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ABSTRACT 

 

The interpretation of phase equilibrium and mass transport phenomena in gas/solvent - 

polymer system at molten or glassy state is relevant in many industrial applications. Among tools 

available for the prediction of thermodynamics properties in these systems, at molten/rubbery state, 

is the group contribution lattice-fluid equation of state (GCLF-EoS), developed by Lee and Danner 

and ultimately based on Panayiotou and Vera LF theory. On the other side, a thermodynamic 

approach namely non-equilibrium lattice-fluid (NELF) was proposed by Doghieri and Sarti to 

consistently extend the description of thermodynamic properties of solute polymer systems obtained 

through a suitable equilibrium model to the case of non-equilibrium conditions below the glass 

transition temperature. The first objective of this work is to investigate the phase behaviour in 

solvent/polymer at glassy state by using NELF model and to develop a predictive tool for gas or vapor 

solubility that could be applied in several different applications: membrane gas separation, barrier 

materials for food packaging, polymer-based gas sensors and drug delivery devices. Within the efforts 

to develop a predictive tool of this kind, a revision of the group contribution method developed by 

High and Danner for the application of LF model by Panayiotou and Vera is considered, with 

reference to possible alternatives for the mixing rule for characteristic interaction energy between 

segments. The work also devotes efforts to the analysis of gas permeability in polymer composite 

materials as formed by a polymer matrix in which domains are dispersed of a second phase and 

attention is focused on relation for deviation from Maxwell law as function of arrangement, shape of 

dispersed domains and loading. 
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𝑁𝐸      = chemical potential of solutes in the mixture at nonequilibrium conditions (kJ kmol-1 ) 

      𝜇1
(𝑃)

       = chemical potential of a pure component 1 (kJ kmol-1 ) 

     𝜇1
                    = chemical potential of component 1 into mixtures (kJ kmol-1 ) 

      𝜌𝑖        = species mass density of all solute components (unit) 

      𝜌𝑝𝑜𝑙
𝑁𝐸                         = mass density of the polymeric species in the mixture at nonequilibrium conditions (kg of pol 

m-3 ) 

      𝜌𝑝𝑜𝑙
𝑃𝐸        = density of solvent per polymer mass at nonequilibrium conditions (kg of pol m-3) 

      𝜌𝑝𝑜𝑙
0                       = dry polymer density (kg m-3) 

       𝜎            = volume-independent parameter accounting for symmetry of mixture molecules (unitless) 

       𝜎𝑖        = volume-independent parameter accounting for symmetry of component i molecules (unitless) 

       𝜎1                          = volume-independent parameter accounting for symmetry of pure component 1 molecules 

(unitless) 

       𝜙𝑖                       = volume fraction of component 𝑖 in the mixture (unitless) 

      𝜒                = compressibility ratio between glass region and rubber (unitless) 

      𝜔𝑖          = weight fraction of low molecular weight solutes in the mixture (unitless)  

     𝜔𝑖
𝐸𝑞

                     = weight fraction of low molecular weight solutes in the mixture at equilibrium conditions 

(unitless) 

     𝜔𝑖
𝑁𝐸                         =   weight fraction of low molecular weight solutes in the mixture at nonequilibrium conditions 

(unitless) 

     𝜔1
𝐸𝑞        = weight fraction of component 1 into mixture at equilibrium condition (unitless) 

     𝜔1
𝑁𝐸        = weight fraction of component 1 into mixture at nonequilibrium condition (unitless) 

     𝜔2
                     = weight fraction of a pure polymer (unitless) 

   Superscripts 

    𝐸𝑞        = equilibrium 

    (𝑀)         = mixture 
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    𝑁𝐸                       = nonequilibrium 

    𝑃𝐸                      = pseudo equilibrium       

    (𝑃)       = pure 

     *        = reducing quantities 

     ~       = reduced quantities 

       ̇                   = non-randomness factor 

 

  Subscripts 

   𝑐                          = combinatorial 

   H                   = quantity pertaining to holes 

   𝐺                           = glassy state 

   𝑖, 𝑗                = component 𝑖, 𝑗 

   k, m, n           = group k, m, and n 

   𝑛𝑟                   = non-random 

   pol                      = polymer 

   𝑅                    = rubbery state 

   𝑠𝑤                     = swelling 

   𝑠                     = solute component 
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List of abbreviations 

 

   EOS                 = equation of state 

   GCLF                     = group-contribution lattice-fluid 

   NELF                      = nonequilibrium lattice fluid 

   NET-GP      = nonequilibrium thermodynamics of glassy polymers 

   PC             = polycarbonate 

   PEMA        = poly(ethyl methacrylate) 

   PMMA      = poly(methyl methacrylate) 

   PPO            = poly(2,6-dimethyl phenylene oxide) 

   PS                   = polystyrene 
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Chapter 1 

INTRODUCTION 

 

        The investigation of phase equilibria behaviour for the prediction of the thermodynamics properties 

of solvent and polymers solutions has become crucial in many industrial applications. Recently, many 

models had been exhibited in prediction VLE conditions:  UNIFAC free volume model 1, group 

contribution Flory EoS 2,3, and ultimately Lee and Danner approach, that has been succeeded to predict 

the equilibria phase behaviour of polymeric systems for pure component and binary mixture 4,5   by 

developing the group-contribution method based on Panayiotou and Vera lattice-fluid equation of state 

(LF-EoS). Besides that, Panayiotou and Vera EoS has shown an optimal result in correlating the phase 

equilibria in polymer-solvent systems 6,7. Thus, it has been selected as a starting point for developing a 

group-contribution lattice-fluid EoS, together with different mixing rules for interaction energy proposed 

by [High, Danner, Hamedi, and Lee] 8,9, and [Hamedi and coworkers] 10. While GCLF- EoS shows a 

very good prediction capability for the analysis of vapor/gas in polymer solutions at molten/rubbery 

equilibrium state in many applications, polymers are processed and used at below glass transition 

temperature that is considered as non-equilibrium condition. Therefore, to address this specific 

condition, [Doghieri and Sarti] 11 have developed a model that solves this kind of phase behaviour below 

glass transition temperature by employing pseudo equilibrium polymer mass density as an additional 

state variable. As a result of that, most of thermodynamic properties can be calculated and analysed, 

such as solubility gas into homopolymer and copolymers at various pressures.  

In what follows a brief discussion is offered of essential features of lattice-fluid theories, with 

reference to earlier versions (chapter 3) first and then to the model of Panayiotou and Vera which is of  

direct interest of this work (chapter 4). Characteristic of group contribution methods are then presented 

in chapter 5, both in general terms and for the specific approach considered by Danner and co-workers 

with reference to lattice fluid theory.  

A short description follows of the non-equilibrium lattice-fluid approach, which includes most 

recent developments and consider a new formulation built to facilitate the use of predictive procedures 

for the evaluation of non-equilibrium parameters (chapter 6). The overall predictive procedure set up in 

this work for the estimation of gas and vapor solubility in glassy polymer is finally described in chapter 

7, in which several results are shown as obtained from its application to the case VLE of few 

conventional glassy polymers with both gaseous and vapor species.  



2 
 

 
 

The additional effort devoted to the analysis of an alternative approach to the group contribution 

estimation of the energy both homogeneous and heterogeneous interaction between segments in the 

lattice is then discussed in chapter 8. The last chapter of this work summarizes the results obtained from 

the numerical analysis of effective permeability in composite media and it specifically addresses the 

effect of shape, arrangement and permeability ratio for the case of isotropic composite media obtained 

through the ordered dispersion of isotropic inclusions.   

It is worthful to address a general representation of this work, departing from a mathematical expression 

namely, the effective permeability of gas or vapour in glassy polymers, 𝑃𝑒𝑓𝑓, as shown: 

 

 

                   𝑃𝑒𝑓𝑓 =  𝑓(𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦, 𝜙 ,  𝑃(𝑑),  𝑃(𝑐))                               (1.1) 

 

Where 𝜙 is the disperse loading in the matrix. 𝑃(𝑑) is the permeability of gas or vapour in the disperse 

phase. 𝑃(𝑐) is the permeability of gas or vapour in the continuous phase.  

Fifty-four years ago, [Crank and Park] 12 showed a mathematical expression for representing the 

permeability coefficient departing from Fick’s law 13 to describe the permeability coefficient and its 

association to the diffusion and solubility coefficients, as follows:  

          𝐹 =  
𝐷 (𝐶1− 𝐶2)

𝑙
                                                                (1.2) 

Where F is the flow rate of gas or vapour per unit area of membrane’s section, 𝐶1 is the concentration of 

gas or vapour that exists on the surface of the membrane or diffuses across the membrane and this 

mechanism is termed “sorption”, 𝐶2 is the concentration of gas or vapour that exists on the other surface 

of the membrane or releases at atmosphere and this mechanism is named “desorption”, 𝑙 is the thickness 

of the membrane, and 𝐷 is the diffusion coefficient in which it controls the quantity of the diffused gas 

or vapour across the membrane. 

Eq.1.2 has another relevant expression that is more applicable for predicting the permeability coefficient, 

P , as follows: 

           𝐹 =  
𝑃 (𝑝1− 𝑝2)

𝑙
                              (1.3) 
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Where 𝑝1 and 𝑝2 are the pressure of gas or vapour in the membrane and the pressure of gas or vapour 

out of the membrane from the other side, respectively. 

There is a linear relationship between the concentration of gas or vapour and the external vapour 

pressure, given by: 

                 𝐶 = 𝑆𝑝                       (1.4) 

 

where S is the solubility coefficient. 

By equating [Eq.1.2 & 1.3], it gives the ultimate expression for the permeability coefficient, 𝑃, as 

follows: 

                       𝑃 = 𝐷𝑆                                        (1.5) 

It could be noted that the solubility coefficient can be calculated by modelling a predictive tool that 

combines two models a group-contribution method (GC) 4,5,10,14,15 and nonequilibrium thermodynamics 

of glassy polymers (NET-GP) 11.  GC method is selected due to its ability to express the thermodynamic 

properties behaviour when there are no sufficient characteristic properties of chemical compounds by 

utilizing solo the chemical structure.  Besides that, NET-GP has been chosen because of its capability to 

interpret the thermodynamics properties behaviour of polymers at below glass transition temperature, Tg 

in which polymer material is transformed from liquid to rubbery, and ultimately to a stiff or glassy upon 

cooling 16.  Furthermore, polymer has a free volume that allows gas or vapor to diffuse between 

polymers’ chains. The free volume shows a low effect of segmental mobility when the temperature 

below glass transition temperature, namely glassy polymers [Matteucci et al.] 17. In addition, it arises to 

study the thermodynamics properties behaviour of gas or vapour particularly in glassy polymers due to 

increasing demand by industrial and commercial enterprises. Moreover, the interested group-

contribution method that has been selected to be developed at this work, is relied on Panayiotou and 

Vera EoS 7,8 that was evolved by manipulating lattice-hole theory. Interestingly, Panayiotou and Vera 

EoS showed accurate results in the literature. Thus, it has been selected as an optimal departure to extend 

from GC method to NET-GP.  

 

Ultimately, the solubility coefficient model that is referred to as “nonequilibrium group contribution 

lattice fluid” model (NE-GCLF) can be designed to be applied based on a minimum number of properties 
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as inputs such as glass transition temperature, 𝑇𝑔, compressibility ratio,𝜒, chemical structure of polymer, 

Mn and the ratio of the thermal expansion coefficient from the glassy to rubbery state,𝛾.  

 

It could be noted that the NE-GCLF model has been implemented in a mathematical tool (MATLAB) 

for the purpose of highly achieving precision in both calculation and plotting. However, there are some 

difficulties that may encounter at current work which are the lack of experimental data and properties 

(i.e., compressibility and glass transition temperature) in the literature. A similar modelling approach is 

followed for calculating the diffusion coefficient. 

Along with modelling permeability coefficients, analysis of diverse geometries considering the effect of 

chemical structure of polymer matrix, characterizing disperse phase, disperse arrangement and its 

loading.  

For a better understanding to the effective permeability of gas or vapour in polymer composites, it is 

essential to introduce the relative permeability expression, 𝑃𝑟, as shown: 

                                   𝑃𝑟 =  
𝑃𝑒𝑓𝑓

𝑃𝑐
                                    (1.6) 

Maxwell model 18 presented a predictive model that can study the permeation of species in 

composite materials. His model is composed of two objects: (i) sphere within a surface and  (ii) the other 

one without a surface, alternatively an extended sphere. The spheres are arranged regularly and 

separately from each other with a view to allow the course of the current to pass.  The model is well 

effective when the spheres are far from each other and vice versa it shows a deviation from the ideality 

because the model works at low loadings of spherical particles approximately (𝜙𝑑 ≤ 0.2). Moreover, it 

does not take into consideration the particle shape or distribution.  

Maxwell’s model expression is given by: 

                        𝑃𝑒𝑓𝑓 =  
𝑃𝑑+2𝑃𝑐 − 2𝜙 (𝑃𝑐−𝑃𝑑)

𝑃𝑑+2𝑃𝑐  +  𝜙 (𝑃𝑐−𝑃𝑑)
 𝑃𝑐                                    (1.7. A) 

By substituting the permselectivity 19, 𝛼𝑑 𝑐 ⁄   in [Eq. 1.7. A], it results the following expression: 

                  𝑃𝑒𝑓𝑓 =  
2 (1−𝜙)+ 𝛼 (1+2𝜙)

(2+𝜙)+  𝛼 (1−𝜙)
     ; 𝛼

𝑑 𝑐 = 
𝑃𝑑
𝑃𝑐

⁄
                   (1.7. B) 

It can be noted that the permselectivity demonstrates the ideal capability to separate fluids. 
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It can be stated that Maxwell's model can be applied in several applications which have different driving 

forces such as pressure, concentration … etc., for predicting the performances of composite membranes. 

As it has been shown that Maxwell’s model demonstrates a deviation when the loading is higher than 

0.2. At present work, verifying the validity of empirical Nielsen model extending the Maxwell-Wiener-

Nielsen through the use of a CFD software (FLUENT) tool. A new coefficient, Ψ can be introduced to 

optimize more complex geometries with different loadings and permeability ratios which disperse phase 

can be almost compacted to the continuous (matrix phase) by reaching approximately 0.99 out of 1.  
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Chapter 2 

MOTIVATION 

 

The future vision of renewable and sustainable energy has played a crucial role around the world, 

through development of modern separation technologies to preserve energy while minimizing waste and 

reducing emission of volatile organic compounds, VOCs. In this respect, membrane technologies proved 

to represent good alternative over traditional separation processes in the industries, such as absorption, 

adsorption, and distillation, owing to their advantages 20: (i) low energy consumption and capital costs 

21, (ii) consistent production with high performance 22, (iii) ease of operating management 23,24.  

Mass transport properties of low molecular weight species in polymers are of major importance 

to the performance of separation processes which make use of dense polymer membranes. The latter is 

typically the case of gas separation, pervaporation and organic solvent nanofiltration processes. In these 

fields, and especially in the case of gas separation, great attention has been devoted in recent years to 

the use of high free volume glassy materials for the preparation of separation membranes, and to the 

development of suitable composites, in which domains of an organic or inorganic phase are dispersed 

into a polymer matrix (mixed matrix membranes, MMM). Interest in glassy membranes is motivated by 

their superior selectivity, with respect to rubbery membranes, while the routes developed for the 

preparation of MMM allow, in principle, to optimize mass transport properties of the composite system 

with respect to specific target separations, by combining permeability of the matrix and selectivity of 

dispersed phase.   

To the optimal design of material for the preparation of membranes, the availability of reliable 

tools for the prediction of key mass transport properties as gas/vapor solubility and diffusivity is crucial.  

Several well-established models, based on solid thermodynamic foundations, are indeed available for 

the representation of mass transport properties of low molecular weight species in bulk rubbery 

polymers, from lattice fluid to free volume theory, which can be easily applied when key experimental 

data are available for volumetric and viscosity properties of pure polymer and solute components.  

Significant efforts have also been done to extend the use of the latter tools to the case of polymeric 

species for which necessary experimental data are missing. In this respect, several approaches, based on 

group contribution methods, have been proposed, combined with specific thermodynamic models for 

equilibrium phases. Similar reliable tools still miss, in this respect, for the case of polymer-solute mixture 

below the glass transition temperature, where non-equilibrium condition need to be addressed to 

properly represent the thermodynamic behaviour. On a different side, studies must be mentioned which 
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have presented in the technical literature and aimed at interpreting the effect of loading, disperses 

domains and arrangement on effective permeability of composite materials. Despite the efforts, the tools 

developed remain substantially empirical in nature, except for the case of simple geometries of dilute 

dispersion of spheroids, for which exact solutions are known (Maxwell-Garnett type models).  

The aim of this work is to contribute to the development of predictive tools for the mass 

properties of composite materials prepared after glassy polymers. In this view, two distinct approaches 

have been taken. The first is aimed at extending to the case of glassy materials, the capability of 

modelling approaches for gas/vapor solubility, based on group contribution methods, already proposed 

in the technical literature for the case of polymer-solute mixtures above the glass transition temperature. 

The latter result will ultimately allow for the prediction of solubility coefficient of low molecular weight 

species in polymeric materials for which key equilibrium volumetric properties are not available. In fact, 

this is the case of several materials of interest in separation applications, for which the glass transition 

temperature exceeds the degradation temperature, thus preventing the direct experimental exam of 

equilibrium properties. The second approach considered in this work is aimed at the detailed analysis of 

the effect of shape, loading, arrangement and permeability ratio of dispersed domains on effective 

permeability in composite material. This problem is addressed through the numerical evaluation of the 

latter property in a number of different geometries, paying special attention to the uncertainty of 

numerical results, trying to recognize patterns for the effect of permeability ratio which could be useful 

in representing the deviations from Maxwell results in general conditions. In this respect, what is 

developed in this work is a first attempt to identify possible forms of generalized Maxwell type models 

and, to this aim, the case of isotropic ordered geometries is first addressed.  

It is also worthwhile to mention here that the tools for thermodynamic and transport properties 

addressed in this work will be useful also in a number of applications different from membrane 

separation. Indeed, predicting gas/vapor transport properties in glassy materials is essential also in the 

design of polymer-based gas/vapor sensors, of that of drug delivery devices, in the optimization of 

devolatilization as well as foaming processes, just to mention few cases. As it refers to the predictive 

tools for effective permeability in composite materials, it is useful to mention that the same mathematical 

problem arises in the calculation of effective thermal conductivity or electrical permittivity of dielectric 

material and that results developed in this work could be easily transferred to these related problems, 

pertinent to rather different fields.  
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Chapter 3 

EARLY LATTICE FLUID THEOIES 

 

3.1.1. Flory Lattice Fluid Theory: 

More than eighty years ago, Flory 25 investigated a statistical mechanical treatment by studying 

the thermodynamic properties of polymer-solvent system considering a lattice structure (quasi-solid). In 

his work, he discussed how the polymer and solvent were arranged on the lattice sites through the 

analysis of mixing entropy.  

It is worthful to indicate the expression for mixing entropy,  ∆𝑆𝑚𝑖𝑥𝑖𝑛𝑔 and the partial molar entropy of 

dilution for component 1 in a binary ideal mixture, ∆𝑆1̅ , as given by: 

 

                                         ∆𝑆𝑚𝑖𝑥𝑖𝑛𝑔 = −𝑅 (𝑛1 ln 𝑋1 + 𝑛2 ln 𝑋2 )                          (3.1.1.1) 

 

                                                     ∆𝑆1̅ = −𝑅 ln 𝑋1                                                               (3.1.1.2) 

 

where 𝑛1 and 𝑛2 are the numbers of moles for component 1 and component 2, respectively, 𝑋1 and 𝑋2 

the mole fraction of component 1 and component 2 in the mixture, respectively, and  R is a gas universal 

constant which is equal to 8.314 𝐽 𝑚𝑜𝑙. 𝐾⁄ . 

 

Flory had addressed the problem of mixing entropy for the case of a low molecular weight 

component and a polymer following few simplified assumptions. The assumptions include (𝑖) quasi-

solid lattice in the liquid, (𝑖𝑖) interchange ability of segments of the polymer chain with solvent; the cell 

of hypothetical lattice maybe be occupied either by a solvent molecule or a segment of a polymer chain, 

(𝑖𝑖𝑖) independence of lattice constants on composition, (𝑖𝑣) all polymers’ molecules are assumed to have 

the same size; the average concentration of polymer segments in cells adjacent to cells unoccupied by 

the polymeric are equal the average concentration.  
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Flory’s expression was derived after the application of the lattice statistical thermodynamic 

approach to the evaluation of configurational entropy in which the above mixture can be described, as 

follows:  

 

                                   ∆𝑆𝑚𝑖𝑥𝑖𝑛𝑔 =  −𝑘 [𝑛 ln (
𝑛

𝑛+𝑥𝑁
) + 𝑁 ln (

𝑥𝑁

𝑛+𝑥𝑁
)]                                  (3.1.1.3) 

 

where n is the number of molecules of a pure solvent, N is the number of polymer molecules, 𝑥 is the 

number of segments of a polymer chain, and 𝑘 is Boltzmann’s constant. 

It can be noted that if the value of 𝑥 in (Eq. 3.1.1.3) is equal to 1, then (Eq. 3.1.1.3) will turn to the 

fundamental expression that is (Eq. 3.1.1.1).  

 

Alternatively, 

 

                                            ∆𝑆𝑚𝑖𝑥𝑖𝑛𝑔 = −𝑘[𝑛 ln 𝑣1 + 𝑁 ln 𝑣2]                                              (3.1.1.3.A) 

 

Where 𝑣1and 𝑣2 are the volume fraction of solvent and polymer, respectively.  

Differentiating (Eq. 3.1.1.3) with respect to n, it turns out the partial molar entropy of solvent, as shown: 

 

                                      ∆𝑆1̅ = −𝑅 ln(1 − 𝑣2) − 𝑅(1 − 1 𝑥⁄ )𝑣2                                        (3.1.1.4) 

Correspondingly, 

                                      ∆𝑆2̅ = −𝑅 ln(1 − 𝑣1) − 𝑅(1 − 1 𝑥⁄ )𝑣1                                        (3.1.1.5) 

 

The heat of mixing can be represented, as follows: 

 

                                           ∆𝐻 = 𝐵𝑉1 𝑉2𝑛 𝑁 (𝑛𝑉1 + 𝑁𝑉2)⁄                                                (3.1.1.6) 
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where B is a constant for a pair of polymer molecules (liquid state). 𝑉1 and 𝑉2 are the molar volumes of 

solvent and polymeric solute, respectively.  

Flory considered that the molar volume of the polymer is equal to the number of segments in a 

polymer molecule multiplied by the molar volume of solvent, as follows: 

 

                                                                 𝑉2 = 𝑥𝑉1                                                             (3.1.1.7) 

 

Differentiating (Eq.3 .1.1.7) with respect to n, it gives the partial molar heat of solvent, as follows: 

 

                                                            ∆𝐻̅1 = 𝐵𝑉1𝑣2
2                                                           (3.1.1.8) 

 

Similarly, 

 

                                                    ∆𝐻̅2 = 𝐵𝑉2𝑣1
2 = 𝐵𝑥 𝑉1𝑣1

2                                                (3.1.1.9) 

 

The partial molar free energy can be calculated through the combination of (Eq. 3.1.1.4) and (Eq. 

3.1.1.5), as given by: 

 

                                  ∆𝐹̅1 = 𝑅𝑇 ln(1 − 𝑣2) +  𝑅𝑇 ln(1 − 1 𝑥⁄ ) 𝑣2 + 𝐵𝑉1𝑣2
2                       (3.1.1.10) 

 

                                          = −𝑅𝑇𝑣2[1 𝑥⁄ + (1 − 𝐾) 𝑣2 2⁄ + 𝑣2
2 3⁄ ]                                     (3.1.1.10.A) 

 

Similarly, 

                                  ∆𝐹̅2 = 𝑅𝑇 [ln(1 − 𝑣1) − (𝑥 − 1)𝑣1 + 𝐾𝑥 𝑣1
2 2⁄ ]                                 (3.1.1.10.B)                          

where 𝐾 = 2𝐵𝑉1 𝑅𝑇⁄ .  
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It could be mentioned that when K is higher than 1, then 𝑥 becomes large, the region of partial miscibility 

is reached. In addition, miscibility gap is obtained when the heat of mixing is much greater than zero, 

according to (Eq. 3.1.1.8) and (Eq. 3.1.1.9).  Thus, to study the phase equilibria of a binary system, the 

relevant compositions 𝑣2 and 𝑣2
′  to that system must obey the following expressions: 

 

                                        ∆𝐹̅1(𝑣2) = ∆𝐹̅1(𝑣2
′ ) , ∆𝐹̅2(𝑣2) = ∆𝐹̅2(𝑣2

′ )                                    (3.1.1.11) 

 

                                          𝐾(critical) = (1 + √𝑥)
2

𝑥⁄                                                         (3.1.1.12) 

 

Where ∆𝐹̅1(𝑣2)  is the partial molar free energy of the solvent; as ∆𝐹̅1decreases as 𝑣2 increases from 

zero to unity.  

It can be noted that if 𝑥 is great, then, the critical value of K is slightly greater than unity and it approaches 

unity as 𝑥 approaches infinity; continuing if the K is larger, then, two phases will co-exist in equilibrium. 

Moreover, when K exceeds the critical value, there exists a pair of values (𝑣2 and 𝑣2
′  ) which satisfies 

the equilibrium conditions (Eq. 3.1.1.11) and when K is very near K(critical), it is permissible to set 

∆𝐹̅1(𝑣2
′ ) = 0  and to compute 𝑣2

′  from K using (Eq. 3.1.1.9). 

The roots can be calculated by taking the differentiation of (Eq. 3.1.9), with respect to 𝑣2 and equating 

to zero, as follows: 

                                             𝐾𝑥𝑣2
2 − (𝐾𝑥 − 𝑥 + 1)𝑣2 + 1 = 0                                           (3.1.1.13) 

The two solutions for the two roots (±𝑣2) can be calculated, if the maximum and minimum of  ∆𝐹̅1 are 

equal and (Eq. 3.1.12) satisfies its condition, then,   

 

                                                    𝑣2 =
𝐾𝑥−(𝑥−1)±[(𝐾𝑥−𝑥+1)2−4𝐾𝑥]

1
2

2𝐾𝑥
                                                    (3.1.1.14) 

 

By substituting (Eq. 3.1.1.12) in (3.1.1.14),  

 

                                           𝑣2(critical) = 1 (1 + √𝑥)⁄                                                        (3.1.1.15) 
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The critical composition, at which the two phases become identical, according to (Eq. 3.1.1.15), occurs 

when 𝑥 is large.  

In summary, it can be said that the thermodynamic properties of polymer solutions are frequently 

described in terms of the Flory-Huggins equation, which gives the free enthalpy change occurring when 

a non-crystalline polymer is mixed with a solvent.  

For any given polymer-solvent pair, it contains a characteristic parameter, 𝜒 , called “Flory interaction 

parameter”, which reflects the intermolecular forces between the molecules in the solution.  

The corresponding formulation of Flory-Huggins free enthalpy of mixing is: 

 

                                   
Δ𝐺𝑚

𝑅𝑇
=  𝑛1 ln Φ1 +  𝑛2 ln Φ2 + 𝜒Φ1Φ2(𝑛1 + 𝑚𝑛2 )                         (3.1.1.16) 

 

In (Eq.3.1.1.16), Δ𝐺𝑚 is defined as the free enthalpy of mixing; the “liquid-like”, disoriented polymer 

with the solvent; 𝑛1 and 𝑛2 refer to the number of moles of solvent and polymer, respectively. Φ1 and 

Φ2 are the volume fractions of solvent and polymer, respectively, as follows:  

 

                                                 Φ1 ≡  
𝑛1

𝑛1+𝑚𝑛2
 and Φ2 ≡  

𝑚𝑛2

𝑛1+𝑚𝑛2
                                         (3.1.1.17) 

 

where m is the ratio of molar volumes of polymer and solvent, and 𝜒, is the Flory interaction parameter; 

a dimensionless quantity which is a function of the interaction energy characteristic of a given solvent-

solute pair. 

If (Eq. 3.1.1.16) is used to describe the thermodynamic properties of polymer solutions, then, the 

problem of predicting polymer solubility is equivalent to that of predicting reasonably accurate values 

of the Flory interaction parameter. In (Eq. 3.1.1.18), 𝜒 is a free enthalpy parameter, which is considered 

to include both entropy and enthalpy contributions, as follows: 

                                                              𝜒 = 𝜒𝑆 +  𝜒𝐻                                                           (3.1.1.18) 
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Huggins’ derivation for the free energy of mixing predicts that the entropy parameter, 𝜒𝑆 = 1 𝑧⁄ , where 

𝑧 is the lattice coordination number; however, many workers have found 𝜒𝑆 empirically to have a value 

of approximately 0.3 to 0.4. 

The parameter is: 

                                               𝜒𝐻 =
𝑣1

𝑅𝑇
   (𝛿1 − 𝛿2)2                                                    (3.1.1.19) 

 

Where 𝑣1 is the solvent molar volume, and where 𝛿1 and 𝛿2 are the solubility parameters of solvent and 

polymer, respectively. 

The condition of (Eq.3.1.1.19) to be used is that it allows only positive values for 𝜒𝐻. Thus, if 𝜒 tends 

to have a value less than 0.5, it means that 𝜒𝐻 has a very small value, and therefore the solubility 

parameters of the polymer and solvent must have very closely values. Furthermore, the approximate 

equality of the solubility parameters of polymer and solvent is a useful for priori test of the suitability of 

a given solvent for a given polymer. 

It could be noted that (Eq.3.1.1.19) is applied only to nonpolar systems and is not valid for systems 

containing polar molecules or for those where specific interactions are present.  
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3.1.2. Flory Equation of State [EoS]: 

Fifty-eight years ago, Flory et al. interpreted and correlated the properties of macro molecular 

liquids and their solutions by linking the molecular characteristics with the thermodynamic properties 

of such liquids that can be employed in investigating several thermodynamic properties such as glass 

transition temperature 26. Thus, Flory and co-workers had formulated a partition function for chain 

liquids. Their motivation was to represent the intermolecular energy and its volume in the cell model. 

They started from assuming a linear chain consisting of repeating units, 𝑛 for a certain molecule that is 

terminated with a certain atom (i.e., H − (CH2)𝑛 − H). They had been indicated that the terminal groups 

may exert intermolecular forces varying from those of the mid-chain repeating units and imagined the 

chain is subdivided into 𝑥 segments. The segment does not correspond to repeating unit (i.e., 𝑥 ≠ 𝑛 ). 

The segment, 𝑥 is proportional to the “hard core” molecular volume 𝑣∗. 

The configuration partition function of the liquid is written as follows: 

                         𝑍 = 𝑍† [𝛾 (𝜐
1

3⁄ − 𝑣∗1
3⁄ )

3

]
𝑥𝑁𝑐

exp(−𝐸0 𝑘𝑇⁄ )                                (3.1.2.1) 

                                                 𝐸0 = −𝑥𝑁𝑠𝜂 2𝜈⁄                                                       (3.1.2.2)                  

                             𝜂 ≅ (𝑠𝑚 𝑠⁄ )2𝜂𝑚 [1 + (𝑠𝑒𝜂𝑒
1

2⁄ 𝑠𝑚𝜂𝑚
1

2⁄⁄ ) 𝑥⁄ ]
2

                          (3.1.2.3) 

Where 𝐸0 is the intermolecular energy. 𝑍† is the number of ways of arranging the segments of 

𝑁 molecules over a spatial array of 𝑥𝑁 sites in the lattice model and the combinatorial factor;  𝑍† is 

assumed to be independent of volume and temperature. 𝛾 is a geometric constant. 𝜂 is the mean 

interaction between a segment pair in the liquid. 𝜂𝑚, 𝜂𝑒𝑚 , 𝜂𝑒 characterize interactions between sites on 

two neighbouring mid-chain segments, between a mid-chain and a terminal segment site, and between 

two terminal sites, respectively. 

By substituting (Eq. 3.1.2.2) in (Eq. 3.1.2.1), together with introducing reduced variables, an expression 

can be obtained, as follows:  

 

The statistical form of the simple configurational integral: 

 

                           𝑍 = 𝑍†(𝛾𝑣∗)𝑥𝑁𝑐 (𝑣̃
1

3⁄ − 1)
3𝑥𝑁𝑐

𝑒(𝑥𝑁𝑐 𝑣̃𝑇̃⁄ )                                       (3.1.2.4.A) 
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The classical form of the simple configurational integral: 

                                                 𝑍 = (𝑛𝑉∗)𝑛(𝑣̃1 3⁄ )
3𝐶𝑛

𝑒−𝑒𝑞𝜖 𝑅𝑇𝑣̃⁄                                          (3.1.2.4.B) 

                                             𝑍𝑓𝑣 =  (𝑛𝑉∗)𝑛(𝑣̃1 3⁄ )
3𝐶𝑛

                                              (3.1.2.5) 

                                             𝑍𝐴𝑡𝑡 =  𝑒−𝑒𝑞𝜖 𝑅𝑇𝑣̃⁄                                                          (3.1.2.6) 

                                                    𝑣̃ = 𝑣 𝑣∗⁄                                                                 (3.1.2.7) 

 

where 𝑣̃ =  𝑉 𝑉∗⁄ , 𝑉∗ is the molar hard-core volume, and 𝜖 is the average configurational potential 

energy per segment surface area, 𝑞.  

 

                                          𝑇̃ = 𝑇 𝑇∗ =⁄ 2𝑣∗𝑐𝑘𝑇 𝑠𝜂⁄                                                  (3.1.2.8) 

 

Ultimately, the equation of state can be obtained from (Eq. 3.1.2.4.A), and it can be expressed in reduced 

form, as shown:                  

                                𝑝𝑣̃ 𝑇̃⁄ = 𝑣̃
1

3⁄ (𝑣̃
1

3⁄ − 1) − 1 (𝑣̃𝑇̃)⁄⁄                                         (3.1.2.9) 

                                          𝑝 = 𝑝 𝑝∗ = 2𝑝𝑣∗2 𝑠𝜂⁄⁄                                                      (3.1.2.10) 

Alternatively, 

                                    𝑝 𝜌̃2⁄ = 𝑇̃ 𝜌̃⁄ (1 − 𝜌̃1 3⁄ ) − 1                                                  (3.1.2.11) 

                                                𝑝 = 𝑝𝑣∗ 𝑐𝑘𝑇∗⁄                                                             (3.1.2.12) 

It could be mentioned that the equation of state differs as the parameter c changes, i.e., when c is equal 

to 1, it shows (Eq. 3.1.2.11). In addition, the three parameters, namely, 𝑣∗,c, and the product 𝑠𝜂, serve 

to characterize the chain molecule according to (Eq. 3.1.2.4.A) and (Eq. 3.1.2.11).  

Based on that, the equation of state reduces to parametric form. 

The first of the parameters is alleged to be the same for all homologs of the series; this follows from the 

manner of defining a segment and the assumed linearity of 𝑥𝑣∗ with 𝑛. The other parameters are 

considered to depend asymptotically on n. 
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Thermodynamic properties can be deduced from Flory EoS such as the coefficient of thermal expansion 

𝛼, the coefficient of compressibity 𝜅, and the thermal pressure coefficient 𝛾 (not to be confused with the 

previous 𝛾), may be exhibited in terms of the reduced variables as: 

 

                           𝛼 = 𝑣−1(𝜕𝑣 𝜕𝑇⁄ )𝑝 = (𝑇̃ 𝑇𝑣̃⁄ )(𝜕𝑣̃ 𝑇̃⁄ )
𝑝̃
                                          (3.1.2.13) 

                         𝜅 = −𝑣−1(𝜕𝑣 𝜕𝑝⁄ )𝑇 = −(𝑝̃ 𝑝𝑣̃⁄ )(𝜕𝑣̃ 𝑝⁄ )𝑇̃                                      (3.1.2.14) 

                         𝛾 = (𝜕𝑝 𝜕𝑇⁄ )𝑣 = 𝛼 𝜅⁄ = (𝑇̃𝑝 𝑇𝑝⁄ )(𝜕𝑝 𝜕𝑇̃⁄ )
𝑣̃
                                 (3.1.2.15) 
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3.2. Sanchez and Lacombe Lattice Fluid Theory: 

3.2.1. Pure Lattice Fluid: 

Sanchez and Lacombe lattice fluid theory 27 is a statistical mechanical model that is based solely 

on three molecular parameters that are required to describe a real fluid: 𝜖𝑖
∗,𝑣𝑖

∗, and 𝑟𝑖
0. The three 

molecular parameters can be calculated once the three equation of state parameters, 𝑇𝑖
∗, 𝑃𝑖

∗, and 𝜌𝑖
∗ are 

evaluated.      

 

                                                      𝜖𝑖
∗ = 𝑁𝐴𝑘𝑇𝑖

∗                                                         (3.2.1.1) 

                                   𝑟𝑖
0 = (1 × 103 × 𝑀𝑤𝑃𝑖

∗) (𝑁𝐴𝑘𝑇𝑖
∗𝜌𝑖

∗)⁄                                     (3.2.1.2) 

                                               𝑣𝑖
∗ = 𝑀𝑤 (𝜌𝑖

∗𝑟𝑖
0)⁄                                                         (3.2.1.3) 

where 𝜖𝑖
∗ is the interaction energy between molecules of type 𝑖 in the pure component, 𝑇𝑖

∗, 𝑃𝑖
∗, and 𝜌𝑖

∗ are 

the characteristic of temperature, pressure, and density of a pure component 𝑖, respectively, 𝑟𝑖
0 is the 

number of occupied sites by the pure component molecules of type 𝑖 in the lattice, the superscript (0) is 

referred to the pure fluid, and 𝑣𝑖
∗ is the molecular close-packed volume.  

The minimum reduced Gibbs free energy can be expressed after several substitutions, as follows: 

                 𝐺 (𝑁𝑟𝜖∗)⁄ ≡ 𝐺̃ =  −𝜌̃ + 𝑃̃𝑣̃ +  𝑇̃ [(𝑣̃ − 1) ln(1 − 𝜌̃) +
1

𝑟
ln(𝜌̃ 𝜔⁄ )]      (3.2.1.4) 

                                               𝑇̃ ≡  𝑇 𝑇∗⁄    𝑇∗ ≡  𝜖∗ 𝑘⁄                                                     (3.2.1.5) 

                                                    𝑃̃ ≡  𝑃 𝑃∗⁄    𝑃∗ ≡  𝜖∗ 𝑣∗⁄                                              (3.2.1.6) 

                                                           𝑣̃ ≡ 𝜌∗ 𝜌⁄   ≡  1 𝜌̃⁄                                                         (3.2.1.7) 

                                              𝜔 = 𝛿𝑟 𝜎𝑒𝑟−1⁄                                                  (3.2.1.8) 

where 𝜔 is the number of configurations available to a r-mer in the close-packed “pure state”, 𝛿 is a 

parameter used to characterize the flexibility of pure component molecules, 𝜎 is a parameter utilized to 

characterize the symmetry of pure component molecules, and  𝑇̃, 𝑃̃, 𝑣̃, and 𝜌̃ are the reduced temperature, 

pressure, volume, and density.  

The equation of state for the system is estimated by equating the partial differentiation of reduced free 

energy with respect to the reduced volume at fixed reduced temperature and pressure to zero, as follows: 

                                                            𝜕𝐺̃ 𝜕𝑣̃⁄ |
𝑇̃,𝑃̃

= 0                                                  (3.2.1.9.A) 
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which yields to the following expression: 

 

                                      𝜌̃2 +  𝑃̃ + 𝑇̃ [ln(1 − 𝜌̃) +  (1 −
1

𝑟
) 𝜌̃] = 0                           (3.2.1.9.B) 

 

It should be mentioned that 𝜌̃ is a dependent variable because it is calculated at given (𝑇̃, 𝑃̃) , with regard 

to the minimization of the free energy, while  𝑃̃ and 𝑇̃ are independent variables.  

(Eq. 3.2.1.9.B) shows the complete thermodynamic description of the model fluid; all other 

thermodynamic properties can be deduced from the standard thermodynamic expressions, e.g., the 

thermal expansion coefficient, 𝛼, and isothermal compressibility, 𝛽 ,  as shown: 

 

                                                 𝛼 ≡
1

𝑉
 
𝜕𝑉

𝜕𝑇
|

𝑃
= −

𝜕 ln 𝜌̃

𝜕𝑇
|

𝑃
                                                  (3.2.1.10.A) 

                                                 𝑇𝛼 =  
1+𝑃̃𝑣̃2

𝑇̃𝑣̃ [1 (𝑣̃−1)⁄ +1 𝑟⁄ ]−2
                                                (3.2.1.10.B) 

                                                𝛽 ≡ −
1

𝑉
 
𝜕𝑉

𝜕𝑃
|

𝑇
= −

𝜕 ln 𝜌̃

𝜕𝑃
|

𝑇
                                              (3.2.1.11.A) 

                                               𝑃𝛽 =  
𝑃̃𝑣̃2

𝑇̃𝑣̃ [1 (𝑣̃−1)⁄ +1 𝑟⁄ ]−2
                                                  (3.2.1.11.B) 
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3.2.2. Mixed Lattice Fluid: 

[Sanchez and Lacombe] 28 have extended the lattice-fluid theory to mixture by using “combining 

rules”; these combining rules are essential in all statistical and mechanical theories in which they can be 

employed as preliminary characteristics that lead finally to investigate the VLE behaviour.   

Prior to proceeding, it is essential to understand the mechanism of this mixing rule considering how the 

characteristics of a mixture differ from a pure one.  

The mer volume in the lattice for a pure component varies from one to another, whereas in the case of 

mixture, it differs slightly in which it depends on the concentration that results from the average 

characteristic value of pure components, as shown: 

 

                                              𝑣∗ = 𝜙1
0 𝑣1

∗ + 𝜙2
0 𝑣2

∗                                                    (3.2.2.1) 

                                              𝜙1
0 =

𝜙1

𝜙1+𝜈𝜙2
= 1 − 𝜙2

0                                              (3.2.2.2) 

                                                       𝜈 ≡ 𝑣1
∗ 𝑣2

∗⁄                                                           (3.2.2.3) 

                             𝜙1 =
𝑚1 𝜌1

∗⁄

𝑚1 𝜌1
∗⁄ +𝑚2 𝜌2

∗⁄
= 1 − 𝜙2                                           (3.2.2.4) 

                                       𝑚2 = 1 − 𝑚1                                                         (3.2.2.5) 

 

Where 𝜙1
0
 is the close packed volume of component 1 in the mixture.  𝑚1 and 𝑚2 are the mass fractions 

of component 1 and 2, respectively. 

 

The number of sites that occupied by the molecules of type 𝑖 in the mixture, as follows: 

                                              𝑟𝑖 =  (𝑟𝑖
0 𝑣𝑖

∗) 𝑣∗⁄                                                           (3.2.2.6) 

 

The total number of sites that occupied by the molecules, as follows: 

                                      𝑟 ≡ 𝑥1𝑟1 +  𝑥2𝑟2                                                            (3.2.2.7) 

           𝑥1 = (𝑚1 𝑀𝑤1
⁄ ) (𝑚1 𝑀𝑤1

⁄ + 𝑚2 𝑀𝑤2
⁄ )⁄ = 1 − 𝑥2                               (3.2.2.8) 
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where 𝑥1 and 𝑥2 are the mole fractions of component 1 and 2, respectively. 

 

The total characteristic pressure is given by: 

 

                        𝑃∗ = 𝜙1𝑃1
∗ + 𝜙2𝑃2

∗ + 𝜙1𝜙2Δ𝑃∗                                           (3.2.2.9) 

                                  Δ𝑃∗ ≡  𝑃1
∗ + 𝑃2

∗ − 2𝑃12
∗                                                 (3.2.2.10) 

                               𝑃12
∗ = √𝑃1

∗𝑃2
∗ (1 − 𝑘12)                                                  (3.2.2.11) 

where 𝑘12 is an adjustable parameter. 

 

The interaction energy of the mixture between two sites in the lattice, as follows: 

 

           𝜖∗ = 𝑃∗𝑣∗ =  (𝜙1𝑃1
∗ + 𝜙2𝑃2

∗ − 𝜙1𝜙2∆𝑃∗)(𝜙1
0𝑣1

∗ + 𝜙2
0𝑣2

∗)                            (3.2.2.12) 

 

The total characteristic temperature is given by: 

 

                   𝑇∗ = 𝑇 [(𝜙1 𝑇̃1 + 𝜈 𝜙2 𝑇̃2⁄⁄ ) (𝜙1 + 𝜈𝜙2)⁄ − 𝜙1𝜙2𝑋]                             (3.2.2.13) 

 

where,  

                                         𝑋 ≡ (∆𝑃∗𝑣∗) (𝑁𝐴𝑘𝑇)⁄                                                         (3.2.2.14)  

 

The reduced temperature 𝑇̃ and pressure 𝑃̃ of the mixture are defined similarly as a pure lattice fluid in 

(3.2.1.5-6). 

 

The configurational Gibbs free energy G of a binary mixture is given by: 

                                                    𝐺 ≡ 𝑟𝑁𝜖∗𝐺̃                                                              (3.2.2.15) 

      𝐺̃ = −𝜌̃ + 𝑃̃𝑣̃ + 𝑇̃𝑣̃ [(1 − 𝜌̃) ln(1 − 𝜌̃) +
𝜌̃

𝑟
ln 𝜌̃] + 𝑇̃ [

𝜙1

𝑟1
ln 𝜙1 +

𝜙2

𝑟2
ln 𝜙2]       (3.2.2.16) 
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where 𝐺̃ is the reduced Gibbs free energy. 

 

The chemical potential of component 1 in the mixture can be obtained by taking the partial derivative of 

(Eq. 3.2.2.15) with respect to the number of molecules of a component 1 in the mixture at a certain 

temperature, pressure, and the number of molecules of a component 2 in the mixture, as follows: 

 

                                                            𝜇1 ≡
𝜕𝐺

𝜕𝑁1
|

𝑇,𝑃,𝑁2

                                                (3.2.2.17) 

𝜇1 = 𝑁𝐴𝑘𝑇[ln 𝜙1 + (1 − 𝑟1 𝑟2⁄ )𝜙2 + 𝑟1
0𝜌̃𝑋1𝜙2

2] + 𝑟1
0𝑘𝑇 {−𝜌̃ 𝑇̃1⁄ + 𝑃̃1𝑣̃ 𝑇̃1 + 𝑣̃⁄ [(1 −

                                                        𝜌̃) ln(1 − 𝜌̃) +
𝜌̃

𝑟1
0 ln 𝜌̃]}                                              (3.2.2.18) 

 

The expression of the chemical potential of component 2, 𝜇2 in the mixture can be calculated by 

interchanging the indices 1 by 2. 

The above chemical potential of either component 1 or 2 leads to the following conditions: 

• If the concentration of component 1 in the mixture equals to 1, then the chemical potential of 

component 1 turns to the chemical potential of component 1 in the pure state, as shown by: 

 

                                        𝜇1(𝜙1 = 1)  ≡ 𝜇1
0                                                    (3.2.2.19) 

• The Flory-Huggins chemical potentials can be recovered when the temperature is low or the 

pressure is high, then, the reduced densities can approach their maximum value of unity 

(as  𝜌̃ 𝑎𝑛𝑑 𝜌̃1 → 1): 

 

                 (𝜇1 − 𝜇1
0) (𝑁𝐴𝑘𝑇)  → ln 𝜙1⁄ + (1 − 𝑟1 𝑟2⁄ )𝜙2 + 𝑟1

0𝑋1𝜙2
2             (3.2.2.20) 

 

• ∆𝑃∗ or 𝑋1  parameter can characterize a binary mixture whereas all the remaining parameters are 

known from the pure components.  

It could be noted that it is convenient to characterize the interaction in terms of a dimensionless 

parameter 𝜁 which measures the deviation of 𝑃12
∗  from the geometric mean, as follows: 

                                                   𝜁 = 𝑃12
∗ (𝑃1

∗𝑃2
∗)1 2⁄⁄                                              (3.2.2.21) 



22 
 

 
 

 

 And (Eq. 3.2.2.10) becomes: 

                                           Δ𝑃∗ =  𝑃1
∗ + 𝑃2

∗ − 2𝜁(𝑃1
∗𝑃2

∗)1 2⁄                                         (3.2.2.22) 

The change of mixing volume is defined by: 

                                       ∆𝑉𝑚 𝑉0⁄ = 𝑣̃ (𝜙1𝑣̃1 + 𝜙2𝑣̃2)⁄ − 1                                   (3.2.2.23) 

Where 𝑉0 is the ideal volume of the mixture.  

 

The heat of mixing: 

    ∆𝐻𝑚 𝑅𝑇 = 𝑟{ 𝜌̃𝜙1𝜙2𝑋 + 𝑣∗[𝜙1𝑃1
∗(𝜌̃1 − 𝜌̃) + 𝜙2𝑃2

∗(𝜌̃2 − 𝜌̃)] 𝑅𝑇⁄ }⁄                       (3.2.2.24) 

The entropy of mixing ∆𝑆𝑚 is: 

∆𝑆𝑚 𝑅 ⁄ =  −𝑟 {
𝜙1

𝑟1
ln 𝜙1 +  

𝜙2

𝑟2
ln 𝜙2 + 𝑣̃ [(1 − 𝜌̃) ln(1 − 𝜌̃) +

𝜌̃

𝑟
ln 𝜌̃]} +  

𝑟

𝜙1+𝜈𝜙2
 {𝜙1𝑣̃1 [(1 −

𝜌̃1) ln(1 − 𝜌̃1) +
𝜌̃1

𝑟1
0 ln 𝜌̃1] + 𝜈𝜙2𝑣̃2 [(1 − 𝜌̃2) ln(1 − 𝜌̃2) +

𝜌̃2

𝑟2
0 ln 𝜌̃2]}                              (3.2.2.25) 

 

It can be mentioned that the first terms of the above equation are the Flory-Huggins combinatorial 

entropy terms. 

 

3.2.3. Alternative Mixing Rules for Sanchez and Lacombe LF model: 

3.2.3.1. Modified mixing rule which uses two fitting parameters 𝑘𝑖𝑗 and 𝑙𝑖𝑗: 

The mixing rule reported by McHugh et al. 29 for the segment volume 𝑣∗ of the mixture, as follows: 

                                     𝑣∗ = ∑  ∑ 𝜑𝑖 𝜑𝑗 𝑣𝑖𝑗
∗                                                                  (3.2.3.1.1) 

                                 𝑣𝑖𝑗
∗ =

1

2
 (𝑣𝑖

∗ + 𝑣𝑗
∗ )(1 − 𝑙𝑖𝑗)                                                        (3.2.3.1.2) 

                                            𝜙𝑖 =
𝑥𝑖𝑟𝑖

𝑟
                                                                           (3.2.3.1.3) 
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where 𝜙𝑖  is the segment fraction of component 𝑖 and 𝑙𝑖𝑗 is the interaction size parameter.  

It can be noticed that there is an adjustable parameter (𝑙𝑖𝑗) that has been added to (Eq. 3.2.3.1.1), 

compared to the total molecular close packed volume that was introduced by Sanchez and Lacombe in 

the original method, [see Eq. (3.2.2.1)].  

The segment energy, 𝜖∗ is defined by: 

                                         𝜖∗ =
∑  ∑ 𝜙𝑖 𝜙𝑗 𝜖𝑖𝑗

∗ 𝑣𝑖𝑗
∗

𝑣∗                                                                (3.2.3.1.4) 

                                      𝜖𝑖𝑗
∗ = √𝜖𝑖

∗𝜖𝑗
∗ (1 − 𝑘𝑖𝑗)                                                            (3.2.3.1.5) 

Where 𝑘𝑖𝑗 is the interaction energy parameter between component 𝑖 and 𝑗. 

The mixing rule proposed by McHugh et al. which divides the interaction parameters into the energy 

parameter 𝑘𝑖𝑗 and the size parameter 𝑙𝑖𝑗 was shown to be more effective than the original mixing rule. 

 

𝜇𝑖

𝑅𝑇
= (ln 𝜙𝑖 + 1 −

𝑟𝑖

𝑟
) + ln 𝜌̃ + 𝑟𝑖 [−

𝜌̃

𝑇̃
− (

1

𝜌̃
− 1) ln(1 − 𝜌̃) +

𝑃̃𝑣̃

𝑇̃
] +

𝑧

𝑟
[

𝑛𝑟

𝑣∗ (
𝜕𝑣∗

𝜕𝑛𝑖
)

𝑛𝑗,𝑇
] −

𝜌̃

𝑇̃
[

𝑛𝑟

𝜖∗ (
𝜕𝜖∗

𝜕𝑛𝑖
)

𝑛𝑗,𝑇
]       

                                                                                                                                       (3.2.3.1.6)     

                       𝑧 =
𝑃𝑣

𝑅𝑇
= 𝑟 [−

1

𝜌̃
ln(1 − 𝜌̃) − (1 −

1

𝑟
) −

𝜌̃

𝑇̃
]                                            (3.2.3.1.7) 

                      
𝑛𝑟

𝑣∗ (
𝜕𝑣∗

𝜕𝑛𝑖
)

𝑛𝑗,𝑇
=

1

𝑣∗ [2𝑟𝑖(−𝑣∗ + ∑ 𝜙𝑗𝑣𝑖𝑗
∗ )]                                                  (3.2.3.1.8) 

                  
𝑛𝑟

𝜖∗
(

𝜕𝜖∗

𝜕𝑛𝑖
)

𝑛𝑗,𝑇
=

1

𝜖∗𝑣∗
[2𝑟𝑖(−𝜖∗𝑣∗) + ∑ 𝜙𝑗 𝜖𝑖𝑗

∗ 𝑣𝑖𝑗
∗ ] − [

𝑛𝑟

𝑣∗
(

𝜕𝑣∗

𝜕𝑛𝑖
)

𝑛𝑗,𝑇
]                (3.2.3.1.9) 

 

3.2.3.2. Mixing rule proposed by West et al.30: 

 

                                       𝑣∗ = ∑  𝑛
𝑖=1 ∑ 𝜙𝑖

𝑛
𝑗=1 𝜙𝑗𝑣𝑖𝑗

∗                                                       (3.2.3.2.1) 

                                            𝑣𝑖𝑗
∗ = (

𝑣𝑖𝑖
∗1 3⁄

+𝑣𝑗𝑗
∗1 3⁄

2
)

3

                                                         (3.2.3.2.2) 

                                             𝜖∗ ∑  𝑛
𝑖=1 ∑ 𝜙𝑖

𝑛
𝑗=1 𝜙𝑗𝜖𝑖𝑗

∗                                                     (3.2.3.2.3) 
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                                  𝜖𝑖𝑗
∗ = (𝜖𝑖𝑖

∗ 𝜖𝑗𝑗
∗ )

1 2⁄
𝜁𝑖𝑗                                                                    (3.2.3.2.4) 

 

Where 𝜁𝑖𝑗 is a binary interaction parameter and 𝜙𝑖 is the site fraction of component 𝑖. 

 

𝜇𝑖
𝐿𝐹

𝑘𝑇
= ln 𝜙𝑖 + (1 +

𝑟𝑖

𝑟
) + 𝑟𝑖𝜌̃(∑ 𝜙𝑗

𝑛
𝑗=1 𝜒𝑗𝑗 − ∑  𝑛

𝑗=1 ∑ 𝜙𝑗
𝑛
𝑘=𝑗+1 𝜙𝑘𝜒𝑗𝑘) + 𝑟𝑖 [−

𝜌̃

𝑇̃𝑖
+

𝑃̃𝑖𝑣̃

𝑇̃
+

                                  (𝑣̃ − 1) ln(1 − 𝜌̃) +
1

𝑟𝑖
ln 𝜌̃]                                                            (3.2.3.2.5) 

where 𝜒𝑖𝑗 is the classic Flory-Huggins interaction term: 

                                             𝜒𝑖𝑗 =
(𝜖𝑖𝑖

∗ +𝜖𝑗𝑗
∗ −2𝜖𝑖𝑗

∗ )

𝑘𝑇
                                                            (3.2.3.2.6) 

                                               
1

𝑟
= ∑

𝜙𝑖

𝑟𝑖
 𝑛

𝑖=1                                                                     (3.2.3.2.7) 

3.2.3.3. Mixing rule proposed by [Sanchez and Panayiotou] 31: 

 

                                        𝜖𝑖𝑗
∗ =

1

2
(𝜖𝑖𝑖

∗ + 𝜖𝑗𝑗
∗ ) −

1

2
𝑅𝑇                                                      (3.2.3.3.1) 
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Chapter 4 

THERMODYNAMIC EQUATION OF STATE 

 

4. Panayiotou and Vera Equation of State [EoS]: 

4.1. Statistical Mechanics of the Lattice-Fluid Equation of State for a Pure Component: 

Decades ago, Panayiotou and Vera developed an equation of state 6,7.  Starting from the following: 

𝑃 = 𝑅𝑇 (
𝜕 𝑙𝑛 𝑄

𝜕𝑣
)

𝑇,𝑁1

                             (4.1.1) 

                                                     𝑣 =  (𝑁𝐻𝑣𝐻 + 𝑁1
 𝑟1𝑣𝐻)                                   (4.1.2) 

                                                            𝑣1
∗ =  𝑁1

 𝑟1𝑣𝐻                                            (4.1.3) 

𝑣  is the total volume of the lattice, 𝑁𝐻 is the number of holes in the lattice, 𝑣ℎ which corresponds to 

(9.75 × 10 -3 m3 kmol-1) that has been considered to be correspondent to a methylene group in 

poly(ethylene) 7, 𝑁1 is the number of molecules of a pure component 1, 𝑟1 is the number of lattice cells 

occupied by molecules of a pure component 1, and 𝑣1
∗ is the volume of cells in the lattice of a pure 

component 1 and it can be considered as the first adjustable parameter. 

The canonical partition function, 𝑄 is defined by: 

                                               

                                    𝑄 = (
𝛿1

𝜎1
)

𝑁1

𝑔𝑐𝑔𝑁𝑅  𝑒(
−𝐸

𝑅𝑇
)
                                        (4.1.4) 

 

Where 𝛿1and 𝜎1 are volume-independent parameters accounting for flexibility and symmetry of 

component 1 molecules, 𝑔𝑐 is the random combinatorial term,  𝑔𝑁𝑅 is the non-random combinatorial 

correction factor, and E is the lattice energy of the system.  

 

EoS can be derived by taking the partial derivative of Q with respect to 𝑣,  fixing T and 𝑁1 as shown in 

(Eq.4.1.1) along with the substitution of conventional reduced quantities: 

 

                           𝑃̃1 =  
𝑃 

𝑃1
∗ =  

2 𝑃 𝑣ℎ

𝑧 𝜖11
          𝑇̃1 =  

𝑇

𝑇1
∗ =

2 𝑅𝑇

𝑧 𝜖11
           𝑣̃1 =  

 𝑣 

 𝑣1
∗ 
                    (4.1.5) 

                                                            𝜖11 =  𝜖11ℎ + 𝑇𝜖11𝑠                                                 (4.1.5.A) 
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𝑧 is the coordination number; the number of the closest neighbours’ sites to the central site in the lattice. 

Panayiotou and Vera had assumed the coordination number equals to 10 since the base of the lattice can 

accommodate the chemical structure that leads to an accurate result, 𝜖11 is the molecular interaction 

energy between like molecules of a pure component 1, 𝜖11ℎ is the enthalpic interaction energy between 

molecules of component 1, and 𝜖11𝑠 is the entropic interaction energy between molecules of component 

1 and they can be considered as the second adjustable parameter and the third one, respectively. 

 

𝑃̃1, 𝑇̃1 and 𝑣̃1 are reduced quantities of pressure, temperature, and volume, respectively.   

Eventually, EOS (Random approximation) can be obtained, as follows: 

                                                
𝑃̃1 

𝑇̃1
= 𝑙𝑛 

𝑣̃1

𝑣̃1 −1
+  

𝑧

2
 𝑙𝑛 (

𝑣̃1 + 𝑞1 𝑟1−1⁄

𝑣̃1 

) −  
 𝜃1

2
 

 

𝑇̃1
                               (4.1.6) 

                                                           𝜃1 =
𝑞1

𝑟1(𝑣̃1−1)+𝑞1
                                                              (4.1.7) 

 

 𝜃1  denotes the molecular surface area fraction of component 1 including holes, and 𝑞1 is the 

molecular surface area of a component 1. 

                                                             𝑧𝑞1 = (𝑧 − 2)𝑟1 + 2                                                    (4.1.8) 

 

𝑧𝑞1 is the number of contact sites by component 1 molecules, (𝑧 − 2) are the interaction sites; two of 

these sites are taken up by bonded neighbours, and (+2) is added in (Eq. 4.1.8) because there is only one 

site at the end of the lattice.  

The chemical potential of a pure component 1 has a significant role in the phase equilibrium. It can be 

obtained from the canonical partition function, as follows: 

− 
𝜇1

(𝑃)

𝑅𝑇
=  (

𝜕 𝑙𝑛 𝑄

𝜕𝑁1
)

𝑇,𝑣
                                              (4.1.9) 

After several differentiations, ultimate of chemical potential of a pure component 1 form as follows: 

 

                           − 
𝜇1

(𝑃)

𝑅𝑇
=  𝑙𝑛

𝛿1

𝜎1
+ ln 𝑞1 + ln

(1− 𝜃1)𝑟1

𝜃1
 + 

𝜃1

𝑇̃1
  (𝑞1 +  𝑟1𝑣̃1𝜃1)                   (4.1.10) 

 

 𝜇1
(𝑃)

denotes the chemical potential of a pure component 1. 
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4.2. Statistical Mechanics of the Lattice-Fluid Equation of State for Mixtures: 

 

A good start to determine the EoS for a mixture 7 is given by: 

 

𝑃 = 𝑅𝑇 (
𝜕 𝑙𝑛 𝑄

𝜕𝑣
)

𝑇,𝑁𝑖

                                  (4.2.1) 

 

The expression for the canonical partition function of the mixture, 𝑄, is written in a similar way to the 

expression of the canonical partition function for the pure component with considering the product of 

multi-components as defined by: 

                                                   𝑄 = ∏
𝑖

(
𝛿𝑖

𝜎𝑖
)

𝑁𝑖

𝑔𝑐𝑔𝑁𝑅 𝑒(
−𝐸

𝑅𝑇
)
                                             (4.2.2) 

 

 

The expression for calculating the reduced variables remains the same as a pure component expression, 

                                                     𝑃̃ =  
𝑃   

𝑃∗ =  
2 𝑃 𝑣ℎ

𝑧  𝜖∗                                                       (4.2.3) 

                                                     𝑇̃ =  
𝑇

𝑇∗ =
2 𝑅 𝑇

𝑧 𝜖∗                                                          (4.2.4) 

                                                             𝑣̃ =  
 𝑣 

𝑣 
∗                                                             (4.2.5) 

Where 𝑃̃, 𝑇̃, 𝑣̃  are reduced of pressure, temperature, and volume of a mixture, respectively. 𝑃∗  and 𝑇∗ 

are characteristic of pressure and temperature. 𝜖∗ is the molecular interaction energy among molecules 

of a mixture. 𝑣 
∗ is the molecular reference volume of a mixture. 

The molecular interaction energy of a mixture, 𝜖∗, as follows: 

                                               𝜖∗ =  𝜃̅𝑖 𝜖𝑖𝑖 + 𝜃̅𝑗𝜖𝑗𝑗 − 𝜃̅𝑖   𝜃̅𝑗 𝛤̇𝑖𝑗 ∆𝜖                                     (4.2.6) 

                                  ∆𝜖 = 𝜖𝑖𝑖 + 𝜖𝑗𝑗 − 2𝜖𝑖𝑗                                             (4.2.7) 

                                                             𝜖𝑖𝑗 =  𝜖𝑖𝑗ℎ + 𝑇𝜖𝑖𝑗𝑠                                              (4.2.8) 

                                           𝜃̅𝑖 =  
𝑥𝑖   𝑞𝑖  

𝑞
                                                 (4.2.9)           

𝜖𝑖𝑖 is the molecular interaction energy between like molecules of type 𝑖, 𝛤̇𝑖𝑗 is non-randomness factor for 

molecules of type i around molecules of type j, ∆𝜖 is the difference of the molecular interaction energy 

between unlike molecules of type 𝑖 and 𝑗, 𝜖𝑖𝑗 is the molecular interaction energy of molecules between 
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unlike molecules of type  𝑖 and 𝑗, 𝜖𝑖𝑗ℎ is the enthalpic interaction energy between unlike molecules, 𝜖𝑖𝑗𝑠 

is the entropic interaction energy between unlike molecules of type  𝑖 and 𝑗. 𝜃̅𝑖  is the molecular surface 

area fraction of component 𝑖 subjected to the cells in the lattice, and 𝑥𝑖 is the mole fraction of component 

𝑖. 

The number of lattice cells occupied by molecules, 𝑟, as follows: 

 

                                                                       𝑟 =  ∑ 𝑥𝑖  𝑟𝑖                                                  (4.2.10) 

                                                                        𝑟𝑖 =  
𝑣𝑖

∗

𝑣ℎ
                                                        (4.2.11) 

Where 𝑟𝑖 is number of lattice cells occupied by one molecule of component 𝑖, 𝑣𝑖
∗ is the molecular 

reference volume of component 𝑖. 

 

The total molecular surface area parameter of a mixture, 𝑞,  as follows: 

                                                                𝑞 =  ∑ 𝑥𝑖  𝑞𝑖                                                         (4.2.12) 

                                                              𝑧𝑞𝑖 = (𝑧 − 2)𝑟𝑖 + 2                                                    (4.2.13) 

 

𝑞𝑖 represents the effective chain length of molecule 𝑖. 𝑧𝑞𝑖 is the number of contact sites by the molecule 

𝑖.  

The molecular surface area fraction of a mixture, 𝜃, as follows: 

                                                         𝜃 =  ∑ 𝑥𝑖  𝜃𝑖                                                                (4.2.14) 

                                                      𝜃𝑖 =
𝑞𝑖𝑁𝑖

𝑟𝑁(𝑣̃−1)+𝑞𝑁
                                                            (4.2.15) 

  𝜃𝑖  denotes the molecular surface area fraction of component 𝑖 including holes.                 

The EoS of random approximation for a mixture in terms of reduced variables is: 

                                                 
𝑃̃ 

𝑇̃ 
= 𝑙𝑛 

𝑣̃ 

𝑣̃ −1
+  

𝑧

2
 𝑙𝑛 (

𝑣̃ + 𝑞 𝑟−1⁄

𝑣̃ 
) −  

𝜃 
2

𝑇̃ 
                                 (4.2.16) 

 

The chemical potential of component 𝑖 in a binary mixture, 𝜇𝑖
(𝑀)

: 

 

                    − 
𝜇𝑖

(𝑀)

𝑅𝑇
=  𝑙𝑛𝜙𝑖 + 𝑙𝑛

𝑣̃𝑖

𝑣̃
+ 𝑞𝑖 𝑙𝑛 (

𝑣̃

𝑣̃−1
   

𝑣̃𝑖−1

𝑣̃𝑖
 ) + 2𝑞𝑖 (

 𝜃𝑖,𝑃−𝜃𝑖

𝑇̃𝑖
 −  

𝜃𝑗

𝑇̃𝑖𝑗
)                (4.2.17) 
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                             𝜙𝑖 =  
𝑥𝑖  𝑣𝑖

∗

∑ 𝑥𝑗 𝑣𝑗
∗

𝑗
=

𝑥𝑖 𝑟𝑖

∑ 𝑥𝑗 𝑟𝑗𝑗
                                                    (4.2.18) 

                                                        𝑇̃𝑖𝑗 =  
2 𝑅 𝑇

𝑧 𝜖𝑖𝑗
                                                              (4.2.19) 

 

where 𝜃𝑖,𝑃  is the molecular surface area fraction of the pure component 𝑖 including holes at the same 

temperature and pressure as the mixture, 𝑇̃𝑖𝑗 is the reduced temperature of a binary mixture, 𝑣̃𝑖  is the 

reduced volume of component 𝑖 in the mixture, and 𝜑𝑖 is the volume fraction of component 𝑖 in the 

mixture.     
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Chapter 5 

GROUP CONTRIBUTION METHOD 

 

5.1. Introduction to Group Contribution Methods [GCM]: 

      Industrial chemical process design requires a separation for mixtures, especially studying the 

behaviour of fluid phase equilibrium, and because of limited experimental data or empirical correlations, 

group contribution methods are introduced for the prediction of several thermodynamic properties. The 

basic idea moves from considering that while thousands of chemical compounds are of interest in 

chemical technology, the number of functional groups which compose them is much smaller. In addition, 

assuming that a physical property of a fluid is the sum of contributions formed of the molecule’s 

functional groups, the contribution constructed by one group is supposed to be independent of that 

constructed by another group in which the molecule contains several different groups such as a molecule 

made by alkane and alcohol. Interestingly, it assists to acquire a technique for correlating the properties 

of a very large number of fluids in the matter of a much smaller number of parameters which characterize 

the contributions of individual groups.  

 

5.2. Group Contribution Methods: 

5.2.1. UNIFAC model: 

UNIFAC model (UNIQUAC Functional-Group Activity Coefficients) is a result of combination 

of the solution-of-groups concept with a model for activity coefficients based on an extension of the 

quasi-chemical theory of liquid mixtures, namely Universal Quasi-Chemical (UNIQUAC) which holds 

two adjustable parameters that were derived from the extension of Guggenheim's quasi-chemical theory 

of liquid mixtures. UNIFAC method is used for calculating activity coefficients in the matter of 

parameters that are identified in the sizes and surface areas of individual functional groups, and energetic 

interactions between groups. Size and area constants for groups were evaluated from pure component 

and molecular structure data. Group- interactions constants were evaluated from phase equilibrium data 

for mixtures containing water, alcohol, ketones, amines, esters, ethers, aldehydes, chlorides, nitriles, 

paraffines, olefines, aromatic hydrocarbons, and other organic liquids. 
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UNIQUAC equation of mixture for the activity coefficient of (molecular) component 𝑖 is defined by:   

                                      ln 𝛾𝑖 =        ln 𝛾𝑖
𝑐       +     ln 𝛾𝑖

𝑅                                              (5.2.1.1) 

     combinatorial term        residual term 

 

Where 𝛾𝑖
𝑐 is the combinatorial term which results from the difference in molecular size and it can be 

evaluated by using the Flory-Huggins equation. 𝛾𝑖
𝑅 is the residual term which results from the molecular 

interactions and Wilson equation can be applied to its calculation. 

 

5.2.2. GC-Flory EoS: 

Holten-Andersen and co-workers 2 have represented a new group-contribution model for 

predicting phase equilibria in polymer solutions. The model is based on an equation of state that is 

extended from Flory. The equation contains a free volume term, which leads to the correct ideal gas 

limit. The model can correlate and predict with good accuracy both pure-component PVT properties and 

vapor-liquid equilibria of mixtures containing polymers. The model by Flory et al. has been modified 

on three points, the purpose of which is to render the model applicable for associating mixtures and to 

enable the introduction of the group-contribution approach. 

Firstly, the free volume term of Flory in (Eq. 3.1.2.5) has been changed, as follows: 

 

                                   𝑍𝐹𝑉 =   [𝑛𝑉∗(𝑣̃1 3⁄ − 1)
3

(
𝑣̃1 3⁄ −1

𝑣̃1 3⁄ )
3𝐶

]

𝑛

                                            (5.2.2.1)  

 

The above expression is unlike the Flory expression as it leads to the correct ideal gas limit, i.e., 𝑍𝐹𝑉 →

𝑉 as 𝑉 → ∞ .    

The attractive term has been changed on two points: The first alteration considers the attractive potential 

of two molecules to be the sum of two different contributions: (𝑖) an energy of random orientations of 

two molecules and (𝑖𝑖) an energy of favorable orientations or favorable packing configurations of the 

two molecules. This difference has been found advantageous in expressing several phenomena met in 

polymer solution thermodynamics.  
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This separation of the attractive energy leads to the following form of the attractive part of the partition 

function: 

                        𝑍𝐴𝑇𝑇 = 𝑒 [−
𝑧𝑛𝑞𝜖0
2𝑅𝑇𝑣̃

]  [(1 − 𝜔 + 𝜔 𝑒𝑥𝑝(−𝜖𝜔𝑏 𝑅𝑇𝑣̃⁄ ))]
2𝑛𝑞 2𝑏⁄

                       (5.2.2.2)  

Random orientation      +    favorable orientations 

In the above equation, 𝜖0 is the potential energy per sement-surface area of random packing 

configurations. 𝜖𝜔 is the extra energy contribution from packing into more favorable configurations. 𝜔 

is a measure of the relative number of favorable configurations. b is a measure of the number of segment 

units engaged in the favored orientations.   

The second alteration of the attractive term concerns its extension to mixtures, where a non-random 

UNIQUAC-like expression has been adopted instead of the random mixing expression of the Flory 

model: 

                  𝑍𝑚𝑖𝑥
𝐴𝑇𝑇 = 𝑒𝑥𝑝 {− ∑

1

2𝑖 𝑧𝑞𝑖𝑛𝑖 (𝑎𝑖𝑖 − 𝑅𝑇 ln ∑ 𝜃𝑗𝑗 𝑒𝑥𝑝(−∆𝑎𝑗𝑖 𝑅𝑇⁄ )) 𝑅𝑇⁄ }             (5.2.2.3) 

                                                            ∆𝑎𝑗𝑖 = (𝑎𝑗𝑖 − 𝑎𝑖𝑖)𝑠                                                        (5.2.2.4) 

                          𝑎𝑗𝑖 = 𝜖0,𝑗𝑖 𝑣̃⁄ − (𝑅𝑇 𝑏⁄ ) ln{1 + 𝜔(𝑒𝑥𝑝(−𝑏𝜖𝜔𝑗𝑖 𝑅𝑇𝑣̃⁄ ) − 1)}                  (5.2.2.5) 

 

Where 𝑎𝑗𝑖 is the Helmholtz energy of interaction. s is the number of segment units. 

It can be mentioned that there is only one binary parameter that is 𝑎𝑗𝑖, which is equal to 𝑎𝑖𝑗, and it is 

used for system without hydron bonding. Thus, for hydrogen-bonding systems, it has been noticed that 

one parameter is not sufficient to describe the systems. Therefore, binary vapor-liquid equilibria data 

has been correlated by introducing an extra binary entropic interaction parameter, ∆𝑆𝑗𝑖
ℎ𝑏, in the attractive 

or residual term:  

 

                                                        ∆𝑎𝑗𝑖 = (𝑎𝑗𝑖 − 𝑎𝑖𝑖 − 𝑇∆𝑆𝑗𝑖
ℎ𝑏)𝑠                                      (5.2.2.6) 

 

This additional entropy parameter for hydrogen-bonding components is assumed independent of density, 

and therefore, it does not affect the equation of state. 
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From the expressions given above, all necessary thermodynamic quantities may be derived. The main 

equations are given below.  

The Gibbs mixing function is formed of three terms: 𝑖) combinatorial, 𝑖𝑖) free volume, 𝑖𝑖𝑖) attractive, as 

shown in the following:  

∆𝐺𝑀𝑖𝑥𝑖𝑛𝑔 𝑅𝑇⁄ ≈ ∆𝐴 𝑅𝑇⁄ = ∑ 𝑛𝑖𝑖 ln 𝜑𝑖 + ∑ 𝑛𝑖𝑖 [3(1 + 𝑐𝑖) ln
𝑣̃𝑖

1
3⁄ −1

𝑣̃
1

3⁄ −1
− 𝐶𝑖 ln

𝑣̃𝑖

𝑣̃
] +

                ∑
1

2𝑖 𝑧(𝑞𝑖𝑛𝑖 𝑅𝑇⁄ )[𝑎𝑖𝑖(𝑣̃) − 𝑎𝑖𝑖(𝑣̃𝑖) − 𝑅𝑇 ln ∑ 𝜃𝑗𝑗 exp(−∆𝑎𝑗𝑖 𝑅𝑇⁄ )]                       (5.2.2.7) 

                   Combinatorial       +      free volume +      attractive 

 

Where 𝑣̃𝑖 is the pure component reduced volume and 𝑣̃ the reduced volume of the mixture. 

The chemical potential is given in the following: 

∆𝜇𝑖 𝑅𝑇⁄ = ln 𝜑𝑖 + 1 −
𝜑𝑖

𝑥𝑖
+ 3(1 + 𝐶𝑖) ln

𝑣̃𝑖
1

3⁄ −1

𝑣̃
1

3⁄ −1
− 𝐶𝑖 ln

𝑣̃𝑖

𝑣̃
+  

1

2
𝑧𝑞𝑖 [

1

𝑅𝑇
(𝑎𝑖𝑖(𝑣̃) − 𝑎𝑖𝑖(𝑣̃𝑖)) + 1 −

    ln ∑ 𝜃𝑗𝑗 exp(−∆𝑎𝑗𝑖 𝑅𝑇⁄ ) − ∑ (𝜃𝑗 exp (−∆𝑎𝑖𝑗 𝑅𝑇⁄ ) ∑ 𝜃𝑘𝑘⁄ exp(−∆𝑎𝑘𝑗 𝑅𝑇⁄ ))𝑗 ]             (5.2.2.8) 

 

The pressure is given by: 

                                                          𝑃 =
𝑛𝑅𝑇

𝑉
(

𝑣̃
1

3⁄ +𝐶

𝑣̃
1

3⁄ −1
) + 

𝐸

𝑛𝑉∗𝑣̃
                                            (5.2.2.9) 

 

For a mixture, [Flory and co-workers] 26 proposed a simple linear mixing rule for the hard-core volume 

and C parameter, as follows: 

                                                                   𝐶 = ∑ 𝑛𝑖𝐶𝑖 𝑛⁄𝑖                                                     (5.2.2.10) 

                                                                 𝑉∗ = ∑ 𝑛𝑖𝑉𝑖
∗ 𝑛⁄𝑖                                                    (5.2.2.11) 

 

and energy E is given by,  

                                           𝐸 = ∑
1

2𝑖 𝑧𝑞𝑖𝑛𝑖 {𝜖𝑖𝑖 +
∑ 𝜃𝑗 exp(−∆𝑎𝑗𝑖 𝑅𝑇⁄ )∆𝜖𝑗𝑖𝑗

∑ 𝜃𝑘 exp(−∆𝑎𝑘𝑖 𝑅𝑇⁄ )𝑘
}                               (5.2.2.12) 



34 
 

 
 

                                            𝜖𝑗𝑖 = 𝜖0,𝑗𝑖 𝑣̃⁄ +
𝜔 exp(−𝑏𝜖𝜔,𝑗𝑖 𝑅𝑇𝑣̃⁄ )

1+𝜔(exp(−𝑏𝜖𝜔,𝑗𝑖 𝑅𝑇𝑣̃⁄ )−1)

𝜖𝜔,𝑗𝑖

𝑣̃
                              (5.2.2.13) 

                                                              ∆𝜖𝑗𝑖 = 𝜖𝑗𝑖 − 𝜖𝑖𝑖                                                        (5.2.2.14) 

There are only five molecular parameters for expressing this model which are 𝑉𝑖
∗, 𝑞𝑖 ,𝐶𝑖 , 𝜖0,𝑗𝑖 , 𝜖𝜔,𝑗𝑖 and 

only two parameters for hydrogen bonding systems which are ∆𝑆𝑖𝑗
ℎ𝑏, ∆𝑆𝑗𝑖

ℎ𝑏. 

The following group-contribution expressions are adopted for the calculation of these parameters: 

                                                        𝑉𝑖
∗ = ∑ 21.238𝑚 𝑅𝑚                                                     (5.2.2.15) 

                                                             𝑞𝑖 = ∑ 𝑄𝑚𝑚                                                               (5.2.2.16) 

                                      𝐶𝑖 = −0.640 + ∑ 𝐶𝑚
𝑀𝐶𝑅𝑚

𝑀𝐶 + ∑ 𝐶𝑚
𝐵𝐺𝑅𝑚

𝐵𝐺
𝑚𝑚                                   (5.2.2.17) 

                                                𝜖0,𝑗𝑖 = ∑ 𝜃𝑚
(𝑖)

𝑚 ∑ 𝜃𝑛
(𝑗)

𝑛 𝜖𝑛𝑚                                                   (5.2.2.18) 

                                                  𝜖𝜔,𝑗𝑖 = −[𝜖𝜔,𝑗𝑗𝜖𝜔,𝑖𝑖]
1 2⁄

                                                      (5.2.2.19) 

                                          ∆𝑆𝑗𝑖
ℎ𝑏 = ∑ 𝜃𝑚

(𝑖)
𝑚 ∑ (𝜃𝑛

(𝑗)
− 𝜃𝑛

(𝑖)
)𝑛 ∆𝑆𝑛𝑚

ℎ𝑏                                       (5.2.2.20)  

where 𝑅𝑚 and 𝑄𝑚 are nonadjustable parameters that retrieved from UNIFAC. 𝐶𝑚
𝑀𝐶  is a degree of 

freedom group parameter for groups located in the main chain. The quantity 𝐶𝑚
𝐵𝐺  is the degree of freedom 

parameter for branch point groups (e.g., the CH group in propane, 2-methyl). 𝐶𝑚
𝐵𝐺  can be calculated 

through a correlation related to 𝐶𝑚
𝑀𝐶 . 𝑅𝑚

𝑀𝐶 and 𝑅𝑚
𝐵𝐺 are group volume parameters that obtained from 

UNIFAC. 𝜖𝜔,𝑗𝑗 is a pure-component molecular parameter. 𝜖𝑛𝑚 and ∆𝑆𝑛𝑚
ℎ𝑏  are a group-interaction 

parameters. 𝐶𝑚
𝑀𝐶 , 𝜖𝑚𝑛 are adjustable group parameters for hydrogen bonding components. ∆𝑆𝑚𝑛

ℎ𝑏  is 

adjustable parameter and determined experimentally. 𝑚 and 𝑛 refer to groups 𝑚 and 𝑛 indexes. 𝑖 and 𝑗 

refer to 𝑖 and 𝑗 molecules.  

 

 

 



35 
 

 
 

    5.2.3. Developed GC-Flory EoS: 

Thirty-two years ago, [Chen and co-workers] 3 presented an equation of state by extending a 

group-contribution of the Flory equation. Their motivation was to develop an equation that is similar to 

Flory but simpler than the Holten-Andersen model. They introduced a new correlation for the degree of 

freedom parameter, C. The energy interaction parameters are based on group-group interactions, and the 

C parameters are calculated by using the group-contribution approach. They indicated that the new 

equation of state can predict vapor-liquid equilibria for a large variety of mixtures of polymers and 

solvents over a wide range of temperatures with a good accuracy.  

Holten-Andersen model has been changed on the following:  

In the Holten-Andersen EoS, the attractive potential between two molecules was expressed as the sum 

of energy of random orientations, 𝜖0, and of favourable orientations, 𝜖𝜔. This distinction is meant to be 

advantageous in describing a number of phenomena met in polymer solutions, as well as for pure 

compounds.  This type of treatment appears to be physically reasonable, but it causes the model to be 

complex to use.  

Chen and co-workers have developed an attractive energy partition function that is similar to the 

Flory expression as shown in (Eq. 3.1.2.6), as follows: 

                                                            𝑍𝐴𝑡𝑡 = 𝑒[−
𝑧𝑛𝑞𝜖0
2𝑅𝑇𝑣̃

]
                                                       (5.2.3.1) 

 

The energy has been changed compared to Holten-Andersen and others work 2, as follows: 

                        𝐸 =  ∑
1

2𝑖 𝑧𝑞𝑖𝑛𝑖 {𝜖𝑖𝑖 +
∑ 𝜃𝑗 exp(−(∆𝜖𝑗𝑖−𝑇∆𝑆𝑗𝑖

ℎ𝑏) 𝑅𝑇⁄ )∆𝜖𝑗𝑖𝑗

∑ 𝜃𝑗 exp(−(∆𝜖𝑘𝑖−𝑇∆𝑆𝑘𝑖
ℎ𝑏) 𝑅𝑇⁄ )𝑗

}                                 (5.2.3.2) 

 

A new correlation for the C parameter of component 𝑖 has been introduced instead of the simple, linear 

temperature dependency of the C parameter in the Holten-Andersen model as shown in (Eq.5.2.2.17), 

as follows: 

                           𝐶𝑖 = ∑ 𝜈𝑛,𝑖𝑛 [𝐶𝑇0,𝑛 +  𝐶𝑇,𝑛 (
1

𝑇
−

1

𝑇0
)] + ∑

𝑅𝑛

∑ 𝑅𝑚𝑚
𝑛 𝐶𝑛

0                               (5.2.3.3) 

where 𝜈𝑛,𝑖 is the number of group n in molecule 𝑖, the reference temperature 𝑇0 is taken as 298.15K, 𝑅𝑛 

is the normalized van der Waals volume for group 𝑛 given as in the UNIFAC model [Fredenslund et al., 
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1977] 32, and 𝐶𝑇0,𝑛 , 𝐶𝑇,𝑛 and 𝐶𝑛
0  are the temperature-independent term, the temperature coefficient, 

and a constant term for group n taking into account special effects. 

The temperature dependence of the C parameter is rigorously introduced into the Helmholtz free energy. 

Thus, a new energy expression is obtained, replacing (Eq.5.2.3.2): 

  𝐸 = ∑
1

2𝑖 𝑧𝑞𝑖𝑛𝑖 {𝜖𝑖𝑖 +
∑ 𝜃𝑗 exp(−(∆𝜖𝑗𝑖−𝑇∆𝑆𝑗𝑖

ℎ𝑏) 𝑅𝑇⁄ )∆𝜖𝑗𝑖𝑗

∑ 𝜃𝑘 exp(−(∆𝜖𝑘𝑖−𝑇∆𝑆𝑘𝑖
ℎ𝑏) 𝑅𝑇⁄ )𝑘

} − 3𝑅 ln (
𝑣̃1 3⁄ −1

𝑣̃1 3⁄ ) ∑ 𝑛𝑖𝑖 [
𝑑𝐶𝑖

𝑑(1 𝑇⁄ )
]      (5.2.3.4) 

In summary, it can be said that Chen and co-workers have obtained a predictive model for correlating 

the data of pure polymers and solvents with good accuracy and even better than those of the Holten-

Andersen. Their model can be applied over a wider range of temperature compared to Holten-Andersen 

model.  

5.2.4. GC-Sanchez and Lacombe EoS: 

[Constantinou and Gani, 1994] 33 developed a group contribution method that can evaluate the 

lattice-fluid (LF) scaling constants of the polymers and it has been shown to be very successful in 

estimating various thermophysical properties of simple fluids. This method can be applied in two steps. 

First step, the fundamental step has contributions from first-order functional groups such as those 

currently applied for the estimation of mixtures properties [Fredenslund et al., 1977] 32. Second step has 

a set of second-order groups which have the first-order groups as building blocks. The identity of the 

second-order groups is dependent on the concept of conjugation operators. Based on this method, the 

molecular structure of a compound is as a number of conjugate forms and the property of a compound 

is a linear combination of these conjugate form contributions. Each conjugate form is an idealized 

structure with integer-order localized bonds and integer charges on the atoms. The purely covalent 

conjugate form is the dominant conjugate form, and the ionic forms are the recessive conjugates, which 

can be obtained from the dominant form by a rearrangement of electron pairs. A conjugation operator 

describes a particular pattern of electron rearrangement and, when applied to a dominant conjugate, 

yields an entire class of recessive conjugates. The property of a compound is evaluated by calculating 

and combining the properties of its conjugate forms through conjugation operators. The group 

identification focuses on the operators which correspond to the significant conjugate forms, that is, the 

operators with significantly high contributions than the other. The structure of a second-order group 

ought to the distinct sub-chain of at least one significant conjugation operator; i.e., the CH3COCH2 

second-order group incorporates the O = C − C , the O = C − C − H , and the C − C − C − H operators. 

The structure of a second-order group has to adjacent first-order groups as building blocks, and it should 



37 
 

 
 

be as small and simple as possible. Certainly, the performance of second-order groups (as with first-

order groups) is independent of the molecules in which the groups occur. 

Constantinou and Gani’ method for the estimation of a property X of a compound is as follows. Let 𝐶𝑖 

be the contribution of the first-order group of type 𝑖, which occurs Ni times, and 𝐷𝑗  be the contribution 

of the second-order group of type 𝑗, which occurs 𝑀𝑗 times in the compound. By selecting a simple 

function 𝑓(𝑋) of the property X, as follows:  

                                                𝑓(𝑋) = ∑ 𝑁𝑖𝑖 𝐶𝑖 + 𝑊 ∑ 𝑀𝑗𝑗 𝐷𝑗                                             (5.2.4.1) 

The constant W is equal to 1 when there are second-order groups contributing to the property and equal 

to 0 when only first-order groups are contributing. The selection of the function 𝑓(𝑋) is based on some 

principles as well. It has to achieve additivity in the contributions 𝐶𝑖 and 𝐷𝑗  and to exhibit the best 

possible fit of the experimental data. Furthermore, it should be able to provide sufficient extrapolating 

behaviour and, therefore, a wide range of applicability. The determination of the (adjustable) parameters 

𝐶𝑖 and 𝐷𝑗  of the model is categorized into a two-step regression analysis. In the first step, W is set equal 

to 0 and the regression is carried out in order to determine the contributions 𝐶𝑖 of the first-order groups. 

In the second step, W is set equal to 1 and the contributions 𝐷𝑗  of the second-order groups are estimated 

through regression. Thus, the contribution of the first-order groups is independent of that of the second-

order groups and the contribution of the second-order groups serves as a correction to the first-order 

approximation. 
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5.3.  Calculation of the Molecular Parameters for Panayiotou and Vera EoS through 

Group Contributions for Pure Component: 

Group Contribution Method [GCM] can be employed to study a particular thermodynamic 

property based on the chemical structure. Moreover, it depends mainly on molecular parameters. The 

molecular parameters contribute to solving EoS.  

High 14   developed the molecular parameters, 𝜖11ℎ , 𝜖11𝑠, and 𝑣1
∗  of Panayiotou and Vera. 

However, instead of adjusting three parameters, High has adjusted four parameters: 𝜖11,300 𝐾
 , 𝜖11,400 𝐾

  , 

𝑣1,300 𝐾
∗  , and 𝑣1,400 𝐾

∗  by using a linear expression in the range of 300 K to 400 K.  

Furthermore, High has expanded 𝑣1
∗ by adding the temperature used a group contribution 

expression for calculating all groups of component 1 at 300K and 400K. Whereas Panayiotou and Vera 

assumed 𝑣1
∗ as independent parameter. 𝑣1

∗ is obtained by taking the interpolation between calculated 

values, 𝑣1,300 
∗ and 𝑣1,400 𝐾

∗ . The value of  𝑣1
∗ is modified by adding a linear expression which is used for 

estimating the value of 𝑣1
∗ at the temperature of interest. 

The molecular interaction energy between molecules of component 1,𝜖11
   is calculated at the temperature 

of interest as follows: 

                        𝜖11
 =  𝜖11,300 K 

 +  
(𝜖11,400 𝐾

 − 𝜖11,300 𝐾
 )

100
 (𝑇 − 300)          [Linear]              (5.3.1) 

 

𝜖11,300 
 , 𝜖11,400 

  are the interaction energy between molecules at 300K and 400K, respectively. 

 

The group contribution expression for calculating the interaction energy between molecules at 300K and 

400K, as follows: 

 

                                      𝜖11,𝑇 = ∑  𝑘 ∑  𝑚 Θ𝑘
(1)

Θ𝑚
(1)

(𝑒𝑘𝑘,𝑇 𝑒𝑚𝑚,𝑇)
1

2⁄
                                 (5.3.2) 

 

∑  𝑘 ∑  𝑚  are the summations of all groups of a certain compound and presence. 

𝑒𝑘𝑘,𝑇  is an interaction energy constant of group k at 300K and 400K. 
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The surface area fraction of group k in the pure component 1 at group k is defined by:          

 

 

                                                           Θ𝑘
(1)

=  
𝑛𝑘

(1) 
𝒬𝑘

∑  𝑝 𝑛𝑝
(1) 

𝒬𝑝

                                                     (5.3.3)          

 

𝑛𝑘
(1) 

 denotes the number of group k in component 1, Θ𝑘
(1)

 is the surface area fraction of group k in 

component 1, 𝒬𝑘 is the dimensionless surface area parameter of group k as utilized in the UNIFAC 

method 32. 

The molecular reference volume of component 1, 𝑣1
∗ is estimated at the temperature of interest from the 

following: 

                             𝑣1
∗ =  𝑣1,300 K 

∗ +  
(𝑣1,400 𝐾

∗ − 𝑣1,300 𝐾
∗ )

100
  (𝑇 − 300)     [Linear]                  (5.3.4) 

                                                    𝑣1,T
∗ = 𝑎𝑇 +  ∑ 𝑛𝑘

(1) 
𝑘 𝑅𝑘,T                                             (5.3.5) 

                                      

𝑣1,300 𝐾
∗ , 𝑣1,400 𝐾

∗  are the molecular reference volume of component 1 at 300K and 400K, respectively.  

 

𝑎𝑇 is universal constant which is added to maintain the calculation. It can be noted that High had chosen 

0.021231 for 𝑎300  and 0.022373 for 𝑎400.   

 

𝑅𝑘,𝑇 is the molecular reference volume constant of group k at 300K and 400K. 

 

[Lee and Danner] 5 have developed (Eq.5.3.4) by eliminating the universal constant, 𝑎𝑇  from 

(Eq.5.3.5) because it does not make a significant change in the result. Additionally, (Eq.5.3.4) is no 

longer linear.  

The molecular reference volume of a pure component 𝑖, 𝑣𝑖   
∗ as follows: 

                                                     𝑣𝑖   
∗ = Σ

𝑘
𝑛𝑘

(𝑖) 
𝑅𝑘                                                            (5.3.6) 

The molecular group reference volume of k, 𝑅𝑘 has been replaced of being parameter in (Eq.5.3.5) to a 

variable in (Eq.5.3.7) as follows: 

            𝑅𝑘 = 
1

103 [𝑅0,𝑘  + 𝑅1,𝑘 (
𝑇

𝑇0
) + 𝑅2,𝑘 (

𝑇

𝑇0
)

2

 ]                   [Quadratic]          (5.3.7) 
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where 𝑇0 is arbitrarily set to 273.15 K.  

 

𝑅0,𝑘,𝑅1,𝑘 ,𝑅2,𝑘 are the molecular reference volume constants of group k. 

 

The molecular interaction energy between molecules of component 𝑖, given by: 

                                          𝜖𝑖𝑖 = ∑  𝑘 ∑  𝑚 Θ𝑘
(i)

Θ𝑚
(𝑖)(𝑒𝑘𝑘 𝑒𝑚𝑚)

1
2⁄                                        (5.3.8) 

 

Lee and Danner 5 have modified, 𝑒𝑘𝑘,𝑇  from constant to variable, [see Eq.5.3.2 & Eq. 5.3.9], as follows: 

                               𝑒𝑘𝑘 =𝑒0,𝑘 + 𝑒1,𝑘 (
𝑇

𝑇0
) + 𝑒2,𝑘 (

𝑇

𝑇0
)

2

                      [Quadratic]        (5.3.9) 

𝑒0,𝑘,𝑒1,𝑘 ,𝑒2,𝑘 are the molecular interaction energy constants of group k. 

Table 5.1 and 5.2 subgroups were retrieved from the paper of Lee and Danner 5 and the handbook of 

Danner and High 15 for the purpose of using them at present work, respectively. 

𝑅0,𝑘,𝑅1,𝑘 ,𝑅2,𝑘   in [Eq.5.3.7], and 𝑅𝑘,300𝐾  , 𝑅𝑘,400𝐾  in [Eq.5.3.4] are estimated by the best fitting to the 

liquid density of the Daubert and Danner experimental data 34.  

 𝑒0,𝑘,𝑒1,𝑘 ,𝑒2,𝑘   in [Eq.5.3.9] and 𝑒𝑘,300𝐾  , 𝑒𝑘,400𝐾   in [Eq.5.3.1] are estimated by the best fitting to the 

vapor pressure of the Daubert and Danner experimental data 34. 
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TABLE 5.1 

 Group Interaction Energy and Reference Volume Parameters [Linear] 

 

 

TABLE 5.2 

Group Interaction Energy and Reference Volume Parameters [Quadratic] 

Main 

group 
subgroup e0 e1 e2 R0 R1 R2 Qk 

CH2 

CH3 642.019 10.186 -4.817 25.979 -0.388 0.814 0.848 

CH2 919.390 -67.757 78.384 14.089 2.039 -0.963 0.540 

C C 1480.016 1125.680 1967.093 -11.793 7.681 -5.795 0.150 

ACH ACH 1132.433 -209.906 78.217 12.189 1.834 -0.389 0.400 

ACCH2 

ACCH3 959.652 -11.693 33.812 26.370 3.136 -1.092 0.968 

ACCH 2134.993 -232.701 560.421 2.933 7.462 -4.174 0.348 

COO COO 2182.434 -782.011 226.335 14.091 10.712 -3.344 0.880 

OH OH 9229.525 -7980.168 2105.795 4.862 14.325 -3.989 0.584 

CO2 CO2 570.152 149.875 -49.995 8.808 33.2832 -9.353 1.112 

 

 

 

Group ekk,300 ekk,400 Rk,300 Rk,400 Qk 

CH3 640.87 640.79 0.01596 0.01628 0.848 

CH2 943.33 987.68 0.01522 0.01518 0.540 

C 5378.38 7731.24 0.00854 0.00762 0.150 

ACH 975.38 971.62 0.01054 0.01035 0.400 

AC 5452.73 6771.48 0.00623 0.00680 0.120 

AC-CH3 994.41 1022.68 0.02465 0.02456 0.968 

AC-CH 2780.93 3281.53 0.02733 0.02643 0.348 

-COO- 1341.67 1308.80 0.02236 0.02327 0.880 

-OH 1867.92 1466.87 0.00685 0.00752 1.200 

-O- 868.47 679.56 0.00670 0.00606 0.240 
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5.4.  Calculation of the Molecular Parameters through Group Contributions for Mixtures: 

[High and Danner] 8 has used a geometric mixing rule for calculating the interaction energy 

between unlike molecules, 𝜖𝑖𝑗  , as follows: 

                                                          𝜖𝑖𝑗 = (𝜖𝑖𝑖  𝜖𝑗𝑗)
1

2⁄
                                               (5.4.1) 

                                                                                                 𝛿𝑖𝑗=0                                  [MR0]                   (5.4.2) 

where 𝜖𝑖𝑖   is the molecular interaction energy between like molecules of type 𝑖. 

Lee and Danner 5 have developed a binary mixing rule, as follows:  

                                                            𝜖𝑖𝑗 = (𝜖𝑖𝑖  𝜖𝑗𝑗)
1

2⁄
  (1- 𝛿𝑖𝑗)                                       (5.4.3) 

 

                                                                𝛿𝑖𝑗 = ∑  𝑚 ∑  𝑛 Θ𝑚
(𝑀)

Θ𝑛
(𝑀)

𝛼𝑚𝑛           [MR1]                     (5.4.4) 

Where αmn is a binary interaction parameter between m group and n.  

                                                  Θ𝑘
(𝑀)

=  
∑  𝑖 𝑛𝑘

(𝑖) 
𝒬𝑘

∑  ∑  𝑖𝑝 𝑛𝑝
(𝑖) 

𝒬𝑝

                                                   (5.4.5) 

where 𝛩𝑘
(𝑀)

 is the surface area fraction of all the groups present in the mixture.   

 

[Hamedi and co-workers] 10 have proposed an alternative mixing rule that can handle more than one 

mixture instead of a binary mixture [see Eq.5.4.4], an example is a triple-mixture, as follows: 

 

                                                          𝛿𝑖𝑗 = ∑  𝑚 ∑  𝑛 Θ𝑚
(𝑖)

Θ𝑛
(𝑗)

𝛼𝑚𝑛                     [MR2]                  (5.4.6) 

                                                      Θ𝑘
(𝑖)

=  
𝑛𝑘

(𝑖) 
𝒬𝑘

∑  𝑝 𝑛𝑝
(𝑖) 

𝒬𝑝

                                                     (5.4.7) 

 

where Θ𝑘
(𝑖)

 is the surface area fraction of group k in component 𝑖. 

 

The molecular reference volume of a mixture, 𝑣∗ as follows: 

 

                                                            𝑣∗ = ∑ 𝑥𝑖  𝑣𝑖
∗                                                                (5.4.8)  

Where 𝑥𝑖 is the mole fraction of component 𝑖. 
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Table 5.3 illustrates the parameters of group interaction. The binary interaction parameter was predicted 

independently of temperature by the best fitting of bubble point and dew point for the temperature and 

pressure, and then compared to experimental data of DECHEMA 35-40. 

 

 

Table 5.3 

Group Binary Interaction Parameters (𝜶𝒎𝒏) [Quadratic] 

 

 

 

 

Lee and Danner have mentioned that there was not adequate binary VLE data available to calculate 

values for all the subgroups. Thus, as in the UNIFAC method, values were obtained only for the main 

groups as defined in Table 5.2. The group binary interaction parameters, 𝛼𝑚𝑛 , are given in Table 5.3 

The group binary interaction parameters between like groups, 𝛼𝑚𝑚, are set to zero and 𝛼𝑚𝑛 is equal to 

𝛼𝑛𝑚. 

 

 

 

 

m∖n CH2 C ACH ACCH2 COO OH CO2 [MR1] CO2 [MR2] 

CH2 0.0000 0.2033 0.0363 -0.0064 0.0211 0.3994 0.1262 0.2994 

C  0.0000 0.0202 -0.3946 0.0000 1.2601 0.0000 0.0000 

ACH   0.0000 0.0116 -0.1408 0.1031 0.1130 0.2483 

ACCH2    0.0000 0.0415 0.3770 0.0027 0.0278 

COO     0.0000 -1.4501 -0.1850 -0.4739 

OH      0.0000 0.0000 0.0000 

CO2 [MR1]       0.0000 0.0000 

CO2 [MR2]        0.0000 
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Chapter 6 

NONEQUILIBIRUM LATTICE FLUID [NELF] 

 

6. NELF Model for Gas Solubility in Glassy Polymers: 

6.1. Early Version: 

The nonequilibrium thermodynamics of glassy polymers (NET-GP) was proposed by [Doghieri 

and Sarti] 11.  NET-GP approach extends EoS description of thermodynamic properties of amorphous 

phase from equilibrium conditions above glass transition temperature (Tg) to non-equilibrium conditions 

below (Tg). NET-GP can be applied to any EoS by using the properties and tools of the equation of state. 

NELF approach can be used for the equilibrium of Helmholtz Free Energy Density,𝑎𝐸𝑞, as follows:  

 

                          𝑎𝐸𝑞 =  𝑎𝐸𝑞(𝑇, 𝑃, {𝜌𝑖}𝑖=1,𝑁𝑐
)     1 ≤ 𝑖 ≤ 𝑁𝑐                     (6.1.1) 

 

Where T is the temperature of the system, 𝜌𝑖 is the species mass density of all solute components 

(1 ≤ 𝑖 ≤ 𝑁𝑠) and polymeric species (𝑖 = 𝑁𝑐). 

The main idea of the NET- GP is by assuming the mass density of the polymeric species in the mixture 

(𝜌𝑝𝑜𝑙
𝑁𝐸 ) as an order parameter for the description of the nonequilibrium state at a certain temperature, T 

and pressure, p and the mass fraction of low molecular weight solutes in the mixture, 𝜔𝑖. Helmholtz free 

energy can then be considered at nonequilibrium condition, as follows:  

 

                                 𝑎𝑁𝐸 =  𝑎𝑁𝐸(𝑇, 𝑝, 𝜔𝑖
𝑁𝐸 , 𝜌𝑝

 )          1 ≤ 𝑖 ≤ 𝑁𝑠                      (6.1.2) 

 

[Doghieri and Sarti] 11 have assumed the mass density of the polymer as an internal state variable (its 

rate of variation in time depends on the state of the system). By applying the second law of 

thermodynamic.  

The following condition is derived for Helmholtz free energy density in non-equilibrium conditions, as 

follows: 

                                 𝑎𝑁𝐸 = 𝑎𝐸𝑞(𝑇, 𝑝, 𝜔𝑖
𝐸𝑞 , 𝜌𝑝

  )              1 ≤ 𝑖 ≤ 𝑁𝑠                               (6.1.3) 
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This approach can be applied parallelly to thermodynamic expression of the chemical potential of solutes 

in the mixture at non equilibrium state, 𝜇𝑖
𝑁𝐸,  as follows: 

 

                           𝜇𝑖
𝑁𝐸 =  𝜇𝑖

𝑁𝐸(𝑇, 𝑝, 𝜔𝑖, 𝜌𝑝𝑜𝑙) =  𝜇𝑖
𝐸𝑞(𝑇, 𝑃, 𝜌𝑖)                                          (6.1.4) 

 

The later assumption for the evaluation of solubility in glassy polymers that has been accounted a 

swelling coefficient, 𝑘𝑠𝑤 as an adjustable parameter, as follows: 

 

                     𝜌𝑝𝑜𝑙
𝑃𝐸 (𝑇, 𝑓𝑖(𝑇, 𝑝, 𝜔𝑖)) =  𝜌𝑝𝑜𝑙

0 (𝑇) [1 −  (𝑘𝑠𝑤 𝑓𝑖(𝑇, 𝑝))]                                (6.1.5) 

 

where 𝜌𝑝𝑜𝑙
𝑃𝐸  is the density of solvent per polymer mass at nonequilibrium condition, and 𝜌𝑝𝑜𝑙

0 (𝑇) is the 

dry polymer density that has been taken from the experimental data.  

 

6.2. Recent Version: 

[Minelli and Doghieri] 41 developed a rheological tool by addressing the polymer behaviour in a 

sorption experiment below the glass transition temperature. A simplification of the spectrum of 

relaxation times in which the distribution is considered to be bimodal with a constant ratio between 

(“hard” and “soft” element).  

Parallelly, it can calculate the total volume of mixture per polymer mass at nonequilibrium condition 

(pseudo equilibrium), as follows: 

 

                    𝑉̂𝑝𝑜𝑙
𝑁𝐸(𝑇, 𝑝, 𝜔1

𝑁𝐸) =  𝜒 𝑉̂𝑝𝑜𝑙
𝐸𝑞(𝑇, 𝑝, 𝜔1

𝐸𝑞) + (1 −  𝜒 ) 𝑉̂𝑔(𝑇)                             (6.2.1) 

                                                           𝜒 =
𝑘𝐺

𝑘𝑅
                                                                    (6.2.2) 

 

where 𝑉̂𝑝𝑜𝑙
𝐸𝑞(𝑇, 𝑝, 𝜔1

𝐸𝑞)  is the total volume per polymer mass at equilibrium condition at specific 

temperature, pressure, and mass fraction of solute, 𝜒 is the compressibility ratio between glass region 
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and rubber and 𝑘 is the compressibility coefficient; the partial derivative of specific volume with respect 

to pressure, p at constant temperature, T multiplies by the negative reciprocal of the average volume, 

and 𝑉̂𝑔(𝑇) is a model parameter depends only on temperature. 

The specific volume of a pure polymer at equilibrium, 𝑉̂𝑝𝑜𝑙𝑦
𝐸𝑞0

   can be calculated after an equilibrium EoS. 

𝑉̂𝑝𝑜𝑙𝑦
0  is meant as the dry polymer mass density at non-equilibrium glassy state, can be estimated from 

literature data, using the following expression: 

 

                     𝑉̂𝑝𝑜𝑙𝑦
0 (𝑇 , 𝑝 ≅ 0) =   𝑉̂𝑝𝑜𝑙𝑦

𝐸𝑞0

 (𝑇𝑔 , 𝑝 ≅ 0) × [1 +  𝛼𝑔 × (𝑇 −  𝑇𝑔)]                      (6.2.3) 

                                                          𝛼𝐺 =
1

𝑉
(

𝜕𝑉

𝜕𝑝
)

𝑇
                                                                 (6.2.4) 

 

𝛼𝐺  is the thermal expansion coefficient; the partial derivative of specific volume with respect to 

temperature, T at constant pressure, p, multiplied by the reciprocal of the average volume. 
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Chapter 7 

NELF AND GCLF COMBINATION [NEGCLF-EOS] 

 

 7.1. Introduction to NEGCLF-EOS: 

 
At present work, a predictive tool has been evolved that combines two models: a group 

contribution lattice-fluid equation of state (GCLF-EoS) and nonequilibrium lattice fluid (NELF); the 

group contribution method depends mainly on the chemical structure. As a result of this combination, a 

new model is produced that is referred to as “nonequilibrium group contribution lattice fluid” model 

(NE-GCLF). NE-GCLF model is designed to be applied based on a minimum number of properties as 

inputs, to study thermodynamic properties such as the solubility of gas/vapour into glassy polymers.  

 

The polymer properties that are required for the application of NE-GCLF procedure are glass 

transition temperature,𝑇𝑔 ,compressibility ratio,𝜒 ,chemical structure of polymer and the ratio of the 

thermal expansion coefficient from the glassy to rubbery state,  𝛾. 

 

Obviously, the group interaction energy parameters [𝑒0,𝑘 , 𝑒1,𝑘 , 𝑒2,𝑘 ], reference volume 

parameters [ 𝑅0,𝑘 , 𝑅1,𝑘 , 𝑅2,𝑘 ] and the surface area parameter, 𝑄𝑘   need also to be known for all functional 

groups participating to polymer and solvent structure. 

 

The compressibility ratio of polymer, the glass transition temperature and the ratio of the thermal 

expansion coefficient properties are used in NELF for calculating the total volume per polymer mass at 

nonequilibrium condition (glassy state), 𝑉̂𝑝𝑜𝑙𝑦
𝑁𝐸 .  

 

The chemical structure is composed of groups and contributes to counting the number of the molecular 

reference volume of a certain component. 

 

The thermal expansion coefficient is used at present work because the temperature of the system is lower 

than the glass transition temperature, as follows: 

 

                                               𝛼𝑔(𝑝 ≅ 0) =  𝛼𝐸𝑜𝑆 𝛾                                                         (7.1.1) 

 

                                                         𝛾 = (
𝛼𝐺

𝛼𝑅
)                                                                   (7.1.2) 
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𝛾 is the estimated ratio of the thermal expansion coefficient from the glassy to rubbery state. The 

availability of the ratio at (Eq.7.1.1) because the calculated thermal expansion coefficient at 

nonequilibrium condition using EoS, 𝛼𝐸𝑜𝑆 must get a bit closer to the thermal expansion coefficient at 

rubbery state, 𝛼𝑅 , that is measured experimentally. 

 

In order to study the solubility of penetrant species into solid polymers, the chemical potential of 

component 1 into mixtures, 𝜇1
  at temperature, T, mass fraction of component 1 into mixture at 

nonequilibrium condition, 𝜔1
𝑁𝐸, and the total volume per polymer mass at nonequilibrium condition, 

𝑉̂𝑝𝑜𝑙
𝑁𝐸 must be equal to the chemical potential of a pure component 1, 𝜇1

(𝐺)
, as follows: 

 

                                       𝜇𝑖
 (𝑇, 𝜔1

𝑁𝐸 , 𝑉̂𝑝𝑜𝑙
𝑁𝐸) =  𝜇1

(𝐺)(𝑇, 𝑝)                                                  (7.1.3) 

 

 

The total volume per polymer mass, 𝑉̂𝑝𝑜𝑙
𝑁𝐸 is calculated by substituting (Eq.6.2.3) in (Eq.6.2.1), as follows:  

 

   𝑉̂𝑝𝑜𝑙
𝑁𝐸(𝑇, 𝑝, 𝜔1

𝑁𝐸) =  𝜒 𝑉̂𝑝𝑜𝑙
𝐸𝑞(𝑇, 𝑝, 𝜔1

𝐸𝑞) + (1 −  𝜒 ) 
𝑉𝑝𝑜𝑙𝑦

0 (𝑇,𝑝≅0)− 𝜒 𝑉𝑝𝑜𝑙𝑦
𝐸𝑞0

(𝑇,𝑝≅0) 

(1− 𝜒 )
              (7.1.4) 

 

Where 𝑉̂𝑃𝑜𝑙𝑦
0 (𝑇, 𝑝 ≅ 0) is the specific volume of polymer at system temperature and low pressure at 

nonequilibrium condition (glassy state) and 𝑉̂𝑝𝑜𝑙𝑦
𝐸𝑞0

(𝑇, 𝑝 ≅ 0) is the specific volume of polymer at system 

temperature and low pressure at equilibrium condition (rubbery state) which is calculated by solving 

EoS of a pure component from (Eq.4.1.6) which satisfies the equilibrium condition of known pressure, 

as follows: 

                                        𝑝 = 𝑝𝐸𝑞 (𝑇, 𝜔2
 = 1, 𝑉̂𝑝𝑜𝑙𝑦

𝐸𝑞0
(𝑇, 𝑝 ≅ 0))                                      (7.1.5) 

𝜔2
  denotes the mass fraction of a pure polymer. 

The equation of the specific volume of polymer at nonequilibrium condition (glassy state), 

𝑉̂𝑝𝑜𝑙𝑦
0 (𝑇, 𝑝 ≅ 0) , (Eq.6.2.3) is substituted in (Eq.7.1.4), as shown: 

𝑉̂𝑝𝑜𝑙
𝑁𝐸(𝑇, 𝑝, 𝜔1

𝑁𝐸) = 𝜒 𝑉̂𝑝𝑜𝑙
𝐸𝑞(𝑇, 𝑝, 𝜔1

𝐸𝑞) + 𝑉̂𝑝𝑜𝑙𝑦
𝐸𝑞0

 (𝑇𝑔 , 𝑝 ≅ 0) [1 + 𝛼𝑔 (𝑇 −  𝑇𝑔)] −  𝜒 𝑉̂𝑝𝑜𝑙𝑦
𝐸𝑞0

(𝑇, 𝑝 ≅ 0)    

                                                                                                                                           (7.1.6)                    
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The expression of thermal expansion coefficient, 𝛼𝑔 , (Eq.7.1.1-2) is substituted in (Eq.7.1.6), as shown: 

 

𝑉̂𝑝𝑜𝑙
𝑁𝐸(𝑇, 𝑝, 𝜔1

𝑁𝐸) =  𝜒 𝑉̂𝑝𝑜𝑙
𝐸𝑞(𝑇, 𝑝, 𝜔1

𝐸𝑞) + 𝑉̂𝑃𝑜𝑙𝑦
𝐸𝑞0

 (𝑇𝑔 , 𝑝 ≅ 0) [1 + 𝛼𝐸𝑜𝑆  (
𝛼𝐺

𝛼𝑅
) (𝑇 − 𝑇𝑔)] −

                             𝜒 𝑉̂𝑝𝑜𝑙𝑦
𝐸𝑞0

(𝑇, 𝑝 ≅ 0)                                                                                     (7.1.7) 

 

The total volume per polymer mass, 𝑉̂𝑝𝑜𝑙𝑦
𝐸𝑞 

 at temperature, T, pressure, p, mass fraction of component 1 

into mixture at equilibrium condition, 𝜔1
𝐸𝑞

 ,  is calculated by solving EoS of a mixture from (Eq.4.2.16), 

as follows: 

 

                                        𝑝 = 𝑝𝐸𝑞 (𝑇, 𝜔1
𝐸𝑞 , 𝑉̂𝑝𝑜𝑙𝑦

𝐸𝑞 

(𝑇, 𝑝, 𝜔1
𝐸𝑞))                                          (7.1.8) 

 

The chemical potential of component 1 into mixtures, 𝜇1
  at temperature, T, equilibrium mass fraction 

of component 1 into mixture, 𝜔1
𝐸𝑞

 and the total volume per polymer mass, 𝑉̂𝑝𝑜𝑙
𝐸𝑞

 must be equal to the 

chemical potential of a pure component 1 , 𝜇1
(𝐺)

, as follows: 

 

 

                                     𝜇𝑖
 (𝑇, 𝜔1

𝐸𝑞 , 𝑉̂𝑝𝑜𝑙
𝐸𝑞(𝑇, 𝑝, 𝜔1

𝐸𝑞)) = 𝜇1
(𝐺)(𝑇, 𝑝)                                    (7.1.9) 
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7.2. Solubility Prediction in Polymer-Solute Systems: 
 

To proceed in the calculation, it is essential to express the first case of mixing rule that requires 

to estimate a linear expression for  𝜖11
  which is a function of two variables 𝜖11,300 𝐾

   and 𝜖11,400 𝐾
  . The 

two variables are calculated from (Eq.5.3.2). The surface area fraction of group k of component 1, Θ𝑘
(1)

 

which is a function of 𝜖11
  , it can be estimated by (Eq.5.3.3). The surface area parameter of group k, 𝒬𝑘 

and the two constants 𝑒kk,300K
   and 𝑒kk,400K

   are retrieved from Table 5.1.  

First case, 𝑣1
∗ is represented in a linear expression as function of two variables 𝑣1,300𝐾

∗   

and 𝑣1,400𝐾
∗ , [see Eq.5.3.4]. The two variables 𝑣1,300𝐾

∗  and  𝑣1,400𝐾
∗  are calculated from a group 

contribution expression that is given in (Eq. 5.3.5) and the two constants 𝑅𝑘,300𝐾 and 𝑅𝑘,400𝐾 are 

retrieved from Table 5.1. 

Second case, the molecular interaction energy between two components 𝑖 and 𝑗, 𝜖𝑖𝑗 which 

requires to estimate a binary interaction variable 𝛿𝑖𝑗 that is illustrated in mixing rule 1 [MR1], [see Eqs. 

5.4.3-4].  𝑒𝑘𝑘  is a function of the molecular interaction energy variable between like groups that can be 

calculated quadratically by (Eq.5.3.9). The constants of energy (𝑒0,𝑘 , 𝑒1,𝑘 , 𝑒2,𝑘 ) are retrieved from Table 

5.2.  One more variable, Θ𝑘
(𝑀)

 is estimated by (Eq.5.4.5) and the surface area group parameter, 𝒬𝑘  [that 

is requested to calculate Θ𝑘
(𝑀)

] is retrieved from Table 5.2.  

The calculation of   𝛿𝑖𝑗  for the third case MR2 is similar to MR1 excluding the variable Θ𝑘
(𝑖)

 that 

can be estimated by (Eq.5.4.7).  The expression of 𝑣i
∗  that follows Lee and Danner approach is a function 

of molecular reference volume variable of group k as shown in (Eq.5.3.6) that can be calculated 

quadratically from (Eq.5.3.7). The contents of reference volume for a group k, (𝑅0,𝑘 , 𝑅1,𝑘 , 𝑅2,𝑘 ) can be 

retrieved from Table 5.2. 
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Table 7.1 shows the five different types of the polymers (PEMA, PMMA, PC, PS, PPO) that are used at 

this work. It also illustrates the properties of polymers such as the ratio of thermal expansion coefficient 

from glassy to rubbery state which retrieved from [Zoller] 42, compressibility factors, and the glass 

transition temperature of each polymer were retrieved from different references. 

 

 

 

Table 7.1 

The Properties of Polymers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Polymers (
𝜶𝑮

𝜶𝑹
) Ref. χ Ref. Tg [°C] Ref. 

PEMA 0.57 

[42] 

0.83 [41] 61 [43] 

PMMA 0.45 0.69 [49] 120 [44] 

PC 0.43 0.69 [41] 150 [41] 

PS 0.42 0.68 [41] 92 [41] 

PPO 0.27 0.46 [52] 210 [45] 
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7.3. Results and discussion for solubility prediction in glassy polymers: 

 
7.3.1. Solubility Prediction in Poly (methyl methacrylate) + CO2 system: 

Koros et al.44 investigated the sorption of carbon dioxide (CO2) in poly(methyl methacrylate) 

(PMMA) at various temperatures experimentally, the polymer utilized in his study was earned from 

Aldrich Chemical Co., Milwaukee, WI. Koros measured the molecular weight of the PMMA using 

solution viscosity in butanone and found it to be equivalent to 599,000 g/mole. Koros measured the 

sorption isotherms after such pre-treatments were reproducible as long as the maximum sorption never 

exceeded 20 atm. Compressibility parameter, χ was not available in the Koros et al. paper 44. Thus, it has 

been retrieved from Minelli and Doghieri paper 49. (Eqs.7.1.1-2) were applied for estimating the PMMA 

ratio of thermal expansion coefficient from glassy to rubbery state, which is equivalent to 0.45 [Zoller]42.  

At this system, it has been applied (Eq.5.4.1) for the first case [mixing rule 0, MR0]. For the 

second case, [mixing rule 1, MR1] was applied for calculating 𝛿12 using EoS, registered value of the 

MR1 equals to 0.0205 and 0.0772 for the mixing rule 2  [MR2] as a third case.  

It could be noted that the surface area parameter, Qk  is equivalent to 1.200 for ester group (-COO-

) as it was published by [Danner and High] 15, however, this value was  in contrary  to Fredenslund 1  Qk  

which is equivalent  to 0.880. Therefore, the value that was published by Fredenslund has been selected. 

There was not available group interaction energy and reference volume parameters for CO2 as shown in 

Table 5.1. Thus, it has been taken the constants of group interaction energy and reference volume (𝑒0,𝑘 , 

𝑒1,𝑘 , 𝑒2,𝑘 , 𝑅0,𝑘 , 𝑅1,𝑘 , 𝑅2,𝑘 ) that are shown in Table 5.2 for calculating CO2 considering all cases [MR0, 

MR1, MR2]. 

Koros et al.’ experimental data expressed the solubility of carbon dioxide (CO2) in poly (methyl 

methacrylate) (PMMA) at various pressures for different temperatures. Fig. 7.1.A shows the predicted 

results from the NEGCLF model at both cases [MR1, MR2]. They succeeded in general term but failed 

in the temperature range compared to experimental data. In addition, both cases exhibited the same result 

at low pressure because they have the same properties.  Fig. 7.1.B shows a quite similar trendlines for 

the case [MR0]. However, mixing rule 1 is remained the best. 
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Fig 7.1.A.  Solubility isotherm of CO2 in PMMA at 35, 55 and 80°C: experimental data from ref 44 and predictions given 

by GCLF EoS and NELF model. 

 

Fig. 7.1.B.  Solubility isotherm of CO2 in PMMA at 35, 55 and 80°C: experimental data from ref 44 and predictions given 

by GCLF EoS and NELF model. 
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7.3.2. Solubility Prediction in Poly (ethyl methacrylate) + CO2 system: 

Kamiya et al 43 have prepared poly (ethyl methacrylate) (PEMA) by radical polymerization, the 

glass transition temperature Tg was 61°C that was determined by taking the average of several methods: 

thermal dilation, the Arrhenius plot of gas permeability, and evaluated by differential scanning 

calorimetry (DSC). Kamiya and co-workers have determined sorption under pressure up to 50 atm in 

the temperature range 15 to 85°C and measured with an electric microbalance (Cahn model 2000) settled 

in a high-pressure chamber 50,51. The molecular weight of PEMA was not available in the paper of 

Kamiya et al. Thus, the value was taken from Koros et al. paper 44 which is equivalent to 309,000 g/mole. 

The compressibility parameter, χ was not available in the Kamiya et al paper. Therefore, it has been 

retrieved from Minelli and Doghieri paper 41. (Eqs.7.1.1-2) were applied for estimating the PEMA ratio 

of the thermal expansion coefficient from glassy to rubbery state, which is equivalent to 0.57 [Zoller] 42.  

At this system, it has been used (Eq.5.4.1) for the first case [MR0] and for the second case, it has 

been applied [MR1] for calculating  𝛿12 using EoS which is equivalent to 0.0188 and 0.1088 for [MR2] 

as a third case. Similar to the previous case, the surface area parameter, Qk for ester group (-COO-) is 

equal to 0.880 and it has been used a quadratic expression for calculating the properties of CO2 for all 

three cases: [MR0, MR1, MR2]. 

Fig. 7.2.A-B show the prediction of CO2 solubility in PEMA for the three cases: MR0, MR1, and MR2. 

Fig. 7.2.A represents the ability of the model to predict the volume of CO2 in the mixture per polymer 

mass. Fig. 7.2.B expressed linear trendlines compared to PMMA due to the glass transition temperature 

closeness to the predicted temperatures. 
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Fig. 7.2.A.  Solubility and volume swelling isotherm of CO2 in PEMA at 15 °C: experimental data from ref 43 and 

predictions given by the GCLF EoS and NELF model. 
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Fig 7.2.B.  Solubility isotherm of CO2 in PEMA at 30, 40 and 55°C: experimental data from ref 44 and predictions given 

by GCLF EoS and NELF model. 
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7.3.3. Solubility Prediction in Polycarbonate + CO2 system: 

[Fleming and Koros] 52 applied 1000 psia of pressure for the measurement of carbon dioxide 

(CO2) sorption in polycarbonate at 35°C and it has been indicated that the isothermal dilatometry 

measurements exposure of polycarbonate. The measurement of pure gas sorption was made with a 

pressure decay cell design. Fleming and Koros did not mention the molecular weight. Therefore, it has 

been assumed [Mn=110000]. (Eqs.7.1.1-2) were applied for estimating the PC ratio of the thermal 

expansion coefficient from glassy to rubbery state which is equivalent to 0.43 [Zoller] 42. Similar to the 

previous cases, it has been used the quadratic expression for calculating the properties of CO2 for the 

case of MR0 due to the lack of parameters in Table 5.1. Furthermore, there was not available ether group 

(-O-) parameters in Table 5.2 for the calculating the value of 𝑒𝑘𝑘 and 𝑅𝑘  quadratically for both cases 

[MR1, MR2].  Thus, it has been utilized the parameters 𝑒𝑘𝑘,300𝐾 , 𝑒𝑘𝑘,400𝐾, 𝑅𝑘,300𝐾,  and 𝑅𝑘,400𝐾 that 

available in Table 5.1 for expressing them in a linear expression. Fig. 7.3 shows a satisfactory result of 

the carbon dioxide solubility in polycarbonate at diverse pressures.  

 

Fig. 7.3.  Solubility isotherm of CO2 in PC at 35 °C: experimental data from ref 52 and predictions given by GCLF EoS 

and NELF model. 
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7.3.4. Solubility Prediction in Poly (2,6-dimethyl phenylene oxide) + CO2 system: 

Chern et al. 45 measured the phase behaviour of carbon dioxide (CO2) and poly (2,6-dimethyl 

phenylene oxide) (PPO) by utilizing a dual-transducer barometric device at 35°C, and the glass transition 

temperature, Tg equals to 210°C that was evaluated by a differential scanning calorimeter operated at 

20°C heating rate. Chern did not indicate the molecular weight. Therefore, it has been presumed 

[Mn=110000]. Compressibility parameter, χ was not available in the paper of Chern et al 45.  Thence, it 

was retrieved from Minelli and Sarti paper 52. (Eqs.7.1.1-2) were applied for estimating the PPO ratio of 

thermal expansion coefficient from glassy state to rubbery, which is equivalent to 0.27 [Zoller] 42. Like 

the previous cases, it has been used quadratic expression for calculating the properties of CO2 for the 

case of MR0 due to the lack of parameters in Table 5.1 and there were not ether group (-O-) parameters 

for the two cases MR1, and MR2. Therefore, a linear expression has been used. Fig 6.4 illustrates the 

amount of carbon dioxide (CO2) sorption in poly (2,6-dimethyl phenylene oxide) (PPO) at varying 

pressures. It shows a good fitting to experimental data. 

 

 

Fig. 7.4.  Solubility isotherm of CO2 in PPO at 35 °C: experimental data from ref 45 and predictions given by GCLF EoS 

and NELF model. 
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7.3.5. Solubility Prediction in Polycarbonate + EtOH system: 

Hwang et al. 47 measured the phase equilibrium of ethanol and polycarbonate by using a Sartorius 

M25D-V vacuum electro microbalance cell [MB] at 30°C, [Mn = 24000]. Glass transition temperature, 

Tg and compressibility, χ parameters had not been stated by Hwang et al 47. For that reason, the two 

parameters have been retrieved from Minelli and Doghieri paper 41. Similar to the previous cases, the 

surface area parameter, Qk  for ester group (-COO-) is equal to 0.880 and there were not available ether 

group (-O-) parameters for the two cases [MR1, MR2]. Thus, a linear expression has been used in MR0. 

Fig. 7.5 shows the activity effect of the weight concentration of ethanol in polycarbonate at diverse 

pressures. It does not exhibit a satisfactory result because this type of mixing rule is not good at mixing 

polar compound with non-polar one.  

 

Fig. 7.5. Solubility isotherm of EtOH in PC at 30 °C: experimental data from ref 47 and predictions given by the GCLF EoS 

and NELF model. 
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7.3.6. Solubility Prediction in Polystyrene + m-xylene system: 

 

Tsutusi et al.48 investigated the solubility of m-xylene in atactic polystyrene (APS) at 25°C and 

the averaged molecular weight was [Mn = 280000]. The glass transition temperature, Tg and 

compressibility, χ parameters were not available in the Tsutusi et al. paper 48. Therefore, the two values 

have been retrieved from [Minelli and Doghieri] paper 41. (Eqs.7.1.1-2) were applied for estimating the 

PS ratio of thermal expansion coefficient from glassy to rubbery state which is equivalent to 0.42 [Zoller] 

42. It has been applied the first case of mixing rule [MR0], MR1 in which the binary interaction variable 

equals to 0.0110 and MR2 in which the binary interaction variable equals to 0.00744 and MR2 in which 

the binary interaction variable equals to 0.00744.  It has also been used a direct prediction for all cases 

due to the availability of parameters in both Tables 5.1 and 5.2.  

Fig. 7.6 illustrates the amount of m-xylene concentration in polystyrene (PS) at varied activity of 

pressures to m-xylene vapour pressure. Three predicted plots of the models show a quite similar 

trendlines. Mixing rule 1 is kept the closest one to the experimental data. 

 

Fig. 7.6. Solubility isotherm of m-xylene in PS at 25 °C: experimental data from ref 48 and predictions given by the GCLF 

EoS and NELF model. 
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7.4. Conclusions of Solubility Part I: 

 

GCLF EOS has been used within the NELF approach for pure prediction of gas solubility in 

glassy polymer and the results were compared for the use of different mixing rule for the expression of 

binary interaction parameter. Quantitative predictions obtained for CO2 solubility isotherm in a large 

pressure interval are interesting while, apparently, “mixture-based” MR1 mixing rule performed better 

than “component-based” MR2 mixing rule.  

From the work that it has been done at the prediction of gas or vapour in glassy polymers using 

EoS with three different mixing rule; molecular weight does not affect mixing rule 1 [MR1] because of 

the interaction of molecules between segments whereas it affects mixing rule 2 [MR2]. A convenient 

extension of data for group contribution is necessary in order to apply the predictive procedure to a 

broader class of polymeric materials. 
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Chapter 8 

DEVELOPMENT OF A GROUP CONTRIBUTION MIXING RULE 

 

8.1. Introduction to the Developed GCLF - EoS: 
 

At this chapter, it has been evolved a group contribution mixing rule that deals with a pure 

component and a mixture following the Panayiotou and Vera EoS that were introduced in [Eq.4.1.6, and 

Eq.4.2.16] for a pure component and a mixture, respectively. Firstly, the mixing rule is employed to 

express the molecular reference interaction energy between similar groups or different ones. Secondly, 

the mixing rule of molecular reference volume is kept the same for a pure component and a mixture 

because it is not a function of temperature.  The mixing rule is applicable in predicting the 

thermodynamic properties such as the solubility of gas or vapor into rubbery polymers or glassy ones. 

8.1.1. Mixing Rule for A Pure Component and Mixtures: 

The mixing rule refers to the estimation of interaction energy between segment of component “𝑖” and 

that of component “𝑗” as a function of the group surface area of group-to-group interaction energy 

parameter:  

                                  𝜖𝑖𝑗 = ∑  ∑ Θ𝑚
(𝑖)

𝑛𝑚 Θ𝑛
(𝑗)

𝑒𝑚𝑛
                   [MR3 & MR4]                       (8.1.1.1) 

                                          𝑒𝑚𝑛
 = 𝑒𝑚𝑛ℎ

+ 𝑒𝑚𝑛𝑠
𝑇                                                                (8.1.1.2) 

 

Where  𝜖𝑖𝑗 is the interaction energy between segments of component “𝑖” and “𝑗”, Θ𝑚
(𝑖)

 is the surface area 

fraction of group m in the pure component 𝑖, 𝑒𝑚𝑛
  is the molecular reference interaction energy between 

group 𝑚 and 𝑛, 𝑒𝑚𝑛ℎ
 is the molecular enthalpic interaction energy parameter between group 𝑚 and 𝑛, 

𝑒𝑚𝑛𝑠
 is the molecular entropic interaction energy parameter between group m and n. T is the temperature 

of the system.  

It could be noted that the above mixing rule also works for the case “𝑖 = 𝑗” (homogeneous interaction) 

as well as for that in which “𝑖𝑗” (heterogeneous interaction). 
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The molecular reference volume of component 𝑖, as follows: 

                                                 𝑣𝑖
∗ = ∑ 𝑅𝑚

0
𝑚                                                                         (8.1.1.3) 

Where 𝑅𝑚
0  is the molecular reference volume constant of group m. 

 

The molecular reference volume of a mixture, 𝑣∗ is calculated similarly to (Eq.5.4.8), with taken into 

consideration the difference of  𝑣𝑖
∗. 

 

8.2. Prediction of the Molecular Reference Volume, Enthalpic Interaction Energy and 

Entropic Interaction Energy Parameters and Results: 

 
The developed GCLF – EoS is applicable in predicting the thermodynamic properties considering 

the molecular reference volume, enthalpic interaction energy, entropic interaction energy as adjustable 

parameters.  

 

At this chapter, it has been predicted the results of a pure component based on the best fitting to the 

Daubert and Danner experimental data 34, and it is worth to mention that the interested thermodynamic 

properties that have been selected are the vapor pressure, P* for predicting the molecular enthalpic and 

entropic interaction energies and the liquid density, 𝜌𝑙𝑖𝑞  for predicting the molecular reference volume 

constant. For the case of mixture, it has been analysed the phase behaviour of vapor-liquid equilibria for 

predicting the parameters of the molecular reference volume and interaction energy of groups.  The 

vapor pressure, P* was used as a thermodynamic property, and it was predicted by finding the best fitting 

to the DECHEMA experimental data 53,54.  

 

It could be stated that mixing rule 3 [MR3] and mixing rule 4 [MR4] that represented in (Eq. 8.1.1.1) 

are set for a pure component and a mixture one, respectively.  

 

Table 8.1 shows the predicted parameters of the molecular enthalpic interaction energy between group 

m and n for the following groups: CH3, CH2, CH3COO and CO2. The molecular enthalpic interaction 

energy between CH3COO and CH3COO demonstrates the highest rate of energy whereas the molecular 

enthalpic interaction energy parameter between CH3 and CH3COO exhibits the lowest rate of energy. 
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Table 8.1 

Group Binary of the Molecular Enthalpic Interaction Energy Parameters (𝒆𝒎𝒏𝒉
) 

 

 

 

 

 

 

 

 

 

 

Table 8.2 represents predicted parameters of the molecular entropic interaction energy between group 

m and n for the following groups: CH3, CH2, CH3COO and CO2. The molecular entropic interaction 

energy between CH3COO and CH3COO illustrates the lowest rate of entropy whereas the molecular 

entropic interaction energy parameter between CH3 and CH3COO expresses the highest rate of entropy.  

 

Table 8.2 

Group Binary of the Molecular Entropic Interaction Energy Parameters (𝒆𝒎𝒏𝑺
) 

 

 

 

 

 

 

 

 

 

m\n CH3 CH2 CH3COO CO2 

CH3 673.87 760 457 701.38 

CH2  
821.2 738 1036.55 

CH3COO 
 

 1687 

 
1198.03 

CO2  
  1002.4 

m\n CH3 CH2 CH3COO CO2 

 

CH3 
-0.16 0.01 0.68 -0.33 

CH2  
0.25 0.47 -0.65 

CH3COO  
 

 

-2.13 

 

 

-1.07 

 

CO2  
  -0.99 
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Table 8.3 shows predicted parameters of the molecular reference volume and the surface area for the 

following groups: CH3, CH2, CH3COO and CO2. The surface area of the following groups: CH3, CH2, 

C, and CH3COO were retrieved from Fredenslund et al. book 32, while CO2 was retrieved from Hamedi 

et. al. paper 10.  It should be noted that the surface area constant of carbon (C) is equal to zero because it 

has no surfaces around its atom. 

 

Table 8.3 

Group Reference Volume, Rm and Surface Area Parameters, Qk  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group 𝑹𝒎
𝟎  Qk Ref. 

 

CH3 

 

0.02572 

 

0.848 

 

CH2 0.016464 0.540 [32] 

C 0.000 0.000  

CH3COO 0.065 1.728  

 

CO2 

 

0.04 

 

1.112 

 

[10] 
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8.2.1. Prediction of the Molecular Reference Volume, Enthalpic Interaction Energy and 

Entropic Interaction Parameters of CH3 CH3 Using the Properties of Vapor Pressure and 

Liquid Density of Ethane: 

 

Fig. 8.1 illustrates the predicted results of the logarithmic of vapor pressure, P* and liquid 

density,𝜌𝑙𝑖𝑞 of ethane at the temperature range of 90.35 to 273K. The predicted results by GCLF-EoS 

for the logarithm of vapor pressure fits well to the Daubert and Danner experimental data 34. Whereas, 

the predicted results of liquid density, 𝜌𝑙𝑖𝑞 do not show a satisfactory result. However, the predicted 

results of liquid density do not affect this work compared to the predicted results of the logarithm of 

vapor pressure, P*. MR3 is applied for predicting the parameters of molecular reference volume constant 

of a group CH3, RCH3
0 , enthalpic interaction energy between like groups CH3 and CH3, 𝑒𝐶𝐻3−𝐶𝐻3ℎ  , and 

entropic interaction energy between like groups CH3 and CH3,  𝑒𝐶𝐻3−𝐶𝐻3𝑠
. The parameters of the 

molecular enthalpic and entropic interaction energies of CH3 CH3 can be found in Tables 8.1-2, whereas 

the reference volume and the surface area of group CH3 parameters are given in Table 8.3, the surface 

area constant of CH3, QCH3 was retrieved from Fredenslund et al. book 32 which is equal to 0.848. 

 
 

Fig. 8.1. Logarithmic of vapor pressure and liquid density of ethane: experimental data from ref 34 and predictions given by 

the developed GCLF EoS. 
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8.2.2. Prediction of the Molecular Reference Volume, Enthalpic Interaction Energy and 

Entropic Energy Interaction Parameters of CH2 CH2 Using the Properties of Vapor 

Pressure and Liquid Density of Cyclohexane: 

 

Fig. 8.2 shows the prediction of the logarithmic of vapor pressure, P* and liquid density,𝜌𝑙𝑖𝑞 of 

cyclohexane at the temperature range of 279.69 to 498.19 K. Interestingly, the predicted results of the 

logarithmic of vapor pressure and liquid density fit perfectly to the Daubert and Danner experimental 

data 34. As previous case [ethane], it has been applied MR3 for predicting the parameters of molecular 

reference volume of a group CH2, 𝑅CH2
0 , enthalpic interaction energy between like groups CH2 and 

CH2, 𝑒𝐶𝐻2 𝐶𝐻2ℎ  and entropic interaction energy between like groups CH2 and CH2, 𝑒𝐶𝐻2 𝐶𝐻2𝑠
, 

[parameters, see Table 8.1-3]. It has been found that the surface area constant of cycles [cy-CH2] in the 

article that was published by [Lee and Danner] 5, is equal to the normal alkanes [CH2]. Thus, it has been 

taken the surface area constant of CH2, QCH2 from the Fredenslund et al.  book 32 which is equal to 0.540. 

 

 

Fig. 8.2.  Logarithmic of vapor pressure and liquid density of cyclohexane: experimental data from ref 34 and predictions 

given by the developed GCLF-EoS. 
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8.2.3.  Prediction of the Molecular Enthalpic Interaction Energy and Entropic Interaction Energy 

Parameters of CH2 CH3 Using the Properties of Vapor Pressure and Liquid Density of 

Pentane: 

 

Fig. 8.3 represents the prediction of the logarithmic of vapor pressure, P* and liquid density,𝜌𝑙𝑖𝑞 

at the temperature range of 143.42 to 422.73 K.  The predicted results by GCLF-EoS for the logarithmic 

of vapor pressure fit appropriately to the Daubert and Danner experimental data 34. On the other hand, 

the predicted results by GCLF-EoS for the liquid density,𝜌𝑙𝑖𝑞 do not show a reasonable result. However, 

as it has been clarified in the previous case [ethane] that the predicted results of liquid density do not 

influence this work contrary to the predicted results of the logarithmic of vapor pressure. Furthermore, 

MR3 is used for predicting the parameters of molecular enthalpic interaction energy between unlike 

groups CH2 and CH3,  𝑒𝐶𝐻2 𝐶𝐻3ℎ
and entropic interaction energy between unlike groups CH2 CH3, 

𝑒𝐶𝐻2 𝐶𝐻3𝑠
, [parameters, see Table 8.1-2].  

 

 

Fig. 8.3.  Logarithmic of vapor pressure and liquid density of pentane: experimental data from ref 34 and predictions given 

by the developed GCLF EoS. 
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8.2.4.  Prediction of the Molecular Reference Volume, Enthalpic Interaction Energy and 

Entropic Interaction Energy Parameters of CO2 CO2 Using the Properties of Vapor 

Pressure and Liquid Density of Carbon Dioxide: 

 

Fig. 8.4 illustrates the prediction of the logarithmic of vapor pressure, P* and liquid density, 𝜌𝑙𝑖𝑞 

at the temperature range of 216.58 to 273K. The predicted results by GCLF-EoS for the logarithmic of 

vapor pressure match accurately to the experimental data that were proposed by [Daubert and Danner] 

34. Whereas, the predicted results of liquid density, 𝜌𝑙𝑖𝑞 do not lead to a convenient result. However, 

liquid density does not affect this work compared to the predicted vapor pressure, P*. Similarly to 

previous cases for a pure component, it has been applied MR3 for predicting the parameters of molecular 

reference volume of a group CO2, RCO2, enthalpic interaction energy between like groups CO2 and CO2,  

𝑒𝐶𝑂2 𝐶𝑂2ℎ, and entropic interaction energy between like groups CO2 and CO2, 𝑒𝐶𝑂2 𝐶𝑂2𝑠
, [parameters, 

see Table 8.1-3]. The surface area constant of CO2, QCO2 was not available in the book of Fredenslund 

et al. 32. Thus, it has been taken the value of QCO2 from the paper of Hamedi et al. 10 which is equal to 

1.112. 

 

Fig. 8.4. Logarithmic of vapor pressure and liquid density of carbon dioxide (CO2): experimental data from ref 34 and 

predictions given by the developed GCLF EoS. 
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8.2.5.  Prediction of the Molecular Enthalpic Interaction Energy and Entropic Interaction Energy 

Parameters of CO2 CH3 Using the Properties of Vapor or Liquid Equilibria of 

CO2/Ethane: 

 

Figs 8.5.1-2 show the prediction of the vapor pressure, P* at two different temperatures 223.15 

and 263.15 K that was analyzed by investigating the phase behaviour of vapor and liquid equilibria of 

carbon dioxide and ethane. As it has been noticed in the two figures that the difference between the 

predicted vapor pressure by GCLF-EoS and the ideal one with respect to the mass fraction of CO2 is 

fitted suitably to the DECHEMA experimental data 54.  

It is worthful to mention that MR4 is applied for predicting the parameters of molecular enthalpic 

interaction energy between unlike groups CO2 and CH3, 𝑒𝐶𝑂2 𝐶𝐻3ℎ
, [parameters, see Table 8.1-2]. 

Furthermore, it has been calculated the entropic interaction energy between unlike groups CO2 and CH3, 

𝑒𝐶𝑂2 𝐶𝐻3𝑠
 by interpolating the molecular enthalpic interaction energy linearly considering the maximum 

temperature and the minimum one, ultimately, the interaction energy between unlike groups is calculated 

at the temperature of interest, [see Eq. 8.1.1.1-2]. For an accurate estimation an objective function has 

been used by taking the quadratic difference of the experimental vapor pressure and the calculated one 

as shown in (Eq.8.4.2). Hence, the confident value that had been taken into consideration was the 

minimized one.  
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Fig. 8.5.1.  VLE of CO2/Ethane at 223.15 K: experimental data from ref 54 and predictions given by the developed GCLF 

EoS. 

 

Fig. 8.5.2.  Predicted VLE of CO2/Ethane at 263.15 K: experimental data from ref 54 and predictions given by the developed 

GCLF EoS. 

(k
P

a)
 

(k
P

a)
 



72 
 

 
 

8.2.6.  Prediction of the Molecular Enthalpic Interaction Energy and Binary Entropic Interaction 

Energy Parameters of CO2 CH2 Using the Properties of Vapor/Liquid Equilibria of 

CO2/Propane: 

 

Figs 8.6.1-2 illustrate the prediction of the vapor pressure, P* at two different temperatures 

233.15 and 273.15 K that was analyzed by studying the phase behaviour of vapor and liquid equilibria 

of carbon dioxide and propane. The difference between the predicted vapor pressure by GCLF-EoS and 

the ideal one with respect to the mass fraction of CO2 is fitted well to the DECHEMA experimental data 

54 as shown in Fig 8.6.1 whereas Fig 8.6.2 shows a partial match to the experimental data.  Similar to the 

previous case, MR4 is applied for predicting the parameters of molecular enthalpic interaction energy 

between unlike groups CO2 and CH2,  𝑒𝐶𝑂2 𝐶𝐻2ℎ
 , [parameters, see Table 8.1-2]. Similar to the previous 

case, the molecular entropic interaction energy between unlike groups CO2 and CH2,    𝑒𝐶𝑂2 𝐶𝐻2𝑠
    has 

been estimated by interpolating the molecular enthalpic interaction energy parameter linearly taking into 

consideration the maximum temperature and minimum one, eventually the interaction energy between 

unlike groups can be calculated at the  temperature of interest, [see Eq. 8.1.1.1-2], along with that, an 

objective function has been used by taking the quadratic difference of the experimental vapor pressure 

and the calculated one as given in (Eq.8.4.2). Consequently, the verified value that had been taken into 

account was the minimized one. 
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Fig. 8.6.1. VLE  of CO2/Propane at 233.15 K: experimental data from ref 54 and predictions given by the developed GCLF 

EoS. 

 

Fig. 8.6.2. VLE of CO2/Propane at 273.15 K: experimental data from ref 54 and predictions given by the developed GCLF 

EoS. 
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8.2.7.  Prediction of the Molecular Reference Volume of CH3COO, Enthalpic Interaction 

Energy and Entropic Interaction Energy Parameters of CH3COO CH3COO, CH3 

CH3COO Using the Properties of Vapor/Liquid Equilibria of Ethane/Methyl Acetate: 

 

Fig 8.7.1 represents the prediction of the vapor pressure, P* at 298.15 K that was examined by 

studying the phase behaviour of vapor and liquid equilibria of ethane and methyl acetate. As it can be 

seen in Fig 8.7.1, the difference between the predicted vapor pressure by GCLF-EoS and the idea one 

with regard to the mass fraction of ethane showed high and low trendline compared to the DECHEMA 

experimental data 54. Similarly to previous cases for a mixture, MR4 is applied for predicting the 

parameters of molecular reference volume of CH3COO, 𝑅CH3COO
0 , enthalpic interaction energy between 

like groups CH3COO and CH3COO, 𝑒𝐶𝐻3𝐶𝑂𝑂 𝐶𝐻3𝐶𝑂𝑂ℎ  , entropic interaction energy between like groups  

CH3COO and CH3COO, 𝑒𝐶𝐻3𝐶𝑂𝑂 𝐶𝐻3𝐶𝑂𝑂𝑠
, enthalpic interaction energy between unlike groups CH3 and 

CH3COO, 𝑒𝐶𝐻3 𝐶𝐻3𝐶𝑂𝑂ℎ
, and entropic interaction energy between unlike groups CH3 and CH3COO, 

𝑒𝐶𝐻3 𝐶𝐻3𝐶𝑂𝑂𝑠  ,  [parameters, see Table 8.1-2]. As it was clarified in the previous cases that the objective 

function had been used for achieving the best estimation, [see, Eq.8.4.2]. 

 

Fig. 8.7.1.  VLE of Ethane/Methyl Acetate at 233.15 K: experimental data from ref 54 and predictions given by the developed 

GCLF EoS. 
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Fig 8.7.2 illustrates the prediction of the logarithmic of vapor pressure, P* and liquid density,𝜌𝑙𝑖𝑞 

at the temperature range of 175.15 to 425K. The predicted results by GCLF-EoS for the logarithmic of 

vapor pressure match perfectly to the Daubert and Danner experimental data 34. Whereas, the predicted 

results by GCLF-EoS for the liquid density,𝜌𝑙𝑖𝑞 do not show a satisfactory result. Nevertheless, the liquid 

density does not affect this work compared to the predicted vapor pressure, P*. Likewise previous cases, 

It has been used MR3 for predicting the pure component parameters of  molecular reference volume of 

CH3COO, 𝑅CH3COO
0 , enthalpic interaction energy between like groups CH3COO and CH3COO, 

𝑒𝐶𝐻3𝐶𝑂𝑂 𝐶𝐻3𝐶𝑂𝑂ℎ , entropic interaction energy between like groups CH3COO and CH3COO, 

𝑒𝐶𝐻3𝐶𝑂𝑂 𝐶𝐻3𝐶𝑂𝑂𝑠
and enthalpic interaction energy between unlike groups CH3 and CH3COO, 

𝑒𝐶𝐻3− 𝐶𝐻3𝐶𝑂𝑂ℎ
, entropic interaction energy between unlike groups CH3 and CH3COO, 𝑒𝐶𝐻3 𝐶𝐻3𝐶𝑂𝑂𝑠

. 

[parameters, see Table 8.1-3]. It could be noted that the surface area constant of CH3COO, QCH3COO was 

retrieved from Fredenslund et al. book 32 which is equivalent to 0.880. 

 

Fig. 8.7.2.  Logarithmic vapor pressure and liquid density of methyl acetate: experimental data from ref 34 and predictions 

given by the developed GCLF-EoS. 
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8.2.8.  Prediction of the Molecular Enthalpic Interaction Energy and Entropic Interaction Energy 

Parameters of CH2 CH3COO Using the Properties of Vapor/Liquid Equilibria of Methyl 

Acetate/Dodecane: 

 

Figs 8.8.1 illustrates the prediction of the vapor pressure, P* at 323.15 K that was examined by 

analyzing the phase behaviour of vapor and liquid equilibria of methyl acetate and dodecane. The 

difference between the predicted results of the vapor pressure by GCLF-EoS and the ideal one is fitted 

to the DECHEMA experimental data 53 at the high concentration of methyl acetate. Parallelly to the 

previous cases for a mixture, MR4 is applied for predicting the parameters of molecular enthalpic 

interaction energy between unlike groups CH2 and CH3COO, 𝑒𝐶𝐻2 𝐶𝐻3𝐶𝑂𝑂ℎ
, entropic interaction energy 

between unlike groups CH2 and CH3COO,  𝑒𝐶𝐻2 𝐶𝐻3𝐶𝑂𝑂𝑠  ,[parameters, see Table 8.1-2]. As it was stated 

in the previous cases that the objective function had been applied for obtaining the best estimation, [see, 

Eq.8.4.2]. 

 

 

Fig. 8.8.1. VLE of Methyl Acetate/Dodecane at 323.15 K: experimental data from ref 53 and predictions given by the GCLF 

EoS. 
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Fig. 8.8.2 illustrates the prediction of the logarithmic of vapor pressure, P* and liquid density,𝜌𝑙𝑖𝑞 

at the temperature range of 187.35 to 490K. The predicted results by GCLF-EoS for the vapor pressure 

lay well on the Daubert and Danner experimental data 34. Whereas, the predicted results of liquid 

density,𝜌𝑙𝑖𝑞 do not demonstrate a convenient result.  However, the liquid density does not influence this 

work in contrast to the predicted vapor pressure, P*. Similar to previous cases for a pure component, 

MR3 is applied for predicting the parameters of molecular enthalpic interaction energy between unlike 

groups CH2 and CH3COO, 𝑒𝐶𝐻2 𝐶𝐻3𝐶𝑂𝑂ℎ
, and entropic interaction energy between unlike groups CH2 

and CH3COO, 𝑒𝐶𝐻2 𝐶𝐻3𝐶𝑂𝑂𝑠
,[parameters, see Table 8.1-2].  

 

 

Fig. 8.8.2.  Logarithmic of vapor pressure and liquid density of methyl n-butryate: experimental data from ref 34 and 

predictions given by the developed GCLF-EoS. 
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Fig. 8.8.3 represents the prediction of the logarithmic of vapor pressure, P* and liquid density,𝜌𝑙𝑖𝑞 

at the temperature range of 185.65 to 460K. The predicted results by GCLF-EoS for the vapor pressure 

fit appropriately to the Daubert and Danner experimental data 34. Whereas, the predicted results of liquid 

density,𝜌𝑙𝑖𝑞 do not show a reasonable result. However, the predicted liquid density does not affect this 

work contrary to the predicted vapor pressure, P*. Likewise previous cases for a pure component, MR3 

is used for predicting the parameters of molecular enthalpic interaction energy between unlike groups 

CH2 and CH3COO, 𝑒𝐶𝐻2 𝐶𝐻3𝐶𝑂𝑂ℎ
, and entropic interaction energy between unlike groups CH2 and 

CH3COO, 𝑒𝐶𝐻2 𝐶𝐻3𝐶𝑂𝑂𝑠
, [parameters, see Table 8.1-2].  

 

 

 

Fig. 8.8.3.  Logarithmic of vapor pressure and liquid density of methyl propionate: experimental data from ref 34 and 

predictions given by the developed GCLF-EoS . 
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Figs. 8.9.1-2 illustrate the prediction of the vapor pressure, P* at two different temperatures 

298.15 and 313.15 K that was analyzed by investigating the phase behaviour of vapor and liquid 

equilibria of carbon dioxide and methyl acetate. The difference of the predicted results by GCLF-EoS 

for the vapor pressure with respect to the mass fraction of CO2 showed high and low trends compared 

to the DECHEMA experimental data 54. Similar to the previous cases for a mixture, MR4 is applied for 

predicting the parameters of molecular reference enthalpic interaction energy between unlike groups 

CO2 and CH3COO, 𝑒𝐶𝑂2 𝐶𝐻3𝐶𝑂𝑂ℎ , [parameters, see Table 8.1-2]. In addition, it has been calculated the 

molecular entropic interaction between unlike groups CO2 and CH3COO, 𝑒𝐶𝑂2 𝐶𝐻3𝐶𝑂𝑂𝑠 by interpolating 

the molecular enthalpic interaction energy linearly with taking into consideration the maximum 

temperature and minimum one, ultimately the interaction energy between unlike groups can be 

calculated at the temperature of interest, [see Eq. 8.1.1.1-2]. As it was mentioned in the previous cases 

that the objective function had been applied for attaining the best estimation, [see, Eq.8.4.2]. 

 

 

Fig. 8.9.1. VLE of CO2/Methyl Acetate at 298.15 K: experimental data from ref 54 and predictions given by the developed 

GCLF-EoS. 
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Fig. 8.9.2. VLE of CO2/Methyl Acetate at 313.15 K: experimental data from ref 54 and predictions given by the developed 

GCLF EoS. 
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8.3. Solubility Prediction in Poly (methyl methacrylate) + CO2 system: 

It is worthful to mention that it has been used the same properties that already presented in [chap.7, 

sec. 7.3.1]. The PMMA molecular weight and its glass transition temperature were retrieved from Koros 

et. al. paper 44 which is equivalent to 599,000 g/mole and [120°C, see Table 7.1], respectively. Whereas, 

the compressibility parameter, χ, was retrieved from Minelli and Doghieri paper 49. As it was mentioned 

that it had been applied (Eqs.7.1.1-2) for estimating the thermal expansion coefficient, which was 

equivalent to 0.45 [Zoller] 42. 

Fig 8.10 exhibits the prediction of the carbon dioxide (CO2) solubility in poly(methyl methacrylate) 

(PMMA) at various pressures for different temperatures. The developed NE-GCLF EoS model that was 

examined by MR4 has shown unsatisfactory result contrasted to Koros’s experimental data. Nonetheless, 

it can be said that the model has been launched properly in general term.  

 

Fig. 8.10.  Solubility isotherm of CO2 in PMMA at 35, 55 and 80°C: experimental data from ref 44 and predictions given by 

the developed GCLF EoS and NELF model. 
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8.4. Test and Consistency of the Developed GCLF - EoS: 

 

For obtaining a perfect estimation to the developed GCLF-EoS model, the model must be examined by 

setting a mathematical expression for calculating the molecular interaction energy between groups.   

Thus, it has been selected an arbitrary temperature which is equal to 300 K for this examination. 

Table 8.4 represents the interaction energy between group m and n at 300 K.  

 

Table 8.4 

Interaction Energy between group m and n  

 

emn 
Estimated Energy (kJ/kmol) 

[300K] 

e CH2 CH3COO 879 

e CH3 CH3COO 661 

e CH3COO CH3COO 1048 

e CH2 CH2 896.20 

e CH3 CH3 625.87 

e CH2 CH3 763.00 

e CO2 CO2 705.40 

e CO2 CH3COO 878.23 
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An interaction energy parameter is expressed to analyze the energy between like groups or unlike ones, 

as follows: 

                                                    𝑘𝑚𝑛 = 1 −
𝑒𝑚𝑛

√𝑒𝑚𝑚𝑒𝑛𝑛
                                       (8.4.1) 

 

Table 8.5 shows an optimal result for the interaction energy parameter between groups CH2 and CH3 in 

which demonstrates that the carbon dioxide (CO2)  is dissolved perfectly in the polymer that is composed 

of a group (CH3COO). 

 

 

Table 8.5 

Interaction Energy Parameter between group m and n  

 

 

 

 

 

 

 

 

 

 

For approaching an optimal convergence to the program, an objective function is given by: 

 

                                                   𝑂𝐹 = ∑
[(𝑃𝐸𝑥𝑝−𝑃𝐼𝑀)− (𝑃𝐶𝑎𝑙𝑐−𝑃𝐼𝑀)]

[(𝑃𝐸𝑥𝑝−𝑃𝐼𝑀)+ (𝑃𝐶𝑎𝑙𝑐−𝑃𝐼𝑀)]
                        (8.4.2) 

 

 

kmn Interaction Energy Parameter 

k CH2 CH3COO 0.09 

k CH3 CH3COO 0.18 

k CH2 CH3 -0.0187 

k CO2 CH3COO -0.021 
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8.5. Conclusions of Solubility Part II: 

 

A revision of the mixing rule was considered to optimize the prediction of gas solubility in glassy 

polymers, together with a specific activity to retrieve pertinent energy parameter for a limited list of 

functional group. Preliminary results obtained in this attempt do not appear to be self-consistent and 

suggest the use of a wider set of experimental data to retrieve the carboxylate ester group contribution 

parameters,  
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Chapter 9 

ANALYSIS OF PERMEABILITY IN COMPOSITE MATERIALS 

 

9.1. Introduction and aim: 

The evaluation is here addressed of effective gas permeability properties of a composite material 

obtained through the dispersion of domains of phase “A” into a continuous matrix of phase “B”. Both 

type of domains are assumed to be isotropic and their gas permeability will be identified as PA and PB, 

for dispersed and continuous phase respectively. Even for this simple case, however, the permeability 

of the corresponding composite material may have a tensorial nature, depending on shape, as well as 

orientation and arrangement of dispersed domains. In general terms, for isothermal and low-pressure 

gradients processes, three different scalar permeability value would be necessary to characterize the 

steady state gas transport properties in the system, pertinent to the different principal directions of the 

structure:   

, 1,2,3i mixP i =  

The enhancement in gas permeability, ( ), /i mix B BP P P−  for the i-th principal direction in the composite 

material with respect to the matrix, is expected to increase, in the general case, with both the volume 

fraction of the dispersed phase  (indicated as “loading”, in what follows) and the permeability ratio α  

= /A BP P  (the enhancement vanishing, of course, for the case α→ 1 ).  In this respect, it may be 

interesting to represent the permeability enhancement coefficient Ki, for the i-th principal direction, 

defined as follows: 

                                                  
( )

( )
, /

; 1,2,3
1

i mix B B

i

P P P
K i

 

−
 =

−
             (9.1.1) 

and to discuss its dependence on orientation and space arrangement of dispersed domains, as well as on 

permeability ratio. 

The simplest case, in this respect, is that of a planar multilayer composite material, in which orientation 

of principal directions can be easily recognized as the direction perpendicular to layers plane 

(corresponding permeability hereafter indicated as P⊥) and any direction parallel to layers plane 

(corresponding permeability hereafter indicated as Pǁ).  
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For multilayer materials, the following relations can be simply derived for the series combination of 

mass flow resistance (P⊥) or of mass flow conductance (Pǁ): 

                                               

( )

1 1 1
1 1

1 1

B

B

P P

P P




 

⊥

   
= + −   

  
 = + −  

              (9.1.2) 

which ultimately bring to the following relations for enhancement permeability coefficient: 

                                                  
( )( )

1
1 1 1

1

K

K

 
⊥


= + − −


 =

                                         (9.1.3) 

so that a simple result can be drawn for the combination of permeability enhancement coefficient along 

principal directions in a layered composite: 

                                         ( )( )
3

1

1
1 1 1

i iK
 

=

 
− = − − 

 
                        (9.1.4) 

It is interesting to observe that the latter relation works also for the case of dilute dispersion of spheres, 

in which the well-known Maxwell 55 relation holds: 

 

                                                 
( )( )1 11

1 1,2,3
3i

i
K

 − −
= + =                        (9.1.5) 

It is useful to stress here that the above relation results from the exact solution of the mass transport 

problem in a composite material obtained through the dispersion of spherical domains in a matrix, for 

the case of arbitrary permeability ratio ( 0    ), in the limit of vanishing loading ( 0 → ). 

The result in (Eq.9.1.4), in the same limits ( 0 → ; 0    ) can be also recognized from the exact 

solution of permeability problem in a composite material obtained through the dispersion of aligned 

spheroids (either oblate or prolate) 56, in which the coefficient along principal axes are generally different 

one from the other. 

The same result also works for the case of dilute dispersion of aligned long circular section cylinders, 

for which the relation by Wiener 57 is known to hold: 

                                                               

( )( )1 11
1

2

1

K

K

 

⊥

− −
= +


 =

              (9.1.6) 
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where K⊥ indicates the permeability enhancement coefficient in direction perpendicular to the axis of 

dispersed cylinders, while Kǁ refers to the same property evaluated in direction parallel to the same axis. 

It is useful to remember here, once more, that the above relation holds for vanishing loading, irrespective 

of the value of permeability ratio. 

Results mentioned above are those for which a simple close form or the exact solution of the permeability 

problem is known. When you move away from the dilute dispersion of aligned spheroids (ultimately, 

the case of an isolated long cylinder is a limiting condition in the same set), only approximate results are 

found in the literature, which in turn have great relevance and are widely used. Among the latter, the 

Nielsen model 58 for diluted dispersion of infinitely long aligned ribbons (rectangular cross section 

cylinders) with cross section edges of length Li in i-th direction (i =1,2), in which the following 

expressions of effective permeability in the principal directions of the composite are proposed: 

                                          

( ) ( )

( )( )

11

2

22

1
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1 11
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1 11
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1
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

− −
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


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                                (9.1.7) 

It should finally be mentioned that relation in (Eq.9.1.4) is known to be obeyed by all composites 

materials in which domains of isotropic phase A are dispersed in a continuous isotropic phase B, in the 

limit of permeability ratio approaching unity ( 1 → ) 59. It should however be kept in mind that 

condition represented in (E.9.1.4) does not have universal application and, indeed, the sum represented 

on the l.h.s. of the above equation, in the general case, depends on loading, shape, orientation and 

arrangement of dispersed domains, as well as o permeability ratio between dispersed and continuous 

phases. Several examples are offered in the literature of estimation of permeability in the principal 

direction of the composite material, from the numerical solution of the transport problem of traces of 

mobile components through a composite sample. Not many of them, however, were run with the 

accuracy needed to appreciate deviation from the simple rule represented in (Eq.9.1.4). 

Aim of the activity described in the remaining of this section is the evaluation of deviations from results 

expressed in relation (Eq.9.1.4) for the case of composite geometries more complex than that of diluted 

dispersion of aligned spheroids. To represent these deviations in a compact and useful form, the 

coefficient  Ψ  is here introduced, defined as follows: 



88 
 

 
 

                                      
( )

( ) ( )( )

3

1

1
1

1
1

1 1 1

i iK

  

=

  
−  

+     − 
− − − 

 
 


             (9.1.8) 

 

Use of factor  ( ) ( )1 1   − + in (Eq.9.1.8), to scale the deviations measured for a given composite 

structure from result in Eq.(9.1.4), is suggested both by the fact that variations are expected for term in 

brackets on r.h.s. of (Eq.9.1.8) of the same sign of  ( )1 −  and by its limed range, as   increases from 

-1 to +1 when permeability ratio changes from 0 to ∞.  

Effective permeability in the composite material of interest was estimated through the numerical solution 

of diffusive mass transport equation in a sample of the composite, for the case a fugacity jump was 

imposed at opposite faces of the sample.  At this stage of the analysis, the attention was focused on the 

case of ordered dispersion of aligned domains o dispersed phase which could result in an overall isotropic 

composite material. 

The exploration of permeability enhancement coefficient reached for a composite as effect of shape, 

orientation and arrangement of dispersed phase, as well as of the permeability ratio, are then discussed 

in terms of relation Ψ vs β, which directly expresses the deviation from value reached in ideal conditions 

represented in (Eq.9.1.4). As all structure considered are isotropic, the results of the comparison here 

performed can be seen as the analysis of deviation of actual effective permeability from prediction by 

the Maxwell model (Eq.9.1.5). Among composite structures considered in this work are rather peculiar 

shape of the dispersed domains, which were considered in order analyze the case of dispersed phase 

volume fraction in the full range, from zero to one. This will ultimately allow to test the validity of 

hypothesis formulated in the literature, according to which the Maxwell model well represents effective 

permeability in isotropic composite material also for the case of very large loading values 60.  

Specific attention is given in this work to the evaluation of uncertainty of numerical output obtained, in 

order to validate the departure from Maxwell results discussed in the examples considered in this 

analysis.     
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9.2. Methods: 

Permeability enhancement coefficient for composites resulting from ordered arrangement of 

dispersed domains of isotropic materials in a continuous isotropic matrix were calculated solving the 

corresponding mathematical steady state permeation problem in a convenient sample of the composite 

material. The problem is described by the Laplace equation for fugacity, distinctly considered for 

dispersed and continuous phase, together with continuity condition for gas fugacity value at the 

interphase between domains pertinent to different phases. The effective permeability of the composite 

is ultimately computes by evaluating the mass flow through the sample resulting for the case of assigned 

fugacity jump at opposite boundaries.   

The problem is actually solved through the use of a CFD software (FLUENT) based on fine volume 

formulation of discretized transport equations 61. By mean of the CFD software, a detailed representation 

is given of the geometry of the smallest portion (sample) of the material whose integral permeability 

coefficient is equivalent to the effective properties of the whole composite.  

For each case considered, in term of geometry, loading and permeability ratio, several different 

fractionations of the calculation domain in discrete volumes (mesh) were considered and the results for 

the apparent effective permeability were examined as function of the number of volume elements in the 

mesh in order to identify, by extrapolation, the expected value for the case of infinite number of discrete 

volumes. The latter is indeed the effective permeability value used to evaluate the coefficient Ψ [see Eq. 

9.1.8] shown in the following subsection, for all conditions examined. In addition to calculation for the 

case of finite value of permeability of the disperse phase, performed as just described, calculation were 

carried out for the case of null or infinite permeability value of the dispersed phase accounting for the 

solution of the Laplace equation in the continuous phase domain of the sample only, and imposing a 

zero-flux or iso-fugacity condition, respectively, at the boundary with the dispersed phase.  

 

9.2.1. Laplace Equation for Fugacity: 

The Laplace equation is considered as the prototypical elliptic partial differential equation (PDE): 

                                                           ∇2𝑓 = 0                             (9.2.1.1) 

Where  ∇2 is the Laplace operator, corresponding to the divergence of the gradient and 𝑓 is the fugacity 

of the mobile species in the medium. 
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9.2.2. Discretization Method: 

The discretization the differential equations is managed according to the method proposed by 

Patankar 61. The numerical method treats as its fundamental unknowns the values of the dependent 

variable at a finite number of locations, namely the grid points in the calculation domain. The method 

includes the tasks of providing a set of algebraic equations for the unknown values and of prescribing 

an algorithm for solving the equations. The continuous information contained in the exact solution of 

the differential equation has been replaced with discrete values (values at grid points). The algebraic 

equations involving the unknown values of 𝜙 at selected grid points, are the discretization equations as 

derived from the differential equation governing 𝜙. It is common to subdivide the calculation domain 

into a number of elements such as a separate profile assumption that can be associated with each 

subdomain. Hence, the value of 𝜙 at a grid point influences the distribution of 𝜙 only in its 

neighbourhood.  

As the number of grid points becomes very large, the solution of the discretization equations is expected 

to approach the exact solution of the corresponding differential equation. Based on the consideration 

that, as the grid points get closer from each other, the change in 𝜙 between neighboring grid points 

becomes small, and then the actual details of the profile assumption become negligible. For a given 

differential equation, the required discretization equations can be derived in many ways. One of the ways 

is the control-volume formulation method. 

 

9.2.3. Control-Volume Formulation Method: 

The principle of the control-volume formulation is easy to understand and lends itself to direct 

physical interpretation. The calculation domain is divided into a number of non-overlapping control 

volumes such that there is one control volume surrounding each grid point. The differential equation is 

integrated over each control volume. Piecewise profiles expressing the variation of 𝜙 between the grid 

points in which are used to evaluate the required integrals. The outcome is the discretization equation 

containing the values of 𝜙 for a group of grid points. When the discretization equations are solved to 

obtain the grid-point values of the dependent variable, the result can be viewed in the finite-element 

method. In the finite-difference method, however, only the grid-point values of 𝜙 are considered to 

constitute the solution whereas in the control-volume approach, the solution seeks in the form of the 

grid-point values only. The interpolation formulas or the profiles will be regarded as supplementary 

relations needed to evaluate the required integrals in the formulation. Once the discretization equations 

are derived, the profile assumptions can be neglected.  
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9.2.4. Control-Volume-based Finite-Element Method: 

At this work, it has been selected “tetrahedron” which takes the form of a triangular grid, that is 

based on the control volume and finite element methods. The triangular grids are dependent variables 

which can be calculated for grid points that lie at the vertices of the triangles. The discretization equations 

are set up by the control-volume method; i.e., the differential equation is integrated over the typical 

control volume illustrated in Fig. 9.1.  The control volumes are created by joining the centroid of each 

triangle to the midpoints of the sides of that triangle. It can be seen from Fig. 9.1 that the triangular 

elements adjacent to the grid point P accommodate portions of the control volume and the corresponding 

control-volume faces. The discretization equation is formed by adding the contributions of these 

elements to the integral conservation for the control volume. 

 

A shape function describing the variation of 𝜙 over an element is required to calculate the flux across 

the control-volume faces that fall within the element. The standard shape function for the triangular 

element is:  

                                       𝜙 = 𝑎 + 𝑏𝑥 + 𝑐𝑦                            (9.2.4.1) 

Where the constants a, b, c are expressed in terms of the three grid-point values of 𝜙.   

 

 

Fig. 9.1.  Control volume for the triangular grid 61. 
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9.3.  Prediction of the Effective Permeability along Principal Axis for the Case of 

Isotropic Composite Geometries: 

 

At present work, it has been chosen several dispersed shaped such as octahedron, rhombic 

dodecahedron, truncated octahedron, spheres, and cubes. These dispersed shapes are common in 

isotropic condition, as they all have at least three distinct symmetry planes. On top of that, it should be 

mentioned that only ordered arrangements of dispersed phase which preserve the isotropic condition for 

the composite material. A portion is captured from the lattice to represent a repeated unit that can be 

minimized by slicing it to the smallest portion of the domain and then it can be brought to the calculation 

domain. It has been sorted different loading ratio from the smallest to the largest. It has been manipulated 

the highest possible loading ratio of the disperse to the matrix based on the dispersed shape with using 

the following permeability ratios: (0, 0.001, 0.01, 0.04, 0.1, 0.25, 0.5, 2,4, 10, 25, 100, 1000, ∞).  

 

The effective permeability, 𝑃𝑒𝑓𝑓 is given by: 

         𝑃𝑒𝑓𝑓 =  
(𝑁𝐴 𝐿)

(𝐴  ∆𝑓)
                          (9.3.1) 

 

Where 𝑁𝐴 is the mass flux. L is the thickness of the membrane. A is the area of the membrane. ∆𝑓 is the 

difference of the fugacity across the membrane. 

 

The problem of searching for effective permeability of a composite medium to a mobile species at 

infinite dilution condition, from the know value of permeability of both dispersed and continuous phases, 

is indeed equivalent to the searching the corresponding effective thermal conductivity, from the pertinent 

known values for the constituent phases. The two enhancement coefficients result to be expressed by the 

same function of loading ratio, 𝜙𝐷,  and permeability/thermal conductivity ratio, 𝛼. 

 

Thus,  

at this work, it has been utilized the effective thermal conductivity, 𝑘𝑒𝑓𝑓  and its expression as follows: 

                         𝑘𝑒𝑓𝑓 =  
(𝑄 𝐿)

(𝐴 ∆𝑇)
                                     (9.3.2)  
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Where 𝑄  is the heat flux. L is the thickness of the slab. A is the area of the slab. ∆𝑇 is the difference of 

the temperature between the inlet and outlet. 

It could be noted that it has been predicted three heat flux values [1094.98, 1094.973,1094.971] with 

three different number of elements [9766510,4478523,3428567] considering the size of element mesh 

that were used in the calculation [0,009,0,0131,0,0148], as it has been observed that as the size of 

element mesh decreases as the total number of elements, N increases, Thus, it has been taken the 

intercept of the slope as infinity value as shown in Fig. 9.1. 

 

Fig. 9.2. Heat flux and mesh element size of simple cubic (SC) cubes: solids circles are three predicted heat flux values by 

Fluent and dashed line is the intercept. 

 

The uncertainty error is calculated by taking the absolute difference between the average of three 

predicted heat flux values and the “y”intercept of the linear interpolation function, then dividing the 

difference result on the average of three predicted heat flux values. 

After several solutions to multiple different cases, it has been found that 0.01% is the highest deviation 

measured this way, and this value has been assumed as uncertainty for effective permeability in all 

performed calculations. However, instead of predicting three heat flux values, the calculation can be 
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reduced to only one predicted value considering a total number of elements before this equal to the mid 

value of three originally examined, which is equal to an approximate five million element.  

Table 9.1 represents the types of lattices and dispersed shapes: simple cubic (SC) lattice categorizes; 

octahedron, sphere, and cube. Face centered cubic (FCC) lattice classifies rhombic dodecahedron and 

sphere. Body centered cubic (BCC) lattice sorts truncated octahedron and sphere. 

 

 

Table 9.1 

Types of Lattices and Dispersed Shapes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lattices Dispersed Shapes 

SC Octahedron – Sphere - Cubes 

FCC Rhombic Dodecahedron - Sphere 

BCC Truncated Octahedron - Sphere 
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9.3.1. Prediction of the Effective Thermal Conductivity of Simple Cubic (SC) Octahedron: 

 

Fig. 9.3.1 shows a simple cubic (SC) lattice for octahedron. 

 

 

Fig. 9.3.1. Representation of simple cubic (SC) octahedron lattice. 

 

Fig. 9.3.1. illustrates a captured unit cell for the simple cubic lattice of octahedron in which it remains 

eight portions of the domain.  

 

 

Fig. 9.3.2. Representation of simple cubic (SC) octahedron repeated unit. 
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The eight portions are similar to each other. Thus, the geometry has been sliced to the calculation domain 

for the ease of running the program and reaching an accurate result. An example of this work is the 

smallest loading ratio which equals to 0.00195 as shown in Fig. 9.3.3. 

 

 

Fig 9.3.3 Representation of simple cubic (SC) octahedron of the calculation domain for the smallest loading ratio (0.00195). 

Fig. 9.2.4 exhibits the mesh domain. The mesh is done by Fluent tool with choosing patch conforming 

tetrahedrons method. 

 

Fig 9.3.4 Representation of simple cubic (SC) octahedron mesh of the smallest loading ratio (0.00195). 

 

Fig. 9.2.5 expresses a graph for the transport of the energy between disperse and matrix. At present work, 

it has been used the thermal conductivity property for calculating the permeability ratio. The graph in 
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Fig 9.3.5 demonstrates the process of the transport the energy from top with 400 K to bottom with 200 

K whereas the heat flux is equal to zero from left to right or vice versa. 

 

 

 

Fig. 9.3.5. Representation of simple cubic (SC) octahedron contour of the smallest loading ratio (0.00195) and lowest 

permeability ratio (0.001). 

 

The same approach and data that were used in Fig 9.2.5 are utilized in Fig 9.3.6 except the permeability 

ratio is equal to 1000. The highest thermal conductivity of dispersed phase has shown an influence in 

the graph whereas in Fig. 9.3.5 the temperature is approximately equal to 350 K and in Fig. 9.3.6 the 

temperature in the region of dispersed phase equals nearly to 400K.  
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Fig 9.3.6 Representation of simple cubic (SC) octahedron contour of the smallest loading ratio (0.00195) and highest 

permeability ratio (1000). 

 

Fig. 9.3.7 exhibits the same lattice and shape of the dispersed domain that was represented in Fig. 9.3.3 

but with different loading ratio of dispersed phase regarding to the matrix phase which represents the 

largest loading ratio that is equal to 0.165. 

 

 

 

 

 

 

Fig. 9.3.7. Representation of simple cubic (SC) octahedron of the calculation domain of the highest loading ratio (0.165). 

 

 

Fig. 9.3.8 expresses the same procedure that was followed in Fig. 9.3.4 for the type of method excluding 

the element size for the mesh.  
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Fig 9.3.8 Representation of simple cubic (SC) octahedron mesh of the largest loading ratio (0.165). 

 

 

 

Fig 9.3.9 represents a similar procedure that was done in Fig. 9.3.5 excludes the loading ratio which 

equals to 0.165.  

 

 

Fig 9.3.9.  Representation of simple cubic (SC) octahedron contour of the largest loading ratio (0.165) and lowest 

permeability ratio (0.001). 

 

Fig. 9.3.10 demonstrates an analogous approach that was accomplished in Fig. 9.3.6. As it has been 

indicated that higher thermal conductivity of the dispersed phase can affect the transport of energy 
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because of the conduction strength. As shown in Fig. 9.3.10, the largest zone has a red colour which is 

equal to 400 K.  

 

 

Fig 9.3.10. Representation of simple cubic (SC) octahedron contour of the largest loading ratio (0.00195) and highest 

permeability ratio (1000). 

 

Figs. 9.3.11-13 show a matrix without its dispersed phase in which it has been extracted, then the heat 

flux has been calculated into two additional steps , first step when the permeability ratio is equal to zero 

in which the dispersed phase does not influence the matrix domain because the thermal conductivity of 

the dispersed phase is too low and vice versa for the second step, when the permeability ratio is equal to 

∞ in which the extracted dispersed phase is conducted well due to its higher thermal conductivity. Thus, 

it could be said that the contact zone temperature equals to inlet or outlet temperature of the matrix. 

However, the value of ∞ cannot be added as input in the program. Thus, the dispersed phase has been 

removed phase from the domain. Moreover, these two steps can be employed as verified steps for the 

work. 
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Fig 9.3.11 Representation of simple cubic (SC) octahedron mesh of the largest loading ratio (0.165) for the case of   0 &  ∞ 

permeability ratios.  

 

 

 

 

 

 

 

Fig. 9.3.12. Representation of simple cubic (SC) octahedron contour of (0) permeability ratio. 
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Fig. 9.3.13. Representation of simple cubic (SC) octahedron contour of (∞) permeability ratio. 

 

 

 

 

 

 

9.3.2.  Prediction of the Effective Thermal Conductivity of Face Centered Cubic (FCC) 

Rhombic Dodecahedron: 

 

Fig. 9.4.1. Representation of face centered cubic (FCC) rhombic dodecahedron lattice. 



103 
 

 
 

 

 

 

Fig. 9.4.2. Representation of face centered cubic (FCC) rhombic dodecahedron repeated unit. 

 

 

 

 

Fig. 9.4.3. Representation of face centered cubic (FCC) of the calculation domain rhombic dodecahedron. 
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9.3.3. Prediction of the Effective Thermal Conductivity of Body Centered Cubic (BCC) 

Truncated Octahedron: 

 

Fig. 9.5.1. Representation of body centered cubic (BCC) truncated octahedron lattice. 

 

Fig. 9.5.2. Representation of body centered cubic (BCC)  truncated octahedron repeated unit. 
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Fig. 9.5.3. Representation of body centered cubic (BCC) of the calculation domain truncated octahedron. 

 

 

 

9.3.4. Prediction of the Effective Thermal Conductivity of Simple Cubic (SC) Cube: 

 

 

Fig. 9.6.1. Representation of simple cubic (SC) cube repeated unit. 
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Fig. 9.6.2. Representation of simple cubic (SC) cube of the calculation domain. 

 

 

 

 

9.3.5. Prediction of the Effective Thermal Conductivity of Body Centered Cubic (BCC) Sphere: 

 

 

Fig. 9.7.1. Representation of body centered cubic (BCC) sphere repeated unit. 
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Fig. 9.7.2. Representation of body centered cubic (BCC) sphere of the calculation domain. 

 

 

 

9.3.6. Prediction of the Effective Thermal Conductivity of Face Centered Cubic (FCC) Sphere: 

 

 

Fig. 9.8.1. Representation of face centered cubic (FCC) sphere repeated unit. 

 



108 
 

 
 

 

Fig. 9.8.2. Representation of face centered cubic (FCC) sphere of the calculation domain. 

 

 

 

9.3.7. Prediction of the Effective Thermal Conductivity of Simple Cubic (SC) Sphere: 

 

Fig. 9.9.1. Representation of simple cubic (SC) sphere repeated unit. 
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Fig. 9.9.2. Representation of simple cubic (SC) sphere of the calculation domain. 

 

 

 

9.4. Results: 

While more complex geometries are of interest in this study, only results for isotropic distribution of 

dispersed domains in the continuous phase are shown here. As all geometries considered result is 

isotropic transport properties of the composite material, we can ignore the specific direction of principal 

axes and refer to a single value of the permeability P and of the corresponding enhancement factor K, 

for which the expression of the coefficient Y can be simplified as indicated hereafter: 

                                               
( )

( ) ( ) ( )

1
3 1

1
1

1 1 1
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                          (9.4.1) 

 which ultimately can be rearranged to express the permeability P in the composite material as: 
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             (9.4.2) 

which, of course, resembles the Maxwell expression for the case of null value of coefficient Ψ. 
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(Eq.9.4.2) represent the main result in the preliminary analysis performed in this work as it allows to 

represent permeability data in a general isotropic composite medium though a Maxwell-type expression. 

Indeed, results reported in this section for coefficient Ψ can thus be seen as representation of deviation 

of actual permeability from Maxwell model, for the condition of interest. In this respect, it should also 

been considered that, as factor β= (α-1)/(α+1) is of order one for both high and low values of permeability 

ratio, the relevance of correction factor in (Eq.9.4.2) with respect to Maxwell relation can be identify 

from the order of coefficient Ψ. 

The relative uncertainty ɛP for the value of effective permeability P  estimated for the numerical 

procedure described above ( )1 PP P =   was estimated in the order of  410P
− , from the exam of 

results obtained for the use of different mesh type and element size. 

By means of the analysis of error propagation, from the expression of effective permeability P to that of 

deviation coefficient Ψ , through the representation of enhancement factor K, the following expression 

is obtained for the uncertainty affecting the estimate   of the deviation coefficient :   

 

( )

( ) ( )( )( )

( ) ( ) ( )( )( ) ( ) ( )

1

1 1 1 1 1 1 1
1 1 1

1 1 11 1 1 1
P


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 

      





 =  

+ + − + + − − + +
= + + +

− +  −+ + − − −

 

            (9.1.11) 

From the expression above, it can be calculated that the relative error for deviation coefficient  Ψ 

computed through the above procedure is typically in the order of 1% for the case of limiting values of 

permeability ratio (α → 0 and α → ∞). On the other hand, it also results that uncertainty for the estimated 

deviation coefficient increases indefinitely when permeability ratio is close to 1. For this reason, the 

numerical results were not considered in the analysis for permeability ratio in the range 0.25 4  , 

where relative uncertainty for  Ψ exceeds 10%. It is also in evidence, in the above expression, that the 

uncertainty depends on the order of the same coefficient Ψ and it can be concluded that relative error for 

the deviation coefficient approaches 100% when the absolute value of calculated   decreases below  

10-3. 

For each case of geometry and loading considered in this work, coefficient Ψ has been calculated for the 

following list of values of permeability ratio α:  0, 0.001, 0.01, 0.1, 0.25, 0.5, 2, 4, 10, 100, 1000, ∞. 

The results for Ψ are finally shown in plots as function of parameter β = (α-1)/(α+1). In all plots, trends 
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are highlighted separately for negative and positive β, respectively corresponding to values of a lower 

and higher than 1, because uncertainty for coefficient Ψ calculated for a higher than 0.5 but lower than 

2.0 was considerably larger than that associated to points in the rest of the range for a and definitely not 

acceptable for the purpose of this work.  

The first case here represented is that of isotropic ordered lattice of spheres. Three different types of 

cubic lattice were considered: “simple cubic” (SC) lattice, “body centered cubic” (BCC) lattice and “face 

centered cubic” (FCC) lattice. Results are shown in (Fig. 9.10), for the case of two different loading 

values for each type of lattice, always pointing at the largest admissible value of φ which is consistent 

with the geometry of interest. 

It can be recognized that smooth variation of coefficient Ψ are estimated for variations of permeability 

ratio in the whole range from zero to infinity, while the value of the same coefficient decreases when the 

loading decreases, as expected in view of the Maxwell result for vanishing fraction of dispersed phase. 

It can be also appreciated, from data in the plot, that highest measured Ψ values (in the order of 30%) 

correspond to the arrangement of simple cubic lattice, high loading. Less than half the value of Ψ  is 

obtained for the case of FCC loading and even lower level are registered for the case of BCC lattice.  

 

Fig. 9.10.   Ψ coefficient calculated for regular cubic lattice of sphere, as function of loading and permeability ratio. 

 

In (Fig.9.11) results are reported for the case of simple cubic lattice of cubes and it can be observed that 

the coefficient Ψ  mainly depends on the loading, while only minor variation results from change in 
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permeability ratio. It can be also observed that the higher the loading the lower the value of  Ψ. Indeed, 

a higher limit value, in the order of 17%,  seems to be reached for vanishing loading, although results 

from calculation for value of φ lower than 1% are not reported, as they reveled to be not accurate enough 

to be compared with others. 

Interestingly, at very high loading (for this geometry there is no limit to admissible value of φ), 

coefficient Ψ seems to vanish, although results from calculation for value of φ higher than 90% are not 

reported as they reveled to be not accurate enough to be compared with the remaining.  

With reference to the same type of lattice (simple cubic), Fig.9.12 show the value of coeffiicent  for the 

case of dispersed domain shaped in regular octaherdrons. It can be observed that, unlike the case of 

cubes, but similar to that of spheres, higher deviations for Maxwell results are observed for higher 

loading. Dependence of coefficient Ψ on permeability ratio is higher than in the case of cubes (the 

coefficient results higher for higher permeability ratio), although the dependece remains smooth, again 

similar to the case of spheres.  

 

 

Fig. 9.11.   Ψ coefficient calculated for regular simple cubic lattice of cubes, as function of loading and permeability ratio. 

 

Last two figures in this section are pertinent to two different lattice type (FCC and BCC). For each type 

of lattice, domains are considered of that shape which allow to explore the whole range of loading values, 
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from null to unity, just as it happens for SC in the case of cubic inclusions. Corresponding solid are 

“rhombic dodecahedron” for FCC lattice and “truncated octahedron” for BCC. 

Results are reported in (Fig.9.13) and (9.14), where coefficient  Ψ is shown to change mostly with 

loading and only slightly with permeability ratio and in both cases they results be signifincantly lower 

(in the order of 7% maximum) than in the case of cubes. With repect to effect of loading, it clearly results 

that the coefficient generally decreases with loading and it appears to vanish for the case of  φ → 1. In 

both cases, however, a maximum in the coefficient Ψ results for loading variation in the region of dilute 

dispersion. 

The observation about order of deviation coefficient for higest loading, in all example considered, 

confirms the hypothesis stated in the mentioned paper by [Petropoulos,1985]60, about thenegligible 

deviation from Mawell relation for the case of isotropi structure at vey high loading of dispersed phase. 

The exam is in order of non isotropic structures, both in terms of coefficient Ψ and of ratio of 

permeability coefficient in different principal directions. 

  

Fig. 9.12.   Ψ coefficient calculated for regular simple cubic lattice of cubes, as function of loading and permeability ratio. 
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Fig. 9.13. Ψ coefficient calculated for regular face centered cubic lattice of rhombic dodecahedron, as function of loading 

and permeability ratio. 
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Fig. 9.14. Ψ coefficient calculated for regular body centered lattice of truncated octahedron, as function of loading and 

permeability ratio. 
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APPENDIX A 

ALGORITHM LOOP FOR SOLVING PURE COMPONENT EOS 
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APPENDIX B 

ALGORITHM LOOP FOR SEARCHING PURE COMPONENT 

REDUCED VOLUME OF LIQUID OR VAPOR IN EOS 
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APPENDIX C 

CALCULATION OF THE EQUILIBRIUM CONCENTRATION 𝝎𝟏
𝑬𝒒
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APPENDIX D 

CALCULATION OF THE NON-EQUILIBRIUM 

CONCENTRATION 𝝎𝟏
𝑵𝑬 
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