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ABSTRACT 

 

 

In the agri-food sector, measurement and monitoring activities contribute to high 
quality end products. In particular, considering food of plant origin, several product 
quality attributes, vegetation indices characterising plant growth, the state of plant 
hydration, the degree of fruit maturity or the presence of defects and diseases in the 
plant or the fruit itself can be monitored. Among the non-destructive measurement 
techniques, a large variety of optical techniques are available, including hyperspectral 
imaging (HSI) in the visible/near-infrared (Vis/NIR) range, which, due to the capacity 
to integrate image analysis and spectroscopy, proved particularly useful in agronomy 
and food science. Many published studies regarding HSI systems were carried out 
under controlled laboratory conditions. In contrast, few studies describe the 
application of HSI technology directly in the field, in particular for high-resolution 
proximal measurements carried out on the ground.  

Based on this background, the activities of the present PhD project were aimed at 
exploring and deepening knowledge in the application of optical techniques for the 
estimation of quality attributes of agri-food plant products. First, research activities on 
laboratory trials carried out on apricots and kiwis for the estimation of soluble solids 
content (SSC) and flesh firmness (FF) through HSI were reported; subsequently, FF 
was estimated on kiwis using a NIR-sensitive device; finally, the procyanidin content 
of red wine was estimated through a device based on the pulsed spectral sensitive 
photometry technique. In the second part, trials were carried out directly in the field to 
assess the degree of ripeness of red wine grapes by estimating SSC through HSI, and 
finally a method for the automatic selection of regions of interest in hyperspectral 
images of the vineyard was developed. 

The activities described above have revealed the potential of the optical techniques for 
sorting-line application; moreover, the application of the HSI technique directly in the 
field has proved particularly interesting, suggesting further investigations to solve a 
variety of problems arising from the presence of the many environmental variables 
that may affect the results of the analyses. 
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1. INTRODUCTION 

 

 

The present section provides an overview of non-destructive measurement techniques 
based on optical spectroscopy and imaging. Next, visible/near-infrared spectroscopy 
is introduced in more detail, and finally, hyperspectral imaging is presented, describing 
the analytical process that starts with hyperspectral image acquisition and ends with 
the development of classification and prediction models. 

 

1.1. Non-destructive spectroscopic and imaging techniques 

Non-destructive assessment of food quality is a widely reported topic in recent 
scientific literature. The combined use of sensors based on optical technologies with 
mathematical models and algorithms allows to measure food quality attributes by 
identifying correlations with physical/chemical properties. Spectroscopy, a technique 
based on differentiation in frequency (wavelength) of electromagnetic radiation, is 
becoming even more accessible due to increased data processing capacities and 
simplification in calibration procedures (Ruiz-Altisent et al., 2010). In addition, in 
recent years the integration of spectroscopy with imaging is experiencing increasing 
application in quality and safety assessment of agricultural and food products 
(Adebayo et al., 2016). Spectroscopic techniques integrated with imaging include 
Raman, Vis/NIR, fluorescence, and light backscattering (Hussain et al., 2018). 

Raman spectroscopy, relying on inelastic scattering of photons, provides a series of 
narrow, well-resolved bands that result from the vibration of covalent bonds (in 
particular, relatively neutral ones, such as intramolecular C–C, C–H, C=C) building 
up a structural fingerprint by which molecules can be identified; furthermore, Raman 
spectroscopy eliminates water interferences; finally, it is used to characterize the 
orientation of anisotropic crystal structures. Raman spectroscopy uses lasers as light 
sources, with spectral ranges from ultraviolet (UV) to NIR (Zhang, 2017). 
Accordingly, Raman imaging (RI) is used to identify the locations of chemical and 
crystal structures in samples (Hussain et al., 2018; Pathmanaban et al., 2019). Among 
the new evolution of Raman spectroscopy, surface enhanced Raman scattering (SERS) 
amplifies the scattering intensity of molecules by nanostructured metallic particles; 
spatially offset Raman spectroscopy (SORS), allowing deep probing of diffusely 
scattering objects (Mosca et al., 2021), has been used to evaluate internal maturity of 
tomato samples (Hussain et al., 2018). 
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NIR spectroscopy focuses on the vibrational movements of the hydrogen bonds in the 
functional groups of molecules, such as C–H, O–H and N–H, and is oriented to 
quantitative analysis, such as the determination of the concentration of chemical 
groups. Hyperspectral imaging (HSI) combines visible and/or near-infrared (Vis/NIR) 
spectroscopy and imaging, and it is widely used as an effective tool for agri-food 
quality assessment. HSI, like NIR spectroscopy, is primarily related to bonds involving 
the lightest atom, hydrogen, in functional groups (Delwiche, 2015). Each pixel in the 
image contains spectral data, which provides a map of the quality attributes of the 
sample (Hussain et al., 2018). 

Fluorescence spectroscopy is based on the emission of a unique fluorescence 
occurring when specific organic compounds, fluorophores, are excited by 
ultraviolet/visible (UV/Vis) radiation, and in reverting to the ground state by photon 
emission, lose some of the absorbed energy due to vibrational relaxation of the excited 
state. As a result, according to the Stokes rule, the fluorescence spectrum shifts toward 
longer wavelengths, hence of lower energy, than the absorption spectrum (Hussain et 
al., 2018; Sikorska et al., 2019). Fluorescent organic compounds (fluorophores) 
frequently present conjugate systems of C=C double bonds, aromatic character, and 
rigid molecular skeletons. Fluorophores include polyaromatic hydrocarbons, 
heterocyclic compounds, and some highly unsaturated aliphatic compounds. In 
addition, the nature and position of substituents affect fluorescence characteristics as 
well (Sikorska et al., 2019). An interesting evolution of fluorescence spectroscopy is 
the hyperspectral fluorescence imaging (HSFI), which combines the advantages of 
fluorescence with those of spatial dimension; HSFI was used for the evaluation of fruit 
ripening and for the detection of defects, diseases, aflatoxin contamination, and faecal 
contamination (Sikorska et al., 2019). 

While vibrational NIR and mid-infrared (MIR) spectroscopy can have low sensitivity 
for the quantification of minor food components, especially in those foods, such as 
fruit, that have water as a major component, fluorescence spectroscopy has the 
advantage of high sensitivity and selectivity for the study of minor and trace 
components in complex food matrices. In this context, Raman spectroscopy provides 
complementary information to MIR spectroscopy, with the advantage of eliminating 
interference from water, but has a low signal intensity and is subject to interference 
caused by the fluorescence of the sample (Sikorska et al., 2019). 

Light backscattering is based on the information stored in the backscattered photons 
that interact with the internal components of the analysed sample. In fruits and 
vegetables, the joint surfaces of the cell wall mostly contribute to the backscattering 
effect, however suspended particles such as starch, chloroplasts and mitochondria can 
also generate diffusion by refraction on their surface. There are two light 
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backscattering techniques, monochromatic light backscattering imaging or laser light 
backscattering imaging (LLBI) and broadband light backscattering imaging, which 
can be split into multispectral light backscattering imaging (MLBI) and hyperspectral 
light backscattering imaging (HLBI). LLBI requires a monochromatic laser diode as 
light source; compared to MLBI and HLBI techniques, where the light source is 
usually a halogen lamp generating broadband light, LLBI can provide a higher light 
intensity per unit area, therefore light can penetrate deeper into the sample, generating 
more diffuse photons, which will hold more information. MLBI and HLBI, however, 
have the advantage of generating images containing full information in the considered 
wavelength range, whereas in the case of LLBI, information will be gained only in the 
considered wavelength (Mollazade et al., 2012). 

 

1.2. Origins of hyperspectral imaging technology 

Imaging spectrometry, a remote sensing technique introduced in the mid-1980s at the 
Jet Propulsion Laboratory (JPL) of the California Institute of Technology in Pasadena, 
sparked the development of hyperspectral imaging (Liu et al., 2015). Airborne and 
spaceborne sensors were applied for remote and direct identification of materials on 
the Earth’s surface: the output were images of the observed surface, coupled with 
reflectance spectra consisting of up to 200 contiguous spectral bands (Goetz et al., 
1985). In recent decades, imaging techniques have also been developed and 
implemented in the agro-industry for product assessment and classification (ElMasry 
& Sun, 2010). The integration of imaging techniques with spectroscopy, which 
occurred through the development of HSI technology, has also combined their 
strengths (Lu & Park, 2015). 

 

1.3. Near-infrared spectroscopy 

According to quantum theory, the absorption of light by a molecule occurs through 
discrete changes in energy levels (quantum levels); when a molecular interatomic bond 
absorbs an energy equal to the difference between two adjacent quantum levels, 
fundamental vibrations occur between the bonded atoms, characterised by specific 
vibrational wavelengths in the region of the mid-infrared (MIR, 2500–25000 nm). The 
presence of anharmonicity allows for overtone transitions and combination bands, 
whose vibrations are observed in the near-infrared range (NIR, 780–2500 nm). The 
observation of overtone and combination band vibrations in the NIR region provides 
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several benefits: (1) the absorption bands are weak, so no sample dilutions are 
required; (2) the largest vibrational movements concern the bonds of hydrogen atoms 
located in the functional groups of molecules (typically C–H, O–H, and N–H, 
prevalent in organic molecules), while the vibrations of intrachain bonds such as C–C 
are not active; (3) it is suitable for quantitative analysis, such as the determination of 
chemical group concentration; however, it is not suitable for qualitative analysis, since 
the high degree of band overlap does not allow the vibration of a chosen bond to be 
exactly assigned to a specific wavelength (Delwiche, 2015). 

The calculation of the concentration of a solute in gases and liquids with negligible 
scattering is based on the Beer-Lambert law: A = log10(I0/I) = ε c l, where A is the 
absorbance, I0 is the incident radiation intensity, I the transmitted radiation intensity, 
ε the molar decadic extinction coefficient, c the concentration of absorbing species, 
and l the path length. In diffuse reflectance analyses, such as proximal or remote 
sensing hyperspectral analysis, the calculation of the concentration of the compound 
of interest is based on an approximation of the Beer-Lambert law: log10(1/R) ≈ 
[analyte], where R stands for reflectance and square brackets for concentration. A 
further simplification concerns the direct use of the reflectance R, assuming that the 
degree of non-linearity between R and its log10 reciprocal transform is irrelevant: for 
instance, in the R range 0.2–0.8 the coefficient of determination with log10(1/R) is 0.97 
(Delwiche, 2015). 

Among the most relevant applications in the agro-food sector, NIR spectroscopy can 
be used to predict physico-chemical quality attributes related to the degree of ripeness 
of the fruit such as soluble solids content (SSC), flesh firmness (FF), acidity, phenolic 
content, and vitamin content (Liu et al., 2015; Chandrasekaran et al., 2019). 

 

1.4. Vis/NIR hyperspectral imaging and quality attributes of fruits 

HSI techniques in the Vis/NIR range, originally developed for remote sensing, have 
later spread mainly to the agri-food, material science and pharmaceutical sectors. In 
agri-food sector, these techniques are widely applied for grains, vegetables, and meat 
products (Chandrasekaran et al., 2019). Compared to traditional ‘point’ NIR 
spectroscopy, HSI provides spatial information, allowing for example the mapping of 
target attributes. HSI is therefore promising for the development of new, fast, and cost-
effective non-destructive techniques for quality assessments of fruits. 

Since HSI is based on Vis/NIR spectroscopy, both will present the same absorbance 
bands. For fruit analyses, the visible/short wave NIR region (Vis/SWNIR, 400–1100 
nm) appears relevant. Data in the visible spectral range (400–750 nm) can be used to 
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assess external features such as colour, shape, size, defects, and faecal contamination 
(Liu et al., 2015; Chandrasekaran et al., 2019). The visible spectrum includes the 
absorption bands of some substances used as fruit maturity indices: carotenes and 
xanthophylls absorb at 420–500 nm (Walsh et al., 2020), and up to 600 nm (Munera 
et al., 2017), with beta-carotene close to 475 nm (Walsh et al., 2020); anthocyanins 
absorb at around 500 nm (ElMasry et al., 2007), up to 530–550 nm for an anthocyanin 
pigment sugar-protein complex in apples; chlorophyll absorbs at 670–720 nm (Walsh 
et al., 2020). In the SWNIR region (750–1100 nm), water absorption bands are 
localised at 760 nm and 960–970 nm, and are characterised by overtone of O–H bonds 
(McGlone & Kawano, 1998; Nicolaï et al., 2007). The absorption band at about 840 
nm has been associated with sugar (Pu et al., 2016). Finally, the peaks observed in the 
950–1000 nm region were related to both water and carbohydrates, as the second 
overtone of the O–H and N–H bonds, a combination band of the O–H bond, and the 
third overtone of the C–H bond were detected in the aforementioned region (Camps & 
Christen, 2009). 

Since the water content of a fruit is about 74–90% (Salunkhe & Kadam, 1995), the 
water-related absorption band can be expected to prevail. As observed, the water 
absorption peaks in the SWNIR region are not very marked and broad. Therefore, the 
SSC spectral information in the 800–1000 nm range will tend to be less covered by 
water (Camps & Christen, 2009; Manley et al., 2007). However, the SWNIR 
assessment of macro-constituents such as SSC and dry matter content could be 
strongly dependent on a negative correlation with water (Walsh et al., 2020). 
Wavelengths > 1100 nm result in narrower and stronger absorption peaks than those 
observed in SWNIR, and therefore provide superior performance in the assessment of 
internal fruit quality attributes compared to those obtained in SWNIR. However, the 
SWNIR region is preferred to the region with wavelengths > 1100 nm, as the relatively 
low water absorption coefficient in the SWNIR region allows for deeper light 
penetration into the fruit. The lower effective penetration depth associated with the use 
of longer wavelengths could limit the robustness of the performance between 
independent populations, given the variation in quality attributes of the outer fruit layer 
(Walsh et al., 2020). 

 

1.5. Operating principles of a hyperspectral camera 

A typical HSI lab-scale system consists of a hyperspectral camera equipped with a 
charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) 
sensor and spectrograph, a light source that illuminates the sample, usually a conveyor 
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belt on which the sample flows, and a computer (ElMasry et al., 2012). The 
hyperspectral camera, similar to a RGB camera, measures and stores the light reflected 
from the sample. The RGB camera sensor measures only three bands of visible 
radiation (corresponding to the wavelengths of red, green, and blue light), whereas the 
hyperspectral camera sensor can measure several hundred wavelength bands in its 
characteristic spectral range. HSI systems are characterised by high spectral resolution, 
due to the width of the spectral bands, which is just a few nanometres (nm) (Thomas 
et al., 2018). Broadband light dispersion in wavelength bands is performed by optical 
and electro-optical devices (Liu et al., 2015). 

 

1.6. Sensor types in hyperspectral imaging 

In HSI systems, three types of sensors are implemented: (1) linear array ‘whisk-broom’ 
type with a rotating mirror, (2) linear array ‘push-broom’ type, (3) and area array. 
Linear array sensors are based on diodes or CCDs measuring radiance from the sample. 
Linear array push-broom sensors have some advantages over whisk-broom: they 
provide a more accurate measurement of the radiant flux from the sample, since no 
moving mirrors are required; moreover, given the same hyperspectral image 
acquisition time, the exposure time of the same part of the sample (e.g., a push-broom 
scan line) is longer. Push-broom sensors take their name from the disposition of the 
pixel sensor units, which is similar to a line of bristles in a broom (Jensen, 2014). Since 
a push-broom hyperspectral camera can collect only one line of the sample surface at 
a time, a conveyor belt is normally used to slide the sample under the lens: therefore, 
an entire scan of the sample can be captured. Finally, the computer will compose and 
visualize the whole hyperspectral image (Liu et al., 2015). In case of area array sensors, 
hyperspectral images are fully captured in a single run: this system does not require 
movement of the sample or the hyperspectral camera. A filter, either wheel or tuneable, 
is required to select different wavelengths during the scanning process (ElMasry et al., 
2012). The area array sensors are more practical in multispectral imaging, where the 
number of wavelengths selected is limited (Garini et al., 2006). 

 

1.7. The hyperspectral data 

Hyperspectral data consist of volume elements, the voxels, which contain reflectance, 
absorbance, or transmittance information of each wavelength band of a given spectral 
range. The spectral signature (or spectral profile) of each point in the hyperspectral 
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image can be obtained by combining this information; otherwise, the spectral signature 
can also be measured by a non-imaging hyperspectral system such as a spectrometer, 
but spatial information would be lost (Thomas et al., 2018). HSI, combining 
spectroscopy and imaging, measures the spectral signatures and spatial information of 
a sample at the same time. The output of the hyperspectral data is a stack of 
narrowband images organised along the spectrum axis, thus generating a 3D 
hypercube. The hypercube data, the voxels (values on a regular grid in a 3D space), 
are thus characterised by two spatial dimensions (x, y) and one spectral dimension (λ) 
(Fig. 1.7.1) (Mishra et al., 2017). 

 

 
 

1.8. Hyperspectral image processing 

The whole analytical process of a hyperspectral image can be summarised in three 
steps: (1) acquisition and calibration of the hyperspectral image; (2) spectral/spatial 
processing and dimensionality reduction; (3) hyperspectral data processing and 
development of prediction or classification models (Fig. 1.8.1). In recent years, several 
hyperspectral image processing techniques in both spectral and spatial dimensions 

spatial dimension (x)

sp
at
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im
en

si
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(y
)

Reflectance spectrum of 
the selected point (voxel)

Representation of a 3D 
hypercube.

Fig. 1.7.1 – Representation of a 3D hypercube. The hypercube consists of two spatial 
dimensions (in the figure a RGB representation of a portion of a hyperspectral image of a 
vineyard section) and a spectral dimension (in the figure in false colours). Each point (voxel) 
identified in the spatial dimensions is characterised by a spectrum (in the figure a reflectance 
spectrum). 
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have been developed, based on chemometric and multivariate analysis. By reducing 
the dimensionality of the hyperspectral image through the extraction of useful 
spectral/spatial features, a smaller dimensional space is obtained compared to the 
original, thus reducing the amount of hyperspectral data. Finally, chemometric and 
multivariate analysis techniques can be applied on hyperspectral data to estimate a 
reference parameter (Yoon & Park, 2015). 

 

1.8.1. Hyperspectral image acquisition and calibration 

Following the acquisition of the hyperspectral image, a correction is applied to the 
hyperspectral image through black and white references. The black reference can be 
obtained by acquiring a hyperspectral image with the cap on the hyperspectral camera 
lens; the acquisition of the white reference requires the framing of a dedicated high 
reflectance white panel placed within the field of view of the hyperspectral camera 
(Ma et al., 2019). 

 

Sample

Hyperspectral 
imaging acquisition 

and calibration

Preprocessing

Dimensionality 
reduction

ROIs selection

Model calibration 
and validation

Analytical 
measurement of 

components using 
traditional methods

Classification or 
prediction

Fig. 1.8.1 – Common steps in hyperspectral imaging: process 
operations and data analysis. Note: ROIs, regions of interest. 
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1.8.2. Spectral/spatial processing and dimensionality reduction 

Spectral processing, a key step at this stage, includes preprocessing and extraction of 
spectral features. The most commonly adopted preprocessing techniques include: 
spectral noise smoothing methods, such as Savitzky-Golay, moving average, median 
filter; algorithms to refine spectral data, such as derivatives (Norris-Williams and 
Savitzky-Golay), multiplicative scatter correction (MSC), standard normal variate 
(SNV); alignment techniques such as correlation optimised warping (COW) (Rinnan 
et al., 2009; Ma et al., 2019). 

To overcome multicollinearity in multivariate analysis, it could be worthwhile to 
perform variable selection, identifying and removing unnecessary, noisy, and 
redundant variables. In addition, the dimensionality of the hyperspectral data could be 
also reduced, which may result in improved model features and performance, helping 
to simplify further classification and information retrieval processes (Liu et al., 2014). 
Variable selection methods can be classified as: (1) filter methods, including 
information gain and correlation-based feature selection (CFS), (2) wrapper methods, 
including learning algorithms, such as beam search, simulated annealing (SA), and 
genetic algorithms (GA), and (3) embedded methods, such as support vector machine 
(SVM) and decision trees. If the variables are wavelengths, as in the case of HSI, 
common variable selection methods include successive projections algorithm (SPA), 
stepwise regression (SWR), partial least square regression (PLSR), uninformative 
variable elimination (UVE), artificial neural network (ANN), SA, GA, competitive 
adaptive reweighted sampling (CARS), receiver operating characteristic (ROC) 
analysis, branch and bound (BB) algorithm, and minimum redundancy-maximum 
relevance (MRMR) (Liu et al., 2014). 

 

1.8.3. Classification and prediction methods 

The last stage of HSI processing is related to the development of classification or 
prediction models. Classification methods based on multivariate classification 
techniques include: (1) unsupervised methods such as principal component analysis 
(PCA), clustering (k-means, Jarvis-Patrick, hierarchical), and convolutional neural 
networks (CNN); (2) supervised methods such as discriminant analysis (linear, 
quadratic, or regularized DA), soft independent modelling class analogies (SIMCA), 
partial least squares discriminant analysis (PLS-DA), SVM, and non-parametric k-
nearest neighbour (kNN) (Ma et al., 2019). Methods for developing prediction models 
used to estimate the correlation between spectral information and reference properties 
measured on samples are divided into linear and non-linear regression. Linear 
regression methods include multiple linear regression (MLR), principal component 
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regression (PCR) and PLSR. The most commonly used non-linear regression methods 
are ANN, such as multilayer perceptron (MLP) or generalised regression neural 
network (GRNN), SVM and non-linear PLSR (Ma et al., 2019). 
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2. EXPERIMENTAL SECTION 

 

 

This section, organized into two parts, introduces the research activity with brief 
abstracts of the studies carried out. 

The first part concerns studies from activities carried out in the laboratory: first, two 
studies on the application of hyperspectral imaging technology for the determination 
of quality attributes of apricots and kiwis; then, the application of an optical method 
for the estimation of procyanidins in red wine; finally, a study on the determination of 
kiwi hardness using a near-infrared (NIR) sensitive device. 

In the second part, studies on activities carried out directly in the field using 
hyperspectral imaging (HSI) technology are reported: as an introduction to the topic, 
a review on in-field HSI systems for ground-based proximal sensing has been 
included, followed by a study on the monitoring of wine grape ripening and finally a 
study on the automatic selection of regions of interest from hyperspectral images. 

 

 

2.1. Lab-scale studies by hyperspectral imaging technology and 
other optical techniques 

The fruit industry needs fast, non-destructive and inexpensive techniques to monitor 
the quality of produce in the post-harvest and storage phases, to identify the proper 
degree of ripeness for distribution, or to assess shelf-life. In the following studies, the 
soluble solids content (SSC) and flesh firmness (FF) of apricots (Benelli et al., 2022, 
under review) and kiwis (Benelli et al., 2021a) were monitored as quality attributes 
related to the ripeness of the fruit using a HSI lab-scale system. 

Then, a study based on a rapid and cost-effective optical method for the determination 
of procyanidins in red wine is introduced (Ricci et al., 2020). Finally, a brief 
description of a study involving the application of a sensitive NIR device, with 
potential in on-line sorting, for the determination of kiwi flesh firmness is reported 
(Berardinelli et al., 2019). 
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2.1.1. Hyperspectral imaging to measure apricot attributes during 
storage (Benelli et al., 2022, accepted for publication) – Paper I 

The purpose of the present study was to provide a prediction of the FF and SSC of 
apricots during storage. A HSI lab-scale system operating in the visible/near-infrared 
(Vis/NIR) spectral region (400–1000 nm) was used to scan 180 ‘Farbaly’ apricots over 
11 days. Partial least square (PLS) regression and artificial neural network (ANN) 
were used to develop predictive models. From the PLS models, the best results were 
obtained for the prediction of FF, with R2P=0.854 and RMSEP=1.64 N, while 
R2P=0.721 and RMSEP=0.51 °Brix were obtained for the prediction of SSC. From the 
ANN models, the best results were obtained for the prediction of FF, with R2P=0.85 
and RMSEP=1.50 N. Accordingly to these results, the study also revealed the potential 
of the HSI technique for assessing quality attributes of apricots along the supply-chain. 

 

2.1.2. Ripeness evaluation of kiwifruit by hyperspectral imaging (Benelli, 
et al., 2021a) – Paper II 

In the present study, a Vis/NIR (400–1000 nm) hyperspectral imaging lab-scale system 
was adopted to assess the ripeness of ‘Hayward’ kiwifruit. PLS models were 
developed to predict SSC and FF, while two types of partial least square discriminant 
analysis (PLS-DA), soft and hard, were used to classify samples according to three 
ripeness classes (unripe, ripe for storage, ripe for consumer), defined according to 
ranges of SSC and FF values. To reduce the dimensionality of the hyperspectral data, 
two methods of variable selection were adopted: genetic algorithm (GA) and variable 
importance in projection (VIP). The results of the SSC prediction ranged from R2P 
values of 0.85 (RMSEP=1.10 °Brix) to 0.94 (RMSEP=0.73 °Brix), while with the FF 
prediction, R2P values from 0.82 (RMSEP=14.51 N) to 0.92 (RMSEP=9.87 N) were 
obtained. The classification sensitivity reached values of 97% for SSC and 93% for FF 
models. Prediction and classification performance remained essentially unchanged by 
reducing the dimensionality of the hyperspectral data through variable selection. 
Therefore, hyperspectral imaging appears suitable for prediction of kiwifruit quality 
attributes and classification of kiwifruit into the three classes unripe, ripe for storage, 
ripe for consumer, defined considering quality attributes. 

 

2.1.3. Rapid optical method for procyanidins estimation in red wines 
(Ricci et al., 2020) – Paper III 

This work describes a reliable and rapid optical method for estimation of tannin 
content in red wines. The method draws from the ability of tannins to precipitate 
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proteins from aqueous solutions. The mixing of wine tannins (procyanidins) with 
gelatine forms a delicate meshwork that sweeps colloidal proteins out of wine 
(Jackson, 2020). An optical device based on the spectral-sensitive pulsed photometry 
(SSPP) technique (Ragni et al., 2016) was used to assess the degree of turbidity by 
measuring the light intensity of a pulsed light source (tungsten lamp) with a 
wavelength-sensitive photodiode. Twenty-seven red wines were optically measured at 
room temperature immediately after mixing with a saturated gelatine solution in a 
model wine buffer (12% ethanol, pH 3.5). The resulting output signal waveform 
(voltage, V) presents different peak intensity, amplitude, and curvature values as a 
function of the degree of turbidity and radiation absorption. A significant nonlinear 
correlation (R2 up to 0.9657) with tannin content, determined by a reference 
colorimetric method, was obtained. Hence, the proposed new optical method 
represents a reliable, rapid, simple, and cost-effective alternative for on-line and off-
line analysis of procyanidins in red wine. 

 

2.1.4. Kiwifruit flesh firmness determination by a NIR sensitive device 
and image multivariate data analyses (Berardinelli et al., 2019) – 
Paper IV 

A prototype based on a NIR-sensitive camera and a xenon lamp was set up and used 
to capture 8-bit greyscale images (0=black to 255=white) of the radiation passing 
through kiwifruits. Grey tones and pixel counts were used to build statistical-
mathematical models to correlate and predict the FF of the fruit. One hundred and 
sixteen properly stored fruits (FF range: 0.8–87 N) were subjected to the optical 
measurements. Simple regression between the prevailing grey tone (the grey tone with 
the most pixels) and FF revealed an exponential correlation (R2=0.717). Instead, tone 
uniformity (the number of pixels of the prevailing grey tone) resulted linearly 
correlated to FF (R2=0.687). The PLS algorithm was able to predict FF with R2=0.777 
(RMSE=13 N). ANNs produced similar results. Although the current technique does 
not fully meet the requirements for accurate selection, it could be considered for on-
line applications by improving performance (e.g., acting on lamp spectral emissions 
and camera detection) and with easy mechanical modifications of the sorting lines 
(Berardinelli et al., 2019). 
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2.2. Studies on in-field hyperspectral imaging systems 

In the agro-food sector, a large number of works have been published on the use of 
HSI technology under controlled laboratory conditions. However, studies concerning 
the application of HSI technology directly in the field, in particular through ground-
based systems, are less common. Therefore, an overview of the application of HSI 
technology directly in the field, considering ground-based systems, has been proposed 
(Benelli et al., 2020). Afterwards, two studies on the monitoring of the ripening 
process of wine grapes, from post-veraison to harvest, are reported (Benelli et al., 
2021b); hyperspectral images were acquired by a HSI system mounted on a ground-
based vehicle. 

 

2.2.1. In-field hyperspectral imaging: an overview on the ground-based 
applications in agriculture (Benelli et al., 2020) – Paper V 

Monitoring vegetation indices that characterise plant health and growth, or the 
assessment of fruit maturity, defects, and diseases, are key steps to gain high quality 
products. HSI could fulfil these demands providing a good basis for research and 
development of fast, cost-effective, and non-destructive systems for direct in-field 
monitoring of crop production. In this context, the studies reviewed and reported 
concern in-field applications of ground-based HSI systems, such as high-throughput 
phenotyping of different types of cereals, vines and cotton, mango ripening, 
chlorophyll and nitrogen content of cereals, sugar beet and mosses, water stress 
detection of cereals, weed detection and management, monitoring of corn stubbles in 
conservation agriculture, monitoring of wheat canopies under uncontrolled conditions. 

 

2.2.2. In-field and non-destructive monitoring of grapes maturity by 
hyperspectral imaging (Benelli et al., 2021b) – Paper VI 

The study describes the development of a rapid, non-destructive method for in-field 
monitoring of the ripening of ‘Sangiovese’ wine grapes with a HSI Vis/NIR (400–
1000 nm) system mounted on a ground-based vehicle. A vineyard row divided into 11 
sections was analysed on 13 different days under clear sky conditions between post-
veraison and harvest. The analysis focused on the monitoring of SSC. The °Brix of the 
grapes was measured directly in the field with a portable digital refractometer. Mean 
spectra of the grapes were extracted from the hyperspectral images of the vineyard 
sections and used to predict SSC by PLS regression. Afterwards, the grape samples 
were divided into two classes: the first with °Brix<20 (not-ripe) and the second with 
°Brix≥20 (ripe). Mean spectra of the grapes were then classified by PLS-DA. SSC was 
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predicted with R2CV=0.77 (RMSECV=0.79 °Brix), and samples were correctly 
classified with a percentage ranging from 86 to 91%. By performing variable selection, 
the percentages of correctly classified samples fell into the same range. The study 
highlights the potential of HSI technology for proximal sensing applied directly in the 
field under daylight conditions to predict grape maturity and harvest time. 

 

2.2.3. Automatic selection of the regions of interest from moving wagon 
hyperspectral images of grapes and SSC prediction 

In the present study, the development process of a method for automatic selection of 
regions of interest (ROIs) from hyperspectral images was described. For this purpose, 
the whole dataset from Benelli et al. (2021b) was used, consisting of hyperspectral 
images of a row of ‘Sangiovese’ wine grapes acquired directly in the field by means 
of an HSI Vis/NIR system (400–1000 nm) mounted on a ground-based vehicle. The 
analyses were carried out on 17 different days, under clear or partly cloudy conditions, 
in the period between post-veraison and harvest. The vineyard row was divided into 
11 sections and a hyperspectral image for each section for each day of analysis was 
acquired. The ROIs of the hyperspectral images, comprising the areas covered by 
grapes, were predicted using a PLS-DA-based method. The best PLS-DA model 
provided excellent results, with sensitivity and specificity values of 0.991 and 0.996, 
respectively. The mean spectra of the selected ROIs were then used to predict the SSC 
of grapes by PLS regression. The best results of SSC prediction (R2CV=0.74 and 
RMSECV=0.86 °Brix) agree with those obtained by manual ROIs selection 
(R2CV=0.73 and RMSECV=0.87 °Brix). 
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Abstract 
 

Fruit industry needs for rapid and non-destructive techniques to evaluate the products 
quality in field and during the post-harvest phase. The soluble solids content (SSC), in 
terms of °Brix, and the flesh firmness (FF) are typical parameters used to measure fruit 
quality and maturity state. Hyperspectral imaging (HSI) is a powerful technique, 
combining image analysis and infrared spectroscopy. The aim of this study was to 
evaluate the potential of application of the Vis/NIR push-broom hyperspectral imaging 
(400 to 1000 nm) to predict the firmness and the °Brix in apricots (180 samples) during 
storage (11 days). Partial least squares (PLS) and artificial neural networks (ANN) 
were used to develop predictive models. For the PLS, R2 values (test set) up to 0.85 
(RMSEP=1.64 N) and 0.72 (RMSEP=0.51 °Brix) were obtained for the FF and SSC, 
respectively. Concerning the ANN, the best results, in test set, was achieved for the FF 
(R2=0.85, RMSEP=1.50 N). The study showed the potential of the HSI technique as a 
non-destructive tool for measuring apricot quality even along the whole supply chain. 
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Keywords: apricot, storage, hyperspectral imaging, ANN, PLS. 

 

3.1.1. Introduction 

The optimal harvest time or the right degree of ripeness of apricots (Prunus Armeniaca 
L.) intended for the fresh market are typically determined by measuring chemical and 
physical quality parameters of the fruit, i.e., the ripening indexes. The measurement of 
the quality parameters of the fruit is traditionally carried out using destructive 
analytical techniques, which also involve long operating times (Witherspoon & 
Jackson, 1995). In the last decades, numerous researches have been addressed on the 
fast and non-destructive estimation of fruit ripening indexes through spectroscopic 
methods, including near- and mid-infrared spectroscopy (NIR/MIR); in particular, for 
apricots, have been analysed: soluble solids content (SSC), titratable acidity (TA), 
flesh firmness (FF), total carotenoids content (TCC), total phenolic content (TPC) and 
flavonols content (FLC) (Amoriello et al., 2019; Guo et al., 2019; Amoriello et al., 
2018; Bureau et al., 2018; Ciacciulli et al., 2018; Buyukcan & Kavdir, 2017; De 
Oliveira et al., 2014; Bureau et al., 2012; Christen et al., 2012; Berardinelli et al., 2010; 
Bureau et al., 2009; Camps & Christen, 2009b; Camps & Christen, 2009a; Ruiz et al., 
2008; Manley et al., 2007; Carlini et al., 2000). Another spectroscopic technique that 
has been increasingly applied in the last decade for the determination of fruit and 
vegetable quality parameters is hyperspectral imaging (HSI). HSI combines image 
analysis and spectroscopy, in particular Vis/NIR spectroscopy. HSI allows to obtain 
as many absorbance/reflectance/transmittance spectra as there are single acquired 
pixels (in this technique called voxels) that form the hyperspectral image; the output 
is a hypercube, composed of data with two spatial and a spectral dimensions. This 
method of analysis is fast and non-destructive, without the need for contact with the 
sample to be analysed. HSI is applied for the determination of quality parameters of 
fruit and vegetables both directly in the field and in the laboratory. The processing of 
the acquired hyperspectral images generally requires several steps: the use of 
hyperspectral image segmentation techniques, in order to reduce the size of the 
acquired data; the application of a region of interest (ROI) selection method, from 
which the hyperspectral data required can be derived; finally, the application of spectra 
pre-treatment techniques for the implementation of multivariate data analysis. Partial 
least square regression (PLS), supporting vector machines (SVM) and artificial neural 
networks (ANN), are popular multivariate regression techniques used for 
hyperspectral imaging. 
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There are several studies on the determination of fruit quality parameters by means of 
HSI (Chandrasekaran et al., 2019), but there is only one study concerning apricots 
(Xue et al., 2015). The authors evaluated the ripeness of the Shajin apricot, in terms of 
4 ripeness classes (unripe, mid-ripe, ripe, and over-ripe according to the days after 
harvesting) and SSC, by using the HSI in the band range of 400–1000 nm. Extreme 
learning machine (ELM) was used as classification technique. The results showed a 
correct discrimination rate of 93.33%, but regression models able to estimate the SSC 
have not been developed. 

In this study, the potential of HSI technique combined with multivariate data analyses 
(PLS and ANN) to non-destructively predict quality parameters (SSC and FF) of 
apricots in post-harvest conditions was investigated. This would allow to assess the 
degree of ripeness of the fruit suitable for the fresh market. 

 

3.1.2. Materials and methods 

3.1.2.1. Samples 
180 samples of apricot c.v. Farbaly harvested in July 2019 in the Cesena area (Italy) 
and stored at 4 °C were used for the research. The analyses were carried out after 1 (I), 
2 (II), 3 (III), 4 (IV), 5 (V), 8 (VI), 9 (VII), 10 (VIII) and 11 (IX) days of storage at 20 
°C, for a total of nine storage times. Twenty apricots for storage time were evaluated. 
These storage conditions have been chosen to reproduce those in the fresh market. 

 

3.1.2.2. Hyperspectral measurements 
The hyperspectral (HS) images of the apricots were obtained through the use of a push-
broom linear array hyperspectral camera (HSC) working in the spectral range from 
400 to 1000 nm (Nano-Hyperspec VNIR, Headwall Photonics, Inc., Fitchburg, MA, 
USA) with a 12 mm EFL (effective focal length) lens. The HSC scans one line of 
voxels at a time, with a spatial resolution of 640 points, each one characterized by 272 
spectral bands, with a nominal spectral resolution of 2.2 nm. The HSC has been set 
with an exposure and frame period of 25 ms: the frame rate is a variable depending on 
the set exposure time, in this case it was 34.22 frames per second (FPS). 

The set-up used during the experimental test is shown in Fig. 3.1.1. Particularly, the 
HSC has been mounted on a metallic frame with the optical axis perpendicular to the 
underlying conveyor belt, on which the sample runs, at a height of 54 cm. The 
conveyor belt speed has been set to 8 mm·s-1. On the same frame, two halogen 
spotlights with 120 W lamp have been mounted, inclined by 15° with respect to the 
conveyor belt plane and at a height of 32 cm. The analysis was carried out by isolating 
the apparatus from the external light using a properly assembled box. The 
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hyperspectral image was obtained by progressive scanning of several lines, keeping 
the HSC fixed and running the sample on a prototype conveyor belt, which simulates 
an industrial fruit sorting line. 

Reflectance spectrum of white reference (RW) was obtained respectively by means of 
a white cardboard sheet covering the entire angle of view of the HSC; reflectance 
spectrum of dark reference (RD) was obtained placing the cover on the lens. Raw 
diffuse reflectance spectrum (RR) was obtained by the scan of the sample. The 
calibrated diffuse reflectance spectrum (RC), was calculated by the following equation 
(Guo et al., 2019): 

𝑅𝑅𝐶𝐶 =
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝐷𝐷
𝑅𝑅𝑊𝑊 − 𝑅𝑅𝐷𝐷

 

Each whole apricot was longitudinally scanned twice, one per side. The sample 
temperature was 23±1 °C. 

 

3.1.2.3. Destructive measurements of quality parameters 
The quality parameters (FF and SSC) were measured immediately after the acquisition 
of the HS images. The apricots were prepared for FF analysis by cutting them in half 
with a knife along the longitudinal plane, depriving them of the kernel, and finally 
removing the concavity resulting from the removal of the kernel, in order to obtain a 
flat support surface. FF (N) was determined on each half portion of the fruit on the 
equatorial area by a compression test performed with a texture analyser (TA-HDi, 

sample conveyor
belt

halogen
lamps

hyperspectral
camera

signal to PC

metal
frame

sliding
direction

Fig. 3.1.1 – Components of the hyperspectral imaging system 
developed for the experiment. 
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Stable Micro System Ltd., Godalming, UK) during a penetration of 9 mm obtained by 
a 6 mm diameter flat-headed cylindrical steel probe mounted on a 50 N load cell. The 
test speed was 0.5 mm·s-1. The SSC (°Brix) was measured by means of a digital 
refractometer (PR-101 Digital Refractometer, ATAGO CO., LTD, Tokyo, Japan), on 
juice obtained from the pulp in the equatorial area of the fruit side previously analysed 
with the texture analyser (Witherspoon & Jackson, 1995). An average value of the 
ripening index was subsequently obtained by averaging the FF and °Brix grade values 
of the two sides of the fruit. Significant differences between the means of the quality 
parameters at different storage time were evaluated through analysis of variance 
(ANOVA with Tukey-HSD post-hoc test, p-level>0.05). In case of non-homogeneity 
of variance, evaluated by the Levene test, the non-parametric Kruskal-Wallis test (p-
level<0.05) with multiple comparison z’ post-hoc test (Dunn’s test) was applied. 

 

3.1.2.4. Multivariate data analysis 
For each side of each sample, a mean spectrum was calculated by averaging the spectra 
of the region of interest (ROI), a selected equatorial area measuring 30×30 voxels (900 
spectra). This operation was done by using HyperCube v. 11.52 software (U.S. Army 
Engineer Research and Development Center (ERDC), USA). The mean spectra of two 
sides were averaged and used for the chemometric elaborations. Principal component 
analysis (PCA) was used as explorative technique to evaluate the spectra variations 
and to identify sample outliers. Two different statistical techniques were used to 
predict SSC and FF, the first one (PLS) based on a linear approach, and the second one 
(ANN) on a non-linear approach. The dataset was split into two sub-sets, one to train 
and cross-validate the models (80% of the entire dataset) and the other (20%) to 
external validate it (test set), by using the Kennard-Stone method (selects samples that 
best span the same range as the original data, but with an even distribution of samples 
across the same range). The overfitting of the models was avoided monitoring the root 
mean square error in cross-validation (RMSECV) as a function of the latent variables 
(PLS) or iterations number (ANN). To identify and select relevant variables, variable 
importance in the projection (VIP) method was adopted. VIP scores estimate the 
relevance of each predictor in the projection used in a PLS model: since the mean of 
squared VIP scores is equal to 1, the ‘greater than one’ rule is frequently used as a 
variable selection criterion (Chong & Jun, 2005). Finally, the results were expressed 
in terms of R2, root mean square error (RMSE) and residual prediction deviation 
(RPD), defined as the standard deviation of observed values divided by the RMSE: a 
good model should have a high R2, a low RMSE and a high RPD. 

PLS regression models were developed by using PLS Toolbox for Matlab2018a®. 
Spectral bands between 400 and 426 nm (13 spectral bands) and between 980 and 1000 
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nm (10 spectral bands) were excluded, due to the low signal-to-noise ratio generated 
by the hyperspectral sensor, as also observed by Wendel et al. (2018). The spectra were 
pre-treated with standard normal variate (SNV) or Savitzky-Golay first derivative (D1) 
transformation (10 points) and finally mean centred (MC), to improve the prediction 
performance. 

The ANN models were performed by using the Neural Net Fitting tool for 
Matlab2018a®. Specifically, two Multi-Layer Perceptron (MLP) neural network were 
built to predict SSC and FF. For input and output layers, linear activation function was 
used, while for the hidden layer a logistic activation function was applied. Considering 
that the ANN ability should be to capture an implicit pre-processing of the spectra 
(Helin et al., 2022), the raw spectra were only subjected to denoising (Savitzky-Golay 
method with 15 smoothing points). Min-max normalization is independently applied 
by the software to speed up learning and leads to faster convergence. 

Looking for the best classification ability, different node numbers in the hidden layer 
and combinations were tested. The ANN were trained by using the Levenberg-
Marquardt back propagation method. 

 

3.1.3. Results and discussion 

Mean and standard deviation values of SSC and FF are shown in Table 3.1.1. The 
obtained values are in agreement with those reported by Ciacciulli et al. (2018), 
Berardinelli et al. (2010), and Manley et al. (2007) for apricots analysed during 
different days of storage. Significant differences emerged for both FF and SSC 
between measurements at different storage time. 

Table 3.1.1 – Means and standard deviations (in 
brackets) of maturity indices (SSC and FF) as a function 
of storage time (n=20 for each storage time). 

Storage time SSC (°Brix) FF (N) 
I 15.0a (1.0) 14.3a (2.8) 
II 15.7a,b (0.9) 13.0a (3.4) 
III 16.5b,c (1.4) 10.2a,b (1.7) 
IV 16.4b,c (0.7) 8.3a,b,c (1.4) 
V 16.6b,c (0.8) 6.6b,c,d (0.8) 
VI 16.6b,c (0.6) 4.0c,d,e (0.4) 
VII 17.0c (0.8) 3.5d,e (0.6) 
VIII 16.5b,c (0.7) 3.4e (0.6) 
IX 16.4b,c (0.9) 3.0e (0.6) 

Note: the differences between means with the same letter are 
not significant at p<0.05. 

The range of variation of FF is rather high, with a decrease from day I to day IX of 
79%. In the same time period SSC increased by 9%. 
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Raw spectra and pre-treated spectra by the first derivative of all the samples by day of 
analysis are shown in Fig. 3.1.2. The Vis/NIR region from 400 to 1000 nm is 
characterized by vibration overtones and combination bands of O–H, C–H and N–H 
bonds, related to the principal structural organic molecules (Manley et al., 2007). In 
the visible spectrum (400–700 nm) are present the absorption bands of substances used 
as ripening indexes of fruit (Manley et al., 2007). The absorption band of anthocyanins 
is around 500 nm (ElMasry et al., 2007), the range of absorption bands related to 
carotenoids is between 570 and 590 nm (Munera et al., 2017), and between 680 and 
710 nm for chlorophyll-α (Amoriello et al., 2018; Munera et al., 2017; Pu et al., 2016; 
ElMasry et al., 2007; McGlone & Kawano, 1998). 

Absorption bands related to water with overtone of O–H bonds were observed at 760 
nm (Nicolaï et al., 2007) and 970 nm (Bureau et al., 2009; Nicolaï et al., 2007). In 
accordance with the latter statement, a strong absorption band related to water was 
observed at around 960 nm (Guo et al., 2019; Pu et al., 2016; McGlone & Kawano, 
1998), and can be expected to prevail, since the water content of the fresh fruit is 80–
90% (McGlone & Kawano, 1998). In general, the water absorption peaks in the 
spectral region between 700 and 1000 nm are less marked and wide. Therefore, the 
spectral information from substances present in the fruit at low concentrations will 
tend to be less covered by the presence of water (Manley et al., 2007). Between 950 
and 1000 nm, absorbance peaks were observed for carbohydrates and water, 
corresponding to the second overtone of O–H and N–H, a combination band of O–H 
bonds and the third overtone of C–H (Camps & Christen, 2009a). Absorption regions 
at 840 nm have been indicated as probable sugar absorption bands (Pu et al., 2016). In 
summary, regions within the 800–1000 nm range have been related to SSC variations, 
while absorption bands referred to water have been located at 960–970 nm (Camps & 
Christen, 2009b). 

Fig. 3.1.2 – Raw (a) and first derivative (b) spectra of all samples on different days (from I to IX) of analysis. 
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The variance between the spectra acquired at different storage time was evaluated by 
means of PCA. Two different PCAs were developed, the first one by using the spectra 
pre-treated by SNV+MC and the second one applying the D1+MC. The scores plots 
of the first two PCs (76.38% and 13.43%; 62.90% and 17.96%) are reported in Fig. 
3.1.3a,b. For both cases, a clear separation of the samples according to all the days of 
storage is not evident, but the samples are placed from right to left along the PC1 and 
from bottom to top along the PC2 passing from time one to time nine. The loadings 

plots (Fig. 3.1.3c,d) suggest that the discrimination might be attributed to absorption 
bands related to carotenoids (around 560–590 nm) and chlorophyll-α (around 680–690 
nm). 

PLS and ANN models were developed to predict FF and SSC. PLS results, in terms of 
R2, RMSE, RPD, and number of latent variables (LV), in calibration, cross-validation 
and test set, are reported in Table 3.1.2. For both the quality parameter (FF and SSC), 
the best models were obtained by treating the spectra with first derivative and mean 
centring. In particular, for the FF parameter, R2 in test set ranging from 0.83 
(RMSEP=1.98 N) to 0.85 (RMSEP=1.64 N) were achieved. For the prediction of SSC, 

Fig. 3.1.3 – Scores plots (a,b) and loadings plots (c,d) obtained by PCA developed on all the spectra. Spectra pre-
treatments: (a,c) standard normal variate and mean centring; (b,d) first derivative and mean centring. 
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the results are less good in terms of R2, ranging from 0.68 to 0.72, probably due to the 
small variation of the measured SSC values; however, good RMSEP values, ranging 
from 0.59 to 0.51 °Brix, were obtained. RPD values above 2 confirm that the PLS 

models built to estimate FF are robust, instead the RPD values calculated for the °Brix 
models are slightly lower. Fig. 3.1.4 shows the best results in terms of measured vs 
predicted values of FF for the test set. 

The spectral and spatial information of each pixel in HS images allows the evaluation 
of quality parameters of each pixel with chemometric models. The pixels having 
similar spectra showed similar colours in the images, and consequently similar 
predicted values. Using the best PLS model developed to predict FF, false colour 
images were obtained. The prediction maps of FF of two representative apricots are 
shown in Fig. 3.1.5. The colour bars indicate the scales of the reference values (FF in 
N). Spatial distribution of FF is in alignment with the measured values, particularly 
passing from 2.74 N to 16.53 N the colour ranges from blue to red. The noise of the 
HS image, influenced by the fruit curvature and inclination of the light source, 
especially in the peripheral zone, could affect the spectrum of each pixel, which may 
result in the underestimation of the FF. 

Table 3.1.2 – PLS results, in terms of coefficient of determination (R2), root mean square error (RMSE), residual 
prediction deviation (RPD) and number of latent variables (LV). 

Parameter  Pre-treatment LV Calibration set Cross-validation set Test set 
   R2 RMSEC RPD R2 RMSECV RPD R2 RMSEP RPD 
FF (N) SNV +MC 12 0.93 1.16 3.9 0.81 1.99 2.3 0.83 1.98 2.4 
(7.3 ±4.4 N) D1+MC 12 0.91 1.39 3.2 0.82 1.85 2.4 0.85 1.64 2.6 
SSC (°Brix) SNV +MC 13 0.82 0.42 2.3 0.69 0.58 1.8 0.68 0.59 1.8 
(16.3±1.0 °Brix) D1+MC 13 0.78 0.46 2.1 0.72 0.50 1.9 0.72 0.51 1.9 

Note: SNV: standard normal variate; MC: mean centring; D1: first derivative. 
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Fig. 3.1.4 – Measured vs predicted values of FF (a) and SSC (b) for the test set, obtained by means of PLS 
regression. 
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The VIP scores obtained by the PLS models built to estimate FF are reported in Fig. 
3.1.6. These scores estimate the importance of each variable in the projection used in 
a PLS model. A variable with a VIP score close to or greater than one can be 
considered important in a given model. Considering different spectra pre-treatments 
(SNV+MC or D1+MC), similar regions with VIP scores higher than one were 
obtained, suggesting that the wavelengths with the highest contribution to FF 
prediction range from about 525 to 725 nm. Very similar VIP trends were obtained for 
PLS models developed by using Vis/NIR data and for measuring FF and IQI ripening 
index in peaches and nectarine, respectively (Uwadaira et al., 2018; Munera et al., 
2017). 

Regarding ANN, training was repeated five times and results, in terms of R2 and 
RMSE, were averaged, since the convergence is influenced by the initial weight 
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Fig. 3.1.5 – Prediction maps of FF of two representative apricots. Peripheral regions have lower 
signal intensity in hemispherical samples. 

Fig. 3.1.6 – VIP (variable importance in projection) scores of the PLS models to predict FF. Spectra pre-treatments: 
a) standard normal variate and mean centring; b) first derivative and mean centring. 
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values. An early stopping technique was used to select the number of training cycles 
(iterations) to avoid overfitting, using the validation set to monitor the prediction error. 
Above this point, the error increased further indicating that the ANN tends to overfit. 
An example of the trend of the errors (training, validation, and external set) as a 
function of the iteration number is shown in Fig. 3.1.7. The optimal number of 
iterations (six) was selected corresponding to the minimum value of the validation 
error. Over this point, the validation error starts to increase. 

For both the quality parameter, the best prediction results were obtained with only two 
nodes in the hidden layer; a larger number of nodes did not increase the network 
performance. The ANN results, in terms of R2, RMSE and number of iterations, in 
training, cross-validation and test set, are reported in Table 3.1.3. As for the PLS, the 
best result in terms of R2 was achieved for the FF parameter (R2=0.85, RMSEP=1.50 
N). For the prediction of the SSC, R2 values (0.65 in test set) lower than those from 
PLS regression were obtained. A worse performance was also obtained for RMSEP, 
which was 0.68 °Brix. This is probably due to the small variation of the measured SSC 
values during the storage. Also in this case, RPD values greater than 2 were reached 
for the prediction of FF. 

Table 3.1.3 – ANN results, in terms of mean coefficient of determination (R2), root mean square error (RMSE), 
residual prediction deviation (RPD) and number of iterations. 

Parameter Training set Cross-validation set Test set Iterations 
 R2 RMSEC RPD R2 RMSECV RPD R2 RMSEP RPD  
FF (N) 0.95  1.14 4.4  0.86  2.01 2.6  0.85  1.50  2.6  5  
SSC (°Brix) 0.82  0.43  2.4  0.66  0.67  1.7  0.65  0.68  1.7  6  
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Fig. 3.1.7 – Error graph of training, validation and test set used to stop 
the ANN model and select the optimal number of iterations. 
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Comparing the results with those reported in literature and based on the predictive 
models built considering a spectral range comparable with that of this study, it possible 
to confirm that R2 achieved for the FF parameter are higher or in agreement with those 
reached in previous works. Camps and Christen (2009a) analysed three apricot 
varieties by using a portable Vis/NIR spectrometer (650–1200 nm) and report R values 
(in validation) between 0.85 and 0.92, for the prediction of the firmness. Considering 
the same parameters and spectral range, Camps and Christen (2009b) achieved R value 
of 0.85 and 0.87, for the Bergarouge and Harostar variety, respectively. In the former 
study mentioned (Camps & Christen, 2009a), the SSC prediction resulted in R values 
between 0.88 and 0.96 (in validation), and RMSECV between 0.67 and 1.00 °Brix. In 
terms of SSC, the results of the present work are therefore slightly lower; on the 
contrary, the range of RMSEP from the PLS models is lower (0.51–0.59 °Brix), which 
means better performance in RMSEP. 

 

3.1.4. Conclusions 

The application of HSI technology allowed to estimate the FF and SSC of apricots. 
Two different multivariate techniques were used to build the predictive models. 
Particularly a linear method (PLS) and a non-linear method (ANN) were tested. 

Good and similar results were achieved for the FF parameter, by using both the 
statistical techniques, with R2 values (test set) of 0.85 for both PLS and ANN, and 
RMSEP of 1.64 N and 1.50 N, for the PLS and ANN, respectively. SSC was 
characterized by a low level of variation (9%) and an initial level already suitable for 
retail sale: as a possible consequence, both the prediction models (PLS and ANN) were 
less able to estimate this quality parameter than the previous one (R2 up to 0.72), 
nevertheless RMSEP range obtained by PLS models (0.51–0.59 °Brix) was good. Due 
to this finding, it would be possible to discriminate and then sort apricots for the fresh 
market, discarding those with too low FF values therefore undesirable for retail sale. 
In light of the obtained results, the HSI technology could be implemented in a sorting 
line of apricots for the fresh market, subject to the improvement of hyperspectral image 
segmentation techniques, dimensionality reduction, and finally prediction, to automate 
real-time analysis. 
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Abstract 
 

Rapid, non-destructive fruit sorting techniques are increasingly being adopted to 
ensure that producers, industry, and consumers receive products that meet their quality 
requirements. Quality attributes typically used to assess fruit ripeness include soluble 
solids content (SSC) and flesh firmness (FF). In this study, hyperspectral imaging 
operating at 400–1000 nm (Vis/NIR) was adopted to evaluate the ripeness degree of 
‘Hayward’ kiwifruit. Partial least square (PLS) regression models were developed to 
estimate SSC and FF, while two different types of PLS discriminant analysis (PLS-
DA) were used to classify samples according to three repining classes (defined on the 
base of SSC and FF values). To reduce the computation complexity, and simplify the 
calibration models, two variable selection methods (genetic algorithm GA, and 
variable importance in projection VIP) were adopted. For SSC, the prediction R2 
values ranged from 0.85 (RMSE=1.10 °Brix) to 0.94 (RMSE=0.73 °Brix), and for FF 
from 0.82 (RMSE=14.51 N) to 0.92 (RMSE=9.87 N). Classification sensitivity 
reached values of 97% and 93%, for the model considering the SSC and FF classes, 
respectively. Prediction and classification performances remained substantially 
unchanged by reducing the number of wavelengths. Therefore, hyperspectral imaging 
appears to be suitable for prediction of kiwi quality attributes and their classification. 
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3.2.1. Introduction 

Most fruits and vegetables are characterised by a short harvest season. Short or long-
term storage is therefore necessary to ensure a continuous supply of quality raw 
material and to extend the processing and marketing periods of fresh produce (Mishra 
& Gamage, 2020a). Fruit is harvested when threshold values of some quality attributes, 
expressing their physiological maturity, are reached. With regard to kiwifruits, the 
soluble solids content (SSC) must reach 6.2–6.5 °Brix (from 7 to 9 °Brix for storage), 
while the flesh firmness (FF) must be equal to or greater than about 62 N (OECD, 
2008; Crisosto & Kader, 1999; Walsh et al., 2020). Regarding commercial ripening, 
to satisfy consumer taste, SSC should exceed 12.5 °Brix, while FF should fall below 
approximately 9–13 N (Crisosto & Kader, 1999). 

The storage potential of kiwifruit in air at storage sites under semi-optimal conditions 
of temperature and relative humidity ranges from 4 to 8 weeks (Mishra & Gamage, 
2020a). From postharvest to commercial maturity, several changes at the cellular level 
affect fruit texture, which becomes softer (Mishra & Gamage, 2020b). Composition, 
water content, turgor pressure and cell wall constituents undergo various 
transformations. In kiwifruit pulp cells, the structure of the middle lamella and the 
primary cell wall weakens mainly due to high pectin solubilisation; in addition, a 
moderate contribution to fruit softening is provided by the loss of pectic arabinan side 
chains. These phenomena result in cell separation and wall swelling (Watkins, 2017; 
Mishra & Gamage, 2020b). 

Early in ripening, there is often an increase in sugar concentration. In fruits and 
vegetables, sucrose comes from photosynthetic leaves and/or hydrolysis of starch 
reserves degraded by amylase, resulting in an increase in SSC. As ripening progresses, 
glucose and fructose increase due to the action of the enzyme invertase through 
glycolysis. The amount of sucrose may also increase due to gluconeogenesis of organic 
acids (Sánchez-Rodríguez et al., 2019). As fruits ripen, the chlorophyll content 
generally decreases, and other pigments such as carotenoids are usually biosynthesised 
and accumulated. However, there are some exceptions to this general behaviour: some 
fruits retain chlorophyll, such as the skin of ‘Granny Smith’ green apples and 
‘Conference’ pears and the flesh of ‘Hayward’ green kiwi, in which the accumulation 
of carotenoids decreases with ripening. Kiwifruits are also very rich in vitamin C (Alós 
et al., 2019; Mellidou et al., 2019). 

The use of the penetrometer and refractometer to measure FF and SSC, respectively, 
result in destruction of the sample and are time consuming and expensive. To 
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overcome this problem, several techniques, many of which are non-destructive, have 
been introduced over the past few decades and generally allow for faster analysis and 
lower costs. 

Near-infrared (NIR) spectroscopy (McGlone & Kawano, 1998; Schaare & Fraser, 
2000; X. F. Hu et al., 2016) and portable NIR instruments used directly in the field 
(Costa et al., 2015; Cantin et al., 2011) have been adopted with good results to predict 
dry matter , SSC and FF of kiwifruit. 

Time-domain diffuse reflectance spectroscopy, a pulsed laser spectroscopic technique, 
was applied to classify kiwifruits according to FF, sugar content and acidity, obtaining 
the best result with acidity (Valero et al., 2004). A multifrequency magnetic induction 
spectroscopy system (156 kHz–2.5 MHz) resulted in a good correlation of the bio-
impedance conductivity measurement with SSC and FF (Bauchot et al., 1999; O’Toole 
et al., 2015). Ragni et al. (2012) adopted waveguide spectroscopy (2–3 GHz and 15–
16 GHz) to evaluate SSC and FF of kiwifruit during storage, obtaining the best results 
by partial least squares (PLS). Using a device consisting of a xenon lamp whose 
emitted radiation passes through kiwi samples and is captured by a NIR-sensitive 
camera, 8-bit greyscale images (255 grey tones) have been used to predict the FF and 
SSC of kiwifruit (Berardinelli et al., 2019). 

FF penetrometer measurements correlated with measurements from a non-invasive 
system called ‘intelligent firmness detector’, which can detect the FF of a fruit as it 
rotates on a grading belt (Blanke, 2013). Li et al. (2016) correlated penetrometer 
measurements with those from four different non-destructive devices. X. G. Hu et al. 
(2016) observed a correlation between colour change and FF of kiwifruit by adopting 
a palladium complex-based colorimetric sensor that can be used for real-time 
monitoring of kiwifruit ripening. 

Hyperspectral imaging (HSI) has been increasingly applied in the last decade for 
determination of quality parameters in fruits and vegetables. This technique combines 
image analysis and spectroscopy, obtaining absorbance/reflectance/transmittance 
spectra as single acquired pixels (in this technique called voxels) that form the 
hyperspectral (HS) image. HSI has been applied for the determination of quality 
parameters of fruits and vegetables in the laboratory and directly in the field 
(Chandrasekaran et al., 2019). HSI was implemented by Zhu et al. (2017) for quality 
attributes prediction of three kiwifruit varieties at commercial maturity. The best 
results were obtained in the 380–1023 nm range and applying multiple linear 
regression models, with a RP=0.981 and a residual prediction deviation (RPD) of 5.17 
N cm-2 for FF. RP=0.952 and RPD=3.26 °Brix were obtained for SSC. Serranti et al. 
(2017) proposed application of HSI (1000–1650 nm) to evaluate kiwifruit ripeness. In 
particular, HS images of the inner pulp and outer surface of kiwifruit were acquired to 
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assess the degree of ripening. Fruits, divided into 4 batches, were analysed on the day 
of harvest and after 7 and 14 days. Using principal component analysis (PCA) false-
colour plots of the principal components were obtained, which allowed to discriminate 
the ripening time of fruits. 

In this study, HSI combined with variable selection methods and chemometric 
techniques was implemented to evaluate quality parameters of kiwifruits in 
post-harvest conditions. PLS models were developed to predict the SSC and FF, while 
PLS-discriminant analysis (PLS-DA) and soft PLS-DA were used to classify samples 
into 3 ripening classes defined through observation of SSC and FF. 

 

3.2.2. Materials and methods 

3.2.2.1. Samples 
130 unconditioned ‘Hayward’ kiwifruits harvested near Latina (Italy) and delivered 
on November 11th, 2019 to the storage centre, were adopted for the present research. 
During the analysis period, kiwis were stored at 15 °C. The analyses were carried out 
on 5 different days starting from the day following delivery to the storage centre: day 
I (November 12th), II (November 19th), III (November 26th), IV (December 10th) and 
V (December 17th). The samples were weighed immediately before being placed in the 
storage chamber and before being analysed. As the samples were not homogeneous in 
terms of weight, they were divided into four weight classes (80–100 g, 100–120 g, 
120–140 g and 140–160 g), random selected and equally distributed over the days of 
analysis. 

 

3.2.2.2. Hyperspectral measurements 
A push-broom linear array hyperspectral camera working in the 400–1000 nm spectral 
range (Nano-Hyperspec VNIR, Headwall Photonics, Inc., Fitchburg, MA, USA) was 
adopted to acquire HS images. The camera was equipped with a 17 mm effective focal 
length (EFL) lens, characterised by an angular field of view (FOW) of 15.3°. 

The scan line has a spatial resolution of 640 points, each with 272 spectral bands and 
a nominal spectral resolution of 2.2 nm. The sensor exposure time and frame period 
were set at 28 ms, while the frame rate, which depends on the exposure time set, was 
34.2 frames s-1 (FPS). 

Fig. 3.2.1 illustrates the HSI system adopted for the experimental trials. The camera 
was installed on a metal frame with the optical axis perpendicular to the underlying 
conveyor belt, which simulates an industrial fruit sorting line at a height of 540 mm. 
The speed of the conveyor belt, on which the sample runs, was approximately 8 mm 
s-1. Two spotlights inclined by 15° and at a height of 320 mm from the conveyor belt 
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plane were installed on the metal frame. The spotlights were equipped with 120 W 
halogen lamps. Ambient light was isolated using a specific box. 

The white (RW) and dark (RD) reference reflectance spectra were obtained by acquiring 
a high-reflectance matte white panel and covering the camera lens with its cup, 
respectively. The raw diffuse reflectance spectrum (RR) was obtained by scanning the 
sample. Each sample was scanned longitudinally at laboratory temperature (22±1 °C). 
The calibrated diffuse reflectance spectrum (RC) was calculated by applying the Eq. 
(1) (Guo et al., 2019): 

𝑅𝑅𝐶𝐶  =  
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝐷𝐷
𝑅𝑅𝑊𝑊 − 𝑅𝑅𝐷𝐷

 (1) 

 

3.2.2.3. Destructive measurements of quality parameters 
The Magness-Taylor FF and SSC of the kiwifruit samples were measured after HS 
image acquisitions. FF was determined through a compression test performed on kiwi 
samples with a texture analyser (TA-HDi, Stable Micro System Ltd., Godalming, UK) 
equipped with a cylindrical steel probe 8 mm diameter with a hemispherical head 
(ASABE Standard, 2008). Before the analysis, a small portion of skin in the area 
subjected to the compression test was removed. Tests were performed with a 
penetration speed of 0.5 mm s-1 and a maximum deformation of 8 mm. Kiwi juice was 
analysed with a digital refractometer (PR-101 Digital Refractometer, ATAGO CO., 
LTD, Tokyo, Japan) to measure the SSC and expressed in °Brix. 

Hyperspectral
camera

Signal to PC

Halogen
lamps

Conveyor
belt

Sample

Fig. 3.2.1 – Representation of the lab-scale hyperspectral 
imaging system used to acquire hyperspectral images of kiwi 
samples. 
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Significant differences between the means of the quality indexes (FF and SSC) at 
different days of storage were evaluated through analysis of variance (one-way 
ANOVA with Tukey-HSD post-hoc test, p-level>0.05). Homogeneity of variance was 
evaluated by the Levene test. 

 

3.2.2.4. Data analysis 

3.2.2.4.1. ROI determination 
The background was removed from each HS image by k-means clustering, performed 
using 2 clusters (classification method based on Euclidean distance) on the calibrated 
spectra (HyperCube v. 11.52, U.S. Army Engineer Research and Development Center 
(ERDC), USA). Cluster 1 (red in Fig. 3.2.2b) represents the background to be 
discarded, while cluster 2 (green in Fig. 3.2.2b and Fig. 3.2.2c) is the region of interest 
(ROI). It can be observed (Fig. 3.2.2c) that the partially shaded edge of the kiwi sample 
was not included in cluster 2. For each sample, the mean spectrum was calculated 
considering spectra of the ROI. 

3.2.2.4.2. Multivariate analysis 
Due to a low signal-to-noise ratio produced by the sensor, spectral bands between 400 
and 424 nm were removed from the analysis. The spectra were subsequently smoothed 
to reduce noise from the spectra and pre-processed by applying the standard normal 
variate (SNV) method, first derivative (D1) and mean centred (MC). (Rinnan et al., 
2009). The data were preliminary visualised according to quality indices (SSC and FF) 
and days of analysis using PCA. 

3.2.2.4.3. Selection of wavelengths 
The selection of wavelengths from the original or pre-processed spectra can reduce the 
computation complexity, improve the predictive ability of calibration models and 
simplify the calibration models. Furthermore, a limited number of wavelengths can be 
directly used for developing on-line or portable multispectral equipment. The 
wavelength selection methods used in this study are variable importance in projection 

Fig. 3.2.2 – (a) RGB representation obtained from a hyperspectral image of a kiwi sample; (b) 
ROI (green) and background (red) obtained by k-means clustering; (c) ROI overlay (semi-
transparent green) on the RGB representation in (a). 
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(VIP) and genetic algorithm (GA). VIP method is a filter method, which estimates the 
importance of each variable in the projection used in a PLS model. The VIP score 
calculates the contribution of each variable according to variance explained by each 
PLS component. The ‘greater than one’ is conventionally used as the criterion for 
variable selection; accordingly, only variables with VIP scores greater than one were 
selected (Wang et al., 2015). This method has been extensively used in different fields 
and adopted for a variety of data types (Farrés et al., 2015). 

GA is a wrapper method implemented by selecting the candidate of sensitive 
wavelengths and optimising the number of evaluations in each run, while PLS is 
applied to perform and evaluate the selected wavelengths (Zhu et al., 2017). The 
computation steps involved have been described by (Mehmood et al., 2012). In this 
study, 100 runs were set. 

3.2.2.4.4. Chemometric models 
PLS regression models were developed to estimate the quality indices (SSC and FF), 
adopting the Onion method to split the dataset (130 samples) in calibration (75% of 
samples, with venetian blinds as cross-validation method) and validation test set (25% 
of samples). 

The onion method selects a ring of the most unique samples (based on Euclidian 
distance from the mean, like the outer-most layer of an onion.) These are used in the 
calibration set. Next, a ring of less unique samples, just inside the first set (the next 
onion layer), is put into the validation set. This is repeated two more times so that there 
are three outer rings of the most unique and less unique samples. Finally, all remaining 
samples are split randomly into calibration and validation (Gallagher et al., 2004; 
Gallagher & O’sullivan, 2020). 

To avoid over-fitting the model, the optimal number of latent variables (LV) were 
chosen by identifying the global minimum of root mean square error in cross validation 
(RMSECV). 

PLS-DA and multi-class soft PLS-DA (Pomerantsev & Rodionova, 2018; Zontov et 
al., 2020) were developed to classify samples into 3 ripening classes, according to 
Crisosto & Kader (1999). For the SSC, the following limits were selected: SSC<6.5 
(unripe), 6.5≤SSC<12.5 (ripe for storage) and SSC≥12.5 (ripe for consumer), while 
for FF the following were used: FF≥62 (unripe), 13≤FF<62 (ripe for storage) and 
FF<13 (ripe for consumer). These ranges were chosen since they meet the 
requirements at both the harvesting stage (unripe to ripe for storage) and by consumers 
(ripe for storage to ripe for consumer). The dataset was spilt using the Onion method, 
as described for PLS. 

PLS-DA assumes that each sample is assigned to a single class using a probabilistic 
approach based on Bayes rule. Multi-class soft PLS-DA, by adopting PCA of the 
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matrix T of the predicted response (Ŷ), classifies samples according to the distance 
between rows of this matrix and rows of matrix Y (measured response). The procedure 
can be summarised as:  

𝑋𝑋,𝑌𝑌
𝑃𝑃𝑃𝑃𝑃𝑃
��𝑌𝑌�

𝑃𝑃𝐶𝐶𝑃𝑃
�⎯� 𝑇𝑇 (2) 

where X is the matrix utilised as a predictor. Furthermore, with multi-class soft PLS-
DA, the sample can be assigned to one or more classes, or it cannot be assigned to any 
class (Zontov et al., 2020). 

All the chemometric models were developed using PLS Toolbox for MATLAB 
R2020b, except for multi-class soft PLS-DA, where PLS-DA Toolbox for MATLAB 
R2019a was used. 

3.2.2.4.5. Spatial distribution 
To reduce calculation time, image resolution was decreased by averaging the spectra 
of adjacent pixels (3×3). PLS calibration models were developed considering the mean 
spectra of the ROIs and applied to groups of 3×3 pixels of each image. Consequently, 
predicted SSC and FF values were obtained for each pixel group. This allows to 
observe the difference attributes from sample to sample and even within the same 
sample. 

 

3.2.3. Results 

Means and standard deviations of quality attributes (SSC and FF) measured on kiwi 
samples during the 5 days of analysis are reported in Fig. 3.2.3. Significant differences 
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Fig. 3.2.3 – Mean and standard deviation of quality attributes (SSC and 
FF) of the sample of kiwifruits during the five days of analysis. 
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were observed for both attributes between the second and third day and between the 
third and fourth day, whereas no significant differences were found between the first 
and second day and between the fourth and fifth day. The percentage variation between 
the first and last day of analysis was 124% and -82% for SSC and FF, respectively. 
The correlation between FF and SSC was negative, with a probable linear trend 
(R2=0.84; FF = -10.22 SSC + 146.72). 

Fig. 3.2.4 shows the mean spectra of kiwifruit samples according to SSC and FF, and 
pre-processed by SNV and D1 filters, respectively. The portion of the spectrum from 
400 to 700 nm (visible) is characterised by absorption bands of anthocyanins, 
carotenoids and chlorophyll-α (ElMasry et al., 2007), which have been adopted as 
quality attributes to assess fruit ripeness. The NIR part of the spectrum (700–1000 nm) 
shows absorption bands related to water (Nicolaï et al., 2007) and sugar (Pu et al., 
2016). Manley et al. (2007) and Camps & Christen (2009) observed that in the 800–
1000 nm range, SSC-related spectral information tends to be less covered by water, 
whose absorption peaks are broad and not very marked. 
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Fig. 3.2.5 – Scores plots obtained by PCA according to: (a) SSC; (b) FF. The colour scales are reported on the right 
of the relative scores plot. 

Fig. 3.2.4 – Mean spectra of kiwi samples pre-processed by: (a) SNV (colour scale related to SSC); (b) D1 (colour 
scale related to FF). 

SSC
(°Brix)

500 600 700 800 900 1000
Wavelengths (nm)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

6

7

8

9

10

11

12

13

14

Re
fle

ct
an

ce

SSC
(°Brix)

a

FF
(N)

500 600 700 800 900 1000
Wavelengths (nm)

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

10

20

30

40

50

60

70

80

90

100

110

Re
fle

ct
an

ce

FF
(N)

b



42 

The scores plots of principal components 1 and 2 resulting from PCA were obtained 
mean centring the calibrated spectra (Fig. 3.2.5). Subsequently, some outliers were 
removed. Samples were distributed along PC1 from right to left for increasing SSC 
values (Fig. 3.2.5a) and decreasing FF values (Fig. 3.2.5b). 

The results of the PLS models developed to estimate SSC and FF were reported in 
Table 3.2.1. Two different pre-processing sequences were adopted: SNV+MC and 

D1+MC, as well as two variable selection methods, namely VIP and GA. For SSC, the 
prediction R2 values ranged from 0.85 (RMSE=1.10 °Brix) to 0.94 (RMSE=0.73 
°Brix) and the best results were achieved applying D1 pre-processing and selecting the 
variables by the GA. For FF, the best results, in terms of prediction R2 (0.92) and 
RMSE (9.87 N), were obtained with SNV pre-processing and GA variable selection 
methods. In general, for both quality parameters, reduction of the variable number, 
especially by using the GA method, positively affected the results in terms of 
increasing of R2 and reducing RMSE in prediction. Selected variables by GA method 
are shown in Fig. 3.2.6 for SSC and FF prediction, respectively. Most are in the NIR 
region (700–1000 nm), especially for SSC. The spectral regions selected for the model 
prediction of SSC and FF were quite different. The region from 950 to 1000 nm, 
typically related to carbohydrate absorption, was selected only for SSC prediction, 
while the region around 750 nm (band assignments for the major water (O–H) 
vibration) was defined only for FF prediction. This may suggest that FF prediction is 

Table 3.2.1 – Results of the PLS models developed to estimate SSC e FF. 
Qualitative 
index 

Spectra 
pre-processing 

Variable 
selection (nv) 

LVs Calibration Cross-validation Prediction 

    R2 RMSEC R2 RMSECV R2 RMSEP 
SSC SNV+MC All (260) 12 0.96 0.59 °Brix 0.92 0.83 °Brix 0.85 1.10 °Brix 
  VIP (104) 10 0.92 0.83 °Brix 0.88 1.03 °Brix 0.86 1.14 °Brix 

  GA (47) 11 0.96 0.61 °Brix 0.93 0.81 °Brix 0.94 0.73 °Brix 

 D1+MC All (260) 12 0.95 0.66 °Brix 0.90 0.97 °Brix 0.90 0.94 °Brix 

  VIP (58) 6 0.90 0.94 °Brix 0.85 1.12 °Brix 0.88 1.08 °Brix 

  GA (78) 7 0.92 0.87 °Brix 0.86 1.13 °Brix 0.90 1.00 °Brix 

FF SNV+MC All (260) 14 0.93 8.56 N 0.86 12.43 N 0.85 13.10 N 

  VIP (97) 13 0.91 9.76 N 0.82 14.17 N 0.82 14.51 N 

  GA (72) 14 0.94 7.66 N 0.87 11.50 N 0.92 9.87 N 

 D1+MC All (260) 8 0.90 10.02 N 0.85 12.41 N 0.84 13.62 N 

  VIP (41) 10 0.90 10.03 N 0.86 12.30 N 0.86 12.26 N 
  GA (75) 10 0.92 9.64 N 0.87 12.26 N 0.89 11.31 N 

Note: SSC = soluble solids content; FF = flesh firmness; SNV = standard normal variate; MC = mean centred; D1 = first 
derivative; nv = number of variables selected; All = all variables; VIP = variable importance in projection; GA = genetic 
algorithms; LVs = latent variables. 
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independent of SSC correlation. Considering the VIP method, the selected variables 
(VIP>1) were in similar spectral ranges (650–1000 nm) to those for the GA method, 
even if appreciable differences between the SSC and FF models were not observed 
(Fig. 3.2.7). Overall, VIP scores obtained by PLS models developed after variable 
selection, were higher than one for all x-variables. This suggests that the contribution 
of the selected spectral variables on the model performance, is similar. 

Measured vs. predicted values of SSC obtained by PLS regression applying SNV+MC 
pre-processing and GA variable section method are shown in Fig. 3.2.8. These results 
confirm the feasibility of HSI in the Vis/NIR spectral region for the rapid prediction 
of kiwi quality parameters, such as SSC and FF; furthermore, they are in good 
agreement with those reported in the literature (R of 0.9812 and 0.9523 for FF and 
SSC, respectively) by Zhu et al. (2017) in a very similar wavelength range (380–1023 
nm). 

Fig. 3.2.6 – GA selections of mean spectra of kiwi samples pre-processed by SNV related to: (a) SSC and (b) FF. 
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Fig. 3.2.7 – VIP scores of the PLS models developed to predict SSC (a) and FF (b) (spectra pre-processed by SNV). 
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The spectral and spatial information of each pixel in HS images allowed evaluation of 
quality parameters of each pixel with chemometric models. Using the PLS models 
developed after the GA variable reduction, false colour images were obtained. The 
pixels having similar spectra showed similar colours in the images, and consequently 
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Fig. 3.2.8 – Measured vs. predicted values of SSC obtained by PLS 
regression (10 LVs) applying SNV+MC pre-processing, and then 
selecting the variables with GA. 
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the hypercube allowed to visualise the biochemical compounds of a sample in a pixel-
wise manner (Zhu et al., 2017). The prediction maps of SSC and FF of three 
representative kiwifruits (one for each ripening class) are shown in Fig. 3.2.9. The 
colour bars indicate the scales of the reference values. Measured (M) and mean 
predicted (P) values are also reported. Spatial distribution of SSC (a) and FF (b) are in 
alignment with the measured values, particularly passing from 5.9 °Brix/108.83 N to 
13.6 °Brix/19.24 N, where the colour ranges from blue/yellow to yellow/blue. As 
reported by Zhu et al. (2017), the noises of the HS image affected the spectrum of each 
pixel, which may result in the predicted contents in maps exceeding the range of the 
calibration set and prediction set. 

Results of PLS-DA and soft PLS-DA in terms of class sensitivity (percentage of 
samples correctly recognised as members of the class) are reported in Table 3.2.2 and 
Table 3.2.3. As for the PLS models, two different pre-processing sequences were 
adopted, SNV+MC and D1+MC, as well as two variable selection methods, VIP and 
GA. For both quality parameters, according to Crisosto & Kader (1999), three classes 
were defined: SSC<6.5, 6.5≤SSC<12.5 and SSC≥12.5; FF≥62, 13≤FF<62 and FF<13.  

Considering the PLS-DA models, regardless of pre-processing and variable selection 
method, lower sensitivity values were achieved for the central classes, reporting values  

Table 3.2.2 – Results of PLS-DA and soft PLS-DA, in terms of sensitivity, developed to classify the samples 
according to SSC (class 1 = SSC<6.5; class 2 = 6.5≤SSC<12.5; class 3 = SSC≥12.5). 
Spectra 
pre-processing 

Variable 
selection (nv) 

Classes of 
qualitative 
index 

Sensitivity (%) 
PLS-DA Soft PLS-DA 
Calibration Prediction Calibration Prediction 

SNV+MC All (260) class 1 97 83 97 67 
 class 2 79 62 97 92 
 class 3 94 75 100 100 
VIP (104) class 1 97 62 97 77 
 class 2 84 77 92 77 
 class 3 100 100 100 100 
GA (47) class 1 93 77 93 100 
 class 2 78 58 92 92 
 class 3 78 58 92 92 

D1+MC All (260) class 1 91 100 94 91 
 class 2 77 62 100 92 
 class 3 93 70 100 100 
VIP (58) class 1 86 93 97 100 
 class 2 78 68 98 100 
 class 3 87 89 100 89 
GA (78) class 1 94 100 94 100 
 class 2 72 71 97 88 
 class 3 89 82 100 83 

Note: SNV = standard normal variate; MC = mean centred; D1 = first derivative; SSC = soluble solids content; nv = number of 
variables selected; All = all variables; VIP = variable importance in projection; GA = genetic algorithms; PLS-DA = partial 
least squares discriminant analysis. 
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from 58 to 77% and from 55 to 86% for SSC and FF, respectively. For both quality 
parameters, considering the overall sensitivity (SSC=84% and FF=93%), the best 
models were obtained applying the D1+MC pre-processing and selecting the variables 
(78 and 75) by GA. PLS-DA prediction plots for FF are presented in Fig. 3.2.10. As 
shown in Fig. 3.2.10a (Y predicted = FF≥62), there is a clear separation between 
samples belonging to the FF≥62 class and the other samples. In Fig. 3.2.10b (Y 
predicted = 13≤FF<62) and Fig. 3.2.10c (Y predicted = FF<13), some samples of 
classes 13≤FF<62 and FF<13 are overlapping, suggesting that the samples of the two 
groups, are quite similar. Nevertheless, it can be observed that almost all samples 
belonging to Y predicted class, were correctly classified. 

Table 3.2.3 – Results of PLS-DA and soft PLS-DA, in terms of sensitivity, developed to classify the samples 
according to FF (class 1 = FF≥62; class 2 = 13≤FF<62; class 3 = FF<13). 

Spectra 
pre-processing 

Variable 
selection (nv) 

Classes of 
qualitative 
index 

Sensitivity (%) 
PLS-DA Soft PLS-DA 
Calibration Prediction Calibration Prediction 

SNV+MC All (260) class 1 100 100 97 100 
 class 2 94 86 97 95 
 class 3 92 50 100 67 
VIP (97) class 1 100 95 94 85 
 class 2 91 61 94 89 
 class 3 100 75 100 100 
GA (72) class 1 94 100 97 78 
 class 2 89 77 97 88 
 class 3 83 83 100 100 

D1+MC All (260) class 1 91 84 100 86 
 class 2 72 55 97 94 
 class 3 91 93 100 100 
VIP (41) class 1 97 95 95 89 
 class 2 81 77 97 91 
 class 3 83 100 92 83 
GA (75) class 1 100 96 97 78 
 class 2 89 83 94 94 
 class 3 92 100 100 100 

Note: SNV = standard normal variate; MC = mean centred; D1 = first derivative; FF = flesh firmness; nv = number of variables 
selected; All = all variables; VIP = variable importance in projection; GA = genetic algorithms; PLS-DA = partial least squares 
discriminant analysis. 
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Fig. 3.2.10 – PLS-DA prediction plots for FF applying D1+MC pre-processing and GA variables selection method. 
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Soft PLS-DA can simultaneously attribute a sample to multiple classes. In addition, a 
sample may not be attributed at all, if the distance between sample and class is greater 
than the set critical threshold. In this study, the outlier significance level (γ) was set to 
0.01 (Pomerantsev & Rodionova, 2018). Regarding the soft PLS-DA models 
developed to classify the samples according to the SSC, the best results (overall 
sensitivity = 97%) was obtained applying SNV+MC pre-processing and selecting 
variables (47) by GA. In prediction, all samples of the classes SSC<6.5 and SSC≥12.5 
were correctly classified, while 2 samples of the class 6.5≤SSC<12.5 were not (Fig. 
3.2.11a). For FF, the best result (overall sensitivity = 93%) was obtained by 
considering all the variables and applying D1 pre-processing. In Fig. 3.2.11b, it can be 
observed that all samples of class FF≥62 were correctly classified. Furthermore, the 
separation of class FF≥62 from the other two classes is evident, as the acceptance area 
of the class bound by the ellipsoid is well separated from the others. 

Comparing PLS-DA and soft PLS-DA results, it is possible to state that for SSC, 
regardless of pre-processing and variable selection method, notably higher sensitivity 
values were achieved by using soft PLS-DA. Instead, for FF, the sensitivity values 
obtained by the two discrimination methods are comparable. Overall sensitivities are 
higher than those reported in the literature for similar ripening classes defined on 
green-fleshed kiwifruit (82.0% for SSC and 74.0% for FF) and obtained using a 
detector working on nine wavelengths from 800 to 1100 nm (Yang et al., 2020). 

The results show how the maturity class of kiwifruit can be predicted non-destructively 
even when limiting the number of wavelengths. Overall, the best models were obtained 
by applying the GA method, which allowed a decrease of wavelength number by more 
than 80%. This could be a first step in developing a multispectral equipment to sort 
kiwifruits directly on-line. In the light of what was observed during laboratory trials, 
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it is necessary to highlight some choices that affected the success of the experiment. 
The angle of inclination of the lamps affects the extension of the areas of light 
reflection and shadows on the surface of the fruit. In the case of the kiwifruit variety 
under analysis, light reflection is attenuated by the presence of hairs on the skin, so 
that it is possible to reduce the angle of inclination of lamps with respect to the plane. 
The black surface of the conveyor belt was useful as it was easy to exclude from HS 
images by 2-class k-means classification, which also allowed elimination of shaded or 
poorly illuminated parts of fruits. 

 

3.2.4. Conclusions 

The application of HSI combined with chemometric techniques (PLS and PLS-DA), 
allowed estimation of the FF and SSC of kiwifruit and to classify samples according 
to ripening classes. Prediction and classification performances remained substantially 
unchanged by reducing the number of wavelengths, and thus it is expected that a less 
expensive multispectral camera in the 400–1000 nm range would work just as well. 
Regarding SSC, the prediction R2 values ranged from 0.85 (RMSE=1.10 °Brix) to 0.94 
(RMSE=0.73 °Brix), and for FF from 0.82 (RMSE=14.51 N) to 0.92 (RMSE=9.87 N). 
Classification sensitivity reached of 97% and 93% for the model considering the SSC 
and FF classes, respectively. Considering the results obtained, HSI technology could 
be implemented in a sorting line of kiwifruit or portable multispectral equipment for 
the fresh market, but the segmentation techniques, dimensionality reduction, and 
automated real time analysis need to be improved upon. 
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Abstract 
 

The present work outlines a reliable and rapid optical method to estimate tannin 
content in red wines. The method originates from the known reactivity of wine tannins 
(procyanidins) with proteinaceous matter (i.e. gelatin) which reaction results in a 
cloudiness due to the formation of floating procyanidin-protein complexes in solution. 
An optical device operating with a wavelength-sensitive pulsed electromagnetic 
source enabled to measure the extent of turbidity, combining the different intensity 
and spectral emission of a light source (tungsten lamp) with the photodiode wavelength 
sensitivity. In this experiment, 27 red wines (tannins content range: 6–1904 mg/L) 
were optically measured at the room temperature immediately after mixing with a 
saturated solution of gelatin in model wine buffer (12% ethanol, pH 3.5). An output 
signal waveform (voltage, V) was produced and modified as a function of peak 
intensity, amplitude and curvature depending on the extent of turbidity. The 
relationship was fitted obtaining a significant not-linear correlation (R2 up to 0.9657) 
with tannins content as determined using a reference colorimetric method. The 
proposed new optical method is easy and cost-effective and provides a reliable 
alternative to the time-consuming analyses for fast in-line and off-line analysis of 
procyanidins in wine. 
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Keywords: Red wine procyanidins; tannin assay; in-line rapid measurements; 
decision support system; Spectral-sensitive pulsed photometry. 

 

3.3.1. Introduction 

Wine is consumed worldwide with great impact on both production and consumption 
level. The most recent annual release after the International Organization of Vine and 
Wine (OIV) highlighted that wine production has reached a record level in 2018, with 
a global trend of 293 million hectoliters (State of the vitiviniculture world market, State 
of the sector in 2018, released in April 2019). Winemakers aims at improving the 
quality of their wines to boost the consumer preference (Tempere et al., 2019; Di Vita 
et al., 2019), and in this view there is a need of new tools to control the process and 
the products. 

Polyphenolic compounds have a great importance on wine composition due to their 
antioxidant and antimicrobial properties, and their sensory attributes (Santos-Buelga 
& Freitas, 2009). Natural condensed tannins derived from grapes (i.e. procyanidins) 
are especially abundant in red wines, affecting their mouthfeel properties in terms of 
bitterness and astringency (Gambuti et al., 2012; Gambuti et al., 2019). Furthermore, 
procyanidins in wine can be either derived from the grapes and/or added as exogenous 
processing aids (Harbertson et al., 2012; Versari et al., 2013). A detailed study on 
tannins involves the use of expensive and/or time-consuming techniques (gravimetric 
methods, colorimetric methods, vibrational spectroscopy, mass spectroscopy) with 
intensive sample preparation, periodic instrument calibrations and maintenance in 
order to obtain satisfactory results, along with qualified personnel for the interpretation 
of data (Herderich & Smith, 2005; Jensen et al., 2008; Ricci et al., 2017; Nel, 2018; 
Billerach et al., 2020). This is rarely the case of wine companies that require rapid and 
reliable analyses and the possibility to monitor the evolution of the industrial process 
with in-line measurements.   

The tannins have traditionally been used in the leather industry for their ability to 
inhibit the decomposition of collagen protein in the animal tissues, stabilizing it 
through the formation of hydrogen bonds between phenolic groups and peptides 
moieties. The reactivity of procyanidins toward proline-like proteins contained in the 
human saliva is also the basis for the astringency perceived during wine tasting (Maier 
et al., 2017; Ramos-Pineda et al., 2020). 

The formation of procyanidin-protein complexes in the presence of an excess of 
protein produces a colloidal suspension with the formation of a whitish haze. When a 
colloidal suspension is irradiated with a light beam in the visible light region (Vis) 
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there is a balance between part of the light, which is transmitted across the suspension, 
absorbed, and removed by scattering. The presence of internal interferences due to 
particles size, concentration and orientation makes hard to reproduce the results in 
typical UV-Vis and IR transmission/reflectance spectrophotometric experiments 
(Doty & Steiner, 1950). Recently, an innovative technique named Spectral-Sensitive 
Pulsed Photometry (SSPP) has been successfully applied to the prediction of fat 
content in milk; in the experiment, a simple and inexpensive device has been used to 
exploit key optical properties of commercial milk samples, such as light scattering 
according to the Mie theory. Theoretical basis for the Spectral-Sensitive Pulsed 
Photometry are detailed in Ragni et al. (2016). Briefly, while differing from the 
traditional spectroscopy techniques, the SSPP technique proposed by the authors 
maintains a sensitivity to the wavelength of the radiation used and the optical response 
depends on the material under test to a pulsed source of radiation (tungsten filament 
bulb lamp). When the source is progressively lighted, the output voltage pulse takes a 
characteristic shape (peak, amplitude, curvature) as function of interposed medium; by 
exploiting the spectral sensitivity of photodiodes, the device enables to measure the 
relevant optical phenomena involved in the attenuation of the source intensity, such as 
light scattering, but also molecular vibrational absorbance (Ragni et al., 2016).  

Results obtained in the prediction of fat content in milk has encouraged the application 
of the SSPP technique in the analysis of the procyanidin content in wine. In this study 
an innovative tool for the fast quantification of wine procyanidins based on their 
selective reactivity against proteins is proposed. A selection of commercial red wines 
from different grape varietals were used for the purposes of this experiment; a 
voltage/time curve obtained after irradiation in SSPP was processed for the prediction 
of wine procyanidins and the Adams-Harbertson colorimetric assay (Harbertson et al., 
2002). 

 

3.3.2. Materials and methods 

3.3.2.1. Chemicals 
Working solvents, including absolute ethanol (ACS grade, ≥99.5%) and L(+)-tartaric 
acid (ACS grade, ≥99.5%) used to prepare the synthetic wine (buffer solution 
containing 12% ethanol in MilliQ water, 5% tartaric acid, pH 3.5) were purchased 
from Merck (Merck Millipore, Darmstadt, Germany).  

The (+)-catechin monohydrate standard (≥98%) used to calibrate the colorimetric 
method was purchased from Sigma-Aldrich (St. Louis, MO).  

The gelatin used for the optical measurements was a spray-dried powder from bovine 
skin and it was purchased from Sigma-Aldrich (St. Louis, MO). 
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3.3.2.2. Wine samples 
Twenty-seven red wines, including Cabernet Sauvignon, Merlot, Lambrusco 
Gasparossa, Sangiovese, Sagrantino di Montefalco, Raboso del Piave, Primitivo di 
Manduria, Cannonau, Aglianico del Vulture, Teroldego and Nebbiolo (vintages 2016-
2018) were selected to cover a wide range of tannin content (Table 3.3.1). Samples 
were stored at room temperature in glass bottles, capped with different closures (cork, 
synthetic cork, screw caps, crown caps) and preserved from light and temperature 
fluctuations. Bottles were opened immediately before the analysis. 

Table 3.3.1 – Procyanidin contents measures by the Adams-Harbertson assay and 
correspondent values of the signal voltage measured with the SSPP photometer. 

Sample wine 
(nr) 

Tannins 
(mg/L CE)  P 

(V)  BR 
(V)  

 Mean SD Mean SD Mean SD 
1 480 22 2.98 0.03 0.124 0.010 
2 443 22 2.74 0.03 0.106 0.009 
3 97 5 4.08 0.03 0.182 0.012 
4 246 18 3.29 0.03 0.139 0.010 
5 1786 22 0.95 0.02 0.012 0.004 
6 1855 76 0.99 0.01 0.015 0.003 
7 1522 20 1.06 0.02 0.021 0.006 
8 1005 40 1.94 0.01 0.072 0.005 
9 39 1 3.48 0.01 0.156 0.000 
10 740 19 2.47 0.02 0.102 0.005 
11 618 41 2.92 0.02 0.121 0.008 
12 1170 42 1.76 0.01 0.062 0.004 
13 699 18 2.81 0.03 0.114 0.011 
14 1452 44 1.45 0.02 0.042 0.003 
15 976 18 2.12 0.01 0.079 0.006 
16 1017 19 1.66 0.02 0.062 0.003 
17 970 20 1.91 0.01 0.067 0.005 
18 877 46 2.26 0.03 0.088 0.007 
19 795 43 2.2 0.03 0.082 0.007 
20 1164 18 1.69 0.01 0.056 0.004 
21 652 47 2.61 0.01 0.105 0.006 
22 820 44 2.09 0.02 0.078 0.008 
23 258 17 3.33 0.03 0.146 0.010 
24 6 0 3.64 0.03 0.155 0.007 
25 538 22 2.65 0.01 0.111 0.002 
26 1555 79 1.23 0.00 0.033 0.002 
27 1904 100 1.02 0.00 0.018 0.003 

Legend: CE, equivalent of (+)-catechin; P, voltage peak value; BR, voltage corresponding to the 
best R2 value for quadratic regression. 

 

3.3.2.3. Analysis of procyanidins content in wine 
Wines were analyzed in duplicate by the well-known Adams-Harbertson colorimetric 
assay (Harbertson et al., 2002). Calibration was performed using (+)-catechin as a 
reference standard and results were expressed as mg/L (+)-catechin equivalents (mg/L 
CE). 
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3.3.2.4. Theoretical premises to the optical methodology  
To meet winery needs for new rapid tools for tannin analysis it is necessary to 
overcome the limitations of the classic precipitation-colorimetric assay, including: (i) 
the need for a preparative step, to isolate tannins from monomeric polyphenolic 
compounds, and (ii) the long incubation times requested in the stepwise procedure 
including tannins precipitation, resuspension, and reaction with complexing agents.  

In previous experiments, the effectiveness of gelatins to remove polyphenols from 
wines was investigated, showing their ability to selectively remove condensed tannins 
(Sarni-Manchado et al., 1999). 

At wine pH, these proteins have a positive charge with increasing density in high-
molecular weight gelatins or when pH is reduced; these conditions makes gelatin a 
positively charged polyelectrolyte, producing polar, Van der Waals, H-bonds, London 
interactions and hydrophobic effects with the negatively charged tannins in wine 
(Obreque-Slier et al., 2010; Ghanem et al., 2017); a schematic representation of the 
tannin-protein complex formation is reported in Fig. 3.3.1. 

Binding of ligand to proteins may cause a conformational change in the protein 
structure, and the same occurs in tannins structure after the formation of protein 
complexes; these conformational changes result in a diminished solubility (Asquith & 
Butler, 1986) accompanied by the development of a white haze in solution visible to 
the naked eye. When adding an excess of gelatin, the number, dimension and extent of 
such aggregates is regulated by the relative tannin/gelatin ratio (Calderon et al., 1968; 
Yokotsuka & Singleton, 1987). It follows that the optical properties of the wine sample 
added with gelatin changes in relation to the tannin content, since the monomeric 
polyphenols do not display the general property of tannins to form complexes with the 
amino acid residues of proteins (Haslam, 1998). 

procyanidin

amino acid
residues

Fig. 3.3.1 – Simplified representation of the 
chemical interaction occurring between a 
generic procyanidin molecule and the amino 
acid residues of a protein. 
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Interaction of procyanidins with gelatin in model solution has been previously 
investigated by Calderon et al. (1968), suggesting that the presence of ethanol and low 
pH values (3.5 in the study) could maximize the positive charges density and speed up 
the reaction with rapid formation of flocculates and subsequent precipitation. Similar 
conditions were applied to dissolve gelatin in the SSPP experiment. 

Based on these premises, the proposed SSPP method provides the direct measure of 
the optical turbidity instantly generated by mixing the red wine with a saturated 
solution of gelatin dissolved in a hydroalcoholic buffer with fixed pH 3.5 value. The 
extent of turbidity is efficiently measured with optical infrared sensing, typically 
operating in the near-infrared (NIR) spectral region; radiations over 700 nm interact 
with suspended particles, with variable yield according to the particles’ dimensions 
(Filella et al., 1997). To maximize the optical response generated by turbidity and to 
overcome interferences related to wine color during the analysis, the SSPP was 
equipped with a photodiode operating in the 650–1200 nm region, with a maximum 
peak around 875 nm where the red wines do not display absorbance (Fig. 3.3.2). 

3.3.2.5. SSPP measurements on wines 
The prototype and acquisition setting up used in this experiment are detailed in Ragni 
et al. (2016). Wine samples were directly mixed with a saturated solution of gelatin 
(30 g/L in model wine buffer) in ratio 1:1 (v/v) to enable the reaction with formation 
of the colloidal suspension, then immediately inserted in the sample compartment of 
the optical device and irradiated with the pulsed source, as shown in Fig. 3.3.3. For 
each wine-gelatin mixture, five subsequent voltage pulses were acquired and averaged.  

Fig. 3.3.2 – Typical spectral absorption of red wines (dot line) 
overlapped to the emission spectrum of the photodiode used in the 
SSPP experiment (black line). 
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3.3.2.6. Statistical analysis 
Simple regression was used to analyze the signal waveform. Models with different 
functions were exploited to fit the data set and estimate tannin contents. Models were 
built for each of the 187 waveforms points, with signal (V) as x and tannins (mg/L) as 
f(x). On the whole, the coefficient of determination later shows how the quadratic 
model is the best suited for data interpolation. The best results in terms of coefficient 
of determination was selected among all the points of the signal waveform as indicator 
of the best estimation model. Additional parameters were calculated and reported for 
a comprehensive regression characterization: adjusted R2, p-level of each function 
coefficient, 95% confidence and prediction limits. 

 

3.3.3. Results and discussion 

3.3.3.1. Procyanidin content of wines 
Average values and standard deviation of the procyanidin content of red wines and the 
photometric parameters are reported in Table 3.3.1. 

The amount of tannins in red wines was highly variable, as expected. The mean red 
wine contained 877 mg/L CE with a coefficient of variation corresponding to 62.3% 
of the averaged value. The variation of the tannin’s concentration was up to three 
orders of magnitude. 

 

3.3.3.2. Determination of red wine procyanidins using the SSPP method 
The amount of turbidity, as a function of procyanidin concentration, has a clear effect 
on the pulsed light signal detected by the photometer. The radiation at these 

Arduino board

Photodiode
amplfier

Lamp current
amplifier

Power
supply

to USB

photodiodelamp

cuvette

Fig. 3.3.3 – Simplified layout of the used prototype. 
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wavelengths strongly interacts with matter giving a response in terms of light 
scattering, function of the chemical-physical parameters of the analysed samples and 
allowing the tannins content evaluation. The voltage signals for the different wines 
with different tannins content, as a function of the lighting time of the lamp (time 
during which the lamp lights up, becomes brighter and suddenly blow out) are shown 
in Fig. 3.3.4. 

The raise of tannins content enhances the turbidity reaction and a less intensity signal 
was revealed. The maximum peak voltage and the waveforms modifications of 
different wines, characterized by variable tannins content, are dependent on the 
spectral component of light, the interaction of light with sample and the spectral 
sensitivity of the photodiode. The voltage peak values and the voltage at the most 

Fig. 3.3.6 – Tannin content vs. voltage at voltage peak 
value. 

Fig. 3.3.7 – Tannins content vs. voltage at t the time 
providing the highest R2 value. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1 1.2

Vo
lta

ge
 (V

)

Time (s)

BR

P

tannins increase

Fig. 3.3.4 – Voltage (V) signals vs. lighting time (s). P: 
peak time; BR: time corresponding to the highest R2 for 
quadratic regression. 
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sensitive points (at the time giving the highest R2 value) were used to create models to 
estimate the tannins content. A quadratic regression was performed between each 
spectral point and the tannins content. The coefficient of determination values for all 
the waveform points are shown in Fig. 3.3.5.  

From this figure it can be noted that the R2 is high for a large part of the waveform 
signal (lamp lighting) with a maximum at 0.21 s (voltage peak is at 0.96 s). Fig. 3.3.6 
and Fig. 3.3.7 show the quadratic regression between tannins content and the voltage 
peak and at the point (time) the highest coefficient of determination was obtained, 
respectively.  

Observed and estimated values by means of equation in Fig. 3.3.7 were regressed in 
Fig. 3.3.8. 
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Fig. 3.3.8 – Observed vs. estimated tannins content at the time with 
the highest coefficient of determination. 

Fig. 3.3.9 – Tannins content vs. light time (quadratic 
regression). 

Fig. 3.3.10 – Tannins content vs. light time (linear 
regression). 
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A quadratic regression with high R2 (0.957) was also obtained for the simple light time 
(time during which the output voltage is not 0). However, not all the coefficients of x 
and the intercept were significant (see the subsequent analysis in Table 3.3.2), so a 
linear regression was calculated with very limited loss of correlation. Fig. 3.3.9 and 
Fig. 3.3.10 show the quadratic and linear regression for the light time. In Table 3.3.2 
the main parameters related to the significance of the regression were reported. 

Table 3.3.2 – Main statistical parameters for the calculated regressions. 

Equation 
in figure 

Equation 
coefficients 

Estimate Standard 
error 

p-value 95% Lower 
confidence limit 

95% Upper 
confidence limit 

6 a 99.51 27 0.0012 43.39 155.6 
 b -1072.83 130 0.0000 -1340 -804 
 c 2725 142 0.0000 2431 3019 
7 a 28678 8829 0.0034 10456 46900 
 b -16427 1632 0.0000 -19796 -13058 
 c 2028 67 0.0000 1889 21656 
9 a -13870 5797 0.0249 -25833 -1907 
 b 19834 11746 0.1042 -4409 44077 
 c -4753 5931 0.4307 -16994 7489 
10 b -8259 391 0.0000 -9065 -7453 
 c 9412 405 0.0000 8577 10246 

Legend: a, x2 coefficient; b, x coefficient; c, intercept. 

From graphical and tabulated results, it can be observed that the tannins content is 
correlated to the peak voltage and the most sensitive point voltage with a coefficient 
of determination of 0.963 and 0.966 (RMSE 104 mg/L and 99 mg/L), respectively. No 
substantial differences emerged by using one or the other voltage, the R2 value remains 
high for most of the signal points (Fig. 3.3.5). The estimation of the tannins content by 
means of the light time gives a coefficient of determination of 0.947 (RMSE 124 
mg/L). The nonlinear correlation between tannins and detected light signal could be 
attributed to a certain amount of saturation of the turbidity increasing with the tannins 
content. Previous work also reported nonlinear relation among light signal and quality 
parameters of dairy products (Ragni et al., 2016). 

 

3.3.4. Conclusion 

In light of the results obtained, pulsed photometry, based on the interaction of the 
spectrally variable light radiation and the interposed wine, reacted with gelatin, has 
proven to be a technique capable of estimating the tannins content in wine with 
appreciable precision. The highest R2 value, obtained with a quadratic regression 
function, was 0.966 with a RMSE value of 99 mg/L. 

Considering the regression calculated with the voltage peak of wine with different 
procyanidin content, a slightly lower coefficient of determination (0.963) was 
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obtained, with an RMSE of 104 mg/L. The highest coefficient of determination can be 
attributed to the initial lighting of the lamp, characterized by a large amount of infrared 
radiation. In summary, the peak value already provides an estimation of the tannin 
content. A simple linear regression calculated with the time with the photodiode detect 
a measurable signal gives R2 values of 0.947 (RMSE 124 mg/L). 

Further samples are mandatory to perform the statistical model implementation in 
reason to afford the light pulsed contribution in procyanidin content assessment. 
Multivariate techniques, such PLS and neural network could be used to attempt to 
improve the model power, which however seems good enough for the estimation of 
tannins in red wines. 
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3.4. Kiwifruit flesh firmness determination by a NIR sensitive 
device and image multivariate data analyses 
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Abstract 
 

A prototype based on a NIR sensitive camera and a Xenon lamp was set up and used 
to capture 8 bit gray scale (from 0=black to 255=white) image of the radiation that 
passes through the fruit. The count of the pixels with different gray tone was used to 
build statistical-mathematical models to correlate and predict the kiwifruit flesh 
firmness. One hundred sixteen fruits conveniently stored to obtain firmness within a 
range of penetrometric force from 0.8 N to 87 N, were submitted to the optical 
measurements. Simple regression between the gray tone having the maximum number 
of pixels and the firmness shown an exponential correlation with R2 values of 0.717. 
On the contrary, the tone uniformity (maximum number of the pixels with the same 
gray tone) resulted linearly correlated with hardness (R2=0.687). PLS algorithm 
allowed prediction of the flesh firmness with R2 of 0.777 (RMSE=13 N). Artificial 
neural networks given similar results. Although the current technique not fully satisfies 
the need of an accurate selection, it could be considered for on-line applications by 
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improving performances (e.g., acting on lamp spectral emissions and camera 
detection) and with easy mechanical modifications of the sorting lines. 

 

Keywords: Kiwifruit; flesh firmness; infrared-sensitive camera; Partial Least Squares 
regression (PLS); Artificial Neural Networks (ANN). 

 

3.4.1. Introduction 

From 1970 onwards kiwifruit (Actinidia deliciosa) has experienced a growing 
international success largely due to ‘Hayward’ cultivar selection and 
commercialization [1]. Kiwifruit has a worldwide production that reached 4,038,871 
tons in 2017; Italy is the second largest producer (541,150 tons in 2017, 13.4% of total 
production) after China (2,024,603 tons in 2017, 50.1% of total production) [2]. 

Kiwifruits are harvested when ‘hardmature’, but unripe [3]. It is important to harvest 
the fruits at the right stage of maturation, as it influences the quality referred to 
consumption, storage time, fruit management after harvest and disease liability. 
Kiwifruits are climacteric, hence ripen after picking [4,5]. It has been often observed 
that, when the harvest is done too early, fruits might undergo a precocious softening 
during storage, and not reach full-flavour and aroma at ripe [6]. 

During kiwifruit ripening, an increase in Total Soluble Solids (TSS) can be observed 
[7]. Kiwi dry matter is mainly composed of carbohydrates and starch, which during 
ripening gradually transform to soluble solids, such as sugars. For this reason, the per-
centage of carbohydrates and starch could be taken into account as a kiwi ripeness 
index [8] and this parameter can be chosen to proceed with harvesting [7]. 

During storage, kiwi texture changes from hard and crisp to soft and melting. This 
parameter is important for eating quality, and also for postharvest handling, as storage, 
grading, and transport [3]. 

Kiwi firmness can be assessed through destructive techniques, like a penetrometer, and 
a remarkable variety of non-destructive techniques were proposed. 

The correlations between mechanical measurements (compression, impact response 
and acoustic impulse response) with the penetrometric kiwifruits firmness were 
investigated and R2 values from 0.634 to 0.956, depending on the used technique and 
variety of kiwifruit, were calculated [3]. 

An impact device equipped with a load cell was set up to measure kiwifruits hardness 
in a simulated on-line sorting condition. By using multiple regression models with 
independent variables related to some parameters of the impact force during time (e.g., 
the peak), R2 values up to 0.823 were obtained; the use of artificial neural network did 
not improve the goodness of estimation [9]. 
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A non-destructive instrument, named ‘Intelligent Firmness Detector’ (IFD), sensing 
the firmness of peeled fruits with a pressure transducer, was compared with two 
destructive instruments, an ‘ART’ and a ‘Bareiss’ hand-held penetrometer [10]. 
Correlations (r2) between kiwifruit firmness measured by means of IFD and 
destructive instruments were 0.62 and 0.70, respectively. In the same study, a 
comparison for Total Soluble Solids (TSS, sugar, sweetness, and taste) values was also 
made adopting a non-destructive VIS-NIR spectrophotometer (five transmission 
spectra) in the range from 400 to 1100 nm, named ‘Intelligent Fruit Analyser’ (IFA), 
and a conventional refractometer. 

A non-destructive and low-cost fruit ripeness sensing system named ‘FruitSense’ was 
also proposed for kiwi and avocado. It leverages wireless signal emitted by WiFi 
devices to sense physiological changes related to fruit ripening [8]. The received 
signals appeared influenced by changes in the physiological compounds of the fruit 
during ripening. In this study, over the 90% of fruits characterised by four ripeness 
levels usually implemented by industry (from unripen to over ripen) were correctly 
classified according to ripening. 

Waveguide spectroscopy in two frequency ranges (2−3 GHz and15–16 GHz) was used 
to predict both soluble solids content and flesh firmness of kiwifruits [11]. Models 
obtained by partial least squares (PLS) regression algorithms showed test set R2 values 
up to 0.804 and 0.806 for the prediction of soluble solids content and Magness-Taylor 
flesh firmness, respectively. 

The non-destructive time-domain diffuse reflectance spectroscopy (TRS) (a pulsed 
laser spectroscopic technique) was studied to measure kiwifruits quality parameters 
characterised by optical differences, as firmness, sugar content, and acidity. TRS can 
be used to estimate, separately and simultaneously, absorbed and scattered light at each 
wavelength within the sample. It was possible to estimate at the same time firmness 
and chemical contents. Data obtained from standard methods such as flesh puncture, 
compression with ball, °Brix (°Bx), total acidity, skin colour, were correlated with 
non-destructive measures to obtain estimative models, using multivariate analysis. 
Percentage of correctly classified fruits for firmness into three groups was 75%, 60% 
for sugar content, and 97% for acidity [12]. 

The relationship between hardness of kiwifruit, measured by using a HANDPI fruit 
hardness tester penetrometer, and non-destructive near-infrared diffuse reflectance 
spectroscopy was studied [13]. The correlation coefficients between predicted and 
actual hardness values were from 0.896 to 0.977, depending on calibration model 
(MLR and PLS, respectively). 
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Costa et al. (2015) [6] set up a portable instrument (Kiwi-Meter) assessing the fruit 
maturity by means of an index based on the difference in absorbance among specific 
wavelengths and related to the chlorophyll degradation. 

Even a hyperspectral imaging system with a laser as light source was used to predict 
firmness (R=0.898), sugar (R=0.932) and C vitamin content (R=0.918) of kiwi fruits 
[14]. Through backscattering imaging, the propagation of laser light in kiwis was 
measured [15]. Data were modelled with Monte Carlo stochastic method, in order to 
develop a non-destructive assessment method of kiwis’ optical properties. A 
significant difference, at p<0.01, was found between anisotropy of fruits with respect 
to ripeness grades. 

Magnetic resonance imaging (MRI) can be a useful technique to identify minimal 
changes in fruit texture related to water mobility. The fast softening of kiwifruits 
during storage at 0◦C appeared related to minimal changes in texture and is probably 
triggered by ethylene activated at molecular level in response to a wound. Water 
organisation and mobility affect ripening process, and minimal variation of vapour 
pressure due to modification in water loss and temperature can alter this organisation 
inducing textural changes and kiwifruit softening [16]. Kiwifruit is extremely sensitive 
to minute concentrations of ethylene (5 ppb) [4,5]. Quantitative 1H magnetic resonance 
(MR) imaging was adopted to detect changes in relaxation times at fixed times 
intervals during kiwi growth and maturation (Actinidia deliciosa var. deliciosa). The 
parameters selected for the analysis were the relaxation times T1 and T2 using a Carr-
Purcell-Meiboom-Gill pulse sequence (T2-CPMG). Time trends were found for both 
the relaxations parameters, and differences between flesh, locule (the seeds have not 
been taken into account) and core tissue. However, the results obtained by MR did not 
necessarily reflect the underlying biochemical processes, determined by destructive 
measurements of free sugars, SSC, macronutrients, and micronutrients [17]. 

Ethylene gas concentration might be used as an index to establish harvest time of fruit 
and to control after-harvest ripening of fruits. A colorimetric detection system with 
commercially available bathophenanthroline-based palladium complex was explored. 
This sensor changes colour when react with ethylene, which is related to kiwi ripeness 
[18]. 

Electronic Nose (EN) combined with a 433 MHz Surface Acoustic Wave Resonator 
(SAWR) to determine kiwifruit quality in 12 days of storage was tested [19]. Quality 
predictive models of kiwis based on SAWR, EN and EN combined with SAWR, were 
developed giving, respectively, R2 values of 0.865, 0.939, and 0.998. This non-
destructive method has some advantages, such as low cost, accuracy, and high analysis 
speed of fruit quality. 
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Yen & Yao (2018) [20] considered Volatile Organic Compounds (VOCs) released by 
in-ripening and over-ripened kiwis. VOCs were detected with a TD-GC/MS (Thermal 
Desorption Gas Chromatography/Mass Spectrometry) and compared with those 
detected with a SAW (Surface Acoustic Wave) gas sensor system, coated with four 
different thin films, which have a specific affinity to VOCs. A database was built up 
to classify the kiwi fruit during ripeness and over-ripeness. 

Information on the properties and cellular structure of a biological sample can be also 
obtained by measuring its bioimpedance spectra. Fruit ripening is the result of 
structural and cellular modifications that occur within the fruit itself. These 
modifications should produce a change in β-dispersion shape, as a result the spectra 
could be used to indicate the status and evolution of these properties [21]. A multi-
frequency magnetic induction spectroscopy (MIS) system designed for industrial-scale 
was adopted to obtain non-destructive and non-contact spectroscopic bio-impedance 
measurement, using a bandwidth of 156 kHz–2.5 MHz. The goal is to obtain 
conductivity spectra of numerous biological test samples, including apples, pears, 
nectarines, kiwis, potatoes, oranges, tomatoes, and yeast suspensions at different 
concentrations. This application could be further tested for detection of differences in 
flesh firmness of kiwifruits based on conductivity spectra. 

Most of the above-described methods are difficult to apply in a fruit sorting line, in 
which the speed is equal to or greater than 10 fruits per second. Without claiming to 
be an immediate solution, here is presented a simple optical technique that, 
appropriately developed and improved, could carry out the on-line determination of 
kiwi hardness. 

 

3.4.2. Materials and methods 

3.4.2.1. The device 
The main components of the apparatus are a xenon lamp and an infrared-sensitive 
camera. The lamp is confined in a squared section aluminium tubular container (50×50 
mm) having an open end where a fan cooling is housed. In the upper surface of the 
container, a longitudinal 22×34 mm window has been obtained on which the kiwifruit 
is positioned. A dark spongy material coats this surface to prevent the light passes 
through the rough contact between case and fruit. Moreover, a rigid black sheet 
(210×300 mm) was positioned around to this window to avoid reflections from the 
aluminium surfaces. A layout of the apparatus is depicted in Fig. 3.4.1. The xenon 
lamp, for automotive use, was powered by an ignitor for 55 W lamps, supplied at 13 
V, 4 A. The emission spectrum of the lamp was detected with a commercialized 
spectrometer equipped with optic fiber (AvaSpec 2048, Avantes, NL). The camera was 
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obtained from a commercialized webcam with 1280×1024 resolution, by replacing the 
infrared filter with a visible filter. All the apparatus was placed in a shielded container. 
Images of the kiwifruits were acquired by RGS-AvaCam, v. 3.7.0 software in an 8-bit 
gray scale (from 0=black to 255=white). 

 

3.4.2.2. Kiwifruits 
A sample of 116 kiwifruit (Hayward variety) was picked at commercial harvest in 
October 2018 in the Romagna area (Italy) to carry out the measurements. About 1/3 of 
the fruits was stored at 4 °C until test to maintain the flesh firmness high. One third 
was left to mature at room temperature (22 °C) in the presence of apples, inside a 
container provided by some openings to avoid excessive accumulation of ethylene. 
Another third was extracted from the refrigerator after about one day before test and 
left to ripen in the same conditions of the second batch. This procedure allowed to 
obtain fruits with a Magness-Taylor flesh firmness (MTf) ranging from about 1 to 90 
Newton (N) and a soluble solids content (SSC) from 7 to 16 °Bx. 

MTf was measured with a 7.9 mm diameter probe mounted on a compression/traction 
machine with a load cell conditioned and interfaced with a PC. The SSC was measured 
by an IR refractometer (PR-1, ATAGO Co. Ltd., Tokyo, Japan). Two measurements, 
both for MTf and SSC, were carried out on the opposite side of the fruit and the values 
were averaged. 

 

3.4.2.3. Image analysis 
The image analysis, including the distribution (count) of the gray pixels according with 
the 8-bit scale was carried out with ImageJ software (National Institutes of Health, 
USA). To avoid or limit possible boundary light effects or other disturbances, only the 

50

50

250

22

150

Aluminium
case Fan

IR sensitive
camera

Xenon lamp
longitudinal
axle position25

Black
sheetKiwifruit

to PC
via USB

Spongy
material

Sorting
line 
cups Kiwifruit

Xenon
lamp

34

Fig. 3.4.1 – Layout of the assembled device. In the inset 
a potential on-line application (figure is not to scale). 



73 

oval area inscribed in the kiwifruit was used for image processing. Being the fruits of 
different size, the number of pixels was normalized before counting. 

 

3.4.2.4. Data analysis 
A preliminary statistical analysis was carried out by exploring the correlation between 
MTf (and SSC) and the main parameters describing the distribution of the gray pixels, 
such as the tone (from 1 to 255; 0=black was removed being the background) with the 
maximum number of pixels, and the maximum number of pixels. The first parameter 
gives information on how much the image is dark or light, the second one gives an 
index of uniformity of the gray tone. 

Multivariate statistical analysis was then carried out on the whole pixel distribution 
(independent variables) with the aim to improve predictability of the firmness and the 
soluble solids content (dependent variables) based on the image parameters. 
Independent variables were arranged in a 116 (samples) × 255 (variables) matrix and 
two vector columns were created for the dependent variables MTf and SSC. 

For Partial Least Squares (PLS) bilinear approach, R2 and RMSE (Root Mean Square 
Error) were calculated for calibration and segmented cross validation (15% of samples, 
randomly selected). The validation residual variance plot was explored to select the 
optimal number of PLS components (PLScomp) (The Unscrambler ver.9.7, Camo, 
Oslo, Norway). 

In the artificial neural network (ANN) modelling (multilayer perceptron), the dataset 
was randomly divided into training and testing. Testing samples were characterised by 
the 15% of the samples. The Levenberg-Marquardt algorithm was used to train the 
network. The Levenberg-Marquardt algorithm, developed to solve nonlinear least 
squares problems, combines two minimization methods: the gradient descent method 
and the Gauss-Newton method [22]. The network was characterised by 255 input 
nodes, 1 hidden layer (number of hidden neurons = 5) and 1 output node. A sigmoid 
activation function f(x)=1/[1+exp(-x)], where x is the input variable, was considered 
in order to reduce the possibility of overtraining. The network design and the number 
of processing elements in the hidden layer was empirically obtained by monitoring and 
analysing the network error progress (MatlabR2016b, Statistics and Machine Learning 
Toolbox). 

 

3.4.3. Results 

3.4.3.1. Descriptive characteristics 
The spectral emission of the used Xenon lamp is given in Fig. 3.4.2. From the figure 
it can be seen a strong emission in the 800–900 nm region. The main characteristics of  
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the used fruits were summarised in Table 3.4.1. An example of two images of 
kiwifruits with different MTf, captured by the infrared-sensitive camera and processed 
in a 8-bit grayscale was reported in Fig. 3.4.3. 

In Fig. 3.4.4, the count of the image pixels for each gray tone (from 1 to 255) and for 
three kiwifruits with different Magness-Taylor flesh firmness (MTf) is given as an 
example. 

 

3.4.3.2. Data analysis 
 

3.4.3.2.1. Univariate analysis 
The dependence of the prevalent gray tone of the image on MTf appears exponential 
(R2=0.717), such as reported in Fig. 3.4.5. In any case, this trend shows an absence of 
linearity between the flesh firmness and the quantity of light passing through it. In 
particular, only when the fruit is overripe, abundant light emerges from the flesh, while 
even when the hardness is modest, the radiation absorption is high. 

Table 3.4.1 – Main characteristics of the kiwifruits used for the experiment. 

Mass (g) Dmin (mm) Dmax (mm)  L (mm) MTf (N) SSC (°Bx) 
112(10) 49(2) 55(2) 72(3) 26(26) 11(2) 

Legend: Dmin, minimum equatorial diameter; Dmax, maximum equatorial diameter; L, maximum 
length, MTf, Magness-Taylor flesh firmness; SSC, soluble solids content (standard deviation is in 
brackets). 

Fig. 3.4.2 – Spectral emission of the used xenon lamp. In the inset a 
magnification of the spectrum in the NIR region. 
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On the contrary, MTf is related with the number of maximum pixels in a linear fashion 
(R2=0.687), such as depicted in Fig. 3.4.6. In other words, MTf seems to increase when 
the uniformity of the image tone increases. 

The SSC appears related with the prevalent gray tone (Fig. 3.4.7) and with the 
maximum number of pixels of the same gray tone (Fig. 3.4.8) according to a 
logarithmic trend (R2=0.496 and 0.470, respectively). The correlation (Fig. 3.4.9) 
between MTf and SSC is negative, with a possible linear trend (R2=0.649). Generally, 
the correlations between image parameters and MTf result higher than that for SSC. 
All constant and coefficients in the functions are significant at p-level>0.05. 
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Fig. 3.4.6 – Magness-Taylor flesh firmness, MTf, vs the 
maximum number of pixels of the same gray tone. 
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Fig. 3.4.4 – Count of the image pixels for each gray 
tone (from 1 to 255) and for three exemplifying 
kiwifruits with different Magness-Taylor flesh 
firmness, MTf. 

Fig. 3.4.3 – Eight bits gray scale image of an overripe 
and a kiwifruit with very high Magness-Taylor flesh 
firmness, MTf. A: MTf=2 N; B: MTf=85 N; (1): whole 
image; (2): inscribed in an oval area image. 

Fig. 3.4.5 – Magness-Taylor flesh firmness, MTf, vs 
gray tone (from 1 to 255) of the maximum number of 
pixels. 

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

M
Tf

(N
)

Gray tone

y=17890x-1.69

R2=0.717

B (1)

B (2)

A(1)

A(2)



76 

 

3.4.3.2.2. Multivariate analysis 
Main results of the PLS regression analysis are summarised in Table 3.4.2. As can be 
observed, best results were obtained for the prediction of MTf. In validation, a value 
of 0.777 was obtained for the coefficient of determination R2 with a root mean square 

Table 3.4.2 – PLS regression main performances. 

Qualitative 
parameters 

Calibration Segmented cross validation 
PLScomp R2 RMSE PLScomp R2 RMSE 

MTf (N) 2 0.794 1.2 2 0.777 1.3 
SSC (°Bx) 2 0.596 1.3 2 0.550 1.4 

Legend: PLScomp, number of PLS components; RMSE, root mean square error. 
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Fig. 3.4.8 – Soluble solids content, SSC (°Bx: degrees 
Brix), vs the maximum number of pixels of the same 
gray tone. 
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Fig. 3.4.7 – Soluble solids content, SSC (°Bx: degrees 
Brix), vs gray tone (from 1 to 255) of the maximum 
number of pixels. 
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Fig. 3.4.9 – Soluble solids content, SSC (°Bx: degrees Brix), vs 
Magness-Taylor flesh firmness, MTf. 
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error (RMSE) of 13 N. As expected from univariate data analysis results, lower 
accuracies emerged for the model set up for the prediction of the SSC. 

Predicted versus observed values for the PLS models built for MTf and SSC are 
respectively shown in Fig. 3.4.10 and Fig. 3.4.11. 

X-Loadings describing the contribution to the variance of the individual independent 
variables (pixel distribution) are in Fig. 3.4.12 and Fig. 3.4.13 respectively for the MTf 
and SSC. As can be observed, for both qualitative parameters and PLS components, 
the highest loading values were extracted in the first 100 tones of the gray. In this tone 
range, the variability in terms of pixel distribution between samples characterised by 
different maturity indices (MTf and SSC) is the highest, as can be appreciated in the 
examples in Fig. 3.4.4. Also for ANN models, best performances were obtained for 
MTf (R2=0.725, RMSE=14.6 N) respect to SSC (R2=0.448, RMSE=1.6 °Bx) (test 
validation). In general, no great differences emerged between PLS and ANN 
modelling results (Table 3.4.3). 
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Fig. 3.4.10 – Predicted versus observed values of the 
Magness-Taylor flesh firmness, MTf (N) (segmented 
cross validation, R2=0.777, RMSE=13 N). 
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Fig. 3.4.12 – X-Loadings vs the pixel distribution for 
the Magness-Taylor flesh firmness, MTf, PLS model. 

Fig. 3.4.11 – Predicted versus observed values of the 
soluble solids content, SSC (°Bx), (segmented cross 
validation, R2=0.550, RMSE=1.4 °Bx). 

6.5 8.5 10.5 12.5 14.5 16.5
6.5

7.5

8.5

9.5

10.5

11.5

12.5

13.5

14.5

15.5

Observed SSC (°Bx)
Pr

ed
ic

te
d 

SS
C

 (°
B

x)

Fig. 3.4.13 – X-Loadings vs the pixel distribution for 
the soluble solids content, SSC, PLS model. 
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3.4.4. Conclusions 

The firmness of the kiwi flesh resulted related to the NIR radiation that emerges from 
the fruit backlighted by means of a xenon lamp. Basically, the softer the fruit, the more 
light passes through it. Image data based on a 8-bit gray scale analysed by univariate 
regressions revealed that there is not a linear, but exponential correlation (R2=0.717) 
between gray tone peak and flesh firmness: the radiation plentifully passes through the 
fruit only when it becomes very soft (penetrometric force < 10 N). On the contrary, 
the degree of uniformity of the gray tone (amount of pixels of the same tone) was 
linearly correlated with the firmness (R2=0.687). Multivariate analysis improved a 
little the performances of the determination models. Coefficient of determination for 
PLS regression, in validation, was 0.777 with RMSE value of 13 N. Artificial neural 
network produced substantially the same or a slight worse average result (R2=0.725, 
RMSE=14.6 N). Soluble solids content resulted correlated with flesh firmness, but its 
correlation with optical parameters is worse than that for flesh firmness confirming 
that the device is more sensitive for variation in the flesh structure and not for soluble 
sugar content. Although the current technique has not exceptional performances, it 
could be improved by using lamps with different spectral emission and power, and 
predictive models with different algorithms. Installing the lamp under the fruit 
container in a mechanized sorting line should not be a difficult problem. 

 

 

  

Table 3.4.3 – Artificial neural network main performances. 

Parameter R2 training R2 validation  R2 test RMSE test 
MTf (N) 0.849 0.733 0.725 14.6 
SSC (°Bx) 0.696 0.653 0.448 1.6 

Legend: RMSE, root mean square error. 
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3.5. In-field hyperspectral imaging: An overview on the ground-
based applications in agriculture 
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Abstract 
 

The measurement of vegetation indexes that characterise the plants growth, assessing 
the fruit ripeness or detecting the presence of defects and diseases, is a key factor to 
gain high quality of fruit or vegetables. Such evaluation can be carried out using both 
destructive and non-destructive techniques. Among non-destructive techniques, 
hyperspectral imaging (HSI), combining image analysis and visible/near-infrared 
spectroscopy, looks particularly useful. Many studies have been published concerning 
the use of hyperspectral cameras in the agronomic and food field, especially in 
controlled laboratory conditions. Conversely, few studies described the application of 
HSI technology directly in field, especially involving ground-based systems. Results 
suggest that this technique could be particularly useful, even if the role of 
environmental variables has to be considered (e.g., intensity and incidence of solar 
radiation, wind or the soil in the background). In this paper, recent in-field HSI 
applications based on ground systems are reviewed. 

 

Keywords: hyperspectral, fruits, vegetables, in-field application, prediction, 
classification. 
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3.5.1. Introduction 

The hyperspectral imaging (HSI) concept originated from imaging spectrometry (Liu 
et al., 2015). In the mid-1980s imaging spectrometry, a new Earth remote sensing 
technique, was developed at the Jet Propulsion Laboratory (JPL) of the California 
Institute of Technology in Pasadena, affiliated with the National Aeronautics and 
Space Administration (NASA). Airborne and spaceborne sensors allowed the 
identification of surface materials directly and remotely; images of the observed 
surface were obtained, simultaneously with reflectance values coming from up to 200 
contiguous spectral bands in the reflectance spectrum (Goetz et al., 1985). 

During the last few decades, numerous imaging and spectroscopic techniques have 
been developed and implemented by the agricultural and food industries for the 
evaluation and classification of products based on their intrinsic characteristics and 
properties (ElMasry & Sun, 2010). In recent years, the integration of imaging and 
spectroscopy through the development of HSI technology has made it possible to 
combine their benefits, obtaining results that are difficult to achieve with traditional 
imaging and spectroscopic technologies (Lu & Park, 2015). As evidence of this, there 
is a growing interest in research in this field as shown in Fig. 3.5.1 where the number 
of papers published in Scopus database (January 2020) in the range of years 2000-
2018 on hyperspectral imaging in agricultural and biological sciences and engineering 
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subject areas are reported. The categories ‘Cereals’, ‘Fruits’ and ‘Vegetables’ have 
been created from the FAO (Food and Agriculture Organisation of the United Nations) 
Commodity lists (©FAO 1994); in particular, the ‘Vegetables’ category, was obtained 
by aggregating the FAO categories vegetables, roots and tubers, pulses, and oil-bearing 
crops. 

 

3.5.1.1. Operating principles of a hyperspectral camera 
A HSI lab-scale system (Fig. 3.5.2) typically consists of a light source, a CCD or 
CMOS camera with a spectrograph (HSI camera), a translation stage composed by a 
conveyor belt on which the sample flows, and a computer (ElMasry et al., 2012; Liu 
et al., 2015). 

The operating principle of a HSI camera is comparable to that of an RGB camera: both 
measure and record the amount of light reflected by the framed object, which reaches 
the sensor. Both cameras can only partially process the electromagnetic spectrum: the 
RGB camera sensor measures only three bands of the visible radiation (corresponding 
to the blue, green, and red light), while the HSI camera sensor can measure a few 
hundred bands within the characteristic wavelength range of the sensor. The amplitude 
of a few nanometers of the spectral bands determines a high spectral resolution of the 
HSI sensor (Thomas et al., 2018). To disperse the light into selected wavelengths, 
optical and electro optical wavelength dispersion devices are used (Liu et al., 2015). 

 

halogen
lamp

hyperspectral
camera

data to PC

conveyor beltsample

flow direction

frame

halogen
lamp

Fig. 3.5.2 – Components of a typical hyperspectral imaging system of 
the push-broom type. 
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3.5.1.2. Sensor systems 
There are three types of sensor systems (Fig. 3.5.3): a) ‘whisk-broom’ linear array with 
a rotating mirror: b) ‘push-broom’ linear array; c) area array. The sensor systems with 
linear arrays include diodes or charge coupled devices that measure the radiance 
resulting from the object framed. Linear array sensors are often named ‘push-broom’ 
because their disposition resembles the arrangement of a single line of bristles in a 
broom (Jensen, 2014). Since the HSI camera captures only one line of the object 
framed, a translation stage is used to slide the sample below the lens. In this way a 
whole scan of the surface of the object can be obtained, then the computer creates and 
displays a complete hyperspectral image (Liu et al., 2015). Respect to whisk-broom 
detectors, push-broom detectors provide a more accurate measurement of the radiant 
flux reflected by the sample because: i) there are no moving mirrors; and ii) push-
broom linear array sensors are able to stay longer on a specific part of the sample 
(Jensen, 2014). With the area array detector system, hyperspectral images are acquired 
entirely, one at a time for each spectral band. This system does not require sample or 
HSI camera movement. A filter, wheel or tunable, is necessary to select different 
wavelengths during the scanning process (ElMasry et al., 2012). Area array sensor 
system is more practical in multispectral imaging techniques, where the number of 
wavelengths selected is limited (Garini et al., 2006). 

 

c
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hyperspectral
camera

FOV
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scan direction

‘whisk-broom’
hyperspectral

camera

scan direction

b
‘push-broom’
hyperspectral
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Fig. 3.5.3 – Three types of scanning systems used for multispectral and hyperspectral data collection: a) imaging 
with a scanning mirror and linear arrays, often referred to as whisk-broom technology; b) hyperspectral imaging 
with linear arrays, often referred to as push-broom technology; c) digital frame camera based on area arrays. FOV, 
field of view of the rotating mirror. 
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3.5.1.3. The hyperspectral image 
In a hyperspectral image, each pixel is characterised by the information on reflectance, 
absorbance, or transmittance from each spectral band selected. The so-called spectral 
signature (or spectral profile) can be obtained by summing this information, but it can 
also be measured through a non-imaging hyperspectral sensor like a spectrometer, 
loosing spatial information (Thomas et al., 2018). HSI, combining spectroscopy and 
imaging, measures at the same time the spectral signatures and the spatial information 
from a sample. The HSI data output is a stack of narrow band sub images organised 
along the reflectance spectrum axis, thus generating a 3-D hypercube (Fig. 3.5.4). The 
3-D cube data (named ‘voxel’) is characterised by two spatial (x, y) and one spectral 
dimension (λ) (Mishra et al., 2017). 

 

3.5.1.4. Hyperspectral image processing 
A typical hyperspectral image processing consists in the following phases: i) 
calibration and image acquisition; ii) spectral/spatial processing and dimensionality 
reduction; iii) data elaboration and development of prediction or classification models. 
Several techniques have been developed to process both the spatial and spectral 
dimensions of a hyperspectral image. Dimensionality reduction means reduction in 
data size and extraction of spatial and/or spectral characteristics in a smaller 
dimensional space. Subsequently, the data can be classified to identify the 
pixels/spectra useful for the analysis. Regression techniques can also be applied to 
estimate a reference parameter; in particular, in recent years techniques of 

Fig. 3.5.4 – a) representation of a 3D hypercube, composed of a stack of sub-images of a kiwi 
in contiguous spectral bands; b) reflectance spectrum of one pixel represented in (a) by a blue 
square. 

a

b
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chemometric and multivariate analysis have been applied to hyperspectral images 
(Yoon & Park, 2015). 

3.5.1.4.1. Calibration and image acquisition 
The calibration of the image acquired in reflectance, absorbance or transmittance mode 
allows to obtain a corrected image considering a black and a white reference image: 
the black image can be obtained by placing the cap on the lens of the camera, instead 
the white image is carried out of a high reflectance material placed inside the framing 
area (Ma et al., 2019). 

3.5.1.4.2. Spectral/spatial processing and dimensionality reduction 
Spectrum processing includes pre-processing and extraction of spectral characteristics. 
The most commonly used techniques are smoothing methods of random noise from 
raw data (e.g., Savitzky-Golay, moving average, median filter), or spectral pre-
processing algorithms to refine the spectral data as the derivatives (Norris-Williams 
and Savitzky-Golay), multiplicative scatter correction (MSC), standard normal variate 
(SNV), alignment technique (COW) (Rinnan et al., 2009). 

Considering the multivariate models, to avoid problem of multicollinearity, it is useful 
to make a variable selection. This can improve model performance and model 
characteristics by identifying and removing useless, noisy, and redundant variables 
(Liu et al., 2014). There are three main variable selection methods: filter methods 
(information gain and correlation-based feature selection) wrapper methods (learning 
algorithms, such as beam search, simulated annealing, and genetic algorithms) and 
embedded methods (SVM and decision tree). 

Regarding the wavelength selection the most common methods are successive 
projections algorithm (SPA), stepwise regression (SWR), PLSR and uninformative 
variable elimination (UVE). Some other algorithms for applications in HSI analysis 
have been developed recently and exhaustively described by Liu et al. (2014). 

3.5.1.4.3. Classification and prediction methods 
Classification methods include multivariate classification techniques, which 
comprises: i) unsupervised methods as principal component analysis (PCA), clustering 
(k-means, Jarvis-Patrick, hierarchical), and convolutional neural networks (CNN); ii) 
supervised methods as discriminant analysis (linear, quadratic or regularised DA), soft 
independent modelling class analogies (SIMCA), partial least square discriminant 
analysis (PLS-DA), support vector machines (SVMs), and the non-parametric k-
nearest neighbour (kNN) (Ma et al., 2019). Prediction methods used to estimate the 
relation between spectral information and reference properties measured on the 
samples are divided into linear and non-linear regression. Linear regression includes 
multiple linear regression (MLR), principal component regression (PCR), and linear 
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partial least square regression (PLSR). The most commonly used non-linear regression 
are artificial neural networks (ANN), e.g., multilayer perceptron (MLP) or generalised 
regression neural network (GRNN), SVM and nonlinear PLSR (Ma et al., 2019). 

 

3.5.2. HSI application in the field 

Recently, due to the rapid development of computer systems with high data processing 
capacities and the miniaturization of HSI systems, the opportunity of analysing in real 
time plants and foods, such as fruits and vegetables directly in the field at ground level, 
has become more interesting. Satellite based systems or airborne systems (manned or 
unmanned aerial vehicles, tethered balloons) characterised by low spatial resolution 
are mainly aimed at the study of the plants canopy and terrestrial vegetation. In 
addition, ground-based systems mounted on agricultural vehicles or fixed platforms 
have been introduced, due to their high spatial resolution, for the estimation of quality 
parameters of plants and foods. 

In this work, both remotely and directly controlled ground based HSI systems have 
been considered, which have been used in the field for: i) phenotypic analysis of plants; 
ii) determination of fruit ripeness, chlorophyll, and nitrogen content of plants; iii) 
detection of fungal diseases, drought stress, weeds, maize stubble in conservative 
agriculture; and iv) monitoring of canopies under uncontrolled conditions. The search 
for the papers was carried out on the abstract and citation database ‘Scopus’ on January 
29th, 2019: the keywords ‘hyperspectral’ and ‘field’ were searched; the search was 
limited to the subject area ‘agri’. Hence, 1069 results were obtained: from the list of 
results, only the articles that met the purposes of this work were selected (Table 3.5.1). 

 

3.5.2.1. High-throughput phenotyping 
The study of different crop genetic varieties and growth related phenomic effects under 
different environmental conditions is essential to achieve higher productivity in terms 
of yield per hectare and sustainable use of natural resources (Underwood et al., 2017). 
High-throughput phenotyping (HTP) is crucial to improve yield as well as quality and 
it contributes to a better understanding of plant genomics. However, phenotyping 
techniques mainly rely on manual measurements and visual inspections. In addition, 
phenotyping techniques are not developed as well as genotyping techniques in terms 
of throughput, accuracy, and repeatability. This condition hinders the potential use of 
plant genotyping data for the development of genotype phenotype maps and for the 
characterisation of the interactions between genotype and environment (Jiang et al., 
2018). 
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Table 3.5.1 – Works cited, in the order in which they are listed in the text, with a brief description of their 
strengths and weaknesses. 

Arguments References Applications Strengths Weaknesses 

3.5.2.1. High throughput phenotyping 

 Underwood 
et al., 2017 

Grains, 
legumes 

Adoption of an unmanned ground 
vehicle, useful in term of labor 
saving and accuracy. Moderately 
good results. 

Limitation for the tallest plants (faba 
beans). Potential for crop damage. 

 Jiang et al., 
2018 

Cotton Multi-instrumental system. 
Moderately good results. 

The implementation of a cover reduced 
the amount of incident sunlight, 
requiring the use of artificial lights. 

 Gutiérrez et 
al., 2018 

Grapevine Real time, on-the-go HSI 
approach. Good prediction 
performance. 

Nothing to report. 

 Deery et al., 
2014 

Wheat Multi-instrumental system. Requires a high degree of expertise. 

3.5.2.2. Fruit ripening 

 Wendel et al., 
2018 

Mango Adoption of an unmanned ground 
vehicle. Dry matter prediction of 
‘on-the-tree’ mangoes is possible 
and repeatable. 

The geometry of the trees, the shadows 
of the fruits and the variation in the 
intensity and angle of the solar 
radiation affected the result. 

3.5.2.3. Chlorophyll content 

 Wang et al., 
2018 

Rice canopy The spectral purification 
procedure developed contributes 
to reduce the background impact. 
Moderately good results. 

The method lacks automation. 

 Wu et al., 
2016 

Wheat leaves 
and canopy 

Good results from single wheat 
plant leaves. 

Low precision of canopy spectral data, 
due to soil in the background. 

 Jay et al., 
2017 

Sugar beet 
canopy 

Good performances achieved 
with an optimized vegetation 
index. 

Results affected by a great variability 
of leaf orientation and lighting 
conditions. 

 Al Makdessi 
et al., 2017 

Durum wheat 
canopy 

Development of a light 
propagation model based on 3D 
models. Acceptable nitrogen 
content prediction. 

Multiple scattering effects mainly 
affect the lower leaves, which cannot 
be discarded due to a significant loss of 
information. 

 Malenovský 
et al., 2015 

East Antarctic 
dominant 
mosses 

Good chlorophyll a and b, and 
leaf density estimation. 

The prediction of the turf water content 
was influenced by the selection of the 
near infrared spectral region, which 
does not include wavelengths with 
adequate water absorption. 

3.5.2.4. Nitrogen content 

 Onoyama et 
al., 2015 

Rice plant Good results applying the 
growing degree-day parameter, 
related to air temperature, to 
predict nitrogen content. 

The wind has made some of the 
captured images unusable. 

 Onoyama et 
al., 2018 

Brown rice Good prediction performance 
adopting 4 regions of interest 
models. 

Exception on good prediction 
performance for the dark area model. 
Strong wind affected the capture of two 
images. 

 Vigneau et 
al., 2011 

Wheat leaves Complications introduced by 
variable solar lighting and plant 
architecture were considered. 
Good prediction performance of 
leaf nitrogen content. 

Models are dataset dependent, probably 
due to low sample number and growing 
conditions, in particular with regard to 
the plant nitrogen supply. 

3.5.2.5. Fungal diseases detection 

 Whetton et 
al., 2018 

Wheat, barley Performance was better in wheat 
than in barley. 

Use of an external light source. 

 Zhao et al., 
2016 

Winter wheat Able to follow the vertical 
features of the infestation. 

The method lacks automation. 
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In line with the aforementioned state, (Underwood et al., 2017) used a high-throughput 
phenotyping system, designed for row crops composed by a set of grains and legumes. 
The system described, named Ladybird UGV, was based on an unmanned ground 
vehicle (UGV) that allowed autonomous, high resolution, multi modal sensing and 
data processing. Hyperspectral data were acquired with a visible to near-infrared 
(VNIR) push-broom camera (Pika II, Resonon); hyperspectral images were of 648 
spatial by 244 spectral pixels, with a spectral resolution of 2 nm in the range from 
390.9 to 887.4 nm. Data were compared to those obtained by a handheld sensor named 
Greenseeker. Moderate linear relationships characterised by a R2=0.83 and R2=0.72, 
were reported for data acquired in August and September, respectively. Ladybird UGV 
was able to efficiently scan areas of coverage typically used in real world scientific 
phenotyping studies. This way of operating was faster than optimised traditional 
manual measurement, and it was able to generate highly repeatable and accurate data 
(Underwood et al., 2017). 

Table 3.5.1 – Continued 

Arguments References Applications Strengths Weaknesses 

3.5.2.6. Drought stress detection 

 Römer et al., 
2012 

Barley, corn Corn: clear detection of clusters, 
determined by two irrigation and 
nitrogen availability regimes. 

Barley: the experiment was 
conducted inside a rain-out 
shelter. 

3.5.2.7. Weeds detection and management 

 Pantazi et al., 
2016 

Corn Use of an autonomous platform and 
information system. Excellent crop 
recognition performance, using 
one-class classifications constructed 
on neural networks. 

One-class classifiers based on 
support vector machine and 
autoencoders have failed, in 
most cases, to yield acceptable 
results. 

 Herrmann et 
al., 2013 

Wheat Detection of four categories, with a 
good accuracy: weeds (2), wheat and 
soil. 

In most of the cases, shaded 
classes produced less user’s and 
producer’s accuracies than the 
respective sunlit class. 

 Huang et al., 
2016 

Palmer 
amaranth, Italian 
ryegrass, 
soybeans 

On-the-go HSI system. Excellent 
accuracy obtained on glyphosate 
resistant and sensitive weeds 
differentiation. 

Wind interference and sensor 
overheating due to intense solar 
irradiation had affected the 
experiment. 

 Reddy et al., 
2014 

Palmer amaranth Excellent validation accuracy of the 
field model classification, able to 
differentiate between glyphosate 
resistant and sensitive palmer 
amaranth plants. 

Nothing to report. 

3.5.2.8. No tillage in conservative agriculture 

 Chen et al., 
2017 

Corn stubble Good capacity to detect corn stubble, 
useful in corn-wheat rotation systems 
in case of no-tillage sowing. 

The study is limited to the 
selection of optimal wavelengths 
by means of principal component 
analysis to optimize image 
segmentation. 

3.5.2.9. Canopy monitoring under uncontrolled conditions 

 Rodriguez-
Moreno et al., 
2016 

Wheat The error in estimation of crop 
reflectance was compatible with a 
proper agronomic interpretation of the 
images using thresholds, linear 
functions or combination of both. 

The main problem observed is 
not the accuracy of the 
measurements, but the precision. 
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The field-based high-throughput phenotyping (FB-HTP) system developed by Jiang et 
al. (2018), named GPhenoVision, consisted of a high-clearance tractor with imaging, 
environmental and GPS sensors; it was evaluated by field scan of 23 cotton genotypes, 
to quantify canopy growth and development. Imaging sensors consisted of a 
conventional RGB-D, a thermal and a hyperspectral camera (MRC-923-001, 
Middleton Spectral Vision, Middleton, WI, USA). HS camera has a spectral range of 
400–1000 nm, an image resolution of 640 (spatial) × 236 (spectral), and a nominal 
spectral resolution of 2.7 nm. About imaging tests, to reduce the intensity of sunlight 
and wind effects a cover was adopted, but with this configuration the intensity of the 
signal recorded by the hyperspectral camera was low due to the reduced amount of 
incident light. Finally, regarding the hyperspectral camera, three calibration lamps 
were used to obtain a more accurate regression. In the present study, six phenotypic 
traits were extracted: plant height, width in-row (WIR), width across-row (WAR), 
projected leaf area (PLA), canopy volume (CV) and canopy expansion (Tc-Ta). The 
considered traits had a moderate correlation (r=0.54–0.74). These results suggested 
that a quantitative genetic analysis could be conducted, and yield prediction models 
could be developed (Jiang et al., 2018). 

Phenotyping of grapevine varieties is important both for producers and for the wine 
industry (Gutiérrez et al., 2018). Gutiérrez et al. (2018) classified a high number of 
grapevine varieties under field condition and natural illumination using a hyperspectral 
camera system (Pika L VNIR hyperspectral imaging camera, Resonon, Inc., Bozeman, 
MA, USA) mounted on an all-terrain vehicle (ATV). The horizontal movement of the 
ATV regulated the scanning of the push-broom type line scan hyperspectral camera. 
Data were processed by using SVM and artificial neural networks (multilayer 
perceptrons, MLP) testing several spectra pre-processing methods. Recall (the ratio of 
the number of correctly classified samples to the total number of testing samples), F1 
value [2 × (precision × recall) / (precision + recall)] and AUC (area under the receiver 
operating characteristic curve) were used as performance statistics. The prediction 
performance of SVM respect to individual varieties resulted in a range from 0.83 
(recall) to 0.93 (AUC), while for MLP between 0.95 (recall and F1 score) and 0.99 
(recall and F1 score), showing a low variability, in particular the AUC values 
(Gutiérrez et al., 2018). 

To keep up with the development of genomic technologies, fast and accurate crop 
phenotyping methods are required, in order to meet expected growing demand for food 
and fibre in the future (Deery et al., 2014). In this perspective, Deery et al. (2014) 
described the development of a ground based proximal remote sensing buggy named 
‘Phenomobile’, implementing these sensors: three LiDAR, four RGB stereo cameras, 
a thermal infra-red camera, three infra-red thermometers and a hyperspectral 
subsystem. The latter is composed by a full range spectroradiometer (Fieldspec 3, ASD 
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Inc., Boulder, CO, USA) and a Vis-NIR hyperspectral line scanner camera (Micro-
Hyperspec, Headwall Photonics Inc., Fitchburg, MA, USA). Sensors were mounted 
on a height adjustable bar (max 3 m from the ground). The frame of the Phenomobile 
was designed to traverse a mature wheat crop (1.2 m ground clearance and 1.8 m 
width) without coming into contact with the canopy, at a typical operating speed of 1 
ms–1. Moreover, Phenomobile presented a Real Time Kinematic GPS characterised by 
about 2 cm resolution, and a removable light bank (Deery et al., 2014). 

 

3.5.2.2. Fruit ripening 
Fruit should ripen on the tree, to allow accumulation of sugars and starch getting the 
best harvesting conditions. Fruits would have to reach on-tree physiological maturity, 
finding a balance between on-tree ripening and characteristics required for transport 
and storage. Hyperspectral imaging systems implementation directly in-field can help 
farmers to optimise harvest time, evaluating the grade of ripening of fruits (Wendel et 
al., 2018). In the study of Wendel et al. (2018), a hyperspectral camera (Resonon Pika 
II visible to near infrared (VNIR) line scanning hyperspectral camera, with a spectral 
range of 411.3–867.0 nm), a LiDAR sensor and a navigation system mounted on a 
ground vehicle contributed to carry out the measure of dry matter (DM) of mango to 
evaluate maturity. DM resulted from measures performed by a hand-held NIR 
spectrometer of harvested and on-tree fruit. These data were elaborated by using PLSR 
and CNN. Considering the cross-validation data set, R2=0.64 and RMSE=1.08%w/w 
was achieved by CNN in fruit on tree, while R2=0.58 and RMSE=1.17%w/w was 
achieved by PLS. Moreover, PLSDA and a CNN were compared to discriminate non 
mango pixels from mango pixels, obtaining good classification performance (mean F1 
score > 0.97). The described system permitted to predict the maturity of fruits at a 
distance from trees but presented difficulties due to the geometry of the trees, the 
shadows of the fruits and the variation of the intensity and angle of solar radiation 
(Wendel et al., 2018). 

 

3.5.2.3. Chlorophyll content 
Determining chlorophyll quantitative variation during plant growth can be useful to 
monitor the physiological state of the plant, to better understand the growing status 
and consequently to estimate the yield of the plant (Jay et al., 2017). 

Wang et al. (2018) captured rice canopy images with an imaging spectrometer (Cubert 
S185 Imaging Spectrometer, with a 4 nm of spectral resolution and a spectral range of 
450-950 nm). Rice leaf hyperspectral images were obtained, in order to retrieve 
chlorophyll content from refined leaf spectra resulting from 58 rice canopies and to 
estimate the yield of paddy rice. Vegetation indices extracted from those hyperspectral 



92 

data were correlated with crop chlorophyll density measured with a SPAD meter (soil 
plant analysis development chlorophyll meter), with the aim to estimate leaf pigment 
content. Three vegetation indices with the highest correlation were selected and used: 
photochemical reflectance index (PRI), structural independent pigment index (SIPI) 
and green normalised difference vegetation index (GNDVI). A PLSR was used, 
obtaining in cross validation R2=0.703 before purification, and R2=0.753 after 
purification. A commonly used field portable spectroradiometer can only obtain point 
spectral information. However, the device is not able to obtain spectral and image 
information at the same time. Usually, canopy spectral data resulting from a 
spectroradiometer are the average of spectra collected in a specific area and are 
affected by the weaker part of the plant, which is located under the foliage, and by the 
environment (Wang et al., 2018). 

Wu et al. (2016) analysed canopy and single wheat plant leaves at seedling stage using 
a spectroradiometer and a planar array visible near infrared hyperspectral camera 
(VNIR hyperspectral MS4100 high resolution 3 CCD camera, Redlake Inc.) to 
establish prediction models to monitor plant growth. Data obtained by the two 
instruments were correlated to plant growth measured factors (chlorophyll SPAD 
value, nitrogen and water content, dry matter). The hyperspectral camera adopted is 
more portable, with a higher acquisition rate and without the necessity to move the 
ground support mounted on a rail, respect to a push-broom hyperspectral camera. Due 
to the soil in the background, both the spectral data of canopy obtained with the two 
instruments were characterised by low precision. Instead, spectral data from single 
wheat plant leaves obtained with the hyperspectral camera were more detailed, gaining 
a correlation coefficient r of 0.8836, 0.8520 (PLSR) for chlorophyll SPAD and 
nitrogen content, respectively (Wu et al., 2016). 

Jay et al. (2017) studied methods based on reflectance observations for non-destructive 
leaf chlorophyll content (Cab) estimation at field level in sugar beet canopies. It was 
adopted a push-broom hyperspectral camera (HySpex VNIR 1600, Norsk Elektro 
Optikk, Norway) in the 400–1000 nm range, with high spatial resolution (millimetre 
to centimetre) mounted on a ground-based platform. The push-broom camera was 
positioned at 1.1 m above the ground and vertically oriented. At this scale, soil 
reflectance and the shape of canopy structure interact with the scattering properties 
related to leaf, producing canopy reflectance. Effects of canopy structure and leaf 
architecture (leaf orientation and spatial distribution) should be carefully straightened 
out when relating remote sensing observations to foliar biochemistry. The best 
performances were achieved with an optimised vegetation index named ‘modified 
normalised difference’, mND[λ1,λ2], defined as (Rλref−Rλ1)/(Rλref+Rλ2), using a blue 
reference spectral band λref=440 nm (Rλ refers to the reflectance at the given 
wavelength). Data were computed considering the average reflectance spectra related 
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to the 50% brightest green pixels, with a spatial resolution equal to 3.5 cm. 
mNDblue[728,850] was correlated with Cab using a linear regression model, obtaining 
R2=0.83 and RMSEP=2.45 μg cm-2 (Jay et al., 2017). 

Leaf radiance variation is strongly induced by the great variability of leaf orientation 
and lighting conditions (Jay et al., 2017). At this regard, Al Makdessi et al. (2017) 
implemented the ‘Caribu’ light propagation model on 3D models of durum wheat 
canopy, trying to obtain a picture of the spectra variability induced by the leafy 
architecture. Spectra were acquired in various phases on leaves completely expanded 
using a field spectrometer [FieldSpec, Analytical Spectral Devices, Inc. (ASD), 
Boulder, Colorado, USA] with a leaf clip. A PCA was performed to analyse the 
distribution of resulting simulated spectra in the spectral feature space. Finally, the 
performance of PLSR in predicting leaf nitrogen content (LNC) was evaluated. At the 
plant level, considering only the leaves on the top of the plant, it revealed an acceptable 
nitrogen content prediction, with an error about 0.5% of dry matter (Al Makdessi et 
al., 2017). 

Near distance imaging spectroscopy was used by Malenovský et al. (2015) to evaluate 
spatial distribution of three East Antarctic dominant mosses (Bryum pseudotriquetrum, 
Ceratodon purpureus and Schistidium antarctici), due to the reduction of liquid water 
availability caused by latest environmental changes. Three quantitative stress 
indicators were used: turf chlorophyll a and b (Cab), water content (TWC) and leaf 
density (LD). Reflectance was measured in the laboratory and outdoors in both poor 
and abundant water conditions. Field measurements were performed by an imaging 
push-broom type spectroradiometer (Headwall Photonics Micro-Hyperspec VNIR 
scanner, Headwall Inc., Fitchburg, MA, USA) mounted to a geodetic tripod on a 
rotation and tilt platform. In the spectral range of 496–898 nm, ten bands were selected, 
three in the visible (496–710 nm) and seven in the near infrared (710–848 nm). The 
best results were obtained estimating the reflectance continuum removal (CR) 
transformation of Cab applying SVR on reference and remotely sensed spectra trained 
with all the three species of mosses together and considering the wavelengths between 
648–719 nm, specific for chlorophyll absorption [RMSE=238.3 nmol g-1 DW (dry 
weight) and R2=0.54]. The best LD estimation was achieved on S. antarctici, adopting 
SVR trained with the reflectance between 708 and 782 nm (RMSE=1.8 leaves mm–1, 
R2=0.55) (Malenovský et al., 2015). 

 

3.5.2.4. Nitrogen content 
Nitrogen nutrition index (NNI) is an expensive, laborious, and destructive method to 
assess plant nitrogen status during plant cycle. Since nitrogen is an essential nutrient 
and the main limiting factor of plant growth, many new non-destructive techniques 
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have been proposed to replace NNI, such as hyperspectral imaging (Vigneau et al., 
2011). 

Onoyama et al. (2015) developed a ground-based hyperspectral imaging system to 
estimate rice plants nitrogen content at the panicle initiation stage. In rice cultivation, 
nitrogen is applied in the form of topdressing in the early stages of panicle 
development, in order to increase the yield in terms of rice grains. The hyperspectral 
imaging system adopted consists of a prism-grating-prism (PGP) component and a 
monochrome camera (ImSpector QE V10E; Specim, Oulu, Finland), with a nominal 
spectral range between 400 and 1000 nm and a 5 nm nominal spectral resolution. A 
planetary gearbox rotational stage rotated the camera with the aid of a motor, for push-
broom type line scan. Three PLSR models were tested, including both the reflectance 
and the growing degree days (GDD), to explain the differences in growing temperature 
conditions over a 3-year period (2008, 2009, and 2010): 1-year model, 2-year model 
and 2-year model based on GDD. GDD represents a meteorological condition 
frequently used to describe the timing of biological processes: it was calculated based 
on air temperature measurements. In order to determine the adaptability of the PLSR 
models to test data collected in different years, a mutual estimation of the values for 
the other years was calculated. In 1-year model, the RMSE and relative error (RE) 
values of the mutual estimation resulted much higher respect to the values of the 
validation of the same 1-year model (RMSE from 0.49 to 3.95 g/m2 and RE from 8 to 
85% in mutual estimation, RMSE from 0.48 to 0.65 g/m2 and RE from 7 to 15% in 
validation), because of underestimation and overestimation. Similar results were 
obtained by applying the 2-year model, without significant differences in accuracy 
respect to the 1-year model (mutual estimation RMSE from 1.29 to 3.32 g/m2 and RE 
from 21 to 43%). The introduction of GDD in the 2-year model (third model) resulted 
in a decrease in mutual estimation RMSE and RE values (RMSE from 0.55 to 0.95 
g/m2 and RE from 8.2 to 13%), proving its usefulness for predicting the nitrogen 
content. Ultimately, it has been shown that the combination of reflectance and 
temperature data could be used to construct a model that explains the changes in 
growth conditions of rice plants at the heading stage (Onoyama et al., 2015). 

In brown rice production, it is important to consider grain quality as well as grain yield. 
A ground-based hyperspectral imaging system (ImSpector QE V10E, Specim, Oulu, 
Finland) with a nominal spectral range from 400 to 1000 nm, and a nominal spectral 
resolution of 5 nm, was used for the estimation of protein content before harvest. 
Protein content is related to rice taste quality; furthermore, it is also useful for 
establishing the application plan of the amount of basal and top-dressing fertiliser for 
the following year. The use of a spatial scanning hyperspectral camera allowed to 
obtain three-dimensional data. In spatial scanning, spatial spectral three-dimensional 
images can be collected line by line through rotational movement of the camera 
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powered by a motor. Instead, one dimensional data, deriving from a common 
spectroradiometer and represented by the reflectance of the analysed target, also 
include unwanted parts, such as soil background. The reflectance of five regions of 
interest (ROI-I: target area; ROI-II: dark area; ROI-III: canopy area; ROI-IV: leaf area; 
ROI-V: ear area) were related with protein content according to PLSR analysis. R2 and 
RMSE prediction values were similar for each model, with R2 values between 0.83 
and 0.86, and RMSE between 0.27 and 0.30%, but with the exception of the dark area 
model, where R2=0.76 and RMSE=0.35%. No significant differences in the magnitude 
of the estimation error between all models were observed. (Onoyama et al., 2018). 

Vigneau et al. (2011) developed a system composed by a push-broom CCD camera 
(HySpex VNIR 1600-160, Norsk Elektro Optikk, Norway) installed on a tractor 
mounted motorised rail. The camera operated in the spectral range between 400 and 
1000 nm, with a spectral resolution of 3.7 nm (160 wavelength bands). Close range 
hyperspectral images acquired were used to evaluate leaf nitrogen content in wheat. 
The study also considered in-field complications introduced by variable solar lighting 
and plant architecture, such as illumination level variation induced by leaf inclination 
and specular reflection. Reflectance pre-processing and correction process led to the 
same quality of results obtained in laboratory. A PLSR model considering nitrogen 
concentration and reflectance spectra of single leaves was developed; it was obtained 
by grouping two datasets, related to plants grown in pots in greenhouse or in field 
conditions. The model predicted leaf nitrogen content for the two growing conditions, 
with R2=0.875 (test step), and standard error of prediction corrected of the bias 
(SEPc)=0.496% DM (Vigneau et al., 2011). 

In summary, hyperspectral images produced spatial nitrogen cartographies, and it was 
possible to monitor nitrogen dynamics at leaf level. Consequently, these data could be 
implemented in growing models or nitrogen remobilisation models (Vigneau et al., 
2011). 

 

3.5.2.5. Fungal diseases detection 
Cereal production can be compromised by the presence of in-field fungal diseases. 
Due to their spatial variability, it is necessary to acquire high spatial resolution data to 
perform a detailed site-specific control of the diseases (Whetton et al., 2018). 

Whetton et al. (2018) measured two fungal diseases with a mobile measurement 
system in four fields of wheat and barley: yellow rust (determined by Puccinia 
striiformis), one of the most detrimental foliar diseases of wheat in cool climates, and 
fusarium head blight (Fusarium graminearum), producing mycotoxins in the grain. 
Such online system consisted of a push-broom hyperspectral camera (HS spectral 
camera model from Gilden Photonics Ltd., UK) attached to a tractor, with an external 
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light source; the camera works in the spectral range of 400–1000 nm. The percentage 
of coverage of the diseases was assessed using two methods, in-field visual assessment 
(IVA) and photo interpretation assessment (PIA) on the basis of a 100-point grid 
superimposed on RGB images. The spectral data were analysed by PLSR with leave-
one-out cross-validation. Measurements of yellow rust and fusarium head blight were 
similarly accurate, while performance was better in wheat than in barley. PIA analysis 
resulted more accurate than IVA for fusarium. Considering PIA analysis, residual 
prediction deviation (RPD) value was 2.27 and R2 value was 0.82 for wheat, while 
RPD was 1.56 and R2 was 0.61 for barley. On the contrary, IVA analysis was more 
accurate than PIA in the yellow rust. In barley RPD and R2 values were 1.67 and 0.72, 
while in wheat they were 2.19 and 0.78 respectively (Whetton et al., 2018). 

The yield and quality of winter wheat grains can also be seriously compromised by 
yellow rust. For this purpose, a hyperspectral imaging spectrometer (ImSpector V10E, 
Specim, Spectral Imaging Ltd., Finland) was used to accurately assess wheat yellow  

rust. The instrument works in the wavelength range between 400 and 1000 nm, with a 
spectral resolution of 2.8 nm. This ground-based imaging spectrometer system 
collected images in a push-broom manner. It consisted of a camera, a spectrograph, a 
mount zoom lens, and a mirror scanner: the system generates a hyperspectral data 
cube, which simultaneously collected spectral and imaging characteristics of pure 
yellow rust spores. Three flag leaves (F-1, F-2, and F-3: F = flag leaf) were randomly 
collected from the inoculated and normal wheat fields. Six region of interest (ROI) 
from the tip to the bottom of the three samples were analysed, finding a relation 
between the general trend of chlorophyll content (F-1>F-2>F-3) and the averaged 
hyperspectral reflectance measured; reflectance values gradually increased (F-1>F-
2>F-3) in the visible region selected (520–720 nm) and decreased (F-1<F-2<F-3) in 
the NIR region (730–1000 nm) (Zhao et al., 2016). Compared to a conventional non-
imaging spectrometer, a hyperspectral imaging system is particularly useful to detect 
the disease development along the leaf layers, following the vertical features of the 
infestation, in the appropriate growth phases considered. Furthermore, spectral and 
image data can be collected at once, regularly, and automatically. In this way, it may 
be decided to spray the fungicides, especially in the initial stages of the infestation 
(Zhao et al., 2016). 

 

3.5.2.6. Drought stress detection 
Hyperspectral imaging sensors were adopted to evaluate early water stress: i) on barley 
(SOC-700, Surface Optics Corp., San Diego, CA, USA) in controlled drought 
conditions inside a rainout shelter; and ii) on corn (PS V10E, Spectral Imaging Ltd, 
Oulu, Finland,) directly in the field, in order to check if the method is applicable both 
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in controlled conditions and in the field. The linear push-broom hyperspectral camera 
used on corn (PS V10E) is characterised by a spectral resolution of 2.8 nm in the range 
between 400 and 1000 nm (Römer et al., 2012). 

A deterministic method to analyse data was introduced, named simplex volume 
maximisation (SiVM). The applicability of this matrix factorization technique was 
tested for the first time in plant sciences; it was also a new approach for unsupervised 
learning of relevant patterns. With regard to the corn experiment, plants were grown 
in an experimental field with two different irrigation regimes (rain-fed and full 
irrigation) and nitrogen availability. In addition, several vegetation indices (VIs), 
including the normalised difference vegetation index (NDVI) and the photochemical 
reflectance index (PRI), were tested. The results have shown that SiVM divided the 
four treatments into three well separated clusters. Regarding the VIs, the PRI detected 
a difference in nutrient treatment, but was not able to detect water, while the NDVI 
detected drought, but was not able to detect nutrient treatment. A combined assessment 
with PRI and NDVI was effective in successfully detecting all four clusters. In 
summary, SiVM has given considerable better results than the use of a combination of 
vegetation indices. In the corn plots, although the effect of the treatments on the foliar 
and canopy traits was reduced, SiVM managed to separate them (Römer et al., 2012). 

 

3.5.2.7. Weeds detection and management 
Ground-based remote sensing techniques (GBRST) provide interesting utilisations for 
precision agriculture (Huang et al., 2016). Crop production and yield are influenced 
by the presence of weeds, and the use of herbicides implies high costs and 
environmental impact. A method based on machine learning, developed by Pantazi et 
al. (2016), was used to discriminate between corn and weed species considering 
differences in spectral reflectance; Herrmann et al. (2013) developed a hyperspectral 
imaging (HSI) system to separate weeds from wheat. 

Pantazi et al. (2016) obtained hyperspectral images from a HSI system (ImSpector V9, 
Specim, Spectral Imaging Ltd., Oulu, Finland) mounted on a robotic platform 
(autonomous platform and information system). This HSI system consisted of a prism-
grating-prism (PGP) line spectrograph with a spectral resolution reduced to 19 nm and 
a spectral range between 435 and 834 nm, integrated with a monochromatic camera. 
Subsequently, four discrimination wavebands were selected using a stepwise variable 
selection. Four novelty detection classifiers have been implemented, based on one-
class classification constructed on neural networks: SVM, autoencoder, mixtures of 
Gaussians (MOG) and self-organising maps (SOM). The best results were obtained 
using the SOM and MOG classifiers. The crop recognition performance was 100% for 
both MOG and SOM classifiers. For the MOG classifier, the correct recognition of the 
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different weed species ranged from 31% to 98%. For the SOM classifier, the correct 
recognition rate ranged between 53% and 94% (Pantazi et al., 2016). 

Herrmann et al. (2013) adopted a ground-level image spectroscopy, characterised by 
high resolution at spatial and spectral level, in order to increase efficiency in weed 
control in wheat fields. Hyperspectral images were obtained by a push-broom type 
hyperspectral camera (ImSpector V10E, Specim, Spectral Imaging Ltd., Oulu, 
Finland) mounted on a tripod. The hyperspectral camera works in the NIR and visible 
regions, with a spectral range between 400 and 1000 nm and a spectral resolution of 
2.8 nm. PLSDA was applied to classify four categories and not for specific species of 
weeds: i) category BLW (broadleaf weeds) included the species Chenopodium, 
Mallow and potato; ii) category GW (grass weeds) included Lolium rigidum and 
Hordeum plaucum, the third and fourth categories corresponded to iii) wheat and iv) 
soil. The models developed considered a combination of some or all of the categories, 
even if the spectra were obtained from sunlight pixels and shaded pixels. The best 
model was the one that included the 4 categories described, but without discriminating 
between sunlight and shaded pixels. This model was chosen by comparing the cross-
validation confusion matrices in terms of variances and the Cohen’s Kappa values: K 
was 0.79 and the total accuracy was 85%. In addition, it was found that the red edge is 
the most important spectral region for vegetation classes through the application of the 
variable importance in projection method. The authors concluded that due to high 
spectral and spatial resolutions it was possible to obtain a separation between wheat 
and weeds on the basis of their spectral data. This approach could lead to a reduction 
in herbicides needing and consequently to an improvement both from an 
environmental and economic point of view so, without diminishing weed control 
efficiency, to a benefit for farmers and consumers. In addition, reduction of herbicides 
amount can limit the development of weed resistance to herbicides (Herrmann et al., 
2013). 

Regarding weed management, it is also useful to detect lesions caused to crops by the 
spread of a herbicide in the fields next to the one treated, as in the case of dicamba, or 
the differentiation between resistance and sensitivity to herbicides in weeds, in the case 
of glyphosate (Huang et al., 2016). For this purpose, Huang et al. (2016) adopted three 
instruments: i) a handheld spectroradiometer, to quickly measure in-field plant canopy 
spectra; ii) a push-broom hyperspectral camera (Resonon Pika II, Resonon, Bozeman, 
MT) with two lamps as a light source for laboratory use, and iii) an on-the-go 
hyperspectral camera, the same used in laboratory, mounted to a 3-point hitch installed 
on the back of a standard tractor, for in-field study of plant canopy. The hyperspectral 
camera works in the range between 400 and 900 nm, providing 240 wavelength bands. 
The in-field hyperspectral system allowed obtaining an over 90% accuracy on 
glyphosate-resistant (GR) and glyphosate-sensitive (GS) weeds differentiation. Wind 
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interference on the linear scanning sensor and sensor overheating due to intense solar 
irradiation had affected in-field experiment. According to this, the authors reported the 
needing to remove data artefacts and minimize environmental and systemic 
interference (Huang et al., 2016). 

Reddy et al. (2014) reported that some populations of Palmer amaranth (Amaranthus 
palmeri S. Wats.), weeds present in the southern United States, have developed 
resistance to glyphosate. Spectra of GR and GS plants were recorded, and the potential 
of hyperspectral sensors to differentiate GR from GS plants were explored. The study 
was conducted both in greenhouse and in the field. In greenhouse, a push-broom type 
hyperspectral camera (Resonon Pika II, Resonon, Bozeman, MT) was mounted on a 
stand, and two incandescent light bulbs were used as artificial light source. In the field, 
the same hyperspectral camera was mounted on a three-point hitch, with the capacity 
to move horizontally and vertically, and with the sun acting as a natural source of light; 
in turn, the tripod was installed on a tractor. Spectral data were randomly assigned to 
training and testing groups, and sensitive hyperspectral bands were selected using a 
forward selection algorithm. Fisher’s linear discriminant analysis (FLDA) was used to 
reduce the dimensionality of the sensitive bands related to the plant set and the 
maximum likelihood (ML) to classify the plants. Finally, amaranth plants were 
classified with confusion matrix with predictive accuracy, through leave-one-out 
validation. Authors observed that four distinct regions of the spectrum (400–500 nm, 
650–690 nm, 730–740 nm and 800–900 nm) were able to separate GR from GS plants. 
Considering fourteen wavebands within or close to these four spectral regions, the 
validation accuracy of the field model classification was 96.4% and was comparable 
with that of the greenhouse model, which was 93.8%. In conclusion, it can be stated 
that hyperspectral imaging has a potential application to differentiate between GR and 
GS Palmer amaranth plants, without subjecting them to a glyphosate treatment. For 
this reason, the technique described could have future implications for glyphosate 
resistance management (Reddy et al., 2014). 

 

3.5.2.8. No tillage in conservative agriculture 
Among basic principles of conservation agriculture (CA) are included zero tillage and 
permanent soil organic cover, which contribute decreasing soil degradation and 
increasing fertility (Chen et al., 2017; FAO, 2017). 

Chen et al. (2017) reported that in North China Plain, where annual maize wheat 
rotation is commonly implemented, the standing maize stubble, and consequently their 
extensive root system, stays in the field. These materials can hardly decompose during 
the short period between maize harvesting and wheat sowing, causing the block of the 
next no till sowing. To address the above problem, a vision-based guide was 
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developed. It consisted of a HSI system mounted on a pedestal. The HSI system 
comprised a spectrograph (1003B-20001 Micro-Hyperspec VNIR A-Series, Headwall 
Photonics Inc.) with a spectral range between 347.4 and 952.8 nm (Vis-NIR) and a 
spectral resolution of 1.846 nm, thus providing 329 wavebands; the spectrograph was 
coupled to a CCD camera, a zoom lens, and a tilt-shift motion control system (PTU-
D48E, FLIR). The HSI system was positioned forward during wheat sowing to avoid 
the standing maize stubble and consequently the underground root system. From the 
hyperspectral images of the standing maize stubble left in the field, three images with 
optimal wavebands (484, 561 and 580 nm) were selected by PCA. The three selected 
images were then enhanced by means of median filter, Sobel filter, Gaussian lowpass 
filter, band fusion method. In summary, the enhanced images demonstrated the 
capacity of the selected optimal wavebands to detect maize stubble (Chen et al., 2017). 

 

3.5.2.9. Canopy monitoring under uncontrolled conditions 
Rodriguez-Moreno et al. (2016) tested the quality of spectral images acquired under 
uncontrolled and consequently not optimal circumstances. Multispectral images were 
acquired from a multispectral camera (DuncanTech MS3100 camera, Auburn, CA, 
USA) mounted on an on-ground platform without a system to control: i) lighting; ii) 
the geometry existing between the sun, the target, and the sensor; and iii) interferences 
(dew, dust, etc.). Multispectral images were compared with spectral data obtained from 
a field radiometer and with hyperspectral images acquired by an airborne hyperspectral 
sensor. In this way, it was possible to measure the error occurring in crop reflectance 
as well as to evaluate the consequences of the uncontrolled conditions. It was observed 
that the error in estimation of crop reflectance was compatible with a proper agronomic 
interpretation of the images using thresholds, linear functions, or combination of both 
(Rodriguez-Moreno et al., 2016). 

 

3.5.3. Conclusions 

Hyperspectral imaging technology for non-destructive analysis by means of high-
resolution proximal sensing of plants directly in the field is currently not widely 
adopted but promising. HSI can be considered in the field of precision agriculture: it 
is useful for high-throughput phenotyping, for determining the ‘harvest maturity’ of 
fruit, for monitoring the physiological state of the plant, parasite attacks, weeds, and 
consequently for the estimation of the production yield. Some factors complicate the 
analysis, such as variations in the level of intensity of sunlight, the angle of inclination 
of the incident solar radiation, overheating of the sensor due to intense solar radiation, 
the plant architecture that includes the inclination of the leaves and specular reflection, 
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the wind. Future research should focus on studying solutions to these problems and on 
automating the process of acquiring and processing the enormous amount of data 
obtained from the analysis. 
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Abstract 
 

Monitoring the quality attributes of grapes is a practice that allows the state of ripeness 
to be checked and the optimal harvest time to be identified. A non-destructive method 
based on hyperspectral imaging (HSI) technology was developed. Analyses were 
carried out directly in the field on a ‘Sangiovese’ (Vitis vinifera L.) vineyard destined 
for wine production, by using a Vis/NIR (400–1000 nm) hyperspectral camera. One 
vineyard row was analysed on 13 different days during the pre-harvest and harvest 
time. The soluble solids content (SSC) expressed in terms of °Brix was measured by a 
portable digital refractometer. Afterwards, the grape samples were split in two classes: 
the first one composed by the samples characterised by a °Brix lower than 20 (not-
ripe), while the second one by the samples with a °Brix higher than 20 (ripe). Grape 
mean spectra were extracted from each hyperspectral image and used to predict the 
SSC by partial least squares regression (PLS), and to classify the samples into the two 
classes by PLS discriminant analysis (PLS-DA). SSC was predicted with a R2=0.77 
(RMSECV=0.79 °Brix), and the samples were correctly classified with a percentage 
from 86 to 91%. Even if the number of wavelengths was limited, the percentages of 
correctly classified samples were again within the above-mentioned range. The present 
study shows the potential of the use of HSI technology directly in the field by proximal 
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measurements under natural light conditions for the prediction of the harvest time of 
the ‘Sangiovese’ red grape. 

 

Keywords: hyperspectral, in-field, grape, wine, harvest, classification 

 

3.6.1. Introduction 

 

Italy is the largest wine producer in the world, with a production in 2018 of 5,480 
million litres (18.8% of world production) (OIV, 2019). In an industrialised wine 
growing system, monitoring the quality attributes, such as soluble solids content 
(SSC), acidity and anthocyanin content of grapes is extremely important: well-planned 
monitoring allows to check the growth and ripening of the grapes, and finally to decide 
when to proceed with the harvest (Delrot et al., 2010). For instance, by managing 
irrigation through the use of techniques such as the regulated deficit irrigation, 
significant increases in SSC and anthocyanins can be achieved which together with a 
decrease in yield and berry size can lead to substantial improvements in grape quality 
(Acevedo-Opazo et al., 2010; Pellegrino et al., 2005). 

Monitoring of grape quality attributes can be carried out directly in the field using 
traditional destructive techniques. Alternatively, quality attributes can be estimated by 
non-destructive techniques, such as near-infrared (NIR) spectroscopy. Portable NIR 
instruments were used to determine the following quality attributes of grapes: water 
content, SSC, reductant sugars, pH, titratable acidity, maturity index (sugar/acidity 
ratio), extractable anthocyanins, potential anthocyanins (Teixeira Dos Santos et al., 
2013). 

Over the last two decades the use of HSI technology in the quality assessment of fruits 
and vegetables has become of increasing interest (Chandrasekaran et al., 2019; Liu et 
al., 2015). HSI was initially limited to controlled environments such as laboratories 
but gradually, thanks to the miniaturisation and improved computing and data storage 
capabilities, it began to be used directly in the field (Benelli et al., 2020). Hyperspectral 
images can be captured either remotely by airborne vehicles and unmanned aerial 
vehicles (Ishida et al., 2018; Matese & Di Gennaro, 2015; Zarco-Tejada et al., 2013) 
or by ground vehicles (Deery et al., 2014; Gutiérrez et al., 2018; Huang et al., 2016; 
Jay et al., 2017; Underwood et al., 2017; Wendel et al., 2018; Whetton et al., 2018), 
which produces proximal hyperspectral images with high spatial resolution. Proximal 
HSI could therefore allow non-destructive, contactless, and automated monitoring of 
grape quality attributes. Moreover, the acquisition of hyperspectral images can be 
performed continuously, enabling the rapid scanning of large areas. Hyperspectral data 
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is characterised by two spatial and one spectral dimension, therefore only specific 
regions of interest (ROIs) can be selected, and the residual regions can be excluded. In 
this sense, hyperspectral analysis is useful to guide the choice of true multispectral less 
expensive solutions. 

Concerning in-field grape studies, Gutiérrez et al. (2018) adopted an on-the-go HSI 
system for the classification of 30 grapevine varietals directly acquired in the field. 
Through the development of classification models based on support vector machines 
(SVM) and multilayer perceptron (MLP), prediction performance (F1 score) up to 0.99 
was achieved. The same on-the-go HSI system described above, combined with SVM, 
was adopted to estimate SSC and anthocyanin concentration of wine grapes (Gutiérrez 
et al., 2019). Determination coefficients (R2) of 0.92 (RMSE=1.274 °Brix) and 0.83 
(RMSE=0.211 mg g-1) were obtained for the prediction of SSC and anthocyanin 
concentration, respectively. These two studies highlight the potential of HSI to monitor 
the indices of grape ripening directly in the field and therefore to improve vineyard 
decisions and management. Non-linear statistical methods were used in both studies. 
Considering the results just mentioned, it would be interesting to investigate whether, 
even combining HSI with linear methods and reducing the number of wavelengths, it 
is possible to monitor the degree of grape maturity directly in the field. Furthermore, 
considering a possible application of this technique, a simple binary model able to 
simply determine whether grapes are ripe for harvesting could be interesting. 

Thus, the present study aims to identify the proper degree of ripeness, suitable for 
harvesting wine grapes, through the observation of the SSC evolution by means of HSI 
technology applied directly in the field. The mean spectra were extracted from each 
hyperspectral image and used to predict the SSC and to classify the samples into the 
two classes (not-ripe and ripe), by partial least squares regression (PLS) and 
discriminant analysis (PLS-DA), respectively. 

 

3.6.2. Materials and methods 

3.6.2.1. Samples 
One side of a row of ‘Sangiovese’ (Vitis vinifera L.) grape vineyards, located near 
Cesena, Italy, was analysed on 13 different days in the period between August 20th and 
October 4th, 2019 (from pre-harvest to harvest time). The row was divided into 11 
sections; from each section 3, grapes were taken for each day of analysis, for a total of 
429 samples. 
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3.6.2.2. Hyperspectral acquisitions 
The adopted push-broom hyperspectral camera (Nano-Hyperspec VNIR, Headwall 
Photonics, Inc., Fitchburg, MA, USA) scans single lines in a sequence, each one 
consisting of 640 voxels: the image is created by moving the camera along the 
scanning direction (Fig. 3.6.1a). Each voxel contains, in addition to the two spatial 
dimensions, a Vis/NIR spectrum (400–1000 nm) characterized by 272 spectral bands, 
with a nominal spectral resolution of 2.2 nm. The mounted lens has an effective focal 
length of 17 mm, with the optical axis perpendicular to the side of the vineyard row 
(scanned surface) analysed (Fig. 3.6.1c). The camera was installed on a garden cart 
(Fig. 3.6.1b) 120 cm above the ground and it was powered by a 12 V, 45 Ah automotive 
battery through a DC to AC power inverter. The scans were performed at about 1.6 m 
from the side of the vineyard row. 

Direct sunlight with clear sky conditions, was used as a light source. To reduce the 
fluctuation of the sample temperature, all the acquisitions were carried during the same 
period of the day, from 10:30 a.m. to 12:00 p.m. 

The frame rate was set to approximately 100 frames·s-1. The exposure time was set 
from 6 to 8 ms, depending on the light intensity, and was achieved through calibration, 
by framing a white high-reflectance matter panel, placed at the same distance as the 
vineyard row, to cover the entire angle of view of the camera. Given the clear sky 
conditions and the short time required, about 10 min, acquisition of hyperspectral 
images of the 11 vineyard row sections and calibration was carried out only once per 
day. 

Fig. 3.6.1 – (a) Vineyard row, highlighted by the purple surface, scanned with the Vis/NIR 
hyperspectral camera; the red arrow indicates the direction of scanning; (b) Garden cart on 
which the hyperspectral camera is mounted. (c) In field hyperspectral imaging to measure 
soluble solids content of wine grape berries during ripening. 
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The raw diffuse reflectance spectrum (RR) was extracted from the HS images. The 
calibrated diffuse reflection spectrum (RC) was calculated by applying the following 
equation (Guo et al., 2019): 

𝑅𝑅𝐶𝐶  =  
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝐷𝐷
𝑅𝑅𝑊𝑊 − 𝑅𝑅𝐷𝐷

 (1) 

where RD is the reflectance spectrum of dark reference, obtained by applying the cap 
on the lens; RW is the reflectance spectrum of white reference, obtained by means 
calibration with the white high-reflectance matte panel reported above. 

A hyperspectral image from each of the 11 sections obtained from the vineyard row, 
was acquired per day of analysis (Fig. 3.6.1c): therefore, during the 13 days of analysis, 
a total of 143 vineyard row sections were scanned. 

 

3.6.2.3. Soluble solids content measurement 
After the acquisition of the images, the SSC, expressed in °Brix, was measured on 3 
grape berries (randomly selected) from each of the 11 sections by using a portable 
digital refractometer (PR-101 Digital Refractometer, ATAGO CO., LTD, Tokyo, 
Japan). Subsequently, the mean for each section was calculated. 

One-way analysis of variance (ANOVA) with Tukey-HSD post-hoc test (p-
level<0.05) was applied to evaluate significant differences between SSC means over 
the different days of analysis. 

 

3.6.2.4. Hyperspectral images elaboration 
ROI selection was made using the software HyperCube, v. 11.52 (U.S. Army Engineer 
Research and Development Center (ERDC), USA). For each image, 5 points and a 
maximum of a further 120 adjacent points (11×11 voxels matrix, with the selected 
point in the centre of the matrix) were selected on 5 different berries directly 
illuminated by the sun, not in the shade. The (reference) points included in the 
classification were characterized by a metric distance from the mean (signature) 
spectrum of the manually selected points within the range (tolerance threshold) 
[0,0.04] (Fig. 3.6.2). The metric distance (d) was calculated by applying the absolute 
difference (Manhattan) function (Eq. (2)) (Deborah et al., 2015) and normalised in the 
range [0,1]: 

𝑑𝑑(𝑅𝑅1,𝑅𝑅2) = ��𝑅𝑅1,𝜆𝜆 − 𝑅𝑅2,𝜆𝜆�
𝜆𝜆

 (2) 

where R1, R2 are two reflectance spectra. 

From the spectra of the classified points, the mean spectrum for each hyperspectral 
image was calculated. 



110 

The spectral bands between 400–424 nm were omitted as a result of the low signal-to-
noise ratio produced by the sensor, as reported in Wendel et al. (2018). The spectra 
were smoothed (Savitzky-Golay method; polynomial order: 2; smoothing points: 15) 
to reduce noise from the spectra and following pre-treated by the standard normal 
variate (SNV) method, first derivative (D1) and finally mean centred (MC). The SNV 
is one of the most common pre-processing methods used to correct spectra for changes 
in optical path length and light scattering, while the derivatives have the capability to 
remove both additive and multiplicative effects in the spectra (Rinnan et al., 2009). 
After SNV, each spectrum will have a mean of 0 and a standard deviation of 1. 

Principal component analysis (PCA) was applied to the mean spectra as exploratory 
technique to visualize the data according to °Brix and time evolution. Subsequently, a 
preliminary PLS regression model was built to estimate the SSC. The validation was 
carried out by the venetian blind cross-validation method (segments: 10). 

PLS-DA models were built to classify the samples according to °Brix. In particular, 
classification models with 2 categories (not-ripe and ripe) were developed: according 
to Bucelli et al. (2010), the first class was composed by the samples characterized by 
a °Brix lower than 20 (0), while the second one by the samples with a °Brix equal or 
higher than 20 (1). 

The sample dataset (n=143) was split in calibration (venetian blinds cross-validation, 
including 75% of the samples) and external validation set (25% of the samples) by 
using the Onion method (Gallagher & O’sullivan, 2020). The threshold value, able to 
identify the belonging category of each sample into one of the groups, was defined by 
using a probabilistic approach based on Bayes’s rule. To avoid the model over-fitting, 
the optimal number of latent variables were chosen by plotting the root mean square 
error of cross-validation (RMSECV) as a function of the number of components and 
by identifying where the curve reaches a local minimum. The receiver operating 

Fig. 3.6.2 – (a) RGB image from hyperspectral image of a scanned vineyard row section. (b) Representation of the 
ROI (in red) resulting from the classification obtained by the Manhattan function. 
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characteristic (ROC) curves in prediction were evaluated to assess the goodness of the 
models. 

All the chemometrics models were developed by using PLS Toolbox for Matlab2018a. 

 

3.6.3. Results and discussion 

Means and standard deviation of the °Brix measured during the 13 days of analysis are 
reported in Table 3.6.1. The increase between the first and last day was of 27.5%, from 
17.8 °Brix (day I) to 22.7 °Brix (day XIII). Several significant differences between the 
°Brix mean values were achieved over the different days of analysis. The whole data 
set was characterized by a mean value of 20.6±1.7 °Brix, which make suitable to split 
it in two subsets with a threshold of 20 °Brix. 

Table 3.6.1 – Mean and standard deviation values of 
soluble solids content (°Brix) as a function of days of 
analysis. 

Day of analysis Mean (°Brix) SD (°Brix) 
I 17.8a 1.05 
II 19.0a,b 0.81 
III 19.2b,c 0.75 
IV 19.9b,c,d 1.1 
V 20.1b,c,d 1.16 
VI 20.2b,c,d,e 0.95 
VII 20.5c,d,e,f 1.11 
VIII 20.7d,e,f 0.82 
IX 21.5e,f,g 0.76 
X 21.6e,f,g 0.89 
XI 21.7f,g 1.17 
XII 22.7g 0.94 
XIII 22.7g 0.88 

Note: means with the same letter are not significant different 
at p-level<0.05. 

Raw and pre-treated (smoothing and SNV) mean spectra of all the samples by day of 
analysis are presented in Fig. 3.6.3. In the Vis/NIR region (400–1000 nm), the visible 
spectrum (400–700 nm) presents the absorption bands of some substances used as 
ripening indexes of fruit: anthocyanins at around 500 nm, carotenoids at 570–590 nm, 
and chlorophyll a at 680–710 nm (ElMasry et al., 2007; Munera et al., 2017). In the 
NIR region (700–1000 nm), absorption bands of water at 760 nm and 960–970 nm are 
characterised by the overtone of O–H bonds (McGlone & Kawano, 1998; Nicolaï et 
al., 2007): since the water content of a ripe wine grape is 70–80% (FAO, 2009), it can 
be expected that the water related absorption band will prevail. Absorption band 
around 840 nm was associated with sugar (Pu et al., 2016); moreover, peaks observed 
in the 950–1000 nm region were related to both water and carbohydrates, as the second 
overtone of O–H and N–H, a combination band of O–H bonds and the third overtone 
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of C–H, were found in the region (Camps & Christen, 2009). As observed, the water 
absorption peaks in the NIR (700–1000 nm) spectral region are not very marked and 
wide. Therefore, spectral information from SSC in the 800–1000 nm range will tend 
to be less covered by water (Camps & Christen, 2009; Manley et al., 2007). 

The scores plot of the first two principal components (PC1: 59%; PC2: 28%) resulting 
from PCA shows the samples distribution according to the day of analysis. A tendency 
to place the samples from left to right can be observed on PC1, starting from day I 
(quadrant III) to day XIII (quadrant IV) (Fig. 3.6.4a). 

A similar distribution can be observed according to the SSC: the samples are 
distributed along PC1, mainly on the left those with SSC<20 °Brix (quadrants II and 
III), on the right those with SSC≥22 °Brix (quadrants I and IV) (Fig. 3.6.4b). 

The best PLS results were obtained pre-treating the spectra by SNV+MC. Particularly, 
R2=0.768 and RMSECV=0.79 °Brix were achieved in cross-validation with 7 latent 
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Fig. 3.6.3 – Raw (a) and pre-treated by smoothing and SNV (b) spectra of all samples on different days of analysis 
(from I to XIII). 
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variables. Fig. 3.6.5 shows the predicted versus measured °Brix values. These results 
agree with those present in literature and developed by using spectra in the same 
wavelength range and acquired directly in-field. Furthermore, regardless of the R2 
values, the RMSE is substantially lower. Diezma-Iglesias et al. (2008) predicted SSC 
on 480 samples of ‘Cabernet Sauvignon’ by using a portable hand-held spectrometer 
(590–1090 nm), reporting a R2=0.72, while Guidetti et al. (2010) working with a 
simple Vis/NIR system in the range from 400 to 1000 nm, obtained in prediction 
r=0.82 (R2=0.67) and RMSEP=1.48°Brix. Gutiérrez et al. (2019) used the HSI 
technique (400–1000 nm) to measure SSC in wine grapes in real time. R2 of 0.91 
(RMSE=1.358 °Brix) and 0.92 (RMSE=1.274 °Brix) were achieved in cross-
validation and prediction, respectively, by using the SVM techniques. 

PLS-DA results, in terms of percentage of correctly classified samples, are reported in 
Table 3.6.2. The percentages ranged from 86 to 91%. Considering the prediction set, 
the best result was obtained applying as pre-treatment the SNV+MC. The results 
obtained with the hyperspectral technique improved those achieved by Guidetti et al. 
(2010) by using of a portable contact system. The authors combined Vis/NIR 

Table 3.6.2 – PLS-DA results in terms of percentages of correctly classified samples (whole spectral range). 

Spectra 
pretreatment Class Calibration 

(n=107)  
Cross-validation 
(n=107, 10 segments) 

Prediction 
(n=36) 

LV 

SNV+MC °Brix<20 89% 89% 91% 4 
 °Brix≥20 91% 91% 91%  
SNV+D1+MC °Brix<20 91% 89% 86% 4 
 °Brix≥20 91% 91% 91%  

Note: SNV=Standard Normal Variate; MC=Mean Centred; D1=first derivative, LV=Latent Variable. 
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spectroscopy in the wavelength range 450–980 nm with PLS-DA to classify grape 
samples in two groups based on SSC (threshold=21 °Brix), obtaining a percentage of 
samples correctly classified (in prediction) of 77.1% (Guidetti et al., 2010). 

The ROC curves in prediction (Fig. 3.6.6) summarise the trade-off between specificity 
(number of samples predicted to not be in the class divided by the actual number not 
in the class) and sensitivity (number of samples predicted to be in the class divided by 
number actually in the class) for the PLS-DA classification models. The area under the 
curves (AUC=0.9855 for SNV+MC and AUC=0.9578 for SNV+D1+MC) suggest that 
the models were characterised by a high degree of discrimination, confirming that the 
best model was those developed considering only the SNV+MC as pre-treatment.  

Results, in terms of probability (Bayes’s rule) of belonging to the class °Brix<20, are 
shown in Fig. 3.6.7. The higher a sample is placed, the higher the probability that it 
will be classified as a member of the °Brix<20 class. Consequently, samples classified 
as members of the other class (°Brix≥20) are placed at the bottom of the graph. The 
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threshold value (dotted red line) was set at 0.5 (probability of 50%); samples with a 
probability lower than this value are considered improperly classified. 

Considering the SNV+MC and SNV+D1+MC pre-treatments, 89% and 77% of the 
samples (in prediction) were classified with a probability higher than 70%. 

Fig. 3.6.8 shows the VIP (variable importance in projection) scores obtained by the 
PLS-DA models. These scores estimate the importance of each variable in the 
projection used in the PLS-DA model. A variable with a VIP score close to or higher 
than 1 can be considered important in a given model. For both the pre-treatments, 
similar regions with VIP score higher than 1 were obtained, suggesting that the 
wavelengths with the highest contribution are in the NIR region of the spectrum (from 
700 to 1000 nm). Consequently, the variable selection method based on the VIP scores 
higher than 1 was used to reduce the original data set. 

PLS-DA results (percentage of correctly classified samples) obtained by using the 
reduced number of variables (wavelengths), are reported in Table 3.6.3. In particular, 
93 (SNV+MC) and 88 (SNV+D1+MC) x-variables were used to develop the new PLS-
DA. The percentages of correctly classified samples are slightly lower (from 86 to 
91%) than those obtained considering the whole spectrum. However, the results are 

Table 3.6.3 – PLS-DA results in terms of percentages of correctly classified samples (reduced spectral range). 

Spectra 
pretreatment Class Calibration 

(n=107)  
Cross-validation 
(n=107, 10 segments) 

Prediction 
(n=36) 

LV 

SNV+MC °Brix<20 84% 83% 86% 4 
 °Brix≥20 93% 92% 91%  
SNV+D1+MC °Brix<20 89% 89% 88% 3 
 °Brix≥20 90% 87% 87%  

Note: SNV=Standard Normal Variate; MC=Mean Centred; D1=first derivative, LV=Latent Variable. 
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still completely acceptable. This confirms also by the high AUC values (0.939 and 
0.942). 

This work presents a solution for in-field and non-destructively determination of grape 
maturity degree by using HSI combined with linear chemometric techniques. 
Particularly, the results confirm the suitability for estimating the soluble solids content 
of red grapes.  

The positioning of the vineyard row did not create any obstacles regarding the direct 
solar lighting of the grape bunches. The images along the vineyard row were acquired 
in the NNE-SSO direction, with the row on the right-hand side of the scanning 
direction. Consequently, the suitable period for analysis was during the late morning 
and not later than midday. To scan the other side of the row, it would have been 
necessary to proceed after midday. Shadows also did not present any problems, as the 
sun was behind the camera at the time of the acquisitions. To correctly acquire 
hyperspectral images, the vines should be stripped to ensure that the upper leaves do 
not overshadow the grapes below. Grapes often had reflection and shaded areas, which 
need to be excluded during the selection of the ROIs, along with fully or partially 
shaded grape bunches. In the presence of clouds or even just a slight cloud cover, a 
significant variation in light intensity was observed: this means that the camera would 
need to be recalibrated every time a section of the row was scanned. In addition, it is 
possible that the brightness conditions change soon after calibration, so it would be 
necessary to recalibrate and immediately proceed with the scan of the row section. 

The variability grape of a vineyards, in terms of SSC, often is quite high. This depends 
on many factors, such us the vineyards orientation, unevenness of the land and 
meteorological phenomena. For this reason, the grapes are harvested at different times 
even along the same row. Consequently, to optimise the harvest, a technique that 
allows to have a mapping of the SSC for all grapes, would certainly be an advantage. 

 

3.6.4. Conclusions 

Hyperspectral imaging technology, usually adopted in laboratories with auxiliary 
artificial lighting, was used in-field under natural lighting conditions to monitor the 
maturity degree of ‘Sangiovese’ (Vitis vinifera L.) grapes. The results achieved 
confirm that it is possible to predict the soluble solids content and to classify grape 
samples into two classes (not-ripe and ripe) using a linear technique to elaborate the 
spectral data. Furthermore, the classification performance remained substantially 
unchanged by reducing the number of wavelengths, so it is expected that a less 
expensive multispectral camera in the 400–1000 nm range can work just as well. The 
implementation of a hyperspectral imaging system on an agricultural vehicle coupled 
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to a gimbal stabilisation system, together with the development of hyperspectral image 
segmentation techniques, would allow on-the-go analysis of large vineyard extensions. 
Attention should be paid to the presence of water on the surface of the sample under 
analysis, to the presence of variable cloudiness and, if the leaves are analysed, to the 
presence of wind. 
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3.7. Automatic selection of the regions of interest from moving 
wagon hyperspectral images of grapes and SSC prediction 

 

 

3.7.1. Introduction 

Vines are one of the most important crops in Europe, playing a key environmental and 
socio-economic role (Droulia & Charalampopoulos, 2021). In particular, the 
Mediterranean area is world leading in wine production. In 2021, Italy, Spain and 
France together accounted for 79% of EU wine production, while on a global scale 
they reached 45% (OIV, 2021). Italy has the first place with a production of 44.5 
million hectolitres (MhL), followed by Spain with 35.0 MhL and France with 34.2 
MhL (OIV, 2021). 

As all other agricultural products, the wine sector is strongly influenced by the ongoing 
global climate change. The global rise in temperature is caused by the increase in 
atmospheric CO2 originating from human activity (Keller, 2020b). Specific thermal 
and hydrologic conditions are the two most frequently cited factors in arguments 
regarding the potential effects of climate change on viticulture (Droulia & 
Charalampopoulos, 2021). In addition, the angle of penetration of solar radiation into 
the canopies also affects grape temperature and composition (Hunter et al., 2021). 
Water-saving irrigation methods based on vine physiology, such as regulated deficit 
irrigation (RDI), partial root zone drying irrigation (PRI), and subsurface drip 
irrigation strategies, are essential for improving both water efficiency as well as berry 
and wine quality. Furthermore, in order to design agricultural systems, including 
vineyards, that are sustainable and resilient to climate change, sustainable soil 
management practices such as cover crops, mulching, composting, reduced tillage, 
mutualistic plant-microorganism interactions, and agroforestry could be implemented 
(Romero et al., 2022). 

Future climate changes could make new areas suitable for vine cultivation, require 
significant movement within current growing areas, affect the phenological timing of 
vines, and eventually alter the composition of grapes and wine (Droulia & 
Charalampopoulos, 2021). An already evident effect of climate change is the tendency 
to anticipate and accelerate the phenological phases flowering, veraison and harvest. 
The period between budbreak and harvest tends to shorten and ripening to move 
toward the warmer part of the growing season of grapes. If ripening occurs earlier, 
there is less time for the pre-veraison synthesis of organic acids and flavanols, which 
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can be also precursors of tannins. In addition, an early and rapid accumulation of 
sugars occurs during ripening, which is not necessarily coupled with the accumulation 
of anthocyanin pigments and aromatic components. This can lead to a decision to delay 
the harvest, resulting in wines with increasingly higher alcohol contents (Keller, 
2020a). 

In the mid-1980s, the concept of precision agriculture (PA) was introduced 
(Santesteban, 2019). PA is a method of agricultural, forestry and livestock 
management based on the observation, measurement, and response of the set of 
quantitative and qualitative inter- and intra-field variables acting in agricultural 
production. The purpose of PA is to define a decision support system for the entire 
farm management, with the aim of optimising yields while looking at climatic, 
environmental, economic, productive, and social sustainability (Ammoniaci et al., 
2021). PA involves the collection of data through proximal or remote sensors installed 
on variable rate technology systems, which carry out the given tasks in a semi- or fully 
automatic way. The assumption behind PA is that each field, unlike how it is generally 
considered in conventional agriculture, is not uniform, but is managed considering 
site-specific characteristics. This management strategy increases the efficiency of 
agricultural inputs and, if adopted correctly, results in cost savings and increased 
benefits (Ammoniaci et al., 2021). The concept of precision viticulture (PV) is based 
on PA. In the same vineyard, there are usually several areas with different soil 
composition and structure, humidity concentration, sun exposure and microclimate. 
Consequently, the objectives of PV, i.e. the assessment of the health, vigour, and 
physiological needs of the vines, are related to the different areas of the vineyard over 
time, which results in a specific adaptation of cultivation techniques. In addition, one 
of the objectives of PV is the monitoring of grape bunches during ripening. The data 
collected may concern the degree of ripeness, sugars (expressed as soluble solids 
content), anthocyanins, acidity, growth ratio. This monitoring can be aimed at selective 
grape harvesting, which will affect the quality of the wine (Ammoniaci et al., 2021). 

Remote sensing systems for data collection are characterised by optical sensors such 
as RGB visible (Vis) cameras, multispectral (MS) and hyperspectral (HS) sensors, 
thermal infrared (TIR) sensors, and other spectroscopic sensors like D-radar, Vis, 
short-wave infrared (SWIR), short-wave near-infrared (SW-NIR). Remote sensing 
technologies involve the use of satellites, aircraft, and unmanned aerial vehicles 
(UAVs) or drones. Their introduction has taken place in the last decade but has faced 
major challenges due to the organisation of the vineyard in rows and the discontinuous 
nature of the canopy. These characteristics require a high capacity for processing 
images, which must have a very high resolution to discriminate the canopy from the 
ground, and spatial data (Ammoniaci et al., 2021). 
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Among the most analysed attributes by remote sensing systems are vine vigour, water 
stress, and more recently also some diseases. Vine vigour was assessed through MS 
imaging (Khaliq et al., 2019). Vine vigour, obtained from RGB and MS imaging, was 
also correlated to yield, berry composition and vine sanitary status (Ferrer et al., 2020). 
Vine vigour and water stress of vines were correlated and validated through RGB, MS 
and TIR imaging (Pádua et al., 2019; Pádua et al., 2020; Comba et al., 2019). Water 
stress maps were obtained by comparing vine vigour obtained from SWIR and MS 
imaging, with leaf stomatal conductance measurements (Kandylakis et al., 2020). MS 
imaging data has also been combined with a decision-making vine water consumption 
model in order to optimise irrigation (Bellvert et al., 2021). Water stress assessed by 
TIR imaging has been compared with traditional vine water status metrics (Pagay & 
Kidman, 2019). MS imaging has been adopted to evaluate status of flavescence dorée 
grapevine disease (Albetis et al., 2017; Albetis et al., 2019) and grape trunk disease 
(Albetis et al., 2019). Flavescence dorée has also been evaluated through RGB imaging 
(Musci et al., 2020). 

Proximal sensing systems can be implemented on ground vehicles monitoring of 
quality attributes of grape ripening, such as soluble solids content (SSC) and acidity 
directly in the field. The hyperspectral imaging (HSI) sensors recently adopted can 
operate at short distance from the vineyard row and due to the high resolution, the 
bunches of grapes can be easily manually discriminated from the background. An on-
the-go HSI system was adopted to estimate the concentration of SSC (coefficient of 
determination (R2) = 0.92, root-mean-square error (RMSE) = 1.274 °Brix) and 
anthocyanins (R2=0.83, RMSE=0.211 mg g-1) of wine grapes by support vector 
machines (SVM) (Gutiérrez et al., 2019). Fernández-Novales et al. (2019) acquired 
hyperspectral images of grape cluster regions along vineyard rows during the period 
between veraison and harvest. Hyperspectral images were acquired directly in the field 
using an on-the-go HSI system operating in the 570–990 nm spectral range. Analyses 
included total soluble solids (TSS), anthocyanin and total polyphenols. The best results 
obtained from PLS regression models consisted of R2 of cross-validation (R2cv) = 0.92 
and prediction (R2p) = 0.95 for TSS, R2cv=0.75 and R2p=0.79 for anthocyanins, and 
R2cv=0.42 and R2p=0.43 for total polyphenols. The accuracy of the models, expressed 
in terms of root-mean-square error of cross-validation (RMSECV) and prediction 
(RMSEP), resulted in RMSECV=1.25 °Brix and RMSEP=1.01 °Brix for TSS, 
RMSECV=0.66 mg/fresh berry mass (mg/berry) and RMSEP=0.62 mg/berry for 
anthocyanins, RMSECV=0.73 absorbance units at 280 nm/fresh berry mass 
(AU/berry) and RMSEP=0.75 AU/berry for total polyphenols. In another study, the 
proper maturity of red wine grapes after veraison and up to harvest (through SSC) was 
assessed by adopting a cart mounted HSI system. By partial least squares regression 
(PLS) the SSC was predicted (R2=0.77, RMSECV=0.79 °Brix) and by partial least 
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squares discriminant analysis (PLS-DA) the samples were classified in the two classes 
‘not-ripe’ and ‘ripe’ (correctly classified samples from 86% to 91%) (Benelli et al., 
2021b). 

Based on the hyperspectral data from the study by Benelli et al. (2021b), the present 
study aimed to develop a method for the automatic selection of grapes representing the 
regions of interest (ROIs) on hyperspectral images of a row of wine grapes acquired 
directly in the field during post-veraison and up to harvest. The selected ROIs were 
subsequently used to predict the SSC of the grapes. 

 

3.7.2. Materials and methods 

3.7.2.1. Samples 
The analysis covered approximately 30 m of one side of a vineyard row of red 
‘Sangiovese’ grapes (Vitis vinifera L.), located near Cesena, Italy. The vineyard row 
was analysed on 17 different days between August 20th and October 4th, 2019, from 
post-veraison to harvest time. The row was divided into 11 sections, and from each 
section, three grapes were taken for each day for reference analysis, giving a total of 
561 grape samples (Fig. 3.7.1). 

 

3.7.2.2. Hyperspectral images acquisitions 
The study was conducted using a line scan hyperspectral camera (Nano-Hyperspec 
VNIR, Headwall Photonics, Inc., Fitchburg, MA, USA), operating in the Vis/NIR 
spectral range (400–1000 nm). The camera is characterized by 272 spectral bands, with 
a nominal spectral resolution of 2.2 nm, and a spatial resolution of 640 pixels. The 
used lens (Xenoplan 1.4/17-0903, Schneider-Kreuznach, GmbH, Bad Kreuznach, 
Rhineland-Palatinate, Germany) presents an effective focal length of 17 mm. The 
camera was installed on a garden cart, at a height of 120 cm above the ground, and 
was driven at approximately 1.6 m from the vineyard row analysed. 

Hyperspectral image acquisitions were carried out between 10:30 and 12:00. Direct 
sunlight was used as light source under both clear sky (14 days) and partly cloudy (3 
days) conditions. Depending on the light intensity, the exposure time was set between 
6 and 8 ms in clear sky conditions, and between 8 and 25 ms in partly cloudy 
conditions. The exposure time was obtained through calibration with a panel of 
broadband high-reflectance white target (hardboard coated with white matte finish 
paint), positioned close to the vineyard row, to cover the entire angle of view of the 
camera. The integration time was determined as the time yielding a maximum pixel 
intensity return from the white target. 
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Under clear sky conditions, calibration was carried out only once a day, as the 
acquisition of hyperspectral images of the 11 vineyard row sections required no more 
than 10 minutes. Under partly cloudy conditions, a calibration was necessary for each 
acquisition, due to the variability of the intensity of light radiation. This situation 
extended the analysis time considerably. 

A total of 187 hyperspectral images were obtained, one per section of the vineyard row 
per day of analysis (11 sections × 17 days of analysis = 187 hyperspectral images). 
From the raw diffuse reflectance spectra (RR) extracted from the hyperspectral images, 
the calibrated diffuse reflectance spectra (RC) were calculated by applying the equation 
(Guo et al., 2019): 

 

𝑅𝑅𝐶𝐶 =
𝑅𝑅𝑅𝑅 − 𝑅𝑅𝐷𝐷
𝑅𝑅𝑊𝑊 − 𝑅𝑅𝐷𝐷

 (1) 

 

Fig. 3.7.1 – During 17 days of analysis, 187 hyperspectral images of a 
vineyard row divided into 11 sections were acquired (1 hyperspectral 
image per section per day of analysis), obtaining 187 mean absorbance 
spectra; soluble solids content, expressed in °Brix, of 561 grape berries 
were analysed (3 grape berries per section per day of analysis) by means 
of a digital refractometer. 
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where RD is the dark reference reflectance spectrum, obtained applying the cap on the 
lens; RW are the white reference reflectance spectra, obtained by the above-described 
white calibration. 

Each RC were finally converted in calibrated diffuse absorbance spectra (AC) (Sørensen 
et al., 2021): 

 

𝐴𝐴𝐶𝐶 = 𝑙𝑙𝑙𝑙𝑙𝑙
1
𝑅𝑅𝐶𝐶

 (2) 

 

 

3.7.2.3. Soluble solids content measurement 
SSC, expressed in °Brix, was measured with a portable digital refractometer (PR-101 
Digital Refractometer, ATAGO CO., LTD, Tokyo, Japan) by taking three randomly 
selected grapes from each of the 11 vineyard row sections for each day of analysis 
(Fig. 3.7.1). The mean of the °Brix for each section was calculated. Through one-way 
analysis of variance (ANOVA) with Tukey-HSD post-hoc test (p-level<0.05), 
significant differences between the mean of SSC for the days of analysis were 
evaluated. 

 

3.7.2.4. Hyperspectral images elaboration 

3.7.2.4.1. RGB images extraction and labelling 
An RGB image was extracted from each hyperspectral image, resulting in 187 RGB 
images. The vertical scan lines forming the RGB images were aligned using a self-
alignment algorithm. The image canvas was extended with 150 pixels above and below 
the scan line data. Then, for each of the scan lines, the neighbour vertical line was 
shifted from 30 pixels up to 30 pixels down and the RMSE of the gray pixel values 
were determined for each step (61 steps in total). The chosen shift was selected as the 
one that yielded the lowest RMSE and applied to all subsequent scans of the image, 
and then the next scan line was processed. The process was repeated for all scan lines 
in the image. 

A total of 80 RGB images randomly selected were then manually labelled using the 
Labelbox® web tool (Labelbox, California, USA, 2021). The self-aligned RGB images 
were manually labelled by assigning 7 different labelling classes: ‘Grapes, sunny’, 
‘Grapes, shadow’, ‘Leaf, sunny’, ‘Leaf, shadow’, ‘Background, grass’, ‘Background, 
sky’, ‘Branches’. Labelling was done coarsely by drawing polygons around relevant 
areas in the images. At least four areas of each class were selected in all the 80 RGB 
images, resulting in a total of 2506 areas of interest. Absorbance spectra for the areas 
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of interest were extracted from the hyperspectral images as the pixel values 
circumscribed by the label polygons. Finally, a mean absorbance spectrum was 
calculated for each selected area, resulting in 2506 labelled mean spectra. The whole 
flow of the data processing is outlined in Fig. 3.7.2. 

3.7.2.4.2. Hyperspectral images classification 
The analyses were carried out by PLS Toolbox (PLS_Toolbox, 2020. Eigenvector 
Research, Inc., Manson, WA, USA) for MATLAB (MATLAB R2020b, The 
MathWorks, Inc., Natick, Massachusetts, USA) software. PLS-DA (Brereton & Lloyd, 
2014) was adopted to classify the mean spectra obtained from the labelling of the 80 
randomly selected RGB images. 

In order to discriminate the grapes from the background, ‘Grapes, sunny’ and ‘Grapes, 
shadow’ classes were combined in the ‘Sunny+Shady’ aggregated grape class; 
therefore, the classes ‘Leaf, sunny’, ‘Leaf, shadow’, ‘Background, grass’, and 
‘Branches’ were combined, obtaining the ‘Background’ aggregated class. The 
‘Background, sky’ class was excluded due to the high heterogeneity of its mean 
spectra. The mean spectra were pre-processed by the following methods: smoothing 
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Fig. 3.7.2 – Data flow, from the acquisition of the hyperspectral images of the sections of a 
vineyard row, to the prediction of °Brix of the grapes. 
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(window: 9) + standard normal variate (SNV), smoothing (window: 31) + detrend 
(polynomial order: 1, to remove linear offset), smoothing (window: 15) + extended 
multiplicative scatter correction (EMSC), Savitzky-Golay first derivative (smoothing 
window: 7; polynomial order: 2), and second derivative (smoothing window: 15; 
polynomial order: 2), all followed by mean centring (MC) (Rinnan et al., 2009). 
Afterwards, the interval PLS (iPLS) method for variable region selection was applied, 
testing 4 different interval sizes (6, 12, 25, 50) in ‘forward’ mode, with non-
overlapping intervals subsequently and automatically included in the analysis 
(Nørgaard et al., 2000). The PLS-DA models were validated by leave-one-section-out 
cross-validation (‘section’ refers to a single hyperspectral image of a vineyard section, 
see Fig. 3.7.1). Only PLS-DA models with sensitivity and specificity values for the 
aggregated class ‘Sunny+Shady’ greater than or equal to 0.99 were considered. 
Finally, the PLS-DA model that simultaneously showed the lowest number of latent 
variables and the highest sensitivity or specificity value for the ‘Sunny+Shady’ 
aggregated class was selected. 

Afterwards, the two classes ‘Grapes, sunny’ and ‘Grapes, shadow’ (renamed to 
‘Sunny’ and ‘Shady’, respectively) were considered individually in order to 
discriminate grapes exposed directly to the sun and grapes in the shadow from their 
respective backgrounds. 

The same pre-processing as for the PLS-DA classification model selected for the 
aggregated class ‘Sunny+Shady’ was used to calculate the new PLS-DA classification 
models, then variable selection was performed using the same iPLS method (interval 
sizes: 6, 12, 25, 50) described above. Finally, the two best PLS-DA classification 
models for the ‘Sunny’ and ‘Shady’ classes respectively were selected in terms of best 
performance for sensitivity, specificity, and low number of latent variables (Fig. 3.7.2). 

3.7.2.4.3. Regions of interest of the hyperspectral images 
The three previously selected PLS-DA classification models (related to grape classes 
‘Sunny+Shady’, ‘Sunny, and ‘Shady’) were then adopted to predict the ROIs of the 
whole hyperspectral image set (187). Each class of ROI would include spectra 
attributed to the three grape classes ‘Sunny+Shady’, ‘Sunny’, and ‘Shady’, 
respectively. Two different set of classification threshold where tested, one at 50% of 
the predicted values and one at 90% of the predicted values (the ‘Super’ threshold). 
Ergo, a total of six classes were obtained: ‘Sunny+Shady’, ‘Sunny’ and ‘Shady’ for 
the first threshold, ‘Super Sunny+Shady’, ‘Super Sunny’ and ‘Super Shady’ for the 
second threshold (Fig. 3.7.2). 
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3.7.2.4.4. Soluble solids content of grapes prediction 
The mean absorbance spectra relative to each ROIs class were calculated for each of 
the 187 hyperspectral images, resulting in six mean spectra (one per ROI class) for 
each hyperspectral image. 

The 187 mean spectra for each of the classes of ROIs were used to predict the SSC of 
the grapes (in °Brix). Two pre-processing methods, SNV and Savitzky-Golay second 
derivative (smoothing window: 19; polynomial order: 2), both followed by MC, were 
used to calculate PLS models; models were validated by leave-one-day-out and leave-
one-section-out cross-validation. 

Finally, the resulting PLS models were compared with PLS models obtained by 
manual selection of ROIs (Benelli et al., 2021b). The best PLS models, in terms of 
number of latent variables, R2CV and RMSECV, were selected and recalculated by 
adopting two variable selection methods, iPLS and recursive weighted partial least 
squares (rPLS) (Rinnan et al., 2014) (Fig. 3.7.2). 

 

3.7.3. Results and discussion 

Mean values of the SSC and standard deviations by day of analysis are reported in Fig. 
3.7.3. The SSC ranged from 17.8 °Brix on the first day of analysis (August 20) to 22.7 
°Brix during the last day of analysis (October 4), which represents a rise of 27.5%. 
Significant differences were found between the mean °Brix values for the days of 
analysis. Due to adverse weather conditions, i.e., rain or extensive cloud cover, it was 
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Fig. 3.7.3 – Means (filled purple circles) and standard deviations (grey 
bars) of soluble solids content (SSC, expressed in °Brix) during the 17 
days of analysis. Means with the same letter are not significantly 
different at p-level<0.05. 
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not possible to carry out in-field analyses at regular time intervals: this occurred 
several times between September 20 and September 27. 

Random selection of 80 RGB images from the entire set of 187 hyperspectral images 
was performed in order to calculate mean absorbance spectra from the labelled areas 
of interest. The seven-class labelling of the RGB images (‘Grapes, sunny’, ‘Grapes, 
shadow’, ‘Leaf, sunny’, ‘Leaf, shadow’, ‘Background, grass’, ‘Background, sky’, 
‘Branches’) was simplified by the alignment of the vertical scan lines resulting from 
the acquisition of the hyperspectral images: indeed, the up-down shifts on the vertical 
plane of the hyperspectral camera, mainly due to the roughness on the ground on which 
the cart was running, resulted in a significant misalignment of the vertical scan lines. 
Therefore, for future analysis, it is recommended to install the hyperspectral camera 
on a gimbal-type three-axis stabilization system to reduce this problem and include an 
encoder on the card wheelbase synchronized to the camera line scan acquisition. 

The best PLS-DA classification models of grapes relative to the aggregated class 
‘Sunny+Shady’ were obtained by pre-processing with smoothing (window: 9) + SNV 
+ MC, and iPLS variable selection method (interval size = 50). The PLS-DA model 
include 3 latent variables and has a resulting sensitivity and specificity values of 0.991 
and 0.996, respectively. However, all PLS-DA models performed well, with number 
of latent variables between 2 and 8 and with sensitivity and specificity values no lower 
than 0.983 and 0.960, respectively (Table 3.7.1). The same pre-processing applied to 
the PLS-DA models for the classification of grapes exposed to sun or shade (classes 
‘Sunny’ and ‘Shady’, respectively) produced slightly inferior results. The best PLS-
DA model of grapes exposed to direct solar radiation (class ‘Sunny’), using 4 latent 
variables and iPLS interval size = 6, resulted in a sensitivity = 0.988 and specificity = 
0.940. Finally, the best PLS-DA model for classification of grapes in shade (class 
‘Shady’), using 9 latent variables and iPLS interval size = 6, resulted in a sensitivity 
and specificity of 0.920 and 0.927 respectively. 

Afterwards, the three PLS-DA classification models reported were used in prediction 
to define the ROIs of the whole set of hyperspectral images of the vineyard sections. 
Finally, the mean absorbance spectra of the 6 classes of ROIs obtained, 
‘Sunny+Shady’, ‘Sunny’, ‘Shady’, ‘Super Sunny+Shady’, ‘Super Sunny’, ‘Super 
Shady’, were used to calculate PLS models to predict the °Brix of grapes (Table 3.7.2). 

The mean absorbance spectra of the grape ROIs (classes ‘Sunny+Shady’, ‘Sunny’, and 
‘Shady’) obtained by averaging the mean spectra of the respective ROIs of the entire 
set of hyperspectral images are shown in Fig. 3.7.4. Considering the spectral range of 
the hyperspectral camera adopted (400–1000 nm), the NIR region is particularly 
interesting for SSC-related spectral information. The second overtone 
O–H stretching vibration for water is observed at 960–970 nm and for carbohydrates 
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in the 950–1000 nm region; the third overtone of the C–H stretching vibrations is found 
at around 900 nm. Since the water content of ripe wine grapes is 70–80% (FAO, 2009), 
the water-related absorption bands dominate over the carbohydrate-related ones, but it 
was observed that the water absorption peaks in the NIR spectral region are not very 
marked and broad, so the carbohydrate-related spectral information should be less 
covered by the water-related information (Manley et al., 2007; Camps & Christen, 
2009). 

The best PLS models were obtained with SNV pre-processing and leave-one-day-out 
cross-validation was adopted to validate the models. The SNV pre-processing was not 
preceded by smoothing, as in the case of the PLS-DA models, since the calculation of 
the mean spectra of the ROIs contributed to reduce the high noise level present at the 
single spectrum level. In particular, the PLS model of the ROIs related to the 
‘Sunny+Shady’ class (using 5 latent variables) resulted in R2CV=0.69 and 

Table 3.7.1 – PLS-DA models to discriminate the grapes (‘Sunny+Shady’, ‘Sunny’, and 
‘Shady’ aggregated grape classes) from the background (obtained aggregating the remaining 
classes, except ‘Background, sky’). 

Aggregated 
grape class Pre-processing All variables / 

iPLS int. size #LVs Sensitivity (CV) Specificity (CV) 

Sunny+Shady SNV All 4 0.994 0.996 
 SNV 6 3 0.986 0.996 
 SNV 12 6 0.994 0.996 
 SNV 25 4 0.992 0.995 
 SNV 50 3 0.991 0.996 
 D1 All 3 0.992 0.995 
 D1 6 2 0.990 0.985 
 D1 12 8 0.992 0.996 
 D1 25 4 0.988 0.996 
 D1 50 4 0.990 0.996 
 D2 All 3 0.988 0.985 
 D2 6 4 0.991 0.990 
 D2 12 3 0.987 0.991 
 D2 25 4 0.985 0.991 
 D2 50 3 0.985 0.994 
 Detrend All 5 0.992 0.997 
 Detrend 6 5 0.991 0.996 
 Detrend 12 4 0.987 0.995 
 Detrend 25 6 0.994 0.995 
 Detrend 50 3 0.986 0.997 
 EMSC All 3 0.992 0.979 
 EMSC 6 5 0.994 0.974 
 EMSC 12 5 0.992 0.974 
 EMSC 25 3 0.988 0.960 
 EMSC 50 5 0.990 0.969 
Sunny SNV 6 4 0.988 0.940 
Shady SNV 6 9 0.920 0.927 

Note – Pre-processing methods details. SNV (standard normal variate): smoothing, window = 9 + SNV + 
MC (mean centring). D1 (Savitzky-Golay first derivative): D1, smoothing window = 7, polynomial order 
= 2 + MC; D2 (Savitzky-Golay second derivative): D2, smoothing window = 15, polynomial order = 2 + 
MC. Detrend: smoothing, window = 31 + detrend, polynomial order = 1 + MC. EMSC (extended 
multiplicative scatter correction): smoothing, window = 15+ EMSC + MC. 
iPLS int. size: iPLS interval size. # LVs: number of latent variables. CV: leave-one-section-out cross-
validation. 
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RMSECV=0.94 °Brix; a similar result was obtained with the ‘Super Sunny+Shady’ 
ROIs, with an R2CV=0.67 and RMSECV=0.97 °Brix, using 4 latent variables. These 
results are comparable to previous PLS prediction results obtained with the ROIs from 
manual selection, with R2CV=0.70 and RMSECV=0.92 °Brix, but with a much higher 
number of latent variables (8) (Table 3.7.2). 

Finally, two variable selection methods, iPLS and rPLS, were applied to the three PLS 
models described. iPLS proved to be a suitable method for data reduction and 

Table 3.7.2 – Results of PLS models obtained by adopting the different classes of regions of interest (Sunny+Shady, 
Sunny, Shady, Super Sunny+Shady, Super Sunny, Super Shady, manual selection) and applying the reported 
preprocessing (SNV and 2nd derivative) and cross-validation methods (leave-one-day out and leave-one-section 
out). 

ROIs Prepro. #LV R2cal R2CV RMSEC RMSECV #LV R2cal R2CV RMSEC RMSECV 
Leave-one-day out cross-validation Leave-one-section out cross-validation 

Sunny+Shady SNV 5 0.73 0.69 0.87 0.94 5 0.73 0.69 0.87 0.94 
2D 5 0.71 0.58 0.91 1.09 4 0.65 0.56 1.00 1.13 

Sunny SNV 6 0.61 0.51 1.06 1.19 6 0.61 0.49 1.06 1.22 
2D 6 0.63 0.45 1.03 1.27 8 0.68 0.59 0.96 1.09 

Shady SNV 9 0.80 0.67 0.75 0.97 8 0.79 0.71 0.77 0.92 
2D 3 0.62 0.53 1.05 1.16 3 0.62 0.56 1.05 1.13 

Super SNV 4 0.73 0.67 0.88 0.97 5 0.73 0.69 0.87 0.95 
Sunny+Shady 2D 5 0.67 0.55 0.97 1.14 4 0.63 0.55 1.02 1.14 
Super Sunny SNV 8 0.51 0.30 1.18 1.43 8 0.51 0.37 1.18 1.36 

2D 8 0.60 0.33 1.07 1.41 7 0.57 0.43 1.10 1.29 
Super Shady SNV 9 0.81 0.67 0.74 0.97 8 0.79 0.71 0.77 0.92 

2D 3 0.61 0.51 1.05 1.18 3 0.61 0.55 1.05 1.14 
Manual selection SNV 7 0.76 0.70 0.83 0.92 3 0.70 0.66 0.92 0.98 

2D 6 0.73 0.66 0.87 0.98 3 0.69 0.63 0.94 1.03 

Note – ROIs: regions of interest; Prepro.: preprocessing method; #LV: number of latent variables; CV: cross-validation; SNV: 
standard normal variate; 2D: 2nd derivative, window dimension = 19. 

Fig. 3.7.4 – Grapes mean absorbance spectra related to the 3 classes 
defined (Sunny, Shady, Sunny+Shady). 
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localisation of informative spectral regions, thus improving the predictive performance 
and simplicity of the PLS models. The best PLS model was obtained for the 
‘Sunny+Shady’ ROIs: by using 4 latent variables and iPLS interval size = 12, 
R2CV=0.74 and RMSECV=0.86 °Brix were obtained. Similar results were also 
achieved with the ROIs ‘Super Sunny+Shady’: by using 5 latent variables and iPLS 
interval size = 25, R2CV=0.74 and RMSECV=0.86 °Brix were obtained (Fig. 3.7.5). 
These results are comparable with those relative to the manual selection of ROIs: the 
PLS model, using 6 latent variables and iPLS interval size = 6, resulted in R2CV=0.73 
and RMSECV=0.87 °Brix (Table 3.7.3). 

The application of Vis/NIR spectroscopic techniques to predict the SSC of grapes 
directly in the field has already been reported and described in literature. Using 
Portable Vis/NIR spectrometers and PLS regression, R2CV=0.72 and a standard error 
of prediction in cross-validation (SEPCV) = 0.61 °Brix (Diezma-Iglesias et al., 2008), 
correlation coefficient in prediction (rP) = 0.82 and RMSEP=1.48 °Brix (Guidetti et 
al., 2010) were obtained. By means of support vector machine regression (SVMR) 
Gutiérrez et al. (2018) obtained R2P=0.92 and RMSEP=1.274 °Brix. Benelli et al. 
(2021b) obtained R2CV=0.77 and RMSECV=0.79 °Brix from the dataset used for the 
present study, but excluding the days of analysis without clear sky, and by manual 
selection of the ROIs. The results of the present study are thus comparable with those 
reported in literature, and in particular the prediction errors, RMSE, obtained are 
slightly better than those obtained by Gutiérrez et al. (2018). 

Fig. 3.7.5 – Measured vs predicted values of soluble solids content 
(°Brix) obtained by PLS regression (cross validation). 

Days
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3.7.4. Conclusions 

The present study provided a valid and automatic classification method of the regions 
of interest for grapes in hyperspectral images of vineyard row sections during post-
veraison and up to harvest. Moreover, the mean spectra obtained from the automatic 
mapping of the regions of interest demonstrated to provide prediction results on par 
with those obtained by carefully manual selections of the regions of interest using 
simpler models (fewer PLS components) giving promise of more robust predictions of 
the maturity of the grapes as measured by the SSC content. 

 

 

  

Table 3.7.3 – PLS models obtained by adopting the ROIs and the settings (SNV preprocessing and leave-one-day 
out cross-validation methods) of the three best PLS models reported on Table 3.7.2, and two variable selection 
methods (iPLS and rPLS). 

ROIs Var. sel. 
method 

iPLS window/ 
rPLS mode 

#LV #var. R2cal R2CV RMSEC RMSECV 

Sunny+Shady – – 5 All 0.73 0.69 0.87 0.94 
 iPLS 6 9 23 0.78 0.73 0.79 0.88 
 iPLS 12 4 84 0.77 0.74 0.81 0.86 
 iPLS 25 6 49 0.79 0.74 0.78 0.86 
 iPLS 50 3 99 0.73 0.69 0.88 0.94 
 rPLS surveyed 7 29 0.75 0.66 0.85 0.98 
 rPLS specified 5 LV 4 72 0.74 0.70 0.86 0.92 
 rPLS suggested 3 17 0.73 0.69 0.88 0.94 
Super Sunny+Shady – – 4 All 0.73 0.67 0.88 0.97 
 iPLS 6 5 12 0.75 0.70 0.84 0.92 
 iPLS 12 7 36 0.79 0.75 0.78 0.84 
 iPLS 25 5 49 0.77 0.74 0.80 0.86 
 iPLS 50 4 50 0.75 0.71 0.85 0.91 
 rPLS surveyed 7 25 0.76 0.63 0.83 1.04 
 rPLS specified 4 LV 5 28 0.72 0.69 0.89 0.97 
 rPLS suggested 5 28 0.72 0.69 0.89 0.97 
Manual – – 7 All 0.76 0.70 0.83 0.92 
 iPLS 6 6 48 0.76 0.73 0.83 0.87 
 iPLS 12 3 108 0.72 0.70 0.90 0.93 
 iPLS 25 6 100 0.76 0.71 0.82 0.91 
 iPLS 50 6 100 0.76 0.71 0.82 0.91 
 rPLS surveyed 3 27 0.68 0.60 0.96 1.07 
 rPLS specified 7 LV 4 13 0.65 0.56 1.00 1.13 
 rPLS suggested 1 19 0.69 0.67 0.94 0.96 

Note – ROIs: regions of interest; Var. sel. method: variable selection method; #LV: number of latent variables; #var.: number of 
variables; iPLS: interval PLS; rPLS: recursive weighted PLS. 
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4. CONCLUSIONS 

 

 

The monitoring of food quality attributes plays a key role in achieving products with 
the desired characteristics. In particular, in the fruit sector, the monitoring of quality 
attributes related to the state of ripeness of the fruit is of great interest, e.g., to decide 
the time of harvest or marketing. Measuring quality attributes is traditionally carried 
out by destructive analytical techniques, which require long operating times and high 
costs. Alternatively, rapid and cost-effective measurements can be achieved through 
the application of optical techniques. Based on this premise, the work of the present 
PhD project was aimed at exploring and deepening knowledge in this research field. 
First, a lab-scale HSI system was developed and adopted for the rapid and non-
destructive measurement of quality attributes such as FF and SSC of apricots and 
kiwis. The FF of kiwi fruit was then measured using a NSD, and finally, the tannins 
of red wine were measured using a device based on SSPP. Finally, a ground-based HSI 
system was developed and adopted directly in the field and in daylight conditions to 
monitor the SSC of wine grapes from post-veraison to harvest. 

 

The application of the HSI technique resulted suitable for the estimation of the quality 
attributes of the fruits analysed in the laboratory, but in case of low level of variation 
of the quality attribute, as for the SSC of the analysed apricots, poorer results were 
obtained. The HSI technique could therefore be implemented in a real-time sorting 
line, but in the case of specific use on a single product variety, it would be worthwhile 
to develop a more cost-effective multispectral system, focusing on segmentation 
techniques for ROIs selection, dimensionality reduction through variable selection, 
and process automation. 

The NDS provided good results in estimating the FF of kiwifruit. The technique offers 
the advantage of easy implementation in a sorting line and has very low application 
costs, but it could certainly be improved, perhaps by optimising spectral emission and 
lamp power. 

The SSPP technique provided excellent results in estimating the procyanidin content 
of red wine. The SSPP technique has therefore proved to be a valid, rapid, and cost-
effective alternative to traditional techniques, but care should be taken with the 
analytical timing and methods, as the turbidity degree of the wine-gelatine mixture is 
not stable over time. 
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The two studies concerning the application of the HSI technique directly in the field 
to estimate the degree of ripeness of wine grapes have demonstrated the potential of 
the HSI technique outside the laboratory. The results of estimating the SSC content 
were moderate, and certainly influenced by the numerous environmental variables, in 
particular the variability of light intensity (affected by atmospheric conditions, time, 
and date), heat, humidity, wind, and finally soil irregularities, which should be 
overcome by adopting a hyperspectral camera stabilisation system. The method of 
automatic selection of the regions of interest finally proved to be as good as the manual 
one. 

 

HSI produces a huge amount of information, requiring large storage capacities and 
data processing capacity. For these reasons, during the research period, various 
techniques for the segmentation of hyperspectral images for the selection of ROIs, as 
well as dimensionality reduction techniques through the selection of variables, have 
been progressively investigated and adopted, with an orientation towards the 
introduction of elements of automation of data processing, calibration, and validation 
of statistical models. A common solution in the field of HSI is the consequent 
development of multispectral systems, including portable ones, which are less 
expensive and less demanding in terms of data processing capacity, but have a 
narrower field of application. Meanwhile, technological evolution is moving towards 
a reduction in the size and cost of devices, and an increase in computing and storage 
capacity, making the adoption of HSI systems increasingly accessible, with greater 
versatility and more information obtainable compared to multispectral systems. The 
application of hyperspectral or multispectral systems in ground-based vehicles, such 
as tractors, offers great potential in the development of techniques for real-time 
monitoring of vegetative parameters and quality attributes of plants and fruits. Such 
an approach fits well with the objectives of precision agriculture, providing 
information that contributes to the optimisation of resource use. However, applying 
these technologies directly in the field raises great challenges, given the number of 
environmental variables involved, so it would be particularly interesting to deepen 
knowledge in this context, and to look for new solutions. 
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