g1
g2

[
1

g1
− 1

g2

](
− 1

g2

)
=

150528

2640625
(4.204)

n = 5 :
f0f1
f2

[
1

f1
− 1

f2

](
− 1

f2

)
=

731136

34328125
. (4.205)

These equations can be solved without any algebraic problem to give the already known
coefficients

f0 = 6 f1 =
111

8
f2 =

325

32
(4.206)

g0 =
21

4
g1 =

689

32
g2 =

325

32
. (4.207)
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4.5. Quantum Picard-Fuchs in the cut-off scale
4.5.1. SW order

Set γ = Λ2. By combining the already known Picard-Fuchs equation [66] [19]
[
(u2 − γ2)

∂2

∂u2
+

1

4

]
a(0)D = 0 (4.208)

[
γ
∂2

∂u2
+ γ

∂2

∂γ2
+ 2u

∂2

∂u∂γ

]
a(0)D = 0 (4.209)

and the relation (which we have derived from the formula below (4.282))

∂

∂u
a(0)D =

1

2u
a(0)D − γ

u

∂

∂γ
a(0)D (4.210)

We find another Picard-Fuchs equation
[
∂2

∂γ2
+

1

γ

∂

∂γ
+

1

4(u2 − γ2)

]
a(0)D = P̂ (0)

Λ a(0)D = 0 (4.211)

4.5.2. Quantum orders

We find as differential operator in γ = Λ2 which gives the first cycle

a(1) = Ĥ(1)
Λ a(0) =

[
γ2

24u

∂2

∂γ2
+

γ

48u

∂

∂γ

]
a(0) (4.212)

For the second

a(2) =

[
+

7γ4

5760u2

∂4

∂γ4
+

γ3

144u2

∂3

∂γ3
+

11γ2

1536u2

∂2

∂γ2
+

γ

1536u2

∂

∂γ

]
a(0) (4.213)

(and of course the same operators for the dual cycles). We have derived these expression
by setting an ansatz for the differential operator in γ and finding its coefficients by com-
parison with the higher cycles calculated through differential operators in u, simplified to
the elliptic integrals of the first and second kind.
We find a Picard-Fuchs equation in Λ for the first quantum cycle (and dual cycle):

[
∂2

∂γ2
+

(3γ2 + u2)

γ3 − γu2

∂

∂γ
+

3

4 (γ2 − u2)

]
a(1)D = 0 (4.214)

The details of the derivation are as follows. We calculate the commutating of the operator
Ĥ(1)

Λ (4.212) with the operator P̂ (0)
Λ associated to equation (4.211) and simplify the result by

using equation (4.211)

[P̂ (0)
Λ , Ĥ(1)

Λ ]a(0) =
(3γ4 + 5γ2u2 − u4)

24γu (u2 − γ2)2
∂

∂γ
a(0) +

(12γ4 − 11γ2u2 + 7u4)

24u (u2 − γ2)2
∂2

∂γ2
a(0) +

γ

6u

∂3

∂γ3
a(0) (4.215)
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Then by using the expression for a(1) wewrite this result in twoways in amixed formwith
a(0)

[P̂ (0)
Λ , Ĥ(1)

Λ ]a(0) =
γ (3γ2u− u3)

16 (γ3 − γu2)2
∂

∂γ
a(0) +

4γ (u2 − γ2)2

(γ3 − γu2)2
∂

∂γ
a(1) − (−2γ4 − 9γ2u2 + 3u4)

(γ3 − γu2)2
a(1) (4.216)

[P̂ (0)
Λ , Ĥ(1)

Λ ]a(0) =
γ2u (u2 − 3γ2)a0′′(γ)

8 (γ3 − γu2)2
∂2

∂γ2
+

4γ (u2 − γ2)2

(γ3 − γu2)2
∂

∂γ
a(1) − 2 (−γ4 − 9γ2u2 + 3u4)

(γ3 − γu2)2
a(1)

(4.217)
Exploiting the fact that

[P̂ (0)
Λ , Ĥ(1)

Λ ]a(0) = P̂ (0)
Λ Ĥ(1)

Λ a(0) =

[
∂2

∂γ2
+

1

γ

∂

∂γ
+

1

4(u2 − γ2)

]
a(1) (4.218)

and differentiating on of the twomixed equations (4.216) (4.217), we arrive at a third order
equation in only a(1)

∂3

∂γ3
a(1) +

(3γ4 + 16γ2u2 − 3u4)

2γ (3γ4 − 4γ2u2 + u4)

∂2

∂γ2
a(1) +

(117γ6 − 65γ2u4 + 6γ4u2 + 6u6)

4γ2 (u2 − γ2) (3γ4 − 4γ2u2 + u4)

∂

∂γ
a(1) (4.219)

+
3 (27γ4 − 20γ2u2 + u4)

8γ (u2 − γ2) (3γ4 − 4γ2u2 + u4)
a(1) = 0 (4.220)

We can simplify the third derivative of a(1) by writing the derivatives of a(1) in terms of
derivatives of a(0) through (4.212) and simplifying higher order derivatives using the dif-
ferentiation of (4.211). We end up with the second order equation (4.214).

4.6. Baxter’s T function at self-dual point as Seiberg-Witten period
This section is devoted to the b = 1 case, where we first analyse an important connexion
between thr unique Baxter’s T function T (θ) = T̃ (θ) and the Floquet exponent, as proven
numerically by [49]. Then, we give both T and Q two peculiar SW theory interpretations.
As anticipated, in the self-dual GME (4.77), we shall rotate the real into the imaginary axis,
z = −iy − π, and obtain the Mathieu equation

− d2

dz2
ψ(z, θ) +

[
2e2θ cos z − P 2

]
ψ(z, θ) = 0 . (4.221)

According to Floquet theorem, there exist two linearly independent (quasi-periodic) solu-
tions of the Mathieu equation (4.221) of the form ψ+(z) = eνzp(z) and ψ−(z) = e−νzp(−z),
with periodic p(z) = p(z + 2π) and monodromy exponent ν = ν(θ, P ), the Floquet index. As
anticipated, already [49] conjectures this identification

T (θ, P 2) = 2 cosh
{
2πν(θ, P 2)

}
. (4.222)

We will prove this formula in the next subsection. This identity has a very relevant inter-
pretation in gauge theory once we add the other important ingredient, namely the coinci-
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dence of the quantum SW period (4.105) a/! = −iν with the Floquet exponent7. More pre-
cisely, the Mathieu ODE/IM equation (4.221) coincides with the Seiberg-Witten one (2.34),
provided we set the change of variables

!
Λ

= e−θ ,
u

Λ2
=

P 2

2e2θ
. (4.223)

Thus, the above (4.222) can be interpreted as a direct connexion between the Baxter’s T
function and the quantum SW period (4.105):

T (!, u,Λ) ≡ T (θ, P 2) = 2 cos
{
2π

! a(!, u,Λ)
}

. (4.224)

4.6.1. Exact analytic proof

Define the periodicity operator

Mψ(y) = ψ(y + 2πi) (4.225)

We can express it in terms of the Λ1,Ω1 symmetry operators

M = Λ1Ω
−1
1 (4.226)

Then we write
ψ+,−1(y + 2πi) = ψ+,0

ψ+,0(y + 2πi) = ψ+,1 = −ψ+,−1 + T (θ)ψ+,0
(4.227)

Or in matrix form, defining ψ = (ψ+,−1,ψ+,0)T

Mψ+ = Υ+ψ+ (4.228)

with
Υ+ =

(
0 1
−1 T (θ)

)
(4.229)

Now we can say that ν is a characteristic exponent of the Doubly confluent Heun equa-
tion (4.77) if and only if e±2πiν are eigenvalues of Υ+. It then follows that ν is determined
from

2 cos 2πν = trΥ+ (4.230)
or more explicitly

2 cos 2πν = T (θ) (4.231)

7We have carried preliminary successful comparisons with the few instanton Nekrasov partition function
in terms of Young diagrams upon using Matone’s relation, as in [43].
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4.6.2. Numerical exact proof

In order to compute numerically T (θ, P 2), we use the TQ relation (4.27)

T (θ, P 2) =
Q(θ + iπ/2, P 2)

Q(θ, P 2)
+

Q(θ − iπ/2, P 2)

Q(θ, P 2)
(4.232)

The analytic continuation of the TBA (4.70) gives ε(θ+ iπ/2, P 2) = −2 lnQ(θ+ iπ/2, P 2)with
the real part given by the contribution of (half) the residue at θ′ = θ+ iπ/2 of the integrand

-ε(θ + iπ/2, P 2) = − ln [1 +Q2(θ, P 2)] (4.233)

and the imaginary part [49]

$ε(θ+iπ/2, P 2) = c0e
θ+8P arctan[e−θ]+C(P )

cosh θ−2 v.p.
∫ ∞

−∞

L(θ′)− 4P ln[1 + e−2θ′ ]− C[1− tanh(θ′)]
sinh(θ − θ′)

dθ′

2π
.

(4.234)
Considering that for real θ andP 2wehaveQ(θ+iπ/2, P 2) = Q(θ−iπ/2, P 2)∗ the TQ simplifies
as

T (θ, P 2) = 2

√
1 +Q2(θ, P 2)

Q(θ, P 2)
cos
{
1

2
$ε(θ + iπ/2, P 2)

}
, (4.235)

Asymptotically for θ → −∞, we find easily

T (θ, P ) 0 2 cos 2πP θ → −∞ , (4.236)

which is consistent with T (θ, P ) 0 2 cosh 2πν(θ, P ) since ν 0 iP . At finite θ we must com-
pute ν through the Hill determinant (see below and for instance [67]) and find confirmed
Zamolodchikov’s conjecture [49]:

T (θ, P ) = 2 cosh 2πν(θ, P ) . (4.237)

Another check of this relation was given by H. Poghosyan in [68].

Hill determinant Here we give the details of the computation of the Hill determinant.
Let us consider the modified Mathieu ODE (4.77) written as:

− d2

dy2
ψ(y) + [e2θey + e2θe−y + P 2]ψ(y) = 0 , (4.238)

Noticing that the potential is periodic under y → y + 2πi, the Floquet index is defined
through

ψ+(y) = e−iνyp̂(y) , ψ+(y + 2πi) = e2πνψ+(y) , (4.239)
where p̂(y) is a 2πi periodic function, which expanded in Fourier modes gives

ψ+(y) = e−iνy
∞∑

n=−∞
bne

ny . (4.240)
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θ T (θ, P ) TBA 2 cosh 2πνM Mathematica 2 cosh 2πνH Hill
−10. 0.617594 0.618034 0.618034
−8. 0.61583 0.618034 0.618034
−6. 0.598208 0.618034 0.618034
−4. 0.479008 0.618026 0.618026
−2. −0.176943 0.594172 0.594172
0. −50.9945 −47.0357 −47.0357
1. −16061.2 −18715.7 −18715.7
2. 1.4194 · 1011 1.46531 · 1011 1.46531 · 1011
3. 3.19213 · 1029 3.67017 · 1029 3.65387 · 1029
4. −4.23969 · 1080 N.R. −4.2823 · 1080
5. 5.14167 · 10218 N.C. 5.13 · 10218

Table 4.1: Here we make a table, with P = 0.2 and several θ in the lines, of three quan-
tities: T (θ, P ) from the TBA, 2 cosh 2πνM , were νM is Mathematica’s Floquet and
2 cosh 2πνH were νM is Hill’s Floquet. N.C. stays for not computable, N.R. for not
reliable (because a little beyond it becomes uncomputable).

Substituting this expression in the Modified Mathieu ODE, we obtain
∞∑

n=−∞

{
−(n− iν)2bn +

[
e2θbn−1 + e2θbn+1 + P 2bn

]} (
e(n−iν)y

)
= 0 (4.241)

In order to have a nontrivial solution, we need to impose the following condition on the
Fourier modes bn:

bn−1 +

[
−(n− iν)2 + P 2

e2θ

]
bn + bn+1 = 0 (4.242)

or
ξnbn−1 + bn + ξnbn+1 = 0 with ξn =

e2θ

P 2 − (n− iν)2
(4.243)

In the matrix form, we have




... ...
· · · ξn 1 ξn 0 · · ·
· · · 0 ξn+1 1 ξn+1 · · ·
· · · 0 0 ξn+2 1 · · ·
· · · 0 0 0 ξn+3 · · ·
... ...









...
bn−1

bn
bn+1

bn+2
...





= 0. (4.244)

Let the determinant of the matrix at the left hand side be ∆(ν), we thus have

∆(ν) = 0. (4.245)

57



We also introduce a (2n+ 1)× (2n+ 1)matrix

An(ν) =





1 ξ−n 0 0
ξ−n+1 1 ξ−n+1 0

0 ξ−n+2 1 ξ−n+2

... · · ·

ξ−1 1 ξ−1 0 0
0 ξ0 1 ξ0 0
0 0 ξ1 1 ξ1

· · ·
...

ξn−2 1 ξn−2 0
0 ξn−1 1 ξn−1
0 0 ξn 1





(4.246)
Let ∆(ν) = 0, we find by the ordinary Floquet theory

2 cosh 2πν = 2
[
1− 2∆(0) sin2 πP

]
(4.247)

where
∆(0) = lim

n→∞
detAn(0) (4.248)

In this way, we can check (4.237) for all θ, as Zamolodchikov did [49].

4.6.3. Identification with instanton period

The gauge a period is defined through the relation

2u = a2 − Λ0

4

∂F inst
NS

∂Λ0
= a2 +

Λ4
0

2(4a2 − !2) +O(Λ8
0) (4.249)

where the instanton prepotential F is given by

F inst
NS =

∞∑

n=0

Λ4nF (n)
NS (4.250)

with
F (1)

NS = − 2

4a2 − !2

F (2)
NS = − 20a2 + 7!2

4(a2 − !2)(4a2 − !2)3

F (3)
NS = − 4(144a4 + 232a2!2 + 29!4)

3(4a2 − !2)5(4a4 − 13a2!2 + 9!4)

(4.251)

In table 4.2 we check the equality to this order of approximation
a

! = ν (4.252)
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Λ0 u a ν
1
10

1
5 0.6321918255 0.6321918255

1
5

1
5 0.6281906897 0.6281906283

3
10

1
5 0.6096988347 0.6096495640

2
5

1
5 0.5463504374 0.5303270313

Λ0 u a ν
1
10

1
5 0.8164231121 0.8164231121

1
5

1
5 0.8153248650 0.8153248652

3
10

1
5 0.8106453170 0.8106454455

2
5

1
5 0.7986254589 0.7986371992

Table 4.2: Comparison of a for Nf = 0 as computed by instanton series and the built-in
Mathematica Floquet exponent ν (with ! = 1).

4.7. Baxter’s Q function at self-dual point as Seiberg-Witten dual
period

Now we find an analogous link for the Q-function, Q(θ, P 2), upon writing (4.77) in the
gauge variables (4.223)

−!2
2

d2

dy2
ψ(y) + [Λ2 cosh y + u]ψ(y) = 0 , (4.253)

which is the same as equation (2.34) upon substitution ψ(y) = ψ(z) with y = iz + iπ. Equa-
tion (4.253) gives rise for P(y) = −i d

dy lnψ(y) to the Riccati equation

P2(y, !, u)− i
dP(y, !, u)

dy
= −(

2u

!2 +
2Λ2

!2 cosh y), (4.254)

while P(z) = −i d
dz lnψ(z) (so that P(y)dy = P(z)dz) verifies

P2(z, !, u)− i
dP(z, !, u)

dz
=

2u

!2 − 2Λ2

!2 cos z. (4.255)

4.7.1. Seiberg-Witten order proof

Let us consider the integral for lnQ at the leading ! (Seiberg-Witten) order. For the modi-
fied Mathieu equation (4.253), φ = −2Λ2 cosh y − 2u (cf. (B.43)). Then, the leading order of
the quantum momentum is

P−1 = −iΛ

√
2 cosh y′ + 2

u

Λ2
. (4.256)

Since, in the limits y → ±∞, we have P−1 = −iΛ! e
±y/2 +O(e∓y/2), it follows that the Seiberg-

Witten regularized momentum is

Preg,−1(y) = P−1(y) + 2iΛ cosh y

2
= −iΛ

[√
2 cosh y′ + 2

u

Λ2
− 2 cosh y′

2

]
. (4.257)
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Figure 4.1: A region of the y complex plane, where in yellow we show the contour of in-
tegration of SW differential for the SU(2) Nf = 0 theory we use for the proof
equality of the dual SW period a(0)D and the leading ! → 0 order of the logarithm
of the Baxter’s Q function lnQ(0). In red are shown the branch cuts of the SW
differential.

From (4.94) and (4.92), the leading order of lnQ is

lnQ(0)(u,Λ) =

∫ ∞

−∞
iPreg,−1(y) dy = Λ

∫ ∞

−∞

[√
2 cosh y + 2

u

Λ2
− 2 cosh y

2

]
dy . (4.258)

We assume u < Λ2. Let us consider the integral of iPreg,−1(y) on the (oriented) closed curve
which runs along the real axis, slightly below the cut and closes laterally. Mathematically,
it is γ = γ1∪γlat,R∪γ2∪γ3∪γ4∪γ5∪γlat,L, with γ1 = (−∞,+∞), γ2 = (+∞+ iπ− i0, 0++ iπ− i0)
, γ3 = (0+ + iπ − i0, 0+ + iπ − i arccos(u/Λ2), γ4 = (0− + iπ − i arccos(u/Λ2), 0− + iπ − i0),
γ5 = (0− + iπ − i0,−∞ + iπ − i0), and γlat,L γlat,R are the lateral contours which close the
curve (see figure 4.1).
We expect the integral of Preg,−1(y) on γ to be zero, since the branch cuts are avoided

and no singularities are inside the curve. By expanding the square root for -y → ±∞,
|$y| < π, we get the asymptotic behaviour:

!
Λ
iPreg,−1(y) = −(

u

Λ2
+ 1)e−y/2 + o(e−y/2) -y → +∞ (4.259)

!
Λ
iPreg,−1(y) = −(

u

Λ2
+ 1)ey/2 + o(ey/2) -y → −∞ , (4.260)

fromwhich, we deduce that the integrals on the lateral contours γlat,L/R are exponentially
suppressed. For γ2 and γ5, we consider Preg,−1(t+ iπ − i0) for t ∈ R:

!
Λ
iPreg,−1(t+ iπ − i0) =

√
−2 cosh t+ 2

u

Λ2
− 2i sinh t

2
. (4.261)
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Since for t = 0 it is necessary to cross a cut, we find the oddness property P−1(t+ iπ− i0) =
−P−1(−t + iπ − i0). Besides also the regularizing part is odd and therefore, for t ∈ R we
have

Preg,−1(t+ iπ − i0) = −Preg,−1(−t+ iπ − i0) (4.262)
As a consequence, the integrals on γ2 and γ5 cancel each other. The integrals on γ3 and γ4,
around the cut, can be better taken into account in the variable z = −iy − π. There is no
contribution from the regularizing part, which has no cut. Instead P−1, which is

P−1(z − i0) = Λ

√
−2 cos (z − i0) + 2

u

Λ2
, (4.263)

has the oddness property

P−1(−z + i0) = −P−1(z − i0) z ∈ R (4.264)

It follows that the integrals on γ3 and γ4 add to each other
∫ 0

− arccos(u/Λ2)

P−1(z − i0) dz +

∫ − arccos(u/Λ2)

0

P−1(z + i0) dz =

∫ + arccos(u/Λ2)−i0

− arccos(u/Λ2)−i0

P−1(z) dz . (4.265)

In conclusion, we find a relation between the integrals on γ1 and on γ3 and γ4:
∫ +∞

−∞
iPreg,−1(y) dy =

∫ + arccos(u/Λ2)−i0

− arccos(u/Λ2)−i0

iP−1(z) dz , (4.266)

which in terms of physical quantities is

lnQ(0)(u,Λ) = 2πia(0)D (u,Λ) . (4.267)

4.7.2. Higher orders asymptotic proof

We now give an asymptotic proof for also all higher orders in the ! → 0 expansion of Q:

lnQ
.
=

∞∑

n=0

!2n−1 lnQ(n) ! → 0 . (4.268)

The small ! asymptotic expansion of (4.92) is analogous but different from the large θ
expansion (4.93), since for the former u is finitewhile for the latter P is finite. If we expand
the Gelfand-Dikii polynomials in the basis (2u+ 2Λ2 cosh y)m, we obtain the same Gelfand-
Dikii coefficients an,m of (4.115) and basic integrals Zm given by

Zm =

∫ ∞

−∞

[
2Λ2 cosh y + 2u

]−m+1/2
dy , (4.269)

(regular for m ≥ 1). Then lnQ(n) is given by

lnQ(n) = − 1

2n− 1

3n∑

m=n

anmZm . (4.270)
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We compute the basic integral as follows

Zm =

∫ ∞

−∞

[
2Λ2 cosh y + 2u

]−m+1/2
dy (4.271)

= 2(2Λ)−2m+1

∫ ∞

0

(
cosh2 y

2
− 1− u/Λ2

2

)−m+1/2

dy (4.272)

= 2(2Λ)−2m+1

∫ ∞

1

(
t− 1− u/Λ2

2

)−m+1/2

(t− 1)−1/2t−1/2 dt (4.273)

= 2(2Λ)−2m+1

∫ 1

0

(
1− 1− u/Λ2

2
s

)−m+1/2

(1− s)−1/2sm−3/2 ds (4.274)

= 2−2m+2Λ−2m+1Γ(m− 1
2)
√
π

Γ(m)
2F1(m− 1

2
,m− 1

2
,m,

1− u/Λ2

2
) . (4.275)

Comparing with formula (4.126) for the deformed dual cycles, we get Zm = iBm and there-
fore

lnQ(n)(u,Λ) = 2πia(n)D (u,Λ) . (4.276)
The full asymptotic expansion of lnQ reads:

lnQ(!, u,Λ) .
=

∞∑

n=0

!2n−12πia(n)D (u,Λ) ! → 0 , (4.277)

by which we prove asymptotically the equality

lnQ(!, u,Λ) .
=

2πi

! aD(!, u,Λ) ! → 0 . (4.278)

4.7.3. Resummed formulæ for the cycles

In consideration of the one to one relation between θ and ! (4.223) we can use the first in
place of the latter. Thus, these two asymptotic expansions hold in the strip |$θ| < π

2 + ε,
ε > 0 for -θ → +∞ (small !)

T (θ, P 2) = T (θ, u)
.
= 2 cos

{
2π

∞∑

n=0

eθ(1−2n)Λ2n−1a(n)(u,Λ)

}
(4.279)

Q(θ, P 2) = Q(θ, u)
.
= exp

{
2πi

∞∑

n=0

eθ(1−2n)Λ2n−1a(n)D (u,Λ)

}
. (4.280)

We now find a new way to compute the NS-deformed Seiberg Witten periods modes,
which will also reveal itself to be an asymptotic check of the identification (4.280). Con-
sidering the large energy asymptotic expansion (4.96) of Q in terms of the LIM, we ob-
serve that, since in Seiberg-Witten theory u is finite as θ → +∞, it is necessary that also
P 2(θ) = 2 u

Λ2 e2θ → +∞. In this double limit, an infinite number of LIMs I2n−1(b = 1) are
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re-summed into an NS-deformed dual period mode (a sort of charge in its turn). Then the
n-th mode of the Q function in the small ! expansion (4.280) is a series which gives the
n-th dual period

2πia(n)D (u,Λ) = −Λ1−2n
∞∑

k=0

2kCn+kΥn+k,k

( u

Λ2

)k
. (4.281)

From here, closed formulæ can be obtained through the previous powerful method for
determining the LIM through the one-step Gelfand-Dikii recursion explained in [1]; they
are very simple series (cf. (4.129)) convergent in the circle |u| < Λ2:

2πia(0)D (u,Λ) = −Λ
∞∑

n=0

[
(−1)n2n

Γ2(n2 − 1
4)

4
√
πn!

]( u

Λ2

)n
(4.282)

2πia(1)D (u,Λ) = Λ−1
∞∑

n=0

[
(−1)n2n

(n+ 1
2)Γ

2(n2 + 1
4)

48
√
πn!

]( u

Λ2

)n
(4.283)

2πia(2)D (u,Λ) = −Λ−3
∞∑

n=0

[
(−1)n2n

(n+ 3
2)(7n+ 25

2 )Γ
2(n2 + 3

4)

5760
√
πn!

]( u

Λ2

)n
(4.284)

2πia(3)D (u,Λ) = Λ−5
∞∑

n=0

(−1)n2n
(
n+ 5

2

)
(124n2 + 740n+ 1107)Γ2

(
n
2 + 5

4

)

1935360
√
πn!

( u

Λ2

)n
(4.285)

2πia(4)D (u,Λ) = −Λ−7
∞∑

n=0

(−1)n2n
(
n+ 7

2

) [
n (508n2 + 6406n+ 27021) + 76145

2

]
Γ2
(
n
2 + 7

4

)

154828800
√
πn!

( u

Λ2

)n

(4.286)

We obtained (4.282)-(4.284) directly from the resummation of the LIMs, as in [1]. For
higher orders, however, we found easier to use homogeneous operators. In general if

2πia(n)D (u) =
n∑

m=0

hn,mu
m ∂n+m

∂un+m
2πia(0)D (u) (4.287)

then

2πia(n)D (u) =
∞∑

k=0

{
n∑

m=0

hn,m
(k + n)!

(k −m)!

}
(−1)k+n2k+nCn+k

( u

Λ2

)k
(4.288)

and thus

Υn,n−k = (−1)n2k
k∑

m=0

hk,m
n!

(n− k −m)!
. (4.289)
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The first leading terms are, for the natural number n

Υn,n = (−1)n Υn,n−1 =
(−1)n

12
n(n− 1

2
) Υn,n−2 = (−1)n

14n− 3

2880
(n− 1)n(n− 1

2
)

(4.290)

Υn,n−3 = (−1)n
124n2 − 4n+ 3

483840
(n− 2)(n− 1)n(n− 1

2
) (4.291)

Υn,n−4 = (−1)n
1016n3 + 620n2 + 314n− 55

77414400
(n− 3)(n− 2)(n− 1)n(n− 1

2
) (4.292)

Υn,n−5 = (−1)n
40880n4 + 71136n3 + 71656n2 + 18648n− 7965

61312204800
(n− 4)(n− 3)(n− 2)(n− 1)n(n− 1

2
)

(4.293)

We have found explicit formulæ until Υn,n−9 and all has been tested with the already
known charges I1 → I17.
From the alternative derivation of the quantum Picard-Fuchs presented in section 4.4.3

we learn how to interpret in integrability such equations. Since the analytic series (4.281)
are essentially the P 2 coefficients of the LIMs, we can interpret in integrability the quan-
tum Picard-Fuchs as fixing the LIMs for b = 1. Therefore, thanks to the quantum Picard-
Fuchs equations (4.139-4.141), we can express explicitly the LIM themselves at all orders.
Conversely, we can invert (4.281) and expresses the LIMs in terms of the the deformed

periods.

Υn,n−k =
(−1)n2kn!

(n− k)!

1
∂n

∂una
(0)
D (0,Λ)

∂n−k

∂un−k
a(k)D (0,Λ) (4.294)

We emphasize that formulæ similar to (4.281) hold also for the a(n) cycles, by taking
linear combinations as follows trivially from the formula (4.311) below.

4.7.4. Exact analytic proof

We can also imagine here an !-exact analytic proof of the relation between the Baxter’s Q
function and aD period.

Q(θ, P ) = exp 2πi aD(!, u,Λ0)

! (4.295)

following on the lines of the ! → 0 (classical SW) proof, by using Cauchy theorem to relate
the exact integral for the Baxter’sQ function and aD period. Since lnQ is i times the integral
over (−∞,+∞) of the regularised NS momentum (as b = 1) (as in (5.49), but see also [1])

Preg(y) = P(y) + 2ieθ cosh y

2
− i

4
tanh y , (4.296)

let us consider the integral of iPreg(y) on the (oriented) closed curve with the actual nu-
merically computed poles in figure 4.7.4. We can define the exact dual periods as the
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5

θ=0+i 0.π

Figure 4.2: Poles for the quantum SW differental P(!, u,Λ0) for the SU(2) Nf = 0 theory.
The set of poles in the periodicity strip |$y| < π we denote by B.

exact integrals of P(y) = −i d
dy lnψ(y) written as sum over residues at the poles which as

! → 0 reduce to the classical cycles (branch cuts), as shown in figure 4.7.4.

1

!aD(!, u,Λ0)
.
=

∮

B

P(y, !, u,Λ0) dy = 2πi
∑

n

ResP(y)

∣∣∣∣
yBn

(4.297)

One may argue that the choice of poles for the two cycles is not well defined. However,
on one hand we numerically find that the period a is given precisely as the integral from
−iπ to iπ as required by the equality a = ν. On the other hand the choice of poles for the
period aD is unambiguous because it includes all of them. Along this lines we should be
able to prove analytically precisely (4.295). However, another exact, precise and unam-
biguous proof , though perhaps less illuminating since numerical, will be given in the next
subsection.

4.7.5. Gauge TBA

Aswehave a gauge interpretation (4.224) and (4.295) of the self-dual Liouville integrability
Baxter’s T and Q functions, respectively, we can search for a gauge interpretation of the
integrability functional relations (theQQ system, the TQ relation, the periodicity relation,
cf. Section 4.1 with b = 1). First, we write theQQ relation (4.25) at b = 1, and then the same
in the gauge variables (4.223)

1+Q2(θ, P 2) = Q(θ−iπ/2, P 2)Q(θ+iπ/2, P 2) , 1+Q2(θ, u) = Q(θ−iπ/2,−u)Q(θ+iπ/2,−u) ,
(4.298)

where we have considered that θ → θ ∓ iπ/2 means u → −u (as P 2 is fixed). The latter
equation, the gaugeQQ system, has been verified by using the expansion (4.280) in several
complex regions of u, in particular in the circle |u| < Λ2. In the present case it is a ’square
root’ of the Y system and then gives us the gauge TBA equations. In fact, we can take
the logarithm of both members and invert to obtain an explicit expression for lnQ(θ, u).
As usual, this inversion possesses zero-modes and so does not fix completely the forcing
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term. For it we need to consider the asymptotic expansion (4.280) as-θ → +∞, lnQ(θ, u) 0
2πia(0)D (u,Λ)eθ/Λ. In this way we find a TBA integral equation for the deformed dual period
−2 lnQ(θ, u) = ε(θ, u) = −4πiaD(!(θ), u) and then we close the system by writing the same
for modulus u → −u

ε(θ, u,Λ) = −4πia(0)D (u,Λ)
eθ

Λ
− 2

∫ ∞

−∞

ln [1 + exp{−ε(θ′,−u,Λ)}]  
cosh (θ − θ′)

dθ′

2π

ε(θ,−u,Λ) = −4πia(0)D (−u,Λ)
eθ

Λ
− 2

∫ ∞

−∞

ln [1 + exp{−ε(θ′, u,Λ)}]  
cosh (θ − θ′)

dθ′

2π
.

(4.299)

In contrast with Liouville TBA (where was no P ), the forcing terms have non-trivial u-
dependences, the SW periods indeed, which can be interpreted (as in [50]) as the mass of
a BPS state of a monopole and dyon (via Bilal-Ferrari [69] formulæ, i.e. (4.310) for n = 0),
respectively. Actually, the quantum period

2πiaD(!(θ),−u,Λ) = 2πia(0)D (−u,Λ)
eθ

Λ
+

∫ ∞

−∞

ln [1 + exp {4πiaD(!(θ′), u,Λ)}]  
cosh (θ − θ′)

dθ′

2π
. (4.300)

can take the place of the first period a(!, u) (linked to T in any case) as the latter can be
expressed in terms of the former two via (4.308). From the large θ asymptotic expansion
of the integral part, we find all the quantum dual periods modes (m ≥ 1), as well

2πi a(m)
D (u,Λ) = −Λ1−2m(−1)m

∫ ∞

−∞
eθ

′(2m−1) ln
[
1 + exp{−ε(θ′,−u,Λ))}

]
 dθ

′

π
. (4.301)

By solving with numerical iterations the two coupled equations of gauge TBA (4.299), we
tested these expressions with the analytic WKB recursive periods (4.129, 4.132) for a re-
gion of the complex plane slightly larger than |u| < Λ2( see for example table 4.3). The
u = 0 unique equation from (4.299) was conjectured numerically in [70]. In order to get
more precise result, it is convenient to add the boundary condition and subtract it within
the convolution, as done in [71]:

ε(θ, u) 0 −2 ln
(
−2θ

π

)
0 −2 ln

[
1 +

2

π
ln(1 + e−θ)

]
θ → −∞ (4.302)

However, even if the procedure is the same that leads to the integrability TBA (4.70), it
differs by it because in that case the boundary condition is strictly necessary to solve the
TBA (not just to improve the precision), because only in the boundary condition is present
the parameter P (while in the gauge TBA is is present also in the leading order).

When u is complex, an alternative way to write the TBA can be given. Adding to the real
θ the phase

φ(u) = − arg{−ia(0)D (u)} (4.303)
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a(1)D a(2)D a(3)D a(4)D a(5)D a(6)D

WKB −0.0445523 i +0.0141647 i −0.0272573i +0.132656i −1.23083i +18.6813i
TBA −0.0445535 i +0.0141649 i −0.0272576i +0.132657i −1.23084i +18.6814i

Table 4.3: A table of comparison between the WKB (4.129) and TBA (4.301) results for the
higher cycle modes. Here u = 1/40, Λ = 1/4. They match rather well, at around
1 part in 106 for higher cycles beyond the first, slightly less precise at 1 part in
105 for the first higher cycle. Here we use about 2000 iterations of the succes-
sive approximations method for solving the TBA (in details, within the interval
θ ∈ (−200, 200) divided in 212 discrete parts). Of course, for other values of the
parameters, similar matches hold.

we get the TBA

ε(θ + iφ(u), u) = 4π|− ia(0)D (u)|e
θ

Λ
− 2

∫ ∞

−∞

ln [1 + exp {−ε(θ′,−u)}]
cosh(θ + iφ(u)− θ′)

dθ′

2π
,

ε(θ + iφ(−u),−u) = 4π|− ia(0)D (−u)|e
θ

Λ
− 2

∫ ∞

−∞

ln [1 + exp {−ε(θ′, u)}]
cosh(θ + iφ(−u)− θ′)

dθ′

2π
.

(4.304)

or (defining ∆φ(u) = φ(u)− φ(−u))

ε(θ + iφ(u), u) = 4π|− ia(0)D (u)|e
θ

Λ
− 2

∫ ∞−iφ(−u)

−∞−iφ(−u)

ln [1 + exp {−ε(θ′ + iφ(−u),−u)}]
cosh(θ + i∆φ(u)− θ′)

dθ′

2π
,

ε(θ + iφ(−u),−u) = 4π|− ia(0)D (−u)|e
θ

Λ
− 2

∫ ∞−iφ(u)

−∞−iφ(u)

ln [1 + exp {−ε(θ′ + iφ(u), u)}]
cosh(θ + i∆φ(−u)− θ′)

dθ′

2π
.

(4.305)

Applying Cauchy theorem, we can relate the integral on the shifted real axis to the integral
on the real axis. If ∆φ(u) < π/2, we have no poles inside the contour and find that the two
integrals are equal. Therefore, the analytic continuation in θ of the TBA is:

ε(θ + iφ(u), u) = 4π|− ia(0)D (u)|e
θ

Λ
− 2

∫ ∞

−∞

ln [1 + exp {−ε(θ′ + iφ(−u),−u)}]
cosh(θ + i∆φ(u)− θ′)

dθ′

2π
,

ε(θ + iφ(−u),−u) = 4π|− ia(0)D (−u)|e
θ

Λ
− 2

∫ ∞

−∞

ln [1 + exp {−ε(θ′ + iφ(u), u)}]
cosh(θ + i∆φ(−u)− θ′)

dθ′

2π
.

(4.306)

The range ∆φ(u) < π/2 corresponds to the strong coupling region of Seiberg-Witten spec-
trum. The formulation (4.306) can be useful as a starting point for the extension of the TBA
to the weak coupling region. Since different particles are present in the two regions8, we
do expect some fundamental change in our relations to take place. Also, theQ, Y function
in integrability are defined to be entire in θ, while the gauge periods not.
8The particles at strong coupling being only the magnetic monopole associated to aD(u) and the dyon as-
sociated to aD(−u) [69, 1]. At weak coupling there are infinite dyonic BPS particles differing by units of
electric charge, associated to a [69, 71].
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Figure 4.3: Comparison of gauge (blue) ε(θ, u) (4.299) and integrability (light orange)
ε(θ, P 2) (4.70) pseudoenergies for u = 1/40, Λ = 1/4 and P =

√
2ueθ0/Λ, with

θ0 = 0. At θ = θ0 they match very well, up to 1 part in 106, with about 2000 itera-
tions of the successive approximations method for solving the TBA (in details,
within the interval θ ∈ (−200, 200) divided in 212 discrete parts). The horizontal
lines (dark orange visible, superimposed to an another green not visible) cor-
responds to the values of ε(θ0, u) = 2.30509 and ε(θ0, P 2) = 2.30508. Of course,
for other values of the parameters, similar matches hold.

We compared numerically the solution ε(θ, u) of the gauge TBA (4.299) and that ε(θ, P 2)
of the integrability TBA (4.70) and we found that

ε(θ, u) = ε(θ, P 2) when P 2 = 2ue2θ/Λ2 , (4.307)

that is, we verified numerically the relation (4.295) between the Baxter function and the
dual cycle. See for example the plots in figure 4.7.5.

4.7.6. Functional relations and Z2 symmetry

Consider now the TQ relation (4.27) at b = 1, which we also write in the gauge variables
(4.223)

T (θ, P 2) =
Q(θ − iπ/2, P 2) +Q(θ + iπ/2, P 2)

Q(θ, P 2)
, T (θ, u) =

Q(θ − iπ/2,−u) +Q(θ + iπ/2,−u)

Q(θ, u)
(4.308)

For the asymptotic ! → 0 analysis of the latter relation, we keep only the dominant expo-
nents (fixed by SW order (4.282))

exp
{
− sgn ($u)2πi

∞∑

n=0

eθ(1−2n)a(n)(+u)
}

.
= exp

{
−2π

∞∑

n=0

eθ(1−2n)
[
sgn ($u)(−1)na(n)D (−u)+ia(n)D (u)

]}
.

(4.309)
Thus, the TQ relation entails

a(n)D (−u) = i(−1)n
[
− sgn ($u) a(n)D (u) + a(n)(u)

]
. (4.310)
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These relations are, in fact, the extension of the Z2 symmetry relation in SW (n = 0) [69]
to the NS-deformed theory [72]. In a nutshell, the TQ relation encodes these Z2 relations
among the asymptotic modes as a unique exact equation. Besides, relation (4.310) – as
well as the TQ relation – allows one to express the NS-periods completely in terms of the
NS-dual periods in the form:

a(n)(u) = sgn ($u) a(n)D (u)− i(−1)na(n)D (−u) , (4.311)

into which we can use the new formulas (4.281) (4.301) for a(n)D (u).
We finally consider the (integrability)T periodicity relation at b = 1 (4.28):

T (θ, P 2) = T (θ − iπ/2, P 2) T (θ, u) = T (θ − iπ/2,−u) (4.312)

To interpret this relation through the asymptotic identification (4.279). Thus, the (4.312)
relation truncates to

exp
{
− sgn ($u)2πi

∞∑

n=0

eθ(1−2n)a(n)(u)
}

.
= exp

{
+2π

∞∑

n=0

eθ(1−2n)(−1)na(n)(−u)
}

(4.313)

fromwhich, we deduce the Z2 symmetry relation for the other period [69] extended to the
NS-deformed theory [72]

a(n)(−u) = −i(−1)n sgn ($u) a(n)(u) . (4.314)

We conclude that, thanks to the identifications (4.224) (4.295) between the integrability
and gauge quantities, we can interpret the Baxter’s TQ relation (4.308) and T periodicity
relation (4.312) as non-perturbative Z2 symmetry relations.

4.7.7. Relation with other gauge period

It was found in [71] a relation between the Q function and the gauge periods AD, a (in our
conventions)

Q(!, a,Λ0) = i
sinh 1

!AD(!, a,Λ0)

sinh 2πi
! a

(4.315)

Actually, we could easily check numerically this relation by computing the l.h.s. by the
Liouville TBA (4.87) for b = 1 and the r.h.s. relies on the expansion of the prepotential F
in Λ0 (number of instantons) [73, 74]: the period a is related to the moduli parameter u
(or P ) through the Matone’s relation [62, 63] and the dual one is given by AD = ∂F/∂a. In
this respect we noticed that only the first instanton contributions are easily accessible and
summing them up (naively) is accurate as long as |Λ0|/! 6 1. The gauge period is defined
as9

AD

! =
4a

! ln i!
Λ0

+ ln
Γ(1 + 2a

! )

Γ(1− 2a
! )

+
1

!
8a

(4a2 − !2)2Λ
4
0 +O(Λ8

0) (4.316)

9Beware that for theNf = 0 theorywith respect to theNf = 1, 2 theorieswe rescale ! → !/
√
2. This explains

the differences with the formulas in subsection 5.3.2.
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{Λ0, p, !} −1
2ε(θ, p) ln i sinhAD/ sinh(2πia/!)

{Γ2( 14 )

16
√
π , 2,−i} 9.27325 9.273204

{Γ2( 14 )

16
√
π , 3,−i} 18.7522 18.752173

{e−1 Γ
2( 14 )

16
√
π , 2,−i} 17.2829 17.282910

{e1 Γ
2( 14 )

16
√
π , 2,−i} 1.04849 1.04235

Table 4.4: Numerical check of formula (4.315). We used only two instanton contribution
and so to have a good match we have to restrict to small Λ0.

2u = a2 − Λ0

4

∂F
∂Λ0

= a2 +
Λ4

0

2(4a2 − !2) +O(Λ8
0) (4.317)

The instanton prepotential is given by

F inst
NS =

∞∑

n=0

Λ4n
0 F (n)

NS (4.318)

with
F (1)

NS = − 2

4a2 − !2

F (2)
NS = − 20a2 + 7!2

4(a2 − !2)(4a2 − !2)3

F (3)
NS = − 4(144a4 + 232a2!2 + 29!4)

3(4a2 − !2)5(4a4 − 13a2!2 + 9!4)

(4.319)

AD(!, u) is very different from our dual cycle aD(!, u): it is not a cycle integral at all and is
defined as the derivative of the prepotential (logarithm of the partition function) coming
from instanton counting:

AD(!, u) =
∂FNS

∂a
(4.320)

Thus, thanks to (4.295), relation (4.315) of Grassi, Gu and Marino becomes a relation be-
tween the two definition of dual cycles

i
sinh 1

!AD(!, a,Λ0)

sinh 2πi
! a

= exp 2πi aD(!, u)
! . (4.321)

This relation means that the two cycles aD and AD differ by non-perturbative terms in
!. From the gauge theory point of view, they are precisely respectively the dyon and
monopole period in the strong coupling region [71].

4.8. D3 brane’s quasinormal modes
The D3 brane is described by the line element

ds2 = H(r)−
1
2 (−dt2 + dx2) +H(r)

1
2 (dr2 + r2dΩ2

5) , (4.322)
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where x are the longitudinal coordinates, H(r) = 1+L4/r4and dΩ2
5 denotes the metric of the

transverse round S5-sphere [7]. The ODE which describes the scalar field perturbation of
the D3 brane is [7, 75]

d2φ

dr2
+

[
ω2

(
1 +

L4

r4

)
−

(l + 2)2 − 1
4

r2

]
φ = 0 . (4.323)

Upon the change of variables

r = Le
y
2 ωL = −2ieθ P =

1

2
(l + 2) , (4.324)

the equation reduces to the generalized Mathieu equation

− d2

dy2
ψ +

[
e2θ(ey + e−y) + P 2

]
ψ = 0 . (4.325)

Crucially, the QNMs condition (3.25) translates into

Q(θn) = 0 , (4.326)

namely the zeros of the Baxter’s Q function which are the Bethe roots [76].
Weprove now that the Bethe roots condition (4.326) recovers theQNMs characterisation

of [6], namely as quantization condition on the gauge period aD. Indeed, it was found
in [71] relation (4.315) between theQ function, as obtained from TBA (4.87), and the gauge
periods aD, a.
Now, (4.326) is the same as the quantization of the AD period, as originally stated in [6]

1

!AD(a,Λ0,n, !) = iπn , n ∈ Z . (4.327)

Nevertheless, we found it very difficult to reach, by summing instantons, the QNMs values
|Λ0,n|/! 7 1.
On the contrary we found very easy using Thermodynamic Bethe Ansatz (TBA) integral

equation for the pseudoenergy ε(θ) = − lnY (θ). Eventually, the QQ system (4.78) charac-
terizes the QNMs as Y (θn − iπ/2) = −1, i.e. the TBA quantization condition

ε(θn′ − iπ/2) = −iπ(2n′ + 1) , n′ ∈ Z (4.328)

which can be easily implemented by using the TBA (4.87) as table 4.5 shows. These values
match very well with those of obtained by the standard method of continued fractions by
Leaver [31, 7] and is consistent with the (l → ∞) WKB approximation (geodetic method).
We note that the physical condition $ω < 0 becomes by (4.324) −π/2 + 2πn < $θ <

π/2 + 2πn, for n ∈ Z. However, the TBA (4.87) is valid only for the fundamental strip
|$θ| < π/2. In fact, in this regionwefinddirectly theQNMs for overtone number n = 0 = n′.
We expect that analytically continuing the TBA by using the Y -system (4.86) in the other
strips |$(θ − 2πin)| < π/2, we would obtain the other overtone numbers. We leave more
details on this for future work.
Within our set-up of functional and integral equations for entire functions in θ (integra-

bility), we can find other quantization conditions on the roots θn (QNMs). For instance, the
TQ relation [1]

T (θ)Q(θ) = Q(θ − iπ/2) +Q(θ + iπ/2) . (4.329)
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n l TBA Leaver WKB
0 0 1.36912 − 0.504048i 1.36972− 0.504311i 1.41421 − 0.5i
0 1 2.09118 − 0.501788i 2.09176− 0.501811i 2.12132 − 0.5i
0 2 2.8057 − 0.501009i 2.80629− 0.501000i 2.82843 − 0.5i
0 3 3.51723 − 0.500649i 3.51783− 0.500634i 3.53553 − 0.5i
0 4 4.22728 − 0.500453i 4.22790− 0.500438i 4.24264 − 0.5i

Table 4.5: Comparison of QNMs of the D3 brane from TBA (4.87) (through (4.328) with
n′ = 0), Leaver (continued fractions) method and WKB (geodetic) approxima-
tion (L = 1).

means Q(θn − iπ/2)+Q(θn + iπ/2) = 0. This and the QQ relation (4.78) actually fixes Q(θn +
iπ/2)Q(θn − iπ/2) = 1 and then

Q(θn ± iπ/2) = ±i (4.330)
are fixed, too. Again (4.78) around θn forces Q(θ + iπ/2) = i±Q(θ) + . . . and Q(θ − iπ/2) =
−i±Q(θ) + . . . up to smaller corrections (dots). Therefore, (4.329) imposes

T (θn) = ±2 . (4.331)

Now, in [1] we have identified the T function through the a period (or Floquet index ν) as

T (θ) = 2 cos
(
2π

! a

)
. (4.332)

In conclusion, condition (4.326) means that also the period a is quantized

1

!a(θn) =
n

2
, n ∈ Z . (4.333)

This is exactly the condition used by [7]. Yet, herewe have fixed the general limits of its va-
lidity as relying on specific forms of the TQ andQQ systems (4.329) and (4.78) respectively:
it does not work in general, but we will see in the next section the specific conditions for
its validity.

4.9. On D3 brane’s greybody factor
Eventually, we note that much of the BH theory seems to go in parallel to the ODE/IM cor-
respondence construction and its 2D statistical field theory interpretation, beyond the de-
termination of QNMs: as an example, the absorption coefficient or greybody factor seems
a ration of Qs. We aim to give more details about this statement in the future.

4.10. General conclusions
We have shown how quantum integrability, in the approach of the ODE/IM correspon-
dence, can be applied to the SU(2) Nf = 0 NS-deformed SW theory, as well as to the D3
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brane gravitational perturbation theory, to obtain both newmathematical physics results
and improve the general understanding of such theories and their interrelation.
In the next section, we will show a direct albeit technical complex generalization of the

same triple correspondence to the SU(2) Nf = 1 and Nf = 2 = (1, 1) theories. In the subse-
quent sections, we will begin showing something similar for also the Nf = 2 = (0, 2) and
Nf = 3, though in a much less complete way. In the final section, we will continue doing
so for the Nf = 4 theory and its simplified version (a certain class S gauge theory) and
further extend our triple correspondence to a 4-fold correspondence, thanks to AdS/CFT.
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5. SU(2) Nf = 1, 2 gauge theory, Hairpin model, extremal
black holes

5.1. ODE/IM correspondence for gauge theory
5.1.1. Gauge/Integrability dictionary

The quantum Seiberg-Witten curves for SU(2) Nf = 1, 2 N = 2 gauge theory, deformed in
the Nekrasov Shatashvili limit ε2 → 0, ε = ! (= 0 can be derived from the classical one as
explained in section 2.5 and they are the following ODEs. For Nf = 1

−!2 d2

dy2
ψ(y) +

[
Λ2

1

4
(e2y + e−y) + Λ1mey + u

]
ψ(y) = 0 , (5.1)

for Nf = 2 (with the first realization N+ = 1, see section 2.5):

−!2 d2

dy2
ψ(y) +

[
Λ2

2

8
cosh(2y) + 1

2
Λ2m1e

y +
1

2
Λ2m2e

−y + u

]
ψ(y) = 0 , (5.2)

where u is the moduli parameter, Λ1,Λ2 are the instanton coupling parameters, m,m1,m2

are masses of the flavour hypermultiplets [20]. We notice that both equations are of the
Doubly Confluent Heun equations [77], with two irregular singularities at y → ±∞, as
shown in appendix D.
The first physical observation we can make is that they can be mapped into the ODEs

for the Integrable Perturbed Hairpin model (IPHM) in the ODE/IM correspondence ap-
proach [78] and its generalization:

− d2

dy2
ψ(y) + [e2θ(e2y + e−y) + 2eθqey + p2]ψ(y) = 0 , (5.3)

− d2

dy2
ψ(y) + [2e2θ cosh(2y) + 2eθq1e

y + 2eθq2e
−y + p2]ψ(y) = 0 , (5.4)

where θ is the TBA rapidity, p, q parametrizes the Fock vacuum of the IPHM and q1, q2 their
generalization. For q = 0, equation (5.3) can be related to the ODE (Generalized Mathieu
equation) associated to the Integrable Liouville model with Liouville coupling b =

√
2 [79,

1, 49]. In particular, the gauge/integrability parameter dictionary is the following
!
Λ1

=
1

2
e−θ

u

Λ2
1

=
1

4
p2e−2θ m

Λ1
=

1

2
qe−θ , (5.5)

!
Λ2

=
1

4
e−θ

u

Λ2
2

=
1

16
p2e−2θ m1,2

Λ2
=

1

4
q1,2e

−θ , (5.6)

or also
u

!2 = p2
m

! = q (5.7)
u

!2 = p2
m1

! = q1
m2

! = q2 . (5.8)

In [78], P and q were considered fixed, on the other hand, in the gauge theory, it is nat-
ural to keep Λ1, u and m fixed. The mixed dependence on θ gives then a nontrivial map,
producing for instance different integrable structures in different parameters.
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5.1.2. Integrability functional relations

The integrability equations are invariant under the following discrete symmetries. For
Nf = 1

Ω+ : y → y + 2πi/3 θ → θ + iπ/3 q → −q ,

Ω− : y → y − 2πi/3 θ → θ + 2πi/3 q → q ,
(5.9)

for Nf = 2
Ω+ : y → y + iπ/2 , θ → θ + iπ/2 , q1 → −q1 , q2 → +q2 ,

Ω− : y → y − iπ/2 , θ → θ + iπ/2 , q1 → q1 , q2 → −q2 .
(5.10)

This symmetry is spontaneously broken by the regular solutions for -y → ±∞, defined by
the asymptotics, for Nf = 1:

ψ+,0(y) 0 2−
1
2−qe−( 12+q)θ−( 1

2+q)y−eθ+y

y → +∞ ,

ψ−,0(y) 0 2−
1
2 e−

1
2 θ+

1
4y−2eθ−y/2

y → −∞
(5.11)

and for Nf = 2:
ψ+,0(y) 0 2−

1
2−q1e−( 12+q1)θ−( 12+q1)ye−eθ+y -y → +∞

ψ−,0(y) 0 2−
1
2−q2e−( 12+q2)θ+( 12+q2)ye−eθ−y -y → −∞ .

(5.12)

The solutions (ψ+,0,ψ−,0) of course form a basis. However, we can generate other indepen-
dent solutions by using the symmetries as

ψ+,k = Ωk
+ψ+ , ψ−,k = Ωk

−ψ− k ∈ Z . (5.13)

For k (= 0 such solutions are in general diverging for y → ±∞. A basis of solutinos is then
given also, for instance, by (ψ+,0,ψ+,1). Importantly, the solutions ψ± are invariant under
the symmetry Ω∓ respectively:

Ω+ψ−,k = ψ−,k Ω−ψ+,k = ψ+,k . (5.14)

The normalization so that we have the following wronskians for next neighbour k-k + 1
solutions. For Nf = 1

W [ψ+,k+1,ψ+,k] = ie(−1)kiπq W [ψ−,k+1,ψ−,k] = −i (5.15)

for Nf = 2

W [ψ+,k+1,ψ+,k] = ie(−1)kiπq1 W [ψ−,k+1,ψ−,k] = −ie(−1)kiπq2 (5.16)
As is usual in ODE/IM correspondence, we can define the integrability Baxter’s Q func-

tion as the wronskian of the regular solutions at different singular points y → ±∞

Q = W [ψ+,0,ψ−,0] (5.17)

Mathematically this quantity is called also the central connection coefficient, since it ap-
pears in the connection relations for solutions at different singular points y → ±∞. To
write such relations it is convenient to introduce the notation, for Nf = 1:

Q±(θ) = W [ψ+,0,ψ−,0](θ, p,±q) (5.18)
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and for Nf = 2:

Q±,±(θ) = W [ψ+,0,ψ−,0](θ, p,±q1,±q2) Q±,∓(θ) = W [ψ+,0,ψ−,0](θ, p,±q1,∓q2) (5.19)

We have to expand the solutions (ψ−,0,ψ−,1) in terms of (ψ+,0,ψ+,1) with coefficients ob-
tained very simply by taking the wronskians of both sides of the relations and using the
symmetries Ω± to change the parameters of Q. Thus we obtain, for Nf = 1

ieiπqψ−,0 = Q−(θ + i
π

3
)ψ+,0 −Q+(θ)ψ+,1 (5.20)

ieiπqψ−,1 = Q−(θ + iπ)ψ+,0 −Q+(θ + i
2π

3
)ψ+,1 (5.21)

and for Nf = 2

ieiπq1ψ−,0 = Q−,+(θ + i
π

2
)ψ+,0 −Q+,+(θ)ψ+,1

ieiπq1ψ−,1 = Q−,−(θ + iπ)ψ+,0 −Q+,−(θ + i
π

2
)ψ+,1 .

(5.22)

By taking the wronskian of the first line with the second line (and also shifting θ and flip-
ping the sign of q), we obtain the first integrability structure, that is the QQ system. For
Nf = 1

Q+(θ + i
π

2
)Q−(θ − i

π

2
) = e−iπq +Q+(θ − i

π

6
)Q−(θ + i

π

6
) . (5.23)

and for Nf = 2

Q+,−(θ +
iπ

2
)Q−,+(θ −

iπ

2
) = e−iπ(q1−q2) +Q−,−(θ)Q+,+(θ) . (5.24)

For this particular ODEs with two irregular singularities it is possible to define also an in-
tegrability Y function and obtain a Y system relation starting directly from theQ function
and QQ system relation, rather than from the T functions and T system. So we define a
function as, for Nf = 1

Y±(θ) = e±iπqQ±(θ − i
π

6
)Q∓(θ + i

π

6
) , (5.25)

and for Nf = 2

Y+,±(θ) = eiπ(q1∓q2)Q+,±(θ)Q−,∓(θ) Y−,±(θ) = eiπ(−q1∓q2)Q−,±(θ)Q+,∓(θ) . (5.26)

We notice that for Nf = 1 in the Y function the Q functions appear with different θ argu-
ments and this will lead to several technical complications for this case, albeit correspond-
ing to one hypermultiplet less. Equivalent definitions are obtained by the QQ systems as,
for Nf = 1:

e±iπqQ±(θ + i
π

2
)Q∓(θ − i

π

2
) = 1 + Y±(θ) (5.27)

and for Nf = 2:
eiπ(q1−q2)Q+,−(θ +

iπ

2
)Q−,+(θ −

iπ

2
) = 1 + Y+,+(θ) . (5.28)
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The Y systems can be now obtained by taking a product of the QQ system with itself with
suitable parameters so to obtain a close relation in terms of Y functions. For Nf = 1

Y±(θ + i
π

2
)Y∓(θ − i

π

2
) =

[
1 + Y∓(θ + i

π

6
)
] [

1 + Y±(θ − i
π

6
)
]

(5.29)

and for Nf = 2

Y+,−(θ +
iπ

2
)Y−,+(θ −

iπ

2
) = [1 + Y+,+(θ)][1 + Y−,−(θ)] . (5.30)

Now, the presence of the irregular singularities of ODEs (5.3)-(5.4) at y → +∞ (Stokes
phenomenon) plays a rôle for defining the T functions, for Nf = 1

T+(θ) = −iW [ψ−,−1,ψ−,1] , T̃+(θ) = iW [ψ+,−1,ψ+,1] . (5.31)

and for Nf = 2

T+,+(θ) = −iW [ψ−,−1,ψ−,1] , T̃+,+(θ) = iW [ψ+,−1,ψ+,1] . (5.32)

(with of course T− T∓,± defined with the flipped masses as in (5.18) (5.19).) By expanding
ψ±,1 in terms of ψ±,0, ψ±,−1, for Nf = 1

ψ+,1 = −e2iπqψ+,−1 + eiπqT̃+,+(θ)ψ+,0 ψ−,1 = −ψ−,−1 + T+,+(θ)ψ−,0 (5.33)

or for Nf = 2

ψ+,1 = −e2iπq1ψ+,−1 + eiπq1T̃+,+(θ)ψ+,0 ψ−,1 = −e2iπq2ψ−,−1 + T+,+(θ)e
iπq2ψ−,0 (5.34)

we obtain the TQ relations, for Nf = 1

T±(θ)Q±(θ) = Q±(θ − i
2π

3
) +Q±(θ + i

2π

3
)

T̃±(θ)Q±(θ) = e±iπq1Q∓(θ −
iπ

3
) + e∓iπq1Q∓(θ +

iπ

3
)

(5.35)

or for Nf = 2

T+,+(θ)Q+,+(θ) = eiπq2Q+,−(θ −
iπ

2
) + e−iπq2Q+,−(θ +

iπ

2
)

T̃+,+(θ)Q+,+(θ) = eiπq1Q−,+(θ −
iπ

2
) + e−iπq1Q−,+(θ +

iπ

2
) .

(5.36)

By applying the Ω+ and Ω− symmetries to the T and T̃ functions it is immediate to obtain
also the periodicity relations, for Nf = 1

T±(θ + i
π

3
) = T∓(θ) T̃±(θ + i

2π

3
) = T̃±(θ) (5.37)

and for Nf = 2

T−,+(θ + i
π

2
) = T+,+(θ) T̃+,−(θ + i

π

2
) = T̃+,+(θ) . (5.38)
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5.1.3. Q function’s exact expressions and asymptotic expansion

From the ODE/IM analysis, cf. equations (5.20)-(5.22), we find a limit formula Baxter’s Q
function as, for Nf = 1

Q+(θ) = −ieiπq lim
y→+∞

ψ−,0(y, θ)

ψ+,1(y, θ)
, (5.39)

or for Nf = 2

Q+,+(θ) = −ieiπq1 lim
y→+∞

ψ−,0(y, θ)

ψ+,1(y, θ)
. (5.40)

From this formula we can obtain another which concretely allows to compute Q as an
integral. However, to do that, it is convenient first to transform the second order linear
ODEs (5.3)-(5.4) for ψ into their equivalent first order nonlinear Riccati equations for the
logarithmic derivative of ψ. Besides, since we will need later to asymptotically expand
the solution for y → ±∞ and θ → ∞, it is convenient to change variable so to single out
the leading order behaviour in y, θ and simplify higher orders calculations. So we change
variable as

dw =
√
φ dy φ =

{
−e2y − e−y Nf = 1

−2 cosh(2y) Nf = 2
. (5.41)

To keep the ODE in normal form we have to let ψ → 4
√
φψ. Then we take the logarithmic

derivative of ψ in the new variable w

Π = −i
d

dw
ln( 4
√
φψ) (5.42)

and we get for it the Riccati equation

Π(y)2 − i
1√
φ

d

dy
Π(y) = e2θ − eθV (y)− U(y) , (5.43)

with

V (y) =

{
− 2qey

e−y+e2y Nf = 1

− q1ey+q2e−y

cosh(2y) Nf = 2 ,

U(y) =

{
− p2

e−y+e2y + ey−40e4y+4e7y

16(e3y+1)3
Nf = 1

1
2 cosh(2y)

[
−p2 − 1 + 5

4 tanh2(2y)
]

Nf = 2 .

(5.44)

The first asymptotic expansion we make is the one for y → ±∞, in the formal parameter
e∓y. The Riccati equation gets approximated, at the leading and subleading order as

Π(y)2 − i
1√
φ

d

dy
Π(y) 0

{
e2θ + 2eθδ+qe−y Nf = 1

e2θ + 2eθq1,2e∓y Nf = 2
y → ±∞ (5.45)

where for Nf = 1 δ+ = 1 for y → +∞, δ+ = 0 for y → −∞. Then the solution is asymptotic
to

Π(y) 0
{
eθ + δ+qe−y Nf = 1

eθ + q1,2e∓y Nf = 2
y → ±∞ (5.46)
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This leading expansion for y → ±∞ allows us to fix the regularization in the integrals
formulas we now write for the (logarithm) of ψ−,0, for Nf = 1

ψ−,0(y) =
2−

1
2 e−

1
2 θ

4
√
e2y + e−y

exp
{
−eθ(2e−y/2 − ey) + 2q ln(1 + ey/2)

}
×

exp
{∫ y

−∞
dy′

[√
e2y′ + e−y′Π(y′, θ, p, q)− eθ

(
ey

′
+ e−y′/2

)
− q

1

1 + e−y′/2

]} (5.47)

and for Nf = 2

ψ−,0(y) =
2−

1
2−q2e−( 12+q2)θ

4
√
e2y + e−2y

exp
{
−eθ(e−y − ey) + 2q1 ln(1 + ey/2)− 2q2 ln(1 + e−y/2)]

}
×

exp
{∫ y

−∞
dy′

[√
e2y′ + e−2y′Π(y′, θ, p, q1, q2)− eθ(ey

′
+ e−y′)− q1

1

1 + e−y′/2
− q2

1

1 + ey′/2

]}
.

(5.48)
Then from the limit formula for Q we get also an integral expression for it, for Nf = 1

lnQ+(θ) =

∫ ∞

−∞
dy

[√
e2y + e−yΠ(y, θ, q, p)− eθey − eθe−y/2 − q

1

1 + e−y/2

]
− (θ + ln 2) q .

(5.49)
and for Nf = 2

lnQ+,+(θ) =

∫ ∞

−∞
dy

[√
2 cosh(2y)Π(y, θ, q1, q2, p)− 2eθ cosh y −

(
q1

1 + e−y/2
+

q2
1 + ey/2

)]
− (θ + ln 2) (q1 + q2)

(5.50)

To get the vacuum eigenvalues of the local integrals of motion (LIMs) wemake instead the
θ → +∞ asymptotic expansion, at all orders

Π(y, θ)
.
= eθ +

∞∑

n=0

Πn(y)e
−nθ θ → +∞ . (5.51)

Its coefficients Πn satisfy the recursion relation

Πn+1 =
1

2

(
i√
φ

d

dy
Πn −

n∑

m=0

ΠmΠn−m

)
n ≥ 1 (5.52)

with initial conditions
Π0 = −1

2
V

Π1 =
1

2

(
i√
φ

d

dy
Π0 − Π2

0 − U

) (5.53)

The expansion of lnQ in terms of the LIMs is, for Nf = 1

lnQ+(θ)
.
= − 4

√
3π3

Γ
(
1
6

)
Γ
(
1
3

)eθ − (θ +
1

3
ln 2)q −

∞∑

n=1

e−nθCnIn θ → +∞ (5.54)
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and for Nf = 2

lnQ+,+(θ)
.
= − 4

√
π3

Γ
(
1
4

)2 e
θ − (θ +

1

2
ln 2)(q1 + q2)−

∞∑

n=1

e−nθCnIn θ → +∞ , (5.55)

with the local integrals of motion In times some normalization constants Cn given by the
integrals

CnIn(p, q) = −i

∫ ∞

−∞
dy
√
φ(y)Πn(y, p, q) n ≥ 1 . (5.56)

In(p, q) are in geneal polynomials in p, q, where q of course here stands for either q for
Nf = 1 or (q1, q2) for Nf = 2. We have checked the first ones for Nf = 1 to match with those
of IPHM given in [78].

I1(p, q) =
1

12

(
4q2 − 12p2 − 1

)

I2(p, q) =
1

6
√
3
q

(
20

3
q2 − 12p2 − 3

) (5.57)

For Nf = 2 they were never given in the literature to our knowledge and they have the
peculiar feature that the mixed q1, q2 terms have trascendental coefficients (Gamma func-
tions). We notice also that the one step recursion very effective method of computation of
LIMs explained in [1] does not directly generalize to this case where all e−nθ are present in
the asymptotic expansion. Further investigations on such LIMs issues could be pursued.

5.1.4. Integrability TBA

Define as usual the pseudoenergy ε(θ) = − lnY (θ) and L = ln[1 + exp(−ε)] (with suitable
subscripts omitted of course). Using the analytic properties of pseudoenergy ε, we can
transform the Y system (5.29) into the following ’integrability TBAs’. For Nf = 1 [78]

ε+(θ) =
12
√
π3

Γ
(
1
6

)
Γ
(
1
3

)eθ − 4

3
iπq − (ϕ++ ∗ L+)(θ)− (ϕ+− ∗ L−)(θ)

ε−(θ) =
12
√
π3

Γ
(
1
6

)
Γ
(
1
3

)eθ + 4

3
iπq − (ϕ++ ∗ L−)(θ)− (ϕ+− ∗ L+)(θ) ,

(5.58)

and for Nf = 2

ε+,+(θ) =
8
√
π3

Γ
(
1
4

)2 e
θ − iπ(q1 − q2)− ϕ ∗ (L+− + L−+)

ε+,−(θ) =
8
√
π3

Γ
(
1
4

)2 e
θ − iπ(q1 + q2)− ϕ ∗ (L++ + L−−)

ε−,+(θ) =
8
√
π3

Γ
(
1
4

)2 e
θ + iπ(q1 + q2)− ϕ ∗ (L−− + L++)

ε−,−(θ) =
8
√
π3

Γ
(
1
4

)2 e
θ + iπ(q1 − q2)− ϕ ∗ (L−+ + L+−) .

(5.59)
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The leading (driving) term follows directly from the expansions (5.54)-(5.55) under the
definitions for Y = exp−ε (5.25)-(5.26). The symbol ∗ stands for the (−∞,+∞) convolution,
which for general functions f, g

(f ∗ g)(θ) =
∫ ∞

−∞

dθ′

2π
f(θ − θ′)g(θ′) (5.60)

The kernel for Nf = 2 is the simple usual hyperbolic secant [80]

ϕ(θ) =
1

cosh θ , (5.61)

while the one for Nf = 1 is slightly more involved because of the shifts in θ also on the
RHS of the Y system (5.29) but can be obtained by taking Fourier transform as explained
in [81]

ϕ+±(θ) =

√
3

2 cosh θ ± 1
. (5.62)

We notice that q, q1, q2 enter the integrability TBAs as chemical potentials [82]. In these
TBAs the parameter p does not appear, but it enters in the boundary condition for the
solution ε at θ → −∞, for Nf = 1

ε±(θ, p) 0 6pθ ∓ iπq + 2C(p, q) θ → −∞ , (5.63)

and for Nf = 2

ε+,+(θ, p) 0 4pθ − iπ(q1 − q2) + 2C(p, q1, q2) θ → −∞ (5.64)

with

C(p) =






ln
[

2−pΓ(2p)Γ(1+2p)
√
2π
√

Γ( 12+p+q)Γ( 12+p−q)

]
Nf = 1

ln
[

21−2ppΓ(2p)2√
Γ(p+ 1

2−q1)Γ(p+ 1
2+q1)Γ(p+ 1

2−q2)Γ(p+ 1
2−q2)

]
Nf = 2 .

(5.65)

This asymptotic behaviour follows of course from the θ → −∞ perturbative expansion
of the ODE (shifting y by ±θ in the ODE so to eliminate the leading terms at y → ∓∞
and get the solution as confluent hypergeometric function, expanding it in eθ and taking
the wronskian, see also [78] for Nf = 1). We can solve therefore this TBA by adding
and subtracting outside and inside the convolutions the boundary condition for θ → −∞
which depends on p. For example, for Nf = 1 the numerically solvable integrability TBA
reads

ε+(θ) =
12
√
π3

Γ
(
1
6

)
Γ
(
1
3

)eθ − 4

3
iπq − f0(θ)− f1(θ)− (ϕ++ ∗ (L+ − L0 − L1))(θ)− (ϕ+− ∗ (L− − L0 − L1))(θ)

ε−(θ) =
12
√
π3

Γ
(
1
6

)
Γ
(
1
3

)eθ + 4

3
iπq − f0(θ)− f1(θ)− (ϕ++ ∗ (L− − L0 − L1))(θ)− (ϕ+− ∗ (L+ − L0 − L1))(θ) ,

(5.66)
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where the explicit terms can be derived in analogue way to [49] as

L0(θ) = 3p ln
[
1 + e−2θ

]
,

L1(θ) = C(p)(1− tanh θ) ,
f0(θ) = ϕ ∗ L0 = 3p

{
ln
[
1 + e−(θ+iπ/6)

]
+ ln

[
1 + e−(θ−iπ/6)

]}
,

f1(θ) = ϕ ∗ L1 = C(p)

[
1− 1

2
tanh

(
θ

2
+

iπ

12

)
− 1

2
tanh

(
θ

2
− iπ

12

)]
.

(5.67)

We notice that the constant term iπq in (5.63) is automatically produced by the contri-
bution of the the complex convolution. We notice also that boundary condition (5.63)
requires strictly p > 0, which in gauge theory will correspond to u/Λ2

1,2 > 0 by (5.5). How-
ever, we shall see that we can solve the TBA in gauge variables for u/Λ2

1,2 ∈ C (small),
thus providing an analytic continuation of the integrability TBA. For Nf = 2 instead the
corresponding auxiliary functions are

L0(θ) = 2p ln
[
1 + e−2θ

]
,

L1(θ) = C(p)(1− tanh θ) ,
f0(θ) = ϕ ∗ L0 = 4p ln

[
1 + e−θ

]
,

f1(θ) = ϕ ∗ L1 = C(p)

[
1− tanh

(
θ

2

)]
.

(5.68)

We notice that (5.59) generalizes the TBA found in [78] for the Perturbed Hairpin IM and
therefore we call the IM involved (with no much creativity admittedly) Generalized Per-
turbed Hairpin IM.
Now from the TBA solutionwe can obtain alsoQ as follows. Writing from theQQ system

for Nf = 1 (5.27)

[Q+(θ + iπ/2)Q−(θ + iπ/2)][Q+(θ − iπ/2)Q−(θ − iπ/2)] = [1 + Y+(θ)][1 + Y−(θ)]
[
Q+(θ + iπ/2)

Q−(θ + iπ/2)

] [
Q+(θ − iπ/2)

Q−(θ − iπ/2)

]−1

= e−2πiq 1 + Y+(θ)

1 + Y−(θ)

(5.69)

we easily deduce the following integral expression for Q for Nf = 1

lnQ±(θ) = − 4
√
3π3

Γ
(
1
6

)
Γ
(
1
3

)eθ ∓ (θ +
1

3
ln 2)q

+
1

2

∫ ∞

−∞

dθ′

2π

{ ln[1 + exp{−ε+(θ′)}][1 + exp{−ε−(θ′)}]
cosh(θ − θ′)

∓ i
eθ

′−θ

cosh(θ − θ′)
ln
[
1 + exp{−ε+(θ′)}
1 + exp{−ε−(θ′)}

]}
.

(5.70)
Similarly for Nf = 2 it follows

lnQ±,∓(θ) = − 4
√
π3

Γ
(
1
4

)2 e
θ ∓ (θ +

1

2
ln 2)(q1 − q2)

+
1

2

∫ ∞

−∞

dθ′

2π

{ ln[1 + exp{−ε+,+(θ′)}][1 + exp{−ε−,−(θ′)}]
cosh(θ − θ′)

∓ i
eθ

′−θ

cosh(θ − θ′)
ln
[
1 + exp{−ε+,+(θ′)}
1 + exp{−ε−,−(θ′)}

]}
.

(5.71)
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5.2. Integrability Y function and dual gauge period
5.2.1. Gauge TBA

To establish a connection between integrability and gauge theory, we need first of all to
express all integrability definitions and relations in gauge variables through the param-
eter dictionaries (5.5)-(5.6). Thus for Nf = 1 we can introduce 6 gauge Q and Y functions
defined, for k = 0, 1, 2, as

Q±,k(θ) = Q(θ,−uk,±mk,Λ1) , Y±,k(θ) = Y (θ, uk,±imk,Λ1) . (5.72)

where for simplicity we denote

uk = e2πik/3u mk = e−2πik/3m k = 0, 1, 2 (5.73)

The explicit relation between Q and Y is for example, for k = 0 (from (5.25) and (5.5))

Y±,0(θ) = Y (θ, u,±im,Λ1) = e∓2π m
Λ1

eθQ±,2(θ − iπ/6)Q±,1(θ + iπ/6) . (5.74)

For Nf = 2 instead we have 8 Q and Y functions

Y±,±(θ) = Y (θ, u,±m1,±m2,Λ2) Ȳ±,±(θ) = Y (θ,−u,∓im1,±im2,Λ2) (5.75)

It is convenient to write the gauge Y system (5.29) explicitly as, for Nf = 1

Y±,0(θ + iπ/2)Y±,0(θ − iπ/2) = [1 + Y±,1(θ + iπ/6)] [1 + Y±,2(θ − iπ/6)]

Y±,1(θ + iπ/2)Y±,1(θ − iπ/2) = [1 + Y±,2(θ + iπ/6)] [1 + Y±,0(θ − iπ/6)]

Y±,2(θ + iπ/2)Y±,2(θ − iπ/2) = [1 + Y±,0(θ + iπ/6)] [1 + Y±,1(θ − iπ/6)]

(5.76)

and for Nf = 2

Ȳ±,±(θ + iπ/2)Ȳ±,±(θ − iπ/2) = [1 + Y±,±(θ)][1 + Y∓,∓(θ)]

Y±,±(θ + iπ/2)Y±,±(θ − iπ/2) = [1 + Ȳ±,±(θ)][1 + Ȳ∓,∓(θ)]
(5.77)

Notice that with respect to what happens in the integrability variables, in the gauge vari-
ables the number of Q, Y functions increases (triples for Nf = 1, doubles for Nf = 2), as it
happens for the SU(2) Nf = 0 theory (where it doubles) [1]. Besides the Q and Y systems
in gauge variables simplify their dependence on the flipped masses.
Again, as explained in [81], it straightforward to invert the Y-systems into the following

’gauge TBAs’. For Nf = 1:

ε±,0(θ) = ε(0)±,0e
θ − (ϕ+ ∗ L±,1) (θ)− (ϕ− ∗ L±,2) (θ)

ε±,1(θ) = ε(0)±,1e
θ − (ϕ+ ∗ L±,2) (θ)− (ϕ− ∗ L±,0) (θ)

ε±,2(θ) = ε(0)±,2e
θ − (ϕ+ ∗ L±,0) (θ)− (ϕ− ∗ L±,1) (θ) ,

(5.78)

and for Nf = 2

ε±,±(θ) = ε(0)±,±e
θ − ϕ ∗ (L̄±± + L̄∓∓)(θ)

ε̄±,±(θ) = ε̄(0)±,±e
θ − ϕ ∗ (L±± + L∓∓)(θ) .

(5.79)
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The new kernels for Nf = 1 ϕ± are defined as

ϕ±(θ) =
1

cosh(θ ± iπ/6)
. (5.80)

The leading order coeffient for Nf = 1, for example for k = 0 writes explicitly as

ε(0)±,k = −e−iπ/6 lnQ(0)(−e−2πi/3uk,±e2πi/3mk,Λ1)−eiπ/6 lnQ(0)(−e2πi/3uk,±e−2πi/3mk,Λ1)±
8

3
π
mk

Λ1
,

(5.81)
where lnQ(0)(u,m,Λ1) is given by the integral

lnQ(0)(u,m,Λ1) =

∫ ∞

−∞

[√

e2y + e−y +
4m

Λ1
ey +

4u

Λ2
1

− ey − e−y/2 − 2
m

Λ1

1

1 + e−y/2

]
dy . (5.82)

For Nf = 2 also

ε(0)±,± = − lnQ(0)(u,m1,m2,Λ2)− lnQ(0)(u,−m1,−m2,Λ2)∓
4πi

Λ2
(m1 −m2)

ε̄(0)±,± = − lnQ(0)(−u,−im1, im2,Λ2)− lnQ(0)(−u, im1,−im2,Λ2)∓
4π

Λ2
(m1 +m2)

(5.83)

and

lnQ(0)(u,m1,m2,Λ2) (5.84)

=

∫ ∞

−∞

[√

2 cosh(2y) + 8m1

Λ2
ey +

8m2

Λ2
e−y +

16u

Λ2
2

− 2 cosh y − 4m1

Λ2

1

1 + e−y/2
− 4m2

Λ2

1

1 + ey/2

]
dy .

(5.85)

We can simply compute concretely lnQ(0) by expanding the square root integrand in mul-
tiple binomial series for small parameters and then getting simple Beta function integrals.
In particular, for Nf = 1 we get

lnQ(0)(u,m,Λ1) =
∞∑

n=0

∞∑

l=0

(
1/2

n

)(
1/2− n

l

)
B1(n, l)

(
4m

Λ1

)n(4u

Λ2
1

)l

(5.86)

with
B1(n, l) =

1

3
B

(
1

6
(2l + 4n− 1),

1

3
(2l + n− 1)

)
(n, l) (= (1, 0)

B1(1, 0) =
2 ln(2)

3

(5.87)

and for Nf = 2 we obtain

lnQ(0)(u,m1,m2,Λ2) =
∞∑

l,m,n=0

(1
2

l

)(1
2 − l

m

)(
−l −m+ 1

2

n

)
B2(l,m, n)

(
8m1

Λ2

)n(16u

Λ2
2

)m(8m2

Λ2

)l

(5.88)
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with
B2(l,m, n) =

Γ
(
1
4(3l + 2m+ n− 1)

)
Γ
(
1
4(l + 2m+ 3n− 1)

)

4Γ
(
l +m+ n− 1

2

)

B2(1, 0, 0) =
1

2
(ln 2− 1) B2(0, 0, 1) =

1

2
ln 2 .

(5.89)

Of course, when u,m,Λ1 (u,m1,m2,Λ2) are such that the leading order (5.81) computed
through (5.82) has a negative real part, the TBA (5.78) no longer converges. In general, we
find the convergence region to correspond to u,m (u,m1,m2) finite but small with respect
toΛ1 (Λ2). For instance in theNf = 1massless case, this region corresponds on the real axis
of u precisely to the strong coupling region −3Λ2

1/2
8/3 < u < 3Λ2

1/2
8/3. For Nf = 2 instead it

corresponds to the region −3Λ2
2/8 < u < 3Λ2

2/8 [83].
Following [49, 71], it is easy to find the boundary condition at θ → −∞ for the gauge TBA

ε±,k(θ) 0 −2 ln
(
− 2

π
θ

)
0 f̂(θ), θ → −∞, (5.90)

with
f̂(θ) = − ln

(
1 +

2

π
ln
(
1 + e−θ−

πi
6
))

− ln
(
1 +

2

π
ln
(
1 + e−θ+

πi
6
))

. (5.91)

Numerically, this condition is imposed by modified the TBA equations to be

ε±,k(θ) = ε(0)±,ke
θ + f̂(θ)−

(
ϕ+ ∗

(
L±,(k+1)mod 3 + L̂

))
(θ)−

(
ϕ− ∗

(
L±,(k+2)mod 3 + L̂

))
(θ),

(5.92)
where L̂ is fixed by f̂ = (ϕ++ϕ−)∗L̂. Under this boundary condition (5.90), the dilogarithm
trick leads to the “effective central charge” associated with the TBA equations (5.78)

ceff =
6

π2

∫
dθeθ

2∑

j=0

ε(0)±,jL±,j(θ) = 3, (5.93)

which coincides the numeric test and thus tests the validity of our boundary condition.
We notice that even if we had not added the boundary condition at θ → −∞, the solution
of the gauge TBA (5.78) would have been fixed anyway, just giving a less precise numerical
solution. We remark that the same thing would have not been true for the integrability
TBA (5.58), since the boundary condition is strictly necessary to fix p, which does not enter
the forcing term [49].
Similarly for Nf = 2 the effective central charge of Nf = 2 case is found to be

ceff =
6

π2

∫
dθeθ

∑

±

(
ε(0)±,±L±,±(θ) + ε̄(0)±,±L̄±,±(θ)

)
= 4, (5.94)

and we find the consistent boundary condition at θ → −∞:

ε±,±(θ) 0 −2 ln
(
−2θ

π

)
0 −2 ln

[
1 +

2

π
ln(1 + e−θ)

]
θ → −∞ (5.95)

and so
f̂(θ) = −2 ln

(
1 +

2

π
ln
(
1 + e−θ

))
. (5.96)
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5.2.2. Seiberg-Witten gauge/integrability identification

We can now begin to find, first at the leading ! → 0 (θ → +∞) order, a relation between
the integrability quantity ε(0) and the gauge periods. It is just a more complex version of
the proof reported in section 4.7.1 for the simpler SU(2) Nf = 0 gauge theory. We do now
the proof for Nf = 1. In (5.81) for k = 0 we have the following integral contributions

e−iπ/6 lnQ(0)(−e−2πi/3u, e2πi/3m) = (5.97)

=

∫ ∞−2πi/3

−∞−2πi/3

[√

−e2y − 4m

Λ1
e+y +

4u

Λ2
1

− e−y − iey + ie−y/2 − i2
m

Λ1

1

1 + e−y/2−πi/3

]
dy (5.98)

and

eiπ/6 lnQ(0)(−e2πi/3u, e−2πi/3m) = (5.99)

=

∫ ∞+2πi/3

−∞+2πi/3

[
−

√

−e2y − 4m

Λ1
e+y +

4u

Λ2
1

− e−y + iey − ie−y/2 + i2
m

Λ1

1

1 + e−y/2+πi/3

]
dy . (5.100)

Wenotice that the integrands in (5.97) and (5.99) are equal except for themass regularizing
term, which gives an integral difference10

2
im

Λ1

∫ ∞+2πi/3

−∞+2πi/3

[
1

1 + e−y/2+πi/3
− 1

1 + e−y/2−πi/3

]
dy =

2

Λ1

4πm

3
. (5.101)

We can then consider only the integrand of lnQ(0)(−e−2πi/3u, e2πi/3m). We observe that such
integrand is nothing but the Seiberg-Witten differential λ, up to a total derivative

e−iπ/6 lnQ(0)(−e−2πi/3u, e2πi/3m) (5.102)

= i

∫ +∞−2πi/3

−∞−2πi/3

dy




e2y + e−y + 4m

Λ1
ey − 4u

Λ2
1√

e2y + e−y + 4m
Λ1

ey − 4u
Λ2
1

− d

dy

√

e2y + e−y +
4m

Λ1
ey − 4u

Λ2
1

− reg.



 (5.103)

= 4i

∫ +∞−2πi/3

−∞−2πi/3

dy




3
8e

−y + 1
2
m
Λ1
ey − u

Λ2
1√

e2y + e−y + 4m
Λ1

ey − 4u
Λ2
1

− reg.



 = −4
√
2π

Λ1

∫ +∞−2πi/3

−∞−2πi/3

λ(y,−u,m,Λ1) dy

(5.104)

where the SW differential λ [84] is defined as usual in the variable x = −Λ2
1
4 e

−y as

λ(x,−u)dx =
1

2π
√
2

−u− 3
2x− Λ3

1
8

m
x√

x3 + ux2 +
Λ3
1m
4 x− Λ6

1
64

dx = − iΛ1

2π
√
2
2

3
8e

−y + 1
2
m
Λ1

ey − u
Λ2
1√

e2y + e−y + 4m
Λ1

ey − 4u
Λ2
1

dy = λ(y,−u) dy

(5.105)
Now we consider for −iλ(y) the countour of integration as in figure 5.2.2. We have hori-
zontal branch cuts for $y = ±π, -y < -y1 and other two curved branch cuts b± from the
10We notice that the integrand of (5.101) has poles only at y = ±4πi/3 with periodicity of 4πi.
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Figure 5.1: A strip of the y complex plane, where in yellow we show the contour of in-
tegration of SW differential for the SU(2) Nf = 1 theory we use for the proof
equality of the (alternative) SW period a(0)1 and the leading ! → 0 order of the
(minus the logarithm of the) integrability Y function ε(0) = − lnY (0). In red are
shown the branch cuts of the SW differential.

branch points y2, y3 to their asymptotics at $y = ±π
2 for -y → +∞. (This can be shown

easily by considering the asymptotics of e2y + e−y + 4m
Λ1

− 4u
Λ1

2 at -y → ±∞ and $y = ±π
2 ,±π,

which are negative real). Now, the integral from the complex-conjugate branch points y2
and y3 is defined as the alternative gauge period a(0)1 (see for the definition appendix C)

a(0)1 (−u,m,Λ1) = 2

∫ y2

y3

λ(y,−u,m,Λ1) dy (5.106)

We now find some symmetry properties of λ(y) for y ∈ C. Since for y ∈ R andm,Λ > 0 and
u > 0 not large we have

iλ(y) ∈ R y ∈ R (5.107)
the analytic continuation is such that

iλ(y∗) = (iλ(y))∗ y ∈ C (5.108)

From this it follows that along the branch cuts upper b+± and lower b−± edge of the curved
branch cuts b±, where iλ ∈ iR we have the properties

iλ(y)
∣∣∣
b++

= −iλ(y)
∣∣∣
b−−

= −iλ(y)
∣∣∣
b−+

= +iλ(y)
∣∣∣
b+−

∈ iR (5.109)

where of course the change of sign between b+± and b−± is due to the fact these are branch
cuts for a square root. Thus by considering the integration contour C2 = (y2, y3) ∪ b−+ ∪ b+−
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closed also at infinity (where thanks to the regularization there is no contribution) we
have

0 =

∮

C2

iλ(y) dy = − i

2
a(0)1 + 2

∫

b−+

iλ(y) dy , (5.110)

that means we can express the gauge period also as an integral along the branch cut b−+

a(0)1 = 4

∫

b−+

λ(y) dy . (5.111)

On the other hand by considering the integration contour C1 = (−∞+2πi/3,+∞+2πi/3)∪
b++ ∪ b−+ ∪ b+− ∪ b−− ∪ (∞− 2πi/3,−∞− 2πi/3) closed also at infinity we have

0 =

∮

C1

iλ(y) dy = +
1

8
√
2πΛ1

ε(0)(u, im)− 4

∫

b−+

iλ(y) dy (5.112)

Hence
ε(0)(u, im,Λ1) =

4
√
2π

Λ1
a(0)1 (−u,m,Λ1) (5.113)

This result is also confirmed numerically. The change of basis of the periods is, at least for
u > 0 (see for the derivation appendix C)

a(0)(−u,m) = −a(0)1 (−u,m) + a(0)2 (−u,m) +
m√
2

a(0)D (−u,m) = −2a(0)1 (−u,m) + a(0)2 (−u,m) +
3

2

m√
2

(5.114)

Hence, we can write the gauge-integrability relation for all 3 gauge TBA’s forcing terms
as 11

ε(0)(u, im) = 2π
√
2

[
a(0)(−u,m)− a(0)D (−u,m) +

1

2

m√
2

]
2
√
2

Λ1

ε(0)(e2πi/3u, ie−2πi/3m) = 2π
√
2

[
a(0)(−e2πi/3u, e−2πi/3m)− a(0)D (−e2πi/3u, e−2πi/3m) +

e−2πi/3m√
2

]
2
√
2

Λ1

ε(0)(e−2πi/3u, ie2πi/3m) = 2π
√
2

[
−2a(0)(−e−2πi/3u, e2πi/3m) + a(0)D (−e−2πi/3u, e2πi/3m) +

1

2

e2πi/3m√
2

]
2
√
2

Λ1
.

(5.115)
We notice that for all three pseudoenergies of the gauge TBA we find that the forcing
term (leading order) is of the form of a central charge for the SW theory for SU(2) with
Nf = 1 [15]:

Z = nma
(0)
D − nea

(0) + s
m√
2
, (5.116)

so that the mass of the BPS state is MBPS =
√
2|Z| [84]. We find a perfect match between

the expected electric and magnetic charges ne, nm which multiply the periods a(0) and a(0)D

11We have checked this expression also numerically through the use of elliptic integrals of appendix C [84,
85] for the periods and the hypergeometric integral (5.86) to calculate ε(0)±,k.
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Figure 5.2: A strip of the y complex plane, where in yellow we show the contour of inte-
gration of SW differential for the SU(2) Nf = 2 = (1, 1) theory we use for the
proof equality of the (alternative) SW period a(0)2 and the leading ! → 0 order
of the (minus the logarithm of the) integrability Y function ε(0) = − lnY (0). In
red are shown the branch cuts of the SW differential.

respectively (precisely, (−1, 0), (1,−1) and (0, 1) [83])1213. We notice that with this obser-
vation on the spectrum the same TBA equations can be derived formally by taking the
conformal limit of the integral equations in the framework of Gaiotto, Moore and Neitzke
in[87, 50, 88, 70, 71]. However, we remark that though their framework is used very gen-
erally, it is for that very reason arguably more conjectural than our bottom-up approach
from the precise four dimensional gauge theory ODEs.
Similarly for Nf = 2 we find At the ! → 0 leading SW order we have the relations, for

12The mass constant term (physical flavour charge [86]) is ambiguous, but that it is just because the periods
themselves are defined up to the well-known SWmonodromy of exactly an integer multiple of 1

2
m√
2
[15,

85, 84]. We emphasize that that the central charge and mass of BPS states have no ambiguity. We notice
also that, in integrability, there is no ambiguity since the wave functions and therefore the Q function
in (5.39) cannot change. In other words, we are fixing through integrability what is in gauge theory is in
general ambiguous.

13The periods (a(0), a(0)D ) are discontinuous on the moduli space, due to the singularities, and can be ana-
lytically continued to (ã(0), ã(0)D ) by using the monodromy matrix around the singularity on the moduli
space. Correspondingly, the charges (ne, nm) will also be transformed by the inverse of the monodromy
matrix, because one needs to keep the physical mass and central charge invariant. Since the driving
terms of TBA equations are given by the central charge, more precisely the BPS mass, the TBA equations
are invariant under the monodromy transformation.
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u,m1,m2 > 0

ε(0)(−u, im1,−im2,Λ2) =
8
√
2π

Λ2
a(0)D (u,m1,m2,Λ2)

ε(0)(−u,−im1, im2,Λ2) =
8
√
2π

Λ2
a(0)D (u,m1,m2,Λ2) +

8π

Λ2
(m1 +m2)

ε(0)(u,m1,m2,Λ2) =
8
√
2π

Λ2
a(0)D (−u,−im1, im2,Λ2)−

4πi

Λ2
(m1 −m2)

ε(0)(u,−m1,−m2,Λ2) =
8
√
2π

Λ2
a(0)D (−u,−im1, im2,Λ2) +

4πi

Λ2
(m1 −m2)

(5.117)

We give an analytic proof also of this result. The leading order of ε as ! → 0 (that is, θ → ∞)
is
ε(θ, u,m1,m2,Λ2) 0 eθε(0)(u,m1,m2,Λ2)

= eθ
[
− lnQ(0)(u,m1,m2,Λ2)− lnQ(0)(u,−m1,−m2,Λ2) +

4πi

Λ2
(m1 −m2)

]

(5.118)
with

lnQ(0)(u,m1,m2,Λ2) =

∫ ∞

−∞

[√
e2y + e−2y +

8m1

Λ2
ey +

8m2

Λ2
e−y +

16u

Λ2

− 2 cosh y − 4m1

Λ2

1

1 + e−y/2
− 4m2

Λ2

1

1 + ey/2

]
dy

lnQ(0)(u,−m1,−m2,Λ2) =

∫ ∞

−∞

[√
e2y + e−2y − 8m1

Λ2
ey − 8m2

Λ2
e−y +

16u

Λ2

− 2 cosh y +
4m1

Λ2

1

1 + e−y/2
+

4m2

Λ2

1

1 + ey/2

]
dy

(5.119)

Now we can trade the change of sign in the masses as a shift in y by iπ

lnQ(0)(u,−m1,−m2,Λ2) =

∫ ∞+iπ

−∞+iπ

[√
e2y + e−2y +

8m1

Λ2
ey +

8m2

Λ2
e−y +

16u

Λ2

+ 2 cosh y +
4m1

Λ2

1

1 + ie−y/2
+

4m2

Λ2

1

1− iey/2

]
dy

(5.120)

We can use the same integrand and integrate it in the countour of figure 5.2 if we separate
and add outside the term coming from the regularizing part

∫ ∞

−∞

[
4
(
m1ey/2 +m2

)

Λ2 (ey/2 + 1)
−

4
(
m1ey/2 + im2

)

Λ2 (ey/2 + i)

]
dy =

4iπ(m1 −m2)

Λ2
(5.121)

Now the SW differential as defined in section 2.5 from the quartic SW curve (2.41) gives
∫
λ(x,−u,−im1, im2,Λ2) dx =

∫ [√
e2y + e−2y +

8m1

Λ2
ey +

8m2

Λ2
e−y +

16u

Λ2

− 2 cosh y − 4m1

Λ2

1

1 + e−y/2
− 4m2

Λ2

1

1 + ey/2
+

d

dy
(...)
]
dy

(5.122)
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Therefore
ε(0)(u,m1,m2,Λ2) =

∮
λ(y) dy − 4πi

Λ2
(m1 −m2) (5.123)

We notice that for y = t+ is along the (almost) horizontal branch cuts we have

-P (0)(y) = 0

$P (0)(t+ is) = −$P (0)(−t+ is)
(5.124)

so that the only contribution is from the vertical branch cuts. That is

ε(0)(u,m1,m2,Λ2) =
8
√
2π

Λ2
a(0)2 (−u,−im1, im2,Λ2)−

4πi

Λ2
(m1 −m2) (5.125)

For u → ∞,Λ2wehave a(0)2 (−u,m1,m2,Λ2) ∼ aD(−u,m1,m2,Λ2) ∼ i
2π

√
2u ln u

Λ2
2
and then (5.117)

follows. In this way TBA (5.79) constitute a generalization of that found in [89] Nf = 2
gauge theory with equal masses m1 = m2 respectively (see a numerical test for different
masses below in table 5.2).

5.2.3. Exact quantum gauge/integrability identification for Y

We can use the following differential operators [20] to get higher ! → 0 (θ → +∞) orders
of either the periods ak or lnQ

ak(θ, u,m,Λ1)
.
=

∞∑

n=0

e−2nθa(n)k (u,m,Λ1) θ → +∞

lnQ(θ, u,m,Λ1)
.
=

∞∑

n=0

eθ(1−2n) lnQ(n)(u,m,Λ1) θ → +∞
(5.126)

For Nf = 1 they are

a(1)k (u,m,Λ1) =

(
Λ1

2

)2 1

12

[
∂

∂u
+ 2m

∂

∂m

∂

∂u
+ 2u

∂2

∂u2

]
a(0)k (u,m,Λ1)

a(2)k (u,m,Λ1) =

(
Λ1

2

)4 1

1440

[
28m2 ∂

2

∂u2

∂2

∂m2
+ 28u2 ∂

4

∂u4
+ 132m

∂2

∂u2

∂

∂m
+ 56mu

∂3

∂u3

∂

∂m

+ 81
∂2

∂u2
+ 124u

∂3

∂u3

]
a(0)k (u,m,Λ1)

(5.127)
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and for Nf = 2

a(1)k (u,m1,m2,Λ2) =

(
Λ2

4

)2 1

6

[
2u

∂2

∂u2
+

3

2

(
m1

∂

∂m1

∂

∂u
+m2

∂

∂m2

∂

∂u

)
+

∂

∂u

]
a(0)k (u,m1,m2,Λ2)

a(2)k (u,m1,m2,Λ2) =

(
Λ2

4

)4 1

360

[
28u2 ∂

4

∂u4
+ 120u

∂3

∂u3
+ 75

∂2

∂u2
+ 42

(
um1

∂

∂m1

∂3

∂u3
+ um2

∂

∂m2

∂3

∂u3

)

+
345

4

(
m1

∂

∂m1

∂2

∂u2
+m2

∂

∂m2

∂2

∂u2

)
+

63

4

(
m2

1

∂2

∂m2
1

∂2

∂u2
+m2

2

∂2

∂m2
2

∂2

∂u2

)

+
126

4
m1m2

∂

∂m1

∂

∂m2

∂2

∂u2

]
a(0)k (u,m1,m2,Λ2) .

(5.128)
The same operators can be used also to obtain lnQ(n) of course.
Remarkably, we find the same higher orders of ak to be given by the asymptotic expan-

sion of the gauge TBA. For Nf = 1

ε(1)+,0 = − 1

2π

∫ ∞

−∞
dθ eθ

{
−2(−1)5/6L+,1(θ

′) + 2(−1)1/6L+,2(θ
′)

}

= −eiπ/6 lnQ(1)(−e−2πi/3u, e2πi/3m,Λ1)− e−iπ/6 lnQ(1)(−e2πi/3u, e−2πi/3m,Λ1)

= −4π
√
2

Λ1
a(1)1 (−u,m,Λ1)

ε(2)+,0 = − 1

2π

∫ ∞

−∞
dθ e3θ

{
2iL+,1(θ

′)− 2iL+,2(θ
′)

}

= −eiπ/2 lnQ(2)(−e−2πi/3u, e2πi/3m,Λ1)− e−iπ/2 lnQ(2)(−e2πi/3u, e−2πi/3m,Λ1)

=
4π

√
2

Λ1
a(2)1 (−u,m,Λ1) .

(5.129)

The numerical check is shown in table 5.1. Thus we have the asymptotic expansion, for
Nf = 1

ε(θ, u, im,Λ1)
.
=

∞∑

n=0

eθ(1−2n)ε(n)(u, im,Λ1) =
4
√
2π

Λ1

∞∑

n=0

eθ(1−2n)(−1)na(n)1 (−u,m,Λ1) θ → +∞

(5.130)
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k=1 k=2
ε(k)+,0 −0.143902 0.00285479

dk∆[lnQ(k)]+,0 −0.143905 0.00285481

(−1)kcka
(k)
1 (−u0,m0) −0.143905 0.00285481

ε(k)+,1 −0.140549 + 0.00193600i −0.00142739 + 0.00311155i
dk∆[lnQ(k)]+,1 −0.140552 + 0.00193603i −0.00142740 + 0.00311157i

(−1)kcka
(k)
1 (−u1,m2) −0.140552 + 0.00193603i −0.00142740 + 0.00311157i

ε(k)+,2 −0.140549− 0.00193600i −0.00142739− 0.00311155i
dk∆[lnQ(k)]+,2 −0.140552− 0.00193603i −0.00142740− 0.00311157i

(−1)kcka
(k)
1 (−u2,m1) −0.140552− 0.00193603i −0.00142740− 0.00311157i

Table 5.1: Comparison between the higher ! → 0 asymptotic expansion modes for the
Nf = 1 gauge theory and Perturbed Hairpin IM. The first line is the result from
the θ → ∞ expansion of the gauge TBA (5.78). The second line is the result from
the differential operators (5.127) acting on the leading order lnQ(0) computed
through hypergeometric functions (5.81), (5.86). The third line are the higher
periods computed through the same differential operators acting on the elliptic
integral of the SW order, as in appendix C, with ck = 4π

√
2

Λ1

(
Λ2
1
8

)k
and dk =

(
Λ2
1
8

)k
.

Here the parameters are u = 0.1, Λ1 = 1., m = 1
20

√
2
and of course uk = e2πik/3u,

mk = e−2πik/3m.
k = 1, m1 = m2 k = 2, m1 = m2 k = 1, m1 (= m2 k = 2, m1 (= m2

ε(k)(u,m1,m2,Λ2) −0.2395247 0.0158881 −0.2379413 0.01513637

(−1)kcka
(k)
2 (−u,−im1, im2,Λ2) −0.2395130 0.0158902 −0.2379297 0.01513580

ε(k)(u, im1,−im2,Λ2) −0.5025004 0.3120101 −0.5000211 0.29418949

cka
(k)
2 (u,m1,m2,Λ2) −0.5024841 0.3120003 −0.5000048 0.29418016

Table 5.2: Comparison of higher orders ε(k) from gauge TBA (5.79) and a(k)2 from elliptic
integrals (through differential operators (5.128), with ck = 8π

√
2

24k Λ2k−1
2 ). In the

second and third column m1 = m2 = 1
8 , Λ2 = 4, u = 1. In the fourth and fifth

column m1 =
1
16 , m2 =

1
8 , Λ2 = 4, u = 1.
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For Nf = 2 we have similarly

ε(n)+,+ = − 1

π

∫ ∞

−∞
dθ eθ(2n−1)

[
L̄+,+(θ

′) + L̄−,−(θ
′)
]

= − lnQ(n)(u,m1,m2,Λ2)− lnQ(n)(u,−m1,−m2,Λ2)

= (−1)n
8π

√
2

Λ2
a(n)2 (−u,−im1, im2,Λ2)

ε̄(n)+,+ = − 1

π

∫ ∞

−∞
dθ eθ(2n−1) [L+,+(θ

′) + L−,−(θ
′)]

= − lnQ(n)(−u,−im1, im2,Λ2)− lnQ(n)(−u, im1,−im2,Λ2)

= (−1)n
8π

√
2

Λ2
a(n)2 (u,m1,m2,Λ2) .

(5.131)

The numerical check is shown in table 5.2. Thus we have the asymptotic expansion, for
Nf = 2

ε(θ, u,±m1,±m2,Λ2)
.
=

∞∑

n=0

eθ(1−2n)ε(n)(u,±m1,±m2,Λ2)

=
8
√
2π

Λ2

[
eθa(0)2 (−u,−im,+im2,Λ2)∓

1

2
√
2
(im1 − im2) +

∞∑

n=1

eθ(1−2n)a(n)2 (−u,−im,+im2,Λ2)

]
θ → +∞

(5.132)
Therefore we can identify the exact gauge pseudoenergy ε as defining the exact periods
ak. Moreover, we can numerically prove that the exact gauge pseudoenergy is equivalent,
under change of variable, to the exact integrability pseudoenergy.

ε(θ, p, q) = ε(θ, u,m,Λ)
u

Λ2
1

=
1

4
p2e−2θ ,

m

Λ1
=

1

2
q e−θ0

ε(θ, p, q1, q2) = ε(θ, u,m1,m2,Λ2)
u

Λ2
2

=
1

16
p2e−2θ mi

Λ2
=

1

4
qie

−θ
(5.133)

This check is shown in tables 5.3-5.4 and figure 5.3.
We have defined the exact gauge periods as cycle integrals of the solution of the Riccati

equation P(y), the Seiberg-Witten quantum differential (see section 4.7.4). However, in
gauge theory they are properly defined from the instanton expansion (around Λ1 = 0),
which is, for also small !, for Nf = 1

a(θ, u,m,Λ1) =

√
u

2
−

Λ3
1m
(
1
u

)3/2

24
√
2

+
3Λ6

1

(
1
u

)5/2

210
√
2

+ ...

+ !(θ)2
(
−
Λ3
1m
(
1
u

)5/2

26
√
2

+
15Λ6

1

(
1
u

)7/2

212
√
2

−
35Λ6

1m
2
(
1
u

)9/2

211
√
2

+ ...

)

+ !(θ)4
(
−
Λ3
1m
(
1
u

)7/2

28
√
2

+
63Λ6

1

(
1
u

)9/2

214
√
2

−
273Λ6

1m
2
(
1
u

)11/2

214
√
2

+ ...

)
+ ... ,

(5.134)
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Figure 5.3: Plots (at low andhighmagnification) of thematching between theNf = 1 gauge
and Perturbed Hairpin IM pseudoenergies ε(θ, u, im) and ε(θ, P, iq) for u = 0.1,
q = 0.1, Λ = 1, for θ0 = 0.

(θ0, u,m,Λ1) (0, 1
10 ,

1
20 , 1)

ε(θ0, u, im) 5.21968
ε(θ0, P, iq) 5.21968

ε(θ0, u, im)Riccati 5.21933

Table 5.3: Table which shows the very goodmatch betweenNf = 1 gauge and integrability
pseudoenergies at θ = θ0 = 0with parameters u = 0.1,m = 1

20 , Λ1 = 1. In the third
line we show also a match with the result from direct numerical integration of
the Riccati equation (5.43).

(θ0, q1, q2, P ) (0, 18 ,
1
8 , 1) (0, 1

16 ,
1
8 , 1)

εINT
±,± 1.428378 1.416945047 ± 0.19634954i

εGAUGE
±,± 1.428383 1.416939137 ± 0.19634954i
εINT
±,∓ 1.4133849 ∓ 0.78539816i 1.40946127∓ 0.58904862i

εGAUGE
±,∓ 1.4133714∓ 0.78539816i 1.40944721∓ 0.5890486i

Table 5.4: Comparison of Nf = 2 gauge and generalized Perturbed Hairpin IM TBA for
different values of parameters.

aD(θ, u,m,Λ1) =
i

2
√
2π

[
√
2

[
2∑

k=0

!(θ)2ka(k)(u,m,Λ1)

](
iπ − 3 ln 16u

Λ2
1

)
+

(
6
√
u+

m2

√
u
+

m4

6 − 1
4Λ

3
1m

u3/2
+ ...

)

+ !(θ)2
(
− 1

4
√
u
− m2

12u3/2
+

− 9
64Λ

3
1m− m4

12

u5/2
+ ...

)

+ !(θ)4
(

1

160u3/2
+

7m2

240u5/2
+

7m4

96 − 127Λ3
1m

2560

u7/2
+ ...

)
+ ...

]
.

(5.135)
The results are shown in table 5.5. Notice that through formulas (5.134) and (5.135) we
can reach even the non-perturbative (non-WKB) large ! regime, the important thing to be
necessarily small being the ratio Λ2

1/u.
Hence we find a first identification between an integrability quantity, the Y function,
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{θ,Λ1, p, q} {−5, 0.1, 5, 0.1} {−2.5, 0.1, 10, 0.1} {0, 0.1, 5, 0.1}
{!, u,m, Λ2

1
u } ∼ {5, 103, 0.5, 10−6} ∼ {0.5, 102, 10−1, 10−4} ∼ {10−2, 10−1, 10−3, 10−1}

ε(θ, p, iq) −267.1186026 −381.1795517 −54.9818090

2π
√
2
a−aD+ 1

2
m√
2

!(θ) −267.1186297 −381.1797573 −54.9949700

Table 5.5: A table which shows thematch between the integrability pseudoenergy for pos-
itive mass iq in the θ-non-perturbative region and the instanton expansion for
the right combination of the Nf = 1 gauge periods which we have analytically
proven to be equal to it.

and the exact gauge periods. For Nf = 1, for u,m,Λ1 > 0

ε(θ, p, iq) =
2π

√
2

!(θ)

[
a(θ − iπ/2,−u,m)− aD(θ − iπ/2,−u,m) +

1

2

m√
2

]
u,m,Λ1 > 0 (5.136)

or more generally for u,m ∈ C, with argu = − argm

ε(θ, p, iq) =
2π

√
2

!(θ) a1(θ − iπ/2,−u,m) =
2π

√
2 i

!(θ − iπ/2)
a1(θ − iπ/2,−u,m) argu = − argm Λ1 > 0 .

(5.137)
Similarly for Nf = 2 and u,m,Λ2 > 014.

ε(θ, ip, iq1,−iq2) =
2
√
2π

!(θ) aD(θ, u,m1,m2,Λ2)

ε(θ, ip,−iq1, iq2) =
2
√
2π

!(θ)

[
aD(θ, u,m1,m2,Λ2) +

1√
2
(m1 +m2)

]

ε(θ, p, q1, q2) =
2
√
2π

!(θ)

[
aD(θ,−u,−im1, im2,Λ2)−

i

2
√
2
(m1 −m2)

]

ε(θ, p,−q1,−q2) =
2
√
2π

!(θ)

[
aD(θ,−u,−im1, im2,Λ2) +

i

2
√
2
(m1 −m2)

]

(5.138)

Relations (5.136)-(5.138) showanew connection between the SU(2)Nf = 1, 2 gauge periods
and the Y function (Generalized) Perturbed Hairpin integrable model. This generalizes
to the case of massive hypermultiplets matter the integrability-gauge correspondence al-
ready developed for the SU(2) Nf = 0 and the self-dual Liouville model (cf. (4.295), with
Q =

√
Y ) [1]. (5.136) and (5.138) are in some sense expressions for a Nf = 1, 2 SW exact

central charge. As explained in section 4.7.5 by considering different particles in the spec-
trum or definition of gauge periods other than the integral one, different relations could
be found like those for the Nf = 0 and Nf = 1 theory in [71, 79].
Besides, we remark that these gauge-integrability identifications holds as they are writ-

ten only in a restricted strip of of the complex θ plane: $θ < π/3 and $θ < π/2 for the
14We remark that the first two relationwith imaginary p parameters are not directly implemented in the in-

tegrability variables (since the integrability TBA does not converge), but theywill in the gravity variables
in section 5.6 (in (5.220) precisely this range of parameters is involved).
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Nf = 1 and Nf = 2 theory. Beyond such strips the gauge TBAs (5.78) (5.79) needs analytic
continuation (of its solution) since poles of the kernels are found on the θ′ integrating axis.
A modification of TBAs equation as usually done in integrability by adding the residue is
possible, but then the Y s no longer identifies with the gauge periods: in fact the former
are entire functions while the latter are not [90, 91, 51]. This is a manifestation of the
so-called wall-crossing phenomenon, whereby the spectrum of SW theory changes and
therefore a fundamental change in its relation to integrability is to be expected. We hope
to investigate further and write more on this issue in the future.

5.3. Integrability T function and gauge period
5.3.1. T function and Floquet exponent

In this subsection we follow and adapt the monograph on Doubly Confluent Heun equa-
tion in [77]. Define the periodicity operator

Υψ(y) = ψ(y + 2πi) (5.139)

We can express Υ in terms of the Ω± symmetry operators, for Nf = 1 as

Υ = Ω2
+Ω

−1
− (5.140)

and for Nf = 2 as
Υ = Ω2

+Ω
−2
− (5.141)

Then we write, for Nf = 1

ψ+,−1(y + 2πi) = ψ+,1 = −e2πiqψ+,−1 + ieiπqT̃+(θ)ψ+,0

ψ+,0(y + 2πi) = ψ+,2 = −eiπqT̃−(θ + iπ/3)ψ+,−1 + [−e−2πiq + T̃−(θ + iπ/3)T̃+(θ)]ψ+,1

(5.142)

and for Nf = 2

ψ+,−1(y + 2πi) = ψ+,1 = −e2πiq1ψ+,−1 + ieiπq1T̃+,+(θ)ψ+,0

ψ+,0(y + 2πi) = ψ+,2 = −eiπq1T̃−,+(θ + iπ/2)ψ+,−1 + [−e−2πiq1 + T̃−,+(θ + iπ/2)T̃+,+(θ)]ψ+,1 .
(5.143)

We can write these relations also in matrix form

Υψ+ = T+ψ+ (5.144)

where we defined ψ = (ψ+,−1,ψ+,0) and, for Nf = 1

T+ =

(
−e2πiq eiπqT̃+,+(θ)

eiπqT̃−(θ + iπ/3) [−e−2πiq + T̃−(θ + iπ/3)T̃+(θ)]

)
(5.145)

and for Nf = 2

T+ =

(
−e2πiq1 eiπq1T̃+,+(θ)

eiπq1T̃−,+(θ + iπ/2) [−e−2πiq1 + T̃−,+(θ + iπ/2)T̃+,+(θ)]

)
. (5.146)
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θ T (θ, p, 0) TBA, TQ exp [−2πν(θ + iπ/3, p, 0)] + exp [2πν(θ − iπ/3, p, 0)] Hill
−10. −0.409791 −0.409791
−8. −0.409791 −0.409791
−6. −0.40979 −0.409791
−4. −0.409786 −0.409791
−2. −0.412355 −0.412353
−1. −1.44334 −1.44332
0. −371.911 −371.912
1. −3.99263 · 106 −3.99263 · 106
2. −1.02835 · 1017 −1.02835 · 1017
3. 1.00886 · 1048 1.00886 · 1048
4. −2.63656 · 10130 −2.63656 · 10130
5. 6.00739 · 10353 6.00739 · 10353

Table 5.6: Here wemake a table, with p = 0.2 and several θ in the lines, of three quantities:
T (θ, p, q = 0) from the TBA and TQ system (Q function), exp [−2πν(θ + iπ/3, p, 0)]+
exp [2πν(θ − iπ/3, p, 0)], were ν is Hill’s Floquet (see appendix F). (Here in θ we
discretize the interval (−50, 50) in 28 parts, which is no big effort, but we go up
to 213 iterations for the TBA or 214 as the Hill matrix’s width.)

Now we can say that ν is a characteristic exponent of the Doubly confluent Heun equa-
tion (5.4) if and only if e±2πiν are eigenvalues of Υ+. It then follows that ν is determined
from

2 cos 2πν = tr T+ (5.147)
or more explicitly, for Nf = 1

2 cos 2πν + 2 cos 2πq = 4 cos π(q + ν) cos π(q − ν) = T̃+(θ)T̃−(θ + i
π

3
) (5.148)

and for Nf = 2

2 cos 2πν + 2 cos 2πq1 = 4 cos π(q1 + ν) cos π(q1 − ν) = T̃+,+(θ)T̃−,+(θ + i
π

2
) (5.149)

Similarly we can prove relations for T , for Nf = 1

2 cos 2πν = 4 cos2 πν = T+(θ)T+(θ + i
2π

3
) = T 2

+(θ) (5.150)

and for Nf = 2

2 cos 2πν + 2 cos 2πq2 = 4 cos π(q2 + ν) cos π(q2 − ν) = T+,+(θ)T+,−(θ + i
π

2
) (5.151)

These relations between T and ν generalize both what found numerically by Zamolod-
chikov and us [49, 1] for the self-dual Liouville model (Nf = 0) and also that found by D.F.
and R. Poghossian and H. Poghosyan for SU(3) Nf = 0 [43].
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For Nf = 1, from the T periodicity T+(θ + iπ/3) = T−(θ) it follows the Floquet (anti)-
periodicity

ν(θ + i
π

3
,−q) = ν(θ, q) = ±ν(θ − i

π

3
,−q) mod(n) ∈ Z (5.152)

Thus for Nf = 1 we prove the following conjecture by Fateev and Lukyanov [78].

T+(θ) = T (θ, p, q) = exp{−iπν(θ + iπ/3, p,−q)}+ exp{iπν(θ − iπ/3, p,−q)} , (5.153)

which follows immediately from (5.150) and (5.152). We show also its numerical proof in
the massless case in table 5.6, where ν is computed in practice through the well-known
method of the Hill determinant [92] (see appendix F).

5.3.2. Exact quantum gauge/integrability identification for T

The gauge a period is defined from the Λ1 (Λ2) derivative of the instanton part of the gauge
prepotential FNS through the Matone’s relation, for Nf = 1

2u = a2 − Λ1

3

∂F inst
NS

∂Λ1
(5.154)

and for Nf = 2

2u = a2 − Λ2

2

∂F inst
NS

∂Λ2
. (5.155)

where the instanton prepotential F inst
NS is given by, for Nf = 1

F inst
NS =

∞∑

n=0

Λ3n
1 F (n)

NS (5.156)

with first terms

F (1)
NS = − 2m1

4(4a2 − 2!2)

F (2)
NS = −

4m2
1

(
20a2 + 14h̄2

)
− 3

(
4a2 − 2h̄2

)2

256
(
a2 − 2h̄2

) (
4a2 − 2h̄2

)3

F (3)
NS = −

4m3
1

(
144a4 + 464a2h̄2 + 116h̄4

)
−m1

(
28a2 + 34h̄2

) (
4a2 − 2h̄2

)2

192
(
4a2 − 2h̄2

)5 (
4a4 − 26a2h̄2 + 36h̄4

)

(5.157)

and for Nf = 2

F inst
NS =

∞∑

n=0

Λ2n
2 F (n)

NS (5.158)

with

F (1)
NS = −1

8
+

[
1

8
− 4m1m2

8(4a2 − 2!2)

]

F (2)
NS = −64a2(a4 + 3a2(m2

1 +m2
2) + 5m2

1m
2
2)− 8!6 + 48!2(a2 +m2

1 +m2
2)− 32!2[3a4 + 6a2(m2

1 +m2
2)− 7m2

1m
2
2]

1024
(
a2 − 2h̄2

) (
4a2 − 2h̄2

)3 .

(5.159)
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Λ1 u m ν a
!

0.04 1.1 0 0.0488088 1 + 0.0488088
0.08 1.1 0 0.0488089 1 + 0.0488088
0.12 1.1 0 0.0488089 1 + 0.0488089
0.16 1.1 0 0.0488094 1 + 0.0488089

Λ1 u m ν a
!

0.04 1.1 0.3 0.0488075 1 + 0.0488085
0.08 1.1 0.3 0.0487981 1 + 0.0488062
0.12 1.1 0.3 0.047726 1 + 0.0487998
0.16 1.1 0.3 0.0487231 1 + 0.0487874

Table 5.7: Comparison of ν as computed by the Hill determinant and a for Nf = 1 as com-
puted from the instanton series (with ! = 1).

Λ2 u m1 m2 ν a
!

0.04 1.1 0 0 0.0488088 1 + 0.0488088
0.08 1.1 0 0 0.0488085 1 + 0.0488088
0.12 1.1 0 0 0.0488069 1 + 0.0488084
0.16 1.1 0 0 0.0488027 1 + 0.0488073
Λ2 u m1 m2 ν a

!
0.04 1.1 0.2 0.2 0.0488043 1 + 0.0488077
0.08 1.1 0.2 0.2 0.0487906 1 + 0.0488043
0.12 1.1 0.2 0.2 0.048767 1 + 0.0487982
0.16 1.1 0.2 0.2 0.0487325 1 + 0.0487892

Table 5.8: Comparison of ν as computed by the Hill determinant and a for Nf = 2 as com-
puted from the instanton series (with ! = 1).

In tables 5.7 and 5.8 we check the equality to this order of approximation

ν =
1√
2

a

! mod(n) , n ∈ Z (5.160)

We notice that (for Nf = 2) the first instanton series coeffient match the general math-
ematical analytical result (from continued fractions tecnique) for the expansion of the
eigenvalue of Doubly Confluent Heun equation in Λ given in [77] in terms of µ = ν mod(n)
with the identification (5.160), as shown in (D.24) of appendix D. This provides a very
strong analytical check of our gauge period-Floquet identification.
In conclusion, from the a period-Floquet identification (5.160) and the Floquet-T func-

tion identifications (5.148)-(5.151) follow new gauge-integrability basic connection formu-
las for the T function and a period. For Nf = 1

T 2
+(θ) = 2 cos

√
2πa

!

T̃+(θ)T̃−(θ + i
π

3
) = 2 cos

√
2πa

! + 2 cos 2πm!

(5.161)

and for Nf = 2

T+,+(θ)T+,−(θ + i
π

2
) = 2 cos

√
2πa

! + 2 cos 2πm2

!

T̃+,+(θ)T̃−,+(θ + i
π

2
) = 2 cos

√
2πa

! + 2 cos 2πm1

!

(5.162)
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5.4. Applications of gauge-integrability correspondence
Wenow show some applications of the gauge-integrability correspondence as new results
on both sides. In particular, for gauge theory we find a gauge interpretation of integra-
bility’s functional relations, namely as exact R-symmetry relations never found before to
our knowledge. For integrability instead we find new formulas for the local integrals of
motions in terms of the asymptotic gauge periods, which may sometimes be convenient.

5.4.1. Applications to gauge theory

Consider firstNf = 2. Wehave the relation (5.151)which considering that a = ν (cf. (5.160))
becomes

T++(θ)T+−(θ + iπ/2) = 4 cos(a− q2) cos(a+ q2) (5.163)
Now using the T periodicity relation (5.38) and the TQ relation (5.36) becomes

T++(θ)T−−(θ) =
1

Q++(θ)Q−−(θ)

[
Q+−(θ + iπ/2)Q−+(θ + iπ/2) +Q+−(θ − iπ/2)Q−+(θ − iπ/2)

+ e2iπq2Q+−(θ + iπ/2)Q−+(θ − iπ/2) + e−2iπq2Q+−(θ − iπ/2)Q−+(θ + iπ/2)
]

(5.164)
Now we claim that thanks to our connection of T function and Q/Y function to gauge
periods a and aD, this TQ relation becomes an Z2 R-symmetry relation for the exact gauge
periods a, aD. Indeed, such relations where already known in the SU(2) Nf = 0 case for
the ! → 0 asymptotic expansion modes a(n), a(n)D [72]. For the massless SU(2) Nf = 2 case
the periods are the same, up to a factor 2 [83]. If u > 0 they are

a(0)(−u, 0, 0) = −ia(0)(u, 0, 0)

a(0)D (−u, 0, 0) = −i[a(0)D (u, 0, 0)− a(0)(u, 0, 0)]
(5.165)

Indeed, expressing (5.164) in terms of gauge periods through (5.163) and (5.117) we get

a(0)(−u, 0, 0) = −a(0)D (−u)− ia(0)D (u) (5.166)

which is consistent with the same relations (5.165). Actually, relations (5.165) can be
considered to be derived from the TQ relation when coupled with the T periodicity re-
lation (5.38)

T−+(θ + iπ/2) = T++(θ) (5.167)
which inside (5.163) reads

T++(θ)T−−(θ) = T−+(θ + iπ/2)T+−(θ + iπ/2) (5.168)

and is then another Z2 R-symmetry relation for the exact gauge periods a. Indeed, in the
massless Nf = 2 case reduces precisely to the first of (5.165). Thus we conclude that Z2

R-symmetry for exact gauge theory periods is encoded in the integrability TQ and T peri-
odicity functional relations.
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Similarly for Nf = 1 case the T periodicity is easily shown to be interpreted in gauge
theory in the same way. If u > 0 andm = 0 the other exact relation from the T periodicity
(5.37) reduces to the Z3 symmetry in the asymptotic ! → 0 (cf. (C.9))

a(0)(e−2πi/3u, 0) = −e2πi/3a(0)(u, 0) (5.169)

a(n)(e−2πi/3u, 0) = −e2πi/3(1−n)a(n)(u, 0) (5.170)
We avoid though for the moment considering the Nf = 1 TQ relation since it requires

somenon-trivial analytic continuation of gauge-integrabiliy relations beyond the complex
strip $θ < π/3 in which the TBA holds without analytic continuation.
We see that the new exact relations following from the integrability functional relations

are a Z2, Z3 Nf = 2, 1 R-symmetry relations. They were never found previously in the
literature, to our knowledge. We knew only the ! → 0 perturbative relations, also in the
massless case in [83].

5.4.2. Applications to integrability

Wenowfind a newways to compute either the local integrals ofmotions for the Perturbed
Hairpin IM or the asymptotic expansion modes of the Nf = 1 quantum gauge periods.
Consider the large energy asymptotic expansion (5.54) ofQ in terms of the LIMs. We set

first q = 0 so to recover the LIMs of Liouville b =
√
2. For this particular case the expansion

simplifies as

lnQ(θ, p)
.
= −C0e

θ −
∞∑

n=1

eθ(1−2n)CnI2n−1 , θ → +∞ , p finite . (5.171)

The normalization constants are given (cf. [1] with b =
√
2)

Cn =
Γ
(
2n
3 − 1

3

)
Γ
(
n
3 − 1

6

)

3
√
2πn!

. (5.172)

We can also expand the LIMs I2n−1, as polynomials in p2 with coefficients Υn,k

I2n−1 =
n∑

k=0

Υn,kp
2k . (5.173)

The leading and subleading coefficients are found to be [1]

Υn,n = (−1)n , Υn,n−1 =
1

24
(−1)nn(2n− 1) . (5.174)

Now, since in Seiberg-Witten theory u is finite as θ → +∞, to connect the IM θ → +∞
asymptotic expansion, it is necessary to take the further limit

p2(θ) = 4
u

Λ2
1

e2θ → +∞ . (5.175)
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In this double limit, an infinite number of LIMs I2n−1(b =
√
2), through their coefficients

Υn,k, are re-summed into a an quantum gauge period asymptoticmode (a sort of LIM on its
way). For instance the leading order is obtained from the resummation of all Υn,n = (−1)n

terms as

lnQ(0)(u, 0,Λ1) = −
∞∑

n=0

Γ
(
2n
3 − 1

3

)
Γ
(
n
3 − 1

6

)

3
√
2πn!

(
−4u

Λ2
1

)n

(5.176)

and from itwe canderive the higher orders as usual throughdifferential operators (5.127).
In particular, in the massless case the first simplify as

lnQ(1)(u, 0,Λ1) =

(
Λ1

2

)2 [u
6

∂2

∂u2
+

1

12

∂

∂u

]
lnQ(0)(u, 0,Λ1)

lnQ(2)(u, 0,Λ1) =

(
Λ1

2

)4 [ 7

360
u2 ∂

4

∂u4
+

31

360
u
∂3

∂u3
+

9

160

∂2

∂u2

]
lnQ(0)(u, 0,Λ1)

lnQ(3)(u, 0,Λ1) =

(
Λ1

2

)6 [ 31u3

15120

∂6

∂u6
+

443u2

18144

∂5

∂u5
+

43u

576

∂4

∂u4
+

557

10368

∂3

∂u3

]
lnQ(0)(u, 0,Λ1) .

(5.177)
Indeed these expression match with the resummation of LIMs at higher orders:

lnQ(1)(u, 0,Λ1) =

(
Λ1

2

)2 ∞∑

n=0

[
n

12
+

1

24

]
Γ
(
2n
3 + 1

3

)
Γ
(
n
3 + 1

6

)

3
√
2πn!

(
−4u

Λ2
1

)n

(5.178)

lnQ(2)(u, 0,Λ1) = −
(
Λ1

2

)4 ∞∑

n=0

[
(14n+ 27)(2n+ 3)

5760

]
Γ
(
2n
3 + 1

)
Γ
(
n
3 + 1

2

)

3
√
2πn!

(
−4u

Λ2
1

)n

(5.179)

lnQ(3)(u, 0,Λ1) =

(
Λ1

2

)6 ∞∑

n=0

[
1

8

[4n(93n+ 596) + 3899](2n+ 5)

362880

]
Γ
(
2n
3 + 5

3

)
Γ
(
n
3 + 5

6

)

3
√
2πn!

(
−4u

Λ2
1

)n

(5.180)

So in general we find the relation

lnQ(k)(u, 0,Λ1) = (−1)k+1

(
Λ1

2

)2k ∞∑

n=0

Υn+k,n

Γ
(
k+n
3 − 1

6

)
Γ
(

2(k+n)
3 − 1

3

)

3
√
2π(k + n)!

(
4u

Λ2
1

)n

. (5.181)

Thus this procedure can actually be a convenient way to compute the LIMs coefficients
Υn+k,n for general n at each successive k order. Alternatively and equivalently, we can use
it to compute the k-th mode of the (alternative dual) quantum period a1

4
√
2π

Λ1
a(k)1 (u, 0,Λ1) = −

∞∑

k=0

Υn+k,n

Γ
(
k+n
3 − 1

6

)
Γ
(

2(k+n)
3 − 1

3

)

3
√
2π(k + n)!

2 sin
(
1

3
π(k + n+ 1)

)(4u
Λ2

1

)n
.

(5.182)
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5.5. Limit to lower flavours gauge theories
5.5.1. Limit from Nf = 1 to Nf = 0

The Seiberg-Witten curve for Nf = 1

y2SW,1 = x2(x− u) +
Λ1

4
m1x− Λ6

1

64
(5.183)

in the limit
Λ1 → 0 , m1 → ∞ , with Λ3

1m1 = Λ4
0 . (5.184)

flows to the Seiberg-Witten curve for Nf = 0

y2SW,0 = x2(x− u) +
Λ4

0

4
x . (5.185)

Similarly the Nf = 1 quantum Seiberg-Witten curve:

−!2 d2

dy21
ψ +

[
1

16
Λ3

1e
2y1 +

1

2
Λ3/2

1 e−y1 +
1

2
Λ3/2

1 m1e
y1 + u

]
ψ = 0 . (5.186)

if we let
y1 = y0 −

1

2
lnm1 → −∞ (5.187)

becomes
−!2 d2

dy20
ψ +

[
1

16

Λ3
1

m1
e2y0 +

1

2
Λ3/2

1 m1/2
1 e−y0 +

1

2
Λ3/2

1 m1/2
1 ey0 + u

]
ψ = 0 (5.188)

that is precisely reduce to the Nf = 0 equation:

−!2 d2

dy20
ψ + (Λ2

0 cosh y0 + u)ψ = 0 . (5.189)

We can also consider the limit on the integrability equation as follows. The Perturbed
Hairpin IM ODE/IM equation is

− d2

dy12
ψ(y1) + [e2θ1(e2y1 + e−y1) + 2qeθ1ey1 + p21]ψ(y1) = 0 . (5.190)

and it must reduce to the ODE/IM equation for the Liouville model studied in [1]

− d2

dy02
ψ(y0) + {e2θ0 [ey0 + e−y0 ] + p20}ψ(y0) = 0 , (5.191)

In order for (5.190) to go into (5.191) we need to impose

e2θ1+2y1 → 0

e2θ1−y1 = e2θ0−y0 2qeθ1+y1 = e2θ0+y0 p1 = p0
(5.192)
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or
q =

1

2

e4θ0

e3θ1

y1 = y0 − 2θ0 + 2θ1

(5.193)

Now the limit requires θ1 + y1 → −∞, that is

θ1 → −∞ (5.194)

and as a consequence
q ∼ e−3θ1 → ∞ θ1 → −∞ (5.195)

We now consider also the limit on gauge periods. We numerically find, for u,m1,Λ1 > 0,
Λ1 → 0,m1 → ∞,Λ3

1m1 = Λ4
0

a(0)1,1(u,m1,Λ1) → −a(0)0,D(u,Λ0) (5.196)
a(0)1,1(−u,m1,Λ1) → −a(0)0,D(−u,Λ0) + a(0)0 (−u+ i0,Λ0) (5.197)

= −ia(0)0,D(u,Λ0) (5.198)

a(0)1,2(±u,m1,Λ1) +
m1√
2
→ 1

2
a(0)0 (±u,Λ0) (5.199)

a(0)1,1(e
±2πi/3u, e∓2πi/3m1,Λ1)−

e∓2πi/3m1√
2

→ 1

2
a(0)0 (u, e∓iπ/6Λ0) (5.200)

a(0)1,1(−e+2πi/3u, e−2πi/3m1,Λ1)−
e−2πi/3m1√

2
→ e−2πi/3[a(0)0,D(−u,Λ0)−

1

2
a(0)0 (−u+ i0,Λ0)] (5.201)

a(0)1,1(−e−2πi/3u, e2πi/3m1,Λ1)−
e2πi/3m1√

2
→ e2πi/3[−1

2
a(0)0 (−u+ i0,Λ0)] (5.202)

5.5.2. Limit from Nf = 2 to Nf = 1

Staring from the Nf = 2 quantum Seiberg Witten curve

−!2 d2

dy22
ψ +

[
1

16
Λ2

2(e
2y2 + e−2y2) +

1

2
Λ2m1e

y2 +
1

2
Λ2m2e

−y2 + u

]
ψ = 0 , (5.203)

since we have
Λ2

2m2 = Λ3
1 m2 → ∞ Λ2 → 0 (5.204)

we can set
y2 = y1 +

1

2
lnm2 → +∞ (5.205)

so the equation becomes

−!2 d2

dy21
ψ +

[
1

16
Λ2

2

(
m2e

2y1 +
1

m2
e−2y1

)
+

1

2
Λ2

√
m2m1e

y2 +
1

2
Λ2

√
m2e

−y2 + u

]
ψ = 0 (5.206)
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which in the limit reduces to the Nf = 1 quantum Seiberg-Witten curve equation:

−!2 d2

dy21
ψ +

[
1

16
Λ3

1e
2y1 +

1

2
Λ3/2

1 e−y1 +
1

2
Λ3/2

1 m1e
y1 + u

]
ψ = 0 . (5.207)

In integrability variables, we impose the conditions that allow the limit of the differen-
tial equations

e2θ+2y2 = e2θ1+2y1 , eθ2+y2q1 = eθ1+y1q1 , 2eθ2−y2q2 = e2θ1−y1 , e2θ2−2y2 → 0 , p22 = p21 .
(5.208)

from which we deduce that we have to take the limit

y2 = −θ2 + θ1 + y1 θ2 → −∞ q2 =
1

2
e3θ1−2θ2 → ∞ (5.209)

5.6. Gravitational correspondence and applications
5.6.1. Gravitational correspondence Nf = 2

Our two-fold integrability-gauge correspondence actually is three-fold method as black
hole’s perturbation theory involves the same ODEs we use. In particular the Doubly Con-
fluent Heun equation (see appendix D) we have for the SU(2)Nf = 0, 1, 2 gauge theory and
Generalized Perturbed Hairpin integrable model is typically associated to extremal black
holes. In particular, for the Nf = 2 we consider now the gravitational background given
by the intersection of four stacks of D3-branes in type IIB supergravity. This geometry is
characterised by four different charges Qi which, if all equal, lead to an extremal RN BH,
that is maximally charged. In isotropic coordinates the line element writes [93, 9]

ds2 = −f(r)dt2 + f(r)−1[dr2 + r2(dθ2 + sin2 θdφ2)] , (5.210)

with f(r) =
∏4

i=1 (1 +Qi/r)
− 1

2 . The ODE describing the scalar perturbation is, with Σk =∑4
i1<...<ik

Qi1 · · · Qik

d2φ

dr2
+

[
−
(l + 1

2)
2 − 1

4

r2
+ ω2

4∑

k=0

Σk

rk

]
φ = 0 . (5.211)

Changing variables as r = 4
√
Σ4ey and

ω 4
√

Σ4 = −ieθ qj =
1

2

Σ2j−1

4
√
Σ4

2j−1 e
θ p2 = (l +

1

2
)2 − ω2Σ2 , (5.212)

(j = 1, 2) the ODE takes precisely the form of the Generalized Perturbed Hairpin IM (5.4).
SettingupODE/IM in gravity variables (5.212), wenotice that the discrete symmetries (5.10)

are consistent with the brane dictionary (5.212), as the brane parameters vary as Σ1 →
±iΣ1 ,Σ2 → −Σ2 ,Σ3 → ∓iΣ3 ,Σ4 → Σ4

15. So in gravity variables the Y system reads

Y (θ +
iπ

2
,−iΣ1,−Σ2, iΣ3)Y (θ − iπ

2
,−iΣ1,−Σ2, iΣ3) = [1 + Y (θ,Σ1,Σ2,Σ3)][1 + Y (θ,−Σ1,Σ2,−Σ3)] ,

(5.213)
15This observation does not mean that a dictionary not consistent with the discrete symmetry would im-

ply ODE/IM cannot be used: in that case we should just do ODE/IM in the suitable variables and then
afterwards change to the variables of interest.
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(with Σ4 omitted since it is fixed). We remark we shall pay particular attention to the
change of variables from gravity or gauge to integrability: this results in different TBA
equations as first noted in [1]. Indeed, Y system (5.213) can be inverted into the TBA in
gravitational variables

ε±,±(θ) = [f0,+ ∓ iπ

2
(
Σ1

Σ1/4
4

− Σ3

Σ3/4
4

)]eθ − ϕ ∗ (L̄±± + L̄∓∓)(θ)

ε̄±,±(θ) = [f̄0,+ ± π

2
(
Σ1

Σ1/4
4

+
Σ3

Σ3/4
4

)]eθ − ϕ ∗ (L±± + L∓∓)(θ)
(5.214)

where we defined ε(θ) = − lnY (θ,Σ1,Σ2,Σ3,Σ4), ε̄(θ) = ε(θ, iΣ1,−Σ2,−iΣ3,Σ4), L = ln[1 +
exp{−ε}], ϕ(θ) = (cosh(θ))−1and

f0,± = c0,+,± + c0,−,∓ c0,+,± = c0(Σ1,Σ2,±Σ3,Σ4) (5.215)

with

c0(�) =
∫ ∞

−∞

[√
2 cosh(2y) + Σ1

4
√
Σ4

ey +
Σ3

4
√

Σ3
4

e−y +
Σ2√
Σ4

− 2 cosh y − 1

2

Σ1
4
√
Σ4

1

1 + e−y/2
− 1

2

Σ3

4
√

Σ3
4

1

1 + ey/2

]
dy

(5.216)
which in turn can be expressed either through a triple power series for small parameters
or as an elliptic integral as

c0(�) =
∞∑

l,m,n=0

(1
2

l

)(1
2 − l

m

)(
−l −m+ 1

2

n

)
B2(l,m, n)

(
Σ1
4
√
Σ4

)n( Σ2√
Σ4

)m
(

Σ3

4
√
Σ3

4

)l

B2(l,m, n) =
Γ
(
1
4(3l + 2m+ n− 1)

)
Γ
(
1
4(l + 2m+ 3n− 1)

)

4Γ
(
l +m+ n− 1

2

)

B2(1, 0, 0) =
1

2
(ln 2− 1) , B2(0, 0, 1) =

1

2
ln 2

(5.217)
We have to numerically input l in the TBA with the boundary condition at θ → −∞:

ε±,±(θ) 0 4Pθ 0 4(l + 1/2) + 2C(p)θ θ → −∞ , (5.218)

C(p) = ln
(
21−2ppΓ(2p)2

Γ
(
p+ 1

2

)2

)
(5.219)

also following from the asymptotic of the ODE (5.4) (the precision improves by adding also
the constant at the subleading order, as explained in [78]). Through this TBAwe find again
the QNMs to be given by the Bethe roots condition

ε̄+,+(θn′ − iπ/2) = −iπ(2n′ + 1) , Q+,+(θn) = 0 n′ ∈ Z (5.220)

and we show in tables 5.10 their agreement with continued fraction (Leaver) method and
WKBapproximation (l → ∞) [31]. Wenotice that forΣ1 (= Σ3 andΣ4 (= 1 the Leavermethod
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n l TBA Leaver WKB
0 1 0.869623 − 0.372022i 0.868932− 0.372859i 0.89642− 0.36596i
0 2 1.477990 − 0.368144i 1.477888− 0.368240i 1.4940− 0.36596i
0 3 2.080200 − 0.367076i 2.080168− 0.367097i 2.0916− 0.36596i
0 4 2.680363 − 0.366637i 2.680350− 0.366642i 2.6893− 0.36596i

Table 5.9: Comparison of QNMs obtained from TBA (5.214), Leaver method
(through (5.220) with n′ = 0) and WKB approximation (Σ1 = Σ3 = 0.2,
Σ2 = 0.4, Σ4 = 1.)

n l TBA Leaver WKB
0 1 0.896681 − 0.40069i N.A. 0.93069− 0.39458i
0 2 1.5308 − 0.39676i N.A. 1.5511− 0.39458i
0 3 2.15708 − 0.395689i N.A. 2.1716− 0.39458i
0 4 2.78077 − 0.39525i N.A. 2.7921− 0.39458i

Table 5.10: Comparison of QNMs obtained from TBA (5.214), (through (5.220) with n′ = 0)
andWKB approximation (Σ1 = 0.1, Σ2 = 0.2, Σ3 = 0.3, Σ4 = 1). Since Σ1 (= Σ3 the
Leaver method seems not applicable, at least in its original version (N.A.).

is not applicable, at least in its original version since the recursion produced by the ODE
involvesmore than 3 terms (compare [7, 31]) and thus also for this reason the TBAmethod
may be regarded as convenient. However, we point out that there exists a development
of the Leaver method, the so-called matrix Leaver method which is still applicable [94,
95]. Thinking to gauge theory, it is clear from the black hole physical requirement in
ODE/IM language (5.220) and our gauge-integrability identication (5.138), it follows that
the integral gauge period aD must be quantized.

2
√
2π

!(θ) aD(θ, u,m1,m2,Λ2) = −iπ(2n′ + 1) (5.221)

This constitutes a (mathematical?) proof of the essential finding of [6] and the following
literature (see the introduction).
A note of caution, though. Literature following [6] uses another definition of gauge

period which we denote by AD which derives from the instanton expansion of the prepo-
tential. Aswe explain in section 4.8 the two definitions can be actually related by formulas
like (4.315) for the Nf = 0 theory. Generalizations of formula (4.315), already exist for the
subcase of the Nf = 1 gauge theory [79] (see next subsection) and so we expect them to
exist also for the wholeNf = 2 theory and evenmore generally. In this waywe expect that
in general the integrable Bethe roots condition, which we have shown to follow straight-
forwardly from BHs physics, in gauge theory indeed corresponds to the quantization of
the gauge AD period as stated in [6].
Bymaking considerations on these TQ systems and theQQ system (5.24) like done in [11]

and reported in section 4.8, we are not in general able to conclude any quantization con-
dition on the T function, except in the case of equal masses q1 = q2 ≡ q where we find

T+,+(θn)T−,−(θn) = 4 . (5.222)
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that generalizes (4.331) for Nf = 0. We now prove (5.222). From the QQ system (5.24) we
can write, for general q1, q2

eiπq1Q−+(θ − iπ/2) = c0

[
1± ieiπ

q1−q2
2

√
Q+,+(θ)Q−,−(θ)

]
(5.223)

e−iπq2Q+−(θ + iπ/2) =
1

c0

[
1∓ ieiπ

q1−q2
2

√
Q+,+(θ)Q−,−(θ)

]
(5.224)

eiπq2Q+−(θ − iπ/2) =
1

c′0

[
1± ie−iπ

q1−q2
2

√
Q+,+(θ)Q−,−(θ)

]
(5.225)

e−iπq1Q−+(θ + iπ/2) = c′0

[
1∓ ie−iπ

q1−q2
2

√
Q+,+(θ)Q−,−(θ)

]
. (5.226)

From the 2 TQ system (5.36) at the Bethe roots we get the same relation

c0(−q1, q2) = −c′0(−q1, q2) . (5.227)

We can also exchange the masses in (5.223) and (5.225) to obtain the relation

c0(−q1, q2)c0(−q2, q1) = −1 . (5.228)

In addition, considering real parameters, we have

c0 = −c∗0 . (5.229)

However, we cannot fix c0 completely in general, only when q1 = q2 = q we can say

c0(q1, q2 = q1) = ±i . (5.230)

We notice also that
Q+,− = Q−,+ q1 = q2 = q . (5.231)

We can generalize the Nf = 0 procedure by considering the Y system instead of the Q
system.

T+,+(θ)T−,−(θ)Y+,+(θ) = [eiπqQ+,−(θ − iπ/2) + e−iπqQ+,−(θ + iπ/2)][eiπqQ−,+(θ − iπ/2) + e−iπqQ−,+(θ + iπ/2)]

= Y+,−(θ − iπ/2) + Y−,+(θ + iπ/2) + 2 + 2Y+,+(θ) .
(5.232)

Notice that we can write shifted Y as

Y+,−(θ − iπ/2) = e2πiqQ+,−(θ − iπ/2)Q−,+(θ − iπ/2)

= −1∓ 2i
√
Q+,+(θ)Q−,−(θ) +Q+,+(θ)Q−,−(θ)

= −1∓ 2i
√
Y+,+(θ) + Y+,+(θ)

(5.233)

and
Y−,+(θ + iπ/2) = −1± 2i

√
Y+,+(θ) + Y+,+(θ) . (5.234)
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Inserting these shifted-Y expressions in what we could call the TY relation (5.232) we find

T+,+(θ)T−,−(θ)Y+,+(θ) = +4Y+,+(θ) , (5.235)

that is nothing but quantization relation on T (5.222).
Now, on plugging the T periodicity relations (5.38) T+,−(θ + iπ2 ) = T+,+(θ), T̃−,+(θ + iπ2 ) =

T̃+,+(θ) in the relations between T , T̃ and ν (5.151), (5.149) we get the simplification to only
one T

±
√

2 cos 2πν + 2 cos 2πq2 = T+,+(θ)

±
√

2 cos 2πν + 2 cos 2πq1 = T̃+,+(θ)
(5.236)

Now we notice from the ν = a instanton series terms (5.159) that

ν(q1, q2) = ν(−q1,−q2) (5.237)

so we can write the same relations for also opposite masses

±
√

2 cos 2πν + 2 cos 2πq2 = T−,−(θ)

±
√

2 cos 2πν + 2 cos 2πq1 = T̃−,−(θ) .
(5.238)

Now from T quantization for q1 = q2 = q (5.222)

T+,+(θ)T−,−(θ) = ±[2 cos 2πν + 2 cos 2πq] = 4 (5.239)

it follows a quantization condition on the combination of ν and q

[cos 2πν + cos 2πq]θ=θn = ±2 . (5.240)

In conclusion, from this derivation we do not expect that the alternative QNMs quantiza-
tion condition on the gauge a period found in [7] for Nf = 0 generalizes to other gauge
theories, both because the integrabilty T function is not quantized generally (for differ-
ent massesm1,m2 q1, q2) and because even when it is, it implies a quantization on only the
combination of a ν period and masses.
Now we can find also an integrability interpretation of the symmetry under Couch-

Torrence transformation found for this gravitational background in [96], thanks to iden-
tifications of certain scattering angles with the SW a period. It refers to the symmetry
that exchange infinity (y → +∞) and the (analogue) horizon (y → −∞), leaving the pho-
ton sphere (y = 0) fixed. In our ODE approach, it correspondence to the following wave
function properties

ψ+,0(y) = ψ−,0(−y) , (q1 = q2) (5.241)
which we notice holds only for equal masses. In this respect, under (5.241) we have the T
and T̃ identity

T̃+,+(θ) = T+,+(θ) (q1 = q2) , (5.242)
as can be understood by looking to their very definitions (5.32).
All the considerations of this subsection showhow integrability structures give valuable

insights in several gauge-gravity correspondence mathematical physics issues.
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5.6.2. Gravitational correspondence Nf = 1

Now, to get a gravitation counterpart of the Nf = 1 gauge theory, we can simply take the
limit from the Nf = 2 theory, as explained in section 5.5. In gravity variables such limit
corresponds to

Σ4 → 0 (5.243)
and in terms of charges can be realised for instance with Q4 → 0. Upon this limit, get the
following gravity-integrability parameters dictionary

ω 3
√

Σ3 = −ieθ ,
Σ1
3
√
Σ3

= 2q1e
−θ , p2 = (l +

1

2
)2 − ω2Σ2 (5.244)

The Nf = 1 Y system in gravitational variables reads

Y (θ + iπ/2,−iΣ1,−Σ2)Y (θ − iπ/2,−iΣ1,−Σ2)

= [1 + Y (θ + iπ/6,−ie−2πi/3Σ1,−e2πi/3Σ2)][1 + Y (θ − iπ/6,−ie2πi/3Σ1,−e−2πi/3Σ2)] ,
(5.245)

from which it appears convenient to define

Y0,+(θ) = Y (θ, iΣ1,−Σ2) Y1,+(θ) = Y (θ, ie2πi/3Σ1,−e−2πi/3Σ2) Y2,+(θ) = Y (θ, ie−2πi/3Σ1,−e2πi/3Σ2)

Y0,−(θ) = Y (θ,−iΣ1,−Σ2) Y1,−(θ) = Y (θ,−ie2πi/3Σ1,−e−2πi/3Σ2) Y2,−(θ) = Y (θ,−ie−2πi/3Σ1,−e2πi/3Σ2) .
(5.246)

The Y system can be inverted in a TBA made of 6 coupled equations as

ε0,±(θ) = (f0,± ± 4

3
πΣ1)e

θ − (ϕ− ∗ L1,±)(θ)− (ϕ+ ∗ L2,±)(θ) (5.247)

ε1,±(θ) = (f1,± ± 4

3
πe2πi/3Σ1)e

θ − (ϕ− ∗ L2,±)(θ)− (ϕ+ ∗ L0,±)(θ) (5.248)

ε2,±(θ) = (f2,± ± 4

3
πe−2πi/3Σ1)e

θ − (ϕ− ∗ L0,±)(θ)− (ϕ+ ∗ L1,±)(θ) (5.249)

with of course Lk,± = ln[1 + exp{−εk,±}] and the kernels

ϕ±(θ) =
1

2π cosh(θ ± iπ/6)
(5.250)

Under change to gravity variables q(θ) = 1
2

Σ1
3√Σ3

eθ and so the leading order is given by

fk,± = −e−iπ/6c0(∓ie
2πi(1+k)

3 Σ1,−e−
2πi(1+k)

3 Σ2)− eiπ/6c0(∓ie
2πi(−1+k)

3 Σ1,−e−
2πi(−1+k)

3 Σ2) (5.251)

c0(Σ1;Σ2,Σ3) =

∫ ∞

−∞

[√
e2y + e−y +

Σ1
3
√
Σ3

ey +
Σ2

3
√

Σ2
3

− ey − e−y/2 − 1

2

Σ1
3
√
Σ3

1

1 + e−y/2

]
dy .

(5.252)
We can compute this integral analytically as usual by expanding it in double binomial
series for small Σ1,Σ2

c0(Σ1;Σ2,Σ3) =
∞∑

n=0

∞∑

l=0

(
Σ1
3
√
Σ3

)n
(

Σ2

3
√

Σ2
3

)l(
1/2

l

)(
1/2− l

n

)
B(n, l) (5.253)
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{n, l,Σ1,Σ2,Σ3} TBA WKB
{0, 1, 0.1, 0.2, 1.} 0.996031 − 0.308972i 1.018635− 0.317055i
{0, 2, 0.1, 0.2, 1.} 1.6945 − 0.301444i 1.69772− 0.31706i
{0, 3, 0.1, 0.2, 1.} 2.39612 − 0.294969i 2.37681− 0.31706i
{0, 1, 0.2, 0.4, 1.} 0.943852 − 0.263758i 0.959219− 0.281322i
{0, 2, 0.2, 0.4, 1.} 1.59951 − 0.250208i 1.59870− 0.28132i
{0, 3, 0.2, 0.4, 1.} 2.25939 − 0.237859i 2.23818− 0.28132i
{0, 1, 0.4, 0.1, 1.} 0.966828 − 0.337457i 0.990202− 0.300483i
{0, 2, 0.4, 0.1, 1.} 1.64269 − 0.357236i 1.65034− 0.30048i
{0, 3, 0.4, 0.1, 1.} 2.32242 − 0.37745i 2.31047− 0.30048i

Table 5.11: QNMs for Nf = 1. Since the Leaver method is not applicable to this case, at
least in its original version, we were able to compare only with the WKB ap-
proximation, by which however the match is necessarily very rough.

B(n, l) = 1

3
B

(
1

6
(2l + 4n− 1),

1

3
(2l + n− 1)

)
(n, l) (= (1, 0)

B(1, 0) = 2 log(2)
3

(5.254)

As in the Liouville model, also in the Hairpin model the TBA does not contain explicitly p,
so that is has to be solved through the boundary condition

ε±(θ) 0 6pθ 0 6(l +
1

2
)θ1 + 2C(p) , θ → −∞ (5.255)

C(p) = log
(
2−

p√
2pΓ

(√
2p
)
Γ
(
2
√
2p
)

π

)
(5.256)

From the general analysis of [11] we can safely affirm that the QNMs are given by zeros
of Q+

Q+(θn) = 0 . (5.257)
or the equivalent condition on Y

Y0,+(θn − iπ/2) = −1. (5.258)

or ε
ε0,+(θn − iπ/2) = −iπ(2n′ + 1) n′ ∈ Z (5.259)

With the last relation we can actually compute the QNMs as usual16. We report their val-
ues obtained in table 5.6.2. Again, we find the Leaver method is not applicable to this
case, at least in its original version [31], so we are able to compare only with the WKB
approximation, which gives however necessarily a very rough match. Now from our

16We notice that to implement this condition through TBA it is NOT necessary to analytically continue (since
Y functions are analytic) beyond the poles of the kernels (5.250) at the points θ − θ′ = iπ3 by adding their
residue.
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gauge-integrability identification (5.137) we can prove a quantization on the (alternative)
gauge period a1

2π
√
2

! a1(θ − iπ/2, u,m) = −iπ(2n′ + 1) n′ ∈ Z (5.260)

and as discussed in the previous subsection we surely expect a similar quantization con-
dition on the other differently defined AD period actually used in the literature on the
new gauge-gravity correspondence following [6]. In particular, we can now compare di-
rectly with the work [79] in which eq. 8.12 (in the first arXiv version) shows that zeros of
Q correspond to quantization conditions on the gauge periods, thus again recovering the
characterization of QNMs of [6].
Applying the Nf = 1 TQ system (5.35) to also this background, we find the same limita-

tions as for Nf = 2 in finding quantization conditions for T and a as in (5.222) and (5.240).
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6. SU(2) Nf = (0, 2), 3 gauge theory, asymptotically flat
black holes and fuzzballs

6.1. Nf = (0, 2) ODE/IM
The quantum Seiberg-Witten curve for Nf = (0, 2) SU(2) gauge theory is, shifting y →
y − lnΛ2 in (2.49).

−!2 d2

dy2
ψ +

e2y(m1 −m2)2 + ey
(
Λ2

2 − 2h̄2 + 8m1m2 − 8u
)
+ 16u− 6Λ2

2 + 8Λ2
2e

−y

4 (ey − 2)2
ψ = 0 (6.1)

Defining the integrability variables as
Λ2

! =
√
2eθ

mi

! = qi
u

!2 = p2 (6.2)

we transform the equation as

− d2

dy2
ψ +

e2y(q1 − q2)2 + ey
(
2e2θ − 2 + 8q1q2 − 8p2

)
+ 16p2 − 12e2θ + 16e2θe−y

4 (ey − 2)2
ψ = 0 (6.3)

Equation (6.3) enjoys the symmetries:

Ω+ : y → y , θ →θ , q1 → −q1 , q2 → −q2
Ω− : y → y , θ →θ + iπ , q1 → q1 , q2 → q2 ,

Υ : y → y + 2πi , θ →θ , q1 → q1 , q2 → q2 ,

E : y → y , θ →θ , q1 → q2 , q2 → q1 .

(6.4)

The fundamental regular solutions are given by the asymptotics:

ψ−,0 0 e−θ/2+y/4 exp
{
−eθ−

y
2

}
y → −∞

ψ+,0 0
1√

q1 − q2
exp

{
−q1 − q2

2
y

}
y → +∞

ψ0,0 0
1√

2(q1 + q2)
(ey − 2)

1+q1+q2
2 y → ln 2 .

(6.5)

We can generate new solutions by action of the symmetries as

ψ−,k = Ωk
−ψ−,0 ,

ψ+,1 = Ω+ψ+,0

ψ0,1 = Ω+ψ0,0 ψ0,2 = ψ0,0

ψ̃+,1 = Eψ+,0

(6.6)

and have the invariance properties

Ω+ψ−,0 = ψ−,0 ,

Ωk
−ψ+,0 = ψ+,0 , Ωk

−ψ0,0 = ψ0,0 ,

Eψ−,0 = ψ−,0 , Eψ0,0 , EΩ+ψ+,0 = ψ+,0

(6.7)
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The solutions are normalized so that the wronskians among nearby k, k + 1 solutions
around the same singular point are

W [ψ−,k+1,ψ−,k] = −i

W [ψ+,1,ψ+,0] = i

W [ψ0,1,ψ0,0] = i

W [ψ̃+,1,ψ+,0] = −i .

(6.8)

We can define apparently 3 Q functions

Q(1)
+ = W [ψ+,0,ψ−,0] , Q(2)

+ = W [ψ−,0,ψ0,0] , Q(3)
+ = W [ψ+,0,ψ0,0] (6.9)

but that they are indeed different Q functions and not merely differently defined wron-
skians should be shown. Define also the shorthand notation

Q(1)
± (θ) = Q(1)(θ,±q1,±q2, p)

Q(2)
± (θ) = Q(2)(θ,±q1,±q2, p)

Q(3)
± (θ) = Q(3)(θ,±q1,±q2, p)

Q̃(3)
± (θ) = Q(3)(θ,±q2,±q1, p)

(6.10)

We have the connection relations between y → +∞ and y → −∞

ψ+,0 = −iQ(1)
+ (θ + iπ)ψ−,0 + iQ(1)

+ (θ)ψ−,1

ψ+,1 = −iQ(1)
− (θ + iπ)ψ−,0 + iQ(1)

− (θ)ψ−,1 .
(6.11)

As usual, taking the wronskian of the first with the second line we get the QQ system

1 = Q(1)
+ (θ)Q(1)

− (θ + iπ)−Q(1)
+ (θ + iπ)Q(1)

− (θ) (6.12)

or, shifting θ

Q(1)
+ (θ − iπ/2)Q(1)

− (θ + iπ/2)−Q(1)
− (θ − iπ/2)Q(1)

+ (θ + iπ/2) = 1 (6.13)

Similarly
ψ−,0 = −iQ(2)

− (θ)ψ0,0 + iQ(2)
+ (θ)ψ0,1

ψ−,1 = −iQ(2)
− (θ + iπ)ψ0,0 + iQ(2)

+ (θ + iπ)ψ0,1

(6.14)

Q(2)
− (θ − iπ/2)Q(2)

+ (θ + iπ/2)−Q(2)
+ (θ − iπ/2)Q(2)

− (θ + iπ/2) = 1 (6.15)
We notice the QQ relations for Q and Q̃ have the same form of those of the minimal mod-
els [2]. Also

ψ+,0 = −iQ(3)
− (θ)ψ0,0 + iQ(3)

+ (θ)ψ0,1

ψ̃+,1 = −iQ̃(3)
− (θ)ψ0,0 + iQ̃(3)

+ (θ)ψ0,1

(6.16)

from this we obtain the constraint

Q(3)
+ (θ)Q̃(3)

− (θ)− Q̃(3)
+ (θ)Q(3)

− (θ) = 1 (6.17)
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Let’s build then a Y system from the QQ system (6.12).

Q(1)
+ (θ)Q(1)

− (θ + iπ) = 1 +Q(1)
+ (θ + iπ)Q(1)

− (θ)

Q(1)
− (θ)Q(1)

+ (θ − iπ) = 1 +Q(1)
+ (θ)Q(1)

− (θ − iπ)

Q(1)
− (θ + iπ)Q(1)

+ (θ)Q(1)
− (θ)Q(1)

+ (θ − iπ) = [1 +Q(1)
+ (θ + iπ)Q(1)

− (θ)][1 +Q(1)
+ (θ)Q(1)

− (θ − iπ)]

(6.18)

Define a Y function as
Y (1)
+ (θ) = Q(1)

+ (θ − iπ/2)Q(1)
− (θ + iπ/2) (6.19)

We get a possible Y system as

Y (1)
+ (θ + iπ/2)Y (1)

+ (θ − iπ/2) = [1 + Y (1)
− (θ + iπ/2)][1 + Y (1)

− (θ − iπ/2)] (6.20)

6.2. Gravity dictionary of Nf = (2, 0) to D1D5 circular fuzzball
We report here the dictionary with gravity given in [9]. Le’ts consider a D1D5 circular
fuzzball with radius af and equal chargesQ1 = Q5 = L2. The smooth horizonless metric is
given by [97]

ds2 = H−1
f

[
(dv + ωψ dψ)

2 − (dt+ ωφ dφ)
2
]
+

+Hf

[
dφ2 sin2 θ(ρ2 + a2f ) +

Σf

ρ2 + a2f

[
dρ2 + (ρ2 + a2f )dθ

2
]
+ ρ2dψ2 cos2 θ

]
(6.21)

with

ωφ =
L2af sin2 θ

Σf
, ωψ =

L2af cos2 θ
Σf

, Hf = 1 +
L2

Σf
, Σf = ρ2 + a2f cos2 θ (6.22)

Setting
Φ = e−iωt+iPvv+imφφ+imψψR(ρ)S(χ) (6.23)

the wave equation can be separated into two ODEs, which can bematched to that of SU(2)
gauge theory with Nf = (0, 2) fundamentals.

d2

dρ2
R0(ρ) +

{(
a2f − ρ2

)2
+ 4

[
ρ2L2

φ −
(
a2f + ρ2

) (
L2
ψ + ρ2 (1 +K2 − (2L2 + ρ2) ω̃2)

)]

4ρ2
(
a2f + ρ2

)2

}
R0(ρ) = 0

(6.24)
d2

dχ2
S0(χ) +

{
(χ2 + 1)2 − 4

[
χ2m2

φ + (1− χ2)
(
m2
ψ − χ2

(
1 +K2 + ω̃2a2fχ

2
))]

4χ2 (1− χ2)2

}
S0(χ) = 0 (6.25)

where χ = cos θ and we defined

Lφ = af mφ − L2ω , Lψ = af mψ − L2Pv , ω̃2 = ω2 − P 2
v (6.26)
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The gauge/gravity dictionary for the radial equation reads

q

h̄2 =
a2f ω̃

2

4
,

u

h̄2 =
1 +K2 + ω̃2

(
a2f − 2L2

)

4
,

m1,2

h̄
=

Lφ ∓ Lψ
2af

; y =
ρ2

a2f
(6.27)

while for the angular equation one finds

qχ

h̄2 =
a2f ω̃

2

4
,

uχ

h̄2 =
1 +K2 + ω̃2a2f

4
,

mχ
1,2

h̄
=

mφ ±mψ

2
; yχ = −χ2 (6.28)

In the BH limit af = 0 the gauge coupling goes to zero while both masses diverge (qBH =
m1m2 q is finite), the resulting theory is Nf = (0, 0) with radial dictionary

qBH
h̄4 =

(
Lω̃

2

)4

,
u

h̄2 =
1 +K2 − 2ω̃2L2

4
; h̄2 yBH =

4ρ2

ω̃2L4
(6.29)

The Ω± symmetries are compatible with the dictionary of the D1D5 fuzzball’s angular
equation:

Λ2
2

!2 =
a2f ω̃

2

4
,

u

!2 =
1 +K2 + ω̃2a2f

4
,

m1,2

! =
mφ ±mψ

2
, (6.30)

whereK is the original PDE separation constant,mφ andmψ are the projections of the total
angular momentum along two orthogonal 2-planes. Indeed:

Ω+ : ω → ω , af →− af , mφ → −mφ , mψ → −mψ

Ω− : ω → −ω , af →af , mφ → mφ , mψ → mψ .
(6.31)

However, we expect that also for the radial problem where the symmetries do not di-
rectly apply, ODE/IM still can be applied, by changing to radial gravity parameters after
the ODE/IM derivation.
The authors [9] give dictionaries for both angular and radial problems of other geome-

tries, namely CCLP five-dimensional BHs, JMaRT and GMS geometries.

6.3. Nf = 3 ODE/IM
Now shift y → y − 1

2 lnΛ3.

− d2

dy2
ψ +

{
e2y (4(m1 −m2)2)

h̄2 +
ey
(
−8h̄2 + 32m1m2 + 4Λ3m3 − 32u

)

h̄2

+
(Λ2

3 − 24Λ3m3 + 64u)

h̄2 +
e−y (32Λ3m3 − 4Λ2

3)

h̄2 +
4Λ2

3e
−2y

h̄2

}
1

16 (ey − 2)2
ψ = 0

(6.32)

Change the variables as
Λ3

! = 4eθ
mi

! = qi
u

!2 = p2 (6.33)
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− d2

dy2
ψ +

{
1

4
e2y(q1 − q2)

2 + ey
(
−1

2
+ 2q1q2 + eθq3 − 2p2

)

+
(
e2θ − 6eθq3 + 4p2

)
+ e−y

(
8eθq3 − 4e2θ

)
+ 4e2θe−2y

}
1

(ey − 2)2
ψ = 0

(6.34)

We have the discrete symmetries

Ω− : θ → θ + iπ , y → y , q1 → q1 , q2 → q2 , q3 → −q3
Ω+ : θ → θ , y → y , q1 → −q1 , q2 → −q2 , q3 → q3
Υ : θ → θ , y → y + 2πi , q1 → q1 , q2 → q2 , q3 → q3
E : θ → θ , y → y , q1 → q2 , q2 → q1 , q3 → q3

(6.35)

ψ−,0 0 e−θ/2+y/2+yq3 exp
{
−eθ−y

}
-y → −∞

ψ+,0 0
1√

q1 − q2
exp

{
−q1 − q2

2
y

}
-y → +∞ , (-q1 > -q2)

ψ0,0 0
1√

2(q1 + q2)
(ey − 2)

1
2 (1+q1+q2) y → ln 2

(6.36)

We can generate new solutions by

ψ−,k = Ωk
−ψ−,0 ,

ψ+,1 = Ω+ψ+,0

ψ0,1 = Ω+ψ0,0 ψ0,2 = ψ0,0

ψ̃+,1 = Eψ+,0

(6.37)

and have the invariance properties

Ω+ψ−,0 = ψ−,0 ,

Ωk
−ψ+,0 = ψ+,0 , Ωk

−ψ0,0 = ψ0,0 ,

Eψ−,0 = ψ−,0 , Eψ0,0 = ψ0,0 , EΩ+ψ+,0 = ψ+,0

(6.38)

The wronskians are
W [ψ−,k+1,ψ−,k] = −2i

W [ψ+,1,ψ+,0] = i

W [ψ0,1,ψ0,0] = i

W [ψ̃+,1,ψ+,0] = −i

(6.39)

Define

Q(1)
+,+(θ) = W [ψ+,0,ψ−,0] Q(2)

+,+(θ) = W [ψ0,0,ψ−,0] Q(3)
+,+(θ) = W [ψ+,0,ψ0,0] (6.40)

with
Q(1)

±,±(θ) = Q(1)(θ,±q1,±q2,±q3) Q(1)
±,∓(θ) = Q(1)(θ,±q1,±q2,∓q3)

Q(2)
±,±(θ) = Q(2)(θ,±q1,±q2,±q3) Q(2)

±,∓(θ) = Q(2)(θ,±q1,±q2,∓q3)
(6.41)
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and
Q(3)

±,±(θ) = Q(3)(θ,±q1,±q2,±q3) Q(3)
±,∓(θ) = Q(3)(θ,±q1,±q2,∓q3)

Q̃(3)
±,±(θ) = Q(3)(θ,±q2,±q1,±q3) Q̃(3)

±,∓(θ) = Q(3)(θ,±q2,±q1,∓q3) .
(6.42)

We have the linear relations
ψ−,0 = iQ(1)

−,+(θ)ψ+,0 − iQ(1)
+,+(θ)ψ+,1

ψ−,1 = iQ(1)
−,−(θ + iπ)ψ+,0 − iQ(1)

+,−(θ + iπ)ψ+,1

(6.43)

and the QQ system is then (taking wronskians of both sides and shifting θ)

Q(1)
+,+(θ − iπ/2)Q(1)

−,−(θ + iπ/2)−Q(1)
−,+(θ − iπ/2)Q(1)

+,−(θ + iπ/2) = 2 . (6.44)

Similarly for Q(2)

ψ−,0 = iQ(2)
−,+(θ)ψ0,0 − iQ(2)

+,+(θ)ψ0,1

ψ−,1 = iQ(2)
−,−(θ + iπ)ψ0,0 − iQ(2)

+,−(θ + iπ)ψ0,1

(6.45)

Q(2)
+,+(θ − iπ/2)Q(2)

−,−(θ + iπ/2)−Q(2)
−,+(θ − iπ/2)Q(2)

+,−(θ + iπ/2) = 2 . (6.46)
Also for Q(3)

ψ+,0 = −iQ(3)
−,+(θ)ψ0,0 + iQ(3)

+,+(θ)ψ0,1

ψ̃+,1 = −iQ̃(3)
−,+(θ)ψ0,0 + iQ̃(3)

+,+(θ)ψ0,1

(6.47)

Q(3)
+,+(θ)Q̃

(3)
−,+(θ)− Q̃(3)

+,+(θ)Q
(3)
−,+(θ) = 1 . (6.48)

6.4. Gravity dictionaries for Nf = 3

6.4.1. Schwarshild black holes

The ODEwhich governs the perturbation of Schwarschild BHs is the Regge-Wheeler equa-
tion

f(r)
d

dr
f(r)

d

dr
φ(r) + [ω2 − V (r)]φ(r) = 0 (6.49)

with
V (r) = f(r)

[
l(l + 1)

r2
+ (1− s2)

2M

r3

]
l ∈ N l ≥ |s| (6.50)

Changing variable as
r =

4Me−y

√
Λ3

(6.51)

the Regge-Wheeler equation (6.49) becomes the SU(2) Nf = 3 quantum SW curve.
The dictionary of parameters to Schwarzschild asymptotically flat BHs is [6]

! = 1 Λ3 = −16iMω

u = −l(l + 1) + 8M2ω2 − 1

4
m1 = s− 2iMω , m2 = −s− 2iMω , m3 = −2iMω

(6.52)

The condition -m1 > -m2 means just -s > 0.
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6.4.2. Kerr black holes

The angular Teukolsy equation for Kerr BHs reads
[
d

dx
(1− x2)

d

dx
+ (cx)2 − 2csx+ sAlm + s− (m+ sx)2

1− x2

]
sSlm(x) = 0, (6.53)

where x = cos θ and s is the (minus of) spin of a perturbing field. Moreover

l = 0, 1, 2 · · · , with |m| ≤ l, (6.54)

where m ∈ Z for integer spins and m ∈ 1
2 + Z for half integer spins. In the black hole

perturbation, the parameter c is related to the angular momentum α and the frequency ω
by

c = αω.

The eigenfunction sSlm(x) is called the spin-weighted spheroidal harmonics in the litera-
ture. Its eigenvalue sAlm is determined by the regularity condition of sSlm(x) at x = ±1.
For general s, l, m and c, no closed form of sAlm is known so far. However, for c = 0 the
spheroidal harmonics sSlm(x) reduces to the spin-weighted spherical harmonics sYlm and
one has

sAlm(c = 0) = l(l + 1)− s(s+ 1). (6.55)
The radial Teukolsky equation for Kerr BHs is

∆(r)R′′(r) + (s+ 1)∆′(r)R′(r) + VT (r)R(r) = 0, (6.56)

where ∆(r) = r2 − 2Mr + α2. The potential is

VT (r) =
K(r)2 − 2is(r −M)K(r)

∆(r)
− sAlm + 4isωr + 2αmω − α2ω2, (6.57)

whereK(r) = (r2+α2)ω−αm. The radial differential equation (6.56) has (regular) singular
points at r = r± := M ±

√
M2 − α2 corresponding to the Cauchy and event horizons. In

addition, (6.56) is supplied by the following boundary conditions

R(r) ∼






(r+ − r−)−1−s+iω+iσ+eiωr+(r − r+)−s−iσ+ if r → r+ ,

A(ω)r−1−2s+iωeiωr if r → ∞ ,
(6.58)

where
σ+ =

ωr+ − α m
2M√

1− α2

M2

. (6.59)

Both the angular and the radial parts of the Teukolsky equation have the same singu-
larity structure as the confluent Heun equation.
For the angular part, we change the variable z = (1+x)/2, anddefine y(z) :=

√
1− x2

sSlm(x)/2.
Then we obtain

y′′(z) +Q(z)y(z) = 0, (6.60)
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where Q(z) takes the form

Q(z) =
1

z2(z − 1)2

4∑

i=0

Aiz
i . (6.61)

The coefficients in Q(z) are computed straightforwardly. Similarly, defining z = (r −
r−)/(r+ − r−) and y(z) := ∆(r)(s+1)/2R(r) for the radial part, we obtain the same form as
(6.60) and (6.61) with different coefficients.
For the angular part, we find [6]

Λ3 = 16c, u = −sA0m − s(s+ 1)− c2 − 1

4
,

m1 = −m, m2 = m3 = −s.
(6.62)

For the radial part of asymptotically flat Kerr BHs, we have [6]

Λ3 = −16iω
√
M2 − α2,

u = −sAlm − s(s+ 1) + (8M2 − α2)ω2 − 1

4
,

m1 = s−2iMω, m3 = −s−2iMω,

m2 =
i(−2M2ω − αm)√

M2 − α2
= −2iMω

M√
M2 − α2

− iαm
1√

M2 − α2
.

(6.63)

When α = 0, it reproduces the identification in the Schwarzschild case by exchanging
m2 ↔ m3. This relabelling comes from the fact that the Teukolsky equation at α = 0 does
not take the form of the Regge-Wheeler equation.
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7. SU(2) Nf = 4 or class S gauge theory, spin chains and
asymptotically AdS black holes

7.1. BTZ black hole
The rotating BTZ (Bañados-Teitelboim-Zanelli) is the black hole of standard 2+1 Einstein-
Maxwell theory with a negative cosmological constant Λ [98]. In particular, the rotating
BTZ BH has line element: [99]

ds2 = −Fdt2 +
dr2

F
+ r2

(
dx− r+r−

r2
dt
)2

(7.1)

with
F =

(r2 − r2+)(r
2 − r2−)

r2
. (7.2)

For simplicity we have set the AdS radius to L = 1. For the BTZ BH x is angular compact
coordinate such that x 0 x+ 2π. However, following [99] we will consider it as a noncom-
pact coordinate. The BTZ BH temperature T , mass M , angular momentum J and angular
momentum potential Ω are given by

2πT =
r2+ − r2−

r+
, M = r2+ + r2− ,

J = 2r+r− , Ω =
r−
r+

.
(7.3)

(We use the standard convention 8G = 1). A two-dimensional CFT has two independent
modes, left-movers and right-movers, and one can introduce temperatures for each sec-
tors:

2πTL =
2πT

1 + Ω
= r+ − r−

2πTR =
2πT

1− Ω
= r+ + r−

2

T
=

1

TL
+

1

TR
,

Ω =
TR − TL

TR + TL
.

(7.4)

In the standard convention, TL → 0 corresponds to the extreme limit in the BTZ BH.
The authors [99] consider a scalar field perturbation of the form φ(r)e−iωt+iqx. The per-

turbation behaves as
φ ∼ A

(
1

r

)∆−

+B

(
1

r

)∆+

(r → ∞) (7.5)

with
∆± = 1± ν ν =

√
1 +m2 (7.6)

wherem is themass of the scalar field φ. According to the AdS/CFT dictionary the retarded
Green function is given by

GR = −(2ν)
B

A
. (7.7)
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7.2. Naive ODE/IM construction
The equation for a minimally coupled scalar field φ in the background is

[
(1− z)∂z((1− z)∂z) +

(ω − Ωq)2 − (Ωω − q)2(1− z)

(4πT )2z
− (ν2 − 1)(1− z)

4z2

]
φ = 0 (7.8)

where we introduced the variable

z =
r2+ − r2−
r2 − r2−

. (7.9)

for which asymptotic infinity is located at z = 0 and the outer horizon is located at z = 1.
Asymptotically for z → 0 (spacetime infinity)

φ ∼ z
∆±
2 . (7.10)

The solution with ∆+ = 1 + ν is regular.

φ−,0 ∼ z
∆+
2 (7.11)

Near the outer horizon for z → 1

φ ∼ (1− z)±iλ , λ =
ω − Ωq

4πT
. (7.12)

The solution with +iλ is regular, since $ω < 0.

φ1,0 ∼ (1− z)+iλ (7.13)

Near z → ∞
φ ∼ z±iµ µ =

q − ωΩ

4πT
(7.14)

the regular solution is
φ+,0 ∼ ziµ (7.15)

The ODE (7.8) has symmetries

Ω− : z → z , ω → ω , Ω → Ω , q → q , T → T , ν → −ν , λ→ λ , µ → µ

Ω1 : z → z , ω → eiπω , Ω → e−iπΩ , q → q , T → T , ν → ν λ→ −λ , µ → µ

Ω+ : z → z , ω → eiπω , Ω → e−iπΩ , q → q , T → −T , ν → ν λ→ λ , µ → −µ
(7.16)

We have
Ω−φ−,0 = φ−,1 ∼ z

∆−
2

Ω−φ1,0 = φ1,0

Ω−φ+,0 = φ+,0

(7.17)

Ω1φ−,0 = φ−,0

Ω1φ1,0 = φ1,1 ∼ (1− z)−iλ

Ω1φ+,0 = φ+,0

(7.18)
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Ω+φ−,0 = φ−,0

Ω+φ1,0 = φ1,0

Ω+φ+,0 = φ+,1 ∼ z−iµ

(7.19)

By transforming the dependent variable as ψ =
√
z − 1φ we get the canonical equation

∂2zψ(z) +
4π2m2T 2(z − 1) + z [q2 (Ω2 + z − 1)− 2qωΩz + 4π2T 2z + ω2 + ω2Ω2(z − 1)]

16π2T 2(z − 1)2z2
ψ(z) = 0

(7.20)
Define the normalized solutions

ψ−,0 0
1

4
√

(1−∆−)(1−∆+)

√
z − 1z

∆+
2 ψ−,1 0

1
4
√
(1−∆−)(1−∆+)

√
z − 1z

∆−
2 z → 0

ψ1,0 0
1√
2iλ

√
z − 1(1− z)iλ ψ1,1 0

1√
−2iλ

√
z − 1(1− z)−iλ z → 1

ψ+,0 0
1√
2iµ

√
z − 1ziµ ψ+,1 0

1√
−2iµ

√
z − 1z−iµ z → ∞

(7.21)
W [ψ−,1,ψ−,0] = i

W [ψ1,1,ψ1,0] = i
λ√
λ2

= i (conventionally)

W [ψ+,1,ψ+,0] = i
µ√
µ2

= −i (conventionally)

(7.22)

We can define the wronskians of the regular solutions as

Q−,1(ω, q,Ω, T, ν) = W [ψ−,0,ψ1,0]

Q−,+(ω, q,Ω, T, ν) = W [ψ−,0,ψ+,0]

Q1,+(ω, q,Ω, T, ν) = W [ψ1,0,ψ+,0]

(7.23)

By expanding ψ−,0 and ψ−,1 in terms of ψ1,0 and ψ1,1

ψ−,0 = iQ−,1(e
iπω, eiπΩ, T, ν)ψ1,0 − iQ−,1(ω,Ω, T, ν)ψ1,1

ψ−,1 = iQ−,1(e
iπω, eiπΩ, T,−ν)ψ1,0 − iQ−,1(ω,Ω, T,−ν)ψ1,1

(7.24)

and taking wronskians we obtain the QQ relation with the Q−,1 (by also suitably normal-
izing the wave functions):

Q−,1(ω,Ω, T, ν)Q−,1(e
πiω, eiπΩ, T,−ν) = 1 +Q−,1(e

iπω, eiπΩ, T, ν)Q−,1(ω,Ω, T,−ν) (7.25)

By expanding ψ−,0 and ψ−,1 in terms of ψ+,0 and ψ+,1

ψ−,0 = −iQ−,+(e
iπω, eiπΩ,−T, ν)ψ+,0 + iQ−,+(ω,Ω, T, ν)ψ+,1

ψ−,1 = −iQ−,+(e
iπω, eiπΩ,−T,−ν)ψ+,0 + iQ−,+(ω,Ω, T,−ν)ψ+,1

(7.26)
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and taking wronskians we obtain the QQ relation with the Q−,+ (by also suitably normal-
izing the wave functions):

Q−,+(ω,Ω, T, ν)Q−,+(e
πiω, eiπΩ,−T,−ν) = 1 +Q−,+(e

iπω, eiπΩ,−T, ν)Q−,+(ω,Ω, T,−ν) (7.27)

By expanding ψ1,0 and ψ1,1 in terms of ψ+,0 and ψ+,1

ψ1,0 = −iQ1,+(e
iπω, eiπΩ,−T, ν)ψ+,0 + iQ1,+(ω,Ω, T, ν)ψ+,1

ψ1,1 = −iQ1,+(e
2πiω, e2πiΩ,−T, ν)ψ+,0 + iQ1,+(e

iπω, eiπΩ, T, ν)ψ+,1

(7.28)

and taking wronskians we obtain the QQ relation with the Q1,+ (by also suitably normal-
izing the wave functions):

Q1,+(ω,Ω, T, ν)Q1,+(e
2πiω, e2πiΩ,−T, ν) = 1 +Q1,+(e

iπω, eiπΩ,−T, ν)Q1,+(e
iπω, eiπΩ, T, ν) (7.29)

7.3. Exact expressions for Q functions
For this simple theorywe can actually get exact expressions for theQ functions as the ODE
in other variables reduces to a hypergeometric ODE, for which connection coefficients are
known to be rational combinations of Euler Gamma functions.
To see that, set the ansatz

φ = z(1+ν)/2(1− z)iλf(z) . (7.30)
Then the field equation becomes the hypergeometric differential equation

z(1− z)∂2zf + [c− (1 + a+ b)z]∂zf − abf = 0 (7.31)

with
c(m) = 1 + ν = 1 +

√
1 +m2

a(ω, q,Ω, T,m) =
c(m)

2
+

i(1 + Ω)

4πT
(ω − q) =

∆+

2
+ i

ω − q

4πTL

b(ω, q,Ω, T,m) =
c(m)

2
+

i(1− Ω)

4πT
(ω + q) =

∆−

2
+ i

ω + q

4πTR

(7.32)

with a+ b = c+ 2iλ.
We consider now the standard Kummer solutions wn. Around z = 0we have the regular

and irregular fundamental solutions given respectively by

w1(z) = 2F1(a, b, c; z) ,

w2(z) = z1−c
2F1(1 + a− c, 1 + b− c, 2− c; z) .

(7.33)

Around z = 1we have the regular and irregular fundamental solutions given respectively
by

w3(z) = 2F1(a, b, 1 + a+ b− c; 1− z) ,

w4(z) = (1− z)c−a−b
2F1(c− a, c− b, c− a− b+ 1; 1− z) .

(7.34)

We assume
-(iq) < 0 (7.35)
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Around z = ∞wehave the regular and irregular fundamental solutions given respectively
by

w5(z) = eaπiz−a
2F1(a, 1 + a− c, 1 + a− b;

1

z
) ,

w6(z) = ebπiz−b
2F1(b, 1 + b− c, 1 + b− a;

1

z
) .

(7.36)

It is easy to see that the normalized solutions we used for the ODE/IM construction of the
previous section are related to the Kummer solutions w1, w3, w5 as follows

ψ−,0 =
1

4
√

(1−∆−)(1−∆+)

√
z − 1z(1+ν)/2(1− z)iλw1(z) =

1
4
√

(1−∆−)(1−∆+)
p(z)w1(z)

ψ1,0 =
1√
2iλ

√
z − 1z(1+ν)/2(1− z)iλw3(z) =

1√
2iλ

p(z)w3(z)

ψ+,0 =
1√
2iµ

e−iπ 1+ν
2 − q−Ωω

4T

√
z − 1z(1+ν)/2(1− z)iλw5(z) =

1√
2iµ

e−iπ 1+ν
2 − q−Ωω

4T p(z)w5(z)

(7.37)
with

p(z) = z(1+ν)/2(1− z)iλ+1/2 =

√
1− c

W [w1, w2]
=

√
a+ b− c

W [w3, w4]
(7.38)

The Q functions are then defined as

Q−,1(ω, q,Ω, T,m) = W [ψ−,0,ψ1,0] =
1√

2iλ 4
√

(1−∆−)(1−∆+)
p2(z)W [w1, w3](z)

Q−,+(ω, q,Ω, T,m) = W [ψ−,0,ψ+,0] =
e−iπ 1+ν

2 − q−Ωω
4T

√
2iµ 4
√

(1−∆−)(1−∆+)
p2(z)W [w1, w5](z)

Q1,+(ω, q,Ω, T,m) = W [ψ1,0,ψ+,0] =
e−iπ 1+ν

2 − q−Ωω
4T

√
2iµ

√
2iλ

p2(z)W [w3, w5](z)

(7.39)

By Kummer’s connection relations we can eventually get the following exact expression
for the Baxter’s Q functions:

Q−,1(ω, q,Ω, T,m) =
1√

2iλ 4
√

(1−∆−)(1−∆+)

Γ(c− 1)Γ(a+ b− c+ 1)

Γ(a)Γ(b)
(1− c)

Q−,+(ω, q,Ω, T,m) = − e−iπ 1+ν
2 − q−Ωω

4T

√
2iµ 4
√

(1−∆−)(1−∆+)
e(c−1)iπΓ(c− 1)Γ(a− b+ 1)

Γ(a)Γ(c− b)
(1− c)

Q1,+(ω, q,Ω, T,m) =
e−iπ 1+ν

2 − q−Ωω
4T

√
2iµ

√
2iλ

e(c−b)πiΓ(a− b+ 1)Γ(a+ b− c)

Γ(a)Γ(a− c+ 1)
(a+ b− c)

(7.40)

7.4. Poles skipping
The so called ”poles skipping” phenomenon can be summarized as follows [100, 101, 102].
At certain imaginary values of the frequency and momentum there is no unique ingoing

126



solution at the BH horizon. As a consequence, near these points in Fourier space the holo-
graphic retarded Green’s function is no longer uniquely defined. Its values depend on
the direction in which we approach the special point. Such behaviour has been dubbed
”pole-skipping” as a line of poles intersects a line of zeros for the Green’s function.
The incoming wave is written as

w3 ∝ w1 +
Γ(c− 1)Γ(a− c+ 1)Γ(b− c+ 1)

Γ(−c+ 1)Γ(a)Γ(b)
w2 = w1 +

Q−,1

Q1,+

e(b−c)πiΓ(b− c+ 1)

Γ(a)

Γ(a− b+ 1)

Γ(c)
w2

= w1 +
Γ(ν)Γ(a− ν)Γ(b− ν)

Γ(−ν)Γ(a)Γ(b) w2

(7.41)
The asymptotic behaviour at infinity is

φ ∼ A

(
z

r2+ − r2−

)∆−
2

+B

(
z

r2+ − r2−

)∆+
2

, z → 0 (7.42)

The Green’s function is then given by

GR = −2ν(4π2TLTR)
ν Γ(ν)Γ(a− ν)Γ(b− ν)

Γ(−ν)Γ(a)Γ(b) (7.43)

We have the following poles and zeroes for the Green function. Left poles:

a− ν = a− c+ 1 =
∆−

2
+ i

ω − q

4πTL
= −np

L (7.44)

ωL = q − i(2πTL)(∆−2n
p
L) (7.45)

Right poles:
b− ν = b− c+ 1 =

∆−

2
+ i

ω + q

4πTR
= −np

R (7.46)

ωR = −q − i(2πTR)(∆−2n
p
R) (7.47)

Left zeros:
a =

∆+

2
+ i

ω − q

4πTL
= −nz

L (7.48)

ωL = q − i(2πTL)(∆+ + 2nz
L) (7.49)

Right zeros:
b =

∆+

2
+ i

ω + q

4πTR
= −nz

R (7.50)

ωR = −q − i(2πTR)(∆+ + 2nz
R) (7.51)

Γ(a) and Γ(a − ν) do not diverge simultaneously. Similarly also Γ(b) and Γ(b − ν) do not
diverge simultaneously. Therefore poles skipping is given by combination of left poles
and right zeros

iω = 2πTR

(
∆+

2
+ nz

R

)
+ 2πTL

(
∆−

2
+ np

L

)

iq = 2πTR

(
∆+

2
+ nz

R

)
− 2πTL

(
∆−

2
+ np

L

) (7.52)
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or right poles and left zeros

iω = 2πTR

(
∆−

2
+ np

R

)
+ 2πTL

(
∆+

2
+ nz

L

)

iq = 2πTR

(
∆−

2
+ np

R

)
− 2πTL

(
∆+

2
+ nz

L

) (7.53)

This is exactly the result of [99], except that poles and zeros are exchanged.
Through the exact expressions for the Q functions, we can give an interpretation of

poles skipping in integrability as follows:

Γ(b) ∼ ∞ , and Γ(a− c+ 1) ∼ ∞ (7.54)

mean
Q−,1 = 0 , and Q1,+ = 0 . (7.55)

Alternatively:

Γ(a) ∼ ∞ , and Γ(b− c+ 1) ∼ ∞ , (Γ(c− b) = 0) (7.56)

mean again
Q−,1 = 0 , and Q1,+ = 0 (7.57)

We see then that poles skipping in integrability corresponds to simultaneous zeros for two
Q functions. This is to compare with the general characterization of quasinormal modes
as zeros of a single Q function.
We seek now an alternative characterization of poles skipping which might be used

even when there is no exact analytic expression for the Q function. In particular in that
case poles skipping is expected to corresponds to simultaneous zeros of two Q functions,
but with different arguments. We check now the consistency of such characterizations.
The action of the symmetries on the hypergeometric parameters is

Ω+a = b , Ω+b = a , Ω+c = c

Ω−a = a− c+ 1 , Ω−b = b− c+ 1 , Ω−c = 2− c

Ω1a = c− b , Ω1b = c− a , Ω1c = c

(7.58)

We notice that the poles skipping condition is invariant under the action of the sym-
metries Ω+ and Ω−, but the action of the symmetry Ω1 makes poles of Gamma functions
become zero.
We have also

w3 ∼ Ω−Q−,1w1 +Q−,1w2 (7.59)
and we find indeed

Ω−Q−1 ∝ −Γ(2− c)Γ(3− 3c+ a+ b)

Γ(a+ 1− c)Γ(b+ 1− c)
∼ 1

Γ(a+ 1− c)Γ(b+ 1− c)
(7.60)
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from which we notice that Ω−Q−1 has the same poles-skipping zeros as Q1,+ (poles of
Γ(a+1−c)). We notice also that simultaneous zeros ofQ−,1 andΩ−Q−,1 seemat first sight in-
compatible with the QQ system. However, in the QQ system we have actually also Ω1Q−,1

which multiplies Ω−Q−1 and cancels its poles-skipping zeros

Ω1Q−,1 ∝ −Γ(c)Γ(c− a− b+ 1)

Γ(c− a)Γ(c− b)
∼ Γ(a+ 1− c)Γ(b+ 1− c) (7.61)

while
Ω1Ω−Q−,1 ∝ −Γ(2− c)Γ(3− c− a− b)

Γ(1− b)Γ(1− a)
∼ 1

Q−,1
(7.62)

7.5. Relation to gauge theory
We can relate (7.20) to Gaiotto’s opers for the three-punctured sphere [70]

−ε2∂2zψ +

[
−c20 − c21 + c2∞ + ε2/4

(z − 1)z
+

c20 − ε2/4

z2
+

c21 − ε2/4

(z − 1)2

]
ψ = 0 (7.63)

by
c0 = ±1

2

√
m2 + 1ε, c1 = ± iε(ω − qΩ)

4πT
, c∞ = ± iε(q − ωΩ)

4πT
(7.64)

However, such gauge theory is a non-Lagrangian...
By the change of variable z → 1/x we get the equation

ε2
d2

dx2
ψ(x) +

−4c20(x− 1)x− 4c21x− 4c2∞(x− 1) + x2ε2 − xε2 + ε2

4(x− 1)2x2
ψ(x) = 0 (7.65)

and make contact with the SW curve in the conventions of [103]

y2SW (x) = − m2
1

(x− 1)x2
+

m2
2

(x− 1)2x
+

m2
3

(x− 1)x
(7.66)

with
m1 = ±ic∞ m2 = ±c1 m3 = ±c0 (7.67)

The gauge periods are defined as integrals of the SW differential

λ =
√

y2SW (7.68)

among the branch points given by the roots

x2(x− 1)2y2SW (x) = 0 (7.69)

which are∞ and

x1 =
−
√

(−m2
1 +m2

2 −m2
3)

2 − 4m2
1m

2
3 +m2

1 −m2
2 +m2

3

2m2
3

x2 =

√
(−m2

1 +m2
2 −m2

3)
2 − 4m2

1m
2
3 +m2

1 −m2
2 +m2

3

2m2
3

(7.70)
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so we can write
λ = m3

√
(x− x1)(x− x2)

x(x− 1)
(7.71)

For example
∫ x2

x1

dxλ = πm3

(
−
√
x1 − 1

√
1− x2 − i

√
x1
√
x2 +

√
x2 − x1√
x1 − x2

)
(7.72)

Eventually, one expects to be able relate the SW periods of this differential to the leading
order of the Q function

lnQ(0)
−+ =

∫ ∞

0

[√
(x− x1)(x− x2)

x(x− 1)
−

√
x1x2

x2
−
√
(1− x1)(1− x2)

x− 1

]
dx (7.73)

We not yet completed developing the details, though.

7.6. XXZ spin chain at the supersymmetric point and poles skipping
Following [44]we can construct amore properODE/IM construction bymapping the equa-
tion with only regular singularities to one with an irregular singularity, so that there is
indeed the Stokes phenomenon and we also can define a T function. For that ODE the
authors have a proper QQ and TQ system, from which they actually derive the ODE:

∂2

∂w′2
ψ±(w

′, w̄′|λ) + λ2ψ±(w
′, w̄′|λ) = U±(w

′; w̄′)ψ±(w
′, w̄′|λ) (7.74)

Then they transform its energy parameter λ into the independent variable u of an another
ODE with only regular singularities in that variable.

λ = e
3iu
2 (7.75)

They end upwith the followingODEs (one for each independent solution ψ± of the original
ODE)

d2f+
du2

− 6n cot(3u+ 2φ)
df+
du

+ (1− 9n2)f+ = 0

d2f−
du2

− 6n cot(3u+ 2φ)
df−
du

+ (4− 9n2)f− = 0

(7.76)

where φ = argw′ = − arg w̄′. If n is an integer and φ = 0, these equations coincide with
those found by Stroganov for the XXZ spin chain with an odd 2n + 1 number of sites at
the supersymmetric point (anisotropy ∆ = −1

2) [104]. Then by the procedure of [44] they
can associate with their solutions f± some proper Q±(u) = Q±(λ) functions for the ground
state of such spin chain.
Now, we can transform easily ODEs (7.76) to the hypergeometric equation. Set

u = − i

6
ln(−z) (7.77)
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k a b c a− c+ 1 b− c+ 1
1 2

3 + n 1 + n 2 + 2n −1
3 − n −n

1 −1
3 − n −n −2n 2

3 + n 1 + n
1 −n 1

3 − n −2n 1 + n 4
3 + n

1 1 + n 4
3 + n 2 + 2n −n 1

3 − n
1 4

3 + n 1 + n 2 + 2n 1
3 − n −n

1 1
3 − n −n −2n 4

3 + n 1 + n
1 −n −1

3 − n −2n 1 + n 2
3 + n

1 1 + n 2
3 + n 2 + 2n −n −1

3 − n
k a b c a− c+ 1 b− c+ 1
4 1

3 + n 1 + n 2 + 2n −2
3 − n −n

4 −2
3 − n −n −2n 1

3 + n 1 + n
4 −n 2

3 − n −2n 1 + n 5
3 + n

4 1 + n 5
3 + n 2 + 2n −n 2

3 − n
4 5

3 + n 1 + n 2 + 2n 2
3 − n −n

4 2
3 − n −n −2n 5

3 + n 1 + n
4 −n −2

3 − n −2n 1 + n 1
3 + n

4 1 + n 1
3 + n 2 + 2n −n −2

3 − n

Table 7.1: Values of the hypergeometric parameters for the XXZ spin chain with 2n + 1
number of sites at the supersymmetric point. We notice that for k = 1, 4 there is
no poles skipping.
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and k = 1, 4. We get

d2

dz2
g − kz2 + 2kz + k − 36n2z − 36nz − 9z2 − 18z − 9

36z2(z + 1)2
g = 0 (7.78)

On the other hand, we can transform the hypergeometric equation in standard form in
normal form

d2

dz2
g +

2c[z(a+ b− 1) + 1] + z [−z(a− b)2 − 4ab+ z]− c2

4(z − 1)2z2
g = 0 (7.79)

Sending also z → z + 1 we get the values of hypergeometric parameters in table 7.1. We
notice that we never get poles skipping points, as right zeros b = −nz

R and left poles a −
c + 1 = −np

L or left zeros a = −nz
L and right poles b − c + 1 = −np

R never simultaneously
appear.17

7.7. SU(2) Nf = 4 gauge theory and its gravity counterpart
The quantum SW curve for SU(2) Nf = 4 is

− !2 d2

dy2
ψ +

{
− exp(2y)

(
q
(
q
(
m2

1 +m2
2 +m3

3 +m2
4

)
− 24(m1m2 +m3m4)

)
+ 16(q + 4)u

)
(7.80)

+ 4
√
q exp(3y)

(
m2

1q −m1m2(q + 8) +m2
2q −m3m4q + 8u

)
(7.81)

+ 4
√
q exp(y)

(
−m1m2q +m2

3q −m3m4(q + 8) +m2
4q + 8u

)
− (7.82)

− 4q exp(4y)(m1 −m2)
2 − 4q(m3 −m4)

2

}
exp(−2y)

4
(
−4

√
q cosh(y) + q + 4

)2ψ+ (7.83)

+
h̄2
(√

q exp(−y)
(
q exp(2y)− 8

√
q exp(y) + 4 exp(2y) + q + 4

))

2
(
−4

√
q cosh(y) + q + 4

)2 ψ = 0 (7.84)

Viceversa, by letting q → 4q and y → ln
(

z√
q

)
equation (7.80) becomes a Heun equation in

canonical form

− !2 d2

dz2
φ+

1

4z2(z − 1)2(z − q)2

[
+z4

(
m2

1 − 2m1m2 +m2
2 − h̄2

)
+m2

3q
2 − 2m3m4q

2 +m2
4q

2 − q2h̄2

(7.85)
+ z2

(
m2

1q
2 − 6m1m2q +m2

2q
2 +m3

3q
2 − 6m3m4q +m2

4q
2 +

(
−q2 − 1

)
h̄2 + 4qu+ 4u

)
(7.86)

+ z3
(
−2m2

1q + 2m1m2q + 4m1m2 − 2m2
2q + 2m3m4q + (q + 1)h̄2 − 4u

)
(7.87)

+ z
(
2m1m2q

2 − 2m2
3q

2 + 2m3m4q
2 + 4m3m4q − 2m2

4q
2 − 4qu+ (q + 1)qh̄2

)]
φ = 0 (7.88)

17This at least holds for k = 1, 4, which is Stroganov’s case, but if k could be k = 9 there would be some poles
skipping for n = 0: a± n, b− c+ 1 = ∓n or b± n, a− c+ 1 = ∓n.
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7.7.1. Naive ODE/IM

We have the symmetries

Ω− : τ = τ + 1 y → y − iπ m1 → m1 m2 → m2 m3 → −m3 m4 → −m4

Ω+ : τ = τ + 1 y → y + iπ m1 → −m1 m2 → −m2 m3 → m3 m4 → m4
(7.89)

The asymptotic solutions at y → ∓∞ are

ψ−,0 ∼
!θ(m3 −m4)√

m3 −m4
exp

{
m3 −m4

2! (y − iπτ)

}{
1 + ey

(8m2
3 + 8m2

4 − 2m3m4q + 2m1m2q − 16u− (4 + q)!2)
(8
√
q!(m3 −m4 + !))

}

(7.90)

+
!θ(m4 −m3)√

m4 −m3
exp

{
m4 −m3

2! (y − iπτ)

}{
1 + ey

(8m2
3 + 8m2

4 − 2m3m4q + 2m1m2q − 16u− (4 + q)!2)
(8
√
q!(m4 −m3 + !))

}

(7.91)
-y → −∞ (7.92)

ψ+,0 ∼
!θ(m1 −m2)√

m1 −m2
exp

{
−m1 −m2

2! (y + iπτ)

}{
1 + e−y (8m

2
1 + 8m2

2 − 2m1m2q + 2m3m4q − 16u− (4 + q)!2)
(8
√
q!(m1 −m2 + !))

}

(7.93)

+
!θ(m2 −m1)√

m2 −m1
exp

{
−m2 −m1

2! (y + iπτ)

}{
1 + e−y (8m

2
1 + 8m2

2 − 2m1m2q + 2m3m4q − 16u− (4 + q)!2)
(8
√
q!(m2 −m1 + !))

}

(7.94)
-y → +∞ (7.95)

The symmetries act on them as

ψ−,1 = Ω−ψ−,0 , Ω+ψ−,0 = ψ−,0

ψ+,1 = Ω+ψ+,0 , Ω−ψ+,0 = ψ+,0
(7.96)

The solution are normalized so that

W [ψ−,1,ψ−,0] = −i (7.97)

W [ψ+,1,ψ+,0] = i (7.98)
We can try to define a kind of Q function as usual as

Q(τ) = W [ψ+,0,ψ−,0] (7.99)

We notice there is no Stokes behaviour with an equation with only regular singularities.
That implies that the kind of Q function obtained through this ”naive” ODE/IM has τ in
the parameter range -(τ ′ − τ) ≤ 2. Besides we cannot define a T function. We have the
connection relations

ψ−,0 = −iQ(τ + 1,−m1,−m2,m3,m4)ψ+,0 + iQ4(τ,m1,m2,m3,m4)ψ+,1

ψ−,1 = −iQ(τ + 2,−m1,−m2,−m3,−m4)ψ+,0 + iQ(τ + 1,m1,m2,−m3,−m4)ψ+,1
(7.100)
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taking their wronskian we get s kind of QQ system

Q(τ,m1,m2,m3,m4)Q(τ + 2,−m1,−m2,−m3,−m4)

−Q(τ + 1,−m1,−m2,m3,m4)Q(τ + 1,m1,m2,−m3,−m4) = +1
(7.101)

One could try to define a Y function as

Y (τ,m1,m2,m3,m4) = Q(τ,−m1,−m2,−m3,−m4)Q(τ,m1,m2,m3,m4) (7.102)

so the Y system would be

[1 + Y (τ + 1,−m1,−m2,m3,m4)][1 + Y (τ + 1,m1,m2,−m3,−m4)]

= Y (τ,m1,m2,m3,m4)Y (τ + 2,−m1,−m2,−m3,−m4)
(7.103)

The Q function can be concretely computed as the limit

Q(τ,m1,m2,m3,m4) = −i lim
y→+∞

ψ−,0

ψ+,1
(7.104)

7.7.2. Gravity realization

The Regge-Wheeler equation for the gravitational perturbation (with spin s) of the four
dimensional asymptotically AdS4 (with cosmological constant Λ < 0) Schwarschild black
holes is [

f(r)
d

dr
f(r)

d

dr
+ ω2 − V (r)

]
φ(r) = 0 (7.105)

with
f(r) = 1− 2M

r
− Λ

3
r2 (7.106)

and
V (r) = f(r)

[
l(l + 1)

r2
+ (1− s2)

(
2M

r3
− 4− s2

6
Λ

)]
. (7.107)

After the redefinition φ(r) = Φ(r)/
√
f(r) the ODE becomes in normal form as

Φ′′(r) + U(r)Φ(r) = 0 , U(r) =
ω2 − V (r)

f(r)2
+

f ′(r)2

4f(r)2
− f ′′(r)

2f(r)
(7.108)

which the potential which explicitly reads

U(r) =
1

2r2 (6M + Λr3 − 3r)2

[
r6
(
Λ2
(
−s2

) (
s2 − 5

)
− 4Λ2

)
+ r4

(
18Λ+ 6Λl2 + 6Λl + 3Λs2

(
s2 − 5

)
+ 18ω2

)

(7.109)

− 6ΛMr3
(
s4 − 3s2 + 8

)
+
(
−18l2 − 18l

)
r2 + 36Mr

(
l2 + l + s2

)
+M2

(
18− 72s2

)]
(7.110)

We want to map this equation into a Heun equation, which we can relate to the gauge
theory one (7.85). We start by changing variable as v = 1/r and we get

d2

dv2
Φ̂+ Q̂(v)Φ̂ = 0 (7.111)

134



Q̂(v) =
1

2v2 (Λ+ 6Mv3 − 3v2)2

[
18M2

(
1− 4s2

)
v6 + v5

(
36l2M + 36lM + 36Ms2

)
+
(
−18l2 − 18l

)
v4

(7.112)

− 6ΛM
(
s4 − 3s2 + 8

)
v3 + v2

(
6Λl2 + 6Λl + 3Λ

(
s4 − 5s2 + 6

)
+ 18ω2

)
+ Λ2

(
−
(
s4 − 5s2 + 4

))]

(7.113)

We notice that for s = 1, 2 the constant term in the denominator is zero and the v2 in the
denominator simplifies, so for s = 1, 2 v = 0, that is r = ∞ is not a singular point and the
equation has only 4 regular singularities, so it is a indeed a Heun equation like (7.85). For
s = 0 instead it has 5 regular singularities.
The 4 regular singularities for s = 1, 2 are

v∞ = ∞

v0 =

3

√
−972ΛM2 +

√
(54− 972ΛM2)2 − 2916 + 54

18 3
√
2M

+
1

22/3M
3

√
−972ΛM2 +

√
(54− 972ΛM2)2 − 2916 + 54

+
1

6M

v1 = −

(
1− i

√
3
)

3

√
−972ΛM2 +

√
(54− 972ΛM2)2 − 2916 + 54

36 3
√
2M

−
1 + i

√
3

2 22/3M
3

√
−972ΛM2 +

√
(54− 972ΛM2)2 − 2916 + 54

+
1

6M

v2 = −

(
1 + i

√
3
)

3

√
−972ΛM2 +

√
(54− 972ΛM2)2 − 2916 + 54

36 3
√
2M

−
1− i

√
3

2 22/3M
3

√
−972ΛM2 +

√
(54− 972ΛM2)2 − 2916 + 54

+
1

6M

(7.114)

So that the denominator of Q̂(v) is proportional to
(
v3 − 1

2M
v2 +

Λ

6M

)2

= [(v − v0)(v − v1)(v − v2)]
2 (7.115)

and we can write it as

Q̂(v) =
1

[(v − v0)(v − v1)(v − v2)]2

4∑

n=0

ĉnv
n (7.116)

We can now change variable as v′ = v − v0, so that the potential becomes

Q̂1(v
′) =

1

[v′(v′ + v0 − v1)(v′ + v0 − v2)]2

4∑

n=0

ĉ′nv
′n (7.117)
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with coefficients

ĉ′0 =
4∑

k=0

ĉkv
k
0

ĉ′1 =
4∑

k=1

kĉkv
k−1
0

ĉ′2 =
4∑

k=2

k(k − 1)

2
ĉkv

k−2
0

ĉ′3 =
4∑

k=3

1

6
k(k − 1)(k − 2)ĉkv

k−3
0

ĉ′4 = ĉ4

(7.118)

Now we can change again variable as v′′ = v′

v1−v0
so that the potential becomes

Q̂2(v
′′) =

1

[v′′(v′′ − 1)(v′′ − a)]2
1

(v1 − v0)4

4∑

n=0

ĉ′′nv
′′n (7.119)

with
ĉ′′n = ĉ′n(v1 − v0)

n (7.120)
and

a =
v2 − v0
v1 − v0

(7.121)

Comparing with (7.85) we have v′′ = z and a = q. We give the dictionary implicitly, without
making explicit the gravity parameters, since they would be otherwise very cumbersome
expressions.

ĉ′′0 = −q2(v0 − v1)
4
(
m2

3 − 2m3m4 +m2
4 − h̄2

)
, (7.122)

ĉ′′1 = q(v0 − v1)
4
(
−2m1m2q + 2m2

3q − 2m3m4q − 4m3m4 + 2m2
4q − qh̄2 + 4u− h̄2

)
, (7.123)

ĉ′′2 = −(v0 − v1)
4
(
m2

1q
2 − 6m1m2q +m2

2q
2 +m3

3q
2 − 6m3m4q +m2

4q
2 − q2h̄2 + 4qu+ 4u− h̄2

)
,

(7.124)
ĉ′′3 = (v0 − v1)

4
(
2m2

1q − 2m1m2q − 4m1m2 + 2m2
2q − 2m3m4q − qh̄2 + 4u− h̄2

)
, (7.125)

ĉ′′4 = −(v0 − v1)
4
(
m2

1 − 2m1m2 +m2
2 − h̄2

)
(7.126)

7.7.3. Poles skipping

The Green function is contructed from the r → ∞ asymptotic, for which we can the exact
expression

−i
ψ−,0

ψ+,1
= Q(τ,m1,m2,m3,m4)−Q(τ + 1,−m1,−m2,m3,m4)

ψ+,0

ψ+,1
(7.127)
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with ψ+,0 → 0 as r → ∞. So the Green function is proportional to

GR ∝ Q(τ + 1,−m1,−m2,m3,m4)

Q(τ,m1,m2,m3,m4)
. (7.128)

We recover thus the interpretation of poles skipping as simultaneous zeros ofQ functions.
However, now we have Q functions with different parameters, as for the Heun equation
connection coefficients are not known explicitly as for the hypergeometric equation. The
consistency of this characterization with the other is explained in section 7.4.
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A. Fibre bundles and connections in gauge theory
In this appendix we show how some differential geometry and differential topology no-
tions are applied to gauge theories in physics. We follow mainly [105], [106].
Usually, one thinks at a field as map φ : M → V from space-time to a vector space V ; or,

as in the non-linear σ-model, to a quotient group: φ : M → G/H . However, a more general
kind of situation is when the space in which the field takes its values varies form point
to point of spacetime: then we have a family (bundle) of target spaces Nx and φ(x) ∈ Nx.
In Yang-Mills theory we have a bundle of copies of the internal symmetry group, one for
each point in spacetime.

A.1. Fibre bundles in general
Definition 1 A bundle is a triple (E, π,M) where E and M are topological spaces and π :
E → M is a continuous map.

The spaceE is called total space, bundle space or, loosely speaking, bundle;M is the base
space; π is the projection and we can assume it to be surjective. We often denote the triple
with a greek letter ξ or η. The inverse image π−1(x) is the fibre over x ∈ M.
In all existing applications in physics the bundles that arise have the property that all

the fibres π−1(x) are homeomorphic to a common space F , called fibre of the bundle. This
kind of bundles are called fibre bundles.
A bundle ξ = (E, π,M) with fibre F it is often written as F → E

π−→ M or

F E

M

π

Definition 2 A cross section of a bundle (E, π;M) is a map s : M → E such that the image
of each point x ∈ M lies in the fibre π−1(x) over x:

π ◦ s = idM (A.1)

Definition 3 A bundle map between a pair of bundles (E, π,M) and (E ′,π′,M′) is a pair of
maps (u, f), with u : E → E ′, f : M → M′ such that following diagram is commutative:

E E ′

M M′

π

u

π′

f

The pair of maps (u, f)maps fibres into fibres:

∀x ∈ M u(π−1(x)) ⊂ π′−1(f(x)) (A.2)
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Since π is surjective, the map f is completely determined by the map u.
An isomorphism between a pair of bundles (E, π,M) and (E ′,π′,M′) is bundlemap (u, f)

from (E, π,M) to (E ′,π′,M′) for which there is another bundlemap (u′, f ′) from (E ′,π′,M′)
to (E, π,M) such that:

u′ ◦ u = idE u′ ◦ u = idE′

f ′ ◦ f = idM f ◦ f = idM′

Two bundles ξ and η with the same base space M are said to be locally isomorphic if,
for each x ∈ M, there exists an open neighborhood U of x such that ξ|U and η|U are U -
isomorphic. The relation of being locally isomorphic is an equivalence relation on the set
of all bundles over the topological spaceM.

Definition 4 A fibre bundle (E, π,M) is trivial if it is M-isomorphic to the product bundle
(M× F,pr1,M). It is locally trivial if it is locally isomorphic to the product bundle.

We can now give an alternative definition of fibre bundle. A triple (E, π,M) is a fibre
bundle with fibre F if and only if for each x ∈ M, there exists an open neighborhood
U ⊂ M of x and a homeomorphism h : U × F → π−1(U), called trivialization, such that

π(h(x, y)) = x x ∈ U, y ∈ F (A.3)

The idea in fibre bundle theory is to study spaces which are not globally products but
only locally products.
An example of bundle i the tangent bundle. The base spaceM is a generic differentiable

manifold, the total space is given by the union of all tangent spaces Tp(M) to all points p
ofM:

T (M) =
⋃

p∈M

Tp(M) (A.4)

the fibre at any point p ∈ M is the tangent space Tp(M), the projection π : T (M) → M
associates to each tangent space Tp(M) the point p to which it is attached.

A.2. Principal bundles and fundamental gauge bundles
Definition 5 A bundle (E, π,M) is a G-bundle if E is a right G-space and if (E, π,M) is iso-
morphic to the bundle (E, ρ, E/G):

E E

M E/G

π

u

ρ

f

If the action ofG is free, theG-bundle is said to be a principal G-bundle. G is called structure
group of the bundle.
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The fibres of theG-bundle (the orbits of theG-action) in general are not homeomorphic
to each other, but when the action is free they are: a principal G-bundle is a fibre bundle
with fibre G.
For example, let H be a closed Lie subgroup of a Lie group G. H acts on the right on

G with a free action; the orbit space is the space G/H of cosets. Thus we get a principal
H-bundle (G,π, G/H) whose fibre is H .
In Yang-Mills theory with internal symmetry group SU(2) the bundle (at least at instan-

ton number one) is a principal SU(2) bundle whose base space is S4, the one-point com-
pactification of Euclidean spacetime: S3 → S7 → S4. It is not a product bundle since S7 is
not isomorphic to S3 × S4.
Consider anm-dimensional differentiable manifoldM. A linear frame at a point x ∈ M

is an ordered set (b1, b2, ..., bm) of basis vectors for the tangent space TxM. The bundle of
frames B(M) of M is the principal bundle with M as base space, the set of all frames at
all points ofM as total space, the function π : B(M) → M that takes a frame into the point
inM to which it is attached as projection map. The free right action of GL(m,R) on B(M)
is defined by:

(b1, b2, ..., bm)g =
( m∑

j1=1

bj1gj11,
m∑

j2=1

bj2gj22, ...
m∑

jm=1

bjmgjmm

)
(A.5)

for all g ∈ GL(m,R).

Definition 6 Abundlemap (u, f) between a pair of principalG-bundles (P,π,M) and (P ′,π′,M′)
is a principal bundle map if u is G-equivariant in the sense that:

u(pg) = u(p)g p ∈ P, g ∈ G (A.6)

The set of all principal bundle maps from a principal G-bundle to itself form a group. It is
called the automorphism group of the bundle.

If A is the set of all Yang-Mills potentials of the theory, the gauge group G is the group
of automorphisms of the bundle. The physical configurations of the theory are identified
with the orbits of the action of the gauge group, that is, they are elements of the quotient
spaceA/M. It can be shown that this action is free and thereforeA is a principal G-bundle
with base space A/M.

Theorem 1 If ξ is the product bundle (M×G,pr1,M), then the automorphisms u : M×G →
M × G are in one-to-one correspondence with the maps χ : M → G such that u(x, g) =
(x,χ(x)g).

In other words, if the bundle is trivial Aut(ξ) is isomorphic to the group C∞(M, G) of the
usual smooth gauge transformations.

Theorem 2 A principal G-bundle (P,π,M) is trivial if and only if it possesses a continuous
cross-section

In Yang-Mills theory, choosing a cross-section of the bundle G → A → A/G corresponds
physically to choosing a gauge. This principal bundle is not trivial and hence no smooth
cross-sections exist. This is responsible for the Gribov effect: there is an intrinsic obstruc-
tion to choosing a gauge that works for all physical configurations.
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A.3. Connections and Yang Mills field
Let G be a Lie group that has a right action g → δg on a differentiable manifold M. Then
the vector fieldXA onM induced by the action of the one-parameter subgroup t → exp tA,
A ∈ TeG is defined as:

XA
p (f) =

d

dt
f(p exp tA)

∣∣∣∣
t=0

(A.7)

where f ∈ C∞(M), and δg(p) has been abbreviated to pg.
The map i : A → XA, which associated to each A ∈ TeG the induced vector field XA

on M, is a homomorphism of group of left invariant vector fields L(G) 0 TeG into the
infinite-dimensional Lie algebra of all vector fields onM VFldsM:

[XA, XB] = X [A,B] (A.8)

for all A,B ∈ TeG 0 L(G).
Consider a principal bundle P with fibre G. Both the Lie group G and the base space

M are differentiable manifolds, so P also is differentiable manifold. Therefore we can
consider the tangent and cotangent bundles TP , T ∗P . We decompose each tangent space
TpP (a point of TP ) into vertical and horizontal subspaces:

TpP 0 VpP ⊕HpP ∀p ∈ P (A.9)
VpP = {τ ∈ TpP |π∗τ = 0} (A.10)

Thus any τ ∈ TpP can be decomposed uniquely into a sum of vertical and horizontal
components ver(τ) and hor(τ).

Definition 7 A connection in a principal bundle G → P → M is a smooth assignment to
each point p ∈ P of a subspace HpP of TpP such that

TpP 0 VpP ⊕HpP ∀p ∈ P (A.11)
δg∗(HpP ) = HpgP ∀g ∈ G, p ∈ P (A.12)

A connection can be equivalently characterized as a TeG-valued one-form ω on P defined as

ωp(τ) = i−1(ver(τ)). (A.13)

and with the following properties

ωp(τ)(X
A) = A ∀p ∈ P,A ∈ TeG (A.14)

(δg∗ω)p(τ) = Adg−1(ωp(τ)) , ∀τ ∈ TpP (A.15)
τ ∈ HpP ⇐⇒ ωp(τ) = 0 (A.16)

Let σ : U ⊂ M → P be a local section of a principal bundle G → P → M which is
equipped with a connection one-form ω. The local σ-representative of ω is the TeG valued
one form on the open set U ⊂ M given by σ∗ω. σ∗ω corresponds to the Yang Mills field:

(σ∗ω)x = A(x) =
m∑

µ=1

dimG∑

a=1

Aa
µ(x)Ea(dx

µ)x (A.17)
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where {E1, E2, ..., EdimG} is a basis set for TeG. In particular:

Aµ(x) = (σ∗ω)x(∂µ) (A.18)

Theorem 3 Let h : U × G → π−1(U) ⊂ P be the local trivialisation of P induced by σ:
h(x, g) = σ(x)g. Let (α, β) ∈ T(x,g)(U × G) 0 TxU ⊕ TgG, the local representative h∗ω of ω on
U ×G can be written in terms of the local Yang Mills field σ∗ω as:

(h∗ω)(x,g)(α, β) = g−1(σ∗ωx)(α) g + Ξg(β) (A.19)

where Ξ is the Cartan-Maurer TeG-valued one form on G.

Thus the connection one-form ω can be decomposed locally as the sum of a Yang-Mills
field on M plus a fixed TeG-valued one-form on G. Hence, at least locally, specifying a
connection is equivalent to giving a Yang-Mills field.
There are twoways of interpreting a gauge transformation: the active view and the pas-

sive view. According to the active view, a gauge transformation in the principal bundle
G → P → M is any principal automorphism of the bundle. In fact, let φ : P → P ,φ ∈
Aut (P ) and let ω be a connection on P , then φ∗(ω) is a connection. φ∗(ω) is the gauge trans-
form of ω under the gauge transformation φ. On the other hand, in the passive view, a
gauge transformation is simply a change of coordinates of the fibre, as the following the-
orem describes.

Theorem 4 Let σ1 : U1 → P and σ2 : U2 → P be two local trivialisations with U1 ∩ U2 (= ∅,
thus A(1)

µ = σ∗
1ω and A(2)

µ = σ∗
2ω. If Ω : U1 ∩ U2 → G is the unique local gauge function defined

by:
σ2(x) = σ1(x)Ω(x) (A.20)

the local representatives are related on U1 ∩ U2 by:

A(2)
µ (x) = Ω(x)−1A(1)

µ (x)Ω(x) + (Ω∗Ξ)µ(x) (A.21)

If G is a group of matrices, Ω∗Ξ = Ω−1dΩ, therefore:

A(2)
µ (x) = Ω(x)−1A(1)

µ (x)Ω(x) + Ω(x)−1∂µΩ(x) (A.22)

The previous equation relates two Yang-Mills fields, whose regions of definitions may
be different. One can recover the usual equation of the gauge transform by considering
an active gauge transformation φ : P → P , which induces a transformation A → σ∗(φ∗ω) =
(φ ◦ σ)∗ω. There exists some Ω : U → G such that, for all x ∈ U , σ(x) = φ ◦ σ(x)Ω(x), then it
follows that:

Aµ(x) → Ω(x)Aµ(x)Ω
−1(x) + Ω(x)∂µΩ(x)

−1 (A.23)
Only if the bundle is trivial (A.23) refers to a globally defined TeG valued one form on
M. If the bundle is not trivial, one must coverM with local trivializing charts, then local
Yang-Mills fields associated with any pair of overlapping charts Ui, Uj will be related on
Ui ∩ Uj by (A.22), with corresponding gauge function ωij(x) such that σi(x) = σj(x)Ωij(x).
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A.4. Associated bundles and matter fields
Let X and Y be a pair of right G-spaces (they can also be both left G-spaces or one right
and one left). The G-product of X and Y is the space of orbits of the G-action on X × Y .
Thus we define an equivalence relation on X × Y : (x, y) ∼ (x′, y′) if there exists g ∈ G such
that x′ = xg and y′ = yg. The G-product is denoted X ×G Y and the equivalence class of
(x, y) ∈ X × Y [x.y].

Definition 8 Let ξ = (P,π,M) be a principal G-bundle and let F be a left G-space. Define
PF = P ×G F where (p, v)g = (pg, g−1v) and define a map πF : PF → M by πF ([p, v]) = π(p).
Then ξ[F ] = (PF ,πF ,M) is a fibre bundle over M with fibre F that is said to be associated
with the principal bundle ξ via the action of the group G on F .

In fact, it can be proven that for each x ∈ M, the space π−1
F ({x})is isomorphic to F .

Let V = Rm ⊗ Rm ⊗ · · ·⊗ Rm ⊗ (Rm)∗ ⊗ (Rm)∗ ⊗ · · ·⊗ (Rm)∗ where the first tensor product
is taken k times and the second l times, let a ∈ GL(m,R) act on v ∈ V by a representation
ρ : GL(m,R) → AutV as follows:

(ρ(a)v)i1...ilj1...jk
= (det a)ω

m∑

k1...kl=1

m∑

h1...hk=1

ai1k1 ...a
il
kl
a h1
j1 ...a hk

jk
vk1...klh1...hk

(A.24)

The associated bundle to the bundle of frames B[V ] = B(M) ×GL(m,R) V is the bundle of
tensors densities of weight ω, contravariant rank k and covariant rank l. A particular case
is tangent bundle (A.4) illustrated above.
A vector bundle is an associated bundle in which the fibre is a vector space. All ten-

sor bundles are vector bundles. The space Γ(E) of all cross-sections of a vector bundle
(E, π,M) is equipped with a natural module structure over the ring C(M) of continuous,
real-valued functions onM, that is:

(ψ1 + ψ2)(x) = ψ1(x) + ψ2(x) ∀x ∈ M,ψ1,ψ2 ∈ Γ(E) (A.25)
(fψ)(x) = f(x)ψ(x) ∀x ∈ M, f ∈ C(M),ψ ∈ Γ(E) (A.26)

In Yang-Mills theory, matter fields (that is, all fields with the exception of the Yang-Mills
field) have the property that they belong to some vector space V which is acted on by the
group G via a representation ρ. Matter fields are identified with cross sections of various
vector (tensor) bundles associated with Yang-Mills principal fibre bundle.
Let (u, f) be a principal bundle map between a pair of principal G-bundles ξ = (P,π,M)

and ξ′ = (P ′,π′,M′). An associated bundle map between the associated bundles P ×GF and
P ′×GF can be defined by uF ([p, v]) = [u(p), v]. A vector bundle map is a bundle map (u, f) in
which the restriction of u : E → E ′ to each fibre is a linear map. An automorphism of an
associated bundle ξ[F ] is a bundle map uF defined by uF ([p, v]) = [u(p), v] where u ∈ Aut ξ
is an automorphism of the principal bundle.

Theorem 5 If (PF ,πF ,M) is an associated fibre bundle then its cross sections are in bijective
correspondence with maps φ : P (ξ) → F that satisfy φ(pg) = g−1φ(p) ∀p ∈ P (ξ), g ∈ G. Let
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ip : F → π−1
F ({x}) be defined by ip(v) = [p, v], then cross sections ψ and maps φ are related by:

ψφ(x) = [p,φ(p)] (A.27)
φψ(p) = i−1

p (ψ(x)) (A.28)

with p ∈ π−1({x}).

An associated fibre bundle ξ[F ] is trivial if its underlying principal bundle ξ is trivial.
If σ : U ⊂ M → P (ξ) is a local trivializing cross section of the principal bundle ξ, the

local representative ψU : U → P of a section ψ of PF is defined by:

ψU(x) = φψ(σ(x)) (A.29)

With these definitions, we can understand how gauge transformations act on thematter
fields of the system. If σ1 : U1 → P and σ2 → P , are two local sections of P with U1 ∩U2 (= ∅,
then there exists some local gauge function Ω : U1 ∩ U2 → G such that σ2(x) = σ1(x)Ω(x) for
all x ∈ U1 ∩ U2. Then

ψU2(x) = φψ(σ2(x)) = φψ(σ1(x)Ω(x)) = Ω−1(x)φψ(σ1(x)) (A.30)

Then the local representatives are related by the gauge transformation:

ψU1(x) = Ω(x)ψU2(x) (A.31)

A.5. Parallel transport and covariant differentiation
Let us consider again a principal bundle P . π∗ : HpP → Tπ(p)M is an isomorphism, there-
fore:

Definition 9 To each vector vector field X on M there exists a unique vector field X↑ on P
, the horizontal lift of X such that, for all p ∈ P ,

π∗(X
↑
p ) = Xπ(p) (A.32)

ver(X↑
p ) = 0 (A.33)

Horizontal lifting is G-equivariant:

δg∗(X
↑
p ) = X↑

pg (A.34)

Let α be a smooth curve that maps a closed interval [a, b] ⊂ R into M. A horizontal lift
of α is a curve α↑ : [a, b] → P which is horizontal (ver[α↑] = 0) and such that π(α↑(t)) = α(t)
for all t ∈ [a, b]. For each point p ∈ π−1{α(a)} there exists a unique horizontal lift of α such
that α↑(a) = p.

Definition 10 Let α : [a, b] → M be a curve. The parallel translation along α is the map
τ : π−1({α(a)}) → π−1({α(b)}) obtained by associating with each point p ∈ π−1({α(a)}) the
point α↑(b) ∈ π−1({α(b)}) where α↑(a) = p.
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Given the associated bundle ξ[F ] = (PF ,πF ,M), the vertical subspace of the tangent space
Ty(PF ), is defined as:

Vy(PF ) = {τ ∈ Ty(PF ) | πF∗τ = 0} (A.35)
Let kv : P → PF , v ∈ F be defined by kv(p) = [p, v]. Then the horizontal subspace of T[p,v]

is defined as:
H[p,v](PF ) = kv∗(HpP ) (A.36)

Let α : [a, b] → M, [p, v] ∈ π−1
F ({α(a)}), α↑ such that α↑(a) = p, then the curve

α↑
F (t) = kv(α

↑(t)) = [α↑(t), v] (A.37)

is the horizontal lift of α to PF that passes through [p, v] at t = a. The parallel translation in
the associated bundle is the map τF : π−1

F ({α(a)}) → π−1
F ({α(b)}).

Definition 11 Let PV be a vector bundle, ψ : M → PV be a cross section, α : [0, ε] → M be a
curve inM such that α(0) = x0. The covariant derivative of ψ in the direction α at x0 is:

∇αψ = limt→0

(
τ tV ψ(α(t))− ψ(x0)

t

)
∈ π−1

V ({x0}) (A.38)

In a local bundle chart, it can be shown that:

(∇αψ)U =
d

dt
(g(t)−1ψU(α(t)))

∣∣∣∣
t=0

=
m∑

µ=1

(∂µψU(x0) + Aµ(x0))
dxµ(α(t))

dt

∣∣∣∣
t=0

(A.39)

If v ∈ TxM the covariant derivative of the section along v is defined by ∇vψ = ∇αψ,
∀α ∈ [v]. Analogously, if X is a vector field on M the covariant derivative along X is the
linear operator ∇X : Γ(PV ) → Γ(PV ) defined by:

(∇Xψ)(x) = ∇Xxψ (A.40)

A particular case is when ∇µ = ∇∂µ:

(∇µψ)(x) = ∂µψ(x) + Aµ(x)ψ(x) (A.41)

The linear operator ∇X : Γ(PV ) → Γ(PV ) possesses also the following properties:

∇X(fψ) = f∇X(ψ) +X(f)ψ (A.42)
∇X+Y ψ = ∇X(ψ) +∇Y (ψ) (A.43)
∇fX(ψ) = f∇Xψ (A.44)

A.6. The curvature two-form or gauge field
Definition 12 If ω is a k-form on a principal bundle space P (ξ), the exterior covariant
derivative of ω is the horizontal (k + 1)-form Dω defined by:

Dω = dω ◦ hor (A.45)

If ω is a connection one-form on P (ξ), the curvature two-form of ω is defined as G = Dω.
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Theorem 6 If X,Y are arbitrary vector fields on P (ξ) we have, for all p ∈ P (ξ) the Cartan
structural equation:

Gp(X,Y ) = dωp(X,Y ) + [ωp(X),ωp(Y )] (A.46)
If {E1, ..., EdimG} is a basis for the Lie algebra TeG, ω = ωaEa then the equation becomes:

Ga = dωa +
1

2

dimG∑

b,c=1

Ca
bcω

b ∧ ωc (A.47)

If σ : U → P is a local section of the principal bundle, the local representative A = σ∗ω is
supplemented with the local representative F = σ∗G. Then F a = dAa + 1

2

∑dimG
b,c=1 Ca

bcA
b
µA

c
ν or

F a
µν =

1

2
(Aa

µ,ν − Aa
ν,µ +

dimG∑

b,c=1

Ca
bcA

b
µA

c
ν) (A.48)

The Bianchi identity holds
DF = 0 (A.49)

If σ1 : U1 → P and σ2 : U2 → P are a pair of local sections with U1 ∩ U2 (= ∅, there exists
some local gauge function Ω : U1 ∩ U2 → G such that σ2(x) = σ1(x)Ω(x). If F (1) = σ∗

1G and
F (2) = σ∗

2G it can be shown that:

F (2)
µ (x) = Ω(x)−1F (1)

µν (x)Ω(x) (A.50)

Introducing the dual gauge field

∗Fµν =
1

2
εµναβF

αβ (A.51)

we can express the pure Yang-Mills action as

S =

∫

M

−1

2
tr(FµνF

µν) = −
∫

M
tr(F ∧∗ F ) (A.52)

form which the Euler Lagrange equations follow:

D∗F = 0 (A.53)

Thanks to the Bianchi identities If one can find a connection A such that F is propor-
tional to ∗F :

F = λ∗F (A.54)
then the Euler Lagrange equations are automatically satisfied. Instantons are such solu-
tions with λ = ±1 in Euclidean space, λ = ±i in Minkowski space. The so called istanton
number is the integer k which labels the forth cohomology group

k ∈ H4(M,π3(S
3)) 0 Z (A.55)

where π3(S3) = Z is the third homotopy group of the three-sphere.
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B. One-step large energy/WKB recursion
This Section contains a general two-fold result concerning the (modified) Schrödinger
equation: an efficient technique of one-step-recursion for computing the asymptotic ex-
pansion of the wave function/periods, for high energy and small Planck constant. In the
Section 4.3, we will apply this result for efficiently compute the NS-deformed periods
modes (4.107), while in section 4.2 we will apply to the computation of the local integrals
of motion.

B.1. Large energy expansion
Let us first start by the large energy expansion of the wave function which we will apply
for computing the local integrals of motion for Liouville theory in section 4.2. Consider a
generalmodified Schrödinger equation, with energy e2θ which multiplies the modification
φ(x) and potential v(x) {

− d2

dx2
+ v(x)− e2θφ(x)

}
ψ(x) = 0 (B.1)

By the transformation dw =
√
φdx, χ = 4

√
φψ, the modified Schrödinger equation can be

transformed into an ordinary Schrödinger equation
{
− d2

dw2
+ U(w)− e2θ

}
χ(w) = 0, U =

v

φ
+

1

4

φ′′

φ2
− 5

16

φ
′2

φ3
. (B.2)

As usual, we defineΠ(w) = −i d
dw lnχ(w) .

=
∑∞

n=−1 e
−nθΠn(x) (the last equality is asymptotical

for large energy, -θ → +∞) satisfying the usual Riccati equation

Π2(w)− i
dΠ(w)

dw
= e2θ − U(w) (B.3)

which is solved by Π−1 = 1, Π0 = 0, Π1 = −1
2U and the recursion relation for the high

energy modes18

Πn+1 = +
1

2

{
i

1√
φ(x)

dΠn

dx
−

n−1∑

m=1

ΠmΠn−m

}
n = 1, 2, ... . (B.4)

Eventually the wave function ψ = (φ)−1/4χ can be written and then expanded at large
energy -θ → +∞

ψ(x; θ) =
1

4
√
φ(x)

exp
{
i

∫ x√
φ(x′)Π(x′)dx′

}
.
=

1
4
√
φ(x)

exp
{
i

∞∑

n=−1

e−nθ

∫ x√
φ(x′)Πn(x

′)dx′
}
,

(B.5)

18Equation (B.3) is solved also by the other solution generated by Π−1 = −1, Π0 = 0, Π1 = 1
2U , with a

recursion given by (B.4) with a relative minus sign.
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fromwhich we can read off the quantummomentum of the (modified) Schrödinger equa-
tion (B.1):

P(x) = −i
d

dx
lnψ(x) = i

4

φ′

φ
+
√
φ(x)Π(x)

.
=

∞∑

n=−1

e−nθPn(x) . (B.6)

Then, we split Π(x) = Πodd(x) + Πeven(x) into odd and even n powers. In terms of even and
odd part, the Riccati equation becomes splitted in two equations

Π2
even(w) + Π2

odd(w)− i
dΠeven

dw
= e2θ − U(w) (B.7)

2Πeven(x)Πodd(w)− i
dΠodd

dw
= 0 (B.8)

From the latter equation emerges that Πeven is a total derivative

Πeven =
i

2

d

dw
lnΠodd , (B.9)

which becomes irrelevant when integrating under special circumstances, for example on
the real axis with suitable asymptotic conditions or on a period. Forgetting about the even
modes Π2n (total derivatives), an important fact happens for the large energy expansion
of (B.2), i.e. the arising of the Gelfand-Dikii (differential) polynomials, Rn[U ] [107].

B.1.1. Gelfand-Dikii polynomials

To see how this happens, we substituteΠeven in equation (B.7), obtaining (we use the prime
′ to indicate the w derivative)

2Π′′
oddΠodd − 3Π

′2
odd + 4Π4

odd = 4
(
e2θ − U

)
Π2
odd (B.10)

We define the function R as the algebraic inverse of Πodd

R(x) =
1

Πodd(x)
(B.11)

such functionR(x) expands asymptotically for ! → 0 in termswith somemodesRn defined
by

R(x) =
∞∑

n=0

Rn(x)e
−θ(2n+1) (B.12)

with R0 = 1. Continuing the previous calculations, by (B.10) we obtain the function R(x)
satisfies the equivalent equation

−2R′′R +R
′2 = 4

(
e2θ − U

)
R2 − 4 (B.13)

We apply the w-derivative and find

R′′′ = −4
(
e2θ − U

)
R′ + 2U ′R (B.14)

148



In terms of the modes Rn this equation means a one-step recursion relation (we restore
′ = d

dw )
dRn+1

dw
= −1

4

d3

dw3
Rn + U

dRn

dw
+

1

2

dU

dw
Rn (B.15)

or, in terms of the x variable (now ′ = d
dx)

dRn+1

dx
= −1

4

1

φ

d3

dx3
Rn +

3

8

φ′

φ2

d2

dx2
Rn +

[v
φ
+

3

8

φ′′

φ2
− 9

16

φ
′2

φ3

] d

dx
Rn

+
[1
2

v′

φ
− 1

2

vφ′

φ2
+

1

8

φ′′′

φ2
− 9

16

φ′′φ′

φ3
+

15

32

φ
′3

φ4

]
Rn

(B.16)

with initial condition R0 = 1.
The first Gelfand-Dikii polynomial are [107]

R0[U ] = 1 (B.17)

R1[U ] =
1

2
U (B.18)

R2[U ] =
3

8
U2 − 1

8
U ′′ (B.19)

=
3

8
U2 − 1

8

1

φ

d2

dx2
U +

1

16

1

φ2

dφ

dx

d

dx
U (B.20)

R3[U ] =
5

16
U3 − 5

32
U ′2 − 5

16
U ′′U +

1

32
U iv (B.21)

=
5

16
U3 − 5

32

1

φ

(
dU

dx

)2

− 5

16

1

φ
U
d2U

dx2
+

5

32

dφ
dx

φ2
U
dU

dx
(B.22)

+
1

32

1

φ2

d4U

dx4
− 3

32

dφ
dx

φ3

d3U

dx3
+
[
− 1

16

d2φ
dx2

φ3
+

19

128

(dφdx)
2

φ4

] d2

dx2
U (B.23)

+
[
− 1

64

d3φ
dx3

φ3
+

13

128

dφ
dx

d2φ
dx2

φ4
− 7

64

(dφdx)
3

φ5

] d

dx
U (B.24)

R4[U ] =
35

128
U4 − 35

64
UU

′2 − 35

64
U2U ′′ +

21

128
U

′′2 +
14

64
U ′U ′′′ +

7

64
UU (4)

− 1

128
U (6) (B.25)

It can be proven (see for instance [108]) that the Geldand-Dikii polynomials Rn are pro-
portional to the modes

√
φ(x)Π2n−1 up to a x-total derivative:

Π2n−1(x) =
−1

2n− 1
Rn(x) +

d

dw
(local fields). (B.26)

The advantage of using the equivalent Rn integrands (which are equivalent under in-
tegration, if one can neglect total derivatives) is that their recursion (B.16) is far simpler
than that (B.4) for the original integrands P2n−1. In fact, in (B.16), to compute the n + 1-th
term, it is sufficient to know only the first preceding n-th term, not all the preceding, as
in (B.4).
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B.1.2. Equivalence proof for the energy-WKB integrands

In this paragraph we report the proof of (B.26) which is in [108]. Define k = eθ for simplic-
ity of notation. By definition Πodd is expanded as

Πodd(w)
.
= k +

∞∑

n=1

Π2n−1(w)

k2n−1
, (B.27)

while R = 1
Πodd

is expanded as

R(w) =
∞∑

n=0

Rn(w)

k2n+1
. (B.28)

Now derive Πodd with respect to k

∂Πodd(w)

∂k
= 1−

∞∑

n=1

(2n− 1)
Π2n−1(w)

k2n
(B.29)

and define a new quantity σ as

σ(w) =
1

k

∂Πodd(w)

∂k
=

1

k
−

∞∑

n=1

(2n− 1)
Π2n−1(w)

k2n+1
(B.30)

With the aid of heuristic examples, we can conjecture

σ(w) = R(w) + t.d. (B.31)

where t.d. is a total w derivative. Now we prove (B.31). We rewrite in the new notation
the Riccati equation (B.10) for the odd part of Π

+2ΠoddΠ
′′
odd − 3Π

′2
odd + 4Π4

odd − 4(k2 − U)Π2
odd = 0 (B.32)

We differentiate (B.32) with respect to k

16Π3
odd

∂Πodd

∂k
− 6Π′

odd
∂Π′

odd
∂k

+2
∂Πodd

∂k
Π′′
odd+2Πodd

(∂Πodd

∂k

)′′
− 8kΠ2

odd− 8(k2 −U)Πodd
∂Πodd

∂k
= 0

(B.33)
then divide by 2kΠodd

8Π2
oddσ − 3

Π′
odd

Πodd
σ′ + σ

Π′′
odd

Πodd
+ σ′′ − 4Πodd − 4(k2 − U)σ = 0 (B.34)

Now, since
Π′
odd

Πodd
= −R′

R

Π′′
odd

Πodd
= 2
(R′

R

)2
− R′′

R
(B.35)
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we can replace Πodd by R to obtain

8
1

R2
σ + 3

R′

R
σ′ + 2σ

(R′

R

)2
− R′′

R
σ + σ′′ − 4

1

R
− 4(k2 − U)σ = 0 (B.36)

8σ + 3R′Rσ′ + 2R
′2σ −RR′′σ +R2σ′′ − 4R− 4(k2 − U)R2σ = 0 (B.37)

4(k2 − U)R2σ + 4R = 8σ + 3RR′σ′ + 2R
′2σ −RR′′σ +R2σ′′ (B.38)

Recalling also equation (B.13) for R

−2R′′R +R
′2 + 4 = 4(k2 − U)R2 (B.39)

we can write

4R = 4σ + 3RR′σ′ +R
′2σ +RR′′σ +R2σ′′

4σ − 4R = −3RR′σ′ −R
′2σ −RR′′σ −R

′2σ′′ (B.40)

We note that the r.h.s. is a total derivative

3RR′σ′ +R
′2σ +RR′′σ +R2σ′′ = (σR2)′′ − (σRR′)′ (B.41)

We have proven the conjecture (B.31), which, in terms of the modes is

Π2n−1(w) = − 1

2n− 1
Rn(w) + t.d. (B.42)

We have thus proved that, under integration over a period or over the entire dominion,
integrating the standardmode Π2n−1 is equivalent to integrating the Gelfand-Dikii polyno-
mial Rn, up to a simple numerical n dependent factor.

B.2. Small ! recursion
We show now that these results can be adapted for the usual small ! WKB asymptotic
expansion of a generic Schrödinger equation

+
d2

dx2
ψ +

φ(x)

!2 ψ = 0 with φ(x) = 2m(E − V (x)) . (B.43)

In fact, the usualWKBanalysis envisages the exact quantummomentumP(x) = −i d
dx lnψ(x) .

=∑∞
n=−1 !nPn(x) verifying the Riccati equation and modes recursion relation, respectively

P2(x)− i
dP(x)

dx
=
φ(x)

!2 , Pn+1 =
1

2
√
φ

(
i
d

dx
Pn −

n∑

m=0

PmPn−m

)
, (B.44)

with initial condition the classical momentum P−1 =
√
φ 19. As above, we split P(x) =

Podd(x) + Peven(x): then Peven = −1
2(lnPodd)′ and P2n are total derivatives, which, under

19As above there is also the solution with P−1 = −
√
φ.
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specific circumstances, can be forgetten about. Now we wish to think of (B.43) as the
particular case, v = 0, of the previous modified Schrödinger equation (B.1) with energy
= 1/!2. Thus, we obtain the usual Schrödinger equation (B.2)with potentialU = 1

4
φ′′

φ2 −
5
16
φ
′2

φ3 :
in this manner small ! is interpreted as large energy. And we can make us of the Gelfand-
Dikii polynomials [107], with recursion relation (B.16) with v = 0

R′
n+1 = − 1

4φ
R′′′

n +
3

8

φ′

φ2
R′′

n +
(3
8

φ′′

φ2
− 9

16

φ
′2

φ3

)
R′

n +
(1
8

φ′′′

φ2
− 9

16

φ′′φ′

φ3
+

15

32

φ
′3

φ4

)
Rn , (B.45)

and initial condition R0 = 1. In fact, we have seen above P2n−1 =
√
φ(x)Π2n−1 which, in its

turn, is expressible by
√
φ(x)Rn up to a x-total derivative:

P2n−1(x) =
−1

2n− 1

√
φ(x)Rn(x) +

d

dx
(local fields) . (B.46)

The advantage of using the Rn integrands (which are equivalent as they give the same
integral, under suitable boundary conditions) is that their recursion (B.45) is far simpler
than that (B.44) for the original integrands P2n−1. In fact, using recusion (B.45) to compute
the n+1-th term, requires to know only the first preceding n-th term, not all the preceding,
as in recursion (B.44).

B.3. homogeneous operators
We give the first homogeneous operators in table B.3.
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n
↓
k
→

0
1

2
3

4
5

6
7

1
1 48

1 24

2
5

15
36

1
19

2
7

57
60

3
41

57
34

4
15

3
14

33
60

79
21

50
40

31
96

76
80

4
15

22
9

70
77

88
80

95
39

30
96

57
60

51
7

41
28

76
8

13
71

68
00

12
7

15
48

28
80

0

5
48

42
49

58
13

30
53

44
50

49
50

3
43

59
97

90
08

0
84

30
05

3
16

34
99

21
28

00
78

03
41

81
74

96
06

40
0

61
72

9
81

74
96

06
40

0
73

35
03

55
45

60

6
52

01
47

13
15

33
37

34
4

19
70

23
77

19
36

62
38

23
66
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00

24
13

59
91

17
1

95
22

19
41

53
47

20
0
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13

23
61

17
85
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14

03
77

60
76

48
01

13
35

88
58

24
00

0
42

32
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3
14

87
84

28
36

48
00

0
14

14
4
7
7

26
78

11
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0
5
6
6
4
0
0
0

7
44

68
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09

7
20

09
07

83
26

88
64

00
27

20
39

45
16

79
9

91
41

30
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87
33

31
20

0
22

20
04

32
76
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15

23
55

10
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55
55

20
0

11
84

12
93

96
71

9
34

27
98

98
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24
99

20
00

81
92

10
61

3
18

83
51

09
31

45
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00
84

13
89

09
7

28
56

65
82

46
04

16
00

0
15

92
5
1
9

15
87

03
23

5
8
9
1
2
0
0
0

8
1
9
1

6
1
2
1
4
1
0
5
2
7
2
3
2
0
0
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n
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n
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8
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h
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=
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37
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8
h
8
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9
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C. Nf = 1, 2 Seiberg-Witten periods
In this appendix we define and give some relations for the Seiberg-Witten periods for the
SU(2) Nf = 1, 2 theories, that is, the leading ! → 0 of the quantum (or deformed) exact
periods which we prove are connected to integrability exact Y and T functions.

C.1. Massless Nf = 1 SW periods
The massless Nf = 2 gauge periods are just the Nf = 0 gauge periods already dealt with
in [1]. Hence we treat here the (much more complex) Nf = 1 massless m = 0 case, fol-
lowing and extending [83]. In that case the low energy effective action has three finite Z3

symmetric singularities, corresponding to dyon BPS particles becoming massless. If we
set Λ1 = Λ∗

1 with

Λ∗
1 =

6

√
256

27
, (C.1)

those singularities are situated at

u0 = −1 u1 = −e2πi/3 u2 = −e−2πi/3 . (C.2)

The massless m = 0 Nf = 1 SW curve is

y2SW (u,Λ1) = x3 − ux2 − Λ6
1

64
, (C.3)

and it gives the SW periods through the integrals
(
a(0)(u,Λ1)

a(0)D (u,Λ1)

)
=

√
2

8π

∮

A,B

dx
2u− 3x√

x3 − ux2 − Λ6
1

64

. (C.4)

It can be shown then that Π(0) = a(0), a(0)D satisfy the SW Picard-Fuchs equation
(
27Λ6

1

256
+ u3

)
∂2Π(0)(u)

∂u2
+

u

4
Π(0)(u) = 0 , (C.5)

with boundary condition as u → ∞ as

a(0)(u,Λ1) 0
√

u

2
u → ∞

a(0)D (u,Λ1) 0 −i

[
1

2π
a(0)(u, 0,Λ1)

(
−iπ − 3 ln 16u

Λ2
1

)
+

3

π

√
u

2

]
u → ∞ .

(C.6)
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The massless SW Picard-Fuchs equation can be mapped into an hypergeometric equation
and then explicit formulas for a(0), a(0)D follow:

a(0)(u,Λ1) =

√
u

2
2F1

(
−1

6
,
1

6
; 1;− 27Λ6

1

256u3

)

a(0)D (u,Λ1) =






−a(0)(u,Λ1) + e−iπ/3fD(u,Λ1) 0 < arg(u) ≤ 2π
3

fD(u,Λ1)− 2a(0)(u,Λ1)
2π
3 < arg(u) ≤ π

a(0)(u,Λ1)− fD(u,Λ1) − π < arg(u) < −2π
3

exp
(
−2πi

3

)
fD(u,Λ1) − 2π

3 ≤ arg(u) ≤ 0

(C.7)

(sectors given assuming Λ1 > 0) where

fD(u,Λ1) =
Λ1

(
256u3

27Λ6
1
+ 1
)

2F1

(
5
6 ,

5
6 ; 2;

256u3

27Λ6
1
+ 1
)

4 3
√
2
√
2
√
3

(C.8)

So defined, a(0) has a branch cut for u < 0 (due to the square root and three other cuts
from the origin u = 0 to u0, u1 and u2 (due to the hypergeometric function). Instead, a(0)D so
defined has a branch cut for u < 0 and from u = 0 to u2.

C.1.1. Z3 R-symmetry

We find the following Z3 R-symmetry relations

a(0)(e2πi/3u) = −e−2πi/3a(0)(u) −π < argu ≤ π/3

a(0)(e2πi/3u) = e−2πi/3a(0)(u) π/3 < argu ≤ π

a(0)(e−2πi/3u) = −e2πi/3a(0)(u) −π/3 < argu ≤ π

a(0)(e−2πi/3u) = e2πi/3a(0)(u) −π < argu ≤ −π/3

a(0)D (e2πi/3u) = −e−2πi/3
[
a(0)D (u)− a(0)(u)

]
−π < argu ≤ π/3

a(0)D (e−2πi/3u) = −e2πi/3
[
a(0)D (u) + a(0)(u)

]
−π/3 < argu ≤ π

(C.9)

C.2. Massive Nf = 1, 2 SW periods
The massive Nf = 1 SW curve is [84]

y2SW = x3 − ux2 +
Λ3

1

4
m1x− Λ6

1

64
(C.10)

The SW differential is
λ =

√
2

4π

[
−
(
3x− 2u+

Λ3
1

4

m

x

)
dx

2ySW

]
(C.11)
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The SW periods a(0)1 , a(0)2 are given by the integrals
∫

γi

λ =

√
2

4π

[
uI(i)1 − 3I(i)2 − Λ3

1

4
mI(i)3

(
−u

3

)]
(C.12)

Define ek as the roots of the Seiberg-Witten curve in canonical form

y2SW (x = ξ +
u

3
) = (ξ − e1)(ξ − e2)(ξ − e3)

= −Λ6
1

64
+ ξ

(
Λ3

1m

4
− u2

3

)
+

1

12
Λ3

1mu+ ξ3 − 2u3

27
,

(C.13)

Basic integrals over the cycle γ1

I(1)1 = 2

∫ e2

e3

dξ

η
=

2

(e1 − e3)1/2
K(k)

I(1)2 = 2

∫ e2

e3

ξdξ

η
=

2

(e1 − e3)1/2
[e1K(k) + (e3 − e1)E(k)]

I(1)3 = 2

∫ e2

e3

dξ

η(ξ − c)
=

2

(e1 − e3)3/2

[
1

1− c̃+ k′K(k) +
4k′

1 + k′
1

(1− c̃)2k′2
Π1

(
ν(c),

1− k′

1 + k′

)]
.

(C.14)
k2 =

e2 − e3
e1 − e3

k
′2 = 1− k2

c̃ =
c− e3
e1 − e3

ν(c) = −
(
1− c̃+ k′

1− c̃− k′

)2(1− k′

1 + k′

)2 (C.15)

Elliptic integrals of the first, second and third kind:

K(k) =

∫ 1

0

dx

[(1− x2)(1− k2x2)]1/2

E(k) =

∫ 1

0

dx

(
1− k2x2

1− x2

)1/2

Π1(ν, k) =

∫ 1

0

dx

[(1− x2)(1− k2x2)]1/2(1 + νx2)

(C.16)

The corresponding integrals I(2)i over the cycle γ2 are obtained by exchaning in I(1)i e1 and
e3.
The massive Nf = 1 SW periods also satisfy the Picard-Fuchs equation [109]

∂3Π(0)(u,m)

∂u3
+

81Λ6
1 − 2048m4u− 384Λ3

1m
3 + 3840m2u2 − 1536u3

(4m2 − 3u) (27Λ6
1 + 256u2 (u−m2) + 32Λ3

1m (8m2 − 9u))

∂2Π(0)(u,m)

∂u2

− 8 (32m4 − 72m2u+ 9Λ3
1m+ 24u2)

(4m2 − 3u) (27Λ6
1 + 256u2 (u−m2) + 32Λ3

1m (8m2 − 9u))

∂Π(0)(u,m)

∂u
= 0

(C.17)
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with boundary conditions

a(0)(u,m,Λ1) 0
[√

u

2
− m

24
√
2u3/2

Λ3
1

]
u → ∞

a(0)D (u,m,Λ1) 0 −i
1

2π
√
2

[
√
2a(0)(u,m,Λ1)

(
−iπ − 3 ln 16u

Λ2
1

)
+ 6

√
u+

m2

√
u
+

m4

6 − m
4 Λ

3
1

u3/2

]
u → ∞

(C.18)
Notice however that the periods a(0) and a(0)D so defined are in principle different from
the periods a(0)1 and a(0)2 defined as integrals. They are in fact linear combinations of each
other, which also possible separate mass term contribution.
For Nf = 2 we have similarly (in the cubic SW curve conventions [84])

y2SW = x3 − ux2 − Λ4
2

64
(x− u) +

Λ2
2

4
m1m2x− Λ4

2

64
(m2

1 +m2
2) . (C.19)

λ = −
√
2

4π

dx

ySW

[
x− u− Λ2

2

16

(m1 −m2)2

x− Λ2
2
8

+
Λ2

2

16

(m1 +m2)2

x+ Λ2
2
8

]

= −
√
2

4π

ySW dx

x2 − Λ4
2

64

(C.20)

∫
λ =

√
2

4π

[
4

3
uI1 − 2I2 +

Λ2
2

8
(m1 −m2)

2I3

(
Λ2

2

8
− u

3

)
− Λ2

2

8
(m1 +m2)

2I3

(
−Λ2

2

8
− u

3

)]
. (C.21)

C.3. Relations between alternatively defined periods

We show now the relation between a(0), a(0)D and a(0)1 , a(0)2 in the massless case. Assuming
u > 0 and with small |u| we have

a(0)(u) = a(0)1 (u) -a(0)(u) > 0

a(0)D (u) = −a(0)2 (u)) -a(0)D (u) < 0

a(0)(e2πi/3u) = a(0)1 (e2πi/3u)− a(0)2 (e2πi/3u)

a(0)D (e2πi/3u) = −a(0)1 (e2πi/3u) + 2a(0)2 (e2πi/3u)

a(0)(e−2πi/3u) = a(0)1 (e−2πi/3u)− a(0)2 (e−2πi/3u)

a(0)D (e−2πi/3u) = −a(0)2 (e−2πi/3u)

(C.22)

with their inverses
a(0)1 (u) = a(0)(u) -a(0)1 (u) > 0

a(0)2 (u) = −a(0)D (u) -a(0)2 (u) > 0

a(0)1 (e2πi/3u) = a(0)D (e2πi/3u) + 2a(0)(e2πi/3u) -e2πi/3a(0)1 (e2πi/3u) < 0

a(0)2 (e2πi/3u) = a(0)D (e2πi/3u)− a(0)(e2πi/3u) -e2πi/3a(0)2 (e2πi/3u) > 0

a(0)1 (e−2πi/3u) = a(0)(e−2πi/3u)− a(0)D (e−2πi/3u) -e−2πi/3a(0)1 (e−2πi/3u) < 0

a(0)2 (e−2πi/3u) = −a(0)D (e−2πi/3u) -e−2πi/3a(0)2 (e−2πi/3u) > 0

(C.23)
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Also
a(0)(−u) = −a(0)1 (−u) + a(0)2 (−u)

a(0)D (−u) = 3a(0)1 (−u)− 2a(0)2 (−u)

a(0)(−e2πi/3u) = a(0)2 (−e2πi/3u)

a(0)D (−e2πi/3u) = −a(0)1 (−e2πi/3u) + a(0)2 (−e2πi/3u)

a(0)(−e−2πi/3u) = a(0)2 (−e−2πi/3u)

a(0)D (−e−2πi/3u) = a(0)1 (−e−2πi/3u)− 2a(0)2 (−e−2πi/3u)

(C.24)

In the massive case, similar relations can be found by looking at the large u asymp-
totics (C.18) and, if the small u region is of interest, also to the continuous behaviour of the
functions involved.

D. Connection to Heun equations

D.1. Doubly confluent Heun equation
Let us now show that the equations for Nf = 0, 1, 2 are just particular cases of the doubly
confluent Heun equation20:

d2w

dz2
+

(
γ

z2
+
δ

z
+ ε

)
dw

dz
+
αz − q

z2
w = 0 (D.1)

It’s general solution is given by Mathematica as

w = c1HeunD[q,α, γ, δ, ε, z] + c2z
2−δe

γ
z−zεHeunD[δ + q − 2,α− 2ε,−γ, 4− δ,−ε, z] (D.2)

It is enough to just change variable as z = ey

d2w

dy2
+ (δ + γe−y + eyε− 1)

dw

dy
+ (αey − q)w = 0 (D.3)

and transforming the solution as

ψ(y) = exp
{
1

2

(
γe−y + (1− δ)y − εey

)}
w(y) (D.4)

to get

d2ψ

dy2
− 1

4

[
γ2e−2y + 2γ(δ − 2)e−y +

(
2γε+ (δ − 1)2 + 4q

)
+ ey(2δε− 4α) + ε2e2y

]
ψ(y) = 0 (D.5)

By comparing with the quantum SW curve for Nf = 2

−!2 d2

dy22
ψ +

(
Λ2

2

16
e2y2 +

Λ2m1

2
ey2 +

Λ2m2

2
e−y2 +

Λ2
2

16
e−2y2 + u

)
ψ = 0 (D.6)

20in the Mathematica’s notation, let δ ↔ γ and set ε = 1
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we get the parameter dictionary

γ = ±Λ2

2! ε =
Λ2

2!

δ =
2(1±m2)

!
α =

1

2!2 (Λ2!−m1Λ2 ±m2Λ2)

q =
1

8!2 [−2!2 + 8u− 8m2
2 ∓ 8m2!∓ Λ2

2]

(D.7)

or
γ = ±Λ2

2! ε = −Λ2

2!

δ =
2(1±m2)

!
α =

1

2!2 (−Λ2!−m1Λ2 ∓m2Λ2)

q =
1

8!2 [−2!2 + 8u− 8m2
2 ∓ 8m2!± Λ2

2]

(D.8)

By comparing with the quantum SW curve for Nf = 1 with y → −y1

−!2 d2

dy21
ψ +

(
Λ2

1

4
e−y1 + Λ1m1e

y1 +
Λ2

1

4
e2y1 + u

)
ψ = 0 (D.9)

we get the parameter dictionary

γ = ±Λ1

!
ε = 0

δ =
2(!±m1)

!

α = −Λ2
1

4

q =
1

4!2 [−!2 + 4u− 4m2
1 ∓ 4m1!]

(D.10)

By comparing with the quantum SW curve for Nf = 0, after also change of variable y →
y0/221

−!2 d2

dy20
ψ +

(
Λ2

0

2
ey0 +

Λ2
0

2
e−y0 + u

)
ψ = 0 (D.11)

γ = ±2
√
2Λ0

! ε =
2
√
2Λ0

! α =
2
√
2Λ0

!
q =

1

4!2 [−!2 ∓ 16Λ2
0 + 16u] δ = 2

(D.12)

21Notice though that as for theNf = 1, 2 theories in this paper, with respect toNf = 0 in [1] we use make the
rescaling ! →

√
2!.
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or
γ = ±2

√
2Λ0

! ε = −2
√
2Λ0

! α = −2
√
2Λ0

!
q =

1

4!2 [−!2 ± 16Λ2
0 + 16u] δ = 2

(D.13)

D.1.1. Alternative form

In the book onHeun equations [77] it is given another form for the doubly confluent Heun
equation, namely

z
d

dz
z
d

dz
w + α

(
z +

1

z

)
z
d

dz
w +

[
(β1 +

1

2
)αz +

(
α2

2
− γ

)
+ (β−1 −

1

2
)
α

z

]
w = 0 (D.14)

Transforming in normal form, then changing variable as z = ey and transforming again
into normal form we get

− d2

dy2
ψ +

(
γ +

1

4
α2e−2y +

1

4
α2e2y − αβ−1e

−y − αβ1e
y

)
ψ = 0 (D.15)

We have
w(z) = e−

α
2 (z−

1
z )ψ(y) (D.16)

We get the parameters map for Nf = 2

α = ±Λ2

2! = ±2eθ β1 = ∓m1

! = ∓M1 β−1 = ∓m2

!   = ∓M1 γ =
u

!2 = P 2 (D.17)

The authors [77] in particolar have solutinos corresponding to the lower sign convention

w∞,1(y) 0 (−2eθ+y)−( 12+M1) 0 ee
θ+y

e−iπ( 12+M1)ψ+,0(y) y → +∞ (D.18)
w∞,2(y) 0 e2e

θ+y
(−2eθ+y)M1− 1

2 0 ee
θ+y
ψ+,1 y → +∞ (D.19)

with
W [w∞,2, w∞,1] = 1 (D.20)

Define
λ = γ − α2/2 (D.21)

The DCHE has a countable number of eigenvalues, denoted λµ(α, β) with

µ ∈ ν + Z (D.22)

where ν is the Floquet characteristic exponent. The eigenvalues have expansion

λµ(α, β) = µ2 +
∞∑

m=1

λµ,m(β)α
2m . (D.23)

The first coefficient is [77]
λµ,1(β) = −1

2
+

2β−1β1
4µ2 − 1

. (D.24)
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D.2. Confluent Heun equation
We also connect the equation for Nf = 3 to confluent Heun equation and Nf = 4 (s = 1, 2)
to Heun equation...
Let us now show that the equations forNf = 0, 1, 2 are just particular cases of the doubly

confluent Heun equation22:

d2w

dz2
+

(
γ

z
+

δ

z − 1
+ ε

)
dw

dz
+

αz − q

z(z − 1)
w = 0 (D.25)

It’s general solution is given by Mathematica as

w = c1HeunC[q,α, γ, δ, ε, z] + c2z
1−γHeunC[(1− γ)(ε− δ) + q,α + (1− γ)ε, 2− γ, δ, ε, z] (D.26)

It is enough to just change variable as z = ey

w′′(y) +
(−γ + ey (γ + δ + (ey − 1) ε− 1) + 1)

ey − 1
w′(y) +

ey (αey − q)

ey − 1
w(y) = 0 (D.27)

and transform the solution as

ψ(y) = (1− ey)−
δ
2 exp

{
1

2
[(1− γ)y − εey]

}
w(y) (D.28)

The equation becomes

d2

dy2
ψ(y)− (γ − 1)2 + e2y (4α− 2ε(2γ + δ) + (γ + δ − 1)2 + 4q + ε2)− 2ey(γ(γ + δ − ε− 2) + 2q + 1)

4 (ey − 1)2
ψ(y)

− −2e3y (2α− ε(γ + δ) + ε2) + e4yε2

4 (ey − 1)2
ψ(y) = 0

(D.29)
Send y → −y and then y → y − ln 2 + 1

2 lnΛ3 then we obtain the quantum SW curve for
Nf = 3 with

γ = 1 +m1−m2

δ =
√

m2
1 + 2m1m2 +m2

2 − h̄2 + 1 + 1

ε =
Λ3

4

α =
1

8
Λ3(δ +m1 −m2 − 2m3 + 1)

q =
1

8

(
−4δ + Λ3 − 4m2

1 − 4δm1 + Λ3m1 − 4m2
2 + 4δm2 − Λ3m2 − Λ3m3 + 8u+ 2h̄2

)

(D.30)

22in the Mathematica’s notation, let δ ↔ γ and set ε = 1
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E. Numerical wave functions

− d2

dy20
ψ +

[
e2θ(ey + e−y) + P 2

]
ψ = 0 (E.1)

its general solution is given in terms of even C and odd S Mathieu functions as

ψ0 = c1C

[
4P 2,−4e2θ,

iy

2

]
− c2S

[
4P 2,−4e2θ,

iy

2

]
(E.2)

The solutions ψ0,±,0 are defined as

lim
y→−∞

ψ0,−,0(y) = 0 , lim
y→−∞

dψ0,−,0(y)

dy
= 0

lim
y→+∞

ψ0,+,0(y) = 0 , lim
y→+∞

dψ0,+,0(y)

dy
= 0

(E.3)

So they are given by

ψ0,+,0 = c1(θ, P )

[
iC

(
4P 2,−4e2θ,

iy

2

)
+ S

(
4P 2,−4e2θ,

iy

2

)]

ψ0,−,0 = c1(θ, P )

[
iC

(
4P 2,−4e2θ,

iy

2

)
− S

(
4P 2,−4e2θ,

iy

2

)] (E.4)

We see the behaviour (E.3) confirmed numerically. In particularwe find that ψ0,±,0 ismany
orders of magnitude smaller at y0 → ±∞ than at y0 → ∓∞. However, the values we nu-
merically get are always large because the Mathieu functions C and S are defined to be
divergent at infinity and so subtracting them even when they asymptotic to each other
gives a large difference because of the finite number of digits used.
We notice however that the normalization is not fixed. Even computing the wronskian

gives just a functional relation for the normalization

W [ψ0,−,1,ψ0,−,0] = −i = −ic0(θ, P )c0(θ + iπ/2, P )

{
W [C

(
4P 2,−4e2θ,

iy

2

)
, S

(
4P 2, 4e2θ,

i(y − iπ)

2

)
]

−W [C

(
4P 2, 4e2θ,

i(y − iπ)

2

)
, S

(
4P 2,−4e2θ,

iy

2

)
]

}

(E.5)
This normalizationproblem is avoidedby taking the logarithmic derivative ofψ and study-
ing the solution of the Riccati equation P as we do in the main text.
For instance we get the Floquet exponent as

2πiν = ln ψ0,+,0(y + 2πi)

ψ0,+,0(y)
= − ln ψ0,−,0(y + 2πi)

ψ0,−,0(y)
(E.6)

so we can identify the solution ψ0,±,0 with the positive (negative) Floquet solution

ψ0,±,0(y + 2πi) = e±2πiνψ0,±,0(y) (E.7)

If we used instead the doubly confluent Heun function given by Mathematica we would
not see this y → y+2πi Floquetmonodromy since those functions are defined for z = ey ∈ C
rather than on the Riemann surface.
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F. Floquet exponent through Hill determinant
Consider the more general Nf = 2 equation and change variable as z = iy. We get

d2

dz2
ψ + [θ0 + θ2e

2iz + θ−2e
−2iz + θ1e

iz + θ−1e
−iz]ψ = 0 (F.1)

with
θ0 = P 2 θ±2 = e2θ θ±1 = 2eθq1,2 (F.2)

We search for Floquet solutions, such that

ψ+(z + 2π) = e2πνψ+(z) ψ−(z + 2π) = e−2πνψ−(z) (F.3)

that implies they can be expanded in Fourier series as

ψ(z) = eνz
∞∑

n=−∞
bne

niz (F.4)

From the equation we get the recursion

(ν + in)2bn +
2∑

m=−2

θmbn−m = 0 (F.5)

Dividing by θ0 − n2 we get the matrix with convergent determinant




... ...
· · · ξn,n−1 1 ξn,n+1 ξn,n+2 0 · · ·
· · · ξn+1,n−1 ξn+1,n 1 ξn+1,n+2 ξn+1,n+3 · · ·
· · · 0 ξn+2,n ξn+2,n+1 1 ξn+2,n+3 · · ·
· · · 0 0 ξn+3,n+1 ξn+3,n+2 1 · · ·
... ...









...
bn−1

bn
bn+1

bn+2
...





= 0. (F.6)

with
ξmn =

−θm−n

(m− iν)2 − θ0
ξm,m = 1 (F.7)

Defining An as the finite 2n + 1 × 2n + 1 submatrix We also introduce a (2n + 1) × (2n + 1)
matrix

An =





1 ξ−n,−n+1 ξ−n,−n+2
ξ−n+1,−n 1 ξ−n+1,−n+2
ξ−n+2,−n ξ−n+2,−n+1 1

... · · ·

χ−1 1 ξ−1 0 0
ξ0,−2 ξ0,−1 1 ξ0,1 ξ0,2

0 ξ1,−1 ξ1,0 1 ξ1,2 ξ1,3

· · ·
...

1 ξn−2,n−1 ξn−2,n
ξn−1,n−2 1 ξn−1,n
ξn,n−2 ξn,n−1 1





(F.8)
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and
∆(iν) = lim

n→∞
detAn (F.9)

by ordinary methods [92] we arrive a this relation

∆(iν) = ∆(0)− sin2(πiν)

sin2 π
√
θ0

(F.10)

The Floquet exponent is then given by the roots of the equation

sin2(πiν) = ∆(0) sin2 π
√
θ0 (F.11)

or
cosh(2πν) = 1− 2∆(0) sin2 πP (F.12)

In particular for Nf = 2 ξm,n are given by

ξ(2)m,m∓2 = − e2θ

(m− iν)2 − P 2
ξ(2)m,m∓1 = − 2eθq1,2

(m− iν)2 − P 2
(F.13)

while for Nf = 1

ξ(1)m,m−2 = − e2θ

(m− iν)2 − P 2
ξ(1)m,m+1 = − e2θ

(m− iν)2 − P 2
ξ(1)m,m−1 = − 2eθq1

(m− iν)2 − P 2

(F.14)
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G. Renormalization flow from higher to lower Nf

From the quantum SW curve for Nf = 4

− !2 d2

dy24
ψ +

{
− exp(2y4)

(
q
(
q
(
m2

1 +m2
2 +m3

3 +m2
4

)
− 24(m1m2 +m3m4)

)
+ 16(q + 4)u

)
(G.1)

+ 4
√
q exp(3y4)

(
m2

1q −m1m2(q + 8) +m2
2q −m3m4q + 8u

)
(G.2)

+ 4
√
q exp(y4)

(
−m1m2q +m2

3q −m3m4(q + 8) +m2
4q + 8u

)
− (G.3)

− 4q exp(4y4)(m1 −m2)
2 − 4q(m3 −m4)

2

}
exp(−2y4)

4
(
−4

√
q cosh(y4) + q + 4

)2ψ+ (G.4)

+
h̄2
(√

q exp(−y4)
(
q exp(2y4)− 8

√
q exp(y4) + 4 exp(2y4) + q + 4

))

2
(
−4

√
q cosh(y4) + q + 4

)2 ψ = 0 (G.5)

Since we have
qm4 = Λ3 m4 → ∞ q → 0 (G.6)

we can set
y4 = y3 +

1

2
lnΛ3 −

1

2
ln q = y3 +

1

2
lnm4 → +∞ (G.7)

and exchanging the masses m3 ↔ m2 we arrive to

− !2 d2

dy23
ψ +

4e2y3Λ3 (m1 −m3)
2 + 4ey3

√
Λ3

(
−2h̄2 + 8m1m3 + Λ3m2 − 8u

)

16
(√

Λ3ey3 − 2
)2 ψ (G.8)

+
Λ2

3 + 64u− 24Λ3m2 + 4e−y3
√
Λ3 (8m2 − Λ3) + 4Λ3e−2y3

16
(√

Λ3ey3 − 2
)2 ψ = 0 (G.9)

which is the qSW curve for Nf = 3.
Since we have

Λ3m3 = Λ2
2 m3 → ∞ Λ3 → 0 (G.10)

we can set
y3 = y2 −

1

2
lnm3 → −∞ (G.11)

we get

− !2 d2

dy22
ψ +

e2y2
(
4Λ3

m2
1

m3
− 8Λ3m1 + 4Λ3m3

)
+ ey2

(
−8

√
Λ3√
m3

h̄2 + 32
√
Λ3m1

√
m3 + 4Λ

3/2
3 m2√
m3

− 32
√
Λ3u√
m3

)

16
(√

Λ3√
m3

ey2 − 2
)2 ψ

(G.12)

+
Λ2

3 + 64u− 24Λ3m2 + e−y2
(
32
√
Λ3

√
m3m2 − 4Λ3/2

3

√
m3

)
+ 4Λ3m3e−2y2

16
(√

Λ3√
m3

ey2 − 2
)2 ψ = 0 (G.13)
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which in the limit precisely reduce to

−!2 d2

dy22
ψ +

[
1

16
Λ2

2(e
2y2 + e−2y2) +

1

2
Λ2m1e

y2 +
1

2
Λ2m2e

−y2 + u

]
ψ = 0 (G.14)

which is the quantum SW curve for SU(2) Nf = 2 = (1, 1).
Alternatively, exchange

m3 ↔ m2 (G.15)
and let

y3 = y′2 −
1

2
lnΛ3 + lnΛ2 = y′2 +

1

2
lnm3 → +∞ (G.16)

−!2 d2

dy
′2
2

ψ +
e2y

′
2Λ2

2 (m1 −m2)
2 + ey

′
2Λ2

(
−2h̄2 + 8m1m2 + Λ2

2 − 8u
)
+ 16u− 6Λ2

2 + 8Λ2e−y′2

4
(
Λ2ey

′
2 − 2

)2 ψ = 0

(G.17)
which is the quantum SW curve for SU(2) Nf = 2 = (0, 2).
Since we have

Λ2
2m2 = Λ3

1 m2 → ∞ Λ2 → 0 (G.18)
we can set

y2 = y1 +
1

2
lnm2 → +∞ (G.19)

then the equation becomes

−!2 d2

dy21
ψ +

[
1

16
Λ2

2

(
m2e

2y1 +
1

m2
e−2y1

)
+

1

2
Λ2

√
m2m1e

y2 +
1

2
Λ2

√
m2e

−y2 + u

]
ψ = 0 (G.20)

which in the limit reduces to the Nf = 1 equation:

−!2 d2

dy21
ψ +

[
1

16
Λ3

1e
2y1 +

1

2
Λ3/2

1 e−y1 +
1

2
Λ3/2

1 m1e
y1 + u

]
ψ = 0 . (G.21)

Since we have
Λ3

1m1 = Λ4
0 m1 → ∞ Λ1 → 0 (G.22)

Let
y1 = y0 −

1

2
lnm1 → −∞ (G.23)

then we get

−!2 d2

dy20
ψ +

[
1

16

Λ3
1

m1
e2y0 +

1

2
Λ3/2

1 m1/2
1 e−y0 +

1

2
Λ3/2

1 m1/2
1 ey0 + u

]
ψ = 0 (G.24)

that precisely reduce to the Nf = 0 equation:

−!2 d2

dy20
ψ + (Λ2

0 cosh y0 + u)ψ = 0 . (G.25)
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