
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

FISICA

Ciclo 34

Settore Concorsuale: 02/A2 - FISICA TEORICA DELLE INTERAZIONI FONDAMENTALI

Settore Scientifico Disciplinare: FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI

EFFECTIVE FIELD THEORIES AND THEIR PHENOMENOLOGICAL 
APPLICATIONS

Presentata da: Luca Pagani

Supervisore

Fabio Maltoni

Esame finale anno 2022

Coordinatore Dottorato

Michele Cicoli





“First of all, the beauty that he sees
is available to other people and to me [...].

At the same time, I see much more
about the flower than he sees.

I could imagine the cells in there, the complicated actions inside [...],
there is also beauty at smaller dimensions”.

Richard P. Feynman
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Abstract
Effective field theories (EFTs) are ubiquitous in theoretical physics and in particular
in field theory descriptions of quantum systems probed at energies much lower than
one or few characterizing scales. More recently, EFTs have gained a prominent role
in the study of fundamental interactions and in particular in the parametriasation of
new physics beyond the Standard Model, which would occur at scales Λ, much larger
than the electroweak scale. In this thesis, EFTs are employed to study three different
physics cases. First, we consider light-by-light scattering as a possible probe of new
physics. At low energies it can be described by dimension-8 operators, leading to
the well-known Euler-Heisenberg Lagrangian. We consider the explicit dependence
of matching coefficients on type of particle running in the loop, confirming the
sensitiveness to the spin, mass, and interactions of possibly new particles. Second,
we consider EFTs to describe Dark Matter (DM) interactions with SM particles.
We consider a phenomenologically motivated case, i.e., a new fermion state that
couples to the Hypercharge through a form factor and has no interactions with
photons and the Z boson. Results from direct, indirect and collider searches for
DM are used to constrain the parameter space of the model. Third, we consider
EFTs that describe axion-like particles (ALPs), whose phenomenology is inspired
by the Peccei-Quinn solution to strong CP problem. ALPs generically couple to
ordinary matter through dimension-5 operators. In our case study, we investigate
the rather unique phenomenological implications of ALPs with enhanced couplings
to the top quark.
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Introduction

The twentieth century has been a period of great discoveries in physics. In a time
span of about 80 years, the understanding of Nature has rapidly accelerated, from
classical mechanics and electromagnetism to general relativity, quantum mechan-
ics, and the rise of quantum field theory as the framework to study fundamental
interactions. Among the most glaring successes of quantum field theory, the elec-
troweak theory has achieved an overwhelming experimental confirmation, to some
extent even unexpected, to the point of being renamed, along with Quantum Chro-
modynamics, the Standard Model (SM) of elementary particles. In order to explore
phenomena described by the Standard Model, it is necessary to carry out research
at extremely high energies. For this purpose, particle accelerators were built, the
last and more energetic of which, is the LHC at CERN in Geneva, which achieved
worldwide visibility in 2012 with the discovery of the Higgs boson, the last missing
ingredient of the SM, theorized about 50 years earlier.

Despite the successes of SM and, naturally, of those scientists who contributed
to its conception, nowadays we know that it is not a complete theory of fundamental
interactions. Not only does gravity lacks a quantum description yet, thus escaping
classification within SM, but also several other observations, such as neutrino masses
and baryonic asymmetry, cannot be predicted while others do not find a description
at all, such as Dark Matter and Dark Energy.

Search for physics beyond the Standard Model, therefore still attract a consid-
erable attention, and many high-energy physicists, either theorists or experimental-
ists, are involved in activities meant at establishing in the laboratory clear evidence
of new phenomena. These searches have been traditionally performed with some
specific models in mind, one leading example being supersymmetry, and then work-
ing out all phenomenological consequences top-down. However, the lack of a clear
indication on what model of new physics might be lurking at high scales, leaves
so much freedom that it is difficult to identify clear model independent signatures.
In this endeavor, more and more interest has grown around the idea of proceeding
bottom-up and considering effective field theory descriptions of UV complete the-
ories, extending the Standard Model with either a few light states and/or just by
adding higher-dimensional operators.

The work collected in this thesis fits exactly into this context, leveraging on the
use of effective field theories to attack some specific problems in particle physics. In
the first chapter, the Standard Model is introduced and its critical issues highlighted.
Chapter 2 is devoted to the description of effective field theories, presenting the most
salient features of the method. The remaining chapters represent the original part
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of the work, and illustrate three different applications of the effective field theories.
In particular, in chapter 3, EFTs are used to study light-by-light scattering, while
in chapter 4 we consider it in several models describing dark matter, assuming that
it is composed by at least one stable flavor. Finally, in chapter 5, EFT is used to
study the interactions of a new pseudo-scalar particle, an axion-like particle, which
could not only resolve some of the fundamental issued of the Standard Model, i.e.,
the strong CP problem, but could also provide an ideal candidate for dark matter.
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CHAPTER

1 The Standard Model

The Standard Model1 of particle physics (SM) is the theory used to describe Nature
at subatomic scales. It depicts a world ruled by electromagnetic and nuclear forces,
since gravity appears to be relevant only at the macroscopic level. The Stand-
ard Model also provides a complete pattern to classify all particles discovered by
experiments until today.

The first steps towards SM can be traced back to the late 1920s, with quantum
electrodynamics; research, however, continued over a time span of about fifty years,
during which the initial theories were abandoned and then restored several times.
The current formulation was only achieved in the mid-1970s, after the experimental
proof of quark model for strong interactions and the implementation of Higgs mech-
anism to explain particle masses.

An increasing number of experiments have been conducted to stress test the
SM, which gained credibility as more empirical confirmations came through. The
Standard Model reached a widespread acknowledgement in 2012 with the discovery
of Higgs boson at CERN, in Geneva. Although the Standard Model has demon-
strated great accuracy in foreseeing experimental outcomes, it leaves some phenom-
ena unexplained and fails to be a complete theory of fundamental interactions.

This chapter retraces the present state-of-the-art of the Standard Model without
claiming to be a complete description of it, for which we refer to well-known books
such as Peskin & Schroeder [3] or Schwartz [4]. However, we will dwell on some
features of SM that will prove useful in the following chapters.

1.1 Fundamental Principles
The Standard Model is a relativistic quantum field theory based on gauge invari-
ance that aims to describe fundamental interactions in flat Minkowski space-time2.
On one hand, the request for a relativistic theory is fulfilled by covariant formu-
lation, that automatically embeds Einstein’s Relativity Principle, introducing the
symmetries of Poincaré group, a non-Abelian Lie group of ten generators. Noether’s

1The name “Standard Model” was first coined by A. Pais and S. Treiman in 1975 for the
Electroweak theory with four quarks.

2The flat Minkowski space-time is a four-dimensional manifold arising from the combination
of the three-dimensional Euclidean space and the time coordinate. The chosen signature for its
metric is the widely-adopted in particle physics, i.e., (+, −, −, −). Vectors in Minkowski space
are denoted by italic type, while bold symbol merely indicates spatial components.
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theorem makes the rest: ten conservation laws arise, one for each generator, includ-
ing energy and momentum conservation – besides conservation of total angular
momentum and center of mass velocity. On the other hand, unitary is necessary to
deal with a quantum theory that yearns to be predictable. The convergence point
is accounted by the irreducible unitary representations of Poincaré group, called
fields, that appears to be infinite-dimensional.

According to Wigner’s classification, each irreducible unitary representation is
characterised by the mass and the spin, the latter is an integer number for bosons
and a half-integer number for fermions. In addition, at the accelerators, such as the
Large Hadron Collider (LHC) in Geneva, physicists track composed and elementary
particles, therefore reducible representations are understood as composed objects,
being irreducible representations associated with fundamental particles. A brief
overhaul of how particles are embedded in fields is given in Appendix A.4.

In classical field theory as well as in its quantum counterpart, every law describ-
ing the behavior of a physical system can be derived from the fundamental action
principle. The action S is nothing but a dimensionless real quantity related to the
Lagrangian density L(x), or merely Lagrangian for brevity, by the equation:

S =
∫
d4xL(x).

The Lagrangian must be Lorentz invariant and transforms covariantly under trans-
lations to ensure the principles of Special Relativity, therefore in absence of back-
ground fields it can not explicitly depend on the space-time coordinates, otherwise
translation invariance would be violated. In other words, Lagrangian is a function
of the fields and their first partial derivatives only:

L(x) = L (φ(x), ∂µφ(x), ψ(x), ∂µψ(x), . . . ) ,

where dots indicate that we can introduce every other field, up to its first derivat-
ive, we need to describe the physical system under consideration. The constraint
on derivative order greatly reduces the number of allowed operators and is dictated
by causality: a third order differential equation in time acting on fields will lead to
solutions where causality is violated, indeed the uniqueness of the related Cauchy
problem is fulfilled by a system of second order derivative in time, at most. The
Abraham-Lorentz equation of electrodynamics is a well-known example of third
order differential equation where a-causal effects arise, such as pre-acceleration
of charged particles, even before they have been hit by radiation. Another con-
straint comes from dimensional analysis: the Lagrangian must have the dimension
of [length]−4 as well as any combination of fields that aspires to appear in it.

While in classical field theory, the space-time evolution of a system follows the
Euler-Lagrangian equations of motion (EOMs) obtained by Hamilton’s principle of
stationary action, in quantum field theory the physics of a system is understood in
terms of the path integral which enables the direct calculation of scattering amp-
litudes – the latter being the generalisation of the former. The original suggestion
of the path integral is due to P. M. Dirac in 1933 but it was successfully elaborated
by R. P. Feynman in the 1940s. The simple idea behind it can be figured out recall-
ing the superposition principle of quantum mechanics: the amplitude of a process
that can take place in multiple ways is given by the coherent sum of the probability
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associated to each path, moreover if such a process occurs as a succession of steps,
one has to multiply the probability of each step. This probability can be written as
a pure phase that in non-relativistic limit is equal to the classical action since only
one path is allowed, i.e., the classical path. In quantum field theory (QFT), the
path integral for a real scalar field evolving from the configuration φi(x) at t = 0
to φf (x) at t = T , reads:

〈φf (x)| e−iHT |φi(x)〉 =
∫
Dφ exp

[
i

∫
d4x L

]
,

where H is the Hamiltonian function, i.e., the time evolution operator, while
∫
Dφ

is the sum over all configurations.
The wide use of path integral in QFT is due to its link with correlation functions,

indeed for a certain ground state |Ω〉, the n-point correlation function can be written
as:

〈Ω|T{φ(x1) . . . φ(xn)}|Ω〉 =
∫
Dφφ(x1) . . . φ(xn) exp

[
i
∫
d4x L

]∫
Dφ exp

[
i
∫
d4x L

] ,

where T is the time-ordering operator. Taking advantage of this equation, the
Feynman rules of the theory can be derived directly. In fact, for the two-points
correlation function the computation of the right-hand side of this equation returns
the Feynman propagator. Once the Feynman rules of a specific theory have been
obtained, they can be assembled to draw any desired diagram that connects the
initial and final configurations of fields.

Scattering amplitude is a physical quantity that plays a fundamental role in
particle physics experiments; the general relation linking Feynman diagrams, or al-
ternatively correlation functions, to scattering amplitude was obtained by H. Leh-
man, K. Symanzik and W. Zimmermann, and is nowadays known as LSZ reduction
formula. In terms of Feynman diagrams, it states that only connected diagrams
with amputated external lines3 enter in the computation of S-matrix elements,
moreover each external field with a non-null spin value involves a multiplication for
a polarization spinor or vector. The reduction formula can also be applied when the
fundamental particles of a theory are unknown; for example, as long as we are not
interested in the nucleons substructure, we can treat them as elementary particles
by introducing the corresponding fields in the Lagrangian and calculating the S-
matrix elements in perturbation theory. This general technique, called effective field
theory (EFT), is very useful and represent the main content of this thesis.

The computation of Feynman diagrams often leads to ultraviolet divergences,
however there is a class of QFTs where these divergences can be systematically
removed. This feature, named renormalizability, ensures that divergences never
show up in observable quantities and enables the use of measured parameters to
make predictions of further experiments. Practically, it results as a constraint for
the Lagrangian: in front of interaction operators only dimensionless constants can
appear, likewise the electric charge e.

In the 1970s, the picture that was emerging from experiments was about a
matter composed by a set of fermions, leptons and quarks, mainly interacting by

3Disconnected Feynman diagrams should be disregarded as they do not carry the singularity
structure, while the multiplication of external lines by a factor p2 + m2 together with the on-shell
limit p2 → −m2, automatically amputates all external lines.
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the exchange of boson particles. Three fundamental forces have been identified:
electromagnetic, strong and weak interactions. The electromagnetic interaction
couples charged fermions, the strong interaction is responsible for atomic nuclei
formation and quarks interaction, while the weak interaction is accountable for
beta decay.

The great success of Quantum Electrodynamics (QED) as a description for elec-
tromagnetic interactions persuaded physicists that strong and weak interactions
could be explained with similar theories. QED is an Abelian gauge theory in which
the interaction between charged particles simply arises from the request of Lag-
rangian invariance under the local U(1) transformation. The natural extension of
QED is provided by non-Abelian gauge theories, also termed Yang-Mills theories,
based on the SU(N) gauge groups. The story of these theories was troubled. They
were first developed in 1954 but suddenly abandoned since experiments suggested
the presence of massive bosons for weak interactions, that could not be predicted
by these theories. One decade later, the idea of spontaneous symmetry breaking
(SSB) restored Yang-Mills theories: the Higgs mechanism, i.e., the SSB of gauge
symmetries, enables weak bosons to acquire mass; it also suggests the presence of
a new particle, named Higgs boson, detected at CERN in 2012.

The present formulation of SM is based on gauge theories, in particular the
combined SU(3)c × SU(2)L ×U(1)Y gauge group is that of the SM. The indices c,
L and Y denote the charges that belong to each group: the color, the left-handed
weak isospin and the hypercharge, respectively. Nowadays, SM consists in two
sectors: the Quantum Chromodynamics (QCD), based on SU(3)c, that provides a
theoretical description for strong forces, and the Electroweak (EW) theory, related
to SU(2)L × U(1)Y , that provides a unified model for electromagnetic and weak
interactions.

1.2 Gauge Theories
The Standard Model is based on the key concept of gauge theories. An early indic-
ation that gauge theories could have a physical application was given by Maxwell
equations, which in terms of scalar and vector potentials show gauge invariance.
Subsequently, the success of QED in predicting electromagnetic phenomena defin-
itively paved the way for these theories.

1.2.1 The Abelian Case: QED
The simplest example of a gauge theory is provided by the Abelian case related to
the local group U(1), that furnishes the theoretical framework to build QED.

Quantum Electrodynamics can explain almost all the observed electromagnetic
phenomena. Not only can QED – as a quantum theory – explain events happen-
ing at a femtometer scale, but also at a macroscopic one, since it embeds Maxwell
equations. At the same time, QED represents the first complete quantum field the-
ory and its birth dates back to the publication of Quantum theory of emission and
absorption of radiation, by Dirac in 1927 [2]. Dirac described the quantized elec-
tromagnetic field as an ensemble of harmonic oscillators and introduced the idea
of creation and annihilation operators of particles. In the following years, many
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physicists contributed to the development of an elegant formulation for the the-
ory. Even though they initially believed that QED would enable every calculation
of processes involving photons and charged particles, they soon realized that from
higher-order computations some infinities were emerging, thus making calculations
meaningless and even casting doubts on the internal consistency of the theory. At
first, the problem was overcome by H. Bethe in 1947 who, while traveling on a train,
back from the famous Shelter Island conference, computed the line shift of hydrogen
atom as measured by Lamb and Rutherford. Bethe’s idea of relating infinities to
the mass and charge corrections represents the foundations of the modern renor-
malization procedure that ensures finite results at any order in perturbation series.
Due to its large success in predicting experimental outcomes, QED has served as
basic template for all subsequent quantum field theories.

The starting point to build QED is provided by Dirac Lagrangian for a massive
fermion

L = ψ̄
(
i/∂ −m

)
ψ,

whose derivation is shown in Appendix A.4.3. Dirac Lagrangian is symmetric under
the global U(1) transformation, that acts on the fermion field as ψ(x) → eiαψ(x). In
quantum mechanics, changes in phase of the wave function must be unobservable
thus the symmetry under a unitary transformation is demanded to express the
conservation of probability.

Nevertheless, the Dirac Lagrangian describes a free fermion field, while the aim
of QED is to build a theoretical framework for interacting particles since charged
particles interact among them and with photons. Furthermore, classical electro-
magnetism suggests that gauge theories are suitable for describing an interacting
theory because Maxwell equations are blind to the addition of a gradient to the
four-vector potential, i.e., they are symmetric under a gauge transformation. In
addition, Maxwell equations are expected to rise as equations of motion from the
appropriate QED Lagrangian.

The simple way to get a gauge – or local – transformation from the global unitary
U(1) is just to make the phase dependent on the space-time, such that α → α(x).
The gauge transformation of Dirac field is:

ψ(x) → eiα(x) ψ(x) ≡ U(x)ψ(x). (1.1)

The Dirac Lagrangian, however, does not remain unchanged under a local trans-
formation since the derivative operator does not transform homogeneously with the
field. The symmetric property is restored once the extra term, generated by deriving
the phase, is absorbed by the suitable derivation operator. The latter, named gauge
covariant derivative, Dµ, must transforms under the local U(1) homogeneously with
the field

Dµψ(x) → U(x)Dµψ(x). (1.2)

The simplest choice for such gauge covariant derivative is dictated by minimal coup-
ling:

Dµ ≡ ∂µ + ieAµ,

where the constant e, i.e., the classical electric charge, represents the strength of
the interaction between the photon and the charged fermion, whose charge is indeed
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e. Moreover, a new gauge vector field, Aµ(x), is introduced, that accordingly to
equation (1.2) transforms as

Aµ(x) → Aµ(x) − 1
e
∂µα(x).

The QED Lagrangian is nothing but Dirac Lagrangian with the minimal sub-
stitution, namely ∂ → D, plus the kinetic term for the new gauge vector boson,
derived in Appendix A.4.2. In absence of external sources, the QED Lagrangian for
a single fermion flavor is

LQED = ψ̄
(
i /D −m

)
ψ − 1

4FµνF
µν , (1.3)

where Fµν = ∂µAν − ∂νAµ = − i
e [Dµ, Dν ] is the field strength tensor. One can

notice that a mass term for gauge vector field would break local symmetry. In other
words, requiring an invariant Lagrangian under the local U(1) automatically fixes
at zero the mass of Aµ(x). The gauge vector field is understood as the photon
field since its equations of motion are, as expected, the inhomogeneous Maxwell
equations:

∂µF
µν = eψ̄γνψ,

while the EOM for Dirac field is the well-known Dirac equation:(
i /D −m

)
ψ = 0.

Since QED Lagrangian is symmetric under a gauge transformation of fields,
consequently, a conserved current arises via Noether theorem

∂µ j
µ = 0,

which is nothing but the continuity equation with jµ = ψ̄γµψ. The related con-
served charge is:

Q =
∫
d3xψ†ψ =

∫
d3x ρ,

where ρ is the electric charge density.
Since gauge theories are equivalent to constrained Hamiltonian systems, the

derivation of their Feynman rules is not straightforward. Specifically, the propagator
of the photon field cannot be obtained from the kinetic as it appears in equation
(1.3). At first, we have to rearrange the kinetic term as

− 1
4FµνF

µν → 1
2A

µ
(
gµν ∂

2 − ∂µ∂ν
)
Aν , (1.4)

which is not an equality since total derivatives were suppressed. The term in the
brackets, being singular, does not admit an inverse operator, i.e., its determinant is
null, thereby the photon propagator cannot be defined. The motivation for that still
lies in gauge symmetry, indeed the same operator appears in Maxwell equations,
which can be recast as

(
gµν ∂

2 − ∂µ∂ν
)
Aν = ejµ. Maxwell equations show that

a specified vector current jν(x) does not uniquely define the field Aν(x). The
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technique to solve this issue was identified by L. D. Faddeev and A. S. Popov and
consists in the introduction of the a gauge fixing term

Lgf = 1
2ξA

µ∂µ∂νA
ν , (1.5)

where ξ is a free parameter. Adding together equations (1.4) and (1.5), the complete
Lagrangian for the photon field reads:

Lξ = 1
2A

µ
(
gµν ∂

2 − (1 − ξ−1) ∂µ∂ν
)
Aν ,

where the operator inside the brackets now admits an inverse, leading to the defin-
ition of the photon propagator iΠµν , that, in the so-called Rξ-gauge, is:

iΠµν = −i
p2 + iε

(
gµν − (1 − ξ) pµpν

p2

)
. (1.6)

Remarkably, all observables in QED are independent from the parameter ξ, whose
value can be arbitrarily chosen to simplify computations; indeed, selecting a specific
value of ξ, we are fixing the gauge.

The Faddeev and Popov’s method is not the only known solving strategy to fix
the issue, the same result can be achieved by introducing an auxiliary field4, however
it is the widely adopted since it appears to be particularly useful in non-Abelian
gauge theories.

The other Feynman rules for QED directly follow from the Lagrangian. The
internal lines, or propagators, including again the photon in Feynman gauge (ξ = 1),
are

µ ν

p
= −igµν
p2 + iε

,

p
=

i
(
/p+m

)
p2 −m2 + iε

,

while external lines give the polarization vectors for the boson field, with εµ(p)
for an incoming and ε∗µ(p) for an outgoing photon, and spinors for the fermion
fields, with us(p) (v̄s(p)) and ūs(p) (vs(p)) for an incoming and outgoing particle
(antiparticle), respectively. External lines are forced by LSZ formula to be on-shell,
thus they satisfy the equations of motion.

The interaction vertex of QED is

µ
= ieγµ,

4The equation (1.5) can be obtained by introducing the auxiliary scalar field, B(x), whose
Lagrangian is Lgf = ξB2/2 + Aµ∂µB. Since the equation of motion for the scalar field is ∂µAµ =
ξB, the Lagrangian of the auxiliary field can be written, up to a total derivative, as equation (1.5),
where the auxiliary field does not even appear.
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which does not depend on the momenta of the interacting particles. Two extra
rules should be added: a -1 factor for the interchange of external identical fermions
that is related to Wick’s contraction, and a -1 factor for each fermion loop, as it
involves a trace operation over spinor indices, reflecting the anti-commuting nature
of spinors.

Feynman rules lead to a direct computation of observables, for both tree-level
and higher-orders diagrams. In four dimensions, QED is, in fact, a renormalizable
theory as it brings a finite number of ultraviolet divergences related to the electron
self-energy, the vacuum polarization and the correction to vertex interaction, whose
diagrams are

Whenever another diagram shows up a divergence, that means it contains as com-
ponents one, or more, of previous diagrams. Thus, renormalization procedure aims
to remove just the primary divergences by absorbing them into unobservable Lag-
rangian parameters.

Despite QED predicts experimental outcomes with great accuracy, it cannot be
the ultimate theory of electromagnetic interactions. From the vacuum polarization
diagram, the effective fine structure constant is:

αeff (−p2) = αR

[
1 + 0.00077 ln

(
−p2

m2
e

)]
,

where αR = e2
R/(4π), while p is the momentum of the external photon and me the

mass of the electron running in the loop. The correction term introduces a weak
dependence on photon momentum, expressed by the logarithmic function in the
previous equation. The positive sign of logarithm entails an increasing behavior
in energy for the fine structure constant, even though only high-precision experi-
ments are sensitive to it, due to the numerically tiny magnitude of its coefficient.
Nevertheless, one can wonder what is the energy scale at which the correction be-
comes comparable to the leading term, i.e., 0.00077 ln (−p2) ∼ 1. The result is an
extremely high-energy level, Q2 = −p2 ∼ 10286 eV, far away from the maximum
energies accessible at Large Hadron Collider (LHC), around 1013 eV. At such high
scale, the perturbation theory breaks down as higher-order diagrams become lar-
ger than lower ones, identifying the so-called Landau Pole for QED. Thus, QED
allows to make predictions at relatively large distances, since at shot scales the
perturbation theory for electromagnetism becomes meaningless.

Within the framework of the SM, QED is included alongside to the theory of
weak interactions, in the Electroweak theory, which is associated to the gauge group
U(1)Y × SU(2)L, where Y and L denote the hypercharge5 and the left-handed weak
isospin, respectively. This unified model describes the weak and the electromagnetic
forces as two different aspects of the same interaction, merging them at the energy
scales above 246 GeV.

5Landau pole persists in U(1)Y gauge group.
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1.2.2 The non-Abelian Case: QCD
The straight extension for Abelian case is provided by Yang-Mills theory, that is
non-Abelian gauge theory associated to the local symmetry group SU(N). Quantum
Chromodynamics serves as a concrete example to explain non-Abelian gauge theory
since it is associated to the local SU(3).

Quantum Chromodynamics is the theory that describes strong interactions. The
elementary fermions affected by strong force are named quarks, while gluons are the
force-carries. On the contrary of photon, gluons are themselves affected by strong
interaction since they are charged under SU(3). The charge of SU(3) is called color
charge, even though the analogy with real colors is limited to the number 3: a single
quark of a specific flavor can appear in three different states of color as three is the
number of basic colors in the additive RGB-model.

In the 1950s, the number of new particles considerably picked up due to the
invention of the bubble chamber, however physicists were convinced that not all
of these new states were fundamental. New particles, later called hadrons and
mesons, were classified in many different frameworks for the purpose of understand
the connections between them, however, pieces began to fall into place, only in
1963 thanks to Gell-Mann and Zweig, who hypothesized the existence of three new
fundamental fermion flavors, i.e., the quarks. The two physicists introduced three
quark flavors, called up, down and strange, whom in different combinations form
mesons and hadrons. In 1968, performing deep inelastic scattering processes, at
SLAC, was gather the first evidence of proton as a composed particle.

The need for introducing a new gauge freedom, i.e., the color charge, became
quite evident when physicists tried to explain the ∆++ baryon with quark theory,
indeed such a state is understood to be composed of three quarks up, which due to
Pauli exclusion principle cannot have the same quantum numbers in a bound state.

The mathematical framework for QCD was built in the early 1970s, again by
Gell-Mann and others, that employed the non-Abelian field theory developed in
1954 by Chen Ning Yang and Robert Mills, to explain an interaction where also the
mediator takes part in it by radiating further force carriers.

Nevertheless, experiments were not able to identify single quarks, thus dischar-
ging the theory. The discovery that asymptotic freedom and color confinement
are directly embedded in non-Abelian gauge theory gave back credibility to QCD.
First experimental evidences of gluons were obtained at PETRA in 1979, while the
number of quark flavors was increased in the following years, up to six, with the
discoveries of charm (1974), bottom (1977) and top (1995) quarks.

Quantum Chromodynamics appears to be well-defined once the appropriate
gauge group and fermion representation under a selected group have been defined.
Since color charge was introduced just to restore Fermi-Dirac statistics for quarks,
but does not bring any fundamental physical role, it was identified as the quantum
number for the gauge group. Based on this assumption, the choice for SU(3) ap-
peared straightforward, and further experiments provided support to it, for instance,
eight states of gluon were identified as predicted by SU(3)6.

The derivation of Quantum Chromodynamics Lagrangian starts with Dirac Lag-
rangian, likewise in QED. For a single flavor of quark ψ(x) that can appear in three

6The dimension of the adjoint representation for SU(N) to which vector bosons belong is N2 −1.
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different states of color, Dirac Lagrangian reads

L =
3∑
i

ψ̄i
(
i/∂ −m

)
ψi,

where i is the color index. This Lagrangian is invariant under the global SU(3)
transformation of the field

ψi(x) → (eiω
aTa)ij ψj(x)

where ωa, with a = {1, . . . , 8}, are the group parameters and T a are 3×3 Hermitian
matrices, that span the 3-dimensional representation of the SU(3) Lie algebra, i.e.,
they are the generators of the fundamental representation of SU(3). In particular,
T a are half of the Gell-Mann matrices, usually labeled as λa, see Appendix A.3.

Similarly to the Abelian case, even in the non-Abelian one the global transform-
ation describes a non-interacting theory; once again, the coupling arises from the
demand for invariance of Lagrangian under a local transformation. Using a less
pedantic notation that drops out spinor color indices

ψ(x) → U(x)ψ(x) = (eiω
a(x)Ta)ψ(x), (1.7)

where ψ(x) stands for a column of three Dirac spinors. Looking for a derivative
operator that transforms homogeneously with the field

Dµ ψ(x) → U(x)Dµ ψ(x),

we can introduce a new field through the minimal coupling

Dµ = ∂µ − igsAµ(x) ≡ ∂µ − igsA
a
µ(x)T a,

where the constant gs represents the strength of the coupling. The gauge bosons
Aµ(x) is a vector of eight real potentials. Its transformation under SU(3) is:

Aµ(x) → U(x)Aµ(x)U†(x) − i

gs
[∂µ U(x)]U†(x), (1.8)

that in terms of components is

Aaµ(x) → Aaµ(x) + 1
gs
∂µω

a(x) − fabc ωb(x)Acµ(x).

Since we have introduced a new field in the Lagrangian, we require a kinetic
term to describe its dynamics. According to the Abelian case, we can build the
tensor field strength by using the covariant derivative:

Gµν(x) = Gaµν(x)T a ≡ i

gs
[Dµ, Dν ] = ∂µAν(x) − ∂νAµ(x) − igs[Aµ(x), Aν(x)],

which, due to the presence of the very last term, does not fulfill the commutative
property. Each component of the tensor field strength is:

Gaµν(x) = ∂µA
a
ν(x) − ∂νA

a
µ(x) + gs f

abcAbµ(x)Acν(x).
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Its transformation law is completely fixed by that of covariant derivative, which in
turn is set by equation (1.7) and is Dµ → U(x)Dµ U

†(x). Then the transformation
law for Gµν reads

Gµν(x) → U(x)Gµν(x)U†(x),
in other words, the tensor field strength transforms accordingly to the adjoint rep-
resentation of gauge group. The kinetic term of the gauge potentials is equivalent
to that found for the photon, since even in non-Abelian case is the square of the
tensor field strength, i.e., GµνGµν .

The Lagrangian of Quantum Chromodynamics7 for a single quark flavor, making
explicit color indices, is

LQCD =
3∑

i,j=1
ψ̄i
[
(i/∂ −m) δij + gs /A

a
T aij
]
ψj − 1

4G
a
µνG

aµν . (1.9)

This theory just depends upon two parameters, namely the mass of the fermion
and the coupling constant. Since QCD Lagrangian is symmetric under the local
transformations of the fields, identified by equation (1.7) and equation (1.8), a
conserved vector of currents8 arises due to Noether theorem

Jµa(x) ≡ −ψ̄i(x) γµ T aij ψj(x) + fabcAbν(x)Gc µν(x),

which satisfies ∂µJµa = 0, for each value of a. Nevertheless, the vector of currents,
i.e., Jµ(x), is not gauge invariant, hence it does not have any physical meaning and
no charge can be associated to it, according to Weinberg-Witten theorem9. In fact,
in QCD as in any non-Abelian gauge theory, gauge fields are related to matter fields
in a non-linear way and the characteristic current of charged particles does not even
exist. Only the fermionic part of the previous current, defined as

jµa(x) ≡ − ψ̄i(x) γµ T aij ψj(x),

proves to be gauge invariant. It satisfies the continuity equation ∇ab
µ j

µ b = 0, where
∇ab
µ ≡ ∂µδ

ab + gfabcAcµ, is the adjoint covariant derivative.
The EOM for the matter field is again the Dirac equation for each single state

of color, while that for gauge fields are:

∇ab
µ Gµν b = jν a.

7In the Standard Model a mass term for fermion is forbidden due to the chiral gauge symmetry
SU(2)L; fermions are indeed introduced massless, but their mass arise from the interaction with
Higgs boson. In the massless limit, QCD satisfies the global chiral symmetry SU(N)L × SU(N)R,
where left-handed and right-handed chiral components of N flavors of quark can be independently
rotated among themselves. The symmetry is spontaneously broken by the vacuum expectation
value of the bilinear operator q̄LqR that being different from zero, acts as an effective mass for
quark. The residual symmetry is SU(N), that identically rotates the two chiral components. Due
to Goldstone theorem, one should expect to find N2 − 1 massless states. Nonetheless, QCD does
not embed massless matter particles, but it contains a relatively light pseudoscalar triplet: the
pions. These mesons are the pseudo Nambu-Goldstone bosons since the symmetry is explicitly
broken by quark masses, explaining the relatively small mass of pions compared to that of other
mesons with similar quark content.

8In non-Abelian gauge theories there are N2 − 1 conserved currents, one for each symmetry
direction ωa, thus in QCD the vector of currents has eight components.

9The Weinberg-Witten theorem states that a non-Abelian theory involving massless 1-spin
bosons does not admit any conserved current that is gauge invariant.
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All Feynman rules of QCD follow from the Lagrangian with the exception of the
gluon propagator, that, as the photon propagator, requires a special attention in
order to be defined. The Faddeev and Popov trick can be used again to identify the
gluon propagator; however, in the non-Abelian case is necessary to add not only a
gauge-fixing term – equivalent to equation (1.5) – but also a ghosts Lagrangian

Lgf = 1
2ξA

aµ ∂µ∂ν A
a ν + c̄a

(
−∂2 δac − g∂µ fabcAbµ

)
cc, (1.10)

where c(x) and c̄(x) are the ghost and anti-ghost fields, respectively. The ghost part
of Lgf is simply given by a kinetic term, plus the interaction between ghosts and
gluons. Note that for each gauge field exists one associated ghost10. The Faddeev
and Popov ghosts are an artifact due to the insistence on describing Nature with
gauge theories. In fact, the path integral formulation of a gauge theory is ambiguous
and singular since we are overcounting the field configurations corresponding to the
same physical state. Nevertheless, Faddeev and Popov method fix this issue, but
the price to be paid is the appearance of ghosts. These fields might be included
in higher orders of perturbation series and then in Feynman diagrams, although as
virtual states. Ghosts are not physical particles since they violate the spin-statistics
theorem, indeed they are anti-commuting complex scalars. In loops diagrams, where
a gauge field can go off-shell and acquiring non-physical degrees of freedom, the
ghost acts by counterbalancing this effect, thus the fermionic rule of -1 factor in
loops must hold for ghosts.

The Faddeev and Popov ghosts do not appear in all gauges, indeed in the so-
called Dirac compatible gauges they are unnecessary. A Dirac-type gauge is a proper
functional of canonical variables, in other words it cannot include Lagrange multi-
pliers associated to primary constraints. The standard choices for gauge, namely
the Lorenz gauge (∂µAµ = 0), but even the temporal gauge (A0 = 0), do not be-
long to Dirac-type, on the contrary, axial (A3 = 0) and Coulomb gauge (∇ · A = 0)
do. The equation (1.10) clarifies why ghosts are not required in QED: in Abelian
theories the structure constants are null, leading to a ghost Lagrangian with just
the kinetic term.

The Lagrangian resulting from the sum of QCD and the gauge fixing terms,
namely equations (1.9) and (1.10), does no longer satisfy the gauge invariance, it,
however, fulfills a global symmetry, called BRST. The total Lagrangian is invariant
under the transformation

Aaµ(x) → Aaµ(x) + 1
g
θDµc

a(x),

ψ(x) → ψ(x) + i g θ caT aψ(x),

ca(x) → ca(x) − 1
2 θ f

abccbcc,

c̄a(x) → c̄a(x) − 1
g
θ

1
ξ
∂µAaµ(x),

where θ is a Grassmann number. In BRST, θc(x) plays the same role as α(x) in a
10The gauge field and its ghost have a very close connection. In a theory with spontaneous

symmetry breaking, if the gauge field becomes massive through Higgs mechanism, then its ghost
acquires an equal value of mass.
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gauge transformation, then we can state that the former is a generalization of the
latter. Moreover, BRST still holds despite the gauge fixing term.

The BRST operator, which is accountable for the transformation of fields, is
a nilpotent operator that commutes with the Hamiltonian. In charge of that, it
divides the eigenstates of H into three subgroups; two of them, including forward
and backward polarizations of gauge bosons as well as ghost and anti-ghost, are
non-physical, while the third subgroup is that of physical states, in fact longitudinal
polarizations of the gluons belongs to it.

A paramount implication of BRST symmetry is the renormalization of non-
Abelian gauge theories. In fact, not only BRST is preserved in loop since it is
an exact symmetry of the Lagrangian, but the most general BRST-invariant Lag-
rangian also appears to have all the required parameters in order to absorb the
infinities.

The gauge fixing term for QCD leads to the definition of the Feynman propagator
for the gluon field in the Rξ-gauge, that is:

iΠab
µν = −i δab

p2 + iε

(
gµν − (1 − ξ) pµpν

p2

)
.

The Feynman propagators for QCD, including the gluon propagator in Feynman
gauge, are:

µ, a ν, b

p
= −igµν δab

p2 + iε
,

i j

p
=
i
(
/p+m

)
δij

p2 −m2 + iε
,

a b
p

= i δab

p2 + iε
,

while the interaction vertices between gauge fields only, are

p1, µ, a

p2, ν, b

p3, ρ, c

= −gs fabc [gµν(p1 − p2)ρ + gνρ(p2 − p3)µ + gρµ(p3 − p1)ν ] ,

µ, a ν, b

ρ, cσ, d

= −ig2
s

[
fabef cde(gµρgνσ − gµσgνρ) + facef bde(gµνgρσ − gµσgνρ)

+ fadef bce(gµνgρσ − gµρgνσ)
]
,
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while those between gluon and matter, including the non-physical ghosts, are

µ, a

i

j

= igsγ
µ T aij ,

µ, a

b

c, p

= −gs fabc pµ.

The computation of next to leading order Feynman diagrams in QCD could
lead to divergent results. However, like QED, even Quantum Chromodynamics is
a renormalizable theory since it embeds a finite number of primary divergences,
related to the radiative correction of the two and three-point correlation functions,
that can be absorbed in unobservable Lagrangian parameters11. The renormaliz-
ation of QCD gauge coupling introduces a scale dependence with opposite beha-
vior to that identified in QED. In fact, Quantum Chromodynamics becomes non-
perturbative at energies below one GeV, where αs = g2

s/(4π) ≈ 0.4, while at high
energy is well-defined. This property, known as asymptotic freedom, also leads to
quark confinement: quarks cannot be observed as free particles since the potential
between colored states grows linearly with the separation until the energy involved
is enough to create a new couple of quarks.

Not only the property of asymptotic freedom has been shown to be a common
feature of the whole set of non-Abelian gauge theories, but also a prerogative of
it since among renormalizable theories in four dimensions is exclusive to this set.
If on one side, the running constant in QED is interpreted as the production of
virtual electron–positron pairs by a background electromagnetic field, causing a
screening effect of the bare charge, on the other side, in QCD the asymptotic freedom
introduces an additional effect of anti-screening. The two effects, on balance, do
not have the same magnitude, with the anti-screening that is almost twelve times
greater than screening. The overall impact is a decreasing value of the coupling
constants at high-energy scales.

At the energy scale below one GeV, where the perturbation theory breaks down,
the adopted technique for Quantum Chromodynamics computations is the Lattice
QCD, introduced by K. Wilson, where the space-time is discretized in a grid of
points. Perturbative QCD is recovered when the lattice is taken infinitely large and
its points infinitesimally close to each other.

1.3 Electroweak Theory
The electroweak (EW) theory provides a unified description of weak and electro-
magnetic interactions. The gauge group of EW theory is the local SU(2)L×SU(1)Y .
However, a non-Abelian gauge theory alone fails in describing experimental obser-
vations, since short-range nature of the interaction requires massive force-carries.
A further ingredient is needed for bosons to gain mass: spontaneous symmetry
breaking.

11In QED the number of required counter-terms is three, while QCD needs eight counter-terms
to be renormalized.
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The electroweak theory achieved its present formulation after more than forty
years of research and efforts by several physicists. The starting point is Fermi theory
of weak interaction, outlined by the Italian Nobel physicists in 1933. Subsequently,
Feynman and Gell-Mann implemented the theory giving rise to the famous V-A
theory [5], that, however, is a non renormalizable theory of dimension-6 operators
(see chapter 2). Despite its moderate success in describing experimental observa-
tions, the theory proved unfruitful at sufficiently high energies. Furthermore, in
1956 Wu observed parity and charge violations in weak interaction, a fact that led
to the search for a unified framework for weak and electromagnetic interactions.

In 1961 Glashow proposed a model based on the gauge group SU(2)×SU(1), he
predicted two neutral vectors, the massless photon and the massive Z; however, at
that time spontaneous broken symmetry was not known yet, and the breaking was
enforced by the explicit addition of mass terms for vector boson and for leptons [6].
Moreover, Glashow’s theory was not renormalizable. In the mid-1960s, Salam and
Ward made a similar attempt, obtaining a theory with four bosons, three massive
and one massless [7]; nonetheless, their theory suffered from the same problem as
that of Glashow: the symmetry had to be broken by hand.

The breakthrough came in 1967, when Weinberg integrated the spontaneous
symmetry breaking research of Englert [8], Higgs [9] and others into the model of
electroweak interactions [10]. Finally, in 1971 ’t Hooft showed that gauge theories
with spontaneous symmetry breaking are renormalizable [11].

The model of electroweak interactions theorized the existence of W and Z bosons
and predicted their mass values even before they were experimentally identified. The
collaborations UA1 and UA2, at CERN, confirmed the existence of these particles
only in the early 1980s, while the Higgs boson had to wait until 2012, when it was
tracked by the ATLAS and CMS experiments, once again at CERN.

The EW theory is based on the key concept of spontaneous symmetry breaking,
which is caused by the non-vanishing vacuum expectation value of a scalar field,
that at low energy shatters the gauge group of the theory leaving just a residual
symmetry that is the electromagnetic U(1)EM , discussed in section 1.2.1

SU(2)L × U(1)Y → U(1)EM . (1.11)
At high energy, where the symmetry in unbroken, the gauge structure of the group is
given by the combination of SU(2)L, which has similar properties to those discussed
in previous section for SU(3)12, and U(1)Y that is equivalent to the phase change
of QED, but with a different charge, named the hypercharge Y . Thus EW includes
four gauge bosons, named W i

µν and Bµν . The former is similar to the gluon field
strength tensor Gaµν , while the latter to the electromagnetic field strength tensor
Fµν . In EW theory the gauge group is broken by the vacuum expectation value
(vev) of a complex SU(2)L doublet H, named Higgs doublet, with hypercharge 1/2.
The electroweak Lagrangian for gauge bososn and Higgs doublet is:

LEW = −1
4W

i
µνW

i µν − 1
4BµνB

µν + (DµH)†(DµH) + µ2H†H − λ(H†H)2. (1.12)

The covariant derivative, that couples the gauge fields to Higgs doublet, is

Dµ = ∂µ − igW a
µ τ

a − 1
2 ig

′Bµ, (1.13)
12The group generators in SU(2) are half of Pauli matrices, while the completely antisymmetric

structure constants are εijk.
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where g and g′ are the SU(2)L and U(1)Y coupling constants, respectively. The
factor 1/2, in front of Bµν comes from the fact that Higgs doublet has hypercharge
Y = 1/2.

The potential V (H) = −µ2H†H+λ(H†H)2 induces a non null vev to the Higgs
doublet, that is v = µλ−1/2. Furthermore, it allows to write the field H as:

H = e2iπiτiv

( 0
v+h√

2

)
, (1.14)

where πi are the massless Goldstone bosons, which are responsible for the mass of
the weak vector bosons. The real scalar fields h is the renowned Higgs bosons.

Expanding the EW Lagrangian by equations (1.13) and (1.14) and assuming the
unitary gauge for the latter so that πi = 0; for the kinetic terms we get

Lgauge = −1
2
(
∂µW

+
ν − ∂νW

+
µ

) (
∂µW

−
ν − ∂νW

−
µ

)
− 1

4FµνF
µν − 1

4ZµνZ
µν ,

where the fields has been defined as
Zµ ≡ cos θwW 3

µ − sin θwBµ,
Aµ ≡ sin θwW 3

µ + cos θwBµ,

W± ≡ 1√
2
(
W 1
µ ∓ iW 2

µ

)
,

with the weak angle that is
tan θw ≡ g′

g
. (1.15)

Moreover, some massive terms arises

Lmasses = 1
2m

2
ZZµZ

µ +m2
WW

+
µ W

−µ − 1
2m

2
hh

2,

while the field Aµ remains massless. Moreover, one can notice that the masses of
weak bosons are related to the parameters of the theory

mW = g v

2 ,

mZ = mW

cos θw
,

mh =
√

2λv2.

These equations introduce a hierarchy in the masses of weak bosons, since mZ must
be greater than mW . Moreover, rewriting the covariant derivative in terms of the
mass eigenstate, it becomes

Dµ = ∂µ − ig√
2

(W+
µ τ

+ +W−
µ τ

−) − ig

cos θw
(τ3 − sin2 θwQ)Zµ − ieQAµ, (1.16)

where τ± = (τ1 ± iτ2), Q = T 3 + Y and g = e/ sin θw. Even if the free parameters
of the electroweak theory are g, g′, µ and λ, from the experimental point of view it
is more straightforward to make use of

mZ = 91.19 GeV, mW = 80.38 GeV,
mh = 125 GeV, GF = 1.166 × 10−5 GeV−2,
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where the Fermi constant is related to the vev via v = (
√

2GF )−1/2 = 246 GeV.
As we will see in chapter 2, the value of GF can be obtained from muon decay.

The complete expansion of the EW Lagrangian shows that several interactions
are allowed among gauge bosons and between gauge and Higgs field. The propagator
of Z and W is the Proca propagator for massive gauge bosons, while the Higgs boson
has the typical propagator of a scalar field.

The covariant derivative, in equation (1.16), also determines the coupling of
gauge fields with fermions. Nevertheless, experimental evidences show that W
boson only couple to left-handed fermion (and right handed anti-fermion), thus we
have to treat ψL and ψR separately, see appendix A.4.3. Left-handed leptons and
left-handed quarks transform under the fundamental representation of SU(2)L13,
thus they are arranged in doublets. The Standard Model includes three generation
of leptons and three generation of quarks, namely

`i =
(
νe
e−

)
L

,

(
νµ
µ−

)
L

,

(
ντ
τ−

)
L

, qi =
(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

, (1.17)

where i = {1, 2, 3}. On the contrary, right-handed fermions does not transform
under SU(2)L, i.e., they form the singlets

eiR = {eR, µR, τR}, uiR = {uR, cR, tR}, diR = {dR, sR, bR}, (1.18)

where right-handed neutrinos have not been included for reasons we will explain
shortly. Since all fermions couple to hypercharge gauge bosons, but with different
hypercharge, we distinguish between QL and QR. The fermion Lagrangian is:

L =
∑
ψL

iψ̄L(/∂ − ig /W
a
τa − ig′YL /B)ψL +

∑
ψR

iψ̄R(/∂ − ig′YR)ψR, (1.19)

where ψL = l, q and ψR = eR, uR, dR. Notice that, no mass term has been intro-
duced, in fact, an explicit term like ψLψR violates the SU(2)L invariance. Fermions
are introduced as massless in electroweak theory, but the Yukawa-like interaction
with Higgs doublet will be responsible for their mass after the EW symmetry break-
ing. A distinction between quarks and leptons is necessary. Starting with the former

LY uk = −Y dij q̄iH†dR j − Y uij q̄iH̃uR j + h.c. , (1.20)

where i and j run over the three generations and the dual Higgs doublet H̃ has
hypercharge −1/2. After the EW symmetry breaking all the mass terms become

LY uk, quark = − v√
2
(
d̄LYddR + ūLYuuR

)
+ h.c. .

The Yukawa matrices in this expression can be diagonalized

YdY
†
d = UdM

2
dU

†
d , YuY

†
u = UuM

2
uU

†
u,

where the matrices Ui are unitary while the matrix (YiY †
i ) is Hermitian and thus

has real eigenvalues. Additionally, in a general way we can write:

Yd = UdMdK
†
d, Yu = UuMuK

†
u, (1.21)

13Now, the meaning of subscript L is clear.
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where Ki are others unitary matrices. The Yukawa couplings become

LY uk, quark = − 1√
2

(
d̄LUdMdK

†
ddR + ūLUuMuK

†
uuR

)
+ h.c. , (1.22)

where the freedom of changing phase can be used in order to remove the matrices
U and K from the Yukawa term. Rotating the left-handed quark as dL → UddL
and the right-handed as dR → KddR – the same holds for up-type quarks – each
term in equation (1.22) becomes diagonal

Lmass, quark = −mψ

(
ψ̄LψR + ψ̄RψL

)
, (1.23)

where ψ = u, d. The coefficients mψ are the diagonal elements of the matrices
vMψ/

√
2.

The rotation affects also the kinetics and the interactions terms; in particular,
in the so-called flavor basis, defined by equations (1.17) and (1.18), the interaction
with W± boson is diagonal, see equation (1.19), while in the mass bases, where the
quarks acquired a mass, the interaction is no longer diagonal

Lmass, int = e√
2 sin θs

(
W+
µ ūiLγ

µVijd
j
L +W−

µ d̄iLγ
µV †

iju
j
L

)
, (1.24)

where V = U†
uUd is a unitary matrix known as Cabibbo-Kobayashi-Maskawa (CKM)

matrix. This matrix counts for all the mixing effects of weak interactions in the
mass basis. Although CKM is a complex 3 × 3 matrix, it is characterized by just
four14 real parameters: 3 angles θi and one complex phase δCP , that accounts for
CP-violation in charged-current interactions. On the contrary, the neutral current
is unaffected by this rotation and therefore is CP-conserving. Given that the angles
θi are quite small, CKM matrix results almost diagonal, therefore flavor and mass
basis are nearly overlapping15. Additionally, in EW theory CKM matrix is unitarity
by construction, but assuming, for instance, the existence of a fourth generation of
quarks, it loses this feature, therefore, we can understand how accurate the present
theoretical description is by experimentally testing CKM unitarity. Finally, we have
to introduce a Yukawa-like interaction between Higgs doublet and leptons. Similar
to up-type quark, for charged leptons, we have

LY uk, fermion = −Y eij ¯̀HeR + h.c., (1.25)

that will generate a mass term like that in equation (1.23), with me that are the
diagonal elements of vMe/

√
2. On the contrary, neutral leptons are massless in

Electroweak theory, indeed the second term of equation (1.19) is simply missing for
right-handed neutrinos since they are neutral and the lack of νR does not allow to
introduce a Yukawa-like mass term. Nonetheless, neutrino oscillations, theoretically
predicted by Pontecorvo in 1957 and observed by Super-Kamiokande in 2015, can
be only explained by massive neutrinos. Including a mass term for neutrinos, an
equivalent mixing to that discussed for quarks, arises for leptons, with the analog-
ous to CKM matrix that is known as Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

14A general 3×3 complex matrices has 18 parameters, however unitarity halves them. Moreover,
each quark field can be redefined up to a phase, fixing further 5 parameters.

15Flavor and mass bases would be equivalent if CKM were diagonal.
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Sector Fields SU(3)c SU(2)L U(1)Y QEM

Fermion

(u, d)L 3 2 1/6 (2/3, −1/3)
uR 3 1 2/3 2/3
dR 3 1 −1/3 −1/3

(νe, e)L 1 2 −1/2 (0, −1)
eR 1 1 −1 −1

Gauge

Ga 8 - - 0
W± - τ1 ± iτ2 - ±1
Z - τ3 Y 0
A - τ3 Y 0

Higgs H 1 2 1/2 0

Table 1.1: The Standard Model fields with their gauge quantum numbers and the
electric charge.. The fermion sector is repeated over 3 generations.

matrix. A compelling theory for massive neutrinos has not been identified yet,
some attempts, based on effective field theory include, not without any problems,
a dimension-5 mass term for neutrinos, which breaks lepton and baryon numbers.

The matter content and gauge mediators of the Standard Model are collected
in table 1.1, according to their Lorentz transformation properties and quantum
numbers under the three gauge groups of the theory

1.4 Physics Beyond the Standard Model
The Standard Model is, undoubtedly, the most successful theoretical framework
for describing Nature. It provides a pattern to outlines all the composed particles
observed in Nature or produced at the accelerators, in term of a few16 elementary
particles that interacts among them with the electroweak and strong interactions.
Despite this, SM leaves some phenomena unexplained and fails to be a complete
theory of fundamental interactions. In fact, several problems do not find any ex-
planation within the SM; to name a few:

• Neutrino masses: right-handed neutrinos are not included in the SM, therefore
is not possible to build – after electroweak symmetry breaking – a Yukawa-like
term for neutrino masses. On the contrary, neutrino oscillations pointed out
that they are light but massive particles.

• Dark Matter: assuming that the Λ-CDM model correctly describes our Uni-
verse and taking into account only its matter content, a measly 20% of the
whole matter can be explained by the SM. Experimental observations, such
as rotational curves of hydrogen clusters around galaxies, Cosmic Microwave
Background and galaxies merging, show that a large amount of stable and
electrically neutral matter is located inside galaxies.

• Strong CP problem: the SU(3)c sector of the SM Lagrangian does not take
into account the CP violation term θGµνG̃µν , while it is allowed by gauge

16Here we refer to flavors.
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invariance. In fact, CP violations have never been observed in experiments
involving strong interactions, moreover the measurement of the neutron’s elec-
tric dipole moment enables us to state that the coefficient of such a term is
very small, θ ≤ 10−10.

• Baryon asymmetry: in the Universe only one kind of matter is widely present –
what we refer to as matter – while anti-matter is almost absent. Nevertheless,
matter and antimatter are produced together, therefore a large amount of
anti-matter is missing. The explanation of this phenomenon requires a large
amount of CP violation. The SU(2)L sector of the SM Lagrangian includes
such term – the complex phase of CKM matrix – but its magnitude is not
enough to explain observations.

• Gravity: SM describes Nature in a space-time with a flat metric, therefore
gravity is not included. In order to unify SM with gravity, a quantum theory
of the latter is needed, but so far, all the efforts have been inconclusive.

• Hierarchy problem: SM requires the manual insertion of some basic paramet-
ers17 (such as coupling constants and masses, measured by the experiments),
which are far apart in terms of magnitude. For example, the strength of strong
interaction compared to gravity is about 1041 times grater and the theory does
not provide any clues to explain that.

Experimental observations, as well as theoretical hints, seem to converge on the
conclusion that SM is a low-energy approximation of a more fundamental theory.
In the next chapter we will present a compelling method, i.e., the effective field
theories, that can be employed to overcome these ope problems.

17The free parameters of the Standard Model are 18: 1 strong coupling constant, 4 EW para-
meters, 9 Yukawa couplings and 4 mixing parameters of quark.
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CHAPTER

2
Effective Field
Theories

In this chapter we will introduce the key concept of effective field theories. At first,
we will dwell on the need for EFTs in the search for new physics, then we will
explain how to build an effective Lagrangian and, giving a few examples, clarify
how to perform the matching procedure with the full theory. We will also discuss
next to leading order EFTs focusing in particular on decoupling of heavy states. In
the final part a basic introduction to SMEFT is given.

The main references for this chapter are [12, 13, 14, 15, 16, 17], while for
SMEFT [12, 18, 23].

2.1 Introduction to EFTs
Universe, superclusters, galaxies, solar systems, planets, continents, countries, cit-
ies, human beings, apparatus, body tissues, molecules, atoms, subatomic particles
and strings (maybe): Nature comes to us in different scales. It is a matter of fact
that we can investigate and make predictions on a specific scale by considering one
relevant scale at a time, without caring or even knowing the theory that rules at
smaller size. Engineers are able to build skyscrapers like Burj Khalifa1 without any
knowledge on QED or quantum gravity; on the contrary, a thorough understanding
of the laws of classical mechanics, specifically, gravity, fluid dynamics and theory of
elasticity is necessary to prevent the structure from collapsing. The needed para-
meters, such as compressive strength of materials, are measured at macroscopic
scale; engineers do not ask high-energy physicists to measure steel density from
collision at LHC. In some way, we can assert that effective field theories are the
path we have always followed to discover even more fundamental laws of Nature
and any theory formulated so far is undoubtedly an EFT, since it is nothing more
than an approximation of an underlying theory, which, in turn, will – probably –
be an effective field theory.

In this thesis, we will only focus on EFTs that are quantum field theories and
which admit a Lagrangian description, thus a regularization and renormalization
scheme are necessary to deal with predictive theories. Likewise QED, that requires
two input parameters, namely the charge and the mass of the electron, EFTs allow
us to compute measurable quantities only when the free parameters are fixed. Since

1With a total height of 829.8 meters, Burj Khalifa, sometimes called Burj Dubai because of its
location, is the tallest structure and building in the world.
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an EFT is an approximation for an underlying full theory, it automatically embeds
a finite error, which is tracked in the power counting parameter, denoted by δ. If
the EFT Lagrangian is an expansion in δ up to some order n, then the error will
be of order δn+1. It is clear that we can arbitrarily reduce the error by increasing
n to a sufficiently large number and then including higher-order corrections in the
Lagrangian.

According to [17], we can split EFTs in two sets:

• type I : EFTs of which we know the underlying theory,

• type II : EFTs of which we ignore the underlying theory.

EFTs of type I may, at first glance, represent a nonsense since one might won-
der why we are using an approximate theory if the underlying theory is available;
however, in the same way we add velocities much lower than the speed of light
with Galilean composition without disturbing special relativity, the EFTs of type I
provide the required level of accuracy with simplified computations. Some examples
are the Heavy Quark Effective Theory (HQET), the Four Fermi theory for weak in-
teractions, the non-relativistic quantum field theories, such as NRQED or NRQCD,
Heuler-Einsenberg theory of low-energy QED, and even QED itself; the latter to-
gether with QCD represents the effective field theory for the Standard Model below
the energy-scale of mW and mZ .

Some examples of EFTs of type II are the Standard Model, described in the
previous chapter, the General Relativity and the Cosmological model, called Λ-
CDM that we will introduce in chapter 4, but even all the EFTs that we build to
implement SM and GR.

2.2 EFT Lagrangian
The action S, being a scalar, fixes the engineering dimension of the Lagrangian. In
a D-dimensional space we have

[S] = [M ]0 ≡ 0, [L] = [M ]D ≡ D, [dDx] = [M ]−D ≡ −D.

In general, the Lagrangian is given by the sum of local, gauge and Lorentz invariant
operators

L(x) =
∑
i

ciOi(x), (2.1)

whose engineering dimension is [O] = d, while the coefficients ci have [c] = D − d.
The fields that appear in the operators are the usual scalar, fermion and vector fields.
Their engineering dimensions, determined by the corresponding kinetic terms, are

[φ] = D − 2
2 , [ψ] = D − 1

2 , [Aµ] = D − 2
2 , [g] = 4 −D

2 ,

where the dimension of the coupling constant is obtained from the covariant deriv-
ative, that is Dµ = ∂µ − igAµ, thus [Dµ] = 1.

Based on their dimension d, the operators are classified in three ensembles, called
relevant operators for d < D, marginal operators for d = D and irrelevant operators
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for d > D. The claim for renormalization is equivalent to discarding operators whose
coefficients have negative mass dimensions, i.e., irrelevant operators. In terms of
the Lagrangian, this is a strong constraint, namely d ≤ D. Making explicit the
dimensions of operators and their coefficients, equation (2.1) becomes

L =
D∑

i, d=0
c

(D−d)
i O(d)

i .

In the usual four-dimensional space-time, the dimensions of the fields and the coup-
ling constant are

[φ] = [Aµ] = 1, [ψ] = 3
2 , [g] = 0,

thus in this space-time the allowed gauge and Lorentz invariant operators are those
with d ≤ 4, namely

d = 0 : 1
d = 1 : φ
d = 2 : φ2

d = 3 : φ3, ψ̄ψ

d = 4 : φ4, φψ̄ψ, DφDφ, ψ̄Dψ, FF, F̃F.

On the contrary, in EFT the validity limits of the theory are ‘a priori’ estab-
lished, therefore the constraint of being renormalizable at all orders in the perturb-
ation series is not required. Renormalization, strictly speaking2, guarantees that
the theory is valid at arbitrarily short scales. Nevertheless, this assumption leads
to a twofold problem: theoretically because we are assuming that the theory is ex-
act at all scales and experimentally because is impossible to reach arbitrarily short
distances.

Discarding renormalization, the Lagrangian will admit also higher-dimensional
operators, that are, however, multiplied by coefficients of negative mass power. The
coefficients ,ci, are often written as the product between dimensionless constant and
a negative power of the energy scale Λ that represents the validity limit above which
the effective theory is meaningless, namely ci = Ci/Λ. Moreover, this convention on
coefficients allows us to easily recognize operator of decreasing significance. Then
the most general Lagrangian of an EFT is:

LEFT =
∑
i, d≥0

Ci
Λd−D O(d)

i = Ld≤D +
∑
d>D

Ld
Λd−D , (2.2)

which in four-dimensional space-time becomes

LEFT = L4 + L5

Λ + L6

Λ2 + . . .,

2Here nomenclature is a bit confusing, indeed “renormalizable” means that the theory embeds
a finite number of amplitudes that superficially diverge. However, as we will see in the following
of this chapter, we can perform the renormalization procedure at fixed order for an EFT, that on
the contrary, belongs to the set of non-renormalizable theories.
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where the sum is over infinite terms which, however, will produce even smaller
contributions to observables as the dimension increase. Hence, only a few terms
are needed to reproduce the experimental outcomes of a fixed level of accuracy.
This explains why non-renormalizable theories are as good as renormalizable ones:
by truncating an infinite series of operators, we are selecting a finite number of
parameters to make predictions, which is what happens when dealing with renor-
malizable theories. It is important to emphasize that, in theoretical computations as
well as in experimental measurements, the relevant quantity is the product ci ΛD−d

and not ci and ΛD−d taken individually.

2.2.1 Power Counting
Once the Lagrangian has been defined, we can figure out how an operator contrib-
utes to physical observables like the amplitudes. Assuming that in a D-dimensional
space the amplitude M is dimensionless for a certain momentum scale p, then if a
single operator of dimension d competes to the tree-level amplitude, we have

M ∼
(

1
Λd−D

)(
1

pD−d

)
=
( p

Λ

)d−D
.

From dimensional analysis the power of Λ is fixed by the dimension of the operator,
see equation (2.2), while kinematic factors, such as external momenta, determine
the power of p. Higher-dimensional operators, still at tree-level, give

M ∼
( p

Λ

)n
, n =

∑
i

(di −D). (2.3)

where i runs over all required operators. Equation (2.3) is known as EFT power
counting formula and furnishes the information about the suppression of a given
diagram. In four-dimensional space, it reduces to

n =
∑
i

(d− 4).

A remarkable aspect of equation (2.3) must be highlighted since it represents the
key-point to understand the difference between a renormalizable theory and an
EFT: let us consider the four-dimensional space where a diagram is given by two
insertions of dimension-5 operators, or a double insertion of the same operator, from
L5. The contribution to the amplitude is proportional to (p/Λ)2, which is equivalent
to a single insertion of dimension-6 operator, from L6. Moreover, if such a diagram
with insertion of dimension-5 operators presents a loop, then we expected it to be
divergent, hence a counter-term is necessary to renormalize it. In this case, the
renormalization term is a dimension 6-operator, indeed for Ld≥D we can generate
arbitrarily high-dimensional operators by multiple insertions of lower-dimensional
operators, but still with d − D > 0. On the contrary, starting with the operators
that appears in Ld≤D, we cannot generate higher-dimensional operators since we
do not need counter-terms of operators of negative mass-dimensions, thus we are,
in such a case, restricted to the set of operators whose dimension is d − D ≤ 0,
i.e., the same size of those already included in the Lagrangian. From this point
of view, renormalizable theories are a subset of EFT, where the limit Λ → ∞
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has been performed, which means that we can compute amplitudes of arbitrary
accuracy, since there are no p/Λ corrections. In EFT, including the whole series of
operators with d ≥ D, an infinite number of higher-dimension counter-term would
be required, however, such a series is, in practice, truncated and only a finite number
of counter-terms is necessary to perform the renormalization procedure.

The Blue Sky

The blue color of sky was explained by J. W. S. Rayleigh, who demonstrated that
the light intensity of low-energy radiation scattered by atoms from the atmosphere
is proportional to the fourth inverse power of light wavelength. Blue light, being
the one with the smallest wavelength, scatters the most. The derivation of Rayleigh
scattering formula is rather complicated and long; however, we can achieve the same
result more directly by power counting in EFT.

Assuming that a photon is going to scatter with an atom from the atmosphere
and that its energy Eγ is much smaller than the excitation energy Ea of the atom,
which in turn is much smaller than the inverse size of the atom and its mass, namely

Eγ � Ea � a−1
0 � Ma,

then we can ignore the atom recoil and consider the interaction as an elastic scat-
tering. The Lagrangian for the EFT will include all the allowed operators that
describe an elastic interaction between the photon and the atom, and that, at the
same time, respect the symmetries of Nature, namely Lorentz and gauge symmet-
ries. Moreover, the atom is electrically neutral, a condition that combined with
gauge invariance, does not allow for a direct interaction with Aµ. The only avail-
able object for describing the photon is the tensor field strength, thus given that
the atom is a fermion Ψ, the lowest-order operator is of dimension-7 and it is

Lint = a3
0Ψ† (cEE2 + cBB2)Ψ. (2.4)

A term proportional to E · B is forbidden by parity conservation. This interaction
Lagrangian leads to the scattering amplitude M ∼ a3

0E
2
γ since the electric and

magnetic fields are gradients of the vector potential, therefore each factor E or B
produces a factor Eγ . The cross section is

σγ−atom ∝ a6
0E

4
γ , (2.5)

thus blue light, having twice the frequency, will scatter 16 times stronger than red
light, in agreement with Rayleigh formula.

2.2.2 Tree-Level Matching
Before going further, we present some examples of matching at tree level between the
the full theory and its low-energy EFT, which will clarify what has been discussed
so far.

Yukawa Toy Model

Assume that a massless fermion exists in Nature and that a certain experimental
apparatus, working at energy scale El, has traced the interaction of four of these
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Figure 2.1: Tree-level Feynman diagrams proportional to λ2 that contribute to
ψψ → ψψ scattering.

fermions. A high-energy physicist will describe the process with the Lagrangian:

LEFT = iψ̄ /∂ψ + C

2 (ψ̄ψ)2,

where C is the coupling constant. Computing the Feynman diagram of the process
he finds

1

2 4

3
ψ

ψ
≡ iMEFT = ū(p3)u(p1)ū(p4)u(p2) (iC) − {3 ↔ 4}. (2.6)

Now, imagine that, with the increasing of technology, a new energy threshold Eh,
with El � Eh can be achieved in experiments. Repeating the collision of four
fermions, experimental physicists discover that the interaction is mediated by an
heavy scalar Φ of mass M , such that El � M � Eh. Then assuming a Yukawa-like
coupling, the new theory reads

LF = iψ̄ /∂ψ + 1
2∂µΦ∂µΦ − 1

2M
2Φ2 − λΦψ̄ψ.

At leading order, the scattering process ψψ → ψψ in the new theory is obtained by
computing the Feynman diagrams represented in figure 2.1. The amplitude is:

iMF = ū(p3)u(p1)ū(p4)u(p2)(−iλ)2 i

(p1 − p3)2 −M2 − {3 ↔ 4}, (2.7)

However, before the discovery of the heavy mediator, the Lagrangian LEFT well
described observations, just as the Lagrangian LF does after the increasing of energy
threshold. Thus, the new “full theory” must reproduce, in the low-energy limit the
result of equation (2.6). Performing the limit (p1 − p3)2 � M2, the amplitude of
the full theory becomes

iMF, low = ū(p3)u(p1)ū(p4)u(p2) iλ
2

M2 − {3 ↔ 4}. (2.8)

The matching procedure requires that equations (2.8) and (2.6) must describe the
same physics

MF, low − MEFT = 0, implies C = λ2

M2 . (2.9)
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Figure 2.2: Muon decay, µ− → ν̄ e− ν̄e at tree-level. On the left in Fermi theory, on
the right in electroweak theory.

The matching procedure just described is simple and straight, however, it also holds
in more complex cases, for instance in tuning the low-energy electroweak theory with
the four-fermion Fermi interaction.

Fermi Theory

Nowadays, Fermi theory belongs to what we call EFT of type I, since its underlying
theory is available. However, when E. Fermi tried to describe β-decay, the W boson
had not been discovered yet. Taking as an example the muon decay, µ− → νµe

−ν̄e,
in Fermi theory the interaction is described by the Lagrangian

LFermi = −GF√
2

[ν̄µ γρ(1 − γ5)µ] [ē γρ(1 − γ5) νe] ,

where GF = 1.166 × 10−5 GeV−2 is the Fermi constant. The Feynman diagram for
muon decay in Fermi theory is represented in figure 2.2, on the left. The amplitude
of the process is

iMFermi = − iGF√
2
ν̄µ γ

ρ(1 − γ5)µ ē γρ(1 − γ5)νe. (2.10)

Within the SM, muon decay is understood by considering an intermediate virtual
state of W boson, see the right diagram in figure 2.2. The mediator W− couples to
the weak charged current as

jµW = g

2
√

2
ν̄`γ

µ(1 − γ5)`.

In Feynman-’t Hooft gauge, the amplitude of the process is

iMEW =
(

−ig
2

√
2

)2
(ν̄µγρ(1 − γ5)µ)

(
−igρσ

p2 −m2
W

)
(ēγσ(1 − γ5)νµ)

which in the low energy limit, defined by p � m2
W , becomes

iMEW, low =
(

−ig
2

√
2

)2
(ν̄µγρ(1 − γ5)µ) igρσ

m2
W

(ēγσ(1 − γ5)νµ) (2.11)

The amplitude obtained with Fermi theory, in equation (2.10), must be equal to
that computed in low-energy electroweak, hence

GF√
2

≡ g2

8m2
W

= 1
2v2 , (2.12)
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Figure 2.3: One-loop contribution of L6 to φφ scattering.

with v ∼ 246 GeV, that is the vev of the Higgs. Thus, at energies well below
the mass of W boson, Fermi theory can be employed to describe weak interaction.
In particular, in the region where W is no longer a degree of freedom – it has
been integrated out of Lagrangian – the effects of an exchange of this particle are
absorbed into the four-fermion operator.

2.2.3 Loops
EFTs not only simplify the derivation of tree-level amplitudes, but also prove to
be useful in performing loop calculations. First of all, it must be emphasized that
equation (2.3) holds even for loop diagrams. This is anything but straight, in
EFT the computation of loop diagrams represents a conceptual problem since the
integration domain is extended to the whole phase space, including the breaks down
regions of EFT.

For simplicity, we consider the Lagrangian for a massive scalar field, that up to
dimension-8 is:

L = Ld≤4 + C6

Λ2
φ6

6! + C8

Λ4
φ4(∂µφ)2

8! ,

where L6 operator contributes to φφ scattering with the diagram represented in
figure 2.3. The amplitude of the process is:

iM6 = − iC6

2Λ2

∫
d4l

(2π)4
1

l2 −m2
φ

,

however, the validity region of this EFT is defined by l < Λ, thus the introduc-
tion of a cut-off momentum Λl, with Λl < Λ, seems the most reasonable choice.
Additionally, for mφ << Λl, we have

iM6 ≈ − iC6

Λ2
Λ2
l

16π2 ,

which diverges with the square of the cut-off momentum since the integral was
quadratically divergent. Computing in the same way the contribution of dimension-
8 operator, we get

iM8 = − iC8

Λ4

∫
d4l

(2π)4
l2

l2 −m2
φ

≈ − iC8

Λ4
Λ4
l

16π2 ,

which diverges with the fourth power of the cut-off momentum. When Λl ≈ Λ, the
theory is no longer predictive since both contributions are of order O(1), thus the
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power counting formula is lost. Moreover, being Λl an artificial scale without any
connection to physical world, it cannot appear in observables, therefore the cut-off
regularization does not seem to be the right tool for loop computations in EFTs. In
order to retain the EFT power counting, the regularization scheme cannot introduce
any contribution that depends on Λl, thus dimensional regularization seems to be
the suitable one, given also the feature of preserving gauge invariance.

Dimensional regularization is implemented via the integration master formula

µ2ε
∫

dDl

(2π)D
(l2)a

(l2 −A)b = iµ2ε(−1)a−bAa−b+D
2

(4π)D2
Γ
(
a+ D

2
)

Γ
(
b− a− D

2
)

Γ
(
D
2
)

Γ (b)
, (2.13)

where A does not depend on loop momentum and Γ(x) is the Euler Gamma function.
Since D = 4 − 2ε, the expansion of Gamma around ε is give by:

Γ(ε) = 1
ε

− γE + O(ε), (2.14)

where γE = 0.577 is the Euler-Mascheroni constant.
If we consider again the the two contribution of L6 and L8, in dimensional

regularisation we have:

µ2ε
∫

dDl

(2π)D
1

l2 −m2
φ

=
im2

φ

16π2

[
1
ε

+ log
(
µ̃2

m2
φ

)
+ 1 +O(ε)

]
,

µ2ε
∫

dDl

(2π)D
l2

l2 −m2
φ

=
im4

φ

16π2

[
1
ε

+ log
(
µ̃2

m2
φ

)
+ 1 +O(ε)

]
.

(2.15)

where µ̃2 ≡ 4πe−γEµ2. These integrals depend on mφ, which defines an infrared
(IR) scale, while all the UV divergences are embedded in 1/ε, that we expected to
cancel by adding the counter-terms. Moreover, µ̃ appears only in the argument of
the logarithm, and since there are no power of this parameter in previous equation,
the only source of µ̃ is the parameter µ2ε in front of the integrals. One remarkable
property of dimensional regularization is that scaleless integral vanishes, indeed in
the limit mφ → 0, equation (2.13), returns a null result.

In EFTs, the choice for dimensional regularization was made because it complies
with the power counting formula. Consider a loop diagram with the insertions of
effective operators that lead to vertices of order 1/Λa, 1/Λb and others, then the
amplitude will be dependent on Λ as

M ∝ 1
Λa+b+ . . .

, (2.16)

indeed, as we have seen from equation (2.15), the only scales that can appear in the
numerator come from the poles of Feynman propagators, which are much smaller
than the cut-off scale.

2.2.4 Matching
For a better understanding of this point, we can perform an explicit matching
procedure between an EFT and its full underlying theory. Imagine that in the
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Figure 2.4: One loop Feynman diagram for the full theory where two light fields
(external solid lines) interact by exchanging a heavy (thick dotted line) and a light
(thin dashed line) scalar fields.

theory discussed above, two scalar fields with different masses are involved in a
loop diagram as represented in figure 2.4. In the full theory the integral describing
the diagram is

IF = g2µ2ε
∫

dDl

(2π)D
1

(l2 −M2)(l2 −m2) , (2.17)

with m << M , where M represents the UV scale, while m the IR scale. This
integral depends on both energy scales since they appear in the denominator of the
scalar propagators. Using Feynman parameters and the master formula (2.13), we
get:

IF = ig2

16π2

[
1
ε

+ log
(
µ̃2

M2

)
+ m2

M2 −m2 log
(
m2

M2

)
+ 1
]
, (2.18)

here the dependence on the IR and UV scales is expressed by the argument of the
logarithms: the first depends only upon the UV scale, while the second one on both
of them.

On the contrary, in the low-energy EFT the heavy particle does not show up,
therefore we have to integrate it out by expanding the propagator of the heavy
particle as:

1
l2 −M2 = − 1

M2

(
1 + l2

M2 + l4

M4 + . . .

)
,

and substituting in equation (2.17). This procedure removes the UV scale from the
theory, therefore we will end up with a low-energy EFT, where the loop integral
reads

IEFT = −g2µ2ε

M2

∫
dDl

(2π)D
1

l2 −m2

(
1 + l2

M2 + l4

M4 + . . .

)
= ig2m2

16π2 (M2 −m2)

(
−1
ε

− log
(
µ̃2

m2

)
− 1
)
.

(2.19)

Note that, as expected, the argument of the logarithm does not present the UV
scale. This result must be compared with equation (2.18), obtained within the full
theory. It is clear that the two results are different, in particular the coefficients
of the divergent terms do not match. In fact, the full theory and the EFT are two
independent theories that we can regulate with different schemes, thus the divergent
terms will be fixed by different counter-terms. As if that were not enough, we can
also choose different values for the gauge-fixing parameters. As said before, the EFT
is only tuned with the full theory in order to reproduce the same matrix element,
while being a completely independent theory.
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Assuming that divergent terms have been fixed in both theories by making use
of the MS-scheme, then we can compute the matching integral named IM

IM = IF − IEFT

= ig2

16π2

[
log
(
µ̃2

M2

)
+ 1 + m2

M2

(
log
(
µ̃2

M2

)
+ 1
)

+ . . .

]
= ig2

16π2

[
log
(
µ̃2

M2

)
+ 1
] ∞∑
n=0

(
m2

M2

)n
,

(2.20)

from which it emerges that the logarithm inside square brackets, that is analytic
in the IR scale, represents a correction to operators of order M−2n. What is re-
markable is that we can read the result from a completely different point of view
by writing the full underlying theory, which embeds both the UV and IR scales, as
the sum of two one-scales theories, i.e., IF = IM + IEFT . If on one hand the IR
scale affects the EFT theory, as highlighted by equation (2.19); on the other hand,
the matching integral, in equation (2.20), depends only on the UV scale. Hence, by
using the parameter µ̃, we can write

log
(
m2

M2

)
︸          ︷︷          ︸

full theory

= log
(
µ̃2

M2

)
︸          ︷︷          ︸

matching

− log
(
µ̃2

m2

)
︸         ︷︷         ︸

EFT

. (2.21)

The separation of the two energy-scales leads to easier computations, since integrals
with multi-scales require a more attention and techniques compared to single-scale
ones.

In this derivation we have obtained the matching integral as a result, but we may
wonder whether there is another way to obtain the IM integral. Both the integrals
IF and IEFT contain non-analytic terms in the IR scale, while their difference, i.e.,
the integral IM , is analytic in this scale. Thus, we can remove the IR scale both in
the full theory and in EFT, by expanding them in m << l, hence

I
(IR)
F = g2µ2ε

∫
dDl

(2π)D
1

l2 −M2

(
1
l2

+ m2

l4
+ . . .

)
,

I
(IR)
EFT = g2µ2ε

∫
dDl

(2π)D

(
1
l2

+ m2

l4
+ . . .

) (
− 1
M2 − l2

M4 + . . .

)
.

(2.22)

Now, as expected, the denominators do not depend on m anymore. Note that, in
dimensional regularization the non-analytic terms in m are proportional to

mε

ε
= 1
ε

[
mε + εmε−1 + . . .

]
,

where we first expanded in the IR scale m and then respect to the parameter ε. In
the limit m → 0, it returns a null contribution.

We can obtain the same outcome starting from I
(IR)
EFT , in equation (2.22), which

is composed by scaleless terms, since two expansion took place; therefore, its con-
tribution is null. This result is completely general.

On the contrary, the integral in I
(IR)
F still depends on a specific scale, i.e., the

UV scale, and its integration will produce the same result of equation (2.20), since
IM = I

(IR)
F − I

(IR)
EFT , with I

(IR)
EFT = 0.
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In order to perform a general derivation, it is sufficient to split the UV and IR
divergences of a scaleless integral∫

dDl

(2π)D
1
k4 = i

16π2

(
1
εUV

− 1
εIR

)
= 0. (2.23)

Moreover, the integrals that appear in the full theory and in the EFT after the
expansion in the IR scale, can always be written as

I
(IR)
F (m) =

∑
n

mnI
(n)
F =

∑
n

mn

(
A(n)

εUV
+ B(n)

εIR
+ C(n)

)
,

I
(IR)
EFT (m) =

∑
n

mnI
(n)
EFT =

∑
n

mn

(
−B(n)

εUV
+ B(n)

εIR

)
,

where An, Bn are the UV and IR divergent integrals respectively, while Cn is the
finite part. Adopting once again the MS-scheme to remove the UV divergences, we
get

I
(n)
M =

[
I

(n)
F − I

(n)
F, ct

]
−
[
I

(n)
EFT − I

(n)
EFT, ct

]
= C(n).

where Ic.t. are the counter-terms. The last equation states that to obtain the match-
ing condition we simply have to expand the integral of the full theory in the IR scale
and keep only the finite part of it.

2.2.5 Fields Redefinition and Equations of Motion
Four-dimensional operators, as well as lower-dimensional ones, are common in
quantum field theory and we are used to deal with them; on the contrary, we
cannot state the same for higher-dimensional operators. First of all, for a given
dimension we have to identify a basis which can only contain local operators that
are also gauge and Lorentz invariant. Usually, we have to handle redundant terms
that have to be eliminated. If on one side, a redefinition of fields does not prove ef-
ficient in this task; on the other side, by making use of equation of motions (EOMs)
we can fulfill the assignment directly. In fact, operator proportional to EOMs can
be deleted, since they do not affect the S-matrix. We can prove this statement by
recalling that EOMs are a special case of redefinition of fields.

First of all, we recall that the redefinition of fields has no physical implications:
assuming that a certain theory depends on the scalar field φ, then the map

φ(x) → f [φ(x)].

will affects the correlation functions, but will leave the observables, such as S-
matrix, unmodified. This is true as long as 〈p|f [φ]|0〉 , 0, where |p〉 is the one-
particle state created by the field φ, since the LSZ reduction formula, which con-
nects correlation functions to S-matrix elements, still holds and identifies the poles
corresponding to the external physical states in scattering amplitudes.

From their side, equations of motion are a special case of redefinition of fields.
They can be written in a compact manner as

E[φ] ≡ δS[φ]
δφ

.
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If we deal with an operator of φ, which is proportional to the EOMs, it can be
recast as

O[φ] = f [φ]E[φ] = f [φ] δS[φ]
δφ

.

Thus, operating the redefinition of the scalar field

φ → φ+ εf [φ],

where ε � 1, the Lagrangian turns to

L[φ] → L[φ] + εf [φ]δS[φ]
δφ

+O(ε2) = L[φ] + εO[φ] +O(ε2),

proving that an operator proportional to the EOMs can always be removed from
the Lagrangian since it disappears when we perform a specific redefinition of the
fields.

A concrete example of this procedure can be shown within the scalar theory. Up
to dimension-4 the Lagrangian for a massive scalar particle is

L = 1
2∂µφ∂

µφ− 1
2m

2φ2 − 1
4!λφ

4,

whose EOMs are
(∂2 +m2)φ+ 1

3!φ
3 = 0.

Now suppose that we want to include some dimension-6 operators to build a new
EFT Lagrangian. Among other, these operators might be φ6, φ3∂2φ and (∂2φ)2.
Nevertheless, EOMs shows that only one of them is independent

(∂2φ)2 ∼ φ6,

φ3(∂2φ)2 ∼ φ6,

where ∼ stands for equivalence between operators. Thus, there is no need to include
the operators φ3∂2φ and (∂2φ)2 in the Lagrangian. In an equivalent manner, we
can remove the redundant operators by making use of field redefinition. Let us
imagine that we have already removed the operator (∂2φ)2, then the Lagrangian
for the effective field theory of dimension six is

LEFT = 1
2∂µφ∂

µφ− 1
2m

2φ2 − 1
4!λφ

4 − C1

Λ2 φ
3∂2φ− C2

Λ2 φ
6 +O(1/Λ4).

Under the field redefinition
φ → φ− C1

Λ2 φ
3, (2.24)

the Lagrangian becomes

LEFT = 1
2∂µφ∂

µφ− 1
2m

2φ2 −
(
λ

4! − C1m
2

Λ2

)
φ4 −

(
C1λ

3! Λ2 − C2

Λ2

)
φ6 +O(1/Λ4).

which, as expected, contains just one operator of dimension six.
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p p

Figure 2.5: The leading order diagram for the vacuum polarization of the photon.

Generally speaking, the EFT Lagrangian might contain redundant operators
that can be eliminated by EOMs or redefinition of fields. On one hand, the super-
fluous operators Oi mix among themselves when we renormalize the theory

µ
d

dµ
Oi = βijOj ,

where βij can be gauge-dependent, but the operators Oi are not observable quant-
ities. On the other hand, for non-EOMs operators Ki, the anomalous dimension
is

µ
d

dµ
Ki = γijK + βijOj . (2.25)

The operators Ki contribute to S-matrix, thus γij is gauge independent. Under the
evolution of µ, the operators Ki can mix with EOMs-operators, but this is not a
problem since Oi are, as said, unobservable.

2.3 Decoupling of Heavy States
Usually, at low-energy scale the heavy states do not contribute. Consider, for in-
stance, the one-loop β-function of QCD

β(gs) = − g3
s

(4π)2

(
11 − 2

3nf
)
,

where nf is the number of quark flavors. At the energy level well below the quark
top mass, we do not expect that this particle contributes to the β-function; in other
words, we assume that the heavy state decouples at low energy.

The decoupling of heavy particles can be understood considering the one-loop
β-function of QED, which comes from the vacuum polarization diagrams, in figure
2.5. In dimensional regularization we have

iΠ(p2) ≡ ie2

2π2

[
1
6ε −

∫ 1

0
dxx(1 − x) log

(
m2 − p2x(1 − x)

µ̃2

)]
, (2.26)

where m is the mass of the particle running in the loop and p the momentum of the
external photon.

Momentum-Subtraction Scheme

Adopting a mass-dependent renormalization procedure, such as the space subtrac-
tion scheme where the renormalized vacuum polarization function is given by the
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difference between Π(p2) − Π(µ2
M ), we get

Πm(p2, m2, µ2
M ) = − e2

2π2

[∫ 1

0
dxx(1 − x) log

(
m2 − p2x(1 − x)
m2 + µ2

Mx(1 − x)

)]
. (2.27)

We can compute the contribution to the β-function for a generic fermion running
in the loop by acting on this function with the operator (e/2)µM d/dµM , hence

βm(e) = e3

2π2

∫ 1

0
dxx(1 − x) µ2

Mx(1 − x)
m2 + µ2

Mx(1 − x) .

Two opposite situation can occur: if we consider a particle lighter than the scale
µM , such as the electron, for which we have me � µM , then previous equation
becomes

β(e) ≈ e3

2π2

∫ 1

0
dxx(1 − x) = e3

12π2 (2.28)

while for an heavy fermion µM � M , thus

β(e2) ≈ e3

2π2

∫ 1

0
dxx(1 − x) µ

2
Mx(1 − x)
M2 = e3µ2

M

60π2M2 → 0.

thus, as anticipated, in momentum-subtraction scheme the heavy particles decouple.

Minimal-Subtraction Scheme

Now, we repeat the computation, but in a mass-independent scheme, such as the
MS-scheme. In this case, the renormalized vacuum polarization function can be
obtained from equation (2.26) by removing its divergent term

ΠMS (p2, m2, µ̃2) = − e2

2π

∫ 1

0
dxx(1 − x) log

(
m2 − p2x(1 − x)

µ̃2

)
. (2.29)

As we did before, to get the β-function, we must act with the operator (e/2)µM d/dµM
on the vacuum polarization function. For light state, we recover the same result of
the mass-dependent scheme, indeed equation (2.28) is independent both from the
mass of the fermion and from the parameter µ̃. Nevertheless, for heavy particles we
find a non-vanishing contribution, thus heavy states do not decouple.

In the MS-scheme, an additional problem comes out, indeed evaluating equation
(2.29) for a particle with low-momentum

ΠMS (0, m2, µ̃2) = − e2

2π

∫ 1

0
dxx(1 − x) log

(
m2

µ̃2

)
,

which is divergent in the limit of heavy particles µ̃ � m, causing the breakdown of
the perturbation theory.

The problems of non-decoupling and theory break down are strictly related and
they can be solved by integrating out heavy states. In fact, the contribution of
heavy particles is embedded in higher-dimensional operators, which are suppressed
by the inverse powers of their mass. At Lagrangian level

L(nl+1) → L(nl),
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which states that we are moving from a theory with nl light particles and one heavy
states to a theory with just nl light particles. The two theories must generate the
same S-matrix for the scattering of a light-particle scattering in low-energy regime.
In the MS-scheme, we can integrate out the heavy-states by computing the vacuum
polarization function for p2 � m2

ΠMS (p2, m2, µ̃2) = − e2

2π

∫ 1

0
dxx(1 − x)

[
log
(
m2

µ̃2

)
+ log

(
1 − p2x(1 − x)

µ̃2

)]
= −1

6 log
(
m2

µ̃2

)
+ p2

30m2 +O

(
p4

m4

)
.

In order to get this result, QED Lagrangian was adjusted by integrating out heavy-
states, which is equivalent to the shift of the gauge coupling constant

1
e2
l (µ̃) = 1

e2
h(µ̃) − 1

12 log
(
m2

µ̃2

)
,

where el(µ̃) and eh(µ̃) are low-energy and high-energy gauge couplings. The shift
is responsible for the first term in equation (2.3), while the second term comes from
a dimension-6 operator of the EFT Lagrangian, namely

L = e2

240π2m2 ∂ρFµν ∂
ρFµν .

2.4 Standard Model Effective Field Theory
We conclude this chapter on effective field theories by presenting the Standard
Model effective field theory (SMEFT), which represents a viable proposal to look for
new physics. SMEFT enables for higher-dimensional operators, while the allowed
fields are those of the SM. On the contrary, our research is focused on the search for
new fields that interacts with the SM particles through high-order operators, while
SM is left untouched; see chapter 4 and 5. This does not detract from the fact that
SMEFT is both a compelling theory and a fundamental example of EFT.

SMEFT comes from the assumption that SM itself is an effective field theory
which approximates a more fundamental theory of elementary interactions. From
this point of view, what we have done so far is describing the Nature with the
Lagrangian

LSM = Ld≤4,

that turned out to accurately foresee experimental outcomes. Nevertheless, it is
expected that as the energy of the accelerators increases, more discrepancies will be
found between theory and experimental data.

The SMEFT Lagrangian is

LSMEFT = LSM + L5

Λ + L6

Λ2 + . . . ,

where Λ is the energy scale of new physics at which SMEFT breaks down. Since
SMEFT allows for the SM fields only – in addition, before the EW symmetry
breaking – we have to build higher-dimensional operators that respect Lorentz and

40



gauge invariance without introducing new fields. It is remarkable that at dimension-
5 just one operator is available to build L5. It was found by Weinberg [19] and it
is

L5 = Crs5 εijεkl(lTir C lks)HjHl + h.c., (2.30)

where i, j, k and l are indices of SU(2), while r and s refer to generation of particles.
C is the charge conjugation matrix. This operator contains a ∆L = 2 interaction,
that violates the lepton number and furnishes a Majorana mass term to neutrinos
after the electroweak breaking. In [20], the authors have shown that all the operators
built starting from the SM fields satisfy

1
2(∆B − ∆L) ≡ d, (2.31)

that makes it clear why for d = 5, the operator in equation (2.30) does not retain
both lepton and baryon numbers.

The scenario of dimension-6 operators is extremely complex, indeed a complete
basis, commonly called Warsaw basis, was identified quite recently by [21], starting
from the results in [22].

2.4.1 SMEFT Corrections to SM
Removing the dimension-5 operator, we can investigate the consequences of L6
on observables. In some cases, dimension-6 operators act as a simple shift of SM
parameters, however in some others they lead to deeper changes.

As previously said, in EFT is important not only to specify the dimension of the
operators, but also the number of insertions of these operators in some diagrams
since multiple insertions of low-dimensional operators is equivalent to a single inser-
tion of a higher-dimensional operator. In [23], the authors obtained some compelling
results with a single insertion of dimension-6 operators. In the following we analyse
some of them.

Higgs Sector

If we allow for dimension-6 operators, the Higgs potential, getting a contribution
from H6, becomes:

V (H) = λ

(
H†H − v2

2

)2

− cH
(
H†H

)3
,

where the coupling constant of H6 is understood as cH = CH/Λ2. This potential
leads to a shift of the vacuum expectation value of Higgs field

〈H†H〉 = v2

2

(
1 + 3cH v2

4λ

)
≡ v2

T

2 , (2.32)

where the shift term is proportional to the Higgs parameters, i.e., v2/λ. The kinetic
term gets two corrections

Lkin = (DµH)† (DµH) + c1
(
H†H

)
∂2 (H†H

)
+ c2

(
H†DµH

)∗ (
H†DµH

)
,
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once again, the small letters ci, with i = {1, 2}, include the cut-off of the theory. In
order to correctly normalize it, in unitary gauge we find

H = 1√
2

(
0

(1 + c3)h+ vT

)
,

where at first order the coefficients are

c3 ≡
(
c1 − c2

4

)
v2, vT ≡

(
1 + 3cH v2

8λ

)
v. (2.33)

Expanding the new Higgs Lagrangian, we observe that dimension-6 operators con-
tribute to Higgs mass as

m2
H = 2λv2

T

(
1 − 3cHv2

2λ + 2c3

)
.

Yukawa Coupling

If dimension-6 operators of Higgs Lagrangian have induced a shift in the parameters,
on the contrary, the modification in Yukawa sector appears to be heavier. In par-
ticular, introducing the operator ψ2H3, before the electroweak symmetry breaking
the Lagrangian is

L(6)
Y uk = −

(
H†
j d̄r [Yd]rs qjs + +H̃†

j ūr [Yu]rs qjs + +H†
j ēr [Ye]rs `js + h.c.

)
+
(
H†H

) (
H†
j d̄r [c∗

d]sr qjs + H̃†
j d̄r [c∗

u]sr qjs +H†
j ēr [c∗

e]sr `js + h.c.
)
,

where the cut-off is included in the interaction matrices c. This equation will bring
a contribution to the mass of fermions, indeed after the electroweak symmetry
breaking the mass of a generic fermion ψ will be

[Mψ]rs = vT√
2

(
[Yψ]rs − v2

2
[
c∗
ψ

]
sr

)
,

with ψ = {u, d, e}. If we try to write the interaction term between Higgs and
fermions in a Yukawa-like form, i.e., L = −HūYq, we get

[Yψ]rs = 1 + c3

vT
[Mψ]rs − v2

√
2
[
c∗
ψ

]
sr
,

which is no longer proportional to the fermion mass alone. Moreover, given that
the mass and Yukawa matrices are not simultaneously diagonalizable, the coupling
between the Higgs boson and the fermion ψ is no more diagonal in flavor.

Fermi Constant

The introduction of dimension-6 operators in the SM Lagrangian leads, as we saw,
to the shift of Higgs parameters, in particular of its vev. Then, also Fermi constant,
GF , will be affected by the presence of higher-order operators since it is inversely
proportional to the square of vev, moreover the new Fermi constant is not simply
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obtained by replacing v → vT , indeed at order 1/Λ2, the new constant, renamed
GF , is

4GF√
2

= 2
v2
T

−
(
cllµeµe + clleµµe

)
+ 2

(
cHlee + cHlµµ

)
,

where the coefficients cll comes from the four-lepton interaction of dimension-6
operators, while cHl from the exchange of W bosons. Note that they include the
theory cut-off.

Gauge Bosons

Some dimension-six operators impact on interactions of gauge bosons, both among
themselves and with the other particles of SM. The SMEFT theory allows for the
following operators

Lgauge6 = cGH
†HGaµνG

aµν + cWH
†HW i

µνW
i µν + cBH

†HBµνB
µν

+ cWBH
†τ iHW i

µνB
µν + c3Gf

abcGa νµ Gb ρν Gc µρ + c3W ε
ijkW i ν

µ W j ρ
ν W k µ

ρ .

After the electroweak symmetry breaking the operators X2H2 contribute to the
kinetic terms of gauge fields as

Lgauge = − 1
2W

+
µνW

−µν − 1
4W

3
µνW

3µν − 1
4BµνB

µν − 1
4G

a
µνG

aµν

+ v2
T

2 cWW
i
µνW

i µν + v2
T

2 cBBµνB
µν − v2

T

2 cWBW
3
µνB

µν ,

(2.34)

where the gauge fields are not canonically normalised. In addition, dimension-6
operators lead to a mixing kinetic term between W 3 and B. As if that were not
enough, the mass term of gauge bosons acquires new contributions

Lmass = 1
4g

2v2
TW

+
µ W

−µ + 1
8v

2
T (gW 3

µ − g′Bµ)2 + 1
16v

4
T c2(gW 3

µ − gBµ)2.

A redefinition of gauge fields is necessary to restore the diagonal and normalised
form of the kinetic terms

Gaµ = Gaµ(1 + cG v
2
T ), W i

µ = Wi
µ(1 + cW v2

T ), Bµ = Bµ(1 + cB v
2
T ).

Defining new coupling constants

ḡs = gs(1 + cG v
2
T ), ḡ = g(1 + cW v2

T ), ḡ′ = g′(1 + cB v
2
T ),

the product g3G
i
µ = ḡ3Giµ is unchanged. Nevertheless, we still have to identify the

mass eigenstates for W 3
µ and Bµ. Taking into account just the EW part of equation

(2.34), we have:

Lgauge = − 1
2W

+
µνW−µν − 1

4W
3
µνW3µν − 1

4BµνB
µν − v2

T

2 cWB W3
µνBµν

+ 1
4 ḡ

2v2
TW+

µW−µ + 1
8v

2
T (ḡW3

µ − ḡ′Bµ)2 + 1
16v

4
T c2 (ḡW3

µ − ḡ′Bµ)2,
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and the mass eigenstates are(
W3
µ

Bµ

)
=
(

1 −v2
T cWB

2
−v2

T cWB

2 1

)(
cos θ̄ sin θ̄

− sin θ̄ cos θ̄

)(
Zµ
Aµ

)
,

where

tan θ̄ = ḡ′

ḡ
+ v2

T

2 cWB

(
1 − ḡ′2

ḡ2

)
,

sin θ̄ = ḡ′√
ḡ′2 + ḡ2

(
1 + v2

T cWB

2
ḡ (ḡ2 − ḡ′2)
ḡ′ (ḡ2 + ḡ′2)

)
,

cos θ̄ = ḡ′√
ḡ′2 + ḡ2

(
1 − v2

T cWB

2
ḡ′ (ḡ2 − ḡ′2)
ḡ (ḡ2 + ḡ′2)

)
.

As expected, the photon is still massless since U(1)EM is unbroken; on the contrary,
the masses of heavy bosons of weak interactions become

M2
W = ḡ2v2

T

4 ,

M2
Z = v2

T

4 (ḡ′2 + ḡ2) + v2
T

8 c2(ḡ′2 + ḡ2) + v4
T

2 ḡ′ḡ cWB .

The covariant derivative is

Dµ = ∂µ + i
ḡ√
2
(
W+
µ T

+ + W−
µ T

−)+ iḡZ
(
T3 − s̄2Q

)
Zµ + iēQAµ,

where as usual Q = T3 + Y . The new coupling constants are

ē = ḡ′ḡ√
ḡ2 + ḡ′2

(
1 − ḡ′ḡ

ḡ2 + ḡ′2 v
2
T cWB

)
,

ḡZ = ē(
sin θ̄ cos θ̄

) (1 + ḡ2 + ḡ′2

2ḡ′ḡ
v2
T cWB

)
,

s̄2 = sin2 θ̄.

Finally, the parameter ρ given by the ratio between the charged and neutral current,
also undergoes a modification

√
ρ ≡ ḡ mZ

ḡZ mW
=
√

1 + v2
T

2 c2 ,

where the parameters ḡ, ḡ′, vT , cWB and c2 can be experimentally fixed through
the masses and the couplings of W and Z bosons. The modifications of the coupling
between gauge bosons and fermions have been studied in [24, 18].

44



CHAPTER

3
Light-by-light
Scattering

In this chapter we will see a concrete application of effective field theories in order
to study the light-by-light scattering. We will first derive the low-energy effect-
ive Lagrangian that, for interacting Dirac fields, is nothing but the famous Euler-
Heisenberg Lagrangian, then we will compute the light-by-light scattering at next
to leading order in the underlying full theory. The computation will be repeated for
the physical QED, to which we will refer as spinor QED within this chapter, and
for the hypothetical scalar QED and vector QED where the interacting particles
are charged scalars and charged vectors, respectively. Finally, we will match the
coefficients of the effective field theory with those of these three different QEDs and
we will compute the cross section of the process.

3.1 The Euler-Heisenber Lagrangian
Classical electrodynamics described by Maxwell equations is a linear theory that
does not allow for interactions between two electromagnetic fields in vacuum. Nev-
ertheless, if QED at tree level agrees with this picture, higher-order corrections
allow the scattering of light-by-light itself. In other words, QED extends classical
theory by including also non-linear corrections.

At low energy, the non-linear corrections are described by the Euler-Heisenberg
(EH) Lagrangian. The original suggestion for EH theory was given by O. Halpern
who firstly realized that photons can be scattered from other photons. Euler and
Heisenberg described the process by assuming that degrees of freedom heavier than
a certain cut-off Λ can be encoded in new interactions of those fields that survive
at energy scales below the cut-off. Since the low-mass scale is represented by the
electron mass me, the only surviving field is the photon field.

The Euler-Heisenberg Lagrangian can be derived from QED Lagrangian by in-
tegrating out the electron field. Consequently, new interactions among photons
arise, that are suppressed by the fourth power of the electron mass, accordingly to
the full theory – QED with only electrons – that includes these interactions at next
to leading order computations. Since EH Lagrangian must be Lorentz and gauge
invariant, every operator directly proportional to the vector potential, Aµ(x), must
be excluded in favor of the electromagnetic field strength, as discussed in Appendix
A.4.2. Moreover, restricting the analysis up to operators of dimension eight, one
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can only have:
F2, G2, FG, (3.1)

with

F = 1
4F

µνFµν = 1
2(B2 − E2), and G = 1

4 F̃
µνFµν = B · E, (3.2)

where F̃µν = 1
2ε
µνρσFρσ is the dual tensor field strength, while E and B are the

electric and magnetic fields. Note that the last term in equation (3.1) is forbidden
since it breaks parity invariance.

The EH Lagrangian is composed by the typical kinetic term for photon field
plus two operators that describe the interactions between photons

LEH = −F + 8
45

(
α2

m4
e

)
F2 + 14

45

(
α2

m4
e

)
G2. (3.3)

This Lagrangian leads to a direct computation of β-function for QED, Schwinger
pair creation, scalar and pseudoscalar decay rates and chiral anomaly, in addition
to a straight calculation of light-by-light scattering cross section [25]:

dσ

dΩ = 139α2

(180π)2
ω6

m8
e

(
3 + cos2 θ

)2
, (3.4)

with ω =
√
s/2 where s is the square of the energy in the center of mass, and

ω/me << 1, while θ is the scattering angle between incoming and outgoing direc-
tions in the center of mass rest frame.

3.2 The Effective Lagrangian
The Euler-Heisenberg Lagrangian in equation (3.3) serves as basic template to build
the general effective field theory for interacting photons at low energy. Taking into
account just coupling terms, the effective Lagrangian is

Leff = L1 + L2 ≡ g1 (FµνFµν)2 + g2
(
F̃µνF

µν
)2
, (3.5)

that can be visualized by the Feynman diagrams depicted in figure 3.1.

g1g1 g2

Figure 3.1: Feynman diagrams for the four-photon interactions.

Our purpose is to compute the light-by-light scattering amplitude, both in the
effective field theory and in QED in order to identify the values of the two coefficients
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g1 and g2. We remark that the process occurs at tree level in the EFT and at one-
loop in the underlying full theory. The matching procedure will be performed not
only for spinor QED, but also for scalar QED and vector QED.

The S-matrix element of four incoming photons is:

〈f |S|i〉 = i

∫
d4x 〈0|

( 4∏
i=1

api,λi

)
Leff (x)|0〉

= iM (2π)4δ(4)(p1 + p2 + p3 + p4)
4∏
i=1

1
(2π)3(2ωpi)1/2 ,

(3.6)

where M is the invariant amplitude that can be written as a sum of two pieces

M = M1 + M2.

The addends Mi, with i = {1, 2}, are the invariant amplitudes generated by equa-
tion (3.6) with L1 and L2 separately taken. Starting with the first interaction term,
we rewrite it to make explicit the dependence on the derivatives of vector potential

L1 = 4g1 (∂µAν∂µAν∂ρAσ∂ρAσ

− 2∂µAν∂µAν∂ρAσ∂σAρ

+ ∂µAν∂
νAµ∂ρAσ∂

σAρ).

The quantized vector potential is:

Aµ(x) =
∫

d3p

(2π)3
1√
2ωp

2∑
λ=1

(
ελµ(p) ap,λ e−ipx + ελ ∗

µ (p) a†
p,λ e

ipx
)
,

thus its first derivative reads

∂νAµ(x) =
∫

d3p

(2π)3
(−ipν)√

2ωp

2∑
λ=1

(
ελµ(p) ap,λ e−ipx − ελ ∗

µ (p) a†
p,λ e

ipx
)
.

From equation (3.6), it is clear that M1 is given by the sum over permutations π
of four element, since the distinct Wick contractions of the annihilation operators
with the vector potentials are 4! = 24. The invariant amplitude is:

M1 = 4g1
∑
π

[
(pπ1 · pπ2)(επ1 · επ2)(pπ3 · pπ4)(επ3 · επ4)

− 2(pπ1 · pπ2)(επ1 · επ2)(pπ3 · επ4)(pπ4 · επ3)

+ (pπ1 · επ2)(pπ2 · επ1)(pπ3 · επ4)(pπ4 · επ3)
]
.

(3.7)

Factorizing out the vector polarizations, the amplitude reads

M1 = Mµνρσ
1 (p1, p2, p3, p4) ε∗1µε∗2 νε∗3 ρε∗4σ

≡

(∑
π

Γµπ1µπ2µπ3µπ4
1 (pπ1 , pπ2 , pπ3 , pπ4)

)∣∣∣∣∣
µi=µ,ν,ρ,σ

ε∗1µε
∗
2 νε

∗
3 ρε

∗
4σ,
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where indices inside the brackets have been renamed as µ = µ1, ν = µ2, ρ = µ3 and
σ = µ4, to write a compact formula. The polarization tensor Mµνρσ

1 as well as the
tensor Γµπ1µπ2µπ3µπ4

1 , is a function of photon momenta and Minkowski metric only.
Each element of the sum in previous equation is:

Γµπ1µπ2µπ3µπ4
1 (pπ1 , pπ2 pπ3 , pπ4) = 4g1

[
(pπ1 · pπ2)(pπ3 · pπ4)gµπ1µπ2 gµπ3µπ4

− 2(pπ1 · pπ2)(pπ3)µπ4 (pπ4)µπ3 gµπ1µπ2

+ (pπ1)µπ2 (pπ2)µπ1 (pπ3)µπ4 (pπ4)µπ3
]
.

For the polarization tensor we get:
Mµνρσ

1 = g1
[
(p1 · p2)(p3 · p4)gµνgρσ + (p1 · p3)(p2 · p4)gµρgνσ

+ (p1 · p4)(p2 · p3)gµσgνρ − 2(p1 · p2)(p3)σ(p4)ρgµν

− 2(p1 · p3)(p2)σ(p4)νgµρ − 2(p1 · p4)(p2)ρ(p3)νgµσ

+ (p1)ν(p2)µ(p3)σ(p4)ρ + (p1)ρ(p2)σ(p3)µ(p4)ν

+ (p1)σ(p2)ρ(p3)ν(p4)µ
]
.

(3.8)

Following the same procedure for L2, we obtain the polarization tensor Mµνρσ
2 ,

however it expression is quite long since each term Γµ1µ2µ3µ4
2 is

Γµπ1µπ2µπ3µπ4
2 (pπ1 , pπ2 , pπ3 , pπ4) = −8g2

[
(pπ1 · pπ2)(pπ3 · pπ4)gµπ1µπ2 gµπ3µπ4

− (pπ1 · pπ2)(pπ3 · pπ4)gµπ1µπ4 gµπ2µπ3

− 2(pπ1 · pπ2)(pπ3)µπ4 (pπ4)µπ3 gµπ1µπ2

+ (pπ1 · pπ2)(pπ3)µπ4 (pπ4)µπ1 gµπ2µπ3

+ (pπ1 · pπ2)(pπ3)µπ2 (pπ4)µπ3 gµπ1µπ4

− (pπ1 · pπ2)(pπ3)µπ2 (pπ4)µπ1 gµπ3µπ4

+ (pπ1)µπ2 (pπ2 · pπ3)(pπ4)µπ1 gµπ3µπ4

− (pπ1)µπ2 (pπ2 · pπ3)(pπ4)µπ3 gµπ1µπ4

+ (pπ1)µπ2 (pπ2)µπ3 (pπ3 · pπ4)gµπ1µπ4

+ (pπ1)µπ2 (pπ2)µπ1 (pπ3)µπ4 (pπ4)µπ3

− (pπ1)µπ2 (pπ2)µπ3 (pπ3)µπ4 (pπ4)µπ1
]
.

The complete expression for Mµνρσ
2 is given in equation (A.19). One can prove that

the polarization tensor Mµνρσ
1 and Mµνρσ

2 satisfy the transversality condition since
the theory is gauge invariant, see Appendix A.5.

Energy conservation, that is expressed by p1 + p2 + p3 + p4 = 0 such that all
the momenta are incoming, enables us to remove the dependence on p4 in the total
amplitude:

Mµνρσ(p1, p2, p3) = Mµνρσ
1 (p1, p2, p3) + Mµνρσ

2 (p1, p2, p3).
Renaming the scalar product in analogy with Mandelstam variables, but taking into
account our convention on incoming momenta:

s = (p1 + p2)2 = 2p1 · p2

t = (p1 + p3)2 = 2p1 · p3

u = (p1 + p4)2 = (p2 + p3)2 = 2p2 · p3

s+ t+ u = 2p1 · p2 + 2p1 · p3 + 2p1 · p4 = −2(p1)2 = 0.

(3.9)
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In view of that, the total polarization tensor can be considerably simplified and its
complete expression is written in Appendix A.5.

The comparison between the EFT and each one of the QED models takes place
at the level of amplitude, therefore their polarization tensors will be compared, in
other words we must solve the equation:

Mµνρσ
eff (p1, p2, p3) − Mµνρσ

QED(p1, p2, p3) = 0 (3.10)

where Meff is the polarization tensor of the EFT just calculated.

3.2.1 Cross-Section
Once the amplitude has been computed, we can go further by calculating the dif-
ferential cross-section. For an elastic binary process, in the center of mass frame we
have:

dσ

dΩ = |M|2

64π2s
, (3.11)

where s is the square of the energy in the center of mass. Since an experimental
setup does not always permit to select polarized light in the initial state, the squared
amplitude in the previous formula is averaged on the photon polarizations, namely:

|M|2 = 1
4

2∑
λ=1

MµνρσMαβγδε∗1µε
∗
2 νε

∗
3 ρε

∗
4σε1αε2 βε3 γε4 δ = 1

4M
µνρσMµνρσ,

where the sum over photon polarizations is
∑2
λ=1 ε

µ
λε

∗ ν
λ = −gµν + Iµν , with Iµν

that is a gauge-dependent part that contracted with a transverse tensor gives a null
contribution. The averaged square amplitude is:

|M|2 = 64
(
3g2

1 − 2g1g2 + 3g2
2
) (
s2 + t2 + st

)2
.

In the center of mass frame, the dynamics of the system reads

p′
1 = (E, 0, 0, ẑE),
p′

2 = (E, 0, 0,−ẑE),
p′

3 = (E, 0, ŷE sin θ, ẑE cos θ),
p′

4 = (E, 0,−ŷE sin θ,−ẑE cos θ),

(3.12)

where the convention on energy conservation is p1 + p2 = p3 + p4, therefore on
one hand, p′

1 and p′
2 do match with momenta p1 and p2 that appear along the

computation, while on the other hand, the momenta p′
3 and p′

4 are of opposite sign
respect to p3 and p4. The Mandelstam variables are:

s = (p1 + p2)2 = (p′
1 + p′

2)2 = 4E2,

t = (p1 + p3)2 = (p′
1 − p′

3)2 = s(cos θ − 1)
2 ,

(3.13)

where E =
√
s/2 is the photon energy. The differential cross-section in equation

(3.11), becomes:

dσ

dΩ = s3(3g2
1 − 2g1g2 + 3g2

2)(3 + cos2 θ)2

16π2 . (3.14)
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Figure 3.2: The lowest-order contribution to light-by-light scattering in spinor QED.

Finally, integrating over the solid angle we get the total cross-section, however, a
factor 1/2! must be included to account for indistinguishable particles in final state:

σ = 1
2!

∫
dσ

dΩ dΩ = 7s3(3g3
1 − 2g1g2 + 3g2

2)
5π . (3.15)

3.3 Spinor QED
The Lagrangian for spinor QED, whose derivation has been discussed in the first
chapter, accounts for an interaction term between the electron and photon fields

Lint(x) = −eψ̄(x) /A(x)ψ(x). (3.16)

In QED, the lowest-order contribution to light-by-light-scattering is the box diagram
represented in figure 3.2, where the electron is the only particle running in the loop
since the theory is at low energy. The S-matrix is

〈f |S|i〉 = 1
4!

∫
d4x1d

4x2d
4x3d

4x4

〈0|

( 4∏
i=1

api, λi

)
T [Lint(x1)Lint(x2)Lint(x3)Lint(x4)]|0〉 ,

(3.17)

thus, the term inside Dirac brackets can be written as

a1 a2 a3 a4 T [(ψ̄1 /A1ψ1)(ψ̄2 /A2ψ2)(ψ̄3 /A3ψ3)(ψ̄4 /A4ψ4)],

where ai ≡ api, λi and Ψi ≡ Ψ(xi) with Ψ = {ψ̄, ψ, /A}. This term allows for 4!
different Wick contractions of annihilation operator with photon field, since each
ai can be contracted with any /Ai. Moreover, there are still 4! contractions for
fermionic operators, however, only 6 of them account for close loops. In the set
of these 144 diagrams there is a high redundancy, indeed one can prove that there
are only 6 topologically distinct diagrams1, thus each diagram is repeated 24 times.
This factor cancels the 1/4! of Dyson expansion.

Factorizing out the polarization vectors, and using energy conservation to remove
an external momentum, we can parameterise the 6 distinct diagrams as a sum over

1When a loop is composed of three-point interaction terms and n external and indistinguish-
able particles, the problem of counting distinct diagrams is equivalent to identifying the different
arrangements for n people sitting on a round table.
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the combined permutations of indices and momenta, namely

M1/2 = Mµνρσ
1/2 (p1, p2, p3, p4)ε∗1µε∗2 νε∗3 ρε∗4σ

= 24
(∑

π

Γµπ1µπ2µπ3σ(pπ1 , pπ2 , pπ3)
)∣∣∣∣∣

µi=µ,ν,ρ

ε∗1µε
∗
2 νε

∗
3 ρε

∗
4σ,

(3.18)

where, as expected, the are 3!=6 permutations.

3.3.1 Amplitude Evaluation
Choosing the first configuration π = 1, 2, 3, with µi = {µ, ν, ρ} for i = {1, 2, 3},
we can compute the box diagram:

iΓµνρσ(p1, p2, p3) = −e4µD

×
∫

dDl

(2π)D
tr[(/q0 +m)γµ(/q1 +m)γν(/q2 +m)γρ(/q3 +m)γσ]∏3

i=0 (q2
i −m2)

,
(3.19)

where the momenta of virtual electrons are

q0 = l

q1 = l + p1

q2 = l + p1 + p2

q3 = l + p1 + p2 + p3.

The box diagram in equation (3.19) is logarithmically divergent; however, the over-
all amplitude is finite since each of the six permutations contributes with a UV-
divergent term that added to the others gives zero. The computation of the diagram
has been performed in Mathematica powered by the package FeynCalc, employing
the standard technique of Feynman variables with the aim of simplify the denom-
inator

1∏3
i=0 (q2

i −m2)
= 6

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

1
(l2 −m2 [1 + λ(s, t)])4 .

The shit l → l − p1(x + y + z) − p2(y + z) − p3z occurred to symmetrize the
denominator. The parameter λ depends on Feynman variables and scalar products
of the external momenta, with the latter rewritten as a function of Mandelstam
variables, according to equation (3.9). Specifically,

λ(s, t) = s ((x+ y)(y + z) − y) + txz

m2

Performing the same shift at numerator, we get:

tr[. . .] = tr[(/l − /Q0 +m)γµ(/l − /Q1 +m)γν(/l − /Q2 +m)γρ(/l − /Q3 +m)γσ],

where Qi, with i = {0, 1, 2, 3}, are linear combinations of the external momenta.
At this stage, the structure of Qi is not relevant because, in each term of the trace,
we have to deal with the number of Dirac matrices on one hand, and the power of
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the loop moment on the other. Since integration is made over the whole momentum
space, odd powers of lµ are killed by symmetry. Moreover, trace technology leaves
alive only terms with an even number of gamma matrices

tr[. . .] =tr
[
γαγµγβγνγγγργδγσ

](
lα lβ lγ lδ +Q0αQ1 β Q2 γ Q3 δ

+ lβ lγ Q0αQ3 δ + lβ lδ Q0αQ2 γ + lγ lδ Q0αQ1 β

+ lα lβ Q2 γ Q3 δ + lα lγ Q1 β Q3 δ + lα lδ Q1 β Q2 γ

)
+ tr

[
γαγµγβγνγργσ

]
m2(lα lβ +Q0αQ1 β

)
+ tr

[
γαγµγνγγγργσ

]
m2(lα lγ +Q0αQ2 γ

)
+ tr

[
γαγµγνγργδγσ

]
m2(lα lδ +Q0αQ3 δ

)
+ tr

[
γµγβγνγγγργσ

]
m2(lβ lγ +Q1 β Q2 γ

)
+ tr

[
γµγβγνγργδγσ

]
m2(lβ lδ +Q1 β Q3 δ

)
+ tr

[
γµγνγγγργδγσ

]
m2(lγ lδ +Q2 γ Q3 δ

)
+ tr

[
γµγνγργσ

]
m4.

(3.20)

First of all, Lorentz invarinace is invoked to rewrite scalar products of loop mo-
mentum since the denominator is an even function of momentum l, thus∫

dDl

(2π)D l
µlν →

∫
dDl

(2π)D
l2gµν

D∫
dDl

(2π)D l
µlν lρlσ →

∫
dDl

(2π)D
l2(gµνgρσ + gµρgνσ + gµσgνρ)

D(D + 2)

This simplification reduces the number of Dirac gamma matrices that appear inside
a trace. The evaluation of traces has been made according to the equation A.11.
The resulting equation is very long; it becomes even longer when the momenta
Qi are replaced in favor of pi. Nevertheless, we can contract repeated indices to
display scalar products and introduce Mandelstam variables, as in equation (3.9), to
simplify it. The contracted equation shows several terms proportional to the squared
of external momenta that can be removed since photons are on-shell. Moreover, we
applied the transversality conditions on external photons, that are expressed as:

Γµνρσ(p1, p2, p3) p1µ = 0
Γµνρσ(p1, p2, p3) p2 ν = 0
Γµνρσ(p1, p2, p3) p3 ρ = 0,

that leads to the deletion of those terms proportional to pµ1 , pν2 and pρ3.
At this stage, every term that composes the numerator of the integrand function

can be grouped in three ensembles, so that equation (3.19), can be written as:

iΓµνρσ(p1, p2, p3) = −6e4µD
∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

×
∫

dDl

(2π)D
Γµνρσ4 + Γµνρσ2 + Γµνρσ0

(l2 −m2 [1 + λ(s, t)])4 ,

52



where the subscript of Γµνρσi clarifies the proportionality of terms to the loop mo-
mentum, for instance Γµνρσ4 is composed of terms proportional to the fourth power
of the lµ.

The integration over loop momentum can be performed by the master integration
formula, in equation (2.13), which returns

Γµνρσ4 ∝
∫

dDl

(2π)D
(l2)2

(l2 −m2[1 + λ(s, t)])4 = i(ε− 3)(ε− 2)
3π2−ε25−2ε Γ(ε)

(
(λ+ 1)m2)−ε

Γµνρσ2 ∝
∫

dDl

(2π)D
(l2)1

(l2 −m2[1 + λ(s, t)])4 = − i

48π2m2(λ+ 1)

Γµνρσ0 ∝
∫

dDl

(2π)D
(l2)0

(l2 −m2[1 + λ(s, t)])4 = i

96π2m4(λ+ 1)2 .

Unsurprisingly, the integration over the loop momentum produces, at numerator,
the same tensor structures obtained for the effective field theory, namely:

(g) (g) (g) (p) (p) (p) (p) (p) (p).

While Γµνρσ4 and Γµνρσ0 contain only the first and the third kind of structures
respectively, the tensor Γµνρσ2 is a mix of first and second type. Therefore, we must
separate the (g) (g) terms of Γµνρσ2 . Summing them with Γµνρσ4 , we get:

Γµνρσ(g) (g) ≡ Γµνρσ4 + Γµνρσ2 (g) (g)

Γµνρσ(g) (p) (p) ≡ Γµνρσ2 (g) (p) (p)

Γµνρσ(p) (p) (p) (p) ≡ Γµνρσ0 ,

(3.21)

in this way we can perform a power expansion in the parameter λ, which is per-
formed at second order for Γµνρσ(g) (g), at first order for Γµνρσ(g) (p) (p) and at zero order for
Γµνρσ(p) (p) (p) (p). Then the integration over Feynman variables is straight.

Finally, the other five diagrams must be compute, however we can parametrize
our result as a function of indices, momenta and Mandelstam variable – since they
are merely a way of rewriting the scalar products of the external momenta – to
obtain other amplitudes without further calculations. The complete amplitude of
spinor QED is written in equation (A.24).

Comparing the amplitudes of the effective field theory and spinor QED, we have:

Mµνρσ(g1, g2) − Mµνρσ
1/2 = 0, (3.22)

substituting equation (A.23) and equation (A.24), it leads to the system:

e4(10s+ 7t)+5760π2m4(g1s− g2(2s+ t)) = 0
5760π2m4g2 − 7e4 = 0,

whose solutions are:

g1 = e4

1440π2m4 = α2

90m4

g2 = 7e4

5760π2m4 = 7α2

360m4 ,

(3.23)
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Figure 3.3: The lowest-order contributions to light-by-light scattering in scalar
QED: box, triangle and bubble diagram, respectively.

from which it follows that g2 = 7/4g1. In other words, the effective Lagrangian for
spinor QED at low energy is

L1/2 = g1(FµνFµν)2 + g2(F̃µνFµν)2

= α2

90m4 (FµνFµν)2 + 7α2

360m4 (F̃µνFµν)2

= 8α2

45m4 F
2 + 14α2

45m4 G
2.

which is nothing but the interacting terms of Euler-Heisenberg Lagrangian in equa-
tion (3.3).

We can go further by computing the cross-section of light-by-light scattering in
spinor QED, that follows from (3.14)

dσ

dΩ = 139α4ω6

(180)2π2m8 (cos θ2 + 3)2,

in agreement with equation (3.4). The correspondence between our results and
those in literature provides support for the employed calculation, that will be used
in the following sections to obtain the coefficients for scalar QED and vector QED.

3.4 Scalar QED
The Lagrangian that describes the interaction between a complex scalar field and
photon is

Lint = −ieAµ[φ∗(∂µφ) − (∂µφ∗)φ] + e2AµA
µ|φ|2, (3.24)

which aside to three-point interaction, it allows for four-point interaction vertex:

µ ν

= 2ie2gµν .

Thus, in scalar QED there are three diagrams that contributes to light-by-light
scattering, see figure 3.3. These three diagrams, named box, triangle and bubble
diagrams, are all ultraviolet divergent. In this case, logarithmic divergence is still
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alive when adding up different permutations and only by summing diagrams to-
gether we manage to kill it. The computation has been done following the procedure
explained for spinor QED since no further complications occur.

The comparison with effective field theory leads to the following result:

g1 = 7e4

23040π2m4 = 7α2

1440m4

g2 = e4

23040π2m4 = α2

1440m4 .

(3.25)

The effective Lagrangian for the scalar case is:

L0 = 7α2

90m4 F
2 + α2

90m4 G.

From equation (3.14), the differential cross-section is:

dσ

dΩ = 17α4ω6

64800π2m8 (cos θ2 + 3)2.

3.5 Vector QED
The Lagrangian that describes the interaction between a vector field Vµ(x) and
photon is

Lint = − ie(AµVν
↔
∂µV † ν + VµV

†
ν

↔
∂µAν + V †

µAν
↔
∂µV ν)

− e2(VµV †µAνa
ν − Vµa

µV †
ν A

ν),
(3.26)

with the usual convention that
↔
∂ gives a minus sign when acts on the left. The

Lagrangian for vector QED accounts for both three-point and four-point interac-
tions, thus the allowed Feynman diagrams are the box, the triangle and the bubble
diagrams, likewise in scalar QED. The Lagrangian for vector QED is naturally em-

Figure 3.4: The lowest-order contributions to light-by-light scattering in vector
QED.

bedded in the Standard Model, in fact these interactions can occur between photons
and the charged vector bosons of SU(2) gauge symmetry. Their propagator in Rξ-
gauge is

iΠµν(x) = −i
p2 −m2

(
gµν − pµpν

p2 − ξm2 (1 − ξ)
)
.
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The computation of loop diagrams that involve W±
µ are typically performed in

Feynman-t’Hooft gauge (ξ = 1) since it considerably simplifies calculations. How-
ever, on the purpose of avoiding Faddeev and Popov ghosts, we worked in unitarity
gauge (ξ → ∞), where the vector propagator reads:

iΠµν(x) = −i
p2 −m2

(
gµν − pµpν

m2

)
. (3.27)

The computation of diagrams that appear in figure 3.4 is longer then previous cases;
in particular, the structure of vector propagator, that brings momentum in the
numerator, extremely increases the number of terms that enter in the computation.

The matching procedure leads to:

g1 = 29e4

2560π2m4 = 29α2

160m4

g2 = 27e4

2560π2m4 = 27α2

160m4 .

(3.28)

The effective Lagrangian for the vector case is:

L1 = 29α2

10m4 F
2 + 27α2

10m4 G.

From equation (3.14), the differential cross-section is:

dσ

dΩ = 393α4ω6

800π2m8 (cos θ2 + 3)2.

3.6 Conclusions and Outlook
In this chapter, the effective action for low-energy QED has been obtained. The
interactions among photons are embedded, at dimension eight, in two effective
operators that arise by integrating out the heavy fields. The coefficients of high-
dimensional operators are calculated as induced by loop of the heavy particles. The
computation not only shows a first application of effective field theories, but also
leads to the direct computation of light-by-light scattering in the Standard Model.
In particular, the Electroweak sector of SM encodes vector QED given that SU(2)
gauge bosons, namely W±

µ are electrically charged.
The results of the computation match with literature [26]-[29]. Specifically, in

ref. [26] a similar approach has been used, while in ref. [28] and [29] the heat kernel
method has been involved to the obtain same result. The outcomes of our calcula-
tion are presented in table 3.1, where the coupling constants of effective operator
F2 and G2 are shown, namely gi ≡ ḡi (α/4m2)2 where i = {1, 2}. The coupling
constants increase quite fast with the spin of the particle running in the loop. As-
suming that this behavior is kept for larger spins, then light-by-light scattering
might represent a preferred channel to investigate high-spin particles, like string
excitations or strongly-interacting bound states [30]. Experimentally, light-by-light
scattering is extremely difficult to detect, although it has recently been discovered
that this reaction is accessible at Large Hadron Collider since a large electromag-
netic field strengths is generated by ultra-relativistic colliding lead ions. In ref. [31]
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QED models ḡ1 ḡ2
scalar 7/90 1/90
spinor 8/45 14/45
vector 29/10 27/10

Table 3.1: Coupling constants of the effective operators F2 and G2.

the experimental outcomes of ATLAS are presented. They shown that evidence
of this scattering are collected in quasi-real photon interactions from 480 µb−1 of
ultra-peripheral Pb+Pb collisions at √

sNN = 5.02 TeV. In particular, the fiducial
cross-section of Pb+ Pb → Pb+ Pb+ γγ process was measured and appears to be
compatible with SM predictions. The phenomenological analysis of this set up is
presented in ref. [34] - [33].

Some extension of effective field theory of EH-type have been proposed, in
ref. [35] a generalization from photon to SU(N) boson is investigated while in ref. [27]
and [36], an axial coupling of gauge field with fermionic matter has been hypothes-
ized. This interaction allows for the parity-breaking term FG in the effective filed
theory. Spinor QED discussed above, appears to be a limit case of such generalized
EFT.
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CHAPTER

4 Dark Matter

In this chapter we will see a concrete application of effective field theory, that will
be employed in the description of dark matter; in particular we will present a model
where a dark matter candidate, either a Majorana or Dirac spinor, couples to the
hypercharge form factor.

The chapter starts with a brief revision of the Λ-CDM model, also known as the
Standard Model of Cosmology, that gravitationally describes dark matter through
the effects of its mass on cosmological objects. Starting from astronomical observa-
tion, it is possible to make some assumptions on the nature of dark matter in order
to build an effective field theory, that must be tested on experimental outcomes
to verify its predictive power. In fact, not only the model must reproduce the es-
timated relic density abundance of dark matter, but it must also be in agreement
with the latest data obtained from direct and indirect detection, as well as collider
search, of dark matter.

The mainly reference for this chapter is the article in ref. [1], that was co-
authored by the writer of this thesis, that performed, in particular, the analysis and
computations given in section 4.4 and 4.5.

4.1 The Λ-CDM model
In the past forty years our understanding of the Universe has considerably increased
thanks to the research in Cosmology and Astrophysics. In particular, several ob-
servational data, like rotational curves of galaxies, galaxy merging and accelerated
expansion, to name a few, provide indirect support for dark nature of the Universe:
95% of its content relies to dark sector, namely dark energy (DE) and dark matter
(DM), leaving a measly 5% to baryonic (or ordinary) matter, that is described by
the Standard Model of particle physics, presented in chapter 1.

Although many attempts have been made and plenty of speculations have been
put forward, a satisfying explanation for dark sector is still missing. Nevertheless,
cosmologists have been able to arrange our knowledge on the Universe in a single
framework, which has been named the Standard Model of Cosmology or Λ-CDM
model (where CDM stands for Cold Dark Matter) [48]-[43]. The robustness of the
model has been repeatedly questioned since it seems to be constructed with ad-
hoc assumptions that were invoked in response to observations that falsified the
model as it existed at the time [37]. Furthermore, if on one side the particle nature
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of dark matter finds a large consensus between cosmologists that support Λ-CDM
model [38], on the other side the functional nature of dark energy is still fuzzy and
uncertain.

The fundamental hypothesis of Λ-CDM are:

• the cosmological principle, namely homogeneity and isotropy of the Universe;

• the validity of General Relativity (GR);

• the hot Big Bang model history and inflation at the very early stages;

• the dark sector: DE is described by the cosmological constant in Einstein field
equations and the majority part of DM is non-relativistic (cold).

The hot Big Bang model history agrees with the observed abundance of light ele-
ments, expecting at the same time a relic black body radiation permeating the
Universe, that corresponds to the Cosmic Microwave Background (CMB), accident-
ally discovered by A. Penzias and R. Wilson in 1965. Inflation is a viable solution
for flatness of space (at cosmological scales) and to explain the lack of magnetic
monopole and it also accounts for the horizon problem1 explaining the correlation
of apparently causally-disconnected regions in CMB.

In General Relativity the dynamics of the space-time is described by the metric
tensor g̃µν2, whose equations of motion follow from the variation of the Einstein-
Hilbert action:

SEH =
∫
d4x

√
−g̃

[
R

16πG + Lm
]
, (4.1)

where g̃ is the determinant of the curved metric, R is named Ricci scalar, G is the
gravitational Newton constant and Lm is the Lagrangian for the matter content of
the Universe. The Euler-Lagrange equations of the metric are:

Rµν − 1
2 g̃µνR = 8πGTµν , (4.2)

which are known as Einstein field equations, where Tµν is the total-energy mo-
mentum tensor. The tensor on the left-hand side is usually renamed Einsten tensor:

Gµν ≡ Rµν − 1
2 g̃µνR,

and it describes the geometry of space-time. Einsten tensor Gµν fulfills Bianchi
identities, so that ∇νG

µν = 0, where ∇ν is the covariant derivative, that acts on a
tensor Aσν as ∇µA

ν
ρ = ∂µA

ν
ρ − ΓσρµAνσ + ΓνµσAσρ , where Γρµν is the Christoffel symbol:

Γρµν = 1
2g

ρσ (∂µgνσ + ∂νgµσ − ∂σgµν) .

Bianchi identities lead to the conservation of the total energy-momentum tensor:

∇νT
µν = 0.

1The justification for homogeneity and isotropy of the Universe, according to the cosmological
principle, is not fully understood.

2In GR, the metric tensor is typically denoted by gµν while ηµν stands for the flat metric of
Minkowski space-time. Since in this thesis, we adopted particle physics convention, naming the
flat metric gµν , the curved metric is denoted with g̃µν .
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The solution of Einstein equations for an homogeneous, isotropic and adiabatically
expanding universe is identified by Friedmann-Lemaître-Robertson-Walker (FLRW)
metric:

ds2 = dt2 − a(t)2
(

dr2

1 − kr2 + r2dΩ2
)
,

where a(t) is the scale factor and k = {1, 0, 1} is a constant whose values represent
a hyperbolic, a flat and a spherical spaces, respectively. Given the symmetries of
FLRW metric3, the total energy-momentum tensor acquires a diagonal structure:

Tµν =


ρ 0 0 0
0 −P 0 0
0 0 −P 0
0 0 0 −P

 ,

where P is the pressure and ρ the energy density. Therefore, the 10 initially equa-
tions, embedded in 4.2, are reduced to Friedmann equations:

H2 = 1
a2

(
da

dt

)2
= 8πG

3 ρ− k

a2

dH

dt
= d

dt

(
1
a

da

dt

)
= −4πG (ρ+ P ) + k

a2 ,

(4.3)

where H is the Hubble parameter. Combining the two equations in order to get on
the left-hand side the second derivative of the scale parameter a(t), we obtain:

d2a

dt2
= −4πGa

3 (ρ+ 3P ) ,

where d2a/dt2 is nothing but an acceleration, namely the Universe acceleration
expansion. According to previous equation, when ρ + 3P < 0 the expansion is de-
celerated and it leads to w > −1/3, called strong energy condition, where w ≡ P/ρ.
In ordinary matter, the pressure is always positive, thus the observed acceleration
of the Universe must be explained with an exotic component, i.e., the cosmolo-
gical constant Λ, whose state equation is w = −1, thereby motivating accelerated
expansion. Including the cosmological constant, Einstein field equations become:

Gµν = 8πGTµν − g̃µνΛ, (4.4)

note that these equations represent the most general modification of Einstein field
equations, which are still in agreement with the requirement of diagonal structure
of the total energy-momentum tensor, thus preserving also its conservation law, i.e.,
∇νT

µν = 0 [48].
The generalized version of Friedmann equations follows from (4.4):

H2 = 1
a2

(
da

dt

)2
= 8πG

3 ρ− Λ
3 − k

a2

dH

dt
= d

dt

(
1
a

da

dt

)
= −4πG (ρ+ P ) + k

a2 ,

(4.5)

3Isotropy and homogeneity imply that the elements T 0i have to vanish while T ij must be
proportional to the 3-metric g̃ij
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where the second equation is unaffected by the introduction of the cosmological
constant4. The very last set of Friedmann equations can be reworded in the same
form of the first one, namely equations (4.3), by shifting density and pressure by a
constant value that is proportional to the cosmological constant:

ρ → ρ+ Λ
8πG P → P − Λ

8πG,

which explains why the second Friedmann equation remains unchanged while intro-
ducing the cosmological constant. Assuming a flat universe (k = 0), we can solve
the first equation in (4.5), to get the critical density value that leads to a flat space

ρc = 3
8πGH

2. (4.6)

Substituting in the original first equation of Friedmann, in (4.3), where k is still a
free parameter, we obtain:

H2
(

1 − ρ

ρc

)
= − k

a2 .

The definition of density parameters

Ωi = ρi
ρc

Ωcurv = − k

a2H2 , (4.7)

where i = {matter, radiation, Λ}, allows to separate out the contribution coming
from each different substance that permeates the Universe, then equation (4.6)
becomes ∑

i

Ωi + Ωcurv = 1.

This equation imposes a condition on the geometrical structure of the universe
based on its content: if the density of the universe is lower than the critical value,
the curvature of its space-time is negative resulting in a hyperbolic geometry; on
the contrary, for a density higher than the critical value the curvature is positive
and its geometry is spherical, while a flat space-time requires a density equal to the
critical value. At the present time, the best value for these parameters are [39]

Ωm = 0.3111 ± 0.0056
Ωr < 5 · 10−5

ΩΛ = 0.6889 ± 0.0056
|Ωcurv| = 0.0007 ± 0.0019,

(4.8)

introducing another puzzling question: why does the content of our Universe exactly
coincide with the critical value? Our Universe, at large scale, is therefore flat and
its history and evolution can be described by the standard Hot Big Bang theory,
considering also a period of inflationary expansion [39].

4This is not always true, indeed there are several ways to write Friedmann equations, which
are not all unchanged by the introduction of Λ.
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Density parameters are not fixed in time, their evolution trend can be obtained
starting from the total energy-momentum tensor, that in terms of pressure and
density is:

dρ

dt
= −3H(ρ+ P ). (4.9)

Assuming that each component of the Universe is well-described by this equation,
we can integrate it to get the function that describes the evolution of density in
time

ρi(t) = ρi 0

(
a(t)
a0

)−3(1+wi)
,

where wi = {0, 1/3, −1} for non-relativistic matter, radiation and a cosmological
constant, respectively. Thus, each component of the Universe evolves with a simple
scaling law, that for matter is ρm ∝ a−3, for radiation is ρr ∝ a−4 and for the
Λ is constant ρΛ = 1. Hence, the weight of each component changes in time,
resulting in a sequence of stages where the Universe was ‘dominated’ by different
components. Since the scale factor increases with time, at the early stages radiation
was predominant, but due to its faster dilution compared to matter, during the
Universe expansion, it was definitively defeated by matter at the equivalence red-
shift, where ρm(teq) = ρr(teq). In the same way, at some point in the past, called
red-shift of matter-cosmological constant, the latter has exceeded the former and
the Universe has started an era of accelerated expansion.

4.2 Indirect Evidences of Dark Matter
In the previous section, we mentioned matter as a single component of the Universe,
however, the value in (4.8) is understood as the sum of two contributions: the
baryon (or ordinary) matter (Ωb) and cold dark matter (Ωc). In particular, the
Planck collaboration obtained [39]:

Ωch2 = 0.1200 ± 0.0012
Ωbh2 = 0.0224 ± 0.0001,

(4.10)

where h is defined from H0 = 100h km s−1 Mpc−1 and named dimensionless Hubble
constant5. Almost 84% of the Universe matter content belongs to dark matter,
whose origin is still unknown, although there are several experimental evidences,
that find a good explanation because of dark matter. In fact, DM was firstly in-
troduced as a viable solution to explain the rotational velocity of hydrogen-cloud
in the external region of galaxies. In the non-relativistic limit, the dynamics of
galaxy is well described by Newton’s gravity and the expected velocity of rotating
objects around galaxy must be proportional to (M/r)1/2, where M is the mass of
the gravitational source that sets in rotational motion the hydrogen-clouds, whose
distance from the galaxy center is r. Thus, once all the observed matter as been
counted in M , the expected behavior of velocity is rapidly decreasing in distance,
v ∝ r−1/2. Nevertheless, data suggest that the speed of hydrogen-clouds is greater
than expected, leading to the hypothesis that some dark mass has not been coun-
ted. The issue of missing matter has been also found in gravitational lensing since

5The current estimation [39] for Hubble constant is H0 = (67.4 ± 0.5)kms1Mpc1.
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light traveling from far away sources might be deflected in space regions where no
lightning object has been observed.

Dark matter also represents a solution for structure formation after the inflation
period, when density fluctuations have been created, while background density was
diluted because of Universe’s expansion. If the perturbation density of a certain re-
gion of space exceeds a critical overdensity relative to the background, that region
starts to collapse, giving rise to a gravitational bound state. In a universe with only
ordinary matter, all the anisotropies would be washed out since matter interacts
with radiation that was dominant in the early stages, as we saw in the previous sec-
tion. On the contrary, the scenario of weakly (or absent) interactions between dark
matter and radiation can explain structure formation since, in this case, dark mat-
ter dominates the gravitational potential, that acts on ordinary matter collapsing
it. In fact, the initial anisotropies of dark matter began to grow through a sequence
of merging, leading to the formation of dark matter halos and thereby to galaxies
formation in their center [40].

The nature of DM is still unknown, astronomical observations suggest that dark
matter permeating the galaxies belongs to the cold type. The adjective cold means
that dark matter moves slowly compared to the speed of light, in other words, it
can be treated as non-relativistic object. Theoretically, there are many proposals
on the particle nature of DM, some candidates are:

• Weakly-interacting massive particles (WIMPs): originally introduced in [41],
WIMPs are not included in the Standard Model and they interact at least
gravitationally with SM sector. Like particles in the SM, WIMPs candidates
are expected to be thermally created in the early stages. Some theories con-
sider also new interactions, weaker than the weak force, that couples WIMPs
with SM. Therefore, WIMPs detection is really challenging and currently no
particles belonging to this class have been discovered.

• Neutrinos: the experiments on neutrino’s oscillations confirmed that the mass
of neutrinos is small but not zero, in contrast with SM that fixes at zero their
mass, thus the cosmic neutrino background has been considered as candid-
ate for DM. However, there are several problems in considering neutrino as
DM candidate. Since neutrinos follow Fermi-Dirac distribution they have a
maximum phase-space density, which implies a maximum space density that
cannot explain the high dark matter density estimated for dwarf irregular
galaxies and dwarf spheroidals galaxies.

• Supersymmetric particles: SM does not accounts for any fundamental rela-
tionship between fermions and bosons. Such a relation has been proposed in
the field of supersymmetry, where fermions and bosons constitute particles
multiplets. The hypothesis is that supersymmetry holds at very high energy,
while at low-energy scale it is broken. The Minimal Supersymmetric Stand-
ard Model (MSSM) has been proposed as a model of broken supersymmetry,
where each fermion of SM has a superpartner that belongs to boson and vice-
versa. The soft supersymmetry breaking allows for masses of the superpartner
different from their SM counterparts. The most general gauge invariant Lag-
rangian, including these fields, contains operators that violate both lepton and
baryon numbers, leading to proton decay at weak scale. Nevertheless, proton
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is a stable particle, thus conservation of R-parity must be imposed. In other
words, superpartners must have negative R-parity and must interact in pairs,
in this way the ensemble of superpartners must, at least, contains one stable
particle that is the dark matter candidate [42].

• Axions-like particles: originally introduced as a feasible solution for the Strong
CP problem, as we will see in the next chapter, ALPs are now back in vogue
as DM candidates.

The only non-particular proposal concerns

• Primordial black holes (PBHs): PBHs are hypothetical black holes that could
have formed in the very early stages of the Universe, in a period when ra-
diation was dominant. The recent detection of gravitational waves from the
collaborations LIGO and VIRGO have given credence to this theory.

We remark that, despite an increasing experimental efforts in searching for dark
matter, none of the above candidates have been discovered, nor other new particles.
Thus, DM remains an open problem of physics both theoretically and experiment-
ally.

4.3 Effective Field Theory Approach
The model building procedure requires some preliminary assumptions in order to
identify the interaction operators that couple dark matter with particles of the SM.
For instance, of particular interest are the interactions of dark matter with photon,
given its status as primary messenger of astrophysical and cosmological probes. UV
models can generate these interactions at tree-level through extremely small coup-
lings, and are known as milli-charged dark matter [65, 66, 67, 68, 184]. If we assume
dark matter to be electrically neutral, the general framework for describing these
interactions is via electromagnetic form factors, which couple dark matter directly
to the electromagnetic field strength tensor [70, 71, 74]. These are theoretically and
experimentally well motivated, and arise in a plethora of models [141, 142, 183]

Heavy mediators that couple SM to dark matter are a popular explanation for
the relative weakness of its interactions. Allowing the use of an effective field theory
approach to assess the scenario in a fairly model independent way [53, 50, 51, 54,
147]. The effective operators give a good description when the energy scale of the
considered processes is well below the masses of the mediating particles, and their
interactions respect the low-energy symmetries of the SM. The appropriate choice of
such symmetries is a crucial aspect for a consistent EFT description, and ultimately
depends on the relevant scales of the calculation at hand. In this chapter we focus on
the EFT for electromagnetic form factors, treating them as local, higher-dimensional
operators mediated by heavy new physics.

First of all, we must choose the correct symmetry for the low-energy EFT.
In fact, to couple the stable gauge singlet of dark matter with photon, there are
two viable solutions: the electromagnetic symmetry group, i.e., U(1)EM , or the
full electroweak symmetry group, namely SU(2)L × U(1)Y . In the first case, this
results in the operators OµνFµν while in the other case in OµνBµν , where Oµν is a
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gauge singlet combination (usually a bilinear) of dark matter fields6. As we saw in
chapter 1, the hypercharge form factor is a linear combinations of electromagnetic
form factors and the corresponding Z boson operator, weighted by appropriate
factors of the sine and cosine of the Weinberg angle. This relation is preserved in
the EFT:

C OµνBµν = CγOµνFµν + CZOµνZµν ,

Cγ = C cos θw
CZ = −C sin θw,

(4.11)

where the factors C denote generic Wilson coefficients. The choice between the two
theories is motivated by the observation that we are able to test these models over
a wide range of energy scales, even higher than the EW scale, thanks to collider
experiments, thus the most appropriate theory is the one with the hypercharge form
factor. Furthermore, the dark matter mass itself is a free parameter and determines
the relevant scale for thermal freeze-out and indirect detection constraints. Nat-
urally, at energies far below the electroweak scale the Z boson degree of freedom
decouples and the two descriptions are identical. At this low-energy scale, relevant
scattering process involving dark matter field might occur, however, the description
with the hypercharge form factor still holds.

In literature, the EFT with electromagnetic form factor for dark matter have
been studied in direct and indirect detection as well as at colliders even far beyond
its validity limit, extending to the TeV range [70, 71, 72, 73, 181, 74, 165, 166, 76,
167, 162, 77, 69, 158, 182, 99, 159]. Nevertheless, it is clear that the appropriate
EFT have to involve the hypercharge form factor since the relevant energies can be
considerably higher than the electroweak scale.

The employment of a wrong theory leads to an ambiguous treatment of some
processes involving dark matter fields, such as the χχ → W+W− channel, which
was treated with a non-univocal approach by different authors:

• by ignoring it, as the author of ref. [69] did, even if γ → W+W− is a vertex
of SM and must appear in annihilation processes;

• by assuming that the theory and its outcomes were correct, as in ref. [99]
where the χχ → W+W− channel was employed to identify collider limits
in the energy region above 80 GeV, where the electromagnetic form factors
predict a large and unphysical growth, which occurs when an EFT is pushed
beyond its validity region.

These treatments are in tension with each other and we argue that the issue must
be resolved by employing the hypercharge form factors. Involving the operator
Bµν , it alters the phenomenology described in [69], since the largest experimentally
observable effects come in the form of resonant features around the Z-boson mass
and additional constraints from Z-boson invisible decay width can be investigated.
The hypercharge form factors also restore the full SM gauge invariance, thus the
behavior of χχ → W+W− channel appears to be smooth even at high energies,
where the Z-mediated diagrams dominates the process, resulting in a total annihil-
ation cross-section. Ultimately, the most stringent limits usually come from either

6The stability of dark matter ensures that, otherwise one can couple the dark matter field to
neutrinos as in ref. [163, 164].
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direct detection or colliders, so modifications of indirect detection limits do not have
extreme consequences. Nevertheless, annihilation plays a central role in the relic
density calculation, and we will see that the relic line of dark matter depends on
the chosen form factor.

4.4 Comparing EFTs: Hypercharge vs Electromag-
netic

The EFT framework relies on the presence of decoupled, new physics at an arbitrary
high-energy scale, identified by Λ, that in the low-energy limit leaves behind the
light particles of SM plus a dark matter field. The latter is assumed to be a fermionic
singlet that interacts with the photon and the Z boson through effective interactions,
that involve the hypercharge gauge boson. Up to dimension-6, the operators of the
EFTs are

LχMajorana = CA

2Λ2 χ̄γ
µγ5χ∂νBµν , (4.12)

if the dark matter field is understood as a Majorana particle denoted by χ, while

LψDirac = 2Lχ→ψ
Majorana + CM

2Λ ψ̄σµνψBµν

+ Cel

2Λ iψ̄σ
µνγ5ψBµν + Ccr

Λ2 ψ̄γ
µψ∂νBµν ,

(4.13)

for a Dirac fermion labeled by ψ 7. The Ci, with i = {A, M, el, cr}, are the dimen-
sionless Wilson coefficients for the dimension-6 anapole moment, the dimension-5
the electric and magnetic dipole moments and the dimension-6 charge radius op-
erator, respectively. In ref. [83, 84], the authors demonstrated that for Majorana
particles the only non-zero hypercharge interaction is the anapole moment. The
relation of Wilson coefficients to usual electromagnetic form factors, denoted by the
‘γ’ superscript, can be found through equation (4.11).

We have implemented this effective field theory into FeynRules [80] and obtained
the model files in the UFO format [81], which will be used in the rest of the analysis 8.

To highlight the types of interactions and scatterings that the dark matter form
factors mediate, figure 4.1 depicts all possible Feynman diagrams for dark matter
annihilation into two states of the SM, via a single insertion of the operators in
equations (4.12) and (4.13), that is to say at leading order in the EFT expansion.

4.4.1 Electromagnetic Form Factors Beyond their Limits
We have introduced the form factor operators and claimed the use of the hyper-
charge variants to safely explore the phenomenology of an EFT that aims to couple
a dark matter candidate with the fields of SM via annihilation channels only. In
this section, we will discuss two explicit examples in which the employment of the
hypercharge or the electromagnetic operators leads to significant phenomenological
consequences; in particular the latter argues for the use of photon-only operators
beyond their validity.

7Dark matter particle is denoted by χ whenever does not need to be specified.
8The model files are publicly available at https://feynrules.irmp.ucl.ac.be/wiki/EWFF4DM.
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Figure 4.1: Dark matter annihilation diagrams. The coupling to photon and Z bo-
son are defined in equations (4.12) and (4.13), considering only one vertex insertion
of the hypercharge EFT.

Annihilation of Dark Matter into W Bosons

The first example to analyzed the differences between the two EFT descriptions
is the χχ → W+W− scattering process. For dark matter masses above mW , the
χχ → W+W− annihilation channel plays an important role in fixing the thermal
relic abundance; besides that, a recent phenomenological study [99] has found the
vector boson fusion (VBF) process to be a sensitive probe of ‘anapole’ dark matter
for the EFT with the electromagnetic form factor, which corresponds to the photon
version of the CA operator in equation (4.12). This process embeds the W+W− →
χχ amplitude, leading to a striking signature of two very forward jets recoiling
against the missing energy, reflecting the production of a pair of neutral, stable
particles.

Specifically, we made the computations for a pair of Majorana matter candidate
that interacts via the anapole moment operator. This form factor describes the
interaction between a gauge current, corresponding to the photon or B fields, with
the current of the dark matter candidate. The middle diagram in figure 4.1 accounts
for the contribution to this scattering process. It is simplest to first compute the
contribution of the photon-only anapole moment, arising from the EFT with the
electromagnetic form factor where the mediator of the interaction is the photon and
its Wilson coefficient is C

γ
A. The amplitude of the process, with incoming momenta

p1, p2 and outgoing momenta p3, p4, is

iMγ
A = −C

γ
A

Λ2
i e

k2 v̄ (p2,mχ)
(
k2γµγ5 − kµ/kγ5)u (p1,mχ)T ρσµ ερ(p3) ε∗

σ(p4), (4.14)

where k = p1 +p2, u, v and ε are the spinors and polarization vectors for χ and W±

respectively, and the tensor structure of the W+W−γ vertex has been abbreviated
by Tµρσ. The high-energy limit (m2

W , m
2
χ � s < Λ2) of the corresponding squared

matrix element (summed and averaged over final and initial polarization states) is

|Mγ
A|2 ∼ 2παEW

9m4
W

(
C
γ
A

Λ2

)2

s4 sin2 θ +O(s3), (4.15)

where s = k2 is the square of the center of mass energy, θ is the scattering angle
and αEW the EW fine structure constant. The result in equation (4.15) implies
a growth in energy of the underlying amplitude of |MA| ∼ s2. Nevertheless, at
the amplitudes level we expect that the contribution coming from a dimension-6
operator is proportional, at most, to s. This is because the only scales present in
the high-energy limit are Λ and s, furthermore 2 → 2 amplitudes are dimensionless,
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meaning that a dimension-6 operator should yield a s/Λ2 behavior. One can realize
that the amplitude in equation (4.15) does not admit a clean high-energy limit,
since it is diverging for mW → 0. Using the partial wave analysis, as in ref. [170],
the lowest partial wave of the helicity amplitude for the longitudinal W boson
configuration violates unitarity at a centre of mass energy

√
s & 4.3

√
mZ

Λ√
C
γ
A

, (4.16)

which implies that unitarity is violated below the cutoff (
√
s . Λ), for

Λ & 1.7 TeV√
C
γ
A

. (4.17)

Altogether, these results suggest that the treatment of this amplitude in the EFT
with electromagnetic form factor is incomplete. This can be traced back to the fact
that the photon-only anapole operator must be strictly used at energy scales where
the W boson field is not a low-energy degree of freedom, i.e., below the EW scale.
Instead, using the hypercharge anapole operator in its place yields a result with the
correct high-energy behavior for a dimension-6 operator. The annihilation process
mediated by Z boson when combined with the former contribution, as described in
equation (4.11), exactly cancels the leading high-energy behavior of equation (4.14),
resulting in the amplitude

iMA = CA

Λ2
i em2

Z cW
k2 (k2 −m2

Z) v̄ (p2,mχ)
(
k2γµγ5 − kµ/kγ5)

u (p1,mχ)T ρσµ ερ(p3) ε∗
σ(p4), (4.18)

whose matrix element squared, in the high-energy limit, reads

|MA|2 ∼ 2παEW
c2
W

(
CA

Λ2

)2
s2 sin2 θ +O(s). (4.19)

Now the partial wave unitarity bounds take a more familiar form

√
s & 18.9 Λ√

CA

, (4.20)

from which we get the violation of unitarity below the cutoff only for the implausibly
non-perturbative values of CA & 360. Therefore, the annihilation process into W
bosons has been partly ‘unitarized’ by using the appropriate EFT description.

In summary, since the relevant energy scale for the scattering process χχ →
W+W− is around or above the EW scale, the appropriate low-energy symmetry
of an EFT approach to new physics is SU(2)L × U(1)Y . The photon-only ana-
pole contribution to this process manifestly does not respect this symmetry, being
only U(1)EM invariant. This violation of gauge invariance leads to two additional
powers of ‘anomalous’ energy growth, contradicting the expectations dictated by
dimensional analysis. The behavior described for the electromagnetic anapole mo-
ment is also common to other form factor operator contributions to this scattering
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and only the corresponding hypercharge form factors are able to restore the gauge
invariance and the high-energy limit. The charge radius operator gives identical
predictions in this channel, with the same consequences for unitarity violation and
resulting bounds on Cγcr as equations (4.16) and (4.17) that are relaxed for Ccr as in
equation (4.20). Similar conclusions can be reached about dimension-5 operators.
In ref. [56], analogous effects due to non-gauge-invariant descriptions of dark mat-
ter contact interactions with quarks and their unitarity-violating effects in mono-W
production have been pointed out.

The implications of the different approaches are discussed in section 4.5 in the
context of collider phenomenology in section 4.6.1 where the thermal relic abundance
will be calculated. In the former, we will see that the above computation leads
to the VBF production cross-section of χχ at the LHC being overestimated by
several orders of magnitude while in the latter, the relic abundance predictions
when mχ & mW are drastically modified.

Dark Matter Coupling to Z Boson

The second aspect of the electromagnetic vs hypercharge form factors is related
to the fact that, as previously mentioned, the hypercharge operators introduce an
additional dark matter coupling, in particular with Z boson. Since these can be
viewed as a ‘completion’ of the photon channel, for all the interesting phenomenolo-
gical aspects of electromagnetic form factors one generically expects a Z boson form
factor coupling of a similar magnitude. This involves a series of other experimental
and theoretical probes of such dark matter models. The first major consequence is
a Z-funnel shape, peaking at mχ ∼ 45 GeV, in the thermal relic density as a func-
tion of mχ, which alters the relationship between direct detection constraints and
preferred regions for producing the correct relic density. The second consequence
is that, for mχ < 45 GeV, the model can now be constrained by invisible Z de-
cays. Indirect LEP constraints on an additional invisible partial width, Γinv, place
a strong bound of Γinv < 2 MeV which can potentially have a significant impact
on the viable parameter space. The partial decay widths of Z boson into the dark
matter field, mediated by hypercharge form factors, are:

ΓZ
A

=
C2

A
s2
Wm

2
Z

(
m2
Z − 4m2

χ

)3/2

24πΛ4

ΓZcr =
C2
crs

2
Wm

2
Z

√
m2
Z − 4m2

ψ

(
m2
Z + 2m2

ψ

)
12πΛ4

ΓZel =
C2
els

2
W

(
m2
Z − 4m2

ψ

)3/2

24πΛ2

ΓZ
M

=
C2

M
s2
W

√
m2
Z − 4m2

ψ

(
m2
Z + 8m2

ψ

)
24πΛ2 .

(4.21)

This constraint from LEP corresponds to Λ/C1/2
A & 315 GeV for the anapole mo-

ment and Λ/C1/2
cr & 370 GeV for charge radius, while for both dimension-5 interac-

tions, we have Λ/C5 & 1 TeV. These are shown together with the other considered
constraints in section 4.7.
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Variable Cut Variable Cut
|η(j)| > 3.0 |∆η| > 7.0
pT (j) > 30.0 GeV EmissT > 175.0 GeV
N(j) ≥ 2 mjj > 500.0 GeV

Table 4.1: Summary of the kinematic selection criteria imposed in vector boson
fusion analysis.

Relying on the consideration of scattering of dark matter with W boson, one
could argued that the phenomenology of dark matter models is properly described
by electromagnetic form factors for mχ < mW ; however, the hypercharge form
factors predict a correlation between the couplings mediated by photons and those
mediated by Z bosons, such that their relic density predictions differ from those
of the electromagnetic form factors and that additional Z-decay constraints can be
applied to the model for all masses below 45 GeV.

In conclusion, we have shown that the hypercharge form factors are the suitable
description for these models of dark matter effective interactions and that, on the
contrary, the electromagnetic form factors do not appear to furnish an adequate
picture in any range of dark matter masses. The former provides a consistent
framework for calculating the dark matter production, annihilation and scattering
processes relevant for theoretically an experimentally testing this scenario.

4.5 Collider Searches of Dark Matter
In this section we revisit the potential for the LHC to probe the parameter space of
dark matter assuming that the EFT with electromagnetic form factors can correctly
describe the physics of the processes.

Reversing the annihilation diagrams of figure 4.1 suggests a number of potential
production modes of dark matter particles, that can be explored at hadron colliders,
including the traditional ‘mono-X’ searches via the qq̄ initial state and the vector
boson fusion mediated by theW+W−-initiated sub-amplitude. Several of these have
been studied, in literature, as a probe of the anapole dark matter coupling, CγA [75,
77, 99]. As argued in section 4.4.1, although the VBF channel has been shown to
be particularly sensitive to the electromagnetic anapole form factor, the consistency
of the W+W− → χχ amplitude requires the reformulation of the electromagnetic
EFT in terms of the hypercharge form factor, particularly for dark matter masses
above mW .

We begin with a reappraisal of the W+W− → χχ channel, quantifying the differ-
ence in sensitivity with respect to the photon and the hypercharge form factors. The
partial ‘unitarization’ of the W+W− → χχ sub amplitude that occurs when going
from photon to hypercharge form factor results in a drastic loss of sensitivity, to the
point that mono-jet searches become the most stringent probes. Subsequently, we
proceed with the interpretation of the latest CMS mono-jet search [134], which rep-
resents the strongest known limit from collider searches on electroweak form factors
for dark matter, as well as projections for the high-luminosity LHC. Our analyses
are performed in Madgraph5_aMC@NLO [58], where parton-level Monte Carlo sim-
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Figure 4.2: Examples of Feynman diagrams for p p → χχ j j mediated by EW form
factors for dark matter. On the left the pure-EW contributions, on the right the
mixed QCD/EW contributions.

ulations are generated for proton-proton collisions at a center of mass energy of√
s = 13 TeV, using the UFO model that we have created. The event samples were

analyzed with MadAnalysis5 [57].

4.5.1 Electromagnetic EFT in Vector Boson Fusion
The dark matter production mode involving vector boson fusion as intermediate
state, exhibits a striking signature of missing energy along with a high invariant
mass pair of forward jets, well-separated in rapidity. It is particularly well-known
for being the most sensitive and direct way to search for invisible Higgs decay modes
and has also been used to constrain dark matter production via the Higgs-portal
interaction through both on- and off-shell probes [60, 62, 61, 63, 59]. More generally,
it offers a unique way to probe the interactions of a light dark sector with the EW
gauge bosons via W+W− → χχ scattering. In section 4.4.1, our study of the
different behavior of this amplitude between the hypercharge and electromagnetic
form factors suggests that the two different effective field theories will lead to very
different phenomenology in this channel. The latter exhibits a rapid energy growth,
beyond the expectations for a dimension-6 operators, that highlights the breakdown
of unitarity due to gauge symmetry violation at energies above the W mass. In this
section, we quantify the impact in the change from electromagnetic to hypercharges
on the prospects of constraints for dark matter in the VBF processes.

The starting point for our analysis is provided by [99], in which authors identi-
fied VBF processes as a very promising constrain to C

γ
A. Their phenomenological

analysis of signal and background distributions identified efficient selection criteria
to determine the phase space region in which the VBF signal dominates. These are
summarized in table 4.1 and correspond to the familiar requirements of two jets
with a large separation in rapidity, |∆η|, as well as a large invariant mass mjj and a
significant missing energy. Our main goal is to quantify the difference between the
limits outlined for the electromagnetic and hypercharge versions of each operator.
Therefore, we replicate a simple version of the kinematical analysis, taking into ac-
count the dominant source of SM background, namely Z + jets with the Z boson
decaying into neutrinos.

At tree-level, the signal process p p → χχjj has two contributions of different
coupling order, shown in figure 4.2. The first one is the pure-EW contribution,
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arising at O(α3
EW ), which includes the ‘true’ VBF topology, and represents the

target of this analysis. The second contribution, arising at O(α2
SαEW ) describes

two QCD emissions from the underlying Drell-Yan-like production of the χχ final
state. We noticed that, before applying VBF selection criteria, the total cross-
section of the latter process is much larger compared to that of the former. Once
the tight selection of table 4.1 are imposed, in the electromagnetic anapole case the
signal rate is dominated by vector boson fusion topology; however, this is no longer
true for the hypercharge case.
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Figure 4.3: The pp → χχjj cross-sections predicted by the hypercharge (solid line)
and electromagnetic versions (dashed line) form factors. The anapole moment in top
left panel, the charge radius in top right, the magnetic dipole moment in bottom left
and the electric dipole moment in bottom right. The mixed QCD/EW contribution
is represented in orange, pure-EW contribution in blue and total process in black.
The rates are obtained for Ci = 1 and Λ = 1 TeV.

The two upper panels of figure 4.3 depict the cross-sections of hypercharge and
electromagnetic dimension-6 operators, for the two separate contributions (the or-
ange line for mixed QCD/EW contribution and the blue line for the pure-EW
contribution) and their sum (the black line) as a function of dark matter mass.
The cross-sections are estimated before VBF cuts were applied, with the only re-
quirement of a di-jet invariant mass of 100 GeV, to avoid on-shell vector bosons
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contributing two jets through their hadronic decays. We find that in the electro-
magnetic case the VBF contribution and the QCD-emission topology have roughly
the same magnitude. On the contrary, in the hypercharge case the mixed QCD/EW
contribution dominates the inclusive cross-section. Furthermore, in all hypercharge
cases, the cross-section exhibits a feature at 45 GeV, coming from the newly-present
on-shell Z → χχ contribution. The plots, especially in the hypercharge case, show
that the mixed QCD/EW contribution, which is approximately three orders of mag-
nitude greater than the pure-EW contribution, can no longer be correctly neglected
in the determination of the sensitivity even though it comes from a different type
of process compared to the one originally being targeted. In the lower panels of fig-
ure 4.3, we show the same plot for cross-sections involving dimension-5 operators.
In this case, the purely VBF contribution is suppressed even for the electromagnetic
form factors. The two contributions have comparable magnitudes only in the limit
of large dark matter masses.

After the stringent VBF selection, we find that for low values of dark matter
masses, the signal rate is almost equally divided between the pure-EW and mixed
QCD/EW contributions. Conversely, as dark matter mass increases, the latter
comes to completely dominate the signal cross-section.

For the purpose of estimate the sensitivity, we performed a cut-and-count ana-
lysis assuming an integrated luminosity of 3000 fb−1 collected at the LHC. We
endorsed the following definition of signal significance

z = s√
s+ b+ (b/4)2

,

where s and b denote the number of signal and background events in the signal
region, respectively. The measure includes a 25% relative systematic uncertainty
on the background expectation, which is motivated in ref. [99] as being typical for
LHC in vector boson fusion searches. The critical value, z = 2 is used to determine
the 95% confidence level (C.L.) exclusion limit of a given operator in the scale Λ
divided by the appropriate power of the Wilson coefficient.

The limits plotted in figure 4.4, quantify the drastic loss in sensitivity for all
the hypercharge form factors. Note that one of the major difference between our
analysis and that of [99] is related to the fact that we do not perform a binned-
likelihood fit of the di-jet invariant mass distribution after the initial VBF selection
cuts. While this is expected to somewhat improve the overall sensitivity, our main
concern here is the difference between the electromagnetic and hypercharge form
factors, as well as the fact that the loss in sensitivity defeats the justification for
considering this channel.

At TeV scale, the constraints for dimension-6 operators are reduced by an or-
der of magnitude, while for dimension-5 case, the loss is about a factor of 3 below
mZ/2 and again an order of magnitude above. We found that the drop in cross-
section for the pure EW contribution is compounded by a loss in efficiency of the
extreme VBF selection employed in this analysis, which on the contrary was optim-
ized for dimension-6 operators for electromagnetic form factors, leading to a further
worsening of prospects for this particular set of cuts. Therefore, the obtained sens-
itivity is not likely to be optimal for the hypercharge operators. Nevertheless, given
the quartic(quadratic) dependence of the dimension-6(5) signal cross-section on the
cutoff scale Λ, it is extremely unrealistic that an optimization of signal to back-
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Figure 4.4: Vector boson fusion constraints for the electromagnetic (black dashed)
and hypercharge (black solid) form factors. The anapole moment in top left panel,
the charge radius in top right, the magnetic dipole moment in bottom left and the
electric dipole moment in bottom right.

ground would gain the orders of magnitude needed to recover comparable sensitiv-
ity. Finally, relatively weak constraints also mean that the validity of the effective
description is more likely to break down, considering the typical energy scales in-
volved in vector boson fusion processes at the LHC. For this reason, we have not
considered this option, but rather alternative options for collider constraints on
these scenarios.

A remarkably observation is that, in contrast with pure-EW contribution to
χχ + 2 j, the mixed QCD/EW cross-section is largely unaffected by the switch
from electromagnetic to hypercharge form factors. This is because the underlying
new physics process is qq̄ → χχ, as opposed to W+W− → χχ in the EW process,
see figure 4.2. In the case of dimension-6 form factors, the two considered operators
can be removed by the photon/hypercharge gauge field equations of motion, or the
appropriate redefinition of fields

∂νFµν = eJEM
µ ∂ρBρµ = eJYµ , (4.22)

where JEM
µ and JYµ are the electromagnetic and hypercharge currents, respectively.
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These consist mostly of fermion bilinears, in other words both types of operators
have a component that can be described by a linear combination of qq̄χχ contact
interactions. These four-fermion operators prompt the mixed QCD/EW process,
such that the electromagnetic and hypercharge operators are expected to have sim-
ilar predictions up to O(1) factors of ratios of linear combinations of gauge charges
and quark-antiquark parton luminosities.

Operators of dimension-5 cannot be eliminated by equations of motion, therefore
they can only be understood as momentum dependent interactions between neutral
gauge fields and a pair of dark matter particles. Once again, in this case we do not
expect a significant difference when switching from electromagnetic to hypercharge
form factor, apart from the observed additional on-shell Z component of the cross-
section in qq̄ → χχ scattering. The reason why the W+W− → χχ channel is so
suppressed is that hypercharge form factors partly unitarize this scattering process.
Moreover, even for electromagnetic form factors of dimension-5 the vector boson
fusion channel is no particularly effective, and even more for their hypercharge
counterparts.

In the case of hypercharge form factors, the clear dominance of the qq̄ → χχ
scattering lead us to the conclusion that this set of interactions is most likely to
be better constrained by processes that explicitly target this amplitude, the most
obvious of which is the well-known mono-X channel.

4.5.2 The Latest on the Mono-jet Signature
The most rudimentary collider searches, which do not have explosive repercussions
of gauge violation, are likely to be the most promising. Naturally, the mono-jet
searches have been widely studied in the context of the effective operators, see [75]
for the anapole interaction and [173, 177, 178, 174, 51, 179, 180, 150, 175, 149, 148,
176, 147] for more generic dark matter EFT research. In this section, we provide
an update of these bounds using the results of the most recent CMS analysis [134]
with a luminosity of 35.9 fb−1 as well as a projection into the high-luminosity LHC.
As previously argued, unlike with VBF processes, the growth of off-shell γ/Z does
not play a key role in either the electromagnetic or EW form factors, leading to
similar limits for both operator types. Nevertheless, the discussion up to this point
should have already convinced the reader that the interactions with the B field are
the only ones that are physically significant, and so we present only these results.

The selection criteria of the CMS analysis on the single jet are, pTjet > 250 GeV
and |η| < 2.5. The missing transverse energy distribution pmiss

T , equal to the jet
pT at leading order, is then used to constrain the production of invisible particles
produced in association with a single jet or a boosted, hadronic vector boson. For
the purpose of calculate the current and future limits we used the binned χ2 statistic,

χ2 ≡ (nexp + κnsig − nobs) · V−1 · (nexp + κnsig − nobs), (4.23)

comparing data (nobs) with the expected distribution of SM background reported
by the analysis (nexp), incorporating the predicted shape of the dark matter sig-
nal contribution (nsig). The new physics interaction is labeled by κ = (c/Λ2)2

and κ = (c/Λ)2 for dimension-6 and dimension-5 interactions respectively, and the
covariance matrix for data V includes the reported statistical and systematic un-
certainties for the pmissT distribution and their correlations. The shape of the signal
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Figure 4.5: The current mono-jet LHC constraint (blue) and projected high lumin-
osity LHC reach with 25% (orange) and 0% (green) systematic uncertainty. The
anapole moment in top left panel, the charge radius in top right, the magnetic di-
pole moment in bottom left and the electric dipole moment in bottom right.

distribution depends only on dark matter mass since the coupling strength, called
κ, can be factorized out from the process. Since the observables linearly depend on
the parameter of interest, the ∆χ2 can be written as

∆χ2(κ) = (κ− κmin) · F · (κ− κmin), (4.24)

where κmin is the value of κ that minimizes χ2 and F is the Fisher information
matrix that encodes the shape of the likelihood in κ around its maximum for a
given mχ. It depends on the normalized signal for each value of dark matter mass
and the covariance matrix V. Imposing the critical value of ∆χ2 = 3.84, we derived
through this form the upper limits on κ.

The limits depicted in figure 4.5 provide the most update results for dark mat-
ter candidate that couples to the fields of SM through hypercharge form factors
of dimension-6 and dimension-5. They are within an order of magnitude of each
other, with charge radius interaction reaching the strongest limit. The constraints
outlined for dimension-6 form factors start to decrease around mχ ∼ 1 TeV, while
for dimension-5 they already degrade at mχ ∼ 300 GeV. The reason for this lies
in the fact that the dimension-6 operators grow faster with energy and populate
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Figure 4.6: 2D heatmap showing how Fisher information per GeV is distributed
over the pmiss

T . The Fisher information is normalized to 1 for each value of mχ. The
anapole moment in top left panel, the charge radius in top right panel. In lower
panels (anapole moment on the left and charge radius on the right) we plotted the
invariant mass bins of the mono-jet search.

more easily the high-pT bins of the distribution, where systematic uncertainties in
the background expectations are less important. In the same plot we also show
the projections for 3 ab−1 of LHC data, assuming either reduced (25%) or no (0%)
systematic uncertainties. The former is considered a reasonable expectation, con-
sidering the improvements in theoretical and experimental methods over the next 15
years. High-energy bins are also less sensitive to variations in the systematic errors
of the background. Therefore, for dimension-5 operators, the expected sensitivit-
ies are much more sensitive to variations in the assumed systematic uncertainties.
This picture is highlighted by the top row in figure 4.6, which shows how the Fisher
information, and therefore the constraining power, is distributed over bins as a
function of mχ. This visualization is only possible without including the correla-
tions between uncertainties of different bins, which has an overall small effect on
our limits. One can notice a clear bias for lower pT for dimension-5 form factors,
particularly at mχ below the mZ/2.

A crucial aspect that must be considered when dealing with collider data to
identify the limits for an EFT is whether the energy, at which we are working,
is sufficiently below the new physics scale Λ. The subtleties associated with this
aspect have been examined [173, 51, 172, 49, 135, 55] and have led to the adoption
of simplified models [136, 160, 171]. Since the EFT approach does not predict,
‘a priori’, the values of the Wilson coefficients, C, and constraints apply to the
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combination C/Λn, one is technically safe from such worries up to a point. It is
only when matching these operators with the UV underlying theory that care must
be taken. An approximate version of the argument would take the highest bin value,
used in the analysis, and require Λ > pmax

T . Therefore limits, such as

C/Λn < limit, (4.25)

can be recast as a lower bound on the Wilson coefficient that admits a valid inter-
pretation

Cj >

(
max bin

limit

)2
and Cj >

(
max bin

limit

)
, (4.26)

for dimension-6 and dimension-5 form factors, respectively. Taking the maximum
bin of 1.4 TeV, it returns a minimum C ∼ O(1). However, looking at figure 4.6 we
realize that most of the information belongs to the lower energy bins, which might
give more space for lower values of C and Λ to be consistent with these results.

In the light of the above, the pmiss
T does not represent the only energy scale of the

process that can be used to examine its validity. The χχ invariant mass, although
not observable, is presumably a more accurate representation of the energy being
probed, given that can be identified with the momentum flow through the effective
vertex. One would roughly associate this quantity with 2mχ, since particle pair
production are inclined to occur close to the kinematic threshold. Nevertheless,
for dark matter masses below a few hundred GeV, the high-energy of the LHC
collisions coupled with the valence quark PDF in the initial state and the energy
dependence of the interactions bias this quantity to much higher-than-expected
values. The bottom row of figure 4.6 exhibits the distribution of invariant mass,
Mχχ, for different values of mχ. We found that for dimension-6 operators and dark
matter masses up to 500 GeV, which is the expected that restores mχχ ∼ 2mχ,
many signal events populate the invariant masses around 1 TeV. For dimension-5,
the dominant value for Mχχ is ∼ mZ when mχ . 45 GeV, above which the behavior
is similar to dimension-6. This is consistent with our previous analysis from the
Fisher information in the case of low dark matter masses, but requires caution in
interpreting the limits when mχ reaches O(TeV) and beyond; for instance, using
equation 4.26 with the aforementioned estimates of mχχ, yields minimum Wilson
coefficients of around C5 & 0.03 for the dimension-5 operators in the low mass case,
when mχ < 45 GeV. For the dimension-6 operators, the higher typical scale leads to
C6 & 1 for mχ < 1 TeV, above which the limits are significantly weakened anyway.
Overall, the sensitivity of the collider lends itself to interpretations in relatively
strongly coupled scenarios and would not be sufficient to allow for loop-induced
Wilson coefficients, as is often the case for EW form factors induced by weakly
coupled UV completions.

4.6 DM Phenomenology in hypercharge EFT
In this section we present the dark matter phenomenology of the hypercharge EFT
theories. We show the interplay among the most constraining direct and indirect
searches for dark matter and discuss the prospects for detection by estimating the
sensitivity of future probes to the model parameter space.
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4.6.1 Dark Matter Production
A fundamental issue that must be addressed in any model describing dark matter
concerns its formation in the primordial stages of the Universe. In our analysis,
we assume that this is achieved via the standard thermal freeze-out mechanism.
Initially, the interactions between the dark matter and the particles of SM were
effective enough to keep it in thermal equilibrium with SM plasma. Subsequently,
when the expansion of the Universe dilutes dark matter enough, annihilations be-
come ineffective and the dark matter freezes out with a relic density Ωχ. The
proportionality between relic density and the cross section is

Ωχh2 ∝ 1
〈σannv〉

, (4.27)

where 〈σann v〉 is the thermally averaged annihilation cross-section evaluated at the
freeze-out temperature.

Dark matter annihilation into particles of SM is described differently between
the two considered EFT models, referring back to figure 4.1: in the hypercharge
case χχ → SM SM processes are also mediated by the Z boson in s-channel, whose
contribution can potentially be resonant, while this is not the case for the electro-
magnetic form factors. In figure 4.7, we show the annihilation cross-section into
various final states composed by particles of SM as a function of the center-of-mass
energy (

√
s/2). In this case, the analysis has been conducted for the charge radius

operator; however, qualitatively the picture is similar for all the other form factors.
The first astonishing difference between gauge invariant and violating cases, is the
Z-funnel shape that appears when we consider the coupling with B field, leading
to the conclusions: (i) the use of the photon-only channel is not accurate already
at energies around 15 GeV, (ii) the Z resonance dominates 〈σann v〉 roughly in the
range between 15 and 60 GeV and includes the χχ → νl νl process with a similar
relevance to annihilation into quarks, while this channel is not present in the case
of the electromagnetic form factors. The second deviation between the EFT models
for dark matter is found above the Z-funnel, where the hypercharge 〈σann v〉 re-
turns a proper energy dependence (∝ s), while the electromagnetic operator shows
an annihilation cross-section growing in energy with a gradient greater than s, as
previously discussed in section 4.4.1. At high energies, the annihilation channel is
dominated by fermionic final states for the hypercharge form factors; on the con-
trary, in the electromagnetic case the predominant process is that with W+W− as
final state. The discrepancies highlighted between the two EFT models lead to dif-
ferent suitable parameter space regions when searching for relic abundance. For a
given dark matter mass, we compute the effective coupling that provides the correct
relic density by making use of MadDM 3.0 [79] and matching the value of Ωχh2 to
that measured by the Planck satellite [78].

In the left panel of figure 4.8 we plot the results for the dimension-6 interactions.
The results confirm figure 4.7 to the extent that electromagnetic and hypercharge
interactions start to diverge around mχ ∼ 30 GeV for the whole Z-funnel and that
above mχ ∼ 90 GeV the electromagnetic anapole has a steeper gradient. Given
that for dark matter masses the generic thermal relic bound, calculated by using
partial wave analysis for a generic s-wave cross-section [82], is 100 TeV, we plotted
the result up to this value. Nevertheless, all anapole interactions are p-wave hence
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Figure 4.7: Annihilation cross-sections as a function of the center-of-mass energy
for charge radius coupling. Solid lines stand for hypercharge form factor, while
dotted lines for electromagnetic form factor. Different contributions are shown in
different color as labeled. The dark matter mass is set to mχ = 10 GeV, the Wilson
coefficient is Ccr = 1.0 and Λ = 10 TeV.

partial wave unitarity might break down at higher dark matter masses with respect
to the case of s-wave unitarity, see e.g. [145].

We also consider naive perturbativity limits on the parameter space by taking,

C6

Λ2 s ≤ 4π and C5

Λ
√
s ≤ 4π, (4.28)

for dimension-6 and dimension-5 vertices respectively. For the annihilation process
we set

√
s ∼ 2mχ to get the relations,

mχ√
π

≤ Λ√
C6

and mχ

2π ≤ Λ
C5
. (4.29)

These constraints (depicted as grey areas in figure 4.8) are a loose statement on
whether it makes sense to treat the effective couplings perturbatively. Beyond
these regions, one may worry that loop contributions could be comparable to the
tree-level ones that we have computed. They are independent of the scale of new
physics Λ since one can always compensate any restriction by varying the Wilson
coefficients Cj . If one is prepared to make more specific assumptions, i.e., to under-
stand how this actual term relates to a complete UV model, different constraints
can be derived.

The left panel in figure figure 4.8 highlights that for relic density obtained in
the hypercharge EFTs, the perturbative description of the scattering starts to break
down around a dark matter mass of ∼ 6 TeV for the anapole moment and of ∼ 20
TeV for the charge radius.

For both dimension-6 operators, the annihilation processes in the s-channel,
shown in figure 4.1, are the only ones available. It is tempting to also consider t-
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Figure 4.8: Values of Λ/
√
Ci that yield to the estimated relic density abundance

(colored lines) as a function of dark matter masses. The plot on the left is for
dimension-6 operators (blue. for the anapole moment and orange for the charge
radius), while the plot on the right is for dimension-5 operators (red for the magnetic
moment and green for the electric dipole moment). Solid and dot-dashed lines stand
for hypercharge and electromagnetic form factors, respectively. Dotted lines are for
hypercharge interactions that do not include double insertion contributions, i.e., the
pure dimension-5. The grey region denotes the breakdown of perturbativity for the
EFT theories: the solid grey region for dimension-6 (in both panels), the dotted
region for a single insertion of dimension-5 operators.

channel and u-channel processes with two effective vertices, as shown in figure 4.9.
These annihilation processes give rise to di-photon or γZ final states, which are
prominent for dark matter line searches [113, 112], as well as the ZZ final state,
which contributes, for instance, to continuum gamma ray searches. From the EFT
perspective, however, care should be taken when considering processes at higher
orders in Wilson coefficients. In fact, higher order contributions to a process with
multiple insertions of low-dimensional operators can be of the same order in Λ−n as
a single insertion of high-dimensional operators, although these are typically neg-
lected. It could also happen that a multiple insertion diagram can be fully described
in terms of a single insertion of a high-dimensional operator. In fact, multiple in-
sertions of an EFT operator in, e.g., loop calculations require the theory to be
renormalized to higher orders in Λ−n. These effects are truly of higher dimension
and be considered as operators of a higher dimension.

From equation (4.13), it appears the annihilation processes χχ → γγ, γZ, ZZ
can only be described by double insertions of dimension-5 operators, while there is
not a corresponding single insertion of dimension-6 operator that mediates the same
interactions. Therefore, up to Λ−2, these processes are described only by the square
of the dimension-5 couplings. New operator contributions only arise starting at
dimension-7, in the form of so-called Rayleigh operators, χχFµνFµν [165, 166, 168].
In agreement with the above, it is justified to include ‘double insertions’ as part
of the model, i.e., to consider the magnetic and electric dipoles up to dimension-6,
when describing the new physics contributions to dark matter annihilation onto
neutral gauge bosons.

82



χ/ψ

χψ̄ γ/Z

γ/Z

Figure 4.9: Annihilation channels of dimension-6 or dimension-8. They occur
through multiple insertion of effective vertices. Possible final states are γγ, γZ
and ZZ.

In the following of the analysis we will consider the phenomenology of the pure
dimension-5 operators and their double insertions separately, to study the para-
meter regions in which each type of contribution is relevant. In the right panel of
figure 4.8, we plotted the correct relic abundance lines for both the magnetic and
electric dipole interactions (red and green respectively). We show the curves for
both the electromagnetic (black dot-dashed) and hypercharge field strength tensors
(black dotted) this time including the double insertion processes (black solid). The
phenomenology is rather similar to the case of the dimension-6 operators, except
that for the hypercharge dimension-5 operators the value of Λ/Cj becomes flat at
large dark matter masses. In fact, dimension-5 operators do not grow with energy
while dimension-6 operators grow ∝ s. Therefore at large dark matter masses, above
103 GeV or 100 GeV for the magnetic and electric vertex respectively, the processes
described by a double insertion of dimension-6 double start to dominate the hyper-
charge EFT model. The additional diagrams grow with energy and the relic lines
exhibit a slope similar to anapole and charge radius cases. Given their respective
energy growths, the single and double insertion scenarios have different perturbativ-
ity bounds depicted by the grey regions. As expected, dimension-6 bounds cover
more the parameter space. In the right panel of figure 4.8, we notice that for the
magnetic dipole, including the double insertion processes slightly restrains the vi-
able parameter space for thermal relic: the dark matter mass upper bound due to
perturbative unitary of 30 TeV for dimension-5 operator only becomes 20 TeV for
dimension-6 vertices. On the contrary, the parameter space of the electric dipole
is enlarged, shifting the upper bound of perturbative unitarity on the dark matter
mass from 3 TeV up to 20 TeV.

A crucial aspect of the unphysical growth in the cross-section registered for the
photon-only interactions, is that the steep gradient in figure 4.8 makes it appear that
the correct relic density can be obtained to arbitrarily high values of mχ. However,
this is not realistic since the W+W− scattering cross-section violates unitarity at
much lower masses.

As we remarked at the beginning of the section, the computation of the relic
density abundance of dark matter relic is based on the thermal freeze-out assump-
tion with the standard cosmological history. In figure 4.8, the region below the
black curve denotes under-abundant dark matter, while that above it denotes over-
abundant. In the latter case its annihilation cross-section is small and dark matter
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decouples too early from the thermal bath with a large abundance; the later it
decouples the more dark matter undergoes matter suppression.

In the next section we will assume that the dark matter candidate accounts for
all dark matter regardless of abundance resulting from thermal freeze-out. In partic-
ular, this assumption concerns the local dark matter densities that enter the fluxes
computations for indirect and direct detection experiments. For instance, in the case
of under-abundant dark matter this scenario could be realized by additional non-
thermal contributions to dark matter production, such as the late gravitino decay in
supersymmetric models, which is a popular mechanism to augment the neutralino
relic density and bring it to Planck measured value [124]. Over-abundant dark
matter could be accommodated by a non-standard cosmological history which for
instance modifies the expansion rate of the Universe, see ref. [143], or UV comple-
tion of phenomenological models could provide more efficient annihilations at early
times, ref. [125] and references therein.

Furthermore, there exist alternative scenarios that can reproduce the correct
relic density, such as the freeze-in mechanism [122, 121] and forbidden dark mat-
ter [123], which might highlight different regions of the EFT model parameter space.
Nevertheless, those scenarios typically select dark matter candidates which are fairly
light, close or below the GeV mass scale. This region is in great tension with the
measurements of the Z boson invisible decay width for the hypercharge EFT model;
however, a throughout analysis of the phenomenology due to the freeze-in mechan-
ism is beyond our research.

4.6.2 Direct Searches
Direct dark matter searches expect to measure the recoil of target nuclei hit by a
dark matter particle passing through the underground detectors. The momentum
transfer in elastic collision is limited by kinematics and the galactic escape velocity,
named vesc, in detector frame

q2
max = 4µ2

χT v
2
esc, (4.30)

where µχT is the reduced mass of the incoming dark matter and the target nucleus.
The largest value of q2 is achieved in the large mχ limit, with vesc ∼ 700 km
s−1 [186] and results in q ≤ 500 MeV. This value, is well above most of the signal,
which instead falls in the range between 1 and 10 MeV. Therefore, results for the
electromagnetic moments will be directly applicable to the hypercharge EFT model,
since the B field strength tensor is simply related to both photon and Z boson as
highlighted by equation (4.11). In the following, we briefly review how the non-
relativistic operators relevant for direct detection are obtained from the EW EFT
operators in equations (4.12) and (4.13).

The computation of direct detection contribution for dimension-5 operators,
has to include the scattering amplitude with the full propagator. The interaction
vertices that couple quarks with photon and Z field are

Lint ⊃ eQq q̄Aµq + g

4cW
q̄γµ

(
Vq −Aqγ

5) qZµ, (4.31)

where g is the EW coupling and Qq is the electromagnetic charge. Moreover, Vq and
Aq are the vector and axial coupling respectively, and they describe the interactions
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between quarks and Z field. According to ref. [94], their parametrization is

Vq = 2
(
−2Qqs2

W + T 3
q

)
and Aq = 2T 3

q , (4.32)

where T 3
q is the weak isospin number. Since the pure vector coupling with Z boson

has the same structure as that for photon, it will produce the same responses
from nucleons ODD as outlined in ref. [97, 98, 64, 69]. However, a fundamental
difference is related to the coefficients of such operators, which for the Z field, have
a suppression factor

CN
Bµγµ

CN
Aµγµ

= 1
4m2

W

VN
QN

, (4.33)

if the couplings in the Lagrangian, namely equation (4.12) and equation (4.13), are
assumed to be the same. The super and sub scripts N refer nucleon interaction,
namely the parameters VN and QN are summed values from quark coefficients Vq
and Qq, respectively. In reference [185], the author quote the exact value of these
parameters. As expected, the axial vector couplings give rise to novel responses
compared to the photon case 9; however, due to the suppression coming from the
mediator, the contributions are sub-dominant.

For the electromagnetic EFT, the computations involving dimension-6 operators
are simplified since we can make use of the equations of motion

∂νFµν = eJEM
µ ≈ e

∑
q=u,d,s

Qq q̄γµq , (4.34)

where the approximation is because we are interested in calculating low-energy
scattering with nucleons. For B field, there is a similar expression

∂ρBρµ = 1
2g

′H†i
↔
Dµ H + g′(JEM

µ − J3
µ), (4.35)

where J3
µ is the current J3

µ =
∑
i f̄

L
i γ

µT 3fLi , H is the Higgs field, T 3 is the weak
isospin value of the fermion f and g′ is the hypercharge coupling. After the EW-
symmetry breaking, equation (4.35) becomes

∂ρBρµ = egv2

4 Zµ + g′ (JEM
µ − J3

µ

)
, (4.36)

where v is the Higgs vacuum expectation value and g is the weak charge. Using the
Z equation of motion

Zν = e

sW
ΠµνJZµ = e

sW
Πµν

(
J3
µ − s2

WJ
EM
µ

)
,

where Πµν is the Z propagator, and expanding in the large mZ limit, at the lowest
order the result from the photon field is recovered

∂ρBρµ ≈ ecWJ
EM
µ +O

(
q2

m2
Z

)
,

9In the non-relativistic formalism of [98], these responses are the operators O9 and O14.
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which is the relevant term at the energy scales of direct detection. Since the effects
of interactions mediated by Z are weaker than that mediated by the photon, the
results are equivalent to previous works, in which dark matter interactions in the
non-relativistic effective theory basis go like

χ̄iσµνγ5χBµν → QNe
4
q2mχm

2
NO

DD
11

χ̄σµνχBµν → 2emχmN

[
QN
4mχ

ODD1 +QNmN
ODD5
q2

+ gN
2mN

(
ODD4 − m2

NO
DD
6

q2

)]
χ̄γµχ∂νBµν → 4mχmNeQNO

DD
1

χ̄γµγ5χ∂νBµν → 4mχmNe
(
2QNODD8 − gNO

DD
9
)
,

where the factors QN , mN and gN are the charge, mass and the magnetic moments
of the nucleons respectively. In the basis defined above, ODD1 is the canonical spin-
independent interaction which receives a coherent contribution from the nucleons in
the target nucleus by way of A2, where A is the atomic number. The same occurs
for ODD11 which, however, is also momentum suppressed. Thus, it directly follows
that the anapole response will be the weakest.

Making use of the tool called RAPIDD [85], we recast the current exclusion limit
by XENON1T [86] as well as future LZ [87, 88] projected sensitivity in terms of
the hypercharge EFT model. For the purpose of match with results coming from
colliders and indirect searches, we present the 95% C.L. exclusions and projections,
as opposed to the direct detection community standard of 90% confident level.
XENON1T has the strongest exclusion limit at intermediate and large dark matter
masses while LZ will probably be the most sensitive detector int the same mass
range, built in the near future. For the XENON1T results, we make use of the
prescription given in appendix A of reference [69]. We adopted the same procedure
to derive the projected limit for the LZ experiment and for an exposure of 1000 days,
as LZ will be a dual phase time projection chamber consisting of 5.6 tons of xenon
similar to XENON1T. Our result is in agreement with that obtained in appendix
D of [89]. In order to evaluate the sensitivity of direct detection at low dark matter
masses, we simulate the SuperCDMS experiment following [108, 109, 110, 107]. In
particular, we used the high-voltage design of the experiment, which will be able
to access very low threshold energies, thus enabling greater sensitivity to light dark
matter.

We have not included any current bounds in the parameter space below mχ ∼ 6
GeV, which would likely come from CRESST-III [152, 151] or DarkSide-50 [153].
The situation here is more complicated and could even be most constrained through
electron recoils. in reference [154, 161], the authors computed the electron recoil
bounds for anapole, magnetic and electric moments and shown that for mχ ∼ 1
GeV, Xenon1T [86] results are the most sensitive. The interplay between electronic
and nuclear recoils, as well as the multitude of ongoing experiments, is left to a
potential future work.

In figure 4.10, we reported the constraints at 95% C.L. and future reach from
direct detection for the hypercharge EFT model. We found that the basic picture
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Figure 4.10: Direct detection limits at 95% confidence level (C.L.) on Λ/Cj (or
Λ/C1/2

j ) as a function of the dark matter mass mχ, coming from the current
XENON1T exclusion limit (blue) as well as projected sensitivities of the future
LZ experiment (blue dashed) and SuperCDMS (red dashed). The top left panel for
the anapole moment, top right panel for charge radius, bottom left panel for mag-
netic moment and bottom right panel for the electric dipole moment form factors,
respectively. Notice that the scale of the y-axis has been altered from figure 4.8 due
to the strength of the direct detection limits.

does not change with respect to the case of the photon-only interaction [69] bar-
ring a few remarks. The blue shaded region shows that current constraints from
XENON1T are able to exclude large regions of viable parameter space. In fact,
the black solid lines, that predict the correct dark matter abundance via freeze-out,
are completely ruled out for the magnetic and electric dipole moments, as previ-
ous works [146] already obtained. Our finding is that even considering the extra
dimension-6 contributions, it is not possible to escape constraints.

4.6.3 Indirect Searches
Indirect searches of dark matter rely on the annihilation into particles of the Stand-
ard Model, which subsequently decay, shower and hadronise to lead to a continuum
spectrum of gamma rays, cosmic rays (positrons and antiprotons) and neutrinos,
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likewise presented in reference [129]. Alternatively, dark matter can annihilate, as
we previously said, into the di-photon or γZ final state, producing the smoking-gun
signature of a sharp gamma-ray line feature at the dark matter mass [126, 127, 128].
In this section, we derive exclusion bounds for our models using the continuum an-
nihilation spectra, including the ZZ final state, and the γγ, γZ line final states.
The latter three annihilation channels come from the double insertion diagrams as
represented in figure 4.9, with the last two being peculiar to the hypercharge form
factors.

All annihilations share a typical energy scale that is fixed by the dark matter
mass, as the late time environments that provide the strongest constraints (for
example, dwarf spheroidal galaxies, dSPhs, and the Galactic Centre) are much
cooler than at the time of freeze-out, being characterized by relative velocities v/c
ranging roughly from 10−5 to 10−3. The fact that the annihilation cross-section is
either an s-wave or p-wave is extremely important to determine the mapping that
indirect constraints draw in the parameter space of the hypercharge EFT models.
We have analytically calculated the (velocity averaged) annihilation cross-sections
for all operators in (4.12) and (4.13) and reported in table A.1, Appendix A.6, their
expression obtained in the limit of massless particles of the SM. These expressions
are in agreement with reference [69]. As already noted, the anapole moment is p-
wave, hence, we cannot further consider this form factor in this section. The electric
dipole moment annihilation into fermions and gauge bosons of SM is suppressed by
p-wave, while the related dimension-6 operator, leading to γγ, γZ and ZZ, are
not suppressed and therefore accounted in this analysis. Conversely, the magnetic
dipole and the charge radius interactions are s-wave, meaning that their annihilation
strength is unaltered throughout the thermal history of the Universe.

From table A.1, in the high-energy limit operators manifest a hierarchy between
the ff̄ and W+W−(Zh) final states, which differs only by factors of their respective
hypercharges, as already shown in figure 4.7. This is supported by figure 4.11, which
shows, in the left panel, these branching ratios for the charge radius form factor.
Nevertheless, all operators (neglecting, at this stage, the double insertions) have
qualitatively the same trend. We have included dashed lines for the electromagnetic
moment to highlight the need for taking the gauge invariant interaction.

The effect of interpreting indirect detection limits in the context of hypercharge
instead of photon-only EFT models is represented for the charge radius interaction
on the right panel of figure 4.11: the most constraining bounds for the hypercharge
form factors are those identified by Fermi-LAT dSph, while in the case of photon-
only operators cosmic-ray antiprotons [102] from AMS 02 originating from W+W−

are predominant. It is not surprising, at this stage, that by taking the gauge
violating effective interactions, indirect constraints become larger and larger as the
mass of the dark matter increases, even surpassing the strong sensitivity of the direct
detection constraints, which was set around 500 GeV. In literature [69], it has been
claimed that the W−W+ final state is sub-dominant, which is not the case for
the electromagnetic interaction. Their results, considering final states composed by
fermionic particles only are much more in line with the one obtained with a correct
treatment of the hypercharge operators, as these final states clearly dominate the
annihilation cross-section, while bosonic final states have BR ' 10−2. The most
peculiar aspect is the appearance of both the Z-funnel region, in figures 4.7 and 4.11,
and the presence of more annihilation channels in the case of hypercharge EFT.
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Figure 4.11: On the left, the branching ratios of the velocity averaged annihilation
cross-section into all possible final states of SM as a function of the dark matter
mass, for the charge radius effective interaction. The line and color scheme is the
same as figure 4.7. On the right, the exclusion limits (excluded the region below the
curve) at 95% C.L. coming from Fermi-LAT dwarf spheroidal galaxies [79] (Fermi-
LAT dSphs) and AMS 02 cosmic ray measurements [102] (AMS p̄, for the qq̄ and
W+W− final states) in the plane Λ/C1/2

cr versus the dark matter mass. The results
are shown for both the cases of hypercharge (solid) and photon only (dashed) EFT
dark matter model (dashed) as labeled.

The monochromatic neutrino channel is relevant for indirect detection, since it
is considered a clean astrophysical messenger and its branching ratio is remarkable
(∼ 0.1) at high energies and dominates in the Z-funnel region. The inclusion of
double insertions of dimension-5 operators, as discussed in section 4.6.1, is both
legitimate and correct. This predictably complicates the picture, since, for instance,
the branching ratio of a specific annihilation channel no longer depends solely on the
mass of dark matter. Now some annihilation processes are proportional to different
powers of the effective coupling, namely

〈σv〉γγ
〈σv〉ff̄

∝ Λ2

C2
j

, (4.37)

meaning that bigger couplings lead to the di-photon channel dominating for low
values of dark matter mass. In figure 4.12, we reported the results for two specific
values of Λ/Ci. The relative branching ratios of γγ, γZ and ZZ are the same in both
cases, since predicted by the breaking of the EW symmetry. Nevertheless, the onset
of dimension-6 operator is delayed to larger dark matter masses for larger Λ/Ci, as
expected from (4.37). Notice that the γγ final state has the largest branching ratio,
strictly followed by γZ, while the ZZ final state is one order of magnitude lower.

Before going into the details of how the indirect detection constraints delimit
the parameter space of the model, we briefly outline what exclusion constraints
have been considered in the analysis and how they have been recast for effective
moments.
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Figure 4.12: On the left, the branching ratios of the velocity averaged annihilation
cross-section into all possible final states composed by particles of SM as a function
of the dark matter mass, for the magnetic effective interaction with Λ/CM = 103,
including dimension-6 contributions. The line and color scheme is the same as
figure 4.7. On the right, the same as left for Λ/CM = 105.

Charged Lepton and Quark Final States

We consider the 95% C.L. gamma-ray continuum bounds from Fermi-LAT dSphs
and antiproton bounds from AMS 02 (AMS p̄).

The dSph Fermi-LAT constraint has been obtained using MadDM, which performs
a statistical analysis to set the limit given our specific model. For future constraints
coming from land and space based telescopes on gamma-ray measurements from
dSphs we have considered the Cherenkov Telescope Array (CTA) [103] and the
Large Synoptic Survey Telescope (LSST) + Fermi-LAT white paper [104]. For
CTA, we obtained a projection by using the sensitivity for the τ+τ− annihilation
channel shown in reference [103], which is the most constraining for the hypercharge
EFT models. The LSST+Fermi-LAT (LSST+LAT) projection assumes that it is
accurate to scale the bb̄ projection to other fermionic channels. A more accurate
analysis would probably yield better projections, but that is beyond the scope of
our analysis. Whenever relevant, we included into the gamma-ray continuum limits
the contribution of the ZZ and γZ final states (the latter contribution is scaled by
1/2 to take into account the fact that only one Z boson is emitted).

Antiproton bounds have been obtained from [102], by rescaling each final state
with the BR obtained from models. Notice that astrophysical uncertainties are
extremely large, and even when profiled out their inclusion makes an envelope that
can shift the bound up or down by a factor of approximately four. Nonetheless,
this are competitive bounds for dark matter masses larger than 250 GeV.

Finally, we also consider the Planck limits [111] on dark matter annihilating into
e+e−, which, at extremely low dark matter masses, are competitive with dSphs
bounds. These bounds are due to the annihilations of dark matter that injects
electromagnetically interacting particles during the dark ages, which can poten-
tially modify the residual ionisation fraction, enlarge the last scattering surface and
modify the anisotropies of the cosmic microwave background.
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Neutrino Exclusion Limits

A comprehensive study on the constraints from dark matter to neutrinos from the
Galactic Center or from the diffuse isotropic background has been performed in
reference [101], from which we took the constraints of Antares [116]. The IceCube
constraints are a combination of [117] together with [118], which are obtained for
neutrino lines. Future projections from the neutrino telescopes KM3NeT [114] and
Hyper-Kamiokande [115] are also shown, again derived in the most optimistic scen-
ario of neutrino lines. The experimental constraints have usually been obtained
for a NFW dark matter density profile hypothesis [132, 133]. Each limit has been
rescaled accordingly with the branching ratio into neutrino lines of the model. All
bounds are shown at 90% confidence level. The ZZ and γZ final states produce a
continuum neutrino spectrum, thus a rescaling of the above-mentioned limits and
projections is not correct. The implementation of this final state would imply a full
recasting of experimental limits using their likelihoods; however, this goes beyond
the scope of this analysis and our results remain unchanged especially because as
the ZZ contribution into neutrinos is a subdominant component anyway.

Gamma-ray Lines

We have considered two lines searches at 95% C.L. from the Galactic Center by
Fermi-LAT [113] (Fermi γγ, γZ) and HESS [112] (HESS γγ, γZ), both obtained
with the Einasto dark matter density profile assumption [131]. The experimental
exclusion bounds have been rescaled again by the corresponding branching ratio of
the processes ψψ̄ → γγ, γZ (the latter being divided by two since each annihilation
emits just one photon). Additionally, we shown the projected sensitivity for line
searches towards the Galactic Center for CTA (assuming consistently an Einasto
dark matter density profile) from [130] (CTA γγ, γZ).

We shown in figure 4.13 the constraints from indirect searches as well as the
reach of future probes for hypercharge EFT models, in a comprehensive fashion.
By considering first the results for the magnetic dipole at dimension-5 only (top left
panel) we realized that current dSph Fermi-LAT limits are the most constraining,
together with cosmic-ray antiproton bounds at high masses. We obtained that the
current neutrino bounds are substantially weaker than that of Fermi-LAT and AMS
p̄. It is important to notice, however, that future experiments such as KM3NeT
will be competitive with CTA for heavy dark matter while LSST discovery of new
dSphs will increase the current Fermi-LAT bounds (LSST+Fermi-LAT). Moreover,
complementary across annihilation channels will prove important in the event of
positive signal. The description is qualitatively unchanged for the charge radius
operator (bottom right panel).

As discussed above, the magnetic dipole phenomenology should be considered
up to dimension-6, this shown in the top right panel. When the branching ratio
of 〈σv〉γγ , γZ start to dominate, all continuum searches weaken, as expected from
figure 4.12, and this occurs accordingly to equation (4.37). Up to this certain
mass value, the magnetic dipole behaves like a pure dimension-5 operator, while
above it the HESS limit dominates in constraining the model parameter space. The
experimental sensitivity from continuum searches, however, does not completely
drop to zero, as it is still powered by the ZZ final state. Here, for simplicity, we
only shown the behavior of the dominant Fermi-LAT dSph limit.
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Figure 4.13: In the top left panel, the indirect detection constraints for the magnetic
hypercharge moment interaction in the plane Λ/CM and dark matter mass mχ.In
the top right panel, the same as left but including the dimension-6 operator leading
to the di-photon final state. In the bottom left panel, the same as top right for the
electric dipole form factor, notice that only di-photon exclusion bounds are relevant
for this operator.In the bottom right panel, the same as top left for the charge ra-
dius interaction. The experimental constraints shown by shaded region are actual
bounds, while dashed lines are projected sensitivities, as in figure 4.10. Gamma-ray
continuum bounds: Fermi-LAT dwarf spheroidal galaxies [79] (green), CTA projec-
tion [103] (green) and LSST+Fermi-LAT dwarf spheroidal galaxies sensitivity [104]
(dark red); Neutrino bounds: IceCube [118] (red), Antares [101, 116] (yellow),
Hyper-Kamiokande (HK) [115] (orange) and KM3NeT [114] (blue). Additional
constraints: Planck [111] (light blue), AMS 02 cosmic rays [102] (brown), gamma-
ray lines from the Galactic Centre from Fermi-LAT [113] (green), HESS [112] (dark
blue) and expected CTA sensitivity [130]. Unlike figure 4.10 the relic density curve
is not shown to avoid additional cluttering. Details on the CL of each exclusion
limit are provided in the text.

The projected sensitivity of CTA only slightly improves the sensitivity of gamma-
ray line searches to the magnetic moment operator at very large dark matter masses.
Notice that the LSST+Fermi-LAT sensitivity drops artificially to zero since it is
obtained from a bb̄ final state and could not be easily translated into a ZZ ones.
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We do not expect that our conclusion will change when this bound is included, as
the same portion of the parameter space is already excluded by HESS. The case of
the electric dipole interaction (bottom left) is peculiar since, as stated above, the di-
photon and γZ channels are the only s-wave interactions; therefore, this introduces
the possibility of constraining the model via indirect probes which would not be
possible otherwise. Furthermore, one must notice that unlike the magnetic and
charge radius form factors, there is no Z-peak (or dip for the line searches), due
to the p-wave suppression of Z mediating diagrams. In this case, we have not
considered the ZZ gamma-ray continuum because it would give a subdominant
contribution as for the magnetic dipole operator, showing only the effect of line
finding.

4.7 Conclusions and Outlooks
In this chapter we started with a revisit of the Standard Model of Cosmology, focus-
ing in particular on the reasons for the introduction of dark matter. Subsequently,
we introduce an effective field theory where that couples the photon with a new
fermionic field χ both Dirac and Majorana, i.e., the dark matter candidate. The
only effective interaction which is not zero for Marojana dark matter is the anapole
moment at dimension-6 while for Dirac dark matter the magnetic and electric dipole
at dimension-5 and the charge radius at dimension-6 also exist.

These so-called electromagnetic form factors might have seemed to be thoroughly
studied in literature, however, at certain energies the EFT treatment has not been
properly addressed, leading to wrong conclusions. Our analysis amends these issues
and results in a proper mapping of the operator parameter space in the light of
current and future dark matter and collider searches. The results from each section
are collated and presented together in figure 4.14, to summarize our main findings
and bring to light possible caveats.

Starting with the primary issue, a naive treatment of the electromagnetic oper-
ator, dark matter coupling to Fµν , signals gauge-violating processes at large energies
or dark matter masses. Gauge invariance is simply restored by coupling the dark
matter to the U(1)Y gauge boson Bµν of the Standard Model instead of the photon
at energies above the W boson mass. This is dictated by the proper choice of low-
energy symmetries of the EFT given the energy scales of the processes relevant for
dark matter phenomenology. The price or maybe the recompense of the consistent
description is a set of interactions for dark matter with the Z boson. An immedi-
ate consequence is that constraints apply from the Z invisible decay width, having
fundamental consequences for the parameter space at low dark matter masses. The
description also leads to a richer set of final states, namely Zγ & ZZ in addition to
γγ, for indirect detection via the dimension-5 interactions.

This issue is represented in the plots by the relic density lines (black) from both
the Fµν and Bµν and tells us that the gauge violating annihilation cross-sections
leads to a completely different picture for where viable thermal dark matter can-
didates are in parameter space. Furthermore, the Z-width bound from LEP (green
region) closes the window of freeze-out dark matter for masses . 45 GeV for all
but the magnetic dipole. The gauge violating process, namely W+W− → χχ, also
provides large and unphysical contributions in collider experiments, which would
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Figure 4.14: Summary of the most constraining search from direct (blue), indir-
ect (yellow) detection and collider searches (red for LHC searches and green for
LEP searches) in the plane Λ/C1/2

A versus mχ. Current experimental bounds are
denoted with solid lines and shaded regions, while projected sensitivities are shown
with dashed lines. The relic density with denoted by a black line for the hyper-
charge (solid) and electromagnetic (dot-dashed) scenarios. In the top left panel the
analysis for the anapole moment form factor, in the top right panel for the charge
radius and in the bottom pannels for the magnetic (left) and electric (right) dipoles,
respectively.

lead to incorrect conclusions concerning the most sensitive searches (cf. VBF in-
stead of mono-jet searches, as described in section 4.5). The same scattering process
would lead to the incorrect impression that indirect detection experiments have a
better sensitivity that direct searches for high values of dark matter mass. The hy-
percharge form factors correctly describe the electromagnetic effective interaction
of dark matter at energies relevant for dark matter and collider searches, therefore
we only focus on those.

The search that is most dominant in figure4.14 is direct detection. These experi-
ments (here shown XENON1T and projected LZ and SuperCDMS sensitivities) are
able to cover almost all the parameter space up until the perturbative limit for the
EFT for magnetic and electric dipoles. Generally speaking, direct detection is the
strongest current constraint above mχ ∼ 6 GeV for all but the anapole interaction.
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Notice that for direct detection the pure electromagnetic description is valid, as the
relevant energies are much below the EW scale.

At low masses, direct detection is likely more sensitive than Z invisible decay
width for all interactions but the anapole moment. Above mχ ∼ 100 GeV, exper-
imental sensitivity can be improved by analyzing recoil energies up to 500 keV as
shown in ref. [93]. This is of particular relevance for the anapole interaction since
improvements in this region could constrain the thermal freeze-out scenario.

It is important, however, to remark that astrophysical assumptions are at play
in these bounds. For instance, there is a plausible level of uncertainty in the density
of dark matter in the solar system, see e.g. [157, 156, 137, 144, 155]. Since the limits
for direct detection are so sensitive in the case of dimension-5 operators, it is still
likely that direct detection remains the most constraining search also in the case
of huge variation of the local density. The only region which might escape direct
detection is eventually the low mχ region for the magnetic dipole, where indirect
limits (Fermi-LAT dSphs) dutifully cover the relic line and overcome as well the
Z-decay bound.

Astrophysical uncertainty is certainly at play in indirect searches as well, but
in a completely different domain. Limits on the continuum of gamma rays coming
from the Fermi-LAT telescope are derived from a set of dwarf spheroidal galaxies,
which are dark matter dominated objects. The argument used to weaken limits in
direct detection experiments is simply not available in the indirect case. For this
reason, the complementary nature of the two searches is important, in particular
since large portions of the thermal relic line is covered by indirect searches in the
cases of magnetic, electric and charge radius interactions.

The strongest mono-jet bounds from section 4.5.2 and their high luminosity
projections are shown in figure 4.14 as “collider bounds”. When we compare our new
mono-jet bounds to other dark matter searches, we achieve competitive results apart
from the impressive hierarchy between the direct detection sensitivity to dimension-
5 operators and all others. The best case is for the dimension-6 operators, since for
the anapole interaction the constraints currently are more sensitive for the whole
valid parameter space. We also point out that these limits either already, or will
eventually surpass those coming from invisible Z decays in all cases. We notice an
interesting complementarity between the high-luminosity LHC and direct detection
bounds not only for the anapole but also for the charge radius interaction, which
was not naively expected given the fact that it induces spin-independent nucleon
scattering.

One limitation of these results is that our analysis focuses only on one interaction
at a time, rather than allowing all operators to vary at once. In such a global study,
renormalization group running and operator mixing may well change significantly
the picture, since dark matter annihilation, Z-decay, collider production and nuclear
scattering all take place at different scales (see Refs. [54, 95, 89, 96] for relevant
studies). Nevertheless, the results presented here can provide useful inputs to a
global DM-EFT analysis, in order to properly assess how much parameter space is
left for a thermally produced dark matter candidate. In this case, the Dirac dark
matter scenario will be severely precluded by dimension-5 moments, with no good
reason, ‘a priori’ to suppress them. Therefore, data seems to be pushing us towards
a Majorana dark matter candidate.

Finally, we also tried to assess the validity of the EFT description given the
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sensitivity obtained by each experiment. We used naive perturbativity arguments
to suggest regions in which predictions are not expected to be reliable. The validity
issue is especially important for the collider bounds, since a range of energies are
naturally probed by the LHC. Therein we discuss the viable range of Wilson coeffi-
cients that admit a valid EFT interpretation, concluding that couplings of order one
are required. In other words, a thermal relic produced by loops is perhaps not com-
patible with a viable EFT interpretation. On the contrary, tree level processes via
a U(1)′-mixing are unavailable to Majorana particles. The assumption of a simple
thermal history of dark matter can lead to the construction of exotic models, whose
implications can only be evaluated after a comprehensive global analysis.
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CHAPTER

5 Axion-like Particles

In this chapter effective field theories will be employed to extend the Standard
Model of particle physics by including a new physical state that belongs to the class
of axion-like particles (ALPs).

The chapter starts with the description of the Strong CP problem, whose most
known solution is the Peccei-Quinn theory of axions. Nevertheless, the idea of R.
Peccei and H. Quinn appears to be extremely ductile and not strictly related to
the scope for which it was originally proposed. This leads to a class of theories
that include axions without considering the strong CP problem, therefore the name
‘axion-like particles’ is preferred to axion alone.

In our EFT, ALPs interact with every particle in SM. A unitarity rotation,
whose phase is proportional to the ALP itself, will lead to a Lagrangian where the
coupling between ALP and heavy fermions is preferred, thus bringing to a top-philic
theory, whose phenomenology is studied.

5.1 The Strong CP Problem
In section 1.2.2, we said that the most general Lagrangian for Quantum Chromo-
dynamics is equation (1.9). Nevertheless, there is a further Lorentz and gauge
invariant term that can be added

LQCD ⊃ θ g2
s

32π2G
a
µνG̃

µν a, (5.1)

which is C-conserving, but violates P , T and CP symmetries. Even if this term
can be written as a total derivative

∂µKµ = GG̃, with Kµ = εµνρσ

(
AaνG

a
ρσ − 2

3f
abcAaνA

b
ρA

c
σ

)
,

it cannot be neglected since the statement that Gaµν vanishes faster than 1/r2 does
not lead Aµ to vanish faster than 1/r for r → ∞, where r is the Euclidean dis-
tance [188]. The term in equation (5.1) is called instanton and causes θ to have
physical effects1. The instanton term not only is allowed, but also required since it

1In the Abelian case Kµ = εµνρσAνF ρσ , thus the request for Fµν of falling faster than 1/r2,
leads to A falling faster than 1/r. Even in SU(2) an analogous term to that in equation (5.1) is
allowed, however, we can remove it by using symmetries that are anomalously violated and, i.e.,
the baryon and lepton number.
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may be generated by a divergent loop, making θ necessary for the renormalization.
The angle θ changes by performing a chiral rotation, thus it cannot appear in

any observable of the theory. In fact, starting from the Yukawa matrices of quarks,
introduced in equation (1.21), namely

Yu = UuMuK
†
u,

Yd = UdMdK
†
d,

(5.2)

and performing a chiral transformation of the right-handed spinors we can remove
the Ku and Kd matrices, while a generic rotation simplifies Uu and Ud, thus we
have:

θp = arg det [KuKd] = − arg det [YuYd], (5.3)
since det [MuMd] is real. After two rotations the CP-violating term reads:

LQCD ⊃ θ̄ g2
s

32π2G
a
µνG̃

µν a, (5.4)

where we defined θ̄ = θ−θp, the chiral rotation contemporary shifts θ and θp, leaving
their difference unchanged, i.e., θ̄. In other words, the angle θ̄ is an observable of
the theory2 and we commonly refer to it as strong CP phase.

The effects of θ̄ could be observed in pions theory, since the vacuum energy
becomes proportional to this angle [189]

E(θ̄) = V 3(mu +md) cos θ̄ = f2
πm

2
π cos θ̄, (5.5)

where V 3 = 〈ūu〉 = 〈d̄d〉. The strong CP phase impacts on neutron physics, where
it causes an electric dipole moment for neutron, that is directly proportional to
θ̄ [189], namely dn = θ̄ (3 × 10−16e · cm). The current experimental bound for the
neutron electric dipole moment is dn = 1.8 × 10−26e · cm [190], so that:

θ̄ < 10−10.

5.1.1 Axions and Axion-like Particles
The hypothetical solutions to the Strong CP problem include theories of massless
quark [191], spontaneous CP violation [192, 193] and axions [194], to name a few.
On one hand, the theory of massless quark just moves the problem from smallness
of θ̄ to smallness of mu – being up the lightest quark – as there is no symmetry
that fixes its value to zero while the spontaneous CP violation does not represent
an intriguing model since it forces all breaking terms to be included in Yukawa
matrices, as the full theory respects CP symmetry. On the other hand, axions
represents a compelling solution to the Strong CP problem. A new spontaneously
broken symmetry UPQ(1) must be added to the Standard Model [194] in order to
generate a new Goldstone boson a(x) that cancels the effects of θ̄. In particular the
effective Lagrangian of axions is:

L = (∂µa)2 +
(
θ̄ − a

fa

)
g2
s

32π2 G
a
µνG̃

µν a, (5.6)

2If quarks are massless than det [MuMd] = 0, thus θ̄ becomes unphysical.
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where fa is named axion decay constant. The vacuum energy, in equation (5.5),
becomes:

E(a, θ̄) = f2
πm

2
π cos

(
θ̄ − a(x)

fa

)
,

which is a potential for the axion field. The vacuum expectation value is 〈a〉 = faθ̄.
This potential also accounts for a tight relationship between the mass and the axion
decay constant. Expanding the previous equation, we get:

ma = mπfπ
fa

, (5.7)

that can be constrained by cosmological and astrophysical bounds that squeeze the
axion mass in the range 10−4eV< ma <10−2eV. Moreover, even neutron dipole
moment finds a solution in the theory of axions, since dn ∝ θ̄ − a(x)/fa = 0.

The Peccei-Quinn symmetry not only allows for interactions between the axion
and gauge fields:

La = a

fa

g2
s

32π2GG̃+ a

fW

g2

32π2WW̃ + a

fB

g′ 2

32π2BB̃, (5.8)

but also for derivative couplings with SM fermions and the Higgs field, as we will
see in the next section. Unlike the interaction with gluon field, the coupling with
electromagnetic and weak bosons is model dependent. Many efforts were made in
order to define boundaries for those coupling and, unless complex models are in-
troduced, both couplings with fermion and with photon seems weaker compared to
the interaction with gluon [189]-[196]. Practically, the coupling with photon is the
easiest to probe and many experiments have been carried out in this direction to
search for axion although the magnitude of the interaction is completely uncorrel-
ated to the Strong CP problem. Thus, one has to wonder why we are forcing the
new particle to solve the strong CP problem if we are looking for couplings that
have nothing to do with it. Because of this reason, axions have been overshadowed
by the Axions-Like Particles (ALPs).

In following sections we will exclusively study ALPs, treating them as new scalar
or pseudosclar field and ignoring the Strong CP problem.

5.2 Effective Field Theory of ALP
Assuming that ALP is a new gauge singlet, described by a scalar or pseudoscalar
field a(x), whose couplings with SM fields are, at the classical level, protected by
an approximate shift symmetry a → a + c, which is broken by the mass term ma.
Up to dimension-5 operators, the most general Lagrangian is [197]:

LALP = 1
2∂µa ∂

µa− 1
2m

2
aa

2 + icH∂µa(H†
↔
DµH)

+ cg aG
a
µνG̃

aµν + cw aW
i
µνW̃

i µν + cb aBµνB̃
µν

+
∑

ψ=L,Q
cψ∂

µa
(
ψ†σ̄µψ

)
+

∑
ψ=e,u,d

cψ∂
µa
(
ψ†σµψ

)
,

(5.9)
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where ci = Ci/Λ, for some energy cut-off Λ. We choose to introduce the cut-off
instead of using the ALP decay constant fa, for the purpose of working with dimen-
sionless coupling constants, namely Cg, Cw and Cb. They embeds the coefficients
of equation (5.8), so that for gluon interaction, we have Cg/Λ = α2

s/(8πfa).

5.2.1 Phase Redefinition of SM Fields
The Lagrangian in equation (5.9) provides democratic interactions between ALP
and fields of the Standard Model, however, performing a rotation, whose phase is
proportional to ALP itself, of fermions and Higgs fields we will end up with a new
Lagrangian which could provide information about couplings involving the ALP,
which, at that point, could encourage specific channels of interaction. In flavor
basis, the phase redefinition is realized as a unitary rotation, that for fermions is
proportional to 3×3 Hermitian matrices qψ

ψi →
[
eiqψia

]
ij
ψj ,

H → eiqHaH.

The technicalities of calculation are presented in section A.7.1, here we only report
the result:

LSM → LSM − (∂µa)
∑

ψ=L,Q

(
ψ†σ̄µψ

)
qψ − (∂µa)

∑
ψ=e,u,d

(
ψ†σµψ

)
qψ

− ia
(
`†HeR

)
(Ye · qe − qL · Ye + qHYe) + h.c.

− ia
(
q†HdR

)
(Yd · qd − qQ · Yd + qHYd) + h.c.

− ia
(
q†H̃uR

)
(Yu · qu − qQ · Yu − qHYu) + h.c.

− iqH (∂µa) (H†
↔
DµH) +O

(
a2)+O

[
(∂a)2]

(5.10)

The switch from flavor basis to mass basis is achieved by the rotation

ψL → Uψ · ψL,
ψR → Vψ · ψR,

that transforms equation (5.10) as

LSM mass →LSM mass − (∂µa)
∑

ψ=L,Q

(
ψ†σ̄µψ

)
q̃ψ − (∂µa)

∑
ψ=e,u,d

(
ψ†σµψ

)
q̃ψ

− ia
√

2
v

(
`†HeR

)
(Me · q̃e − q̃L,e · Me + qHMe) + h.c.

− ia
√

2
v

(
q†HdR

)
(Md · q̃d − q̃Q,d · Md + qHMd) + h.c.

− ia
√

2
v

(
q†H̃uR

)
(Mu · q̃u − q̃Q,u · Mu − qHMu) + h.c.

− iqH (∂µa) (H† ↔
DµH) +O

(
a2)+O

[
(∂a)2] ,

(5.11)
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where we defined the parameters

q̃Q,u = U†
u · qQ · Uu, q̃u = V†

u · qu · Vu,

q̃Q,d = U†
d · qQ · Ud, q̃d = V†

d · qd · Vu,

q̃L,e = U†
e · qL · Ue, q̃e = V†

e · qe · Ve,

and the masses matrices as

Mψ = v√
2

U†
ψ · Yψ · Vψ.

The non-invariant measure of path integral for fermions introduces the Fujikawa
anomaly [198], which is realized as a shift of the coupling constants between ALP
and gauge fields [197]:

Cb →CB ≡ Cb − αY
8π
∑(

qQ
3 − 8qu

3 − 2qd
3 + qL − 2qe

)
Cw →CW ≡ Cw − α2

8π
∑

(3qQ + qL)

Cg →CG ≡ Cg − αs
8π
∑

(2qQ − qu − qd)

(5.12)

The new theory for ALP is given by the sum of equation (5.9) and equation
(5.11). The former has not been rotated since each one of its term is already
proportional to ALP – or to partial derivative of the ALP – thus every further term
that the phase rotation would produce is already counted in O(a2) – or in O[(∂a)2].
Rewriting the Hermitian matrices that performed the phase redefinition

q̃ψ = C̃ψ

Λ , qH = C̃H
Λ ,

and taking into account also Fujikawa anomaly, the effective Lagrangian becomes:

LY
ALP = 1

2∂µa ∂
µa− 1

2m
2
aa

2

+ CB
Λ aBµνB̃

µν + CW
Λ aW i

µνW̃
i µν + CG

Λ aGaµνG̃
aµν

+
∑

ψ=L,Q

(
Cψ
Λ − C̃ψ

Λ

)
∂µa (ψσ̄µψ) +

∑
ψ=e,u,d

(
Cψ
Λ − C̃ψ

Λ

)
∂µa

(
ψ†σµψ

)
+ ia

(
Ce

Λ
(
`†HeR

)
+ Cd

Λ
(
q†HdR

)
+ Cu

Λ
(
q†H̃uR

)
+ h.c.

)
+ i

(
CH
Λ − C̃H

Λ

)
∂µa

(
H†

↔
DµH

)
.

where the capital Ci, for i = {e, u, d}, are defined as

Ce =yd
(
C̃e − C̃L + C̃H

)
,

Cu =yd
(
C̃u − C̃Q − C̃H

)
, yψ =

√
2
v

Mf ,

Cd =yd
(
C̃d − C̃Q + C̃H

)
.

(5.13)
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Figure 5.1: The lowest-order contributions to ALP → gg scattering process.

One may already have noticed that since the parameters of the phase rotation, in
equation (5.2.1), are free, we can fix them at the values of the original couplings;
those that appear in equation (5.9), to get

LY
ALP = 1

2∂µa ∂
µa− 1

2m
2
aa

2 + CB
Λ aBµνB̃

µν + CW
Λ aW i

µνW̃
i µν + CG

Λ aGaµνG̃
aµν

+ ia

(
Ce
Λ
(
`†HeR

)
+ Cd

Λ
(
q†HdR

)
+ Cu

Λ
(
q†H̃uR

)
+ h.c.

)
,

(5.14)

where we have no longer used the convention of bold symbol for matrices. Despite
this Lagrangian is equivalent to that in equation (5.9), it allows us to look at ALP
theory from a different point of view, the interactions between the ALP and the
fermions are proportional to Yukawa coupling; this also explains the superscript Y
in the previous equation.

5.2.2 Comparing Effective Field Theories
In previous section we obtained a new Lagrangian for ALP field. The computation
has been rigorously executed and starting from the most general Lagrangian for
ALP, where interactions with fermions of SM are encoded in derivative operators
of ALP field itself, we ended up with new couplings that connect ALP and fermi-
ons through Yukawa-like operators. We now have to investigate whether the two
theories really describe the same physics.

In this section, we will prove the equivalence of the two Lagrangians by cal-
culating the amplitude of a specific process in both theories, namely ALP → gg.
Without losing generality we can choose Cg = 0, so that in Lagrangian with deriv-
ative coupling the process can only take place at 1-loop. Moreover, equation (5.12)
can be simplified in

CG = −αs
8π
∑

(2qQ − qu − qd). (5.15)

In the theory with Yukawa-like couplings Feynman diagrams that contribute to
the amplitude of ALP → gg are depicted in figure 5.1. we have made is that the
loop diagram is proportional to the mass of the particle running through it, so we
compute the loop for a top quark. From Lagrangian (5.14), we get the required
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interaction vertices

VYALP gg = 2iCG
Λ δab εµνρσ (pρ1pσ2 − pσ1p

ρ
2) ,

VYALP tt = Ct v√
2Λ

δab γ5.
(5.16)

The tree-level amplitude is straight:

iMtree = 4iCG
Λ δab εµνρσ p

ρ
1p
σ
2 ε

µ(p1) εν(p2). (5.17)

By slightly deviating from our main purpose, we can obtain the decay width of the
process without many efforts. The squared amplitude is:

|Mtree|2 = 256C2
G

Λ2 (p1 · p2)2
,

and the dynamics in the center of mass frame reads

p1 = (ma/2,ma/2, 0, 0),
p2 = (ma/2,−ma/2, 0, 0),
p3 = (ma,~0),

thus leading to the decay width:

dΓ = 2C2
G

Λ2π
m3
a

The computation of the decay width was made by taking into account that the final
state presents two identical particles, therefore a factor of 1/2 must be included in
the integration over the solid angle. Since we have implemented both EFT theories
in FeynRules [80] and obtained the model files in UFO format [81] that were upload
on Madgraph5_aMC@NLO [58], we checked this result by fixing the parameters.

Coming back to the matching between the two effective field theories, we have
to compute the amplitude at next to leading order with a top quark running in the
loop. Our convention on energy conservation is fixed by p1 + p2 = p3, with the
momenta of gluons that are outgoing while the ALP momentum is incoming. The
amplitude of the loop diagram is:

iMloop = − εµ(p1) εν(p2)
∫

dDl

(2π)D
v γ5Ctδ

ab

√
2Λ

i(/l − /p1 +mt)
(l − p1)2 −m2

t

× (igsγµT g1) i(
/l +mt)
l2 −m2

t

(igsγνT g2)
i(/l + /p2 +mt)
(l + p2)2 −m2

t

+
(

1 ↔ 2
µ ↔ ν

)
where Mloop is made of two addends since gluons of the final state can be exchanged
among themselves. This amplitude appears superficially divergent. However, the
result must be UV finite. Lorentz invariance and symmetry under the exchange of
1 ↔ 2 and µ ↔ ν, which is nothing but Bose statistics, suggests that there are
only two allowed structures, which are pν1p

µ
2 and εµνρσp1 ρp2σ. In both cases, the

amplitudes will be, at worst, proportional to p2 ∫ d4l/l5 which means they are not
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divergent. Making use of dimensional regularization, we have to deal with the issue
of γ5 and εµνρσ extensions, as they are specific objects of four-dimensional space.
In this thesis, we overcome this problem by adopting the KKS-scheme, whose main
rules are given in Appendix A.2.1.

After trace resolution, we can write the amplitude as a function of Passarino-
Veltman scalar integrals (PaVe), see Appendix A.8, to get

iMloop = i g2
s Ct vmt δ

ab

(2π)2
√

2Λ
εµ(p1) εν(p2)εµνρσp1 ρp2σ C0(−p1, p2,mt,mt,mt)

Finally, summing up tree-level and one-loop amplitudes, we get the desired result
for the Lagrangian that carries Yukaka-like interactions

iMY = iMtree + iMloop

= 2iδg1g2

Λ εµ(p1) εν(p2)εµνρσ p1 ρp2σ(
2CG + g2

s Ct vmt

2 (2π)2
√

2
C0(−p1, p2,mt,mt,mt)

)
.

(5.18)

On the contrary, the computation for the Lagrangian with derivative coupling
is more complicated. As previously said, since the coupling with gluon is fixed at
zero, the scattering process ALP → gg occurs, at least, at one-loop. In this case,
the interaction vertex involved in the computation couples the ALP with the top
quark:

VDALP tt = Ctop δ
ab

Λ /p3 P+, (5.19)

where the projectors are, as usual, given by P± =
(
1± γ5) /2. Then the amplitude

reads:

iMD = − εµ(p1) εν(p2)
∫

dDl

(2π)D
Ctop δ

ab /p3 P+

Λ
i(/l − /p1 +mt)
(l − p1)2 −m2

t

× (igsγµT g1) i(/l +mt)
l2 −m2

t

(igsγνT g2)
i(/l + /p2 +mt)
(l + p2)2 −m2

t

+
(

1 ↔ 2
µ ↔ ν

)
.

The computation of the trace is quite hard and long, in addition many stratagems
are required to obtain the result. First of all, distinguishing terms according to the
presence or absence of γ5, we get:

tr[. . .] = 1
2 Ctop

(
tr[. . .]no γ5 + tr[. . .]γ5

)
.

A simple shrewdness tells that the contribution of the first term must be null:
looking at equation (5.18), we realize that the complete result is proportional to
Levi-Civita tensor, which cannot come from a trace without γ5. Our hypothesis
was checked with FeynCalc: a divergent result was obtained from the integration of
the term that does not carry γ5, however, the result is fully anti-symmetrical under
the exchange µ ↔ ν and 1 ↔ 2. The loop diagram where gluons of the final state
have been exchanged provides for such contribution, thus removing the divergence
and resulting in a zero net result.
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The trace involving γ5 results in

tr[. . .]γ5 =tr[γργ5γαγµγβγνγγ ] (p1 + p2)ρ (l − p1)α lβ (l + p2)γ
+ tr[γργ5γαγµγν ] (l − p1)α (p1 + p2)ρm2

t

+ tr[γργ5γµγβγν ] lβ (p1 + p2)ρm2
t

+ tr[γργ5γµγνγγ ] (l + p2)γ (p1 + p2)ρm2
t ,

The last three terms – those proportional to the mass of top quark – can be recast
according to the rules provided by KKS-scheme, while the first term was settled by
the trick suggested in [208]. The idea consists in rewriting the momentum of ALP
particle as:

p3 ρ = (p1 + p2)ρ = (l − l + p1 + p2)ρ = − (l − p1)ρ + (l + p2)ρ ,

in such a way that the simplification (/l − /q)(/l − /q) = (l − q)2 can be applied to
decrease the number of Dirac matrices involved in the trace. The whole trace then
turns to:

tr[. . .] = Ctop
2
(
−4i εµνρσ ((l − p1)2 −m2

t ) p2 ρ lσ − 4i εµνρσ ((l + p2)2 −m2
t ) p1 ρ lσ

+ 8i (gραεµβνγ − gρµεαβνγ + gρβεαµνγ − gρνεαµβγ + gργεαµβν)
× (l + p2)ρ (l − p1)α lβ (l + p2)γ

+8im2
t ε
µνρσp1 ρ p2σ

)
.

The first line is null since each term gives rise to an integrand function that is com-
posed by either odd terms in the loop momentum – once the shift at denominator
will take place – or tensor that are symmetric under the exchange of two indices,
therefore the contraction with Levi-Civita symbol returns a null result. Moreover,
the usual simplification for product of even number of loop momentum is applied,
however, combined with a further trick that helps in the solution of the integral:

lρ lβ p1α p2 γ → l2

D
gρβ p1α p2 γ = (l2 −m2

t ) +m2
t

D
gρβ p1α p2 γ . (5.20)

The amplitude, written in terms of Passarino-Veltman scalar integral, contains
both B0 and C0. Since the former does not appear in equation (5.18), we can solve
it (the procedure is given in Appendix A.8) to get

iMD = i δab g2
s Ctop

8π2Λ εµ(p1) εν(p2) εµνρσ p1 ρ p2σ

×
(
1 + 2m2

t C0(−p1, p2,mt,mt,mt)
)

+O(ε)
(5.21)

The matching between the two theories is performed by equaling the amplitude
in equation (5.18), that comes from the Lagrangian with Yukawa-like interactions,
with that of equation (5.21), which is obtained by the Lagrangian with derivative
couplings

CG = g2
s

32π2 Ctop,

Ct =
√

2mt

v
Ctop.

(5.22)
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In other words, the two theories reproduce the same physics if their coupling con-
stants are related by these relations. Making use of equation (5.15), we can check
that

CG = 0 − αs
8π (−qu) = αs

8π Ctop,

while from equation (5.13), we obtain

Ct = yd c̃u =
√

2mt

v
Ctop.

in agreement with equation (5.22).
In conclusion, the computation shows that the original Lagrangian, in equa-

tion (5.9), not only represents the most general theory of ALP up to dimension-5,
but it also considers interactions with fermions of SM through derivative couplings
that, ‘a priori’, do not discriminate between flavors. Nevertheless a simple phase
redefinition of SM fields, whose phase is proportional to the ALP itself, gives rise
to a new Lagrangian, namely equation (5.14), that is completely equivalent to the
previous in describing physics, but which encourages coupling with heavy ferminos.
Emphasizing this behavior, we can formulate a top-philic theory for the ALP.

5.3 Top-philic Axions-like Particles
In the Lagrangian with Yukawa-like interactions we choose to switch off all the
couplings except for that with top quark. Including the top quark, kinetic term and
its interaction with the gluon field, the effective field theory is

LEFT = t̄
(
i/∂ −mt + gs /G

a
T a
)
t

+ 1
2∂µa ∂

µa− 1
2m

2
aa

2 − Ct v√
2 Λ

t̄
(
iγ5 a

)
t,

(5.23)

where Yukawa-like coupling has been recast by the vev of the Higgs field.

5.3.1 Renormalization of ALP theory
Since our purpose is to make predictions up to next to leading order in the ALP
theory, we have to renormalize the Lagrangian. The renormalization procedure of
the ALP sector requires the introduction of the following counter-terms:

a0 =
√
Zaa

R, t0 =
√
Z2 t

R, m0
a = Zmam

R
a ,

m0
t = Zmtm

R
t , C0

t = ZCtCt.

The renoramlization of Yukawa-like coupling is fixed by that of the coupling con-
stant between ALP and top quark, such as ZY = ZCtZ2

√
Za. Following the canon-

ical procedure, we introduce the δ parameters

Zi ≡ 1 + δi
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Figure 5.2: The self-interaction of quark top in the ALP top-philic theory.

where i = {a, 2, ma, mt, Y }. The EFT Lagrangian then becomes:

LEFT = t̄
(
i/∂ − mt + gs /G

a
T a
)
tj + 1

2 ∂µa ∂
µa− 1

2 m
2
aa

2

− Ct v√
2 Λ

t̄
(
iγ5 a

)
t+ δ2 t̄

(
i/∂ + gs /G

a
T aij
)
t− (δ2 + δmt)mt t̄t

+ 1
2 δa∂µa ∂

µa− 1
2 (δa + δma)m2

aa
2 − Ct v√

2 Λ
δY t̄

(
iγ5 a

)
t,

(5.24)

where we dropped the superscript R as it is not necessary to provide any further
clarification. The renormalized theory also includes the following rules

= i
(
p2δa − (δa + δma)m2

a

)
,

= i
(
/p δ2 − (δ2 + δmt)mt

)
δij ,

while the counter-term of vertices are the same as equation (5.16) multiplied by
δ2 and δY , respectively. Our main goal is to make predictions on the top quark
physics, assuming that ALP is involved in the interaction of this field; thus we need
to compute the counter-term strictly related to top quark only, namely δ2 and δm

Wave Functions

The renormalization procedure of ALP sector, up to one-loop corrections, requires
the computation of 1PI diagrams of top quark propagator. At this level of accuracy,
the whole set of 1PI is composed by two diagrams: the top self-interaction and the
counter-term; then the complete propagator of the top quark is

iG(/p) = i

/p−mt + Σ(/p)
, (5.25)

where the sum of 1PI diagrams is Σ(/p) ≡ iΣALP (/p) + i(/pδ2 − (δ2 + δmt)mt), where
ΣALP (/p) is the top quark self energy in the theory of ALP, whose Feynman diagram
is depicted in figure 5.2. The on-shell renormalization scheme fixes the singularity of
the propagator at the physical mass and its residue must be equal to the imaginary
unit:

/p+ Σ(/p)
∣∣
mt

= mt, lim
/p→mt

i(/p−mt)
/p−mt + Σ(/p)

= i.

These conditions set the counter-terms

δmt = 1
mt

Σalp(mt), δ2 = − d

d/p
Σalp(/p)

∣∣
mt
, (5.26)
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Figure 5.3: Feynman diagrams involved in the computation of the counter-term for
the interaction between gluon and top quark.

The computation of the diagram can be easily addressed with Feynman variables

iΣALP (/p) = −iC
2
t v

2

2Λ2 δac
µ2ε

(4π)2−ε

∫ 1

0
dx (mt − /px)Γ(ε)

∆ε
,

where, as usual, we have set D = 4 − 2ε. Factorizing out δac, since it appears in
the propagator, and applying the conditions of equation (5.26), we get

δmt = − C2
t v

2

64π2Λ2

(
1
ε

+ log
(
µ̃2

m2
t

)
+ x2 + 1 −

(
x2 − 2

)
x2 log x

+x3
√
x2 − 4 log

( √
x2 − 4 + x

2

))
,

δ2 = − C2
t v

2

64π2Λ2

(
1
ε

+ log
(
µ̃2

m2
t

)
+ 3x2 + 1 + (4 − 3x2)x2 log x

− (10x3 − 3x5)√
x2 − 4

log
( √

x2 − 4 + x

2

))
,

(5.27)

where we defined x = ma/mt and µ̃2 ≡ 4πµ2e−γE . In the MS-scheme the two
counter-terms are equal:

δ2 = δmt = − C2
t v

2

64π2Λ2
1
ε
. (5.28)

Interaction Vertex

Since in ALP theory the gluon field and the strong coupling do not require to be
renormalized, the counter-term of top wave function automatically fixes that of
gluon-top interaction. This can be directly derived from equation (5.24). Neverthe-
less one can check this statement by a direct computation of δG, that mathematic-
ally means to compute the Feynman diagrams represented in figure 5.3. The vertex
structure is the same as that obtained by Schwinger in his famous computation
for the QED vertex correction, which is fixed by Lorentz invariance and Gordon
identity

Γµ = γµF1(k2) + iσµν

2mt
kν F2(k2)

where kν denotes the photon momentum. In addition, in our case we only need to
consider the color charge. Since the computation is merely a check of the result
obtained in equation (5.27) we do not show it.
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5.4 NLO amplitude of q̄q → t̄t

A simple process, where ALP theory might be tested, is q̄q → t̄t scattering, that
at next-to-leading order involves the loop diagram in figure 5.4. The counter-term

q

q̄

ALP

t

t̄

Figure 5.4: The next-to-leading order diagram for the scattering process q̄q → t̄t.

δ2 computed in previous section is necessary to remove the divergent terms from
the amplitude. The computation, which is quite long and complex, was made
in Mathematica powered by the package FeynCalc, by making use of Passarino-
Veltman reduction technique. Nevertheless, the following C0 scalar integral will
show up in the solution

C0 ≡C0(s, m2
t , m

2
t , m

2
t m

2
t , x

2m2
t )

= 1
iπ2

∫
d4l

1
(l2 −m2

t )((l +
√
s)2 −m2

t )((l +mt)2 − x2m2
t )
,

where x = ma/mt. The X-package returns the full solution of this integral3, that we
simplified by operating an expansion series over x in each Di-Logarithm that appears
in the solution, the series has been truncated at O(x), however, since the coefficient
of C0 is proportional to x2, the full amplitude will be a O(x3). Additionally, the
properties of Di-Log

Li2
(

1
1 − z

)
= Li2(z) − 1

2 log2(1 − z) + log(−z) log(1 − z) + π2

6 ,

Li2
(

z

z − 1

)
= −Li2(z) − 1

2 log2(1 − z),

have been applied to simplify the computation that results in

C0 = − 1
3
(
12Li2(z) − 12i log(x)(π − i log(z)) − 3 log2(z) + 6 log(1 − z) log(z)

− 6iπ log(z) + 6iπ log(1 − z) + 6 log(1 − z) log(−z) + 4π2)
where

z = 1 − v

1 + v
and v =

√
1 − 4m2

t

s
, (5.29)

3The computation can be also performed by Feynman variables techniques, however, the com-
putation is far from being straight and it requires specific steps, as for instance a shift on the inner
Feynman variable that linearizes the denominator of the integrand function respect to external
variable. Then the order of integration can be reversed according to Fubini’s theorem.
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with s = (pq̄ + pq)2, therefore the condition s ≥ 4m2
t can be rendered as 0 ≤ v < 1

and 0 < z ≤ 1, with z that reaches its maximum value when the energy involved in
the process achieves its minimum.

The NLO amplitude, which is given by the sum of tree-level diagram, one loop
diagram and its counter-term, at order O(x3) is written in equation (A.30).

5.4.1 Scalar Axion-like Particles
The results shown up to this point have been obtained by considering ALP as a
pseudoscalar field, however, we can repeat every computation for a scalar particle.

Starting from Yukawa vertex:

V ≈ gψ̄φψ scalar case
V ≈ gψ̄

(
iγ5)φψ pseudo-scalar case

Comparing the second line of this equation with the interaction term in equation
(5.23), we get:

g ≡ − Cqtv√
2 Λ

,

therefore, the theory for scalar ALP is:

LEFT = t̄
(
i/∂ −mt + gs /G

a
T a
)
tj + 1

2∂µa ∂
µa− 1

2m
2
aa

2 − Ct v√
2 Λ

t̄ a t. (5.30)

The interaction vertex between ALP and top quark is

VYs = − iCt v√
2 Λ

δab. (5.31)

The same renormalization procedure described for pseudoscalar case can be repeated
for scalar ALP. The counter-terms are

δmt = C2
t v

2

64π2Λ2

(
3
ε

+ 3 log
(
µ̃2

m2
t

)
− x2 + 7 +

(
x2 − 6

)
x2 log(x)

+ x
(
4 − x2) √x2 − 4 log

( √
x2 − 4 + x

2

))

δ2 = C2
t v

2

64π2Λ2

(
−1
ε

− log
(
µ̃2

m2
t

)
− 3x2 + 7 +

(
3x2(x2 − 4) + 8

)
log(x)

−3x(x4 − 6x2 + 8)√
x2 − 4

log
( √

x2 − 4 + x

2

))
.

(5.32)

Even for scalar case we proved that in the MS-scheme the equality δ2 = δG still
holds.

The NLO amplitude of the scattering process q̄q → t̄t was obtained also in scalar
theory and its expression is given in equation (A.32)
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5.4.2 Massless Limit
An interesting case of study is the ALP massless theory. We computed the ALP
massless limit for the NLO amplitude of qq̄ → tt̄ in both pseudoscalar and scalar
theories.

From literature [3], we know that the amplitude of a process involving the real
emission of a massless scalar particle is divergent, however, this infrared divergency
is absorbed by the NLO amplitude of the same process without the real emission. In
fact, in perturbation theory real emission graphs are of the same order as one-loop
amplitudes.

Since the NLO amplitude, computed above, represents the regulator of the pro-
cess with a real ALP emission, we expected that its massless limit is divergent for
the scalar theory, indeed

lim
ma→0

iMscalar = ∞,

lim
ma→0

iMpseudo =T g1
a1 a2

T g1
a3 a4

v̄(p2)γµu(p1)

× ū(p3)
z (i log(z) − π)

(
mt(z + 1)2 γµ − 2iz (p3 + p4)µ

)
64π4m3

t (z − 1)(z + 1)3 v(p4),

which confirms that the real emission amplitude of a scalar ALP particle presents
an IR divergence.

5.5 Yukawa Potential in the non-Relativistic Limit
In this section we will compute the behavior of the Yukawa potential between two
top quarks that interact by exchanging an ALP particle, both in the pseudo-scalar
and scalar theory. The result is obtained in the non-relativistic (NR) limit. We
will proceed by computing the amplitudes in the effective field theory, then we will
apply the non-relativistic limit and by comparing with the Born approximation for
non-relativistic quantum theory, we will obtain the Yukawa potential.

In the effective field theory of top-philic ALP, the interaction occurs when a top
quark and an anti-top quark exchanges a virtual ALP, hence the scattering process
can take place either through s-channel and t-channel.

First of all, we must check the sign of Wick contraction. Starting from the
s-channel (time flows from left to the right), without taking care of the coupling
constant that could be imaginary or real:

q

p

k

ALP

p′

q′
t̄

t t

t̄

= 〈p′,q′| (1/2!)∫ d4x (ψ̄ψa)x
∫
d4y (ψ̄ψa)y |p,q〉

(5.33)
where the factor (1/2!) coming from Taylor series of the time-ordering product is
always canceled by the 2! ways of realize the Wick contraction. The initial and final
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states are labeled as:

| p, q 〉 ∼ a†
p a

†
q| 0 〉 〈 p, q | ∼ 〈 0 | aq ap

so that (| p, q 〉)† = 〈 p, q |. Where as †
p and asp are the creation and annihilation

operators of the particle. Thus,

| p, s〉 =
√

2Ep a
s †
p | 0 〉 〈 p, s | = 〈 0 | asp

√
2Ep

with the usual normalization convention

〈 p, s | q, r 〉 = (2π)3δ3(p − q) δrs. (5.34)

The quantized Dirac fermion and anti-fermion are

ψ(x) =
∫

d3p

(2π)3
1√
2Ep

∑
s

(
asp u

s(p) e−ipx + bs †
p vs(p) eipx

)
,

ψ̄(x) =
∫

d3p

(2π)3
1√
2Ep

∑
s

(
as †

p ūs(p) eipx + bsp v̄
s(p) e−ipx) ,

where bs †
p and bsp are the creation and annihilation operators for the antiparticles.

The initial and final states embedding a particle or an antiparticle generated by the
Dirac field are

ψ(x) | p, s 〉 = us(p) e−ipx | 0, 〉 〈 p, s |ψ(x) = 〈 0 | vs(p) eipx,
ψ̄(x) | p, s 〉 = v̄s(p) e−ipx | 0, 〉 〈 p, s | ψ̄(x) = 〈 0 | ūs(p) eipx,

where the normal modes u(x) and ū(x) decode for an incoming and outgoing
particles respectively, while v̄(x) and v(x) decode for an incoming and outgoing
antiparticles.

To untangle the operators in the amplitude we can move each field functions close
to the corresponding operator, taking into account the anti-commutation relation
for Dirac field. After the integrations over the space-time points and the transferred
momentum, we obtain the amplitude in the s-channel:

iMs = (2π)4δ4(p+ q − p′ − q′) i

k2 −m2
a

v̄(q)u(p) ū(p′) v(q′), (5.35)

where p and q are the incoming momenta and p′ and q′ the outgoing momenta. The
energy conservation reads k = p+ q or k = p′ + q′, where k is the four-momentum
of the ALP.

Following the same procedure for the t-channel, we get:

iMt = −(2π)4δ4(p+ q − p′ − q′) i

k2 −m2
a

ū(p′)u(p) v̄(q) v(q′), (5.36)

note that the energy conservation now is k = p − p′ and k = q′ − q. In particular,
expression (5.36) agrees with literature [3], where authors usually calculate the
Yukawa-interaction for processes that involve only particles, as p + q → p′ + q′.
They find a positive untangled amplitude, however it is well-known that the trade
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of a pair of particles for a pair of anti-particles introduces a minus sign. Summing
the two amplitudes:

iM = i(2π)4δ4(p+ q − p′ − q′)

×
(

1
(p+ q)2 −m2

a

v̄(q)u(p) ū(p′) v(q′) − 1
(p− p′)2 −m2

a

ū(p′)u(p) v̄(q) v(q′)
)
.

Note that up to this point, we did not specify if the ALP involved in the computation
is a scalar or a pseudoscalar field. We can easily make this distinction by introducing
the vertex operator between ALP and Dirac spinors. Since vertex operators are:

VPS = Ct v√
2 Λ

γ5, VS = −i Ct v√
2 Λ

, (5.37)

the amplitudes become

iMPS = i

(
Ct v√

2 Λ

)2
(2π)4δ4(p+ q − p′ − q′)

×
(

1
(p+ q)2 −m2

a

v̄(q) γ5 u(p) ū(p′) γ5 v(q′)

− 1
(p− p′)2 −m2

a

ū(p′) γ5 u(p) v̄(q) γ5 v(q′)
)
,

iMS = i

(
Ct v√

2 Λ

)2
(2π)4δ4(p+ q − p′ − q′)

×
(

1
(p+ q)2 −m2

a

v̄(q)u(p) ū(p′) v(q′)

− 1
(p− p′)2 −m2

a

ū(p′)u(p) v̄(q) v(q′)
)
.

(5.38)

In order to perform the NR limit, the spinors chains must be evaluated. The suitable
form of Dirac spinors to work in the NR limit is:

us(p) =
√
Ep +m

2Ep

 χs

p·σ
Ep+m χs

 vs(−q) =
√
Eq +m

2Eq

 −q·σ
Eq+mηr

ηr


where χ and η are 2-components spinors. The appropriate representation of gamma
matrices to perform the NR limit is Dirac representation:

γ0 =
(
1 0
0 −1

)
, γ5 =

(
0 1

1 0

)
.

In NR limit Ep′ ≈ Ep ≈ mt, thus:

ūs′(p′)us(p) = χ†
s′

(
1 − (p′ · σz) (p · σz)

4m2
t

)
χs ,

where σz are nothing but Pauli matrices for the top quark. For the anti-top we
have:

v̄r(q) vr′(q′) = −η†
r

(
1 − (q · σz̄) (q′ · σz̄)

4m2
t

)
ηr′ ,
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where σx̄ are the Pauli matrices for the anti-top quark. The corresponding spinor
chains in the pseudoscalar case are:

ūs′(p′) γ5 us(p) = χ†
s′

(p − p′) · σz
2mt

χs = χ†
s′

kt · σx
2mt

χs ,

v̄r(q) γ5 vr′(q′) = η†
r

(q′ − q) · σz̄
2mt

ηr′ = η†
r

kt · σx̄
2mt

ηr′ ,

where kt stands for the transferred momentum in t-channel. Thus, in scalar case
there is an extra minus sign compared to pseudoscalar case. For s-channel, we have:

v̄r(q)us(p) = −η†
r

(p + q) · σ

2mt
χs = −η†

r

ks · σ

2mt
χs ,

ūs′(p′) vr′(q′) = −χ†
s′

(p′ + q′) · σ

2mt
ηr′ = −χ†

s′
ks · σ

2mt
ηr′ ,

v̄r(q) γ5 us(p) = −η†
r

(
1 + (q · σz̄) (p · σz)

4m2
t

)
χs ,

ūs′(p′) γ5 vr′(q′) = χ†
s′

(
1 + (p′ · σz) (q′ · σz̄)

4m2
t

)
ηr′ ,

here ks stands for the transferred momentum in s-channel. Now the extra minus
sign appears in pseudo-scalar case, thus the sign of the two amplitudes, up to this
point, is the same.

Furthermore, in NR limit holds:(
kt
)2 = (p− p′)2 ≈ (0, p − p′)2 = −

(
kt
)2
,

(ks)2 = (p+ q)2 ≈ (2mt, 0)2 = 4m2
t ,

therefore, the scalar propagators read:

t− channel) 1
k2 −M2

a

≈ − 1
(kt)2 +M2

a

s− channel) 1
k2 −M2

a

≈ 1
4m2

t −M2
a

Substituting these results in equation (5.38), we can obtain the amplitudes in the
non-relativistic limit. Since our ALP is a light particle, we have 2mt >> Ma, thus
the amplitudes can be truncated at order O(1/(4m2

t )2), this results in a complete
suppression of the s-channel in scalar case, while only its leading order survives in
pseudoscalar case. Comparing the amplitudes with Born approximation of quantum
mechanics

〈f | iT |i〉 = −iṼ (k) (2π)4 δ (Ef − Ei) δ(pf − pi),
we will obtain the Yukawa potentials. The comparison must take into account the
normalisation prescription of initial and final states, that in quantum mechanics is
〈p|q〉 = (2π)3δ(p − q), which is equivalent to the normalisation of our quantum
field theory, given by equation (5.34). Moreover, to remove the bi-spinor we must
notice that choosing their value, we are fixing the initial and final helicity states,
hence:

χ†
s ηr = η†

r χs = δsr χ†
s [M ]2×2 ηr = [M ]sr
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Setting k ≡ kt

ṼPS(k) = −
(
Ct v√

2 Λ

)2 (
−δs r δs′r′

4m2
t

+ [ k · σz ]s′s [ k · σz̄ ]r r′

(k2 +m2
a) 4m2

t

)
,

ṼS(k) = −
(
Ct v√

2 Λ

)2 1
k2 +m2

a

×
(
δs s′ δr r′ −

δr r′ [ (p′ · σz) (p · σz) ]s′s

4m2
t

−
δs s′ [ (q · σz̄) (q′ · σz̄) ]r r′

4m2
t

)
.

Yukawa Potential for Scalar ALP

Making use of relation (A.4), we can simplify the second term in the bracket of the
scalar potential. Then performing a Fourier transformation, we obtain the potential
as a function of space-time coordinates. Changing from linear to polar coordinates,
then d3k → dk dθ dϕ k2 sin θ, with k ∈ [−∞,+∞], θ ∈ [0, π] and ϕ ∈ [0, 2π]. The
integration is now straight, and the potential is

VS(x) = −
(
Ct v√

2 Λ

)2
e−ma x

4π x δs s′ δr r′

+
(
Ct v√

2 Λ

)2
e−ma x

4π x

[
δs s′ δr r′

(
p2 + q2)

4m2
t

−i
(
ma + 1

x

) (
δr r′ [(x̂ · σz) (p · σz) ]s′s

4m2
t

−
δs s′ [(q · σz̄) (x̂ · σz̄) ]r r′

4m2
t

)]
,

(5.39)

where ∂ix = xi/x = x̂i. The first addend returns the well-known Yukawa potential
of an interaction mediated by a scalar particle. In agreement with literature, the
potential is universally attractive. On the contrary, the other terms, that represent
higher-order corrections introduce a repulsive adjustment – being of opposite sign.

Yukawa Potential for Pseudocalar ALP

For the purpose of obtaining the pseudoscalar potential, we have to replicate the
procedure employed in scalar case

VPS(x) =
(
Ct v√

2 Λ

)2 (
δs r δs′r′ δ(3) (x)

4m2
t

+ [ ∇ · σz ]s′s [ ∇ · σz̄ ]r r′

4m2
t

e−max

4π x

)
,

where the derivatives of the second term can be rewritten as:

VPS(x) =
(
Ct v√

2 Λ

)2
m2
a e

−Ma x

(4m2
t ) 12π x

×

[
[Sz z̄]s′s r r′

(
1 + 3

ma x
+ 3

(ma x)2

)
+ [ σz ]s′s · [ σz̄ ]r r′

]
,

(5.40)

for a more detailed explanation, see Appendix A.7.2. In previous equation, the spin
tensor operator S12 = 3(σ1 · x̂)(σ2 · x̂) − σ1 · σ2 has been introduced, with Pauli

115



matrices; the latter represent the top and anti-top spins. Given that the spin value
is 1/2 for both particle and anti-particle, the total spin of the system belongs to
S = {0, 1}. Assuming that spins are oriented along x̂, then (σz · x̂) and (σz̄ · x̂)
can only be ±1/2, consequently (σz · σz̄) can take the values ±1/4, depending on
the relative alignment. Accordingly to that, the spin tensor operator belongs to
Szz̄ = {−1/2, 1/2}, with the negative value for the anti-aligned configuration.

In conclusion, the overall sign of the pseudo-scalar potential depends on the
relative alignment of spins in the initial states: when the spins of the top quark is
anti-aligned to that of anti-top, the total spin sums zero and an attractive potential
with an overall negative sign arises (S = 0 and Szz̄ = −1/2); on the contrary, when
the spin of the top quark is aligned to that of anti-top, a repulsive potential with
positive overall sign (S = 1 and Szz̄ = 1/2) rules the interaction.

5.6 Conclusions and Outlook
In this section we started by presenting the Strong CP Problem, which most fam-
ous solution relies on the introduction of a new spontaneously broken symmetry,
i.e., UPQ(1), whose Goldstone boson is called axion. Subsequently, we saw that
experimental efforts in the searching for axions are mostly investigating its inter-
action with photon field, that has nothing in common with Strong CP problem,
thus paving the way for ALP theories. In particular we presented the most general
Lagrangian for ALP up to dimension-5 operators, that involves democratic operat-
ors that couple ALP field with fermions of the SM. A phase rotation of the latter,
including also Higgs field, yields to a new theory that is completely equivalent to the
previous from the physical point of view, but which highlights that ALP coupling
with heavy fermions are preferred.

The new top-philic theories – one for scalar and on for pseudoscalar ALP –
were renormalized in order to compute NLO amplitudes, as we did for q̄q → t̄t,
and cross-section that can be compared with experimental data in order to set the
free parameters of the Lagrangian, namely the mass of the ALP and the coup-
ling constant for the interaction with top quark. Both EFTs were implemented
into FeynRules to generate the model files in the UFO format, which have been
upload on Madgraph5_aMC@NLO and a preliminary analysis was already performed.
Specifically, with the theories of ALP we tried to recover the discrepancy between
experimental data and theory prediction highlighted by both ATLAS and CMS in
the scattering process pp → t̄t. Each top rapidly decays in a bottom quark by
emitting a W boson, which in turn leptonically decays4 in a pair of a charged and
a neutral leptons. The signature of the final state is then a pair of charged leptons
plus some missing energy of the two undetected neutral leptons. In particular AT-
LAS and CMS measured the differential cross-section as a function of the di-lepton
∆φ, i.e., the azimuthal angle between the two charged leptons in the final state.
The results of their analysis can be found for in [199, 199], however, the state of
art of this discrepancy stands out from figure 5.5 [201]. The lower plot shows that
within the Standard Model at NNLO, the expected behavior of cross-section is in-
creasing as the azimuthal angle between the two charged leptons grows, while data

4The W ± boson can decay in a leptonic or hadronic state, thus a selection occurs to record the
necessary data. Moreover the letonic decay is easiest to track at LHC.
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Figure 5.5: Normalized differential cross-section as function of the di-lepton ∆φ.
The charged leptons are produced by the scattering process pp → t̄t, at

√
s = 13

TeV where the pairs of top quarks decay weakly and W± decays in turn in a leptonic
final state. The plot is taken from the LHCPhysics Web [201].

records the opposite trend. Including ALP in the theory, the main process becomes
pp → t̄t ALP , that keeps the signature of the original scattering since ALP is un-
detected. Thus, we can fix the free parameters of the theory by fitting experimental
data, however, a preliminary result shows that adding a pseudoscalar ALP to SM,
the divergence deepens; on the contrary, by adding a scalar ALP the discrepancy
becomes narrower, suggesting that our investigations should be directed primarily
towards the latter.

In conclusion, the research on axions-like particles – not necessarily restricted
to a top-philic theory – has a lot of potential since it might represent a compelling
solution to more than one open problem in fundamental physics. In addition to
those mentioned in this thesis, not only ALPs are suitable as dark matter candid-
ate [189, 202] but also several proposals have been made to solve the enigmatic
question of the anomalous magnetic moment of the muon (muon g − 2), by mainly
exploring the phenomenology of coupling with photons [204, 203, 205], which gen-
erates a NNLO contribution to muon g − 2. Axions and ALPs are also included in
specific supersymmetric theories where PQ symmetry breaking is often related to
supersymmetry breaking [206].
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Conclusions

The Standard Model of particle physics is not only an elegant framework for com-
pactly describing three of the four fundamental interactions, but it has also proven
to be very successful in predicting experimental data. Nevertheless, several phenom-
ena, from dark matter to baryon asymmetry, do not find any explanation within
SM. This theory, in fact, might be understood as a low-energy effective description
of Nature which approximates an underlying more comprehensive theory. Besides
that, the lack of direct evidences of new physics at LHC, probably because of an
insufficient energy level, further complicates theoretical research. It would be in-
accurate to state that deviations from predictions have not already been observed
since small discrepancies occur in many sectors of SM, from leptonic universality,
through top quark physics to muon g−2, to name a few. At present time, however,
there is no conclusive confirmation of new physics; with a deviation of approximately
4σ, muon g − 2 is the measurement with the largest deviation from the theoretical
prediction and it could be a window for new physics in the next future. In the
meantime, we are forced to conduct a thorough search in data to identify additional
deviations. This suggests that effective field theory might represent the suitable
facility to address with open problems of physics because higher-order operators
could account for small deviations.

In this thesis, we applied the effective field theory approach to three different
topics. Firstly, we demonstrated that light-by-light scattering might represent a pre-
ferred channel to look for higher-spin particles, like string excitations or strongly-
interacting bound states, since the coefficients of effective vertices are highly de-
pendent on the spin of the particle running in the loop. Light-by-light scattering
is extremely difficult to detect, although it has recently been discovered that it
is accessible at LHC since a large electromagnetic field strengths is generated by
ultra-relativistic colliding lead ions, therefore more precise experimental data will
be available in the near future.

Furthermore, we employed EFTs in the description of Dark Matter. Hypothes-
ising an interaction between a new fermionic dark matter field and an hypercharge
form factor, we were able to address the issue of gauge invariance at high scales
already identified as a problem in previous works. Available implementations with
the electromagnetic form factors have a limited region of validity well below the
electroweak scale. Moreover, we proved that dark matter coupling to Fµν , signals
gauge-violating processes at high energies. On the contrary, the gauge invariance
is restored by coupling dark matter with the B gauge boson. The choice to couple
dark matter with the hypercharge field is ruled by the relevant energy scale ac-
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cessible by processes involving dark matter, which can be way larger than the EW
scale. Besides photon annihilation channel, the hypercharge EFT involves the Z
boson channel. A direct consequence is that the constraint coming from the invisible
decay width of Z boson affects the parameters region of low dark matter masses.
Moreover, in the gauge-violating theory, the process W+W− → χχ provides large
unphysical contributions in collider experiments, which would lead to the incor-
rect result that indirect detection experiments have a better sensitivity than direct
searches for high values of dark matter masses. Thus, the hypercharge form factors
correctly describe the electromagnetic effective interactions of dark matter at ener-
gies relevant for dark matter and collider searches.

Finally, we studied a new physics model featuring axion-like particles. Specific-
ally, we started with the most general Lagrangian, up to dimension-5 operators,
that democratically couples an ALP to each SM field. Performing a chiral rotation
of SM matter fields and Higgs doublet, we obtain a reformulation of the theory,
completely equivalent to the previous one, which however highlights that the coup-
lings of ALPs with heavy fermions are preferred. Hence, we switched to a top-philic
theory for ALP and investigated its phenomenological implications, focusing on
next-to-leading-order processes that involves ALPs in loops, t̄t interaction medi-
ated by ALP and distribution of proton-proton collisions where a pair of top quarks
constitutes the final states.

Effective field theories have proven to be a suitable tool for search of physics
beyond the Standard Model. On one hand, they introduce the advantage of a quite
model independent description; on the other hand, by admitting high-dimensional
operators they contribute to a natural explanation of small deviations from the four-
dimensional theory. In fact, as long as direct evidence of new physics is missing, the
efforts should be concentrated on indirect searches, whose limit is determined by
both accuracy of measurements and precision of the theoretical calculations. This
thesis provides a further proof that EFT can be employed in the development of new
theories that, implementing the Standard Model, will lead to a better understanding
of Nature.
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CHAPTER

A Appendix

A.1 Pauli Matrices
Pauli matrices were identified at first by by W. Pauli while obtaining the Schrödinger-
Pauli equation1 for a non-relativistic quantum particle with 1/2-spin. In fact, in-
troducing Pauli matrices the equation assumes a more compact form.

Pauli matrices are a set of three 2 × 2 matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (A.1)

It is straight to prove that Pauli matrices are Hermitian and unitary:

σi = σ†
i σ−1

i = σ†
i ,

from which follows
σ2

1 = σ2
2 = σ2

3 = −iσ1σ2σ3 = 1.

In addition, σ matrices have null trace and det σi = −1.
Pauli matrices satisfy the following commutation and anti-commutations rela-

tions
[σi, σj ] = 2iεijkσk {σi, σj} = 2iδij1, (A.2)

whose sum leads to
σiσj = δij1+ iεijkσk. (A.3)

Contracting with the components of the 3-vectors ai and bj (that commutes with
σi)

(a · σ)(b · σ) = (a · b)1+ i(a × b) · σ (A.4)
where σ = (σ1, σ2, σ3), while in the Minkowski space-time they form, together with
the identity matrix, the following four-vectors

σµ = (1, σ) σ̄µ = (1, −σ).

Moreover, the set composed by identity matrix and Pauli matrices, form a basis
for the 2 × 2 Hermitian matrices. The commutation relation in equation (A.2) is
equivalent to that of Lie Algebra of the group SU(2). Pauli matrices are indeed
proportional to the generators of the fundamental representation of SU(2), thus
they span the su(2) algebra.

1Schrödinger-Pauli equation represents the non-relativistic limit of Dirac equation.
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A.2 Dirac Matrices
Dirac matrices, commonly named gamma matrices, are a set of four 4 × 4 matrices
labelled by γµ, that spans the matrix representation of Clifford algebra Cl1, 3(R),
defined by the anti-commutation relation:

{γµ, γν} = 2gµν1, (A.5)
where γµ = (γ0, γ1, γ2, γ3).

Dirac matrices can be expressed in different representations; however, the most
used is Weyl (or chiral) representation, in which Dirac matrices are

γ0 =
(

0 1

1 0

)
γ1 =

(
0 σ1

−σ1 0

)
γ2 =

(
0 σ2

−σ2 0

)
γ3 =

(
0 σ3

−σ3 0

)
.

In a more compact way, we can write

γµ =
(

0 σ̄µ

σµ 0

)
(A.6)

In addition, we can define the fifth Dirac matrix as

γ5 ≡ iγ0γ1γ2γ3 = i

4!ε
µνρσγµγνγργσ (A.7)

which commutes with all the other gamma matrices
{γµ, γ5} = 0. (A.8)

The matrix γ5 is unitary and Hermitian, therefore its square is equal to the identity
matrix. Moreover the trace of four Dirac matrices and γ5 returns:

tr
[
γ5γµγνγργσ

]
= −4iεµνρσ,

while any trace involving an even number of matrices γ5 is null. The cyclic property
can be used when several γ5 appear in a trace in order to mash them together and
use (γ5)2 = 1.

A.2.1 Dirac Matrices in D-dimensions
The loop computation presented in this thesis are performed in dimensional regular-
isation, therefore we need to extend the definition of gamma matrices to a space of
D-dimensions. We still continue to use the Greek letter γ to refer at Dirac matrices,
thus the dimension of the space will be explicitly stated in the description.

In D-dimension the generalisation of equation (A.5) is:
{γµ, γν} = 2gµν1d×d. (A.9)

It is easy to prove that the following rules hold for Dirac matrices in a D-dimensional
space:

γµγ
µ = d

γµγνγµ = −(2 − d)γν

γµγνγργµ = (d− 4)γνγρ + 4gνρ

γµγνγργσγµ = −2γσγργν − (d− 4)γνγργσ

γµγνγργσγεγµ = 2γεγνγργσ + 2γσγργνγε − (d− 4)γνγργσγε,

(A.10)

124



and so on. Dirac matrices are engaged in the computation of S-matrix element for
scattering processes that involve fermionic fields. In particular, if a specific process
occurs at next to leading order with a fermionic loop, the number of Dirac matrices
in the trace might be very large. Nevertheless, there are many properties of gamma
matrices that can help us in the computation. First of all, the trace of an odd
number of Dirac matrices is null

tr
[
γµ1 . . . γµ2n−1

]
= 0,

while for an even number of gammas we have:

tr
[
γµγν

]
= 4 gµν

tr
[
γµγνγργσ

]
= 4 (gµνgρσ − gµρgνσ + gµσgνρ)

tr
[
γµγνγργσγεγη

]
= 4

(
gηρgµνgεσ − gησgµνgερ + gµνgρσgεη

− gηνgµρgεσ + gησgµρgεν + gηνgµσgερ

− gηρgµσgεν + gηµgνρgεσ − gησgνρgεµ

+ gµσgνρgεη − gηµgνσgερ + gηρgνσgεµ

− gµρgνσgεη + gηµgρσgεν − gηνgρσgεµ
)

tr
[
γµ1 . . . γµ2n

]
= 4

∑
π

(−1)σ(π)gµi1µj1 . . . gµinµjn .

(A.11)

where 1 = i1 < . . . < in and ik < jk, while π are the permutations of i1, j1, . . . , in, jn.
Thus, the extension of gamma matrices to a D-dimensional space is quite straight.
On the contrary, problems arise when we try to extend γ5, which definition is still
that of equation (A.7). In fact, the main property of this matrix, namely equation
(A.8), crashes against cyclic property of trace. These two rules cannot simultan-
eously hold in a coherent extension of γ5. Thus, there are two possible path we can
follow:

• KKS-scheme: retains the anti-commutation property in equation (A.8),

• BMHV-scheme: retains the trace cyclic property.

In this thesis, we embrace the KKS-scheme [207]-[208], whose main rules are

I) first rule:
{γµ, γ5} = 0,

II) second rule:

tr
[
γµ1 . . . γµ2n−1γ5] = 0
tr
[
γµγνγργσγ5] = −4iεµνρσ

tr
[
γµ1 . . . γµ2nγ5] = 4

∑
π

(−1)σ(π)εµin+1µin+2µjn+1µjn+2

× gµi1µj1 . . . gµin+2µjn+2 ,

where 1 = i1 < . . . < in+2 and ik < jk, while π are the permutations of
i1, j1, . . . , in+2, jn+2,
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III) third rule: when an odd number of γ5 appears in a trace, cyclic property
cannot be used,

IV) fourth rule: if a specific process is given by several diagrams, all the traces
must be read starting from the same vertex, that will be called reading point,

V) fifth rule: the anomalous graphs, of a theory involving an anomalous axial
current, must be read starting from an axial vector vertex in order to fulfill
the usual convention of conserved vector currents. When there are several
axial vector vertices, the Bose symmetric choice of the reading prescription
must be used.

For more details see reference [207].

A.3 Gell-Mann Matrices
Gell-Mann matrices are eight linearly independent 3 × 3 Hermitian matrices of null
trace. They are half of the generators of the group SU(3) in the fundamental
representation

T a = λa

2
with a, b, c = {1, . . . , 8}. Explicitly, those matrices are

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0



λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0



λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 .

Gell-Mann matrices are nothing but the generalisation of Pauli matrices for SU(3),
indeed they satisfy the commutation relation

[λa, λb] = 2ifabcλc

where fabc are the structure constants of SU(3), that are completely anti-symmetric
and real quantities.

Since Gell-Mann matrices satisfy the Jacobi identity:[
λa, [λb, λc]

]
+
[
λb, [λc, λa]

]
+
[
λc, [λa, λb]

]
= 0,

then structure constants obey to

fabdfdce + f bcdfdae + f cadfdbe = 0.
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A.4 Embedding Particles in Fields
In this appendix we discuss the key principles that link real particles to fields. Since
the present thesis is mostly based on model building it is useful to introduce this
topic for the purpose of obtain, for every types of fields, the basic Lagrangian that
serve as basis on which more complex theories can be built. Analogous discussion
can be found in Peskin & Schroeder [3] or Schwartz [4].

Elementary particles are characterised by dynamical quantities such as mo-
mentum and spin projection along an axis, that can be modified by boosts or
rotations, and by intrinsic quantum number that identify the particle. Mathem-
atically, we can associate each particle to a set of states |ψ〉, that under a Poincaré
transformation P transforms only among themselves to preserve quantum numbers:

|ψ〉 → P |ψ〉 .

A set of elements that satisfy this property is called representation of Poincaré
group. Well-known examples are the scalar field φ(x) and the vector field Vµ(x).
For any given representation, we can define a basis {|ψi〉} where the index i can be
discrete or continuous:

|ψi〉 → Pij |ψj〉 .

Schur’s lemma states that if is not possible to identify a subset of states that trans-
forms only among themselves, then the representation {|ψ〉} is called irreducible.

A predictable quantum field theory also requires unitary since the matrix ele-
ments M must be Poincaré invariant:

M = 〈ψ1|ψ2〉 = 〈ψ′
1|ψ′

2〉 = 〈ψ1|P†P|ψ2〉 = M′ ⇒ P†P = 1,

thus, particles are understood as irreducible unitary representations of the Poincaré
group.

In 1939 Wigner classified all irreducible unitary representations of Poincaré
group labelling them by the mass m and the spin number j, therefore it can only ac-
quire half-integer numbers, namely j = {0, 1/2, 1, 3/2, . . .}. He also demonstrated
that the number of allowed states for each representation is:

j > 0 ⇒

{
2j + 1 for m > 0
2 for m = 0

while j = 0 ⇒
{

1 ∀ m.

The irreducible unitary representations of Poincaré group are infinite-dimensional
while we are used to deal with finite-dimensional and reducible representation such
as scalar, vector and tensor representations. In fact, the vector representation,
that brings four degrees of freedom, is the direct sum of the 1-spin and the 0-spin
states. Therefore, we must find a prescription to embed particles, i.e., the irreducible
unitary representations, in scalar, vector and tensor representations. The simple
idea to overcome this problem is to make the finite representations dependent on
the momentum, in this way they turn to infinite-dimensional representations as the
momentum can assume infinite different values. Namely, the representation of the
full Poincaré group is induced by the so-called little group, where the momentum is
fixed. The little group is finite-dimensional and has unitary representations.
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A.4.1 The Scalar Field
Starting from the spin j = 0 particle, the embedding procedure aims to include one
degree of freedom in the real scalar field φ(x). The Lorentz invariant kinetic and
massive terms are:

L = 1
2∂µφ∂

µφ− 1
2m

2φ2, (A.12)

this Lagrangian also transforms covariantly under translations. The related equa-
tion of motion is

(
∂2 −m2)φ = 0, whose solution is:

φ(x) = e−ipx, with p2 = m2.

The classical energy density, i.e., the zero-zero component of the energy-momentum
tensor, is:

E = ∂L
∂φ̇

φ̇− L = 1
2

[
(∂tφ)2 + (∇φ)2 +m2φ2

]
,

being positive defined and bounded by 0 from below, tells us that the overall sign
of Lagrangian in equation (A.12) is the correct one.

A.4.2 The Vector Field
The four-dimensional vector field Aµ(x) is the smallest field that can embed massive
1-spin particles, as they bring three degrees of freedom. In this case, a prescription
to remove the superfluous degree must be identified.

Leaving aside this problem, we can first try to guess the Lagrangian and then
verify that it propagates the right number of modes. Inspired by the scalar field we
can guess that the Lagrangian for the vector theory is:

L = −1
2∂µAν ∂

µAν − 1
2 m

2AνA
ν , (A.13)

whose equations of motion are
(
∂2 +m2)Vµ = 0, that bring four propagation

modes. Hence, Lagrangian in equation (A.13) does not describe a massive 1-spin
particle but four scalar 0-spin states, that are V0, V1, V2, V3. In other words, the
four vector has been decomposed as 4 = 1 ⊕ 1 ⊕ 1 ⊕ 1. The associated classical
energy density is:

E = T00 = ∂L
∂ (∂0Aµ) ∂0Aµ − L

= −1
2

[
(∂0A0)2 + (∇A0)2 +m2A2

0

]
+ 1

2

[
(∂0A)2 + (∇ V)2 +m2A2

]
,

which is not positive definite, thus Lagrangian in equation (A.13) cannot even de-
scribe any physics.

In four dimensions other operators can serve as kinetic term, likewise Aµ∂µ∂νAν
and Aµ∂

2Aµ. Including both of them, the new Lagrangian is:

L = c1

2 Aµ∂
2Aµ + c2

2 Aµ∂µ ∂νA
ν + 1

2 m
2AµA

µ, (A.14)
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where c1 and c2 are free coefficients. As long as c2 , 0, the term ∂νA
ν forces Aν to

transform as a vector. The equations of motion are:

c1∂
2Aµ + c2∂µ∂νA

ν +m2Aµ = 0,

whose derivative is
[
(c1 + c2) ∂2 +m2] (∂µAµ) = 0. If c1 = −c2 and m , 0, then

we get ∂µAµ = 0, which reduces by one the degrees of freedom of Aµ. The four
vector has been decomposed as 4 = 3 ⊕ 1, with the extra degree corresponding to a
0-spin mode, while the others reproduce the 1-spin massive particle. The equation
∂µA

µ = 0 is Lorentz invariant, this guarantees that the extra degree of freedom is
completely removed from the representation.

Fixing c1 = −c2 = 1 for convenient, equation (A.14) becomes:

L = 1
2 Aµ∂

2Aµ − 1
2 Aµ∂

µ∂νA
ν + 1

2 m
2AµA

µ

= −1
4FµνF

µν + 1
2 m

2AµA
µ,

(A.15)

where Fµν = ∂µAν − ∂νAµ. The equations of motion are still (∂2 + m2)Aµ = 0,
which have solutions:

Aµ =
∑
i

∫
d3p

(2π)3 ε
i
µ(p) ṽi(p) eipx,

with ωp =
√

p +m2. The vectors εiµ(p) form a basis and they are named polariz-
ations. As we were looking for a basis that automatically leads to ∂µV µ = 0, the
number of basis element is three, thus i runs over 1, 2, 3. The condition is directly
embedded if the polarization vectors satisfy:

pµε
µ
i (p) = 0.

Once the momentum pµ, with p2 = m2, is fixed, the previous equation has three in-
dependent solutions, that are the momentum-dependent polarization vectors εµi (p),
with the conventional normalisation ε∗µε

µ = −1. For an explicit solution, we can
take pµ as pointing in the z-direction:

pµ = (E, 0, 0, pz), with E2 − p2
z = m2.

The solutions of equation (A.4.2) are:

ε1µ = (0, 1, 0, 0), ε2µ = (0, 0, 1, 0) and εLµ =
(
pz
E
, 0, 0, E

m

)
.

The vectors ε1µ and ε2µ are named transverse polarizations, while the third vector
is called longitudinal polarization. The integration of the polarizations, that are
momentum dependent, against Fourier components ṽi(p) gives rise to the space
of vectors satisfying the equations of motion; this vector field forms an infinite-
dimensional unitary representation of Poincaré group.

We must notice that in the high-energy limit, the longitudinal polarization be-
comes

εLµ ∼ E

m
(1, 0, 0, 1).
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The cross section of a process, that involving these two modes, behaves as dσ ∼
g2(εL)2 ∼ g2 E2

m2 , with g coupling constant. The cross section – being a probability
– is bounded by 1, then if we are able to reach sufficiently high energies, dσ ∼ 1
that means E ∼ m/g. Taking a mass value m ∼ 100 GeV, close to the mass of weak
bosons, and g ∼ 0.1, then E ∼ 1 TeV is the energy scale at which theory begins to
fail.

Not all the 1-spin states that appear in Nature are massive particle, photons
and gluons are indeed massless bosons. One could think that performing the limit
mVµ → 0 for the massive case, is enough to describe massless 1-spin particles,
however this limit is not smooth. Anyhow, the limit works for the Lagrangian:

L = −1
4 FµνF

µν , (A.16)

while the constraint m2 (∂µAµ) = 0 is automatically fulfilled, restoring the 0-spin
mode that we removed. The massless limit m → 0 leads to εLµ → ∞, since light-
vector momentum became pµ → (E, 0, 0, E), as pz → E. In addition, the 1-spin
massless particle has only two physical polarization states, thus we have to remove
two extra polarizations. The Lagrangian in equation (A.16) already propagates two
modes, indeed it must satisfy the property of gauge invariance, that the massive
term breaks. The equation (A.16) is invariant under the transformation:

Aµ(x) → Aµ(x) + ∂µf(x), (A.17)

which means that the physical system of a massless 1-spin particle is mathematically
described by a class of vector fields that differs one from each other by the total
derivative of a scalar function f(x). The equations of motion are ∂2Aµ−∂µ (∂νAν) =
0, or in components:

∂2
iA0 − ∂0∂iAi = 0,
∂2Ai − ∂i (∂0A0 − ∂iAi) = 0.

Taking the gradient of the spatial components of equation (A.17), i.e., ∂iAi(x) →
∂iAi(x)+∂2

i f(x), and choosing f(x) such that its second space derivate is null, then
if ∂iAi(x) is not singular, we are free to set ∂iAi(x) = 0, named Coulomb gauge.
The first equation of motion becomes:

∂2
iA0 = 0,

which is satisfied by A0(x) → A0(x) + ∂tf(x), i.e., the zero component of gauge
transformation, allowing us to set A0 = 0 which completely eliminates on degree of
freedom from Aµ. The other equations of motion are:

∂2Ai = 0,

that bring three propagation modes that will be reduced by one imposing the con-
straint ∂iAi = 0. Turning into Fourier space

Aµ(x) =
∫

d4p

(2π)4 εµ(p)eipx,
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the equations of motion become p2 = 0, while the gauge choice ∂iAi = 0 and the
constraint A0 = 0 lead to piεi = 0 and ε0 = 0 respectively. Choosing the inertial
reference frame where pµ = (E, 0, 0, E), the two solution of the equations of motion
are:

ε1µ = (0, 1, 0, 0) , ε2µ = (0, 0, 1, 0) ,
which are the linear polarizations of light. Another viable basis for the transverse
polarizations of light is composed by the helicity eigenstates, that are the circular
polarizations:

εRµ = 1√
2

(0, 1, i, 0) , εLµ = 1√
2

(0, 1, −i, 0) .

Thus, the theory we built stands as the right theory for massless 1-spin particle, as
it propagates only two degrees of freedom.

There are many choices for gauge, a familiar one is ∂µAµ = 0, called Lorentz
gauge. This gauge, being Lorentz invariant, leads to three polarizations vectors that
satisfy pµεµ = 0, that are

ε1µ = (0, 1, 0, 0) , ε2µ = (0, 0, 1, 0) , εfµ = (1, 0, 0, 1) ,

where we recognize the transverse polarizations plus the so-called forward polariz-
ation. The latter vector does not correspond to any physical state as it is even not
normalizable, with (εfµ)∗ εf µ = 0.

A.4.3 The Spinor Field
A general solution of Dirac equation is not an irreducible representation of the
Lorentz group. The commutation relation[

γ5, Sµν
]

= 0,

with Sµν = i
4 [γµ, γν ], provides the existence of eigenvectors of γ5, associated to

different eigenvalues, that do not mix under Lorentz transformations. Moreover,
the block-diagonal form of boost and rotation generators for Dirac field

S0j = i

4
[
γ0, γj

]
= − i

2

(
σj 0
0 −σj

)
,

Sij = i

4
[
γi, γj

]
= i

2ε
ijk

(
σk 0
0 σk

)
,

is another confirmation that Dirac spinor is reducible. Schur’s Lemma removes
all doubt by establishing that for an irreducible representation, the property in
equation (A.4.3) must be a prerogative of the identity matrix only.

The Dirac spinor, often called bispinor, is indeed give by the sum of one left-
handed and one right-handed Weyl spinor:

ψD(x) =
(
ψL(x)
ψR(x)

)
=


ψL 1(x)
ψL 2(x)
ψR 1(x)
ψR 2(x)

 , ψL(x) =
(
ψL 1(x)
ψL 2(x)

)
, ψR(x) =

(
ψR 1(x)
ψR 2(x)

)
,
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where left-handed and right-handed spinors are two non-equivalent representation
of Lorentz group.

Since the group algebra so(1, 3), is equivalent to the direct sum of two algebras
generated by the group SU(2)

so(1, 3) = su(2) ⊕ su(2),

each representation of Lorentz group can be labelled by two semi-integer number as
T(m,n), with (2m+ 1)(2n+ 1) independent states. Making use of this notation, the
left-handed Weyl spinor belongs to T( 1

2 , 0
) representation, while the right-handed

to T(0, 1
2

) [210].
As before, we try to write down the Lagrangian starting the kinetic and mass

terms, that can be proportional to ψ†
RψR, thus

L = ψ†
R∂

2 ψR +m2
Wψ

†
RψR,

which do not satisfy Lorentz invariant, likewise the left-handed spinor. Hence, a
mass term for the Weyl spinor is not allowed. On the contrary, combining the
left-handed and the right-handed spinors in the same term we get

L = mDirac

(
ψ†
LψR + ψ†

RψL

)
,

where mDirac ∈ R, is the mass for a Dirac spinor. The kinetic term is:

L = ψ†
L∂

2 ψR + ψ†
R∂

2 ψL,

that is real and invariant, but it propagates a couple of scalars instead of a spinor,
similarly to what happens with the vector field V µ that propagates four scalar until
we contract it with ∂µ. Going further, we can look at ψ†

RσiψR that behaves like a
spatial vector, thus we can simply build a four-vector as AµR = (ψ†

RψR, ψ
†
RσψR),

while for the left-handed spinor V µL = (ψ†
LψL, −ψ†

LσψL). Defining

σµ ≡ (1, σ) , σ̄µ ≡ (1, −σ) ,

the two terms become AµR = ψ†
Rσ

µψR and V µL = ψ†
Lσ̄

µψL, that contracted with ∂µ
give rise to the Lagrangian:

L = iψ†
R∂µσ

µψR + iψ†
L∂µσ̄

µψL +mDirac

(
ψ†
LψR + ψ†

RψL

)
notice that if we had applied the derivative in front of each term we would get a
total derivative. The imaginary unit has been introduced to make the Lagrangian
hermitian. In terms of Dirac field, the previous Lagrangian turns to:

L = ψ̄ (iγµ∂µ −m)ψ (A.18)

where ψ̄ = ψ†γ0 =
(
ψ†
R, ψ

†
L

)
and

γµ =
(

0 σµ

σ̄µ 0

)
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The EOM of this Lagrangian is Dirac equation (iγµ∂µ −m)ψ = 0, thus it really
propagates a Dirac spinor. In addition to Dirac equation, spinors satisfy also the
Klein-Gordon equation (∂2 +m2)ψ(x) = 0, whose solutions are plane-waves:

ψs(x) =
∫

d3p

(2π)3 us(p) e
ipx,

with p0 =
√

p2 +m2 > 0. Even solutions with negative energies are allowed, but
those are understood as anti-particles of positive energies:

χs(x) =
∫

d3p

(2π)3 vs(p) e
ipx,

again with p0 =
√

p2 +m2 > 0. The polarizations of particles and anti-particles are
the spinors us(p) and vs(p) respectively. Since they are momentum-dependent, the
search for an explicit solution requires the setting of the momentum. For example,
in the rest frame pµ = (m, 0, 0, 0) the solutions are

us =
(
ξs
ξs

)
, vs =

(
ηs

−ηs

)
,

for any two-component spinors ξs and ηs, a viable choice is ξ1 = η1 =
(

1
0

)
and

ξ2 = η2 =
(

0
1

)
. For a momentum pointing along the z-axis pµ = (E, 0, 0, pz), the

polarizations are:

us(p) =
(√

p · σ ξs√
p · σ̄ ξs

)
, vs(p) =

( √
p · σ ηs

−
√
p · σ̄ ηs

)
.

In conclusion, an infinite representation for Dirac spinor has been found, a remark
is necessary, the representation is not irreducible as it is given by the direct sum of
two non-equivalent Weyl spinor, one of left and one of right chirality.
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A.5 Light-by-light Formulas
The complete formula for the polarization tensor Mµνρσ

2 is

Mµνρσ
2 = 32g2

(
− 2(p4)µ(p3)ν(p2)ρ(p1)σ + (p3)µ(p4)ν(p2)ρ(p1)σ

+ (p2)µ(p3)ν(p4)ρ(p1)σ + 2(p4)µgνρ (p2 · p3) (p1)σ

− gµρ(p4)ν (p2 · p3) (p1)σ − gµν(p4)ρ (p2 · p3) (p1)σ

− (p3)µgνρ (p2 · p4) (p1)σ + gµρ(p3)ν (p2 · p4) (p1)σ

− (p2)µgνρ (p3 · p4) (p1)σ + gµν(p2)ρ (p3 · p4) (p1)σ

+ (p4)µ(p3)ν(p1)ρ(p2)σ − 2(p3)µ(p4)ν(p1)ρ(p2)σ

+ (p3)µ(p1)ν(p4)ρ(p2)σ + (p2)µ(p4)ν(p1)ρ(p3)σ

+ (p4)µ(p1)ν(p2)ρ(p3)σ − 2(p2)µ(p1)ν(p4)ρ(p3)σ

+ (p4)µ(p3)νgρσ (p1 · p2) + (p3)µ(p4)νgρσ (p1 · p2)
− (p3)µgνσ(p4)ρ (p1 · p2) − gµσ(p3)ν(p4)ρ (p1 · p2)
− (p4)µgνρ(p3)σ (p1 · p2) − gµρ(p4)ν(p3)σ (p1 · p2)
+ 2gµν(p4)ρ(p3)σ (p1 · p2) − (p2)µ(p4)νgρσ (p1 · p3)
+ (p4)µgνσ(p2)ρ (p1 · p3) − gµσ(p4)ν(p2)ρ (p1 · p3)
+ (p2)µgνσ(p4)ρ (p1 · p3) − (p4)µgνρ(p2)σ (p1 · p3)
+ 2gµρ(p4)ν(p2)σ (p1 · p3) − gµν(p4)ρ(p2)σ (p1 · p3)
− (p2)µ(p3)νgρσ (p1 · p4) − (p3)µgνσ(p2)ρ (p1 · p4)
+ 2gµσ(p3)ν(p2)ρ (p1 · p4) + (p3)µgνρ(p2)σ (p1 · p4)
− gµρ(p3)ν(p2)σ (p1 · p4) + (p2)µgνρ(p3)σ (p1 · p4)
− gµν(p2)ρ(p3)σ (p1 · p4) − (p4)µ(p1)νgρσ (p2 · p3)
− (p4)µgνσ(p1)ρ (p2 · p3) + gµσ(p4)ν(p1)ρ (p2 · p3)
+ gµσ(p1)ν(p4)ρ (p2 · p3) − 2gµσgνρ (p1 · p4) (p2 · p3)
+ gµρgνσ (p1 · p4) (p2 · p3) + gµνgρσ (p1 · p4) (p2 · p3)
− (p3)µ(p1)νgρσ (p2 · p4) + 2(p3)µgνσ(p1)ρ (p2 · p4)
− gµσ(p3)ν(p1)ρ (p2 · p4) + gµρ(p1)ν(p3)σ (p2 · p4)
− gµν(p1)ρ(p3)σ (p2 · p4) + gµσgνρ (p1 · p3) (p2 · p4)
− 2gµρgνσ (p1 · p3) (p2 · p4) + gµνgρσ (p1 · p3) (p2 · p4)
+ 2(p2)µ(p1)νgρσ (p3 · p4) − (p2)µgνσ(p1)ρ (p3 · p4)
− gµσ(p1)ν(p2)ρ (p3 · p4) − gµρ(p1)ν(p2)σ (p3 · p4)
+ gµν(p1)ρ(p2)σ (p3 · p4) + gµσgνρ (p1 · p2) (p3 · p4)
+ gµρgνσ (p1 · p2) (p3 · p4) − 2gµνgρσ (p1 · p2) (p3 · p4)

)

(A.19)
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The complete formula for the total tensor polarization, where the momentum p4
has been removed by energy conservation, i.e., p1 + p2 + p3 = −p4, is:

Mµνρσ =32g1
(
gµσgνρ(p1 · p2)2 + gµνgρσ(p1 · p2)2 + gµσgνρ(p1 · p3)2

+ gµρgνσ(p1 · p3)2 + (p2)ρ(p3)νgµσ (p1 · p2)
+ (p2)σ(p3)µgνρ (p1 · p2) + 2gµσgνρ (p1 · p2) (p1 · p3)
+ (p2)ρ(p3)µgνσ (p1 · p3) + (p2)ρ(p3)νgµσ (p1 · p3)
+ (p2)σ(p3)µgνρ (p1 · p3) + (p2)σ(p3)νgµρ (p1 · p3)
+ 2(p2)ρ(p2)σ(p3)µ(p3)ν

)
+ 32g2

(
−gµσgνρ(p1 · p2)2 + 2gµρgνσ(p1 · p2)2 − gµνgρσ(p1 · p2)2

− gµσgνρ(p1 · p3)2 − gµρgνσ(p1 · p3)2 + 2gµνgρσ(p1 · p3)2

− 2(p2)ρ(p2)σgµν (p1 · p2)2 − 2(p3)µ(p3)νgρσ (p1 · p2)
+ 2(p2)ρ(p3)µgνσ (p1 · p2) − 3(p2)ρ(p3)νgµσ (p1 · p2)
− 3(p2)σ(p3)µgνρ (p1 · p2) + 2(p2)σ(p3)νgµρ (p1 · p2)
− 4gµσgνρ (p1 · p2) (p1 · p3) + 2gµρgνσ (p1 · p2) (p1 · p3)
+ 2gµνgρσ (p1 · p2) (p1 · p3) − (p2)ρ(p3)µgνσ (p1 · p3)
− (p2)ρ(p3)νgµσ (p1 · p3) − (p2)σ(p3)µgνρ (p1 · p3)
− (p2)σ(p3)νgµρ (p1 · p3) − 2(p2)ρ(p2)σ(p3)µ(p3)ν

)

(A.20)

The total polarization tensor Mµνρσ, likewise its two components Mµνρσ
1 and

Mµνρσ
2 , satisfies the property of transversality:

Mµ1µ2µ3µ4pi µi = 0 (A.21)

where i = {1, 2, 3} since the fourth momentum has been removed yet.
Renaming the scalar product in analogy with Mandelstam variables, but taking

into account our convention on incoming momenta:

s = (p1 + p2)2 = 2p1 · p2

t = (p1 + p3)2 = 2p1 · p3

u = (p1 + p4)2 = (p2 + p3)2 = 2p2 · p3

s+ t+ u = 2p1 · p2 + 2p1 · p3 + 2p1 · p4 = −2(p1)2 = 0,

(A.22)
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the total polarization tensor becomes

Mµνρσ =gµσgνρ
(
8g1s

2 + 16g1st+ 8g1t
2 − 8g2s

2 − 32g2st− 8g2t
2)

+ gµρgνσ
(
8g1t

2 + 16g2s
2 + 16g2st− 8g2t

2)
+ gµνgρσ

(
8g1s

2 − 8g2s
2 + 16g2st+ 16g2t

2)
+ (p1)ν(p1)ρ(32g2s+ 32g2t)gµσ + (p1)ν(p1)σ(−16g2s− 16g2t)gµρ

+ (p1)ρ(p1)σ(−16g2s− 16g2t)gµν − 32g2t(p2)µ(p2)ρgνσ

+ 16g2t(p2)µ(p2)σgνρ + 16g2t(p2)ρ(p2)σgµν

− 32g2s(p3)µ(p3)νgρσ + 16g2s(p3)µ(p3)σgνρ

+ 16g2s(p3)ν(p3)σgµρ + (p1)ν(p2)µ(16g2s− 16g1s)gρσ

+ (p1)σ(p2)µgνρ(−16g1s− 16g1t+ 16g2s+ 32g2t)
+ (p1)ν(p2)σgµρ(16g1t− 16g2s− 32g2t)
+ (p1)σ(p3)µgνρ(−16g1s− 16g1t+ 32g2s+ 16g2t)
+ (p1)ρ(p3)σgµν(16g1s− 32g2s− 16g2t)
+ (p1)ρ(p3)µ(16g2t− 16g1t)gνσ

+ (p2)ρ(p3)νgµσ(16g1s+ 16g1t− 16g2s− 16g2t)
+ (p2)σ(p3)νgµρ(16g1t+ 16g2s− 16g2t)
+ (p2)ρ(p3)σgµν(16g1s− 16g2s+ 16g2t)
+ (p1)ρ(p2)µ(−32g2s− 32g2t)gνσ + (p1)ρ(p2)σ(16g2s+ 16g2t)gµν

+ 32g2t(p1)ν(p2)ρgµσ − 16g2t(p1)σ(p2)ρgµν + 32g2s(p1)ρ(p3)νgµσ

− 16g2s(p1)σ(p3)νgµρ + (p1)ν(p3)µ(−32g2s− 32g2t)gρσ

+ (p1)ν(p3)σ(16g2s+ 16g2t)gµρ + 32g2s(p2)ρ(p3)µgνσ

− 16g2s(p2)σ(p3)µgνρ + 32g2t(p2)µ(p3)νgρσ − 16g2t(p2)µ(p3)σgνρ

+ (32g2 − 32g1)
[
(p1)σ(p2)µ(p2)ρ(p3)ν + (p1)σ(p2)ρ(p3)µ(p3)ν

+ (p1)ν(p1)ρ(p2)σ(p3)µ + (p1)ρ(p2)σ(p3)µ(p3)ν

+ (p1)ν(p1)ρ(p2)µ(p3)σ + (p1)ν(p2)µ(p2)ρ(p3)σ
]

− 32g2
[
(p1)ρ(p1)σ(p2)µ(p3)ν + (p1)ν(p1)σ(p2)ρ(p3)µ

+ (p1)ρ(p2)µ(p2)σ(p3)ν + (p1)ν(p2)ρ(p2)σ(p3)µ

+ (p1)ρ(p2)µ(p3)ν(p3)σ + (p1)ν(p2)ρ(p3)µ(p3)σ
]
,

(A.23)

which contains 45 different structures.
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The complete amplitude of spinor QED is:

Mµνρσ
1/2 =gµνgρσ

(
− e4s2

240π2m4 + 7e4st

360π2m4 + 7e4t2

360π2m4

)
+ gµρgνσ

(
7e4s2

360π2m4 + 7e4st

360π2m4 − e4t2

240π2m4

)
+ gµσgνρ

(
− e4s2

240π2m4 − e4st

36π2m4 − e4t2

240π2m4

)
+ e4

360π2m4

(
14(s+ t)(p1)ν(p1)ρgµσ − 7(s+ t)(p1)ν(p1)σgµρ

− 7(s+ t)(p1)ρ(p1)σgµν + 3s(p1)ν(p2)µgρσ

+ 14(p1)ν(p2)ρgµσ − (7s− 10t)(p1)ν(p2)σgµρ

+ 7(s+ t)(p1)ρ(p2)σgµν − 14(s+ t)(p1)ρ(p2)µgνσ

+ (3s+ 10t)(p1)σ(p2)µgνρ − 7t(p1)σ(p2)ρgµν

− 14(s+ t)(p1)ν(p3)µgρσ + 7(s+ t)(p1)ν(p3)σgµρ

+ 3t(p1)ρ(p3)µgνσ + 14s(p1)ρ(p3)νgµσ

− (10s+ 7t)(p1)ρ(p3)σgµν + (10s+ 3t)(p1)σ(p3)µgνρ

− 7s(p1)σ(p3)νgµρ − 14t(p2)µ(p2)ρgνσ

+ 7t(p2)µ(p2)σgνρ + 7t(p2)ρ(p2)σgµν

+ 14t(p2)µ(p3)νgρσ − 7t(p2)µ(p3)σgνρ

+ 14s(p2)ρ(p3)µgνσ − 3(s+ t)(p2)ρ(p3)νgµσ

− (3s− 7t)(p2)ρ(p3)σgµν − 7s(p2)σ(p3)µgνρ

+ (7s− 3t)(p2)σ(p3)νgµρ − 14s(p3)µ(p3)νgρσ

+ 7s(p3)µ(p3)σgνρ + 7s(p3)ν(p3)σgµρ
)

− 7e4

180π2m4

(
(p1)ρ(p1)σ(p2)µ(p3)ν + (p1)ν(p1)σ(p2)ρ(p3)µ

+ (p1)ρ(p2)µ(p2)σ(p3)ν + (p1)ν(p2)ρ(p2)σ(p3)µ

+ (p1)ρ(p2)µ(p3)ν(p3)σ + (p1)ν(p2)ρ(p3)µ(p3)σ
)

+ e4

60π2m4

(
(p1)σ(p2)µ(p2)ρ(p3)ν + (p2)ρ(p3)µ(p3)ν(p1)σ

+ (p1)ν(p1)ρ(p2)σ(p3)µ + (p1)ρ(p2)σ(p3)µ(p3)ν

+ (p1)ν(p2)ρ(p2)σ(p3)µ + (p1)ν(p2)µ(p2)ρ(p3)σ
)

(A.24)
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A.6 Dark Matter Table
Analytic expressions for the cross-section (σ), and velocity-weighted, non-relativistic
annihilation cross-sections (σv),for dimension-5 and dimension-6 operators of the
hypercharge EFT for Dirac dark matter.

Opr. ψψ̄ → XX σXX(s � mf , mZ) (σv)XX

OM ff̄

(
3−2β2

)
e2NcC

2
MY 2

f

48πβΛ2c2
W

e2NcC
2
MY 2

f

16πΛ2c2
W

W+W−, Zh

(
3−2β2

)
e2C2

M

384πβc2
W

Λ2
e2C2

M

128πc2
W

Λ2

γγ
C4

Mc4
W s

((
9−7β2

)
β2−6β

(
β2−1

)2
tanh−1(β)

)
96πβ3Λ4

c4
WC

4
Mm2

ψ

8πΛ4

γZ
s2
W

c2
W

(
2σγγ + 3

(
β2 − 1

)
log
(

3+β
1−β

))
s2
W

c2
W

2(σv)γγ

Oel ff̄
e2βNcC

2
elY

2
f

48πc2
W

Λ2
e2NcC

2
elY

2
f

48πc2
W

Λ2 · v2

W+W−, Zh
e2βC2

el

384πc2
W

Λ2
e2C2

el
384πc2

W
Λ2 v

2

γγ
C4
elc

4
W s

((
9−7β2

)
β2−6β

(
β2−1

)2
tanh−1(β)

)
96πβ3Λ4

c4
WC

4
elm

2
ψ

8πΛ4

γZ
s2
W

c2
W

(
2σγγ + 3

(
β2 − 1

)
log
(

3+β
1−β

))
s2
W

c2
W

2(σv)γγ

Ocr ff̄

(
3−β2

)
e2sNcC

2
crY

2
f

48πβc2
W

Λ4
e2NcC

2
crY

2
f m

2
ψ

4πc2
W

Λ4

W+W−, Zh

(
3−β2

)
e2sC2

cr

384πβc2
W

Λ4
e2C2

crm
2
ψ

32πc2
W

Λ4

OA ff̄
e2sβC2

ANcY
2
f

24πΛ4c2
W

e2C2
ANcY

2
f m

2
χ

6πΛ4c2
W

· v2

W+W−, Zh
e2sβC2

A

192c2
W
πΛ4

e2C2
Am

2
χ

48πΛ4c2
W

· v2

Table A.1: Analytic expressions for the cross-section (σ), and velocity-weighted,
non-relativistic annihilation cross-sections (σv) into SM final states (XX), for
dimension-5 and dimension-6 operators of the hypercharge EFT for Dirac dark
matter. The cross-section is provided in the high-energy limit with massless SM
particles, β2 = (1 − 4m2

ψ/s) and Nc is the number of colors. In the low velocity
limit β ≈ v, so cross-sections that are s-wave will be O(1/β) at the lowest order.
The ψψ̄ → ZZ annihilation cross-section is given by (s4

W/c
4
W )σγγ . The Majorana

anapole can be obtained by dividing the Dirac anapole moment by two, following
equations (4.12) and (4.13).
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A.7 ALPs Computations

A.7.1 Explicit Calculation of Phase Redefinition
Performing an ALP-dependent phase redefinition of the Higgs and the fermion fields
in the SM Lagrangian, that in flavor basis is realized as a unitary rotation whose
phase is proportional to the 3×3 Hermitian matrices qψ

ψi →
[
eiqψia

]
ij
ψj ,

H → eiqHaH,

we can obtain more details, compared with those following from equation (5.9),
on the phenomenology of ALP. The phase redefinition affects each term of SM
Lagrangian except for those that are pure gauges.

Since left-handed and right-handed fermions undergo different couplings, we
have chosen to use Weyl basis in this computation, thus we must have to switch
from Dirac to Weyl spinor in each term of the Lagrangian. For instance, term
kinetic term of the left-handed spinor turns to:

ψ̄Lγµ∂
µψL = ψ†

Lγ0γµ∂
µψL =

(
ψ†
L, 0

)(0 1

1 0

)(
0 σµ
σ̄µ 0

)
∂µ
(
ψL
0

)
= ψ†

Lσ̄µ∂
µψL.

The adopted notation might be a little misunderstanding since the same symbol
ψL has been used to denote both the Dirac and the Weyl spinor, however we made
this choice to avoid extra subscripts. A similar computation can be done for the
right-handed spinors. Thus:

ψ̄L /∂ψL → ψ†
Lσ̄

µ∂µψL,

ψ̄R /∂ψR → ψ†
Rσ

µ∂µψR.

The phase redefinition of the right-handed spinor leads to:

LψR → i
([
eiqψRa

]
ij
ψR j

)†(
σµDµ

)([
eiqψRa

]
ik
ψRk

)
= LψR − (∂µa)ψ†

R i [qψR ]ij σ
µψR j +O

[
(∂a)2] , (A.25)

where the covariant derivative is Dµ = ∂µ − igsG
a
µT

a − ig′YψRBµ and the subscript
ψR runs over the right-handed fields e, u and d. The computation was performed
by using the Hermitian transpose of the transformation matrix([

eiqψa
]
ij

)†
'
(

[1+ iaqψ]ij
)†

= [1]ij − ia [qψ]ij '
[
e−iqψa

]
ij
,

and the derivative of an exponential matrix

∂µ
[
eiqψa

]
ij

= i (∂µa)
[
eiqψa

]
ij

= i (∂µa)
[
eiqψa

]
ij

[qψ]kj .

The phase redefinition of the left-handed spinor fields leads to an analogous
formula of equation (A.25) since the only difference is that the covariant derivative
now reads Dµ = ∂µ − igsG

a
µT

a − igW a
µ τ

a − ig′YψLBµ, thus we get:

LψL →= LψL − (∂µa)ψ†
L i [qψL ]ij σ̄

µψL j +O
[
(∂a)2] , (A.26)
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where ψL takes the values L and Q. Summing together the equations (A.25) and
(A.25) for all the flavor, we obtain the complete transformation of the Lagrangian
that describes the interaction between fermions and gauge fields:

Lint →Lint − (∂µa)
∑

ψ=L,Q
[qψ]ij ψ

†
i σ̄

µψj

− (∂µa)
∑

ψ=e,u,d
[qψ]ij ψ

†
iσ

µψj +O
[
(∂a)2] . (A.27)

Turning to Higgs Lagrangian, the phase redefinition acts as

LH →
(
Dµ(eiqHaH)

)† (Dµ(eiqHaH)) +m2
HH

†H − λ(H†H)2

= LH − iqH (∂µa) (H† ↔
DµH) +O

[
(∂a)2] , (A.28)

where the mass term and the potential are not affected by the rotation since they
are composed by the Higgs field and his Hermitian transpose.

Finally, we have to transform the Yukawa terms of the SM Lagrangian. This
time, left-handed and right-handed Weyl spinors are mixed in the same Lagrangian
term, therefore we need to distinguish between the two types of particles that com-
pose the SU(2) doublet: the upper particles (up-like quarks and neutral leptons),
and lower particles (down-like quarks and charged leptons). Starting with the case
of lower particles, in particular for charged leptons:

LY uk, e → −Ye
ijL

†
`

[
e−iqLa

]
`i
eiqHaH

[
eiqea

]
jk
ekR + h.c,

expanding in Taylor series:

LYuk, e → = −Ye
ijL

†
` ([1]`i − [iqLa]`i) (1 + iqHa)H

(
[1]jk + [iqea]jk

)
ekR + h.c.

= LYuk, e − ia
(

Ye
ik [qe]kj − Ye

kj [qL]ik + qHYe
ij

)
L†
iHe

j
R + h.c. +O

(
a2) .

While for the up-like quarks, we have:

LYuk, u → − Yu
ijq

†
`

[
e−iqQa

]
`i
e−iqHaH̃

[
eiqua

]
jk
ukR + h.c.

= LYuk, u − ia
(

Yu
ik [qu]kj − Yu

kj [qQ]ik − qHYu
ij

)
g†
i H̃u

j
R + h.c. +O

(
a2) .

Summarizing our result, the phase redefinition in the complete Yukawa Lagrangian
leads to

LYuk → LY ukawa − ia
(

Ye
ik [qe]kj − Ye

kj [qL]ik + qHYe
ij

)
`†
iHe

j
R + h.c.

− ia
(

Yd
ik [qd]kj − Yd

kj [qQ]ik + qHYd
ij

)
q†
iHd

j
R + h.c.

− ia
(

Yu
ik [qu]kj − Yu

kj [qQ]ik − qHYu
ij

)
q†
i H̃u

j
R + h.c. +O

(
a2) .

Forgetting for the moment the non invariant measure of the path integral, the
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SM Lagrangian under the phase rotation of fields turns to:

LSM →LSM − (∂µa)

 ∑
ψ=L,Q

[qψ]ij ψ
†
i σ̄

µψj +
∑

ψ=e,u,d
[qψ]ij ψ

†
iσ

µψj


− ia

(
Ye
ik [qe]kj − Ye

kj [qL]ik + qHYe
ij

)
`†
iHe

j
R + h.c.

− ia
(

Yd
ik [qd]kj − Yd

kj [qQ]ik + qHYd
ij

)
q†
iHd

j
R + h.c.

− ia
(

Yu
ik [qu]kj − Yu

kj [qQ]ik − qHYu
ij

)
q†
i H̃u

j
R + h.c.

− iqH (∂µa) (H†
↔
DµH) +O

(
a2)+O

[
(∂a)2] .

(A.29)

The amplitude of the scattering process q̄q → t̄t at NLO in the ALP theory,
is given by the sum of the tree-level, the one-loop diagram involving ALP and its
counter-term:

iMNLO = T g1
a1 a2

T g1
a3 a4

v̄(p2)γµu(p1)

× ū(p3)
[

izγµ

192π4 (z2 − 1)3
m2
t

(
48x2z2Li2(z) + 24zx2z log(1 − z)

× (log(−z) + log(z) + iπ) − 6iπx2z(z(z + 10) + 1) + 3iπ
(
z2 − 1

)2

+ 3 log(z) + 16π2x2z2 + 3z
(
− log(z)

(
2x2 (z2 + 4iπz + 10z + 1

)
+ 4x2z log(z) − z

(
z2 − 2

)))
+ 3x2 (3z4 − 2z3 + 2z − 3

)
+ 12x2 log(x)

(
z4 − 4iπz2 − 4z2 log(z) − 1

))
+ z2σµν (p3 + p4)ν

96π4 (z2 − 1)3
m3
t

(
12x2zLi2(z) + 3iπ

(
z
(
−6x2 + z − 2

)
+ 1
)

+ 3x2 (z2 − 1
)

+ 4π2x2z + 6x2 log(x)
(
z2 − 2iπz − 2z log(z) − 1

)
+ 6x2z log(1 − z)(log(−z) + log(z) + iπ)

− 3z log(z)
(
x2 log(z) + (6 + 2iπ)x2 − z + 2

)
+ 3 log(z)

)]
v(p4),

(A.30)
where the incoming quarks are labeled by the subscripts 1 and 2, so that their
momenta and colors are p1, a1 and p2, a2 respectively, while the outgoing pair of
quarks top are labeled by the indices 3 and 4. The color inidex of the gluon field is
g1. Moreover, the variables x and z are:

x = ma/mt, z = 1 − v

1 + v
with v =

√
1 − 4m2

t

s
. (A.31)

The condition s ≥ 4m2
t , where s = (pq̄ + pq)2, can be rendered as 0 ≤ v < 1 and

0 < z ≤ 1, with z that reaches its maximum value when the energy involved in the
process achieves its minimum.

In the scalar ALP theory, where the interaction vertex between the ALP and
the top quark is:

V Ys = iCt v√
2Λ

δab,
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the NLO amplitude – still at O(x3) – is:

iMNLO =T g1
a1 a2

T g1
a3 a4

v̄(p2)γµu(p1)

× ū(p3)
[

izmtγ
µ

192π4 (z2 − 1)3
m3
t

(
144x2z2Li2(z) + (z − 1)248zLi2(z)

+ 36x2 log(x)
(
z4 − 4iπz2 − 4z2 log(z) − 1

)
− 3x2z

(
3(z + 2)z2 − 16π2z + 2iπ(z(z + 10) + 1) − 6

)
+ 72x2iπz2(log(2 − 2z) − log(2z))
− 6x2z(−12iπz log(1 − z) + log(z) + z log(z)(z + 6 log(z) + 10)) + 3
+ 6πx(z − 1)(z + 1)(z(3z + 2) + 3) − 24z2 + 16π2z + 3iπ((z − 14)z + 1)
+ 24i(z − 1)2πz(log(2 − 2z) − log(2z)) + 3 log(z) + 24
+ 24(z − 1)2 log(x)

(
−z2 − 2iπz − 2z log(z) + 1

)
+ 24(z − 1)2iπz log(1 − z) + 3(z − 1)4z(z − 4 log(z) − 14) log(z)

)
+ 6z2σµν (p3 + p4)ν

192π4 (z2 − 1)3
m3
t

(
12x2zLi2(z) − 3x2 (z2 − 1

)
− iπ

(
6x2z + 4ix

(
z2 − 1

)
+ 3(z − 1)2)

+ 6x2 (z2 − 2iπz − 1
)

log(x) + 4π2x2z − 3 log(z)
+ 6x2z log(1 − z)(log(−z) + iπ) − 6x2iπz log(z) − 3x2z log2(z)

− 3z log(z)
(
−2x2 log(1 − z) + 2x2 + 4x2 log(x) + z − 2

))]
v(p4).

(A.32)

A.7.2 Derivatives in Pseudo-Scalar Potential
The pseudoscalar potential is

VPS(x) =
(
Ct v√

2 Λ

)2 (
δs r δs′r′ δ(3) (x)

4m2
t

+ [ ∇ · σz ]s′s [ ∇ · σz̄ ]r r′

4m2
t

e−max

4π x

)
,

Recalling that Del operator is ∇ = (∂1, ∂2, ∂3), we can label its components as ∂i
where i = {1, 2, 3}, therefore:

∂i ∂j
(
e−Ma |x|

x

)
= e−Ma |x| ∂i ∂j

(
1

|x|

)
+ ∂i

(
e−Ma |x|

)
∂j
(

1
|x|

)
+ ∂i

(
1

|x|

)
∂j
(
e−Ma |x|

)
+ 1

|x|
∂i ∂j

(
e−Ma |x|

)
Moreover, we must notice that |x| =

(
x2

1 + x2
2 + x2

3
)1/2 and ∂i|x| = xi/|x| ≡ x̂i.

The first term is singular and not derivable in x = 0, therefore we start evaluating
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it for |x| , 0:

e−Ma |x| ∂i ∂j
(

1
|x|

)
= e−Ma |x| ∂i

(
− xj

|x|2

)
= e−Ma |x|

(
3xi xj

|x|5
− δij

|x|3

)
= e−Ma |x|

(
3 x̂i x̂j − δij

|x|3

)
while in the coordinates’ origin we have |x| = 0 and i = j, thus:

e−Ma |x| ∂i ∂j
(

1
|x|

)
= e−Ma |x| δ

ij

3 ∇2
(

1
|x|

)
= e−Ma |x| δ

ij

3
(
−4πδ3(x)

)
this result follows from the evaluation of ∇2(1/|x|) which is null for each value of
|x| , 0 and equals to −4π for |x| = 0. To obtain this result in a faster way lets
write the Laplacian operator in polar coordinates:

∇2 = 1
r2 ∂r

(
r2 ∂r

)
+ 1
r2 sin θ ∂θ (sin θ ∂θ) + 1

r2 sin2 θ
∂2
φ

Only its first term survives when applied on a function of the radius only:

∇2(1/r) = 1
r2 ∂r

(
r2 ∂r(1/r)

)
= 1
r2 ∂r (−1) = 0

However, to evaluate this Laplacian in r = 0 we can integrate our function 1/r on
a sphere volume pointed in the origin. Using Gauss theorem:∫

V

∇2(1/r) dV =
∫
S

∇(1/r) dS

now we only need to evaluate the Del operator and write the infinitesima sphere
surface as dS = r̂dA = r̂ r2 sin θ dθ dφ, thus:∫

V

∇2(1/r) dV =
∫ π

0
dθ

∫ 2π

0
dφ (−r/r3) r̂ r2 sin θ = −4π

therefore, we get that the Laplacian of 1/r is null for all the value of r , 0, but its
integral over a sphere volume is equal to −4π. Thus, it must be different from zero
in the center of coordinates space, thus we can conclude that ∇2(1/r) = −4πδ3(r).

Coming back to our computation, the first term is:

e−Ma |x| ∂i ∂j
(

1
|x|

)
= e−Ma |x|

(
3 x̂i x̂j − δij

|x|3
− 4

3π δ
3(x) δij

)
(A.33)

The second and third term are straight and they can be analysed together:

∂i
(
e−Ma |x|

)
∂j
(

1
|x|

)
+ ∂i

(
1

|x|

)
∂j
(
e−Ma |x|

)
= 2e−Ma |x| Ma

x̂ix̂j

|x|2
(A.34)
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The derivative of last is:
1

|x|
∂i ∂j

(
e−Ma |x|

)
= 1

|x|
∂i
(

−Ma e
−Ma |x|∂j |x|

)
= e−Ma |x|

|x|
(
M2
a

(
∂i|x|

) (
∂j |x|

)
−Ma ∂

i ∂j |x|
)

= e−Ma |x|

|x|
(
M2
a x̂

i x̂j −Ma ∂
i (xj/|x|)

)
= e−Ma |x|

|x|

(
M2
a x̂

i x̂j − Ma

|x|
δij + Ma

|x|
x̂i x̂j

)
(A.35)

Summing together equations (A.33) - (A.35)

∂i ∂j
(
e−Ma |x|

|x|

)
=M2

a e
−Ma |x|

3|x|

[(
3x̂i x̂j − δij

)(
1 + 3

Ma |x|
+ 3

(Ma |x|)2

)
+ δij

]

− 4π
3 δ3(x) δij

A.8 Passarino Veltman Scalar Integrals
The Passarino-Veltman scalar integrals are defined as

B0(q10,m0,m1) = µ(4−D)

i(π)D/2

∫
dDl

1
(l2 −m2

0)((l + q1)2 −m2
1)

C0(q10, q20,m0,m1,m2) = µ(4−D)

i(π)D/2

∫
dDl

1
(l2 −m2

0)((l + q1)2 −m2
1)((l + q2)2 −m2

2)

In chapter 3 and 5, we many of these integrals enter in computations. While an
explicit solution for C0 is quite hard to obtain when all its parameters are non
null, the same does not hold for B0, which can be easily solved with Feynman
variables. Furthermore, this integral is involved in computations where the particle
that running in the loop does not change its flavor, thus m0 = m1 = m

B0(p,m,m) =µ(4−D)
∫

dDl

i(π)D/2

∫ 1

0
dx

1
[(l2 −m2) (1 − x) + ((l + p)2 −m2)x]2

=µ(4−D)
∫

dDl

i(π)D/2

∫ 1

0
dx

1
(l2 + 2lx p−m2)2

=µ(4−D) (2π)D
i(π)D/2

∫
dDl

(2π)D
∫ 1

0
dx

1
(l2 −m2)2

where the second equality has been obtained by performing the shift l → l − px.
The integration over loop momentum is now straight:

B0(p,m,m) = µε
(2π)D
i(π)D/2

iΓ
(
2 − D

2
)

(4π)D/2 (m2)−2+D/2 = 1
ε

− γE − log m
2

µ2 +O(ε).

(A.36)
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