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Abstract

The growing interest for constellation of small, less expensive satellites is

bringing space junk and traffic management to the attention of space community.

At the same time, the continuous quest for more efficient propulsion systems

put the spotlight on electric (low thrust) propulsion as an appealing solution for

collision avoidance.

Starting with an overview of the current techniques for conjunction assess-

ment and avoidance, we then highlight the possible problems when a low thrust

propulsion is used.

The need for accurate propagation model shows up from the conducted simula-

tions. Thus, aiming at propagation models with low computational burden, we

study the available models from the literature and propose an analytical alter-

native to improve propagation accuracy.

The model is then tested in the particular case of a tangential maneuver. Re-

sults show that the proposed solution significantly improve on state of the art

methods and is a good candidate to be used in collision avoidance operations.

For instance to propagate satellite uncertainty or optimizing avoidance maneu-

ver when conjunction occurs within few (3-4) orbits from measurements time.
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1
Introduction

Satellites have become fundamental for everyday life. Most of the services we

use, from communications to surveillance and monitoring are gradually migrat-

ing towards space-based architectures. Primarily because of the global coverage

that those services have to guarantee.

For instance, it may be fundamental for an end-user to access web services while

traveling across the ocean where cellular network has no installation. In case the

web services were provided through satellite link, the user location would not be

a limitation, provided that some satellites are in view of the user itself.

In this introduction, we start by justifying the reason for constellations of

satellite to exist, highlighting technical challenges. With this in mind, we then

focus on a particular challenge becoming the research topic for this PhD disser-

tation.

1.1 Mega-constellations

A constellation of satellites can be defined as a set of more than two spacecraft

flying in a coordinated manner to solve a given task.

If it is possible to give a definition of constellation, it is instead not straight for-

ward to define a mega-constellation. In fact, by mega-constellation we mean

1
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a constellation having a large number of elements, although no commonly ac-

cepted quantification of "large number" exists.

Continuous coverage of ground surface areas or short revisit time are typi-

cal needs for an end-user application potentially justifying mega-constellations.

Examples can be disaster monitoring, ship/aircraft tracking, atmosphere moni-

toring or web services.

1.1.1 New Space Economy

If, at the beginning of the space era, the access to space was exclusively owned

by governance agencies, in the era of the New Space Economy access is mainly

offered by private companies, or by a mixed collaboration between governance

and private entities. This shift is motivated by mainly two facts: firstly, govern-

mental agencies do not have anymore the strong impulse from politics, which

was instead present during the second half of the 20th century. Secondly, ven-

ture capitalists started financing access to space in general.

This new framework is establishing a strongly competitive environment lead-

ing to an easier access to space. Combined with the growing real-time data de-

livery and global coverage needs, this is justifying technically and economically

the existence of space-based solutions such as mega-constellations. Constella-

tions of satellites appear in fact to be a solution raising a growing interest (Lal

et al., 2017), (Curzi et al., 2020), (Kulu, 2021), (Miraux, 2022).

1.1.2 Challenges

Continuous deployment of spacecraft constellations will require a paradigm shift

with respect to the way space missions are currently handled, with major chal-

lenges to be faced. It has been the focus of the first part of this PhD to locate

those operational challenges for a successive extensive study (Curzi et al., 2020).

The identified challenges were of three kinds:

1. Constellation Management: regards the handling of a single constellation

by the owner.

Clearly, the larger the constellation the larger the owner’s effort is if they

decide to manage each element of the constellation as a single satellite.

Automation of spacecraft operations and telemetry monitoring (e.g. though
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Artificial Intelligence) may help focusing efforts only on those elements

that does need attention.

2. Communication Management: regards the handling of the owners/users

communication with their satellites.

Radio equipment and environmental limitations guide the owners to choose

among very selected frequency channels. At the same time, the traffic data

volume is foreseen to increase significantly because of the emerging con-

stellations (operations and generated payload data). Then, it is easy to imag-

ine a congestion of radio channels in the future so that protocol optimiza-

tion, high frequency communication and infrastructure sharing are of key

interest.

3. Space Traffic Management: consist of ensuring an adequate clearance be-

tween objects in space so that every spacecraft can accomplish its mission

(Muelhaupt et al., 2019).

The growing number of objects in space clearly leads to an increased prob-

ability of having collisions, which would likely destroy the colliding objects

or cause mission failure. Also, the debris generated in those collisions may

contribute to further collisions (Kessler syndrome).

Although well-established surveillance tracking methods and collision avoid-

ance procedures are available to spacecraft operators, both are not easily

scalable to handle the needs of (large) constellations of satellite. From the

tracking point of view, limits to scalability are imposed by the finite traffic

volume capacity of current ground tracking systems. From the procedural

point of view, limitations arise due to both the high workload needed to

handle a single conjunction and the reliability (or conservativeness) of the

risk assessment method being used.

Among the three wide areas above, the space traffic issue is arguably the most

urgent because of the catastrophic consequences of space collisions. Such conse-

quences are both in economic terms, because the colliding spacecraft are usually

lost, and in terms of space sustainability, because a large amount of space debris

may endanger any further space activity. Collision avoidance (COLA) operations

are thus fundamental for the health of space environment and it has been chosen

as the main topic of this PhD.
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1.1.3 Ground-based versus spaceborne conjunction assessment

How much of the conjunction assessment shall be done on ground and how much

shall or could be done onboard satellite is important for mega-constellations.

Automation, cited as a key factor in the previous paragraph, could be imple-

mented either on ground or on board. At the moment, a clear trend between the

two is not defined. From one side, ground-based assessment allows for running

complex and computationally expensive algorithms, while implying a heavier

workload for the ground stations. On the other side, onboard automation alle-

viates the ground workload but the limited computational power constrains the

complexity and performance of the algorithms that can be actually used.

Mega-constellations would certainly benefit from increasingly shifting to-

wards onboard automation of COLA operations, as the rate of collision alerts

is expected to become unacceptably high to be entirely managed from ground

(Krage, 2020). On the other hand, such a shift would imply an unsupervised

avoidance process which must be maintained safe enough and computationally

efficient at the same time.

Historically, the conjunction assessment has been completely performed on

ground, ESA’s approach in using JSpOC’s (Joint Space Operations Center) data

is an example (Merz et al., 2017). However, the above cited need for automation

hints for moving at least part of the COLA tasks onboard (Muelhaupt et al.,

2019). Under this action line for instance, Serra et al. (2016) and Ding et al.

(2019) propose very efficient, analytical methods for fast collision probability

computation.

1.1.4 Possible lines of action

Concerning the trends in collision avoidance, we can highlight the following re-

search topics:

1. Data-sharing: many active object are nowadays having onboard GNSS or

are tracked with high precision for other purposes. It would be of great

value for COLA the sharing of updated data on a common database. As

a result, the database reflecting space situational awareness would be up-

dated more frequently and be inherently more precise.

2. Low-cost measurement systems: a common problem is the availability of
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fresh and accurate tracking data for orbit determination. At the moment

this service is only available under purchase option or because JSpOC has

already detected a close approach. Having alternative, possibly low-cost,

sources of tracking data would be highly beneficial.

3. Uncertainty propagation: this is an essential task in computing any colli-

sion risk metric (Krage, 2020). With the tendency of demanding onboard

more computations, analytical solutions for onboard nonlinear uncertainty

propagation can be valuable.

4. Risk classification: this is probably the most overlooked aspect of collision

avoidance with operators heavily relying on classical metrics which are ei-

ther inefficient, thereby leading to an excessive maneuver rate (confidence

interval) or unsafe (i.e. subject to false confidence problem) (Hejduk, 2019).

Searching for safer collision metrics would be interesting.

5. Maneuver planning and coordination: tools for computing collision avoid-

ance maneuvers in a single conjunction are well established; a problem

arising in case of mega-constellations is the coordination of multiple ma-

neuvers when the number of warnings become too high to be handled by

a manual procedure. Automation of COLA maneuvers coordination would

be of great interests for operators. With the tendency of demanding those

tasks in orbit, the efficiency of such maneuvers computation is of paramount

importance.

In this respect, a key aspect is the increasing consideration of low thrust,

electric propulsion systems for COLA (e.g. Willis and D’Amico (2018)),

which poses additional operational constraints compared to classic, chem-

ical propulsion based, impulsive maneuvers.

1.2 Thesis focus

Being electric propulsion inherently a low thrust system, its application to COLA

is not trivial, yet it is not sufficiently explored in the literature.

After the seminal work at the US air force in 1991 (Widhalm and Heise, 1991)

showing the feasibility of low thrust, and the case study of CRYOSAT project in

early 2000 (Graziano et al., 2001), only very recently the issue regained attention.
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In their paper, Petit et al. (2019) confirmed that low thrust evasive maneuvers are

possible and shall start between 4 and 8 orbital periods prior to closest approach.

Hernando-Ayuso and Bombardelli (2021) study instead the optimality of low

thrust COLA maneuvers in circular orbits. None of them however, addressed

the problem of the uncertainties that those systems may introduce in the COLA

process.

When computation and/or optimization of low thrust maneuvers is performed

in the context of COLA operations, one shall consider that the ultimate goal is

assessing the reduction in the risk of collision. As a result, the design of a specific

maneuver computation tool shall be driven by accuracy requirements in terms

of the employed collision risk index. With this in mind, the following research

questions arise:

1. Which are the requirements for an orbit propagator under low thrust to be

used for COLA operations?

2. Can we fulfil such requirements with an efficient analytic orbit propagator?

To answer, at least in part, those questions, this research studies the effects of

low thrust engine characteristics when used in collision avoidance and propose

an analytic model to propagate position (or uncertainty) in such situations. Being

the model analytic, it is computationally light and opens the possibility to the

implementation of a lighter, autonomous, onboard maneuver computation unit.

Although the motivating use case is that of spacecraft (mega-) constellations,

the availability of computational efficient algorithms for maneuver computation

may be beneficial to generic collision avoidance scenarios. Surely however, the

biggest benefit will be drawn by large constellations because the proposed model

is a step towards automation of the COLA process.

1.2.1 Document structure

The next chapter is dedicated to the collision avoidance process for an in-depth

understanding of the problem mechanics.

The following chapter addresses research question 1, by elaborating orbit prop-

agation requirements for COLA, and studying in detail the challenges arising

from the use of low thrust.
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The forth chapter addresses research question 2, by developing the theory and

application of a high accuracy analytic orbit propagator for the orbital motion

under low thrust, along with its performance assessment.

Conclusions highlight achievements and limitation of the present work as well

as promising future research directions.

Finally notice that, auxiliary mathematical derivations are collected in dedicated

chapter appendices.
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2
Collision avoidance process

In this chapter an overview of the process and mathematics behind COLA is

given. In doing so, we summarize the state of the art digging into mathematical

details only in the aspects needed for this dissertation, e.g uncertainty propaga-

tion and the calculation of classical collision metrics.

We start with the definition of encounter and its geometry introducing then the

COLA process.

2.1 Encounter definition

It is commonly defined (close) encounter or conjunction the situation in which

two space objects are located at a relative distance below some threshold. The

threshold is usually fixed following heuristic criteria which are however out of

scope for this discussion, typically it is something in the order of few kilometers

(Chan, 2008).

Let us define the Cartesian State Vector of a spacecraft the column vector made

by position r in km and velocity v in km/s both written in some Earth Centered

Inertial (ECI) frame of reference, mathematically:

s =

[
r

v

]

9
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Moreover, we call ρ and ν the difference between Chaser’s and Target’s positions

and velocities respectively.

For every encounter, it is possible to define a Time of Closest Approach, com-

monly indicated as tca or TCA, as the instant of time at which the minimum

relative distance

min
t
(∥ρ∥)

between the objects is reached.

The positions and velocities of target and chaser at TCA defines a relative

geometry in which the so called encounter plane (or b-plane) can be located. The

b-plane is that plane containing the relative distance ρ and orthogonal to the

relative velocity ν.

Remark 2.1. Note that the orthogonality of ρ and ν at TCA follow from the

realization of min(∥ρ∥). This can be easily shown considering the equality ν =

ρ̇ρ̂+ ρ ˙̂ρ with ρ = ∥ρ∥. △

The encounter frame of reference is defined by the orthonormal vectors x̂t, ŷt

belonging to the b-plane and ẑt in the direction of relative velocity, that is:

x̂t =
ρt

∥ρt∥
ŷt =

ρt × ν t

∥ρt × ν t∥
ẑt = x̂t × ŷt

The subscript t indicates that the vectors are written in the target’s R-T-N frame.

For a target’s osculating state s, we define R-T-N frame the reference system cen-

tered at the target’s center of gravity and made by the vectors:

• r̂ = r
∥r∥ the outgoing direction from the Earth’s center of gravity to the

spacecraft center of gravity.

• n̂ = r×v
∥r×v∥ the angular momentum direction.

• t̂ = −r̂ × n̂ the transverse direction.

Given the encounter frame definition above, it can be defined a rotation ma-

trix between the target’s R-T-N frame and the encounter frame, that is:

Re
t =

x̂
T
t

ŷT
t

ẑTt





2.2. PROCESS OVERVIEW 11

Analogously one could define rotation matrices rotating the frame of reference

from target’s R-T-N (t) to chaser’s one (c) and vice-versa, Rc
t .

The usage of such matrix is intended passive, therefore for instance, the rotation

matrix Rc
t , if left-multiplied, writes a vector from the frame target’s R-T-N into

the chaser’s R-T-N.

2.2 Process overview

The collision avoidance process can be divided into 4 consecutive segments:

1. Object tracking/measurement system: determination of the object position

and uncertainty through measurements (radar, laser, GNSS, etc.).

2. Position and uncertainty propagation: object’s ephemerides are propagated

up to the time of closest approach where collision statistics has to be com-

puted. Typically into this step, a fast heuristic scanning detects dangerous

close approaches, for those only the uncertainty is then propagated to com-

pute statistics.

3. Metric computation and event classification: once collision statistics are

computed they need to be evaluated deciding whether to maneuver or not.

4. Maneuver computation/optimization: if needed and possible, dangerous

close approaches are mitigated scheduling an evasive maneuver (CAM) to

either colliding objects.

Although in principle these segments are distinct and consecutive, in practice

they often end up into an iterative process. The reason for this can be located

mainly into two factors:

1. As the closest approach becomes nearer in time, better collision statistics

can be obtained because for instance the propagation model is more accu-

rate for shorter periods or one can get better tracking measurement. Then,

the risk metric can be updated and the maneuvering decision reconsidered.

2. The evasive maneuver significantly changes collision metric to mitigate the

risk. Suppose the avoidance maneuver is performed with a system affected
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by significant imperfect realization. The realization error affects the colli-

sion metric so that maneuver shall account for this to achieve the desired

mitigation effect. As a result, the uncertainty propagation task merges with

the maneuver computation one.

2.3 Measurement system

The process to calculate the trajectory of an unknown space object based on a

set of observables is known as orbit determination. A variety of measurement

systems can be used to provide the observables, an historical summary is given

by Vetter (2007). The most classic techniques rely on:

• Radar systems (either passive or active)

• Optical or laser systems (they usually need reflectors onboard the target

object)

• Radio-interferomety systems

• Global Navigation Satellite System - GNSS (in the last decades)

In the framework of collision avoidance, we have the need to be both precise and

able to track passive objects. The systems giving this best compromise are radar

systems. Within this view, the currently most advanced and accepted system for

collision avoidance is the global network of radars provided by the US army. Data

from those radars are processed and dispatched by JSpOC (Joint Space Operation

Center), alias the 18-th US squadron.

In the last years however, also the European Space Agency is building his own

tracking network within its Space Surveillance and Tracking (SST) program.

Private owners as well are emerging to offer tracking services, e.g. LeoLabs Inc.

Like any measurement system, radar systems are affected by unavoidable un-

certainties. Typical uncertainties for those systems are given in terms of standard

deviation which ranges around 10-100 meters (Vetter, 2007) depending on the

quality.

Passive radar systems (the most common) typically provides observables in range,

elevation and azimuth angles (and range rate if doppler feature is used). For
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Table 2.1: Radar measurement error standard deviations (courtesy of Goff et al. (2015))

Radar σρ(m) σAz(deg) σEl(deg) σρ̇(m/s)
good 5 0.01 0.01 0.05

average 25 0.03 0.03 0.2
poor 100 0.05 0.05 10

these type of observables, a realistic uncertainty estimate is given by Goff et al.

(2015) which we report in the Table 2.1.

For cooperative objects, more precise tracking may be available as we can

take advantage of GNSS or laser ranging. For instance, a satellite having access

to GNSS signal can determine its own orbit with position accuracy in the order

of 1-10 meters, depending on the kind of dynamic model implemented onboard.

Alternatively, having surface reflectors allow for laser tracking (e.g. LARES); in

this case the achievable accuracy can be less than 1 m.

2.4 Uncertainty description and propagation

The output of an orbit determination process provides the spacecraft state and

its uncertainty at a given epoch within the measurement window. However, to

compute collision metric we need such information around the time of closest

approach. As a result, one needs to propagate forward in time the state vector

uncertainty with some method. Among all the methods, in this section we review

the most common ones digging into the details only for the Unscented Transform

method, which will be later used in Chapter 4.

2.4.1 Types of uncertainties

Uncertainty quantification is the process of determining the error sources and

their characterization.

There are different error sources causing uncertainty in collision avoidance, Luo

and Yang (2017) gives an overview reporting among others:

• Navigation error (the most obvious), e.g. orbit determination error, attitude

determination errors
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• Modelling error, e.g. Earth gravity model truncation, atmospheric density

truncation

• Actuation error, e.g. thrust vector misalignment

The uncertainty associated to such sources (real random phenomenons) can

be described through probability density functions which, in turn, are uniquely

determined by their moments. The concept of uncertainty realism mentioned by

Poore et al. (2016) is based on these moments and links the mathematical de-

scription of uncertainty to the real phenomenon. It can be stated as follows:

Definition 2.1. Given a random variable modelling a real probabilistic phenomenon,
consider the real probabilistic central moments of the phenomenon (mean, covariance,
skewness, etc.). Uncertainty realism is the property of the random variable (i.e. its
PDF ) to have the same (theoretically infinite) moments of the real phenomenon.

Any collision metric is affected by uncertainty realism, as mentioned by Poore

et al. (2016). Either due to measurement or propagation mismodelling, if uncer-

tainty does not reflect reality, the estimated collision metric is going to be an

approximation.

Realistic error (or uncertainty) models could be potentially obtained for all the

above mentioned error sources and included in the propagation. However, this is

a formidably complex task and, typically, only the most important error sources

are retained, i.e. orbit determination and actuation errors (Yang et al., 2019),

with possibly simplified modelling. Furthermore, although there are methods,

such as Monte Carlo simulations, to propagate the uncertainty with high real-

ism, these are computationally very intensive, so that approximate methods are

adopted. As we shall see for instance, the Unscented Transform method is an

approximation that allows to retain good realism up to the second moment, e.g.

covariance realism.

In case the uncertainty distribution can be considered Gaussian during the com-

plete propagation, than the description using the first two moments only is cor-

rect.

Typically, the error distribution of a space object’s state at measurement times

can be considered Gaussian. Given the non linearity of the orbital dynamics how-

ever, the gaussianity is hardly preserved in propagation, for instance after a few
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orbits in LEO (Kyle and PARK, 2016). The literature offers a variety of statis-

tical tests to quantify the "gaussianity" of a probability density function. Two

widespread examples are the Cramer-Von Mises and Kolmogorov-Smirnov tests

(Poore et al., 2016), which differ mainly on the level of severity. Despite the con-

cerns raised by the need for covariance realism, it is still customary in COLA to

adopt only the first two central moments for the PDF description. This is, indeed,

the most straightforward approach, which also proved to be effective in practical

applications.

When referring to uncertainty, a distinction shall also be made regarding its

nature, that can be classified as epistemic or aleatory.

Definition 2.2. The epistemic (or systematic) uncertainty is related to the "known-
unknown" for which an experiment prediction results to be wrong because a parameter
cannot be determined accurately enough, although it would be theoretically possible.
It reflects the lack of knowledge of the operator, originating an error on a modelling
parameter which could be accessible but practically is not.

Definition 2.3. The aleatory (or stochastic) uncertainty is related to the "unknown-
unknown" for which an experiment cannot be determined accurately enough because
some modelling parameter are missing and are not accessible to the operator. Each
time the same experiment is done a slightly different random result is obtained.

Let us give a couple of intuitive examples for both types of uncertainties in a

general scenario. Suppose we want to measure the free-fall time for a tennis ball

from a fixed height, measuring only its height from ground. The height measure-

ment error can be regarded as an epistemic uncertainty because we know that

the measurement error has a detrimental effect on the prediction, we don’t know

its exact value but is theoretically accessible (one could measure the height as

accurately as possible). The effect of the wind on the tennis ball cause instead

an error to be regarded as aleatory uncertainty because it cause slightly different

result each time we run the experiment and the operator has no access to wind

measurement.

As the reader may understand, giving a taxonomy of errors usually depends on

the degree to which we are willing to consider the parameter to be known or

accessible (Kiureghian and Ditlevsen, 2009), (Fox and Ülkümen, 2011).

In collision avoidance for instance, Luo and Yang (2017) classifies the orbit de-
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Figure 2.1: Schematic taxonomy of uncertainty propagation methods (reviewed version
from Luo and Yang (2017))

termination (navigation) error as aleatory uncertainty, while dynamic modeling

errors are classified as epistemic.

The distinction between epistemic and aleatory uncertainty can be significant

because it may i) change the outcome of the decision (Kiureghian and Ditlevsen,

2009), ii) open the possibility of applications of new techniques. For instance,

the Dempster-Shafer theory of evidence by Shafer (1976) is a new tool in the

so-called imprecise probability theory able to deal explicitly with epistemic un-

certainty.

2.4.2 Propagation methods

As explained by Luo and Yang (2017), and by Poore et al. (2016) there are cur-

rently many methods for propagating uncertainty. We recall the most used briefly

here, whereas a graphic summary is given in the Figure 2.1.

1. Linear Covariance methods (EKF, Second Order EKF): very simple, compu-

tationally efficient methods, however, due to linearization, they are suitable

for short term propagation only.

2. Unscented transform (non-linear method): propagates second and first or-
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der moments of PDF non-linearly using sigma-points. As a result, it achieves

a good mean and covariance realism (Wan and Merwe, 2000).

3. Polinomial Cahos (PC, non-linear method): describes a density function

f(ξ) using a set of orthogonal functions Ψ(ξ), where ξ is a random input.

Once the expansion of f(ξ) is found (PCE, Polynomial Chaos Expansion),

the PDF moments of f(ξ) can be analytically evaluated or fund by random

evaluation of PCE (Jones and Doostan, 2013). The biggest disadvantage of

this method is the suffering of course of dimensionality.

4. State Transition Tensors (STT, non-linear): it is basically a covariance analy-

sis method through taylor expansion. Still suffers computational complex-

ity when high order expansion and needs differentiable equations (Poore

et al., 2016).

5. Differential Algebra (DA, non-linear): usually used as the base for Taylor

expansion or Monte Carlo analysis, allows fast propagation (Poore et al.,

2016). Loosely speaking, the DA consist in a calculator storing a function

as its Taylor expansion (analogously to normal algebra with the calculator

storing floating point representation of real numbers). Using this represen-

tation, the DA allows fast operations between functions.

6. Solving Fokker-Plank-Kolmogorv equation(FPKE, non-linear): the FPKE is

the basic equation describing a random variable propagation through its

PDF. All other methods can be thought as approximating the solution of the

FPKE. Numerical solutions of this equation are available only in simplified

cases, and researchers are actively working on its solution, e.g. (Acciarini

et al., 2020).

7. Gaussian Sum Filter or Gaussian Mixture Model (GSF, non-linear): it breaks

the initial uncertainty into a sum of Gaussian PDFs with their own mean

value and covariance. Propagating non-linearly the means and covariances

a more realistic PDF is achieved. This is an approximation that suffers from

curse of dimensionality, e.g. the more "Gaussian bits" the better, but this

increases the computational cost (Kumar Vishwajeet and Puneet Singla,

2018).
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8. Particle filter or Monte Carlo method (MC, non-linear): it is a brute force

approach consisting of propagating many realizations of the initial mea-

surement. From the propagated cloud of points one can infer statistical

moments of the PDF. It is clearly the most reliable method and is used usu-

ally as a test bench for other methods. The main disadvantage is that in

conjunction assessment, most of the events are characterized by low prob-

ability, meaning that a large number of samples are usually needed (Jones

and Doostan, 2013).

9. Coordinate transformation (auxiliary method): used in coordination with

one of the above methods, it can improve the validity of the prediction. In

fact, it is empirically shown that the use of orbital elements is to be pre-

ferred to that of Cartesian coordinates for uncertainty propagation. Mean-

ing that the Orbital element (OE) frame aids to keep the uncertainty dis-

tribution approximately Gaussian for longer time, thus increasing the time

validity of the prediction. (Horwood et al., 2016).

2.4.3 Unscented Transform method

Suppose we are given the flow equation Φ(x0, t) : Rd×R → Rd of a system propa-

gating an initial state x0 to some final time t. Assume moreover x0 be distributed

with some probability density function P , where the initial average state is µ0

and the d× d (non singular) initial covariance matrix is Σ0.

This method consists in propagating with the full flow equation only few se-

lected points, called sigma-points. Then compute a weighted sample mean and

covariance from those ones only.

There are different methods to obtain such sigma-points, here we use the

ones proposed by Wan and Merwe (2000). In such approach there are exactly

N = 2d+ 1 points which at the initial time are taken to be:

x00 = µ0

x0i = µ0 +
(√

(d+ l)Σ0

)
i

for i = 1, ..., d

x0i = µ0 +
(√

(d+ l)Σ0

)
i−d

for i = d+ 1, ..., 2d

(2.1)

where l = a2(d+ κ)− d, with a an heuristic parameter determining the spread of
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the points around the true mean (usually a =1e-3), whereas κ is a similar scaling

parameter of lower importance which we set to null. The notation (·)i indicates

the i-th column of the matrix.

Remark 2.2. In our specific application, the initial covariance may be small with

respect to position magnitude (e.g. in ECI frame). Such small a may produce

sigma-points too close to the starting position, triggering significant numerical

errors. A larger a around 1e-1 is therefore a better choice. △

The sample mean and covariance at any time is given by a weighted average

with coefficients:

Wm
0 = l/(d+ l)

W c
0 = l/(d+ l) + 1− a2 + b

Wm
i = W c

i = 1/(2(d+ l))

(2.2)

Where b reflects the knowledge of the modeling distribution. In our case, we are

mainly concerned with distribution resembling gaussians, so we set b = 2, the

value for gaussian distributions.

Call xi = Φ(x0i, t), the first and second statistical moments are given by

x̄ =
N∑
i=0

Wm
i xi

S =
N∑
i=0

W c
i (xi − x̄)(xi − x̄)T

(2.3)

It is possible to show that these formulas are exact for Gaussian distributions

however, they are precise up to third order for any nonlinear flow Φ (Wan and

Merwe, 2000). By order, we mean here the order of Taylor expansion of the mean

and covariance around the true values.

As we shall see, in collision avoidance we are usually allowed to neglect the

velocity uncertainty while retaining the position one. This means that out of the

6 dimensions of the state vector x0 only 3 components are uncertain.

In such case, one shall apply Eqs. 2.2 and 2.3 only to the position subset of the

state vector, and treat the velocity components as deterministic, i.e. keeping the

same initial velocity value for every initial position sigma-point.
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2.4.4 Use of covariance

Suppose we have propagated uncertainties and we are given one covariance for

the target tC and one for the chaser cC which can be regarded as independent.

Remark 2.3. Independence is in general not strictly true in orbital dynamics,

in fact, significant correlation may be introduced by atmospheric drag. The ra-

tio being that spacecraft undergoes similar atmospheric conditions because is

depending on the same Sun activity (Matney et al., 2004). △

Covariance matrices are usually given in the R-T-N frame of the respective

objects, e.g. tC t and cCc, so that a rotation is needed to sum them.

Using rotation matrix defined in Section 2.1, it is possible to write the chaser’s

covariance cCc into its R-T-N frame by cC t = Rc
t
T cCcR

c
t . Then, the combined

covariance can be written as C t =
tC t +

cC t.

As we shall see in the following, the combined covariance is usually written

in the b-plane, i.e. projected. To do so, the passive rotation matrix Re
t is used to

bring the covarince matrix written into the encounter frame of reference.

Then, the projection is obtained cancelling the third row and column of the ma-

trix to obtain Cb, i.e.

Cb = Rb
tC tR

b
t

T
,

where:

Rb
t =

[
1 0 0

0 1 0

]
Re

t

2.5 Collision metrics

The most common collision metrics are probability of collision and Mahalanobis

distance (Hejduk, 2019). In this section, we shall examine in details only the for-

mer, since it will be the one used in the rest of the work.

They together, represent the roots of state-of-the-art, in the sense that many vari-

ants of them are proposed in the literature using correction systems or combina-

tion of these with other quantities. None of these hybrid metrics will be however

examined in this dissertation because out of scope.
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2.5.1 Mahalanobis distance

The Mahalanobis distance is commonly defined as the Cartesian distance be-

tween two objects scaled with the inverse positional covariance. Computation of

this metric is straightforward and efficient for gaussian random variables. It is

usually used as conservative detection metric.

Problem arises in generalizing it for non-gaussian distribution, however one in-

teresting possibility is given by Poore et al. (2016).

2.5.2 Probability of collision

Probability of collision, commonly intended as non-survival probability, is a

probabilistic measure of the event that two colliding objects are found at a dis-

tance so that their physical volumes interfere (given a time window of interest).

Calling Hard Body Radius (HBR) the collision distance, the formal definition of

collision event is the following (Coppola, 2012).

Definition 2.4. Let t0 be some initial time of interest, Rhbr > 0 the HBR and tf a
maximum time of interest. Two objects (target and chaser) are said to collide in the
time of interest [t0, tf ] if

∃t ∈ [t0, tf ] such that ∥ρ(t)∥ ≤ Rhbr

This definition is substantially different from the one used to compute the in-
stantaneous probability of collision which is merely the probability of two space-

craft to be located within collision distance at a specific time. A hint to the formal

use of Definition 2.4 can be given as follows.

Call S0 = [r0,v0,ρ0,ν0]
T the augmented spacecraft state at the initial time t0,

where r0 and v0 are the initial position and velocity of the target in the ECI

frame. Call moreover P0(S0, t0) the generic Probability Density Function (PDF)

at that instant.

The 12-dimensional state fully describes the configuration of the objects and it

is defined on a 12-dimensional space that here is called {S0}-set. Physically this

set is a double copy of the same 6-dimensional space (one for the target and one

for the chaser’s relative position).

Then, the probability of collision is the integral of P0 on a hyper-volume V such
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Figure 2.2: Illustration scheme of the 12-dimensional S0 set partition for PDF integra-
tion in Coppola’s formalism for Pc

that the collision definition above is fulfilled, mathematically:

Pc =

∫
V

P0(S0, t0)dS0 (2.4)

Figure 2.2 provide a graphical attempt to visualize the integration set V =

V0

⋃
V1. V0 is the hyper-volume of initial states that collides at t0, whereas V1 is

the hypervolume of the initial states that will collide in the time window (t0, tf ].

Notice that to obtain the instantaneous probability of collision, for instance at t0,

one would integrate just on V0.

The 12-dimensional integral in Eq. 2.4 is cumbersome to solve, however there

are methods using heuristic hypothesis and simplifications that approximate the

value. Such methods have been studied since 90’s to achieve collision assessment

for the ISS (Alfriend et al., 1999).

The applicability of the proposed methods varies from short-term, high velocity

encounters (Patera, 2001), (Patera, 2003) (Linear and nonlinear) to long term en-

counters (Schaeffer et al., 2018) such as the ones in GEO orbits, e.g. encounters

happening at very slow relative velocity. In the remaining part of the disserta-

tion, we will refer to probability of collision according to Foster’s method for
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high-velocity encounters, which is one of the most widespread approaches.

2.5.3 Foster’s method

By adopting the following simplifying assumptions, the so-called Foster’s inte-

gral is valid (Chan, 2008) for estimating Pc:

1. The two objects are spherical, with radii summing to Rhbr

2. The encounter is of the type short-term, meaning that

• the relative motion can be consider linear

• the uncertainty distribution is constant during the encounter

• the target’s ECI position (assumed as reference for the encounter frame)

is essentially constant during the encounter.

3. The objects uncertainty in the velocity is negligible, i.e. velocity is deter-

ministic

4. The position uncertainties of the objects are Gaussian and independent

with mean iµ and covariance iC (with i = t, c).

Using these heuristic assumptions, the Foster’s method reduces the PDF integral

in Eq. 2.4 from a 12-dimensional problem into a 3-dimensional problem and

further into a bi-dimensional problem (the b-plane defined earlier) involving

relative position, mean relative position and combined covarinace only, i.e. ρ, µ

and C.

Remark 2.4. Using the second and the third hypothesis above, the PDF can be

though as the 3-dimensional distribution of the relative position centered at the

mean relative position and solidal to it, while the encounter is evolving. Whereas

V is a sphere centered in the origin. △

To state the formal expression for Pc with an intuitive justification, let us

consider the encounter coordinate system where ẑ is the axis along the relative

motion direction, i.e. −ν, and x̂, ŷ are axis in the b-plane. Using the reciprocal

principle, we can swap the view in Remark 2.4 and imagine V0 at the relative

position and moving on a straight line along z-axis, while the PDF P0 is centered
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Figure 2.3: Illustration of the volume swapped by the hard-body radius going trough
the covariance ellipsoid in the relative coordinate frame and their projection on the en-
counter plane (translated from the origin for illustration purposes).

on the origin and steady.

It is easy to imagine that the volume V0 is spanning a cylinder along the relative

trajectory and parallel to the z axis (see Figure 2.3). Considering an arbitrarily

large time window of interest, the cylinder is arbitrarily long and the integration

on such volume is effectively a marginalization of the PDF (assumed Gaussian).

This intuitively justifies the projection mechanism anticipated heuristically by

Foster, yielding the integration on the 2-dimensional b-plane. Mathematically:

Pc =
1

(2π)
√

|Cb|

∫ −
√

R2
hbr−x2

−
√

R2
hbr−x2

∫ Rhbr

−Rhbr

e
1
2
(ρb−µb)

TC−1
b (ρb−µb)dx dy, (2.5)

where the b subscripts means the projection on the b-plane of respectively: ρ the

relative position, µ the mean relative position and C the combined covariance.
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2.5.4 Collision detection

Once the collision metric is available, there must be a mean to take a decision

whether to maneuver or not. To this end, mainly three approaches have been

found in the literature:

• Probability of collision threshold

• Maneuver as a detection problem (probability ratios)

• Distance threshold (Mahalanobis)

The first approach is the straightest and consist of placing a collision probability

threshold, above which the satellite is maneuvered. The Pc threshold is usually

around 1e-4 but depends on a compromise between what is the achievable global

risk reduction and the desired rate of maneuvering (see current ESA’s policy in

Merz et al. (2017)). However, doubts on the correct use of Pc in this sense are

arisen by Carpenter et al. (2017).

Another major problem of using Pc as collision metric is its inherent False Confi-
dence (Balch et al., 2019).

False confidence is the phenomenon by which a decrease in the quality of mea-

surements causes a decrease in the Pc metric. This makes the operator feel more

confident that the collision is not going to happen, but this is false because the

actual trajectory (so the future minimum distance) is always the same. Its just

the measurement system providing bad quality data which shall be therefore

not trusted. Practically this occurs when the covariance is too large with respect

to the closest distance (Hejduk, 2019).

The second alternative is to take a decision formulating the problem as a de-

tection problem, so that performances are enforced directly on the false-alarm

and miss-detection. The Wald Sequential Probability Ratio Test (WSPRT) ap-

pears to be the most suitable to the problem (Carpenter et al., 2012). In this

approach, probability of collision does not enter directly in the decision, instead

its observables with uncertainty does, e.g. relative position and covariance.

The last, widely used, alternative consists of putting a threshold on the min-

imum distance. The threshold can be set on the physical distance but it is typi-

cally used on the Mahalanobis distance.
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This method is usually adopted in the preliminary detection phase only as it is

very conservative (Hejduk, 2019).

Automating collision detection to face the increasing workload due to up-

coming constellations is a very challenging task. The sensitive point is to do that

in a safe manner whiteout human supervision.

In light of the considerations of Carpenter et al. (2017), false confidence is for in-

stance a major problem for the widely used probability of collision, making col-

lision detection the ”art” of mixing classical indicators to avoid miss-detections

and false alarms, (Balch, 2016) and (Carpenter and Markley, 2014) are examples.

Although using the Mahalanobis distance metric would not be affected by false

confidence (Balch et al., 2019), it would lead to an unacceptable rate of maneu-

vers (Hejduk, 2019).

A very promising and straightforward technique seems to be Machine Learn-

ing or AI in general (Sanchez et al., 2019), (Fernández-Mellado and Vasile, 2021),

(Pinto et al., 2020). One of the fundamental problems to be faced is that ML ar-

chitectures are typically “black box” once trained. This means that the agent

will take a decision based on its training, but with no indication on how much

the inference on the input was consistent with the training. Such a drawback

was effectively circumvented by (Fernández-Mellado and Vasile, 2021) combin-

ing Dempster-Shafer theory of evidence with ML trained on a synthetic data set.

The evidential approach confers transparency to the classification while ML is

increasing the classification efficiency. In support to the applicability of such

theory, a work by Denoeux (2019) shows that for classification tasks, Dempster-

Shafer theory (or in general evidential classifiers) may help to make ML “self-

explainable” in general.

2.6 Avoidance maneuver design

Once a threat is identified, the maneuver planning task tries to make the op-

timal evasive maneuver. Optimality can be interpreted in different ways, most

straight-forward being minimum fuel cost or minimum impact on satellite oper-

ations.

The path planning problem has been considered for instance by Gremyachikh

et al. (2020) and Richardson-Little et al. (2019). The former performs an integra-
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tion of multi-objective optimization making use of reinforcement learning (AI).

It trains an agent with a reward function based on optimality parameters such

as fuel cost, collision probability threshold, maneuver restrictions, etc. The lat-

ter instead, designs a similar optimization tool without using AI. The tool is a

multi-purpose optimizer that given a collision event and maneuver constraints,

offers a series of optimal alternative maneuvers that the operator has to choose

from.

The work of Chen et al. (2019) rather optimizes the maneuver to have the maxi-
mum collision probability below a given threshold.

Another example is the work from Bombardelli and Hernando-Ayuso (2014)

where the optimization problem of minimizing the collision probability and im-

pulsive maneuver cost is formulated and solved analytically. It uses the Kep-

lerian dynamics and Gaussian assumptions to find out that if the maneuver is

performed more than 1 orbit in advance, minimizing the collision probability

tend to be equivalent to maximizing the miss-distance.

Uncertain maneuvering may have an effect on the overall position uncer-

tainty which is also worth to be analyzed. In fact, the effectiveness of the ma-

neuver to lower the probability depends on the position uncertainty after the

maneuver. Zhang and Geng (2018) for example, address this problem finding an

optimal thrust direction for an uncertain thrust direction. The optimality crite-

rion minimizes position uncertainty after maneuvering.

Yang et al. (2019) instead uses a hybrid propagation model (STT-GMM) to prop-

agate uncertainty in the presence of non-ideal maneuver sequences.
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3
Low thrust modelling in

Collision Avoidance

There is in principle a neat advantage in using low thrust for COLA through

electric propulsion, given by the higher specific impulse of those engines. De-

spite negligible gravity losses in fact, examining the rocket equation it is easy to

conclude that the same spacecraft equipped with more efficient engine reach the

same orbital energy with less fuel.

In COLA scenario however, the long-lasting maneuver acts on the propagated

uncertainty (i.e. collision metrics) and the use of those engines may not give the

expected mitigation effects.

We shall see in Section 3.2 that low thrust presence and thruster’s uncertain-

ties may affect non-negligibly positional uncertainty at closest approach, which

in turn increases the required maneuver magnitude to achieve the same safety

threshold.

To analyze this aspect, we need first of all to understand what is the allowable

propagation error for COLA applications. For this reason, the first section of this

chapter is dedicated to obtain an estimate of those allowable errors.

Lastly, we shall comment modelling errors in low thrust presence which have

a detrimental effect similar to thruster’s uncertainty. In fact, to compute or op-

29
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timize low thrust COLA maneuvers, a model for trajectory propagation must

be used. Such model will be used for both (average) state and state uncertainty

propagation, so that each of them result affected by a modeling error. These er-

rors impact the computed collision index and therefore the quality of the ma-

neuver.

3.1 Trajectory propagation requirements

Most widely used approaches in collision avoidance takes as main collision in-

dex the probability of collision (see Section 2.5). A good propagation for COLA

operations shall therefore limit the computation error of this index.

Considering that the probability of collision (Pc) is typically a very low number,

it is customary to consider its base-10 logarithm (Plc), ranging between -5 and

-30. Within this view, we can consider a relative error on Plc defined as:

δPlc =

∣∣∣∣P ∗
lc − Plc

Plc

∣∣∣∣
We assume, as it is typically done in COLA (Chan, 2008), that the hypothe-

ses to apply the Foster’s integral are fulfilled (see Section 2.5.3). Using Foster’s

method, once the problem is formulated in the b-plane, Pc error arises from two

possible sources: a positional error or a positional covariance error.

In the following, we obtain approximate bounds on such quantities starting from

a desired maximum error on Plc, i.e. ˘δPlc.

In a quest for an analytical treatment, we approximate the Foster’s integral

using the PDF central value only:

Pc =
πR2

hbr

2π
√

|Cb|
e−

ρTb C−1
b

ρb
2 ,

where ρb is the position of the secondary object in the b-plane, and Cb the pro-

jection on the b-plane of the combined covariance matrix (positional covariance

only).
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3.1.1 Position error requirements

Consider the encounter in the 2-dimensional b-plane with a perfect knowledge

of the covariance matrix, whereas position is affected by error. Let us assume

that the position error on ρb is small with respect to its norm ∥δρb∥/∥ρb∥ << 1

and that the Probability of Collision is nearby its maximum value i.e. ρT
b C−1

b ρb

2
≈ 1

(Alfriend et al., 1999). Notice also that both ρb and δρb are 2-dimensional vectors

with one (the same) null component, thanks to the encounter frame definition.

We can use taylor expansion around the true Pc to obtain the erroneous P ∗
c :

P ∗
c = Pc −

πR2
hbr

2π
√

|Cb|
e−

ρTb C−1
b

ρb
2 (C−1

b ρb)
T δρb = Pc(1− ρT

b C
−1
b δρb)

Then we have:

δPlc =

∣∣∣∣ log(1− ρT
b C

−1
b δρb)

Plc

∣∣∣∣
Explicitly noticing that the two assumptions above implies ∥ρT

b C
−1
b δρb∥ << 2,

then we can further expand the logarithm function around 1 obtaining:

δPlc =
|ρT

b C
−1
b δρb|
Plc

Let now ˘δPlc be the desired upper bound of the probability error, we have that

the limit δρb shall fulfill:

|ρT
b C

−1
b δρb| = Plc

˘δPlc

Using the sub-multiplicative property of the matrix norm we finally have the δρb

bound:

∥δρb∥ ≤ Plc
˘δPlc

∥ρT
b C

−1
b ∥

(3.1)

Notice that the obtained threshold for δρb is problem dependent. This means

that fixing a desired maximum error on the probability of collision, the allowed

position error depends on the encounter geometry (through ρb and Cb).

The above derivation was performed implicitly considering positional errors

in the b-plane only. If one wishes to account for position errors in the full Carte-

sian space ∥δρt∥ as well as a velocity error δν t, the main effect is that the b-plane

itself now differs from the true one. However, it is easy to prove (see Chapter Ap-
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pendix) that at first order ∥δρb∥ ≤ ∥δρt∥. Therefore, if one wishes to use Eq. 3.1

as requirement, a natural extension for the bound computed above holds, mean-

ing that one can replace ∥δρb∥ with ∥δρt∥ producing a conservative requirement

estimate.

3.1.2 Covariance error requirements

Consider again the encounter in the 2-dimensional b-plane. Let us now address

the problem of a small error affecting the covariance while knowing exactly the

positions, that is:

C∗
b = Cb + δCb with ∥C−1

b δCb∥ ≤ ∥C−1
b ∥∥δCb∥ << 1

Additionally, suppose again that the probability of collision is nearby its maxi-

mum value i.e. ρT
b C−1

b ρb

2
≈ 1 (Alfriend et al., 1999). We start rewriting the proba-

bility of collision as:

Pc =
R2

hbr

2

√
|C−1

b |e−
ρTb C−1

b
ρb

2

Then like the positional error case, we adopt a linearization of P ∗
c around the

true probability Pc. So, we need to compute the gradient of Pc with respect to the

matrix C−1
b , which results to be:

∂Pc

∂C−1
b

=
R2

hbr

2


√

|C−1
b |

2
CT

b e
−

ρTb C−1
b

ρb
2 −

√
|C−1

b |2e−
ρTb C−1

b
ρb

2 ρbρ
T
b

 ,

where we have used the differential identities:

∂|C−1
b |

∂C−1
b

= |C−1
b |CT

b and
ρT
b C

−1
b ρb

∂C−1
b

= ρbρ
T
b

The above expression simplifies when plugged into the linear expansion of P ∗
c to

obtain:

P ∗
c = Pc

(
1− 1

2
tr
(
(−Cb + ρbρ

T
b )δC

−1
b

))
(3.2)

Remark 3.1. Notice that i) this expansion holds in force of the starting hypothe-

ses because we can write ∥(−Cb + ρbρ
T
b )δC

−1
b ∥ << 1, this will be shown shortly;

ii) we have used the symmetry of Cb to replace CT
b △
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It is now possible to notice that the expansion is function of the small error

δC−1
b whereas we would it to be a function of δCb. To this aim, consider the first

order Neumann expansion of C∗
b
−1 in force of ∥C−1

b δCb∥ << 1 so that we can

write:

δC−1
b = (Cb + δCb)

−1 −C−1
b = −C−1

b δCbC
−1
b

Remark 3.2. The starting Taylor expansion used for Eq. 3.2 is valid for

∥δC−1
b ∥/∥C−1

b ∥ << 1. Thanks to the above Neumann expansion we have

∥C−1
b δCbC

−1
b ∥/∥C−1

b ∥ ≤ ∥C−1
b δCb∥ << 1, which agrees with the original hy-

pothesis. △

Substituting into the P ∗
c expression, and using the cyclic property of the trace of

product, one has:

P ∗
c = Pc

(
1 +

1

2
tr
(
(−C−1

b +C−1
b ρbρ

T
b C

−1
b )δCb

))
(3.3)

We are now in the position of showing that the Taylor expansion holds and fur-

ther obtain an expression for the log-probability error. Consider that:

∥(−Cb + ρbρ
T
b )δC

−1
b ∥ ≈ ∥(−C−1

b +C−1
b ρbρ

T
b C

−1
b )δCb∥

Then using the matrix square root decomposition C−1
b = C

−1/2
b C

−1/2
b , the left

hand side is up-bounded by:

∥C−1
b δCb∥+ ∥C−1/2

b ∥∥C−1/2
b ρb∥2∥C

−1/2
b ∥∥δCb∥ << 1

where the inequality holds thanks to the starting assumptions: ∥C−1
b δCb∥ ≤

∥C−1
b ∥∥δCb∥ << 1 and ρT

b C−1
b ρb

2
≈ 1. This also implies we can linearize the loga-

rithm of Eq. 3.3 around 1 and obtain:

δPlc =
1

2Plc

∣∣tr ((−C−1
b +C−1

b ρbρ
T
b C

−1
b

)
δCb

)∣∣
Using now the property of the trace of product in term of vectorized matrices

tr(ATB) = vec(A)Tvec(B) one can write

|vec(−C−1
b +C−1

b ρbρ
T
b C

−1
b )Tvec(δCb)| = 2PlcδPlc
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Let ˘δPlc be the desired upper bound of the probability error and use the sub-

multiplicative property of the matrix norm, one obtains:

∥vec(δCb)∥ ≤ 2PlcδPlc

∥vec(−C−1
b +C−1

b ρbρ
T
b C

−1
b )T∥

(3.4)

Or, in terms of Frobenious norm of matrices:

∥δCb∥F ≤ 2PlcδPlc

∥C−1
b (−I + ρbρ

T
b C

−1
b )∥F

Again similarly to the position error threshold, the obtained bound is prob-

lem dependent.

Furthermore, also in this case, we have to generalize the bound on the projected

matrix Cb to the general 3D covariance matrix C. This time however, as we were

supposing the position to be exact, the b-plane coincides with the true one, which

makes the derivation straightforward:

δCb = C∗
b −Cb = Rt

b
T
(C + δC)Rt

b −Rt
b
T
CRt

b

Which, thanks to sub-multiplicative property of matrices yields ∥Cb∥F ≤ ∥C∥F
(recall that Rt

b is 2× 3). Finally, we can say that also in this case, the norm bound

obtained on the b-plane can be considered a norm requirement in the 3D space.

3.1.3 Error bounds validation

Both the error bounds obtained in the previews sections hold with approxima-

tions and, more importantly, depends on the specific encounter geometry. In this

section, we first validate the obtained bounds, proving that they can be consid-

ered statistically reliable, i.e. perform well on typical encounters.

Then, we try to obtain an overall positional and covariance requirements valid

for most practical situations, which will be used as the main requirement for the

analytic trajectory propagator discussed in the next Chapter.

To validate the bounds we need a benchmark of random encounter geome-

tries. To this end, we profiled the collision avoidance challenge database pro-

vided by ESA (2019) fitting kernel probability distributions on:

• Relative velocity components
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• Relative position components on the b-plane

• Eigenvalues of the covariance matrices (both target and chaser)

• Euler angles of the diagonalizing matrix for the covariance matrices (both

target and chaser)

As a result, 17 experimental PDFs are obtained from which random independent

realization can be drawn. This procedure however, loses dataset correlation, for

instance between relative velocity and covariance orientation. The result is a ran-

dom dataset with a higher number of low-probability events (Plc ≤ −30) with

respect to the original database. Still, by discarding those events, we can obtain

a statistically meaningful dataset if the remaining ones are enough.

With such a set of probability distributions, the random set of encounters

are generated firstly by randomly generating 1000 LEO target orbits and relative

encounter geometries from the profiled dataset. Figure 3.1 depicts the Plc his-

togram of an example realization of such procedure where, discarding the events

with log probabilities of collision Plc ≤ −30, a set of 153 random encounters is

obtained.

To test the relative position norm bound, we set a desired log-probability er-

ror threshold, say ˘δPlc = 0.1. Then, for each random encounter, we require the

right-hand-side of Eq. 3.1 to be the norm of a sphere (limiting ∥δρt∥), rather than

a circle (limiting ∥δρb∥). Meaning that, when ∥δρt∥ is projected onto the b-plane

Eq. 3.1 is fulfilled.

For each case, we create a grid of evaluation points on such a sphere (1250 points

equally spaced in the angular positions). We can thus evaluate the actual prob-

ability of collision error (using Foster’s method) when the perturbed distance at

TCA lies on the obtained bounding surface. If there is any point on such a sur-

face originating an error probability δPlc > ˘δPlc, we say that the bound has failed.

Counting the success rate on all the random encounters gives an indication on

how good Eq. 3.1 is on typical encounters.

Testing the combined covariance norm bound follows the same line, so we

require the 2-dimensional covariance bound to be that of the full 3-dimensional

one. Then, the further complication is that the grid points now lie on a 5D hyper-

sphere (12000 points grid used). In fact, having fixed the Frobenious norm of a

3D covariance matrix we can consider one of its three eigenvalues constrained.
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Figure 3.1: Log-probabilities of collision histogram obtained from a set of 1000 ran-
domly generated encounters (probabilities lower than -30 where neglected, yielding 153
encounters)
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We are then left with five free parameters, namely the other two eigenvalues and

the three possible rotation angles for the diagonalizing (unitary) matrices.

The three eigenvalues are evenly spaced on a sphere with 12-point grid, while the

rotation angles of the diagonalizing matrix are evenly spaced on a 3-dimensional

cube with edge length 2π.

Let us formalize the above experiment in a statistical framework to get con-

fidence interval on the outcome, showing that the 153 samples produce statisti-

cally significant result.

The proposed experiment is a Bernoulli process where a sequence of N = 153 in-

dependent trials is realized. Each trial may result in either a success (with proba-

bility p) or a failure (with probability 1-p). Then, the number of successes in this

experiment is a random variable following the Binomial distribution.

We want to estimate the rate of success p with a 95% confidence interval, so that

p represents reliably the probability that our statistic threshold is respected in

an operative scenario.

The p-parameter of a Binomial distribution can be estimated with its maximum

likelihood estimator, i.e. number of successes in the experiment divided by 153.

Then, it is possible to show that a confidence interval for such estimator can be

obtained approximating the number of successes distribution as a normal distri-

bution (Brown et al., 2001). Thus for a 95% confidence interval the bounds are

given by:

CI = ±1.96

√
p̂(1− p̂)

N
,

with p̂ the experimental ratio between the number of successes in the experiment

and N , the number of trials.

Remark 3.3. This approximation of the CI is subjected to the requirement Np >

5 to be reliable. This requirement is actually met with 153 samples for the most

interesting studied cases of ˘δPlc. △

The success rates clearly depends on the log-error threshold. The larger the

threshold the larger the bounds degrading the linear approximations, i.e. de-

grading the assumptions ∥C−1
b δCb∥ << 1 and ∥δρt∥/∥ρt∥ << 1. Table 3.1 re-

ports the success rates as function of the chosen ˘δPlc. We can take those values as

confidence on the obtained bound given some desired ˘δPlc.

Then, we can heuristically conclude that the obtained bounds in Eqs. 3.1 and
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Table 3.1: Success rates of the bounds in % as function of ˘δPlc, 95% confidence interval
in parenthesis.

˘δPlc 0.001 0.01 0.1 0.5
∥δρt∥ 97(±3) 95(±3) 92(±4) 82(±6)
∥δC∥ 100(±NA) 98(±2) 90(±5) 82(±6)

3.4 are usable as requirements for requested log-probability error thresholds
˘δPlc ≤ 0.1, i.e. 10%.

We shall now link the desired log-probability error ˘δPlc to some overall po-

sition and covariance error bounds, eliminating the dependency on the specific

encounter of Eqs. 3.1 and 3.4. To this end, the original (not the profiled one) col-

lision avoidance competition data set was employed.

For each event in the dataset, we took the CDMs issued at most 1 day prior to

TCA (5000 CDMs). For each CDM, the position and covariance error bounds

were computed for a log-probability error threshold of 10%. We then visualized

the obtained bounds in a CDF-like fashion (see Figure 3.2), i.e. displaying the

number of occurrences where the obtained bounds were greater than a given

value.

By tracing an horizontal line at the desired percentage (say 95%, 2σ), we find the

overall bound which in the 95% of real cases assures a log-probability error to

be less than 10%. This follows simply from the fact that those 95% of situations

would have a bound equal or larger than the overall one.

The outcome of this approach allows concluding that, for a propagation to

comply with ˘δPlc = 0.1 at 2σ or 1σ level on real scenarios, it has to provide:

• 10m (2σ) or 204m (1σ) accuracy in the relative position at TCA (∥ρt∥)

• 5m (2σ) or 155m (1σ) accuracy in the combined covariance at TCA (
√

∥δC∥F )

Notice that those are errors built up from two parts: the chaser and the target

propagation. This means that, assuming their state vector have been measured

at the same accuracy level and undergoes similar propagation conditions, the

single satellite propagation shall fulfill half that accuracy. Meaning that that the

sum of the errors (chaser and target), made either in relative position or com-

bined covariance shall be within the bounds. If the requirements above are not

fulfilled, we shall consider the propagation error significant. A remediation ac-
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Figure 3.2: CDF of the computed thresholds for 5000 real encounters assuming ˘δPlc =
0.1

tion would then be to properly inflate the covariance, adding to the measure-

ment uncertainty the expected propagation uncertainty. Under the reasonable

assumption that those uncertainties are independent.

3.2 Impact of low thrust maneuvers on uncertainty

propagation

Low-thrust maneuvers affect the propagation of an initial state uncertainty un-

der two aspects:

• as a result of the modified system dynamics;

• due to possible uncertainties in the thrust itself.

To highlight the relative importance between these effects, we make use of sim-

ulations on two baseline scenarios, defined in Table 3.2.

The spacecraft on such orbits, referred to as the target, is supposed to be at the

pericenter at the initial time t0 = 0.
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Table 3.2: Benchmark orbits for the target spacecraft

case altitude [km] eccentricity inclination [°]
1 713 0.001 98.2
2 1422 0.1 40

3.2.1 Low thrust presence

Examine as first case, the one where low-thrust is deterministic, i.e. there are no

uncertainties on it. Consider moreover, the case where the low thrust is the only

perturbing force and we use a propagation model able to exactly propagate the

uncertainty, i.e. numerical model with Monte Carlo.

Being the thrust very small by assumption, one might be tempted to conclude

that the initial uncertainty propagated with a keplerian model or a perturbed

model are very similar. There would be therefore no need to take low thrust into

account when propagating uncertainty.

To have an idea of the error committed in the latter case, a Monte Carlo simula-

tion has been performed for the two benchmark cases of Table 3.2. To this aim,

we do not need the complete conjunction scenario, we just need the maneuver-

ing target spacecraft and its initial covariance. Therefore we assume a (typical)

initial covariance matrix in local R-T-N coordinates (Vetter, 2007):

tC t0 =

.025
2 0 0

0 .22 0

0 0 .0252

 [km2] (3.5)

We propagated some initial samples for 5 orbits under two conditions: no-

thrust and 1e-7km/s2 tangential acceleration. With a trial and error approach,

an initial gaussian population of 3.5 million samples was found to provide sta-

ble results.

Results show that the standard deviations of the cartesian position slowly di-

verge apart (Figure 3.3), around 1% to 10% of the initial deviation prescribed in

Eq. 3.5. Considering a spacecraft in orbit with case 1 and case 2 of Table 3.2, no

noteworthy difference appears in the Cartesian covariance. Being the period of

case 1 smaller, also the standard deviations are shrinked (roughly) proportion-

ally.



3.2. IMPACTOF LOWTHRUSTMANEUVERSONUNCERTAINTY PROPAGATION41

Figure 3.3: Norm of the Cartesian R-T-N difference between the covariance diagonals as
a function of propagation time in reference case 2, between unperturbed and perturbed
motion.
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Figure 3.4: Covariance error metric as a function of propagation time in reference case
2, between covariance propagated under perturbed motion and Keplerian motion

Next, to include also the out-of-diagonal covariance matrix elements in the anal-

ysis, we report the error metric defined in Section 3.1.2 as a function of the prop-

agation time, see Figure 3.4.

To analyse Figure 3.4, consider for simplicity, the case where the chaser’s uncer-

tainty is propagated exactly as well. Since the target’s uncertainty are propagated

exactly in both cases Keplerian and perturbed, the only error we can commit in

the combined propagated uncertainty is in considering or not the perturbation,

i.e. low thrust presence. Then, the full bound obtained in Section 3.1.3 is at dis-

posal to depreciate the propagation error made on the target (when neglecting

thrust presence). Given the bounds, from Figure 3.4 we can be confident at 1σ

that the presence of the tangential perturbation in case 2 can cause a Pc error

within 10% for about 4 orbital periods propagation. Much less than one orbit

instead if one wants a 2σ confidence.
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Although this result is restricted to benchmark cases, we can reasonably extend

the conclusion saying that at 1σ, one can reasonably neglect the perturbation

presence when propagating the covariance for few orbital periods. Conversely,

requiring a 2σ confidence in a 10% Pc error requirement, the perturbation pres-

ence must be taken into account or the estimate of the final covariance is too

rough.

3.2.2 Low thrust systems uncertainties

From the BepiColombo experience (see references Section IV.G of (Clark et al.,

2019) and Section V/VI of (Castellini et al., 2020)), when applying low-thrust we

have at least two uncertainties:

• An uncertainty on the stabilized value of the thrust: 0.1% - 2%

• An uncertainty on the instantaneous thrust: 0.1% - 0.2% (4 minutes aver-

aging window)

Additionally, one can add a third uncertainty on the thrust direction given by

some inaccuracies in the spacecraft attitude or manufacturing issues (Bruijn

et al., 2017), however this effect is smaller than the one due to magnitude varia-

tion.

The origin of the stabilized thrust error (first in the list) is located in the

difficulty of estimating the real engine performance characteristics. In fact, the

onboard computer can compute only an approximation of the applied thrust, as

long as a direct measure is not available.

Although one could estimate the actual thrust in post-processing by precise or-

bit determination from ground, the estimate would be subjected anyhow to some

residual uncertainty in the order of 0.5% (Castellini et al., 2020). Although small,

0.5% uncertainty is still significant in a low-thrust scenario as explained by

Bruijn et al. (2017) and expanded hereafter.

The origin of the second (random) error in the list, expressed in terms of thrust

stability, is aleatory.

Remark 3.4. In the simulations below, we need a statistical representation of

engine stability. Characterizing statistically the aleatory uncertainty for a low

thrust engine is not an easy task. This is why errors are verified in terms of sta-

bility of the thrust, i.e. thrust remaining within some bounds when averaging for
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given time, see Clark et al. (2019). In Chapter Appendix an empirical method is

outlined to convert the stability characteristic into a statistical one. △

Using a simple Monte Carlo simulation with cases of Table 3.2 we obtain

propagation errors for both the listed uncertainties.

The idea is the following: assume a target and chaser has some expected miti-

gated probability of collision Pc (maneuver being performed). Assume moreover

that the initial target’s state vector is perfectly known while the chaser has some

initial uncertainty. Then, if the target’s perform a perfect avoidance maneuver,

its uncertainty at mitigated TCA is null and the mitigated probability of colli-

sion would be given by the chaser’s uncertainty only. If instead, the target has

uncertainties on the thrust, its uncertainty at TCA is not null and, summed to

the chaser’s one, causes the actual mitigated probability of collision to be some

P ∗
c ̸= Pc. In case engine’s uncertainties are insignificant one would expect a neg-

ligible difference between P ∗
c and Pc, meaning the the target’s position and co-

variance at TCA shall be within the bounds stated in Section 3.1.3.

With this idea, the simulations considered the evolution of the target only. Using

the starting condition of null initial uncertainty, some realizations are propa-

gated varying the perturbing acceleration around a mean value of 5e-8 km/s2

(e.g. to reflect a 300 kg S/C subjected to 0.015 N thrust). In one case adding a

random realization bias to the average thrust and, in the other case, adding a

white noise to the thrust. Then, we considered a 5 orbit propagation (less then 1

day) and measured how large was the final covariance.

With a trial and error process we established that respectively 10000 and 100

samples produced acceptably stable results respectively in "realization bias" and

"white noise" simulations.

The outcome shows that:

• A 1% gaussian uncertainty (i.e. 5e−10km/s2 standard deviation) on the sta-

bilized value of the acceleration caused about 500 m standard deviation in

the traverse direction and 1m in the radial direction for case 1, and about

900 m and 30m for case 2 respectively. Notably these values resulted to be

about 1% of the cartesian position change with respect to Keplerian case

(great linearity between thrust error and position difference).

• A 0.17% uncertainty (on 4 minutes averaging window), equivalent to Ns =
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1.32e−9km/s3/2, for the instantaneous acceleration caused few meters stan-

dard deviation in the traverse direction, and few centimeter in the radial

direction.

Coherently with the references above, the error coming from the stabilized thrust

creates errors in the order of kilometers (in the tangential direction). On the

other hands, the instantaneous thrust variability still has a growing behavior

but significantly smaller by orders of magnitude in the propagation period of

interest. Intuitively, this is due to the fact that, with randomized thrust in time,

the thrust error somehow averages out, in the thrust-biased case instead the error

accumulates.

To draw conclusions about the significance of such uncertainties we take the

usual Frobenious norm parameter of the final target’s covariance. Similarly to

Section 3.2.1, we consider the situation in which the model can perfectly prop-

agate the trajectories and the thrust is the only perturbation, so that bounds in

Section 3.1 are fully available for error depreciation.

From Figures 3.5 and 3.6, it is clear that the covariance error committed by ne-

glecting the biased thrust is out of the allowed bounds (both 1σ or 2σ) soon after

a couple of orbits, in both the test cases. It is therefore fundamental to convert

the stabilized thrust into a contribution of positional uncertainty.

Stochastic uncertainty is instead well below the 1σ bound, hinting to the possi-

bility of neglecting this contribution in short propagation.

It is finally possible to rank the low thrust effects to be accounted when per-

forming COLA with such a system. From the largest to the smallest one has:

1. Stabilized thrust uncertainty

2. Low thrust presence

3. Random thrust uncertainty

3.3 Trajectory modelling error

Independently on whether the low thrust execution is perfect or not, when per-

forming propagation of either average state or state uncertainty under perturbed
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Figure 3.5: Covariance error metric as a function of propagation time in reference case 1.
Two cases are shown: the thrust affected by a random bias and thrust affected by white
noise.
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Figure 3.6: Covariance error metric as a function of propagation time in reference case 2.
Two cases are shown: the thrust affected by a random bias and thrust affected by white
noise.
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dynamics, the modelling error is something always present. Although poten-

tially controllable at the desired level of accuracy, often mathematical complex-

ity and finite computational precision poses a limit.

The error committed, although systematic, is unpredictable, rising an uncer-

tainty often referred to in the literature as epistemic.

The model error affects the computed risk index, e.g. probability of collision,

thus the reliability of any CAM computation. As a result, the modelling error

shall be subjected to the same propagation requirements outlined in Section 3.1.

If these requirements are not met, inflation of the uncertainty coming from mea-

surements shall be considered. Estimating such inflation is however not trivial

because of the non-aleatory nature of the error.

Although for Keplerian dynamics and some conservative perturbations a full

analytic solution is possible, this is not the case for a general low thrust. There

are therefore different attempts to solve the full perturbed propagation problem,

having different assumptions and accuracy.

In the subsections below, we review the state of the art models suitable for prop-

agation of low thrust maneuvering spacecraft. As we are proposing in this disser-

tation an alternative propagation model, we report where possible the declared

accuracy of the methods.

Lastly, we close with a subsection summarizing the current applications of such

models in a COLA framework.

3.3.1 Perturbed modeling State of the art

With reference to (Curzi and Modenini, 2022), we examine what is the current

state of the art for spacecraft trajectory propagation under a generic perturba-

tion. In doing this, we will make stand out analytical models.

Optimization of maneuvers is the main line of application using perturbed

modelling. Currently, the established techniques for low thrust optimization in-

volves mainly numerical solutions (direct or indirect methods) of the perturbed

orbital models (Morante et al., 2021). Instead, we would prefer an analytic solu-

tion for both computational efficiency and problem insight.

Generally speaking there are (semi) analytical studies providing models for per-

turbed orbital motion, at least for deterministic-assumed perturbations. SGP4

model is a typical example of semi-analytical model that can account for natural
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orbit perturbations such as atmospheric drag and simplified gravity potential. It

cannot however model "custom" low thrust profiles, in this sense valuable efforts

have been put towards analytic models.

Relevant to this work, several authors developed analytical solutions for the

orbital motion under low thrust, most important of which are: Yang (2007), Bom-

bardelli et al. (2011), Zuiani et al. (2012), Di Carlo et al. (2021) and Gonzalo and

Colombo (2021). Although with different approximations, the approaches differ

substantially only for the time element of the orbital element vector, undergoing

ad-hoc treatment.

Yang (2007) provided approximate solutions using classical orbital elements for

computing near-optimal low-thrust Earth orbit transfers. In doing so, he as-

sumed three different thrust profile directions: tangential, inertial or piecewise

constant out-of-plane thrust, including also the effect of J2.

He integrated the Gauss planetary equations along the fast angular variable (ec-

centric anomaly) for the first five orbital elements. The time law was instead

approximated as purely Keplerian, i.e. neglecting the small perturbation pres-

ence.

Bombardelli et al. (2011) developed an analytical solution under the assumption

of a small constant tangential thrust integrating the orbital dynamics along the

sole fast variable, i.e. the angular position. They adopted a set of three general-

ized non-singular orbital parameters and introduced a Sundman transformation

for the time equation. The time-of-flight instead, is integrated using a full first-

order solution in the perturbing acceleration.

The accuracy of the model is measured in a Geosynchronous transfer orbit frame-

work yielding about 1e-3% error for the position in a short term propagation,

with a tangential acceleration of 1e-7km/s2. Similarly, Zuiani et al. (2012) per-

formed the same kind of integration but removing the tangentiality assumption

of the thrust.

Di Carlo et al. (2021) lately extended the work of Zuiani et al. (2012) to include

atmospheric perturbation, solar radiation pressure, third body and higher order

harmonics. In both works the time equation was first reduced to its Keplerian

version, and then integrated assuming first order variations in the remaining or-

bital elements.

Gonzalo and Colombo (2021) in a followup of their work (Gonzalo et al., 2019),

adopted a similar approach for solving the time equation, by incorporating vari-
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ations of the semi-major axis and eccentricity into the time equation expanded at

first order in thrust. The resulting integral has been solved further adopting the

analytical expansions of semi-major axis and eccentricity solutions to 4th order

for small eccentricities. Authors also proposed to correct the outcome computed

through the integration of Kepler’s equation by adding the rotation of the line of

apses, i.e. δω.

The reported relative accuracy for the orbital elements is between 1e-3% and

1e-4% in a short term propagation, with a tangential acceleration of 1e-7km/s2.

Remark 3.5. To further improve accuracy, Bombardelli et al. (2011) proposed an

update policy of the integration process, lately recalled by Gonzalo et al. (2019).

Following this policy, at each orbital period the reference orbit is updated for the

next integration in the fast variable. Potentially, this method is applicable to any

of the above and the update can be made as frequent as we wish up to the point

where the problem is essentially solved numerically (by small steps in time). On

the other hand, it has to be noticed that this policy destroys the analytic nature

of the model. △

A common point in the cited methods is that the integration of the equations

of motion is carried out assuming constant all orbital elements. Exception made

for the “fast” time element in some works. In the long-time horizon, this is a

crude approximation especially for the semi-major axis whose real value slowly

drifts away from the analytical solution. This negatively affects especially the

time law in which the semi major axis variation plays a crucial role, as recognized

for instance by Gonzalo and Colombo (2021).

3.3.2 Model applications to optimal evasive maneuvers

One of the firsts application examples of such models in a CAM scenario is given

by Gonzalo et al. (2020). Considering a tangential thrust constraint, they adopted

the eccentric anomaly as independent angular variable and built an analysis tool

for collision avoidance considering the possibility of a low thrust. Specifically,

they made use of analytic solution for the five orbital elements, but integrated

the time equation numerically, since the resulting accuracy was not sufficient for

COLA purposes.

Hernando-Ayuso and Bombardelli (2021) appears to be the first address-

ing fully analytically the optimization of low thrust CAM. They specifically de-
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scribed a formulation of the problem using the model in (Bombardelli et al.,

2011) to obtain a solution in the circular orbit case. Thanks to the analytic form

of the solution for the case of tangential thrust, they showed that this direction

is the global optimal if some phasing conditions are met.

Remark 3.6. It is natural to adduce that the tangential direction may be in gen-

eral a nearly optimal solution. The work by Bombardelli and Hernando-Ayuso

(2014) corroborate this conclusion for impulsive thrust cases. They numerically

show that a tangential maneuver tends to be the optimal thrust direction as the

impulsive maneuver is applied earlier in time. The simplified study-cases made

under tangential thrust have therefore a solid reason to be made. △

One last comment about the applications above is that none of them take into

account the uncertainty in thrust realization. Instead, we have seen in the pre-

vious sections that thrust uncertainties may play significant role in propagation

for COLA applications and therefore in CAM optimization.

3.4 Chapter Appendix

3.4.1 From 3-dimensional positional error to b-plane bound

With the aim of an approximated derivation at first order, consider the erroneous

vectors at TCA in the 3D space:

ρ∗
t = ρt + δρt and ν∗

t = ν t + δν t

where ∥δρt∥/∥ρt∥ << 1 and ∥δν t∥/∥ν t∥ << 1. The b-plane can deffer from the

truth by means of both a position error and a velocity error, as the b-plane versors

are defined as:

x̂t = ρt/∥ρt∥ and ŷt = x̂t × ν t/∥ν t∥

with the rotation matrix describing the b-plane given by

Rb
t =

[
x̂T
t

ŷT
t

]

Remark 3.7. Notice that we are interested only in the first two rows of the matrix

because we consider the projection on the b-plane. △
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Then, the erroneous b-plane versors are:

x̂∗
t = x̂t +

∂x̂t

∂ρt

δρt = x̂t + (I − ρtρ
T
t

∥ρt∥2
)
δρt

∥ρt∥

ŷ∗
t = ŷt +

∂ŷt

∂ρt

δρt +
∂ŷt

∂ν t

δν t = ŷt − [ν̂ t]
×(I − ρtρ

T
t

∥ρt∥2
)
δρt

∥ρt∥
+

[ρt]
×

∥ρt∥
(I − ν tν

T
t

∥ν t∥2
)
δν t

∥ν t∥

The error we would commit with such wrong b-plane in computing Pc is caused

by the wrong relative position ρ∗
t. In fact, ν is not entering the Foster’s inte-

gral and the covairiance is assumed perfectly known. Then, the error in relative

position on the b-plane is given by

δρb = ρ∗
b − ρb = R∗b

t (ρt + δρt)−Rb
tρt

However, we can now make use of the hypothesis that ∥δρt∥/∥ρt∥ << 1 and

∥δν0∥/∥ν t∥ << 1.

Simplifying and neglecting second order terms in the relative position error we

arrive at:

δρb = Rb
t δρt +

[
δρT

t

∥ρt∥
(I − ρtρ

T
t

∥ρt∥2
)ρt

δρT
t

∥ρt∥
(I − ρtρ

T
t

∥ρt∥2
)[ν̂ t]

×ρt − δνT
t (I −

νtνT
t

∥νt∥2 )
[ρt]

×

∥ρt∥
ρt

]

This further simplifies noticing that [ρt]
×ρt = 0 and ρT

t ρt = ∥ρt∥2. Notice that,

as the rightmost matrix is a column vector, it is possible to take the transpose of

each entry so that δρt is a common multiplier at the right, yielding:

δρb = (Rb
t +

[
01×3

ν̂T
t [ρt]

×/∥ρt∥

]
)δρt

We shall now notice that the second row coincides with −ŷT
b meaning that at

first order

δρb =

[
x̂T
t

01×3

]
δρt

Remark 3.8. This is actually to be expected as the b-plane is defined with the

x-axis pointing to the secondary object. we will not commit any error perpendic-

ular to that direction as, by construction, we always obtain a null y-component

on the b-plane. △



3.4. CHAPTER APPENDIX 53

Thanks to the sub-multiplicative property of matrix norm we then have ∥δρb∥ ≤
∥δρt∥.

3.4.2 Translation of signal stability to noise power density

Clark et al. (2019) report a thrust stability for Bepicolombo thrusters of ±0.5mN

in a 4-minutes averaging window. Meaning that averaging the noisy signal over

4 minutes the resulting running average has oscillations at most of ±0.5mN.

When working with 154mN nominal thrust this resulted in a 0.35% bound.

We empirically interpret the stability as the condition when a thrust error re-

main constant to a value within the bounds for the 4 minutes, before changing

to another random value (always within the bounds) and so on. From this inter-

pretation, one can guess a reasonable white noise intensity as follows. Suppose

the ±0.5mN bound is a 2-sigma bound, reflecting the 95% confidence (fearly

high) to fall within the bounds. This is to say that the random extractions (at 4

minutes intervals) has ±0.25mN standard deviation (0.175%).

In Section 3.2.2, we work with a nominal acceleration of 5e-8 km/s2 so that

the random extractions shall have a standard deviation 0.175% of 5e-8 km/s2.

The white noise intensity (Ns) generating such condition is given by solving:

8.5e−11 =
Ns√
4 · 60

Then, one can generate the white noise as Ns ξ/
√
dt, where dt is the desired time

step of the stochastic simulation and ξ ∼ N(0, 1) a realization from a a standard-

normal distribution. Notice that the extraction variance for the 4-minutes aver-

aging window is fulfilled when dt = 4min.
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4
Analytic propagation model

In this chapter, a novel analytical propagation model is presented for space-

craft subjected to small accelerations. Although the solution is explicitly ob-

tained under the restriction of tangential perturbations, we shall see that the

implicit model solution is valid for any small periodic acceleration.

Finally, some use-cases of the explicit solution will be shown concerning both

position and uncertainty propagation. In doing so, we shall also compare the

performance with state of the art methods.

4.1 Physics preliminary

The Gauss Planetary Equations (GPE) offer a mathematically exact way of de-

scribing the orbital dynamics of a spacecraft subjected to perturbing accelera-

tion.

GPE assume a different form depending on the adopted state vector, i.e. orbital

elements. In this derivation, we use the set of classical (Keplerian) orbital ele-

ments indicated with α ∈ R6 and made by:

[a, e, i,Ω, ω, t]T = [αT
r , t]

T ,

55
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where a is the semi-major axis, e the eccentricity, Ω the argument of ascending

node, ω the argument of pericenter and t the time. The choice of time as sixth

orbital element reflects the fact that the final form of the GPE to be solved shall

adopt an angular anomaly as the independent variable.

The subscript "r", standing for reduced, is in general adopted in the following to

indicate the first 5 orbital elements of a vector.

Battin (1999) offers few GPE variants with classical orbital elements, here we

are particularly interested into ones in the form:

dα⋆

dt
= Ψ(t,α⋆,ap),

where we temporarily adopted α⋆ = [αT
r , E]T , and ap ∈ R3 is the 3D perturbing

acceleration. Ψ is the form of GPE where ap appears in the normal-tangential-

binormal (η, τ, n) frame of reference.

Notice that the t-dependency is put for sake of generality and symmetry. In fact,

if only external acceleration acts on the spacecraft, Ψ can depend on time only

through ap or α⋆. To give a counter example, this may not be the case if we had

to consider the orbital elements variation in a two body problem with variable

masses.

Due to the fact that E(t) appears explicitly in GPE, rather than t, the system

of equation can be more easily integrated if in the form:

dα

dE
= f(E,α,ap) (4.1)

This can be obtained by simply letting:

f(E,α,ap) =

[
Ψr(t,α

⋆,ap)(
dE
dt
)−1

dt
dE

]

The expression for dE
dt

is given again in Battin (1999) at page 489.

4.1.1 Non-dimensional form of GPE

The analytical expressions are simplified if we regard the non dimensional form

of the GPE. With this aim, we define the non-dimensional semi-major axis and
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time respectively as:

ã =
a

ac
, t̃ = nct,

where ac is the chief semi-major axis and nc =
√
µ/a3c the chief mean motion.

With the term chief we refer to a reference orbit whose orbital elements, in this

work, are taken coincident with the initial orbital elements.

In the reaming of the manuscript we will refer to α as its non dimensional form,

i.e. α = [ã, e, i,Ω, ω, t̃]. The non-dimensional form of the GPE can be found ex-

plicitly in Chapter Appendix 4.6.1.

4.2 Averaging theory preliminary

In averaging applications we are concerned with the solution of a differential

equation of the type:

ẋ = g(x, t, ϵ) with x(0) = x0 (4.2)

with x,x0 ∈ Rd, ϵ ∈ R arbitrarily small and g : Rd → Rd a generic function.

Averaging theory seeks to adopt an averaged version of the problem and quan-

tify how much close its solution is to the actual one.

In the following we shall restrict to the case where ϵ ∈ R+ ∪ {0}. As ϵ usually ac-

count for magnitude of some perturbation, this restriction is not a big limitation

in practical applications.

First of all, let us recall some basic definitions from Sanders et al. (2000) that

help defining the mathematical meaning of "close" solutions.

Definition 4.1. Let ϵ̆ ∈ R+, a function δ(ϵ) : R → R is called order function if:

• δ(ϵ) is continuous and positive in some interval (0, ϵ̆]

• limϵ→0+ δ(ϵ) exists

Definition 4.2. Let ϕ(t, ϵ) be a real or vector-valued function defined for ϵ ≥ 0 and
for t ∈ Iϵ, where Iϵ is an interval that may be ϵ-dependent.
The expression "for ϵ → 0+" means that there exist an ϵ̆ > 0 such that the preceding
statement holds for all (0, ϵ̆].
Then, we say that ϕ(t, ϵ) = O(δ(ϵ)) for ϵ → 0+ and we read it as "ϕ(t, ϵ) is of the order
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of δ(ϵ)", if:
there exits a constant ϵ̆ > 0 and k > 0 such that ∥ϕ(t, ϵ)∥ ≤ k|δ(ϵ)| for all t ∈ Iϵ and
ϵ ∈ (0, ϵ̆].

When ϕ(t, ϵ) is taken to be the difference between two solutions (e.g. the real and

the averaged one), the definition above states the meaning of closeness. Notice

that the closeness does not constrain the maximum error, rather its trend when

the perturbation is scaled.

Definition 4.3. Let L be a positive constant independent of ϵ. We say that ϕ(t, ϵ) =
O(δ(ϵ)) for ϵ → 0+ on the time scale δ(ϵ)−1 if the statement holds for 0 ≤ δ(ϵ)t ≤ L.
Or equivalently Iϵ = [0, Lδ(ϵ)−1].

g(·) in Eq. 4.2 can be in general a nonlinear function of the perturbation ϵ.

As we assume ϵ ∈ (0, ϵ̆], if g is differentiable in ϵ an expansion in terms of Taylor

series around ϵ = 0 does make sense.

g(x, t, ϵ) = g0(x, t) + ϵg1(x, t) + ...+ ϵrgr(x, t) + ... ,

where gr(x, t) = Dr
ϵg(x, t, 0) and the superscript of g means clearly the power of

ϵ to which it is referred.

This takes the name of asymptotic expansion when ϵr gets smaller and smaller

as r → ∞ and ϵ → 0+.

Remark 4.1. Notice that g0(x, t) reflects the so-called unperturbed problem. If

one further collects a leading ϵ, the following form is obtained:

g(x, t, ϵ) = g0(x, t) + ϵg[1](x, t, ϵ)

Note that the g’s first-order exponent is now in square brackets because includ-

ing also higher order terms. △

It is customary to call standard form of a perturbation problem the one in the

form:

ẋ = ϵg[1](x, t, ϵ) with x(0) = x0 (4.3)

Within this manuscript, we shall be concerned only with this kind of problems.
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4.2.1 Periodic Averaging

We have a periodic averaging problem if g1(x, t, ϵ) and g[2](x, t, ϵ) are periodic

in t with some period T . We define averaged system associated to the original

system:

ż = ḡ1(z, ϵ) with z(0) = z0,

where ḡ1(x, ϵ) = 1
T

∫ T

0
g1(x, s, ϵ)ds and the integration is performed keeping x

constant. Note that thanks to periodicity, ḡ1(x, ϵ) does not explicitly depend on

t.

Remark 4.2. The initial conditions may not be necessarily the same as the origi-

nal system, e.g. z0 ̸= x0. △

The usefulness of this auxiliary system is stated by the following theorem (Sanders

et al., 2000):

Theorem 4.1. Let g[1](x, t, ϵ) : Rd × R × R+ → Rd such that g1(x, t, ϵ) is lipschitz-
continuous and g[2](x, t, ϵ) is continuous. Let moreover be ϵ̆ ∈ R+, D ⊂ Rd and L ∈ R.
Then, there exist k > 0 (of Definition 4.2) such that:

∥x(t, ϵ)− z(t, ϵ)∥ = O(ϵ)

on the time scale O(1/ϵ).

Practically, the theorem is saying that for "small" ϵ the averaged solution has an

error with respect to the true solution that is proportional to ϵ itself. Moreover,

this conclusion is valid on a "time-scale" proportional to 1/ϵ (not necessarily with

the same constant of proportionality), i.e. the order function is δ(ϵ) = ϵ. That is,

the smaller the perturbation the longer the validity of the averaged solution,

which is intuitively reasonable.

If the average solution is not accurate enough, one can aim at lowering the er-

ror magnitude by adding a "short-period" perturbation. This can be formalized

adopting a higher-order averaging, which is possible for periodic systems (see

p.40 of Sanders et al. (2000)) or using the so called improved first approximation.

In this work we adopted the second strategy because is less numerically cumber-

some while achieving good performance.

Let us start by defining the near-identity transformation, fundamental to the im-
proved first approximation.
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Definition 4.4. Let x(t, ϵ) be the solution to the original periodic system. Let more-
over y(t, ϵ) be the solution to the associated fully averaged equation ẏ = ϵḡ1(y) +

ϵ2ḡ[2](y, ϵ). We call near-identity transformation a function

x = U(y, t, ϵ) = y + ϵu[1](y, t, ϵ) (4.4)

where u[1](y, t, ϵ) is a periodic function with period T .

The existence of such mapping, which is proven by Sanders et al. (2000), ensures

that the solution to a periodic system can always be decomposed into an average

solution plus a periodic perturbation. Note that in general y ̸= z as it is the so-

lution of the fully averaged equation (notice the square brackets).

The improved first approximation consists of forcing y = z. Then, by differen-

tiation of 4.4 an approximate first order short-period term can be obtained by

integrating:
∂u1

∂t
= g1(z, t)− ḡ1(z)

Remark 4.3. Notice that i) a partial derivative is involved, so the integration can

be carried out considering z as a constant, and ii) the resulting u1 is only the first

periodic contribution to u[1]. △

Eventually, the improved first approximation can be expressed as:

x ≈ z + ϵu1(z, t), (4.5)

which is still correct to first order only, i.e. error scales proportionally with ϵ.

4.2.2 Non-Periodic Averaging

If the system is not periodic, e.g. g1(x, t, ϵ) is not periodic, standard averaging

theory poses other restrictions on the dynamical system for formal error esti-

mates to be obtained. Here instead, we will restrict ourselves to a special class of

non-periodic systems of interest, for which the periodic and non-periodic state

components can be separated, with the governing equation depending only on

the periodic part. Specifically, denoted with subscripts p and np the periodic and
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non periodic parts respectively, such system can be written as in:

ẋ =

[
ẋp

ẋnp

]
= ϵ

[
g1
p(xp, t, ϵ)

g1
np(xp, t, ϵ)

]
(4.6)

Note that Gauss Planetary Equations can fall in this class, with xp being the

first five orbital elements, and xnp the sixth element (time). In fact, in case the

perturbing acceleration does not depend explicitly on time, also GPE in the form

of Eq. 4.1 do not depend explicitly on time.

In this case, the average solution to the periodic part can be found solving ż =

ϵḡ1
p(z, t, ϵ). Then, similarly to the improved first approximation approach, we can

approximate the non-periodic differential equation by:

ẋnp ≈ ϵg1
np(z, t, ϵ)

So that the right hand side reduces to a function of time only to be integrated.

Properties on the error introduced by such approximation cannot be drawn

in general. Nevertheless, some error estimate can be obtained restricting to the

case of a linear time-variant, non-periodic part, e.g. when

ẋnp = ϵ(qnp(t) +Qnp(t)xp)

With qnp and Qnp generic non-periodic vectorial and matrix functions respec-

tively.

Suppose the average solution to the periodic part is still some z(t). Then the

error committed using the approach described above in the interval of validity

Iϵ = [0, L/ϵ] is:

∥δxnp∥ = ∥ϵ
∫
Iϵ
g1
np(xp, t, ϵ)− g1

np(z, t, ϵ)dt∥ = ∥ϵ
∫
Iϵ
Qnp(t)(xp − z)dt∥

Using standard inequality identities one can obtain:

∥ϵ
∫
Iϵ
Qnp(t)(xp − z)dt∥ ≤ ϵ

∫
Iϵ
∥Qnp(t)∥∥xp − z∥dt

The right hand side can be further up-bounded in the interval Iϵ by considering:
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• The supreme of ∥Qnp(t)∥ in the interval, i.e.

sup
t∈Iϵ

∥Qnp(t)∥

• The order ϵ of xp−z in the interval, i.e. xp−z = O(ϵ) with a constant k > 0

Then we obtain:

∥δxnp∥ ≤ ϵ sup
t∈Iϵ

∥Qnp(t)∥kϵ
L

ϵ
= k′ϵ sup

t∈Iϵ
∥Qnp(t)∥

By definition of order of a function, this means that the obtained solution x∗
np is

an approximation of order ϵ supt∈Iϵ ∥Qnp(t)∥ of the real solution xnp in the time

interval [0, L/ϵ].

Loosely speaking, in case of a linear state dependence, the proposed approach

obtains a solution of the non-periodic part which is "quasi-ϵ" order. The quality of

this solution thus depends on the behavior of ∥Qnp(t)∥, it gets worse as ∥Qnp(t)∥
maximum value gets higher on the interval of validity.

4.3 Model derivation

The proposed model leverages the fact that most perturbations of interest for

GPE are small. Consequently, also the variations of orbital elements are small

(with respect to unperturbed case). As a result, we can effectively linearize the

equations of motion with respect to both the perturbation ϵ and the state vector

α. We refer to this process as a double stage expansion around a null perturbative

acceleration and a chief (osculating) orbital elements vector αc.

As anticipated in Section 4.2.2, the model is conveniently solvable using aver-

aging theory only under the hypothesis that the "time" orbital element does not

appear explicitly in the perturbation (so that Eq. 4.6 is enforced). This is, how-

ever, a minor limitation as long as most perturbations can be described through

explicit dependence on angular anomalies rather than time.
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4.3.1 First-order perturbation expansion

By "small" perturbations, we mean that the acceleration to which the spacecraft

is subjected is much smaller than the local gravity, i.e.

ap

µ/a2c
= ãp(E,α, ϵ)

Where ac is the semi major axis of the chief orbit, ϵ a small positive constant and

∥ãp∥ << 1.

Without loss of generality, we can rewrite the right hand side of the above equa-

tion as:

ãp(E,α, ϵ) = ϵb(E,α)

Where b is a function of order 1 (with the meaning given in Section 4.2), i.e. it

does not depend on the scaling parameter ϵ.

Remark 4.4. Notice that the requirement ∥ãp∥ << 1 becomes ∥b(E,α)∥ << 1/ϵ

△

Then, a first order expansion of Eq. 4.1 around ãp = 0 is obtained as:

dα

dE
≈ f 0(E,α) + f 1(E,α)b(E,α)ϵ, (4.7)

where f 0(E,α) is f evaluated at ãp = 0, i.e the GPE for a keplerian orbit:

dα

dE

∣∣∣∣
ϵ=0

=

[
05×1

ã3/2(1− e cosE)

]
,

whereas f 1(E,α) is the gradient of f with respect to ãp and evaluated at ãp =

0, i.e. a 6 × 3 matrix. Using the non-dimensional formula given in the Chapter

Appendix 4.6.1, the explicit expressions for f 1(E,α) are given in the Chapter

Appendix 4.6.2.

4.3.2 First-order orbit state expansion

With reference to the first-stage GPE linearization in Eq. 4.7, we can distinguish

between fast and slow variables. Specifically we can label "slow" the αr orbital

elements because their derivatives are proportional to the small perturbation ac-
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celeration. The time variable instead, has to be regarded as "fast" because the

Keplerian part of the derivative is not proportional to the perturbation.

A common strategy used to find approximate solution for the slow-variables con-

sists of integrating the right hand side of Eq. 4.7 keeping the orbital elements

constant at their initial value, i.e. α = αc (see e.g. (Gonzalo et al., 2019), (Di

Carlo et al., 2021)). Here instead, we will attempt to obtain a more accurate ap-

proximation by allowing first-order variations of α about αc, i.e. by linearizing

further Eq. 4.7 with respect to the state vector, as in:

dα

dE
≈ f 0(E,αc) +∇αf

0(E,αc)δα+
(
f 1

b(E,αc) +∇αf
1
b(E,αc)δα

)
ϵ,

where the notation f 1
b indicates the multiplication f 1(E,α)b(E,α) and δα =

α−αc is the orbital elements variation.

It is convenient to directly solve for the variation δα, since its dynamics is sim-

pler:
dδα

dE
≈ ∇αf

0(E,αc)δα+
(
f 1

b(E,αc) +∇αf
1
b(E,αc)δα

)
ϵ

For notation simplicity, we introduce the symbols A0(E) = ∇αf
0(E,αc), A1(E) =

∇αf
1
b(E,αc), so that the resulting equation is:

dδα

dE
≈ ϵf 1

b(E) +
(
A0(E) + ϵA1(E)

)
δα (4.8)

The terms f 1
b and A1 are clearly perturbation-dependent through b. An ex-

pression will be provided in the next section when specializing the model for the

case of a constant tangential acceleration.

A0 is instead a simple block matrix in the form:

A0 =

[
05×6

3ã1/2(1−e cosE)
2

ã3/2 cosE 01×4

]
(4.9)

As only the last row contains non-null entries, it provides the sensitivity of the

time element to variations of the osculating orbit.

The final form of the double stage linearization (Eq. 4.8) is a linear first-order

non-homogeneous ordinary differential equation for δα. The general solution to

this final form does exist in terms of state transition matrix. The latter however
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is difficult to obtain as in our case the system is time variant. The next section is

dedicated to approximate analytically such solution using averaging theory.

4.4 Model solution

To apply averaging theory to the problem in Eq. 4.8, we need to reduce the equa-

tion to its standard averaging form. This, in turn, can be obtained by applying

the variation of constants methods (Sanders et al., 2000). Consider then the as-

sociated unperturbed problem, that is:

dθ

dE
= A0(E)θ,

where we used θ in place of δα just to distinguish between the unperturbed and

perturbed solutions. The solution to this system is readily available thanks to the

particular form of A0 (see Eq.4.9). Considering ϑ ∈ R6 the vector of integration

constants, we have:

θ =
(
I +A0(E)

)
ϑ, (4.10)

where A0(E) =
∫
A0(E

′
)dE

′
.

In force of the variation of constants method, we assume ϑ = ϑ(E) and set δα =

θ(ϑ(E), E). Then recalling Eq. 4.8, we have:

∂θ

∂E
+∇ϑθ

dϑ

dE
= A0(E)θ + ϵ

(
f 1

b(E) +A1(E)θ
)

In this expression, the leftmost terms of both sides simplify as θ is the solution of

the unperturbed problem. Furthermore, using Eq. 4.10, we obtain a differential

equation for ϑ:

dϑ

dE
= ϵ

(
I +A0(E)

)−1 [
f 1

b(E) +A1(E)
(
I +A0(E)

)
ϑ
]

(4.11)

First observe that this system is in the standard form of averaging. Then observe

that thanks to the special form of A0, we have (1+A0(E))−1 = 1−A0(E). Lastly,

observe that A0(E) is a non-periodic function; also b(E,α) may not be periodic

in general.

At this stage, we introduce two restrictions to recover the periodic part de-
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coupling and use periodic averaging:

• b(E,α) is periodic in E.

• the perturbing acceleration does not depend explicitly on the time t, i.e.
∂b(E,α)

∂t̃
= 0

The second point implies that the last column of A1 will be null and A1(E)A0(E) =

0. Therefore, the system in Eq. 4.11 becomes:

dϑ

dE
= ϵ

(
I −A0(E)

) [
f 1

b(E) +A1(E)ϑ
]

(4.12)

The standard system in Eq. 4.12 is not fully periodic in E due to A0(E) which,

however, affects only the time equation. Then, thanks to the second assumption

there is a complete decoupling between the slow orbital elements and the fast

time element.

Furthermore, thanks to the first hypothesis, the differential equations describing

the slow orbital elements dynamics is 2π-periodic in E. As a result, system is of

the form 4.6, therefore can be solved separately using periodic averaging.

Remark 4.5. Notice that Eq 4.12 offers the solution of ϑ so, to recover δα, Eq.

4.10 shall be used. Incidentally, for slow orbital elements δαr, one has δαr = ϑr.

△

4.4.1 Slow elements solution

For slow orbital elements we apply Section 4.2.1 which requires the solution of:

dδᾱr

dE
= ϵ

(
f̄

1
br +B1

rδᾱr

)
∂δαsp

r

∂E
= ϵ

(
f 1

br(E)− f̄
1
br

)
+ ϵ
(
A1(E)−B1

r

)
δᾱr

with i.c. δᾱr0 = −δαsp
r (0)

(4.13)

where f̄
1
br represents the first five components of 1

2π

∫ 2π

0
f 1

b(E
′
)dE

′
, whereas B1

r

represents the upper-left 5× 5 block matrix of 1
2π

∫ 2π

0
A1(E

′
)dE

′

The first of Eqs. 4.13 is a linear time invariant system, amenable of analytic

solution. Care however, must be taken, as B1
r can be in general singular.

A general solution can be outlined in terms of Jordan block decomposition. Using
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this decomposition B1
r = UWU−1, where U is a non-singular matrix and W is

a block diagonal matrix in the form:

W =

[
0 0

0 W r

]

Then, using the fact that eUWU−1
= UeWU−1, the solution to the differential

equation is given by:

δᾱr = eB
1
rϵE

(
δᾱr0 + ϵU

∫ E

0

e−W ϵE
′

dE
′
U−1f̄

1
br

)
, (4.14)

leading to:

δᾱr = eB
1
rϵE

(
δᾱr0 + ϵU

[
EI 0

0 (ϵW r)
−1(I − e−W rϵE)

]
U−1f̄

1
br

)

The solution for the second of Eqs. 4.13 can be obtained taking advantage of

the fact that we can integrate keeping δᾱr constant (see Section 4.2.1):

δαsp
r = ϵ

(
f1br(E)− f̄

1
brE +

(
A1

r(E)−B1
rE
)
δᾱr

)
+

− ϵ

2π

∫ 2π

0

(
f1br(s)− f̄

1
brs+

(
A1

r(s)−B1
rs
)
δᾱr

)
ds,

(4.15)

where f1br(E) =
∫
f 1

br(s)ds, A1
r(E) =

∫
A1

r(s)ds and the rightmost integral con-

stant is included to ensure a null-average of the short-period.

The indefinite integrals used above depend clearly on the perturbing acceler-

ation b(E,α), so that a general expression is again not possible. For the existence

of an analytical form, we have to consider the functions b(E,α) such that f 1
br

and A1 can be integrated analytically.

4.4.2 Fast element solution

For the fast orbital element we can apply Section 4.2.2. In fact, because of the

separation between fast and slow variables we are provided with an average so-

lution δᾱr = ϑ̄r (see previous section), which can be used to approximate the
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dynamics of the last row in Eq 4.12, by replacing ϑ with ϑ̄. That is:

dϑ6

dE
= ϵ

[
−A0

61 − A0
62 ... 1

](
f 1

b(E) +A1(E)

[
δᾱr(E)

0

])

Or, by using the symbols h0 and h1 for the sake of brevity:

dϑ6

dE
= ϵ

(
h0(E) + h1(E)δᾱr(E)

)
The solution is simply:

ϑ6 = ϵ

(∫
h0(s)ds+

∫
h1(s)δᾱr(s)ds

)
+ const, (4.16)

Then the time element is recovered by applying the former change of variable

that is:

δt̃ =
[
−A0

61 − A0
62 ... 1

]
ϑ

Integrating Eq. 4.16 is actually not easy because δᾱr(s) is an exponential

function multiplying a non-periodic function. Such integration can be however

approximated leveraging the small parameter ϵ.

To this end, we integrate by parts the rightmost term of Eq. 4.16 using h0 =∫
h0(s)ds and h1 =

∫
h1(s)ds to obtain:

ϑ6 = ϵ
(
h0(E) +

(
h1(E) + ch

)
δᾱr(E)

)
+

− ϵ

∫ (
h1(s) + ch

)
δ ˙̄αr(s)ds+ const,

(4.17)

where by substituting the expression for δ ˙̄αr

ϑ6 = ϵ
(
h0(E) +

(
h1(E) + ch

)
δᾱr(E)

)
+

− ϵ2
∫ (

h1(s) + ch
) (

f̄
1
r +B1

rδᾱr(s)
)
ds+ const

As we start from null initial condition of slow orbital elements, we have that

δᾱr(E)) is of order ϵ. Then if we would like to retain up to second order in ϵ, the
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following approximation is obtained:

ϑ6 = ϵ
(
h0(E) + h1(E)δᾱr(E)

)
− ϵ2

∫
h1(s)dsf̄

1
br + const

which is now more tractable, provided that the primitives h0(E), h1(E),
∫
h1(s)ds

can be obtained. This will indeed be the case for the application scenario of a

constant tangential acceleration.

Remark 4.6. Retaining higher order terms in ϵ here does not produce a higher

order expansion of the averaging problem. Merely, the integral in Eq. 4.16 is

computed with more precision. We decide to retain up to second order because

such integral is itself an approximated solution of "quasi linear" order (see sec-

tion 4.2.2), △

4.5 Application to constant tangential acceleration

In this section we apply the previous solution method to the case of a spacecraft

subjected to a small constant tangential acceleration b(E,α) = [0 1 0]T . Notice

that, mathematically this is a very special periodic perturbation independent of

both E and α.

This case is of particular interest for spacecraft equipped with low thrust propul-

sion systems. In fact, as we have seen from literature in Section 3.3, the tangential

maneuver is a nearly-optimal collision avoidance maneuver.

By applying to non-dimensional GPE the linearization methodology outlined

in section 4.3, we obtain a first-stage linearization:

dδα

dE
=



0

0

0

0

0

a3/2(1− e cosE)


+ ϵ



2ã3
√
1− e2 cos2E

2ã2(1− e2)
√

1−e cosE
1+e cosE

cosE

0

0

2ã2
√
1−e2

e

√
1−e cosE
1+e cosE

sinE

ã3/2(1− e cosE)β(E)


, (4.18)

where β(E) = 2ã2

e

√
1−e cosE
1+e cosE

sinE.

It is possible to recognize the form in Eq. 4.7 by noticing that f 0(E,α) is the first
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addendum of the right hand side and f 1
b(E,α) the second one.

To apply the second-stage linearization we need the gradient of both f 0(E,α)

and f 1
b(E,α). The former was given in Eq. 4.9, whereas the second can be com-

puted yielding:

∂f 1
b

∂ã
=



6ã2
√
1− e2 cos2E

4ã(1− e2)
√

1−e cosE
1+e cosE

cosE

0

0

4ã
√
1−e2

e

√
1−e cosE
1+e cosE

sinE

7ã5/2

e
(1− e cosE)

√
1−e cosE
1+e cosE

sinE



∂f 1
b

∂e
=



−2ã3 e cos2 E√
1−e2 cos2 E

−2ã2
√

1−e cosE
1+e cosE

cosE
[
2e+ (1− e2) cosE

1−e2 cos2 E

]
0

0

− 2ã2

e
√
1−e2

√
1−e cosE
1+e cosE

sinE
[
1
e
+ cosE

1−e2 cos2 E

]
−2a7/2

e2

√
1−e cosE
1+e cosE

1+2e cosE
1+e cosE

sinE



(4.19)

The partial derivatives with respect to the remaining orbital elements are instead

null given the tangential perturbation.

Notice also that when evaluated at chief orbit αc, we have ã = 1.

Finally, to use the same notation as in section 4.3, we have

• f 1
b(E) given by the second column vector of f 1 in Eq. 4.7 evaluated at αc

• A0(E) still given by Eq. 4.9 evaluated at αc

• A1(E) given by the column vectors in Eqs. 4.19 evaluated at αc

To obtain the analytical approximation of the solution we need to compute the
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integrals outlined in section 4.4, that is:

f1b =

∫
f 1

b(E)dE

A1 =

∫
A1(E)dE

h =

∫
h0(E)dE

h1 =

∫
h1(E)dE∫

h1dE

(4.20)

Furthermore, from the first two of the above one can easily compute the averaged

counterparts f̄ 1
br and B1

r , required for obtaining the average solution Eq. 4.14.

4.5.1 Partial indefinite integral of GPE

The analytic primitive f1b = [δãI , δeI , δiI , δΩI , δωI , δt̃
I
], read:

δãI(E) = 2ϵ
√

1− e2cE[E, k]

δeI (E) = 2ϵ
1− e2c
ec

{
1

2
ln

√
1− e2c cos

2E + ec sinE√
1− e2c cos

2E − ec sinE

− 1√
1− e2c

F [E, k] +
√

1− e2cE [E, k]

}

δωI (E) = 2ϵ

√
1− e2c
ec

(
2 arcsin

√
1− ec cosE

2
−
√

1− e2c cos
2E

)∣∣∣∣∣
E

0

δt̃
I
(E) = − ϵ

e2c

(√
1 + ec cosE

1− ec cosE

(
e2c cos

2E − 5ec cosE + 4
)
+

−6 arcsin

√
1− e cosE

2

)∣∣∣∣∣
E

0

,

(4.21)

where k = e2c
(e2c−1)

and F and E are respectively the elliptic integrals of first and sec-

ond kind. We skipped the equations for δiI and δΩI because a tangential thrust

has no effect on them. Note that the first three equations were first obtained by

Gonzalo et al. (2019), whose work is highly acknowledged.
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4.5.2 Partial indefinite integral of GPE gradient

The analytic primitive A1(E) can be written as:

A1 =
[∫ ∂f1

b(α,E)

∂ã

∣∣∣
αc

dE
∫ ∂f1

b(α,E)

∂e

∣∣∣
αc

dE 06×4

]
The first term of the right hand side easily follows from partial indefinite inte-

grals of GPE (Eq. 4.21), yielding:

∫
∂f (α, E)

∂ã

∣∣∣∣
αc

dE =



3δaI (E)

2δeI (E)

0

0

2δωI (E)
3
2
(E − ec sin (E)) + 7

2
δtI (E)


The second term of the right hand side is instead given below term by term:

A1
12 = −2ecϵ

(F [E|k] + (e2c − 1)E [E|k])
e2c
√

1− e2c

A1
22 = − 2ec

(1− e2c)
δeI (E)+

− 2ϵ
(
1− e2c

) ∫ cos2E√
1− e2c cos

2E (1 + ec cosE)
dE

A1
32 = A1

42 = 0

A1
52 = − 2ϵ

ec
√

1− e2c

2 arcsin
√

1−ec cosE
2

−
√

1− e2c cos
2E

e2c
+

−
arcsin (ec cosE) +

√
1−ec cosE
1+ec cosE

e2c


A1

62 =
4ϵ

e3c

(√
1− ec cosE

1 + ec cosE
(2 + ec cosE)+

3 arcsin

√
1− ec cosE

2

)

(4.22)
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The integral in the equation for A1
22 can be computed using the change of variable

H = 2arctan

(√
1− ec
1 + ec

tan

(
E

2

))
→ dH

dE
=

√
1− e2c

1 + ec cosE

In fact, noticing that cosE = cosH−ec
1−ec cosH

, we can write:

∫
cos2E√

1− e2c cos
2E (1 + ec cosE)

dE =

1√
1− e2c

∫
(cosH − ec)

2

(1− ec cosH)
√
(1− e4c) (1−m cosH)

dH,

(4.23)

with m = 2ec
1+e2c

.

The right hand side is then the sum of:

1√
1− e4c

∫
(1 + e2c)/e

2
c

(1− ec cosH)
√
1−m cosH

dH =
(1 + e2c)/e

2
c√

1− e4c
2

Π
[

2ec
ec−1

; H
2

∣∣∣ 2m
m−1

]
(1− ec)

√
1−m

−1/e2c√
1− e4c

∫
1 + ec cosH√
1−m cosH

dH =
− 1

e2c√
1− e4c

2

m
√
1−m

×(
(ec +m)F

[
H

2

∣∣∣∣ 2m

m− 1

]
+ ec (m− 1)E

[
H

2

∣∣∣∣ 2m

m− 1

])
1 + e2c√
1− e4c

∫ √
1−m cosH

1− ec cosH
dH =

1 + e2c√
1− e4c

2

ec (ec − 1)
√
1−m

×(
m (ec − 1)F

[
H

2

∣∣∣∣ 2m

m− 1

]
+ (m− ec)Π

[
2ec

ec − 1
;
H

2

∣∣∣∣ 2m

m− 1

])
(4.24)

which can be obtained with the aid of bisection formulae.

4.5.3 Indefinite integral of h0

h0 =

∫
h0(E)dE =

∫
−A0

61f
1
b1 (E)− A0

62f
1
b2 (E) + f 1

b6 (E) dE (4.25)
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In performing such integration, the identities in Chapter Appendix 4.6.3 are

used to give:∫
−A0

62fb1 (E) dE = ϵ
(
1− e2c

)
2 Isc∫

−A0
61fb2 (E) dE ∼= −3

2
ϵ

(
E2 − e2c Ic2 −

e4c
4
Ic4

)
+ 3ϵecIs,

(4.26)

where to write the second equation, an expansion of the elliptic integral is used

to integrate terms of the type EE[E, ·].
The last integral in Eq. 4.25 coincides with δt̃

I
(E) already given in Section 4.5.1.

4.5.4 Indefinite integral of h1

The next integral we need for the envisaged solution is:

h1 =

∫
h1dE =

[∫
−A0

61A
1
11 − A0

62A
1
21 + A1

61dE∫
−A0

61A
1
12 − A0

62A
1
22 + A1

62dE

]T

The integral involving the term A0
61 imposes the use of the expansion for the

elliptic functions as given in Chapter Appendix 4.6.3, to obtain:∫
−A0

61A
1
11 (E) dE = −9ϵ

(
E2

2
− e2c

2
Ic2 −

e4c
8
Ic4

)
+ 9ϵecIs∫

−A0
61A

1
12 (E) dE = 3ϵec

(
Ic2 +

e2c
2
Ic4 +

e4c
8
Ic6

)
− 3ϵe2cIsc3,

(4.27)

whereas the ones involving A0
62 results to be∫

−A0
62A

1
21 (E) dE = 4(1− e2c)ϵIsc∫

−A0
62A

1
22 (E) dE = −2ϵ

(
2ecIsc +

(
1− e2c

)
Isc2
)
,

(4.28)

where we made use of the recurrent integrals given in Chapter Appendix 4.6.3.

The two integrals involving A1
61 and A1

62 only were already given in Section 4.5.2,

i.e. A1
61 and A1

62 .

The last integral we need is
∫
h1dE. Let us start by the two parts involving
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the double integration of A1
61 and A1

62 alone, the former reads:

∫
A1

61dE =
7

2

[
−4ϵ

e2c

∫ √
1 + ec cosE

1− ec cosE
dE +

+
5ϵ

ec

∫ √
1 + ec cosE

1− ec cosE
cosEdE − ϵ

∫ √
1 + ec cosE

1− ec cosE
cos2EdE+

+
6ϵ

e2c

∫
arcsin

√
1− ec cosE

2
dE

]

=
7

2

[
−4ϵ

e2c
(Ic0F + ec Ic1F ) +

5ϵ

ec
(Ic1F + ec Ic2F ) dE +

− ϵ

(
Ic2F +ecIc3F ) +

6ϵ

e2c

(
E arcsin

√
1− ec cosE

2
− ec

2
IEsF

)]

Then, similarly:

∫
A1

62dE =
4ϵ

e3c

∫ (√
1− ec cosE

1 + ec cosE
(2 + ec cosE) + 3 arcsin

√
1− ec cosE

2

)
dE

=
4ϵ

e3c

[
2 (Ic0F − ec Ic1F ) + ec (Ic1F − ec Ic2F )+

+3

(
E arcsin

√
1− ec cosE

2
− ec

2
IEsF

)]

To complete
∫
h1dE, we need finally to perform the integration of the terms in
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4.27 and 4.28. Then we need integrals:∫
Ic2dE =

∫
E2

4
− sin2E

8
+

cos2E

8
+

E

2
sinE cosEdE∫

Ic4dE =

∫
3E2

16
+

E sin (2E)

4
+

E sin (4E)

32
+

+
cos (2E)

8
+

cos (4E)

128
dE∫

Ic6dE =

∫
5E2

32
+

15E sin (2E)

64
+

3E sin (4E)

64
+

+
E sin (6E)

192
+

15 cos (2E)

128
+

3 cos (4E)

256
+

cos (6E)

1152
dE∫

IscdE =
−1

2e2c

∫ (
−e3c cos

3E + 2e2ccos
2E + ec cosE − 2√

1− e2c cos
2E

+

+2arcsin

√
1− ec cosE

2

)
dE

∫
Isc2dE =

∫
1

e3c

(√
1− e2c cos

2E (2 + ec cosE)

1 + ec cosE
+

+arcsin (ec cosE)) dE∫
Isc3dE =

∫
cosE

2e2c

√
1− e2c cos

2E − arcsin (ec cosE)

2e3c
dE∫

IsdE =

∫
−cosE

2

√
1− e2c cos

2E − arcsin (ec cosE)

2ec
dE

(4.29)

Most of these integrals can be easily solved analytically by hand or by any sym-

bolic manipulator. There are however two integrals that are not trivial, still they

can be reduced to known integrals or approximated. One is:∫
arcsin (ec cosE)dE ∼= E arcsin (ec cosE) + ec IEsF ,

where the recurrent integrals in Chapter Appendix 4.6.3 was used after integrat-

ing by parts.
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The other is:∫
cosE

√
1− e2c cos

2EdE =
sinE

2

√
1− e2c cos

2E+

+ (1− e2c)

arsinh

(
ec√
1−e2c

sinE

)
2ec

,

where we first integrated by parts and then used the integral 630.11 from the

handbook of elliptic integrals (Byard and Friedman, 1970).

4.5.5 Short-Period integration constant

The integration constant in Eq. 4.15 for the short period variations of the slow

elements,

1

2π

∫ 2π

0

(
f1br(s)− f̄

1
brs+

(
A1

r(s)−B1
rs
)
δᾱr

)
ds,

can be computed analytically using the completeness property of elliptic inte-

grals and the symmetry of some integrand functions in the interval [0, 2π].

Start from the integrand f1br(s)− f̄
1
brs. Since we are interested only in its first

5 elements, the only non-zero component is the fifth one.

In fact, the elliptic integrals of the first two equations of Eqs. 4.21 (a and e ele-

ments of f1br(s)) can be split between an exact linear drift in s which is compen-

sated by f̄
1
brs and a periodic component, which amounts to zero when integrated

between [0, 2π]. Additionally, the symmetry of the function argument of the nat-

ural logarithm proves the claim.

On the other hand, the fifth component has to be integrated resulting in the sum

of a complete elliptic integral contribution and a constant, π/4, from integration

of the arcsin term. The latter conclusion can be easily obtained expanding the

integrand in a Taylor series around null eccentricity. Then, integrating on the

complete circle, only the 0-order term is not null, which amounts to π/4 for any
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Table 4.1: Benchmark orbits for the target spacecraft

a [km] e i [°] Ω [°] ω [°] E0 [°]
8500 0.2 0 0 0 0

eccentricity. In summary:

1

2π

∫ 2π

0

f1br(s)− f̄
1
brsds = 2

√
1− e2c
ec


0

0

0

0

π/2−
√

1− e2cE[2π, k]/(2π)


For the integrand A1

r(s) − B1
rs similar arguments can be used to show that

only the fifth row of the resulting matrix is not null. The integrals therein can be

again calculated leveraging symmetry and the results collected in this Chapter

Appendix (See section 4.6.3), to obtain:

1

2π

∫ 2π

0

A1
r(s)−B1

rsds =

1

2π



0 0 ...

0 0 ...

0 0 ...

0 0 ...

4

√
1−e2c
ec

(
π2 −

√
1− e2cE[2π, k]

)
−2

(
π2−

√
1−e2cE[2π,k]

ec3
√

1−e2c
− F[2π,k]

ec3(1−e2c)

)
...


4.5.6 Model performance as position propagator

The accuracy of the obtained model has been assessed through numerical sim-

ulations. We took as a test case a reference LEO orbit with the initial elements

reported in Table 4.1, considering a propagation interval of 5 orbits and a small

constant-tangential acceleration of 1e-7km/s2.

This reference case is then modified to test the sensitivity of the model to pertur-

bation magnitude, semi-major axis and eccentricity.

Remark 4.7. Section 4.2 provides results for the error behavior that hold within

an ϵ-dependent propagation interval, i.e. 0 < E < L/ϵ, with L some positive con-
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stant. Thus, when comparing results for different values of ϵ it may have sense to

scale the propagation interval accordingly, rather than using a fixed number of

orbits. Such a scaling, however, may lead to extremely small propagation hori-

zons.

For instance, for an acceleration of 1e-5km/s2, we would obtain a propagation

interval of 0.05 orbits which is of low interest in low thrust collision avoidance.

For this reason, we opted for retaining a fixed propagation interval throughout

the entire analysis. △

The ground-truth solution has been obtained solving numerically Eq. 4.1

with MATLAB’s built-in ode113 function.

The double-stage linearized form in Eq. 4.8 was solved numerically as well, to

check the agreement between the full GPE and their linearization.

In fact, our method introduces two distinct levels of approximation:

• First, the model we seek to solve,(Eq. 4.8), is a simplification, through the

dual-stage linearization, of the true one (Eq. 4.1).

We call the resulting error an intrinsic error.

• Second, the developed solution method to the linearized model is by itself

approximate, due to the application of averaging theory, introducing a fur-

ther source of error.

We call this latter averaging error.

Figure 4.1 depicts the errors with respect to the ground truth in the reference

case for both intrinsic and global (intrinsic plus averaging) errors. The global

error tracks reasonably closely the intrinsic error, meaning that we are solving

the averaged problem accurately enough with respect to the limit set by the lin-

earization process. This is especially true for semi-major axis and time elements.

For relatively large perturbation forces however (see Figure 4.2), the prediction

drifts apart from the linear solution, especially for the time element. This is ex-

pected as when the acceleration gets larger, the fundamental assumption of av-

eraging technique degrades.

With reference to Figure 4.1, the drift of the intrinsic error on ω, resulting

from the numerical integration of Eq. 4.8, is worth to be noted. Such an effect is

originated by the approximation of the derivative
(
dE
dt

)−1
within the linearization

process described in Section 4.3, and can be explained by inspecting higher order
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Figure 4.1: Non-dimensional errors of proposed solution and (numerically solved) lin-
earized solution with respect to the ground truth on the reference orbit
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Figure 4.2: Non-dimensional errors of proposed solution with respect to the linear solu-
tion (averaging error) on the reference orbit with perturbing acceleration of 1e-5km/s2
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Table 4.2: Root mean square errors of orbital elements with respect to the ground truth
varying tangential acceleration (non-dimensional form)

ãp δã δe δω δt̃

1.812e-6 (1e-8[km
s2
]) 7.71e-11 3.50e-11 9.84e-11 2.23e-08

1.812e-5 (1e-7[km
s2
]) 7.99e-09 3.50e-09 9.86e-09 2.13e-06

1.812e-4 (1e-6[km
s2
]) 1.18e-06 3.59e-07 1.02e-06 2.43e-04

1.812e-3 (1e-5[km
s2
]) 8.31-04 5.50e-05 2.87e-04 6.20e-02

Table 4.3: Root mean square errors in radial and transversal components with respect to
the ground truth varying tangential acceleration

ap[
km
s2
] R[km] T [km]

1e-8 1.33e-4 1.35e-4
1e-7 1.26e-2 1.28e-2
1e-6 1.444 1.472
1e-5 349.1 371.7

terms which are neglected in the first-order expansion Eq. 4.18. In particular, the

second order (ϵ2) term is proportional to β(E)f 1
b(E). The resulting functions are

periodic with zero mean for a, e derivatives, having instead non-zero mean for

ω and t derivatives. Thus, error drifts arise upon integration of these latter. The

effect is less visible for t element, since its derivative is dominated by the Keple-

rian part, f 0(E) in Eq. 4.7. As a result, the integration error is mostly affected by

that of the semimajor axis used to evaluate f 0(E).

Table 4.2 reports the non-dimensional root mean square errors of the pro-

posed averaged model with respect to the ground-truth solution. As expected,

the accuracy degrades as the magnitude of the perturbing acceleration increases:

a change of one order of magnitude in the perturbing acceleration causes a change

of at least two orders of magnitude in a, e and ω. Notice also that the results in

Table 4.2 are global errors, so the intrinsic error introduced by the linearization

of GPE plays a role as well.

For collision avoidance applications, these errors would be more useful when

expressed in the R-T-N frame of reference. Table 4.3 reports these errors for R

and T cartesian components; N component is instead identically null, being the

acceleration on the orbital plane.

Taking into consideration the results of Chapter 3, we can draw qualitative con-

clusion about the applicability of the model to conjunction assessment. If we
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consider accurate enough a log-Pc error of 10% at 1σ level (i.e. 68% of conjunc-

tions), the propagated position can be biased at most by half the positional bound

in Section 3, i.e. 102 meters. As a consequence, we can reasonably say that the

proposed model can be reliably used in LEO up to accelerations of about 1e-

7km/s2. For larger accelerations this model shall implement a covariance infla-

tion strategy to account for model uncertainty.

Remind that this conclusion is contingent upon the specific simulation scenario,

most significantly the 5 orbital periods of propagation and 8500 km semi-major

axis.

We now consider the sensitivity of the proposed solution. We study the ef-

fect of varying the eccentricity and semi-major axis to the values in the sets

[0.2, 0.5, 0.8] and [6800, 8500, 10200] respectively. Argument of pericenter and

initial eccentric anomaly were not considered in this analysis, as they have neg-

ligible effects on the error.

Notice that these orbits have been chosen solely for evaluation purposes and

some of them are not physically meaningful, e.g. orbit with 8500km semi-major

axis and 0.8 eccentricity has pericenter below Earth’s surface.

As it can be seen in Figure 4.3, changing the semi-major axis changes the orbital

period and the error scales accordingly and almost proportionally. For this rea-

son, the proposed solution can be said to be tolerant to changes in semi-major

axis.

Figure 4.4 instead shows the behavior of the proposed model changing the ec-

centricity. Here we can distinguish two characteristics, from one side the average

behavior seems quite stable varying the eccentricity except for the time element.

This is due to the fact that in approximating an analytic solution for the time ele-

ment, Taylor expansions around null eccentricity was used. The error committed

in this expansion, although precise, becomes larger as the eccentricity gets fur-

ther from 0.

The second comment regards the increasing oscillations as the eccentricity ap-

proaches 0. Figure 4.5 helps understanding that this behavior is inherent to the

linearization of the true orbital model (intrinsic error) and not to the approxima-

tion made for solving that linear model (averaging error). The behaviour can be

adduced to the singularity of the adopted orbital elements for null eccentricity,

whereby the gradient becomes numerically very large amplifying errors in the
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Figure 4.3: Non-dimensional errors of proposed solution with respect to the ground
truth on the reference orbit changing semi-major axis
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Figure 4.4: Non-dimensional errors of proposed solution with respect to the ground
truth on the reference orbit changing eccentricity
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Figure 4.5: Non-dimensional intrinsic errors with respect to the ground truth on the
reference orbit changing eccentricity, i.e. error between linearized model and ground
truth

orbital elements.

To compare the solution method developed herein with state of the art, we

simulated the reference case also with the models from Bombardelli et al. (2011)

and Gonzalo and Colombo (2021), for simplicity referred as Bombardelli’s method

and Gonzalo’s method respectively.

Figure 4.6 shows the model proposed herein accurately tracking the average

trend of the orbital elements. The semi-major axis is experiencing the best im-

provement reducing the error by two orders of magnitude. The improvements of

the other orbital elements amount to about one order of magnitude.

Overall, the rms value of the position error magnitude along the entire propa-

gation interval reduces from 183.9 and 116.5 meters obtained respectively from
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Figure 4.6: Non-dimensional errors of proposed (linear), Bombardelli’s and Gonzalo’s
solutions with respect to the ground truth on the reference test case

Gonzalo’s and Bombardelli’s methods down to 18.0 meters. The largest error be-

ing on the tangential component which still reduces from 139.3 and 84.3 to 12.8

meters respectively.

Comparing more in details the results, one can appreciate that the present

method offers the largest improvement on the semi-major axis and eccentricity

elements. This is a beneficial effect of including the averaged gradient term, B1
r,

in the average solution (see Eq. 4.13).

Furthermore the errors in eccentricity and argument of pericenter exhibit a sen-

sible decrease in the oscillatory behavior. This is again a benefit of the lineariza-

tion step which allows the short period solution to account also for accelerations

arising from the gradient of the system dynamics.

Looking at the time element, improvements can be found both in the secular and

periodic components of the error. The key advantage of our method in this case

does not reside in the linearization of the GPE time-component, rather in the

more accurate modelling of the semi-major axis. In fact, the latter appears in the

GPE time law in a non-linear form and more importantly non-proportionally to

the perturbation ϵ.

In addition, it is worth to be noted that a disadvantage exist that is shared by

all the methods. In collision avoidance, we typically work with positions (e.g.
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Table 4.4: Non-dimensional execution time for the different methods with respect to the
fastest.

Method Time
Numeric 45.3
Gonzalo 1.2

Bombardelli 1
This 5.6

anomaly) at given times, while the above models provide times at given anoma-

lies. In case there is no possibility to work in a framework with anomaly as in-

dependent variable, this implies an iterative procedure to find the position at a

given time.

Lastly, we compare the computational burden of the proposed analytical model

with respect to state of the art. In order to make such comparison we considered

the base scenario in Table 4.1 always with the same tangential perturbation and

5-orbit propagation length.

We compared to the proposed method other three methods: the numeric method

using the Matlab’s ode113 commands (a variable-step, variable-order Adams-

Bashforth-Moulton Predict–Evaluate–Correct–Evaluate solver of orders 1 to 13),

Bombardelli and Gonzalo. We acknowledge that other efficient numeric solvers

exist that have been used in orbital mechanics, such as Livermore Solver for Or-

dinary Differential equations with Automatic Root-findingi.e., LSODAR (Amato

et al., 2018), but differences are not expected to be significant given the relatively

short integration window (few orbits). For the numeric method to be compara-

ble, we fixed the convergence tolerance to a relative value of 1e-6, which is in the

order of the error for the proposed model.

For the results not to depend from the machine hardware, we report in Table 4.4

the non-dimensional execution time using as a reference value the fastest among

the methods i.e., Bombardelli.

It can be concluded that the proposed method is heavier than the analogous

models proposed in the literature, which is a price to be paid for the increased

accuracy. This is expected as our model uses matrix exponential functions and

needs to evaluate a total of 15 elliptic integrals against the 3 of Gonzalo’s method,

which are computationally intensive routines.

Still, it retains a sensible advantage on the numerical integration, by running
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roughly 10 times faster.

4.5.7 Model performance as uncertainty propagator

As discussed in Chapter 3, a trajectory propagator to be adopted for COLA shall

fulfill accuracy requirements also in terms of positional covariance. To measure

accuracy of the proposed model in this sense, we take as a use case the base sce-

nario of the previous Section 4.5.6. In this case, based on Section 2.3, we shall

additionally make the gaussian assumption for the initial uncertainty and pro-

vide an initial covariance matrix which was set to:

C0 =

.02
2 0 0

0 .252 0

0 0 .022

 [km2]

Since we want to emphasize the error of the model rather than the error of the

propagation method we have chosen a compromise between computational com-

plexity and uncertainty realism, e.g. accuracy. In order to propagate the initial

covariance we used the Unscented Transform method.

UT can enforce a high degree of covariance realism (see Section 2.4) while con-

taining the computational costs, offering a good compromise between the linear

(simplest) and the ideal Monte Carlo approach. With such method, we prop-

agated the covariance (i.e. sigma-points) for both ground truth and analytical

models under tests. The sample propagation of the ground truth covariance was

performed fully numerically.

We tested our proposed model against the two state of the art models: Bom-

bardelli and Gonzalo.

Figure 4.7 reports the error of the position mean. As it can be seen, the position

mean error is coherent with previous section.

Figure 4.8 reports instead the error of the positional covariance. Taking again

into consideration the results of Chapter 3, we can draw qualitative conclusion

about the applicability of the model as uncertainty propagator to conjunction

assessment. Assuming as acceptable a log-Pc error of 10% at 1σ level (i.e. 68%

of conjunctions), the propagated covariance can be biased at most by half the

bound in Section 3, i.e. 77.5 meters. Regarding the models performance then,

one can see that in this use case all the models could be used with acceptable
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Figure 4.7: Error of position mean against numerical solution for proposed model and
other state of the art methods using Unscented Transform

errors on the first 5 orbital periods of propagation and potentially even beyond.

Figure 4.8 also depicts that despite the better positional accuracy of each prop-

agated sigma-point, the improvement in covariance accuracy of the proposed

model is not as large as the one in the position accuracy. Nonetheless, it has been

shown to provide sufficient accuracy, both in position and covariance predic-

tions, for COLA application on longer propagation periods.
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Figure 4.8: Error of position covariance in frobenious norm against numerical solution
for proposed model and other state methods of the art using Unscented Transform
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4.6 Chapter Appendix

4.6.1 Non-dimensional GPE form

We will make here use of the identities

∥v∥ = na

√
1 + e cosE

1− e cosE

cos f =
cosE − e

1− e cosE

sin f =
√
1− e2

sinE

1− e cosE

Let us furthermore recall the non-dimensional thrust definition as vector ϵ =

[ϵη ϵτ ϵn]
T = ap/

√
µ/a2c

Starting from the Gauss Planetary equation provided by Battin (1999) at

Problem 10-7 we have:

dã

dt̃
= 2ã3/2

√
1 + e cosE

1− e cosE
ϵτ

de

dt̃
=

√
ã

√
1− e cosE

1 + e cosE

[
2(1− e2) cosE

1− e cosE
ϵτ −

√
1− e2 sinE ϵη

]
di

dt̃
=

√
ã

1− e2
(cosE − e)ϵn

dΩ

dt̃
=

√
ã
1− e cosE

sin i
sinE ϵn

dω

dt̃
=

√
ã

e

√
1− e cosE

1 + e cosE

[
2
√
1− e2 sinE

1− e cosE
ϵτ + (e+ cosE)ϵη

]
+

−
√
ã
1− e cosE√

1− e2
cos i

sin i
ϵn

dM

dt̃
=

√
ã−3 − 1− e2

e

√
ã

√
1− e cosE

1 + e cosE

[
2(1− e3 cosE)√

1− e2
sinE

1− e cosE
ϵτ +

(cosE − e) ϵη]

(4.30)

Rewriting the latter in terms of eccentric anomaly instead of mean anomaly, one

has:

dE

dt̃
=

ã−3/2

1− e cosE
−

√
ã

e

√
1− e cosE

1 + e cosE

[
2 sinE

1− e cosE
ϵτ +

√
1− e2 cosE ϵη

]
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4.6.2 Non-dimensional GPE gradient in perturbation

The rows of the 6× 3 matrix evaluated at ϵ = 0 are:

∇ϵ
dã

dE
= (1− e cosE)


0

2ã3
√

1+e cosE
1−e cosE

0


T

∇ϵ
de

dE
= (1− e cosE)ã2

√
1− e cosE

1 + e cosE

−
√
1− e2 sinE

2(1−e2) cosE
1−e cosE

0


T

∇ϵ
di

dE
= (1− e cosE)ã3/2


0

0√
ã

1−e2
(cosE − e)


T

∇ϵ
dΩ

dE
= (1− e cosE)ã3/2

 0

0√
ã1−e cosE

sin i
sinE


T

∇ϵ
dω

dE
= (1− e cosE)

ã2

e

√
1− e cosE

1 + e cosE

 (e+ cosE)
2
√
1−e2 sinE

1−e cosE√
ã1−e cosE√

1−e2
cos i
sin i


T

∇ϵ
dt̃

dE
= −(1− e cosE)2

ã7/2

e


√
1− e2 cosE

2 sinE√
1−e2 cos2 E

0


T

4.6.3 Some recurrent integrals

An analytic solution for the integrals of E
√

1− e2c cos
2E or E√

1−e2c cos
2 E

is not

known at the authors. Therefore, we adopted an expansion of the elliptic part of

the integrand function to approximate a solution

√
1− e2c cos

2E = 1− e2c
2
cos2E − e4c

8
cos4E +O(e6c)

1√
1− e2c cos

2E
= 1 +

e2c
2
cos2E +

e4c
8
cos4E +O(e6c)
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Being the eccentricity typically between 0 and 1, we considered satisfactory an

expansion of 4-th order around null eccentricity.

Then the integrals involving either E
√

1− e2c cos
2E or E√

1−e2c cos
2 E

, both reduces

to the sum or subtraction of integrals of the type:

Ic2 =

∫
E cos2EdE =

E2

4
− sin2E

8
+

cos2E

8
+

E

2
sinE cosE

Ic4 =

∫
E cos4EdE =

3E2

16
+

E sin (2E)

4
+

E sin (4E)

32
+

cos (2E)

8
+

cos (4E)

128

Ic6 =

∫
E cos6EdE =

5E2

32
+

15E sin (2E)

64
+

3E sin (4E)

64
+

E sin (6E)

192
+

15 cos (2E)

128
+

3 cos (4E)

256
+

cos (6E)

1152

Whereas another useful integral of the same kind is:

IEsF =

∫
E sinE√

1− e2c cos
2E

dE ∼=
∫

E sinE dE +
e2c
2

∫
E sinE cos2E dE+

3e4c
8

∫
E sinE cos4E dE

Other recurrent integrals that can be analytically solved are those involving
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sine and cosine multiplying elliptic functions:

Isc =

∫
sinE

√
1− e cosE

1 + e cosE
cosE dE =

− 1
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(
−e3ccos
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2E

+
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2
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√
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√
1−e2c cos
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+ arcsin (ec cosE)
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sinE

cos2E√
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2E
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cosE
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sinE
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1− e2c cos

2EdE =

− cosE

2
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1− e2c cos

2E − arcsin (ec cosE)

2ec

A useful recurrence is also noticed using the integrals:

Ic0F =

∫
1√

1− e2c cos
2E
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F [E|k]√
1− e2c

Ic1F =
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cosE√
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1
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ec√
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sinE
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cos2E√
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1−e2c cos
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2E
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,

(4.31)

where we recall that k = e2c
(e2c−1)

.
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In fact, multiplying and dividing by
√
1± ec cosE which is always different from

0 for elliptic orbits, one can show that:∫ √
1± ec cosE

1∓ ec cosE
cosi E dE = IciF ± ec Ic(i+1)F



5
Conclusions

This thesis has reported the results obtained as part of the PhD research on

efficient tools for management of satellite constellations.

After identifying the main technical and operational challenges to be faced for

the sustainability of satellite constellations, a main line of research was identi-

fied in the space traffic management and collision avoidance operations using

low thrust electric propulsion. As in the era of large constellations the number

of collision warnings is expected to become too large to be handled by man-

ual procedures, the on-board automation of (at least part) of the COLA process

would be a great asset. This, in turn, has led the investigation towards the devel-

opment of efficient analytic methods for orbit propagation under low trust and

the formulation of the research questions:

1. Which are the requirements for an orbit propagator under low thrust to be

used for COLA operations?

2. Can we fulfil such requirements with an efficient analytic orbit propagator?

To answer the first question, we considered the problem of satellites con-

junction assessment adopting as risk metric the probability of collision in the

encounter plane, which is the most widely adopted index. For such metric, we

enforced a desired maximum error, and derived accuracy requirements for both
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position and positional covariance propagation.

With the propagation requirements, we studied a couple of show-cases arriving

at a classification of low thrust systems characteristics that shall be taken into

account when applying low thrust to COLA operations. We concluded that the

systematic error on the realized low thrust is the most significant source of error

for the collision metric if not taken into account.

Given the importance of accounting for propulsion systems characteristics in

COLA, we moved the focus on analytic orbit propagation models for such sys-

tems, to answer research question 2.

Inspired by recent literature on analytical models for perturbed motion, we

developed a novel solution method which improves state of the art propagation

accuracy, both in terms of position and positional covariance predictions. We

based our analytical model on the theory of averaging applied to a linearized

version of Gauss Planetary Equations. The main merit of the proposed approach

is that of relaxing the commonly employed hypothesis of keeping constant the

slow orbital elements while integrating GPE.

After recognizing the relevance of tangential maneuvers in COLA, we specialized

the model to such case, and assessed its performance on several numerical test

cases. Results suggest the proposed model is a good candidate to be used for

COLA applications, for instance to optimize low thrust maneuvers that starts

few orbit before the TCA (3-4 orbits).

5.1 Limitations and future work

As future work, we mention the possibility of formulating the problem in some

non-singular orbital elements. In fact, a limitation is the increasing error of the

model when approaching null eccentricities. Towards circular orbits in fact, the

intrinsic error resulted to increase sensibly because of the formulation in singu-

lar Keplerian orbital elements.

Furthermore, to accurately model cases approaching unitary eccentricity, higher

order expansions for solving the most complex integrals are desirable. In fact, to-

wards parabolic orbits, the global error increases because of the approximations

involved in integrating complex elliptic integrals.

Another limitation lies in the range of accelerations up to which the predic-
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tion accuracy meets the COLA requirements. Although the 1e-7km/s2 limit in-

cludes a large amount of the available low thrust propulsion systems, there exist

other orbital perturbations that may exceed this limit, and thereby could be em-

bedded in the model developed herein only at the price of significantly degraded

accuracy. For instance, J2 acceleration in LEO is in the order of 1e-6, 1e-5 km/s2.

One possibility to overcome such limitation, at least for conservative perturba-

tions, is the formulation of the problem in a set of orbital elements that could

absorb such major perturbations, similarly to the J2-equinoctial elements pro-

posed in (Bau et al., 2021).
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