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DOTTORATO DI RICERCA IN MATEMATICA

CICLO XXXIII

Settore Concorsuale: 01/A2 - GEOMETRIA E ALGEBRA

Settore Scientifico Disciplinare MAT/03 - GEOMETRIA

THE HITCHIN MAP

FOR ONE-NODAL BASE CURVES

OF COMPACT TYPE

Presentata da: Marco Portioli

Coordinatore Dottorato:

Chiar.ma Prof.ssa

Valeria Simoncini

Esame finale anno 2022



Abstract

Studying moduli spaces of semistable Higgs bundles (E, φ) of rank n on

a smooth curve C, a key role is played by the spectral curve X (Hitchin

[30]), because an important result by Beauville-Narasimhan-Ramanan [11]

allows us to study isomorphism classes of such Higgs bundles in terms of

isomorphism classes of rank-1 torsion-free sheaves on X. This way, the

generic fibre of the Hitchin map, which associates to any semistable Higgs

bundle the coefficients of the characteristic polynomial of φ, is isomorphic

to the Jacobian of X. Focusing on rank-2 Higgs data, this construction was

extended by Barik [7] to the case in which the curve C is reducible, one-

nodal, having two smooth components. Such curve is called of compact type

because its Picard group is compact.

In this work, we describe and clarify the main points of the construction

by Barik and we give examples, especially concerning generic fibres of the

Hitchin map.

Referring to Hausel-Pauly [29], we consider the case of SL(2,C)-Higgs

bundles on a smooth base curve, which are such that the generic fibre of the

Hitchin map is a subvariety of the Jacobian of X, the Prym variety. We

recall the description of special loci, called endoscopic loci, such that the

associated Prym variety is not connected.

Then, letting G be an affine reductive group having underlying Lie alge-

bra so(4,C), we consider G-Higgs bundles on a smooth base curve. Starting

from the construction by Bradlow-Schaposnik [16], we discuss the associated

endoscopic loci.

By adapting these studies to a one-nodal base curve of compact type, we

describe the fibre of the SL(2,C)-Hitchin map and of the G-Hitchin map,
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together with endoscopic loci.

In the Appendix, we give an interpretation of generic spectral curves in

terms of families of double covers.



Introduction

Let C be a smooth complex projective curve whose genus is at least 2 and

let KC be its canonical bundle. Let L be a line bundle on C whose degree is

greater or equal to the degree of KC and letM(n, d) be the moduli space of

semistable GL(n,C)-Higgs bundles (E, φ) on C, where E is a holomorphic

vector bundle on C having rank n and degree d and

φ : E → E ⊗ L

is a L-twisted endomorphism of E, which we call Higgs field. There is a

proper morphism

h :M(n, d)→ A =
n⊕
i=1

H0(C,Li),

obtained by assigning to (E, φ) the coefficients of the characteristic polyno-

mial of φ. We call this morphism Hitchin map, referring to the works by

Hitchin [30] and Simpson [49]. We refer to elements a of A as characteristics.

Letting Tot (L) be the total space of L and letting π : Tot (L)→ C be the

natural projection, the spectral curve Xa (also called spectral cover) is de-

fined as the zero divisor in Tot (L) of a nonzero section inH0(Tot (L), π∗Ln).

This is a ramified cover of C whose degree equals the rank n of E. It is called

spectral curve because its fibre over each point p of C represents the eigen-

values of φ over p, which are not necessarily distinct. For a generic choice

of the characteristic a, the curve Xa is smooth, however, the curve Xa can

be singular even if the base curve is smooth.

The fibre h−1(a) of the Hitchin map is given by isomorphism classes of

semistable Higgs bundles (E, φ) such that the characteristic polynomial of

φ yields the characteristic a ∈ A, as described above. The correspondence
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described by Beauville, Narasimhan and Ramanan [11], called the BNR

correspondence, in the case in which the spectral curve is integral, says that

there is a natural correspondence between the fibre of the Hitchin map, that

is isomorphism classes of semistable Higgs bundles (E, φ) such that h(E, φ)

equals the characteristic a, and isomorphism classes of rank-1 torsion-free

sheaves on Xa having suitable degree. This means that the fibre h−1(a) is

isomorphic to the compactified Jacobian of Xa (Proposition 1.3.22, Section

3 of [36]).

An aim of this work is to clarify and give examples of Barik’s construction

[7], which adapts the generic case of the BNR correspondence for GL(2,C)-

Higgs data to the case of a reducible one-nodal base curve C which is given

by the union of two smooth components C1 and C2, both having genus at

least 2. The Picard group Pic C of such curve is compact, hence C is called

one-nodal curve of compact type. Barik considers rank-2 vector bundles E1

on C1 and E2 on C2, together with a homomorphism
−→
A (q) between the

fibres of E1 and E2 at the node q of C. The compactness of Pic C allows

us to associate to any line bundle L on C line bundles L1 on C1 and L2

on C2, which yields moduli spaces of GL(2,C)-Higgs bundles (Ei, φi) on Ci

and spectral curves Xai → Ci, i = 1, 2. In this case, the Higgs fields φi

need to commute with the map
−→
A (q), which yields Hitchin triples that we

see in Section 3.1. Moreover, we call adapted spectral curve the union of

the spectral curves Xai , which, for a generic choice of ai, are smooth and

intersect transversally over the node.

Another aim of this work is to consider G-Higgs bundles, for some affine

reductive groups G which are different from GL(n,C). We first assume

that C is a smooth base curve. Considering G-Higgs bundles implies asking

extra-conditions on Higgs bundles, mirroring the nature of the group G.

By the BNR correspondence, this also gives further restrictions on rank-

1 torsion-free sheaves in the compactified Jacobian of Xa. For example,

considering the subgroup SL(2,C) of GL(2,C) implies that the generic fibre

of the Hitchin map is a subvariety of the Jacobian, precisely the Prym variety

(Definition 1.5.4).

The choice of SL(2,C)-Higgs data allows the existence of special loci,

called endoscopic loci, which are such that the normalization of the asso-
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ciated spectral curve factors through an étale double cover of C and the

fibre of the Hitchin map is no longer connected. We refer to the descrip-

tion of endoscopic loci for the SL(2,C)-Hitchin map by Hausel-Pauly [29].

Following the work by Bradlow-Schaposnik [16], which describes the fibre

of the Hitchin map for groups G which are isogenous to SL(2,C)× SL(2,C)

by considering the fibred product of two smooth SL(2,C)-spectral cov-

ers of C, we describe generic endoscopic loci for G-Higgs bundles, where

G = Spin(4,C),SO(4,C),PSO(4,C). We give an analogue description for a

one-nodal base curve of compact type, finding differences in the description

of endoscopic loci.

Our description of endoscopic loci for Spin(4,C)-Higgs bundles and SO(4,C)-

Higgs bundles on a smooth base curve and the study of SL(2,C)-Higgs data

and of G-Higgs data on a one-nodal base curve of compact type that we give

in Chapter 5 was not considered before and we think that it can be useful.

This work is organized as follows.

In Chapter 1, we recall moduli spaces of vector bundles and of Higgs

bundles on a smooth base curve. We describe the associated Hitchin map,

the spectral curve and the BNR correspondence. We briefly recall Simpson’s

compactification of the Jacobian of the spectral curve, which enables us to

describe moduli spaces of rank-1 torsion-free sheaves on any projective curve.

We also give some preliminaries on the norm map and on Prym varieties,

which will be useful in Chapter 5.

In Chapter 2, we recall the correspondence between a line bundle L on

a one-nodal curve C of compact type and the restrictions of L to its smooth

components C1, C2. We then see how the preliminaries on moduli spaces

of vector bundles adapt when C is a one-nodal curve of compact type and

recall the description of moduli spaces of torsion-free sheaves on C following

Nagaraj-Seshadri [40]. In particular, we recall the correspondence between

torsion-free sheaves and triples (E1, E2,
−→
A (q)), where Ei is a vector bundle

on Ci, for i = 1, 2, and
−→
A (q) is a linear map between the fibres of E1, E2 at

the node q of C. We then focus on vector bundles E1 and E2 having rank 2.

A suitable stability condition on triples, taking into account the polarization

on C (Definition 2.3.9) enables us to define the moduli space of semistable

triples, then we focus on triples having odd Euler characteristic, which im-



plies that semistable triples are stable. The moduli space of semistable

triples is given by the union of two smooth components, which intersect

transversally at a smooth divisor N V (Theorem 2.4.2). We describe the

relation between stability of triples and stability of vector bundles appear-

ing in the triples and we discuss a class of unstable triples (Remark 2.4.4,

Lemma 2.4.6). We recall that the divisor N V is isomorphic to a product of

moduli spaces of vector bundles with parabolic structure only at the node q

(Theorem 2.5.5). We show that there are no couples of vector bundles with

parabolic structure at q corresponding to the class of unstable triples above

(Remark 2.5.6). The description above allows to compute the dimension of

the moduli space of triples in two ways (see Proposition 2.4.8, Remark 2.4.9

and Remark 2.5.7).

In Chapter 3, we add the Higgs datum. Following Barik, we adapt the

description in Chapter 2 to moduli spaces of Hitchin triples, in which E1

and E2 have rank 2. We focus on triples of the form (Ê1, Ê2,
−→
A (q)) where

Êi denotes the Higgs bundle (Ei, φi), which is such that φi satisfy a com-

mutativity condition involving
−→
A (q) (Definition 3.1.1). The semistability

condition (Definition 3.2.7) implies that the rank of the map
−→
A (q) is at least

one (Theorem 3.2.10). Considering Hitchin triples whose Euler characteris-

tic is odd, the moduli space of such semistable Hitchin triples is still given by

the union of two smooth components, intersecting transversally at a smooth

divisor N (Theorem 3.3.2). We describe the relation between stability of

Hitchin triples and stability of Higgs bundles appearing in the triples and

we discuss a class of unstable Hitchin triples (Remark 3.3.5, Lemma 3.3.7).

As in the case of triples, every Hitchin triple appearing in N corresponds

to a couple of Higgs bundles with parabolic structure at q, but the converse

does not hold (Remark 3.4.6).

In Chapter 4, we recall how Barik [7] and Bhosle [13] adapt the notions

of Hitchin map and of spectral covers to one-nodal base curves of compact

type and we recall the description of the generic fibre of the adapted Hitchin

map (Proposition 4.4.4), giving an analogue of the BNR correspondence for

generic spectral covers of one-nodal base curves of compact type, which are

not ramified over the node. Considering the generic fibres of the adapted

Hitchin map, we prove the following.
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Proposition 4.4.6 Let C be a one-nodal base curve of compact type having

arithmetic genus g and assume that L1
∼= KC1 and L2

∼= KC2. Then the

dimension of the moduli space of semistable Hitchin triples is 8g − 12.

We also give an analogue of the BNR correspondence for a non-generic

case in which the spectral cover is ramified over the node q (Proposition

4.4.7).

In Chapter 5, we first consider SL(2,C)-Higgs bundles on a smooth base

curve C. Following Schaposnik [45], Section 2.2.2, we recall the description

of the fibre of the SL(2,C)-Hitchin map, which, for L ∼= KC is a connected

Prym variety (we further discuss definitions of Prym varieties in Remark

1.5.5). On the other hand, the number of connected components of the

Prym variety of a SL(2,C)-spectral cover depends on the choice of L: we

discuss this aspect by referring to the work by Hausel and Pauly [29]. If a

generic SL(2,C)-spectral cover is endoscopic, the associated Prym variety is

not connected.

Then we let C be a one-nodal base curve of compact type, we define

SL(2,C)-Higgs data for this case and we apply the discussion of Chapters

3 and 4 to describe the BNR correspondence for SL(2,C)-Hitchin triples

and to compute the dimension of the moduli space of semistable SL(2,C)-

Hitchin triples (Proposition 5.2.5). Moreover, we can describe endoscopic

loci for base curves of compact type as follows.

Proposition 5.2.7 Let C be a one-nodal base curve of compact type such

that the genus of the components C1 and C2 is at least 2. If at least a

SL(2,C)-spectral cover of Ci is endoscopic, then the SL(2,C)-adapted spec-

tral curve is endoscopic.

Following the work by Bradlow-Schaposnik [16], we recall how the iso-

morphism sl(2,C) × sl(2,C) ∼= so(4,C) of Lie algebras lets us describe G-

Higgs bundles, for G = Spin(4,C),SO(4,C),PSO(4,C) via moduli spaces of

SL(2,C)-Higgs bundles. After studying the fibres of the G-Hitchin map, we

describe generic endoscopic loci both for smooth base curves and for one-

nodal base curves of compact type in Sections 5.4, 5.6, 5.8. We describe

endoscopic loci for G-Higgs bundles on a smooth base curve in the following

proposition.



vi

Proposition Let C be a smooth base curve of genus g ≥ 2 and consider

G-spectral covers of C such that the underlying Lie algebra of G is so(4,C).

Then:

• a Spin(4,C)-spectral cover is endoscopic if at least an associated SL(2,C)-

spectral cover is endoscopic,

• a SO(4,C)-spectral cover is endoscopic if and only if both its associated

SL(2,C)-spectral covers are endoscopic.

• a PSO(4,C)-spectral cover is not endoscopic.

Endoscopic loci for a one-nodal base curve of compact type are described

in Propositions 5.5.5, 5.7.2, 5.8.7.

In the Appendix, we give an interpretation of generic spectral curves

and generic adapted spectral curves in terms of families of double covers

and their admissible compactification.
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Chapter 1

Preliminaries

1.1 Vector bundles on a smooth base curve

Let C be a complex nonsingular projective curve having genus g ≥ 2.

Definition 1.1.1. Let E be a holomorphic vector bundle of rank n on C. We

define the degree of E as the degree of its determinant bundle detE =
∧nE,

i.e. the degree of the divisor associated to the line bundle detE.

Remark 1.1.2. Alternatively, defining, for any vector bundle E on C, its

Euler characteristic as

χC(E) = dimH0(C,E)− dimH1(C,E),

the degree of E is defined as

degE = χC(E)− rank (E)χC(OC). (1.1)

Definition 1.1.3. We define the slope of E as

µ(E) =
deg (E)

rank (E)
=
d

n
. (1.2)

Definition 1.1.4. We say that E is a stable vector bundle if, for any proper,

nonzero subbundle F ⊂ E, we have

µ(F ) < µ(E).
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2 1. Preliminaries

We say that E is a semistable vector bundle if, for any proper, nonzero

subbundle F ⊂ E, we have

µ(F ) ≤ µ(E).

We say that E is a polystable vector bundle if we have

E = E1 ⊕ · · · ⊕ El,

where µ(Ei) = µ(E) for 1 ≤ i ≤ l.

Remark 1.1.5. In order to define the moduli space of semistable vector bun-

dles, we define an appropriate equivalence relation. Any semistable vector

bundle admits a (non-unique) Jordan-Hölder filtration, i.e. a flag

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fl = E

such that Fi/Fi−1 is stable and µ(Fi/Fi−1) = µ(E). The graded object

Gr(E) =
l⊕

i=1

Fi/Fi−1

is unique up to isomorphism, e.g. by Huybrechts-Lehn [33], Proposition

1.5.2.

Definition 1.1.6. Two semistable vector bundles E and E′ are said to be

S-equivalent if Gr(E) ∼= Gr(E′).

Thus we have the following.

Theorem 1.1.7 ([41], Theorem 5.8, Remark 5.9, [32], Theorem 8.64, Propo-

sition 8.65). There exists a coarse moduli space MV,s(n, d) parametrizing

isomorphism classes of stable vector bundles of rank n and degree d. The

moduli spaceMV,s(n, d) has a natural compactification to a projective variety

MV (n, d) parametrizing S-equivalence classes of semistable vector bundles

of rank n and degree d.

When n and d are coprime, the moduli space MV (n, d) =MV,s(n, d) is

smooth and we have

dimMV (n, d) = n2(g − 1) + 1. (1.3)
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We also recall the definition of Jacobian of a curve.

Definition 1.1.8. Let C be a smooth curve. We define the Jacobian

J(C) := Pic0C of C as the subgroup of line bundles of degree zero of

Pic(C) ∼= H1(C,O∗C).

Remark 1.1.9 ([15], Chapter 11.1). If M is a line bundle on C of degree d,

then we can define a noncanonical isomorphism

Picd(C)
∼−→ J(C) L 7→ L⊗M−1. (1.4)

Notation 1.1.10. Considering the isomorphism (1.4), from now on we use

the term “Jacobian”, instead of Picard, even if we consider line bundles

having any degree. We write Jd(C) when we need to emphasize that we are

referring to line bundles on C having degree d.

Remark 1.1.11. All line bundles are stable, thus MV (1, d) from Theorem

1.1.7 contains all line bundles of degree d and is isomorphic, via (1.4), to

the Jacobian J(C) of C, which is an abelian variety whose dimension equals

the genus g of C.

More generally, we define the generalized Jacobian of a nodal curve in

Definition 1.3.18.

1.2 Higgs bundles on a smooth base curve

Let KC be the canonical bundle of C and let L be a line bundle on C whose

degree is greater or equal to the degree of KC . Following classical references,

(Hitchin [30], see e.g. Schaposnik [45], Section 2.1.3), we simply call Higgs

bundles the GL(n,C)-Higgs bundles.

Definition 1.2.1. A Higgs bundle is a pair (E, φ), where E is a holomorphic

vector bundle on C and φ is a holomorphic section in H0(C,EndE ⊗ L),

which is seen as a L-twisted endomorphism φ : E → E ⊗ L that we call

Higgs field.

Definition 1.2.2. We say that a vector subbundle F ⊂ E is a φ-invariant

subbundle of E if it is such that φ(F ) ⊂ F ⊗ L.
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Stability for Higgs bundles is defined in terms of φ-invariant subbundles.

Definition 1.2.3. Let (E, φ) be a Higgs bundle on C. We say that (E, φ)

is a stable Higgs bundle if for any proper, nonzero, φ-invariant subbundle

F ⊂ E, we have

µ(F ) < µ(E).

We say that (E, φ) is a semistable Higgs bundle if for any proper, nonzero,

φ-invariant subbundle F ⊂ E, we have

µ(F ) ≤ µ(E).

We say that (E, φ) is a polystable Higgs bundle if we have

(E, φ) = (E1, φ1)⊕ (E2, φ2)⊕ · · · ⊕ (El, φl),

where, for each 1 ≤ i ≤ l, we have that (Ei, φi) is a stable Higgs bundle and

µ(Ei) = µ(E).

Remark 1.2.4. If a Higgs bundle (E, φ) has underlying stable vector bundle

E, then it is also stable as a Higgs bundle. In fact, since E has no destabi-

lizing subbundles, a fortiori it has no φ-invariant destabilizing subbundles.

On the other hand, an unstable vector bundle having no φ-invariant

subbundles is stable as a Higgs bundle, as we see in Example 1.2.8.

Remark 1.2.5. In order to define the moduli space of Higgs bundles, we

define an appropriate equivalence relation. Any semistable Higgs bundle

admits a (non-unique) Jordan-Hölder filtration, i.e. a flag

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fl = E

such that µ(Fi/Fi−1) = µ(E) and, letting φi : Fi/Fi−1 → Fi/Fi−1 ⊗ L be

the induced Higgs fields, we have that (Fi/Fi−1, φi) are stable, for 1 ≤ i ≤ l.

Also in the case of Higgs bundles, the graded object

Gr(E, φ) =

l⊕
i=1

(Fi/Fi−1, φi)

is unique up to isomorphism, e.g. by [33], Proposition 1.5.2.
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Definition 1.2.6. Two semistable Higgs bundles (E, φ) and (E′, φ′) are

said to be S-equivalent if Gr(E, φ) ∼= Gr(E′, φ′).

Remark 1.2.7. If a pair (E, φ) is stable, then the associated Jordan-Hölder

filtration is trivial, so the isomorphism class of Gr(E, φ) is the isomorphism

class of (E, φ).

We consider the following example to give a more explicit view on sta-

bility and Higgs fields.

Example 1.2.8 ([45], Example 2.7). Let C be a smooth curve of genus at

least 2, choose a square root of KC and let

E = K
1/2
C ⊕K−1/2

C (1.5)

be a vector bundle of degree zero. Since EndE ∼= E∨ ⊗ E, (1.5) yields

H0(C,EndE ⊗KC) ∼= H0(C,KC)2 ⊕H0(C,K2
C)⊕H0(C,OC),

thus we have

φ =

(
a b

c d

)
,

where a, d ∈ H0(C,KC), b ∈ H0(C,K2
C), c ∈ H0(C,OC).

We consider the family of Higgs fields given by:

φω =

(
0 ω

1 0

)
: (K

1/2
C ⊕K−1/2

C )→ (K
1/2
C ⊕K−1/2

C )⊗KC
∼= K

3/2
C ⊕K1/2

C ,

(1.6)

where ω ∈ H0(C,K2
C) is a quadratic differential.

We now discuss stability: clearly E is not stable as a vector bundle,

since we have assumed that g ≥ 2, which implies that K
1/2
C is a destabilizing

subbundle since

g − 1 =
deg (K

1/2
C )

1
>

deg (E)

2
= 0.

However, we now show that the Higgs bundles (E, φω) are stable for any ω.

If ω = 0, then K
−1/2
C is preserved by φω (since it is sent to zero), and it

satisfies the stability condition since g ≥ 2:

1− g =
deg (K

−1/2
C )

1
<

deg (E)

2
= 0.
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If ω is different from zero, (1.6) shows that no subbundle of E is φω-invariant,

so (E, φω) is a family of stable Higgs bundles.

Theorem 1.2.9 ([42], Theorem 5.10, Proposition 7.1). With the above no-

tation, there exists a scheme M(n, d) which is a coarse moduli space for

S-equivalence classes of semistable Higgs bundles of degree d and rank n.

It is quasi-projective and it has an open subscheme Ms(n, d) which is the

moduli scheme of stable Higgs bundles.

When n and d are coprime, we have thatM(n, d) =Ms(n, d) is smooth.

The moduli space M(n, d) is a non-compact variety whose dimension

depends on the choice of L. If L ∼= KC , then

dimM(n, d) = 2n2(g − 1) + 2. (1.7)

1.3 Spectral data for Higgs bundles on a smooth

base curve

A natural way to studyM(n, d) is through the Hitchin map, which we now

present.

The Hitchin map

Since a Higgs field is a twisted endomorphism of the vector bundle E, it has

a characteristic polynomial with coefficients

ai := (−1)itr
(∧i

φ
)
∈ H0(C,Li), i = 1, · · · , n. (1.8)

In particular, we have a1 = −tr(φ) and an = (−1)ntr(
∧n φ) = (−1)n det(φ).

Definition 1.3.1. Let (E, φ) ∈ M(n, d) be a semistable Higgs bundle and

consider sections ai as in (1.8). The Hitchin map is defined as follows.

h :M(n, d)→ A =

n⊕
i=1

H0(C,Li), (E, φ) 7→ (a1, · · · , an). (1.9)

Definition 1.3.2. We call characteristic the n-tuple a = (a1, · · · , an) ∈ A.

Remark 1.3.3. As it is already observed in [31], Theorem 8.1, the Hitchin

map is surjective and proper (see also [42], Theorem 6.1 and Remark 6.2).
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Moreover, if L ∼= KC , referring to the definition of A in (1.9), we have:

dimA = n2(g − 1) + 1 =
1

2
dimM(n, d).

Spectral curves

Let

Tot (L) = Spec(Sym(L−1)) (1.10)

be the total space of the line bundle L and let π : L→ C be the projection

onto C. There is a tautological coordinate x ∈ H0(Tot (L), π∗L) on Tot (L).

Consider the sections of π∗Ln having the form

sa = xn + π∗(a1)xn−1 + · · ·+ π∗(an). (1.11)

Definition 1.3.4. We define the spectral curve Xa as the zero divisor in

Tot (L) of a nonzero section as in (1.11). We also refer to Xa as the spectral

cover.

We now characterize the spectral curve Xa as a projective scheme defined

in Tot (L). Let

Z = P(OC ⊕ L−1) (1.12)

and let p : Z → C be the projection map extending π : L → C. Let OZ(1)

be the relatively ample line bundle on Z. We denote by y the section of

OZ(1), whose pushforward via p corresponds to the constant section (1, 0)

of the vector bundle

p∗OZ(1) ∼= OC ⊕ L−1.

We denote by x the section of OZ(1)⊗ p∗L whose pushforward via p corre-

sponds to the constant section (0, 1) of the vector bundle

p∗(OZ(1)⊗ p∗L) ∼= (OC ⊕ L−1)⊗ L ∼= L⊕OC .

In other words, {y = 0} is the section of p, called the infinity section,

corresponding to the surjection

OC ⊕ L−1 → L−1

and {x = 0} is the section of p, called the zero section, corresponding to the

surjection

OC ⊕ L−1 → OC .
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Remark 1.3.5. Given a = (a1, · · · , an) ∈ A as in (1.9), the spectral curve

is the projective curve inside Z given by the zero locus of the section

xn + p∗(a1)xn−1y + · · ·+ p∗(an)yn ∈ H0(Z, p∗Ln ⊗OZ(n)),

thus by the equation

xn + p∗(a1)xn−1y + · · ·+ p∗(an)yn = 0. (1.13)

We denote by πa : Xa → C the restriction of π to the spectral curve Xa.

Remark 1.3.6. By the description above, the spectral curve has pure dimen-

sion one and it has at worst locally planar singularities, since it is embedded

in Z.

Remark 1.3.7 ([30], Section 5.1). As the sections ai vary, (1.13) forms a

linear system of divisors on Tot (L) and on Z. The linear system

P(H0(Z, p∗Ln ⊗OZ(n))) (1.14)

has no base points: the main points of the argument by Hitchin are that xn

lies in the system (1.14) and that the linear system P(H0(C,Ln)) has no base

points for n ≥ 2. This follows from our assumption degL ≥ degKC = 2g−2.

Since we also assume that g ≥ 2 and that the vector bundle E has rank

n ≥ 2, we have degLn ≥ 4g − 4 ≥ 2g, yielding the claim (e.g. by [28],

Chapter IV, Corollary 3.2).

Remark 1.3.8. By Bertini’s theorem (e.g. [28], Chapter III, Corollary 10.9),

the generic spectral curve is a nonsingular projective curve, since the linear

system (1.14) has no base points by Remark 1.3.7.

On the other hand, if E has a φ-invariant subbundle F , then the char-

acteristic polynomial of φ decomposes and one factor corresponds to the

characteristic polynomial of the restriction of φ to F . In this case, the

spectral curve is singular.

We will also use the term “generic” for singular curves, in the sense of

Notation 5.1.19.

Remark 1.3.9. Referring to (1.13), note that y restricted to Xa is ev-

erywhere nonzero, so it trivializes OZ(1)|Xa . Thus x|Xa is a section of

(OZ(1)⊗ p∗L)|Xa = π∗aL associated to the spectral curve

xn + π∗a(a1)xn−1 + · · ·+ π∗a(an) = 0.
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Notation 1.3.10. From now on, with a slight abuse of notation, we assume

that the equation of the spectral curve Xa is of the form

xn + a1x
n−1 + · · ·+ an = 0. (1.15)

Spectral curves as finite morphisms

It is also useful to consider the following description of πa as a finite cover

of degree n.

Remark 1.3.11. Let a0 = 1 ∈ H0(C,OC). We can also see the sections

ai ∈ H0(C,Li), i = 0, · · · , n, as embeddings

ai : L−n → L−(n−i).

Consider the ideal sheaf

Ia =

(
n⊕
i=0

ai(L
−n)

)
⊂ Sym(L−1)

generated by the images of ai. Then we have

Xa = Spec(Sym(L−1)/Ia) ⊂ Tot (L) = Spec(Sym(L−1)).

In particular, the spectral curve πa : Xa → C is a finite morphism of degree

n and we have

πa,∗OXa ∼= Sym(L−1)/Ia (1.16)

as an OC-algebra and

πa,∗OXa ∼= OC ⊕ L−1 ⊕ · · · ⊕ L−(n−1) (1.17)

as a vector bundle (e.g. by [9], Chapter I, Lemma 17.2).

Moreover, since the map πa is finite, we can compute the arithmetic genus

of Xa via the invariance of the Euler characteristic (1.1) by pushforward by

finite morphisms, obtaining

χXa(OXa) = χC(πa,∗OXa).

By (1.17), this yields

χXa(OXa) =

n−1∑
i=0

χC(Li) = −(degL) · n(n− 1)/2 + nχC(OC). (1.18)
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Thus we have

gXa = (degL) · n(n− 1)/2− nχC(OC) + 1,

which, for L ∼= KC , yields

gXa = n2(g − 1) + 1. (1.19)

We also consider the spectral curve locally, for later use.

Definition 1.3.12. Let E → C be a vector bundle. We define the fibre of

E at a point q ∈ C as E(q) := Eq ⊗OC,q C(q), where Eq is the stalk of E at

q and C(q) is the residue field.

Notation 1.3.13. We denote by (q) all data referring to fibres of E at a

point q, e.g. maps, Higgs fields, etc.

Remark 1.3.14 ([7], Remark 5.1.2, [30], Section 5.1). We now give a more

explicit description of the relation between spectral curves and eigenvalues

of the Higgs field φ. Consider the characteristic polynomial of φ having the

form

det(λ · In − φ) = λn + a1λ
n−1 + · · ·+ an.

Pulling back the vector bundle E to Xa, we have φ ∈ H0(Xa,EndE ⊗ L)

satisfying

det(x · In − φ) = 0,

where x is the tautological coordinate on Tot (L).

For example, if E has rank 2, considering a point p ∈ C such that Xa is not

ramified over it, we have π−1
a (p) = {p1, p2} and we have

φ(p) =

(
c 0

0 d

)
(1.20)

where c = x(p1), d = x(p2) are the distinct eigenvalues of φ over p.

Fibres of the Hitchin map

Note that, while the generic spectral curve is smooth by Remark 1.3.8, it is

also useful to consider some non-generic cases for later use.
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Definition 1.3.15. We say that a curve is integral if it is reduced and

irreducible.

Notation 1.3.16. We assume that spectral covers of smooth base curves

are integral.

In particular, we focus on nodal curves.

Definition 1.3.17. By a nodal curve we mean a connected curve which

is allowed to be reducible and has only nodes (ordinary double points) as

singularities.

We need to consider a more general definition of Jacobian of a curve

than Definition 1.1.8.

Definition 1.3.18. Let Y a nodal curve. We define the generalized Jacobian

J(Y ) of Y as the moduli space of isomorphism classes of line bundles having

degree zero on every irreducible component of Y . Its dimension equals the

arithmetic genus of Y .

The level of generality of Notation 1.3.16 is enough for the aims of this

work. The case in which the spectral curve is reducible is discussed in the

Appendix of [35] and the case in which the spectral curve is not reduced is

discussed in [29], Proposition 6.1 and [17], Part 1.

Many ways of compactifying J(Xa) were described, e.g. by Altman-

Kleiman [2] for integral curves and by Seshadri [46] for reducible curves.

Simpson’s description, which we recall in Section 1.4, includes both of them.

As we saw in Remark 1.3.11, the morphism πa is finite, so it is affine.

This yields the following local description of the fibres of the Hitchin map.

Remark 1.3.19 ([36], Section 3). Let U = SpecA be an affine open set of

the smooth base curve C. Then π−1
a (U) = SpecB, where B is the A-algebra

B =
A[x]

xn + a1xn−1 + · · ·+ an
. (1.21)

A torsion-free sheaf on Xa corresponds, when it is restricted to π−1
a (U), to

a torsion-free B-module M . By the presentation (1.21), the datum of a
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B-module is equivalent to the datum of an A-module N together with an

endomorphism ψ satisfying

ψn + a1ψ
n−1 + · · ·+ anid = 0.

The module M is torsion-free if and only if N is torsion-free, which, since

A is regular of dimension one, is equivalent to N being locally free.

We see in Proposition 1.3.22 how this local construction can be globalized

over C.

In order to characterize rank-1 torsion-free sheaves on Xa, we recall the

definition of Euler characteristic of a sheaf.

Definition 1.3.20. Let E be a coherent sheaf on an integral curve Y . We

define the Euler characteristic of E as χY (E) = deg E + rank E · χY (OY ).

Let

Λ := Sym(L−1). (1.22)

Lemma 1.3.21 ([6], Section 2.3). Let Y be a curve having at worst a nodal

singularity. The category of Higgs bundles on Y is equivalent to the category

of Λ-modules on Y .

We discuss Simpson’s compactified Jacobian in Remark 1.4.15.

Proposition 1.3.22 ([11], Proposition 3.6, [17], Section 1.4.1). Let C be

a smooth projective curve, let L be a line bundle on it having degree which

is greater or equal to the degree of KC . Let a = (a1, · · · , an) be a set of

sections of Li, i = 1, · · · , n, let πa : Xa → C be the spectral curve and

assume that Xa is integral. Then there is a bijective correspondence between

isomorphism classes of rank-1 torsion-free sheaves η on Xa and isomorphism

classes of semistable Higgs bundles (E, φ) on C, where φ has characteristic

coefficients ai. The correspondence is given by associating to any rank-1

torsion-free sheaf η on Xa the semistable Higgs bundle (E, φ), where E is

the vector bundle πa,∗η on C, endowed with the natural isomorphism

πa,∗η → πa,∗η ⊗ L ∼= πa,∗(η ⊗ π∗aL)

given by multiplication by the section x of π∗aL. This yields an isomorphism

h−1(a) ∼= J
γ
(Xa), (1.23)
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where J
γ
(Xa) is Simpson’s compactified Jacobian parametrizing rank-1 torsion-

free sheaves on Xa having suitable fixed degree γ.

Proof. Recall that πa is a finite morphism of degree n. Thus, if η is a torsion-

free sheaf of rank 1 on Xa, then we have that E = πa,∗η is a torsion-free

sheaf of rank n on C. Since C is smooth, E is a vector bundle and we have

χXa(η) = χC(πa,∗η),

yielding

deg η + χXa(OXa) = degE + nχC(OC).

Evaluating χXa(OXa)− nχC(OC) as in (1.18) yields

degE = deg η − n(n− 1)

2
degL. (1.24)

Letting

γ := deg η = degE +
n(n− 1)

2
degL,

we have η ∈ Jγ(Xa). In particular, letting L ∼= KC yields

γ = degE + n(n− 1)(g − 1). (1.25)

Pushing forward η via πa also yields the Higgs field, as we now see. By

(1.16), a πa,∗OXa-module structure on E corresponds to an algebra homo-

morphism

Λ/Ia → EndE, (1.26)

which is equivalent to an OC-module L−1 → EndE, which is equivalent,

by Lemma 1.3.21, to the datum of a Higgs field φ : E → E ⊗ L satisfying

Pa(φ) = 0, where Pa is the polynomial determined by a. Since we assume

that Xa is integral, Pa is irreducible over the function field of Xa, so it is

the characteristic polynomial of φ.

Conversely, if (E, φ) is a semistable Higgs bundle, where E is a vector

bundle of rank n on C and φ : E → E ⊗ L is a linear homomorphism

with characteristic coefficients ai, then Pa(φ) = 0 by the Cayley-Hamilton

theorem.

This yields the sought-for isomorphism (1.23).
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Remark 1.3.23. Since the Hitchin map is surjective, by Proposition 1.3.22

we have a further way to compute the dimension of M(n, d), which will be

useful in Section 4.4. Assuming L ∼= KC , we have:

dimM(n, d) = dimh−1(a) + dimA = gXa + dimA = 2n2(g−1) + 2. (1.27)

Definition 1.3.24. We call spectral data the datum of the spectral curve Xa

together with the datum of the rank-1 torsion-free sheaf η as in Proposition

1.3.22.

In particular, the rank-1 torsion-free sheaf η corresponding to (E, φ) can

always be obtained, up to twisting, as the eigenspace of π∗aφ with eigenvalue

x.

Proposition 1.3.25 ([20], Proposition 1.4.5, [11], Remark 3.7). In the no-

tations of Theorem 1.3.22 we have the following exact sequence

0→ η ⊗ π∗aL1−n → π∗aE
π∗aφ−x−−−−→ π∗aE ⊗ π∗aL

ev−→ η ⊗ π∗aL→ 0, (1.28)

where ev is induced by the evaluation map π∗aE
∼= π∗aπa,∗η → η.

1.4 Simpson’s moduli space

We first recall some definitions about coherent sheaves on a curve Y having

at worst nodal singularities, which will also be useful later.

Definition 1.4.1. Let E be a coherent sheaf on Y , let y be a point of Y

and let Ey be the stalk of E at y. We define the support of E as the closed

set

Supp E = {y ∈ Y : Ey 6= 0} ⊂ Y.

The dimension dimE of E is the dimension of its support.

Definition 1.4.2. We say that E is pure of dimension d if, for all nontrivial

subsheaves F ⊂ E, we have dimF = d.

We say that E is torsion-free if it is pure of dimension 1.

Let OY (1) be an ample invertible sheaf on Y .
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Definition 1.4.3. We define the Hilbert polynomial of E as the polynomial

with rational coefficients, whose degree equals dimE, given by

p(E, s) := χY (E ⊗OY (1)s), s >> 0.

Definition 1.4.4. Let E be a torsion-free sheaf on Y and let

p(E, s) = c1 · s+ c0

be its Hilbert polynomial. We define the polarized rank of E as the rational

number rank p(E) = c1/deg (OY (1)) and the polarized degree of E as the

rational number deg p(E) = c0− rank p(E)χY (OY ). The Hilbert polynomial

thus has the form:

p(E, s) = deg (OY (1))rank p(E) · s+ deg p(E) + rank p(E)χY (OY ). (1.29)

Remark 1.4.5 ([29], Remark 3.8, [33], Section 1.2). We now discuss how

polarized rank and polarized degree relate to the (classical) notions of rank

and degree given in Section 1.1.

First, assume that Y is an integral curve. If E is a torsion-free sheaf on

Y , then there exists an open dense subset U ⊂ Y such that E|U is locally

free and the rank of E equals the rank of E|U , so the notions of rank and

degree coincide with the ones in Section 1.1.

If Y is not integral, then the polarized rank and polarized degree of E

need not be integers. Example 2.2.4 provides an explicit computation of

rank p(E), deg p(E) for this case.

Definition 1.4.6. We define the p-slope of E as

µp(E) :=
p(E, s)

rank p(E)
=

χY (E)

rank p(E)
+ deg (OY (1)) · s. (1.30)

We say that a coherent sheaf E is p-semistable (respectively, p-stable) if it

is torsion-free and, for any proper subsheaf F ⊂ E, we have µp(F ) ≤ µp(E)

(respectively, µp(F ) < µp(E)).

Remark 1.4.7 ([7], Section 4.1, [48], Section 1.3). Equation (1.30) shows

that, if Y is a smooth curve, Definition 1.4.6 is equivalent to Definition 1.1.3,

since the difference between slope and p-slope does not depend on E. If Y
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is a one-nodal reducible curve having two smooth components, we will give

an alternative notion to p-slope in Definition 2.3.1 and we will show that it

is equivalent to p-slope in Remark 2.3.2.

Notation 1.4.8. Until the end of the section, Y denotes a smooth curve or

Y is a reducible, one-nodal, curve having two smooth components.

We recall the interpretation of Simpson’s works [48], [49] by Balaji-Barik-

Nagaraj [6], which generalizes Sections 1.1 and 1.2 and will also be useful

later.

Definition 1.4.9. Let L be a line bundle on Y . We define a torsion-

free Hitchin pair (E, φ) on Y as a torsion-free sheaf E together with a

homomorphism φ : E → E ⊗ L.

Remark 1.4.10. Simpson constructs in [48], Theorem 3.8, a quasi-projective

scheme whose points correspond to S-equivalence classes of p-semistable Λ-

modules with fixed Hilbert polynomial p. The equivalence Lemma 1.3.21

thus yields an alternative construction of the moduli space M(n, d), which

will be useful in Chapter 3.

Remark 1.4.11. Let Y be a smooth curve. Then [48], Theorem 4.10, char-

acterizes singularities of M(2, 0) in terms of nontrivial polystable Higgs

bundles. In particular, assuming that Φ has trace zero, the singularities of

M(2, 0) are given by

Σ = {(E,Φ) : (E,Φ) = (N,φ)⊕ (N−1,−φ)}, (1.31)

for N a Φ-invariant line subbundle of E of degree 0.

Let Z be as in (1.12). Let D∞ := Z \ L be the divisor at infinity. Then

we have the following.

Lemma 1.4.12 ([49], Lemma 6.8, [6], Lemma 2.4, [7], Lemma 4.1.3). There

is a functorial correspondence between the category of Hitchin pairs (E, φ)

on Y and the category of coherent OZ-modules E whose support does not

intersect the divisor at infinity. The sheaf E is flat if and only if E is flat.

The sheaf E is torsion-free if and only if E is pure of dimension one.
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Moreover, as in [6], Section 2.4, we have that Remark 1.4.7 enables us

to relate semistability on Z to semistability on Y , as we now see.

Remark 1.4.13. Choose k such that OZ(1) := π∗OY (k)⊗OZ(D∞) is ample

on Z. In particular, since Z is the projective completion of the total space

of L, we have:

OZ(1)|L = π∗OY (k). (1.32)

This way, for any coherent sheaf E on Z whose support does not meet the

divisor D∞, the Hilbert polynomials of the OZ-module E and that of π∗E
are such that

p(E , s) = p(π∗E , ks),

thus the notion of p-semistability on Z is equivalent to that on Y . By

Remark 1.4.7, p-semistability of E on Z is equivalent to slope-semistability

of (E, φ) on Y (both in the case in which Y is smooth and in the case in

which Y is one-nodal, reducible).

Remark 1.4.14. Fix a polynomial p of degree one and let pk(s) := p(ks).

Then [48], Theorem 1.21 yields a coarse moduli space M(OZ(1), pk) of

p-semistable coherent OZ-modules of pure dimension 1 on the projective

variety Z with respect to the ample line bundle OZ(1), having fixed Hilbert

polynomial pk. The moduli space M(OZ(1), pk) is a projective variety.

Since, by Lemma 1.4.12, Higgs bundles on Y correspond to p-semistable

pure sheaves whose support does not intersect D∞, there is an open inclusion

M(n, d) ⊂M(OZ(1), pk).

Moreover, considering stable vector bundles as stable Higgs bundles hav-

ing underlying stable vector bundle and zero Higgs field, Simpson’s construc-

tion also yields moduli spaces of stable vector bundles.

Remark 1.4.15. Consider the spectral curveXa → Y . We denote by Jδ(Xa)

the Simpson moduli space of p-semistable rank-1 torsion-free sheaves on Xa

of degree δ. We consider two cases:

(a) if Y is a smooth curve and Xa is an integral curve, then every rank-

1 torsion-free sheaf on Xa is stable and Jδ(Xa) is isomorphic to the

compactification by Altman-Kleiman [2],
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(b) if Y is one-nodal, reducible and Xa is an adapted spectral curve (Def-

inition 4.3.1), [1] shows that Simpson’s compactification is isomorphic

to the one by Oda-Seshadri [43], which parametrizes rank-1 torsion-

free sheaves on Xa with a semistability condition depending on the

polarization on Y , as we see in Proposition 4.4.4.

1.5 The norm map and Prym varieties

We now give preliminaries to characterize the fibre of the SL(2,C)-Hitchin

map, which will be useful in Chapter 5.

Notation 1.5.1. In this section, we denote by π : X → C a cover of degree

n ≥ 2 of a smooth base curve C.

Definition 1.5.2. Let X be a smooth curve, let pi ∈ X and let ni ∈ Z. We

define the norm map associated to π as the map

Nmπ : J(X)→ J(C) OX
(∑

nipi

)
7→ OC

(∑
niπ(pi)

)
.

Remark 1.5.3. More generally, the norm map is defined for any finite cover

π : X → C of degree n ≥ 2 in [29], Section 3.1 and the following properties

hold:

• for any invertible sheaves N ,N ′ on X, we have

Nmπ(N ⊗N ′) ∼= Nmπ(N )⊗Nmπ(N ′).

• for any invertible sheaf N on C, we have

Nmπ(π∗N ) ∼= N n. (1.33)

Definition 1.5.4. We define the Prym variety associated to π as the locus

Prπ ⊆ J(X) of line bundles whose norm with respect to π is trivial, i.e.

Prπ = {L ∈ J(X) : Nmπ(L) ∼= OC}.

We define the compactified Prym variety associated to π as the closure

of Prπ inside the compactified Jacobian of X:

Prπ = {η ∈ J(X),Nmπ(η) ∼= OC}.



19

In particular, Prπ = Prπ ∩ J(X).

Remark 1.5.5. Note that, as in the work by Gothen-Oliveira [26], Remark

3.5, we define the Prym variety as full kernel of the norm map, which agrees

e.g. with the work by Hausel-Pauly [29], Theorem 1.1, de Cataldo-Hausel-

Migliorini [23], Lemma 4.4.3, de Cataldo [22], Definition 2.4.8. This enables

us to consider cases in which the Prym variety is not connected.

Definition 1.5.4 is different from the classical one by Mumford [37], Sec-

tion I.3, in which the Prym variety is always connected.

Proposition 1.5.6 ([20], Definition-Lemma 2.5.1). For any rank-1 torsion-

free sheaf η in J(X) we have:

Nmπ(η) ∼= det(π∗η)⊗ det(π∗OX)−1. (1.34)

From [15], Proposition 11.4.3, we obtain the following characterization.

Proposition 1.5.7. Let X and C be smooth curves and let π : X → C be a

cover of degree n ≥ 2. Then Ker Nmπ is nontrivial if and only if π factors

through a cyclic étale cover of degree at least 2.

X
π //

π2   

C

X1

π1

>> . (1.35)

Prym varieties appear in the study of G-Higgs bundles, which we briefly

introduce here and discuss in Chapter 5. We emphasize the aspects of the

description of G-Higgs bundles from Arroyo [5] and Branco [17] which are

useful to our aims and we refer to these works for a more comprehensive

treatment.

Remark 1.5.8. Let C be a smooth base curve and let G be an affine re-

ductive group over C with Lie algebra g. Similarly to Theorem 1.2.9, there

exists a coarse moduli spaceMG(n, d) for S-equivalence classes of semistable

G-Higgs bundles of degree d and rank n.

The datum of the G-Higgs bundles that we will study is obtained from the

datum of GL(2,C)-Higgs bundles satisfying suitable extra-conditions, e.g.

that the underlying vector bundles have fixed determinant. Considering
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Proposition 1.3.22, these conditions are mirrored both by extra-conditions

on the coefficients of the spectral curve, some of which are necessarily zero,

and by considering (in the generic case) appropriately constrained line bun-

dles, e.g. having fixed norm, on the spectral curve. This way, we will see

that the fibre of the Hitchin map associated to G-Higgs bundles is given by

the Prym variety introduced in Definition 1.5.4.



Chapter 2

Torsion-free sheaves on a

one-nodal curve of compact

type

We now discuss how the tools introduced in Chapter 1 adapt when we con-

sider a one-nodal curve C of compact type as our base curve.

2.1 Line bundles on a one-nodal curve of compact

type

We first recall some definitions about nodal curves, then we focus on one-

nodal curves of compact type. We consider a nodal curve C (Definition

1.3.17) having γ irreducible components C1, · · · , Cγ and δ nodes q1, · · · , qδ.

Definition 2.1.1. We define the dual graph ΓC of C as the graph whose

vertices are identified with the irreducible components of C and whose edges

are identified with the nodes of C. An edge joins two (possibly equal)

vertices if the corresponding node is in the intersection of the corresponding

irreducible components.

Definition 2.1.2. Let C be a nodal curve. We say that C is of compact

type if every irreducible component of C is smooth and its dual graph ΓC is

a tree, i.e. it is non oriented, connected and without cycles. In particular,

21



22 2. Torsion-free sheaves on a one-nodal curve of compact type

ΓC being a tree implies that its first Betti number is zero, i.e.

γ − δ + 1 = 0. (2.1)

We now show that the generalized Jacobian of C (Definition 1.3.18) is

projective if and only if C is a curve of compact type.

Remark 2.1.3 ([19], Section 2.1). Let C be a nodal curve. Assume that C

has δ nodes and γ irreducible components. Let

ν : C̃ = tγi=1Ci → C

be the (partial) normalization. The associated map of structure sheaves

OC ↪→ OC̃

is associated to the following exact sequence

0→ OC → ν∗OC̃ → ⊕
δ
i=1C(qi) → 0,

which yields the following exact sequence in cohomology:

0→ H0(C,OC)→ H0(C̃, ν∗OC̃)→ Cδ → H1(C,OC)→ H1(C̃, ν∗OC̃)→ 0.

(2.2)

From this sequence we have a formula for the arithmetic genus g of C:

g = h1(C̃, ν∗OC̃) + δ − γ + 1 =

γ∑
i=1

gi + δ − γ + 1, (2.3)

where gi is the geometric genus of Ci.

We now consider O∗C ↪→ OC in (2.2), and identify J(C) ∼= H1(C,O∗C),

J(C̃) ∼= H1(C̃, ν∗O∗C̃). Then, arguing as above, we obtain the exact sequence

0→ (C∗)δ−γ+1 → J(C)
∼−→
ν∗

J(C̃)→ 0.

In particular, if C is of compact type, then (2.1) yields the isomorphism

J(C)
∼−→ J(C̃), L 7→ (L|C1

, · · · , L|Cγ ). (2.4)

Notation 2.1.4. From now on, unless otherwise stated, we assume

that C is a one-nodal curve of compact type having two smooth

components C1, C2 which have genus at least 2. Let q be the node

of C.
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Remark 2.1.5. By Remark 2.1.3, we have the following characterizations.

• The datum of a line bundle L on C is equivalent to the datum of its

restrictions L1 to C1 and L2 to C2, together with a canonical identifi-

cation between the fibres of L1 and L2 at q.

• Letting g be the arithmetic genus of C, we have g = g1 + g2 because

of (2.3), where gi is the genus of Ci.

2.2 Equivalence of categories: torsion-free sheaves

and triples

As we saw in Remark 1.4.5, when C is reducible, the rank and degree of

torsion-free sheaves depend on the choice of a polarization on C.

Definition 2.2.1. Let C be a one-nodal curve of compact type. A polar-

ization α = (α1, α2) on C is the choice of positive rational numbers such

that

α1 + α2 = 1. (2.5)

We can reformulate Definition 2.2.1 as follows, which will also be useful

for Remark 4.4.3.

Remark 2.2.2. Let OC(1) be an ample line bundle on C. This yields ample

line bundles OC(1)|C1
, OC(1)|C2

on C1, C2 respectively. Equivalently to

Definition 2.2.1, setting δi := degOC(1)|Ci
for i = 1, 2, we say that OC(1)

gives a polarization on C if we have

δ1

δ2
=
α1

α2
.

In this case, we set αi =
δi

δ1 + δ2
.

Since C is of compact type, we can reformulate Definition 1.4.4 as follows.

Definition 2.2.3. Let E be a torsion-free sheaf on C. Let r1, r2 be the

ranks of the restrictions of E to the components C1, C2 respectively. We say

that E has rank (r1, r2) and we define the α-rank of E as

rα(E) := rank α(E) = α1r1 + α2r2. (2.6)
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In particular, if we have r1 = r2 = r, we also simply say that E has rank r.

We define the α-degree of E as

dα(E) := deg α(E) = χC(E)− rα(E)(1− g).

Example 2.2.4 ([17], Example 1.8). We now consider the relation of Def-

inition 2.2.1 and Remark 2.2.2 to Definition 1.4.4. Let C be a one-nodal

curve of compact type having smooth components C1, C2 of genus g1, g2

respectively. Let q be the node of C. Let OC(1) be an ample line bundle

whose corresponding polarization is given by α1 = α2 = 1/2. Let H be a

locally free sheaf of rank r1 and degree d1 on C1. Let j : C1 ↪→ C be the

natural inclusion and consider the torsion-free sheaf H = j∗H on C.

By the assumption on the polarization, we have

degOC(1) = 2deg
(
OC(1)|C1

)
= 2δ1.

The polarized rank and polarized degree of the sheaf H are given by (1.29):

p(H, s) = χC(H⊗OC(s)) = 2δ1rank p(H)s+deg p(H)+rank p(H)(1−g1−g2).

On the other hand, we have that

p(H, s) = χC1(H ⊗ j∗OC(s)) = δ1r1s+ d1 + r1(1− g1),

thus we have

rank p(H) =
r1

2
,

which is not necessarily an integer. Moreover, we have

deg p(H) = d1 + r1(1− g1)− r1

2
(1− g1 − g2) = d1 +

r1

2
(1− g1 + g2).

Note that H restricted to C2 is a torsion sheaf supported at the node q.

We now define triples on C.

Definition 2.2.5. Let E1, E2 be locally free sheaves on C1, C2 respectively.

Let E
(q)
i be the fibre of Ei at q, i = 1, 2. A triple on C is the datum of

(E1, E2,
−→
A (q)), where

−→
A (q) : E

(q)
1 → E

(q)
2 is a homomorphism.
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Definition 2.2.6. A morphism of triples β : (F1, F2,
−→
D (q))→ (E1, E2,

−→
A (q))

consists of OCi-module homomorphisms βi : Fi → Ei, i = 1, 2, such that

there is a commutative diagram

F
(q)
1
β1⊗C(q)

//

−→
D (q)

��

E
(q)
1

−→
A (q)

��

F
(q)
2
β2⊗C(q)

// E
(q)
2

. (2.7)

We now recall the equivalence of categories between torsion-free sheaves

and triples.

Lemma 2.2.7 ([40], Lemma 2.3, [13], Theorem 6.5(1) ). Fix an orientation

of C such that C1 is the first component and C2 is the second component.

Then there is an equivalence between the category of torsion-free sheaves E as

in Definition 1.4.2 and the category of triples (E1, E2,
−→
A (q)) as in Definition

2.2.5.

Example 2.2.8. Consider the torsion-free sheaf H from Example 2.2.4.

Then, since the restriction of H to C2 is a torsion sheaf supported at q, the

construction in the proof of Lemma 2.2.7 associatesH to the triple (H, 0,
−→
0 ).

Example 2.2.9. Let L be a rank-1 torsion-free sheaf on C. Then, by

Lemma 2.2.7, the datum of L is equivalent to that of its restrictions L1 and

L2, together with a map
−→
A (q) whose rank is at most 1. If

−→
A (q) has rank 1,

then L is a line bundle and
−→
A (q) is the canonical identification between L1

and L2 at q as in Remark 2.1.5, otherwise L is not locally free at q.

We give a stability condition on triples, depending on the polarization

on C, and we give further examples in Sections 2.3, 2.4.

Remark 2.2.10. By Lemma 2.2.7, every torsion-free sheaf E gives rise to

a triple (E1, E2,
−→
A (q)). Note that, if we choose C2 as the first component

and C1 as the second component, Lemma 2.2.7 yields a triple (Ė1, Ė2,
←−
B (q)),

where Ė1, Ė2 are locally free sheaves on C1, C2 respectively, which we con-

sider together with a homomorphism
←−
B (q) : Ė

(q)
2 → Ė

(q)
1 .

We recall the construction which relates triples of the form (E1, E2,
−→
A (q))

to triples of the form (Ė1, Ė2,
←−
B (q)).
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Remark 2.2.11 ([40], Remark 2.4). Let V be a vector bundle on a smooth

curve Y , let p be a point of Y and let H be a subspace of the fibre V (p) of V

at p. Then there are two canonical constructions, called Hecke modifications

of vector bundles, which are defined as follows:

(i) γ : W → V , Im(W (p)) = H, where W is a vector bundle and γ is a

homomorphism of vector bundles, which is an isomorphism outside p.

We obtain γ and W by letting T := V (p)/H and letting j : V → T be

the canonical OY -module homomorphism. Then we naturally obtain

W = Kerj ⊆ V, γ : W → V. (2.8)

In fact, W is a subsheaf of V which is torsion-free. Since Y is smooth,

W is also a vector bundle. The map γ is just the natural inclusion of

the kernel of a homomorphism into its domain.

(ii) δ : V → W , Ker(δ(p)) = H, where W is a vector bundle and δ is a

homomorphism of vector bundles, which is an isomorphism outside p.

We obtain δ and W as follows: let V (p)×(V (p))∨ → k be the canonical

dual pairing and let H⊥ be the orthogonal of H under the dual pairing.

Let V ∨ be the dual of V and define the vector bundle W∨ and the

homomorphism δ∨ as in (2.8) so that

δ∨ : W∨ → V ∨, Im((W (p))∨) = H⊥.

These can be obtained as in (i). Let δ be the dual of δ∨ and let W

be the dual of W∨. Then δ : V → W is a homomorphism of vector

bundles and δ(p) is the dual of (δ(p))∨, thus it satisfies

Ker(δ(p)) = (Im(δ(p))∨)⊥ = (H⊥)⊥ = H,

hence we have δ and W with the required properties.

Remark 2.2.12 ([40], Remark 2.5). Given a triple (E1, E2,
−→
A (q)), the triple

(Ė1, Ė2,
←−
B (q)) can be obtained as follows. Consider the diagram

E
(q)

1
i(q) //

−→
A (q)

��

Ė
(q)

1OO
←−
B (q)

E
(q)

2
oo
j(q)

Ė
(q)

2

(2.9)
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where j : Ė2 → E2 (respectively i : E1 → Ė1) is the canonical Hecke modifi-

cation such that Im(j(q)) = Im(
−→
A (q)) (respectively Ker(i(q)) = Ker(

−→
A (q))).

The homomorphism
←−
B (q) : Ė

(q)
2 → Ė

(q)
1 is obtained as follows: for x ∈ Ė (q)

2

let f ∈ E (q)
1 be such that

−→
A (q)(f) = j(q)(x). If we set

−→
B (q)(x) = i(q)(f),

this is well defined.

Definition 2.2.13. The Euler characteristic of a triple (E1, E2,
−→
A (q)) is

defined by

χC(E1, E2,
−→
A (q)) = χC1(E1) + χC2(E2)− rank (E2). (2.10)

Remark 2.2.14. Note that, if E1, E2 are rank-2 locally free sheaves on C1, C2

respectively, Definition 2.2.13 is compatible with the definitions of Euler

characteristics of Ei as vector bundles on Ci, i = 1, 2, since we have

χC1(E1)+χC2(E2)−2 = deg (E1)+2(1−g1)+deg (E2)+2(1−g2)−2 = degE+2(1−g) = χC(E).

Remark 2.2.15 ([40], Remark 2.11). Recalling Remark 2.2.12, we define the

Euler characteristic of triples of the form (Ė1, Ė2,
←−
B (q)) as

χC(Ė1, Ė2,
←−
B (q)) := χC(E1) + χC(E2)− rank (E1)

and we have χC(E1, E2,
−→
A (q)) = χC(E) = χC(Ė1, Ė2,

←−
B (q)).

2.3 Moduli spaces of semistable triples

We now define semistability for torsion-free sheaves and for the associated

triples on the curve C having polarization α as in Definition 2.2.1.

Semistability for torsion-free sheaves and for triples

Definition 2.3.1. We define the α-slope of the torsion-free sheaf E on C

as

µα(E) =
χC(E)

rα(E)
.

for rα as in (2.6).
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Remark 2.3.2. Considering (1.29) for a one-nodal curve C of compact type,

we have

µp(E) =
p(E, s)

rank p(E)
= µα(E) + deg (OC(1)) · s,

in particular the difference between the p-slope and the α-slope does not

depend on E.

Definition 2.3.3. We say that E is α-semistable (respectively α-stable) if

µα(F ) ≤ µα(E) (respectively µα(F ) < µα(E))

for all nontrivial proper subsheaves F ⊂ E.

Remark 2.3.4 ([7], Remark 1.1.4). If χC(E) is odd and E is a α-semistable

torsion-free sheaf of rank 2, then E is automatically α-stable since there is

no subsheaf F of E such that 2χC(F ) = χC(E).

Notation 2.3.5. From now on, we focus on triples of type (E1, E2,
−→
A (q))

and refer to triples of the form (Ė1, Ė2,
←−
B (q)) only when it is necessary.

Recall that Remark 2.2.12 provides a way to pass from triples of the

form (E1, E2,
−→
A (q)) to triples of the form (Ė1, Ė2,

←−
B (q)).

Definition 2.3.6. Let E be a torsion-free sheaf. A subbundle F of E is a

subsheaf F such that the quotient E/F is a torsion-free sheaf.

Definition 2.2.6, considering βi as the inclusion of Fi into Ei, i = 1, 2,

gives the following.

Definition 2.3.7. A triple (F1, F2,
−→
D (q)) is said to be a subtriple of (E1, E2,

−→
A (q))

if ιi : Fi → Ei is an inclusion of OCi-modules and the following diagram

commutes.

F
(q)
1
� �

ι1⊗C(q)
//

−→
D (q)

��

E
(q)
1

−→
A (q)

��

F
(q)
2
� �

ι2⊗C(q)
// E

(q)
2

(2.11)

We say that (F1, F2,
−→
D (q)) is a proper subtriple if at least one submodule Fi

is strictly contained in Ei.
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Definition 2.3.8. Let E be a torsion-free sheaf of rank (r1, r2) on C. We

define the slope µα of the triple (E1, E2,
−→
A (q)) associated to E as

µα(E1, E2,
−→
A (q)) :=

χC(E1, E2,
−→
A (q))

rα(E)
.

Definition 2.3.9. A triple (E1, E2,
−→
A (q)) is said to be α-semistable (respec-

tively α-stable) if

µα(F1, F2,
−→
D (q)) ≤ µα(E1, E2,

−→
A (q)) (respectively µα(F1, F2,

−→
D (q)) < µα(E1, E2,

−→
A (q)))

(2.12)

for all nontrivial proper subtriples (F1, F2,
−→
D (q)) of (E1, E2,

−→
A (q)).

Notation 2.3.10. As we did in Section 1.1, in order to have different nota-

tions for spaces of torsion-free sheaves (without Higgs datum) and for spaces

of torsion-free Hitchin pairs, we use the superscript V (e.g. SV ,MV ) when

we refer to moduli spaces of torsion-free sheaves or triples (not involving

Higgs data), while we omit the superscript V when we discuss Hitchin pairs

and Hitchin triples.

Notation 2.3.11. Until the end of the chapter, we assume that we are given

a torsion free sheaf E on C of rank (2, 2).

Stability of torsion-free sheaves on C corresponds to stability of the as-

sociated triples.

Remark 2.3.12. Let SV (2, χ, α) denote the set of all isomorphism classes of

α-semistable torsion-free sheaves on C of rank (2, 2) and Euler characteristic

χ. Let E be a torsion-free sheaf such that [E] ∈ SV (2, χ, α). Then the triple

corresponding to it is α-semistable and conversely, because of our definition

of Euler characteristic (2.10).

Theorem 2.3.13 ([40], Theorem 3.1(a)). Let χ 6= 0 and let α = (α1, α2)

be a polarization on C such that α1χ is not an integer. Let (b1, b2) be the

unique tuple satisfying

α1χ < b1 < α1χ+1, α2χ+1 < b2 < α2χ+2, b1+b2 = χ+2. (2.13)

Let [E] ∈ SV (2, χ, α) and let (E1, E2,
−→
A (q)) be the triple corresponding to E.

Then we must have rank
−→
A (q) ≥ 1 and there are two possibilities: either

χC1(E1) = b1, χC2(E2) = b2 (2.14)
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or

χC1(E1) = b1 + 1, χC2(E2) = b2 − 1. (2.15)

Moreover, if rank
−→
A (q) = 1 only (2.14) is possible.

Corollary 2.3.14 ([40], Section 1, Corollary 3.1). In the hypotheses of The-

orem 2.3.13, if [E] ∈ SV (2, χ, α), then either E is locally free or it is a

torsion-free OC-module such that Eq ∼= OC,q ⊕ mC,q. The choice of the po-

larization α on C prevents the existence of torsion-free OC-modules whose

stalk at the node q is of the form mC,q ⊕mC,q.

Remark 2.3.15. Bounds on χCi(Ei) which are similar to the ones given in

Theorem 2.3.13 are given in Favale-Brivio [25], Lemma 3.3 and they involve

the rank of
−→
A (q) explicitly. Let E be a α-semistable torsion-free sheaf of

rank (2, 2), for some polarization α = (α1, α2). Let χ = χC(E). Then we

have:

α1χ ≤ χC1(E1) ≤ α1χ+rank
−→
A (q), α2χ+2−rank

−→
A (q) ≤ χC2(E2) ≤ α2χ+2.

(2.16)

Referring to the arguments in the proof of Theorem 3.2.10, which are similar

to the ones in the proof of Theorem 2.3.13, we have that (2.16) coincides

with the bounds (3.15), (3.16) for rank
−→
A (q) = 2 (respectively with (3.17)

for rank
−→
A (q) = 1).

An explicit description of loci which allow the existence of a polarization

α such that the conditions (2.16) hold is given in [25], Lemma 3.4, which we

consider for our case of rank-2 torsion-free sheaves E having nonzero Euler

characteristic.

Example 2.3.16. Let E be a torsion-free sheaf of rank 2 and let 1 ≤ k ≤ 2

be an integer. Then there exists a non-empty subset W2,k of Z2 such that

for any pair (χ1, χ2) ∈ W2,k, we can find a polarization α = (α1, α2) such

that

α1χ ≤ χ1 ≤ α1χ+k, α2χ+2−k ≤ χ2 ≤ α2χ+2, χ = χ1+χ2−2. (2.17)
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If χ > 0, then we need that the system

χ1−k
χ ≤ α1 ≤ χ1

χ

χ2−2
χ ≤ α2 ≤ χ2+k−2

χ

α1 + α2 = 1,

0 < αi < 1, αi ∈ Q

has solutions, which occurs if and only if χ1 > 0, χ2 > 2 − k. Similarly, if

χ < 0, then we need that the system

χ1

χ ≤ α1 ≤ χ1−k
χ

χ2−2+k
χ ≤ α2 ≤ χ2−2

χ

α1 + α2 = 1,

0 < αi < 1, αi ∈ Q

has solutions, which occurs if and only if χ1 < k, χ2 < 2.

Remark 2.3.17. In Section 2.4.4, especially Lemma 2.4.6, we discuss the

relation between α-stability of triples and stability of vector bundles ap-

pearing in these triples and we obtain a description which is similar to [25],

Corollary 3.5.

We introduce the following notations for moduli spaces of α-semistable

triples.

Notation 2.3.18. LetMV
12(2, χ) be the moduli space of α-semistable triples

(E1, E2,
−→
A (q)) of rank 2 and Euler characteristic χ = χC(E1, E2,

−→
A (q)),

which we simply denote by MV
12, satisfying

α1χ < χC1(E1) < α1χ+ 1, α2χ+ 1 < χC2(E2) < α2χ+ 2. (2.18)

Let MV
21(2, χ) be the moduli space of α-semistable triples (Ė1, Ė2,

←−
B (q))

of rank 2 and Euler characteristic χ = χC(Ė1, Ė2,
←−
B (q)), which we simply

denote by MV
21, satisfying

α1χ+ 1 < χC1(Ė1) < α1χ+ 2, α2χ < χC2(Ė2) < α2χ+ 1. (2.19)

Remark 2.3.19. Moduli spaces of α-semistable triples are constructed in

[40], Theorem 5.3.
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We also define moduli spaces of semistable vector bundles on Ci.

Notation 2.3.20. We denote byMV
1 the moduli space of semistable vector

bundles of rank 2 on C1. We denote byMV
2 the moduli space of semistable

vector bundles of rank 2 on C2.

2.4 Moduli spaces of triples having odd Euler char-

acteristic

Notation 2.4.1. Until the end of the chapter, we assume that the Euler

characteristic χC(E) of E is odd, in particular we assume that χC1(E1) is

odd and χC2(E2) is even. As in Notation 2.3.18, we focus on the Euler

characteristic of vector bundles E1 and E2, rather than on their degree.

Recall that we obtain an equivalent notion of stability, as we saw in Remark

1.4.7.

Theorem 4.1 in [40] yields the following description of the moduli space

of α-semistable rank-2 torsion-free sheaves on C.

Theorem 2.4.2. Consider a polarization α = (α1, α2) on C such that

α1χ is not an integer. Then the moduli space MV (2, χ, α) of α-semistable

rank-2 torsion-free sheaves of odd Euler characteristic χ on C is a reduced,

connected, projective scheme with exactly two smooth irreducible compo-

nents MV
12 and MV

21 intersecting transversally along a smooth divisor N V

parametrizing triples of the form (E1, E2,
−→
A (q)), where

−→
A (q) has rank 1.

In particular, assuming that α1χ is not an integer (together with the

assumption that χ is odd) implies that all α-semistable torsion-free sheaves

(equivalently, all α-semistable triples) are stable, so MV
12 and MV

21 are

smooth.

Nagaraj-Seshadri characterize the smooth divisor N V in terms of a prod-

uct of smooth moduli spaces P Vi of stable vector bundles on Ci having

parabolic structure only at the node q as we recall in Section 2.5.
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Stability of triples implies stability of vector bundles in the

triples

Theorem 2.4.3 ([40], Theorem 5.1). Let α = (α1, α2) be a polarization

on C such that α1χ is not an integer. Let (E1, E2,
−→
A (q)) be a α-semistable

triple of rank (2,2) such that χC(E1, E2,
−→
A (q)) = χ and

α1χ < χC1(E1) < α1χ+ 1, α2χ+ 1 < χC2(E2) < α2χ+ 2. (2.20)

Then we have that E1 is a stable vector bundle on C1 and E2 is a semistable

vector bundle on C2 in the sense of Definition 1.1.3.

Relation between stability of vector bundles and stability of

the triples in which they appear

We now consider when the converse of Theorem 2.4.3 holds. Recall that

assuming that χC1(E1) is odd implies that E1 cannot be a strictly semistable

vector bundle.

We further study a case which is suggested by the statement of [10],

Lemma 2.3.

Remark 2.4.4. Let (E1, E2,
−→
A (q)) be a triple admitting a subtriple of the

form (E1, L2,
−→
A (q)), for a subbundle L2 of E2 such that

χC2(L2) = χC2(E2)/2. (2.21)

If (E1, E2,
−→
A (q)) is α-semistable,

−→
A (q) has rank 1 and (2.21) yields the fol-

lowing stability check

χC1(E1) + χC2(L2)− 1

2α1 + α2
≤ χ

2
.

By Definition 2.2.1 and (2.21), this implies

χC1(E1) + χC2(L2)− 1

1 + α1
=
χC1(E1) + χC2(E2)/2− 1

1 + α1
≤ χ

2

yielding by (2.10)
χC1(E1) + χ

2(1 + α1)
≤ χ

2
,

thus

χC1(E1) ≤ α1χ. (2.22)
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However, since (2.20) requires χC1(E1) > α1χ, triples (E1, E2,
−→
A (q)) admit-

ting subtriples of the form (E1, L2,
−→
A (q)) are unstable. Hence there is no

point of MV
12 associated to them.

Remark 2.4.5. On the other hand, recall the α-semistability condition

(2.12), in particular (2.10). Since E1 is stable and E2 is semistable, in all

cases which do not involve strictly semistable vector bundles E2, the semista-

bility conditions of E1 and E2 as vector bundles on C1 and C2, respectively,

imply directly that triples of the form (E1, E2,
−→
A (q)) are α-stable.

Lemma 2.4.6. Let E1 be a rank-2 stable vector bundle on C1 having odd

Euler characteristic, let E2 be a rank-2 semistable vector bundle on C2 having

even Euler characteristic and assume that χCi(Ei) satisfy inequalities (2.20)

for i = 1, 2. Then two cases are possible:

(a) if E2 does not admit any subbundles having its same slope, then for

any nonzero linear map
−→
A (q) : E

(q)
1 → E

(q)
2 the triple (E1, E2,

−→
A (q)) is

α-stable.

(b) if E2 admits a subbundle having its same slope, then for any isomor-

phism
−→
A (q) : E

(q)
1 → E

(q)
2 , the triple (E1, E2,

−→
A (q)) is α-stable.

Proof. Every triple (E1, E2,
−→
A (q)) which is not as the ones in point (a) is a

α-stable triple by Remark 2.4.5.

Moreover, if
−→
A (q) is an isomorphism, then (E1, L2,

−→
A (q)) is not a sub-

triple of (E1, E2,
−→
A (q)), so we exclude triples of the form discussed in Remark

2.4.4 and we have the claim.

Remark 2.4.7. The map

ψ :MV
12 →MV

1 ×MV
2

is surjective by Lemma 2.4.6 since, given any (E1, E2) in MV
1 ×MV

2 and

considering maps
−→
A (q) of rank 2, we always have that (E1, E2,

−→
A (q)) is a

triple of MV
12.

We now consider a special case of a result by Teixidor i Bigas [14],

Proposition 2.1, yielding the dimension of MV
12.
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Proposition 2.4.8. Let C be a one-nodal curve of compact type having

genus g. Then the dimension of MV
12 (respectively, the dimension of MV

21)

is 4g − 3.

Proof. In order to compute the dimension of MV
12, we consider the open

dense subvariety which is given by α-stable triples in which both E1 and

E2 are stable vector bundles on C1 and C2, respectively, and the map
−→
A (q)

has rank 2. Since for stable bundles we have Aut(Ei) ∼= C∗, if two triples

(E1, E2,
−→
A (q)) and (E1, E2, (

−→
A (q))′) satisfy, for λ ∈ AutE1 and ρ ∈ AutE2

the diagram

E
(q)
1

−→
A (q)

//

λ
��

E
(q)
2

ρ
��

E
(q)
1

(
−→
A (q))′

// E
(q)
2

, (2.23)

then we have (
−→
A (q))′ = ρ

λ

−→
A (q). Conversely, if two triples (E1, E2,

−→
A (q))

and (E1, E2, (
−→
A (q))′) are such that (

−→
A (q))′ = γ

−→
A (q), for γ ∈ C∗, then

(E1, E2,
−→
A (q)) and (E1, E2, (

−→
A (q))′) belong to the same isomorphism class.

Hence two triples are in the same isomorphism class if and only if (
−→
A (q))′

is a scalar multiple of
−→
A (q). Fixing bases of E

(q)
1 and E

(q)
2 ,
−→
A (q) can be

identified with an element of GL(2,C). By the argument above, we have the

following equivalence

[(E1, E2,
−→
A (q))] = [(E1, E2, γ

−→
A (q))]

for γ ∈ C∗, hence each distinct isomorphism class of triples is in one to one

correspondence with a unique element in PGL(2,C).

Thus we have, considering (1.3):

dimMV
12 = dimMV

1 +dimMV
2 +dim PGL(2,C) = (4g1−3)+(4g2−3)+3 = 4g−3.

Remark 2.4.9. Since N V is a divisor in MV
12 (respectively in MV

21), we

have

dimN V = 4g − 4.
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2.5 Triples with
−→
A (q) of rank 1 in terms of vector

bundles with parabolic structure

Recalling Theorem 2.4.2, we can also interpret the intersection

N V =MV
12 ∩MV

21

in terms of vector bundles on the components Ci having parabolic structure

only at the preimages of q via the normalization map ν : C1 tC2 → C. We

recall the main definitions for the case of our interest, the general case being

presented in [47].

Definition 2.5.1. Let Y be a smooth curve, let p be a point of Y and let

V be a vector bundle of rank 2 on Y . A p-parabolic bundle is the datum of:

• a flag F of subspaces of the fibre of V at p:

0 ⊂ F 2V (p) ⊂ F 1V (p) = V (p),

• constants β := (β1, β2), called the weights of the parabolic structure,

such that

0 < β1 < β2 < 1,

where βi is associated to F iV (p).

We simply denote p-parabolic bundles by (V, 0 ⊂ F 2V (p) ⊂ V (p)).

Definition 2.5.2. Let V be a p-parabolic bundle. We say that W is a

p-parabolic subbundle of V if W is a subbundle of V having the following

parabolic structure at p:

• a flag

0 = F 2W (p) ⊂ F 1W (p) = W (p),

where F iW (p) = W (p) ∩ F iV (p)

• a weight β2, since i = 2 is the maximum index such that we have the

inclusion W (p) ⊂ F 2V (p), while W (p) 6⊂ F 3V (p) = 0.
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Definition 2.5.3. Let V be a p-parabolic bundle (respectively, let W be a

p-parabolic subbundle). Then the parabolic degree of V , respectively W , is

defined as

pardeg (V ) = deg (V ) + β1 + β2,

respectively

pardeg (W ) = deg (W ) + β2.

The parabolic slope of V is defined as

parµ(V ) =
pardeg (V )

rank (V )
,

respectively

parµ(W ) =
pardeg (W )

rank (W )
.

Definition 2.5.4. Let V be a p-parabolic bundle on Y . Then V is parabolic

semistable (respectively parabolic stable) if, for any p-parabolic subbundle

W of V , we have par µ(W ) ≤ par µ(V ) (respectively parµ(W ) < parµ(V )).

We now apply the discussion above to our case. Let C be a one-nodal

curve of compact type having polarization α such that α1 < α2. We obtain

the following, from [40], Theorem 6.1.

Theorem 2.5.5. Consider a polarization α = (α1, α2) on C such that we

have α1 < α2 and that α1χ is not an integer. Let q be the node of C. Let P V1

be the moduli space of semistable q-parabolic bundles of rank 2 on C1 given

by (E1, 0 ⊂ F 2E
(q)
1 ⊂ E

(q)
1 ) with parabolic weights (α1/2, α2/2). Assume

that the degree of E1 equals χC1(E1), in particular that it is odd and that it

satisfies (2.20). Let P V2 be the moduli space of semistable q-parabolic bundles

of rank 2 on C2 given by (E2, 0 ⊂ F 2E
(q)
2 ⊂ E

(q)
2 ) with parabolic weights

(α1/2, α2/2). Assume that the degree of E2 equals χC2(E2), in particular

that it is even and that it satisfies (2.20).

Then P V1 and P V2 are smooth. Moreover, we have an isomorphism

γ : N V ∼−→ P V1 × P V2 . (2.24)

given by:

N V 3 (E1, E2,
−→
A (q)) 7→ (E1, 0 ⊂ F 2E

(q)
1 ⊂ E(q)

1 )×(E2, 0 ⊂ F 2E
(q)
2 ⊂ E(q)

2 ) ∈ P V1 ×P V2 .
(2.25)
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where F 2E
(q)
1 = Ker

−→
A (q) and F 2E

(q)
2 = Im

−→
A (q).

Remark 2.5.6. Let E2 be a vector bundle appearing in unstable triples as

in Remark 2.4.4. Then q-parabolic vector bundles having underlying vector

bundles E2 are also unstable as parabolic vector bundles, thus they do not

appear in P V2 . In fact, consider the q-parabolic bundle

(E2, 0 ⊂ L(q)
2 ⊂ E

(q)
2 ),

where L2 is such that χC2(L2) = χC2(E2)/2 and L
(q)
2 is associated to the

weight α2
2 , in the same hypotheses of Theorem 2.5.5. Then we have

parµ(L2) = χC2(L2) +
α2

2
=
χC2(E2)

2
+
α2

2

parµ(E2) =
χC2(E2)

2
+

1

4
.

Asking parµ(L2) ≤ parµ(E2) is equivalent to asking

α2

4
≤ α1

4
,

which is not possible, since α2 > α1.

In particular, there are no strictly semistable q-parabolic vector bundles.

We also consider an alternative computation of the dimension of N V ,

which agrees with Proposition 2.4.8 and Remark 2.4.9.

Remark 2.5.7. By Mehta-Seshadri [34], Theorem 4.1, referring to the flag

variety F in Definition 2.5.1, we have

dimP Vi = r2(gi − 1) + 1 + dimF .

Since we have dimF = 1, in our hypotheses this implies

dimP V1 = dimP V2 = 4gi − 2,

yielding, once again,

dimMV
12 = (dimP V1 + dimP V2 ) + 1 = 4g − 3.



Chapter 3

Higgs data on a one-nodal

curve of compact type

We now consider how the tools introduced in Chapter 1 and Chapter 2

adapt, endowing torsion-free sheaves on the curve C of compact type with

the Higgs datum.

3.1 Torsion free Hitchin pairs on a one-nodal curve

of compact type

We first give an equivalence of categories corresponding to Lemma 2.2.7.

Equivalence of categories: torsion free Hitchin pairs and Hitchin

triples

We fix a line bundle L on C such that the degree of its restrictions to Ci is

greater or equal to the degree of KCi . Recall the definition of torsion-free

Hitchin pairs Definition 1.4.9. Since C is of compact type, Remark 2.1.5

yields a canonical identification, which we call l, between the fibres L
(q)
1 and

L
(q)
2 of the restrictions L1 and L2 of L at q. So we associate to L the triple

(L1, L2, l), for

l : L
(q)
1
∼−→ L

(q)
2 (3.1)

a canonical isomorphism.

39
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Definition 3.1.1. A Hitchin triple is (Ê1, Ê2,
−→
A (q) ⊗ l), which we denote

by (Ê1, Ê2,
−→
A (q)), where Êi := (Ei, φi) are locally free sheaves Ei on Ci

together with Higgs fields φi : Ei → Ei⊗Li, i = 1, 2, such that the following

diagram commutes:

E
(q)
1

φ
(q)
1 //

−→
A (q)

��

E
(q)
1 ⊗ L

(q)
1

−→
A (q)⊗l
��

E
(q)
2

φ
(q)
2

// E
(q)
2 ⊗ L

(q)
2

(3.2)

Remark 3.1.2. Commutativity of (3.2) is equivalent to

(
−→
A (q) ⊗ l) φ(q)

1 = φ
(q)
2

−→
A (q). (3.3)

Considering Lemma 2.2.7 and endowing E with the datum of the mor-

phism φ, we have the following.

Lemma 3.1.3 ([7], Lemma 3.1.3, [13], Theorem 6.5(2)). Fix an orientation

of C such that C1 is the first component and C2 is the second component.

There is an equivalence between the category of torsion-free Hitchin pairs

and the category of Hitchin triples (Ê1, Ê2,
−→
A (q)).

Proof. Given a torsion-free sheaf E we obtain, by Lemma 2.2.7, a triple

(E1, E2,
−→
A (q)). As discussed above, we can associate the line bundle L to

(L1, L2, l), for l as in (3.1).

As in (2.7), the morphism φ induces homomorphisms of OCi-modules

φi : Ei → Ei ⊗ Li, i = 1, 2, which make diagram (3.2) commute. Thus, the

Hitchin pair Ê gives rise to the Hitchin triple (Ê1, Ê2,
−→
A (q) ⊗ l).

Conversely, a Hitchin triple (Ê1, Ê2,
−→
A (q) ⊗ l) gives rise to a Hitchin

pair Ê: a triple (E1, E2,
−→
A (q)) gives rise to a torsion-free sheaf E as in

Lemma 2.2.7 and, as in (2.7), φi together with the identification l yield a

homomorphism φ : E → E ⊗ L.

Example 3.1.4. Consider the torsion-free sheafH from Example 2.2.8. En-

dowing it with φ : H → H⊗L, we obtain a Hitchin pair and the construction

in the proof of Lemma 3.1.3 associates Ĥ to the triple (Ĥ, 0,
−→
0 ).
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Example 3.1.5. Let Li ∼= KCi . Given any semistable Higgs bundles Ê1

on C1, Ê2 on C2, there is at least an associated torsion-free Hitchin pair,

since we can always consider the Hitchin triple (Ê1, Ê2,
−→
A (q)) in which the

map
−→
A (q) is the zero map. However, as we see in Section 3.2, we will focus

on maps
−→
A (q) having rank at least one by a stability requirement (Theorem

3.2.10). This implies extra-requirements on φ
(q)
i that we will discuss in

Section 4.2.

Notation 3.1.6. From now on, we simply call “Higgs bundles” the data

that we should call (paralleling what we did in Definition 2.2.5) “locally free

sheaves on Ci with Higgs datum”.

We now define the Hecke modification for Hitchin triples, which enables

us to extend the correspondence in (2.9) including Higgs fields at q. Consider

again (3.2) in the following form:

E
(q)
2

φ
(q)
2��

oo
−→
A (q)

E
(q)
1

φ
(q)
1��

Ker(
−→
A (q))? _oo

��

E
(q)
2 ⊗ L

(q)
2
oo
−→
A (q)⊗l

E
(q)
1 ⊗ L

(q)
1 Ker(

−→
A (q) ⊗ l)? _oo

. (3.4)

We have that φ
(q)
1 restricts to φ

(q)
1 : Ker(

−→
A (q)) → Ker(

−→
A (q) ⊗ l). Consider-

ing the Hecke modification i : E1 → Ė1 such that Ker(
−→
A (q)) = Ker(i(q)),

diagram (3.4) yields the following commutative diagram:

Ker(i(q))

φ
(q)
1
��

� � // E
(q)
1

φ
(q)
1��

i(q) // Ė
(q)

1

��

Ker(i(q) ⊗ id) �
� // E

(q)
1 ⊗ L(q)

1
i(q)⊗id

// Ė
(q)

1 ⊗ L(q)
1

. (3.5)

So the map φ
(q)
1 restricts to φ̇

(q)
1 : Ė

(q)
1 → Ė

(q)
1 ⊗ L

(q)
1 . Since, by the

definition of the Hecke modification, at any point x ∈ C1 \ {q} we have

Ė
(x)

1
∼= E

(x)
1 , the morphism φ1 induces the morphism φ̇1.

Definition 3.1.7. The Hecke modification of a Higgs bundle Ê1 = (E1, φ1)

is the Higgs bundle ̂̇E1 = (Ė1, φ̇1) such that diagram (3.5) commutes.



42 3. Higgs data on a one-nodal curve of compact type

Similarly, we obtain the Hecke modification ̂̇E2 of Ê2.

Hence Remark 2.2.10 extends as follows.

Remark 3.1.8 ([7], Section 3.4). To the Hitchin pair Ê is also associ-

ated the triple (̂̇E1,
̂̇E2,
←−
B (q)) and the triples are related as in (3.6), where

j : Ė2 → E2 (respectively i : E1 → Ė1) is the canonical Hecke modifica-

tion such that Im(j(q)) = Im
−→
A (q) (respectively Ker(i(q)) = Ker

−→
A (q)) and

Ker(j(q)) = Ker
←−
B (q) (respectively Im(i(q)) = Im

←−
B (q)) and φ̇1, φ̇2 are the

Hecke modifications of φ1 and φ2, which are constructed as in Definition

3.1.7.

Ė
(q)
2 Ė

(q)
1

Ė
(q)
2 ⊗ L

(q)
2 Ė

(q)
1 ⊗ L

(q)
1

E
(q)
2 E

(q)
1

E
(q)
2 ⊗ L

(q)
2 E

(q)
1 ⊗ L

(q)
1

←−
B (q)

φ̇
(q)
2

j(q)

φ̇
(q)
1

j(q)⊗id

←−
B (q)⊗l−1

φ
(q)
2

i(q)

−→
A (q)

φ
(q)
1

−→
A (q)⊗l

i(q)⊗id

(3.6)

Definition 3.1.9. We define the Euler characteristic of a Hitchin triple

(Ê1, Ê2,
−→
A (q)) as the Euler characteristic of the underlying triple (E1, E2,

−→
A (q)),

i.e.

χC(Ê1, Ê2,
−→
A (q)) := χC(E1, E2,

−→
A (q)) (3.7)

Remark 3.1.10. Definition 3.1.9 naturally yields, as in Remark 2.2.15,

χC(Ê1, Ê2,
−→
A (q)) = χC(Ê) = χC( ̂̇E1,

̂̇E2,
←−
B (q)).

3.2 Moduli spaces of semistable Hitchin triples on

a one-nodal curve of compact type

We now define semistability for rank-2 torsion-free Hitchin pairs and for

the associated Hitchin triples on the curve C having polarization α as in

Definition 2.2.1.
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Semistability for Hitchin pairs and for Hitchin triples

Definition 3.2.1. We define the α-slope of a torsion-free Hitchin pair (E, φ)

as

µα(E) =
χC(E)

rα(E)
.

Definition 3.2.2. We say that (E, φ) is α-semistable (respectively α-stable)

if µα(F ) ≤ µα(E) (respectively µα(F ) < µα(E)) for all φ-invariant sub-

sheaves F ⊂ E.

As in the classical case Definition 1.2.3, stability of Hitchin pairs is only

checked on φ-invariant subsheaves, that is subsheaves F of E satisfying

φ(F ) ⊂ F ⊗ L. Moreover, it is enough to check stability on φ-invariant

subbundles F of E (in the sense of Definition 2.3.6).

Lemma 3.2.3 ([7], Lemma 2.1.3). A torsion-free Hitchin pair (E, φ) is α-

semistable (respectively α-stable) if and only if µα(F ) ≤ µα(E) (respectively

µα(F ) < µα(E)) for all φ-invariant subbundles F ⊂ E.

Proof. If (E, φ) is a α-semistable (respectively, α-stable) torsion-free Hitchin

pair, we have that µα(F ) ≤ µα(E) (respectively, µα(F ) < µα(E)) for all

φ-invariant subsheaves F of E, so in particular we have µα(F ) ≤ µα(E)

(respectively µα(F ) < µα(E)) for all φ-invariant subbundles F of E.

Conversely, assume that µα(F ) ≤ µα(E) for all φ-invariant subbundles

F of E. Let G be a φ-invariant subsheaf of E. Then we need to show

that µα(G) ≤ µα(E) (respectively, that µα(G) < µα(E)). Similarly to [32],

Definition 8.20, letting H be the subbundle of E generically generated by

G, we have rankH = rankG and χC(H) ≥ χC(G), hence µα(G) ≤ µα(H).

Let q : E → E/G be the quotient map and let φ : E/G→ (E/G)⊗L be

the restriction of φ to E/G. Then the following diagram commutes.

E
φ
//

q

��

E ⊗ L

q⊗id
��

E/G
φ

// (E/G)⊗ L

Since we have that the torsion subsheaf of E/G maps into the torsion sub-

sheaf of (E/G) ⊗ L under φ, we have that φ(H) ⊂ H ⊗ L. Thus H is a
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φ-invariant subbundle of E, so by assumption we have that µα(H) ≤ µα(E),

which implies that µα(G) ≤ µα(E) (respectively, that µα(G) < µα(E)).

We now consider torsion-free Hitchin pairs on C in terms of Hitchin

triples.

Notation 3.2.4. From now on, we focus on Hitchin triples of type (Ê1, Ê2,
−→
A (q))

and refer to Hitchin triples of type (̂̇E1,
̂̇E2,
←−
B (q)) only when necessary.

Recall that Remark 3.1.8 provides a way to pass from Hitchin triples of

the form (Ê1, Ê2,
−→
A (q)) to Hitchin triples of the form (̂̇E1,

̂̇E2,
←−
B (q)).

Definition 3.2.5. A Hitchin triple (F̂1, F̂2,
−→
D (q)) is said to be a Hitchin

subtriple of (Ê1, Ê2,
−→
A (q)) if F̂i is a Higgs subbundle of Êi, i = 1, 2, and the

following diagram commutes

F
(q)
1
� � //

−→
D (q)

��

E
(q)
1

−→
A (q)

��

F
(q)
2
� � // E

(q)
2

. (3.8)

We say that (F̂1, F̂2,
−→
D (q)) is a proper Hitchin subtriple if at least one sub-

undle Fi is strictly contained in Ei.

Definition 3.2.6. Let Ê be a torsion-free Hitchin pair of rank (r1, r2) on

C. We define the slope µα of the triple (Ê1, Ê2,
−→
A (q)) associated to Ê as

µα(Ê1, Ê2,
−→
A (q)) := µα(E1, E2,

−→
A (q)) =

χC(E1, E2,
−→
A (q))

rα(E)
.

Definition 3.2.7. A Hitchin triple (Ê1, Ê2,
−→
A (q)) is said to be α-semistable

(respectively α-stable) if

µα(F̂1, F̂2,
−→
D (q)) ≤ µα(Ê1, Ê2,

−→
A (q)) (respectively µα(F̂1, F̂2,

−→
D (q)) < µα(Ê1, Ê2,

−→
A (q)))

(3.9)

for all nontrivial proper Hitchin subtriples (F̂1, F̂2,
−→
D (q)) of (Ê1, Ê2,

−→
A (q)).

Notation 3.2.8. From now on, unless otherwise stated, we assume that Ê

is a torsion-free Hitchin pair on C of rank (2, 2).
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Remark 3.2.9. Let S(2, χ, α) denote the set of all isomorphism classes of

α-semistable torsion-free Hitchin pairs on C of rank (2, 2). Let Ê be a

torsion-free Hitchin pair such that [Ê] ∈ S(2, χ, α). Then the triple corre-

sponding to it is α-semistable and conversely, because of our definition of

Euler characteristic Definition 3.1.9.

Moreover, the Euler characteristics of the bundles appearing in a α-

semistable Hitchin triple have to satisfy the following bounds.

Theorem 3.2.10 ([7], Theorem 3.1.9(1)). Let χ 6= 0 and let α = (α1, α2)

be a polarization on C such that α1χ is not an integer. Let (b1, b2) be the

unique tuple satisfying

α1χ < b1 < α1χ+1, α2χ+1 < b2 < α2χ+2, b1+b2 = χ+2. (3.10)

Let [Ê] ∈ S(2, χ, α) and let (Ê1, Ê2,
−→
A (q)) be the triple corresponding to Ê.

Then we must have rank
−→
A (q) ≥ 1 and there are two possibilities: either

χC1(E1) = b1, χC2(E2) = b2 (3.11)

or

χC1(E1) = b1 + 1, χC2(E2) = b2 − 1. (3.12)

Moreover, if rank
−→
A (q) = 1 only (3.11) is possible.

Proof. First suppose that
−→
A (q) has rank 2. Since the canonical map

(E1 ⊗OC1(−q))(q) → E
(q)
1

is zero, ( ̂E1 ⊗OC1(−q), 0,−→0 ) is a Hitchin subtriple of (Ê1, Ê2,
−→
A (q)), which

is α-semistable, so we must have
χC1(E1)− 2

2α1
≤ χ

2
, hence

χC1(E1) ≤ α1χ+ 2. (3.13)

On the other hand, considering (0, Ê2,
−→
0 ) as a Hitchin subtriple of

(Ê1, Ê2,
−→
A (q)), we must have

χC2(E2) ≤ α2χ+ 2. (3.14)

We obtain

α1χ ≤ χC1(E1)
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by recalling that we have χ = χC1(E1) + χC2(E2)− 2, that the polarization

α = (α1, α2) is such that α1 +α2 = 1 and using this in (3.14). This, together

with (3.13), yields

α1χ ≤ χC1(E1) ≤ α1χ+ 2 (3.15)

and, similarly, we obtain

α2χ ≤ χC2(E2) ≤ α2χ+ 2. (3.16)

Hence the only choices which are compatible with (3.15), (3.16) and with

the condition b1 + b2 = χ + 2 are either χC1(E1) = b1, χC2(E2) = b2 or

χC1(E1) = b1 + 1, χC2(E2) = b2 − 1.

Now suppose that
−→
A (q) has rank 1. Let (Ė1, φ̇1) → (E1, φ1) be the

Hecke modification such that ImĖ
(q)
1 = Ker

−→
A (q) obtained as in Remark

2.2.11, together with the modified Higgs datum, as in Definition 3.1.7. This

implies that the triple (̂̇E1, 0,
−→
0 ) is a Hitchin subtriple of (Ê1, Ê2,

−→
A (q)) and,

since χC1(Ė1) = χC1(E1)− 1, the α-semistability of (Ê1, Ê2,
−→
A (q)) implies

χC1(E1) ≤ α1χ+ 1.

On the other hand, considering (0, Ê2,
−→
0 ) as a subtriple of (Ê1, Ê2,

−→
A (q))

and arguing as in the case in which
−→
A (q) has rank 2, we must have

χC2(E2) ≤ α2χ+ 2.

Recalling the definition of Euler characteristic of a Hitchin triple (3.7), to-

gether with that of polarization (2.5), we obtain

α1χ ≤ χC1(E1) ≤ α1χ+ 1, a2χ+ 1 ≤ χC2(E2) ≤ α2χ+ 2, (3.17)

which forces χC1(E1) = b1, χC2(E2) = b2.

Finally, we show that the case in which the rank of
−→
A (q) is zero does not

yield any b1, b2. In fact, considering the subtriples (Ê1, 0,
−→
0 ) and (0, Ê2,

−→
0 )

of (Ê1, Ê2,
−→
0 ), we obtain χC1(E1) = α1χ and χC2(E2) = α2χ+ 2, which are

not allowed by (3.10), preventing the existence of bi. So (3.10) implies that

the rank of
−→
A (q) is at least one.

Corollary 3.2.11 ([6], Section 9, [7], Corollary 3.1.10). In the hypotheses

of Theorem 3.2.10, if [Ê] ∈ S(2, χ, α), then either E is locally free or it is
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a torsion-free OC-module such that Eq ∼= OC,q ⊕ mC,q. The choice of the

polarization α on C prevents the existence of torsion-free OC-modules whose

stalk at the node q is of the form mC,q ⊕mC,q.

Remark 3.2.12. Since the arguments that we give in the proof of Theorem

3.2.10 only involve the fibres of Ei at the node q, the characterizations given

in Remark 2.3.15 and Example 2.3.16 also hold for α-semistable Hitchin

triples.

Notation 3.2.13. LetM12(2, χ) be the moduli space of α-semistable Hitchin

triples (Ê1, Ê2,
−→
A (q)) of rank 2 and Euler characteristic χ = χC(Ê1, Ê2,

−→
A (q)),

which we simply denote by M12, satisfying

α1χ < χC1(E1) < α1χ+ 1, α2χ+ 1 < χC2(E2) < α2χ+ 2. (3.18)

LetM21(2, χ) be the moduli space of α-semistable Hitchin triples (̂̇E1,
̂̇E2,
←−
B (q))

of rank 2 and Euler characteristic χ = χC(̂̇E1,
̂̇E2,
←−
B (q)), which we simply

denote by M21, satisfying

α1χ+ 1 < χC1(Ė1) < α1χ+ 2, α2χ < χC2(Ė2) < α2χ+ 1. (3.19)

Remark 3.2.14. The existence of the moduli spacesM12 andM21 is given

by the construction of the moduli space of α-semistable Hitchin pairs in

[7], Chapter 2 (or [13], Appendix B) and the equivalence Lemma 3.1.3.

Another construction of the moduli space of α-semistable Hitchin pairs can

be obtained by Simpson’s construction Remark 1.4.10.

Notation 3.2.15. We denote by M1 the moduli space of semistable Higgs

bundles of rank 2 on C1. We denote by M2 the moduli space of semistable

Higgs bundles of rank 2 on C2.

3.3 Hitchin triples having odd Euler characteristic

Notation 3.3.1. From now on, we assume that χ = χC(E) is odd, in

particular we assume that χC1(E1) is odd and that χC2(E2) is even. As in

the case of vector bundles, we focus on the Euler characteristic of E1, E2

rather than on their degree.
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Considering [7], Theorem 3.1.9 and assuming that χ is odd, we obtain

the following.

Theorem 3.3.2. Let χ be odd and let α = (α1, α2) be a polarization on

C such that α1χ is not an integer. Then the moduli space M(2, χ, α) of α-

semistable rank-2 torsion-free Hitchin pairs on C with Euler characteristic χ

is given by the union of two smooth components M12 and M21 intersecting

transversally along a smooth divisor N , which parametrizes Hitchin triples

of the form (Ê1, Ê2,
−→
A (q)), where

−→
A (q) has rank 1.

Proof. We first notice that, since E has rank 2 and since we assume that χ

is odd and α1χ 6∈ Z, every α-semistable Hitchin pair is α-stable, thusM12 is

smooth. By Theorem 3.2.10, if Ê is a α-stable Hitchin pair of rank 2 and Eu-

ler characteristic χ, then there exists a unique α-stable triple (Ê1, Ê2,
−→
A (q))

such that Ê1, Ê2 are rank-2 Higgs bundles on C1, C2 respectively, satisfying

α1χ < χC1(E1) < α1χ+2, α2χ < χC2(E2) < α2χ+2, χC1(E1)+χC2(E2) = χ+2.

(respectively a unique α-stable triple (̂̇E1,
̂̇E2,
←−
B (q)) such that ̂̇E1,

̂̇E2 is a

rank-2 Higgs bundle on C1, C2 respectively, satisfying

α1χ < χC1(Ė1) < α1χ+2, α2χ < χC2(Ė2) < α2χ+2, χC1(Ė1)+χC2(Ė2) = χ+2)

with
−→
A (q) (respectively

←−
B (q)) a nonzero linear map. Moreover,

(a) if E is locally free at q, then
−→
A (q) is invertible and we have Ei ∼= Ėi,

i = 1, 2,
←−
B (q) = (

−→
A (q))−1,

(b) if E is not locally free at q, then
−→
A (q) has rank 1 and

α1χ < χC1(E1) < α1χ+ 1, α2χ+ 1 < χC2(E2) < α2χ+ 2 (3.20)

(respectively

α1χ+ 1 < χC1(Ė1) < α1χ+ 2, α2χ < χC2(Ė2) < α2χ+ 1).

The triples (Ê1, Ê2,
−→
A (q)), (̂̇E1,

̂̇E2,
←−
B (q)) are related as in (3.6).

Let M12 and M21 be as in Notation 3.2.13.
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The closed subschemes

N12 = {[(Ê1, Ê2,
−→
A (q))] ∈M12 : rank

−→
A (q) = 1}

and

N21 = {[(̂̇E1,
̂̇E2,
←−
B (q))] ∈M21 : rank

←−
B (q) = 1}

are isomorphic because of Remark 3.1.8, in particular because of the com-

mutativity of the diagram (3.6).

This, together with Lemma 3.1.3, yields that M(2, χ, α) is isomorphic

to M12 ∪M21 with the natural identification N := N12
∼−→ N21, which is a

divisor inM12 (respectively inM21), since it is defined by the vanishing of

the determinant of
−→
A (q).

Stability of Hitchin triples on C implies stability of the Higgs

bundles in the triples

Remark 3.3.3. Recall Notation 3.2.15, together with Notation 3.3.1. By

Theorem 1.2.9, the moduli space M1 is smooth since Higgs bundles are

assumed to have rank 2 and odd Euler characteristic. On the other hand,

the moduli spaceM2 is singular, its singularities being as in Remark 1.4.11

(if we assume, for simplicity, that φ2 has trace zero).

Theorem 3.3.4 ([7], Theorem 3.1.11). Let α = (α1, α2) be a polarization

on C such that α1χ is not an integer. Let (Ê1, Ê2,
−→
A (q)) be a triple of M12.

Then Ê1 is a stable Higgs bundle on C1 and Ê2 is a semistable Higgs bundle

on C2 in the sense of Definition 1.2.3.

Proof. If E2 has no φ2-invariant subbundles, then Ê2 is a stable Higgs bundle

on C2. Otherwise, assume that there exists a φ2-invariant line subbundle

L2 ⊂ E2. Then (0, L̂2,
−→
0 ) is a Hitchin subtriple of (Ê1, Ê2,

−→
A (q)), which is

α-semistable, so we must have

χC2(L2)− 1 ≤ α2
χ

2
, (3.21)

which implies

χC2(L2) ≤ α2
χ

2
+ 1 <

χC2(E2)− 1

2
+ 1 (3.22)
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by (3.18). Hence

χC2(L2) ≤ χC2(E2)

2
.

So Ê2 is a semistable Higgs bundle on C2.

We now show that also Ê1 is semistable. If E1 has no φ1-invariant

subbundles, then Ê1 is automatically a stable Higgs bundle on C1. Oth-

erwise, let L1 ⊂ E1 be a φ1-invariant line subbundle. Then we have that

L1 ⊗ OC1(−q) ⊂ E1 ⊗ OC1(−q), so ( ̂L1 ⊗OC1(−q), 0,−→0 ) is a Hitchin sub-

triple of (Ê1, Ê2,
−→
A (q)), so we must have

χC1(L1)− 1 ≤ α1
χ

2
,

hence

χC1(L1) ≤ α1
χ

2
+ 1 <

χC1(E1)

2
+ 1 (3.23)

by (3.18). By the hypothesis that χC1(E1) is odd, (3.23) implies

χC1(L1) ≤ χC1(E1)

2
+

1

2
. (3.24)

We claim that

χC1(L1) ≤ χC1(E1)

2
. (3.25)

Assume by contradiction that there is a φ1-invariant line subbundle L1 of

E1 such that

χC1(L1) >
χC1(E1)

2
.

This, together with (3.24), implies that for any such subbundle we have

χC1(L1) =
χC1(E1)

2
+

1

2
. (3.26)

Since (L̂1, Ê2,
−→
A

(q)
|L1

) is a Hitchin subtriple of the α-semistable Hitchin triple

(Ê1, Ê2,
−→
A (q)), we have

χC1(L1) + χC2(E2)− 2

α1 + 2α2
≤ χ

2
.

Using α1 + α2 = 1 and (3.26), we obtain

χC1(E1) + 2χC2(E2)− 3 ≤ χ+ α2χ,
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yielding, by the definition of Euler characteristic of a triple,

χ+ χC2(E2)− 1 ≤ χ+ α2χ,

which implies

χC2(E2) ≤ α2χ+ 1,

which is in contrast with (3.18). Thus we have the claim (3.25), yielding

semistability of Ê1. Moreover, since χC1(E1) is assumed to be odd, we have

χC1(L1) <
χC1

(E1)

2 , so Ê1 is a stable Higgs bundle on C1.

Relation between stability of Higgs bundles and stability of

the triples in which they appear

We now consider when the converse of Theorem 3.3.4 holds. First, we study

a case which is suggested by the statement of [7], Lemma 3.1.12.

Remark 3.3.5. Let (Ê1, Ê2,
−→
A (q)) be a Hitchin triple admitting a Hitchin

subtriple of the form (Ê1, L̂2,
−→
A (q)), for a φ2-invariant subbundle L2 of E2

such that

χC2(L2) = χC2(E2)/2. (3.27)

If (Ê1, Ê2,
−→
A (q)) is α-semistable,

−→
A (q) has rank 1 and (3.27) yields the fol-

lowing stability check

χC1(E1) + χC2(L2)− 1

2α1 + α2
≤ χ

2
,

which, by Definition 2.2.1 and (3.27), implies

χC1(E1) + χC2(L2)− 1

1 + α1
=
χC1(E1) + χC2(E2)/2− 1

1 + α1
≤ χ

2

yielding by (2.10)
χC1(E1) + χ

2(1 + α1)
≤ χ

2
,

thus

χC1(E1) ≤ α1χ. (3.28)

However, since (3.18) requires χC1(E1) > α1χ, triples (Ê1, Ê2,
−→
A (q)) admit-

ting subtriples of the form (Ê1, L̂2,
−→
A (q)) do not belong to the space M12.
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Remark 3.3.6. On the other hand, recall the α-semistability condition (3.9),

in particular the definition of the Euler characteristic of a Hitchin triple (3.7).

Since Ê1 is stable and Ê2 is semistable, in all cases which do not involve

strictly semistable Higgs bundles Ê2, the semistability conditions of Ê1 and

Ê2 as Higgs bundles on C1 and C2, respectively, imply that triples of the

form (Ê1, Ê2,
−→
A (q)) are α-stable.

Lemma 3.3.7. Let Ê1 be a rank-2 stable Higgs bundle on C1 having odd

Euler characteristic, let Ê2 be a rank-2 semistable Higgs bundle on C2 hav-

ing even Euler characteristic and assume that χCi(Ei) satisfy inequalities

(3.18) for i = 1, 2. Moreover, assume that the Higgs fields φi have the same

characteristic polynomial over q. Then two cases are possible:

(a) if Ê2 does not admit any φ2-invariant subbundles having its same

slope, then, for any nonzero linear map
−→
A (q) : E

(q)
1 → E

(q)
2 , the triple

(Ê1, Ê2,
−→
A (q)) is α-stable.

(b) if Ê2 admits φ2-invariant subbundles having its same slope, then, for

any isomorphism
−→
A (q) : E

(q)
1 → E

(q)
2 , the triple (Ê1, Ê2,

−→
A (q)) is α-

stable.

Proof. Every Hitchin triple (Ê1, Ê2,
−→
A (q)) as in (a) is a α-stable triple by

Remark 3.3.6. Moreover, if
−→
A (q) is an isomorphism, then (Ê1, L̂2,

−→
A (q)) is

not a Hitchin subtriple of (Ê1, Ê2,
−→
A (q)), so we exclude triples of the form

discussed in Remark 3.3.5 and we have the claim.

While our approaches in this section mirror the ones in Section 2.4, we

do not have an analogue of Remark 2.4.7.

Remark 3.3.8. The map

ψ :M12 →M1 ×M2

is not surjective.

For example, assume that E1 is a stable vector bundle on C1 and that

φ
(q)
1 is an isomorphism. Assume that E2 is a stable vector bundle on C2 and

that φ
(q)
2 = 0. Then (Ê1, Ê2) is a couple of stable Higgs bundles inM1×M2,

but there is no point of M12 corresponding to it, since the only solution to
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(3.3) in these hypotheses is
−→
A (q) being the zero map, which is not allowed

by Theorem 3.2.10.

Using the correspondence Lemma 3.1.3, together with Remark 3.2.9 and

Theorem 3.3.4, we now give an example of a class of α-stable Hitchin pairs

Ê, in which Ê2 is a stable Higgs bundle having underlying strictly semistable

vector bundle.

Example 3.3.9. Let Ê be a α-stable torsion-free Hitchin pair such that

E has fixed determinant of odd degree. Assume that Ê corresponds to a

α-stable Hitchin triple (Ê1, Ê2,
−→
A (q) ⊗ l), where

−→
A (q) is an isomorphism.

Moreover, assume that L1
∼= KC1 , L2

∼= KC2 , so that l = id. We assume

that E1 has fixed determinant of odd degree and that E2 has trivial de-

terminant. We consider a stable Higgs bundle Ê1 having underlying stable

vector bundle E1. Then, as argued in Remark 1.2.4, Ê1 is stable for any

φ1 ∈ H0(C1,EndE1 ⊗KC1).

On the other hand, let Ê2 be a stable Higgs bundle having underlying strictly

semistable vector bundle E2 = L2⊕L−1
2 , for L2 ∈ J0(C2) such that we have

L2
2 6∼= OC2 . Let

φ2 =

(
a2 b2

c2 −a2

)
,

for a2 ∈ H0(C2,KC2), b2 ∈ H0(C2, L
2
2KC2), c2 ∈ H0(C2, L

−2
2 KC2). Then

(E2, φ2) is a stable Higgs bundle if and only if we have b2 6= 0 and c2 6= 0,

so that L2 and L−1
2 are not φ2-invariant.

Moreover, as in Lemma 3.3.7, the Higgs fields φ1, φ2 need to have the same

characteristic polynomial over the node q of C.

3.4 Hitchin triples with
−→
A (q) of rank 1 in terms of

Higgs bundles with parabolic structure

We now consider how the statements of Section 2.5 adapt when we also

consider the Higgs fields φ1, φ2 over the node and see that the morphism

corresponding to (2.24) is not surjective in this case.
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Definition 3.4.1. Let Y be a smooth curve, let p be a point of it and let

V be a vector bundle of rank 2 on Y . A p-parabolic Higgs bundle (V, ψ) is

the datum of

• a p-parabolic bundle as in Definition 2.5.1,

• a morphism ψ : V → V ⊗L satisfying ψ(p)(F j(V (p))) ⊂ F j(V (p))⊗L(p)

for j = 1, 2.

We simply denote p-parabolic Higgs bundles by (V̂ , 0 ⊂ F 2V (p) ⊂ V (p)).

Definition 3.4.2. Let (V, ψ) be a p-parabolic Higgs bundle. Then the

parabolic degree of V is defined as

pardeg (V ) = deg (V ) + β1 + β2,

where the weights βi are as in Definition 2.5.1. The parabolic slope of V is

defined as

parµ(V ) =
pardeg (V )

rankV
.

Definition 3.4.3. Let (V, ψ) be a p-parabolic Higgs bundle on Y . Then

V is parabolic semistable (respectively parabolic stable) if, for any nontrivial

p-parabolic subbundle W of V , we have par µ(W ) ≤ par µ(V ) (respectively

parµ(W ) < parµ(V )).

We now apply the discussion above to our case. Let C be a one-nodal

curve of compact type having polarization α such that α1 < α2. Theorem

6.1 in [40] adapts as follows.

Theorem 3.4.4 ([7], Lemma 3.4.2). Consider the polarization α = (α1, α2)

on C such that α1 < α2 and that α1χ is not an integer. Let q be the node

of C. Let P1 be the moduli space of semistable q-parabolic Higgs bundles

of rank 2 on C1, given by (Ê1, 0 ⊂ F 2E
(q)
1 ⊂ E

(q)
1 ) with parabolic weights

(α1/2, α2/2). Assume that the degree of E1 equals χC1(E1), in particular that

it is odd and that it satisfies (3.18). Let P2 be the moduli space of semistable

q-parabolic Higgs bundles of rank 2 on C2, given by (Ê2, 0 ⊂ F 2E
(q)
2 ⊂ E(q)

2 )

with parabolic weights (α1/2, α2/2). Assume that the degree of E2 equals

χC2(E2), in particular that it is even and that it satisfies (3.18).
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Then P1 and P2 are smooth. Moreover, we have an injective morphism

γ : N → P1 × P2. (3.29)

obtained by sending

N 3 (Ê1, Ê2,
−→
A (q)) 7→ (Ê1, 0 ⊂ F 2E

(q)
1 ⊂ E(q)

1 )×(Ê2, 0 ⊂ F 2E
(q)
2 ⊂ E(q)

2 ) ∈ P1×P2.

(3.30)

where F 2E
(q)
1 = Ker

−→
A (q)and F 2E

(q)
2 = Im

−→
A (q).

Proof. Let (Ê1, Ê2,
−→
A (q)) ∈ N be a α-stable Hitchin triple. We prove that

(Ê1, 0 ⊂ F 2E
(q)
1 ⊂ E(q)

1 )

is a q-parabolic stable Higgs bundle on C1 with respect to the weights

(α1/2, α2/2), where α1/2 is associated to E
(q)
1 and α2/2 is associated to

F 2E
(q)
1 . By Theorem 3.3.4, we have that E1 is semistable on C1, so, by the

assumptions on αi we have that, for any φ1-invariant subbundle L1 of E1,

χC1(L1) + α2/2 <
χC1(E1)

2
+

1

4
=
χC1(E1)

2
+
α2/2 + α1/2

2
.

So, if either L
(q)
1 6= F 2E

(q)
1 or χC1(L1) < χC1(E1)/2, Definition 3.4.2 yields

par deg (L1) = par µ(L1) < par µ(E1).

Since χC1(E1) is odd, there are no strictly semistable q-parabolic Higgs

bundles in P1. Thus all parabolic Higgs bundles in P1 are stable and P1 is

smooth.

When we consider E2, we still have

par deg (L2) = par µ(L2) < par µ(E2)

if either L
(q)
2 6= F 2E

(q)
2 or χC2(L2) < χC2(E2)/2. By Remark 3.4.5, there are

no strictly semistable parabolic Higgs bundles. Hence all parabolic Higgs

bundles in P2 are stable and P2 is smooth.

Hence we obtain the injective morphism γ from the moduli space N to

P1 × P2.
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Remark 3.4.5. Let Ê2 be a Higgs bundle appearing in unstable Hitchin

triples as in Remark 3.3.5. Then q-parabolic Higgs bundles having under-

lying Higgs bundles Ê2 are also unstable as parabolic Higgs bundles, thus

they do not appear in P2. In fact, consider the q-parabolic Higgs bundle

(Ê2, 0 ⊂ L(q)
2 ⊂ E

(q)
2 ),

with L2 such that χC2(L2) = χC2(E2)/2 and with L
(q)
2 associated to the

weight α2
2 , in the same hypotheses of Theorem 3.4.4. Then we have

parµ(L2) = χC2(L2) +
α2

2
=
χC2(E2)

2
+
α2

2

parµ(E2) =
χC2(E2)

2
+

1

4
.

Asking parµ(L2) ≤ parµ(E2) is equivalent to asking

α2

4
≤ α1

4
,

which is not possible, since α2 > α1.

In particular, there are no strictly semistable q-parabolic Higgs bundles.

Remark 3.4.6. The morphism γ in (3.29) is not surjective. In fact, in the

hypotheses of Theorem 3.4.4, we need diagram (3.2) to be commutative

and, by Definition 3.4.1, we have that F 2E
(q)
1 = Ker

−→
A (q) is φ

(q)
1 -invariant

and F 2E
(q)
2 = Im

−→
A (q) is φ

(q)
2 -invariant.

Let {u1} be a basis of F 2E
(q)
1 , let {u1, v2} a basis of E

(q)
1 ⊗L

(q)
1 , respec-

tively let {t1} be a basis of F 2E
(q)
2 , let {t1, w2} be a basis of E

(q)
2 ⊗ L

(q)
2 .

By the assumptions above, the matrices of φ
(q)
1 and φ

(q)
2 have the follow-

ing form

φ
(q)
1 =

(
a b

0 c

)
φ

(q)
2 =

(
d e

0 f

)

and the assumptions on
−→
A (q) involving the subbundles F 2E

(q)
i imply that

−→
A (q) =

(
0 0

0 t

)
.

Condition (3.3) implies e = 0 and c = f . Thus, if we take e 6= 0 or c 6= f ,

this forces
−→
A (q) to be the zero map, which is not allowed by Theorem 3.2.10.

Hence the morphism γ is not surjective.



Chapter 4

The Hitchin map adapted to

Hitchin triples

We now generalize Section 1.3 to the case in which C is of compact type,

adapting the definition of Hitchin map to Hitchin triples.

4.1 The adapted Hitchin map

Recall that we assume that E is a torsion-free sheaf of rank (2, 2) and let

Ai := H0(Ci, Li)⊕H0(Ci, L
2
i ), i = 1, 2.

The commutativity condition on Higgs data Definition 3.1.1, in particular

the identification l in (3.1), implies restricting the target A1 × A2 of the

product of the classical Hitchin maps h1 :M1 → A1 and h2 :M2 → A2 to

the locus

A(q) := {(a1, a2) ∈ A1 × A2 : a
(q)
1 = a

(q)
2 }. (4.1)

We define the adapted Hitchin map as follows.

had :M12 → A(q) (Ê1, Ê2,
−→
A (q)) 7→ (a1, a2). (4.2)

Recall that the torsion-free Hitchin pair Ê is also associated to the triple

(̂̇E1,
̂̇E2,
←−
B (q)), which is related to the triple (Ê1, Ê2,

−→
A (q)) as in (3.6).

Lemma 4.1.1 ([7], Lemma 3.2.2). The map had is well defined.

57
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Proof. Recall Definition 3.1.7. The Hecke modification is an isomorphism

over smooth points of C, thus we have that on C1 \ {q} the characteristic

polynomial of φ1 and that of φ̇1 coincide. Thus (E1, φ1) and (Ė1, φ̇1) have

the same characteristic polynomial on C1. Similarly, (E2, φ2) and (Ė2, φ̇2)

have the same characteristic polynomial on C2.

So, taking into account the canonical identification (3.1), the Hitchin

triples (Ê1, Ê2,
−→
A (q)) and ( ̂̇E1,

̂̇E2,
←−
B (q)) define the same point in A(q).

Moreover, also when the base curve is one-nodal of compact type, the

Hitchin map is proper.

Theorem 4.1.2 ([7], Theorem 3.3.1, Lemma 5.1.1, [6], Theorem 9.2). The

adapted Hitchin map (4.2) is proper.

4.2 Gluing condition for Higgs fields in α-semistable

Hitchin triples

We now describe a gluing condition of the Higgs fields φi over the node q of

C in terms of the identification l from (3.1) and of Theorem 3.2.10.

As in Remark 1.3.14, considering Higgs fields φ
(q)
i : E

(q)
i → E

(q)
i ⊗ L

(q)
i ,

i = 1, 2, over the node, their characteristic polynomial is given by (1.15):

x2
i + a

(q)
i,1 xi + a

(q)
i,2 = 0, (4.3)

where xi is the tautological coordinate on Tot (Li). In particular, we have

a
(q)
i,1 = trace φ

(q)
i ∈ H0(Ci, L

(q)
i ) and a

(q)
i,2 = detφ

(q)
i ∈ H0(Ci, (L

(q)
i )2).

Remark 4.2.1. Assume that L1
∼= KC1 and L2

∼= KC2 , so that the identi-

fication l in (3.1) is the identity. Then φ
(q)
1 and φ

(q)
2 need to have the same

trace and the same determinant. Referring to (4.3), let a
(q)
1 := (a

(q)
1,1, a

(q)
1,2)

and let a
(q)
2 := (a

(q)
2,1, a

(q)
2,2).

In these hypotheses the diagram (3.2) defining Hitchin triples commutes

if and only if

(a1, a2) ∈ A(q). (4.4)

Since we want to generalize the classical description given in Sections

1.2 and 1.3 to curves of compact type, we also need the characterization
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of α-stability of Hitchin triples given by Theorem 3.2.10. It implies that

when a Hitchin triple is α-semistable, diagram (3.2) has to commute for
−→
A (q) having nonzero rank.

Definition 4.2.2. We say that a α-semistable Hitchin triple (Ê1, Ê2,
−→
A (q))

is associated to a if we have a = (a1, a2) and (4.4) holds.

As we did in Remark 1.3.14, we pull-back the vector bundles E1, E2 to

the spectral curves Xa1 , Xa2 respectively and we give an explicit form of

maps
−→
A (q) making diagram (3.2) commute.

Figure 4.1: Relation between the spectral cover Xa of C and spectral covers

Xai of Ci.

Remark 4.2.3 ([7], Remark 5.1.3). Assume that we have that the spectral

curves πai : Xai → Ci intersect transversally at two distinct points over the

node q, as in Figure 4.1.

Let ν : C1 t C2 → C be the normalization map and let qi ∈ Ci be the

preimages of q via ν. Pulling back Ei to Xai , letting xi be the tautological

sections of π∗aiLi and letting Qi,j (i = 1, 2, j = 1, 2) be the distinct preimages

of qi via the covers πai , we have det(xi · I2 − φ(qi)
i ) = 0 and

φ
(q1)
1 =

(
c1 0

0 d1

)
φ

(q2)
2 =

(
c2 0

0 d2

)
, (4.5)

where ci = xi(Qi,1), di = xi(Qi,2).

Remark 4.2.4. Let (Ê1, Ê2,
−→
A (q)) be a Hitchin triple associated to a, in the

sense of Definition 4.2.2 and assume, for simplicity, that L1
∼= KC1 and that

L2
∼= KC2 . Then the commutativity condition (3.3) simplifies to:

−→
A (q)φ

(q1)
1 = φ

(q2)
2

−→
A (q). (4.6)
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Let

−→
A (q) =

(
k y

z t

)
,

for k, y, z, t ∈ C. Assume that
−→
A (q) satisfies (4.6), which, by Remark 4.2.1,

is equivalent to the requirement that φi have the same eigenvalues over q

and that φ
(qi)
i , i = 1, 2, are as in (4.5). Then, if

−→
A (q) has rank 2, it is of the

form

−→
A (q) =

(
k 0

0 t

)
assuming that c1 = c2 and d1 = d2 (4.7)

−→
A (q) =

(
0 y

z 0

)
assuming that c1 = d2 and d1 = c2 (4.8)

for nonzero k, t (respectively nonzero y, z). If
−→
A (q) has rank one and it is

of the form (4.7), then exactly one of k and t vanishes. If it is of the form

(4.8), then exactly one of y and z vanishes.

Remark 4.2.5. Let Ê1 be any semistable Higgs bundle on C1. We claim

that there is always at least a semistable Higgs bundle Ê2 on C2 and a

linear map
−→
A (q) such that diagram (3.2) commutes. In fact, asking (4.6)

and solving for k, y, z, t always yields solutions in which
−→
A (q) has nonzero

rank. The same argument clearly holds if we fix a semistable Higgs bundle

Ê2 and it yields Ê1 together with linear maps
−→
A (q) of nonzero rank. Note

that, since φ1, φ2 can also be seen as holomorphic one-forms with values in

EndE, the condition (4.4) is not restrictive for the behaviour of the Higgs

fields φ1, φ2 over points which are different from q. In particular, for any

Ê1 ∈M1, Ê2 ∈M2, we can find suitable φ
(q)
1 , φ

(q)
2 such that (3.2) commutes

for nonzero linear maps
−→
A (q). Thus we have obtained a locus which is open

and dense in M1 ×M2.

Note that, if (4.6) has nonzero solutions
−→
A (q), then it has infinitely

many. Thus we describe a way to indentify triples, which is motivated by

the definition of the adapted Hitchin map for Hichin triples (4.2), which

forgets the datum of the map
−→
A (q).

Remark 4.2.6. We consider the following equivalence relation: we say that

two Hitchin triples (Ê1, Ê2,
−→
A (q)), (Ê′1, Ê

′
2, (
−→
A (q))′), are a-equivalent if they
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are both associated to a. We obtain the moduli space M12(2, χ) of a-

equivalent Hitchin triples of rank 2 and Euler characteristic χ as in Remark

3.2.14.

Remark 4.2.7. Assuming L1
∼= KC1 and L2

∼= KC2 , Remark 4.2.5 and the

dimension of M1,M2 in (1.7) yield

dimM12 = dimM1 + dimM2 = 8g1 − 6 + 8g2 − 6 = 8g − 12. (4.9)

In particular note that, even if the number of maps
−→
A (q) making diagram

(3.2) commute is not finite, Definition 4.2.2 provides a way to identify equiv-

alent triples, mirroring the structure of M1 ×M2. We give an alternative

way to compute the dimension ofM12 via the fibres of the adapted Hitchin

map in Section 4.4.

Remark 4.2.8. As we saw in Section 2.1, the existence of the identification

l is a specific property of curves of compact type that enables us to define

the Hitchin map over all points of C. On the other hand, for irreducible

one-nodal curves, the Jacobian of the curve is not compact and we cannot

define the characteristic polynomial of φ over the node, since there is not a

unique way to identify the fibres of L at the preimages of the node on the

normalization of the curve.

4.3 Adapted spectral curves

We define the adapted spectral curve Xa to be a ramified covering of degree

2 of C (recall that we assume that the rank of E is 2). Consider the canonical

identification (3.1) between the fibres of L1 and L2 at the node q of C and

let π : Tot (L)→ C be the natural projection.

Definition 4.3.1. The adapted spectral curve Xa is the zero divisor in

Tot (L) of a nonzero section in H0(Tot (L), π∗L2).

Similarly to Remark 1.3.8, by generic adapted spectral curve we mean

that, over points of C which are different from q, the components of the

adapted spectral curve are smooth.
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Spectral covers which are unramified over the node can be thought as

the union of the spectral covers of Ci, meeting transversally over the node

q.

We refer to [13], Section 4.1 for a discussion which parallels the discussion

of spectral curves that we gave in Section 1.3.

4.4 Fibres of the adapted Hitchin map

Fibres of the adapted Hitchin map for spectral covers unram-

ified over the node

Recall that, by Remark 4.2.1, we have had(M12) ⊂ A(q), for A(q) as in (4.1).

Let Aur be the open subset of A(q) corresponding to adapted spectral

curves which are not ramified over the node. We now let a ∈ Aur and we

relate spectral data on the components Xai (which we assume to be integral,

as we did in Notation 1.3.16) to spectral data on Xa. The correspondence

in Proposition 1.3.22 plays a key role.

Remark 4.4.1. Consider Figure 4.1. By Proposition 1.3.22, the datum of

rank-1 torsion-free sheaves ηi on the components Xai is equivalent to the

Higgs data Êi on the smooth components Ci, i = 1, 2. Moreover, consider

Lemma 3.3.7 and assume that
−→
A (q) is an isomorphism. Then, since C is of

compact type, the total spaces of L1 and L2 are identified over q and any

choice of identifications

η
(Q1,1)
1

∼−→ η
(Q1,2)
2 , η

(Q2,1)
1

∼−→ η
(Q2,2)
2 . (4.10)

corresponds to the choice of a map
−→
A (q) : E

(q1)
1 → E

(q2)
2 making diagram

(3.2) commute.

By (1.24) applied to the smooth components C1 and C2, we have

deg ηi = degEi + degLi.

Assuming Li ∼= KCi , this yields

deg η1 +deg η2 = (degE1 +2g1−2)+(degE2 +2g2−2) = d+2g−4 = γ−2,

(4.11)

for γ as in (1.25). Let γ′ = γ − 2.
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Remark 4.4.2. The assumption that
−→
A (q) is an isomorphism in Remark

4.4.1 is without loss of generality. In fact, the Hitchin map forgets the

datum of the map
−→
A (q) and the space N is a divisor in M12, so we can

assume that
−→
A (q) has rank 2.

Moreover, the assumption that Xa is not ramified over the node implies

that the eigenvalues of φ
(q)
1 , φ

(q)
2 are different, so we cannot have the case

described in Remark 3.3.8.

Remark 4.4.3 ([7], Remark 5.2.2). Consider the line bundle L associated

to the line bundles L1, L2 on C1, C2 respectively and let Z be the projective

completion of the total space of L, as in (1.12). Since the adapted spectral

curve Xa can be realized as a closed subscheme Xa ⊂ Z, Remark 1.4.13

endows Xa with the polarization OXa(1) induced from (1.32).

By restricting the polarization OXa(1) to the components Xa1 , Xa2 of

Xa and by arguing as in Remark 2.2.2, we obtain a polarization β = (β1, β2)

on Xa such that β1 + β2 = 1. Since the ample line bundles on Xa1 , Xa2

are the pullbacks of ample line bundles on C1, C2 yielding the polarization

α = (α1, α2), we obtain α = β.

We have the following analogue of Proposition 1.3.22 for base curves C

of compact type.

Proposition 4.4.4 ([7], Theorem 5.3.1, [13], Lemma 4.6, Proposition 4.7).

Let a ∈ Aur and let πa : Xa → C be an adapted spectral curve such that its

components Xai are integral. Let α = (α1, α2) be a polarization of C such

that α1χ is not an integer. Then there is a bijective correspondence between

• isomorphism classes of α-stable rank-1 torsion-free sheaves η on Xa,

• isomorphism classes of α-stable Hitchin triples (Ê1, Ê2,
−→
A (q)) associ-

ated to a, as in Definition 4.2.2.

This yields an isomorphism

(had)−1(a)
∼−→ Jγ′(Xa),

where Jγ′(Xa) is Simpson’s compactified Jacobian from Remark 1.4.15(b).
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Proof. Remark 4.4.1 yields a description of torsion-free sheaves in the com-

pactified Jacobian of the adapted spectral curve, whose degree is computed

in (4.11). The equivalence between β-stability of rank-1 torsion-free sheaves

onXa and α-stability of Hitchin pairs on C (which is equivalent to α-stability

of Hitchin triples on C, as in Remark 3.2.9) is given by Remark 4.4.3.

Dimension of M12

Proposition 4.4.4 yields an alternative way to Remark 4.2.7 to compute the

dimension of M12, as we now see.

Proposition 4.4.5 ([7], Proposition 5.2.1). The adapted Hitchin map

had :M12 → Aur (4.12)

is surjective.

Proof. Given any generic a = (a1, a2) ∈ Aur, by Proposition 1.3.22 there

are stable Higgs bundles Ê1, Ê2 corresponding to a. Considering Ê1, Ê2

associated to a and considering a map
−→
A (q) of rank 2 making diagram (3.2)

commute (which always exists by Remark 4.2.4), we have that the triple

(Ê1, Ê2,
−→
A (q)) is α-stable by Lemma 3.3.7, yielding the claim.

Thus we have

dimM12 = dimAur + dim(had)−1(a) = dimA(q) + dim Jγ′(Xa). (4.13)

Proposition 4.4.6. Let L1 and L2 be the canonical bundles KC1 and KC2,

respectively, of the smooth components C1 and C2 of C, which has arithmetic

genus g. Then we have

dimM12 = 8g − 12.

Proof. As discussed above, the generic fibre of had is Jγ′(Xa), whose dimen-

sion equals the arithmetic genus of Xa (e.g. by Theorem 1.1.19 in [44], see

also Caporaso [18]). Since Xa is associated to the union of the smooth spec-

tral curves Xai , each having genus 4gi−3, i = 1, 2, intersecting transversally

at two nodes, its arithmetic genus is given by (2.3), yielding

gXa = gXa1 + gXa2 + (δ − γ + 1) = (4g1 − 3) + (4g2 − 3) + 1 = 4g − 5.
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Thus the dimension of the Hitchin fibre is 4g − 5.

Since the locus A(q) has codimension 1 in A1 × A2, we have:

dimA(q) = dimA1 + dimA2 − 1 = (4g1 − 3) + (4g2 − 3)− 1 = 4g − 7.

Hence (4.13) yields

dimM12 = 8g − 12. (4.14)

An example of fibres of the adapted Hitchin map for spectral

covers ramified over the node

Consider a generic adapted spectral curve Xa. Assume that it is ramified

over the node q and that the ramification point Q over q is a nodal singular-

ity, as in Figure 4.2. We show that, also in this case, the fibre of the Hitchin

map is the compactified Jacobian of Xa.

Figure 4.2: BNR correspondence for adapted spectral curve ramified over q

Proposition 4.4.7. Let Xa be a generic adapted spectral curve which is

ramified over the node q of C, as above. Then there is a one-to-one corre-

spondence between rank-1 torsion-free sheaves on Xa and Hitchin triples on

C. We have

(had)−1(a) ∼= J(Xa1)× J(Xa2).

Proof. Using the notation from (2.3), we have

gXa = gXa1 + gXa2 + (δ − γ + 1) = gXa1 + gXa2 , (4.15)
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thus Xa is of compact type by Remark 2.1.5.

Consider Figure 4.2. By Lemma 3.1.3, the datum of a rank-2 torsion-

free Hitchin pair Ê on C is equivalent to the datum of its restrictions Ê1 on

C1 and Ê2 on C2, together with a linear map
−→
A (q) making diagram (3.2)

commute.

By the classical BNR correspondence Proposition 1.3.22 between ηi on

Xai and Êi on Ci, i = 1, 2, we obtain a correspondence between rank-1

torsion-free sheaves on Xai and Higgs bundles on Ci, yielding

h−1
i (ai) ∼= J(Xai).

Moreover, since the spectral curve Xa is of compact type, we have an

equivalence at the level of spectral curves: the datum of a rank-1 torsion-free

sheaf η on Xa is equivalent to the datum of its restrictions ηi on Xai as in

Remark 2.1.5. This yields

(had)−1(a) ∼= h−1
1 (a1)× h−1

2 (a2),

which yields the claim.

Remark 4.4.8. Consider the canonical map

Π : J(Xa)→ J(Xa1)× J(Xa2).

Then:

• if the adapted spectral curve Xa is not ramified over the node, then Π

is the map (η1, η2, f) 7→ (η1, η2) forgetting the identifications between

the fibres of the torsion-free sheaves ηi at the preimages of q, which

yield the map
−→
A (q).

• If Xa is ramified over the node, then Π is an isomorphism.
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The G-Hitchin map

Let G be an affine reductive group over C such that its associated Lie algebra

is so(4,C), i.e. it is isogenous to SL(2,C)× SL(2,C). We apply the results

presented in the first four chapters to describe the fibre of the G-Hitchin

map for a smooth base curve of genus g ≥ 2 and the fibre of the adapted

G-Hitchin map for a one-nodal base curve of compact type such that the

genus of both components is at least 2.

This builds on the study of SL(2,C)-Higgs data, which we now recall.

5.1 SL(2,C)-Higgs bundles on a smooth base curve

We first consider the case in which the base curve C is smooth, then we

consider the case in which C is one-nodal of compact type in Section 5.2.

Definition 5.1.1. The datum of a SL(2,C)-Higgs bundle on C corresponds

to the datum of (E, φ), where:

• E is a vector bundle on C having fixed determinant Λ,

• φ : E → E ⊗ L is a L-twisted endomorphism having trace zero.

Notation 5.1.2. We assume, unless otherwise stated, that SL(2,C)-Higgs

bundles have fixed determinant Λ of odd degree.

This follows the convention of the work by de Cataldo-Hausel-Migliorini

[23], Section 1.2.2 and enables us to use the characterization from the pre-

vious chapters, in which we assume that χ is odd. On the other hand, the

67
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usual assumption on SL(2,C)-Higgs bundles, e.g. in the works [16], [20],

[45], is that they have trivial determinant.

Remark 5.1.3. Notation 5.1.2 corresponds, via (1.34), to asking

Nmπ(η)
∼−→ Λ⊗ det(π∗OX)−1 =: Λ′. (5.1)

Similarly to Remark 1.1.9, tensoring by a fixed line bundle of suitable degree

induces a noncanonical isomorphism between line bundles on the spectral

curve, having fixed norm, and line bundles in the Prym variety Prπ of a

cover as in Definition 1.5.4.

Let M(2, d) be the moduli space of semistable Higgs bundles of rank 2 and

degree d on C. Let L be a line bundle on C whose degree is greater or equal

to the degree of KC and consider the map

ψ :M(2, d)→ J(C)×H0(C,L), (E, φ) 7→ (detE, trφ).

Definition 5.1.4. Let C be a smooth base curve. We define the moduli

space of SL(2,C)-Higgs bundles as

MSL(2,C) = ψ−1(Λ, 0).

Notation 5.1.5. We denote by A0 ⊂ A be the locus of characteristics

such that a1 = 0. Moreover, from now on, we denote the spectral curve

πa : Xa → C simply by π : Xa → C.

Remark 5.1.6. Referring to (1.9) and to Notation 5.1.5, we call by a the

section a2 ∈ H0(C,L2) and we define the SL(2,C)-Hitchin map as:

hSL(2,C) :MSL(2,C) → A0 ⊂ A (E, φ) 7→ (0, a), (5.2)

where a = detφ. In particular, SL(2,C)-spectral curves Xa have equation

x2 − a = 0, (5.3)

where x is the tautological coordinate on Tot (L). The curve in (5.3) has

an involution ι(x) = −x, having the zeros of a as its only fixed points.
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Remark 5.1.7 ([37], Section I.3). Let π : X → C be a smooth double cover

and assume that X has an involution ι. Then we can define Prπ as the locus

of line bundles M on X such that

M∨ ∼= ι∗M.

More generally, by Remark 1.3.6, spectral curves are Gorenstein curves.

The dual of a torsion-free sheaf on a Gorenstein curve is a torsion-free sheaf

of the same rank, so we can characterize torsion-free sheaves η in the com-

pactification Prπ of Prπ in terms of torsion-free sheaves in J(Xa) satisfying

η∨ ∼= ι∗η.

Remark 5.1.8 ([30], Section 4). More generally, for an affine reductive

group G over C with Lie algebra g of rank n, the characteristic coefficients

a1, · · · , an in (1.9) are naturally associated to a homogeneous basis of poly-

nomials which are invariant under the adjoint action of G.

In particular, as we have seen above and as we see in Section 5.3, for

groups G having underlying Lie algebra sl(2,C), the basis is simply given by

a2 in (1.9). On the other hand, for groups G having underlying Lie algebra

so(4,C) ∼= sl(2,C)× sl(2,C),

which we consider in Sections 5.4, 5.6, 5.8, the basis is given by {a2, p4} and

we have a4 = p2
4.

Fibres of the SL(2,C)-Hitchin map

We now describe the fibre of the Hitchin map hSL(2,C).

Remark 5.1.9. Since sl(2,C) ∼= sp(2,C), we can endow SL(2,C)-Higgs bun-

dles with a non-degenerate symplectic form

ω : E ⊗ E → detE ∼= Λ (5.4)

satisfying the condition

ω(φv,w) = −ω(v, φw).

Thus, by slightly adapting the proof of Proposition 4.3.1 in [20] (for r = 1),

we obtain a proof of Proposition 5.1.10.
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Proposition 5.1.10 ([20], Proposition 4.1.2, [26], Theorem 6.1). Let a ∈ A0

be such that π : Xa → C is an integral spectral curve. Then we have

h−1
SL(2,C)(a) ∼= Prπ.

Proof. By Remark 1.3.25, the rank-1 torsion free sheaf η on Xa associated

to (E, φ) by Proposition 1.3.22 fits into the exact sequence

0→ η ⊗ π∗L−1 → π∗E
π∗φ−x−−−−→ π∗(E ⊗ L)→ η ⊗ π∗L→ 0. (5.5)

Considering the dualized sequence and tensoring by π∗(L⊗ Λ) we have the

sequence

0→ η∨ ⊗ π∗Λ→ π∗(E∨ ⊗ Λ)
π∗φt−x−−−−−→ π∗(E∨ ⊗ Λ)⊗ π∗L,

which is exact on the left.

Applying ι∗ to the exact sequence (5.5) we have

0→ ι∗η ⊗ π∗L−1 → π∗E
π∗φ+x−−−−→ π∗(E ⊗ L)→ ι∗η ⊗ π∗L→ 0.

The form ω in (5.4) induces an isomorphism ωE : E
∼−→ E∨⊗Λ, hence a

commutative diagram:

0 // η∨ ⊗ π∗Λ // π∗(E∨ ⊗ Λ)
π∗φt−x// π∗(E∨ ⊗ Λ)⊗ π∗L

0 // ι∗η ⊗ π∗L−1 // π∗E

ωE

OO

π∗φ+x // π∗(E ⊗ L)

ωE

OO
.

This yields an isomorphism

η∨ ⊗ π∗Λ ∼−→ ι∗η⊗ π∗L−1, thus η∨
∼−→ ι∗η⊗ π∗(L−1 ⊗Λ−1) =: ι∗η⊗ π∗L̃−1.

Hence we have

η0 = η ⊗ π∗L̃−1/2 ∈ Prπ (5.6)

by Remark 5.1.7.

We also consider an approach which refers to the characterization of

Nmπ in (5.1).
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Remark 5.1.11. By the classical BNR correspondence, the datum of a

SL(2,C)-Higgs bundle is equivalent to that of a rank-1 torsion-free sheaf

η on Xa. Let B := det(π∗OXa)−1 ∈ J(C). Then (1.34) yields

Nmπ(η) = det(π∗η)⊗B,

so giving a trivialization det(π∗η)
∼−→ Λ is the same as giving an isomorphism

Nmπ(η)
∼−→ Λ′. Hence, arguing as in [20], Proposition 4.1.1, the datum of

a SL(2,C)-Higgs bundle (E, φ) is the same as the datum of a torsion-free

sheaf η in Prπ together with the datum of the isomorphism (5.1), i.e. it is a

constrained torsion-free sheaf as anticipated in Remark 1.5.8.

Remark 5.1.12. If we choose L ∼= KC , spectral curves are ramified double

covers, thus the associated Prym variety Prπ yielding the generic fibre of the

SL(2,C)-Hitchin map is connected (recall Remark 1.5.5), e.g. by Mumford

[37], Section I.3 for smooth spectral curves. We refer to Gothen-Oliveira

[26], Theorem 6.3 for integral spectral curves.

We now consider the behaviour for different choices of L and discuss

endoscopic loci.

Endoscopic loci for the SL(2,C)-Hitchin map

Normalizing the spectral curve does not change the number of connected

components of the associated Prym variety, as we see in the following lemma,

since our case is a special case of the one which is studied by Hausel-Pauly

[29], Lemma 4.1(4).

Lemma 5.1.13. Let π : Xa → C be a reduced spectral curve, let the map

ν : X̃a → Xa be its normalization and let π̃ : X̃a → C be the natural

projection. Then we have

Gconn(Prπ) ∼= Gconn(Prπ̃),

where Gconn denotes the group of connected components.

Definition 5.1.14. We say that a SL(2,C)-cover π : Xa → C is endoscopic

if the natural projection π̃ factors through an étale double cover of C.
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We also say that the characteristic a is endoscopic and we call endoscopic

loci, denoted A0
SL(2,C),e, the loci of characteristics a ∈ A0 such that the

associated spectral curve Xa is endoscopic.

Notation 5.1.15. We denote by Γ the group J0(C)[2]∼= Z2g
2 of line bundles

γ ∈ J0(C) such that γ2 ∼= OC .
We will refer to the natural projection π̃ as the normalization of π.

Remark 5.1.16. We can interpret Definition 5.1.14 by considering a two-

torsion point γ ∈ Γ∗ and taking a as a section of

(KC ⊗ γ)2 ∼= K2
C . (5.7)

As in de Cataldo-Hausel-Migliorini [23], Section 4, there is a “squaring” map

iγ : H0(C,KC ⊗ γ)→ H0(C,K2
C) = A0 iγ(a′) = a′ ⊗ a′, (5.8)

with image A0
γ ⊂ A0.

By Proposition 1.5.7, together with Lemma 5.1.13, endoscopic loci are

characterized by the fact that the number of connected components of Prπ

is larger than the number of connected components that Prπ has when we

consider L ∼= KC . More precisely, from [29], Theorem 5.3, we obtain the

following characterization of endoscopic SL(2,C)-characteristics.

Theorem 5.1.17. Let π : Xa → C be a SL(2,C)-spectral curve. The group

Gconn(Prπ) is nontrivial if and only if the characteristic a belongs to

A0
SL(2,C),e = ∪γ∈Γ∗A0

γ .

We now discuss endoscopic loci by considering the total space Tot (L)

of the line bundle L.

Remark 5.1.18. Assume that Xa is a SL(2,C)-spectral curve. By (5.7),

we can see Xa either in Tot (KC) or in Tot (KC ⊗ γ). Let π : Xa → C be

a standard SL(2,C)-spectral curve, let πγ be the étale double cover of C

associated to γ.

If we consider the generic SL(2,C)-spectral curve π : Xa → C, then it

has equation x2 − a = 0, where a ∈ H0(C,K2
C) and Prπ is connected by

Remark 5.1.12. Hence we have

Gconn(Prπ) ∼= {OC}.
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If we consider γ ∈ Γ∗ and we consider the cover Xa → C in Tot (KC⊗γ),

then it is reducible and it has equation

x2 − (a′)2 = 0. (5.9)

In particular, it has double points at the 2g−2 zeros of a′ ∈ H0(C,KC⊗γ).

Its normalization π̃ factors via the étale cover πγ . In this case, Proposition

1.5.7, together with Lemma 5.1.13, yields:

Gconn(Prπ) ∼= Z/2Z.

Notation 5.1.19. Let a ∈ A be a characteristic such that the associated

spectral curve Xa is endoscopic. We say that Xa is generic (also, that a is

generic) if Xa has ramification points as its only singularities.

Remark 5.1.20. Let C be a smooth base curve. Then there are no GL(n,C)-

endoscopic loci because, in our assumptions Notation 1.3.16, the fibre of the

Hitchin map is irreducible.

5.2 SL(2,C)-Higgs bundles on a one-nodal curve of

compact type

Notation 5.2.1. Let MSL(2,C)
12 be the moduli space of Hitchin triples asso-

ciated to α-stable Hitchin pairs (E, φ), where E has fixed determinant Λ of

odd degree (so, in particular, E has odd Euler characteristic) and φ has trace

zero. In particular, as we did in Section 3.3, we assume that χC1(E1) is odd

and that χC2(E2) is even. By these assumptions, the study of α-stability of

SL(2,C)-Hitchin triples reduces to the study of α-stability of Hitchin triples

that we gave in Chapters 3 and 4, so in this chapter we assume that Hitchin

triples are α-stable.

We first parallel Section 4.4, describing the fibres of the adapted SL(2,C)-

Hitchin map and computing the dimension ofM12,SL(2,C) for L1
∼= KC1 and

L2
∼= KC2 , then we consider endoscopic loci.
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Fibres of the adapted SL(2,C)-Hitchin map for spectral covers

unramified over the node

Notation 5.2.2. Referring to Section 4.2, in particular to Remark 4.2.1,

we denote by

(A0)(q) ⊂ A(q)

the locus of characteristics a = (a1, a2), a1 = (0, a1,2), a2 = (0, a2,2) such that

the Higgs fields φi : Ei → Ei⊗Li, i = 1, 2 have trace zero. In particular, they

have trace zero over the node q, so in order to have a semistable SL(2,C)-

Hitchin triple it is enough to ask that φ
(q)
i , which are given e.g. as in (4.5),

with di = −ci, have the same determinant.

We first adapt Proposition 4.4.4 to SL(2,C)-spectral curves. Denote by

(A0)ur ⊂ (A0)(q) the locus of characteristics associated to adapted spectral

covers which are not ramified over q.

Proposition 5.2.3. Let C be a one-nodal curve of compact type, consider

a ∈ (A0)ur and let Xa → C be an adapted SL(2,C)-spectral cover having

integral components Xa1 , Xa2. Let α = (α1, α2) be a polarization such α1χ

is not an integer. Then there is a bijective correspondence between:

• isomorphism classes of α-stable rank-1 torsion free sheaves η on Xa

such that there is an isomorphism λ : det(π∗η)
∼−→ Λ,

• isomorphism classes of SL(2,C)-Hitchin triples (Ê1, Ê2,
−→
A (q)) ∈M12,SL(2,C)

associated to a.

Hence we have an isomorphism

(hadSL(2,C))
−1(a)

∼−→ Prπ.

Proof. The correspondence between rank-1 torsion-free sheaves on Xa and

Hitchin triples on C is given by Proposition 4.4.4.

Letting hi : MSL(2,C),i → Ai, i = 1, 2, be the Hitchin maps for the

smooth base curves Ci and arguing as in the proof of Proposition 5.1.10 for

each Ci, we have h−1
i (ai) ∼= Prπi .

Thus, letting f be the identification between the fibres of ηi at the preim-

ages of qi via the spectral cover, as in Figure 4.1 and Remark 4.4.1, the triple

(η1, η2, f) ∈ Prπ yields the claim.
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Dimension of M12,SL(2,C)

Let L1 and L2 be the canonical bundles KC1 and KC2 of the smooth com-

ponents C1 and C2 of C and consider an adapted SL(2,C)-spectral curve

which is not ramified over the node.

By the proof of Proposition 5.2.3 and the proof of Proposition 4.4.5, we

obtain the following.

Proposition 5.2.4. The adapted Hitchin map

hadSL(2,C) :M12,SL(2,C) → (A0)ur (5.10)

is surjective.

Thus we have

dimM12,SL(2,C) = dim(A0)ur + dim(hadSL(2,C))
−1(a) = dim(A0)(q) + dim Prπ.

(5.11)

Proposition 5.2.5. Let C be a one-nodal base curve of compact type having

arithmetic genus g and assume that L1
∼= KC1 and L2

∼= KC2. Then we

have:

dimM12,SL(2,C) = 6g − 12. (5.12)

Proof. As discussed above, the generic fibre of hadSL(2,C) is Prπ ⊂ J(Xa) and

we have

dim Prπ = dim J(Xa)− g = 3g − 5.

On the other hand, the locus (A0)(q) has codimension 1 in A0
1 × A0

2. Thus

we have

dim(A0)(q) = (3g1 − 3) + (3g2 − 3)− 1 = 3g − 7.

Hence (5.11) yields:

dimM12,SL(2,C) = 6g − 12.
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Endoscopic loci for the adapted SL(2,C)-Hitchin map

We consider Theorem 5.1.17.

Definition 5.2.6. We say that an adapted spectral cover π : Xa → C

of a one-nodal curve of compact type is endoscopic if the associated Prym

variety Prπ has more connected components than in the case in which we

take L1
∼= KC1 and L2

∼= KC2 (in this case, each Prym variety Prπi is

connected by Remark 5.1.12).

Lemma 5.1.13 yields the following description of SL(2,C)-endoscopic

loci.

Proposition 5.2.7. Let a ∈ (A0)ur be associated to a generic adapted spec-

tral curve. If at least a SL(2,C)-spectral cover Xai of the component Ci is

endoscopic, then Xa is endoscopic.

Proof. Since the normalization π̃ of a generic adapted SL(2,C)-spectral

curve π : Xa → C is given by the disjoint union of its components, we

have

Prπ̃ ∼= Prπ1 × Prπ2 .

Thus, if at least a spectral cover Xai is endoscopic, then Lemma 5.1.13 yields

that the associated adapted spectral curve is endoscopic.

So, if exactly one spectral cover Xai is endoscopic, then we have

Gconn(Prπ) ∼= Z/2Z,

while, if both covers are endoscopic, we have

Gconn(Prπ) ∼= Z/2Z⊕ Z/2Z.

Remark 5.2.8. When we study endoscopic loci for adapted spectral curves,

it will be useful to consider the endoscopy of each component of the adapted

spectral curve separately.
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5.3 PGL(2,C)-Higgs bundles

We now present the moduli space of PGL(2,C)-Higgs bundles on a smooth

base curve, referring to our description in Section 5.1 and to the exact se-

quence:

0→ µ2
λ7→λI2−−−−→ SL(2,C)→ PGL(2,C)→ 0, (5.13)

where µ2 is the group of square roots of the unity.

Let Γ be as in Notation 5.1.15.

Remark 5.3.1. Let γ ∈ Γ and assume that ρ : γ2 ∼−→ OC is a trivialization.

Let (E, φ) be a SL(2,C)-Higgs bundle and consider the equivalence relation

∼ defined by

(E, φ) ∼ (E ⊗ γ, φ⊗ 1γ).

Then [(E, φ)] is the orbit of (E, φ) under the action of Γ onMSL(2,C) defined

by:

MSL(2,C) × Γ→MSL(2,C) ((E, φ), γ) 7→ (E ⊗ γ, φ⊗ 1γ). (5.14)

Recalling Notation 5.1.2, we have that

det(E ⊗ γ)
∼−→ det(E)⊗ γ2 ∼−→

ρ
Λ.

Definition 5.3.2. We define the moduli space of PGL(2,C)-Higgs bundles

as the quotient

MPGL(2,C) :=MSL(2,C)/Γ.

Remark 5.3.3. Moreover, since H2(C, µ2) = Z/2Z, (5.13) induces the exact

sequence

H1(C, µ2)→ H1(C,SL(2,OC)) � H1(C,PGL(2,OC)) −→ Z/2Z→ 0.

A PGL(2,C)-Higgs bundle (E, φ) of odd degree deg Λ lifts to a SL(2,C)-

Higgs bundle (E0, φ0) of the same degree; any other lifting differs by the

action of a 2-torsion line bundle by tensor product as above.

Remark 5.3.4. The action (5.14) of Γ on the moduli space of SL(2,C)-Higgs

bundles corresponds to an action of π∗Γ on the SL(2,C)-Hitchin fibre Prπ

from Proposition 5.1.10, which we now describe:

Prπ × π∗Γ→ Prπ (η, π∗γ) 7→ η ⊗ π∗γ (5.15)
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and, by (5.1), together with Remark 1.5.3, we have

Nmπ(η ⊗ π∗γ)
∼−→ Nmπ(η)⊗Nmπ(π∗γ)

∼−→ Nmπ(η)⊗ γ2 ∼−→ Λ′.

Fibres of the PGL(2,C)-Hitchin map

Proposition 4.2.5 in [20] yields the following.

Proposition 5.3.5. Consider the PGL(2,C)-Hitchin map

hPGL(2,C) :MPGL(2,C) → A0, (E, φ) 7→ (0, a). (5.16)

Let a ∈ A0 be such that the associated spectral curve π : Xa → C is integral.

Consider the action of π∗Γ on the SL(2,C)-Hitchin fibre as in Remark 5.3.4.

Then we have

h−1
PGL(2,C)(a) ∼= Prπ/π

∗Γ. (5.17)

Proof. By Proposition 5.1.10, the datum of (E, φ) is equivalent to that of

η ∈ Prπ.

Let γ be any 2-torsion line bundle on C. By the projection formula, we

have

π∗(η ⊗ π∗γ) ∼= π∗η ⊗ γ

and, letting x be the tautological section of π∗L, the following diagram

commutes

π∗(η ⊗ π∗γ)
∼ //

π∗(·x)

��

π∗η ⊗ γ

φ

��
π∗(η ⊗ π∗γ)⊗ L ∼ // (π∗η ⊗ γ)⊗ L

.

Hence the spectral correspondence is equivariant with respect to the action

of π∗Γ by tensor product on Prπ as in (5.15) and by the action of Γ on the

moduli space MSL(2,C) as in (5.14).

Passing to the quotient on both sides, the datum of the Γ-equivalence

class [(E, φ)] corresponds uniquely to the datum of the π∗Γ-equivalence class

[η] ∈ Prπ/π
∗Γ, yielding the claim.

Proposition 5.3.6. There are no nontrivial PGL(2,C)-endoscopic loci.

Proof. The quotient defining PGL(2,C)-Higgs data identifies extra-components

of Prπ, forcing the PGL(2,C)-endoscopic locus to be trivial.
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PGL(2,C)-Higgs bundles on a base curve of compact type

We define the moduli space of PGL(2,C)-Hitchin triples as follows:

MPGL(2,C)
12 :=MSL(2,C)

12 /Γ,

where the equivalence relation associated to the quotient by Γ is obtained

by considering the action of two-torsion line bundles associated to the re-

strictions of γ to Ci as in Remark 2.1.5.

The fibre of the adapted PGL(2,C)-Hitchin map is given by

(η1, η2, f) ∈ Prπ/π
∗Γ

and, arguing as in the proof of Proposition 5.3.6 for both components Ci,

we have the following.

Proposition 5.3.7. Let C be a curve of compact type. Then the adapted

PGL(2,C)-spectral curve Xa is not endoscopic.

5.4 Spin(4,C)-Higgs bundles on a smooth curve

Notation 5.4.1. From now on, we assume that the group G has underlying

Lie algebra so(4,C).

We define Spin(4,C)-Higgs data via the isomorphism

Spin(4,C) ∼= SL(2,C)× SL(2,C). (5.18)

Notation 5.4.2. Relating to the assumptions from Notation 5.1.2, we as-

sume that E1 has fixed determinant Λ of odd degree. Moreover, we assume

that E2 has trivial determinant.

Definition 5.4.3. We define MSpin(4,C) as MSL(2,C) ×MSL(2,C), thus:

MSpin(4,C) = {(E1 ⊗ E2, φ1 ⊗ 1 + 1⊗ φ2), (Ei, φi) ∈MSL(2,C)},

where:

• E = E1 ⊗ E2 is a rank-4 holomorphic vector bundle having fixed

determinant Λ, with the choice of a positively oriented local frame for

E,
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• ϕ = φ1 ⊗ 1 + 1⊗ φ2 is a Higgs field having trace zero.

Notation 5.4.4. Following [16], when we discuss Higgs bundles associated

to so(4,C) on a smooth base curve, we denote by bi the data referring to

the i-th copy of SL(2,C)-Higgs bundles via the SL(2,C)-Hitchin map, for

i = 1, 2.

The choice of using bi instead of ai is to try to avoid misunderstandings

with notation in the previous sections and chapters.

Remark 5.4.5 ([5], Section 5.2). Let (E1, φ1) be a SL(2,C)-Higgs bundle

on C having fixed determinant Λ of odd degree, let (E2, φ2) be a SL(2,C)-

Higgs bundle having trivial determinant. Arguing as in Remark 5.1.9, we

can endow SL(2,C)-Higgs bundles with symplectic forms given, for i = 1, 2,

by ωi : Ei ⊗ Ei → detEi.

Let E and ϕ be as in Definition 5.4.3. Then the vector bundle E has rank

4 and a non-degenerate symmetric quadratic form Q associated to ω1 ⊗ ω2

and defined by

Q : E×E → detE ∼= Λ (y
(1)
1 ⊗y

(2)
1 , y

(1)
2 ⊗y

(2)
2 ) 7→ (y

(1)
1 ∧y

(1)
2 )⊗(y

(2)
1 ∧y

(2)
2 ).

(5.19)

Let {e(1)
1 , e

(1)
2 } and {e(2)

1 , e
(2)
2 } be bases of E1 and E2 respectively, and

let the Higgs fields be

φ1 =

(
φ

(1)
1,1 φ

(1)
1,2

φ
(1)
2,1 −φ(1)

1,1

)
, φ2 =

(
φ

(2)
1,1 φ

(2)
1,2

φ
(2)
2,1 −φ(2)

1,1

)

in the bases of E1 and E2 respectively. Since E is a Spin(4,C)-Higgs bundle,

referring to Definition 5.4.3, we choose

{e(1)
1 ⊗ e

(2)
1 , e

(1)
1 ⊗ e

(2)
2 , e

(1)
2 ⊗ e

(2)
1 , e

(1)
2 ⊗ e

(2)
2 } (5.20)

as a positively oriented local frame for E. With respect to (5.20), ϕ is given

by

ϕ =


φ

(1)
1,1 + φ

(2)
1,1 φ

(2)
1,2 φ

(1)
1,2 0

φ
(2)
2,1 φ

(1)
1,1 − φ

(2)
1,1 0 φ

(1)
1,2

φ
(1)
2,1 0 −φ(1)

1,1 + φ
(2)
1,1 φ

(2)
1,2

0 φ
(1)
2,1 φ

(2)
2,1 −φ(1)

1,1 − φ
(2)
1,1

 (5.21)
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while Q is given by

Q =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 ,

and we have tϕQ+Qϕ = 0.

Hence ϕ is skew-symmetric and the determinant of the matrix (5.21) is

the square of a polynomial, which is called the Pfaffian of ϕ. The choice of

a sign for the Pfaffian is an equivalent condition to the choice of a positively

oriented local frame for E.

Note that the datum of Q is classically associated to SO(4,C)-Higgs

bundles lifting to Spin(4,C)-Higgs bundles, as in Remark 5.6.3 and Remark

5.6.5.

On the other hand, the approach that we have recalled is consistent

with the discussion in [39], Section 2 and with the fact that spectral curves

associated to G-Higgs bundles, where G has underlying Lie algebra so(4,C),

have equation of the same form (Remark 5.1.8).

We now describe generic Spin(4,C)-spectral curves.

Remark 5.4.6. As we will see in Remark 5.4.10, G-spectral curves are al-

ways singular, their generic singularities being double points. Note that this

is different from the characterization of generic GL(2,C)-spectral curves or

SL(2,C)-spectral curves, which are smooth by Remark 1.3.8.

Remark 5.4.7. From now on, relying on the genericity conditions on SL(2,C)-

spectral curves and on the fact that G-spectral data are given on the desin-

gularization of the spectral curve, we only consider line bundles in the fibre

of the Hitchin map.

We now recall the approach in [16], especially Section 5.4, whose fibred-

product construction yields the desingularization of the G-spectral curve

and the generic fibre of the Spin(4,C)-Hitchin map.

Remark 5.4.8. Let πi : Xbi → C, i = 1, 2, be the SL(2,C)-Higgs data

associated to bi ∈ H0(C,L2), whose equation, letting x be the tautological

section of π∗L, is x2 − bi = 0. The fibred product

X̃b = Xb1 ×C Xb2 (5.22)
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is thus given, as a curve in the total space of L⊕ L, by

x2
1 − b1 = x2

2 − b2 = 0, (5.23)

(x1, x2) denoting the tautological section on L⊕ L. The situation is repre-

sented in the following diagram

X̃b

π

��

p1

~~

p2

  

p

((
Xb1

π1 !!

Xb2

π2}}

X̃b/ι̃

π
vv

C.

(5.24)

where pi : X̃b → Xbi are the natural projections from the fibred product to

its factors and p is obtained as in Remark 5.4.9.

Remark 5.4.9. Since generic SL(2,C)-spectral curves are smooth, the curve

X̃b in (5.24) is smooth and provides the desingularization of the curve Xb.

We obtain the equation of the curve Xb via the map

L⊕ L→ L, (5.25)

given by fiberwise addition. In fact, setting x = x1+x2 gives Xb the equation

x4 − 2(b1 + b2)x2 + (b1 − b2)2 = 0. (5.26)

Generically, the curve Xb has singularities which are double points corre-

sponding to the zeros of (b1− b2). The SL(2,C)-curves Xbi have involutions

ιi, having the zeros of bi as fixed points. Since these zeros are generically

different, the involution ι̃ := (ι1, ι2) on X̃b has no fixed points. Thus the

map

p : X̃b → X̃b/ι̃. (5.27)

is an étale double cover. Then by [38], Lemma 1, the Prym variety Prp has

two connected components whose elements are of the form M ⊗ ι̃∗M∨, for

M a line bundle on X̃b, since degM can either be zero or one.

The choice of Spin(4,C)-data as in Definition 5.4.3 comes with a canon-

ical choice of the connected component of Prp, as we see in Proposition

5.4.11, giving a further equivalent characterization to the choice of a posi-

tively oriented local frame for E.
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Remark 5.4.10. The involution ι̃ descends to an involution x 7→ −x on Xb,

having fixed points at the zeros of (b1 − b2), which are generically double

points.

Fibres of the Spin(4,C)-Hitchin map

Recall Notation 5.1.5, together with Remark 5.1.8. If G has underlying Lie

algebra so(4,C), the target of the G-Hitchin map is given by

H0(C,K2
C)⊕H0(C,K2

C) ∼= A0 ⊕ A0.

Considering [16], Proposition 14, Proposition 16 and Section 7.1 we ob-

tain the following.

Proposition 5.4.11. Let bi ∈ A0 and let π : Xb → C be the curve associated

to the SL(2,C)-spectral curves Xbi as in Remark 5.4.9. Assume that Xb is

integral and that its equation is (5.26). Consider the Spin(4,C)-Hitchin map

hSpin(4,C) :MSpin(4,C) → A0⊕A0, ((E1, φ1), (E2, φ2)) 7→ (−2(b1 + b2), b1 − b2).

(5.28)

Then, referring to diagram (5.24), we have

h−1
Spin(4,C)(b)

∼= Pr1
p.

Proof. Recalling Notation 5.4.2, let M1 be a line bundle from Prπ1 and let

M2 be a line bundle from Prπ2 . Then we have

M := p∗1M1 ⊗ p∗2M2 ∈ Pr1
p. (5.29)

In fact, the line bundle M1 has fixed odd degree and it is isomorphic to its

dual via the involution ι1, while the line bundle M2 has degree zero and it

is isomorphic to its dual via the involution ι2. In particular, by (5.1), we

have that M has norm Λ′.

Notation 5.4.12. From now on, we simply refer to the fibre of the G-

Hitchin map as Prp.
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Endoscopic loci for the Spin(4,C)-Hitchin map

We first parallel Remark 5.1.16.

Remark 5.4.13. If only Xb1 is endoscopic, we consider the map

H0(C,KC ⊗ γ1)⊕H0(C,K2
C)→ A0 ⊕ A0 (b′1, b2) 7→ (b′1 ⊗ b′1, b2),

where γ1 ∈ Γ∗ is a two-torsion line-bundle on C, while, if only Xb2 is endo-

scopic, we consider the map

H0(C,K2
C)⊕H0(C,KC ⊗ γ2)→ A0 ⊕ A0 (b1, b

′
2) 7→ (b1, b

′
2 ⊗ b′2),

where γ2 ∈ Γ∗ is a two-torsion line-bundle on C. If both covers Xbi are

endoscopic, then we consider the map

H0(C,KC⊗γ1)⊕H0(C,KC⊗γ2)→ A0⊕A0 (b′1, b
′
2) 7→ (b′1⊗b′1, b′2⊗b′2),

for γi distinct 2-torsion line bundles in Γ∗.

Consider the SL(2,C)-spectral curves Xbi → Ci and (5.24). Considering

Proposition 5.4.11, we have the following.

Proposition 5.4.14. A Spin(4,C)-spectral curve is endoscopic if bi ∈ A0
SL(2,C),e

for at least one value of i.

Proof. If exactly one spectral curve Xbi is endoscopic, assume without loss

of generality that it is Xb1 . Thus the normalization of the SL(2,C)−cover

Xb1 → C factors through an étale double cover. Hence, considering (5.24),

the associated Spin(4,C)-cover factors through this cover and we have the

claim. In particular, we have that

Gconn(Prp) ∼= Z/2Z,

as in Remark 5.1.18.

If both spectral curves Xbi are endoscopic, we can argue as above twice

and we have

Gconn(Prp) ∼= Z/2Z⊕ Z/2Z.
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Remark 5.4.15. We can also consider the case in which both SL(2,C)-

covers associated to a Spin(4,C)-spectral cover are endoscopic by referring

to (5.26) and observing that

x4−2(b1 + b2)x2 + (b1− b2)2 = x4−2(b1 + b2)x2 + (b1 + b2)2−4b1b2. (5.30)

Assume that both covers Xbi are endoscopic, having equation x2
i − (b′i)

2 = 0

in Tot (KC ⊗ γi). Referring to Remark 5.1.18, we can rewrite (5.30) as

(x2−((b′1)2+(b′2)2)−2b′1b
′
2)(x2−((b′1)2+(b′2)2)+2b′1b

′
2) = (x2−(b′1+b′2)2)(x2−(b′1−b′2)2)

(5.31)

which further factors. Hence we have

Gconn(Prp) ∼= Z/2Z⊕ Z/2Z.

5.5 Spin(4,C)-Higgs bundles on a base curve of

compact type

Notation 5.5.1. When we discuss the Hitchin map for base curves of com-

pact type, we use the following notation: we denote with the subscripts Ei, bi

the data referring to the components Ci, while we denote by the superscripts

Ej , bj the j-th copy of a datum.

For example, considering the torsion-free sheaf E2 on C, we denote by

E2
1 the datum of the vector bundle which is associated to the restriction of

E2 to C1.

Remark 5.5.2. Recalling the description of the moduli space M12,SL(2,C)

from Notation 5.2.1 and that of the moduli space MSpin(4,C) in Definition

5.4.3, we make the following assumptions. Let Ê1, Ê2 be distinct SL(2,C)-

Hitchin pairs on C.

• the SL(2,C)-Hitchin pair Ê1 on C is such that E1
1 has fixed determi-

nant of odd degree, while the E1
2 has trivial determinant.

• the SL(2,C)-Hitchin pair Ê2 on C is such that both E2
1 and E2

2 have

trivial determinant.
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Moreover, we assume that all adapted SL(2,C)-spectral curves are smooth

over points which are different from the node q of C.

We define M12,Spin(4,C) as

M12,Spin(4,C) = {((E1
1⊗E2

1 , φ
1
1⊗1+1⊗φ2

1), (E1
2⊗E2

2 , φ
1
2⊗1+1⊗φ2

2),
−→
A (q))}.

We now adapt Remark 5.4.6 to the case in which C is a one-nodal curve of

compact type. Arguing as in the proof of Proposition 5.4.11 for each smooth

base component Ci, we have the following.

Proposition 5.5.3. Let C be a one-nodal base curve of compact type, let

b be the characteristic associated to the adapted Spin(4,C)-spectral curve

having components

X̃bi := (Xb1i
×Ci Xb2i

). (5.32)

Then we have that

(hadSpin(4,C))
−1(b) ∼= Prp. (5.33)

Remark 5.5.4. The form of the fibre (5.33) is consistent with the assump-

tion in Remark 5.4.7. In particular, elements of Prp are line bundles Mi

on X̃bi together with gluing data over the preimages of the node, mirroring

Figure 4.1.

In the same assumptions as above, we have the following.

Proposition 5.5.5. If at least a SL(2,C)-spectral cover X
bji

of Ci is endo-

scopic, then the associated adapted Spin(4,C)-spectral curve is endoscopic.

In particular, we have

Gconn(Prp) ∼= (Z/2Z)⊕k,

where 1 ≤ k ≤ 4 is the number of X
bji

which are endoscopic.

Proof. By Proposition 5.2.7, if at least a SL(2,C)-spectral cover of Ci is

endoscopic, then the adapted spectral curve is endoscopic. Arguing as in

the proof of Proposition 5.4.14, we have the claim.
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5.6 SO(4,C)-Higgs bundles on a smooth base curve

We now present the moduli space of SO(4,C)-Higgs bundles on a smooth

base curve, referring to our description in Section 5.4, in particular to the

choice of the degrees of the vector bundles E1 and E2, and to the exact

sequence:

0→ µ2 → Spin(4,C)→ SO(4,C)→ 0, (5.34)

where µ2 is the group of square roots of the unity.

Remark 5.6.1. Let γ ∈ Γ and assume that ρ : γ2 ∼−→ OC is a trivialization.

Let (E, φ) be a Spin(4,C)-Higgs bundle and consider the equivalence relation

∼ defined by

(E, φ) ∼ (E ⊗ γ, φ⊗ 1γ).

Then [(E, φ)] is the orbit of (E, φ) under the action of Γ on MSpin(4,C)

defined by:

MSpin(4,C) × Γ→MSpin(4,C) ((E, φ), γ) 7→ (E ⊗ γ, φ⊗ 1γ). (5.35)

Recalling Notation 5.1.2, we have that

det(E ⊗ γ)
∼−→ det(E)⊗ γ2 ∼−→

ρ
Λ.

Definition 5.6.2. We define the moduli space of SO(4,C)-Higgs bundles

as

MSO(4,C) :=MSpin(4,C)/Γ.

Remark 5.6.3. The exact sequence (5.34) yields the sequence

H1(C, µ2)→ H1(C,Spin(4,OC)) � H1(C,SO(4,OC)) −→ Z/2Z. (5.36)

A SO(4,C)-Higgs bundle (E, φ) having fixed determinant Λ of odd degree

lifts to a Spin(4,C)-Higgs bundle having fixed determinant Λ of odd degree,

any other lifting differs by the action of a 2-torsion line bundle by tensor

product as above.

We now describe the action of π∗Γ on h−1
Spin(4,C)(b)

∼= Prp.
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Remark 5.6.4. Let M ∈ Prp be a line bundle on X̃b, let β : Nmπ(M)
∼−→ Λ′

and ρ : γ2 ∼−→ OC be isomorphisms. Let π∗Γ act on Prp as follows:

Prp × π∗Γ→ Prp (M,π∗γ) 7→M ⊗ π∗γ. (5.37)

Then we have

Nmπ(M ⊗ π∗γ)
∼−→ Nmπ(M)⊗Nmπ(π∗γ)

∼−−→
β⊗ρ

Λ′.

Remark 5.6.5. We go on following the description in [16], which relies on

the isogeny between SO(4,C) and SL(2,C)×SL(2,C). We refer to [45], Sec-

tion 2.2.5 for the classical description of SO(4,C)-Higgs bundles by Hitchin,

which relies on the form Q from Remark 5.4.5.

Fibres of the SO(4,C)-Hitchin map

Proposition 5.6.6. Let bi ∈ A0 and let π : Xb → C be the curve associated

to the SL(2,C)-spectral curves Xbi as in Remark 5.4.9. Assume that Xb is

integral and that its equation is (5.26). Consider the SO(4,C)-Hitchin map

hSO(4,C) :MSO(4,C) → A0⊕A0, ((E1, φ1), (E2, φ2)) 7→ (−2(b1 + b2), b1 − b2).

(5.38)

Let π∗Γ act on Prp as in Remark 5.6.4. Then we have

(hSO(4,C))
−1(b) ∼= Prp/π

∗Γ, (5.39)

where Prp is as in Proposition 5.4.11.

Proof. By Proposition 5.4.11, the datum of (E, φ) corresponds to the datum

of M ∈ Prp. Let γ be any 2-torsion line bundle on C. By the projection

formula, we have

π∗(M ⊗ π∗γ) ∼= π∗M ⊗ γ

and the following diagram commutes

π∗(M ⊗ π∗γ)
∼ //

π∗(·x)

��

π∗M ⊗ γ

φ

��
π∗(M ⊗ π∗γ)⊗ L ∼ // (π∗M ⊗ γ)⊗ L
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The spectral correspondence is equivariant with respect to the action of

π∗Γ on Prp in (5.37) and by the action of Γ on the moduli space MSpin(4,C)

in (5.35).

Passing to the quotient on both sides, the datum of the Γ-equivalence

class [(E, φ)] corresponds uniquely to the datum of the π∗Γ-equivalence class

[M ] ∈ Prp/π
∗Γ.

Endoscopic loci for the SO(4,C)-Hitchin map

Proposition 5.6.6, in particular (5.39), implies the following.

Proposition 5.6.7. A SO(4,C)-spectral curve is endoscopic if and only if

both associated SL(2,C)-spectral covers appearing in (5.24) are endoscopic.

Proof. Assume, without loss of generality, that Xb1 is the only endoscopic

cover. Then the action of π∗Γ identifies extra components of the associated

Prym variety, thus the associated SO(4,C)-characteristic is not endoscopic.

Hence a SO(4,C)-spectral curve is endoscopic if and only if both associ-

ated SL(2,C)-spectral curves are endoscopic.

5.7 SO(4,C)-Higgs bundles on a base curve of com-

pact type

Recall Notation 5.5.1. We define M12,SO(4,C) as

M12,SO(4,C) =M12,Spin(4,C)/Γ.

Arguing as in the proof of Proposition 5.5.3, we have the following charac-

terization of the fibre of the adapted SO(4,C)-Hitchin map.

Proposition 5.7.1. The fibre of the adapted SO(4,C)-Hitchin map is given

by:

(hadSO(4,C))
−1(b) ∼= Prp/π

∗Γ

Considering Proposition 5.5.3, together with Proposition 5.7.1, we have

the following.

Proposition 5.7.2. If at least three characteristics bji are endoscopic, then

the associated adapted SO(4,C)-spectral cover is endoscopic.
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In particular, if exactly three spectral covers X
bji

are endoscopic, we have

that

Gconn((hadSO(4,C))
−1(b)) ∼= Z/2Z.

If all spectral covers X
bji

are endoscopic, we have that

Gconn((hadSO(4,C))
−1(b)) ∼= Z/2Z⊕ Z/2Z.

5.8 PSO(4,C)-Higgs bundles

We now present the moduli space of PSO(4,C)-Higgs bundles on a smooth

base curve, referring to our description in Sections 5.4 and 5.6.

We consider the exact sequence

0→ µ2 × µ2 → Spin(4,C)→ PSO(4,C)→ 0, (5.40)

where µ2 is the group of square roots of the unity.

Remark 5.8.1. Let γ, ζ ∈ Γ and assume that ρ : γ2 ∼−→ OC , τ : ζ2 ∼−→ OC
are trivializations. Consider the equivalence relation ∼ defined by

(E, φ) ∼ (E ⊗ γ ⊗ ζ, φ⊗ 1γ ⊗ 1ζ), for any (γ, ζ) ∈ Γ× Γ (5.41)

Then [(E, φ)] is the orbit of (E, φ) under the action of Γ× Γ on MSpin(4,C)

defined by:

MSpin(4,C)×(Γ×Γ)→MSpin(4,C) ((E, φ), (γ, ζ)) 7→ (E⊗γ⊗ζ, φ⊗1γ⊗1ζ).

(5.42)

Recalling Notation 5.1.2, we have that

det(E ⊗ γ ⊗ ζ)
∼−→ det(E)⊗ γ2 ⊗ ζ2 ∼−−→

ρ⊗τ
Λ.

Definition 5.8.2. We define the moduli space of PSO(4,C)-Higgs bundles

as the quotient

MPSO(4,C) :=MSpin(4,C)/(Γ× Γ).

Remark 5.8.3. The sequence (5.40) yields the sequence

H1(C, µ2×µ2)→ H1(C,Spin(4,OC)) � H1(C,PSO(4,OC)) −→ Z/2Z×Z/2Z.
(5.43)
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A PSO(4,C)-Higgs bundle (E, φ) having fixed determinant Λ of odd

degree lifts to a Spin(4,C)-Higgs bundle having fixed determinant Λ of odd

degree, any other lifting differs by an action as in (5.42).

Remark 5.8.4. Let π∗Γ× π∗Γ act on h−1
Spin(4,C)(b)

∼= Prp as follows:

Prp × (π∗Γ× π∗Γ)→ Prp (M, (π∗γ, π∗ζ)) 7→M ⊗ π∗γ ⊗ π∗ζ, (5.44)

and we have

Nm(M ⊗ π∗γ ⊗ π∗ζ)
∼−→ Nm(M)⊗ γ2 ⊗ ζ2 ∼−−→

ρ⊗τ
Λ′.

Proposition 5.8.5. Let bi ∈ A0 and let π : Xb → C be the curve associated

to the SL(2,C)-spectral curves Xbi as in Remark 5.4.9. Assume that Xb

is integral and that its equation is (5.26). Consider the PSO(4,C)-Hitchin

map

hPSO(4,C) :MPSO(4,C) → A0⊕A0, ((E1, φ1), (E2, φ2)) 7→ (−2(b1 + b2), b1 − b2).

(5.45)

Let π∗Γ× π∗Γ act on Prp as in Remark 5.8.4. Then we have

h−1
PSO(4,C)(b)

∼= Prp/(π
∗Γ× π∗Γ)

where Prp is as in Proposition 5.4.11.

Proof. By Proposition 5.4.11, the datum of (E, φ) corresponds to the datum

of M ∈ Prp. By the projection formula, we have

π∗(M ⊗ π∗γ ⊗ π∗ζ) ∼= π∗M ⊗ γ ⊗ ζ

and the following diagram commutes

π∗(M ⊗ π∗γ ⊗ π∗ζ)
∼ //

π∗(·x)

��

π∗M ⊗ γ ⊗ ζ

φ

��
π∗(M ⊗ π∗γ ⊗ π∗ζ)⊗ L ∼ // (π∗M ⊗ γ ⊗ ζ)⊗ L

Passing to the quotient, the datum of the (Γ × Γ)-equivalence class

[(E, φ)] corresponds uniquely to the datum of the (π∗Γ × π∗Γ)-equivalence

class [M ] ∈ Prp/(π
∗Γ× π∗Γ).
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Proposition 5.8.5 implies the following characterization of PSO(4,C)-

endoscopic loci.

Proposition 5.8.6. There are no nontrivial PSO(4,C)-endoscopic loci.

We can define the moduli space of PSO(4,C)-Hitchin triples arguing

similarly to Section 5.7, defining

M12,PSO(4,C) :=M12,Spin(4,C)/(Γ× Γ).

We have

(hadPSO(4,C))
−1(b) ∼= Prp/(π

∗Γ× π∗Γ),

which, applying Proposition 5.8.5 to both components Ci, yields the follow-

ing.

Proposition 5.8.7. Let C be a base curve of compact type. There are no

nontrivial PSO(4,C)-endoscopic loci.



Appendix A

Spectral curves in terms of

moduli spaces of double

covers

In this Appendix, we interpret generic spectral covers (as in Remark 1.3.8) of

a smooth base curve C in terms of families of double covers and we interpret

adapted spectral curves (as in Definition 4.3.1) in terms of a compactification

of this family.

A.1 Double covers of smooth base curves as generic

spectral curves

Remark A.1.1. Let C be a smooth curve and let π : X → C be a double

cover of C. Then we have

π∗OX ∼= OC ⊕ L−1, (A.1)

where L is a line bundle on C such that L2 ∼= OC(B), where B is the branch

divisor of π.

Let n = degB = 2degL be an even integer. Consider the moduli space

Mg,n of smooth curves of genus g with n marked points. By an abuse of

notation, we refer to points of Mg,n as (C,B) where C is a smooth curve

having arithmetic genus g, on which we consider the divisor B given by

93
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the sum of n unordered marked points, which are smooth and distinct.

Endowing (C,B) with the datum of L yields a point of the moduli space

Dg,n, parametrizing smooth double covers of C which are ramified over the

divisor B. We refer to Harris-Morrison [27] for a description of the moduli

spaces Dg,n and Mg,n, together with their compactifications.

We will focus on the case in which the line bundle L on C has degree

2g − 2. Remark A.1.1 yields the following interpretation of generic spectral

curves in terms of points of Dg,4g−4. Recall the definition of spectral data

Definition 1.3.24.

Proposition A.1.2. Let (E, φ) be a rank-2 Higgs bundle on a smooth base

curve C and let π : X → C be the associated spectral curve, which is assumed

to be smooth and ramified at 4g−4 distinct points pi. Let xi be their images

on C. Consider (C,B) ∈ Mg,4g−4 as a smooth curve which is pointed at

B = x1 + · · · + x4g−4. Let L ∈ J2g−2(C) be a square root of OC(B). Then

spectral data are also given by the datum of (C,B,L) ∈ Dg,4g−4 and line

bundles in Jd(X) having suitable degree d = degE + degL yield the Higgs

bundle (E, φ) on C.

Proof. Let (C,B) ∈ Mg,4g−4 be a smooth base curve, which is pointed at

the 4g − 4 points of B. Considering a square root L of OC(B), we obtain a

double cover X of C. Consider a line bundle M on X of suitable degree d,

satisfying (1.24) for n = 2:

d = degE + degL.

Then the pushforward of M via π yields a vector bundle E which, together

with the pushforward of multiplication by the tautological coordinate x of

Tot (L), yields the Higgs datum (E, φ) on C.
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A.2 Double covers of base curves of compact type

as adapted spectral curves

We now consider a pointed one-nodal base curve (C,B) of compact type

from the compactificationMg,4g−4 ofMg,4g−4 having the points of B which

distribute on the components Ci. We consider points from a compactifica-

tion Dg,4g−4 of the moduli space Dg,4g−4 of double covers of C.

Definition A.2.1. Let (C,B) be a one-nodal pointed curve of compact

type. An admissible double cover of (C,B) is a pointed nodal curve X with

a finite map π : X → C of degree 2 such that:

• the preimages of nonsingular points of C are nonsingular points of

X and the restriction of π to the open set of nonsingular points is

as follows: it is simply branched over the marked points and it is

unramified otherwise,

• the preimage of the node of C consists of one or two nodes of X.

Similarly to the description by Cornalba-Harris [21], we obtain the fol-

lowing.

Proposition A.2.2. Let C be a one-nodal pointed curve of compact type

having genus g. Let X be its admissible double cover. Then only two cases

are possible:

(a) the cover X is unramified over the node q. This happens precisely

when each component Ci carries an even number of marked points,

(b) the cover X is ramified over the node q. This happens precisely when

each component Ci carries an odd number of marked points.

Proof. Recall that the line bundles L1 and L2 (given by restricting L to C1

and C2), yielding the double covers of C1 and C2, exist if and only if the

degree of OC(Bi) is even. Since we have patterns of 4g − 4 smooth points

which distribute on the two components Ci as x1+· · ·+xk, xk+1+. . .+x4g−4,

the only two possible cases are the following ones (as in Figures A.1a and

A.1b):
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(a) the cover is not ramified over q and k = 2s + 2 is even. Boundary

points have the form

(C,B,L) : L2
1
∼= OC1(x1 + . . .+ x2s+2), L2

2
∼= OC2(x2s+3 + . . .+ x4g−4),

(A.2)

(b) the cover π is ramified over q and k = 2s+ 1 is odd. Boundary points

have the form

(C,B,L) : L2
1
∼= OC1(x1+. . .+x2s+1+q), L2

2
∼= OC2(q+x2s+2+. . .+x4g−4).

(A.3)

(a) Unramified over q (b) Ramified over q

Figure A.1: Admissible double covers

Remark A.2.3. Let C be a one-nodal curve of compact type having genus

g, which is given by the sum of the genera gi of Ci. We have the following

possibilities for the arithmetic genus gX of the cover X by Riemann-Hurwitz

applied to the smooth covers Xi → Ci and by (2.3).

(a) By (A.2) X1 → C1 is ramified at 2s + 2 points, hence its genus is

given by gX1 = 2g1 + s. Similarly, X2 → C2 is ramified at 4g − 2s− 6

points, so we have gX2 = 2g1 + 4g2 − s − 4, thus (2.3) yields that

gX = gX1 + gX2 + (δ − γ + 1) = 4g − 3.

(b) The genera ofXi from part (b) are gX1 = 2g1+s, gX2 = 2g1+4g2−s−3,

thus (2.3) yields gX = gX1 + gX2 = 4g− 3, so X is of compact type by

Remark 2.1.5.
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Remark A.2.4. Since C is of compact type, there is an identification be-

tween the total space of the line bundle L and the product of the total spaces

of the line bundles L1 and L2. This induces clutching maps

(a) Dg1,2s+2,1 ×Dg2,4g−2s−6,1 → Dg,4g−4

for double covers unramified over the node, respectively

(b) Dg1,2s+1,1 ×Dg2,4g−2s−5,1 → Dg,4g−4,

for double covers ramified over the node.

Considering the top right hand side of Figure A.2 and Figure A.3, the

last index ’1’ stands:

(a) if the cover is unramified over the node q, {Q1,1, Q1,2} being its preim-

ages on X1 (respectively {Q2,1, Q2,2} on X2), for the gluing of Q1,j

with Q2,j , j = 1, 2,

(b) if the cover is ramified over the node q, Q1 being its preimage on X1

(respectively Q2 on X2), for the gluing of Q1 with Q2.

Remark A.2.5. Note that for admissible double covers of type (b), the node

q of C cannot be a marked point because marked points ofMg,n need to be

smooth by definition.

Proposition A.2.6. Let (E, φ) be a rank-2 Hitchin pair on a one-nodal

curve C of compact type and let π : X → C be the associated generic adapted

spectral curve such that B1 is the branch divisor of π1 : X1 → C1 and B2

is the branch divisor of π2 : X2 → C2. Consider (C,B) ∈ Mg,4g−4 as a

one-nodal curve of compact type. Assume that it is pointed at the divisor

B = B1+B2 = x1+· · ·+x4g−4. Let L ∈ J2g−2(C) be a square root of OC(B).

Then X is also given by the datum of (C,B,L) ∈ Dg,4g−4 as follows:

(a) generic adapted spectral covers X of C which are unramified over q

are admissible double covers of C that are not ramified over q. This

happens when the components Ci carry an even number of marked

points.



98 A. Spectral curves in terms of moduli spaces of double covers

(b) generic adapted spectral covers X of C which are ramified over q are

admissible double covers of C that are ramified over q. This happens

when the components Ci carry an odd number of marked points.

Moreover, by a suitable gluing of line bundles Mi in the Jacobians Jdi(Xi),

having degrees di = degEi + degLi, we obtain the Hitchin pair (E, φ) on C.

Proof. We first consider part (a). As on the left hand side of Figure A.2,

we can build the unramified admissible double cover of C via the datum of

L as in Proposition A.2.2 (a), which is canonically associated to L1 and L2

as in (A.2).

As on the lower part of Figure A.2, we can normalize C and keep track

of the marked points and of the preimages q1, q2 of the node.

We can build a smooth double cover of Ci via the datum of Li, i = 1, 2,

which, by Proposition A.1.2, is also a smooth spectral cover Xi, which is

contained in the total space of the line bundle Li and is not ramified over

the node. So we can consider a clutching map as in Remark A.2.4(a) from

the smooth components Xi to the admissible double cover X on the top left

hand side of Figure A.2.

We now obtain (E, φ) on C. By Proposition 1.3.22, torsion-free sheaves

ηi on Xi yield Higgs bundles Êi on Ci, together with the map
−→
A (q) which

comes from the choice of the clutching. Thus we obtain, by Lemma 3.1.3, a

Hitchin triple on C.

Figure A.2: One-nodal adapted spectral curve unramified over the node as

an admissible double cover.
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Figure A.3: One-nodal adapted spectral curve ramified over the node as an

admissible double cover.

The steps of the proof of part (b) are similar, considering Figure A.3,

clutching the two pieces of smooth double covers as in Remark A.2.4(b),

where the double covers are ramified over the node.
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ences Mathématiques, vol. 140, no. 8, pp. 953-989, 2016.

[11] A. Beauville, M. S. Narasimhan, S. Ramanan, Spectral curves and the

generalised theta divisor, Journal für die reine und angewandte Mathe-

matik, no. 398, pp. 169-179, 1989.

[12] U. N. Bhosle, Generalised parabolic bundles and applications to tor-

sionfree sheaves on nodal curves, Arkiv för Matematik, vol. 30, no. 2, pp.

187-215, 1992.

[13] U. N. Bhosle, Hitchin pairs on reducible curves, International Journal

of Mathematics, vol. 29, no. 3, 49 pages, 2018.

[14] M. T. I. Bigas, Vector bundles on reducible curves and applications,

Clay Mathematics Proceedings, vol. 14, 2011.

[15] C. Birkenhake, H. Lange, Complex Abelian Varieties, Second Aug-

mented Edition, Grundlehren der mathematischen Wissenschaften, vol.

302, Springer-Verlag, Berlin, 2004.

[16] S. B. Bradlow, L. P. Schaposnik, Higgs bundles and exceptional isoge-

nies, Research in the Mathematical Sciences, no. 3, 28 pages, 2016.

[17] L. C. Branco, Higgs bundles, Lagrangians and mirror symmetry, DPhil.

Thesis, University of Oxford, 2017, https://arxiv.org/pdf/1803.

01611.pdf.

[18] L. Caporaso, A compactification of the universal Picard variety over

the moduli space of stable curves, Journal of the American Mathematical

Society, vol. 7, no. 3, 1994.

[19] L. Caporaso, Compactified Jacobians of nodal curves, 2010, http://

www.mat.uniroma3.it/users/caporaso/cjac.pdf.

https://arxiv.org/pdf/1803.01611.pdf
https://arxiv.org/pdf/1803.01611.pdf
http://www.mat.uniroma3.it/users/caporaso/cjac.pdf
http://www.mat.uniroma3.it/users/caporaso/cjac.pdf


103

[20] R. Carbone The Norm map on the compactified Jacobian, the Prym

stack and Spectral data for G-Higgs pairs, DPhil. thesis, Rome, 2019,

https://arxiv.org/pdf/2006.13034.pdf.

[21] M. Cornalba, J. Harris, Divisor classes associated to families of sta-

ble varieties, with applications to the moduli space of curves, Annales
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