
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

INGEGNERIA BIOMEDICA, ELETTRICA E DEI SISTEMI

Ciclo 34

Settore Concorsuale: 09/G1 - AUTOMATICA

Settore Scientifico Disciplinare: ING-INF/04 - AUTOMATICA

THE THREE-DIMENSIONAL SINGLE-BIN-SIZE BIN PACKING PROBLEM:
COMBINING METAHEURISTIC AND MACHINE LEARNING APPROACHES

Presentata da: Gabriele Ancora

Supervisore

Claudio Melchiorri

Esame finale anno 2022

Coordinatore Dottorato

Michele Monaci

Co-supervisore

Gianluca Palli

i

Declaration of Authorship
I, Gabriele ANCORA, declare that this thesis titled, “The Three-Dimensional
Single-Bin-Size Bin Packing Problem: Combining Metaheuristic and Machine
Learning Approaches” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

ii

In the beginning was the Word
And by mutation came the Gene

Word
Wore
Gore
Gone
Gene

Michael A. Arbib

iii

ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA

Abstract
School of Engineering and Architecture

Department of Electrical, Electronic and Information Engineering (DEI)
"Guglielmo Marconi”

Doctor of Philosophy

The Three-Dimensional Single-Bin-Size Bin Packing Problem:
Combining Metaheuristic and Machine Learning Approaches

by Gabriele ANCORA

The Three-Dimensional Single-Bin-Size Bin Packing Problem is one of the
most studied problem in the Cutting & Packing category. From a strictly
mathematical point of view, it consists of packing a finite set of strongly het-
erogeneous “small” boxes, called items, into a finite set of identical “large”
rectangles, called bins, minimizing the unused volume and requiring that
the items are packed without overlapping. The great interest is mainly due
to the number of real-world applications in which it arises, such as pallet
and container loading, cutting objects out of a piece of material and pack-
aging design. Depending on these real-world applications, more objective
functions and more practical constraints could be needed. After a brief dis-
cussion about the real-world applications of the problem and a exhaustive
literature review, the design of a two-stage algorithm to solve the aforemen-
tioned problem is presented. The algorithm must be able to provide the
spatial coordinates of the placed boxes vertices and also the optimal boxes
input sequence, while guaranteeing geometric, stability, fragility constraints
and a reduced computational time. Due to NP-hard complexity of this type
of combinatorial problems, a fusion of metaheuristic and machine learning
techniques is adopted. In particular, a hybrid genetic algorithm coupled with
a feedforward neural network is used. In the first stage, a rich dataset is cre-
ated starting from a set of real input instances provided by an industrial com-
pany and the feedforward neural network is trained on it. After its training,
given a new input instance, the hybrid genetic algorithm is able to run using
the neural network output as input parameter vector, providing as output
the optimal solution. The effectiveness of the proposed works is confirmed
via several experimental tests.

HTTP://WWW.UNIBO.IT
http://faculty.university.com
https://dei.unibo.it/en
https://dei.unibo.it/en

iv

v

Acknowledgements
My sincere thanks go to my supervisor Claudio Melchiorri and my co-supervisor
Gianluca Palli for the encouragement and guidance they have given to me
over the last three years. Through their support and trust, I have had the
opportunity to direct my part in an interesting and very challenging project,
and to enjoy myself along the way.

I want to deeply thank my family for their support in this path as a PhD
student. I could not feel more lucky for the encouragement you gave me.

I would like to thank Chiara, for her unconditional love and constant sup-
port, always being there for me.

Finally, a great hug goes to friends and all the people who have shared
any kind of moment with me.

Thank you!

Gabriele

vi

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Overview . 1
1.2 Structure of Thesis . 2

2 Literature review 3
2.1 Introduction . 3
2.2 Cutting and Packing problems 3
2.3 Single-Bin-Size Bin Packing Problem 6

2.3.1 One-Dimensional variant 6
2.3.1.1 Heuristics . 6
2.3.1.2 Metaheuristics 11

2.3.2 Two-Dimensional variant 12
2.3.2.1 Heuristics . 13
2.3.2.2 Metaheuristics 17

2.3.3 Three-Dimensional variant 19
2.3.3.1 Real-world constraints 19
2.3.3.2 Heuristic/metaheuristics methods 24

3 Preliminary mathematical tools 26
3.1 Feedforward Neural Networks 26
3.2 Genetic Algorithms . 28

4 A Two-Stage Algorithm for the Three-Dimensional Single-Bin-Size
Bin Packing Problem 30
4.1 Hybrid Genetic Algorithm setup 30

4.1.1 Chromosome structure 30
4.1.2 Initial population . 31

vii

4.1.3 Evaluation process . 31
4.1.3.1 A new heuristic procedure 32
4.1.3.2 Feasibility check 32
4.1.3.3 Fitness function 32

4.1.4 Genetic Operators . 33
4.1.4.1 Selection . 33
4.1.4.2 Crossover and mutation 33

4.2 A new two-stage algorithm . 34
4.2.1 First stage . 34

4.2.1.1 Dataset creation 34
4.2.1.2 Training process 36

4.2.2 Second stage . 37
4.3 Results . 37

4.3.1 HGA parameters . 37
4.3.2 FNN parameters . 38
4.3.3 Input instances and graphical results 39

4.3.3.1 Training and validation processes 39
4.3.3.2 Test process . 40

5 Conclusion and future works 44
5.0.1 Conclusion . 44
5.0.2 Future works . 44

Bibliography 46

viii

List of Figures

2.1 Illustration of a semi-loaded pallet. 5
2.2 Basic Cutting and Packing problem types. 5
2.3 Intermediate types for the Bin Packing Problem. 6
2.4 Solution using First-Fit Algorithm. 7
2.5 Solution using First-Fit-Decreasing Algorithm. 8
2.6 Solution using Max-Rest Algorithm. 9
2.7 Solution using Next-Fit Algorithm. 9
2.8 Solution using Next-Fit-Decreasing Algorithm. 10
2.9 Solution using Best Fit Algorithm. 11
2.10 Solution using Best-Fit-Decreasing Algorithm. 11
2.11 Three classical strategies for the strip packing. 14
2.12 Algorithm HFF. 14
2.13 Variation of HFF algorithm. 15
2.14 FNF algorithm. 16
2.15 FFF algorithm. 16
2.16 FBL algorithm. 17
2.17 NBL algorithm. 17
2.18 Six possible orientations. 21
2.19 Percentage of papers in which constraint types have been ad-

dressed (population size = 163). 23

3.1 Structure of an artificial neuron. 27
3.2 FNN with three hidden layers. 27

4.1 Frequency distribution of the different dimension box typolo-
gies of all packing instances. 39

4.2 MSE evaluation on training set and validation set. 40
4.3 Best solutions found related to some relevant test instances. . 43

ix

List of Tables

4.1 Local weight vectors. 38
4.2 Target vs. predicted local weight vector. 41
4.3 Target vs. predicted global weight vector. 41
4.4 Simulation time (S), number of different dimension box ty-

pologies (M) and total number of boxes (N) reported for some
test instances. 42

4.5 Time simulation statistics on subset Dtest. 42

x

Dedicated to my parents

1

Chapter 1

Introduction

1.1 Overview

One of the most extensive and researched fields within combinatorial op-
timization is the one concerning Cutting & Packing (in short C & P) prob-
lems. This because of their wide range of applications, especially in indus-
tries, transportation, warehousing and supply chain management. The cut-
ting problems arise, for example, with the production of steel bars and plates,
paper, adhesive tape, glass, pipes and textile. In all these cases, it is usually
more economic to produce large objects in only a few standard sizes at first
and later cut them into the sizes requested by the customers, than produce
the required sizes directly. The packing problems could arise, instead, in the
manufacturing and distribution industries, where all kind of goods are pack-
aged in cartons for easy handling and then packed into a bin for transporta-
tion and warehouse storage. Within this family, a key-role is played by Bin
Packing Problem (BPP), studied since the thirties [37]. BPP involves placing
a set of items of different sizes on bins of various sizes with the goal to pack
as many items as possible in the least number of bins. It arises in forms of
one, two or three dimensions and, consequently, the related industrial appli-
cations vary in according to them. In the one–dimensional (1D|BPP) form,
also denoted strip packing, only one dimension of the items to be packed
is considered. The remaining ones are either immaterial or (more usually)
fixed. A practical application for the 1D|BPP is cutting lengths of stock
material that has fixed width, such as pipes for plumbing applications, or
metal beams. A set of orders for different lengths must be fulfilled by cutting
the stock lengths into smaller pieces while minimising the wasted material.
Regarding the two–dimensional packing problem (2D|BPP), 2D shapes are
packed on 2D bins. The shapes can either be rectangular or irregular. Typ-
ical applications could be glass cutting, sheet metal cutting and cardboard

Chapter 1. Introduction 2

cutting. The three–dimensional problem (3D|BPP), instead, involves pack-
ing 3D regular or irregular shapes into a 2D or 3D bins. Typical applications
include pallet loading and loading of cargo containers inside the ship. The
BPP is well treated in the literature using different mathematical approaches.
They are classified in two main clusters: exact and heuristic/metaheuristic.
Due to NP-hardness of the problem [46], exact optimization techniques [12],
[36] can not be used in real-world applications because, in general, they re-
quire a huge amount of boxes, and consequently high computational burden.
In fact, some industries require that the code be run on embedded systems
with very limited memory and sometimes even without online memory al-
location. Also heuristic techniques [11], out of a metaheuristic framework,
are not deemed as suitable choices, because they are often too greedy, and
usually get trapped in a local optimum very far from the global one. For
these purposes, the aim of this research project is to develop and implement
an algorithm based on a metaheuristic framework coupled with a machine
learning approach, with the aim to produce high quality solutions for a spe-
cial class of the 3D|BPP, called Three-Dimensional Single-Bin-Size Bin Pack-
ing Problem (3D|SBS|BPP), having the property that all the bins are identical.
Moreover, real-world practical constraints must be also satisfied and the op-
timal boxes input sequence is required as output.

1.2 Structure of Thesis

The thesis is organized as follows. In Chapter 2, a literature review and a
exhaustive classification about C & P problems is presented, focusing on the
BPP and its dimensional variants. In Chapter 3, a summary of genetic algo-
rithm and feedforward neural networks is shown, discussing how they can
be adapted and combined to solve the 3D|BPP. In Chapter 4, the complete
structure of the proposed algorithm is presented and simulation results are
showed and discussed. Finally, in Chapter 5 some final considerations and
plans for future activities are described.

3

Chapter 2

Literature review

2.1 Introduction

A literature review concerning the C & P problems is now presented. In par-
ticular, in Section 2.2, the complete family of C & P problems is described,
relying on a useful categorization developed in [64], extending the one pre-
viously depicted in [22], with the aim to unify even more notations and def-
initions and concentrate further research on special types of problems. After
that, in Section 2.3 the Single-Bin-Size Bin Packing problem is addressed and
different methodologies found in literature are described for the one, two
and three dimensional forms in 2.3.1, 2.3.2, 2.3.3, respectively.

2.2 Cutting and Packing problems

C & P problems are among the most well-studied combinatorial optimiza-
tion problems in literature. This is due to their versatility, allowing many
real-world applications to be modelled as such. Using the tipology defined
by [64], they can be defined as follows:

Given are two sets of elements, namely a set of large objects (input, supply) and a
set of small items (output, demand), which are defined exhaustively in one, two,

three or more geometric dimensions. Select some or all small items, group them into
one or more subsets and assign each of the resulting subset to one of the large objects
such that the geometric conditions hold, i.e., the small items of each subset have to

be laid out on the corresponding large object such that

• all small items of the subset lie entirely within the large object,

• the small items do not overlap,

and a given (single-dimensional or multi-dimensional) objective function is
optimized.

Chapter 2. Literature review 4

In according to the aforementioned improved topology, a generic C & P prob-
lem can be classified using five criteria:

• Kind of assignment:

– Input minimization: The large objects set is sufficient to guarantee
that all small items can be assigned to a subset of it. It is therefore
not necessary to make a selection among the small items;

– Output maximization: The large objects set is not sufficient to ac-
comodate the entire set of small items. Then, a selection among
the small items is mandatory.

• Assortment of small items:

– Identical small items;

– Weakly heterogeneous assortment of small items;

– Strongly heterogeneous assorment of small items.

• Assortment of large objects:

– Identical large items;

– Weakly heterogeneous assortment of large items;

– Strongly heterogeneous assorment of large items.

• Problem dimensionality:

– One-dimensional;

– Two-dimensional;

– Three-dimensional.

• Shape of small items:

– Regular small items (rectangles, cuboids, circles, cylinders);

– Irregular items.

The use of the first two criteria allows us to define the so called basic prob-
lem types. If also the third criterion is used, it is possible to define the in-
termediate problem types. Using all five criteria, the refined problem types are
obtained. For further details, see [64]. In Figure 2.2, the six basic problem
types are represented while in Figure 2.3 the intermediate problem types for
the Bin Packing problem are shown. Considering all the aforementioned cri-
teria, the bin packing problem addressed in this research can be identified

Chapter 2. Literature review 5

as a Three-Dimensional Rectangular Single-Bin-Size Bin Packing Problem
(3D|SBS|BPP). Moreover, large objects are assumed to be industrial pallets
while small objects are assumed to be rectangular parallelepiped (boxes) to
be palletized. Notice that pallets do not have solid walls. This means that
there is less lateral support for the boxes packed then what occurs when large
objects are assumed to be containers. An illustration of a semi-loaded pallet
is shown in Figure 2.1.

FIGURE 2.1: Illustration of a semi-loaded pallet.

FIGURE 2.2: Basic Cutting and Packing problem types.

Chapter 2. Literature review 6

FIGURE 2.3: Intermediate types for the Bin Packing Problem.

2.3 Single-Bin-Size Bin Packing Problem

Single-Bin-Size Bin Packing Problem (SBS|BPP), arising in forms of one, two
or three dimensions, involves placing a set of strongly heterogeneous items
in identical bins with the goal to pack as many items as possible in the least
number of bins. Many algorithms can be find in literature to solve the SBS|BPP
for all of its dimensional variants. Basically, it is possible to divide them
into two main clusters: exact and heuristic/metaheuristic algorithms. Due
to both NP-hardness and real-world point of view of the problem, only algo-
rithms belonging to the second cluster will be analyzed. However, references
of some exact techniques are also provided. Regarding the three-dimensional
variant of the problem, several real-world industrial constraints are also an-
alyzed and discussed.

2.3.1 One-Dimensional variant

One-Dimensional Single-Bin-Size Bin Packing Problem (1D|SBS|BPP) is the
easiest variant of the SBS|BPP. In this version, items have only a single di-
mension (cost, time, size, weight, etc.). The most relevant heuristic and meta-
heuristic techniques adopted to face the problem are now described. Regard-
ing exact methods, instead, refer to [16].

2.3.1.1 Heuristics

The heuristics now described are on-line algorithms. This means that the
items are given to the algorithm one by one from a list, and the next items
is given as soon as the current items is irrevocably placed. In the off-line
version, instead, it is assumed that the algorithm has full knowledge of the

Chapter 2. Literature review 7

whole input.
In order to make clear the descriptions of the following heuristic algorithms,
an example set of items having a weight sequence S = {4, 8, 5, 1, 7, 6, 1, 4, 2, 2}
and a bin capacity equals to 10 is given.

• First-Fit Algorithm: “Place the items in the order in which they arrive. Place
the next item into the lowest numbered bin in which it fits. If it does not fit
into any open bin, start a new bin” [53]. The pseudocode of the algorithm
is shown in Algorithm 1. In the worst-case, a new bin has to be opened
each time a new object is inserted. Thus, there are 1, 2, 3, ..., n − 1 exe-
cutions of the inner loop, which yields an asymptotical factor of O(n2).
The solution related to the example is depicted in Figure 2.4.

Algorithm 1 First-Fit

1: for All items i=1,2,...,n do
2: for All bins j=1,2,... do
3: if Item i fits in bin j then
4: Pack item i in bin j
5: Break the loop and pack the next item
6: end if
7: end for
8: if Item i did not fit in any available bin then
9: Create a new bin and pack item i

10: end if
11: end for

FIGURE 2.4: Solution using First-Fit Algorithm.

• First-Fit-Decreasing Algorithm: The pseudocode of the algorithm is
shown in Algorithm 2. Since Counting Sort has a complexity of O(n + k),

Chapter 2. Literature review 8

where k is the largest weight, the algorithm is obviously dominated by
the running time of First-Fit, which yields a factor of O(n2). The solu-
tion related to the example is depicted in Figure 2.5.

Algorithm 2 First-Fit-Decreasing

1: Sort objects in decreasing order using Counting Sort
2: Apply First-Fit to the sorted list of objects

FIGURE 2.5: Solution using First-Fit-Decreasing Algorithm.

• Max-Rest Algorithm: The pseudocode of the algorithm is shown in
Algorithm 3. If a naive algorithm is used, determining the bin with
maximum remaining capacity yields a factor of O(n). Thus, the worst-
case running-time of the algorithm is O(n2). A more detailed analysis
shows that the bin can be determined by using a priority queue (i.e.
a heap). In this case, the algorithm has a worst-case running-time of
O(nlogn). The solution related to the example is depicted in Figure 2.6.

Algorithm 3 Max-Rest

1: for All items i=1,2,...,n do
2: Determine k = min

{
i|ci = minj=m

j=1 cj

}
, the index of the bin with max-

imum remaining capacity.
3: if Item i fits in bin k then
4: Pack item i in bin k
5: else
6: Create a new bin and pack item i
7: end if
8: end for

Chapter 2. Literature review 9

FIGURE 2.6: Solution using Max-Rest Algorithm.

• Next-Fit Algorithm: “Place the items in the order in which they arrive. Place
the next item into the current bin if it fits. If it does not, close that bin and
start a new bin” [53]. The pseudocode of the algorithm is shown in Al-
gorithm 4. Since packing an object can be done in constant time, the
algorithm is dominated by the loop, which has a running-time of Θ(n).
The solution related to the example is depicted in Figure 2.7.

Algorithm 4 Next-Fit

1: for All items i=1,2,...,n do
2: if Item i fits in current bin then
3: Pack item i in current bin
4: else
5: Create a new bin, flag it as current, and pack item i
6: end if
7: end for

FIGURE 2.7: Solution using Next-Fit Algorithm.

• Next-Fit-Decreasing Algorithm: The pseudocode of the algorithm is
shown in Algorithm 5. Since Next-Fit has a running time of Θ(n), the

Chapter 2. Literature review 10

dominating factor is the Counting Sort algorithm, which has a running
time of O(n + k), where k is the maximum weight of the problem. The
solution related to the example is depicted in Figure 2.8.

Algorithm 5 Next-Fit-Decreasing

1: Sort objects in decreasing order using Counting Sort
2: Apply Next-Fit to the sorted list of objects

FIGURE 2.8: Solution using Next-Fit-Decreasing Algorithm.

• Best-Fit Algorithm: “Place the items in the order in which they arrive. Place
the next item into that bin which will leave the least room left over after the
item is placed in the bin. If it does not fit in any bin, start a new bin” [53]. The
pseudocode of the algorithm is shown in Algorithm 6. Since all bins are
examined in each step, the algorithm has an obvious running time of
O(n2). The solution related to the example is depicted in Figure 2.9.

Algorithm 6 Best-Fit

1: for All items i=1,2,...,n do
2: for All bins j=1,2,... do
3: if Item i fits in bin j then
4: Calculate remaining capacity after the object has been packed
5: end if
6: end for
7: Pack item i in bin j, where j is the bin with minimum remaining capac-

ity after adding the object (i.e. the object "fits best").
8: If no such bin exists, open a new one and add the object
9: end for

Chapter 2. Literature review 11

FIGURE 2.9: Solution using Best Fit Algorithm.

• Best-Fit-Decreasing Algorithm: The pseudocode of the algorithm is
shown in Algorithm 7. Since Counting Sort has a complexity of O(n +

k), where k is the largest weight, the algorithm is obviously dominated
by the running time of First-Fit, which yields a factor of O(n2). The
solution related to the example is depicted in Figure 2.10 and it results
equal to that generated by using First-Fit-Decreasing algorithm.

Algorithm 7 Best-Fit-Decreasing

1: Sort objects in decreasing order using Counting Sort
2: Apply Best-Fit to the sorted list of objects

FIGURE 2.10: Solution using Best-Fit-Decreasing Algorithm.

2.3.1.2 Metaheuristics

In recent years, metaheuristic approaches to solve the 1D|MBS|BPP have be-
come popular. This is largely due to these algorithm’s ability to easily handle
complex constraints that are present in real-life applications of optimization
problems, and the fact that metaheuristics require less computational time to

Chapter 2. Literature review 12

produce high-quality solutions [31]. Some of the most relevant metaheuris-
tics are now briefly illustrated. In [2], the Whale Optimization Algorithm
(WOA) is adopted. WOA is a swarm intelligent metaheuristic that imitates
the peculiar hunting strategy of humpback whales, known as the ‘bubble
net strategy’ [48]. This adaptation incorporated Lévy flights, an additional
mutation phase, and a logistic chaotic map to enhance the exploration capa-
bilities of the original algorithm. In [23], a modified version of the Squirrel
Search Algorithm is adopted to solve the problem. This algorithm mimics
the behaviour of flying squirrels and their use of gliding [33]. In [3], the Fit-
ness Dependent Optimizer (FDO) is adapted to face the problem. FDO is
a swarm intelligent algorithm that models the characteristics of the repro-
ductive process of bee swarms, along with their collective decision-making
behaviour. It calculates the velocity of a particle using the problem fitness
function value to produce weights. These weights then guide the algorithm’s
search agents during the exploitation and exploration phases. An improved
version of FDO is proposed in [58], where the original way of generating the
first population is replaced with a random generation of the initial popula-
tion, using an improved First-Fit heuristic and updating the operating strate-
gies in the original algorithm to improve the exploration and exploitation
phases. The advantages of this algorithm are that it is stable in both the two
phases and that it requires fewer computations than other algorithms [52].

2.3.2 Two-Dimensional variant

The Two-Dimensional Single-Bin-Size Bin Packing Problem (2D|SBS|BPP) is
the problem of packing a finite set of “small” rectangles, called items, into
the minimum number of identical “large” rectangles, called bins, with the
requirement that the items are packed without overlapping. In this problem,
a set of n rectangular items j ∈ J = {1, ..., n} is given, each having width wj

and height hj, and an unlimited number of finite identical rectangular bins,
having width W and height H. The problem is to allocate all the items to the
minimum number of bins. Notice that, in the special case where wj = W
where (j = 1, ..., n), the one-dimensional variant is obtained. The problem has
been classically addressed through heuristic techniques, whereas in the last
years also metaheuristic approaches have been proposed. For details about
exact methods refer to [47].

Chapter 2. Literature review 13

2.3.2.1 Heuristics

The heuristics in the following belong to the set of the off-line algorithms and
they can be classified in two families:

• One-phase algorithms directly pack the items into the finite bins;

• Two-phase algorithms start by packing the items into a single strip of
width W. In the second phase, the strip solution is used to construct
a packing into finite W × H bins.

For a detailed survey on on-line heuristics, instead, refer to [20]. Before de-
scribing one and two-phase algorithms, let introduce three algorithms for
packing the items into a strip, derived from the strategies for the one-dimensional
case. As we will see, the they are also used as a first step in the two-phase
algorithms.

Strip Packing

Firstly, in each case, the items are initially sorted by non-increasing height
and packed in the corresponding sequence. Let j denote the current item and
s the last created level:

• Next-Fit Decreasing Height (NFDH) strategy: item j is packed left justi-
fied on level s, if it fits. Otherwise, a new level (s := s + 1) is created,
and j is packed left justified into it;

• First-Fit Decreasing Height (FFDH) strategy: item j is packed left justified
on the first level where it fits, if any. If no level can accommodate j, a
new level is initialized as in NFDH;

• Best-Fit Decreasing Height (BFDH) strategy: item j is packed left justified
on that level, among those where it fits, for which the unused horizontal
space is a minimum. If no level can accommodate j, a new level is
initialized as in NFDH.

An example of these algorithm is depicted in Figure 2.11

Chapter 2. Literature review 14

FIGURE 2.11: Three classical strategies for the strip packing.

Two-Phase Heuristics

A well-known two-phase algorithm, called Hybrid First-Fit (HFF), was pro-
posed in [26]. In the first phase, the FFDH heuristic is used to obtain a strip
packing. Let now H1, H2, ... be the heights of the resulting levels. It results
that H1 ≥ H2 ≥ A solution for the original problem is obtained by solv-
ing a 1D|SBS|BPP with item sizes Hi and bin capacity H, through the First-Fit
Decreasing algorithm described in Algorithm 2. Both phases can be imple-
mented so as to require O(nlogn). An instance of the algorithm is shown in
Figure 2.12.

FIGURE 2.12: Algorithm HFF.

A variation of this algorithm was proposed in [9]. An initial strip packing
is now obtained using the BFDH heuristic. Let now H1, H2, ... be the heights
of the resulting levels. Also in this case results that H1 ≥ H2 ≥ A solution
for the original problem is obtained by solving a 1D|SBS|BPP with item sizes
Hi and bin capacity H, through the Best-Fit-Decreasing algorithm described

Chapter 2. Literature review 15

in Algorithm 7. Both phases can be implemented so as to require O(nlogn).
An instance of the algorithm is shown in Figure 2.13.

FIGURE 2.13: Variation of HFF algorithm.

Let us consider now another variation of HFF, denoted Hybrid Next-Fit
(HNF), in which the NFDH strategy is adopted in the first phase, while the
1D|SBS|BPP is solved through the Next-Fit Decreasing algorithm. Due to
the next-fit policy, this algorithm is equivalent to a one-phase algorithm in
which the current item is packed on the current level of the current bin, if
possible; otherwise, a new (current) level is initialized either in the current
bin (if enough vertical space is available), or in a new (current) bin. Also this
strategy can be implemented so as to require O(n logn) time complexity.

One-Phase Heuristics

Regarding one-phase heuristics, instead, they can be divided into 2 main cat-
egories: level and non-level heuristics.

• Level heuristics: two classical one-phase level algorithms were presented
in [9] and [29] . Algorithm Finite Next-Fit (FNF) directly packs the items
into finite bins exactly in the way algorithm HNF does. An example is
shown in Figure 2.14.

Chapter 2. Literature review 16

FIGURE 2.14: FNF algorithm.

Algorithm Finite First-Fit (FFF) adopts instead the FFDH strategy. The
current item is packed on the lowest level of the first bin where it fits;
if no level can accommodate it, a new level is created either in the first
suitable bin, or by initializing a new bin (if no bin has enough vertical
space available). An example is shown in Figure 2.15.

FIGURE 2.15: FFF algorithm.

Both algorithms can be implemented so as to require O(nlogn) time.

• Non-Level heuristics: the main non-level strategy is known as Bottom-
Left (BL) and consists in packing the current item in the lowest pos-
sible position, left justified. The BL approach for the finite bin case is
proposed in [9]. Their algorithm, denoted Finite Bottom-Left (FBL), ini-
tially sorts the items by non-increasing width. The current item is then
packed in the lowest position of any initialized bin, left justified; if no
bin can allocate it, a new one is initialized. An example is shown in Fig-
ure 2.16. The computer implementation of algorithm BL was studied
in [7], where a method for producing a packing in O(n2) time is given.
The same approach was adopted in [9].

Chapter 2. Literature review 17

FIGURE 2.16: FBL algorithm.

In [9], it is also proposed the Next Bottom-left (NBL) algorithm which is
similar to FBL but, in this case, the generation of a new bin for packing
means that all the free spaces from the previous bin are discarded. Thus
only one bin is active at a time. An example is shown in Figure 2.17.

FIGURE 2.17: NBL algorithm.

2.3.2.2 Metaheuristics

In [42],[40],[41], Tabu Search algorithms for 2BP and for variants has been de-
veloped. In particular, these strategies involve the possibility of rotating the
items by 90°or the additional constraint that the items may be obtained from
the resulting patterns through guillotine cuts, i.e., straight bisecting lines go-
ing from one edge of a rectangle to the opposite edge. Guillotine cutting
is particularly common in the glass industry, where glass sheets are scored
along horizontal and vertical lines, and then broken along these lines to ob-
tain smaller panels. It is also useful for cutting steel plates, cutting of wood
sheets to make furniture, and cutting of cardboard into boxes [8]. The Uni-
fied Tabu Search framework proposed in [41], whose main characteristic is
the adoption of a search scheme and a neighborhood which are independent

Chapter 2. Literature review 18

of the specific packing problem to be solved, is now described. It can thus
be used for virtually any variant of 2D|BPP, by simply changing the specific
deterministic algorithm used for evaluating the moves within the neighbor-
hood search. Given a current solution, the moves modify it by changing the
packing of a subset S of items, trying to empty a specified target bin selected
among those that currently pack a small area and a relatively large number of
items. Subset S is defined so as to include one item, j, from the target bin and
the current contents of k other bins, and the new packing is obtained by exe-
cuting an appropriate heuristic algorithm on S. If the move packs the items
of S into k (or less) bins, i.e., item j has been removed from the target bin, a
new item is selected, a new set S is defined accordingly, and a new move is
performed. Otherwise, S is changed by selecting a different set of k bins, or a
different item j from the target bin.

The above framework above was suitably combined with a genetic algo-
rithm in [32] so as to get a hybrid algorithm for 2D|BPP that can be easily
adapted to other packing problems.

A different metaheuristic for 2D|SBS|BPP has been proposed in [25]. Their
guided local search algorithm starts from a feasible solution, and randomly
removes some bins by assigning the corresponding items to the other bins.
The new solution is generally infeasible, leading to an optimization problem
in which one is required to minimize an objective function that measures the
pairwise overlapping area. The associated neighborhood is explored through
object shifts, until a feasible solution is found.

Moreover, in [14] and [15], an effective randomized multi-start heuristic
for 2BP has been proposed. The procedure is the following:

1. Assigns a score to each item;

2. Packs the items, one at a time, according to decreasing values of the
corresponding scores;

3. Updates the scores by using a specified criterion, and

4. Iterates on 2 and 3 until an optimal solution is found or a maximum
number of iterations has been performed.

The execution of the algorithm is repeated for a given set of different criteria
used for the updating of the object scores.

In [49], a two-phase heuristic algorithm has been formulated. In the first
phase (column generation), a large set of different feasible patterns is pro-
duced by using heuristic algorithms from the literature, while in the second

Chapter 2. Literature review 19

phase (column optimization) a subset of patterns is selected by heuristically
solving the associated set covering instance.

In [59], an hybrid genetic algorithm and a simulated annealing techinque
is proposed for two-dimensional non-guillotine rectangular packing prob-
lems. In the paper, GA and SA are used separately to obtain permutation
for placing the small pieces. Improved BL algorithm are employed to place
rectangular pieces. The solution approach can be summarized as:

• GA and SA are used to find permutations with small trim loss.

• An improved BL algorithm is used to place rectangular pieces corre-
sponding to a particular permutation.

The current literature on the bin packing problem mostly focuses on the min-
imization of wasted space. However, in most bin packing problems, both
minimization of wasted space and balance of the bins needs to be achieved.
For this purpose, a multiobjective two-dimensional bin packing model (MOBPP-
2D) with minimum wasted space and balancing of loads has been formulated
in [39].

2.3.3 Three-Dimensional variant

The Three-Dimensional Single-Bin-Size Bin Packing Problem (3D|SBS|BPP)
in a real-industrial scenario is the main problem addressed in this thesis. As
said above, it consists in packing a finite set of “small” cuboids, called items,
into the minimum number of identical “large” rectangles, called bins, with
the requirement that the items are packed without overlapping. Also this
variant of the problem has been addressed through heuristic/metaheuristic
approaches if a real-world point of view is considered. For details about exact
methods, instead refer to [46].

2.3.3.1 Real-world constraints

In the following, the geometric and the specific constraints are distinguished
and explained. Notice that, the latter type of constraints is not considered in
the typology described in [64].

Chapter 2. Literature review 20

Geometric constraints

This typology of constraints include that all box must lie entirely within the
bin. Moreover, they do not overlap and are assumed to be placed orthogo-
nally, i.e., the edges of the boxes have to be only parallel or perpendicular to
the bin edges.

Specific constraints

In [Bortfeld_2013], on the basis of [10], the authors presented a huge set of
additional constraints that might be encountered in real-world packing situ-
ations. Each type of constraints is explained in the following, clarifying the
selection of those taken into account in this work.

• Bin weight limit: typically, bins have a maximal weight limit, thus the
total sum of the mass of the loaded items must not exceed this thresh-
old. This type of constraint is common in literature (e.g., [60], [18], [17])
and it is particular relevant when there are some high density items.

In this work, this constraint is not taken into account since the total
weight of the products to be loaded is supposed to be always less than
the bin weight limit. However, it is an easy task inserting also this con-
straint into the algorithm.

• Load balance constraints: they are also called weight distribution con-
straints. Satisfying these constraints ensure that the height of the centre
of mass of the loaded bin is as much as possible across the floor, while
the geometric centre of the related plane projection is as much as possi-
ble near to the geometric centre of the bin floor. In this way, a balanced
bin is obtained, reducing the risk of shifting when the bin is moving
and thus the risks of accidents. Moreover, some operations such as bin
lifting may even become impossible if the weight is not well balanced
(see, e.g., [18], [50], [30], [61]). This type of constraint can also be met in
road transportation. Indeed, the loaded truck has to respect a precise
distribution of the cargo over the axles of the vehicle ([56], [5]). Legisla-
tion about axle weight limits varies between countries and more details
for European countries can be found in [27].

Therefore, load balance constraints are crucial and they are taken into
account in this work.

• Loading priorities for the items: Some of the available items can have
higher priority than the loading of others [35].

Chapter 2. Literature review 21

However, since this thesis deals with a input minimization problem
(i.e., all the boxes have to be loaded) this constraint is not considered.

• Orientation constraints for the items: Items are assumed to be placed
orthogonally, i.e., the edges of the boxes have to be parallel or perpen-
dicular to those of the bin. If the box can rotate and if each dimension
can be in a vertical position, then six orientations are possible and they
are shown in Figure 2.18. In practice, however, some boxes may not
rotate in all directions because of their contents. These constraints are
called orientation constraints (see, e.g., [28], [19], [17], [35]).

In this thesis, it is considered that some dimensions may not be in a
vertical position, hence reducing the admittable orientations.

FIGURE 2.18: Six possible orientations.

• Stacking constraints: Also called load-bearing constraints, this type
of constraint describes how many boxes can be placed on top of each
other. More generally, load bearing strength refers to the maximum
pressure that can be applied over the top face of a box without dam-
aging it. How much pressure or weight box can hold depends on the
material and the construction of the boxes. Different strategies have
been developed to manage this feature (see, for example, [60], [38], [35],
[17]). This constraint is quite important in practice because it prevents
damage to products contained in a fragile box.

In this work, a box is said to be fragile if only other fragile boxes can be
placed on it.

• Complete shipment constraints: As far the loading priority constraints
the complete shipment constraints appear only with the output max-
imisation objective. Since there is a selection of small items, some are
left behind. This type of constraint states that if one item of a subset
is loaded, then all other items of the same subset have to be packed as

Chapter 2. Literature review 22

well. Inversely, if one box of a subset cannot be packed, then no item of
the same subset can be loaded [24]. This kind of constraint may arise,
for example, when parts of a piece of furniture are packed separately
and have to be assembled on site at a customer’s location.

This constraint is not considered in this thesis since all the boxes must
be packed.

• Allocation constrains: This type of constraint arises when there are
several bins in the problem [62], [60], [24], [4]. It is possible to distin-
guish:

– Connectivity constraints: demand that items of a particular subset
go into the same bin, for example because they go to the same
destination;

– Separation constraints: require tat some items are accommodated in
different bins for safety reasons.

These constraints are not considered in this thesis because they repre-
sent particular cases.

• Positioning constraints: These constraints limit the location of items
on the bin either in absolute or in relative terms [60], [38]. On the one
hand, absolute positioning constraints specify where items should or
should not be located on the bin. For instance, volatile liquids or explo-
sives should be packed near the opening of the bins so that they can be
accessed and removed quickly if necessary. On the other hand, relative
positioning constraints state whether items should or should not be lo-
cated close to each other. For instance, items which alter the quality of
other items (like food and petrol) must not be placed next to each other.

This type of constraint is not considered here.

• Stability constraints: Load stability is one of the most important types
of constraint. Indeed, unstable loads may result in a damaged loaded
bin. Bin stability involves the vertical (or static) and the horizontal (or
dynamic) stability [60], [34], [38], [18], [35], [17]. More in details:

– Vertical stability: the bottom side of each box needs to be supported
by the top face of other boxes or by the bin floor. This constraint
is also called static stabilty as it deals with static bins. The vertical
stability excludes floating boxes.

Chapter 2. Literature review 23

– Horizontal stability: this constraint refers to the capacity of the box
to withstand the inertia of its own body when being moved. The
boxes remain in their position with respect to the main plane axis
of the bin.

This thesis only considers vertical stability because horizontal stabil-
ity could be obtained by adding a special sheet increasing the friction
between items.

• Complexity constraints: The proposed loading patterns sometimes have
to be easy enough for the loading human operator to be able to visual-
ize quickly. Moreover, more automatic packing technologies are not al-
ways suitable for complex bin packing. The most frequently constraint
of this category is the guillotine cutting constraints, already discussed
in the two-dimensional case. However, this kind of constraints is not
always appropriate in practice since it may reduce the stability of the
loaded bin when being transported.

Then, for this reason, these will not taken into account in this thesis.

In order to measure how often the different constraints are considered,
in [13] the authors listed 163 papers that are publicly available and published
between 1980 and the end of 2011 in English in international journals, edited
volumes and conference proceedings. Among these 163 papers, only 36 (i.e.,
22%) addressed the 3D|SBS|BPP. The authors also present the number of pa-
pers in which constraint types have been addressed. The percentages are
represented in Figure 2.19.

FIGURE 2.19: Percentage of papers in which constraint types
have been addressed (population size = 163).

Chapter 2. Literature review 24

2.3.3.2 Heuristic/metaheuristics methods

To solve this problem, the best results in literature have been obtained com-
bining together heuristic and metaheuristic techniques. The best performing
ones are now briefly explained.
A Tabu Search algorithm for the 2D|SBS|BPP was proposed in [40]. The al-
gorithm consists of two simple constructive heuristics to pack the items into
bins, and a Tabu Search mechanisms to control the movement of items be-
tween bins. Two neighborhoods were considered to try to move an item
from the weakest bin (i.e., the bin that appeared to be the easiest to empty)
into another. Since the constructive heuristics produced guillotine packings,
so did the overall algorithm. The authors generalized this approach to the
3D|SBS|BPP in [43]. In [25], a Guided Local Search (GLS) heuristic for the
3D|SBS|BPP is presented. Starting with an upper bound on the number of
bins obtained by a greedy heuristic procedure, the algorithm iteratively de-
creased the number of bins, each time searching for a feasible packing us-
ing the GLS method. The process terminated when either a given time limit
was reached or the current solution matched a precomputed lower bound.
Moreover, two constructive heuristics have been developed and tested for
the 3D|SBS|BPP in [46] . The first algorithm, called S Pack, was based on a
layer-building principle. The second heuristic, denoted MPV-BS, repeatedly
filled one bin after the other by means of the Branch & Bound algorithm for
the single container presented by the authors in the same paper. To reduce
the computational time of the algorithm, the Branch & Bound is truncated
by limiting the width of the tree. In [1], a new shelf-based heuristic for the
3D|SBS|BPP, called Height first - Area second (HA) is presented. The algorithm
was based on constructing two solutions and selecting the best. To obtain the
first one, items were partitioned into clusters according to their height and a
series of layers were obtained from each cluster. The layers were then packed
into bins using the Branch & Bound algorithm developed in [45]. The second
solution was obtained by ordering the items by non-increasing area of their
base and building new layers. As previously, layers were packed into bins by
solving a a set of 1D|SBS|BPP problem. HA is the constructive heuristic that
currently obtains the best results on the benchmark test problem instances.
Notice that, although the performances are good, none of the mentioned al-
gorithm is able to provide as output also the optimal boxes input sequence,
that is an essential requirement in a real-industrial scenario.

Considering this, the main contribute of the thesis is to develop an algo-
rithm able to guarantee excellent solutions for each input, providing also the

Chapter 2. Literature review 25

optimal boxes input sequence within a reasonable time and exploring other
metaheuristic techniques.

26

Chapter 3

Preliminary mathematical tools

3.1 Feedforward Neural Networks

In this chapter, a brief summary of feedforward neural networks is shown,
discussing how they can be adapted to our problem. An Artificial Neural
Network (ANN) is an aspect of Artificial Intelligence (AI) that is focused on
emulating the learning approach that humans use to gain certain types of
knowledge. Like biological neurons, which are present in the brain, ANN
also contains a number of artificial neurons, and uses them to identify and
store information [21]. ANN consists of input and output layers, as well as
(in most cases) one or more hidden layer(s) consisting of units that transform
the input into something that the output layer can use. The role of each type
of layers is the following:

• Input layer: this layer accepts input features. It provides information
from the outside world to the network, no computation is performed
at this layer, nodes here just pass on the information (features) to the
hidden layer.

• Hidden layer: nodes of this layer are not exposed to the outer world.
Hidden layer performs computations on the features entered through
the input layer and transfer the result to the output layer.

• Output layer: this layer bring up the information learned by the net-
work to the outer world.

In Figure 3.1, the complete structure of an artificial neuron is shown.
Except for the neurons of the input layer, each neuron uses a nonlinear

activation function. Moreover, a bias node could be added in the input and
hidden layers to increase the flexibility of the model to fit the data. The most
used nonlinear activation functions are the Rectified Linear Unit (ReLU), Sig-
moid and Tanh activation functions. In [54], the most common activation

Chapter 3. Preliminary mathematical tools 27

FIGURE 3.1: Structure of an artificial neuron.

functions are discussed and compared. To address our problem, a partic-
ular class of ANN, represented by Feedforward Neural Network (FNN) is
adopted. It is a fully connected network moving only in forward direction
(no loopback). An example of FFN with three hidden layers is shown in Fig-
ure 3.2.

FIGURE 3.2: FNN with three hidden layers.

FNN is suitable for both classification and prediction problems. For the
training process, a supervised learning technique is utilized [44], [57]. This
algorithm uses a training set to teach network to yield the desired output,
a validation set to avoid overfitting and a test set used to provide an unbi-
ased evaluation of a final model fit on the training set. The union of these
three sets forms the entire dataset. It must be created ad hoc, based on the
problem under consideration. In particular, each element of the dataset is

Chapter 3. Preliminary mathematical tools 28

generated starting from a real order and consists of an input vector and a
target vector. The input vector is created through a feature extraction process
and it indicates the quantity of boxes present in the order, for each type. The
target vector, on the other hand, represents the optimal weights associated
to the sum-weighted objective functions of the optimization processes that
generated the optimal solution. The dataset creation is discussed in details
in Chapter 5.

3.2 Genetic Algorithms

Genetic Algorithms (GAs) are iterative optimization procedures that repeat-
edly apply GA operators (such as selection, crossover, and mutation) to a
group of solutions until some criterion of convergence has been satisfied. In
a GA, a search point (solution) is a setting in the search space with dimen-
sions n and it is coded into a string, x = (x1, .., xn), which is analogous to a
chromosome in biological systems. The string/chromosome is composed of
n characters, x1, ..., xn, which are analogous to the n genes. A set of chromo-
somes (or individuals) is called population. Each iterative step in which a new
population is obtained is called generation. A GA hybridized with a heuristic
is called Hybrid Genetic Algorithm (HGA). A basic HGA procedure has the
following steps.

1. Define an objective/fitness function, and set the GA operators (such as
population size, parent/offspring ratio, selection method, number of
crossovers, and mutation rate);

2. Generate the initial population in a random way or using heuristics;

3. Evaluate the objective function for each individual (chromosome or so-
lution) in the initial population;

4. Generate an offspring population by using GA operators (such as se-
lection/mating, crossover, and mutation);

5. Evaluate the objective function of each individual in the offspring pop-
ulation using a heuristic procedure;

6. Decide which individuals to include in the next population;

7. If a stopping criterion is satisfied, then the procedure is halted. Other-
wise, go to step 4.

Chapter 3. Preliminary mathematical tools 29

In order to adapt this framework to the problem under consideration,
n will indicate the number of boxes to be loaded and xk ∈ {1, ..., n} will
represent the k-th box placed. Therefore, a chromosome x = (x1, ..., xn) will
be an input boxes sequence.

30

Chapter 4

A Two-Stage Algorithm for the
Three-Dimensional
Single-Bin-Size Bin Packing
Problem

This chapter is organized as follows: in Section 4.1, a revisitation and a syn-
thesis of the arguments already addressed in [6] is presented, in order to get
the paper reading clearer. In Section 4.2, the complete structure of the algo-
rithm is presented. Finally, in Section 4.3, simulation results are presented
and discussed.

4.1 Hybrid Genetic Algorithm setup

4.1.1 Chromosome structure

Let B = {b1, b2, ..., bs} be an ordered set containing all possible topology of
boxes, where each element is characterized by a height, widht and depth
value. Let U = {u1, u2, ..., um} be a high-cardinality set of orders. Consider-
ing an order ui and defining ui

c as the number of boxes of type bc present in
the order, it is possible to write ui = [ui

1, ui
2, ..., ui

s]. Moreover, let ni = ∑s
c=1 ui

c

representing the total number of boxes in the order. Given an order ui, a
HGA chromosome ci

d ∈ {ci
1, ..., ci

l} represents an input boxes sequence and
it is composed of ni genes, xi

d,1, ..., xi
d,ni

, where xi
d,k ∈ {1, ..., ni} denotes the

k-th box placed. As a direct consequence of this choice, the genetic algorithm
will run only on this information (using the classical genetic operators such
as selection, mutation and crossover), allowing boxes orientations and an-
chor points to be free optimization variables of the evaluation process. More-
over, in the special case of identical items, this choice allows us to use only

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

31

one chromosome and one generation to find a suitable solution. In this way,
the algorithm will turn into a non-genetic version, reducing calculation time
even more.

4.1.2 Initial population

The chromosomes of the initial population are heuristically generated based
on the following observations.

• The larger products, in most cases, should be packed first, so that the
less bulky boxes can be placed into the small remaining spaces.

• In some cases, it is more convenient to insert boxes starting from the
less voluminous ones, for example when many small and a few large
boxes need to be loaded, so that the large boxes can be laid on the layers
formed by the small ones.

Therefore, to be able to cover as many cases as possible, we divide the first
population into three subsets: the main subset is the one composed of those
chromosomes created in according to the first observation. The chromosomes
belonging to the second subset will be created according to the second obser-
vation while those in the third subset will be randomly created. The number
of chromosomes belonging to each subset is a parameter of the algorithm.

4.1.3 Evaluation process

The chromosome evaluation process is performed only if the input sequence
coded in the chromosome is feasible, i.e., if it is a generic permutation of the
sequence (1, 2, ...n). In this case, for each box to place, a constrained mini-
mization problem has to be solved, with respect to both anchor points and
box orientations that represent the only free variables of the problem. Re-
garding orientations, since the boxes are assumed to rotate only orthogonally
and since any of the four vertices of the lower face of the box can coincide
with the candidate anchor point, there are 24 possible orientations (2 orienta-
tions along x-axis, 2 orientations along y-axis and 2 orientation along z-axis,
for each vertex of the lower face). Notice that, in case of fragile box, some
orientations may not be recommended. This is taken into account using a
suitable fitness function. Regarding anchor points, they are generated using
the following heuristic procedure.

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

32

4.1.3.1 A new heuristic procedure

From an analysis of heuristics proposed in the literature, one of the most per-
forming is the one based on the concept of corner points ([46]). The proposed
heuristic can be seen as its extension, allowing the algorithm to explore many
more configurations within a reasonable computational time. Initially, when
the bin is still empty, the only candidate anchor point for the first box will
be the point at the centre of the bin. Once a box has been loaded (using both
optimal anchor point and optimal orientation according to the fitness func-
tion), the algorithm will add the eight vertices of the placed box to the set
of candidate anchor points for the following box in the input sequence. The
chosen anchor points is not removed from the set, if it results usable again.
Given a box to place, a feasibility check is required for all the possible pairs
(anchor point, orientation) and, only among all the feasible pairs, the one that
minimizes the fitness function is chosen.

4.1.3.2 Feasibility check

A pair (anchor point, orientation) is considered feasible if the related box
satisfies these hard constraints:

• Geometric constraints:

– The box must lie completely on the bin;

– There must be no overlap between the placed boxes;

– The height of the boxes must not exceed the maximum bin height
threshold;

• Stability constraint:

– At least s% and v vertices (v ∈ {1, 2, 3, 4}) of the lower surface
of the box must lie on the bin floor or on other boxes. Choosing
s ≥ 70 and v ≥ 3 ensures that its center of mass will always lie in
the convex hull of all the contact points ([55]).

If all the pairs are infeasible, the fitness value of the chromosome is set to
+∞.

4.1.3.3 Fitness function

The aforementioned suitable fitness function can be written as:

fk = w1 f1,k + w2 f2,k + w3 f3,k + w4 f4,k (4.1)

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

33

where wh are normalized positive weights (h ∈ {1, ..., 4}) and fh,k represents
normalized fitness function. More in details, once the k-th box is placed:

• f1,k represents the maximum height of the boxes;

• f2,k denotes the height of the center of mass of the boxes;

• f3,k indicates the Euclidean norm between the chosen anchor point and
the center of the bin floor;

• f4,k represents the number of fragile boxes on the bin.

In order to evaluate the whole chromosome, a fitness function f i,d is needed
and obtained once all boxes are placed. It will be:

f i,d = fni . (4.2)

4.1.4 Genetic Operators

4.1.4.1 Selection

A modified version of the Tournament Method for selection is adopted. Once
all the chromosomes have been evaluated, nrs chromosomes are randomly
selected and, among these, the best chromosome is chosen for the next gener-
ation. This process is repeated until the 80% of the new population is created.
Then, the best chromosome in the entire population is selected and replicated
to complete the new population. In order to preserve the best chromosome,
the crossover and mutation processes will not act on some of its clones.

4.1.4.2 Crossover and mutation

In the literature, crossover and mutation processes are conducted on each
newly generated offspring with constant probability Pc and Pm, respectively.
In this work, these probabilities are assumed to be generation-varying de-
creasing functions. By doing so, the algorithm tries to explore the solution
spaces in a very exhaustive way at the begin and then it tries to converge to
the optimal direction. The crossover is a one-point version: a random loca-
tion is selected for two parents and the two parts after the crossover point of
the two parents are switched over to form two children ([63]). If the newly
formed children are not feasible due to some boxes appear in the children
twice while some do not appear at all the chromosome is considered in-
feasible and its fitness values is set to +∞. Regarding mutation, for each

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

34

chromosome, two positions are randomly selected and the elements on these
positions are swapped.

4.2 A new two-stage algorithm

The two-stage algorithm proposed in this work consists of a coupling be-
tween the previous HGA and a FNN. The latter is exploited to learn, as a
function of the input instances, the optimal weight vector related to the local
HGA fitness function and the optimal weight vector related to a new global
weighted-sum objective function. The aim of the first stage is to create a rich
dataset in order to train, validate and test the neural network. The HGA is
run several times on each order within a large set of packing instances, using
a different fitness weight vector at each iteration, with the aim of generating
a rich set of solutions. Once the set is created, the best solution is chosen for
each order, optimizing a new global weighted-sum objective function. Rely-
ing on a graphical user interface, it is possible to choose the optimal weight
vector related to the optimized global objective function, showing in real-
time the dependence of the optimal solution on the weight vector. Moreover,
it is possible to keep track of the weights vector associated to the local HGA
fitness that generated the chosen optimal solution.

4.2.1 First stage

4.2.1.1 Dataset creation

Let W = {w1, w2, ..., wp} be a set of p local weight vectors related to the
local weighted-sum fitness function optimized in the chromosome evalua-
tion process of the HGA. In particular, the j-th local weight vector is wj =

[wj,1, wj,2, wj,3, wj,4], where j ∈ {1, 2, ..., p} and wj,h ∈ [0, 1], ∀h ∈ {1, 2, 3, 4}.
These vectors are found relying on trial-and-error techniques and they are
able to cover a wide range of configurations during the boxes loading pro-
cess. Opposite to what happened in our previous algorithm, in which only
one solution (the optimal one) was generated as output, our aim now is to
generate a rich set of solutions for each order in U , running the HGA p times,
varying wj and considering the ri best solutions found during HGA process
at each iteration. Notice that, for each solution, we keep track of the local
weight vector that generated it. Considering the order ui, the HGA fitness

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

35

function in (4.1) for the local weight vector wj can be rewritten as:

f j,k = wj,1 f1,k + wj,2 f2,k + wj,3 f3,k + wj,4 f4,k. (4.3)

This extended version of (4.1) is optimized when the k-th box of a generic
chromosome ci

d has to be placed (k ∈ {1, 2, ..., ni}), fixing wj as local weight
vector. In order to evaluate the whole chromosome, an extended version of
(4.2) is needed and obtained once all boxes are placed. It will be:

f i,d
j = f j,ni . (4.4)

Once all p simulations related to the i-th order are completed, a set Si =

{ci
best,1, ci

best,2, ..., ci
best,b} containing the best b = p · ri solutions is created. The

optimal solution will be the one that minimizes a new global weighted fit-
ness, calculated for each chromosome ci

best,z belonging to Si. It can be written
as:

gi = wi
1g1 + wi

2g2 + wi
3g3 + wi

4g4 + wi
5g5 (4.5)

where gt are new normalized fitness functions and wi
t are normalized posi-

tive global weights (t ∈ {1, ..., 5}). In particular:

• g1 represents the ratio between the total volume of the loaded boxes
and the volume of the associated convex hull;

• g2 represents the number of fragile boxes;

• g3 represents the stackability index of the bin. It is calculated as:

g3 = β · (1 − Astack) · D (4.6)

where:

– β is a boolean value. It is set to 1 if all boxes at maximum height
are not fragile. Otherwise, it is 0. In the case of β = 1, the fragility
constraint ensures that no fragile boxes will be damaged by the
stacking process.

– Astack indicates the normalized area of the convex hull Cstack of the
set Sstack, containing the vertices of the top face of each boxes at
maximum height;

– D represents the normalized Euclidean distance between the geo-
metric center of the bin floor and the projection of the Cstack cen-
troid on it.

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

36

• g4 and g5 represent the global strapping indices along the width and
length directions of the loaded bin. Let x, y and z denote the three or-
thogonal axes related to the width, length and height directions of the
loaded bin. Furthermore, let Sproj be a set containing the projections
onto the xy-plane of the vertices of the placed boxes and Cxy = (Cx, Cy)

the centroid of its convex hull. The two indices are calculated, respec-
tively, as: {

g4 = 1 − min(sx,1, sx,2, ..., sx,ni)

g5 = 1 − min(sy,1, sy,2, ..., sy,ni)
(4.7)

where sx,k and sy,k represent the normalized strapping indices along
x-axis and y-axis of the k-th box of the sequence. Considering the pro-
jection Bxy,k = (Bx,k, By,k) onto the xy-plane of the centroid of the k-th
box, the index sx,k (sy,k) can be calculated as follows:

– Case Bx,k ̸= Cx (By,k ̸= Cy): some contact forces act along the x-
axis (y-axis) during the strapping process. Let Fx (Fy) be the box
face parallel to the yz-plane (xz-plane) and such that its centroid is
a minimum distance from Cxy. Let Ax (Ay) and Atouch,x (Atouch,y)
be, respectively, the area of Fx (Fy) and the area of the portion of
Fx (Fy) touching other boxes. It is possible to write: sx,k =

Atouch,x
Ax(

sy,k =
Atouch,y

Ay

)
.

– Case Bx,k = Cx (By,k = Cy): no contact forces act along the x-axis
(y-axis) during the strapping process. Then, sx,k = 1 (sy,k = 1).

Relying on a graphical interface that permits to modify the global weights
and to show in real-time the four best solutions in Si, it is possible to create a
target vector yi related to the input vector ui to be included into a dataset used
for the training, validation and testing phase of the neural network. In partic-
ular, let W̄ i

g = [w̄i
1, w̄i

2, w̄i
3, w̄i

4, w̄i
5] be the selected global weight vector related

to the global fitness gi and W̄ i
l = [w̄i

j,1, w̄i,
j,2, w̄i

j,3, w̄i
j,4] the local weight vector

that generated the chosen optimal solution. The target vector for the input
vector ui will be yi = [W̄ i

l , W̄ i
g]. Once all these tasks are completed for all or-

ders in U , the entire dataset can be created: D = [(u1, y1), (u2, y2), ..., (um, ym)].

4.2.1.2 Training process

The dataset D is randomly shuffled and divided into three subsets, using the
following percentages:

• Training set Dtrain: 60%;

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

37

• Validation set Dvalid: 20%;

• Test set Dtest: 20%.

For the training process, the backpropagation algorithm is adopted, using
the mean square error (MSE) as loss function to be minimized. In order to
avoid overfitting, the early stopping criterion is adopted [51], calculating the
MSE on the validation set after each training epoch and stopping the training
process when it tends to increase. When the training process is completed,
the generalization performance of the FNN is calculated on the test set. The
results are reported in Section 4.3.

4.2.2 Second stage

Let Utest = {u1
test, u2

test, ..., um
test} be a set containing all the packing instances

associated to the test set Dtest. Once the test phase is successfully completed,
the trained FNN is now able to determine the optimal local weight vector
W̄ i

l and the optimal global weight vectors W̄ i
g, for each order ui

test ∈ Utest.
By doing this, the HGA will run only once using the predicted local weight
vector W̄ i

l and, once the solution set is generated, the optimal solution will be
chosen using the predicted global weight vector W̄ i

g.

4.3 Results

The above algorithm is coded in Python 3.7, running on a 3.6 GHz Intel Core
i9 octa-core processor with 64 GB RAM. The set U of real packing instances
is provided by an industrial company, as well as the box types and bin types
databases. In order to fully exploit the processor power, U is split into eight
subset to be simulated in parallel on each core.

4.3.1 HGA parameters

The HGA parameters are set as follows:

• Number of chromosomes = 30;

• Number of generations = 8;

• Number of chromosomes randomly selected in the selection process:
nrs = 3;

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

38

• Crossover probability:
Pc(g) = [0.3, 0.28, 0.25, 0.23, 0.2, 0.18, 0.15, 0.1];

• Mutation probability:
Pm(g) = [0.7, 0.65, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1];

• Local weight vectors: See Table 4.1.

TABLE 4.1: Local weight vectors.

j wj,1 wj,2 wj,3 wj,4

1 1.0 0.7 0.5 0.9
2 1.0 1.0 0.1 0.1
3 0.9 0.9 0.3 0.1
4 0.8 0.6 0.9 0.7
5 0.9 0.2 0.8 0.5
6 0.5 0.1 0.4 0.5
7 0.8 0.7 0.6 0.5
8 0.4 0.4 0.6 1.0
9 0.6 0.8 0.2 0.8

10 0.2 0.2 1.0 1.0
11 0.2 0.4 0.2 0.3
12 0.8 0.7 0.7 1.0
13 0.9 0.7 0.4 0.4
14 1.0 0.5 0.2 0.3
15 0.9 0.6 0.1 0.5
16 1.0 1.0 0.0 0.1
17 0.2 0.2 0.0 1.0
18 0.8 0.7 0.0 0.5
19 0.5 0.5 0.0 0.5

4.3.2 FNN parameters

The FNN parameters are set as follows:

• Number of hidden layers: 1;

• Number of neurons in the input layer: 122 + bias;

• Number of neurons in the hidden layer: 500 + bias;

• Number of neurons in the output layer: 9;

• Activation function: ReLu;

• Loss function: Mean Squared Error;

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

39

• Stopping criterion: Early Stopping.

4.3.3 Input instances and graphical results

The set U , containing real packing instances, is provided by an industrial
company. The number of boxes of each instance can vary from 1 to 83 and,
on average, 15 bin per hour should be arranged. Moreover, the frequency dis-
tribution of the different dimension box typologies of all instances is shown
in Figure 4.1. The dataset D, generated from U , contains 675 samples. The
related subsets, Dtrain, Dvalid and Dtest, contain 405, 135 and 135 samples,
respectively.

FIGURE 4.1: Frequency distribution of the different dimension
box typologies of all packing instances.

4.3.3.1 Training and validation processes

The training process proves to be very efficient, resulting in a training time
of 1.81 seconds. Moreover, it turns out to be robust with respect to the in-
troduction of new typology of boxes in B, that leads to an increment of the
overall network complexity. The MSE evaluation on both Dtrain and Dvalid is
reported in Figure 4.2, as function of the epochs number of the FNN training
process. As expected, the error evaluated on Dtrain is a decreasing function,
while the error evaluated on Dvalid, is decreasing until 17-th epoch and, then,
it starts to increase, highlighting an overfitting phenomenon. The early stop-
ping criterion will stop the training process once the 17-th epoch is reached.

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

40

FIGURE 4.2: MSE evaluation on training set and validation set.

4.3.3.2 Test process

After the FNN training process is complete, it is possible to evaluate the MSE
on the test set Dtest and it results equal to MSEtest = 0.0258. The comparison
between the target weight vector yi = [W̄ i

l , W̄ i
g] and the predicted weight

vector ŷi = [Ŵ i
l , Ŵ i

g] is reported in Table 4.2 and Table 4.3, for some relevant
test instances. Notice that the target global weight vector is the same for
each order in U , meaning that it fits very well the type of packaging carried
out by the company. The optimal solution of these instances is depicted in
Figures 4.3a- 4.3f. They are found running the second stage of the algorithm
directly on the relative predicted fitness weight vector. The red and blue box
borders indicate, the fragility or non-fragility of the box, respectively. The
related simulation time (S), the number of different dimension box typologies
(M) and the total number of boxes (N) are reported in Table 4.4, while useful
time simulation statistics, calculated on the whole subset Dtest, are shown in
Table 4.5.

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

41

TABLE 4.2: Target vs. predicted local weight vector.

Order Local weight vector Type
1 [0.9, 0.2, 0.8, 0.5] Target
1 [0.86, 0.18, 0.61, 0.55] Predicted
2 [1.0, 0.7, 0.5, 0.9] Target
2 [0.89, 0.63, 0.54, 0.86] Predicted
3 [0.6, 0.8, 0.2, 0.8] Target
3 [0.56, 0.71, 0.34, 0.71] Predicted
4 [1.0, 0.5, 0.2, 0.3] Target
4 [1.28, 0.57, 0.14, 0.26] Predicted
5 [0.8, 0.7, 0.7, 0.1] Target
5 [0.83, 0.75, 0.59, 0.86] Predicted
6 [0.9, 0.9, 0.3, 0.1] Target
6 [0.99, 0.82, 0.39, 0.17] Predicted

TABLE 4.3: Target vs. predicted global weight vector.

Order Global weight vector Type
1 [0.7, 0.5, 0.4, 0.4, 0.4] Target
1 [0.68, 0.49, 0.42, 0.38, 0.38] Predicted
2 [0.7, 0.5, 0.4, 0.4, 0.4] Target
2 [0.69, 0.49, 0.39, 0.39, 0.39] Predicted
3 [0.7, 0.5, 0.4, 0.4, 0.4] Target
3 [0.71, 0.47, 0.41, 0.40, 0.38] Predicted
4 [0.7, 0.5, 0.4, 0.4, 0.4] Target
4 [0.67, 0.51, 0.37, 0.38, 0.38] Predicted
5 [0.7, 0.5, 0.4, 0.4, 0.4] Target
5 [0.73, 0.52, 0.39, 0.42, 0.43] Predicted
6 [0.7, 0.5, 0.4, 0.4, 0.4] Target
6 [0.81, 0.57, 0.46, 0.45, 0.45] Predicted

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

42

TABLE 4.4: Simulation time (S), number of different dimension
box typologies (M) and total number of boxes (N) reported for

some test instances.

Order M N S
1 1 44 1.529 min
2 1 21 0.187 min
3 2 28 13.183 min
4 2 27 15.190 min
5 2 50 14.540 min
6 2 27 14.797 min

TABLE 4.5: Time simulation statistics on subset Dtest.

Mean value 1.654 min
Standard Deviation 4.176 min

Minimum value 0.004 min
Maximum value 20.632 min

Chapter 4. A Two-Stage Algorithm for the Three-Dimensional
Single-Bin-Size Bin Packing Problem

43

(A) Test Instance 1. (B) Test Instance 2.

(C) Test Instance 3. (D) Test Instance 4.

(E) Test Instance 5. (F) Test Instance 6.

FIGURE 4.3: Best solutions found related to some relevant test
instances.

44

Chapter 5

Conclusion and future works

5.0.1 Conclusion

In this relation, the Three-Dimensional Single-Bin-Size Bin Packing problem
has been solved using an innovative and efficient algorithm. In Chapter 2,
a literature review and a exhaustive classification about Cutting & Packing
problems is presented, focusing on the Bin Packing problem and its dimen-
sional variants. Continuing, a summary of genetic algorithm and feedfor-
ward neural networks is shown in Chapter 3, discussing how they can be
adapted and combined to solve the 3D|BPP. Finally, In Chapter 4, the com-
plete structure of the proposed algorithm is presented and simulation results
are showed and discussed. In particular, a Hybrid Genetic Algorithm cou-
pled with a Feedforward Neural Network has been used, taking into account
geometric, stability and fragility constraints. One of the most important fea-
tures of the new algorithm is its capability and efficiency to predict, for each
input instance, the optimal weight vectors of all fitness functions that need
to be optimized for solving the problem. Moreover, it is able to provide as
output, the optimal boxes input sequence as well as the spatial coordinates
of the the placed boxes vertices. The proposed algorithm proves to be very
efficient and flexible for all the input instances as shown by the simulation re-
sults. Furthermore, the simulations demonstrate also that the system is easily
adaptable to different users, thanks to an automatic adjustment of the fitness
functions weights in order to avoid empirical tuning of the weights by the
human operator.

5.0.2 Future works

The outcomes of the research work presented in this thesis open the possibil-
ity to several future improvements, taking as starting point the aquired stock
of knowledge and the results obtained. Possible future works may involve
the investigation of other machine learning techniques, in order to compare

Chapter 5. Conclusion and future works 45

the various performance. Moreover, new practical constraints and new fit-
ness functions could be added to the model, increasing the quality of the
solutions even more.

46

Bibliography

[1] D. Vigo A. Lodi S. Martello. “Heuristic algorithms for the three-dimensional
bin packing problem”. In: European Journal of Operational Research 141
(2002), pp. 410–420.

[2] Mohamed Abdel-Basset et al. “An improved nature inspired meta-heuristic
algorithm for 1-D bin packing problems”. In: Personal and Ubiquitous
Computing 22 (Oct. 2018). DOI: 10.1007/s00779-018-1132-7.

[3] Jaza Abdullah and Tarik Rashid. Fitness Dependent Optimizer: Inspired by
the Bee Swarming Reproductive Process. Apr. 2019. DOI: 10.1109/ACCESS.
2019.2907012.

[4] A. D. Almeida and M. B. Figueiredo. “A particular approach for the
three-dimensional packing problem with additional constraints”. In:
Computers & Operations Research 37(11) (2010), pp. 1968–1976.

[5] M. Alonso et al. “Mathematical models for multicontainer loading prob-
lems”. In: Omega 66 (2017), pp. 106–117.

[6] Gabriele Ancora, Gianluca Palli, and Claudio Melchiorri. “A Hybrid
Genetic Algorithm for Pallet Loading in Real-World Applications”. In:
IFAC-PapersOnLine 53.2 (2020). 21th IFAC World Congress, pp. 10006–
10010. ISSN: 2405-8963. DOI: https://doi.org/10.1016/j.ifacol.
2020.12.2719. URL: https://www.sciencedirect.com/science/
article/pii/S2405896320334820.

[7] Chazelle B. “The Bottomn-Left Bin-Packing Heuristic: An Efficient Im-
plementation”. In: IEEE Transactions on Computers C-32.8 (1983), pp. 697–
707. DOI: 10.1109/TC.1983.1676307.

[8] J. E. Beasley. “Algorithms for Unconstrained Two-Dimensional Guillo-
tine Cutting”. In: Journal of the Operational Research Society 36.4 (1985),
pp. 297–306. DOI: 10.1057/jors.1985.51. eprint: https://doi.org/
10.1057/jors.1985.51. URL: https://doi.org/10.1057/jors.1985.
51.

https://doi.org/10.1007/s00779-018-1132-7
https://doi.org/10.1109/ACCESS.2019.2907012
https://doi.org/10.1109/ACCESS.2019.2907012
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.2719
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.2719
https://www.sciencedirect.com/science/article/pii/S2405896320334820
https://www.sciencedirect.com/science/article/pii/S2405896320334820
https://doi.org/10.1109/TC.1983.1676307
https://doi.org/10.1057/jors.1985.51
https://doi.org/10.1057/jors.1985.51
https://doi.org/10.1057/jors.1985.51
https://doi.org/10.1057/jors.1985.51
https://doi.org/10.1057/jors.1985.51

Bibliography 47

[9] J. O. Berkey and P. Y. Wang. “Two-Dimensional Finite Bin-Packing Al-
gorithms”. In: The Journal of the Operational Research Society 38.5 (1987),
pp. 423–429. ISSN: 01605682, 14769360. URL: http://www.jstor.org/
stable/2582731.

[10] E. E. Bischoff and M. S. W. Ratcliff. “Issues in the development of ap-
proaches to container loading”. In: Omega 23(4) (1995), pp. 337–390.

[11] Eberhard E. Bischoff and Michael D. Marriott. “A comparative eval-
uation of heuristics for container loading”. In: European Journal of Op-
erational Research 44.2 (1990). Cutting and Packing, pp. 267–276. ISSN:
0377-2217. DOI: https://doi.org/10.1016/0377-2217(90)90362-
F. URL: https://www.sciencedirect.com/science/article/pii/
037722179090362F.

[12] E.E. Bischoff, F. Janetz, and M.S.W. Ratcliff. “Loading pallets with non-
identical items”. In: European Journal of Operational Research 84.3 (1995).
Cutting and Packing, pp. 681–692. ISSN: 0377-2217. DOI: https : / /
doi . org / 10 . 1016 / 0377 - 2217(95) 00031 - K. URL: https : / / www .
sciencedirect.com/science/article/pii/037722179500031K.

[13] A. Bortfeld and G. Wascher. “Constraints in container loading - A State-
of-the-Art Review”. In: European Journal of Operational Research 229 (2012),
pp. 1–20.

[14] Marco Boschetti and Aristide Mingozzi. “The two-dimensional finite
bin packing problem. Part I: New lower bounds for the oriented case”.
In: Quarterly Journal of the Belgian, French and Italian Operations Research
Societies 1(1) (2003), pp. 27–42.

[15] Marco Boschetti and Aristide Mingozzi. “The two-dimensional finite
bin packing problem. Part II: New lower and upper bounds”. In: Quar-
terly Journal of the Belgian, French and Italian Operations Research Societies
1(2) (2003), pp. 135–147.

[16] José Carvalho. “LP models for bin packing and cutting stock problem”.
In: European Journal of Operational Research 141 (Sept. 2002), pp. 253–273.
DOI: 10.1016/S0377-2217(02)00124-8.

[17] S. Ceschia and A. Schaerf. “Local search for a multi-drop multi-container
loading problem”. In: Journal of Heuristics 19(2) (2013), pp. 275–294.

[18] F.T.S. Chan et al. “Development of a decision support system for air-
cargo pallets loading problem: A case study”. In: Expert Systems with
Applications 31 (2006), pp. 472–485.

http://www.jstor.org/stable/2582731
http://www.jstor.org/stable/2582731
https://doi.org/https://doi.org/10.1016/0377-2217(90)90362-F
https://doi.org/https://doi.org/10.1016/0377-2217(90)90362-F
https://www.sciencedirect.com/science/article/pii/037722179090362F
https://www.sciencedirect.com/science/article/pii/037722179090362F
https://doi.org/https://doi.org/10.1016/0377-2217(95)00031-K
https://doi.org/https://doi.org/10.1016/0377-2217(95)00031-K
https://www.sciencedirect.com/science/article/pii/037722179500031K
https://www.sciencedirect.com/science/article/pii/037722179500031K
https://doi.org/10.1016/S0377-2217(02)00124-8

Bibliography 48

[19] C. Chen, S. Lee, and Q. Shen. “An analytical model for the container
loading problem”. In: European Journal of Operational Research 80 (1995),
pp. 68–76.

[20] J. Csirik and G. Woeginger. “On-line packing and covering problems”.
In: Lecture Notes in Computer Science, Springer Berlin Heidelberg 1442 (1998),
pp. 144–177.

[21] Himanish Das and Pinki Roy. “A Deep Dive into Deep Learning Tech-
niques for solving Spoken Language Identification Problems in Speech
Signal processing”. In: Dec. 2018, pp. 81–100. ISBN: 9780128181300. DOI:
10.1016/B978-0-12-818130-0.00005-2.

[22] Harald Dyckhoff. “A typology of cutting and packing problems”. In:
European Journal of Operational Research 44.2 (1990). Cutting and Pack-
ing, pp. 145–159. ISSN: 0377-2217. DOI: https://doi.org/10.1016/
0377- 2217(90)90350- K. URL: https://www.sciencedirect.com/
science/article/pii/037722179090350K.

[23] Walaa El Ashmawi and Dr-Diaa Salama. “A modified squirrel search
algorithm based on improved best fit heuristic and operator strategy
for bin packing problem”. In: Applied Soft Computing 82 (June 2019),
p. 105565. DOI: 10.1016/j.asoc.2019.105565.

[24] M. Eley. “A bottleneck assignment approach to the multiple container
loading problem”. In: OR Spectrum 25(1) (2003), pp. 45–60.

[25] O. Faroe, D. Pisinger, and M. Zachariasen. “Guided local search for the
three-dimensional bin packing problem”. In: Department of Computer
Science, University of Copenhagen (2003).

[26] Chung F.K.R., Garey M.R., and Johnson D.S. “On packing two-dimensional
bins.” In: SIAM Journal on Algebraic Discrete Methods 3(1) (1982), pp. 66–
76.

[27] International Transport Forum. “Permissible maximum weights of lor-
ries in europe”. In: (2016).

[28] H. J. Fraser and J. A. George. “Integrated container loading software for
pulp and paper industry”. In: European Journal of Operational Research
77(3) (1994), pp. 466–474.

[29] Hans Frenk and Gábor Galambos. “Hybrid next-fit algorithm for the
two-dimensional rectangle bin-packing problem”. In: Computing 39 (Sept.
1987), pp. 201–217. DOI: 10.1007/BF02309555.

https://doi.org/10.1016/B978-0-12-818130-0.00005-2
https://doi.org/https://doi.org/10.1016/0377-2217(90)90350-K
https://doi.org/https://doi.org/10.1016/0377-2217(90)90350-K
https://www.sciencedirect.com/science/article/pii/037722179090350K
https://www.sciencedirect.com/science/article/pii/037722179090350K
https://doi.org/10.1016/j.asoc.2019.105565
https://doi.org/10.1007/BF02309555

Bibliography 49

[30] M. d. G. Costa and M. E. Captivo. “Weight distribution in container
loading: a case study”. In: International Transactions in Operational Re-
search 23(1-2) (2016), pp. 239–263.

[31] Michel Gendreau. “Metaheuristics in combinatorial optimization”. In:
Annals of Operations Research 140 (2005), pp. 189–213. ISSN: 1572-9338.
DOI: https://doi.org/10.1007/s10479-005-3971-7.

[32] M. Iori, S. Martello, and M. Monaci. “Metaheuristic algorithms for the
strip packing problem”. In: Applied Optimization 78 (2003), pp. 159–180.

[33] Mohit Jain, Vijander Singh, and Asha Rani. “A novel nature-inspired
algorithm for optimization: Squirrel search algorithm”. In: Swarm and
Evolutionary Computation 44 (2019), pp. 148–175. ISSN: 2210-6502. DOI:
https://doi.org/10.1016/j.swevo.2018.02.013. URL: https://
www.sciencedirect.com/science/article/pii/S2210650217305229.

[34] Z. Jin, T. Ito, and K. Ohna. “A three-dimensional bin packing problem
and its practical algorithm”. In: JSME International Journal Series C: Me-
chanical Systems, Machine Elements and Manifacturing 46 (2003), pp. 60–
66.

[35] L. Junqueira, R. Morabito, and D. S. Yamashita. “Three-dimensional
container loading models with cargo stability and load bearing con-
straints”. In: Computers and Operations Research 39 (2012), pp. 74–85.

[36] Leonardo Junqueira et al. “Optimization Models for the Three-Dimensional
Container Loading Problem with Practical Constraints”. In: Modeling
and Optimization in Space Engineering. Ed. by Giorgio Fasano and János
D. Pintér. Springer Optimization and Its Applications. Springer, 2012.
Chap. 0, pp. 271–293. DOI: 10.1007/978-1-4614-4469-5. URL: https:
//ideas.repec.org/h/spr/spochp/978-1-4614-4469-5_12.html.

[37] L. V. Kantorovich. “Mathematical Methods of Organizing and Planning
Production”. In: Management Science 6.4 (1960), pp. 366–422. DOI: 10.
1287/mnsc.6.4.366. URL: https://doi.org/10.1287%2Fmnsc.6.4.
366.

[38] J. L. Lin, C. H. Chang, and J. Y. Yang. “A study of optimal system
for multiple-constraint multiple-container packing problems”. In: Lec-
ture Notes in Computer Science, Springer Berlin Heidelberg 4031 (2006),
pp. 1200–1210.

https://doi.org/https://doi.org/10.1007/s10479-005-3971-7
https://doi.org/https://doi.org/10.1016/j.swevo.2018.02.013
https://www.sciencedirect.com/science/article/pii/S2210650217305229
https://www.sciencedirect.com/science/article/pii/S2210650217305229
https://doi.org/10.1007/978-1-4614-4469-5
https://ideas.repec.org/h/spr/spochp/978-1-4614-4469-5_12.html
https://ideas.repec.org/h/spr/spochp/978-1-4614-4469-5_12.html
https://doi.org/10.1287/mnsc.6.4.366
https://doi.org/10.1287/mnsc.6.4.366
https://doi.org/10.1287%2Fmnsc.6.4.366
https://doi.org/10.1287%2Fmnsc.6.4.366

Bibliography 50

[39] D.S. Liu et al. “On solving multi-objective bin packing problems us-
ing evolutionary particle swarm optimization”. In: European Journal of
Operational Research 190(2) (2008), pp. 357–382.

[40] A. Lodi, S. Martello, and D. Vigo. “Approximation algorithms for the
oriented two-dimensional bin packing problem”. In: European Journal
of Operational Research 112 (1999), pp. 158–166.

[41] A. Lodi, S. Martello, and D. Vigo. “Heuristic and metaheuristic ap-
proaches for a class of two-dimensional bin packing problems”. In: IN-
FORMS Journal on Computing 11 (1999), pp. 345–357.

[42] A. Lodi, S. Martello, and D. Vigo. “Neighborhood search algorithm for
the guillotine non-oriented two-dimensional bin packing problem”. In:
Meta-Heuristics, Springer US 11 (1999), pp. 125–139.

[43] A. Lodi, S. Martello, and D. Vigo. “Tspack: A unified tabu search code
for multi-dimensional bin packing problems”. In: Annals of Operations
Research 131 (2004), pp. 203–213.

[44] Christoph von der Malsburg. “Frank Rosenblatt: Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mechanisms”. In: Brain
Theory (Jan. 1986), pp. 245–248. DOI: 10.1007/978-3-642-70911-1_20.

[45] S. Martello and P. Toth. “Knapsack Problems - Algorithms and com-
puter implementations”. In: John Wiley & Sons, Chichester, UK (1990).

[46] Silvano Martello, David Pisinger, and Daniele Vigo. “The Three-Dimensional
Bin Packing Problem”. In: Operations Research 48 (Feb. 1998). DOI: 10.
1287/opre.48.2.256.12386.

[47] Silvano Martello and Daniele Vigo. “Exact Solution of the Two-Dimensional
Finite Bin Packing Problem”. In: Management Science 44.3 (1998), pp. 388–
399. ISSN: 00251909, 15265501. URL: http://www.jstor.org/stable/
2634676.

[48] Seyedali Mirjalili and Andrew Lewis. “The Whale Optimization Algo-
rithm”. In: Advances in Engineering Software 95 (2016), pp. 51–67. ISSN:
0965-9978. DOI: https://doi.org/10.1016/j.advengsoft.2016.01.
008. URL: https://www.sciencedirect.com/science/article/pii/
S0965997816300163.

[49] M. Monaci and P. Toth. “A set-covering based heuristic approach for
bin-packing problems”. In: INFORMS Journal on Computing 18 (2006),
pp. 71–85.

https://doi.org/10.1007/978-3-642-70911-1_20
https://doi.org/10.1287/opre.48.2.256.12386
https://doi.org/10.1287/opre.48.2.256.12386
http://www.jstor.org/stable/2634676
http://www.jstor.org/stable/2634676
https://doi.org/https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/https://doi.org/10.1016/j.advengsoft.2016.01.008
https://www.sciencedirect.com/science/article/pii/S0965997816300163
https://www.sciencedirect.com/science/article/pii/S0965997816300163

Bibliography 51

[50] I. Moon and T. Nguyen. “Container packing problem with balance con-
straints”. In: OR Spectrum 36 (2013), pp. 837–878.

[51] N. Morgan and H. Bourlard. “Generalization and Parameter Estima-
tion in Feedforward Nets: Some Experiments”. In: Advances in Neural
Information Processing Systems. Ed. by D. Touretzky. Vol. 2. Morgan-
Kaufmann, 1990. URL: https://proceedings.neurips.cc/paper/
1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf.

[52] Chanaleä Munien and Absalom E. Ezugwu. “Metaheuristic algorithms
for one-dimensional bin-packing problems: A survey of recent advances
and applications”. In: Journal of Intelligent Systems 30.1 (2021), pp. 636–
663. DOI: doi:10.1515/jisys-2020-0117. URL: https://doi.org/10.
1515/jisys-2020-0117.

[53] Tugrul Nayraktar. “A memory-integrated artificial bee algorithm for
heuristic optimisation”. In: University of Bedfordshire (2014). DOI: http:
//hdl.handle.net/10547/332794.

[54] Chigozie Nwankpa et al. “Activation Functions: Comparison of Trends
in Practice and Research for Deep Learning”. In: Dec. 2020.

[55] C. Paquay, Michael Schyns, and Sabine Limbourg. “A mixed integer
programming formulation for the three-dimensional bin packing prob-
lem deriving from an air cargo application”. In: International Transac-
tions in Operational Research 23 (July 2014). DOI: 10.1111/itor.12111.

[56] H. Pollaris et al. “Vehicle routing problems with loading constraints:
state-of-the-art and future directions”. In: OR Spectrum 37(2) (2015),
pp. 297–330.

[57] David E. Rumelhart and James L. McClelland. “Learning Internal Rep-
resentations by Error Propagation”. In: Parallel Distributed Processing:
Explorations in the Microstructure of Cognition: Foundations. 1987, pp. 318–
362.

[58] Dr-Diaa Salama et al. “An Adaptive Fitness-Dependent Optimizer for
the One-Dimensional Bin Packing Problem”. In: IEEE Access (Apr. 2020),
pp. 97959 –97974. DOI: 10.1109/ACCESS.2020.2985752.

[59] A. Soke and Z. Bingul. “Hybrid genetic algorithm and simulated an-
nealing for two-dimensional non-guillotine rectangular packing prob-
lems”. In: Engineering Applications of Artificial Intelligence 19(5) (2006),
pp. 557–567.

https://proceedings.neurips.cc/paper/1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf
https://doi.org/doi:10.1515/jisys-2020-0117
https://doi.org/10.1515/jisys-2020-0117
https://doi.org/10.1515/jisys-2020-0117
https://doi.org/http://hdl.handle.net/10547/332794
https://doi.org/http://hdl.handle.net/10547/332794
https://doi.org/10.1111/itor.12111
https://doi.org/10.1109/ACCESS.2020.2985752

Bibliography 52

[60] J. Terno et al. “An efficient approach for the multi-pallet loading prob-
lem”. In: European Journal of Operational Research 123 (2000), pp. 372–
281.

[61] A. Trivella and D. Pisinger. “The load-balanced multi-dimensional bin-
packing problem”. In: Computers & Operations Research 74 (2016), pp. 152–
164.

[62] R. Tsai, E. Malstrom, and W. Kuo. “Three dimensional palletization of
mixed box sizes”. In: IIE Transactions 25(4) (1993), pp. 64–75.

[63] Yong Wu et al. “Three-dimensional bin packing problem with variable
bin height”. In: European Journal of Operational Research 202.2 (2010),
pp. 347–355. ISSN: 0377-2217. DOI: https://doi.org/10.1016/j.
ejor.2009.05.040. URL: https://www.sciencedirect.com/science/
article/pii/S0377221709003919.

[64] Gerhard Wäscher, Heike Haußner, and Holger Schumann. “An im-
proved typology of cutting and packing problems”. In: European Jour-
nal of Operational Research 183.3 (2007), pp. 1109–1130. ISSN: 0377-2217.
DOI: https://doi.org/10.1016/j.ejor.2005.12.047. URL: https://
www.sciencedirect.com/science/article/pii/S037722170600292X.

https://doi.org/https://doi.org/10.1016/j.ejor.2009.05.040
https://doi.org/https://doi.org/10.1016/j.ejor.2009.05.040
https://www.sciencedirect.com/science/article/pii/S0377221709003919
https://www.sciencedirect.com/science/article/pii/S0377221709003919
https://doi.org/https://doi.org/10.1016/j.ejor.2005.12.047
https://www.sciencedirect.com/science/article/pii/S037722170600292X
https://www.sciencedirect.com/science/article/pii/S037722170600292X

