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Abstract

This thesis work has been motivated by an internal benchmark dealing with the output regulation problem
of a nonlinear non-minimum phase system in case of full state feedback. The system under consideration
structurally suffers from finite escape time, and this condition makes the output regulation problem very
hard even for very simple steady-state evolution or exosystem dynamics, such as a simple integrator.
This situation leads to the study of the approaches developed for controlling non-minimum phase systems
and how they affect feedback performances. Despite a lot of frequency domain results, only a few works
have been proposed for describing the performance limitations in a state space system representation.
In particular, in our opinion, the most relevant research thread exploits the so-called Inner-Outer
Decomposition. Such decomposition allows splitting the non-minimum phase system under consideration
into a cascade of two subsystems: a minimum phase system (the outer) that contains all poles of the
original system and an all-pass non-minimum phase system (the inner) that contains all the unavoidable
pathologies of the unstable zero dynamics.
Such a cascade decomposition was inspiring to start working on functional observers for linear and
nonlinear systems. In particular, the idea of a functional observer is to exploit only the measured
signals from the system to asymptotically reconstruct a certain function of the system states, without
necessarily reconstructing the whole state vector. The feature of asymptotically reconstructing a certain
state functional plays an important role in the design of a feedback controller able to stabilize the
non-minimum phase system.
To describe these topics we composed this thesis of mainly two parts.

Part I: non-minimum phase systems

In this first part of the thesis, we provide the reader with a general literature overview of performance
limitations concerning non-minimum phase dynamics. In particular, we described the limitations in the
design of the feedback controller in achieving desired closed-loop characteristics. We provide the reader
with a set of proposed approaches to relax some of these limitations: a state feedback approach to
remove undershoot and overshoot problems in systems with unstable zero dynamics, and a funnel control
approach in which the output trajectory is driven to stay between two boundary functions for all time.
In a more theoretical framework, the non-minimum phase limitations in an ideal control case can be
described by a nonzero lower bound on the output signal energy. In particular, this bound refers to
the amount of energy needed by the output signal to stabilize the unstable system zero dynamics. This
characteristic has been proved both for linear and for nonlinear cases. By the way, more recent results
have shown that by solving a path-following problem instead of an output regulation problem, such a
bound of the output signal energy can then be made arbitrarily small.

Our contributions mainly concern the output undershoot limitations and the realization of the Inner-Outer
decomposition for strictly proper linear time-invariant systems. In particular, we first develop a
closed-form solution to the realization of the Inner-Outer decomposition and by exploiting the cascade
characteristics, we were able to upper bound the output undershoot by consequently steering the
non-minimum phase output arbitrary close to the output trajectory of minimum phase systems. The
only drawback of the approach is that the equivalent system closed-loop bandwidth must be reduced to
a low-frequency range, which is reflected in a very slow output behaviour.

Part II: Functional observers

To achieve such a slow output behaviour, the only meaning part of the Inner-Outer cascade is the output
(or the state vector) of the outer dynamics. We thus considered the problem of building a functional
observer up to reconstruct from the real system output one of the outer dynamics. To pursue this idea,
we first consider the case of Linear autonomous systems and then that of nonlinear autonomous systems.

Our contribution to the thread of functional observers consists, for the case of linear systems, in
establishing a unifying framework able to gather the most relevant literature approaches. And for the
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case of nonlinear systems, it consists in extending the KKL observer approach to the case of nonlinear
functional observer and finding practical applications, such as input reconstruction, unknown input
observers, and observers for nonlinear controlled system.
Unfortunately, the Inner-Outer decomposition results to be a detectable cascade, due to the equivalent
zero/pole cancellation, and this property does not satisfy the backward distinguishability assumptions
needed in the KKL observer approach. Hence, it is not possible to reconstruct a functional of the outer
system states directly from the system output but in order to do so, we necessarily have to apply a change
of coordinates (or a diffeomorphism) on the original system states.
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Notation

C, C− and C+ stand respectively for the complex plane, the closed left half complex plane and the open
right half complex plane.
We consider BR, for positive real R > 0, the closed ball around the origin of radius R.
Given a matrix A ∈ Rn×n, σ(A) ⊂ Cn denotes the spectrum of A, while σmin(A) and σmax(A) are the
minimum and the maximum values of σ(A), respectively.

We associate with each tuple (A,B,C,D), with A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu ,
the linear equations

ẋ = Ax+Bu

y = Cx+Du
(1)

and we refer to (1) as “system (A,B,C,D)”, or “system (A,B,C)” when D = 0. In this latter case, the
system is said to be strictly proper. Moreover, the transfer matrix associated to system (1) is given by

G(s) = C(sI −A)−1B +D.

For a system (A,B,C), define the vector relative degree r̄ = (r1, . . . , rp) and r =
∑ny
i=1 ri, where each

ri, for i = 1, . . . , ny, is defined as the smallest integer such that CiA
k−1B = 0, for k = 1, . . . , ri − 1, and

CiA
r−1B 6= 0, where Ci is the i-th row of C. There always exists, see Mueller (2009), a nonsingular

matrix Tnf ∈ Rnx×nx , such that the system (Tnf AT
−1
nf , TnfB, C T

−1
nf ) is the normal form realisation of

system (A,B,C), namely

Tnf AT
−1
nf =

[
F G
H Ā

]
TnfB =

[
0
B̄

]
C T−1

nf =
[
0 C̄

]
,

(2)

where F ∈ R(nx−r)×(nx−r), Ā ∈ Rr×r, and for some matrices G,H, B̄, C̄ of suitable dimensions. In
particular, for ri being relative degree of the i-th output, the matrices Āi ∈ Rri×ri , i = 1, . . . , ny, are in
standard companion form with last row filled with the coefficients of the relative characteristic polynomial,
and we have

Ā =


Ā1 ? · · · ?
? Ā2 · · · ?

? ?
. . . ?

? ? · · · Āp

 , B̄ =


B̄1

B̄2

...
B̄p

 , H̄ =


H̄1

H̄2

...
H̄p


where the terms ?, B̄i, and H̄i, for i = 1, . . . , ny, are matrices of appropriate dimensions with all zero
terms expect their last row; while C̄ and G have the form

C̄ =
[
C̄1 C̄2 . . . C̄p

]
G = ḠC̄

for some Ḡ, where each C̄i has all zero terms expect its i-th row which is defined as [1, 0, . . . , 0] ∈ Rri ,
for i = 1, . . . , ny.
Given x̄ > 0 and x ∈ R, we define the function

satx̄(x) =

{
x, if |x| ≤ x̄
sign(x)x̄, otherwise.

(3)

Moreover, for x = (x1, . . . , xnx) ∈ Rnx , we let satx̄(x) := (satx̄(x1), . . . , satx̄(xn)).
The transmission zeros of system (A,B,C), as defined in Rosenbrock (1973), are the values λ̄ ∈ C such
that

rank

[
A− λ̄I B
C 0

]
< n+ min(ny, nu). (4)
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The set of such values λ̄ is equal to the spectrum of the matrix F when the system (A,B,C) is in
normal form realization (2), see Isidori (2017)[Ch.2]. Equivalently for a proper transfer matrix G(s),
its transmission zeros are the values s̄ ∈ C at which G(s̄) loses rank. The transmission zeros of system
(A,B,C,D), are the values λ̄ ∈ C such that

rank

[
A− λ̄I B
C D

]
< nx + min(ny, nu). (5)

For a proper system (A,B,C,D) with D nonsingular, the transmission zeros are the eigenvalues of
A−BD−1C, i.e. the elements of σ(A−BD−1C). A system (A,B,C) (and equivalently G(s)) is said to
be minimum phase if it has all zeros in C−. While it is said to be non-minimum phase if at least one of
its zeros is in C+. A system (A,B,C) is said to be right invertible if (see Qiu and Davison (1993))

rank

[
A− λI B
C 0

]
= nx + ny, (6)

for at least one λ ∈ C+.
For a C1 map h : Rnx → Rny and a vector field f : Rnx → Rnx , Lfh(x) := dh

dx (x)f(x) denotes the Lie

derivative of h along the vector field f , and iteratively, L
(k)
f h denotes the kth Lie derivative of h along f .

For a system with locally Lipschitz map f , we denote for each x in Rnx , t 7→ X(x, t) to be the unique
solution with initial condition x at t = 0. Similarly, for a system (4.22) with inputs and locally Lipschitz
map f with respect to x, we denote by Xu(x, s, t) the solution subject to the input u taken at time t and
initialized in x at time s, so that Xu(x, t, t) = x. Given an open set O of Rnx and for each x in O, we
denote by (σ−O(x), σ+

O(x)), or (σ−O(x, s;u), σ+
O(x, s;u)), the maximal interval of definition of the solution

X(x, t), or Xu(x, s, t), respectively, conditioned to take values in O. For a set S, we denote by cl(S) its
closure and with S + δ the set

S + δ = {x ∈ Rnx : ∃χ ∈ S : |x− χ| ≤ δ} .

For the Kronecker product, we consider the symbol ⊗. Given a matrix P , with spectrum λ(P ), we
indicate with λmin(P ) and λmax(P ) the minimum and maximum eigenvalues of P , respectively.
A continuous function α : [0,+∞)→ [0,+∞) is a class-K map if it is increasing and α(0) = 0.
Finally, we denote W a class of functions w : D ⊆ R→ Rnw and by W a subset of Rnw containing their
image sets w(D).
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Non-minimum Phase Systems
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Chapter 1

Introduction: Performance
limitations of Non-minimum Phase
Systems

In this chapter, we describe the framework that motivated the analysis regarding the whole thesis work.
In particular, we introduce what we informally called the Astolfi Benchmark, i.e., an output regulation
problem involving a critical non-minimum phase system driven by the error signal to be regulated with
the help of additional non-vanishing measurement of the system zero dynamics. We call it critical because
the zero dynamics of such a system suffer from the finite escape time pathology. In the following, we
better describe in more detail such a problem and then analyse the state of the art about performance
limitations due to the presence of a non-minimum phase system (unstable zeros in the plant).

1.1 Motivating Benchmark

We started this Thesis work with the objective of solving the output regulation problem associated with
the Astolfi Benchmark.
The plant under consideration is

ż = z3 + e+ r(w)

ė = u

y =

(
z
e

) (1.1)

where z, e, u are scalar and the available measurement y is constituted of the whole state. Such a system
is perturbed by an exogenous system via the term r(w) where the dynamics of w is given by

ẇ = s(w) (1.2)

Assume that there exists an invariant manifold such that z = Π0(w) and e = 0 where Π(w) is solution of
the nonlinear regulator equation Isidori and Byrnes (1990)

∂Π0(w)

∂w
s(w) = Π0(w)3 + r(w) (1.3)

and, moreover, that Π0 evolution in time can be described in regression form, i.e., there exists an integer
number v and a function φ : Rv → R such that

Π
(v+1)
0 (w) = φ(Π0(w), Π̇0(w), . . . ,Π(v)(w)). (1.4)

Under this assumption, the output regulation problem associated with the Astolfi Benchmark is to
find a (dynamical) control law u only exploiting the the output measurement y (partial-information
case), such that system (1.1) perturbed by the exosystem (1.2) is steered on the invariant manifold
{(z, e) ∈ R2|(z, e) = (Π0(w), 0)} while u is kept bounded and asymptotically vanishes.
In the following, we describe general feedback limitations due to the presence of non-minimum phase
zeros in the controlled plant.
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1.2 Performance limitations in non-minimum phase: frequency
domain

Given a plant G(s) and a regulator R(s) transfer functions, where both G(s) and R(s) are single input
single output systems, we call the open loop transfer function L(s) = R(s)G(s). In feedback design, very
important roles are played by the sensitivity functions S(s) and T (s) defined as

S(s) =
1

1 + L(s)
=

D(s)

D(s) +N(s)

T (s) =
L(s)

1 + L(s)
= S(s)L(s) =

N(s)

D(s) +N(s)

where D(s) and N(s) are the denominator and the numerator of L(s). To distinguish among the two
sensitivity functions S(s) and T (s), the latter is called the complementary sensitivity function while S(s)
is simply the sensitivity function. The two functions are indeed complementary in the sense that for all
s in C it holds

S(s) + T (s) = 1. (1.5)

R(s) G(s)
w e u

n

d
y

ym

Figure 1.1: Standard control structure

According to the feedback structure reported in Fig.1.1, the output function y(t) can be decomposed into
three different components, i.e., yd, yw, and yn, related to the three systems inputs, i.e., w, d and n

y(t) = yd(t) + yw(t) + yn(t) = d(t)S(s) + w(t)T (s)− n(t)T (s)

with some abuse of notation in implicitly considering the Laplace transform of the involved signals. We
can see from the output terms that the two sensitivity functions play an important role in feedback
design. In particular, the sensitivity function describes the link between the output disturbance d and
the measured plant output y, while the complementary function describes the whole closed loop system
from the reference w to the plant output y and it is moreover the link between the measurement noise
n and the output itself. We generally consider, d and n to live in the low and high-frequency ranges,
respectively. Indeed, the magnitude of the sensitivity function S(s) is a direct indication of the ability
of the related feedback loop to perform satisfactorily despite the presence of disturbances, d, at the
plant output and small plant parameter variations. Equivalently, for the complementary function T (s)
and the noise signal n(t). Moreover, we say that the feedback system possesses sensitivity reduction
at some frequency ω if |S(jω)| < 1. While, the feedback system exhibits increased sensitivity at some
frequency ω if |S(jω)| > 1. In this case, the feedback increases the effect of plant parameter variations
and disturbances on the output plant.
The feedback system is considered stable if S(s) has no poles in the right half plane, and there is no
unstable zero/pole cancellation in the open loop function, L(s), see Bode et al. (1945); Freudenberg and
Looze (1983, 1985).

1.2.1 Bode Integrals

Considering a stable feedback system and assume that L(s) has relative degree strictly larger than 1 (so
that lims→∞ sL(s) = 0) and has finitely many poles and zeros in the right half plane, and denote them as
P = {pi; i = 1, . . . , Np} and Z = {zi; i = 1, . . . , Nz}, including multiplicities. When L(s) has no unstable
poles the first Bode integral reads as Bode et al. (1945)∫ ∞

0

ln (|S(jω)|) dω = 0, (1.6)
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that is, the natural logarithm of the sensitivity function magnitude integrated over the non-negative
frequencies must be zero. Hence, the negative area (associated with the feedback sensitivity reduction
|S(s)| < 1) resulting in a certain frequency range must be compensated by a positive area (associated
with the feedback sensitivity increase |S(s)| > 1) in the complementary frequency range.
When the open-loop function L(s) has unstable poles, the constraint worsens and the Bode integral is
given by Freudenberg and Looze (1983, 1985)

∫ ∞
0

ln (|S(jω)|) dω = π

Np∑
i=1

Re{pi} > 0. (1.7)

In this case, the trade-off between the sensitivity reduction and increase in some frequency range and its
complementary is unbalanced towards the sensitivity increase.
Note that the two Bode integrals apply even if the system is non-minimum phase.
Exploiting the Blaschke product we can write, as in Freudenberg and Looze (1985), the open loop function

L(s) = L′(s)B−1
p (s)Bz(s)

where, by denoting with the ? symbol the complex conjugation, the Blaschke products read as

Bp(s) =

Np∏
i=1

pi − s
p?i + s

,

Bz(s) =

Nz∏
i=1

zi − s
z?i + s

.

Hence, the L′(s) term has no poles nor zeros in the right half plane. The same can be done with the two
sensitivity functions

S(s) = S′(s)Bp(s) (1.8)

T (s) = T ′(s)Bz(s) (1.9)

Defining a weighting function for a complex number s

θs(ω) = arctan

[
ω − y
x

]
, s = x+ jy (1.10)

the following theorems describe an extension of the Bode integral constraints

Theorem 1.2.1 (Th.1 in Freudenberg and Looze (1985)). Let z = x + jy be an element of Z, if the
closed-loop system is stable the sensitivity function S(s) must satisfy the integral constraints∫ +∞

−∞
ln (|S(jω)|) dθz(ω) = π ln

(
|B−1

p (z)|
)

∫ +∞

−∞
ϕ (S′(jω)) dθz(ω) = πϕ

(
B−1
p (z)

)
.

Theorem 1.2.2 (Th.2 in Freudenberg and Looze (1985)). Let p = x + jy be an element of P, if the
closed-loop system is stable the sensitivity function S(s) must satisfy the integral constraints∫ +∞

−∞
ln (|T (jω)|) dθp(ω) = π ln

(
|B−1

z (p)|
)

∫ +∞

−∞
ϕ (T ′(jω)) dθp(ω) = πϕ

(
B−1
z (p)

)
.

In both theorems, ϕ stands for the phase value of its argument.
This result can be specialized Freudenberg and Looze (1985) to the case of non-minimum phase system
in which we ask some sensitivity reduction in a certain frequency range Ω = [−ω2,−ω1] ∪ [ω1, ω2] (i.e., Ω
is a conjugate symmetric range of frequency). Let z be an open right half plane zero of L(s) and let the
weighted length of the frequency range Ω be denoted

Θz{Ω} =

∫
Ω

dθz(ω)

13



and the weighted length of the complementary frequency range Ωc = {ω|ω /∈ Ω} is given by

Θz{Ωc} = π −Θz{Ω}.

Let the desired level of sensitivity reduction be given by

|S(jw)| ≤ S̄Ω < 1, ∀ω ∈ Ω

with S̄Ω positive scalar value. The following theorem gives a lower bound on the maximum sensitivity in
the complementary frequency range Ωc due to the achievement of such a sensitivity reduction level for a
non-minimum phase system.

Theorem 1.2.3. Suppose that the closed-loop system is stable and that the level of sensitivity reduction

|S(jw)| ≤ S̄Ω < 1, ∀ω ∈ Ω

has been obtained. Then for each z ∈ Z the following bound must be satisfied

‖S‖∞ ≥

(
1

S̄Ω

) Θz(Ω)
π−Θz(Ω)

·
∣∣B−1

p (z)
∣∣ π
π−Θz(Ω)

where ‖S‖∞ = supω |S(jω)|.

The lower bound is necessarily greater than one (hence in the complementary frequency range the
system has a sensitivity increase), indeed, S̄Ω < 1, |B−1

p (z)| > 1, and Θz(Ω) < π. To avoid this issue, one
might think that a solution to this problem is to spread the sensitivity on the remaining infinite range
of frequency Ωc with an arbitrary small magnitude value. This is not usually desirable due to stability
robustness. Indeed, typically uncertainties in the plant model are stronger at higher frequencies. This
is why it is required to have L(s) approaching 0 at high frequency, where larger relative uncertainty
levels are present. Moreover, it is required to have a small loop magnitude at frequencies for which the
sensor noise, n(t), dominates the contributions of the plant disturbances, i.e., output disturbances and
references, Freudenberg and Looze (1983). Furthermore, note that if the system is open-loop unstable
and non-minimum phase with approximate right half plane pole-zero cancellations, it might have very
bad sensitivity properties. Indeed, the lower bound for ‖S‖∞ increases as a function of the proximity of
unstable poles to the zero in question,Freudenberg and Looze (1983).

A similar result, Freudenberg and Looze (1985), can be found for the complementary sensitivity function
in presence of unstable open loop poles. And lower bounds on the maximum value of |T (jω)| can be
similarly derived. In this case, since the specifications on sensor noise responds are generally imposed at
high frequencies, the set Ω = [−ω2,−ω1] ∪ [ω1, ω2] usually has ω2 →∞.

In Goodwin et al. (2001) another integral constraint has been consider relating the complementary
sensitivity function T (s) and the unstable zeros location z ∈ Z, that is∫ ∞

0

ln (|T (jω)|)
1

ω2
dω = π

Nz∑
i=1

1

zi
−

π

2Kv
(1.11)

with Kv = lims→0 sL(s). Note, that if L(s) has relative degree strictly larger then 1, or if perfect
tracking/output disturbance rejection is obtain, that is e(t)→ 0, then Kv = lims→0 sL(s)→∞.
Then, a revisited version has been recently developed by Emami-Naeini and de Roover (2019). According
to the author, these integral limitations/constraints forms are hiding a fundamental result, i.e., that the
‘sensitivity integral constraint is related to the difference in speed (bandwidth or poles location) of the
closed-loop system compared to the speed (bandwidth or poles location) of the open loop system’. We then
have the following results

Theorem 1.2.4 (Theorem 1 in Emami-Naeini and de Roover (2019)). For any SISO closed-loop stable
and proper rational LTI system, the Bode’s integral constraint can be written as∫ ∞

0

ln (|S(jω)|) dω =
π

2

n∑
i=1

(pc`i − po`i) + π

Np∑
i=1

pi (1.12)

where {pc`i} and {po`i}, i = 1, . . . , n are the locations of the closed-loop and open-loop poles, while pi ∈
P, i = 1, . . . , Np are the open-loop unstable poles.
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The fundamental relationship is that the sum of the areas underneath the ln(|S(s)|) curve is related to
the difference in speeds of the closed-loop and open-loop systems. This result extends the one in Goodwin
et al. (2001) that shows that if L(s) is strictly proper then

∫ ∞
0

ln (|S(jω)|) dω = π

Np∑
i=1

pi −
πKh

2

with Kh = lims→∞ sL(s). And it can be shown that

Kh = −
n∑
i=1

(pc`i − po`i) .

Note that, because the imaginary part of the complex conjugate poles cancel each other, this is the
same result obtained in Freudenberg and Looze (1985) for which Kh = 0 because the system under
consideration has at least relative degree 2.
For the complementary sensitivity function T (s) in Emami-Naeini and de Roover (2019) has been shown
the following theorem.

Theorem 1.2.5 (Theorem 2 in Emami-Naeini and de Roover (2019)). For any SISO closed-loop stable
proper rational LTI system the complementary sensitivity integral constraint may be written as∫ ∞

0

ln (|T (jω)|)
1

ω2
dω = π

Nz∑
i=1

1

zi
+
π

2

(
n∑
i=1

1

pc`i
−
Nzo∑̀
i=1

1

zo`i

)

where {pc`i}, i = 1, . . . , n are the locations of the closed-loop poles, {zo`i}, i = 1, . . . , Nzo` are the locations
of the open-loop zeros, while zi ∈ Z, i = 1, . . . , nz are the open-loop unstable zeros.

By exploiting the Truxal’s identity we have, Emami-Naeini and de Roover (2019),

n∑
i=1

1

pc`i
−
Nzo∑̀
i=1

1

zo`i
= −

1

Kv

as defined above and thus we recover Goodwin’s version of the Bode’s integral (1.11).
With these versions of Bode’s integral, one can directly notice the relationship between the location
of poles and zero in the open and closed loop system, and the sensitivity constraints in the frequency
domains.

1.2.2 Output Performances in case of non-minimum phase zeros

In the following, we consider some frequency domain analysis of the output characteristics due to the
presence of non-minimum phase zeros.

The first result is from Vidyasagar (1986). The author first defines an undershooting system in the
locality of the initial time t = 0. In particular, for a strictly proper LTI SISO system with relative
degree r and transfer function G(s), it’s well known that the unitary step response of G(s), y(t), at time
t = 0, is 0 along with the its first r− 1 derivatives are 0. By considering, that the step response exhibits
‘undershoot’ if its steady-state value has a sign opposite from that of its first non-zero derivative at time
t = 0. Thus, we define a system to have undershoot if y(r)(O)y(∞) < 0. Clearly, this definition only
makes sense if y(∞) 6= 0. This is a natural mathematical version of “the step response initially starts in
the wrong direction”. Then they provide the following result anywhere.

Proposition 1 (Proposition in Vidyasagar (1986)). The system has initial undershoot if and only if its
transfer function has an odd number of real RHP zeros.

We modified the original proposition by adding the adjective initial to the word undershoot because by
considering a different definition of output undershoot, such as the one in Lau et al. (2003) or Stewart and
Davison (2006), the original proposition does not hold anymore. Indeed, by considering the undershoot
yus of the unitary step response, denoted y(t), as the smallest non-negative number such that y(t) ≥ −yus,
then the system output may still have points of zero crossing, see, e.g. Fig.5 in Hoagg and Bernstein
(2007), or simply the output y(t) may reverse its direction during its time evolution (hence, in some time
interval the output derivate becomes negative before crossing the steady state value). This is why we say it
is only a local (in time) result that works accordingly with the provided undershoot definition. As shown
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in Hoagg and Bernstein (2007), there are two different possible output behaviour for a non-minimum
phase strictly proper LTI SISO system with zero initial condition, i.e., monotonic and non-monotonic
step responses. In the latter class, we can distinguish between zero crossing and non-zero crossing step
response. In Table 1, in Hoagg and Bernstein (2007), they summarize the possible output characteristics
(initial undershoot, zero crossing, and overshoot) relations according to zero dynamics of the plant. In
particular, for strictly proper system an only sufficient condition to have zero crossing is that the system
has at least one positive real zero. To have an initial undershoot the necessary and sufficient condition
is that the plant has an odd number of positive real zeros. While to have a step response overshoot it is
sufficient that G(s)−G(0) has at least one positive real zero.
In Stewart and Davison (2006), the authors report a result from Middleton (1991),i.e., the lower bound
for the output undershoot (this time the absolute value of the inf of the system step response with zero
initial condition) of a strictly proper LTI SISO system with a real positive zero at s = z

yus ≥
0.99

ezTs1% − 1
y(∞) > 0 (1.13)

where y(∞) = limt→∞ y(t) and Ts1% is the 1% settling time of y(t), i.e., the smallest time Ts1% that
|y(t) − y(∞)| ≤ 0.01y(∞) for all t ≥ Ts1%. Note that, for z → 0 (the real positive zero is close to the
imaginary axis) or for Ts1% → 0 (thus, a very fast output response), the lower bound tends to infinity.
Moreover, they show that with two distinct real positive zeros, the output response necessarily exhibits
overshoot. The same two results have been similarly investigated in Lau et al. (2003)[Section B].

1.3 Performance limits in non-minimum phase: Linear Time
Invariant systems (state space)

In Qiu and Davison (1993) a cheap control problem set-up has been used to describe the constraints in
terms of output y energy when the system is non-minimum phase. In particular, for a linear LTI (exactly)
proper non-minimum phase system in state space realization

ẋ = Ax+Bu, x(0) = x0 6= 0

y = Cx+Du
(1.14)

the cheap control problem is to find a control action u such that the cost functional

Jε =

∫ ∞
0

yT (t)y(t) + εuT (t)u(t)dt (1.15)

is minimized with ε→ 0. In particular, the final results exploit the following properties.

� A proper transfer matrix G(s) can always be factorized as Gi(s)Go(s) such that Gi(s) is a inner
system and Go(s) is a right-invertible and minimum phase system (thus, outer) system. Where,
a stable exactly proper transfer matrix Gi(s) is called inner if GTi (−s)Gi(s) = I and all the zeros
of Gi(s) are in the open right half plane. Letting (Ao, Bo, Co, Do) and (Ai, Bi, Ci, Di) be minimal
stabilizable and detectable realization of Go(s) and Gi(s) factors, then a stabilizable and detectable
realization of G(s) is given by the cascade realization

A =

[
Ai BiCo

0 Ao

]
, B =

[
BiDo

Bo

]
C =

[
Ci DiCo

]
, D = DiDo.

(1.16)

� Associated with any realization (A,B,C,D) in which A is stable, we call controllability and
observability grammian Pc and Po, respectively, the solution of the following Lyapunov equations

APc + PcA
T = −BBT

PoA+ATPo = −CTC

and a minimal realization (A,B,C,D) is called balanced realization if such Pc and Po are diagonal
and equal, see Glover (1984). Without loss of generality we can assume that (Ao, Bo, Co, Do) and
(Ai, Bi, Ci, Di) exploited in (1.16) are balanced realization.

� Moreover, a balanced realization of a inner system (Ai, Bi, Ci, Di) has Pc = Po = I, DT
i Di = I and

DTC +BT = 0 (or equivalently, DBT + C = 0).
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As also shown afterwards in this thesis 2.2.1, in the inner-outer cascade realization, the inner factor has
all the unstable zeros of G(s) and all the poles of Gi(s) are equal to the negatives of zeros of Gi(s),i.e.
poles and zeros of Gi(s) are mirrored with respect to the imaginary axis.
At this point, consider the cheap control problem described before in equations (1.14)-(1.15). It is well
known, that the cost functional can be written as Jε = x(0)TPεx(0), and that the optimal control that
stabilize the system and achieves the optimal cost is given by u = −(εI + DTD)−1(BTPε), where Pε is
the stabilizing solution of the following Algebraic Riccati Equation (ARE)

[
A−B(ε2I +DTD)−1DTC

]T
Pε + Pε

[
A−B(ε2I +DTD)−1DTC

]
+

CT
[
I −D(ε2I +DTD)−1DT

]
C − PεB(ε2I +DTD)−1BTPε = 0. (1.17)

It is well-known that Pε monotonically decreases as ε→ 0, thus P0 = limε→∞ Pε exists. In particular, for
a minimum phase and right invertible system such as (Ao, Bo, Co, Do), P0 = 0. While for a inner system
with balanced realization (Ai, Bi, Ci, Di, P0 = I and u = 0 because BTi +DT

i Ci = 0 1. Thanks to this two
properties and by considering a factorized realization of the system matrices (A,B,C,D) as in (1.16), we
have that

P0 =

[
I 0
0 0

]
and for the cheap control problem described by (1.14)-(1.15), the cost functional for ε → 0,
J0 = limε→∞ Jε = xT (0)P0x(0) = xi(0)Txi(0) is the energy used by the system output y(t) in order to
stabilize the unstable zero dynamics xi.

1.3.1 The servomechanism problem

In the same work, Qiu and Davison (1993), the authors extend the result to the output regulation
(servomechanism) framework assuming this time a zero initial condition of the plant, i.e. x(0) = 0.
The analysed framework considers a stabilizable and detectable system (A,B,C,D) with noise-corrupted
input and output

ẋ =Ax+B(u+ wu)

e =Cx+D(u+ wu) + we
(1.18)

where wu and we are exosystem-generated noise signals with some periodic behaviour, and the error
signal e is generated by comparing the output to a reference signal y?, i.e., e = y− y?. To such a system
we associated the following cost functional

Jε = min
ũ

∫ ∞
0

eT e+ ε2ũT ũdt (1.19)

where ũ refers to the transient behaviour of the input u to its steady states uss. In both full information
setup (in which we assume to measure x, wu, and we) and the internal model approach, Davison
(1976) Francis and Wonham (1976), the optimal cheap control problem as defined above give the same
performance result, i.e. we are able to characterize J0 = limε→0 Jε as a function of the system unstable
zeros. In particular, in Qiu and Davison (1993) the authors show that for the wu and we signals oscillating
with frequency ω2 we have for some positive semi-definite M matrix

J0 = WT
e MWe (1.20)

where We refers to the vector of amplitude elements of the sinusoidal terms of we, i.e. for we =
We1 sin(ωt) +We2 cos(ωt) and WT

e =
[
We1 We2

]
, while the trace of M is

trM =

Nz∑
i=1

(
1

zi − jω
+

1

zi + jω

)
.

Hence, the closer to the imaginary axis the unstable zeros are the more expensive, in terms of output
energy, the problem becomes.

1Indeed the optimal control in this case is 0 because the system is already asymptotically stable by itself. And an optimal
controller would place the system poles in the open left half plane mirroring the right half plane zeros of the plant. But
this is already a property of the inner system.

2For this scenario the non-resonance condition, i.e. system (A,B,C,D) has no zeros on the imaginary axis at the same
frequency ω, is assumed to have necessary and sufficient conditions in order to have a solution to the output regulation
problem.
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1.3.2 Path-following case

The authors in Aguiar et al. (2005), extend the result of Qiu and Davison (1993), stating that a
path-following approach removes the performance limitations imposed by the unstable zeros of the system
only for the case of output reference tracking. For the authors, perfect tracking means that the L2-norm
of the tracking error (or its energy) can be made arbitrarily small. To achieve such perfect tracking also
for the case of non-minimum phase systems, the authors consider a parametrization of the exosystem
dynamics. In particular, assuming to define a timing law θ(t) afterwards, they describe the geometric
path of the reference y? to be tracked, by the system under consideration, as exosystem-generated

dw(θ)

dθ
=Sw(θ)

y?(θ) =Qw(θ).

(1.21)

The system under consideration is the same as in Qiu and Davison (1993), i.e., eq. (1.14) with a zero
initial condition x(0) = 0, and the path-following to be solved is as follows. For a desired path y?(θ),
the designed controller must achieve: boundedness of the state x(t), for t > 0, for every initial condition
(x(0), w(θ(0)), and convergence of the error e(t) = y(t) − y?(θ(t)) as t → ∞, for a forward motion
θ̇ > c ≥ 0 with t ≥ 0. To the path-following problem, we associate an optimal cheap control problem
with cost function

J0 =

∫ ∞
0

eT (t)e(t)dt (1.22)

constrained to be less than a given positive number δ, i.e. J0 ≤ δ. We call these two united problems
the constrained cheap path following problem. The main result in Aguiar et al. (2005), that follows
step-by-step the approach described in Qiu and Davison (1993), is the following.

Theorem 1.3.1. If (A,B) is stabilizable, then for any given positive constant δ there exist a timing law
θ(t) and matrices Kx and Kw such that

u(t) = Kxx(t) +Kww(θ(t))

solves the constrained cheap path-following problem.

And in particular, from the constructive proof, we see that the cost functional can be made arbitrarily
small. Indeed, as for the case described in Qiu and Davison (1993), the optimal cost function is given
by3

J0 = WT
e MWe (1.23)

where We is again the vector of amplitudes of the sinusoidal terms of the output reference, and the
semidefinite positive matrix M has trace

trM =

Nz∑
i=1

(
1

zi − jvdω
+

1

zi + jvdω

)

and thus J0 can be made arbitrarily small by choosing a sufficiently fast forward motion of the timing
law (i.e., a large vd). Obviously, the constant vd must be selected such that the non-resonance condition
in the cascade exosystem-system under consideration is fulfilled.

Thanks to this degree of freedom, the authors in Aguiar et al. (2005) were able to obtain the same kind
of result even if the path-following problem must be obtained for a specified timing law, i.e., vd is fixed,
thus reconstructing the standard output tracking problem. In particular, thanks to the asymptotic
convergence required property, they propose to select a decreasing finite sequence of N constants vi,
i = 0, . . . , N , such that vN = vd. The values of these vi are such that in the time interval they are
applied, the related cost function Jvi is small enough to obtain the desired constraint on the total
functional J0 ≤ δ. See Aguiar et al. (2005)[Section IV] for more details.

3When applying a timing law

θ̇ = vd, vd > 0

, the exosystem dynamics reads as
ẇ(θ(t)) =vdSw(θ(t))

y?(θ(t)) =Qw(θ(t)).
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1.3.3 Cheap control and T-integral relationship

Lyapunov function (energy) interpretation

In Seron et al. (1999), the authors analyze the relationship between the cheap control result obtained in
Qiu and Davison (1993) and the standard T -integral limitation formula resulting in Middleton (1991) in
the frequency domain. The analysis in Seron et al. (1999) concerns a strictly proper square LTI system

ẋ = Ax+Bu, x ∈ Rnx , u ∈ Rnu

y = Cx, y ∈ Rnu

which is stabilizable and detectable, and associate to it the cost functional Jε in (1.15). They re-derive
the result in Qiu and Davison (1993) for the case of relative degree one system, i.e., rank CB = nu, so
that the system under consideration admits a normal form

ż = A0z +B0y, z ∈ Rnx−nu

ẏ = A1y +A2z +B1u.
(1.24)

They assume that A0 is antistable, i.e. −A0 is Hurwitz, and thus all system zeros are non-minimum
phase. The Algebraic Riccati equation associated with Jε in the new coordinate is given by[

A1 A2

B0 A0

]T
P (ε) + P (ε)

[
A1 A2

B0 A0

]
+

[
I 0
0 0

]
=

1

ε
P (ε)

[
B1B

T
1 0

0 0

]
P (ε), (1.25)

to solve it they seek a solution P (ε) of the form

P (ε) =

[
εP1 + εP2

εPT2 + P0 + εP3

]
+O(ε2)

where P0,P1,P2, and P3 are independent of ε. Then, substituting in (1.25) yields

I − P1B1B
T
1 P1 +O(ε) = 0 (1.26a)

BT0 P0 − P1B1B
T
1 P2 +O(ε) = 0 (1.26b)

AT0 P0 + P0A0 − PT2 B1B
T
1 P2 +O(ε) = 0. (1.26c)

By setting ε = 0, we have P1 = (B1B
T
1 )−1/2, P2 = P1B

T
0 P0. Substituting P2 in (1.26c) and setting ε = 0,

one obtains

AT0 P0 + P0A0 = P0B0B
T
0 P0 (1.27)

and because −A0 is Hurwitz, there exists a unique positive definite solution P0.

Finally, the optimal cost functional value J?ε =
[
y z

]
P (ε)

[
y z

]T
can be written as

J?ε =
1

2
zTP0z +

ε

2
(y +BT0 P0z)

T (B1B
T
1 )−1(y +BT0 P0z) +O(ε) (1.28)

by defining V0(z) =
1

2
zTP0z, and V1(y, z) =

1

2
(y + BT0 P0z)

T (B1B
T
1 )−1(y + BT0 P0z), the optimal cost

functional value J?ε is given by

J?ε = V0(z) + εV1(z, y) +O(ε) (1.29)

thus for ε→ 0 the ideal performance is given by V0, i.e.,

J?0 =ε→0 J
?
ε =

1

2
zTP0z = V0(z). (1.30)

Such ideal value has the interpretation of being the least amount of energy required to stabilize the
zero-dynamics, indeed

J0 =ε→0 Jε =
1

2

∫ ∞
0

y(t)T y(t)dt. (1.31)
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Cheap Control and T-integral

We now apply the above results to the problem of regulating the output y of (3) to a constant setpoint
y?. With the feedforward term uss = −B−1

1

(
A1 −A2A

−1
0 B0

)
y?, where they place the equilibrium of

(1.24) at y = y?. Define the error variables e = y − y?, z̃ = z + A−1
0 B0y

?, and ũ = u − uss, in the new
coordinates we rewrite (1.24) as

ė = A1e+A2z̃ +B1ũ

˙̃z = A0z̃ +B0e.
(1.32)

Then the cheap control problem is the same as for (1.24), but with (e, z̃) in place of (y, z). This time
the ideal performance is V0(z̃). We are interested in V0(z̃(0)) = z̃(0)TP0z̃(0). By considering a trivial
initialization for the starting system (1.24) in the origin we have that e(0) = −y?; z̃(0) = A−1

0 B0y
?, we

can write

J?0 = V0(z̃(0)) =
1

2
z̃T (0)P0z̃(0)

=
1

2
y?TBT0 (AT0 )−1P0A

−1
0 B0y

? =
1

2
y?T P̄0y

?,

(1.33)

where the trace of P̄0 can be directly related to the eigenvalues of A−1
0

trace P̄0 = trace
[
BT0 (AT0 )−1P

1/2
0 P

1/2
0 A−1

0 B0

]
= trace

[
P

1/2
0 (AT0 )−1B0B

T
0 A
−1
0 P

1/2
0

]
= trace

[
P

1/2
0 A−1

0 P
−1/2
0 + P

−1/2
0 A−T0 P

1/2
0

]
= 2trace A−1

0 = 2

nx−nu∑
i

1

zi

(1.34)

where zi are the eigenvalues of A0. Now, we realize the relationship with (1.11). Indeed, equation (1.11)
is the Bode integral for the complementary sensitivity function T

1

π

∫ ∞
0

log|T (jω)|
dω

ω2
+

1

2Kv
=

nx−nu∑
i

1

zi
. (1.35)

For a single input single output linear system, whose controller is minimum phase and such that the
closed loop is asymptotically stable, hence, the complementary sensitivity function T (s) is stable we have
that

1

π

∫ ∞
0

log|T (jω)|
dω

ω2
+

1

2Kv
= lim
ε→0

1

2

∫ ∞
0

e2(t) + ε2u(t)Tu(t)dt (1.36)

where, Kv is the high frequency gain of the system under consideration with e(t) = y − y?.

1.3.4 Under/overshoot of output signal

In Lau et al. (2003)[Section C] consider a the output tracking problem of a constant reference value ȳ for
strict proper LTI SISO system in normal form, i.e.,

ż =Fz +Gy, z(0) = 0

ξ̇ =Hz + Āξ + B̄u, ξ(0) = 0

y =C̄ξ

in which the zeros of the equivalent plant G(s) are the eigenvalues of F in the zero dynamics with state
z. In this work, the authors consider the relationship between the output undershoot, the settling time
and the location of the unstable zeros (only for the case of one and two zeros present in the system).
Thus, assuming F to be nonsingular, associated to the target equilibrium ȳ we can define the equilibrium
point for z(t) as z̄ = −F−1Gȳ. Considering, the evolution of a stabilizing y(t) for the zero dynamics in
finite time Ts, i.e. z(t) = z̄ for all t ≥ Ts, such that y(t) = ȳ for all t ≥ Ts, we can define yus > 0 as the
minimum value4 such that y(t) ≥ −yus for all t ≥ 0, and the relative undershoot as yus/ȳ. For the scalar
zero dynamics case with G = 1, we have that

z(t) =

∫ t

0

eF (t−τ)y(τ)dτ (1.37)

4We are implicitly assuming that ȳ > 0, without loss of generality.
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and because y(t) ≥ −yus for all t ≥ 0, we can write

−z(t) ≤
∫ t

0

eF (t−τ)dτ yus = F−1(eFt − 1)yus

and since for all t ≥ Ts we have z(Ts) = −F−1ȳ we can then write

F−1ȳ ≤ F−1(eFT − 1)yus

that is, we thus recover the same result obtained in the frequency domain approach (1.13)

yus ≥
1

eFT − 1
ȳ

that is, the undershoot level is lower bounded by the function depending on the reference amplitude, the
location of the zero and on the designed settling time of the closed loop system.

1.3.5 Non-overshooting and Non-undershooting design

In Schmid and Ntogramatzidis (2012), the authors propose a procedure to design a feedback gain matrix
K to obtain a non-overshooting or non-undershooting step response. In particular, consider an (exactly)
proper LTI system (A,B,C,D) in state space realization

ẋ = Ax+Bu

y = Cx+Du
(1.38)

with x ∈ Rnx , u ∈ Rnu , and y ∈ Rny , with nu = ny (thus considering a square system), initialized
at an equilibrium configuration, i.e., u(0) and x(0) are such that 0 = Ax(0) + Bu(0). The goal is to
design a feedback control law for system (1.38) such that y(t) asymptotically tracks a step reference
y? = Qw ∈ Rny , with ẇ = 0 being the scalar exosystem dynamics initialized at w(0) = w0.

Now, assuming that system (1.38) is right invertible, stabilizable and has no zero at the origin, one is
able to solve for Π and Σ the regulator equations

0 = AΠ +BΣ

Q = CΠ +DΣ.
(1.39)

Then, in this full information framework, the control law can be taken as

u(t) = K(x(t)−Πw(t)) + Σw, ∀t > 0 (1.40)

and by putting the system in the error coordinates defined as x̃ = x − Πw, we obtain the closed loop
dynamics

˙̃x = (A+BK)x̃

y = (C +DK)x̃+Qw
(1.41)

with the closed loop matrix (A + BK) asymptotically stable. As a consequence, the error converges to
zero asymptotically and the output eventually reaches the value y?.
To determine if a SISO system output overshoots or undershoots, one can either analyse the
output response with respect to the reference signal or directly check the tracking error behaviour,
e(t) = Qw(t) − y(t) = y? − y(t). When looking at output behaviour, in case y(0) < y?, overshooting
means that the output y(t), for t > 0, takes values less than or equal to y?, while undershooting means
that y(t), for t > 0, takes values greater than or equal to y(0). On the other hand, similar considerations
can be done in terms of the tracking error e(t). In this case, overshooting corresponds to a zero crossing
behaviour (or equivalently e(t) as function of time has a real positive root), while undershooting occurs
when |e(t)| > |e(0)|, for some t > 0.

Moreover, note that for (exactly) proper system at t = 0+ we may have on output y(t) (and consequently
an error e(t)) discontinuity with respect to the initial equilibrium configuration y(0) (and e(0),
respectively). We can thus introduce the notion of instantaneous overshoot and undershoot, that is
having on the output y(t) an overshooting or undershooting behaviour at t→ 0+, rather than for t > 0.
The authors in Schmid and Ntogramatzidis (2012) hence introduce a notation to directly characterize
the instantaneous overshoot or undershoot by looking at the error behaviour around the time origin.
In particular, they take e(0+) = µe(0) for some real scalar µ. If µ ≤ 0 then we have instantaneous
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overshoot, if µ > 1 then we have instantaneous undershoot. And for 0 < µ ≤ 1, the overshoot occurs if
there exists a positive real t̄ such that e(0)e(t̄) < 0 (which is again the presence of zero crossing). By the
way, for strictly proper systems the discontinuity around the time origin is not possible and so µ = 1.

To exploit these considerations, the authors of Schmid and Ntogramatzidis (2012) aim at finding an
algorithm to construct a stabilizing feedback gain matrix K so that the error evolution e(t) can be
described by a particular combination of real exponential functions. This algorithm is an adaptation
of Moore’s one, introduced in (Moore, 1975, Proposition 1), to assign particular eigenstructure to the
closed-loop system.

Lemma 1. (Lemma 3.1 in Schmid and Ntogramatzidis (2012)) Let Λ = {λ1, . . . , λnx} be a self-conjugate
set of nx distinct complex numbers. Let S = {s1, . . . , snx} be a set of nx (not necessarily distinct) vectors
in Rny . Assume that, for each i = {1, . . . , nx}, the matrix equation[

A− λiI B
C D

] [
vi
wi

]
=

[
0
si

]
(1.42)

has solutions sets V = {v1, . . . , vnx} ⊂ Cnx and W = {w1, . . . ,wnx} ⊂ Cnu . Then, provided that V has
linearly independent elements, a unique real feedback matrix F exists such that, for all i = 1, . . . , nx,

(A+BF )vi = λivi (1.43)

(C +DF )vi = si. (1.44)

For square systems, i.e., ny = nu, if si = 0, then (1.42) is solvable for non trivial vi if and only if λi is
a zero of system (1.38). For arbitrary si 6= 0, then (1.42) is solvable if and only if λi is not a zero of
system (1.38). Assuming that the solution set V and W do exist and that V has all linearly independent
elements, then the feedback gain matrix K = ŴV̂−1, where the matrices V̂ and Ŵ, are constructed as

V̂ = [v1

... . . .
...vnx ] and Ŵ = [w1

... . . .
...wnx ], for real5 λi, i = 1, . . . , nx.

A particular choice of the λi values and of the vectors si, i = 1, . . . , nx, yields an exponential form of the
error function vector e(t), for t > 0, containing exactly one mode per component. Assume that system
(1.38) has at least nx−ny distinct minimum phase zeros, i.e., zeros in C−. Let {z1, . . . , znx−ny} be nx−ny
of such zeros and let {λnx−ny+1, . . . , λnx} be any real distinct stable modes not coincident with invariant
zeros of (1.38), construct the closed loop eigenvalues set Λ = {z1, . . . , znx−ny , λnx−ny+1, . . . , λnx}. With
e1, . . . , ep being the canonical basis of Rny , and si = 0 for i = 1, . . . , nx − ny, and snx−ny+j = ej , for
j = 1, . . . , ny, assume that elements of the solution set V are linearly independent6. Now introduce the

error coordinate x̃ = x−Πw, and x̃(0) = x(0)−Πw(0) and defied a =
[
a1 . . . anx

]T
= V̂ −1x̃(0). The

following Theorem describes the form of the error term.

Theorem 1.3.2 (Theorem 3.1 in Schmid and Ntogramatzidis (2012)). Assume that system (1.38) is
square and has at least nx − ny distinct minimum phase zeros. Let K = ŴV̂−1 obtained from the
above steps, let y? = Qw ∈ Rny be any step reference, and let (u(0), x(0), y(0)) be the initial equilibrium
configuration. Then, the error vector e(t) = y?− y(t) obtained from the closed loop (1.38)-(1.40), has the
form

e(t) =

anx−ny+1e
λnx−ny+1t

...
anxe

λnx t

 . (1.45)

Consider now the case in which system (1.38) has fewer than nx − ny minimum phase zeros and the
number of such asymptotically stable zeros can be written as nx − lny + q for some l and q. In final
goal is to obtain an error evolution with l (or less) modes per component, i.e., the number of exponential
terms in the error components. For simplicity, consider the case in which q = 0. Then choose Λ =
{z1, . . . , znx−lny , λnx−lny+1, . . . , λnx} where, zi, for i = 1, . . . , nx − lny, are the minimum phase zeros of
the system and λi, for i = nx − lny + 1, . . . , nx, are freely-chosen distinct real and stable eigenvalues not
coinciding with the zeros of (1.38). As above, take the si vectors as follows, for i = 1, . . . , nx − lny, let
si = 0, while for i = nx− lny +1, . . . , nx− lny + l, let si = e1, for i = nx− lny + l+1, . . . , nx− lny +2l, let
si = e2, etc.7, till for i = nx−l+1, . . . , nx, let si = ep, where {e1, . . . , ep}, as before, are the canonical basis

5For complex conjugate pair of eigenvalues λi, λi+1, we refer the reader to Schmid and Ntogramatzidis (2012)(Remark
3.1)

6Note that for the discussion above, thanks to the choice of the si and the λi for i = 1, . . . , nx, the solution sets V and
W always exist, we have no guarantee about the linear independence among the vectors in V

7One has to assign the j-th basis of Rny , ej to vectors si, for i = nx − lny + (j − 1)l, . . . , nx − lny + jl. Note that in
Schmid and Ntogramatzidis (2012) equation (16) has a typo in last row.
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of Rny . With this choice of the Λ and S the solution sets V and W always exist, but we have to further
assume that the vectors of V are all linearly independent. Now, denoting as vk,1, . . . , vk,l the eigenvectors
in V associated with the canonical basis ek, let λk,1, . . . , λk,l be the corresponding eigenvalues, without

loss of generality, ordered in increasing way. Denote, moreover, the coefficient a = V̂−1x̃(0), with elements
given by

a =
[
a1 · · · anx−lny

... a1,1

... a1,l

... · · · any,1 · · · any,l

]T
.

Then the following theorem holds.

Theorem 1.3.3 (Theorem 3.2 in Schmid and Ntogramatzidis (2012)). Assume that system (1.38) is
square and has exactly nx − lny distinct minimum phase zeros. Let K = ŴV̂−1 obtained from the
above steps, let y? = Qw ∈ Rny be any step reference, and let (u(0), x(0), y(0)) be the initial equilibrium
configuration. Then, the k-th component ek(t) of the error vector e(t) = y?−y(t) obtained from the closed
loop (1.38)-(1.40), has the form

ek(t) = ak,1e
λk,1t + ak,2e

λk,2t · · ·+ ak,le
λk,lt. (1.46)

If q > 0, then we have nx − l + q minimum phase zeros, and the additional minimum phase zeros must
be used in the design. This modifies the vectors si, so that, for i = 1, . . . , nx − lny + q, si = 0. Then, we
have to choose q of the outputs and allocate into them only l − 1 modes. In this case, the associated q
canonical basis vectors corresponding to such outputs need to be related to only l − 1 eigenvalues each.
The remaining ny − q will then have l modes, as shown for the case q = 0.

We now only need to characterize the conditions on such functions of exponential terms that imply
overshoot and undershoot in the output response, or equivalently in the error behaviour. In this respective,
denote by {λ1, . . . , λl} and {a1, . . . , al} , with λ1 < · · · < λl. define β : R→ R as

β(t) = a1e
λ1t + · · ·+ ale

λlt. (1.47)

Let Sc{a1, . . . , al} denote the number of sign changes in the sequence of coefficient {a1, . . . , al}, and

for an real interval [a,b] ⊆ R, let Zβ[a,b] denote the number of real roots of β in [a,b]. Let us also

introduce the values pi =
∑i
j=1 aj , for i = 1, . . . , l and qi = qi−1 + pi(λi − λi−1) for i = 1, . . . , l − 1 with

q0 = 0 and ql = pl. Also, introduce r1 =
∑i−1
j=0 al−j , for i = 1, . . . , l, and si = si−1 + ri(λl−i+1 − λl−i) for

i = 1, . . . , l−1 with v0 = 0 and sl = rl. We now need to introduce the next basic lemmas before providing
the design algorithm provided in Schmid and Ntogramatzidis (2012), whose proofs can be found in their
work.

Lemma 2 (Lemma 4.2 in Schmid and Ntogramatzidis (2012)). Let λ1 < λ2 < λ3 < 0, and, for any real
constants {a1, a2, a3} with a3 6= 0, define

β(t) = a1e
λ1t + a2e

λ2t + a3e
λ3t.

There exists a positive real t̄ such that β(t̄) = 0 if and only if one of the following conditions holds:

I Sc{a1, a2, a3} = 1 and (a1 + a2 + a3)a3 < 0;

II Sc{a1, a2, a3} = 2 and (a1 + a2 + a3)a3 ≥ 0;

III Sc{a1, a2, a3} = 2 and (a1 + a2 + a3)a3 < 0, with t > 0 and |γ(ts)| ≥ |a1 + a2 + a3|, where

t =
1

λ3 − λ1
ln

(
a1(λ2 − λ1)

a3(λ3 − λ2)

)

γ(t) = a1

(
1− e(λ1−λ2)t

)
+ a3

(
1− e(λ3−λ2)t

)
.

Lemma 3 (Lemma 4.3 in Schmid and Ntogramatzidis (2012)). Let λ1 < λ2 < 0, and, for any real
nonzero constants {a1, a2}, define

β(t) = a1e
λ1t + a2e

λ2t.

Let b = (a1 + a2)/µ, for some 0 < µ ≤ 1. Then there exists positive real t̄ such that β(t̄) = b if and only
if t and β(t)b ≥ b2, where

t =
1

λ2 − λ1
ln

(
−
a1λ1

a2λ2

)
.
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Lemma 4 (Lemma 4.4 in Schmid and Ntogramatzidis (2012)). Let λ1 < λ2 < λ3 < 0, and, for any
nonzero constants {a1, a2, a3}, define b = (a1 + a2 + a3)/µ, for some 0 < µ ≤ 1. Let

β(t) = a1e
λ1t + a2e

λ2t + a3e
λ3t

and consider pi, qi, ri, and si, for i =, . . . , l, defined as above Lemma2 and with l = 4. Then there exists
positive real t̄ such that β(t̄) = b only if at least one of the following conditions hold:

I Sc{q1, q2, q3, q4} ≥ 1;

II Sc{r1, r2, r3, r4} ≥ 1.

Lemma 5 (Lemma 4.5 in Schmid and Ntogramatzidis (2012)). For some positive integer l, let λ1 <
λ2 < · · · < λl < 0, and, for any nonzero constants {a1, a2, . . . , al}, define

β(t) = a1e
λ1t + a2e

λ2t + · · ·+ ale
λlt.

Then

(a) There exists positive real t̄ such that β(t̄) = 0 only if

Sc{q1, q2, . . . , ql} ≥ 1

or

Sc{r1, r2, . . . , rl} ≥ 1,

with qi and ri, i = 1, . . . , l defined as above Lemma 2;

(b) Let b =
∑l
i=1 ai/µ for some 0 < µ ≤ 1, and define al+1 = −b and λl+1 = 0. Then there exists

positive real t̄ such that β(t̄) = b only if

Sc{q1, q2, . . . , ql+1} ≥ 1

or

Sc{r1, r2, . . . , rl+1} ≥ 1,

with qi and ri, i = 1, . . . , l + 1 defined as above Lemma 2, in which last element of the sequence in
this case is indexed l + 1 rather then simply l.

In the end, the proposed algorithm in Schmid and Ntogramatzidis (2012) reads as follows:

(i) Begin by determining the number of minimum phase zeros of system (1.38), i.e., nx − lny + q, and
thus solve for l and q.

(ii) For a given initial condition x(0) and reference y? = Qw, determine Π and Σ from the regulator
equations (1.39) and obtain also x̃(0) = x(0)−Πw.

(iii) Choose a desired interval [a,b] of the real line (where a < b < 0), and form a candidate set
{λ1, . . . , λnx} of nx distinct closed-loop eigenvalues containing the nx− l+ny minimum phase zeros
of (1.38), and ny sets of l eigenvalues chosen from within [a,b].

(iv) Determine the target set {s1, . . . , snx} in accordance with the canonical basis of Rny , taking into
account the fact that q ≥ 0. Then solve (1.42), for i = 1, . . . , nx for the corresponding sets V and W
and check if V has linearly independent elements. If it is not, then return to Step (iii) and choose
an alternative set of eigenvalues within [a,b].

(v) Obtain the coordinate vector a = V−1x̃(0), and hence obtain the components ek of the tracking
error e = y? − y, for k = 1, . . . , ny;

(vi) For strictly proper systems, skip this step and proceed directly to Step (vii); For (exactly) proper
systems, solve ek(0+) = µek(0) for real scale µk, then

[a] For a step response without instantaneous overshoot, check that µk > 0

[b] For a step response without instantaneous undershoot, check that µk < 1 for k = 1, . . . , ny.
If not, return to Step (iii).
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(vii) If l = 1, proceed directly to next Step. For l ≥ 2, for k = 1, . . . , ny do the following :

[a] For a nonovershooting response, test each ek for the conditions in Lemma 2 if l ∈ {2, 3}, or
Lemma 5[(a)] if l ≥ 4;

[b] For a nonundershooting response, test each ek for the conditions in Lemma 3 if l = 2,
Lemma 4 if l = 3, or Lemma 5[(b)] if l ≥ 4;

[c] For a monotonic response, test each ėk for the conditions in Lemma 2 if l ∈ {2, 3}, or
Lemma 5[(a)] if l ≥ 4. In each case, if the conditions in the respective lemmas are satisfied for any
k ∈ {1, . . . , ny}, then the sets {λ1, . . . , λnx} and V are satisfactory. If not, then return to Step (iii).

(viii) Apply Moore’s algorithm to obtain the feedback matrix K = ŴV̂−1, and define the control action
u as in (1.40).

The main drawback of this approach is that, assuming that the solution sets can be found8, the solution
is not robust to parametric uncertainties of the plant, and it is thus almost impossible to obtain the same
theoretical results in a real plant controller implementation. Furthermore, no conditions are provided on
the choice of the eigenvalues that allow us to obtain a linearly independent set V. Indeed, the algorithm
works in a trial and error fashion with no guarantee of convergence on the desired solution.

1.3.6 Funnel control approach

In Berger (2020) instead, the analysis of the performance in terms of funnel control, i.e., the system output
time evolution is constrained to be in between upper and lower boundaries called funnel functions.
Consider a square LTI system with strict relative degree r in normal form realization, for notation
simplicity,

ż =Fz +Gy + dz(t)

ξ̇ =Hz + Āξ + B̄(bu+ Λξ) + dr(t)

y =C̄ξ

(1.48)

where dz(t) and dr(t) are external disturbances, and (Ā, B̄, C̄) is in prime form of dimension r. Assuming
that F is in block diagonal form

F =

F1 0 0
0 F2 0
0 0 F3

 , G =

G1

G2

G3


where σ(F1) ⊂ C−, σ(F2) ⊂ C+, and σ(F3) ⊂ iR, with (F,G) stabilizable9 (which is implied by assuming
that system (1.48) is stabilizable). Consider (F,G) controllable and define Γ = [0, . . . , b−1]C−1

z , where
Cz = [G,FG, . . . , Fnx−rG] is the controllability matrix associated to the (F,G) pair. In Berger (2020)
the author consider a particular form of controllability for the zero dynamics for rz m-tuples in the
elements of F and G we have [G,FG, . . . , F rz−1G] = Cz, being rz the controllability index of the system
zero dynamics with respect to its driving signal y(t). To deal with the stabilization of the system zero
dynamics, the author in Berger (2020) define a new auxiliary output ynew = Γz2, and obtain its rz-th
time derivative

y(rz)
new = ΓF̄2z2 + Γ−1y(t) + ΓF rz−1dz2

where dz2 is assumed to be zero to develop the proposed approach, thus by assumption we have

y(rz)
new = ΓF̄2z2 + Γ−1y(t), (1.49)

from which we can write

y(t) = Γy(rz)
new − Γz2.

Including now the time derivatives of y(t) in the successive time derivative of y
(rz+i)
new , for i = 1, . . . , r, we

have can write the complete ynew dynamics, whose relative degree becomes rz + r:

y(rz+r) =λnewξnew +H1z1 +H3z3 + Γ−1dr(t) + u(t)

ż1 =F1,newz1 +G1,newξnew + dz1

ż3 =F3,newz3 +G3,newξnew + dz1

8No guarantee on the existence of the solution sets V and W has been provided. This also implies that there is no
guarantee that the algorithm will eventually converge.

9In order to guarantee the controllability matrix invertibility
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where λnew and ξnew include the dynamics induced by the new output ynew definition so that ynew =

ξ1,new and y
(i−1)
new = ξi,new for i = 2, . . . , r+rz. We now need to define the new output reference trajectory,

y?new, by solving the initial value problem associated with the steady state of the z2 dynamics, i.e. compute
z?2(0) such that

ż?2 =F2z
?
2 +G2y

?

y?2 =Γz?2

such that z?2(t) is bounded for all t ≥ 0 and continuously differentiable r+ rz times. Such a solution can
be analytically computed as

z?2(0) = −
∫ ∞

0

e−F2sG2y
?(s)ds

for which y?(t) must be known for all t ≥ 0.

Then, the proposed controller design is based on a back-stepping approach Sepulchre et al. (2012) to
apply a funnel control strategy. Indeed, defining

e0 = ynew − y?new
e1 = ė0 +K0e0

. . .

ei = ėi−1 +Ki−1ei−1, i = 2, . . . , r + rz − 1

(1.50)

with Ki = (1− φi(t)2‖ei(t)‖2)−1, for i = 0, . . . , r + rz − 1, and control law

u(t) = −Kr+rz−1er+rz−1 (1.51)

where φi(t), i = 0, . . . , r+rz−1, are the funnel functions determining the boundaries of the relative error
evolutions. Such φi ∈ Φr+rz−i, for i = 0, . . . , r + rz − 1, where the class functions Φj are defined as

Φj =
{
φ ∈ Cj(R+ → R), s.t. φ, . . . , φ(j) are bounded, φ(t) > 0,∀t ≥ 0, and lim inf

t→∞
φ(t) > 0

}
.

In Berger (2020) the following theorem has been proven.

Theorem 1.3.4 (Theorem 3.3 in Berger (2020)). Consider the linear system (1.48) with strict relative
degree r, with (F,G) stabilizable and dz2 = 0. Let y? ∈ Cr(R+ → R) and φi ∈ Φr+rz−i, for i =
0, . . . , r + rz − 1. Then the closed loop system (1.48)-(1.51), has the following properties

� all signals z, ξ, z?2 , u,K0, . . . ,Kr+rz−1 are bounded.

� the error signals e1, . . . , er+rz−1 evolve uniformly within the respective performance funnels
functions, that is ∀i = 0, . . . , r + rz − 1, there exists εi > 0 such that

|ei(t)|2 ≤ φ−1
i (t)− εi, ∀t ≥ 0.

In Berger (2020) it is shown that the initial tracking problem, according to the error signal e(t) =
y(t)− y?(t), is achieved with some funnel performances, i.e.,

‖e(t)‖ = ‖y(t)− y?(t)‖ ≤
rz+1∑
i=1

αi(φ
−1
i−1 + Γ̄i−2)

for some αi and Γ̄i−2 for i = 1, . . . , rz + 1. Then controller (1.51) achieves the prescribed performance
of the original tracking error, i.e., for any φ ∈ Φ0, we have ‖e(t)‖ ≤ φ−1(t) for all t ≥ 0 such that
φ(0)‖e(0)‖ < 1.
Unfortunately, as reported in Berger (2020), a general procedure to construct φ0, . . . , φr+rz−1, and
k0, . . . , kr+rz−1, for a given desired performance φ ∈ Φ0 is not available. The author proposes to design
such a function via offline simulation.
Moreover, the approach is not robust to parameter uncertainties while the knowledge of the future
behaviour of the output reference signal may not be available. Thus, the approach is again very difficult
to implement in a real plant controller.
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1.4 Performance limits in non-minimum phase: nonlinear
systems

1.4.1 Performance limitations

The same idea of section 1.3.4 can be extended to the case of nonlinear non-minimum phase systems.
In Lau et al. (2003), the authors consider a SISO nonlinear system

ξ̇ = F (ξ, z, u)

ż = F0(z, y)

y = H(ξ)

(1.52)

with ξ ∈ Rr and z ∈ Rnx−r, where r is the output relative degree uniformly defined.
Denote by φ(t, z0, y) the solution of the zero dynamics starting at initial condition z(0) = z0.
Assume that for every ȳ in R, ż = F0(z, ȳ) has a unique equilibrium point z̄ which implies 0 = F0(z̄, ȳ).
Moreover, assume, without loss of generality, that the state space origin is an equilibrium for the zero
dynamics, i.e., F0(0, 0) = 0.
Such an equilibrium point z̄ is unstable if it is not (locally) asymptotically stable. It is anti-stable if
ż = −F0(z, ȳ) is (locally) asymptotically stable. The zero dynamics are unstable (antistable) if, for all
ȳ, the corresponding equilibrium point is unstable (antistable). If z̄ is unstable then the stable manifold
Mz̄, corresponding to z̄, is given by

Mz̄ =

{
z0 ∈ Rnx−r : lim

t→+∞
φ(t, z0, ȳ) = z̄

}
. (1.53)

Recall that, for each γ ≥ 0, Yγ is the set of functions y satisfying y(t) ≥ −α for all t > 0.
They thus concern with the problem of taking the system from rest to the equilibrium y(t) = ȳ > 0. This
is equivalent to finding y(t), which satisfies the following constraints:

lim
t→+∞

y(t) = ȳ (1.54a)

lim
t→+∞

φ(t, 0, y) = z̄. (1.54b)

We say that y has an exact finite settling time T if y(t) = ȳ for all t > T .
Now, consider the system described by (1.52). For each triple (z0, α, T ) the reachable set, Rz0,α,T is the
set given by

Rz0,α,T =
{
zR ∈ Rnx−r : ∃y ∈ Yγ s.t.φ(T, z0, y) = zR

}
and a set S ⊆ Rnx−r is reachable if S ⊆ Rz0,α,T . A set Su ⊆ Rnx−r is unreachable if Rz0,α,T ⊆ Scu,
where Scu = Rnx−r/Su.

We observe that if y satisfies constraints (1.54a) and (1.54b), and z̄ is un- stable, then y must stabilise
the zero dynamics by driving z to Mz̄. Thus the following lemma holds.

Lemma 6. Consider the system described by (1.52). Suppose that assumptions above are satisfied, ȳ > 0
and y1 satisfies constraint (1.54b). Then, the following statements hold

� If the open set Su is unreachable for all y(t) ∈ Y0 (and for all t > 0), and z̄ ∈ Su, then y1 must
undershoot.

� If Tes(y1) = T , and Mz̄ is unreachable at t = T for all y(t) ∈ Yγ , then rus(y1) ≥ γ/ȳ.

For a scalar zero dynamics case, i.e.,

ż = F0(z, y) = f0(z) + g0(z)y, z(0) = 0 (1.55)

where z ∈ R, f0(z) is continuous and increasing (df0/dz > 0 almost everywhere), f0(0), and g0(z) has
positive sign for all z, without loss of generality. Note that the conditions on f0 ensure that the system
satisfies the above assumptions. Suppose that y is required to track a step of height ȳ > 0. Let the
corresponding equilibrium point be z̄. We have z̄ > 0 because f(z̄) = −g(z̄)ȳ < 0. z̄ is also anti-stable
because f0 is an increasing function. Hence y(t) must drive z to z̄. Then we have the following.

Lemma 7. Consider the previous system. Suppose that y(t) ∈ Yγ and let zγ(t) be the solution to initial
value problem (1.55) with y(t) = −γ, z(t) > zγ .

Suppose that y ∈ Y0. When γ = 0, zγ(t) = 0. Thus, have from the proposition, z(t) ≥ 0 for all t. But
then z̄ is unreachable, and so y must undershoot.
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1.4.2 Cheap control problem analysis

In Seron et al. (1999) the authors extend the results obtained in Qiu and Davison (1993) to the case of
nonlinear systems. In particular, they consider a specific class of systems, i.e., square and with a global
unitary relative degree so that the system dynamics can be represented in the following normal form

ẏ = f(y, z) + g(y, z)u, y, u ∈ Rnu

ż = f0(z) + g0(z)y, z ∈ Rnx−nu
(1.56)

where f(0, 0) = 0 and f0(0) = 0. In these coordinates, the system zero dynamics is given by ż = f0(z),
as introduced in Isidori (2013). They assume that

Assumption 1.4.1. There exists a γ > 0 such that the smallest singular value of g(y, z) is greater than
or equal to γ for all y and z.

For such a system, the cheap optimal control problem consists of finding a feedback control u which
guarantees asymptotic stability and minimizes the cost functional Jε in (1.15) with ε > 0 is small.
The problem has a solution if there exists a positive semidefinite optimal value V (y, z; ε) satisfying the
Hamilton-Jacobi-Bellman (HJB) equation

∂V

∂y
f(y, z) +

∂V

∂z
[f0(z) + g0(z)y] +

1

2
yT y −

1

2ε

∂V

∂y
g(y, z)T g(y, z)

∂TV

∂y
= 0, V (0, 0; ε) = 0 (1.57)

and such that the feedback control

u = −
1

ε2
gT (y, z)

∂TV

∂y
(1.58)

asymptotically stabilizes (1.56). Due to the singularity that raises in the HJB equation (1.57) for ε→ 0,
they propose to solve the equation by seeking a solution in the form

V (y, z; ε) = V0(z) + εV1(y, z) +O(ε2) (1.59)

thus, obtaining

∂V0

∂z
[f0(z) + g0(z)y] +

1

2
yT y −

1

2

∂V1

∂y
g(y, z)T g(y, z)

∂TV1

∂y
+O(ε2) = 0. (1.60)

Assume that

Assumption 1.4.2. the zero dynamics is antistable, i.e., ż = −f0(z) is asymptotically stable, and there
exists a positive definite function V0(z) satisfying the HJB equation

∂V0(z)

∂z
f0(z)−

1

2

∂V0(z)

∂z
g0(z)gT0 (z)

∂TV0

∂z
= 0, V0(0) = 0 (1.61)

such that the feedback control

y? = −gT0 (z)
∂TV0(z)

∂z
(1.62)

achieves global asymptotic stability of the system (1.56) zero dynamics.

This is associated with the optimal control problem

min
y

∫ ∞
0

zT z + yT ydt

subj to ż = f0(z) + g0(z)y.

(1.63)

Considering such analysis in the cheap control problem on the initial system we can slightly modify the
HJB equation in (1.57) by adding and subtracting y?T y?/2 we can write

1

2
(y − y?)T (y − y?)−

1

2

∂V1(z, y)

∂y
g(y, z)gT (y, z)

∂TV1

∂y
= O(ε). (1.64)

Hence, by defining the output transitory behaviour as ỹ = y − y? and letting ε→ 0, the HJB becomes

1

2
ỹT ỹ −

1

2

∂V1(ỹ + y?, z)

∂ỹ
g(ỹ + y?, z)gT (ỹ + y?, z)

∂TV1(ỹ + y?, , z)

∂ỹ
= 0. (1.65)
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Thus the solution of the original cheap control corresponds to

min
u

∫ ∞
0

ỹT (t)ỹ(t) + ε2uT (t)u(t)dt

subj to ˙̃y = g(ỹ + y?(z), z)u.

(1.66)

with z being a constant. The optimal value for this problem is given by εV1(ỹ+ y?(z), z) and the optimal
control law is given by

u =
1

ε
gT (ỹ + y?(z), z)

∂TV1

∂ỹ
=

1

ε
gT (ggT )−

1
2 ỹ. (1.67)

Via a singular perturbation analysis, we can write the system in the new coordinates (ỹ, z)

˙̃y = ẏ − ẏ?(z)

= f(ỹ + y?, z)−
1

ε
(ggT )

1
2 ỹ −

∂y?(z)

∂z

[
f0(z)− g0(z)gT0 (z)

∂TV0(z)

∂z
+ g0(z)ỹ

]

ż = f0(z)− g0(z)gT0 (z)
∂TV0(z)

∂z
+ g0(z)ỹ

(1.68)

that can be easily put in singular perturbation form

ε ˙̃y = −(ggT )
1
2 ỹ + εf(ỹ + y?, z)− ε

∂y?(z)

∂z

[
f0(z)− g0(z)gT0 (z)

∂TV0(z)

∂z
+ g0(z)ỹ

]

ż = f0(z)− g0(z)gT0 (z)
∂TV0(z)

∂z
+ g0(z)ỹ

(1.69)

from which we can find the boundary layer of the ỹ obtained by considering ε = 0 in the first equation of
(1.69), yielding ỹ = 0, and thus the system dynamics reduces to the slow subsystem

ż = f0(z)− g0(z)gT0 (z)
∂TV0(z)

∂z
(1.70)

which is globally asymptotically stable by the properties of V0(z). We can analyze the convergence
properties to the boundary layer by considering a change of the time scale defining τ = ε−1t

dỹ

dτ
= −(ggT )

1
2 ỹ + εf(ỹ + y?, z)− ε

∂y?(z)

∂z

[
f0(z)− g0(z)gT0 (z)

∂TV0(z)

∂z
+ g0(z)ỹ

]
(1.71)

that, for ε sufficiently small, can be approximated to

dỹ

dτ
= −(ggT )

1
2 ỹ (1.72)

which is globally exponentially stable by the properties of the function V1.
To guarantee the asymptotic stability of the closed loop system, we need to introduce some assumptions
on the interconnection with the zero dynamics in the ỹ one, i.e., the term

φ(ỹ, z) = f(ỹ + y?, z)−
∂y?(z)

∂z

[
f0(z)− g0(z)gT0 (z)

∂TV0(z)

∂z
+ g0(z)ỹ

]
.

Lemma 8. Assume ‖φ(ỹ, z)‖ ≤ k1‖ỹ‖ + k2‖y?(z)‖, in Bδ for some positive real k1, k2 and δ. Then,
under Assumption 1.4.1, to each R > 0 there corresponds an εR > 0 such that for all ε ∈ (0, εR] the
equilibrium (ỹ, z) = (0, 0) of (1.69) is asymptotically stable and its basin of attraction contains BR

Limitations to Nonlinear Ideal Performances

The analysis above has decomposed the optimal cheap control problem into two separate subproblems:
a minimum energy problem for asymptotic stabilization of the system zero dynamics and a cheap control
problem for asymptotic stabilization of the boundary-layer subsystem (1.71). For ε→ 0 the ỹ dynamics
in (1.69) tends to zero instantaneously and the solution of (1.69) settle on the slow invariant manifold
in which the z dynamics is controlled by the stabilizing action y?(z). Due to its definition, the cost of
ỹ stabilization, εV1(ỹ + y?, z), decreases as ε → 0. What remains is the cost V0(z) of the zero dynamics
stabilization. Hence, the overall stabilization cost cannot be reduced below V0(z) as described in the
following Theorem.
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Theorem 1.4.1. Under the same conditions of Lemma 8, for every initial condition (y(0), z(0)) of (1.56)
for which the cheap control problem (1.15) has a solution, the optimal value satisfies

J?ε = V (y(0), z(0); ε) = V0(z(0)) +O(ε) (1.73)

and thus the ideal performance is V0(z(0)), the optimal value of the minimum energy problem for the
zero-dynamics of (1.56) controlled by the output y.

Thus, the lowest attainable L2 norm of the output of (1.56) is the least amount of energy required to
stabilize the unstable zero dynamics.
It is also possible to find a nonlinear analogue of the property that, as ε → 0, the finite poles of the
optimal linear system converge to the mirror image of the NMP zeros. An expression of this property
is that the zero dynamics are ‘as stable in the closed loop as they are unstable in the open loop’. Using
V0(z) as a Lyapunov function we reveal an analogous property for the nonlinear zero dynamics in

Corollary 1.4.1. For the open and closed loop zero dynamics, V0(z) satisfies

∂V0

∂z
f0(z) = −

∂V0

∂z
[f0(z) + g0(z)y?(z)] .

Which is immediate from the Hamilton-Jacobi-Bellman equation (1.61).

1.4.3 Path-following as an alternative to output tracking

In Aguiar et al. (2008) the authors extend their previous results Aguiar et al. (2005) for path following
linear case, to nonlinear systems by developing a local analysis on the system behaviour and considering
a linear exosystem dynamics.
The class of system under consideration is one of the nonlinear square systems which are locally
diffeomorphic to systems in the strict-feedback form

ż = f0(z) + g0(z)ξ1

ξ̇1 = f1(z, ξ1) + g1(z, ξ1)ξ2

. . .

ξ̇r = fr(z, ξ1, . . . , ξr) + gr(z, ξ1, . . . , ξr)ξ2

y = ξ1

with ξi ∈ Rnu , for i = 1, . . . , r, z ∈ Rnx−rm, u ∈ Rnu . fi(·) and gi(·) are Ck functions of their arguments
(for some large k), fi(0, . . . , 0) = 0 and the matrices gi(· · · ), i = 1, . . . , r, are always non-singular. And
moreover we assume the system is at rest, i.e., (z(0), ξ(0)) = (0, 0).
The nonlinear reference tracking problem considers a reference signal r ∈ Rny generated by a known
exosystem

ẇ = s(w), s(0) = 0

r = q(w)
(1.74)

and the problem refers to finding a feedback controller such that the closed-loop system is asymptotically
stable and the output y converges to r. Isidori and Byrnes (1990) show that for a system of the form

ẋ = f(x, u), y = h(x, u)

the problem is solvable if and only if there exists smooth maps Π(w) and c(w) satisfying

∂Π

∂w
s(w)− f(w, c(w)) = 0, Π(0) = 0

h(Π(w), c(w))− q(w) = 0, c(0) = 0.

(1.75)

The necessary and sufficient conditions, specialized for system (1.4.3), hence the reference-tracking
problem is solvable, if and only if there exists maps Π = col (Π0,Π1, . . . ,Πr), Π0 : Rnw → Rnx−rm,
Πi : Rnw → Rny , i = 1, . . . , r and c : Rny → Rnu that satisfy (1.75). Consider the following locally
diffeomorphic change of coordinates

z̃ = z −Π0(w) (1.76a)

ξ̃i = ξi −Πi(w), i = 1, . . . , r (1.76b)

ũ = u− c(w) (1.76c)
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transforms system (1.4.3) into the error system

ż = f̃0(z̃, w) + g̃0(z̃, w)ξ̃1

˙̃
ξ1 = f̃1(z̃, ξ̃1, w) + g̃1(z̃, ξ̃1, w)ξ̃2

. . .

˙̃
ξr = f̃r(z̃, ξ̃1, . . . , ξ̃r) + g̃r(z̃, ξ̃1, . . . , ξ̃r)ξ̃2

e = ξ̃1

(1.77)

where f̃i, g̃i, i = 0, 1, . . . , r are appropriately defined functions satisfying f̃(0, w) = 0, g̃(z̃, 0) = g0(z̃),
f̃i = (0, . . . , 0, w) = 0 and g̃i(z̃, . . . , ξ̃i, 0) = gi(z̃, . . . , ξ̃i).
Also in this case, as for the linear one in section 1.3.2, we consider two optimal control problems: cheap
control and minimum energy problems.
Cheap control problem: For system consisting of the error system (1.77) and exosystem (1.74) with initial
condition (z̃(0), ξ̃(0), w(0)) = (z̃0, ξ̃0, w0), find the optimal feedback law ũ = κ(z̃, ξ̃, w) that minimizes the
cost functional

Jδ,ε =
1

2

∫ ∞
0

(
‖e(t)‖2 + δ‖z̃(t)‖2 + ε2r‖ũ(t)‖

)
dt (1.78)

for δ, ε > 0. We denote by J?δ,ε(z̃0, ξ̃0, w0) the corresponding optimal value. The best attainable cheap
control performance for reference tracking is then

JT = lim
(δ,ε)→0

Jδ,ε(z̃0, ξ̃0, w0).

In some neighborhood of the origin and for every δ, ε > 0, the value Jδ,ε is Ck−2 under the following
assumption

Assumption 1.4.3. The linearization around (z, ξ) = (0, 0) of system (1.4.3) is stabilizable and
detectable and the linearization around w = 0 of the exosystem dynamics (1.74) is stable.

Minimum-energy problem: For system

˙̃z = f̃0(z̃, w) + g̃0(z̃, w)e, z̃(0) = z̃0 (1.79a)

ẇ = s(w), w(0) = w0 (1.79b)

with e viewed as the input, find the optimal feedback law e = κe,δ(z̃, w) that minimizes the cost

Je,δ =
1

2

∫ ∞
0

(
δ‖z̃(t)‖2 + ‖e(t)‖2

)
dt

for δ > 0. We denote by J?e,δ(z̃0, w0) the corresponding optimal value. Under Assumption 1.4.3,

J?e,δ(z̃0, w0) is Ck−2 in some neighborhood of (0, 0).
Their analysis reveals that the best-attainable cheap control performance JT is equal to the least control
effort (i.e., as δ → 0) needed to stabilize the corresponding zero dynamics (1.79a) driven the tracking
error e. The following theorem summarises the analysis.

Theorem 1.4.2. Suppose that Assumption 1.4.3 holds and that the regulator equations (1.75) has
a solution in some neighborhood of w = 0. Then, for any (z̃(0), ξ̃(0), w(0)) = (z̃0, ξ̃0, w0) in some
neighborhood of (0, 0, 0) there exists a solution to the cheap control problem and JT = limδ→0 Je,δ.

They show that the pah-following case can be solved with arbitrarily small L2 norm of e. For the path
following analysis, we define the corresponding cheap control problem by replacing the definition of the
exosystem dynamics and, as a consequence, of the regulator equations. They focus their attention on
linear exosystem dynamics, in particular, (1.74) are defined as a geometric path parameterized in theta
along with the timing law

θ̇(t) = vd, θ(0) = θ0 (1.80a)

∂w

∂θ
(θ) = Sw(θ), w(0) = w0 (1.80b)

r(t) = Qw(θ(t)) (1.80c)

equivalently resulting in
ẇ(t) = vdSw(t), r(t) = Qw(t) (1.81)

31



where vd will be properly defined according to the desired optimal cost. Consequently, the regulator
equations are

vd
∂Π

∂w
Sw − f(Π(w), c(w)) = 0

h(Π(w), c(w))−Qw = 0.

(1.82)

The result is summarized in the next Theorem.

Theorem 1.4.3. Assume that (1.82) has a solution for almost all vd in (0,∞). Then, for every w(0) =
w0 in a neighborhood around w = 0, there exist a timing law (1.80a) for θ(t) and a feedback law

u = c(w) + κe,δ(z, ξ, w) (1.83)

which solves the geometric path following problem, i.e., the e(t) = y(t)−r(t) goes to zero while the system
state is bounded, by satisfying ∫ ∞

0

‖e(t)‖2dt ≤ δ?. (1.84)

Proof. We sketch the proof, since J?δ,ε = limδ→0 Je,δ, it can be shown that Je,δ is bounded by

Je,δ ≤
1

2
z̃T0 P0z̃0

where P0 is positive definite and does not depend on vd. Observing that z̃0 = Π0(w0), since z(0) = 0,
and that ‖Π0(w0)‖ can be made arbitrarily small by choosing a sufficiently large vd. Hence, δ? in (1.84)
can be taken arbitrarily small.

Moreover, an arbitrarily small L2 norm of the path-following error is attainable even when the speed vd
is specified beforehand.

Theorem 1.4.4. Consider vd to be specified so that (1.82) has a solution in some neighborhood of w = 0.
Then, ∫ ∞

0

‖e(t)‖2dt ≤ δ?

can be satisfied for any δ? > 0 with a suitable timing law θ(t) and a control law u = c(w) +κ(z, ξ, w) with
time-varying piecewise-continuous maps c(w) and κ(z, ξ, w).
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Chapter 2

Stabilization of Non-minimum Phase
Linear Systems via Inner-Outer
Decomposition

The general idea behind the Inner-Outer decomposition is to describe a non-minimum phase system
into a minimum phase system (the outer factor) driving a non-minimum phase one (the inner factor).
The latter dynamics is stable but contains all the ugly non-minimum phase characteristics of the plant.
Moreover, by stabilizing the outer system, the inner trajectories stay bounded and eventually stabilize by
themselves. By exploiting this property, one can ideally think to feedback the output of the outer system
yo(t), or the whole outer state xo as depicted in Fig.2.1, and exploit any of the available tools from the
literate to design a controller for the outer system (which is minimum phase) and solve the stabilization
problem of a non-minimum phase system. By exploiting this Inner-Outer decomposition, we can analyze

Go(s) Gi(s)
u(t) yo(t) y(t)

xo(t)

Figure 2.1: Inner-Outer decomposition Cascade system

the feedback control characteristic to make the output trajectory of a non-minimum phase system, y(t),
to be arbitrarily close to the output trajectory of its minimum phase ‘twin ’system (the outer factor, up
to a sign change).
In this chapter, we describe how to obtain an Inner-Outer decomposition for strictly linear systems and
how to stabilize a controllable and observable linear non-minimum phase systems.
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2.1 Preliminaries

2.1.1 Modal subspaces: stable and unstable eigenspaces

We give the definition of Modal Subspaces for a n-dimensional matrix as introduced in Francis
(1987)[Ch.7].
Considering a nonsingular matrix A in Rn×n (with no eigenvalues on the imaginary axis) and let pA(λ)
be the characteristic polynomial of A factorized as pA = pA− · pA+

, where the pA− (pA+
) has all its zeros

s with Re{s} < 0 (Re{s} > 0). We call the modal subspaces of Rn relative to A are

X−(A) = ker pA−(A)

X+(A) = ker pA+
(A).

It can be shown that X−(A) (X+(A)) is also spanned by the generalized real eigenvectors v− (v+) of A
associated to the eigenvalues λ− (λ+) with negative (positive) real part, i.e. Re{λ}− < 0 (Re{λ}+ > 0).
The two modal subspaces are complementary, not generally orthogonal, that is they are independent and
their direct sum is equivalent to the whole Rn

Rn = X−(A)⊕X+(A).

The modal subspaces are the stable and unstable eigenspaces of A, i.e., the spaces spanned by the stable
and unstable eigenvectors associated with the stable and unstable eigenvalues of A.

2.1.2 Modal subspaces of Hamiltonian matrix

A 2n-dimensional Hamiltonian matrix is a matrix of the form

HM =

[
A −R
−Q −AT

]
(2.1)

where A, Q, R are n× n matrices, in particular, Q and R are symmetric. It is also very well-known that
HM and −HMT are similar matrices, i.e. for each eigenvalue of HM , λ, also −λ is a HM eigenvalue,
see also Isidori (2017)[A.6]. Clearly, the stable and unstable eigenspaces of HM live in R2n. To the
Hamiltonian Matrix, HM , we associate the Algebraic Riccati Equation (ARE)

ATP + PA− PRP +Q = 0. (2.2)

In case R = 0 and A Hurwitz, the Algebraic Riccati Equation (2.2) is a Lyapunov equation

ATP + PA+Q = 0 (2.3)

has a unique, positive solution P. We now recall some theorems from Francis (1987)[Ch.7].

Lemma 9. Let A be Hurwitz and R = 0 in HM , then the stable and unstable eigenspaces relative to
HM are

X−(HM) =span

(
0
I

)
X+(HM) =span

(
I
P

)
where P is the solution of (2.3).

In case R 6= 0 and HM has no eigenvalues on the imaginary axis, the associated ARE (2.2), because
HM is antisymmetric, it must have two n-dimensional modal subspaces. The following theorem holds

Theorem 2.1.1. Assuming HM has no eigenvalues on the imaginary axis and (A,R) is a stabilizable

pair, then the stable modal subspace X−(HM) is complementary to the span
(
0 I

)T
.

Moreover, there exists a unique matrix P such that

X−(HM) = span

(
I
P

)
.

Such an P results to be symmetric, i.e. P = PT , and a stabilizing solution of the ARE (2.2), i.e. A−RP
is Hurwitz.

A proof of these theorems can be found in Francis (1987)[Ch.7] and Isidori (2017)[A.6].
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2.1.3 Spectral factorization and Inner-Outer decomposition for proper Linear
Time Invariant systems

We now introduce the standard Inner-Outer decomposition for Linear Time Invariant (LTI) proper
systems as presented in Chen and Francis (1989) and exploited in Qiu and Davison (1993). This allows
to connect the concepts introduced in section 2.1.1
Given a LTI proper system with minimal realization (A,B,C,D), with transfer matrix

G(s) = C (sI −A)
−1
B+D, by defining G?(s) its adjoint system, i.e. G?(s) = GT (−s), to do the spectral

factorization of G(s) corresponds to find a transfer matrix Go(s) such that G?(s)G(s) = G?o(s)Go(s).
We call a matrix G(s) inner if A transfer matrix G(s) is said to be outer if it is minimum phase and
wide (i.e., if it has more columns than rows), while G(s) is said to be inner if it is stable, tall (i.e., its
transpose is wide), GT (−s)G(s) = I, ∀s ∈ C, and its zeros are all in C+. Moreover, an inner transfer
matrix is by definition an all-pass system and thus proper.

Lemma 10 (Lemma 2 in Qiu and Davison (1993)). Given a system with minimal realization (A,B,C,D)
and its associated transfer matrix

G(s) = C(sI −A)−1B +D,

it can always be factorized as G(s) = Gi(s)Go(s) such that Gi(s) is an inner matrix and Go(s) is minimum
phase and right invertible, thus outer. Moreover, all unstable poles of G(s) are poles of Go(s).

In particular, finding the outer factor Go(s) is equivalent to do the spectral factorization for G(s).
The standard state space approach to find the inner and outer factors starts by considering the realization
of the cascade G?(s)G(s), i.e. (Ã, B̃, C̃, D̃), where

Ã =

[
A 0

−CTC −AT
]
, B̃ =

[
B

−CTD

]
, C̃ =

[
DTC BT

]
, D̃ =

[
DTD

]
.

assuming no zeros on the imaginary axis and D̃ nonsingular. We relate the matrices realization of the
cascade G?(s)G(s) to the Hamiltonian Matrix

˜HM = Ã− B̃D̃−1C̃ =

[
A−B(DTD)−1DTC −B(DTD)−1BT

−CT
[
I −D(DTD)−1DT

]
C −AT + CTD(DTD)−1BT

]
.

Lemma 11 (Lemma 1 in Chen and Francis (1989)). Assuming G(s) has no transmission zeros on the
imaginary axis and D̃ nonsingular, then there exists a unique symmetric matrix P such that the stable

eigenspace of ˜HM , X−( ˜HM) = span
(
I P

)T
.

Moreover, the spectral factor Go(s) of G(s) with realization (A,B,Co, Do) where

Co = (DTD)−
1
2

(
DTC +BTP

)
, Do = (DTD)

1
2

Thus we can conclude, via the respective Hamiltonian matrices, that G?(s)G(s) = G?o(s)Go(s). Hence,
by computing the stabilizing solution P of the associated ARE (2.2), we obtained the outer factor
Go(s) of the G(s) decomposition and we can simple define the inner factor Gi(s) := G(s)G−1

o (s),
where G−1

o (s) is the right inverse of the outer factor Go(s). The realization of the inner factor is(
A+BK,B

(
DTD

)− 1
2 , C +DK,D

(
DTD

)− 1
2

)
, with K = −

(
DTD

)−1 (
DTC +BTP

)
.

In Chen and Francis (1989), is presented also the case in which the D̃ is not invertible, we report here
the main result of the work

Lemma 12 (Th.1 in Chen and Francis (1989)). Assuming G(s) has no transmission zeros on the

imaginary axis and DTD singular, define E = DT
(
DDT

)−2
D and the system associated ARE

(
A−BEDTC

)T P + P
(
A−BEDTC

)
− PBEBTP = 0. (2.4)

Then, the realization of outer factor Go(s) is (A,B,Co, D), with Co = C + DEBTP, and Gi(s) =
G(s)G+

o (s), with G+
o (s) being the right-inverse of Go(s), where P is the stabilizing solution of (2.4), i.e.

(A−BE(DTC +BTP), B(I −DT (DDT )−1D)) is stabilizable pair.

The proof of this lemma can be found in Chen and Francis (1989)[Sec.3].
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Simple example

To simply get the idea of the Inner-Outer decomposition, consider the SISO non-minimum phase system

G(s) =
s2 − 2s

(s+ 1)3
(2.5)

In order to obtain the outer factor we have to construct a transfer function Go(s) that is minimum phase
such that G?o(s)Go(s) = G?(s)G(s), i.e.

G?(s)G(s) =
−s(−s− 2)

(−s+ 1)3

s(s− 2)

(s+ 1)3
. (2.6)

The outer transfer function has the same poles as the initial system, thus it is

Go(s) =
s2 + 2s

(s+ 1)3
. (2.7)

We can simply obtain the inner system transfer function by considering

Gi(s) =
s− 2

s+ 2
. (2.8)

Thus, we can write G(s) = Gi(s)Go(s)

s2 − 2s

(s+ 1)3
=
s− 2

s+ 2
· s(s+ 2)

(s+ 1)3
(2.9)

2.2 The Inner-Outer decomposition for strictly proper systems

While in section 2.1.3 we studied the existence of the Inner-Outer factorization for general proper transfer
matrices. We now extend the Inner-Outer decomposition in the state space to the case of strictly proper
systems. And as a first result of this thesis, we propose an alternative (closed) form solution of the
decomposition for strictly proper of the Inner-Outer factors systems matrices realization.
We introduce the Inner-Outer factorization by first describing the properties of inner and outer systems.

Definition 1 (Inner system, Qiu and Davison (1993)). A system with minimal realization (A,B,C,D)
is said to be inner if A is Hurwitz, ny ≥ nu, σ(A − BD−1C) = σ(−A) (thus all zeros are in C+ and
mirror the eigenvalues of A).

Moreover, by defining the controllability and observability Grammian as the solution of the following
Lyapunov equations

AGc + GcAT = −BBT

ATGo + GoA = −CTC
(2.10)

for a balanced realization (as introduced in Glover (1984)) of a inner system (A,B,C,D), see Glover
(1984) and Qiu and Davison (1993), we have

� Go = Gc

� DTD = I

� DTC +BT = 0 and DBT + C = 0.

Definition 2 (Outer system). A system (A,B,C) is said to be outer if ny ≤ nu, and all its zeros are in
C−.

For the sake of completeness, we also recall the definition of inner and outer systems introduced in Francis
(1987)[Ch. 7] and Chen and Francis (1989) involving transfer matrices. A transfer matrix G(s) is said
to be outer if it is wide (i.e., if it has more columns than rows) and right-invertible (hence, its right
inverse is analytic in C+) hence minimum phase, while G(s) is said to be inner if it is stable, tall (i.e.,
its transpose is wide), its zeros are all in C+, and GT (−s)G(s) = I, ∀s ∈ C. Hence, an inner transfer
matrix is by definition an all-pass system and thus proper.
The standard Inner-Outer factorization problem considered in the literature as only be described in the
frequency domain case and reads as follows. Given an arbitrary transfer matrix G(s), determine two
transfer matrices Gi(s) and Go(s) such that G(s) = Gi(s)Go(s) where Gi(s) is inner and Go(s) is outer.
G(s) = Gi(s)Go(s) defines an Inner-Outer factorization of G(s).

36



Lemma 13 (Lemma 2 in Qiu and Davison (1993)). Consider a system with minimal realization
(A,B,C,D). Its associated transfer matrix G(s) = C(sI − A)−1B + D can always be factorized as
G(s) = Gi(s)Go(s) such that Gi(s) and Go(s) are respectively an inner and outer transfer matrix.
Moreover, all unstable poles of G(s) are poles of Go(s).

Lemma 13 guarantees the existence of the Inner-Outer factorization for general proper transfer matrices.
We extend this I/O result by first presenting an Inner-Outer decomposition in the state space to the case
of strictly proper systems.

Remark 1. Note that by the properties of the inner factor, we can exploit and solve the spectral
factorization problem to determine the outer factor of the system and then compute the inner factor.
Usually, this last term is obtained by inverting the outer factor and post-multiply the initial system by the
outer right inverse, i.e., Gi(s) = G(s)G+

o (s), being G+
o (s) right inverse of Go(s).

In this work, we provide an analysis and description of the spectral factorization and Inner-Outer
decomposition problems for strictly problem systems in the state representation.
In particular, we consider a linear multi-input multi-output system (A,B,C)

ẋ = Ax+Bu

y = Cx
(2.11)

without zeros on the imaginary axis and its associated normal form realization

Tnf AT
−1
nf =

[
F G
H Ā

]
TnfB =

[
0
B̄

]
C T−1

nf =
[
0 C̄

]
.

(2.12)

We construct a second system of the form

ẋo = Aoxo +Bou

ẋi = Aixi +BiCoxo

y = Cixi +DiCoxo.

(2.13)

with xi ∈ Rni , xo ∈ Rno , ni, no ∈ N, ni + no > nx, such that

(i) System
ẋi = Aixi +Biu

yi = Cixi +Diu;
(2.14)

is inner;

(ii) System
ẋo = Aoxo +Bou

yo = Coxo.
(2.15)

is outer.

(iii) The cascade (2.13) is input-output equivalent to (A,B,C), namely for all initial conditions x(0)
and for all u, the output trajectory of (2.13) with (xi(0), xo(0)) = Tx(0) coincides with the output
trajectory of (A,B,C).

To obtain the Inner-Outer matrices realization, let P be the stabilizing solution to the Algebraic Riccati
Equation (ARE)

PF + FTP + PGC̄T C̄GTP = 0, (2.16)

whose existence and uniqueness are guaranteed by the absence of eigenvalues of F on the imaginary axis,
and define

To :=

[
I 0

−C̄T C̄GTP I

]
, Ti :=

[
I 0

]
. (2.17)

Now, take (Ao, Bo, Co) in (2.13) as

Ao =

[
Fo Go

Ho Āo

]
= To

[
F G
H Ā

]
T−1

o

=

[
F +GC̄T C̄GTP G

H −GTPFo + ĀC̄T C̄GTP Ā− C̄T C̄GTPG

]
Bo =

[
0
B̄

]
, Co :=

[
0 C̄

]
,

(2.18)
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and define (Ai, Bi, Ci, Di) in (2.13) as

Ai = F +GC̄T C̄GTP, Bi = GC̄T

Ci = C̄GTP, Di = I.
(2.19)

Note that Co 6= CT−1
o , that is the output yo = Coξo 6= y = Cξ. Moreover, note that, system (A,B,C)

and (2.13) are related by the linear immersion map T : Rnx → Rno+ni , defined as T =
[
TTi TTo

]T
Tnf .

In particular, with T̄i = TiTnf and T̄o = ToTnf , we have xi = T̄ix and xo = T̄ox. Then, the following
holds.

Theorem 2.2.1. The realization of (Ai, Bi, Ci, Di) in (2.19), and of (Ao, Bo, Co) in (2.18) are respectively
the inner and outer factors of a stabilizable realization of (A,B,C) and system (2.13) is input-output
equivalent to (A,B,C).

Proof. By the properties of the stabilizing solution P of (2.16), see Francis (1987), and because the pair
(F,GC̄T C̄GT ) is stabilizable (since (A,B) is stabilizable), we have that

σ(F +GC̄T C̄GTP) ⊂ C−. (2.20)

In particular, P modifies only the eigenstructure (eigenvalues and relative eigenvectors) of the F matrix
that corresponds to right half plane eigenvalues by mirroring their position into the left half plane, leaving
untouched the stable part.
With these considerations, one can define an ideal output trajectory that stabilizes the zero dynamics,
i.e., ξ? = C̄T C̄GTPz. Thus, we define a change of coordinates for the initial system (2), ξo = ξ − ξ?

ξ̇o = ξ̇ − C̄T C̄GTP ż
= Hz + Āξ + B̄u− C̄T C̄GTP(Fz +Gξ)

=
(
H − C̄T C̄GTP(F +GC̄T C̄GTP) + ĀC̄T C̄GTP

)
z +

(
Ā− C̄T C̄GTPG

)
ξo + B̄u

= Hoz + Āoξo + B̄u .

(2.21)

By this change of coordinates, with zo = z and ξo as new states, the outer system is described as

żo =
(
F +GC̄T C̄GTP

)
zo +Gξo

= Fozo +Goξo

ξ̇o = Hozo + Āoξo + B̄ou

yo = C̄ξo.

(2.22)

Thus, the outer system (Ao, Bo, Co) has realization

Ao =

[
Fo Go

Ho Āo

]
:=

[
F +GC̄T C̄GTP G

H − C̄T C̄GTPFo + ĀC̄T C̄GTP Ā− C̄T C̄GTPG

]
Bo =

[
0
B̄

]
, Co =

[
0 C̄

]
(2.23)

We observe that Ao is similar to A via the linear map To. It is very easy to see that the system (Ao, Bo, Co)
is minimum phase, and thus it is an outer factor for (A,B,C).
Now, we only need to construct the inner system

ẋi = Aixi +Biyo

y = Cixi +Diyo .
(2.24)

In this respect, we consider the change of coordinate ξo = ξ − C̄T C̄GTPzo to obtain the real system
output y(t), by taking into account that C̄C̄T = Ip,

y = C̄ξ = C̄ξo + C̄GTPzo

= C̄GTPzo + yo

= Cixi +Diyo .

(2.25)
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In this case, we can set Di = I and Ci = C̄GTP, and xi = zo.

To find the inner dynamics, we consider the dynamics of zo

ẋi = żo

= Fozo +Gξo .
(2.26)

Take Bi such that G = BiC̄. By the property C̄C̄T = Ip we obtain Bi = GC̄T and Ai = Fo. Thus the
inner dynamics read as

ẋi = Fozo +BiC̄ξo

= Foxi +Biyo

y = C̄GTPxi + yo,

(2.27)

which is non-minimum phase and Hurwitz. Thus, system (Ai, Bi, Ci, Di) is inner with

Ai = F +GC̄T C̄GTP, Bi = GC̄T

Ci = C̄GTP, Di = I.
(2.28)

By the properties of the ARE (2.16) and of its stabilizing solution P, the stable eigenvalues of F are left
unchanged in F + GC̄T C̄GTP while the unstable ones are mirrored to the left half plane at the same
distance from the imaginary axis. This implies that the stable eigenvalues of F are both stable zeros and
poles of (Ai, Bi, Ci, Di), while the unstable eigenvalues of F are unstable zeros of (Ai, Bi, Ci, Di) and are
mirrored by the relative stable poles in F +GC̄T C̄GTP.
By construction, the cascade of (Ao, Bo, Co) and (Ai, Bi, Ci, Di) is a non-minimal realization of system
(A,B,C). Indeed, we just split the output trajectory y(t) into two terms and defined the two relative
dynamics accordingly with the (A,B,C) dynamics.

We observe that also Gu (2002) considers the Inner-Outer factorization for strictly proper systems.
Compared to Gu (2002), Theorem 2.2.1 gives an explicit closed-form solution for the realisation of the
inner and outer systems in the state space and also allows us to express the initial conditions of the
inner and outer systems in terms of those of the original plant, thus guaranteeing the same input-output
behaviour. The construction of Gu (2002) is instead based on an algorithmic iterative procedure.

2.2.1 Spectral factorization

Here, we describe the spectral factorization problem for analytic transfer matrices, i.e., given G(s) an
arbitrary transfer matrix, determine a real rational matrix Go(s) such that

GT (−s)G(s) = GTo (−s)Go(s) (2.29)

where Go(s) is right-invertible (hence its pseudo-right inverse is analytic in C+). Then, Go(s) is called
a spectral factor of G(s) and (2.29) defines a spectral factorization of G(s). For further details, the
reader can see Anderson (1967), Chen and Francis (1989), and Francis (1987). In particular, thanks
to the all-pass property of the inner factor one can notice that the outer factor of the Inner-Outer
decomposition has exactly the desired properties required for the spectral factor.

Corollary 2.2.1. The outer system with realization (Ao, Bo, Co) in (2.18) is a spectral factor of the
initial system (A,B,C).

Proof. Consider, system (A,B,C) in normal form (2) and its adjoint system. The cascade of these two
systems reads as

ż = Fz +Gξ

ξ̇ = Hz + Āξ + B̄u

żT = −FT zT −HT ξT

ξ̇T = −GT zT − ĀT ξT + C̄T C̄ξ

yT = −B̄T ξT .

(2.30)

By Theorem 2.2.1, we known that system (A,B,C) is input-output equivalent to system the cascade
(Ao, Bo, Co) and (Ai, Bi, Ci, Di) whose realizations are given by (2.18) and (2.19). Thus, the self-adjoint

39



system (2.30) can be written as

ẋo = Aoxo +Bou

ẋi = Aixi +BiCoxo

y = Cixi +DiCoxo

ẋiT = −ATi xiT + CTi y

ẋoT = −CTo BTi xiT −ATo xoT + CTo D
T
i y

yT = −BoxoT

(2.31)

which is equivalent to the frequency domain relationship G(−s)TG(s) = Go(−s)TGi(−s)TGi(s)Go(s).
To prove that the (Ao, Bo, Co) is a spectral factor of (A,B,C), is enough to show that cascade of
(Ai, Bi, Ci, Di) with its adjoint system is all pass (i.e., the output of such cascade is equal to its input)
for all t, for a zero initial condition. Hence, we analyze the properties of the state space representation
of GTi (−s)Gi(s)

ẋi = Aixi +Biu

ẋiT = −ATi xiT + CTi (Cixi +Diu)

yiT = −BTi xiT +DT
i Cixi +DT

i Diu

(2.32)

in which Di = I and we need to prove that the output term −BTi xiT + Cixi = 0. Indeed, substituting
Bi = GC̄T and Ci = C̄GTP, taking into account that for transfer matrix case the cascade (2.32) has zero
initial condition (xi(0) = xiT (0) = 0), we show Pxi − xiT = 0 for all t > 0, (for t = 0 the equivalence is
trivial satisfied). Define a change of coordinates χi = Pxi − xiT , then

χ̇i = Pẋi − ẋiT

= P(F +GC̄T C̄GTP)xi − PGC̄Tu− (F +GC̄T C̄GTP)TPxi+

PGC̄T C̄GTPxi + PGC̄Tu
= −(F +GC̄T C̄GTP)Tχi + (FTP + PGC̄T C̄GTP+

PF + PGC̄T C̄GTP − PGC̄T C̄GTP)xi

= −(F +GC̄T C̄GTP)Tχi

(2.33)

for the property of P. Since χi(0) = 0 and its dynamics is autonomous, we can conclude χi(t) =
Pxi(t)− xiT (t) = 0, ∀t ≥ 0. Thus, yiT = u and so the cascade is all pass. We thus have the equivalence
between (2.30) and the cascade of (Ao, Bo, Co) and its adjoint system for a zero initial condition. Hence,
the outer system (Ao, Bo, Co) is the spectral factor of (A,B,C).

2.2.2 Alternative Inner-Outer realization

It is well-known that Inner-Outer decomposition for transfer matrix representation is unique up to sign,
Chen and Francis (1989) and Qiu and Davison (1993). In terms of state-space realizations, this means
that an equivalent Inner-Outer decomposition of system (A,B,C) is given by

Ao =

[
Fo Go

Ho Āo

]
=

[
F +GC̄T C̄GTP −G

−H +GTPFo − ĀC̄T C̄GTP Ā− C̄T C̄GTPG

]
Bo =

[
0
−B̄

]
, Co =

[
0 C̄

]
(2.34)

and
Azi = F +GC̄T C̄GTP, Bzi = −GC̄T

Czi = C̄GTP, Dzi = −I
(2.35)

with initial conditions

zi(0) = z(0) =
[
I 0

]
x(0)

xo(0) =

[
z(0)

C̄T C̄GTPz(0)− ξ(0)

]
=

[
I 0

C̄T C̄GTP −I

]
x(0).

The proof for alternative realization in (2.34) and (2.35) is based on the definition of ξo(t) =
C̄T C̄GTPz(t)− ξ(t) and does not add any value, thus it is omitted.
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Remark 2. The state space realization of the Inner-Outer Decomposition is unique (up to sign) for a
particular normal form.

Moreover, we observe that both (2.19) and (2.35) are not minimal realization of the inner factor. In
(2.2.4) we show how to obtain its minimal realization.

2.2.3 Optimal control interpretation

By analysing the zero dynamics system (F,G), the change of coordinates we apply on the coordinates
ξ is a backstepping approach that allows the stabilisation of the zero dynamics in an optimal way. In
particular, by solving the ARE equation (2.16) we are concurrently solving the optimal expensive control
problem on the zero dynamics (F,G′), where now the zero dynamics only depends on the output signal
y = C̄ξ. The latter is part of the input vector to be minimized. Indeed, by defining the cost function

J =

∫ ∞
0

z(s)TQz(s) + y(s)TRy(s)ds

with Q = 0 and R = I, with the dynamical system

ż = Fz +G′y

and by solving the ARE (2.16), reported here for the sake of completeness,

PF + FTP + PG′G′TP = 0

we find the control signal y? = G′TPz(t) is optimal in sense of the input energy J .
A similar analysis has also been treated in Gu (2002), from a different point of view.

2.2.4 Inner system minimal realization

By exploiting the Kalman decomposition for the observable/ non-observable dynamics of the system we
can define the change of coordinates for (2.28). In particular we define ni ≤ nx − r, r is the sum of the
elements of the vector relative degree, and ni is the rank of the Observability matrix O(Ai, Ci). We then
define the change of coordinates

Ti =

[
T ?i
Oni

]
where Oni are ni linearly independent rows of the observability matrix O(Ai, Ci) and T ?i are any rows
that makes Ti nonsingular (and possibly T ?i Bzi = 0). By applying the change of coordinates Ti, the
system in (2.28) reads as

TiAziT
−1
i =

[
Adi Adoi
0 Aoi

]
, TiBzi =

[
Bdi

Boi

]
CziT

−1
i =

[
0 Coi

]
, Dzi = I.

(2.36)

Hence, the minimal realization of (2.28) is given by (Aoi, Boi, Coi, Dzi).

2.3 A simple example (continued)

Consider again the SISO non-minimum phase system as in (2.5)

G(s) =
s2 − 2s

(s+ 1)3
. (2.37)

Its state space realization in controllability canonical form is given by the matrices

A =

 0 1 0
0 0 1
−1 −3 −3

 , B =

0
0
1


C =

[
0 −2 1

]
.

(2.38)

With the change of coordinates [zT yT ] = Tx, where

T =

1 0 0
0 1 0

C

 (2.39)
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we put the system in canonical normal form

TAT−1 =

[
F G
H Ā

]
=

 [
0 1
0 2

] [
0
1

]
[
−1 −13

] [
−5
]


TB =
[
0 0 1

]T
CT−1 =

[
0 0 1

]
.

(2.40)

Thus, in order to find the outer factor (2.22) we need to solve the zero-associated ARE (2.16)

PF + FTP + PGGTP = 0 (2.41)

solving element-wise we find a semi-negative definite matrix

P =

[
0 0
0 −4

]
(2.42)

for which

Fo = F +GGTP =

[
0 1
0 −2

]
Go = G =

[
0
1

]
Ho = H −GTPFo+ ĀGTP =

[
−1 −1

]
Āo = Ā−GTPG = −1.

(2.43)

Then, the outer system matrices are given by

Ao =

[
Fo Go

Ho Āo

]
=

 0 1 0
0 −2 1
−1 −1 −1


Bo = TB =

[
0 0 1

]T
Co = CT−1 =

[
0 0 1

]
.

(2.44)

The outer transfer function is then

Go(s) = Co(sI −Ao)−1Bo =
s2 + 2s

(s+ 1)3
. (2.45)

For the inner system, we have realization matrices

Ai = Fo =

[
0 1
0 −2

]
Bi = G =

[
0 1

]T
Ci = GTP =

[
0 −4

]
Di = 1.

(2.46)

it is very easy to see that the inner system minimal realization is given by

(Aoi, Boi, Coi, Dzi) = (−2, 1,−4, 1)

and its transfer function is

Gi(s) = Di + Ci(sI −Ai)
−1Bi =

s− 2

s+ 2
. (2.47)

Thus, we can write G(s) = Gi(s)Go(s)

s2 − 2s

(s+ 1)3
=
s− 2

s+ 2
· s(s+ 2)

(s+ 1)3
(2.48)
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2.3.1 Example of the inverted pendulum on a cart

For a more interesting example, we consider the model of the inverted pendulum on a cart as shown in
(Gurumoorthy and Sanders, 1993):

(M +m)p̈+ bṗ+m`
(
θ̈ cos(θ)− θ̇2 sin(θ)

)
= u

m
(
p̈ cos(θ) + `θ̈ − g sin(θ)

)
= 0

(2.49)

where p is the cart position, M is the lumped mass of the cart, b is the viscous friction coefficient and
u the force applied to the cart along the horizontal direction, θ is the angle of the pendulum barycenter
draws with respect to the vertical axis, m is the lumped mass of the pendulum, ` is the distance between
the centre of rotation on the cart and the pendulum barycenter.
By defining v = ṗ, ω = θ̇, we write the system model in state space with coordinates x = (p, v, θ, ω) and
then by linearizing the model about the point (1, 0, 0, 0) = (p, v, θ, ω)(0) we have (A,B,C) matrices

A =


0 1 0 0
0 − b

M −mgM 0
0 0 0 1

0 b
`M

(M+m)g
`M 0

 , B =


0
1
M
0
− 1
`M


C =

[
1 0 0 0

]
.

(2.50)

The linearized system has relative degree r = 2, thus by taking

Tnf =


1 0 1 0
1 1 1 `

C
CA

 , T−1
nf =


0 0 1 0
0 0 0 1
`−1 0 −`−1 0
−`−1 `−1 0 −`−1


we obtain the system normal form Isidori (2017)[Ch.2] with coordinates (z, ξ) = Tnfx

Anf =


−1 1 0 0
g
` − 1 1 − g` 0

0 0 0 1
−mg
M` 0 mg

M` − b
M

 , Bnf =


0
0
0
1
M


Cnf =

[
0 0 1 0

] (2.51)

where C̄ =
[
1 0

]
and B̄ =

[
0 1

M

]T
, and xnf(0) = (1, 1, 1, 0)T = Tnfx(0). In particular, the normal

form matrices F,G,H, Ā are

F =

[
−1 1
g
` − 1 1

]
, G =

[
0 0
− g` 0

]
,

H =

[
0 0
−mg
M` 0

]
, Ā =

[
0 1
mg
M` − b

M

]
.

(2.52)

With system data

g = 9.81 [m/s], ` = 0.325 [m], m = 0.051 [Kg], M = 1.378 [Kg], b = 12.98 [Ns/m]

we obtain the stabilizing solution P of PF + FTP + PGC̄T C̄GTP = 0

P =

[
−0.2436 −0.0542
−0.0542 −0.0121

]
.

And the outer system reads as

Ao =


−1 1 0 0

−20.1965 −9.9881 −30.1846 0
8.9881 2 10.9881 1
0.7105 0.4067 1.1171 −9.4194

 ,
Bo = Bnf =

[
0 0 0 1

M

]T
,

Co = Cnf =
[
0 0 1 0

]
(2.53)

with initial condition xo(0) = (1, 1,−1, 0) = ToTnfx(0). The inner factor in minimal realization has
matrices

Ai = −5.4941, Bi = −10.9881, Ci = Di = 1

with initial condition xi(0) = [1 0]Tizo(0) = 2.
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2.4 Stabilization of non-minimum phase systems

Consider a SISO non-minimum phase linear system (A,B,C) and its Inner-Outer decomposition (2.13).
Let yo = Coxo be the output of the outer subsystem with input u and initial state xo(0) = T̄ox(0).
Furthermore, let ȳo = Gi(0)yo, with Gi(0) = Di − CiA

−1
i Bi.

Our main objective is to start with a (state) feedback stabiliser for the outer system, resulting in an
output trajectory yo(t), and to explore the design of an output feedback stabiliser for the original
system so that the resulting output y(t) is ”practically” close to ȳo(t). Of course, the behaviour of
ȳo(t) cannot be perfectly reproduced on the non-minimum phase system output y(t) due to the intrinsic
limits of performances characterising the latter. It is well-known (see Middleton (1991) and Stewart and
Davison (2006)) that the output of a SISO system with one unstable zero is necessarily characterised by
undershoots whose entity increases as the closed-loop setting time decreases and as the position of the
zero gets closer to the imaginary axis. Such undershoot is not present in the output yo(t) because of
the minimum phase behaviour of the outer system. In view of this, the practical matching between the
two output behaviours can be only attained, at best, after a time t? > 0. Indeed, in the next result, we
show that such a t? can be rendered arbitrarily small provided that the outer closed-loop dynamics are
sufficiently slow, with the restrictions on the outer closed-loop dynamics that depend on the position of
the slowest unstable zero of the original system. The result is detailed next.
Let

X0 := {x0 ∈ Rnx : Ax0 +Bu0 = 0, for some real u0} (2.54)

namely x0 ∈ X0 is a forced equilibrium for (1) when u = u0.
We now assume to have a state-feedback stabiliser for the outer system u = −Ko(αo)xo(t), with αo

a positive real parameter, such that the resulting outer output trajectory originating from an initial
condition xo(0) = T̄ox0 with x0 ∈ X0 satisfies |ẏo(t)| ≤ αocye

−αot ≤ αocy, with real c > 0. Consider now
the observer

˙̂x = Ax̂+Bu+ L(y − Cx̂), x̂o = satx̄o
(T̄ox̂) (2.55)

with x̄o and L to be designed, and consider system (1) controlled by

u(t) = −Ko(αo)x̂o(t) . (2.56)

Then, the following result holds.

Theorem 2.4.1. Suppose that (A,B) is controllable, (A,C) is observable and that the triplet (A,B,C) has
no transmission zeros on the imaginary axis. Then, for every compact subsets X0 ⊂ X0 and Xc0 ⊂ Rnx
and X ⊂ Rnx such that x(t) ∈ X, for all t ≥ 0, there exists x̄o > 0 and, for every εy > 0, t? > 0, there
exist α?o > 0 and L such that for all αo ≤ α?o, the output y(t) resulting from the closed-loop system (1),
(2.55), (2.56) with initial conditions x̂(0) ∈ Xc0, x(0) ∈ X0 satisfies

|y(t)− ȳo(t)| ≤ εy ∀ t ≥ t? (2.57)

and limt→∞ y(t) = 0.

Proof. Inspired by separation principle arguments, the proof is conceptually split into two parts. In the
first part, we consider the case in which the state x(t) is available for feedback and we show that the result
is true with t? = 0 if the original system is controlled by u(t) = −Koxo(t) = −KoT̄ox(t). The second part
follows high-gain arguments typically used in the context of output feedback stabilization of nonlinear
systems (see, e.g., Isidori (2017)[Sec. 7.5]). By defining x̄o = supxo∈T̄oX xo, the degree-of-freedom
L can be chosen to quickly (i.e. in an arbitrarily amount of time t?) practically recover the state xo.
Throughout the proof, (xi, xo) denotes the state of the Inner-Outer realization of (A,B,C), as introduced
in Section 2.2, with inner system minimal realization. Part I: We can explicitly write the state xi(t) as

xi(t) = eAitxi(0) +

∫ t

0

eAi(t−s)BiCoxo(s)ds

whose integral part can be written, via integration by parts, as∫ t

0

eAi(t−s)BiCoxo(s)ds = −
∫ t

0

[
−eAi(t−s)A−1

i

]
[BiCoxo(s)]

′
ds+

[
−eAi(t−s)A−1

i BiCox̄o(s)
]t

0

=

∫ t

0

eAi(t−s)A−1
i Biẏo(s)ds− eAi(t−t)A−1

i BiCoxo(t) + eAitA−1
i BiCoxo(0).

Then, from the output system y(t) we can write

y(t)−DiCox̄o(t) + CiA
−1
i BiCox̄o(t) = Cie

Ait
(
xi(0) +A−1

i BiCox̄o(0)
)

+ Ci

∫ t

0

eAi(t−s)A−1
i Biẏo(s)ds.
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For every solution of (A,B,C) originating in X0, we have xi(0) + A−1
i BiCox̄o(0) = 0 as a consequence

of the matrices definition (up to a change of coordinates, note that ẋi(0) = ż(0) = 0). Then, using
Gi(0) = Di − CiA

−1
i Bi, we write

y −Gi(0)yo = Ci

∫ t

0

eAi(t−s)A−1
i Biẏo(s)ds. (2.58)

Then, by the properties of the outer output derivative in closed loop ẏo, we can upper bound (2.58) as
follows

|y −Gi(0)yo| ≤
∣∣∣∣Ci

∫ t

0

eAi(t−s)A−1
i Biẏo(s)ds

∣∣∣∣ ≤ ‖Ci‖
∣∣∣∣∫ t

0

eAi(t−s)A−1
i ds

∣∣∣∣ ‖Bi‖αocy

≤ ‖Ci‖‖A−2
i ‖‖(e

Ait − I)‖‖Bi‖αocy ≤ ‖Ci‖‖A−2
i ‖‖Bi‖αocy

Then, for every εy there exists α?o = α?o(εy) such that for all αo ≤ α?o

|y(t)−Gi(0)yo(t)| ≤ εy, ∀t ≥ 0 (2.59)

and thus (2.57) holds with t? = 0. Moreover, since Ai and (Ao − BoKo) are Hurwitz, we also have
y(t)→ 0 as t→∞.
Part II: By considering the output feedback controller (2.55) we can write the observer dynamics in error
coordinates x̃ = x− x̂ and the closed loop as

˙̃x = (A− LC)x̃

ẋo = Aoxo −BoKo(αo)satx̄o(xo − x̃o)

ẋi = Aixi +BiCoxo.

Then, by defining
∆AKo

(xo, x̃o) := BoKo(αo)−BoKo(αo)satx̄o
(xo − x̃o)

hence the outer dynamics reads as

ẋo = (Ao −BoKo(αo))xo + ∆AKo(xo, x̃o).

Since (A,C) is observable there exists a L such that A−LC is Hurwitz for any desired eigenvalues. Then,
for every real positive q there exists symmetric positive definite matrix PLC solution of

(A− LC)TPLC + PLC(A− LC) = −2qI.

Then, defining V (x̃) := x̃TPLC x̃ its dynamics is given by

V̇ (x̃) = −2q|x̃|2 ≤ −
2q

σmax(PLc)
V (x̃)

because for all x̃ in Rnx
σmin(PLC)|x̃|2 ≤ V (x̃) ≤ σmax(PLC)|x̃|2.

We can explicitly write V (t) from its dynamics

V (x̃(t)) ≤ V (x̃(0)) exp

(
−

2qt

σmax(PLC)

)

then

σmin(PLC)|x̃|2 ≤ σmax(PLC)|x̃(0)|2 exp

(
−

2qt

σmax(PLC)

)
and hence we can bind the error evolution

|x̃| ≤ ρ

√
σmax(PLC)

σmin(PLC)
exp

(
−

qt

σmax(PLC)

)
(2.60)

with ρ = maxx̂∈Xc0 x̂+ maxx∈X0
x. For the observability properties of (A,C), for every εx̃ > 0 and every

t? > 0 there exists L and q, (and thus PLC), such that

|x̃| ≤ ρ

√
σmax(PLC)

σmin(PLC)
exp

(
−

qt

σmax(PLC)

)
≤ εx̃, ∀t ≤ t?.
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We now analysis the behavior of ẏo for t ∈ [0, t?) and t ≤ t?. In particular, for t ∈ [0, t?)

|ẏo| = |Coẋo| ≤ |Co(Ao −BoKo)xo|+ ‖CoBo‖|∆AoKo|
≤ αocy + ‖CoBo‖δ1

where Co(Ao −BoKo)xo is the outer output in the ideal state feedback case, and the |∆AoKo| term has
been upper bounded by a positive real number δ1, i.e., |∆AoKo| ≤ δ1 for all xo ∈ ToX0 and x̂o ∈ ToXc0.
For t ∈ [t?,∞), instead, because ∆AoKo(xo, 0) = 0 for x̃o sufficiently small there exists δ2 > 0 such that
|∆AoKo| ≤ δ2|x̃o| = δ2|Tox̃| ≤ δ2‖To‖εx̃.

|ẏo| = |Coẋo| ≤ |Co(Ao −BoKo)xo|+ ‖CoBo‖|∆AoKo|
≤ αocy + ‖CoBo‖δ2‖To‖εx̃.

Then, from (2.58) we can write for t ∈ [0, t?)

|y(t)−Gi)(0)yo(t)| ≤ ‖Ci‖‖Bi‖‖A−2
i ‖ (αocy + ‖Co‖‖Bo‖δ1) .

While, for t ∈ [t?,∞) we have

|y(t)−Gi)(0)yo(t)| =
∣∣∣∣Ci

∫ t

0

eAi(t−s)A−1
i Biẏo(s)ds

∣∣∣∣
≤

∣∣∣∣∣Ci

∫ t?

0

eAi(t−s)A−1
i Biẏo(s)ds+ Ci

∫ t

t?
eAi(t−s)A−1

i Biẏo(s)ds

∣∣∣∣∣
≤‖Ci‖‖Bi‖‖A−2

i ‖‖e
Ait

?

− I‖ (αocy + ‖Co‖‖Bo‖δ1) +

‖Ci‖‖Bi‖‖A−2
i ‖+ (αocy + ‖Co‖‖Bo‖δ2‖To‖εx̃) .

For t? → 0 the term in δ1 vanishes and the εx̃ term can be made arbitrary small reconstructing the same
result of the state feedback case. Thus, for every εy there exists t?, ε?x̃ and α?o, such that for all εx̃ ≤ ε?x̃
and αo ≤ α?o

|y(t)−Gi(0)yo(t)| ≤ εy, ∀t ≥ t?.

The stability is then guaranteed because the closed loop system (2.4) is a cascade of Hurwitz systems
and thus y(t)→ 0 as t→∞.

Moreover, notice that the upper bound (2.57) gives also an upper bound for the maximum undershoot
the system output will exhibit with respect to its ideal minimum phase behaviour.

2.4.1 Comparison with other stabilizing approaches for non-minimum phase
available in literature

As one of the reviewer pointed out, some approaches to stabilize non-minimum phase systems are already
available in literature. We consider of particular relevance the work by Isidori (2000), Nazrulla and Khalil
(2010) and Boker and Khalil (2016). The first two works are mainly describing the same approach, where
Nazrulla and Khalil (2010) treated more in detail the nonlinear approach proposed in Isidori (2000), so
they share the same comments. In particular, with respect to the work in Isidori (2000) (and Nazrulla
and Khalil (2010) as consequence) the inner-outer decomposition approach provides an easy solution to
deal with the stabilization of nonminimum phase systems and allowing us to threat them as if they were
minimum phase. In other words, once an inner-outer decomposition is available, the stabilizer has to be
design only for the outer part of the plant which is a minimum phase system and as a consequence we
achieve the stabilization of the whole non minimum phase system. If we consider the zero dynamics of
the outer factor to be (ISS) input to state stable (with respect to the input yo), the stabilizer only has
to deal with steering to zero yo. This is true because the inner-outer realization intrinsically provides a
stabilizing action for the unstable zero dynamics. This is not true for the approach proposed in Isidori
(2000) because there is no guarantee that the auxiliary system therein is minimum phase and thus the
problem of stabilizing such system might result more complicated then the original one, since the auxiliary
system is not any more in normal form.
On a different level we find the work Boker and Khalil (2016), in which the state feedback stabilizing
action is assumed to be known with some ISS properties for the zero dynamics and then they show
how to realize an Extended Kalman filter plus a dirty derivative observer to apply the state feedback
stabilizer in an output feedback scenario and recover, after a certain transitory, the performances of the
ideal state feedback. Hence, again the problem of stability for non minimum phase is not dealt directly
in a constructive way.
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2.5 Example of the inverted pendulum on a cart (continued)

In section 2.3.1, we obtained the system normal form Isidori (2017)[Ch.2] with coordinates (z, ξ) = Tnfx

Anf =


−1 1 0 0
g
` − 1 1 − g` 0

0 0 0 1
−mg
M` 0 mg

M` − b
M

 , Bnf =


0
0
0
1
M


Cnf =

[
0 0 1 0

] (2.61)

where C̄ =
[
1 0

]
and B̄ =

[
0 1

M

]T
, and xnf(0) = (1, 1, 1, 0) = Tnfx(0).

With system data g = 9.81 [m/s], ` = 0.325 [m], m = 0.051 [Kg], M = 1.378 [Kg], b = 12.98 [Ns/m] we
obtain the stabilizing solution P of PF + FTP + PGC̄T C̄GTP = 0

P =

[
−0.2436 −0.0542
−0.0542 −0.0121

]
.

And the outer system reads as

Ao =


−1 1 0 0

−20.1965 −9.9881 −30.1846 0
8.9881 2 10.9881 1
0.7105 0.4067 1.1171 −9.4194

 ,
Bo = Bnf =

[
0 0 0 1

M

]T
Co = Cnf =

[
0 0 1 0

]
(2.62)

with initial condition xo(0) = (1, 1,−1, 0) = ToTnfx(0). The inner factor in minimal realization has
matrices

Ai = −5.4941, Bi = −10.9881, Ci = Di = 1

with initial condition xi(0) = [1 0]Tizo(0) = 2. Note that this initial condition is contained in the X0 set,
thus it satisfies xi(0) +A−1

i BiCox̄o(0) = 2 + 2 · (−1) = 0.
We then define a static state feedback gainKo such that (Ao−BoKo) has eigenvalues {−1,−1.5,−2,−2.5},
while we define L as the observer gain such that the estimation error dynamics (A−LC) has eigenvalues
{−1,−2,−4.5,−5} · 104. By saturating the input u between −5 and 5, we can control the system by
dynamic output feedback. Figure 2.2 depicts the output for the case of the real system subject to output
feedback along with the outer system subject to the ideal state feedback input and the outer system
subject to the output feedback controller. One can notice that the observer peaking does not affect the
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Figure 2.2: Output comparison among the system output ‘y’, the outer output under state feedback ‘yo

Ideal’, and the outer output subject to output FeedBack ‘yo output FB ’.

system output thanks to the input saturation and that the output undershoot is about 0.4% of the initial
condition y(0). Note that, in order to provide a comparison plot we had to change sign to the outer
output yo(t) = Coxo(t) because in our case Gi(0) = −1.
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2.6 Conclusions

In this chapter, we presented an Inner-Outer decomposition for non-minimum phase multi-input
multi-output Linear Time Invariant systems. With respect to existing results, we provide an explicit
closed-form decomposition realization completely obtained in state space. The decomposition was then
instrumental to present a stabilization result showing how to design an output feedback stabilizer for the
original system keeping the output trajectory arbitrary close to the output trajectory of a closed-loop
outer system provided that the latter is sufficiently slow.
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Part II

Functional Observers
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Motivations

A functional observer for a dynamical system allows to asymptotically reconstruct a target functional of
the system state x, denoted `(x), in the following. After having summarized the most relevant results
in the linear system case, we present a unifying framework to gather the relevant results into a single
point of view. In the successive chapter, we then specialize the standard KKL approach to the case
of functional observation for nonlinear systems and provide some possible applications, such as Input
reconstruction, Unknown input observers, and controlled nonlinear systems.

The world of functional observer was moreover motivated by the inner-outer decomposition framework in
the sense of the input reconstruction application of the functional observer. Indeed, since the inner system
of the decomposition is non-minimum phase, it does not accept a causal left inverse and reconstructing
the yo signal is impossible via inversion. Indeed, the sufficient and necessary condition provided in Hou
and Muller (1992) to solve the input reconstruction problem via inversion is that the system must be
minimum phase.
By exploiting the idea of functional observers for the nonlinear case, we can reconstruct the input of
the inner system not via inversion but by exploiting the whole cascade dynamics. Indeed, the output
of the outer factor yo can be seen as a functional of the system cascade and thus can in principle be
asymptotically reconstructed from the system output by considering a sufficiently large observer order.
Unfortunately, only recently we noticed that a system with detectable dynamics does not satisfy the
backward distinguishability assumption which is the building pillar of the KKL-observer approach. And
due to the equivalent zero/pole cancellations of the inner-outer decomposition, the cascade becomes a
detectable system. Hence, we cannot directly apply the functional observer approach to the inner-outer
cascade in order to accomplish a reconstruction of the outer system output and then exploit it directly
for feedback.
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Chapter 3

Linear case

Given a linear autonomous dynamical system with state x(t) and output measurements y(t), and some
functional of the system state, in the following `(x(t)), the basic idea of a functional observer is to
construct a dynamical system driven by the only signal available, i.e., the output trajectory y(t), to
asymptotically reconstruct the functional `(x(t)), possibly, without estimating the whole state x(t).

3.1 Problem statement and preliminaries

The problem under consideration that we want to analyze in this chapter is the following.

Problem 1. Consider system
ẋ = Fx

y = Hx

`(x) = L0x

(3.1)

in which x ∈ Rnx , y ∈ Rny , and `(x) ∈ Rn` , thus rank[H] = ny < nx and rank[L0] = n` < nx. Then,
look for an observer of the form

η̇ = Aη +By

ˆ̀= Cη +Dy
(3.2)

with η ∈ Rnη , nη ≥ n`, and A,B,C,D such that limt→+∞ ˆ̀− ` = 0.

Inspired by Luenberger, we can look for nη ≥ n`, A ∈ Rnη×nη Hurwitz, and B,C,D such that there is T
solution to

TF = AT +BH (3.3a)

L0 = CT +DH (3.3b)

Indeed, in that case, since A is Hurwitz, for any initial condition in (3.2), we have limt→+∞ |η− Tx| = 0

from (3.3a) and therefore, limt→+∞ |ˆ̀− `| = 0 from (3.3b). On the other hand, the basic idea behind a
functional observer is to construct an observer dynamics only driven by y able to reconstruct the vector
` without necessarily estimating the whole state x. Hence, the main challenge is to solve Problem 1
via observer dynamics with the minimum order possible. In this respect, in literature, there have been
several attempts. Here, we give a short literature overview summarizing the main results dealing with
establishing whether a triple (F,H,L0) is functional observable (detectable) in the sense provided below.

The analysis of functional observers started mainly with the work of Watson Jr and Grigoriadis (1998).
In this work, they take into consideration an autonomous system affected by noise as

ẋ =Fx+Gν

y =Hx+ Jν.
(3.4)

This work aims to solve a filtering problem via the estimation of a function ` = L0x from the noisy output
y. In particular, they want to find an observer of dimensions n` whose dynamics is strictly proper, i.e.,

η̇ =Aη +By

ˆ̀=η.
(3.5)
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The existence of an unbiased observer (3.5) is given if and only if

L0F

(
I −

[
L0

H

]+ [
L0

H

])
= 0. (3.6)

In the end, they provide an H∞ result aiming at reducing the H∞ norm between the magnitude of noise
ν and the norm of estimation error e` = ˆ̀− `.
A first result taking into account as a core problem that of functional observation and the condition to
characterize if a triple (F,H,L0) is functionally observable1 is given in Darouach (2000) and it can be
summarized in the following theorem.

Theorem 3.1.1. For system (F,H,L0) in (3.1), there exists a functional observer (3.2) with (A,C) in
observability form, if and only if the following two conditions hold

(i) for the existence of A,B,D solving (3.3),

rank


LF
L
HF
H

 = rank

 L
HF
H

 . (3.7a)

(ii) to guarantee the stability of the error dynamics, namely A Hurwitz,

rank

sL− LFHF
H

 = rank

 L
HF
H

 ∀s ∈ C+ (3.7b)

Moreover, the spectrum of A can be assigned arbitrarily if (3.7b) is replaced by

rank

sL− LFHF
H

 = rank

 L
HF
H

 ∀s ∈ C (3.7c)

In both condition (3.7a) and (3.7b), we consider a generic L instead of L0 because in the observer design,
one might need a dynamical system of order nη > nq. In this case, L will be of rank nη and in general,
it can be written as

L =

[
L0

L1

]
. (3.8)

In Moreno (2001), we have a first result that generalizes the standard definition of observability provided
by the they provide an alternative result to test the Functional-Observability property of system (3.1),
and this reads as follows

Theorem 3.1.2. The triple (F,H,L0) is Functional-Observable if and only if

rank

sI − FH
L0

 = rank

[
sI − F
H

]
, ∀s ∈ C (3.9)

The equivalent condition for Functional-Detectability is given when condition (3.9) holds for any s in C+.
In Jennings et al. (2011) we first find a proper definition of functional-observability that we generalized
into a geometric framework and extended to the case of functional detectability. In the following, for an
autonomous system (M,N) we consider that the Observable space of an output matrix N is the Range
R(N) of the observability matrix O(M,N) associated to N . While the non-Observable space of N is the
Kernel of the Observability matrix O(M,N).

Definition 3. [Functional-Observability] The triple (F,H,L0) is Functional-Observable if the Observable
space R(L0) from L0 is contained in the Observable space R(H) from H (R(L0) ⊆ R(H)).

In parallel, we consider the definition of Functional-Detectability.

Definition 4 (Functional-Detectability). The triple (F,H,L0) is Functional-Detectable if the Observable
sub-space D(L0) from L0 defined as D(L0) = R(L0)∩Ker(O(F,H)) is contained in the region of attraction
of the origin.

1Here and in the following results we consider the definition of functional-observable (-detectable) according to the one
provided in the relative work.
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In other words, by considering the dynamical properties, in order to have Functional-Detectability of the
pair (F,H,L0) the Observable subspace from L0, which is not in the Observable space from H, must be
associated to an asymptotically stable dynamics.
Note that in these terms condition (3.7b) guarantees the properties of Functional-Detectability.
In their work, the authors provide an alternative representation of the result in Darouach (2000), as
stated in the following

Theorem 3.1.3. For system (3.1), for any Hurwitz A there exists a functional observer (3.2) with
C = [I 0], if and only if (3.7a) and

rank

sL− LFHF
H

 = rank

 L
HF
H

 , ∀s ∈ C (3.10)

hold for some L1, where L is as in (3.8).

Note that we already provide this condition in (3.7c) in Theorem 3.1.1 must hold. We only want to add
that this property, which provides the possibility to have an arbitrary error convergence rate, has been
only introduced in Jennings et al. (2011).
A parallel research thread has been autonomously developed in Kravaris (2016) and its main linear result
can be synthesised as follows.

Theorem 3.1.4. For a linear system (3.1) there exists a functional observer of the form (3.2) if and
only if for nη > 0 there exists a Hurwitz polynomial with coefficients αi, i = {1, . . . , nη} such that for
all k = {1, . . . , n`},

Lk,0F
nη + α1Lk,0F

nη−1 + · · ·+ αrLk,0F ∈ span (Hi, HiF, . . . , HiF
nη )i=1...ny

where Lk,0 denotes the k-th line of L0 and Hi is the i-th row of H.

In particular, the proof is constructive since they provide an explicit solution of the observer matrix,
for the case n` = 1, and it is interesting to notice that the coefficients βi in Rn`×ny , i = {0, . . . , nη},
defining the linear combination of the ` time derivatives, are exactly the coefficients of the observer zero
dynamics. Indeed, if the following holds

L0F
nη + α1L0F

nη−1 + · · ·+ αrL0 = β0HF
nη + β1HF

nη−1 + · · ·+ βnη−1HF + βnηH (3.11)

the observer matrices are given in the standard observability canonical form, with A in companion form,
C in prime form, and B and D as follows

A =


0 0 . . . 0 −αnη
1 0 . . . 0 −αnη−1

...
...

...
0 0 . . . 1 −α1

 , B =


βnη − αnηβ0

βnη−1 − αnη−1β0

...
β1 − α1β0


C =

[
0 0 . . . 0 1

]
, D = β0.

(3.12)

3.2 A unifying approach

In the following, we propose an approach to unify all the presented results into a single more intuitive
framework. In particular, we first prove an equivalence among all the above-stated conditions for
functional-detectability. We then, provide the equivalence among the functional-observability conditions.

Theorem 3.2.1 (Functional-Detectability). The following statements are equivalent :

(i) There exists a matrix L1 ∈ R(nη−n`)×n such that L = [LT0 , L
T
1 ]T verifies conditions (3.7a) and

(3.7b).

(ii)

rank

sI − FH
L0

 = rank

[
sI − F
H

]
, ∀s ∈ C+. (3.13)
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(iii) there exists nη ∈ N>0 and a Hurwitz polynomial λnη + α1λ
nη−1 + · · ·+ αnη−1λ+ αnη such that for

all k = {1, . . . , n`},

Lk,0F
nη + α1Lk,0F

nη−1 + · · ·+ αrLk,0 ∈ span (Hi, HiF, . . . , HiF
nη )i={1,...,p}

where Lk,0 denotes the k-th line of L0 and Hi is the i-th row of H.

(iv) There exists nη ∈ N>0 and a Hurwitz matrix A ∈ Rnη×nη such that there exists a functional observer
of the form (3.2).

(v) The triple (F,H,L0) is Functional-Detectable.

Proof. The equivalence between (i) and (iv) has been originally proved by Darouach (2000) for the case
L = L0 and it is easily extendable by considering L = [LT0 , L

T
1 ]T and taking in (3.2) C = [In` , 0n`×(n`−nη)].

Condition (ii) has been proved to be equivalent to (iv) in (Moreno, 2001, Theorem 3).
Condition (iii) has been proved to be equivalent to (iv) in Kravaris (2016).
It thus follows that (i),(ii),(iii), and (iv) are equivalent and it is enough to prove (ii) is equivalent to (v)
to conclude the proof.

We define n̄x the rank of the observability matrix O(F,H) = [HT , (HF )T , . . . , (HFnx−1)T ]T with n the
dimension of the square matrix F . We define the normal form change of coordinates according to the
ordered observability index n1, . . . , np, such that in the new coordinates, the triple (F,H,L0) reads as

F =

[
Fo 0
F? Fno

]
H =

[
H̄ 0

]
L0 =

[
L01 L02

] (3.14)

where (Fo, H̄) is a companion form of dimension n̄. We note that the first n̄ components of the state
represent the observable subspace from H, while the rest of the state describes the non-observable
subspace from H. We then apply the same decomposition to the pair (Fno, L02), in order to highlight
the remaining observable space from L0, thus leading to the normal form

Fno =

[
FoL 0
F?L FnoL

]
L02 =

[
L̄02 0

] (3.15)

where (FoL, L̄02) is a pair in companion form and has dimension equal to the rank noL of the observability
matrix O(Fno, L02). In those coordinates, we thus have

F =

 Fo 0 0
F?oL FoL 0
F?noL F?L Fno


H =

[
H̄ 0 0

]
L0 =

[
L01 L̄02 0

]
(3.16)

Now, let us take into account the following matrices rank

rank

F − sIH
L0

 = rank


Fo − sI

... 0

F?
... Fno − s

H̄
... 0

L01

... L02


= n̄+ rank

[
Fno − s
L02

]
, ∀s ∈ C

(3.17)

because the pair (Fo, H̄) is completely observable and

rank

[
F − sI
H

]
= rank


Fo − sI

... 0

F??
... Fno − s

H̄
... 0


= n̄+ rank

[
Fno − s

]
, ∀s ∈ C

(3.18)
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again because the pair (Fo, H̄) is completely observable.
Now, to prove the sufficiency (ii) =⇒ (v) we have

rank

[
Fno − s
L02

]
= rank

[
Fno − s

]
, ∀s ∈ C+ (3.19)

or explicitly ∀s ∈ C+

rank

FoL − s 0
F?L FnoL − s
L̄02 0

 = rank

[
FoL − s 0
F?L FnoL − s

]
.

Because the pair (FoL, L̄02) is completely observable we have ∀s that

rank

[
FoL − s
L̄02

]
= noL.

Thus if (ii) holds then
noL = rank

[
FoL − s

]
, ∀s ∈ C+. (3.20)

which implies the Functional-Detectability property.
To prove the necessity part we go by contradiction: Not (v) =⇒ Not (i).
We separately study the rank of the two matrices

rank

[
Fno − s
L02

]
= rank

FoL − s 0
F?L FnoL − s
L̄02 0

 (3.21)

and

rank
[
Fno − s

]
= rank

[
FoL − s 0
F?L FnoL − s

]
(3.22)

We then have (3.21) is equal to noL + rank[FnoL − s] for any s because the pair (FoL, L̄o2) is completely
observable. On the other hand, in (3.22) we have for any s.

rank

[
FoL − s 0
F?L FnoL − s

]
= rank[FoL − s] + rank[FnoL − s]. (3.23)

If the triple (F,H,L0) is not functional detectable it means that rank[FoL − s] < noL for some s in C+

and thus condition (ii) can not hold for any s in C+. This concludes the proof.

For the sake of proof completeness, in the next subsections, we also provide the equivalences between
conditions (i) and (v), and between (iii) and (v).
Note that the last part of the proof of Th.(3.2.1) is constructive, and can be exploited in building a
possibly minimal order functional observer up.

Theorem 3.2.2 (Functional-Observability). The following statements are equivalent :

(i) There exists a matrix L1 ∈ R(nη−n`)×n such that L = [LT0 , L
T
1 ]T verifies conditions (3.7a) and

(3.7c).

(ii)

rank

sI − FH
L0

 = rank

[
sI − F
H

]
, ∀s ∈ C. (3.24)

(iii) there exists nη ∈ N>0 such that, for any Hurwitz polynomial λnη + α1λ
nη−1 + · · ·+ αnη−1λ+ αnη ,

the following holds for k = {1, . . . , n`},

Lk,0F
nη + α1Lk,0F

nη−1 + · · ·+ αrLk,0F ∈ span (Hi, HiF, . . . , HiF
nη )i={1,...,ny} (3.25)

where Lk,0 denotes the k-th line of L0 and Hi is the i-th row of H.

(iv) There exists nη ∈ N>0 such that for any Hurwitz matrix A ∈ Rnη×nη , there exists a functional
observer of the form (3.2).
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(v) The triple (F,H,L0) is Functional-Observable.

Proof. The equivalence between Condition (i) and (iv) has been proved in Darouach (2000), while the
equivalence between Condition (ii) and (iv) has been proved in (Moreno, 2001, Th.3). In Jennings et al.
(2011) has been proved that, in this form, (ii) is equivalent to (i).
By applying the proof of Kravaris (2016) for any Hurwitz matrix A we have the equivalence between (iii)
and (iv).
It thus follows that (i),(ii),(iii) and (iv) are equivalent.
To prove that (ii) is equivalent to (v), and thus conclude the proof, we can follow the steps in the proof of
Theorem3.2.1, note that the functional-detectability conditions become functional-observability the term
L02 = 0.

3.2.1 Equivalence between (i) and (v) of Th.(3.2.1)

We now prove that (i) is equivalent to (v). By exploiting the coordinates in (3.14) and (3.15), we take a
L1 matrix such that

L =

[
L0

L1

]
=

L01

... L̄02 0

L11

... L̄12 0


=
[
L′1

... L′2 0

] (3.26)

where [L′1 L
′
2] is any matrix that makes (3.7a) to hold. Note that the zero columns in L are mandatory

because those columns are not in the observable space from L02 by construction. We can moreover notice
that in order for (3.7a) to hold it must be that L′2 is full column rank. This is because (FoL, L̄02) is an
observable pair and it can be put in observability form. If L′2 is not full column rank, via manipulation
of the columns we can write it of the form

L′2 =

[
I 0
0 0

]
and L′2FoL will add a linearly independent columns, thus not satisfying condition (3.7a). Indeed, by
explicitly writing the condition we have

rank


LF
L
HF
H

 = rank


L′1Fo + L′2F?L L′2FoL

L′1 L′2
H̄Fo 0
H̄ 0

 =

rank

 L
HF
H

 = rank

 L′1 L′2
H̄Fo 0
H̄ 0


(3.27)

If L′2 is not full column rank it implies that L′2FoL has a linearly independent column from L′2 and thus
the rank condition can never be satisfied because

rank

[
L′2FoL
L′2

]
> rank

[
L′2
]
.

Hence, with loss of generality, we can consider L′2 = [InoL , 0]T .
Now in order to prove sufficiency ((i) =⇒ (v)) we have that (3.7b) holds. Hence

rank

L(F − sI)
HF
H

 = rank

L
′
1(Fo − sI) +

[
I
0

]
F?oL

[
I
0

]
(FoL − s) 0

H̄Fo 0 0
H̄ 0 0

 =

rank

L
′
1(Fo − sI) +

[
I
0

]
F?oL

H̄Fo
H̄

+ rank
[
FoL − s

]
=

rank

 L′1 L′2
H̄Fo 0
H̄ 0

 = rank

 L′1
H̄Fo
H̄

+ rank
[
L′2
]
.

(3.28)
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Hence, condition (i) implies that for any s in C+

rank

L
′
1(Fo − sI) +

[
I
0

]
F?oL

H̄Fo
H̄

 = rank

 L′1
H̄Fo
H̄

 (3.29)

and
rank

[
FoL − s

]
= rank

[
L′2
]

= noL. (3.30)

Because FoL has dimension noL this implies that FoL has a spectrum inside the left half plane, hence is
Hurwitz.
We prove by contraction the necessary part: in particular if FoL is not Hurwitz, hence, the triple (F,H,L0)
is not functional detectable we have that for some s in C+

rank
[
FoL − s

]
< rank

[
L′2
]

= noL (3.31)

And thus, for any L′1 satisfying

rank

L
′
1(Fo − sI) +

[
I
0

]
F?oL

H̄Fo
H̄

 = rank

 L′1
H̄Fo
H̄

 (3.32)

it is not possible to satisfy (3.7b). And this proves the necessity part.

3.2.2 Equivalence between (iii) and (v) of Th.(3.2.1)

We now want to prove that (iii) is equivalent to (v). Thus for the necessary part, assume
Functional-Detectability of the triple (F,H,L0) and consider a Hurwitz polynomial p(λ) of degree nη,
not defined yet. Because of the lower block triangular structure of F in the new coordinates, the k-th
power of F will read as

F k =

F ko 0 0
? F koL 0
? ? F knoL

 (3.33)

where ? are elements of no interest in this proof. Then, by applying polynomial p(λ) to F we have

p(F ) =

p(Fo) 0 0
? p(FoL) 0
? ? p(FnoL)

 (3.34)

by pre-multiplying by L0 =
[
L01 L̄02 0

]
leads to

L0p(F ) =
[
??

... L̄02 p(FoL)
... 0

]
(3.35)

where the ?? term, according to the adopted coordinates, only depends on H and HF i. In order to satisfy
(iii), in order for each line of L0p(F ) to be in the span of (Hi, HiF, . . . ,HiF

nη )i=1...p, it must hold that
the term L̄02p(FoL) = 0. Now we prove necessity, because FoL is Hurwitz, by F-detectability property,
and we can construct the polynomial p(λ) = p′(λ)poL(λ), with p′ an arbitrary Hurwitz polynomial and
poL the minimal polynomial of FoL. We thus prove the existence of a Hurwitz polynomial of degree nη,
in this case, nη ≥ noL, that satisfies (iii).

To now prove sufficiency, we assume the existence of nη and the related Hurwitz polynomial that satisfies
condition (iii). We consider three non-trivial scenarios in which the condition L̄02p(FoL) = 0 holds or
more explicitly

α0L̄k,02F
nη
oL + α1L̄k,02F

nη−1
oL + · · ·+ αrL̄k,02 = 0 (3.36)

where L̄k,02 denotes the k-th line of L̄02 and without loss of generality, (FoL, L̄02) is in observability
canonical form.
The first scenario is the one in which FoL has all decoupled blocks with the same characteristic polynomial
and dimensions. In this case, in order to satisfy (3.36), p must necessarily be of the form p(λ) =
p′(λ)poL(λ) with poL being the characteristic polynomial of FoL and p′ any other arbitrary Hurwitz
polynomial that brings the degree of p to be larger or equal to np−1, with np the maximum observability
index associated to H. This implies that FoL is Hurwitz.
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The second scenario is when FoL has joL decouple blocks with different dimensions and characteristic
polynomials. Then p necessarily must be of the form p = p′jpj , ∀j = 1 . . . joL, with pj being the
characteristic polynomial of the j-th block. Because p is a Hurwitz polynomial, it implies that all blocks
in FoL have Hurwitz components. The last scenario is the more general case in which FoL has all couple
blocks with different dimensions. Without loss of generality, we prove this scenario in the parametric
case in which FoL and L̄02 are of the form

FoL =


0 1 0 0
−β0 −β1 1 0

0 0 0 1
0 0 −γ0 −γ1


L̄02 =

[
1 0 0 0
0 0 1 0

]
.

(3.37)

For nη = 2 and L̄1,02, condition (3.36) reads as

α2

[
1 0 0 0

]
+ α1

[
0 1 0 0

]
+ α0

[
−β0 −β1 1 0

]
=[

α2 − β0α0 α1 − β1α0 α0 0
]

= 0.
(3.38)

That is α0 = 0 which implies α2 = α1 = 0. We thus necessarily have nη ≥ 4. Thus, with nη = 4 condition
(3.36) reads as

α4

[
1 0 0 0

]
+ α3

[
0 1 0 0

]
+ α2

[
−β0 −β1 1 0

]
+ α1

[
β1β0 −β0 + β2

1 −β1 1
]

+

α0

[
(β0 − β2

1)β0 β1β0 + (β0 − β2
1)β1 −β0 + β2

1 − α0 −β1 − γ1

]
= 0. (3.39)

By considering, without loss of generality, α0 = 1 as scaling factor, the coefficient of p satisfying (3.39)
must have solution

α1 = β1 + γ1

α2 = γ0 + β0 + β1γ1

α3 = γ0β1 + β0γ1

α4 = γ0β0.

(3.40)

The characteristic polynomial of FoL reads as

poL(λ) = λ4 + (β1 + γ1)λ3 + (γ0 + β0 + β1γ1)λ2 + (γ0β1 + β0γ1)λ+ γ0β0β0.

Hence in this case the polynomial p corresponds to the characteristic polynomial of FoL. This implies that
FoL is Hurwitz. And thus that the triple (F,H,L0) is functional detectable. The same procedure applies
for any other case leading to the fact that necessarily p(·) = p′(·)poL(·) thus containing the characteristic
polynomial of FoL. And this implies functional detectability.
We thus proved the sufficiency.

3.3 Conclusions

We provide a unified overview of the works related to functional observers for linear systems. We also
provide the geometrical definition of both functional-observability and -detectability. We proved the
equivalence of these works and we provide a change of coordinates that makes the equivalence proofs
constructive. Then, exploiting just a change of coordinates one can design an algorithm to construct an
L1 wide matrix for (3.8) such that the resulting observer dynamics has the smallest dimension and its
converge rate can be arbitrary chosen.
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Chapter 4

Nonlinear case

In this chapter, we want to extend as much as possible the linear results obtained in the previous chapter
to the case of nonlinear systems.
Given a nonlinear autonomous dynamical system with state x(t) and output measurements y(t), and
some functional of the system state `(x(t)), the basic idea of a functional observer is to construct a
dynamical system driven by the only signal available, i.e., the output trajectory y(t), to asymptotically
reconstruct the functional `(x(t)), possibly, without estimating the whole state x(t). In general, for
nonlinear systems, reducing the functional-observer order is a much harder task than for a linear system
and, as for the linear case, we will not address it.

4.1 Problem statement

Consider an autonomous system
ẋ = f(x) , y = h(x) (4.1)

with state x ∈ Rnx , output y ∈ Rny and maps f : Rnx → Rnx and h : Rnx → Rny continuously
differentiable. The goal of this chapter is to investigate the possibility of reconstructing, from the
measurement y, a certain continuous function ` : Rnx → Rnq of the state x, namely design a functional
observer processing y and providing asymptotically an estimate of `(x), for any solution of (4.1) initialized
in some set X0 ⊆ Rnx of interest. In the following, we consider a set X ⊆ Rnx such that any solution to
(4.1) initialized in X0 remains in X for all positive times.
To this end, we build upon the literature of nonlinear Luenberger observers, also called KKL observers,
and propose a functional observer of the form

˙̂η = Aη̂ +B(y)

ˆ̀= τ(η̂)
(4.2)

of appropriate dimension nη, with A ∈ Rnη×nη Hurwitz, B : Rny → Rnη and τ : Rnη → Rnq to be
designed such that, for any solution t 7→ x(t) to (4.1) initialized in X0, any solution to (4.2) with input
y = h(x) verifies

lim
t→∞

|ˆ̀(t)− `(x(t))| = 0 . (4.3)

We then say that (4.2) is a `-functional observer for (4.1) initialized in X0.
The idea followed in the KKL methodology is to look for a C1 map T : Rnx → Rnη transforming the
dynamics (4.1) into

η̇ = Aη +B(y) , τ(η) = `(x) (4.4)

namely such that

∂T

∂x
(x)f(x) = AT (x) +B

(
h(x)

)
(4.5a)

τ ◦ T (x) = `(x) ∀x ∈ X . (4.5b)

Indeed, if (4.5) is verified, then for any solution to (4.1) initialized in X0, the image η = T (x) is solution
to (4.4), and because A is Hurwitz, any solution to (4.2) verifies

lim
t→∞

|η̂(t)− T (x(t))| = 0 . (4.6)

It then follows by applying τ and using (4.5b), that the convergence property (4.3) holds if the map τ
verifies an appropriate uniform continuity condition.
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Note that if `(x) = x, namely a full-state observer is required, then we recover the paradigm of Andrieu
and Praly (2006). On the other hand, for an arbitrary map `, the spirit of the approach is the same as
the one proposed in Kravaris (2016). However, the main difference lies in the fact that the map τ in (4.5)
is allowed to be nonlinear while it is taken linear in Kravaris (2016). This allows us to prove the existence
of a functional observer for a larger class of systems verifying a very general distinguishability property
with respect to the map q (see Remark 3 below) The price to pay is that the obtained result deals only
with existence and not constructive design.

4.2 Robust functional KKL observer

4.2.1 Main result

In Andrieu and Praly (2006), the existence of a full-state observer of the type (4.2) with ` = Id is
shown under a backward distinguishability assumption on the full state x. In this chapter, we relax this
assumption into backward distinguishability of `(x) only as follows.

Definition 5. System (4.1) is backward O-distinguishable with respect to ` if there exist δd > 0 and
δΥ > 0, with δd > δΥ, such that for each pair (xa, xb) in (O + δΥ)2 verifying `(xa) 6= `(xb), there exist a
time t ∈ (max{σ−O+δd

(xa), σ−O+δd
(xb)}, 0], such that

h(X(xa, t)) 6= h(X(xb, t)).

A checkable sufficient condition for backwards-distinguishability is the so-called differential observability,
namely the fact that the map

x 7→ (h(x), Lfh(x), . . . , L
(m)
f h(x))

made of the output and its successive time derivatives, is injective on O+ δΥ for some integer m. Indeed,
this means that the outputs from two distinct initial conditions (xa, xb) in O + δΥ can instantaneously
be distinguished and δd is any positive scalar.
We then prove our main result.

Theorem 4.2.1. Assume X is compact and system (4.1) is backward O-distinguishable with respect to `,
with O an open bounded set such that X ⊆ cl(O). Then there exist τ : Rnη → Rnv , A ∈ Rnη×nη Hurwitz
and B : Rny → Rnη with nη = 2(n+ 1)ny such that (4.2) is a `-functional observer of (4.1) initialized in
X0. Moreover, there exists a class-K map α such that if (4.2) is implemented with y = h(x) + ν then

lim sup
t→+∞

|ẑ(t)− `(x(t))| ≤ α
(

lim sup
t→+∞

|ν(t)|
)
. (4.7)

More precisely, there exists a subset S of Cn+1 of zero Lebesgue measure and ` < 0 such that, denoting
C` := {λ ∈ C : Re{{}λ} < `}, A can be chosen as a block diagonal matrix1 A = diag

(
Iny ⊗A1, . . . , Iny ⊗

An+1

)
, with

Ai =

[
Re{λi} Im{λi}
−Im{λi} Re{λi}

]
(4.8)

where (λ1, . . . , λn+1) is arbitrarily chosen in Cn+1
` \S, and

B(y) =

1
...
1


n+1

⊗
(
y ⊗

[
1
0

])
. (4.9)

Remark 3. In Kravaris (2016), τ is imposed to be linear (and so is B), modulo a possible linear
dependence of ` on y = h(x), i.e., (4.5b) is replaced by `(x) = CT (x) +Dh(x) for some matrices C and
D to be designed. In this case, a q-functional observer exists if and only if a certain Hurwitz polynomial p
of degree nη applied to the Lie derivatives of the scalar functional q can be written as a linear combination
of the outputs yi and their nη Lie derivatives for i = 1, . . . , ny. Besides, this equivalence is constructive,
because when such a polynomial p exists, A, B, C and D can be designed as shown in Kravaris (2016),
with p taken as the characteristic polynomial of A and nη the observer’s dimension. This result holds
because applying p to the Lie derivatives of q(x) = CT (x) +Dh(x) makes the dependence on T disappear
thanks to the linearity of q with respect to T and Cayley-Hamilton theorem. In this chapter, because

1The matrix A and linear map B as described here are a real realization of the complex variable dynamics żkj = λkzkj+yj
for k = 1, . . . , n+ 1 and j = 1, . . . , ny .
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τ is a general nonlinear function this condition is no longer necessary. In addition, relaxing it to a
nonlinear dependence of the Lie derivatives of q on the Lie derivatives of h is not straightforward due to
the nonlinearity of τ .

Remark 4. Even when nq < n, the dimension nη of the observer given by Theorem 4.2.2 is the same
as if we were designing a full-state KKL observer with `(x) = x. This is due to the use of Coron’s
Lemma Andrieu and Praly (2006) in the proof and does not allow the design of minimal/reduced order
observers unlike Darouach and Fernando (2019); Fernando and Trinh (2014); Kravaris (2016).However,
this observer can be used even when the full state is not observable, by extracting from η all the
backwards-distinguishable states (or functions of state), through an appropriate design of τ .

The rest of the section shows how to adapt the proof of Andrieu and Praly (2006) to prove Theorem
4.2.1.

4.2.2 Existence of T injective with respect to ` solving (4.5a)

The existence of a map T : O ⊂ Rn → Rnη satisfying (4.5a) has been studied in Andrieu and Praly
(2006). A candidate solution is indeed

T (x) =

∫ 0

−∞
e−AsB

(
h(X̆(x, s))

)
ds (4.10)

with X̆(x, t) solution at time t of

ẋ = χ(x)f(x) (4.11)

passing through x at time t = 0, for an arbitrary locally Lipschitz function χ satisfying

χ(x) =

{
1 if x ∈ O + δd

0 if x /∈ O + δc
(4.12)

with δc > δd. The heart of the problem is rather in guaranteeing the existence of τ such that (4.5b)
holds, namely the fact that q(x) can be written as a function of T (x). A necessary condition is that T
be injective with respect to q on X , namely that for any (xa, xb) ∈ X × X ,

T (xa) = T (xb) =⇒ q(xa) = q(xb) . (4.13)

The following theorem generalizes (Andrieu and Praly, 2006, Theorem 3) (in the case of a bounded set
O) and gives a sufficient condition for T defined in (4.10) to be C1 and injective with respect to `.

Theorem 4.2.2. Assume X is compact and system (4.1) is backward O-distinguishable with respect to
q with corresponding δd in (0, δc). Then, there exists a subset S of C(n+1) of zero Lebesgue measure such
that the function T : cl(O) → R2(n+1)×ny defined by (4.10) is C1 and injective with respect to q in the
sense of (4.13), provided A is a block diagonal matrix A = diag

(
Iny ⊗ A1, . . . , Iny ⊗ An+1

)
, with Ai

defined in (4.8) and (λ1, . . . , λn+1) arbitrarily chosen in Cn+1
µ \S, with Cµ = {λ ∈ C : Re{λ} < µ}, and

B : Rny 7→ R2(n+1)ny defined in (4.9).

Proof. The proof of the theorem follows the same steps as in (Andrieu and Praly, 2006, Theorem 3), but
with the set

Υ := {(xa, xb) ∈ (O + δΥ)2 : xa 6= xb}

replaced by

Υ = {(xa, xb) ∈ (O + δΥ)2 : q(xa) 6= q(xb)} . (4.14)

Indeed, Υ is an open set by continuity of q. Define for λ ∈ Cµ

Tλ(x) =

∫ 0

−∞
e−λsh(X̆(x, s))ds .

which is shown in Andrieu and Praly (2006) to be C1 on O+δΥ for any λ ∈ Cµ. Since T defined in (4.10)
is built from the real and imaginary parts of (Tλ1 , Tλ2 , · · · , Tλn+1), it is C1 on cl(O). The injectivity of
T with respect to q is then proved by applying Coron’s lemma (Andrieu and Praly, 2006, Lemma 1) to
g : Υ× Cµ → Cny defined by

g(xa, xb, λ) = Tλ(xa)− Tλ(xb) ,

63



with Υ defined in (4.14). g is indeed holomorphic with respect to λ for all (xa, xb) ∈ Υ in the same way
as in Andrieu and Praly (2006). Besides, for all (xa, xb) ∈ Υ, λ 7→ g(xa, xb, λ) is not identically zero on
Cµ because for any a < `, applying Plancherel theorem,∫ +∞

−∞
|g(xa, xb, a+ is)|2ds =

∫ 0

−∞
e−2λs|h(X̆(xa, s))− h(X̆(xb, s))|2ds > 0

by backwards-distinguishability with respect to q, continuity in time and injectivity of b. It follows that
(Andrieu and Praly, 2006, Lemma 1) applies and the set

S =
⋃

(xa,xb)∈Υ

{(λ1, · · · , λn+1) ∈ Cn+1
µ : g(xa, xb, λ1) = . . . = g(xa, xb, λn+1) = 0}

has zero Lebesgue measure in Cn+1
µ . By definition of g and Υ, we conclude that for any (λ1, · · · , λn+1) ∈

Cn+1
µ \ S, the map (Tλ1

, Tλ2
, · · · , Tλn+1

), and therefore T , is injective with respect to q on cl(O) ⊂
O + δΥ.

4.2.3 Existence of τ solving (4.5b)

Now that injectivity of T with respect to ` is guaranteed, we prove the existence of a globally defined
uniformly continuous map τ verifying (4.5b). This is guaranteed by (Bernard, 2019, Lemma A.12) since
X is compact. More precisely, there exists a map τ : Rnη → Rnq and a class-K map γ such that (4.5b)
holds and

|τ(ηa)− τ(ηb)| ≤ γ(|ηa − ηb|) ∀(ηa, ηb) ∈ Rnη × Rnη . (4.15)

Hence, for any x ∈ X and η̂ ∈ Rnη ,

|τ(T (x))− τ(η̂)| ≤ γ(|T (x)− η̂|) (4.16)

and thus according to (4.5b),
|q(x)− τ(η̂)| ≤ γ(|T (x)− η̂|) . (4.17)

Finally, using the fact that A is Hurwitz and that, according to (4.5a),

d

dt
(T (x)− η̂) = A(T (x)− η̂) ,

we deduce that (4.3) holds and the first part of Theorem 4.2.1 is proved.

4.2.4 Robustness of the functional observer

We now study the effect of measurement additive noise on the functional observer (4.2), namely when
y = h(x) + ν. The error ∆η = η̂ − T (x) now verifies

d

dt
∆η = A∆η +B(ν) (4.18)

and
|ẑ − `(x)| = |τ(η̂)− τ(T (x))| ≤ γ(|η̂ − T (x)|) = γ(|∆η|)

where γ(·) is the uniform continuity map of τ verifying (4.15). Let us define a Lyapunov function
V (∆η) = ∆ηTP∆η, with P positive definite, such that PA+ATP ≤ −aP for some a > 0. Then

V̇ ≤ −aV + 2∆ηTPB(ν)

≤ −aV +
a

2
V +

2

a
B(ν)TPB(ν)

≤ −a
2
V +

2

a
β|ν|2λmax(P )

(4.19)

for some β > 0 depending only on ny and nη. It follows by standard ISS arguments that asymptotically,

lim sup
t→+∞

|∆η(t)| ≤ 2

√
λmax(P )

λmin(P )

β

a
lim sup
t→+∞

|ν(t)|2 (4.20)

and thus, we obtain the following asymptotic error property

lim sup
t→+∞

|ẑ − q(x)| ≤ γ
(

2

√
λmax(P )

λmin(P )

β

a
lim sup
t→+∞

|ν|
)
. (4.21)
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4.3 Application: observer design for systems with input

Consider a system
ẋ = f(x, u) , y = h(x, u) (4.22)

with state x ∈ Rn, output y ∈ Rny and input u ∈ Rnu in a certain class U. We are interested in designing
an observer for solutions initialized in X0 with input u ∈ U and remaining in a compact set X . The goal
of this observer may be for instance to reconstruct the full-state x, or a certain function of the state `(x),
or even the input u. Apart from specific structures allowing the design to be valid for any u ∈ U, typically
under uniform observability assumptions (linear forms Luenberger (1964), triangular forms Gauthier et al.
(1992), see also (Bernard and Andrieu, 2018, Theorem 4)) or particular classes of systems Astolfi et al.
(2010), there does not exist a general observer design paradigm for systems with input. Here we propose
to use the functional KKL observers presented in the previous section to provide a general answer to this
problem when the input is known in advance to be generated by a finite-dimensional system, or to be
approximable by one, in a sense to be defined. In this latter case, the robustness proved in Theorem 4.2.2
is instrumental to allow the use of universal approximators and ensure practical estimation as detailed
in Section 4.3.1. Then, we detail in particular two contexts:

� observer to reconstruct x or `(x) when u is known: u can then be considered as an extra measurement
and the observer fed with yaug = (u, y), see Section 4.3.2;

� functional and/or input observer to reconstruct x, `(x), and/or u, when the latter is unknown: the
observer is only fed with y, see Section 4.3.3.

4.3.1 Finite-dimensional input generator

Let us start by assuming that the input u is known to be generated, in forward time, by a
finite-dimensional dynamical system of the form

ẇ = s(w) , u = l(w) (4.23)

with s : Rnw → Rnw and l : Rnw → Rnu continuously differentiable, w initialized in W0 ⊂ Rnw such that
any solution initialized in W0 remains in a compact set W for all t ≥ 0. This applies well in particular
in the fields of electrical machines or automotive engines, where the inputs are typically periodic with a
finite number of Fourier coefficients as in Chauvin et al. (2007). More precisely, defining

W =
{
w : R≥0 →W solution to ẇ = s(w) on R≥0, with w(0) ∈ W0

}
we assume the input u is known to belong to the class

Ugen = {l(w) : w ∈W} . (4.24)

The idea is then to apply off-the-shelf the functional KKL design of the previous section on the
autonomous cascade (4.23)-(4.22) for an appropriate map qaug, in order to obtain an observer (4.2)
for (4.22), with a certain choice of A,B, τ that works for any input u ∈ Ugen. To appropriately define and
analyse the observer, we need to consider a larger class of inputs. So, similarly as above, for 0 < δ′ < δ
to be defined, consider a C1 map χδ satisfying

χδ(w) =

{
1 if w ∈ W
0 if w /∈ W + δ

(4.25)

and the input class

Uδgen =
{
u :R→ Rnu such that ∃w : R→W + δ, solution to ẇ = χδ(w)s(w), with w(0) ∈ W + δ′ ,

such that u(t) = l(w(t)) ∀ t ∈ R
}
.

(4.26)
Note that Ugen ⊂ Uδgen.
In a second step, once we have designed an observer (4.2) for inputs u ∈ Ugen, one may wonder whether
the designed observer may still be used when the input u ∈ U is not in Ugen. Thanks to the robustness
property of the observer described in Theorem 4.2.1, the accuracy of the input generator model drives
the steady-state estimation of the observer. Indeed, consider an arbitrary u ∈ U, x0 ∈ X0 and the
corresponding solution x to (4.22) with output y. Then, for any uw = l(w) ∈ Ugen, with w ∈ W, and
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corresponding xw solution to (4.22) with input uw and output yw, we can consider the observer (4.2)
driven by y (and possibly u, see below) as driven by yw + νyw (and uw + νuw) where

νuw = u− uw = u− l(w)

νyw = y − yw = y − h(xw, l(w))

Hence, applying Theorem 4.2.1 to the cascade (4.23)-(4.22), we deduce a result of the type

lim sup
t→+∞

|`(x(t))− ẑ(t)| ≤ inf
w∈W

lim sup
t→∞

{|`(x(t))− `(xw(t))|+ α (|(νuw(t), νyw(t))|)} (4.27)

with the quality of the estimation thus depending on how well u can be approximated by a signal
uw ∈ Ugen for w ∈W, and how far the corresponding yw, q(xw) are from y, q(x).
A natural idea is therefore to use in (4.23) a universal approximator of sufficiently large dimension making
νu and νy sufficiently small. For instance, any sinusoidal signal of arbitrary frequency u(t) = A sin(ωt+φ)
may be modelled via a nonlinear three-dimensional system

ẇ1 = w2

ẇ2 = −w3w1

ẇ3 = 0

, l(w) = w1

and several such exosystems could be combined to approximate arbitrarily well any periodic signal.
In the following, we thus provide conditions ensuring the existence of asymptotic observers in the two
scenarios mentioned above (known/unknown inputs) only for inputs u ∈ Ugen. One may rely on robustness
as detailed above when using the observer for an arbitrary u ∈ U.

4.3.2 Observer with known input

According to (Bernard and Andrieu, 2018, Theorem 3), we already know that, under an appropriate
backwards-distinguishability condition of the full state x for inputs u ∈ U, a KKL observer exists for
(4.22) with time-varying maps Tu depending on each individual u ∈ U. Although this dependence on u
is causal, it is not explicit in general, which renders the use of such an observer limited in practice unless
Tu can be explicitly computed as done in some examples in Bernard and Andrieu (2018). In addition,
the zero-measure set Su outside of which the eigenvalues of A must be chosen depends on each u ∈ U
and

⋃
u∈U Su may not be of zero-measure. Therefore, the existence of a single KKL observer working for

any u ∈ U is not guaranteed. Our goal here is to use the functional observer paradigm presented in the
previous section to prove the existence of a KKL functional observer relevant for at least any u ∈ Ugen,
where Ugen can be modelled by (4.24).
We start by giving a generic definition of backwards-distinguishability for systems with inputs.

Definition 6. System (4.22) is backward O-distinguishable with respect to q for inputs in U, if there
exist 0 < δΥ < δd such that for any pair (xa, xb) in (O + δΥ)2 with q(xa) 6= q(xb), and any u ∈ U, there
exists t ∈ (max{σ−O+δd

(xa, 0;u), σ−O+δd
(xb, 0;u)}, 0] such that

h(Xu(xa, 0, t), u(t)) 6= h(Xu(xb, 0, t), u(t)) .

Remarking that both y and u are known, the idea is to consider u as an extra measurement and look for
a functional observer of the form

˙̂η = Aη̂ +B (y, u)

ẑ = τ(η̂)
(4.28)

with A,B, τ chosen such that for any solution to (4.22) initialized in X0 with input u ∈ Ugen and output
y, any solution to (4.28) verifies

lim
t→∞

|ẑ − q(x)| = 0 .

Because u ∈ Ugen, we design A,B, τ by applying the functional KKL paradigm on the extended system{
ẇ = χδ(w)s(w)
ẋ = f(x, l(w))

, yaug = (h(x, l(w)), l(w)) (4.29)

in a way that makes
˙̂η = Aη̂ +B (yaug)

ẑ = τ(η̂)
(4.30)

a qaug-functional observer for (4.29) with

qaug(w, x) = `(x) .

66



Theorem 4.3.1. Assume X is compact and that there exist 0 < δ′ < δ such that system (4.22) is
backward Ox-distinguishable with respect to a continuous map q for inputs in Uδgen defined in (4.26), with
Ox a bounded open set such that X ⊆ cl(Ox). Then, there exist ` > 0 and a set S of zero-Lebesgue
measure in C(nw+n+1) such that there exists a map τ : R2(nw+n+1)(ny+nu) → Rn such that (4.28) is a
q-functional observer for (4.22) for any input u ∈ Ugen defined in (4.24), provided A is a block diagonal
matrix A = diag

(
Iny+nu⊗A1, . . . , Iny+nu⊗Anw+n+1

)
, with Ai defined as in (4.8) and (λ1, . . . , λnw+n+1)

arbitrarily chosen in Cnw+n+1
` \S, with Cl as in Theorem 4.2.2, and B defined in (4.9).

Proof. For any solution x to (4.22) initialized in X0 with input u ∈ Ugen and output y, there exists a
solution (w, x) to (4.29) initialized in W0 ×X0 such that yaug = (y, u). Therefore, it is sufficient to show
that (4.30) is a qaug-functional observer for (4.29) initialized in W0 × X0 with respect to the continuous
map qaug(w, x) = q(x). For that, we would like to apply Theorem 4.2.1. We know that solutions to (4.29)
initialized in W0 × X0 remain in forward time in the compact set W × X , and we only need to find an
open bounded set Ow such that W ×X ⊆ cl(Ow ×Ox) and (4.29) is backward Ow ×Ox-distinguishable
with respect to qaug.
Let us consider an open bounded set Ow, δΥw > 0 and δdw > 0 such that W ⊂ Ow, Ow + δΥw ⊂ W + δ′

and W + δ ⊂ Ow + δdw .
Consider δΥx < δdx given by the property of Ox-distinguishability. Consider a pair (wa, wb) ∈ (Ow +
δΥw)2, a pair (xa, xb) ∈ (Ox + δdx)2 such that q(xa) 6= q(xb), and the corresponding solutions t 7→
(W ((wi, xi), t), X((wi, xi), t)) to (4.29) for i = a, b. Because t 7→ W ((wi, xi), t) does not depend on xi,
we actually write t 7→W (wi, t). By definition of χδ, W (wi, t) ∈ W + δ ⊂ Ow + δdw for all t and thus,

tdx := max
i=a,b

σ−(Ow+δdw )×(Ox+δdx )(wi, xi)

verifies
tdx = max

i=a,b
σ−Rnw×(Ox+δdx )(wi, xi) (4.31)

We have the following two cases

� either there is a time t ∈ (tdx , 0] such that l(W (wa, t)) 6= l(W (wb, t)), in which case we trivially
have [

h(X((wa, xa), t), l(W (wa, t))))
l(W (wa, t))

]
6=
[
h(X((wb, xb), t), l(W (wb, t))))

l(W (wb, t))

]
(4.32)

� or, l(W (wa, t)) = l(W (wb, t)) for all t ∈ (tdx , 0]. In this case, defining u := l(W (wa, ·)), both
X((wa, xa), ·) and X((wb, xb), ·) are solutions on (tdx , 0] to (4.22) initialized in Ox+δdx with xa 6= xb
and with input u ∈ Uδgen. Besides, according to (4.31),

tdx = max{σ−Ox+δdx
(xa, 0;u), σ−Ox+δdx

(xb, 0;u)} .

By the property of backward Ox-distinguishability of (4.22) with respect to q, there exists t ∈ (tdx , 0]
such that

h(X((wa, xa), t), u(t)) 6= h(X((wb, xb), t), u(t)) .

We conclude that in both cases there exists t ∈ (tdx , 0] such that (4.32) holds. Therefore, (4.29) is
backward Ow ×Ox-distinguishable with respect to qaug.

4.3.3 Observers with unknown input

Two possible applications of practical interest are the unknown input observers and the input
reconstruction/observation problems.

Unknown input observer (UIO)

The goal of UIO design is to estimate the state of a system despite the presence of unknown inputs
(disturbances) that are not required to be estimated. This problem is typically approached in the
literature either (i) by cancelling the contribution of those inputs in the observer, through an appropriate
change of coordinates and/or matrix manipulation Wang et al. (1975); Hou and Muller (1992); Chen and
Saif (2006); Chakrabarty et al. (2017), or (ii) by transforming the system into a particular triangular
form where robust sliding mode differentiators can be used Barbot et al. (2009) (among many others), or
(iii) by using a stochastic model of the input and design a minimum-variance Kalman filter Maes et al.
(2016); Azam et al. (2015).
Here, we rather propose to exploit the KKL functional paradigm of this chapter by assuming a
finite-dimensional (deterministic) input generator is available, i.e., u ∈ Ugen. In the UIO setting, the
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input is unknown so the observer can only be fed with y. Therefore, we consider an observer of the form
(4.2), with A,B, τ still designed so that (4.30) is a qaug-functional observer for (4.29), but with

yaug = h(x, l(w)) , qaug(w, x) = `(x) .

Reproducing similar arguments as in Theorem 4.3.1, but with (4.32) replaced by

h(X((wa, xa), t), l(W (wa, t)))) 6= h(X((wb, xb), t), l(W (wb, t)))) ,

we show the existence of a `-observer (4.2) for system (4.22) with nη = 2(nw + n + 1)ny for any input
in Ugen if (4.22) is backward Ox-distinguishable with respect to q for unknown inputs in Uδgen. In other
words, Definition 6 must be adapted to the following.

Definition 7. System (4.22) is backward O-distinguishable with respect to q for unknown inputs in U,
if there exist 0 < δΥ < δd such that for any pair (xa, xb) ∈ (O + δΥ)2 with q(xa) 6= q(xb), and any pair
(ua, ub) ∈ U2, there exists t ∈ (max{σ−O+δd

(xa, 0;ua), σ−O+δd
(xb, 0;ub)}, 0] such that

h(Xua(xa, 0, t), ua(t)) 6= h(Xub(xb, 0, t), ub(t)) .

For a linear system
ẋ = Fx+Gu ,

standard linear UIO methodologies would aim at annihilating the contribution of Gu in the observer
dynamics by using G+ such that G+G = 0.
In our approach instead, we relax the constraints by designing an observer able to generate asymptotically
the unknown input term Gu, but only for signals u generated by a particular exosystem ẇ = Sw.
To whom is familiar with the concept of output regulation/tracking internal model, the idea is somehow
to have in the observer dynamics an internal model of the part of the unknown input that is necessary to
generate `(x). In other words, the observer state η incorporates the “useful” effect of u through y, and
the information about `(x) is then extracted from η via τ thanks to distinguishability. We indeed want
to highlight the similarity with this control field, in particular with Marconi et al. (2007).

Input reconstruction

Estimating the input of a system is of interest in practical applications in particular for fault diagnosis.
A first approach to reconstruct the input from the output is by inverting the system’s dynamics. This is
the path taken in Szigeti et al. (2002); Edelmayer et al. (2004), where a detector is designed so that the
cascade of the plant with its detector creates an identity map. Such an inversion requires observability
of any input and thus that the system in question be minimum phase (i.e., its zero dynamics must be
asymptotically stable) Hou and Patton (1998); Szigeti et al. (2002); Edelmayer et al. (2004). Other
approaches requiring minimum-phase properties include Fridman et al. (2008), where sliding mode is
applied on a particular triangular form, and Corless and Tu (1998) where a practical linear-based design
is used on a system with a Lipschitz nonlinearity considered as unknown input.
Other approaches avoid the problem of non-minimum phase systems, by restricting the class of considered
inputs, for instance to bounded inputs in Veluvolu and Soh (2009), or to periodic inputs with a finite
number of harmonics in Chauvin et al. (2007). Our design also falls in this category since we consider
the input reconstruction problem under the assumption that the input is bounded and generated by a
finite-dimensional model, i.e., belongs to Ugen. This does not require any minimum-phaseness property
because inputs that are made indistinguishable by the unstable zero dynamics may not belong to the
class of interest and may be discarded, thus recovering distinguishability. The price to pay is of course
the need for an input generator model which augments the observer dimension. Anyway, still following
the same arguments as before but this time with

yaug = h(x, l(w)) , qaug(w, x) = l(w) ,

we propose to design an input estimator of the form (4.2) such that

lim
t→+∞

|ẑ(t)− u(t)| = 0 ,

and we thus need the system (4.22) to verify the following input distinguishability property for inputs in
Uδgen.

Definition 8. The system (4.22) is backward input O-distinguishable for inputs in U if there exist positive
real δd, δΥ, with δd > δΥ, such that for each pair (xa, xb) in (O + δΥ)2 and (ua, ub) in U2 verifying
ua(0) 6= ub(0), there exists t ∈ max{σ−O+δd

(xa, 0;ua), σ−O+δd
(xb, 0;ub)}, 0] such that

h(Xua(xa, 0, t), ua(t)) 6= h(Xub(xb, 0, t), ub(t)).
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A similar definition (in forward time) is given in (Szigeti et al., 2002, Definition 1) under the name of
input observability, but the main difference is that we only require this property for inputs in a certain
class.

4.4 Conclusion

We have provided distinguishability conditions ensuring the existence of functional KKL observers for
autonomous systems and for systems with inputs when the input is generated by a finite-dimensional
autonomous dynamical system. Such observers consist of linear filters of the known signals (output, and
input when it is known) and a nonlinear map enabling the reconstruction of the quantity of interest.
The observer dimension is explicitly linked to the dimension of the system (and of the input generator).
Moreover, the inherent robustness of the observer allows us to obtain practical estimation when the input
is only approximately modelled by the input generator, although the observer dimension then increases
with the generator dimension and thus with the required precision.
Further work includes developing numerical methods to implement such observers, extending for instance
what is done in Ramos et al. (2020), as well as developing this functional KKL paradigm also in the
time-varying case (extending the results of Bernard and Andrieu (2018)). Such results could indeed
allow the use of more general time-varying input generators such as neural networks Salgado and Chairez
(2017).
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Conclusions

In our work, we presented a summary of the most relevant results in literature about the limitations
in feedback design due to the presence of a non-minimum phase plant. In particular, we began with
the Bode’s integrals limitations appearing in the frequency domain. We then moved to the state space
results in which we found lower bounds limitations in the output undershoot. Then, some approaches
to construct a state feedback gain matrix that allowed no undershoot nor overshoot of the closed output
trajectory, or another approach intending to stuck the output trajectory of a non-minimum phase system
between two boundary functions of time, i.e., the funnel control approach. Despite the limitations
we have found in the output trajectory, the most relevant theoretical work on the unstable zeros in
linear system has been established via the Inner-Outer decomposition by Qiu and Davison (1993). In
particular, they were able to directly link the location of such unstable zeros to a boundary of the
minimum energy needed for the output trajectory in order to (unavoidably) stabilize the unstable zeros
dynamics. This work has been recast into a path following scenario that allows to put into play a new
design degree of freedom that brakes the limitations on the minimum energy needed for the output
trajectory, leading to a arbitrary small, but not zero, output energy. These latter works has then by
extended to the case of nonlinear systems. In particular, it is thanks to Seron et al. (1999) that we first
we a bound between the Bode’s integral results and the limitations described in Qiu and Davison (1993).
They moreover extend to the case of nonlinear system the stabilization approach exploited in Qiu and
Davison (1993) to stabilize square nonlinear systems with unitary vector relative degree.
Our contributions to the non-minimum phase research thread has been strongly inspired by the work of
Qiu and Davison (1993) and provides an extension of the Inner-Outer decomposition to strictly proper
linear systems. We then exploit this decomposition in a state feedback framework to impose an upper
bound the maximum undershoot a non-minimum phase system can exhibit, by paying the price of
imposing a limitation on the output time derivative. Moreover, the results we proved, in the context
of dynamic output feedback, is that, by exploit a fast enough observer, we can steer the non-minimum
phase system trajectory arbitrarily close to that of minimum phase one, by equivalently controlling a
minimum phase ‘twin’ of the system under consideration enforcing a constraint on the minimum phase
output time derivative.

Motivated by our results in the field of non-minimum phase systems stabilization via the Inner-Outer
decomposition, we were interested in reconstructing the minimum phase (outer) output from its
inner-filtered version, i.e., the real plant output y. In doing so we cannot simply invert the inner dynamics
of the system because its inverse is an unstable system, thus the equivalent input reconstruction problem
cannot be solved. We then wanted to exploit the outer-inner system cascade to construct a functional
observer because the yo can be viewed as functional of the cascade states. This idea led to the study of
the functional observation literature and the most relevant approaches to construct such a functional
observer. Apparently, these results seemed completely independent from each other, but, by exploiting
a simple change of coordinates, we were able to proof the equivalence among all. Moreover, we also
provide a generic definition functional-observability and -detectability for linear systems.
We then extended our work to the case of nonlinear systems by exploiting the so-called KKL observer
approach. We also find interesting applications of the functional observer, such as: input reconstruction,
unknown input observers, and controlled nonlinear systems. Unfortunately, due to the equivalent
pole/zero cancellation present in the inner-outer decomposition its cascade becomes detectable and its
state cannot satisfy the backward distinguishability property to construct the inverse map and obtain a
reconstruction of the desired functional.

We are currently working on the extension of the inner-outer decomposition also to nonlinear systems
admitting a normal form. Moreover, we are also focusing on different approaches to exploit the inner-outer
decomposition in order to stabilize a non-minimum phase systems via dynamics output feedback.

71



72



Appendix A

Multi-Input Multi-Output Normal
form

We consider the normal form of an LTI MIMO system

ẋ = Ax+Bu

y = Cx
(A.1)

with x ∈ Rnx , u ∈ Rnu , and y ∈ Rny . We consider the Ci as the i-th row of matrix C, and we define the
i-th relative degree ri as the smallest integer satisfying

� CiB = · · · = CiA
j−1
i B = 0 for all j = 1, . . . , ri − 1

� CiA
ri−1
i B 6= 0.

We can thus construct a linear map T of the form

T =



Tz
C1

C1A
· · ·

C1A
r1−1

C2

· · ·
CpA

rp−1


(A.2)

where Tz is any wide matrix that makes T non-singular. Note that it is always possible to find such a Tz
matrix with the propery that TzB = 0. Map T defines a change of coordinates that puts the system in
normal form [

z
ξ

]
= Tx (A.3)

with z ∈ Rnx−r and ξ ∈ Rr, being 1 r =
∑ny
i=1 ri. Then, system (A.1) in the normal form coordinates

read as [
ż

ξ̇

]
= TAT−1

[
z
ξ

]
+ TBu

=

[
F G
H Ā

] [
z
ξ

]
+

[
0
B̄

]
u

y = CT−1

[
z
ξ

]
= C̄ξ

(A.4)

1In literature, we usually refer to r as the vector relative degree, see Isidori (2013). We believe that our definition of r
generalizes the standard notion of relative degree given for SISO systems, as given in Isidori (2017) and we refer to r̄ as the
classical vector relative degree, i.e., r̄ = {r1, r2, . . . , rp}.
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where the matrices Ā, B̄, and C̄ are of the form

Ā =


Ā1 ? · · · ?
? Ā2 · · · ?

· · · · · ·
. . . · · ·

? ? · · · Āp



=



0 1 0 · · · 0
0 0 1 · · · 0

· · ·
0 0 0 · · · 1
? ? ? · · · ?

0 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0
? ? ? · · · ?

· · ·

0 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0
? ? ? · · · ?

0 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0
? ? ? · · · ?

0 1 0 · · · 0
0 0 1 · · · 0

· · ·
0 0 0 · · · 1
? ? ? · · · ?

· · ·

0 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0
? ? ? · · · ?

· · · · · ·
. . . · · ·

0 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0
? ? ? · · · ?

0 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0
? ? ? · · · ?

· · ·

0 1 0 · · · 0
0 0 1 · · · 0

· · ·
0 0 0 · · · 1
? ? ? · · · ?



(A.5)

B̄ =


B̄1

B̄2

...
B̄p

 =



0 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0
? ? ? · · · ?
0 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0
? ? ? · · · ?

...
0 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0
? ? ? · · · ?



(A.6)

C̄ =
[
C̄1 C̄2 . . . C̄p

]
=


1 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0

0 0 0 · · · 0
1 0 0 · · · 0

· · ·
0 0 0 · · · 0

· · ·

0 0 0 · · · 0
0 0 0 · · · 0

. . .
1 0 0 · · · 0

 (A.7)

where the matrix blocks Āi, B̄i and C̄i are respectively in Rri×ri , Rri×nu and Rny×ri , with ? possible
nonzero elements.
Moreover, it is possible for square systems, see Mueller (2009), to find a normal form such as (A.4) where
the matrices G and H have structure

G =


? 0 0 · · · 0
? 0 0 · · · 0

· · ·
? 0 0 · · · 0

? 0 0 · · · 0
? 0 0 · · · 0

· · ·
? 0 0 · · · 0

· · ·

? 0 0 · · · 0
? 0 0 · · · 0

. . .
? 0 0 · · · 0


= ḠC̄,

(A.8)
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for some Ḡ and

H =



0 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0
? ? ? · · · ?
0 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0
? ? ? · · · ?

...
0 0 0 · · · 0
0 0 0 · · · 0

· · ·
0 0 0 · · · 0
? ? ? · · · ?



(A.9)

where the ? symbols are possible nonzero elements.
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A. Edelmayer, J. Bokor, Z. Szabó, and F. Szigeti. Input reconstruction by means of system inversion:
A geometric approach to fault detection and isolation in nonlinear systems. International Journal of
Applied Mathematics and Computer Science, 14:189–199, 2004.

A. Emami-Naeini and D. de Roover. Bode’s sensitivity integral constraints: The waterbed effect revisited.
arXiv preprint arXiv:1902.11302, 2019.

T. Fernando and H. Trinh. A system decomposition approach to the design of functional observers.
International Journal of Control, 87(9):1846–1860, 2014.

B. A. Francis. A course in H∞ control theory, volume 88. 1987.

B. A. Francis and W. M. Wonham. The internal model principle of control theory. Automatica, 12(5):
457–465, 1976.

J. Freudenberg and D. Looze. Sensitivity reduction, nonminimum phase zeros, and design tradeoffs in
single loop feedback systems. In The 22nd IEEE Conference on Decision and Control, pages 625–630.
IEEE, 1983.

J. Freudenberg and D. Looze. Right half plane poles and zeros and design tradeoffs in feedback systems.
IEEE transactions on automatic control, 30(6):555–565, 1985.

L. Fridman, Y. Shtessel, C. Edwards, and X.-G. Yan. Higher-order sliding-mode observer for state
estimation and input reconstruction in nonlinear systems. International Journal of Robust and
Nonlinear Control: IFAC-Affiliated Journal, 18(4-5):399–412, 2008.

J.-P. Gauthier, H. Hammouri, and S. Othman. A simple observer for nonlinear systems applications to
bioreactors. IEEE Transactions on automatic control, 37(6):875–880, 1992.

K. Glover. All optimal hankel-norm approximations of linear multivariable systems and their l∞-error
bounds. International journal of control, 39(6):1115–1193, 1984.

G. C. Goodwin, S. F. Graebe, M. E. Salgado, et al. Control system design, volume 240. Prentice Hall
Upper Saddle River, 2001.

G. Gu. Inner-outer factorization for strictly proper transfer matrices. IEEE transactions on automatic
control, 47(11):1915–1919, 2002.

R. Gurumoorthy and S. Sanders. Controlling non-minimum phase nonlinear systems-the inverted
pendulum on a cart example. In 1993 American Control Conference, pages 680–685. IEEE, 1993.

J. B. Hoagg and D. S. Bernstein. Nonminimum-phase zeros-much to do about nothing-classical
control-revisited part ii. IEEE Control Systems Magazine, 27(3):45–57, 2007.

M. Hou and P. Muller. Design of observers for linear systems with unknown inputs. IEEE Transactions
on Automatic Control, 37(6):871–875, 1992.

M. Hou and R. J. Patton. Input observability and input reconstruction. Automatica, 34(6):789–794,
1998.

A. Isidori. A tool for semi-global stabilization of uncertain non-minimum-phase nonlinear systems via
output feedback. IEEE transactions on automatic control, 45(10):1817–1827, 2000.

A. Isidori. Nonlinear control systems. Springer Science & Business Media, 2013.

A. Isidori. Lectures in feedback design for multivariable systems. Springer, 2017.

A. Isidori and C. I. Byrnes. Output regulation of nonlinear systems. IEEE transactions on Automatic
Control, 35(2):131–140, 1990.

L. S. Jennings, T. L. Fernando, and H. M. Trinh. Existence conditions for functional observability from
an eigenspace perspective. IEEE transactions on automatic control, 56(12):2957–2961, 2011.

C. Kravaris. Functional observers for nonlinear systems. IFAC-PapersOnLine, 49(18):505–510, 2016.

K. Lau, R. H. Middleton, and J. H. Braslavsky. Undershoot and settling time tradeoffs for nonminimum
phase systems. IEEE Transactions on automatic control, 48(8):1389–1393, 2003.

78



D. G. Luenberger. Observing the state of a linear system. IEEE transactions on military electronics, 8
(2):74–80, 1964.

K. Maes, A. Smyth, G. De Roeck, and G. Lombaert. Joint input-state estimation in structural dynamics.
Mechanical Systems and Signal Processing, 70:445–466, 2016.

L. Marconi, L. Praly, and A. Isidori. Output stabilization via nonlinear Luenberger observers. SIAM
Journal on Control and Optimization, 45(6):2277–2298, 2007.

R. H. Middleton. Trade-offs in linear control system design. Automatica, 27(2):281–292, 1991.

B. C. Moore. On the flexibility offered by state feedback in multivariable systems beyond closed
loop eigenvalue assignment. In 1975 IEEE Conference on Decision and Control including the 14th
Symposium on Adaptive Processes, pages 207–214. IEEE, 1975.

J. Moreno. Quasi-unknown input observers for linear systems. In Proceedings of the 2001 IEEE
International Conference on Control Applications (CCA’01)(Cat. No. 01CH37204), pages 732–737.
IEEE, 2001.

M. Mueller. Normal form for linear systems with respect to its vector relative degree. Linear algebra and
its applications, 430(4):1292–1312, 2009.

S. Nazrulla and H. K. Khalil. Robust stabilization of non-minimum phase nonlinear systems using
extended high-gain observers. IEEE Transactions on Automatic Control, 56(4):802–813, 2010.

L. Qiu and E. J. Davison. Performance limitations of non-minimum phase systems in the servomechanism
problem. Automatica, 29(2):337–349, 1993.

L. Ramos, F. Di Meglio, V. Morgenthaler, L. Silva, and P. Bernard. Numerical design of Luenberger
observers for nonlinear systems. IEEE Conference on Decision and Control, pages 5435–5442, 12 2020.
doi: 10.1109/CDC42340.2020.9304163.

H. Rosenbrock. The zeros of a system. International Journal of Control, 18(2):297–299, 1973.

I. Salgado and I. Chairez. Adaptive unknown input estimation by sliding modes and differential neural
network observer. IEEE transactions on neural networks and learning systems, 29(8):3499–3509, 2017.

R. Schmid and L. Ntogramatzidis. The design of nonovershooting and nonundershooting multivariable
state feedback tracking controllers. Systems & Control Letters, 61(6):714–722, 2012.

R. Sepulchre, M. Jankovic, and P. V. Kokotovic. Constructive nonlinear control. Springer Science &
Business Media, 2012.

M. M. Seron, J. H. Braslavsky, P. V. Kokotovic, and D. Q. Mayne. Feedback limitations in nonlinear
systems: From bode integrals to cheap control. IEEE Transactions on Automatic Control, 44(4):
829–833, 1999.

J. Stewart and D. E. Davison. On overshoot and nonminimum phase zeros. IEEE Transactions on
Automatic Control, 51(8):1378–1382, 2006.

F. Szigeti, J. Bokor, and A. Edelmayer. Input reconstruction by means of system inversion: application
to fault detection and isolation. IFAC Proceedings Volumes, 35(1):13–18, 2002.

K. C. Veluvolu and Y. C. Soh. High-gain observers with sliding mode for state and unknown input
estimations. IEEE Transactions on Industrial Electronics, 56(9):3386–3393, 2009.

M. Vidyasagar. On undershoot and nonminimum phase zeros. IEEE Transactions on Automatic Control,
31(5):440–440, 1986.

S.-H. Wang, E. Wang, and P. Dorato. Observing the states of systems with unmeasurable disturbances.
IEEE Transactions on Automatic Control, 20(5):716–717, 1975.

J. T. Watson Jr and K. M. Grigoriadis. Optimal unbiased filtering via linear matrix inequalities. Systems
& Control Letters, 35(2):111–118, 1998.

79



80



List of Figures

1.1 Standard control structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Inner-Outer decomposition Cascade system . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Output comparison among the system output ‘y’, the outer output under state feedback

‘yo Ideal’, and the outer output subject to output FeedBack ‘yo output FB ’. . . . . . . . 47

81


