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Abstract

Dynamical models of stellar systems represent a powerful tool to study their internal
structure and dynamics, to interpret the observed morphological and kinematical fields,
and also to support numerical simulations of their evolution.
We present a method especially designed to build axisymmetric Jeans models of galaxies,
assumed as stationary and collisionless stellar systems. The aim is the development of
a rigorous and flexible modelling procedure of multicomponent galaxies, composed of
different stellar and dark matter distributions, and a central supermassive black hole.
The stellar components, in particular, are intended to represent different galaxy struc-
tures, such as discs, bulges, halos, and can then have different structural (density profile,
flattening, mass, scale-length), dynamical (rotation, velocity dispersion anisotropy), and
population (age, metallicity, initial mass function, mass-to-light ratio) properties.
The theoretical framework supporting the modelling procedure is presented, with the
introduction of a suitable nomenclature, and its numerical implementation is discussed,
with particular reference to the numerical code JASMINE2, developed for this purpose.
We propose an approach for efficiently scaling the contributions in mass, luminosity,
and rotational support, of the different matter components, allowing for fast and flexible
explorations of the model parameter space. We also offer different methods of the com-
putation of the gravitational potentials associated of the density components, especially
convenient for their easier numerical tractability.
A few galaxy models are studied, showing internal, and projected, structural and dy-
namical properties of multicomponent galaxies, with a focus on axisymmetric early-type
galaxies with complex kinematical morphologies. The application of galaxy models to
the study of initial conditions for hydro-dynamical and N -body simulations of galaxy
evolution is also addressed, allowing in particular to investigate the large number of in-
teresting combinations of the parameters which determine the structure and dynamics
of complex multicomponent stellar systems.
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Chapter 1
Introduction

Galaxies are complex systems, populating the Universe. In some cases they are quite
solitary, in other cases they are embedded in more or less crowded environments, such as
groups and clusters of galaxies. In any case, they are composed of an ensemble of different
matter components, gravitationally bounded: they are made of stars, interstellar medium
(ISM, mainly composed of gas and dust), typically they contain a supermassive black
hole (BH) in the galactic centre, and, last but not least, a huge halo of dark matter (DM)
seems to host the galactic baryonic components. Moreover, like the ISM that occurs in
different phases and distributions, also the stars do not belong to one single population;
galaxies may contain, as principal components, a main younger stellar disc, or even a thin
and a thick disc, embedded in an older stellar halo, a central bulge, a nuclear stellar disc
and a nuclear star cluster, a bar, and spiral arms. The stellar dynamics plays a crucial
role in connecting many aspects of galaxies, and stellar systems in general, such as also
open and globular clusters. On one side, the stellar orbits are of course determined by
the structure of the system, including the amount and distribution of the other matter
components (and we will see how), which in turn depends on the history of formation
and evolution of the system itself. On the other side, the stellar dynamics influences the
evolution of the whole system. In galaxies, for instance, the stellar rotation affects the
cooling flows, enhancing the formation of a cold gaseous disc in the galactic plane; the
development of local instabilities in the disc then can lead to star formation bursts and to
gas accretion events onto the central BH. Moreover, the rotation of galactic stellar discs
enhances the development of global disc instabilities, which can lead to the formation of
bars in the central galactic regions. The shape and rotation of galaxies are also recognised
to significantly influence the X-ray properties of the hot gaseous corona. These are
only some examples of evolutionary mechanisms which are strongly correlated to stellar
dynamical properties. Therefore, the development of rigorous modelling techniques for
the internal structure and dynamics is fundamental to understand the physical processes
in real galaxies, and in particular to interpret observed morphological and kinematical
fields, and to infer possible formation and evolution paths. Beyond a pure theoretical
interest in understanding the internal processes feeding stellar systems, in the era of
integral field spectroscopy (IFS) and large surveys, and of high-performance computing,
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2 1. Introduction

Figure 1.1: Elliptical galaxies IC2006 (left) and NGC1132 (right) from Hubble Space Telescope.

more and more sophisticated dynamical models are indeed required for the interpretation
of observed galaxies and for simulations of their evolution.

1.1 Early-type galaxies

The focus of this Thesis is on early-type galaxies (ETGs) in the Local Universe (i.e. at
redshift z ' 0). ETGs usually include elliptical (Es), lenticular (S0s), and dwarf galaxies,
and so they can present an almost spherical shape up to a very flattened disc-like shape,
without spiral arms (see two examples in Fig. 1.1). They represent in practice the left-
hand side of the Hubble tuning-fork (Hubble 1936, see also Sandage 1961), and they have
elliptical shape when observed in the plane of the sky. They are distinguished by late-
type galaxies, which include spirals (with or without bar) and irregular galaxies. These
two main categories present a strong bimodality, not only in their morphology, but also
in several galaxy properties: ETGs in the Local Universe are typically passive (absent
or almost absent star formation events), populated by older stars and then redder, rich
of hot gas but poor of cold gas, and more metal-rich, with respect to late-type galaxies;
moreover, they are mainly found in denser environments. In the Local Universe, ETGs
are more rare than late-type, with about 20−30% of the observed nearby galaxies versus
70− 80%.

ETGs are observed to follow some empirical relations, showing correlations between
their structural, and dynamical properties, so-called Scaling Laws. Just to briefly review
the most important ones, we recall the Faber-Jackson relation (Faber and Jackson, 1976)
and the Kormendy relation (Kormendy, 1977). The former one states a correlation
between the luminosity (L, total or in a given band) and the stellar velocity dispersion
(measured within a certain aperture radius, typically the effective radius Re, so σe) of
ETGs; the latter one, between the surface brightness (measured within e.g. Re, so Ie)
and the size of the galaxy, usually measured by Re. From the Kormendy relation, it is
also derived the so-called size-luminosity relation, involving L instead of Ie. Overall, it
is widely recognised that ETGs with larger velocity dispersion of the stars (and so larger
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Figure 1.2: On the left, the five classes of ETGs distinguished by Krajnović et al. (2011) on the basis
of the morphology of the velocity maps. On the right, the (v/σ, ε) diagram for a sample of ETGs of the
ATLAS3Dsurvey, where the symbols for the same classes are reported according to the legend on the
left. The plots are taken from Cappellari (2016), to which we refer for details.

mass, from the Virial Theorem) are in general more extended and more luminous. These
Scaling Laws are also a representation of the Fundamental Plane (Dressler et al., 1987;
Djorgovski and Davis, 1987): ETGs remarkably lie on a plane (log Ie, log σe, logRe), with
a small scatter, and the Faber-Jackson and the size-luminosity relations can be obtained
as projections of this plane. Another fundamental empirical scaling law highlights a
strong correlation between the evolution of ETGs and their central BH: the mass of the
BH is typically three orders of magnitude smaller than the total stellar mass of the host
galaxy (Magorrian et al., 1998).

Thanks to the advent of Integral Field Spectroscopy, providing detailed kinematical
maps, ETGs have shown kinematical features which have suggested a further classifica-
tion, distinguishing them primarily in two main classes: the slow rotators and the fast
rotators (Krajnović et al. 2011 from ATLAS3Ddata, see also e.g. Cappellari 2016 for a
review). Fast rotators show a wide range of observed ellipticity ε = 1 − b/a (where b/a
is the ratio between minor and major axis), and a regular pattern of rotation projected
along the line-of-sight; they are also called regular rotators. Slow rotators, on the other
side, have ellipticity typically ε . 0.4, and they are also called non-regular rotators; in
particular four sub-classes have been recognised based on the morphology of the kinemat-
ical maps: not-rotating galaxies, galaxies with complex and irregular rotation pattern,
galaxies with kinematically decoupled core, galaxies with two counter-rotating discs, as
summarised in Fig. 1.2 (e.g. Morelli et al., 2004; Krajnović et al., 2015; Mitzkus et al.,
2017). In the classical (v/σ, ε) diagram (Binney, 1978), the distinction between regu-
lar and non-regular rotators is apparent: regular rotators are flatter and the flattening
is more supported by the rotation, while non-regular rotators are rounder and mainly
supported by the anisotropy of the velocity dispersion tensor (see the right panel of Fig.
1.2).

It is of course well-known that galaxies are made of different stellar components, as
already mentioned, but the easier treatment of galaxy modelling in the assumption of a
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single stellar population, with global average properties, such as a total surface bright-
ness distribution, a constant mass-to-light ratio, mean age and chemical abundance, and
so on, made this approximation the most used for many years. Moreover, the possibility
of theoretical studies on multiple stellar components was not supported by advanced
enough observations or numerical simulations. Nowadays, the complexity revealed by
observations of the kinematical fields of ETGs, and the huge amount of data available,
have highlighted the need of sophisticate and flexible procedures for the galaxy models,
in order to reproduce and interpret such kinematical features, clearly due to the pres-
ence of multiple stellar components, with different structural, dynamical and chemical
properties. Moreover, other observational evidences request to properly model different
stellar populations, such as gradients of color, chemical abundances, mass-to-light ratio,
suggesting the importance of taking into account age, metallicity, stellar initial mass
function (IMF) variations inside galaxies (e.g. Martín-Navarro et al. 2015; van Dokkum
et al. 2017; Parikh et al. 2018; Bernardi et al. 2018; García-Benito et al. 2019; besides the
non-universality of the IMF between different galaxies, see e.g. van Dokkum and Con-
roy 2010; Cappellari et al. 2012, 2013). More and more realistic galaxy models are also
required by numerical simulations of galaxy evolution, both hydrodynamical or N -body
simulations. We have already mentioned the importance of rigorous and flexible galaxy
models in simulations, and we will dedicate a specific Introduction in Chapter 6 (see also
Section 7.2), so we will not go in more details now.

1.2 Dynamical models

Dynamical models of galaxies are usually based on the assumption that galaxies are
stellar systems in equilibrium, i.e. in a stationary state. The phase-space distribution
function of the stars (DF), i.e. the 6-dimensional function describing the 3D position
and the 3D velocity of each star, usually cannot be recovered, and so basic assumptions
on its form are in order. For axisymmetric systems, due to the easier tractability, it is
often assumed that the DF depends on the two classic integrals of motion, namely the
energy and the axial component of the angular momentum.

Axisymmetric (oblate or prolate) galaxy models often represent an acceptable de-
scription of real galaxies, beyond the zeroth-order approximation of spherical symmetry.
Analytical models of single and multicomponent axisymmetric galaxies are available only
in few simpler cases; moreover, while of fundamental importance in elucidating physical
concepts behind the stellar dynamics, and so in guiding the construction of more realistic
galaxy models to be carried out numerically, analytical models necessarily suffer from the
restrictions imposed by the request of analytical tractability, and they miss the flexibility
of a numerical treatment. Analytical and numerical modelling should be seen then as
complementary approaches.

Dynamical models of galaxies have been developed during the years, following dif-
ferent approaches. The most widely used are the Jeans modelling (Jeans 1922; see e.g.
Binney and Tremaine 2008; Ciotti 2021), based on the application of equations very simi-
lar to those describing the hydrodynamics to the stellar dynamics, the orbit superposition
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technique (Schwarzschild, 1979), the made-to-measure particle based method (Syer and
Tremaine, 1996), the torus mapper technique (Binney and McMillan, 2016).

The Jeans approach is based on the assumption of a two-integral DF, so that the
Jeans equations solved for the stellar distribution embedded in a total gravitational po-
tential give the total stellar velocity fields. In this framework, the stellar system is
quasi-isotropic, in the sense that the axisymmetry naturally imposes that the velocity
dispersion tensor is isotropic in the vertical and radial directions, and the system ro-
tates only around the symmetry axis. Moreover, except in the isotropic case, the Jeans
equations are not a closed system, and they lead to a degeneracy between the streaming
velocity and velocity dispersion in the azimuthal direction (in cylindrical coordinates);
this degeneracy is solved a posteriori by the adoption of an arbitrary kinematical decom-
position. DFs which do not depend on two integrals can be considered within the Jeans
method forcing the basic assumptions, and introducing also a radial anisotropy (Cappel-
lari, 2008). The other methods mentioned are more general and suitable in modelling
stellar systems described by three-integral DFs, however they are also more computa-
tionally demanding, and less straightforward in their use.

This Thesis and the numerical code developed, JASMINE2, are based on the Jeans
approach, in particular with the aim of producing a tool suitable for the modelling of stel-
lar systems with multiple stellar components. In general, we can consider two approaches
when dealing with dynamical modelling of galaxies: one focused on the reproduction of
specific observed galaxy properties, and the construction of best-fit models, that we can
call from observations to models; the other one focused on the theoretical models of the
galactic structure and dynamics, that we can call from models to observations. As ex-
ample of the first approach, based on the solution of the Jeans equations and addressed
to multiple stellar components, as well, we would like to mention the multi-gaussian ex-
pansion method (MGE, Emsellem et al., 2011; Cappellari, 2002). It consists in a series
expansion of galaxy images with 2D gaussian functions; then the deprojected internal
density is easily reconstructed, and other dynamical and photometric quantities can be
easily and accurately evaluated, thanks to the analytical tractability of the gaussian func-
tion. In this way, an arbitrary large number of gaussian distributions is considered to
best-match the surface brightness of the galaxy; to each gaussian is associated a depro-
jected internal density distribution, implicitly described by a phase-space DF, so that for
each density component the Jeans equations are solved in the total gravitational poten-
tial; finally, the total kinematical fields are reconstructed. This method has been applied,
for example, to a large number of galaxies of the ATLAS3Dsurvey for the interpretation
of the kinematical components observed, as illustrated in Fig. 1.2. Our method, instead,
follows the second approach: we choose an arbitrary number of stellar components, each
one implicitly described by its own DF, and modelled by a chosen density profile (e.g.
a Hernquist ellipsoidal bulge, and exponential disc, a Jaffe ellipsoidal halo, and so on),
then the Jeans equations are solved for each stellar distribution in the total gravita-
tional potential, and the projected morphological and kinematical fields are obtained
(for each stellar component), and can be compared with those of observed galaxies. This
method allows for a higher level of theoretical understanding of the physical properties of
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multicomponent galaxies, in particular in case of multiple stellar components. We stress,
indeed, that our modelling approach involves a physical decomposition of the total stellar
distribution, where each underlying DF is intended to represent a physically meaningful
stellar component; the MGE method, on the other side, consists in a mathematical de-
composition. The two methods have their strengths and limitations, and can be seen as
complementary in the study of structural and dynamical properties of galaxies.

1.3 Overview of the Thesis

In this Thesis we present the theoretical framework, and the scheme for a numerical
implementation, of a multicomponent dynamical modelling of galaxies, in the assumption
of axisymmetry in cylindrical coordinates, especially focused on the presence of multiple
stellar components. The galaxy models may include an arbitrary number of stellar and
DM components, and a central BH; the stellar components can have different structural
(density profile, flattening, mass, scale-length), dynamical (rotation, velocity dispersion
anisotropy), and population (age, metallicity, initial mass function, mass-to-light ratio)
properties. The dynamical models are based on the solution of the Jeans equations for
each stellar distribution, which is implicitly described by a two-integral DF (or even
more general). In order to split the azimuthal velocity in the streaming and velocity
dispersion motions, several kinematical decompositions are discussed. The sum rules for
the combination of the internal structural and dynamical fields, and the projected fields,
of the stellar components are presented, giving the resulting total galaxy properties. In
a numerical implementation of this modelling procedure, two main obstacles are faced:
an extensive exploration of the model parameter space would be impossible, due to the
large number of parameters increasing with the number of matter components, and to the
computational time required by the numerical evaluation of the gravitational potential
associated to each density component, increasing also for increasing numerical resolution.
To allow for a fast and flexible multicomponent modelling, the scaling operations allowed
by the Poisson and Jeans equations, and by the projection formulae, are fully exploited:
we present a scaling approach, developed in order to fix the minimum possible number of
structural parameters before the computation of the potentials and the solution of the
Jeans equations, and then to have the flexibility to vary the maximum possible number
of model parameters in post-processing. Moreover, we present several methods for the
evaluation of the potential components, allowing to drastically reduce the computational
time; in particular, we give a new general formula for a fast numerical computation of
the potential produced by factorised discs.

The framework presented is implemented in (and tested with) the numerical code
JASMINE2. It is a substantially improved version of the original code JASMINE, which
is now able to model multiple stellar components, improved by the addition of the scaling
approach, and by different efficient methods for the computation of the gravitational
potentials.

In Chapter 2, the theoretical framework for the multicomponent modelling is pre-
sented, and in Chapter 3 the scaling approach, with some references to the specific
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implementation in JASMINE2. In Chapter 4, the library of density models implemented
in JASMINE2 is listed, with the related analytical potential when known, and several
methods for its numerical evaluation are illustrated; finally, some tests are shown, to
prove the accuracy of the numerical procedures, and in particular JASMINE2 is also
used to verify the reliability of analytical formulae in homoeoidal approximation. In
Chapter 5, some illustrative galaxy models including two distinct stellar components are
shown, and their internal structural and dynamical properties discussed, together with
the resulting projected fields; it is shown, for example, the effect of slightly prolate stellar
components, of faster stellar discs embedded in stellar halos, of counter-rotating stellar
components. Moreover, the possibility to reproduce properties of double-exponential
discs through the sum of Miyamoto-Nagai discs is explored. In Chapter 6, we report a
study of the effects of the shape and the rotation of the stellar component on gas flows in
ETGs, which supports a more extended study of the evolution of gas flows carried out by
means of hydrodynamical simulations. In each chapter, brief introductions and conclu-
sions will help to take stock and follow the main flow of the dissertation. In Chapter 7,
the whole work is summarised and the main results reported. Furthermore, an ongoing
study on the stability of stellar discs is presented, in its preliminary stage; in particular,
it is focused on criteria able to foresee the development of global instabilities leading to
bar formation, with the employment of N -body simulations. At the end of this Thesis,
a few Appendices report relevant analytical and technical arguments.

The Thesis is mainly based on a published and a submitted paper, and some brief and pre-
liminary aspects were published also in Conference proceedings, with additional original
material which will be partially included in other papers in preparation. The published
and in preparation papers are listed below; then, at the beginning of each Chapter, we
report the publications on which the material is mainly inserted.

• Dynamical models of spheroidal multi-component stellar systems
Caravita C., Ciotti L., Pellegrini S., 2020, IAUS, 351, 273

• Jeans modelling of axisymmetric galaxies with multiple stellar populations
Caravita C., Ciotti L., Pellegrini S., 2021, MNRAS, 506, 1480

• A parameter space exploration of high resolution numerically evolved ETGs includ-
ing AGN feedback and accurate dynamical treatment of stellar orbits
Ciotti L., Ostriker J. P., Gan Z., Jiang B. X., Pellegrini S., Caravita C., Mancino
A., 2022, Accepted for publication, ApJ

• An efficient method to compute the gravitational potential of disc galaxies
Caravita C., Ciotti L., In preparation

• Stability of disc galaxies through dynamical models and N-body simulations
Caravita C., D’Onghia E., Ciotti L., Pellegrini S., In preparation
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Chapter 2
Multicomponent modelling

We illustrate the main theoretical foundations on which our modelling procedure is based,
and we introduce the general notation used. We discuss how the internal structure and
dynamics are reconstructed for multicomponent axisymmetric systems in equilibrium,
which can be composed of an arbitrary number of stellar and dark matter components,
and in presence of a central supermassive black hole. We focus on the solution of the
Jeans equations for the multiple stellar components embedded in the total gravitational
potential, and satisfying the Virial Theorem. Then, we present different possible decom-
positions for the azimuthal motions, and the projection formulae on the plane of the sky
of the morphological and kinematical fields produced, together with relevant observable
galaxy properties. The formulae discussed have been implemented in (and tested with)
our numerical code JASMINE2.

Caravita C., Ciotti L. and Pellegrini S., 2020, IAUS

Caravita C., Ciotti L. and Pellegrini S., 2021, MNRAS

9



10 2. Multicomponent modelling

2.1 Structure of the galaxy models

We adopt cylindrical coordinates (R,ϕ, z), with the symmetry axis of the models aligned
with the z-axis. In full generality, we consider models composed of N different stellar
density distributions ρ∗i(R, z), of total mass M∗i, so that the total stellar density ρ∗ and
the total stellar mass M∗ of the system are given respectively by

ρ∗(R, z) =
∑
i

ρ∗i, M∗ =
∑
i

M∗i, i = 1, . . . , N. (2.1)

From now on, sums over i indicate sums over the N stellar components. We assume that
each ρ∗i is made of a simple stellar population (see e.g. Renzini and Buzzoni, 1986; Maras-
ton, 2005), i.e. by stars of the same age, chemical composition, initial mass function, and
in particular the same mass-to-light ratio Υ∗i. Therefore, the total stellar distribution ρ∗
can be considered a composite stellar population; the luminosity density and the total
luminosity of each stellar component can be written respectively as

ν∗i(R, z) =
ρ∗i
Υ∗i

, Li =
M∗i
Υ∗i

, (2.2)

so that
ν∗(R, z) =

∑
i

ν∗i, L =
∑
i

Li. (2.3)

The local and average stellar mass-to-light ratios of the galaxy are given by

Υ∗(R, z) ≡
ρ∗
ν∗

=

∑
i ρ∗i∑

i ρ∗i/Υ∗i
, < Υ∗ >≡

M∗
L

=

∑
iM∗i∑

iM∗i/Υ∗i
, (2.4)

where it is apparent how in general the local stellar mass-to-light ratio in a multicompo-
nent model depends on position.

As well-known, a mass density distribution is related to the gravitational potential
produced through the Poisson equation, which we write for the total stellar density as

∇2φ∗ = 4πGρ∗; (2.5)

then, from eq. (2.1), we can write the total stellar potential as

φ∗(R, z) =
∑
i

φ∗i, (2.6)

where φ∗i(R, z) is the potential originated by the density component ρ∗i. The presence
of a central BH, of mass MBH, produces the potential

φBH(r) = −GMBH

r
, r =

√
R2 + z2, (2.7)



N systems of Jeans equations 11

and an axisymmetric DM halo, of density ρh(R, z) and total mass Mh (when finite),
produces the potential φh(R, z). Therefore, in general, the total gravitational potential
of the model is

Φ(R, z) = φ∗ + φh + φBH =
∑
j

φj , j = 1, . . . , N + 2. (2.8)

From now on, sums over j indicate sums over all the N + 2 galaxy components, i.e.
the N stellar components, the central BH, and the DM halo. In principle, also the DM
distribution can be made of different components, with a trivial generalisation of the
current discussion, which is not necessary to detail here; in Chapter 6, for example, some
galaxy models are shown, including the effect of a group/cluster DM halo, in addition
to the galactic DM halo. Our approach to multicomponent systems fully exploits the
linearity of the Jeans equations with respect to the stellar density and to the gravitational
potential, as shown in the following Sections and in the next Chapter.

2.2 N systems of Jeans equations

The procedure, in its basic version, assumes that each stellar component is implicitly
described by a two-integral phase-space DF fi(E, Jz), in general different for each com-
ponent, where E and Jz are respectively the energy and the axial component of the
angular momentum of each star (per unit mass) in the total potential Φ. Therefore, the
DF of the total stellar distribution is the two-integral function

f =
∑
i

fi. (2.9)

In Appendix A, the assumption of non-collisionality is summarised, and the method
of moments presented; then the Jeans equations are derived, and the Virial theorem
verified, showing stationary and axisymmetric systems as particular case. Here we apply
the same procedure, with the generalisation to multiple stellar components. First of all,
f and fi of eq. (2.9) satisfy eq. (A.3), giving respectively ρ∗ and ρ∗i. As usual, we
indicate with (vR, vϕ, vz) the velocity components in the phase-space, and with a bar
over a quantity the operation of average over the velocity-space, weighted for the DF of
the stellar component of interest. We recall here that, in the assumption of two-integral
DF, for each stellar component vRi = vzi = 0, the only non-zero ordered velocity can
occur in the azimuthal direction vϕi ≡ vϕi, and finally for the velocity dispersion tensor
σRi = σzi ≡ σi. Of course, from eq. (2.9), similar relations hold as well for the dynamical
fields of the total ρ∗.

The Jeans equations for each stellar component are obtained as velocity moments of
the Collisionless Boltzmann Equation for the corresponding fi over the velocity space.



12 2. Multicomponent modelling

Overall, we have N systems of Jeans equations for the N stellar components,
∂ρ∗iσ2

i

∂z
= −ρ∗i

∂Φ

∂z
,

∂ρ∗iσ2
i

∂R
= ρ∗i

∆i

R
− ρ∗i

∂Φ

∂R
,

(2.10)

where Φ is the total potential in eq. (2.8), and

∆i ≡ v2
ϕi
− σ2

i , σ2
ϕi = v2

ϕi
− v2

ϕi = ∆i + σ2
i − v2

ϕi. (2.11)

In the isotropic case, it is immediate to prove that also σϕi = σi and ∆i = v2
ϕi. Imposing

the natural boundary condition ρ∗iσ2
i → 0 for z →∞, the solution of eqs. (2.10) is

ρ∗iσ2
i =

∫ ∞
z

ρ∗i
∂Φ

∂z′
dz′, ρ∗i∆i = R

(
∂ρ∗iσ2

i

∂R
+ ρ∗i

∂Φ

∂R

)
. (2.12)

We notice that ∆i can be also recast as a commutator-like integral as

ρ∗i∆i = R

∫ ∞
z

(
∂ρ∗i
∂R

∂Φ

∂z′
− ∂ρ∗i

∂z′
∂Φ

∂R

)
dz′, (2.13)

with some advantage for analytical and numerical investigations (see e.g. eq. 35 in Ciotti
et al. 2021, from now on shortened to CMPZ21); however we found by several numerical
tests that ∆i can also be accurately computed by (centred) numerical differentiation as in
eq. (2.12), and so in our code JASMINE2 we maintain this more direct way of evaluation.

Furthermore, although our modelling procedure is based on the assumption of two-
integral DFs, it is straightforward the generalisation proposed by Cappellari (2008), with
the inclusion of the orbital anisotropy in the Jeans equations (2.10). In this case (also
implemented in JASMINE2), we have σRi = bi σzi, with bi a constant parameter that
can be different for each stellar component, and the underlying fi does not depend on
the two classic integrals of motion.

A central point of the procedure is the sum rule in the phase-space imposed by the
identity (2.9). We are assuming that the N stellar components ρ∗i are physically distinct,
each of them described by its own fi, and so necessarily the N pairs of equations (2.10)
are the moment equations of each fi in the total potential Φ. Therefore, for a generic
physical property F (x,v), defined over the phase-space, the following equivalences hold:

F i =

∫
Ffid

3v

ρ∗i
, F =

∑
i ρ∗iF i
ρ∗

, FL =

∑
i ν∗iF i
ν∗

. (2.14)

The first one is the average of F over the velocity-space, weighted for a given fi; it is the
counterpart of the more generic eq. (A.5), when applied specifically to multicomponent
systems. Consequently, F and FL are properties related to the whole multicompo-
nent system, and they can be interpreted, respectively, as the mass-weighted and the
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luminosity-weighted averages of the F i. Notice that we are not reconstructing here the
phase-space DFs of the models; we just determine the general rules of combination of the
velocity moments in multicomponent systems. The previous considerations show how
to combine the solution for the single ρ∗i to obtain the dynamical fields associated with
the total ρ∗. Clearly, the Jeans equations for ρ∗, as given in eq. (2.1), are obtained as
the sum of eqs. (2.10) over the N components, and their solution can be written as the
mass-weighted quantities

σ2 =

∑
i ρ∗iσ

2
i

ρ∗
, ∆ =

∑
i ρ∗i∆i

ρ∗
,

v2
ϕ =

∑
i ρ∗iv

2
ϕi

ρ∗
, vϕ =

∑
i ρ∗ivϕi
ρ∗

,

(2.15)

where these identities are of straightforward proof from eqs. (2.14) and (2.11). Note,
however, that the velocities vϕi sum linearly, since they derive from first-order velocity
moments (see eq. A.6), at variance with σi, ∆i, and v2

ϕi
, which are second-order moments

(see eqs. A.7 and A.8). By consequence, and at variance with the previous quantities,
σ2
ϕ is not given by the simple sum of the σ2

ϕi of the single components: in fact, from eq.
(2.11), σ2

ϕ = v2
ϕ − v2

ϕ = ∆ + σ2 − v2
ϕ, and so

σ2
ϕ =

∑
i ρ∗i(σ

2
ϕi + v2

ϕi)

ρ∗
− v2

ϕ. (2.16)

In the limiting case of single component, the two last terms cancel out, and the equality
is trivially verified. Similarly, we can derive all the corresponding luminosity-weighted
quantities, obtained by using as weights the luminosity densities ν∗i of the components
instead of the mass densities ρ∗i, in eqs. (2.15) and (2.16), so that

σ2
L =

∑
i ν∗iσ

2
i

ν∗
, ∆L =

∑
i ν∗i∆i

ν∗
,

v2
ϕL

=

∑
i ν∗iv

2
ϕi

ν∗
, vϕL =

∑
i ν∗ivϕi
ν∗

,

(2.17)

and then

σ2
ϕL = v2

ϕL
− v2

ϕL = ∆L + σ2
L − v2

ϕL =

∑
i ν∗i(σ

2
ϕi + v2

ϕi)

ν∗
− v2

ϕL . (2.18)

If all the mass-to-light ratios Υ∗i are equal, there is no reason to define luminosity-
weighted quantities, which are indeed equal to the corresponding mass-weighted ones.

Finally, since each stellar component corresponds to a stationary and axisymmetric
stellar system, described by its own DF, and satisfying the Jeans equations, it is also
assured the Virial Theorem in the form of eq. (A.33). We refer to Appendix A, and
in particular Section A.3, for details, where a generic density ρ in a generic potential Φ
are treated; here we recast the main formulae entering the scalar Virial Theorem (that
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derives from the tensor Virial Theorem) when dealing with multiple stellar components.
For each stellar distribution,

2Ki +Wi = 0, (2.19)

where the trace of the total kinetic energy tensor is given by Ki = Tϕi+Πi+Πϕi/2, with

Tϕi = 2π

∫ ∞
0

∫ ∞
0

ρ∗iv2
ϕiR dR dz, (2.20)

Πi = 4π

∫ ∞
0

∫ ∞
0

ρ∗iσ2
i R dR dz, Πϕi = 4π

∫ ∞
0

∫ ∞
0

ρ∗iσ2
ϕiR dR dz, (2.21)

and the trace of the gravitational energy tensor reads

Wi = −4π

∫ ∞
0

∫ ∞
0

ρ∗i

(
R
∂Φ

∂R
+ z

∂Φ

∂z

)
R dR dz. (2.22)

The same argument holds for the total stellar distribution ρ∗: in particular, from the
sum rules of eqs. (2.1) and (2.15), it is immediate to prove that

K =
∑
i

Ki, W =
∑
i

Wi, 2K +W = 0. (2.23)

We spend few additional words on the gravitational energy, because of the importance
of different definitions. While Wi is obtained as the trace of the gravitational interaction
energy tensor, for the i-th stellar component in the total potential, the gravitational
energy of the stellar component in the total potential is given by

Ui = 2π

∫ ∞
0

∫ ∞
0

ρ∗iΦR dR dz, (2.24)

from eq. (A.17). Both the quantities represent the gravitational interaction between
matter components, and they are always negative, but Wi involves the forces (space-
derivatives of the potential), while Ui involves directly the potential (as we discuss in
particular in Section 7.2).

2.3 Azimuthal velocity decomposition

As well known, eqs. (2.10) are degenerate in the azimuthal direction, i.e. they only pro-
vide the total (squared) azimuthal velocity v2

ϕi
= σ2

ϕi + v2
ϕi for each stellar component.

The most common phenomenological approach to break this degeneracy is the Satoh
(1980) k-decomposition, valid for systems with ∆i ≥ 0. In addition, we propose an alter-
native kinematical decomposition which can be applied when ∆i < 0, a not uncommon
case in multicomponent stellar systems. Finally, we give a further equation allowing to
close the system of Jeans equations, in the approximation of almost circular orbits.
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2.3.1 Satoh k-decomposition

If ∆i ≥ 0 over the whole space, Satoh (1980) assumes

vϕi = ki
√

∆i, σ2
ϕi = σ2

i +
(
1− k2

i

)
∆i, (2.25)

with negative values of ki describing clockwise rotation. The special case k2
i = 1 de-

scribes an isotropic rotator (σϕi = σi), so the flattening of an ellipsoidal system is totally
supported by rotation; on the other side, ki = 0 implies no net rotation (vϕi = 0), and
the flattening is totally supported by tangential velocity anisotropy. In case of spherical
symmetry, it is immediate to prove directly from the Jeans equations (eqs. 2.10) that
∆i = 0, meaning that with the Satoh decomposition a spherical system cannot rotate
and is isotropic independently of the value of ki. Furthermore, in a simpler kinematical
decomposition, ki is assumed constant over the whole space (as can be found in many
applications in the literature), while more general decompositions can be obtained by
adopting a position-dependent parameter ki(R, z) (see e.g. eq. 5.8 used in Section 5.2.2
and in Chapter 6), also allowing for values greater than unity: a position-dependent
maximum is then determined by the request σϕi = 0 (e.g. Satoh, 1980; Ciotti and Pel-
legrini, 1996; Negri, Ciotti and Pellegrini, 2014). In principle each stellar component of
a multicomponent model is characterised by a different ki, so that, from eqs. (2.25) and
(2.15), we can define an effective Satoh parameter ke for the total ρ∗, given by

ke ≡
vϕ√
∆

=

∑
i kiρ∗i

√
∆i

ρ∗
√

∆
, σ2

ϕ = σ2 +
(
1− k2

e

)
∆, (2.26)

where ke in general depends on position, even if the ki do not.

2.3.2 Generalised k-decomposition

Clearly, in case of ∆i < 0 for some stellar component, the Satoh decomposition in eq.
(2.25) cannot be applied. The case of a negative ∆i over some regions of space (or
everywhere) is not frequently encountered in applications, but it is not impossible; for
example, it necessarily occurs for at least one density component in a multicomponent
system with spherically symmetric total density, or in a density distribution elongated
along the symmetry axis (see two applications in Sections 5.1 and 5.2; see also e.g. Ciotti
2021). Indeed, ∆ = 0 everywhere for a spherical system supported by a two-integral DF,
and thus, from eq. (2.15), at least one ∆i must be negative (excluding the trivial case of
all the subcomponents spherically symmetric, so that all ∆i = 0). Notice that ∆i < 0 is
not necessarily a manifestation of an inconsistent DF (fi < 0), while if v2

ϕi
= ∆i+σ2

i < 0
certainly the whole model must be discarded as unphysical, even if the solution for the
total stellar distribution is well-behaved. Therefore, in case of some ∆i < 0, but positivity
of the sum ∆i + σ2

i ≥ 0, the Satoh decomposition is generalised to

vϕi = ki

√
∆i + σ2

i , σ2
ϕi =

(
1− k2

i

)(
∆i + σ2

i

)
, k2

i ≤ 1, (2.27)
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where again ki can depend on position. We refer to this alternative decomposition as
to the generalised k-decomposition. The case ki = 0 implies no net rotation (vϕi = 0),
while now k2

i = 1 corresponds to σϕi = 0; notice that no isotropic rotators can be
realised from eq. (2.27) when ∆i < 0, because isotropy (σϕi = σi) would imply k2

i < 0.
At variance with the Satoh decomposition, it is now possible to model rotating and
anisotropic spherical systems (an application of this last case can be found, for example,
in exploratory numerical simulations of rotating gas flows in galaxies of Yoon et al.
2019). Notice that the generalised decomposition applied to systems with ∆i � σ2

i (as
for instance the case of highly flattened discs) reduces to the standard Satoh formula.
A more interesting (and delicate) case, requiring particular care in the choice of the
parameter ki, is represented by systems with |∆i| � σ2

i , when we have vϕi ∼ kiσi, and
σ2
ϕi ∼ (1 − k2

i )σ
2
i . This means that, in order to avoid substantial rotation, for example

in almost spherical systems (oblate or prolate), ki must be kept small.
We finally remark that, for a given multicomponent system, it is also possible to

assume a Satoh decomposition for some components, and the generalised decomposi-
tion for the others. In analogy with eq. (2.26) it is possible to define a total effective
decomposition parameter ke as

ke ≡
vϕ√

∆ + σ2
, σ2

ϕ =
(
1− k2

e

)(
∆ + σ2

)
. (2.28)

2.3.3 Epicyclic approximation

We consider a further possibility for the determination of the azimuthal motions. For
quite flattened axisymmetric systems, the stellar orbits can be described by almost cir-
cular orbits, in the so-called epicyclic approximation. In this case, it can be shown that
the azimuthal velocity dispersion is directly related to the radial (and vertical) velocity
dispersion by

σ2
ϕi =

σ2
i

η2
, v2

ϕi = ∆i +

(
1 +

1

η2

)
σ2
i , (2.29)

where

η2 =
4

R

∂Φ

∂R

(
3

R

∂Φ

∂R
+
∂2Φ

∂R2

)−1

(2.30)

(see e.g. B&T08). Notice that that v2
c = R∂Φ/∂R is the squared circular velocity on the

equatorial plane, and Φ is the total potential (eq. 2.8). Under this approximation, the
ordered rotational velocity of the stellar component is everywhere near to the circular
velocity at the same radius, and the first- and second-order velocity moments are all
determined only by the structure of the system, without assuming any arbitrary decom-
position parameter. This means that the system of two Jeans equations (eq. 2.10) turns
out to be closed. Moreover, the ratio between azimuthal and vertical velocity dispersion,
i.e. η in eq. (2.30), is the same for all the stellar components in the model. Obviously, this
approximation is quite realistic only for very flattened systems made of circular orbits. In
Section 7.2, we mention some models of disc galaxies where the epicyclic approximation
is employed, following Springel et al. 2005.
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2.4 Projections

We recast here the projection formulae presented in Posacki et al. (2013) for the case of a
multicomponent system, focusing in particular on how the solutions for the components
must be summed to obtain the projected fields of the total stellar distribution. We
indicate with <,> the scalar product, with n the line-of-sight direction (hereafter los)
directed from the observer to the galaxy1, and with l the integration path along the los.
For the ease of notation in this Section we drop the subscript i, so that all the following
formulae must be intended to hold separately for each stellar component ρ∗i (and of
course also for the total ρ∗). We will resume the use of the subscript i at the end of
the Section, when we give the expressions for the projected fields of ρ∗ as functions of
the projected fields of the components. The projection of a stellar density, and of the
ordered velocity v = vϕ eϕ, are

Σ∗ =

∫ ∞
−∞

ρ∗ dl, Σ∗vlos =

∫ ∞
−∞

ρ∗vϕ < eϕ,n > dl, (2.31)

where eϕ = (− sinϕ, cosϕ, 0) is the unitary vector in the tangential direction. From the
adopted orientation of n, a positive/negative vlos indicates a motion receding from/ap-
proaching to the observer, respectively. The los velocity dispersion can be written as

σ2
los = σ2

P + V 2
P − v2

los = V 2
rms − v2

los, (2.32)

where

Σ∗σ2
P =

∫ ∞
−∞

ρ∗ < σ2n,n > dl, Σ∗V 2
P =

∫ ∞
−∞

ρ∗v2
ϕ < eϕ,n >

2 dl, (2.33)

and we refer to Ciotti and Pellegrini (1996), in particular, for a thorough distinction
between the meanings of ’P’ and ’los’; in the first eq. (2.33), σ is the 3 × 3 velocity
dispersion tensor. We also define V 2

rms ≡ σ2
P + V 2

P = σ2
los + v2

los, in agreement with the
definition of Cappellari (2008). The fields Vrms and vlos in general depend on the specific
direction n; moreover, vlos, σP and VP depend on the specific velocity decomposition
adopted, while Vrms is independent of the velocity decomposition. For this reason, this
latter can be a convenient observable quantity to fit (see e.g. Cappellari, 2008). The pre-
vious identities are fully general and hold for a generic inclination of the los with respect
to the galaxy. For our axisymmetric models, it is assumed without loss of generality that
the los is parallel to the x− z plane, and the projection plane rotates around the y axis.

In particular, in the face-on projection (hereafter FO), the los is parallel to the z axis
with n = −ez, the projection plane is the x− y plane, and

Σ∗ = 2

∫ ∞
0

ρ∗ dz, Σ∗σ2
los = 2

∫ ∞
0

ρ∗σ2 dz, (2.34)

1Since in the following we refer often to CMPZ21, we report here the different convention adopted:
in that paper, indeed, n points from the galaxy to the observer.
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because vlos = VP = 0, and so σlos = σP. In the edge-on projection (hereafter EO), the
los is aligned with the x axis with n = −ex, the projection plane coincides with the y−z
plane, and (cosϕ, sinϕ) = (x/R, y/R), where R =

√
x2 + y2. Therefore

Σ∗ = 2

∫ ∞
y

ρ∗R√
R2 − y2

dR, Σ∗vlos = 2y

∫ ∞
y

ρ∗vϕ√
R2 − y2

dR, (2.35)

and, with some algebra from eqs. (2.33),

Σ∗σ2
P = 2

∫ ∞
y

(R2 − y2)σ2 + y2σ2
ϕ

R
√
R2 − y2

ρ∗ dR, (2.36)

Σ∗V 2
P = 2y2

∫ ∞
y

ρ∗v2
ϕ

R
√
R2 − y2

dR. (2.37)

Finally, exploiting eq. (2.11), eq. (2.32) can be recast in compact form as

Σ∗σ2
los = 2

∫ ∞
y

R2σ2 + y2∆

R
√
R2 − y2

ρ∗ dR− Σ∗v2
los, (2.38)

where the independence of Vrms (first term) from the specific azimuthal velocity decom-
position is here apparent. We stress that at this stage JASMINE2 performs only FO and
EO projections, but the extension to general los is one of our prospects.

2.4.1 Mass-weighted projections

The projected properties of a multicomponent stellar system can now be obtained, re-
gardless of the los direction, by considering the sum rules of the internal quantities shown
so far. From eqs. (2.1) and (2.15), and from eqs. (2.31)–(2.33), it is immediate to see
that

Σ∗ =
∑
i

Σ∗i, vlos =

∑
i Σ∗i vlosi

Σ∗
, V 2

rms =

∑
i Σ∗iV 2

rmsi

Σ∗
, (2.39)

and σ2
los is given again by eq. (2.32).

2.4.2 Luminosity-weighted projections

No difficulty is encountered in the construction of the luminosity-weighted fields anal-
ogous to eqs. (2.39), by using the surface brightness distributions, I∗i = Σ∗i/Υ∗i and
I∗ =

∑
i I∗i, in lieu of the surface densities, Σ∗i and Σ∗. In particular, the los luminosity-

weighted rotational velocity vlosL and velocity dispersion σlosL are obtained. At variance
with the (internal, i.e. non projected) quantities of Section 2.2, the luminosity-weighted
projected properties are equal to the mass-weighted ones only if all the mass-to-light ra-
tios Υ∗i of the different stellar components are equal and constant. The projected stellar
mass-to-light ratio is defined as Υ∗los ≡ Σ∗/I∗, in analogy with the local Υ∗ in eq. (2.4).
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Thus it is given by the ratio between the projected mass and luminosity, and not by the
projection of their ratio, i.e. it is not the projection of Υ∗.

For their usefulness in the observational field, we introduce some further quantities:
in particular, ETGs satisfy empirical Scaling Laws (e.g. Faber and Jackson, 1976; Ko-
rmendy, 1977) relating their size, luminosity, and kinematics. We can define for each
stellar distribution an effective radius2, Rei, as the radius of the circumference of half-
light, Li/2, on the plane of the sky; analogously, we have the total effective radius Re

enclosing L/2. They are respectively defined by

Li(Rei) = 2π

∫ Rei

0
I∗i tdt =

Li
2
, L(Re) = 2π

∫ Re

0
I∗ tdt =

L

2
, (2.41)

where t is the integration radius on the projection plane, for any given los. Note that for
a stellar component with a constant mass-to-light ratio, the half-light radius coincides
with the half-mass radius, indeed

M∗i(Rei) = 2π

∫ Rei

0
Σ∗i t dt =

M∗i
2
. (2.42)

This is not true when the mass-to-light ratio depends on the position, as occurs in
general for the total stellar distribution, so that the total Re encloses L/2, but not M∗/2
in general. We stress now an important point: the relation between Re and all the Rei

of the stellar components is not trivial, and in fact Re can not be directly determined
once all the Rei are known, (as we show in Section 3.2.3, in particular see the Footnote
2 therein). Moreover, from eq. (2.41), and recalling that L =

∑
i Li (eq. 2.3), we prove

that
L(Re) =

∑
i Li
2

=
∑
i

Li
2

=
∑
i

Li(Rei), (2.43)

but also, since I∗ =
∑

i I∗i,

L(Re) = 2π

∫ Rei

0

∑
i

I∗i t dt =
∑
i

(
2π

∫ Rei

0
I∗i t dt

)
=
∑
i

Li(Re). (2.44)

Nevertheless, although
∑

i Li(Rei) =
∑

i Li(Re), we stress that Re 6= Rei, which can be
different for each stellar component. Finally, we define an aperture velocity dispersion,
as the luminosity-weighted velocity dispersion σlosL integrated over an aperture radius
xRe (given by a fraction x of the effective radius Re), and luminosity-averaged, so that

σ2
0 =

∫ xRe

0 I∗σ2
losL t dt∫ xRe

0 I∗ t dt
. (2.45)

2For an ellipsoidal system, we can define also a circularised effective radius 〈Re〉 when the system is
observed EO, which is useful in the next Chapters. It is related to Re of the same model in the spherical
limit (or when observed FO) by the identity

〈Re〉 =
√
qRe. (2.40)

Besides, in the EO projection of an ellipsoidal system, the isophotal flattening coincide with the intrinsic
flattening.
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2.5 Summary

We have shown the sum rules to combine structural and dynamical properties of multi-
component systems, based on the assumption that each stellar component is implicitly
described by a specific distribution function (usually depending on two integrals of mo-
tion). We now have the framework necessary to determine the solution of the Jeans
equations, and the projected properties, for the whole multicomponent stellar system,
once the solutions for the single stellar components in the total gravitational potential
are known. Investigations of galaxy properties can be based on such galaxy models, as
mentioned in Chapter 1. Nevertheless, an extensive exploration of the model parameter
space would be impossible, due to the large number of parameters, increasing with the
number of matter components; indeed, for each (stellar and DM) density distribution,
unless the gravitational potential produced is known analytically, a numerical evaluation
of the potential is necessary, and can require a lot of computational time. To overcome
these bottlenecks of a numerical implementation, we proceeded in two directions. In
the next Chapter, we present in depth the scaling approach, developed in order to fix
the minimum possible number of structural parameters before the computation of the
potentials and the solution of the Jeans equations, and then to have the flexibility to
vary the maximum possible number of model parameters in post-processing. Then, in
Chapter 4, we present several methods for the evaluation of the potential components
which allow to drastically reduce the computational time.



Chapter 3
The scaling approach

We show how, thanks to the full use of the scaling operations allowed by the Poisson and
the Jeans equations, and by the projection formulae, it is possible to calculate a set of
scaled (dimensionless) solutions, and then to build an arbitrarily large family of models,
just by combining the solutions in this set with suitable weights. For this purpose the
numerical procedure is organised in two main parts: in the Potential & Jeans Solver, the
potential associated to each density component is calculated, and the Jeans equations are
solved for each stellar component in each potential component; in the Post-processing,
the mass and luminosity weights are assigned, the kinematical decompositions imposed,
and the projections performed. The numerical procedure is described in depth in its
basic (an reproducible) idea, with some references to the implementation in JASMINE2,
when necessary for more clearness.

Caravita C., Ciotti L. and Pellegrini S., 2020, IAUS

Caravita C., Ciotti L. and Pellegrini S., 2021, MNRAS
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3.1 N × (N + 2) systems of Jeans equations

We recognise that the Jeans equations (2.10), at fixed total potential Φ, are invariant
to a mass scaling of the density ρ∗i, i.e. at fixed Φ the derived velocity fields would be
independent of the value of M∗i. However, as Φ contains also φ∗i, eqs. (2.10) obviously
are not invariant to such scaling. Nevertheless, recalling that Φ =

∑
j φj , we are allowed

to split the Jeans equations (2.10) with respect to the contribution of each potential
φj . We write the N × (N + 2) systems of equations for the stellar densities ρ∗i in the
potentials φj , 

∂ρ∗iσ2
ij

∂z
= −ρ∗i

∂φj
∂z

,

∂ρ∗iσ2
ij

∂R
= ρ∗i

∆ij

R
− ρ∗i

∂φj
∂R

,

(3.1)

and their solutions

ρ∗iσ2
ij =

∫ ∞
z

ρ∗i
∂φj
∂z′

dz′, ρ∗i∆ij = R

(
∂ρ∗iσ2

ij

∂R
+ ρ∗i

∂φj
∂R

)
, (3.2)

with ρ∗iσ2
ij → 0 for z →∞. The Jeans equations in this form do have important scaling

properties that will be exploited in Section 3.2. We note that, here and in the following,
the double subscript ij does not refer to a tensorial nature, but just identifies the solution
of the i-th stellar component in the j-th potential component.

Leaving aside for the moment the scaling properties of eqs. (3.1) and (3.2), it is clear
that the sums

σ2
i =

∑
j

σ2
ij , ∆i =

∑
j

∆ij , (3.3)

are the solution of eqs. (2.10). This can be demonstrated, first by summing over j the
N + 2 eqs. (3.1) and their solutions (3.2) for a given ρ∗i, and comparing the resulting
expressions with eqs. (2.10) and (2.12), and then by proving that the solution of equation
(2.10) is unique from the imposed boundaries.

An important point is in order here. Despite the apparent similarity of the decompo-
sition of σ2

i and ∆i performed in eqs. (3.1) over the N +2 potential components φj , with
the decomposition of σ2 and ∆ performed in eqs. (2.10) over the N stellar components
ρ∗i, there is a fundamental conceptual difference between the two decompositions. In
fact, eqs. (2.10) are true moments of the Collisionless Boltzmann Equation obeyed by
the DFs fi in the total potential Φ, and so they have a sort of autonomous physical
meaning; eqs. (3.1), instead, are just a mathematical decomposition over the different
φj of the Jeans equations for ρ∗i. As a consequence, phase-space consistency arguments
apply to the solution of eqs. (2.10), but not to σ2

ij and ∆ij separately: as far as the fields
σ2
i and ∆i are physically acceptable, the model is also acceptable, independently of the

specific properties1 of its components σ2
ij and ∆ij .

1The situation is somewhat similar to that faced when decomposing a positive density distribution
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A further dynamical quantity interested by a decomposition of the total potential
surely deserves to be mentioned: the rotation curve in the equatorial plane is given in
terms of the circular velocities vcj of the mass components as

v2
c =

∑
j

v2
cj , v2

cj = R
∂φj(R, z = 0)

∂R
, (3.4)

as a direct consequence of eq. (2.8).
Finally, we apply this decomposition also to the Virial Theorem (in its scalar form,

but the formulae can be easily extended to the tensorial form) of eq. (2.19). For each
i-th stellar component in each the j-th potential component, it holds

2Kij +Wij = 0, (3.5)

whose sums over j,
Ki =

∑
j

Kij , Wi =
∑
j

Wij , (3.6)

satisfy eq. (2.19). Kij and Wij are defined from Appendix A, and in analogy with eqs.
(2.20)–(2.22). In particular, here Kij = Kϕij + Πij , where Kϕij is the total azimuthal
kinetic energy: since the kinematical decomposition of the azimuthal motions (see Section
2.3) is applied to the i-th velocity fields, and not to their ij-th decompositions, it has
no sense here to split the Kϕij in its streaming and velocity dispersion contributions. In
analogy with eqs. (2.22) and (2.24), we stress that Wij , for the i-th stellar component in
the j-th potential component, reads

Wij = −4π

∫ ∞
0

∫ ∞
0

ρ∗i

(
R
∂φj
∂R

+ z
∂φj
∂z

)
R dR dz, (3.7)

while the gravitational energy is

Uij = 4π

∫ ∞
0

∫ ∞
0

ρ∗iφj R dR dz, (3.8)

from eq. (A.18). In particular, Uij is symmetric from the Reciprocity Theorem, so that
Uij = Uji, while Wij is not, and, in general, Uij = Wij +Wji. In case of self-gravity, i.e.
i = j in the current notation, it immediately turns out that Uii/2 = Wii: indeed the self-
energy is usually defined as half of eq. (3.8). In the same manner, also the gravitational
energy due to the interaction of a density ρ∗i and the total potential Φ is given by half
of the corresponding integral of eq. (3.8), as shown in eq. (2.24). A deeper discussion on
these properties of the gravitational energies is subject of the study introduced in Section
7.2, for the special case of a two-component galaxy model.

over some prescribed set of functions (e.g spherical harmonics), when the basis functions can present
regions of negative densities.
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3.2 Scaling procedure

We describe the scaling approach, with a particular focus on its numerical implemen-
tation. We distinguish three groups of model parameters, on the basis of their roles in
the construction of a multicomponent model, and coherently we organise the numerical
procedure in two logically distinct parts - the Potential & Jeans Solver and the Post-
Processing (PP) -, as illustrated in the following Sections, and summarised in Fig. 3.1
and Table 3.1. The procedure is implemented in the numerical code JASMINE2 (see Ap-
pendix B for a technical description of the code), to which we refer sometimes specifically,
but it can be implemented as well in similar numerical codes.

Figure 3.1: Scheme of the modelling procedure. The diagram summarises the procedure of
construction of multicomponent galaxy models, based on the scaling approach described in Section 3.2,
and implemented in the code JASMINE2. For details about the input parameters - structural parameters,
weights, and physical scales -, see Table 3.1.
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Potential & Jeans Solver
Structural parameters

Scaled stellar and DM densities ρ̃∗i, ρ̃h

Scale-length ratios ξi =
r∗i
r∗
, ξh =

rh

r∗
, . . .

Shape parameters qi, qh, . . .

Post-Processing
Weights

Mass ratios Ri =
M∗i
M∗

, Rh =
Mh

M∗
, RBH =

MBH

M∗
Mass-to-light ratios Υ∗i =

M∗i
Li

Kinematical decompositions ki(λi, δi)

Post-Processing
Physical Scales

Total stellar mass M∗
Total stellar scale-length r∗

Table 3.1: Model parameters. The three main steps involved in the construction of a multicomponent
galaxy model, listed from top to bottom in the order in which they are considered in a numerical
implementation of the scaling approach, as shown in the diagram of Fig. 3.1. The meaning and the role
of the parameters, separated in three groups, and the two main parts of the numerical procedure - the
Potential & Jeans Solver and the Post-Processing (PP) - are described in detail in Section 3.2.

3.2.1 Model parameters

The three groups model parameters are presented in the following in the opposite order
with respect to the list of Table 3.1. Here they are discussed following logical arguments,
to introduce them as clearly as possible, while in Table they are listed in the order in
which they are considered in a numerical implementation.

Physical scales

In the first group of model parameters, there are the physical scales M∗ and r∗, meaning
the total stellar mass and its scale-length. All the masses and lengths are normalised
to M∗ and r∗, respectively. In particular, all the density and potential components are
made dimensionless by scaling them, respectively, with the normalisation coefficients

ρn ≡
M∗

4πr3∗
, φn ≡

GM∗
r∗

; (3.9)

and the 2D numerical grid is normalised to r∗, so that we have (R̃, z̃), with R̃ ≡ R/r∗
and z̃ ≡ z/r∗. Such a scaled grid guarantees the same resolution, independently of the
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actual physical size of the model, measured by r∗ (see Appendix B for details about the
spatial grid implemented in JASMINE2). Even though the physical scales are logically
introduced first, the values of M∗ and r∗ (and so of ρn and φn) are fixed as the last step of
the model construction, at the end of the PP. In this way, different physical realisations
(in total mass and size) can be obtained for the same multicomponent galaxy model.

Weights

In the second group of parameters there are the relative mass weights Ri ≡ M∗i/M∗,
Rh ≡ Mh/M∗, RBH ≡ MBH/M∗ of the different components, the mass-to-light ratios
Υ∗i, and the parameters ki appearing in eqs. (2.25) and (2.27) for the kinematical
decomposition of the azimuthal motions. By definition∑

i

Ri = 1, (3.10)

and in full generality we write

ρ∗i = ρnRiρ̃∗i, ρh = ρnRhρ̃h, ρ∗ = ρnρ̃∗ = ρn

∑
i

Riρ̃∗i, (3.11)

where ρ̃∗i and ρ̃h are the scaled (and dimensionless) density distributions, and ρ̃∗ is the
dimensionless total stellar density, weighted for the mass ratios of the stellar components.
Notice that, from the definition of ρn (eq. 3.9), the volume integrals of the dimensionless
densities over the whole dimensionless numerical grid evaluate to 4π by construction. We
mention here a subtlety which however can be very useful in applications: in principle
all the stellar mass weights Ri are naturally positive numbers, describing everywhere
positive density distributions; nevertheless, when interested in reproducing a physically
meaningful ρ∗ with the superposition of different components ρ∗i, regardless of their
physical acceptability (as a purely mathematical decomposition), also negative ρ∗i can
be considered, obtained with negative Ri (in Section 5.3, for example, we model such a
case). The situation is conceptually similar to that explained in Section 3.1 for σ2

i and
∆i (see also Footnote 1 therein). Similarly to eq. (3.11), for the gravitational potentials
we have

φ∗i = φnRiφ̃∗i, φh = φnRhφ̃h, φBH = φnRBHφ̃BH, (3.12)

and so
φj = φnRjφ̃j , Φ = φn

∑
j

Rjφ̃j . (3.13)

Exploiting the normalisation of the potentials, the ij-th solution (3.2) of the Jeans equa-
tions can be written as

σ2
ij = φnRj σ̃2

ij , ∆ij = φnRj∆̃ij ; (3.14)

then the i-th solution σ2
i and ∆i are given by sums over j from eq. (3.3), so that we

define dimensionless σ̃2
ij and ∆̃i as

σ2
i = φnσ̃

2
i = φn

∑
j

Rj σ̃2
ij , ∆i = φn∆̃i = φn

∑
j

Rj∆̃ij , (3.15)
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and in turn the total solution σ2 and ∆ are given by sums over i as in eq. (2.15), involving
also the normalisation of the stellar densities in eq. (3.11).

Since vϕi and σ2
ϕi derive from σ2

i and ∆i (see Section 2.3), their scaling derive directly
from the previous equation, with the addition of the decomposition parameters ki, which
enter the sums over i. Moreover, for the energies entering the Virial Theorem in eq. (3.5)
we have

Kij = M∗φnRiRjK̃ij , Wij = M∗φnRiRjW̃ij , (3.16)

withKi,Wi, andK,W , obtained from the sum rules of eqs. (3.6) and (2.23), respectively,
in analogy with the velocities above. Finally, from the assumption of a constant mass-
to-light ratio Υ∗i for each stellar component,

ν∗i = ρn
Ri
Υ∗i

ρ̃∗i, Li =
Ri
Υ∗i

M∗, (3.17)

where obviously the luminosity density follows the shape of the scaled mass density ρ̃∗i:
in case of constant Υ∗i, indeed, the dimensionless luminosity density corresponds to ρ̃∗i.
The values of the weights are chosen in PP, because a change in their values, and in the
kinematical decompositions, does not require to recompute the potentials and solve again
the Jeans equations. This possibility allows for a fast construction of different models
belonging to the same family, defined below.

Structural parameters

A family of models is characterised by the choice of the third group of parameters, to
be performed at the beginning of the model construction: the structural parameters of
the scaled density components ρ̃∗i and ρ̃h, that in full generality we indicate with the
symbols ξi ≡ r∗i/r∗ and ξh ≡ rh/r∗ for the different scale-lengths, and with qi and qh for
other parameters that determine the shape of the scaled densities (e.g. the flattenings in
case of ellipsoidal density distributions). The values of the structural parameters must be
assigned in order to run the Potential and Jeans Solver, and in general a change in some
of their values requires a new computation of the potentials and of the Jeans solutions.

3.2.2 The Potential & Jeans Solver

For a chosen set of values for the structural parameters, the scaled Jeans equations are
solved from eqs. (3.2) and (3.14), for each scaled density ρ̃∗i in each scaled potential φ̃j .
In practice, for N assigned scaled stellar components ρ̃∗i and a scaled DM halo ρ̃h, the
Potential & Jeans Solver first computes the N + 2 scaled potentials φ̃∗i, φ̃h, and φ̃BH,
and the relative forces (space-derivatives); then solves the N × (N + 2) pairs of scaled
Jeans equations (3.1), one for each ρ̃∗i in the potential φ̃j , over the dimensionless grid
(R̃, z̃). Thus the scaled fields σ̃2

ij and ∆̃ij are obtained. The possibility to solve eq. (3.1)
without choosing Ri and Rj is due to the fact that, on one hand, the weights Ri appear
linearly in both sides of eqs. (3.1); on the other hand, σ̃2

ij and ∆̃ij scale linearly with Rj ,
once the boundary condition is fixed to zero at infinity.
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When the analytical expression of the gravitational potential produced by a specific
density distribution is not known, a numerical evaluation is required, and many different
techniques have been developed. The details of the numerical methods implemented in
our code JASMINE2 are given in Sections 4.2 and 4.4 (see also Appendix B); here we
mention them for completeness. First of all, when available, the analytical potential is
used; in this regard, JASMINE2 is supplied with a continuously updated library of an-
alytical density-potential pairs available in the literature. For any choice of the density
distribution, it is always possible to perform a fully numerical computation of the po-
tential through the 2D integration over the cylindrical grid in terms of complete elliptic
integrals of the first kind K. Unfortunately, exact analytical potentials are known only
in few cases, and the latter very accurate fully numerical computation is quite time-
expensive. For these reasons, we have also implemented the Chandrasekhar formula for
ellipsoidal distributions, and a formula based on zeroth-order Bessel function of the first
kind J0 for discs; both imply a 1D integration, allowing for a quite fast computation.
Moreover, for ellipsoidal distributions, we can exploit analytical homoeoidally expanded
density-potential pairs, in particular for almost spherical ellipsoids.

3.2.3 The Post-Processing

As described in the previous Section, for a given multicomponent model of assigned ρ̃∗i,
ρ̃h, and with a central BH, the Potential & Jeans Solver gives the solution σ̃2

ij and ∆̃ij

of the scaled form of eq. (3.1). The N + 2 solutions for each the stellar component in
all the potential components are then combined in PP, with the assignment of the mass
ratios Rj , so that the solution σ2

i and ∆i of eq. (2.10) for ρ∗i is obtained, according
to eq. (3.15). At this stage, as discussed in Section 2.3, the PP performs a positivity
check of ∆̃i and ∆̃i + σ̃2

i . In case of negativity of the latter quantity, a new choice of
the weights Rj is made, until positivity is reached: if positivity cannot be obtained for
acceptable choices of Rj , then the multicomponent model is discarded as unphysical; if
instead ∆̃i + σ̃2

i is nowhere negative for some choice of Rj , the sign of ∆̃i influences the
choice of a suitable kinematical decomposition (in Sections 5.1 and 5.2, some illustrative
cases are shown).

Once the mass weights are assigned and the kinematical decomposition formula is
chosen, the PP requires the decomposition parameter ki, that gives the scaled azimuthal
velocity fields ṽϕi and σ̃ϕi. In full generality, we define each decomposition parameter as

ki(R, z) = λiδi(R, z), (3.18)

where λi is a constant weight, and δi(R, z) is a position-dependent function; the constant
Satoh parameter is obtained with δi = 1 and λi = ki. The benefit of this factorisation
is due to the fact that the projection formula of ṽϕi, as in equation (2.31), for a given
δi(R, z) scales with λi, so that we can set the value of λi after having computed the
projection integral. As projections represent the second most time-consuming step, the
possibility to choose (and change) λi after projections is a significant advantage. Note
that, at variance with what happens for the fields σ̃2

i , ∆̃i, ṽ2
ϕi and σ̃

2
ϕi, the mass weights
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Rj enter the expression of ṽϕi under a square root (see eqs. 2.25 and 2.27). This implies
that the weights Rj must be chosen before calculating the projections that use vϕi.
The effective radius Re of the total stellar distribution is obviously another important
quantity that can not be obtained as a linear combination of the effective radii of the
stellar components, as mentioned in Section 2.4.2, and it can only be computed after the
choice of the weights Ri and Υ∗i2. Summarising, the possibility to modify the values of
Rj in PP, allowed by the ij-decomposition, concern all the internal (i.e. non projected)
quantities, and the projected quantities with the exception of vlos, σlos and Re. Once
we have obtained the internal and projected fields of each ρ∗i, they are combined to
calculate the total (mass- and luminosity-weighted) internal and projected fields of ρ∗
(respectively from eqs. 2.15, 2.16, and eq. 2.39).

Finally, it is possible to arbitrarily set the physical scales M∗ and r∗ (determining
also ρn and φn), giving physical dimensions to the model.

3.3 Summary

A family of multicomponent galaxy models is defined by the choice of N scaled stellar
density components ρ̃∗i, a scaled DM halo ρ̃h, and a central BH. The Potential & Jeans
Solver computes the associated scaled potentials φ̃j , and then solves the N × (N + 2)
systems of Jeans equations in their scaled form. In the subsequent PP, specific values of
the mass ratios Ri, Rh, RBH, and of the mass-to-light ratios Υ∗i, and the kinematical
decompositions with the parameters ki, are fixed, thus defining a specific model in the
same family. The solution of the Jeans equations for the total density distribution is
recovered as (mass- or luminosity-) weighted sums of the scaled solutions, and the pro-
jections along a given line-of-sight are performed. The values of the total stellar mass
M∗ and of the scale-length r∗ complete the construction of the model. In practice, we set
the total mass and size, scaling the whole galaxy model, without changing its internal
structure and dynamics, neither the relative contributions in mass and luminosity of the

2Given that the projection of a dimensionless density distribution ρ̃∗i gives the dimensionless surface
density Σ̃∗i, we can define the projected mass enclosed within a circular radius xRe (defined as in eq.
2.45) as

M̃∗i(xR̃e) =

∫ xR̃e

0

Σ̃∗i t̃dt̃ , (3.19)

where R̃e = Re/r∗ and t̃ ≡ t/r∗. The integral of M̃∗i(xR̃e) over the projection plane results in M̃∗i = 4π,
and M̃∗i(R̃ei) = 2π, which directly provides the value of R̃ei = Rei/r∗. In order to calculate R̃e, instead,
we write L(Re) = L/2 as follows:

ρnr
3
∗
∑
i

Ri
Υ∗i

M̃∗i(R̃e) =
M∗
2

∑
i

Ri
Υ∗i

, (3.20)

which immediately leads to ∑
i

Ri
Υ∗i

M̃∗i(R̃e) = 2π
∑
i

Ri
Υ∗i

, (3.21)

showing that the estimate of R̃e requires to set the weights Ri and Υ∗i of each stellar component, and
it can not be calculated directly from the values of R̃ei.
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different matter components. This is also convenient, for example, to make a certain
model lie on the Scaling Laws (e.g. Faber and Jackson, 1976; Kormendy, 1977) and the
Fundamental Plane (Dressler et al., 1987; Djorgovski and Davis, 1987) for ETGs. The
modelling procedure, as also implemented in JASMINE2, is summarised in the scheme
of Fig. 3.1, and the model parameters involved are listed in Table 3.1.

There are at least two significant advantages in this procedure, when compared with
a straightforward integration of the Jeans equations for a multicomponent galaxy model.
First, the gravitational potentials of each stellar component and of the DM halo need not
to be recalculated every time the weights are changed in PP; thus the run of the most
time-expensive part of the numerical procedure is required just once for all the models
in the same family. Second, the possibility to choose the weights in PP allows for a fast
exploration of the parameter space (that can be very large for multicomponent models).
Qualitatively, the N × (N + 2) ij-th scaled solutions of the Jeans equations, for all the
i-th density components in all the j-th potential components, can be interpreted as basis
vectors that are successively linearly combined with different weights, to obtain a specific
solution belonging to a family of multicomponent models.



Chapter 4
Density models, evaluation of the
potentials and tests

A large number of density models have been studied (and published in the literature)
to describe the matter distributions in astrophysical systems, both for the luminous and
the dark matter. We summarise all the density models that have been included in the
code JASMINE2, with the relative analytical potential when known. Then, we present
the different methods for the numerical computation of the potentials that have been
implemented in JASMINE2, with particular reference to the evaluation of the potentials
produced by the density models of our library. The standard method for axisymmetric
density distributions is the integration formula in terms of elliptic integrals; for ellipsoidal
systems, we also recall the Chandrasekhar integral formula, and the analytical solutions
in homoeoidal approximation (for small flattening of the ellipsoidal density distribution);
finally, for factorised discs, we present a new general formula in terms of Bessel functions.
All these methods have been widely tested, and applied to the construction of the galaxy
models presented as applications in this Thesis work. Moreover, JASMINE2 has been
used to test the reliability of the solution of the Jeans equations in homoeoidal expansion,
for increasing flattening.

Caravita C., Ciotti L. and Pellegrini S., 2021, MNRAS

Caravita C. and Ciotti L., In preparation
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4.1 Density models

The following list of density profiles, and density-potential pairs when analytical poten-
tials are known, represents the current library from which we can choose for the construc-
tion of our models with JASMINE2, meaning for the definition of the stellar and DM
distributions. The library is continuously updated with other density profiles according
to the needs. In full generality, we adopt the normalisations introduced in the previ-
ous Chapter, so that all the masses and the lengths are normalised, respectively, to M∗
and r∗, and consequently all the densities and the potentials to ρn and φn, respectively:
the formulae for the density and the potentials are then recast, and given for general
ρ̃
(
R̃, z̃

)
and φ̃

(
R̃, z̃

)
. The models are ordered according to their shapes: in Section 4.1.1,

spheroidal density models, characterised by a flattening parameter q; in Section 4.1.2,
other special flattened systems; in Section 4.1.3, exponential discs, infinitely thin and
with two possible vertical stratifications. The complete list is summarised in Table 4.1,
where it is also specified whether the analytical potential is known, and the numerical
methods to calculate the potential available for each specific density model. With regard
to discs, in Section 4.4, other radial profiles are mentioned (which are not included in
JASMINE2 at this stage) that can describe the surface density of infinitely thin discs, or
can be combined with one of the two vertical profiles.

The description of the density profiles (density-potential pairs in some cases) does not
intend to be exhaustive, and some references are suggested for more details; moreover,
general and quite comprehensive references on the topic can be, for instance, B&T08,
Ciotti (2021).

4.1.1 Spheroidal systems

γ-models The family of γ-models (Dehnen, 1993; Tremaine et al., 1994) is characterised
by a parameter 0 ≤ γ < 3, and its generalisation to the ellipsoidal case gives

ρ̃
(
R̃, z̃

)
=

(3− γ)ξ

q mγ(ξ +m)4−γ , m2 = R̃2 +
z̃2

q2
, (4.1)

describing the Hernquist (1990) model and the Jaffe (1983) model, respectively, for γ = 1
and γ = 2. We recall that (here and below) ξ is the semi-major axis of the ellipsoid,
normalised to r∗, and q is the flattening, i.e. the ratio between the semi-minor and
semi-major axes of the ellipsoid. In the spherical limit, the analytical potential is

φ̃(s) =


− 1

(2− γ)ξ

[
1−

(
s

ξ + s

)2−γ]
, γ 6= 2

−1

ξ
ln

(
ξ + s

s

)
, γ = 2,

(4.2)

with s =
√
R̃2 + z̃2 the normalised spherical radius. We mention, as a useful link with

observations, that for a spherical Jaffe model, and in the assumption of constant mass-
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Density model Analytical Chandrasekhar Homoeoidal Bessel

Spheroidal systems

γ-models Xq = 1 X X
NFW Xq = 1 X X
Quasi-iso. sphere (q = 1) X
Perfect ellipsoid X X
Plummer Xq = 1 X X
Einasto Xq = 1 X
de Vaucouleurs X

Other flattened systems

MN X
Satoh X
Binney log potential X

Exponential discs

Razor-thin exp X
Double-exponential X
Pseudo-isothermal exp X

Table 4.1: Density models and suitable methods for the evaluation of the potentials. All
the density models presented in Section 4.1 are listed. On the right, it is specified whether the analytical
potential is known, and other methods for its evaluation: the 1D numerical integration of the Chan-
drasekhar formula (Section 4.2.1) and the homoeoidal expansion (Section 4.2.2) for ellipsoidal systems;
the 1D numerical integration based on Bessel functions for factorised discs (Section 4.4). Moreover, for
all the density distributions, it is possible to calculate the associated potential with the standard 2D
numerical integration based on elliptic integrals (eq. 4.23).

to-light ratio, the scale radius r∗ is related to the effective radius by Re ' 0.75 r∗ (see
e.g. Jaffe, 1983; Ciotti and Ziaee Lorzad, 2018).

NFW model The Navarro-Frenk-White model (NFW, Navarro et al., 1996), in its
ellipsoidal generalisation, is given by

ρ̃
(
R̃, z̃

)
=

1

q m(ξ +m)2f(c)
, f(c) = ln(1 + c)− c

1 + c
, (4.3)

where the concentration c = ξt/ξ is the ratio between the truncation radius (enclosing
the finite total mass) and the scale-length, both in units of r∗. In the spherical case, we
have

φ̃(s) = − 1

s f(c)
ln

(
ξ + s

s

)
. (4.4)

Quasi-isothermal sphere The quasi-isothermal sphere is a spherical model of infi-
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nite mass,

ρ̃(s) =
ξ2

ξ2 + s2
, M̃(s) = ξ3

[
s

ξ
− arctan

(
s

ξ

)]
, (4.5)

with M(s) = M∗RM̃(s), and circular velocity asymptotically constant at large radii,
v2

c ∼ φnRξ2. Due to the infinite mass, for this model we adopt R = ρ(0)/ρ∗(0), i.e. the
density ratio at the centre, instead of the mass ratio. The gravitational potential is given
by

φ̃(s) = ξ2

[
ln

(√
ξ2 + s2

ξ

)
+

arctan(s/ξ)

s/ξ
− 1

]
, (4.6)

where it is immediate to see that the big bracket represents φ/v2
c , which can be an

alternative convenient normalisation of the potential for this special model.
Perfect ellipsoid We write the density of the perfect ellipsoid, well-known for pro-

ducing a potential of Stäckel form (de Zeeuw, 1985; de Zeeuw and Lynden-Bell, 1985),
in the axisymmetric case, so that

ρ̃
(
R̃, z̃

)
=

4 ξ

q π
(
ξ2 +m2

)2 . (4.7)

Plummer The ellipsoidal generalisation of the Plummer (1911) sphere gives

ρ̃
(
R̃, z̃

)
=

3 ξ2

q
(
ξ2 +m2

)5/2 , (4.8)

with associated potential, in the spherical limit, given by

φ̃(s) = − 1√
ξ2 + s2

. (4.9)

In the spherical limit, the previous models have been unified in a three-parameter
family (see e.g. Hernquist, 1990; Zhao, 1996; Mo et al., 2010; Roncadelli and Galanti,
2021), with a double power-law density generically defined as

ρ(s) = ρ0s
−γ(1 + sα

) γ−β
α , (4.10)

describing each model with an appropriate constant ρ0. In particular, for α = 1, we
obtain the γ-models when β = 4 (including the Hernquist model for γ = 1 and the Jaffe
model for γ = 2), and the NFW model when β = 3 and γ = 1. Instead, for α = 2
and γ = 0, we derive the family of so-called β-models, including the quasi-isothermal
sphere, the modified Hubble sphere (not presented in this work), the Plummer sphere,
and the spherical limit of the perfect ellipsoid, for β = 2, 3, 4, 5 respectively.

Einasto The Einasto (1965; see also Graham et al., 2006) profile is the three-
dimensional counterpart of the Sérsic (1963) law applied to the internal density dis-
tribution, and it well reproduces the DM halos obtained from numerical simulations. Its
ellipsoidal generalisation gives

ρ̃
(
R̃, z̃

)
=

b3nn
q n ξ3Γ(3n)

e−bn(m/ξ)1/n
, bn ' 3n− 1

3
+

8

1215n
, (4.11)
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with associated potential, in the spherical case, given by

φ̃(s) = −1

s

[
1− Γ(3n, x)

Γ(3n)
+
xnΓ(2n, x)

Γ(3n)

]
, (4.12)

where Γ(a) =
∫∞

0 ta−1e−t dt and Γ(a, x) =
∫∞
x ta−1e−t dt are the complete and the upper

incomplete Gamma functions, respectively.
de Vaucouleurs The de Vaucouleurs (1948) profile, also known as ’R1/4’ law, and

special case of the Sérsic (1963) profile for n = 4, is widely used to describe the surface
brightness of elliptical galaxies. From the deprojection formula of Mellier and Mathez
(1987), an approximation of the Abel inversion formula, an axisymmetric density is
derived:

ρ̃
(
R̃, z̃

)
=

Bn
q ξ3

e−bn(m/ξ)1/4
(m
ξ

)−0.855
, (4.13)

where

Bn =
b12−4·0.855
n

4 Γ(12− 4 · 0.855)
, bn ' 2n− 0.324, (4.14)

so that, for n = 4, bn ' 7.67 and Bn ' 588.637. Note the similarity with the Einasto
profile (eq. 4.11), except for the power-law term.

4.1.2 Other flattened systems

Miyamoto-Nagai The Miyamoto-Nagai model (MN, Miyamoto and Nagai, 1975) reads

ρ̃
(
R̃, z̃

)
= b̃2

ãR̃2 +
(
ζ + 2

√
z̃2 + b̃2

)
ζ2(

R̃2 + ζ2
)5/2(

z̃2 + b̃2
)3/2 , (4.15)

φ̃
(
R̃, z̃

)
= − 1√

R̃2 + ζ2

, ζ = ã+

√
z̃2 + b̃2, (4.16)

depending on two scale-lengths, ã and b̃, both in units of r∗. For ã = 0 it reduces to the
Plummer sphere (eq. 4.8), and for b̃ = 0 to the razor-thin Kuzmin-Toomre disc (Kuzmin
1956; Toomre 1963; see also Section 4.4).

Satoh Satoh (1980) derived a new model from the Plummer sphere, by differentiating
the density-potential pair several times with respect to its scale parameter (i.e. ξ in eqs.
4.8 and 4.9) and then flattening it:

ρ̃
(
R̃, z̃

)
=

ãb̃2

ζ3
(
z̃2 + b̃2

)[ 1√
z̃2 + b̃2

+
3

ã

(
1− R̃2 + z̃2

ζ2

)]
, (4.17)

φ̃
(
R̃, z̃

)
= −1

ζ
, ζ =

√
R̃2 + z̃2 + ã

(
ã+ 2

√
z̃2 + b̃2

)
. (4.18)
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Binney logarithmic potential B&T08 introduce an axisymmetric potential pro-
ducing a circular velocity asymptotically constant at large radii, v2

c ∼ φnR, for which
they also derive the corresponding density:

ρ̃
(
R̃, z̃

)
=

(
1 + 2q2

)
ξ2 + R̃2 +

(
2− q−2

)
z̃2

q2
(
ξ2 +m2

) , φ̃
(
R̃, z̃

)
=

1

2
ln
(
ξ2 +m2

)
, (4.19)

where for this special model q is the flattening of the potential distribution, and not
of the density distribution. Moreover, in order to assure a nowhere negative density,
q > 1/

√
2 ' 0.7: approaching this limit, the density distribution presents a torus-like

shape, becoming negative on the z-axis when the limit is reached.

4.1.3 Exponential discs

A radial exponential profile is commonly used to describe the surface density distribution
of stellar and gaseous galactic discs. Here we present three cases of exponential discs:
the infinitely thin disc, and two cases of vertical stratifications.

Razor-thin exponential disc Infinitely thin discs, defined only in the equatorial
plane, represent the first approximation of thin stellar and gaseous galactic discs. The
distribution

ρ̃
(
R̃, z̃

)
=

2 e−R̃/ã

ã2
δ(z̃) =

2 e−R̃/ã

ã2
, z̃ = 0

0, z̃ 6= 0.
(4.20)

is in fact a surface density, with scale-radius ã, in units of r∗.
Double-exponential disc A simple model for a more realistic disc includes an ex-

ponential vertical profile, so that

ρ̃
(
R̃, z̃

)
=

e−R̃/ã−|z̃|/b̃

ã2b̃
, (4.21)

with scale-length b̃, in units of r∗, typically much smaller than ã.
Pseudo-isothermal exponential discAnother vertical stratification often employed

gives

ρ̃
(
R̃, z̃

)
=

22−n

ã2b̃B
(
n
2 ,

n
2

)e−R̃/ã sechn
(
z̃/b̃
)
, (4.22)

where we recall that sechn(t) = cosh−n(t) = 2nent/(1 + e2t)n, producing again an expo-
nential vertical decline of the density distribution. We also recall (see Appendix C for
more details) that the complete Beta function can be written in terms of the complete
Gamma function, so that B

(
n
2 ,

n
2

)
= Γ

(
n
2

)2
= Γ(n), and, for example, it evaluates to π

for n = 1, and to 1 for n = 2. This last is the most commonly used value for n when
modeling exponential stellar and gaseous discs, describing the so-called isothermal sheet
(Spitzer, 1942).
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4.2 Methods to calculate the gravitational potential

In the previous Section, we have reported some analytical potentials associated to the
respective mass densities. Unfortunately, only in few cases it is possible to recover the
analytical expression for the potential, making it necessary to develop numerical proce-
dures, complementing the analytical results. In this and the next Section, we present
some techniques, whether well-known in the literature, or discussed specifically in this
Thesis work, and all implemented in (and tested with) JASMINE2. They are summarised
in Table 4.1, where it is also specified which methods can be used for each density model
of the previous Section.

First of all, for axisymmetric distributions, in cylindrical coordinates, it is always
possible to perform a fully numerical computation of the potential in terms of elliptic
integrals. In the current notation, we recast the formula as follows:

φ̃
(
R̃, z̃

)
= − 1

π

∫ ∞

0

∫ ∞

−∞
K

√√√√ 4R̃R̃′(
R̃+ R̃′

)2
+
(
z̃ − z̃′

)2
 ρ̃

(
R̃, z̃

)
R̃′ dR̃′ dz̃′√(

R̃+ R̃′
)2

+
(
z̃ − z̃′

)2 ,
(4.23)

where K is the complete elliptic integral of the first kind, related to the incomplete one
by K(k) = F (π/2, k) (see e.g. B&T08; Ciotti 2021). The potential is evaluated as a 2D
integration for each point

(
R̃, z̃

)
, giving a very accurate solution, but at the price of a

quite time-expensive computation (see Appendix B for more technical details).
To reduce the computational time required by the evaluation of the potentials, recall-

ing that it is the most time-consuming part of the numerical procedure (as highlighted
in Section 3), we have also implemented in JASMINE2 two faster 1D integration for-
mulae: the Chandrasekhar formula for ellipsoidal distributions, and a formula based
on Bessel functions for discs. Moreover, we can use analytical homoeoidally expanded
density-potential pairs for some ellipsoidal distributions. In the following Sections we
describe these three methods: we stress that, while the integration based on elliptic in-
tegrals (eq. 4.23) was already implemented in the first version of the code, JASMINE,
and it was in fact the only numerical method available for the evaluation of the poten-
tials, besides the use of analytical potentials for some density models, the further three
methods represent a trait of the new version of the code, JASMINE2. In particular,
for the Chandrasekhar formula (Section 4.2.1) and the homoeoidal expansion technique
(Section 4.2.2), we briefly report formulae from other works, while a deeper discussion
will be dedicated to factorised discs (Section 4.4), with a new method and original results
presented.

4.2.1 Chandrasekhar formula for ellipsoidal models

We recall the Chandrasekhar integration formula for the evaluation of the gravitational
potential produced by a generic density distribution stratified on ellipsoidal surfaces, in
cartesian coordinates (x, y, z), with semi-axes a ≥ b ≥ c ≥ 0 aligned with the coordinate
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system (see e.g. Chandrasekhar 1969; B&T08; Ciotti 2021):

φ(x) = −πGabc
∫ ∞

0

∆ψ dτ√
(a2 + τ)(b2 + τ)(c2 + τ)

, (4.24)

where
∆ψ = ψ(∞)− ψ(mτ ) = 2

∫ ∞
mτ

ρ(t) t dt, (4.25)

and

t =

√
x2

a2
+
y2

b2
+
z2

c2
, mτ =

√
x2

a2 + τ
+

y2

b2 + τ
+

z2

c2 + τ
(4.26)

are dimensionless parameters. In case of axisymmetric ellipsoid, so that a = b, c = qa,
in cylindrical coordinates, and with the adoption of our usual normalisations (in analogy
with the previous Section), we obtain

φ̃
(
R̃, z̃

)
= −q

4

∫ ∞

0

∆̃ψ dλ

(1 + λ)
√

(q2 + λ)
, λ =

τ

r∗
, (4.27)

where now
∆̃ψ = 2

∫ ∞
mτ

ρ̃(t) tdt, (4.28)

with t and mτ unchanged with respect to eq. (4.26), but they can be recast as

t =

√
R̃2 +

z̃2

q2
, mτ =

√
R̃2 +

z̃2

q2 + λ
. (4.29)

We see, in the following, the expression of ∆̃ψ for some ellipsoidal distributions in our
library, obtained through the analytical solution of eq. (4.28) with the respective density
ρ̃ from Section 4.1. For details, we refer especially to Ciotti (2021).

For the γ-models, from eq. (4.1), we have

∆̃ψ =



2

q(2− γ)ξ

{
1− m2−γ

τ

(ξ +mτ )3−γ

[
mτ + (3− γ)ξ

]}
, γ 6= 2

2

qξ

[
ln

(
ξ +mτ

mτ

)
− ξ

ξ +mτ

]
, γ = 2;

(4.30)

for the NFW model, from eq. (4.3),

∆̃ψ =
2

q(ξ +mτ )f(c)
; (4.31)

for the perfect ellipsoid, from eq. (4.7),

∆̃ψ =
4 ξ

q π
(
ξ2 +m2

τ

) ; (4.32)
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for the Plummer model, from eq. (4.8),

∆̃ψ =
2 ξ2

q
(
ξ2 +m2

τ

)3/2 ; (4.33)

for the Einasto model From eq. (4.11),

∆̃ψ =
2 bnn

q ξ Γ(3n)
Γ

[
2n, bn

(
mτ

ξ

)1/n
]

; (4.34)

finally, for the de Vaucouleurs deprojected profile, from eq. (4.13), we obtain

∆̃ψ =
0.4174

q ξ
Γ

[
4.58, 7.67

(
mτ

ξ

)1/4
]
, (4.35)

where the numerical values derive from the values given for ρ̃.

4.2.2 Homoeoidally expanded formulae for ellipsoidal models

For density distributions stratified on homoeoidal surfaces, such as ellipsoidal distribu-
tions, both the density and the associated gravitational potential can be approximated by
an expansion in the limit of small flattening, through the so-called homoeoidal expansion
technique (Ciotti and Bertin, 2005). We see the homoeoidally expanded density distribu-
tions, and the related analytical expressions for the expanded potentials, for some density
models of Section 4.1; we report also the expression for the density distribution for rea-
sons that will be clear in the following. In case of axisymmetric density distributions,
the expansion up to the linear order in the flattening q can be written as

ρ̃
(
R̃, z̃

)
= ρ̃0(s) + (1− q)ρ̃1(s) + (1− q)R̃2ρ̃2(s), (4.36)

and, in analogy, the potential produced is

φ̃
(
R̃, z̃

)
= −

[
φ̃0(s) + (1− q)φ̃1(s) + (1− q)R̃2φ̃2(s)

]
, (4.37)

where the usual normalisations are adopted, and s =
√
R̃2 + z̃2 is the normalised spher-

ical radius, accordingly to Section 4.1. For details about the homoeoidal expansion
technique, we refer to Ciotti and Bertin (2005), and also CMPZ21 (where in particular
axisymmetric Jaffe models are treated); here we recall the meaning of the functions in
eqs. (4.36) and (4.37) for coherence with our use of the formulae:

ρ̃0(s) = ρ̃(s),

ρ̃1(s) = ρ̃(s) + s
dρ̃(s)

ds
,

ρ̃2(s) = −1

s

dρ̃(s)

ds
;

(4.38)
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φ̃0(s) =
1

s

∫ s

0
ρ̃(t)t2 dt+

∫ ∞
s

ρ̃(t)t dt,

φ̃1(s) = − 2

3s2

∫ s

0
ρ̃(t)t4 dt+

1

3

∫ ∞
s

ρ̃(t)t dt,

ρ̃2(s) =
1

s5

∫ s

0
ρ̃(t)t4 dt.

(4.39)

These are functions of the radius s and the scale-length ξ, while the dependence on the
flattening q is contained in eqs. (4.36) and (4.37). The homoeoidally expanded density-
potential pair recovers the exact spherical case for q = 1, and indeed −φ̃0(s) is the
potential associated to ρ̃0(s), while it diverges from the ellipsoidal density-potential pair
for increasing flattening (decreasing q). We highlight here two possible interpretations
(and applications) of the homoeoidal expansion: on one side, homoeoidally expanded
density-potential pairs can be intended as approximations of true ellipsoidal systems,
and this can be useful to deal with analytical potentials (even if approximated), when
otherwise numerical computations would be required; on the other side, homoeoidally
expanded models can be intended as proper models, regardless of the approximation of
ellipsoidal systems. In Section 4.3, we see some tests involving the homoeoidal expansion
technique, and in Chapters 5 and 6 we use it in applications.

In the following, we give the analytical solutions of eqs. (4.38) and (4.39) for some
models of interest, for which also the homoeoidal expansions have been included in JAS-
MINE2 (see Table 4.1). From Ciotti and Bertin (2005), we recast the formulae for
γ-models in eqs. (4.1)–(4.2). For γ 6= 2 (including the Hernquist model for γ = 1), we
have

ρ̃0(s) =
(3− γ)ξ

sγ(ξ + s)4−γ , ρ̃1(s) = −ξ(3− γ)
[
ξ(γ − 1) + 3s

]
sγ(ξ + s)5−γ ,

ρ̃2(s) =
ξ(3− γ)(ξγ + 4s)

s2+γ(ξ + s)5−γ ;

(4.40)

φ̃0(s) =
1

ξ(2− γ)

[
1−

( s

ξ + s

)2−γ
]
,

φ̃1(s) = − 1

3ξ(2− γ)

{
1 +

[
ξ(γ − 3)− s

]
s2−γ(ξ + s)γ−3

}
− 2ξ2(3− γ)

3s3
B

(
5− γ,−1;

s

ξ + s

)
,

φ̃2(s) =
ξ2(3− γ)

s5
B

(
5− γ,−1;

s

ξ + s

)
,

(4.41)

exploiting the incomplete Beta function B(a, b;x). In Appendix C, some considerations
about the Beta function and its numerical implementation are discussed. In particular,
since the incomplete Beta function is often called in numerical languages in its regularised
form, it must be b > 0, which fails in the expressions of φ̃1 and φ̃2 above, since b = −1: the
incomplete Beta function is recast for this situation in terms of Hypergeometric function
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2F1 (eq. C.3). The case γ = 2, i.e. Jaffe model, is solved separately and can be found
with detailed discussions in CMPZ21:

ρ̃0(s) =
ξ

s2(ξ + s)2
, ρ̃1(s) = − ξ(ξ + 3s)

s2(ξ + s)3
, ρ̃2(s) =

2ξ(ξ + 2s)

s4(ξ + s)3
; (4.42)

φ̃0(s) =
1

ξ
ln

(
ξ + s

s

)
,

φ̃1(s) = −s
2 + 2ξs+ 4ξ2

3s2(ξ + s)
+

1

3ξ
ln

(
ξ + s

s

)
+

4ξ2

3s3
ln

(
ξ + s

ξ

)
,

φ̃2(s) =
ξ(2ξ + s)

s4(ξ + s)
− 2ξ2

s5
ln

(
ξ + s

ξ

)
.

(4.43)

For the perfect ellipsoid in eq. (4.7), we obtain

ρ̃0(s) =
4ξ

π(ξ2 + s2)2
, ρ̃1(s) =

4ξ
(
ξ2 − 3s2

)
π(ξ2 + s2)3

, ρ̃2(s) =
16ξ

π(ξ2 + s2)3
; (4.44)

φ̃0(s) =
2 arctan(s/ξ)

πs
, φ̃1(s) =

4ξ2 arctan(s/ξ)

πs3
− 2ξ

(
2ξ2 + s2

)
πs2(ξ2 + s2)

,

φ̃2(s) =
2ξ
(
3ξ2 + s2

)
πs4(ξ2 + s2)

− 6ξ2 arctan(s/ξ)

πs5
.

(4.45)

Finally, for the Plummer model in eqs. (4.8)–(4.9),

ρ̃0(s) =
2ξ2

(ξ2 + s2)5/2
, ρ̃1(s) =

ξ2
(
3ξ2 − 12s2

)
(ξ2 + s2)7/2

, ρ̃2(s) =
15ξ2

(ξ2 + s2)7/2
; (4.46)

φ̃0(s) =
1√

ξ2 + s2
, φ̃1(s) =

ξ2
(
2ξ2 + 3s2

)
s2(ξ2 + s2)3/2

− 2ξ2 arcsinh(s/ξ)

s3
,

φ̃2(s) =
3ξ2 arcsinh(s/ξ)

s5
− ξ2

(
3ξ2 + 4s2

)
s4(ξ2 + s2)3/2

.

(4.47)

For the formulae of the last two models, we thank especially the courtesy of Luca Ciotti
and Antonio Mancino. Some similarities between the formulae above are not surprising,
indeed these models, in their spherical limit, belong to a same three-parameter family
with a double power-law density distribution, as shown in eq. (4.10). In particular, the
expressions for ρ̃0 and φ̃0 are the exact spherical density-potential pair, as mentioned
above, and they are necessarily in agreement with the formulae for the ellipsoidal distri-
butions of Section 4.1, when q = 1.

4.3 Tests for spheroidal systems

We show some proves of the accuracy of the numerical methods seen so far for the
computation of the gravitational potentials, and of the numerical solution of the Jeans
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equations, with the code JASMINE2. First, in Section 4.3.1, we check the numerical
integrations based on elliptic integrals and on the Chandrasekhar formula for the evalua-
tion of the potential of spherical systems, against analytical potentials, and we check the
numerical integration of the Jeans equations against analytical results. Second, once we
have verified these numerical procedures, in Section 4.3.2, we use numerical potentials to
study the reliability of the homoeoidal expansion, for ellipsoidal systems with increasing
degree of flattening.

For this set of tests, for simplicity, we use a single-component Jaffe stellar model: the
density distribution is given by eq. (4.1), for γ = 2, and ξ = 1 (i.e. the scale-length r∗
is taken as the scale-length of the density model itself). We choose an ellipsoidal density
distribution, and in particular a Jaffe profile, for the following reasons. First, we verify
the accuracy of two numerical methods for the evaluation of the potential (see Table
4.1): via elliptic integrals from eq. (4.23), and via the Chandrasekhar formula of eq.
(4.27) with ∆̃ψ from eq. (4.30); both the numerical integrations are compared with the
analytical expression of the potential in case of spherical symmetry (eq. 4.2 with γ = 2,
ξ = 1). Second, for a spherical Jaffe model, also the solution of the Jeans equations
is known analytically (see Jaffe 1983; see also e.g. Ciotti and Ziaee Lorzad 2018, and
references therein), allowing for a check of the numerical solution.

Once we have verified the accuracy of the numerical potential and of the numerical
integration of the Jeans equations with JASMINE2, the Jaffe model is also suitable for
a further twofold experiment, addressed to verify the reliability of homoeoidal expansion
techniques for increasing flattening of the ellipsoid. On one side, we solve numerically the
Jeans equations for a true ellipsoidal model (eq. 4.1) with numerical potential, and for an
homoeoidally expanded (up to the linear terms in the flattening) density-potential pair (as
reported in eqs. 4.36, 4.37, and 4.42, 4.43, from CMPZ21): we show how well the internal
structure and dynamics are reproduced in the second case, for increasing flattening. We
recall that the most time-consuming part of the modelling procedure is the numerical
evaluation of the potential (when using elliptic integrals), thus the possibility to exploit an
approximated analytical expression for the potential can be a significant advantage. On
the other side, in CMPZ21, the analytical solution of the Jeans equations in homoeoidal
expansion is also given: in this case, only the linear order in the flattening is taken
into account, while a numerical integration of the Jeans equations for an homoeoidally
expanded density-potential pair (again up to the linear terms in the flattening) keep also
the quadratic flattening terms in the solution. We compare the expanded solution with
the numerical solution of JASMINE2, checking the importance of quadratic flattening
terms. Summarising, we compare the solutions of the Jeans equations obtained in three
different ways: a true ellipsoidal density model, with numerical potential and numerical
integration of the Jeans equations (that we call in the following figures ’num’); an hybrid
solution, obtained from an homoeoidally expanded density-potential pair, with numerical
solution of the Jeans equations (’hom-num’); a pure homoeoidal solution, obtained from
an homoeoidally expanded density-potential pair, with homoeoidally expanded solution
of the Jeans equation (’hom’). We expect an increasing discrepancy of the ’hom-num’,
and more of the ’hom’, results with respect to the pure ’num’, for increasing flattening.
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Figure 4.1: Radial profiles in the equatorial plane
(
R̃, z̃ = 0

)
of the (dimensionless) gravitational

potential φ (left), and velocity dispersion σ (right), for a spherical Jaffe model. On the left, the numerical
evaluations of φ with JASMINE2, in terms of elliptic integrals and with the Chandrasekhar formula,
are compared with the analytical potential. Then, the numerical integration of the Jeans equations in
JASMINE2 gives σ, compared with the analytical solution in the right plot, and an everywhere zero ∆,
as expected.

In the following, we discuss some figures showing the comparisons discussed. We do
not analyse here the structural and dynamical properties of the models, while we focus
only on the tests in interest; details on the features typical of Jaffe models (and other
models) can be found in the applications of Chapters 5 and 6. Similar tests have been
performed also for other density models of our library, as we mention below. Finally, we
only mention here that similar tests have been performed for two-component models, to
check the multicomponent modelling procedure, for different degrees of flattening of the
ellipsoidal distributions, and also in presence of the central BH. In particular, we refer to
the so-called JJ model in Ciotti and Ziaee Lorzad (2018) for the spherical case, and to
the JJe model in CMPZ21 for the ellipsoidal case (see also the models used in Section 5.1
and in Chapter 6). For the sake of conciseness, we do not show figures for these cases,
limiting the treatment to the spherical and flattened single-component cases.

4.3.1 Spherical case: test of numerical procedures

We show in Fig. 4.1 the radial profile on the equatorial plane of the gravitational potential
produced by a spherical Jaffe density model, comparing the numerical evaluation of
JASMINE2, both in terms of elliptic integrals and with the Chandrasekhar formula,
with the analytical potential. With a suitable resolution of the spatial grid

(
R̃, z̃

)
, and

of the integration variable λ of eq. (4.27) (see Appendix B), both the numerical methods
are able to perfectly reproduce the potential.

We then solve the Jeans equations numerically with JASMINE2, comparing the so-
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lution with the well-known analytical solution for spherical Jaffe model. We recall that
for a spherical system ∆ = 0, and so only σ is given. In the right plot of Figure 4.1,
we show how well the numerical integration of the vertical Jeans equation recovers the
analytical σ; of course, we have also verified that the numerical integration of the radial
Jeans equation gives an everywhere zero ∆.

Similar checks on the potential of spherical systems have been performed also for
other density models, strengthening our confidence in the numerical implementation in
JASMINE2 of the two methods. Finally, some checks on the integration via elliptic
integrals, and on the solution of the Jeans equations, had been already performed with
the first version of the code, JASMINE, by comparison with the analytical results of
Smet et al. (2015). In this regard, we recall that the numerical integration in terms of
elliptic integrals, and the integration of the Jeans equations, in cylindrical coordinates,
in JASMINE2 are based on the same approach of the original JASMINE, but extended
to the treatment of multiple stellar and DM components.

4.3.2 Increasing flattening: test of homoeoidal expansion

After the checks on the numerical techniques implemented in JASMINE2, we now con-
sider the numerical results as true, and we use them to verify the reliability of ho-
moeoidally expanded results. We recall that the homoeoidal expansion of an ellipsoidal
distribution recovers the exact analytical results in the limit case of spherical symme-
try (q = 0), and diverges from the true ellipsoidal model for increasing flattening. The
homoeoidal expansion technique is then valid only for small flattening of the ellipsoid,
and in particular it imposes a flattening q ≥ 2/3, in order to assure an everywhere pos-
itive density distribution. For illustrative purposes, in Fig. 4.2, the difference of the
ellipsoidal Jaffe density distribution (solid black line) and its expansion is shown, for
q = 0.9, 0.8, 0.7. While on the equatorial plane the isodensity contours are substantially
the same, along (and near) the z-axis the outer expanded contours differ from the ellip-
tical shape for increasing q; for q < 2/3 this behaviour would lead to regions of negative
density. More details, and similar figures, can be found in CMPZ21, in particular see
Figure 2 therein.

We see now the difference between the numerical and the expanded potentials re-
lated to the Jaffe density models above. The numerical potentials are calculated by
JASMINE2 through the Chandrasekhar formula, because of its enormous rapidity with
respect to the integration based on elliptic integrals (see Appendix B). As well known,
a generic oblate density distribution produces a gravitational potential with a rounder
distribution: then the potentials produced by the almost spherical density distributions
of Fig. 4.2 are essentially spherical. For this reason, in Fig. 4.3, we do not show the
isopotential contours, but the radial profiles on the equatorial plane; moreover, since the
main differences between the curves occur in the innermost regions, a logarithmic radial
scale allows to better appreciate them (besides, an inset plot shows a zoom in at small
radii). The curves for the three models with q = 0.9, 0.8, 0.7 are overlapped, and lower
profiles refer to lower q, since more flattened systems produce more negative potentials:
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Figure 4.2: Isodensity contours on the meridional plane
(
R̃, z̃

)
for true ellipsoidal Jaffe density distri-

butions (solid black lines) and the respective homoeoidal expansions (dashed orange lines), for increasing
flattening q = 0.9, 0.8, 0.7, from left to right. The isodensity contours represent the dimensionless ρ/ρn,
with values spaced by 1 dex.

of course, at large radii the profiles are nearly the same, while at small radii we can see
the effect of the increasing flattening. The expanded potentials (dashed orange lines)
reproduce very well the true potentials (solid black lines), with small discrepancies in the
innermost regions, and only slightly increasing the discrepancy for increasing flattening.

In Figure 4.4, the radial profiles on the equatorial plane of the solutions of the Jeans
equations, σ and

√
∆, are shown for the three Jaffe models with q = 0.9, 0.8, 0.7, com-

paring the three cases ’num’, ’hom-num’ and ’hom’, already introduced. Let us analyse
first the difference between the numerical integration of the Jeans equations for a true
ellipsoidal density model with numerical potential (’num’, solid black lines), and for an
homoeoidally expanded density-potential pair (’hom-num’, dot-dashed green lines): the
increasing discrepancies for increasing flattening are apparent. In particular, the velocity
dispersion σ is perfectly reproduced for q = 0.9, and still with very good agreement for
q = 0.8, up to an error of few per cent for q = 0.7; the differences in

√
∆, instead, are

larger, from few per cent for q = 0.9, to about 10% for q = 0.8, up to about 20% for
q = 0.7. Caution is then required when using homoeoidally expanded density-potential
pairs to approximate true ellipsoidal distributions. We recall that, however, homoeoidally
expanded models can also be intended as proper models, regardless of the approxima-
tion of ellipsoidal systems (as explained in Section 4.2.2): in this case, the solution of the
Jeans equations called ’hom-num’ is the true numerical solution for this density-potential
pair. Especially for this case, it is interesting to see how well the analytical integration
of the Jeans equations, truncated to the linear order in flattening (’hom’, dashed orange
lines), reproduce the numerical integration, which in contrast extends to second-order
(’hom-num’, dot-dashed green lines). The difference between the two profiles is not sig-
nificant, neither for σ nor for

√
∆, for any degree of flattening shown. This means that,

when interested in homoeoidally expanded density-potential pairs, quadratic flattening
terms can be neglected also in the solution of the Jeans equations, without a significant
loss in accuracy.
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Figure 4.3: Radial profiles in the equatorial plane
(
R̃, z̃ = 0

)
of the gravitational potential φ, normalised

to φn: the numerical potential (Chandrasekhar formula) for true ellipsoidal Jaffe density distributions
(solid black lines) are compared with the respective homoeoidal expansions (dashed orange lines), for
increasing flattening q = 0.9, 0.8, 0.7. The curves for the three degrees of flattening are overlapped, and
lower profiles refer to lower q. The inset plot shows a zoom in at small radii, to better appreciate the
differences between the curves.

We stress that the results about the homoeoidal expansion technique are obtained for
Jaffe models and can be different for other ellipsoidal distributions, at least quantitatively.

4.4 Gravitational potential of factorised discs with Bessel
functions

We consider a generic axisymmetric system, in cylindrical coordinates, with a mass den-
sity distribution ρ(R, z), producing a gravitational potential φ(R, z), and satisfying the
Poisson equation ∇2φ = 4πGρ. If we apply the Hankel transform (or Fourier-Bessel
transform) to both sides of the Poisson equation, we can write the potential in terms of
Bessel functions (see e.g. Toomre 1963; Casertano 1983; B&T08; Ciotti 2021; Bovy 2022;
see also Jackson 1998), as follows:

φ(R, z) = −2πG

∫ ∞
0

J0(kR) dk

∫ ∞
−∞

ρ̂(k, z′) e−k|z−z
′| dz′,

ρ̂(k, z′) =

∫ ∞
0

ρ(R′, z′) J0(kR′)R′ dR′,

(4.48)

where J0 is the zeroth-order Bessel function of the first kind, and ρ̂ is the zeroth-order
Hankel transform of the function ρ.

From a computational point of view, eqs. (4.48) correspond to a 3D integral, to
be evaluated in each position of a numerical grid in the coordinates (R, z). Therefore,
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Figure 4.4: Radial profiles in the equatorial plane
(
R̃, z̃ = 0

)
of the solution of the Jeans equations

for Jaffe models with flattening q = 0.9, 0.8, 0.7 from left to right. The first row shows the velocity
dispersion σ, and the second row

√
∆, both normalised to

√
φn, obtained in three different ways: a true

ellipsoidal density model, with numerical potential and numerical integration of the Jeans equations
(’num’, solid black lines); an hybrid solution, obtained from an homoeoidally expanded density-potential
pair, with numerical solution of the Jeans equations (’hom-num’, dot-dashed green lines); a pure ho-
moeoidal solution, obtained from an homoeoidally expanded density-potential pair, with homoeoidally
expanded solution of the Jeans equation (’hom’, dashed orange lines).

in the hypothesis of the same grid resolution for the integration and for sampling the
potential, with N grid points in each variable, a number of operations of the order of
O(N5) is required. The situation slightly improves if ρ̂ is known analytically, reducing
the order of operations to O(N4). Finally, if the density ρ can be written in factorised
form, i.e. it is separable in cylindrical coordinates, and also the integral over z′ can be
solved analytically, eqs. (4.48) reduce to a 1D integral, and the order of operations drops
to O(N3). This may allow to save a remarkable amount of computational time. The case
already mentioned may appear quite rare and of limited use, but fortunately it is not,
since factorised density distributions are often employed in modelling stellar and gaseous
galactic discs (e.g. Casertano, 1983; Kuijken and Gilmore, 1989; Jurić et al., 2008; Smith
et al., 2015, among many others). In a very first approximation, stellar and gaseous
discs are often considered as zero-thickness discs, i.e. in the simplest and idealised case
of infinitely thin (a.k.a. razor-thin) discs, thanks to the very small vertical extension
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with respect to their radial size. More realistic models, however, assume a - albeit small
- non-zero constant scale-height, characterising the vertical distribution of matter off-
plane, and allowing for a full 3D treatment of the gravitational potential produced. The
reality is even more complex, and in fact stellar and gaseous discs in disc galaxies are
observed to have radial-dependent scale-height.

In this Section, we take into consideration some radial and vertical density distribu-
tions which can be multiplied to produce a variety of factorised discs, in the assumption
of constant scale-height. For each radial distribution we report in Appendix D the an-
alytical Hankel transform ρ̂, and for each vertical stratification we give in the following
the analytical solution of the integral over z′ in eq. (4.48), so that the evaluation of the
potential of these factorised discs requires only the 1D integration over k. Writing the
potential in terms of Bessel function J0, of course, is not the only way for a numerical
computation, and sometimes it could not be the most convenient. In the previous Section
4.2, we have seen other numerical methods, from the most general and direct approach
through the complete elliptic integral of the first kind K, to methods especially suitable
for spheroidal systems. In case of infinitely thin axisymmetric discs, an alternative formu-
lation have been proposed by Cuddeford (1993), through the superposition of infinitely
thin homoeoids. For example, in case of infinitely thin exponential disc, the potential is
evaluated in terms of modified Bessel functions K0 or K1, with an important advantage
with respect to eq. (4.48): the modified Bessel functions K0 and K1 decrease exponen-
tially and are always positive towards infinity, while the Bessel function J0 has a slow
and oscillatory decline, requiring more care in the numerical evaluation. Another formu-
lation for the potential of infinitely thin axisymmetric discs has been proposed by Evans
and de Zeeuw (1992), exploiting Stieltjes transforms, and avoiding the use of Bessel func-
tions. Nevertheless, eq. (4.48), while firstly developed for discs of zero-thickness, is easily
extended to discs with a generic vertical stratification of matter, which allows to have
density distributions factorised in cylindrical coordinates, and, for many commonly used
radial and vertical distributions, the integrals in R′ and z′ have analytical solutions: this
allows to reduce the problem to a 1D integration, with evident benefit in computational
time, as mentioned above.

In Section 4.4.1, we introduce the integration formulae to evaluate the potential in
case of factorised discs in cylindrical coordinates. In Section 4.4.2, we focus in particular
on two important vertical stratifications, beyond the case of zero-thickness: the expo-
nential profile and the ’pseudo-isothermal’ profile, decreasing as a power-law of the sech.
We also recall a variety of widely used radial distributions (Appendix D): the exponen-
tial and the Kuzmin discs, the disc of truncated constant density, the Maclaurin disc,
and the finite, truncated, and truncated Mestel discs. Remarkable combinations of these
radial and vertical distributions are, for example, the double-exponential disc and the
pseudo-isothermal exponential disc, presented in Section 4.1.3 (and already implemented
in JASMINE2). The analytical terms for the potential of the double-exponential disc
are given also in Kuijken and Gilmore (1989) and Cuddeford (1993), so we verify their
results. Instead, the potential of an exponential disc with a vertical pseudo-isothermal
profile is mentioned in Casertano (1983) and Kuijken and Gilmore (1989), but the ana-
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lytical solution of the integral in z′ is not given there, neither in other references of our
knowledge. In Cuddeford (1993), also the gaussian vertical density profile is analysed,
and the analytical solution of the integral in z′ is shown, which could be included in
our scheme of building of factorised discs with no effort. As a proof of the new method
in terms of Bessel functions, in Section 4.4.3, we show the comparison of the numeri-
cal evaluation of the potential with respect to the integration based on elliptic integrals
(method already verified, as shown in Section 4.3), for the two factorised discs named as
double-exponential and pseudo-isothermal exponential discs.

In the following, to avoid an excessively cumbersome notation, we still omit the usual
normalisations of the masses and the lengths to the M∗ and r∗, respectively, but their
addition would be straightforward.

4.4.1 Factorised density distributions

We consider axisymmetric density distributions that can be written in factorised form in
cylindrical coordinates, so that

ρ(R, z) = ρ0A(R)B(z), (4.49)

with a generic normalisation ρ0. Therefore the 3D integral of eqs. (4.48) is separable,
and it is naturally divided in a part depending only on R′ and a part depending only on
z′, giving

φ(R, z) = −2πGρ0

∫ ∞
0

Â(k) B̂(k, z) J0(kR) dk, (4.50)

where

Â(k) =

∫ ∞
0

A(R′) J0(kR′)R′ dR′, B̂(k, z) =

∫ ∞
−∞

B(z′) e−k|z−z
′| dz′. (4.51)

This formulation for the potential becomes especially useful when the two functions Â(k)
and B̂(k, z) have analytical forms, i.e. when the radial distribution A(R) has analytical
Hankel transform Â(k), and the vertical distribution B(z) allows an analytical solution
of the integral over z′, giving B̂(k, z). In this case, eq. (4.50) reduces to a 1D integration
over k. We see some radial and vertical distributions allowing for such simplification: in
particular, we discuss some profiles widely used in the description of stellar galactic discs.
In Appendix D, we report the Hankel transforms for some radial density distributions,
while the description of the vertical structure deserves a deeper discussion, in the next
Section. Then the analytical radial and vertical functions Â(k) and B̂(k, z) can be
combined to calculate the gravitational potential for different factorised discs from eq.
(4.50).

Of course, a special case of factorised distribution is the razor-thin disc, the simplest
and idealised representation of a (finite or infinite) disc, defined only in the equatorial
plane (z = 0) and with no matter off-plane. In this case, we have

B(z) = δ(z) =
δ(z/hd)

hd
, (4.52)
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where the second equivalence comes directly from a property of the δ function, and in
general hd represents the scale-height of the disc. In case of infinitely thin disc, naturally,
the density distribution reduces to a surface density distribution, thus the definition of
a scale-height has no physical meaning, and hd only represents an arbitrary algebraic
constant (at variance with the cases discussed in the next Section). It is immediate to
prove that the solution of B̂(k, z) in eq. (4.51), for B(z) from eq. (4.52), provides

B̂(k, z) = e−k|z|, (4.53)

recasting a well-known result (see e.g. B&T08; Ciotti 2021).

4.4.2 Two important vertical stratifications

Besides the razor-thin case, we also investigate two vertical density stratifications, which
find wide applications in the description of realistic (thin and thick) galactic discs: the
exponential vertical distribution and the ’pseudo-isothermal’ sheet. We consider a generic
vertical distribution, written as B(z) = g(z/hd), with g being an even function of z, i.e.
B(z) = B(−z). It is immediate to show that it holds also B̂(k, z) = B̂(k,−z). We can
write eq. (4.51) as

B̂(k, z) = hd

∫ ∞
−∞

g(t) e−γ|ζ−t| dt, γ = khd ≥ 0, ζ =
|z|
hd
, t =

z′

hd
. (4.54)

This formulation of B̂(k, z) is valid also for the previous case of zero-thickness (eq. 4.52),
as a particular case with g(t) = δ(t)/hd. We present the expressions of the functions
B(z), and so g(t) in the integral above, for the exponential and the ’pseudo-isothermal’
stratifications, and we derive the related analytical solutions for B̂(k, z). In particular,
with this new approach, for the exponential case, we re-obtain the results known from
the literature, while for the first time we offer the solution for the computation of the
potential of the ’pseudo-isothermal’ vertical distribution. Moreover, in the latter case,
we derive the solution for a generic power-law n of the hyperbolic secant, where the
most common used value of n = 2 (Spitzer 1942; see also Section 4.1.3) is obtained as a
particular case with no effort.

The exponential stratification

An exponential vertical stratification (Freeman, 1970), perhaps the simplest modification
of the razor-thin disc, is given by

B(z) = e−|z|/hd . (4.55)

The solution of eq. (4.54), with g(t) = e−|t|, have already been studied, and published
in the literature: we report here for completeness the solution in the current notation,
reassuringly in agreement with e.g. Kuijken and Gilmore (1989); Cuddeford (1993). By
inserting eq. (4.55) in eq. (4.54), the resulting integral can be split in three parts: between
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−∞ and 0, between 0 and ζ, and between ζ and ∞. The integration is elementary for
the three parts, giving

e−γζ
∫ 0

−∞
e(γ+1)t dt =

e−γζ

γ + 1
, eγζ

∫ ∞
ζ

e−(γ+1)t dt =
e−ζ

γ + 1
, (4.56)

and

e−γζ
∫ ζ

0
e(γ−1)t dt =


e−ζ − e−γζ

γ − 1
, γ 6= 1,

ζ e−ζ , γ = 1.

(4.57)

Therefore, we obtain

B̂(k, z) = hd ×


2 (γe−ζ − e−γζ)

γ2 − 1
, γ 6= 1,

e−ζ(1 + ζ), γ = 1.

(4.58)

The ’pseudo-isothermal’ sheet

The so-called ’pseudo-isothermal’ sheet is defined by the even stratification

B(z) = sechn(z/hd), n > 0, (4.59)

where sechn(t) = cosh−n(t), which naturally produces again an exponential density de-
cline. Surprisingly, although studied in several theoretical works and widely used in
applications, it is often stated in the literature the impossibility to solve analytically the
integral of eq. (4.54) for this case (e.g. Casertano, 1983; Kuijken and Gilmore, 1989;
Cuddeford, 1993). Thus a fast 1D numerical integration of the gravitational potential of
a disc with a vertical stratification such as eq. (4.59) would not be allowed. We show in
the following that the analytical solution of eq. (4.54) is in fact possible, even if not in
terms of elementary functions, for generic positive values of n.

Therefore, in eq. (4.54), g(t) = 2nent/(1+e2t)n, and the integration can be performed
as follows. We split the integral in two parts, between −∞ and ζ, and between ζ and
∞; in each of the two integrals, we change the variable as y = e2t. The two integrals can
now be recast in a very compact form, as functions of three parameters, so that they can
be written as∫ ε

0

yβ dy

(1 + y)α
= B

(
β + 1, α− β − 1;

ε

1 + ε

)
, α > 0, β > −1,

∫ ∞
ε

yβ dy

(1 + y)α
= B

(
α− β − 1, β + 1;

1

1 + ε

)
, α > 0, α− β > 1,

(4.60)
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in terms of incomplete Beta functions, B(a, b;x), requiring a > 0 always, and b > 0 when
x = 1 (see Appendix C). Then we obtain

B̂(k, z) = hd 2n−1

[
e−γζB

(
n+ γ

2
,
n− γ

2
;

1

1 + e−2ζ

)
+ eγζB

(
n+ γ

2
,
n− γ

2
;

e−2ζ

1 + e−2ζ

)]
.

(4.61)

A few comments are in order about the last equation. First, we stress that we recast
the argument x of the Beta functions in a suitable form, in order to avoid numerical
evaluations of ratios between very large numbers. Second, the condition a > 0 is always
verified, since n and γ are positive coefficients. On the contrary, the condition b > 0 for
x = 1 apparently fails easily, in the sense that (n − γ)/2 becomes negative for n < γ,
and we recall that γ = khd is integrated from 0 to ∞ in eq. (4.50). However, for both
the arguments of the incomplete Beta functions of eq. (4.61), we can be sure that x is
always smaller than 1, and in fact it is immediate to see that 0 < x < 1, since ζ ≥ 0.
After careful considerations, we then confirm that the conditions on the arguments a and
b are always satisfied for the incomplete Beta functions used in eq. (4.61).

A further consideration is however in order, specifically for a numerical implementa-
tion. As happens for the homoeoidally expanded potential of eq. (4.41), the fact that
the argument b of the incomplete Beta function can be negative (for some values of n
and γ, as seen above), impedes in some cases the numerical implementation, as shown
in Appendix C. Therefore, a relation between the incomplete Beta function and the Hy-
pergeometric function is given (eq. C.3), allowing for an alternative formulation of eq.
(4.61), such as

B̂(k, z) =
hd 2n

(n+ γ)(1 + e−2ζ)(n+γ)/2

[
e−γζ2F1

(
n + γ

2
,
2− n + γ

2
;
2 + n + γ

2
;

1

1 + e−2ζ

)
+ e−nζ2F1

(
n + γ

2
,
2− n + γ

2
;
2 + n + γ

2
;

e−2ζ

1 + e−2ζ

)]
.

(4.62)

4.4.3 Tests for factorised discs

We show now the application of the method presented to two density models commonly
used for discs, already reported in Section 4.1.3: the double-exponential disc and the
pseudo-isothermal exponential disc. Their density distribution, respectively eq. (4.21)
and eq. (4.22), is of the factorised form of eq. (4.49), so that the potential can be
evaluated from eqs. (4.50)–(4.51). The Hankel transform Â(k) for the exponential radial
part is given in eq. (D.2), while the solutions for B̂(k, z) for the vertical stratifications are
given in eq. (4.58) for the exponential case, and in eq. (4.62) for the pseudo-isothermal
sheet.

In Section 4.3, we verified the accuracy of the numerical integration based on elliptic
integrals (eq. 4.23), which we recall is valid for any axisymmetric density distribution, so
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Figure 4.5: Isopotential contours on the meridional plane
(
R̃, z̃

)
for a double-exponential disc (top)

and a pseudo-isothermal exponential disc (bottom). The numerical evaluation of the potentials in terms
of complete elliptic integrals (solid black line) and of Bessel functions (dashed orange line) are compared,
showing excellent agreement between the two methods. The two models have ã = 1, b̃ = 0.1, and for
the second model we set the isothermal sheet, i.e. n = 2. The isopotential contours represent the
dimensionless φ/φn, with values spaced by 1 dex.

that we take it as reference here. Then, we test the accuracy of the numerical evaluation of
the gravitational potential in terms of Bessel functions, for the two factorised discs above,
by showing the comparison with the potential computed in terms of elliptic integrals. In
Fig. 4.5, the isopotential contours on the meridional plane

(
R̃, z̃

)
are compared for two

quite thin discs with arbitrary parameters (ã = 1, b̃ = 0.1, and n = 2 for the isothermal-
sheet), where curves of φ̃ = φ/φn calculated via the elliptic integrals integration are solid
black, and the curves obtained with the Bessel method are dashed orange: the agreement
is excellent. We recall, as detailed in Appendix B, the outstanding gain in computational
time allowed by the new method, making it the favourite choice when it is possible to
apply it.

Looking at the shape of the isopotential curves, for this choice of the model pa-
rameters, the potentials produced by a double-exponential disc and by an isothermal
exponential disc are very similar, slightly more flattened near the centre in the second
case. Notice also that, for both the models, the potential is quite flattened in the inner
regions, while it is almost spherical towards large radii.

4.5 Summary

We showed several density models which are suitable for the description of stellar and
DM components in galaxies; in the next Chapters some of them are used to build specific
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galaxy models, and their properties are discussed in more details. A starting and crucial
point of galaxy modelling is the evaluation of the gravitational potential associated to
each density component involved in the system; we presented different methods to cal-
culate the potential for axisymmetric systems in cylindrical coordinates, which we can
summarise as follows, in agreement with Table 4.1:

• analytical potential (when available),

• elliptic integrals (always),

• Chandrasekhar formula (ellipsoids),

• homoeoidal expansion (ellipsoids),

• Bessel functions (factorised discs).

With respect to the 2D integration in terms of elliptic integrals, besides the immediate
(exact or approximated) analytical expressions for the potentials, the 1D integrations
based on the Chandrasekhar formula, or Bessel functions, allow to reduce the computa-
tional time required by the numerical computation of a potential component, from many
hours to few minutes or even few seconds. We showed that these alternative methods are
not only remarkably faster, but they are also equally accurate. After a safety check on the
numerical solution of the Jeans equations, we investigated the reliability of homoeoidal
approximations, for increasing flattening (in the limit allowed by the homoeoidal expan-
sion technique). Since our tests have been performed on Jaffe models, and the results can
depend on the density models, we only assert here that σ is reconstructed with high pre-
cision even for quite flat spheroids, while the discrepancy increases faster for

√
∆, when

solving numerically the Jeans equations (with JASMINE2) for an homoeoidally-expanded
density-potential pair or for the true ellipsoidal density with numerical potential. On the
other side, we also confirm that, when exploiting analytical solutions of the Jeans equa-
tions obtained in homoeoidal expansion, neglecting second-order terms in the flattening
does not produce a significant divergence. Finally, concerning the integral formula based
on Bessel functions, we stress the benefit of our method: we propose a general formula
which can be used for a variety of factorised discs, allowing to combine many possible
radial profiles with at least two different vertical stratifications. Thanks to the efficiency
of this method, it is not necessary to resort to the approximation of zero-thickness of the
disc, neither to simple analytical but less realistic disc models (in the next Chapter, we
will see, for example, the decomposition of thick exponential discs with a combination of
MN discs). In particular, we offer a practical solution for the sechn stratification, even
if not in terms of elementary functions. We also showed that for n = 2, an isothermal
exponential disc and a double-exponential disc, with same scale-length and scale-height,
produce a very similar potential.



Chapter 5
Illustrative multicomponent models

In order to illustrate the features and potentialities of the modelling procedure, as pre-
sented so far and implemented in JASMINE2, we show in this Chapter four brief direct
applications. Firstly, we describe in some detail the building of three multicomponent
galaxy models; we focus on the resulting total structural and dynamical properties, and
on the projected kinematical fields, discussing the contribution of each matter compo-
nent. All the three models are made of two stellar distributions, to which a DM halo
with a spherical NFW profile and a central supermassive BH are added. In the first
model (called JJE, i.e. ’Jaffe-Jaffe Ellipsoidal’) the total spherical stellar distribution
and an ellipsoidal stellar component, both with a Jaffe density profile, are assigned; then
the second stellar component is obtained by difference. This represents a special way to
build multiple components, not by sum of assigned components, but by difference, as a
particular application of the modelling procedure presented; the JJE model originates
as a generalisation of JJe models in homoeoidal expansion of CMPZ21. The successive
models are instead built by sum of assigned components. The second model (JHD, for
’Jaffe-Heavy Disc’) consists of an ellipsoidal Jaffe stellar density distribution, that rep-
resents a light stellar halo, coupled with a massive MN stellar disc. In the third model
(JLD, for ’Jaffe-Light Disc’), the ellipsoidal Jaffe component dominates, while a small
MN inner disc counter-rotates in the central regions. These three models are intended
to represent features observed in real galaxies, but they are not designed to reproduce
specific objects. Finally, we illustrate the comparison between a double-exponential disc
and its representation via the sum of three MN discs, as proposed by Smith et al. (2015),
with the extension of their analysis to the projected kinematical fields.

Caravita C., Ciotti L. and Pellegrini S., 2021, MNRAS
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5.1 The JJE models

JJE models are a natural generalisation of JJe (standing for ’Jaffe-Jaffe ellipsoidal’)
models presented in CMPZ21. As these latter describe quite well real elliptical galaxies,
and several of their dynamical properties can be expressed in analytical form, through
the homoeoidal expansion technique, they also represent an obvious test for JASMINE2
(see Section 4.3). JJE models consist in multicomponent models made of two stellar
components defined by difference, a DM halo, and a central BH, allowing to test this way
of modelling the stellar distributions, as a particular case of the sum rules illustrated
in Chapter 2. We also extend the analysis of JJe models, by studying the dynamics
and the stellar properties of the difference component. Moreover, as we will see, the
difference component results slightly prolate, requiring special case in its treatment, and
offering the chance to employ the generalised Satoh k-decomposition (Section 2.3.2). In
the following, we see the main structural properties of this family of models, and then
we analyse the features of a specific model, after the choice of specific parameters.

5.1.1 Building of JJE models by difference

To better appreciate the properties of JJE models, we first recall the main properties (and
limitations) of JJe models. These are constructed by assigning a total density, that we
call generically ρ, following the axisymmetric ellipsoidal generalisation of the Jaffe model
(eq. 4.1), and another axisymmetric ellipsoidal Jaffe distribution, representing a stellar
density component ρ1, with different flattening, scale-length and total mass; in CMPZ21
the second density distribution is obtained by difference as ρ2 = ρ− ρ1, and interpreted
as a DM halo; finally, a central BH is added to the system. The analytical conditions on
ρ1 to guarantee the positivity of ρ2 are given, and then the Jeans equations for the stellar
component ρ1 are solved in analytical closed form, by using the homoeoidal expansion
technique (reported in Section 4.2.2), truncated at the linear order in the flattenings q
and q1, of ρ and ρ1, respectively (the expanded solution of the Jeans equations is that
used for tests in Section 4.3). Albeit several properties of JJe models can be expressed in
analytical form (making them useful in numerical simulations of gas flows in galaxies, see
Chapter 6), few important shortcomings still affect them: i) the projected kinematical
fields of ρ1 can be obtained in analytical form only as asymptotic formulae at the center
and at large radii; ii) the Jeans equations (and the projections) have not been studied
for the difference component ρ2. A numerical code like JASMINE2 is then the obvious
tool to address the two points above.

Now we generalise the JJe models to JJE models: at variance with the former, in
JJE models the total Jaffe density distribution is purely stellar, so that the two density
components discussed above assume here the meaning of stellar distributions, and the
galaxy turns out to include two stellar components. We model the total ρ∗ with an
ellipsoidal Jaffe profile, of total mass M∗, scale-length ξ, and flattening q, as given in eq.
(4.1), and recast here with the inclusion of the weights and normalisation scales (see also
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Table 3.1 for a summary of the model parameters):

ρ∗(R, z) =
ρnξ

q m2(ξ +m)2
, m2 = R̃2 +

z̃2

q2
. (5.1)

We then consider another ellipsoidal Jaffe density profile, of total mass M∗1 = R1M∗,
scale-length r∗1 = ξ1r∗, and flattening q1:

ρ∗1(R, z) =
ρnR1ξ1

q1m2
1(ξ1 +m1)2

, m2
1 = R̃2 +

z̃2

q2
1

. (5.2)

The second stellar component is then defined as

ρ∗2(R, z) = ρ∗(R, z)− ρ∗1(R, z), (5.3)

with M∗2 = M∗ −M∗1 = (1 − R1)M∗ = R2M∗, in agreement with eq. (3.10). Notice
that ρ∗2 is not an ellipsoid, unless q1 = q, and even in this case ρ∗2 is not a Jaffe ellipsoid,
unless ξ1 = ξ. As extensively discussed in CMPZ21, ρ∗2 could be negative somewhere
(and so unphysical) for some choices of R1, ξ1 and q1. Remarkably, the conditions
required to assure ρ∗2 ≥ 0 can be expressed as analytical (and simple) inequalities: due
to the different roles of the density components in our interpretation and in the original
JJe models, we recast the positivity condition in Appendix E in agreement with our
notation. In particular, in CMPZ21 the normalisation scales, r∗ and M∗, represent the
scale-length and the total mass, respectively, of the stellar density component, while here
they represent the scale-length and the total mass of a total stellar distribution (making
necessary to rewrite the proof in Appendix). In Chapter 6, we use again JJe models,
with the original meaning of the density components of CMPZ21. We stress that for
these illustrative models (JJE, JHD, JLD) we use actually the homoeoidally expanded
density-potential pairs of the Jaffe models (eqs. 4.42–4.43), for which we solve the Jeans
equations numerically with JASMINE2 (solutions that we call ’hom-num’ in the tests of
Section 4.3).

The total stellar distribution ρ∗ is embedded in a NFW DM halo (spherically sym-
metric for simplicity), of mass Mh(rt) = RhM∗ enclosed within a truncation radius rt,
scale-length rh = ξhr∗, and concentration c ≡ rt/rh. Again, we recast eqs. (4.3) and
(4.4) with the inclusion of the weights and normalisation scales, so that

ρh(r) =
ρnRh

s(ξh + s)2f(c)
, φh(r) = −φnRh

sf(c)
ln

(
ξh + s

s

)
, (5.4)

where s = r/r∗, and f(c) = ln(1 + c)− c/(1 + c). We complete the model with a central
BH of mass MBH = RBHM∗.

Summarising, JJE models are determined, besides the total stellar mass and scale-
length, M∗ and r∗, by the two parameters ξ and q for ρ∗, the five parameters q1, ξ1, R1,
Υ∗1, k1 for ρ∗1, the two parameters Υ∗2, k2 for ρ∗2, the three DM parameters ξh, c, Rh,
and the BH mass weight RBH (see Table 5.1 for a specific JJE model). We anticipate
that a further generalisation of JJE models can be found in 6, with the addition of a
second DM component given by a shallow and very extended quasi-isothermal halo, as
useful in simulations of gas flows in galaxies residing in groups or clusters.
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Model ρ∗1 ρ∗2

JJE Jaffe ρ∗(ξ = 1, q = 1)− ρ∗1
ξ1 = 0.1 —
q1 = 0.8 —
R1 = 0.04 R2 = 0.96
Υ∗1 = 2 Υ∗2 = 6
k1 = 0.5 k2 = 0.2

JHD Jaffe MN
ξ1 = 1 b̃ = 0.1
q1 = 0.8 q2 = 10
R1 = 0.3 R2 = 0.7
Υ∗1 = 6 Υ∗2 = 2
k1 = 0.5 k2 = 0.8

JLD Jaffe MN
ξ1 = 1 b̃ = 0.01
q1 = 0.8 q2 = 10
R1 = 0.96 R2 = 0.04
Υ∗1 = 6 Υ∗2 = 2
k1 = 0.5 k2(R, z)

Table 5.1: The parameters for the stellar components of the illustrative JJE, JHD and JLD models
(Sections 5.1 and 5.2). In the JJE model, the component ρ∗2 is obtained as difference between a total
spherical (q = 1) Jaffe profile ρ∗, with scale-length ξ = 1, and a small and light Jaffe ellipsoidal component
ρ∗1 (similarly to JJe models in CMPZ21). The standard Satoh k-decomposition in eq. (2.25) for ρ∗1, and
the generalised k-decomposition in equation (2.27) for ρ∗2, are adopted. In the JHD model, an ellipsoidal
Jaffe distribution is coupled to a massive and quite flat (q2 = ã/b̃ = 10) MN disc; in both components
a generalised k-decomposition is adopted. In the JLD model, the ellipsoidal Jaffe component has the
same flattening and size as in the JHD model, but the disc is significantly smaller, and counter-rotates
in the inner regions, with the position-dependent Satoh parameter in eq. (5.8), while a constant Satoh
parameter is applied to the Jaffe component. In all models, the DM halo has a spherical NFW profile
with ξh = 2.6, c = 10, Rh = 20, and the BH is defined by RBH = 0.002. Moreover, in all models the
homoeoidally expanded density-potential pairs are used for the Jaffe distributions (after many checks on
their reliability, as shown in Section 4.3). Finally, for details on the meaning and the role of the model
parameters in Table, we refer to Section 3.2, and in particular Figure 3.1 and Table 3.1.

5.1.2 Results for a JJE model

We move now to illustrate the main properties of a specific JJE model (see Table 5.1).
The total stellar distribution ρ∗ has a spherical Jaffe profile obtained from eq. (5.1)
with ξ = 1 and q = 1; this quite artificial case allows us to discuss some subtleties that
can occur to the kinematical decomposition in multicomponent systems. The stellar
component ρ∗1 is obtained from eq. (5.2) with ξ1 = 0.1, q1 = 0.8, R1 is 0.04, and
Υ∗1 = 2, i.e. it is a quite small ellipsoidal distribution at the center of the galaxy; note
that, from eq. (E.15), the maximum possible value of R1 to assure a nowhere negative
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ρ∗2 is 0.08. The component ρ∗2 accounts for the remaining 96% of the total stellar mass
of the galaxy, and Υ∗2 = 6, so that ρ∗ could represent an elliptical galaxy with a central
and younger1 stellar system. We add the spherical NFW DM halo, given by eq. (5.4),
with ξh = 2.6, c = 10, and Rh = 20, so that the DM mass inside r∗ is ≈ 0.45 of the total
mass2. Finally, in agreement with BH-galaxy scaling relations (see e.g. Kormendy and
Ho, 2013), the mass of the central BH is fixed to RBH = 0.002.

In the three top panels of Fig. 5.1, we show the scaled (dimensionless) density
distribution of the components ρ̃∗1 and ρ̃∗2, and of the total stellar density ρ̃∗ = ρ∗/ρn

(from definitions of eq. 3.11). Being this last spherical, and ρ̃∗1 oblate, ρ̃∗2 in its central
regions is slightly prolate, and this affects its kinematical fields, as we discuss below and
anticipated in Section 2.3. Additional information on the model structure is provided
in the first column of Fig. 5.2: the top panel shows the radial profiles in the equatorial
plane of R1ρ̃∗1, R2ρ̃∗2, ρ̃∗, and Rhρ̃h, i.e. the density components normalised to ρn

(dimensionless density components, weighted for the respective mass ratios). The total
ρ∗ is almost coincident with ρ∗2, except for the central regions, where ρ∗1 and ρ∗2 are
comparable. The DM density ρh overcomes ρ∗ outside ≈ 0.5 r∗. The bottom panel shows
the radial profiles in the equatorial plane of the contributions to the circular velocity
due to the various mass components (from eq. 3.4): the BH contribution is dominant
in the inner regions, the DM in the outer regions, while at intermediate distances from
the centre the resulting circular velocity is quite flat. Notice that the radial scale is
logarithmic, to appreciate the rotation curve produced by all the matter components,
even if the flat region of the curve would have been more emphasised by a linear scale.

Similar trends can be seen in the radial profiles of the velocity fields in the equatorial
plane of Fig. 5.3, where, in the first column from top to bottom, we show the rotational
velocity, the vertical velocity dispersion, and the azimuthal velocity dispersion, of ρ∗1
and ρ∗2, and the total mass-weighted and luminosity-weighted fields (see eqs. 2.14–
2.18). Note that in the three panels the vertical scale is the same, and the resulting
system appears to have a significantly low rotational velocity with respect to the velocity
dispersion in all the directions, but producing a regular pattern of rotation (as we will see
especially in Fig. 5.4). This JJE model offers the opportunity to apply the generalised
k-decomposition of eq. (2.27): the field ∆2, associated to the slightly prolate ρ∗2, is
negative in the central regions, thus, as discussed in Section 2.3, we verify that v2

ϕ2
is

nowhere negative, and then we adopt the generalised decomposition, with a quite small
k2 = 0.2. The field ∆1 instead is everywhere positive, as expected, and so we adopt
the standard Satoh formula of eq. (2.25) with k1 = 0.5. In the velocity profiles, the
effect of the central BH is clearly visible (thanks to the logarithmic radial scale); for

1From Evolutionary Population Synthesis models (e.g. Maraston, 2005), the mass-to-light ratio of
a simple stellar population is a function of its age, chemical composition and initial mass function.
Since younger stars are more brighter with respect to their mass, while older stars are massive but less
luminous, a younger stellar population produces in general a smaller mass-to-light ratio.

2We recall that Re ' 0.75 r∗ for a spherical Jaffe model with constant mass-to-light ratio, from Section
4.1.1. In fact, here the total stellar distribution has a spatially-dependent mass-to-light ratio, since the
two stellar components have different values of Υ∗1 and Υ∗2, so the approximation is not valid, but still
gives an order of comparison.
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Figure 5.1: The scaled stellar distributions ρ̃∗1, ρ̃∗2, and the dimensionless total stellar distribution
ρ̃∗ = ρ∗/ρn, of the three models of Table 5.1. The dotted contours show the isodensities, with values
spaced by 1 dex.

example, the velocity dispersion profile of a Jaffe model with RBH = 0 would be nearly
constant in the central regions. Notice also how the velocity profiles, outside ≈ r∗, are
almost coincident with the profiles of the more massive component ρ∗2, in both the mass-
weighted and luminosity-weighted cases: this is not surprising, because in these regions
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Figure 5.2: Radial profiles in the equatorial plane (z̃ = 0) of the mass densities R1ρ̃∗1 (dashed blue),
R2ρ̃∗2 (dotted-dashed magenta), ρ̃∗ (heavy solid), and Rhρ̃h (dotted), normalised to ρn (top row), for
the three models of Table 5.1. In the bottom row, we show the corresponding contributions to the
total circular velocity (heavy solid) in the equatorial plane of the mass components, with the additional
contribution of the central BH (solid), all normalised to

√
φn.

ρ∗ nearly coincides with ρ∗2 (see Figs. 5.1 and 5.2). The situation is different in the inner
regions, where ρ∗1 and ρ∗2 are comparable: here the total velocities have intermediate
values, with the luminosity-weighted profiles closer to the profiles of ρ∗1 because of the
smaller mass-to-light ratio.

As an illustration of the projection procedure, in the first row of Fig. 5.4, we show the
EO projected luminosity-weighted fields vlosL and σlosL , with the superimposed dotted
contours representing the galaxy isophotes of the surface brightness I∗ (see Section 2.4).
The model shows a clear morphology of regular rotation (see the classification of ETGs
mentioned in Chapter 1; Krajnović et al. 2011; Cappellari 2016), with low rotation,
as apparent from the colorbar values, where vlosL is everywhere lower than σlosL . A
curious feature is the slightly vertically elongated shape of σlosL : this is not due to
the prolate shape of ρ∗2 in the central regions, but it is an effect of the generalised k-
decomposition, coupled with the fact that ∆2 is almost null in the external regions, and
so here vϕ2 ∼ k2σ2, as introduced in Section 2.3.2. For example, an increase in k2 would
lead to an increase of the rotation in the external regions, with correspondent decrease
of σlosL , and with the net result of a more elongation of σlosL in the central regions.
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Figure 5.3: Radial profiles in the equatorial plane (z̃ = 0) of the rotational velocities (top row),
vertical velocity dispersions (middle row), and azimuthal velocity dispersions (bottom row), normalised
to
√
φn, for the three models of Table 5.1. Each panel shows the total mass-weighted (heavy solid) and

luminosity-weighted (heavy dotted) fields, together with the corresponding fields of ρ∗1 (dashed blue)
and ρ∗2 (dotted-dashed magenta). Notice the different values on the vertical scales of the first column
(JJE model) and of the top right panel showing the counter-rotation (JLD model).

5.2 Ellipsoidal models with an embedded stellar disc

We consider two other galaxy models, made of two stellar components, a DM halo, and a
central BH. In particular, we build the case (JHD) of a dominant stellar disc, embedded
in an ellipsoidal stellar component, that can be interpreted as the stellar halo of a disc
galaxy, and the case (JLD) of a small stellar disc, counter-rotating in the inner regions,
at the center of a dominant stellar spheroid, as sometimes observed in real ETGs (e.g.
Morelli et al. 2004; Krajnović et al. 2015; Mitzkus et al. 2017).
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Figure 5.4: Edge-on projected luminosity-weighted rotational velocity vlosL (left), and velocity disper-
sion σlosL (right), normalised to

√
φn, for the three models of Table 5.1. Notice the different ranges of

values on the colorbars. For the JLD model, the region shown is limited to r∗ to appreciate the central
features, in particular the inner counter-rotating disc. The dotted contours show the galaxy isophotes
with values spaced by 1 dex.

JHD and JLD models consist of a stellar profile ρ∗1 given again by the ellipsoidal
Jaffe model of eq. (5.2), coupled with a stellar MN disc ρ∗2, of total mass M∗2 = R2M∗,
and scale-lengths a = ãr∗, b = b̃r∗:

ρ∗2(R, z) = ρnR2b̃
2 ãR̃

2 + (ζ + 2
√
z̃2 + b̃2)ζ2

(R̃2 + ζ2)5/2(z̃2 + b̃2)3/2
, (5.5)
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φ∗2(R, z) = − φnR2√
R̃2 + ζ2

, ζ = ã+

√
z̃2 + b̃2, (5.6)

where, in analogy with the previous Section, we recast here eqs. (4.15) and (4.16), with
the inclusion of the weights and normalisation scales, and in particular R2 = 1−R1 from
eq. (3.10). We recall that for ã = 0 the MN disc reduces to the Plummer (1911) sphere,
and for b̃ = 0 to the razor-thin Kuzmin (1956) disc; in the following, we indicate the disc
flattening parameter with q2 = ã/b̃. As in JJE models, we add the spherical NFW halo
in eq. (5.4), and a central BH. Overall, JHD and JLD models differ from the JJE model
only for the second stellar component ρ∗2, and consequently for the total ρ∗; moreover,
ρ∗ is now obtained by the sum of the stellar components, so that

ρ∗(R, z) = ρ∗1(R, z) + ρ∗2(R, z), (5.7)

while in JJE models ρ∗2 is obtained by difference of assigned ρ∗ and ρ∗1 from eq. (5.3).
The resulting multicomponent models are completely determined once the values of ξ1,
q1, R1, Υ∗1, k1 for ρ∗1, b̃, q2, Υ∗2, k2 for ρ∗2, ξh, c, Rh for ρh, and RBH for the BH, are
assigned, in addition to the total stellar mass M∗ and the scale length r∗ (see Table 5.1).
The parameters of the DM halo and of the central BH are the same as in the JJE model.

5.2.1 Results for the JHD model

In the ’Jaffe - Heavy Disc’ JHD model (see Table 5.1), the ellipsoidal Jaffe stellar halo
ρ∗1 is characterised by a scale-length ξ1 = 1, a flattening q1 = 0.8, a stellar mass fraction
of 30% of the total stellar mass (i.e. R1 = 0.3), and a mass-to-light ratio Υ∗1 = 6. The
dominant and younger MN disc ρ∗2 (R2 = 0.7) is quite flat (q2 = 10), with b̃ = 0.1, and
a lower Υ∗2 = 2.

In the central row of Fig. 5.1, the dimensionless density distributions ρ̃∗1, ρ̃∗2, and
ρ̃∗, are shown. The resulting isodensity contours of ρ∗ could be classified as discy near
the equatorial plane, and as boxy at large distance from the plane. The radial profiles of
the density distributions (including the DM), in the equatorial plane, are shown in Fig.
5.2. It is apparent how, inside ≈ 0.1 r∗ the Jaffe halo dominates, around r∗ the MN disc
dominates, and ρh overcomes the total ρ∗ outside ≈ 10 r∗. Note that, even if R1 < R2,
ρ∗1 dominates the total density in the central regions, due to the cuspy profile of the
Jaffe density compared with the flat core of the MN density. The density decomposition
reflects on the circular velocity profiles in the bottom panel of the same Figure: the total
vc at small radii is totally dominated by the BH, and at large radii by the DM halo;
while the bump around 3 r∗ is due to the MN and the DM potentials.

The radial profiles in the equatorial plane of the velocity fields, obtained from the
Jeans equations, coupled with suitable kinematical decompositions, are shown in the mid-
dle column of Fig. 5.3, where from top to bottom the total mass- and luminosity-weighted
rotational velocity, vertical velocity dispersion, and azimuthal velocity dispersion, are
plotted together with the corresponding quantities for each stellar component separately.
For the adopted values of the parameters in Table 5.1, ∆1 turns out to be negative in
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a quite central region, while ∆1 + σ2
1 is everywhere positive; we decide to apply the

generalised k-decomposition of eq. (2.27) to both stellar components, with k1 = 0.5 and
k2 = 0.8. The total velocity profiles, in the central regions, are completely determined
by the Jaffe profile, because here ρ∗1 > ρ∗2, compensating also for the higher Υ∗1; in the
external regions, instead, the total profiles are dominated by the MN disc. Furthermore,
vϕ stays well below vc both in the inner and outer regions, as for the JJE model as well
(see vc in Fig. 5.2), as expected and as a clear manifestation of asymmetric drift in the
equatorial plane (e.g. B&T08). Note that σ2, associated with a flat density profile at the
centre, is much higher than σ1, associated with ρ∗1 ∼ R−2 in the inner regions, as can
be expected from the integration of the vertical Jeans equation for a power law density
distribution in the gravitational field of a point-mass (i.e. the BH). In addition, ∆2 of
the MN model with the central BH vanishes at the centre (as known analytically, see
e.g. Ciotti, 2021), thus in the generalised k-decomposition vϕ2 ∼ k2σ2 (at variance with
what would happen in the standard Satoh decomposition, i.e. vϕ2 = k2

√
∆2).

In the second row of Fig. 5.4, the luminosity-weighted projected fields vlosL and
σlosL are shown, and the high rotation of the disc is clearly visible, with an overall
regular rotation pattern. The drop of vlosL inside r∗ is due to a drop of the internal
rotational velocity (Fig. 5.3). Also σlosL shows the highest values near the equatorial
plane, with a nearly toroidal distribution around the centre, and a drop inside r∗.

5.2.2 Results for the JLD model

At variance with the JHD model, in the ’Jaffe - Light Disc’ JLD model (see Table 5.1),
the ellipsoidal Jaffe distribution ρ∗1 accounts for almost the whole stellar mass of the
galaxy (R1 = 0.96), while its scale-length (ξ1 = 1), flattening (q1 = 0.8), and mass-to-
light ratio (Υ∗1 = 6) are unchanged. The component ρ∗2 is a small and young MN disc,
with b̃ = 0.01 and R2 = 0.04, while q2 = 10 and Υ∗2 = 2 are the same of the JHD model.

The scaled density distributions, and the resulting total stellar density, are shown in
the three bottom panels of Fig. 5.1: ρ̃∗1 is (structurally) identical to that of the JHD
model, while ρ̃∗2 is much more concentrated, so that the total stellar density is distributed
in an extended halo with a very small disc. Indeed, the disc is almost invisible in the last
panel, and it would be apparent only with a zoom in, as in Fig. 5.4. The last column
of Fig. 5.2 shows the radial profiles in the equatorial plane of the density components,
with their mass weights, and the resulting decomposition of the galaxy circular velocity
profile. Notice that the central values of ρ∗2 are higher than those in the JHD model,
due to its smaller size, compensating for the reduced mass. In the circular velocity plot,
this reflects into a larger contribution from the Jaffe component, and a smaller and inner
bump of the MN component. As a result, vc is almost flat between 10−2 r∗ and 10 r∗.

In the last column of Fig. 5.3, the radial profiles of the velocity fields in the equatorial
plane are shown. As in the previous models, of course, the total luminosity-weighted
profiles, when distinguished from the mass-weighted ones, are always closer to the profiles
of the component with the lower mass-to-light ratio. For the JLD model, both ∆1 and
∆2 are everywhere positive, so we apply the standard Satoh decomposition. The stellar
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halo is modeled with a low rotation, given by k1 = 0.5, while the circumnuclear stellar
disc as a faster and counter-rotating light disc. In order to have counter-rotation limited
to a central region, we adopt a position-dependent Satoh parameter, defined as follows:

k2(R, z) = k0 + (k∞ − k0)
s

s+ 0.1
, s =

√
R̃2 + z̃2 (5.8)

(also used in Chapter 6; see also Negri, Ciotti and Pellegrini 2014 for an alternative
parameterisation), with k0 = −0.8, k∞ = 0.1, where the negative sign of k0 assures the
counter-rotation of the disc, as can be seen in the top right panel of Fig. 5.3, and we
will discuss below for Fig. 5.4. At very small radii (inside 10−2 r∗), the total rotational
velocity is again positive, because the density is dominated by the Jaffe component. We
stress that the module of vϕ2 decreases towards the centre, at variance with the JHD
model, because now vϕ2 = k2∆2, and ∆2 → 0, as explained in the previous Section. The
central total vertical velocity dispersion is higher than that of the JHD model, even if
the Jaffe component is structurally identical, because of the higher R1 and of the more
concentrated MN disc.

In the last row of Fig. 5.4, the los luminosity-weighted velocities show clearly the effect
of the inner thin disc, where the region shown is limited to r∗ to appreciate the central
features: in the vlosL distribution we have counter-rotation at small radii (but not in the
very centre). In particular, the inner regions of the disc (excluded the very central radii,
as already seen for Fig. 5.3) have opposite rotation with respect to the surrounding stellar
halo, and also to the outer regions of the disc itself: from an observational point of view,
they would appear as two counter-rotating disc components, as sometimes observed in
slow rotator ETGs (e.g. Morelli et al. 2004; Krajnović et al. 2015; Mitzkus et al. 2017; see
also Chapter 1, and Krajnović et al. 2011; Cappellari 2016). The disc is also responsible
for the highest values of the σlosL in the equatorial plane, and the extended surrounding
toroidal distribution is also present, in analogy with the JHD model.

5.3 Exponential discs and multi-MN decompositions

Exponential discs are the common choice for modelling the stellar disc of disc galaxies.
Their gravitational potential can be constructed numerically by using the general formula
based on complete elliptic integrals or by using Bessel functions, as deeply discussed in
Section 4.2. The latter approach is particularly useful in case of factorised densities, such
as

ρ∗(R, z) =
ρne−R̃/α

α2
V (z̃/β), (5.9)

where α = Rd/r∗ and β = hd/r∗ are respectively the scale-length and scale-height of
the disc, and the function V describes its vertical distribution. Different expressions of
V recover the three exponential discs of Section 4.1.3: the the razor-thin exponential
disc of eq. (4.20), the double-exponential disc of eq. (4.21), and the pseudo-isothermal
exponential disc of eq. (4.22). Unfortunately, the gravitational potential of these discs
cannot be obtained in a pure analytical expression; however, due to their relevance in
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the construction of galaxy models, alternative models with analytical potential have
been proposed in the literature. In particular, the possibility to use multicomponent MN
models to reproduce exponential discs, over some finite radial range, has been explored
for example by Smith et al. (2015) and Rojas-Niño et al. (2016) (see also Flynn et al.,
1996; Ciotti and Pellegrini, 1996). Such alternatives optimise the fit of the density profile,
and produce a good agreement with the rotation curve of the exponential disc. Obviously,
the superposition of MN discs with their power-law radial decline at large radii (see eq.
4.15) cannot reproduce the exponential decline of eq. (5.9). This forces to include at
least one MN density component with negative mass (or negative scale-length), that can
lead to a disc density distribution somewhere negative. The use of a multicomponent
MN representation of an exponential disc is motivated by the advantage of avoiding a
time-consuming numerical computation of its gravitational potential. However, as shown
in Section 4.2, it is possible to obtain the potential of factorised exponential discs in eq.
(5.9) also with a very fast 1D integration in terms of Bessel functions (a method we
implemented in JASMINE2).

As a natural application of our procedure, we extend the work carried out by Smith
et al. (2015), by constructing the solutions of the Jeans equations for the double-exponential
disc and for its everywhere positive density representation in terms of three MN discs
(hereafter 3MN). This 3MN decomposition is an ideal application of our multicomponent
modelling procedure, also because one MN component has negative mass, which gives
the opportunity to illustrate how the scaling scheme presented in Chapter 3 works also
with negative values of the mass ratios Ri.

5.3.1 A double-exponential disc and its 3MN fit

We consider the single-component double-exponential model, recast from eq. (4.21), so
that

ρ∗(R, z) = ρnRd
e−R̃/α−|z̃|/β

α2β
, (5.10)

in analogy with eq. (5.9), with mass Rd = Md/M∗ = 1, scale-length α = Rd/r∗ = 1,
and scale-height β = hd/r∗ = 0.1. For this density distribution, we build the everywhere
positive 3MN fit, following Section 2.2 in Smith et al. (2015). Accordingly, the three
MN components are given as in eqs. (5.5) and (5.6), with a same scale-height b̃, and
different Ri and scale-length ãi (i = 1, 2, 3): in particular, from their Figure 5, we obtain
b̃ = 0.12, and from their equation (7) the values of Ri and ãi. The parameters for the
double-exponential disc and for its 3MN fit are summarised in Table 5.2, where qi = ãi/b̃i.

As a safety check of the reconstructed 3MN model, we compare the circular velocity
in the equatorial plane of the double-exponential disc and of its 3MN fit (Fig. 5.5,
top panel), that can be compared with Figure 3 of Smith et al. (2015), and the FO
surface density profiles of the two models (Fig. 5.5, bottom panel) that in turn can be
compared with their Figure 7. The circular velocity of the exponential disc is almost
perfectly reproduced over the explored radial range, while the reproduction of the FO
surface density is less satisfactory, an unavoidable consequence of the everywhere positive
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Model Parameters

Double-Exponential disc α = Rd/r∗ = 1
β = hd/r∗ = 0.1
Rd = 1
k = 1

3MN fit (Smith et al., 2015) b̃ = 0.12
q1 = 4.64, q2 = 21.42, q3 = 18.67
R1 = 0.16, R2 = −5.77, R3 = 6.72

k = 1

Table 5.2: The parameters of the double-exponential disc and its 3MN fit from Smith et al. (2015).
For the meaning of the parameters of the double-exponential disc, see eq. (5.10). For the 3MN model,
instead, we adopt the same notation of eq. (5.5), where b̃ is the same for all the three components,
qi = ãi/b̃, and Ri = M∗i/M∗. The Jeans equations are solved in the isotropic case, with constant Satoh
parameter k = 1.

decomposition adopted. For completeness, in Fig. 5.6, we present the EO surface density
distributions of the two models. As expected, the two distributions are quite different
in the outer regions, especially for increasing vertical distance from the equatorial plane,
where the 3MN model produces higher surface density values. Consequently, also the
kinematical fields obtained from the solution of the Jeans equations are expected to show
significant differences, especially at high |z|.

5.3.2 Results for the dynamics of the double-exponential disc and its
3MN fit

We use our numerical procedure to evaluate the differences in the dynamical properties,
a problem left open by the studies of Smith et al. (2015) and Rojas-Niño et al. (2016); we
adopt for simplicity the case of the isotropic rotator, without DM halo and central BH.
In Figure 5.7, the EO projected rotational velocity and velocity dispersion are shown. In
this case, since we model a single-component system with constant mass-to-light ratio, it
has no sense to look at luminosity-weighted quantities. The fields vlos of the two models
look remarkably similar, also outside the equatorial plane. In particular, the percent
error of the 3MN model with respect to the double-exponential model, in the equatorial
plane, is < 9% out to 4Rd, and < 14% out to 10Rd (we use the reference distances of
4Rd and 10Rd in analogy with Smith et al., 2015). This quite satisfactory result is not
obvious a priori, since vϕ, at variance with vc, is not a function of the potential only,
but it also depends on the velocity dispersion via the asymmetric drift. Therefore, the
excellent agreement of vc in Fig. 5.5 is not a guarantee that also vϕ, and its projection
vlos, are well reproduced by the 3MN density fit. The reproduction of vlos outside the
equatorial plane is still quite good, with a slightly higher discrepancy at increasing |z|,
as expected, but improving for larger galactocentric distances; for example, at z = Rd,
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Figure 5.5: Circular velocity (left) and face-on surface density (right) profiles of the two models of
Table 5.2; these plots can be compared with Figures 3 and 7 in Smith et al. (2015).

Figure 5.6: Edge-on surface density distributions Σ∗ of the two models of Table 5.2. The dotted
contours are spaced by 1 dex.

the percent error is < 23% out to 4Rd, reducing to < 18% out to 10Rd. The situation
is different for σlos: the two fields are significantly different, even in the equatorial plane,
with the 3MN model showing values up to a factor of 2 larger than those of the double-
exponential model. Moreover, the velocity dispersion of the 3MN model near the rotation
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Figure 5.7: Edge-on projected rotational velocity vlos, and velocity dispersion σlos, normalised to
√
φn,

for the two models of Table 5.2. The dotted contours are the same as in Fig. 5.6.

axis presents a characteristic hourglass-shaped distribution (also observed e.g. by Negri,
Ciotti and Pellegrini, 2014), only barely detectable at the very centre for the double-
exponential model. Notice that this feature is not observed in the maps of Figure 5.4
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for the JHD and JLD models, even if they also contain a MN component, due to the
addition of a stellar halo and a DM halo, and to the different kinematical decompositions
adopted (see also the discussion in Smet et al., 2015). These experiments suggest caution
when adopting the 3MN representation to interpret the observed velocity dispersion of
disc galaxies.

5.4 Summary

The galaxy models illustrated are meant to show the properties of some density mod-
els from our library, whose potential has been obtained with the methods presented in
Chapter 4, and to show the results of the overall multicomponent modelling procedure
presented in the previous Chapters. In particular, they offered the possibility to discuss
in some details the role of the scaled density distributions chosen at the beginning of the
Potential and Jeans Solver, and of the weights fixed in Post-Processing, and how they
affect the resulting total galaxy properties, both internal and projected, and both mass-
and luminosity-weighted. Summarising the methods here employed for the evaluation of
the potentials, for the MN and the spherical NFW density distributions (and of course
for the BH), the exact analytical potentials have been exploited, and for the ellipsoidal
Jaffe distribution the analytical homoeoidally-expanded density-potential pair has been
used; finally for the double-exponential disc, the potential has been calculated with the
integral formula based on Bessel functions, in a very fast and very accurate manner. We
stress that, indeed, for all the density models mentioned in the previous Chapter (includ-
ing those factorised discs not yet inserted in JASMINE2), we have now the possibility
to obtain the gravitational potential avoiding the most time-expensive 2D integration
in terms of elliptic integrals. Thus, on the same line as this Chapter, we can build a
variety of galaxy models, composed of different matter components, in a very fast and
reliable way, and to flexibly vary the Post-Processing parameters. In the next Chapter,
the exploration of the parameter space for some families of galaxy models is performed.
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Chapter 6
Effects of galaxy structure and
dynamics on gas flows in ETGs

We present a study carried out for the work in Ciotti et al. (2022; in this Chapter short-
ened to Paper), where axisymmetric and rotating models of ETGs, lying on the empirical
Scaling Laws, are used to set the initial conditions for hydrodynamical simulations of gas
flows. The goal is to study the evolution of some galaxy properties based on an explo-
ration of the model parameter space. In this Chapter, we mainly focus on the structural
and dynamical properties of the initial models, following the nomenclature and the mod-
elling procedure presented in the previous Chapters. The solution of the Jeans equations
are implemented in the numerical simulations in analytical form in homoeoidal expan-
sion; we stress the role of JASMINE2 in testing the reliability of this approximation.
The setup of the simulations, and the features of the hydrodynamical code MACER used
for this study, are briefly reported, together with the main results from the evolution
of the gas flows over a time spanning a few Gyr. The main global properties analysed
concern the central BH accretion, the formation of (cold) gaseous and stellar discs, the
star formation, the X-ray properties of the hot gas, including the effects of supernovae
explosions and AGN feedback. In particular, we mainly focus on the effect of the galaxy
shape and rotation on the evolution of gas flows driven by angular momentum conser-
vation: we analyse a series of galaxy models for which also the numerical evolution has
been studied, and we extend the analysis in Paper with some preliminary considerations
about more flattened systems, modelled with JASMINE2, reaching degrees of flattening
not allowed by the homoeoidal expansion.

Ciotti L., Ostriker J. P., Gan Z., Jiang B. X., Pellegrini S., Caravita C., Mancino A.,
2022, Accepted for publication, ApJ
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6.1 Introduction

As anticipated in the Introduction of Chapter 1, theoretical, numerical and observational
studies of ETGs show a strong interplay between the ISM (produced by stellar mass losses
and cosmological accretion from group/cluster environment) and the internal structure
and stellar dynamics of the host galaxies. From an evolutionary point of view, this
affects for example the cooling flows, the star formation, the BH accretion, and then the
properties of the hot X-ray emitting corona surrounding the galaxies, and the amount
of gas retained by and ejected from the galaxies, where indeed the feedback effects from
supernovae explosions and central AGN play an important role (see e.g. Mathews and
Brighenti, 2003; Kim and Pellegrini, 2012; Werner et al., 2019, for reviews).

In order to address these aspects, over the years, numerical simulations have been
supplied by increasingly detailed treatment of galaxy structure and internal dynamics
(e.g. shape and density profiles of stellar and DM distributions, velocity dispersion and
rotational fields of the stellar component); physics of the ISM (cooling and heating mech-
anisms, evolution of the dust and metals content of the ISM, star formation processes,
instabilities); accretion of the central supermassive BH and associated AGN feedback
(radiative and mechanical feedback and its dependence on the local ISM properties, ra-
diative transfer, cosmic-rays acceleration); group/cluster confining and accretion effects.
In particular, we briefly review here the importance of the effects of the galaxy shape
and rotation, based on observations and numerical works. From one side, flat and ro-
tating ETGs are observed to host fainter and cooler X-ray emitting halos than ETGs of
same optical luminosity but with rounder shape and less ordered rotation of the stellar
component (e.g. Eskridge et al., 1995; Pellegrini et al., 1997; Sarzi et al., 2013; Kim and
Fabbiano, 2015; Juráňová et al., 2020). On the other side, numerical simulations based
on hydrodynamical codes (also carried out with the aid of a previous version of the code
JASMINE2 for the study of the galaxy models, e.g. Posacki et al., 2013; Negri, Ciotti and
Pellegrini, 2014; Negri, Posacki, Pellegrini and Ciotti, 2014; Negri et al., 2015) showed
that indeed the galactic rotation can be very effective in enhancing ISM instabilities and
leading to the formation of cold gaseous rotating discs, with substantial reduction of the
X-ray luminosity, and lower emission temperatures of the ISM, in agreement with ob-
servations (see also e.g. Brighenti and Mathews, 1996, 1997; D’Ercole and Ciotti, 1998).
These results have been successively confirmed also by simulations which take into ac-
count the effect of AGN feedback and using increasingly more realistic galaxy models
(e.g. Ciotti et al., 2017; Pellegrini et al., 2018; Yoon et al., 2018).

Regardless of the specific topic of interest, the study of stellar systems may be faced
with two different approaches, in some sense opposite and complementary, as also men-
tioned in Chapter 1: modelling specific real objects, reproducing their observed features,
or modelling more general and arbitrary objects, reproducing global observed trends of
galactic properties. In the specific case of the study of the evolution of gas flows in ETGs,
this results in the following respective merits and limitations. In the first approach, it
is possible to build well tailored galaxy models, but it is naturally not possible to know
the specific evolutionary time at which the galaxy is observed, so that the results have
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to be interpreted in some time-averaged way. In the second approach, large samples
of galaxy models are built, and global trends are derived, which are of course indepen-
dent of specific differences from system to system, allowing for a global picture of real
galaxies, and so in particular of the evolution of the ISM properties. Clearly, a thorough
exploration of the model parameter space can be very time-expensive, depending on the
complexity of the galaxy models, and on the spatial and temporal resolution adopted for
the numerical simulations. In this scenario, the possibility of a flexible exploration of the
parameter space of multicomponent galaxy models makes our modelling procedure, and
in particular the scaling approach implemented in JASMINE2, a useful complementary
tool for numerical simulations of galaxy evolution.

In Paper, the second approach is favoured: the evolution of ETGs is studied by means
of hydrodynamical simulations performed with the latest version of the high-resolution
2D code MACER (Massive AGN Controlled Ellipticals Resolved), by using realistic dy-
namical models for the host galaxies. MACER, which is based on the Athena++ code
(version 1.0.0; Stone et al., 2008, 2020), sees major improvements, with respect to the
first versions (Ciotti and Ostriker, 2001, 2007; Novak et al., 2011), regarding the physical
treatment of AGN and SNII feedback, the effects of rotation of the stellar component on
the BH accretion, and the star formation and disc instabilities; moreover, in Gan, Ciotti,
Ostriker and Yuan (2019, hereafter G19a), Gan, Choi, Ostriker, Ciotti and Pellegrini
(2019, hereafter G19b), and Gan et al. (2020), additional improvements are thoroughly
described, allowing for the inclusion of a suite of chemical elements, and the study of
dust production and destruction. The aim of Paper is an exploration of the parameter
space of the galaxy models, in particular concerning the shape and the rotational support
of the stellar component, to study their effects on evolutionary properties. Over a time
range of the order of few Gyr, we have analysed the formation of equatorial discs of cold
gas and of newly formed stars, the time-dependent BH accretion rate and star formation
rate, the evolution of the X-ray luminosity and of the emission-weighted temperature
of the hot corona. Finally, the total BH accreted mass, the total amount of new stars,
the final X-ray luminosity and temperature, the total mass ejected from the galaxy are
obtained. A group/cluster DM halo is also included in the galaxy models, providing an
important confining effect, and the cosmological accretion is also taken into account, in
agreement with results from cosmological simulations. We also consider the time change
of the stellar velocity dispersion and rotational velocity fields, due to mass loss of the
stellar populations, and to the mass growth of the central BH.

As highlighted above, a major ingredient for the hydrodynamical simulations of galac-
tic gas flows is represented by the galaxy models hosting the flows. The models are needed
indeed in order to assign the gravitational field of the host galaxies, and the spatial and
temporal distribution of the gas source terms (mass, momentum, and energy); besides,
the momentum and energy terms require the specification of the galaxy internal dynam-
ics. Structural and dynamical properties of the galaxy models have then an essential
role in affecting the evolution of gas flows. Over the years, more and more realistic (and
numerically tractable) models have been developed and employed in simulations. The
galaxy models adopted in Paper are an extension of the models used in G19a, G19b, and
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Gan et al. (2020), and are based on JJe models (CMPZ21), already presented in Section
5.1 (see also Sections 4.2.2 and 4.3). They include an ellipsoidal stellar distribution, and
a galactic DM halo, as obtained from the JJe formalism, with a central supermassive
BH, and an additional DM halo which accounts for the gravitational confining effect
of the group/cluster hosting the galaxy. The evolutionary properties listed above have
been analysed for a set of galaxy models, varying their total mass and size, accordingly
to the Scaling Laws for ETGs (Faber and Jackson, 1976; Kormendy, 1977), and their
rotational support, and finding results in good agreement with observations. In practice,
accordingly with the modelling procedure presented in this Thesis, especially in Chapter
3 (see also the summary scheme of Fig. 3.1), we firstly build a family of galaxy models,
characterised by the choice of the structural parameters; then we distinguish the models
with different parameterisations for the kinematical decomposition; finally, the physical
scales are assigned, satisfying the Scaling Laws, and building models of different phys-
ical dimensions. We obtain specific galaxy models characterised by different rotational
supports, and by different total stellar mass and size.

In this Chapter, we present the work in Paper in the following way: we focus on the
construction of the galaxy models used as input for the hydrodynamical simulations, and
in particular on the contribution provided by the code JASMINE2, while we only briefly
report the setup of numerical simulations and the main results achieved. We mention
here that the Jeans equations for the stellar component, whose solution is needed for the
hydrodynamical equations, are solved analytically in homoeoidal approximation, in the
gravitational potential produced by the stars themselves, the galactic DM halo, and the
central supermassive BH. In fact, the homoeoidal expansion, while very useful because it
allows for fully analytical dynamical models, does not allow to take into account the effect
on the stellar dynamics of the group/cluster DM halo. We exploit our code JASMINE2
to study its effect, and to assure that it can be safely neglected in the evaluation of the
stellar dynamical fields, while of course it is fundamental for retaining gas. A second limit
of the homoeoidal approximation faced in this investigation is that it is valid only for
small flattening of the ellipsoidal density distributions, preventing the study of gas flows
in quite flat galaxies. Although without running the simulations, we exploit JASMINE2
to build arbitrarily flat galaxy models, for which we give some predictions on cooling
flows driven by angular momentum conservation.

In Sections 6.2 and 6.3, we recall the main structural and dynamical properties rel-
evant for the construction of the galaxy models used for this set of simulations, and we
give the specific parameters adopted. In Section 6.4, some considerations about the gas
flows driven by the angular momentum conservation are discussed; important predic-
tions can be done, indeed, even before the run of the simulations. In Section 6.5, from
completeness, also the main results obtained from the hydrodynamical simulations are
presented, while we refer to Paper for deeper discussions. Finally, in Section 6.6, we ex-
tend some considerations to models with different flattenings of the stellar components,
as mentioned above.
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6.2 Structure of the galaxy models

The stellar density distribution is described by an oblate ellipsoidal Jaffe model of total
mass M∗, scale-length r∗, and flattening (axial ratio) 0 < q∗ ≤ 1. We adopt the usual
normalisations presented and employed in this Thesis, as defined in Section 3.2, so that
all the lengths and masses are in units of r∗ and M∗, respectively. By consequence,
ρn = M∗/(4πr3

∗) and φn = GM∗/r∗, from eq. (3.9), are the normalisation coefficients for
the densities and the potentials, respectively. Then, from eq. (4.1), the stellar density
profile is given by

ρ∗(R, z) =
ρn

q∗m2∗(1 +m∗)2
, m2

∗ = R̃2 +
z̃2

q2∗
. (6.1)

It is useful to introduce the flattening parameter also as η∗ = 1 − q∗, so that η∗ = 0
corresponds to a spherical stellar distribution. In particular, the flattening of the stellar
density model used for these simulations is set to q∗ = 0.7 (i.e. η∗ = 0.3), and in Fig.
6.1 the density profile in the equatorial plane is shown. We recall that the circularised
effective radius 〈Re〉 of an ellipsoidal stellar system observed EO (edge-on) is related to
the effective radius Re of the same model in the spherical limit, or when observed FO
(face-on), by 〈Re〉 =

√
q∗Re; moreover, in the EO projection of an ellipsoidal system, the

isophotal flattening coincide with the intrinsic flattening (see eq. 2.41 and the related
footnote). As well known, the projected density profile of the Jaffe model is remarkably
similar to the de Vaucouleurs law (eq. 4.13) over a quite large radial range, and Re '
0.75 r∗, in case of spherical symmetry and in the assumption of constant mass-to-light
ratio (as reported just below eq. 4.1). Therefore, we can determine the scale radius r∗
for our ellipsoidal Jaffe models once q∗ and 〈Re〉 are fixed by observations. To complete
the modelling of the stellar distribution, we disclose now that three values for the initial
stellar massM∗ are explored in simulations, characterising three groups of galaxy models
(whose parameters are summarised in Table 6.1): M∗ = 1.5 × 1011M�, 3.4 × 1011M�,
and 7.8 × 1011M�, respectively for the LM (low mass), MM (medium mass), and HM
(high mass) model group.1 The models lie on the Fundamental Plane of ETGs, so that
the EO circularised effective radius 〈Re〉 (and consequently r∗) and the total luminosity
(LB, in the B-band) are derived for the chosen values of M∗.

In JJe models the stellar distribution is embedded in a galactic DM halo, so that the
total (stellar plus DM) galaxy density distribution is again described by a Jaffe ellipsoidal
distribution of total mass Mg = RM∗, flattening qg, and scale length rg = ξr∗:

ρg(R, z) =
ρnRξ

qgm2
g(ξ +mg)2

, m2
g = R̃2 +

z̃2

q2
g

; (6.2)

in the present models we always assume the natural choice of ξ ≥ 1, and for simplicity
we restrict to the case of spherically symmetric ρg, i.e. qg = 1. The latter approximation

1The explored models correspond to galaxies that are massive enough that the evolution of the gaseous
halo is not entirely dominated by SNIa heating, being smaller systems able to sustain galactic winds just
due to the SN energy input.
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Figure 6.1: On the left, radial profiles in the equatorial plane (z = 0) of the mass densities of the stellar
component (solid black), the galactic DM halo (’DM’, dashed green), and the group/cluster DM halo
(’halo’, dot-dashed blue), described in Section 6.2, and normalised to ρn = M∗/(4πr

3
∗). The galactic DM

profile dominates around few 〈Re〉, while the external DM dominates in the outermost regions. On the
right, radial profiles in the equatorial plane of the vertical (and radial) velocity dispersion σ (solid red),
and of the azimuthal velocity dispersion σϕ (orange) and rotational velocity vϕ (blue), with different
line-styles depending on the kinematical decomposition, all normalised to

√
φn =

√
GM∗/r∗. For all

the models, the Satoh k-decomposition is adopted: the solid blue line is vϕ of the isotropic rotator
(k = 1), while of course in this case σϕ = σ; the dot-dashed lines represent the asymptotically flat
case (k = ka(r)), and the dashed lines the exponentially declining case (k = ke(r)), in eq. (6.10). The
effect of the central supermassive BH is clearly visible in the innermost regions; notice also that in the
exponential decomposition the stars rotate faster in the inner regions (like the isotropic rotator) than in
the asymptotically flat decomposition, while rotation is the lowest in the outer regions. For the galaxy
models of the simulations, the values of ρn and φn can be obtained from Table 6.1.

is quite acceptable for moderately flattened galaxies (as the isopotential surfaces are in
general rounder than the associated mass density), with the additional advantage of a
simple expression for the galaxy gravitational field, and of analytical expressions for the
solution of the Jeans equations in homoeoidal expansion, of easy implementation in the
hydrodynamical code. In the spherical limit, the total galaxy mass contained in a sphere
of radius r, and the galaxy potential, are given by

Mg(r) =
M∗Rs
ξ + s

, φg(r) = −φnR
ξ

ln

(
ξ + s

s

)
, s =

r

r∗
, (6.3)

in agreement with eq. (4.2). Since in JJe models ρg and ρ∗ are assigned, a condition for
the positivity of the density distribution of the galactic DM halo ρDM = ρg − ρ∗ (shown
in Fig. 6.1) is needed. From eq. (13) in CMPZ212, imposing ξ ≥ 1 and qg = 1, the

2The positivity condition of eq. (6.4) is obtained in Appendix A in CMPZ21; the proof is analogous to
Appendix E at the end of this Thesis, but in a different formalism: we recall that, in fact, our Appendix
is recast for JJE models of Section 5.1, where the normalisation scales, r∗ and M∗, represent the scale-
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positivity condition reduces to

R ≥ Rm =
ξ

1− η∗
. (6.4)

A model with R = Rm is called minimum halo model; it can be shown that, in this case,
ρDM is well described by the NFW profile (eq. 4.3) over a large radial range (Ciotti and
Ziaee Lorzad 2018, Ciotti et al. 2019, CMPZ21): for this reason, in the simulations, the
initial galaxy parameters are fixed to the minimum halo case, in particular with ξ = 12.6,
and so R = 18. Notice that the total galaxy (stars plus DM) density profile ρg in eq.
(6.2) is proportional to r−2 inside rg: this property is one of the motivations behind the
construction of JJe models, since different theoretical and observational findings support
this assumption over a large radial range (see e.g. Gavazzi et al., 2007; Koopmans et al.,
2009; Auger et al., 2010; Barnabè et al., 2011; Cappellari et al., 2015; Serra et al., 2016;
Poci et al., 2017; Lyskova et al., 2018; Li et al., 2018; Bellstedt et al., 2018; Wang et al.,
2019, 2020).

In order to take into account the effects of a group/cluster DM halo on the gas
flows, we also consider the gravitational field produced by a spherically symmetric quasi-
isothermal DM halo of asymptotic circular velocity vh, and scale-length rh = ξhr∗, so
that

ρh(r) =
v2

h

4πGr2∗
(
ξ2

h + s2
) , Mh(r) =

v2
hr∗
G

[
s− ξh arctan

(
s

ξh

)]
, (6.5)

and
φh(r) = v2

h

[
ln

(√
1 + s2/ξ2

h

)
+

arctan(s/ξh)

s/ξh
− 1

]
, (6.6)

from eqs. (4.5) and (4.6), recast here as functions of vh. Notice that in eqs. (6.3) and
(6.6) we fixed φg(∞) = φh(0) = 0. In the simulations we consider models with ξh � 1, so
that the group/cluster DM component does not alter significantly the internal dynamics
of the models, as we show in details in Section 6.3.1. In particular, for these models, we
set ξh = 5, in order to have a quite flat total rotation curve in the equatorial plane, as
shown in Fig. 6.2 (and apparent especially with a linear radial scale, on the right plot).
Moreover, vh is fixed equal to the central value of the circular velocity due to the galaxy
(stars plus DM), as can be seen in the same figure, and we discuss below in eq. (6.14).

The stellar mass 〈M∗〉(r) contained in a sphere of radius r, centred in the origin is
easily computed in the homoeoidal expansion approximation, and we have

〈M∗〉(r) =
M∗s
1 + s

[
1 +

η∗
3(1 + s)

]
, (6.7)

from eqs. (15) and (16) in CMPZ21, so that the total DM mass (galactic plus group/-
cluster) inside the same sphere is

MDMtot(r) = MDM(r) +Mh(r) = Mg(r)− 〈M∗〉(r) +Mh(r). (6.8)

length and the total mass, respectively, of the total density distribution. Here, instead, they represent
the scale-length and the total mass of a component of the total galactic system (stars plus DM).
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Figure 6.2: With a thick black line, the total circular velocity of the galaxy models, in the equatorial
plane (z = 0), is shown (eq. 6.15), in units of

√
φn =

√
GM∗/r∗ (whose value is given in Table 6.1 for

the specific galaxy models of the simulations). The curves below show the contributions of the different
mass components: the central supermassive BH (dotted red), the stellar component (solid black), the
galactic DM halo (’DM’, dashed green), and the group/cluster DM halo (’halo’, dot-dashed blue). The
radial profiles are shown with a logarithmic radial scale on the left, and with a linear radial scale on
the right, to better appreciate the effects of the different potential components in the inner and outer
regions, respectively, as discussed in Sections 6.3.1 and 6.3.2.

For the three groups of models in Table 6.1, it follows that MDMtot(r)/Mg(r) ' 52% at
r = 〈Re〉, and ' 64% at r = 2〈Re〉 for η∗ = 0.3, and for reference ' 39% at r = Re, and
' 55% at r = 2Re, for η∗ = 0.

Finally, a supermassive BH of initial mass MBH = RBHM∗, with an initial value of
RBH = 10−3 (half of the currently observationally estimated value, see e.g. Kormendy
and Ho 2013, as instead used in applications in Chapter 5), is added at the centre of the
galaxy, with

φBH(r) = −φnRBH

s
, (6.9)

in agreement with eq. (2.7).

6.3 Internal dynamics

The internal dynamics of the galaxy models, i.e. their velocity dispersion and ordered
rotation fields, is a crucial ingredient of the problem, as it determines the momentum and
kinetic energy sources associated with stellar mass losses that enter the hydrodynamical
equations. The kinematical fields are obtained by solving the Jeans equations for the
density ρ∗, under the usual assumption of a two-integral phase-space DF (eq. 2.10),
and after the choice of a decomposition of the azimuthal motions (see Section 2.3). In
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Model LB M∗ r∗ 〈Re〉 vg(0) σ(0)
√
φn vh

(1011 LB,�) (1011 M�) (kpc) (kpc) (km s−1) (km s−1) (km s−1) (km s−1)
(1) (2) (3) (4) (5) (6) (7) (8)

LM 0.32 1.54 7.33 4.57 360 223 301 360

MM 0.65 3.35 11.29 7.04 427 265 357 427

HM 1.38 7.80 18.94 11.80 504 312 421 504

Table 6.1: Structural and dynamical properties of the three groups of galaxy models. For
the group name on the left, each column gives: (1) the galaxy luminosity in the B-band, (2) the initial
stellar mass, (3) the scale-length of the stellar distribution (eq. 6.1), (4) the edge-on circularised effective
radius (below eq. 6.1), (5) the galaxy central circular velocity (in absence of the BH and in the minimum
halo case, eq. 6.14), (6) the stellar central velocity dispersion (in absence of the BH, eq. 6.12), (7)
the normalisation coefficient for the velocities of the models, and (8) the asymptotic circular velocity
of the quasi-isothermal DM halo (eq. 6.5), equal to vg(0) (eq. 6.14). For all models, the flattening of
the stellar distribution in eq. (6.1) is fixed to q∗ = 0.7 (i.e. η∗ = 0.3), the initial BH-to-stellar mass
ratio in eq. (6.9) is RBH = 10−3, the parameters characterising the total galaxy density in eq. (6.2) are
ξ = 12.6 and R = 18, corresponding to a minimum-halo model from eq. (6.4), and the scale-length of
the quasi-isothermal halo in eq. (6.5) is ξh = 5.

particular, the Jeans equations for the stellar component are solved both numerically
with JASMINE2, and analytically in homoeoidal approximation with the formulae of
CMPZ21. The fully analytical form (given in Appendix A in Paper), not only allows for
a simple numerical implementation in simulations (see also G19a), but it also allows to
follow the secular changes of the gravitational and kinematical fields due to the stellar
mass losses and the mass growth of the central BH, just by imposing the required time-
dependence on the structural parameters (see Appendix B in Paper). We also consider
the effects on the gas flows of the (time-dependent) gravitational field associated with the
formation of the stellar disc in the equatorial plane (see Section 3 in Paper for details),
and with the gravitational field of a group/cluster DM halo; for simplicity, instead, we do
not consider their effects on the stellar dynamical fields, so the formulae in the Appendices
in Paper give the dynamical fields produced by the total galaxy mass distribution (disc
excluded) and the central BH.

In the following Section 6.3.1, we prove that we can safely adopt this approximation,
thanks to the comparison with the numerical solution of the Jeans equations in the total
initial gravitational potential performed with our code JASMINE2. In the successive
Section 6.3.2, the most relevant properties about the internal dynamics of the galaxy
models presented in Section 6.2, and used for the simulations, are given.

6.3.1 Applicability of the homoeoidal approximation

The assumption of homoeoidal expansion, and the neglect of the effect of the group/-
cluster DM halo on the stellar dynamics inside a few effective radii of the galaxy (cor-
responding to more than 99% of the total stellar mass), are checked with respect to
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numerical results obtained with JASMINE2. We build a model as described in the Sec-
tion 6.2, where the density distributions of the stellar and galactic DM halo are given
in homoeoidal expansion, and so their potentials (following CMPZ21; see also Section
4.2.2), and the group/cluster DM halo and the central BH are added to the total grav-
itational potential. Then the Jeans equations are solved numerically with JASMINE2,
without truncation in the flattening order, for the stellar distribution in the total initial
gravitational potential; see Section 4.3 for a detailed description of the difference between
numerical and analytical results (and some tests on the homoeoidal approximation). We
stress that, in Section 4.3, we show the level of approximation of the expanded solution
of the Jeans equations for a single stellar Jaffe component (also in the specific case of
flattening q∗ = 0.7, as used for the current models); since here the stellar component
is embedded in a total spherical Jaffe distribution (with exact analytical potential), the
discrepancy from the true solution is even smaller than the discrepancy shown in Section
4.3. Now we show in particular that the effect of the group/cluster DM halo on the stellar
dynamics within ≈ 2Re is in fact negligible, as clearly visible by the rotation curves in
the equatorial plane in Fig. 6.2, especially with a logarithmic radial scale, in the left
plot. Also in the velocity profiles in Fig. 6.1, its effect can be seen as dominant only at
large radii. We can safely conclude that, for the purposes of the present hydrodynamical
simulations, the formulae in Appendix A in Paper can be adopted: the stellar dynamics
is recovered in homoeoidal approximation and determined by the effect of the gravita-
tional potential produced by the stellar ellipsoidal component ρ∗ itself, the galactic DM
halo ρDM, and the central BH, as in JJe models of CMPZ21.

6.3.2 Dynamical properties

We present here the main dynamical properties relevant for the setup of the simulations.
The azimuthal velocity field is split in its ordered and dispersion contributions, vϕ and
σϕ, respectively, by adopting the standard Satoh k-decomposition of eq. (2.25), with
the expressions for the solution of the Jeans equations, σ and ∆, given in Appendix
A in Paper. We recall that k = 1 corresponds to the isotropic rotator, while k = 0
describes a galaxy with a flattening totally supported by tangential velocity dispersion.
In addition to the standard case with constant k, we also explore two more models of
rotating galaxies, with a spatially-dependent Satoh parameter:

ka(r) = k0 + (k∞ − k0)
s

ξ0 + s
, ke(r) = e−r/〈Re〉, (6.10)

where in the first case we adopt the same parametrisation of eq. (5.8), and we set
k0 = 0.42, k∞ = 0.05, ξ0 = 2.67. In the right plot of Fig. 6.1, the effect of the three
different kinematical decompositions on vϕ and σϕ can be seen (recalling that σϕ = σ
when k = 1). In particular, at large radii, in the first case vϕ becomes asymptotically
flat, while in the second exponential case vϕ decreases significantly; in the central region,
instead, stars of a model with k = ke(r) rotate almost as fast as an isotropic rotator, faster
than those in the asymptotically flat case with k = ka(r), as at the centre ka(0) = k0 is
lower than unity.
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To set up realistic galaxy models, we recall that their stellar central velocity disper-
sion, in absence of the central BH, can be obtained combining eqs. (26) and (42) in
CMPZ21 (the former with R = ξ = 1 and ηg = η∗, and the latter with RBH = 0 and
ηg = 0):

σ2(0) =
φnR
2ξ

1− η∗ cos2 θ

1 + η∗ − 2η∗ cos2 θ
. (6.11)

For minimum halo models (i.e. R = Rm from eq. 6.4), when evaluating the limit3 along
the equatorial plane, it becomes

σ2(0) =
φn

2(1− η2∗)
, (6.12)

so that σ(0)/
√
φn ' 0.74 for η∗ = 0.3, and this would be the central value of the radial

profile in the equatorial plane of σ/
√
φn, in absence of the BH, in the right plot of Fig.

6.1. We adopt σ(0) as a proxy for the observed velocity dispersion of the galaxy in the
central regions (outside the sphere of influence of the central BH). Moreover, at the centre
of the galaxy, in absence of the BH, the circular velocity of JJe models in the equatorial
plane is given by

v2
g(0) =

φnR
ξ

, (6.13)

and again, for minimum halo models,

v2
g(0) = 2(1 + η∗)σ2(0), (6.14)

which gives vg(0)/
√
φn ' 1.20 (see Fig. 6.2), with the central value of σ(0) estimated

above, η∗ = 0.3, and recalling that v2
g(r) = v2

∗(r) + v2
DM(r), which includes the contri-

butions of the stars and the galactic DM halo. The value of vg(0) is also equal to the
asymptotic value at large radii of the circular velocity due to the external DM halo, vh,
by construction.

Finally, the model circular velocity in the equatorial plane v2
c (r) = v2

BH(r) + v2
g(r) +

v2
h(r), in case of minimum halo, can be written as

v2
c (r) = 2(1− η2

∗)
(RBH

s
+
Rm

ξ + s

)
σ2(0) +

[
1− ξh

s
arctan

(
s

ξh

)]
v2

h, (6.15)

where we neglect for simplicity the contribution of the equatorial stellar disc formed by
cooling and rotating ISM (see Section 3 in Paper). It is immediate to see that at the
centre vh(0) is zero, so v2

c (0) = v2
g(0) = vh, in absence of central BH (see Fig. 6.2).

6.4 Gas flows driven by angular momentum conservation

We spend some words about another quantity determined by the structure and dynam-
ics of a rotating system, and which is essential to understand gas flows: the angular

3The central velocity dispersion of ellipsoidal JJe models is discontinuous, with values dependent on
the direction approaching the centre (for a full discussion, we refer to CMPZ21).
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Figure 6.3: Maps of stellar rotational velocity vϕ, for the isotropic rotator (left), and for the two
spatially dependent Satoh decompositions in eq. (6.10), i.e. the asymptotically flat case (middle) and
the exponentially declining case (right). The velocity values are in units of

√
φn =

√
GM∗/r∗, whose

value is given in Table 6.1 for the specific galaxy models of the simulations. The dotted lines represent
surfaces of constant angular momentum per unit mass, Jz, of the stellar component. As discussed in
Section 6.4, in absence of mass sources and viscous dissipation, for a gaseous halo rotating with the same
velocity vϕ of the stars, the cooling gas falls along these lines, reaching the radius Rin on the equatorial
plane (i.e. where the surfaces of constant Jz cross the plane), and then contract to Rfin, as shown in Fig.
6.4. Notice the zoom-in of the last panel, to appreciate the rotation, limited to a very central region.

momentum. The z-component of the stellar angular momentum (per unit mass) is de-
fined as Jz = Rvϕ, where the rotational velocity vϕ depends on the adopted kinematical
decomposition. For these simulations, the Satoh k-decomposition is applied to all the
galaxy models, and so Jz depends on the choice of the parameter k: in Fig. 6.3, we show
the distribution of vϕ in the meridional plane (i.e. R− z plane), with the superimposed
curves representing surfaces of constant Jz, for the different choices of k = 1, ka(r), ke(r),
from eq. (6.10); of course in case of k = 0, there is no net rotation, and the angular
momentum is everywhere null. We also define the quantity Jc = Rvc, related to the
circular velocity (eq. 6.15), and so defined only in the equatorial plane, and independent
of the decomposition of the azimuthal motions.

In this Section, we limit to considerations based on the structural and dynamical
properties of the galaxy models, while in Section 6.5 the results of the evolution are
reported. However, let us see for a while the equation for the time evolution of Jz of
the gas, subjected to the angular momentum injection due to stellar evolution.4 Due to
the axisymmetry of the simulations (and ignoring for simplicity viscosity effects of the
inflows, at variance with the evolution of the equatorial cold gas discs, where α-viscosity
is taken into account), it is easy to show that along the paths of fluid elements,

DJz
Dt

=
ρ̇

ρ
R (vϕ − uϕ), (6.16)

4In the simulations, the mass sources terms for the galactic gas flows are represented by mass losses
from stars (red giants, AGB stars, and SNIa/SNII explosions, computed following the prescriptions
of stellar evolution), and by a time-dependent cosmologically motivated mass accretion rate from the
group/cluster environment, imposed at the outer boundary of the numerical grid.
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Figure 6.4: On the left, with black lines, the radial profiles in the equatorial plane (z = 0) of the
angular momentum per unit mass, Jz, of the stellar component, for the three kinematical decompositions
adopted: isotropic rotator (solid), asymptotically flat case (dot-dashed), and exponentially declining case
(dashed). With the red line, the radial profile of Jc is shown for reference. Following the explanation of
Section 6.4, cooling gas reaching the equatorial plane at a radius Rin (see also Fig. 6.3) moves inwards
to Rfin, so that Jz(Rin, 0) = Jc(Rfin). In the right plot, the movement of the gas in the equatorial plane
from Rin to Rfin is explicit.

where D/Dt is the lagrangian derivative, and vϕ−uϕ is the difference between the stellar
and the gas azimuthal velocity. The numerical simulations show that this difference is
quite small, so that as a zeroth-order approximation we can assume Jz is conserved. In
this simplified assumption, in rotating models, the stellar mass losses are injected in the
ISM following vϕ, and the cooling gas falls along the curves of constant Jz, as in Fig.
6.3, preserving its initial angular momentum, and reaching the equatorial disc at Rin,
i.e. where the surfaces of constant Jz cross the plane. However, due to the asymmetric
drift, the rotational velocity of the gas is lower than the galaxy local circular velocity, so
Jz(Rin, 0) < Jc(Rin); then the gas moves inwards in the plane, ending on a circular orbit
of radius Rfin, where Jz(Rin, 0) = Jc(Rfin), meaning Rinvϕ(Rin, 0) = Rfinvc(Rfin). On the
left plot of Fig. 6.4, the two measures of the angular momentum in the equatorial plane
are shown, where the black lines represent Jz(Rin, 0) regarding to the different rotational
supports of the models, and the reference red line represents Jc(Rin), clearly larger than
Jz(Rin, 0) at each radius. Moreover, on the right plot, the movement from Rin to Rfin is
explicit.

From Fig. 6.3, we see that the gas falls onto the disc at significantly larger radii in
the isotropic rotator than in the mildly rotating models, and from Fig. 6.4 we also see
that it moves less inwards in more rotating systems. This suggests that more rotating
models will develop larger discs of cold and dense gas in the equatorial plane. The runs
of the simulations confirm this prediction, as reported in Section 6.5, showing also the
effect of the gas disc properties on the accretion onto the BH, and on the formation of
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newly formed stars on the equatorial discs. Notice that curious curves of constant Jz are
obtained for the model with exponentially declining rotation (last panel in Fig. 6.3): the
curves are very inclined towards the centre and closed, so that the same value of Jz can
be found at a very small radius and at a larger radius. This implies that gas particles
which fall at such a large radius, in this prescription for the gas flows, are destined to
move on the plane down to the same inner radius than particles arrived on the plane at
the smaller radius, as visible in Fig. 6.4. Simulations confirm, in particular, that models
with this parametrisation of the streaming velocity field produce gaseous discs confined
in the inner regions.

Furthermore, in Section 6.6, we extend the analysis of gas inflows due to angular
momentum conservation to similar galaxy models with different degrees of flattening,
exploiting also the knowledge achieved from the results of the simulations.

6.5 Summary of the main results from hydrodynamical sim-
ulations

A detailed presentation of the setup of the hydrodynamical simulations is given in Paper
and references therein, while in this Section, like in previous Sections, we only recall
some features when needed. The simulations are performed with the high-resolution 2D
hydrodynamical code MACER, introduced in Section 6.1.

The run of numerical simulations for a systematic and complete exploration of the
model parameter space would be impossible, due to the computational time required by
each run (see details in Paper), and to the number of model parameters. Therefore, we
fix the properties of the galactic and the group/cluster DM halos, and the initial BH-to-
stellar mass ratio, together with the galaxy flattening. We restrict the investigation to
the combination of three values for the total initial stellar mass, M∗, already introduced
as LM, (low mass), MM (medium mass), HM (high mass), with three kinematical de-
compositions: no rotation (k = 0, all the galaxy flattening is due to tangential velocity
dispersion), moderate rotation (k = ke(r), rotation exponentially declining in the outer
regions), and the isotropic rotator case (k = 1, all the galaxy flattening is supported
by ordered rotation). The parameters of the galaxy models, discussed in the previous
Sections for each mass component, are reported in Table 6.1. The age of the galaxy at
the beginning of the simulation is fixed to be 2 Gyr, so that the initial phases of galaxy
formation are terminated, and a central supermassive BH with a mass near to the ob-
served values of RBH ∼ 2×10−3 (e.g. Kormendy and Ho, 2013) is assumed to be already
in place.

In the following, the main results obtained from the evolution of these galaxy models,
over a time range spanning from 2 Gyr to 13.7 Gyr, are summarised, with a focus on the
topics manly discussed in this Chapter. The study of Paper mainly concern the following
aspects of galaxy evolution: the BH accretion, the formation of gaseous and stellar discs
in the equatorial plane, the star formation, and the luminosity and temperature of the
X-ray emitting gas of the hot corona. The discussion is driven by the study of the effects
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Figure 6.5: From top to bottom, the time evolution of the total mass of cold gasMdHI (T ≤ Tc = 5×105

K) in the equatorial disc, the star formation rate Ṁ∗, and the BH accretion rate ṀBH, from 2 Gyr to
13.7 Gyr. All the quantities are shown for the three groups of models, meaning high-mass (’HM’, green),
medium-mass (’MM’, blue), and low-mass (’LM’, red) galaxy models, and for two degrees of rotational
support: k = 1 on the left, and k = ke(r) on the right. The correlation between the evolution of these
quantities is apparent, as discussed in particular in Section 6.5. Further figures about the time evolution
of the galaxy properties are shown and discussed in Paper, together with the final values (at the end of
the simulation) of the total cold gas mass, mass of new stars formed, and accreted BH mass.

of the galaxy mass and of the degree of internal rotation, comparing the behaviour of the
galaxy models on the basis of their different initial M∗, and decomposition parameter
k, as mentioned above. Some evolutionary trends for the six rotating galaxy models
analysed are shown in Figure 6.5 to support the results, while full discussions, more
quantitative results, and more figures, can be found in Paper.

As a first global consideration, we confirm the picture that the evolution of the ISM
undergoes recurrent cycles, during which the gas cools, falls towards the central galactic
regions, and - if it possesses angular momentum - accumulates in a central disc. Indeed,
with the exception of non rotating models, in all the six rotating models, cold gaseous



88 6. Effects of galaxy structure and dynamics on gas flows in ETGs

discs of HI form in the equatorial plane, as consequence of gas cooling in the assumption
of angular momentum conservation. Then, the cold gaseous disc becomes over-dense
and self-gravitating, and develop Toomre instabilities, allowing for local bursts of star
formation5, and mass inflow from the disc towards the central supermassive BH, with
consequent SNII and AGN feedback in the galaxy.

In Fig. 6.5, from top to bottom, the evolution of the gaseous disc mass MdHI, the
stellar disc mass Ṁ∗, and the BH accretion rate ṀBH, are shown, and their interplay is
apparent from the correlation between their trends. We found that the mass and size
of HI disc increase for increasing galaxy mass and amount of rotational support. The
BH accretion rate and the total BH accreted mass, as well, increase with galaxy mass,
meaning that the central supermassive BHs accrete more material, and more efficiently,
in more massive galaxies. Moreover, the efficiency of accretion increase with increasing
galaxy rotation. This is not so obvious, since in more rotating galaxies the gas falls onto
the equatorial plane at larger distances from the centre (as shown in Figs. 6.3 and 6.4,
and discussed in Section 6.4). However, more rotating discs in galaxies of same structure
(i.e. same initial M∗) turn out to have lower gas surface density, due to the larger size.
This implies more Toomre instabilities in faster rotators, leading to more BH accretion
and more star formation, despite the stronger centrifugal barrier. Overall, the larger BH
mass accreted in fast rotators is due to fewer instability events in the disc, characterised
though by significantly larger mass accretion. Analogously, faster rotators produce larger
and more massive discs of newly formed stars in the equatorial plane6, as visible in Fig.
6.5.

For completeness, albeit less discussed in this Chapter, we briefly summarise also the
evolutionary X-ray properties of the hot gas, as functions of the galaxy properties. More
massive galaxies are more X-ray luminous and hotter, in agreement with expectations
from the Faber-Jackson relation (Faber and Jackson, 1976), and with values in the ob-
served ranges. Moreover, more rotating galaxies of same structure are found at a lower
luminosity, confirming that rotation tends to reduce the X-ray luminosity of galaxies,
due to the strong tendency of rotating flows to induce gas cooling. Indeed, more rotating
models present a larger amount of cold gas, and coherently a smaller amount of hot gas,
and so they are less X-ray luminous and with lower hot gas temperature.

6.6 Effect of galaxy flattening on the gas flows

In Section 6.4, we described the expected behaviour of gas flows driven by angular mo-
mentum conservation, and neglecting viscosity effects, in relation to the rotational sup-

5Two different channels are considered for star formation: the classical one based on the cooling and
the Jeans collapse times of the ISM, and a second one based on the assumption that the rotating gaseous
disc self-regulates due to Toomre instabilities around a value of the Toomre parameter of Q ' 1 (Toomre,
1964).

6We stress that, from the stellar formation prescription in G19a, the star formation is not limited to
the equatorial disc; however in the simulations almost all the star formation takes place in the gaseous
disc. A top heavy IMF is adopted, and the massive stars inject energy in the ISM via SNII explosions,
i.e. SNII feedback.
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Figure 6.6: Maps of stellar rotational velocity vϕ, for the isotropic rotator, for q∗ = 0.3, 0.5, 0.7, 0.9, in
units of

√
φn =

√
GM∗/r∗. The galaxy models are discussed in Section 6.6. The dotted lines represent

surfaces of constant angular momentum per unit mass, Jz, of the stellar component. See Fig. 6.3 for
the explanation of the fall of the cooling gas onto the equatorial plane, with reference also to the next
Fig. 6.7.

port of a flattened galaxy model. In particular, we analysed the model with q∗ = 0.7
described in Section 6.2, for the three cases of Satoh kinematical decomposition k =
1, ka(r), ke(r) of eq. (6.10). For the isotropic and the exponential cases, the evolution
has been studied through numerical simulations, and some results are discussed in the
previous Section. We extend here the investigation to different degrees of flattening of
the galaxy models: along the same lines of Section 6.4, now we analyse the effect of the
flattening on gas inflows for isotropic rotators, both more and less flattened with respect
to the already studied case of q∗ = 0.7.

We recall that the formulae for the stellar component of the models used for the
simulations are given in homoeoidal expansion, which imposes a limit in the flattening
of the ellipsoidal density distribution of q∗ ≥ 2/3 (see Section 4.3, and e.g. CMPZ21 for
details). Thus the models studied in this Section are built with JASMINE2, as true ellip-
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Figure 6.7: Analogous to Fig. 6.4, for the isotropic rotator, with different degrees of flattening (as
reported in the plot), as discussed in Section 6.6. See Fig. 6.4 for the explanation of the movement of
gas in the equatorial plane, from Rin to Rfin. Clearly, in less flattened models (and less rotating, see the
previous Fig. 6.6), gas reaching the equatorial plane at the same Rin moves towards more central Rfin.

soids (not homoeoidally expanded), with numerical evaluation of the potentials (through
the Chandrasekhar integral formula, from eqs. 4.27 and 4.30), and numerical solutions of
the Jeans equations (see Section 4.3 for a detailed discussion of the difference between ho-
moeoidally expanded and numerical results). In this way, we have no limits in the choice
of the flattening degree of the ellipsoidal stellar density distribution, and we can study
also very flattened systems. We build galaxy models following the prescription of Sections
6.2 and 6.3.2 (except for the homoeoidal approximation) with q∗ = 0.3, 0.5, 0.7, 0.9, and
Satoh parameter k = 1. The two extreme values of q∗ represent a quite flat E7 galaxy
and an almost spherical E1 galaxy; the case q∗ = 0.7 is the not-expanded counterpart of
the isotropic rotator studied in the previous Sections, so that we use it as reference for
the more and less flattened cases.

In Fig. 6.6, the maps of stellar rotational velocity vϕ and the surfaces of constant
angular momentum Jz are shown, in analogy with Fig. 6.3. The same colorbar has been
used for the four models to highlight that more flattened models rotate faster, with the
same pattern of rotation, typical of a regular rotator such as the isotropic one. The
curves of constant Jz, from a position (R, z) and reaching the equatorial plane (z = 0),
are slightly more inclined towards the centre for increasing flattening, i.e. for increasing
rotation in the plane. They are almost vertical for the almost spherical case (q∗ = 0.9,
lower right plot); indeed, as the spatial gradient of vϕ decreases, Jz depends more and
more only on the radiusR, by definition, and so the surfaces of constant Jz tend to become
stratified on cylinders. However, the radius Rin in the equatorial plane reached by gas
coming from a position (R, z) does not vary strongly with the flattening of the system, as
visible in Fig. 6.6. From Fig. 6.7, analogous to Fig. 6.3 discussed in Section 6.4, we see
that in less flattened (and less rotating) models, the gas moves in the equatorial plane



Summary 91

more inwards, reaching more central Rfin, while in more flattened models the movement
is less significant, and Rfin turns out to be nearer to Rin.

Without fixing the total initial stellar mass and size of the galaxy models, and without
running the simulations, it is not possible of course to predict the evolution of the gas flows
in the whole galaxy, neither the amount of gas involved, and neither by consequence the
effect on the BH accretion and the star formation. Nevertheless, from what learnt from
the present study of the gas flows onto the equatorial plane, and the inflows towards the
centre of the galaxy, we can say that more flattened models tend to form more extended
gaseous discs. This is in agreement with what found in Sections 6.4 and 6.5, since more
flattened models are also faster rotators, and we found that the size of gaseous equatorial
discs correlates with the rotational support of the models.

6.7 Summary

We applied the code JASMINE2 to the study of galaxy models suitable for hydrodynam-
ical simulations of galaxy evolution. In particular, the effect on the stellar dynamics of
an extended group/cluster DM distribution has been analysed, and different parametri-
sations of the Satoh parameter k have been considered. Then, we discussed the expected
behaviour of gas inflows towards the centre of the galaxies, as predicted through the as-
sumption that the gas falls into the equatorial plane following the rotation field of stars,
and preserving its angular momentum. The run of hydrodynamical simulations for a
set of galaxy models, with different total stellar mass and different rotational support,
confirmed the predictions and naturally extended the analysis.
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Chapter 7
Conclusions

The work presented in this Thesis is addressed at building dynamical models of mul-
ticomponent stellar systems as flexible and rigorous as possible, in order to study the
properties of galaxies in relation to the complexity of their internal structure and dynam-
ics. For instance, the observable stellar morphological and kinematical features depend
of course on the amount and distribution of the stellar and DM components, and on the
properties of the stellar populations. On the basis of the history of formation and evolu-
tion of the whole system, galaxies are composed by stellar populations characterised by
different age, metallicity, IMF, with higher or lower streaming velocities, and more or less
anisotropic orbits; these populations are also structurally distinct, belonging for example
to an extended halo, a main disc, a central bulge or bar, a nuclear stellar disc or star
cluster. A sophisticated modelling of the internal structure and of the stellar dynamics
of galaxies is crucial not only to understand observed features of real galaxies, but also to
produce realistic galaxy models to study the initial conditions for hydrodynamical and
N -body simulations of galaxy evolution.

7.1 Summary and conclusions

We summarise the main results achieved in this Thesis, and we mention some ongoing
and future applications.

Modelling procedure and JASMINE2

Theoretical framework We developed a theoretical framework to model (and project
along a given line-of-sight) the internal structure and stellar dynamics of multicomponent
axisymmetric galaxies in equilibrium, with an arbitrary number of stellar and DM com-
ponents, and a central BH; the models are based on the solution of the Jeans equations
for the stellar dynamics. The numerical applicability is illustrated as an efficient and eas-
ily reproducible modelling procedure, which in particular we implemented in, and tested
with, the ad hoc numerical code JASMINE2, developed as part of the PhD project. In
our approach, we reproduce realistic galaxy properties, and we can build large samples

93
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of galaxy models, thanks to a dynamical modelling procedure allowing to control the in-
ternal structure and dynamics of each stellar component. For this purpose, we consider
a number of stellar components, representing a stellar population, and described by a
specific distribution function (DF). In fact, the underlying DF is unknown, and we only
verify some consistency arguments based on the positivity of the mass density and on the
positivity of second-order velocity moments; instead, we define each stellar distribution
through its density profile. The total stellar distribution is implicitly described by a DF
which is given by the sum of the DFs of the stellar components; from this fundamen-
tal identity, we derived the sum rules of the structural properties and of the velocity
moments, and consequently of the projected fields, allowing to calculate the total inter-
nal and projected fields once they are obtained for the single stellar components. This
procedure can be easily applied to the construction of stellar systems by difference of
stellar components, which can be very for instance when interested in setting the total
stellar distribution. Moreover, for each stellar component we assume a possibly different
constant mass-to-light ratio, so that the total mass-to-light ratio is in general position-
dependent, and the total internal and projected dynamical quantities can be calculated
as mass-weighted or luminosity-weighted sums of the components.
Anisotropy and kinematical decomposition In the assumption of axisymmetry, each
DF is assumed to depend on two integrals of motions, producing stellar systems with
only tangential anisotropy of the velocity dispersion tensor, and rotating only around the
symmetry axis. This assumption is also generalised to stellar systems fully anisotropic,
which do not depend on two integrals, following Cappellari (2008). Once the solution
of the Jeans equations is obtained for a stellar component in the total gravitational po-
tential, a further assumption is necessary to split the total azimuthal velocity in ordered
velocity and velocity dispersion: besides well-known kinematical decompositions, we pre-
sented a generalisation of the Satoh k-decomposition, which can be applied when the
Satoh decomposition cannot be used, a not uncommon case in multicomponent systems,
as we have shown in some applications.

Numerical aspects

Two main bottlenecks in the numerical implementation In a numerical implemen-
tation of the multicomponent modelling technique presented, two main slowdown factors
are encountered, meaning the time-expensive numerical evaluation of the gravitational
potentials, and the large number of model parameters. Indeed, for each stellar and
DM density component, the gravitational potential is determined by the solution of the
Poisson equation; only for few simpler density models, an analytical expression for the
associated potential is known, so that in most cases a numerical computation is required.
For any axisymmetric density distribution, the numerical computation of the potential
can be performed in terms of complete elliptic integrals, implying a very accurate but
quite time-expensive 2D integration for each position of the 2D numerical grid. The com-
putational time increases naturally for increasing number of density components, and for
increasing numerical resolution, so that an extensive exploration of the model parameter
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space, which can be very large for multicomponent models, would be impossible. To
reduce the computational time, and allow for a fast and flexible models construction,
on one side, we proposed faster methods for the evaluation of the potentials, and on the
other side, we fully exploited the scalings allowed by the Poisson and the Jeans equations,
and by the projection formulae.
Scaling approach The scaling approach, which we implemented in the numerical code
JASMINE2, is proposed as a general numerical scheme that can be implemented as well
in similar codes. The scheme leads to an organisation of the code in two logically distinct
parts, which we called Potential and Jeans Solver and Post-Processing (PP). In practice,
once the structural properties of the scaled (dimensionless) stellar and DM distributions
are assigned, the code computes, with a single run of the Potential and Jeans Solver, the
scaled solutions of the Jeans equations, for each stellar component in each potential com-
ponent, defining a family of models. The scaled Jeans solutions are then combined in PP,
with the desired mass and luminosity weights, and the choice of appropriate kinematical
decompositions, and then projected along a given line-of-sight. The PP procedure can be
rapidly performed several times, obtaining different specific models in the same family.
Finally, for each model, the two physical scales M∗ and r∗, to which all the masses and
lengths are respectively normalised, can be assigned, obtaining the final scaling of the
whole system. A further benefit of this approach is the possibility to gain a full under-
standing of the role of each density component in determining the resulting total galaxy
properties, including for instance the kinetic and gravitational energies of the systems,
and the observable quantities entering the Fundamental Plane.
Fast methods for the evaluation of the potentials Besides the scaling operations,
a second expedient reduces the computational time with respect to what required by the
computation of the potentials in terms of elliptic integrals. We suggested the use of the
Chandrasekhar integral formula for ellipsoidal distributions, and of an integral formula
based on Bessel functions for factorised disc distributions. Both methods only require
a very fast 1D integration, and we showed that the accuracy reached is the same pro-
vided by the elliptic integrals. The so-called Chandrasekhar formula is a classic method,
involving two integrations: one can be solved analytically for many axisymmetric distri-
butions, and in particular for all the spheroidal density models of the library included
in JASMINE2. Also integral formulae based on Bessel functions are well known; how-
ever, we presented a general formula using the Bessel function J0, allowing for a fast 1D
integration when applied to factorised discs in cylindrical coordinates for which the two
integrals over R and z have analytical solutions. This is obtained for several radial and
vertical distributions, which can be combined to produce a variety of thin and thick discs,
beyond the simplest approximation of zero-thickness. In particular, the radial term is
represented by the Hankel transform of the radial density distribution, which is known
for many commonly used models. For the vertical stratification, the solution for the ex-
ponential distribution is obtained, recasting a well-known result, and the infinitely-thin
case is simply given as a limit case; more importantly, we offered the solution also for
the so-called pseudo-isothermal sheet, with vertical density profile proportional to sechn,
which is often used as well to model stellar and gaseous galactic discs. Summarising, for
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many ellipsoidal systems and factorised discs, and especially for all the density models
of the library implemented in JASMINE2 (which do not have analytical potential), we
are able to calculate the potential with a fast numerical integration, reducing the com-
putational time from many hours to few minutes, or even few seconds, with respect to
the standard integration using elliptic integrals.
Reliability of the homoeoidal approximationWe exploited the numerical solutions
of the Jeans equations for σ and

√
∆, obtained with JASMINE2, to test the reliability

of homoeoidally-expanded formulae for increasing degree of flattening of the ellipsoidal
density distributions. For Jaffe models, as examples, we proved that the numerical so-
lution for σ obtained for an homoeoidally-expanded density-potential pair, with respect
to the true ellipsoidal density distribution with numerical potential, diverges only up
to few percent for q = 0.7, i.e. approaching the limit flattening allowed in homoeoidal
approximation;

√
∆ instead diverges up to about 20%. Thus more care is needed in

this latter case, recalling also that from
√

∆ we calculate the stellar rotational field
with the Satoh k-decomposition. In addition, we showed that the use of pure analytical
homoeoidally-expanded σ and

√
∆, i.e. neglecting second-order terms in the flattening,

does not increase significantly the discrepancies discussed above.

Applications

Three illustrative galaxy models In order to illustrate the features of the modelling
procedure presented, and to show the effect of the different matter components on the
total galaxy properties, we built and discussed three illustrative galaxy models - named
JJE, JHD, and JLD -, composed of two stellar components, a DM halo, and a central
BH. The JJE model represents a spherical galaxy, and it has been used to force the mod-
els construction to obtain a stellar density component by difference of assigned density
distributions. Then it offered the opportunity to apply the generalised Satoh decomposi-
tion to the difference component, after assuring the consistency of the underlying DF, at
least up to second-order velocity moments. The JHD and JLD are built as quite realistic
models of ETGs including a stellar disc embedded in a stellar halo: the JHD model may
represent a disc galaxy, with a large, massive and rotating disc, and a surrounding stellar
halo, less massive and populated by older stars, with more anisotropic orbits; the JLD
model, instead, may represent a so-called slow rotator with evidence of a small inner
counter-rotating disc. We studied the effect on the internal and projected dynamics of
the mass and luminosity weights of the components. For instance, the younger stellar
component (with lower mass-to-light ratio) may dominate the total dynamical fields, at
least in some regions of the galaxy, even if less massive, as expected. Moreover, different
values of mass-to-light ratio for the components produce gradients of total mass-to-light
ratio, in agreement with what observed in ETGs.
3MN fit of a double-exponential disc We explored the accuracy of one of the 3MN
decompositions proposed by Smith et al. (2015) to reproduce the morphological and kine-
matical fields of double-exponential discs. Firstly, we confirmed the excellent agreement
of the rotation curves of the two models in the equatorial plane, at least out to ∼ 10Rd,
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and the good agreement of the FO and EO surface brightness near the centre, while they
start to significantly diverge at few Rd; especially the EO projections are different off-
plane, due to the rounder shape of the MN distributions. Then, we extended the analysis
to the solution of the Jeans equations, and to the projected kinematical fields. We found
that the EO υlos tends to be larger for the double-exponential disc than for its 3MN rep-
resentation, but overall the agreement is rather good, even outside the equatorial plane.
A different situation is found for the EO σlos: the values are significantly larger in the
3MN model, which also presents a characteristic hourglass-shaped vertical distribution.
Some care is thus recommended when using a 3MN decomposition to infer the properties
of observed disc galaxies. Furthermore, we recall that with a fast and precise evaluation
of the potential produced by the double-exponential disc, as possible with the method
presented based on Bessel functions, it is not necessary (at least in many applications)
to resort to less realistic disc models (although with analytical potentials), and to the
use of tailored combinations of such models.
Internal dynamics and gas flows in ETGs Finally, we carried out an exploration
of the parameter space for a family of galaxy models, representing oblate and rotating
massive ETGs, with the aim of investigating the evolution of gas flows, by means of
hydrodynamical simulations, as functions of structural and dynamical galaxy properties.
The galaxy models are composed of an oblate stellar component, a DM halo, and a cen-
tral supermassive BH, with the addition of a DM distribution taking into account the
effect of an hosting galaxy group/cluster. The stellar dynamical fields are included in the
simulations, in a convenient way via analytical formulae in homoeoidal approximation,
which however limited the analysis with respect to two main points: it is not possible
to include the effect of group/cluster DM halo on the stellar dynamics, and to consider
very flattened stellar systems, making helpful the application of the code JASMINE2
in two main directions. On one side, we studied the total dynamical fields, to assure
the construction of a group/cluster DM halo which did not affect the stellar dynamics
in the inner regions, and which produced a flat rotation curve in the outer regions. On
the other side, we made predictions on the behaviour of the gas falling on the equatorial
plane, and then infalling towards the centre of the galaxy, for a set of galaxy models with
different degree of flattening and different rotational support, Overall, more flattened
and rotating systems tend to form more extended discs of cold gas on the equatorial
plane. For some of these models, with different total stellar mass and size, and different
rotational support, but same flattening, hydrodynamical simulations have been run, also
confirming the predictions. Furthermore, the time evolution of some galaxy properties
are discussed in details in Ciotti et al. (2022), leading to the construction of galaxies with
global properties in agreement with observations.

7.2 Ongoing work: the global stability of disc galaxies

This study arises from a recent collaboration with Elena D’Onghia, and it is presented
here in its starting idea, as an ongoing application of the modelling approach and nu-
merical code presented in this Thesis, with the support of N -body simulations.
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Caravita C., D’Onghia E., Ciotti L., Pellegrini S., In preparation

We extend our study, mainly focused so far on ETGs, to the analysis of disc galaxies
which can develop global instabilities on the stellar disc, leading to the formation of
non-axisymmetric features, such as a bar in the inner regions. Often spiral galaxies host
a bar, and are classified as barred galaxies.

The formation and evolution of the bar is an open research field, addressed by means
of N -body simulations since the early 1970s (e.g. Hohl, 1971; Ostriker and Peebles, 1973).
Some criteria have been studied to understand the conditions for the development of
global instabilities in the stellar disc leading to bar formation, but a universal agreement
is not found. Our intent is to find a global stability parameter which is a good diagnostic
for the development of future instabilities.

The most common global stability parameter, due to Ostriker and Peebles (1973), is

t =
T

|U | , (7.1)

where T is the ordered kinetic energy of the system (see eq. A.13 and eq. A.34), and U
is the total gravitational energy, calculated from the potential of the whole system (eq.
A.17). In particular, it is stated that discs become certainly unstable to bar formation
for an initial value of t < 0.14. It is well recognised, indeed, that the stellar rotation of
the disc itself enhances the growth of instabilities, while the presence of an additional
matter distribution, such as a DM halo, a central bulge, or a central BH, tends to stabilise
the disc. However, while the parameter t may predict in a quite satisfactory way the
development of disc instabilities in certain cases, it may fail in some other situations.

We briefly discuss the main limits, which are partially discussed also, for example,
in Sellwood (1983). First, the parameter t cannot be used to take into account the
effect of a central point-mass, such as the central BH, which would produce a divergent
denominator for an arbitrarily small central mass: the resulting zero t regardless to any
other model parameter, indeed, could not give any useful prediction. Second, in the
opposite case, t can be misleading even in case of an extended mass distribution, such as
a spherical DM halo extended far beyond the stellar disc: the amount of mass outside the
disc cannot affect the stellar dynamics, since it produces a null gravitational force inside
(from the Newton’s Theorem); however, since U depends on the potential, an arbitrarily
large mass distributed outside the disc produces an arbitrarily small t, without actually
affecting the stability of the disc.

Addressing the points above, an alternative global stability parameter has been pro-
posed by Efstathiou et al. (1982), as

t∗ =
T∗
|W∗|

, (7.2)

where now T∗ is by definition the stellar order kinetic energy (see eq. 2.20), and W∗ is
the trace of the gravitational interaction energy tensor (eq. A.16), of the stars in the
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total potential (eq. 2.22). Thus t∗ involves the forces instead of the potentials, and it
does not take into account the self-interaction energy of an external matter distribution,
in contrast with the parameter t.

We are analysing the behaviour of the two global stability parameters t and t∗, as
functions of structural and dynamical galaxy properties, and investigating in depth their
limits and merits, through an exploration of the model parameter space with JASMINE2,
and through N -body simulations performed with the numerical code GADGET (Springel
et al., 2005). For a sample of interesting galaxy models, selected also on the basis of
the more critical situations discussed above, we are running the simulations. We aim
at understanding the relation between the initial model parameters and the successive
development of instabilities, with respect to bar formation, and at establishing which
parameter provides a stronger stability criterion, able to distinguish between models
which remain stable during many Gyr of evolution, and models which develop clear
features of a central bar within few Gyr.

The first galaxy models we are studying are built following Springel et al. (2005),
and they are composed of a stellar disc and an external halo. The disc is modelled by a
pseudo-isothermal exponential density distribution (eq. 4.22), whose associated poten-
tial is computed in terms of Bessel functions from eq. (4.50) (with eqs. D.2 and 4.62);
the halo is modelled by an Hernquist density profile (eq. 4.1), with analytical poten-
tial in the spherical case (eq. 4.2), or otherwise numerical potential calculated with the
Chandrasekhar formula in eq. (4.27) (with eq. 4.30). The stellar azimuthal motions are
determined in epicyclic approximation (Section 2.3.3). As a check between the different
numerical codes, we found a remarkable agreement between the circular velocity, the
rotational velocity and the velocity dispersion profiles produced by JASMINE2, and in-
dependently produced as initial conditions of the simulations of GADGET. With suitable
choices of the parameters, the halo may be intended as an extended DM distribution, or
an inner stellar bulge. We are studying the values of the global stability parameters, t
and t∗, for a large sample of galaxy models, varying the halo-to-stellar mass ratio, the
halo-to-stellar scale-radius ratio, the amount of rotational support of the stellar disc.

7.3 Future applications

Dynamical models of galaxies are a powerful tool to study galaxy properties and to
understand galaxy formation and evolution.

• An application field is naturally represented by the reproduction and interpretation
of observed features, especially accounting for the quantity and quality of data pro-
vided by Integral Field Spectroscopy, and exploiting the ability of a numerical code
like JASMINE2 in modelling multiple stellar components, and complex kinematical
structures.

• A future perspective of application of JASMINE2, and of its scaling approach, is a
systematic exploration of galaxy models constrained to lie on the empirical Scaling
Laws, and the Fundamental Plane in particular for ETGs, extending the statistical
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approach pioneered in Bertin et al. (2002) and Lanzoni and Ciotti (2003). The
possibility to flexibly vary in Post-Processing the mass-weights of all the matter
components, and the luminosity weights and rotational supports of the stellar com-
ponents, and moreover to vary further the total stellar mass and size, can be very
convenient to identify the models satisfying some Scaling Relations.

• From the point of view of numerical simulations of galaxy evolution, we have seen
that dynamical models can provide the stellar dynamical fields necessary to im-
plement the hydrodynamical equations. Further investigations can be performed,
based on the construction of different galaxy models, on the exploration of different
model parameters, or after the implementation of new features in simulations.

• The evolution of stellar systems is studied also by means ofN -body simulations, and
also in this case a numerical code like JASMINE2 allows to study the properties
of galaxy models for which one is interested in running the simulations, and to
calculate the initial conditions. At this regard, in the previous Section, we have
briefly introduced an ongoing study on the stability of galactic discs, with the aid
of N -body simulations.



Appendix A
Jeans equations and Virial theorem

We show some considerations about astrophysical gravitational systems and their stellar
dynamics. First, we briefly recall the validity of the assumption of non-collisionality of
galaxies, and we define the distribution function (DF) of stars over the phase-space. Then
we derive some fundamental dynamical properties, as velocity moments of the DF over the
velocity space, and the energies of the systems. In the assumption of non-collisionality,
the DF of stars satisfies the Collisionless Boltzmann Equation (CBE). We apply the
method of moments to derive simpler differential equations: the Jeans Equations are
obtained through the velocity moments of the CBE over the velocity space. In turn,
through the configuration moments of the Jeans equations over the configuration space,
we verify the Tensor Virial Theorem, and consequently its scalar formulation. Finally,
we derive the Jeans equations and the scalar Virial Theorem in case of stationary and
axisymmetric stellar systems, which are the objects of interest of this Thesis work.

This Appendix does not claim to be exhaustive on the topic, but to create the neces-
sary background for the issues faced in this dissertation. For a much more extended view
on the topic, and on stellar dynamics in general, see e.g. Binney and Tremaine (2008),
Ciotti (2021).

We stress that here we refer to a generic single stellar component, but what we discuss
is valid also for each stellar component of a multicomponent system, adapting to galaxy
models presented in this Thesis. In this regard, the subscript used here, e.g. ij, refer to
the tensorial nature of a quantity, and not to i-th stellar components and j-th potential
components.
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A.1 Non-collisionality and distribution function

In stellar systems, the orbits of stars are determined by the gravitational interactions with
the stars themselves, generic DM particles, and a central massive BH if present; while
the gravitational effect of the gaseous component on stellar orbits can be neglected. For
an exact investigation of the stellar dynamics, these systems should be treated as N-
body problems, in which each encounter with a nearby star, DM particle and black hole,
changes the position and the velocity of each star, i.e. its coordinates in the phase-space
γ = (x,v). Nevertheless, the time scale employed by a system to experience significant
variations in its dynamics through the sum of individual encounters, the 2-body relax-
ation time, trelax, can be even longer than the age of the system itself. In this case,
2-body collisions are negligible, and the stellar system can be considered collisionless;
otherwise, 2-body collisions are important in determining the stellar dynamics, and the
system has to be treated as collisional. For illustrative purposes, we set for a moment
on the simple and idealised case of a self-gravitating finite stellar system of N particles,
with generic size R and stellar speed σ. The characteristic time needed by a star to cross
the system is the crossing time tcross ∼ R/σ, and it is proved that approximately

trelax ∼
0.1N

lnN
tcross. (A.1)

Note that trelax increases of course with increasing tcross, but also with increasing N , al-
though less intuitively. For example, for a typical galaxy with N ∼ 1011 and tcross ∼ 108,
it results trelax ∼ 107Gyr, a time scale even greater than the age of the Universe; there-
fore, it is effectively significant the study of the galactic dynamics in the approximation
of non-collisionality. In contrast, stellar systems such as globular clusters, with charac-
teristic N ∼ 105−6 and tcross ∼ 106, have trelax ∼ 1− 10Gyr, a time scale comparable to
their age, thus they are weakly collisional. Strongly collisional systems are instead open
clusters, with characteristic N ∼ 102−3 and tcross ∼ 106, and so trelax ∼ 106−7yr.

In the assumption of non-collisionality, we replace the real discrete distribution of
N stars with a continuous mass density distribution ρ(x; t); the gravitational potential
associated derives from the Poisson equation ∇2φ = 4πGρ, so that

φ(x; t) = −G
∫
<3

ρ(ξ; t)d3ξ

||x− ξ|| . (A.2)

The distribution of stars in the phase-space, i.e. the space of configurations and velocities,
at any time, is described by the so-called distribution function (DF) f(x,v; t): a nowhere
negative function, which represents the stellar mass density in a volume element of the
phase-space d3xd3v, at a given time t. Just to clarify between different definitions in
literature, we are adopting the same definition as in Ciotti (2021), while in Binney and
Tremaine (1987) it is defined as a numerical density and in Binney and Tremaine (2008)
as a probability density. So the stellar mass density distribution of the system, at position
x and at time t, is given by

ρ(x; t) =

∫
<3

f(x,v; t)d3v (A.3)
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and the total stellar mass is

M =

∫
<6

f(x,v; t) d3xd3v. (A.4)

Before introducing some relevant properties of stellar systems, we consider a generic
physical property of stars, defined over the phase-space, F (x,v; t), and we define its
average over the velocity space weighted for the DF as

F̄ (x; t) =
1

ρ(x; t)

∫
<3

F (x,v; t)f(x,v; t)d3v. (A.5)

We then define, as velocity moments of the DF over the velocity space, this operation
when F is given by the velocity coordinates. Immediately, the zero-order velocity moment
gives eq. (A.3). The first-order moment is

vi(x; t) =
1

ρ

∫
<3

vifd
3v (A.6)

and the second-order moments are

vivj(x; t) =
1

ρ

∫
<3

vivjfd
3v, (A.7)

σ2
ij(x; t) = vivj − vi vj = (vi − vi)(vj − vj) =

=
1

ρ

∫
<3

(vi − vi)(vj − vj)fd
3v,

(A.8)

for i, j = 1, 2, 3, where vi is the i-th component of the streaming velocity, and σ2
ij is the

velocity dispersion tensor, representing the mean dispersion from the mean (streaming)
velocity of stars. It is a symmetric tensor, so in a reference system in which it can be
written in the diagonal form (e.g. the cylindrical coordinates system, as we will see
later), the only non-zero components are σ2

ii = v2
i − vi

2. Its geometrical interpretation
as velocity dispersion ellipsoid is useful when the anisotropy of the velocity dispersion
tensor plays an important role in determining the galaxy morphology, as in slow-rotating
elliptical galaxies. In each position and at any time, it is possible to define an ellipsoid,
whose three semi-axis coincide with the three components of the diagonal tensor: if
σ2
ij(x; t) = σ2(x; t)δij ∀x, the velocity dispersion tensor is isotropic, and the velocity

dispersion ellipsoid is everywhere a sphere; otherwise σ2
ij is anisotropic.

We see now other essential second-order tensors, obtained as moments over the con-
figuration space, by integrating the quantities above. First, we define the mass tensor

Iij(t) =

∫
<3

ρxixj d3x, (A.9)

whose trace is Tr(Iij) = I(t). The kinetic energy of the system is described by the total,
streaming, and velocity dispersion kinetic energy tensors, respectively,

Kij(t) =
1

2

∫
<3

ρvivj d3x, (A.10)
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Tij(t) =
1

2

∫
<3

ρvi vj d3x, (A.11)

Πij(t) =

∫
<3

ρσ2
ij d3x, (A.12)

with traces

K(t) =
1

2

∫
<3

ρv2 d3x, T (t) =
1

2

∫
<3

ρv̄2 d3x, Π(t) =

∫
<3

ρσ2 d3x, (A.13)

where v2, v̄2, σ2 are the total velocities, sums of the diagonal terms of the related tensors.
Of course it holds

Kij = Tij +
Πij

2
, K = T +

Π

2
. (A.14)

The gravitational interaction energy tensor between a density distribution ρ and a generic
gravitational potential Φ is defined as

Wij(t) = −
∫
<3

ρxi
∂Φ

∂xj
d3x. (A.15)

Its trace is

W (t) = −
∫
<3

ρ < x,∇Φ > d3x, (A.16)

where <,> indicates the scalar product. If the potential Φ is produced by the density
ρ only (eq. A.2), then W represents the self-gravity of the system; otherwise, Φ may
indicate an external potential with respect to ρ, i.e. produced by a different density
distribution (such as dark matter or gaseous components, other stellar components, a
central black hole) or a total potential in which ρ is embedded, given by the superposition
of the potential produced by ρ and those produced by other density distributions. At
variance with the tensors of eqs. (A.9)–(A.12), which are always positive, Wij is always
negative. We recall also that the total energy of the system is given by E = K +W . It
is useful to define the gravitational energy of the density ρ in the total potential Φ as
the scalar quantity

U(t) =
1

2

∫
<3

ρΦ d3x. (A.17)

If otherwise Φ is an external potential with respect to ρ, then the gravitational energy
becomes

U(t) =

∫
<3

ρΦ d3x. (A.18)

This difference appears more clear, and its importance stands out, in the application to
multicomponent systems (as we see in particular in Chapter 3 and we briefly introduce in
Section 7.2). Obviously also U is always negative, and in particular in case of self-gravity
it holds U = W (from eqs. A.16 and A.17).
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A.2 The Collisionless Boltzmann Equation

Although stellar systems are never exactly collisionless, we have seen that galaxies es-
sentially are. Therefore, we describe the time evolution of the DF in the assumption of
perfectly collisionless regime: the DF f satisfies the Collisionless Boltzmann Equation
(CBE), so that

Df

Dt
=
∂f

∂t
+

6∑
i=1

∂(fẇi)

∂wi
= 0, (A.19)

where wi is the i-th coordinate of the phase space, i.e. w = (x1, x2, x3, v1, v2, v3), and
ẇi = ∂wi/∂t, reading ẋi = vi

v̇i = − ∂Φ

∂xi
,

(A.20)

where Φ is the total gravitational potential. Then the CBE can also be written as

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0, (A.21)

where the Einstein summation convention (sum over repeated indices) is adopted.
Now we calculate the zero-order and first-order velocity moments of the CBE over

the velocity space: ∫
<3

[
∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi

]
d3v = 0, (A.22)∫

<3

vj

[
∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi

]
d3v = 0. (A.23)

Through the definitions (A.3), and (A.6)–(A.8), a set of the so-called Jeans equations is
derived,

∂ρ

∂t
+
∂(ρvi)

∂xi
= 0, (A.24)

∂(ρvj)

∂t
+
∂(ρvivj)

∂xi
+ ρ

∂Φ

∂xj
= 0, (A.25)

where the latter can also be written in terms of σij as

ρ
∂vj
∂t

+
∂(ρσ2

ij)

∂xi
+ ρvi

∂vj
∂xi

+ ρ
∂Φ

∂xj
= 0. (A.26)

We stress the similarity between the two expressions of the Jeans equations for the stellar
dynamics and the hydrodynamical equations of the mass conservation and the momentum
conservation, respectively.

Then we calculate the first order configuration moment of the Jeans equations (A.25)
over the configuration space, meaning∫

<3

xk

[
∂(ρvj)

∂t
+
∂(ρvivj)

∂xi
+ ρ

∂Φ

∂xj

]
d3x = 0. (A.27)
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The integration of the three terms leads, respectively, to the tensors of eqs. (A.9), (A.10),
and (A.15), so that

1

2

d2Ijk
dt2

= 2Kjk +Wjk, (A.28)

which is the tensorial expression of the Virial theorem. While the second and third terms
are straightforward, the first one is derived as follows:

dIjk
dt

=

∫
<3

∂ρ

∂t
xjxk d3x =

= −
∫
<3

∂(ρvi)

∂xi
xjxk d3x =

=

∫
<3

ρvi(xkδij + xjδki) d3x =

=

∫
<3

ρ(vjxk + vkxj) d3x,

(A.29)

and, since xk is independent of t, it holds

1

2

d2Ijk
dt2

=

∫
<3

xk
∂(ρvj)

∂t
d3x. (A.30)

From the traces of each tensor, the scalar Virial theorem is also immediately verified:

1

2

d2I

dt2
= 2K +W. (A.31)

A.3 Stationary and axisymmetric stellar systems

We consider now stationary and axisymmetric stellar systems, in cylindrical coordinates
(R,ϕ, z), and we write the associated Jeans equations and scalar Virial theorem.

The velocity dispersion tensor σij is diagonal and aligned with the coordinate system.
Moreover, in a stationary and axisymmetric potential Φ, all derivatives with respect to t
and ϕ vanish. There is no rotation in radial and vertical directions, vR = vz = 0, so the
only non-zero streaming motion can occur in the azimuthal direction, vϕ, and the only
non-zero component of the angular momentum is Jz = Rvϕ. Axisymmetry also impose
σ2
R = σ2

z . A stationary and axisymmetric system is therefore described by a two-integral
DF f(E, Jz), which depends on the phase-space coordinates only through two integrals
of motion, according with the Jeans theorem: the energy E = 1

2(v2
R + v2

ϕ + v2
z) + Φ and

the vertical component of the angular momentum Jz, both per unit mass. The Jeans
equations become 

∂(ρσ2)

∂z
= −ρ∗

∂Φ

∂z

∂(ρσ2)

∂R
= ρ

v2
ϕ − σ2

R
− ρ∂Φ

∂R
,

(A.32)
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and the scalar Virial theorem reads

2K +W = 0. (A.33)

In this case, K = T + Π/2 = Tϕ + Πz + Πϕ/2, where from eq. (A.13)

Tϕ = 2π

∫ ∞
0

∫ ∞
0

ρvϕ
2R dR dz, (A.34)

Πz = 4π

∫ ∞
0

∫ ∞
0

ρσ2
z R dR dz, Πϕ = 4π

∫ ∞
0

∫ ∞
0

ρσ2
ϕR dR dz, (A.35)

and ΠR = Πz. Finally,

W = −4π

∫ ∞
0

∫ ∞
0

ρ

(
R
∂Φ

∂R
+ z

∂Φ

∂z

)
R dR dz. (A.36)
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Appendix B
The numerical code JASMINE2

We report the main technical features of the code JASMINE2, on which this Thesis work
is substantially based.

109



110 B. The numerical code JASMINE2

The code JASMINE2 arises from a first version JASMINE (Jeans AxiSymmetric
Models of galaxies IN Equilibrium, Posacki et al., 2013; Posacki, 2014), which I partially
upgraded for my Master Thesis (Caravita, 2018), and substantially modified during my
PhD project. The code produces models of stationary axisymmetric galaxies, based on
the solution of the Jeans equations for the dynamics of multiple stellar components in a
multicomponent gravitational potential. The idea behind the development of the code is
fully illustrated in this Thesis, and so the modelling procedure. Here we report the main
technical features.

The code is organised in two main parts, accordingly to the modelling procedure illus-
trated, in particular in Section 3.2: the Potential & Jeans Solver and the Post-Processing
(PP). The Potential & Jeans Solver, due to the computational task of evaluating the grav-
itational potentials (when analytical potentials are not given) is developed in Fortran
90, and it can run in serial or parallel. The PP, instead, is developed in Python 3, better
suited to the flexibility requested by the exploration of the model parameter space for
the combination of the single matter components. The output data produced by the
Potential & Jeans Solver are stored in HDF5 files (in binary format), and then read as
input in PP. Since all the projection formulae, integrated in PP, are linearly proportional
to all the weights, except the (FO/EO) los rotational velocity vlos (as discussed in Sec-
tion 3.2.3), there is actually an intermediate output of the PP: all the scaled projected
fields are calculated and then stored in HDF5 libraries, while vlos is calculated separately
after the choice of the mass weights, so that a change in the weights does not require to
compute again all the projections.

At this stage, the Potential & Jeans Solver runs in parallel using three processors.
Indeed, it works on three axisymmetric grids in

(
R̃, z̃

)
: a principal grid, on which all

quantities are computed, and two secondary grids, staggered in R̃ and z̃ respectively,
that serve to compute the derivatives of the potentials (forces) with the centred finite-
differences method of approximation; the potential of a density component is then calcu-
lated simultaneously on the three grids by the three processors. Numerical integrations
are performed through the standard trapezoidal rule.

The first version of the code, JASMINE, was supplied by two possible spatial grids,
a linear one and a slightly logarithmic one, to better resolve the central regions of the
galaxy. This latter was set by choosing the number of grid points, the maximum extension
of the grid, and the step between the points, keeping free the minimum value after 0.
In this way, however, an increase of the total number of points would increase much
more the number of points at small radii, than at large radii. We upgraded JASMINE2
with another slightly logarithmic grid, where we choose the total number of points, the
maximum value and the minimum value (after 0), keeping free the step between the
points: in this way an increase of the number of grid points would increase the spatial
resolution everywhere. The principal spatial grid and the two staggered grids have equal
parameters. Moreover, also the grid in λ for the 1D integrations of the Chandrasekhar
formula and of the formula based on Bessel functions (Sections 4.2.1 and 4.4, respectively)
are built in the same slightly logarithmic way, with suitable parameters.

We report now the parameters usually used for the numerical grids, depending on
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the need. The grid in
(
R̃, z̃

)
usually ranges from 10−6 to 70 with 500 points. The seem-

ingly very small minimum value is necessary to assure a good precision in the potential
evaluation in terms of elliptic integrals down to ≈ 10−3 − 10−4. Of course, we have
performed many checks on the resolution of the spatial grid, in order to find the better
possible resolution with the minimum possible computational time: just to give an idea,
the Potential & Jeans Solver with three processors spends a couple of days to compute
a potential component with elliptic integrals; decreasing down to 350 points, it would
spend some hours, giving a quite satisfactory precision for some needs; on the other side,
increasing up to 700 points, for example, would require many days of computation, with
no significant improvements. The grid in λ (for integrations from 0 to ∞) usually spans
a range of 10−3 − 106 with 500 points, suitable both for the Chandrasekhar formula
and for the formula based on Bessel functions (after many checks also in these cases).
The two 1D integrations are remarkably fast, spending only few seconds or few minutes,
depending on the model. The gain in running time is apparent with respect to the 2D
integration based on elliptic integrals, and in Sections 4.3 and 4.4.3 we also show the
precision of these alternative methods.

We note that a further parallelization of the Potential & Jeans Solver would be possi-
ble, allocating the computation of each of the three potentials of each density component
to a different processor, reaching a number of 3×N processors for N density components.
Nevertheless, thanks to the very fast alternative methods implemented in JASMINE2 to
evaluate the potentials (collected in Section 4.2), only rarely we need the full numerical
integration based on elliptic integrals, and so a further parallelization is avoided for now.
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Appendix C
Few notes about Beta functions and
Hypergeometric functions

We briefly present the complete and incomplete Beta functions, recalling in particular
the properties exploited in the discussions of this Thesis. Then we stress a limit that
can be faced in a numerical implementation, and we give useful relations which allow to
write the Beta functions in terms of Hypergeometric functions.
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We recall, first of all, the complete Beta function, which reads

B(a, b) =

∫ 1

0
ta−1(1− t)b−1 dt, a > 0, b > 0, (C.1)

and it is related to the complete Gamma function by B(a, b) = Γ(a)Γ(b)/Γ(a + b). If
a = b, it becomes B(a, a) = Γ(a)2 = Γ(2a), and, for example, it evaluates to π for
a = 1/2, and to 1 for a = 1. The incomplete Beta function is given by

B(a, b;x) =

∫ x

0
ta−1(1− t)b−1 dt, a > 0, b > 0 if x = 1. (C.2)

A consideration is in order, especially for a numerical implementation. For example,
in Fortran 90, the incomplete Beta function can be implemented following Press et al.
(1992) in a regularised form, as I(a, b;x) = B(a, b;x)/B(a, b), i.e. normalised for the
related complete Beta function. Thus, the incomplete Beta inherits the more limiting
conditions of the complete Beta, and it cannot be called for arguments b ≤ 0, even if it
is assured that x 6= 1. This occurs, for example, in the expression of the potential of γ-
models in homoeoidal expansion (eq. 4.41), and in the evaluation of the potential of the
pseudo-isothermal sheet in terms of Bessel functions (eq. 4.61). To avoid this numerical
obstacle, we suggest a solution in terms of Hypergeometric functions, by exploiting the
relation

B(a, b;x) =
xa

a
2F1(a, 1− b; 1 + a; x) (C.3)

(see e.g. Gradshteyn et al., 2007), where we recall that the Hypergeometric function 2F1 is
symmetric with respect to the first two arguments, so that 2F1(a,b; c; x) = 2F1(b, a; c; x).
Moreover, many relations exist between Hypergeometric functions 2F1, allowing for the
use of different arguments, which can be useful in some cases. For instance, it holds

2F1(a,b; c; x) =
1

(1− x)a 2F1

(
a, c− b; c;

x

x− 1

)
. (C.4)



Appendix D
Hankel transforms for some radial
density profiles

We report the analytical Hankel transform of some radial density distributions, used
for the evaluation of the gravitational potential of factorised discs in terms of Bessel
functions, as discussed in Section 4.4.
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We report here some well-known radial distributions in the form A(R) (eq. 4.49), for
which we show the related analytical solutions for the Hankel transform Â(k) (eqs. 4.50
and 4.51). We avoid to derive them, since they are exhaustively treated for example in
Ciotti (2021). The radial decreasing of the mass density on a disc can be naturally finite,
truncated, so that the total mass is enclosed in a certain truncation radius Rt, or can
continue towards infinity. The Hankel transform of eq. (4.51) can be written in general
as

Â(k) = R2
d

∫ ∞
0

g(t) J0(λt) t dt, λ = kRd, t = R′/Rd, (D.1)

with Rd the scale-radius of the disc, on the same line of eq. (4.54) for the vertical
stratification.

We start from the exponential disc (Freeman, 1970), for which

A(R) = e−R/Rd , Â(k) =
R2

d(
1 + λ2

)3/2 , λ = kRd, (D.2)

in agreement with Kuijken and Gilmore (1989) and Cuddeford (1993). For the Kuzmin-
Toomre disc (Kuzmin, 1956; Toomre, 1963), we have

A(R) =
(
1 +R2/R2

d

)−3/2
, Â(k) = R2

de−kRd . (D.3)

We include also some truncated discs of finite mass enclosed in a truncation radius Rt,
by exploiting the Heaviside step function Θ: for example, the truncated constant density
disc (Mestel, 1963),

A(R) = Θ(1−R/Rt), Â(k) =
R2

tJ1(λ)

λ
, λ = kRt; (D.4)

the Maclaurin disc (Mestel, 1963; Kalnajs, 1972; Schulz, 2009),

A(R) =
√

1−R2/R2
t Θ(1−R/Rt), Â(k) = R2

t

sinλ− λ cosλ

λ3
, λ = kRt; (D.5)

the truncated Mestel disc (Mestel, 1963),

A(R) =
Θ(1−R/Rt)

R/Rd
, Â(k) = RdRt

{
J0(λ)+

π

2

[
J1(λ)H0(λ)−J0(λ)H1(λ)

]}
, λ = kRt,

(D.6)
where we stress the different meaning of Rd and Rt, and H0 and H1 are Struve functions
of the zero-th and first order, respectively. At variance, for the finite Mestel disc (Mestel,
1963; Lynden-Bell and Pineault, 1978; Brada and Milgrom, 1995; Schulz, 2012), we have

A(R) =
arccos(R/Rt)

R/Rt
Θ(1−R/Rt), Â(k) =

R2
t Si(λ)

λ
, λ = kRt, (D.7)

where we refer to the sine integral function Si(λ) =
∫ λ

0 sinx/xdx. Finally, the untrun-
cated Mestel disc is obtained from the truncated case of eq. (D.6) in the limit Rt →∞,
so that

A(R) =
Rd

R
, Â(k) =

Rd

k
. (D.8)



Appendix E
Positivity condition for JJE models

We derive the condition assuring the positivity of the density distribution obtained by
difference in JJE models, presented in Section 5.1.
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The stellar component ρ∗2, for the two-component ellipsoidal models JJE, described
in Section 5.1, is given by the difference of an assigned total ρ∗ and an assigned ρ∗1. This
approach naturally leads to discuss the positivity of ρ∗2, with a treatment similar to that
followed in the appendix of CMPZ21, and references therein. We recast eq. (5.3) in the
generalisation of γ-models, in agreement with eq. (4.1), so that

ρ∗2(R, z)

(3− γ)ρn
=

ξ

qmγ(ξ +m)4−γ −
R1ξ1

q1m
γ
1(ξ1 +m1)4−γ , (E.1)

recovering the case of JJE models for γ = 2. In order to discuss the positivity condition
for ρ∗2, we use spherical coordinates, so that (R, z) = r(sin θ, cos θ) and

m = sΩ, m1 = sΩ1, s ≡ r

r∗
, (E.2)

where

Ω2 ≡ sin2 θ +
cos2 θ

q2
, Ω2

1 ≡ sin2 θ +
cos2 θ

q2
1

. (E.3)

The positivity of ρ∗2 reduces to a condition on R1, given by

R1 ≤ RM ≡ inf
I

[
ξq1

ξ1q

(
Ω1

Ω

)γ (ξ1 + sΩ1

ξ + sΩ

)4−γ]
, (E.4)

over the rectangular region I ≡ {s ≥ 0, 0 ≤ θ ≤ π/2} in the (s, θ) plane. Following the
discussion in CMPZ21, we determine

RM = min
(
Rc,R∞,R0,Rπ/2,Rint

)
, (E.5)

where the first four quantities refer to the minimum value of the r.h.s. of eq. (E.4) over
the boundaries of I, and Rint is the value of a minimum (if it exists) in the interior of I.
When q1 6= q, it is simple to show that no critical points can exist in the interior of I,
and so the discussion reduces to the boundaries of I: geometrically, RM can be reached
only at the centre (s = 0, Rc), at infinity (s→∞, R∞), along the symmetry axis (θ = 0,
R0), or on the equatorial plane (θ = π/2, Rπ/2).

We begin with Rc and R∞, obtaining

Rc =
ξ3−γ

1 q1

ξ3−γq
min

0≤θ≤π/2

(
Ω1

Ω

)γ
, (E.6)

R∞ =
ξq1

ξ1q
min

0≤θ≤π/2

(
Ω1

Ω

)4

. (E.7)

Now, from eq. (E.3), it is easy to show that for a generic α ≥ 0, the function (Ω1/Ω)α

reaches its minimum at θ = π/2 if q1 ≤ q, and at θ = 0 if q ≤ q1, so that

min
0≤θ≤π/2

(
Ω1

Ω

)α
=


1, q1 ≤ q,(
q

q1

)α
, q ≤ q1,

(E.8)
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and the conditions in eqs. (E.6) and (E.7) can be finally summarised as

Rc =
ξ3−γ

1 q1

ξ3−γq
min

(
1,
qγ

qγ1

)
, (E.9)

R∞ =
ξq1

ξ1q
min

(
1,
q4

q4
1

)
. (E.10)

Along the symmetry axis, and in the equatorial plane, condition (E.4) becomes

R0 =
ξq3

ξ1q3
1

inf
0≤s<∞

(
ξ1q1 + s

ξq + s

)4−γ
, (E.11)

Rπ/2 =
ξq1

ξ1q
inf

0≤s<∞

(
ξ1 + s

ξ + s

)4−γ
, (E.12)

and simple algebra finally shows that the results can be summarised as

R0 =
ξq3

ξ1q3
1

min

[
1,

(
ξ1q1

ξq

)4−γ]
, (E.13)

Rπ/2 =
ξq1

ξ1q
min

(
1,
ξ4−γ

1

ξ4−γ

)
. (E.14)

For the JJE models in Section 5.1, with ξ1 < ξ, q1 < q, and γ = 2, the positivity
condition (E.5) becomes

R1 ≤ RM =
ξ1q1

ξq
. (E.15)
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