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Abstract

The present manuscript focuses on out of equilibrium physics in two dimensional models.
It has the purpose of presenting some results obtained as part of out of equilibrium
dynamics in its non perturbative aspects. This can be understood in two different ways:
the former is related to integrability, which is non perturbative by nature; the latter is
related to emergence of phenomena in the out of equilibirum dynamics of non integrable
models that are not accessible by standard perturbative techniques. In the study of
out of equilibirum dynamics, two different protocols are used througout this work: the
bipartitioning protocol, within the Generalised Hydrodynamics (GHD) framework, and
the quantum quench protocol. With GHD machinery we study the Staircase Model,
highlighting how the hydrodynamic picture sheds new light into the physics of Integrable
Quantum Field Theories; with quench protocols we analyse different setups where a
non-perturbative description is needed and various dynamical phenomena emerge, such
as the manifistation of a dynamical Gibbs effect, confinement and the emergence of
Bloch oscillations preventing thermalisation.





“Ford... you’re turning into a penguin. Stop it.”
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Introduction

Due to recent developments in experimental techniques, non-equilibrium behaviour of
quantum many-body systems is at the forefront of contemporary research. Within
this framework, closed quantum systems, described by pure states and subject to the
time dependent Schrödinger equation, play an essential role. It is clear that quantum
statistical mechanics must arise from such time-evolving pure states. But how and in
what sense?

When a whole new range of methods in the field of ultracold atomic and molecular
gases was developed, allowing the engineering of strongly-interacting quantum systems,
a massive theoretical interest in questions concerning out of equilibrium dynamics arised.

In particular quantum integrable models play an important role: in the first place,
some of the systems that have been explored experimentally are described by integrable
theories with small perturbations; secondly, integrable models allow the derivation of
exact results. This in turn has proved extremely useful for revealing general features of
non equilibrium dynamics.

The present manuscript is set within this context. Its aim is to present some results
obtained as part of out of equilibrium dynamics in its non perturbative aspects. This
can be understood in two different ways: the former is related to integrability itself,
which is non perturbative by nature; the latter is related to emergent phenomena in the
out of equilibirum dynamics of non integrable models that are not accessible by standard
perturbative techniques. In this case other approaches are needed and numerical methods
that allow the study of the properties of many-body quantum systems constitute a main
tool. In particular in recent years increasing attention has been paid to algorithms that
express the state of the system as a tensor network. Among them, for the simulation of
time evolution, the Time Evolving Block Decimation (TEBD) algorithm is particularly
popular and extensively used in this thesis. The work is structured as follows.

In Chapter 1 we start by recollecting some useful notions about out of equilibrium
dynamics in one dimensional systems. It is explained in what sense an isolated quantum
system may relax to a stationary state at late times. The concept of quantum integrablity
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Introduction

is introduced and compared with the well established classical counterpart, analysing
the role of the infinitely many conserved quantities. Finally the relation between (non)
integrability and equilibration is explored.

One of the leading approaches to compute out-of-equilibrium dynamical quantities is
introduced in Chapter 2: Generalised hydrodynamics (GHD). The original GHD propos-
als considered the partitioning protocol. In this set up two independently thermalised
systems are put into contact at time zero. The presence of multiple conserved quantities
gives rise to ballistic transport, meaning that, after a transient period, steady state
currents flowing between the right and left sub-systems emerge; GHD provides a method
to compute such currents by combining the hydrodynamic principle, generalised to
infinitely many conservation laws, with an effective description of quasi-particles, which
for integrable Quantum Field Theories is based on the Thermodynamic Bethe Ansatz
(TBA).

In Chapter 3 we apply GHD formalism to the integrable staircase model (SM), a
generalisation of the sinh-Gordon model obtained by Al. B. Zamolodchikov. After
investigating hydrodynamic properties of the model, we focus on the expectation values
of conserved densities and currents, both at and away from equilibrium. We evaluate
these for several values of spin higher than s = 1 and investigate the temperature
dependence in the CFT limit. This chapter gathers the results published in [1].

Chapter 4 aims at reviewing some key aspects of another protocol used to drive
systems out of equilibirum: the quantum quench. An isolated quantum system composed
of many particles and ruled by a Hamiltonian H is prepared in a state that is not an
eigenstate of the latter, and it is let to evolve. Even in this simple set up it is not
trivial at all to describe the system dynamics. The example of quench dynamics in the
paradigmatic Transverse Field Ising Chain is finally provided.

The last two chapters have the purpose of exploring some non perturbative effects
in the framework of quench dynamics. Chapter 5 presents the results obtained in [2]
and [3], where the first non perturbative effect of the work is introduced: the dynamical
Gibbs Effect. After proving the existence of such mechanism for the Potts model, we
analyze the relation between relaxation and entropy generation in quantum spin chains
and provide a characteristic signature of the phenomenon that can be observed in
experimental environments.

In Chapter 6 we consider the decay of the false vacuum realised within a quantum
quench into an anti-confining regime of the Ising spin chain with a magnetic field opposite
to the initial magnetisation. We observe that time evolution is in stark contrast with the
field theory predictions and after comparing this scenario with dynamical confinement,
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another highly non-perturbative effect already studied within the quench framework, we
find that the relevant mechanism responsible for the suppression of correlations is the
emergence of Bloch oscillations. This results can be found in [4].

Finally, we draw our conclusions and discuss the outlooks for future inquiries.
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1

A Prelude to out of equilibrium systems

In this chapter the problem of quantum many body systems out of equilibrium is
introduced together with the role played by integrability (for reviews see [5–7]). Our
understanding of the out-of-equilibrium dynamical properties of many-body quantum
systems has vastly expanded over the past decade [6, 8]. In the context of 1+1D quantum
integrable models, a lot of interest was triggered by the results of the quantum Newton’s
cradle experiment [9] which showed that dimensionality in conjunction with integrability
give rise to a distinct kind of dynamics: one in which there is no long-term thermalization.
This result was later related to the presence of infinitely many conserved quantities in
integrable models. The dynamics is then determined by all conserved quantities, leading
to the concept of generalised Gibbs ensembles (GGEs) [10]. As a consequence, quantum
integrable models do not thermalise to Gibbs ensembles but they equilibrate to GGEs.
Thanks to this fundamental understanding, non-equilibrium dynamics has become a
powerful way of studying strongly correlated many-body systems [6, 7, 11–17].

The Chapter is organised as follows. We start in Sec. 1.1 by specifying in what sense
an isolated quantum system may relax to a stationary state. In Sec. 1.2 we discuss
thermalisation in generic systems and finally in Sec. 1.3 we introduce the concept of
equilibration in integrable systems, after reviewing the key points of integrability.

1.1 Relaxation in isolated quantum systems

In statistical mechanics of classical systems, a generic isolated system in the thermody-
namic limit prepared in a generic initial state evolves, in the long time limit, towards
a well defined stationary state. The latter is the one that maximises the entropy [18,
19] and the whole system is described by a microcanonical ensemble with total energy
equal to the initial one.

5



1. A Prelude to out of equilibrium systems

Since we are considering an isolated quantum system, it is necessary to specify in
what sense it may relax to a stationary state al late times after we have driven it out
of equilibrium. If we prepare the system in a pure state |ψ0〉 that is not an eigenstate
of the Hamiltonian of the system H, it will remain in a pure state, since evolution is
unitary

|ψ(t)〉 = e−iHt |ψ0〉 (1.1)

instead of a statiscal ensemble, which is by definition a mixed state. Consider, for
instance, the following class of hermitian operators

Okl = |k〉 〈l|+ |l〉 〈k| . (1.2)

Expanding the pure state in the energy eigenstates

H |n〉 = |n〉En (1.3)

|ψ(t)〉 =
∑
n

〈n|ψ0〉 e−iEnt |n〉 , (1.4)

the expectation values in the state |ψ(t)〉 of these operators can be expressed as

〈ψ(t)| Okl |ψ(t)〉 = 〈ψ(t)|k〉 〈l|ψ(t)〉+ c.c.

= ei(Ek−El)t 〈ψ0|k〉 〈l|ψ0〉+ c.c..
(1.5)

We see that generically it exhibits periodic oscillatory behaviour in time. Hence the
observables Okl do not relax at late imes. In general the whole evolution is periodic or
quasi-periodic, that is, the system will return to its initial state or arbitrary close to it:
the whole isolated system cannot relax to a steady state.

A

Figure 1.1: Finite subsystem A and rest of the system.

Locality plays a crucial role (note that operators like Okl are generally non-local).
Even if the whole system cannot relax, subsystems of a much larger system are not
isolated and they may therefore thermalise due to the thermal bath with the rest of the
system. Isolated quantum many-body systems can namely relax locally in space. Using
the density matrix formalism, this is equivalent to saying that the density matrix of the
whole system is pure while the density matrix of the subsystem is mixed and the latter
can be therefore described by a statistical ensemble [20–23]. To clarify these concepts,
let’s consider a quantum spin chain of N sites initially in a pure state |ψ0〉, whose time
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1. A Prelude to out of equilibrium systems

evolution is ruled by an Hamiltonian H. We partition the system into an arbitrary but
finite subsystem A and its complement Ā (Fig. 1.1). The density matrix of the entire
system at a certain time t is given by

ρA∪Ā(t) = |ψ(t)〉 〈ψ(t)| = e−iHt |ψ0〉 〈ψ0| eiHt (1.6)

which is a pure state. The reduced density matrix of the subsystem A is obtain by
tracing out the degrees of freedom of the rest of the system:

ρA(t) = TrĀ

[
ρA∪Ā(t)

]
(1.7)

The question is if it exists a “virtual” mixed state ρSS
A∪Ā capable of describing the

stationary state of ρA(t), i.e.

lim
t→∞

lim
N→∞

ρA(t) = lim
N→∞

TrĀ

[
ρSSA∪Ā

]
. (1.8)

If such virtual mixed state exists for any finite subsystem A, then the system is said to
relax locally and ρSS

A∪Ā describes the stationary state of the system.
Any expectation value of a local observable OA having its support on A can be now

computed in the long time limit with a statistical ensamble as

lim
t→∞

Tr

[
ρ(t)OA

]
= Tr

[
ρSSA∪ĀOA

]
. (1.9)

It is important to remark that the thermodynamic limit is taken keeping the subsystem
A finite, and that it has to be done before the long time limit, otherwise quantum
recurrences are impossible to avoid.

1.2 Non-integrability and thermalisation

An important question about the dynamics of a closed many-body quantum system is if
interactions within the system are sufficient to make the system behave ergodically,which
is at the basis of statistical mechanics.

Let us consider a classical system with N particles in d spatial dimensions, represented
by a point in the 2dN dimensional phase space; given an initial condition X0 = (q0,p0),
the Hamiltonian H(q,p) is ergodic if the trajectory of the system in the phase space
covers uniformly the constant energy hypersurface selected by the initial condition, for
almost every initial state. This condition allows the replacement of time averages with

7



1. A Prelude to out of equilibrium systems

phase space averages weighted with the microcanonical ensemble; hence for any operator
O:

〈O〉time ≡ lim
T→∞

1

T

∫ T

0

dtO(q(t),p(t))

=

∫
ddNqddNpO(q,p)δ[H(q,p)−H(q0,p0)] ≡ 〈O〉mc

(1.10)

Equations of motions for classical non integrable systems are not exactly solvable
and non linear equations. KAM’s theory [24] states that if the non linear amplitudes
overcome a certain threshold, chaos emerges and the ergodic hypothesis is satisfied for
these systems.

The most straightforward generalization of ergodicity to quantum system was per-
formed by von Neumann [25]. We can define a microcanonical ensemble for quantum
systems with the following procedure: given an Hamiltonian H with eigenstates |n〉 of
energy En, we can coarse grain the spectrum on energy shells of width δE, in such a
way that it remains small on macroscopic scales but it contains many states. Denoting
with S(E) the set of eigenstates of H with energy between E and E+ δE, we can define
the microcanonical distribution as

ρmc(E) =
∑

n∈S(E)

1

N(E)
|n〉 〈n| , (1.11)

where N(E) is the number of states in the shell. But given now a generic initial condition
in a microcanonical shell

|ψ0〉 =
∑

n∈S(E)

cn |n〉 , (1.12)

the long time average of the density matrix of the system is not given, in general, by
the microcanonical ensemble (1.11). Assuming the eigenstates of the system not to be
degenerate, we indeed obtain

lim
T→∞

1

T

∫ T

0

dt |ψ(t)〉 〈ψ(t)| =
∑
m,n

cmc̄n |m〉 〈n| lim
T→∞

1

T

∫ T

0

dte−i(Em−En)t

=
∑
n

|cn|2 |n〉 〈n| ≡ ρdiag,

(1.13)

where the last step follows from a stationary phase approximation. This is the so called
diagonal ensemble [10, 26, 27]. Note that this ensemble depends on the choice of the
initial states through the overlaps cn = 〈n|ψ0〉 and the requirement ρmc = ρdiag implies
that |cn|2 = 1/N(E) for every n, which is obviously not satisfied for any initial state.
Quantum ergodicity in the sense above is therefore almost never realizable. The reason

8



1. A Prelude to out of equilibrium systems

is in the linearity of Schrödinger’s equation, hence we cannot expect an emergence of
quantum chaos.

However there are many evidences of both experimental [28, 29] and numerical
nature [10, 30] that shows that thermalization can occur. The commonly accepted
explanation for this behaviour is the ETH (Eigenstate Thermalization Hypothesis)
[31–33]: instead of explaining the ergodicity of a thermodynamic system through the
mechanism of dynamical chaos, one should instead examine the properties of matrix
elements of observable quantities Ok in individual energy eigenstates of the system. The
requirement

Tr

[
ρmcOk

]
= Tr

[
ρdiagOk

]
(1.14)

implies that matrix elements of these observables are constant on the energy shell and
equal to the microcanonical average:

Tr

[
ρdiagOk

]
=
∑
n

|cn|2 〈n|Ok|n〉 = Tr

[
ρmcOk

]∑
n

|cn|2 = Tr

[
ρmcOk

]
. (1.15)

In this picture even the initial state is a thermal one but the coherence between the
eigenstates initially hides it (Fig. 1.2) and time dynamics reveals it through dephasing
[26].

It is important to remark, though, it has been proof that ETH is not a necessary
condition to quantum thermalization [34] and that it does not apply to all cases, for
example to many body localised states [35].

1.3 Integrability and equilibration

1.3.1 Integrable systems

First of all, what does integrability mean for quantum systems? And how integrability
of a certain model implies its solvability? A physical system is commonly identified as
a topological space of statesM (usually a manifold, albeit often infinite dimensional)
with a bijective evolution map

Ut :M→M (1.16)

parametrised by a real parameter t identified as time. Every state inM encodes physical
observable predictions, while the evolution map depicts how these predictions change in
time.

9



1. A Prelude to out of equilibrium systems

Figure 1.2: In classical mechanics (left), time evolution constructs the thermal state from an
initial state that generally bears no resemblance to the former. In quantum mechanics (right),
according to the ETH, every eigenstate of the hamiltonian always implicitly contains a thermal
state. The coherence between the eigenstates initially hides it, but time dynamics reveals it
through dephasing. Figure taken from [26].

10



1. A Prelude to out of equilibrium systems

Classical integrability

For classical one dimensional systems,M is a 2n simplectic manifold described by the
coordinates (qi, pi) ∈ R2, i ∈ {1, . . . , n}, with canonical Poisson brackets

{qi, pj} = δij. (1.17)

A physical observable is then a real (smooth) function F of these coordinates. Denoting
by F the real linear space of observables, we have for any F,G ∈ F

{F,G} =
∑
k

∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk
. (1.18)

The bijective map Ut is related to a particular function on phase space, the Hamilto-
nian H = H(q, p), that gives the equations of motion of the system

dF

dt
= {F,H}. (1.19)

The operator
DHF (q,p) = {F,H}

∣∣∣
(q,p)

(1.20)

acts as infinitesimal generator of the evolution map and Ut can be expressed as Lie series

Ut =
∞∑
n=0

tn

n!
Dn
H ≡ exp{tDH}. (1.21)

The evolution equation is such, in most physical cases, that time evolution of a
given state is continuous. However the map Ut can be very complicated. In particular,
although it may be almost everywhere continuous, this continuity is almost nowhere
uniform in time. In many cases, two nearby states map to states that are very far apart,
and that become exponentially further apart as t is increased (chaos). Integrability is
essentially the opposite of chaos: the map Ut is as nice as it can be. It possesses infinitely
many invariant submanifolds that foliate M, parametrised by as many continuous
parameters as there are “degrees of freedom”, and on these submanifolds, states that
start nearby stay nearby uniformly in time. To clarify these concepts we introduce the
definition of Liouville integrability [24].

Definition 1 (First integral). A function F ∈ F is a first integral of a system with
hamiltonian function H if its Poisson bracket with H itself is identically equal to zero.

{F,H} = 0 (1.22)
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1. A Prelude to out of equilibrium systems

Definition 2 (Involution). Two functions F1, F2 ∈ F are in involution if their Poisson
bracket is equal to zero.

{F1, F2} = 0 (1.23)

Definition 3 (Liouville integrability). A dynamical system (of 2n−dimensional phase
space) is Liouville integrable if there exists n independent first integrals Ik, with k ∈
{1, . . . , n}, in involution.

The independence of the latter means that at generic points on the symplectic
manifold, the tangent space of the surface defined by Ik = const. exists ∀k and is
n−dimensional.

It is now possible to state the Liouville theorem on integrable systems.

Theorem 1 (Liouville theorem). Consider a Liouville integrable system with a set of
first integrals {Fk}. Consider the set

Mf = {(q,p) : Fi(q,p) = fi = const., i ∈ {1, . . . , n}}. (1.24)

Then

1. Mf is a smooth manifold, invariant under the phase flow with hamiltonian function
H = F1

2. If the manifold Mf is compact and connected, then it is diffeomorphic to the
n−dimensional torus

T n = {(φ1, . . . , φn), φi ∈ [0, 2π[}

3. The evolution map with hamiltonian function H determines a conditionally periodic
motion on Mf , i.e., in angle variables{φj} and their canonical conjugate action
variables {Ij}, j = 1, . . . , n,

{φj, Ik} = δj,k

we have that action variables are purely functions of the first integrals, hence are
invariant under time evolution. This implies that angles evolve linearly with time:

{φj, H} =
∂H

∂Ij
⇒ φj(t) =

∂H

∂Ij
t+ φj(0)

4. The canonical equations with hamiltonian function H can be integrated by quadra-
tures.
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1. A Prelude to out of equilibrium systems

Quantum integrability

When it comes to quantum theory, the definition of integrability it is not straightfor-
ward. One may wish to emulate the classical case following canonical quantization [36],
supplanting Poisson brackets by commutators

{F,G} → −i[F,G] (1.25)

and ask for many integrals of motions (in involution) as there are degrees of freedom.
Having a lattice model with N sites in mind and a local Hilbert space of dimension 2,
the problem is that for any finite N , its Hamiltonian is a finite-dimensional Hermitian
matrix 2N × 2N and can be diagonalised. In the diagonal basis, any other matrix
that is diagonal will communte with the Hamiltonian. There are 2N of such matrices,
all independent from each other. Hence, we have automatically a greater number of
conserved quantities then the number of degrees of freedom. Obviously this doesn’t
mean that every quantum chain is integrable: since these conserved quantities exist for
every system, they can’t have any profound meaning or impact. There is no universally
accepted definition of integrability for quantum spin chains (see for example [37, 38]).
One of the main concepts that is commonly accepted as being fundamental, however, is
that of locality. We now introduce some concepts related to this feature [39].

Definition 4 (local quantum spin chain). A quantum spin chain model is local if the
Hamiltonian H, as the thermodynamicl limit is taken, is always on the form

H =
∑
k

hk, (1.26)

with [hl, hk] = 0 for |l − k| large enough.

Definition 5 (local operator). An operator On is local around the site n1

∃r > 0 : [On, hm] = 0 ∀m : |n−m| > r. (1.27)

Two operators On,O′m are said to be local with respect to each other if they commute
for |n−m| large enough.

Definition 6 (local conserved quantity). A local conserved quantity (or charge) is an
operator Q supported on the whole chain, such that it commutes with the hamiltonian
function

[Q,H] = 0 (1.28)
1The meaning of index n can be introduced through the unitary algebra automorphism that generates

space translations, formally eiPn.

13



1. A Prelude to out of equilibrium systems

and such that Q is a sum over n of uniformly local operators around n:

Q =
∑
n

qn, ∃r > 0 : [qn, hm] = 0 ∀|n−m| > r (1.29)

Using these concepts we can define integrability as follows:

Definition 7. (quantum integrability) A local quantum spin chain model is integrable if,
in the thermodynamical limit, there exist infinitely many local conserved quantities Q(k)

that are in involution,
[Q(k), Q(l)] = 0 ∀k, l (1.30)

and whose densities are local with respect to each other.

We remark that in the thermodynamic limit the Hamiltonian H can be written as
[37]

H =
∑
k

ε(k)η†kηk + E0 (1.31)

where η†k and ηk are the creation and annihilation operators for asymptotic particles
of momentum k and produce quasi particle excitations with dispersion relation ε(k)

and E0 is the ground state energy. Furthermore in integrable models nk = η†kηk are
extensive observables. It is important to remark that the existence of a quasi-particle
description is not a sufficient condition for integrability. It is indeed necessary that
the quasi-particles mantain their identity upon scattering between each other. This is
ensured by the complete factorization of many-body scattering amplitudes into 2−body
scattering processes [40]. In this picture the conserved charges are simply the occupation
number of each single-particle eigenmode nk.

1.3.2 Equilibration

Considering now integrable quantum systems out of equilibrium, expectation values of
the conserved quantities Q(k) are time independent

Tr
(
ρ(t)Q(k)

)
= Tr

(
e−iHtρ(0)eiHtQ(k)

)
= Tr

(
ρ(t)Q(k)

)
≡ E(k), (1.32)

where the invariance of the trace under cyclic permutations and the fact that [Q(k), H] = 0

were used.
An immediate consequence is that such systems cannot thermalise because the

system retains memory of the initial expecation values of all conserved quantities at all
times. The works of Jaynes [18, 19] on the maximum entropy ensemble then suggest

14



1. A Prelude to out of equilibrium systems

that the stationary state density matrix is given by a generalised Gibbs ensemble (GGE)
[10]

ρSS ≡ ρGGE =
e
∑
n λnQ

(n)

Tr
(
e
∑
n λnQ

(n)
) . (1.33)

The Lagrange multipliers λk are fixed by the initial conditions (1.32), requiring

lim
N→∞

E(k)

N
= lim

N→∞

1

N
Tr
(
ρGGEQ(k)

)
(1.34)

To distinguish this process from thermalization it has been given the name of equilibration.
This conjecture motivates the need of a clear characterization of quantum integrable
systems and it also recovers part of the analogy with the classical case: even if the
thermalization mechanism may be different, integrability is still a sufficient condition
for non-thermalization.

Nevertheless, this definition of GGE suffers from the same ambiguities of the definition
of integrability. Instead of using local conserved quantities, GGE are often formulated
using conserved mode occupation numbers [10]. The crucial point is that conservation
laws are usually linearly related to the mode occupation number. This implies that the
GGE describing the stationary state can be constructed either from the local conservation
laws or from the mode occupation number. There are though cases in which this is
not valid. In this cases the stationary state is not always locally equivalent to a GGE
[41–43].

Furthermore it was found in [44, 45] that a GGE formed of local conserved charges
fails to describe thermalization after a quantum quench in the gapped XXZ model. These
results hinted at the existence of additional effectively local conserved charges linearly
independent from the strictly local ones. The first progress to solve this dilemma was
perfermoed in [46] where the importance of a quasilocal conservation law is pointed out.
In a subsequent study [47], a connection to certain non-standard solutions to Yang–Baxter
equation has been uncovered, permitting a systematic construction of a large set of
quasilocal conservation laws directly from commuting transfer matrices associated to
complex spin (non-unitarty) representations. As stated in [12] it became clear that in
a generic case the GGE has to be appropriately extended by incorporating quasilocal
conservation laws which are viable for the whole range of anisotropies, invariant under
spin-reversal transformation (i.e., of even parity), but still distinct from the canonical
ones obtained from expanding the fundamental transfer matrix. Such quasilocal charges
have been constructed (for the isotropic case) in [48], invoking transfer matrices built
from unitary but non-fundamental spin representations of the auxiliary spin. Soon after,
a study [49] confirmed that those charges exactly explain the GGE puzzle.
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2

Generalised Hydrodynamics

Generalised hydrodynamics (GHD) is one of the leading approaches to computing
dynamical quantities in non-equilibrium steady states and non-stationary settings [16,
50, 51]. The basic idea is that hydrodynamics emerges as a consequence of local entropy
maximisation and scale separation on individual fluid cells containing a mesoscopic
quasi-particle number. In a practical sense GHD allows us to evaluate exact expectation
values of currents in GGEs. This current formula has been subject to increasingly
rigorous and general derivations [52–61].

The original GHD proposals considered the partitioning protocol. In this set up
two independently thermalized systems are put into contact at time zero. The presence
of multiple conserved quantities gives rise to ballistic transport, meaning that, after a
transient period, steady state currents flowing between the right and left sub-systems
emerge [11, 13]. As mentioned above, GHD provides a method to compute such currents
by combining the hydrodynamic principle, generalised to infinitely many conservation
laws, with an effective description of quasi-particles, which for IQFTs is based on the
Thermodynamic Bethe Ansatz (TBA) [62–64]. The energy current and density in the
partitioning protocol admit simple exact expressions in conformal field theory (CFT)
[65–67]. These constitute a useful benchmark when studying IQFTs, whose ultraviolet
limits are described by CFT.

The chapter, following [16], is organized as follows: In Sec. 2.1 we review the
main concepts of hydrodynamics. After introducing the Thermodynamic Bethe Ansatz
technology in Sec. 2.2, we apply it to obtain Generalised Hydrodynamics in Sec. 2.3.
Finally in Sec. 2.4 we consider the Riemann problem (or partitioning protocol) in the
new GHD framework.
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2. Generalised Hydrodynamics

2.1 Hydrodynamics: A Short Review

The main assumption of standard hydrodynamics lies in the possibility of reducing the
complex behaviour of a many particle system with small range interaction to a small set
of equations. In this perspective, the dynamics and the states of the system are specified
by the value and the evolution of some fields, so that the knowledge of the trajectory of
each particle is not required. In order to understand when this drastic simplification is
actually viable, we need to distinguish four types of time scales in which phenomena of
different nature occur:

◦ Microscopic regime: At very short time scales the individual particles of the
system propagate ballistically between collisions and the dynamics is reversible;

◦ Boltzmann equation regime: after many collisions, some mixing occurs. At
this stage, one reverts to an approximate description where, instead of individual
particles’ trajectories, one uses the coarser density of particles in the single-particle
phase space. This description is valid only after this coarse graining has actually
occurred. This leads to the Boltzmann equation, with contains a collision integral
that accounts for the change of phase space densities due to collisions. This is
famously an irreversible dynamics, the passage from reversible to irreversible being
attributed to the coarsening and arguments about microscopic phase space volumes
occupied by coarse states;

◦ Hydrodynamics regime:

Collisions – or the collision integral in the Boltzmann equation – lead to relaxation,
whereby the system tends to maximise entropy. Entropy maximisation occurs at
large scales compared to the microscopic scales, but can still occur at small scales
compared to laboratory scales. Thus we divide the system into “fluid cells”, where
each cell, small on laboratory scales, is considered thermodynamically large, and is
considered to have (nearly) reached a state in which entropy has been maximised.
These are local thermodynamic states, and local entropy maximisation is often
referred to as the reaching of a local thermodynamic equilibrium (although in
integrable systems this nomenclature is not entirely accurate). This change in the
degrees of freedom used to describe the local states – from densities in single-particle
phase space to the degrees of freedom of entropy-maximised thermodynamic states
– is one of the most important assumptions of hydrodynamics.
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2. Generalised Hydrodynamics

◦ Thermodynamics regime: At even larger time scales the entropy maximisation
tends to involve all the system and one recovers thermodynamics.

2.1.1 Maximal Entropy States and Hydrodynamic Matrices

Let us consider a homogenous many-body one dimensional system with short range
interactions, which is isolated from any external environment. Let H be its (conserved)
total energy and Qi be a (finite) set of conserved charges in involution expressed in
terms of some local or quasi-local densities qi(x, t). We can write:

Qi =

∫
dxqi(x, t),

∂tQi = 0 =⇒ ∂tqi(x, t) + ∂xji(x, t) = 0.

(2.1)

Now the question is: if the system starts in some arbitrary, generic, homogeneous
state, what happens to a typical finite region after long enough times? Physically,
we expect such finite regions to “relax” to some state, the rest of the infinite system
playing the role of a bath. By ergodicity, the density matrix ρ that describes all local or
quasi-local observables O,

〈O〉 = Tr
[
ρO
]
, (2.2)

will maximise the entropy
S = −Tr[ρ ln ρ]. (2.3)

As averages of conserved densities cannot change, entropy maximisation is with respect
to the available conservation laws. Constraints for the conserved quantities Qi impose a
density matrix of the Gibbs form:

ρ ∝ exp

{
−
∑
i

βiQi
}
, (2.4)

where βi is the Lagrange multiplier associated to Qi. The set of βi form a system of
coordinates in the manifold of maximal entropy states (MESs) and they are the only
parameters encoding information about the initial, generic state after relaxation has
occurred. These are the “generalised inverse temperatures”. Let β be the array of all
the inverse temperatures, the averages evaluated in MESs satisfy

− ∂

∂βi
〈O〉β =

∫
dx 〈Oqi(x, 0)〉cβ (2.5)
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2. Generalised Hydrodynamics

where the upperscript c denotes the connected correlation function. In particular (2.5)
constitues an appropriate definition of the inverse temperatures and contains most of
the information encoded in (2.4).

Notice that, by denoting
Ō = 〈O(0, 0)〉β , (2.6)

we have
∂

∂βi
q̄j =

∂

∂βj
q̄i. (2.7)

This implies the existence of a free energy F(β) such that:

q̄i =
∂F
∂βi

. (2.8)

We can now define an inner product on the space of local and quasi-local observables
as

(O1,O2) =

∫
dx 〈O1(0, 0)O2(x, 0)〉cβ (2.9)

From this, it is convenient to introduce the symmetric static covariance matrix C,
whose elements are defined by the inner product of the densities of the local conserved
charges:

Cij = (qi, qj). (2.10)

This matrix is positive and symmetric, in fact (2.5, 2.7) imply:

Cij =

∫
dx 〈qi(0, 0)qj(x, 0)〉cβ = − ∂

∂βj
〈qi〉β = − ∂

∂βj
q̄i = − ∂

∂βi
q̄j = Cji, (2.11)

thus the free energy F(β) is a strictly convex function of the inverse temperatures (note
that C is precisely the Hessian of the free energy). This observation is extremely useful:
the very same matrix can be seen as the Jacobian

Cij = − ∂

∂βj
q̄i, (2.12)

hence the map
β → q̄ (2.13)

is a bijection. This allow us to fully characterise maximal entropy states in terms of the
averages of conserved densities. As a consequence, all averages of local or quasi-local
observables in maximal entropy states can be seen as functions of q̄. In particular for
the average currents we may write the equations of state of the model

j̄i = j̄i(q̄). (2.14)
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2. Generalised Hydrodynamics

Equations of state satisfy quite surprising relations. Indeed, there is a symmetry
(see [16] for proof) mimicking (2.7):

∂

∂βi
j̄j =

∂

∂βj
j̄i. (2.15)

The related hydrodynamic matric B follows up:

Bij = (ji, qj) =
∂

∂βj
j̄i (2.16)

and as a consequence there must exist a free energy flux G such that

j̄i =
∂G
∂βi

. (2.17)

Finally we define the so-called flux Jacobian as:

Aji =
∂j̄i
∂q̄j

. (2.18)

The flux Jacobian plays an essential role in identifying some of the fundamental quantities
in hydrodynamics and it satisfies the identity:

B = AC = CAT . (2.19)

Writing an arbitrary conserved density as a linear combination
∑

i,j viC
ijqj(x, t), where

Cij is the inverse of Cij, the inner product defined in (2.9) induces an inner product on
the coefficient vector v with components vi

〈v,w〉 = (v · C−1q,w · C−1q) = v · C−1w =
∑
ij

viC
ijwj. (2.20)

In particular this defines a metric in which the flux Jacobian is symmetric:

〈v, Aw〉 = vC−1Aw = vATC−1w = 〈Av,w〉 . (2.21)

Since A is symmetric, it is diagonalisable and its eigenvectors hj;l can be interpreted
as the normal modes of hydrodynamics and its real eigenvalues as generalised sound
velocities (we will simply refer to them as effective velocities veffl ):∑

j

Ajihj;l = veffl hi;l. (2.22)
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2.1.2 From Microscopic Regime to Hydrodynamics: Local En-
tropy Maximisation and Euler Hydrodynamics

In the previous section we have introduced a set of important mathematical objects
to describe the hydrodynamics of maximal entropy states. Now we want to use that
formalism to obtain a generalised version of the Euler equation for local averages and,
starting from such equation, we aim to find a privileged frame, where the description of
hydrodynamics looks simpler.

To begin with, let us consider some initial inhomogeneous state of a quantum many
body system. In general, average values of observables in this kind of states depend
on the position and the time in which they are computed. In the assumption of local
entropy maximisation, however, we can state with a good approximation that:

〈O(x, t)〉 ≈ 〈O(0, 0)〉β(x,t) , (2.23)

that is, any average of an arbitrary operator O(x, t) can be evaluated as the average of
O(0, 0) in a maximal entropy state with (x, t)-dependent inverse temperatures.

The choice (x, t) = (0, 0) is completely arbitrary and follows from the homogeneity
and stationarity of MESs, moreover (2.23) does not depend on the observable itself, so
the same state can be used to describe any (quasi)local observable.

The downside of this approach is that the validity of such approximation has to
be checked case by case and so far there are no general rules for non trivial systems.
However we can expect to obtain exact results in the limit where the typical sizes over
which the variations of local average occur become infinitely large. We will refer to this
situation as the Euler scaling limit or mesoscopic scale (see Fig. 2.1).

Once the local entropy maximisation is assumed, one can derive, from the microscopic
dynamics, the Euler equations for the model under consideration. First consider the
conservation laws (2.1) in their integral form over some contour (say [0, X]× [0, T ]):∫ X

0

dx(qi(x, T )− qi(x, 0)) +

∫ T

0

dt(ji(X, t)− ji(0, t)) = 0. (2.24)

By taking the averages and using the entropy maximisation hypothesis we get:∫ X

0

dx(q̄i(x, T )− q̄i(x, 0)) +

∫ T

0

dt(j̄i(X, t)− j̄i(0, t)) = 0. (2.25)

If such equations are differentiable, they can be re-casted in the local form:

∂tq̄i(x, t) + ∂xj̄i(x, t) = 0. (2.26)
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2. Generalised Hydrodynamics

Figure 2.1: The local entropy maximisation hypothesis. At mesoscopic scales the behaviour
of each fluid cell is dictated only by the value of the local inverse temperatures.

We can now use the flux Jacobian (2.18) to re-write the second term in the l.h.s.
obtaining:

∂tq̄i(x, t) +
∑
j

Aji (q̄(x, t))∂xq̄j(x, t) = 0. (2.27)

These “wave equations” for all space-time dependent coordinates q̄i(c, t) characterising
the local MESs represent the Euler hydrodynamic equations. They depend on the
equations of state of the model and the number of conserved quantities, but on nothing
else: at the emerging Euler scale, very little of the microscopic dynamics remains. Once
such equations are solved, then the exact local state at every space-time point (x, t) is
known and, in particular, we can evaluate the average of any observable at any point
lying within the fluid cell through (2.23).

Let us now investigate in more detail the properties of the flux Jacobian. In the
previous section we argued that, being it symmetric with respect to the inner product
(2.20), it is diagonalisable. Then there must exist a matrix R such that

RAR−1 = diag(veffi ), (2.28)

where the effective velocities veffi , defined by (2.22), are its eigenvectors. Since R depends
on q̄, let us suppose that we can find a set of functions nj(q̄), whose Jacobian is precisely
R:

∂ni
∂q̄j

= Rj
i (q̄). (2.29)
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Then (2.27) becomes:
∂tni + veffi ∂xni = 0. (2.30)

If R is invertible, so are the functions nj(q̄) and, in such a case, we have found a new set
of coordinates which can characterise all the maximal entropy states. Moreover, in these
coordinates, the dynamics governed by the generalised Euler equation looks simpler, so
we will refer to them as normal modes of the hydrodynamics. In this perspective, (2.30)
simply means that the ith normal mode is convectively transported at the velocity veffi .

We conclude this section by pointing out that Euler equations only involve first-order
derivatives, so they must describe a reversible dynamics. This fact can be checked also
by considering the macrocanonical entropy:

s =
∑
i

βiq̄i −F q̄. (2.31)

Using the Euler hydrodynamic equation (2.26) and the free energy flux (2.17), it is a
simple matter to observe that there exists a conserved entropy current js such that

∂ts+ ∂xjs = 0, (2.32)

with
js =

∑
i

βiji − G. (2.33)

Thus, Euler hydrodynamics conserve entropy.

2.2 Thermodynamic Bethe Ansatz

In the previous sections we discussed the main properties of hydrodynamics in absolute
generality. Now we want to specialise our results in the case in which the number of
conserved commutating charges is infinite, that is when the system under consideration
is integrable.

Natural questions that arise are: How can we extend the previous results? The
diagonalisation problem (2.29) is in general a difficult task: how is it expressed in this
context? What are the normal modes? To answer these questions we need to introduce
the Thermodynamic Bethe Ansatz machinery. With TBA’s help, in the next section the
answers to those questions will come quite naturally.

Let’s consider a relativistic Integrable Quantum Field Theeory (IQFT). To avoid
irrelevant complications we consider first the simplest scattering theory with a single
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neutral particle of mass m and pair scattering amplitude S(θ12 = θ1 − θ2). Rapidities
θ1,2 of particles parameterize their on-shell energies and momenta.

ei(θ) = m cosh θi, pi(θ) = m sinh θi. (2.34)

Amplitude S(θ) satisfies unitarity

S(θ)S(−θ) = 1 (2.35)

and crossing symmetry
S(θ) = S(iπ − θ). (2.36)

S(θ) satisfies the quantisation equations for the momenta pi, i = 1, . . . , N , of N particles
in a periodic box of length L given by

eipiL
∏
j 6=i

S(θij) = 1; i = 1, . . . , N, (2.37)

or, by defining
S(θ) = eiδ(θ), (2.38)

we have the Bethe ansatz equations

mL sinh θi +
∑
j 6=i

δ(θij) = 2πni, (2.39)

with N integer numbers ni.
Additional selection rules on rapidity sets are to be taken into account if the particles

are identical. The Bethe wave function should be symmetrized or antisymmetrized
depending on their statistics. The unitarity condition (2.35) specifies that S2(0) = 1.
Two different cases are possible:

◦ S(0) = −1: This leads to a wave-function that is antisymmetric under the exchange
of two particles with the same rapidity. If the two particles are bosons, this is
clearly in conflict with their Bose statistics. This implies that two bosons cannot
have the same value of the rapidity, namely each value of θ can be assigned at
most to one particle only. Hence all integers ni must be different. Vice versa, if the
identical particles are fermions, the antisymmetry of the wavefunction perfectly
matches their Fermi–Dirac statistics and there is no restriction on the integers ni.
In the context of the Bethe ansatz, the condition S(0) = −1 is called fermionic
type, independently of the bosonic or the fermionic nature of the particles.
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◦ S(0) = 1: In this case the situation is inverted. this condition gives rise to a
symmetric wavefunction under the exchange of two particles of the same species
with the same rapidity. Hence, if the two particles are bosons, this is compatible
with their Bose statistics and there is no restriction on the integers ni. Vice versa,
if the two particles are fermions, each value of the rapidity can be taken only by
one particle, i.e. all integers ni must necessarily be different. In the context of the
Bethe ansatz, the condition S(0) = +1 is called bosonic type, independently of
the bosonic or the fermionic nature of the particles.

Thermodynamic limit and Thermodynamics

The quantisation conditions (2.39) for the rapidities of the particles form a complicated
set of transcendental equations. They simplify in the thermodynamic limit, on which
both L→∞ and the total number of particles N →∞ but keeping their ratio fixed.
The spectrum of rapidities condenses and the distance between adjacent levels behaves
as θi − θi+1 ∼ 1/mL. It makes sense in this limit to introduce a continuous rapidity
density of roots ρ(r)(θ) defined as the number particles with rapidity between θ and
θ + ∆θ divided by L∆θ. The phase sum in (2.39) is nearly constant when varying from
θ to θi+1 and can be estimated as an integral. Eq. (2.39) acquires the form

mL sinh θi +

∫
dγδ(θi − γ)ρ(r)(γ) = 2πni (2.40)

and can be considered as the equation for rapidity levels, defined as solutions to this
equation for all integer numbers n on the r.h.s. but not only ni corresponding to actual
states. In fact, these equations admit solutions in θi also for integer values of n that are
necessarily in relation to the occupie d states. Such solutionsthat do not correspond to
the admissible quantum numbers, are called holes, and their density around the value θ
is denoted by ρ(h)(θ).

The total density ρ(θ) of the occupied and empty levels of the particle is equal to

ρ(θ) = ρ(r)(θ) + ρ(h)(θ) =
1

L

dni
dθ

, (2.41)

which leads to
ρ(θ) =

m

2π
cosh θ +

∫
dγϕ(θ − γ)ρ(r)(γ), (2.42)

where
ϕ(θ) =

∂δ(θ)

∂θ
= −i ∂

∂θ
lnS(θ) (2.43)
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It is convenient to define pseudo-energies ε(θ) through the ocupation numbers nF/B(θ)

as:

ρ(r)(θ)

ρ(θ)
= nF/B(θ) =

1

eε(θ) ± 1
, (2.44)

where the sign +(−) stands for fermions (bosons).
The equations abocve can be manipulated to generate equations for the pseudo-

energies ε(θ). This is achieved by requiring thermodynamic equilibrium, or minimisation
of the free energy per unit length. To do so we have to define the total energy of the
system and entropy. The former is simply given by

h(ρ(r)) = m

∫
dθρ(r)(θ) cosh θ, (2.45)

while for the latter a little bit of work is needed. It should be realized that in the
thermodynamic limit a large number of quantum states correspond to every consistent
pair of densities ρ(θ) and ρ(h)(θ). Consider a partition of the rapidity axis in small
intervals ∆θ such that 1� ∆θ � 1/mL. In this case there is a large numberN ∼ ρ(θ)∆θ

of levels in each interval and about n ∼ ρ(r)(θ)∆θ particles are distributed between
them.

Since these densities are not strongly influenced by the local redistributions of the
particles, the number of different ways of distributing the particles among these levels is
given by

ΩF =
[Lρ(θ)∆θ]!

[Lρ(r)(θ)∆θ]![Lρ(h)(θ)∆θ]!
(2.46)

in the fermionic case and by

ΩB =
[L(ρ(θ) + ρ(r)(θ)− 1)∆θ]!

[Lρ(r)(θ)∆θ]![L(ρ(θ)− 1)∆θ]!
(2.47)

in the bosonic case. Correspondingly, the entropy per unit length s = ln Ω is expressed
by

sF [ρ, ρ(r)] =

∫
dθ[ρ ln ρ− ρ(r) ln ρ(r) − (ρ− ρ(r)) ln

(
ρ− ρ(r)

)
],

sB[ρ, ρ(r)] =

∫
dθ[(ρ+ ρ(r)) ln

(
ρ+ ρ(r)

)
− ρ ln ρ− ρ(r) ln ρ(r)].

(2.48)

Minimizing the free energy

f(ρ, ρ(r)) = h(ρ(r))− 1

β
sF,B(ρ, ρ(r)), (2.49)
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2. Generalised Hydrodynamics

and taking into account (2.44)w e obtain the Thermodynamic Bethe Ansatz (TBA)
Equation

ε(θ) = mβ cosh θ ∓ 1

2π

∫
dγϕ(θ − γ) ln

(
1± e−ε(γ)

)
, (2.50)

where the upper sign refers to the fermionic case and the lower one to the bosonic case.
The extremal free energy is given by

f(β) = ∓ 1

2πmβ

∫
dθ cosh θ ln

(
1± e−ε(θ)

)
, (2.51)

where again the upper sign refers to the fermionic case and the lower sign to the bosonic
case. The term ln

(
1± e−ε(θ)

)
is usually referred to as the L(θ) function:

L(θ) = ln
(
1± e−ε(θ)

)
. (2.52)

In the more general case there are several types of particles Aa with masses a. The
purely elastic scattering theory is described by a symmetric matrix of pair transition
amplitudes Sab(θ). In this case, TBA equations can be rephrased as

εa(θ) = maβ cosh θ ∓
∑
b

1

2π

∫
dγϕab(θ − γ) ln

(
1± e−εb(γ)

)
, (2.53)

where
ϕab(θ) = −i ∂

∂θ
lnSab(θ). (2.54)

Relation to QFT on a Torus

Consider a (1+1)-dimensional euclidean quantum field theory defined on a cylinder, with
periodic boundary conditions. Now let L and R be respectively the lengths of the two
geodesics ΓL and ΓR generating the torus (see Fig. 2.2). There are two equivalent ways
to quantize the theory on such a geometry: from the symmetry of the two directions,
one can equivalently choose as the time direction one of the two axes and consider the
other as the space direction. Hence, the partition function can be written either as

Z(R,L) = Tr e−LHR , (2.55)

or as
Z(R,L) = Tr e−RHL , (2.56)

where HR and HL are the Hamiltonians of the system quantized along the R and L
direction respectively. The quantisation scheme in which the role of the time direction
is played by the L axis will be denoted as the L-channel, while the other one is the
R-channel.
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2. Generalised Hydrodynamics

Figure 2.2: Graphical representation of the torus with circumferences ΓL and ΓR.

◦ In the L-channel, taking L → ∞ and keeping R finite we have a compactified
system whose partition function is led by the term e−e0(R)L, where E0(R) is the
ground state energy.

◦ In the R-channel we have instead a theory where time is periodic and space infinite.
If we identify R with β, then we can think of this as a description of a QFT at
finite temperature. The partition function is now dominated by the term e−RLf/R,
where f(R = β) is given by (2.51).

It is straightforward that

E0(β) = βf(β) = ∓ 1

2πm

∫
dθL(θ) cosh θ (2.57)

where the function L(θ) is defined by (2.52). For generic values of β we may define a
scaling function c(β) by the ground state energy parameterisation

E0(β) = −πc(β)

6β
. (2.58)

From (2.57) it follows that

c(β) =
3β

π2m

∫
dθL(θ) cosh θ. (2.59)

Taking the ultraviolet limit β → 0 we expect to approach the underlying CFT and so
the ground state energy is related to the central charge in the usual way:

lim
β→0

E0(β) = −πceff
6β

, where ceff = c− 24∆min, (2.60)
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being ∆min the lowest negative conformal weight of the theory. Notice that this limit
establishes an important relation between the scattering theory of a massive quantum
field theory and the conformal theory that rules its short-distance behavior. The
confirmation and the validity of many scattering theories proposed to describe the
deformations of conformal field theories can be accomplished thanks to the relation
above.

2.3 Generalised Hydrodynamics

The aim is now to specialize the concepts of hydrodynamics to systems with an infinite
number of conserved charges using the TBA technology. We will begin our discussion
by assuming that the system under study can be described by a set of TBA equations.
For semplicity we will assume they are of the fermionic type. A more general version of
this equation takes the form

ε(θ) = ν(θ)−
∫

dθ′

2π
ϕ (θ − θ′) ln

(
1 + e−ε(θ

′)
)

︸ ︷︷ ︸
L(θ′)

(2.61)

where now the so called driving term is given by: ν(θ) =
∑

i β
ihi(θ), where hi(θ) are the

one-particle eigenvalues of the conserved quantities in the model. For instance h0(θ) = 1

(particle number), h1(θ) = e(θ) = cosh θ (energy), h2(θ) = p(θ) = sinh θ (momentum)
and more generally

h2s−1(θ) = cosh(sθ) h2s = sinh(sθ), for s ∈ Z≥0. (2.62)

By taking the derivative of eq. (2.61) with respect to the inverse temperature βi we
obtain:

∂ε(θ)

∂βi
= hi(θ) +

∫
dθ′

2π
ϕ (θ − θ′) ∂L (θ′)

∂ε

∂ε (θ′)

∂βi
. (2.63)

We define:
hdr
i (θ) =

∂ε(θ)

∂βi
Dressed charge density.

n(θ) = −∂L(θ)

∂ε
Occupation function.

(2.64)

And we observe that:
n(θ) =

1

1 + eε(θ)
(2.65)

With these new variables, eq. (2.63) becomes:

hdr
i (θ) = hi(θ) +

∫
dθ′

2π
ϕ (θ − θ′)n (θ′)hdr

i (θ′) . (2.66)
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This last equation defines the so-called dressing operator, which act on the space of the
functions of rapidities:

F (θ)→ F dr(θ) = F (θ) +

∫
dθ′

2π
ϕ (θ − θ′)n (θ′)F dr (θ′) (2.67)

and, if ϕ(θ) is symmetric , it satisfies the following identity:∫
dθη(θ)n(θ)hdr(θ) =

∫
dθηdr(θ)n(θ)h(θ) (2.68)

Now we want to express the average of the conserved densities qi in the rapidities
space in terms of the distribution ρ(r)(θ). In this context the latter is referred to as
spectral particle density and to lighten the notation we shall denote it simply ρp(θ). We
get:

(2π)ρp(θ) = (p′)
dr

(θ)n(θ), (2.69)

from which:

qi ≡ q̄i =

∫
dp

2π
n(θ)hdr

i (θ) =

∫
dθ

2π
p′(θ)n(θ)hdr

i (θ) =

∫
dθρp(θ)hi(θ). (2.70)

In order to obtain the generalised form of the Euler equations in terms of the quantities
characterizing our model, we need to find an expression for the average currents j̄i. This
task is not trivial requires a "trick" based on the so-called crossing symmetry. In every
relativistic quantum field theory the crossing symmetry C is defined as the double Wick
rotation:

(x, t)
C−→ (−ix, it), (2.71)

which translates, in terms of rapidities, as:

θ
C−→ iπ

2
− θ, (2.72)

(Note that: C2 = 1 ). The previous equation implies: (p, e)
C−→ (ie,−ip) and we expect

a similar behaviour between q̄i and j̄i. In particular, let O be a generic (quasi)local
operator. We make the following assumption:

〈C(O)〉ν = 〈O〉Cν , (2.73)

i.e. the average of the transformed operator CO characterized by the source term ν(θ)

is equal to the average of the original operator evaluated in the transformed sources:
Cν(θ) = ν(iπ/2− θ). Let us denote with q[h] and j[h] respectively the energy densities
and currents as functions of the one particle eigenvalue h(θ). We have:

C(j[h]) = iq [hc] (2.74)
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and, by using (2.73), we get:

〈j[h]〉ν = 〈C(C(j[h]))〉ν = i
〈
q
[
hC
]〉
Cν (2.75)

By substituting the expression of the average energy density (2.70) we finally arrive at
the equation for the average currents:

ji ≡ j̄i =

∫
de(θ)

2π
n(θ)hdr

i (θ) =

∫
dθ

2π
(e′)

dr
(θ)n(θ)hi(θ). (2.76)

We now possess all the ingredients to approach the problem of the evolution of the
system from the perspective of the GHD.

We can rewrite the relation (2.76) as:

ji =

∫
dθveff(θ)ρp(θ)hi(θ), (2.77)

where:

veff(θ) =
(e′)dr (θ)

(p′)dr (θ)
. (2.78)

This effective velocity appears in the form of group velocity and takes into account (via
the dressing) all the interactions with the quasiparticles. In this perspective, eq. (2.77)
has a very natural interpretation: the average current is obtained by integrating the
product of the quantity of charge transported by each quasiparticle times the density of
quasiparticles times their effective velocity, so that we can also define a spectral current
density

ρc(θ) = veff(θ)ρp(θ). (2.79)

By substituting (2.70) and (2.76) into (2.26) we get:

∂tρp(θ) + ∂x
(
veff (θ)ρp(θ)

)
= 0 (2.80)

which identifies ρp as the conserved fluid density. To find the normal modes we have
to study the properties of the diagonalising matrix of the flux Jacobian. This task is
performed in detail in [16] and it turns out that:

◦ ∑j A
j
ih

dr
j (θ) = veff(θ)hdr

i (θ). The spectrum of the flux Jacobian is given by the
effective velocities of the quasiparticles. Thus, the index ` from (2.22) labels all
the rapidities.

◦ The occupation functions represent the normal modes of the GHD:

∂tn(θ) + veff(θ)∂xn(θ) = 0 (2.81)

There is one normal mode for every value of the rapidities, in agreement with the
continuum spectrum of the flux Jacobian.
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2. Generalised Hydrodynamics

2.4 GHD Approach to the Riemann Problem

One of the most iconic examples in which the results of the GHD have been applied with
success is the so-called Riemann problem or partitioning protocol. It can be summarised
as follows:

◦ A physical system is partitioned into two semi-infinite halves, which are, initially
homogeneous and independently thermalised into different equilibrium states. In
d = 1, one sub-system extends towards x < 0 with inverse temperature βL, while
the other towards x > 0 with inverse temperature βR.

◦ At a given time, let’s say t = 0, the two sub-systems are put into contact at
x = 0, so they can exchange energy or charge. Immediately after the contact has
been established, flows of energy and charge are produced. The evolution of the
two halves continue according to the Hamiltonian of the physical system under
consideration.

◦ After a long time, relaxation occurs and the flows described above are expected to
reach a steady regime, at least in a neighbourhood of the contact point.

Now, following the discussion in [13], we will give a qualitative (yet detailed) de-
scription of the whole process when the system under consideration is characterised
by a (1 + 1) dimensional conformal field theory. The principal characteristic of (1 + 1)

dimensional CFTs is the so-called chiral separation, namely the property according
to which emergent quanta of energy or charge may only be either right-movers or
left-movers, independent of each other. Moreover their dynamics is trivialised as waves
with speeds ±vF given by the Fermi velocity of the underlying critical model. One may
introduce the mean free path le which is the typical distance a particle travels between
successive collisions. These collisions yield to momentum relaxation time τe with

τe =
le
vf
. (2.82)

When the two sub-systems are put into contact, a ballistic, wave-like flow, transporting
energy and charge, from one reservoir to the other, occurs. The fronts of these inde-
pendent waves propagate at the Fermi velocity and they delimitate a domain in which
the flow is stable: a Non Equilibrium Steady State (NESS) is produced. At a time t
the size of such domain is approximately 2vF t, so in order to observe steady behaviours,
the size of the observables `obs has to be smaller. Since there is no delay between the
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connection and the emergence of the NESS, we have shock fronts propagating along the
fronts of the waves, which induce a discontinuity in the expected values of energy and
charge. Other observables don’t present this behaviour and are in general smooth.

Figure 2.3: Graphic representation of the light cone evolution performed by the system in
the Riemann problem. Figure taken from [13].

We can picture the evolution of the system as being described by a light cone (see
Fig. 2.3): at large distances we have two reservoirs in which the system state is a Gibbs
state, the boundaries of the light cone are represented by shock waves and inside the
light cone we have NESS. Since half of the energy is carried by the left-movers and the
other half by the right movers, we have the following relation, valid at ξ = 0, for the
total mean energy density in the NESS [13]:

〈h〉ness =
cπ

12

(
β−2
L + β−2

R

)
, ξ = 0, (2.83)

and, if βL 6= βR, we have also a non zero mean energy current, given by:

〈j〉ness =
cπ

12

(
β−2
L − β−2

R

)
, ξ = 0. (2.84)

We observe that these equations do not depend on the value of the Fermi velocity,
thus fully displaying the universality of the result. The previous description is exact if
the model under consideration is precisely at the critical point (described by a CFT)
and since CFTs are valid only in the low-energy regime, we have to take into account
two effects. The first one occurs at microscopic time scales: in fact, when the two
sub-systems are put into contact, a very large amount of energy is injected into the
system. In principle this discontinuity should break the CFT description (as well as the
chiral factorisation), but the decoherence of such process quickly dampens its effects.
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This potential issue is therefore invisible at the large time scales of NESS. The second
effect is simply related to the fact that in both the sub-systems the temperatures are
finite. This should be in contrast with the assumptions of CFT, but, it turns out that
even for perturbed CFTs, the previous description remains valid at mesoscopic scales
and for times shorter than the momentum relaxation time τe. For t > τe, the shock
fronts become smoother as time increases and a crossover from ballistic transport to
diffusive transport occurs inside the light cone domain. At times much larger than τe
full equilibration and thermalisation is expected provided that the size of the system is
finite. An exception of the latter behaviour may take place in integrable models. In fact,
the presence of parity-odd conserved quantities that overlap with the energy current,
may guarantee the stability of dressed right/left-moving energy quanta. In such a case,
even in the diffusive regime, thermalisation may never occur (see [9]) and the steady
flows may always exist.

Let us now turn to a quantitative description of the problem. First we observe that
the Euler equation (2.81) is invariant under a rescaling of the spacetime coordinates.
This implies that its solutions must depend only on the ratio x/t = ξ (i.e. they are
constant on each light-cone "ray"). Secondly, we will choose the occupation functions
n(θ) to fully characterise the states of the system. Since those functions represent the
normal modes of the GHD, they identify a privileged frame in which the Euler equation
assumes the simplified form (3.61). With these considerations, the Riemann problem
can be translated into the equations:(

veff(θ)− ξ
)
∂ξn(θ, ξ) = 0 (2.85)

with boundary conditions:
lim

ξ→±∞
n(θ, ξ) = nR/L(θ) (2.86)

where we denoted with nL(θ) and nR(θ) the occupation functions corresponding to the
initial thermal states with inverse temperatures βL and βR respectively as shown in Fig.
2.4.

We observe that eq.(3.64) is trivially solved by all the occupation functions that are
independent on the ray ξ, except for a specific value ξ∗, in which the first term vanishes:

veff (θ∗) = ξ∗ = ξ (θ∗) (2.87)

Therefore, the solution can be written in terms of Θ step-functions as:

n(θ, ξ) = nL(θ)Θ
(
veff − ξ

)
+ nR(θ)Θ

(
ξ − veff

)
(2.88)
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Figure 2.4: The partitioning protocol with two reservoirs at temperaturs TL/R = β−1
L/R. With

ballistic transport, a current emerges after a transient period. Dotted lines represent different
values of ξ = x/t. If a maximal velocity exists initial reservoirs are unaffected beyond it
(light-cone effect). The steady state lies at ξ = 0 [50].

and, when veff (θ) is a monotonously increasing function of θ for all ξ, we have:

n(θ, ξ) = nL(θ)Θ (θ − θ∗) + nR(θ)Θ (θ − θ∗) (2.89)

The physical interpretation of this solution is clear: due to the two-body elastic scattering,
quasi-particles propagate at the effective velocity veff . They carry, along the ray ξ,
information of the left reservoir if their velocity is greater than ξ, otherwise they carry
information of the right reservoir. Once the solution n(θ) is determined, the average
values of the energy density and current are given by the relations (2.70) and (2.76).
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The Staircase Model: Massless Flows
and Hydrodynamics

GHD framework has been generalised in many ways to adapt to increasingly complex
physical situations such as force terms [68–70], diffusive and higher corrections [55, 71–
73], noise [74] and integrability-breaking terms [75–77]. It has been shown to be superior
to conventional hydrodynamics in describing the results of experiments on an atom chip
[78] and to qualitatively reproduce the phenomenology of Newton’s cradle experiment
[79]. Impressive as these developments are, an aspect of the original formalism that
has only become apparent recently is that, even when used in equilibrium situations,
the hydrodynamic picture sheds new light into the physics of IQFTs. Put another
way, well-known equilibrium features can be analysed from a different viewpoint by
looking at hydrodynamic functions, such as the effective velocities of quasi-particles.
This has become apparent in two recent studies of IQFTs with unstable particles in their
spectrum [80, 81]. These studies have shown that the presence of unstable particles
in the theory, even if they are not part of the asymptotic particle spectrum, leads to
recognisable signatures in the effective velocity profile and particle density of their stable
constituents. One may for instance identify a particle density ascribable to the unstable
particles.

In this chapter we apply GHD to the study of the staircase model (SM), introduced
by Al. B. Zamolodchikov [82] by generalising the sinh-Gordon IQFT scattering matrix.
The SM has features which make it comparable to the model studied in [80, 81]. Namely,
similar to the case of unstable particles, the two-body scattering matrix of the theory
has poles in the unphysical sheet and the presence of these extra poles has an enormous
effect on the physics of the theory. In particular, the monotonicity properties of typical
hydrodynamic quantities such as the effective velocity are markedly different from those
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of any model studied so far and, as is typical of the model, are heavily influenced by the
interplay between the value of a coupling θ0 and the value of the temperature (in a Gibbs
ensemble) or temperatures (in the partitioning protocol set-up). Various generalizations
of the SM construction were proposed in [83–87].

This chapter is organised as follows: In Sec. 3.1 we introduce the SM and its
TBA structure. In Sec. 3.2 we investigate several hydrodynamic quantities in the
SM at equilibrium and identify unique features associated to this model: the spectral
particle density and spectral particle current have generally many local maxima while the
effective velocity displays intricate square-wave patterns [88]. We present an explanation
of these properties based on theMA

(+)
k model, which provides an effective description

of massless flows between consecutive unitary minimal models. In Sec. 3.3 we extend
our investigation to the out-of-equilibrium situation where we consider the partitioning
protocol and compute higher spin currents and densities. In Appendix A we review
some standard results for the SM following the derivations presented in [84, 85]. In
particular, we present the constant TBA analysis that allows us to obtain equations for
the height of individual plateaux of the TBA L-functions and derive the central charges
of unitary minimal models. In Appendix B we present an explicit computation of higher
spin currents in CFT as derived from a thermal TBA in the Ising model. We see that
even for such a simple theory, the dependence on spin is relatively intricate.

3.1 The Staircase Model

3.1.1 The Model

The staircase model is constructed starting with the sinh-Gordon model. The sinh-
Gordon model is the simplest interacting IQFT in one spatial dimension. It is defined
by the Lagrangian [89, 90]:

LshG =
1

2
(∂µφ)2 − m2

g2
cosh(gφ), (3.1)

where φ is the bosonic sinh-Gordon field, m is the bare mass of the single particle in the
spectrum and g is the coupling constant. The two-particle scattering matrix associated
to this model is given by [91–93]

S(θ) =
tanh 1

2

(
θ − iπB

2

)
tanh 1

2

(
θ + iπB

2

) . (3.2)
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The parameter B ∈ [0, 2] is the effective coupling constant which is related to the
coupling constant g in the lagrangian by

B(g) =
2g2

8π + g2
. (3.3)

The S-matrix is obviously invariant under the transformation B 7→ 2−B, a symmetry
which is also referred to as weak-strong coupling duality, as it corresponds to B(g)→
B(g−1) in (3.3). The point B = 1 is known as the self-dual point.

In [82] it was observed that when analytically continuing the coupling constant B
from the self-dual point to the complex plane via the transformation

B 7→ 1 + i
2θ0

π
with θ0 ∈ R+ , (3.4)

the resulting scattering matrix

S(θ) = tanh
1

2

(
θ − θ0 −

iπ

2

)
tanh

1

2

(
θ + θ0 −

iπ

2

)
, (3.5)

still satisfies all physical requirements, such as unitarity and crossing, while being distinct
from the sinh-Gordon S-matrix. In particular, it has poles in the unphysical sheet at
θ = ±θ0 − iπ

2
. In order to investigate the properties of this new theory, the paper

[82] carried out a detailed TBA study of the model and discovered several unusual
features. These observations were later generalised to the whole family of affine Toda
field theories[84, 85], of which the sinh-Gordon model is the simplest example. We
review the key ideas in the next subsection.

3.1.2 Thermodynamic Bethe Ansatz and Scaling Function

The TBA approach provides a description of IQFTs at finite temperature [62–64] as
introduced in section 2.2. This description can be easily generalised to GGEs, as
discussed in [94] (even though the generalisation had already been used in [95]). The
TBA equations describing the SM at thermal equilibrium take a very simple form. In
fact, given that there is a single particle in the theory and that scattering is diagonal,
there is a single equation to start with. The non-trivial interaction that is present in
the model enters the TBA equation through the kernel or two-body scattering phase
ϕ(θ) which is defined as

ϕ(θ) = −i d
dθ

lnS(θ) =
1

cosh(θ − θ0)
+

1

cosh(θ + θ0)
. (3.6)
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This is a function that is peaked around θ = ±θ0. This means that interaction is
maximal when the rapidity difference between interacting particles takes these values
and greatly reduced otherwise. This feature plays a key role in the shape of some of the
functions we will study later in the paper, specially the spectral particle density and
spectral particle current.

We recall that for finite temperature T = 1/β the pseudoenergies ε(θ) satisfy the
nonlinear integral equation (TBA-equation)

ε(θ) = β cosh θ − (ϕ ? L)(θ), (3.7)

where we have taken the mass m = 1 and ? denotes the rapidity convolution

(ϕ ? L)(θ) =
1

2π

∫
dθ′ϕ(θ − θ′)L(θ′). (3.8)

Since S(0) = −1 the TBA system is of fermionic type [62–64] and therefore

L = ln
(
1 + e−ε(θ)

)
. (3.9)

The ground state energy is given by

E(β) = − 1

2π

∫
L(θ) cosh θ dθ = −πc(y)

6β
, (3.10)

where c(y) is the TBA scaling function introduced by (2.59) and

y = ln
2

β
(3.11)

is a new, more convenient variable in terms of which the infrared (IR) or low temperature
limit corresponds to y → −∞ and the ultraviolet (UV) or high temperature limit
corresponds to y → ∞. The scaling function flows from the UV value c(∞) = 1

corresponding to the central charge of a free massless boson, to the IR value c(−∞) = 0.
So far, this behaviour is identical to that of the sinh-Gordon theory. The unusual
features of the model become only apparent when the dependence of the L-function
and the scaling function on the parameter θ0 is explored in detail. These have been
discussed in the original paper [82] and in [84, 85] but it is worth recalling the main
ideas, as they will play a role in the hydrodynamic picture.

Let us examine the change in the function L(θ) as we increase y towards the deep
UV regime. We take θ0 � 1 in order to have two well separated bumps in the kernel
(3.6). We have the following regimes:
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• For y > 0, L(θ) develops a plateau of height ln 2 in the region −y < θ < y, that is
the usual free fermion UV behaviour. As y increases the plateau broadens. At the
same time, the scaling functions c(y) reaches the value c = 1/2 corresponding to a
massless free fermion or the Ising model. This is the first of the series of unitary
minimal models and we denote it by M3 for reasons that become clear below.
This L-function is shown in the top-right of Fig. 3.5.

• When y reaches the value θ0/2, the plateau’s edges start interacting via the kernel
in equation (3.7). The interaction can be described by two separate interacting
integral equations for two separate pseudoenergies ε±(θ) = ε(θ± θ0

2
). The resulting

system coincides with the description of the massless flow between the critical
(M3) and tricritical (M4) Ising models given in [96]. This relation is explored
in later sections. As y increases the scaling function grows from c = 1/2 to
c = 7/10, as expected, while the L-function develops two higher plateaux at values
2 ln
(
2 cos π

5

)
, which rise above the main plateau at ln 2. This L-function is shown

in the top-right of Fig. 3.6. This specific flow has also being studied using form
factor techniques in [97].

• Similarly, when y reaches θ0 we have a new transition from c = 7/10 to c = 4/5

which again describes the massless flow between two unitary minimal models, in
this case the tricritical and the tetracritical Ising model (M5). This L-function is
shown in the top-right of Fig. 3.7.

• In general, every time y ∼ kθ0/2, with k = 1, 2, 3, . . . the scaling function flows
(or roams) from the value

ck+2 = 1− 6

(k + 2)(k + 3)
, k = 1, 2, . . . (3.12)

that is, the central charge of Mk+2, to the value ck+3 corresponding to Mk+3.
Simultaneously, the L-function acquires new plateaux, emerging symmetrically in
θ in pairs. In summary, for θ0 � 1 the function c(y) exhibits a staircase behaviour
roaming through the value ck+2 inside every interval (k − 1)θ0/2 < y < kθ0/2 and
finally settling on the UV value c = limk→∞ ck = 1. The scaling function c(y) is
depicted in Fig. 3.1 for three different values of the parameter θ0.

The values (3.12) are not only observed numerically when evaluating c(y) through
the definition (3.10), but they can also be obtained analytically by studying the constant
TBA system associated with the SM. That is, the set of TBA equations that are obtained
in the UV limit. This is discussed in detail in Appendix A.
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Figure 3.1: Scaling function of the SM for θ0 = 20, 35, 50. The central charges ck+2 (dashed
horizontal lines for k = 1, 2, 3, 4, 5) are approached by c(y) at different values of y, as the
crossover points are at y ∼ kθ0/2.

3.1.3 MA
(+)
k Massless Flows

As we have seen, the SM is associated with an RG flow which visits the vicinity of
all unitary minimal models. In particular, each pair of successive fixed pointsMk+2

andMk+1 are connected by RG trajectories corresponding to a massless interpolating
field theory whose UV limit isMk+2, while the IR limit is controlled byMk+1. The
associated RG flow is generated from the UV fixed point by perturbing with the relevant
operator Φ13 and negative coupling [96, 98, 99]. More details can be found at this end
of this Section.

Much as the example discussed earlier of the flow between critical and tricritical
Ising, which can be described by a pair of TBA equations for shifted pseudoenergies,
the interpolating flow between generic fixed pointsMk+2 andMk+1 can be described
by a set of TBA equations associated with the Ak Dynkin diagram [96, 98, 99].
They take the form

εi(θ) = ωi(θ)−
k∑
j=1

(ϕ̂ij ? Lj)(θ) with ϕ̂ij(θ) =
Iij

cosh θ
(3.13)

and Iij = δi,j+1 + δi,j−1 is the adjacency matrix of the Ak algebra (see Fig. 3.2). The

42
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driving terms ωi(θ) are given by

ωi(θ) =
β

2
(e−θδi,1 + eθδi,k). (3.14)

Note that the driving terms associated to nodes 1 and k are usually exchanged in the
literature, but this is a more suitable prescription in order to relate theMA

(+)
k model

to the SM.

β
2
e−θ

1 2 k − 1

β
2
eθ

k

Figure 3.2: Ak Dynkin diagram showing driving terms associated to the massless TBA (3.13).

In theMA
(+)
k model, each node in the Dynkin diagram and each TBA equation can

be interpreted as associated to a different particle species, with non-trivial scattering
only between nearest neighbouring nodes. Only two nodes in the Dynkin diagrams
couple to non-vanishing driving terms. The source terms β

2
e±θ correspond to right- and

left-moving i.e. (RM) and (LM) particles, whose one-particle energy and momentum are

e±(θ) = e±θ−y and p±(θ) = ±e±θ−y , (3.15)

respectively (y is the variable defined in (3.11)). The other nodes in the Dynkin diagram
correspond to magnons, which describe internal degrees of freedom of the quasi-particle
excitations. It is important to note that although the magnonic excitations themselves
may be regarded as quasi-particles, they have zero one-particle eigenvalues with respect
to the conserved charge operators, hence quantities such as the energy or momentum
are carried only by the RM and LM species. In particular the scaling function

c(y) =
3β

π2

k∑
j=1

∫ ∞
−∞

dθ p′j(θ)Lj(θ) , (3.16)

only receives equal contributions from the LM and RM. A GHD study of this and other
massless theories was carried out in [100].

It is worth saying a little more about the origins of this massless model. TheMA
(+)
k

models can be seen as perturbations ofMk+2 by the field Φ13 (k = 1, 2, 3 . . .). There are
however two families of theories with different properties depending on whether or not
the perturbing parameter is positive. These two families were namedMA

(±)
k in [98].

The familyMA
(−)
k is massive, and the S-matrix has been written by various authors

[98, 101, 102]. It corresponds to a restriction of the sine-Gordon model (that is, the
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sine-Gordon model at a specific k-dependent value of the coupling constant) which
is also related to the restricted solid-on-solid (RSOS)k lattice models. The scattering
in these theories is non-diagonal but the associated TBA system can be diagonalised
resulting into an Ak-based system of k TBA equations where the driving terms are
ω1(θ) = cosh θ, ωi(θ) = 0 for i > 1. Thus the Ak-system in this case describes a massive
particle and k − 1 magnons.

The perturbation of interest in the context of the SM isMA
(+)
k which was studied

in [96]. These models are massless (although non conformal, there is a fundamental
scale in the theory) and describe a crossover between the unitary minimal modelsMk+2

andMk+1. This flow was studied perturbatively for large k some years before [103, 104].
The TBA description which was then conjectured is given by the equations (3.13).

3.1.4 SM L-function from the MA
(+)
k Model

A remarkable feature of the effective description of massless flows provided by theMA
(+)
k

model is that it is possible to carry out both a quantitative and qualitative comparison
between solutions of (3.7) and (3.13) by introducing ad hoc shifts (in θ space) of the
solutions of (3.13). This procedure amounts to “cutting an pasting" the solutions for
the L-functions of theMA

(+)
k model in such a way as to reproduce the SM L-function

corresponding to a fixed finite value of the dimensionless parameter α defined by

α =
y

θ0

, for y, θ0 →∞. (3.17)

An illustration of this approach is presented in Fig. 3.3. As can be seen in the example,
such engineered L-function clearly matches the L-function structure of the SM for
1
2
< α < 1.
This procedure allows us to see each step of the scaling function of the SM as two

different limits, encoded in the two sets of decoupled equations (A.13) for the values
of the pseudoenergy at the centres of the plateaux found in Appendix A: if the RG
trajectory flows very close to the fixed pointMk+2, the latter can be seen both as the
UV limit of the Ak flow and as the IR limit of the Ak+1 flow of the massless TBA (3.13).
This is illustrated in Fig. 3.4.

3.2 The SM at Equilibrium

Let us now solve the TBA-equation for the SM at some inverse temperature β, obtain
n(θ) and compute from this the quantities:

44



3. The Staircase Model: Massless Flows and Hydrodynamics

−20 −10 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

θ

L
(θ
) LLM

Lm1

LRM

−50 0 50

0.0

0.2

0.4

0.6

0.8

1.0

θ

L̃
(θ
)

L̃LM

L̃m1

L̃RM

Figure 3.3: Left : L-functions for theMA
(+)
3 model, showing solutions for three functions

corresponding to the RM, the LM and the magnon. Right : Same functions shifted in rapidity
space to reconstruct the single L-function of the SM.

ρp(θ) = edr(θ)n(θ) spectral particle density,

veff(θ) =
(e′)dr (θ)

(p′)dr (θ)
effective velocity,

ρc(θ) = ρp(θ)v
eff(θ) spectral particle current.

(3.18)

As expected, the form of these functions, similar to the L-functions, will very much
depend on the parameter α defined by (3.17). This is illustrated in Figs. 3.5, 3.6, 3.7 and
3.8, all of which show the scaling function (highlighting one specific temperature) and
the L-function, spectral particle density, spectral particle current and effective velocity
for the same temperature.

Sitting on a step of the scaling function defined by an integer k such that k−1
2
< α < k

2
,

the L-function has 2k kinks. At the same positions, the spectral particle density and
spectral particle current exhibit 2k bumps (local maxima). Except for two outer-most
bumps which are centered around ±y, all other bumps are centered at values of θ
whose distance from one of the outer-most bumps is a multiple of θ0. This is due to
the structure of the scattering phase which maximises interaction precisely for such
distances. Thus, from a scattering viewpoint, we can think of each pair of peaks of
the spectral particle density whose mutual distance is θ0 as describing densities of
mutually interacting particles. In fact, it is this interaction that makes the particle
density increase with respect to the non-interacting (free fermion) case shown in Fig. 3.5.
A similar structure was found in [80]. In all figures for this section we have introduced

45



3. The Staircase Model: Massless Flows and Hydrodynamics

−100 −50 0 50 100

0.0

0.5

1.0

1.5

θ

L
(θ
)

−50 0 50
0.0

0.5

1.0

1.5

θ

L̃
(θ
)

L̃LM

L̃m1

L̃RM

−50 0 50
0.0

0.5

1.0

1.5

θ

L̃
(θ
)

L̃LM

L̃m1

L̃m2

L̃RM

Figure 3.4: Top: L-function of the SM for 1 < α < 3/2 (k = 3) highlighting the 2k + 1 = 7

plateaux’ mid-points zi and 2k kinks Ki as discussed in Appendix A. Bottom, Left : L-functions
of theMA

(+)
3 model in the UV limit, reproducing the odd-labelled plateaux of the SM model

and matching the colour scheme of the top panel. Bottom, Right : L-functions of theMA
(+)
4

model in the IR limit, reproducing the even-labelled plateaux of the SM model and matching
the colour scheme of the top panel.

the convenient definitions:
ρ̃p/c(θ) =

ρp/c(θ)

max ρp/c(θ)
, (3.19)

which are the scaled spectral particle density (p) and current (c).
A simple example of this phenomenology is provided in Fig. 3.6. Here the two pairs

of bumps centered at ±y and ±(y − θ0) describe densities of particles that are mutually
interacting and also co-moving, as their effective velocities are the same.

Following the considerations of [80], if we actually compute the particle density
associated to one of the larger maxima (say the right-most peak centered at θ = y) and
subtract from it the density associated with the corresponding peak of a free fermion
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Figure 3.5: Free fermion regime for k = 1. Top: Scaling function and L-function for
β = 2e−15 and θ0 = 50, hence α = 3/10 < 1

2 . Bottom Left : Spectral density (solid orange
line) and spectral particle current (dashed red line). Bottom Right : Effective velocity (green)
versus scaled spectral particle functions ρ̃p/c(θ). Since we are in the free fermion regime, the
effective velocity is simply tanh θ and the spectral particle densities exhibit two separate bumps
corresponding to equal densities of right- and left-moving fermions.

solution at the same temperature, we find that the difference exactly matches the area
of the smaller peak centered at θ = y − θ0. We can say that the increase in the particle
density with respect to the free theory is directly linked to the interaction with a smaller
density of particles at distance θ0 in phase space. In other words, we can identify a stable
density of interacting particles corresponding exactly to the area of the smaller peak.
These particles are both interacting and co-moving as the two peaks of the spectral
density also correspond to the same effective velocities (+1 in this example).

The situation is similar but a bit more complicated in Figs. 3.7 and 3.8. For instance,
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Figure 3.6: Tricritical Ising for k = 2: Top: Scaling function and L-function for β = 2e−35

and θ0 = 50, hence 1
2 < α = 7/10 < 1. Bottom Left : Spectral density (solid orange line) and

spectral particle current (dashed red line). Bottom Right : Effective velocity (green) versus
scaled spectral particle functions (3.19). Note that the effective velocity is now non-monotonic
and has 2k − 1 = 3 zeroes.
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in Fig. 3.7 the spectral particle density and current have six local maxima, which can
be seen as describing three pairs of densities of mutually interacting particles centered
around ±y, ±(y − θ0) and ±(y − 2θ0). Again, interacting particles are associated with
a fixed increase in particle density and are in all cases co-moving so that they can be
easily identified by following the twists and turns of the effective velocity profile. Once
more, the increase in the particle density can be attributed to interaction. This can be
quantified by comparing the particle density associated to one of the larger maxima, say
at θ = y, with that of the same peak in the free fermion spectral particle density at the
same temperature. The difference in areas coincides with the combined areas of peaks at
y − θ0 and y − 2θ0, both of which are mutually interacting with each other. Reflecting
the interaction structure of theMA

(+)
3 model, the peak at y − θ0 also interacts with

the one at y.
As α is further increased more pairs of these local maxima will emerge, until infinitely

many are present in the deep UV limit. This behaviour is similar but distinct from
what is observed in the SU(3)2-HSG model studied in [80]. The main difference arises
from parity breaking in the HSG-model which for each particle type makes interaction
maximal for some finite value of θ but not for its opposite. The effect of this lack of
symmetry is that the spectral particle density of each particle never develops more than
three local maxima.

Unlike for the L-functions where a constant TBA analysis allows us to determine
the exact height of each plateau, the definition of the effective velocities makes such
an analysis difficult. However, their complex structure can be well understood by
mapping the SM to the correspondingMA

(+)
k model described in the previous section.

In particular we can reinterpret the multiple peaks of the spectral particle densities in
terms of the LM, RM and magnonic excitations of the massless theory. This is shown in
Fig. 3.9 and 3.10 and is similar in spirit to the reconstruction of the L-function that we
saw in Fig. 3.4.

The structure of the effective velocity is far more peculiar. For k > 1, veff(θ) becomes
strongly non monotonic and develops k plateaux at velocity veff(θ) = 1 and the same
number at the opposite velocity. The 2k − 1 zeros of veff(θ) are at the midpoints of the
L-function’s internal plateaux, that is the points zi given by (A.6). This can be argued
from the definitions (3.7) and (2.66), as these imply that

ε′(θ) = β pdr(θ) , (3.20)

and therefore the simple zeros of the effective velocity are at the points where ε′(θ)
(and therefore L′(θ)) vanishes. See Fig. 3.5, Fig. 3.6, Fig. 3.7 and Fig. 3.8 for some
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Figure 3.7: Tetracritical Ising model for k = 3: Top: Scaling function and L-function for
β = 2e−60 and θ0 = 50, hence 1 < α = 6

5 <
3
2 Bottom Left : Spectral density (solid orange line)

and spectral particle current (dashed red line). Bottom Right : Effective velocity (green) versus
scaled spectral particle functions (3.19). The effective velocity exhibits three plateaux with
veff(θ) = 1 and three plateaux with veff(θ) = −1. Therefore the effective velocity changes sign
at 2k − 1 = 5 points.

summarising plots.
In Fig. 3.9 and 3.10 we reconstruct the effective velocity of the SM for k = 2 and

k = 3, respectively with the same procedure used for the L-function in section A.2.
Notice that both the description as UV limit of theMA

(+)
2 and IR limit of theMA

(+)
3

model are valid. In the former case we have only two excitations with two peaks each
in the spectral particle density; in the latter, LM and RM have only one peak while
the others are described by the magnons. Nonetheless, both scenarios are valid and all
peaks are at the same values of the effective velocity.
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How the intricate features of the spectral particle density, current and effective
velocity change with temperature can be best seen in the video [88] which provides a
visual summary of all results in this Section.

3.3 SM and the Partitioning Protocol

In Section (2.4) we introduced the main ideas behind the partitioning protocol. In this
section we focus on the average currents (2.76) and densities (2.70) for spins s > 1.
Unlike for the energy current and density studied in [65–67, 105], it is not known precisely
how higher spin currents and densities behave in the UV limit. That is, unlike for the
energy, there is no existing CFT computation of these quantities. There are however
some features that are to be expected at UV fixed points: holomorphic/antiholomorphic
factorisation should guarantee a structure involving differences/sums of appropriate
powers of the temperatures for the currents/densities and dimensional analysis imposes
that such power should be s+ 1 for a spin s current/density. In the absence of a CFT
derivation, the present model allows us to study these quantities starting from the GHD
equations and considering their UV limit. In this context, the SM is an ideal theory
to consider, as we are able to access multiple UV fixed points. A special feature of the
SM is that the equation veff(θ; ξ) may have multiple solutions depending on ξ and βL/R,
therefore the function n(θ) has multiple discontinuities as shown in Fig. 3.11.

3.3.1 Higher Spin Currents and Densities

Consider the one-particle eigenvalues (2.62) and their associated average current and
density (2.70) and (2.76) with n(θ) given by (2.88). We are interested in the non-
equilibrium steady state at ray ξ = 0 and in the situation in which the left and right
subsystem both tend in the UV limit to the same minimal model, that is, defining

yR := log
2

βR

, yL := log
2

βL

and σ :=
βR

βL

, (3.21)

we will consider
(k − 1)θ0

2
< yR < yL <

kθ0

2
, (3.22)

that is, σ > 1. If yL/R lie in the same range (3.22) and σ is not too large then the
occupation functions of the right and left subsystems are very similar and one can
numerically check that the zeroes of the effective velocity are still very close to their
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Figure 3.8: Minimal model M6: Top:Scaling function and L-function for β = 2e−85 and
θ0 = 50, hence 3

2 < α = 1.7 < 2. Bottom Left : Spectral density (solid orange line) and spectral
particle current (dashed red line). Bottom Right : Effective velocity (green) versus scaled
spectral particle functions (3.19). As in previous figures, we see that the effective velocity
changes sign at 2k − 1 = 7 points and exhibits eight plateaux at alternating values ±1.
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Figure 3.9: Effective velocities and spectral particle density of theMA
(+)
2 andMA

(+)
3 models

shifted according to the analysis in (A.11)-(A.12). Left : UV limit of theMA
(+)
2 model. We

have two bumps of the spectral particle density for the RM and two bumps for the LM. One
peak is at veff(θ) = 1 (RM) and one at veff(θ) = −1 (LM). Right : IR limit of theMA

(+)
3 model.

LM (RM) each have one peak in their spectral particle density at veff(θ) = ±1, respectively.
The single magnon in the theory has two symmetric peaks (these are the two smaller peaks in
each figure). The overall effective velocity has the same features as the previous case and both
descriptions match qualitatively the SM behaviour. The reconstructed functions reproduce all
features of the functions presented in Fig. 3.6 for the case k = 2.
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Figure 3.10: Effective velocities and spectral particle density of the MA
(+)
3 and MA
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4

models shifted according to the analysis in (A.11)-(A.12). Left : UV limit of theMA
(+)
3 model.

We have two bumps of the spectral particle density for each excitation. All peaks (for all
excitations) are at veff(θ) = ±1. Right : IR limit of the MA

(+)
4 model. The reconstructed

functions reproduce all features of the functions presented in Fig. 3.7 for the case k = 3.
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Figure 3.11: A sketch of the effective velocity in the region 1
2 < α < 1 (k = 2, second plateau

of c(y)). As we can see, depending on the ray we can have multiple solutions to veff(θ; ξ) = ξ

and every time the velocity changes sign, so does n(θ) alternate between the right (blue) and
left (gray) solutions.

equilibrium values. Given (2.88) we can therefore define the total currents j2s−1 (and
j2s) for the joint system as the sum of contributions from the two subsystems:

j2s−1 = jR2s−1 + jL2s−1, (3.23)

with
jL/R2s−1 =

∫
L/R

dθ

2π
pdr(θ)nL/R(θ)h2s−1(θ) , (3.24)

and integration regions defined by

R ≡]−∞, z1] ∪ [z2, z3] ∪ · · · ∪ [z2k−2, z2k−1]

L ≡ [z1, z2] ∪ [z3, z4] ∪ · · · ∪ [z2k−1,+∞[.
(3.25)

Now we use the fact that if εL/R(θ) are the solutions of the TBA equations for the two
Gibbs ensembles, from (3.20) it follows that

ε′L/R(θ) = βL/R p
dr(θ). (3.26)

We emphasise that the dressing of p(θ) in (3.26) is performed with nL(θ) in the
left reservoir and with nL(θ) in the right one. In contrast, in (3.24) it is the the joint
occupation function n(θ) which enters the definition of the dressing. However, as long as
(3.21) holds and σ is small we can assume that also in (3.24) the dressing is performed
with nL/R(θ). This assumption is supported by numerical results.
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Therefore, since ε′L/R(θ)nL/R(θ) = −L′L/R(θ), we have

jL/R2s−1 = −
T s+1
L/R

2π

∫
R

L′L/R(θ)βsR/Lh2s−1(θ) . (3.27)

We will see in a few lines why this rewriting of TL/R = T s+1
L/Rβ

s
L/R is useful. To proceed

we can take θ0, yR/L � 1 in order to exploit the correspondence between the SM and the
MA

(+)
k model explained in the previous section. In this approximation the expression

(3.27) is slightly simpler, and is replaced by the massless limit

jL2s−1 = − T s+1
L

22−sπ

∫
K2k

dθ e−s(yL−θ)L′L(θ)

jR2s−1 = − T s+1
R

22−sπ

∫
K1

dθ e−s(yR+θ)L′R(θ) .

(3.28)

The same considerations can be done when considering j2s and it is straightforward
that jL2s can be computed with the same expression given in (3.28), while jR2s differs
from its odd counterpart for an overall sign. Integrating by parts and considering yR,/L
sufficiently large, boundary terms vanish (as for large temperature, the L-functions
exhibit a double-exponential decay) and we end up with

j2s−1 =
s

22−sπ
(CsLT s+1

L − CsRT s+1
R )

j2s =
s

22−sπ
(CsLT s+1

L + CsRT s+1
R ),

(3.29)

where

CsR =

∫
K1

dθe−s(yR+θ)LR(θ), CsL =

∫
K2k

dθe−s(yL−θ)LL(θ). (3.30)

Since both the L-functions and the kinks K1 and K2k are symmetric with respect to the
origin we can write CsL/R := Cs(yL/R) with

Cs(y) =

∫
K2k

dθe−s(y−θ)L(θ) . (3.31)

Note that for s = 1 and (k − 1)θ0/2 < y < kθ0/2, we recover the known result [65–67]

lim
y,θ0→+∞

C1(y) =
π2

6
ck+2 , (3.32)

with ck+2 given in (3.12). A very similar result can be obtained for j2s by simply
replacing the minus sign by a plus sign in (3.29).
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Figure 3.12: Cs(y) for spin s = 1, 2, 3, 4, 5 and 6 from Eq. (3.31). Here θ0 = 50.

The same considerations can be applied to the charge densities q2s−1 and q2s. Again,
the only contributions to the integrals come from K1 and K2k and at a finite but large
temperature one obtains:

q2s−1 ≈ j2s and q2s ≈ j2s−1. (3.33)

where the symbol ≈ indicates equality up to terms of order O(e−y), thus becomes exact
in the UV limit. Notice however that because of relativistic invariance q2 = j1 at any
finite temperature.

Unfortunately, for s > 1 the coefficients Cs(y) do not admit an obvious simple form.
However we can at least perform some analysis based on numerics. Since it is only
the value of the ratio α = y

θ0
that fixes the UV limit of the theory, we expect that

Cs(yL) = Cs(yR) as long as the condition (3.22) is satisfied. This is indeed verified by
the numerical evaluation of the function Cs(y) which shows that it is constant in the
central regions of [(k − 1)θ0/2, kθ0/2] (see Fig. 3.12).

Looking at the plots in Fig. 3.12 we also observe that when α approaches a half-
integer value the function Cs(y) has a sudden fall. This is consistent with the definition
of Cs(y) in (3.31): it is easy to show that

L(z2k) ≤ lim
α→k/2

Cs(y) ≤ L(z2k−1) , (3.34)

where L(z2k) ' 0 and L(z2k−1) ' 1. In the central plateau regions, to a first approxima-
tion Cs(y) depends linearly on the central charge and exponentially on the spin. To see
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Figure 3.13: The function C̃s(y) defined in (3.37) for spin s = 1, 2, 3, 4, 5 and 6 from Eq. (3.31)
and θ0 = 50. For each spin all plateaux are almost the same height, which strongly suggests
the coefficient of the currents is very nearly proportional to the central charge ck+2. However
there are small deviations for spin s > 1.

this we can treat s as a continuous variable and differentiate Cs(y) with respect to s. We
obtain a differential equation for Cs(y) which is solved with the initial condition (3.32):

Cs(y) =
π2

6
ck+2 exp

{∫ s

1

ds′ 〈θ〉s′ − (s− 1)y

}
, (3.35)

where

〈θ〉s ≡
∫
K2k

dθθesθL(θ)∫
K2k

dθesθL(θ)
. (3.36)

Writing Cs(y) in this form gives a complicated dependence on the spin but has the
advantage that the central charge is factored out and corrections to linearity are encoded
in the exponential. In Fig. 3.13 we show the scaled functions

C̃sk(y) =
6 Cs(y)

π2ck+2

, (3.37)

for the first few integer values of s. As is clear from the figure, these functions have
almost the same values at every plateau and deviations from linearity in ck are very
small, but non-zero when s > 1. It would be interesting to investigate these corrections
in more detail as well as the explicit dependence on the spin. The latter can be obtained
exactly at the free fermion point, which is instructive. We show the calculation in
Appendix B.
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Figure 3.14: Scaled currents j̃2s−1 versus values of Cs(y) obtained from (3.31) for s = 1, 2, 3, 4.
We see very good agreement in all plateau regions. All data are for θ0 = 50 and σ = e.

Another numerical check of (3.31) is presented in Fig. 3.14 where we look instead at
the scaled currents:

j̃2s−1 =
π βs+1

R

s 2s−2(σs+1 − 1)
j2s−1 , (3.38)

as functions of −yL for fixed σ = e along with the coefficients Cs(y) as obtained from
(3.31). As expected, we find good agreement in all the plateau regions.
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4

Introduction to quantum quenches

Another paradigmatic protocol for taking a quantum many-body system out of equi-
librium is provided by a quantum quench, which corresponds to sudden change in the
Hamiltonian. It is a protocol routinely engineered in cold-atom experiments [9, 28, 29,
106–111] and provides a fruitful starting point to study non-equilibrium time evolution
of isolated quantum systems. When both the pre- and post-quench Hamiltonians are
translationally invariant, a quench starting from an equilibrium (e.g. ground) state of
the pre-quench system corresponds to a situation with a uniform non-zero energy density
under the post-quench Hamiltonian, which is a highly excited configuration that can be
considered as a source of quasi-particle excitations [112]. The subsequent time evolution
can be considered as dynamics driven by the quasi-particles created in the quench; the
post-quench excitations determine the spreading of correlation and entanglement in the
system.

We start by properly defining the protocol in Sec. 4.1, while in sections 4.2 and 4.3
we analise how the quasi-particle pictures determines time evolution for correlators and
entanglement entropy respectively. We finish the chapter in Sec. 4.4 by reviewing the
results for the quench protocol in the paradigmatic Transverse Field Ising model.

4.1 Definition of a quantum quench

We now introduce the concept of quantum quench [112]. First suppose we have a
quantum system prepared in an eigenstate |ψn,0〉 of the hamiltonian function H at time
t = 0. For t > 0 we make H time dependent and we ask how the initial state evolves.
Since the hermiticity of the Hamiltonian is preserved, at each t we have an instantaneous
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orthonormal basis of eigenvector

Ht |ψn,t〉 = |ψn,t〉En,t 〈ψn,t|ψm,t〉 = δn,m
∑
n

|ψn,t〉 〈ψn,t| = 1 ∀t (4.1)

Integrating the time dependent Schrödinger equation

i
∂

∂t
|ψn,t〉 = Ht |ψn,t〉 = En,t |ψn,t〉 , (4.2)

one finds
|ψn,t(t)〉 = eiθn(t) |ψn,t〉 , (4.3)

where θn(t) is the so called dynamical phase factor :

θn(t) = −
∫ t

0

dt′En,t′ . (4.4)

Thanks to the completness relation the initial state can be expressed in terms of the
instantaneous eigenstates and evolved

|ψn,0(t)〉 =
∑
m

cm,te
iθm(t) |ψm,t〉 cm,0 = δn,m. (4.5)

The coefficients cn,t can be found substituting the latter expression in the time dependent
Schrödinger equation:

i
∑
m

eiθm(t){ċm,t |ψm,t〉+ iθ̇m(t)cm,t |ψm,t〉+ cm,t

∣∣∣ψ̇m,t〉} =
∑
m

eiθm(t)cm,tEm,t |ψm,t〉 ,

(4.6)
which implies

ċl,t = −
∑
m

e−i
∫ t
0 dt
′(Em,t′−El,t′ )cm,t

〈
ψl,t

∣∣∣ψ̇m,t〉 . (4.7)

An expression for
〈
ψl,t

∣∣∣ψ̇m,t〉 is found by differentiating the eigenvalues equation in (4.1)
and projecting on |ψl,t〉:

〈ψl,t| Ḣt |ψm,t〉+ El,t

〈
ψl,t

∣∣∣ψ̇m,t〉 = Ėm,tδl,m + Em,t

〈
ψl,t

∣∣∣ψ̇m,t〉 . (4.8)

Equation (4.7) then becomes

ċm,t = −cm,t
〈
ψm,t

∣∣∣ψ̇m,t〉−∑
l 6=m

e−i
∫ t
0 dt
′(Em,t′−El,t′ )cl,t

〈ψm,t| Ḣt |ψl,t〉
El,t − Em,t

. (4.9)

From here it follows that if

| 〈ψm,t| Ḣt |ψl,t〉 | � |El,t − Em,t| ∀l,m (4.10)
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then
cm,t = eiαm(t)cm,0, (4.11)

where αm(t) is called geometric phase:

iαm(t) = −
∫ t

0

dt′
〈
ψm,t′

∣∣∣ψ̇m,t′〉 . (4.12)

Note that αm(t) is real since

0 =
d

dt
〈ψm,t′ |ψm,t′〉 =

〈
ψm,t′

∣∣∣ψ̇m,t′〉+
〈
ψm,t′

∣∣∣ψ̇m,t′〉. (4.13)

The evolution of the initial state is eventually given by

|ψn,0(t)〉 = eiαn(t)eiθn(t) |ψn,0〉 . (4.14)

This is essentially the adiabatic theorem by Max Born and Vladimir Fock [113]: if (4.10)
holds (the Hamiltonian varies slowly with respect to the gap between the En,t and
the rest of the energy spectrum), the initial state evolves without changing quantum
numbers and picking up phase factors. The phase factor αn(t) can also be cancelled out
by an appropriate choice of gauge (if the adiabatic evolution is not cyclic, otherwise it
becomes a gauge invariant physical quantity known as Berry phase [114]).

A quantum quench occurs when the adiabatic aproximation (4.10) is not valid. This
can happen either when the Hamiltonian variation rate is not small enough, or when
there is no gap between the energy eigenvalue of the initial state and the rest of the
spectrum. In both cases there isn’t a precise theoretical approach to the problem and
perturbation theory cannot be applied since the change in the Hamiltonian isn’t small
in general. Seminal works on quantum quenches ([112, 115–118]) investigated different
ways of taking the system out of equilibrium. In this thesis we concentrate on a standard
procedure which is called sudden quench.

In a sudden quench the many-body system is prepared in a pure state which is an
eigenstate of the initial Hamiltonian, the latter depending on a set of parameters {g0

i }:

H({g0
i }) |ψ0〉 = |ψ0〉E (4.15)

At t = 0 we suddenly quench the set of parameters to new values {gi} and, since the
system remains isolated, consider the unitary time evolution with the new Hamiltonian
H({gi}). At times t > 0 the state of the system is found solving the time-dependent
Schrödinger equation

|ψ(t)〉 = eiH({gi})t |ψ0〉 . (4.16)
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Furthermore, the quench is said to be global if the change of the coupling constants
{g0

i } is the same in the whole chain.
A crucial property of a global quantum quench is that energy is conserved at all

t > 0 and the post-quench energy density is larger than the ground state energy per site.
This means that through the quantum quench we explore a region of Hilbert space that
is macroscopically different from the sector containing the ground state and low-lying
excitations [7].

4.2 Spreading of correlations after a quantum quench

How does the system behave after a quantum quench? And what is the theoretical
picture that allows to compute expectation values of local operators? Let’s consider an
integrable quantum system. Suppose that the latter is mappable into a free fermion
model, hence both the pre-quench and the post-quench Hamiltonians can be put in the
diagonal form

Pre-quench: H({g0
i }) =

∑
k

ε{g0i }(k)η̃†kη̃k + E0({g0
i })

Post-quench: H({gi}) =
∑
k

ε{gi}(k)η†kηk + E0({gi}),
(4.17)

with the corresponding vacua, satisfying

η̃k
∣∣0; {g0

i }
〉

= 0 ∀k
ηk |0; {gi}〉 = 0 ∀k

(4.18)

with fermionic commutation relations

{ηk, η†p} = δk,p. (4.19)

It is possible to put in relation the two sets of creation and annihilation operators
through a Bogoliubov transformation:

η̃p =
∑
k

(Θpkηk + Ωpkη
†
k)

η̃†p =
∑
k

(Θ∗kpη
†
k + Ω∗kpηk).

(4.20)

The physical interpretation of Ω is the following: suppose one desires to compute
the number of quasi-particles excitations of the pre-quench Hamiltonian on the vacuum
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of the quenched system 〈0; {gi}| η̃†pη̃p |0; {gi}〉. Taking (4.18) and (4.20) into account:

η̃p |0; {gi}〉 =
∑
k

(Θpkηk + Ωpkη
†
k) |0; {gi}〉 =

∑
k

Ωpk |1k; {gi}〉 , (4.21)

so that
〈0; {gi}| η̃†pη̃p |0; {gi}〉 =

∑
k

|Ωpk|2. (4.22)

Hence the new vacuum is filled with quasi-particle of the pre-quench Hamiltonian (and
viceversa). Indeed, since both sets of quasi-particles can be used to generate the Fock
space, we can express the ground state of the pre-quench Hamiltonian as excited states
of the quenched system. We can define this relation by taking (4.18) into account:

η̃p
∣∣0; {g0

i }
〉

= 0 =
∑
k

(Θpkηk + Ωpkη
†
k)
∣∣0; {g0

i }
〉
. (4.23)

Multiplying this expression by
∑

p Θ−1
ip we find the equation

ηi
∣∣0; {g0

i }
〉

=
∑
k

ℵikη†k
∣∣0; {g0

i }
〉
, (4.24)

where
ℵik = −

∑
p

Θ−1
ip Ωpk. (4.25)

The solution of (4.25) is given by

∣∣0; {g0
i }
〉

= exp

{
1

2

∑
ik

ℵikη†i η†k

}
|0; {gi}〉 . (4.26)

In our models, that are translational invariant, we’ll see that

ℵik = δi,−kℵi,−i ≡ δi,−kℵi, (4.27)

that give us an expression of the pre-quench ground state as boundary state:

∣∣0; {g0
i }
〉

= exp

{∑
k>0

ℵkη†kη†−k

}
|0; {gi}〉 , (4.28)

where the function ℵ is referred as kernel of the state.
This gives a precise physical interpretation for what happens after a quantum quench

in this case: when changing the set of parameters in the Hamiltonian, the state of
the system is a superposition of excited states given by pairs of quasi-particles with
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opposite momenta (in such a way the total momentum is conerved). These excitations
propagate with a dispertion relation given by the post-quench Hamiltonian ε{gi}(k) and
have therefore a maximum velocity of propagation given by

vmax = max
k

∣∣∣dε{gi}(k)

dk

∣∣∣. (4.29)

This means that even if the models are non-relativistic there exists a maximum velocity
of propagation of the information. This feature has a profound impact on time depenence
of the expectation values of local operators after a quench.

Suppose we want to calculate the connected correlation function of a local operator
O, whose support is a single site of the chain:

Gc
2(l; t) = 〈ψ(t)| OkOk+l |ψ(t)〉 − 〈ψ(t)| Ok |ψ(t)〉 〈ψ(t)| Ok+l |ψ(t)〉 . (4.30)

At t = 0, the state is characterised by a finite correlation length ξ and the correlation
function is extremely small at large spatial separations:

Gc
2(l; t) ∝ e−l/ξ. (4.31)

At times t > 0 quasi-particles start propagating throughout the system. A measure-
ment at site k will be influenced by quasi-particles within the backwards light cone
[k − vmaxt, k + vmaxt]. At time

t =
l

2vmax
(4.32)

the backwards light cones emanating from site k and site k+ l touch and the the average
measurements of the two sites become correlated.

This physical interpratation was given by Calabrese and Cardy [116, 117] and light
cone effects after quantum quenches have been analysed and observed in various models.
In Fig. 4.1 the time dependent part of the connected density-density correlator of a one
dimensional fermionic pairing model is displayed.

4.2.1 Relation to Lieb-Robinson bounds

As shown by Lieb and Robinson [119], the velocity of information transfer in quantum
spin chains is effectively bounded and there exists a causal structure in commutators of
local operators at different times. Given two local operators OX and OY having their
supports on X and Y respectively that are spatially separated by distance L,

||[OX(t),OY (0)]|| ≤ cmin{µ(X), µ(Y )}‖OX‖‖OY ‖e−
L−vt
ξ′ , (4.33)
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Figure 4.1: Time dependent part of the connected density-density correlator after a quantum
quench. A light cone effect is clearly visible [7].

where µ(X) indicates the numbers of sites in X, ‖.‖ denotes the operator norm and c, v
and ξ′ are constants.

The Lieb-Robinson bound has important consequences for quantum quenches start-
ing in initial states with finite correlation lengths and evolving under short-ranged
Hamiltonians. It was shown in [120] that (4.33) implies a bound on the connected two
point functions

〈ψ(t)| OXOY |ψ(t)〉 − 〈ψ(t)| OX |ψ(t)〉 〈ψ(t)| OY |ψ(t)〉 ≤ c′(µ(X) + µ(Y ))e−
L−2vt
χ ,

(4.34)
with c′ and χ constants.

4.3 Entanglement entropy and evolution after a quan-
tum quench

Many quantum features can be deduce by studying quantities that are non local
observables. Entropy is one of these quantities and builds the basis for a statistical
description of nature. An isolated quantum system evolves unitarily and if the system
is prepared in a pure state it will remain in a pure state with zero entropy.

However we can characterize the entropy of a subsystem, that is generally in a mixed
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state, computing the Von Neumann entropy of its reduced density matrix, also called
entanglement entropy.

The entanglement of a subsystem with the rest of the system measures how the
configuration of the former depends on the configuration of the latter and how far it
is from being a pure state. To put this into formulae, we first introduce the Schmidt
decomposition.

4.3.1 Schmidt decomposition

Let us consider a bipartition of the Hilbert space of a spin chain H = HL

⊗HR of a
1D system, where HL(HR) describes all the states defined on the left (right) of a given
bond.

Any pure state |ψ〉 defined on the whole system can be written as

|ψ〉 =
∑
ij

Ψij |i〉L ⊗ |j〉R , (4.35)

where {|i〉L} and {|j〉R} are orthonormal bases of HL and HR with dimensions NL and
NR respectively. From this representation we can introduce the reduced density operator
of a part of the system tracing out the degrees of freedom of the other part

ρL/R = TrR/L |ψ〉 〈ψ| , (4.36)

which expressed with respect to the orthonormal bases take the form

ρL = ΨΨ† ρR = Ψ†Ψ (4.37)

We can now perform a singular value decomposition (SVD) of the matrix Ψ. The
SVD guarantees for an arbitrary matrix M of dimension (n ×m) the existence of a
decomposition

M = USV †, (4.38)

where:

• U is of dimension (n×min(n,m)) and has orthonormal columns, i.e. U †U = 1; if
n ≤ m, U is then unitary;

• S is of dimension (min(n,m)×min(n,m)) and diagonal with non negative entries
Saa ≡ Λa. These are the so-called singular values. The number r of non-zero
singular values is the (Schmidt) rank, or bond dimension, of M. Furthermore we
choose to put the singular values in descending order;
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• V is of dimension (min(n,m) ×m) and has orthonormal rows, i.e. V V † = 1; if
n ≥ m, V is then unitary;

For practical importance in the following, it is useful to define a topology induced
by the inner product

〈
M,N

〉
= TrM †N . The latter defines the Frobenius norm

‖M‖2
F =

〈
M,M

〉
= TrM †M = Tr

∑
k

(M †)jiMik =
∑
ij

|Mij|2. (4.39)

In this topology the optimal approximation of the matrix M by a matrix M ′ of rank
r′ < r is given by [121]

M ′ = US ′V † S ′ = diag(s1, s2, . . . , sr′ , 0, . . . ), (4.40)

i.e. one sets all but the first r’ singular values to be zero.
The SVD is at the basis of a very compact representation of quantum states living

in a bipartite universe L/R called the Schmidt decomposition.
The pure state |ψ〉 can be expressed as

|ψ〉 =
∑
ij

Ψij |i〉L ⊗ |j〉R =
∑
ij

min(NL,NR)∑
α=1

UiαSααV
∗
jα |i〉L ⊗ |j〉R

=

min(NL,NR)∑
α=1

Λα

(∑
i

Uiα |i〉L
)
⊗
(∑

j

V ∗jα |j〉R
)

=

min(NL,NR)∑
α=1

Λα |α〉L ⊗ |α〉R

. (4.41)

Due to the orthonormality properties of U and V †, the sets {|α〉L} and {|α〉R} are also
orthonormal bases of HL and HR, i.e.,

〈α|α′〉L =
∑
ii′

L〈i|U∗iαUi′α′ |i′〉L =
∑
ii′

(U †)αiUi′α′δii′ =
∑
i

(U †)αiUiα′ = δαα′ (4.42)

Restricting the sum over the r positive non-zero values of {Λa}, we obtain the
Schmidt decomposition:

|ψ〉 =
r∑

α=1

Λα |α〉L ⊗ |α〉R (4.43)

Furthermore, if the pure state |ψ〉 is normalised:

r∑
α=1

Λ2
α = 1 (4.44)
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4.3.2 Entanglement Entropy and area law

An important aspect of the Schmidt decomposition is that it gives meaningful information
about the entanglement between the degrees of freedom in HL and HR because the
values Λα give a measure of the overlap between the states of the two subsystems. To
better understand their meaning, we analyse two extreme cases. The first one is given
by

Λα = δα,α0 |ψ〉 = |α0〉L ⊗ |α0〉R . (4.45)

This state is separable and there is no entanglement. A measure on the L subsystem
will not affect a measure on the R subsystem.

Every other state is entangled and the opposite situation to the previous one is when

Λα =
1√
N

|ψ〉 =
1√
N

N∑
α

|α〉L ⊗ |α〉R , (4.46)

where N = min(NL, NR). This is the maximally entangled state.
It is important to remark that the Schmidt basis coincides with the eigenbasis of the

reduced density matrix of the two subsystems, that share the same spectrum:

ρL =
∑
α

Λ2
α |α〉L 〈α|L

ρR =
∑
α

Λ2
α |α〉R 〈α|R

(4.47)

But what provides a good measure of entanglement? It was proved in [122] that an
entanglement measure S is fixed uniquely after imposing the following conditions:

1. S is invariant under local unitary transformations (that implies that S is a function
of the Λ2

α only);

2. S is continuos;

3. S is additive when several copies of the system are present:

S(|ψ〉 ⊗ |φ〉) = S(|ψ〉) + S(|φ〉). (4.48)

This conditions are satisfied by the von Neumann entropy of the reduced density
matrix

S(ρL) = −Tr[ρL log ρL] = −
∑
α

Λ2
α log Λ2

α = S(ρR) ≡ S, (4.49)

which corresponds to the Shannon entropy with pα = Λ2
α.
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Note that as we wanted an unentangled product state, where the pure state is
described by only one Schmidt value, has S = 0. Conversely, S is maximum for a
maximally entangled state.

The definition of entanglement entropy is formally the same of thermal entropy.
This similarity though is only apparent since they exhibit different behaviours when
the system size is changed. Thermal entropy ST scales indeed withe the number of
microstates. These can be approximated with the volume of the phase space accessible
to the system. Since the latter is a direct product of the configuration space with its
tangent bundle, it is natural that ST scales with the volume accessible to the system. In
d spatial dimensions

ST w ld, (4.50)

where l is a typical length of the system.
The situation is different for entanglement entropy. To see this difference let’s

consider ground states of local, short range Hamiltonians of a bipartite system in d

dimensions. In general we expect that for non degenerate ground states of gapped
Hamiltonians, the entangled degrees of freedom are the ones placed near the surface
that separates the two subsystems. This is because of the finiteness of the correlation
length, suggesting that the entanglement entropy scales with the area of the surface
that divides the two subsystems [123]:

S w

(
l

ε

)(d−1)

, (4.51)

where ε is a non-universal short-distance cut-off.
For one dimensional systems the previous expression leads to bounded entanglement

entropy and the following theorem was indeed proved in [124]:

Theorem 2. Consider a short range Hamiltonian H with a unique ground state with a
gap ∆E to the first excited state. Then, for any bond chosen for the bipartition L/R,

SL ≤ Smax, (4.52)

where
Smax = c0ξ

′ log(ξ′) log(d)2ξ
′ log d (4.53)

with c0 constant and ξ′ = 6ξ = 6 max(2v/∆E, ξC).
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When the Hamiltonian is gapless there is a violation to this law since ξ diverges and
for one dimensional critical systems it has been shown [125] that

S =
c

3
log

(
l

ε

)
, (4.54)

where c is the central charge of the correspondent conformal field theory describing the
model [126].

On the other hand, excited states are usually characterised by maximal entangle-
ment and actually follow a volume law. Indeed they resemble classical states, where
entanglement entropy reduces to thermodynamic entropy.

In conclusion, in the full Hilbert space of the system, among typical states, which
follow a volume law, there are untypical rare states (usually represented by ground
states) that are slightly entangled and can be described by only a relatively small number
of Schmidt values.

This provides an extremely useful approach to compress quantum states by truncating
the Schmidt decomposition. It is natural to approximate a state |ψ〉 by some |ψ′〉 spanned
over state spaces of L and R that have dimension r′ only. This problem can be related to
the SVD, because the 2-norm of |ψ〉 is identical to the Frobenius norm of the matrix Ψ.
The optimal approximation is therefore given in the 2-norm by the optimal approximation
of Ψ by Ψ′ in the Frobenius norm, where Ψ′ is a matrix of rank r′ (4.40).

When |ψ〉 follows an area law, we can therefore always truncate the Schmidt decom-
position at some finite χ. That is ∀ε > 0, ∃χ finite such that∥∥∥∥∥|ψ〉 −

χ∑
α=1

Λα |α〉L ⊗ |α〉R

∥∥∥∥∥ < ε, (4.55)

being χ non extensive.
This particular property of area law states is intimately related to the MPS represen-

tation of one dimensional quantum states, which is at the basis of the iTEBD algorithm
(see Appendix C) used throughout the thesis.

4.3.3 Time evolution

How does entanglement entropy evolve after a sudden quench? We showed with the
quasi-particle description that after a quench from the ground state, whose entanglement
entropy follows an area law, the new state for t > 0 is given by a boundary state,
obtained as superposition of excited states. Hence one should expect that in the long
time limit entanglement entropy follows a volume law.
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It was actually proved in [116] that entanglement in one dimensional models between
the degrees of freedom in an interval A of length l and its complement Ā, starting
from a pure state which is not an eigenstate of the Hamiltonian that determines time
evolution, increases linearly with time t up to t∗ = l/2v, after which it saturates at a
value proportional to l.

This result was obtained using path integral methods of quantum field theory as
well as with explicit computations for the transverse Ising spin chain, but it is believed
to hold in a wider class of systems, since it can be derived by causality arguments with
the quasi-particle description already introduced.

The initial state |ψ0〉 has an extensively high energy relative to the ground state of
the post-quenched Hamiltonian and therefore acts as a source of quasiparticle excitations,
emitted in pairs from any point of the initial state. Those quasi-particles originating
from different points (further apart than the correlation length ξ typical of the initial
state) are incoherent, but pairs of particles originating from the same point or from
points within ξ are highly entangled. Suppose that the cross section for producing such
a pair of particles of momenta p′ and p′′ from a certain point in space is σ(p′, p′′) and
that since they separate they move classically, with no interaction between them.

t
tb

ta

A

Figure 4.2: Space-time picture illustrating how oppositely moving correlated quasi-particles
increase entanglement between an interval A and the rest of the system.

The classical velocity is given by v(p) = dε/dp, where ε(p) is the dispersion relation
and we fix the maximum allowed speed to 1, that is |v(p)| ≤ 1. A quasi-particle generated
at (x, t = 0) is therefore at x+ v(p)t at time t. Consider these quasi-particles as they
reach either A or Ā at time t. The entanglement between the two sets increases if a
pair of entangled particles emitted from a point x arrives simultaneously at x′ ∈ A and
x′′ ∈ Ā (Fig. 4.2). The entanglement entropy between x′ and x′′ is proportional to the
length of the interval in x for which this can be satisfied. Thus the total entanglement
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entropy is

SA(t) '
∫
x′∈A

dx′
∫
x′′∈Ā

dx′′
∫ ∞
−∞

dx

∫
dp′dp′′σ(p′, p′′)δ(x′ − x− v(p′)t)δ(x′′ − x− v(p′′)t) (4.56)

Considering now that A is an interval of length l then the total entanglement is twice that
between A and the real axis to the right of A, which corresponds to taking p′ < 0, p′′ > 0

in the above. The integration over the coordinates then gives max((v(p′) + v(p′′))t, l)

(see Fig. 4.3), so that

SA(t) ' 2t

∫ 0

−∞
dp′
∫ ∞

0

dp′′σ(p′, p′′){v(−p′) + v(p′′)}θ(l − [v(−p′) + v(p′′)]t)

+ 2l

∫ 0

−∞
dp′
∫ ∞

0

dp′′σ(p′, p′′)θ([v(−p′) + v(p′′)]t− l),
(4.57)

where θ(x) is the Heaviside step function. Since |v(p)| ≤ 1, the second term cannot
contribute if t < t∗ = l/2 so that SA(t) is strictly proportional to t. On the other hand,
as t→∞, the first term is negligible and SA is asymptotically proportional to l.

l l 2t = l

2t < l

t2t 2t

A = l

Figure 4.3: Space-time picture of the entanglement entropy dynamics. For times such that
2t < l the entanglement entropy increases linearly with time; for later times it saturates to a
value proportional to the lenght l of the subsystem considered.

However, unless |v| = 1 everywhere (as in the conformal field theory case), SA is not
strictly proportional to l for t > t∗ and there is a slow increase towards the asymptotic
value. This can be understood since, on the lattice, there are quasi-particles excitations
which travel with a group velocity that is less than the maximum allowed value.
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4.4 Quantum Quenches in the Transverse Field Ising
Chain

As an example of the general statements of the the previous sections we review some
results, following [7], obtained in a paradigmatic model: the Transverse Field Ising
Chain (TFIC), whose Hamiltonian is given by

H(h) = −J
L∑
`=1

σx` σ
x
`+1 + hσz` . (4.58)

Here we impose periodic boundary conditions σαL+1 ≡ σα1 , L even, h ≥ 0 and J > 0.
We note that the signs of h and J can be reversed by unitary transformations with
respectively

U1 =
L∏
`=1

σx` , U2 =

L/2∏
`=1

σx2`−1σ
y
2`. (4.59)

The Hamiltonian (4.58) has a Z2 symmetry of rotations by π around the z-axis. The
ground state phase diagram of the TFIC features a paramagnetic (for h > 1) and a
ferromagnetic (for h < 1) phase, in which the Z2 symmetry is spontaneously broken.
The two phases are separated by a quantum critical point at h = 1, which is described
by the Ising conformal field theory with central charge c = 1/2.

It is well known that the TFIC admits a representation in terms of non-interacting
fermions by a Jordan-Wigner transformation

σz` = ia2`a2`−1 , σx` =

(
`−1∏
j=1

(ia2ja2j−1)

)
a2`−1 , σy` =

(
`−1∏
j=1

(ia2ja2j−1)

)
a2`, (4.60)

where a` are Majorana fermions satisfying the anti-commutation relations {a`, an} = 2δ`n.
The usual spinless fermions are obtained by taking linear combinations c†` = (a2`−1 +

ia2`)/2. It is now straightforward to see that spin-spin correlation functions map onto
expectation values of strings of fermions, e.g.

〈σx` 〉 = (−i)`−1

〈
2`−1∏
j=1

aj

〉 〈
σx` σ

x
`+n

〉
= (−i)n

〈
2`+2n−1∏
j=2`

aj

〉
. (4.61)

Application of the Jordan-Wigner transformation to the TFIC Hamiltonian (4.58) results
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in a fermion Hamiltonian of the form

H =
I− eiπN

2
HR +

I + eiπN

2
HNS ,

HNS/R = iJ
L−1∑
j=1

a2j [a2j+1 − ha2j−1]− iJa2L [ha2L−1 ∓ a1] . (4.62)

Here eiπN is the fermion parity operator with eigenvalues ±1

eiπN =
L∏
`=1

σz` = (−i)L
2L∏
j=1

aj , eiπNaj = −ajeiπN . (4.63)

HR,NS commute with the fermion parity operator, and the full Hamiltonian (4.62) is
therefore block-diagonal: HR (HNS) describes the action on states with an odd (even)
number of fermions.

The Hamiltonians HNS/R can be diagonalised by Bogoliubov transformations to
canonical momentum space fermion operators bp.

Ha(h) =
∑
p∈a

εh(p)

(
b†pbp −

1

2

)
, a = R, NS , (4.64)

where the single-particle energy is given by

εh(k) = 2J
√

1 + h2 − 2h cos k. (4.65)

The difference between R and NS sectors enters via the allowed values of the momenta,
which are p = πn

L
, where n are even/odd integers for R and NS fermions respectively.

The ground states of HR,NS(h) are the fermionic vacua

bp|GS〉a = 0 ∀p ∈ a , a = R,NS. (4.66)

These vacuum states are also eigenstates of the fermion parity operator

eiπN |GS〉NS = |GS〉NS , eiπN |GS〉R = sgn(h− 1) |GS〉R . (4.67)

From (4.62) it follows that in the ferromagnetic phase h < 1 both fermion vacua are
eigenstates of the full Hamiltonian H. Their respective energies are exponentially (in
system size) close, and they become degenerate in the thermodynamic limit. Spin-flip
symmetry then gets spontaneously broken, and the ground state is either the symmetric
or the antisymmetric combination of the two vacuuum states. In the paramagnetic
phase h > 1 the ground state of H is given by the NS vacuum state. In summary, we
have

|GS〉 =

{ |GS〉NS±|GS〉R√
2

h < 1

|GS〉NS h > 1 .
(4.68)
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Quench protocol

We now consider the following quench protocol. We prepare the system in the ground
state of H(h0), and at time t = 0 quench the transverse field to a new value h. At times
t > 0 we time evolve with the new Hamiltonian H(h). We now turn to the dynamics of
spin correlations.

One-point functions

The longitudinal spin operator σxj = (−i)`−1
∏2`−1

j=1 aj is the simplest and most important
example. Its expectation value is the order parameter in the ferromagnetic phase. As we
are dealing with an odd operator, its expectation value is identically zero for quenches
originating in the paramagnetic phase. For quenches from the ferromagnetic phase
(h0 < 1) it was shown in [127] that

〈Ψ(t)|σxj |Ψ(t)〉 ' Cx(t)e−t/τx , h0 < 1 , (4.69)

where the inverse decay time is given by

τ−1
x =

∫ π

0

dk

π
ε′h(k) ln

∣∣∣∣1−K2(k)

1 +K2(k)

∣∣∣∣ . (4.70)

Here the function iK(k) correponds to the kernel ℵk in (4.25) and in this case satisfies
K(k) = tan ∆k/2, with

cos ∆k =
hh0 − (h+ h0) cos k + 1√

1 + h2 − 2h cos k
√

1 + h2
0 − 2h0 cos k

. (4.71)

The prefactor Cx(t) was calculated in [127] and reads

Cx(t) =


√

1−hh0+
√

(1−h2)(1−h20)

2
√

1−hh0(1−h20)
1
4

h < 1[
h
√

1−h20
h+h0

] 1
4

[1 + cos(2εh(k0)t+ α) + . . .]
1
2 h > 1 ,

(4.72)

where the dots stand for higher orders in the post-quench quasiparticle density.
At first sight the exponential decay (4.69) of the order parameter for quenches within

the ferromagnetic phase may look surprising. Even a very small quench will lead to
the eventual disappearance of the order parameter. A simple way of understanding
this is to note that the ferromagnetic order persists only at zero temperature T = 0,
and melts for any T > 0. By means of our quantum quench we deposit a finite energy
density into the system, which is very similar to imposing a finite temperature. This
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Figure 4.4: Expectation value of the order parameter after two quenches within the ferromag-
netic phase (left) and two quenches across the critical point (right). Numerical results obtained
in the thermodynamic limit are compared with the asymptotic predictions (4.69) (labelled as
“determinant”). In the left panel analytic results obtained by form factor methods[127] are
shown as well (labelled as “form factor”). Figures taken from [127].

consideration provides an intuitive explanation for why even small quenches wipe out
the long range order present in the initial state. We note that this behaviour is specific
to one dimensional systems, where discrete symmetries can be spontaneously broken
only at T = 0.

We remark that a more recent result for (4.69) is presented in [128] where, with a
different approach, they obtained the same result for the decay time τx while they found
a different C coefficient, known to second order in the post-quench quasiparticle density.

Spin-spin correlators

A particularly useful way of describing the time dependence of two-point functions
after a quantum quench is by considering an asymptotic expansion around the so-called
space-time scaling limit [127]. The latter refers to the behaviour along a particular ray
in space-time

t, `→∞ ,
vmaxt

`
= κ = fixed. (4.73)

Here vmax = maxk
dεh(k)
dk

is the maximal group velocity of elementary excitations of the
post-quench Hamiltonian.

In the space-time scaling limit the order parameter two-point function ρxx(`, t) takes
the form

ρxx(`, t) ' Cx(`, t) exp
[ ∫ π

0

dk

π
ln

∣∣∣∣1−K2(k)

1 +K2(k)

∣∣∣∣min
(
2ε′h(k)t, `

)]
. (4.74)
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The function Cx(`, t) has been determined in Ref. [127]:

◦ For quenches within the ferromagnetic phase, h0, h < 1, Cx(`, t) equals the constant

Cx(`) ≡ CxFF =
1− hh0 +

√
(1− h2)(1− h2

0)

2
√

1− hh0
4
√

1− h2
0

. (4.75)

For times smaller than the Fermi time

tF =
`

2vmax

, (4.76)

(4.74) equals the square of the one-point function (4.69). Thus, in the space-time
scaling limit, connected correlations vanish identically for times t < tF and begin
to form only after the Fermi time. We stress that this does not imply that the
connected correlations are exactly zero for t < tF : in any model, both on the
lattice or in the continuum there are exponentially suppressed terms (in `), which
however vanish in the scaling limit.

Also for this case in [128] they present the result

ρxx(`, t) ' C exp

(
−2

∫ π

−π
ρ(x)(1 + 2πρ(x))|tε′(x)− `|dx

)
,

C = ξ exp

(
−2

∫ π

−π

∫ π

−π

ρ(y)ρ′(x)

tan
(
x−y

2

)dxdy) (4.77)

with ρ(x) = 1−cos ∆k
4π

and ξ = (1− h2)1/4.

◦ For quenches from the ferromagnetic phase to the paramagnetic phase the prefactor
is given by

Cx(`, t) = CxFP

[
1 + θH(tF − t)

(
cos(2εh(k0)t+ α) + . . .

)]
, (4.78)

where CxFP is given by

CxFP =

√
h
√

1− h2
0

h+ h0

, (4.79)

while k0 and α are the constants appearing in the one-point function (4.72). Again,
the dots stand for higher orders in the post-quench quasiparticle density. For
t < tF , (4.74) is simply the square of the corresponding one-point function, which
ensures that connected correlations vanish for t < tF in the space-time scaling
regime. We note that the expression for t < tF is a conjecture [127].
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◦ For quenches within the paramagnetic phase one has

Cx(`, t) ' CxPP(`) + (h2 − 1)
1
4

√
4J2h

∫ π

−π

dk

π

K(k)

εk
sin(2tεk − k`) + . . . , (4.80)

where CxPP(`) is the function defined by

Cx(`) ≡ CxPP(`) =


−h0

√
h
(
hh0−1+

√
(h2−1)(h20−1)

)2
4
√
π(h20−1)3/4(h0h−1)3/2(h−h0)

`−3/2 if 1 < h0 < h ,√
h(h0−h)

√
h20−1

(h+h0)(hh0−1)
if 1 < h < h0.

(4.81)

Eq. (4.80) constitutes the leading order in a low-density expansion computed
within the form-factor formalism. The exact expression for a generic (not small)
quench is not known.

◦ For quenches from the paramagnetic to the ferromagnetic phase, for t > tF , Cx(`, t)
is independent of time and is given by

Cx(`) ≡ CxPF(`) =

√
h0 − h√
h2

0 − 1
cos
(
` arctan

√
(1− h2)(h2

0 − 1)

1 + h0h

)
. (4.82)

For t < tF the correlator is exponentially small and, to the best of our knowledge,
there are no analytic predictions for its behaviour.

Entanglement entropy

We now turn to the entanglement entropy introduced in section 4.3.2 through (4.49).
Exact results for the evolution of the entanglement entropy after quenches in the

transverse field Ising chain [129] are in accordance with the structure suggested by the
quasi-particle picture introduce in section 4.3. In the limit 1� `, Jt, the entanglement
entropy of a block of ` neighbouring spins is

S[ρB] '
∫ π

π

dk

2π
w(〈Ψ(0)|n(k)|Ψ(0)〉) min

(
`, 2|ε′(k)|t

)
+ o(`) , (4.83)

where w(x) = −x log x− (1− x) log(1− x) is the entropy per site and 〈Ψ(0)|n(k)|Ψ(0)〉
is the (conserved) density of elementary excitations of the post-quench Hamiltonian H
with momentum k at times t > 0. It is given by

〈Ψ(0)|n(k)|Ψ(0)〉 =
K2(k)

1 +K2(k)
, (4.84)
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where K2(k) was defined through (4.71). It follows from (4.83) that the entanglement
entropy increases linearly until the Fermi time (4.76), and then slowly approaches its
stationary value set by the GGE. The latter equals the entropy per site of the GGE for
the entire system [130]∫ π

π

dk

2π
w(〈Ψ(0)|n(k)|Ψ(0)〉) = lim

L→∞

1

L
S[ρGGE] . (4.85)
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5

Quasi-particle Spectrum, Entropy
Generation and Post-quench Relaxation

in Quantum Spin Chains

As seen in the previous chapter, entanglement entropy is an important characteristics of
the non-equilibrium evolution and the stationary state resulting after a quench. Therefore
has been studied extensively in recent years [129–144]. The growth of entanglement
also has important implications for the efficiency of computer simulations of the time
evolution [145–149]. Recently it has become possible to measure entanglement entropy
and its temporal evolution in condensed matter systems [106, 150, 151].

For systems where interactions have a suitable fall-off with distance, the quasi-
particle propagation is limited by the existence of a maximum speed vmax called the
Lieb-Robinson bound [119]. For the entanglement entropy S` of a subsystem of length `
with the rest of system this results in an overall linear growth of entanglement entropy
S`(t) ∼ t for times t < `/2vmax, after which it becomes saturated as the subsystem
approaches its stationary state [116]. The late time asymptotic value of entanglement
entropy of a large subsystem can also be interpreted as the usual thermodynamic
entropy [106, 116, 152–154] and consequently the growth of entanglement entropy can be
interpreted as a signal of the approach to equilibrium. In the regime dominated by the
linear growth, entanglement generation can be characterised by the mean entanglement
entropy production rate ∂tS, which naturally depends on the post-quench spectrum and
its quasi-particle content.

A more general set of entanglement measures are the so-called Rényi entropies

S(n)(t) =
1

1− n log Tr ρn(t) , (5.1)

which in the limit n→ 1 converge to the von Neumann entropy SA(t); the n = 2 case
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is also known as the purity of the reduced density matrix ρA(t). At present there is
no generalisation of the approach of [152, 155] to compute the time evolution of Rényi
entropies in integrable models and only the stationary values are known [156–158]. In
contrast to the von Neumann entanglement entropy the Rényi entropies are not related
directly to the thermodynamics of the system. Nevertheless, the quasi-particle picture
suggests that the evolution of the Rényi entropies tracks closely that of the von-Neumann
entanglement entropy, including the initial linear growth and later saturation. Contrary
to the von Neumann entanglement entropy, the Rényi entropies can also be directly
accessed by experiment [106, 151].

Much less is known about entanglement dynamics in quenches governed by non-
integrable post-quench dynamics. In the case of the quantum Ising chain it was shown
in recent studies that switching on an integrability breaking longitudinal magnetic field
h leads to non-trivial dynamical phenomena. The dependence of the mean entanglement
entropy production rate ∂tS on the quench parameter h shows an anomalous behaviour in
the paramagnetic phase: a sudden increase setting at the threshold value of h where a new
quasi-particle excitation appears in the spectrum [159]. Using the physical interpretation
of the asymptotic entanglement of a large subsystem as the thermodynamic entropy of
the stationary (equilibrium) state, this can be recognised as arising from the contribution
of mixing entropy between the particle species, and so the effect can be interpreted as a
non-equilibrium manifestation of the Gibbs paradox.

The approach to equilibrium can also be characterised by the rates of relaxation
of physical observables, such as order parameters. It is natural to expect a close
correspondence between the entropy growth rates S(n)

A (t) and the relaxation rates of
expectation values of order parameters after the quench. Indeed, in the transverse field
Ising spin chain it is possible to compute the Rényi entropy growth rates [129] and the
magnetisation relaxation rate [127] explicitly, and for small post-quench density they are
related by simple proportionality factors. The same relation between entropy growth
and relaxation rates was found in the scaling Ising field theory in [160] when comparing
Rényi entropy growth rates to the magnetisation relaxation rate computed in [161].

The relation between entropy growth and relaxation is interesting since magnetisation
relaxation rates have a straightforward physical meaning and can be measured much
more directly. Therefore it is interesting to study how the behaviour of entanglement
entropy growth is reflected in Rényi entropy and especially relaxation rates. In the next
chapter we also discuss a recent example of such a relation, where it was observed that
dynamical confinement can limit entropy growth, which is accompanied by apparently
undamped oscillations in magnetisation [162].
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In the case of non-equilibrium manifestation of the Gibbs paradox, magnetisation re-
laxation rates provide an experimental signature of the effect instead of the entanglement
entropy which is not directly observable.

Motivated by the above considerations, the aim of this chapter is to demonstrate the
manifestation of the Gibbs paradox mechanism in the quantum Potts spin chain and to
analyse the relation between entropy growth and relaxation in quantum quenches in the
quantum Ising and Potts spin chains.

The outline of the chapter is as follows:

◦ In the first part we demonstrate the manifestation of the Gibbs paradox mechanism
in the quantum Potts spin chain. Quenches in the paramagnetic phase are
considered first in Sec. 5.1, where it is shown that the effect observed in [159]
generalises from the Ising to the Potts case. The determination and analysis of
spectrum in the paramagnetic phase are presented in Sec. 5.2. Sec. 5.3 analyses the
relation between the time evolution and the quasi-particle spectrum, arguing that
the scenario proposed in [159] holds for the Potts case as well, and also discussing
specific aspects where the Potts model differs from the Ising case considered in
[159];

◦ In the second part we study the relation between relaxation and entropy growth.
In Sec. 5.4 we recall exact results for quenches in the transverse field Ising spin
chain, also introduced in Sec. 4.4, and exhibit the exact ratios of Rényi entropy
rates to the magnetisation relaxation rate for small post-quench density. Sec. 5.5
proceeds to the transverse field Potts spin chain which is non-integrable, therefore
we approach it via numerical simulation. For small quenches the ratios of Rényi
entropy rates to the magnetisation relaxation rate again turn out to be universal
rational numbers, related to the symmetry properties of the order parameter and
the replica symmetry underlying the computation of the Rényi entropy. Sec. 5.6
turns to quenches in the paramagnetic phase corresponding to switching on a
longitudinal magnetic field, demonstrating that the relaxation rate provides a
direct way for observation of the “dynamical Gibbs effect”.

5.1 Quenches in the quantum potts spin chain

The 3-state Potts quantum spin chain is defined on the Hilbert space

H =
L⊗
i=1

(
C3
)
i

(5.2)
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where i labels the sites of the chain of length L. The quantum space C3 at site i has the
basis |α〉 with α = 0, 1, 2 corresponding to the spin degrees of freedom. The dynamics is
defined by the Hamiltonian

H = −J
L∑
i=1

[
2∑

α=0

(
Pα
i P

α
i+1 + hαP

α
i

)
+ gP̃i

]
(5.3)

where

Pα = |α〉〈α| − 1

3
13×3 (5.4)

P̃ =
1

3

2∑
α,α′=0

(1− δαα′) |α〉〈α′|

and we assume periodic boundary conditions

Pα
L+1 ≡ Pα

1 , P̃L+1 ≡ P̃1 (5.5)

The parameters hα and g are dimensionless, while energy (and by implication, time)
units are specified by J . In all of our subsequent numerical calculations we use units
with J = 1 and also ~ = 1.

In the absence of the “longitudinal” magnetic fields hα, the chain is invariant under
the S3 permutation symmetry of the three spin states α = 0, 1, 2 and it has a critical point
at g = 1 corresponding to a phase transition between a paramagnetic (PM) g > 1 and
ferromagnetic (FM) g < 1 case. In the PM phase, there is a single S3 invariant vacuum,
while in the FM phase there are three vacua that become degenerate in the infinite
length limit. The order parameter for the transition is given by the magnetisations
m(α) = 〈Pα

i 〉 and the quantum critical point separating the phases can be described
with a conformal field theory (CFT) with central charge c = 4/5.

5.1.1 The quench protocol and the simulation procedure

The non-equilibrium time evolution we study is defined by the following quench protocol.
The initial state is the ground state |Ψ(0)〉 of the pre-quench Hamiltonian

Hpre = −J
L∑
i=1

[
2∑

α=0

(
Pα
i P

α
i+1

)
+ gP̃i

]
(5.6)

which is unique in the paramagnetic phase g > 1. We consider four values g =

1.25, 1.5, 1.75 and 2.0, and the time evolution is given by

|Ψ(t)〉 = e−iHt|Ψ(0)〉
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where the post-quench Hamiltonian is given by (5.11):

H = −J
L∑
i=1

(
2∑

α=0

Pα
i P

α
i+1 + hP 0

i + gP̃i

)
(5.7)

and we consider the time evolution as a function of h which is taken to be non-negative.
The time evolution is computed using the infinite volume time evolving block

decimation (iTEBD) algorithm [163]. Using translational invariance, the many-body
state is represented as the Matrix Product State (MPS)

|Ψ〉 =
∑

...,sj ,sj+1,...

· · ·ΛoΓ
sj
o ΛeΓ

sj+1
e · · · | . . . , sj, sj+1, . . .〉 ,

where sj spans the local 3-dimensional spin Hilbert space, Γso/e are χ × χ matrices
associated with the odd/even lattice site; Λo/e are diagonal χ × χ matrices with the
singular values corresponding to the bipartition of the system at the odd/even bond
as their entries. The many-body state is initialised to the product state |Ψ0〉 =⊗

1√
3
(|0〉+ |1〉+ |2〉). The ground state |Ψ(0)〉 was obtained by time-evolving the initial

state |Ψ0〉 in imaginary time by the pre-quench Hamiltonian (5.6), using a second-order
Suzuki-Trotter decomposition of the evolution operator with imaginary time Trotter
step τ = 10−3. Due to the presence of an energy gap, an auxiliary dimension χ0 = 81

was sufficient to have a very accurate result for the ground state.
The post-quench time evolution was obtained by evolving |Ψ(0)〉 with the post-quench

Hamiltonian (5.7) in real time, again using a second-order Suzuki-Trotter decomposition
of the evolution operator with real time Trotter step δt = 0.005. To keep the truncation
error small the auxiliary dimension was allowed to grow up to χmax = 243 which was
sufficient to reach a maximum time T = 40. For more on the iTEBD algorithm see
Appendix C.

5.1.2 Entanglement growth rate

The central issue of this analysis concerns the evolution of the half-system entanglement
entropy S(t). This is defined by cutting the system into two halves H and H̄ and
introducing the reduced density matrix

ρH(t) = TrH̄|Ψ(t)〉〈Ψ(t)|

Then the half-system entanglement entropy is given by

S(t) = −TrHρH(t) log ρH(t) .
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Figure 5.1: The time evolution of S(t) for g = 1.75 and h = 0.10, 0.20, 0.40, 0.42 and 0.45,
where time is measured in units of 1/J . The vertical line drawn at time t shows the limit above
which the average slope was extracted, the corresponding fits are shown by the black dotted
lines.

As illustrated in Fig. 5.1 after a relatively short transient S(t) shows a linear trend
(with some slowly decaying oscillations) as expected after a global quantum quench.
A numerical estimation of the mean entanglement entropy production rate ∂tS was
obtained by a linear fit of the iTEBD data in the time window 20 ≤ t ≤ 40. The
dependence of ∂tS on h for the values of the transverse field g = 1.25, 1.5, 1.75 and 2.0

is shown in Fig. 5.2. It can be seen clearly that ∂tS has a local minimum at a value
hmin, the values of which are summarised in the following table:

g 1.25 1.5 1.75 2.0

hmin 0.10 0.28 0.49 0.72

This very peculiar, non-monotonous behaviour of ∂tS was previously seen for quenches
in the paramagnetic Ising spin chain [159] where it was explained by the effect of the
quasi-particle spectrum on the entanglement entropy production. In the following we
investigate the detailed dynamics of the Potts model to see whether it confirms the
scenario proposed in [159], which posited that the reversal of the decreasing trend in
∂tS at hmin is due to the appearance of a new quasi-particle excitation in the spectrum,
which enhances entropy production by increasing the number of species available.
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Figure 5.2: The mean entanglement entropy production rate ∂tS as a function of h for
g = 1.25, 1.5, 1.75 and 2.0.

5.2 Spectrum of the paramagnetic Potts spin chain

5.2.1 The case hα = 0

In the ferromagnetic phase the quasi-particle spectrum of the chain consists of kink
excitations Kαβ connecting the vacua according to the adjacency condition

α− β = ±1 mod 3 (5.8)

with an obvious action of the permutation symmetry.
In the paramagnetic phase the quasi-particle spectrum consists of doubly degenerate

magnons. Choosing two generators C and T for the group S3 which satisfy the relations

T 3 = 1 , C2 = 1 , CT C = T −1 (5.9)

one can introduce a basis in the magnonic space with one-particle states at fixed
momentum given by |A(k)〉and |Ā(k)〉. They form the two-dimensional irreducible
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representation of S3 defined by the relations:

T |A(k)〉 = e2πi/3|A(k)〉
T |Ā(k)〉 = e−2πi/3|Ā(k)〉
C|A(k)〉 = |Ā(k)〉 (5.10)

For more information regarding the quasi-particle spectrum of the chain we refer the
interested reader to the work [164] and references therein.

5.2.2 The case hα 6= 0

Switching on one or more longitudinal magnetic fields hα leads to an explicit breaking
of the symmetry group S3. In the ferromagnetic case this results in confinement which
is well-studied in the scaling limit [165–169]. However, in this work we are interested
in the paramagnetic phase, and consider switching on one of the fields h0 = h 6= 0 and
keeping h1,2 = 0. Therefore our Hamiltonian is

H = −J
L∑
i=1

(
2∑

α=0

Pα
i P

α
i+1 + hP 0

i + gP̃i

)
(5.11)

This partially breaks the symmetry S3, leaving only a Z2 subgroup intact. We choose
the generator C to correspond to the unbroken subgroup, which in this case is generated
by the transformation swapping the spin directions 1 and 2. Then for h = 0 one can
introduce the quasi-particle basis corresponding to the eigenstates of C

|A±(k)〉 =
1√
2

(
|A(k)〉 ± |Ā(k)〉

)
(5.12)

For h = 0 they are degenerate, but for a non-zero h the degeneracy is lifted. As shown
below, similarly to the case of the Ising spin chain [159], for any fixed g > 1 there is
some critical value hcrit above which two A+ quasi-particles form a C-even bound state B
which can formally be written as a two-particle state with imaginary relative momentum

|B(k)〉 ∝ |A+(k/2 + iκ/2)A+(k/2− iκ/2)〉 . (5.13)

It is likely that the spectrum shows a larger variation when considering the whole range
of parameters hα and g (in the Ising case, there also exist another bound state for larger
values of h: cf. [159] for the spin chain, and [170] for the scaling field theory). However,
in this work we restrict ourselves to the regions 0 ≤ h ≤ hcrit and hcrit . h, and leave a
more complete exploration of the parameter space for the future.
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Figure 5.3: Dispersion relations for A+ and A− for g = 1.5 and h = 0.2, 0.3 and 0.4. Energies
are shown in units of J , while momentum is shown in units of 1/a, where a is the lattice
spacing.

5.2.3 Quasi-particle dispersion relations for h > 0

We determined the quasi-particle dispersion relations applying exact diagonalisation of
the Hamiltonian (5.11). After determining a few hundred states at the bottom of the
spectrum, they were sorted into bins containing energy levels that are degenerate within
numerical precision. Most of the eigenvalues appear in degenerate pairs of states with
opposite total momentum k and −k, with the exception of singlets with momenta k = 0

and k = π. Momenta of states can be obtained by diagonalising the shift operator S
mapping site i to site i+1 mod L within the bins. In the paramagnetic phase, the ground
state is an isolated singlet, followed by two branches of one particle states corresponding
to momenta

kn = n
2π

L
, n =

[
−L

2

]
+ 1, . . . ,

[
L

2

]
(5.14)

where the two branches are distinguished by the eigenvalue of C which corresponds to
the unbroken Z2. We computed the quasi-particle branches for chain lengths L from 12
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Figure 5.4: Quasi-particle gaps ∆± and ∆B (in units of J) as functions of h. The vertical
dashed line shows the threshold value of h above which the bound state quasi-particle B exists.

to 15. An example result is shown in Fig. 5.3.
It turns out that dependence on the finite size L is very weak, so one can treat the

results from different chain lengths L as sampling the same (infinite volume) dispersion
relations ε±(k). In addition, the fitting functions

ε±(k) =
√
a± + b± cos k (5.15)

inspired by the free fermion dispersion relation provide an excellent description of the
numerical data. The fits can be used to determine both the gaps

∆± =
√
a± + b± (5.16)
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and the Lieb-Robinson (LR) velocities

vmax± = max
k

∂ε±
∂k

(5.17)

To find the bound state threshold, we use a different approach for the determination
of the gap that leads to a much more precise result. Note that for each chain length
one can obtain the value of the gap ∆±(L) from the energy of the first/second zero
momentum excited state relative to the ground state. Using the theory of finite size
effects [171] one can then extrapolate these to infinite volume using the fitting functions

∆±(L) = ∆± + γ±e
−µ±L (5.18)

For the choices of the transverse field g = 1.25, 1.5, 1.75 and 2.0, the dependence of
the gaps and LR velocities on the longitudinal field h are shown in Figs. 5.4 and 5.5,
respectively.

5.2.4 Bound state threshold

Determination of hcrit

For h < hcrit, the part of the spectrum above the two quasi-particle branches consists of
many-particle states called the continuum. Since ∆+ < ∆− for h > 0, the lowest lying
levels are two-particle states1

|A+(k/2 + q/2)A+(k/2− q/2)〉

of total momentum k taking the values (5.14), while q is their relative momentum, which
is quantised differently due to interaction effects involving the scattering phase shift
[172]. The lowest lying even state above |A+(0)〉 corresponds to a zero-momentum state

|A+(qmin/2)A+(−qmin/2)〉

where qmin is the smallest allowed value for the relative momentum q. When h approaches
hcrit, qmin goes to 0 and for h > hcrit it turns imaginary according to the standard
quantum mechanical relation between scattering and bound states, with the state
becoming identical to

|B(0)〉
1In fact, this state can hybridise with A−A− two-particle states, but it does not change the subsequent

considerations and so we omit this term for simplicity.
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Figure 5.5: Lieb-Robinson velocities vmax± and vmaxB as functions of h. The vertical dashed
line shows the threshold value of h above which the bound state quasi-particle B exists.
Velocities are shown in units of Ja, where a is the lattice spacing.

i.e. a zero-momentum level with a single B quasi-particle. Denoting the energy gap of
this level by ∆B one has

∆B > 2∆+ h < hcrit

∆B = 2∆+ h = hcrit (5.19)

∆B < 2∆+ h > hcrit

which makes possible the determination of hcrit.
Finite size effects can be eliminated using the exponential extrapolation according
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Figure 5.6: Finite size extrapolation for the gap ∆B (in units of J). Note that well above
the threshold value of h ≈ 0.49 the exponential fit works very well (a), while at the threshold
it completely misses (b). However, comparing (a) abd (b) shows that the range of variation of
∆B is much smaller when at the threshold, corresponding to the vanishing of the leading order
finite size correction.

to the leading order finite size dependence predicted in [171]

∆B(L) = ∆B + γBe
−µBL (5.20)

when h > hcrit. Here 1/µB is a length scale corresponding to the spatial extension of
the A+A+ bound state wave function, which diverges at h = hcrit and so the simple
exponential extrapolation prescribed by (5.20) becomes impossible in the vicinity of
the threshold hcrit, as illustrated in Fig. 5.6. However, in that case γB vanishes as well
since it corresponds to the effective coupling between two A+ particles which changes
sign from attractive to repulsive and so vanishes at the threshold, so the finite volume
dependence is much weaker as it is determined by subleading corrections.

For h < hcrit the energy level is a scattering state and volume dependence is different
(decaying as a power in L) and much better numerical data are necessary in order
to describe it in terms of scattering characteristics [172]. However, since we are not
interested in finding the actual value of the energy level in that range we can simply fit
it by the same function (5.20) to keep our procedure uniform.

The value of hcrit can be determined by plotting ∆B/∆+ as a function of h and
finding the value where it crosses 2, as shown in Fig. 5.7.
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Figure 5.7: Determining hcrit from ∆B/∆+ as a function of h.

Dispersion relation for B

In the regime h > hcrit the states with momenta (5.14) lying just above the two quasi-
particle branches A± correspond to single-quasi-particle states |B(kn)〉, and their energies
allow the determination of the dispersion relation of B as shown in Fig. 5.8. Just as it
was noted in the case of the Ising chain [159], the dispersion relation can be fitted well
with the function

εB(k) =
√
aB + bB cos k + cB cos 2k

from which it is possible to determine both the gap ∆B =
√
aB + bB + cB and the

Lieb-Robinson velocity vmax± = max
k

∂ε±
∂k

. Just as in the case of the “elementary” quasi-
particles A±, the gap ∆B can also be determined using the extrapolation (5.20) which

94



5. Quasi-particle Spectrum, Entropy Generation and Post-quench
Relaxation in Quantum Spin Chains

1.0 0.5 0.0 0.5 1.0
k/

2.2

2.4

2.6

2.8

3.0

3.2

3.4

B

 L=12
 L=13
 L=14
 L=15
h = 0.4
h = 0.5
h = 0.6

Figure 5.8: Dispersion relation for B at g = 1.5 and h = 0.4, 0.5 and 0.6. Energies are shown
in units of J , while momentum is shown in units of 1/a, where a is the lattice spacing.

leads to a more accurate result. It is also clear from Fig. 5.8 that moving closer to the
threshold i.e. for smaller h, when the quasi-particle B becomes more weakly bound
the finite size dependence becomes stronger, which is in fact expected from 5.20 since
when the spatial extension of the bound state wave function increases, the exponent µB
becomes smaller.

5.3 Quasi-particle spectrum and non-equilibrium time
evolution

5.3.1 Time evolution of magnetisation

The three components of longitudinal magnetisation can be computed as

mα(t) = 〈Ψ(t)|Pα
i |Ψ(t)〉
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Figure 5.9: Time evolution of the longitudinal and transverse magnetisations m0(t) resp.
m̃(t) for g = 1.25 and h = 0.06, 0.10 and 0.12, showing both the real time dependence and its
Fourier power spectrum (FPS). Frequencies are shown in units of J .
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Due to translation invariance they are independent of the spatial position i and from
the definitions (5.4) and due to the residual symmetry Z2 they satisfy

m1(t) = m2(t) = −m0(t)

2
.

Transverse magnetisation can be defined as

m̃(t) = 〈Ψ(t)|P̃i|Ψ(t)〉 .

An example of their time evolution is shown in Fig. 5.9. Following [162] and [159],
the Fourier spectra of their time series can be used as to determine the post-quench
quasi-particle spectrum via a sort of “quench spectroscopy”. The power spectra were
obtained using FFT with an angular frequency resolution dω = 2π/T ' .157 and are also
illustrated in Figs. 5.9. They agree well with the predicted quasi-particle gaps; note that
due to the Z2 symmetry of the initial state preserved by the post-quench Hamiltonian
(5.7), only C-even states are visible. The second peak in the power spectrum which
appears above the critical value of h is the signature of a new bound state, in agreement
with the predicted spectrum from exact diagonalisation.

We remark that the post-quench state has a finite energy density, which induces
corrections in the quasi-particle spectrum and introduces a finite life-time. The presence
of well-defined quasi-particle peaks close to the values extracted from the spectrum of
the zero-density system demonstrates that the post-quench dynamics can be described in
terms of the quasi-particle picture despite the non-integrability of the system, similarly
to the Ising case considered in [159].

5.3.2 Time evolution of entanglement entropy

Now we return to the effect observed in Fig. 5.2. Starting our discussion with the
decreasing trend just before hmin, we note that while presently a full quantitative
understanding is missing, the qualitative picture is clear. The initial increase in ∂tS
comes from the energy density of the quench increasing with h as shown in Fig. 5.10.
The subsequent decline in ∂tS is consistent with the quasi-particle gaps increasing, and
the Lieb-Robinson velocities decreasing with h as demonstrated in Figs. 5.4 and 5.5,
respectively. In fact for very large values of h the dynamics of the whole chain stops
since the Potts spins are locked in the direction of h, suppressing the propagation of
excitations along the chain as shown in the next Subsection.

Now let us consider the reversal of the decreasing trend, which happens at the
position hmin of the local minimum in ∂tS. The value of hmin can be compared to the
threshold hcrit for the excited even quasi-particle B:
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Figure 5.10: Density of energy (in units of J/a, with a denoting the lattice spacing) released
by the quench as a function of h.

g 1.25 1.5 1.75 2.0

hmin 0.10 0.28 0.49 0.72

hcrit 0.10 0.28 0.48 0.71

It is clear that the two positions coincide within numerical accuracy (corresponding
to the number of digits shown in the above table) for small values of g, while hmin is
slightly larger than hcrit for larger g. This is the same pattern as observed for the Ising
spin chain in [159], and it can be explained in the same way.

Firstly, the appearance of the new quasi-particle species B for h > hcrit leads to
a steep increase in the entanglement entropy production due to the contribution of
Gibbs mixing entropy arising from species information carried by the post-quench quasi-
particles. While a full quantitative description is lacking at the moment, there is a simple
argument using quasi-particle pair production rates determined in the scaling Ising field
theory that shows that the presence of mixing entropy can lead to an order-of-magnitude
increase in entropy production. This argument is presented in [159], and we do not
repeat it here in detail.

Secondly, the fact that hmin − hcrit is non-zero and grows with g can also be easily
understood. Note that before particle B appears, ∂tS has a decreasing trend which is
reversed by the appearance of B. However, the rate of production of pairs containing
B is expected to rise only gradually. The reason is when B is only very weakly bound,
the finite density post-quench medium easily destabilises it. So the higher the value of
hcrit, the larger is the quench when B appears, leading to a higher destabilising effect
of the post-quench medium to be overcome. Since hcrit increases with g, the difference

98



5. Quasi-particle Spectrum, Entropy Generation and Post-quench
Relaxation in Quantum Spin Chains

hmin− hcrit is also expected to increase with g as well. This is indeed what was observed
both here in the Potts case, and also the Ising case considered in [159].

5.3.3 Large h behaviour

10 1 100 101

h

0.00

0.02

0.04

0.06

0.08

tS

Figure 5.11: Entanglement entropy production rate ∂tS for g = 1.5, including the regime
of large h > 0. The shaded region corresponds to a parameter range where entropy growth
was so fast that ∂tS could not be evaluated from iTEBD as it was impossible to follow the
dynamics for long enough times.

Recalling the Hamiltonian (5.7) we see that for large h� g the spins of the chain
are essentially frozen in direction 0. This is consistent with the increasing gaps and
decreasing velocities for the excitations shown in Figs. 5.4 and 5.5. For a very large
value of h, the dynamics slows down and ∂tS goes to zero, as shown in Fig. 5.11.

5.3.4 The regime h < 0

When h < 0, no freezing of the dynamics occurs for h � −g. The reason is that
although a large negative h freezes direction 0, the energetically favoured directions 1

and 2 remain degenerate and so the chain effectively enters an Ising regime where ∂tS
grows monotonously with the amount of energy injected into the system as shown in
Fig. 5.12. Examining the quasi-particle threshold shows that here A− is lighter than A+

and there is even a threshold value h−(≈ −0.19 for g = 1.5) below which ∆+ > 2∆−.
Therefore, for h < h− the excitation A+ becomes unstable and decays into a pair of A−
particles; as a result, the number of available species decreases.
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Figure 5.12: Entanglement entropy production rate ∂tS for g = 1.5 including the range
h < 0
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Figure 5.13: Quasi-particle gaps ∆± (in units of J) and Lieb-Robinson velocities vmax± (in
units of Ja, where a is the lattice spacing) for h < 0 (with g = 1.5). The vertical dashed line
shows the threshold value h− ≈ −0.19 beyond which A+ becomes unstable and decays into
two A− quasi-particles.

Turning to the details of the quasi-particle spectrum, a direct calculation using exact
diagonalisation (as described in Section 5.2) shows that the quasi-particle gap ∆− rapidly
decreases, while the Lieb-Robinson velocities vmax− increases when h becomes more
negative as shown in Fig. 5.13. Coupled with the rapid increase of the energy density
injected in the quench very similar to the h > 0 domain (starting with a quadratic rise
and having a linear asymptotics for large |h|, cf. Fig. 5.10), this explains the rapid rise
in ∂tS. Note that even though A+ becomes unstable at h−, it barely has any effect on
entropy generation. The reason is that the gap and Lieb-Robinson velocity of A+ behave
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in an opposite way compared to A−, so with h becoming more negative the share of A+

in the entropy production decreases rapidly. By the point when h passes through h−,
the only observable effect of A+ becoming unstable is a hint of an inflection point in the
dependence of ∂tS on h at the threshold (cf. Fig. 5.12).

We turn now to the discussion on the relation between relaxation and entropy
generation in quantum spin chains.

5.4 Quenches in the transverse field Ising spin chain

Due to a slight change of notation, we recall the main concepts already introduced in
4.4 when quenching the Transverse Field Ising Chain, defined by the Hamiltonian

H(g) = −J
N∑
j=1

(
σxj σ

x
j+1 + gσzj

)
, (5.21)

where σαj are the Pauli matrices at site j, and J is taken to be positive. The model can
be solved exactly by mapping the spin variables to Majorana fermion modes αk with
momenta k = 2πr/N 2 [173, 174], in terms of which the Hamiltonian becomes

H(g) =
∑
k

εg(k)α†kαk + E0(g) , (5.22)

with the dispersion relation

εg(k) = 2J
√

1 + g2 − 2g cos k (5.23)

and ground state energy

E0(g) = −1

2

∑
k

εg(k) . (5.24)

We consider a quench protocol where the pre-quench Hamiltonian is given by a transverse
Ising Hamiltonian with transverse field g0, and the quench corresponds to switching
the transverse field to a new value g at t = 0. Then both the pre-quench and the
post-quench models are described by free Majorana fermions α̃k and αk, respectively,
related by the Bogolyubov transformation

α̃k = cos

(
∆k

2

)
αk + i sin

(
∆k

2

)
α†−k ,

cos ∆k =
gg0 − (g + g0) cos k + 1√

1 + g2 − 2g cos k
√

1 + g2
0 − 2g0 cos k

. (5.25)

2The momentum quantum number r can take either half-integer or integer values, corresponding to
the Neveu-Schwarz and Ramond sectors.

101



5. Quasi-particle Spectrum, Entropy Generation and Post-quench
Relaxation in Quantum Spin Chains

The initial state can be written in terms of the post-quench eigenstates as

|Ψ0〉 ≡ |0; g0〉 =
1

N exp

{
i
∑
k

K(k)α†kα
†
−k

}
|0; g〉 , (5.26)

with
K(k) = tan

(
∆k

2

)
, cos ∆k =

1−K2(k)

1 +K2(k)
, (5.27)

which allows for a detailed evaluation of the time evolution [127].

5.4.1 Magnetisation

For a quench inside the ferromagnetic regime i.e. both g, g0 < 1, the order parameter
evolves in time according to [127]

m(t) ≡ 〈Ψ0(t)|σx |Ψ0(t)〉 ' (CFF )
1
2 exp

{[
t

∫ π

0

dk

π
ε′g(k) ln | cos ∆k|

]}
, (5.28)

where CFF was conjectured to be

CFF =
1− gg0 +

√
(1− g2)(1− g2

0)

2
√

1− gg0(1− g2
0)

1
4

, (5.29)

which follows by applying the cluster decomposition principle to the two-point function.
The two-point function and the validity of (5.29) was recently reconsidered and a new
result on CFF is presented in [128]. Alternatively, a form factor expansion results in

m(t) ∼
√
ξ[1 + I(t) +O(t−1)]e−Γt , (5.30)

where √
ξ = (1− g2)1/8 ≡ 〈0; g|σx |0; g〉

I(t) = A0

cos
(
2εg(0)t+ 3π

4

)
t3/2

− Aπ
cos
(
2εg(π)t− 3π

4

)
t3/2

+ o(t−3/2)

Γ =

π∫
0

dk

π
K2(k)[2ε′g(k)] +O(K6)

(5.31)

with
Ak =

hJ2K ′(k)
√
πεg(k)2

∣∣ε′′g(k)
∣∣3/2 , k = 0, π , (5.32)

which is equivalent to (5.28) in the limit where K2(k)� 1.
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In the scaling limit the relaxation rate Γ in (5.31) is given by [161]

Γ = 2M

∞∫
0

dθ

π
K̂2(θ) sinh θ , (5.33)

where M = 2J |1− h| is the fermion mass which is kept fixed in the scaling limit, and

iK̂(θ) = K(θ) = i tan

[
1

2
arctan(sinh θ)− 1

2
arctan

(
M

M0

sinh θ

)]
. (5.34)

with M0 = 2J |1− h0| denoting the fermion mass of the pre-quench system.

5.4.2 Rényi entropies vs. relaxation rate

In the scaling limit

Consider a spatial partition of the system into a subsystem A its complement Ā, the
Rényi entropies are given by

Sn :=
1

1− n log Tr ρnA . (5.35)

Its evaluation can be handled by the replica trick where n is the number of replicas and
Rényi entropy for an interval can be represented as a correlator of branch-point twist
fields [175, 176].

Quenching the transverse field corresponds to changing the mass parameter from
a value m0 to m in the scaling Ising field theory (free Majorana fermion). For the
case when the subsystem A spans the (semi-infinite) left/right half of space, the Rényi
entropies can be computed as the expectation values of the appropriate branch-point
twist fields, which can be evaluated to O(K2) using form factors resulting in [160]

Sn(t) = Sn(0) +
Γnt

2(n− 1)
+

nµ2

64πMt(n− 1)
+

µ

8
√
πn

cos π
2n

sin2 π
2n

cos
(
2Mt− π

4

)
(n− 1)(Mt)3/2

+O(t−3),

(5.36)
where

µ = 1− M

M0

(5.37)

parameterises the quench magnitude. We remark that it is unclear at present how to
carry out the n→ 1 limit to obtain the von Neumann entropy in the scaling field theory.

The result (5.36) implies that in the leading order in µ the following relation holds
between the relaxation rate of the magnetisation and the growth rates of the n > 1

Rényi entropies:

γTFIMn =
ΓTFIMn

Γ
=

1

2

1

1− 1/n
. (5.38)
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On the spin chain

In the case of a finite region A of L number of sites, one can calculate the eigenvalues
of the reduced density matrix from a block Toeplitz matrix [116, 177], which allow the
computation of the Sn. For long times t, assuming that L� t the time evolution of the
entropies is given by [129]:

Sn(t) ≈ 2Sn(0) + 2ΓTFIMn t , (5.39)

where 2Sn(0) is the entropy of the initial state and the growth rates ΓTFIMn are given as:

ΓTFIMn =
1

1− n

∫ π

0

dk

π
|ε′g(k)| log(Pn(cos ∆k)) , (5.40)

where Pn(x) = (1+x
2

)n + (1−x
2

)n. The factor of two in (5.39) is related to the number of
boundaries between the subsystems A and B, or identically the number of brach-point
twist field insertions. This result holds for any transverse quenches regardless of the
phase, but in order to compare it to the relaxation of magnetisation we restrict our
consideration to the quenches within the ferromagnetic regime in the following.

In Table 5.1 we compute the ratios γTFIMn for quenches on the spin chain by numerical
integration of (5.28) and (5.40) illustrating the relation (5.38). It is clear that (5.38)
only holds approximately, and the agreement is better for smaller quenches. Note that
a finite quench in the scaling field theory corresponds to a limit in the spin chain when
the quench magnitude goes to zero, so the universal ratio (5.38) continues to hold to
the lowest order of the quench amplitude K, i.e. for small post-quench density.

It is possible to show explicitly that (5.38) holds for small quasi-particle density for
the discrete chain itself. At O(K2) we have that Pn(cos ∆k) as a function of K is given
by

Pn(cos ∆k) = 1− nK2 +O(K4) (5.41)

so that (5.40) becomes

ΓTFIMn =
n

n− 1

∫ π

0

dk

π
|ε′g(k)|K2(k) +O(K4). (5.42)

Comparing the latter result with Γ in (5.31) it is clear that the relation (5.38) holds at
the leading order in K. Including the first correction leads to

γTFIMn =
1

2

1

1− 1/n

(
1− 3n+ 1

2

∫ π
0

dk
π
|ε′g(k)|K4(k)

Γ

)
. (5.43)
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g0 → g γTFIM1 γTFIM2 γTFIM3 γTFIM4

0.3→ 0.5 2.85355 1 0.746474 0.66351

0.5→ 0.3 2.85355 1 0.746474 0.66351

1/3→ 2/3 2.18374 1 0.737744 0.6555

2/3→ 1/3 2.18374 1 0.737744 0.6555

0.5→ 0.7 2.56297 1 0.743885 0.661164

0.7→ 0.5 2.56297 1 0.743885 0.661164

0.6→ 0.66 3.74455 1 0.749385 0.666119

0.6→ 0.66 3.74455 1 0.749385 0.666119

0.6→ 0.606 6.10712 1 0.749996 0.666663

0.1→ 0.11 6.03714 1 0.749994 0.666661

0.1→ 0.101 8.34075 1 0.75 0.666666

0.3→ 0.4 3.60792 1 0.749189 0.665945

0.3→ 0.2 3.67499 1 0.74929 0.666035

Table 5.1: Values of γTFIMn for a set of transverse quenches in the ferromagnetic phase of the
TFIM, in units obtained by setting J = 1.

For the von Neumann entropy we have

lim
n→1

1

1− n logPn(x) = − 1

P1(x)

∂Pn(x)

∂n

∣∣∣∣
n=1

=
1 + x

2
log

(
1 + x

2

)
+

1− x
2

log

(
1− x

2

) (5.44)

resulting in

γTFIM1 =
1

2

(
1−

∫ π
0

dk
π
|ε′g(k)|K2(k) logK2(k) +O(K4)

Γ

)
, (5.45)

which is K dependent. In agreement with the numerical data, this ratio increases for
smaller quenches.
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5.5 Transverse quenches on the quantum Potts spin
chain

5.5.1 The quantum Potts spin chain

The q-state quantum Potts spin chain consists of a chain of generalised spins having
internal quantum states |µ〉i, with i labeling the lattice sites and µ = 0, . . . , q − 1 the
possible internal states of the spins, governed by the Hamiltonian

H = −J
(∑

i

q−1∑
µ=0

P µ
i P

µ
i+1 + g

∑
i

Pi

)
. (5.46)

The first term of the Hamiltonian contains the traceless projector P µ
i = |µ〉i 〈µ|i which

tends to align the spin at site i along the direction µ, while the second term is given
by the traceless operator P = |λ0〉 〈λ0| − 1/q, which forces the spin along the direction
|λ0〉 ≡

∑
µ
|µ〉√
q
. The relative strength of these two terms is regulated by the transverse

magnetic field g: g > 1 is the paramagnetic phase with a unique ground state, while g < 1

is the ferromagnetic phase with q degenerate ground states, spontaneously breaking the
global Sq symmetry. The case q = 2 is the quantum Ising spin chain, while q = 3 gives
the 3-state quantum Potts spin chain which we call quantum Potts spin chain for short.
In both of these cases, the partition function is invariant under the Kramers-Vannier
duality g → 1/g [178], and the two phases are separated by a quantum phase transition
at the critical point gc = 1. For the quantum Ising spin chain, the spectral gap is given
by ∆ = 2J |1− g| (exact), while for the quantum Potts spin chain ∆ ∼ J |g − 1|5/6 (for
g ∼ 1) where the exponent can be extracted from conformal field theory [179].

The quantum Potts spin chain is not integrable apart from the critical point. Never-
theless, its spectrum can easily be guessed, and subsequently verified using perturbation
theory for g far away from the critical value [164]. In the ferromagnetic phase, the
elementary excitations are domain walls with dispersion relation

εµ,µ
′
(k) = εg(k), (5.47)

where µ and µ′ denote the orientations of domains linked by the excitation, with
µ− µ′ = ±1 mod 3, with the dispersion relation

εg(k) = J

(
1− 2g

3
cos k

)
+O

(
g2
)
. (5.48)
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Conversely, for g > gc the ground state is non-degenerate and the elementary excitations
are two kinds of local spin flips λ = ± with dispersion relation

ελ(k) = ε̃g(k) , ε̃g(k) = 3J

(
1− 2

3g
cos k

)
+O

(
g−2
)
. (5.49)

The two excitations are related to each other by the charge conjugation mapping the
spin direction µ to −µ mod 3.

5.5.2 Quenches in the transverse field

We consider quantum quenches starting at time t = 0 from the ground state |Ψ0〉 of a
pre-quench Hamiltonian H0 corresponding to a pre-quench value of transverse field g0,
evolved for t > 0 by the post-quench Hamiltonian H corresponding to transverse field g:

|Ψ0(t)〉 = e−iHt |Ψ0〉 . (5.50)

For the quantum Potts spin chain there are no analytic results for time evolution since
the model is not integrable. However, we expect a quench dynamics qualitatively similar
to the Ising case, and so considering quenches inside the ferromagnetic phase g, g0 < 1

we can assume that the magnetisation evolves according to

m0(t) ≡ 〈Ψ0(t)|P 0 |Ψ0(t)〉 ' (CPottsFF ) exp
{
−tΓPotts

}
, (5.51)

where CPottsFF and ΓPotts are some positive constants that can be determined fitting the
iTEBD data. For Rényi entropies (computed for semi-infinite subsystem) we can again
assume that time evolution occurs according to

Sn(t) = Sn(0) + ΓPottsn t , (5.52)

where again ΓPottsn can be obtained fitting the iTEBD data. Examples are shown in
Fig. 5.14, while Table 5.2 summarises the results for the ratios γPottsn = ΓPottsn /ΓPotts for
different values of g0 and g.

5.5.3 Digression: global symmetries, twist fields and replicas

In general, quantum field theories can have global internal symmetry transformations
{φ} → {Rφ} acting on the fields of the field theory. Twist fields, or symmetry fields are
defined in the path integral formalism: a twist field insertion 〈TR . . .|TR . . .〉 changes the
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Figure 5.14: Rényi entropies and magnetisation time evolution for the quenches g0 = 0.3→
g = 0.5 (a) and g0 = 0.5 → g = 0.3 (b). Time is measured in units of 1/J , and the initial
entropy was subtracted.

g0 → g γPotts1 γPotts2 γPotts3 γPotts4

0.3→ 0.5 4.20 1.34 1.01 0.89

0.5→ 0.3 4.21 1.34 1.01 0.89

1/3→ 2/3 3.29 1.32 1.00 0.89

2/3→ 1/3 3.34 1.32 1.00 0.89

0.5→ 0.7 3.82 1.32 1.00 0.88

0.7→ 0.5 3.88 1.33 1.00 0.89

Table 5.2: Values of γPottsn for various transverse quenches.

boundary condition for the path integral along the cut starting from the insertion point
to:

{φ+} = {Rφ−} (5.53)

where {φ±} denote the set of fields on the two sides of the cut. From this definition it is
clear that taking a local operator O around the twist-field insertion results in the change
O → RO. Therefore the correlator 〈TRO . . .|TRO . . .〉 is not a single valued function if
RO 6= O, and O is said to be “semi-local" with respect to TR.

The q-state Potts model has the permutation symmetry Sq of the spins, with the
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magnetisation field as order parameter. In the scaling field theory the kink excitations
are created by the disorder operators [180] which are semi-local with respect to the
magnetisation [181] and the respective symmetry is given by the cyclic subgroup Zq.
Note that the same properties hold for the lattice model [182].

The Rényi entropies can be constructed using the so-called replica trick [116, 125,
175]. Considering the scaling field theory limit, the n-th power of the reduced density
matrix of a finite interval can be represented as a path integral over an n-sheeted
Riemann surface with each sheet corresponding to a replica of the original QFT. The
branching points of the Riemann surface can be represented as the insertion points
of branch-point twist-fields. The Rényi entropy of an interval is proportional to the
logarithm of a branch-point twist-field two-point function, while the bipartite Rényi
entropy of a system cut in two semi-infinite halves can be obtained from a one-point
function.

The replica theory has a Sn replica symmetry in addition to the possible global
symmetries acting within the replicas, and the original QFT fields describing observables
and creating the particle excitations have a copy inside each replica. These copies are
transferred to the next Riemann sheet when taken around a branch-point twist-field,
which corresponds to the action by the generator of the cyclic group Zn [175]. Therefore
the branch-point twist-field acts as a Zn twist field for the fields creating the particle
excitations, which entirely parallels the situation for the magnetisation and its associated
Zq symmetry.

5.5.4 Conjecture for the universal ratio

From the numerical results one can form the following conjecture: for n 6= 1

γPottsn =
2

3

1

1− 1/n
, (5.54)

in the limit of small quenches. Together with (5.38) this result hints that for a generic
q-state quantum Potts spin chain

γ(q)
n =

1− 1/q

1− 1/n
. (5.55)

This conjecture can be heuristically supported as follows. Note that the Rényi entropy
is associated to a replica trick, which has a symmetry Zn. The replica structure can
be implemented by a branch-point twist field, which is semi-local with respect to the
intertwining fields creating the particles in the different replicas [175] and the entropy
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growth rate itself is nothing else than the relaxation rate of the expectation value of the
Zn twist field divided by n− 1.

Turning to the magnetisation, it is a field with Zq symmetry. The role of replicas is
played by the sectors built upon the q different ground states. In this case the roles are
reversed: the magnetisation is a local field acting within a given sector, while the particle
excitations are kinks (domain walls) created by disorder operators [165, 183], however
their mutual semi-locality properties are analogous to the case of the branch-point twist
fields. In fact, the factor 1

1−1/q
appears in the annihilation pole of the two-kink form

factor of the magnetisation [165]. It is exactly the kinematical poles that give rise to
the secular terms in the time evolutions which can be resummed to yield the relaxation
of the magnetisation [161], which explains the q-dependence in (5.55).

It is then tempting to argue that the full ratio (5.55) is just a result of the symmetry
properties, whereby the relaxation rate for the branch-point twist field can be obtained
from that of the magnetisation by replacing q with n. There is a caveat, however: the
Rényi entropy growth rate depends on its normalisation, i.e. the choice of the prefactor
in its definition (5.35). The prefactor is necessary to recover the von Neumann entropy
in the limit n→ 1, however, it is not so obvious how to argue for n > 1. Therefore, the
argument can only be made robust by comparing the computation of the relaxation
rates of the branch-point twist fields to that of the magnetisation in the q-state Potts
model in more detail, and we return to this issue in the Conclusions.

0.2 0.3 0.4 0.5
|g g0|

0.9

1.0
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1.3

n

2

3
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Figure 5.15: Values of γn quenching from g0 = 0.7 to g = 0.5, 0.4, 0.3, 0.2. The dashed lines
represent the conjectured ratios (5.55).

Similarly to the Ising case, the universal ratio (5.55) is only expected to be valid
when considering small quenches. To demonstrate this numerically for the 3-state Potts
chain, we considered quenches starting from g0 = 0.7 to different values of g (see Fig.
5.15). These results are consistent with the analytic considerations presented for the
Ising chain in subsection 5.4.2: the ratios γPottsn start to deviate from (5.55) once |g− g0|
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(and therefore the post-quench quasi-particle density) is increased.

5.6 Longitudinal quenches in the paramagnetic phase

The other class of quenches we consider corresponds to starting from a transverse spin
chain and switching on a longitudinal field h. For the quantum Ising spin chain this
means a quench from

H(g, 0) = −J
N∑
j=1

(
σxj σ

x
j+1 + gσzj

)
, (5.56)

to

H(g, h) = −J
N∑
j=1

(
σxj σ

x
j+1 + gσzj + hσxj

)
. (5.57)

In the ferromagnetic phase this leads to confinement [162] which limits entropy growth
and prevents equilibration by truncating the spread of correlations; therefore here we
only consider these quenches in the paramagnetic phase.

These quenches lead to the dynamical manifestation of the Gibbs mixing entropy
observed in [2, 159], resulting in a non-monotonic behaviour of the von Neumann entropy
growth rate with the quench magnitude h. We demonstrate that the same behaviour is
reflected in the relaxation rate of magnetisation and the Rényi entropy growth rates,
which opens the way for an experimental observation of the “dynamical Gibbs effect”.

5.6.1 Longitudinal quenches in the Ising spin chain

We present the numerical results for longitudinal quenches in the quantum Ising spin
chain with transverse field g = 1.75, leaving the transverse field unchanged and quenching
the longitudinal field from 0 to h in Fig. 5.16. Some plots for different quenches showing
the same behaviour are relegated to Appendix D.

In this case we do not expect that the ratio

γn =
Γn
Γ

=
1

2

1

1− 1/n
(5.58)

holds in the limit of small quenches, since the Z2 symmetry characterising the magneti-
sation is broken by the longitudinal field h. However, the replica symmetry of the twist
fields associated to the Rényi entropies is unaffected, and therefore we expect that

Γn
Γm

=
1− 1/m

1− 1/n
, (5.59)
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Figure 5.16: Left panels: Entropy growth rates Γn (top) and magnetisation relaxation rate Γ

(bottom) in units J = 1 for longitudinal quenches in the quantum Ising spin chain starting
from g = 1.75 as a function of the longitudinal coupling. Right: Ratios Γn/Γm (top) and Γn/Γ

(bottom). The dashed lines represent the universal ratios (5.59) that are restored in the limit
h→ 0. The vertical line is drawn at the value hcrit where the second quasi-particle appears in
the post-quench spectrum.

which is in fact the case as shown in Fig. 5.16.
Note that the characteristic minimum and subsequent fast growths displayed by

the von Neumann entropy growth rate Γ1 is followed very well by the Rényi entropy
rates Γn, with the maximum and the subsequent minimum at the same location within
a very good approximation. We recall that the critical value of the longitudinal field
h ≈ 0.4 where the rates take their minimum, coincides with the threshold for the
appearance of a bound state quasi-particle in the spectrum, and the subsequent much
faster generation of entropy can be associated to the contribution of Gibbs mixing
entropy [159]. Additionally, the magnetisation relaxation rate follows the behaviour of
the entropy growth rate, which means that it can be used as an experimental signal for
the “dynamical Gibbs effect” .

More precisely, the threshold value hcrit where the new quasi-particle appears generally
somewhat differs from the position hmin of the minimum in the von Neumann entropy
rate Γ1. As already explained in [159] this is mainly due to two effects. Firstly, the
bound state threshold value hcrit is determined from the excitation spectrum above the
ground state, while the post-quench system has a finite energy density which is expected
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to induce shifts in the effective quasi-particle masses. Secondly, the contribution which
makes Γ1 grow for h > hcrit must grow sufficiently in size to counteract the one that
made it decrease for h < hcrit. The latter effect is expected to depend on the quantity
considered, i.e. one expects to find slightly different positions of the minima for Γn for
different n, as well as for the magnetisation relaxation rate Γ. However these differences
are quite small and the positions of the local minimum (and similarly that of the local
maximum) only depend very mildly on the rate considered.

Another interesting observation is that the quench corresponding to the critical
longitudinal field field h = hcrit also seems to be small in the sense that the ratios
Γn/Γm return close to the universal values (5.59) characteristic for small quenches. This
indicates that somehow these quenches are also small as indicated by the slow growth of
entanglement entropy, and that the proper condition for the universal ratios (5.59) to
hold is slow growth of entropy rather than small post-quench density.

Finally we note that simulations for other values of the transverse field lead to the
same conclusions, as shown in Appendix D in Figs. D.1, D.2 and D.3 for g = 1.25,
g = 1.5 and g = 2.00, respectively.

5.6.2 Longitudinal quenches in the Potts spin chain

In this subsection we present the numerical results for longitudinal quenches in the
quantum Potts spin chain. As shown in [2], this model shows effects of changes of the
quasi-particle spectrum on the entropy growth rate as observed in the quantum Ising
spin chain [159]. Just as for the Ising case, we consider four different values of transverse
field (g = 1.25, 1.50, 1.75, 2.00) and performed a quench by adding a longitudinal field
leaving the transverse field unchanged, i.e. starting from

H(g, 0) = −J
(∑

i

q−1∑
µ=0

P µ
i P

µ
i+1 + g

∑
i

Pi

)
(5.60)

to

H(g, h) = −J
(∑

i

q−1∑
µ=0

P µ
i P

µ
i+1 + g

∑
i

Pi +
∑
i

hP µ0
i

)
. (5.61)

where the direction µ0 of the longitudinal field h can eventually be chosen arbitrarily
among the three possibilities 0, 1 and 2 without altering the physical behaviour.

For g = 1.75, the results are shown in 5.17, while the other three cases are presented
in Appendix D in Figs. D.4, D.5 and D.6. Apart from difference in quantitative details
such as the values of the critical longitudinal field and the numerical values of the rates

113



5. Quasi-particle Spectrum, Entropy Generation and Post-quench
Relaxation in Quantum Spin Chains

themselves, the qualitative features and the essential conclusions are exactly the same
as for the quantum Ising spin chain: (1) the universal ratios (5.59) hold both for small
values of h and, to a very good approximation for quenches around the critical value
corresponding to the appearance of a new quasi-particle; and (2) the magnetisation
relaxation rate closely follows the behaviour of the von Neumann and Rényi entropy
rates, which can again be used as an observable signature for the “dynamical Gibbs
effect”.
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Figure 5.17: Left panels: Entropy growth rates Γn (top) and magnetisation relaxation rate Γ

(bottom) for longitudinal quenches in the quantum Potts spin chain starting from g = 1.75

as a function of the longitudinal coupling, in units with J = 1. Right: Ratios Γn/Γm (top)
and Γn/Γ (bottom). The dashed lines represent the universal ratios (5.59) that are restored in
the limit h→ 0. The vertical line is drawn at the value hcrit where the second quasi-particle
appears in the post-quench spectrum.

5.6.3 Large quenches above the threshold: slow oscillations

Above the bound state threshold, i.e. for h > hcrit there are two quasi-particle species of
masses (a.k.a. quasi-particle gaps) m1 and m2, and the binding energy m2 − 2m1 goes
to zero when h approaches hcrit from above. As a result, the quench dynamics contains
slow oscillations with the frequency m2 − 2m1, similar to those recently observed in the
time evolution of entropies and one-point functions in mass quenches in the E8 field
theory [184, 185]. It turns out that in the E8 case entanglement growth is suppressed
and iTEBD numerics can be performed for very long times, which allows to extract the
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Figure 5.18: Time evolution of various quantities after a large quench (g0, h0) = (2.0, 0.0)→
(g, h) = (2.0, 0.7) in the quantum Ising spin chain. The top diagram shows the evolution
of magnetisation, the bottom left one the von Neumann entropy (S1) and two of the Rényi
entropies (S2 and S3), while the bottom right one shows the entropy evolution with the linear
trend subtracted. The vertical lines correspond to a single period of the slow oscillation
corresponding to the frequency 2m1 −m2. The first line is drawn at the first minimum of the
envelope of the magnetisation oscillations while second is drawn at a distance given by the
period T ≈ 40. Note that their position matches quite well the behaviour of the entropy curves
as well. Time is measured in units of 1/J , and the initial entropy was subtracted.

frequency with a very high precision. For the E8 theory the source of the long period
oscillations is the third quasi-particle, with a mass m3 = 1.989 . . . m1, which is known
exactly in terms of the mass m1 of the lightest quasi-particle due to the integrability of
the model [186].

In the longitudinal quenches of the paramagnetic quantum Ising spin chain, entangle-
ment growth is enhanced for h > hcrit by the “dynamical Gibbs effect” , so even observing
a single period of the oscillation takes quite some effort. Nevertheless, we were able to
demonstrate its presence for a large quench from g = 2.00, h = 0 to g = 2.00, h = 0.7.
Although the model is non-integrable, the quasi-particle masses can be computed with
sufficient precision from exact diagonalisation [159] resulting in 2m1 −m2 = 0.158 (in
units with J = 1), leading to a period T ≈ 40. As shown in Fig. 5.18 this period matches
well the oscillations observed in iTEBD evaluation of the magnetisation and entropy
time evolutions. Two other examples of slow oscillations present in large longitudinal
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Figure 5.19: Time evolution of various quantities after a large quench (g0, h0) = (2.0, 0.0)→
(g, h) = (2.0, 1.4) in the quantum Potts spin chain. The top diagram shows the evolution
of magnetisation, the bottom left one the von Neumann entropy (S1) and two of the Rényi
entropies (S2 and S3), while the bottom right one shows the entropy evolution with the linear
trend subtracted. The vertical lines correspond to a single period of the slow oscillation
corresponding to the frequency 2m1 −m2. The first line is drawn at the first minimum of the
envelope of the magnetisation oscillations while second is drawn at a distance given by the
period T ≈ 25.6. Note that their position matches quite well the behaviour of the entropy
curves as well. Time is measured in units of 1/J , and the initial entropy was subtracted.

quenches of the quantum Ising spin chain are shown in Appendix D in Figs. D.7 and
D.8.

The same effect can also be observed in the quantum Potts spin chain, as shown in
Fig. 5.19 for a quench from g = 2.00, h = 0 to g = 2.00, h = 1.4, where the quasi-particle
masses are again determined from exact diagonalisation following [2] with the result
m1 = 2.480 and m2 = 4.714, leading to a period T ≈ 25.62 which matches the signature
in the numerical simulation.
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6

Confinement and Emergent Bloch
oscillations

The decay of the false vacuum is a famous scenario proposed in 1977 by Sidney Coleman
to describe the dynamics of phase transitions in quantum field theory [187, 188], which
plays an important role in particle physics and cosmology. In such a situation a system
stuck in a metastable (‘false’) vacuum state transitions to the ‘true’ vacuum state by
bubble nucleation and subsequent growth of the bubbles driven by the energy difference
between the false and the true vacua. This is a non-equilibrium process, in which the
expansion of the bubbles rapidly accelerates to the maximum possible velocity (the
speed of light), and thus the true vacuum ultimately replaces the original false vacuum
everywhere in space. Quantum bubble formation is, of course, not only relevant in
cosmology, but it is the primary mechanism behind first order classical and quantum
phase transitions and hysteresis.

Quantum quenches provide a natural environment to test Coleman’s scenario in
various quantum systems. In fact, in global, translationally invariant quantum quenches,
the initial state has a finite uniform energy density with respect to the post-quench
Hamiltonian, and the system is therefore in a highly excited state. This highly excited
configuration acts as a source of quasi-particle excitations, which may collide and
thermalise with time. Preparing a system in the false vacuum as an initial state,
therefore allows one to test quantum bubble nucleation in the laboratory [189–193].

A primary candidate to perform this experiment is again the quantum Ising spin
chain, governed by the Hamiltonian

HQISC = −J
∑
i

(
σzi σ

z
i+1 + gσxi + hσzi

)
, (6.1)

where g and h denote the transverse and the longitudinal magnetic fields, respectively.
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In the ferromagnetic phase, g < 1, quasi-particles are domain walls, and the chain’s
dynamics may be understood in terms of quantum bubble nucleation [cf. Ref. [194] for
a recent study in a different setting].

However, light-cone spreading of correlations is not completely generic [162]: confining
forces, as a remarkable exception, can suppress the light-cone spreading of correlations.
The prediction of dynamical confinement has indeed been confirmed recently in numerous
systems and settings exhibiting confinement [195–203]. For the model (6.1) dynamical
confinement occurs when initialising the system in its g0 < 1 positive (spontaneous)
magnetisation ground state with m = 〈σzi 〉 > 0 and h0 = 0, and then quenching to
a Hamiltonian with some g < 1 and h > 0. In this case, the quench gives rise to
oppositely moving domain walls (kink-antikink pairs), with a bubble of false vacuum
with negative magnetisation −m stretched between them (see Fig. 6.6a), which costs a
potential energy proportional to the distance between the domain walls. The resulting
confining force [204] inhibits the propagation of the domain walls to large distances,
and prevents thermalisation of the system within all time scales accessible to numerical
simulations.

It is intriguing to investigate what happens if we switch on a field in the opposite
direction, h < 0, thereby initialising the system in the false vacuum of the final
Hamiltonian. In this case, according to Coleman’s scenario, nucleation must lead to
bubbles of the true vacuum appearing inside a sea of false vacuum. The external
field now promotes the expansion of bubbles, and generates a repulsive force between
domain walls forming the bubbles, as illustrated in Fig. 6.6b. As a result, one naively
expects that bubbles extend to the whole spin chain and the system rapidly relaxes
to an equilibrium or steady state around the true vacuum. In the quantum quench
framework, this corresponds to the light-cone spreading of correlations, as predicted by
the quasi-particle picture.

In this final chapter, however, we show by detailed simulations that – quite counter-
intuitively – Coleman’s scenario is violated in the Ising spin chain. We start in Sec. 6.1 by
reviewing the results obtained in [162] for the confining regime of the Ising chain, where
dynamical confinement emerges. In Sec. 6.2 the dynamics of the anit-confining regime is
introduced. In particular spin-spin correlation function indicates that the true vacuum
bubbles do not expand indefinitely. In addition, computing the entanglement entropy
between two halves of the system reveals that its initial linear growth is suppressed after
a transitional period. For the confining quenches this effect was discovered in [162] and
is explained by the suppression of light-cone spreading of correlations due to localisation
of the quasi-particles by the confining force; however, in the anti-confining case this is
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unexpected in light of the force being repulsive. In Sec. 6.3 we find that the relevant
mechanism responsible for the lack of light-cone spreading of bubbles is not dynamical
confinement: rather, the repulsive force leads to an oscillatory motion of the domain
walls, known as Bloch oscillations. While surprising, these findings are consistent with
recent numerical studies of the order parameter statistics in the quantum Ising spin
chain [205]. Finally, in 6.4 we present two different ways of probing Bloch oscillations.

6.1 Dynamical confinement in the Ising chain

In [162] it was proposed a mechanism that, through confinement of the elementary
excitations, strongly suppresses the light-cone spreading. As in the standard scenario,
the initial state acts as a source of quasiparticles. Pairs of quasiparticles move in opposite
directions, but due to the confining potential the farther they go apart the stronger is
the attractive force they feel, which eventually turns the particles back leading to an
oscillatory behaviour, as depicted in Fig. 6.1. In analogy to strong interaction physics,
the resulting bound states are called mesons. Confinement is known to take place in the
Ising chain with both transverse and longitudinal fields. Switching on a non-zero field h
in (6.1) induces a linear attractive potential between pairs of domain walls which enclose
a domain of length d and of magnetisation opposite to h. For small h, the potential can
be approximated as V (d) = χ · d with χ = 2Jhm, with m = (1− g2)1/8. This scenario
was first proposed by McCoy and Wu in [204].

The model for h 6= 0 is no longer integrable and in [162] to describe out-of-equilibrium
dynamics the low-density approximation of Ref. [206] was used. This approximation
allows to calculate all the properties of the mesons we need, namely their number,
masses, and velocities. We now review the main concepts.

6.1.1 Semiclassical calculation of the meson dispersion relations

When applying a non-zero field h, this lifts the degeneracy of the two ferromagnetic
ground states, and in particular, a domain with magnetisation opposite to the external
field will have energy proportional to its length. In the lattice system the number of
stable mesons and their dispersion relations were computed in Refs. [206].

The external field induces a linear attractive potential between neighbouring domain
walls which border a domain having magnetisation in the direction opposite to h. If d is
the distance between the domain walls, the potential is V (d) = χ·. Let us now consider
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Figure 6.1: Pictorial semiclassical picture of a meson state in the Ising model: two counter-
propagating domain walls bounce back and forth because of a confining interaction. Fig. taken
from [162].

two fermions moving in one dimension as a classical system with the Hamiltonian

H = ε(θ1) + ε(θ2) + χ|x2 − x1| . (6.2)

For simplicity, the coordinates are taken to be real numbers as in a continuum system,
but the dispersion relation is taken to be that in the lattice system. θ1, θ2 are the
canonical conjugate variables. After making the canonical transformation

X =
x1 + x2

2
, x = x2 − x1 , (6.3)

Θ = θ1 + θ2 , θ =
θ2 − θ1

2
, (6.4)

the Hamiltonian takes the form

H = ω(θ; Θ) + χ|x| , (6.5)

where ω(θ; Θ) = ε(θ + Θ/2) + ε(θ −Θ/2). The canonical equations of motion are

Ẋ(t) =
∂ω(θ; Θ)

∂Θ
, Θ(t) = Θ = const. , (6.6)

ẋ(t) =
∂ω(θ; Θ)

∂θ
, θ̇(t) = −χ sgn(x(t)) . (6.7)

For a given value of the total momentum Θ, these equations describe the relative
motion of two particles. The solution becomes simple if we think of q = θ as a spatial
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Figure 6.2: Semiclassical bound state energy levels in the “relative potential” ω(θ,Θ) from
the solutions of Eqs. (6.8). The dashed vertical lines show the turning points θa,b.
(a) Bound states for g = 0.25, h = 0.1,Θ = 0. (b) Bound states for g = 0.5, h = 0.1,Θ = 3.
(c) Meson dispersion relations for g = 0.25, h = 0.1. Figures taken from the supplementary
material of [162].

coordinate and consider p = −x as the conjugate momentum: we have the periodic
motion of a particle with “kinetic energy” χ|p| in the 1D potential ω(q; Θ). The energy
levels can be obtained by the Bohr–Sommerfeld quantisation condition which becomes
more and more accurate as one moves to higher excited states. When Θ < 2 arccos g

the function ω(q; Θ) has only one minimum at q = 0) and this leads to [206]

2En(Θ)θa −
∫ θa

−θa
dθ ω(θ; Θ) = 2πχ(n− 1/4) , (6.8a)

where n = 1, 2, . . . and the turning point θa = θa(n; Θ) is the solution of the equation

ω(θa(n; Θ); Θ) = En(Θ) . (6.8b)

For Θ > 2 arccos g the potential ω(θ; Θ) has two minima. Then for E > ω(0; Θ) the
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above treatment is unchanged, but if E < ω(0; Θ), the classical motion takes place in
one of the two separated wells, and the semiclassical energy levels are given by [206]

En(Θ)(θa − θb)−
∫ θa

θb

dθ ω(θ; Θ) = πχ(n− 1/2) , (6.9a)

with n = 1, 2, . . . and
ω(θa,b(n; Θ); Θ) = En(Θ) . (6.9b)
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Figure 6.3: Remark: In the original paper [162] the roles of σx and σz in the Hamiltonian
are inverted, so the time evolution represented here corresponds to our order parameter 〈σz〉,
while hz corresponds to g and hx to h.
Upper panels: Time evolution of the longitudinal magnetisation 〈σz(t)〉 after quenching from
g = 0.5, h = 0 to g = 0.25 and h = 0.1, 0.2. Dots are iTEBD results, lines are exact
diagonalisation results for L = 8, . . . , 12,. Lower panels: power spectrum of 〈σz(t)〉 in which
the dashed vertical lines show the meson masses and their differences. Figures taken from [162].

The solutions of Eqs. (6.8,6.9) give the dispersion relations En(Θ) of the bound
states (see Fig. 6.2c) The energy gaps give, in particle physics language, the meson
masses.
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Mesons cannot have arbitrarily large momenta Θ, at least semiclassically, and higher
lying mesons have flatter dispersion relations. Since their velocities are given by

vn(Θ) =
dEn(Θ)

dΘ
, (6.10)

this means that the heavier mesons move more slowly.

6.1.2 Time evolution

We now see how the presence of mesonic bound states alters dynamics. Starting from
time evolution of the magnetisation 〈σz(t)〉, we recall from Sec. 4.4 that in the integrable
case the order parameter decays to zero exponentially for any quench in the ferromagnetic
phase. When switching on the external field h it is evident from Fig. 6.3 that the
exponential relaxations turn into an oscillatory behaviour with different frequencies.
With a Fourier transform the dominant frequencies in the resulting power spectrum are
compatible, to a surprising high degree of accuracy, with the masses of the mesons and
their differences obtained as in Sec. 6.1.1.

The two point function is the quantity that shows the strongest effects of confinement.
Mesons propagate with a maximal velocity which is smaller than that of the domain
walls as shown in 6.1.1.

However, it turns out that the effect of confinement in some cases is even stronger
than an already dramatic and non-perturbative change of speed of propagation. In Fig.
6.4 it is shown that for large values of h the region where there is light cone propagation
shrinks to an almost invisible portion of the space-time. What happens is that due to
the heavy masses of the mesons, the quench only provides sufficient energy to produce
them at rest.

It is very important to stress once more that these confinement effects are non-
perturbative: a very small perturbation such as h = 0.025 is enough to destroy completely
the sharp light cone of the integrable model.

Finally, entanglement entropy SA = −TrρA ln ρA is another important probe for
the quasi-particle propagation and hence light cone effects. The results are reported
for three sets of quenches in Fig. 6.5, two within the ferromagnetic phase and one
across the critical point to the ferromagnetic phase. We consider several different
final values of the longitudinal fields. In all cases, by turning on the interaction h,
the growth of the entanglement entropy is considerably slowed down and practically
saturates (during the observation time) for quenches within the ferromagnetic phase.
The latter correspond to cases in which the light-cone of the two-point function is
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Figure 6.4: Remark: In the original paper [162] the roles of σx and σz in the Hamiltonian
are inverted. hz corresponds to g and hx to h.
Connected longitudinal spin-spin correlation function 〈σz1σzm+1〉c after quenching to the fer-
romagnetic point g = 0.25 with a longitudinal magnetic field h = 0, 0.025, 0.05, 0.1, 0.2, 0.4.
Figures taken from [162].

strongly suppressed. As explained above, this is a consequence of the fact that mesons
are predominantly produced at rest and then the entanglement just oscillates around a
saturation value, as in the left panel of Fig. 6.5. Actually the small fraction of mesons
with non-negligible velocities should produce a very slow increase of the entanglement
which however is likely too small to be observed. In the case of a quench across the
critical point, the increase of the entanglement entropy is only reduced because of the
production of many mesons with non-vanishing velocities. Overall, the data for the
entanglement are compatible with the confinement scenario drawn for the correlations.

6.2 Anti-confining quench: setup and subsequent time
evolution

We now consider quantum quenches in the ferromagnetic phase of the quantum Ising
spin chain (6.1). For simplicity, we start the quench from a fully aligned, positively
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Figure 6.5: Remark: In the original paper [162] hz corresponds to g and hx to h.
Time evolution of the half-chain entanglement entropy after a quench to the confining phase.
Left: starting from the ferromagnetic phase (g = 0). Right: starting from the paramagnetic
phase (g = 2). Figures taken from [162].

polarised state, i.e. from the ground state with g0 = 0 and h0 = 0. We then quench to a
finite transverse field, g < 1, and an “anti-confining” longitudinal field h < 0. Turning
on a finite g0 → g > 0 creates a gas of domain wall excitations, which then move in the
presence of the field h < 0.

The time evolution is numerically simulated using the infinite volume time evolving
block decimation (iTEBD) method [163] (for more see Appendix C), which we use
to compute the time evolution of the connected two-point equal time spin correlation
function

Cz(l, t) ≡ 〈σz0(t)σzl (t)〉c (6.11)

= 〈σz0(t)σzl (t)〉 − 〈σz0(t)〉 〈σzl (t)〉 ,

as well as the entanglement entropy between two halves of the system, say A and Ā,

S(t) = −Tr ρA(t) log ρA(t) (6.12)

where ρA is the reduced density matrix of the subsystem A. For the time evolution
we used a second order Trotter expansion, with the maximum bond dimension of the
matrix product states fixed at 512.

As shown in Figs. 6.6 and 6.7, at a first sight, the time evolutions of the correlation
functions Cz(l, t) and the entanglement entropy S(t) look remarkably similar for an
anti-confining field, h < 0, to the one obtained in the dynamical confinement region,
h > 0, studied in the previous section: in both cases, the light-cone propagation of
correlations and the growth of entropy are suppressed, and oscillations are observed.
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Figure 6.6: Upper panel: (a) For h parallel to the initial magnetisation, bubbles nucleated
during the quench contain the false vacuum. The corresponding attractive forces (red arrows)
confine domain walls into ‘mesons’. (b) For h opposite to the initial magnetisation, nucleating
bubbles contain the true vacuum. The induced repulsive forces (red arrows) accelerate the
domain walls. Lower panel: Time evolution of the connected spin-spin correlation function
Cz(l, t) ≡ 〈σz0(t)σzl (t)〉c for g = 0.4 in the confining regime, h > 0 (left), and in the anti-
confining regime, h < 0 (right). Red vs. blue lines show average bubble sizes estimated using
Eqs. (6.25) and (6.24), respectively.
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Figure 6.7: Time-dependence of entanglement entropy for the quenches displayed in Fig. 6.6.
Note that anti-confining quenches (blue continuous lines) show a suppression of entropy growth
similar to the confining case (red dashed lines), albeit with a larger magnitude of entanglement
entropy generated during the quench.

Closer examination of the simulation results discerns, however, some important
differences between the two cases. While correlations have an oscillatory behaviour
in both cases, the corresponding frequencies and amplitudes are quite different. As
discussed in Ref. [162], in the confining case h > 0 the frequencies of oscillations scale
with h2/3 and correspond to bound states of domain walls called “mesons”. In contrast,
for the anti-confining case the characteristic frequency scales with h, as shown explicitly
by the quench spectroscopy discussed in Subsection 6.4.2.

6.3 Bloch oscillations

Consider first a pure transverse field quench with h = 0 and g > 0. The post-
quench state then consists of independent kink-antikink pairs with momenta k and
−k. These kinks behave as non-interacting fermions with a dispersion relation, ε(k) =

2J
√

1 + g2 − 2g cos k, and propagate with the group velocity

v(k) =
∂ε(k)

∂k
, (6.13)
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Figure 6.8: The kink dispersion relation ε(k) for g = 0.3 (full line) and the initial density
ρ(k) (shaded region) for g0 = 0, g = 0.3.

limited by the maximum velocity, vmax = 2J g. The initial density of kinks can be
determined following Refs. [127, 207]. Kink-antikink pairs of momentum ±k are created
with a pair creation amplitude, K(k) = tan ∆k/2, with

cos ∆k =
gg0 − (g + g0) cos k + 1√

1 + g2 − 2g cos k
√

1 + g2
0 − 2g0 cos k

. (6.14)

and the density of kink pairs with momentum in the interval [k, k + dk] is given by

ρ(k) =
|K(k)|2

1 + |K(k)|2
=

1− cos(∆k)

2
= sin2(∆k/2) , (6.15)

shown in Fig. 6.8. The denominator in this equation simply reflects the fermionic nature
of kinks, and the spatial bubble density is just the integral of ρ(k),

ρbubble =

∫ π

0

dk

2π
ρ(k) . (6.16)

Let us consider now a finite longitudinal field h < 0. Before entering the issue of
bubble dynamics, it is important to discuss the origin of the bubbles. In Coleman’s
original scenario, the bubbles appear as a result of vacuum tunnelling. The tunnelling
probability per lattice site for the Ising spin chain was computed in [208] and in a
semi-classical approximation1 it is given by

γ =
πgm

9
exp

{
− 1

mg
|f (−i log h)|

}
(6.17)

1We note that the conditions for the semi-classical approximation are that g is sufficiently far away
from its critical value gc = 1 and it is valid in the asymptotic limit h → 0, which means that the
exponent is large and tunnelling is suppressed.
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Figure 6.9: Illustration of Bloch oscillation of a bubble with a definite initial momentum of
the kinks forming the bubble walls. Arrows indicate dominant spin directions in space and
time. Time delays at kink collisions are neglected.

where m = (1 − g2)1/8 is the spontaneous magnetisation for the pure transverse field
Ising spin chain with transverse field g and

f(x) = 2

∫ x

0

ε(k)dk . (6.18)

For the range of parameters considered in our simulations, the nucleation rate per
site estimated from (6.17) is very small, not exceeding 10−6. In fact, the nucleation is
heavily suppressed by a mechanism analogous to the Schwinger effect [209] in Quantum
Electrodynamics: the creation of the bubbles can also be viewed as spontaneous creation
of particle-antiparticle (kink-antikink) pairs in a homogeneous external field (here given
by h), which is the same as in continuum field theory. However, the bubbles created
in the quenches we consider originate from the finite energy density in the initial state
which is not fine-tuned to be the false vacuum itself. Nevertheless, the fate of the bubbles
after their appearance is essentially independent of the mechanism responsible for their
creation and, as we demonstrate, the suppression of their subsequent expansion is due
to Bloch oscillations, which arise from the presence of the lattice.

Bloch oscillations can be described using a simple semi-classical picture, similar to
the one used in [206] to describe the spectrum of mesonic excitations due to confinement.
This is expected to work under the conditions that (i) the system is apart from the
immediate vicinity of the critical point gc = 1, (ii) the mean inter-particle spacing is
much larger than the correlation length ξ: ρbubbleξ � 1, where ξ is of order one away
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from the vicinity of gc, and (iii) |h| is sufficiently small. The validity of the latter
condition can be seen from the fact that the semi-classical description of the meson
spectrum is very accurate for the parameter range considered here [162].

To a first approximation, we can neglect the correction to the dispersion relation
ε(k), and treat the dynamics of the bubbles as that of a two-particle system, a kink and
an antikink interacting via a repulsive potential

V (r) = −χ r, (6.19)

where r is the distance between the kinks, and χ the coefficient given by the energy gain of
flipping the magnetisation into the external field’s direction: χ = 2m|h| = 2|h| (1− g2)

1/8.
The semi-classical equation of motion of the kinks is then written as

ṙ = 2
∂ε(k)

∂k
, k̇ = −1

2

∂V

∂r
=
χ

2
, (6.20)

with the factors 2 and 1/2 related to having two mobile kinks. The second equation
yields immediately k(t) = k0 + 1

2
χt , and can be used to determine the kink-antikink

distance as
r(t) =

4

χ
[ε (k0 + χ t/2)− ε (k0)] + r0 , (6.21)

with r0 initial size of the bubble (typically of the order of the lattice spacing), and
±k0 the initial momenta of the kinks. Let us first consider bubbles where the initial
size r0 can be neglected. Due to the periodicity of ε(k), the kink velocity reverses sign
when the momentum k passes the boundary of the Brillouin zone at k = ±π, where the
kinks turn back. As a result, kinks return to their original position and collide again
after a period T (k0) when the bubble re-collapses (r(T (k0)) ≈ 0). This happens when
k0 + χT (k0)/2 = 2π − k0. At this point, the kink and the antikink are reflected, and
start off again with the whole cycle repeating as illustrated in Fig. 6.9, causing the
bubbles oscillate in time. The maximum amplitude of these oscillations is obtained
when k0 = 0:

lmax =
4(ε(π)− ε(0))

χ
=

8g

m|h| . (6.22)

In contrast to the idealised single-bubble dynamics shown in Fig. 6.9, the observed
oscillations shown on the left of Fig. 6.6 result from a large number of bubbles, each
having different initial momenta and initial sizes. Nevertheless, these Bloch oscillations
still have a characteristic time. As obvious from Fig. 6.8, (and can be indeed verified by
direct calculation, for an initial state with g0 = 0) the kink density is highest around
momenta corresponding to vmax, which determines the front line of the bubbles, and
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thus the overall frequency of oscillations via the condition, 1
2
χTB = 2k0 ≈ π for small

g-s, yielding

ω ≈ 2π

TB
= χ .

The presence of a distribution of domain wall momenta leads, however, to a gradual
decay of oscillations due to the dependence of the oscillation period and phase on the
initial kink momentum. Bubble collisions have a similar, degrading effect on coherent
oscillations.

We close this subsection with some important observations regarding the role of
collisions:

◦ For small bubbles, kink-antikink pairs collide once during every oscillation period.
In principle they could annihilate into mesons then; however our numerics shows
no such effect in the accessible time frame, which is consistent with recent findings
[210] that the inelastic scattering is very ineffective. In this regard we also note that
annihilation into mesons would involve string breaking which is heavily suppressed
as can be understood via relating it to the Schwinger effect [201].

These collisions also give rise to a time delay due to the interaction between kinks.
In the case of zero longitudinal field, h = 0, however, the kink-antikink scattering
amplitude is simply −1, and there is no time delay. Therefore any time delay
introduced by kink collisions is of order h, which we can neglect in the simple
semi-classical picture used here.

◦ Collisions between different bubbles lead to corrections to the simple motion
described above. This effect can be neglected if the average spacing between
bubbles is larger than their maximum allowed size, which leads to the condition
ρbubble � 1/lmax requiring the longitudinal field to satisfy h� hc, where

hc =
8g

m
ρbubble . (6.23)

therefore we always use field values larger than hc in our simulations. The values
of hc are reported in Table 6.1 for different values of g.

g 0.20 0.25 0.30 0.35 0.40

hc 0.0041 0.0080 0.0139 0.0223 0.0338

Table 6.1: Values of hc for different values of g.
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Figure 6.10: Entanglement entropy as a function of time for different values of g and h, with
the overall drift indicated by dashed lines.

◦ For bubbles created with a sufficiently large initial size r0 > lmax, the kinks never
collide and instead oscillate around spatially separated positions with frequency
given exactly by χ (cf. also [206]). Note that the creation of large bubbles is
suppressed, since creating a finite sized bubble of the true vacuum corresponds to
a process involving a number of simultaneous spin flips given by the bubble size r0,
with probability suppressed exponentially in r0. As a result, the contribution of
‘collisionless bubbles’ (those satisfying r0 > lmax and therefore oscillating without
periodic internal collisions) increases sharply with decreasing lmax i.e. increasing
|h|, which is consistent with the quench spectroscopy results reported later in
Subsection 6.4.2. In addition, to avoid collisions between kinks from different
bubbles, the average bubble spacing must be much larger than lmax, leading to the
same condition |h| � hc as before.

◦ It is apparent from Fig. 6.7 that even though the growth of entanglement entropy
is suppressed, it still shows a slow drift in time in addition to the dominant feature
of temporal oscillations. This drift can be understood to originate from bubble
collisions, which become less probable as |h| grows compared to hc. Indeed, Fig.
6.10 demonstrates that the drift is suppressed for other values of g as well when
|h| > hc. Note that entanglement entropy grows so fast at g = 0.4 for h = −0.05

that it was not possible to simulate the evolution in the time scale shown in the
figure. As can be seen from Table 6.1, hc = 0.0338 for g = 0.4, so bubble collisions
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are much less suppressed than for the other two cases g = 0.2 and 0.3.

6.4 Probing Bloch oscillations

6.4.1 Verifying average bubble size and scaling

One piece of evidence for the scenario of Bloch oscillations is that it predicts an average
bubble size that agrees reasonably well with the spatial extension of the correlations.
This is demonstrated in Figure 6.6, where the blue lines depict the estimate for the
average bubble size

〈r〉anti−conf ≈
1

ρbubble

∫ π

0

dk0

2π
ρ(k0)

4

χ
(ε(π)− ε(k0)) (6.24)

obtained by neglecting the original bubble size d0. For the standard confining case, a
similar reasoning gives the average bubble size

〈r〉conf ≈
1

ρbubble

∫ π

0

dk0

2π
ρ(k0)

4

χ
(ε(k0)− ε(0)) (6.25)

since, in this latter case, kink momenta oscillate between k0 and 0. Note that these
estimates depend both on g and h, and give a very good estimate for the spatial extension
of the correlations shown in Figure 6.6.

Another tell-tale signal of Bloch oscillations is that their spatial extension is predicted
to scale as ∼ 1/h, while their frequency is proportional to h. This is manifest in the
numerically computed time evolution, as demonstrated in Fig. 6.11, where the space-time
bubble contour is extracted from the data at h = −0.1 and then superimposed on the
time evolution obtained for other h values, with time and space rescaled accordingly.
Note that the actual distance and time scales vary by a factor of 4, while the correlation
profiles remain almost identical when plotted in terms of the scaled variables, |h|t and
|h|l. This scaling works remarkably well for the first few oscillations. Differences for
larger values of time can be attributed to deviations from our simple semi-classical
picture such as the presence of localised spin excitations with frequencies much higher
than the Bloch oscillations of the bubble walls, as well as distortions due to bubble
collisions and the contributions from the periodic kink collisions when bubbles shrink to
their minimal size.
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Figure 6.11: Scaling evidence for Bloch oscillations for the transverse field values
g = 0.20 (left) and g = 0.25 (right), with the longitudinal field taking the values h =

−0.05,−0.10,−0.15,−0.20 for each. The plot shows 〈σz0σzl 〉c as a function of the scaling
variables |h|t and |h|l. The colour scale is defined by normalising the maximum value of the
correlator to 1, while the blue lines show the bubble wall defined by the data with h = −0.10

at one fifth of its maximum value. Note that h = −0.05 where the scaling is visibly the least
perfect, is a small field for which quench spectroscopy (cf. Subsec. 6.4.2) reveals that the
system is not yet cleanly dominated by Bloch oscillations.
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Figure 6.12: Power spectrum of 〈σz0(t)σzl (t)〉c for l = 0 and g = 0.25. Green dotted lines show
meson frequencies (computed following [162]) - note that they become less and less relevant as
|h| grows. Red dashed lines have a spacing χ = 2|h|m, indicating a regular sequence of higher
harmonics of the Bloch oscillations, which instead become more prominent for higher values of
|h| as lmax becomes smaller. In the cases shown, the minimum size of collisionless bubbles lmax

(from top to bottom) are 40.3, 20.2, 13.4 and 10.1, respectively.

6.4.2 Quench spectroscopy

‘Quench spectroscopy’, presented in Fig. 6.12, i.e. the Fourier analysis of the time
evolution after the quench provides a further tool to assess Bloch oscillations. For negative
values of h with small magnitude, we only observe frequency peaks corresponding to
mesonic bound states, just as for the case of dynamical confinement with h > 0 [162].
The energy gap of these mesonic excitations is always larger than twice the kink gap,
grows with increasing |h|, and can also be computed theoretically using a semi-classical
method [206], which we briefly summarise in Section 6.1.1. For longitudinal fields such
that |h| is smaller than, or comparable to hc, we do not observe well-defined frequencies
corresponding to Bloch oscillations, as shown by the top plot in Fig. 6.12. This is not
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unexpected, since in such a case bubble collisions prevent independent Bloch oscillations.
For larger field values |h| � hc, collisions between bubbles become less frequent. In

addition, the maximum Bloch oscillation length lmax becomes shorter with increasing h,
and the number of collisionless bubbles increases rapidly. This leads to the appearance
of regularly spaced frequency peaks well below the threshold of mesonic excitations,
corresponding to higher harmonics of the Bloch frequency χ. Indeed, such a series of
peaks is seen to coincide with the red lines in the lower three plots in Fig. 6.12, with the
distance between them equal to χ. Note that the simulation can only capture higher
harmonics, mostly due to the finite time window of the numerical simulations, but
also due to low-frequency background which results from the quench time evolution
containing frequencies corresponding to all differences between energy levels of the
post-quench Hamiltonian. In addition, the energy needed to create mesonic excitations
also increases with |h|. We therefore expect, and indeed find, that mesonic contributions
to the frequency spectrum become less and less pronounced with growing |h|. This
stands in stark contrast to the case of dynamical confinement, where meson excitations
continue to dominate the time evolution even for large values of the longitudinal field h
[162].
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In Chapter 3 we used the generalised hydrodynamics approach introduced in Chapter
2 to study the paradigmatic staircase model [82]. The SM has a property which is
unique among integrable quantum field theories, that is, at thermal equilibrium and
high temperature, the theory does not flow to a single ultraviolet fixed point but rather
to infinitely many, depending on how the high temperature limit is carried out. More
precisely, at temperature T , the key scale in the model is the ratio α = y

θ0
where

y = log(2T ) and θ0 is a parameter of the scattering matrix. Taking both y and θ0 to
infinity, whilst keeping their ratio fixed and finite, determines the choice of the UV fixed
point. The set of all possible UV fixed points is given by the unitary minimal models
of conformal field theory. In addition, the flow between consecutive CFTs, ordered
according to their central charge, admits an effective description in terms of a massless
theory known as theMA

(+)
k model, which we have also studied. The main conclusions

of our study can be summarised as follows:

◦ The evaluation of TBA quantities that have a key hydrodynamic interpretation,
such as the spectral particle current and density and the effective velocity gives
new insights into the properties of the model, even at thermal equilibrium. The
spectral functions of the SM generally exhibit multiple local maxima/minima
while the effective velocity has multiple zeroes and plateaux. The number of such
maxima, minima, zeroes and plateaux is linked to the scale α introduced above.
For k−1

2
< α < k

2
the spectral particle density has 2k maxima and the spectral

particle current has k maxima and k minima. The effective velocity has 2k − 1

zeroes, k plateaux at value +1 and k plateaux at value −1. The non-monotonicity
of the effective velocity is indeed one of the most distinct features of the model.
All these properties can be seen in the video [88].

◦ The massless description of the SM by means of theMA
(+)
k models provides an

accurate description of all the functions mentioned above. The agreement between
both descriptions can be visualised by contrasting any of the SM functions with a
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“cut and paste" arrangement of the corresponding functions found in the massless
model. The agreement is particularly striking for the effective velocities, whose
intricate square-wave structure is perfectly reproduced.

◦ Similar properties are found within the partitioning protocol, especially when the
right and left temperatures are chosen so as to fall within an interval of values of
α associated to the same UV fixed point. In this context, the SM model provides
an excellent opportunity to study the averages of conserved currents and densities
for higher spins near different UV fixed points. Indeed, it is well-known how the
energy current and density scale in CFT [65–67] but a lot less is known for higher
spin conserved quantities. We provide a partial answer to this question. We show
numerically and analytically that higher spin currents and densities scale with
appropriate powers of the temperatures TL/R, as expected. More importantly, we
also show that the numerical coefficient of these powers is very nearly proportional
to the central charge of the UV fixed point. By very nearly we mean that the
central charge is not exactly reproduced (except for spin 1, corresponding to
the energy), but deviations from it are numerically very small and still to be
analytically understood.

These results suggest several future directions of research. First, in line with the last
point, it is desirable to have a better analytical understanding of the UV scaling of the
averages of higher spin currents and densities. This is a problem of general interest in
the context of out-of-equilibrium dynamics in CFT and goes beyond the precise model
we have discussed. This analytical understanding could come from two sources: the
explicit construction/study of conserved quantities in CFT and the evaluation of their
averages and/or the manipulation of the GHD expressions for higher spin currents and
densities, so that coefficients such as those presented in (3.30) are analytically evaluated.
Second, we would like to generalise these results to other staircase models such as the
generalisations constructed in [83–87].

In conclusion, this is a new contribution to a so far small body of work including
also [80, 81] which explores how quantities of interest in the context of generalised
hydrodynamics can provide, even at thermal equilibrium, new insights into properties of
integrable quantum field theory. These insights are especially rich in IQFTs possessing
unusual features, such as unstable particles or, as in the present case, an intricate RG
physics. In all the models studied, including SM, we find a quantitative relationship
between the emergence and area of new local maxima of the spectral particle density
and the intensity of the interaction, as described by the two-particle scattering matrix.
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We also find that in such models the effective velocities can exhibit extremely intricate
and unusual patterns as seen in [88], very far from the standard deformed tanh θ shape
that is found for most interacting IQFTs.

In the work introduced in Chapter 5 we considered quantum quenches in the paramag-
netic phase of the quantum Potts spin chain corresponding to switching on a longitudinal
magnetic field. We have demonstrated that the entanglement entropy production rate
shows a deep relation with the quasi-particle spectrum. In particular, the mean entan-
glement entropy production rate ∂tS is greatly enhanced by the appearance of a new
quasi-particle species in the spectrum, which is a manifestation of Gibbs mixing entropy
corresponding to species information. These findings are completely consistent with
the results obtained for the Ising case in [159], showing the general nature of the effect
and confirming its interpretation as a non-equilibrium manifestation of the so-called
Gibbs paradox. We have also shown that for very large h > 0 the entropy production
rate decreases towards zero, which can be understood from the freezing of spin chain
dynamics.

In contrast with the Ising model, for the Potts case the domain h < 0 has a different
physics since the spin dynamics does not freeze for any magnitude of h, and indeed in
that domain we observed a monotonous increase of ∂tS with |h|, the qualitative details
of which again could be fully understood from the quasi-particle spectrum.

As we noted, a detailed quantitative description of the entanglement entropy produc-
tion is not yet available. All the available evidence shows that the quenches considered
here are of sufficiently small density to admit an essentially semi-classical quasi-particle
description following the picture proposed by Calabrese and Cardy in their seminal
works [112, 116]. There has been substantial recent work aiming at extending the
quasi-particle description beyond the simple picture of production of independent pairs,
such as to cases with no pair structure [211], and initial states with correlated pairs
[212].

For a quantitative prediction of entanglement entropy production, the main missing
ingredient is sufficiently detailed knowledge of the quasi-particle production rates as
functions of the quench parameter h. Presently such information is only available for
the Ising case and even there only in the scaling field theory limit [213]. Once the
amplitudes are available, one can try to develop a theory for the entanglement entropy
production following the lines of [211]. Albeit in contrast to the case in [211] the system
we consider has interacting quasi-particles, it seems likely that in the regime of transverse
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field g close enough to the critical value 1, the post-quench density is small enough so
that effects of interactions between the quasi-particle do not affect substantially the
post-quench time evolution once the particles were created, and therefore one could
achieve at least a semi-quantitative description if the quasi-particle production rates
can be obtained by some means.

Furthermore we analysed the existence of a direct relation between relaxation rates
and entropy growth after a quantum quench. This is not just an idea intuitively supported
by the quasi-particle picture of the dynamics [112], but a more direct, quantitative
relation is suggested by the fact that the growth rate of Rényi entropies can be represented
as the relaxation rate for branch-point twist fields related to replica symmetry [160, 185].
In the second part of Chapter 5 we examined this relation in the context of quantum
quenches on the quantum Ising and Potts spin chains i.e. q-state Potts spin chains with
q = 2, 3.

For transversal quenches (i.e. in the absence of explicit breaking of the symmetry Zq)
we found that the ratio of Rényi entropy growth rates to the magnetisation relaxation
rates is universal in the small quench limit

Γn
Γ

=
1− 1/q

1− 1/n
+ . . . , (n = 2, 3, . . . ) , (6.26)

with the ellipsis denoting corrections for higher post-quench density. This can be proven
explicitly using exact results for the Ising chain, and it is also consistent with the above-
mentioned expression of Rényi entropy rates as relaxation rates of branch-point twist
fields; we also presented numerical evidence using iTEBD simulations. The value of the
ratio can be understood heuristically in terms of the symmetries Zq of the magnetisation
operator and Zn of the branch-point twist fields, however, at this point we lack a fully
convincing derivation. One possible way to go is to consider the scaling limit of the
transverse field 3-state Potts chain, which is an integrable quantum field theory [214], for
which the exact S-matrices are known both in the paramagnetic [215] and ferromagnetic
[180] phases. In fact, the parameter q can even be generalised to a real variable between
0 and 4. Therefore it must be possible to repeat the field theory derivation of both the
relaxation rate and the Rényi entropy growth rates for the transverse quenches for q 6= 2,
and directly verify that the universal ratio (5.55) is indeed obtained at the leading order
in the post-quench quasi-particle density. However, this requires a rather involved and
lengthy calculation (cf. [161]) which is beyond the scope of the present work.

Note that there is no similar universal ratio for the von Neumann entropy rate
obtained as the limit n→ 1, which is not surprising as there is no semi-local operator
(such as the twist field) to express it as an expectation value.
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For quenches involving the longitudinal field the symmetry Zq is explicitly broken. In
the ferromagnetic phase when the transverse field g < 1 this leads to confinement, which
can limit the growth of entropy and at the same time leads to persistent oscillations
[162], which is consistent with both the entropy rate and the relaxation rate vanishing.

The behaviour in the paramagnetic regime is more interesting. Here we considered
the family of quenches starting from the ground state at a transverse field g > 1 and
switching the longitudinal field h from zero to a finite value. Since the order parameter
symmetry Zq is explicitly broken, we expect that the universal ratio above is not valid
even for small quenches. However, for the Rényi entropy rates we still predict

Γn
Γm

=
1− 1/m

1− 1/n
+ . . . , (n,m = 2, 3, . . . ) , (6.27)

which is indeed confirmed by numerical simulations.
Despite the absence of a simple quantitative relation, the growth rates of Rényi

entropies and the magnetisation relaxation rate qualitatively follow the behaviour of the
growth rate of the von Neumann entropy, as expected from the quasi-particle picture.
In particular, all rates show the characteristic non-monotonous behaviour in h due to
changes in the quasi-particle spectrum and the consequent “dynamical Gibbs effect”.
The important implication of our results is that in an experimental implementation of
the spin chain the “dynamical Gibbs effect’ has a well-defined signature in the behaviour
of the magnetisation relaxation rates which is easily observable, in contrast to the
entanglement entropy, opening an avenue for the experimental demonstration of the
effect.

An interesting observation is that while the ratios of Rényi entropy rates deviate from
(6.27) by increasing the quench size parametrised by h, the universal ratio is restored to
a good precision in a well defined region. This happens approximately at the threshold
hcrit for the appearance of the bound state quasi-particles, where the entropy growth is
suppressed despite of the finite magnitude of the quench. The theoretical explanation of
this finding is an interesting open question.

Finally, in Chapter 6 we demonstrated within the framework of the transverse field
Ising model that light-cone time evolution and the decay of the false vacuum can be
absent in one-dimensional systems even in a deconfined quench regime, where the
formation of bubbles would be energetically favourable. Rather, quite unexpectedly,
we observe in this regime spatially confined correlations, oscillating in time, which
we identify as Bloch oscillations. These appear due to the underlying lattice and the
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periodicity of the quasi-particles’ dispersion relation in the momentum variable. The
absence of relaxation after the quantum quench can also be considered an effect of the
bounded quasi-particle dispersion, due to which the domain walls can only carry away
a limited portion of the energy that would be liberated by the expansion of the true
vacuum bubble.

This results demonstrate that Bloch oscillations play a key role in inhibiting the
growth of bubbles which result from nucleation of the true vacuum in a global quantum
quench starting from a translationally invariant initial state dominated by the false
vacuum. The effect we observe can also be interpreted as a suppression of thermalisation
in a global quench of a spin chain with (anti-)confining dynamics. In this context,
we note that Bloch oscillations have been previously found in the dynamics governed
by the Hamiltonian (6.1) for an initial state consisting of a single domain wall [197],
and later they were argued to slow down entropy growth after starting from a random
multi-kink state [201]. Besides the difference from our case in the initial state and the
observable signature, in [197, 201] the Bloch oscillations appear in concert with the
dynamical confinement mechanism discovered in [162], while in our case the effect of
Bloch oscillations is clearly separate and distinct from dynamical confinement. This
separation between the two mechanisms is parameterised by relative magnitude of the
longitudinal field compared to the field value hc (cf. Eq. (6.23)) derived from comparing
the maximum bubble size to the post-quench bubble density, and is also confirmed
by quench spectroscopy. In addition, instead of relying on perturbation theory in the
transverse field g, we make use of the semi-classical approach which is valid for any g
(albeit not too close to the critical point g = 1).

We point out that after our results, the vacuum tunnelling in the Ising spin chain
was numerically observed in [216], where the prediction (6.17) was also verified. The
observation of the tunnelling was made possible by choosing transverse fields close to
the critical value, g ≥ 0.7 which enhances the transition amplitude (6.17) to magnitudes
10−3 − 10−1, and also by observing the dynamics for times much shorter (at least by
an order of magnitude) than the period of Bloch oscillations for the chosen parameters
values of g and h. It is an interesting issue to perform simulations for parameter values
and time ranges where effects of both Bloch oscillations and vacuum tunnelling can be
observed, to see how the two mechanisms interfere. However, these regimes are difficult
to access by the present numerical methods.

Our observations of emergent Bloch oscillations are also in agreement with recent
results obtained in kinetically constrained Rydberg spin systems [217]. However, while
in Ref. [217] a special constraint (fine-tuning) was needed to generate Bloch oscillations,
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here they emerge quite generically, without any constraint in a regime where quasi-
particle excitations would naively be expected to speed up and spread correlations over
the system.

This results are relevant for experimental realisations of the tunnelling decay of the
false vacuum such as put forward in Ref. [191]. We predict that in discrete spin chains,
the dynamics after bubble nucleation generally leads to Bloch oscillations, in stark
contrast to expectations from continuum quantum field theories. We also demonstrate
that simple spin chains provide an experimental realisation of Bloch oscillations, which
can clearly be identified from the scaling of the space-time dependent spin-spin correlation
functions with the applied longitudinal field and from quench spectroscopy.

Today, strongly correlated quantum many-body systems – including the quantum
Ising spin chain itself [218] – can be routinely realised using ultra-cold atomic quantum
simulators [219–223], or in a digital quantum computers [224]. These advances have
triggered recently considerable interest in simulating the decay of the false vacuum [189–
193]. Our results, demonstrating the violation of Coleman’s scenario and providing
directly observable signatures of Bloch oscillations, may be particularly interesting in
this context.
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appendix A

Constant TBA for the SM

A.1 L-function Kinks and Plateaux

The value of TBA functions in the SM depends very strongly on the interplay between
the parameters y = − log(β/2) and θ0. In fact, the crucial parameter is precisely their
ratio

α =
y

θ0

(A.1)

If this ratio is kept fixed with both y and θ0 going to infinity, then the scaling function
c(y) tends to the central charge of one of the unitary minimal modelsMk+2. Precisely
which one depends on the value α.

As already introduced in section 3.1.2, the general structure is the following. When

k − 1

2
< α <

k

2
, k ∈ N, (A.2)

the L-function has 2k kinks at positions ±(y − `θ0) with ` = 0, 1, . . . , k − 1. Kinks can
be organised into two sequences, depending on whether they originate from the left or
from the right. That is, we can order kinks according to

θ1,L < θ1,R < θ2,L < · · · < θk,L < θk,R (A.3)

with θ`,L = −y + (`− 1)θ0

θ`,R = y − (k − `)θ0

` = 1, 2, . . . , k (A.4)

As we have seen, the L-function will develop plateaux in the regions between consecutive
kinks. There are therefore 2k + 1 plateaux, the first and the last being in the regions
θ < −y and θ > y, respectively, where L(θ) is effectively zero. The internal plateaux

145



A. Constant TBA for the SM

are of alternating width, and so is the distance between two adjacent kinks. We arrange
the internal plateaux in two sequences, odd and even, according to:P2`−1 = [θ`,L, θ`,R], ` = 1, . . . , k

P2` = [θ`,R, θ`+1,L], ` = 1, . . . , k − 1,
(A.5)

with |P2`−1| = 2y − (k − 1)θ0 and |P2`| = kθ0 − 2y, where |P | indicates the width of
plateau P .
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Figure A.1: L-function of the SM for k = 2. Points z` lie at the centre of plateaux, while
kinks K` interpolate between them.

Finally, we define the mid-points of the internal plateaux

z` ≡
(`− k)θ0

2
, 1, . . . , 2k − 1, (A.6)

and
z0 ≡ −

kθ0

2
, z2k ≡

kθ0

2
(A.7)

to extend the definition (A.6) to the first and last plateaux where L(θ) is zero. All these
definitions are illustrated in Fig. A.1 for the case k = 2. So far we have ignored the fact
that the kinks Ki have themselves a finite width. We can see that the `th kink is spread
in the interval

K` = [z`−1, z`], i = 1, 2, . . . , 2k . (A.8)
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A.2 Constant TBA equations

In this section we derive the so-called constant TBA equations [62–64]. These can be
seen as UV limits of the original TBA equation for the SM, whose solutions describe
the height of the centres of the plateaux at zi. Because there are many such plateaux
in the SM there are several constant TBA equations, which in effect form a system of
coupled equations in much the same spirit as the TBA description of theMA

(+)
k model

presented in section 3.1.3. Following the steps used in [84, 85], we want to look at the
values of L(θ) at the midpoints of the plateaux. Let εi := ε(zi) be the values of the
pseudoenergy at the plateaux’ mid-points. The TBA-equation can be expressed as

εi = 2e−y cosh(zi)−
2k∑
i=1

∫
Ki

dθ′

2π
L(zi − θ′)ϕ(θ′) , (A.9)

where we can reduce our integration region because of the double-exponential fall-off of
L(θ). The driving term is vanishingly small for all i except for regions K1 and K2k:

2e−y cosh(θ) ∼


e−y−θ, θ ∈ K1

0, θ ∈ K2, . . . , K2k−1

e−y+θ, θ ∈ K2k

(A.10)

Furthermore the kernel couples only those mid-points which are at distance θ0 from each
other since it is strongly peaked at θ′ = ±θ0. Therefore, we can identify L(zi±θ0) := Li±2.
We can also make the standard asumption that underlies all constant TBA derivations,
namely that the L-function is effectively constant (with values Li±2) over the region
where the kernel is non-vanishing. In effect this means that we can take the L-functions
outside the convolution (A.9) and just integrate each term in the kernel separately,
giving ∫ ∞

−∞

dθ

cosh(θ ± θ0)
= π . (A.11)

The equations for plateaux midpoints simplify to:

− 2εi = Li+2 + Li−2, i = 1, . . . , 2k − 1 , (A.12)

with boundary conditions ε−1 = ε0 = ε2k = ε2k+1 = ∞. Setting xi = exp{−ε2i−1} for
i = 1, . . . , k and yi = exp{−ε2i−2} for i = 2, . . . , k we can rewrite (A.12) as

x2
i =

k∏
j=1

(1 + xj)
Iij and y2

i =
k∏
j=2

(1 + yj)
Iij , (A.13)
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with boundary conditions x0 = xk+1 = y1 = yk+1 = 0. These two sets of equations are
again reminiscent of an underlying An structure and Iij is the incidence matrix of An.
Solutions to these equations where first given in [63] in their study of the constant TBA
of An minimal Toda field theory and also in [98] in the study of RSOS models. They
were also found in a more general context in [225]

x` =
sin π`

k+3
sin π(`+2)

k+3

sin2 π
k+3

, y` =
sin π`

k+2
sin π(`+1)

k+2

sin2 π
k+2

. (A.14)

The associated UV central charge can be computed in terms of these values in the
standard way [62, 63] and gives ck+2 as in equation (3.12).

Due to the kink structure of the L-function discussed here (see (A.10)) the SM
scaling function (3.10) only receives contributions from the outer-most kinks K1 and
K2k. Writing c(y, θ0) = c− + c+ with

c− =
3

π2

∫
K1

dθe−y−θL(θ), c+ =
3

π2

∫
K2k

dθe−y+θL(θ) , (A.15)

we find that c− = c+ and the two contributions match exactly the formula (3.16) for the
MA

(+)
k model. Their computation is standard and, as expected, for k−1

2
< α < k

2
we

obtain once more ck+2 as in (3.12).
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Higher Spin Currents for a Free Fermion

In the free fermion case we can evaluate explicitly and analytically all the functions
(3.23). In particular, in the partitioning protocol we have that

εL/R(θ) = βL/R cosh θ , (B.1)

and so the even and odd spin currents can be written as

j2s−1 =
1

2π

∫ ∞
0

cosh(sθ) sinh θ

[
1

1 + eβL cosh θ
− 1

1 + eβR cosh θ

]
, (B.2)

j2s =
1

2π

∫ ∞
0

sinh(sθ) sinh θ

[
1

1 + eβL cosh θ
+

1

1 + eβR cosh θ

]
. (B.3)

For β > 0 it is possible to expand the occupation functions as

1

1 + eβ cosh θ
= e−β cosh θ

∞∑
n=0

(−1)ne−nβ cosh θ , (B.4)

and to express the CFT limit of the currents above in terms of modified Bessel functions
Ks(x). For instance, for the currents j2s we can use the identity∫ ∞

0

sinh(sθ) sinh θe−β cosh θ dθ =
s

β
Ks(β) , (B.5)
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to obtain

j2s =
1

2π

∞∑
n=0

(−1)n
∫ ∞

0

sinh(sθ) sinh θ[e−βL(n+1) cosh θ + e−βR(n+1) cosh θ]dθ

=
s

2π

∞∑
n=0

(−1)n

n+ 1
[TLKs((n+ 1)βL) + TRKs((n+ 1)βR)]

≈ s

2π

∞∑
n=0

(−1)n

(n+ 1)

[
2s−1Γ(s)

βs+1
L (n+ 1)s

− 2s−1Γ(s)

βs+1
R (n+ 1)s

]
=

sΓ(s)

22−sπ
(T s+1

L + T s+1
R )

∞∑
n=0

(−1)n

(n+ 1)s+1

=
sΓ(s)

4π
(2s − 1)ζ(s+ 1)(T s+1

L + T s+1
R ) , (B.6)

where we have used the small x expansion of Ks(x) and ζ(x) is Riemann’s zeta function.
As discussed in Chapter 3, we expect the coefficients (3.31) to be identical for j2s−1 and
j2s and so from the computation above we can identify

Cs(∞) = Γ(s)ζ(s+ 1)(1− 2−s) . (B.7)

In particular, we have the values

C1(∞) =
π2

12
= 0.822467 , C2(∞) =

3ζ(3)

4
= 0.901543 ,

C3(∞) =
7π4

360
= 1.89407 , C4(∞) =

45ζ(5)

8
= 5.83272 . (B.8)

These values are well reproduced by the height of the first plateau in the Figs. 3.12 and
3.14. As we can see in Fig. B.1 this coefficient grows rapidly with the spin s.
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Figure B.1: log(Cs(∞)) for the free fermion.

In fact, using Stirling’s approximation we have that

log
(
Cs+1(∞)

)
≈ s log s− s. (B.9)
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The iTEBD algorithm

The iTEBD algorithm [226] is based on the infinite Matrix Product State (iMPS) de-
scription of one dimensional translational invariant lattice models in the thermodynamic
limit (thus it is free of any finite size effect). The canonical iMPS representation of a
generic many-body state is

|Ψ〉 =
∑
{s}

Tr[· · ·Γsj
o ΛoΓ

sj+1
e Λe· · · ]| · · · sjsj+1· · · 〉, (C.1)

where Γ
sj
o/e are χ× χ matrices associated with odd/even lattice sites, with sj spanning

the jth-site Hilbert space in the canonical basis {|↑z〉, |↓z〉}; similarly, Λo/e are diagonal
matrices with entries equal to the singular values associated with the bipartition of the
system onto the odd/even bonds.

To achive time evolution, one makes use of the Trotter-Suzuki decomposition, which
apporoximates the exponent of a sum of operators with a product of exponents of the
same operators. At first order the expansion reads

e(V+W )δ = eV δeWδ +O(δ2). (C.2)

We can decompose the Hamiltonian as a sum

H = Hodd +Heven

=
∑
r odd

h[r,r+1] +
∑
r even

h[r,r+1].
(C.3)

In this way each term consistes of a sum of commuting operators.
We now divide the time into small time slices δt� 1 and expand the U(t) operator

as a sequence of small two-site gates

U [r,r+1](δt) = exp
(
−ih[r,r+1]δt

)
, (C.4)
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ΓA ΛA ΓB ΛB ΓA ΛA ΓB ΛB ΓA ΛA

t

U U U

U U

Figure C.1: In iTEBD eash time step δt of a time evolution is approximated using a
Trotter-Suzuki decomposition. The evolved state is obtained by subsequent applications of U
gates.

which we arrange into gates UAB and UBA,

UAB(δt) =
⊗
r∈Z

U [2r,2r+1](δt), UBA(δt) =
⊗
r∈Z

U [2r−1,2r](δt). (C.5)

At first order U(δt) is given by

U(δt) = UAB(δt)UAB(δt). (C.6)

We partially break translational symmetry to simulate the action of gates (C.5) on
|ψ0〉:

Γ[2r] = ΓA Λ[2r] = ΛA

Γ[2r+1] = ΓB Λ[2r+1] = ΛB.
(C.7)

The decomposition of the time evolution operator is shown pictorially in Fig. C.1. The
simulation of the time evolution is achieved by updating the MPS by repated application
of gates UAB and UBA. The update procedure for two-site transformation action on two
neighboring sites n and n+ 1 is shown in Fig. C.2. We focus on an update with a UAB

gate. The inequivalent BA bonds are updated similarly by exchanging A and B.
The wave function of a generic state |ψ〉 can be expressed in the basis spanned by

the left Schmidt states on bond n− 1 : n, the local Hilbert space of sites n and n+ 1,
and the right Schmidt states on bond n+ 1 : n+ 2:

|ψ〉 =
∑
α,j,k,γ

Θj,k
αγ |αn−1〉L |jn〉 |kn+1〉 |γn+1〉R , (C.8)

where the wave function coefficients Θ are given by (step (i) in Fig. C.2)

Θj,k
αγ =

∑
β

ΛB
αΓA,jαβ ΛA

βΓB,kβγ ΛB
γ . (C.9)
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(i)
ΛB ΓA ΛA ΓB ΛB Θ

(ii)
Θ

U

Θ̃

(iii)
Θ̃

SV D

X Λ̃A Y

(iv)
ΛB

(ΛB)−1

X Λ̃A Y

(ΛB)−1

ΛB ΛB Γ̃A Λ̃A Γ̃B ΛB

Figure C.2: The iTEBD update scheme for unitary two-site transformation of a two-site unit
cell MPS in canonical form.

Physical indices j, k can take d values while bond indices α, γ have ξ values. The local
unitary update of the algorithm is given by (step (ii) in Fig. C.2) :

Θ̃j,k
αγ =

∑
j′k′

U jk
j′k′Θ

j′,k′
αγ . (C.10)

Next we have to extract the updated tensor Γ̃A, Γ̃B and Λ̃A from the transformed tensor
Θ̃. We first reshape the tensor Θ̃ by combining indices to obtain a dχ× dχ dimensional
matrix Θ̃jα;kγ. Because the basis |αn−1〉L |jn〉 is orthonormal, as for the right, it is
natural to decompose the matrix using a SVD into

Θ̃jα;kγ =
∑
β

Xjα;βDββYβ;kγ (C.11)

(step (iii) in Fig. C.2).The matrix X relates to the new Schmidt states |βn〉L to the
combined bases |αn−1〉L |jn〉. The Schmidt states for the right site are obtained from
the matrix Y in the same way. Thus the diagonal matrix D contains the Schmidt values
of the updated state:

Λ̃A = D. (C.12)
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The new tensors Γ̃A and Γ̃B can be obtained extracting the old matrices Λβ (see
step (iv) in Fig. C.2):

Γ̃A,jαβ = (ΛB)−1
α Xjα;β

Γ̃B,jβγ = Yβ;kγ(Λ
B)−1

γ

(C.13)

The update of n sites the TEBD algorithm requires O(ndχ2) space to store an MPS
and O(nd3χ3) time to simulate a small evolution exp(−iHδt), but for an infinite chain
the action of the gates preserves the invariance of the evolved state under shift by two
sites. In other words for n =∞ the iTEBD requires computational space and time that
scale hust as O(dχ2) and O(d3χ3).
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Further simulations of longitudinal
quenches
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Figure D.1: Left panels: Entropy growth rates Γn (top) and magnetisation relaxation rate Γ

(bottom) for longitudinal quenches in the Ising chain starting from g = 1.25 as a function of
the longitudinal coupling. Right: Ratios Γn/Γm (top) and Γn/Γ (bottom). The dashed lines
represent the universal ratios (5.59) that are restored in the limit h→ 0. The vertical line is
drawn at the value hcrit where the second quasi-particle appears in the post-quench spectrum.
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Figure D.2: Left panels: Entropy growth rates Γn (top) and magnetisation relaxation rate Γ

(bottom) for longitudinal quenches in the Ising chain starting from g = 1.5 as a function of
the longitudinal coupling. Right: Ratios Γn/Γm (top) and Γn/Γ (bottom). The dashed lines
represent the universal ratios (5.59) that are restored in the limit h→ 0. The vertical line is
drawn at the value hcrit where the second quasi-particle appears in the post-quench spectrum.
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Figure D.3: Left panels: Entropy growth rates Γn (top) and magnetisation relaxation rate Γ

(bottom) in units J = 1 for longitudinal quenches in the quantum Ising spin chain starting
from g = 2.0 as a function of the longitudinal coupling. Right: Ratios Γn/Γm (top) and Γn/Γ

(bottom). The dashed lines represent the universal ratios (5.59) that are restored in the limit
h→ 0. The vertical line is drawn at the value hcrit where the second quasi-particle appears in
the post-quench spectrum.
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Figure D.4: Left panels: Entropy growth rates Γn (top) and magnetisation relaxation rate Γ

(bottom) in units J = 1 for longitudinal quenches in the quantum Potts spin chain starting
from g = 1.25 as a function of the longitudinal coupling. Right: Ratios Γn/Γm (top) and Γn/Γ

(bottom). The dashed lines represent the universal ratios (5.59) that are restored in the limit
h→ 0. The vertical line is drawn at the value hcrit where the second quasi-particle appears in
the post-quench spectrum.
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Figure D.5: Left panels: Entropy growth rates Γn (top) and magnetisation relaxation rate Γ

(bottom) in units J = 1 for longitudinal quenches in the quantum Potts spin chain starting
from g = 1.5 as a function of the longitudinal coupling. Right: Ratios Γn/Γm (top) and Γn/Γ

(bottom). The dashed lines represent the universal ratios (5.59) that are restored in the limit
h→ 0. The vertical line is drawn at the value hcrit where the second quasi-particle appears in
the post-quench spectrum.

157



D. Further simulations of longitudinal quenches

0.2 0.4 0.6 0.8
h

0.000

0.005

0.010

0.015

n

1

2

3

4

0.2 0.4 0.6 0.8
h

1.2

1.4
n/

m

2/ 3
3/ 4
2/ 4

0.2 0.4 0.6 0.8
h

0.000

0.005

0.010

0.015

0.2 0.4 0.6 0.8
h

1

2

3

n/

1/
2/

Figure D.6: Left panels: Entropy growth rates Γn (top) and magnetisation relaxation rate Γ

(bottom) in units J = 1 for longitudinal quenches in the quantum Potts spin chain starting
from g = 2.0 as a function of the longitudinal coupling. Right: Ratios Γn/Γm (top) and Γn/Γ

(bottom). The dashed lines represent the universal ratios (5.59) that are restored in the limit
h→ 0. The vertical line is drawn at the value hcrit where the second quasi-particle appears in
the post-quench spectrum.
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Figure D.7: Time evolution of various quantities after a large quench (g0, h0) = (2.0, 0.0)→
(g, h) = (2.0, 0.8) in the quantum Ising spin chain. The top diagram shows the evolution
of magnetisation, the bottom left one the von Neumann entropy (S1) and two of the Rényi
entropies (S2 and S3), while the bottom right one shows the entropy evolution with the linear
trend subtracted. The vertical lines correspond to a single period of the slow oscillation
corresponding to the frequency 2m1 −m2. The first line is drawn at the first minimum of the
envelope of the magnetisation oscillations while second is drawn at a distance given by the
period T ≈ 23.9. Note that their position also matches the behaviour of the entropy curves
quite well. Time is measured in units of 1/J , and the initial entropy was subtracted.
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Figure D.8: Time evolution of various quantities after a large quench (g0, h0) = (2.0, 0.0)→
(g, h) = (2.0, 0.9) in the quantum Ising spin chain. The top diagram shows the evolution
of magnetisation, the bottom left one the von Neumann entropy (S1) and two of the Rényi
entropies (S2 and S3), while the bottom right one shows the entropy evolution with the linear
trend subtracted. The vertical lines correspond to a single period of the slow oscillation
corresponding to the frequency 2m1 −m2. The first line is drawn at the first minimum of the
envelope of the magnetisation oscillations while second is drawn at a distance given by the
period T ≈ 17.8. Note that their position also matches the behaviour of the entropy curves
quite well. Time is measured in units of 1/J , and the initial entropy was subtracted.
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