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Abstract

Several decision and control tasks involve networks of cyber-physical systems that

need to be coordinated and controlled according to a fully-distributed paradigm in-

volving only local communications without any central unit. This thesis focuses on

distributed optimization and games over networks from a system theoretical perspective.

In the addressed frameworks, we consider agents communicating only with neighbors

and running distributed algorithms with optimization-oriented goals. The distinctive

feature of this thesis is to interpret these algorithms as dynamical systems and, thus,

to resort to powerful system theoretical tools for both their analysis and design. We

first address the so-called consensus optimization setup. In this context, we provide

an original system theoretical analysis of the well-known Gradient Tracking algorithm

in the general case of nonconvex objective functions. Then, inspired by this method,

we provide and study a series of extensions to improve the performance and to deal

with more challenging settings like, e.g., the derivative-free framework or the online

one. Subsequently, we tackle the recently emerged framework named distributed ag-
gregative optimization. For this setup, we develop and analyze novel schemes to handle

(i) online instances of the problem, (ii) “personalized” optimization frameworks, and

(iii) feedback optimization settings. Finally, we adopt a system theoretical approach

to address aggregative games over networks both in the presence or absence of linear

coupling constraints among the decision variables of the players. In this context, we

design and inspect novel fully-distributed algorithms, based on tracking mechanisms,

that outperform state-of-the-art methods in finding the Nash equilibrium of the game.

Keywords: Distributed Optimization, Consensus Optimization, Online Optimization,

Derivative-Free Optimization, Distributed Aggregative Optimization, Personalized Op-

timization, Distributed Feedback Optimization, Aggregative Games, Distributed Equi-

librium Seeking, Singular Perturbations.
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Introduction

Motivation and Challenges

In recent years, the increasing amount of interconnected and embedded engineering sys-

tems poses significant challenges for their development [157]. Indeed, several domains

have seen an impressive increase in the employment of devices with communication

and computation capabilities [101] such as intelligent transportation systems [215],

and autonomous mobile robots [4]. For several application tasks, they are organized

and controlled as interconnected, complex systems that interact with each other to

realize the full potential of the aggregated knowledge and computational power of

the entire network. Popular examples can be found in the context of smart grids [49],

smart cities [71], or Industry 5.0 [121]. In all these domains, controlling these networks

through a centralized entity would require a central node that knows some global in-

formation, takes all the decisions, and communicates them to all the single entities (or

agents) that belong to the network. Such an aspect may be undesirable because, e.g.,

it may represent a barrier to scalability [198], privacy concerns [18], or the develop-

ment of efficient and flexible swarming systems [44]. For this reason, it is dramatically

increasing the attention for approaches relying on the so-called distributed paradigm.

These approaches take advantage of inter-agent peer-to-peer communication protocols

to spread critical information across the entire system and, thus, control the whole

network without any centralized unit. In this context, a relevant goal is to formulate a

mathematical framework to take decisions that optimize a given performance metric.

The network agents can cooperate with the aim of optimizing a common performance

index, giving rise to distributed optimization scenarios, or can compete with each other

with the aim of optimizing individual objective functions, leading to the context of games
over networks. Indeed, optimization can be used to formalize several challenges stem-

ming from different domains such as, e.g., estimation in sensor networks, cooperative

model predictive control, learning in machine learning applications, control of energy

networks, and control of networks of mobile robots. Specifically, as for distributed opti-

mization, we focus on two different scenarios, namely distributed consensus optimization
and distributed aggregative optimization. Instead, as regards games, we concentrate on
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Introduction

network aggregative games. Along this thesis, according to the distributed paradigm

introduced above, the key assumption is that each agent works with partial information

about the problem. In particular, each agent is only aware of its own local information

(e.g., an associated objective function) and can exchange data according to a sparse

communication graph, i.e., only with a subset of the entire set of agents.

The expression distributed consensus (or cost-coupled) optimization refers to opti-

mization problems over networks where the cost is the sum of local functions depending

on a common decision variable. Typical tasks that can be posed as consensus opti-

mization problems can be found, e.g., in the context of robust estimation in statistics,

support vector machine in machine learning, and signal processing. We refer the reader

to the recent surveys [73, 135, 142, 202] for a comprehensive overview of the possible

applications of this setting and the existing methods to address it. The complex features

of consensus optimization problems arising in, e.g., data analytics and deep learning

motivated our interest in addressing (i) nonconvex objective functions, (ii) asynchronous

communication, (iii) derivative-free scenarios, and (iv) time-varying settings.

Distributed aggregative optimization, on the other hand, refers to a recently emerged

framework in which agents in a network aim to minimize the sum of local objective

functions which depend both on local decision variables and a common aggregative
variable that couples the decisions of all the agents. This challenging setting has been

introduced by the pioneering work [104] and suitably models many tasks in the context

of cooperative robotics such as, e.g., multi-robot surveillance scenarios.

Instead, in the context of network aggregative games, we still have objective functions

both depending on local and aggregative variables but each agent aims at minimizing

only its own cost. Many tasks arising in several domains such as smart grids management,

economic market analysis, cooperative control of robots, electric vehicles charging,

network congestion control, can be formulated as aggregative games. See, e.g., the

surveys [12, 87, 152] for a detailed examination. In this context, the goal is to design

distributed equilibrium seeking algorithms, i.e., fully-distributed methods able to find a

so-called Generalized Nash Equilibrium (GNE) of the considered game.

Recent years have also seen a growing interest in the exploitation of concepts and

ideas from system theory in the context of optimization. Such an interest is due to

the wide set of well-established tools and concepts provided by system theory that can

be leveraged to analyze and design effective optimization methods. Motivated by this,

throughout the whole thesis, we take a system theoretical perspective in which our

distributed algorithms are interpreted as dynamical systems.
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Summary of the Contributions

This thesis contributes to the fields of distributed consensus optimization, distributed

aggregative optimization, network aggregative games. In detail, we contribute to all

these frameworks by proposing novel schemes under different problem settings and

assumptions. A distinctive feature of the thesis is the exploitation of a system theoretical

framework both for the analysis and design. The interpretation of the algorithms as

dynamical systems allows for a deeper understanding of existing schemes and for the

design of novel ones. We resort to Lypaunov-based tools as, e.g., LaSalle’s invariance

principle, time-scale separation, and averaging theory, to understand and recognize key

properties of the algorithms and, thus, to enhance their capabilities. Moreover, a system

theoretical perspective naturally leads to a unified description and design of distributed

algorithms in different frameworks.

As for distributed consensus optimization, we take into account different prob-

lem settings and, in this context, we study and extend the existing Gradient Tracking

algorithm. The latter is a popular distributed optimization algorithm for consensus

optimization whose main feature consists of combining the gradient descent idea with

the so-called trackers, i.e., a set of auxiliary variables that locally compensate for the lack

of knowledge of the agents about the gradient of the global objective function. First, we

consider the case of nonconvex objective function and analyze the convergence proper-

ties of the Gradient Tracking scheme through an elegant system theoretical dissertation.

Afterward, we restrict to quadratic programs and propose a control-oriented design

to enhance the convergence properties of Gradient Tracking. Subsequently, we derive

Continuous Gradient Tracking, i.e., the continuous-time counterpart of Gradient Track-

ing. Moreover, since such a scheme requires continuous-time communication among

the network agents, we also derive two extensions implementing synchronous and

asynchronous discrete-time communication, respectively. Then, we tackle a derivative-

free scenario, namely the case in which the agents cannot access the gradients of their

associated cost functions. To overcome this lack of knowledge, we modify a forward

Euler discretization of Continuous Gradient Tracking by taking advantage of a gradient

estimation technique based on extremum-seeking concepts. Finally, we consider an

online setting, i.e., a scenario in which the objective functions vary over time. In this

framework, we propose a novel distributed scheme obtained by combining Gradient

Tracking with Adam, i.e., a popular centralized algorithm for stochastic optimization.

The effectiveness of the considered algorithms is tested with numerical simulations

about typical problems arising in data-analytics and source estimation.

As for the distributed aggregative framework, we start by proposing a novel dis-

tributed scheme for constrained online instances of the problem which improves the

convergence properties of similar existing schemes. Then, we extend this algorithm
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to address the so-called personalized framework, i.e., the one in which each objective

function has an unknown part that can be accessed by the related agent only in terms of

noisy user feedbacks. Specifically, we interlace the standard algorithm with a Recursive

Least Squares (RLS) scheme devoted to estimating the unknown part of the cost using

the collected user feedbacks. Further, we design a distributed feedback optimization

law for the aggregative framework. In particular, we consider a set of systems with

continuous-time nonlinear dynamics and aim to design a distributed control law able to

steer the network to a steady-state configuration corresponding to a stationary point of

an associated aggregative optimization problem with nonconvex cost functions. Notably,

in this setting, the agents do not know the objective functions of the problem and can

only measure the gradients evaluated in their current configuration. The theoretical

results of the chapter are corroborated by numerical simulations involving tasks arising

in multi-robot scenarios and opinion dynamics.

As for network aggregative games, the contribution consists of novel distributed

equilibrium seeking algorithms for two scenarios, i.e., the one with only local constraints

and the one in which also linear coupling constraints are present. The first scenario is

tackled through a projected pseudo-gradient scheme combined with a tracking mecha-

nism due to reconstruct the unavailable aggregative variable. As for the second scenario,

we adapt a recent augmented primal-dual method for this setting and combine it with

average consensus and tracking techniques. Both theoretical and numerical results are

provided to show that our schemes outperform the other state-of-the-art distributed

methods in terms of convergence rate.

Finally, this thesis contributes with two novel results about the so-called discrete-

time singularly perturbed systems. These results extend the existing ones with (i)

convergence in a LaSalle sense, and (ii) global exponential convergence. Although

we explicitly use them to prove the convergence features of some of the algorithms

described above, they represent per se results that can be useful for the analysis of

generic dynamical systems.

Organization and Chapter Contributions

The thesis organization follows the contribution scheme outlined in the previous section.

We first provide a chapter to formalize the three frameworks addressed in the thesis.

Then, for each one of these frameworks, we provide a related chapter containing both

the theoretical findings and the numerical simulations that confirm them.

In Chapter 1, we formalize the distributed consensus optimization framework, the

distributed aggregative optimization scenario, and the network aggregative games

setting.

In Chapter 2, we deeply investigate and extend the existing Gradient Tracking al-
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gorithm. First, we provide a clean, elegant system theoretical perspective based on a

LaSalle and singular perturbations analysis to study the Gradient Tracking convergence

properties in the case of nonconvex objective functions. In particular, we perform

suitable changes of variables to reformulate the Gradient Tracking algorithm as a singu-

larly perturbed system, namely the interconnection between a slow subsystem, which

mimics the gradient descent method, and a fast one describing the dynamics of the

consensus error among both the solution estimates and the trackers. We separately

study the system theoretical properties of two auxiliary schemes associated to these

subsystems and, then, by merging these results through a specific theorem, we assess

the asymptotic convergence of the whole interconnection to the set of stationary points

of the problem. Afterward, we demonstrate the effectiveness of the system theoretical

tools by designing modified Gradient Tracking schemes with sparse matrix gains (rather

than the diagonal ones of the standard scheme) for quadratic programs. We numerically

show the enhancement in terms of convergence rates by comparing the two versions of

the algorithm. Subsequently, by taking inspiration from a branch of research studying

the continuous-time counterpart of existing discrete-time optimization algorithms, we

develop the continuous-time version of the Gradient Tracking algorithm. Moreover, to

avoid the unrealistic implementation of continuous-time inter-agent communication,

we also design two additional extensions leveraging synchronous and asynchronous

discrete-time communication, respectively. In particular, the asynchronous scheme

relies on local triggering conditions that the agents independently check to choose the

instants of time in which their own variables must be sent to their neighbors. For all

the obtained schemes, we take advantage of a Lyapunov-based analysis to show the

exponential convergence to the solution of strongly convex problems. We also show that

the asynchronous scheme avoids the so-called Zeno effect, i.e., an infinite number of

communications in a finite interval of time. Then, we consider the case in which the

agents cannot access the gradients of the objective functions. To overcome this issue,

we propose Extremum Tracking Descent, i.e., a novel distributed algorithm obtained

by modifying a forward Euler discretization of the Continuous Gradient Tracking pol-

icy by replacing the unavailable gradients through a suitable mechanism based on an

extremum-seeking technique. The obtained scheme is analyzed by resorting to tools

from discrete-time averaging theory. Specifically, we study the average system asso-

ciated to the original one. For this system, by means of a Lyapunov-based analysis,

we find an arbitrarilry small set with semi-global practical stability guarantees. Then,

with a suitable choice of the algorithm parameters, we impose the closeness betweeen

the original and the average scheme. In this way, we guarantee that, in the case of

strongly convex costs, the obtained scheme asymptotically converges to an arbitrarily

small neighborhood of the problem solution. Notably, we show that the accuracy can

be arbitrarily improved through the amplitude of the so-called dither signals used to
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estimate the gradients. Finally, we take into consideration the online case, i.e., the one in

which the objective functions vary over time. In this setting, we propose GTAdam, i.e., a

novel distributed algorithm obtained by combining the Gradient Tracking algorithm

with Adam, namely a popular centralized method for stochastic optimization. In detail,

inspired by Adam, GTAdam computes the descent direction of each agent through the

estimates of the first- and second-order momenta of the trackers. In the case of strongly

convex problems, we theoretically (i) provide an upper bound for the dynamic regret

achieved by GTAdam and (ii) prove its linear convergence to the optimal solution for

the static case. By performing detailed numerical simulations, we show that GTAdam

outperforms existing state-of-the-art distributed methods. The results of this chapter

are based on [25, 28, 31, 33, 130].

In Chapter 3, we investigate the distributed aggregative optimization framework.

In this context, we consider a constrained online version of the problem where cost

functions, aggregation rules, and constraints vary over time. To address such a problem,

we propose Projected Aggregative Tracking, namely a novel distributed algorithm for

constrained online aggregative optimization. Projected Aggregative Tracking combines

in each agent a distributed implementation of the gradient descent with two tracking

mechanisms devoted to reconstructing, in a distributed manner, both the aggregative

variable and the related gradient of the global objective function. Further, we include a

convex combination step which turns out to be crucial in improving the existing theoret-

ical results. Indeed, we demonstrate that Projected Aggregative Tracking (i) achieves a

dynamic regret with an improved upper bound with respect to the existing one, and (ii)

linearly converges to the optimal solution in case of static problems. Then, we consider a

personalized scenario, i.e., a setting in which the considered optimization tasks directly

involve human end-users. As a consequence, users’ dissatisfaction needs to be taken

into account together with engineering-oriented goals but, due to the complexity and

subjectivity of human preferences, personalization may suit better than the exploitation

of synthetic models. For this reason, we address this framework assuming that part

of each local objective function is unknown and can be accessed only through noisy

user feedback of the cost. To overcome this lack of knowledge, we equip each agent

with an RLS scheme that, interlaced with Projected Aggregative Tracking, leads to a

novel distributed algorithm named RLS Projected Aggregative Tracking. Starting from

the existing analysis, we theoretically provide an upper bound for the dynamic regret

achieved by RLS Projected Aggregative Tracking. Subsequently, we investigate a feed-

back optimization setting for the aggregative framework. In this context the challenge is

twofold: (i) we investigate the feedback optimization paradigm for nonlinear systems

in a distributed framework, and (ii) we consider the aggregative optimization set-up

in a nonconvex scenario. Specifically, we propose Aggregative Tracking Feedback, i.e.,

a novel continuous-time distributed feedback optimization law for aggregative opti-

6



mization problems. The aim is to steer, in a fully-distributed manner, a network of

dynamic agents to a steady-state configuration which is a stationary point of a given

aggregative optimization problem with (possibly) nonconvex objective function. Ag-

gregative Tracking Feedback implements a two-step procedure: (i) moves the network

along an estimated descent direction of the cost, and (ii) reconstructs in each agent

the global information needed for step (i). Step (i) is performed through a distributed

implementation of a closed-loop gradient flow. As per step (ii), a consensus-based

dynamics is implemented in which two auxiliary states asymptotically compensate for

the mismatches between the part of information locally available and the global one.

It is worth highlighting that Aggregative Tracking Feedback is a distributed feedback

strategy handling at the same time-scale the control and the optimization of a net-

work of nonlinear systems. By resorting to tools from system theory, we guarantee the

asymptotic convergence of the network to a steady-state configuration being a stationary

point of the optimization problem. Further, we take into account the case with single

integrator dynamics and strongly convex objective function. In this case, we adapt

Aggregative Tracking Feedback to get a closed loop system that exponentially converges

to a configuration corresponding to the optimal solution of the problem. The results of

this chapter are based on [26, 29, 30, 32].

Finally, in Chapter 4, we design novel distributed equilibrium seeking algorithms

for aggregative games with both local and linear coupling constraints. First, we tackle

the case with only local constraints by proposing a scheme that combines a projected

pseudo-gradient method with a tracking mechanism. Then, to deal also with coupling

constraints, we take inspiration by an existing continuous-time augmented primal-dual

scheme for centralized optimization. In detail, we combine a distributed augmented

primal-dual scheme with (i) an average consensus step to force agreement among the

agents’ multipliers and (ii) a tracking-based mechanism to reconstruct in each agent

the aggregative variable and the coupling constraint. Both the proposed schemes are

analyzed trough the following system theoretical strategy. We reformulate the original

scheme as a singularly perturbed system, i.e., as the interconnection between a slow

subsystem and a fast one. Then, we provide two Lyapunov functions for two distinct

auxiliary schemes related to these two subsystems. Subsequently, by properly merging

these two results, we show that our methods linearly converge to the GNE of the

problem. Both the theoretical guarantees and the numerical results show that our

methods outperform the state-of-the-art distributed algorithms in terms of convergence

rate. The results of this chapter are based on [27].

As a complementary part of the thesis, we include Appendix A providing some basic

concepts on optimization, Appendix B reporting some auxiliary results that turn out to

be useful to prove some intermediate results of the thesis, and Appendix C containing

our novel, custom results about singularly perturbed systems.
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Notation

The symbols R and N denote the set of real and natural numbers, respectively. A matrix

M ∈ Rn×n is Schur if all its eigenvalues lie in the open unit disc, while is Hurwitz if

all its eigenvalues have negative real part. The identity matrix in Rm×m is Im, while

0m is the all-zero matrix in Rm×m. The vector of N ones is denoted by 1N , while

1N,d := 1N ⊗ Id with ⊗ being the Kronecker product. Dimensions are omitted whenever

clear from the context. Given two vectors v1, v2 ∈ Rn, their Hadamard product is

denoted as v1 ⊙ v2. Given a function of two variables f : Rn1 × Rn2 → R, we denote

as ∇1f ∈ Rn1 the gradient of f with respect to its first argument and as ∇2f ∈ Rn2

the gradient of f with respect to the second one. The vertical concatenation of column

vectors v1Rn1 , . . . , vN ∈ RnN is col(v1, . . . , vN ) ∈ R
∑N

i=1 ni . Rn+ identifies the positive

orthant in Rn. We denote with diag(v1, . . . , vn) the diagonal matrix whose i-th diagonal

element is given by vi, and with blkdiag(M1, . . . ,MN ) the block diagonal matrix whose

i-th block is Mi ∈ Rni×ni . Given a vector v ∈ Rn and a set § ⊆ Rn, PSx denotes

the projection of v on S, i.e., PS [v] := argminx ∈ S ∥v − x∥, while we use dist(v, S) to

denote its distance from the set, namely dist(v, S) = minx∈S ∥v − x∥. For a finite set

S, we denote by |S| its cardinality. Given v ∈ Rn, we use [v]+ to denote max{0, v}
in a component-wise sense. Given a square matrix M ∈ Rn×n, a set S ⊂ Rn is said

to be M-invariant if for all v ∈ S it holds Mv ∈ S. Given v ∈ Rn and a symmetric,

positive definite matrix M ∈ Rn×n, ∥v∥M =
√
v⊤Mv. As for the euclidean norm, we

omit the subscript, namely ∥v∥ =
√
v⊤v. Let M ∈ Rn×n, then we denote as ρmax(M)

its spectral radius. Given a vector v and a matrix M , we denote as [v]j and [M ]j the

j-th component of v and the j-th row of M , respectively. Given c ∈ R, b ∈ Rn, and

M ∈ Rn×n, let v := col(c, b, [M ]1, . . . , [M ]n) ∈ R1+n+n2
, then we define the operator

unpack(v) so that (M, b, c) = unpack(v). Given a function f : Rn → Rm, we define

ker{f(·)} := {x ∈ Rn | f(x) = 0}. Given c > 0, we use the symbol Bc to denote the

sphere with radius c, namely Bc := {v ∈ Rn| ∥v∥ ≤ c}.
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Chapter 1

Distributed Optimization and
Aggregative Games over Networks

In this chapter, we introduce the frameworks addressed in this thesis. We first review

some basic concepts of graph theory and introduce the distributed computation model.

Then, we formalize the three frameworks studied throughout the thesis and, for each of

them, we present a practical application.

1.1 Graph Theory and Distributed Communication Model

In a distributed context, there are N units, called agents or players, that have both

communication and computation capabilities. We assume that the agents can exchange

information with each other by sending and receiving packets of information.

This communication model is formalized by resorting to graph theory. Formally,

we define a graph G as the ordered pair (V, E), where V = {1, . . . , N} and E ⊆ V × V .

We call nodes (or vertices) the elements in V , while we call edges the ones in E which

are of the type (i, j) with i, j ∈ V . The nodes represent the set of agents of the network,

while the edges represent the communication links among them. If the edges are not

oriented, i.e., (i, j) ∈ E iff (j, i) ∈ E , we say that the graph is undirected, otherwise we

call it directed. An example of a directed and of an undirected graph is depicted in

Figure 1.1.
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Figure 1.1: A directed (left) and an undirected (right) graph of N = 6 nodes.

Further, we also associate to the graph G a weighted adjacency matrixWG ∈ RN×N

matching the graph sparsity in the sense that its (i, j)-th entry wij > 0 if (j, i) ∈ E and 0

otherwise. Given an edge (i, j) ∈ E , i is called in-neighbor of j and j is an out-neighbor
of i. For each agent i, we define the in-neighbor set as Ni = {j ∈ V : (j, i) ∈ E} and the

out-neighbor set as N out
i = {j ∈ V : (i, j) ∈ E}. If the graph is undirected, we simply

say that i is a neighbor of j (and viceversa), and denote Ni (wich coincides with N out
i )

as the neighbor set. Analogously, we define the weighted in-degree of the agent i as

din
i :=

∑
j∈Ni

wij and its out-degree as dout
i :=

∑
j∈N out

i
wji. If it holds din

i = dout
i for all

i ∈ {1, . . . , N}, we say that the graph is weight-balanced. In this connection, we define

the in-degree matrix Din ∈ RN×N and the out-degree matrix Dout ∈ RN×N that are the

diagonal matrices whose i-th blocks are given by din
i and dout

i , respectively. Also, we

define the Laplacian matrix L ∈ RN×N , where each entry (i, j) is equal to

Lij =




din
i if i = j

−wij if i ̸= j
. (1.1)

Thus, it can be equivalently written L = Din −WG .

In a distributed computation context, each agent in the network is associated to

a fixed identifier i ∈ V from the set of nodes, while, if the edge (i, j) belongs to the

communication graph, then agent i can send information to agent j. In this context,

each agent typically maintains some local states that change according to the specific

algorithm in execution. In particular, if each agent uses only information received by

its in-neighbors, then we refer the algorithm as distributed. As one may expect, the

connectivity among the agents plays a key role in determining the effectiveness of the

algorithm. In detail, most distributed algorithms need to be executed over strongly

connected graphs which are the ones satisfying the following connectivity property.

Definition 1.1 (Connectivity [21]). A directed graph G is said to be strongly connected if
for every pair of nodes (i, j) there exists a path of directed edges that goes from i to j. If G is
undirected, we say that G is connected. △

12
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In this setting, it is customary to employ suitable weighted adjacency matrices

matching the following definition.

Definition 1.2 (Stochastic matrices [21]). The matrix A ∈ RN×N is said to be row stochas-

tic if it holds

A1N = 1N .

Analogously, A is said to be column stochastic if it holds

1⊤NA = 1⊤N .

If A is both row and column stochastic, then it is said to be doubly stochastic. △

1.2 Consensus Optimization

In this section, we formalize the distributed consensus optimization setup and present a

related application example. This framework is widely investigated in Chapter 2 with

different problem settings and assumptions.

1.2.1 Problem Description

We deal with a network of N ∈ N agents that must solve a consensus (or cost-coupled)

optimization problem, which can be stated as

min
x∈X

N∑

i=1

fi(x), (1.2)

where x ∈ Rn is the (common) decision variable of the objective functions fi : Rn → R,

and X ⊆ Rn is the feasible set. In our distributed context, each agent i ∈ {1, . . . , N} is

only aware of its own associated function fi and maintains a local estimate about the

solution of problem (1.2). In this connection, we term such a problem as “consensus

optimization” because the agents aim to asymptotically reach a consensus among their

estimates in a point that coincides with a solution of (1.2). Indeed, if the decision variable

had not been common, then the problem would split into N independent problems of

the form

min
xi∈X

fi(xi), i ∈ {1, . . . , N}.

13
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1.2.2 Application Example: Classification using Logistic Regression

Consider a network of agents that want to cooperatively train a linear classifier for a

set of points in a given feature space. Each agent i is equipped with mi ∈ N points

pi,1, . . . , pi,mi ∈ Rd−1 with binary labels li,q ∈ {−1, 1} for all q ∈ {1, . . . ,mi}. The

problem consists of building a linear classification model from the given points, also

called training samples. In particular, we look for a pair (w, b) ∈ Rn × R defining a

separating hyperplane described by {p ∈ Rn−1 | w⊤p + b = 0}. The aim is to find the

ideal hyperplane (w⋆, b⋆) that separates all points with li,q = −1 from all the ones with

li,q = 1, namely to find (w⋆, b⋆) so that

w⊤
⋆ pi,q + b⋆ ≥ 0 ∀(i, q) such that li,q = 1

w⊤
⋆ pi,q + b⋆ < 0 ∀(i, q) such that li,q = −1.

Figure 1.2 depicts the scenario described above. We use different colors to denote the

points belonging to different agents, while we distinguish among the two possible class

of points by using circles and triangles to label them. Figure 1.2 clearly highlights that

a single agent may have only points belonging to the same class and, therefore, would

have no way to build classifier without cooperation with other agents in the network.

i

Figure 1.2: Illustration of the classification in a network of 4 agents. Each agent has private
points with two possible labels, i.e., circles or triangles. The black, dotted line perfectly separates
the two classes of points.

The classification problem can be posed as a minimization problem described by

min
w∈Rn−1,b∈R

N∑

i=1

mi∑

q=1

log
(
1 + e−li,q(w

⊤pi,q+b)
)
+
C

2

(
∥w∥2 + b2

)
, (1.3)

where C > 0 is the so-called regularization parameter. The optimization problem

formalized in (1.3) is an unconstrained instance of (1.2), i.e., X ≡ Rn. Indeed, the

(common) decision variable is x = col(w, b), while the local objective function of agent

14



1.3. Distributed Aggregative Optimization

i is given by

fi(col(w, b)) =

mi∑

q=1

log
(
1 + e−li,q(w

⊤pi,q+b)
)
+

C

2N

(
∥w∥2 + b2

)
.

1.3 Distributed Aggregative Optimization

This section is devoted to formalize the distributed aggregative optimization setup and

present a related application example. In Chapter 3, we address this kind of problems

and related variants.

1.3.1 Problem Description

We consider an optimization problem written in the form

min
(x1,...,xN )∈X

N∑

i=1

fi(xi, σ(x)), (1.4)

in which x := col(x1, . . . , xN ) ∈ Rn is the global decision vector, with each xi ∈ Rni and

n =
∑N

i=1 ni. The global decision vector is constrained to belong to a set X ⊆ Rn that

can be written as X =
∏N
i=1Xi, where each Xi ⊆ Rni . The functions fi : Rni × Rd → R

represent the local objective functions, while the aggregative variable σ(x) has the form

σ(x) :=

∑N
i=1 ϕi(xi)

N
, (1.5)

where each ϕ : Rni → Rd is the i-th contribution to the aggregative variable. We

compactly denote the cost function of problem (1.4) through f : Rn×Rd → R defined as

f(x, σ(x)) :=
∑N

i=1 fi(xi, σ(x)). Each agent of the network has only partial information

about problem (1.4). In particular, each agent i ∈ {1, . . . , N} can only privately access

fi, Xi, and ϕi and, thus, needs to exchange information with the other agents of the

network to find the i-th component of an optimal solution of problem (1.4). Here, the

coupling among the agents is due to the fact that each objective function fi depends on

the aggregative variable σ(x).

1.3.2 Application Example: Multi-Robot Surveillance

Consider a network of N mobile robots, whose position is xi ∈ R2, that aim to protect a

common target, located at b ∈ R2, from a collection of N intruders, see Figure 1.3. In

particular, each robot i of the surveillance team is associated to an intruder located at

pi ∈ R2. Therefore, the protection strategy of the team consists of a trade-off between two
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competing objectives: (i) each robot tries to stay close to the intruder, (ii) the surveillance

team tries to keep its barycenter close to the target.

The scenario described above can be suitably captured by means of the distributed

aggregative optimization framework described in the previous section. Specifically, in

problem (1.4) we can set

fi(xi, σ(x)) =
1

2
∥xi − pi∥2 +

γ

2N
∥σ(x)− b∥2 (1.6)

with γ > 0, and aggregative variable denoting the weighted center of mass of the

defending team

σ(x) =
1

N

N∑

i=1

βixi, (1.7)

for some weights βi > 0. We notice that if βi = 1 for all i ∈ {1, . . . , N}, then the standard

center of mass is recovered. An illustrative concept of this framework is provided in

Figure 1.3, where an initial configuration and the (unique) optimal one are shown.

Robot
Robot

Robot

Target

σ(x)

(a) Initial configuration.

Robot

Robot

Robot

Target

σ(x)

(b) Optimal configuration.

Figure 1.3: Multi-robot surveillance scenario.

1.4 Distributed Equilibrium Seeking in Aggregative Games

In this section, we introduce aggregative games over networks and present a related

application example. As we will see in the sequel, this framework has many similarities

with the distributed aggregative optimization setup presented in Section 1.3. However,

the key difference is that, here, the goal is to compute a (generalized) Nash equilib-

rium rather than an optimal solution cooperatively. Chapter 4 is devoted to providing

distributed algorithms able to find such an equilibrium.
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1.4.1 Problem Description

We consider a population of N ∈ N agents who, given all other agents’ strategies, aim at

finding a local strategy solving the optimization problem:

∀i ∈ {1, . . . , N} :





min
xi∈Xi

Ji(xi, σ(x))

s.t.
N∑

j=1

Ajxj ≤
N∑

j=1

bj ,
(1.8)

where Xi ⊆ Rni , Ai ∈ Rm×ni , and bi ∈ Rm model the feasible strategy set for agent

i, while the cost function Ji : Rni × Rd → R depends on the i-th individual strategy

xi ∈ Rni , as well as on the aggregative variable σ(x) ∈ Rd, with x := col(x1, . . . , xN ) ∈
Rn, n :=

∑N
i=1 ni. We consider m ≤ n. As in Section 1.3, the aggregative variable σ(·)

formally reads as

σ(x) :=
1

N

N∑

i=1

ϕi(xi), (1.9)

where each aggregation rule ϕi : Rni → Rd models the contribution of the corresponding

strategy xi to the aggregate σ(x). We define the constraint functions ci : Rni → Rm,

c−i : Rn−ni → Rm, and c : Rn → Rm as follows:

ci(xi) = Aixi − bi, (1.10a)

c−i(x−i) =
∑

j∈{1,...,N}\{i}
(Ajxj − bj), (1.10b)

c(x) = ci(xi) + c−i(x−i) = Ax− b, (1.10c)

where x−i := col(x1, . . . , xi−1, xi+1, . . . , xN ) ∈ Rn−ni , A := [A1 . . . AN ] ∈ Rm×n, and

b :=
∑N

i=1 bi. Then, the collective vector of strategies x belongs to the feasible set

C := {x ∈ X | c(x) ≤ 0} ⊆ Rn, where X :=
∏N
i=1Xi ⊆ Rn.

We refer to any equilibrium solution to the collection of inter-dependent optimiza-

tion problems (1.8) as aggregative Generalized Nash Equilibrium (GNE) [59] (or simply

GNE), and to the problem of finding such an equilibrium as GNE problem (GNEP) in

aggregative form – as opposed to a Nahs Equilibrium problem (NEP) which is character-

ized by local constraints only. We will design distributed algorithms to find aggregative

GNEs, which formally correspond to the following definition:

Definition 1.3 (Generalized Nash Equilibrium [59]). A collective vector of strategies x⋆ ∈ C
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is a GNE of (4.1) if, for all i ∈ {1, . . . , N}, we have:

Ji(x
⋆
i , σ(x

⋆)) ≤ min
xi∈Ci(x⋆−i)

Ji
(
xi,

1
N ϕi(xi) + σ−i(x⋆−i)

)
,

with Ci(x−i) := {xi ∈ Xi | Aixi ≤ bi − c−i(x−i)}. △

We note that the definition of Nash Equilibrium (NE) follows directly from the above

by replacing Ci(x⋆−i) simply with Xi.

An equivalent definition of GNE requires one to find a fixed-point of the best response
mapping xi,br : Rn−ni → Rni of each agent, which is formally defined as:

xi,br(x−i) ∈ argmin
xi∈Ci(x−i)

Ji (xi, σ(x))

= argmin
xi∈Ci(x−i)

Ji
(
xi,

1
N ϕi(xi) + σ−i(x−i)

)
,

In fact, a collective vector of strategies x⋆ is a GNE if, for all i ∈ {1, . . . , N}, x⋆i =

xi,br(x
⋆
−i).

Also in this setting, we want to develop methods that work in a distributed fashion.

Similarly to the distributed aggregative optimization setup (see Section 1.3), we assume

that agent i only knows Ji, ϕi, Xi, Ai, and bi. Hence, also in this setting the local lack of

knowledge must be compensated by leveraging inter-agents communication.

1.4.2 Application Example: Nash-Cournot Game

In this section, we show a case study from [11] that can be formalized as an instance

of problem (1.8), i.e., a Nash-Cournot game. In this connection, consider N firms that

compete over nm markets. In particular, for each market τ ∈M := {1, . . . , nm}, firm i is

characterized by a production gi,τ ≥ 0 and sales si,τ ≥ 0. For each i ∈ {1, . . . , N} and

τ ∈M, the cost of production amounts to

fi,τ (gi,τ ) = qi,τg
2
i,τ + ci,τgi,τ .

The revenue of firm i at market τ is modelled as (dτ − s̄τ )si,τ , where dτ > 0 is the

total demand for location τ , and s̄τ :=
∑

i∈{1,...,N} si,τ represents the aggregate sales at

location τ . For all firms i ∈ {1, . . . , N} and markets τ ∈ M, we assume a production

limitation ui,τ . Moreover, in each market τ , the total production
∑

i∈{1,...,N} gi,τ must

cover the demand dτ without exceeding a maximum capacity rq. We can thus cast

this setting as an instance of the GNEP in (1.8) with each strategy vector given by

xi := col(gi,1, . . . , gi,nm , si,1, . . . , si,nm) ∈ R2nm , and cost function

Ji(xi, σ(x)) = x⊤i Qixi + ℓ⊤i xi + (∆σ(x))⊤xi,
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where we introduce the symbols Qi := diag(qi,1, . . . , qi,nm , 0, . . . , 0) ∈ R2nm×2nm , ℓi :=

col(ci,1, . . . , ci,nm ,−d1, . . . ,−dnm) ∈ R2nm , ∆ = blkdiag(0nm , NInm), and set the ag-

gregation rule as ϕi(xi) = xi for all i ∈ {1, . . . , N}. As for the constraints, for all

i ∈ {1, . . . , N}, we have the local constraint set

Xi :=
{
xi ∈ R2nm |

[
−1⊤2nm

1⊤2nm

]
xi ≤ 0, 0 ≤ gi,τ ≤ ui,τ , 0 ≤ si,τ , τ = 1, . . . , nm

}
,

while the coupling constraints are defined by

Ai :=

[
Inm 0nm

−Inm 0nm

]
, bi :=

1

N

[
r1 . . . rnm −d1 . . . −dnm

]⊤
.
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Chapter 2

Gradient Tracking Algorithms:
System Theoretical Perspective and
Algorithm Extensions for
Asynchronous, Derivative-Free, and
Online Scenarios

In this chapter, we focus on the Gradient Tracking algorithm, i.e., a distributed method

widely employed to solve over a network ofN agents distributed consensus optimization

problems (see Section 1.2) in the form

min
x∈Rn

N∑

i=1

fi(x), (2.1)

with each function fi : Rn → R known to agent i only. In Section 2.2, we begin by pro-

viding a system theoretical analysis to study the convergence properties of the Gradient

Tracking in the case of nonconvex objective functions. The analysis takes on a singular

perturbation perspective and LaSalle-based arguments. Afterward, In Section 2.3, we

focus on quadratic programs and perform a control-based approach to design a sparse

gain matrix enhancing the convergence properties of the standard Gradient Tracking.

Subsequently, in Section 2.4, we devise the continuous-time counterpart of the Gradient

Tracking and two additional versions implementing synchronous and asynchronous

inter-agent communication, respectively. A Lyapunov-based analysis assesses that all

these schemes exponentially converge to the optimal solution of the problem. Then,

in Section 2.5, by extending the forward Euler discretization of the continuous-time

scheme introduced in Section 2.4, we develop a distributed algorithm for derivative-free
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scenarios, i.e., the ones in which the agents cannot access the gradients of their cost func-

tions. We perform a system theoretical analysis to guarantee that the scheme converges

to a neighborhood of the solution. Finally, in Section 2.6, we focus on the time-varying

setting and we address it by proposing GTAdam, i.e., a novel distributed method ob-

tained by combining the Gradient Tracking method with Adam. In this connection, we

provide an upper bound for the dynamic regret achieved by the proposed method. The

results of this chapter are based on [25, 28, 31, 33, 130].

2.1 Literature Review

In distributed consensus optimization, a network of agents wants to minimize the sum

of local functions depending on the same decision variable. Early attempts to address

this kind of problem consist in combining the gradient method with average consensus

steps to enforce agreement [88, 137, 138]. When constant step-sizes are employed, these

methods exhibit fast convergence rates but cannot achieve the exact solution due to the

partial knowledge of the gradient of the global objective function. Exact convergence

is guaranteed by the so-called Gradient Tracking algorithm. This feature is achieved by

resorting to a “tracking action” based on dynamic average consensus (see [93, 216]) to

reconstruct the gradient of the global objective function gradient in each agent. The

convergence properties of Gradient Tracking have been studied under different problem

assumptions, see [54, 136, 158, 168, 186, 196, 199, 200]. In [50], the authors analyze the

Gradient Tracking in the case of nonconvex objective function over digraphs, while, still

in this framework, the authors of [181] study the perturbed push-sum algorithm with

diminishing step-size. The first part of this chapter investigates this nonconvex setting

but, differently from [50, 181], takes on a system theoretical perspective. Other works

have shown the advantages of system theoretical tools for distributed optimization in

the convex case as, e.g., [16, 37, 79, 102, 177, 189, 190]. Inspired by these works, we

focus on quadratic programs and modify the Gradient Tracking from a control-oriented

perspective by designing sparse gain matrices. We mention existing approaches to

sparse gain design for dynamical systems because distributed solutions are associated to

sparse system matrices. In [112], a Lyapunov-based technique for optimal sparse state-

feedback design is proposed leveraging the Alternating Direction Method of Multipliers

(ADMM). A similar problem is considered in [111] in which, instead an augmented

Lagrangian approach is employed while in [62] the authors used sequential convex

programming to accomplish sparse design. In [6], an algorithm for a sparse gain

synthesis based on ADMM and regularization is proposed. In [100] a unified design

strategy for decentralized linear quadratic state-feedback controllers is proposed to

account also for delays. A strategy based on the so-called Projection Lemma is proposed

in [67] for the design of structured stabilizers for linear systems.
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Continuous-time counterpart of discrete-time algorithms

In this section, we develop the continuous-time counterpart of the Gradient Track-

ing algorithm. Indeed, numerous applications falling within different domains can

be addressed through continuous-time optimization algorithms. In this context, the

work [72] proposes a distributed continuous-time optimization algorithm to solve a

consensus convex optimization problem over a directed network. A constrained convex

problem is solved in [115] for a network of agents having local, second-order dynamics.

In [210], a distributed continuous-time projected algorithm is proposed to tackle nons-

mooth convex optimization problems with local constraints. Authors in [113] consider

continuous-time multi-agent systems with single-integrator dynamics to solve a dis-

tributed optimization problem. A proportional-integral protocol is designed in [201] to

solve distributed problems with equality and inequality constraints. In [108], an adap-

tive continuous-time method based is designed to deal with distributed optimization

problems with nonconvex objective functions. In [79], the convergence of distributed

continuous-time schemes is ensured through passivity-based arguments for both uncon-

strained and constrained scenarios, also in presence of communication delays. Authors

in [103] assess the exponential convergence of their algorithm by decomposing it as a set

of interacting input feed-forward passive systems. Paper [133] proposes a continuous-

time optimization algorithm inspired by the existing discrete-time algorithm named

Newton-Raphson method. Indeed, a branch of research is recently trying to study the

convergence properties of dynamic systems representing the continuous counterparts

of existing iterative optimization schemes. This line of research starts in [176], where

the authors analyze a second-order differential equation associated to the Nesterov’s

accelerated gradient method. The authors of [193] establish a systematic way to develop

discrete-time accelerated algorithms starting from continuous-time differential equa-

tions generated by a Lagrangian functional. In [194], the so-called estimating sequence

analysis (typically adopted for algorithms with momenta) is connected with a Lyapunov

approach to analyze accelerated optimization methods. In [170], the continuous-time

counterpart of the Nesterov algorithm and heavy ball algorithm are studied by means of

high-resolution ordinary differential equations. Paper [55] studies the first-order mirror

descent algorithm by deriving ordinary differential equations from duality gaps.

Distributed continuous-time schemes rely on continuous-time communication among

the network agents. In order to avoid the (not implementable) continuous-time commu-

nication required by distributed continuous-time schemes, the design of continuous-time

distributed algorithms with discrete-time communication has gained attention. In this

regard, [92] addresses a consensus optimization problem by proposing a continuous-

time optimization algorithm and two related variants characterized by periodic and

event-triggered communication among the agents of the network. The same setting
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is tackled in [116], where a distributed event-triggered scheme based on is proposed

to deal also with quantized communication. Authors in [52] leverage internal model

concepts to extend the event-triggered scheme by [92] to reject external disturbances.

Paper [89] combines an event-triggered communication policy and a distributed sub-

gradient method. In [207] a continuous-time distributed optimization algorithm with

second order dynamics both with continuous communication and event-triggered com-

munication between agents is proposed. A quadratic problem is considered in [213] and

a continuous-time algorithm with event-triggered communication is proposed to solve

it. An event-triggered implementation of the distributed gradient descent is given in [1]

to deal with nonconvex optimization problems.

Derivative-free distributed optimization

Recent years have seen increasing attention in derivative-free scenarios, namely in the

case in which neither gradients nor other derivatives of the objective functions are

available to agents in the network, see [43] for an overview.

In this context, the key idea consists of the approximation of the local gradi-

ents through a finite set of (possibly random) evaluations of the cost functions. The

work [179] modifies the distributed gradient method by approximating the gradients

through a two-point estimator. Authors in [119] propose a continuous-time gradient-

free algorithm based on a distributed gradient algorithm. The work [114] proposes the

discrete-time version of the algorithm given in [119]. In [209], random gradient-free

oracles are used within a continuous-time distributed algorithm. This kind of estimation

technique is used also in [149] and [41]. In [56], a distributed gradient-free algorithm is

designed to deal also with quantized inter-agent communication.

The work in [148] instead develops a “directed-distributed projected pseudo-gradient”

descent method for directed graphs. In[187], the gradient-free strategy of [209] has

been combined with a saddle-point algorithm. Authors in [191] address an online

constrained optimization problem by proposing a distributed algorithm relying on the

Kiefer-Wolfowitz method to approximate the gradients. In [15], the estimation of the

gradient is performed by combining a “simultaneous perturbation stochastic approxi-

mation” technique with the so-called matrix exponential learning optimization method.

Authors in [162] propose distributed algorithms based on a Frank–Wolfe update.

In this section, the derivative-free setting is addressed through a scheme whose

algorithmic structure is inspired by Gradient Tracking, and the unavailable gradients

are replaced by resorting to an equilibrium seeking mechanism. In [154], an extremum

seeking control, based on classical evolutionary game-theory ideas, is designed to per-

form distributed real-time resource allocation. The work [155] proposes a distributed

continuous-time extremum-seeking scheme using sign-based consensus. An equilibrium

seeking technique is used in [127] in a quadratic distributed consensus optimization
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framework. Authors in [203] propose a continuous-time distributed equilibrium seeking

algorithm based on saddle point dynamics. A distributed proportional-integral equilib-

rium seeking design technique is proposed in [77]. In [57], a network of agents combines

a distributed consensus method with an equilibrium seeking technique. In [164], a dis-

tributed optimization method based on sliding mode and extremum seeking is proposed.

More recently, [109] tackles in a distributed fashion a stochastic source localization

problem by using a method based on equilibrium seeking. Authors in [76] propose a

distributed method that is inspired by the Newton method and uses equilibrium seeking

to approximate both the gradients and hessian functions. As for constraint-couopled

setting, in [129], a Lie bracket approximation technique is exploited to implement the

extremum seeking strategy for problems with linear constraints. In [188], resource

allocation problems are addressed by an extremum seeking algorithm which is shown

to be semi-globally practically stable.

It is worth mentioning that our scheme, together with the ones in [99,185], is the only

distributed extremum-seeking scheme proposed in discrete-time with the following

distinctive features. The work [185] (i) does not address a consensus optimization

problem and (ii) relies on consensus dynamics estimating the global cost, while ours

estimates the global gradient. Instead, in [99], (i) the addressed consensus optimization

problems have scalar decision variables and (ii) an extremum-seeking technique is

combined with a distributed gradient algorithm, i.e., without a tracking mechanism.

Distributed Online Consensus Optimization

Since stationary optimization problems are of limited use in a multitude of practical

applications in dynamic environments, online optimization is gaining increasing popu-

larity, see, e.g., [65, 174] where, in a centralized setting, the authors consider problems

with time-varying costs. As for distributed online optimization, see the recent sur-

vey [105] for an overview of the algorithms and the applications arising in this context.

An online distributed subgradient scheme is proposed in [34]. Variations over time

of both the cost and constraint functions are handled in [184] in a distributed fashion

by using an adaptive diffusive algorithm. In [122], a class of coordination algorithms

that generalize distributed online subgradient descent and saddle-point dynamics is

proposed to tackle online problems. Authors in [2] combine a subgradient flow with

a push-sum consensus for online settings in which also the graph varies over time.

A distributed algorithm based on dual subgradient averaging is proposed in [86] to

address cost uncertainties and switching communication topologies. A distributed

online algorithm inspired by the mirror descent algorithm is proposed in [169]. In [3],

it is proposed a distributed online scheme based on the alternating direction method

of multipliers, while [206] takes into account also time-varying inequality constraints.

Online optimization is strictly related to stochastic optimization, see [64, 156, 161] for
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distributed approaches to this kind of problem. As for the Gradient Tracking scheme,

in [211], it is used for online optimization problems, while, in [140], it is combined with a

recursive least squares scheme to address in a distributed way the so-called personalized

optimization framework (see [171] that introduces this problem in a centralized setting).

2.2 Nonconvex Distributed Optimization via LaSalle and Sin-

gular Perturbations

In this section, we analyze the Gradient Tracking algorithm in the case of nonconvex

objective functions. In particular, we provide a system theoretical analysis based singular

perturbation and LaSalle argument to assess that the solution estimates asymptotically

converge to a stationary point of the problem in a consensual manner.

As formalized in the next assumption, we do not require the convexity of fi, thus

making this work attractive for complex settings as, e.g., the ones involving big-data

and deep learning (where nonconvex cost functions are often used).

Assumption 2.1 (Objective function). For all i ∈ {1, . . . , N}, fi : Rn → R is of class C1
and has L-Lipschitz continuous gradient, for some β > 0. Moreover, f(x) :=

∑N
i=1 fi(x) is

radially unbounded. △

In this context, we model the inter-agent communication through a graph G and an

associated adjacency matrixWG (see Section 1.1 for further details). The next assumption

formalizes the class of networks considered in this section.

Assumption 2.2 (Network). The directed graph G is strongly connected and the associated
weighted adjacency matrixWG is doubly stochastic. △

The Gradient Tracking algorithm is a popular distributed method to solve instances

of problem (2.1). We provide as follows the idea besides the design of this method. An

effective strategy to solve problem (2.1) is the gradient descent method. The latter is the

iterative procedure in which each agent i ∈ {1, . . . , N}, at each iteration k ∈ N, maintains

an estimate xki ∈ Rn of a solution of problem (2.1) and updates such an estimate by

using the gradient of the objective function. Indeed, when applied to problem (2.1), the

gradient descent update of agent i reads as

xk+1
i = xki − γ∇f(xki ), (2.2)

where γ > 0 is a step-size. However, in our distributed setting, agent i can only access

its local gradient ∇fi(xki ) and, thus, the global gradient ∇f(xki ) =
∑N

j=1∇fj(xki ) is not

locally available. To overcome this issue, the Gradient Tracking algorithm uses (i) an

auxiliary state ski ∈ Rn called tracker, and (ii) an average consensus step to enforce
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consensus among the local solution estimates xki of the agents. Thus, update (2.2) is

modified as

xk+1
i =

∑

j∈Ni

wijx
k
j − γski ,

where eachwij ≥ 0 is the (i, j)-th entry of the adjacency matrixWG . The goal of the track-

ers ski is to reconstruct, in each agent i ∈ {1, . . . , N}, the global vector
∑N

j=1∇fj(xkj ). To

this end, each agent updates ski according to the following perturbed average consensus

scheme

sk+1
i =

∑

j∈Ni

wijs
k
j +∇fi(xk+1

i )−∇fi(xki ).

Thus, the whole update of the Gradient Tracking scheme from the local perspective of

agent i reads as

xk+1
i =

∑

j∈Ni

wijx
k
j − γski (2.3a)

sk+1
i =

∑

j∈Ni

wijs
k
j +∇fi(xk+1

i )−∇fi(xki ). (2.3b)

The initialization s0i = ∇fi(x0i ) is required for all i ∈ {1, . . . , N}. We notice that (2.3b) is

not causal in the sense that sk+1
i depends on xk+1

i .

In order to recover a causal (still distributed) version of (2.3), following [16], we

define zki = γ(ski −∇fi(xki )) and accordingly rewrite the scheme dynamics as

xk+1
i =

∑

j∈Ni

wijx
k
j − zki − γ∇fi(xki ) (2.4a)

zk+1
i =

∑

j∈Ni

wijz
k
j − γ∇fi(xki ) + γ

∑

j∈Ni

wij∇fj(xkj ). (2.4b)

In an aggregate form Algorithm (2.4) reads as

xk+1 =Wxk − zk − γG(xk) (2.5a)

zk+1 =Wzk − γ(INn −W)G(xk), (2.5b)

whereW :=WG ⊗ In and

xk :=




xk1
...

xkN


 , zk :=




zk1
...

zkN


 , G(xk) :=




∇f1(xk1)
...

∇fN (xkN )


 .
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As shown in [16], in these new coordinates, the initialization of the auxiliary state reads

as 1⊤N,nz
0 = 0.

2.2.1 Gradient Tracking as a Singularly Perturbed System

Here, we provide an equivalent reformulation of the Gradient Tracking which take

advantages on the properties of the doubly stochastic matrixWG to give insights on the

dynamics of the scheme. Let R ∈ RNn×(N−1)n be such that R⊤R = I and R⊤1N,n = 0,

and define

[
x̄k

xk⊥

]
:=




1⊤
N,n

N

R⊤


 xk,

[
z̄k

zk⊥

]
:=




1⊤
N,n

N

R⊤


 zk. (2.6)

Thus, we can rewrite (2.5) as




x̄k+1

xk+1
⊥
z̄k+1

zk+1
⊥



=




In 0
1N,n

N 0

0 R⊤WR 0 −I(N−1)n

0 0 In 0

0 0 R⊤W1N,n R⊤WR







x̄k

xk⊥
z̄k

zk⊥




+ γ




−1⊤
N,n

N

−R⊤

R⊤(W − INn)
0



G(1N,nx̄

k +Rxk⊥). (2.7)

The initialization 1⊤N,nz
0 = 0 guarantees that z̄k ≡ 0 for all k ≥ 0 so that we can neglect

the dynamics of z̄ and study

x̄k+1 = x̄k − γ

N
1⊤N,nG

(
1N,nx̄

k +Rxk⊥
)

(2.8a)
[
xk+1
⊥
zk+1
⊥

]
= A

[
xk⊥
zk⊥

]
+ γBG

(
1N,nx̄

k +Rxk⊥
)
, (2.8b)

with

A :=

[
R⊤WR −I(N−1)n

0 R⊤WR

]
, B :=

[
−R⊤

R⊤(W − INn)

]
. (2.9)

System (2.8) fits the class of singularly perturbed systems (see, e.g., [19]) given by the

interconnection between a slow dynamics, which in our case is (2.8a), and a fast one

represented by (2.8b) (see Figure 2.1 for a schematic representation). Appendix C is

devoted to providing results for this kind of systems. We point out that, numerically, it
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clearly appears that the convergence of subsystem (2.8b) is faster than the one of (2.8a).

x̄k+1 = x̄k − γ
N
1⊤
N,dG

(
1N,nx̄

k +Rxk⊥
)

[
xk+1
⊥

zk+1
⊥

]
= A

[
xk⊥
zk⊥

]
+ γBG

(
1N,nx̄

k +Rxk⊥
)

x̄kxk⊥

Figure 2.1: Schematic representation of system (2.8).

Now, we provide some notation of singularly perturbed systems that will be used in

the analysis. We denote boundary layer system the one obtained by “freezing” x̄ ∈ Rn

within (2.8b). As we will see later, such a system exhibits an equilibrium parametrized

in x̄, say h(x̄, γ). We denote as reduced system the one obtained by considering (2.8a)

with col(xk⊥, z
k
⊥) = h(x̄k, γ) for any k ≥ 0.

Once the Gradient Tracking has been posed in the singularly perturbed form (2.8),

we can separately study two auxiliary schemes associated to the subsystems (2.8a)

and (2.8b). The boundary layer system is obtained by freezing the state of the slow

dynamics in the fast one (2.8b). Notice that

h(x̄, γ) := γ

[
0

−R⊤G(1N,nx̄)

]
(2.10)

is an equilibrium of system (2.8b) for any “frozen” x̄. Now, we introduce the error

coordinates of the fast dynamics with respect to h(x̄, γ). Let ψk := col(xk⊥, z
k
⊥)− h(x̄, γ),

we can write the boundary layer system associated to (2.8a) as

ψk+1 = Aψk + γBukbl(x̄), (2.11)

where

ukbl(x̄) := G
(
1N,nx̄ +R1ψ

k
)
−G (1N,nx̄) . (2.12)

Remark 2.1. From Assumption 2.2 the matrixW has 1 as an eigenvalue with multiplicity

d, while all the remaining ones lie within the open unit circle. The left and right

eigenvectors associated to 1 belong to the span of 1⊤N,n and 1N,n, respectively. Thus,

R⊤WR is Schur. Then, the matrix A, being up-triangular with two Schur matrices on

the diagonal blocks, is Schur too. See [16] for a detailed discussion. △
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Exponential stability of (2.11) uniformly in x̄ is given now.

Lemma 2.1. Consider system (2.11). Let m := 2(N − 1)n. Then, there exists γ̄1 > 0 and a
Lyapunov function W : Rm → R such that, for any γ ∈ (0, γ̄1), it holds

b1 ∥ψ∥2 ≤W (ψ) ≤ b2 ∥ψ∥2 (2.13a)

W (Aψ + γukbl(x̄))−W (ψ) ≤ −b3 ∥ψ∥2 (2.13b)

|W (ψ1)−W (ψ2)| ≤ b4 ∥ψ1 − ψ2∥ (∥ψ1∥+ ∥ψ2∥), (2.13c)

for any ψ,ψ1, ψ2 ∈ Rm, x̄ ∈ Rn, and some b1, b2, b3, b4 > 0.

Proof. Pick any Q ∈ Rm×m, Q = Q⊤ > 0. Being A Schur (see Remark 2.1), there exists

P = P⊤ > 0 so that

A⊤PA− P = −Q. (2.14)

Pick such P to define W : Rm → R as

W (ψk) := (ψk)⊤Pψk,

which clearly satisfies (2.13a) and (2.13c). Further, along (2.11), ∆W (ψk) :=W (ψk+1)−
W (ψk) is given by

∆W (ψk) = (ψk)⊤(A⊤PA− P )ψk + 2γ(ψk)⊤A⊤PBukbl(x̄) + γ2(ukbl(x̄))
⊤B⊤PBukbl(x̄)

(a)

≤ −(ψk)⊤Qψk + 2γ
∥∥∥A⊤PB

∥∥∥
∥∥∥ψk

∥∥∥
∥∥∥ukbl(x̄)

∥∥∥+ γ2
∥∥∥B⊤PB

∥∥∥
∥∥∥ukbl(x̄)

∥∥∥
2
,

(2.15)

where in (a) we have used the result (2.14) and the Cauchy-Schwarz inequality. Being

each ∇fi Lipschitz continuous (cf. Assumption 2.1), we bound ukbl(x̄) (defined in (2.12))

as

∥∥∥ukbl(x̄)
∥∥∥ ≤ L ∥R1∥

∥∥∥ψk
∥∥∥ , (2.16)

for any x̄ ∈ Rn. Thus, we can use (2.16) to bound (2.15) as

∆W (ψk) ≤ −(q − γc1 − γ2c2)
∥∥∥ψk

∥∥∥
2
, (2.17)

where q is the (positive) smallest eigenvalue of Q, while c1 := 2L
∥∥A⊤PB

∥∥ ∥R1∥, c2 :=
L
2 ∥∥B⊤PB

∥∥ ∥R1∥2. Thus, there exists γ̄1 > 0 such that q − γc1 − γ2c2 > 0 for any

γ ∈ (0, γ̄1) so that (2.13b) holds and the proof follows. ■

Now, we consider col(xk⊥, z
k
⊥) = h(x̄k, γ) for all k ≥ 0 within (2.8a) obtaining the
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so-called reduced system as

x̄k+1 = x̄k − γ

N
1⊤N,nG

(
1N,nx̄

k +R1h(x̄
k, γ)

)
. (2.18)

By exploiting h (cf. (2.10)) and G, we write system (2.18) as

x̄k+1 = x̄k − γ

N
∇f(x̄k). (2.19)

It is worth noting that the reduced system has recovered the desired update (2.2), i.e., the

one given by applying the (centralized) gradient descent method to solve problem (2.1).

The next lemma uses the radially unbounded (see Definition A.2 in Appendix A) function

f to show the convergence of system (2.19) to the set X⋆ := {x̄ ∈ Rn | ∇f(x̄) = 0} of

stationary points of (2.1).

Lemma 2.2. Consider system (2.19) Then, there exists γ̄2 > 0 such that, for any γ ∈ (0, γ̄2),
it holds

f
(
x̄− γ

N
∇f(x̄)

)
− f(x̄) ≤ −γd1 ∥∇f(x̄)∥2 (2.20a)

f(x1 + x2)− f(x1 + x3) ≤ d2 ∥∇f(x̄1)∥ ∥x2 − x3∥+ d3

(
∥x2∥2 + ∥x3∥2

)
, (2.20b)

for any x, x1, x2, x3 ∈ Rn, and some d1, d2, d3 > 0.

Proof. In light of Assumption 2.1, f has Lipschitz continuous gradient. Thus, we apply

the Descent Lemma (cf. [14, Proposition 6.1.2]) to write

f(x̄k+1)− f(x̄k) ≤ − γ
N

∥∥∥∇f(x̄k)
∥∥∥
2
+ γ2

L

2N2

∥∥∥∇f(x̄k)
∥∥∥
2
. (2.21)

Choose any d1 ∈ (0, 1/N). Then, for any γ ∈ (0, γ̄2) with γ̄2 := 2N(1−Nd1)
L

> 0, the

inequality (2.21) ensures that (2.20a) is satisfied. With same arguments, also the in-

equality (2.20b) with d2 = 1 and d3 = L
2 can be shown. ■

Once these preliminary results have been provided, we can use them in the next the-

orem to state the convergence properties of the Gradient Tracking distributed algorithm.

Theorem 2.1. Consider the Gradient Tracking given in (2.5). Let Assumptions 2.1 and 2.2
hold. Then, for any initial condition (x0, z0) ∈ R2Nn such that 1⊤N,nz

0 = 0, there exists γ̄ > 0

such that, for any γ ∈ (0, γ̄), it holds

lim
k→∞

inf
ξ∈X⋆

∥∥∥xki − ξ
∥∥∥ = 0, ∀i ∈ {1, . . . , N}.

Proof. The proof relies on Theorem C.1 in Appendix C. Indeed, Lemma 2.1 and

Lemma 2.2 provide the functions W and U ≡ f satisfying conditions (C.4) and (C.5),
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respectively. Further, Assumption 2.1 guarantees the radial unboundedness of U and

the regularity properties required for ϕ, g, and h. Hence, by Theorem C.1, there exists

γ̄ > 0 such that, for any γ ∈ (0, γ̄), any trajectory of system (2.8) satisfies

lim
k→∞

inf
ξ∈M′

∥∥∥∥∥∥∥



x̄k

xk⊥
zk⊥


−

[
ξ

h(ξ, γ)

]∥∥∥∥∥∥∥
, (2.22)

whereM′ ⊆ ker{∇f(·)} ⊆ Rn denotes the largest invariant set for system (2.19) con-

tained within ker{∇f(·)}. The proof follows by noting that M′ ≡ ker{∇f(·)} ≡ X⋆.

■

2.2.2 Numerical Simulations

This section validates our theoretical findings with a numerical simulation about the

target localization problem given in [54, Section IV.A]. A network of N = 10 agents aims

to locate a common target through some distance measurements. Each agent i is located

at ωi ∈ Rn and has a noisy measurement ϕi > 0 of the target squared distance. The

target position is estimated by solving the nonconvex distributed consensus optimization

problem

min
x∈Rn

N∑

i=1

(
ϕi − ∥x− ωi∥2

)2
.

We set n = 3 and consider an Erdős-Rényi directed graph with parameter 0.6. We

uniformly randomly set each component of the target location within the interval [0, 1].

As for the parameters ϕi, we generate them adding Gaussian noise to the target location.

We uniformly randomly generate the parameters ωi within the interval [0, 1] for all

i ∈ {1, . . . , N}. We randomly generate the initial conditions x0i choosing them according

to 3-dimensional Gaussian distributions with unitary variance centered in the target

location. The step-size parameter is empirically tuned as γ = 0.01 to guarantee the

algorithm effectiveness. Figure 2.2 separately shows the convergence of the fast and

slow subsystems identified in (2.8) and graphically highlights their different rates.
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Figure 2.2: Convergence of the fast and slow subsystem.

2.3 Revisited Gradient Tracking Algorithms for Distributed

Quadratic Optimization via Sparse Gain Design

In this section, we consider a quadratic instance of problem (2.1), i.e., the optimization

problem described by

min
x∈Rn

N∑

i=1

fi(x), (2.23)

in which, for each i ∈ {1, . . . , N}, fi : Rn → R has the following quadratic form

fi(x) =
1

2
(x− Γiθ0)

⊤Ci(x− Γiθ0), (2.24)

with Ci ∈ Rn×n symmetric and positive definite, Γi ∈ Rn×p, and θ0 ∈ Rp. It is easy to

show that (2.23) admits a unique optimal solution x⋆ ∈ Rn given by

x⋆ = Σθ0, (2.25)

with

Σ :=

(
N∑

i=1

Ci

)−1 N∑

i=1

CiΓi.

Since problem (2.23) has quadratic costs (cf. (2.24)), each gradient ∇fi has the linear

form

∇fi(xi) = Cixi +Qiθ0, (2.26)

in whichQi = −CiΓi. As before, also in this section we want to solve problem (2.23) over

a strongly connected graph. Further, we assume that the agents can communicate using

the weighted adjacency matricesWG ∈ RN×N and W̃G ∈ RN×N which respectively are a

row and a column stochastic matrix matching the graph G. Indeed, we want to solve
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problem (2.23) by using a slightly modified version of the Gradient Tracking algorithm

as we (cf. (2.5)). First, we useWG for the average consensus step of the solution estimates,

and W̃ for the one of the auxiliary variables. Hence, by exploiting the linearity of the

gradients (cf. (2.26)), we get a linear time invariant system described by

[
xk+1

zk+1

]
= Fγ

[
xk

zk

]
+Gγθ0, (2.27)

in which xk, zk ∈ RNn have the same meaning as in (2.5) and we introduced

Fγ :=

[
W − γC −γI
(W̃ − I)C W̃

]
, Gγ :=

[
−γQ

(W̃ − I)Q

]
,

whereW :=WG ⊗ In and W̃ := W̃G ⊗ In, and

C :=




C1

C2

. . .

CN



, Q :=




Q1

Q2

...

QN



.

If γ = 0, the state matrix Fγ has an eigenvalue at 1 with multiplicity 2n and, therefore, it

is not Schur. For γ positive and sufficiently small, instead, the eigenvalues of Fγ move

inside the unit circle, and Fγ becomes Schur, see [16]. In this sense, the term −γ(z + y)

can be interpreted as a stabilizing output-feedback control action, conferring asymptotic

stability on (2.27) with θ0 = 0. The main idea of this section is that we may substitute the

“control gain” −γI with a general matrix K ∈ RNn×Nn, in this way obtaining a variation

of the Gradient Tracking algorithm that we denote as Revisited Gradient Tracking and

is described by [
xk+1

zk+1

]
= FK

[
xk

zk

]
+GKθ0, (2.28)

in which

FK :=

[
W +KC K

(W̃ − I)C W̃

]
, GK :=

[
KQ

(W̃ − I)Q

]
.

By following [16], we introduce some definitions to formally establish sufficient con-

ditions to solve problem 2.23. Define m := 2Nn and, with mν ≤ m, consider an

mν-dimensional subspace V of Rm, and let T ∈ Rm×m be an orthonormal matrix of the

form T = [T1, T2], with T1 ∈ Rm×mν and T2 ∈ Rm×(m−mν) satisfying

Im(T1) = V , Im(T2) = V⊥.
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Then, V is F -invariant if and only if

T⊤FT =

[
FI FJ

0 FE

]
,

for some FI ∈ Rmν×mν , FJ ∈ Rmν×(m−mν) and FE ∈ R(m−mν)×(m−mν).

Definition 2.1 (Internal stability and external anti-stability [16]). The subspace V is said
to be:

• internally stable if FI is Schur;

• externally anti-stable if FE has no eigenvalues inside the open unit disc. △

Let O be an affine subspace of Rm of the form

O := V + Uθ0, (2.29)

for some linear subspace V of Rm of dimension mν and for some matrix U ∈ R(m−mν)×p

satisfying Im(U) ⊂ V⊥.

Definition 2.2 (Admissible initialization [16]). Consider system (2.28). A set O of the
form (2.29) is said to be an admissible initialization set if V is FK-invariant and externally
anti-stable. △

With the above definitions at reach, the results of [16] are summarized within the

following theorem.

Theorem 2.2. Consider system (2.28) and suppose that (x(0), z(0)) ∈ O, in which O is an
admissible initialization set of the form (2.29). If

• V is internally stable;

• U = T2(T
⊤
2 T2)

−1T⊤
2 Π, with Π = col(1N,nΣ,−C1N,nΣ−Q),

then it holds
lim
k→∞

∥∥∥xk − 1N,nθ
⋆
∥∥∥ ,

namely all the estimates xk1, . . . , x
k
N asymptotically converge to the optimal solution of (2.23).

△

Theorem 2.2 suggests that the matrix FK in (2.28) needs to be designed to possess

an internally stable subspace that we can use to define an admissible initialization

set. We underline, however, that not every subspace fits our purposes. In fact, if the

matrix U in (2.29) is not zero, then the admissible initialization of the algorithm would
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depend on the unknown variable θ0 and, as such, it would not be implementable. In the

following, we construct a matrixK ensuring that the corresponding matrix FK possesses

an invariant subspace V with the desired properties, whose corresponding matrix U

is zero. The search of such K is approached as a stabilization problem. Consider the

transformation matrix T := [T1, T2] with

T1 :=

[
I 0

0 R

]
, T2 :=

1√
N

[
0

1N,n

]
,

in which R ∈ RNd×N(d−1) is such that RR⊤ = I and R⊤In = 0. Then, it holds T−1 = T⊤,

and T transforms FK to

T⊤FKT =

[
FKI

FKJ

0 FKE

]
,

in which

FKI
:=

[
W +KC KR

RT (W̃ − I)C RT W̃R

]
∈ R(m−n)×(m−n),

FKJ
:= 1√

N

[
K1N,n

R⊤W̃1N,n

]
∈ R(m−n)×n,

FKE
:= I ∈ Rn×n.

(2.30)

The structure of the matrix T⊤FKT implies that there exists an (m− n)-dimensional

subspace V that is FK-invariant. This subspace is given by vectors w ∈ Rm such that

Tw = col(w̃1, 0), with w̃1 ∈ Rm−n. Equivalently we can say that V = {col(x, z) ∈
Rm|z := (z1; z2; . . . ; zN ) ∈ RNn,

∑N
i=1 zi = 0}. We point out that, using the definition in

Theorem 2.2, the choice for T2 implies that U = 0. We stress that, according to (2.29),

having U = 0 ensures that the algorithm can be properly initialized without relying on

any unknown quantity (in this case x0 is arbitrary, while z0 is only constrained to have

a zero mean). We also remark that this is consistent with (and actually slightly milder

than) the usual initialization of gradient tracking algorithms (see [16]). It remains to

show that K can be chosen to guarantee that V is also internally stable, in this way

completing the design in view of Theorem 2.2. According to Definition 2.1, we have

that V is internally stable if and only if FKI
is Schur. Moreover, the matrix FKI

can be

further decomposed as

FKI
= FKI0

+BI0KH,

in which

FKI0
:=

[
W 0

R⊤(W̃ − I)C R⊤W̃R

]
, BI0 :=

[
I

0

]
,

with H := [C,R]. The design of a matrix K such that FKI
is Schur, on the other hand,

36



2.3. Revisited Gradient Tracking Algorithms for Distributed Quadratic Optimization via

Sparse Gain Design

can be cast as the stabilization of the following linear system

x+I = FKI0
xI +BI0u0, (2.31a)

u0 = KHxI . (2.31b)

From (2.31), it can be seen that the matrix FKI
is the closed-loop matrix obtained

by choosing a feedback control law. This shows that the design of the gradient tracking

algorithm can be posed as a feedback stabilization problem. Notice that, however, in

order to preserve the distributed nature of the optimization algorithm, we need to add

an additional sparsity requirement on the gain, which will be discussed in the following

section.

2.3.1 Revisited Gradient Tracking: Sparse Gain Design

In this section we present our algorithmic strategy to design a sparse gain K for (2.28)

in order to solve problem (2.23).

To this end, we derive a Linear Matrix Inequality (LMI) to obtain a stabilizing gain K

for system (2.31). The approach relies on a discrete-time version of the Lyapunov-based

approach presented in [20] for continuous-time systems. We consider the closed-loop

system obtained by substituting the feedback control (2.31b) in (2.31a)

xkI = (FKI0
+BI0KH)xkI . (2.32)

For the sake of readability, from now on, we drop the subscripts in (2.32) and write

xk = (F +BKH)xk. (2.33)

The linear time-invariant system (2.33) is asymptotically stable if and only if there exist

Q = Q⊤ ∈ Rmν×mν and K ∈ RNn×Nn satisfying




Q > 0

Q− (F +BKH)⊤Q(F +BKH) > 0.
(2.34)

Notice that (2.34) is not linear in the unknown (Q,K). However, it can be equivalently

written as 


Q > 0

Q− (Q(F +BKH))⊤Q−1(Q(F +BKH)) > 0.
(2.35)
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Using the Schur complement lemma (cf. [20]), we can write (2.35) as

[
Q Q(F +BKH)

(Q(F +BKH))⊤ Q

]
> 0 (2.36)

that is still meant to be solved in the unknowns Q and K.

Let P := Q−1. Since Q is symmetric, then also P is symmetric. By pre- and post-

multiplying (2.36) by the following symmetric and positive definite matrix

[
P 0

0 P

]
,

we obtain the equivalent inequality

[
P (F +BKH)P

P (F +BKH)⊤ P

]
> 0, (2.37)

which is still not linear, because of the product between the unknowns P and K. We

thus introduce a further matrix L ∈ RNn×2Nn defined as L := KHP , and rewrite (2.37)

as





 P FP +BL

PF⊤ + L⊤B⊤ P


 > 0

L−KHP = 0.

(2.38)

Although (2.38) is linear in both the unknowns P and L, it is still not sufficient to

provide a distributed solution, since the feedback control law (2.31b) would not be

implementable by a network of agents. In fact, the resulting matrix K obtained from

(2.38) need not be sparse (and typically it will not), as no sparsity constraints are imposed

in (2.38). In the next subsection we show how sparsity constraints in K can be included

in the solution of (2.38), and we develop an algorithmic procedure to solve the resulting

problem.

Encoding Sparsity of the Gain Matrix

In this subsection we add a set of constraints imposing a sparsity pattern to the gain K

in order to match the network topology. Formally, K ∈ RNn×Nn must be such that its

(i, j)-th is zero whenever (i, j) /∈ E .

For each pair (i, j) ∈ E , let M ij ∈ RNn×Nn be the matrix having zeros everywhere

except for the (i, j)-entry which is equal to 1. Then, a matrix K satisfying the sparsity

constraint of the network can be expressed as a linear combination of the matrices
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M ij ⊗ In, i.e.,

K =
∑

(i,j)∈E
kij(M

ij ⊗ In), (2.39)

with kij ∈ R for all (i, j) ∈ E . For notational convenience, we let k ∈ R|E| collect

all the coefficients kij in a single vector with an arbitrary ordering of the edges. The

expansion (2.39) can be used to encode in (2.38) the desired sparsity constraints. In

particular, by substituting (2.39) into the second condition of (2.38), we obtain the

following constraints






 P FP +BL

PF⊤ + L⊤B⊤ P


 > 0

L−∑(i,j)∈E kijM
ijHP = 0,

(2.40)

in the unknowns P , L and k.

We stress that including the sparsity constraints (2.39) makes (2.40) a nonlinear

problem because of the product between P and k in the second condition of (2.40).

Unfortunately, no general procedure exists to solve nonlinear problems of this form.

Therefore, in the following we propose an iterative procedure to tackle such nonlinear

problem.

In the proposed procedure, at each iteration τ , an approximate version of (2.40)

is solved, in which the decision variable P in the equality constraint of the second

condition is substituted with a fixed value, denoted by P̂τ , which coincides with the

solution found in the previous iteration. In this way, at each iteration τ , we obtain a

linear matrix inequality in the variables P , L and k, given by

[
P FP +BL

PF⊤ + L⊤B⊤ P

]
> 0 (2.41)

L−
∑

(i,j)∈E
kijM

ijHP̂τ = 0, (2.42)

which can be efficiently solved using numerical routines. Once a solution (Pτ , Lτ ,kτ )

to (2.41) is obtained, the matrix Pτ serves as new value for P̂τ+1 in the next iteration

τ +1. The procedure starts with an arbitrary initialization P̂0 and is repeated until some

convergence criterion is satisfied, e.g., until ∥Pτ+1 − Pτ∥ falls below a given threshold

ϵ > 0. Notice that the described procedure has no theoretical convergence guarantees.

However, in Section 2.3.2 we show the effectiveness of the proposed scheme (2.41) for

the design of sparse feedback through simulations.

Remark 2.2. We underline that (2.41) is a feasibility problem. Then, once its constraints
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are fulfilled, we can also include an optimality criterion in its selection. For this reason,

in our numerical experiments we also add a cost function in order to optimize the

convergence rate of the resulting optimization algorithm. △

The following Algorithm 1 summarizes the described iterative procedure.

Algorithm 1 Iterative Procedure for Sparse Gain Design

given tolerance ϵ > 0
initialize P̂0

for τ = 0, 1, 2, . . . do
obtain (Pτ , Lτ ,kτ ) as a solution to (2.41)
if ∥Pτ − P̂τ∥ < ϵ then

set k⋆ = kτ
break

else
P̂τ+1 = Pτ

end if
end for
retrieve the sparse gain K⋆ =

∑
(i,j)∈E k

⋆
ijM

ij .

2.3.2 Numerical Simulations

In this section we propose a numerical study to show the effectiveness of the proposed

design strategy. In particular, we compare the convergence behavior of the gradient

tracking including the sparse (possibly non-diagonal) gain K (cf. (2.28)) with its basic

version with diagonal gains (cf. (2.27)).

As mentioned in Remark 2.2, we include in the solution of each problem (2.41) the

minimization of the objective

∥F +BKH∥+ β
∥∥∥P − P̂τ

∥∥∥ ,

in which β > 0 represents a trade-off parameter in the following sense. Minimizing

the term ∥F + BKH∥ reflects in maximizing the convergence rate of the resulting

distributed optimization algorithm. Indeed, ∥F + BKH∥ is directly related to the

maximum singular value of the closed-loop matrix F + BKH . The term ∥P − P̂τ∥
is, instead, a “regularization” introduced to foster the convergence of the iterative

procedure in Algorithm 1. The design parameter β can be thus chosen to privilege one

of the two terms as desired.

We term “Basic GT” the standard Gradient Tracking with diagonal gains, while we

term “Rev. GT” the algorithm that implements the sparse gain K designed using our

procedure described in Section 2.3.1. In order to to choose the step-size γ in the Basic
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GT, we resort to Algorithm 1. Indeed, the case of diagonal K is a special case obtained

by imposing a graph structure with only self-loops.

In the following, we present simulations obtained for different numbers of agents N

and for different “graph density” dA := |E|/N2. We set P̂0 = I and β = 1. In the figures

below we plot the norm of the difference between the mean vector and the optimal

solution of (2.23), namely
∥∥x̄k − x⋆

∥∥ =
∥∥∥ 1
N

∑N
i=1 x

k
i − x⋆

∥∥∥.

In Figure 2.3, three networks with respectively 5, 10 and 15 agents are considered

for comparison. In all the cases we consider d = 2 and dA = 0.7.
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Figure 2.3: Evolution of the optimality error for different values of N .

Figure 2.3 shows that in all cases the Rev. GT has a faster convergence rate than the

Basic GT. The converge rate enhances as the number of agents increases. This behavior

can be explained by noticing that a larger number of agents implies a “larger space” in

which the sparse matrix K is searched.

In Figure 2.4, four networks with density dA equal to 0.3, 0.6, 0.75, and 0.9 are

considered. In all the cases we consider n = 2 and N = 10.

0 200 400 600 800 1,000

103

104

105

k

R
k
/k

± std. dev
mean

0 200 400 600 800 1,000

103

104

105

k

R
k
/k

± std. dev
mean

0 0.2 0.4 0.6 0.8 1

·104

10�9

10�6

10�3

100

k

kx̄
k
�

x
?
k

DGD

GT

DAdam

GTAdam

0 200 400 600 800 1000
10�14

10�10

10�6

10�2

102

t

ke
(t

)k

Rev. GT: dA = 0.30

Basic GT: dA = 0.30

Rev. GT: dA = 0.60

Basic GT: dA = 0.60

Rev. GT: dA = 0.75

Basic GT: dA = 0.75

Rev. GT: dA = 0.90

Basic GT: dA = 0.90

Figure 2.4: Evolution of the optimality error for different values of dA.

Figure 2.4 shows that only in one case the Basic GT is faster than the Rev. GT.

Specifically, it occurs when graph density is really low, namely dW = 0.3. This confirms

our interpretation that the Basic GT is actually obtained by limiting the gain structure

choice to diagonal matrices. We point out that, although the Basic GT is faster, both gains
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are associated to the same cost value ∥F +BKH∥2+β∥P − P̂τ∥2. This is reasonable since

the cost function does not encode directly an information related to the convergence

rate of the closed-loop system. Moreover, also the regularization term plays a role in the

optimization procedure. Consistently to the previous case, we observe that the algorithm

performance enhances as the graph density dA increases.

2.4 Asynchronous Distributed Consensus Optimization

In this section, we devise the continuous-time version of the Gradient Tracking algorithm

and, then, two additional versions replacing continuous-time inter-agent communication

with discrete-time synchronous and asynchronous communication, respectively. Along

this section, these schemes will be analyzed under the following assumptions.

Assumption 2.3. For all i, the function fi : Rn → R is strongly convex with coefficient
µ > 0. △

Assumption 2.4. For all i, the function fi : Rn → R has Lipschitz continuous gradient with
constant L > 0. △

We recall that Assumption 2.3 ensures that problem (2.1) has a unique optimal

solution, denoted by x⋆ ∈ Rn (cf. Proposition A.2 in Appendix A).

Assumption 2.5. G is undirected and connected. Moreover, the associated weighted adjacency
matrixWG is symmetric. △

From Discrete to Continuous

In this section, we will derive the continuous-time counterpart of the Gradient Tracking

algorithm. For the sake of readability, we recall its local causal form (2.4)

xk+1
i =

∑

j∈Ni

wijx
k
j − zki − γ∇fi(xki ) (2.43a)

zk+1
i =

∑

j∈Ni

wijz
k
j − γ∇fi(xki ) + γ

∑

j∈Ni

wij∇fj(xkj ), (2.43b)

and its aggregate formulation (2.5)

xk+1 =Wxk − zk − γG(xk) (2.44a)

zk+1 =Wzk − γ(INn −W)G(xk), (2.44b)

Following the arguments proposed in [176] for a centralized optimization algorithm,

we interpret the sequences xk and zk of (2.44) as sampled versions of two continuous-

time signals x(t) and z(t). These signals are assumed to be smooth. According to this
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interpretation, the step-size γ > 0 can be then seen as the sampling time character-

izing a discretization procedure. Figure 2.5 shows a graphical representation of the

discretization of the continuous signal x(t) resulting in the discrete sequence xk.

t

x(t)

xk xk+1

kγ (k + 1)γ
γ

Figure 2.5: xk as sampled version of x(t).

Informally, we start from the intuition

xk ≈ x(t)
∣∣∣
t=kγ

, zk ≈ z(t)
∣∣∣
t=kγ

,

in which the iteration index k is obtained by setting k := t/γ with t being the continuous

time. For any fixed t, by choosing an arbitrarily small step-size γ, we can consider the

following approximations

x(t) ≈ xt/γ = xk, x(t+ γ) ≈ x(t+γ)/γ = xk+1.

The same clearly holds also for the sequence zk. With these approximations in mind, we

can write the following Taylor expansions

xk+1 = x(t)
∣∣∣
t=(k+1)γ

= x(t)
∣∣∣
t=kγ

+ γẋ(t)
∣∣∣
t=kγ

+ o(γ) (2.45a)

zk+1 = z(t)
∣∣∣
t=(k+1)γ

= z(t)
∣∣∣
t=kγ

+ γż(t)
∣∣∣
t=kγ

+ o(γ), (2.45b)

where o(γ) collects the higher order terms of the expansions. As γ goes to zero, the

higher order terms in (2.45) can be neglected, leading to

ẋ(t) =
1

γ
(xk+1 − xk) =

W − INn
γ

x(t)− z(t)−G(x(t))

ż(t) =
1

γ
(zk+1 − zk) =

W − INn
γ

z(t)− W − INn
γ

G(x(t)),

which can be rewritten as

ẋ(t) = −Lγx(t)− z(t)−G(x(t)) (2.46a)
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ż(t) = −Lγz(t)− LγG(x(t)). (2.46b)

where Lγ := (INn −W)/γ.

2.4.1 Continuous Gradient Tracking: Algorithm Description and Analysis

The Ordinary Differential Equation (ODE) in (2.46) involves matrices whose structure

depends on the preceding derivation. However, one may consider any weighted Lapla-

cian matrix L associated to G. Therefore, we define the Continuous Gradient Tracking

as
[
ẋ(t)

ż(t)

]
=

[
−L −INn
0 −L

][
x(t)

z(t)

]
−
[
INn

L

]
G(x(t)), (2.47)

where L ∈ RNn×Nn is given by L := L ⊗ In.

It is useful to also provide a local view of algorithm (2.47), i.e., from the perspective

of a generic agent i. The i-th block-components of x(t) and z(t) corresponds, respectively,

to the local states xi(t) and zi(t) of agent i. The state xi(t) represents the local estimate

at time t of the optimal solution of problem (2.1) while zi(t) ∈ Rn is an auxiliary state.

SetWG := D − L (with D being the degree matrix of G) and let wij be its (i, j)-th entry.

Exploiting the sparsity inWG , the i-th block-components of (2.47) can be then written

as

ẋi(t) = −
∑

j∈Ni

wij
(
xi(t)− xj(t)

)
− zi(t)−∇fi(xi(t)) (2.48a)

żi(t) = −
∑

j∈Ni

wij
(
zi(t)− zj(t)

)
−
∑

j∈Ni

wij
(
∇fi(xi(t))−∇fj(xj(t))

)
. (2.48b)

In the next, we will analyze Continuous Gradient Tracking through a Lyapunov

approach relying on the feedback structure of (2.47) as represented in Figure 2.6.

[
ẋ(t)
ż(t)

]
=

[
−L −I
0 −L

] [
x(t)
z(t)

]
+

[
I
L

]
u(t)

u(t) = −G(x(t))

xu

Figure 2.6: Block diagram representation of system (2.47).

Specifically, noticing that col(1N,nx⋆,−G(1N,nx⋆)) is the unique equilibrium point

44



2.4. Asynchronous Distributed Consensus Optimization

for system (2.47) and by exploiting the initialization, it is possible to perform a se-

quence of coordinate changes to obtain an equivalent, reduced system formulation. The

equivalent system is characterized by a (marginally stable) linear part, associated to the

consensus mechanism, which is perturbed by a nonlinear (feedback) term depending on

the gradient G. The next theorem proves the exponential stability of the equilibrium by

designing a quadratic Lyapunov function based on the linear part only and bounding

the nonlinear gradient term using the strong convexity and the Lipschitz continuity. We

point out that the initialization 1⊤N,nz(0) = 0 can be obtained in a fully distributed way

by simply setting each zi(0) = 0, for all i ∈ {1, . . . , N}.

Theorem 2.3. Consider the Continuous Gradient Tracking distributed algorithm described
by (2.47). Let Assumptions 2.3, 2.4, 2.5 hold and pick any col(x(0), z(0)) such that
1⊤N,nz(0) = 0. Then, there exist a1 > 0 and a2 > 0 such that

∥xi(t)− x⋆∥ ≤ a1 exp(−a2t), ∀i ∈ {1, . . . , N}. △

Proof. We first observe that, in light of Assumption 2.4, the ODE in (2.47) is well

posed for any t ≥ 0 and admits a unique solution, see [91, Theorem 3.2]. By inspecting

system (2.47), we can assert that it has a unique equilibrium point at

[
xeq

zeq

]
:=

[
1N,nx

⋆

−G(1N,nx⋆)

]
,

which represents the situation in which theN agents have a consensual solution estimate

equal to the optimal solution x⋆ of the optimization problem (2.1). In order to use a

Lyapunov approach, we put the system in error coordinates. Let

[
x

z

]
7−→

[
x̃

z̃

]
:=

[
x

z

]
−
[
xeq

zeq

]
. (2.49)

Then, system (2.47) can be rewritten as

[
˙̃x

˙̃z

]
=

[
−L −I
0 −L

][
x̃

z̃

]
+

[
I

L

]
u(x̃), (2.50)

where the role played by the “input” term u(x̃) := G(1N,nx
⋆)−G(x̃+ 1N,nx

⋆) has been

highlighted. Indeed, it can be interpreted as a nonlinear feedback of the output ỹ = x̃

and suggests to introduce a further change of coordinates given by

[
x̃

z̃

]
7−→

[
ỹ

η̃

]
:=

[
I 0

L −I

]

︸ ︷︷ ︸
T1

[
x̃

z̃

]
. (2.51)
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Since T1 is an involutory matrix (i.e., it coincides with its inverse), the change of coordi-

nates (2.51) transforms (2.50) in

[
˙̃y

˙̃η

]
=

[
−2L I

−L2 0

][
ỹ

η̃

]
+

[
I

0

]
u(ỹ). (2.52)

Before studying the stability of the origin for (2.52), the effect of the initialization

1⊤N,nz(0) = 0 in the new coordinates (ỹ, η̃) is investigated. We observe that the subspace

S := {(ỹ, η̃) | 1⊤N,nη̃ = 0}

is invariant for (2.52). In light of (2.51), it holds

0 = 1⊤N,nη̃ = 1⊤N,n(Lx̃− z̃) = 1⊤N,nz,

where the last equality holds in light of (2.49) and since 1⊤N,nG(1N,nx
⋆) = 0 and 1⊤N,nL =

0 (cf. Assumption 2.5). Therefore the initialization of z(0) guarantees that η̃(0) ∈ S.

Hence, we can perform a final change of coordinates to isolate the invariant state to

further restrict the dynamics. Let

[
ỹ

η̃

]
7−→



ỹ

ψ̃

η̃avg


 := T2

[
ỹ

η̃

]
, (2.53)

in which

T2 :=

[
Tỹ

Tη̃

]
, Tỹ :=

[
I 0

0 R⊤

]
, Tη̃ :=

[
0 1√

N
1⊤N,n

]
, (2.54)

with R ∈ RNn×(N−1)n such that R⊤R = I, R⊤1N,n = 0 and ∥R∥ = 1. The following

useful relations holds true

RR⊤ = I − 1

N
1N,n1

⊤
N,n. (2.55)

It is easy to check that T−1
2 = T⊤

2 , thus (2.52) can be rewritten as




˙̃y
˙̃
ψ

˙̃ηavg


 =



−2L R

1N,n√
N

−R⊤L2 0 0

0 0 0






ỹ

ψ̃

η̃avg


+



I

0

0


u(ỹ). (2.56)

In light of the invariance of S, it holds η̃avg(t) ≡ 0. Then we can consider only ζ :=
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col(ỹ, ψ̃) ∈ Rd, with d := (2N − 1)n. The dynamics (2.56) can be written as

ζ̇ = Aζ +Bu(ỹ), (2.57a)

with

A :=

[
−2L R

−R⊤L2 0

]
, B :=

[
I

0

]
. (2.58)

Next, consider a quadratic, candidate Lyapunov function V : Rd → R given by

V (ζ) := ζ⊤Pζ, (2.59)

with P ∈ Rd×d such that P = P⊤ > 0 and arranged in blocks as

P :=

[
P1 P2

P⊤
2 P3

]
, (2.60)

where P1 ∈ RNn×Nn, P2 ∈ RNn×n, and P3 ∈ R(Nn−n)×(Nn−n). Next, it is shown how to

choose P in order to prove global exponential stability of the origin of (2.57). Let m > 0

and set

P1 = mI, P2 = −R, P3 = mR⊤(L2)†R, (2.61)

where (·)† denotes the Moore-Penrose pseudoinverse. By the Schur complement lemma,

P > 0 imposes that m must satisfy




mI > 0

mR⊤(L2)†R− 1
mI > 0

=⇒ m >
1√

min{σ(R⊤(L2)†R)}
. (2.62)

The time-derivative of V along trajectories of (2.57) is

V̇ (ζ) = ζ⊤ (A⊤P + PA)︸ ︷︷ ︸
−Q

ζ + 2ζ⊤PBu. (2.63)

The choices (2.61) yield to

Q =

[
4mL− 2L2 2LR

2R⊤L 2I

]
, PB =

[
mI

−R⊤

]
. (2.64)

We separately study the quadratic term−ζ⊤Qζ and the cross term 2ζ⊤PBu as a function

of m to show that V̇ (ζ) can be made negative definite for a sufficiently large m.

As for the first term in (2.63), we observe that Q is a solution to a Lyapunov equation
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associated to a marginally stable matrix. Therefore, it can only be positive semidefinite.

Indeed, the upper-left block within the expression (2.64) has the kernel spanned by 1N,n

for any choice of m. By the Schur complement lemma, imposing Q ≥ 0 is equivalent to

4mL− 2L2 − 2LRR⊤L ≥ 0. (2.65)

In light of (2.55) and since L1N,n = 0, condition (2.65) reduces to 4mL− 4L2 ≥ 0. Since

L and L2 have the same kernel, the latter condition is fulfilled by any m such that

m ≥ max{σ(L2)}
min{σ(L) \ {0}} . (2.66)

Moreover, L positive semidefinite, condition (2.66) can be satisfied with m > 0.

Next, the second term in (2.63) is considered to show V̇ < 0. In light of (2.64), it

holds

2ζ⊤PBu = 2mỹ⊤u− 2ψ̃⊤R⊤u
(a)

≤ −2mµ ∥ỹ∥2 − 2ψ̃⊤R⊤u, (2.67)

where in (a) we use the strong convexity of the cost functions (cf. Assumption 2.3).

Using the Cauchy-Schwarz inequality, condition (2.67) can be manipulated as

2ζ⊤PBu ≤ −2mµ ∥ỹ∥2 + 2 ∥R∥
∥∥∥ψ̃
∥∥∥ ∥u∥

(a)

≤ −2mµ ∥ỹ∥2 + 2L
∥∥∥ψ̃
∥∥∥ ∥ỹ∥

(b)

≤ −2mµ ∥ỹ∥2 + L

ϵ
∥ỹ∥2 + Lϵ

∥∥∥ψ̃
∥∥∥
2

(c)
= ζ⊤

[(
− 2mµ+ L

ϵ

)
I 0

0 LϵI

]

︸ ︷︷ ︸
Q0

ζ, (2.68)

where in (a) we use the Lipschitz continuity of the gradient of the cost functions

(cf. Assumption 2.4) and the fact that ∥R∥ = 1, while in (b) we use the Young’s inequality

with ϵ > 0, and in (c) we introduce the matrix Q0. Indeed, we want to show that the

zero eigenvalues of Q can be moved inside the open left-half plane through Q0. Thus,

by plugging (2.68) in (2.63), it holds

V̇ (ζ) ≤ −ζ⊤Q̃ζ, (2.69)
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where Q̃ := Q−Q0, i.e., it holds

Q̃ :=

[
4mL− 2L2 +

(
2mµ− L

ϵ

)
I 2LR

2R⊤L (2− Lϵ)I

]
. (2.70)

By the Schur complement lemma, Q̃ > 0 is equivalent to





2− Lϵ > 0

4mL− 2
(

2
2−Lϵ + 1

)
L2 + 2mµϵ−L

ϵ I > 0,

which is verified for every ϵ < 2
L

and

m > max





(
1 + 1

2−Lϵ

)
max{σ(L2)}

2min{σ(L) \ {0}} ,
L

2µϵ



 . (2.71)

Therefore, we can conclude that V̇ (ζ) < −min{σ(Q̃)} ∥ζ∥2 which implies that the origin

is globally exponentially stable for system (2.57) (cf. [91, Theorem 4.10]). Specifically,

there exist a7, a2 > 0 such that

∥ζ(t)∥ ≤ a7 ∥ζ(0)∥ exp(−a2t), (2.72)

for any ζ(0) ∈ Rd. By noticing that ∥xi(t)− x⋆∥ ≤ ∥x(t)− 1N,nx
⋆∥ = ∥y(t)∥ ≤ ∥ζ(t)∥ ,

the proof follows by (2.72) by setting a1 = a7 ∥ζ(0)∥. ■

We underline that both a1 and a2 in Theorem 2.3 depend on (i) the distance between

the initial conditions and the system equilibrium and (ii) the problem properties as,

e.g., the network connectivity, the strong convexity parameter of the cost and the

Lipschitz constants of the cost gradients. The same observation consistently applies to

the subsequent results.

Remark 2.3. The expression of the discrete-time dynamics as in (2.44) turns out to be

crucial in the derivation of its continuous-time version. In fact, one can check that

G(xk+1) = G

(
x(t)

∣∣∣
t=(k+1)γ

)

= G

(
x(t)

∣∣∣
t=kγ

+ γẋ(t)
∣∣∣
t=kγ

+ o(γ)

)

= G

(
x(t)

∣∣∣
t=kγ

)
+ γ∇G

(
x(t)

∣∣∣
t=kγ

)
ẋ(t)

∣∣∣
t=kγ

+ o(γ).

Thus, the arguments presented to derive (2.47) applied to the algorithm in its original
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coordinates (2.3) results in

[
ẋ(t)

ṡ(t)

]
=

[
−Lγ −INn

−∇G(x(t))Lγ −(Lγ +∇G(x(t)))

][
x(t)

s(t)

]
,

where s(t) is the continuous counterpart of sk := col(sk1, . . . , s
k
N ) while ∇G(x(t)) :=

blkdiag(∇2f1(x1(t)), . . . ,∇2fN (xN (t))) ∈ RNn×Nn. Notice that these coordinates in-

volve the second-order matrix ∇G(·) which usually requires a non-negligible computa-

tional complexity and, in certain applications, is not even known. △

2.4.2 Triggered Gradient Tracking: Algorithms Description and Analysis

The Continuous Gradient Tracking would require communication among agents at

all t ≥ 0. Clearly, this prevents its practical implementation on real devices that

require time-slotted communication. This issue is addressed next by proposing two

alternative schemes in which inter-agent communication is triggered synchronously and

asynchronously, respectively.

Let {tkii }ki∈N, be the sequence of time instants at which agent i sends its states (xi, zi)

and ∇fi to its neighbors j ∈ Ni. Consistently, at time tkjj , agent i receives the updated

variables from its neighbor j ∈ Ni. Let {t̃k}k≥0 be the ordered sequence of all the

triggering times that occurred in the network. Then, given any t ∈ [t̃k, t̃k+1), let us

introduce, for all i ∈ {1, . . . , N}, the shorthands

x̂ki := xi(t)
∣∣∣
t= inf

ki∈N

{
t
ki
i ≥t̃k

}

ẑki := zi(t)
∣∣∣
t= inf

ki∈N

{
t
ki
i ≥t̃k

}

∇fki := ∇fi(xi(t))
∣∣∣
t= inf

ki∈N

{
t
ki
i ≥t̃k

}.

(2.73)

Quantities in (2.73) represent the most updated values in the network within the con-

sidered time interval. Under the described communication paradigm, we propose to

modify the local dynamics in (2.48) as follows

ẋi(t) = −
∑

j∈Ni

wij

(
x̂ki − x̂kj

)
− zi(t)−∇fi(xi(t)) (2.74a)

żi(t) = −
∑

j∈Ni

wij

(
ẑki − ẑkj

)
−
∑

j∈Ni

wij

(
∇fki −∇fkj

)
, (2.74b)

for all t ∈ [t̃k, t̃k+1). Within the k-th period, the variable zi behaves as an integrator. As

for the variable xi, it is a local gradient flow compensated with an integral action zi

and a constant consensus-error-like term. Agent i does not use its own variables xi(t),
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zi(t), and ∇fi(xi(t)) in the consensus mixing terms, but it rather uses their sampled

version. This fact allows one to preserve the theoretical consensus properties of the

original scheme (2.48).

As one can expect, the specific rule to choose the triggering time tkii will play a

crucial role in the convergence properties of the resulting algorithms.

Synchronous Triggered Gradient Tracking

We start by presenting Synchronous Triggered Gradient Tracking, obtained by imposing

a synchronous communication among agents. Specifically, in this protocol each agent

i ∈ {1, . . . , N} sends its local variables to its neighbors at common instants of time

chosen according to

tki+1
i := tkii +∆, (2.75)

for some common ∆ > 0 and with t0i = t0 for all i ∈ {1, . . . , N}. Intuitively, the greater

∆, the more inter-agent communication reduces. On the other hand, the greater ∆, the

more the triggered algorithmic evolution moves away from the behavior of Continuous

Gradient Tracking.

For all t ∈ [t̃k, t̃k+1), the aggregate form of (2.74) reads as

[
ẋ(t)

ż(t)

]
= H

[
x(t)

z(t)

]
+B1G(x(t)) +B2



x̂k

ẑk

Gk


 , (2.76)

where x̂k := col(x̂k1, . . . , x̂
k
N ), ẑ

k := col(ẑk1 , . . . , ẑ
k
N ), G

k := col(∇fk1 , . . . ,∇fkN ), and

H :=

[
0 −I
0 0

]
, B1 :=

[
−I
0

]
, B2 :=

[
−L 0 0

0 −L −L

]
.

The convergence properties of (2.76) can be shown by reformulating it as a perturbed

instance of the Continuous Gradient Tracking system (2.47). In particular, it is possible

to show that the periodic triggering law (2.75) gives rise to a perturbation term that

vanishes at the equilibrium point (see, e.g., [91, Chapter 9] for the notion of vanishing

perturbation) and that can be arbitrarily bounded through the parameter ∆. Based on

this observation, the next thereom considers the same Lyapunov function V used in

the proof of Theorem 2.3 and shows that, with a sufficiently small ∆, the perturbation

does not alter the sign of the derivative of V and, hence, the exponential convergence is

preserved. The next theorem formalizes this result.

Theorem 2.4. Consider the algorithm in (2.74) with the synchronous communication protocol
given by (2.75). Let Assumptions 2.3, 2.4, 2.5 hold and pick any col(x(0), z(0)) such that
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1⊤N,nz(0) = 0. Then, there exist ∆⋆ > 0, a3 > 0, and a4 > 0 such that for any ∆ ∈ (0,∆⋆), it
holds

∥xi(t)− x⋆∥ ≤ a3 exp(−a4t), ∀i ∈ {1, . . . , N}. △

Proof. The dynamics (2.74) of Synchronous Triggered Gradient Tracking can be reformu-

lated as a perturbed instance of the nominal dynamics of Continuous Gradient Tracking

described by (2.47). Clearly, the perturbation expresses the impact of the triggering

mechanism on the algorithmic evolution. Thus, by adding and subtracting the term

B2col(x(t), z(t), G(x(t))) in the dynamics (2.76), we get

[
ẋ

ż

]
=

[
−L −I
0 −L

][
x

z

]
+

[
−I
−L

]
G(x) +B2e, (2.77)

where e has the same meaning as in (2.114). By performing the same changes of

coordinates defined in (2.49), (2.51), and (2.53), the dynamics (2.77) can be equivalently

reformulated as the following (restricted) dynamics

ζ̇ = Aζ +Bu+ Eeζ,∇, (2.78)

where the vectors ζ ∈ Rd, u ∈ RNn and the matrices A ∈ Rd×d and B ∈ Rd×Nn are as

in (2.57), while the quantities associated to the perturbation are

E := T⊤
ỹ T1B2T1Tỹ =

[
−L 0 0

0 −R⊤LR R⊤L

]
, (2.79a)

eζ,∇ := col(ˆ̃y − ỹ, ˆ̃ψ − ψ̃, e∇) := col(ˆ̃y − ỹ, ˆ̃ψ − ψ̃, Gk −G(ỹ + x⋆)) (2.79b)

with T1 and Tỹ defined in (2.51) and (2.54), respectively. Let us consider a quadratic,

candidate Lyapunov function V (ζ) = ζ⊤Pζ as in (2.59) with the blocks of P set as

in (2.61). The time-derivative of V along the trajectories of (2.77) satisfies

V̇ (ζ) = ζ⊤(A⊤P + PA)ζ + 2ζ⊤PBu+ 2ζ⊤PEeζ,∇

≤ −ζ⊤Q̃ζ + 2ζ⊤PEeζ,∇, (2.80)

where Q̃ is as in (2.70) so that the inequality holds in light the previous proof of

Theorem 2.3 (cf. (2.69)). By using the Young’s inequality with ϵ > 0, we can further

upper bound (2.80) as

V̇ (ζ) ≤ −ζ⊤Q̃ζ + ϵζ⊤PPζ +
1

ϵ
e⊤ζ,∇E

⊤Eeζ,∇

(a)
= −ζ⊤

(
Q̃− ϵP 2

)
ζ +

1

ϵ
e⊤ζ,∇E

⊤Eeζ,∇, (2.81)
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where in (a) the terms in ζ have been grouped. In light of the sufficient condition

in (2.71) to get a positive definite Q̃, we can always take ϵ such that

0 < ϵ <
min{σ(Q̃)}
max{σ(P 2)}

in order to impose also Q̃− ϵP 2 positive definite. Thus, by denoting as q > 0 the smallest

eigenvalue of the matrix Q̃− ϵP 2 and by applying the Cauchy-Schwarz inequality to the

quadratic term in eζ,∇ of (2.81), we bound (2.81) as

V̇ (ζ) ≤ −q ∥ζ∥2 + 1

ϵ

∥∥∥E⊤E
∥∥∥ ∥eζ,∇∥2

(a)
= −q ∥ζ∥2 + 1

ϵ

∥∥∥E⊤E
∥∥∥ (∥eζ∥2 + ∥e∇∥2)

(b)

≤ −q ∥ζ∥2 + 1

ϵ

∥∥∥E⊤E
∥∥∥
(
∥eζ∥2 + L

2
∥∥∥ˆ̃y − ỹ

∥∥∥
2 )

(c)

≤ −q ∥ζ∥2 + 1

ϵ

∥∥∥E⊤E
∥∥∥ (1 + L

2
)

︸ ︷︷ ︸
c1

∥eζ∥2 , (2.82)

where in (a) we introduce eζ := col(ˆ̃y− ỹ, ˆ̃ψ− ψ̃) to write ∥eζ,∇∥2 = ∥eζ∥2+∥e∇∥2, in (b)

we use the Lipschitz continuity of the gradients of the cost functions (cf. Assumption 2.4)

to bound ∥e∇∥2 ≤ L2∥ˆ̃y − ỹ∥2, and in (c) we rely on the fact that ˆ̃y − ỹ is a component of

eζ .

The proof continues by deriving an upper bound for ∥eζ∥2 in (2.82). We start by

defining

r :=
∥eζ∥
∥ζ∥ . (2.83)

Moreover, recall that in each interval [t̃k, t̃k+1), the error eζ is set to zero at t̃k and grows

until t̃k+1 when it is reset again to zero. Hence, the goal is to establish a lower bound on

the needed time for r(t) to reach
√
q/c1. By computing the time derivative of (2.83), it

follows

ṙ =
e⊤ζ ėζ
∥eζ∥ ∥ζ∥

− ∥eζ∥ ζ
⊤ζ̇

∥ζ∥3
. (2.84)

Using the Cauchy-Schwarz inequality, we bound ṙ as

ṙ ≤ ∥eζ∥ ∥ėζ∥∥eζ∥ ∥ζ∥
+
∥eζ∥ ∥ζ∥ ∥ζ̇∥
∥ζ∥3

(a)

≤ ∥ζ̇∥∥ζ∥ +
∥eζ∥ ∥ζ̇∥
∥ζ∥2

(b)
= (1 + r)

∥ζ̇∥
∥ζ∥ (2.85)
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where in (a) we use the identity ėζ = −ζ̇ while in (b) we exploit the definition of r

in (2.83). Then, in light of the dynamics of ζ in (2.78), it holds

ṙ ≤ (1 + r)
∥Aζ +Bu+ Eeζ,∇∥

∥ζ∥
(a)

≤ (1 + r)
∥A∥ ∥ζ∥+ ∥u∥+ ∥E∥ ∥eζ∥+ ∥E∥ ∥e∇∥

∥ζ∥ , (2.86)

where in (a) we use the triangle and the Cauchy-Schwarz inequalities combined with

∥Bu∥ = ∥u∥. Next, by using the Lipschitz continuity of the gradients of the cost

functions (cf. Assumption 2.4), we have ∥u∥ ≤ L ∥ζ∥ and ∥e∇∥ ≤ L ∥eζ∥. Thus, (2.86)

becomes

ṙ ≤ (1 + r)
(∥A∥+ L) ∥ζ∥+ (1 + L) ∥E∥ ∥eζ∥

∥ζ∥
(a)
= (1 + r)

L ∥ζ∥
∥ζ∥ + (1 + r)

∥A∥ ∥ζ∥+ (1 + L) ∥E∥ ∥eζ∥
∥ζ∥

(b)
= L(1 + r) + (1 + r)

c2 ∥ζ∥+ c2 ∥eζ∥
∥ζ∥

(c)
= L(1 + r) + c2(1 + r)2, (2.87)

where in (a) we simply rearrange the terms, in (b) we introduce c2 := max{∥A∥ , (1 +
L) ∥E∥}, and in (c) we use the definition of r in (2.83).

Using the Comparison Lemma (see [91, Lemma 3.4]) the bound (2.87) translates in

the following inequality

r(t, r(t̃k)) ≤ r̄(t, r̄(t̃k)), (2.88)

where r(t, r(t̃k)) denotes the solution of (2.84) with initial condition at t = tk given by

r(tk) while r̄(t, r̄(t̃k)) denotes the solution of

˙̄r(t) = L(1 + r̄(t)) + c2(1 + r̄(t))2, (2.89)

for some initial condition initial condition at t = t̃k given by r̄(t̃k) such that r(t̃k) ≤ r̄(t̃k).
Recalling that the protocol (2.75) imposes r(t̃k) = 0 at the beginning of each time

interval [t̃k, t̃k+1), then we select r̄(t̃k) = 0. The solution of (2.89) can be shown to be

(cf. [92])

r̄(t, 0) =
(L+ c2)(exp(L(t− t̃k))− 1)

−c2 exp(L(t− t̃k)) + L+ c2
. (2.90)

Notice that r̄(t, 0) starts from 0 at t = t̃k and monotonically increases within the interval
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[
0, tk + ln

(
L+c2
c2

)
/L
)

. Thus, we can always find a triggering value t = ∆⋆ > 0 such that

r̄(∆⋆, 0) =
√
q/c1. Hence, by choosing any ∆ ∈ (0,∆⋆) in (2.75), the inequality (2.88)

ensures

|r(t)| = r(t) <

√
q

c1
, (2.91)

for all t ∈ [t̃k, t̃k+1), where the equality holds because r is always positive, see its

definition in (2.83). With this result in mind, the inequality (2.82) can be rewritten as

V̇ (ζ) ≤ −
(
q − |r|

2

c1

)
∥ζ∥2 ,

which allows us to use (2.91) to conclude that the origin is globally exponentially stable

for system (2.78) (cf. [91, Th. 4.10]). Specifically, there exist a4, a8 > 0 such that

∥ζ(t)∥ ≤ a8 ∥ζ(0)∥ exp(−a4t), (2.92)

for any ζ(0) ∈ Rd. By noticing that ∥xi(t)− x⋆∥ ≤ ∥x(t)− 1N,nx
⋆∥ = ∥y(t)∥ ≤ ∥ζ(t)∥ ,

the proof follows by (2.92) by setting a3 = a8 ∥ζ(0)∥. ■

Asynchronous Triggered Gradient Tracking

We now investigate the case in which the agents choose their triggering time tkii in a fully

asynchronous way giving rise to an algorithm termed Asynchronous Triggered Gradient

Tracking. This scheme is motivated by the fact that the synchronous communication

executed according to (2.75) is rather conservative with a consequent non-efficient usage

of the available resources. An asynchronous communication protocol allows agents to

exchange information only when really needed. This requires a modification of the

synchronous scheme. In particular, each agent has to check a local triggering condition

and to maintain an additional auxiliary variable. The latter is important to take into

account the so-called Zeno behavior. Specifically, an infinite number of triggerings over

a finite interval of time must be avoided. Indeed, for agent i, a triggering law suffers

from the Zeno effect if

lim
ki→∞

tkii =

∞∑

ki=0

(tki+1
i − tkii ) = t∞i ,

for some (finite) t∞i > 0 termed the Zeno time.

The local dynamics is again described by (2.74). But, in order to perform commu-

nication only when needed, each agent i chooses the next triggering time instant tki+1
i
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according to a locally verifiable condition. A possible choice for such a condition may be

tki+1
i := inf

t>t
ki
i

{∥ei(t)∥ > λ ∥hi(t)∥} , (2.93)

with ei(t) := col(xi(t)− x̂ki , zi(t)− ẑki ,∇fi(xi(t))−∇fki ), hi(t) := zi(t)+∇fi(xi(t)), and

λ > 0 a constant to be properly specified later. The rationale for the triggering mecha-

nism is to (i) keep the triggered scheme close to the original dynamics (2.47), and (ii)
avoid the Zeno behavior. To this end, the right-hand side of the inequality within (2.93)

must be asymptotically vanishing when the algorithm approaches a steady state. This,

in turn, gives rise to a vanishing quantity on the left term of the inequality. Indeed,

looking also to the discrete-time version (2.3), the (local) quantity zi(t) +∇fi(xi(t)) can

be seen as a proxy for
∑N

i=1∇fi(xi(t)), i.e., a quantity that vanishes at a consensual

optimal solution. However, ∥hi(t)∥ vanishes not only when the algorithm approaches the

equilibrium, but also if (xi(t), zi(t)) ∈ Si := {(xi, zi) ∈ R2n | zi = −∇fi(xi)}, possibly

giving rise to the Zeno behavior. Thus, in order to exclude this situation, the triggering

condition (2.93) is further modified as

tki+1
i := inf

t>t
ki
i

{
∥ei(t)∥ > λ ∥hi(t)∥+ |ξi(t)|

}
, (2.94)

where ξi ∈ R is a local, auxiliary variable maintained by each agent i evolving as

ξ̇i(t) = −νξi(t), (2.95)

where ν > 0 is a parameter ruling the decay of ξi(t).

As formally shown next, if the ξi are initialized to nonzero values, then algo-

rithm (2.74) with triggering law (2.94) does not incur in the Zeno behavior.

As in Theorem 2.4, also the convergence properties of Asynchronous Triggered

Gradient Tracking can be shown by properly reformulating its aggregate form (which

is still given by (2.76)) as a perturbed instance of the Continuous Gradient Tracking

dynamics (2.47) with a vanishing perturbation. For this asynchronous triggering law,

(2.94), an upper bound on the perturbation magnitude is provided. It is proportional

to (i) the term λ ∥z(t) +G(x(t))∥, which, as already stated, represents a surrogate for

the distance from the equilibrium point col(1N,nx⋆,−G(1N,nx⋆)), and (ii) to the expo-

nentially decaying term ∥ξ∥. Thus, considering a Lyapunov function derived from the

one used in Theorem 2.3, it is possible to show that, by picking suitable λ and ν, the

perturbation does not affect the sign of the Lyapunov derivative. The next theorem

formalizes these concepts.

Theorem 2.5. Consider the algorithm described by (2.74) with the asynchronous com-
munication protocol given by (2.94). Let Assumptions 2.3, 2.4, 2.5 hold and pick any
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col(x(0), z(0), ξ(0)) such that 1⊤N,nz(0) = 0 and with ξ(0) = col(ξ1(0), . . . , ξN (0)) ̸= 0.
Then, there exist λ⋆ > 0, ν⋆ > 0, a5 > 0, and a6 > 0 such that for any λ ∈ (0, λ⋆) in (2.94)

and any ν > ν⋆, it holds

∥xi(t)− x⋆∥ ≤ a5 exp(−a6t), ∀i ∈ {1, . . . , N}.

Moreover, system (2.74) does not exhibit the Zeno behavior. △

Proof.

The proof of Theorem 2.5 traces the same initial steps of the proof of Theorem 2.4.

Specifically, we reformulate the Asynchronous Triggered Gradient Tracking as a per-

turbed, extended version of Continuous Gradient Tracking in which the perturbation is

due to the event-triggered communication. By exploiting the steps leading to (2.78), the

aggregate form of (2.74) and (2.95) reads

ζ̇ = Aζ +Bu+De (2.96a)

ξ̇ = −νξ, (2.96b)

where the vectors ζ ∈ Rd, u ∈ RNn and the matrices A ∈ Rd×d and B ∈ Rd×Nn are

as in (2.57), e ∈ R3Nn has the same meaning as in (2.114), ξ := col(ξ1, . . . , ξN ) ∈ RN ,

while the matrix D is given by

D := T⊤
ỹ T1B2 =

[
−L 0 0

−R⊤L2 R⊤L R⊤L

]
, (2.97)

where the matrices T1, Tỹ and B2 are as in (2.51), (2.54), and (2.76), respectively. We

underline that the dynamics of ζ and ξ are decoupled while both quantities affect the

triggering law (2.94).

Next, we show how to properly choose the value for ν in (2.95) and for λ in the

triggering law (2.94) to guarantee that the perturbation term De and the auxiliary

variable ξ do not alter the stability property associated the nominal system ζ̇ = Aζ +Bu

(cf. Theorem 2.3). To this end, an upper bound for ∥De∥, proportional to ∥ζ∥ and ∥ξ∥, is

derived. We start by using the Cauchy-Schwarz inequality to write ∥De∥ ≤ ∥D∥ ∥e∥ ≤
c3
∑N

i=1 ∥ei∥, with c3 := ∥D∥. In light of the triggering law (2.94), the latter inequality

can be upper bounded as

∥De∥ ≤ λc3
N∑

i=1

∥zi +∇fi(xi)∥+ c3

N∑

i=1

|ξi|

(a)

≤ λc3
√
N ∥z +G(x)∥+ c3

√
N ∥ξ∥

(b)
= λc4 ∥z̃ +G(x̃+ 1N,nx

⋆)−G(1N,nx⋆)∥+ c4 ∥ξ∥
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(c)

≤ λc4 ∥z̃∥+ λc4L ∥x̃∥+ c4 ∥ξ∥ , (2.98)

where in (a) we apply the basic algebraic relation
∑N

i=1 ∥θi∥ ≤
√
N ∥θ∥ for a vector

θ = col(θ1, . . . , θN ), in (b) we perform the change of coordinates given in (2.49) and

introduce the constant c4 := c3
√
N , and in (c) we use the triangle inequality and

the Lipschitz continuity of the gradients of the cost functions (cf. Assumption 2.4).

According to (2.51) and (2.53), it holds

[
x̃

z̃

]
= T1T

⊤
2

[
ζ

η̃avg

]
= T1T

⊤
2

[
ζ

0

]
, (2.99)

where we use the fact that the initialization z(0) leads to η̃avg(t) ≡ 0. We rearrange the

inequality (2.98) to reconstruct the term ∥col(x̃, z̃)∥ as

∥De∥ ≤ λc4max{1, L}
√
2 ∥col(x̃, z̃)∥+ c4 ∥ξ∥

(a)

≤ λc5 ∥ζ∥+ c4 ∥ξ∥ , (2.100)

where in (a) we combine (2.99) with the Cauchy-Schwarz inequality and set c5 :=

c4max{1, L}
√
2
∥∥T1T⊤

2

∥∥. Given the linear bound in (2.100), we can pursue a Lyapunov

approach to conclude the global exponential stability of the origin. Let us consider

a quadratic, candidate Lyapunov function Ṽ (ζ, ξ) = ζ⊤Pζ + 1
2ξ

⊤ξ. derived from the

one considered in (2.59) with the blocks of P set as in (2.61). Using similar arguments

leading to (2.82), the time-derivative of Ṽ along trajectories of (2.96) can be upper

bounded as
˙̃V (ζ, ξ) ≤ −q̃ ∥ζ∥2 + 2ζ⊤PDe− ν ∥ξ∥2 . (2.101)

By using the Cauchy-Schwarz inequality, we can plug (2.100) in (2.101) to obtain

˙̃V (ζ, ξ) ≤ −q̃ ∥ζ∥2 + 2 ∥ζ∥ ∥P∥ ∥De∥
≤ −q̃λ ∥ζ∥2 + 2c4 ∥P∥ ∥ζ∥ ∥ξ∥ − ν ∥ξ∥2 , (2.102)

where we introduce q̃λ := (q̃ − 2λc5 ∥P∥). Then, for any λ < q̃
2c5
∥P∥ =: λ⋆, it holds

q̃λ > 0. Setting c6 := c4 ∥P∥, the inequality (2.102) can be arranged in a matrix form as

˙̃V (ζ, ξ) ≤ −
[
∥ζ∥
∥ξ∥

]⊤ [
q̃λ −c6
−c6 ν

]

︸ ︷︷ ︸
U

[
∥ζ∥
∥ξ∥

]
. (2.103)

Being U ∈ R2×2 symmetric, by the Sylvester criterion U > 0 if and only if q̃λν >

c26. Therefore, by taking any ν > ν⋆ :=
c26
q̃λ

, the matrix U is positive definite. Thus
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the inequality (2.103) guarantees that the origin is globally exponentially stable for

system (2.96) (cf. [91, Lemma 4.10]). Specifically, there exist a6, a9 > 0 such that

∥col(ζ(t), ξ(t))∥ ≤ a9 ∥col(ζ(0), ξ(0))∥︸ ︷︷ ︸
a5

exp(−a6t), (2.104)

for any col(ζ(0), ξ(0)) ∈ RN+d. By noticing that

∥xi(t)− x⋆∥ ≤ ∥x(t)− 1N,nx
⋆∥ = ∥y(t)∥ ≤ ∥col(ζ(t), ξ(t))∥ ,

the proof of the first part of the theorem follows by (2.104).

Next, we prove by contradiction that (2.74) does not exhibit the Zeno behavior.

Suppose, without loss of generality, that an agent i exhibits the Zeno behavior, namely

lim
ki→∞

tkii = t∞i . (2.105)

For any k ≥ 0, we have

d

dt
∥ei(t)∥ =

e⊤i ėi
∥ei(t)∥

(a)

≤ ∥ėi(t)∥

(b)
=
∥∥col(ẋi(t), żi(t),∇2fi(xi(t))ẋi(t))

∥∥
(c)
=
∥∥col( ˙̃xi(t), ˙̃zi(t),∇2fi(x̃i(t) + x⋆) ˙̃xi(t))

∥∥ , (2.106)

where in (a) we use the Cauchy-Schwarz inequality, in (b) we use the definition of ei(t),

and in (c) we locally perform the change of variables given in (2.49). Combining the

latter change of variables with (2.74), it holds

˙̃xi(t) = −
∑

j∈Ni

wij(ˆ̃x
k
i − ˆ̃xkj )− z̃i(t) + ui(x̃i(t)) (2.107a)

˙̃zi(t) = −
∑

j∈Ni

wij(ˆ̃z
k
i − ˆ̃zkj )−

∑

j∈Ni

wij(∇fki −∇fkj ), (2.107b)

where we use ui(x̃i(t)) := (∇fi(x̃i(t) + x⋆) − ∇fi(x⋆)) and the local components of

the shorthands given in (2.73). By (2.104), the variables x̃i(t) and z̃i(t) are bounded

for all i ∈ {1, . . . , N} and k ≥ 0. Then, by defining c7 := maxi,t ∥x̃i(t)∥ and c8 :=

maxi,t ∥z̃i(t)∥, (2.107a) and the triangle inequality can be combined to get

∥∥ ˙̃xi(t)
∥∥ ≤

∑

j∈Ni

wij2c7 + c8 + ∥ui(x̃i(t))∥
(a)

≤ (2c9 + L)c7 + c8,

where in (a) we introduce c9 :=
∑

j∈Ni
wij and we use the Lipschitz continuity of the

gradients of the cost functions (cf. Assumption 2.4). Using again the boundedness of the
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quantities, and by adding and subtracting ∇fi(x⋆) within the second sum of (2.107b), it

holds

∥∥ ˙̃zi(t)
∥∥ ≤ 2c9(c8 + Lc7).

Moreover, the Lipschitz continuity of the gradients of the cost functions (cf. Assump-

tion 2.4) also ensures that
∥∥∇2fi(v)

∥∥ ≤ L, for all v ∈ Rd and all i ∈ {1, . . . , N}. By

combining the latter with the two previous equations, the inequality (2.106) can be

upper bounded as

d

dt
∥ei(t)∥ ≤ c10, (2.108)

with c10 := (1 + L)(2c9 + L)c7 + c8 + 2c9(c8 + Lc7).

Since the protocol (2.94) imposes ei(t) = 0 at the beginning of each time interval

[tkii , t
ki+1
i ), then by also using (2.108), we can write

ei(t) = ei(t
ki
i ) +

∫ k

t
ki
i

d ∥ei(τ)∥
dτ

dτ ≤ c10(t− tkii ). (2.109)

By (2.95), it holds ξi(t) = ξi(0) exp(−νt) for all k ≥ 0. Thus, being λ ∥hi(t)∥ ≥ 0 for any

k ≥ 0, the bound in (2.109) imposes, as a necessary condition to satisfy the triggering

in (2.94), that

c10(t
ki+1
i − tkii ) ≥ |ξi(0)| exp(−νtki+1

i ) (2.110)

From (2.105), for all ϵ > 0 there exists ki,ϵ ∈ N such that

tkii ∈ [t∞i − ϵ, t∞i ], ∀ki ≥ ki,ϵ. (2.111)

Set

ϵ :=
|ξi(0)|
2c10

exp(−νt∞i ), (2.112)

and suppose that the ki,ϵ-th triggering time of agent i, namely tki,ϵi , has occurred. Let

t
ki,ϵ+1
i be the next triggering time determined by (2.94). Then, using the necessary

condition (2.110) we can write

t
ki,ϵ+1
i − tki,ϵi ≥ |ξi(0)|

c10
exp(−νtki,ϵ+1

i )
(a)

≥ |ξi(0)|
c10

exp(−νt∞i )
(b)
= 2ϵ, (2.113)
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where in (a) we use t∞i ≥ t
ki,ϵ+1
i , while in (b) we use (2.112). However (2.113) implies

t
ki,ϵ
i ≤ tki,ϵ+1

i − 2ϵ ≤ t∞i − 2ϵ,

which contradicts (2.111) and concludes the proof. ■

Robustness Against Inexact Computation

This section considers a more general scenario in which agents can access only inexact

evaluations of their local state (xi, zi) and/or of the local gradients ∇fi. Let vi,∇(t) ∈ Rn

represents the mismatch between the exact value of ∇fi(xi(t)) and the one available

to agent i for the local updates. The presence of this mismatch may be due to several

reasons as, e.g., quantization errors of the computing unit, measurement errors in the

sensor providing ∇fi(xi(t)), or model uncertainties affecting the available gradient.

Similarly, also mismatches affecting the states xi and zi can be considered. Thus, we

consistently introduce vi,x(t) ∈ Rn and vi,z(t) ∈ Rn to model such uncertainties. This

framework can be formalized by writing

[
ẋ(t)

ż(t)

]
=

[
−L −I
0 −L

][
x(t)

z(t)

]
−
[
I

L

]
G(x(t)) + δ1B2e(t) +B3v(t), (2.114)

where e(t) := col(x̂k − x(t), ẑk − z(t), Gk − G(x(t))) collects (possible) mismatches

due to discrete-time communication and v(t) := col(v∇(t), vx(t), vz(t)) collects the

mentioned local mismatches between the gradients, the solution estimates and the

auxiliary variables, the matrix B2 has the same meaning as in (2.76), and B3 is defined

as

B3 :=

[
−L −I −I
0 −L −L

]
. (2.115)

Finally, δ1 is equal to 0 for Continuous Gradient Tracking and equal to 1 for both the

Synchronous and Asynchronous Triggered Gradient Tracking. Similarly, we denote

as δ2 is equal to 0 for both Continuous Gradient Tracking and Synchronous Triggered

Gradient Tracking and equal to 1 for Asynchronous Triggered Gradient Tracking.

Next, the robustness of the algorithm in terms of input-to-state stability is studied.

Specifically, we guarantee that within the framework modeled by (2.114), the proposed

algorithms behave as input-to-state stable systems. Therefore, in presence of mismatches

on variables and gradients, the distance between the solution of problem (2.1) and the

computed estimates stay bounded according to the error magnitude.

Proposition 2.1. Consider the algorithm described by (2.114). Let Assumptions 2.3, 2.4, 2.5
hold and pick any col(x(0), z(0)) such that 1⊤N,nz(0) = 0. Then, there exist a KL function
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g1(·) and a K∞ function g2(·) such that for any x(0) ∈ RNn it holds ∥x(t)− 1N,nx
⋆∥ ≤

g1(∥χ(0)∥ , t) + g2(∥v(·)∥∞), with χ(0) := col(x(0) − 1N,nx
⋆, z(0) + G(1N,nx

⋆), δ2ξ(0))

and for any v(·) ∈ L3Nn∞ .1 △

Proof.

The proof of Proposition 2.1 traces the same initial steps of the proof of Theorem 2.4

and 2.5. Using the change of coordinates in (2.49), (2.51), (2.53), system (2.114) can be

recast as

ζ̇ = Aζ +Bu+ δ1Eeζ,∇ + T⊤
ỹ T1B3vxz∇, (2.116)

with ζ ∈ Rd, u ∈ RNn, where A ∈ Rd×d and B ∈ Rd×Nn are as in (2.57), E and eζ,∇
are as in (2.79a) and (2.79b), B3, Tỹ, and T1 are as in (2.115), (2.51), and (2.54), while

vxz∇ := col(vx, vz, v∇). We remark that eζ,∇ changes according to the implemented

communication protocol. Moreover, when Asynchronous Triggered Gradient Tracking

is considered, also dynamics (2.95) has to be taken into account. However, when

v∇ ≡ vxz ≡ 0, then vxz∇ ≡ 0 and system (2.116) reduces to

ζ̇ = Aζ +Bu+ δ1Eeζ,∇. (2.117)

Theorems 2.3, 2.4, and 2.5 ensure that the origin is globally exponentially stable

for (2.117) for both δ1, δ2 ∈ {0, 1} and for both communication protocols (2.75) and (2.94).

In light of [91, Lemma 4.6], this condition is sufficient to assert that system (2.116) is

input-to-state stable and the proof follows (cf. [175, Section 2.9]). ■

2.4.3 Numerical Simulations

We next present numerical simulations to confirm and support the theoretical findings.

The simulations are done using Matlab with its numerical solver “ode45” to integrate

the Continuous Gradient Tracking.

We consider a network of agents that want to cooperatively solve the data analytics

problem presented in Section 1.2.2. We briefly recall the problem as follows. The

agents want to train a linear classifier and each agent i is equipped with mi ∈ N points

pi,1, . . . , pi,mi ∈ Rn with binary labels li,q ∈ {−1, 1} for all q ∈ {1, . . . ,mi}. To this end,

we consider a logistic regression problem given by

min
w,b

N∑

i=1

mi∑

q=1

log
(
1 + exp(−li,q(w⊤pi,q + b))

)
+
C(∥w∥2 + b2)

2
,

where the optimization variables w ∈ Rn−1 and b ∈ R define the separating hyperplane,

1See [91, Chapter 4] for the function classes’ definitions.
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while C > 0 is the so-called regularization parameter. Notice that the presence of the

regularization makes the cost function strongly convex. In our simulations, we pick

n = 3, mi = 10 for all i ∈ {1, . . . , N}, and C = 0.1.

Continuous Gradient Tracking

In this subsection, the effectiveness of Continuous Gradient Tracking is shown on a

network of N = 50 agents communicating according to an undirected and connected

Erdős-Rényi graph with parameter 0.4. In Figure 2.7 the convergence performances

of Continuous Gradient Tracking algorithm are shown. Specifically, the distance of

the local estimates x(t) := col(x1(t), . . . , xN (t)) from the optimum ∥x(t)− 1N,nx
⋆∥,

converges to zero exponentially fast as expected from Theorem 2.3.
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10−14

10−6

102

t

‖x
(t
)
−

1
x
?
‖

Figure 2.7: Evolution of the distance from the optimum of local estimates generated by Continu-
ous Gradient Tracking.

Synchronous and Asynchronous Triggered Gradient Tracking

In this subsection, the effectiveness of the triggered algorithms is shown for a network of

N = 10 agents communicating according to an undirected and connected Erdős-Rényi

graph with parameter 0.4. We tested Synchronous Triggered Gradient Tracking and

Asynchronous Triggered Gradient Tracking for different values of their key parameters

∆ and λ, respectively. Moreover, we experimentally tuned the step-size for the discrete

Gradient Tracking as γ = 0.1 in order to optimize its convergence rate. Finally, we set

ν = 5 for the dynamics of ξi in (2.95). For the simulation of Asynchronous Triggered

Gradient Tracking, the triggering condition (cf. (2.94)) is checked every 0.001 seconds.

Figure 2.8 compares the evolution of the optimality error obtained with different ∆

and λ, for Synchronous Triggered Gradient Tracking, Asynchronous Triggered Gradient

Tracking, and the discrete Gradient Tracking algorithm. Specifically, the comparison

is done in terms of communication rounds. The plot considers the performances of

the most efficient agent, say i⋆, that performs the smallest number of neighboring

communications in Asynchronous Triggered Gradient Tracking. As for the discrete
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Gradient Tracking algorithm, we denote, with a slight abuse of notation, xi⋆(t
ki⋆
i⋆

) = xki⋆ ,

with the sequence {xki⋆}k≥0 generated by (2.44). As Figure 2.8 clearly highlights, the

communication rounds decrease as λ increases. The same applies to ∆. In particular,

we underline that Asynchronous Triggered Gradient Tracking results more efficient

in finding the optimal solution with respect to both Synchronous Triggered Gradient

Tracking and discrete gradient tracking.
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STGT, ∆ = 0.025

Figure 2.8: Comparison among Asynchronous Triggered Gradient Tracking (ATGT), Synchronous
Triggered Gradient Tracking (STGT) and the discrete gradient tracking (DGT) in terms of
evolution of the optimality error.

Finally, in Figure 2.9 each cross represents when the triggering condition occurred

for each agent while running the Asynchronous Triggered Gradient Tracking with

λ = 0.1. The plots demonstrate how event-triggered communication effectively reduces

inter-agents communication.
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Figure 2.9: Occurrence of the triggering conditions in the Asynchronous Triggered Gradient
Tracking.

2.5 Derivative-Free Distributed Consensus Optimization

In this section, we address problem (2.1) in a derivative-free manner, i.e., by assum-

ing that the agents cannot access the gradients (or other derivatives) of the objective

functions. In this setup, we propose Extremum Tracking Descent, i.e., a distributed
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method whose algorithmic structure is inspired by the Gradient Tracking algorithm and

that uses an equilibrium seeking technique to replace the unavailable gradients. In this

section, we enforce the following assumptions.

Assumption 2.6. Graph G is connected and the adjacency matrixWG ∈N×N is symmetric.△

Assumption 2.7. For all i ∈ {1, . . . , N}, the function fi is L-strongly convex for some L > 0.
△

Assumption 2.8. Each function fi is (at least) C3 and has Li-Lipschitz continuous gradients,
namely there exists a constant Li > 0 such that for all i ∈ {1, . . . , N} it holds

∥∇fi(x1)−∇fi(x2)∥ ≤ Li ∥x1 − x2∥ ,

for any x1, x2 ∈ Rn. We denote L = max{L1, . . . , LN}. △

Before the description of our derivative-free algortihm, we introduce the forward

Euler discretization of Continuous Gradient Tracking (cf. (2.48)), namely the discrete-

time scheme described by

xk+1
i = xki − γ

∑

j∈Ni

ℓijx
k
j − γ

(
zki +∇fi(xki )

)
(2.118a)

zk+1
i = zki − γ

∑

j∈Ni

ℓij

(
zkj +∇fj(xkj )

)
, (2.118b)

where γ > 0 represents the time step and ℓij the (i, j)-entry of the Laplacian matrix

L associated to the graph G. In this algorithm, agents exchange with their neighbors

the information col(xki , z
k
i +∇fi(xki )) involving 2n components. The main idea consists

of estimating ∇fi(xki ), supposed non-measurable, via an extremum-seeking algorithm.

It is worth noting how system (2.118) is in the so-called averaging standard form for

discrete-time systems [165], which will be useful in the analysis of the extremum seeking

version of this protocol.

2.5.1 Extremum Tracking Descent: Algorithm Description and Analysis

The proposed algorithm is inspired by (2.118), which is redesigned via extremum

seeking by replacing local gradients with a proper estimation based on the local cost

function values and suitable dithering signals defined as

dki = col

(
sin

(
2πk

τi1
+ ϕi1

)
, . . . , sin

(
2πk

τin
+ ϕin

))
, (2.119)
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where τip ∈ N and ϕip ∈ R such that, given p, q, r ∈ {1, . . . , n}, p ̸= q, q ̸= r, q ̸= r, it

holds

τ−1∑

k=0

sin
(
2πk
τip

+ ϕip

)
= 0 (2.120a)

τ−1∑

k=0

sin
(
2πk
τip

+ ϕip

)
sin
(
2πt
τiq

+ ϕiq

)
=
τ

2
(2.120b)

τ−1∑

k=0

sin
(
2πk
τip

+ ϕip

)
sin
(
2πt
τip

+ ϕip

)
sin
(
2πk
τir

+ ϕir

)
= 0, (2.120c)

for i ∈ {1, . . . , N}. Here, τ ∈ N is the least common multiple of all periods τip.Extremum

Tracking Descent is described in Algorithm 2 from the perspective of agent i. In the

table, the parameter δi > 0 represents the amplitude of the dither signal dti. Notice that,

as in (2.118), agents communicate to neighbors a total of 2n components.

Algorithm 2 Extremum Tracking Descent (agent i)

initialization: x0i ∈ Rn and z0i = 0
for t = 0, 1, . . . do

xk+1
i = xki − γ


∑

j∈Ni

ℓijx
k
j + zki +

2fi(x
k
i + δid

k
i )d

k
i

δi


 (2.121a)

zk+1
i = zki − γ

∑

j∈Ni

ℓij

(
zkj +

2fj(x
k
j + δjd

k
j )d

k
j

δj

)
(2.121b)

end for

The convergence properties of Extremum Tracking Descent are formalized in the

next theorem.

Theorem 2.6. Consider (2.121) and let Assumptions 2.6, 2.7, and 2.8 hold. Then, for any
r, ρ̄ > 0, there exist γ⋆, δ⋆, k1 > 0, ϵ ≤ ρ̄, and k2 ≥ (ρ̄ − ϵ) such that, for any γ ∈ (0, γ⋆),
col(xi, zi) ∈ {col(x0i , z0i ) ∈ R2n | ∥xi − x⋆∥ ≤ r, zi = 0}, δi ∈ (0, δ⋆), i ∈ {1, . . . , N}, the
trajectories of (2.121) are bounded and for each i ∈ {1, . . . , N}

∥∥∥xki − x⋆
∥∥∥ ≤ ρ̄, (2.122)

for all k ≥ k⋆, where k⋆ := − 1
γk1

ln((ρ̄ − ϵ)/k2), i.e., the convergence to the set {xi ∈ Rn |∥∥xki − x⋆
∥∥ ≤ ρ̄} is linear. △

The proof of Theorem 2.6 is provided in Section 2.5.1. It is worth noting that

Theorem 2.6 provides a semi-global, practical exponential-stability result on the discrete-

time dynamics described by Extremum Tracking Descent. Indeed, the parameters γ⋆
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and δ⋆ depend on both r and ρ̄.

We first rewrite the local updates in (2.121) in an aggregate form as

xk+1 = xk − γ
(
Lxk + zk + fd(x

k + δdk)
)

(2.123a)

zk+1 = zk − γ
(
Lzk + Lfd(x

k + δdk)
)
, (2.123b)

where we introduced L := L ⊗ In, xk := col(xk1, . . . , x
k
N ), z

k := col(zk1, . . . , z
k
N ), fd(x

k +

δdk) := col(2f1(x
k
1 + δ1d

k
1)d

k
1/δ1, . . . , 2fN (x

k
N + δNd

k
N )d

k
N/δN ), d

k := col(dk1, . . . ,d
k
N ),

and δ := diag(In, . . . , In)⊗ In. We point out that, see also Fig. 2.10, system (2.123) can

be conceived as an extremum seeking scheme with output map f(x + δdk).

sk = fd(w
k)

xk+1 = (I − γL)xk − γ
(
zk + skd

)

zk+1 = (I − γL)zk − γLskd

dk

+ ×

δ

sk

skdxk
wk

Figure 2.10: Block scheme of the proposed Extremum Tracking Descent algorithm in the (x, z)
coordinates.

We now give an overview of the main steps of the stability analysis carried out to

prove Theorem 2.6:

(i) We perform a first change of variables to describe the dynamics (2.123) in terms

of the mean value (over the agents) ˜̄z of z and the orthogonal part z̃⊥ associated

to the consensus error. Then, by relying on averaging theory [165], we introduce

a so-called average system obtained by averaging the dithering signals over a

common period. This system is shown to be driven by the local function gradients

with additive estimation errors.

(ii) When neglecting these errors, the average system corresponds to an equivalent

form of (2.118). Based on this observation, we rely on existing stability properties

of the continuous gradient tracking to demonstrate that the trajectories of the

average system exponentially converge to an arbitrarily small neighborhood of

col(1x⋆, z̃eq
⊥ ) for some z̃

eq
⊥ arising from the analysis.

(iii) Finally, we prove Theorem 2.6 by exploiting the steps above and by using averaging

theory to show the closeness between the trajectories of (2.123) and those of its

average system.
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We start by introducing a change of coordinates to highlight the error dynamics. To

this end, let G : RNn → RNn be

G(xk) := col(∇f1(xk1), . . . ,∇fN (xkN )).

Then, let the error coordinates x̃k, z̃k ∈ RNn be

x̃k := xk − 1N,nx
⋆, z̃k = zk +G(1N,nx

⋆), (2.124)

and let us introduce ϕxz : N× RNn × RNn → R2Nn as

ϕxz(t, x̃
k, z̃k) :=

[
−Lx̃k − z̃k − fd(x̃k + 1N,nx

⋆ + δdk) +G(1N,nx
⋆)

−Lz̃k − L(fd(x̃k + 1N,nx
⋆ + δdk) +G(1N,nx

⋆))

]
,

Then, by using the new coordinates, we rewrite (2.123) as

[
x̃k+1

z̃k+1

]
=

[
x̃k

z̃k

]
+ γϕxz(t, x̃

k, z̃k), (2.125)

where we have used the property L1N,n = 0. As in the previous sections, we take

advantage of the initialization z0i = 0 for all i ∈ {1, . . . , N} by defining

[
˜̄zk

z̃k⊥

]
:=

[
1⊤
N,n

N

R⊤

]
z̃k, ξk :=

[
x̃k

z̃k⊥

]
, (2.126)

where we introduced the matrixR ∈ RNn×(N−1)n such thatR⊤1N,n = 0,R⊤R = I . Then,

since 1⊤N,nL = 0 in light of Assumption 2.6 and 1⊤N,nG(1N,nx
⋆) =

∑N
i=1∇fi(x⋆) = 0

(since x⋆ is the minimizer of problem (2.1)), system (2.125) reads as

ξk+1 = ξk + γϕξ(k, col(x̃
k,1N,n˜̄z

k +Rz̃k⊥)) (2.127a)

˜̄zk+1 = ˜̄zk, (2.127b)

where we introduced ϕξ : N× R2Nn → R(2N−1)n defined as

ϕξ(k, col(x̃, z̃)) :=

[
I 0

0 R

]
ϕxz(k, x̃, z̃).

The equation (2.127b) allows us to claim that ˜̄zk = ˜̄z0 for all k ≥ 0. Moreover, we recall

that (i) z0i = 0 for all i ∈ {1, . . . , N}, and (ii) 1⊤N,nG(1N,nx
⋆) = 0. Hence, it holds ˜̄z0 = 0

which allows us to ignore (2.127b) and rewrite (2.127) according to the equivalent,
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reduced system

ξk+1 = ξk + γϕ(t, ξk), (2.128)

where ϕ(k, ξk) := ϕξ(k, col(x̃
k, Rz̃k⊥)),with ξk = col(x̃k, z̃k).

We define the average system associated to (2.128) as

ξk+1
a = ξka + γϕa(ξ

k
a), ξ0a = ξ0 (2.129)

with ϕa(ξka) =
1

τ

∑k+τ
q=k+1 ϕ(q, ξ

k
a). We need the following result to detail ϕa(ξka).

Lemma 2.3 (Gradient estimation). For all i ∈ {1, . . . , N}, there exists ℓi : Rn → Rn such
that

2

δiτ

k+τ∑

q=k+1

fi(xi + δid
q
i )d

q
i = ∇fi(xi) + δ2i ℓi(xi),

for all xi ∈ Rn and all k ≥ 0. Moreover, given any compact set Si ⊂ Rn, if δi ∈ (0, 1], there
exists Li,Si > 0 such that

∥ℓi(xi)∥ ≤ Li,Si , (2.130)

for any xi ∈ Si and all i ∈ {1, . . . , N}. △

Proof. Given α = col(α1, . . . , αn) ∈ Nn, y = col(y1, . . . , yn) ∈ Rn, and a smooth

function f : Rn → R, we define

α! := α1! . . . αn!, yα := yα1
1 . . . yαn

n ,

∂αf(y) :=
∂α1

∂yα1
1

. . .
∂αn

∂yαn
n
f(y), |α| := α1 + · · ·+ αn.

Being each function fi smooth (cf. Assumption 2.8), we can apply Taylor’s expansion

(cf. [68, Theorem 2]) and write

fi(xi + δid
k
i ) = fi(xi) + δid

k
i
⊤∇fi(xi) +

δ2i
2
dki

⊤∇2fi(xi)d
k
i + δ3Ri,2(xi, δid

k
i ), (2.131)

where the remainder Ri,2(xi, δidki ) is given by

Ri,2(xi, δid
k
i ) =

∑

|α|=3

∂αfi(xi + cδid
k
i )

α!
(δid

k
i )
α, (2.132)

69



Chapter 2. Gradient Tracking algorithms: System Theoretical Perspective and Algorithm

Extensions for Asynchronous, Derivative-Free, and Online Scenarios

for some c ∈ (0, 1). Then, we can use (2.131) to write

2

δiτ

k+τ∑

q=k+1

dqi fi(xi + δid
q
i ) =

2fi(xi)

δiτ

k+τ∑

q=k+1

dqi +


2
τ

k+τ∑

q=k+1

(
dqid

q
i
⊤
)

∇fi(xi)

+
δi
τ

k+τ∑

q=k+1

(
dqid

q
i
⊤
)
∇2fi(xi)d

q
i +

2

δiτ

k+τ∑

q=k+1

dqiRi,2(xi, δid
q
i ).

(2.133)

Since the frequencies of dqi satisfy (2.120), we get

k+τ∑

q=k+1

dqi = 0

2

τ

k+τ∑

q=k+1

(
dqid

q
i
⊤
)
= In

k+τ∑

q=k+1

(
dqid

q
i
⊤
)
∇2fi(xi)d

q
i = 0,

which combined with (2.133), allows us to write

fi(xi + δid
k
i ) = ∇fi(xi) +

2

δiτ

k+τ∑

q=k+1

dqiRi,2(xi, δid
q
i ).

The proof follows by setting ℓi(xi) =
2

τ

∑k+τ
q=k+1 d

q
iRi,2(xi, δid

q
i )/δ

3
i . Finally, given a

compact set Si ⊂ Rn, let us bound ∥ℓi(xi)∥ for any xi ∈ Si. Note that
∥∥δidki

∥∥ ≤ δi
√
n

for all k ≥ 0 and let S ′i ⊂ Rn be a compact set such that (i) Si ⊆ S ′i ⊂ Rn, and (ii)

xi + δdki ∈ S ′ for any xi ∈ Si, δi ∈ (0, 1], and all k ≥ 0. Thus, we can write

sup
xi∈Si

∥∥∥∥
Ri,2(xi, δid

q
i )

δ3i

∥∥∥∥
(a)

≤ sup
xi∈S′

i

∥∥∥∥∥∥
1

δ3i

∑

|α|=3

∂αfi(xi)

α!
(δid

q
i )
α

∥∥∥∥∥∥

(b)
= sup

xi∈S′
i

∥∥∥∥∥∥
∑

|α|=3

∂αfi(xi)

α!
(dqi )

α

∥∥∥∥∥∥
=: L′

i,Si
, (2.134)

where in (a) we use the expression (2.132) of Ri,2(xi, δid
q
i ), the definition of S ′i, and the

fact that δi ∈ (0, 1], while in (b) we drop out the term δ3i from (δid
q
i )
α. We underline that,

since the set S ′i is compact and fi is smooth, Li,Si exists and is finite. The bound of ℓi(xi)

follows by defining Li,Si := 2L′
i,Si

√
n and combining the result (2.134) with the bound

about the norm of the dither signal, i.e.,
∥∥dki
∥∥ ≤ √n for all k ≥ 0. ■
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Now, let

ℓ(xk) := col

(
ℓ1(x

k
1), . . . , ℓN (x

k
N )
)
.

Then, averaging (2.128) over τ samples and using Lemma 2.3 leads to ϕa(ξka) = ϕGT (ξ
k
a)+

BMδu(ξ
k
a), where Mδ := diag(δ21 , . . . , δ

2
N )⊗ In, ξka := col(x̃ka, z̃

k
⊥,a), and

ϕGT (ξ
k
a) :=

[
−Lx̃ka −Rz̃k⊥,a −G(x̃k + 1N,nx

⋆) +G(1N,nx
⋆)

−R⊤Lz̃ka −R⊤L(G(x̃k + 1N,nx
⋆)−G(1N,nx⋆))

]

u(ξka) := ℓ(x̃ka + 1N,nx
⋆)

B :=

[
−I
−R⊤L

]
.

Remark 2.4. It is worth highlighting the main distinctive features of our method. First,

the finite differences methods are characterized by estimation errors involving second-

order terms of the local cost function expansion, while our estimation policy allows for

estimation errors involving third-order terms and, thus, an higher precision. Second,

the estimation of the gradients is performed according to a single-point estimator and,

thus, the objective functions queries and, possibly, communications are reduced. Also,

in some application scenarios, it may be not possible to have multiple samples of the

cost function, but the user/agent/robot should decide just one. Third and final, the

estimation policy is purely deterministic and, thus, the convergence guarantees are

deterministic too. △

Average System Analysis

In this subsection, we analyze the average system (2.129). We study (2.129) as the system

ξk+1
a = ξka + γϕCGT(ξ

k
a), (2.135)

perturbed by γBMδu(ξ
k
a). The next lemma proves the global exponential stability of the

origin for (2.135).

Lemma 2.4. There exist PEST = P⊤
EST ∈ R(2N−1)n×(2N−1)n, a1, a2, c1 > 0, and γ0 > 0 such

that, for any γ ∈ (0, γ0), along the trajectories of (2.135) it holds

a1I ≤ PEST ≤ a2I (2.136a)

ξk+1
a

⊤
PESTξ

k+1
a − ξka

⊤
PESTξ

k
a ≤ −γc1 ∥ξa∥2 , (2.136b)

for any ξka ∈ R2(N−1)n. △
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Proof. Theorem 2.3 (cf. Section 2.4) proves that, under the Assumptions 2.6, 2.7, and 2.8,

the point ξ⋆ = (1x⋆, z̃eq
⊥ ), with z̃

eq
⊥ := −R⊤G(1x⋆), is a globally exponentially stable

equilibrium for the continuous-time system

ξ̇(t) = ϕCGT(ξ(t)),

which is equivalent to (2.57), i.e., the system written according to the coordinate ζ :=

col(ỹ, η̃) (cf. (2.51)). In detail, Theorem 2.3 (cf. Section 2.4) introduces the matrix

P = P⊤ ∈ R(2N−1)n×(2N−1)n given by

P :=

[
mI −R
−R⊤ mR⊤(L2)†R

]
,

and proves that there exist m̄,m1,m2,m3 > 0 such that, for any m > m̄, it holds

m1I ≤ P ≤ m2I (2.137a)

ζ⊤PT̄ϕCGT(T̄
−1ζ) ≤ −m3 ∥ζ∥2 , (2.137b)

for any ζ ∈ R(2N−1)n, where we used a tranformation matrix T̄R(2N−1)n×(2N−1)n to

describe the transformation from ξ to ζ. Based on this observation, we guarantee that

there exists PEST = P⊤
EST ∈ R(2N−1)n×(2N−1)n such that

a1I ≤ PEST ≤ a2I (2.138a)

ξ⊤a PESTϕCGT(ξa) ≤ −a3 ∥ξa∥2 , (2.138b)

for any ξa ∈ R(2N−1)n. Then, we use PEST to introduce the candidate Lyapunov function

V : R(2N−1)n → R considered in Theorem 2.3 defined as With this result at hand, we

can bound ∆V (ξka) := V (ξk+1
a )− V (ξka) along the trajectories of (2.135) as

∆V (ξka) ≤ −γ2a3
∥∥∥ξka
∥∥∥
2
+ γ2ϕCGT(ξ

k
a)

⊤PESTϕCGT(ξ
k
a). (2.139)

Moreover, by using the Lipschitz continuity of the gradients of the objective functions

(cf. Assumption 2.8) and the definition of ϕCGT, there exists a4 > 0 such that

∥∥∥ϕCGT(ξ
k
a)
∥∥∥ ≤ a4

∥∥∥ξka
∥∥∥ . (2.140)

Finally, for any c ∈ (0, 2a3), let γ0 := (2a3 − c)/(a2a
2
4) and the proof follows by us-

ing (2.139) and (2.140). ■

Remark 2.5. Notice that Lemma 2.4 proves the algorithm (2.118) linearly converges to

the minimizer of (2.1), since (2.135) is an equivalent formulation of (2.118). △
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Now, we analyze the impact of u(·) on (2.129).

Lemma 2.5. Assume that there exist a1, a2, c1 > 0 and PEST = P⊤
EST ∈ R(2N−1)n×(2N−1)n →

R such that conditions (2.136) hold. Then, for any rξ > 0, c′1 ∈ (0, c1), and ρ ∈ (0, rξ), there
exist c3 ≥ 0 and δ⋆ ∈ (0, 1] such that, for any γ ∈ (0, 1], δi ∈ (0, δ⋆), i ∈ {1, . . . , N}, and∥∥ξ0a
∥∥ ≤ rξ, it holds

(i) ξka ∈ B√a2/a1rξ for all k ≥ 0, and
(ii)

∥ξka∥ ≤
√
a2/a1 exp (−kγc3) ∥ξ0a∥, (2.141)

for any
∥∥ξka
∥∥ ≥ ρ. △

Proof. The proof relies on (i) the matrix P satisfying (2.136), and (ii) the fact that

the norm of the perturbation term γBMδu(ξ
k
a) can be arbitrarily reduced through

the parameters δi as long as ξka lies into a compact set. First of all, without loss of

generality, we assume ρ ≤ rξ. Indeed, we will use the parameter rξ to define a (compact)

ball and arbitrarily bound the norm of the perturbation term γBMδu(ξ
k
a) through the

parameters δi as long as ξka lies into this ball. Hence, we can always use the more

conservative condition. In detail, we define V (ξa) := ξ⊤APESTξa and Ωrξ := {ξ(2N−1)n
a |

V (ξa) ≤ a2r
2
ξ} ⊂ R(2N−1)n. Then, from (2.136a), we derive Brξ ⊆ Ωrξ ⊆ Br′ξ , where

r′ξ :=
√
a2/a1rξ. Thus, it holds ξka ∈ Ωrξ . Now, under the assumption ξka ∈ Brξ (later

verified by a proper selection of the algorithm parameters), we use (2.139), the Cauchy-

Schwarz inequality, the result (2.140), and the parameter δ̄ := max{δ1, . . . , δN}, to bound

∆V (ξka) := V (ξk+1
a )− V (ξka) along the trajectories of (2.129) as

∆V (ξka) ≤ −γc1∥ξka∥2 + δ̄2γ2 ∥PESTB∥ ∥ξka∥
∥∥∥u(ξka)

∥∥∥+ δ̄2γ22a4 ∥PESTB∥
∥∥∥ξka
∥∥∥
∥∥∥u(ξka)

∥∥∥

+ δ̄4γ2
∥∥∥B⊤PESTB

∥∥∥
∥∥∥u(ξka)

∥∥∥
2
. (2.142)

Now, let us define the compact set Si := {xi ∈ Rn | ∥xi − x⋆∥ ≤ r′ξa} ⊂ Rn and note

that ξa := (x̃a, z̃⊥,a) ∈ Ωrξ =⇒ x̃ ∈ S ⊂ RNn, where S := S1 × · · · × SN . Then,

we apply result (2.130) to claim that, for all i ∈ {1, . . . , N}, it holds ℓi(xi) ≤ Li,Si for

any xi ∈ Si. Thus, by defining LS := maxi{L1,S1 , . . . , LN,SN
} and using the definition

u(ξka) = ℓ(x̃k + 1N,nx
⋆), we get

∥∥∥u(ξka)
∥∥∥ ≤
√
NLS . (2.143)

Hence, if γ ∈ (0, 1] and δ ∈ (0, 1], we can bound (2.142) as

∆V (ξka) ≤ −γc1∥ξka∥2 + γδ̄2
(
b1

∥∥∥ξka
∥∥∥+ b2

)
, (2.144)
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where we introduced

b1 := 2 ∥PESTB∥
√
NLΩrξ

+ 2a4 ∥PESTB∥
√
NLΩrξ

b2 :=
∥∥∥B⊤PESTB

∥∥∥NL2
Ωrξ

.

Therefore, for any ρ ∈ (0, rξ) and c′1 ∈ (0, c1), we define

δ⋆ := min
{√

(c1 − c′1)ρ2/(b1r′ξ + b2), 1
}
. (2.145)

Consequently, by combining (2.144) and (2.145), we claim that, if δi ∈ (0, δ⋆) for all

i ∈ {1, . . . , N}, then, for any ξka ∈ Ωr′ξ such that
∥∥ξka
∥∥ ≥ ρ, it holds

∆V (ξka) < −γc′1
∥∥∥ξka
∥∥∥
2
. (2.146)

Thus, the inequality (2.146) ensures that the set Ωrξ is invariant for system (2.129).

Hence, if we pick ξ0a ∈ Brξ , we prove that ξka ∈ Ωrξ for all k ≥ 0. Consequently, the

bound (2.143) holds for all k ≥ 0 and, in turn, also the inequality (2.146) is verified

for all k ≥ 0, namely we proved that the trajectories of system (2.129) enter the ball Bρ
exponentially fast. The result (2.141) follows from the inequality (2.146) and (2.136a)

by setting c3 := c′1/(2a2). ■

Proof of Theorem 2.6

Since Assumptions 2.6, 2.7, and 2.8 hold, we apply Lemma 2.4 to claim that there

exists P : R(2N−1)n×(2N−1)n, a1, a2, c1 > 0 such that, if γ ∈ (0, γ0), the conditions (2.136)

are satisfied. Now, we evaluate the distance with respect to the origin of the initial

conditions of system (2.128) and (2.129), i.e.,
∥∥ξ0
∥∥ =

∥∥ξ0a
∥∥. By using the definition of ξ,

the changes of variables (2.124) and (2.126), and the triangle inequality, we get

∥∥ξ0
∥∥ ≤

∥∥x0 − 1N,nx
⋆
∥∥+

∥∥∥R⊤(z0 +G(1N,nx
⋆))
∥∥∥+

∥∥∥∥∥
1⊤N,n
N

(z0 +G(1N,nx
⋆))

∥∥∥∥∥
(a)

≤ r
√
N + ∥R∥ ∥G(1N,nx⋆)∥ ,

where in (a) we combine the initialization
∥∥x0i − x⋆

∥∥ ≤ r and z0i = 0 for all i ∈ {1, . . . , N}
with the fact that 1⊤N,nG(1N,nx

⋆) =
∑N

i=1 fi(x
⋆) = 0. Hence, by defining rξ := r

√
N +

∥R∥ ∥G(1N,nx⋆)∥, we claim that
∥∥ξ0
∥∥ =

∥∥ξ0a
∥∥ ≤ rξ. Once the initial distance from the

origin has been evaluated, we choose any ρ̄ > 0, set c2 :=
√
a2/a1, and choose any ϵ ∈

(0, ρ̄(1+c2)). Then, we pick ρ ∈ (0, (ρ̄−(1+c2)ϵ)/c2), c′1 ∈ (0, c1), and use the matrix PEST

satisfying (2.136) to apply Lemma 2.5. Specifically, we claim that there exist c3 > 0, and

δ⋆ ∈ (0, 1] such that, for any δi ∈ (0, δ⋆) for all i ∈ {1, . . . , N} and γ ∈ (0, 1], it holds (i)
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ξka ∈ Bc2rξ for all k ≥ 0, and (ii) the inequality
∥∥ξka
∥∥ ≤ c2 exp(−kγc3)

∥∥ξ0a
∥∥, for any ξka such

that
∥∥ξka
∥∥ ≥ ρ. Now, in order to bound ∥ξk − ξka∥, let υ(k, ξa) :=

∑k−1
q=0 (ϕ(q, ξa)− ϕa(ξa))

and write

υ(k + 1, ξk+1
a )− υ(k, ξka) = ϕ(k, ξk+1

a )− ϕa(ξk+1
a ) + υ(k, ξk+1

a )− υ(k, ξka). (2.147)

Then, let r′ξ := c2rξ and define ∆ := δ
√
Nn. Under the assumption of ξk ∈ Br′ξ+ϵ for

all k ≥ 0 (later verified by a proper selection of γ), we claim that the arguments of the

functions fi and their derivatives (embedded into the definitions of ϕ(k, ·) and ϕa(·) and

their derivatives) lie into the compact set Br′ξ+ϵ+∆. Thus, since the functions fi and its

derivatives are continuous (cf. Assumption 2.8) and the functions ϕ(·, ·) and ν(·, ·) are

periodic in the first argument, we define

Lϕ := sup
ξ∈Br′

ξ
+ϵ

k∈[0,τ ]

{
∥ϕ(k, ξ)∥ , ∥ϕa(ξ)∥ ,

∥∥∥∥
∂ϕ(k, ξ)

∂ξ

∥∥∥∥ ,
∥∥∥∥
∂ϕa(ξ)

∂ξ

∥∥∥∥ ,
∥∥∥∥
∂ν(k, ξ)

∂ξ

∥∥∥∥
}
.

Consequently, it holds

∥υ(k, ξ)∥ ≤ 2Lϕτ (2.148a)

∥ϕ(k, ξ)− ϕ(k, ξ′)∥ ≤ Lϕ∥ξ − ξ′∥ (2.148b)

∥ϕa(ξ)− ϕa(ξ′)∥ ≤ Lϕ∥ξ − ξ′∥ (2.148c)

∥υ(k, ξ)− υ(k, ξ′)∥ ≤ 2Lϕτ∥ξ − ξ′∥ (2.148d)

∥ϕa(ξ)∥ ≤ Lϕ, (2.148e)

for any ξ, ξ′ ∈ Br′ξ+ϵ and k ≥ 0. Let ηk := ξka + γυ(k, ξka) and write

ξk − ηk =
k−1∑

q=0

(ξq+1 − ξq)− (ηq+1 − ηq),

add and subtract γ
∑k−1

q=0(ϕ(q, ξ
q) + ϕ(q, ξqa)), and use (2.147) to get

ξk − ηk = γ
k−1∑

q=0

(ϕ(q, ξq)− ϕ(q, ηq)) + γ
k−1∑

q=0

(ϕ(q, ηq)− ϕ(q, ξqa))

− γ
k−1∑

q=0

(ϕ(q, ξq+1
a )− ϕ(q, ξqa)) + γ

k−1∑

q=0

(ϕa(ξ
q+1
a )− ϕa(ξqa))

− γ
k−1∑

q=0

(υ(q, ξq+1
a )− υ(q, ξqa)).
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Use (2.128), (2.129), and (2.148) to bound

∥ξk − ηk∥ ≤ γLϕ
k−1∑

q=0

∥ξq − ηq∥+ γ2L2
ϕ2 (1 + 2τ) k.

Apply the discrete Gronwall inequality (see [84, 153]) and

k−1∑

q=0

γLϕq exp (−γLϕq) ≤
∞∑

q=0

γLϕq exp (−γLϕq) = 1

to get

∥ξk − ηk∥ ≤ γ2L2
ϕ2 (1 + 2τ) k + γLϕ2 (1 + 2τ) exp (γLϕk) ,

from which

∥ξk − ηk∥ ≤ γ2L2
ϕ2 (1 + 2τ) k + γLϕ2 (1 + 2τ) exp (γLϕk) + γ2Lϕτ.

Then, set θ⋆ ∈ N such that

θ⋆ ≥ − 1

c3
ln

(
(ρ̄− ϵ)/c2
c2rξ

)
. (2.149)

Let γ2 := ϵ/3
L2
ϕ2(1+2τ)θ⋆

, γ3 := ϵ/3
2Lϕ(1+2τ) exp(Lϕθ⋆)

,γ4 := ϵ/3
2Lϕτ

, γ1 := min{γ2, γ3, γ4, 1}, and

k⋆ := θ⋆/γ. Then, for any γ ∈ (0, γ1), it holds

∥∥∥ξk − ξka
∥∥∥ ≤ ϵ, (2.150)

for all k ∈ [0, k⋆]. As a consequence, since ξka ∈ Br′ξ for all k ≥ 0, it holds ξk ∈ Br′ξ+ϵ for

all k ∈ [0, k⋆], i.e., we have verified that the bounds (2.148) can be used into the interval

[0, k⋆]. Moreover, the exponential law (2.141) and the expression of θ⋆ (cf. (2.149)) ensure

that it holds

∥ξka∥ ≤ (ρ̄− ϵ)/c2, (2.151)

for all k ≥ k⋆. Now, by using the triangle inequality, we write

∥ξk⋆∥ ≤ ∥ξk⋆ − ξk⋆a ∥+ ∥ξk
⋆

a ∥
(a)

≤ ρ̄/c2, (2.152)

where in (a) we combined (2.150) and (2.151). The inequality (2.152) guarantees that

ξt
⋆ ∈ Bρ̄/c2 , hence we proved that the trajectories of (2.129) enters into Bρ̄/c2 with linear

rate. Next, in order to show that ξk ∈ Bρ̄ for any k ≥ k⋆, we divide the set of natural

numbers in intervals as N = [0, k⋆]∪ [k⋆, 2k⋆]∪ . . . . Define ψa(q+k⋆, ξk
⋆
) as the solution
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to (2.129) for ξ0a = ξk
⋆

and q ∈ [0, k⋆]. Thus, at the beginning of the time interval [k⋆, 2k⋆],

the initial condition of the trajectory of (2.129) (i) coincides with the one of ψa(q+k⋆, ξk
⋆
),

and (ii) lies into Bρ̄ ⊆ Brξ . Thus, we apply the same arguments above to guarantee that,

for any γ ∈ (0, γ⋆), it holds (i)
∥∥ξq+k⋆ − ψa(q + k⋆, ξk

⋆
)
∥∥ ≤ ϵ, for all q ∈ [0, k⋆], and (ii)

ψa(2k
⋆, ξk

⋆
) ∈ B(ρ̄−ϵ)/c2 . Moreover, using the arguments of Lemma 2.5, we guarantee

that system (2.129) cannot escape from the set Bρ̄−ϵ, namely ξka ∈ Bρ̄−ϵ for all k ≥ k⋆.

Thus, we get ξk ∈ Bρ̄ for all k ∈ [k⋆, 2k⋆]. The proof follows by recursively applying the

same arguments above for each time interval [jk⋆, (j + 1)k⋆] with j = 2, 3, . . . , and by

using the trivial inequality
∥∥xki − x⋆

∥∥ ≤
∥∥ξk
∥∥ for all i ∈ {1, . . . , N} and k ≥ 0.

2.5.2 Numerical Simulations

To corroborate the theoretical analysis, in this section we provide numerical computa-

tions for the proposed distributed algorithm on a personalized optimization framework.

In several engineering applications, a problem of interest consists of optimizing a

performance metric while keeping into account user discomfort terms [146, 203]. In

these scenarios, the user discomfort term is usually not known in advance but can be only

accessed by measurements. Specifically, we associate to each agent i ∈ {1, . . . , N} a cost

function in the form fi(w) = w⊤Qiw + r⊤i w + log(
∑n

ℓ=1 aiℓe
biℓwℓ) with Qi = Q⊤

i ∈n×n,

ri ∈n and aiℓ, biℓ, for all ℓ ∈ {1, . . . , n}. For all i ∈ {1, . . . , N} and ℓ ∈ {1, . . . , n}, we

uniformly randomly choose the eigenvalues of Qi from the interval [10−3, 5 · 10−3], the

components of ri within the interval [−10−2, 3 · 10−2], and the parameters aiℓ, biℓ within

the interval [0, 10−3]. Agents communicate according to Erdős-Rényi random graphs

with edge probabilities equal to 0.2. We choose the parameters τip and ϕip as follows.

Define O3 as the set of odd umbers greater than 3. Then, for all i ∈ {1, . . . , N}, we take

δi = 0.2, ϕip =
π

4
(1 + (−1)p) for all p = 1, . . . , n, while τip have been chosen as the first

⌊(n+ 1)/2⌋ elements of O3. Simulations are performed using DISROPT [63], a Python

package based on MPI which provides libraries to encode and simulate distributed

optimization algorithms.

In the first set of runs, we consider for the number of agents the values N =

5, 10, 20, 30. For each value of N , we generate 50 random instances. We generate com-

munication graphs with a diameter d such that the ratio N/d is constant while varying

N . Results are depicted in Fig. 2.11, where for each problem instance, we evaluated the

relative errors |∑i fi(x̄
k)− f(x⋆)|/|f(x⋆)| and ∥x̄k − x⋆∥/∥x⋆∥, where x̄k := 1

N

∑N
i=1 x

k
i .
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Figure 2.11: Cost error (left) and optimization variable error (right) in Monte Carlo simulations
for varying number of agents.

Then, we perform numerical simulations over a larger network made of N = 250

agents. We consider different optimization variable sizes, namely n = 10, 20. For each

value of N , we generate 20 random instances. Part of these performances has been run

on the Marconi100 HPC Cluster of the Italian Cineca. We used 10 nodes of the cluster

and, for each node, we used 25 cores and 4 GPUs. The code has been adapted in order to

perform part of the computation directly on GPUs. The results are shown in Fig. 2.12.
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Figure 2.12: Cost error (left) and optimization variable error (right) in Monte Carlo simulations
for different problem size and 250 agents.

To conclude, we perform a numerical comparison against with the zero-order dis-

tributed scheme Algorithm 1 in [179]. At each communication round, this algorithm

estimates the gradient with two queries of the objective function, which is similar to the

one-query estimation in our proposed algorithm. We run Algorithm 1 in [179] on the

same set of simulations with n = 10 and N = 10. We used the same communication

graphs, cost functions and initial conditions. Results are in Fig. 2.13. As it can be seen,

our scheme performs better.
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Figure 2.13: Cost error (left) and optimization variable error (right) comparison between the
proposed algorithm and a zero order scheme.

In detail, increasing the number of agents increases the Lipschitz constant of the

system to be averaged. Moreover, a larger domain of initial conditions also implies a

potentially larger Lϕ constant (cf. Section 2.5.1). This implies smaller γ⋆, which, fixed

the other parameters, makes the convergence slower. The decision variable dimension

instead impacts the selection of the dither signal. A larger number of states implies a

larger number of frequencies. This, in turn, means a longer time to estimate the gradient

(cf. Lemma 2.3). Notice that, however, the accuracy of the final estimate is guaranteed

by design. Indeed, since δ and γ are designed on ρ̄, the trajectories of (5) converge to a

ball of radius ρ̄ independently of the dimensions of the optimization problem.

2.6 Distributed Online Consensus Optimization

In this section, we address online instances of (2.1), namely optimization problems in

the form

min
x∈Rn

N∑

i=1

fki (x), k ≥ 0, (2.153)

where each fki : Rn → R is a local function revealed only to agent i at iteration k. In the

following, we let fk(x) :=
∑N

i=1 f
k
i (x).

We address the distributed solution of the online optimization problem (2.153) in

terms of dynamic regret (see, e.g., [105]). In particular, let xki be the solution estimate

of the problem at time t maintained by agent i, and let xk⋆ be a minimizer of
∑N

i=1 f
k
i .

Then, the agents want to minimize the dynamic regret defined as

RT :=
T∑

k=1

fk(x̄k)−
T∑

k=1

fk(xk⋆), (2.154)

for a finite value T > 1 with x̄k := 1
N

∑N
i=1 x

k
i .

Another possible performance metric is the so-called static regret (see, e.g., [105]).
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The dynamic regret (2.154) is known to be more challenging than the static one [105]

and, for this reason, consistently with the majority of the recent papers in literature,

this work focuses on the dynamic regret (2.154). As it is customary in the distributed

setting, we also complement these measures with the consensus metric
∑N

i=1

∥∥xTi − x̄T
∥∥2,

quantifying how far from consensus the local decisions are.

Along this section, we enforce the following assumptions.

Assumption 2.9 (Lipschitz continuous gradients). The functions fki have L-Lipschitz
continuous gradients for all i ∈ {1, . . . , N} and k ≥ 0. △

Assumption 2.10 (Strong convexity). The functions fki are µ-strongly convex for all i ∈
{1, . . . , N} and k ≥ 0. △

Finally, the following characterizes the communication structure.

Assumption 2.11 (Network Structure). The weighted graph G is connected with doubly
stochastic matrixWG stochastic. △

We point out that, in light of Assumption 2.10, the minimizer xk⋆ is unique for all

k ≥ 0 (cf. Proposition A.2 in Appendix A).

In order to address in a distributed fashion problem (2.153), we propose GTAdam,

i.e., a novel method taking inspiration both from the Gradient Tracking (see Section 2.2)

distributed algorithm and Adam.

Adam centralized algorithm

Adam [94] is an optimization algorithm that solves problems in the form (2.153) in a

centralized computation framework. It is an iterative gradient-like procedure in which,

at each iteration k, a solution estimate xk is updated by means of a descent direction

which is enhanced by a proper use of the gradient history, i.e., through estimates

of their first- and second-order momenta. Specifically, the (time-varying) gradient

gk = ∇fk(xk) of the function drives two exponential moving average estimators. The

two estimates, denoted by mk and vk, represent, respectively, mean and variance (1st

and 2nd momentum) of the gradient sequence and are nonlinearly combined to build

the descent direction. A pseudo-code of Adam algorithm is reported in Algorithm 3

in which γ > 0 is the step-size, the constant 0 < ϵ ≪ 1 is introduced to guarantee

numerical robustness of the scheme, while the hyper-parameters β1, β2 ∈ (0, 1) control

the exponential-decay rate of the moving average dynamics.

We point out that in the algorithm above the ratio mk+1√
vk+1+ϵ

is meant element-wise.

Typical choices for the algorithmic parameters are β1 = 0.9, β2 = 0.999, and ϵ = 10−8.
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Algorithm 3 Adam

initialization: x0 ∈ Rn, m0 = v0 = 0, g0 = ∇f0(x0)
for k = 1, 2 . . . do

mk+1 = β1m
k + (1− β1)gk

vk+1 = β2v
k + (1− β2)gk ⊙ gk

xk+1 = xk − γ
√
1−β2
1−β1

mk+1√
vk+1+ϵ

gk+1 = ∇fk+1(xk+1)
end for

2.6.1 GTAdam: Algorithm Description and Analysis

In this section, we present GTAdam. Along the evolution of the algorithm, each agent i

maintains four local states:

(i) a local estimate xki of the current optimal solution xk⋆ ;

(ii) an auxiliary variable ski whose role is to track the gradient of the whole cost

function;

(iii) an estimate mk
i of the 1st momentum of ski ;

(iv) an estimate vki of the 2nd momentum of ski .

The momentum estimates of ski are initialized as m0
i = v0i = 0, while the tracker of the

gradient is initialized as s0i = ∇f0i (x0i ).
The algorithm works as follows. At each iteration k, each agent i performs the

following operations

(i) it updates the moving averages mk
i and vki ;

(ii) it computes a weighted average of the solution estimates of its neighbors and,

starting from this point, it uses the update direction mk+1
i√

vk+1
i +ϵ

to compute the new

solution estimate xk+1
i ;

(iii) it updates the local gradient tracker ski via a “dynamic consensus” mechanism.

A pseudo-code of GTAdam is reported in Algorithm 4.

Some remarks are in order. The algorithm proposed in this paper is different

from [134]. In fact, although they both use a similar strategy involving first- and

second-order momenta, in that work only local gradients are considered, without re-

sorting to any tracking mechanism. Note that a saturation term G ≫ 0 is introduced

in the update of vki , where the min operator is to be intended element-wise. The value

of G guarantees a bound for the scaling factor that multiplies the descent direction.
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Algorithm 4 GTAdam (for agent i)

initialization: x0i ∈ Rn, s0i = g0i = ∇f0i (x0i ), m0
i = v0i = 0

for k = 1, . . . , T do
mk+1
i = β1m

k
i + (1− β1)ski

vk+1
i = min{β2vki + (1− β2)ski ⊙ ski , G}

xk+1
i =

∑
j∈Ni

wijx
k
j − γ

mk+1
i√

vk+1
i +ϵ

gk+1
i = ∇fk+1

i (xk+1
i )

sk+1
i =

∑
j∈Ni

wijs
k
j + gk+1

i − gki

end for

Such a bound will turn out to be important for analysis purposes. We suggest to take it

proportional to the initial estimates v0i .

In order to analyze GTAdam, we rewrite it into an aggregate form. We define

xk := col(xk1, . . . , x
k
N ) and their average as x̄k := 1

N

∑N
i=1 x

k
i . Similar definitions apply to

the quantities mk, vk,dk, gk, sk and their averages m̄k, v̄k, d̄k, s̄k. With these definitions

at hand, GTAdam can be rephrased from a global perspective as

mk+1 = β1m
k + (1− β1)sk (2.155a)

vk+1 = min{β2vk + (1− β2)sk ⊙ sk,1N,nG} (2.155b)

dk+1 = (Vk+1 + ϵI)−1/2mk+1 (2.155c)

xk+1 =Wxk − γdk+1 (2.155d)

sk+1 =Wsk + gk+1 − gk, (2.155e)

where we set W :=W⊗ In, Vk := diag(vk), and V̄k := diag(v̄k). Moreover, the averaged

quantities of (2.155) satisfy

m̄k+1 = β1m̄
k + (1− β1)s̄k (2.156a)

v̄k+1 = min{β2v̄k + (1− β2)s̄k ⊙ s̄k, G} (2.156b)

d̄k+1 =
1

N
1⊤N,nd

k+1 (2.156c)

x̄k+1 = x̄k − γd̄k+1 (2.156d)

s̄k+1 = s̄k +
1

N

N∑

i=1

(gk+1
i − gki ). (2.156e)

Our analysis is based on studying the aggregate dynamical evolution of the following:

average first momentum ∥m̄k∥, average tracking momentum difference ∥s̄k − m̄k∥, first

momentum error ∥mk − 1N,nm̄
k∥, gradient tracking error ∥sk − 1N,ns̄

k∥, consensus error

∥xk − 1N,nx̄
k∥ and solution error ∥x̄k − xk⋆∥. Let yk be the vector stacking the above
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quantities at iterations k

yk :=




∥m̄k∥
∥s̄k − m̄k∥

∥mk − 1N,nm̄
k∥

∥sk − 1N,ns̄
k∥

∥xk − 1N,nx̄
k∥

∥x̄k − xk⋆∥




. (2.157)

Notice that, due to the distributed context and no assumptions on the boundedness of

the gradients, we need to take into account all these quantities to study the convergence.

Let us introduce two useful variables that will be used to provide the main result of the

paper, namely

ηk := sup
i

sup
x∈Rn

∥∇fk+1
i (x)−∇fki (x)∥,

ζk := ∥xk+1
⋆ − xk⋆∥.

(2.158)

We now give a sequence of intermediate results, providing proper bounds on the compo-

nents of yk (defined in (2.157)), that are then used as building blocks for proving the

main result regarding GTAdam, i.e., an upper bound for the dynamic regret.

Preparatory Lemmas

Lemma 2.6 (Average first momentum magnitude). Let Assumption 2.9 holds. Then, for
all k ≥ 1, it holds

∥∥∥m̄k+1
∥∥∥ ≤ β1

∥∥∥m̄k
∥∥∥+ (1− β1)L√

N

∥∥∥xk − 1N,nx̄
k
∥∥∥+ (1− β1)L

∥∥∥x̄k − xk⋆
∥∥∥ .

Proof. By using the update (2.156a), we can write

∥∥∥m̄k+1
∥∥∥ =

∥∥∥β1m̄k + (1− β1)s̄k
∥∥∥ ≤ β1

∥∥∥m̄k
∥∥∥+ (1− β1)

∥∥∥s̄k
∥∥∥ , (2.159)

in which we use the triangle inequality. Regarding the term
∥∥s̄k
∥∥, we use the relation

s̄k = 1
N

∑N
i=1∇fki (xki ), and we add 1

N

∑N
i=1∇fki (xk⋆) = 0, thus obtaining

∥s̄k∥ =
∥∥∥∥∥
1

N

N∑

i=1

∇fki (xki )−
1

N

N∑

i=1

∇fki (xk⋆)
∥∥∥∥∥

(a)

≤ L

N

N∑

i=1

∥∥∥xki − xk⋆
∥∥∥

(b)

≤ L√
N

∥∥∥xk − 1N,nx
k
⋆

∥∥∥
(c)

≤ L√
N

∥∥∥xk − 1N,nx̄
k
∥∥∥+ L

∥∥∥x̄k − xk⋆
∥∥∥ , (2.160)

where in (a) we exploit the Lipschitz continuity of the gradients of the cost functions
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(cf. Assumptions 2.9), in (b) we use the basic algebraic property
∑N

i=1 ∥θi∥ ≤
√
N∥θ∥ for

a generic vector θ := col(θ1, . . . , θN ), and in (c) we add and subtract the term 1N,nx̄
k

and apply the triangle inequality. The proof follows by combining the bounds (2.159)

and (2.160). ■

Lemma 2.7 (First momentum error). For all k ≥ 1, it holds

∥∥∥mk+1 − 1N,nm̄
k+1
∥∥∥ ≤ β1

∥∥∥mk − 1N,nm̄
k
∥∥∥+ (1− β1)

∥∥∥sk − 1N,ns̄
k
∥∥∥ .

The proof of Lemma 2.7 follows by combining (2.155a) and (2.156a) with the triangle

inequality.

Lemma 2.8 (Input signal error). For all k ≥ 0, it holds

∥dk+1 − 1N,nd̄
k+1∥ ≤ β1

√
N√
ϵ

∥∥∥m̄k
∥∥∥+ β1√

ϵ

∥∥∥mk − 1N,nm̄
k
∥∥∥+ (1− β1)√

ϵ

∥∥∥sk − s̄k
∥∥∥

+
(1− β1)L√

ϵ

∥∥∥xk − 1N,nx̄
k
∥∥∥+ (1− β1)β1L

√
N√

ϵ

∥∥∥x̄k − xk⋆
∥∥∥ .

Proof. By using (2.155c) and (2.156c), one has

∥∥∥dk+1 − 1N,nd̄
k+1
∥∥∥ =

∥∥∥∥∥

(
I −

1N,n1
⊤
N,n

N

)
(Vk+1 + ϵI)−1/2mk+1

∥∥∥∥∥
(a)

≤
∥∥∥(Vk+1 + ϵI)−1/2

∥∥∥
∥∥∥mk+1

∥∥∥
(b)

≤ 1√
ϵ

∥∥∥mk+1
∥∥∥

(c)

≤ 1√
ϵ

∥∥∥mk+1 − 1N,nm̄
k+1
∥∥∥+
√
N√
ϵ

∥∥∥m̄k+1
∥∥∥ , (2.161)

where in (a) we apply the Cauchy-Schwarz inequality combined with
∥∥∥∥I −

1N,n1
⊤
N,n

N

∥∥∥∥ ≤ 1,

in (b) we use the bound
∥∥(Vk+1 + ϵI)−1/2

∥∥ ≤ 1√
ϵ

(justified by the fact that vk ≥ 0 for all

k ≥ 0), in (c) we add and subtract within the norm 1N,nm̄
k+1 and apply the triangle

inequality and an algebraic property. The proof follows by using Lemma 2.6 and 2.7

in (2.161). ■

Lemma 2.9 (Tracking error). Let Assumptions 2.9, 2.10, and 2.11 hold. Then, for all k ≥ 0,
it holds

∥sk+1 − 1N,ns̄
k+1∥ ≤

(
Λ + γ

2(1− β1)L√
ϵ

)∥∥∥sk − 1N,ns̄
k
∥∥∥

+ γ
2β1L

√
N√

ϵ

∥∥∥m̄k
∥∥∥+ γ

2β1L√
ϵ

∥∥∥mk − 1N,nm̄
k
∥∥∥

+

(
L ∥W − I∥+ γ

2(1− β1)β1L2

√
ϵ

)∥∥∥xk − 1N,nx̄
k
∥∥∥
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+ γ
(1− β1)(1 + β1)L

2√
N√

ϵ

∥∥∥x̄k − xk⋆
∥∥∥+
√
Nηk.

where Λ ∈ (0, 1) is the spectral radius ofW − 1N,n1
⊤
N,n

N and ηk has been defined in (2.158).

Proof.

By combining (2.155e) and (2.156e) one has

∥sk+1 − 1N,ns̄
k+1∥ =

∥∥∥∥∥Wsk + gk+1 − gk − 1N,n

(
s̄k +

1

N

N∑

i=1

(gk+1
i − gki )

)∥∥∥∥∥
(a)

≤
∥∥∥∥∥

(
W −

1N,n1
⊤
N,n

N

)
(sk − 1N,ns̄

k)

∥∥∥∥∥+
∥∥∥∥∥

(
I −

1N,n1
⊤
N,n

N

)
(gk+1 − gk)

∥∥∥∥∥
(b)
= Λ

∥∥∥sk − 1N,ns̄
k
∥∥∥+

∥∥∥gk+1 − gk
∥∥∥ , (2.162)

where (a) uses 1N,n ∈ ker

(
W − 1N,n1

⊤
N,n

N

)
and the triangle inequality, and (b) combines

the Cauchy-Schwarz inequality with the bounds
∥∥∥∥W −

1N,n1
⊤
N,n

N

∥∥∥∥ ≤ Λ and
∥∥∥∥I −

1N,n1
⊤
N,n

N

∥∥∥∥ ≤

1. Let g̃k := col(∇fk+1
1 (xk1), . . . ,∇fk+1

N (xkN )) and manipulate the term
∥∥gk+1 − gk

∥∥
in (2.162) as

∥gk+1 − gk∥ ≤ ∥gk+1 − g̃k∥+
∥∥∥g̃k − gk

∥∥∥
(a)

≤ L∥xk+1 − xk∥+ ∥g̃k − gk∥
(b)

≤ L
∥∥∥xk+1 − xk

∥∥∥+
√
Nηk

(c)
= L∥Wxk − γdk+1 − xk∥+

√
Nηk, (2.163)

where in (a) we use the Lipschitz continuity of the gradients of the cost functions (cf.

Assumption 2.9), (b) uses the variable ηk (cf (2.158)), and (c) uses the update (2.155d)

of xk+1. Let us manipulate the first term on the right-hand side of (2.163):

∥∥∥Wxk − γdk+1 − xk
∥∥∥ (a)
=
∥∥∥(W − I)(xk − 1N,nx̄

k)− γdk+1
∥∥∥

(b)

≤ ∥W − I∥∥xk − 1N,nx̄
k∥+ γ∥dk+1 − 1N,nd̄

k+1∥+ γ∥1N,nd̄k+1∥,
(2.164)

where (a) uses the fact that ker (W − I) = span(1N,n) and in (b) we add and subtract the

term 1N,nd̄
k+1 within the norm and we apply the triangle inequality and the Cauchy-

Schwarz inequality. Regarding ∥1N,nd̄k+1∥, we use (2.155c) and (2.156c) to write

∥1N,nd̄k+1∥ =
∥∥∥∥∥
1N,n1

⊤
N,n

N
dk+1

∥∥∥∥∥ =

∥∥∥∥∥
1N,n1

⊤
N,n

N
(Vk+1 + ϵI)−1/2mk+1

∥∥∥∥∥
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(a)

≤ 1√
ϵ

∥∥∥mk+1
∥∥∥

(b)

≤ 1√
ϵ

∥∥∥mk+1 − 1N,nm̄
k+1
∥∥∥+
√
N√
ϵ

∥∥∥m̄k+1
∥∥∥ , (2.165)

where in (a) we apply the Cauchy-Schwarz inequality and the bounds
∥∥∥∥
1N,n1

⊤
N,n

N

∥∥∥∥ ≤ 1

and
∥∥(Vk+1 + ϵ)−1/2

∥∥ ≤ 1√
ϵ
, in (b) we add and subtract within the norm the term

1N,nm̄
k+1, apply the triangle inequality, and use an algebraic property. By combin-

ing (2.164) and (2.165), we bound (2.163) as

∥gk+1 − gk∥ ≤ L∥W − I∥∥xk − 1N,nx̄
k∥+ γL∥dk+1 − 1N,nd̄

k+1∥

+ γ
L√
ϵ

∥∥∥mk+1 − 1N,nm̄
k+1
∥∥∥+ γ

L
√
N√
ϵ

∥∥∥m̄k+1
∥∥∥+
√
Nηk. (2.166)

Now, by using the bound (2.166) within (2.164), we get

∥∥∥sk+1 − 1N,ns̄
k+1
∥∥∥ ≤ Λ

∥∥∥sk − 1N,ns̄
k
∥∥∥+ L∥W − I∥∥xk − 1N,nx̄

k∥

+ γL∥dk+1 − 1N,nd̄
k+1∥+ γ

L√
ϵ

∥∥∥mk+1 − 1N,nm̄
k+1
∥∥∥

+ γ
L
√
N√
ϵ

∥∥∥m̄k+1
∥∥∥+
√
Nηk. (2.167)

The proof follows by using Lemma 2.6, 2.7 and 2.8 to bound
∥∥m̄k+1

∥∥,
∥∥mk+1 − 1N,nm̄

k+1
∥∥,

and
∥∥dk+1 − 1N,nd̄

k+1
∥∥. ■

Lemma 2.10 (Consensus error). Let Assumptions 2.9, and 2.11 hold. Then, for all k ≥ 1, it
holds

∥xk+1 − 1N,nx̄
k+1∥ ≤

(
Λ + γ

(1− β1)L√
ϵ

)
∥xk − 1N,nx̄

k∥+ γ
β1
√
N√
ϵ

∥∥∥m̄k
∥∥∥

+ γ
β1√
ϵ

∥∥∥mk − 1N,nm̄
k
∥∥∥+ γ

(1− β1)√
ϵ

∥∥∥sk − s̄k
∥∥∥

+ γ
(1− β1)β1L

√
N√

ϵ

∥∥∥x̄k − xk⋆
∥∥∥ .

Proof.

By combining (2.155d) and (2.156d), we have

∥xk+1 − 1N,nx̄
k+1∥ = ∥Wxk − γdk+1 − 1N,nx̄

k + γ1N,nd̄
k+1∥

(a)

≤ ∥Wxk − 1N,nx̄
k∥+ γ∥dk+1 − 1N,nd̄

k+1∥
(b)

≤ Λ∥xk − 1N,nx̄
k∥+ γ∥dk+1 − 1N,nd̄

k+1∥,
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where in (a) we apply the triangle inequality and (b) follows by
∥∥∥∥W −

1N,n1
⊤
N,n

N

∥∥∥∥ ≤ Λ.

The proof follows by Lemma 2.8. ■

Lemma 2.11 (Tracking momentum difference magnitude). Let Assumptions 2.9, 2.10,
and 2.11 hold. Then, for all k ≥ 0, it holds

∥s̄k+1 − m̄k+1∥ ≤ β1∥s̄k − m̄k∥+ γ
β1L√
ϵ

∥∥∥m̄k
∥∥∥+ γ

2β1L√
ϵ
√
N
∥mk − 1N,nm̄

k∥

+

(
Λ

L√
N

+
L√
N

+ γ
(1− β1)L2

√
ϵ
√
N

)∥∥∥xk − 1N,nx̄
k
∥∥∥

+ γ
L√
ϵ
√
N

∥∥∥sk − 1N,ns̄
k
∥∥∥+ γ

(1− β1)L2

√
ϵ

∥∥∥x̄k − xk⋆
∥∥∥+ 1√

N
ηk.

Proof. From the updates of s̄k+1 and m̄k+1 (cf. (2.156e), (2.156a)), we get

∥s̄k+1 − m̄k+1∥ =
∥∥∥∥s̄k +

1

N

N∑

i=1

∇fk+1
i (xk+1

i )− 1

N

N∑

i=1

∇fki (xki )− β1m̄k − (1− β1)s̄k
∥∥∥∥

(a)

≤ β1∥s̄k − m̄k∥+
∥∥∥∥∥
1

N

N∑

i=1

∇fk+1
i (xk+1

i )− 1

N

N∑

i=1

∇fki (xki )
∥∥∥∥∥ ,

where (a) uses the triangle inequality. By adding and subtracting within the second

norm 1
N

∑N
i=1∇fk+1

i (x̄k+1) and 1
N

∑N
i=1∇fk+1

i (xki ), we use the triangle inequality to

obtain

∥s̄k+1 − m̄k+1∥ ≤ β1∥s̄k − m̄k∥+
∥∥∥∥∥
1

N

N∑

i=1

∇fk+1
i (xk+1

i )− 1

N

N∑

i=1

∇fk+1
i (x̄k+1)

∥∥∥∥∥

+

∥∥∥∥∥
1

N

N∑

i=1

∇fk+1
i (xki )−

1

N

N∑

i=1

∇fki (xki )
∥∥∥∥∥

+

∥∥∥∥∥
1

N

N∑

i=1

∇fk+1
i (x̄k+1)− 1

N

N∑

i=1

∇fki (xki )
∥∥∥∥∥

(a)

≤ β1∥s̄k − m̄k∥+ L√
N
∥xk+1 − 1N,nx̄

k+1∥+ 1√
N
ηk

+
L√
N
∥xk − 1N,nx̄

k+1∥, (2.168)

where in (a) we use the Lipschitz continuity of the gradients of the cost functions (cf.

Assumptions 2.9) for the second and the third norm, and we use ηk (cf. (2.158)). Now,
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we replace x̄k+1 with its update (2.156d) within the last term of (2.168) obtaining

∥s̄k+1 − m̄k+1∥ ≤ β1∥s̄k − m̄k∥+ L√
N
∥xk+1 − 1N,nx̄

k+1∥+ L√
N
ηk

+
L√
N
∥1N,nx̄k − γ1N,nd̄k+1 − xk∥

(a)

≤ β1∥s̄k − m̄k∥+ L√
N
∥xk+1 − 1N,nx̄

k+1∥+ L√
N
ηk +

L√
N
∥xk − 1N,nx̄

k∥

+ γ
L√
ϵ
√
N

∥∥∥mk+1 − 1N,nm̄
k+1
∥∥∥+ γ

L√
ϵ

∥∥∥m̄k+1
∥∥∥ , (2.169)

where in (a) we use (2.165) to bound
∥∥1N,nd̄k+1

∥∥. The proof follows by using Lemma 2.10, 2.6,

and 2.7 to bound
∥∥xk+1 − 1N,nx̄

k+1
∥∥,
∥∥m̄k+1

∥∥, and
∥∥mk+1 − 1N,nm̄

k+1
∥∥, respectively. ■

Lemma 2.12 (Solution error). Let Assumptions 2.9, 2.10, and 2.11 hold. Then, for all k ≥ 0,
it holds

∥x̄k+1 − xk+1
⋆ ∥ ≤ (1− γδ)∥x̄k − xk⋆∥+ γ

β1√
ϵ
∥s̄k − m̄k∥+ γ

L√
ϵ
√
N
∥xk − 1N,nx̄

k∥

+ γ
β1√
ϵ
√
N

∥∥∥mk − 1N,nm̄
k
∥∥∥+ γ

(1− β1)√
ϵ
√
N

∥∥∥sk − 1N,ns̄
k
∥∥∥+ ζk,

where ζk is defined in (2.158) and δ := min
{

µ√
ϵ+G

, L√
ϵ

}
.

Proof. By using (2.156d), one has

∥∥∥x̄k+1 − xk+1
⋆

∥∥∥ =
∥∥∥x̄k − γd̄k+1 − xk+1

⋆

∥∥∥
(a)

≤
∥∥∥x̄k − γd̄k+1 − xk⋆

∥∥∥+ ζk,

where in (a) we add and subtract within the norm xk⋆ , use the triangle inequality, and use

ζk (cf. (2.158)). Now, we add and subtract within the norm γ
1⊤
N,n(V

k+1+ϵI)−1/21N,n

N2 ∇fk(x̄k)
and we use the triangle inequality to write

∥x̄k+1 − xk+1
⋆ ∥ ≤

∥∥∥∥∥x̄
k − γ

1⊤N,n(V
k+1 + ϵI)−1/21N,n

N2
∇fk(x̄k)− xk⋆

∥∥∥∥∥

+ γ

∥∥∥∥∥
1⊤N,n(V

k+1 + ϵI)−1/21N,n

N2
∇fk(x̄k)− d̄k+1

∥∥∥∥∥+ ζk. (2.170)

Consider the second term of (2.170) and use (2.156c) to write

γ

∥∥∥∥∥
1⊤N,n(V

k+1 + ϵI)−1/21N,n

N

∇fk(x̄k)
N

− d̄k+1

∥∥∥∥∥
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= γ

∥∥∥∥
1⊤N,n(V

k+1 + ϵI)−1/21N,n

N

∇fk(x̄k)
N

−
1⊤N,n(V

k+1 + ϵI)−1/2

N
mk+1

∥∥∥∥
(a)

≤ γ

∥∥∥∥∥
1⊤N,n(V

k+1 + ϵI)−1/21N,n

N

(∇fk(x̄k)
N

− m̄k+1

)∥∥∥∥∥

+ γ

∥∥∥∥∥
1⊤N,n(V

k+1 + ϵI)−1/2

N
(mk+1 − 1N,nm̄

k+1)

∥∥∥∥∥
(b)

≤ γ√
ϵ

∥∥∥∥
∇fk(x̄k)

N
− m̄k+1

∥∥∥∥+
γ√
ϵ
√
N

∥∥∥mk+1 − 1N,nm̄
k+1
∥∥∥ , (2.171)

where in (a) we add and subtract within the norm the term
1⊤
N,n(V

k+1+ϵI)−1/21N,n

N m̄k+1

and we apply the triangle inequality, in (b) we apply the Cauchy-Schwarz inequality

combined with the bounds
∥∥∥∥
1⊤
N,n(V

k+1+ϵI)−1/21N,n

N

∥∥∥∥ ≤ 1√
ϵ

and
∥∥∥∥
1⊤
N,n(V

k+1+ϵI)−1/2

N

∥∥∥∥ ≤
1√
ϵ
√
N

. Now, we add and subtract the term 1
N

∑N
i=1∇fki (xki ) and then we use the triangle

inequality to rewrite the first term of the second member of (2.171) as

γ
1√
ϵ

∥∥∥∥
∇fk(x̄k)

N
− m̄k+1

∥∥∥∥

= γ
1√
ϵ

∥∥∥ 1

N

N∑

i=1

∇fki (xki )− m̄k+1
∥∥∥+ γ

1√
ϵ

∥∥∥∇f
k(x̄k)

N
− 1

N

N∑

i=1

∇fki (xki )
∥∥∥

(a)
= γ

1√
ϵ

∥∥∥ 1

N

N∑

i=1

∇fki (xki )− β1m̄k − (1− β1)s̄k
∥∥∥+ γ

1√
ϵ

∥∥∥∇f
k(x̄k)

N
− 1

N

N∑

i=1

∇fki (xki )
∥∥∥

(b)

≤ γ
β1√
ϵ
∥s̄k − m̄k∥+ γ

L√
ϵ
√
N
∥xk − 1N,nx̄

k∥, (2.172)

where in (a) we use (2.156a), (b) uses the relation s̄k = 1
N

∑N
i=1∇fki (xki ), and the Lips-

chitz continuity of the gradients of the cost functions (cf. Assumption 2.9) combined

with 1
N

∑N
i=1∇fki (xki ) =

∑N
i=1∇fki (x̄k). Next, in order to bound the right-hand side

of (2.170), first notice that 1√
G+ϵ

<
1⊤
N,n(V

k+1+ϵI)−1/21N,n

N < 1√
ϵ
. Moreover, being fk

µ-strongly convex for all k ≥ 0 (cf. Assumption 2.10) and having L-Lipschitz continuous

gradients (cf. Assumption 2.9), we apply Lemma B.2 (in Appendix B) to write

∥∥∥∥∥x̄
k − γ

1⊤N,n(V
k+1 + ϵI)−1/21N,n

N
∇fk(x̄k)− xk⋆

∥∥∥∥∥ ≤ ϕ
∥∥∥x̄k − xk⋆

∥∥∥ , (2.173)

where ϕ := max
{∣∣∣1− γ√

ϵ+G
µ
∣∣∣ ,
∣∣∣1− γ√

ϵ
L
∣∣∣
}

. If we take γ < min
{√

ϵ+G
µ ,

√
ϵ

L

}
, then it

holds ϕ = 1− γδ, where δ is defined in the statement of Theorem 2.7. By combining the
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latter with (2.172) and (2.173), it is possible to upper bound (2.170) as

∥x̄k+1 − xk+1
⋆ ∥ ≤ (1− γδ)∥x̄k − xk⋆∥+ γ

β1√
ϵ
∥s̄k − m̄k∥+ γ√

ϵ
√
N

∥∥∥mk+1 − 1N,nm̄
k+1
∥∥∥

+
γL√
ϵ
√
N

∥∥∥xk − 1N,nx̄
k
∥∥∥+ ζk. (2.174)

The proof follows by invoking Lemma 2.7 to bound
∥∥mk+1 − m̄k+1

∥∥ within (2.174). ■

Dynamic Regret

Once the necessary preparatory results have been provided, the main result of this paper

is stated as follows.

Theorem 2.7. Consider GTAdam as given in Algorithm 4. Let Assumptions 2.9, 2.10,
and 2.11 hold. Then, for a sufficiently small step-size γ > 0, there exists a constant 0 < ρ̃ < 1,
such that

RT ≤
Lλ2

2

(∥∥y0
∥∥2

1− ρ̃2 + 2
∥∥y0
∥∥ST +QT

)
, (2.175)

where RT is defined in (2.154), the constant λ is defined in the proof (cf. (2.185)) and

ST :=
T∑

k=1

k−1∑

τ=0

ρ̃k+q
(
N + 1√
N

∥∥∥ηk−τ−1
∥∥∥+

∥∥∥ζk−τ−1
∥∥∥
)

(2.176a)

QT :=
T∑

k=1

(
k−1∑

τ=0

ρ̃k
(
N + 1√
N

∥∥∥ηk−τ−1
∥∥∥+

∥∥∥ζk−τ−1
∥∥∥
))2

, (2.176b)

where ηk, ζk are defined in (2.158) and we assume that are finite. Moreover, it holds

lim
T→∞

N∑

i=1

∥∥xTi − x̄T
∥∥2 ≤ λ2

(1− ρ̃)2 max
k

{
N2 + 1

N
ηk + ζk

}
. (2.177)

Proof. By recalling the definition of yk given in (2.157) and combining Lemma 2.6, 2.7, 2.8, 2.9, 2.10,

2.11, 2.12, it is possible to write

yk+1 ≤ A(γ)yk + uk, (2.178)
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where uk := col

(
0, 1√

N
ηk, 0,

√
Nηk, 0, ζk

)
. The matrix A(γ) can be decomposed in

A(γ) := A0 + γE, with

A0 :=




β1 0 0 0 β1c1 (1− β1)L
0 β1 0 0 Λc1 + c1 0

0 0 β1 1− β1 0 0

0 0 0 Λ c2 0

0 0 0 0 Λ 0

0 0 0 0 0 1




and

E :=




0 0 0 0 0 0

β1L√
ϵ

0 2β1c1√
ϵ

c1√
ϵ

(1−β1)c1L√
ϵ

(1−β1)L2

√
ϵ

0 0 0 0 0 0
2β1L

√
N√

ϵ
0 2β1L√

ϵ
2(1−β1)L√

ϵ
c3 c4

β1
√
N√
ϵ

0 β1√
ϵ

1−β1√
ϵ

0 c5

0 β1√
ϵ

β1√
ϵ
√
N

0 (1−β1)√
ϵ
√
N

−δ




,

where we used the following shorthands

c1 :=
L√
N
, c2 := L∥W − I∥, c3 :=

2(1− β1)β1L2

√
ϵ

,

c4 :=
(1− β1)(1 + β1)L

2√
N√

ϵ
, c5 :=

(1− β1)β1L
√
N√

ϵ
.

Being A0 triangular, it is easy to see that its spectral radius is 1 since both β1 and Λ are

in (0, 1). We want to study how the perturbation matrix γE affects the simple eigenvalue

1 of A0. Hence, we denote by χ(γ) such eigenvalue of A(γ) as a function of γ. Call w and

v respectively the left and right eigenvectors of A0 associated to the eigenvalue 1, then

w = col (0, 0, 0, 0, 0, 1) and v = col

(
L, 0, 0, 0, 0, 1

)
. Since the eigenvalue 1 is simple,

from Theorem B.1 (in Appendix B) it holds

dχ(γ)

dγ

∣∣∣∣
γ=0

=
w⊤Ev
w⊤v

= −δ < 0.

Then, by continuity of eigenvalues with respect to the matrix entries, χ(γ) is strictly

less than 1 for sufficiently small γ > 0. Then, it is always possible to choose γ > 0

so as the remaining eigenvalues stay in the unit circle. Therefore, the spectral radius

is ρ(A(γ)) < 1. Moreover, since A(γ) and uk have only non-negative entries, one can
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use (2.178) to write

yk ≤ A(γ)ky0 +
k−1∑

τ=0

A(γ)k−1−τuτ . (2.179)

From [85, Lemma 5.6.10], we have that for any ι > 0, there exists a matrix norm, say

|||·|||ι, such that

|||A(γ)|||ι ≤ ρ(A(γ)) + ι. (2.180)

Let us pick ι ∈ (0, 1 − ρ(A(γ))) and define ρ̃ := ρ(A(γ)) + ι. Then, in light of (2.180)

it holds |||A(γ)|||ι ≤ ρ̃ < 1. Moreover, by applying [85, Theorem 5.7.13], there exists a

vector norm ∥ · ∥ι such that ∥Mv∥ι ≤ |||M |||ι∥v∥ι for any matrix M ∈ R6×6 and v ∈ R6.

Hence, we can manipulate (2.179) taking the norm and using the triangle inequality to

write

∥∥∥yk
∥∥∥
ι
≤
∥∥∥A(γ)ky0

∥∥∥
ι
+

∥∥∥∥∥
k−1∑

τ=0

A(γ)k−1−τuτ
∥∥∥∥∥
ι

≤ ρ̃k
∥∥y0
∥∥
ι
+

k−1∑

τ=0

ρ̃k
∥∥∥uk−1−τ

∥∥∥
ι
, (2.181)

which shows that first term decreases linearly with rate ρ̃ < 1 while the second one is

bounded. By using the Lipschitz continuity of the gradients of fk (cf. Assumption 2.9),

we have

fk(x̄k)− fk(xk⋆) ≤
L

2
∥x̄k − xk⋆∥2

(a)

≤ L

2

∥∥∥yk
∥∥∥
2
, (2.182)

where in (a) we use the fact that
∥∥x̄k − xk⋆

∥∥ represents a component of yk leading to

the trivial bound
∥∥x̄k − xk⋆

∥∥ ≤
∥∥yk
∥∥. Recalling that all norms are equivalent on finite-

dimensional vector spaces, there always exist λ1 > 0 and λ2 > 0 such that

∥·∥ ≤ λ1 ∥·∥ι (2.183a)

∥·∥ι ≤ λ2 ∥·∥ . (2.183b)

Thus, by applying (2.183a), we bound (2.182) as

fk(x̄k)− fk(xk⋆) ≤
Lλ1
2

∥∥∥yk
∥∥∥
2

ι
,

which, combined with the definition of RT (cf. (2.154)) and the result (2.181), leads to

RT ≤
Lλ21
2

(
T∑

k=1

ρ̃2k
∥∥y0
∥∥2
ι
+ 2

∥∥y0
∥∥
ι

T∑

k=1

k−1∑

τ=0

ρ̃k+τ
∥∥∥uk−1−τ

∥∥∥
ι
+

T∑

k=1

(
k−1∑

τ=0

ρ̃τ
∥∥∥uk−1−τ

∥∥∥
ι

))2
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(a)

≤ Lλ21λ
2
2

2



∥∥y0
∥∥2

1− ρ̃2 + 2
∥∥y0
∥∥

T∑

k=1

k−1∑

τ=0

ρ̃k+τ
∥∥∥uk−1−τ

∥∥∥+
T∑

k=1

(
k−1∑

τ=0

ρ̃τ
∥∥∥uk−1−τ

∥∥∥
)2

 ,

(2.184)

where in (a) we use the geometric series property and the relation (2.183b). The proof

follows by using the definitions of UT and QT (cf. (2.176)) and by setting

λ := λ1λ2. (2.185)

Finally, in order to prove (2.177), we notice that
∑N

i=1

∥∥xTi − x̄T
∥∥2 ≤

∥∥yT
∥∥2 ≤ λ21

∥∥yT
∥∥2
ι
,

in which we apply (2.183a). By applying the bound (2.181) for k = T , we get

∥∥yT
∥∥
ι
≤ ρ̃T

∥∥y0
∥∥
ι
+

T−1∑

τ=0

ρ̃τ
∥∥uT−τ−1

∥∥
ι
.

The first term of the latter inequality vanishes as T →∞, while the second one can be

bounded by relying on geometric series property and maxk{
∥∥uk

∥∥2}. By exploiting these

arguments, we can write

lim
T→∞

N∑

i=1

∥∥xTi − x̄T
∥∥2 ≤ λ21

(1− ρ̃)2 max
k

{∥∥∥uk
∥∥∥
2

ι

}
(a)

≤ λ2

(1− ρ̃)2 max
k

{∥∥∥uk
∥∥∥
2
}
. (2.186)

where in (a) we apply (2.183b) and the definition (2.185) of λ. The result (2.177) follows

by noting that

max
k

{∥∥∥uk
∥∥∥
2
}

= max
k

{N2 + 1

N
ηk + ζk

}
.

■

There is evidence in the literature, see, e.g., [48, 105, 107, 132, 140, 169], that the

bound on the dynamic regret cannot be sublinear with respect to T . As stated, e.g.,

in [105], when the objective functions are strongly convex and have bounded gradi-

ents, the bound on dynamic regret is O(1 + ηk). Our work does not assume gradient

boundedness and, thus, our bound has additional terms due to variations over time of

the gradients. Specifically, Theorem 2.7 shows that RT is upper bounded by a constant

depending on the initial conditions and by other two terms. The latters involve ST and

QT , which capture the time-varying nature of the problem itself. Indeed, suppose that

the problem varies linearly, i.e., there exists C > 0 so that ηk, ζk ≤ C for all k ≥ 0. Then,
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being ρ̃ ∈ (0, 1), we can exploit the geometric series properties to write the following

ST ≤
(N +

√
N + 1)(ρ̃− ρ̃k+1)(1− ρ̃)C√

N(1− ρ̃)2
, QT ≤

(N +
√
N + 1)2(1− ρ̃T )2C2T

N(1− ρ̃)2 .

In this case, (2.175) ensures that the average regret RT /T asymptotically approaches a

constant when T →∞, specifically

lim
T→∞

RT
T
≤ Lλ2(N +

√
N + 1)2C2

2N(1− ρ̃)2 .

The key point of the proof consists in showing that the error vector yk (see (2.157))

evolves according to a linear system with state matrix A(γ) (whose entries depend

on the problem parameters such, e.g., the strong convexity function or the network

connectivity) which is perturbed by an input uk related to the variations of the problem

over time (see (2.178)). Notice that the parameter ρ̃ is related to the spectral radius of

A(γ) and, thus, depends also on the network topology.

Agent Regret

We may also consider a regret for each agent i defined as RT,i :=
∑T

k=1 f
k(xki ) −∑T

k=1 f
k(xk⋆).

Corollary 2.1. Under the same assumptions of Theorem 2.7, for all i ∈ {1, . . . , N}, it holds

RT,i ≤ 2Lλ2

(∥∥y0
∥∥2

1− ρ̃2 + 2
∥∥y0
∥∥ST +QT

)
,

where λ, ρ̃, ST , and QT are defined as in Theorem 2.7.

Proof. We add and subtract fk(x̄k) to fk(xki )− fk(xk⋆), obtaining

fk(xki )− fk(xk⋆) = fk(xki )− fk(x̄k) + fk(x̄k)− fk(xk⋆)
(a)

≤ fk(xki )− fk(x̄k) +
L

2

∥∥∥x̄k − xk⋆
∥∥∥
2

(b)

≤ ∇fk(x̄k)⊤(xki − x̄k) +
L

2

∥∥∥xki − x̄k
∥∥∥
2
+
L

2

∥∥∥x̄k − xk⋆
∥∥∥
2
, (2.187)

where in (a) we apply (2.182) and in (b) we use the Lipschitz continuity of the gradients

of the cost functions (cf. Assumption 2.9). Being ∇fk(xk⋆) = 0, we rewrite (2.187) as

fk(xki )− fk(xk⋆) ≤ (∇fk(x̄k)−∇fk(xk⋆))⊤(xki − x̄k)

+
L

2

∥∥∥xki − x̄k
∥∥∥
2
+
L

2

∥∥∥x̄k − xk⋆
∥∥∥
2
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(a)

≤ L
∥∥∥x̄k − xk⋆

∥∥∥
∥∥∥xki − x̄k

∥∥∥+ L

2

∥∥∥xki − x̄k
∥∥∥
2
+
L

2

∥∥∥x̄k − xk⋆
∥∥∥
2
, (2.188)

where in (a) we use the Cauchy-Schwarz inequality and the Lipschitz continuity of the

gradients of the cost functions (cf. Assumption 2.9). Now, we notice that both
∥∥x̄k − xk⋆

∥∥
and

∥∥xki − x̄k
∥∥ represent a component of the vector yk defined in (2.157), and thus, can

be both upper bounded by
∥∥yk
∥∥. Hence, the inequality (2.188) can be elaborated as

fk(xki )− fk(xk⋆) ≤ 2L
∥∥∥yk
∥∥∥
2
. (2.189)

By summing over k the inequality in (2.189), we bound RT,i as

RT,i ≤ 2L
T∑

k=1

∥∥∥yk
∥∥∥
2 (a)

≤ 2Lλ21

T∑

k=1

∥∥∥yk
∥∥∥
2

ι
, (2.190)

where in (a) we apply (2.183a). As done above to prove (2.175), the proof follows by

combining (2.190), (2.181), and (2.183b). ■

Static setup

We provide an additional corollary of Theorem 2.7 asserting theoretical guarantees in

a static scenario. Specifically, for this special case the GTAdam distributed algorithm

converges to the optimal solution with a linear rate.

Corollary 2.2 (Static setup). Under the same assumptions of Theorem 2.7, if additionally
holds fk = f for all k ≥ 0, then, for a sufficiently small step-size γ > 0, there exists a constant
0 < ρ̃ < 1 such that

f(x̄k)− f(xk⋆) ≤ ρ̃2k
Lλ2

2

∥∥y0
∥∥2 , (2.191)

where the constant λ is defined in (2.185).

Proof. Using the same arguments of Theorem 2.7 we start from (2.181). Differently

from the dynamic case, in the static setup we have ∇fki (x) = ∇fi(x) for all k and i,

leading to xk⋆ = x⋆ for all k. Thus, we can combine (2.181) with uk ≡ 0, the Lipschitz

continuity of the gradient of the cost function (cf. Assumption 2.9) and (2.183a), to

write f(x̄k) − f(xk⋆) ≤ ρ̃2k
Lλ21
2

∥∥y0
∥∥2
ι
≤ ρ̃2k

Lλ21λ
2
2

2

∥∥y0
∥∥2, in which we use (2.183b). The

proof follows by using the definition (2.185) of λ. ■

2.6.2 Numerical Simulations

In this section we consider three multi-agent distributed learning problems to show the

effectiveness of GTAdam. The first scenario regards the computation of a linear classifier

via a regularized logistic regression function for a set of points that change over time.
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The second scenario involves the localization of a moving target. The third example is a

stochastic optimization problem arising in a distributed image classification task. In all

the examples, the parameters of GTAdam are chosen as β1 = 0.9, β2 = 0.999, and ϵ =

10−8. Moreover, we compare GTAdam with the Gradient Tracking distributed algorithm

(GT) (cf. (2.5) in Section 2.2), the distributed gradient descent (DGD) (see [137]), and

the distributed Adam (DAdam) (see [134]) described by

mk+1
i = β1m

k
i + (1− β1)∇fki (xki )

vk+1
i = β2v

k
i + (1− β2)∇fki (xk+1

i )⊙∇fki (xk+1
i )

ṽk+1
i = β3ṽ

k
i + (1− β3)max{ṽki , vk+1

i }

xk+1
i =

∑

j∈Ni

wijx
k
j + γk

mk+1
i

ṽk+1
i

,

for all i ∈ {1, . . . , N}. As suggested in [134], we set β1 = β3 = 0.9, β2 = 0.999, and a

diminishing step-size γk = (γk )
−1/2, for some γ > 0.

Distributed classification via logistic regression

Here, we consider an online instance of the distributed classification problem already

presented in Section 1.2.2 and addressed in Section 2.4.3. In particular, we consider a

network of agents that want to cooperatively train a linear classifier for a set of (moving)

points in a given feature space. At time k ≥ 0, each agent i is equipped with mi ∈ N
points pki,1, . . . , p

k
i,mi
∈ Rn with binary labels li,k ∈ {−1, 1} for all k ∈ {1, . . . ,mi}. The

problem consists of building a linear classification model from the given points, also

called training samples. In particular, we look for a separating hyperplane described

by a pair (w, b) ∈ Rn × R given by {p ∈ Rd | w⊤p + b = 0}. This online classification

problem can be posed at each time k ≥ 0, as a minimization problem described by

min
w,b

N∑

i=1

mi∑

q=1

log
(
1 + e−li,q(w

⊤pki,q+b)
)
+
C

2

(
∥w∥2 + b2

)
, (2.192)

where C > 0 is the so-called regularization parameter. Each point pki,q ∈ R2 moves along

a circle of radius r = 1 according to the following law

pki,q = pci,q + r

[
cos(k/100)

sin(k/100)

]
,

where pci,q ∈ R2 represents the randomly generated center of the considered circle. We

consider a network of N = 50 agents and pick mi = 5 (for all i). We performed an

experimental tuning to optimize the step-sizes to enhance the convergence properties of
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each algorithm. In particular, we selected γ = 0.1 for GTAdam, γ = 0.05 for Gradient

Tracking, γ = 0.1 for DGD, and γ = 0.1 for DAdam. We performed Monte Carlo

simulations consisting of 100 trials, in which we alternatively consider an undirected,

connected Erdős-Rényi graph with connectivity parameter 0.5, and a ring graph. In

Figure 2.14, we plot the average across the trials of the relative cost error, namely
fk(x̄k)−fk(xk⋆)

fk(xk⋆)
, with xk⋆ being the minimum of fk for all k.
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Figure 2.14: Distributed classification via logistic regression. Mean of the relative cost errors
and 1-standard deviation band obtained with Monte Carlo simulations consisting of 100 trials in
which each of the N = 50 agents is equipped with m = 5 points.

The plot highlights that GTAdam exhibits a faster convergence compared to the

other algorithms, and achieves a smaller tracking error.

Finally, we consider a static instance of problem (2.192), i.e., with fixed objective

function fki = fi for all k ≥ 0 and i ∈ {1, . . . , N}. We consider a network of N = 50

agents in a ring topology. We take γ = 0.001 for GTAdam, γ = 0.01 for GT, γ = 0.1 for

DGD, and γ = 0.5 for DAdam. In Figure 2.15, we plot the error
∥∥x̄k − x⋆

∥∥ achieved by

the considered methods, where x⋆ ∈ Rn is the (fixed) optimal solution of the problem.

Figure 2.15 clearly shows the benefit of the tracking mechanism, which allows GTAdam

and GT to achieve the exact problem solution. The plot also shows that GTAdam is

faster than Gradient Tracking.
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Figure 2.15: Distributed classification via logistic regression. Static setup in which each of the
N = 50 agents is equipped with m = 5 points.
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Distributed source localization in smart sensor networks

The estimation of the exact position of a source is a key task in several applications in

multi-agent distributed estimation and learning. Here, we consider an online version

of the static localization problem considered in [160, Section 4.2]. An acoustic source

is positioned at an unknown and time-varying location θktarget ∈ R2. A network of N

sensors is capable to measure an isotropic signal related to such location and aims at

cooperatively estimating θttarget. Each sensor is placed at a fixed location ci ∈ R2 and

takes, at each time instant, a noisy measurement according to an isotropic propagation

model ωki := A
∥θktarget−ci∥ω

+ϵki , whereA > 0, ω ≥ 1 describes the attenuation characteristics

of the medium through which the signal propagates, and ϵki is a zero-mean Gaussian

noise with variance σ2. With this data, each node i at each time k ≥ 0 addresses a

nonlinear least-squares online problem

min
x

N∑

i=1

(
ωki −

A

∥x− ci∥ω
)2
.

We consider a network ofN = 50 agents randomly located according to a two-dimensional

Gaussian distribution with zero mean and variance a2I2 = 100I2. The agents want to

track the location of a moving target which starts at a random location θ0target ∈ R2

generated according to the same distribution of the agents. The target moves along a

circle of radius r = 0.5 according to the following law

θktarget = θcenter + r

[
cos(k/200)

sin(k/200)

]
,

where θcenter ∈ R2 represents the randomly generated circle center. We pick ω = 1,

A = 100 and a noise variance σ2 = 0.001. We take γ = 0.05 for GTAdam, γ = 0.02 for

GT, γ = 0.05 for DGD, and γ = 0.0725 for DAdam. The agents communicate according

to a ring graph. In Figure 2.16a we compare the algorithm performance in terms of the

(instantaneous) cost function evolution. Figure 2.16b shows that the best performance

in terms of average dynamic regret is obtained by GTAdam. GTAdam seems to achieve a

smaller error with respect to the other algorithms. We make these comparisons by using

θktarget as the optimal estimate associated to the iteration k, but we note that the actual

optimal solution may be slightly different since the noise ϵki affects the measurement of

each agent.
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(a) Relative cost error.
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(b) Average dynamic regret.

Figure 2.16: Distributed source localization over a network of N = 50 agents.

Distributed image classification via neural networks

In this example, we consider an image classification problem in which N nodes have

to cooperatively learn how to correctly classify images. We pick the Fashion-MNIST

dataset [197] consisting of black-and-white 28×28-pixels images of clothes belonging to

10 different classes. Each agent i has a local dataset Di = {(pi,q, yi,q)}mi
q=1 consisting of mi

images pi,ℓ ∈ R28×28 and their associated labels yi,q ∈ {1, . . . , 10}. The goal of the agents

is to learn the parameters x⋆ of a function h(p; x⋆) so that h(pi,q; x⋆) gives the correct

label for pi,q. The resulting optimization problem is

min
x

N∑

i=1

1

mi

mi∑

q=1

V (yi,q, h(pi,q, x)) + C∥x∥2,

where V (·) is the categorical cross-entropy loss, and C > 0 is a regularization parameter.

The local cost function is

fi(x | Di) := EDi [ℓi(x)] =
1

mi

mi∑

q=1

V (yi,q, h(pi,q, x)) +
C

N
∥x∥2.

We represent h(·) by a neural network with one hidden layer (with 300 units with ReLU

activation function) and an output layer with 10 units. Moreover, we pick N = 16 agents

and associate each of them mi = 3750 labeled images for all i. We performed Monte

Carlo simulations consisting of 100 trials and each trial lasts 10 epochs over the local

datasets. The results are reported In Figure 2.17a and Figure 2.17b in terms of the

global training loss f({x̄ep,D1, . . . ,DN}) :=
∑N

i=1 fi(x̄ep | Di), with x̄ep :=
1
N

∑N
i=1 xi,ep,

and the average training accuracy ψ({x̄ep,D1, . . . ,DN}) := 1
N

∑N
i=1 ψi(x̄ep | Di), where

ψi(x̄ep | Di) is the accuracy achieved with x̄ep on the local dataset of the agent i at the

end of epoch ep. We take γ = 0.001 for GTAdam, and γ = 0.1 for DGD, GT, and DAdam.
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As it can be appreciated from Figure 2.17a and Figure 2.17b, in both cases GTAdam

outperforms the other algorithms.
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(a) Training loss.
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Figure 2.17: Distributed image classification. Mean and 3−standard deviation band of the
training loss and the training accuracy.
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Chapter 3

Tracking-Based Algorithms for
Distributed Aggregative
Optimization

In this chapter, we focus on distributed aggregative optimization problems, i.e., on

the optimization scenario (already introduced in Section 1.3) in which a network of N

agents aim to cooperatively solve problems in the form

min
(x1,...,xN )∈X

N∑

i=1

fi(xi, σ(x)), (3.1)

where each fi : Rni → R is the cost function known to agent i only, and the so-called

aggregative variable σ(x) ∈ Rd is given by

σ(x) =
1

N

N∑

i=1

ϕi(xi), (3.2)

where each aggregation rule ϕi : Rni → Rd is a function modeling the contribution of

the i-th agent to the aggregative variable.

In Section 3.2, we start by addressing the online version of problem (3.1), namely

the one in which all the cost functions, aggregation rules, and feasible sets vary over

time. In this context, we propose Projected Aggregative Tracking, i.e., a distributed

optimization algorithm that optimizes the overall cost function by combining (i) a dis-

tributed implementation of the projected gradient descent, and (ii) dynamic consensus

techniques to reconstruct the global information that are not locally available. The

algorithm generalizes an already existing method by allowing for more general online

setups and for the use of constant step-sizes. Thanks to refined steps in the algorithm

evolution, we improve the existing performance results. In detail, we provide tight
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bounds for the dynamic regret and linear convergence in case of time-invariant opti-

mization problems. Then, in Section 3.3, we consider a “personalized” setup in which

each local function is given by the sum of a known term and an unknown one capturing

the user’s dissatisfaction. In this setting, we interlace the previous algorithm with a

Recursive Least Squares (RLS) scheme to take advantage of users’ noisy feedback to learn

the parameters of the unknown function concurrently with the optimization steps. We

prove an upper bound for the dynamic regret related to (i) the initial conditions, (ii) the

temporal variations of the objective functions, and (iii) the learning errors. Moreover, by

considering the average dynamic regret, we prove that both initial conditions and learn-

ing errors do not affect the asymptotic performance of the algorithm. Subsequently, in

Section 3.4, we present Aggregative Tracking Feedback, i.e., a novel distributed feedback

optimization law to steer network systems to a steady-state minimizing an aggregative

optimization problem with (possibly) nonconvex objective function. The key feature of

Aggregative Tracking Feedback is that it directly implements an optimization algorithm

in closed-loop with a set of physical systems with nonlinear dynamics. We perform

a system theoretical analysis to show that Aggregative Tracking Feedback steers the

network to a stationary point of the optimization problem. Finally, we consider the case

with single integrator dynamics and strongly convex objective function. In this case,

we adapt Aggregative Tracking Feedback to get a closed loop system that exponentially

converges to a configuration corresponding to the optimal solution of the problem. The

results of this chapter are based on [26, 29, 30, 32].

3.1 Literature Review

Distributed aggregative optimization is a recently emerged framework in which a

network of agents must cooperatively minimize the sum of local cost functions that

depend both on a local optimization variable and on a global variable obtained by

performing some kind of aggregation of all the local variables (as, e.g., the mean). This

framework stems from distributed aggregative games (see Chapter 4) where however the

objective is to compute a (generalized) Nash equilibrium rather than an optimal solution

cooperatively. Some analogies can be also found with the so-called constraint-coupled

framework. Indeed, the latter is a cooperative optimization framework where each local

cost function depends on a local decision variable, but all the variables are coupled

through separable coupling constraints [22–24, 38, 60, 61, 110, 123, 139, 173, 212].

Distributed aggregative optimization has been introduced in the pioneering work [104],

where a static, unconstrained instance of (3.1) is tackled. Constrained, online version of

the problem is investigated in [106], where the performance of the proposed algorithm is

analyzed in terms of dynamic regret. The authors of [42] design a distributed algorithm

for this setting to also handle communication with finite bits. In [192], the aggregative
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framework is addressed through a distributed algorithm based on the Franke-Wolfe

update to reduce the computational effort.

Personalized Optimization

In several domains there are devices with computation and communication capabilities

directly involving end-users. For this reason, users’ dissatisfaction needs to be taken into

account together with engineering-oriented goals in many tasks. Human preferences

are taken into account, e.g., for demand response tasks in the electric field [39, 145],

to design robot trajectories [98, 120, 214], or for rehabilitation robots [126]. In this

context, while engineering goals can be assessed by using well-known metrics, users’

dissatisfaction is usually described through synthetic models. However, the complexity

of human preferences leads to scarce and biased optimization outcomes for this kind

of models. Hence, personalized strategies relying on users’ feedback may improve the

outcome. Firsts attempts in this direction are given in [146, 172], while recently users’

feedback has been used in the context of distributed optimization [141].

Feedback Optimization

Feedback optimization techniques represent an emerging class of control laws aiming at

steering dynamic systems toward steady-states while minimizing an associated optimiza-

tion problem, see the recent surveys [80,96] for an overview. The key feature of feedback

optimization controllers is that they only rely on real-time gradient measurements,

thus avoiding the knowledge of the objective function of the optimization problem.

Applications for such a control paradigm can be found in several fields ranging from

real-time optimal power flow in electrical networks, see [47, 180], to congestion control

in communication networks, [118]. First attempts for the design of these controllers

leverage the so-called extremum seeking techniques. In this context, the estimate of

the gradient of an unknown objective function is obtained and used to steer the system

toward its minimizer, [5, 97, 178, 182, 195]. In [128], a feedback optimization law has

been designed and applied to a power system setup. In [78,81, 83] feedback optimiza-

tion has been used to implement model-free optimization algorithms with constraint

handling. In [144], algebraic systems are controlled by relying on gradient information

affected by random errors modelled as Sub-Weibull distributions. In [45], a feedback

optimization technique is designed for linear time-invariant systems. The approach

is based on gradient flow dynamics augmented with learning methods to estimate the

cost function based on infrequent and possibly noisy data. A distributed feedback

optimization law has been proposed in [183] to address a partition-based optimization

scenario over a network of communicating systems.
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3.2 Distributed Online Aggregative Optimization

In this section, we address online instances of problem (3.1)

min
(x1,...,xN )∈Xk

N∑

i=1

fki (xi, σ
k(x)), k ≥ 0 (3.3)

in which x := col(x1, . . . , xN ) ∈ Rn is the global decision vector, with each xi ∈ Rni and

n =
∑N

i=1 ni. The global decision vector at iteration index k is constrained to belong to a

set Xk ⊆ Rn that can be written as Xk = (Xk
1 × . . .×Xk

N ), where each Xk
i ⊆ Rni . The

functions fki : Rni × Rd → R represent the local objective functions at iteration k, while

the aggregation function σk(x) has the form

σk(x) :=

∑N
i=1 ϕ

k
i (xi)

N
, (3.4)

where each ϕki : Rni → Rd is the i-th contribution to the aggregative variable at iter-

ation k. We compactly denote the cost function of problem (3.3) as fk(x, σk(x)) :=∑N
i=1 f

k
i (xi, σ

k(x)). In problem (3.3), fk(·, σk(·)) is not known to any agent: each of

them can only privately access fki , Xk
i , and ϕki . We remark that each agent i accesses its

private information fki , and ϕki only once its estimate xki has been computed.

The goal is to design distributed algorithms to seek a minimum for problem (3.3).

Next, we will denote as ∇1f
k
i (·, ·) and as ∇2f

k
i (·, ·) the gradient of fki with respect to

respectively the first argument and the second argument. Moreover, we also introduce

Gk : Rn×RNd → Rn defined as Gk(x, s) := Gk1(x, s) +∇ϕ(x)
1N,d

N

∑N
i=1 f

k
i (xi, si), where

x := col(x1, . . . , xN ) ∈ Rn, s := col(s1, . . . , sN ) ∈ RNd with each xi ∈ Rni , si ∈ Rd

for all i ∈ {1, . . . , N}, Gk1(x, s) := col(∇1f1,t(x1, s1), . . . ,∇1fN,t(xN , sN )), and∇ϕ(x) :=
blkdiag(∇ϕ1(x1), . . . ,∇ϕN (xN )) ∈ Rn×Nd.

Let xki be the solution estimate of the problem at iteration k maintained by agent i,

and let xk⋆ be the (unique) minimizer of fk(x, σk(x)) over the set Xk. Indeed, as we will

formalize within Assumption 3.2, strong convexity of fk(x, σk(x)) guarantees existence

(and uniqueness) of xk⋆ (cf. Proposition A.2 in Appendix A). As in Section 2.6, given a

finite value T > 1, the agents want to minimize the dynamic regret:

RT :=
T∑

t=1

fk(xk, σk(xk))−
T∑

t=1

fk(xk⋆, σ
k(xk⋆)). (3.5)

Another popular metric is the so-called static regret [86]. However, as done in most of

the literature, we focus on (3.5), which is more challenging to handle.
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3.2.1 Projected Aggregative Tracking: Algorithm Description and Analysis

In this section, we propose and analyze Projected Aggregative Tracking, i.e., a novel

distributed algorithm to address problem (3.3). Each agent i maintains for iteration

k an estimate xki of the component i of a minimum xk⋆ of problem (3.3). In order to

reconstruct the descent direction and use it to update the estimate xki , agent i needs

to reconstruct the global information
∑N

i=1
ϕki (x

k
i )

N and
∑N

i=1∇2f
k
i

(
xki ,
∑N

j=1

ϕkj (wij)

N

)
,

which are not locally available. To overcome this lack of information, agent i maintains

auxiliary variables ski and yki and iteratively updates them according to a perturbed

consensus mechanism. A pseudo-code of the Projected Aggregative Tracking algorithm

is reported in Algorithm 5 from the perspective of agent i, in which γ is a positive

constant step-size, δ ∈ (0, 1) is a constant algorithm parameter, and each element wij
represents the (i, j) entry of the weighted adjacency matrixWG of the network.

Algorithm 5 Projected Aggregative Tracking (Agent i)
initialization:

x0i ∈ X0
i , s0i = ϕ0i (x

0
i ), y0i = ∇2f

0
i (x

0
i , s

0
i )

for k = 0, 1, . . . do

x̃ki = PXk
i

[
xki − γ(∇1f

k
i (x

k
i , s

k
i ) +∇ϕki (xki )yki )

]

xk+1
i = xki + δ(x̃ki − xki )

sk+1
i =

N∑

j=1

wijs
k
j + ϕk+1

i (xk+1
i )− ϕki (xki )

yk+1
i =

N∑

j=1

wijy
k
j +∇2f

k+1
i (xk+1

i , sk+1
i )−∇2f

k
i (x

k
i , s

k
i )

end for

In order to analyze the convergence properties of the proposed scheme, we rewrite

Algorithm 5 in a stacked vector form as

x̃k = PXk

[
xk − γ(∇1f

k(xk, sk) +∇ϕk(xk)yk)
]

(3.6a)

xk+1 = xk + δ(x̃k − xk) (3.6b)

sk+1 =Wsk + ϕk+1(xk+1)− ϕk(xk) (3.6c)

yk+1 =Wyk +Gk+1
2 (xk+1, sk+1)−Gk2(xk, sk), (3.6d)

105



Chapter 3. Tracking-Based Qlgorithms for Distributed Aggregative Optimization

where we introduced the symbolsW :=WG ⊗ Id and

xk :=



xk1
. . .

xkN


 , sk :=




sk1
...

skN


 , yk :=




yk1
...

ykN


 , Gk2(x

k, sk) :=




∇2f
k
1 (x

k
1, s

k
1)

...

∇2f
k
N (x

k
N , s

k
N )


 .

In order to perform the convergence analysis, we derive bounds for the quantities∥∥xk+1 − xk
∥∥,
∥∥xk+1 − xk+1

⋆

∥∥,
∥∥yk+1 − 1N,dȳ

k+1
∥∥, and

∥∥sk+1 − 1N,ds̄
k+1
∥∥, in which ȳk :=

1
N

∑N
i=1 y

k
i and s̄k := 1

N

∑N
i=1 s

k
i denote the mean vectors of yk and sk, respectively. Let

zk be the vector staking the above quantities

zk :=




∥∥xk − xk⋆
∥∥

∥∥sk − 1N,ds̄
k
∥∥

∥∥yk − 1N,dȳ
k
∥∥


 . (3.7)

Moreover, also the following variables will be useful to provide the main result of the

paper, namely

ηk := sup
x∈Rn,z∈RNd

∥∥∥Gk+1
2 (x, z)−Gk2(x, z)

∥∥∥ (3.8a)

ωk := sup
x∈Rn

∥∥∥ϕk+1(x)− ϕk(x)
∥∥∥ (3.8b)

αk := sup
x∈Rn

∣∣∣dist(x,Xk+1)− dist(x,Xk)
∣∣∣ (3.8c)

ζk := ∥xk+1
⋆ − xk⋆∥, (3.8d)

where we recall that xk⋆ is the optimal solution of fk(·, σk(·)). Next, we state the assump-

tions of our framework.

Assumption 3.1 (Communication graph). The graph G is undirected and connected and
WG is doubly stochastic. △

Assumption 3.2 (Convexity). For all i ∈ {1, . . . , N} and all k ≥ 0, Xk
i ⊆ Rni is nonempty,

closed and convex, while the global objective function fk(x, σk(x)) is µ-strongly convex. △

Assumption 3.3 (Function Regularity). For all k ≥ 0, the function fk(x, σk(x)) is dif-
ferentiable with L1-Lipschitz continuous gradients, and Gk(x, s), Gk2(x, s) are Lipschitz
continuous with constants L1, L2 > 0, respectively. For all i ∈ {1, . . . , N} and k ≥ 0, the
aggregation function ϕki (xi) is differentiable and L3-Lipschitz continuous, and ηk and ωk are
finite. △

We start by noting that

s̄k+1 = s̄k +
1⊤N,d
N

(ϕk+1(xk+1)− ϕk(xk)) (3.9a)
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ȳk+1 = ȳk +
1⊤N,d
N

(Gk+1
2 (xk+1, sk+1)−Gk2(xk, sk)). (3.9b)

Then, if we initialize σ and y as σ0 := ϕ0(x0) and y0 := G0
2(x

0, s0), from (3.9a) and (3.9b),

it holds for all k ≥ 0

s̄k =
1

N

N∑

i=1

ϕk(xki ) = σk(xk) (3.10a)

ȳk =
1

N

N∑

i=1

∇2f
k
i (x

k
i , s

k
i ). (3.10b)

Now, we present four preparatory Lemmas that we need to prove the main result of this

section, i.e., Theorem 3.1. For brevity, we will use dk to denote the descent direction

used within the update (3.41a), i.e.,

dk := ∇1f
k(xk, sk) +∇ϕk(xk)yk. (3.11)

Lemma 3.1. Let Assumptions 3.1, 3.2, and 3.3 hold. If γ ≤ 1
L1

, then

∥∥∥xk+1 − xk+1
⋆

∥∥∥ ≤ (1− δµγ)
∥∥∥xk − xk⋆

∥∥∥+ δγL1

∥∥∥sk − 1N,ds̄
k
∥∥∥+ δγL3

∥∥∥yk − 1N,dȳ
k
∥∥∥+ ζk.

Proof. We begin by using (3.41b), which leads to

∥∥∥xk+1 − xk+1
⋆

∥∥∥ =
∥∥∥xk + δ(x̃k − xk)− xk+1

⋆

∥∥∥
(a)

≤
∥∥∥xk + δ(x̃k − xk)− xk⋆

∥∥∥+
∥∥∥xk+1

⋆ − xk⋆
∥∥∥

(b)

≤
∥∥∥xk + δ(x̃k − xk)− xk⋆

∥∥∥+ ζk, (3.12)

where in (a) we add and subtract the term xk⋆ and use the triangle inequality, and

in (b) we use ζk (cf (3.8d)). Being xk⋆ the minimizer of fk over Xk, then it holds

PXk

[
xk⋆ − γfk(xk⋆, σk(xk⋆))

]
= xk⋆ . Then, we add the null term

δ
(
PXk

[
xk⋆ − γ∇fk(xk⋆, σk(xk⋆))

]
− xk⋆

)

in the first norm of (3.12) and we apply the triangle inequality and (3.6a) to write

∥∥∥xk+1 − xk+1
⋆

∥∥∥ ≤ (1− δ)
∥∥∥xk − xk⋆

∥∥∥+ δ
∥∥∥PXk [xk − γdk]− PXk

[
xk⋆ − γ∇fk(xk⋆, σk(xk⋆))

]∥∥∥

+ ζk

(a)

≤ (1− δ)
∥∥∥xk − xk⋆

∥∥∥+ δ
∥∥∥xk − γdk − (xk⋆ − γ∇fk(xk⋆, σk(xk⋆)))

∥∥∥+ ζk,

(3.13)
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where (a) uses the non-expansiveness of the projection, see [14]. Add and subtract within

the second norm γ∇fk(xk, σk(xk)) and apply the triangle inequality to rewrite (3.13) as

∥∥∥xk+1 − xk+1
⋆

∥∥∥ ≤ (1− δ)
∥∥∥xk − xk⋆

∥∥∥

+ δ
∥∥∥xk − γ∇fk(xk, σk(xk))−

(
xk⋆ − γfk(xk⋆, σk(xk⋆))

)∥∥∥

+ δγ
∥∥∥dk −∇fk(xk, σk(xk))

∥∥∥+ ζk

(a)

≤ (1− δµγ)
∥∥∥xk − xk⋆

∥∥∥+ δγ
∥∥∥dk −∇fk(xk, σk(xk))

∥∥∥+ ζk,

where (a) uses [104, Lemma 3]. Add and subtract into the second norm the term

∇ϕk(xk)1N,d 1
N

∑N
i=1∇2f

k
i (x

k
i , s

k
i ), and rearrange as

∥∥∥xk+1 − xk+1
⋆

∥∥∥ ≤ (1− δµγ)
∥∥∥xk − xk⋆

∥∥∥+ δγ
∥∥∥Gk(xk, sk)−∇f(xk, σk(xk))

∥∥∥

+ δγ

∥∥∥∥∥∇ϕ
k(xk)

(
yk − 1N,d

1

N

N∑

i=1

∇2f
k
i (x

k
i , s

k
i )

)∥∥∥∥∥+ ζk

(a)
= (1− δµγ)

∥∥∥xk − xk⋆
∥∥∥+ δγ

∥∥∥Gk(xk, sk)−∇fk(xk, σk(xk))
∥∥∥

+ δγ
∥∥∥∇ϕk(xk)

(
yk − 1N,dȳ

k
)∥∥∥+ ζk, (3.14)

where in (a) we use (3.10b). Consider the term ∥Gk(xk, sk) − ∇fk(xk, σk(xk))∥. The

definition of Gk and (3.10a) gives

∥∥∥Gk(xk, sk)−∇fk(xk, σk(xk))
∥∥∥ =

∥∥∥Gk(xk, sk)−∇fk(xk, s̄k)
∥∥∥

(a)

≤ L1

∥∥∥sk − 1N,ds̄
k
∥∥∥ ,

(3.15)

where (a) uses the Lipschitz continuity of Gk (cf. Assumption 3.3). The proof follows

by (3.14), (3.15), and
∥∥∇ϕk(x)

∥∥ ≤ L3 for all x ∈ Rn (which is derived from Assump-

tion 3.3). ■

Lemma 3.2. Let Assumptions 3.1, 3.2, and 3.3 hold. Then

∥∥∥xk+1 − xk
∥∥∥ ≤ δ(2 + γL1 + γL1L3)

∥∥∥xk − xk⋆
∥∥∥+ δγL1

∥∥∥sk − 1N,ds̄
k
∥∥∥+ δγL3

∥∥∥yk − 1N,dȳ
k
∥∥∥ .

Proof. We can use (3.6b) to write

∥∥∥xk+1 − xk
∥∥∥ =

∥∥∥xk + δ(x̃k − xk)− xk
∥∥∥ = δ

∥∥∥x̃k − xk
∥∥∥ (a)
= δ

∥∥∥PXk [xk − γdk]− xk
∥∥∥ ,

where in (a) we have used the update (3.41a). By adding the null quantity

(
PXk

[
xk⋆ − γ∇fk(xk⋆, σk(xk⋆))

]
− xk⋆

)
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within the norm and applying the triangle inequality, we get

∥∥∥xk+1 − xk
∥∥∥ ≤ δ

∥∥∥PXk [xk − γdk]− PXk

[
xk⋆ − γ∇fk(xk⋆, σk(xk⋆))

]∥∥∥+ δ
∥∥∥xk − xk⋆

∥∥∥
(a)

≤ 2δ
∥∥∥xk − xk⋆

∥∥∥+ δγ
∥∥∥dk −∇fk(xk⋆, σk(xk⋆))

∥∥∥ ,

where in (a) we use a projection property and the triangle inequality. We add and sub-

tract within the norm the term ∇ϕk(xk)1N,d
∑N

i=1∇2f
k
i (x

k
i , s

k
i ) and use the expression

of dk and Gk and the triangle inequality to write

∥∥∥xk+1 − xk
∥∥∥ ≤ 2δ

∥∥∥xk − xk⋆
∥∥∥+ δγ

∥∥∥Gk(xk, sk)−∇fk(xk⋆, σk(xk⋆))
∥∥∥

+ δγ

∥∥∥∥∥∇ϕ
k(xk)

(
yk − 1N,d

N∑

i=1

∇2f
k
i (x

k
i , s

k
i )

)∥∥∥∥∥
(a)
= 2δ

∥∥∥xk − xk⋆
∥∥∥+ δγ

∥∥∥Gk(xk, sk)−∇fk(xk⋆, σk(xk⋆))
∥∥∥

+ δγL3

∥∥∥yk − 1N,dȳ
k
∥∥∥ , (3.16)

where in (a) we use (3.10b) and
∥∥∇ϕk(x)

∥∥ ≤ L3. The definition of Gk and its Lipschitz

continuity (cf. Assumption 3.3) imply

∥∥∥Gk(xk, sk)−∇fk(xk⋆, σk(xk⋆))
∥∥∥ ≤ L1

∥∥∥xk − xk⋆
∥∥∥+ L1

∥∥∥sk − 1N,dσ
k(xk⋆)

∥∥∥ . (3.17)

By combining (3.16) with (3.17), we get

∥∥∥xk+1 − xk
∥∥∥ ≤ δ(2 + γL1)

∥∥∥xk − xk⋆
∥∥∥+ δγL1

∥∥∥sk − 1N,dσ
k(xk⋆)

∥∥∥+ δγL3

∥∥∥yk − 1N,dȳ
k
∥∥∥

(a)

≤ δ(2 + γL1)
∥∥∥xk − xk⋆

∥∥∥+ δγL1

∥∥∥sk − 1N,ds̄
k
∥∥∥

+ δγL1

∥∥∥1N,ds̄k − 1N,dσ
k(xk⋆)

∥∥∥+ δγL3

∥∥∥yk − 1N,dȳ
k
∥∥∥ , (3.18)

where in (a) we add and subtract 1N,ds̄k and we apply the triangle inequality. Now,

consider the term
∥∥1N,ds̄k − 1N,dσ

k(xk⋆)
∥∥. By using the definition of σk and the Lipschitz

continuity of ϕki (cf. Assumption 3.3), it can be seen that (see also [104]) ,

∥∥∥1N,ds̄k − 1N,dσ
k(xk⋆)

∥∥∥ ≤ L3

∥∥∥xk − xk⋆
∥∥∥ . (3.19)

By combining the results (3.18) and (3.19), the proof is given. ■

Lemma 3.3. Let Assumptions 3.1, 3.2, and 3.3 hold. Then

∥∥∥sk+1 − 1N,ds̄
k+1
∥∥∥ ≤ Λ

∥∥∥sk − 1N,ds̄
k
∥∥∥+ δγL1L3

∥∥∥sk − 1N,ds̄
k
∥∥∥
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+ δ(2L3 + γL1L3 + γL1L
2
3)
∥∥∥xk − xk⋆

∥∥∥

+ δγL
2
3

∥∥∥yk − 1N,dȳ
k
∥∥∥+ ωk,

where Λ is the maximum eigenvalue of the matrixW − 1N,d1
⊤
N,d

N .

Proof.

By applying (3.6c) and (3.9a), we can write

∥∥∥sk+1 − 1N,ds̄
k+1
∥∥∥ =

∥∥∥Ask − 1N,ds̄
k + Ĩ(ϕk+1(xk+1)− ϕk(xk))

∥∥∥
(a)

≤
∥∥∥∥∥

(
A−

1N,d1
⊤
N,d

N

)(
sk − 1N,ds̄

k
)∥∥∥∥∥+

∥∥∥Ĩ(ϕk+1(xk+1)− ϕk(xk))
∥∥∥ ,

where (a) applies the triangle inequality, introduces Ĩ := I − 1N,d1
⊤
N,d

N , and uses the fact

that 1N,d ∈ ker

(
W − 1N,d1

⊤
N,d

N

)
. Now, we add and subtract within the second norm the

term ϕk+1(xk) and we apply the triangle inequality obtaining

∥∥∥sk+1 − 1N,ds̄
k+1
∥∥∥ ≤

∥∥∥∥∥

(
A−

1N,d1
⊤
N,d

N

)(
sk − 1N,ds̄

k
)∥∥∥∥∥

+
∥∥∥Ĩ(ϕk+1(xk+1)− ϕk+1(xk))

∥∥∥+
∥∥∥Ĩ(ϕk+1(xk)− ϕk(xk))

∥∥∥
(a)

≤ Λ
∥∥∥sk − 1N,ds̄

k
∥∥∥+ L3

∥∥∥xk+1 − xk
∥∥∥+ ωk,

where in (a) we use the maximum eigenvalue Λ of the matrixW − 1N,d1
⊤
N,d

N , Assump-

tion 3.3, ωk (cf (3.8b)), and
∥∥∥Ĩ
∥∥∥ = 1. By using Lemma 3.2 to bound

∥∥xk+1 − xk
∥∥, the

proof follows. ■

Lemma 3.4. Let Assumptions 3.1, 3.2, and 3.3 hold. Then

∥∥∥yk+1 − 1N,dȳ
k+1
∥∥∥ ≤ Λ

∥∥∥yk − 1N,dȳ
k
∥∥∥+ δγL3(L2 + L2L3)

∥∥∥yk − 1N,dȳ
k
∥∥∥

+ δ(2 + γL1 + γL1)(L2 + L2L3)
∥∥∥xk − xk⋆

∥∥∥

+ δγL1(L2 + L2L3)
∥∥∥sk − 1N,ds̄

k
∥∥∥+ 2L2

∥∥∥sk − 1N,ds̄
k
∥∥∥+ L2ω

k + ηk,

where Λ is the maximum eigenvalue of the matrixW − 1N,d1
⊤
N,d

N .

Proof. We use (3.6d) and (3.9b) to write

∥∥∥yk+1 − 1N,dȳ
k+1
∥∥∥ ≤

∥∥∥Wyk − ȳk
∥∥∥
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+

∥∥∥∥∥

(
I −

1N,d1
⊤
N,d

N

)
(Gk+1

2 (xk+1, sk+1)−Gk2(xk, sk))
∥∥∥∥∥

(a)

≤
∥∥∥∥∥

(
W −

1N,d1
⊤
N,d

N

)
(yk − 1N,dȳ

k)

∥∥∥∥∥

+

∥∥∥∥∥

(
I −

1N,d1
⊤
N,d

N

)
(Gk+1

2 (xk+1, sk+1)−Gk+1
2 (xk, sk))

∥∥∥∥∥

+

∥∥∥∥∥

(
I −

1N,d1
⊤
N,d

N

)
(Gk+1

2 (xk, sk)−Gk2(xk, sk))
∥∥∥∥∥ ,

where (a) uses 1N,d ∈ ker(W − 1N,d1
⊤
N,d

N ) and applies the triangle inequality after adding

and subtracting (I − 1N,d1
⊤
N,d

N )Gk+1
2 (xk, sk) within the norm. By using the maximum

eigenvalue Λ ofW − 1N,d1
⊤
N,d

N , Assumption 3.3, and ηk (cf. (3.8a)), we get

∥∥∥yk+1 − 1N,dȳ
k+1
∥∥∥ ≤ Λ

∥∥∥yk − 1N,dȳ
k
∥∥∥+ L2

∥∥∥xk+1 − xk
∥∥∥+ L2

∥∥∥sk+1 − sk
∥∥∥+ ηk.

Now, we can use (3.6d) to get

∥∥∥yk+1 − 1N,dȳ
k+1
∥∥∥ ≤ Λ

∥∥∥yk − 1N,dȳ
k
∥∥∥+ L2

∥∥∥xk+1 − xk
∥∥∥

+ L2

∥∥∥(W − I)sk + ϕk+1(xk+1)− ϕk(xk)
∥∥∥+ ηk

(a)

≤ Λ
∥∥∥yk − 1N,dȳ

k
∥∥∥+ L2

∥∥∥xk+1 − xk
∥∥∥+ L2

∥∥∥(W − I)(sk − 1N,ds̄
k)
∥∥∥

+ L2

∥∥∥ϕk+1(xk+1)− ϕk(xk)
∥∥∥+ ηk,

where in (a) we apply the triangle inequality and the fact that 1N,d ∈ ker

(
W − 1N,d1

⊤
N,d

N

)
.

We add and subtract within the norm the term ϕk+1(xk) and apply the triangle inequality,

obtaining

∥∥∥yk+1 − 1N,dȳ
k+1
∥∥∥ ≤ Λ

∥∥∥yk − 1N,dȳ
k
∥∥∥+ L2

∥∥∥xk+1 − xk
∥∥∥+ L2

∥∥∥(W − I)(sk − 1N,ds̄
k)
∥∥∥

+ L2

∥∥∥ϕk+1(xk+1)− ϕk+1(xk)
∥∥∥+ L2

∥∥∥ϕk+1(xk)− ϕk(xk)
∥∥∥+ ηk

(a)

≤ ρ
∥∥∥yk − 1N,dȳ

k
∥∥∥+ L2

∥∥∥xk+1 − xk
∥∥∥+ L2

∥∥∥(W − I)(sk − 1N,ds̄
k)
∥∥∥

+ L2L3

∥∥∥xk+1 − xk
∥∥∥+ L2ω

k + ηk,

where (a) uses Assumption 3.3 and ωk (cf. (3.8b)). The proof follows by ∥W − I∥ ≤ 2,

and by applying Lemma 3.2. ■

Now, we state the main theoretical results of the section. Next theorem provides
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a bound on the dynamic regret of the iterates generated by the Projected Aggregative

Tracking distributed algorithm in the general, online setup (3.3).

Theorem 3.1. Consider Projected Aggregative Tracking as given in Algorithm 5. Let As-
sumptions 3.1, 3.2, and 3.3 hold. Then, there exists λ, δ̄ > 0 and ρ̃ ∈ (0, 1) so that, if γ ≤ 1

L1

and δ ∈ (0, δ̄), it holds

RT ≤
L1λ

2

2

( ∥∥z0
∥∥2

1− ρ̃2 + 2
∥∥z0
∥∥WT +QT

)
, (3.20)

where RT is defined as in (3.5) and

WT :=

T∑

k=1

k−1∑

q=0

ρ̃k+q
(∥∥∥ζk−q−1

∥∥∥+ 2
∥∥∥ηk−q−1

∥∥∥+ (1 + L2)
∥∥∥ωk−q−1

∥∥∥
)
, (3.21a)

QT :=
T∑

k=1



k−1∑

q=0

ρ̃q
(
ζk−q−1 + 2ηk−q−1 + (1 + L2)ω

k−q−1
)



2

. (3.21b)

Moreover, if αk (cf. (3.8c)) is finite for all k ≥ 0, then the constraint violation is bounded by

T∑

k=1

dist(xk, Xk) ≤ 1

1− (1− δ)T dist(x
0, X0) +

T∑

k=1

k−1∑

q=0

(1− δ)qαk−q−1. (3.22)

Proof. Let us introduce uk to denote uk := col(ζk, ηk, ωk). Then, by combining

Lemma 3.1, 3.3, and 3.4, we bound the evolution of zk (defined in (3.7)) through the

following dynamical system

zk+1 ≤M(δ)zk +Buk, (3.23)

in which

M(δ) :=M0 + δE, B :=



1 0 0

0 1 1

0 1 L2


 ,

where

M0 :=



1 0 0

0 Λ 0

0 2L2 Λ


 , E :=



−µγ γL1 γL3

E21 γL1L3 γL
2
3

E31 E32 E33


 ,

with E21 := 2L3+ γL1L3+ γL1L
2
3, E31 := (2+ γL1+ γL1)(L2+L2L3), E32 := γL1(L2+

L2L3), and E33 := γL3(L2 + L2L3). Being M0 triangular, its spectral radius is 1 since

Λ ∈ (0, 1) as implied by Assumption 3.1. Denote by χ(δ) the eigenvalues of M(δ) as a
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function of δ. Call v and w respectively the right and left eigenvectors of M0 associated

to 1. Then, v =
[
1 0 0

]⊤
, w =

[
1 0 0

]⊤
. Being 1 a simple eigenvalue of M(0), from

Theorem B.1 (in Appendix B) it holds

dχ(δ)

dδ

∣∣∣∣
χ=1,δ=0

=
w⊤Ev
w⊤v

= −µγ < 0.

Then, by continuity of eigenvalues with respect to the matrix entries, there exists δ̄ > 0

so that ρmax(M(δ)) < 1 for any δ ∈ (0, δ̄). From now on we will omit the dependency

of M and its eigenvalues from δ. Since zk ≥ 0 for all k, and M and Buk have only

non-negative entries, one can use (3.23) to write

zk ≤Mkz0 +
k−1∑

q=0

M qBuq. (3.24)

Pick θ ∈ (0, 1 − ρmax(M)) and define ρ̃ := ρmax(M) + θ. Then, by [85, Lemma 5.6.10],

there exists a matrix norm1, which we denote as ∥·∥ι, such that ∥M∥ι ≤ ρmax(M)+θ < 1.

Moreover, by applying [85, Theorem 5.7.13], there exists a vector norm, which we

denote by ∥ · ∥ι, which is compatible with the corresponding matrix norm, i.e., such that

∥Mv∥ι ≤ ∥M∥ι∥v∥ι for any matrix M ∈ R3×3 and v ∈ R3. Using this fact, we use the

norm ∥ · ∥ι on both sides of (3.24) and we apply the triangle inequality to get

∥∥∥zk
∥∥∥
ι
≤
∥∥∥Mkz0

∥∥∥
ι
+

∥∥∥∥∥∥

k−1∑

q=0

M qBuk−q−1

∥∥∥∥∥∥
ι

≤ ρ̃k
∥∥z0
∥∥
ι
+

k−1∑

q=0

ρ̃q
∥∥∥Buk−q−1

∥∥∥
ι
. (3.25)

Being ∇fk Lipschitz continuous (cf. Assumption 3.3), it holds

fk(xk, σk(xk))− fk(xk⋆, σk(xk⋆)) ≤
L1

2
∥xk − xk⋆∥2

(a)

≤ L1

2
∥zk∥2, (3.26)

where in (a) uses the fact that
∥∥xk − xk⋆

∥∥ is a component of zk. Recalling that all norms

are equivalent on finite-dimensional vector spaces, there always exist λ1 > 0 and λ2 > 0

such that ∥·∥ ≤ λ1 ∥·∥ι and ∥·∥ι ≤ λ2 ∥·∥. Thus, by exploiting the square norm and

combining the results (3.25) with the equivalence of the norms, we can bound (3.26) as

fk(xk, σk(xk))− fk(xk⋆, σk(xk⋆))
1An expression of ∥ · ∥ι can be found in the proof of [85, Lemma 5.6.10].
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≤ L1λ
2
1

2


ρ̃2k

∥∥z0
∥∥2
ι
+ 2ρ̃k

∥∥z0
∥∥
ι

k−1∑

q=0

ρ̃q
∥∥∥Buk−q−1

∥∥∥
ι
+



k−1∑

q=0

ρ̃q
∥∥∥Buk−q−1

∥∥∥
ι




2
 ,

which, combined with the definitions of RT (cf. (3.5)), WT , and QT (cf. (3.21)), and the

equivalence of the norms, leads to

RT ≤
L1λ

2

2

(
T∑

k=1

ρ̃2k
∥∥z0
∥∥+ 2

∥∥z0
∥∥WT +QT

)

(a)

≤ L1λ
2

2

( ∥∥z0
∥∥2

1− ρ̃2 + 2
∥∥z0
∥∥WT +QT

)
, (3.27)

where λ = λ1λ2 and (a) uses the geometric series property.

As regards the result (3.22), we use (3.13) to write

dist(xk+1, Xk+1) = dist(xk + δ(x̃k − xk), Xk+1)

(a)

≤ dist(xk + δ(x̃k − xk), Xk) + αk, (3.28)

where in (a) we add and subtract the term dist(xk + δ(x̃k − xk), Xk) and we introduce

αk (cf. (3.8c)). Now, we recall that

dist(xk + δ(x̃k − xk), Xk) = min
y∈Xk

∥∥∥xk + δ(x̃k − xk)− y
∥∥∥ .

Thus, by adding and subtracting within the norm the term (1− δ)vk with vk ∈ Xk so

that
∥∥xk − vk

∥∥ = dist(xk, Xk), we can use the triangle inequality and the definition of

min to get

dist(xk + δ(x̃k − xk), Xk) ≤ (1− δ)
∥∥∥xk − vk

∥∥∥+ min
y∈Xk

∥∥∥vk + δ(x̃k − vk)− y
∥∥∥

= (1− δ)dist(xk, Xk) + dist(vk + δ(x̃k − vk), Xk),

which allows us to rewrite (3.28) as

dist(xk+1, Xk+1) ≤ (1− δ)dist(xk, Xk) + dist(vt + δ(x̃k − vk), Xk) + αk. (3.29)

Notice that vk, x̃k ∈ Xk and 0 < δ < 1, then vt + δ(x̃k − vk) ∈ Xk and the second term

of (3.29) is null and (3.29) becomes

dist(xk+1, Xk+1) ≤ (1− δ)dist(xk, Xk) + αk. (3.30)
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Both members of (3.30) are always positive, then (3.30) leads to

dist(xk, Xk) ≤ (1− δ)kdist(x0, X0) +
k−1∑

q=0

(1− δ)qαk−q−1.

By summing the latter for k = 1 up to k = T and using the geometric series property

the proof follows. ■

Operatively, in order to choose an appropriate value of the parameter δ, it is necessary

to first estimate the upper bound δ̄. As it emerges from the proof of Theorem 3.1, this

can be done as follows: (i) compute a matrix M(δ) (cf. (3.23)), which depends on the

various problem constants and on δ, (ii) compute δ̄ as the maximum value of δ such that

all the eigenvalues of M(δ) are strictly in the unit circle. We observe that Theorem 3.1

improves the dynamic regret bound provided in [106], which demonstrates a bound

of the type O(T ) +O(
√
TVT ) (where VT is a term capturing variations of the problem).

The authors also show that there exists a particular, constant step-size that allows to

tighten the first term to O(
√
T ). However, the choice of the the step-size requires a prior

knowledge of T and VT . In both cases, we improve the first term, which is replaced by

the constant L1λ2

2
∥z0∥2
1−ρ̃2 , while in our terms WT and QT (cf. (3.21)) the variations of the

problem are scaled by ρ̃k, i.e., an exponentially decaying quantity since ρ̃ ∈ (0, 1). △

Remark 3.1 (Average Regret). Let us consider the case in which the problem variations

are bounded by a constant, i.e., suppose there exists C > 0 so that ζk, ηk, ωk ≤ C for all

t ≥ 0. In this case, by using the definitions of WT and QT (cf. (3.21)) and recalling that

ρ̃ ∈ (0, 1), we can use the geometric series property to get

WT ≤
(4 + L2)C

1− ρ̃T , and QT ≤
(4 + L2)

2C2T

1− ρ̃2 .

In this case, the average regret approaches a constant value,

lim
T→∞

RT /T =
L1λ

2(4 + L2)
2C2

2(1− ρ̃2)2 . △

Remark 3.2 (Inequality constraints). Consider the case in which Xk
i can be expressed in

terms of inequality constraints, namely

Xk
i := {xi ∈ Rni | hki (xi) ≤ 0mi},

with hki : Rni → Rmi for all i ∈ {1, . . . , N} and k ≥ 0. In this case, in place of

the distance function dist(x,Xk), one can use ∥[hk(x)]+∥ as a metric to characterize

the constraint violation, where hk(x) := col(hk1(x1), . . . , h
k
N (xN )). By repeating similar
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arguments as in the proof of Theorem 3.1, one obtains similarly that
∑T

k=1 ∥[hk(xk)]+∥ ≤
1

1−(1−δ)T ∥[hk(x0)]+∥+
∑T

k=1

∑k−1
q=0(1− δ)qαk−q−1. △

In the following corollary, we assess that in the static case the Projected Aggregative

Tracking distributed algorithm converges to the (fixed) optimal solution x⋆ with a linear

rate.

Corollary 3.1 (Static setup). Under the same assumptions of Theorem 3.1, if it holds fk = f ,
ϕk = ϕ, and Xk

i = Xi for all i ∈ {1, . . . , N} and all k ≥ 0, then there exists λ, δ̄ > 0 and
ρ̃ ∈ (0, 1) so that, if γ ≤ 1

L1
and δ ∈ (0, δ̄), it holds

f(xk, σ(xk))− f(x⋆, σ(x⋆)) ≤ ρ̃2kL1λ
2

2

∥∥z0
∥∥2 .

Proof. Here, for all k ≥ 0, it holds uk ≡ 0 and xk⋆ = x⋆. By the same arguments

of Theorem 3.1, we use the Lipschitz continuity of ∇fk (cf. Assumption 3.3), (3.25)

with uk ≡ 0, and the equivalence of the norms to get f(xk, σ(xk)) − f(x⋆, σ(x⋆)) ≤
ρ̃2k

L1λ21
2

∥∥z0
∥∥2
ι
. The proof follows by using again the equivalence of the norms and

setting λ := λ1λ2. ■

3.2.2 Numerical Simulations

In this section we show the effectiveness of Projected Aggregative Tracking on an online

version of the multi-robot surveillance scenario already presented in Section 1.3.2.

Online setup

Let us consider a network of cooperating robots that aim to protect a target with location

bk ∈ R2 at iteration k from some intruders. The optimization variables xki ∈ R2 represent

the position of robots at each iteration k and each robot i is able to move from xki to xk+1
i

using a local controller. We associate to each robot i an intruder located at pki ∈ R2 at

iteration k. The dynamic protection strategy applied by each robot consists of staying

simultaneously close to the protected target and to the associated intruder. Meanwhile,

the whole team of robots tries to keep its weighted center of mass rotating close to the

target. A concept of this scenario is given in Figure (3.1).
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Figure 3.1: Multi- robot surveillance scenario - Robot icons denote agents, devil icons denote
intruders, while the flag is the target to be protected.

This strategy is obtained by solving problem (3.3) with the cost functions fki (xi, σ
k(x)) =

1
2

∥∥xi − pki
∥∥2 + α1

2

∥∥xi − bk
∥∥2 + α2

2N

∥∥σk(x)− bk
∥∥2, with α1 = 1, α2 = 10 and the aggrega-

tion rules ϕki (xi) = βixi + ak, where βi > 0 and at ∈ R2 represents a time-varying offset

which follows the law ak = rcol(cos(k/(2πτ)), sin(k/(2πτ))) for some r, τ > 0. In this

way, the center of mass 1
N

∑N
i=1 x

k
i is forced to rotate around the target position bt.

We address a scenario with N = 50 agents and intruders. As regards the constraints,

we consider a common time-varying box Xk
i = {x ∈ R2 | 0 ≤ x ≤ xkmax} for all i,

where xkmax ∈ R2 starts from [20, 20] and linearly increases at each iteration. In this way,

the agents initially stay closer to the target and then they move toward the associated

intruders. Each intruder i moves along a circle of radius r = 1 according to the law pki =

pi,c + rcol(cos(k/100), sin(k/100)), where pi,c ∈ R2 is randomly generated. The target

bk and the offset ak follow similar laws. In this setup, being the sinusoidal functions

bounded, the constants ηk and ωk introduced in (3.8) can be uniformly bounded as

ηk ≤ α2

√
Nr and ωk ≤

√
Nr for all k ≥ 0. Moreover, the vector xkmax defining the box

Xk
i changes linearly with respect time and, thus, also the constant αk (cf. (3.8c)) can be

uniformly bounded. As regards the algorithm parameters, we set γ = 1 and δ = 0.5.

We performed 100 Monte Carlo trials that differ in the problem parameters and agents’

initial conditions. Figure 3.2 shows that the behavior of the algorithm does not depend

on the generated instances. Indeed, the achieved average dynamic regret, as predicted

in Remark 3.1, converges asymptotically to a constant.
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Figure 3.2: Online case – Mean of the average Dynamic regret and 1-standard deviation band
over 100 Monte Carlo trials.

Static setup

Now we address a static instance of the problem. Namely, we fix Xk and the positions

of the intruders and of the target. We perform a Monte Carlo simulation consisting of

100 trials on the same network of N = 50 agents with the same algorithm parameters.

As predicted by Corollary 3.1, Figure 3.3 shows an exponential decay of ∥x
k−x⋆∥
∥x⋆∥ .
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Figure 3.3: Static case – Mean of the relative error and 1-standard deviation band obtained with
100 Monte Carlo trials.

3.3 Distributed Personalized Aggregative Optimization

In this section, we consider “personalized” instances of problem (3.3), i..e, an optimiza-

tion framework described by

min
(x1,...,xN )∈X

N∑

i=1

V k
i (xi, σ

k(x)) + Ui(xi, σ
k(x))︸ ︷︷ ︸

fki (xi,σ
k(x))

, (3.31)

in which x := col(x1, . . . , xN ) ∈ Rn is the global decision vector, with each xi ∈ Rni and

n =
∑N

i=1 ni. Each agent i is equipped with the known time-varying engineering cost
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V k
i : Rni×Rd → R and with the unknown user’s dissatisfaction function Ui : Rni×Rd →

R. For each agent i, these two contributions define the local cost function

fki (·, σk(·)) := V k
i (·, σk(·)) + Ui(·, σk(·)).

The global decision vector is constrained to belong to the set X ⊆ Rn given by X :=

X1×· · ·×XN , with eachXi ⊆ Rni . The aggregation function σk(x) still has the form (3.2).

As in Section 3.2, we denote the cost function of problem (3.31) more compactly as

fk(x, σk(x)), where fk : Rn × Rd → R is defined as fk(x,w) :=
∑N

i=1 f
k
i (xi, w) with

xi ∈ Rni , w ∈ Rd. The same reasoning applies also for the functions V k(x, w) :=∑N
i=1 V

k
i (xi, w) and U(x,w) :=

∑N
i=1 Ui(xi, w). Further, given x := col(x1, . . . , xN ) ∈

Rn and w := col(w1, . . . , wN ) ∈ RNd with xi ∈ Rni , wi ∈ Rd for all ∈ {1, . . . , N}, we

will use the symbols

ϕk(x) :=



ϕk1(x1)

. . .

ϕkN (xN )


 , Gk1,V (x,w) :=



∇1V

k
1 (x1, w1)

. . .

∇1V
k
N (xN , wN )


 , Gk2,V (x,w) :=



∇2V

k
1 (x1, w1)

. . .

∇2V
k
N (xN , yN )


 ,

and

GkV (x,w) := Gk1,V (x,w) +∇ϕk(x)1N,d
1

N

N∑

i=1

∇2V
k
i (xi, wi).

The idea is to solve problem (3.31) in a distributed way over a network of N agents

communicating according to an undirected graph G := ({1, . . . , N}, E). The features of

problem (3.31) are summarized within the next assumptions.

Assumption 3.4 (Unknown Function). The function Ui has a quadratic structure

Ui(xi, si) =
[
x⊤i s

⊤
i

]
Pi

[
xi

si

]
+ q⊤i

[
xi

si

]
+ ri, (3.32)

where xi ∈ Rni , si ∈ Rd, Pi = P⊤
i ∈ R(ni+d)×(ni+d) has eigenvalues in [µU , LU ] with

LU > µU > 0, qi ∈ Rni+d, and ri ∈ R for all i ∈ {1, . . . , N}. The parameters of each
function are unknown, but each agent i can access the noisy measurement zi ∈ R defined as

zi = Ui(xi, si) + ϵi,

with ϵi a generic scalar zero-mean noise with finite variance.

Assumption 3.5 (Set). The set Xk is closed and convex. △

Assumption 3.6 (Engineering Function). The global engineering function V k(x, σk(x)) is
µ-strongly convex for all k ≥ 0 and

∥∥xk⋆
∥∥ is bounded, where xk⋆ ∈ Rn denotes its minimizer
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at time k ≥ 0 over the set X. Further, it is differentiable with L1,V -Lipschitz continuous
gradient. Moreover, the function GkV s L1,V -Lipschitz, namely it holds

∥∥∥GkV (x,w)−GkV (x′, w′)
∥∥∥ ≤ L1,V

∥∥col(x− x′, w − w′)
∥∥ ,

for all x, x′ ∈ Rn and w,w′ ∈ RNd and k ≥ 0. In addition, the functions Gk2,V (x, y) and ϕki (·)
are L2,V -Lipschitz and L3-continuous, respectively, for all k ≥ 0 and i ∈ {1, . . . , N}. △

Assumption 3.7 (Communication graph). G is connected. Moreover, the adjacency matrix
WG is doubly stochastic. △

Assumptions 3.4 and 3.6 imply that, for all k ≥ 0, the gradients ∇fk and ∇1f
k are

Lipschitz continuous functions with parameter LU+L1,V , while the Lipschitz parameter

of Gk2(x, y) := col(∇2f
k
1 (x1, y1), . . . ,∇2f

k
N (xN , yN )) is LU + L2,V .

We assume that each agent i can only privately access V k
i , ϕki , Xi, and a noisy user

feedback zki = Ui(x
k
i , s

k
i ) + ϵki where xki and ski are its local estimates of the solution and

the aggregative variable at iteration k, respectively, and ϵki is a noise term. It is important

to remark that each agent i accesses its private information only once the estimate xki of

the i-th component of the minimizer of problem (3.31) has been computed. We denote

the minimizer of fk(x, σk(x)) over X as xk⋆ (which is unique in light of Assumption 3.5,

cf. Proposition A.2 in Appendix A). We will present RLS Projected Aggregative Tracking,

i.e., a distributed scheme to address problem (3.31) and, as in Section 3.2, we will

evaluate its performance in terms of dynamic regret that recall as follows

RT :=
T∑

k=1

fk(xk, σk(xk))−
T∑

k=1

fk(xk⋆, σ
k(xk⋆)), (3.33)

given a finite value T > 1, Next, we provide a preliminary section to the present Recur-

sive Least Squares scheme, used within the learning part of RLS Projected Aggregative

Tracking.

Recursive Least Squares

The distributed algorithm proposed in this paper relies on a learning part driven by

users’ feedback. Specifically, at each q ≥ 0, let agent i have some local states xqi ∈ Rni

and sqi ∈ Rd, and suppose it can measure

zqi = Ui(x
q
i , s

q
i ) + ϵqi (3.34)
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to learn the parameters of the unknown function Ui by using a Least Squares (LS)

method. That is, it computes

ξ̂ki := argmin
ξi

k∑

q=1

(
ξ⊤i χ

q
i − zqi

)2
, (3.35)

in which, for all q ∈ {1, . . . , k}, the regressor vector χqi ∈ Rnls , nls := 1+ni+d+(ni+d)
2,

is given by

χqi := col

(
1,

[
xqi
sqi

]
,
1

2

[
xqi
sqi

]

1

[
xqi
sqi

]
, . . . ,

1

2

[
xqi
sqi

]

ni+d

[
xqi
sqi

])
. (3.36)

The asymptotic properties of the LS scheme are summarized in the next lemma, which

requires the following assumption on persistent excitation of data.

Assumption 3.8 (Persistent Excitation). For any i ∈ {1, . . . , N} and k ≥ 0, let the sequence
{xqi , s

q
i }0≤q≤k be such that

• {(χqi , z
q
i )}0≤q≤k in (3.34) and (3.36) is a realization of a jointly stationary ergodic

process;

• the matrix Σ := E[χqi (χ
q
i )

⊤] is non-singular;

• the sequence {χqi ϵ
q
i }0≤q≤k is a martingale difference sequence with finite second mo-

ments (cf. [82, Assumption 2.5]). △

Lemma 3.5 (Estimation error). Let Assumption 3.8 holds and, for any i ∈ {1, . . . , N}, let
ξ⋆i := col(1, qi, [Pi]1, . . . , [Pi]nls). Then, denoting S := E

[
χqi ξ

q
i (χ

q
i ξ
q
i )

⊤], it holds

lim
k→∞

√
k(ξ̂ki − ξki,⋆)

D→ N (0,Σ−1SΣ−1), (3.37)

where the notation D→ stands for convergence in distribution. Moreover, the estimated Ûki (x, s)
is bounded for any finite x and s, for all i ∈ {1, . . . , N}, and k ≥ 0. Further, for any ν ∈ (0, 1]

and ϵ > 1, there exists a finite k̄ ≥ 0, for which the estimated P̂ ki is symmetric and it has
eigenvalues in the set [0, ϵLU ] with probability 1− ν, i.e., it holds

ϵLUIn+Nd ≥ P̂ ki = (P̂ ki )
⊤ ≥ 0. (3.38)

The result (3.37) can be derived from, e.g., [117, Chapters 8, 9, 11] and [82, Proposi-

tion 2.1]. As regards the result (3.38), see [141, Appendix A.3].

Recursive Least Squares (RLS) (see, e.g., [117, Chapter 11]) is an efficient scheme

to iteratively solve (3.35) as soon as new data arrive. Asymptotic properties of RLS
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coincide with the ones of non-recursive LS, thus in our scheme we will use RLS and

require Assumption 3.8.

Remark 3.3. Among the possibilities, we exploited an RLS scheme to estimate a

quadratic unknown function. However, especially in the case of more general func-

tions instead of the quadratic ones, other strategies may be investigated such as the

exploitation of, e.g., Gaussian processes [145, 146, 172] or neural networks [46]. △

3.3.1 RLS Projected Aggregative Tracking: Algorithm Description and Anal-
ysis

In this section, we present RLS Projected Aggregative Tracking, namely a distributed

algorithm extending Algorithm 5 to address problem (3.31). RLS Projected Aggregative

Tracking includes a Recursive Least Squares mechanism (see, e.g., [82, 117, 163]) driven

by noisy user feedback zki and providing estimates f̂ki of the local objective function fki .

Each agent i, at each iteration k ≥ 0, maintains an estimate xki ∈ Rni of the compo-

nent i of the minimizer xk⋆ of problem (3.31), and two auxiliary variables ski , y
k
i ∈ Rd.

The estimate xki is updated by manipulating the learned f̂ki and the variables ski and

yki . A pseudo-code of the RLS Projected Aggregative Tracking algorithm is reported

in Algorithm 6 from the perspective of agent i, in which r0i > 0 is an initialization

parameter, γ > 0 is a step-size, δ ∈ (0, 1) represents a convex combination constant, and

each element wij represents the (i, j)-entry of the weighted adjacency matrixWG of the

network communication graph.
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Algorithm 6 RLS Projected Aggregative Tracking (Agent i)

Initialization: set R0
i = r0i Inls , ξ̂

0
i = 0, x0i ∈ Xi, s0i = ϕ0i (x

0
i ), y

0
i = ∇2f̂

0
i (x

0
i , s

0
i )

for k = 0, 1, . . . do

Optimization

x̃ki = PXi

[
xki − γ(∇1f̂

k
i (x

k
i , s

k
i ) +∇ϕki (xki )yki )

]

xk+1
i = xki + δ(x̃ki − xki )

sk+1
i =

N∑

j=1

wijs
k
j + ϕk+1

i (xk+1
i )− ϕki (xki )

Measurement

zk+1
i = Ui(x

k+1
i , sk+1

i ) + ϵk+1
i

Learning

ψk+1
i =

Rki χ
k+1
i

1 + (χk+1
i )⊤Rki χ

k+1
i

Rk+1
i = Rki − (1 + (χk+1

i )⊤Rki χ
k+1
i )ψk+1

i (ψk+1
i )⊤

ξ̂k+1
i = ξ̂ki + (zk+1

i − (χk+1
i )⊤ξ̂k+1

i )ψk+1
i

(P̂ k+1
i , q̂k+1

i , r̂i,k+1) = unpack(ξ̂k+1
i )

P̂ k+1
i ← (P̂ k+1

i + (P̂ k+1
i )⊤)/2

yk+1
i =

N∑

j=1

wijy
k
j +∇2f̂

k+1
i (xk+1

i , sk+1
i )−∇2f̂

k
i (x

k
i , s

k
i )

end for

In Algorithm 6, in order to move xki toward the minimizer of problem (3.31), as in

Algorithm 5, each agent i employs two trackers to reconstruct the unavailable global

quantities ∇1f
k
i

(
xki ,
∑N

j=1

ϕkj (x
k
j )

N

)
and 1

N∇ϕki (xki )
∑N

i=1∇2f
k
i

(
xki ,
∑N

j=1

ϕkj (x
k
j )

N

)
. More-

over, as for the not completely known local function fki , here each agent i needs to

replace it by the estimate f̂ki provided by the learning part of the scheme. Indeed, in

Algorithm 6, the optimization steps (inspired by Algorithm 5) are interlaced with a RLS

performed by using the measurements zk+1
i . By relying on this outcome, agent i can

manipulate the updated estimated cost function f̂k+1
i . In fact, once xk+1

i , sk+1
i , and ξ̂k+1

i
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have been computed, it can access

Ûk+1
i (xk+1

i , sk+1
i ) :=

1

2

[
(xk+1
i )⊤ (sk+1

i )⊤
]
P̂ k+1
i

[
xk+1
i

sk+1
i

]
+ (q̂k+1

i )⊤
[
xk+1
i

sk+1
i

]
+ r̂k+1

i ,

(3.39)

where the estimates P̂ k+1
i , q̂k+1

i , and r̂k+1
i are extracted from the vector ξ̂k+1

i through the

unpack operator (see Notation paragraph). The estimate (3.39) can be combined with

the known part V k+1
i to get the whole local function estimate f̂k+1

i as

f̂k+1
i (xk+1

i , sk+1
i ) := V k+1

i (xk+1
i , sk+1

i ) + Ûk+1
i (xk+1

i , sk+1
i ). (3.40)

Such an estimate is used to compute the update directions used in the optimization

steps.

We specify that, in Algorithm 6,∇1f̂
k
i and∇2f̂

k
i denote the gradients of f̂ki computed

by the agent i using its currently available estimates of the Ui parameters, namely

(P̂ ki , q̂
k
i , r̂

k
i ).

In order to derive an upper bound for the dynamic regret that RLS Projected Ag-

gregative Tracking can achieve, let us rewrite all the agents’ updates of Algorithm 6 in a

stacked vector form as

x̃k = PX [x
k − γ(Ĝk1(xk, sk) +∇ϕk(xk)yk)] (3.41a)

xk+1 = xk + δ(x̃k − xk) (3.41b)

sk+1 =Wsk + ϕk+1(xk+1)− ϕk(xk) (3.41c)

yk+1 =Wyk + Ĝk+1
2 (xk+1, sk+1)− Ĝk2(xk, sk), (3.41d)

in which we have collected all the local quantities through the symbols xk, sk, yk, ϕ(xk)

with same meaning as in (3.6) and

Ĝk1(x
k, sk) :=




∇1f̂
k
1 (x

k
1, s

k
1)

...

∇1f̂
k
N (x

k
N , s

k
N )


 , Ĝk2(x

k, sk) :=




∇2f̂
k
1 (x

k
1, s

k
1)

...

∇2f̂
k
N (x

k
N , s

k
N )


 .

We prove the performance properties of RLS Projected Aggregative Tracking by properly

defining an error vector and using Lemmas 3.1, 3.2, 3.3, and 3.4 suitably adapted for

the setting of this section. Indeed, we notice that, according to the result (3.38), for

any ν ∈ (0, 1], there exists k̄ ≥ 0 such that, for any k ≥ k̄, with probability 1 − ν, the

function f̂k(·, σk(·)) :=
∑N

i=1 f̂
k
i (·, σk(·)) is µ-strongly convex. Hence, for any k ≥ k̄,

with probability 1− ν, the cost f̂k(·, σk(·)) over X has a unique minimizer x̂k⋆ ∈ Rn (cf.

Proposition A.2 in Appendix A). Further, ∇f̂k and Ĝk1 are L1-Lipschitz continuous with
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L1 := ϵLU + L1,V , and Ĝk2 is L2-Lipschitz continuous with L2 := ϵLU + L2,V . Thus, by

suitably replacing fk and xk⋆ with the estimated f̂k and its minimizer x̂k⋆ over X , we can

state the useful bounds relying on the same arguments of Lemmas 3.1, 3.2, 3.3, and 3.4.

To this end, we introduce four useful variables defined as

βk := sup
i

sup
x∈Xi,z∈Rd

∥∥∥Ui(x, z)− Ûki (x, z)
∥∥∥ (3.42a)

ηk := sup
x∈X,z∈RNd

∥∥∥Ĝk+1
2 (x, z)− Ĝk2(x, z)

∥∥∥ (3.42b)

ωk := sup
x∈X

∥∥∥ϕk+1(x)− ϕk(x)
∥∥∥ (3.42c)

ζk :=
∥∥∥x̂k+1

⋆ − x̂k⋆
∥∥∥ . (3.42d)

Lemma 3.6. Let Assumptions 3.4, 3.5, 3.6, 3.7, and 3.8 hold. If γ ≤ 1
L1

, then, for any
ν ∈ (0, 1], ∃k̄ ≥ 0 such that, for all k ≥ k̄, it holds

∥∥∥xk+1 − x̂k+1
⋆

∥∥∥ ≤ (1− δµγ)
∥∥∥xk − x̂k⋆

∥∥∥+ δγL1

∥∥∥sk − 1N,ds̄
k
∥∥∥+ δγL3

∥∥∥yk − 1N,dȳ
k
∥∥∥+ ζk.

Lemma 3.7. Let Assumptions 3.4, 3.5, 3.6, 3.7, and 3.8 hold. Then, for any ν ∈ (0, 1],
∃k̄ ≥ 0 such that, for all k ≥ k̄, it holds

∥∥∥xk+1 − xk
∥∥∥ ≤ δ(2 + γL1 + γL1L3)

∥∥∥xk − x̂k⋆
∥∥∥+ δγL1

∥∥∥sk − 1N,ds̄
k
∥∥∥+ δγL3

∥∥∥yk − 1N,dȳ
k
∥∥∥ .

Lemma 3.8. Let Assumptions 3.4, 3.5, 3.6, 3.7, and 3.8 hold. Then, for any ν ∈ (0, 1],
∃k̄ ≥ 0 such that, for all k ≥ k̄, it holds

∥∥∥sk+1 − 1N,ds̄
k+1
∥∥∥ ≤ Λ

∥∥∥sk − 1N,ds̄
k
∥∥∥+ δγL1L3

∥∥∥sk − 1N,ds̄
k
∥∥∥

+ δ(2L3 + γL1L3 + γL1L
2
3)
∥∥∥xk − x̂k⋆

∥∥∥

+ δγL
2
3

∥∥∥yk − 1N,dȳ
k
∥∥∥+ ωk,

where Λ is the maximum eigenvalue of the matrixW − 1N,d1
⊤
N,d

N .

Lemma 3.9. Let Assumptions 3.4, 3.5, 3.6, 3.7, and 3.8 hold. Then, for any ν ∈ (0, 1],
∃k̄ ≥ 0 such that, for all k ≥ k̄, it holds

∥∥∥yk+1 − 1N,dȳ
k+1
∥∥∥ ≤ Λ

∥∥∥yk − 1N,dȳ
k
∥∥∥+ δγL3(L2 + L2L3)

∥∥∥yk − 1N,dȳ
k
∥∥∥

+ δ(2 + γL1 + γL1)(L2 + L2L3)
∥∥∥xk − x̂k⋆

∥∥∥+ 2L2

∥∥∥sk − 1N,ds̄
k
∥∥∥

+ δγL1(L2 + L2L3)
∥∥∥sk − 1N,ds̄

k
∥∥∥+ L2

√
Nωk + ηk,

where Λ is the maximum eigenvalue of the matrixW − 1N,d1
⊤
N,d

N .
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Now, we are ready to state the main theoretical results of the paper. Indeed, the next

theorem provides a bound on the dynamic regret of the estimates generated by the RLS

Projected Aggregative Tracking. To this end, we will use Lemma 3.6, 3.7, 3.8, and 3.9 to

bound the components of the vector ek defined as

ek :=




∥∥xk − x̂k⋆
∥∥

∥∥sk − 1N,ds̄
k
∥∥

∥∥yk − 1N,dȳ
k
∥∥


 . (3.43)

Theorem 3.2. Consider RLS Projected Aggregative Tracking as given in Algorithm 6. Let
Assumptions 3.4, 3.5, 3.6, 3.7, and 3.8 hold and assume that ηk and ωk are finite for any
k ≥ 0. If γ ≤ 1

L1
, then, for any ν ∈ (0, 1], there exist C, λ, k̄ > 0, and δ̄ ∈ (0, 1) such that, for

any δ ∈ (0, δ̄), there exists ρ̃ ∈ (0, 1) such that, with probability 1− ν, it holds

RT ≤
L1λ

2

2




∥∥∥ek̄
∥∥∥
2

1− ρ̃2 + 2
∥∥∥ek̄
∥∥∥WT +QT


+ BT , (3.44)

where RT has been defined in (3.5) and

WT :=

T∑

k=k̄

k−1∑

q=k̄

ρ̃k+k
(
ζk−q−1 + 2ηk−q−1 + (1 + L2)ω

k−q−1

)
(3.45a)

QT :=

T∑

k=k̄

( k−1∑

q=k̄

ρ̃q
(
ζk−q−1 + 2ηk−q−1 + (1 + L2)ω

k−q−1

))2

(3.45b)

BT := 2N
T∑

k=k̄

βk + Ck̄, (3.45c)

where ζk, ηk, ωk, and βk are defined in (3.42).

Proof. The first steps of the proof of Theorem 3.2 mimics the ones of the proof of

Theorem 3.1. Indeed, by relying on Lemma 3.6, 3.7, 3.8, and 3.9, for any ν ∈ (0, 1) there

exists k̄ > 0 so that, for any k ≥ k̄, the evolution of ek (cf. (3.43)) is governed by the same

system given in (3.23), namely

ek+1 ≤M(δ)ek +Buk,

where uk := col(ζk, ηk, ωk) (cf. (3.42)) is the input variable, and the matrices M(δ) ∈
R3×3, B ∈ R3×3 have the same meaning as in (3.23). Thus, as we already proved in

the proof of Theorem 3.1, there exist δ̄ > 0, ρ̃ ∈ (0, 1), and a norm ∥·∥ν so that, for any
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δ ∈ (0, δ̄), it holds

∥∥∥ek
∥∥∥
ι
≤ ρ̃k

∥∥e0
∥∥
ι
+

k−1∑

q=0

ρ̃q
∥∥∥Buk−q−1

∥∥∥
ι
. (3.46)

Keep this result in mind and recall the definition of dynamic regret given in (3.33) to

write

RT =

T∑

k=1

fk(xk, σk(xk))−
T∑

k=1

fk(xk⋆, σ
k(xk⋆))

(a)
=

k̄−1∑

k=1

fk(xk, σk(xk))−
k̄−1∑

k=1

fk(xk⋆, σ
k(xk⋆))

+

T∑

k=k̄

fk(xk, σk(xk))−
T∑

k=k̄

fk(xk⋆, σ
k(xk⋆)), (3.47)

where in (a) we isolate the terms of the sum until k = k̄. We notice that, in light of

Assumptions 3.4 and 3.6, the function fk is bounded in the case of bounded arguments.

Thus, we can introduce some positive constant C > 0 to write

k̄−1∑

k=1

fk(xk, σk(xk))−
k̄−1∑

k=1

fk(xk⋆, σ
k(xk⋆)) ≤ Ck̄,

which allows us to upper bound (3.47) as

RT = Ck̄ +

T∑

k=k̄

fk(xk, σk(xk))−
T∑

k=k̄

fk(xk⋆, σ
k(xk⋆))

(a)

≤ Ck̄ +
T∑

k=k̄

f̂k(xk, σk(xk))−
T∑

k=k̄

fk(xk⋆, σ
k(xk⋆))

+
T∑

k=k̄

N∑

i=1

(
Ui(x

k
i , σ

k(xki ))− Ûki (xki , σk(xki ))
)
, (3.48)

where (a) uses the definition of f̂ki given in (3.40) to keep apart the learning errors

terms
∑N

i=1(Ui(x
k
i , σ

k(xki )) − Ûki (xki , σk(xki ))). Next, we handle fk(xk⋆, σ
k(xk⋆)). Indeed,

by adding and subtracting fk(x̂k⋆, σ
k(x̂k⋆)) and f̂k(xk⋆, σ

k(xk⋆)), we get

fk(xk⋆, σ
k(xk⋆)) = f̂k(x̂k⋆, σ

k(x̂k⋆)) + f̂k(xk⋆, σ
k(xk⋆))− f̂k(x̂k⋆, σk(x̂k⋆))

+ fk(xk⋆, σ
k(xk⋆))− f̂k(xk⋆, σk(xk⋆)). (3.49)
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Since x̂k⋆ is the unique minimizer of f̂k, then

f̂k(xk⋆, σ
k(xk⋆))− f̂k(x̂k⋆, σk(x̂k⋆)) > 0. (3.50)

Moreover, the definitions of fk and f̂k lead to

fk(xk⋆, σ
k(xk⋆))− f̂k(xk⋆, σk(xk⋆)) =

N∑

i=1

(
Ui(x

k
⋆, σ

k(xk⋆))− Ûki (xk⋆, σk(xk⋆))
)
.

Therefore, by combining the latter with the results (3.49) and (3.50), we can upper

bound (3.48) as

RT ≤ Ck̄ +
T∑

k=1

f̂k(xk, σk(xk))−
T∑

k=1

f̂k(x̂k⋆, σ
k(x̂k⋆))

−
T∑

k=k̄

N∑

i=1

(
Ui(x

k
⋆, σ

k(xk⋆))− Ûki (xk⋆, σk(xk⋆))
)

+
T∑

k=k̄

N∑

i=1

(
Ui(x

k
i , σ

k(xki ))− Ûki (xki , σk(xki ))
)

(a)

≤ Ck̄ +
T∑

k=k̄

f̂k(xk, σk(xk))−
T∑

k=k̄

f̂k(x̂k⋆, σ
k(x̂k⋆)) + 2N

T∑

k=k̄

βk, (3.51)

where in (a) we use (3.42a) to bound the two sums related to the learning errors. Now,

we notice that, in light of Lemma 3.5, ∇f̂k is L1-Lipschitz continuous with probability

1− ν for all k ≥ k̄. Thus, by applying the Descent Lemma (cf.[14, Proposition 6.1.2]) on

the right-hand side of the inequality (3.51), we have that, with probability 1− ν, it holds

RT ≤ Ck̄ +
L1

2

T∑

k=k̄

∥∥∥xk − x̂k⋆
∥∥∥
2
+ 2N

T∑

k=k̄

βk

(a)

≤ Ck̄ +
L1

2

T∑

k=k̄

∥∥∥ek
∥∥∥
2
+ 2N

T∑

k=k̄

βk, (3.52)

where in (a) we use the bound
∥∥xk − x̂k⋆

∥∥2 ≤
∥∥ek
∥∥2 which follows by the definition of

ek given in (3.43). Recalling that all norms are equivalent on finite-dimensional vector

spaces, there always exist λ1 > 0 and λ2 > 0 such that ∥·∥ ≤ λ1 ∥·∥ι and ∥·∥ι ≤ λ2 ∥·∥.
Thus, the inequality (3.52) can be upper bounded as

RT ≤ Ck̄ +
L1λ

2
1

2

T∑

k=k̄

∥∥∥ek
∥∥∥
2

ι
+ 2N

T∑

k=k̄

βk. (3.53)
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By combining the results (3.46) and (3.53), we can write

RT ≤
L1λ

2
1

2

( T∑

k=k̄

ρ̃2(k−k̄)
∥∥∥ek̄
∥∥∥
ι
+

T∑

k=k̄

2ρk−k̄
∥∥∥ek̄
∥∥∥
ι

k−1∑

q=k̄

ρ̃q
∥∥∥Buk−q−1

∥∥∥
ι

+

T∑

k=k̄

( k−1∑

q=k̄

ρ̃q
∥∥∥Buk−q−1

∥∥∥
ι

)2)
+ Ck̄ + 2N

T∑

k=1

βk

(a)

≤ L1λ
2
1

2




∥∥∥ek̄
∥∥∥
2

ι

1− ρ̃2 + 2
∥∥∥ek̄
∥∥∥
ι

T∑

k=k̄

k−1∑

q=k̄

ρ̃k−k̄+q
∥∥∥Buk−q−1

∥∥∥
ι
+

T∑

k=k̄

( k−1∑

q=k̄

ρ̃q ∥Buk−q−1∥ι
)2




+ Ck̄ + 2N
T∑

k=1

βk

(b)

≤ L1λ
2

2




∥∥∥ek̄
∥∥∥
2

1− ρ̃2 + 2
∥∥∥ek̄
∥∥∥

T∑

k=k̄

k−1∑

k=k̄

ρ̃k−k̄+q
∥∥∥Buk−q−1

∥∥∥+
T∑

k=k̄

( k−1∑

q=k̄

ρ̃q
∥∥∥Buk−q−1

∥∥∥
)2




+ Ck̄ + 2N
T∑

k=1

βk,

where in (a) we use the geometric series property, and in (b) we use the relation ∥·∥ι ≤
λ2 ∥·∥ and set λ := λ1λ2. The proof follows by using the triangle inequality to bound the

terms
∥∥Buk−q−1

∥∥ and by invoking the definitions of WT , QT and BT (cf. (3.45)). ■

In the next, we employ Theorem 3.2 to characterize the asymptotic performance of

RLS Projected Aggregative Tracking in terms of dynamic average regret. In particular,

the next corollary guarantees that, if the variations of the problem over time are bounded

by a constant, then the average dynamic regret asymptotically converges to a constant.

Corollary 3.2 (Average Dynamic Regret). Consider the same assumptions of Theorem 3.2
and assume that the problem variations over time are bounded by a constant, i.e., that there
exists D > 0 such that ηk, ωk, ζk ≤ D for any k ≥ 0. Then, for any ν ∈ (0, 1], there exists
λ, k̄ ≥ 0 and δ̄ ∈ (0, 1) such that, for any δ ∈ (0, δ̄), there exists ρ̃ ∈ (0, 1) such that, with
probability 1− ν, it holds

lim
T→∞

RT
T
≤ L1λ

2(4 + L2)
2D2

2(1− ρ̃) .

Proof. The result follows by taking the limit of the bound (3.44) and combining it with

the result (3.37) of Lemma 3.5 and the properties of the geometric series with ρ̃ ∈ (0, 1).

■
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3.3.2 Numerical Simulations

We consider a network of N = 10 agents that want to optimize their opinions about d

different topics. In particular, given a time-varying prejudice pki ∈ Rd for all k ≥ 0, each

agent i wants that its opinion xi ∈ Rd stays as close as possible to this prejudice. Further,

each agent i, would also follow the weighted average opinion σk(x) := 1
N

∑N
i=1 a

k
i xi.

Each weight aki > 0 represents the social influence of the agent i at time k. This

framework can be captured by local engineering functions V k
i of the form

V k
i (xi, σ

k(x)) :=
1

2

∥∥∥xi − pki
∥∥∥
2
+
α

2

∥∥∥xi − σk(x)
∥∥∥
2
,

where α > 0. Further, we assume that each agent i takes into account the evaluation of

a personalized expert. Indeed, given the opinion xki of the agent i at iteration k and its

estimate ski about the weighted average opinion σk of the network, the expert provides

a noisy evaluation zki = Ui(x
k
i , s

k
i ) + ϵki expressing its disagreement with both xki and

ski according to a quadratic function as in (3.32). In addition, we include the sets

Xi := [0, 100]× · · · × [0, 100] to bound the opinions. The agents communicate according

to an undirected, connected Erdős-Rényi graph with connectivity parameter 0.5. We fix

d = 2, and choose piecewise linear laws for the weights aki , while we pick prejudices pki
that vary as pki = pi,c + rcol(cos(k/100), sin(k/100)), where r = 1 and pi,c ∈ [0, 100]2 is

a randomly generated center. Further, we randomly choose each Pi, qi, and ri of (3.32)

and consider a measurement noise ϵki ∼ N (0, 1). We select each component of x0i and

pki from the interval [0, 100] with a uniform random distribution. As for the algorithm

parameters, we set r01 = · · · = r0N = 50, γ = 0.5, and δ = 0.1. We perform 20 Monte

Carlo trials whose results are provided in Figure 3.4a in terms of average dynamic regret

RT /T . Finally, in Figure 3.4b, we show the achieved relative error ∥x
k−xk⋆∥
xk⋆

.
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(a) Mean of the average dynamic regret.
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(b) Mean of the relative solution error.

Figure 3.4: Numerical results with 1-standard deviation band over 20 Monte Carlo trials.

130



3.4. Distributed Feedback Aggregative Optimization

3.4 Distributed Feedback Aggregative Optimization

In this section, we present and address the distributed feedback aggregative optimization

framework. We consider a system of N ∈ N agents. The dynamics of the i-th agent is

described by

ẋi = pi(xi, ui), (3.54)

where pi : Rni × Rmi → Rni , and xi ∈ Rni , ui ∈ Rmi denote the state and the control of

the i-th agent.
The following assumption is customary in the literature.

Assumption 3.9 (Steady-State map). For all i ∈ {1, . . . , N} and for any ui ∈ Rmi , there
exists hi : Rmi → Rni such that hi(ui) ∈ Rni represents a unique globally exponentially
stable equilibrium point for (3.54). Moreover, there exist Lh, Lp > 0 such that

∥hi(ui)− hi(u′i)∥ ≤ Lh∥ui − u′i∥
∥pi(xi, ui)− pi(x′i, u′i)∥ ≤ Lp∥col(xi, ui)− col(x′i, u

′
i)∥,

for any xi, x′i ∈ Rni , ui, u′i ∈ Rmi , and all i ∈ {1, . . . , N}. Furthermore, ker(∇hi(ui)) = 0

for any ui ∈ Rmi . △

The agents cooperate with the aim of reaching a configuration which represents a

stationary point with respect to an unconstrained instance of (1.4), i.e., the optimization

problem described by

min
x∈Rn

N∑

i=1

fi(xi, σ(x)), (3.55)

in which x := col(x1, . . . , xN ) ∈ Rn is the global decision vector with each xi ∈ Rni with

n :=
∑N

i=1 ni, and σ : Rn → Rd is the aggregation function defined as

σ(x) =

∑N
i=1 ϕi(xi)

N
, (3.56)

where ϕi : Rni → Rd be the i-th contribution. In the following, we will also use the

shorthand

F (x, σ(x)) :=
N∑

i=1

fi(xi, σ(x)), (3.57)

and the operator G : Rn × Rd → Rn defined as

G(x) := ∇F (v, σ(v)) |v=x .
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According to the distributed computation paradigm, we assume that the global infor-

mation σ(x) and F (x, σ(x)) are not locally available for the single agent i. Further, we

also satisfy the feedback optimization paradigm in the following sense. The analytic

expression of the local objective functions and aggregation rules are not available for

the agents, they can be only measured according to current local variables. In particular,

each agent i can only access ∇1fi(xi, si), ∇2fi(xi, si), ϕi(xi), and ∇ϕi(xi), where xi is its

current state, while si ∈ Rd is its local estimate of the aggregative variable.

Assumption 3.10 (Function Regularity). The global objective function F (x) is radially
unbounded and differentiable. Moreover, there exist L0, L1, L2 > 0 such that

∥G(x)−G(x′)∥≤ L0∥x− x′∥
∥∥∇1fi(xi, yi)−∇1fi(x

′
i, y

′
i)
∥∥ ≤ L1

∥∥∥∥∥

[
xi − x′i
yi − y′i

]∥∥∥∥∥

∥∇2fi(xi, yi)−∇2fi(x
′
i, y

′
i)∥≤ L2

∥∥∥∥∥

[
xi − x′i
yi − y′i

]∥∥∥∥∥ ,

for any x, x′ ∈ Rn, y, y′ ∈ RNd, xi, x′i ∈ Rni , yi, y′i ∈ Rd, and all i ∈ {1, . . . , N}. Further,
the aggregation functions ϕi are differentiable and there exists L3 > 0 such that

∥∥ϕi(xi)− ϕi(x′i)
∥∥ ≤ L3

∥∥xi − x′i
∥∥ ,

for any xi, x′i ∈ Rni and all i ∈ {1, . . . , N}. △

The communication among the agents is performed according to a directed graph

G = ({1, . . . , N}, E) with E ⊂ {1, . . . , N} × {1, . . . , N} being the edge set. If an edge

(j, i) belongs to E , then agent i can receive information from agent j, otherwise not.

The set of (in-)neighbors of agent i is defined as Ni := {j ∈ {1, . . . , N} | (j, i) ∈ E}.
We associate to the graph G a weighted adjacency matrix A ∈ RN×N whose entries

satisfy aij > 0 whenever (j, i) ∈ E and aij = 0 otherwise. The weighted in-degree and

out-degree of agent i are defined as din
i =

∑
j∈Ni

aij and dout
i =

∑
j∈Ni

aji, respectively.

Finally, we associate to G the so-called Laplacian matrix defined as L := Din −A, where

Din := diag(din
1 , . . . , d

in
N ) ∈ RN×N .

Assumption 3.11 (Communication graph). The graph G is strongly connected and weight-
balanced, namely din

i = dout
i for all i ∈ {1, . . . , N}. △

Let X := {x ∈ Rn | ∇F (x, σ(x)) = 0} be the set of stationary points of prob-

lem (3.55). Then, the aim of the paper is to design a distributed feedback optimization law

u := col(u1, . . . , un) steering ∥x∥X to zero.
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3.4.1 Aggregative Tracking Feedback: Distributed Control Law Description
and Analysis

Now, we introduce Aggregative Tracking Feedback, i.e., a distributed feedback optimiza-

tion law designed to steer the agents’ states, whose local dynamics are given in (3.54), to

a configuration corresponding to a stationary point of problem (3.55).

To introduce the proposed law, given any ui ∈ Rmi , let us study the optimiza-

tion problem when xi = hi(ui) for all i ∈ {1, . . . , N}, i.e., when each agent has al-

ready reached its steady-state configuration (see Assumption 3.9). Let us define u :=

col(u1, . . . , uN ) ∈ Rm, with m :=
∑N

i=1mi, and h(u) := col(h1(u1), . . . , hN (uN )) ∈ Rm.

Then the optimization problem (3.55) becomes

min
u∈Rm

N∑

i=1

fi(hi(ui), σ(h(u))). (3.58)

It is well-known that (3.58) can be addressed by adopting the continuous-time gradient

method (see, e.g., [17]), which, for all i ∈ {1, . . . , N}, reads as

u̇i = −
∂

∂ui
F (h(u), σ(h(u)))

= −∇hi(ui)


∇1fi(hi(ui), σ(h(u))) +

∇ϕi(hi(ui))
N

N∑

j=1

∇2fj(hi(uj), σ(h(u)))


 .

(3.59)

However, agent i does not analytically know the functions appearing in (3.59). It can

only accesses related measurements evaluated in its current state xi, thus (3.59) needs

to be modified as

u̇i = −∇hi(ui)


∇1fi(xi, σ(x)) +

∇ϕi(xi)
N

N∑

j=1

∇2fj(xj , σ(x))


 . (3.60)

In turn, the control law in (3.60) cannot be implemented in a distributed fashion

because σ(x) and
∑N

j=1∇2fj(xj , σ(x)) need a centralized information. To overcome this

limitation, let

πwi (x) := −ϕi(xi) + σ(x)

πzi (x) := −∇2fi(xi, σ(x)) +

N∑

j=1

∇2fj(xj , σ(x))/N,
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and modify (3.60) as

u̇i = −∇hi(ui) (∇1fi(xi, π
w
i (x) + ϕi(xi)) +∇ϕi(xi)πzi (x))

−∇hi(ui)∇ϕi(xi)∇2fi(xi, π
w
i (x) + ϕi(xi)). (3.61)

The strategy is that of designing estimations for πwi and πzi , namely wi, zi ∈ Rd, such that

lim
t→∞
∥wi(t)− πwi (x(t))∥ = 0

lim
t→∞
∥zi(t)− πzi (x(t))∥ = 0,

for all i ∈ {1, . . . , N}. To this end, inspired by the continuous-time compensation dy-

namics of the auxiliary variables in (2.47), we embed two consensus-based mechanisms

giving rise to the distributed feedback optimization law termed Aggregative Tracking

Feedback and resumed in Algorithm 7. The parameters α1, α2 > 0 tune the system

dynamics. The role of the initialization wi(0) = zi(0) = 0 for all i ∈ {1, . . . , N} will be

detailed in the analysis of the scheme. Fig. 3.5 describes the closed-loop system (3.62)

in terms of block-diagrams.

Algorithm 7 Aggregative Tracking Feedback
Agent i perspective
initialization: xi(0), ui(0) ∈ Rni , wi(0) = zi(0) = 0

ẋi = pi(xi, ui) (3.62a)

u̇i = −α1∇hi(ui) (∇1fi(xi, wi + ϕi(xi)) +∇ϕi(xi) (zi +∇2fi(xi, wi + ϕi(xi))))
(3.62b)

ẇi = −
α1

α2

∑

j∈Ni

aij (wi + ϕi(xi)− wj − ϕj(xj)) (3.62c)

żi = −
α1

α2

∑

j∈Ni

aij (zi +∇2fi(xi, wi + ϕi(xi))− zj −∇2fj(xj , wj + ϕj(xj))) (3.62d)
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ẋi = pi(xi, ui)

u̇i = −α1∇hi(ui) (∇1fi(xi, ϕi(xi) + wi) +∇ϕi(xi)(∇2fi(xi, ϕi(xi) + wi) + zi))

ẇi = −
α1

α2

∑

j∈Ni

aij (wi + ϕi(xi)− wj − ϕj(xj))

żi = −
1

α

∑

j∈Ni

aij (zi +∇2fi(xi, wi + ϕi(xi))− zj −∇2fj(xj , wj + ϕj(xj)))

xiui

inter-agents communication: information from j ∈ Ni

Figure 3.5: Block diagram describing (3.62).

Theorem 3.3. Consider the closed-loop system (3.62) and let Assumptions 3.9, 3.10, and 3.11
hold. Then, there exist ᾱ1 > 0 and ᾱ2 > 0 such that, for any α1 ∈ (0, ᾱ1), α2 ∈ (0, ᾱ2) and
col(xi(0), ui(0), wi(0), zi(0)) ∈ Rni+mi+2d such that zi = wi = 0 for all i ∈ {1, . . . , N}, it
holds

lim
t→∞
∥x(t)∥X = 0.

The proof of Theorem 3.3 will be carried out in the next after some preparatory

results. Theorem 3.3 guarantees that Aggregative Tracking Feedback asymptotically

steers the network state x(t) into the set x of stationary points of problem (3.55).

We now give an overview of the steps needed to prove Theorem 3.3:

(i) We reformulate (3.62) as the interconnection of three dynamic subsystems describ-

ing the evolution of all the states, the control inputs, and (a suitable transformation

of) the auxiliary variables.

(ii) Within three separate lemmas we give suitable properties of the time-derivative

of three different Lyapunov-like functions. Specifically, each one of these lemmas

assesses the convergence of one of the three subsystems identified within step (i)

when the convergence of the other subsystems has already occurred.

(iii) To conclude, we define a candidate Lyapunov function for the whole system and,

relying on the lemmas of step (ii) and LaSalle arguments, we study its time-

derivative to prove Theorem 3.3.

According to step (i), we reformulate (3.62) by leveraging the initialization of w and

z and the consensus properties of their dynamics. To this end, we start by defining

L = L⊗ Id, w = col(w1, . . . , wN ), z = col(z1, . . . , zN ), and by introducing the operators
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G1 : Rn × RNd → Rn and G2 : Rn × RNd → Rn given by

G1(x, s) =




∇1f1(x1, s1)
...

∇1fN (xN , sN )


 , G2(x, s) =




∇2f1(x1, s1)
...

∇2fN (xN , sN )


 ,

where we used the decomposition x = col(x1, . . . , xN ) and s = col(s1, . . . , sN ) with

xi ∈ Rni and si ∈ Rd for all i ∈ {1, . . . , N}. Then, the stacked column form of (3.62)

reads as

ẋ = p(x, u) (3.63a)

u̇ = −α1∇h(u)G1(x,w + ϕ(x))− α1∇h(u)∇ϕ(x) (z +G2(x,w + ϕ(x))) (3.63b)

ẇ = −α1

α2
L (w + ϕ(x)) (3.63c)

ż = −α1

α2
L (z +G2(x,w + ϕ(x))) . (3.63d)

Next, we rewrite (3.63) in order to highlight the average dynamics of w and z and their

orthogonal ones. To this end, we investigate the effect of the initialization wi(0) =

zi(0) = 0 for all i ∈ {1, . . . , N}. Let

S := {col(x, u, w, z) ∈ Rn+m+2Nd | 1⊤N,dw = 0,1⊤N,dz = 0},

and note that S is invariant for (3.63) because 1⊤N,dL = 0 (cf. Assumption 3.11). Hence,

we can exploit a change of coordinates to take advantage from this property. To this end,

let us introduce Rd ∈ RNd×(N−1)d such that R⊤
d Rd = I, R⊤

d 1N,d = 0, and ∥Rd∥ = 1 and

the matrix T ∈ R2Nd×2Nd defined as

T :=

[
R⊤
d

1⊤N,d/N

]
.

The matrix T is invertible and we define η, ζ ∈ R(N−1)d, ηavg, ζavg ∈ Rd as

[
η

ηavg

]
:= Tw,

[
ζ

ζavg

]
:= Tz. (3.64)

Then, by using (3.63c)-(3.63d), we note that

η̇avg = 0, ζ̇avg = 0.

Therefore the initialization w(0) = z(0) = 0 guarantees that ηavg(t) = ζavg(t) =
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0, ∀ t ≥ 0. Thus, combining this result with (3.64) it follows

w = Rd η, z = Rd ζ. (3.65)

As a consequence, defining ψ := col(η, ζ) and using (3.64)-(3.65) we can restrict the

dynamics (3.63c)-(3.63d) to

ψ̇ =
α1

α2

[
−R⊤

d LRd 0

0 −R⊤
d LRd

]
ψ +

α1

α2

[
−R⊤

d L 0

0 −R⊤
d L

][
ϕ(x)

G2(x,
[
Rd 0

]
ψ + ϕ(x))

]
.

(3.66)

Note that

ψ̄(x) := −
[
R⊤
d 0

0 R⊤
d

][
ϕ(x)

G2(x,1N,dσ(x))

]
(3.67)

represents an equilibrium for (3.66) for any x ∈ Rn. Based on this observation, let us

introduce the error coordinate ξ ∈ R2(N−1)d defined as

ξ := ψ − ψ̄(x). (3.68)

As a consequence, using (3.65), the definition of ψ, (3.67), and (3.68), we have

w =
[
Rd 0

]
ξ −RdR⊤

d ϕ(x) (3.69a)

z =
[
0 Rd

]
ξ −RdR⊤

d G2(x,1N,dσ(x)). (3.69b)

Let use introduce the selection matrices R1,R2 ∈ RNd×2(N−1)d defined as

R1 :=
[
R 0

]
R2 :=

[
0 R

]
. (3.70)

Then, by exploiting (3.56), (3.66), (3.68), (3.69), (3.70), and I −RdR⊤
d = 1N,d1

⊤
N,d/N , we

rewrite (3.63) as the equivalent, restricted dynamics

ẋ = p(x, u) (3.71a)

u̇ = −α1∇h(u)
(
G1(x,R1ξ + 1N,dσ(x)) +∇ϕ(x)

1N,d1
⊤
N,d

N
G2(x,1N,dσ(x))

)

− α1∇h(u) (G2(x,R1ξ + 1N,dσ(x))−G2(x,1N,dσ(x)) +∇ϕ(x)R2ξ) (3.71b)

ξ̇ =
α1

α2

[
−R⊤

d LRd 0

0 −R⊤
d LRd

]
ξ +

α1

α2

[
0

R⊤
d L(G2(x,R1ξ + 1N,dσ(x))−G2(x,1N,dσ(x)))

]

−∇ψ̄(x) p(x, u). (3.71c)
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With (3.71) at hand, we provide three preparatory results needed to prove Theo-

rem 3.3.

Lemma 3.10. There exists a function W : Rn × Rm → R such that, along the trajectories
of (3.71a) and (3.71b), it holds

c1 ∥x− h(u)∥2 ≤W (x, u) ≤ c2 ∥x− h(u)∥2 (3.72a)

Ẇ (x, u) ≤ −(c3 − α1c4) ∥x− h(u)∥2 + α1c5 ∥x− h(u)∥ ∥∇h(u)G(h(u))∥
+ α1c5c6 ∥x− h(u)∥ ∥ξ∥ , (3.72b)

for some c1, c2, c3, c4, c5, c6 > 0.

Proof. By using the Converse Lyapunov Theorem (cf. [166, Theorem 5.17]), the expo-

nential stability of h(u), and the Lipschitz continuity of h (cf. Assumption 3.9), there

exists W : Rn × Rm → R such that

c1 ∥x− h(u)∥2 ≤W (x, u) ≤ c2 ∥x− h(u)∥2 (3.73a)

∇1W (x, u) p(x, u) ≤ −c3 ∥x− h(u)∥2 (3.73b)

∇2W (x, u) ≤ c5 ∥x− h(u)∥ , (3.73c)

for some positive constant c1 > 0, c2 > 0, c3 > 0, and c5 > 0. In light of (3.73a), we need

only to show (3.72b). To this end, we evaluate V̇ (x, u, ξ) along the trajectories of (3.71a)

and (3.71b), thus obtaining

Ẇ (x, u) = ∇1W (x, u)p(x, u) +∇2W (x, u)u̇

(a)

≤ −c3 ∥x− h(u)∥2 +∇2W (x, u)u̇

(b)

≤ −c3 ∥x− h(u)∥2 + c5 ∥x− h(u)∥ ∥u̇∥ , (3.74)

where in (a) we use (3.73b), and in (b) we use the Cauchy-Schwartz inequality with

condition (3.73c). Note that

G(x) = G1(x,1N,dσ(x)) +∇ϕ(x)
1N,d1

⊤
N,d

N
G2(x,1N,dσ(x)).

Then, by adding and subtracting α1∇h(u)G1(x,1N,dσ(x)) into (3.71b), we get

u̇ = −α1∇h(u)G(x)− α1∇h(u) (G1(x,R1ξ + 1N,dσ(x))−G1(x,1N,dσ(x)))

− α1∇h(u)∇ϕ(x) (G2(x,R1ξ + 1N,dσ(x))−G2(x,1N,dσ(x)) +R2ξ) . (3.75)

Moreover, by using the Lipschitz continuity properties given in Assumption 3.10, we
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can write

∥G1(x,R1ξ + 1N,dσ(x))−G1(x,1N,dσ(x))∥≤L1∥ξ∥ (3.76a)

∥G2(x,R1ξ + 1N,dσ(x))−G2(x,1N,dσ(x))∥≤L2∥ξ∥ (3.76b)

∥∇ϕ(x)∥≤L3, (3.76c)

Further, by exploiting Assumption 3.9, it holds

∥∇h(u)∥ ≤ Lh. (3.76d)

Then, we combine (3.75), the Cauchy-Schwartz inequality, and the bounds (3.76) to

obtain

∥u̇∥ ≤ α1 ∥∇h(u)G(x)∥+ α1Lh(L1 + (1 + L2)L3)∥ξ∥
(a)

≤ α1 ∥∇h(u)G(h(u))∥+ α1 ∥∇h(u)G(x)−∇h(u)G(h(u))∥
+ α1Lh(L1 + (1 + L2)L3)∥ξ∥

(b)

≤ α1 ∥∇h(u)G(h(u))∥+ α1LhL0 ∥x− h(u)∥+ α1Lh(L1 + (1 + L2)L3)∥ξ∥, (3.77)

where in (a) we add and subtract within the norm ∇h(u)G(h(u)) and use the triangle

inequality, in (b) use the Lipschitz continuity of h and G (cf. Assumptions 3.9 and 3.10),

Finally, we use (3.77) to bound (3.74). The proof follows by setting c4 = LhL0 and

c6 = Lh(L1 + (1 + L2)L3). ■

We note that, by choosing α1 ≤ c3/c4, the conditions (3.72) in Lemma 3.10 guar-

entees that, for any u ∈ Rm, the point h(u) is globally exponentially stable for the

subsystem (3.71a) when ∇h(u)G(h(u)) = 0 (cf. [91, Theorem 4.10]).

Lemma 3.11. There exists a radially unbounded function S : Rm → R such that, along the
trajectories of (3.71b), it holds

Ṡ(u) ≤ −α1 ∥∇h(u)G(h(u))∥2 + α1d1 ∥∇h(u)G(h(u))∥ ∥x− h(u)∥
+ α1d2 ∥∇h(u)G(h(u))∥ ∥ξ∥ , (3.78)

for some d1, d2 > 0.

Proof. Let us consider

S(u) := F (h(u), σ(h(u))), (3.79)

where F (·, ·) has been defined in (3.57). We remark that, in light of Assumption 3.10, S
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is radially unbounded (see Definition A.2 in Appendix A). We point out that

∇F (h(u), σ(h(u))) = ∇h(u)G(h(u)). (3.80)

Thus, to evaluate Ṡ(u) along the trajectories of (3.71b), we exploit (3.80) obtaining

Ṡ(u) = (∇h(u)G(h(u)))⊤u̇.
(a)

≤ −α1(∇h(u)G(h(u)))⊤(∇h(u)G(x)) + α1d2 ∥∇h(u)G(h(u))∥ ∥ξ∥
(b)
= −α1 ∥∇h(u)G(h(u))∥2

− α1(∇h(u)G(h(u)))⊤
(
∇h(u)∇F (x, σ(x))−∇h(u)∇F (h(u), σ(h(u)))

)

+ α1d2 ∥∇h(u)G(h(u))∥ ∥ξ∥
(c)
= −α1 ∥∇h(u)G(h(u))∥2 + α1LhL0 ∥∇h(u)G(h(u))∥ ∥x− h(u)∥
+ α1d2 ∥∇h(u)G(h(u))∥ ∥ξ∥ ,

where in (a) we use the results (3.75) and the bounds (3.76) setting d2 = Lh(L1 + (1 +

L2)L3), in (b) we add and subtract the term ∇h(u)G(h(u), σ(h(u))) within the brackets,

and in (c) we use the Lipschitz continuity of h and ∇F (·, σ(·)) (cf. Assumptions 3.9

and 3.10) and the Cauchy-Schwarz inequality. The proof follows by setting d1 = LhL0.

■

For ξ = 0 and x = h(u) the condition (3.78) allows us to use LaSalle arguments to

claim the asymptotic convergence of u to the set {u ∈ Rm | ∇h(u)G(h(u)) = 0}.

Lemma 3.12. There exists a function U : R2(N−1)d → R such that, along the trajectories
of (3.71c), it holds

b1 ∥ξ∥2 ≤ U(ξ) ≤ b2 ∥ξ∥2 (3.81a)

U̇(ξ) ≤ −α1b3
α2
∥ξ∥2 + b4 ∥ξ∥ ∥x− h(u)∥ , (3.81b)

for some b1, b2, b3, b4 > 0.

Proof. In light of Assumption 3.11, the matrix −R⊤LR is Hurwitz. Thus, there exist

P1, P2 ∈ R(N−1)d×(N−1)d such that P1 = P⊤
1 > 0, P2 = P⊤

2 > 0, and

−P1R
⊤LR− (R⊤LR)⊤P1 = −Q1 (3.82a)

−P2R
⊤LR− (R⊤LR)⊤P2 = −Q2, (3.82b)

for any Q1, Q2 ∈ R(N−1)d×(N−1)d such that Q1 = Q⊤
1 > 0 and Q2 = Q⊤

2 > 0. Then, let us
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consider

U(ξ) := ξ⊤Pξ.

Then, the conditions (3.81a) are satisfied by denoting b1 > 0 and b2 > 0 the smallest and

largest eigenvalue of P , respectively. In order to show (3.81b), let ξ1, ξ2 ∈ R(N−1)d be

such that ξ = col(ξ1, ξ2). Then, by using (3.71c) and (3.82), we can write

U̇(ξ) = −α1

α2
ξ⊤1 Q1ξ1 − ξ⊤2 Q2ξ2 +

2α1

α2
ξ⊤2 P2R

⊤L(G2(x, ξ1 + 1N,dσ(x))−G2(x,1N,dσ(x)))

− 2ξ⊤P ∇ψ̄(x) p(x, u). (3.83)

Moreover, by using the Lipschitz continuity of ∇2fi (cf. Assumption 3.10), we can write

∥G2(x, ξ1 + 1N,dσ(x))−G2(x,1N,dσ(x))∥ ≤ L2 ∥ξ1∥ ,

that, combined with the application of the Cauchy-Schwarz, leads to

ξ⊤2 P2R
⊤L(G2(x, ξ1 + 1N,dσ(x))−G2(x,1N,dσ(x))) ≤ L2

∥∥∥P2R
⊤L
∥∥∥ ∥ξ2∥ ∥ξ1∥ . (3.84)

Then, givenQ2 > 0, we compute P2 such that (3.82b), and define k1(Q2) := L2

∥∥P2R
⊤L
∥∥.

Now, let us denote with q1, q2 the smallest eigenvalues of Q1 and Q2, and define

Q̃ :=

[
q1 −k1(Q2)

−k1(Q2) q2

]
.

Then, by using (3.84), we can write

− ξ⊤1 Q1ξ1 − ξ⊤2 Q2ξ2 + 2ξ⊤2 P2R
⊤L(G2(x,R ξ1 + 1N,dσ(x))−G2(x,1N,dσ(x)))

≤ −
[
∥ξ1∥ ∥ξ2∥

]
Q̃ col(∥ξ1∥ , ∥ξ2∥). (3.85)

Let us choose b3 ∈ (0, q2) and Q1 > 0 such that q1 > (b3q2 + k1(Q2)
2)/(q2 − b3). The, it

holds Q̃ ≥ b3I which, combined with (3.85), allows to bound (3.83) as

U̇(ξ) ≤ −α1b3
α2
∥ξ∥2 + 2ξ⊤P∇ψ̄(x) p(x, u). (3.86)

Since p(h(u), u) = 0 (see Assumption 3.9), it holds

ξ⊤P ∇ψ̄(x) p(x, u) = ξ⊤P ∇ψ̄(x) (p(x, u)− p(h(u), u)).
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Recall that, thanks to Assumption 3.9, it holds

∥p(x, u)− p(h(u), u)∥ ≤ Lp∥x− h(u)∥.

On the other hand, by using the Cauchy-Schwarz inequality, Assumption 3.10, ∥R∥ = 1,

and ∥1N1⊤n ∥ =
√
Nn, we can write the bound

∥∇ψ̄(x)∥ ≤
∥∥∥∥∥

[
R⊤ 0

0 R⊤

]∥∥∥∥∥

∥∥∥∥∥

[
∇ϕ(x)

∇G2(x,1N,dσ(x))

]∥∥∥∥∥

≤ (L2

√
Nn+ L3).

Thus, we can bound (3.86) as

U̇(ξ) ≤ −α1b3
α2
∥ξ∥2 + b4 ∥x− h(u)∥ ,

with b4 :=
Lp∥P∥(L2

√
Nn+L3)

2 and the proof is given. ■

We highlight that Lemma 3.12 proves that, if x = h(u), then the origin is a globally

exponentially stable equilibrium point for (3.71c) (cf. [91, Theorem 4.10]).

Proof of Theorem 3.3

By using the functionsW , S, andU provided by Lemma 3.10, 3.11, and 3.12, respectively,

we define

V (x, u, ξ) = U(ξ) +W (x, u) + S(u).

Moreover, let us introduce

y(u) := ∇h(u)G(h(u))

k2 :=
d1 + c5

2
,

H1(α1) :=

[
c3 − α1c4 −α1k2

−α1k2 α1

]
.

Then, by evaluating V̇ (x, u, ξ) along the trajectories of (3.71) and by using (3.72b), (3.78),

and (3.81b), we get

V̇ (x, u, ξ) ≤ −
[
∥x− h(u)∥ ∥y(u)∥

]
H1(α1)

[
∥x− h(u)∥
∥y(u)∥

]
+ α1d2 ∥y(u)∥ ∥ξ∥

− α1b3
α2
∥ξ∥2 + (b4 + α1c5c6) ∥ξ∥ ∥x− h(u)∥ . (3.87)
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By Sylvester Criterion, we know that the matrix H1(α1) = H1(α1)
⊤ ∈ R2 is positive

definite if and only if the following conditions are satisfied




c3 > α1c4

c3α1 > α2
1(k

2
2 + c4).

(3.88)

Let ᾱ1 := max
{
c3/c4, c3/(k

2
2 + c4)

}
. Then, with any α1 ∈ (0, ᾱ1), both conditions (3.88)

are satisfied allowing us to claim the positive definiteness of H1(α1). Let h1 > 0 be the

smallest eigenvalue of the matrix H1(α1). Then, for any α1 ∈ (0, ᾱ1), the right-hand

member of (3.87) can be bounded by

V̇ (x, u, ξ) ≤ −h1(∥x− h(u)∥2 + ∥y(u)∥2) + α1d2 ∥y(u)∥ ∥ξ∥ −
ᾱ1b3
α2
∥ξ∥2

+ (b4 + ᾱ1c5c6) ∥ξ∥ ∥x− h(u)∥ . (3.89)

Let us introduce

e(x, u) := col(x− h(u), y(u))

k3 :=
d2 + b4 + ᾱ1c5c6

2

H2(α2) :=

[
h1 −k3
−k3 ᾱ1

α2
b3

]
.

Then, we can bound (3.89) as

V̇ (x, u, ξ) ≤ −
[
∥e(x, u)∥

ξ

]⊤
H2(α2)

[
∥e(x, u)∥

ξ

]
. (3.90)

By Sylvester Criterion, we know that for any α2 ∈ (0, ᾱ2), with ᾱ2 := ᾱ1b3h1/k
2
3, the

matrixH2(α2) = H2(α2)
⊤ ∈ R2 is positive definite. Let h2 > 0 be the smallest eigenvalue

of H2(α2). Then, the inequality (3.90) leads to

V̇ (x, u, ξ) ≤ −h2∥col(∥e(x, u)∥ , ∥ξ∥)∥2. (3.91)

Let us study the set in which the right-hand side of (3.91) is zero. To this end, let

U := {u ∈ Rm | ∇h(u)G(h(u)) = 0},

and

E := {(x, u, ξ) ∈ RnE | x = h(u), u ∈ U , ξ = 0}. (3.92)

143



Chapter 3. Tracking-Based Qlgorithms for Distributed Aggregative Optimization

Then V̇ (x, u, ξ) = 0 for any (x, u, ξ) ∈ E. By studying system (3.71) restricted to the

subset E, we get

ẋ
∣∣
(x,u,ξ)∈E = 0 (3.93a)

u̇
∣∣
(x,u,ξ)∈E = 0 (3.93b)

ξ̇
∣∣
(x,u,ξ)∈E = 0. (3.93c)

Hence, by (3.93) we guarantee that the largest invariant set contained within E for the

dynamics (3.71) coincides with E. Therefore, by using the LaSalle’s invariance principle

(cf. [91, Theorem 4.4]), it holds

lim
t→∞

∥∥∥∥∥∥∥



x(t)

u(t)

ξ(t)




∥∥∥∥∥∥∥
E

= 0. (3.94)

We remark that Assumption 3.9 guarantees that ker(∇h(u)) = 0 for any u ∈ Rm. As a

consequence, U can be rewritten as

U ≡ {u ∈ Rm |G(h(u)) = 0},

which, in turn, allows us to claim that (x, u, ξ) ∈ E =⇒ G(x) = 0. The proof follows by

using (3.94) and noting that G(x) ≡ ∇F (x, σ(x)).

3.4.2 Aggregative Tracking Feedback with Single Integrator Dynamics

In this section, we adapt Aggregative Tracking Feedback for the case in which sys-

tem (3.54) is replaced by single integrator dynamics. Thus, we now consider N systems

whose evolution is governed by

ẋi = ui, (3.95)

for all i ∈ {1, . . . , N}. Indeed, despite the fact that single integrator dynamics may be

simpler than the more generic one (3.54), we point out that system (3.95) does not have a

steady-state configuration associated to each input ui and, thus, violates Assumption 3.9.

Moreover, in this setting, we enforce the following condition about problem (3.55).

Assumption 3.12 (Convexity). The global objective function f(x, σ(x)) is µ-strongly convex.
△

Assumption 3.12 implies the existence of a unique optimal solution x⋆ (cf. Proposi-

tion A.2 in Appendix A). Hence, now the distributed feedback optimization law should
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steer the network to a steady-state configuration corresponding to the optimal solution

x⋆.

In this setting, we choose each input ui according to the algebraic law

ui = −∇1fi(xi, wi + ϕi(xi))−∇ϕi(xi)zi, (3.96)

with wi and zi with same role and same dynamics as in Algorithm 7. Hence, the

input law (3.96), plugged into the single integrator dynamics (3.95) and combined with

dynamics of the auxiliary variables wi (cf. (3.62c)) and zi (cf. (3.62d)), leads to the whole

closed loop system described by

ẋ = −∇1f(x,w + ϕ(x))−∇ϕ(x)z −∇ϕ(x))∇2f(x,w + ϕ(x)) (3.97a)

ẇ = − 1

α
Lw − 1

α
Lϕ(x) (3.97b)

ż = − 1

α
Lz − 1

α
L∇2f(x,w + ϕ(x)), (3.97c)

where x, w, z, ∇1f , ∇2f , ϕ, and L have the same meaning as in (3.97), while α > 0 is a

control parameter.

In the next, we provide a sketch of the analysis needed to prove that system (3.97)

exponentially converges to a configuration in which x corresponds to the optimal

solution x⋆ of problem (3.55).

This analysis consists of the following main steps.

(i) We introduce a suitable error dynamics with respect to the minimum of prob-

lem (3.55). The obtained dyanmics is a singularly perturbed system, i.e, the inter-

connection of a slow subsystem with a fast one.

(ii) By “freezing” the slow system state within the fast one, we find a parametrized

equilibrium that depends on this frozen state. We use this equilibrium to build the

so-called boundary-layer system. Then, we provide a suitable Lyapunov function

(independent of the slow state), showing the global exponential stability of the

origin for the boundary layer system.

(iii) We consider the fast state lying on the steady state of the boundary layer system

introduced in (ii) to build the so called reduced system. We show that the origin is

a globally exponentially stable equilibrium point for the obtained system.

(iv) Finally, the stability results of steps (ii) and (iii) are exploited to demonstrate the

global exponential stability of the origin for the whole interconnected system by

proving that the agents’ states reach the optimal solution of problem (3.55) with a

linear rate.
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Lemma 3.13. Consider system (3.97) and denote x̃ := x− x⋆. Then, there exist two changes
of variables

[
x

wz

]
7−→



x̃

w̃

z̃


 ,



x̃

w̃

z̃


 7−→

[
x̃

ψ

]
,

such that (3.63) is equivalent to

˙̃x = h(x̃, ψ) (3.98a)

αψ̇ = g(x̃, ψ), (3.98b)

where x̃ ∈ Rn, z̃, w̃ ∈ RNd, ψ ∈ R2(N−d) and

h(x̃, ψ) := −∇1f
(
x̃+ x⋆,

[
Rd 0

]
ψ +∆ϕ(x̃) + 1N,dσ(x

⋆)
)

−∇ϕ(x̃+ x⋆)∇2f
(
x̃+ x⋆,

[
Rd 0

]
ψ +∆ϕ(x̃) + 1N,dσ(x

⋆)
)

+∇ϕ(x̃+ x⋆)∇2f (x
⋆,1N,dσ(x

⋆))

−∇ϕ(x̃+ x⋆)
1N,d1

⊤
N,d

N
∇2f (x

⋆,1N,dσ(x
⋆))−∇ϕ(x̃+ x⋆)

[
0 Rd

]
ψ,

where the matrix Rd has the same meaning as in (3.64), and

g(x̃, ψ) :=

[
−R⊤

d LRd 0

0 −R⊤
d LRd

]
ψ +

[
0

R⊤
d L∇2f (x

⋆,1N,dσ(x
⋆))

]

−
[

R⊤
d L∆ϕ(x̃)

R⊤
d L∇2f

(
x̃+ x⋆,

[
Rd 0

]
ψ +∆ϕ(x̃) + 1N,dσ(x

⋆)
)
]
,

with ∆ϕ(x̃) := ϕ(x̃+ x⋆)− ϕ(x⋆). △

System (3.98) has a structure known in the literature as continuous-time singularly

perturbed system (see [91, Chapter 11]), i.e., the continuous-time counterpart of the

discret-time systems investigated in Appendix C. In particular, as in the discret-time

case, we denote the subsystem (3.98a) as the slow system, and (3.98b) as the fast one.

See Figure 3.6 for a schematic representation of (3.98).
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˙̃x = h(x̃, ψ)

αψ̇ = g(x̃, ψ)

x̃ψ

Figure 3.6: Singularly perturbed system (3.98).

The next step consists in “freezing” the slow state x̃ within the fast system (3.98b).

After this operation, the boundary layer system associated to the interconnection (3.98)

can be built and studied as follows.

Lemma 3.14. Consider system (3.98b) and let x̃ ∈ Rn be fixed. Consider

ψ̄(x̃) =

[
−R⊤

d ∆ϕ(x̃)

R⊤
d (∇2f (x

⋆,1N,dσ(x
⋆))−∇2f (x̃+ x⋆,1N,dσ(x̃+ x⋆)))

]
.

Then, for any x̃ ∈ Rn, ψ̄(x̃) is an equilibrium for (3.98b). Let ξ := ψ−ψ̄(x̃) and write (3.98b)

as the boundary layer system

ξ̇ = g(x̃, ξ + ψ̄(x̃)). (3.99)

Then, there exists a function U : Rm → R so that

b1 ∥ξ∥2 ≤ U(ξ) ≤ b2 ∥ξ∥2 (3.100a)

∂U(ξ)

∂x
g(x, ξ + ψ̄(x)) ≤ −b3 ∥ξ∥2 (3.100b)

∥∥∥∥
∂U(ξ)

∂ξ

∥∥∥∥ ≤ b4 ∥ξ∥ (3.100c)

∂U(ξ)

∂x̃
= 0, (3.100d)

for all ξ ∈ Rm and for some constants b1, b2, b3, b4 > 0. △

Remark 3.4. In view of Assumption 3.11, it is possible to show that the matrix −R⊤
d LRd

is Hurwitz. Then, by explicitly combining the definitions of g and ψ̄, system (3.99) reads

as a stable linear system perturbed with a vanishing perturbation. △

Once ψ̄(x̃) has been found, we can use it to build the reduced system and study the

stability of its origin.
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Lemma 3.15. Consider the reduced system defined as

˙̃x = h(x̃, ψ̄(x̃)). (3.101)

Then, the origin is a globally exponentially stable equilibrium point for system (3.101). △

Remark 3.5. By explicitly combining the definitions of h and ψ̄, the dynamics (3.101)

reads as the gradient flow related to problem (3.55) in error coordinates with respect to

x⋆. Hence, the proof follows from Assumption 3.12. △

Once the global exponential stability of the origin for both the boundary layer

and reduced system has been proved, we can establish the convergence properties of

system (3.97)

Theorem 3.4. Consider system (3.97). Let Assumptions 3.10, 3.11, and 3.12 hold and pick
intial conditons (x(0), w(0), z(0)) such that 1⊤N,dw(0) = 1⊤N,dz(0) = 0. Then, there exist
ᾱ > 0, a1 > 0, and a2 > 0 such that, for all α ∈ (0, ᾱ), it holds

∥xi − x⋆i ∥ ≤ a1 exp(−a2t),

for all i ∈ {1, . . . , N}, where x⋆i ∈ Rni is the i-th block of the optimal solution x⋆ ∈ Rn of
problem (3.55).

Proof. By performing the change of variables introduced in Lemma 3.13, we equivalently

rewrite system (3.63) as

˙̃x = h(x̃, ψ), (3.102a)

αψ̇ = g(x̃, ψ), (3.102b)

with w̃, ψ, h, and g with same meaning as in Lemma 3.13. Lemma 3.14 and Lemma 3.15

respectively ensures the global exponential stability of the origin for the boundary layer

system and for the reduced system associated to (3.102). Moreover, Assumption 3.10

ensures that functions h, g, and ψ̄ are Lipschitz continuous. Hence, with the arguments

of [91, Theorem 11.4], we claim that there exists ᾱ > 0 such that for all α ∈ (0, ᾱ) the

origin is a globally exponentially stable equilibrium point for system (3.102), i.e., it

holds

∥col(x̃, ψ)∥ ≤ a3 ∥col(x̃(0), ψ(0))∥ exp(−a2t),

for some a2, a3 > 0. The proof follows by the trivial fact ∥xi − x⋆i ∥ ≤ ∥x̃∥ ≤ ∥col(x̃, ψ)∥
and by setting a1 = a3 ∥col(x̃(0), ψ(0))∥. ■

We point out that [91, Theorem 11.4] only provides semi-global exponential stability.
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However, it can be shown that the additional condition (3.100d) can be used to prove

the global exponential stability.

3.4.3 Numerical Simulations

In this section, we employ our Aggregative Tracking Feedback to address a multi-robot

surveillance scenario. We consider a network of N mobile robots, whose planar position

is xi ∈ R2, that aim to surveil a collection of N intruders. In particular, each robot

i of the surveillance team is associated to an intruder located at yi ∈ R2. Given the

orientation θi ∈ R of the robot i, we describe its dynamics through the unicycle model

ẋi =

[
cos(θi)

sin(θi)

]
vi (3.103a)

θ̇i = ωi, (3.103b)

where vi, ωi ∈ R are the low-level inputs denoting the linear and the angular speed,

respectively. Let ui ∈ R2 be a reference position, then [183] proposes the following

low-level controller

vi(xi, θi, ui) = ki ∥xi − ui∥ cos(θi,err(xi, θi)) (3.104a)

ωi(xi, θi, ui) =
ki

∥xi−ui∥ cos(θi,err(xi, θi)) sin(θi,err(xi, θi))

+ ki
∥xi−ui∥ sin(θi,err(xi, θi)), (3.104b)

with ki > 0 and θi,err(xi, θi) = atan2(xi,1, xi,2)−θi, where xi,1 and xi,2 are the components

of xi, i.e., we write xi := col(xi,1, xi,2). Thus, the overall closed-loop dynamics reads as

ẋi =

[
cos(θi)

sin(θi)

]
vi(xi, θi, ui) (3.105a)

θ̇i = ωi(xi, θi, ui). (3.105b)

As shown in [183, Lemma 2.1], for any reference ui ∈ R2, the point col(ui, 0) is an almost

globally asymptotically stable equilibrium point for (3.105). Moreover, the trajectories

of (3.105) exponentially converge to ui (cf. [183, Lemma 2.1]). Thus, system (3.105)

satisfies Assumption 3.9, namely it has a steady-state map hi(ui) = ui with exponential

convergence guarantees.

As for the environment, we consider a non convex scenario in which altitude changes

and nc ∈ N crevasses are present. Let col(ℓ1, ℓ2) be the planar coordinates describing

a given location. Then, we model the altitude profile of the environment through a

function zalt : R2 → R given by the sum of a sinusoidal term and a series of gaussian
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functions modeling the crevasses, namely

zalt(ℓ1, ℓ2) = −a1 cos(ρℓ1) sin(ρℓ2)

−
nc∑

g=1

ac,g exp

(
−(ℓ1 − µg,1)2 + (ℓ2 − µg,2)2

sg

)
, (3.106)

where a1, ρ > 0 are respectively the amplitude and the frequency of the sinusoidal

term, while ac,1, . . . , ac,nc , s1, . . . , snc > 0 are the parameters characterizing the gaussian

functions whose respective centers are located in (µ1,1, µ1,2), . . . , (µnc,1, µnc,2). It is worth

noting that this environment profile as well as the nonlinear dynamics give rise to a

nonconvex optimization problem.

The surveillance strategy of the team consists of a trade-off between the following

competing objectives: each robot (i) tries to stay close to the intruder, (ii) tries to

occupy locations with higher altitudes, and (iii) tries to stay close to the weighted center

of mass. This scenario falls into the distributed aggregative feedback optimization

framework. Specifically, in problem (3.55), we choose the objective function fi of each

agent i ∈ {1, . . . , N} as

fi(xi, σ(x)) =
γ1
2
∥xi − yi∥2 − zalt(xi,1, xi,2)

+
γ2
2
∥xi − σ(x)∥2 , (3.107)

where γ1, γ2 > 0, while the term −zalt(xi) increases the cost according to the altitude of

the location xi (cf. (3.106)). Further, we choose our aggregative variable as the weighted

center of mass of the defending team

σ(x) =
1

N

N∑

i=1

βixi, (3.108)

for some weights βi > 0. In particular, we set N = 6, γ1 = 1, γ2 = 0.3, nc = 5, and

we randomly generate the weights β1, . . . , βN within the interval (0, 1), the amplitudes

ac,1, . . . , ac,nc within the interval [0, 5], the terms s1, . . . , snc within the interval (5, 10),

and the locations µ1 := col(µ1,1, µ1,2), . . . , µnc := col(µnc,1, µnc,2), y1, . . . , yN , and b

within the interval [0, 100]2. As regards the sinusoidal terms, we choose a1 = 10 and

ρ = 0.02, while, as for the algorithm parameters, we set α1 = 0.75, α2 = 0.01, while the

initial conditions xi(0) and ui(0) are randomly selected. As predicted by Theorem 3.3,

Fig. 3.7 shows that the optimality error ∥∇F (x(t), σ(x(t)))∥ asymptotically converges to

0.
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Figure 3.7: Optimality error evolution.

Considering the same simulation, Fig. 3.8 provides the initial and final configuration

of the team. Each robot icon denotes an agent of the surveillance team, while each devil

icon denotes an intruder. The color of the background represents the altitude: blue

background denotes the lowest locations, while yellow background denotes the highest

ones.

(a) Initial configuration. (b) Final configuration.

Figure 3.8: Multi-robot surveillance: nonconvex scenario.

Fig. 3.8 highlights the role played by the altitude in determining the final configura-

tion achieved by the agents. Indeed, some of the robots remain far from their associated

intruders because closer locations would have lower altitudes. In order to emphasize

this aspect, we perform the same simulations without taking into account the altitude

zalt in the cost, i.e., by considering the problem in which each objective function reads as

fi(xi, σ(x)) =
γ1
2
∥xi − yi∥2 +

γ2
2
∥xi − σ(x)∥2 , (3.109)

151



Chapter 3. Tracking-Based Qlgorithms for Distributed Aggregative Optimization

for all i ∈ {1, . . . , N}. Fig. 3.9 provides the initial and final team configuration of such

a simulation. In Fig. 3.9, differently from the case inspected in Fig. 3.8, the robots go

closer to their associated intruders thus occupying locations with low altitudes.

(a) Initial configuration. (b) Final configuration.

Figure 3.9: Multi-robot surveillance: strongly convex scenario.

Finally, we note that in both cases the robots arrange themselves inside the polygon

whose vertices coincide with the positions occupied by the intruder. In fact, the outer

configurations at the same (i) distance from the invaders and (ii) altitude suffer from a

higher cost due to the presence of the aggregative term ∥xi − σ(x)∥2.

Finally, we address the same strongly convex problem with objective functions (3.109)

for the case with single integrator dynamics (3.95) to test the effectiveness of (3.97).

We choose the parameters of the problem as above and set α = 0.1. As predicted by

Theorem 3.3, Figure 3.7 shows an exponential decay of the optimality error ∥x(t)− x⋆∥,
where x⋆ is the minimizer of the problem computed by a centralized solver.
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Figure 3.10: Optimality error evolution.
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Chapter 4

Tracking-Based Distributed
Equilibrium Seeking Algorithms for
Aggregative Games

In this chapter, we focus on the development of fully-distributed algorithm for Nash

equilibrium seeking in aggregative games over networks, i.e., the scenario already

introduced in Section 1.4.

In particular, we first consider the case where only local constraints are present and

we design an algorithm combining, for each agent, (i) the projected pseudo-gradient

descent and (ii) a tracking mechanism to locally reconstruct the aggregative variable.

To handle coupling constraints arising in generalized settings, we propose another dis-

tributed algorithm based on (i) a recently emerged augmented primal-dual scheme and

(ii) two tracking mechanisms to reconstruct, for each agent, both the aggregative variable

and the coupling constraint satisfaction. Leveraging tools from singular perturbations

analysis, we prove linear convergence to the Nash equilibrium for both schemes. The

results of this chapter are based on [27].

4.1 Literature Review

Recent years have seen an increasing attention to the computation of (generalized) Nash

equilibria in games over networks [59, 125, 167]. Indeed, numerous applications falling

within different domains such as smart grids management [8, 131], economic market

analysis [143], cooperative control of robots [58], electric vehicles charging [36, 53, 66],

network congestion control [7], and synchronization of coupled oscillators in power

grids [208] can be modelled as networks of selfish agents – aiming at optimizing their

strategy according to an associated individual cost function – that compete with each

other over shared resources.
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Among these examples, one can often find instances modelled as an aggregative

game, where the strategies of all the agents in the network are coupled through the

so-called aggregative variable (expressing, e.g., the mean strategy), upon which each

agent’s cost function depends; see, e.g., [12, 87, 152] for a comprehensive overview.

This chapter investigates such a framework proposing novel distributed algorithms for

generalized Nash equilibrium (GNE) seeking under partial information, i.e., assuming

that each agent is only aware of its own local information (e.g., its strategy set and cost

function) and can communicate only with few agents in the network. This restriction

naturally calls for the design of fully-distributed mechanisms for GNE seeking.

We recall the difference with respect to the distributed aggregative optimization

framework, where agents in a network collaborate to minimize the sum of individual

objective functions depending both on local decision variables and an aggregative

variable, see Chapter 3.

In the context of NE problems in aggregative form, first attempts to design equi-

librium seeking algorithms involve semi-decentralized approaches in which a central

entity gathers and shares global quantities (such as the aggregative variable and/or a

dual multiplier) with all the agents [9, 10, 51, 74, 75, 90, 147, 205].

To relax the communication requirements, [95] proposes a gradient-based algorithm

for non-generalized games with diminishing step-size that relies on dynamic average

consensus to reconstruct the aggregative variable in each agent. Such a method has

been refined in [204] to deal with privacy issues and, as a consequence, only guarantee-

ing approximate equilibrium computations. In [151], the distributed computation of

an approximate Nash equilibrium is guaranteed through a best-response-based algo-

rithm requiring multiple communication exchanges per iteration. In [35], instead, an

asynchronous distributed algorithm based on proximal dynamics is proposed.

Looking at GNE problems where the agents’ strategies are coupled also by means of

constraints, in [150] the distributed computation of an approximate NE is guaranteed

through an algorithm requiring, however, several communication exchanges per itera-

tion. Exact convergence is instead guaranteed in [11], where a distributed algorithm with

diminishing step-size is proposed, combining dynamic tracking mechanisms, mono-

tone operator splitting, and the Krasnosel’skii-Mann fixed-point iteration. An exactly

convergent distributed equilibrium-seeking algorithm with constant step-size is given

in [69], where the authors propose a distributed method based on a forward-backward

splitting of two preconditioned operators requiring a double communication exchange

per iteration.
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4.2 Distributed Aggregative Games over Networks

We recall as follows the formalization of the aggregative games over networks already

given in Section 1.4.

We consider a population of N ∈ N agents who, given all other agents’ strategies,

aim at finding a local strategy solving the optimization problem:

∀i ∈ {1, . . . , N} :





min
xi∈Xi

Ji(xi, σ(x))

s.t. Aixi +
∑

j∈{1,...,N}\{i}
Ajxj ≤

∑

i∈{1,...,N}
bi,

(4.1)

where Xi ⊆ Rni , Ai ∈ Rm×ni , and bi ∈ Rm model the feasible strategy set for agent

i, while the cost function Ji : Rni × Rd → R depends on the i-th individual strategy

xi ∈ Rni , as well as on the aggregative variable σ(x) ∈ Rd, with x := col(x1, . . . , xN ) ∈ Rn,

n :=
∑N

i=1 ni. We consider m ≤ n. As in Chapter 3, the aggregative variable is given by

σ(x) 1
N

∑N
i=1 ϕi(xi), where each aggregation rule ϕi : Rni → Rd models the contribution

of the corresponding strategy xi to the aggregate σ(x). We recall the constraint functions

(see (1.10)) ci : Rni → Rm, c−i : Rn−ni → Rm, and c : Rn → Rm as follows

ci(xi) = Aixi − bi, (4.2a)

c−i(x−i) =
∑

j∈{1,...,N}\{i}
(Ajxj − bj), (4.2b)

c(x) = ci(xi) + c−i(x−i) = Ax− b, (4.2c)

where x−i := col(x1, . . . , xi−1, xi+1, . . . , xN ) ∈ Rn−ni , A := [A1 . . . AN ] ∈ Rm×n, and

b :=
∑N

i=1 bi. Then, the collective vector of strategies x belongs to the feasible set

C := {x ∈ X | c(x) ≤ 0} ⊆ Rn, where X :=
∏N
i=1Xi ⊆ Rn.

The goal of this chapter is to develop fully-distributed schemes to compute the GNE

of (4.1), see Section 1.4 for further details about the mathematical definition of a GNE.

Next, we formalize customary assumptions that establish the regularity of some local

quantities in (4.1).

Assumption 4.1 (Local feasible sets and cost functions). For all i ∈ {1, . . . , N}, we have
that:

(i) The feasible set Xi is nonempty, closed, and convex;

(ii) The function Ji(·, ϕi(·)/N + σ−i(x−i)) is of class C1, i.e., its derivative exists and is
continuous, for all x−i ∈ Rn−ni . △

A key device in this game-theoretic framework is the so-called pseudo-gradient
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mapping F : Rn → Rn:

F (x) := col(∇x1J1(x1, σ(x)), . . . ,∇xNJN (xN , σ(x))). (4.3)

With this regard, we also make the following assumption.

Assumption 4.2 (Strong monotonicity and Lipschitz continuity). F is µ-strongly mono-
tone, i.e., there exists µ > 0 such that

(F (x)− F (y))⊤(x− y) ≥ µ ∥x− y∥2 ,

for any x, y ∈ Rn. Moreover, given any xi, x′i ∈ Rni and y, y′ ∈ Rn−ni , for all i ∈ {1, . . . , N},
we assume that

∥∇xiJi(xi, ϕi(xi)/N + y)−∇x′iJi(x
′
i, ϕi(x

′
i)/N + y′)∥

≤ L1

∥∥col(xi, y)− col(x′i, y
′)
∥∥ ,

∥∥∇1Ji(xi, y)−∇1Ji(x
′
i, y

′)
∥∥ ≤ L1

∥∥col(xi, y)− col(x′i, y
′)
∥∥ ,

∥∥∇2Ji(xi, y)−∇2Ji(x
′
i, y

′)
∥∥ ≤ L2

∥∥col(xi, y)− col(x′i, y
′)
∥∥ ,

∥∥ϕi(xi)− ϕi(x′i)
∥∥ ≤ L3

∥∥xi − x′i
∥∥ . △

While assumptions on strong monotonicity and Lipschitz continuity of the game

mapping are quite standard in the literature [12, 147, 205], in the second part of As-

sumption 4.2 we further specialize the Lipschitz properties of the gradients of the cost

functions in both the local and aggregate variables, as well as of each single aggregation

rule ϕi(·).
Note that we assume partial information, i.e., each agent i is only aware of its own lo-

cal information xi, Ji, ϕi, Xi, Ai, and bi. Moreover, each agent can exchange information

with a subset of {1, . . . , N} only. Specifically, we consider a network of agents whose

communication is performed according to a directed graph G = ({1, . . . , N}, E), with

E ⊂ {1, . . . , N}2. The following assumption characterizes the communication graphs

considered:

Assumption 4.3 (Network). The graph G is strongly connected and the matrixWG is doubly
stochastic. △

4.2.1 Primal TRADES: Algorithm Description and Analysis

In this section we introduce and analyze Primal TRacking-based Aggregative Distributed

Equilibrium Seeking (TRADES), a fully-distributed iterative NE seeking algorithm for
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aggregative games given by (4.1) without coupling constraints, i.e.,

∀i ∈ {1, . . . , N} : min
xi∈Xi

Ji(xi, σ(x)). (4.4)

Our distributed algorithm is then able to steer the strategies of the network to a NE

of the game.

The proposed scheme is iterative with k denoting the iteration index. Let xki ∈ Rni

be the strategy chosen by each agent i at iteration k ≥ 0. Taking its convex combination

with a projected pseudo-gradient step may be an effective way to steer each agent’s

strategy to the best response xi,br(σ−i(xk−i)). When applied to problem (4.4), it reads as

xk+1
i = xki + δ

(
PXi

[
xki − γ

(
∇xiJi(xki , σ(xk))

)]
− xki

)
, (4.5)

where δ ∈ (0, 1) is a constant performing the combination and γ > 0 plays the role

of the gradient step-size. We point out that the chain rule and the definition of σ(xk)

(cf. (1.9)) lead to ∇xiJi(xki , σ(xk)) = ∇1Ji(x
k
i , σ(x

k)) +
∇ϕi(xki )

N ∇2Ji(x
k
i , σ(x

k)). In our

distributed setting, however, agent i cannot access the global aggregate variable σ(xk).

To compensate this lack of information, we rely on the locally available ϕi(xki ) and

the auxiliary variable zki ∈ Rd. Thus, for all i ∈ {1, . . . , N}, we introduce the operator

F̃i : Rni × Rd → Rni defined as

F̃i(xi, s) := ∇1Ji(xi, s) +
∇ϕi(xi)
N

∇2Ji(xi, s),

and, in accordance, we modify the update (4.5) as

xk+1
i = xki + δ

(
PXi

[
xki − γF̃i

(
xki , ϕi(x

k
i ) + zki

)]
− xki

)
, (4.6)

which can be directly implemented without violating the distributed nature of the

algorithm. In case

zki → −ϕi(xki ) + σ(xk), (4.7)

then the implementable law (4.6) coincides with the desired one given in (4.5). Note

that zki encodes the estimate of σ(xki ) − ϕi(xki ), i.e., the aggregate of all other agents’

strategies except for the i-th one. For this reason, we update each auxiliary variable zki
according to the following causal version of the perturbed average consensus scheme

(see (2.4), where it has been used to locally compensate the missing knowledge of the

global gradient in the distributed consensus optimization setting):

zk+1
i =

∑

j∈Ni

wijz
k
j +

∑

j∈Ni

wijϕj(x
k
j )− ϕi(xki ). (4.8)

This is implementable in a fully-distributed fashion since it only requires communi-
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cation with neighboring agents j ∈ Ni. We report the whole algorithmic structure in

Algorithm 8 and, from now on, we will refer to it as Primal TRacking-based Aggregative

Equilibrium Seeking (TRADES)

Algorithm 8 Primal TRADES (Agent i)

Initialization: x0i ∈ Xi, z
0
i = 0.

for k = 1, 2, . . . do

xk+1
i = xki + δ

(
PXi

[
xki − γF̃i

(
xki , ϕi(x

k
i ) + zki

)]
− xki

)
(4.9a)

zk+1
i =

∑

j∈Ni

wijz
k
j +

∑

j∈Ni

wijϕj(x
k
j )− ϕi(xki ). (4.9b)

end for

We note that Algorithm 8 requires the initialization z0i = 0 for all i ∈ {1, . . . , N}; we

will discuss in the sequel the interpretation of this particular initialization. The local

update (4.9) leads to the stacked vector form of Primal TRADES, namely

xk+1 = xk + δ

(
PX

[
xk − γF̃

(
xk, ϕ(xk) + zk

)]
− xk

)
, (4.10a)

zk+1 =Wdz
k + (Wd − I)ϕ(xk), (4.10b)

withWd :=WG ⊗ Id ∈ RNd, zk := col(z1,k, . . . , zN,k), ϕ(xk) := col(ϕ1(x
k
1), . . . , ϕN (x

k
N )),

and F̃ (xk, ϕ(xk)+zk) := col(F̃1(x
k
1, ϕ1(x

k
1)+z

k
1 ), . . . , F̃N (x

k
N , ϕN (x

k
N )+z

k
N )). We establish

next the properties of Primal TRADES in computing the NE of problem (4.4).

Theorem 4.1. Consider the dynamics in (4.10). There exist constants δ̄, γ̄, a1, a2 > 0 such
that, for any δ ∈ (0, δ̄), γ ∈ (0, γ̄) and (x0, z0) ∈ Rn+Nd such that 1⊤N,dz

0 = 0, it holds

∥∥∥xk − x⋆
∥∥∥ ≤ a1 exp(−a2k). △

The proof of Theorem 4.1 relies on a singular perturbation analysis of system (4.10),

and will be given in the next subsection.

Proof of Theorem 4.1

We build the framework to prove Theorem 4.1 by analyzing (4.10) under a singular

perturbations lens. We therefore establish the related proof in five steps:

1. Bringing (4.10) in the form of (C.18): We leverage the initialization z0 so that
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1⊤N,dz
0 = 0 to introduce coordinates z̄ ∈ Rd and z⊥ ∈ R(N−1)d defined as:

[
z̄

z⊥

]
:=

[
1⊤
N,d

N

R⊤
d

]
z =⇒ z = 1N,dz̄ +Rdz⊥, (4.11)

where Rd ∈ RNd×(N−1)d with ∥Rd∥ = 1 is such that

RdR
⊤
d = I −

1N,d1
⊤
N,d

N
and R⊤

d 1N,d = 0. (4.12)

Then, by using the definition of z̄ given in (4.11), the associated dynamics reads as

z̄k+1 =
1⊤N,d
N

zk+1 (a)
=

1⊤N,d
N
Wdz

k +
1⊤N,d
N

(Wd − I)ϕ(xk)

(b)
=

1⊤N,d
N

zk
(c)
=

1⊤N,d
N

(
1N,dz̄

k +Rdz
k
⊥
)

(d)
= z̄k, (4.13)

where in (a) we exploit the update (4.10), in (b) we use the facts that, in view of

Assumption 4.3, (i) 1⊤N,dWd = 1⊤N,d and (ii) 1⊤N,d(Wd − I) = 0, in (c) we rewrite zk

according to (4.11), and in (d) we use the fact that 1⊤N,dRd = 0. Thus, (4.13) leads

to z̄k+1 ≡ z̄0 ≡ 0 for all k ≥ 0, where the last equality follows by the initialization

1⊤N,dz
0 = 0 and the definition of z̄ (cf. (4.11)). We are thus entitled to ignore the null

dynamics of z̄k and, according to (4.11), we equivalently rewrite (4.10) as

xk+1 = xk + δ
(
PX

[
xk − γF̃ (xk, ϕ(xk) +Rdz

k
⊥)
]
− xk

)
, (4.14a)

zk+1
⊥ = R⊤

dWdRdz
k
⊥ +R⊤

d (Wd − I)ϕ(xk). (4.14b)

For any k ≥ 0, the interconnected system (4.14) can be seen as singularly perturbed

system in the generic form of (C.18) (in Appendix C) by setting

wt := zk⊥,

f(xk,wk) := PX

[
xk − γF̃ (xk, ϕ(xk) +Rdw

k)
]
− xk,

g(wk, xk) := R⊤
dWdRdw

k +R⊤
d (Wd − I)ϕ(xk).

(4.15)

In particular, we refer to the subsystem (4.14a) as the slow system, while we refer

to (4.14b) as the fast one.

2. Equilibrium function h : For any xk ∈ Rn, under the expression for RdR⊤
d in (4.12)

and sinceWG is doubly stochastic (cf. Assumption 4.3) notice that for any xk = x ∈ Rn,

z⊥ = h(x) := −R⊤
d ϕ(x) (4.16)

constitutes an equilibrium of (4.14b). SinceR⊤
dWdRd is Schur in view of Assumption 4.3,
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we interpret (4.14b) as a strictly stable linear system with nonlinear input R⊤
d (Wd −

I)ϕ(xk) parametrizing the equilibrium of the subsystem. The role of γ is to slow down

the variation of xk so that the stability of h(xk) for (4.14b) is preserved.

3. Boundary layer system and satisfaction of (C.21): The so-called boundary layer

system associated to (4.14) can be constructed by fixing xk = x for all k ≥ 0, for

some arbitrary x ∈ Rn in (4.14b), and rewriting it according to the error coordinates

z̃k := zk⊥ − h(xk). Using (4.12), we obtain that

z̃k+1 = R⊤
dWdRdz̃

k. (4.17)

Notice that the latter is in the form of (C.20) (in Appendix C) with ψ = z̃k, and g(ψ +

h(x), x)− h(x) = R⊤
dWdRdz̃

k. The next lemma provides a Lyapunov function for (4.17).

Lemma 4.1. Consider system (4.17). Then, there exists a continuous function U : R(N−1)d →
R satisfying (C.21) (in Appendix C) with z̃ in place of ψ.

Proof. System (4.17) is a linear autonomous system whose state matrix R⊤
dWdRd ∈

R(N−1)d×(N−1)d is Schur. Hence, there exists P ∈ R(N−1)d×(N−1)d, P = P⊤ > 0 for the

candidate Lyapunov function U(z̃k) = (z̃k)⊤P z̃k, solving the Lyapunov equation

(R⊤
dWdRd)

⊤PR⊤
dWdRd − P = −Q. (4.18)

for any Q ∈ R(N−1)d×(N−1)d, Q = Q⊤ > 0. Condition (C.21a) follows then from

the fact that U is quadratic with P > 0 so b1 and b2 can be chosen to be its mini-

mum and maximum eigenvalue, respectively. The left-hand side of (C.21b) becomes

(z̃k)⊤((R⊤
dWdRd)

⊤PR⊤
dWdRd − P )z̃k = −(z̃k)⊤Qz̃k, where the equality is due to (4.18).

Hence, (C.21b) is satisfied by taking b3 to be the smallest eigenvalue of Q. To see (C.21c)

notice that

∥∥∥U(z̃k1)− U(z̃k2)
∥∥∥ =

∥∥∥(z̃k1)⊤P z̃k1 − (z̃k2)
⊤P z̃k2

∥∥∥

≤
∥∥∥(z̃k1)⊤P z̃k1 − (z̃k1)

⊤P z̃k2
∥∥∥+

∥∥∥(z̃k2)⊤P z̃k1 − (z̃k2)
⊤P z̃k2

∥∥∥

≤ ∥P∥
∥∥∥z̃k1 − z̃k2

∥∥∥
∥∥∥z̃k1
∥∥∥+ ∥P∥

∥∥∥z̃k1 − z̃k2

∥∥∥
∥∥∥z̃k2
∥∥∥ (4.19)

where the first inequality follows from adding and subtracting (z̃k1)
⊤P z̃k2 and using the

triangle inequality, while the second one from the Cauchy-Schwarz inequality. The

bound in (C.21c) follows then from (4.19) by taking b4 to be the largest eigenvalue of P

(recall it is symmetric). ■

4. Reduced system and satisfaction of (C.22): The so-called reduced system can be

obtained by plugging into (4.14a) the fast state at its steady state equilibrium, i.e., we
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consider zk = h(xk) for any k ≥ 0. We thus have

xk+1 = xk + δ
(
PX

[
xk − γF̃ (xk, ϕ(xk) +Rdh(x

k))
]
− xk

)
. (4.20)

Due to (4.12) we have that F̃ (xk, ϕ(xk)+Rdh(xk)) = F̃ (xk,1N,dσ(x
k)) = F (xk), so (4.20)

is equivalent to

xk+1 = xk + δ
(
PX

[
xk − γF (xk)

]
− xk

)
. (4.21)

The next lemma provides a Lyapunov function for (4.20).

Lemma 4.2. Consider system (4.20). Let x⋆ ∈ Rn be such that f(x⋆, h(x⋆)) = 0 with f
defined as in (4.15). Then, there exist a continuous function W : Rn → R , γ̄ > 0 and δ̄2 > 0

such that, for any γ ∈ (0, γ̄) and any δ ∈ (0, δ̄2), W satisfies (C.22).

Proof. Pick the function W : Rn → R defined as

W (xk) =
1

2

∥∥∥xk − x⋆
∥∥∥
2
.

Since W is a quadratic function, conditions (C.22a) and (C.22c) (in Appendix C) are

satisfied. To show (C.22b) we evaluate ∆W (xk) := W (xk+1)−W (xk) along (4.21). We

then have

∆W (xk) =
1

2

∥∥∥(1− δ)xk + δ
(
PX

[
xk − γF (xk)

])
− x⋆

∥∥∥
2
− 1

2

∥∥∥xk − x⋆
∥∥∥
2

(a)

≤ (1− δ)2
2

∥∥∥xk − x⋆
∥∥∥
2
− 1

2

∥∥∥xk − x⋆
∥∥∥
2

+ (δ − δ2)
∥∥∥xk − x⋆

∥∥∥
∥∥∥PX

[
xk − γF (xk)

]
− PX [x⋆ − γF (x⋆)]

∥∥∥

+
δ2

2

∥∥∥PX
[
xk − γF (xk)

]
− PX [x⋆ − γF (x⋆)]

∥∥∥
2

(b)

≤ (1− δ)2
2

∥∥∥xk − x⋆
∥∥∥
2
− 1

2

∥∥∥xk − x⋆
∥∥∥
2

+ (δ − δ2)
∥∥∥xk − x⋆

∥∥∥
∥∥∥xk − γF (xk)− x⋆ + γF (x⋆)

∥∥∥

+
δ2

2

∥∥∥xk − γF (xk)− x⋆ + γF (x⋆)
∥∥∥
2
, (4.22)

where in (a) we introduce the quantity δ(x⋆ − PX [x⋆ − γF (x⋆)]) within the first norm,

as this is zero due to the definition of x⋆, expand the square, and use the Cauchy-

Schwarz inequality. Inequality (b) follows by the fact that for any a, b, we have that

∥PX [a]− PX [b]∥ ≤ ∥a− b∥, since the projection operator is nonexpansive.

Since F is µ-strongly monotone and L1 Lipschitz continuous (cf. Assumption 4.2),

set γ̄ = 2µ/(L1)
2 and choose γ ∈ (0, γ̄). Applying Lemma B.3 yields

∥∥∥xk − γF (xk)− x⋆ + γF (x⋆)
∥∥∥ ≤ (1− µ̃)

∥∥∥xk − x⋆
∥∥∥ , (4.23)
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with µ̃ = 1−
√
1− γ(2µ− γ(L1)2) ∈ (0, 1]. Thus, by using the inequality in (4.23), we

can bound (4.22) as follows

∆W (xk) ≤ (1− δ)2
2

∥∥∥xk − x⋆
∥∥∥
2
− 1

2

∥∥∥xk − x⋆
∥∥∥
2
+ (δ − δ2)(1− µ̃)

∥∥∥xk − x⋆
∥∥∥
2

+
δ2(1− µ̃)2

2

∥∥∥xk − x⋆
∥∥∥
2

= −δµ̃
(
1− δµ̃

2

)∥∥∥xk − x⋆
∥∥∥
2
. (4.24)

where the equality is obtained by rearranging the right-hand side of the inequality.

Thus, for any δ ∈ (0, δ̄2) with δ̄2 := 2/µ̃, δµ̃(1 − δµ̃/2) > 0 in (4.24), thus establishing

condition (C.22b) and concluding the proof. ■

5. Lipschitz continuity of f , g and h: As we will be invoking Theorem C.2 (in Ap-

pendix C), we need to ensure that the Lipschitz continuity assumptions required by

the theorem are satisfied. In particular, we require f and g in (4.15) to be Lipschitz

continuous with respect to both arguments, and h in (4.16) to be Lipschitz continuous

with respect to x.

Lipschitz continuity of f follows by the fact that ∇Ji is Lipschitz continuous due

to Assumption 4.2. To show Lipschitz continuity of g in (4.15) notice that for any

w,w′ ∈ R(N−1)d and any x, x′ ∈ Rn,

∥∥∥R⊤
dWdRd(w − w′) +R⊤

d (Wd − I)(ϕ(x)− ϕ(x′))
∥∥∥ ≤

∥∥∥R⊤
dWdRd

∥∥∥
∥∥w − w′∥∥

+ L3

∥∥∥R⊤
d (Wd − I)

∥∥∥
∥∥x− x′

∥∥ ,

where the inequality is due to triangle inequality and the fact that by Assumption 4.2, ϕ

is Lipschitz continuous with Lipschitz constant L3. To show Lipschitz continuity of h,

notice that for any x, x′ ∈ Rn,

∥∥h(x)− h(x′)
∥∥ ≤ L3∥Rd∥

∥∥x− x′
∥∥ = L3

∥∥x− x′
∥∥ ,

where the inequality follows from (4.16) and Lipschitz continuity of ϕ, while the equality

from the fact that ∥Rd∥ = 1.

By combining Lemma 4.1 and 4.2 with the Lipschitz conditions expressed above,

Theorem C.2 can therefore be applied. Thus, there exists δ̄ ∈ (0, δ̄2) so that (x⋆, h(x⋆)) is

an exponentially stable equilibrium for (4.14).

4.2.2 Primal-Dual TRADES: Algorithm Description and Analysis

In this section we introduce the Primal-Dual TRADES algorithm, i.e., a distributed

iterative methodology to find a GNE in aggregative games with local and linear coupling
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constraints as formalized in (4.1).

In addition to the assumptions made in Section 4.2, we need some further conditions

for our mathematical developments.

Assumption 4.4 (Feasibility). The set C ̸= ∅ and, for all i ∈ {1, . . . , N}, for any x−i ∈
Rn−ni , (i) Ci(c−i(x−i)) ̸= ∅ and (ii) Ji(xi,br(x−i), ϕi(xi,br(x−i))/N +

∑
j ̸=i ϕj(xj)/N) >

−∞. △

Consider the following variational inequality, defined by the mapping F in (4.3) and

the domain C:

F (x⋆)⊤(x− x⋆) ≥ 0, for all x ∈ C. (4.25)

It is known that every point x⋆ ∈ C for which (4.25) holds is a GNE of the game (4.1) and,

specifically, a variational GNE (v-GNE) (cf. [59, Th. 2.1]). The converse, however, does

not hold in general due to the presence of the coupling constraints. Since F is strongly

monotone (cf. Assumption 4.2) and C nonempty, closed and convex (cf. Assumption 4.4),

a v-GNE is guaranteed to exist and it is also unique by [167, Th. 3].

We will devise an iterative algorithm that will asymptotically return the (unique)

v-GNE of (4.1). Inspired by [159], where an augmented primal-dual scheme was used

for continuous-time, centralized optimization, we require the following additional

condition on the matrix A of the coupling constraints (cf. (4.1)):

Assumption 4.5 (Full-row rank). Matrix A satisfies rank(A) = m, and there exist κ1, κ2 >
0 such that κ1Im ≼ AA⊤ ≼ κ2Im. △

Following [159], for all i ∈ {1, . . . , N} we consider the augmented Lagrangian

function Li : Rn × Rm → R defined as

Li(x, λ) := Ji(xi, σ(x)) +
m∑

ℓ=1

Hℓ([Ax− b]ℓ, [λ]ℓ)
︸ ︷︷ ︸

=:H(Ax−b,λ)

, (4.26)

where

Hℓ([Ax− b]ℓ, [λ]ℓ) :=





[Ax− b]ℓ[λ]ℓ + ρ
2([Ax− b]ℓ)2 if ρ([Ax− b]ℓ) + [λ]ℓ ≥ 0

− 1
2ρ [λ]

2
ℓ if ρ([Ax− b]ℓ) + [λ]ℓ < 0,

with λ ∈ Rm being the multiplier associated to the coupling constraints, and ρ > 0 a

constant. We therefore address the v-GNE seeking problem by obtaining a saddle point

of (4.26) through the discrete-time dynamics:

xk+1
i = xki + δ

(
PXi

[
xki − γ∇xiJi(x

k
i , σ(x

k))− γ∇xiH(Axk − b, λk)
]
− xki

)
(4.27a)
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λk+1 = λk + δγ∇λH(Axk − b, λk), (4.27b)

where xki , δ, and γ have the same meaning as in (4.5), λk ∈ Rm is the multiplier at k ≥ 0,

and the explicit form of the gradients∇xiH(Axk− b, λk) and∇λH(Axk− b, λk) reads as

∇xiH(Axk − b, λk) =
m∑

ℓ=1

∇xiHℓ([Ax
k − b]ℓ, [λk]ℓ)

=
m∑

ℓ=1

max
{
ρ([Axk − b]ℓ) + [λk]ℓ, 0

}
[Ai]

⊤
ℓ , (4.28a)

∇λH(Axk − b, λk) =
m∑

ℓ=1

∇λHℓ([Ax
k − b]ℓ, [λk]ℓ)

=
m∑

ℓ=1

1

ρ
eℓ(max

{
ρ([Axk − b]ℓ) + [λk]ℓ, 0

}
− [λk]ℓ), (4.28b)

where eℓ ∈ Rm is the ℓ-th vector of the canonical basis of Rm, ℓ ∈ {1, . . . ,m}. The

stacked-column form of (4.27) is

xk+1 = xk + δ

(
PX

[
xk − γF (x)− γ∇xH(Axk − b, λk)

]
− xk

)
, (4.29a)

λk+1 = λk + δγ∇λH(Axk − b, λk), (4.29b)

where ∇xH(Axk − b, λk) := col(∇x1H(Axk − b, λk), . . . ,∇xNH(Axk − b, λk).
However, since agent i does not have access neither to σ(xk) nor toAxk−b, the scheme

in (4.27) cannot be directly implemented. Moreover, dynamics (4.27) requires a central

unit that can compute the global quantity Axk − b and communicate the multiplier λk

to all the agents. For this reason, in Algorithm 9 we introduce for all i ∈ {1, . . . , N} (i)

two additional variables zi ∈ Rd and yi ∈ Rm to compensate the local unavailability

of σ(xk) and Axk − b, respectively, (ii) a copy λi ∈ Rm of the multiplier λ, and (iii)

an additional average consensus step to enforce agreement among the multipliers λi,

(cf. (4.31b)-(4.31d)). We choose causal perturbed consensus dynamics to update zi and

yi. For all i ∈ {1, . . . , N}, we then introduce operators Gx,i : Rm × Rm → Rni and

Gλ,i : Rm × Rm → Rm as

Gx,i(s1, s2) :=
m∑

ℓ=1

max{ρ([s1]ℓ) + [s2]ℓ, 0}[Ai]⊤ℓ ,

Gλ,i(s1, s2) :=
1

ρ

m∑

ℓ=1

(max{ρ([s1]ℓ) + [s2]ℓ, 0} − [s2]ℓ) eℓ.

(4.30)

In Algorithm 9, these operators encode the component of the gradients in (4.28) available

to agent i at iteration k, plus the auxiliary variable yki that is used to track Axk − b (see
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Algorithm 9 Primal-Dual TRADES (Agent i)

Initialization: x0i ∈ Xi, λ
k
i ∈ Rm+ , z0i = 0, y0i = 0.

for k = 0, 1, . . . do

xk+1
i = xki + δ

(
PXi

[
xki − γF̃i(xki , ϕi(xki ) + zki )− γGx,i(N(Aix

k
i − bi) + yki , λ

k
i )

]
− xki

)

(4.31a)

λk+1
i =

∑

j∈Ni

wijλ
k
j + δγGλ,i(N(Aix

k
i − bi) + yki , λ

k
i ) (4.31b)

zk+1
i =

∑

j∈Ni

wijz
k
j +

∑

j∈Ni

wijϕj(x
k
j )− ϕi(xki ) (4.31c)

yk+1
i =

∑

j∈Ni

wijy
k
j +

∑

j∈Ni

wijN(Ajx
k
j − bj)−N(Aix

k
i − bi), (4.31d)

end for

(4.31a) and (4.31b) in Algorithm 9). The main steps of the proposed method are hence

summarized in Algorithm 9 from the perspective of agent i, which is then referred as

Primal-Dual TRADES. Note that all the quantities involved in the agent’s calculations

are purely local, thus making Algorithm 9 fully distributed.

Differently from customary primal-dual schemes, (4.31b) does not need the pro-

jection over the positive orthant Rm+ due to the chosen augmented Lagrangian func-

tions Li (see (4.26)). We only need to initialize λ0i ≥ 0 for all i ∈ {1, . . . , N}, and

choose parameters δ, γ, and ρ appropriately so that we avoid situations where λki ≥ 0

implies λk+1
i < 0. To see this notice first that if λki = 0, then it is easy to check

Gλ,i(N(Aix
k
i − bi) + yki , λ

k
i ) ≥ 0 and, thus, λk+1

i ≥ 0. The critical scenario for agent i oc-

curs when all the multipliers of its neighbors are zero, namely λkj = 0 for any j ∈ Ni, and

when max{ρ([N(Aix
k
i − bi + yki ]ℓ) + [λki ]ℓ, 0} = 0 for at least one ℓ ∈ {1, . . . ,m}. Indeed,

specializing (4.31b) for this case leads to the following update of that ℓ-th component of

λki

[λk+1
i ]ℓ =

(
wii −

δγ

ρ

)
[λki ]ℓ. (4.32)

From (4.32), we conclude that [λk+1
i ]ℓ remains non-negative if [λki ]ℓ is non-negative, thus

alleviating the need for a projection, as long as δ, γ, and ρ satisfy wii > δγ/ρ.

As in the case without coupling constraints, the purpose of the initialization step will

become clear in the next subsection. The steps of Algorithm 9 in (4.31) can be compactly

written as:

xk+1 = xk + δfX(x
k, λk, zk, yk), (4.33a)
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λk+1 =Wmλ
k + δγGλ(N(Āxk − b̄) + yk, λk), (4.33b)

zk+1 =Wdz
k + (Wd − I)ϕ(xk), (4.33c)

yk+1 =Wmy
k + (Wm − I)N(Āxk − b̄). (4.33d)

where fX : Rn × RNm × RNd × RNm → Rn is defined as

fX(x, λ, z, y) := PX

[
x− γF̃ (x, ϕ(x) + z)− γGx(N(Āx− b̄) + y, λ)

]
− x,

and, similarly to (4.10), λ : col(λ1, . . . , λN ),Wd :=WG⊗Id,Wm :=WG⊗Im,Gx(N(Āxk−
b̄) + yk, λk) := col(Gx,1(N(A1x

k
1 − b1) + yk1 , λ

k
1), . . . , Gx,N (N(ANx

k
N − bN ) + ykN , λ

k
N )),

and Gλ(N(Āxk − b̄) + yk, λk) := col(Gλ,1(N(A1x
k
1 − b1) + yk1 , λ

k
1), . . . , Gλ,N (N(ANx

k
N −

bN ) + ykN , λ
k
N )).

The next theorem establishes the convergence properties of Primal-Dual TRADES in

computing the v-GNE of (4.1).

Theorem 4.2. Consider 4.33 and Assumptions 4.4, 4.5. Let (x0, λ0, z0, y0) ∈ X × RNm+ ×
RNd × RNm satisfy 1⊤N,dz

0 = 0 and 1⊤N,my
0 = 0. Then, there exist constants δ̄, γ̄, a1, a2 > 0

such that, for any δ ∈ (0, δ̄), γ ∈ (0, γ̄), with wii > δγ
ρ for all i ∈ {1, . . . , N}, it holds

∥∥∥xk − x⋆
∥∥∥ ≤ a1 exp(−a2k). △

Note that the additional condition wii > δγ/ρ needs to be satisfied by δ and γ, given

ρ, to ensure the dual variables remain non-negative, as discussed below (4.32). As in the

case of NE seeking without coupling constraints, the proof of Theorem 4.2 relies on a

singular perturbations analysis of system (4.33). We provide this in the next subsection.

Proof of Theorem 4.2

As with the proof of Theorem 4.1, we show that the setting of Theorem 4.2 fits the

framework of Theorem C.2 (in Appendix C), and organize its proof in five steps.

1. Bringing (4.33) in the form of (C.18): We introduce the change of coordinates

[
z̄k

zk⊥

]
=

[
1⊤
N,d

N

R⊤
d

]
zk,

[
ȳk

yk⊥

]
=

[
1⊤
N,m

N

R⊤
m

]
yk,

[
λ̄k

λk⊥

]
=

[
1⊤
N,m

N

R⊤
m

]
λk, (4.34)

where Rd ∈ RNd×(N−1)d, Rm ∈ RNm×(N−1)m, ∥Rd∥ = 1, ∥Rm∥ = 1, and

RdR
⊤
d = I −

1N,d1
⊤
N,d

N
, RmR

⊤
m = I −

1N,m1
⊤
N,m

N
. (4.35)

As in the proof of Theorem 4.2, we use the initialization 1⊤N,dz
0 = 0 and 1⊤N,my

0 = 0

to ensure that z̄k = 0 and ȳk = 0 for all k ≥ 0. In view of (4.34), we can therefore
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rewrite (4.33) by ignoring the dynamics of z̄k and ȳk, thus obtaining the system

χk+1 = χk + δf(χk,wk), (4.36a)

wk+1 = Swk +K(δ, γ)u(χk). (4.36b)

in which

χk :=

[
xk

λ̄k

]
, wk :=



λk⊥
zk⊥
yk⊥


 , (4.37a)

f(χk,wk) :=

[
fX(x

k,1N,mλ̄
k +Rmλ

k
⊥, Rdz

k
⊥, Rmy

k
⊥)

γ
1⊤
N,m

N Gλ(N(Āxk − b̄) +Rmy
k
⊥,1N,mλ̄

k +Rmλ
k
⊥)

]
, (4.37b)

S :=



R⊤
mWmRm 0 0

0 R⊤
dWdRd 0

0 0 R⊤
mWmRm


 , (4.37c)

K(δ, γ) :=



δγR⊤

m 0 0

0 R⊤
d (Wd − I) 0

0 0 R⊤
m(Wm − I)


 , (4.37d)

u(χk) :=



Gλ(N(Āxk − b̄) +Rmy

k
⊥,1N,mλ̄

k +Rmλ
k
⊥)

ϕ(xk)

N(Āxk − b̄)


 . (4.37e)

where We view (4.36) as a singularly perturbed system, namely the interconnection

between the slow dynamics (4.36a) and the fast one (4.36b). Indeed, system (4.36) can

be obtained from (C.18) by considering χk as the state of (C.18a) and setting

g(χk,wk, δ) := Swk +K(δ, γ)u(χk). (4.38)

2. Equilibrium function h: Under the double stochasticity condition ofWG due to

Assumption 4.3 and using (4.35), for any χk = χ,

h(χ) :=




0

−R⊤
d ϕ
([
In 0

]
χ
)

−R⊤
mN

(
Ā
[
In 0

]
χ− b̄

)


 (4.39)

constitutes an equilibrium of (4.36b) (parametrized by x).

3. Boundary layer system and satisfaction of (C.21): The so-called boundary layer

system associated to (4.36) can be constructed by fixing χk = χ = col(x, λ̄) for some

arbitrary (x, λ̄) ∈ Rn × Rm, and rewriting it according to the error coordinates w̃ :=
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col(λ̃⊥, z̃⊥, ỹ⊥) := w − h(χ). Using (4.35), we then obtain that

w̃k+1 = Sw̃k + δγũ(χ, w̃k), (4.40)

where

ũ(χ, w̃k) :=



R⊤
mGλ

(
1N,m(Ax− b) +Rmỹ

k
⊥,1N,mλ̄+Rmλ̃

k
⊥
)

0

0


 .

The next lemma provides a Lyapunov function for (4.40).

Lemma 4.3. Consider system (4.40). Then, there exists a continuous functionU : R(N−1)(2m+d) →
R and δ̄1 > 0 such that for any δ ∈ (0, δ̄1) and any γ > 0, U satisfies (C.21) with w̃ in place
of ψ.

Proof. Since R⊤
m1N,m = 0, we can write

R⊤
mGλ

(
1N,m(Ax− b) +Rmỹ

k
⊥,1N,mλ̄+Rmλ̃

k
⊥
)

= R⊤
m

(
Gλ

(
1N,m(Ax− b) +Rmỹ

k
⊥,1N,mλ̄+Rmλ̃

k
⊥
)
− 1N,m∇λH(Ax− b, λ̄)

)

= R⊤
m

(
Gλ

(
1N,m(Ax− b) +Rmỹ

k
⊥,1N,mλ̄+Rmλ̃

k
⊥
)
−Gλ(1N,m(Ax− b),1N,mλ̄)

)
,

(4.41)

where in the last equality we used 1N,m∇λH(Ax − b, λ̄) = Gλ(1N,m(Ax − b),1N,mλ̄).
Following [159, Lemma 3], notice that, for any r1, r2 ∈ R, there exists ϵ(r1, r2) ∈ [0, 1] so

that1

max{r1, 0} −max{r2, 0} = ϵ(r1, r2)(r1 − r2). (4.42)

Let us introduce

qki :=
m∑

ℓ=1

[Rmỹ
k
⊥]ℓ+(i−1)meℓ

pki :=

m∑

ℓ=1

[Rmλ̃
k
⊥]ℓ+(i−1)meℓ,

(4.43)

and use them to define

rk1,i := ρ(Ax− b+ qki ) + λ̄+ pki

r2,i := ρ(Ax− b) + λ̄.
(4.44)

1If r1 ̸= r2, pick ϵ = max{r1,0}−max{r2,0}
r1−r2

, otherwise set ϵ = 0.
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By the definition of ũ(χ, w̃k) we have that its norm
∥∥ũ(χ, w̃k)

∥∥ is equal to the norm of

the quantity in (4.41). As such, for any χ ∈ Rn+m and w̃k ∈ R(N−1)(2m+d), we use the

definition of Gλ in (4.30), rk1,i and r2,i in (4.44), and apply (4.42) for each component of

ũ(χ, w̃k) obtaining

∥∥∥ũ(χ, w̃k)
∥∥∥ ≤

∥∥∥∥∥R
⊤
m

1

ρ
col

( m∑

ℓ=1

ϵ([rk1,i]ℓ, [r2,i]ℓ)
(
[rk1,i − λ̄− pki ]ℓ − [r2,i − λ̄]ℓ

)
eℓ

)N

i=1

∥∥∥∥∥

(a)

≤

∥∥∥∥∥∥
R⊤
m

1

ρ
col

(
m∑

ℓ=1

(
[rk1,i − λ̄− pki ]ℓ − [r2,i − λ̄]ℓ

)
eℓ

)N

i=1

∥∥∥∥∥∥

(b)
=

∥∥∥∥∥∥
R⊤
m

1

ρ
col

(
m∑

ℓ=1

ρ[qki ]ℓeℓ

)N

i=1

∥∥∥∥∥∥
(c)
=
∥∥∥R⊤

mRmỹ
k
⊥
∥∥∥

(d)

≤
∥∥∥w̃k

∥∥∥ , (4.45)

where in (a) we use the fact that ϵ([rk1,i]ℓ, [r2,i]ℓ) ∈ [0, 1] for all ℓ ∈ {1, . . . ,m} and i ∈
{1, . . . , N}, (b) uses the definitions in (4.44) to simplify the terms, (c) follows from (4.43),

and (d) uses R⊤
mRm = I and

∥∥ỹk⊥
∥∥ ≤

∥∥w̃k
∥∥ that holds since ỹk⊥ is a component of w̃k.

Pick now U : R(N−1)(2m+d) → R defined as

U(w̃) = (w̃)⊤M w̃,

where M ∈ R(N−1)(2m+d)×(N−1)(2m+d) with M =M⊤ > 0, such that

S⊤MS −M = −I. (4.46)

We remark that such a matrix M always exists because, in light of Assumption 4.3, both

R⊤
dWdRd and R⊤

mWmRm are Schur matrices and, thus, S is Schur as well. Under this

choice of U , conditions (C.21a) and (C.21c) are satisfied. To show (C.21b) we evaluate

∆U(w̃k) := U(w̃k+1)− U(w̃k) along the trajectories of (4.40), obtaining

∆U(w̃k) = (Sw̃k + δγũ(χ, w̃k))⊤M(Sw̃k + δγũ(χ, w̃k))− (w̃k)⊤M w̃k

= −
∥∥∥w̃k

∥∥∥
2
+ 2δγ(w̃k)⊤S⊤Mũ(χ, w̃k) + δ2γ2ũ(χ, w̃k)⊤Mũ(χ, w̃k)

≤ −(1− δγµ1 − δ2γ2µ2)
∥∥∥w̃k

∥∥∥
2
, (4.47)

where the second equality is due to (4.46), and the inequality is due to (4.45) and the

Cauchy-Schwarz inequality , with the constants µ1 := 2 ∥S∥ ∥M∥ and µ2 := ∥M∥. Thus,

there always exists δ̄1 > 0 small enough so that (1−δγµ1−δ2γ2µ2) > 0 for any δ ∈ (0, δ̄1)

and γ > 0, concluding the proof. ■
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4. Reduced system and satisfaction of (C.22): The so-called reduced system can be

obtained by considering the fast dynamics in (4.36a) at steady state, i.e., wk = h(χk) for

any k ≥ 0. We thus have

χk+1 = χk + δf(χk, h(χk)). (4.48)

Let us expand (4.48). Using (4.35), we obtain

xk+1 = xk + δ

(
PX
[
xk − γF̃

(
xk,1N,dσ(x

k)
)
− γGx

(
1N,m(Ax

k − b),1N,mλ̄k
) ]
− xk

)
,

(4.49a)

λ̄k+1 = λ̄k + δγ
1⊤N,m
N

Gλ

(
1N,m(Ax

k − b),1N,mλ̄k
)
. (4.49b)

Notice that

F̃ (x,1N,dσ(x)) = F (x),

Gx

(
1N,m(Ax

k − b),1N,mλ̄k
)
= ∇xH(Axk − b, λ̄k),

and also

1⊤N,m
N

Gλ

(
1N,m(Ax

k − b),1N,mλ̄k
)
= ∇λH(Axk − b, λ̄k).

Therefore, (4.48) is identical to the original update (4.29). Given the unique v-GNE

x⋆ of (4.1) (see Assumptions 4.4, 4.5) and the associated multiplier λ⋆ ∈ Rm, the next

lemma provides a Lyapunov function for (4.48), hence for (4.29).

Lemma 4.4. Consider system (4.48) and Assumptions 4.4, 4.5. Then, there exist a continuous
function W : Rn+m → R, δ̄ > 0, and γ̄ > 0 such that for any δ ∈ (0, δ̄) and γ ∈ (0, γ̄), W
satisfies (C.22) with χ in place of x.

Proof. The proof is inspired by [159, Theorem 2, Lemma 3, Lemma 4], adapted to our

framework. Let F : Rn+m → Rn+m and H : Rn+m → Rn+m be defined as

F(χk) :=
[
F
([
I 0

]
χk
)

0

]
, (4.50a)

H(χk) :=


 ∇xH

(
A
[
I 0

]
χk − b,

[
0 I

]
χk
)

−∇λH
(
A
[
I 0

]
χk − b,

[
0 I

]
χk
)

 . (4.50b)

Applying (4.42) to each of the components of H(χk) − H(χ⋆), for any χk ∈ Rn+m we

obtain

H(χk)−H(χ⋆) =
[
ρA⊤E(χk, χ⋆)A A⊤E(χk, χ⋆)

−E(χk, χ⋆)A −1
ρ(E(χk, χ⋆)− I)

]
(χk − χ⋆), (4.51)
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where E(χk, χ⋆) := diag(ϵ1(χk, χ⋆), . . . , ϵm(χk, χ⋆)) and ϵℓ(χk, χ⋆) ∈ [0, 1] so that

max{ρ([Axk − b]ℓ) + [λ̄k]ℓ, 0} −max{ρ([Ax⋆ − b]ℓ) + [λ⋆]ℓ, 0}
= ϵℓ(χ

k, χ⋆)(ρ([Axk − b]ℓ − [Ax⋆ − b]ℓ) + [λ̄k]ℓ − [λ⋆]ℓ),

for all ℓ ∈ {1, . . . ,m} and χk := col(xk, λ̄k) ∈ Rn+m. Moreover, for any xk ∈ Rn, we

have

F (xk)− F (x⋆) =
∫ 1

0
∇F ((1− ν)x⋆ + νxk)(xk − x⋆)dν

(a)
=

[∫ 1

0
∇F ((1− ν)x⋆ + νxk)dν

]
(xk − x⋆)

(b)
= B(xk, x⋆)(xk − x⋆). (4.52)

where in (a) we have extracted the term (xk − x⋆) from the integral and in (b) we have

introduced B(xk, x⋆) :=
∫ 1
0 ∇F ((1− ν)x⋆ + νxk)dν. Since F is µ-strongly monotone and

L1-Lipschitz continuous (cf. Assumption 4.2), we can uniformly bound the integrand

term of (4.52) as

µI ≼ ∇F ((1− ν)x⋆ + νxk) ≼ L1I,

which leads to

µI ≼
∫ 1

0
µIdν ≼ B(xk, x⋆) ≼

∫ 1

0
L1Idν ≼ L1I. (4.53)

Combining the definitions (4.50) with (4.51) and (4.52), we can write

−F(χk) + F(χ⋆)− (H(χk)−H(χ⋆)) = D(χk, χ⋆)(χk − χ⋆), (4.54)

where D(χk, χ⋆) ∈ R(n+m)×(n+m) is given by

D(χk, χ⋆) :=

[
−B(χk, χ⋆)− ρA⊤E(χk, χ⋆)A −A⊤E(χk, χ⋆)

E(χk, χ⋆)A 1
ρ(E(χk, χ⋆)− I)

]
.

Consider now M ∈ R(n+m)×(n+m) defined as

M :=

[
cI A⊤

A cI

]
, (4.55)

and notice that choosing c such that c2 > κ2 (cf. Assumption 4.5) ensures that M > 0

(see also [159, Theorem 1]). Now, let

PX [χ] := PX×Rm [χ] . (4.56)
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We can employ matrix M to show that
∥∥PX

[
χk − γF(χk)− γH(χk)

]
− χ⋆

∥∥
M

enjoys cer-

tain contraction properties under theM -weighted norm. Note thatPX
[
χk − γF(χk)− γH(χk)

]

combines both the projected descent step for xk+1 and the ascent step for λk+1 in (4.33);

this also justifies the opposite sign in the two block rows ofH(χk) (cf. (4.50b)) and hence

also of D(χk, χ⋆).

We then have that

∥∥∥PX
[
χk − γF(χk)− γH(χk)

]
− χ⋆

∥∥∥
2

M

(a)

≤
∥∥∥χk − χ⋆ − γ(F(χk)−F(χ⋆))− γ(H(χk)−H(χ⋆))

∥∥∥
2

M

(b)

≤
∥∥∥χk − χ⋆ + γD(χk, χ⋆)(χk − χ⋆)

∥∥∥
2

M

(c)
=
∥∥∥χk − χ⋆

∥∥∥
2

M
+ γ2

∥∥∥D(χk, χ⋆)(χk − χ⋆)
∥∥∥
2

M

+ γ(χk − χ⋆)⊤(D(χk, χ⋆)⊤M +MD(χk, χ⋆))(χk − χ⋆), (4.57)

where in (a) we use the relation χ⋆ = PX [χ⋆ − γF(χ⋆)− γH(χ⋆)], and the non-expansiveness

property of the projection since X is closed and convex (cf. Assumption 4.1), in (b) we

use (4.54), and in (c) we expand ∥·∥2M . In light of (4.53), selecting

c := 20L1

(
max

{
ρκ2
µ
,
L1

µ

})2(
max

{
1

L1ρ
,
L1

µ

})2
κ2
κ1

and τ := κ1
2c , we can apply [159, Lemma 4] to D(χk, χ⋆), obtaining

D(χk, χ⋆)⊤M +MD(χk, χ⋆) ≤ −τM. (4.58)

We then have that for any χk ∈ Rn+m,

∥∥∥D(χk, χ⋆)(χk − χ⋆)
∥∥∥
2

M
≤ µ1

∥∥∥χk − χ⋆
∥∥∥
2

M
, (4.59)

where µ1 :=
(
max

{
L1 + ρ ∥A∥2 , 1ρ

})2
and the inequality follows by inspection of

D(χk, χ⋆)(χk − χ⋆) and using
∥∥E(χk, χ⋆)

∥∥ ≤ 1. Thus, we bound the right-hand side of

(4.57) as

∥∥∥PX
[
χk − γF(χk)− γH(χk)

]
− χ⋆

∥∥∥
2

M
≤ (1− γτ + γ2µ1)

∥∥∥χk − χ⋆
∥∥∥
2

M
. (4.60)

Setting γ̄ = τ
µ1

, for any γ ∈ (0, γ̄), we have that 0 < 1− γτ + γ2µ1 < 1. Therefore,

∥∥∥PX
[
χk − γF(χk)− γH(χk)

]
− χ⋆

∥∥∥
M
≤ (1− µ̃)

∥∥∥χk − χ⋆
∥∥∥
M
, (4.61)
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where µ̃ := 1−
√
1− γτ + γ2µ1 ∈ (0, 1).

Consider now W : Rn+m → R defined as

W (χ) = (χ− χ⋆)⊤M(χ− χ⋆), (4.62)

where M is as in (4.55). Since M > 0, W satisfies conditions (C.22a) and (C.22c). To

show (C.22b) we evaluate ∆W (χk) :=W (χk+1)−W (χk) along the trajectories of (4.48),

obtaining

∆W (χk) =
∥∥∥χk + δf(χk, h(χk))− χ⋆

∥∥∥
2

M
−
∥∥∥χk − χ⋆

∥∥∥
2

M

(a)

≤
∥∥∥χk + δ

(
PX
[
χk − γF(χk)− γH(χk)

]
− χk − χ⋆

)∥∥∥
2

M
−
∥∥∥χk − χ⋆

∥∥∥
2

M

(b)

≤ (1− δ)2
∥∥∥χk − χ⋆

∥∥∥
2

M
−
∥∥∥χk − χ⋆

∥∥∥
2

M

+ 2(δ − δ2)
∥∥∥χk − χ⋆

∥∥∥
M

∥∥∥PX
[
χk − γF(χk)− γH(χk)

]
− χ⋆

∥∥∥
M

+ δ2
∥∥∥PX

[
χk − γF(χk)− γH(χk)

]
− χ⋆

∥∥∥
2

M

(c)

≤ (1− δ)2
∥∥∥χk − χ⋆

∥∥∥
2

M
−
∥∥∥χk − χ⋆

∥∥∥
2

M
+ 2(δ − δ2)(1− µ̃)

∥∥∥χk − χ⋆
∥∥∥
2

M

+ δ2(1− µ̃)2
∥∥∥χk − χ⋆

∥∥∥
2

M

(d)

≤ −δµ̃(2− δµ̃)
∥∥∥χk − χ⋆

∥∥∥
2

M
, (4.63)

where (a) uses the definitions of f and PX (cf. (4.37b), (4.56)) to explicitly write the

update, in (b) we expand the squared norm, (c) follows by (4.61), while in (d) we

rearrange the terms. Setting δ̄ := 2/µ̃, (4.63) ensures that for any δ ∈ (0, δ̄), W satisfies

(C.22b), and the proof follows. ■

5. Lipschitz continuity of f , g and h: As we will be invoking Theorem C.2, we need to

ensure that the required Lipschitz continuity assumptions are satisfied. In particular, we

need to show that f , g in (4.37b) and (4.38), respectively, and h in (4.39) are Lipschitz

with respect to their arguments. This is guaranteed by the Lipschitz continuity of

the aggregation rules and the gradients of the cost functions (cf. Assumption 4.2),

the nonexpansiveness of the projection operator (since X is closed and convex, see

Assumption 4.1), and the Lipschitz continuity of Gx and Gλ (that appear in f and g),

which is ensured as shown in (4.42) within the proof of Lemma4.3.

By combining Lemmas 4.3 and 4.4 with the Lipschitz continuity properties expressed

above, Theorem C.2 can be applied. Then, there exists δ̄ ∈ (0,min(δ̄1, δ̄2)) so that, for any

δ ∈ (0, δ̄), col(x⋆, λ⋆, h(x⋆, λ⋆)) is an exponentially stable equilibrium point for (4.36).
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4.2.3 Numerical Simulations

We demonstrate the efficacy of Primal TRADES and Primal-Dual TRADES, and compare

them with the most closely related distributed equilibrium seeking algorithms from the

literature. First, we consider the case with local constraints only, and then we focus also

on problems with coupling constraints.

Example without coupling constraints

In this subsection, we consider an instance of problem (4.4) and perform a numerical

simulations in which we compare Primal TRADES with Algorithm 2 proposed in [151].

We consider the multi-agent demand response problem considered in [151]. Consider

N loads whose electricity consumption xi := col(xi,1, . . . , xi,T ) ∈ RT with T ∈ N has to

be chosen to solve

∀i ∈ {1, . . . , N} : min
xi∈Xi

ρi ∥xi − ûi∥2 + (λσ(x) + p0)
⊤xi,

where ûi ∈ RT denotes some nominal energy profile, ρi > 0 is a constant weighting

parameter, the term λσ(x) + p0 with λ ∈ R, p0 ∈ RT models the unit price which is

taken to be an affine increasing function of the aggregate (average) energy demand

σ(x) = (1/N)
∑N

i=1 xi. As for the local feasible set Xi ⊆ RT , for all i ∈ {1, . . . , N}, we

pick

Xi :=

{
xi ∈ RT |si,τ+1(xi) ∈ Si and xi,τ ∈ Ui ∀τ ∈ {1, . . . , T},

T∑

τ=1

xi,τ =
T∑

τ=1

ûi,τ

}
,

where Ui ⊆ R, Si ⊆ R, and si,τ (xi) is the state of the i-th load at time τ that, given the

parameters ai, bi ∈ R, is computed according to the linear dynamics

si,τ = aτ−1
i si,1 +

τ−1∑

t=1

ak−1bixi,τ−t,

where si,1 ∈ Si is the initial condition of the state of the i-th load. To instantiate

the problem, we set T = 24 and randomly generate values for ûi, ρi, λ, p0, ai, bi, si,1
and initial strategies xi,1 from uniform distributions. As for the sets Ui and Si, we

pick the intervals [0, 1] and [0, 10], respectively. We consider a network with N = 10

players communicating according to an undirected, connected Erdős-Rényi graph with

parameter 0.3.

This setting satisfies our Assumptions. We compare our scheme, namely, Primal

TRADES with Algorithm 2 in [151]. We tune the latter with v1 = v2 = 50 communication

rounds per iterate and update the auxiliary variable zk according to zk+1 = (1− λ)zk +
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λAv1,v2 with λ = 0.01 (the quantity Av1,v2 is a proxy for the unavailable aggregative

variable σ(x), see [151] for more details.) As for the parameters of our scheme, we set

δ = γ = 0.1. Figure 4.1 shows the evolution of the normalized distance
∥∥xk − x⋆

∥∥ / ∥x⋆∥
from the NE x⋆ as the communication rounds (corresponding to iterations) progress. Our

algorithm exhibits faster convergence and achieves higher accuracy in the calculation of

the equilibrium x⋆. This was anticipated as the method in [151] is not guaranteed to

converge to the exact NE.

0 500 1,000 1,500 2,00010−4

10−2

100

Communication rounds

‖x
k
−

x
?
‖/
‖x

?
‖

Primal TRADES
Algorithm 2 in [138]

Figure 4.1: Comparison in terms of the normalized distance of the iterates from the NE between
Primal TRADES (Algorithm 8) and the algorithm by [151], on a case study introduced in [151].

Example with coupling constraints

We address two Nash-Cournot games formulated as in (4.1) to compare our Primal-Dual

TRADES algorithm with the distributed methods proposed in [11] and [69]. For a fair

comparison we test the scheme by [11] with a constant step-size even if convergence

was theoretically proven only with a diminishing one; note that slower convergence is

expected by using a diminishing step-size.

We first compare the algorithms in [11] and [69] with Algorithm 9 on the case study

already presented in Section 1.4.2, i.e., the one from [11] that we recall as follwos.

Consider N firms that compete over nm markets. In particular, for each market τ ∈
M := {1, . . . , nm}, firm i is characterized by a production gi,k ≥ 0 and sales si,τ ≥ 0. For

each i ∈ {1, . . . , N} and τ ∈M, the cost of production amounts to

fi,τ (gi,τ ) = qi,τg
2
i,τ + ci,τgi,τ .

The revenue of firm i at market τ is modelled as (dτ − s̄τ )si,τ , where dτ > 0 is the

total demand for location τ , and s̄τ :=
∑

i∈{1,...,N} si,τ represents the aggregate sales at

location τ . For all firms i ∈ {1, . . . , N} and markets τ ∈ M, we assume a production

limitation ui,τ . Moreover, in each market τ , the total production
∑

i∈{1,...,N} gi,τ must

cover the demand dτ without exceeding a maximum capacity rτ . We can thus cast

this setting as an instance of the GNEP in (4.1) with each strategy vector given by
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xi := col(gi,1, . . . , gi,nm , si,1, . . . , si,nm) ∈ R2nm , and cost function

Ji(xi, σ(x)) = x⊤i Qixi + ℓ⊤i xi + (∆σ(x))⊤xi,

where we introduce the symbols Qi := diag(qi,1, . . . , qi,nm , 0, . . . , 0) ∈ R2nm×2nm , ℓi :=

col(ci,1, . . . , ci,nm ,−d1, . . . ,−dnm) ∈ R2nm , ∆ = blkdiag(0nm , NInm), and set the ag-

gregation rule as ϕi(xi) = xi for all i ∈ {1, . . . , N}. As for the constraints, for all

i ∈ {1, . . . , N}, we have the local constraint set

Xi :=
{
xi ∈ R2nm |

[
−1⊤2nm

1⊤2nm

]
xi ≤ 0, 0 ≤ gi,τ ≤ ui,τ , 0 ≤ si,τ , τ = 1, . . . , nm

}
,

while the coupling constraints are defined by

Ai :=

[
Inm 0nm

−Inm 0nm

]
, bi :=

1

N

[
r1 . . . rnm −d1 . . . −dnm

]⊤
.

Following [11], we choose N = 20, nm = 10, an undirected and connected graph with

doubly stochastic weighted adjacency matrix chosen according to the Metropolis rule,

and we generate values for the parameters of the problem from uniform distributions.

Note that this game satisfies our Assumptions. In particular, for all i ∈ {1, . . . , N}
and k ∈ M, we pick qi,k ∈ [2, 3], ci,k ∈ [2, 12], ui,k ∈ [50, 100], dk ∈ [90, 100], and

rk ∈ [dk, 2dk]. We tune the algorithm as suggested in [11], i.e., with δ = min(1, 1/L),

τ = 1.05/(2δ), γ = 1, αi ≤ 0.95/(∥Ai + τ∥), and Li ≤ 1/(∥A∥+ τ) for all i ∈ {1, . . . , N},
where L > 0 denotes the Lipschitz constant of the pseudo-gradient of the problem. To

instantiate the algorithm in [69], we choose c = 4, k = 1/200, τ = 1/800, α = 1/120,

and v = 1/120, while we implement our scheme with δ = 0.25, γ = 0.01, and ρ = 0.1.

Figure 4.2 compares the performance of these algorithms with our proposed Algorithm 9

in terms of the normalized distance
∥∥xk − x⋆

∥∥ / ∥x⋆∥ from the GNE x⋆. We observe from

Figure 4.2 that Algorithm 9 outperforms the others in terms of accuracy and convergence

speed.
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Figure 4.2: Comparison in terms of the normalized distance of the iterates from the GNE
between Primal-Dual TRADES (Algorithm 9), and the algorithms by [11] and [69], on a case
study introduced in [11].
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Figure 4.3: Comparison in terms of the normalized distance of the iterates from the GNE
between Primal-Dual TRADES (Algorithm 9), and the algorithms by [11] and [69], on a case
study introduced in [69].

We now focus on the case study considered in [69]. Specifically, we consider a

Nash-Cournot game over a network for a single market with production constraints

and globally coupling capacity constraints, which can be formulated as an instance of

(4.1). In particular, we consider N = 20, Xi = [0, 10] for all i ∈ {1, . . . , N}, A = [1 . . . 1],

b = 20, and the cost function

Ji(xi, σ(x)) = (1 + 2(i− 1))xi − xi
(
60− σ(x)− 1

2
xi

)
.

As in [69], we consider a graph with ring topology. To achieve a fair comparison with [69],

we follow the authors’ tuning and choose c = 4, k = 1/200, τ = 1/800, α = 1/120, and

v = 1/120, while we tune the scheme in [11] as above. As for the parameters of our

algorithm, we empirically tune them as δ = γ = ρ = 0.1. In Figure 4.3, we compare

the performance of the algorithms in [11] and [69] with Algorithm 9 in terms of the

normalized distance
∥∥xk − x⋆

∥∥ / ∥x⋆∥ from the GNE x⋆. Also in this case the proposed

scheme exhibits faster convergence.
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Conclusions

In this thesis, we addressed several challenges arising in peer-to-peer networks of agents

with the aim of optimizing their local decision varlables with respect to a global cost

(distributed optimization) or a private one (games). This thesis proposed a system

theoretical point of view to design and analyze distributed algorithms to address this

kind of problems. In detail, we first considered the consensus optimization framework

and, in particular, we focused on the existing Gradient Tracking method. By resorting to

an original singular perturbations perspective, we provided theoretical guarantees about

its convergence in the case of nonconvex objective functions. Then, we extended the

standard scheme to improve its performance and to deal with more complex frameworks,

like, e.g., the case in which the gradients of the objective functions are not available

or the one in which the objective functions vary over time. Subsequently, we tackled

the recently emerged distributed aggregative optimization framework. In this field, we

designed and analyzed novel algorithms arising in the online setup, the “personalized”

optimization setting, and the feedback optimization framework. Finally, we considered

the so-called aggregative games over networks. In this regard, we designed two fully

distributed schemes to compute the Nash equilibrium of the game. In detail, the first

algorithm has been designed to deal only with local constraints, while the second one has

been tailored to deal also with linear coupling constraints among the decision variables

of the agents of the game. In both cases, system theoretical arguments are provided to

guarantee the effectiveness of the schemes.

Future research directions involve the extensions of the developed schemes and

methodologies to more general stochastic frameworks. In particular, it would be in-

teresting to generalize the investigated frameworks by allowing for uncertainties of

the problem parameters that require learning-oriented techniques for which we only

provided a first attempt. Such a contribution would definitely find applications for

big data and deep learning purposes. Further, it may be also interesting to give more

insights about the investigated feedback optimization setup, namely implementing

the emerged methods on physical devices (like, e.g., mobile robots or drones), i.e., in

closed-loop with their own dynamics. Moreover, it could be interesting to investigate

the extension of our algorithms to a more general non monotone game setting. Finally,
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the developed methodologies may also provide interesting contributions to the so-called

constraint-coupled setup, i.e., another distributed optimization framework which has

not been investigated in this thesis.
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Appendix A

Optimization Basics

In this appendix, we provide some basic concepts and results about optimization.

Definition A.1 (Local and Global Minimum [13]). Consider the function f : X ⊆ Rn → R.
Then, the point x⋆ ∈ Rn is said to be a (strict) local minimum of f over X if there exists ϵ > 0

such that it holds

f(x⋆)
(<)

≤ f(x), (A.1)

for any x ∈ X satisfying ∥x− x⋆∥ ≤ ϵ. Moreover, if the inequality (A.1) holds for any x ∈ X ,
then x⋆ is said to be the global minimum of f over X . △

Definition A.2 (Radially unboundedness [14]). Consider a closed function f : Rn → R.
Then, f is said to be radially unbounded if for any sequence {xk}k∈N such that

∥∥xk
∥∥→∞

we have

lim
k→∞

f(xk) =∞. △

Proposition A.1 ([14, Proposition 3.2.1]). Consider the function f : Rn → R. If f is
radially unbounded, then the set of local minima of f over Rn is nonempty and compact. △

Definition A.3 (Convexity [14]). Consider the function f : X ⊆ Rn → R. Then, f is said
to be (strictly) convex if it holds

f(x)
(>)

≥ f(y) +∇f(x)⊤(y − x) + µ

2
∥x− y∥2 ,

for any x, y ∈ X . Moreover, given µ > 0, f is said to be µ-strongly convex if it holds

f(x) ≥ f(y) +∇f(x)⊤(y − x) + µ

2
∥x− y∥2 ,

for any x, y ∈ X . △
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Proposition A.2 ([14, Proposition 3.1.1]). If X ⊆ Rn is a convex subset and f is a convex
function, then a local minimum of f over X is also a global minimum. If in addition f is
strictly convex, then there exists the global minmum x⋆ ∈ Rn of f over X . △

Convergence rates

Let {xk}k∈N be a sequence of vectors in Rn. Assume the sequence converges to some

x̄ ∈ Rn. We say that the sequence converges linearly to x̄ if there exists a number

η ∈ (0, 1) such that

lim
k→∞

∥xk+1 − x̄∥
∥xk − x̄∥ = η.

If η = 0 we say that the sequence converges superlinearly. It is common to denote the

rate of convergence using the big-O notation. For instance, a sequence that goes to

zero as O(1/k) converges sublinearly, while a sequence that goes to zero as O(λk), with

λ ∈ (0, 1), converges linearly.

182



Appendix B

Auxiliary Results

In this appendix, we provide a series of auxiliary results that turn out to be useful in

deriving some of the intermediate results of this thesis.

Lemma B.1 ([85, Theorem 6.3.12]). Let M0, E ∈ Rn×n and let λ be a simple eigenvalue of
M0. Let v and w be, respectively, the right and left eigenvectors of M0 corresponding to the
eigenvalue λ. Then, for each ϵ > 0, there exists a δ̄ > 0 such that, for all δ ∈ R with |δ| < δ̄,
there is a unique eigenvalue λ(δ) of M0 + δE such that

∣∣∣∣λ(δ)− λ− δ
wHEv

wHv

∣∣∣∣ ≤ |δ| ϵ,

in which wH denotes the Hermitian of w. Moreover λ(δ) is continuous at δ = 0 and

lim
δ→0

λ(δ) = λ.

Moreover λ(δ) is differentiable at δ = 0 and it holds

dλ(δ)

dδ

∣∣∣∣
δ=0

=
wHEv

wHv
. △

Lemma B.2. Let f(x) : Rn → R be µ-strongly convex and with L-Lipschitz continuous
gradient. Let x⋆ ∈ Rn its (unique) minimizer. Moreover, let D ∈ Rn×n be positive definite
diagonal matrix such that Dii ∈ [ϵ,M ] for all i = 1, . . . , n with M ≥ ϵ > 0 and M <∞. Let
LM :=ML and µϵ = ϵµ. Let xk+1 = xk−γD∇f(xk), with γ ∈ (0, 2

LM
]. Then∥xk+1−x⋆∥ ≤

max{(1− γµϵ), (1− γLM )}∥xk − x⋆∥.

Proof. Let h(x) be a function such that∇h(x) = D∇f(x) for all x. It can be easily shown

that h has LM -Lipschitz continuous gradients, in fact

∥∇h(x)−∇h(y)∥ = ∥D∇f(x)−D∇f(y)∥
≤ ∥D∥∥∇f(x)−∇f(y)∥ ≤ ∥D∥L∥x− y∥ ≤ML∥x− y∥.

183



Appendix B. Auxiliary Results

Moreover h is µϵ-strongly convex, since ∇2h(x) = D∇2f(x) ⪰ DσI ≥ ϵσI. Define

g(x) = h(x)− µϵ
2 ∥x∥2. Notice that, by definition, g is convex and with (L−µϵ)-Lipschitz

continuous gradient. Thus, by definition we have

⟨∇g(x)−∇g(y), x− y⟩ ≥ 1

L− µϵ
∥∇g(x)−∇g(y)∥2. (B.1)

Now, by using the definition of g one has

⟨∇h(x)− µϵx−∇h(y) + µϵy, x− y⟩ = ⟨∇h(x)−∇h(y), x− y⟩ − µϵ∥x− y∥2. (B.2)

Moreover

∥∇g(x)−∇g(y)∥2 = ∥∇h(x)− µϵx−∇h(y) + µϵy∥2

= ∥∇h(x)−∇h(y)∥2 + µ2ϵ∥x− y∥2 − 2µϵ⟨∇h(x)−∇h(y), x− y⟩.
(B.3)

By combining (B.1), (B.2), and (B.3) we get

⟨∇h(x)−∇h(y), x− y⟩ ≥ µϵLM

µϵ + LM
∥x− y∥2 + 1

µϵ + LM
∥∇h(x)−∇h(y)∥2. (B.4)

Now, by using the update rule, one has

∥xk+1 − x⋆∥2 = ∥xk − γD∇f(xk)− x⋆∥2

= ∥xk − x⋆∥2 − 2γ⟨D∇f(xk), xk − x⋆⟩+ γ2∥D∇f(xk)∥2

= ∥xk − x⋆∥2 − 2γ⟨D∇f(xk)−D∇f(x⋆), xk − x⋆⟩
+ γ2∥D∇f(xk)−D∇f(x⋆)∥2.

By using the result (B.4) with ∇h(x) = D∇f(x), we have

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 + γ2∥D∇f(xk)−D∇f(x⋆)∥2

− 2γ
µϵLM

µϵ + LM
∥xk − x⋆∥2 − 2γ

µϵ + LM
∥D∇f(xk)−D∇f(x⋆)∥2

=

(
1− 2γ

µϵLM

µϵ + LM

)
∥xk − x⋆∥2

+ γ

(
γ − 2

µϵ + LM

)
∥D∇f(xk)−D∇f(x⋆)∥2

≤
(
1− 2γ

µϵLM

µϵ + LM

)
∥xk − x⋆∥2 + γ

(
γL

2
M −

2µ2ϵ
µϵ + LM

)
∥xk − x⋆∥2

≤ max{(1− γµϵ)2, (1− γLM )2}∥xk − x⋆∥2.
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The proof follows by taking the square root of both sides. ■

Lemma B.3 (Contraction of strongly monotone operator). Let F : Rn → Rn be µ-strongly
monotone and L-Lipschitz continuous. If γ ∈ (0, 2µ/L

2
), then for any x, x′ ∈ Rn it holds

that

∥∥x− γF (x)− x′ + γF (x′)
∥∥ ≤ (1− µ̃)

∥∥x− x′
∥∥ ,

where µ̃ := 1−
√

1− γ(2µ− γL2
) ∈ (0, 1]. □

Proof. We have that

∥∥x− γF (x)− x′ + γF (x′)
∥∥2 =

∥∥x− x′
∥∥2 + γ2

∥∥F (x)− F (x′)
∥∥2

− 2γ(x− x′)⊤(F (x)− F (x′))
(a)

≤
∥∥x− x′

∥∥2 − γ(2µ− γL2
)
∥∥x− x′

∥∥2 , (B.5)

where in (a) we use the strong monotonicity and the Lipschitz continuity of F . By

construction, µ̃ ∈ (0, 1] is equivalent to γ(2µ − γL2
) > 0 and γ(2µ − γL2) ≤ 1. The

former holds since γ ∈ (0, 2µ/L
2
). To see the latter, notice that, by definition of µ-strong

monotonicity and L-Lipschitz continuity, we have

µ
∥∥x− x′

∥∥2 ≤ (F (x) − F (x′))⊤(x − x′) ≤
∥∥F (x)− F (x′)

∥∥∥∥x− x′
∥∥ ≤ L

∥∥x− x′
∥∥2 ,

for any x, x′, hence µ ≤ L. Thus, for any γ, it holds that 1−2µγ+γ2L2 ≥ 1−2γL+γ2L2 =

(1− γL)2 ≥ 0. △ ■
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Appendix C

Discrete-Time Singularly Perturbed
Systems

In this appendix, we consider the class of systems known in literature as singularly

perturbed systems, i.e., the interconnection between two schemes referred to as slow and

fast subsystem, respectively. A key feature of this class of systems is that the fast scheme

has an equilibrium parametrized in the slow state. In the following, we provide results

extending the ones existing in literature (see, e.g., [Proposition 9.1][19] for discrete-time

or [91] for continuous-time). Although we explicitly apply the theorems of this appendix

both in Chapter 2 and 4, they represent results that can be useful per se in the analysis

of generic schemes given by the interconnection of two subsystems.

In detail, the next theorem provides a LaSalle’s invariance principle for discrete-time

singularly perturbed systems. First, we provide the definition of invariant set which

turns out to be instrumental for such a theorem.

Definition C.1 (Invariant Set [124]). ConsiderM⊆ Rn and xk+1 = T (xk), with T : Rn →
Rn and x ∈ Rn. Let T (M) := {y ∈ Rn | y = T (x) for some x ∈ M}. M is invariant if
T (M) ≡M. △

Theorem C.1. Consider the system

x̄k+1 = x̄k + γϕ(x̄k, ζk) (C.1a)

ζk+1 = g(ζk, x̄k, γ), (C.1b)

with x̄k ∈ Rn, ζk ∈ Rm, ϕ : Rn × Rm → Rn, g : Rm × Rn × R→ Rm, and γ > 0. Assume
that ϕ and g are Lipschitz continuous in x̄ and ζ with parameters L1 > 0 and Lg(γ) > 0,
respectively, where Lg is continuous. Assume that there exists h : Rn × R → Rm such
that g(h(x̄, γ), x̄, γ) = h(x̄, γ) for any x̄ ∈ Rn and that h is Lipschitz continuous in x̄ with
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parameter Lh(γ) > 0, where Lh is continuous. Let

x̄k+1 = x̄k + γϕ(x̄k, h(x̄k, γ)) (C.2)

be the reduced system and

ψk+1 = g(ψk + h(x̄, γ), x̄, γ)− h(x̄, γ) (C.3)

be the boundary layer system with ψk ∈ Rm. Assume that there exists γ̄1 > 0 such that, for
any γ ∈ (0, γ̄1), there exists a Lyapunov function W : Rm → R such that

b1 ∥ψ∥2 ≤W (ψ) ≤ b2 ∥ψ∥2 (C.4a)

W (g(ψ + h(x̄, γ), x̄, γ)−h(x̄, γ))−W (ψ) ≤ −b3 ∥ψ∥2 (C.4b)

|W (ψ1)−W (ψ2)| ≤b4 ∥ψ1 − ψ2∥ (∥ψ1∥+ ∥ψ2∥), (C.4c)

for any ψ,ψ1, ψ2 ∈ Rm, x̄ ∈ Rn, and some b1, b2, b3, b4 > 0. Further, assume there exists
γ̄2 > 0 and a radially unbounded function U : Rn → R such that

U(x̄ + γϕ(x̄, h(x̄, γ))− U(x̄) ≤ −γc1 ∥ϕ(x̄, h(x̄, γ))∥2 (C.5a)

U(x̄1 + x̄2)− U(x̄1 + x̄3) ≤ c2 ∥ϕ(x̄1, h(x̄1, γ))∥ ∥x̄2 − x̄3∥+ c3

(
∥x̄2∥2 + ∥x̄3∥2

)
,

(C.5b)

for any γ ∈ (0, γ̄2), x̄, x̄1, x̄2, x̄3 ∈ Rn, and some c1, c2, c3 > 0. Then, there exists γ̄ ∈
(0,min{γ̄1, γ̄2}) such that, for all γ ∈ (0, γ̄), any trajectory of system (C.1) satisfies

lim
t→∞

inf
ξ∈M

∥∥∥∥∥

[
x̄k

ζk

]
−
[

ξ

h(ξ, γ)

]∥∥∥∥∥ = 0,

where M ⊆ ker{ϕ(·, h(·, γ))} ⊆ Rn denotes the largest invariant set for (C.2) contained
within ker{ϕ(·, h(·, γ))}.

Proof. We start by defining hγ(x̄) := h(x̄, γ) and

L2 := sup
γ∈[0,γ̄3]

{Lg(γ)}, L3 := sup
γ∈[0,γ̄3]

{Lh(γ)},

where γ̄3 := max{γ̄1, γ̄2} and both L2 and L3 are finite in light of the continuity of g and

h, respectively. Thus, the global Lipschitz properties of g and h with parameters Lg(γ)

and Lh(γ) lead to the Lipschitz property of g and hγ with parameters L2 and L3 in the

interval [0, γ̄3]. With this result at hand, define ψk := ζk − hγ(x̄k), and rewrite (C.1) as

x̄k+1 = x̄k + γϕ(x̄k, ψk + hγ(x̄
k)) (C.6a)
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ψk+1 = g(ψk + hγ(x̄
k), x̄k, γ)− hγ(x̄k+1). (C.6b)

Pick the function U satisfying (C.5). Thus, by evaluating ∆U(x̄k) := U(x̄k+1) − U(x̄k)

along (C.6a), we get

∆U(x̄k) = U(x̄k + γϕ(x̄k, ψk + hγ(x̄
k)))− U(x̄k)

(a)
= U(x̄k + γϕ(x̄k, hγ(x̄

k)))− U(x̄k)

+ U(x̄k + γϕ(x̄k, ψk + hγ(x̄
k)))− U(x̄k + γϕ(x̄k, hγ(x̄

k)))

(b)

≤ −γc1
∥∥∥ϕ(x̄k, hγ(x̄k))

∥∥∥
2

+ U(x̄k + γϕ(x̄k, ψk + hγ(x̄
k)))− U(x̄k + γϕ(x̄k, hγ(x̄

k)))

(c)

≤ −c1
∥∥∥ϕ(x̄k, hγ(x̄k))

∥∥∥
2

+ γc2

∥∥∥ϕ(x̄k, hγ(x̄k))
∥∥∥
∥∥∥ϕ(x̄k, ψk + hγ(x̄

k))− ϕ(x̄k, hγ(x̄k))
∥∥∥

+ γ2c3

(∥∥∥ϕ(x̄k, ψk + hγ(x̄
k))
∥∥∥
2
+
∥∥∥ϕ(x̄k, hγ(x̄k))

∥∥∥
2
)
, (C.7)

where in (a) we add and subtract U(x̄k + γϕ(x̄k, hγ(x̄
k))), in (b) we use (C.5a) to bound

U(x̄k + γϕ(x̄k, hγ(x̄
k))) − U(x̄k), and in (c) we use (C.5b) to bound U(x̄k + γϕ(x̄k, ψk +

hγ(x̄
k)))−U(x̄k+ γϕ(x̄k, hγ(x̄

k))). Now, we add and subtract the term ϕ(x̄k, hγ(x̄
k)) into∥∥ϕ(x̄k, ψk + hγ(x̄

k))
∥∥2 and thus, the right-hand side of (C.7) becomes

∆U(x̄k) ≤ −γc1
∥∥∥ϕ(x̄k, hγ(x̄k))

∥∥∥
2
+ γc2

∥∥∥ϕ(x̄k, hγ(x̄k))
∥∥∥
∥∥∥ϕ(x̄k, ψk + hγ(x̄

k))− ϕ(x̄k, hγ(x̄k))
∥∥∥

+ γ2c3

∥∥∥ϕ(x̄k, ψk + hγ(x̄
k))− ϕ(x̄k, hγ(x̄k)) + ϕ(x̄k, hγ(x̄

k))
∥∥∥
2

+ γ2c3

∥∥∥ϕ(x̄k, hγ(x̄k))
∥∥∥
2

(a)

≤ −γc1
∥∥∥ϕ(x̄k, hγ(x̄k))

∥∥∥
2
+ γc2L1

∥∥∥ϕ(x̄k, hγ(x̄k))
∥∥∥
∥∥∥ψk

∥∥∥+ γ2c32
∥∥∥ϕ(x̄k, hγ(x̄k))

∥∥∥
2

+ γ2c3L
2
1

∥∥∥ψk
∥∥∥
2
+ γ2c32L1

∥∥∥ψk
∥∥∥
∥∥∥ϕ(x̄k, hγ(x̄k))

∥∥∥ , (C.8)

where (a) exploits the square norm and the fact that ϕ is Lipschitz. Now, pick W

satisfying (C.4). By evaluating ∆W (ψk) :=W (ψk+1)−W (ψk), we get

∆W (ψk) =W (g(ψk + hγ(x̄
k), x̄k, γ)− hγ(x̄k+1))−W (ψk)

(a)
= W (g(ψk + hγ(x̄

k), x̄k, γ)− hγ(x̄k))−W (ψk)

+W (g(ψk + hγ(x̄
k), x̄k, γ)− hγ(x̄k+1))

−W (g(ψk + hγ(x̄
k), x̄k, γ)− hγ(x̄k))
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(b)

≤ −b3
∥∥∥ψk

∥∥∥
2
+ W̃ (ψk, x̄k), (C.9)

where in (a) we add and subtract the term W (g(ψk + hγ(x̄
k), x̄k, γ)− hγ(x̄k)) and in (b)

we bound the termW (g(ψk+hγ(x̄
k), x̄k)−hγ(x̄k))−W (ψk) by applying the result (C.4b)

(which holds for any γ ∈ (0, γ̄1)) and introduce

W̃ (ψk, x̄k) :=W (g(ψk + hγ(x̄
k), x̄k, γ)− hγ(x̄k+1))−W (g(ψk + hγ(x̄

k), x̄k, γ)− hγ(x̄k)).

By using (C.4c), we bound the above term as

W̃ (ψk, x̄k) ≤ b4
∥∥∥hγ(x̄k+1)− hγ(x̄k)

∥∥∥
∥∥∥g(ψk + hγ(x̄

k), x̄k, γ)− hγ(x̄k+1)
∥∥∥

+ b4

∥∥∥hγ(x̄k+1)− hγ(x̄k)
∥∥∥
∥∥∥g(ψk + hγ(x̄

k), x̄k, γ)− hγ(x̄k)
∥∥∥

(a)

≤ b4

∥∥∥hγ(x̄k+1)− hγ(x̄k)
∥∥∥
2

+ b42
∥∥∥hγ(x̄k+1)− hγ(x̄k)

∥∥∥
∥∥∥g(ψk + hγ(x̄

k), x̄k, γ)− hγ(x̄k)
∥∥∥

(b)

≤ b4

∥∥∥hγ(x̄k+1)− hγ(x̄k)
∥∥∥
2
+ b42

∥∥∥hγ(x̄k+1)− hγ(x̄k)
∥∥∥
∥∥∥∆g(ψk, x̄k, γ)

∥∥∥
(c)

≤ γ2b4L
2
3

∥∥∥ϕ(x̄k, ψk + hγ(x̄
k))
∥∥∥
2
+ γb42L3L2

∥∥∥ϕ(x̄k, ψk + hγ(x̄
k))
∥∥∥
∥∥∥ψk

∥∥∥ ,
(C.10)

where in (a) we add and subtract within the second norm hγ(x̄) and use the triangle

inequality, in (b) we add within the last norm g(hγ(x̄
k), x̄k, γ)− h(x̄k) = 0 and introduce

∆g(ψk, x̄k, γ) := g(ψk+hγ(x̄
k), x̄k, γ)−g(hγ(x̄k), x̄k, γ), and in (c) we exploit the Lipschitz

continuity of hγ and g. Now, add and subtract ϕ(x̄k, hγ(x̄k)) in
∥∥ϕ(x̄k, ψk + hγ(x̄

k))
∥∥2

and
∥∥ϕ(x̄k, ψk + hγ(x̄

k))
∥∥, use the triangle inequality and the Lipschitz property of ϕ to

bound (C.10) as

W̃ (ψk, x̄k) = γ2b4L
2
3L

2
1

∥∥∥ψk
∥∥∥
2
+ γ2b4L

2
3

∥∥∥ϕ(x̄k, hγ(x̄k))
∥∥∥
2

+ γ2b42L
2
3L1

∥∥∥ψk
∥∥∥
∥∥∥ϕ(x̄k, hγ(x̄k))

∥∥∥+ γb42L3L2L1

∥∥∥ψk
∥∥∥
2

+ γb42L3L2

∥∥∥ϕ(x̄k, hγ(x̄k))
∥∥∥
∥∥∥ψk

∥∥∥ . (C.11)

Thus, we can use (C.11) to bound (C.9) as

∆W (ψk) ≤ −b3
∥∥∥ψk

∥∥∥
2
+ γ2b4L

2
3L

2
1

∥∥∥ψk
∥∥∥
2
+ γ2b4L

2
3

∥∥∥ϕ(x̄k, hγ(x̄k))
∥∥∥
2

+ γ2b42L
2
3L1

∥∥∥ψk
∥∥∥
∥∥∥ϕ(x̄k, hγ(x̄k))

∥∥∥+ γb42L3L2L1

∥∥∥ψk
∥∥∥
2

+ γb42L3L2

∥∥∥ϕ(x̄k, hγ(x̄k))
∥∥∥
∥∥∥ψk

∥∥∥ . (C.12)
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Now, define V : Rn × Rm → R as

V (x̄k, ψk) = U(x̄k) +W (ψk).

Thus, by evaluating ∆V (x̄k, ψk) := V (x̄k+1, ψk+1) − V (x̄k, ψk) = ∆U(x̄k) + ∆W (ψk)

along the trajectories of (C.6), we can use the results (C.8) and (C.12) to write

∆V (x̄k, ψk) ≤ −
[∥∥ϕ(x̄k, hγ(x̄k))

∥∥
∥∥ψk

∥∥

]⊤
H

[∥∥ϕ(x̄k, hγ(x̄k))
∥∥

∥∥ψk
∥∥

]
, (C.13)

where H ∈ R2×2 denotes the symmetric matrix

H :=

[
γc1 − γ2k1 −γk2 − γ2k3
−γk2 − γ2k3 b3 − γk4 − γ2k5

]
,

in which the notation has been shortened through the constants

k1 := b4L
2
3 + c32, k2 :=

c2L1+b42L2L3
2 , k3 :=

c32L1+b42L1L
2
3

2

k4 := b42L1L2L3, k5 := c3L
2
1 + b4L

2
1L

2
3.

Being H = H⊤, by Sylvester Criterion, H > 0 if and only if




γc1 > p1(γ)

γc1b3 > p2(γ),
(C.14)

where we have introduced the polynomials

p1(γ) := γ2k1

p2(γ) := γ2c1(k4 + γk5) + γ2k1(b3 − γk4 − γ2k5) + (γk2 + γ2k3)
2.

(C.15)

We notice that limγ→0 p1(γ)/γ = limγ→0 p2(γ)/γ = 0. Thus, there exists γ̄ ∈ (0,min{γ̄1, γ̄2})
such that, for any γ ∈ (0, γ̄), the conditions in (C.14) hold leading to the positiveness

of H . Hence (C.13) ensures that ∆V (x̄k, ψk) ≤ 0 for any x̄k ∈ Rn and any ψk ∈ Rm. In

particular, the right-hand side of (C.13) is null when x̄k ∈ E′, where E′ ⊆ Rn+m reads as

E′ := {(x̄, ψ) ∈ Rn+m | x̄ ∈ ker{ϕ(·, hγ(·))}, ψ = 0}. (C.16)

Thus, we apply the LaSalle’s invariance principle (cf. [70, Theorem 3.7]) to conclude

that, for any γ ∈ (0, γ̄), any trajectory of system (C.6) approaches

lim
t→∞

inf
ξ′∈M′

∥∥∥∥∥

[
x̄k

ψk

]
− ξ′

∥∥∥∥∥ = 0, (C.17)
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whereM′ ⊆ E′ denotes the largest invariant set for system (C.6) contained within the

subspace E defined in (C.16). The proof follows by noticing that (i)M′ ≡ E′, and that

(ii), turning out to the coordinates (x̄, ζ), the result (C.17) implies that, for any γ ∈ (0, γ̄),

any trajectory of (C.1) converges to M := {(x̄, ζ) ∈ Rn+m | x̄ ∈ ker{ϕ(·, hγ(·))}, ζ =

hγ(x̄)}. ■

We now provide an extension of Theorem C.1. In particular, given the existence of a

globally exponentially stable equilibrium point for the reduced system, we establish the

conditions to guarantee the global exponential stability of an equilibrium point for the

whole interconnected system.

Theorem C.2 (Global exponential stability for singularly perturbed systems). Consider
the system

xk+1 = xk + δf(xk,wk) (C.18a)

wk+1 = g(wk, xk, δ), (C.18b)

with xk ∈ D ⊆ Rn, wk ∈ Rm, f : D × Rm → Rn, g : Rm × Rn × R→ Rm, δ > 0. Assume
that f and g are Lipschitz continuous with respect to both arguments with Lipschitz constants
Lf > 0 and Lg > 0, respectively. Assume that there exists x⋆ ∈ Rn and h : Rn → Rm such
that for any x ∈ Rn

0 = δf(x⋆, h(x⋆)),

h(x) = g(h(x), x, δ),

with h being Lipschitz continuous with Lipschitz constant Lh > 0. Let

xk+1 = xk + δf(xk, h(xk)) (C.19)

be the reduced system and

ψk+1 = g(ψk + h(x), x, δ)− h(x) (C.20)

be the boundary layer system with ψk ∈ Rm.
Assume that there exists a continuous function U : Rm → R and δ̄1 > 0 such that, for any

δ ∈ (0, δ̄1) (cf. (C.18)), there exist b1, b2, b3, b4 > 0 such that for any ψ,ψ1, ψ2 ∈ Rm, x ∈ Rn,

b1 ∥ψ∥2 ≤ U(ψ) ≤ b2 ∥ψ∥2 (C.21a)

U(g(ψ + h(x), x, δ)− h(x))− U(ψ) ≤ −b3 ∥ψ∥2 (C.21b)

|U(ψ1)− U(ψ2)| ≤ b4 ∥ψ1 − ψ2∥ ∥ψ1∥+ b4 ∥ψ1 − ψ2∥ ∥ψ2∥ . (C.21c)
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Further, assume there exists a continuous function W : D → R and δ̄2 > 0 such that, for any
δ ∈ (0, δ̄2), there exist c1, c2, c3, c4 > 0 such that for any x, x1, x2, x3 ∈ D

c1 ∥x− x⋆∥2 ≤W (x) ≤ c2 ∥x− x⋆∥2 (C.22a)

W (x+ δf(x, h(x)))−W (x) ≤ −δc3 ∥x− x⋆∥2 (C.22b)

|W (x1)−W (x2)| ≤ c4 ∥x1 − x2∥ ∥x1 − x⋆∥+ c4 ∥x1 − x2∥ ∥x2 − x⋆∥ .
(C.22c)

Then, there exist δ̄ ∈ (0,min{δ̄1, δ̄2}), a1 > 0, and a2 > 0 such that, for all δ ∈ (0, δ̄), it
holds

∥∥∥∥∥

[
xk − x⋆

wk − h(xk)

]∥∥∥∥∥ ≤ a1
∥∥∥∥∥

[
x0 − x⋆

w0 − h(x0)

]∥∥∥∥∥ e
−a2t,

for any (x0,w0) ∈ D × Rm.

Proof.

Define w̃k := wk − h(xk) and, in accordance, rewrite system (C.18) as

xk+1 = xk + δf(xk, w̃k + h(xk)) (C.23a)

w̃k+1 = g(w̃k + h(xk), xk, δ)− h(xk) + ∆h(xk+1, xk), (C.23b)

where ∆h(xk+1, xk) := −h(xk+1)+h(xk). Pick W as in (C.22). By evaluating ∆W (xk) :=

W (xk+1)−W (xk) along the trajectories of (C.23a), we obtain

∆W (xk) =W (xk + δf(xk, w̃k + h(xk)))−W (xk)

(a)
= W (xk + δf(xk, h(xk)))−W (xk) +W (xk + δf(xk, w̃k + h(xk)))

−W (xk + δf(xk, h(xk)))

(b)

≤ −δc3
∥∥∥xk − x⋆

∥∥∥
2
+W (xk + δf(xk, w̃k + h(xk)))−W (xk + δf(xk, h(xk)))

(c)

≤ −δc3
∥∥∥xk − x⋆

∥∥∥
2
+ 2δc4Lf

∥∥∥w̃k
∥∥∥
∥∥∥xk − x⋆

∥∥∥+ δ2c4Lf

∥∥∥w̃k
∥∥∥
∥∥∥f(xk, w̃k + h(xk))

∥∥∥

+ δ2c4Lf

∥∥∥w̃k
∥∥∥
∥∥∥f(xk, h(xk))

∥∥∥ , (C.24)

where in (a) we add and subtract the termW (xk+δf(xk, h(xk))), in (b) we exploit (C.22b)

to bound the difference of the first two terms, in (c) we use (C.22c), the Lipschitz

continuity of f , and the triangle inequality. By recalling that f(x⋆, h(x⋆)) = 0 we can

thus write

∥f(xk, w̃k + h(xk))∥ =
∥∥∥f(xk, w̃k + h(xk))− f(x⋆, h(x⋆))

∥∥∥
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(a)

≤ Lf

∥∥∥xk − x⋆
∥∥∥+ Lf

∥∥∥w̃k + h(xk)− h(x⋆)
∥∥∥ ,

(b)

≤ Lf (1 + Lh)
∥∥∥xk − x⋆

∥∥∥+ Lf

∥∥∥w̃k
∥∥∥ , (C.25)

where in (a) we use the Lipschitz continuity of f and h, and in (b) we use the Lipschitz

continuity of h together with the triangle inequality. With similar arguments, we have

∥∥∥f(xk, h(xk))
∥∥∥ ≤ Lf (1 + Lh)

∥∥∥xk − x⋆
∥∥∥ . (C.26)

Using inequalities (C.25) and (C.26) we then bound (C.24) as

∆W (xk) ≤ −δc3
∥∥∥xk − x⋆

∥∥∥
2
+ 2δc4Lf

∥∥∥w̃k
∥∥∥
∥∥∥xk − x⋆

∥∥∥+ δ2c4L
2
f

∥∥∥w̃k
∥∥∥
2

+ 2δ2c4L
2
f (1 + Lh)

∥∥∥w̃k
∥∥∥
∥∥∥xk − x⋆

∥∥∥

≤ −c3
∥∥∥xk − x⋆

∥∥∥
2
+ δ2k3

∥∥∥w̃k
∥∥∥
2
+ (δk1 + δ2k2)

∥∥∥w̃k
∥∥∥
∥∥∥xk − x⋆

∥∥∥ , (C.27)

where we introduce the constants

k1 := 2c4Lf , k2 := 2c4L
2
f (1 + Lh), k3 := c4L

2
f .

We now pick U as in (C.21). By evaluating ∆U(w̃k) := U(w̃k+1)− U(w̃k) along the

trajectories of (C.23b), we obtain

∆U(w̃) = U(g(w̃k + h(xk), xk, δ)− h(xk) + ∆h(xk+1, xk))− U(w̃k)

(a)

≤ U(g(w̃k + h(xk), xk, δ)− h(xk))− U(w̃k)

− U(g(w̃k + h(xk), xk, δ)− h(xk))
+ U(g(w̃k + h(xk), xk, δ)− h(xk) + ∆h(xk+1, xk))

(b)

≤ −b3
∥∥∥w̃k

∥∥∥
2
− U(g(w̃k + h(xk), xk, δ)− h(xk))

+ U(g(w̃k + h(xk), xk, δ)− h(xk) + ∆h(xk+1, xk))

(c)

≤ −b3
∥∥∥w̃k

∥∥∥
2
+ b4

∥∥∥∆h(xk+1, xk)
∥∥∥
∥∥∥g(w̃k + h(xk), xk, δ)− h(xk) + ∆h(xk+1, xk)

∥∥∥

+ b4

∥∥∥∆h(xk+1, xk)
∥∥∥
∥∥∥g(w̃k + h(xk), xk, δ)− h(xk)

∥∥∥
(d)

≤ −b3
∥∥∥w̃k

∥∥∥
2
+ b4

∥∥∥∆h(xk+1, xk)
∥∥∥
2

+ 2b4

∥∥∥∆h(xk+1, xk)
∥∥∥
∥∥∥g(w̃k + h(xk), xk, δ)− h(xk)

∥∥∥ , (C.28)

where in (a) we add and subtract U(g(w̃k+h(xk), xk, δ)−h(xk)), in (b) we exploit (C.21b)

to bound the first two terms, in (c) we use (C.21c) to bound the the difference of the
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last two terms, and in (d) we use the triangle inequality. By exploiting the definition of

∆h(xk+1, xk) and the Lipschitz continuity of h, we have that

∥∥∥∆h(xk+1, xk)
∥∥∥ ≤ Lh

∥∥∥xk+1 − xk
∥∥∥

(a)

≤ δLh

∥∥∥f(xk, w̃k + h(xk))
∥∥∥

(b)

≤ δLh

∥∥∥f(xk, w̃k + h(xk))− f(x⋆, h(x⋆))
∥∥∥

(c)

≤ δLhLf (1 + Lh)
∥∥∥xk − x⋆

∥∥∥+ δLhLf

∥∥∥w̃k
∥∥∥ , (C.29)

where in (a) we use the update (C.23a), in (b) we add the term f(x⋆, h(x⋆)) since this is

zero, and in (c) we use the triangle inequality and the Lipschitz continuity of f and h.

Moreover, since g(h(xk), xk, δ) = h(xk), we obtain

∥∥∥g(w̃k + h(xk), xk, δ)− h(xk)
∥∥∥ =

∥∥∥g(w̃k + h(xk), xk, δ)− g(h(xk), xk, δ)
∥∥∥ ≤ Lg

∥∥∥w̃k
∥∥∥ ,

(C.30)

where the inequality is due to the Lipschitz continuity of g. Using inequalities (C.29)

and (C.30), we then bound (C.28) as

∆U(w̃) ≤ −b3
∥∥∥w̃k

∥∥∥
2
+ 2δb4LhLgLf (1 + Lh)

∥∥∥xk − x⋆
∥∥∥
∥∥∥w̃k

∥∥∥

+ 2δb4LhLgLf

∥∥∥w̃k
∥∥∥
2
+ δ2b4L

2
hL

2
f (1 + Lh)

2
∥∥∥xk − x⋆

∥∥∥
2

+ 2δ2b4L
2
hL

2
f (1 + Lh)

∥∥∥xk − x⋆
∥∥∥
∥∥∥w̃k

∥∥∥+ δ2b4L
2
hL

2
f

∥∥∥w̃k
∥∥∥
2

≤ (−b3 + δk6 + δ2k7)
∥∥∥w̃k

∥∥∥
2
+ δ2k8

∥∥∥xk − x⋆
∥∥∥
2

+ (δk4 + δ2k5)
∥∥∥xk − x⋆

∥∥∥
∥∥∥w̃k

∥∥∥ , (C.31)

where we introduce the constants

k4 := 2b4LhLgLf (1 + Lh), k5 := 2b4L
2
hL

2
f (1 + Lh),

k6 := 2b4LhLgLf , k7 := b4L
2
hL

2
f ,

k8 := b4L
2
hL

2
f (1 + Lh)

2.

We pick the following Lyapunov candidate V : D × Rm → R:

V (xk, w̃k) =W (xk) + U(w̃k).

By evaluating ∆V (xk, w̃k) := V (xk+1, w̃k+1)−V (xk, w̃k) = ∆W (xk)+∆U(w̃k) along the
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trajectories of (C.23), we can use the results (C.27) and (C.31) to write

∆V (xk, w̃k) ≤ −
[∥∥xk − x⋆

∥∥
∥∥w̃k

∥∥

]⊤
Q(δ)

[∥∥xk − x⋆
∥∥

∥∥w̃k
∥∥

]
, (C.32)

where we define the matrix Q(δ) = Q(δ)⊤ ∈ R2 as

Q(δ) :=

[
δc3 − δ2k8 q21(δ)

q21(δ) b3 − δk6 − δ2(k3 + k7)

]
,

with q21(δ) := −1
2(δ(k1 + k4) + δ2(k2 + k5)). By relying on the Sylvester criterion [91],

we know that Q ≻ 0 if and only if

δc3b3 > p(δ) (C.33)

where the polynomial p(δ) is defined as

p(δ) := q21(δ)
2 + δ2c3k6 + δ3c3(k3 + k7) + δ2b3k8 − δ3k6k8 − δ4k8(k3 + k7). (C.34)

We note that p is a continuous function of δ and limδ→0 p(δ)/δ = 0. Hence, there exists

some δ̄ ∈ (0,min{δ̄1, δ̄2}) – recall that δ̄1 and δ̄2 exist as U and W are taken to satisfy

(C.21) and (C.22) – so that (C.33) is satisfied for any δ ∈ (0, δ̄). Under such a choice of δ,

and denoting by q > 0 the smallest eigenvalue of Q(δ), we can bound (C.32) as

∆V (xk, w̃k) ≤ −q
∥∥∥∥∥

[∥∥xk − x⋆
∥∥

∥∥w̃k
∥∥

]∥∥∥∥∥

2

,

which allows us to conclude, in view of [40, Theorem 13.2], that (x⋆, 0) is an exponen-

tially stable equilibrium point for system (C.23). The theorem’s conclusion follows then

by considering the definition of exponentially stable equilibrium point and by reverting

to the original coordinates (xk,wk). ■
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[95] J. Koshal, A. Nedić, and U. V Shanbhag, Distributed algorithms for aggregative games on graphs,
Operations Research 64 (2016), no. 3, 680–704.

[96] D. Krishnamoorthy and S. Skogestad, Real-time optimization as a feedback control problem-a review,

Computers & Chemical Engineering (2022), 107723.
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[136] A. Nedić, A. Olshevsky, and W. Shi, Achieving geometric convergence for distributed optimization over
time-varying graphs, SIAM Journal on Optimization 27 (2017), no. 4, 2597–2633.
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