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Abstract  
 

Deep learning methods are extremely promising machine learning tools to analyze neuroimaging 

data. However, their potential use in clinical settings is limited because of the existing challenges 

of applying these methods to complex, high-dimensional neuroimaging data. In fact, by  

surveying the literature, data scarsity, data leakage, interpretability and reproducibility are the 

pitfalls of the existing deep learning systems that are designed to analyze  neuroimaging data. 

The survey also discovered a widely spreaded type of data leakage caused by splicing volumetric 

magnetic resonance image data based on individual 2D slices, for the purpose of training and 

validating a 2D CNN, leading to erroneous overestimated model performances. However, this 

type of data leakage has given less attention by the neuroimaging research community. Although 

there are a few deep learning tools that perform leakage-free pre-processing and provide an 

effective model training platform, due to the abscence of explainability feature, they are barely 

trusted by the clinicials. 

Hence, the goal of this PHD is first, to quantitatively assess the extent to which a biased model  

outputs an overestimated performance due to the presence of data leakage.  

Second, an openly available,  interpretable, and leakage-free deep learning software that is 

versatile enough to be used by many researchers is developed. The software is written in a 

python language and is developed using Keras framework, with Tensorflow backend, and other 

python packages to conduct both classification and regression analysis. In addition, it has a wide 

range of options in terms of model architectures, model training, and validation schemes 

including nested cross validation that allows model selection, hyperparametric optimization and 

unbiased model evaluation. 

The software was applied to the study of mild cognitive impairment (MCI) in patients with small 

vessel disease (SVD) using multi-parametric MRI data, including T1-weighted, T2-weighted 

FLAIR and feature maps [fractional anisotropy (FA) and mean diffusivity (MD)] extracted from 

diffusion tensor imaging (DTI). The cognitive performance of 58 patients with MCI and SVD 

measured by five neuropsychological tests (MoCA, SDMA, TMT-A, Stroop, ROC-F and Visual 
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search) is predicted using a multi-input CNN model taking brain image and demographic data.  

Each of the cognitive test scores was predicted using different MRI-derived features. As MCI 

due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features 

MD and FA produced the best prediction outcome of the TMT-A score which is inline with the 

hypothesis in the literature. 

In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer 

disease and healthy subjects 2) examining the neural correlates of the disease that causes a 

cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential 

of interpretability techniques to capture a biased deep learning model is developed.  Structural 

magnetic resonance imaging (MRI) data of 200 subjects (100 AD and 100 HC) obtained from 

OASIS dataset was used by the proposed CNN model. The model was trained using a transfer 

learning-based approach in a 5-fold cross-validation loop producing a balanced accuracy of 

71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were 

highlighted by the visualization tools. 

 

 

 

 

 

 

 

 

 

 



III 
 

Acknowledgements  

I would first of all like to thank my supervisor Prof. Stefano Diciotti, who has been an ideal 

teacher. mentor and thesis supervisor, offering precious support and encouragement with a 

perfect blend of insight and humor. I am proud of, and greatful for, my time with Prof. Diciotti, 

without whom competent guidance this work would not have been possible. 

I would also like to thank my co-supervisor Prof. Mauro Ursino for his valuable advice and 

support in completing my work.  

A delightful thanks also goes to Prof. Alba García Seco de Herrera and Prof. Luca Citi and all 

their collaborators, for the opportunity granted me to work in collaboration with them as part of 

my Ph.D. internship. 

A heartful thanks also go to Dr. Marco Giannelli, Dr. Carlo Tessa, Dr. Emilia Salvadori, Prof. 

Anna Poggesi, Prof. Antonio Giorgio, Prof. Nicola De Stefano, Prof.  Leonardo Pantoni, and 

Prof. Mario Mascalchi
 
for giving me a chance to work and collaborate with them. 

Finally, I would like to acknowledge all my colleagues in Bio-engineering for their hospitality 

and for the great time we had together. 

  

https://www-nature-com.ezproxy.unibo.it/articles/s41598-021-01681-w#auth-Alba-Garc_a_Seco_de_Herrera


IV 
 

Contents 
Acknowledgements ....................................................................................................................... III 

List of figures ............................................................................................................................. VIII 

List of tables ............................................................................................................................... XIV 

List of acronyms .......................................................................................................................... XV 

1. Introduction ............................................................................................................................. 1 

1.1 Imaging the structure and function of the brain ............................................................... 1 

1.2 Neuroimaging and deep learning ..................................................................................... 2 

1.3 Workflow of deep learning for neuroimaging data .......................................................... 3 

1.3.1 Data acquisition ........................................................................................................ 3 

1.3.2 Data pre-processing .................................................................................................. 5 

1.3.3 Analysis of neuroimaging data ................................................................................. 5 

1.3.4 Interpretation of results ............................................................................................. 6 

1.4 Application of deep learning techniques in neuroimaging............................................... 7 

1.4.1 Overview of convolutional neural networks ............................................................. 7 

1.4.2 Application examples of CNNs in neuroimaging ..................................................... 9 

1.5 Motivations and objectives of the study ......................................................................... 12 

2. Overview of deep learning methods ...................................................................................... 14 

2.1 Artificial neural networks and deep learning ................................................................. 14 

2.1.1 Artificial neural networks ....................................................................................... 14 

2.1.2 Back-propagation .................................................................................................... 17 

2.1.3 Deep Learning ......................................................................................................... 17 

2.2 Convolutional neural networks ...................................................................................... 18 

2.2.1 Convolution layers .................................................................................................. 19 

2.2.2 Pooling layer ........................................................................................................... 20 



V 
 

2.2.3 Fully connected layer .............................................................................................. 22 

2.3 Model training ................................................................................................................ 22 

2.4 Model validation and evaluation techniques .................................................................. 23 

2.4.1 Holdout validation .................................................................................................. 25 

2.4.2 Cross-validation (CV) ............................................................................................. 27 

2.4.3 Nested cross-validation ........................................................................................... 29 

2.5 Performance measurement ............................................................................................. 31 

2.5.1 Performance metrics for classification.................................................................... 31 

2.5.2 Performance metrics for regression ........................................................................ 33 

3. Challenges of application of deep learning in neuroimaging ................................................ 34 

3.1 Scarcity of training data and overfitting .............................................................................. 34 

3.2 Data leakage ................................................................................................................... 43 

3.2.1 Effect of data leakage in brain MRI classification using 2D convolutional neural 

networks43 

3.3 Interpretability ................................................................................................................ 63 

4. Development of interpretable, leakage-free and reproducible deep learning framework for 

analyzing neuroimaging data ........................................................................................................ 67 

4.1 Main features of our deep learning framework .............................................................. 67 

4.2 General structure of the software ................................................................................... 74 

4.3 Code development .......................................................................................................... 75 

5. Applications of deep learning in neuroimaging .................................................................... 79 

5.1 Prediction of the cognitive performance in patients with small vessel disease and mild 

cognitive impairment: a deep learning approach ...................................................................... 79 

5.1.1 Introduction ............................................................................................................. 79 

5.1.2 Materials and methods ............................................................................................ 81 

5.1.3 Results ..................................................................................................................... 88 



VI 
 

5.2 3D Convolutional Neural Networks for Diagnosis of Alzheimer’s Disease via structural 

MRI 90 

5.2.1 Introduction .................................................................................................................. 90 

5.2.2 Related Work .......................................................................................................... 91 

5.2.3 Methodology ........................................................................................................... 93 

5.2.4 Results ..................................................................................................................... 97 

5.3 Development of an interpretable deep learning system for the classification of 

Alzheimer’s disease................................................................................................................... 98 

5.3.1 Introduction ............................................................................................................. 98 

5.3.2 Methods................................................................................................................... 99 

5.3.3 Results ................................................................................................................... 102 

6. Discussion ............................................................................................................................ 106 

6.1 Effect of data leakage in brain MRI classification using 2D convolutional neural 

networks .................................................................................................................................. 106 

6.2 An interpretable, leakage free and reproduciable deep learning framework for analyzing 

neuroimaging data ................................................................................................................... 109 

6.3 Prediction of the cognitive performance in patients with small vessel disease and mild 

cognitive impairment: a deep learning approach .................................................................... 110 

6.4 Development of interpretable deep learning system for the classification of Alzheimer 

disease ..................................................................................................................................... 112 

7. Conclusion ........................................................................................................................... 113 

8. Appendix 1 .......................................................................................................................... 136 

9. Appendix 2 .......................................................................................................................... 140 

10. Appendix 3 ....................................................................................................................... 146 

11. Appendix 4 ....................................................................................................................... 148 

12. Appendix 5 ....................................................................................................................... 152 



VII 
 

13. Appendix 6 ....................................................................................................................... 154 

14. Appendix 7 ....................................................................................................................... 157 

15. Appendix 8 ....................................................................................................................... 162 

 

 

  



VIII 
 

List of figures 

Figure 1.1: A workflow showing the use of deep learning for analyzing neuroimaging data. A) 

shows the data acquisition task using different modalities such as MRI. B) a pre-processing step 

used to enhance the brain images and improve their quality. C) illustrates the model training and 

evaluation phase for classifying a sample brain MRI in to different cognitive groups: CN, 

cognitively normal; MCI, mild cognitive impairment and AD, Alzheimer’s disease. ................... 4 

 

Figure 1.2: An example of a gray scale image representing the number 8. It is composed of 

pixels arranged as a 2D array of dimension height x weight. Each pixel’s value represents the 

gray scale intensity value in the range of 0 to 255, 0-representing black pixels(Ünal, 2019). ....... 8 

 

Figure 1.3: Computations applied to an input image. The image is first convolved with the filters, 

then a bias term is added to the result, and then it passes through a non-linear function. .............. 9 

 

Figure 2.1:  Basic structure of the artificial neuron. Each input X is associated with a weight W. 

The sum of all weighted inputs is passed onto a nonlinear activation function f that leads to an 

output Y. ....................................................................................................................................... 14 

 

Figure 2.2: A simple feed-forward neural network architecture consisting of an input layer with 

three nodes to accept three input variables, one hidden layer having five nodes and an output 

layer with one neuron, is used for classifying the demographic input data representing a subject 

sample to be classified as a healthy control an AD patient(2019). ............................................... 16 

 

Figure 2.3:A general representation of deep learning models(2019). .......................................... 18 

 

Figure 2.4: Example showing the convolution between an input image and a 3 x 3 kernel. An 

element-wise product between the filter and the overlapped image pixel values is computed and 

summed up to get an output(2022). .............................................................................................. 20 

 

file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114056998
file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114056998
file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114056998
file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114056998


IX 
 

Figure 2.5: Plots of different activation functions. a) sigmoid activation, b) hyperbolic tangent 

(tanh) activation, c) Rectified linear unit (ReLu) activation and LeakyRelu activation(Yang, 

2018). ............................................................................................................................................ 21 

 

Figure 2.6: A holdout model validation. The dataset is split into training and testing sets, then the 

model is trained on the training sub-sampled set, ; Lastly, the trained model is evaluated on the 

test set............................................................................................................................................ 27 

 

Figure 2.7: An example of a 5-fold cross-validation.  The dataset is divided into 5 equal parts 

called folds. Then, the model is trained 5 times, each time, one fold is kept as a test set and the 

remaining 4 parts are merged together and used to train the model. The performance is computed 

as the average of the performance of the 5 folds. ......................................................................... 29 

 

Figure 2.8: A procedure of nested CV. There are two nested folds where the inner fold is used to 

tune the hyperparameters of the model, and the inner one is used to evaluate the performance of 

the chosen model........................................................................................................................... 30 

 

Figure 2.9: An Example of ROC curve and AUC a) a ROC curve, represented as a plot of TPR 

vs. FPR. b) an AUC score, which is shown as the area under the ROC curve. ............................ 32 

 

Figure 3.1:The training process is stopped when the validation loss starts to increase(Mustafeez, 

2022). ............................................................................................................................................ 35 

 

Figure 3.2: Illustration of the dropout technique to reduce the risk of overfitting. During training 

time, randomly selected neurons are turned off along with their connections(Dabbura, 2018). 36 

 

Figure 3.3: A general block diagram representing a GAN architecture. It consists of two neural 

network models, which are the generator and discriminator. The generator generates real-like 

images from a random noise vector and the discriminator tries to classify the incoming input as 

real or fake. ................................................................................................................................... 39 

file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114057005
file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114057005


X 
 

 

Figure 3.4: An example of a DCGAN that can generate an image with a resolution of 64x64x3. 

Both the generator and discriminator have a convolutional-based architecture. Starting from a 

random noise of dimension 100x1, the generator produces an image of resolution 64x64x3. The 

discriminator accepts both the real images in the training set and synthetic images from the 

generator to perform - binary classification of real versus fake labels. It takes an image of 

dimension 64x64x3 and through its de-convolution layers; the size of the 2D array is reduced at 

each level finally outputting as a real image with 100% probability and 0 for classifying the input 

as a fake image (Zhang et al., 2020). ............................................................................................ 40 

 

Figure 3.5: Flow of knowledge from the source domain to the target domain using transfer 

learning. ........................................................................................................................................ 42 

 

Figure 3.6: Schematic diagram of the overall T1-weighted MRI data processing and validation 

scheme. First, a preprocessing stage included co-registration to a standard space, skull-stripping 

and slices selection based on entropy calculation. Then, CNNs model’s training and validation 

have been performed on each dataset in a nested CV loop using two different data split 

strategies: a) subject-level split, in which all the slices of a subject have been placed either in 

training or in the test set, avoiding any form of data leakage; b)slice-level split, in which all the 

slices have been pooled together before CV, then split randomly in to training and test set. ...... 54 

 

Figure 3.7: Sample preprocessed T1-weighted axial images from OASIS-200, ADNI, PPMI and 

Versilia datasets. ........................................................................................................................... 55 

 

Figure 3.8: The two different networks based on the VGG16 architecture are shown. Each 

colored block of layers illustrates a series of convolutions. (a) The first model, named VGG16-v1 

consists of five convolutional blocks followed by three fully connected layers. Only the last three 

fully connected layers are fine-tuned, b) On the other hand, the second model, VGG16-v2, has 

five convolutional blocks followed by a global average pooling layer, and all the layers are fine-

tuned. ............................................................................................................................................. 57 



XI 
 

 

Figure 3.9: A modified ResNet-18 architecture with an average pooling layer at the end is 

shown. The upper box represents a residual learning block with an identity shortcut. Each layer 

is denoted as (filter size, # channels); layers labeled as “freezed” indicates that the weightes are 

not updated during backpropagation, whereas when they are labeled as “fine-tuned” they are 

updated. The identity shortcuts can be directly used when the input and output are of the same 

dimensions (solid line shortcuts) and when the dimensions increase (dotted line shortcuts). 

ReLU=rectified linear unit. ........................................................................................................... 59 

 

Figure 3.10: Occlusion map experiment by Zeiler and Fergus (Zeiler & Fergus, 2014) - was 

performed by occluding the images to the left and the generated occlusion heatmaps at the last 

classification layer. ....................................................................................................................... 65 

 

Figure 4.1: Outputs presented for regression analysis. (a) path to the MRI dataset, (b) size of 

training and validation datasets, image indices selected as a validation set, and the fold number, 

(c) the CNN model architecture, (d) the model’s average performance on the important regions 

of the image for prediction. See section 3.3 for a detailed explanation. ....................................... 71 

 

Figure 4.2: The hyperparameter space to search for the best configuration of the analysis. ........ 72 

 

Figure 4.3: The output of one fold of nested CV loop. ................................................................. 72 

 

Figure 4.4: An example of visualization output of an AD slice classified correctly for binary 

classification of AD vs HC, whose learning curve is shown in Figure 4.5. ................................. 73 

 

Figure 4.5: Learning curves for a binary classification task between AD and HC group. ........... 73 

 

Figure 4.6: General overview of the deep learning framework. ................................................... 74 

 

file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114057019
file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114057019
file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114057020


XII 
 

Figure 4.7: Schematic representing a nested CV. It involves three loops of execution, the outer k-

fold CV, the iteration over the hyperparameter space and the inner k-fold CV. After the dataset is 

divided in to N_outer folds, for each of the outer folds fo, where o ϵ {1, 2, 3, …, N_outer}, model 

selection is performed by running the inner loop  loop fi , where  i ϵ {1, 2, 3, …., N_inner}  for 

eachc possible configuration of the hyperparameter pi, where j ϵ {1, 2, 3, …, P}. ....................... 78 

 

Figure 5.1: General overview of our method: each MRI data (T1-weighted, FLAIR, MD and FA) 

has passed through a preprocessing step. Then the adopted VGG16 model is trained on the 

training samples [MRI data and demographic variables (age, sex and years of education)] and the 

trained CNN is used to make a prediction of raw cognitive scores (MoCA, SDMT, TMT-A, 

ROC-F immediate copy, Stroop and visual search). Abbreviations: CNN, convolutionaal neural 

network; DWI, diffusion-weighted image; FA, fractional anaisotropy; MD, mean diffusivity) .. 84 

 

Figure 5.2: The adapted multi-input VGG16 model. Brain image data is processed by the 

convolutional blocks and demographic data is fed to the densely connected layers. The features 

are then concatenated and analyzed by the last fully connected layers (FC-256 and FC-1). 

Abbreviations: FC, fully connected; VGG, visual geometry group. ............................................ 86 

 

Figure 5.3 Comparison of a MoCA score prediction on the test set with and without 

incorporating demographic variables. For all MRI types, including demographic data 

significantly improves the prediction accuracy of the CNN model. ............................................. 89 

 

Figure 5.4: Overview of the 3D convolutional neural network (CNN) architecture. 3D boxes 

show input and feature maps. ........................................................................................................ 91 

 

Figure 5.5: Example of six Magnetic resonance imaging (MRI) slices of two Alzheimer’s 

Disease (AD) subjects from ADNI and OASIS databases (Petersen, et al., 2010; Marcus, et al., 

2007). a) A sample T1-weighted MRI slices of an Alzheimer’s disease (AD) patient from ADNI 

dataset after pre-processing – in coronal, sagittal, and axial view (left, right and bottom 

respectively). b) Sample of T1-weighted MRI slices of an Alzheimer’s disease patient from the 

file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114057024
file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114057024
file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114057024
file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114057024


XIII 
 

OASIS dataset after pre-processing processing – in coronal, sagittal, and axial view (left, right 

and bottom respectively) ............................................................................................................... 95 

 

Figure 5.6: The architecture of the convolutional neural network (CNN) model used in our AD 

classification tasks. ....................................................................................................................... 96 

 

Figure 5.7: A customized VGG16 model consists of: a convolutional that which is transferred 

from the pre-trained VGG16 model, a GAP (global average pooling layer) and two FC layers 

(FC-256 and FC-2). ..................................................................................................................... 101 

 

Figure 5.8: Learning curves of the model on both the training and validation samples. ............ 103 

 

Figure 5.9: the learning curve of the biased model trained with data leakage. ........................... 104 

 

Figure 5.10:CNN visualization heatmaps of MRI slices taken from AD patients, which the CNN 

model correctly classifies. a) represents Grad-CAM images, b) saliency maps, c)occlusion maps 

and d) SHAP heatmaps. .............................................................................................................. 104 

 

Figure 5.11: CNN visualization heatmaps give an indication of a model producing a biased 

performance due to the presence of data leakage.  Heatmaps on the left side are generated by the 

model which is trained on data split based on slices (with data leakage). For CAM, occlusion 

map and SHAP, the heatmap represents a very low number (probability close to 0), capturing the 

biased model. While, Grad-CAM fails to identify the biased model.......................................... 105 

 

 

  

file:///C:/Users/selam/Desktop/thesis_review/Atnafu_selamawet_final_thesis_reviewed_copy%20(Repaired).docx#_Toc114057030


XIV 
 

List of tables 

Table 3.1:Summary of the previous studies performing classification of neurological disorders 

using MRI and with clear data leakage (see also Appendix 1 online for a detailed description). 46 

 

Table 3.2:Summary of the previous studies performing classification of neurological disorders 

using MRI and suspected to have potential data leakage (see also Appendix 2 online for a 

detailed description). ..................................................................................................................... 47 

 

Table 3.3:Summary of the previous studies performing classification of neurological disorders 

using MRI and that provide insufficient information to assess data leakage (see also Appendix 3 

online for a detailed description). ................................................................................................. 48 

 

Table 3.4:Demographic features of subjects belonging to OASIS-200, ADNI, PPMI, and Versilia 

datasets. The same information for the OASIS-34 datasets has been reported in Appendix 5 

online............................................................................................................................................. 50 

 

Table 3.5:Mean slice-level accuracy on the training and test set of the outer CV over 5-fold 

nested CV has been reported for three 2D CNN models (see “Methods” section), all datasets, and 

two data split methods (slice-level and subject-level). The difference between accuracy using 

slice-level and subject-level split in the test set has also been reported. ...................................... 62 

 

Table 5.1: Demographic data and descriptive statistics of neuropsychological scores in the 

sample of 58 patients with SVD and MCI. mean ± SD (min – max). .......................................... 82 

 

Table 5.2: Average Pearson’s correlation coefficient over 10-fold nested CV on outer fold test 

samples. ......................................................................................................................................... 89 

 

Table 5.3: Average model’s performance computed over the five folds on the test set. ............ 103 

Table 5.4: Average accuracy computed over the five folds on the validation set. ..................... 103 



XV 
 

List of acronyms 
 

1D, one dimensional 

2D, two dimensional 

3D, three dimensional 

4D, four dimensional 

AD, Alzheimer's disease  

ADNI, Alzheimer’s Disease Neuroimaging Initiative  

AE, auto encoder 

AI, artificial intelligence  

ANN, artificial neural networks  

ASD, autism spectrum disorder 

AUC, area under ROC curve 

CDR, Clinical Dementia Rating 

CN, cognitively normal 

CNN, convolutional neural network 

CT, computed tomography 

CV, cross validation 

DAT, dopamine transporter 

DBN, deep belief network 

DCGAN, deep convolutional generative adversarial networks 

DFWG, data format working group 



XVI 
 

DLTK, deep learning toolkit for medical imaging 

DTI, diffusion tensor imaging 

DWI, diffusion weighted image 

EMD, earth Mover’s Distance 

FA, fractional anisotropy  

FC, fully connected 

FLAIR, fluid-attenuated inversion recovery 

fMRI, functional magnetic resonance imaging 

FOV, field of view 

FPR, false positive rate 

GAN, generative adversarial network 

GAP, global average pooling  

HC, healthy controls 

ID, identification number 

ILSVRC, Large Scale Visual Recognition Challenge  

LM, logical memory  

MCI, mild cognitive impairment 

MD, mean diffusivity 

MLP, multilayer perceptron  

MMSE, Mini-Mental State Examination  

MoCA, Montreal Cognitive Assessment 



XVII 
 

MPRAGE, Magnetization Prepared Rapid Gradient Echo  

MR, magnetic resonance 

MRI, magnetic resonance imaging  

MSE, mean squared error 

NEX, number of excitations 

Nifti, neuroimaging informatics technology initiative 

NIH, national institute of health 

OASIS, Open Access Series of Imaging Studies 

PD, Parkinson’s disease 

PET, positron emission tomography  

PPMI, Parkinson’s Progression Markers Initiative 

ReLU, rectified linear unit 

ResNet, residual neural network  

ROC, receiver operating characteristics 

ROCF, Rey-Osterrieth complex figure 

ROI, region of interest 

Rs-fMRI, resting state functional magnetic resonance imaging 

SAE, stacked auto encoder 

SD, standard deviation 

SDMT, symbol digit modalities test 

SGD, stochastic gradient descent 



XVIII 
 

SHAP, shapley additive explanations 

sMRI, structural magnetic resonance imaging 

SPECT, single positron emission tomography  

SVD, small vessel disease 

SVM, support vector machine 

SWEDD, scans without evidence of dopaminergic deficit 

TBI, traumatic brain injury 

TD, delay time 

TD, typically developing 

TE, echo time  

TI, inversion time 

TMT-A, trial making test part A  

TPR, true positive rate 

TR, repetition time 

VGG, visual geometry group 

VMAT-2, vesicular monoamine transporter type 2  

VMCI, vascular mild cognitive impairment 

WGAN, Wasserstein generative adversarial networks 

WM, white matter



1 
 

Chapter 1 

1. Introduction  
1.1 Imaging the structure and function of the brain 

Medical imaging has become a standard tool for examining the structure, function and pathology 

of the human brain. It allows increasing our knowledge of how the brain and the other parts of 

the nervous system work and what structural or functional changes may be associated with a 

given clinical presentation of a disease or medical condition(Kassubek, 2017). The use of various 

neuroimaging techniques, such as magnetic resonance imaging (MRI), positron emission 

tomography (PET), and single positron emission tomography (SPECT) among the popular ones, 

for the in vivo investigation of neurological disorders, have increased substantially(Young et al., 

2020). These tools have been used in the prediction, diagnosis, and monitoring of disease 

progression. It has also been helping to define imaging bio-markers that can be employed to infer 

structural and functional brain alterations associated with various neurological disorders. These 

imaging markers may be used primarily for early diagnosis, planning treatment strategies, 

assessing its effects, and tracking disease progression. Various studies have employed 

neuroimaging techniques combined with a variety of analysis methods to illustrate the 

association between the changes in clinical measures and structural and functional alterations of 

the brain caused by different neurological diseases, such as mild cognitive impairment (MCI), 

Alzheimer's disease (AD) and Parkinson's disease (PD)(Yin et al., 2013, Ibarretxe‐Bilbao et al., 

2009). 

The standard machine learning techniques used to analyze neuroimaging data, such as sparse 

learning, support vector machine (SVM), Gaussian networks, random forest, decision tree, 

hidden Markov model, etc., generally require four steps: feature extraction, feature selection, 

dimensionality reduction, and feature-based classification or regression algorithm selection(Jo et 

al., 2019). One of the limitations of these approaches is the need for defining and manually 

crafting features based on a domain-specific knowledge that could represent the disease 

pathology. However, since medical images are very complex, the manual feature selection step is 

not convenient for non-expert users. Another drawback is that, due to their shallow architectures, 

conventional machine learning methods have less representational power to analyze high-
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dimensional medical images, especially brain images(Pandya et al., 2019). Hence the 

effectiveness of neuroimaging to aid in clinical setup greatly depends on the use of more 

efficient data analysis methods. 

1.2 Neuroimaging and deep learning 

In recent years, the use of artificial intelligence (AI) methods with great representational power 

capable of analyzing large scale, high dimensional, complex raw neuroimaging data to generate 

features automatically has been attracting considerable attention of the neuroimaging research 

community(Plis et al., 2014). Deep learning, a machine learning approach that allows a model to 

automatically learn patterns from the raw input data, is a family of representation learning 

methods modeled by a combination of non-linear but simple functions or modules, hence can 

model very complex functions. The first simple module produces a representation of the raw 

input data, and each consecutive module hierarchically transforms the representation coming 

from the lower level into a slightly more abstract level(LeCun et al., 2015). Deep learning 

methods are known by their specific architecture, namely some form of neural networks, which 

are, to some extent, inspired by the structure of the human brain(Zaharchuk et al., 2018).  

There are several advantages of using deep learning techniques for neuroimaging data analysis: 

1. While standard machine learning methods extract features based on some a priori 

knowledge, which can only extract some features associated with a specific application, 

deep learning can find new features that are suitable to specific applications but have 

never been previously discovered by researchers(Liu et al., 2018b); 

2. Deep learning methods can support better data interpretation and supervision, which can 

assist the physicians efficiently(Karthik et al., 2020). This is because they have great 

potential in capturing hidden representations and automatically extracting features, 

especially from the complex neuroimaging data(Karthik et al., 2020); 

3. Their great representational power makes deep learning approaches convenient for 

analyzing the complex neuroimaging data, as the pathology-specific associations are 

embedded at intricate abstract levels. Hence, these methods can outperform traditional 

machine learning methods substantially and particularly well, presenting a lower 
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asymptotic complexity in relative computational time, despite being more complex in 

their architecture and parameterization(Abrol et al., 2021); and  

4. The training phase of deep learning approaches often involves the automatic and adaptive 

discovery of discriminative data representations at multiple levels of hierarchy in an end-

to-end (input to output) learning procedure. Application of this radically different 

approach in an end-to-end manner can also have a provision backward mapping to the 

input image space through methodical interpretations, thus possibly allowing us to make 

inferences about brain mechanisms, for example, delineating the features in the input 

space that are most influential in predicting an attempted task.  On the contrary, relevant 

spatial relationships may be lost at the dimensionality reduction stage, arguably, required 

for standard machine learning methods to work(Abrol et al., 2021). 

1.3 Workflow of deep learning for neuroimaging data 

1.3.1 Data acquisition 

Data acquisition is the first step in any statistical image processing procedure. In neuroimaging, 

the data acquired includes clinically measured test scores, such as the cognitive status as 

measured by the Montreal cognitive assessment (MoCA) score, demographic variables of each 

participant, including age, sex, weight, education, race, etc., and brain images collected through a 

variety of imaging modalities. To make the AI systems developed for analyzing neuroimaging 

data useful for any researcher and to any user, the acquisition procedure should follow common 

standardization rules. In order to facilitate the subsequent processing phases, this process of 

collecting data must be carried out following appropriate precautions, including: 

1. Use a unique and well-defined protocol so that the transversal uniformity of the data 

within the case history is guaranteed; 

2. Conduct the acquisitions with the foresight to verify that there are no artifacts or parts of 

the volume of interest excluded, which even if not considered non-critical for the 

reporting phase by the clinician, can also constitute a vital limit during the subsequent 

computerized processing; and 
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Figure 1.1: A workflow showing the use of deep learning for analyzing neuroimaging data. A) 

shows the data acquisition task using different modalities such as MRI. B) a pre-processing step 

used to enhance the brain images and improve their quality. C) illustrates the model training and 

evaluation phase for classifying a sample brain MRI in to different cognitive groups: CN, 

cognitively normal; MCI, mild cognitive impairment and AD, Alzheimer’s disease. 

 

3. In cases where it is desirable and as permitted by the specific technique used, try to 

obtain isotropic images, in which the volumetric element of the image, voxel, has the 

same size in the three orthogonal directions of space. 
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1.3.2 Data pre-processing 

Pre-processing refers to the procedure of applying multiple operations, such as magnetic field 

inhomogeneity correction, on-brain tissue removal, and registration onto a standard space, that 

help to remove unwanted artifacts and transform the data into a standard format. This step is 

aimed at: 

1. increasing the usability of the data by maintaining its original organization, for example, 

by emphasizing the contrast or filtering the noise;  

2. extracting information that is not directly available in the starting image, such as images 

of the diffusion tensor model in the case of diffusion magnetic resonance (MR) imaging; 

and 

3. Segmenting and/or mapping the volume based on atlases and standardized subdivision 

methods to perform specific measurements and/or obtain a particular topological 

organization of the data. Thus obtaining the descriptive attributes intended for the 

subsequent phases. 

1.3.3 Analysis of neuroimaging data 

Medical image analysis is the process of solving medical problems by extracting information 

from medical images collected based on different imaging modalities and applying digital image 

analysis techniques. Predicting disease onset, diagnosing and categorizing disease progression 

(stage), and following up treatment response are among medical problems that need a solution. 

These problems can be modeled by medical image analysis tasks such as classification, 

detection/localization, registration, segmentation, and prediction (regression).  Classification and 

regression are the most frequently applied tasks on neuroimaging data using advanced analysis 

methods. 

Classification 

Classification refers to categorizing each subject of the study population into one of the classes 

or subgroups to which they belong. For example, an MRI scan of subjects in a study cohort can 

be classified as a cognitively normal individual, an AD brain or a brain with mild symptoms of 

cognitive decline, MCI,  groups, or classes.  
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The classification algorithm is developed through a preliminary phase called training and a 

verification phase of model evaluation or validation. For this purpose, the whole dataset is split 

into a training set and a testing/validation set. During the training step, the model is fed with the 

training dataset along with the predefined parameters of the model. Hence, it learns how to map 

the input samples (x) to the output labels (y) in the training set. In the testing phase, test samples 

will be presented to the model to verify or validate that the model is performing well in 

classifying unseen test samples. It is important to note that, during the splitting of the dataset into 

training and test sets, the two sub-sampled datasets should be independent of each other. The 

performance of the model is quantified by the classification correctness and is measured in terms 

of different evaluation metrics. For example, accuracy, sensitivity, and specificity are the most 

common statistical metrics used for a binary classification task. 

Regression 

Regression analysis is an operation that aims to estimate the relationship between one or more 

dependent variables and a dependent variable, which represents a situation or characteristics of 

the subjects under study. To build a regressive system, a model is provided with training data, 

including the values of the input variables and a continuous output variable, which is the 

independent variable, along with the learning algorithm and the parameters of the model. During 

the validation of the model, input variables of test samples will be presented to the predictive 

system, and the model will produce the predicted value of the continuous variable. Here the 

performance of the model is measured in terms of the closeness of the predicted value of the 

variable to its actual value. Mean squared error (MSE) and Pearson’s correlation coefficient (r) 

are the commonly used performance  

metrics for regression analysis.  

1.3.4 Interpretation of results 

The results obtained by analyzing neuroimaging data using any machine learning method should 

be discussed well and be given a clinical interpretation(Stevens et al., 2020). First, the model’s 

performance should be evaluated using statistical measures with respect to the pre-defined 

evaluation metrics and be clearly presented. A further assesment that involves identifying 

features that are given a higher importance by the model for the prediction analysis is also 

important to infer the association between the features and the variable predicted by the model 
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1.4 Application of deep learning techniques in neuroimaging 

1.4.1 Overview of convolutional neural networks 

Convolutional neural networks (CNNs) are particular types of deep learning models suited to 

image processing computations and could be applied for both classification and regression tasks. 

They have a layered architecture, where each layer consists of feature extracting elements called 

filters arranged in small 2D arrays. During the model training procedure, these filters are applied 

to the image and convolved with the pixels of the image, producing feature maps of that layer.  

The convolution operation between  two 2D arrays is represented mathematically by: 

( ) ( )[ ] ∑ ∑                                                               

(1.1) 

Where, f represents a 2D filter array and I an image. 

An image dataset is a collection of either gray scale or color images. A gray scale image is 

represented as a 2D array of numbers arranged in a dimension of height x width (h x w). Each 

pixel is represented by a number between (0, 255), where the value represents the gray scale 

intensity of that pixel (Figure 1.2). While, for a color RGB image, there are three different 

channels: R-red, G-green, and B-blue channels. In each channel, the pixel values represent the 

pixel’s intensity for that specific color.   
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Figure 1.2: An example of a gray scale image representing the number 8. It is composed of 

pixels arranged as a 2D array of dimension height x weight. Each pixel’s value represents the 

gray scale intensity value in the range of 0 to 255, 0-representing black pixels(Ünal, 2019). 

  

 

In each layer of a CNN, more than one filter is included to extract a variety of features. Each 

filter tries to capture different features, shapes, and edges. Considering one layer (e.g., the first 

layer) of a CNN, if an input image “I” of dimensions n x n is presented to a convolutional layer 

consisting of d filters of size f x f, the computations performed to get an output of this layer are:  

1. First, the image I will be convolved with each of d filters, where the convolution involves 

an element-wise dot product between the pixels of the image and the elements of the 

filter, which are considered the “weights” of that layer;  

2. After the convolution, a “bias” term is added to each element; and 

3. Finally, the summed output passes through a non-linear activation function. These 

operations are illustrated in Figure 1.3. 

According to these computations, a CNN model learns how to relate the input to the output by 

minimizing a pre-defined error function through an iterative optimization procedure. In this way, 

the trained CNN acquires knowledge about the specified classification or regression task and will 

be used to give predictions on unseen input data.  
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Figure 1.3: Computations applied to an input image. The image is first convolved with the filters, 

then a bias term is added to the result, and then it passes through a non-linear function. 

  

 

1.4.2 Application examples of CNNs in neuroimaging 

In recent years, deep learning has become a popular class of machine learning algorithms in 

computer vision and has been successfully employed in various tasks, including multimedia 

analysis (image, video, and audio analysis), natural language processing, and robotics(Hatcher 

and Yu, 2018). In particular, deep convolutional neural networks (CNNs) hierarchically learn 

high-level and complex features from input data, hence eliminating the need for handcrafting 

features, as in the case of conventional machine learning schemes(Goodfellow et al., 2016a). It 

has also become a natural trend to apply these methods for different neuroimaging data analysis 

tasks in order to better understand brain alterations caused by normal aging and to solve the 

clinical questions related to different neurological disorders (see Greenspan et al. and Zaharchuk 

et al. for reviews). Several studies employed deep learning methods for image improvement and 

transformation(Bahrami et al., 2016, Han, 2017, Li et al., 2014, Liu et al., 2018a, Vemulapalli et 

al., 2017, Zhu et al., 2018). Other studies performed lesion detection and segmentation (Chang, 

2016, Dou et al., 2016, Maier et al., 2015) and image-based diagnosis using different CNNs 

architectures(Liu et al., 2015, Plis et al., 2014). Deep learning has also been applied to more 

complex tasks, including identifying patterns of disease subtypes, determining risk factors, and 

predicting disease progression (see, e.g., Zaharchuk et al. and Davatzikos for reviews). 

* 
+  bias ReLU ( )  

Input image  

Filter 
Adding bias and 

applying  non-

linearity 

output 

 

Convolution  
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Considering disease diagnosis, several studies employed convolutional neural network models to 

diagnose different neurological and psychiatric diseases such as Alzheimer’s disease (AD), mild 

cognitive impairment (MCI), Parkinson’s disease, autism spectrum disorder, and schizophrenia.   

Most of the diagnostic investigations of neurological diseases have focused on AD and MCI. 

While the earliest studies have used stacked auto encoder (SAE)(Suk et al., 2015, Liu et al., 

2015), auto encoder (AE) and deep belief network (DBN) (Suk et al., 2014)models to analyze 

AD from neuroimaging data, the latest studies applied deeper CNNs to perform AD diagnosis. 

Moreover, studies focusing on both 2D-CNN (Gupta et al., 2013, Liu and Shen, 2014, Sarraf et 

al., 2016, Billones et al., 2016, Liu et al., 2018c) and 3D-CNN (Payan and Montana, 2015, 

Hosseini-Asl et al., 2016b, Karasawa et al., 2018, Liu et al., 2018c) model types have achieved 

great results. Also, considering the different types of MCI, including the prodromal stage of AD 

and vascular MCI, interesting results have been achieved.  

According to our literature survey, since 2015, there has been a blow in the number of 

neuroimaging publications using deep learning approaches. We also observed that surprisingly 

very good results had been achieved in most of the studies.  

As we attempted to reproduce the results reported in some of the papers, we noticed that most 

studies neither shared their source code nor included enough information about the model 

architecture, hyperparameters used, and validation and evaluation methods followed to achieve 

such very good results. This motivates us to raise questions if those exciting results were 

associated with some methodological biases. The fact that studies(Saravanan et al., 2018, 

Hutson, 2018, Ching et al., 2018, Zhu et al., 2019), highlighted the different challenges and 

obstacles related to deep learning methods as employed in health care applications strengthen our 

claim of the need for carefully designing deep learning systems in healthcare and especially in 

neuroimaging to avoid the possible biases that overestimate the resulting model’s performance. 

Overfitting due to small dataset size(Zhu et al., 2019, Ching et al., 2018), data leakage(Thibeau-

Sutre et al., 2021, Bussola et al., 2021, Saravanan et al., 2018, Wen et al., 2020), reproducibility 

problems(Hutson, 2018, Ching et al., 2018, Thomas et al., 2021) and lack of interpretability (Zhu 

et al., 2019, Thomas et al., 2021, O’Sullivan et al., 2020, Ching et al., 2018) are the major 
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challenges and pitfalls seen in the neuroimaging literature applying deep learning analysis 

methods.  

However, there are studies that tried to tackle such pitfalls and challenges by following 

appropriate data pre-processing procedures and incorporating the latest AI techniques. An 

example classification study by Valliani and Soni (Valliani and Soni, 2017) applied a CNN 

model on structural MRI data to categorize subjects as healthy controls and AD or MCI. The 

authors performed both binary (AD vs. HC) and 3-way (AD vs. MCI vs. HC) classifications 

achieving accuracies 81.3% and 56.8%, respectively. Like most medical image datasets, their 

dataset size was relatively small to train a deep CNN from scratch. To reduce the problem of 

overfitting due to small training samples, they employed an AI technique called transfer learning 

which allows transferring knowledge of the CNN model to identify image features from a source 

task into a target task. Hence, rather than starting from randomly initialized model weights, the 

training procedure fine-tunes the MRI dataset. In addition, they also used a method called data 

augmentation, which involves the generation of more samples by applying simple affine 

transformations such as rotations, flips, and rotations to increase the size of the dataset. Another 

important point is that Valliani and Soni included only one slice from each MRI volume to avoid 

the introduction of a data leakage caused by including different slices of a single MRI volume to 

be included in both the training and test sets. Another paper by Qiu (Qiu et al., 2018) 

demonstrated a classification procedure of subjects as normal cognition (NC) and MCI from 

multimodal data that consists of MRI images and cognitive scores: Mini-Mental State 

Examination (MMSE) and logical memory (LM) test scores. They developed three models, two 

multilayer perceptron (MLP) taking clinical scores and a CNN model adapted from a pre-trained 

VGG-11 model; to reuse the pre-trained weights of VGG-11 since the dataset size was small. 

They trained three different VGG-11 models to prevent data leakage to accept three individual 

slices selected from the MRI volume, the output being the class probability obtained using a 

majority rule.  

In both studies, the authors prevented data leakage and tried to avoid the risk of model 

overfitting due to small size of the dataset by using transfer learning (Qiu, et al., 2018; Valliani 

& Soni, 2017) and augmentation techniques. This surely prevents a bias in the model 

development procedure that could lead to overestimated results. However, both studies did not 
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openly share their studies hence, other researchers barly get a chance to reproduce the results 

reported by the authors. In addition, explainability tools that allow clinicians or health care 

experts to get a better interpretation of the results are missing. The absence of these two features, 

reproducibility and interpretability, reduce the trustworthiness of the findings obtained by many 

studies: 

 For the neuroimaging community, to be benefited from the artificial intellegience (AI) 

research findings at a clinical level, the proposed AI systems are expected to be 

developed in a procedure which is free from any methodological bias; 

 incorporate interpretability tools that will increase their trustworthiness;  

 be openly available to others to allow knowledge sharing and to reproduce the results. 

To bring the trend of developing  reliable AI systems for neuroimaging applications, one solution 

could be to design open source frameworks that incorporate these basic features throughout the 

pipeline (starting from data pre-processing to results interpretation). Apart from providing a bias 

free data pre-processing, model training and evaluation environment, such open source software 

can also be used as a benchmark to compare the performances of different AI systems. 

Considering AI tools that are designed specifically for analyzing brain MRI data, there are a few 

open source deep learning tools that are intended to perform different analysis tasks(Gibson et 

al., 2018, Pawlowski et al., 2017, Kaczmarzyk et al.). However, these python based deep 

learning tools do not incorporate AI explainability feature that reduces their reliability. 

Consequently, to address these shortcomings, this study proposes an open source python 

software (https://github.com/Imaging-AI-for-Health-virtual-lab/Slice-Level-Data-Leakage) that 

incorporates versatile features for analyzing volumetric brain image data, specifically, MRI data. 

The software has features of versatility in terms of model architecture and choice of validation 

schemes, reliability achieved by providing a lekage-free data pre-processing and interpretability 

by integrating a number of model visualization techniques (refer Chapter 4 for a detail 

explanation). 

1.5 Motivations and objectives of the study 

Based on the considerations set out so far, having recognized the potential of applying deep 

learning tools to neuroimaging data, considering the methodological biases for the study of brain 

https://github.com/Imaging-AI-for-Health-virtual-lab/Slice-Level-Data-Leakage
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structure and function and the alterations caused by neurological diseases, the objectives of the 

studies conducted in this work were: 

1. The assessment of methodological pitfalls of the literature on deep learning applied to 

neuroimaging; 

2. The design and development of interpretable, reproducible, and leakage-free deep 

learning software for classification/prediction analysis; which is characterized by: 

1. High versatility in terms of the choice of the CNN model architecture, which 

differ in terms of the number of inputs used, also on the number of MRI 

modalities employed; 

2. Inclusion of different validation techniques; 

3. Integration of techniques that help overcome overfitting when the available 

dataset is of small size; and 

4. Multi-tasking: the software can be used for either regression or classification 

tasks. 

3. The study of neurological diseases not yet been investigated through deep learning 

approaches. From an applicative point of view, the focus was particularly on the study of 

vascular mild cognitive impairment (VMCI) in patients with small vessel disease (SVD), 

which is recognized as one of the main causes of cognitive impairment(Zhou and Jia, 

2009). However, to date, it has only been studied using conventional machine learning 

approaches, based on manually extracting features associated with the disease pathology, 

usually drawing or delineating region of interest areas, that need expert knowledge, and 

not through advanced AI methodologies based on automatic feature extraction and 

analysis mechanisms. 

In a broader sense, the motivation for this approach is the transfer of knowledge relating to the 

disease to the application level through tools potentially capable of: 

1. Providing researchers with an environment that can preserve the data pre-processing and 

model training procedures from being contaminated by methodological flaws and hence 

producing reliable results supported by explainability tools; and 

2. Delivering knowledge about individual patient's cognitive status, from raw neuroimaging 

data, without expert knowledge on the pathology of neurological disease. 
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Chapter 2 

2. Overview of deep learning methods 

2.1 Artificial neural networks and deep learning 

2.1.1 Artificial neural networks 

Artificial neural networks (ANN) are a subset of machine learning models concerned with 

algorithms inspired by how a human brain works, mimicking how biological neurons 

communicate. The basic unit of such networks is an artificial neuron, also known as a node, 

which has an analogy with the fundamental processing element of the human brain called the 

biological neuron. By simulating the basic functions of natural neurons, an artificial neuron 

performs four essential functions based on its simple structure shown in Figure 2.1. 

 

 

 

Figure 2.1:  Basic structure of the artificial neuron. Each input X is associated with a weight W. 

The sum of all weighted inputs is passed onto a nonlinear activation function f that leads to an 

output Y.  

 

First, the node receives raw inputs or weighted signals from other nodes through its incoming 

connections. Then it applies a summation operation, and later it passes the weighted sum of the 
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inputs through a non-linear activation function, the outcome being the activation of the node. 

Finally, for each outgoing connection, this activation value is multiplied by the specific weights 

and transferred to the next neuron(Dongare et al., 2012, Kalogirou, 2000).  

Several such computational units or nodes are interconnected to create computational models 

called artificial neural networks. ANNs are structured in layers, where each layer consists of 

many nodes. The number of layers and nodes in a given ANN and how they are connected, 

representing the network topology, determine its architecture. Different architectures allow for 

the generation of functions of different complexity and power. Feed forward neural networks are 

the simplest and most commonly used class of ANNs(Rosenblatt, 1958, Ripley, 1993). Here, the 

signal flow is unidirectional, and each node sends information to the node in the next layer from 

which it does not receive any information. The connection is always in a forward direction, and 

there are no feedback loops(Micheli-Tzanakou, 2011).  A simple feed-forward ANN consists of 

an input layer, where data is fed to the network, and one or more hidden layers transform the data 

as it flows through(Lundervold and Lundervold, 2019). Figure 2.2 shows an example of a feed-

forward neural network made up of three layers. 

An input layer has a number of nodes equal to the number of input variables. It is not an active 

layer, as it simply passes the raw inputs without applying any modifications to the next layer 

through its outgoing connections. Each node of this input layer is interconnected to all nodes of 

the next layer, creating a densely connected structure. When a node in the first hidden layer 

receives the inputs, it first assigns weights, and then it sums up the resulting products together, 

yielding a single number. If this number exceeds a pre-defined threshold value specified by the 

activation function (e.g., Sigmoid, ReLU), the node is activated and passes the sum to the nodes 

of the next layer. Instead, the node passes no data to the next layer if the number is lower. This 

way, all nodes in the first layer pass the weighted sum of the inputs to the next hidden layer or 

the output layer. The final layer, which is the output layer, consists of one or more data points 

based on the function of the network. For instance, an ANN model that classifies subjects 

between healthy controls and Alzheimer's disease patients will have a single output unit. While a 

network that categorizes subjects based on the different stages of AD will have five nodes, each 

node representing the cognitive states of cognitively normal, early mild cognitive impairment, 

mild cognitive impairment, late mild cognitive impairment, and Alzheimer’s disease.  This 
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interconnection of many simple non-linear units, structured in layers, allows modeling a very 

complex function that represents the mapping from the input to the output, given enough training 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training an ANN can be considered the process of updating network architecture and connection 

weights to effectively perform a specific task(Jain et al., 1996). Since, in the beginning, the 

weights and thresholds of ANNs are randomly assigned or initialized, the training procedure 

aims at iteratively adjusting the weights and thresholds of the network by feeding the model a 

training data, given as X and Y, until training data with the same labels consistently yield similar 

outputs. Usually, adjusting network parameters follows a learning rule that governs the updating 

Age  

Sex  

Education 

0 - HC 

1 - AD 

Forward propagation 

Back propagation 

Figure 2.2: A simple feed-forward neural network architecture consisting of an input 

layer with three nodes to accept three input variables, one hidden layer having five 

nodes and an output layer with one neuron, is used for classifying the demographic 

input data representing a subject sample to be classified as a healthy control an AD 

patient(2019). 
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process, referred to as a learning algorithm. Back-propagation is a learning algorithm suitable for 

feed-forward ANNs(Krogh, 2008, Rumelhart et al., 1986).  

2.1.2 Back-propagation 

To train a feed-forward ANN employing a back-propagation learning algorithm, labeled training 

data, given as X and Y is required. The training starts by setting all the weights in the network to 

small random values. By passing a sample input xi through the network, an output yi is produced. 

A pre-defined cost function measures the difference between the desired output and the output by 

the network, which is the prediction error of a sample training data. Summing up the errors over 

all training samples yields the total error of the network. In the beginning, the error is expected to 

be large. By repeating this procedure over, usually hundreds of times, the error gets smaller and 

smaller and reaches a point where the error no longer changes(Krogh, 2008, Rumelhart et al., 

1986).  

2.1.3 Deep Learning 

By increasing the depth of artificial neural networks(Yegnanarayana, 2009), the concept of deep 

learning has been proposed(Bengio et al., 2007, Bengio, 2009). A neural network that consists of 

more than three layers—inclusive of the inputs and the output—can be considered a deep 

learning algorithm. Figure 2.3  illustrates the general representation of deep learning models. 

Deep learning models, a family of representation learning methods, have a layered architecture, 

where each layer is composed of several non-linear neurons that can transform the representation 

of the input data at one level into a representation at a higher, slightly more abstract level. Hence, 

they can automatically discover the representation of the input data by capturing intricate 

structures in a high-dimensional data, which could be used for classification or prediction 

analysis(LeCun et al., 2015). Due to the increased depth (number of hidden layers) in deep 

learning models, compared to artificial neural networks, a more abstract high-level feature 

representation for the input data is formed by the multiple hidden layers to combine low-level 

features(Liu et al., 2018b).  
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Figure 2.3:A general representation of deep learning models(2019). 

 

2.2 Convolutional neural networks 
CNN is the most established among the various deep learning algorithms especially for image 

processing tasks(Yamashita et al., 2018). It is a type of deep learning model which is suitable for 

processing data that come in the form of multiple arrays(LeCun et al., 2015), such as images, 

which is inspired by the organization of the animal visual cortex  (Hubel and Wiesel, 1968). Due 

to their architecture, which is a structure of multiple consecutive stages, they can automatically 

and adaptively learn spatial hierarchies of features, starting from low-level features extracted by 

the initial layers to high-level patterns, captured by the last layers(Yamashita et al., 2018).  

A typical CNN architecture consists of convolution layers and pooling layers placed alternatively 

at the beginning of the network and the final fully connected (FC) layers. Feature extraction is 

performed by convolution and pooling layers. Instead, the fully connected layer maps the 

extracted features to a final output, such as classification or prediction(Yamashita et al., 2018). 
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2.2.1 Convolution layers 

The convolution layer is the main building block of CNNs. It consists of a linear convolution 

operation followed by a non-linear activation function. For a given image input, these layers 

perform a linear mathematical operation called convolution between the input image pixels and a 

small array of parameters, called the kernel. A kernel is an optimizable filter structured as a 

matrix of numbers, specified as width x height (for two-dimensional (2D) CNN), and can extract 

features from the input data. Hence, a kernel is moved over the image to overlap with each pixel, 

and convolution, the dot product between the kernel and the overlapped area of the image, is 

computed to get an output, called a feature map. Usually, multiple kernels, expressed as a 

hyperparameter Number of filters, are applied to get different feature maps (e.g., Horizontal 

edges, vertical edges) that represent different image patterns(Yamashita et al., 2018).  This 

parameter provides depth to the convolution layers. Hence, the output of a convolution layer is 

represented as Wo x Ho x Do. 

By stacking a number of these convolution layers, only the filters in the first layer are convolved 

with the input image outputting many feature maps equal to the number of filters in the first 

layer. Moreover, the next convolutions will be between the feature maps of the previous layer 

and the kernels. These consecutive operations allow extracting hierarchically and progressively 

more and more complex features(Yamashita et al., 2018). 

The other important parameters when considering a convolution layer are padding and stride. 

Padding: The convolution operation described above does not allow the center of each kernel to 

overlap the outermost element of the input tensor and reduces the height and width of the output 

feature map compared to the input tensor. Padding, typically zero padding, is a technique to 

address this issue, where rows and columns of zeros are added on each side of the input tensor to 

fit the center of a kernel on the outermost element and keep the same in-plane dimension through 

the convolution operation . Modern CNN architectures usually employ zero padding to retain in-

plane dimensions to apply more layers. Each successive feature map would get smaller after the 

convolution operation without zero padding. 

Stride: refers to the distance between successive kernel positions during the convolution 

operation. A stride value larger than 1, results in a down sampling of the output feature maps. 
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Usually, instead of using this parameter to reduce the dimension of feature maps an alternative  

technique called pooling, which is described below, is used after convolution operations. 

 

Figure 2.4: Example showing the convolution between an input image and a 3 x 3 kernel. An 

element-wise product between the filter and the overlapped image pixel values is computed and 

summed up to get an output(2022). 

 

Activation function 

After applying a linear operation, convolution on to the input image, the feature map is passed 

through a non-linear function, called activation function. By comparing the output with a 

threshold value, this unit's role is to fire or block the elements of the feature map matrix to pass 

to the next layer. Figure 2.5 illustrates the plots of activation functions that are commonly used in 

CNN models 

2.2.2 Pooling layer 

In most CNN architectures, it is common to insert a pooling layer between consecutive 

convolution layers. It is one of the layers without learnable parameters. It performs down 

sampling that reduces the spatial size (width and height) of the input volume, keeping the depth 

the same. This procedure helps to decrease the number of learnable parameters. Moreover, the 

pooling operation introduces an important feature of CNNs, which is invariance to small shifts 

and distortions(Yamashita et al., 2018).  Max pooling and Global average pooling (GAP) are the 

two available functions used in CNN models. 
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Max Pooling: it receives feature maps from the previous convolution layer, extracts patches of 

the same size as the filter size of the pooling layer, and outputs the maximum value in each 

patch, discarding all the other values.  

Global average pooling: rather than taking a patch of the feature map, it computes the average 

of the whole feature map of size height x width, down sampling into a 1x1 array. Here, also, the 

depth of the feature maps is retained. Unlike Max pooling, it is possible to apply this type of 

pooling only once just before the fully connected layers. The advantages of applying this type of 

pooling are twofold. First, it substantially reduces the number of learnable parameters. In 

addition, it enables the CNN to accept inputs of variable size(Lin et al., 2014). 

 

 

Figure 2.5: Plots of different activation functions. a) sigmoid activation, b) hyperbolic tangent 

(tanh) activation, c) Rectified linear unit (ReLu) activation and LeakyRelu activation(Yang, 

2018). 
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2.2.3 Fully connected layer 

To make the dimension of the feature maps coming from convolution or pooling layers fit with 

the input size of the fully connected layer, either a Global average pooling is applied just before 

adding a fully connected layer or a flatten layer is added, to transform the three dimensional (3D) 

array (height x width x depth) into a one-dimensional (1D) array of numbers. In fully connected 

layers, since every input is connected to every output by a learnable weight parameter, they have 

also known by the name dense layers. Similar to convolution layers, FC layers are followed by a 

non-linear activation function, usually ReLU activation. The features extracted by convolution 

layers are mapped by the FC layers, and the final FC layer performs classification or regression 

based on the feature values. Unlike the previous layers, the choice of the activation function for 

the final FC layer depends on the type of the task(Yamashita et al., 2018). For a prediction 

(regression) task, a “linear” or identity function is used. For classification of binary classes, 

“sigmoid”, and for multi-class classification, “softmax” activation is preferred.   

2.3 Model training  
Training a CNN involves finding the optimal parameters of the network, kernels in convolution 

layers, and weights in fully connected layers, which minimize the function that computes the 

differences between output predictions and given ground-truth labels on a training dataset, 

namely the loss function. Back-propagation algorithm is commonly used for training neural 

networks where loss function and gradient descent optimization are the key elements. During the 

forward pass of the input data, the model’s performance, which is measured in terms of the loss 

function, is computed, and the error is propagated during backpropagation to update the values of 

kernels and weights by a small amount using a gradient descent algorithm(Yamashita et al., 

2018). This combination of feeding the training data in the forward pass and backpropagation is 

iteratively applied a number of times, defined by the hyperparameter epoch number, to update 

the learnable parameters until the trained model provides a good performance as measured by the 

pre-defined metrics. Two key parameters are used during model training: loss function and an 

optimization algorithm. 

 

Loss function: is a function that computes the error between the true labels/values of training 

samples and the prediction outputs. Cross entropy is the most commonly used loss function for 
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classification problems, where binary cross-entropy is employed for binary classification and 

categorical cross-entropy for multiple categories. Instead, the mean square error is typically 

applied to regression problems. 

Optimizer: gradient descent is one of the most popular algorithms to perform optimization and 

is the most common way to optimize neural networks. It is an optimization algorithm that 

iteratively updates the learnable parameters, kernels, and network weights to minimize the loss. 

The optimization process computes the gradient of the loss function concerning each of the 

parameters (kernels and weights), where its value gives information about the direction in which 

the function has the steepest rate of increase. Hence, each parameter is updated in the negative 

direction of the gradient with an arbitrary step size determined by the value of a hyperparameter 

called the learning rate.  

For a learnable parameter w, and loss function represented as L, the gradient is computed as: 

                                                                                                                        (2.1) 

After the gradient is calculated, each learnable parameter is updated as follows: 

                                                                                                                    (2.2) 

Where α is the learning rate, one of the most critical hyperparameters that need to be initially set 

before the training starts. Several optimization algorithms, which are derivatives of the gradient 

descent algorithm, are provided to researchers by AI experts. The different varieties differ in the 

frequency of parameter updates and the technical improvements that speed up the training 

process. Stochastic gradient descent (SGD), SGD with momentum(Qian, 1999), adaptive 

gradient descent (Adagrad)(Duchi et al., 2011), adaptive moment estimation (Adam)(Kingma 

and Ba, 2014), and root mean squared propagation (RMSProp) are among the different families 

of gradient descent algorithm. Refer to Ruder (Ruder, 2016) for detailed reading. 

 

2.4 Model validation and evaluation techniques 
Model validation is the process of verifying that trained models are providing satisfactory 

outcomes to their input data, both quantitatively and qualitatively. The model is evaluated with a 
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testing dataset, a separate portion of the same dataset from which the training dataset is 

derived(Wang and Zheng, 2013). In addition, there is also an assumption that all samples in the 

dataset are independent and identically distributed (IID) which ensures that all samples have 

been drawn from the same probability distribution and are statistically independent of each other. 

Keeping this assumption, the whole dataset is split into training and testing sets. After the model 

is trained on the training set, it is then validated on the remaining test set. Evaluating the model 

on a separate test set is important to estimate how well a model performs on unseen test data, 

which is the generalization ability of the trained model. There are three popular model validation 

strategies. The reasons for evaluating the predictive performance of a model include: 

 To estimate the generalization ability, which is the predictive performance of our model 

on future (unseen) data; 

 To increase the predictive performance by tweaking the learning algorithm and selecting 

the best performing model from a given hypothesis space; and 

 To identify a machine learning algorithm that is best suited for the problem at hand: thus, 

we want to compare different algorithms, selecting the best performing one and the best 

performing model from the algorithm’s hypothesis space. 

In all these tasks, even if the objective is to evaluate the model's performance, they require 

different approaches or different validation strategies.  

Other essential points to be considered during model validation are the concepts of bias and 

variance. 

Bias (statistical bias): is the difference between the expected prediction accuracy of our model 

and the true prediction accuracy. Mathematically, the bias of an estimator ̃ is the difference 

between its expected or mean value E[ ̃] and the true value of a parameter β being estimated. 

Bias=E[̃]−β                                                                                                                      (2.3) 

So, if E[ ̃]−β=0, then ̃ is an unbiased estimator of β. For example, if we compute the prediction 

accuracy on the training set, this would be an optimistically biased estimate of the absolute 

accuracy of our model since it would overestimate the true accuracy. 
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Variance: is a measure of the variability of our model’s predictions if we repeat the learning 

process multiple times with small fluctuations in the training set. The more sensitive the model-

building process is towards these fluctuations, the higher the variance. 

In the formula, it is simply the statistical variance of the estimator ̃ and its expected value E[ ̃] 

Variance=E[( ̃ −E[ ̃])2
]                                                                                                         (2.4) 

 

2.4.1 Holdout validation 

It is the simplest model validation technique. Assuming that all data has been drawn from the 

same probability, first, the labeled dataset is split into training and test sets by performing a 

simple process of random subsampling. Then the model is trained on the training samples and 

validated on the test set. It is important that the test set is touched once to make sure that there is 

no bias introduced when the generalization accuracy is estimated. The fraction of correct 

predictions constitutes our estimate of the prediction accuracy. The reason for keeping aside a 

separate test set is that training and testing the model on the same dataset introduces a very 

optimistic bias due to overfitting. This is a situation where we cannot tell if the model is 

memorizing the training data or whether it generalizes well to new, unseen data.  

This approach of dividing the data into training and test set, fitting the model on the training set, 

and testing on the remaining test samples has the following limitations: 

1. Since hyperparameters are not learned during model fitting, this approach cannot perform 

hyperparameter tuning. Hence fixed hyperparameter values are used for training and 

validating the model; 

2. The total dataset represents a random sample drawn from a probability distribution; and 

we typically assume that this sample is representative of the true population – more or 

less. When this representative dataset is divided in to training and test set, due to the kept 

aside sample as a test set , which is a process of sub-sampling without replacement,  the 

statistic (mean, proportion, and variance) of the sample will be altered, causing a 

violation of IID and a change of class proportion. The degree to which sub-sampling 
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without replacement affects the statistic of a sample is inversely proportional to the size 

of the sample; and   

3. If the model has not reached its capacity, the performance estimate would be 

pessimistically biased. Assuming that the algorithm could learn a better model from more 

data, we withheld valuable data set aside for estimating the generalization performance 

(i.e., the test dataset). Hence, our estimate of the generalization performance may be 

pessimistically biased. Although the pessimistic bias could be reduced by decreasing the 

proportion of the test set, it causes an increase in the variance of the model’s performance 

and thus widens the confidence interval. 

 

From points 2 and 3, we can note that holdout validation is a good choice and is fine for model 

evaluation when working with relatively large datasets (Raschka, 2018). 
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Figure 2.6: A holdout model validation. The dataset is split into training and testing sets, then the 

model is trained on the training sub-sampled set, ; Lastly, the trained model is evaluated on the 

test set. 

 

2.4.2 Cross-validation (CV) 

The process of finding the best-performing model from a set of models that were produced by 

different hyperparameter settings is called model selection. K-fold cross-validation is the most 
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common technique for model validation and model selection(Rodriguez et al., 2009), based on 

the idea that each sample in the dataset has the opportunity of being a test sample. The process 

involves splitting the dataset into k parts and, the model is trained k times, each time one part is 

used as a test set, and the other k-1 parts will be merged and are used to train the model. By 

doing this, each sample in the dataset will get a chance to be a test sample.  

The main advantage of this approach is that it can reduce the pessimistic bias by using more 

training data in contrast to setting aside a large portion of the data as a test set. If the k-fold CV is 

used for model evaluation, the model will be trained with fixed hyperparameters. To decide the 

number of folds k, we need to consider the bias-variance trade with respect to k. The general 

trend when increasing the number of folds or k is: 

 the bias of the performance estimator decreases (more accurate); 

 the variance of the performance estimators increases (more variability); 

 computational cost increases (more iterations, larger training sets during fitting); and 

 Exception: decreasing the value of k in k-fold cross-validation to small values (e.g., 2 or 

3) also increases the variance on small datasets due to random sampling effects. 

For model selection also, first, the dataset is divided into k parts. Then, for each 

hyperparameter value, a model is trained to apply a KFold CV where the performance of 

each model trained on a specific hyperparameter value becomes the average performance 

computed over the K folds(Raschka, 2018).  The procedure is illustrated in Figure 2.7. The 

main drawback of this approach is that, since the model selection is performed on the whole 

dataset, split into k folds, there is no separate test set to estimate the chosen best model’s 

generalization ability. Consequently, another more robust method of model validation, 

namely nested cross-validation, is recommended in most deep learning applications for small 

to moderate-sized datasets. 
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Figure 2.7: An example of a 5-fold cross-validation.  The dataset is divided into 5 equal parts 

called folds. Then, the model is trained 5 times, each time, one fold is kept as a test set and the 

remaining 4 parts are merged together and used to train the model. The performance is computed 

as the average of the performance of the 5 folds. 

 

2.4.3 Nested cross-validation 

In practical applications, especially in medical imaging, there is a problem of finding a large 

dataset that is sufficient enough to keep aside a test set that can provide an unbiased estimate of 

the true generalization error of a model.  
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Figure 2.8: A procedure of nested CV. There are two nested folds where the inner fold is used to 

tune the hyperparameters of the model, and the inner one is used to evaluate the performance of 

the chosen model. 

 

Reserving too much data for training results in unreliable estimates of the generalization 

performance, and set aside too much data for testing results in too little data for training, which 

hurts model performance(Raschka, 2018). Tuning hyperparameters and performing model 
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selection based on average k-fold performance or the same test set, introduces a bias into the 

procedure, and the trained model’s performance estimates will not be unbiased anymore. Mainly, 

we can think of model selection as another training procedure, and hence, we would need a 

decently-sized, independent test set that we have not seen before to get an unbiased estimate of 

the models’ performance. Often, this is not affordable. 

Nested CV, which was first described by Iizuka (Iizuka et al., 2003) and Varma and Simon 

(Varma and Simon, 2006) when working with small datasets, is a procedure that offers a 

workaround for small-dataset situations that shows a low bias in practice where reserving data 

for independent test sets is not feasible. Nested CV reduces the bias, compared to regular k-fold 

cross-validation when used for both hyperparameter tuning and evaluation. Hence, it provides an 

almost unbiased estimate of the true error(Varma and Simon, 2006). The method of nested cross-

validation is relatively straightforward as it merely is a nesting of two k-fold cross-validation 

loops: the inner loop is responsible for the model selection, and the outer loop is responsible for 

estimating the generalization accuracy, as shown in Figure 2.8. 

2.5 Performance measurement 
The quantififcation of the performance of predictive systems can be carried out through multiple 

statistical descriptors, each of which is designed to highlight the salient information related to 

each specific problem or to adapt to specific characterstics of the learning scheme implemented. 

2.5.1 Performance metrics for classification 

Accuracy: is a quantitative measure of the algorithm’s correctness in predicting each class/group 

concerning the total size of the test set without taking into account any imbalance between the 

groups.  

Sensitivity (recall or true positive rate):  is the metric that evaluates a model’s ability to predict 

the true positives of each available category.  

Specificity (true negative rate): is the metric that evaluates a model’s ability to predict true 

negatives of each available category. 

Receiver operating characteristic curve (ROC): is a graph showing the performance of a 

classification model at all classification thresholds. This curve plots two parameters: 
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 True Positive Rate (TPR); and 

 False Positive Rate (FPR) 

False Positive Rate (FPR): is the ratio between incorrectly classified negative samples and the 

total number of negative samples. 

A ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the 

classification threshold classifies more items as positive, thus increasing both False Positives and 

True Positives. The following figure shows a typical ROC curve. 

Area under the ROC curve (AUC ): is the measure of the ability of a classifier to distinguish 

between classes and is used as a summary of the ROC curve. The higher the AUC, the better the 

performance of the model at distinguishing between the positive and negative classes. AUC and 

ROC curves are shown in Figure 2.9. 

 

 

 

 

 

 

 

Figure 2.9: An Example of ROC curve and AUC a) a ROC curve, represented as a plot of 

TPR vs. FPR. b) an AUC score, which is shown as the area under the ROC curve. 
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2.5.2 Performance metrics for regression 

In this study, mean squared error (MSE) and Pearson’s correlation coefficient are used in a 

regression analysis we performed. 

Mean squared error (MSE): is defined as       ∑ ̂                                  (2.5) 

Pearson’s correlation coefficient (r):             
∑

√(∑ ) ∑
                                                 (2.6) 
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Chapter 3 

3. Challenges of application of deep learning in 

neuroimaging 
 

Although the use of deep learning techniques to analyze neuroimaging data is significantly 

increasing with great promises, reliable application of deep learning for neuroimaging still 

remains in its infancy and many challenges remain(Zhu et al., 2019). The fact that medical 

images, also neuroimaging data, are often three-dimensional brings problems associated with 

memory and computation load. Other important challenges are related to data, interpretability, 

workflow integration and regularizations(Lundervold and Lundervold, 2019). 

3.1 Scarcity of training data and overfitting 

Deep neural networks are computationally intensive and complex multi-layered algorithms with 

parameters on the order of millions(Valliani and Soni, 2017). According to empirical studies 

suggestions, the convergence of these algorithms requires tenfold more training data relative to 

the number of parameters hence to produce an effective model. Due to the wide availability of 

images, videos, and free-form text on the internet, domains such as computer vision and natural 

language processing have been showing great progress(Valliani and Soni, 2017).  Neuroimaging 

data on the contrary is usually very scarce due to privacy and data protection requirements 

related to medical data. Also, finding labeled data is very expensive and difficult to 

produce(Lundervold and Lundervold, 2019).  Training a complex classifier with such a small 

dataset always carries the risk of overfitting(Zhu et al., 2019). Overfitting occurs when a model 

is able to perform well on data in the training set, but it shows a poor performance on the 

validation set hence unable to generalize well. This limits  the applicability of deep learning 

systems to be bounded to certain patient demographics and prevents their usage across clinical 

contexts and the population at-large(Valliani and Soni, 2017).  

Although the basic solution is being able to build large, public, labeled medical image datasets, 

privacy concerns, costs, assessment of ground truth, and the accuracy of the labels remain 

stumbling blocks(Chartrand et al., 2017). 
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Several studies tried to use different strategies to reduce overfitting, including 

regularization(Goodfellow et al., 2016b), early stopping(Prechelt, 1998), and drop out(Srivastava 

et al., 2014).  

Early stopping 

The training procedure of deep neural networks, involves iteratively updating the parameters of 

the model, until the pre-defined loss function reaches a minimum value. Both the training and the 

validation losses decrease in every iteration as far as the model is learning features that allow 

performing with a good generalization. Early stopping is a technique that stops model training 

when the validation loss starts to increase; hence the model starts to overfit the training data 

(Figure 3.1). 

 

 

Figure 3.1:The training process is stopped when the validation loss starts to increase(Mustafeez, 

2022). 

 

Dropout 

The depth of deep neural networks is a key factor in the ability of these models to extract 

hierarchical and latent features from complex high-dimensional data. However, large networks 
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consist of a large number of parameters, bringing the problem of overfitting. In addition, these 

networks are slow to use, making it difficult to deal with overfitting by combining the 

predictions of many different large neural networks at test time. Dropout is a regularization 

method that tries to address this problem by randomly dropping neurons out from the neural 

network along with all its incoming and outgoing connections during training (Figure 3.2). This 

prevents the model from adapting and overfitting too much of the training dataset(Srivastava et 

al., 2014). During the test time however, a model without dropout is used. 

 

Figure 3.2: Illustration of the dropout technique to reduce the risk of overfitting. During training 

time, randomly selected neurons are turned off along with their connections(Dabbura, 2018). 

 

Data augmentation  

Augmentation is an alternative method to training with more data. It involves the generation of 

synthetic data using different techniques. Using data augmentation, a lot of similar images will 

be generated and the model is trained on multiple instances of the same class of objects. This 

increases the dataset size and as we add more and more data, the model is unable to overfit all 

the samples and is forced to generalize.  

In the case of neuroimaging also, images in the training set are used, and modifications are 

applied to these samples to generate further representative samples which simulate changes in 

acquisition and anatomical variation of patients. Different techniques are used to generate new 

samples from training data.  
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The most common and simpler approaches involve the application of various operations to the 

original image, such as, affine transformations (rotation, zooming, cropping, flipping or 

translations), flipping, translations, scaling, cropping and shearing(Chlap et al., 2021, Nalepa et 

al., 2019).  One limitation of these methods is that the generated images become much correlated 

to each other offering very few improvements for preventing overfitting and further 

generalization over unseen samples(Shin et al., 2018). Another drawback is that some operations 

like rotation and shearing might generate anatomically incorrect images(Nalepa et al., 2019). 

Hence, rather than applying modifications to the original images another approach of data 

augmentation involving the generation of artificial images is very popular for generating medical 

images.  Generative adversarial networks (GANs), which are a family of deep neural networks, 

are being exploited to augment neuroimaging datasets(Nalepa et al., 2019, Shorten and 

Khoshgoftaar, 2019, Han et al., 2019). 

Generative adversarial networks (GANs) 

Generative adversarial networks are types of deep neural networks that are used for generating 

artificial images. The GAN model architecture consist of two deep learning models, namely a 

generative model that captures data distribution and a discriminative model that tries to 

categorize the incoming input as a real or fake example(Goodfellow et al., 2016a). The learning 

procedure involves an adversarial process where the generator and the discriminator compete for 

one against the other.  A basic GAN model is composed of a training dataset, random noise 

vector, generator and discriminator and is known by its iterative adversarial training procedure. 

Figure 3.3, illustrates the basic structure of a GAN network and the training process.  

 

Training dataset (data): this is a dataset of real images that we want the generator to learn. For a 

sample x in the training dataset, the fixed distribution can be represented as Pdata(x). 

Random noise vector (z): this is a raw input to the generator. The generator uses a simple 

random noise variable as a starting vector to generate synthetic images.  

Generator: a generative model is a a neural network with parameters Ɵg
,
 
that tries to estimate 

the training dataset distribution Pdata(x) as Pg(x). It takes as an input a random noise vector z and 
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produces artificial images G(z) with a distribution of Pg(z) which look like the images in the 

training dataset. 

Discriminator: a discriminative model based on a neural network architecture that is used to 

identify the real images in training set from the synthetic images generated by the generator. 

Training/learning GANs:  the training procedure is an iterative process based on a 

backpropagation algorithm that propagates the classification error of the discriminator to modify 

the parameters of both the generator and the discriminator models.  The generator is trained to 

make Pg(x) and Pdata(x) as similar as possible(Lan et al., 2020). Hence, for the generator the 

target is to find G* represented by (3.1). 

                                                                                                 (3.1) 

In a GAN model the discriminator is used to measure the difference between Pg(x) and Pdata(x). It 

is a neural network with parameter Ɵd
, that performs binary classification, with a binary cross-

entropy loss function (3.2), outputting 1 for a real sample x and 0 for an image generated by the 

generator(Goodfellow et al., 2014).    

( ̂) ( ) ̂                                                                           (3.2) 

Where ̂ is the probability that the model prediction sample is a positive example and  is the 

sample label. The value of  for a positive example is 1 and for a negative example is 0. By 

substituting the positive and negative cases in to Pdata and Pg, the objective function becomes: 

( ) [ ( )] [ ( ) ]                                          (3.3) 

Combining (3.1) and (3.3), the objective function of a basic GAN is: 

( ) [ ( )] [ ( ) ] (3.4) 
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Figure 3.3: A general block diagram representing a GAN architecture. It consists of two neural 

network models, which are the generator and discriminator. The generator generates real-like 

images from a random noise vector and the discriminator tries to classify the incoming input as 

real or fake. 

 

Since the originally proposed GAN models have limitations such as, vanishing gradients, 

difficulty in training and poor diversity(Wang et al., 2017a), several variants have been proposed 

to build GANs with better performance(Lan et al., 2020). A Deep Convolutional Generative 

adversarial network (DCGAN) is an architecturally modified version of GAN that replaces all 

fully connected layers of the basic GAN with deep convolutional networks(Radford et al., 2015). 

In addition the discriminator and generator are symmetrical to each other. Pooling layers and up-

sampling layers are not included throughout the entire network. Batch normalization is used to 

solve the problem of vanishing gradients(Lan et al., 2020). Figure 3.4 shows a typical DCGAN, 

structured based on all convolutional layers.  
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Figure 3.4: An example of a DCGAN that can generate an image with a resolution of 64x64x3. 

Both the generator and discriminator have a convolutional-based architecture. Starting from a 

random noise of dimension 100x1, the generator produces an image of resolution 64x64x3. The 

discriminator accepts both the real images in the training set and synthetic images from the 

generator to perform - binary classification of real versus fake labels. It takes an image of 

dimension 64x64x3 and through its de-convolution layers; the size of the 2D array is reduced at 

each level finally outputting as a real image with 100% probability and 0 for classifying the input 

as a fake image(Zhang et al., 2020). 

 

Although DCGANs are the best GAN models in terms of model architecture, due to the use of 

binary crossentropy loss function, it has some limitations. The first drawback is the problem of 

model collapse, which occurs when the generator starts generating images of only one class 

while ignoring all other classes. Vanishing gradient is another problem related to using 

DCGANs. As the confidence-values of the discriminator is a single value that can only be b/w 0 

and 1, and the goal is to get a value closer to 1 as much as possible, hence the calculated gradients 

approach to zero and as a result, the generator is not able to get much information and is not able 

to learn. So this may result in a strong discriminator, which will lead to a poor generator.  

As a solution to these issues, another variant of GAN called Wasserstein generative adversarial 

network (WGAN, which modifies the loss function to make the training process more stable has 

been proposed(Arjovsky et al., 2017). It replaces the cross-entropy loss function (JS divergence), 
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which is not a stable loss metric for measuring the distance between distributions with disjoint 

parts, by  a new distance measurement metric called Wasserstein loss that approximates Earth 

Mover’s Distance (EMD). 

( ) ∏
( ) ‖ ‖

                                                            (3.5) 

Where, ∏  is the set of all joint distributions p whose marginals are pg and pdata 

respectively.  implies how much mass must be transported from one distribution to another. 

EMD is the amount of effort needed to make one distribution to another distribution. In our case 

we want to make the generated image distribution equal to the real image distribution. By using 

WGAN, even in the case where two distributions do not overlap, it can still reflect their distance 

(Arjovsky et al., 2017) . 

Since GAN is an emerging AI technology, fewer studies employed GANs to generate synthetic 

brain images. DCGAN(Kazuhiro et al., 2018), DCGAN with Wasserstien loss function(Rejusha 

and KS, 2021), WGAN(Han et al., 2018a), MI-GAN and MI-pix2pix(Alogna et al., 2020) are 

among the different variants of GANs which have been used to generate brain MRI images of 

different resolution. The quality of the images is usually measured by a human expert only 

qualitatively. Still, more efforts are needed to generate brain images of high resolution that could 

expand the dataset size and hence to train deep learning systems with a great prediction 

performance. 

Transfer learning 

Transfer learning is a machine learning technique used when there is scarcity in the training data. 

It aims to extract knowledge from one or more source tasks and applies the knowledge to a target 

task(Pan and Yang, 2010). The two important concepts related to transfer learning are domain D 

and task T. 

A domain D consists of a feature space χ and a marginal probability P(X) over the feature space, 

where X=x1, …, xn ϵ χ. Given a domain, D={χ, P(X)}, a task T consist of a label space У and a 

conditional probability distribution P(Y│X) that is typically learned from the training data 

consisting of pairs xi ϵ X and yi ϵ У. 
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For a source and target parameters (Ds and Ts) and (Dt, Tt) respectively, and assuming Ds ≠Dt or 

Ts ≠ Tt, by using transfer learning, the information gained from Ds and Ts is used to learn the 

target conditional probability distribution P(Yt│Xt)(Pan and Yang, 2010).  In most cases, the 

source domain is rich with samples, and a large dataset is available to train a deep neural 

network. While in the target domain, the dataset is small to learn a deep learning model from 

scratch. In this scenario, transfer learning allows using the knowledge acquired by a model 

trained on the source domain to improve the performance of carrying out the task in the target 

domain. Figure 3.5, illustrates the general usage of the transfer of knowledge from the source 

domain to the target domain. 

 

Figure 3.5: Flow of knowledge from the source domain to the target domain using transfer 

learning. 

 

Considering CNNs, the commonly used approach of transfer learning to pretrain a deep CNN on 

a very large dataset and use that CNN either as an initialization or a fixed feature extractor for 
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the target task. ImageNet, which is one of the largest datasets of natural images which contains 

more than 14 million images and 1000 classes (Simonyan and Zisserman, 2015), has been used 

to train CNNs with very deep architectures. These models are often used to utilize the knowledge 

about the leaned features, in terms of parameter values (weights and biases), to improve the 

performance of models in the target domain where finding large datasets is difficult, such as 

neuroimaging. In recent times, many neuroimaging studies have employed transfer learning 

methods to achieve very good results, both for classification and regression tasks.   

3.2 Data leakage 

The second challenge of employing deep learning models for complex, high dimensional 

neuroimaging data is data leakage. Data leakage occurs due to the use of information in the 

model training that is not expected to be available at the prediction time. By introducing data 

leakage in to the model building process, we will end up with an overly optimistic model with 

very exciting results on the training and validation set, whereas performing very poorly on 

unseen test data. Although, neuroimaging literature nowadays is invaded by such a subtle 

problem producing non relevant models to the clinical scenario, much less attention has been 

given to following the correct practices to avoid this problem. One of the reasons for this is, even 

if the theory that data leakage inappropriately inflates the model’s performance is known by 

researchers, the extent of model performance overestimation caused by data leakage has not been 

assessed very well. Hence, in one of our published papers, we quantitatively investigated the 

extent of model performance overestimation seen as a consequence of data leakage introduced 

by performing slice level dataset split while using 2D CNN models. 

 

3.2.1 Effect of data leakage in brain MRI classification using 2D 

convolutional neural networks  

Introduction  

In recent years, the number of studies that apply AI tools for different neuroimaging analysis 

tasks, especially for classifying neuroimaging data has increased significantly. Moreover, most 

of these studies (Hatcher and Yu, 2018)(Goodfellow et al., 2016a)(Bahrami et al., 2016, Han, 

2017, Li et al., 2014, Liu et al., 2018a, Vemulapalli et al., 2017, Zhu et al., 2018)(Chang, 2016, 
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Dou et al., 2016, Maier et al., 2015)(Liu et al., 2015, Plis et al., 2014)(Liu et al., 2015, Liu et al., 

2014, Suk and Shen, 2013)(Kuang et al., 2014)(Vieira et al., 2017)reported very high accuracies 

in classifying patients with neurological diseases, such as Alzheimer’s disease (AD) and 

Parkinson's disease (PD). For a binary classification of AD vs. healthy controls, Hon and Khan 

(Hon and Khan, 2017) reported accuracy up to 96.25% using a transfer learning strategy. Sarraf 

et al. (Sarraf et al., 2016)classified subjects as AD or healthy controls with a subject-level 

accuracy of 100% by adopting LeNet-5 and GoogleNet network architectures. In other studies, 

CNNs have been used for performing multi-class discrimination of subjects. Recently, Wu and 

colleagues (Wu et al., 2018) adopted a pre-trained CaffeNet and achieved accuracy of 98.71%, 

72.04%, and 92.35% for a three-way classification between healthy controls, stable mild 

cognitive impairment (MCI), and progressive MCI patients, respectively. In another work by 

Islam and Zhang(Islam and Zhang, 2018), an ensemble system of three homogeneous CNNs 

were proposed, and average multi-class classification accuracy of 93.18% was found on the 

Open Access Series of Imaging Studies (OASIS) dataset. For the classification of PD, 

Esmaeilzadeh et al. (Esmaeilzadeh et al., 2018)classified PD patients from healthy controls based 

on MRI and demographic information (i.e., age and gender). With the proposed 3D model, they 

achieved 100% accuracy on the test set. In another study by Sivaranjini and Sujatha(Sivaranjini 

and Sujatha, 2019), a pre-trained 2D CNN AlexNet architecture was used to classify PD patients 

vs. healthy controls, resulting in an accuracy of 88.9%. 

Although excellent performances have been shown by using deep learning for the classification 

of neurological disorders, there are still many challenges that need to be addressed, including 

complexity and difficulty in interpreting the results due to highly nonlinear computations, non-

reproducibility of the results, and data/information and, especially, data overfitting (see Vieira et 

al. and Davatzikos for reviews).   

Overly optimistic results may be due to data leakage – a process caused by the use of 

information in the model training that is not expected to be available at the prediction time. See 

Kaufman et al. (Kaufman et al., 2012) for further details on a formal definition of data leakage. 

Data leakage can be due to a target (class label) leakage or incorrect data split. For example, data 

leakage may occur when feature selection is performed based on the whole dataset before cross-

validation(Reunanen, 2003, Varma and Simon, 2006). In this case, the target variable of samples 
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in the test sets may be erroneously used to improve the learning process. Several cases may be 

related to an incorrect data split. For example, when the data augmentation step is performed 

before dividing the test set from the training data (late split), the augmented data generated from 

the same original image can be seen in both training and test data, leading to incorrect inflated 

performance(Wen et al., 2020). Another form of train-test contamination that leads to data 

leakage is when the same test set is used to optimize the training hyperparameters and evaluate 

the model performance(Varma and Simon, 2006). Different use of information not available at 

prediction time occurs using longitudinal data, when there is a danger of information leaking 

from the future to the past. A particularly insidious form of data leakage may occur when 

information about the target inadvertently leaks into the input data, for example the presence of a 

ruler, markings or treatment devices in a medical image may correlate with the class 

label(Winkler et al., 2019, Oakden-Rayner et al., 2020, Narla et al., 2018).  

While concluding that data leakage leads to overly optimistic results will surprise few 

practitioners, we believe that the extent to which this is happening in neuroimaging applications 

is mostly unknown, especially in small datasets. As we completed this study, we became aware 

of independent research by Wen et al. (Wen et al., 2020)that corroborates part of our conclusions 

regarding the problem of data leakage. They successfully suggested a framework for the 

reproducible assessment of AD classification methods. However, the architectures have not been 

trained and tested on smaller datasets typical of clinical practice, and they mainly employed 

hold-out model validation strategies rather than cross-validation (CV) – that gives a better 

indication of how well a model performs on unseen data(Blum et al., 1999, Yadav and Shukla, 

2016). Moreover, the authors focused on illustrating the effect of data leakage on the 

classification of AD patients only. 

Unfortunately, the problem of data leakage incurred by incorrect data split is not only limited to 

the area of AD classification but can also be seen in various neurological disorders. It is more 

common to observe the data leakage in 2D architectures, yet some forms of data leakage, such as 

late split, could be present in 3D CNN studies as well. Moreover, although deep complex 

classifiers are more prone to overfitting, also conventional machine learning algorithms may be 

affected by data leakage. A summary of these works with clear and potential data leakage is 
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given in Tables 3.1 and 3.2, respectively. Other works with insufficient information to assess 

data leakage are reported in Table 3.3. 

Table 3.1:Summary of the previous studies performing classification of neurological disorders 

using MRI and with clear data leakage (see also Appendix 1 online for a detailed description). 

Disorder Reference Groups 

(number of 

subjects) 

Machine 

learning 

model 

Data split method  Type of data 

leakage  

Accur

acy 

(%) 

 Gunawardena  et 

al., 2017 

AD-MCI-HC 

(36) 

2D CNN 4:1 train/test slice-

level split  

wrong split 96.00 

 Hon & Khan, 

2017 

AD-HC  

(200) 

2D CNN 

(VGG16) 

4:1 train/test slice-

level split 

wrong split 96.25 

 Jain et al., 2019 AD-MCI-HC 

(150) 

2D CNN 

(VGG16) 

4:1 train/test slice-

level split  

late and wrong 

split 

95.00 

 Khagi  et al., 

2019 

AD-HC 

(56) 

2D CNN 

(AlexNet 

GoogLeNet , 

ResNet50, 

new CNN) 

6:2:2 

train/validation/test 

slice-level split 

 wrong split 98.00 

AD/MCI Sarraf  et al., 

2017 

AD-HC 

(43) 

2D CNN 

(LeNet-5) 

3:1:1 

train/validation/test 

slice-level split  

wrong split 96.85 

 Wang et al., 

2017 

MCI-HC 

(629) 

 

2D CNN Data augmentation + 

10:3:3 

train/validation/test 

split by MRI slices 

wrong    split 

and 

augmentation         

before split 

90.60 

 Puranik  et al., 

2018 

AD/EMCI-

HC 

2D CNN 17:3 train/test split by 

MRI slices 

wrong split 98.40 

 Basheera  et al., 

2019 

AD-HC 2D CNN 4:1 train/test split by 

MRI slices 

wrong split 90.47 

 Nawaz et al., 

2020 

AD-MCI-HC 2D CNN 6:2:2 slice level split wrong split 99.89 

 

AD = Alzheimer’s disease;  C =  ealthy controls; MCI = Mild cognitive impairment. 
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Table 3.2:Summary of the previous studies performing classification of neurological disorders 

using MRI and suspected to have potential data leakage (see also Appendix 2 online for a 

detailed description). 

Disorder Reference Groups 

(number of 

subjects) 

Machine 

learning 

model 

Data split 

method  

Type of data 

leakage  

Accurac

y 

(%) 

 Farooq  et al., 

2017 

AD-MCI-

LMCI-HC 

(355) 

2D CNN 

(GoogLeN

et and 

modified 

ResNet) 

3:1 train/test 

(potential) 

slice-level split  

wrong split 98.80 

AD/MCI Ramzan  et al., 

2019 

HC-SMC- 

EMCI-MCI-

LMCI-AD 

(138) 

2D CNN 

(ResNet-

18) 

7:2:1 train/ 

validation/test 

(potential) 

slice-level split 

wrong split 100 

 Raza et al., 

2019 

AD-HC  

(432) 

2D CNN  

(AlexNet) 

4:1 train/test 

(potential) 

slice-level split  

wrong split 98.74 

 Pathak  et al., 

2020 

AD-HC 2D CNN 3:1 (potential) 

slice level split 

wrong split 91.75 

 

 

ASD 

Libero  et al., 

2015 

ASD-TD 

(37) 

Decision 

tree 

unclear entire data set 

used for feature 

selection  

91.90 

Zhou et al., 

2014 

ASD-TD/HC 

(280) 

Random 

tree 

classifier 

4:1 train/test 

split 

entire data set 

used for feature 

selection  

100 

PD Sivaranjini, et 

al., 2019 

PD-HC 

(182) 

2D CNN 4:1 train/test 

split by MRI 

slices 

wrong split 88.90 

TBI Lui  et al., 2014 TBI-HC 

(47) 

Multilayer 

perceptron 

10-fold CV  entire data set 

used for feature 

selection 

86.00 

Brain 

tumor 

Hasan  et al., 

2019 

Tumor-HC 

(600) 

MGLCM+ 

2D CNN + 

SVM 

10-fold CV wrong split and 

entire data set 

used for feature 

selection  

99.30 
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AD = Alzheimer’s disease; ASD = Autism spectrum disorder;  C =  ealthy controls; MCI = 

Mild cognitive impairment; PD = Parkinson’s disease; SWEDD = scans without evidence of 

dopaminergic deficit; TBI = Traumatic brain injury; TD = Typically developing. 

 

Table 3.3: Summary of the previous studies performing classification of neurological disorders 

using MRI and that provide insufficient information to assess data leakage (see also Appendix 3 

online for a detailed description). 

Disorder Reference Groups 

(number of 

subjects) 

Machine 

learning 

model 

Data split 

method  

Accuracy 

(%) 

 Al-Khuzaie  et 

al., 2021 

AD-HC 

(240) 

2D CNN (potential) 

slice-level split 

99.30 

AD/MCI Wu et al., 2018 AD-HC 2D CNN 

 

 

 

 

Data 

augmentation + 

2:1 train/test 

split by MRI 

slices 

97.58 

 

AD = Alzheimer’s disease;  C =  ealthy controls; MCI = Mild cognitive impairment. 

 

In this study, we addressed the issue of data leakage in one of the most common classes of deep 

learning models, i.e., 2D CNNs, caused by incorrect dataset split of 3D MRI data. Specifically, 

we quantified the effect of data leakage on CNN models trained on different datasets of T1-

weighted brain MRI of healthy controls and patients with neurological disorders using a nested 

CV scheme with two different data split strategies: a) subject-level split, avoiding any form of 

data leakage and b) slice-level split, in which different slices of the same subject are contained 

both in the training and the test folds (thus data leakage will occur). We focused our attention on 

both large (about 200 subjects) and small (about 30 subjects) datasets to evaluate a possible 

increase in performance overestimation when a smaller dataset was used, as is often the case in 

clinical practice. This paper expands on the preliminary results by Yagis et al.(Yagis et al., 
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2019), offering a broader investigation of the issue. In particular, we performed the classification 

of AD patients using the following datasets: 1) OASIS-200, consisting of randomly sampled 100 

AD patients and 100 healthy controls from the OASIS-1 study(Marcus et al., 2007), 2) ADNI, 

including 100 AD patients and 100 healthy controls randomly sampled from Alzheimer’s 

Disease Neuroimaging Initiative (ADNI)(Petersen et al., 2010), and 3) OASIS-34, composed of 

34 subjects (17 AD patients and 17 healthy controls) randomly selected from the OASIS-200 

dataset. Given that the performance of a model trained on a small sample dataset could depend 

on the selected samples, we created ten instances of the OASIS-34 dataset by randomly sampling 

from the OASIS-200 dataset ten times independently. The subject IDs included in each instance 

are found in Appendix 4 online. Moreover, we generated a different dataset, called OASIS-

random, where, for each subject of the OASIS-200 dataset, a fake random label of either AD 

patient or healthy control was assigned. In this case, the image data had no relationship with the 

assigned labels. Besides, we included two T1-weighted images datasets of patients with de-novo 

PD: PPMI, including 100 de-novo PD patients and 100 healthy controls randomly chosen from 

the public Parkinson’s Progression Markers Initiative (PPMI) dataset(Marek et al., 2018), and 

Versilia, a small-sized private clinical dataset of 17 patients with de-novo PD and 17 healthy 

controls. A detailed description of each dataset has been reported in the “Methods” section. 

 

Materials and methods  

Datasets 

In this study, we adopted the scans collected by three public and international datasets of T1-

weighted images of patients with AD (the OASIS dataset (Marcus et al., 2007) and the ADNI 

dataset(Petersen et al., 2010)) and de-novo PD (the PPMI dataset (Marek, K. et al., 2018)). An 

additional private de-novo PD dataset, namely the Versilia dataset, has also been used. A 

summary of the demographics of the datasets used in this study is shown in Table 3.4. In the 

following sections, a detailed description of all datasets will be reported. 
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Table 3.4:Demographic features of subjects belonging to OASIS-200, ADNI, PPMI, and Versilia 

datasets. The same information for the OASIS-34 datasets has been reported in Appendix 5 

online. 

Dataset  Patients Healthy controls 

OASIS-200 

 

Number of subjects 100 100 

Age (range, years) 62 – 96 59 – 94 

Age (mean ± SD, years) 76.70 ± 7.10 75.50 ± 9.10 

Gender (women/men) 59/41 73/27 

ADNI 

 

Number of subjects 100 100 

Age (range, years) 56 – 89 58 – 95 

Age (mean ± SD, years) 74.28 ± 7.96 75.04 ± 7.11 

Gender (women/men) 44/56 52/48 

PPMI 

 

Number of subjects 100 100 

Age (range, years) 34 – 82 31 – 83  

Age (mean ± SD, years) 61.71 ± 9.99  61.91 ± 11.52 

Gender (women/men) 40/60 36/64 

Versilia 

 

Number of subjects 17 17 

Age (range, years) 48 – 78 54 – 77 

Age (mean ± SD, years) 64 ± 7.21 64.00 ± 7.00 

Gender (women/men) 4/13 5/12 

 

AD = Alzheimer’s disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; OASIS = 

Open Access Series of Imaging Studies; PD = Parkinson’s disease; PPMI = Parkinson's 

Progression Markers Initiative; SD = standard deviation. 

 

OASIS-200, OASIS-34, and OASIS-random datasets  

We have used the T1-weighted images of 100 AD patients [(59 women and 41 men, age 76.70 ± 

7.10 years, mean ± standard deviation (SD)] and 100 healthy controls (73 women and 27 men, 

age 75.50 ± 9.10 years, mean ± SD) from the OASIS-1 study – a cross-sectional cohort of the 

OASIS brain MRI dataset(Marcus et al., 2007), freely available at https://www.oasis-brains.org/. 
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In particular, we have employed the same scans that were previously selected by other 

authors(Hon and Khan, 2017). We called this dataset OASIS-200. The subject identification 

numbers (IDs) and demographics of these subjects were specified in Appendix 6 online. No 

significant difference in age (p = 0.15 at t-test) was found between the two groups, while a 

significant (borderline) difference in gender was observed (p = 0.0  at χ
2
-test).  

In OASIS-1, AD diagnosis, as well as the severity of the disease, were evaluated based on the 

global Clinical Dementia Rating (CDR) score derived from individual CDR scores for the 

domains memory, orientation, judgment and problem solving, function in community affairs, 

home and hobbies, and personal case(Morris, 1993, Morris et al., 2001). Subjects with a global 

CDR score of 0 have been labeled as healthy controls, while scores 0.5 (very mild), 1 (mild), 2 

(moderate), and 3 (severe) have been all labeled as AD.   

All T1-weighted images have been acquired on a 1.5 T MR scanner (Vision, Siemens, Erlangen, 

Germany), using a Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence in a 

sagittal plane [repetition time (TR) = 9.7 ms, echo time (TE) = 4.0 ms, flip angle = 10°, inversion 

time (TI) = 20 ms, delay time (TD) = 200 ms, voxel size = 1 mm × 1 mm × 1.25 mm, matrix size 

= 256 × 256, number of slices = 128](Marcus et al., 2007).  

   

ADNI dataset  

We considered the T1-weighted MRI data of 100 AD patients (44 women and 56 men, age 74.28 

± 7.96 years, mean ± SD) and 100 healthy controls (52 women and 48 men, age 75.04 ± 7.11 

years, mean ± SD). No significant difference in age (p = 0.24 at t-test) and gender (p = 0.26 at χ
2
-

test) was found between the two groups. AD patients have been randomly chosen from the ADNI 

2 dataset (available at http://adni.loni.usc.edu/) – a cohort of ADNI that extends the work of 

ADNI 1 and ADNI-GO studies(Petersen et al., 2010). Led by Principal Investigator Michael W. 

Weiner, MD, ADNI was launched in 2003 to investigate if biological markers (such as MRI and 

PET) can be combined to define the progression of MCI and early AD. We have used MPRAGE 

T1-weighted MRI scans acquired by 3 T scanners [6 Siemens (Erlangen, Germany) MRI 

scanners and 6 Philips (Amsterdam, Netherlands) scanners] in a sagittal plane (voxel size = 1 

mm × 1 mm × 1.2 mm). The image size of the T1-weighted data acquired from the Siemens and 

Philips scanners were 176 × 240 × 256 and 170 × 256 × 256, respectively. Since ADNI 2 is a 
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longitudinal dataset, more than one scan was available for each subject. The first scan of each 

participant has been chosen to produce a cross-sectional dataset. Appendix 7 provides subject 

IDs and the acquisition date of the specific scan used in our study. The MRI acquisition protocol 

for each MRI scanner can be found at http://adni.loni.usc.edu/methods/documents/mri-

protocols/. In ADNI 2 dataset, subjects have been categorized as AD patients or healthy controls 

based on whether subjects have complaints about their memory and by considering a 

combination of neuropsychological clinical scores(Petersen et al., 2010). 

 

PPMI dataset 

We randomly selected 100 de-novo PD subjects (40 women and 60 men, age 61.71 ± 9.99, mean 

± SD) and 100 healthy controls (36 women and 64 men, age 61.91 ± 11.52, mean ± SD) from the 

publicly available PPMI dataset (https://ida.loni.usc.edu/login.jsp?project=PPMI). No significant 

difference in age (p = 0.44 at t-test) and gender (p = 0.56 at χ
2
-test) was found between the two 

groups. The criterion used to recruit de-novo PD patients, and healthy controls were defined by 

Marek and colleagues(Marek et al., 2018). Briefly, PD patients were selected within two years of 

diagnosis with a Hoehn and Yahr score < 3(Hoehn and Yahr, 1967), at least two of resting 

tremor, either bradykinesia or rigidity (must have either resting tremor or asymmetric 

bradykinesia) or a single asymmetric resting tremor or asymmetric bradykinesia and dopamine 

transporter (DAT) or vesicular monoamine transporter type 2 (VMAT-2) imaging showing a 

dopaminergic deficit. Healthy controls were free from any clinically significant neurological 

disorder(Marek et al., 2018). 

 The T1-weighted scans were collected at baseline using MR scanners manufactured by 

Siemens (11 scanners at 3 T and five scanners at 1.5 T), Philips Medical Systems (10 scanners at 

3 T and 11 scanners at 1.5 T), GE Medical Systems (11 scanners at 3 T and 24 scanners at 1.5 T) 

and another anonymous one (5 scanners at 1.5 T). We also found three subjects whose MRI 

protocol was missing. The details of the MRI protocols of all scanners can be found in Appendix 

8.  

Versilia dataset    

Seventeen (4 women and 13 men, age 64 ± 7.21 years, mean ± SD) patients with de-novo 

parkinsonian syndrome consecutively referred to a Neurology Unit to evaluate PD over a 24-
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month interval (from June 2012 to June 2014) were recruited in this dataset. More details about 

clinical evaluation can be found in(Tessa et al., 2019). Seventeen healthy controls (5 women and 

12 men, age 64 ± 7 years, mean ± SD) with no history of neurological diseases and normal 

neurological examination were recruited as controls. No significant difference in age (p = 0.95 at 

t-test) and gender (p = 0.70 at χ
2
-test) was found between the two groups. 

All subjects underwent high-resolution 3D T1-weighted imaging on a 1.5 T MR scanner system 

(Magnetom Avanto, software version Syngo MR B17, Siemens, Erlangen-Germany) equipped 

with a 12-element matrix radiofrequency head coil and SQ-engine gradients. The SQ-engine 

gradients had a maximum strength of 45 mT/m and a slew rate of 200 T/m/s. T1-weighted MR 

images were acquired with an axial high resolution 3D MPRAGE sequence with TR = 1900 ms, 

TE = 3.44 ms, TI = 1100 ms, flip angle = 15
o
, slice thickness = 0.86 mm, field of view (FOV) = 

220 mm×220 mm, matrix size = 256×256, number of excitations (NEX) = 2, number of slices = 

176.  

T1-weighted MRI data preprocessing 

All T1-weighted MRI data went through two preprocessing steps (see Figure 3.6). In the first 

stage, co-registration to a standard template space and skull stripping were applied to re-align all 

the images and remove non-brain regions. In the second stage, a subset of axial images has been 

collected using an entropy-based slice selection approach.  
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Figure 3.6: Schematic diagram of the overall T1-weighted MRI data processing and validation 

scheme. First, a preprocessing stage included co-registration to a standard space, skull-stripping 

and slices selection based on entropy calculation. Then, CNNs model’s training and validation 

have been performed on each dataset in a nested CV loop using two different data split 

strategies: a) subject-level split, in which all the slices of a subject have been placed either in 

training or in the test set, avoiding any form of data leakage; b)slice-level split, in which all the 

slices have been pooled together before CV, then split randomly in to training and test set. 

 

Co-registration to a standard template space and skull stripping   

For the OASIS datasets, we used publicly available preprocessed data (gain-field corrected, brain 

masked, and co-registration)(Han et al., 2018b). Briefly, the brain masks from OASIS were 

obtained using an atlas-registration-based method, and their quality was controlled by human 

experts(Marcus et al., 2007), and each volume has been co-registered to the Talairach and 

Tournoux atlas. Each preprocessed T1-weighted volume had a data matrix size of 176 × 208 × 

176 and a voxel size of 1 mm × 1 mm × 1 mm(Han et al., 2018b).  

For all other datasets, we have co-registered each individual T1-weighted volume to the MNI152 

standard template space (at 1 mm voxel size – available in the FSL version 6.0.3 package) by 

using the SyN algorithm included in ANTs package (version 2.1.0) with default parameters 

(Avants, B. B. et al., 2011). Then, the brain mask of the standard template space has been 
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applied to each co-registered volume. Each preprocessed T1-weighted volume had a data matrix 

size of 182 × 218 × 182 and a voxel size of 1 mm × 1 mm × 1 mm.  Figure 3.7 illustrates sample 

preprocessed T1-weighted slices from OASIS-200, ADNI, PPMI, and Versilia datasets. 

 

Figure 3.7: Sample preprocessed T1-weighted axial images from OASIS-200, ADNI, PPMI and 

Versilia datasets. 

 

Entropy-based slice selection  

Each T1-weighted slice generally conveys a different amount of information. Given that we are 

interested in developing a 2D CNN model, we have performed a preliminary slice selection 

based on the amount of information. More specifically, for each T1-weighted volume, the 

Shannon entropy ES, representing the information content, was computed for each axial slice, as 

follows:   

     ∑                                                                  (3.6) 

                           

where k is the number of grayscale levels in the slice and pk is the probability of occurrence, 

estimated as the relative frequency in the image, for the gray level k. Then, for each T1-weighted 

volume, the slices were ordered in descending order based on their entropy scores, and, finally, 
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we selected only the eight axial slices that showed the highest entropy (Hon, M. & Khan, N., 

2017).  

To be consistent with the input sizes of the proposed 2D CNN models, all slices were resized to 

224 × 224 pixels by fitting a cubic spline between the 4-by-4 neighborhood pixels
66

. Voxel-wise 

feature standardization has also been applied to make training the CNNs easier and achieve faster 

convergence, i.e., for each voxel, an average value of all grayscale values within the brain mask 

has been subtracted and scaled by the standard deviation (within the brain mask).   

Model architectures 

Since the number of subjects of each dataset may not be sufficient to train with high accuracy a 

2D CNN model from scratch, we have used a machine learning technique called transfer learning 

that allows employing pre-trained models, i.e., model parameters previously developed for one 

task (source domain) to be transferred to target domain for weight initialization and feature 

extraction. In particular, CNN layers hierarchically extract features starting from the general low-

level features to those specific to the target class, and using transfer learning, the general low-

level features can be shared across tasks. Notably, we used pre-trained VGG16 (Simonyan and 

Zisserman, 2015) and ResNet-18 (He et al., 2015)models in this study, as detailed in the 

following sections. The transfer learning approach and VGG16 architectures used in this study 

are similar to those employed in (Hon and Khan, 2017) as their results triggered our investigation 

of data leakage.  

 

VGG16-based models 

VGG16 is one of the most influential architectures which explore network depth with very small 

(3x3) convolution filters stacked on top of each other. VGG16 consists of five convolutional 

blocks, with alternating convolutional and pooling layers and three fully-connected layers.  

 In transfer learning, the most common approach is copying the first n layers of the pre-

trained network to the first n layers of a target network and then randomly initializing the 

remaining layers to be trained on the target task. Depending on the size of the target dataset and 

the number of parameters in the first n layers, these copied features can be left unchanged (i.e., 

frozen) or fine-tuned during the training of the network on a new dataset. It is well accepted that 

if the target dataset is relatively small, fine-tuning may cause overfitting, whereas if the target 
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dataset is large, then the base features can be fine-tuned to improve the model's performance 

without overfitting. 

To investigate the effect of fine-tuning, we have tested two different variants of VGG16 

architecture, namely VGG16-v1 and VGG16-v2 (Figure 3.8). The former model has been used 

as a feature extractor where the weights for all network layers are frozen except that of the final 

fully connected layer. Randomly initialized fully connected layers have replaced the three 

topmost layers with rectified linear unit (ReLU) activation. The weights are initialized according 

to the Xavier initialization heuristic (Glorot and Bengio, 2010) to prevent the gradients from 

vanishing or exploding.  

 

Figure 3.8: The two different networks based on the VGG16 architecture are shown. Each 

colored block of layers illustrates a series of convolutions. (a) The first model, named VGG16-v1 

consists of five convolutional blocks followed by three fully connected layers. Only the last three 

fully connected layers are fine-tuned, b) On the other hand, the second model, VGG16-v2, has 

five convolutional blocks followed by a global average pooling layer, and all the layers are fine-

tuned. 

 

The VGG16-v2 model has been utilized as a weight initializer where the weights are derived 

from the pre-trained network and fine-tuned during training. We have replaced the fully 

connected layers with a randomly initialized global average pooling (GAP) layer suggested by 

Lin and colleagues (Lin, M. Et al., 2014) to reduce the number of parameters and, rather than 

freezing the CNN layers, we have fine-tuned all layers.    
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ResNet-18 based model  

It has been long believed that deeper networks can learn more complex nonlinear relationships 

than shallower networks with the same number of neurons, and thus network depth is of great 

importance on model performance(Szegedy et al., 2015). However, many studies revealed that 

deeper networks often converge at a higher training and test error rate when compared to their 

shallower counterparts(He et al., 2015). Therefore, stacking more layers to the plain networks 

may eventually degrade the model’s performance while complicating the optimization process. 

To overcome this issue, He and colleagues introduced deep residual neural networks and 

achieved top-5 test accuracies with their models on the popular ImageNet test set(He et al., 

2015). The model was proposed as an attempt to solve the vanishing gradients and the 

degradation problems using residual blocks. With these residual blocks, the feature of any deeper 

unit can be computed as the sum of the activation of a shallower unit and the residual function. 

This architecture causes the gradient to be directly propagated to shallower units making 

ResNets easier to train.  

There are different versions of residual neural network (ResNet) architecture with various 

numbers of layers. In this work, we used ResNet-18 architecture, an 18-layer residual deep 

learning network consisting of five stages, each with a convolution and identity block(He et al., 

2015). In our model, one fully connected layer with sigmoid activation has been added at the end 

of the network – a common practice in binary classification tasks as it takes a real-valued input 

and squashes the output to a range between 0 and 1. Since the network is relatively smaller and 

has a lower number of parameters than VGG16, the weights and biases of all the transferred 

layers are fine-tuned while the newly added fully connected layer has been trained to start from 

randomly initialized weights. The architecture of our ResNet-18 model can be seen in Figure 3.9. 
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Figure 3.9: A modified ResNet-18 architecture with an average pooling layer at the end is 

shown. The upper box represents a residual learning block with an identity shortcut. Each layer 

is denoted as (filter size, # channels); layers labeled as “freezed” indicates that the weightes are 

not updated during backpropagation, whereas when they are labeled as “fine-tuned” they are 

updated. The identity shortcuts can be directly used when the input and output are of the same 

dimensions (solid line shortcuts) and when the dimensions increase (dotted line shortcuts). 

ReLU=rectified linear unit. 

 

Model training and validation 

Each 2D CNN model has been trained and validated using a nested CV strategy – a validation 

scheme that allows examining the unbiased generalization performance of the trained models 

along with performing, at the same time, hyperparameters optimization(Varma and Simon, 

2006). It involves nesting two  CV loops where the inner loop is used for optimizing model 

hyperparameters, and the outer loop gives an unbiased estimate of the performance of the best 

model. It is especially suitable when the amount of data available is insufficient to allow separate 

validation and test sets(Varma and Simon, 2006). A schematic diagram of the procedure is 

illustrated in Figure 2.8 of Section 2.3. It starts by dividing the dataset into k folds, and one-fold 

is kept as a test set (outer CV), while the other k-1 folds are split into inner folds (inner CV). The 

model hyperparameters are chosen from the hyperparameter space through a grid search based 

on the average performance of the model over the inner folds. In particular, we varied the 

learning rate in the set {10
-5

, 3 × 10
-5

, 10
-4

, 3 × 10
-4

, 10
-3

} and the learning rate decay in {0, 0.1, 

0.3, 0.5}. The chosen model is then fitted with all the outer fold training data and tested on the 
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unseen test fold, resulting in an unbiased estimation of the model’s prediction error. Specifically, 

we choose a 10-fold CV because it offers a favorable bias-variance tradeoff(Hastie et al., 2009, 

Lemm et al., 2011). 

In all experiments, we used batch size = 128 and epoch number = 50. Due to its ability to 

adaptively updating individual learning rates for each parameter, an Adam optimizer was 

used(Kingma and Ba, 2014). Each selected slice of the 3D T1-weighted volume has been 

classified independently and the final model’s performance was stated using the mean slice-level 

accuracy, separately, on the training set and test set folds of the outer CV.  

We thus conducted CNNs model’s training and validation on each dataset in a nested CV loop 

using two different data split strategies: a) subject-level split, in which all the slices of a subject 

have been placed either in the training set or in the test set, avoiding any form of data leakage; b) 

slice-level split, in which all the slices have been pooled together before CV, then split randomly 

into training and test set. In this case, for each slice of the test set, a set of highly correlated slices 

coming from the MR volume of the same subject ended up in the training set, giving rise to data 

leakage, as shown pictographically in Figure 3.6. 

CNN models were carried out using a custom-made software in Python language (version 3.6.8) 

using the following modules: CUDA v.9.0.176(Cook, 2014), TensorFlow-gpu v.1.12.0(2016), 

Keras v.2.2.4(Chollet and others, 2015), Scikit-learn v.0.20.2(Pedregosa et al., 2011), Nibabel 

v.2.3.3(Brett et al., 2019), and OpenCV v.3.3.0(Bradski and Kaehler, 2008). All the source code 

can be found in a Github repository at https://github.com/Imaging-AI-for-Health-virtual-

lab/Slice-Level-Data-Leakage, and a Docker image can be downloaded at 

https://hub.docker.com/repository/docker/ai4healthvlab/slice-level-data-leakage. The training 

and validation of CNN models were performed on a workstation equipped with a 12 GB G5X 

frame buffer NVIDIA TITAN X (Pascal) GPU with 64 GB RAM, 8 CPUs, 3584 CUDA cores 

and 11.4 Gbps processing speed. The average computational time for CNN training on a dataset 

of 34 and 200 subjects were 5.68 hours (VGG16-v1), 5.63 hours (VGG16-v2), 2.94 hours 

(ResNet-18) and 33.93 hours (VGG16-v1), 33.82 hours (VGG16-v2), 14.12 hours (ResNet-18), 

respectively. The total computational time for this study was thus about 17 days.   

https://github.com/Imaging-AI-for-Health-virtual-lab/Slice-Level-Data-Leakage
https://github.com/Imaging-AI-for-Health-virtual-lab/Slice-Level-Data-Leakage
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Results  

For AD classification, accuracy on the test set, using subject-level CV, was below 71% for large 

datasets (OASIS-200 and ADNI), whereas they were below 59% for smaller datasets (OASIS-

34). Regarding de novo PD classification, they were around 50% for both large (PPMI) and 

small (Versilia) datasets. Conversely, slice-level CV erroneously produced very high 

classification accuracies on the test set in all datasets (higher than 94% and 92% on large and 

small datasets, respectively), leading to deceptive, over-optimistic results (Table 3.5). 

 The worst-case stemmed from the randomly labeled OASIS dataset, which resulted in a model 

with unacceptably high performances (accuracy on the test set more than 93%) using slice-level 

CV, whereas classification results obtained using a subject-level CV were about 50%, in 

accordance with the expected outcomes for a balanced dataset with completely random labels. 
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Table 3.5:Mean slice-level accuracy on the training and test set of the outer CV over 5-fold 

nested CV has been reported for three 2D CNN models (see “Methods” section), all datasets, and 

two data split methods (slice-level and subject-level). The difference between accuracy using 

slice-level and subject-level split in the test set has also been reported. 

Dataset Network 

architecture 

Training set 

accuracy (%) 

Test set 

accuracy (%) 

 

  Subject-

level split 

Slice-

level split 

Subject-

level split 

Slice-

level split 

Differen

ce 

OASIS-200 VGG16-v1  95.93  99.85  66.0  94.18 28.18 

VGG16-v2  95.13  100  66.13  96.99  30.86 

ResNet-18 100  100  68.87  98.96  30.1 

OASIS-34 VGG16-v1  88.94  100  54.35  99.19  44.84 

VGG16-v2  96.94  100  54.34  99.33  44.99 

ResNet-18 100  100  57.49  98.96  41.47 

OASIS- 

Random 

VGG16-v1  63.38  100  53.37  95.93  42.56 

VGG16-v2  69.17  100  49.25  94.81  45.56 

ResNet-18 84.49  99.09  50.8  93.74  42.94 

 

ADNI 

VGG16-v1  91.09  100  70.12  95.31  25.19 

VGG16-v2  80.49  100  66.49  95.24  28.75 

ResNet-18 100  100  68.68  96.87  30.19 

 

PPMI 

VGG16-v1  76.8 100 48.24 93.99 45.75 

VGG16-v2  73.19 100 46.93 94.37 47.44 

ResNet-18 100 100 48.06 96.12 44.06 

 

Versilia 

VGG16-v1  99.72  100  53.86  95.97  42.11 

VGG16-v2  76.89  100  42.97  97.8  54.83 

ResNet-18 99.90  95.13  51.36  92.63  41.27 
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3.3 Interpretability  
Interpretability is one of the major drawbacks of the application of deep learning systems in 

areas where the rationale for the model’s decision is a requirement for trust, such as in the 

healthcare domain(Lipton, 2018). It describes how understandable is the link between the 

features used by a machine learning algorithm and the prediction it produces(Reyes et al., 2020). 

Although deep neural networks have been showing empirical success in medicine, including in 

neuroimaging, the complexity of these models that stem from the very deep architecture 

consisting of hundreds of layers and millions of parameters makes it difficult to understand the 

internal states of the model(Kimura and Tanaka, 2020). This is because the number and 

complexity of the model’s features directly affect the interpretability of the model(Lipton, 2018). 

Due to these black-box properties, the clinical employment of these methods still needs building 

of further trust by incorporating more interpretability in to these systems. In medical imaging, 

also in neuroimaging analysis the desire to include interpretability in to the predictive systems is 

due to the reasons: 

In order to adopt these tools for clinical applications, building trust between the model and the 

users is important, where the trust depends on the level of understanding of the internal states of 

these models. For example, in scenarios, where a model performed well during the model 

development phase and becomes less reliable when applied to real-world data, interpretability 

provides hints to judge if the model is trustworthy in a given scenario supported by expertise’s 

knowledge(Sheu, 2020, Lipton, 2018). 

Model interpretation helps to get more understanding and to discover novel aspects of the 

data(Sheu, 2020). For instance, in neuroimaging model visualization tools, which are one type of 

interpretability approaches, can help in finding new neural correlates associated with different 

brain disorders.  Considering the more general legal side, model interpretability is explicitly 

stated as a requirement by the General Data Protection Regulation set by the European 

Union(Regulation, 2018). 

To increase trust in the use of AI tools for medical imaging application and to incorporate these 

tools in a clinical setup, several AI explainability methods are being developed. Nevertheless, the 

larger number of studies employed attribution-based approaches for developing deep learning 

systems in medical imaging(Singh et al., 2020).  
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Attribution-based methods work by assigning a relevance to each input of a model to determine 

the contribution of each feature to the target neuron, which is often the output neuron of the 

correct class for a classification problem. Generally these methods produce attribution maps or 

heatmaps that represent the importance of different parts of the image to the model decision on a 

pixel-by-pixel basis. Usually positive attribution is marked in red and negative attribution is 

marked in blue(Singh et al., 2020, Huff et al., 2021). Most of attribution-based interpretation 

methods are implemented after building a model and are only meaningful when applied to a fully 

trained model. Hence these methods are known by a name, post-hoc explanations(Huff et al., 

2021). The most commonly used attribution based explainability methods in medical imaging 

studies include: 

Occlusion maps 

The occlusion map, which was introduced first by Zeiler and Fergus(Zeiler and Fergus, 2014), is 

one of the simplest attribution-based interpretability methods, which is categorized as a 

perturbation-based approach(Singh et al., 2020). Perturbation techniques remove, mask or 

modify specific input features, then run the forward pass and compare the difference from the 

original output(Singh et al., 2020). To identify and highlight important regions on the input 

image, in the case of CNNs, part of the image is masked usually by a grey patch, and it is passed 

through the model (Figure 3.10). Parts of the image that strongly affect the output of the model 

when occluded are assigned high relevance and image parts that have less impact on the output 

rather assigned a low relevance(Huff et al., 2021). Since occluding each pixel in the image is 

very expensive, usually a patch of size, 5 x 5 or 10 x 10 is used to generate an occlusion map of a 

CNN. The major limitation of this approach is that it is computationally expensive as many 

forward passes are required to generate the occlusion maps. 
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Figure 3.10: Occlusion map experiment by Zeiler and Fergus (Zeiler & Fergus, 2014) - was 

performed by occluding the images to the left and the generated occlusion heatmaps at the last 

classification layer. 

 

Deep SHapley Additive exPlanations (SHAP) 

Another perturbation-based approach is a SHAP explainer(Lundberg and Lee, 2017), which is an 

extension of a Shapley value in cooperative game theory, as a method for calculating the 

contribution of each feature in machine learning. Considering each feature as a player of a team, 

the contribution or relevance of each feature is represented by a SHAP value, where this value is 

computed by determining the difference between the predicted values with and without addition 

of each feature for all combinations of features and taking the average value. This allows 

determining the feature’s influence on the output or prediction and whether the influence is 

positive or negative. 

 

Saliency maps:  

Saliency maps are another type of attribution-based explainability methods which are classified 

as back-propagation or gradient-based methods. Gradient-based methods rely on a computation 

of the gradient, when a test sample is forward propagated and back-propagated through a trained 

network(Simonyan et al., 2014). 

Saliency maps specifically use the absolute value of the partial derivative of the target output 

neuron with respect to the input features to find the features which affect the output the most 
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with the least perturbation(Singh et al., 2020). Considering the computational time, these are 

very fast algorithms at the expense of a weaker relationship between the outcome and the 

variation of the output. 

The main drawback of saliency map methods is the absence of indication as to whether a pixel 

provides evidence for or against a class, only that the classification is sensitive to that pixel(Huff 

et al., 2021). In addition, in the case of binary classification, saliency maps lose their class 

specificity, because if a feature is vital for distinguishing between two classes, it may be 

highlighted by a saliency map for both classes. In the equation, the heatmap ( ) for a class c 

is computed directly as the derivative of the model output score  with respect to each pixel 

in the input image x through backpropagation(Huff et al., 2021): 

 

( )                                                                                                                       (3.7) 

 

Gradient-weighted class activation maps (GradCAM): 

GradCAM explanations correspond to the gradients of the class score with respect to each 

feature map of the last convolutional unit(Selvaraju et al., 2017). These approaches focused on 

the features with a positive association with the class of interest. In formula(Huff et al., 2021): 

                                                                                                                               (3.8) 

Where, the weights  are the gradients of the score for class c yc with respect to the k
th

 feature 

maps  of the preceding convolutional layer: 

( ) ∑                                                                                      (3.9) 
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Chapter 4 

4. Development of interpretable, leakage-free and 

reproducible deep learning framework for 

analyzing neuroimaging data 
 

To overcome the limitations seen in most of deep learning studies applied to neuroimaging data, 

a set of python functions (which is available at https://github.com/Imaging-AI-for-Health-virtual-

lab/Slice-Level-Data-Leakage) have been developed, which allow to build 2D CNN-based 

models with a wide range of model development and validation options for both classification 

and regression tasks.  

4.1 Main features of our deep learning framework 

Wide model architecture choice 

Our deep learning framework allows choosing a wide variety of model architectures. Most of the 

model architectures are of 2D CNN types. Since we believe that most of the openly available 

brain image datasets have relatively small size, training a deep CNN model from scratch would 

lead to overfitting and results in models with poor generalization performance (a more detailed 

explanation is found in Section 3.1). Hence in our framework, multiple pre-trained 2D models 

are provided and the user can adapt the models based on the desired task. The pre-trained models 

included in our software were taken from one of the top deep learning frameworks, called Keras. 

The pre-trained weights included are: 

 VGG16 

 DenseNet121 

 Xception 

 Resnet50 and ResNet18 

 MobileNetV2 

 InceptionResNetV2 

 

https://github.com/Imaging-AI-for-Health-virtual-lab/Slice-Level-Data-Leakage
https://github.com/Imaging-AI-for-Health-virtual-lab/Slice-Level-Data-Leakage
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Single input and multi-input CNNs: 

Single input CNN: is a CNN that accepts only one type of input, basically a single type of brain 

image, such as slices of T1-weighted or T2-weighted FLAIR MRI data. 

Multi-input CNN: a CNN, accepting two inputs. The pre-trained CNN models are adapted to 

accept two image inputs (by combining two different brain images eg., T1-weighted with T2-

weighted or with DTI images) or they can be designed to take one image and another numerical 

data (demographic or clinical data).  

2D and 3D models: 

Although most of the models included have a 2D architecture, for the reason that to use widely 

available 2D pre-trained models, a 3D model architecture option is also available.  

 

Flexibility of model training and validation options 

All the models included in our framework are trained based on transfer learning techniques for 

both classification and regression problems. Each of the pre-trained models can be used either as 

feature extractor or as a weight initializer. The user can choose between the two options by 

setting the argument ‘Nlfrez’ to determine the number of layers to freeze or to fine-tune. 

Regarding model validation, three approaches are included. 

 Holdout validation; 

 K-fold CV; and 

 Nested k-fold CV. 

Although the choice of the validation technique to use can be made according to the theoretical 

principles described in Section 2.5, for a task requiring only model training and evaluation with 

hyperparameters specified by the user, either holdout or k-fold CV can be used. However, model 

selection is carried out in a nested k-fold CV loop (the implementation details will be shown in 

the next section, See Section 4.3). 

No data leakage (Reliability) 

All data preparation, data pre-processing and model training sub-tasks are designed carefully to 

avoid any form of data leakage. Basically the two useful considerations done in our deep 

learning tool are: 
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For both 2D and 3D models, feature scaling and normalization was performed on the statistics of 

the training set. Specifically mean and standard deviation of the training set was computed and 

these values were used to do feature scaling and normalization of the training, validation and test 

set. By doing so, the training dataset will not have knowledge about the distribution of the 

validation and test sets. 

In the case of 2D CNNs, since the models take 2D MRI images, 3D MRI volumes have to be 

sliced in to 2D images using one of the anatomical planes (axial, coronal, or sagittal). During the 

model validation procedure, the dataset is split in to train, validation and test sets based on 

subject level to prevent the type of data leakage which was explained in Section 3.2. 

In case of 3D architecture, since our models take the whole 3D volume of MRI, there is no 

chance of incurring data leakage while dividing the data in to training, validation and test sets. 

Interpretability  

As interpretability of the results of a deep learning system is a crucial component to getting trust 

of the predictive tool, as already highlighted in the previous chapter (section 3.3), multiple 

choices of CNN visualization methods are included in the predictive toolkit for both 

classification and regression tasks. The available visualization approaches for classification are: 

 Saliency maps; 

 GradCAM; 

 Occlusion maps; and 

 SHAP method. 

While for regression, 

 Saliency maps; and  

 GradCAM 

This feature of the toolkit is available for the validation techniques of holdout and k-fold CV. In 

addition, at the current level of development, the visualization techniques are included only for 

singleinput CNNs. 
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Presentation of results 

The way the outputs of the deep learning analysis are presented depends on the task, type of 

analysis in terms of validation techniques and the type of CNN model architecture. 

For a regression task, the available outputs include: 

For a simple model training and evaluation, in the case of holdout and k-fold CV, the MRI image 

type, image IDs included in the training and test set, the model architecture, the evaluation 

outputs for each fold, including both training and validation MSE and Pearson’s correlation 

coefficient are presented. In addition training and validation learning curves are drawn (Figure 

4.1). 

 

(a) 

 

(b) 
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(c) 

 

(d) 

    

e) 

 

Figure 4.1: Outputs presented for regression analysis. (a) path to the MRI dataset, (b) size of 

training and validation datasets, image indices selected as a validation set, and the fold number, 
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(c) the CNN model architecture, (d) the model’s average performance on the important regions 

of the image for prediction, and (e) saliency and GradCAM heatmaps generated by the CNN 

visualization tools. See section 3.3 for a detailed explanation.  

 

For parameter optimization, for each outer fold of nested CV, the list of the hyperparameter grid 

is reported at the beginning of the nested loop (see Figure 4.2). At the end of the execution, the 

best hyperparameter configuration with the performance evaluated on the chosen best 

configuration is printed out (Figure 4.3). 

 

Figure 4.2: The hyperparameter space to search for the best configuration of the analysis. 

 

 

Figure 4.3: The output of one fold of nested CV loop. 

 

For a classification problem also, similar outputs are presented except for few differences.  

 Visualization of CNNs: in the case of classification, the following visualization images 

are displaced. 
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Figure 4.4: An example of visualization output of an AD slice classified 

correctly for binary classification of AD vs HC, whose learning curve is shown 

in Figure 4.5. 

Figure 4.5: Learning curves for a binary classification task between AD and HC group. 
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4.2 General structure of the software 
The structure of our deep learning framework is categorized in to three functions. The main 

functions included are: 

all_net_train.py: this is the main analysis function to perform the model training and validation. 

The inputs to this function are: 

 MRI dataset: is a 4D array in a neuroimaging informatics technology initiative (NIFTI) 

file format; 

 Label data: a file consisting of subject IDs and the label assigned for each participant; 

 Data_config: a configuration file that includes information needed for data preparation 

and pre-processing; and . 

 Arch_config: a configuration file that contains information about the model architecture, 

training setup and validation method. 

 

 

Figure 4.6: General overview of the deep learning framework. 



75 
 

 

 By taking these input information, the all_net_train.py function. Performs: 

1. Data pre-processing: the different stages of data pre-processing include:  

 slicing of the 3D MRI volume of each subject using either of the axial, coronal or 

sagittal planes  

 selecting a subset of slices based on entropy-based slice selection  

 dividing the 2D image dataset based on subject-level in to training-validation or 

training-validation-test sets to prevent data leakage as explained in section 3.2; 

 normalizing the 2D MRI slices using the training dataset statistics;  

 These sub-processes are executed to convert the raw neuroimaging data in to an 

appropriate format to be fed to the CNN model. 

2. Model training: a pre-trained model of the user’s choice is selected from many available 

pre-trained models, which is specified in the arch_config.json file, and by applying 

modifications of the user’s interest,  the model architecture is built, the model is then 

trained on the training dataset and validated on the validation set. 

3. Model evaluation: the trained model is evaluated based on the defined metric function. 

Visualize_cnn.py: is the function that is called up after the main analysis has been completed. It 

carries out model interpretation tasks to reason out the results of the main analysis. Multiple 

CNN visualization techniques are included for both classification (GradCAM, Saliency map, 

Shap and occlusion map) and regression (GradCAM, Saliency map) analysis. 

This method accepts the trained model and test dataset samples, which are results of  the 

all_net_train.py execution, and returns visualization output images highlighting the important 

brain regions on the test sample images. 

gan_train.py: is the function used to generate synthetic brain MRI images.  

 

4.3 Code development 
The design and implementation of the code was founded on the basis of knowledge defined by 

following the suggestions on the web. 
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Data preparation 

The input MRI data is imported from a NIFTI file format. It is a format defined by the data 

format working group (DFWG) in two meetings held at National Institute of Health (NIH). It 

was proposed to resolve the issue of the absence of orientation information in the previous data 

formats. It is adapted from the widely used ANALYZE format and uses the empty space in the 

ANALYZE header to add more important features. The new features include: 

1. Affine coordinate definitions relating voxel index (i, j, k) to spatial location (x, y, z);  

2. Codes to indicate spatio-temporal slice ordering for FMRI;  

3. "Complete" set of 8-128 bit data types;  

4. A standardized way to store vector-valued datasets over 1-4 dimensional domains;  

5. Codes to indicate data "meaning";  

6. A standardized way to add "extension" data to the header; and 

7. Dual file (.hdr & .img) or single file (.nii) storage.  

Each NIfTI file contains metadata and a voxel in up to 7 dimensions and supports a variety of 

data types. Usually NIfTI files have a .nii or .nii.gz extension containing both the header and the 

data. NIfTI files can be split into a binary header (.hdr) and image data (.img/.img.gz). NIfTI 

metadata provides additional information about the coordinate system and how to interpret the 

data of the image. This may include parameters such as intent, a description, or fMRI-specific 

metadata. 

Data import is performed using a function included in the python library called “NiBabel” and it 

is loaded as a  D Numpy array. The ‘Generate_data’ function in our framework slices the series 

of 3D MRI volumes in to 2D images and resizes them to the required image resolution. Other 

methods single2three_channel, generate iterator, holdout_validate and cv_validate perform 

conversion to threechannel (RGB) image, split data in to training/validation and test sets based 

on subject level normalize the image features.  

 

Model training and validation 

Our deep learning system allows choosing between three validation schemes holdout, k-fold CV, 

and nested k-fold CV.  The holdout and k-fold CV validation methods are implemented using the 
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functionalities of the keras library, which is one of the popular deep learning framework. For 

both of these validation schemes, specifying a fixed set of hyperparameters is required. 

In the case of a nested k-fold CV, it is implemented by nesting two k-fold CV loops. Starting 

from the outer loop, first a k-fold CV is applied to the whole dataset on the basis of subjects 

creating N_outer folds. Looping over the outer folds, while each fold will get a chance to be a 

test set, the remaining N_outer -1 folds are merged  to be used for the model selection procedure 

performed by the inner k-fold CV. For a single input CNN, a method called GridSearchCV, 

provided by scikit-learn takes the training data and applies two loops of execution, the first 

iterating over the grid of hyperparameters and for each combination of hyperparameters performs 

an internal  k-fold CV loop. For a multi-input CNN instead, a python library called Hyperas is 

used to perform hyperparameter tunning as it supports optimizing multi-input models.  Overall, 

by running the nested CV, the inner loop selects the best model, and on the outer loop, the 

chosen model is evaluated on the unseen test set. For evaluating the goodness of the 

hyperparameter grid, a statistical metric accuracy (ACC) is used for classification tasks and 

Pearson’s correlation coefficient for regression problems. This procedure of model selection and 

evaluation are summarized in Figure 4.7. 

Model visualization 

The visualization method also performs iteratively to generate a visualization map of each of the 

images included in the test or the validation set. For each test image, all heatmap images 

(occlusion map, saliency map, GradCAM heatmap and SHAP heatmap) are produced since all of 

the visualization functions are included in the single Visualize_cnn.py script. The out put images 

are saved as PNG files. 

For binary classification, the test samples are categorized as True_positive, False_positive 

True_negative and False_negative to allow better analysis of the visualization results. 

While the function for the occlusion map is implemented using the keras library, the 

visualize_saliency and visualize_cam functions provided by the ‘keras-vis’ python module are 

customized and integrated in to our system. For generating SHAP heatmaps also, the 

GradientExplainer function included in the SHAP python package is applied on the test brain 

images.  
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Figure 4.7: Schematic representing a nested CV. It involves three loops of execution, the outer k-

fold CV, the iteration over the hyperparameter space and the inner k-fold CV. After the dataset is 

divided in to N_outer folds, for each of the outer folds fo, where o ϵ {1, 2, 3, …, N_outer}, model 

selection is performed by running the inner loop  loop fi , where  i ϵ {1, 2, 3, …., N_inner}  for 

eachc possible configuration of the hyperparameter pi, where j ϵ {1, 2, 3, …, P}. 
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Chapter 5 

5. Applications of deep learning in neuroimaging 
 

In this chapter, we discuss applications of the deep learning system we developed for analyzing 

neuroimaging data. The first project that has employed our deep learning system is the “VMCI 

Tuscany” study. In this study, we primarily aimed at developing a deep learning system capable 

of predicting a wide range of raw and demographically adjusted neuropsychological clinical 

scores of SVD subjects with MCI from neuroimaging data. In addition, we highlight the neural 

correlates that are influential in the cognitive degradation seen in SVD patients.  

In the second project, we focused on developing a robust deep learning system that can diagnose 

Alzheimer's disease from neuroimaging data. The visualization results of our system also show 

important brain substrates associated with the cognitive decline caused by Alzheimer's disease.  

5.1 Prediction of the cognitive performance in patients with small 

vessel disease and mild cognitive impairment: a deep learning 

approach 
 

5.1.1 Introduction 

Vascular mild cognitive impairment (MCI) is an intermediate state between normal status and 

dementia, with evidence of measurable cognitive impairment, but maintaining independence in 

activities of daily living (Moorhouse and Rockwood, 2008). Cerebral small vessel disease, which 

is the second most frequent cause of cognitive decline (Smith, 2017), is known as the main cause 

of vascular MCI (SVD) (Vasquez and Zakzanis, 2015). SVD is a brain disease characterized by 

several heterogeneous pathological changes affecting small arteries, arterioles, venules, and brain 

capillaries (Pantoni, 2010; Vasquez and Zakzanis, 2015). In patients with SVD and MCI, a wide 

range of brain, such as subcortical infarcts, lacunes, white matter (WM) T2-hyperintensities, 

dilated perivascular spaces, micro-bleeds, and brain atrophy can be  revealed by MRI (Wardlaw 

et al., 2013). Nevertheless, the impact of each of these features on cognitive abilities overall and 

in the single domains is not yet established (Pantoni et al., 2019).  
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Machine learning methods have been widely applied to neuroimaging and enabled better 

understanding of normal brain structure and functions and identifying signatures of different 

brain disorders (Davatzikos, 2019). Few machine learning studies (Ciulli et al., 2016; Pantoni et 

al., 2019; Shi et al., 2018) have addressed the analysis of the above MRI features with the 

cognitive status in patients with SVD and MCI. They assessed the ability of different 

conventional machine learning approaches by extracting MRI features from T1-weighted and T2-

weighted fluid-attenuated inversion recovery (FLAIR) images and diffusion tensor imaging 

(DTI). Overall, these machine learning studies reported a good to excellent capability of the MRI 

features to predict comprehensive or domain-specific cognitive scores (Ciulli et al., 2016; 

Pantoni et al., 2019; Shi et al., 2018). However, machine learning methods require a hand-crafted 

and complex feature extraction procedure on manual or semiautomatic drawn regions of interest 

(ROIs). Recently, deep learning approaches have become very popular in medical image 

processing because they can extract complex patterns from high dimensional data while retaining 

spatial information without or with a reduced need for ROI definitions or editing for feature 

extraction (Plis et al., 2014). Deep learning methods are representation learning techniques based 

on artificial neural network  architecture and known for their deep architecture that hierarchically 

extract complex levels of data abstractions using simple nonlinear functions(LeCun et al., 2015). 

Specifically, convolutional neural networks (CNNs) are convenient for analyzing MRI data (Plis 

et al., 2014) because their architecture is specialized in the extraction of latent patterns from 

structured data like multi-dimensional arrays, such as, for example, images(LeCun et al., 2015). 

In this study, we assessed the ability of patients with SVD and MCI to predict the overall 

neuropsychological performance and, specifically, the performance in attention and executive 

functions tests –  two of the cognitive domains typically earlier and more severely compromised 

(O’Brien et al., 2003) –   using a deep learning approach. A multi-input CNN-based system is 

trained and evaluated in a 10-fold nested cross-validation loop. In particular, we separately fed 

T1-weighted images, T2-weighted FLAIR images, and DTI-derived mean diffusivity (MD) and 

fractional anisotropy (FA) maps into a CNN model along with demographic data. Since 

demographic information, such as education, age and sex are known to have a strong association 

with cognitive status(Casanova et al., 2020), we combined brain image and demographic features 

to predict the cognitive test scores. Through a transfer learning approach, the CNN-based system 

identified brain image patterns associated with each cognitive ability from each input image 
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modality to estimate individual neuropsychological scores. Hence, we assessed and compared 

the ability of different MRI-derived data (T1-weighted images, T2-weighted FLAIR images, MD, 

and FA maps) to predict the cognitive scores in patients with SVD and MCI.   

 

1. Materials and methods  

In this section, we explain the MRI dataset, the preprocessing image pipeline, CNN model 

training, and evaluation to predict neuropsychological test scores in patients with SVD and MCI.  

Subjects  

In this study, 58 patients [27 women and 31 men, aged 74.18 ± 6.98 years, mean ± standard 

deviation (SD)] with SVD and MCI from the VMCI-Tuscany study were considered (Poggesi et 

al., 2012). From 64 subjects, which were examined in a previous study (Pantoni et al., 2019), we 

removed six patients in whom data for one or more cognitive scores were missing. We thus 

included 58 patients with MCI according to an ad hoc operationalization of Winblad criteria 

(Salvadori et al., 2016; Winblad et al., 2004) and evidence on MRI of moderate-to-severe WM 

T2 hyperintensities on the modified Fazekas scale(Pantoni, 2010)). Demographic data and 

descriptive statistics of neuropsychological scores of the dataset are shown in Table 5.1. 

 

Cognitive evaluation  

Each participant underwent a comprehensive neuropsychological evaluation through the VMCI-

Tuscany neuropsychological battery – a comprehensive tool specifically developed for patients 

with SVD and MCI(Salvadori et al., 2015). The VMCI-Tuscany neuropsychological battery 

includes both global cognitive functioning tests and second-level tests covering different 

cognitive domains. Among the cognitive tests of the VMCI-Tuscany neuropsychological battery, 

we selected those sensitive to attention and executive dysfunctions for this experiment. This is 

because these are prominent features of subcortical vascular cognitive impairment (O’Brien et 

al., 2003). The cognitive tests included: 1) Montreal cognitive assessment (MoCA): a global 

efficiency test sensitive to attention and executive functions (score range 0–30: higher scores 

represent better performance); 2) trail making test part-A (TMT-A): a visual scanning and 

 

 



82 
 

 

Table 5.1: Demographic data and descriptive statistics of neuropsychological scores in the 

sample of 58 patients with SVD and MCI. mean ± SD (min – max). 

Demographic data  

Number of patients 58 

Sex (women/men) 27/31  

  

Age (years) 74.18 ± 6.98 (59.80 – 89.03) 

Education (years) 8.12 ± 4.17 (3.00 – 18.00) 

Cognitive score  

MoCA 20.89 ± 4.42 (8.00 – 28.00) 

SDMT 22.94 ± 11.55 (3.00 – 49.00) 

TMT-A 89.08 ± 49.91 (25.60 – 238.00) 

ROC-F immediate copy 21.25 ± 8.33 (2.00 – 36.00) 

Stroop 51.41 ± 30.44 (12.00 – 169.00) 

Visual search 30.63 ± 8.58 (10.00 –46.00) 

 

tracking task for psychomotor speed (execution time in seconds: higher scores represent worse 

performance); 3) visual search (VS): a digit cancellation task for focused attention (score range 

0–50: higher scores represent better performance); 4) symbol digit modalities test (SDMT): a 

symbol substitution task for processing speed and sustained attention (score range 0–110: higher 

scores represent better performance); 5) color-word stroop test (Stroop): a response inhibition 

task for selective attention (execution time in seconds: higher scores represent worse 

performance); 6) immediate copy of the Rey-Osterrieth complex figure (ROCF): a constructional 

praxis task whose complexity requires planning and organizational strategies related to executive 

functions (score range 0–36: higher scores represent better performance). 

MRI acquisitions  

All MR images were acquired using a 1.5 T scanner (Intera, Philips Medical Systems, Best, The 

Netherlands) with 33 mT/m gradients capability and a head coil with SENSE technology. T1-
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weighted images were collected using a turbo gradient echo sequence [repetition time (TR) = 8.1 

ms, echo time (TE) = 3.7 ms, inversion time (TI) = 764 ms, flip angle = 8
o
, field of view 

(FOV) = 256 mm × 256 mm, number of contiguous slices = 160, acquisition matrix = 256 × 

256 with a slice thickness of 1 mm]. T2-weighted axial FLAIR images were acquired using TR = 

11, 000 ms, TE = 140 ms, TI = 2, 800 ms, flip angle = 90
o
, FOV = 250 mm × 250 

mm, acquisition matrix = 280 × 202, number of slices = 40, slice thickness = 3 mm, interslice 

gap = 0.6 mm. In addition, axial diffusion-weighted images were obtained with a single-shot 

echo-planar imaging sequence (TR = 9394 ms, TE = 89 ms, FOV = 256 mm × 256 mm, matrix 

size = 128 × 128, 50 slices, slice thickness = 3 mm, no gap, number of excitations (NEX) = 3, 

SENSE acceleration factor = 2) using diffusion sensitizing gradients applied along 15 non-

collinear directions using b values of 0 (b0 image) and 1000 s/mm
2
. 

 

MRI image processing  

An overview of the imaging processing and computational approach is schematized in Figure 

5.1.  

Diffusion-weighted images (DWI) were corrected for head motion and eddy current distortions 

using the FMRIB’s Diffusion Toolbox part of FSL 5.0.9 (Smith et al., 2004), and the rotational 

part of the affine transformation employed in this step was applied to the b-matrix (Leemans and 

Jones, 2009). Brain tissue was segmented using BET (Smith, 2002). Through a constrained 

nonlinear least-squares procedure implemented in the software CAMINO (Cook et al., 2006), a 

tensor model was later fitted to the DWI data. The diffusion tensor invariants of FA and MD 

indices were extracted from the tensor model using the package DTI-TK (Zhang et al., 2007). 

Registration to the high-resolution MNI152 standard space was performed on the multi-modal 

MR images (T1-weighted, T2-weighted FLAIR, and DWI images) and derivatives (FA and MD 

maps). In detail, the T1-weighted scans have been aligned to the standard template space through 

an affine and deformable transformation with linear interpolation included in the ANTs package 

(version 2.1.0) using default parameters (Avants et al., 2011). Later, the same affine and 

deformable transformation was applied to T2-weighted FLAIR images and FA and MD maps, 

previously registered to the respective T1-weighted scans by using a 12 degrees-of-freedom 
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linear transformation with spline interpolation implemented in the FSL flirt tool (Greve and 

Fischl, 2009; Jenkinson et al., 2002; Jenkinson and Smith, 2001). 

 

Figure 5.1: General overview of our method: each MRI data (T1-weighted, FLAIR, MD and FA) 

has passed through a preprocessing step. Then the adopted VGG16 model is trained on the 

training samples [MRI data and demographic variables (age, sex and years of education)] and the 

trained CNN is used to make a prediction of raw cognitive scores (MoCA, SDMT, TMT-A, 

ROC-F immediate copy, Stroop and visual search). Abbreviations: CNN, convolutionaal neural 

network; DWI, diffusion-weighted image; FA, fractional anaisotropy; MD, mean diffusivity) 

 

A Dell PowerEdge T620 workstation equipped with two 8-core Intel Xeon E5–2640 v2, for a 

total of 32 CPU threads, and 128 GB RAM, using the Oracle Grid Engine batch-queuing system 

for parallel computing was used to perform all image processing tasks. 

Since our proposed deep learning model is based on a 2D CNN architecture, we sliced the 3D 

MRI volumes in to a 2D gray scale images using an axial plane. However, not all axial slices 

contain important information for training the model for the prediction problem. Hence, we have 
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performed a preliminary slice selection based on the amount of information, retaining, for each 

volume, only a limited number of axial slices that showed the highest entropy(Hon and Khan, 

2017). Mathematically, for a slice with k grayscale levels and with each gray level having a 

probability of occurrence pk (estimated as its relative frequency in the image), the Shannon 

entropy ES was computed as: 

∑                                                                   (5.1)  

To decide the number of slices to choose, we selected a reference model that is trained on T1-

weighted images to predict a MoCA score and this model is trained iteratively on different 

number of axial slices {1, 2, 3, … , 16} based on a 10-fold CV approach. Then, we compared the 

results of the models trained on each number of slices and the model that produced the best 

performance on the test set was chosen. In this study thus, 16 most informative slices were 

considered. For all the other models we considered this number. 

Considering that the pre-trained CNN model has been trained on color (3 channels) natural 

images, we repeated our grayscale images onto the three channels. Finally, voxel-wise feature 

standardization (for each voxel, an average value of all grayscale values within the brain mask 

has been subtracted and scaled by the standard deviation (within the brain mask)) has also been 

applied to make training the CNNs easier and to achieve faster convergence.  

CNN models 

CNN architecture 

Since our dataset size is relatively small, we employed transfer learning technique by which 

knowledge gained by training a model in the source domain (i.e., a large dataset) can be 

transferred to the target domain (i.e., a small size dataset) to improve the performance of the 

model on the target task (Tan et al., 2018). Specifically, we have adapted the VGG16 

architecture to build a multi-input CNN. VGG16 is one of the pre-trained 2D CNN models that 

won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where deep CNNs are 

challenged to produce the best performance in classifying natural images on the ImageNet 

dataset. Our proposed multi-input CNN consists of two input branches, the CNN branch and the 

fully connected (FC) branch taking the image and demographic data, respectively. In the CNN 

branch, we reused the convolutional layers of VGG16 by replacing its pre-trained FC layers with 
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a GlobalAveragePooling (GAP) layer. While the FC branch, consists of a number of FC layers. 

The outputs from the two branches are then concatenated and the final FC layers produce a 

prediction output.  The detailed architecture of our proposed architecture is shown in Figure 5.2.  

 

Model training and evaluation 

During the proposed 2D CNN training, all transferred convolutional layers were fine-tuned, and 

the newly added layers were trained from scratch. The training was performed using the Adam 

optimizer (Kingma and Ba, 2017) – an effective adaptive stochastic gradient descent 

optimization algorithm that adaptively updates individual learning rates for each parameter – 

using the first and second moments of the gradients to minimize the loss function and to get the 

best estimates of network parameters. Mean squared error (MSE) was used as a loss function to 

measure the error between the actual values of cognitive scores and the values predicted by the 

model.  

 

 

Figure 5.2: The adapted multi-input VGG16 model. Brain image data is processed 

by the convolutional blocks and demographic data is fed to the densely connected 

layers. The features are then concatenated and analyzed by the last fully connected 

layers (FC-256 and FC-1). Abbreviations: FC, fully connected; VGG, visual 

geometry group. 
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In this study, we incorporated two experiments. In the first experiment, to demonstrate the 

contribution of the demographic features in improving the model’s prediction accuracy, two 

CNN models, one multi-input and another single-input CNN, were trained with and without 

demographic information respectively for predicting the MoCA score. The two models were 

trained on a 10-fold CV scheme using Adam optimizer with a learning rate of 1 x 10
-4

 and a 

learning rate decay of 0.5 and the model’s performances on the validation set were compared to 

assess the contribution of demographic scores.   

In the second experiment, we employed a 10-fold nested CV strategy for training and validating 

the multi-input CNN to get a prediction of the raw neuropsychological test scores (MoCA, 

SDMT, TMT-A, ROC-F immediate copy, Stroop and Visual search). In both experiments,  our 

dataset was split into train-validation (CV in experiment 1) and train-validation-test sets (nested 

CV in experiment 2) on a subject-level basis, i.e., we incorporated all the 16 slices of a single 

subject in either the training, validation or test sets to prevent building an overly optimistic 

model caused by the presence of data leakage.   

 The final trained model’s performance was evaluated using a regression metrics average 

slice-level Pearson correlation coefficient (rav) between the actual values, and the model 

predicted values of the neuropsychological scores computed across the outer folds. 

 The deep learning scheme was set up on a workstation equipped with a 12 GB G5X 

frame buffer NVIDIA TITAN X (Pascal) GPU with 64 GB RAM, 8 CPUs, 3584 CUDA cores, 

and 11.4 Gbps processing speed. All CNN model development, training, validation and testing of 

the models have been implemented in Python (version 3.6.8) language using the following 

modules: GPU-TensorFlow 1.12.0, Keras 2.2.4 (Tensorflow backend), Sklearn 0.20.2, Nibabel 

2.3.3, Hyperas 0.4.1, Hyperopt 0.2.2. The computational time needed for the training and 

validation of each CNN model was about 75 hours. 
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2. Results  

 

In the first experiment, where a raw MoCA score is predicted using multiple MRI types, 

incorporating demographic features significantly improves the performance of all CNN models. 

While the models that are trained on image data only produced r=0.1463 using T1-weighted 

images, r=0.2638 using MD, r=0.1061 using FA and r=0.2959 using T2-weighted FLAIR 

images, including demographic data boostes the model’s performance by producing (r=0.5120 

on T1-weighted images, r=0.6033 on MD, r=0.4269 on FA and r=0.5228 on T2-weighted FLAIR 

images. Figure 3.2 demonstrates the comparison of the learning curves of the models trained 

with and without demographic data. 

Table 5.2 also lists the performance obtained by the proposed CNN models for the correlation of 

the neuropsychological scores with different MRI features.  Different neuropsychological scores 

were significantly predicted by different MRI features maps. The Montreal Cognitive 

Assessment (Pearson’s correlation coefficient r=0.523), visual search (r=0.368), and Rey-

Osterrieth complex figure (r=0.224) were best estimated using T1-weighted, the symbol digit 

modalities test using T2-weighted FLAIR (r=0.569) images, and the trail making test part-A 

(r=0.513) and the Stroop (r=0.460) using MD maps.  
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Figure 5.3 Comparison of a MoCA score prediction on the test set with and without 

incorporating demographic variables. For all MRI types, including demographic data 

significantly improves the prediction accuracy of the CNN model. 

Table 5.2: Average Pearson’s correlation coefficient over 10-fold nested CV on outer fold test 

samples. 

Cognitive test Mean correlation coefficient 

T1 FLAIR MD FA 

MoCA 0.523 0.435 0.504 0.375 

SDMT 0.505 0.569 0.246 0.505 

TMT-A 0.438 0.451 0.522 0.504 

ROC-F immediate copy 0.224 0.203 0.145 0.207 

Stroop 0.419 0.429 0.460 0.412 

Visual search 0.368 0.166 0.011 0.117 
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5.2 3D Convolutional Neural Networks for Diagnosis of Alzheimer’s 

Disease via structural MRI 

5.2.1 Introduction  

Alzheimer’s Disease (AD) is the most common type of dementia, which is caused by the 

deterioration of cognitive and memory functions(Hague et al., 2005). Pathologically, AD is 

characterized by the accumulation of extracellular β-amyloid (Aβ) plaques and cytopla00000mic 

neurofibrillary tangles (NFTs) which have a microtubule-associated protein called tau(Braak and 

Braak, 1991). In healthy neurons, tau protein normally stabilizes the microtubules(Weingarten et 

al., 1975). However, abnormal changes in brain chemistry cause tau protein molecules to detach 

from microtubules and form neurofibrillary tangles destroying the brain cells’ ability to 

communicate with other cells(Grundke-Iqbal et al., 1986). Some recent studies reveal that AD 

may begin 20 years or more before any symptoms appear and the disease is clinically 

diagnosed(Villemagne et al., 2013, Reiman et al., 2012, Jack Jr et al., 2009, Bateman et al., 2012, 

Braak et al., 2011). Only after a certain stage, patients may experience diagnostic symptoms such 

as deterioration in memory and decline in cognitive abilities when irreversible neurological 

damage already occured. Therefore, an early and accurate diagnosis of AD is crucial and may be 

possible via computer-assisted analytical techniques. Receiving an early diagnosis of AD will 

enable patients to benefit from various treatments, plan their future, and maximize their life 

quality. As AD progresses, the structure of the brain undergoes some changes, such as the 

shrinkage of the cerebral cortex and hippocampus and the expansion of ventricles(Lehericy et al., 

1994, Bobinski et al., 1999). Through numerous medical imaging techniques like magnetic 

resonance imaging (MRI), positron emission tomography (PET) and computed tomography 

(CT), some of these changes can be detected earlier. Notably, a T1-weighted MRI scan of the 

brain reveals high-resolution structural information of the brain and can be used to identify 

atrophic changes in the temporal lobes(Mortimer et al., 2004). 

Throughout the last decade, multiple studies have been focusing on the automatic diagnosis of 

AD using different methods(Alam et al., 2017, Liu et al., 2013, Gray et al., 2013). Among those, 

deep learning (DL) has come to the fore as one of the most promising tools to address AD 

diagnosis and prognosis. In DL models, discriminative features may be extracted automatically 

from the raw data resulting in end-to-end learning design.  
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Figure 5.4: Overview of the 3D convolutional neural network (CNN) architecture. 3D boxes 

show input and feature maps. 

 

In this work, we propose an end-to-end AD classifier, which takes T1 weighted MRI as input. 

We implemented a 3D VGG (a deep neural network model implemented by Oxford Visual 

Geometry Group (VGG)) variant convolutional neural network (CNN) to overcome the 

limitations regarding the feature extraction from brain MRI and preserve spatial relations.  Figure 

5.3 provides an illustration of the network architecture. 

The paper is organized as follows: after this introduction, a brief of related work is given in 

Section 5.2.2. Section 5.2.3 provides the details of the proposed model, including the dataset and 

classification algorithm of CNN. Experimental results are presented in Section 5.2.4. Finally, 

Section 5.2.5 concludes the paper with some final remarks. 

5.1.2 Related Work 

DL has become a popular and powerful technique with the advance of the computational power 

of GPU clusters and big data analytics, and as a result, rapidly expanded into various fields. In 

medical image analysis, several neuroimaging studies have utilized DL models for diagnosis of 
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AD(Huang et al., 2019, Oh et al., 2019, Payan and Montana, 2015, Rieke et al., 2018, Korolev et 

al., 2017, Wen et al., 2020). 

Various studies used a set of 2D slices extracted from the MRI volume as input to the 2D CNN 

architectures(Farooq et al., 2017, Gunawardena et al., 2017, Hon and Khan, 2017, Islam and 

Zhang, 2018, Valliani and Soni, 2017, Wang et al., 2018, Yagis et al., 2019). Farooq et al. 

(Farooq et al., 2017)used a 2D CNN model for 4-way classification of Alzheimer’s into AD, 

MCI (Mild Cognitive Impairment), LMCI (Late Cognitive Impairment) and HC (Healthy 

Control) using structural MRI images. Sarraf et al. (Sarraf et al., 2016)utilized CNN and the 

famous architecture LeNet-5 to classify functional MRI data of AD’s patients from healthy 

controls. In [24], Hon et al. used VGG16 and Inception V4 to classify AD using transfer 

learning. Finally, in 2019, Jain et al. (Jain et al., 2019)presented the CNN model for the 3-way 

AD classification. However, in most of these studies, it is not clear if data division was done at 

the subject-level, calling into question the validity of the results due to potential data 

leakage(Wen et al., 2020, Yagis et al., 2019, Fung et al., 2019). 

Another possible problem in the 2D approach is the loss of information from 3D MRI when 

sliced and analyzed by 2D convolutional filters. 

Some studies addressed 3D networks to solve the issue of insufficient information in the 2D 

slice-level approach(Huang et al., 2019, Oh et al., 2019). Even though these models are 

computationally more expensive, they have a higher capability to extract discriminative features 

from three-dimensional MRI data. Korolev et al. (Korolev et al., 2017)used 3D residual neural 

network architecture together with several regularization techniques for AD classification. 

In 2018, Hosseini-Asl et al.(Hosseini-Asl et al., 2016a), utilized a pre-trained 3D- Adaptive CNN 

classifier with used scans from the CADDe-mentia dataset for the classification of AD vs. HC. 

However, the details regarding CV methodology and classification decisions are not presented in 

this study. Wang et al. (Wang et al., 2017b)proposed an ensemble of 3D densely connected 

convolutional networks (3D-DenseNets) for three-class AD, MCI, and HC diagnosis. In their 

model, MRI scans of the same patients that are over three years apart are employed as different 

samples, incorporating information from test data into the learning process. 

Rieke et al. (Rieke et al., 2018)trained a 3D CNN for AD classification accuracy. At the end of 

their visualization efforts, they showed that the model focuses on the medial temporal lobe. Yang 
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et al. (Yang et al., 2018)also provided visual explanations regarding the AD from deep 3D 

CNNs. They utilized 3D VGGNet together with 3D-ResNet. Finally, in 2019, Oh et al. (Oh et al., 

2019)developed a volumetric CNN-based approach for the AD classification task It should be 

noted that the classification performances of these studies are hard to compare as they have 

trained and tested the models with different sets of participants. The studies also differ in terms 

of the pre-processing stages, hyperparameter selection, cross-validation (CV) procedure, and 

evaluation metrics. 

5.1.3 Methodology  

In this section, the main components of our framework are presented. We briefly describe the 

datasets used in the experiments in Subsection 5.2.3-A, explain the preprocessing steps of T1-

weighted MRI data in 3.2.3-B and finally show the architectures of the model in 3.2.3-C. 

 

A. Datasets 

In this study, we use two primary publicly available datasets on AD and Related Dementia: the 

Alzheimer’s Disease Neu- roimaging Initiative (ADNI) dataset (Petersen et al., 2010) and Open 

Access Series of Imaging Studies (OASIS)(Marcus et al., 2007). These datasets are described in 

detail below. The characteristics of the subjects included in this study are given in Table 3.4 in 

section 3.2.1  

1) ADNI: ADNI1 is a research initiative that brings together researchers to collect, validate, and 

utilize several types of data such as clinical, genetic, MRI, PET, and biospecimen to validate 

biomarkers for AD(Petersen et al., 2010). ADNI was formed in 2004 and launched three 

different phases so far, namely ADNI 1, ADNI GO/2, and now ADNI 3. In addition to the first 

phase, ADNI 2 contains information from 150 elderly controls, 100 EMCI subjects, 150 late 

mild cognitive impairment (LMCI) subjects, and 150 mild AD patients. 

In this work, we used a subset of ADNI 2 dataset with 200 structural T1-weighted MRI scans. 

From ADNI 2 dataset, we randomly picked 200 subjects, 100 of whom were chosen from the AD 

group (44 women and 56 men, age 74.28 ± 7.96 years, mean ± SD), while the other 100 from the 

HC group (52 women and 48 men, age 75.04 ± 7.11 years, mean ± SD). Only the first scan of 

each patient has been added to the dataset. 

Patients with a CDR score of 0 are labeled as HC subjects, whereas the ones whose CDR rating 
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is higher than 0 are considered AD subjects. MPRAGE T1-weighted MRI images have been 

acquired using 3 T scanners, and consisted of 176 × 240 × 256 (Siemens) and 170 × 256 × 256 

(Philips) voxels with a size of approximately 1 mm × 1 mm × 1.2 mm. 

2) OASIS: OASIS2 is a project that is intended to promote future discoveries in AD by 

providing neuroimaging datasets freely to the scientific community. The project released data in 

three different phases: OASIS 1-Cross-sectional, OASIS 2- Longitudinal, and OASIS-3-

Longitudinal. OASIS 1 includes overall 416 subjects (316 HC and 100 AD) aged 18 to 96. 

For our experiments, T1-weighted MRI scans of 100 healthy subjects [73 women and 27 men, 

age 75.5 ± 9.1 years, mean ± SD] and 100 AD patients (59 women and 41 men, age 76.7 ± 7.1 

years, mean ± SD) have been selected to create a subset of OASIS-1 dataset. Again, the CDR 

score was 0 for the HC subjects, 0.5 (very mild), 1 (mild), 2 (moderate), and 3 (severe) were for 

the AD subjects. MPRAGE T1-weighted MRI images have been acquired using a 1.5 T Siemens 

scanner. They are in the size of 256 × 256 × 128 with voxel size 1 mm × 1 mm × 1.25 mm. 

B. Data pre-processing 

Even though CNN models do not require any preprocessing beforehand, an accurate image 

preprocessing stage could be key to increasing the effectiveness of learning and help to achieve a 

good classification performance, particularly in the domain of MRI(Cuingnet et al., 2011, Lu and 

Weng, 2007). We transformed all the data into a standardized structure by performing co-

registration with a standard template and skull stripping. For ADNI, each T1-weighted image has 

been co-registered with the SyN method using standard T1-weighted template MNI152 at 1 

mm(Avants et al., 2011). After co-registration, the brain mask of the standard space was applied 

to each volume to remove extracranial tissues. The final size of the ADNI T1-weighted MRI 

volumes is 182 x 218 x 182 with 1mm x 1mm x 1mm voxel size. 

When it comes to the OASIS dataset, we used the data which was already gain-field corrected. 

An additional brain masking and re-sampling operations are performed. The final dimension of 

the 3D volume is 176 x 208 x 176 with 1mm x 1mm x 1mm voxel size(Han et al., 2018b). The 

sample MRI slices from ADNI and OASIS datasets after the pre-processing stage can be seen in 

Figure 5.4. 

C. CNN Models: 3D Convolutional Networks 

We created a 3D CNN model inspired by VGG-16 architecture. The model has four onvolutional 
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blocks, among which the first two contain two convolutional layers each, and the latter two have 

three convolutional layers followed by a pooling layer with filter size a 2x2x2. The overview of  

 

 

Figure 5.5: Example of six Magnetic resonance imaging (MRI) slices of two Alzheimer’s 

Disease (AD) subjects from ADNI and OASIS databases (Petersen, et al., 2010; Marcus, et al., 

2007). a) A sample T1-weighted MRI slices of an Alzheimer’s disease (AD) patient from ADNI 

dataset after pre-processing – in coronal, sagittal, and axial view (left, right and bottom 

respectively). b) Sample of T1-weighted MRI slices of an Alzheimer’s disease patient from the 

OASIS dataset after pre-processing processing – in coronal, sagittal, and axial view (left, right 

and bottom respectively) 

 

the 3D CNN architecture is shown in Figure 5.5. A convolutional and a pooling layer has several 

feature maps, and in most cases, the number of feature maps increases as layers grow. The 

calculation of the jth feature map is given by: 

( )                                                                                                             (5.2) 

where yj be the 3D array of the jth feature map in a hidden layer, x be the 3D array of the input, 

bj be the scalar bias and Wj be the 3D filter with a size of w×h×d. f corresponds to an 

activation function, and ∗ stands for the convolution operation. The convolution operation [Wj ∗ 

x](m, p, q), is represented as follows: 

∑ ∑ ∑ ( )                                        (5.3) 
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After the convolutional blocks, a dropout layer with a probability of 0.5 is applied to avoid 

overfitting. It is followed by three fully connected layers with 128, 64, and 2 neurons, 

 

Figure 5.6: The architecture of the convolutional neural network (CNN) model used in our AD 

classification tasks. 

 

respectively. The last fully-connected layer with softmax activation provides the output label. 

The model has been trained with categorical cross-entropy loss and the Adam optimizer 

with a learning rate of 0.0001 and a batch size of 2 for 200 epochs. Binary cross-entropy loss is 

computed as: 

( ) ( )                                                                          (5.4) 
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where y is the actual label and p is the predicted label. Training and validation of our proposed 

models were performed on a NVidia RTX2080 GPU. 

5.1.4 Results 

The model has been evaluated using five-fold CV. The average accuracy is obtained by repeating 

5 times the full 5-fold cross-validation starting from five different splits of the data into folds. 

The architecture was built using Keras with TensorFlow backend(Chollet and others, 2015, 

2016). 

The model was tested on two different test sets, each of which contained 40 subjects. Using 5-

fold CV, the model achieves 73.4%± 0.04 (mean, standard deviation) on ADNI dataset and 

69.9%± 0.06 (mean, standard deviation) classification accuracy on the OASIS dataset. The 

results are 

comparable to other studies that use different convolutional models for AD vs. HC classification. 

In addition, the dataset is divided by subjects, and only one screening of a patient is included in 

the dataset in order to prevent possible data leakage. For instance, Rieke et al. (Rieke et al., 

2018)reported 78% ± 0.04 classification accuracy with a similar architecture using ADNI 1 

datasets, which contains MRI scans of the subjects up to three-time points (screening, 12 and 24 

months; sometimes multiple scans per visit). Following such procedure may cause the scans of 

the same subject to be in both testing and training set, which could affect the model performance. 
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5.2 Development of an interpretable deep learning system for the 

c  ss f c       f A zh  m  ’s   s  s   

5.3.1 Introduction  

Alzheimer disease is the most commonly occurring neurodegenerative disorder (Selkoe and 

Lansbury, 1999) that causes memory impairment at its initial stage and advances to a cognitive 

decline that can affect behavior, speech, visuospatial orientation, and motor system(Kelley and 

Petersen, 2007). Early diagnosis is important to plan treatment strategies that could slow down 

the disease progression and enhance the quality of life(Small et al., 1997). Diagnosis of AD 

needs a follow-up of patient’s medical history by a physician by performing clinical assessment 

and neuropsycological tests(Small et al., 1997). Neuroimaging tools, such as structural MRI, 

functional MRI, and positron emission tomography (PET) are also used to confirm that the 

cognitive decline caused by AD is altering the brain structure.   

In the past, traditional machine learning methods have been used to analyze neuroimaging data. 

Nevertheless, due to the need to extract hand-crafted features, designing a machine learning 

system becomes a very long process and is not appropriate for non-expert users. Another 

approach called deep learning, which is a family of machine learning methods that has the ability 

to automatically extract features from complex data(LeCun et al., 2015), 2015) overcomes the 

limitations of traditional machine learning approaches and hence becomes the current state of the 

art technology in medical imaging, including neuroimaging.  

 Convolutional neural networks (CNNs), are a special type of deep learning models that are used 

specifically for image processing applications(LeCun et al., 2015). A basic CNN model consists 

of convolutional layers, pooling layers and fully connected layers. Numerous studies have 

employed CNNs for classifying between sMRI of AD patients and healthy subjects(Liu et al., 

2020, Oh et al., 2019, Qiu et al., 2020, Wen et al., 2020, Feng et al., 2020, Yagis et al., 2019). 

Most of these studies used MRI data obtained from ADNI dataset and other few studies (Yagis et 

al., 2019, Yagis et al., 2021, Tufail et al., 2020, Puente-Castro et al., 2020, Saratxaga et al., 2021, 

Mehmood et al., 2020, Massalimova and Varol, 2021) applied deep learning techniques on the 

OASIS collection of brain images.  
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Apart from their success in many applications, deep learning approaches have been criticized for 

producing highly non-interpretable models(Linardatos et al., 2020). Interpretability is a 

requirement in many applications in which crucial decisions are made by users relying on a 

model’s outputs, such as in medical applications(Lipton, 2018).   

CNN visualization methods help understand the reasoning behind the model’s decisions. A 

number of recent neuroimaging studies have integrated explainability tools in their CNN models 

to classify different neurological disorders(Gao et al., 2021, Jimeno et al., 2022, Zhang et al., 

2021, Qiu et al., 2020, Tang et al., 2019, Lu et al., 2022, Oh et al., 2019, Iizuka et al., 2019, 

Sánchez Fernández et al., 2020). Regarding AD classification, few studies (Lu et al., 2022, Oh et 

al., 2019, Qiu et al., 2020) employed CNN visualization techniques to highlight the features used 

by the model to make decisions. All of these studies used a public brain dataset of AD and 

healthy individuales, namely Alzheimer’s Disease Neuroimaging Initiative (ADNI).  

In this study, we proposed an interpretable CNN for classifying structural MRI (sMRI) scans 

obtained from a public OASIS dataset. The CNN model is trained based on a transfer learning 

technique by utilizing the weights of a pre-trained VGG16 network. Unlike the previous deep 

learning studies classifying the OASIS collection of brain images, our proposed model includes a 

wide range of visualization methods to illustrate that the models are focusing on the clinically 

defined AD pathologies.  

5.3.2 Methods 

In this section, the datasets used in our study, the model architecture, training and validation 

schemes, and finally CNN visualization methods applied to the trained model and their 

interpretation are discussed. 

Subjects 

In this study we used a publicly available dataset of AD patients and healthy control (HC) 

subjects called Open Access Series of Imaging studies (OASIS)(Marcus et al., 2007). The dataset 

consists of across sectional collection of MRI scans of 416 right-handed subjects aged between 

18 and 96. The scans were acquired using a 1.5 T vision scanner. In the dataset both men and 

women are included. 100 AD patients [(59 women and 41 men, age 76.70 ± 7.10 years, mean ± 

standard deviation (SD)] and 100 HC subjects (73 women and 27 men, age 75.50 ± 9.10 years, 



100 
 

mean ± SD) who have been previously selected by Hon and Khan (Hon and Khan, 2017) are 

included in our experiment (refer Section 3.2.1.2 for inclusion criteria and scanner parameters 

and Table 3.4 for demographic information). 

 

Data pre-processing 

The OASIS dataset publicly provides a pre-processed data, where gain-field correction, brain 

masking and atlas-based co-registration(Han et al., 2018b) were applied to the raw MRI images 

resulting in a data matrix size of 176 × 208 × 176 and a voxel size of 1 mm × 1 mm × 1 mm(Han 

et al., 2018b). We performed 2D image processing on such partially pre-processed 3D MRI 

volumes. The 2D image processing involves slicing the MRI volumes in to 2D gray scale images 

using an axial anatomical plane, performing slice selection based on entropy values (as explained 

in Section 3.2.1.2), splitting the data in to training and validation sets based on a 5-fold CV 

scheme and lastly applying feature scaling based on the training feature statistics (using mean 

and SD values). From each MRI scan 10 slices are selected based on their entropy values (Hon 

and Khan, 2017) producing a total of 2000 (1000 AD and 1000 HC) gray scale images. As 

compared to the number of parameters for building a CNN model, the size of the image dataset is 

insufficient to effectively train a CNN from scratch. To prevent overfitting of a CNN model 

caused due to limited training samples, we employed a technique called transfer learning by 

starting from a pre-trained VGG16 model and finetuning the model parameters on the MRI 

dataset. Since VGG16 is trained on colored RGB images, the gray scale MRI slices were 

converted to threechannel images by repeating the 2D image on to the three channels. By 

applying these pre-processing operations, we end up with an array of 2000 x 176 x 208 x 3.  

 

CNN model 

The CNN model architecture is customized from the pre-trained VGG16 model. The fully 

connected (FC) layers of VGG16 are removed and replaced by a global average pooling (GAP) 

layer and a last FC classification layer with a ‘sigmoid’ activation is added (Figure 5.6). During 

model training three convolutional blocks were freezed to reduce the number of trainable 

parameters and to avoid overfitting. The rest two blocks of convolutional layers were finetuned 

along with the newly added FC layer. 
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Figure 5.7: A customized VGG16 model consists of: a convolutional that which is transferred 

from the pre-trained VGG16 model, a GAP (global average pooling layer) and two FC layers 

(FC-256 and FC-2). 

 

Model training was performed based on a 5-fold CV scheme with an Adam optimizer with a 

learning_rate of 1 x 10
-4 

and a learning rate decay of 0.5. ‘categorical_corssentropy’ is used as a 

loss function. The model is trained for 90 epochs and with a batch size of 128 images. Three 

classification metrics: 1) balanced accuracy, 2) sensitivity and 3) specificity were used to 

measure the performance of the model. The final results of the trained model are reported based 

on the average accuracy computed over the 5 folds on the validation set.  

CNN visualization 

Model visualization methods are tools that enable understanding the rationale behind a deep 

learning model’s decisions. For a CNN model, these interpretability approaches are applied on a 

trained model to see which image regions or features are given high importance for the 

prediction analysis. In this study, we employed 4 attributebased interpretability techniques (two 

gradient-based approaches, saliency maps and GradCAM and two perturbation-based methods, 

SHAP and Occlusion maps) for a classification problem of AD vs. HC subjects. To emphasize 

the importance of these visualization tools, we performed two experiments.  In the first 
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experiment, a model is trained to classify subjects as AD and HC, and visualization heatmaps 

highlight the brain regions that are used by the model to identify AD brain scans from healthy 

MRI images and to check if our results are in line with the neural correlates of AD, which are 

defined in the previous AD studies. 

While, the aim of the second experiment is to highlight the potential of these visualization tools 

for identifying biased models producing highly inflated performances. Data-leakage caused by 

slice-level split is one of the methodological pitfalls of applying 2D CNNs for the classification 

of 3D MRI data that result in a biased model outputting overestimated performance on the test 

set(Yagis et al., 2021, Yagis et al., 2019, Wen et al., 2020). Following similar procedures as in 

the experiment explained in Section 3.2.1, in this study also we trained two architecturally 

similar models using two data split methods. While the first model is trained by applying subject-

level split, hence without data leakage, the second model is trained on data that is divided based 

on MRI slices introducing data leakage. Correctly classified AD test samples are then passed 

through the trained models and visualization heatmaps generated from the two models are 

compared to check if reliabile features are used by the two CNN models. 

 

5.3.3 Results 

The results of Experiment 1 and Experiment 2 are presented in this section. In Experiment 1, the 

performance of our interpretable CNN model as measured by the average accuracy, sensitivity 

and specificity values computed over the five folds on the test set are reported in table 5.3. The 

learning curve is also shown in Figure 5.7. An example of the visualization hetmap images 

generated by passing MRI images of AD patients which are predicted by the model taken from 

the test set can be seen in Figure 5.8. 

In the second Experiment, the model which is trained introducing data leakage achieved a test set 

accuracy of 95.12% (Table 5.4). Figure 5.8 and 5.10 illustrate the learning curve and the 

visualization heatmaps of the trained model respectively. 
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Table 5.3: Average model’s performance computed over the five folds on the test set. 

 sensitivity specificity accuracy 

training set 0.8146 0.7686 0.7916 

test set 0.7185 0.7273 0.7162 

 

 

Table 5.4: Average accuracy computed over the five folds on the validation set. 

 sensitivity specificity accuracy 

training set 0.9996 0.9810 0.9923 

test set 0.9592 0.9450 0.9512 

 

 

 
Figure 5.8: Learning curves of the model on both the training and validation samples. 
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Figure 5.9: the learning curve of the biased model trained with data leakage. 

 

Figure 5.10:CNN visualization heatmaps of MRI slices taken from AD patients, which the CNN 

model correctly classifies. a) represents Grad-CAM images, b) saliency maps, c)occlusion maps 

and d) SHAP heatmaps. 
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Figure 5.11: CNN visualization heatmaps give an indication of a model producing a biased 

performance due to the presence of data leakage.  Heatmaps on the left side are generated by the 

model which is trained on data split based on slices (with data leakage). For CAM, occlusion 

map and SHAP, the heatmap represents a very low number (probability close to 0), capturing the 

biased model. While, Grad-CAM fails to identify the biased model. 
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Chapter 6 

6. Discussion 
 

6.1 Effect of data leakage in brain MRI classification using 2D 

convolutional neural networks 
 

In this study, we quantitatively assessed the extent of the overestimation of the model’s 

classification performance caused by an incorrect slice-level CV, which is unfortunately adopted 

in neuroimaging literature (see Tables 3.1, 3.2, 3.2. More specifically, we showed the 

performance of three 2D CNN models (two VGG variants and one ResNet-18, see  section 

3.2.1.2 of chapter 3) trained with subject-level and slice-level CV data splits to classify AD and 

PD patients from healthy controls using T1-weighted brain MRI data. Our results revealed that 

pooling slices of MRI volumes for all subjects and then dividing randomly into training and test 

set leads to significantly inflated accuracies (in some cases from barely above chance level to 

about 99%). In particular, slice-level CV erroneously increased the average slice level accuracy 

on the test set by 40–55% on smaller datasets (OASIS-34 and Versilia) and 25–45% on larger 

datasets (OASIS-200, ADNI, PPMI). Moreover, we also conducted an additional experiment in 

which all the labels of the subjects were fully randomized (OASIS-random dataset). Even under 

such circumstances, using the slice-level split, we achieved an erroneous 95% classification 

accuracy on the test set with all models, whereas we found 50% accuracy using a subject-level 

data split, as expected from a randomized experiment. This large (and erroneous) increase in 

performance could be due to the high intra-subject correlation among T1-weighted slices, 

resulting in a similar information content present in slices of the same subject(Murad et al., 

2020). 

In AD classification, three previous studies(Hon and Khan, 2017, Sarraf et al., 2016, Farooq et 

al., 2017), using similar deep networks (VGG16, ResNet-18 and LeNet-5, respectively), reported 

higher classification accuracies (92.3%, 98.0% and 96.8%, respectively) than ours. However, 

there is a strong indication that these performances are massively overestimated due to a slice-

level split. In particular, in one of these works(Hon and Khan, 2017), the presence of data 
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leakage was further corroborated by the source code accompanying the paper and confirmed by 

our data. In fact, when we used the same dataset of Hon and Khan(Hon and Khan, 2017) 

(OASIS-200 dataset), our VGG16 models achieved only 66% classification accuracy with 

subject-level split, whereas they boosted to about 97% with a slice-level split. Similar findings 

were presented by Wen et al.(Wen et al., 2020), who used an ADNI dataset with 330 healthy 

controls and 336 AD patients. Indeed, using baseline data, they reported a 79% of balanced 

accuracy in the validation set with a subject-level split which increased up to 100% with a slice-

level split. 

One of the main issues in the classification of neurological disorders using deep learning is data 

scarcity(Suk et al., 2015). Not only because labeling is expensive but also because privacy 

reasons and institutional policies make acquiring and sharing large sets of labeled imaging data 

even more challenging(Kobayashi et al., 2018). To show the impact of data size on model 

performance, we created 10 small subsets from the OASIS dataset (OASIS-34 datasets). As 

expected, when we reduced the data, we obtained lower classification accuracies with all the 

networks using the subject-level data split method. However, when the slice-level method was 

used, the models erroneous achieved better results on OASIS-34 than on the OASIS-200 dataset. 

Similarly, models trained on the Versilia dataset (34 subjects) produced inflated results with the 

slice-level split. Overall, these results indicate that data leakage is highly relevant, especially 

when small datasets are used, which may, unfortunately, be common in clinical practice. 

It is well-known that data leakage leads to inflating performance—and this phenomenon is not 

specific to brain MRI or deep learning, but it can occur in any machine learning system. 

Nevertheless, the degree of overestimation quantified through our experiments was surprising. 

Unfortunately, in the literature, the precise application of CV is frequently not well-documented, 

and the source code is not available, although we have observed these issues mostly in 

manuscripts that were either not peer-reviewed or not rigorously peer-reviewed (see Tables 3.1, 

3.2, 3.3). Overall, this situation leaves the neuroimaging community unable to trust the 

(sometimes) promising results published. Regardless of the network architecture, the number of 

subjects, and the level of complexity of the classification problem, all experiments that 

applied slice-level CV yielded very high classification accuracies on the test set as a result of 

incorporating different slices of the same subject in both the training and test sets. Considering 
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classifications on 2D MRI images, we showed that it is crucial that the CV split be done based 

on the subject-level to prevent data leakage and get trustable results. This assures that the 

training and validation sets to be completely independent and confirms that no information is 

leaking from the test set into the training set during the development of the model. Additionally, 

employing 3D models for 3D data with subject-level train-test split should be encouraged as 2D 

models do not effectively capture 3D features. The high computational complexity of 3D models 

may be tackled using image patches or sub-images, and parallel processing on multiple GPUs, 

or, in some cases, by image downsampling. 

With recent advances in machine learning, more and more people are becoming interested in 

applying these techniques to biomedical imaging, and there is a real and growing risk that not all 

researchers pay sufficient attention to this serious issue. We also emphasize the need to 

document how the CV is implemented, the architecture used, how the different hyperparameter 

choices/tunings are made and include their values where possible. Besides, we advocate 

reproducibility and encourage the community to take a step towards transparency in 

deep/machine learning in medical image analysis by publicly releasing code, including 

containers and a link to open datasets(Celi et al., 2019). Moreover, a blind evaluation on external 

test sets—i.e., within open challenges—is highly recommended. 

One limitation of this study is due to the substantial overfitting we observed while applying a 

subject-level split for training our models. This overfitting is manifested by the very high 

accuracy in training sets compared to that observed in test sets (Table3.4). Focussing our efforts 

on alleviating overfitting may have improved performance in the test set, thus reducing the 

extent of the faulty boost due to the slice-level split. Moreover, in this study, we have not 

assessed all data leakage types, including late split and hyperparameters optimization in the test 

set—that may also be present in 3D CNN studies. We have found evidence of all these data 

leakage issues in the recent literature (see Tables3.1, 3.2, 3.3), and we plan to quantify their 

effect in our future work systematically. 

In conclusion, training a 2D CNN model for analyzing 3D brain image data must be performed 

using a subject-level CV to prevent data leakage. The adoption of slice-based CV results in very 

optimistic model performances, especially for small datasets, as the extent of the overestimation 

due to data leakage is severe. 

https://www.nature.com/articles/s41598-021-01681-w#Tab4
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6.2 An interpretable, leakage free and reproduciable deep learning 

framework for analyzing neuroimaging data 
 

As part of this work, a python function tool was developed, which uses the Tensorflow library as 

backbone, dedicated to deep learning analysis and more specifically aimed at classification and 

regression analysis of neuroimaging data, explicitly brain MRI data with the features of leakage-

free pre-processing, transfer-learning based model training to prevent overfitting, reproducibility 

and interpretability of the results. The capabilities of our algorithm were put in to practice on real 

application problems according to different predictive schemes, demonstrating usability, 

versatility, flexibility and computational efficiency. In the technological landscape regarding the 

implementation of solutions of tools for deep learning analysis, there are several approaches and 

software tools similar to each other but with specific peculiarities. The most popular software 

tools based on Tensorflow library include: 

NiftyNet: is a Tensorflow based opensource CNN platform for research in medical image 

analysis and aimed at sharing networks and pre-trained models which are used for classification 

and segmentation tasks(Gibson et al., 2018).  It is developed with features of customizable 

interfaces of network components incorporating comprehensive evaluation metrics for 

segmentation task, support for different dimensional inputs of 2D, 2.5D, 3D and 4D, providing 

efficient training with multiple GPU support and more others.  

Deep learning toolkit for Medical imaging (DLTK): this is also a toolkit written in python on 

top of Tensorflow framework(Pawlowski et al., 2017), which supports classification, 

segmentation, regression and super-resolution tasks. It is developed to enable fast prototyping 

and to ensure reproducibility in image analysis applications, especially medical imaging.  

Nobrainer: is a deep learning framework for 3D image processing. It includes several 3D 

CNNs, methods for loading and augmenting volumetric data, losses and metrics for 3D data and 

simple utilities for model training, evaluation, prediction and transfer learning(Kaczmarzyk et 

al.).  It also provides pre-trained models for brain extraction, brain segmentation, brain 

generation and other analysis problems. 
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All of the above toolkits are popular deep learning frameworks, which provide many openly 

available pre-trained CNN models for multiple analysis problems. However, all these tools do 

not incorporate interpretability features and they require integrating AI explainability tools to 

show the results achieved are reasonable. Our deep learning tool has been successfully used for 

the study of VMCI in patients with SVD using multiparameteric brain MRI data and for 

classification analysis of AD patients versus HC subjects employing T1-weighted MRI data. The 

results obtained from the VMCI analysis were exhibited at the 35
th

 International conference of 

Computer Assisted Radiology and Surgery in 2021. 

 

6.3 Prediction of the cognitive performance in patients with small 

vessel disease and mild cognitive impairment: a deep learning 

approach 
 

In this first study, we demonstrated that deep learning methods could be useful in 

predicting neuropsychological scores in patients with SVD and MCI by automatically extracting 

information from different MRI and MRI-derived maps. The prediction outcomes of our CNN 

models showed marked correlations with cognitive scores. SDMT (0.569), MoCA (0.523), TMT-

part A (0.513), and Stroop (0.485) are among the tests that have been predicted with good 

accuracy. Although Shi and colleagues found better results for the prediction of a MoCA score 

(r=0.77 – 0.80) using a combination of 8 demographic and neuroimaging features, the reported 

values were on the validation set rather than the unseen test set. In addition, a larger sample size 

was used to train an SVR model (Shi et al., 2018). Instead, smaller values were obtained in the 

same population using a least absolute shrinkage and selection operator (LASSO) regression 

trained on 13 demographic and neuroimaging features (coefficient of correlation = 0.354) 

(Pantoni et al., 2019). However, in that study, DTI-derived indices were not available and the 

model predicted demographically adjusted TMT-A scores, rather than raw scores. 
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TMT score, which mainly measures the psychomotor speed, was best predicted from DTI-

derived features MD and FA with a correlation coefficient of 0.51 and 0.5 respectively. This is in 

accordance with the fact that cognitive deficits associated with information processing speed are 

results of white matter damage and deteriorations (Papp et al., 2014) which are well explained by 

changes in DTI-derived quantitative measures(Ciulli et al., 2016, Pasi et al., 2016).  

The contribution of demographic variables in improving the prediction accuracy of the CNN 

models is demonstrated by the learning curves generated in experiment 1 (Figure 3.2). Level of 

education, age and sex are identified as the best predictors of the cognitive status among different 

demographic variables (Casanova, et al., 2020). Methodologically, our approach takes care of the 

common issues that may exist in applying deep learning methods for analyzing neuroimaging 

data. We implemented a nested 10-fold CV, which allows getting an unbiased estimate of the 

selected models. 10-fold CV, which is a common choice for model validation procedure, is 

sufficient for model selection(Breiman and Spector, 1992). In addition, it balances the 

computational cost of the evaluation procedure and unbiased estimate of model performance by 

providing a good bias-variance balance(Hastie et al., 2009, Lemm et al., 2011). 

Moreover, we ensured that we did not introduce data leakage which is caused by performing 

slice-level data split during the train/validation/test data division procedure(Wen et al., 2020). 

Instead, we split the data based on 3D MRI volumes (subject-level split): For each CV loop, a 

sub-set of subjects was used for training the CNN models, another subset for validating the 

model, and the rest for testing the chosen best model. This assures that all 2D slices of each 

patient are included in only one of the sample datasets (training/validation/test) hence preventing 

models from overfitting due to data leakage.  

As a key limitation, the size of our dataset is relatively small to train deep learning models with 

good predictive accuracy. Although we tried to solve the problem by using the transfer learning 

method, yet larger datasets would produce models with better generalization and more accurate 

prediction scores by fine-tuning the pre-trained models well.  
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6.4 Development of interpretable deep learning system for the 

classification of Alzheimer disease 
In this study, a deep learning model customized from VGG16 is proposed for a binary 

classification problem of AD and HC subjects. The proposed CNN was trained by employing 

transfer learning techinique to prevent model overfitting caused by the small size of the training 

data. The model was trained on a brian image collection of the OASIS dataset achieving an 

average accuracy of 71.6% on the test set. Comparing to previous studies employing OASIS 

dataset(Yagis et al., 2019, Yagis et al., 2021), our model classifies AD and HC subjects with a 

better accuracy. Although, in the other few studies (Tufail et al., 2020, Saratxaga et al., 2021, 

Massalimova and Varol, 2021) the authors reported higher accuracies, these results are due to the 

use of larger number of subjects, multimodality and the application of data augmentation to 

improve the performance of the model. Apart from repoting the model’s performance, neither of 

these studies included model visualization tools to make sure that the models are focusing on 

meaningful brain regions to perform the predictive analysis. While, our proposed model 

incorporates four different visualization methods which allows strengthening the reliability of 

our system. 

The results also showed that the interpretation techniques highlight features located around the 

frontal lobe, the parital lobe, cerebral cortex and areas around the thalamus. The SHAP method 

outperform the other methods in localizing the frontal lobe. While the cortical atrophy and 

alterations around the thalamus were captured by the Grad-CAM method. The visualization 

outcomes by the CAM-based technique are very much distributed and the GradCAM method has 

a better localization ability.  

Regarding the role of visualization techniques in identifying a biased model, such as a model 

trained by introducing data leakage, although the occlusion map method outperforms the other 

approaches, SHAP and CAM also perform well by producing heatmaps with a probability value 

of close to 0. Rather the Grad-CAM method fails by producing goodlooking heatmaps.  

Since each interpretability approach has its own limitation, incorporating multiple visualization 

methods helps better understand deep learningbased predictive systems.  
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Chapter 7 

7. Conclusion 
 

This work includes two parts. In the first part of the research, a literature review was performed 

to identify the challenges and pitfalls of employing deep learning predictive systems for 

analyzing neuroimaging data and based on our observations, we found out that the exisiting 

results in a considerable number of research papers were associated with some kind of 

methodological bias. Focusing on a data-leakage problem caused by splitting the 3D brain MRI 

dataset based on slice-level, we assessed and quantified the model performance overestimation 

seen in 2D CNN models developed for the classification of AD versus HC and PD versus HC 

subjects. Our results confirmed that slice-level data leakage, which is seen in a significant 

number of studies, results in overly optimistic models producing falsy good results and the effect 

being worse when using datasets of small size. 

 

Since, the first part of this study led us to the conclusion that there is a need for designing a deep 

learning system that alleviates the pitfalls seen in analyzing neuroimaging data, in the second 

part of this work, a deep learning predictive system, which has features of leakage-free, 

interpretability, and reproducibility, was developed in a python language based on Tensorflow 

backend Keras and Scikit-learn libraries aimed at conducting classification and regression 

analysis with flexible options of employment starting from simple model training and evaluation 

based on holdout and k-fold CV strategy to the complex procedure of hyperparameter 

optimization and model validation according to a nested k-fold crossvalidation scheme. 

The ability of the predictive system to predict the overall neuropsychological performance as 

assessed by MoCA, SDMT, TMT-A, ROCF, Stroop and Visual Search scoring in patients with 

SVD and MCI  was demonstrated using multimodal MRI and DTI and patient demographic data. 

The results have also confirmed the importance of deep learning approaches in the evaluation of 

the cognitive performance status based on neuroimaging and demographic data  
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The tool kit was also employed for the classification of Alzheimer disease, both in 2D and 3D 

model architectures scenarios applied to MRI data. In conducting the studies, the advantages of 

CNN visualization techniques that are available in the case of 2D models, were highlighted, 

which allowed interpreting the decisions produced by the model and to see relevant image 

regions or features that are given higher importance by the model’s prediction. 

From the clinical point of view, knowledge of the disease in SVD patients with MCI has been 

expanded, highlighting the brain substrates underlying the alterations of psychomotor speed. The 

results confirm that cognitive deficits associated with information processing speed are results of 

white matter damage and deteriorations and this is well explained by the changes in DTI-derived 

quantitative measures. This also demonstrate also the possibility of using machine learning 

strategies in understanding the neural substrates of cognitive impairment in studies with larger 

sample size. 

Possible feature developments also include: 

1. greater automation of some changes to the configuration of predictive schemes that 

can be set in the toolkit, such as the number of parameters that can be optimized. 

2. expanding the system to support ensembles of CNNs 

3. The application of the system to other neurological pathologies, especially those 

where bigger dataset of the pathologies are available. 
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9. Appendix 1 

Summary of the previous studies performing classification of neurological disorders using MRI 

and with clear data leakage. 

 

Reference Description 

Gunawardena 

et al., 2017 

"The MRI scan produces a 3-dimensional (3D) model of the body. 

Performing image processing techniques in a 3D MRI film is hard. 

Therefore it is necessary to convert those 3D MRI films into a series of 2D 

images before doing any preprocessing […] Series of 2D images were pre-

processed before feature extraction and classification […] Preprocessed 

images were further processed in order to achieve the best result. All the 

images which were to be input to the CNN model were resized into 160 x 

160 dimension because different sizes may reduce the accuracy of the 

classification […] Afterward, the data set was shuffled. Then the data set 

has been divided (split) into training set and testing set with a ratio of 

80/20 (80% for training and 20% for testing).” 

 

Hon & Khan, 

2017  

“Typically, from a 3D MRI scan, we have a large number of images that 

we can choose from. In most recent methods, the images to be used for 

training are extracted at random. Instead, in our porposed method, we 

extract the most informative slices to train the network. For this, we 

calculate the image entropy of each slice.” [...] 

“We used our entropy-based sorting mechanism to pick the most 

informative 32 images from the axial plane of each 3D scan. That resulted 

in a total of 6400 training images, 3200 of which were AD and the other 

3200 were HC.” [...] 

“5-fold cross-validation was used to obtain the results, with an 80% - 20% 

split between training and testing.” [...] 

“in our method, there are total 6,400 images; a 5-fold cross-validation 
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(80% - 20%) split therefore results in a training size of 5,120).” [...] 

 

Jain et al., 

2019  

“Brain MR images are in NIfTI format. NIfTI images are volumetric (3D) 

images, therefore images that we have after pre-processing are all of size 

256x256x256. These images comprise of 2D images called slices. Hence, 

we have 256 slices corresponding to each NIfTI image […] image entropy 

based sorting mechanism is used to take most informative slices in which 

image entropy for each slice was calculated and top 32 slices based on 

entropy value were selected of each subject […] Above steps of data 

processing results in a balanced data-set of 4800 (150 subjects x 32 slices 

corresponding to each subject) slices which contains 1600 CE, 1600 MCI, 

and1600 CN slices” [...] 

“Our balanced dataset of 4800 images is shuffled and split into training 

and test set with split ratio 80:20.” 

 

Khagi et al., 

2019  

"We have used 28 Normal controls (NC) and 28 Alzheimer’s disease (AD) 

patients for classification, selecting 30 important slices from each patient. 

Once all the slices are collected, each model was trained, validated and 

tested in ratio of 6:2:2 on random selection basis."  

 

Sarraf et al., 

2017  

“The preprocessed rs-fMRI time series data were first loaded into memory 

using neuroimaging package Nibabel (http://nipy.org/nibabel/) and were 

then decomposed into 2D (x, y) matrices along z and time (t) axes. Next, 

the 2D matrices were converted to lossless PNG format using the Python 

OpenCV (opencv.org). The last 10 slices of each time course were removed 

since they included no functional information. Also, any slices with sum of 

pixel intensities equal to zero were ignored. During the data conversion 

process, a total of 793,800 images were produced, including 270,900 

Alzheimer’s and 522,900 normal control PNG samples […] The random 

datasets were labeled for binary classification, and 75% of the images 

were assigned to the training dataset, while the remaining 25% were used 
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for testing purposes.” [...] 

“The preprocessed MRI data were then loaded into memory using a 

similar approach to the fMRI pipeline and were converted from NII to 

lossless PNG format using Nibabel and OpenCV, which created two 

groups (AD and NC) × four preprocessed datasets (MRI 0, 2, 3, 4). 

Additionally, the slices with zero mean pixels were removed from the data 

[… ] This step produced a total number of 62,335 images, with 52,507 

belonging to the AD group and the remaining 9,828 belonging to the NC 

group per dataset […] Next, the model was trained and tested by 75% and 

25% of the data” 

 

Wang et al., 

2017  

Note that in addition to slice-level split, significant data leakage could 

come from the way augmentation is implemented in this paper. For 

example, a slice could end up in the training set and a slightly brighter 

copy of it in the test set. 

 

“In this work, we employ the following data augmentation techniques: 

brightness augmentation, horizontal and vertical shifts, shadow 

augmentation and flipping.” [...] 

"The selected dataset includes serial brain MRI scans from 400 individuals 

with MCI (age: 74.8±7.4years, 257 Male/143 Female), and 229 healthy 

elderly controls (age: 76.0±5.0years, 119 Male/110 Female)[…] After data 

augmentation, we obtain 8000 images including 4000 images of MCI and 

4000 images of healthy control. We extract 5000 images for training, 1500 

images for validation, 1500 images for testing.” 

 

Puranik et 

al., 2018  

"After the conversion of images to the JPEG format, the last 5 frame 

images from each time course were scraped as it didn’t specifically denote 

any significant characteristic of the brain. Moreover, the images that were 

removed were complete black, and would only contribute as noise to the 

CNN. This generated 474,320 images in all of which 154,000 were 
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Alzheimer disease prone images, 209,440 were normal and 110,880 

comprised of EMCI images. These images were pooled together and then 

randomly shuffled for bifurcation into training and testing dataset in the 

ratio of 85% and 15% respectively” 

 

Basheera et 

al., 2019  

“The CNN is used for classification. In our article, we used 224 x 224-

sized gray segmented images as input to the CNN.” [...] 

“Our total data set has 18,017 GM segmented images. We shuffled and 

split the data set in the ratio 80:20 as training and test data sets.” [...] 

 

Nawaz et al., 

2020 

 

“Every 3D MRI image contains 256 256 166 slices per volume which 

cannot be fed to a 2D CNN model. Therefore, we have rescaled each 3D 

MRI volume and have converted it into 2D slices each of size 300 300 with 

a single channel for each plane (axial, coronal, sagittal). Each patient 

contains around 690± 2D slices which can be further fed to train the 2D-

CNN model. The pre-processed slices of 3D images are shown in Fig. 1 

during different stages.” [...] 

“In this paper, we have used 3D structural MRI scans of 160 patients (52 

NC, 62 MCI, and 45 AD) to train our 2D-CNN model. The unbalanced (a 

total of 67413) 2D images are used as a dataset which includes 20972 

images for AD class, 26192 images for MCI, and 18513 for NC class. 

Networks are trained from scratch on data for 70 epochs with a batch size 

of 100. Experiments are performed using 60% data for training, 20 % for 

testing, and 20% for the validation set.” Please note that in Table 1 the 

number of images has been reported. 
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10. Appendix 2 

Summary of the previous studies performing classification of neurological disorders using MRI 

and suspected to have potential data leakage. 

 

Reference Description 

Farooq et 

al., 2017  

“MRI scans are provided in the form of 3D Nifti volumes. At first, 

skull stripping and gray matter (GM) segmentation is carried out on 

axial scans through spatial normalization, bias correction and 

modulation using SPM-8* tool. GM volumes are then converted to 

JPEG slices using Python Nibabel package. Slices from start and end 

which contain non information are discarded from the dataset”. 

Paragraph III.A. “A subject is scanned at different point of times in 

different visits, i.e., baseline, after on two and three years.  Each such 

scan is considered as a separate subject in this work. The dataset 

consists of 33 AD, 22 LMCI, 39 MCI patients and 45 healthy controls 

which makes a total 355 MRI volumes. Augmentation is done by 

simply flipping the image along horizontal axis. The balances set 

includes a total of 9506 images for each class, and a total of 38024 

images for all classes”. [...] 

“All experiments are performed by splitting data into 25% as test and 

75% as train data. 10% data from train set is used as validation set”. 

 

Ramzan et 

al., 2019  

“After applying the preprocessing methods on fMRI data, 

preprocessed 64×64x48x140 4D fMRI scans are obtained in which 

each scan contains 64×64x48 3D volumes per time course (140 s). 

These 4D scans are then converted to 2D images along with image 

height and time axis. This results in 6720 images of size 64x64 per 

fMRI scan. The first and last three slices are removed as they contain 

no functional information. Therefore, from each scan information 



141 
 

from 44 slices is used. Hence, 6160 2D images are obtained from 

each fMRI scan and are saved in portable network graphics (PNG) 

format. The data acquired from ADNI is processed and converted to 

2D images by using the aforementioned pre-processing methods. In 

this way, we have created a dataset that was used for training deep 

learning networks.” […] 

“In the dataset, there are 138 4D scans and 850,080 2D images. For 

the evaluation, we split the dataset into a training dataset, validation 

dataset and testing dataset with 70%, 20%, and 10% split ratio, 

respectively as described in Table 6. The dataset was randomly 

shuffled before splitting.” Please note that in Table 6, the number of 

images rather than the number of subjects has been reported for the 

training, validation, and testing dataset. 

 

Raza et al., 

2019  

“We used the AlexNet model that takes a 2-d image as an input 

whereas our brain MRI data is 3-d. Data permutation is used in 

which multiple slices (Central 20 slices) are extracted from MRI 

brain data to increase training samples.” [...] 

“split ratio for training and test data is set to 0.8 in the experiment. In 

each plane of OASIS dataset, the number of images for training and 

testing the classifier are 6656 and 1664 respectively. Similarly, for 

each plane in ADNI dataset, the number of images for training and 

testing the classifier is 34912 and 8728 respectively.” 

 

Pathak et 

al., 2020  

“In our work, we have converted MRI samples into JPEG slices in 

MATLAB tool. Pixel size of each sample is reduced to 8-bit from 14-

bit size by rescaling to 255.” [...] 

“Dataset consists of 110 AD, 105 MCI and 51 NC subjects, where 

each subject contains 44–50 sample of images. Out of which 110 AD 

subjects are collected from Horizon imaging center [17]. There are 



142 
 

total of 9540 images used for training the network and 4193 images 

for testing. Data augmentation on images is done with rescale 

operation.” [...] 

“We have conducted four experiments of our dataset. For two 

experiments, as shown in Table 4, 70% of the data was used for 

training and 30% for validation.” Please note that in Table 4 the 

number of images rather than the number of subjects has been 

reported for training and validation. 

“Remaining two experiments are conducted with our dataset by 

removing some blank and unwanted images. In this, 75% of the 

reduced data was used for training and 25% for validation for 

remaining two experiments are shown in Table 5.” Please note that 

also in Table 5 the number of images rather than the number of 

subjects has been reported for training and validation. 

 

Libero et 

al., 2015  

We suspect that feature selection was performed on the whole dataset, 

before the application of the ML validation scheme. 

 

“Nineteen high-functioning adults with ASD (15 males/4 females; 

mean age: 27.1 years) and 18 typically developing (TD) peers (14 

males/4 females; mean age: 24.6 years) participated in this 

multimodal neuroimaging study (see Table 1 for demographic 

information).” […] 

“Groups were compared on the resulting cortical thickness values 

using ANCOVAs conducted using SPSS 22.0 software. Age was used 

as a covariate for all between-group analyses, as well as average 

hemispheric cortical thickness.” […] 

“1H-MRS ratios were compared using ANCOVA, covarying for age, 

and GM content.” […] 

“To compare the ASD and TD groups on FA, RD, MD, and AD, t- 

tests were conducted point-wise along each fiber tract for 100 points. 
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A permutation based multiple comparison correction was applied to 

determine statistical significance (Nichols & Holmes, 2002), p < 

.05.” 

“Leave-one-subject-out cross validation was performed for both 

regression and classification.” […] 

“The data points included were the significant resulting values of the 

statistical analyses of separate neuroimaging modalities.” 

 

Zhou et al., 

2014  

We suspect that feature selection was performed on the whole dataset, 

before the application of the ML validation scheme. 

 

“To reduce possible classifier overfitting and improve generalization, 

feature selection was performed in two steps. First, principal 

component analysis was used to decompose the covariance matrix of 

the imaging features using the singular value decomposition program 

in Matlab (release 2010b; MathWorks, Natick, Mass) [33] after 

variance normalization. Then the number of sorted components based 

on singular values that contained 99% or 95% of the information 

from the covariance matrix of all features was determined. Finally, an 

advanced feature selection algorithm, based on mutual-information 

and integration of both mRMR criteria [34], was used to select 

imaging features based on the number of features (components) 

determined via principal component analysis.” 

 

Sivaranjini, 

et al., 2019  

“The image dataset with 80% of the input data is used for training 

and the remaining 20% is used for testing. The number of images 

from each subject given to the deep learning model is averaged to be 

40 ± 5 slices based on the selection criterion as shown in Table 2. 

These images are given to the subsequent convolution layers.” Please 

note that also in Table 2 the number of images rather than the number 



144 
 

of subjects has been reported for training and testing. 

 

Lui et al., 

2014  

We suspect that feature selection was performed on the whole dataset, 

before the application of the ML validation scheme. 

 

“All original features are normalized by removing the mean of each 

feature and dividing by its SD. We used the feature selection 

procedure, mRMR, 24 to incrementally choose the most 

representative subset of imaging features, to increase relevance, and 

decrease redundancy.” […] 

“We used 5 types of mainstream classifiers on the features chosen by 

mRMR: support vector machine (SVM), naive Bayesian, Bayesian 

network, radial basis network, and multilayer perceptron […] We 

also applied the above methodology to evaluate the achievable 

performance of different classifiers using the single best feature alone 

and for mRMR selected features.” 

 

Hasan et 

al., 2019  

“Hasan and Meziane [2] refined these texture measures by ignoring 

the irrelevant features using analysis of variance method (ANOVA) 

and reduced to eleven texture measures for each co-occurrence 

matrix, namely, the contrast, the dissimilarity, the correlation, the 

sum of square variance, the sum variance, he sum average, the 

difference entropy, the inverse difference normalized (IDN), the 

information measure of correlation I (IMC1), the inverse difference 

moment normalized (IDMN) and the weighted distance in addition to 

the cross correlation. The total number of texture measures was 

reduced from 190 to 100 feature measures after using ANOVA.” […] 

“In this study, a total of 6000 MRI axial slices from 600 patients (300 

normal, and 300 abnormal) were collected […] The number of slices 

for each MRI scan is about 75 slices. […] The collected MRI dataset 
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is adopted to validate the proposed method. Support vector machine 

(SVM) with 10-fold cross validation method are applied for accuracy 

rate estimation of the proposed method. The dataset is divided 

randomly into 10 folds that are roughly of equal size. Each MRI slice 

in the given dataset was normalized with ‘zero- center’ before 

submission to CNN.”  
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11. Appendix 3 

Summary of the previous studies performing classification of neurological disorders using MRI 

and that provide insufficient information to assess data leakage. 

 

Reference Description 

Al-Khuzaie et 

al., 2021 

Section 3 “Table 1 demonstrates the number of MRI slices.” 

Section   “The training data set was 75% and the validation 

data set was 25%.” Please note that also in Figure 3 the input is 

“MRI slices dataset”. 

 

Wu et al., 2018 “Then, from among about 160 slices of raw MR scans of each 

subject, we discarded the first and last 15 slices without 

anatomical information, resulting in about 130 slices for each 

subject. Next, we selected 48 different slices randomly from the 

remaining slices with the interval of 4, and thus generated 16 

RGB color images for each subject. Third, the selected slices 

were converted into portable network graphics (PNG) format. 

Finally, all of the RGB color images were resized to 256×256 

pixels and converted to the Lightning Memory-Mapped 

Database (LMDB) for high throughput of the CaffeNet deep 

learning platform. To ensure the robustness of the model, five 

random datasets were created to repeat the training and testing 

of the CNN classifiers (5-fold cross-validation). The flow chart 

for this is shown as in Figure 4.” [...] 

“Differential diagnosis of MCI” “According to aforementioned 

data augmentation, all baseline MR data were expanded to up 

to 7,200 slices (4,800 for training, 2,400 for testing) for 150 NC 

subjects, 7,200 slices (4,800 for training, 2,400 for testing) for 

150 patients with sMCI, and 7,536 slices (5,024 for training, 
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2,512 for testing) for 157 patients with cMCI. During the 

training model, embedded five-fold cross validation was 

employed to train a robust model.” 
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12. Appendix 4 

OASIS-200 is sub-sampled ten times by selecting 34 subjects (17 healthy controls (label=0) and 

17 Alzheimer disease patients (label=1))  

Sub-sample 1 Sub-sample 2 Sub-sample 3 Sub-sample 4 Sub-sample 5 

id label sex age id label sex age id label sex age id label sex age id label sex age 

27 0 F 82 8 0 F 89 97 0 F 60 9 0 M 89 95 0 M 61 

40 0 F 78 54 0 F 73 58 0 F 73 74 0 M 69 77 0 M 68 

63 0 M 71 97 0 F 60 68 0 M 71 15 0 M 87 15 0 M 87 

24 0 F 83 65 0 F 71 74 0 M 69 53 0 M 74 7 0 F 90 

50 0 F 74 13 0 F 88 2 0 F 91 46 0 M 75 6 0 F 90 

53 0 M 74 37 0 F 80 46 0 M 75 28 0 F 81 68 0 M 71 

78 0 M 68 12 0 F 88 88 0 M 64 91 0 M 62 46 0 M 75 

21 0 M 84 43 0 F 76 26 0 F 82 25 0 F 83 34 0 F 80 

80 0 F 67 58 0 F 73 56 0 F 73 75 0 F 69 44 0 F 75 

89 0 F 64 27 0 F 82 18 0 M 86 76 0 F 69 26 0 F 82 

71 0 M 70 30 0 F 81 19 0 F 85 97 0 F 60 81 0 F 67 

29 0 F 81 64 0 F 71 49 0 F 74 61 0 F 72 73 0 F 69 

23 0 F 84 2 0 F 91 75 0 F 69 13 0 F 88 98 0 F 59 

85 0 F 65 89 0 F 64 87 0 F 64 66 0 F 71 71 0 M 70 

59 0 F 73 53 0 M 74 72 0 F 70 51 0 F 74 40 0 F 78 

49 0 F 74 80 0 F 67 61 0 F 72 50 0 F 74 22 0 M 84 

91 0 M 62 85 0 F 65 0 0 F 94 27 0 F 82 52 0 M 74 

135 1 F 80 188 1 M 68 173 1 F 72 182 1 M 70 146 1 M 78 

148 1 F 77 138 1 M 79 176 1 F 71 115 1 M 84 134 1 F 80 

128 1 M 81 194 1 M 66 188 1 M 68 138 1 M 79 179 1 F 71 

191 1 F 67 163 1 M 73 127 1 F 81 132 1 F 80 170 1 F 72 

192 1 F 66 161 1 M 74 116 1 F 83 154 1 F 76 122 1 M 82 

198 1 F 63 162 1 F 73 197 1 M 64 117 1 F 83 149 1 F 77 

144 1 F 78 169 1 F 73 198 1 F 63 124 1 F 81 165 1 F 73 

163 1 M 73 113 1 F 84 118 1 F 83 111 1 M 86 183 1 M 70 

104 1 M 90 189 1 F 67 168 1 M 73 198 1 F 63 172 1 F 72 

140 1 F 78 187 1 M 69 134 1 F 80 161 1 M 74 141 1 F 78 

186 1 F 69 198 1 F 63 147 1 F 78 160 1 F 74 175 1 F 72 

197 1 M 64 192 1 F 66 106 1 M 88 135 1 F 80 154 1 F 76 
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187 1 M 69 179 1 F 71 157 1 F 75 106 1 M 88 112 1 F 84 

130 1 M 80 119 1 F 83 107 1 F 87 101 1 F 92 150 1 M 77 

172 1 F 72 101 1 F 92 146 1 M 78 125 1 M 81 195 1 F 65 

157 1 F 75 121 1 F 83 196 1 M 64 129 1 F 80 168 1 M 73 

152 1 M 77 183 1 M 70 181 1 M 70 152 1 M 77 124 1 F 81 
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 (Continued) 

Sub-sample 6 Sub-sample 7 Sub-sample 8 Sub-sample 9 Sub-sample 10 

id label sex age id label sex age id label sex age id label sex age id label sex age 

75 0 F 69 4 0 F 90 24 0 F 83 39 0 F 78 88 0 M 64 

71 0 M 70 59 0 F 73 89 0 F 64 38 0 F 78 8 0 F 89 

39 0 F 78 44 0 F 75 33 0 M 80 37 0 F 80 85 0 F 65 

14 0 F 88 55 0 F 73 31 0 M 81 72 0 F 70 14 0 F 88 

84 0 F 65 33 0 M 80 55 0 F 73 33 0 M 80 26 0 F 82 

1 0 F 93 41 0 F 77 67 0 F 71 97 0 F 60 90 0 F 63 

90 0 F 63 37 0 F 80 66 0 F 71 86 0 M 65 4 0 F 90 

24 0 F 83 71 0 M 70 83 0 F 65 49 0 F 74 28 0 F 81 

67 0 F 71 9 0 M 89 98 0 F 59 80 0 F 67 57 0 F 73 

61 0 F 72 86 0 M 65 88 0 M 64 60 0 F 72 59 0 F 73 

87 0 F 64 2 0 F 91 40 0 F 78 55 0 F 73 9 0 M 89 

89 0 F 64 34 0 F 80 51 0 F 74 73 0 F 69 80 0 F 67 

72 0 F 70 66 0 F 71 7 0 F 90 25 0 F 83 82 0 F 66 

43 0 F 76 81 0 F 67 86 0 M 65 23 0 F 84 19 0 F 85 

34 0 F 80 1 0 F 93 68 0 M 71 32 0 F 80 62 0 M 72 

70 0 F 70 25 0 F 83 95 0 M 61 19 0 F 85 61 0 F 72 

77 0 M 68 61 0 F 72 54 0 F 73 54 0 F 73 66 0 F 71 

176 1 F 71 168 1 M 73 156 1 M 75 125 1 M 81 176 1 F 71 

129 1 F 80 137 1 M 79 117 1 F 83 153 1 M 76 162 1 F 73 

111 1 M 86 196 1 M 64 164 1 F 73 129 1 F 80 157 1 F 75 

196 1 M 64 178 1 M 71 148 1 F 77 180 1 M 71 149 1 F 77 

143 1 M 78 130 1 M 80 159 1 M 75 140 1 F 78 104 1 M 90 

100 1 F 96 134 1 F 80 155 1 F 75 177 1 M 71 165 1 F 73 

139 1 F 79 157 1 F 75 187 1 M 69 138 1 M 79 123 1 M 82 

122 1 M 82 100 1 F 96 124 1 F 81 167 1 F 73 191 1 F 67 

186 1 F 69 195 1 F 65 129 1 F 80 189 1 F 67 138 1 M 79 

135 1 F 80 116 1 F 83 193 1 F 66 169 1 F 73 130 1 M 80 

178 1 M 71 192 1 F 66 163 1 M 73 195 1 F 65 199 1 F 62 

165 1 F 73 177 1 M 71 132 1 F 80 100 1 F 96 178 1 M 71 

195 1 F 65 101 1 F 92 162 1 F 73 196 1 M 64 148 1 F 77 

114 1 M 84 151 1 F 77 194 1 M 66 132 1 F 80 164 1 F 73 

173 1 F 72 159 1 M 75 169 1 F 73 127 1 F 81 106 1 M 88 
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174 1 F 72 126 1 F 81 190 1 M 67 197 1 M 64 126 1 F 81 

161 1 M 74 164 1 F 73 127 1 F 81 101 1 F 92 109 1 F 86 
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13. Appendix 5 

Thirty-four subjects (17 AD and 17 HC) have been randomly sampled ten times to produce sub-

sampled OASIS-34 datasets. The demographic features of each sub-sampled dataset are listed. 

Differences between AD and HC groups were assessed through a t-test and a 
2
-test for age and 

gender, respectively. The p-values are also reported. 

OASIS 

subsample  

 AD  

patients 

Healthy 

controls 

p-value 

 

Sample-1   

  

Age (range, years)  62 – 84  63 - 90   

Age (mean ± SD, years)  73.7 ± 7.0  74.0 ± 6.9  0.72 

Gender (women/men)  11/6  10/7  0.45 

 

Sample-2   

  

Age (range, years)  60 – 91  63 – 92   

Age (mean ± SD, years)  76.0 ± 9.1  73.7 ± 7.6  0.02 

Gender (women/men)  16/1  10/7  0.22 

 

 

Sample-3  

  

  

Age (range, years)  60 – 94  63 - 88   

Age (mean ± SD, years)  74.8 ± 9.3  75.1 ± 7.7  0.47 

Gender (women/men)  12/5  10/7  0.45 

 

 

Sample-4  

  

  

Age (range, years)  60 – 89  63 – 92   

Age (mean ± SD, years)  75.2 ± 8.3  79.2 ± 6.6  0.49 

Gender (women/men)  11/6  9/8  0.07 

 

 

Sample-5  

  

  

Age (range, years)  59 – 90  65 – 84   

Age (mean ± SD, years)  75.2 ± 9.0  75.3 ± 4.8  0.29 

Gender (women/men)  9/8  12/5  0.49 
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(continued…) 

 

Sample-6   

  

Age (range, years)  63 – 93  64 – 96   

Age (mean ± SD, years)  73.1 ± 8.4  76.2 ± 7.8  0.05 

Gender (women/men)  15/2  10/7  0.15 

 

Sample-7  

Age (range, years)  65 – 93  64 – 96   

Age (mean ± SD, years)  78.1 ± 8.3  76.5 ± 8.4  0.27 

Gender (women/men)  13/4  10/7  0.29 

 

Sample-8  

  

Age (range, years)  59 – 90  66 – 83   

Age (mean ± SD, years)  71.9 ± 8.2  74.5 ± 5.2  1.00 

Gender (women/men)  11/6  11/6  0.15 

 

Sample-9  

  

Age (range, years)  60 – 85  64 – 96   

Age (mean ± SD, years)  74.7 ± 6.8  75.9 ± 8.7  0.05 

Gender (women/men)  15/2  10/7  0.34 

 

Sample-10  

  

Age (range, years)  63 – 90  62 – 90   

Age (mean ± SD, years)  75.8 ± 9.4  76.7 ± 7.1  0.24 

Gender (women/men)  14/3  11/6  0.38 

   

AD = Alzheimer’s disease;  C =  ealthy controls; OASIS = Open Access Series of Imaging 

Studies; SD = standard deviation. 
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14. Appendix 6 

Subject IDs and associated demographics for OASIS_200 dataset. The first 100 subjects are from 

the healthy control group (label = 0) and the last 100 subjects belong to Alzheimer disease 

patient group (label = 1). Age is in years. F, female; M, male; OASIS, Open Access Series of 

Imaging Studies. 

OASIS_IDs NIFTI_IDs labels sex age  OASIS_IDs NIFTI_IDs labels sex age 

221 0 0 F 94 278 100 1 F 96 

270 1 0 F 93 400 101 1 F 92 

284 2 0 F 91 447 102 1 F 92 

65 3 0 M 90 226 103 1 M 90 

83 4 0 F 90 247 104 1 M 90 

299 5 0 F 90 273 105 1 F 89 

301 6 0 F 90 31 106 1 M 88 

445 7 0 F 90 137 107 1 F 87 

19 8 0 F 89 179 108 1 F 87 

32 9 0 M 89 28 109 1 F 86 

197 10 0 F 89 351 110 1 M 86 

271 11 0 F 89 440 111 1 M 86 

169 12 0 F 88 35 112 1 F 84 

176 13 0 F 88 161 113 1 F 84 

342 14 0 F 88 223 114 1 M 84 

260 15 0 M 87 304 115 1 M 84 

363 16 0 M 87 53 116 1 F 83 

157 17 0 F 86 122 117 1 F 83 

317 18 0 M 86 123 118 1 F 83 

201 19 0 F 85 286 119 1 F 83 

254 20 0 F 85 290 120 1 M 83 

110 21 0 M 84 380 121 1 F 83 

186 22 0 M 84 16 122 1 M 82 

428 23 0 F 84 23 123 1 M 82 

75 24 0 F 83 84 124 1 F 81 

113 25 0 F 83 158 125 1 M 81 

146 26 0 F 82 164 126 1 F 81 

426 27 0 F 82 352 127 1 F 81 
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13 28 0 F 81 441 128 1 M 81 

106 29 0 F 81 21 129 1 F 80 

228 30 0 F 81 42 130 1 M 80 

337 31 0 M 81 134 131 1 M 80 

33 32 0 F 80 166 132 1 F 80 

138 33 0 M 80 267 133 1 M 80 

180 34 0 F 80 329 134 1 F 80 

244 35 0 F 80 335 135 1 F 80 

330 36 0 F 80 373 136 1 F 80 

446 37 0 F 80 60 137 1 M 79 

206 38 0 F 78 263 138 1 M 79 

259 39 0 F 78 339 139 1 F 79 

280 40 0 F 78 52 140 1 F 78 

64 41 0 F 77 185 141 1 F 78 

338 42 0 M 77 217 142 1 F 78 

195 43 0 F 76 268 143 1 M 78 

220 44 0 F 75 287 144 1 F 78 

234 45 0 M 75 308 145 1 F 78 

423 46 0 M 75 399 146 1 M 78 

1 47 0 F 74 425 147 1 F 78 

10 48 0 M 74 233 148 1 F 77 

165 49 0 F 74 238 149 1 F 77 

212 50 0 F 74 315 150 1 M 77 

241 51 0 F 74 388 151 1 F 77 

354 52 0 M 74 405 152 1 M 77 

365 53 0 M 74 15 153 1 M 76 

62 54 0 F 73 402 154 1 F 76 

279 55 0 F 73 82 155 1 F 75 

326 56 0 F 73 205 156 1 M 75 

355 57 0 F 73 272 157 1 F 75 

369 58 0 F 73 424 158 1 M 75 

404 59 0 F 73 452 159 1 M 75 

139 60 0 F 72 240 160 1 F 74 

237 61 0 F 72 418 161 1 M 74 

332 62 0 M 72 3 162 1 F 73 

170 63 0 M 71 124 163 1 M 73 
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203 64 0 F 71 210 164 1 F 73 

216 65 0 F 71 291 165 1 F 73 

255 66 0 F 71 312 166 1 F 73 

341 67 0 F 71 374 167 1 F 73 

398 68 0 M 71 451 168 1 M 73 

449 69 0 F 71 454 169 1 F 73 

85 70 0 F 70 56 170 1 F 72 

256 71 0 M 70 115 171 1 M 72 

371 72 0 F 70 269 172 1 F 72 

112 73 0 F 69 298 173 1 F 72 

199 74 0 M 69 316 174 1 F 72 

293 75 0 F 69 432 175 1 F 72 

422 76 0 F 69 67 176 1 F 71 

130 77 0 M 68 155 177 1 M 71 

343 78 0 M 68 288 178 1 M 71 

356 79 0 F 68 411 179 1 F 71 

68 80 0 F 67 430 180 1 M 71 

303 81 0 F 67 39 181 1 M 70 

438 82 0 F 66 120 182 1 M 70 

30 83 0 F 65 142 183 1 M 70 

133 84 0 F 65 453 184 1 F 70 

322 85 0 F 65 22 185 1 F 69 

358 86 0 M 65 73 186 1 F 69 

78 87 0 F 64 390 187 1 M 69 

135 88 0 M 64 300 188 1 M 68 

292 89 0 F 64 98 189 1 F 67 

70 90 0 F 63 307 190 1 M 67 

114 91 0 M 62 382 191 1 F 67 

457 92 0 F 62 66 192 1 F 66 

109 93 0 F 61 94 193 1 F 66 

455 94 0 F 61 143 194 1 M 66 

456 95 0 M 61 184 195 1 F 65 

72 96 0 F 60 46 196 1 M 64 

200 97 0 F 60 243 197 1 M 64 

289 98 0 F 59 362 198 1 F 63 

372 99 0 M 59 41 199 1 F 62 
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15. Appendix 7 

Subject IDs and associated demographics for ADNI dataset. The first 100 subjects are from the 

Alzheimer disease group (label = 1) and the last 100 subjects belong to the healthy control group 

(label = 0). Age is in years. ADNI, Alzheimer’s Disease Neuroimaging Initiative; F, female; M, 

male. 

ADNI_ID

s 

NIFTI_ID

s 

labe

l 

ag

e 

se

x 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

ADNI_ID

s 

NIFTI_ID

s label age sex 

5275 0 1 78 F 4075 100 0 73 M 

5006 1 1 68 F 4266 101 0 70 F 

4252 2 1 87 F 4348 102 0 66 F 

4338 3 1 81 M 56 103 0 78 F 

4990 4 1 75 F 4388 104 0 67 M 

4756 5 1 84 M 89 105 0 71 M 

5029 6 1 80 M 4739 106 0 65 M 

4954 7 1 61 M 4071 107 0 85 M 

4774 8 1 86 M 4150 108 0 74 M 

4195 9 1 62 M 416 109 0 82 F 

4124 10 1 72 M 4262 110 0 73 F 

4672 11 1 67 M 4083 111 0 85 M 

5163 12 1 67 M 4080 112 0 79 F 

4615 13 1 87 M 4545 113 0 67 F 

5149 14 1 84 M 23 114 0 78 M 

5087 15 1 65 F 4643 115 0 65 F 

5027 16 1 76 M 4382 116 0 76 F 
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4537 17 1 77 F   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

59 117 0 79 F 

4039 18 1 56 M 257 118 0 86 F 

4625 19 1 64 M 4093 119 0 70 F 

4879 20 1 80 F 4616 120 0 85 M 

5162 21 1 69 M 4345 121 0 70 M 

4732 22 1 77 M 677 122 0 81 M 

4993 23 1 72 F 4389 123 0 81 M 

5013 24 1 68 F 4393 124 0 74 M 

4968 25 1 79 M 4399 125 0 78 F 

5206 26 1 85 M 4313 126 0 77 F 

4845 27 1 68 F 4577 127 0 85 M 

5016 28 1 64 F 4032 128 0 70 F 

4280 29 1 80 M 4021 129 0 67 M 

5090 30 1 59 M 4082 130 0 76 M 

5184 31 1 73 F 4060 131 0 85 M 

4024 32 1 56 F 4339 132 0 84 M 

4001 33 1 89 F 4349 133 0 71 F 

4905 34 1 73 F 4277 134 0 72 F 

4894 35 1 61 F 4340 135 0 67 F 

5070 36 1 71 M 4208 136 0 78 M 

5138 37 1 61 M 4278 137 0 75 M 

5205 38 1 59 F 4391 138 0 75 M 

4153 39 1 79 M 4856 139 0 65 F 
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4728 40 1 82 M   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

4357 140 0 74 F 

5146 41 1 73 F 4158 141 0 84 M 

4982 42 1 58 F 4304 142 0 75 M 

4258 43 1 76 M 4104 143 0 72 M 

5208 44 1 69 M 4580 144 0 70 F 

4192 45 1 82 M 4448 145 0 64 F 

4740 46 1 88 M 4270 146 0 75 F 

4589 47 1 75 F 4795 147 0 61 M 

5019 48 1 63 F 842 148 0 79 M 

5240 49 1 63 F 4264 149 0 74 F 

4949 50 1 78 F 311 150 0 83 F 

5210 51 1 86 M 4086 151 0 82 M 

4853 52 1 71 F 4010 152 0 71 F 

5106 53 1 74 M 4367 153 0 65 F 

4223 54 1 76 M 4222 154 0 82 F 

5015 55 1 78 F 4386 155 0 85 F 

5071 56 1 76 M 5023 156 0 64 F 

4641 57 1 74 F 4218 157 0 81 M 

4172 58 1 76 M 4878 158 0 73 F 

4770 59 1 76 M 4120 159 0 82 F 

4783 60 1 83 M 4076 160 0 73 F 

4971 61 1 77 M 685 161 0 95 F 

5123 62 1 73 F 21 162 0 79 F 
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4863 63 1 70 M   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

4257 163 0 79 M 

4730 64 1 81 F 4291 164 0 76 F 

4719 65 1 79 F 4612 165 0 69 F 

4657 66 1 72 F 4559 166 0 67 F 

4549 67 1 79 M 4308 167 0 74 M 

4692 68 1 83 M 4762 168 0 74 M 

4997 69 1 61 F 454 169 0 89 F 

4906 70 1 76 F 4196 170 0 79 M 

5054 71 1 74 F 4084 171 0 68 F 

4820 72 1 86 F 555 172 0 87 M 

5252 73 1 57 M 4552 173 0 63 M 

4827 74 1 71 M 4505 174 0 80 F 

5005 75 1 78 M 4410 175 0 69 F 

4501 76 1 79 M 4200 176 0 70 F 

4912 77 1 69 F 4576 177 0 71 F 

4867 78 1 75 M 4320 178 0 71 F 

4546 79 1 71 M 4164 179 0 73 M 

4526 80 1 80 M 4173 180 0 70 F 

5241 81 1 88 M 4424 181 0 66 F 

5017 82 1 84 M 4043 182 0 82 M 

4110 83 1 79 F 4026 183 0 74 M 

4733 84 1 75 M 4453 184 0 66 M 

4792 85 1 80 M 4028 185 0 64 F 
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4696 86 1 73 F   

  

  

  

  

  

  

  

  

  

  

  

  

  

4642 186 0 58 F 

4209 87 1 78 F 69 187 0 81 M 

5074 88 1 75 F 4092 188 0 82 F 

5231 89 1 74 F 4511 189 0 70 M 

4477 90 1 82 F 4491 190 0 84 M 

4660 91 1 77 F 473 191 0 83 M 

4859 92 1 72 M 210 192 0 83 F 

5037 93 1 67 M 4041 193 0 78 F 

5112 94 1 75 F 4014 194 0 81 M 

4755 95 1 72 M 751 195 0 77 M 

4772 96 1 79 F 4225 196 0 70 M 

5018 97 1 73 M 498 197 0 80 M 

5059 98 1 72 M 4037 198 0 76 M 

4994 99 1 85 M 4337 199 0 72 M 
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16. Appendix 8 

Subject IDs and associated demographics for PPMI dataset. The first 100 subjects are from the 

Parkinson's disease patient group (label = 1) and the last 100 subjects 

PPMI_IDs NIFTI_IDs label sex age   PPMI_IDs NIFTI_IDs label sex age 

3625 0 1 F 67   3515 100 0 F 74 

3060 1 1 M 75   3468 101 0 M 57 

3577 2 1 M 68   3809 102 0 F 53 

3830 3 1 F 52   3277 103 0 M 66 

3709 4 1 M 69   4010 104 0 M 42 

3591 5 1 M 63   3216 105 0 F 52 

3154 6 1 F 73   3350 106 0 M 79 

3814 7 1 M 67   3390 107 0 M 66 

3056 8 1 M 56   3544 108 0 M 70 

3327 9 1 F 54   3527 109 0 M 62 

3176 10 1 M 62   3851 110 0 F 54 

3229 11 1 M 73   3959 111 0 M 73 

3770 12 1 F 55   3464 112 0 M 51 

4099 13 1 F 60   3767 113 0 F 53 

4102 14 1 M 69   3257 114 0 F 53 

4038 15 1 F 71   3480 115 0 F 72 

4071 16 1 M 58   3952 116 0 F 69 

3575 17 1 M 61   3967 117 0 M 57 

3771 18 1 F 75   3270 118 0 M 55 
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3003 19 1 F 57   3424 119 0 F 64 

3364 20 1 F 39   4116 120 0 M 65 

3608 21 1 M 46   3000 121 0 F 69 

3116 22 1 M 65   3016 122 0 M 57 

3522 23 1 M 54 

 

3779 123 0 M 56 

3288 24 1 F 47   3813 124 0 M 65 

3632 25 1 M 55   3806 125 0 F 59 

3309 26 1 F 54   3029 126 0 M 66 

3150 27 1 F 57   3526 127 0 M 61 

3970 28 1 M 67   3619 128 0 F 32 

3638 29 1 M 66   3151 129 0 M 58 

3232 30 1 F 68   3114 130 0 F 64 

3454 31 1 F 57   3301 131 0 M 52 

3616 32 1 M 78   4004 132 0 F 65 

3455 33 1 M 67   3479 133 0 M 58 

3023 34 1 F 71   3570 134 0 M 72 

3083 35 1 F 66   3853 135 0 M 47 

3325 36 1 F 67   3636 136 0 M 64 

3218 37 1 M 64   3161 137 0 M 45 

3429 38 1 M 65   3310 138 0 M 65 

3653 39 1 F 80   3201 139 0 F 65 

3514 40 1 M 71   3013 140 0 F 79 

3119 41 1 M 64   4104 141 0 M 66 
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3752 42 1 M 52   3074 142 0 M 31 

4022 43 1 M 48   3053 143 0 M 69 

4122 44 1 M 64   3611 144 0 F 42 

3436 45 1 M 51   3478 145 0 M 77 

3207 46 1 F 58   3169 146 0 M 57 

3439 47 1 M 57   3215 147 0 F 70 

3067 48 1 M 74   4079 148 0 M 63 

3066 49 1 F 64   3157 149 0 F 64 

3290 50 1 M 63   4090 150 0 M 57 

3230 51 1 M 70   3428 151 0 F 58 

3787 52 1 M 49   3206 152 0 F 31 

4115 53 1 M 67   3368 153 0 F 53 

3311 54 1 M 75   3355 154 0 M 32 

3634 55 1 M 43   3405 155 0 F 64 

3077 56 1 M 63   3160 156 0 M 80 

3417 57 1 M 57   3361 157 0 F 56 

3822 58 1 M 56   3613 158 0 F 56 

4092 59 1 F 77   3320 159 0 M 56 

3021 60 1 F 64   3411 160 0 M 41 

4034 61 1 F 55   3519 161 0 M 74 

3958 62 1 M 76   3008 162 0 F 82 

4113 63 1 F 34   3969 163 0 F 81 

3630 64 1 F 61   3358 164 0 M 49 
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3588 65 1 F 49   3362 165 0 F 42 

3621 66 1 F 54   3219 166 0 M 70 

3473 67 1 F 55   3759 167 0 F 54 

3584 68 1 M 43   4085 168 0 M 67 

3102 69 1 M 64   4032 169 0 M 68 

3819 70 1 F 53   3551 170 0 M 64 

3442 71 1 M 63   4118 171 0 F 68 

3472 72 1 M 61   3615 172 0 M 66 

4035 73 1 M 60   3965 173 0 M 83 

3815 74 1 M 62   3064 174 0 F 60 

3432 75 1 M 64   3057 175 0 F 60 

3838 76 1 F 61   3807 176 0 F 73 

4077 77 1 M 48   3075 177 0 M 76 

3282 78 1 F 62   4139 178 0 M 81 

3190 79 1 M 82   3466 179 0 M 48 

3307 80 1 M 66   3410 180 0 M 74 

3710 81 1 M 56   3523 181 0 M 64 

3462 82 1 F 44   3768 182 0 M 60 

3802 83 1 M 70   3651 183 0 M 77 

3433 84 1 F 82   3004 184 0 M 59 

3128 85 1 F 60   3115 185 0 M 61 

3132 86 1 M 50   3855 186 0 F 49 

3080 87 1 M 80   3156 187 0 M 70 
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3186 88 1 F 62   3453 188 0 F 60 

4078 89 1 M 70   3525 189 0 M 56 

3589 90 1 F 75   3852 190 0 M 77 

3666 91 1 M 52   3071 191 0 M 72 

3001 92 1 M 65   3521 192 0 M 65 

3631 93 1 F 68   3955 193 0 M 54 

3205 94 1 M 73   3656 194 0 M 79 

3006 95 1 F 58   3554 195 0 M 75 

3434 96 1 M 54   4105 196 0 M 67 

3220 97 1 F 74   3859 197 0 M 60 

3461 98 1 M 63   3817 198 0 M 74 

3961 99 1 M 37   3457 199 0 F 63 

 


