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Digital forensics as a field has progressed alongside technological advancements over the 

years, just as digital devices have gotten more robust and sophisticated. However, criminals 

and attackers have devised means for exploiting the vulnerabilities or sophistication of these 

devices to carry out malicious activities in unprecedented ways. Their belief is that electronic 

crimes can be committed without identities being revealed or trails being established. Several 

applications of artificial intelligence (AI) have demonstrated interesting and promising 

solutions to seemingly intractable societal challenges. This thesis aims to advance the concept 

of applying AI techniques in digital forensic investigation. Our approach involves 

experimenting with a complex case scenario in which suspects corresponded by e-mail 

and deleted, suspiciously, certain communications, presumably to conceal evidence. The 

purpose is to demonstrate the efficacy of Artificial Neural Networks (ANN) in learning and 

detecting communication patterns over time, and then predicting the possibility of missing 

communication(s) along with potential topics of discussion. To do this, we developed a novel 

approach and included other existing models. The accuracy of our results is evaluated, and their 

performance on previously unseen data is measured. Second, we proposed conceptualizing the 

term “Digital Forensics AI” (DFAI) to formalize the application of AI in digital forensics. The 

objective is to highlight the instruments that facilitate the best evidential outcomes and 

presentation mechanisms that are adaptable to the probabilistic output of AI models. Finally, 

we enhanced our notion in support of the application of AI in digital forensics by 

recommending methodologies and approaches for bridging trust gaps through the development 

of interpretable models that facilitate the admissibility of digital evidence in legal proceedings. 

Keywords: Digital Forensics AI, Evidence Mining, Digital Forensics, Digital Evidence, ANN, 

DNN, DL, ML, CNN, VAE, VGAE, GRU, Optimization, Evaluation, Natural Language 

Processing, Explainable AI, Interpretable AI, Topic Modelling, E-mail Artifacts, LDA, Latent 

Dirichlet Allocation, NMF, Non-Matrix Factorization 
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La Digital forensics come campo ha progredito insieme ai progressi tecnologici nel corso degli 

anni, proprio come i dispositivi digitali sono diventati più robusti e sofisticati. Tuttavia, 

criminali e aggressori hanno escogitato mezzi per sfruttare le vulnerabilità o la sofisticazione 

di questi dispositivi per svolgere attività dannose in modi senza precedenti. La loro convinzione 

è che i crimini elettronici possano essere commessi senza che le identità vengano rivelate o che 

vengano stabiliti percorsi. Diverse applicazioni dell'intelligenza artificiale (AI) hanno 

dimostrato soluzioni interessanti e promettenti a sfide sociali apparentemente intrattabili. 

Questa tesi mira a far avanzare il concetto di applicazione delle tecniche di IA nell'indagine 

forense digitale. Il nostro approccio prevede la sperimentazione di un caso complesso in cui i 

sospetti corrispondevano via e-mail e cancellavano, sospettosamente, alcune comunicazioni, 

presumibilmente per nascondere prove. Lo scopo è dimostrare l'efficacia delle reti neurali 

artificiali (ANN) nell'apprendimento e nel rilevamento dei modelli di comunicazione nel 

tempo, e quindi prevedere la possibilità di comunicazioni mancanti insieme a potenziali 

argomenti di discussione. Per fare questo, abbiamo sviluppato un nuovo approccio e incluso 

altri modelli esistenti. Viene valutata l'accuratezza dei nostri risultati e viene misurata la loro 

performance su dati precedentemente non visti. In secondo luogo, abbiamo proposto di 

concettualizzare il termine “Digital Forensics AI” (DFAI) per formalizzare l'applicazione 

dell'IA in digital forensics. L'obiettivo è quello di evidenziare gli strumenti che facilitano i 

migliori risultati evidenziali e meccanismi di presentazione che sono adattabili all'output 

probabilistico dei modelli AI. Infine, abbiamo migliorato la nostra nozione a sostegno 

dell'applicazione dell'IA nella digital forensics raccomandando metodologie e approcci per 

colmare le lacune di fiducia attraverso lo sviluppo di modelli interpretabili che facilitano 

l'ammissibilità delle prove digitali nei procedimenti legali. 

 

Oggeto: Informatica legale 

Parole chiave: Digital Forensics AI, Evidence Mining, Digital Forensics, Prove digitali, ANN, 

DNN, DL, ML, CNN, VAE, VGAE, GRU, Ottimizzazione, Valutazione, Elaborazione del 

linguaggio naturale, AI spiegabile, AI interpretabile, Modellazione argomento, Artefatti e-

mail, LDA, allocazione di Dirichlet latente, NMF, fattorizzazione non matrice  
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The history of forensics dates back thousands of years — the Babylonians in 200 BC used 

fingerprints to sign contracts, but the concept got popularized in 1892, when Sir Francis Galton 

conducted research by categorizing fingerprint patterns to determine the likelihood of two 

persons having the same sets of fingerprints.  Galton’s research eventually resulted in the 

development of what we now refer to as forensics. 

Digital forensics (DF) origin dates all the way back to more than five decades, when two data 

recovery engineers successfully restored the lone copy of a database file that had been deleted 

mistakenly (Garfinkel, 2010). The discipline of computer forensics first appeared in a 1992 

publication by (Collier and Spaul, 1992) and has progressively evolved into forensic science 

since then. Now, the discipline’s scope has been expanded to encompass the presentation of 

forensic investigation findings in a court of law. Hence, the terms computer forensics, forensic 

computing, and digital forensics are all used interchangeably in the context of the acquisition, 

investigation, analysis, and presentation of digital evidence in a legal proceeding (Schatz, 

2007). 

While DF as a domain has evolved over time to keep up with technological advancements, as 

digital devices have become more robust and sophisticated in their ability to solve seemingly 

intractable societal problems, the intent and eventual use of these technologies to commit 

crimes has become more complex and widespread. Attackers and criminals have discovered 

methods for exploring the vulnerabilities or sophistication of these devices to carry out 

malicious operations in previously unthinkable ways. The primary motivation for electronic 

crime, as opposed to traditional physical crime, is the hope that evidence can be hidden; 

identities can be masked; actions can go undetected; and trails can be obfuscated. 
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What typically necessitates digital forensic investigation is cybercrime1, i.e., the commission 

of crime using electronic means, which prompted the development of a system of rules, 

processes, and standards for systematically investigating such crimes. Among the early 

classifications of what was considered cybercrime were fraud; theft; use of unsolicited 

software; violation of privacy; hacking; malware or virus attack, and so on (Furnell, 2003). 

However, nowadays, these crimes have evolved in sophistication and operational complexities 

to include: Cyberextortion2, Cryptojacking3, Cyberespionage4, ransomware attacks, 

Distributed-Denial-of-Service5, phishing6 and so on. Cybercrime has advanced to the point 

where it is expected to cost the global economy ten trillion dollars yearly by 2025, an almost 

300 percent increase over 2015 (Steve, 2021). It was estimated that,  if cybercrime were a 

country, it would rank third in terms of GDP after the United States and China. Every half-

minute, an attack, attempted attack, intent to commit — or actual commission of e-crime 

occurs, according to reports (Marija, 2021).  

When paired with the activities of cyber criminals, these staggering figures create a new type 

of challenge for the fields of law, criminology, law enforcement, and cyber security, among 

others. The whole nature of crime has shifted dramatically, with security and justice systems 

scrambling to devise measures and redefine laws to combat electronic-based criminal activity. 

Despite increased resources for cyber defence by governments and organizations, constant 

amendments to laws, and improvements on the skills and capacities of law enforcement and 

 
1 Cybercrime is referred to as an illegal action directed against or involving a computer, a network, or an 

interconnected devices. Individuals or organizations commit cybercrime for a variety of motives, including 

economic, personal, or political. Description available at https://www.kaspersky.com/resource-

center/threats/what-is-cybercrime 
2 “Cyberextortion is a crime involving an attack or threat of an attack coupled with a demand for money or some 

other response in return for stopping or remediating the attack.” Definition available at 

https://searchsecurity.techtarget.com/definition/cyberextortion 
3 “Cryptojacking is a threat that embeds itself within a computer or mobile device and then uses its resources to 

mine cryptocurrency. Cryptocurrency is digital or virtual money, which takes the form of tokens or coins.” 

Definition available at https://www.kaspersky.com/resource-center/definitions/what-is-cryptojacking 
4 “Cyber Espionage, or cyber spying, is a type of cyberattack in which an unauthorized user attempts to access 

sensitive or classified data or intellectual property (IP) for economic gain, competitive advantage or political 

reason.” Definition available at https://www.crowdstrike.com/cybersecurity-101/cyberattacks/cyber-espionage/ 
5 “A distributed denial-of-service (DDoS) attacks target websites and online services. The aim is to overwhelm 

them with more traffic than the server or network can accommodate. The goal is to render the website or service 

inoperable.” Definition available at https://us.norton.com/internetsecurity-emerging-threats-what-is-a-ddos-

attack-30sectech-by-norton.html 
6 “Phishing is a cybercrime in which a target or targets are contacted by e-mail, telephone or text message by 

someone posing as a legitimate institution to lure individuals into providing sensitive data such as personally 

identifiable information, banking and credit card details, and password.” Definition available at 

https://www.phishing.org/what-is-phishing 
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security experts, prevention of attacks remain elusive. This is especially expected given that 

technological advancements have usually outpaced legislations, or the development of 

detective/preventive mechanisms. 

The interconnectedness of digital devices, particularly with the concept of the Internet of 

Things (IoTs7) (Ashton, 2009; Atzori, Lera, and Morabito, 2010; Xia, et al., 2012), which has 

become indispensably pervasive, has facilitated unprecedented access to and sharing of 

information (a commodity in and of itself). Oftentimes, this information overload (also referred 

to as infobesity), which is associated with excessive exposure to (mainly superfluous) 

information, has resulted in the unlawful storage of personal data for a variety of reasons, one 

of which is malicious. 

Equally, developers/producers of technological systems are constantly enhancing the security 

of their systems to avoid illicit data exfiltration or unauthorized access by third parties, by 

incorporating data encryption techniques. Strong encryption-protected devices have 

significantly harmed the capacity of DF experts and LEAs to conduct adequate investigations 

in a short amount of time or without violating certain rules.  

Computer/Digital forensics developed out of the need to accurately identify, trace, analyse, and 

report on the activities (or potential) of cybercriminals, in most situations, so that a court of 

competent jurisdiction can decide on the degree of the commission (or non-commission) of 

crime and adjudicate accordingly. Computer forensics is defined in (Kuchta, 2000) as “the 

science concerned with the relation and application of computers and legal issues.” According 

to (Casey, 2004), DF process entails identifying investigative activity (including determining 

relevant digital sources), gathering information, safeguarding it against inadvertent alterations, 

analyzing, and reporting the examination's findings. In  (Kerr, 2011), DF integrates computer 

science principles, such as computer architecture (operating and file systems), software 

engineering, and computer networking, with legal procedures defining criminal, civil, cyber, 

and evidence laws.  

Over the last decade, the area of digital forensics has seen remarkable developments. Several 

improvements in the testing and validation of forensic tools; open-source tools with verifiable 

codes; the development of interoperable, community-oriented, ontology-based, investigative 

 
7 IoT connect “things and people – all of which collect and share data about the way they are used and about the 

environment around them.” Definition available at: https://www.ibm.com/blogs/internet-of-things/what-is-the-

iot/ 
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information exchange tools, such as CASE8 (Casey et al., 2017a; Casey et al., 2017b), 

EVIDENCE2-eCODEX9, and ‘The Evidence Project’ (Biasiotti et al., 2018a; Biasiotti et al., 

2018b); cross-border collaborative efforts; distributed or interconnected devices handing 

techniques, etc.  Additionally, there are a number of challenges (Farid, 2019; Montasari 

and Hill, 2019; Casey, 2019) that the field is still facing — some are a result of recurring issues 

that have not been adequately addressed, while others are a result of the rapid growth in 

popularity of digital devices, which is putting forensic analysis’ efficiency and capabilities to 

the test. (Garfinkel, 2010) highlighted several of these issues over the last decade and advocated 

a new research direction. This study will discuss the highlighted challenges and assess the 

current state of research and techniques implementation.

When crime is committed (particularly through electronic means), most often unintentional, 

often invisibly, footprints are left behind, and the goal of Law Enforcement Agencies (LEAs) 

or Forensic Investigators (FIs) is to follow this trail and reconstruct events that may be of 

potential probative value in the detection and subsequent prosecution of the perpetrator. What 

is most noteworthy in digital forensics is the evidence (referred to as digital evidence in this 

context) that is extracted, analyzed, and presented to prove culpability, complicity, intent, or 

guilt (or lack thereof) of a suspect, in a criminal or civil case. Digital evidence is the main 

resultant data of value in a forensic investigation.  Michelle Theer was convicted for the first 

time using digital evidence in 2000. E-mails extracted from her computer revealed her 

complicity in a conspiracy to assassinate her spouse (Bryan, 2017).  The significance of this 

(usually hidden) value in proving or disproving the commission of a crime, which may 

eventually result in a subject's conviction or acquittal, emphasizes its fragility, from the initial 

point of identification through the presentation in court. Numerous scientific methods have 

been used to extract evidence from digital devices, with many more being developed or 

proposed. However, because to the rapid and ongoing improvements in technology, many 

extraction procedures have become challenging, if not impossible. 

 
8 Cyber-investigation Analysis Standard Expression (CASE) is an ontology-based, community-

exchanged digital evidence analysis system.” Available at https://caseontology.org/ 
9 The ‘EVIDENCE2-eCODEX’ project, among other things, implements existing European legislation 

concerning collection, preservation, and exchange of e-Evidence amongst member states, with best practices 

and guidelines integrated into a comprehensive framework. Available at: http:// http://www.evidenceproject.eu/ 
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While forensic science has applications in a variety of science disciplines, such as biology, 

toxicology, and physics, these fields often view evidence in a physical context. In contrast, 

digital evidence is complex due to its volatility, volume, changeability, and sophisticated 

architecture of digital devices. These complexities have constantly cast doubt on the 

authenticity of digital evidence, as well as its admissibility in court. This means that the 

procedure used to get the evidence, its handling, and the chain of custody should guarantee that 

the evidence was not tampered with inadvertently and was obtained in accordance with all 

applicable fundamental rights. This can be seen as the legality of the procedure and the 

evidence. In Chapter 2 of this thesis, we discuss digital evidence in detail.

The concept of evidence as described above is intended to emphasize the critical role of digital 

evidence in supporting or refuting hypothesis in a criminal or civil case. The narrated 

components stress the uniqueness of each of the points, in part or in whole, as a 

standard requirement, the absence of which could render the offered exhibit inadmissible as 

evidence. This indicates that the methodologies for extracting (Soltani and Seno, 2017; 

Horsman, 2019) digital evidence will be complex, massive, and time consuming. Numerous 

researchers have conceptualized and/or codified several approaches (Gaby and Benjamin, 

2013; Novak, Grier, and Gonzalez, 2018; Kwon and Jeong, 2021) to reduce these complexities, 

but we are still a long way from developing an all-in-one efficient solution. The majority of 

forensic methods are either inadequate or incapable of discovering substantial evidence in 

artifacts, particularly when the items are “out-of-the-ordinary, out of place, or subtly modified” 

(Garfinkel, 2010). 

While digital forensic artifacts from which evidence can be inferred provide critical validity 

for proof of facts, such as attribution of evidence to a suspect (Chaski, 2005; Himal, 2010; 

Kumar, et al., 2012; Sarunas and Jevgenijus, 2020), determination of intents (Mohammad, 

2021), source identification, confirmation/corroboration of alibi or statement, etc., they are not 

without inherent complexities. Artifacts are similar to footprints in that they exist and are 

difficult for end users to access or manipulate. However, if the investigation is not conducted 

correctly, it is very possible for these artifacts to be missed. Textual data is a key source of 

artifacts, and it can take on a variety of forms —  most frequently, conversations. Textual data 

includes e-mails, documents, tweets, and text messages, as well as log files and the registry. 

Complex scientific, linguistic, and philosophical techniques can be utilized to analyse this data 
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in order to elicit critical traces establishing or pointing the way to substantial evidence. A small 

number of existing forensic tools provide the capability to examine complex traces. While 

qualified experts can sift through these clues, it is possible that critical footprints may be 

ignored or missed. 

Inspired by contemporary breakthroughs in Artificial Intelligence (AI) (Turin, 1950; 

McCarthy, 2004) — which is penetrating the entire landscape of technology and services at the 

moment. Digital devices, tasks, and major business services, for example, are leveraging 

machines’ intelligence, predictive/forecasting capabilities, and pattern recognition capabilities 

(as well as their ability to mimic the human mind) to boost productivity and support critical 

organizational/governmental decision making. For example, the Big Data10 field has evolved 

significantly over the years and demonstrated innovative approaches to handling and 

transforming data, as have ‘Data Mining’ (Agrawal and Psaila, 1995; Chung and Gray, 1999; 

David, Padhraic and Heikki, 2001) and Machine Learning (ML) (Carbonell, Michalski and 

Mitchell, 1983; Jordan and Mitchell, 2015) – both of which are subfields of AI. Statistical and 

computational methods can be useful in uncovering hidden patterns in huge datasets via data 

mining. This establishes a promising link between data mining techniques and the analysis of 

digital evidence. Additionally, ML is concerned with data and computer algorithms; it employs 

statistical and probabilistic methods to categorize, predict, and deduce important insights about 

the structure of data. (Farid and Rahman, 2010) introduced a Bayesian algorithm-based 

solution for detecting anomalous network intrusions. Their approach correctly classified 

various types of attacks with a low false positive rates. (Panagiotis, Theodoros and Petros, 

2018) investigated the efficacy of deep computational methods for classifying and predicting 

crimes using open data from police reports. (Costantin, Giovanni and Olivieri., 2019a) 

investigated the potential for Answer Set Programming (ASP) to automate evidence analysis. 

The objective was to provide possible hypotheses as evidence in court. (Khan, Hanif and 

Muhammad, 2021) recently conducted a survey on the application of ML in the acquisition of 

digital evidence. The survey examined a variety of applications with the goal of promoting 

ML’s potential in digital forensics.  

The most recent, yet most advanced branch of AI to date is the Artificial Neural Network 

(ANN) (Jure, 1994; Wang, 2003; Dongare, Kharde and Kachare, 2012), a subfield of Deep 

Learning (DL) (LeCun, Yoshua and Geoffrey, 2015) or Deep Learning Neural Networks 

 
10 Big data is a field of AI that deals with systematic extraction or analysis of large volume and complex data 

sets. 
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(DNN). DL and ML are frequently used interchangeably, and except for the fact that DLs are 

designed with several layers, DL is a subdivision of ML. ANNs, also known as Neural 

Networks (NNs), are a form of computing system design that is inspired by the way neurons 

interconnect in the biological human brain. Although human brains appear to interpret real-

world situations differently than computers or machines, the purpose of NNs is to attempt to 

simulate a network of neurons (also called nodes) connected (by edges) in layers, by sending 

signals (of real numbers) among each other, in order for computers to learn and make human-

like decisions. ANNs can learn and model complex and non-linear relationships in data by 

identifying meaningful or unusual patterns in the data during training process.  Whatever is 

learned during this training phase is expected to be generalizable and capable of being utilized 

to make predictions on previously unseen data. Due to the heterogeneity, volatility, and 

variation of data, ANNs are an ideal candidate for learning hidden relationships because they 

do not impose a fixed relationship on the data; rather, they compute the error rate during their 

learning phase and backpropagate by penalizing these errors for accurate predictions.  

After a brief description of the complexities of digital forensics artifacts, the functionalities of 

AI models, and the potentially promising interconnections between them, one of the goals of 

this thesis – which forms the majority of Part II — is to develop an AI-based technique for 

detecting evidential patterns in textual communications. Although e-mails were employed in 

this research, the approach is extensible to other types of textual communications, including 

documents, tweets, and text/instant messages. The practicality of this part of the research is 

demonstrated in a project using Deep Neural Networks that is modelled on a real-world use 

case. The project uses Deep Neural Networks to reconstruct events based on prior learnable 

inferences in order to predict the likelihood of the occurrence of some prior events. 

Specifically, we deduced that a suspect may have deleted certain suspicious e-mails in order to 

conceal a suspected fraud. The fundamental objective of this paper is to promote and support 

and advance the concept and proposal for the (foundational) usage of AI in DF, particularly in 

detecting complex latent patterns that are difficult to infer manually. 

In Part III of this thesis, we discussed the recent scepticism expressed by prosecutors and courts 

in general about AI-based evidence extraction methods/processes. Understandably, many have 

questioned the suitability of AI — commonly referred to as a closed-box – as a tool to be 

deployed in evidence mining11, or more broadly, in digital forensics. While the operations of 

 
11 See Section 3.2 
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AI models are firmly steeped in pure mathematics, statistics, computational theories, and 

perhaps philosophy and psychology, they argued the interpretability and comprehensibility of 

these models, particularly in terms of how they arrive at a certain decision. Additionally, this 

sparked a lengthy argument and triggered a surge in research interest in computational science 

and law. The results of the majority of AI tasks are stochastic in nature - they are not 

deterministic. The challenge is that DF, as it relates to the presentation of evidence, should not 

be subject to probability — it must be well-established; scientifically verifiable; generally 

uncontroversial; and legally admissible, otherwise, the evidence will be excluded from 

proceedings or become inadmissible. We examined scepticism in AI-based evidence 

acquisition in terms of explainability and interpretability in this section. This article presents a 

framework defining the concepts and criteria that can be used to mitigate some of these 

mistrusts. In another dimension, we examined the many machine-driven methodologies 

currently being used for evidence mining, as well as the associated challenges and multiple 

attempts or proposals to solve complex problems. We demonstrated that different models, 

standards, and optimization strategies are appropriate for different tasks and hence have a 

significant impact on the result. 

Overall, this thesis establishes, via practical examples, the notion of “Digital Forensics AI12” 

as a concept that encompasses the models, methods, acceptable standards, evaluation, and 

optimization techniques associated with AI models deployed for digital forensics purposes. In 

Chapter 5 of this thesis, we discuss this concept in detail.

The ‘Explosion of Complexity’ (Caviglione, Wendzel and Mazurczyk, 2017) and ‘Scale’ 

(Casey, 2019) are two of the most difficult components of forensic investigation. The 

complexity of data – exacerbated by the development of novel technologies, and the rate at 

which this data is generated in huge quantities —  amplified in particular by the ‘Internet of 

Everything (IoE)’ (Mahdi et al., 2015; Hussain, 2017), means that potential evidence may be 

dispersed over several physical or virtual hosts and geographical locations. The most 

significant issue that arises as a result of this is that forensic analysts become overwhelmed 

with a stream of data to investigate. Due to the fallibility of human beings, traces may be 

overlooked, and the backlog of work awaiting investigation frequently impairs the delivery of 

 
12 See Chapter 5 



12 
 

criminal investigation results in time for judicial proceedings (Montasari and Hill, 2019). A 

prolonged judicial process may end in an absolute acquittal, particularly if the defense attorney 

can demonstrate that the delay is the result of the prosecution’s lack of significant evidence. 

This is especially true in jurisdictions where criminal procedure is accusatorial (as it is in the 

United Kingdom and former British Empire countries), requiring the prosecution report to be 

made available to the defense in order to ascertain agreement or otherwise prior to the actual 

trial (Sommer, 2018). In general, this pre-trial phase of civil litigation is referred to as 

“discovery,” and it allows both parties in the lawsuit to request documents and other evidence. 

Although there are forensic technologies capable of handling several terabytes of data, what 

these systems typically lack is the capacity to organize this material succinctly into relevant 

investigative clues. As (Garfinkel, 2010) noted, the majority of tools were built to aid experts 

in identifying a particular piece of evidence, not to aid with investigation. Garfinkel suggests 

the combination of process automation and forensic investigation, in his words, such 

automation “should be able to detect and present outliers and other data elements that seem 

out-of-place.  These systems will be able to construct detailed baselines that are more than 

simply a list of registry entries and hash codes for resident files.” Thus, overcoming the 

challenges associated with identifying probative values in huge data would require the 

development of tools with the necessary engineering and visualization capabilities that can 

report possible digital clues to examiners in a standardized, unified manner for further 

investigation (Caviglione, Wendzel and Mazurczyk, 2017). 

A strong probative analysis of a crime should be able to place objects, activities, and time in a 

single dimensional space, allowing for the reconstruction of events that may be suggestive of 

actors’ prior activities. Historically, reconstruction tasks have been performed manually by 

examining a variety of disparate artifacts in order to establish relationships between objects, 

time, and crime, which explains why forensic investigations have taken an abnormally long 

time to complete. The term “event reconstruction” refers to the method of converting the state 

of a digital object to that of its causal event (Carrier and Spafford, 2004a). This simply entails 

establishing the occurrence of an event and its time of occurrence. 

Several approaches have been proposed over the last decades in an attempt to address some of 

the numerous challenging problems involved with digital evidence reconstruction – the bulk of 

which are based on automated systems. The authors in (Khan, Chatwin and Young, 2007) 

monitored file system manipulations, captured the snapshots at specified intervals, and then 
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trained a neural network on the acquired data to build a post-event timeline on a hard disk to 

prove the execution of different software applications. In a similar task, but using a comparison 

technique, (Khan, 2012) evaluated the performance of a Bayesian network-based model vs a 

neural network-based model for reconstructing post-event timelines. The Bayesian network 

model outperformed the other models in terms of recognizing and detecting patterns in 

incomplete datasets. According to (Gladyshev and Patel, 2004), an incident state can be 

examined using a Finite State Machine to find all possible scenarios (FSM). Their FSM 

computes all plausible explanations based on a series of witness testimony. On a computer 

system, social network data, such as internet browsing cache, can be used to locate social media 

(Facebook, LinkedIn, e-mail sent and received, and so on) data. Turnbull and Randhawa (2015) 

demonstrated how low-level digital artifacts can be homogeneously fused to assist 

investigators in translating the status of file systems and reducing them to sequences of events, 

which can aid in making fact-based conclusions. In  (Studiawan, Sohel and Payne, 2020), a DL 

technique in conjunction with a context and content attention model to identify and highlight 

terms with negative sentiments as events of interest using log (message) file data. “The 

experimental result produced an F1 score of 98.43 percent and an accuracy of 99.64 percent, 

respectively.” 

Given the promising results of these proposed methods (and countless others) for 

reconstructing sequences of events, it may be sufficient to argue that intelligent automated 

systems have demonstrated sufficient effectiveness to stake a strong claim for inclusion in the 

domain of digital forensics – at least at the foundational level of DF investigation. However, 

the use of AI in forensics has been met with widespread criticism within the DF community 

(James and Gladyshev, 2013), with concerns that the quality of the results could be endangered, 

and expert expertise significantly diminished. Another area of concern that necessitates the 

adoption of AI in DF analysis is deep fake (Westerlund, 2019) — a deep/machine learning-

based false synthetic images or videos created by substituting a human with a fictitious (non-

existent) human being. This trend poses a significant threat to digital forensics and the 

possibility of identifying the perpetrator of a crime. Traditional forensic techniques will have 

a difficult time identifying false patterns in a deep fake image. In contrast to stakeholders' 

reservations about the deployment of closed-box models, we argue that for deep fakes, only 

an AI-based model that generated the image can learn and identify anomalous patterns in such 

images via a reverse engineering technique. It is safe to expect, however, that we will continue 
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to see such deceptively complex technologies in the future, for which AI can be instrumental 

in identifying.

Considering the problems described in Section 1.4, this thesis aims to answer three (3) 

questions as follows: 

RQ1 – How can we intelligently learn (detect) hidden patterns from the complex unstructured 

textual artifact? 

RQ2 – To what extent can Artificial Intelligence (AI) models aid in the analysis of a digital 

forensic investigation process? 

RQ3 – How can the (mis)trust in AI-based digital forensics analysis be mitigated through an 

effective evaluation of its results and an understandable presentation of its outcomes? 

The study discussed in this thesis aims to provide answers to the questions raised above. 

The overall research goal of this thesis is to advance support for the adoption of AI methods in 

digital forensic investigation. Our approach is to begin by experimenting with a complex case 

scenario in which suspects corresponded by e-mail and suspiciously deleted some 

communication(s), ostensibly to conceal evidence. We observed that manually analyzing this 

case may be difficult and time consuming, and most available e-mail forensic tools lack the 

capability to detect latent behaviours. The objective is to demonstrate the usefulness of DNN 

in learning and recognizing communication patterns over time, and then predicting the 

possibility of missing communication(s). To accomplish this, we devised a novel approach and 

included several existing models. The correctness of our results is evaluated, and the 

performance of the model is measured when deployed on previously unseen data. Second, we 

intend to formalize the application of AI in digital forensics. The idea is to emphasize on the 

instruments that helps to achieve best evidential results in the process. Lastly, we seek to 

advance our notion in support of the application of AI in digital forensics by offering  

methodologies and mechanisms for bridging the trust gaps using interpretable approach in 

forensic analysis and presentation.  
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To guide the scope of this work, the broad definition of intelligent systems used in this thesis 

excludes the use of physical machines (such as robots) in the analysis or investigation of digital 

crime. To begin, examining the requirements for resolving the problems raised by the research 

questions (particularly RQ1) necessitates the need to modularize the entire method. 

Modularization13 aids in determining which aspects of the problems require (or do not require) 

AI-based techniques. For example, the technique for processing and extracting text patterns 

from e-mails was developed using theoretical computing science14 and formal language 

theory15, not an AI model. This approach allows for the decomposition of the problem into sub-

modules that can be tackled individually. A significant advantage of this modularization 

approach is that each sub-module can be independently evaluated, tested, and optimized. 

Combining the individual results yields the optimal solution to the problem. 

Our approach focuses on identifying the most appropriate dataset and the most effective 

technique for pre-processing the data. Recognizing the need for relevance of extracted text, and 

the value of noise removal, while ensuring that the final dataset is not inappropriately skewed 

or biased. Our techniques enabled us to capture sequential snapshots of communications 

occurring at different points in time. We construct a Dynamic (communication) Graph (Siljak, 

2008; Trivedi et al., 2018; Kazemi et al., 2020) in such a way that it allows for the smooth 

reconstruction of communication patterns over a pre-defined time period. While constructing 

a communication graph is a common technique in neural networks, training a Graph Neural 

Network (GNN) (Scarselli et al. 2008) model with multiple edge features  has not been fully 

exploited in NN architectures. Our methodology is detailed in Chapter 4 of this thesis. 

In the other part of this thesis, with reference to the practicality of our approach to solving the 

RQ1 and a review of available methods, we discuss the evaluation techniques adopted in the 

majority of the methodologies. The purpose is to evaluate how effectively the methods used to 

investigate align with the objective. We discuss different standards and optimization 

techniques, and which ones are appropriate for a given task. Chapter 5 goes into greater detail 

 
13 Modular programming is the division of a computer program into distinct sub-programs.  
14 Theoretical computer science focuses on mathematical aspects of computer science such as computation 

theory, calculus, and type theory. 
15 Formal language is composed of words whose letters are drawn from an alphabet and which adhere to a 

specific set of rules. 
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on standards and optimization techniques, including an effective mode of verbally representing 

probabilistic outcomes in terms of strength of evidence. 

Finally, we discuss the current issues of explainability and interpretability in the field of Digital 

Forensics AI, highlighting the reasons for the public’s scepticism (and suspicion) of its 

acceptance (particularly among legal practitioners and courts in general), as well as the general 

efforts to make AI interpretable. The chapter 6 of this thesis details the techniques and the 

recommendations offered to mitigate the distrusts.

The significance of this work is the approach utilized to address all of the research questions’ 

components. The practical experimental approach, in particular, aims to demonstrate a use case 

that may be difficult to analyse with conventional forensic tools but is possible using AI. We 

can contextualize this work’s contribution to knowledge in terms of the issues addressed in 

each part of the thesis. The following are the key contributions: 

1. Pattern Recognition and Reconstruction of e-mail artifacts: In this scenario, we use a 

dynamic graph to describe the temporal evolution of communications, followed by a 

Variational Graph Autoencoder (VGAE) (Kipf and Welling, 2016b) to uncover 

probable e-mail deletions in the communication network.  Our model represents node 

and edge attributes using multiple types of features, some of which are derived from 

the messages’ metadata and others from the contents using natural language processing 

(NLP) (Manning and Schutze, 1999; Liddy, 2001; Chowdhury, 2003) and text mining 

(Tan, 1999) techniques. We use the autoencoder to identify missing edges; which we 

interpret as likely deletions, and to reconstruct their attributes, through which we infer 

hypotheses about the deleted messages’ contents. The contributions made in this part, 

first , showcases the efficacy of edge reconstruction as a prediction technique in digital 

evidence mining. Second, our technique demonstrates the reconstruction process using 

a VGAE in conjunction with a graph convolutional recurrent network (GCRN) (Seo et 

al., 2018) and multidimensional edge features. Finally, we demonstrate the 

effectiveness of using topic models as feature vectors for edges in a dynamic temporal 

graph design. This part of the thesis is adapted from our work in (Solanke, Chen, and 

Ramírez-Cruz, 2021). 
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2. Digital Forensics AI standardization: As a discipline, digital forensics has developed 

certain standards that must be strictly adhered to in order to conduct a forensically 

sound investigation. However, approaches based on AI are being used that lack 

domain-specific standards. We present a “preliminary” conceptualization of Digital 

Forensics AI (DFAI) in this part of this thesis, with the goal of using it as a springboard 

for a more generic formalization. Additionally, as an addition to our proposal, we 

examine several evaluation methods, standardization procedures, and optimization 

techniques that are suitable to AI models employed for DF. The contributions here are 

twofold: first, contextualizing and presenting a preliminary conceptualization of Digital 

Forensics AI on which more refined formalization can be built; and second, the 

proposal of an adaptive confidence scale (C-Scale) for evaluating the strength of 

evidence generated by an AI algorithm. Finally, as a minor contribution to this part, we 

discuss and compare numerous AI algorithm optimization methods; highlighting their 

strength and drawbacks; their applicability to DF; including their time complexities, 

which may be crucial in determining the methodology to utilize in digital evidence 

mining. 

3. Explainability and Interpretability of Digital Evidence Mining Techniques for Distrust 

Mitigation: The widespread belief that AI systems are closed-boxes and that it is 

difficult to analyse their inferential model has cast doubt on the legitimacy of decisions 

made by machines. Trust and confidence are much more crucial in a high-stakes 

domain like DF. Numerous research efforts have been made to improve the 

understandability of AI systems, and as a consequence, different methods have been 

proposed under the concept of explainable AI (XAI). However, as crucial as digital 

evidence is in proving or disproving an entity’s guilt or innocence in a legal proceeding, 

efforts to make AI-based forensic analysis methods interpretable are still lacking (in 

practice or research). This chapter provides an overview of explainable and 

interpretable AI, as well as some approaches for making it more intelligible. Connecting 

this to DFAI, the contribution of this part of the thesis is majorly in the 

recommendations made to improve the interpretability of DFAI techniques and to 

mitigate mistrust. Additionally, a preliminary definition of explainable DFAI (xDFAI) 

is provided based on review of literatures and an understanding of the subject matter. 

Further along this line, a case for interpretable DFAI as a preferable approach is 

presented, as well as several use cases for different explanation approaches described.
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We addressed digital forensics in detail in Chapter 2; the branches and process models, along 

with digital evidence and its admissibility in legal proceedings, as well as its challenges. 

Chapter 3 examines Artificial Intelligence (AI) and its relationship to the mining of digital 

evidence. We discuss symbolic and non-symbolic AI and their subcomponents, as well as the 

different ways in which AI might be used to extract digital evidence. Chapter 4 introduces our 

experiment with pattern recognition and reconstruction, in which we present an AI-based 

solution for detecting suspicious deletions in e-mail communications. In Chapter 5, we provide 

the preliminary formalization of the “Digital Forensics AI” concept, which aims to advance the 

application of AI in digital forensics by providing techniques for evaluating, standardizing, and 

optimizing digital evidence extraction. Chapter 6 discusses the importance of explainability 

and interpretability in AI-based digital forensics processes with recommendation for a 

trustworthy procedure. Chapter 7 concludes.

This chapter offers the groundwork for understanding the extent of our study in its entirety. We 

emphasized the problem statement that serves as the motivation for our work. We discussed 

our research goals and our proposed approach for addressing the issues. We summarized our 

contribution to knowledge for each part of the thesis. Meanwhile, the algorithmic description 

of our work’s experimental part is available on: https://github.com/spyderweb-

abdul/Deletion-Detection-in-Unstructured-Data 

  

https://github.com/spyderweb-abdul/Deletion-Detection-in-Unstructured-Data
https://github.com/spyderweb-abdul/Deletion-Detection-in-Unstructured-Data
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As stated in Chapter 1, DF is the science that deals with the relationship and application of 

computers to legal issues. A DF investigation is usually instituted when there is a commission 

of crime — or civil case, through electronic means, with the purpose of finding probative values 

(referred to as evidence) to support or refute a claim. This chapter provides an overview of 

what DF is, the stages and procedures required, the challenges, and the many sorts of artifacts.

The most widely acceptable definition of Digital Forensics to date was put forward by the 

Digital Forensics Research Workshop Technical Committee (DFRWS, 2001), which defines 

computer forensics as: 

“The use of scientifically derived and proven methods towards the preservation, 

collection, validation, identification, analysis, interpretation, documentation, and 

presentation of digital evidence derived from digital sources for the purpose of 

facilitating or furthering the reconstructions of events found to be criminal or helping 

to anticipate unauthorized actions shown to be disruptive to planned operation.” 

This definition is the most generic not only because it is “appropriate,” but also because the 

sequential operations involved in DF; the medium; the resultant value; and the eventual 

consequence are all explicitly fused into a sentence. However, recent revisions to this definition 

(and to the broader notion of DF) now incorporate the legal aspects of these procedures, as well 

as rules of evidence. There are additional definitions of digital forensics available in a variety 

of literatures. In (Welch, 1997) computer forensics is defined as “...the study of computer 

technology in relation to the law.” A slight modification to this definition is added in (Kuchta, 

2000), defining computer forensics as the science that studies the interaction between 

computers (including its application) and legal issues.  As one of DF’s objectives is to identify 

and analyse digital evidence, Carrier in (Carrier, 2003) describes digital forensics as the process 

of identifying digital evidence using valid scientific methods in order to facilitate the 

reconstruction of events during an investigation. According to Caloyannides, “computer 
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forensics is a collection of techniques and tools for locating evidence on a computer that can 

be used against one in a court of law” (Caloyannides, 2004). The United Kingdom forensics 

regulator, as narrated by (White, 2010), defines digital forensics as “…any scientific and 

technical knowledge that is applied to the investigation of  a crime and the evaluation of 

evidence to assist courts in resolving questions of fact in court.” Brighi and Ferrazzano (2021) 

defines DF as the application of scientific and analytical methods to data stored in digital device 

or in transmission through a digital medium, to identify, process, and preserve the data in ways 

that makes it accessible as evidence at trial. DF also defines best practices for handling digital 

evidence, as well as the rigorous methodological requirements by the legal process. 

Over the last decades, the DF discipline has gradually evolved into a forensic science discipline 

by adopting the major forensic science guidelines and standards. Although forensics refers to 

the application of scientific methodologies in justice systems, Casey (2004) defined it as “the 

application of science to law and it is ultimately defined by use in court.” The scientific 

methods employed to collect and uncover evidence must be reliable, trustworthy, impartial, 

and the veracity of the resulting evidence must be provable. Essentially, any discipline 

purporting to be related to forensics must adhere to the standards of evidence collection, 

preservation, and analysis for presentation in a court. Thus, despite the fact that DF 

investigation procedures are arguably distinct from other scientific forensic investigations, they 

have consistently lent themselves to the scrutiny of hypothesis, verifiable approaches, 

reproducible outcomes, and standardized methodologies applicable in the practical scientific 

domain. 

As stated previously, the purpose of digital forensic investigation is to uncover probative 

trails that could be used or presented in court as digital evidence. The majority of the discussion 

in this chapter about DF is devoted to the extraction of this probative value and the 

required procedures for identifying, analyzing, and presenting it in furtherance of, 

or conclusion of, a criminal or civil litigation. Any object discovered to be forensically valuable 

during a digital investigation is an artifact. Artifacts can take several forms, including log files, 

shell bags, database files, user dictionaries, registry keys, event logs, and timestamps. Other 

types include textual data, multimedia files, and GPS logs. Artifacts are incoherent data 

(sometimes, unintelligible) that, when analysed, can reveal the intent or state of mind of 

suspects or litigants, corroborate a certain content, or point to factual evidence. In this thesis, 

significant emphasis is placed on textual artifacts as a source of digital evidence.  
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To begin with, there are several words and concepts in digital forensics that needs explanation, 

and we define some of these words and concepts below: 

 

Digital data is data that is represented numerically. Often, they take the form of binary systems 

(traditionally, 0’s and 1’s that accepts a single value from a finite set) — which are represented 

as a string of discrete symbols and can be interpreted by a variety of machines. In a more formal 

sense, digital data is any data that is stored on or in a digital format. However, binary encoding 

is not a requirement; for example, network and keyboard cables carry electric signals that are 

converted to digital representation when instructions are passed (Carrier and Spafford, 2004b). 

Due to the unintelligibility of raw data, a sequence of processes must be performed to transform 

it to distinct (rather readable) outputs (Brighi and Ferrazzano, 2021), for example, output on 

paper or screen. 

 

“An object composed of a set of bit sequence” (CCSDS, 2012). Any digital entity or data 

structure composed of elements expressed in digital formats that is interoperable with other 

information systems is referred to as a data object (Gary, 2014). If a data object can be 

represented in digital format, and as a bitstream, it signifies that the data object is a collection 

of discrete symbols. Digital objects include hard disk sectors, network packets, and memory 

pages. A data object's characteristics are unique and can be identified differently; for example, 

a hard disk sector will store the content of an ASCII text document differently than it will store 

the content of a JPEG image  (Carrier and Spafford, 2004a) 

When the content of an object changes, the object assumes a new ‘state’ as well. Therefore, 

when data is written to a computer memory, it modifies the state of the currently operating 

computer process. 

 

A digital event is an occurrence that modifies digital object’s state (Carrier and Spafford, 

2004a). The effect of an event causes the state of an object to change. When a digital 

object triggers an event, it is referred to as a cause. If a digital object modifies an object’s event 

state, the object serves as evidence of the event. 
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A digital incident (or crime) is an occurrence or sequence of events that violates some 

established policy or law. To prove that an event occurred, hypothesis concerning the ‘what, 

when, and where’ of such occurrence must be developed and tested —  this process is referred 

to as investigation. 

Forensic investigation is a phrase that refers to the process of examining digital objects using 

scientific methods in order to develop testable hypothesis about the occurrence of events that 

can be offered in furtherance of a court case. 

The digital evidence of an incident’ refers to any digital data that contains verifiable 

information supporting or refuting an incident hypothesis (Carrier and Spafford, 2004a). 

Putting it all together, according to the authors in (Carrier and Spafford, 2004a) “an object is 

evidence of an incident if its state was used to cause an event related to the incident or if its 

state was changed by an event that was related to the incident.”

Digital forensics is always evolving to keep up with the rapid advancement of digital 

technology. The miniaturization of digital devices has reduced the cost of technology, making 

it much easier to commit crimes or violate the law. To keep up with the fast pace of 

technological advancement, DF investigation has branched into a variety of discipline, each 

with its own set of unique specifics, methods, and guidelines. A few of these are described 

below.

This discipline encompasses computers, embedded digital systems, and storage media, with 

the objective of identifying, preserving, acquiring, analyzing, and presenting evidence 

discovered on these computer systems in court. Computer forensics is concerned with the 

reconstruction of events found to be incriminating (or potentially incriminating); this includes 

everything from internet activity logs to the primary files on a computer drive.   

Disk forensics is a sub-field of DF concerned with the science of digital evidence extraction 

from storage media such as floppy disks, hard and USB drives/devices, and CDs. A disk drive’s 
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forensic investigation often entails searching for active, modified, or deleted files on the drive’s 

occupied and unallocated space. Additionally, disk forensics includes file recovery and carving 

from physically and logically damaged drives. 

This is a subfield of DF concerned with monitoring, capturing, storing, and analyzing computer 

network traffic (both local and internet) in order to gather information, collect evidence, and 

identify the source of an attack or intrusion. In comparison to other fields of DF, network data 

is generally volatile; thus, analysis always involves intercepting the network packet and 

filtering it in real time or storing it for later study. Because network traffic is frequently 

transferred and lost, it is prudent to investigate its pattern and capture data in transit between 

computing devices. The evidence gleaned through network analysis can be used in conjunction 

with other traces left on hard drives during a breach or intrusion attack. This also include 

wireless network forensics. 

This sub-branch is also known as ‘mobile device forensics,’ and it is concerned with the 

recovery of electronic evidence from mobile devices, e.g., cell phones, tablets, PDAs, GPS 

devices, and gaming consoles, among others. Mobile devices are critical in criminal 

investigations since they store many sorts of personal information such as contacts, messages, 

multimedia/image files, e-mails, chats, location information, and web browsing history. 

Typically, mobile forensics investigations focus on communication data, such as voice calls, 

e-mails, and short/instant messages, rather than on in-depth data recovery of deleted 

data (Casey, 2004). Although forensic analysis of mobile devices is becoming more difficult 

due to the usage of inbuilt end-to-end encryption to secure data, important information such as 

location — obtained via inbuilt GPS/location tracking — can be used as corroboration in a 

criminal case. 

Malware is a type of computer program (code, script, or software) that is designed to disrupt 

or deny operational services, gain unauthorized access to systems, and exploit the system to 

exfiltrate data — frequently resulting in the loss of valuable resources, intellectual property, or 

privacy. As a result, discovering the source, functionality, and other properties of malware in 
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order to identify the perpetrators and motivations for attacks is referred to as ‘Malware 

Forensics’. Malware analysis also includes determining the malicious program's entry point, 

mechanism of propagation, impact on the system, and the network port it attempts to use. There 

are numerous types of malwares, including rootkits, trojans, worms, viruses, backdoors, and 

keyloggers, and they are frequently classified based on various parameters such as the method 

of propagation; the program’s intent; the mode of attack; and whether the program obtains user 

consent prior to execution.  

Image forensics is a significant subfield in DF; it is concerned with resolving the origin and 

veracity of an image. The purpose of image analysis is to detect the presence (or absence) of 

anomalous traces inherent in a digital image as captured by the acquisition device and other 

operations involved in its creation (Piva, 2013). Typically, digital image forensics is prompted 

by two distinct events: 1) when a suspect argues their identity in an image; and 2) when a 

suspect repudiates the image’s authenticity. However, the duty of investigators in these 

situations will be to refute these claims by presenting evidence to the contrary. A wide variety 

of evidence can be collected from image artifacts (Burns, 2020), including authenticity 

evidence (e.g., Exif data, metadata, pixel data), and content evidence (e.g., topography, sign 

language, and landmarks). 

Differentiating between legitimate and illegitimate image processing is fairly challenging; for 

example, modifying, altering the compression ratio of an image, or editing an image to lessen 

its noise level are not considered illegal (Arshad, Aman and Abiodun, 2018). Consequently, it 

is necessary to specify a threshold point for quantifying the degree of legitimacy or alleged 

deception (Wong, et al., 2014). The admissibility of digital images as evidence in court has 

been complicated further by the recent emergence of deepfake16, which calls into question the 

widely held belief that photographs are a true representation of reality — “...there is more to a 

picture than meets the eye” (Sencar and Memon (Eds.), 2012). 

As with digital image forensics, multimedia forensics entails the analysis of multimedia signals 

such as audio, video, and games using techniques capable of extracting potentially probative 

 
16   While image manipulation is fairly common, deepfakes present a unique challenge by utilizing advanced 

AI algorithms to manipulate or synthesis visual and audio data with a significant potential for deception. 
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information that can aid in the authentication and estimation of the trustworthiness of digital 

multimedia content. The fundamental premise is that digital images have noise-like properties, 

which constitute an intrinsic trace of the acquisition device. Therefore, the investigation task 

will be to determine the source device that created the data, to verify the integrity of the content, 

and to extract key information from the multimedia signals. Statistical methods can be used to 

distinguish between computer-generated images, images produced with a camera, and images 

scanned. Similarly, by assuming that the acquisition device’s traces can be manipulated, tamper 

detection algorithms can distinguish between patterns that match the image and those that do 

not. Forensics techniques can utilize a variety of signal enhancement techniques to increase the 

intelligibility of the data17. This forensic exploit allows the analysis of object’s color, 

photogrammetric measurement of objects inside the content, and recognition of sound/visual 

patterns, among other things.  

This is also referred to as ‘live acquisition,’ because it entails collecting evidence in raw form 

from system memory, such as RAM, cache, and system registers, which can subsequently be 

carved from the raw dump. Memory dumps may contain critical forensic data regarding the 

condition of the system before the occurrence of an incident, such as a security breach (Lord, 

2020). Memory forensics has become vital as advances in cybercrime have enabled criminals 

to perpetrate crimes without leaving a trace on the hard drive. Typically, malicious programs 

must be loaded into memory in order to execute, which is why memory forensic analysis has 

proven critical in the investigation of sophisticated computer intrusions in which detectable 

trails on hard drives have been difficult to trace. Because the data in computer memory is 

volatile, care must be taken to protect the memory dump’s integrity, much more so if the 

evidence collected will be utilized in a court case. 

E-mail forensics is a subfield of DF that focuses on the systematic analysis of e-mails in order 

to gather data that can be used as evidence in criminal investigations. E-mail has become one 

of the most commonly used modes of communication for sending messages, delivering 

documents (secret, legal, business, etc.), and transactions. However, e-mail has become a 

 
17 Multimedia Forensics – Laboratorio Elaborazione Segnali e Comunicazioni (LESC), Universitá Degli Studi 

Firenze. 
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primary conduit for a range of criminal activities, including the sharing of illegal files, the 

dissemination of hate messages, cyberbullying, and virus propagation, all of which have the 

potential to be lethal. In e-mail investigation, the major evidence is the e-mail header, which 

contains a wealth of metadata about the e-mail (Chirath, 2019). By analyzing the email header, 

it is possible to identify crimes such as internal data leakage, spam, spoofing, and phishing. 

Figure 2.1  illustrates an e-mail header graphically.  

 

Figure 4.1: Graphical representation of a typical e-mail header 

Image source: (Chirath, 2019). 

Typically, when conducting an inquiry, the e-mail header is analyzed from bottom to top, as 

the sender’s information is at the bottom and the receiver’s information is at the top. Numerous 

techniques and tools exist for conducting forensic investigations into e-mail (Banday, 2011; 

Lazic and Bogdanoski, 2018; Chirath, 2019), the majority of which propose methodologies for 

analyzing e-mail headers. In Chapter 4 of this thesis, we discuss our method for detecting 

suspicious e-mail deletions between suspects.

This appears to be a new subfield of digital forensics that poses significant privacy concerns. 

It entails the forensic examination of IoT devices such as smart devices (lights, doorbells, 

speakers, cameras, and home appliances, etc.) and connected systems (e.g., in smart city). IoT 

forensics evidence can be used to corroborate claims made in court. For example, data retrieved 

from smart doors can be utilized to confirm the presence of a suspect in a particular location at 

a certain time. 
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The procedures involved in a typical forensic investigation are in phases which are expected to 

be diligently followed. These procedures, sometimes referred to as process model, consist of 

sequence of actions necessary to conduct forensic investigation. Process model usually begins 

with the notification of the occurrence of an incident through to presentation of findings (Casey, 

2004). Generally, the basic standard DF process phases are identification, preservation, 

analysis, documentation, and presentation. However, several process models have been 

proposed – mostly in the form of frameworks — with additional phases, within which there 

could be sub-phases. The reason for these numerous (rather sophisticated) frameworks is 

because of the prevalent complex architectures of emerging technologies, which makes it 

almost impractical to adapt the general DF process model to a particular incident. For instance, 

(Du, Le-Khac and Scalon, 2017) analysed existing process model frameworks for cloud 

computing forensics, with focus on the benefit of Digital Forensics as a Service (DFaaS) (van 

Baar et al., 2014; van Beek et al., 2020) by leveraging the vast computing resources and storage 

capacities of cloud infrastructures. (Zia, Liu and Han, 2017) argued that, and introduced, the 

concept of application-specific DF process model as an important means to a sound forensics 

practice, especially in the context of IoT systems. They exemplified this importance in 

application scenarios such as Smart Home, Wearables, and Smart City. (Al Mutawa et al., 

2018) proposed Behavioural DF Model which incorporates psychological approach to forensic 

investigation. The model is based on ‘Behavioural Evidence Analysis (BEA)’ (Turvey and 

Profiling, 2012) that involves the analysis of digital crime with respect to human interactions 

between the committer and the victim. The practical application of this model helped to identify 

logical paths to further relevant evidence and facilitated an in-depth understanding of the 

motivations of the offenders and other suspected collaborators. The capability of blockchain 

technology to comprehensively keep track of the entire events of transactions from inception 

is the basis of the work of (Lone and Mir, 2019). They proposed Forensic-Chain – a blockchain 

based process model to handle DF ‘Chain of Custody’ (Giova, 2011) in a way that ensures 

integrity of the process and maintain the evidence’s authenticity.  In one of several proposed 

frameworks to reduce instances of wrong convictions or exculpation, (Overill and Collie, 2020) 

proposed Digital Evidence Enhanced Process (DEEP), which is aimed at guaranteeing the 

reliability of presented evidence and ensure the standard evaluation of the competence of 

examiners.  
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Traditionally, DF (and mostly all forensic science) investigation begins with the investigation 

of the crime scene. The crime scene is any location connected to the incident (or where 

evidence may be found) which is of interest to the investigation. Investigators are often advised 

to be cautious about the management of a crime scene – its mishandling could totally nullify 

the entire forensic process (White, 2010). The prevalence of digital devices in incident/crime 

scenes particularly requires that standard digital forensic guidelines be applied, as electronic 

devices present in crime scene can also provide insight about an incident, or aid in the 

reconstruction of events that took place before, during, and after the crime. The modus operandi 

for the assessment of a crime scene is mostly dependent on the guidelines available to 

examiners according to predefined procedures established by their laboratory. Investigators 

should then be fully aware of these guidelines concerning pre-scene preparations and 

managements (ENFSI, 2015a). Described in section (2.3.1)  are some important digital forensic 

investigation processes required to guarantee the integrity of an evidence for it to be admissible 

in court. It is important to also mention that the processes highlighted here are largely generic, 

and though the phases could be inexhaustive owing to numerous proposed models that tends 

to handle case scenarios differently, we support the notion that there is no one-size-fits-all 

process model.  

Before investigation can proceed, digital media involved in the incident(s) will be seized. 

Seizure means ‘a dispossession of something against the will of the possessor18.’Although, in 

some literatures, the first phase is identification, i.e., digital devices that can be used as exhibits 

are identified, before seizure can take place. However, if the case in contention is civil in nature, 

or involves a company’s internal incident, the assumption is that the devices involved can be 

already identified. In a criminal case, sometimes, this phase can involve a search warrant19, 

which is the needed legal authorization to search and seize exhibits. Several European nations, 

including Germany, Sweden, and Spain, require a court order before accessing or seizing stored 

data, whereas in Luxembourg, the significance of the information sought and its impact on the 

 
18 ‘Seizure.’ See Duhaime’s Law Dictionary. Available online at: 

http://www.duhaime.org/LegalDictionary/S/Seizure.aspx 
19 A search warrant is a legal document issued by a magistrate or judge permitting law enforcement officers to 

search objects (i.e., people, devices, and locations) and seize any evidence associated with an incident. The 

regulations governing search warrants vary by jurisdiction — some are more considerate of the rule of law and 

the right to privacy, while others allow for search and seizure without obtaining authorization. 
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fundamental rights granted are considered. According to (ENISA, 2015), it is recommended 

that examiners have a flow chart detailing how to proceed in this phase, depending on the case 

scenario.  In case the exhibit involved is a digital device, the general rule of thumb is to mirror 

the system and analyse in forensic lab —  not at the incident location. However, before the 

mirroring can happen, the examiner needs to be aware of the general state of the system, and 

indeed, the environment. The photograph of the entire environment can be taken prior to any 

activities —  the believe is that the prior state of the environment can be crucial to the general 

hypothesis derivable from the investigation. In most cases, it is recommended that the system 

be turned off, and isolated if on a network. However, turning off the system could impact the 

potential evidence on the device. Due to the volatile nature of computer memory, all data will 

be erased when the machine is shut off. To adequately preserve data (or potential evidence) in 

circumstances in which turning off might be undesirable, ACPO principle20 (ACPO, 2012) 

encouraged that specialist’s advice be sought, and audit trail of all processes be recorded and 

preserved. The (United States Department of Homeland Security, 2015) provided a first 

responders’ pocket guide on steps to follow during an electronic evidence seizure. This guide 

offers a comprehensive guideline, depending on the device involved, and the state of the object.  

To reflect what is largely available in digital forensics literatures, we can literally categorize 

the activities in the seizure phase into two main sub-phases, namely: 

1. Identification (of exhibits): the activity here is to identify potential source of relevant 

evidence, the location, and the possessor of the data. The exhibits include devices and 

network configurations. 

2. Preservation: this step includes the prevention of any activities that can challenge the 

integrity of the data or evidence collected, e.g., making sure all ongoing or scheduled 

jobs on the system, which might interfere with evidence collection, is stopped. It also 

consists of preserving the incident scene (usually by taking visual images of the scene) 

and all relevant Electronically Stored Information (ESI)21. 

 
20 ‘Good Practice Guide for Computer-Based Electronic Evidence’ (Version 5). Available online at: 

https://library.college.police.uk/docs/acpo/digital-evidence-2012.pdf 
21 According to the Federal Rules of Civil Procedure (FRCP) in the United States, ESI is information that is 

created, manipulated, conveyed, or stored in a digital format using computer hardware and/or software. 
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This process is also referred to as imaging, which is the creation of the exact sector level 

duplicate of the original digital media. The ‘forensic duplication’, which is a “bit-for-bit copy 

of the data contained in the original device without any additions or deletions, even for the 

portions of the device that do not contain data (Novak, Grier and Gonzalez,  2018)”, is usually 

done with a write blocker22, or software imaging tools such as Encase23 and FTK imager24. 

Imaging is required because one of the most important rules in DF is to never perform direct 

forensic analysis on the original evidence. Analysis on original evidence will eventually change 

the properties (such as, date and time of modified, accessed and created) of the file, which will 

render the evidence inadmissible in a legal proceeding. Preserving the integrity of potential 

evidence is mostly essential during this process, so also the extensive documentation of the: 

entire event scenarios; software and hardware specifications; systems involved in the 

investigation procedure, and system being investigated. The acquired image is constantly 

verified with a method called hashing25 —  which  uses hash functions, such as SHA-126 or 

MD5 (Rivest and Dusse, 1992), to tamper-protect the extracted data. Whatever methods used 

in the acquisition must not be intrusive —  as this may result in a change in the physical features 

and destruction of evidence.  

 

This is the phase during which an exhaustive systematic search for traces relating to the incident 

under investigation (Reith, Carr and Gunsch, 2002) is carried out, to elicit evidence that either 

supports or refutes specific hypotheses, intentions, or indicators of (deliberate —  or not) data 

concealment. In this stage, investigators examine the content from the archived image files – 

using variety of methods and tools (EnCase, FTK, ILOOKIX27, etc.) to recover deleted 

materials, search for relevant matches of some specific keywords or file types from massive 

 
22 “A write blocker is any tool that permits read-only access to data storage devices without compromising the 

integrity of the data. A write blocker, when used properly, can guarantee the protection of the data chain of 

custody.” – Write Blocker, CRU. Available online at: https://www.cru-inc.com/data-protection-topics/write-

blockers/ 
23 https://security.opentext.com/encase-forensic 
24 https://www.exterro.com/ftk-imager 
25 Hashing is the process of applying a mathematical algorithm on an object (e.g., a string of text, a file, or a 

storage device) in order to obtain a unique alphanumeric value (hash value). 
26 ‘Secure Hash Standard’ – Federal Information Processing Standards Publication 180-2 (2002). Available online 

at: https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2.pdf 
27 https://www.xtremeforensics.com/ilookix 
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archives of data, classify files based on timestamps, and identify suspicious files, such as 

encrypted or deliberately hidden files. The type of data recoverable from allocated and 

unallocated (deleted) disk space, systems-and-user-generated files include  images, documents, 

internet browser history, e-mails, message logs, log files etc., however it varies depending on 

the investigation. With regards to classification based on timeline, it is extremely important to 

reduce data to list of points in time when a certain activity occurred. Typically, a list including 

date/time, sources, identities, and a description of the findings is used. Having this list can 

greatly aid investigators in tracking how files change over a period, and to have option for 

timeline searches (ENISA, 2015).  Next after recovery of relevant information is the 

reconstruction of fragmented traces, events,  and actions to draw conclusions. Usually at this 

stage, investigators work in close collaboration with LEAs, lawyers, and other stakeholders to 

understand every nuance of the case, map out the extent of the investigative actions, and agree 

upon the type of information that can serve as evidence. The investigative process must ensure 

that the conclusion is based on factual data and the expert’s knowledge. Expert opinion is 

permissible in many jurisdictions, for example, according to the U.S. Federal Rules of Evidence 

(hereinafter referred to as FRE), with specific reference in this case to Rule 70228, which states 

that “expert (by knowledge, skill, experience, training, or education) may testify ‘in the form of 

an opinion or otherwise’, so long as: (1) the testimony is based on sufficient facts or data, (2) 

the  testimony is the product of reliable principles and methods, and (3) the witness has applied 

the principles and methods reliably to the facts of the case.” 

D.   

When investigation procedure is concluded, it is required that the information about the entire 

process be reported – usually in suitable form that is understandable by non-technical audience. 

(Casey, 2004) describes reporting as “To provide a transparent view of the investigative 

process, final reports should contain important details from each step, including reference to 

protocols followed and methods used, to seize, document, collect, preserve, recover, 

reconstruct, organize and search key evidence.” The reporting stage can be strategically sub-

divided into two major sub-phases to reflect opinion of most literatures, namely: 

 
28 ‘Rule 702 Testimony by experts’ – Federal Rules of Evidence. Available online at: 

https://web.archive.org/web/20100819114909/http://federalevidence.com/rules-of-evidence#Rule702 
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1. Documentation: which includes the contemporaneous documentation of all activities 

relating to the investigation — such as the methods and tools used for testing, 

recovering, duplicating, and archiving of data, so also the software and hardware 

specifications of the system investigated, and the systems used in acquisition, 

examination, and assessment of evidence. The documentation of procedures is 

especially necessary to demonstrate: (1) the integrity of the preserved data, authenticity 

of the findings, reliability of the scientific methods involved, and admissibility, (2) that 

proper policies, rules, guidelines, and procedures have been adhered to by all parties, 

(3) that other competent forensic examiners can replicate the procedures and reproduce 

the same results. 

2. Presentation: is the passing of documented procedures to those in whose capacity the 

investigation was commissioned, such as law enforcements (in a criminal case), or the 

employing company (in civil proceedings). The validity of the report can then help the 

commissioner in deciding whether, or not, to use the evidence in court. The best practice 

before presenting an evidence is to run a second reliable forensic tool or manually 

examining and comparing the original location of evidence with the original result 

(ENISA, 2015). The presentation should also clearly state (in details) the formulation 

of hypotheses and the inferences that led to the evidence and the expert’s conclusion 

(Casey, 2004). 

The analysis phase is very essential and key to the conclusions drawable from the investigative 

process.  Often, digital evidence is intentionally obfuscated to make traces difficult or 

impossible, however, an intuitive DF analysis should be able to logically gather all fragmented 

or disjointed piece of evidence together within the same space of objects (people, devices, 

networks, data, etc.), time (access, create, modify, logs, etc.), activities, and location (GPS, 

maps, distributed systems, etc.), to infer or establish (retrospective or prospective) 

commonality or association. Digital forensic analysis can help in providing clues and trails 

which can be useful in leading investigators to the culprit. Casey and Rose (Casey, 2010)  

itemized some of the context in which DF analysis can be essentially useful. 
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“Attribution is more of an art than science.29” This is particularly true because some aspects of 

forensic analysis involve, not only the use of scientific techniques, but also the knowledge of 

previous events – the tactics, and the tools and methods deployed – as well as assumptions, 

historical data, open-source intelligence, etc., to establish the confidence level of an 

investigative conclusion. Attribution in digital forensics literally refers to the tracking, 

identifying (individual, or device), and the assignment of some specific actions or 

responsibilities to a suspect or perpetrator. “There is no simple technical process or automated 

solution to determine the responsibility of a cyber operation.30” Rather, there are often times 

when psychological behavioural analysis (Ikuesan and Venter, 2019), language stylistics 

(Rosenblum, Zhu and Miller, 2011; McMenamin, 2020), content patterns found in e-mails 

(Himal, 2010), domain names/IP addresses, method of delivery of attacks, and other metadata 

uncovered during investigation have helped to conclude on certain assumptions or assertions 

of attribution. A typical scenario of attribution in digital evidence was the case of ‘Maury Troy 

Travis31’, an American serial killer who was tracked and arrested by the FBI simply by 

leveraging on the information Internet companies keep of visitors to their website. However, 

attributing a specific computer crime or activity to a certain individual might be challenging - 

since it may be difficult to prove that the owner of an internet account committed a crime that 

was perhaps done by someone else who gained unauthorized access to that account (Casey, 

2010). Throughout attribution process, case catalogue of who, why, what, where and how is 

assembled with the aim to put together fragmented patterns across multiple investigations. 

Correlation of matching patterns is therefore established, and assumption of attribution can 

then be made. “While attribution isn’t an exact science, we can come close to attribution 

beyond a reasonable doubt – and we should continue trying.32” 

 
29 Digital Forensics, Incident Response & Attribution – Cyber Forensic Intelligence, Technology Resilience 

(2017). Available online at: https://www.cybersecurityintelligence.com/blog/digital-forensics-incident-response-

and-attribution-2022.html 
30 ‘A Guide to Cyber Attribution.’ – Office of the Director of National Intelligence (US) (2018). Available 

online at: https://www.dni.gov/files/CTIIC/documents/ODNI_A_Guide_to_Cyber_Attribution.pdf 
31 Peter Shinkle (2002). “Serial Killer Caught by his own Internet Footprint.” St. Louis Post-Dispatch. Available 

online at: https://murderpedia.org/male.T/t/travis-maury.htm 
32 Justin Harvey (2017) “The shadowy – and vital – role attribution plays in cybersecurity.” Security Blog, 

Accenture. Available online at: https://www.accenture.com/us-en/blogs/blogs-shadowy-vital-role-attribution-

cybersecurity 
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According to Merriam-Webster online dictionary, alibi33 is “the plea of having been at the time 

of commission of an act elsewhere than at the place of commission”. In a legal proceeding, 

alibi (or statement of alibi) is a defence to a criminal allegation that asserts the defendant was 

not present at the scene of the crime when it occurred. The most essential components in the 

confirmation of alibi, especially as regards digital evidence, are time and location. It is also 

noteworthy to recognize that the time/location evidence relates to the device(s) involved in the 

commission of the act —  not the user. However, using these devices, and some other 

supporting evidence, can help to associate a case with an individual (Casey, 2011). The 

proliferation of digital devices, enhanced by the digitization and interconnections of 

everything, has increased the possibility of leaving, and the traceability of, digital footprints. 

Usually, suspects try to mislead investigators deliberately, or unwittingly, into believing they 

were somewhere (or engaged in something) different when the incident occur. Nevertheless, 

such information given by the suspect can be cross-referenced with the suspect’s digital 

activities, to support or refute an alibi or statement. The challenge herein, however, is when the 

time/date configuration on a digital device is changed to manipulate traces, or the process of 

sending an e-mail is automated. The falsifiability of digital alibi is possible, and it has been 

demonstrated in (Castiglione et al., 2012), wherein a methodology showed how a typical 

individual actions (such as mouse clicks, writing of texts, pressure of key, pattern of daily 

online activities, etc.) on a computer can be automatically simulated in a way that is 

indistinguishable from those of original human activities. What is equally problematic is the 

use of a Virtual Private Network (VPN)34 to mask the correct IP address of a device — allowing 

individual to purport to be connected from a different location. Such scenario complicates the 

investigation, because even the third-party remote internet providers may not be able to 

invalidate the location of the IP address used. In cases where an obscured piece of equipment 

or technique is suspected to be involved, it might be necessary to extend the approach of 

investigation by, for instance, contacting the manufacturer of a device with specific questions 

relating to the configuration of the device, interviewing other individuals who might be familiar 

with some components of the device or network used, or reconstructing the events surrounding 

the alibi and compare it with the original evidence (Casey, 2011). Most importantly, the 

 
33 “Alibi” – Merriam-Webster. Available online at: https://www.merriam-webster.com/dictionary/alibi 
34 A virtual private network (VPN) enables users to send and receive data over shared or public networks in the 

same way that they would if their computing devices were connected directly to the private network. 
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presence of evidence, or the lack thereof, to support or refute an alibi, is not sufficient to assert 

that a suspect’s claim is false, it is consequently critical to substantiate all assertions with 

concrete evidence using other associated cybertrails, rather than simply concluding on the 

absence of evidence (Casey, 2011). A popular axiom in forensics science says, ‘absence of 

evidence is not evidence of absence.’ 

An exploratory forensic analysis can uncover some infrequent/unusual behaviour of a suspect 

which can be key for determining intent. For example, suspect’s computer use can reveal plan 

or premeditation to commit crime at a particular moment in time. Analysis of internet browser 

searches have been very instrumental for this purpose. A popular case of William B. Guthrie35, 

a presbyterian minister, who was convicted in 2000 for killing his wife,  is a very good example 

of how internet searches might be suggestive of a criminal intent. William’s wife’s unconscious 

body was found drowned in a bathtub with autopsy showing the “presence of subtherapeutic 

amounts of two antianxiety agents, Diazepam and Lorazepam, and a sedative, Oxazepam”. 

William’s internet searches of words such as: “household accidents,” “bathtub accidents,” and 

“Temazepam” were presented as evidence, and he lost several appeals to exclude his internet 

searches as evidence in the court case. Consistent searching of the word “Child Pornography” 

might also be indicative of involvement (or an attempt to be) in such crimes. 

Also, malicious activities such as backdating the digital clock on a computer system could be 

useful in the assumption of suspicious actions, the same way the possession of disk cleaning 

or encryption program can be used to demonstrate the plan to wipe or obfuscate incriminating 

evidence. However, exhibition of caution is recommended because some of these supposed 

activities may have unharmful explanations, therefore, conclusions in this case should only be 

based on strong assertions, rather than mere assumption of malicious intent. 

The embedded metadata of data object can provide a useful insight in evaluating the origin of 

a piece of evidence. According to (Casey, 2010), ‘a piece of evidence may have been: 1) 

produced by the source; 2) a segment of the source; 3) altered by the source; 4) a point in 

space.’ Every data object has a traceable embedded characteristics which can be used to 

 
35 STATE of South Dakota, Plaintiff and Appellee, v. William Boyd GUTHRIE, defendant, and Appellant. 

Available online at: https://caselaw.findlaw.com/sd-supreme-court/1085831.html 



37 
 

identify the computer with which the data object was created. For instance, documents contain 

metadata such as, name of author, creation/modification date-time stamps, directory, printer 

names, etc., useful for tracing their sources. Likewise, the source of an incriminating image on 

the computer of a suspect can be traced to the digital camera (Kurosawa, Kuroki  and Akiba, 

2009; Alles, Geradts and Veenman, 2009) or scanner found in the crime scene. It is not unusual 

however, for such incriminating images to be downloaded or copied from another computer, 

that is why thorough investigation is needed. Information embedded by the image file such as, 

model, manufacturer, and date/time the photograph was taken, can be associated with the 

digital camera in possession of the suspect, or a flaw on the image file could be traced to the 

scratch on the screen of a flatbed scanner (Casey, 2010). 

The chronological arrangement of the content of log files makes it possible to detect 

falsification by checking the inconsistences in timestamps of document’s creation and 

modification. Digital stratigraphy (i.e., the arrangement of data on storage media) can provide 

analyst with the supporting evidence to demonstrate that a document has been altered to cover 

up some useful leads into a criminal investigation. For example, if a suspicious document 

purportedly created at an earlier date is found on top of a deleted document created later, 

suspicion of staging can be raised, as newer files should not be overwritten by older ones under 

stratigraphy (Casey, 2010). However, anti-forensics techniques such as disk optimization 

program or disk defragmentation, can reposition data on the storage media, thereby inhibiting 

document authentication process through stratigraphy. Like other intuitive evidence 

corroborative techniques, analyst should be able to demonstrate the correctness of their 

assertions for evidence to be admissible in court. 

One of the most critical aspects of forensic analysis is the recovery of data from storage media 

and the conversion of unreadable data to readable data. Often, investigators are faced with the 

task of retrieving purposefully deleted files, e-mails, images etc., which were destroyed to hide 

evidence. Unfortunately, when a file is deleted, the storage location is marked as “free” 

showing that the space is available for use, but the content of the storage location is only 

overwritten when another file is assigned to this location. This means that, files are hardly 
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entirely removed from a storage media (especially on windows system), its storage location 

only become part of an unallocated space.   

According to Alexander36, recovery of deleted files (on windows/NTFS) is achieved by looking 

up a file table for files that have not be overwritten. File location can be recovered if entries 

are still in place, likewise, the original file can be completely recovered, if the location have 

not been reused by a new file. Also, partial recovery of file may be possible if some, but not 

all the storage locations have been reused. However, data recovery will be impossible if all 

locations have been reused. In addition to looking up the file table, a method called “carving” 

is used for recovering deleted files by searching the unallocated space on storage media for 

header and footer values associated with different files. 

Another significant indicator of data hiding during forensic investigation is when the total size 

of all visible partitions on a disk is smaller than the drive’s capacity. This may indicate the 

existence of another hidden partition that has to be discovered. Similarly, as one of the 

techniques during forensic analysis is to filter extracted data and classify it based on relevance 

to the incident being investigated, or by logical categorization based on file types, a large 

unclassified or unknown file type may, therefore, be suggestive of the use of data obfuscation 

or encryption (Casey, 2010).  

In law discipline, evidence, which is crucial in both civil and criminal proceedings, is 

predominantly characterized by weight, relevance, admissibility, burden of proof, and 

sufficiency of any material that should be admitted into the record of a case proceedings. If 

evidence is presented to establish a fact, it is deemed material. Literally, the weight of an 

evidence is dependent on the degree of conviction of presented evidence on the triers of fact37 

— to either accept or reject a statement of fact. Evidence with strong weight can change the 

probability of the fact in issue. Evidence is said to have less weight if it is vague or indefinite 

 
36 See “Understanding Deleted Files and What They Mean” – Expert Witness Article, Trace Digital Forensics, 

LLC. Available online at: https://www.hgexperts.com/expert-witness-articles/understanding-deleted-files-and-

what-they-mean-44950 

37 See “TRIER OF FACT.” Legal Information Institute, Cornell Law School, cited on Jul. 27, 2021. Available 

online at: https://www.law.cornell.edu/wex/trier_of_fact 
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(Hewling, 2013). The “competence” (mostly considered as issues relating to weight) of 

evidence is measured based on its compliance with certain notion of reliability.  

On the other hand, according to the FRE; an evidence is said to be relevant if it has the 

“tendency to make the existence of any fact that is of consequence to the determination of the 

action more probable or less probable than it would be without the evidence”38, i.e., 

an evidence is relevant if it contributes to the determination of the fact in issue and is capable 

of assisting in the furtherance of an investigation to make the existence (or not) of a fact more 

probable. The relevance of evidence can be a necessary condition but, in some cases, may be 

insufficient condition for evidence to be admissible. For instance, Rule 40339 of the FRE allows 

for the exclusion of relevant evidence “if its probative value is substantially outweighed by the 

danger of” any of: unjust prejudice; perplexing or misleading the jury; or unnecessarily 

prolonging the trial duration. Thus, this provision vests the trial court with considerable 

discretion over the determination of relevance. In Europe, however, where Member State have 

differing rules to determine the relevance of an evidence, with strict observance of Art. 640 of 

the European Convention on Human Rights (ECHR) and Art. 4741 of the EU Charter of 

Fundamental Rights, requires that states must examine evidence that could call into question 

the overall fairness of the judicial proceedings. Certain legal jurisdictions in the EU grant the 

court the authority to (or not) disregard evidence based on a variety of considerations, including 

the gravity of the crime, the intention to commit crime (or not), and fairness, among others. 

While numerous others make relevance decisions non-discretionary, the adjudication of 

inadmissibility will be an automatic consequence of a violation of procedural rules 

(Garamvolgyi et al., 2021). Specifically in Italy, evidence is physically excluded from the court 

file to guarantee that the decision authority is not swayed by information that should have been 

obtained differently (Garamvolgyi et al., 2021). 

 
38 See “Rule 401 – Test for Relevant Evidence.” U.S. Federal Rules of Evidence, cited on Jul. 27, 2021. 

Available online at: https://www.rulesofevidence.org/article-iv/rule-401/  
39 See “Rule 403 – Excluding Relevant Evidence for Prejudice, Confusion, Waste of Time, or Other Reasons.” 

U.S Federal Rules of Evidence, LII, Cornell Law School, cited on Jul. 27, 2021.  Available online at: 

https://www.law.cornell.edu/rules/fre/rule_403 
40 See ECHR Case Law, Council of Europe, Guide on Article 6 of the European Convention on Human Rights, 

updated on 30th April 2021. Available online at: 

https://www.echr.coe.int/documents/guide_art_6_criminal_eng.pdf 
41 See Article 47 – Right to an effective remedy and to a fair trial, EU Charter of Fundamental Rights. Available 

at: https://fra.europa.eu/en/eu-charter/article/47-right-effective-remedy-and-fair-trial 
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Under certain common and statute law, before an evidence can be accepted in advancement of 

a court trial, it must pass the test of admissibility. The specificity of admissibility is dictated by 

law, and just like the notion of relevance, evidence is deemed admissible if the trier(s) of fact 

finds it useful to the resolution of the dispute to which it is a part, and relevant to the fact to be 

proven. In some jurisdictions, like the U.S., the Rule 40242 (of the FRE), provides that all 

“relevant evidence is admissible” except with certain exceptions — some of which are related 

to constitutional exigency, or informally, on the broad basis upon which the concept of legal 

admission or exclusion is predicated (e.g., as provided in relevance of evidence). The same rule 

also provides that, all “irrelevant evidence is not admissible.”  However, the statement that all 

“relevant evidence is admissible” is rationally debatable – and this has been highlighted and 

argued by legal experts — as this would logically contradict the “exclusion of relevant 

evidence” provided in 403. With the rule of exclusion in mind, and several other rules such as 

the Rules of Civil43 and Criminal44 Procedure, Bankruptcy Rule45, etc., it is particularly 

reasonable to intuitively assert that; ‘not all relevant evidence is admissible.’ This has since 

been held true and recognized by the U.S. congress committee on the Judiciary, which led to 

the amendment of the rule of evidence (and other rules where the reference appears) in 201146, 

to accommodate all other rules prescribed by the Supreme Court pursuant to statutory authority. 

The European approach can be observed in two different folds, namely the “controlled 

systems” — with legal jurisdictions that strictly filters materials to be admitted at trial, and the 

“free proof systems” — where the judges are left to decide whether it is appropriate to dismiss 

or accept evidence that is obtained illegally. Likewise, the possibility to challenge the 

admissibility of a piece of evidence before a competent court, including the provision for rules 

of “nullity” (or validity) of evidence, varies amongst Member States (Spencer, 2010). The 

nullity or exclusion of evidence is mostly filed in cases where potential infringement on 

fundamental right is alleged. It is therefore not uncommon to see such request during legal 

 
42 See “Rule 402 – General Admissibility of Relevant Evidence.” U.S Federal Rules of Evidence, LII, Cornell 

Law School, cited on Jul. 27, 2021.  Available online at: https://www.law.cornell.edu/rules/fre/rule_403 
43 See Rule 30(b) and 32(a)(3) of the “Federal Rules of Civil Procedure” (2020). Available at: 

https://www.uscourts.gov/sites/default/files/federal_rules_of_civil_procedure_-_december_2020_0.pdf 
44 See Rule 15 of the “Federal Rules of Criminal Procedure” (2016). Available at: 

https://www.uscourts.gov/sites/default/files/rules-of-criminal-procedure.pdf 
45 See “Federal Rules of Bankruptcy Procedure” (2020). Available at: 

https://www.uscourts.gov/sites/default/files/federal_rules_of_bankruptcy_procedure_-_december_2020_0.pdf 
46 Available at: https://www.govinfo.gov/content/pkg/CPRT-112HPRT70817/html/CPRT-112HPRT70817.htm 



41 
 

proceedings in countries like Italy, Spain, and France where laws that protects the rights of 

suspects exist. Germany and the UK, however, use systemic integrity model where exclusion 

of evidence is granted only if important rights are violated, or when this exclusion would not 

significantly undermine the appropriate conviction for a serious crime (Garamvolgyi et al., 

2021). There are also considerably noticeable differences among States on the applicability of 

the “fruit of the poisonous tree47, 48” doctrine (not recognized in the UK), which does not only 

exclude from trial evidence obtained illegally, but also any additional evidence derived via 

those illegal means (Garamvolgyi et al., 2021).  

Reliability in evidence is used to denote something trustworthy — a material of value that can 

be relied on as accurate or truthful. In some situations, reliability is associated with the 

testimony of expert in a legal proceeding, which is expected to guarantee the accuracy and 

correctness of the scientific principles and methods used to arrive at a certain conclusion. 

Additionally, reliability is seen in the context of repeatability or reproducibility of the 

hypothetical assertions. Repeatability tends to answer the question like; will the same result be 

obtained using the same instrumentation or approach, if the same material is provided the 

second time? A method, testimony, or approach will be regarded as reliable if the same 

outcome is obtained when the same procedure is repeated multiple times. An expert witness 

can be unconsciously cross-examined multiple times just to ascertain the degree of confidence 

in the expert’s hypothesis. Reproducibility on the other hand, is the measurement of accuracy 

of the instrumentation or approach used in drawing a certain conclusion, when introduced in a 

different situation — i.e., the same results should be achieved by different methods than those 

used initially (Brighi and Ferrazzano, 2021). This is commonly used to ascertain scientific 

hypothesis’ correctness by testing with several different or uncorrelated situations. 

Authenticity of an evidence is the determination of its worth by confirming that: 1) the contents 

have remained unaltered or unchanged, and 2) that the content originated from the purported 

 
47 “Fruit of the Poisonous Tree.” LII, Cornell Law School. Available online at: 

https://www.law.cornell.edu/wex/fruit_of_the_poisonous_tree 
48 See GAFGEN V. GERMANY. European Court of Human Rights no. 22978/05, § 25, ECHR. Available 

online at: https://hudoc.echr.coe.int/eng#{%22itemid%22:[%22001-99015%22]} 

http://hudoc.echr.coe.int/eng?i=001-99015
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source. According to Rule 90149 (of the FRE), authentication requires that evidence must be 

sufficient to support that the claim of the proponent is indeed what it purports to be. 

Authenticity is determined at two stages of a proceeding. The first being to determine the 

genuineness of the probative value so that its admission could assist the jury, and the second 

would be for the jury to carefully examine and determine the veracity of the evidence. Besides 

that, authenticity can be established through an expert witness attesting to the fact that a matter 

is what it claims to be, or through a non-expert opinion, for example, attesting to the 

genuineness of a material based on familiarity with it that was not acquired during the current 

litigation. Additional determinants of authenticity include evidence demonstrating the accuracy 

of a result by detailing the process or system that generated it, as well as conformance to any 

method permitted by statute or common law.  

The satisfaction of authenticity requirement does not necessarily guarantee admissibility. Other 

rules of evidence such as those related to hearsay can exclude authenticated evidence from 

being admissible. 

A privilege is a legal rule, under the law of evidence, that refers to a regulation that allows the 

right to non-disclosure information or evidence about a certain subject or to exclude such 

evidence from disclosure or use in a trial. Privilege is a right that can be exercised by an 

individual, businesses, spouse, government, etc. Notably however, is the solicitor-client 

privilege – also referred to as the attorney-client privilege50 (in the U.S), or legal professional 

privilege51 (in Australia and the EU) — that protects the confidentiality of communications 

between a client and their legal adviser to facilitate proper functioning of the justice system. 

Some legal jurisdictions favours public interest privilege which seeks to prevent the disclosure 

of information (usually of secrecy) that is of interest to government or against public interest. 

The EU court of justice also recognize  the confidentiality of communication between lawyers 

and their clients, by ensuring that clients are free to consult their attorneys without fear that any 

confidences may be subsequently disclosed, and that commissions do not improperly use the 

 
49 See Rule 901 – Authenticating or Identifying Evidence. U.S Federal Rules of Evidence, LII, Cornell Law 

School, cited on Jul. 27, 2021. Available online at: https://www.law.cornell.edu/rules/fre/rule_901 
50 See Attorney-Client Privilege. Privileges, LII, Cornell Law School. Cited on Aug. 3, 2021. Available online 

at: https://www.law.cornell.edu/wex/attorney-client_privilege 
51 See Legal professional privilege. Information and Privacy Commission. Cited on Aug. 3, 2021. Available 

online at: https://www.ipc.nsw.gov.au/fact-sheet-legal-professional-privilege 
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content of a confidential document in investigation or trial. In many jurisdictions, privilege can 

also be seen in light of  policies on trade secrets52, 53 protection, which upholds the right to non-

disclosure or secrecy of any element of intellectual property. This right has been exercised in 

several civil and criminal proceedings. 

The foundation of the Best Evidence Rule is rooted in the originality of a material issued as 

evidence in a trial. The type of this evidentiary materials include written documents, voice 

messages, photograph, recordings, etc. The rule holds an original document as superior 

evidence, and that secondary evidence (e.g., a copy of the original), will only be admissible if 

the original document is not obtainable or does not exist. In any case, the party presenting such 

document as evidence must provide a genuine excuse for its absence and prove that the content 

of the secondary evidence is the direct copy of the original. Over the years, the abolition of the 

‘best evidence’ rules have been witnessed through common and statute declarations54, 55, 56. The 

move to abolish might not be unconnected to the need to review laws to accommodate 

provisions of digital evidence. There have been several arguments as to whether computer 

printouts — which is a copy of the original document – qualifies under the best rule of evidence. 

These arguments have been however settled by rule 1001(4)57 (of the FRE) — which states 

that “for an electronically stored information, ‘original’ means any printout — or other output 

readable by sight – if it accurately reflects  the information.” — and the provisions of the 

European Union guidelines on electronic evidence58 which relates to reliability. 

 
52 See Trade Secrets. European Union. Cited on Aug. 3, 2021. Available online at: 

https://europa.eu/youreurope/business/running-business/intellectual-property/trade-secrets/index_en.htm 
53 See Trade Secret Policy. IP Policy, United States Patent and Trademark Office. Cited at Aug 3, 2021. 

Available online at: https://www.uspto.gov/ip-policy/trade-secret-policy 
54 See Section 51, Evidence Act 1995, Federal Register of Legislation (Australia). Cited on July 30, 2021. 

Available online at: https://www.legislation.gov.au/Details/C2018C00015/Html/Text#_Toc503517635 
55 See “Best evidence rule laid to rest” CMS Law-Now. Cited on July 30, 2021. Available online at: 

https://www.cms-lawnow.com/ealerts/2001/04/best-evidence-rule-laid-to-rest?cc_lang=en 
56 See also Masquerade Music Ltd. V Mr. Bruce Springsteen [2001] ECWA CIV 513. Cited on July 21, 2021. 

Available online at: https://www.casemine.com/judgement/uk/5a8ff71060d03e7f57ea7048 
57 See Rule 1001(D) – Definitions that Apply to this Article, Federal Rules of Evidence (2021 Ed.). Cited on 

June 25, 2021. Available online at: https://www.rulesofevidence.org/article-x/rule-1001/ 
58 See “Guidelines of the Committee of Minister of the Council of Europe on Electronic Evidence in Civil and 

Administrative Proceedings.” Cited on March 3, 2021. Available online at: 

https://search.coe.int/cm/Pages/result_details.aspx?ObjectId=0900001680902e0c  
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Generally, evidence rules favour testimony given under oath by witness(es) in the courtroom, 

where the witness’ appearance and behavior may be evaluated, and remarks can be cross-

examined. However, any “testimony given by witnesses based on conversations held outside 

the courtroom are considered hearsay” (Goodison, Robert and Brian, 2015). It is any 

‘statement’59 made – out of court – by the ‘declarant’60, other than the testimony given at a trial 

to prove the truth of the matter asserted. According to rule 80161 (of the FRE), hearsay means 

a statement that: 

1) the declarant does not make while testifying at the current trial or hearing; and 

2) a party offers in evidence to prove the truth of the matter asserted in the statement. 

Generally, “hearsay is not admissible”62 as evidence unless it is specifically allowed by 

exceptions provided in statutes, evidence rules, or other precedence rules. Some of the 

“exception rules”63 upon which hearsay can be admitted include but not limited to declarant’s 

unavailability; declarant’s availability is irrelevant; record recollection; records of a regularly 

conducted activity; statements of facts contained in certificates (e.g., marriage certificate); 

reputations (as in personal or family history), etc.  

Evidence is often classified according to the type of facts it tends to establish, its form, the role 

it plays in the case, and the applicable laws (Hewling, 2013). Basically, evidence is divided 

into two categories which can either be physical; which involves any tangible object, real or 

material evidence relevant to the case, or testimonial; that relates to statement made under oath 

by a competent witness. Notwithstanding, several types of evidence can be derived from these 

two categories. The types and classes depend on legal jurisdictions and the forms of evidence 

that the local laws permit. We describe some types below: 

 
59 “Statement means a person’s oral assertion, written assertion, or nonverbal conduct, if the person intended it 

as an assertion.” – Rule 801 (Federal Rules of Evidence). 
60 “Declarant means the person who made the statement” – Rule 801 (Federal Rules of Evidence) 
61 See Rule 801 – Definitions that Apply to this Article; Exclusions from Hearsay. LII, Cornell Law School. 

Cited on May 23, 2021. Available online at: https://www.law.cornell.edu/rules/fre/rule_801 
62 See Rule 802 – The Rule Against Hearsay. LII, Cornell Law School. Cited on Mar 23, 2021. Available online 

at: https://www.law.cornell.edu/rules/fre/rule_802 
63 See Rule 803 – Exceptions to the Rule Against Hearsay. LII, Cornell Law School. Cited on Mar 23, 2021. 

Available online at: https://www.law.cornell.edu/rules/fre/rule_802 
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This is regarded as the most powerful evidence. It requires no inference – not assumed, and it 

is alone a proof. Direct evidence is the evidence of a witness testifying to the truth of an 

assertion (of guilt or innocence) directly. The most perfect example of direct evidence is an 

eyewitness testifying to seeing a criminal offence take place. 

Contrary to direct evidence, the circumstantial evidence is not drawn from direct observation 

of fact, rather, it is deduced from other events or circumstances from which the occurrence of 

the matter can be reasonably inferred. It involves making probabilistic and statistical 

deductions based on suggestions rather than personal knowledge or observation. “The more 

circumstantial evidence there is, the greater weight it carries.64”  

The inculpatory and exculpatory evidence differs only in the way they favour the defendant or 

the prosecution. Inculpatory evidence is favourable to the prosecution because it establishes 

(or seeks to establish) the defendant's involvement in an act. On the other hand, exculpatory 

evidence absolves (or tries to acquit) the defendant of guilt or culpability. It is used to establish 

innocence. 

The hearsay is an oral or written statement made by someone out of court (or a particular trial) 

which is tendered as evidence for the assertion of truth. Always not taken under oath. Hearsay 

is a complex area of law of evidence because, generally, it is not admissible, but the principle 

has been subject to numerous exceptions. According to some common law jurisdiction (e.g., 

the U.K.’s Criminal Justice Act 200365), if all parties to the proceedings agree on the 

admissibility of hearsay evidence or the court decides that it is in the interests of justice to be 

 
64 “Types of Evidence.” Available online at: 

https://www.casdschools.org/site/handlers/filedownload.ashx?moduleinstanceid=7201&dataid=6177&FileName

=02-TypesOfEvidence.pdf 
65 “Admissibility of hearsay evidence.” Section 114 of the Criminal Justice Act 2003. Available online at: 

https://www.legislation.gov.uk/ukpga/2003/44/contents 
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admissible. The hearsay is usually about what one was told by someone who witnessed an act, 

so, it is a second-hand evidence. 

Documentary evidence is introduced through documents — mostly considered to be written 

forms of proof, such as diary entry, contracts, letters, or wills etc., and it is offered to support 

a fact. Documentary evidence can also include digital media, such as video or audio recordings, 

and images. For documentary evidence to be admissible, it is essential to therefore establish 

that the document is authentic and from reliable source. 

This type of testimony involves an expert witness testifying on a matter based on formal 

expertise and/or experience in a particular field. It is commonly used in reference to the 

scientific analogy of a subject that is beyond the competence of the trier of facts. An expert 

testifier is assumed to possess the necessary qualifications (and, in certain cases, license) and 

expertise in the field in which they are to testify.  

This is the evidence presented as “a first appearance” in a court proceeding to prove a fact and 

it is held as sufficient until it is successfully rebutted or disproved. It is also called “presumptive 

evidence.” 

Digital evidence, also referred to as electronic evidence, is data or information that exist in 

electronic format, useful to prove or reveal the truth about a crime in a court of law. The major 

difference between digital evidence and other scientific forms of evidence is that digital 

evidence data exists in digital format of zeros and ones. This means that digital evidence data 

may be unintelligible at the initial point of collection and would require specialized tools and 

protocols to make it readable. As a result of this significant distinction, the collection, analysis, 

interpretation, and presentation of digital evidence in civil or criminal proceedings is unique 

and challenging. 
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It is worth noting that digital evidence can be relevant and useful in the prosecution of all types 

of crimes — including non-electronic crimes. Digital evidence is information that is leveraged 

by condensing objects, events, and time into a unified dimensional space to establish causation 

for criminal incidents (Novak, Grier and Gonzalez, 2018). For instance, files on suspect’s 

electronic device could reveal critical evidence of intent, relationship, location, and timing of 

crime. This is particularly true in the story of a Wichita police officer in 2005, who used a 

floppy disk drive to uncover the BTK serial killer. Before the discovery, the serial killer had 

claimed ten (10) lives and had escaped capture since 1974 (Wenzl, 2014).  

Formally, here are some of the definitions that have been put forward to describe digital 

evidence. (Casey, 2004) defines “digital evidence or electronic evidence as any probative 

information stored or transmitted in digital form that a party to a court case may use at trial.” 

In (Novak, Grier and Gonzalez, 2018), “digital evidence is information stored or transmitted 

in binary form that may be relied on in court.” Griffin described digital evidence as data or 

information stored in a digital format that is sufficiently reliable to be used in a court trial to 

establish or reveal the truth about a crime (Griffin, 2018). According to the National Institute 

of Justice (US), Digital evidence is “information and data of value to an investigation that is 

stored on, received, or transmitted by an electronic device” (NIJ, 2008).  

There are few unique points that are peculiar in these definitions that can be elaborated further. 

Firstly, the probative information or data could be e-mails, databases, transaction logs, digital 

multimedia files, internet browsers, printouts, Global Positioning System (GPS) track logs, 

instant messages, system log files, etc. (Casey, 2010). The list is inexhaustive, however, what 

can be regarded as a digital data are categorized into to two groups, namely: 1) data stored on 

computers or other electronic devices; and 2) data transmitted through electronic means over 

communication networks. This also corroborates the use of binary (as computer system stores 

data and perform calculations with 0s and 1s) and digital formats in the definitions. More data 

types will fall within this category as we continue to witness technological developments. 

Secondly, the transmission or reception of information highlights the potential involvement of 

two or more parties – this can be the sender and/or the receiver. For example, in cases involving 

child pornography (Taylor and Quayle, 2003; Adler, 2001; Webb, Craissati and Keen, 2007) 

or cyber-terrorism (Gordon and Ford, 2002), multiple syndicates may be involved, resulting in 

extended bottlenecks during the investigation, particularly if other parties are located outside 

the territory where the crime was committed or investigated (Garamvolgyi et al., 2021). In 
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other circumstances, it may be the act of a single individual, as with identity theft (Hoar, 2001), 

e-fraud (Graycar and Russell, 2002), cyber-stalking (Ogilvie, 2000), and malware 

transmission, among others. Also, the unlawful interception of data in 

transmission/communications are often regarded (except if done in protection of national 

security, even though that could be invasive of privacy (Ryan and Shpantzer, 2010)), as an 

electronic crime. Interception or wiretapping (Westin, 1952) has been legally controlled by 

several national statutes, e.g., wiretap Act66, Electronic Communication Privacy Act (ECPA)67, 

the Pen/Tap statutes68, and numerous court cases69 either authorizing or restraining the act. The 

essential premise is that there is always someone or some group of individuals committing 

(potential) crime against another group of people or an entity (through transmission or 

interception of something).  

Furthermore, whatever form this probative information takes — whether as raw data or 

analytically processed — it must be reliable (Kenneally, 2001), admissible (Goode, 2001; 

McKemmich, 2008; Ryan and Shpantzer, 2010), authentic (Lynch, 2000; Grimm, Capra and 

Joseph, 2017), and relevant (Grimm, Capra and Joseph, 2017) to the court case. The 

admissibility and relevance of digital evidence are not sharply different from the general 

principles of evidence which have been described in section 2.5.1, however, some courts have 

treated digital evidence differently in aspects that relates to authenticity, hearsay, privilege, and 

the best evidence rule. Most legal jurisdictions have specifically promulgated laws to guide the 

administration of digital evidence in civil and criminal proceedings,70, 71, 21 some, e.g., the U.S., 

have modified rules of evidence72 to accommodate the preservation and disclosure 

requirements for electronically stored evidence, while others have applied extant traditional 

rules of evidence in cases where laws are silent or non-existent – as is the case in developing 

countries with insufficient resources and capacity to properly investigate electronic crimes.  

 
66 The Wire Tap Act, also known as Title III, is 18 U. S. C. §§ 251022 
67 The Pen Registers and Trap and Trace Devices statute is 18 U. S. C. §§ 312127 
68 Electronic Communications Privacy Act is 100 STAT. 1848, PUBLIC LAW 99508, which inter alia 

amended the Wiretap Act and added 18 U. S. C. §§ 270110 dealing with stored communications. 
69 See Katz v. United States, 389 U.S. 347; 88 S. Ct. 507; 19 L. Ed. 2d 576; 1967 U.S. LEXIS 2 (1967). 
70 “Electronic Evidence in Civil and Administrative Proceedings.” Guidelines adopted by the committee of 

Ministers of the Council of Europe (2019). Available online at: https://rm.coe.int/guidelines-on-electronic-

evidence-and-explanatory-memorandum/1680968ab5 
71 “Electronic evidence in Criminal Matters.” European Parliament Think Tank. Available online at: 

https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/690522/EPRS_BRI(2021)690522_EN.pdf 
72 “Federal Rules of Evidence” Available online at: 

https://www.uscourts.gov/sites/default/files/federal_rules_of_evidence_-_dec_1_2019_0.pdf 
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Reliability in the context of digital evidence extensively include the collector of the evidence 

— who must be recognised by the court – as well as the processes and procedures adopted in 

the collection of the evidence. According to the FRE rule 70273, an expert witness may testify 

if he or she possesses reliable scientific, technical, or other specialized knowledge and is 

capable of forming an opinion regarding the principles and scientific methods used to interpret 

the evidence or determine the fact in issue. What is admissible may be dependent on what the 

court admits as relevant to the case. However, before the relevance or materiality of a digital 

evidence can be determined, it must survive the threshold test posed by Frye standard74, or 

later, the Daubert standard75 (Ryan and Shpantzer, 2010). The acceptance of scientific evidence 

was initially governed by a heuristic known as the “general acceptance” or Frye standard, 

which was based on a well-known 1923 Supreme Court of the District of Columbia decision 

(James Alphonso Frye vs United States)76, to determine validity. The rule states that:  

“While courts will go a long way in admitting expert testimony deduced from a 

well-recognized scientific principle or discovery, the thing from which the 

deduction is made must be sufficiently established to have gained general 

acceptance in the particular field in which it belongs.” 

The Frye case established a literal precedent for the admissibility of evidence only if the 

scientific approach upon which it is based is widely accepted by the scientific community 

(Goodison, Robert and Brian, 2015). It also brought to the fore the power of the courts to decide 

what should (or not) be accepted in a legal proceeding. 

More recently, precisely since 1993, the Daubert standard — which came into being as a result 

of a court ruling in Daubert v. Merrell Dow Pharmaceutical, inc.77 – has been the standard 

adopted by most Federal and some state courts in the U.S., and it has also been the general 

benchmark of ‘Good Scientific’ process requirements around the world. The factors necessary 

 
73 See Rule 702. Testimony by expert witnesses, Federal Rules of Evidence. LII, Cornell Law School. Cited on 

March 5, 2021. Available online at:  https://www.law.cornell.edu/rules/fre/rule_702 
74 See “Frye Standard.” LII, Cornell Law School. Cited on March 5, 2021. Available online at:  

https://www.law.cornell.edu/wex/frye_standard 
75 See “Daubert Standard.” LII, Cornell Law School. Cited on March 5, 2021. Available online at: 

https://www.law.cornell.edu/wex/daubert_standard 
76 Frye V. United States 293 F.1013 (D.C. Cir. 1923) Available online at: https://www.mass.gov/doc/frye-v-

united-states-293-f-1013-dc-cir-1923 
77 Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993). Available at:   

https://supreme.justia.com/cases/federal/us/509/579/ 
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for the consideration of the validity of scientific methods under the Daubert standard are 

whether:  

(1) the theory or technique has been empirically validated (or tested);  

(2) it has undergone peer review and publication;  

(3) it possesses any known or hypothetical error rate;  

(4) they are subject to set standards governing their applications; and  

(5) the methodology has been widely accepted by a relevant scientific community 

However, evidence and testimony that does not follow these criteria may still be accepted — 

as the Daubert requirements are not exhaustively or entirely conclusive (Arshad, Aman and 

Abiodun, 2018). In an attempt to systematically codify and organize the elements stated in the 

Daubert standard, the Rule 702 (of the FRE) has been amended twice — in 2000, and then in 

2011 — thereby extending the rules on the testimony of expert witnesses. The rule 702 as 

amended now reads: 

“a witness who is qualified as an expert by knowledge, skill, experience, 

training, or education may testify in the form of an opinion or otherwise if: 

(a) the expert’s scientific, technical, or other specialized knowledge will help the 

trier of fact to understand the evidence or to determine a fact in issue; 

(b) the testimony is based on sufficient facts or data; 

(c) the testimony is the product of reliable principles and methods; and 

(d) the expert has reliably applied the principles and methods to the fact of the 

case.” 

With this rule, a process known as the “Daubert Hearing”, or “preliminary question” may occur 

before the main trial begins. The Daubert hearing — usually done out of the jury’s presence – 

is mostly required to help the judge evaluate the validity of an expert’s testimony or evidence, 

and to decide whether or not it is admissible. During the hearing, the parties in the trial are 

allowed to present the scientific methodology behind their hypothesis or evidence, and the 

admission of such evidence must be based on the satisfaction of all the questions raised in the 

rule above.  
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The Rule 10478 (of the FRE), even though deceptively straightforward about preliminary 

questions, is essential to understanding the legality of the preliminary procedure with respect 

to admissibility of digital evidence. The rule 104(a) states: “…the court must decide any 

preliminary question about whether a witness is qualified, a privilege exists, or evidence is 

admissible. In so deciding, the court  is not bound by evidence rules, except those on privilege. 

” This rule then posits that, the decisions about relevance, qualification of expert witness and 

the possible allowance (or otherwise) of the testimony the expert gives, application of best 

evidence rule, and the general admissibility of evidence, are solely made by the judge. This 

rule is applicable to physical evidence, however, in the case of digital evidence, there is a 

greater likelihood that the judge may sought the assistance of experts and the jury regarding 

admissibility (Grimm, Capra and Joseph, 2017). From the European perspective, and relating 

it to seeking expert’s assistance, the preliminary procedure varies amongst Member States’ 

legal systems — depending on whether the judicial system of a particular State favours the 

accusatorial or inquisitorial tradition. In accusatorial tradition (also known as adversarial 

tradition) — usually oral — the requirement to advance the investigative procedure is provided 

by the parties in the litigation, in which both adduce evidence in support of their positions 

(Champod and Vuille, 2011). The versions of facts from the prosecution and the defence are 

presented to the jury who determines the accuracy of both versions. Also, during this stage, the 

cross-examination of experts and witnesses by the parties occur, and in compliance with set 

rules, the decision on which evidence to admit and those to exclude from the proceeding is 

made (Champod and Vuille, 2011). The judge’s role (mostly passive) in this legal system is to 

uphold the principles of fairness and equality until the final verdict is issued. This tradition is 

mostly related to common law jurisdiction (such as England, Wales, and U.S.) where previous 

judgement made by higher courts serve as precedence (and therefore binding) for lower courts. 

In contrast, the inquisitorial tradition, commonly found in civil law countries such as Italy and 

France, is aimed at getting the fact in issue through extensive investigation and examination of 

all evidence. The entire trial in this case is conducted by the court and the role (mainly active) 

of the judge here — in a quest to establish the truth — is to seek incriminating and exonerating 

evidence, collect substantive evidence, cross-examine witnesses (in whatever order in which 

they are to be heard), and appoint experts if necessary (Champod and Vuille, 2011). Unlike the 

accusatorial legal system, all evidence are admissible a priori, and the judge is free to decide 

 
78 See Rule 104. Preliminary Questions, Federal Rules of Evidence. LII, Cornell Law School. Cited on June 5, 

2021. Available online at:  https://www.law.cornell.edu/rules/fre/rule_104 
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all principles of admissibility by applying statues, without taking precedence from previous 

judgements.  

There are, of course, observed disadvantages on both legal systems, most notably, on the 

accusatorial system is that the tradition of interviewing and cross-examining expert witnesses 

inhibits their ability to express their results or knowledge freely. Hence, the process is distorted 

in one direction or another (Champod and Vuille, 2011) to favour the expert witness with the 

best communication skills or the best ability to convince the court (Spencer, 1992) — and not 

especially for their scientific expertise. On the inquisitorial tradition, it is possible that the best 

qualified experts work with the prosecuting authorities, that in itself can raise critical questions 

about neutrality, and seriously deprive the defence of valuable legal resources (Champod and 

Vuille, 2011).  

Regardless of the culture of legal systems adopted by different States in the European Union, 

the Article 6, and of course all the provisions, of The European Convention on Human Rights79 

is binding on all members. The question therefore is whether these two systems and the 

associated procedures through which they take place, guarantees a fair trial to all parties 

involved. Nevertheless, the principle of “Equality of arms” provided in article 6 of the 

convention seeks to ensure that all parties to a litigation have balanced opportunities to present 

their cases, as well as the rights to equal access to information and resources. Strict compliance 

to the fundamentals of human rights have somewhat made admissibility of digital evidence in 

European courts a bit challenging, and State’s judicial systems have had to constantly grapple 

with how to balance the intricacies of digital evidence, the EU rights provisions, and extant 

laws on evidence.  

In summary, the principle of reliability of electronic evidence requires that nothing about the 

collection and handling of the evidence should make its authenticity or veracity doubtful80.  

As earlier mentioned, that hearsay is mostly not admissible as evidence, except with some 

tightly controlled conditions. Some of these conditions relate to digital evidence where the 

hearsay rules permit the admission of evidence if the source of the digital records is reliable 

and acceptable. For instance, statements made by defendants preserved in e-mails, text 

 
79 “European Convention on Human Rights.” Cited on Aug. 3rd, 2021. Available online at: 

https://www.echr.coe.int/documents/convention_eng.pdf 
80 See “Electronic Evidence Guide: A Basic Guide for Police Officers, Prosecutors and Judges.” Ver. 2.0. 

Council of Europe. Cited on June 21, 2021. Available online at: 

https://au.int/sites/default/files/newsevents/workingdocuments/34122-wd-annex_4_-

_electronic_evidence_guide_2.0_final-complete.pdf 
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messages, or other digital media (Goodison, Robert and Brian, 2015). Digital records such as 

e-mails are permissible as evidence so long as it can be proved as authentic, and its integrity 

can be asserted. The rules 803(6) and (7) which gives conditions for the ‘Records of a Regularly 

Conducted Activity’81 and ‘Absence of a Record of a Regularly Conducted Activity’82 provides 

for explorable exceptions to the rule of hearsay, especially to corroborate assertions, that indeed 

– based on records – some actions were a frequent conduct (or characteristics) of the defendant, 

and therefore, the fact in issue (an act, event, opinion, diagnosis, knowledge, etc.) is 

attributable. For this corroboration to happen, something more than just a record of 

events/actions must be adduced. For example, in the case of an e-mail, the computer involved 

must be something only the defendant use; in his home or personal office, password protected, 

and only him know the password. 

Authentication of digital evidence requires the proponent to provide sufficient facts to support 

the adduced evidence. To establish authenticity, the presented evidence must be indisputable 

and representative of the original form. Presumably, most digital evidence stands authenticated, 

so long as the proponent can (and able to) sufficiently pull in all the necessary resources (Bellin 

and Ferguson, 2014). Physical evidence is no different from digital evidence, therefore, the 

rules associated with former is also applicable to latter. However, cautions are required in 

handling and administering digital evidence, because of the ease with which it can be 

inadvertently or deliberately altered. Nowadays, courts are largely concerned about reliability 

of digital evidence rather than authenticity (Ryan and Shpantzer, 2010), mostly because, over 

the years, set of guidelines (also constantly updated) have been established on chain of custody. 

The “ACPO principles” is one of  such guidelines for the authentication and integrity of 

evidence. Modern commercial forensic software solutions are also designed to preserve the 

original form of evidence to guarantee its authenticity and integrity. According to the Council 

of Europe’s guidelines on ‘electronic evidence in civil and administrative proceedings’, and to 

support the presumption that ‘most digital evidence stands authenticated’, the section on 

‘reliability’ provides that “…electronic data should be accepted as evidence unless the 

authenticity of such data is challenged by one of the parties.”83 The section also provides that 

 
81 See Rule 803(6) – Records of a Regularly Conducted Activity, Federal Rules of Evidence. LII, Cornell Law 

School. Cited on June 5, 2021. Available online at:  https://www.law.cornell.edu/rules/fre/rule_803 
82 See Rule 803(7) – Absence of a Record of a Regularly Conducted Activity, Federal Rules of Evidence. LII, 

Cornell Law School. Cited on June 5, 2021. Available online at:  https://www.law.cornell.edu/rules/fre/rule_803 
83 See Reliability (21), Guidelines of the Committee of Ministers of the Council of Europe on Electronic 

Evidence in Civil and Administrative Proceedings. Cited on June 22, 2021. Available online at: 

https://search.coe.int/cm/Pages/result_details.aspx?ObjectId=0900001680902e0c 
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“…the reliability of electronic data should be presumed, provided that the identity of the 

signatory can be validated and the integrity of the data secured, unless and until there are 

reasonable doubts to the contrary.”84 “We can therefore deduce from the foregoing that, in 

most cases that involves digital evidence, the burden to counter the presumption of authenticity 

and reliability of the presented evidence is on the defendant.” 

Other key important criteria to consider in the evaluation of digital evidence for admission into 

a trial are: 

Completeness: That the whole story about the arrival at a certain hypothetical fact or opinion 

based on the evidence should be told without the intention to favour a particular perspective. 

Believability: That the evidence must be sufficiently representative of the proof of facts and 

the trier of fact, and the court in general, should find it, clear, understandable, trustworthy, and 

reliable.  

Proportionality: That the evidence collection methodology must not be intrusive – rather must 

be fair and not prejudicial. “Not only should we collect evidence that can prove a suspect’s 

malicious actions, but also evidence that could prove their innocence (Exculpatory evidence).” 

(Krishnan and Shashidhar, 2021) 

The admissibility of digital evidence is fairly precise and structured in United States law, 

however, the European legal systems seems to be ambiguous on the subject, as most issues 

about admissibility (or reliability) is linked to the manner in which the evidence is accessed – 

i.e., a challenge to the scientific reliability of an evidence will most likely diminish its probative 

value or totally nullify its admissibility. 

Basically, for digital evidence to be admissible in a trial, it must conform with the series of 

laws and rules that ensure its acceptability in court. The preservation of digital evidence that 

will be admissible is inconclusively hinged on the following basic principles: 

1. Investigators actions should not in any way alter or modify the original evidence. 

2. Access to original digital evidence should be done by only competent persons. 

 
84 See Reliability (22), Guidelines of the Committee of Ministers of the Council of Europe on Electronic 

Evidence in Civil and Administrative Proceedings. Cited on June 22, 2021. Available online at: 

https://search.coe.int/cm/Pages/result_details.aspx?ObjectId=0900001680902e0c 
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3. All investigation procedures, from identification to presentation, should be thoroughly 

documented, with processes and methodology repeatable by an independent third-

party. 

4. The individual or organization in charge of evidence custody is ultimately responsible 

for ensuring that all applicable rules are followed. 

Identifying and extracting digital evidence is not an easy task, especially while having to ensure 

that the evidence (or the hypothetical facts to support a certain claim) is admissible in a legal 

proceeding. Generally, the challenges digital forensics is faced with are the same with its 

resultant probative value. However, digital evidence have some peculiar challenges which can 

be observed from different perspectives. We describe below some of the most notable 

challenges identified. 

Identification and forensic analysis of evidence on a single digital source could, sometimes, be 

a complex task, however, these complexities have been exacerbated by the advent of distributed 

systems, in which data and resources are scattered among different physical or virtual hosts 

(Caviglione et al., 2017). The distribution of data across several platforms will introduce 

additional layer of complexity to evidence data analysis. Automated data analytics techniques 

have been suggested as potential solution – to handle huge data – however, that has been met 

with serious criticism from the digital investigation community, sighting probable deterioration 

of evidence quality (Caviglione et al., 2017). 

One of the most challenging aspects of digital evidence investigation is privacy. This has been 

exacerbated by the enforcement of GDPR in Europe and how it affects its citizens around the 

world. Many jurisdictions are taking the rights to privacy of its people seriously, and in many 

cases, it has been the stumbling block in the proper investigation, or the successful conclusion 

of criminal trials. Furthermore, it is a usual practice to reconstruct events in a criminal case 

such as cyberterrorism, and more often than not, this process may involve analysing social 

connections of suspects and other potential individuals or groups. Users’ privacy can be 
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potentially violated during this process — which may totally jeopardize the investigation and 

render the evidence inadmissible. 

Cybercriminals always try to hide footprints of their activities, and in so doing, they obfuscate, 

cloak, or encrypt data, to either hide incriminating evidence or make traces difficult. The 

intension is to mitigate the effectiveness of forensic investigation (Liu, 2016). According to 

Rogers (2005), anti-forensics is the “attempts to negatively affect the existence, amount and/or 

quality of evidence from a crime scene or make the analysis or examination of evidence difficult 

or impossible to conduct.” Anti-forensics in form of legitimate solution to security/protection 

of privacy such as encryption is one of the most challenging problems in digital evidence 

investigation. Additionally, tools and techniques which makes anti-forensic possible are 

becoming easily accessible and available to malicious criminals.  

There are several dynamics to digital evidence investigations challenges — from cross-border 

evidence information exchange; to formal knowledge-based representation; to uniform 

resource database of case scenarios and investigative solutions; and general methodological 

standard format. The lack of all these afore-mentioned, and many more, have been identified 

within the digital forensic community as a critical challenge to the development of a robust 

systems for digital evidence investigation. However, there have been several steps taken to 

solve issues of standardization and enhance information exchange across diverse legal 

jurisdiction, but productive success is yet to be achieved. 

A recent digital forensic lawsuit study had identified 10 out of a random 100 cases as having 

issues that relates to errors in data collection and evidence analysis (Cole et. al, 2015). The 

fault being incorrect output and inaccurate timestamp in the tool used for analysis (Arshad, 

Aman and Abiodun, 2018).  The lack of proper tools to measure the frequency of error(s), and 

the accuracy and reliability of the approach used in arriving at a certain conclusion during 

criminal investigation is a significant challenge. Although, the Daubert principle requires that 

the error rates of the tools, methods/techniques used in the analysis of digital evidence must be 

well-established before such evidence is admissible in a trial, however, there are instances 
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where results from these tools or methods have been erroneous and have had devastating 

impact on the outcome of the trial.  

In this chapter, we explained the meaning Digital Forensics with detailed description of its 

branches, process models, as well as the significant use of forensics analysis. Furthermore, 

understanding that digital forensic investigation, and the consequent analysis of artifacts is 

necessitated by the need to mine evidence; which can be used for inculpatory or exculpatory 

defence in the court of law, we discussed extensively, the legality of traditional evidence and 

its digital components. We juxtaposed different jurisdictional provisions relating to digital 

evidence and the numerous challenges to balance legitimate investigation and the complexities 

of rights violation. Lastly, we highlighted the types of evidence  and various sources of digital 

evidence. 
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In chapter 1, we briefly discussed the concept of AI and its corresponding subfields. However, 

there is a notable ambiguity around AI and its several nuances which tends to create 

conversational confusion. In this chapter, we give a detailed description aimed at demystifying 

the conceptual misunderstanding around AI, ML, DL, and NN. Also, in extension to the in-

depth explanation of digital evidence given in Chapter 2, particularly on the aspect of its 

extraction, analysis, and presentation. Here, we bring into perspective, the idea of the 

divergence of cognitive computing into digital evidence analysis. This chapter (and thereafter, 

subsequent ones) is motivated by the current advancement in research and development of AI-

powered methods used in big data mining, which seek to find meaningful and explorable 

patterns in data. Digital artifacts are digital data, mostly voluminous, complex and 

heterogenous. It is therefore intuitive to presume that the same cognitive approach used in data 

mining will succeed if adapted to the analysis of digital artifact. We introduced the necessary 

background of AI — its components and relevance — that aligns with the processes involved 

in digital forensics. Also in this chapter, we reviewed several literatures that have extended the 

concept of AI techniques in the DF analysis, including the methods or frameworks, proposed 

to demonstrate the practicality and benefit of these approaches. The descriptions in this chapter 

will lay the necessary foundational background to understanding the concepts and components 

of our experiments, as well as the results obtained in subsequent chapters. It is also worth 

noting at this point that the thesis' discussion of AI/AI-powered systems in DF excludes 

techniques for robotics, which, as far as we know, have no direct impact on DF. 

Finding the right definition for AI is not a simple task as there is no clear definition. 

Nonetheless, there are several explanations formulated to put the notion of AI in a general 

perspective. Literally, AI is the simulation of intelligence in machines to learn and mimic 

human behaviour. Some definitions have also tried to extend this idea of simulation to include 

the ability to mimic human “thought process”. This has however been rejected by researchers 

as too high-level, and should instead, be considered as human “rational behaviour” (Russell 
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and Norvig, 2009). The rationality herein means logical reasoning that involves acting (mostly 

influenced by the environment) in a certain way to attain optimality within a set of predefined 

goal(s). For machines (or computers thereof) to process this logical reasoning, it must be 

formally represented. This representation in AI is what is referred to as “Knowledge 

Representation” (KR) (Davis, Shrobe and Szolovits, 1993). KR contributes to the pragmatic 

efficiency of the computational process of reasoning by organizing information in such a way 

that makes inferencing easy. A formal way to structure the representation of this reasoning 

process is what is currently known as “Ontology” (Peter, 1987; Guarino, Oberle and Staab, 

2009; Barry, 2012). Ontology is domain specific, in that, it formalizes the properties (classes, 

attributes, and relationships) of a particular subject area and how they relate. Literally, the 

process of designing an ontology involves modelling the properties pertaining to a domain as 

facts; how these facts are processed into rules and techniques that defines how the system 

behaves in a certain situation; or how the processed knowledge is applied (meta-knowledge) 

(Faye, 2010). From the individual set of facts, the ontology data model creates a knowledge 

graph85 — which is a collection of entities, expressed as nodes and edges, where the entities 

represents the nodes, and the edges form the type of relationship between the entities.  Fig. 3.1 

shows a conceptual model of a simple animal kingdom ontological design. 

Ontology design and modelling has, over the years, become widespread and advanced to a 

high-level state, and now, they are able to reason across multiple subject areas. Using 

RDF/XML86, it is possible to create ontologies for multiple domains that are sharable amongst 

application and systems. Also, ontologies can be expressed with the Web Ontology Language 

(OWL). “OWL is a semantic web computational logic-based language, designed to represent 

rich and complex  knowledge about things and the relationship between them.87”  

In another interesting proposal, (Kaplan and Haenlein, 2019) defines AI as the “system’s ability 

to correctly interpret external data, to learn from such data, and to use those learnings to 

achieve specific goals and tasks through flexible adaptation.” This definition provides the right 

basis to discuss the categories of AI techniques, viz. the symbolic and sub-symbolic AI. 

 
85 “The knowledge graph represents the collection of interlinked description of entities – object, events or 

concepts.” Cited on 25th July, 2021. Available online at: 

https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/ 
86 https://www.w3.org/TR/rdf-syntax-grammar/ 
87 https://www.ontotext.com/knowledgehub/fundamentals/what-are-ontologies/ 
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FIGURE 3.1:  Conceptual model of a simple ontological design. 

Symbolic AI, according to John Haugeland, is the “Good Old-fashioned Artificial Intelligence” 

(GOFAI) (Haugeland, 1989) that reasons based on first-order (predicate) mathematical logic, 

rules, and semantics. Symbolic reasoning are deductive, in that, conclusions are established 

based on set of logical inference rule, that is premised on certain consequence. The automation 

of the reasoning process involves using some sets of procedural axioms, defined declaratively 

to produce theorems. Symbolic systems are built on knowledge bases that consist of discrete 

entities through which logical reasoning can be inferred (Faye, 2010). A formal and popular 

example of a symbolic systems are the rule-based engines such as expert systems, or knowledge 

graphs which was described earlier.  

Expert systems are predominantly stack of nested if-then statements used in drawing 

conclusions about entities and their relationships (this is an oversimplification of the meaning, 

however). They are designed to solve complex problems by reasoning through a knowledge 

base in a manner that mimics human experts' decision-making capacity (Peter, 1998). Expert 

systems have two (2) major subsystems, namely: 1) inference engine, and 2) knowledge base. 

The knowledge base contains facts and rules, and the inference engine applies these rules to 

existing facts to derive new facts. Consequently, at any point in time with expert system, 

explanations can be sought as to the reasoning behind a certain conclusion. This provides for 

an efficient debugging ability. 
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The drawbacks with expert systems, and generally all symbolic reasoning system is that, since 

all rules have to be explicitly stated, any non-existing rules will not be considered in the 

formulation of new facts. This is a serious disadvantage to the idea of autonomous logical 

reasoning. Expert systems is also monotonic; that is, it is one directional. This means the more 

rules added, the more knowledge is encoded. However, additional rules can not erase old 

knowledge. This could result in conflicting or error-prone decision-making system. Also, 

expert systems do not function well when fed with large quantities of data (Faye, 2010). This 

totally disqualifies them as a candidate of choice in areas of big data mining. 

Case-Based Reasoning (CBR) was proposed in an attempt to solve the problems associated 

with the rule-based systems, such as expert systems. CBR’s idea is deeply rooted in the concept 

of solving problems by adapting successful previous solutions to a similar problem. Indeed, it 

is a pervasive human behavioural reasoning to attempt to solve a problem based on past cases 

personally experienced. Basically, experts maintains a vast collection of case histories, drawn 

from several problem-solving techniques, inferences, and solutions. When a target problem is 

to be solved, experts use a metric to measure how close a similar problem in the case base 

matches the new problem. If a perfect match is found, then the solution to the previous case is 

implemented on the new one. However, if a perfect match is not found, the system tries to adapt 

to any solution in the case base that is closest (in measure) to the new situation. The CBR 

process has been formalized and can be summarized in a four-step scheme. Fig. 3.2 shows the 

diagrammatic representation of CBR design cycle.  

According to (Aamodt and Plaza, 1994) the working cycle of a CBR comprises of: 

1. Retrieve: for a given problem, retrieve all cases similar to it. A case is composed of a 

problem, its related solution, and annotations regarding the derivation of the solution. 

2. Reuse: connect the solution(s) from the previous problem to the target situation — and 

adapt as necessary to fit the target situation. 

3. Revise: after mapping the previous solution to the target problem, test the new solution 

and revise if necessary. 

4. Retain: once the solution has been adapted to the target problem, store the derivation 

procedure in memory as a new case. 
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FIGURE 3.2: A typical Case-Base Reasoning Cycle 

Image source: (Ludmila et al., 2021) 

CBR systems offer the advantage of solving problems in ways that experts are acquainted to, 

are capable of dealing with previously unknown scenarios, and can also handle massive 

amounts of data. More significantly, they possess a slight ability to explain their reasoning 

process. The most observable limitations of CBR systems, however, is that the processes 

involved in the refinement of a solution requires the presentation (to user) of a lot of questions 

(to which the user is expected to provide answers) before an action can be triggered. Also, the 

encoding to machine-readable form is complex (Sally and Terrence, 1999). 

The sub-symbolic reasoning methods represent the connectionism movement in cognitive 

science that is trying to mimic the human brain and its interconnected neurons with the hope 

to explain the intellectual abilities using Artificial Neural Network (which we describe in 

section 3.1.2.5). Sub-symbolic methods establish highly complex relationships or correlations, 

often formalized by functions that maps input data to the output data or the target variables. 

Unlike the symbolic AI, the sub-symbolic AI are susceptible to noise, have high computing 

performance, can identify, and try to connect missing data. Furthermore, they are well-tuned 

for large scale (structure and unstructured) dataset and knowledge graphs. Connectionist 

methods often does not require any pre-knowledge of the subject domain, rather, they rely on 

their ability to independently learn meaningful deductions from data. This makes them a better 

candidate for perceptual problems. 
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Nevertheless, sub-symbolic methods have significant disadvantages. The fact that these 

methods rely on data, with a lot of parameters tuning, means they require a lot of computational 

powers and huge amount of quality data from which they can learn. Most often, this quality 

data is difficult to find. Furthermore, because of the complexity of their internal working 

architecture, it is mostly impossible to interpret or explain their results. This poses applicability 

bottlenecks particularly in sectors, such as legal, medical, and defence, where explanation and 

interpretation of results is significant to decision-making. Another difficulty is reproducibility 

— well-trained data may not be generalizable when extrapolated to previously unseen data that 

do not follow the training data's distribution. This may happen if the training data is not well 

labelled; can lead to a biased conclusion (Ntoutsi, et al., 2020).  

Sub-symbolic AI include statistical learning methods, such as Bayesian learning, deep learning, 

genetic algorithms, and backpropagation learning methods. Other applications of sub-symbolic 

methods include Natural Language Processing (NLP) (Manning and Schutze, 1999; Liddy, 

2001; Chowdhury, 2003), prediction, pattern recognition, classification of object and text, 

speech and text recognition, and clustering (Ilkou and Koutraki, 2020). Table 3.1 summarizes 

the major characteristics between the symbolic and Sub-symbolic AI. 

Having described the methods underpinning the concept of AI, we discuss further other 

applications of sub-symbolic AI that will help us to create the right understanding and 

connection between AI and digital evidence extraction. 

Symbolic Sub-symbolic 

Symbols Numbers 

Logical  Associative 

Serial Parallel 

Reasoning Learning 

Von Neuman Machine Dynamic Systems 

Localised Distributed 

Rigid and Static Flexible and Adaptive 

Concept composition and expansion Concept creation, and generalization 

Model abstraction Fitting to data 

Human intervention Learning from data 

Small Data Big Data 

Literal/Precise input Noisy/incomplete input 

Table 3.1: Symbolic vs Sub-symbolic methods characteristics (Ilkou and Koutraki, 2020) 
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To begin with, we need to understand what pattern means. The term ‘pattern’ could have 

different meanings; depending on the domain or use case However, the definition that is mostly 

suitable, although high-level, is the one presented by Satosi Watanabe in 1985. According to 

(Watanabe, 1985), pattern is defined as “the opposite of chaos; it is an entity, vaguely defined, 

that could be given name.” In another description of the term ‘pattern’, (Frawley, Paitetsky-

Shapiro and Matheus, 1992) stated that: “given a set of facts (data) F, a language L, and some 

measure of certainty C, we define a pattern as a statement S in L that describes relationships 

among a subset FS of F with a certainty C, such that S is simpler (in some sense) than the 

enumeration of all facts in FS.” Summarizing this definition, it means pattern is an entity of 

interest (could be anything, in any context) which one needs to recognize and/or identify 

(Kpalma and Ronsin, 2007). Thus, given an input pattern, its recognition and/or classification 

entails either classifying it as a member of a predefined set of classes (supervised; descriptive) 

or assigning it to an undefined class and allowing a self-learning process based on pattern 

similarity (unsupervised; explorative). Given that it is a broad field that is constantly evolving, 

it is entirely logical that multiple definitions exist. Literally, pattern recognition implies 

automatic recognition of patterns in data. It is concerned with the identification of regularities 

in data with the use of computer algorithms and the application of these regularities to perform 

tasks such as classification into different categories. (Bishop, 2006). In broad terms, it refers to 

the study of how machines can analyze the world, learn to distinguish varied patterns of interest 

from their background, and draw logical inferences about the categories of the patterns 

(Boesch, 2021). While it has its roots in statistics and engineering, modern approaches integrate 

ML as a result of the increased availability of massive data and processing capacity. However, 

it is more of a loosely connected collection of knowledge or approaches than a singular 

technique.  

Modern use cases of pattern recognition are based on AI technologies; with applications in 

domain such as: image recognition for security and healthcare, text pattern recognition, speech 

recognition, facial and movement recognition, deep video analysis, etc. Consequently, it is 

common to encounter any of these four methodologies in pattern recognition task, they include: 

1) statistical method, 2) syntactic method, 3) template matching, 4) neural networks. 

• Statistical Method: this method is the most extensively used because of its simplicity. 

In statistical pattern recognition, pattern features are converted to numerical vectors and 
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then grouped according to this number of features. The number of features determines 

how the pattern is represented on a multidimensional vector space. To compare or 

evaluate patterns in this method, distance measured between points in the vector space 

is calculated. 

• Syntactic Method: this approach involves the representation of patterns in hierarchical 

perspective that considers the complex relationship between features (Venguerov and 

Cunningham, 1998). The syntactic approach relies on set of primitive sub-patterns 

(such as alphabets). 

• Template Matching: is a popular pattern recognition technique that is commonly used 

in image processing to recognize and localize specific shapes within an image. By 

optimizing spatial cross-correlation or minimizing distance, template matching model 

attempts to identify the similarities between two entities by comparing the template 

function of the inputs. For each possibility, the matching rate is calculated, and the 

highest one that exceeds a predefined threshold is chosen. Typical real-world 

application of template matching can be found in face recognition. A significant 

downside of this method is its inefficiency in recognizing distorted patterns (Waweru, 

2021). 

• Neural Networks: this is currently the most popular pattern recognition method. 

Neural Networks (NNs) are based on massive interconnection of parallel neurons (or 

synapses) that simulates how the biological human brain works. It works by repeatedly 

supplying a set of inputs (samples), and the interconnected processing elements in the 

model are slowly adjusted until a desirable output, that matches the input, is achieved. 

Here, we only present a brief description of neural networks as a pattern recognition 

methodology under sub-symbolic reasoning. Section 3.1.2.5 discusses in detail, the idea 

of Artificial Neural Network. 

• Hybrid Method: this is not a distinctive method because it involves the combination 

of different pattern recognition techniques. The powerful neural network approach is 

computationally intensive, while the other mathematical methods; though time 

consuming with heavy human resources involvement, are equally efficient. The 

hybridization of these models lead to optimized and efficient pattern detection results.  

• Fuzzy-based Method: this is another approach that often does not get discussed. The 

fuzzy-based method (Pathak, Vidyarthi and Summer, 2005; Bayu and Miura, 2013; 

Orujov et al., 2020) applies the concept of fuzzy logic by utilizing the truth values 

between 0 and 1. Fuzzy models can be used as classifiers (Kuncheva, 2008) that assigns 
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a class label to an object, based on the object’s description (in form of a vector 

containing attributes of the object). The model produces good results in uncertain 

domain, because in cases where dataset is not available, it can be designed based on 

prior knowledge and expertise. 

Genetic Algorithms (GA) is a metaheuristic88 which belong to the larger class of evolutionary 

algorithm89. The GA technique is influenced by biological evolution and natural genetics 

mechanisms such as mutation, crossover, and selection. GA is stochastic; it is advantageous 

for solving optimization problems. The stochastic aspect of the search process is intended to 

guide it in such a way that the state of solutions explored are flexible and not solely controlled 

by the properties of the problem. To solve a problem using GA, the solutions are encoded as 

genes (which could be strings of characters from certain alphabets), which acts as an initial 

population of candidate solutions (chromosomes). The current population is then allowed to 

mutate by mating two solutions to create a new one. The breeding, mutation (or modification) 

process is iterated for a finite number of times (the population in each iteration is referred to as 

a generation), and the fitness of each candidate in the population is evaluated until the optimal 

solution is obtained, with the worst candidates being discarded (Shapiro, 2001). The evaluation 

of fitness is served by a fitness function, which is an objective function used to summarize, as 

a single figure of merit90, how close a given design solution is to achieving the desired result. 

In ML, GAs are critical for three reasons (Shapiro, 2001) — which are: 1) They operate on 

discrete spaces in which gradient-based approaches are inapplicable, also to search rule sets, 

neural networks architectures, etc. 2) unlike backpropagation methods, GA are essentially 

reinforcement learning, determined by a single fittest candidate. Thus, they are important in 

situations where performance is the only measurement for correctness. 3) sometimes, the 

desired solution to a problem can be group of solutions, instead of a single entity. 

 
88 To locate, produce, or select a heuristic (particular search algorithm) that can provide a good solution to an 

optimization problem, a metaheuristic is used. 
89 An evolutionary algorithm uses mechanisms inspired by biological evolution to address optimization 

problems. 
90 A ‘figure of merit’ is a metric used to describe how well a device, system, or approach performs in comparison 

to its alternatives. 
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In section 3.1.2.1, a high-level description of the term ‘pattern’ was given that includes the 

concept of language, and the measurement of certainty and interestingness (objective or 

subjective). The objective measure of interestingness is based on the structure of the discovered 

pattern (Hilderman and Hamilton, 1999), while the subjective measure deals with the 

measurement of unexpectedness (surprising to the user) and actionability (if users can take 

actions to their advantage) (Silberschartz and Tuzhilin, 1995). Extending this notion further in 

terms of knowledge discovery, we may deduce that a pattern that is both interesting and firmly 

certain (both according to the user-defined criteria) is referred to as knowledge (Frawley et al., 

1992). Consequently, the knowledge discovered is the result from a monitored collection of 

facts in a database, and the patterns identified therein (Frawley et al., 1992). In 1989, at the 

inaugural KDD workshop, the term “knowledge discovery” was coined (Piatetsky-Shapiro, 

1991) to underline that the end result of a data-driven discovery is knowledge. By definition, 

KDD is the systematic process of identifying genuine, valuable, and understandable, as well as 

previously unknown patterns within large and complex datasets (Maimon and Rokach, 2005). 

In (Frawley, Piatetsky-Shapiro and Matheus, 1992), the authors defined KDD as the “non-

trivial retrieval of implicit, previously unknown, and potentially useful information from data.” 

KDD involves the automatic exploration and modelling of large data repositories. The term 

‘automatic’ means the process to sift through data and detect meaningful patterns requires 

minimal human input. This highlights the interconnection between KDD and AI. KDD’s 

fundamental goal is to convert low-level data (voluminous, unintelligible) into more compact 

(a brief report), abstract (an approximated description), or valuable forms (a predictive value 

useful for future cases) (Fayyad, 1996).  

At the centre of the KDD process is the data mining (Agrawal and Psaila, 1995) methods for 

pattern identification and extraction. Data mining is a subfield of computer science and 

statistics that is concerned with extracting information (through intelligent methods) from a 

collection of raw data and transforming it into a comprehensible structure for further use 

(Jiawei, Micheline and Jian, 2011). It encompasses data storage and access, scaling algorithms 

to large data set efficiently, visualization and interpretation of results, as well as the overall 

modelling and support for machine-interactions. Figure 3.4 shows the schematic representation 

of the steps KDD is composed of, and we describe the processes, according to (Brachman and 

Anand, 1994), below: 
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1. Application domain understanding and task goals. This step necessitates an in-depth 

analysis and specification of the end user’s objective, as well as the context in which 

knowledge discovery will occur. 

2. Selection or creation of dataset. It entails determining what data is available, 

acquiring any necessary additional data, including attributes, and merging all of the data 

into a single data collection. 

3. Pre-processing and cleansing. This is a crucial element in any machine learning task 

since it improves data reliability. It include cleaning data, removing noise and outliers, 

and dealing with missing data or attributes.  

4. Data reduction and projection. It entails data transformation (discretization of 

numerical attributes) and dimensionality reduction (feature extraction and selection). 

The effective number of variables can be reduced while ascertaining that data is well 

represented to fit the goal of the task. 

5. Matching goals with appropriate data mining task. In this stage, the appropriate data 

mining methods depending on the goal of the knowledge discovery is determined. 

These methods include classification, clustering, or regression. However, the 

knowledge discovery goal can fall under two major data mining branches: predictive 

and descriptive.  

6. Models and Hypothesis Selection. This is the stage at which the data mining algorithm 

and methodology for discovering data patterns are chosen. Additionally, this is goal-

specific. Depending on the task’s objective, it may make a trade-off between precision 

and understandability.  

7. Employing the data mining algorithm. Finally, the mining algorithm is deployed on 

the prepared dataset. At this point, the algorithm may need to run multiple times before 

a good result is obtained.  

8. Evaluation. This step evaluates and interprets the findings, in this case, the mined 

patterns (rules, dependability, etc) in relation to the pre-defined objectives. At this 

point, we can also evaluate the model’s major components, such as the previous stages 

and their separate contributions to the final output.  

9. Acting on the discovered knowledge. Put the knowledge to immediate use, 

incorporate it into another system for future use, or just document and communicate it 

to the appropriate parties are all options. Additionally, this approach entails identifying 

and resolving potential conflicts with prior (or extracted) knowledge. 
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Figure 3.3: An Overview of the KDD Process Steps 

 

 

Figure 3.4: Data Mining Taxonomy 

As previously stated, the discovery process is divided into two primary components: prediction 

and description (Maimon and Rokach, 2005). The prediction-oriented method develops a 

behavioural method for obtaining new and previously unseen samples and predict one or more 

sample-related variables. Additionally, the approach can aid in structuring the discovered 

knowledge pattern in an intelligible manner. Figure 3.4 diagrammatically describe the 

taxonomy of data mining. The descriptive method deals with interpretation, which focuses on 

how the underlying data relates to its components. Finally, KDD and data mining continue to 
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be the most effective artificial intelligence methods for dealing with vast amounts of data. 

However, because the KDD’s reasoning process does not make use of previous knowledge or 

more complicated AI reasoning methodologies, it is probable that they will overlook more 

significant information in the process. 

Machine Learning (ML) is a field of study that spans computer science, statistics (Harrington, 

2012), and a variety of other disciplines concerned with continuous improvement, as well as 

inferences and decision-making in uncertain conditions. Several other fields 

are strongly related to the foundations of ML, including psychology, neuroscience, the study 

of human biological evolution, adaptive control theory, and educational methods (Jordan and 

Mitchell, 2015). In general, any field that requires the interpretation and processing of data can 

benefit from ML approaches (Harrington, 2012). ML started reorganizing in the 1990s, when 

it shifted focus from traditional AI, towards solving real-world problems. It shifted the 

emphasis away from the traditional logical, knowledge-based (symbolic) or AI-based approach 

and toward statistical and probabilistic models and techniques (Langley, 2011). There has been 

an increase in arguments concerning ML and its relationship to conventional AI. While some 

sources claim that ML is a subdivision of AI (Breiman, 2001; James et al., 2013; Mehryar, 

Afshin and Ameet, 2018), others believe that AI should refer to only a subset of ML that is 

intelligent (Bishop, 2006; Alpaydin, 2010). Regardless, ML learns and predicts through passive 

(or more recently, active) observation, however, AI is an intelligent agent that learns about its 

environment and undertakes activities to enhance its chances of success (Alpaydin, 2010). 

Additionally, ML, as stated  in (Jordan and Mitchell, 2015), attempts to answer two interrelated 

questions: 1) How is it possible to construct a computer system that automatically learns from 

experience? 2) What are the computational and theoretical concepts underlying the learning 

processes of computers, humans, and organisations? These two questions appear to be 

interconnected across disciplines, including computational/mathematical science, statistics, 

psychology, philosophy, neuroscience, and economics. 

Several definitions of ML exist, we state some of them here. According to the authors in  

(Mehryar, Afshin and Ameet, 2018), ML is a computational method that makes use of the 

learner’s prior knowledge (in the form of electronic data) to improve performance or produce 

correct predictions. The digitized data may take the form of human-labelled training examples, 

or other information obtained via environmental interactions. However, the learner's success is 
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contingent upon the quality and volume of the training examples. IBM, a global leader in 

modern AI, defines ML as a branch of AI and computer science that focuses on using data and 

algorithms to replicate how humans learn, while continually improving the accuracy of the 

process91. In (Samuel, 2000), ML is a key aspect of AI that aims to equip computers with the 

ability to learn without explicit programming. Another definition in (Parth, 2017) states that 

ML is a collection of techniques that enables computers to automate the process of creating 

and programming data-driven models by discovering statistically significant patterns in 

available data. Daniel Faggella in his article (Faggella, 2020), sees ML as “the science of 

getting computers to learn and act like humans do, and improve their learning over time in 

autonomous fashion, by feeding them data and information in the form of observations and 

real-world interactions.” By combining these definitions, it is intuitive to deduce that “ML is 

a broad term that refers to a variety of algorithms that are powered by computational and 

statistical sciences, as well as biological human reasoning principles, and are designed to 

optimise the automatic discovery of latent behaviour in data that can aid in accurate 

predictions on unseen data.” A primary goal of ML is for it to perform accurately on new, 

unknown examples following exposure to a learning data set, i.e., to generalize from its 

experience (Bishop, 2006). 

One key element crucial to the success of ML problem is the algorithm, or typically referred to 

as model, which is determined by the nature of the given problem, the features of the data (with 

primary consideration on the number of unique data point), and the type of the desired outcome 

(James et al., 2019). A large data set may necessitate a complicated ML method, but a smaller 

data set may be acceptable for a classical technique such as Decision Trees (Quinlan, 1986),  

or linear regression. While it is true that ML aims to replicate human reasoning abilities (which 

rely on common sense to filter out meaningless conclusions), transferring similar tasks to 

computers must be done with extreme caution. A set of well-defined principles must be 

provided to prevent the algorithm from reaching illogical or worthless conclusions (Shai and 

Shai, 2014). While significant attention is frequently placed on the learning algorithms, 

researchers have realized that some of the most intriguing problems originate from the training 

data, this also happen when working with ML in new domains (Faggella, 2020). 

 
91 What is Machine Learning? IBM Cloud Education. Cited on 23rd June 2020. Available online at 

https://www.ibm.com/cloud/learn/machine-learning 
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Consequently, the field of ML consist of various subdivisions, each of which deals with a 

distinct sort of learning task. Traditionally, ML approaches have been categorised into three 

(3) main groups depending on the signal (methods used to get training data) and feedback (test 

data used to evaluate) available to the learning system. The following sections address the three 

most often used techniques, as well as a few others that are rarely discussed in texts. 

Essentially, supervised learning is a ML approach that is distinguished by the usage of labelled 

datasets. It builds a mathematical model of set of input data (known as training data; with set 

of training examples) and the desired output (Russell and Norvig, 2009). The training examples 

are usually represented as an array of feature vectors, and the training data as a matrix. The 

datasets used in supervised learning aims to train or supervise algorithms to accurately classify 

data or predict outcomes. In general, supervised learning makes their predictions using a 

mapping function 𝑓(𝑥), which produces an output (or a probability distribution) 𝑦 for each 

input x. The training data consists of pairs of (𝑥, 𝑦) values, and the objective is to generate 𝑦′ 

in response to query 𝑥′. 𝑥′ can be a simple vector or a more complex objects (e.g., images, 

protein sequence, documents, etc.). Similarly, numerous types of output y can be derived 

depending on the problem. For example, in classification problems, 𝑦 can be: binary, where the 

output take one of two values (e.g., ‘spam’ or ‘not spam’); multiclass  (where 𝑦 can take one 

of 𝑘 values); and multilabel (that takes several simultaneous 𝑘 values). In addition, the derived 

output 𝑦 could take the form of a partial order to solve ranking problem – a sets of constraints 

for generic prediction, or a set of real values or mixed with discrete values (Jordan and Mitchell, 

2015). Predicting the output associated with a new (unseen) input involves iterative 

optimization of the objective function following the training phase. An objective function (or 

loss/cost function) is a function that intuitively maps an event or the values of one or more 

variables to a real number expressing the event’s cost. The purpose of optimization is to 

minimize this loss function while maximizing the objective function. As a result, an optimal 

function of the ML model should be capable of effectively determining the output for inputs 

not included in the training sample. 

We mathematically define the general idea of a learning model as follows: a supervised model 

is essentially a function 𝑓(𝑥, 𝜃), given 𝑁 items of input data 𝑥𝑖 and associated output 𝑦𝑖, where 

𝑖 =  {1, . . . , 𝑁}. 𝑥 is the input data and 𝜃 denotes a set (or sets) of parameters. The purpose is to 

iterate the loss function towards parameter 𝜃, producing output 𝑦�̂�  =  𝑓(𝑥𝑖 , 𝜃)that is as close to 
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𝑦𝑖  as possible. After then, the model 𝑦 =  𝑓(𝑥, 𝜃) can be used to make predictions about new 

and unseen data 𝑥. Further, we detail the types of supervised learning algorithms below, 

categorizing them according to the sort of problem they typically solve. They include the 

following: 

Classification algorithms are used when the outputs are constrained to a finite set of values. It 

is a problem of assigning a category to each input item. For instance, classifying a document 

involves assigning categories such as business, politics, sport, or health to each input document, 

while classifying images consist of assigning categories to input images such as cat, car, shoes, 

or to predict cancerous conditions on a patient’s skin. The algorithm predicts the category of a 

new, unseen input based on passive experience, which it has gained from the labelled training 

data. Classifier role is played by a dataset where each data point 𝑥𝑖 (e.g., vectors, objects) has 

the corresponding output 𝑦𝑖, describing which of 𝑘 possible classification 𝑥𝑖 belong to (James 

et al., 2019). In the case of a binary classification, 𝑘 = 2 (representing 0 or 1). The output of a 

classifier is represented as a vector �̂�𝑖  =  (�̂�𝑖,1, … , �̂�𝑖,𝑘) which is the probability that 𝑥𝑖 belongs 

to any of the class 1 to 𝑘, and the values sum to 1. In most cases if the value of 𝑘 >= 0.5, then 

it is classified as ‘positive’, otherwise, if 𝑘 < 0.5, then it is ‘negative’. Nevertheless, the number 

of categories a classification problem is often less than few hundreds, however, it can be larger 

in some complex tasks and even unbounded as in OCR, text classification, or speech 

recognition tasks (Mehryar, Afshin and Ameet, 2018). k-Nearest Neighbours (KNN), Linear 

Classifiers (LC), Random Forests (RF) (Ho, 1995; Ho, 1998; Breiman, 2001), SVM (Cortes 

and Vapnik, 1995; Joachims, 1999; Noble, 2006), and Decision Trees are all examples of 

classification algorithms. Figure 3.5 shows a typical classification problem graph in a D-

dimensional space. 

We briefly describe below some classification algorithms: 

Support Vector Machine (SVM) are supervised machine learning models with an 

accompanying learning algorithm for classification and regression analysis. They are, 

however, mostly utilized to solve categorization problems. Given a set of training 

examples, each of which is labelled as belonging to one of two categories, an SVM 

model assigns subsequent samples to one of the two categories, thereby transforming it 

into a deterministic binary linear classifier. However, a technique known as “plat 
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scaling92” exists for using SVM in a probabilistic setting. SVMs are nothing more than 

the coordinates of individual observations; they do classification by mapping training 

examples to points in space and determining the hyperplane that separates the classes 

the most. Apart from linear classification, SVM may also be used for non-linear 

classification by applying the kernel trick93 method to map inputs to a high-dimensional 

feature space. While SVM is mostly used to classify labelled data, the Support Vector 

Clustering (SVC) (Ben-Hur et al., 2001) algorithm can also be used to classify 

unlabelled data. 

Decision Trees is a type of prediction model that is used in statistics, ML, and data 

mining (Lior and Oded, 2008). It is a subset of supervised learning wherein data is 

gradually split according to a specific parameter. Decision trees are a combination of 

computational and mathematical methods that are used in the description, 

categorization, and generalization of a given datasets. Three entities can be used to 

describe the tree: the root node,  the leave node, and the decision node (or branch). The 

tree illustrates the evolution of observations (defined as branches) about an entity to 

conclusions about the entity’s desired value (represented as leaves). The leaves 

represent class labels, whereas the branches describe the features that combine to form 

the class labels. A decision tree model can be represented as a classifier with target 

variables having discrete values (e.g., “true” or “false”). Alternatively, the decision tree 

model might be a regression tree with continuous (real number) values for the target 

variables. The process of creating a tree entail segmenting the source set (the root node) 

into subsets (the successor children) using a splitting rule based on classification 

features (Shai and Shai, 1994).  This process is performed for each derived subset using 

recursive partitioning. The recursive process is complete when the continuous splitting 

no longer adds value to the prediction or when the node’s subset value and the target 

variable are the same. Algebraically, data comes in the form: (𝑥, 𝑌) =

(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 , 𝑌). The dependent variable, 𝑌, is the target variable for which 

classification is sought. The vector 𝑥, is composed of the feature 𝑥1, 𝑥2, 𝑥3, etc., that are 

used for the predictive task. Algorithms for decision trees usually works top-down 

 
92 In ML, Platt scaling is a way of transforming the outputs of a classification model into a probability 

distribution over classes. 
93 Kernel tricks are a form of pattern analysis algorithm whose purpose is to discover and explore general types 

of relationships (through clustering and correlation) in datasets. 
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(induction of decision trees) (TDIDT) (Quinlan, 1986) choosing a variable at each step 

that offers the best split for the set of items. To measure the “optimal” split, several 

algorithms often assess the target variable's homogeneity within the subsets. The 

resulting values are then summed (and averaged) to produce a measure of the splits’ 

quality. Some popular metrics used in decision tree algorithms are measurement of 

goodness, information gain (and the concept of entropy), variance reduction (for 

regression tree), Gini impurity, etc. 

Random Forests (RF) during training, performs ensemble learning (a technique that 

combines numerous classifiers to solve a large number of complex problems) by 

assembling a number of decision trees that may be used for classification, regression, 

and other tasks. In a classification task, the output of RF algorithm is the class selected 

by the majority of trees, but in a regression task, the output is the average mean of the 

individual tree’s prediction. While RF are frequently used in supervised learning, they 

can also be used to define a dissimilarity measure between unlabelled data by building 

an RF predictor capable of discriminating between real and synthetically generated data 

(drawn from a reference distribution) (Breiman, 2001) — which is similar to what 

unsupervised learning does. Unlike in a traditional Decision Tree, RF selects randomly, 

a subset of features at the node’s splitting point. RF generates the required prediction 

by utilizing the “Bagging”94 methodology — a bootstrap aggregation technique that 

utilizes several data samples. Depending on the RF algorithm deployed, the trees 

produce different output. The outputs are then ranked, and the highest is selected as the 

final output.  RF often outperforms decision trees because it reduces overfitting and 

boosts precision (Hastie, Tibshirani and Friedman, 2008). However, the characteristics 

of the training data can have an effect on their performance (Piryonesi and El-Diraby, 

2021). Explicitly, overfitting in decision trees is induced by trees that have grown to a 

depth and tend to learn irregular patterns. As a result, they exhibit little bias but a great 

deal of variance. To address this issue, RF averages numerous deep decision trees in an 

attempt to limit the variance (Hastie, Tibshirani and Friedman, 2008). The decrease in 

variance is offset by a little increase in bias and a loss of interpretability. RF are 

commonly characterized as “closed-box” model due to their ability to make significant 

 
94 Bagging is a ML ensemble method developed to increase the stability and accuracy of classification and 

regression tasks. 
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predictions across a wide variety of data with minimal configuration or without hyper-

parameter tuning. 

Regression algorithms are applicable when an ML task’s target outputs are constrained to a 

finite set of values. It predicts the actual value for each input item. Regression algorithms seek 

to understand the relationships between dependent and independent variables. In regression, 

the penalty for making an inaccurate prediction is proportional to the magnitude of the 

difference between the predicted and actual values. For a regressor, we assume a linear function 

𝑓(𝑥, 𝜃)  =  𝛽𝑥 +  𝑚, where 𝜃 = (𝛽, 𝑚) is the parameter set; which contains the slope 𝛽 and line’s 

intercept 𝑚. In the context of ML, training a regression model entails determining slope and 

intercept. A simple closed-form calculation is used to solve the 𝛽 and 𝜃, e.g., minimizing the 

sum of squares of the difference between actual and predicted values (𝑦𝑖   – �̂�𝑖)2 (James et al., 

2019) to find the degree of closeness. Regression algorithms are useful for the prediction of 

continuous values such as sales revenue projection in a given business. Some popular 

regression algorithms are logistic regression, polynomial regression, and linear regression. 

Mathematically, a linear regression relationship is given by: 

𝑦 =  𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2+ . . . + 𝛽𝑛𝑥𝑛 

where:  

𝑦 is the response 

𝛽are the model’s coefficient; learned during model training/fitting step 

𝛽0 is the intercept 

𝛽1 is the coefficient of the 𝑥1 (the first feature) 

𝛽𝑛 is the coefficient of 𝑥𝑛 (the 𝑛𝑡ℎ feature)  

Unlike classification models, which are evaluated using “accuracy” metrics, regression models 

are evaluated by comparing continuous values (i.e., the predicted and actual values). The 

detailed description of regression model evaluation metrics are in chapter 5. Figure 3.6 shows 

a typical regression problem plotted as a graph. 

Similarity Learning is a subfield of supervised learning that is comparable to regression and 

classification — albeit with distinct learning functions — with the objective to learn a 

(similarity) function that measures the similarity or relationship between two objects. 

Similarity learning is used in recommender and ranking systems, as well as visual tracking, 

face, and speech verification. 
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Figure 3.5: A Multi-class Classification problem 

illustration 

 

Figure 3.6: A regression problem plotted on graph. 

  

Unsupervised learning algorithms takes as input, a set of unlabelled data and, based on specific 

assumptions about the data’s structural properties (e.g., algebraic, combinatorial, or 

probabilistic) (Jordan and Mitchell, 2015), learn to classify or categorize it by grouping or 

clustering the data points. The term “unsupervised learning” refers to a method of learning that 

requires no human supervision; yet human intervention is required to validate output variables. 

The learning algorithm studies how unlabelled data might be used to infer a function that 

describes the hidden structure. This is accomplished by identifying commonalities in data and 

reacting to their presence or absence in each new piece of data. Typically, the model does not 

produce the precise output, but it explores the data and can draw inferences from it to describe 

the data's hidden characteristics. While the tasks may include cluster detection or various types 

of pattern recognition (James et al., 2019), supervised learning is primarily concerned with 

summarizing and interpreting data features. In comparison to supervised learning, 

unsupervised learning is capable of extracting insights from large amounts of data; the goal is 

to determine what makes the dataset interesting and/or different. It is an excellent candidate for 

use in anomaly detection (Varun, Arindam and Vipin, 2009) and recommender systems. For 

example, the model can determine that online-buyers frequently purchase a specific group of 

products concurrently — such as a babysitting father purchasing diapers and beers because he 

prefers to stay at home (tending to the baby) rather than go to the pub with friends. Additionally, 

unsupervised learning is computationally complex — it requires a big training set to achieve a 

desired result — and might yield crazily erroneous results unless  human intervenes to adjust 

some functional parameters (Delua, 2021). Unsupervised Learning are used for three (3) main 
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tasks: clustering, association, and dimensionality reduction. We define each learning model 

below: 

 

Clustering is the process of partitioning a set of data into (homogeneous) subsets (occasionally 

referred to as clusters) in such a way that observations within identical clusters are comparable 

in terms of one or more predefined criteria, whilst the observations derived from other clusters 

are disparate. They are used to process raw, unclassified data into groups represented by 

structures or patterns in the information. Different clustering approaches make varying 

assumptions about the data’s structure, which is typically expressed by some measure of 

similarity and evaluated in various ways, for example, by internal compactness or similarity 

between cluster members. A clustering task can have a varying input and output type. 

Mathematically, common setup of a clustering model is described below: 

Input: a collection of elements, 𝑋, and a distance function applied to them. That is, a 

function denoted by 𝑑: 𝑋 ×  𝑋 →  ℝ+ that  is symmetric, satisfies 𝑑(𝑥, 𝑥)  =  0 for all 𝑥 ∈

𝑋, and frequently also satisfies the triangle inequality. Alternatively, the function might 

be a symmetric similarity function 𝑠: 𝑋 ×  𝑋 →  [0, 1] that satisfies 𝑠(𝑥, 𝑥)  =  1 for all 

𝑥 ∈ 𝑋. Additionally, certain clustering algorithms require an input parameter 𝑘 (which 

specifies the number of clusters required).  

Output: a subdivision of the domain set 𝑋 into subsets. That is, 𝐶 =  (𝐶1, . . . , 𝐶𝑘) where 

⋃ 𝐶𝑖 = 𝑋𝑘
𝑖=1  and for all 𝑖 ≠  𝑗, 𝐶𝑖 ∩ 𝐶𝑗  =  𝜑. In some cases, clustering is "soft," i.e., the 

partitioning of 𝑋 into distinct clusters is probabilistic, with the output being a function 

that assigns a vector (𝑃1(𝑥), . . . , 𝑃𝑘(𝑥)) to each domain point, 𝑥 ∈ 𝑋, where 𝑃𝑖(𝑥)  =

 𝑃[𝑥 ∈  𝐶𝑖] is the probability that x is a member of cluster 𝐶𝑖. 

Clustering algorithms can be categorized into specific type, viz. exclusive, overlapping, 

hierarchical, and probabilistic. We briefly describe these components below. 

a) Exclusive Clustering 

Exclusive clustering groups data points exclusively in one cluster, i.e., a data point can only 

belong to one group — not more than. Also referred to as the “hard” clustering. A classic 

example of an exclusive clustering algorithm is the “K-Means”. 
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K-Means Clustering (Hartigan and Wong, 1979): in which data points are assigned to 𝐾 

groups depending on their distance from the centroid of each group. The data points that 

are closest to a specific centroid will be grouped together. A higher 𝐾 value indicates 

smaller groupings with increased granularity, whereas a lower 𝐾 value indicates bigger 

groupings with less granularity. It begins by defining a cost function over a parameterized 

set of possible clusters, and the algorithm's objective is to discover the cluster with the 

minimal cost (Shai and Shai, 2014). The clustering task is transformed into an optimization 

problem under this paradigm. k-means objective function is a pair of input, (𝑋, 𝑑), and a 

proposed clustering solution 𝐶 =  (𝐶1, . . . , 𝐶𝑘), to positive real numbers. Given such an 

objective function, denoted by 𝐺, the purpose of a clustering method is to identify a 

clustering 𝐶 such that 𝐺((𝑋, 𝑑), 𝐶) is minimized for a given input (𝑋, 𝑑). k-means clustering 

is frequently used in document clustering, image compression and clustering, and market 

segmentation.  

b) Overlapping Clustering 

The difference between this clustering technique and the exclusive clustering technique is that 

it allows for cluster overlap, which means that data points can be a member of different clusters 

with distinct membership degrees. The “soft” or fuzzy k-means (Dan, 2004) clustering 

algorithm is an outstanding example of an overlapping technique. 

c) Hierarchical Clustering 

This technique is also known as Hierarchical Cluster Analysis (HCA). It can be classified as 

agglomerative or divisive. Agglomerative clustering, on the one hand, is a bottom-up approach 

wherein data points are initially divided into various groups and then iteratively merged 

together based on similarity until a single cluster is obtained. The metric evaluation in this 

technique is performed by measuring similarities — usually the distance between two points 

within each cluster, often using the Euclidean distance95, although the Manhattan distance96 

has been reported in certain publications.  

d) Probabilistic Clustering 

The probabilistic clustering model assists in resolving the problem of soft clustering or density 

estimation. Data points are clustered in this model based on their likelihood to belong to a given 

 
95 See https://www.sciencedirect.com/topics/mathematics/euclidean-distance 
96 See https://xlinux.nist.gov/dads/HTML/manhattanDistance.html 



80 
 

distribution. One of the most commonly used probabilistic clustering is the Gaussian Mixture 

Model (GMM). 

 

Association Rules (Agrawal, Tomasz and Swami, 1993; Agrawal and Srikant, 1994) are a rule-

based approach for determining the relationships between variables in a given dataset. It is 

meant to identify strong rules in databases through the use of an interestingness metrics 

(Frawley, Piatetsky-Shapiro and Matheus, 1992). These techniques are constantly employed in 

market basket analysis to assist businesses in better understanding the relationships between 

various products, as well as consumer consumption habits, which aids in the development of 

cross-selling strategies and recommender systems (for instance, the strategies used by Amazon 

and Netflix). In (Agrawal, Tomasz and Swami, 1993), the authors presented association rules 

for recognising product regularities in massive amounts of transaction data generated by 

supermarket point-of-sale (POS) systems. For instance, a particular rule discovered in sales 

data indicates {potatoes, onions} → {burger} – which means that if a buyer purchases potatoes 

and onions, they are also likely to purchase hamburger meat. This method aids businesses in 

making promotional and product placement decisions.  

The “Apriori Algorithm” is a frequently used approach based on the concept of association 

rules, and as a result, it has gained popularity as a result of its use in market basket analysis and 

recommender systems on online music platforms and e-commerce sites. 

 

Dimensionality Reduction (DR) is the process of transforming data from a high-dimensional 

space to a low-dimensional space while retaining the significant features of the original 

representation; usually close to the intrinsic dimension. While it is true that more data produces 

more accurate results in machine learning, failing to transform to a lower dimensional space 

can have a detrimental effect on the learning model's performance (e.g., overfitting), make it 

computationally intractable, result in poor generalization, and make it difficult to visualize. DR 

is strongly related to the information theory idea of (lossy) compression. Additionally, 

dimensionality reduction can improve data interpretability — the ease with which significant 

structures can be discovered in the data (Shai and Shai, 2014). DR is frequently used in domains 

that deals with a large number of observations and/or variables, such as signal 

processing, bioinformatics, etc. (Laurens, Eric and Jaap, 2009). Additionally, it is effective for 
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use in noise reduction, data visualisation, and cluster analysis. The general idea of reduction 

involves the application of linear transformation to the original data. That is, if the data is in 

ℝ𝑑, such that we want to embed into ℝ𝑛 (𝑛 <  𝑑). Consequently, we find a matrix 𝑊 ∈  ℝ𝑛,𝑑  

that induces the mapping 𝑥 →  𝑊𝑥. The choice of 𝑊 will allow the reasonable recovery of the 

original 𝑥. However, the exact recovery of x from 𝑊𝑥 is not possible (Shai and Shai, 2014).  

Common methods in DR are divided into linear and non-linear approaches (Laurens, Eric and 

Jaap, 2009), also feature selection and feature extraction approaches (Pavel and Jana, 1998). 

Reduction is typically utilized during the pre-processing step of a learning model, and we will 

explore some of the most frequently used approaches below: 

Principal Component Analysis (PCA): is the major technique for dimensionality 

reduction. It performs a linear transformation on a set of data in order to create a new 

low-dimensional representation that maximizes the data’s variance. In practice, the 

covariance (or correlation) matrix of the data is constructed, and its eigenvectors are 

computed. The corresponding eigenvectors  to the biggest eigenvalues (principal 

components) are then utilized to reconstruct a considerable percentage of the variance 

in the original data. PCA reduces redundancies and compresses data through feature 

extraction. Mathematically, we describe the principal component reduction problem as 

follows: 

Let 𝑥1, . . . , 𝑥𝑚 denote 𝑚 vectors in ℝ𝑑 .We would like to use a linear transformation to 

lower the dimensions of these vector. A matrix 𝑊 ∈  ℝ𝑛,𝑑 where 𝑛 <  𝑑, induces a 

mapping 𝑥 → 𝑊𝑥, where 𝑊𝑥 ∈  ℝ𝑛 is the lower dimensional representation of 𝑥. Then, 

using a second matrix, 𝑈 ∈  ℝ𝑛,𝑑, it is possible to recover (approximately) each original 

vector 𝑥 from its compressed version. That is, for a compressed vector 𝑦 =  𝑊𝑥, where 

𝑦 is in the low dimensional space ℝ𝑛, we can construct �̃�  =  𝑈𝑦, where �̃� is the 

recovered version of 𝑥 in the original high dimensional space ℝ𝑑. 

Singular Value Decomposition (SVD): is another dimensionality reduction techniques 

that factorizes a real or complex matrix, 𝑀, into three low-rank matrices, 𝑈𝐷𝑉∗. 

Particularly, the singular value decomposition of an 𝑚 × 𝑛 complex matrix, 𝑀, 

represent a factorization method of the form 𝑈𝐷𝑉∗, where 𝑈 is an 𝑚 × 𝑚 unitary matrix, 

𝐷 denotes an 𝑚 × 𝑛 diagonal matrix consisting of non-negative real numbers on the 

diagonal, and 𝑉 is an 𝑛 × 𝑛 complex matrix. If 𝑀 is real, 𝑈 and 𝑉 are also guaranteed to 

be real orthogonal matrix. In such a case, the SVD is often denoted as 𝑈𝐷𝑉𝑇. The 
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diagonal entries 𝜎𝑖  =  𝐷𝑖𝑖 of 𝐷 are regarded as singular values of 𝑀. The matrix 𝑀 rank 

is equal to the number of non-zero singular values. Summarily, unit vectors 𝑉 ∈ ℝ𝒏 and 

𝑈 ∈ ℝ𝑚  are the right and left singular vectors of 𝑀 with corresponding singular value 

𝜎 > 0 if: 

𝑀𝑉 =  𝜎𝑈 𝑎𝑛𝑑 𝑀𝑇𝑈 =  𝜎𝑉 

Similar to PCA, SVD is also  commonly used for  noise reduction and compression of 

files, such as image files. 

Autoencoders (AE): literally utilize neural networks to compress data and then recreate 

its original representation. AE are used to learn (unsupervised) representations or 

features of unlabelled data (Kramer, 1991), mostly for dimensionality reduction. The 

data encoding is validated and refined by trying to regenerate the input from the 

representations, typically by training the network to disregard inconsequential (noisy) 

data. AE and its variants, such as Variational Auto-Encoders (VAE) (Welling and 

Kingma, 2019), Denoising Autoencoders (Vincent and Larochelle, 2010), and so on, 

are also referred to as generative models (Welling and Kingma, 2019), as they are 

capable of randomly generating new data that is identical to the input data, which is 

useful for learning representations for classification and prediction tasks. AE are 

applied to many machine learning problems  such as feature detection (Géron, 2019), 

facial recognition (Hinton, Krizhevsky and Sida, 2011), word embedding for meaning 

acquisition (Liou, et al., 2014), anomaly detection (Varun, Arindam and Vipin, 2009; 

Farid and Rahman, 2010), etc. AE is composed of two major components: an encoder 

(input layer) that transforms the input to a low-dimensional representation (embedding) 

in the latent space, and a decoder (output layer) that converts the embedding into a 

reconstruction of the input. The diagram in Figure 3.7 illustrates a common autoencoder 

architecture. As illustrated in the diagram, the hidden layer serves as a bottleneck, 

compressing the input layer prior to reconstruction in the output layer. The input layer 

and output layer each have the same number of nodes (neurons). The term “encoding” 

refers to the stage that occurs between the input and hidden layers, while “decoding” 

is the stage that occurs between the hidden and output layers.  
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Figure 3.7: A simple Autoencoder Architecture 

 

In its simplest form, AE is a feedforward (Zell, 1994), non-recurrent neural network 

identical to a single layer perceptron. However, it can also be used as a component of a 

multilayer perceptron (MLP)97 with one or more hidden layers. As is the case with 

machine learning prediction problems,  whereby target value 𝑌 is predicted given input 

𝑋, AE’s goal is to learn (unsupervised) to reconstruct its input by minimizing the 

difference between the input and the output. Mathematically, the encoder and decoder 

are defined as a transition ∅ and 𝜓, respectively, such that: 

𝜙 ∶  𝑋 →  𝐹 

𝜓 ∶  𝐹 →  𝑋 

∅, 𝜓 = 𝑎𝑟𝑔𝑚𝑖𝑛 || 𝑋 − (𝜓 ∘ ∅)𝑋||2  

In a simple case of a single-layered autoencoder, the encoder takes the input  

𝑥 ∈ ℝ𝑑 = 𝑋 and maps it to ℎ ∈ ℝ𝑝 = 𝐹: 

ℎ =  𝜎(𝑊𝑥 + 𝑏) 

ℎ is knowns to as the latent (or hidden) variables/representation, 𝜎 denote an element-

wise activation function such as the sigmoid function98 or Rectified Linear Unit 

(ReLU)99, and 𝑊 and 𝑏 represent the weight matrix and bias vector, respectively (both 

 
97 A multilayer perceptron (MLP) is a form of feedforward ANN that creates outputs based on a set of inputs. 

Between the input and output layers, multiple layers of input nodes are connected via a directed graph. 
98 See https://deepai.org/machine-learning-glossary-and-terms/sigmoid-function 
99 See ‘Rectified Linear Units (ReLU) in Deep Learning’ By DanB. Available online at 

https://www.kaggle.com/code/dansbecker/rectified-linear-units-relu-in-deep-learning/notebook 
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are typically randomly initialized and are  iteratively updated via backpropagation100 

during training (Rumelhart, Hinton and Williams, 1986; LeCun, 1988)). 

The decoder stage maps ℎ to the reconstruction of 𝑥′ of the same shape as 𝑥: 

𝑥′ =  𝜎′(𝑊′ℎ +  𝑏′) 

It is worth noting that 𝜎′, 𝑊′ and 𝑏′ are unrelated to the corresponding 𝜎, 𝑊 and 𝑏 in the 

encoder part. AE is modelled to minimize the reconstruction (error) loss; therefore, the 

loss function is given by: 

𝐿(𝑥, 𝑥′) =  ||𝑥 – 𝑥′||2 =  || 𝑥 −  𝜎′(𝑊′(𝜎(𝑊𝑥 + 𝑏)) + 𝑏′)||2 

where x is typically calculated as an average over the training set. 

Lastly, some of the most common real-world application of unsupervised learning include 

computer vision, anomaly detection, medical imaging, News section categorization, 

recommender system, and customer’s persona. 

Semi-supervised learning is a subset of ML whose functionality lies between supervised 

and unsupervised learning, and it combines a small amount of labelled training data with a 

large amount of unlabelled training data to create predictions for previously unknown data 

points. The goal is to significantly enhance learning accuracy by leveraging unsupervised 

learning's ability to intelligently detect hidden structures in massive amounts of unlabelled data 

and the accurate predicting abilities of the (labelled) supervised technique. It is prevalent in 

settings or sectors where unlabelled data is easily accessible but labelled data is expensive to 

collect due to a scarcity of human experts to perform the labelling. Numerous machine learning 

problems encountered in applications, such as classification, regression, or ranking, can be 

framed as semi-supervised learning problems in the hope that the learner’s access to unlabelled 

data will result in better performance than supervised learning. However, the theoretical 

underpinnings and practical implementation of this approach continue to be a source of ongoing 

research interest (Mehryar, Afshin and Ameet, 2018). Furthermore, semi-supervised learning 

could be regarded as either transductive or inductive learning. The former relates to reasoning 

 
100 In contrast to a basic direct computation of the gradient with respect to individual weight, during ANN 

training, backpropagation effectively computes the gradient of the loss function with regard to the network's 

weights. 
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from observed, specific (training) cases and making predictions solely for unlabelled specific 

test cases, whereas the latter refers to reasoning from observed training cases to generic rules 

that are subsequently applied to the test case. 

Reinforcement learning is a subfield of ML concerned with the study of how intelligent agents 

should behave in a given environment in order to maximise the notion of cumulative reward. 

RL is a fascinating learning model because it is capable of not only learning how to map one 

input to an output (as native ML approaches do), but also mapping series of inputs to outputs 

dependencies, typically in the form of Markov Decision Processes (MDP). To collect 

information literally in RL, the learner actively interacts with, and in certain situations, impacts, 

the environment, and receives an immediate reward for each action (Mehryar, Afshin and 

Ameet, 2018). Typically, RL problems take place in a general control-theoretic framework, 

with the learning task being to develop a control policy for an agent acting in an unfamiliar 

dynamic environment, while also training the agent to choose actions (or responses) for any 

given state with the goal of maximising its expected reward over time (Jordan and Mitchell, 

2015).  

 

Figure 3.8: Reinforcement Learning model 

However, because there is no long-term reward feedback from the environment, the learner is 

confronted with the challenge of “exploring” uncharted territories in order to gather additional 

information and "exploiting" the information already gathered. RL is distinguishable from 

supervised learning because it does not require the presentation of labelled input/output pairs 

or the explicit correction of suboptimal behaviours. During the learning phase, the algorithm 
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randomly explores state–action pairings in a specific environment (to create a table of state–

action pairs), and then uses the state–action pair rewards to identify the optimal action for a 

certain state that leads to the desired result (Tim, 2017). Figure 3.8 illustrates the reinforcement 

learning model. 

Self-learning as a ML paradigm, along with the crossbar adaptive array (CAA) (Bozinovski, 

1982), is an ANN capable of self-learning.  It is a method of learning without external rewards 

or guidance from an instructor. The CAA self-learning algorithm computes both decisions 

about behaviours (such as emotions) and actions concerning consequence scenarios in a 

crossbar fashion. The system is propelled forward through the interaction of intellect and 

emotion (Bosinovski, 2014). Self-learning algorithm update a memory matrix 𝑊 = ||𝑤(𝑎, 𝑠)|| 

such that, in each iteration, it runs the steps as seen in figure 3.9. 

The figure algorithm illustrates a system with a single input, situation 𝑠, and a single output, 

action (or behaviour) 𝑎 - without receiving distinctive reinforcement from the environment. 

The emotion experienced in response to the consequence situation is the backpropagated value 

(secondary reinforcement). The CAA exists in two environments: one in which it is supposed 

to behave (behavioural environment), and another in which it acquires initial emotions about 

the situations it will encounter in the behavioural world for the first and only time (genetic 

environment).  

 

Figure 3.9: Self-learning algorith 

 

 

The term “feature (or representation) learning” refers to a set of techniques that enable a system 

to automatically learn the representations required for feature recognition or classification 

from data. This reduces the need for manual feature engineering and enables a system to learn 

and employ features to accomplish a certain task. As a pre-processing step prior to solving a 

classification or prediction problem, feature learning typically transforms data to useful 

>> In situation s, execute action a; 

>> Receive consequence situation s’; 

>> Compute emotion in consequence situation v(s’); 

>> Update crossbar memory w’(a, s) = w(a, s) + v(s’) 
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representations while retaining the information contained in the original input data. They can 

be either supervised or unsupervised. Examples of learning models that leverages feature 

learning under supervised architecture include Artificial Neural Networks (ANN) and 

Multilayer Perceptron (MLP). The unsupervised features are learned with unlabelled data, and 

example of such learning models includes Autoencoders and various forms of clustering 

algorithms. 

Deep learning is a subset of ML that is designed to learn from massive amounts of data in ways 

that loosely mimic how the human brain works. DL is a subfield of ML, which is itself a 

subfield of AI. In other words, deep learning is a subset of a larger family of ML techniques 

that utilize Artificial Neural Networks (Discussed in 3.1.2.5). The recent advancements in 

emerging technologies such as generating captions for YouTube videos, speech/voice 

recognition on phones and smart speakers, machine translations, facial/entity recognition in 

images, as well as self-driving cars, are largely driven by deep learning. Because the majority 

of deep learning methods employ neural network design, DL models are frequently referred to 

as “deep neural network”. Other common types of DL architecture include feedforward neural 

networks (FFNN) (Sanger, 1989; Bebis and Georgiopoulos, 1994), deep belief networks 

(DBNs) (Hua et al., 2015; Chen et al., 2015), convolutional neural networks (CNN) (O’shea 

and Nash, 2015; Albawi, Mohammed and Al-Zawi, 2017), recurrent neural networks (RNN) 

(Mikolov et al., 2010), and many more. While a neural network might have one or two hidden 

layers, the term “deep” in deep learning alludes to the deployment of multiple (dozens – or 

even hundreds) interconnected layers of nodes in the network. Each layer has an infinite 

number but a finite size, allowing for practical application and optimization while preserving 

theoretical applicability under optimal circumstances. The layers learn to transform by 

progressively extracting higher-level features and creating a composite representation of the 

raw input data. For efficiency, trainability, and understandability, DL allows layers to be 

heterogeneous and vary from biologically informed connectionist models. Although, 

depending on the nature of the task, increasing the number layers and nodes to the network 

may improve accuracy. Additional layers, on the other hand, incur a penalty in terms of 

parameterization and computational resources. 

One significant distinction between DL and ML is that DL models take data from various data 

sources, analyze it, and learn patterns from it in real time without human intervention. It is 
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capable of ingesting unstructured data (text, images) and automatically determine the set of 

features that distinguishes various categories of the data. It can also use supervised (with 

labelled datasets) learning to inform its algorithm, but this is not necessarily required. 

Additionally, DL algorithms must be trained on huge datasets; the accuracy of their predictions 

is proportional to the amount of information available to them. For instance, the model will 

need to be ingested with thousands of cats’ pictures with varying properties before it is able to 

classify new pictures of cats. Furthermore, weights — which are parameters that represent the 

strength of the connection between inputs —  are used in the hidden layers to process the raw 

data supplied to a DL model. To improve predictions, the weights are adjusted during training 

(depending on the input). DL spends a lot of time training large amounts of data, which requires 

high processing power. 

Uses of deep learning have been demonstrated in finance (Huang, Chai and Cho, 2020; Lee 

and Yoo, 2020, Heaton, Polson and Witte, 2017), health (da Silva et al., 2021; 

Rezaeianjouybari and Shang, 2020; Sahoo, Pradhan and Das, 2020) cybersecurity and digital 

forensics (Salih et al., 2021; Qadir and Noor, 2021), and social media (Pathak, Pandey and 

Rautaray, 2021; Singh and Sharma, 2021). Their applications have also been used in aerospace 

and defence engineering, industrial automation, electronics, and so on. 

To begin, this section presents an extended description of Artificial Neural Network (ANN) in 

order to supplement the prior discussions about neural networks. Additionally, in this thesis, 

the terms “Artificial Neural Network (ANN)” and “Deep Neural Network (DNN)” may be used 

interchangeably to refer to the same concept. However, when the term "DNN" is stated 

specifically, it refers to networks with several interconnected layers (usually two or more). 

In 1943, Warren McCulloch, a neuropsychologist, and Walter Pitts, a mathematician, published 

the first article on how neurons could work (McCulloch and Walter, 1943). To characterize the 

neurons, they used electrical circuits to model a simple neural network. Donald Hebb’s 1949 

work “The organizing behavior” (Hebb, 1949) demonstrated that neural pathways are 

strengthened each time they are utilized —  a principle that is crucial to how humans learn. His 

reasoning was predicated on the hypothesis (mechanism of neural plasticity) that when two 

nerves fire simultaneously, their connection is reinforced. As research in this field progressed, 

a psychologist named Frank Rosenblatt built the perceptron (Rosenblatt, 1957; 1958; Haykin, 

2008), the first artificial neural network. A simple perceptron is an artificial neuron that uses a 
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unit step function (with 0 indicating a negative argument and 1 representing a positive 

argument) as an activation function. It is an algorithm used to learn a binary classifier (or a 

threshold function) that maps it input x (a real-valued vector) to an output value of the function 

𝒇(𝒙): 

𝑓(𝑥) = {
1    𝑖𝑓 𝑤. 𝑥 +  𝑏 >  0,
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0

 

Where w is a real-valued weights vector, 𝒘. 𝒙 is the dot product: 

∑ 𝒘𝒊

𝒎

𝒊=1

. 𝒙𝒊 

𝒎 is the number of perceptron inputs and 𝒃 denotes the bias. The bias causes a shift of the 

decision boundary away from the origin that is independent of the input data. In a typical binary 

classification, the value of 𝒇(𝒙), which is either 0 or 1, indicates the class of input 𝒙 as either a 

positive or a negative example. A perceptron may be single-layered (using a simple 

feedforward neural network) or multi-layered (which is often misunderstood as a complex 

neural network). Rosenblatt’s work sparked interest in the field until Minsky and Papert in 

(Minsky and Papert, 1969) demonstrated that a basic perceptron could handle a relatively 

limited class of linearly separable problems and that machines then, lacked sufficient powers 

to process useful neural networks, resulting in a period of stagnation in the field (Anders, 2008). 

However, distinct research continued in a relative direction until 1986, when Rumelhart, 

Hinton and Williams demonstrated that back-propagation (Rumelhart, Hinton and Williams, 

1986) can be used to train rather complex networks of simple neurons to learn from examples 

by using word’s internal representations as feature vectors to predict next word in a sequence. 

Unsupervised pre-training, combined with advances in computer processing power (GPU) — 

courtesy of computer-game industry — and distributed computing, paved the way for the 

deployment of larger networks capable of learning to recognize higher-level concepts such as 

objects from unlabelled images (Quoc V. Le et al., 2012)  and in visual recognition, a process 

dubbed “deep learning” (Goodfellow, Bengio and Courville, 2016). For example, in object 

recognition, the systems can be fed thousands of labelled images of automobiles, plants, 

houses, and animals, and the model will look for visual patterns consistent with the labels in 

the images. Figure 3.9 illustrates the building block of a deep neural networks. 

In general, the NN architectural underpinning is based on the concept of an input vector getting 

mapped to an output value and being optimized using real-valued weight vectors, and the 
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constant bias value (that helps in a way that best fit the given data). A Neural Network is a 

computational model inspired by the structure and connectivity of neurons in the human brain 

(Shai and Shai, 2014). They consist of networks of nodes termed artificial neurons (synapses) 

that are connected (by edges) in order to transmit signals. The signals are in the form of real 

values, and the neuron’s output is computed using some non-linear functions of the sum of its 

inputs. The weights are modified as learning progresses to increase or reduce the signal 

strength. Typically, neurons are aggregated into layers, with each layer performing a unique 

transformation on their inputs. Similar to a linear regression, the algebraic formula of a simple 

neural network is represented as: 

∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖𝑎𝑠 = 𝑤1𝑥1 + 𝑤2𝑥2 +

𝑚

𝑖=1

𝑤3𝑥3 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏𝑖𝑎𝑠 

 

 

Figure 3.9: (a) Illustrate a typical deep neural network building block. (b) A feedforward multilayer neural 

network is depicted (also known as multilayer perceptron) 

Image source: (Vieira et al., 2017). 

For a classification problem, a neural network objective function is given by: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑥) = {
1    𝑖𝑓 ∑𝑤𝑖𝑥𝑖 + 𝑏 > 0
0   𝑖𝑓 ∑𝑤𝑖𝑥𝑖 + 𝑏 < 0

 

Three interconnected layers constitute an ANN: an input layer, an inner layer, and an output 

layer. The input layer receives external data, the output layer generates the desired result, and 
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between them are zero or more hidden layers. The hidden layer may be one-layered, unlayered, 

or multi-layered. The connections between layers can be fully connected (i.e., each neuron in 

one layer is connected to every neuron in the next layer), or pooling (in which group of neurons 

in one layer connects to a single neuron in the next layer) (Ciresan et al., 2011). Neurons 

connected in this manner form an acyclic graph, often known as a feedforward network (Zell, 

1994). Additionally, recurrent networks are those that permit connections between neurons in 

the same or preceding layer (Miljanovic, 2012). Each layer aids the ANN in understanding an 

object’s complex structure. 

Depending on the learning rule, an ANN may employ the backpropagation process to adjust 

and compensate for any errors found during training. Backpropagation makes sure that any 

output with incorrect-labels is routed back through the layers and that the weights are 

updated/recalibrated, via stochastic gradient descent (Bottou and Bousquet, 2007) (or other 

techniques), in proportion to their contribution to the errors. Technically, backpropagation 

computes the gradient of the loss function with respect to the weights. As training progresses, 

the NN learns how to minimize the likelihood of errors while accounting for the difference 

between the desired and actual results.  

Below, we briefly discuss other components of an ANN 

a) Hyperparameter (HP): is a constant parameter that is initialized before neural network 

training begins. In some cases, the values of these parameters are determined by 

training. Hyperparameters are important because they have a crucial impact on the 

performance and the behaviour of the training model. Common HPs include, batch size, 

learning rate, and number of hidden layers (Lau, 2017). Certain HPs may be reliant on 

the values of others; for example, the size of some layers could be dependent on the 

overall number of layers.  

b) Learning: entails modifying the network’s weights in order to improve the result’s 

accuracy. Typically, this is accomplished by minimizing observed error, and when 

observed errors cease to decrease, learning is complete. While errors in the learning 

process do not have to be zero to be optimal, if they are, the network should be 

redesigned. Learning involves defining a loss (cost or objective) function that is 

evaluated on a periodic basis throughout the learning process and continues as long as 

the error rate keeps decreasing.  

c) Learning rate (LR): is a tuning parameter that sets the size of the corrective steps 

made by the model to compensate for observed error at each iteration while trying to 
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minimise the loss function (Murphy, 2012). It represents the rate at which a model 

learns; a high LR reduces training time but results in lower accuracy, whereas a low Lr  

increases training time but results in potential higher accuracy. However, there is a 

trade-off between a high and a low LR. A too high LR causes the learning to hop over 

minima, while a low LR either takes too long to converge or causes the learning to get 

trapped in an unwanted local minimum (Buduma and Locascio, 2017). To eliminate 

alternating connection weights and to improve convergence, it is currently common to 

adopt an adaptive LR that increases or decreases appropriately throughout training (Li, 

2009). 

d) Cost Function:  or a loss function, is the function that must be minimized in a leaning 

model to obtain the optimal solution. It is usually used to measure the performance of 

ML models. A cost function, depending on the desirable properties of the problem (e.g., 

regression, binary classification, multi-classification, etc.), takes both predicted and 

actual output and calculates how far off target the model was in its prediction. A high-

valued cost function may indicate how far the prediction is from the actual value. As 

the model hyperparameters are tuned during training, the cost  function represents the 

degree to which the model has improved. 

e) Modes: the learning mode can be stochastic or batch. The former produces a weight 

adjustment for each input, but the latter creates weight adjustments across the batch, 

accumulating errors. Given that adjustment is conducted in the direction of the batch’s 

average error, batch mode is more stable moving toward the local minimum. A popular 

compromise is to utilize simple batches with samples stochastically selected from the 

dataset collection for each batch. This is referred to as “mini-batch.” 

After discussing the detailed background of AI and its corresponding components, this section 

will focus on the application of AI to digital forensics — specifically, on the extraction and 

analysis of evidence. We refer to “digital evidence mining” in this thesis as the process of 

automatically identifying, detecting, extracting, and analyzing digital evidence with AI-driven 

techniques. The phrase “mining” is borrowed from the notion of data mining, which embodies 

procedures and components that can be applied to the analysis of digital evidence. Certain 

significant challenges in digital forensics necessitate the adoption of AI techniques. AI 

methods have proved promising on a variety of complex tasks; particularly with ML and 
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NN algorithms which are capable of discovering hidden patterns in massive heterogeneous 

data. These challenges include the following: 1) increasing availability of distributed systems; 

2) exponential growth in the size and capacity of storage devices; 3) the pervasiveness of 

electronic devices; and 4) the inability of existing forensic tools to keep up with the diversity 

and complexity of cybercrimes.  

In a conventional manual procedure, investigators will often familiarize themselves with the 

domain before generating reports that summarize their insights about the acquired artifacts 

(Mohammad, 2019). Consequently, investigators mostly rely on their experience to interpret 

findings. For example, manually comparing samples to determine if they share enough 

attributes to indicate a common source, or whether a particular set of data exhibits a persuasive 

pattern to establish probative facts, might be subjective. Subjective assessments imply that 

various examiners analyzing the same evidence will reach different conclusions or make 

varying assessments at different points in time. It is, however, worth highlighting that 

experience should never be used in place of experimentation, particularly when the ground 

truth is known (Carriquiry et al., 2019).  

The collection, categorization, and revision of evidence is the first step in evidence analysis, 

after which the probability of a crime (and prospective perpetrators) is hypothesized. The 

possible proofs that support these hypotheses are elicited, and the proof is then presented in a 

court-acceptable format. Examining fragmented knowledge and establishing complex 

scenarios that often incorporate time, uncertainty, causality, and possibilities is what evidence 

analysis entails (Constantini, Giovanni and Olivieri, 2019). Most DF analysis methods are 

incapable of extracting evidence in a holistic manner that considers all of the significant 

components in the artifacts, including the causal events. As a result, the analysis may be 

incomplete, and vital evidence may be overlooked. Another issue with existing investigative 

methods and practices is that they take an inordinate amount of time and require unnecessary 

human involvement to accomplish. 

As stated earlier in section 1.4, that a strong investigative analysis should place objects, 

activities, and time in a space that allows for complete representation of the data so that 

meaningful reasoning can be inferred. AI methodologies can apparently provide a reasonable 

approach to tackle most of the DF challenges highlighted above. Additionally, AI’s ability to 

discover potential regularities (or irregularities thereof) in a vast amount of complex, widely 

disparate, data in a reasonable length of time (Faye, 2010), with little or no human involvement, 
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makes them a choice candidate in mining evidence. Arguably one can subtly agree to the notion 

that the stages involved in conducting a DF investigation are similar to the steps needed in 

creating ML models (Mohammad, 2019). Various learning algorithms exist that can interact 

with digital artifacts in ways that enable reproducible experimentation and the identification of 

critical clues from data in a meaningful and visualizable manner. In what follows, we examine 

several prospective applications of AI algorithms to digital evidence mining, as well as existing 

approaches that have been proposed or implemented for the same goal. In this context, the term 

AI algorithms refers to all forms of AI approaches, including symbolic and sub-symbolic. 

Until recently, cyber security experts dealt with threats (or responded to incidents) such 

infiltration/intrusion in network, cloud, IoT, and mobile devices, or fraudulent activities by 

using anti-malware or antivirus software, as well as a firewall with specific rules (Brighi, 

Ferrazzano and Summa, 2020). However, today’s threats are so advanced that they may be able 

to circumvent standard security measures. This security failure could be ascribed to a lack of 

expertise, the accuracy of the malware detection systems, or the time required to detect or 

investigate daily attack threats, among other things. AI algorithms, with their advanced pattern 

recognition abilities, can analyse millions of log files in a reasonable amount of time and find 

in any data cluster, an “atypical” behavior in files (Brighi, Ferrazzano and Summa, 2020). In 

fact, in a well-configured environment, a machine learning classifier trained on massive 

historical, labelled data can detect a malicious or anomalous entry in real-time. There exist a 

number of literatures proposing different AI techniques to solving several intrusion attacks. 

Anuradha (Anuradha and Padmavathi, 2019) detected botnet intrusion using DNS query data 

modelled with ML. Recognizing that signature-based or white/blacklist methods are ineffective 

in combating botnets on digital devices and social platforms, Singh, Singh and 

Kaur demonstrated the ability to detect “Bot infections” as opposed to bot detection, in a 

network by identifying anomalous patterns in DNS traffic using DNS fingerprint for each 

host, modelled with Random Forest classifier in (Singh, Singh and Kaur, 2019). In a similar 

vein, Alauthman et al. (2020) claimed that bot detection in a real-time, high-speed, voluminous 

network may be unachievable in the absence of a method to reduce the dimensionality of 

network traffic data. As a result, they introduced a network traffic reduction technique based 

on neural networks that reduces training time while also increasing the learning rate of newly 

extracted features in an online system. They also modelled a decision tree classifier to 
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accurately detect new bots. Pour et al. have introduced a novel large IoT data dimensionality 

reduction technique based on ℓ1-norm PCA (Kwak, 2008) which is applied on passive 

measurement data to infer, describe, and report maliciously exploited and coordinated probing 

activities on IoT devices (Pour et al., 2019). In network packets or logs, indicators of 

compromise (IOC) are also evidence artifacts indicating that a system is compromised (Xiaoyu 

et al., 2020). The authors in (Chiadighikaobi and Abdullah, 2017) developed an approach to 

identify the source of an attack utilizing a behavior malware analysis framework and a k-means 

clustering algorithm to generate IOC rules to detect malware. Murtaz et al. (2018) used multiple 

ML classifiers such as Random Forest, k-Nearest Neighbour, Decision Tree, and Regression to 

detect malware in Android network traffic. 

Depending on the detection system design, ML/ANN models are capable of detecting unusual 

behaviour, and consequently either flag instant report, prohibit malicious entry, or log such 

reports so that human experts (or the system itself) can analyse its performance and perhaps 

provide reward in the form of reinforcements. As far as we understand, there is no detection 

tool with the aforementioned capacity that does not rely on AI learning techniques. This 

underscores the importance of implementing AI in such a domain. 

The conversion of the state of digital objects to their causal events is referred to as event 

reconstruction (Carrier and Spafford, 2004). Typically, a data object will reveal functional, 

relational, and temporal relationships with various events (Mohammad, 2019). To reconstruct 

events during a DF investigation, various factors must be addressed, including possible (causal) 

correlations, the context of the suspicious activities, the suspects’ “modus operandi,” and, most 

significantly, the time of the event (Constantini, Giovanni and Olivieri, 2019). Most digital 

items (or artifacts) have recoverable timestamps, though can be volatile because they change 

often in reaction to activities/events on the digital object (influenced by users or systems). 

However, a more extensive examination of sources such as the Windows Registry, event logs, 

database logs, etc., can reveal usable activity history, based on timelines, that can aid in event 

reconstruction — that is, what happened when, and sometimes, by who. Event reconstruction 

methodologies on huge volumes of artifacts, according to Chabot et al. (Chabot et al., 2015), 

must meet the following requirements: 



96 
 

• Automatic reconstruction and analysis of multiple event timelines. This will, however, 

necessitate the encoding of data in a machine-readable format, as well as a 

comprehensive approach to dealing with multiple heterogeneities. Heterogeneity, in 

this case, refers to identifying relationships by examining data from numerous sources 

such as file systems, Windows event logs, file metadata, server logs, web browser 

history, Memory dumps, and so on. 

• Making timeline data easier to understand by using tools that can interpret, analyze, and 

detect correlations between events, as well as draw conclusive inferences from the 

artifacts. 

• The availability of tools that allow for the easy and intuitive search and visualization of 

data.   

Event reconstruction could be complex, especially given the temporal component of digital 

artifacts. For example, if timestamps are not expressed as a vector, they may have a wide range 

of variations. Scaling the data within the range [0...1] or [-1...1] is a common technique 

(Mohammad, 2019). Due to unsynchronized clocks, time zone variances, and differing system 

file time formats, examining artifacts from different sources may cause timing issues (Chabot 

et al., 2014). Nevertheless, several methods have been proposed (Chen et al., 2003; Chabot et 

al., 2014; Chabot et al., 2015) to address such issues, some of which are also based on symbolic 

or rule-based representations of digital artifacts as presented in (Turnbull and Randhawa, 2015) 

to detect timeline inconsistences. In this area, there are numerous prospects for AI applications. 

In fact, AI algorithms can meet all of the requirements outlined by Chabot et al. above. We 

briefly explore various related literatures on the application of AI to event reconstruction during 

an investigation. Khan et al. presented a method for characterizing the use of various 

application programs by monitoring and capturing file system changes at discrete timelines. 

The recorded data was then used to train a feedforward and RNN model to distinguish instances 

of application execution. The RNN model showed improved accuracy because the network 

could frequently correlate different inputs, which is critical for recognizing time series 

relationships (Khan, Chatwin and Young, 2007). Similarly, Khan presented the comparative 

effectiveness of Bayesian probabilistic networks and NNs to identify file system manipulation 

during a specific time period, in an experiment to reconstruct post-event timelines of 

unauthorized system access. The Bayesian network appeared to be more suited for such task, 

because of its ability to stochastically represent data to learn from prior knowledge and detect 

hidden patterns from an incomplete dataset (Khan, 2012). Studiawan et al. (2020) employed a 



97 
 

sentiment analysis technique modelled with DL (word embedding with context and content 

attention layer) to detect aspect phrases and the associating sentiments in a forensic timeline to 

identify “Events of Interest (EOI)” from message logs (Studiawan, Sohel and Payne, 2020). 

The objective is to establish a class of positive and negative messages, with negative sentiments 

signalling the presence of EOI and are being highlighted in the timeline. This can provide 

investigators with insights to further investigate the activities within the surrounding timeline.  

There are numerous areas where AI could be applied to event timeline reconstruction, 

particularly in the detection of anomalous or deviant behavior in log files, databases, system 

files, etc. Nonetheless, anomalous behavior in a digital system is mostly dependent on a 

heuristic definition of what is legal or illegal – the distinction between which can only be 

determined via additional analysis of surrounding activities. 

Given that the notion of pattern recognition was fully covered in subsection 3.1.2.1, we will 

focus on its divergence into DF and its application to evidence extraction in this part. 

Pattern recognition is a fundamental tenet of AI; not necessarily a distinct stage in DF. 

Nonetheless, it is a valuable approach for examining digital artifacts. Crimes are 

characterized by a series of acts that, at times, follow a self-consistent, traceable pattern, while 

at other times, particularly when experienced criminals are involved, the patterns can be 

complex and difficult to trace. Additionally, there may be some distinct dynamics underlying 

the events surrounding the commission of a given crime, which may appear disparate or 

disjointed in the real sense (particularly when examined manually) but are connected in 

unimaginable ways. Digital crime analysis relates to identifying and correlating fragmented 

pieces of digital artifacts that can aid in establishing facts. Consequently, when digital artifacts 

are as large as they are today, it is nearly impossible to manually search for evidence clues. It 

thus necessitates the need for a robust mechanism capable of sifting through the data and 

identifying significant hidden relationships that can lead investigators to factual information. 

Pattern recognition is a suitable method for such complex task. Literally, it is a scientific 

discipline that deals with the automatic detection of regularities in data and the classification 

of data into various categories (Bishop, 2006). Pattern recognition has proved successful in 

examinations involving texts, images, audio, deep video, among others. For example, it can be 

used to determine whether a pattern in a disk image indicates that it is a component of a sound 

file (Faye, 2010) or to identify text patterns that appear frequently in phishing (Morovati and 
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Kadam, 2019) or SPAM (Santos et al., 2012) e-mails. Other areas of application include the 

detection of textual stylistics (linguistic analysis) in e-mails for the purpose of authorship 

attribution (Farkhund et al., 2008; Bogawar and Bhoyar, 2016; Emad et al., 2019), as well as 

the detection of objects, incriminating content, or abnormal behavior in video surveillance 

(Jianyu, Shancang and Qinglian, 2019). A full survey of digital video forensics can be found 

in (Javed, et al., 2021).  

Historically, pattern recognition systems were classifiers (which are largely supervised); that 

is, they determine if a piece of data is a member of an “object of interest,” X. Then they attempt 

to match all possible (or as close as computation allows) pieces of similar data to X, with 

enough generality to match all positive examples but enough specificity to exclude all negative 

examples (Faye, 2010). However, the breakthrough with DNN means that the same operations 

may now be accomplished with greater accuracy even without prior knowledge of the 

characteristics of the digital artefacts. It is simply a matter of feeding a neural network 

algorithm multiple disparate, but properly structured, digital artifacts and let the model deduce 

meaningful patterns from them. The model’s accuracy and the interpretability of the 

regularities detected would therefore be contingent on the quality of the fed examples and, to 

a considerable extent, the interpreter’s (investigator’s) experience. The following are some of 

the techniques that may be used singly or in combination to recognize patterns in digital 

artifacts: 

• Entity extraction is though heavily reliant on a massive amount of input data, it gives 

basic information for crime analysis. It can be used to extract patterns from textual data, 

image files, audio files, among other sources. In literatures, a neural network-based 

entity extractor was utilized in conjunction with entity extraction techniques to extract 

personal information from police reports, such as a person’s attributes, addresses, drug 

history, and so on (Chau, Xu and Chen, 2002). As described in (Spafford and Weeber, 

1993), viruses typically leave a trail of codes in infected systems; hence, code that 

remains after an attack may include source code, object code, executable scripts, and 

so on. As a result, MacDonell et al. stated that programmers, to a degree, have different 

coding styles that are readily identifiable by code analysts, given sufficient coding 

samples (MacDonell, et al., 2002). The authors also demonstrated that software 

metrics101 combined with psychological and linguistic analysis of codes, and ML 

 
101 Measurement made on software program to assess user satisfaction, degree to which comments is source 

code matches comments, ratio of statement lines to blank lines, etc. 
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algorithms (to recognize patterns) are sufficient for identifying, characterizing, and 

discriminating malicious code writers. 

• Clustering techniques assists in grouping data items with comparable characteristics 

in ways that minimize or maximize similarity overlap. Crime analysis may require that 

suspects (or perpetrators of crime) be identified using the same “modus operandi”, or 

that groups belonging to distinct networks be distinguished. Due to the fact that the 

majority of clustering approaches are unsupervised, they do not require predefined class 

labels. Rather, the statistics-based algorithm identifies associations and links between 

items such as organizations, individuals, crime patterns, among others (Hauck et al., 

2002; Gani, Hacid and Skraba, 2012; Shao et al., 2019). Clustering is also used in link 

analysis, which is crucial for investigating financial crimes and money laundering 

(Senator et al., 1995; Rouhollahi, 2021, Dasaklis and Arakelian, 2021), as well as drug 

cartels and extremist networks (Florea et al., 2019). Section 3.1.2.4 (B) has a detailed 

description of the clustering technique (and its variants). 

• Association rule mining can identify patterns in sets of regularly occurring objects in 

digital artifacts and report them as rules. Its application in network intrusion detection 

has proved important in identifying profiles and detecting potential network attacks by 

deriving association patterns from users’ interaction history (Lee, Stolfo and Mok, 

1999; Mabu et al., 2010; Hyeok, Cholyong and Ryang, 2016; Safara, Souri and 

Serrizadeh, 2020). Similarly, “sequential pattern mining”  falls under this category, as 

it identifies a sequence of frequently occurring items over a series of events that 

occurred at various times. This approach could be extremely valuable for detecting and 

reconstructing intrusion patterns with respect to timestamps. 

• Classification as a pattern recognition technique is a widely used “digital forensic AI” 

methodology for identifying common characteristics among various crime entities and 

organize them into predefined classes. For example, classification has been used to 

determine the origin of e-mail spam based on the senders’ linguistic styles (De Vel, 

2001; Santos et al., 2012); differentiate genuine and fake multimedia files in order to 

detect the presence of deepfake content (Ferreira, Antunes and Correia, 2021a); and to 

determine whether a computer file system has been manipulated by a specific software 

program (Mohammad, 2019). Additionally, predictive crime analysis can make use of 

classification approaches. However, the technique requires both predefined class labels 

and high-quality training and testing data (Chau, Xu and Chen, 2002). 
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• Social network analysis enables visualization of criminal networks, by detailing the 

roles and interconnections of nodes in a conceptual network. Numerous criminal 

activities occur in cyberspace, including identity theft, public defamation, cyber 

stalking, personal data theft, fraud, and gangsterism (Baca, Cosic and Cosic, 2013). 

Some of these crimes (or the perpetrators’ interactions) take place on social media 

platforms and determining the entities responsible for these acts would involve an 

investigation of multiple links, roles, the movement of tangible and intangible objects, 

as well as the association between these entities. A thorough forensic examination of 

the suspects' interactive behaviours can identify crucial roles, subgroups, and 

penetration loopholes in the network (Chau, Xu and Chen, 2002). 

• Deviation detection is also known as “outlier detection” —  is a technique that employs 

certain techniques to analyze data that deviate significantly from the rest of the data. It 

is commonly used in fraud and intrusion detection, as well as to spot missing patterns 

in data. However, depending on the learning algorithms and the data structure, a 

deviating behavior may appear normal when visualizing results, making it difficult to 

discover anomalies. 

• String comparators: is mostly used to analyse textual data — it compares pairs of 

textual records and calculates their similarity. The approach is capable of detecting 

misleading information in criminal records, such as names, Social Security numbers, 

and dates of birth (Wang, Chen and Atabakhsh, 2004). 

Knowledge discovery, also known as Knowledge Discovery in Databases (KDD), is another 

branch of artificial intelligence that benefits digital evidence mining. It is also commonly used 

in electronic discovery — which is the process of organizing forensically acquired data into 

information that is understandable, replicable, and available to all parties involved in a court 

proceeding (Krishnan and Shashidhar, 2021). KDD is a term that refers to the process of 

extracting valuable data from a big collection of data (or in this case, digital artifacts). It 

encapsulates the integration of artificial intelligence, statistics, and probabilistic methods with 

the purpose of discovering meaningful representations of data that can aid in the detection of 

valid, novel, valuable, and meaningful patterns in huge and complex datasets (Maimon and 

Rokach, 2005). Unlike the majority of knowledge representation methods, KDD requires little 

or no background knowledge of the domain for which digital evidence is sought (Faye, 2010). 
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Additionally, the heavy lifting involved in a standard AI technique’s complex representation 

of knowledge may be ineffective in KDD (Faye, 2010). Moreover, KDD is exploratory in 

nature; it frequently requires human (in the middle) intervention to issue query-like instructions 

such as “identify item with X properties that is connected to event Y.” If the output is well 

structured, the human expert can perceptually detect patterns, albeit this can occasionally result 

in the identification of non-existent patterns. In reality, KDD continues to be one of the most 

helpful AI approaches in the legal domain (DF inclusive) and for large-scale data analysis. 

They should, however, be utilized with extreme caution, as they may overlook significant 

evidence due to the lack of background knowledge or advanced reasoning abilities. 

It is typical in knowledge discovery (and, of course, DF) to examine more of the object’s 

metadata because it is commonly not visible to the users and, unless tampered with, provides a 

rich artifact for DF investigation. Metadata, which literally translates as “data beyond data,” is 

structurally embedded within digital files. It is frequently created and updated automatically 

by application programs (unless altered explicitly by a human), operating systems, or Malware. 

Metadata contains a variety of properties that vary according to its source — which could be 

file systems, images, documents, or the Internet (browsers and web pages). Explicitly, a 

document’s metadata (which varies depending on the application program) includes 

information such as time stamps, last changed timestamps, the time period during which an edit 

occurred, the file hash, the author, and the computer that created the document. Similarly, an 

image file will have embedded metadata such as product/manufacturer details, lens 

information, time/date of creation, geographical coordinates, pixel information, among others 

(Larry and Lars, 2012). Meta-tags, programming language, page rendering intent, static or 

dynamic content production are all examples of web page metadata that may be relevant for 

digital investigations. However, the metadata associated with web pages is not as relevant to 

investigators as that of internet browsers (Krishnan and Shashidhar, 2021). For instance, 

browsing history, cached passwords, and search records are all examples of browser metadata 

that can be extremely relevant for investigations. The primary goal of the KDD technique in 

DF is to analyse all of these components in order to extract meaningful knowledge that may be 

used to derive inculpatory or exculpatory conclusions. 

For provenance analysis and object authentication, device or machine fingerprinting is 

frequently utilized. Device fingerprinting  is the process of obtaining information about an 
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electronic device that uniquely identifies it. Typically, device fingerprinting is used for 

legitimate purposes such as preventing fraud or unwanted access to systems. When systems 

with fingerprinting mechanism are accessed, information such as the browser version, IP 

address, OS version, system fonts, screen resolution, HTTP cookies, and GPS location are 

recorded. Subsequent access information is compared with the previously logged data to 

validate identity or authenticate transactions. There are instances where malware bots are 

programmed to repeatedly access systems, and when this occurs, equivalent countermeasures 

to identify and block these malwares should be implemented. Gandotra et al. (2014) provided 

an overview of numerous malware classification techniques based on the behavior of static or 

dynamic malware (Gandotra, Bansal and Sofat, 2014), as well as malware author attribution 

(Alrabaee et al., 2017). In multimedia provenance, images can be analyzed to determine 

whether or not it was created by a particular camera. A minor, unnoticed defect in the sensor 

of a digital camera might leave imprints on the images produced (Xiaoyu et al., 2020). As a 

result, when analyzing photographs, it is possible to connect their content with a specific 

camera sensor (Lukas, Fridrich and Goljan, 2006; Freire-Obregon, 2017). Tsai, Lai and Liu 

demonstrated how to train and categorize image characteristics using SVM on similar image 

scenes captured with a conventional and a mobile phone camera (Tsai, Lai and Liu, 2007). 

Their model correctly identified the image's originating camera. CNN have also demonstrated 

encouraging results on a variety of image, sound, and video recognition/analysis 

tasks (Karpathy et al., 2014; Hijazi, Kumar and Rowen, 2015). 

We discussed the history of artificial intelligence in this chapter, from its inception to the 

concept of symbolic and sub-symbolic reasoning. The former, which is predicated on logical 

rules premised on certain consequence, exemplifies expert systems and case-based reasoning. 

While the latter refers to a broader concept of complex relationships or correlations between 

data points. We discussed in depth various types of sub-symbolic reasoning AI, such as ML, 

DL, DNN, and ANN, as well as introduced learning algorithms using supervised and 

unsupervised techniques. Furthermore, we discussed the potential divergence of machine 

learning algorithms for DF analysis and evidence extraction. Additionally, we cited cases from 

the literature in which learning algorithms and neural networks aided in the mining of evidence 

or provided indications for further analysis. 
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Textual communication data continues to be a valuable source of evidence; it comes in a variety 

of forms, including text messages, tweets, documents, and e-mails. In this chapter, we describe 

our neural network-based approach to pattern recognition in unstructured textual 

communication data, as well as the reconstruction of time series event to detect potential 

evidence concealment. Our method is based on the Variational Graph Autoencoder (VGAE) 

(Kipf and Welling, 2016), constructed with a multi-featured dynamic graph to represent the 

temporal evolution of e-mail exchanges between multiple user pairs. Our approach makes use 

of e-mail metadata and contents extracted from the body with NLP and text mining (Tan, 1999) 

techniques. The primary goal of our work is to aid the partial automation of the detection of 

suspicious e-mail deletions during an investigation. Thus, the constructed model is aimed at 

detecting missing graph edges, which we interpret as probable deletions, and reconstructing 

the edge attributes from which we infer the deleted messages' topics. 

In subsequent sections, we briefly introduce the context of the problem including the related 

works. We then discuss our approach which can be divided into three key parts as follows: 

• Methodology for building graphical representation of e-mail collections 

• VGAE-based method for detecting e-mail deletion and topic reconstruction 

• Experiment, evaluations, and results. 

E-mail is a fundamental mode of communication, as it enables the transmission of text 

messages, documents (confidential, legal, commercial, etc), and the conduct of transactions. 

However, it is a major source of a number of criminal activities, including illegal file sharing 

and malware transmission.  

Discovering probative evidence in a vast volume of data is a difficult process that requires 

systems capable of identifying and visualizing digital cues (Caviglione, Wendzel and 

Mazurczyk, 2017). As a result, mining evidence from a large pool of semi-structured and 
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unstructured data, such as e-mails, will require analytical methods capable of fusing objects 

(e.g., e-mail users), activities, and time into a multidimensional space that enables the 

reconstruction of events that may be suggestive of prior activities (Solanke, Chen and Ramírez-

Cruz, 2021). The majority of proposed efforts on e-mail forensics have focused on the analysis 

of e-mail headers (Miyamoto, Hazeyama and Kadobayashi, 2008; Guo, Jin and Qian, 2013), 

which has proved beneficial in detecting crimes such as spam, phishing, and spoofing (Aparna 

and Dija, 2015; Shukla, Misra and Varshney, 2020). Meanwhile, certain textual analysis 

approaches have made use of NLP to discover and prove the attribution of crime or criminal 

intent (Studiawan, Sohel and Payne, 2020). In general, we can analyze a few literatures 

covering e-mail analysis and the proposed automated approaches. In (Miyamoto, Hazeyama 

and Kadobayashi, 2008), a method for detecting virus-infected e-mails using e-mail headers 

was proposed. The authors in (Morovati and Kadam, 2019) discussed techniques for detecting 

and classifying "phished" and benign e-mails using a variety of machine learning classifiers 

(SVM, k-nearest neighbours, etc.). The classifiers exploited features such as common text 

patterns in phishing e-mails and potentially purposeful spelling errors. Additionally, (Santos et 

al., 2012) presented a spam filtering algorithm based on word frequency in the subject and 

body. However, the technique omitted two crucial parts of the metadata: the sender and the 

time stamp. ‘Holmes’ (Peilun, Fan and Hui, 2021) is a recently proposed semantic-based e-

mail anomaly detection method that intends to discover e-mail threats that usually evade 

enterprise anti-spam systems’ detection. Their strategy is based primarily on the information 

contained in e-mail headers. In (Mrityunjay, Chauhan and Gupta, 2017), an autonomous e-mail 

analyzer architecture was proposed that can monitor the content of e-mail headers in real-time 

and raise a suspicion flag if a certain collection of strings is identified. Uma and Nikkath 

developed a machine learning-based prototype dubbed “Enhanced Forensics Fuzzy C-Means 

Clustering (EFFCM)” (Uma and Nikkath, 2021)  for the purpose of detecting potentially illicit 

materials in e-mails. Similarly, several authors (Farkhund et al., 2008; Bogawar and Bhoyar, 

2016; Emad et al., 2019) have presented techniques for determining authorship or intent in e-

mails through stylistics and discourse analysis.  

Criminal intent or activities may occasionally involve accomplices attempting to conceal 

incriminating messages; thus, having a tool that can detect e-mail deletions may be useful in 

determining criminal intent. From a novel standpoint, our work benefits from the uniqueness 

of the manner in which we integrated the semi-structured information from the headers with 

the semantic features extracted from the (unstructured) textual content of the bodies. This 
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supports the richness of our representation of the e-mail collections. Additionally, and in 

contrast to other works utilizing e-mail artifacts, we seek to expose dishonest persons who 

conspire to delete evidence of discussion about a certain subject. Our approach is also distinct 

in the formalism with which the problem is addressed: VGAE – a sort of ANN utilized for 

creating genuinely synthetic data, reconstructing partially degraded images, and so on. 

Hypothetically, we assume a case scenario where investigators are given access to specific e-

mail artifacts, presumably after authorizations have been obtained. They consequently aim to 

ascertain: i) whether an e-mail exchange between two suspects was deleted; and ii) whether the 

deletion was made with the intent of concealing evidence of communication about a particular 

subject. 

Below, we detail our thorough approach to resolving the issue. 

Our method combines the semi-structured information in the e-mail header and information 

extracted from the unstructured text in e-mail bodies to construct an attributed dynamic graph 

that represents the collection of e-mail exchanges. The metadata extracted from the e-mail 

headers include sender and receiver addresses, timestamps (at which e-mail was sent and 

received), labels (e.g., Cc, BCc), the subject (if any), etc., Explained below are the steps taken 

to construct the graphical representation of the collection of e-mails. 

The e-mails are processed incrementally, while a log of triples of the form (sender, receiver, 

timestamp) is updated at each iteration. As a result, before extracting the content of a new e-

mail, a check is made to ensure it is not a duplicate. This is important since a copy of 

the message sent will be stored in the sender's outbox (or sent items, as the case may be) and 

the receiver's inbox. Having both will amplify the noise.  

In the message parsing process, we use Regular Expressions (RE) (Thompson, 1968) to match 

string patterns. RE are specially encoded text strings or sequences of characters that 

specify/match a string pattern; they are extremely valuable for extracting entities such as e-

mail addresses, social security numbers, phone numbers, and web collection entities (Yunyao 

et al., 2008). Using RE to extract entities may be relatively simple; this is especially true for 

extracting popular strings such as those found in e-mail headers, as multiple samples exist to 
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accomplish this. Due to the complexity of matching patterns in the body of an e-mail, the string 

searching algorithm must be robust and adaptive. 

To ensure that duplicates are removed correctly, we use RE to search the list of triples for 

patterns with the same (sender, receiver) pair. If a matched pair is found in the log, the new 

message is ignored if the absolute difference between the messages time stamps is less than 

two seconds. Mathematically, given two messages, 𝑚1 and 𝑚2 with corresponding timestamps 

𝑚𝑡1
and 𝑚𝑡2

, respectively. The time difference 𝒯 = 𝑚𝑡1
− 𝑚𝑡2

; therefore, if |𝒯| ≤ 2 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 

then the message is a duplicate. This method has been extensively validated and is highly 

effective in identifying duplicates in e-mails exchanged between pairs. Additionally, with RE, 

we eliminate messages that match the patterns of typical automated e-mails, as well as the 

ASCII representation of attachments included in the e-mail body, and textual contents attached 

to the end of forwarded or replied-to messages. These text fragments constitute duplicates of 

the original messages. Furthermore, we label each message to indicate if the receiver was the 

primary recipient or was added in Cc or Bcc, as well as whether the e-mail initiates a 

conversation, or it is a reply or forwarded message. Finally, we pass the de-noised contents of 

the non-removed e-mails to the text processing pipeline. 

We employ domain-specific heuristics and specialized tools from the NLTK (Natural 

Language Toolkit) library102 to process the unstructured texts contained in the e-mail bodies. 

The steps illustrating the specific details of our text processing is represented in Figure 4.1 and 

the pipelines are described below. 

1. Punctuation removal. Considering our use case, we carefully selected the 

punctuations that needed to be discarded. We utilize a specialized Python module 

(“strings”) that searches for list of punctuations (or special characters) in text and 

automatically identify and remove them. The list of removed punctuations include:  

2. Text tokenization. This is the process of segmenting text into smaller components 

known as tokens. It entails the breakdown of a complete sentence (or the entire content 

of a document) into simple or complex lexical terms/words, acronyms, abbreviations, 

 
102 https://www.nltk.org/ 
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and alphanumeric expressions. Tokenization can be accomplished using specific tools 

such as sentence or word tokenizers103 available in the NLTK libraries. 

3. Part-of-Speech (POS) tagging. This is the process of associating a word in a textual 

corpus with its associated part of speech, as defined and contextualized by the word. 

POS tagging can be rule-based  (Brill, 1992) or stochastic, and it is based on 

computational linguistics, which correlates discrete terms and hidden parts of speech 

with a collection of descriptive tags. We accomplish this task by utilizing the Stanford 

POS tagger104 (Manning et al., 2014). In our use case, we retain all nouns (NNP, NNS,  

NN), verbs (VB), adjectives (JJ), and adverbs (RB), and then eliminate the other POS 

tags. 

4. Lemmatization. Typically, this phase could be replaced by (or added to) stemming — 

a well-known technique for reducing words to their morphological roots. 

Lemmatization ensures that words are not severely stemmed to the point of meaning 

loss, and we chose it over stemming to avoid many terms with common stems 

collapsing into a single term. This is accomplished through the usage of the NLTK's 

WordNet-based lemmatizer105. 

5. Stopword removal. As with the terms that were already removed from the e-mail 

during the pre-processing phase, stopwords are further collection of frequently used 

words that do not contribute to the semantic understanding of the sentence or provide 

any value to its analysis. We employ NLTK's standard stopword list106, supplemented 

with a few terms that are ubiquitous but uninformative in the context of e-mail 

processing, such as 'dear', 'attached', 'regards', and so on.   

 

Figure 4.1:  Text Pre-processing Pipeline 

Following the text processing pipeline, we construct a weighted vector representation of 

each e-mail. To do this, we employ the widely used Term Frequency – Inverse Document 

Frequency (TF-IDF) technique (Juan, 2003; Robertson, 2004). TF-IDF was developed 

 
103 https://www.nltk.org/api/nltk.tokenize.html 
104 https://nlp.stanford.edu/software/tagger.shtml 
105 https://www.nltk.org/_modules/nltk/stem/wordnet.html 
106 https://www.nltk.org/nltk_data 
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primarily for the purpose of document search, keyword extraction, and information 

retrieval. It is defined as follows: 

• Term Frequency (TF) is given by the number of times a term occur in a document 

– the more a term is represented in a document, the important it is. In our case, we 

compute it as the relative frequency of the term in each e-mail.  

• Inverse Document Frequency (IDF) is conceptualized in terms of the frequency 

with which a word occurs in an entire collection of documents. It is based on the 

principle that the relevance of a term is inversely proportional to the number of 

documents in the corpus as a whole. The closer a term's 𝑖𝑑𝑓 is to 0, the more 

common or important it is. Our inverse document frequency is computed as 

𝑖𝑑𝑓(𝑡) = log (𝑁
𝐷𝑡

⁄ ), where 𝐷𝑡 is the number of e-mails containing term 𝑡 and 𝑁 is 

the total number of e-mails. 

Generally, TF-IDF is mathematically given by: 

𝑊𝑡 ,𝑑 = 𝑓𝑡 ,𝑑 ∗ log (𝑁
𝐷𝑡

⁄ )  

Where 𝑊𝑡 ,𝑑 is the weight of term 𝑡 in in document (e-mail) 𝑑; 𝑓𝑡 ,𝑑 is the frequency of term 𝑡 in 

document (e-mail) 𝑑. 

We represent e-mail collections as a dynamic graph 𝒢 = {𝐺(1), 𝐺(2), … , 𝐺(𝑇)}, where every 

snapshot 𝐺(𝑡) = (𝒱(𝑡), ℰ(𝑡)), 𝑡 ≥ 2, represents all e-mails exchanged from time-step 𝑡 − 1 (not 

inclusive) and time-step 𝑡 (inclusive). That is, 𝐺(1) represents all communications until time-

step 1 (inclusive). Each node 𝜐 ∈ 𝒱(𝑡) represents an e-mail address, while with each edge 

(𝜐, 𝜔) ∈ ℰ(𝑡), we represent the e-mail(s) exchange between the addresses 𝜐 𝑎𝑛𝑑 𝜔 during the 

snapshot 𝐺(𝑡). Our dynamic graph is undirected and organized in such a way that new nodes 

and edges (with their corresponding attributes) can appear and disappear at various time-steps. 

The graph is undirected because our model aggregates the entire body of e-mails exchanged 

during each time step, rather than individual messages, for each user pair. 

All nodes at snapshot 𝑡 have a pre-defined number of attribute vectors represented as 𝐹𝑡, and 

we denote the node attribute by 𝒳 = { 𝑋(1), 𝑋(2), … , 𝑋(𝑇)}, where 𝑋(𝑡)is an 𝑁𝑡 ×  𝐹𝑡 matrix such 

that 𝑋𝑖𝑘
(𝑡)

 contains the value of the k-th entry of the F-dimensional feature vector of the i-th node 
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at time-step 𝑡. Similarly, the edge attributes are denoted by ℰ = 𝐸(1), 𝐸(2), … , 𝐸(𝑇), where the P-

dimensional vector in 𝐸𝑖𝑗𝑝
(𝑡)

 represent the probability distribution of a specific number 𝑛 of latent 

topics according to a topic-based language model (which we describe later in this chapter) fitted 

to the collection of e-mails exchanged between 𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗 in 𝐺(𝑡). For every (𝑣𝑖 , 𝑣𝑗) ∉  𝐸(𝑡), we 

set 𝐸𝑖𝑗.
(𝑡) 

=  [0]𝑛. 

Topic model (or Probabilistic Language Model (Bengio, 2003)) is a statistical method used for 

discovering ‘latent’ topics or hidden semantic structures present in a collection of documents. 

It is a non-rule-based, unsupervised techniques used for finding pattern of co-occurring terms 

in a large corpus of text. Fundamentally, topic models are generative models which are based 

on the rationale that the generation of a document is through the sampling of a collection of 

topics, from which words are sampled with topic-specific distributions. 

We employ topic models to generate low-dimensional abstract feature vectors that describe the 

contents of each pair of users' collections of exchanged e-mails. Originally, we explored the 

option of encoding e-mail subjects to enrich the feature vectors but observed that it made an 

insignificant contribution and was ultimately unsuitable due to the large number of e-mails 

with blank, uninformative, or deceptive subjects. The abstract vectors contain information from 

the weighted terms (tf-idf) and the bag-of-words, both of which represent the entire e-mail 

collections exchanged between user pairs over a predefined time period. 

Numerous techniques for topic modelling have been proposed, including Latent Semantic 

Indexing (LSI) (Dumais, 1994), Probabilistic Latent Semantic Indexing (pLSI) (Hofmann, 

1999), Latent Dirichlet Allocation (LDA) (Blei, Ng and Jordan, 2003), and Non-negative 

Matrix Factorization (NMF) (Xu, Liu and Gong, 2003). A priori, any topic model should fit 

well with our model; nonetheless, based on empirical evaluation (which we describe later in 

this chapter), we experimented with LDA and NMF. Literally, LDA is modelled using Dirichlet 

distributions; it is based on a topic per document and words per topic model. It represents any 

collection of documents in a lower-dimensional vector space as a document-term matrix. The 

matrices are denoted as document-topic matrix (𝑁, 𝐾) and topic-term matrix (𝐾, 𝑀); where 𝑁 

denotes the number of documents, 𝐾 is the number of subjects, and 𝑀 is the vocabulary size. 

Thus, for a collection of documents, LDA generates a probability distribution between 0 and 
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1, indicating the percentage of correctness for each of the topic in the selected number of topics. 

Figure 4.2 is a pictorial representation of the LDA model. 

 

Figure 4.2: Graphical representation of an LDA Model 

On the other hand, NMF is a statistical method that employs factor analysis to reduce the 

dimension of inputs by assigning a lower weight to words with a minimal degree of coherence. 

It is an unsupervised ML technique for identifying latent or hidden structure in data. One of 

the key features of NMF is its ability to automatically extract interpretable factors from sparse 

data. NMF operates by decomposing a 𝑤𝑜𝑟𝑑𝑠 𝑋 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 matrix 𝐴 into the product of a 

𝑤𝑜𝑟𝑑𝑠 𝑋 𝑡𝑜𝑝𝑖𝑐𝑠 matrix 𝑊 and a 𝑡𝑜𝑝𝑖𝑐𝑠 𝑋 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 matrix 𝐻. Figure 4.3 graphically describes 

the NMF rationale. Mathematically,  NMF is given by: 

𝐴 = 𝑊 ∗ 𝐻 

 

Figure 4.3: Graphical representation of the NMF model 
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The theory is that by combining a VGAE with recurrent graph neural networks, it is possible 

to detect infrequent activities in e-mails (such as deletions) and partially reconstruct the edge 

vectors encoding the subjects of deleted e-mails. Our model, which takes e-mail exchange as 

input, is constructed using standard social network analysis and anomaly detection techniques, 

as well as autoencoders' reconstruction capabilities. Precisely, our approach uses conventional 

missing link prediction as a basis for deletion detection, and the interpretation of topic 

reconstruction is based on edge attribute reconstruction. 

The VGAE model is an extension of the VAE (Kingma and Welling, 2013) model, with the 

addition of the requirement to reason about and act on graph-related structures. VAEs are a 

subset of AE. AEs are NN models widely used for synthesising realistic data, de-noising 

images, etc. The encoder in AE takes a data point 𝑿 as input, converts it to a lower-dimensional 

representation 𝒁, or embedding (or latent variables). Then the decoder takes the embedding 𝒁 

and return the reconstructed representation of the original input �̂�. The distinction in 

architecture for VAEs is that the encoder learns a multivariate Gaussian distribution 𝒒𝝋(𝒛|𝒙) of 

the input data. The decoder samples the embedding from the latent space and reconstructs it to 

generate the output �̂�, which is a variational approximation 𝒒𝜽(𝒙|𝒛). VGAE takes as input the 

adjacency matrix107 and feature vectors representing the nodes (and in our model, also the 

edges) of a graph. Our initial intuition is that when a damaged communication graph is given 

into a VGAE-based model, the model learns the pattern of communications as it evolves over 

time during training. The model's output shall then reflect the reconstructed communication 

graph that will serve as the  foundation for our deletion detection tasks. Additionally, while a 

standard VGAE can be represented with multi-dimensional node features, our model can 

include multi-dimensional edge features as an addition. The input to our model are: 

i. the dynamic adjacency matrix 𝒜 of the (dynamic) graph representing the e-mail 

exchange, is a sequence of matrices {𝐴(1), 𝐴(2), … , 𝐴(𝑇)}, where 𝐴(𝑡) is an 𝑁𝑡 × 𝑁𝑡 matrix, 

and 𝐴𝑖𝑗
(𝑡)

 =  1 if an edge exists between nodes 𝜈𝑖 and 𝜈𝑗 at the t-th snapshot, otherwise 

𝐴𝑖𝑗
(𝑡)

 =  0; 

ii. the node attributes 𝒳, described in section 4.2.3; 

 
107 The adjacency matrix, also known as the connection matrix, of a simple labelled graph is a matrix with rows 

and columns labelled by graph vertices and a value of 1 or 0 in position (vi, vj) depending on whether vi and vj. 
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iii. the edge attributes ℰ, also briefly described in section 4.2.3, is a sequence of matrices, 

where 𝐸(𝑡) is an 𝑁𝑡 × 𝑁𝑡 × 𝑃𝑡 tensor, and we set the p-th entry of the edge attribute 𝐸𝑖𝑗𝑝
(𝑡) 

=

 [0]𝑛, if (𝜈𝑖 , 𝜈𝑗) does not exist, otherwise, the probability vectors (in this case, 10 values) 

of the latent topics (derived using probabilistic language model) between 𝜈𝑖 and 𝜈𝑗 are 

used. 

To reduce the dimensionality of the graph and extract meaningful features, we use a variant of 

the Graph Convolutional Networks (GCN) (Kipf and Welling, 2016a) as proposed in (Chen, 

2020). Below, we describe the convolutional architecture of the multi-dimensional weighted 

edge as proposed by Chen. 

The node degree matrix 𝐷(𝑡) at time-step 𝑡 is denoted by an 𝑁𝑡 × 𝑁𝑡 diagonal matrix108, where 

𝐷𝑖𝑖
(𝑡)

 gives the degree of the i-th node. Therefore, the edge features are normalized in a 

symmetric manner using the node degrees. However, contrary to the normalization technique 

in GCN, the adjacency matrix is replaced with 𝑁𝑡 × 𝑁𝑡 × 𝑃𝑡 edge weight tensor. 

Mathematically, the normalization method at time-step 𝑡 is given by: 

�̂�𝑖𝑗𝑝
(𝑡)

= 𝐷𝑖𝑖
(𝑡) − 0.5

 .  𝐸𝑖𝑗𝑝
(𝑡)

 .  𝐷𝑖𝑖
(𝑡) − 0.5

 

(4.1 ) 

Representing equation (4.1) in matrix form, we have: 

�̂�..𝑝
(𝑡)

= 𝐷(𝑡) − 0.5 .  𝐸..𝑝
(𝑡)

 .  𝐷(𝑡) − 0.5 

(4.2 ) 

𝐻(𝑙)(𝑡) denotes the 𝑁𝑡 × 𝑑𝑡
(𝑙)

 matrix of hidden node states at the l-th layer at time-step 𝑡; with 

𝐻𝑖.
(𝑙)(𝑡)

 of the i-th row representing the 𝑑𝑡
(𝑙)

 dimensional hidden state vector of the i-th node in 

the l-th layer at time-step 𝑡. At the initial l-th layer 𝑙 =  0, hidden layer 𝐻(0)(𝑡) = 𝑋(𝑡) (the node 

attribute matrix at time 𝑡). At other (𝑙 + 1)-th layer, for each of the P channels of the edge 

weights, the hidden node state is obtained iteratively by performing a weighted convolution 

operation on 𝐻(𝑙)(𝑡) with �̂�𝑖𝑗𝑝
(𝑡)

 as convolution co-efficient, along with the usual weight matrix, 

 
108  diagonal matrix is a matrix in which the entries outside the main diagonal are all zero 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Main_diagonal
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𝑊(𝑙,𝑝), of dimension 𝑑(𝑙) × �̂�(𝑙). This implies that, for each 𝑝 ∈ {1, … , 𝑃}, an 𝑁 𝑥 �̂�(𝑙) matrix, 

�̂�(𝑙,𝑝) is computed at time-step 𝑡 as: 

�̂�(𝑙,𝑝)(𝑡) = 𝜎 (�̂�..𝑝
(𝑡)

 .  𝐻(𝑙)(𝑡) .  𝑊(𝑙,𝑝)) 

(4.3 ) 

where 𝜎 𝑖𝑠 𝑛𝑜𝑛 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛; in our case, we use the Rectified Linear Unit 

(ReLU) (Nair and Hinton, 2010). Precisely, when given a negative input, the ReLU function 

returns 0, but when given a positive input, it returns the same number. It can be written as: 

𝑓(𝑥) = max (0, 𝑥). 

 

At each snapshot, we propagate information across the different edge channels and update the 

nodes by combining �̂�(𝑙,𝑝)(𝑡) for 𝑝 ∈ 1, … , 𝑃 into the hidden node states of the next layer, �̂�(𝑙+1). 

In our task, we use the sum aggregation method which is given as: 

𝐻(𝑙+1)(𝑡) = σ (∑ �̂�(𝑙,𝑝)(𝑡)
𝑃

𝑝=1
. 𝑊𝑠𝑢𝑚

(𝑙)
) 

(4.4 ) 

where 𝑊𝑠𝑢𝑚
(𝑙)

 is a learnable weight matrix of size 𝑑(𝑙) × �̂�(𝑙+1). 

Therefore, the entire update rule for a sum-aggregated multi-dimensionally weighted edge 

convolution method (with a bias) is: 

𝐻(𝑙+1)(𝑡) = 𝜎 (∑ 𝜎 (�̂�..𝑝
(𝑡)

 .  𝐻(𝑙)(𝑡) .  𝑊(𝑙,𝑝))

𝑃

𝑝=1

.  𝑊𝑠𝑢𝑚
(𝑙)

 +  𝑏) 

(4.5 ) 

The bias 𝑏 parameter enables the activation function to be shifted (to the right or left) by adding 

a constant to the input, analogous to the role of a constant in a linear function. 

Finally, in the last layer 𝑙 =  𝐿, the last hidden state at time-step 𝑡, 𝐻(𝐿)(𝑡) is then pass through 

a linear layer to obtain a global graph-level output. 

We use Graph Convolutional Recurring Networks (GCRN) (Seo et al., 2018) to simulate the 

time series evolution of the communication network. GCRN combines GCN with Recurrent 

Neural Network (RNN) (Mikolov et al., 2010) to capture spatial temporal patterns in data. 
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Precisely, GCRN takes as input an adjacency matrix 𝑨 ∈  ℝ𝑁×𝑁, and a sequence of node 

attributes 𝒳 = { 𝑋(1), 𝑋(2), … , 𝑋(𝑇)}. GCRN then takes the F-dimensional node attributes 𝑋(𝑡) ∈

ℝ𝑁×𝐹, at each time step 𝑡, and updates its hidden state ℎ𝑡 ∈ ℝ𝑝; that is: 

𝒉𝑡 = 𝑓(𝑨,  𝑿(𝑡),  𝒉𝑡 − 1) 

(4.6 ) 

𝑓 represents a deterministic deep neural network in equation (6). In this experiment, we employ 

a recursive neural network known as the Gated Recurrent Unit (GRU), which was introduced 

in (Cho et al., 2014), to control the flow (remember and forget component) of temporal 

information across the hidden units of the network. Other recursive neural networks, such as 

the Long Short-Term Memory (LSTM) (Gers, Schmidhuber and Cummins, 1999), can be used. 

However, our choice of GRU was based on empirical evaluation (Chung et al., 2014; Gruber 

and Jokisch, 2020) that GRU performs better on certain smaller and less frequent datasets. A 

fully gated unit is given as: 

𝑧𝑡 =  𝜎𝑔(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1  + 𝑏𝑧) 

𝑟𝑡 =  𝜎𝑔(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟 

ℎ̂𝑡 =  ∅ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡  ⊙ ℎ𝑡−1) + 𝑏ℎ 

ℎ𝑡 = (1 − 𝑧𝑡)  ⊙ ℎ𝑡−1 + 𝑧𝑡  ⊙  ℎ̂𝑡 

(4.7 ) 

The variables in the equation(s) above denotes: 

𝑥𝑡 ∶ 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

ℎ𝑡 ∶ 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

ℎ̂𝑡 ∶ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑧𝑡 ∶ 𝑢𝑝𝑑𝑎𝑡𝑒 𝑔𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑟𝑡 ∶ 𝑟𝑒𝑠𝑒𝑡 𝑔𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑊, 𝑈 𝑎𝑛𝑑 𝑏 ∶ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝑤𝑒𝑖𝑔ℎ𝑡)𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑎𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 

𝜎𝑔 ∶ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛; 𝑔𝑖𝑣𝑒𝑛 𝑎𝑠: 
1

1 + 𝑒−𝑥
 

∅ℎ ∶ 𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 (𝑡𝑎𝑛ℎ); 𝑔𝑖𝑣𝑒𝑛 𝑎𝑠: 
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
 

⊙ ∶ 𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑖. 𝑒. , 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 − 𝑤𝑖𝑠𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡𝑤𝑜 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠)  
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Additionally, we combine the models discussed previously with a variation of VGAE proposed 

in (Hajiramezanali et al., 2020). The model, dubbed "Variational Graph Recurrent Neural 

Network (VGRNN)," combines GCN and RNN to produce GRNN (Hajiramezanali et al., 

2020); which is a dynamic graph autoencoder model, as well as VGAE. GRNN can get 

different adjacency matrices at different time snapshots and reconstruct the graph and edge 

attributes at time 𝑡, by utilizing an inner-product and an edge attributes reconstruction decoder 

on the hidden state 𝒉𝑡. The edge attribute reconstruction decoder is generated by passing the 

concatenated embedding of the edges (𝜈𝑖 , 𝜈𝑗) through a fully-connected linear layer. In our 

implementation, 𝒉𝑡 is designed as node and edge embedding of the dynamic graph at time 𝑡. 

The VGAE is integrated to further improve not just the time dependence of graphs, but also to 

represent nodes and their associated edge attributes in latent space using a stochastic 

distribution.  

We extend the proposed model  – which previously considered just one-dimensional edge 

features, to handle multi-dimensional edge features. Nonetheless, our strategies are 

sequentially based on the methods described in this work, but with a modified implementation 

that addresses our objectives explicitly. Noteworthy is that the following equations extend the 

rationale described in (Hajiramezanali et al., 2020).  

A standard VGAE consists of three models: generative, inference, and learning, and we present 

our formulations, as well as the idea behind deletion detection and topic inference, as follows: 

The generative model is conditioned on the recurrent hidden state variable 𝒉𝑡−1, which 

accounts for the dynamic nature of the graph’s topology and the time dependency of its node 

and edge features. The recurrence equation of the GRNN is then given by: 

ℎ𝑡 = 𝑓(𝐴(𝑡),  𝛿𝑥(𝑋(𝑡)),  𝛿𝑧(𝑍(𝑡)),  ℰ(𝑡),  ℎ𝑡−1) 

(4.8 ) 

where the function of 𝑓 is as described in equation (6). Likewise,  𝛿𝑥 and  𝛿𝑧 DNN used for 

independent feature extraction from 𝑋 and 𝑍, at time 𝑡, respectively. Therefore, based on the 

recurrence of hidden state 𝒉𝑡, the prior and the generating distributions can be factorized as: 
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𝑝(𝐴(≤𝑡), 𝐸(≤𝑡), 𝑍(≤𝑡) | 𝑋(≤𝑡)) = ∏ 𝑝(𝑍(𝑡)|𝑋(≤𝑡), 𝐸(≤𝑡), 𝑍(≤𝑡))

𝑁𝑡

𝑡=1

 𝑝(𝐴(≤𝑡), 𝐸(≤𝑡) | 𝑍(𝑡))    

(4.9 ) 

The prior distribution of the generative model at the first snapshot is 𝑝(𝑍𝑖
0| −) ~ 𝒩(0, 1) for 𝑖 ∈

{1, … , 𝑁0} and the hidden state at 𝑡 = 0 is 𝒉0 = 0. 

Mathematically, the values of the latent variables are inferred based on observed data as 

follows: 

𝑞(𝑍(𝑡)|𝑋(𝑡), 𝐴(𝑡), 𝐸(𝑡), ℎ𝑡−1) = ∏ 𝑞(𝑍(𝑡)|𝑋(𝑡), 𝐴(𝑡), 𝐸(𝑡), ℎ𝑡−1)

𝑁𝑡

𝑖=1

= ∏ 𝒩 (𝜇𝑖,𝑒𝑛𝑐
(𝑡)

, 𝑑𝑖𝑎𝑔 ((𝜎𝑖,𝑒𝑛𝑐
(𝑡)

)
2

))

𝑁𝑡

𝑖=1

; 

𝜇𝑒𝑛𝑐
(𝑡)

= 𝐸_𝐺𝐶𝑁_𝐶𝑂𝑁𝑉𝜇  (𝐴(𝑡), 𝐸(𝑡), ⨀ (δ𝑥(𝑋(𝑡)), ℎ𝑡−1)) 

σ𝑒𝑛𝑐
(𝑡)

= 𝐸_𝐺𝐶𝑁_𝐶𝑂𝑁𝑉𝜎 (𝐴(𝑡), 𝐸(𝑡), ⨀(δ𝑥(𝑋(𝑡)), ℎ𝑡−1)) 

(4.10 ) 

where 𝜇𝑖,𝑒𝑛𝑐
(𝑡)

 and 𝜎𝑖,𝑒𝑛𝑐
(𝑡)

 are the i-th rows of 𝜇𝑒𝑛𝑐
(𝑡)

 and 𝜎𝑒𝑛𝑐
(𝑡)

, respectively; 𝜇𝑒𝑛𝑐
(𝑡)

 and 𝜎𝑒𝑛𝑐
(𝑡)

 denote the 

parameters of the approximated posteriors modelled as a standard multivariate Gaussian 

distribution ~ 𝒩(0, 1); 𝛿𝑥 is a fully-connected neural network; and 𝐸_𝐺𝐶𝑁_𝐶𝑂𝑁𝑉𝜇 and 

𝐸_𝐺𝐶𝑁_𝐶𝑂𝑁𝑉𝜎are the encoder functions. Although they can be any pair of feature extraction 

models, we employ the variation of GCN specified in equation (5) to strategically model the 

multi-dimensional edge features in our implementation. If the hidden state variables 𝒉𝑡−1 are 

not utilized, then the prior becomes independent across snapshots, resulting in a conventional 

VGAE model.  Lastly, ⨀ represent the concatenation of the node attributes at time 𝑡 with the 

recurrent hidden state variable. 

Our objective function encodes the parameters of the generative and inference models used for 

edge reconstruction by summing all the joint maximizations of the expected likelihood of the 

input data with respect to its parameters at each time step. Due to the fact that the edge features 

are continuous, we define the objective function in terms of regression model; thus, we employ 
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the ℓ2 − 𝑛𝑜𝑟𝑚 as a regularization term in the reconstruction loss. Learning model is described 

mathematically as: 

ℒ = ∑ {𝔼𝑍(𝑡) ~ 𝑞(𝑍(𝑡)|𝐴(≤𝑡), 𝑋(≤𝑡),𝐸(≤𝑡),𝑍(≤𝑡)) ℓ2(𝐸(𝑡)|𝑍(𝑡))
𝑁𝑡

𝑖=1

−  𝐾𝐿 (𝑞(𝑍(𝑡) |𝐴(≤𝑡), 𝐸(≤𝑡), 𝑍(≤𝑡))|| 𝑝(𝑍(𝑡) |𝐴(≤𝑡), 𝑋(≤𝑡), 𝐸(≤𝑡), 𝑍(≤𝑡))) }  

(4.11 ) 

Similarly, the objective function for the reconstruction of the adjacency matrix is the binary 

cross entropy between the target 𝑨 and the output �̂� – which is the log-likelihood of the original 

adjacency matrix, and it is given as: 

ℒ = ∑ {𝔼𝑍(𝑡) ~ 𝑞(𝑍(𝑡)|𝐴(≤𝑡), 𝑋(≤𝑡),𝐸(≤𝑡),𝑍(≤𝑡)) log 𝑝 (𝐸(𝑡)|𝑍(𝑡))  
𝑁𝑡

𝑖=1

−  𝐾𝐿 (𝑞(𝑍(𝑡)|𝐴(≤𝑡), 𝐸(≤𝑡), 𝑍(≤𝑡))|| 𝑝(𝑍(𝑡) |𝐴(≤𝑡), 𝑋(≤𝑡), 𝐸(≤𝑡), 𝑍(≤𝑡))) }  

(4.12 ) 

Consequently, we adopt the inner-product decoder in our model, due to its wide use in the 

prediction of missing links (edges). Thus, 

𝑝(𝐴(𝑡)|𝑍(𝑡)) ∏ ∏ 𝑝 (𝐴𝑖,𝑗
(𝑡)

 |  𝑍𝑖
(𝑡)

, 𝑍𝑗
(𝑡)

)

𝑁𝑡

𝑗=1

𝑁𝑡

𝑖=1

 

(4.13 ) 

with 

𝑝 (𝐴𝑖,𝑗
(𝑡)

= 1|  𝑍𝑖
(𝑡)

, 𝑍𝑗
(𝑡)

) =  
1

1 + ℯ−𝑥
( 𝑍𝑖

(𝑡)
(𝑍𝑗

(𝑡)
)

𝑇
) 

Similarly, edge attributes prediction in our model is given by: 

𝑝(𝐸(𝑡)|𝑍(𝑡)) =  ∏ ∏ 𝑝 (𝐸𝑖𝑗𝑝
(𝑡)

 |  𝑍𝑖
(𝑡)

, 𝑍𝑗
(𝑡)

) 

𝑁𝑡

𝑗=1

𝑁𝑡

𝑖=1

 

with 

𝑝 (𝐸𝑖𝑗𝑝
(𝑡)

 |  𝑍𝑖
(𝑡)

, 𝑍𝑗
(𝑡)

) =  𝜂(⨀[ 𝑍𝑖
(𝑡)

, 𝑍𝑗
(𝑡)

]) 

(4 14 ) 

where 𝜂 is a fully-connected neural network;  𝑍𝑖
(𝑡)

, 𝑍𝑗
(𝑡)

 are the corresponding embedding of 

nodes 𝜈𝑖 and 𝜈𝑗 at time 𝑡, respectively; and ⨀ represents the concatenation of the embeddings. 
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The outputs of the decoding functions in (13) and (14) forms our hypothesis to determine 

whether e-mails were deleted, and reconstruction of the topic vectors affected by the deletions. 

The e-mail deletion detection is modelled as a missing link prediction task, based on the edge 

occurrence probabilities given in equation (13). To predict links on the (𝑡 +  1) − 𝑡ℎ snapshot, 

our model takes as input the sequence {𝐺(1), 𝐺(2), … , 𝐺(𝑇)} of previously observed snapshot. If 

the model predicts the existence of a link between two nodes 𝜈 𝑎𝑛𝑑 𝜔 in the (𝑡 +  1) − 𝑡ℎ 

snapshot but the actual graph does not have such a link, we report this as potential evidence 

that the users represented by 𝜈 and 𝜔 may have deleted e-mails. Similarly, our model also use 

the same sequence {𝐺(1), 𝐺(2), … , 𝐺(𝑇)} of previously observed snapshots as input for 

reconstructing topic vectors in the (𝑡 + 1) − 𝑡ℎ snapshot. We use the probability vectors 

defined in equation (14) to make inferences about the possible deleted e-mails’ topics. As a 

result, we deduce that the edge attributes associated with the predicted missing links are likely 

to be the subjects discussed. Figure 4.4 is a representation of our model’s architecture. 

 

Figure 4.4: Image representation of the E-mail deletion detection and topic inference model architecture 

Our experiments will evaluate the effectiveness of our deletion detection method, as well as 

our model's capacity to reconstruct edge attributes, on a widely used real-life e-mail corpus. 

We detail the steps and approach used in our experiments below. 

We used the publicly available Enron e-mail dataset109, which accurately portrays the 

environment in which our approach is intended to be applied, as it contains e-mails made 

available in pursuant to a court order. Another advantageous feature of this dataset is that we 

can process just e-mails sent by Enron employees, which eliminates worries regarding the 

 
109 https://www.cs.cmu.edu/~enron/ 
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privacy of third-party individuals. The collection is organized into 149 unique folders, one for 

each employee. Additionally, each user's folder has been appropriately classified into sub-

folders such as ‘inbox’, ‘sent-items’, and ‘deleted messages’.  

We conducted an empirical evaluation of two widely used topic models, LDA and NMF. We 

chose these two candidates based on previously reported strengths and weaknesses in the 

literature (Suri and Roy, 2017; Yong et al., 2019; Rania, Tet and Morad, 2020): LDA is quite 

successful on large corpora, although it performs best when each document is substantial in 

and of itself, whereas NMF has been shown to perform well on collections of short documents. 

Given that the efficacy of both models is highly dependent on the number of topics chosen 

correctly, our experiment aims to decide both the model to use and the number of topics. The 

coherence measure (Roder, Both and Hinneburg, 2015) of the topic distributions for each pair 

is derived from the form (model, number of topics). The figures (4.5) and (4.6) illustrate the 

coherence values of LDA and NMF, respectively, when a number of topics ranging from 2 to 

50 is estimated. As shown in the figures, NMF with ten (10) topics is the most appropriate topic 

model for our experiment.  

 

Figure 4.5: Coherence values of LDA for different 

numbers of topics. 

 

Figure 4.6: Coherence values of NMF for different 

numbers of topics. 

We used the networkX110 library to create the dynamic graph that represents the e-mail 

exchanges in the dataset; each snapshot represents one-month period of communications. This 

 
110 https://pypi.org/project/networkx/ 
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creates a dynamic graph with 27 snapshots. We added an edge for each pair of users who 

exchanged at least one e-mail, and as indicated previously, we build the edge feature vectors 

using NMF with ten topics. Additionally, for each node, we manually set the following six 

attributes:  

1) the number of messages sent by the user during the time period represented by the snapshot;  

2) the number of e-mails received by the user as the primary addressee (the user is listed in the 

‘To’ field);  

3) the number of e-mails received as ‘Cc’;  

4) the number of e-mails received as ‘Bcc’;  

5) the degree of the node; and  

6) the node’s betweenness centrality.  

The recurrent network in the model uses a 32-unit hidden layer. Moreover 𝜇𝑒𝑛𝑐
(𝑡)

 and 𝜎𝑒𝑛𝑐
(𝑡)

 are 

modelled with 32-dimensional hidden layers and a latent space with 16 variables. All functions 

that make use of deep or fully connected neural networks have hidden layers with a depth of 

32. The VGAE has a latent variable dimension of 16. We train the model with a learning rate 

of 0.01 using the Adaptive Moment Estimation (Adam) optimizer (Kingma and Ba, 2014). We 

run the models for 1000 epochs for both missing edge prediction and edge reconstruction tasks. 

The model is run on a Google cloud server (Colab) equipped with an NVIDIA K80/T4 GPU 

and 16GB of RAM. 

We trained our model on the 26 first snapshots of the dynamic graph and evaluated it on the 

27-th snapshot for link prediction and edge reconstruction. We evaluated the model’s ability to 

accurately predict the existence of all edges in this snapshot of the real graph. These are referred 

to as positive examples. Additionally, we randomly selected a set of non-edges in the real 

graph to examine the model's ability to not predict their existence, i.e., to assign extremely 

small probability values. The elements of this set are referred to as negative examples. We 

selected an equal number of negative and positive examples. Additionally, we evaluated edge 

reconstruction by comparing the reconstructed feature vectors to those in the real graph. 

The message deletion detection is based on the prediction of possible missing links, as such, 

the evaluation is based on assessing if the predictor ranks a positive example higher than a 

negative example. The Area Under (ROC) Curve (AUC) (Hanley and McNeil, 1982; Bradley, 
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1997)  and Average Precision (AP) (Zhang and Zhang, 2009) are used in this context. A detail 

description of AUC and AP is given in section 5.1.1.1. 

The edge reconstruction quality measures are based on the closeness of the estimated feature 

values to the actual values. As a result, we evaluate our model's performance on this task by 

measuring the difference between the predicted and actual values. Our regressor performance 

metrics in this instance includes the Mean Squared Error (MSE) ) (Toro-Vizcarrondo and 

Wallace, 1968; Alen, 1971; Sammut and Webb, 2010), Root Mean Squared Error (RMSE) 

(Nevitt and Hancock, 2010), Mean Absolute Error (MAE) (Sammut and Webb, 2010), Mean 

Absolute Percentage Error (MAPE) (De Myttenaere et al., 2016), and the Error loss. The error 

loss is a model-based error evaluation. It is a quantitative measurement of the difference 

between the predicted and actual output. It estimates the network’s error in predicting the 

output. The meaning and mathematical representations of the other metrics are discussed in 

Chapter 5. 

Given these error metrics, the closer the values are to 0, the more accurate the approach can be 

claimed to be. Due to the intrinsic randomness of VGAEs, the findings reported in this thesis 

are obtained by repeating the experiment multiple times (the results do not vary significantly 

in all situations) and averaging the values obtained for each measure. 

Table 4.1 summarizes the results of link prediction in terms of AUC and AP. The AUC value 

of 0.7477 is encouraging, as it indicates that our model is capable of accurately predicting links 

in the snapshot under study (which coupled with the inspection of the real graph, in our 

application scenario, is available to the investigators, enables them to accurately predict a 

significant number of edge deletions. Moreover, the fact that AP is 0.7275 implies that the 

model's capacity to detect deletions correctly does not come at the expense of issuing an 

excessive number of false positives. Furthermore, the edge reconstruction results, which are 

provided in Table 4.2 in terms of all four error measures, demonstrate that the reconstruction 

capability of our model is rather good, as all error values are considerably close to 0. 

Metrics Scores 

AUC Mean 0.7477 

AP Mean 0.7275 

Table 4.1: Link prediction results on the 27th snapshot of the dynamic graph 
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Metrics Scores 

Error Loss 4.115 

MSE 0.0155 

RMSE  0.1236 

MAE 0.0913 

MAPE 9.1365 

Table 4.2: Reconstruction results on the 27th snapshot of the dynamic graph 

To supplement the previous findings, we ran an additional experiment in which we deleted a 

number of edges from the real graph and evaluated our model's ability to reliably reconstruct 

the corresponding feature vectors and detect deletions. At each time step, we randomly chose 

80%, 90%, and 95% of node pairs from our communication graph and then deleted 25% of the 

communications between these node pairs. The results of this experiment, shown in Table 

4.3 and 4.4, demonstrate that the model is still capable of detecting deletions and accurately 

reconstructing feature vectors in this context. 

Percent of affected users AUC Mean AP Mean 

95% 0.6457 0.6743 

90% 0.7932 0.8205 

80% 0.7235 0.7402 

Table 4.3: Results of the random removal experiment on link prediction 

Percent of affected 

users 

Error 

Loss 

MSE RMSE MAE MAPE 

95% 9.308 0.0143 0.1194 0.0616 6.1671 

90% 10.8207 0.0206 0.1435 0.0621 6.2117 

80% 6.6501 0.0145 0.1203 0.0601 6.0122 

Table 4.4: Results of the random removal experiment on edge reconstruction 

 

In this chapter, we introduced a new tool to partially automate the task of forensic investigators 

examining e-mail collections. Particularly, we presented techniques for detecting possible 
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malicious deletions of e-mails exchanged between suspects. Our solution is based on 

Variational Graph Autoencoders and takes advantage of the model's ability to reconstruct 

partially missing patterns. The autoencoders (coupled with other feature extraction and graph 

recurrent methods) manage a rich dynamic attributed graph-based representation of the e-mail 

collection, which incorporates metadata from the e-mail headers and semantic information 

derived from the e-mail contents, all while accounting for the communication's temporal 

properties. Our technique demonstrated the efficiency of combining e-mail header metadata 

with natural language body elements. Additionally, our graph neural network model performs 

well in dynamic temporal contexts with multiple edge properties. Finally, we presented our 

findings, which are both encouraging and promising in terms of stimulating additional research 

into this technique. 
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The development of research methodologies for big data mining which seeks to discover 

meaningful and explorable patterns in data, has motivated its application in DF investigations. 

Despite concerns regarding closed-box AI models’ ability to produce reliable and verifiable 

digital evidence (Pasquale, 2015), the idea that cognitive approaches employed in big data 

analysis will work when applied to DF analysis has fueled a decade-long research surge into 

the application of AI in DF. 

To begin, a misunderstanding exists regarding the colloquial use of the terms “Forensics AI” 

and “AI Forensics” within the forensics community (and beyond), with some using the phrases 

interchangeably as referring to the application of AI in DF. While both phrases are self-explicit, 

in this thesis, we propose the conceptualization of “Digital Forensics AI” and to draw a 

preliminary distinction between the common misconceptions and distinguish the two concepts. 

On the one hand, according to (Doowon, 2020), a word preceding ‘forensics’ in DF domain 

denotes the target (too or device) to be analyzed (e.g., memory forensics, network forensics, 

cloud forensics, etc.). Hence, the author refers to “AI Forensics” as forensic analysis of AI tools 

or methods, rather than forensic investigation applying AI techniques. In the same vein, as 

proposed in the paper of Baggili and Behzadan (2020), refers to “AI Forensics” as the 

“scientific and legal tools, techniques, and protocols for the extraction, collection, analysis, 

and reporting of digital evidence pertaining to failures in AI-enabled systems.” To summarise, 

AI Forensics is the examination of the sequence of events and circumstances leading up to the 

failure of an intelligent system, including the determination of whether the failure was caused 

by malicious activity and the determination of the responsible entity(ies) in such situations. On 

the other hand, a thorough search of academic databases such as Google Scholar, IEEE 

Explore, and Scopus for the phrases “Forensics AI” or “Digital Forensics AI” reveals that the 

vast majority of resources are based on DF analysis methodologies augmented with AI 

techniques. However, in this thesis, we refer to Digital Forensics AI (hereafter referred to as 

DFAI) “as a generic or broader concepts of automated systems that encompasses the scientific 

and legal tools, models, methods; including evaluation, standardization, optimization, 
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interpretability, and understandability of AI techniques (or AI-enabled tools) deployed in 

digital forensics domain.”  

As this, to our understanding, is the maiden attempt to conceptualize this idea (in terms of 

definition) — it is merely intended as a preliminary proposal that could serve as a springboard 

for a more refined formalization of this concept, either as a sub-domain of DF or as an essential 

part of the existing framework.  

Indeed, despite concerns about the “closed-box” AI models, their success in other domains has 

made its adoption in DF procedures unavoidable. The majority of DF tools are designed to 

report solely on data that exists in digital artifacts; not the non-existing ones (SWGDE, 2018). 

Unsupervised ML algorithms, for instance, can interact with artifacts, extract meaningful cues, 

and cluster or classify them appropriately. Consequently , it is necessary to chart a new course 

in order to standardize all sub-components of DFAI in ways that are adaptable and consistent 

with the scientific and legal intricacies of the DF and Law domain. Furthermore, the majority 

of digital artifacts are unstructured; they have an irregular and ambiguous data model, making 

them difficult to understand.  This adds additional layer of complexity to DF examination 

process. However, with a well-structured AI algorithm and appropriate accuracy metrics, this 

complexity can be reduced to the point where insightful clues can be deduced and the degree 

of accuracy/correctness of this deduction can be measured.  

Therefore, this chapter discusses (at a foundational level) several approaches for evaluating, 

standardizing, and optimizing AI methodologies used in DF investigation. As such, while all 

subsequent references to the aforementioned DFAI components are also relevant to 

conventional DF procedures (without AI algorithms), in this chapter (as well as the following 

ones), they are framed within the context of AI and the mining of unstructured evidentiary data, 

to which these components apply. 

We will discuss some techniques and scientific principles that we consider relevant for 

evaluating, standardizing, and optimizing AI-driven approaches to digital forensics procedures 

in the sections that follow. 

During an investigation, examiners define hypothesis as an initial proposition based on 

informed supposition from observed data that is evaluated against other competing assertions 

(Pollitt et al., 2018). The issue is that, as highlighted in (Sunde and Dror, 2019), in an attempt 
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to make sense of what is observed (sometimes by coercively ensuring that it fits the initial 

assumption), investigators subconsciously: 1) seek findings that support their assertions; 2) 

interpret relevant and vague data in relation to the hypothesis; and 3) disregard or assign less 

weight to data that contravene the working hypothesis. Numerous factors could account for 

these biases, including but not limited to: confidence (as a result of the presumption of guilt), 

emotional imbalance, concern about long term implications (e.g., loss of prestige), personality 

characteristics (e.g., dislike for uncertainty or a predilection to over-explore various 

scenarios) (Ask, 2005), and the expert’s support for the party’s position (adversarial allegiance 

– for prosecution  or defence) (Murrie et al., 2009). Thus, before conclusion is reached in a 

forensic investigation, each component of the initial hypothesis must be independently and 

wholly tested (or evaluated) in order to ascertain the degree of confidence in the processes that 

led to the fact. Evaluation, therefore, is the process of determining the strength of evidence 

supporting competing claims, as well as their relative believability and probability (Lau and 

Biedermann, 2020). Expert examiners can evaluate the outcomes of a forensic analysis 

through a variety of methods, some based on predefined scientific parameters and others 

entirely on logical deductions supported by experience or subjective reasoning. We emphasized 

the pitfalls of subjectivity in Section 3.2, and while it may be necessary at times, it is not a 

recommended scientific practice. (Sunde and Dror, 2019) discussed further issues with 

subjectivity and the problems with human cognitive factors in forensic investigations. 

However, in the context of DFAI, forensic evaluation is viewed through the lens of the 

assessment of the AI techniques used to accomplish the DF analysis such as identification, 

classification, reconstruction, and presentation. Such deployment necessitates metrics and 

measurements that are compatible with the evaluation of AI models. The evaluation of DFAI 

models can be performed on the functional parameters of the algorithm (i.e., the evaluation of 

individual modules) or on their outputs. Unlike typical methods for evaluating 

ML/DNN models, which employ standard metrics related to the task or learning algorithm, 

establishing confidence in the outcome of a DFAI investigation may require extra human 

observation of the output. Numerous studies in DF have also revealed that forensic practitioners 

frequently issue  inconsistent or biased results (Ask, 2005; Graham et al., 2006). In addition, 

the majority of AI-based approaches lack the necessary clarity and replicability to allow 

investigators to assess the accuracy of their output (Bollé, Casey and Jacquet, 2020). Thus, a 

forensically sound process111, is one that integrates automated investigative analysis — 

 
111 Transparent digital forensics procedure that preserves the data's true context for use in a legal proceeding. 
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evaluated through scientific (accuracy and precision) metrics — with human assessments of 

the outcome. For example, a DF investigation into Child Sexual Exploitation Material (CSEM) 

(Anda et al., 2019) may seek to automatically detect and classify images of people found on a 

seized device as adult or underage (based on automatic estimated age). Given the complexity 

and bias in the training dataset, the learning algorithm may pick up on errors/biases, resulting 

in misclassification (i.e., false positive112), misinterpretation of features, and the possibility of 

missing critical features during the classification process that could have served as evidence 

(false negative113; e.g., an underage wearing adult facial makeup) (Anda et al., 2019). In this 

scenario, merely addressing bugs in codes may not be sufficient, as the classification errors 

may be subconsciously inherited and propagated through data. Similarly, in Chapter 4 of this 

thesis, we described a temporal analysis of e-mail exchange events to detect whether 

suspicious deletions of communication between suspects occurred and whether the deletions 

were intended to conceal evidence of discussion about certain incriminating subjects. One 

significant drawback of that analysis is the system’s inability to thoroughly investigate if the 

suspicious message(s) were initiated or received by the user or were deliberately sent by an 

unauthorized hacker remotely accessing the user’s account and sending such incriminating 

message. To reach a factual conclusion in this case, various other fragmented unstructured 

activity data (unrelated to e-mail, maybe) must be analyzed and reconstructed. Depending on 

the design, a robust AI-based system can uncover various heretofore unrecognized clues. If 

these new revelations (even though relevant) are not properly analyzed and evaluated, they 

may lead investigators to believing that the outputs dependably fulfil their needs (Bollé, Casey 

and Jacquet, 2020). As a result, an extensive review of the output of DFAI will be required 

(supposedly provided by human experts) to arrive at a factually correct conclusion. This has 

also been highlighted as a significant instrument for analyzing digital evidence in (ENFSI, 

2015a; Pollitt et al., 2018).  

As with the output of any other forensic tool capable of extracting and analyzing evidence from 

digital artifacts, which frequently requires additional review and interpretation that are 

compatible with the working hypothesis, the results of forensic examinations conducted using 

DFAI should be viewed as “recommendations” that must be interpreted within the context of 

the entire forensic investigation (Bollé, Casey and Jacquet, 2020). In a typical analysis of 

unstructured evidence data, DFAI models are arranged in sub-modules, with each module 

 
112 See section 5.1.1.1 
113 See section 5.1.1.1 
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addressing a particular aspect of the overall problem. Thus, at each decision point in the 

investigation process, or within each of the DFAI algorithm’s sub-modules, an evaluation 

procedure may be carried out to determine the confidence in the decision taken at that level, 

with the aim to address the pre-defined proposition. In addition, the evaluation apparatus must 

be verifiable, appropriate for the task it seeks to solve, and compatible with the other contextual 

analysis of the investigative model. Taking this into consideration, DFAI evaluation can be 

viewed in terms of two significant instruments: performance and forensic evaluation. We 

discuss below, the significance and components of each of these instruments. In our opinion, 

for a sound forensic process based on DFAI, these two instruments are essentially required. 

In a machine-driven system, evaluation produces value as a measure of the model’s 

performance in accomplishing the task for which it was commissioned, which may be used to 

influence decision-making (Pollitt et al., 2018). Depending on the problem the model attempt 

to solve, evaluation may be: a set of thresholds formulated as binary (i.e., ‘yes’ or ‘no’, or 0 or 

1) or categorical (qualitative; one of a possible finite outcome) as the case maybe; discrete 

(enumeration of strength; e.g., range between 0 to 10); or continuous (e.g., probability 

distributions of real values between 0 and 1). Consequently, evaluating the performance of a 

DFAI model built to recognize specific faces in a CSEM is distinct from evaluating the 

performance of a model meant to classify faces as underage or adolescent. Similarly, distinct 

metrics are required for models that detect SPAM e-mails and those that attempt to infer intent 

from an e-mail content. The majority of DFAI tasks will fall into one of three categories: 

classification, regression, or clustering. There may be instances when regression problems or 

continuous data are transformed into classification tasks (through categorical data 

discretization and dichotomization114) and evaluated as such for the sake of clarity and 

conciseness. While we discussed both categories in Section 3.1.2.4, including the 

corresponding algorithms, the next sections provides further details on the evaluation process 

of a classification, regression, and clustering models.  

 
114 See ‘Discretization in data mining.’ Data Mining, JavaTpoint. Cited on January 20, 2022. Available online 

at: https://javatpoint.com/discretization-in-data-mining 
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Classification models115 are predictive in nature, identifying the class to which a set of input 

samples belongs. A classification task is commonly modelled in ML as a binary representation 

that predicts a Bernoulli probability distribution for each sample. Bernoulli distributions (Dai, 

2013)  are a type of discrete probability distribution in which events have binary outcomes such 

as 0 or 1. The model’s performance is measured by its ability to correctly predict (assign a high 

probability value to) the class of positive samples and to assign a very low probability value to 

non-existent samples. 

Prior to deploying a DFAI model, it is important to examine the characteristics and 

complexities of the investigation to determine whether the model is suitable for that purpose. 

Apart from binary classification, there are varieties of other classification models that are 

tailored to tackling particular DF problems. Practitioners are expected to be aware of the unique 

characteristics of learning algorithms and to use them appropriately. For instance, in a forensic 

investigation involving facial materials, which requires facial classification. There are two 

main models that can be applicable: verification and identification. Verification entails 

comparing an unknown face to a known face directly (One-vs-One) (Gidudu, Hulley and 

Tshilidzi, 2007) and computing their similarity score. This can be adapted as a binary 

classification problem, in which the system predicts whether or not two faces share a high 

degree of similarity, based on a predetermined threshold. On the other hand, identification 

involves One-vs-Rest (Hong and Cho, 2008) comparison, in which an unknown face is 

compared to the faces in a database of known persons. The Identification task is a typical 

“Multi-Class Classification” (Wu, Lin and Weng, 2004) problem, in which samples are 

classified into one of a set of known classes. Other classification models are: 

Multi-Label Classification (Tsoumakas and Katakis, 2007): This technique is employed in 

specialized classification tasks that require the prediction of one or more class labels (often two 

or more) for each example. In contrast to previous classification techniques, Multi-Label 

Classification can predict many outputs, each of which follows a Bernoulli probability 

distribution adapted as binary classification. This classification type is extremely beneficial for 

identifying objects in crime scene images, particularly when there are numerous materials to 

analyse. It has the capability of infer the presence of several objects within an image. For this 

 
115 See 3.1.2.4(A) 
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task, specialized multi-label variants of classification algorithms, e.g., Multi-label Decision 

Tree (Vens, 2008) and Multi-label Random Forest (Liu et al., 2015) can be utilized. 

Imbalanced Classification (Tang et al., 2008; Zou et al., 2016): refers to classification 

problems in which the number of examples per each class is unevenly distributed. They are 

basically binary classification wherein the majority of training examples fall into the positive 

(normal) class and the remaining minority fall into the negative (abnormal) class. As such, in 

a cost-sensitive setting, certain specialized techniques are used to under-sample the class with 

majority examples and oversample the minority class, ensuring that the minority class receives 

more attention during model fitting on the training dataset. This classification type can be quite 

effective in detecting fraud or anomalies when the majority of sample data appear to be 

legitimate (or behaving normally), with the exception of a few bad samples that should be 

addressed.  

Metrics such as accuracy, precision, recall, and F-Measure are all relevant depending on the 

investigation’s characteristics. 

The measure of “accuracy” can be seen as the validity measure of a model. It is the ratio of the 

correctly classified samples to the total samples, and it is given as:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠
 

The accuracy metric can tell us whether a model was correctly trained and how well it will 

function in general. However, caution should be exercised when using this information alone 

to reach a general conclusion in forensic investigation, as it provides little information about 

its application to the problem and performs poorly in circumstances of severe class imbalance. 

That is, if the dataset is asymmetric, e.g., if the proportion of false positives is not (or nearly) 

equal to the proportion of false negatives. Accuracy is calculated in terms of a confusion matrix 

while performing a binary classification task, such as predicting whether an e-mail is “SPAM” 

or “NOT-SPAM.” The confusion matrix is applied to a set of test data, for which the true 

values are known. The confusion matrix depicted in Table (5.1) is an illustration of one. 

 
Predicted Class 

SPAM NOT-SPAM 

Ground Truth 

Class 

SPAM True Positive (TP) False Negative (FN) 

NOT-SPAM False Positive (FP) True Negative (TN) 

Table 5.1: Confusion Matrix of a Typical SPAM e-mail Classifier 
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From Table (5.1), “True Positive” and “True Negative” are the samples that are correctly 

predicted. What a classifier seek to minimize is the number of “False Positives” and “False 

Negatives.”  

A true positive (tp) is one in which the model accurately predicts the positive samples, while a 

true negative (tn) indicates the result of correctly predicted negative samples. Similarly, a false 

positive (fp) outcome occurs when the model incorrectly predicts positive samples, whereas a 

false negative (fn) outcome occurs when the model inaccurately predicts negative samples. 

Therefore, in terms of confusion matrix, an accuracy measure is represented as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 

Precision – this metric is critical, particularly in the domain of DFAI — can be regarded as 

reliability measure of the model. It provides additional assurance by posing the question: “how 

frequently is the model correct when it predicts a positive sample?” With precision, we affirm 

the classifier’s ability not to label a negative sample as positive. Given that the outcome of a 

forensic investigation may be critical to the outcome of an inculpatory or exculpatory 

proceeding, the cost of a high rate of false positives may be detrimental. For example, in the 

United Kingdom, a study by (Smit, Morgan and Lagnado, 2018) identified cases in which 

digital evidence had a role in around 32% of the 235 wrongful convictions. Thus, to avoid 

misleading errors, a precision score must be persuasively high (i.e., low false positive rate). 

Precision is calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

Recall – this is crucial in DFAI as well, especially when the cost of  false negative could be 

catastrophic. For example, a facial recognition algorithm could be used to analyze criminal 

materials through training examples. While the system may be capable of identifying and 

classifying many positive samples, we may need to determine how many true positives were 

correctly identified from the predicted true positives. This is critical for evaluating working 

hypothesis and assisting in the answering of some potentially damning questions during court 

proceedings. Recall allows informed decisions concerning false negatives - such as 

relevant details that should not be overlooked. Recall is calculated as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
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F-Measure - this metric combines precision and recall for determining the model’s overall 

accuracy. It accounts for both false positives and negatives, i.e., a low false positive and 

negative rate is indicative of a good F-measure, and it can aid in the reduction of false claims 

during forensic investigation. The F1 score is the weighted average of precision and recall; an 

ideal fit has a value of 1 (or approximately), while the worst-case scenario has a value of 0. F1 

score is mathematically given as: 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Another relevant metric for measuring a classifier’s capacity to distinguish between classes is 

the Area Under the Curve (AUC), which serves as a summary of the Receiver Operating 

Characteristic (ROC) curve. The AUC and Average Precision (AP) are the quality measures 

used in link prediction. AUC reflects the likelihood that the model ranks a positive example 

higher than a negative example in terms of probability of existence. AUC values range between 

0 and 1. A model that makes 100% inaccurate predictions has an AUC of 0, whereas a model 

that makes correct predictions 100% of the time has an AUC of 1.0. Mathematically, the AUC 

is given as: 

𝐴𝑈𝐶 =  
∑ ∑ 1[𝑓(𝑡0) < 𝑓(𝑡1)]𝑡1∈𝒟1𝑡0∈𝒟0

|𝒟0| ∙ |𝒟1|
 

where 1[𝑓(𝑡0) < 𝑓(𝑡1)] denotes an indicator function which returns 1 iff 𝑓(𝑡0) < 𝑓(𝑡1), 

otherwise, returns 0. 𝒟1 and 𝒟0 are the set of positive and negative examples, respectively. A 

high AP value suggests that a model is capable of detecting a large number of positive cases 

effectively without wrongly classifying an excessive number of negative examples as positive. 

It is used to quantify the average difference between precision and recall at different decision 

points. AP is given by: 

𝐴𝑃 =  ∑(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

𝑛

 

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall at the n-th threshold.  

There are instances when accuracy is preferred over F-measure, particularly when the cost of 

false positives and negatives is similar, implying that the consequences are not negligible. If, 

on the other hand, the situation is reversed, it is fair to evaluate the F1 score. Additionally, 

caution should be exercised when evaluating performance on classified samples that involves 

the assignment of a threshold (as is the case in some logistic regression models). Increases or 
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decreases in the threshold have a significant effect on the precision and recall values116. In 

contrast to a model designed to optimize business decisions, it may not be prudent to include 

any threshold in DFAI — as it would be appropriate to have a realistic picture of the 

analysis’ outcome — unless we are convinced that doing so will have no detrimental impact 

on the outcome. Nonetheless, accuracy is critical; so, if the trade-offs can be quantified and 

justified satisfactorily, the threshold can be considered. 

In contrast to classification models, which predict the classification of input samples, 

regression models117 predict an infinite number of possible (continuous; real-valued such as 

integer or floating point) outcomes. In DFAI, regression analysis can be utilized for two 

conceptually distinct purposes: forecasting and prediction; and inference of causal relationships 

between dependent (observed) and independent (predictors) variables. Before a regression 

analysis may be commissioned, the examiner must be convinced that the correlations present 

in the data possess the predictive power to infer a new context or that these correlations can 

induce a causal interpretation based on observational data (Cook and Weisberg, 1982; 

Freedman, 2009). This is particularly important for forensic investigations. To elucidate this 

point further, consider the e-mail experiment described in Chapter 4, the component of the 

model that predicts the likely topic of discussion between two suspects is based on regression 

analysis. The choice of regression model was influenced by the dataset’s characteristics, which 

include temporal dynamics, a large number of e-mail exchanges across time, and the e-mail 

text from which abstract topics were derived. As a result, the model gained insight into how 

communications evolved over time, enhancing its prediction capabilities in an unknown 

scenario. Furthermore, by delving deeper into the conversations between various user pairs, we 

may be able to deduce the reason for their interactions or, as was the case in our experiment, 

the reason for deletion.  

A critical element that might enhance a regression model’s predictive potentialities is when the 

input variables are arranged chronologically (with event time), a concept referred to as time 

series forecasting. This can be advantageous for forensic purposes involving the detection of 

deviations (anomalies), crime forecasting, the prediction of potential connections between 

 
116 For examples, see: https://developers.google.com/machine-learning/crash-course/classification/precision-

and-recall 
117 See 3.1.2.4(A) 
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data, and event reconstruction. Importantly, examiners should be wary of interpolation and 

extrapolation when using regression. In many circumstances, the former is appropriate, as it 

entails the prediction of values within the range of data points in the dataset used to fit the 

model. However, the latter is frequently undesirable. It is based on regression assumptions and 

entails predicting values that are not within the range of observed data. An extrapolation over 

a range that is far away from the observed data involves danger and is an indication of possible 

model failure. 

A regression model’s performance is measured as an error in prediction, i.e., how close the 

predictions were to the ground truth. To do this, the following error measures are frequently 

used: MSE, RMSE, MAE, and MAPE. Although there are several other error metrics available; 

the choice of which is determined by the type of error being evaluated. We present a brief 

discussion about these metrics below. 

MSE: or Mean Squared Deviation (MSD) measures the average squared difference between 

predicted and observed values. MSE can be used to evaluate the quality of a predictor or an 

estimator118. However, in DFAI, it better-off as a predictor since it can map arbitrary input to 

a sample of random variables. A MSE of zero indicates a perfectly accurate prediction, 

however this is rarely possible (Lehmann and Casella, 1998). MSE values that are close to zero 

and strictly positive (as values are squared) are considered ideal. As a loss function, MSE is 

optimized using least squares, i.e., to minimize the mean squared difference between prediction 

and expected values. Unfortunately, other measures have been sometimes preferred to MSE 

due to its disproportionate weighting of outliers. This occurs as a result of magnification of 

large errors than on small ones, due to each value being squared. Mathematically, MSE is given 

by: 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖 −  �̂�𝑖)

2
𝑛

𝑖=1

 

where 𝑛 denotes the number of data points. 𝑌𝑖 and �̂�𝑖 are the observed and the predicted values. 

RMSE: is an extension of the MSE, except that the square root of the averaged squared error 

is calculated. Also, it is a measure of the differences between predicted and actual values. 

RMSE is always non-negative, therefore, like MSE, a value of zero (0) is almost unrealistic; 

and if it does occur, it is a hint that the model is trivial. The RMSE is sensitive to outliers, as 

 
118 a mathematical function that maps a sample of data to an estimate of a population parameter 
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larger errors are weighted more heavily. For a DFAI task, it may be prudent to create a baseline 

RMSE for the working dataset by predicting the mean target value for the training dataset using 

a naive predictive model. This can be accomplished by transforming or scaling 

(i.e., normalization) the dataset’s feature vectors between 0 and 1. Most GNN models perform 

this transformation during feature extraction. If the evaluating RMSE achieves a better value 

than the baseline RMSE, it is said to be well-fit. Mathematically, RMSE is given as: 

𝑅𝑀𝑆𝐸 = √
∑ ∥ 𝑦𝑖 −  �̂�𝑖 ∥2𝑛 

𝑖=1

𝑁
 

where 𝑁 denotes the number of data points, 𝑦𝑖 and �̂�𝑖are the actual values and the corresponding 

predicted values. 

MAE: measures the differences in error between paired observations expressing the same 

phenomenon, i.e., it is scale-dependent; it employs the same scale as the data being 

measured119. MAE is defined mathematically as the average of the absolute (vertical or 

horizontal distance) errors |ℯ𝑖| between predicted and actual values. The absolute, or abs() in 

mathematical notation, simply ensures that the results are not negative. In contrast to the 

previously stated error measures, which require squaring the differences, MAE changes are 

linear, intuitive, and interpretable; they simply represent the contribution of each error in 

proportion to the error’s absolute value. MAE does not give greater or lesser weight to errors 

and hence provides a realistic view of the main prediction errors; thus, it is strongly 

recommended for DFAI. Additionally, it is a frequently used metric for forecasting error in 

time series analysis (Hyndman and Koehler, 2006). Mathematically, MAE is given as: 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖=1

𝑛
 

where 𝑛 denotes the number of data points. 𝑦𝑖 is the predicted value and �̂�𝑖 is the actual value.  

MAPE: is the mean or average of a regression forecast’s absolute percentage errors (MAPE, 

2000). Due to its relatively intuitive interpretation in terms of relative error, MAPE is 

frequently used for model evaluation and as a loss function for regression problems. MAPE 

has been asserted to be very well-suited for prediction, especially when sufficient data is 

available (De Myttenaere et al., 2016). Caution should be exercised, however, to avoid the 

occurrence of the ‘one divided by zero’ problem. Additionally, MAPE penalizes errors with 

 
119 See “Evaluating Forecast Accuracy.” OTexts. Cited on Aug. 5, 2021. Available at 

https://otexts.com/fpp2/accuracy.html 
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negative values substantially more than positive values; hence, when used in a prediction task, 

it is biased towards methods with very low forecasts, rendering it inappropriate for evaluating 

problems where large errors are expected (Ren and Glasure, 2009; De Myttenaere et al., 2016). 

Arithmetically, MAPE is given as: 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
 |

𝑛

𝑖=1

 

where 𝑛 denotes the number of data points. 𝐴𝑡 denotes the real values, while 𝐹𝑡  are the predicted 

values. 

There are other error measures for regressors such as Max Error (Garofalakis and Kumar, 

2004); that calculates the maximum residual error and detect worst case errors (Bollé, Casey 

and Jacquet 2020), and 𝑅2 (also known as R-Squared, Goodness of fit; Co-efficient of 

Determination ) (Wright, 1921; Barrett, 2000; Di Bucchianico, 2008), which is the measure of 

variance proportion in the regressor. Arithmetically,  

𝑅2 = 1 −  
∑ (𝑋𝑖 − 𝑌𝑖)2𝑚

𝑖=1

∑ (�̅� − 𝑌𝑖)2𝑚
𝑖=1

 

The numerator denotes the squared sum error of regression line, while the denominator is the 

squared sum of error of mean line.  

After describing each of these error measurements for regression problems, along with their 

associated limitations in some circumstances, determining which one is most appropriate for 

forensic investigation can be fairly daunting. However, according to literature, (Armstrong and 

Collopy, 1992) indicated that the RMSE is unreliable and unsuitable for measuring correctness 

in a time series analysis. In addition, RMSE was discovered to have “disturbing characteristics” 

in (Willmott and Matsuura, 2005; Willmott, Matsuura and Robeson, 2009), making it 

ineffective as an error measure. MSE and all other squared errors were equally stated as unfit 

for evaluation purpose. However, by offering arguments in support of RMSE, (Chai and 

Draxler, 2014) partially disputed these conclusions. Nonetheless, MAE was recommended in 

vast majority of instances; which is understandable. As previously stated, the MAE measure is 

a consistent and compatible evaluation technique with DFAI; it is a more natural measure of 

average error magnitude (Willmott and Matsuura, 2005) that accurately depicts the model’s 

performance. The 𝑅2 is another metric that deserves a role in DFAI. A recent comparison of 

regression analysis error measures is discussed in (Chicco, Warrens and Jurman, 2021). The 

R-squared value can be in the range [−∞, 1], with an upper bound of 1 or close reflecting a 
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good fit regardless of the scale of measurement, and despite the fact that it is not lower bounded, 

a value of 0 refers to a trivial fit (Chicco, Warrens and Jurman, 2021). 𝑅2 exhibit desirable 

features, including interpretability in terms of the data’s information content and sufficient 

generality that span a relatively broad class of models (Cameron and Windmeijer, 1997). 

Although a negative 𝑅2 indicates a worse fit than the average line, this representation may be 

critical in determining how the learning model fits the dataset. Moreover, regardless of whether 

an examiner reports the 𝑅2 score, it is a highly effective technique for evaluating the 

performance of a regression analysis and should be considered. 

Evaluating a clustering method, particularly in an unstructured data, can be challenging 

because it is mostly used in unsupervised learning, which means that no ground-truth labels 

are available. Clustering in a supervised setting, on the other hand, can be evaluated using 

supervised learning metrics. One significant difficulty with unsupervised learning is that 

applying clustering analysis to a dataset blindly would categorize the data into clusters (even 

if the data is random), as this is the algorithm’s expected function. As a result, examiners must 

check the data’s non-random structure before deciding on a clustering approach. Three critical 

factors that should be considered in clustering are: 1) Clustering tendency; 2) Number of 

clusters, 𝑘; and 3) Clustering quality. 

Clustering tendency: quantifies data’s spatial randomness by calculating the probability that a 

given dataset is produced by a uniform distribution. Clustering techniques may be meaningless 

if the data is sparsely random. This preliminary assessment is key to DFAI, particularly because 

it can help to reduce the time spent analysing artefacts. A common method for assessing a 

dataset’s cluster tendency is to utilize the Hopkins statistic (Hopkins and Skellam, 1954), which 

is a type of sparse sampling test. The Hopkins statistic is used to test the null hypothesis (𝐻0), 

which states that the data is generated by a Poisson point process120 and are, therefore, 

uniformly distributed (Banerjee and Rajesh, 2004), and the alternative hypothesis (𝐻𝑎), which 

states that the data is not generated by uniform distribution (i.e., contains meaningful clusters). 

If the Hopkins statistic is close to 1 or 𝐻 > 0.5, we can reject the null hypothesis and infer that 

there are considerable clusters in the data. A value close to 0 indicates a uniform distribution, 

 
120 A Poisson point process is a type of random mathematical object composed of randomly located points in a 

mathematical space. 
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and thus the absence of clustering. However, the way values are assigned differs  according to 

the tool used. 

Number of clusters: obtaining the ideal number, k, of clusters is critical in clustering analysis; 

while there is no definitive method for doing so, it can rely on the shape of the distribution, the 

size of the data set, and the examiner’s preference. If k is set to a value that is too high, each 

data point has a chance of forming a cluster, whereas a value that is too low may result in 

inaccurate clusters. Additionally, the following approaches can help to determine the cluster 

number: 

Prior domain knowledge  - prior domain knowledge can provide insight into the optimal 

number of clusters to choose. 

Data driven approach – employs mathematical methods to determine the correct value, 

such as rule of thumb method (using the formula 𝑘 ≈  √
𝑛

2
 , where n is the number of 

data point), elbow method (Ng, 2012; Kodinariya and Makwana, 2013), and gap 

statistics (Tibshirani, Walther and Hastie, 2001). 

Clustering quality: is defined by the minimum intra-cluster distance and the maximum inter-

cluster distance. 

To evaluate the performance of a clustering task, two validation statistics are key, namely: 

internal cluster validation and external cluster validation. 

Internal cluster validation evaluates the goodness of a clustering structure without referring 

to external data. It frequently reflects the clusters’ compactness, connectivity, and separation. 

The silhouette coefficient (Rousseeuw, 1987; Aranganayagi and Thangavel, 2007) and Dunn 

index (Dunn, 1973) can be used to evaluate the algorithm’s performance in relation to its 

internal clusters. There are additional indices (e.g., Davies-Bouldin index (Davies and Bouldin, 

1979)); nevertheless, the silhouette coefficient and Dunn index show the most compatibility 

with DFAI in general, and specifically in terms of ease of interpretation. 

By measuring the average distance between two observations, the Silhouette Coefficient 

determines how well they are clustered. In this approach, for each observation 𝑖, the average 

dissimilarity 𝑎𝑖 between 𝑖 and other points within its own cluster is calculated. Similarly, for 

all other clusters 𝐶, the average dissimilarity 𝑑(𝑖, 𝐶) (calculated as 𝑏𝑖 = min
C

𝑑(𝑖, 𝐶)) between 𝑖 

to all other points in 𝐶 is also calculated. Therefore, a silhouette width of point 𝑖 is defined by: 
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𝑆𝑖 =
(𝑏𝑖 − 𝑎𝑖)

max(𝑎𝑖 − 𝑏𝑖)
 

If 𝑆𝑖 is close to 1, then the data points are well clustered. A value close to 0 indicates that the 

data point is located between two clusters, whereas a negative value suggests that the data point 

is most likely placed in the wrong cluster. 

If computational cost is not an issue, the Dunn index can be utilized. Simply compute the 

distance between each point in a cluster and the points in the other clusters, and then use the 

pairwise distance with the minimum value as the inter-cluster separation (min. separation). 

Additionally, to determine intra-cluster compactness, compute the distance between 

points within the same cluster and then use the maximum intra-cluster distance (max. 

diameter). Hence, the Dunn index is defined as: 

𝐷𝑖 =  
𝑚𝑖𝑛. 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥. 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 

External cluster validation compares and quantifies a cluster analysis’ results against 

externally known benchmarks (e.g., externally provided gold standard labels). Such 

benchmarks are made up of a collection of predefined classes of items, which are often created 

by human experts. The evaluation approach quantifies the degree to which the clustering 

analysis result corresponds to predefined ground truth classes. To evaluate the performance of 

external cluster, the Rand index (Rand, 1971), the Purity index (Manning, Raghavan and 

Schutze, 2008), the F-measure (with precision and recall; as indicated in the classification task), 

and the Fowlkes-Mallows index (Fowlkes and Mallows, 1983) can be utilized. This thesis does 

not go into detail regarding the evaluation techniques used in this approach in order to keep the 

scope focused on components critical to DFAI. 

As a matter of fact, it remains unclear how external cluster validation could improve DFAI. To 

elaborate on this fact, given the majority of digital artifacts from which evidence can be derived 

are sparse, unconventional, and previously unseen, having a ground truth label with which to 

compare may be impracticable. In addition, because the majority of DF analysis are crime-

specific (or specific case related), the question is whether it is permissible to compare a crime-

related data analysis to general task ground truth labels. However, if gold standard, case-based 

labels are available, such as those for videos and images in (Ferreira, Antunes and Correia, 

2021b) or (though limited in scope and diversity) the “Computer Forensic Reference Dataset 
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Portal CFReDS)121” or “Datasets for Cyber Forensics122,” then suitable comparisons can be 

established.  

After deriving facts from a forensic investigation, decision-making follows; which is the 

adoption of a hypothesis as a conclusion (Lau and Biedermann, 2020). Whilst evaluation of 

forensic decisions is frequently discussed in court contexts, it is applicable at all stages of 

forensic investigation (Casey, 2020). It begins with the evaluation of the individual hypothesis 

against all competing claims; the accuracy (including quantification of error rates) of the results 

obtained through automated tools used in the analysis; the extent to which experience, and 

domain knowledge were helpful; and to the simplicity with which the entire investigative 

process can be explained to a non-expert. Because automated systems are not self-contained 

and thus cannot take everything into account (Bollé, 2020), it is possible that multiple DFAI 

approaches were used to find solutions to all competing hypotheses. As a result, forensic 

evaluation in this case will entail weighing the differing claims against the overall investigative 

problem. One way of determining this is to assign an evidential weight (strength of evidence)  

or “Likelihood Ratios” (LRs) (Berger et al., 2011, Kerkhoff et al., 2013; ENFSI, 2015b) to all 

contending claims. Although LR was originally created as a framework for evaluating forensic 

evidence, the concept can be adopted to help make the DFAI model’s evaluation outcome more 

intelligible. Contrary to the factually deterministic requirements of evidence in a criminal or 

civil case, the majority of AI-based algorithms and their outputs are mostly probabilistic. 

However, forensic examiners do not pronounce judgments or issue final decisions; they rather 

provide expert testimony (or an opinion) or report of their findings to fact finders (attorneys, 

judges, etc.). Succinctly reporting forensic investigation findings remains a challenge 

(Thompson, 2017), and while it may be comprehensible to state an opinion on a hypothesis and 

its alternatives as true (or false), this approach lacks the transparency and logical correctness 

necessary to reach a verdict in a legal proceeding. As a result, reporting DF findings in terms 

of weights or LRs enables the decision maker to assign the evidence an appropriate level of 

confidence (Bollé, 2020). Particularly with LRs, which are frequently used by forensic 

investigators in Europe (also in the U.S), represent their assessment of the relative probability 

of observed features under various hypotheses concerning a particular case. To mathematically 

 
121 https://cfreds.nist.gov/ 
122 https://datasets.fbreitinger.de/datasets/ 
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express the concept of LRs in a typical source identification analysis, let 𝐸 denote the observed 

features of two items to be compared; let 𝐻𝑠 represent the hypothesis that the items originate 

from the same source; and let 𝐻𝑑 denote the hypothesis that the items belong to a different 

source. The LR is thus defined as “the ratio of the probability of 𝐸 given 𝐻𝑠 to the probability 

of 𝐸 given 𝐻𝑑.” That is: 
𝑝(𝐸|𝐻𝑠)

𝑝(𝐸|𝐻𝑑)
 . Using databases and statistical models, LRs have been utilized 

to reflect the strength of forensic evidence (in voice comparison) (Morrison and Thompson, 

2017). Furthermore, the ENFSI recommends LR (simply in terms of numbers) even when 

examiners must make subjective decisions (ENFSI, 2015b), because it makes the examiner’s 

belief and inferential process explicit and transparent, facilitating the evaluation of strengths 

and weaknesses for those who rely on it (Thompson, 2017). While expressing 

subjective decision in terms of LRs has grown widespread in Europe, doubts have been raised 

in support of empirical data instead (Berger et al., 2011). In other contexts, verbal expressions 

of LRs have been proposed; for example, consider an LR expression in the form: “at least 

1,000 times more likely” and “far more probable.” The former is likely to receive scepticism 

regarding the basis for that figure, whereas the latter has a stronger possibility of acceptance. 

(Berger et al., 2011). 

Consequently, given the probabilistic (or stochastic) nature of the results of DFAI models, and 

the fact that these models have been empirically verified as accurate and well-suited for 

analytical purposes123, as well as the inclusion of an “expert-in-the-middle124,” it is still 

necessary to find the most suitable method to report the results in the clearest and most 

understandable manner possible, albeit as recommendations. A table of recommended LRs that 

is commensurate with the accuracy values of a typical AI-based evaluation of forensic 

investigation results could look like table (5.2)*. The table illustration reflects the Association 

of Forensic Science Providers (AFSP) in the United Kingdom’s recommendation on 

the “standard for the formulation of evaluative forensic science expert opinion” (AFSP, 2009). 

In Table 5.2, an equivalence of the common LR with corresponding verbal terminology that 

express the strength of support for a claim or evidence is presented with a simple AI-based 

accuracy score. Importantly, the false positive/negative rates are presented to demonstrate the 

significance of the false identification and exclusion rates in forensic outcome report. 

 
123 Via published studies, surveys, experiments, and peer review 
124 Either by way of having human expert verify the results manually, or with a rule-based expert system. 
* This is just for insight purposes, does not reflect what is feasible in the real sense of likelihood ratio; which 

cannot be expressed in terms of probabilistic uncertainty. 
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Likelihood Ratio 
AI Accuracy 

Score (%) 

False Positive 

Rate (%) 

False Negative 

Rate (%) 

Verbal Expression 

(Strength of Support) 

1 – 10 0 – 40 60 – 100   60 – 100   Weak or limited support 

10 – 100  40 – 50  50 – 60 50 – 60 Moderate support 

100 – 1,000 50 – 60  40 – 50  40 – 50  Moderately strong support 

1,000 – 10,000 60 – 70 30 – 40  30 – 40  Strong support 

10,000 – 1,000,000 70 – 90  10 – 30  10 – 30  Very strong support 

> 1,000,000 90 – 100 0 – 10  0 – 10  Extremely strong support 

Table 5.2: A combined AI-Adaptive Likelihood Ratio with associated verbal support for reporting forensic 

outcomes. 

The FP and FN rating scales in Table 5.2 can be adjusted according to investigative tasks, as 

there are instances when a 50% to 60% false positive/negative rate would indicate “weak 

support.” In 2016, the US President’s Council of Advisors on Science and Technology 

(PCAST, 2016) recommended that forensic examiners reveal the error rates observed in closed-

box validation when reporting or testifying on forensic comparisons. Thus, error rates have 

become an intrinsic element of investigative outcome reporting, and with it, factfinders have a 

greater logical and empirical understanding of the probative value of the examiner’s conclusion 

(Berger et al., 2016). However, it is evident that this method of evaluation is only appropriate 

when the investigation result is categorical (or discrete); the same may not be practicable when 

the outcome values are continuous; this is especially true for regression analysis. An alternative 

approach is as proposed in (Morrison, 2011) which based on the combination of prior 

probabilities and the likelihood ratio. It is not straightforward to express likelihood ratios in 

ways that are consistent with probabilistic distributions or error estimates (usually real values 

between 0 and 1). When the conditional components of a hypothesis are transposed, evaluating 

its probability might be logically fallacious (Casey, 2020). Probabilities are hardly acceptable 

in judicial decisions, as an 80% probability implies that one in every five cases would be 

decided incorrectly (Atkinson et al., 2020). Given that probability is relative to certainty (or 

otherwise), we can align our DFAI evaluation intuition with the “Certainty Scale”, or 

“Confidence Scale” (C-Scale) proposed in (Casey, 2002; 2011; 2020), which is reasonably 

appropriate for assigning strength of evidence to continuous values with respect to the 

hypothesis. As noted by (Casey, 2020); “...the strength of evidence does not exist in an abstract 

sense, and is not an inherent property of the evidence; it only exists when a forensic practitioner 

assigns value to the evidence in light of the hypothesis.” Therefore, in light of each working 
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hypothesis resolved via DFAI, table 5.3 represent a proposed C-Scale for expressing the 

strength of evidence in evaluation of a typical DFAI task.  

C-Value AI Accuracy 

Score (%) 

False Positive 

Rate (%) 

False Negative 

Rate (%) 

Verbal Expression (Strength of 

Support) 

C0 0 – 20 55 – 100   55 – 100   Erroneous/Incorrect 

C1 20 – 30  50 – 55 50 – 55 Extremely weak evidence 

C2 30 – 40 40 – 50  40 – 50  Very weak evidence 

C3 40 – 55 30 – 40  30 – 40  Weak evidence 

C4 55 – 70 20 – 30  20 – 30  Strong evidence 

C5 70 – 90 10 – 20   10 – 20   Very strong evidence 

C6 90 – 100 0 – 10  0 – 10  Extremely strong evidence 

Table 5.3: A proposed AI-adaptive C-Scale evaluation of strength of evidence for DFAI 

This is by no means a standard evaluation, but rather a tentative proposition that will need to 

be refined as research in this field progresses. Additionally, unlike the LR recommendation and 

the C-Scale proposals, which are based on hypothesis (or strength of hypothesis) about source 

identification during a forensic investigation, the DFAI C-scale evaluation approach is fairly 

generic (for hypothesis and AI models) and applicable in a wide variety of situations, including 

strength of evidence.  

As previously noted, human expert interpretation and evaluation are key components of DFAI 

in a partially automated setup because it is difficult to predetermine all of the reasonings 

required to do a forensic investigation work (Bollé, 2020). However, in a fully automated 

scenario, learning algorithms in conjunction with contextually structured expert systems can 

incorporate domain-specific knowledge-derived rules. The expert system can also be 

configured to evaluate every hypothesis at each modular level and make recommendations 

based on codified likelihood ratios. 

The issue of standardization in digital forensics has persisted for several years; first because 

standard guidelines have been unable to keep up with the dynamic pace of technological 

sophistication, and second, because forensic stakeholders have been unable to agree on certain 

rules and standards, resulting in conflict of interest (Bennet, 2012). Additionally, the 

distinctiveness of investigation, the domain’s diversity, and the existence of disparate 

legislative frameworks are all reasons cited as impediments to the standardization of the DF 
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field (Palmer, 2001; Reith, Carr and Gunsch, 2002). Nowadays, when it comes to 

standardization, the majority of what we encounter (with guidelines) are boxes to be ticked - 

since the belief is that the more details, the better the standard (Sommer, 2018). Nonetheless, 

the “Forensic Science Regulator” in a 2016 guidance draft highlighted the validation of forensic 

methods as a standard, rather than the software tool (FSR, 2016). This method validation entails 

a number of assessments, including the evaluation of data samples, which are relatively small 

in DF (Arshad, Aman and Abiodun, 2018). Standardization in DF (as well as DFAI) is a broad 

and intricate area of study, as every component of DF requires it. However, within the limits 

of this thesis and as part of the preliminary advancement of DFAI (for which further study is 

envisaged), we examine standardization in the context of forensic datasets and error rates. 

Datasets (or data samples) are a critical component of AI, as they define the validity of an AI 

model to a great extent. A dataset is a set of connected, discrete items that, depending on their 

context, have varied meanings and are employed in some form of experiment or analysis 

(Grajeda, Breitinger and Baggili, 2017). To evaluate or test novel approaches or to replicate 

existing procedures, similar data sets are required; for example, investigations on facial 

recognition require human facial sample data. Similarly, an inquiry into message spamming 

necessitates the collection of e-mail samples. Datasets are often beneficial in the following 

ways, according to the National Institute of Standards and Technology (2019)125: 

i. For training purposes: dataset is generated for training purposes, i.e., simulation of 

case scenarios to train a model to learn the specifics of that environment, and to 

facilitate practitioner’s training on case handling so that their ability to identify, 

examine, and interpret information can be assessed. 

ii. Tool validation: wherein dataset is utilized to determine the completeness and 

correctness of a tool when it is deployed in a given scenario. 

iii. Familiarity with tool behavior: for instance, a dataset collected from users’ software 

interaction traces. These datasets are critical for decoding how certain software 

behaves on a computer and helping in the understanding of digital traces left by 

usage (Horsman and Lyle, 2021). 

 
125 National Institute of Standards and Technology, 2019. The CFReDS Project. Available at 

https://www.cfreds.nist.gov/. (Accessed 20 June 2021). 
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The process of creating a dataset is critical, even more so in the domain of DF, where each 

component must be verifiable, fit for purpose, and compliant with some set of standards. 

Therefore, the created dataset must be realistic and reliable (Gobel et al., 2020). This also 

includes having a high-quality, correctly labelled dataset that is identical to the real-world use 

case for testing and evaluation purposes, sufficient enough in quantity for adequate learning, 

and available to ensure reproducibility (Grajeda, Breitinger and Baggili, 2017). In the context 

of DFAI, there are a few considerations that must be made in order to conduct a forensically 

sound operation with respect to datasets. 

Due to limited availability of datasets in DF, practitioners frequently overuse a single data 

corpus in developing several tools and methodologies, resulting in solutions gradually adapting 

to a dataset over time. For example, in Chapter 4, we used the Enron dataset to develop a 

particular forensic solution on e-mails. The Enron corpus has developed into a research 

treasure for a variety of forensic solutions, including e-mail classification (Miyamoto et al., 

2008; Guo, Jin and Qian, 2013; Morovati and Kadam, 2019), person of interest identification 

(Noever, 2022), and other forensic linguistics works (Farkhund et al., 2008; Bogawar and 

Bhoyar, 2016; Emad et al., 2019).  However, proving that a solution based on a single corpus 

is sufficiently generalizable to establish a conclusion in a forensic investigation will be 

difficult. Nevertheless, this is a widely recognized issue among stakeholders, and while it may 

be excusable in peer reviews, it is a major issue in the standardization of DF that requires 

immediate resolution. Similarly, while a sufficiently workable DF dataset is being sought, 

caution should be exercised when using a (single) dataset as a benchmark for a tool or method’s 

validity. 

Datasets are created as a “mock-up” of a specific scenario, representing the activities/events 

that occur within an environment; supposedly within a specified time period. Each use case is 

time-dependent; as such, the continued relevance of a particular use case (from a previous 

period) in a future period may be debatable. This is particularly true in the domain of DF. For 

instance, given the advancements in computer network architecture, it may be illogical to use 

a dataset of network traffic from the 1990s to model an intrusion detection system today. This 

is also a point made in (McHugh, 2001). Similarly, it may seem counterintuitive to argue that 

a model trained on images retrieved from an older (e.g., 2000) CCTV footage or camera is 

helpful for identifying objects in a contemporary crime scene image – technology has 

improved. However, in an ideal circumstance and for a robust model, updating the dataset with 
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a collection of new features compatible with recent realities, rather than completely discarding 

the old dataset, should be viable. 

Criminal cases are predominantly local in nature, and while they may have a global dimension, 

investigations should consider local nuances. For instance, in a typical forensic linguistics 

investigation (e.g., cyberbullying), a language corpus plays a vital role. However, native 

speakers’ use of language (for example, English) may differ greatly from those of non-native 

speakers. Language, in usage and writing, varies across borders. An AI model trained to 

identify instances of bullying using a message corpus extracted from British databases may not 

be fully representative of the same use case in Anglophone Africa – there are some English 

terms that are offensive to native speakers but inconsequential to non-natives. As such, a 

training dataset for DFAI should accurately reflect the use case (in terms of location and 

dimension) to which it is meant to be applied. 

Lastly, the demand for synthetically generated datasets is increasing in the DF domain, and 

rightly so. The issues of privacy, unavailability, and non-sharing policy continue to be a barrier 

to getting forensically viable datasets for the purpose of training, testing, and validating 

forensic tools. Synthetic data, first introduced in (Rubin, 1993; Little, 1993), is described as an 

artificially generated data that contains statistical features of the original data.  While synthetic 

data can be extremely beneficial for research and education, the question is whether any novel 

technique can be tested on fictitious data (Baggili and Breitinger, 2015), and particularly for 

DF; whether a perfect simulation of a crime event can be achieved. Nonetheless, several 

research (not related to DF) have demonstrated the usefulness of synthetic data in comparison 

to actual data (Heyburn et al., 2018; Rankin et al., 2020), in which a model was trained on 

synthetic data and tested on real data. The results indicated that the accuracy of numerous ML 

methods were slightly decreased and varied as compared to when the real data set was used. 

Synthetic data can be used to enrich or expand an existing dataset or to correct for data 

imbalances caused by limited occurrence of an event. In DFAI, modelling with synthetic data 

can be advantageous in some circumstances, but not in all. Synthetic data generation involves 

a purpose-built dataset that may be too specific for general-purpose solutions; demonstrating 

the results’ suitability for real-world crime data may be problematic. This point is highlighted 

in (Yannikos et al., 2014), while some other challenges are emphasized in (Horsman and Lyle, 

2021). Furthermore, synthetic datasets are randomised, which means that the data do not follow 

a regular pattern. We foresee an extended challenge if the dataset is used to train an 

unsupervised neural network model - the model may learn non-interpretable patterns. While it 
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is natural to assume that random data is less biased, there is no means to verify this claim. Thus, 

while synthetic datasets may be advantageous for solving specific ML problems, their usage in 

DFAI should be carefully addressed. 

As critical as accuracy is in determining the correctness of an evidence mining process, so also 

is the error rate. The error rate not only indicates the probability that a particular result is 

correct, or the strength of a technique, but also its limitations. According to the Scientific 

Working Group on Digital Evidence (SWGDE), the term “error” does not allude to a mistake 

or blunder, but rather to the inevitable uncertainty inherent in scientific measurements. 

Numerous factors can influence these uncertainties, including algorithmic flaws, statistical 

probability, physical measurements, and human error (SWGDE, 2018). In Chapter 2, we 

discussed the Daubert standard, and one of the criteria for validating scientific methods under 

Daubert is error rate. Indeed, some of the other requirements are largely contextualized around 

error rate. For instance, the Daubert standard involves testing of a theory or technique; how 

can we test a hypothesis and its alternatives or a method without assessing the rate of 

uncertainty? Likewise, peer review publishing of the method is essential. How scientifically 

valid is a published work that does not acknowledge methodological uncertainties? This 

highlights how crucial error rates assessment is to forensic methods. 

In alignment with the guidance offered in (SWGDE, 2018), the uncertainty associated with any 

DFAI technique can be assessed in two ways: random and systematic. Random uncertainties 

are related with the algorithmic component of the technique and are frequently associated with 

measurements, while systematic uncertainties are typically associated with implementation — 

they occur in tools. DF tools represents implementation of a technique, and their functionality 

varied according to the task they seek to resolve. It is not uncommon for software to possibly 

have intrinsic bugs (Walker, 2011) — triggered by logical flaws or incorrect instructions. For 

instance, an erroneous string search algorithm can cause a tool to report certain critical evidence 

incompletely. In this instance, the tool will extract some relevant strings but may underreport 

them. Because these flaws are not random, the tool will frequently generate the same result 

when given the same input, which may be inadvertently deceptive to an examiner. As a result, 

additional error mitigation strategies may be necessary to detect and fix it. 

Due to the probabilistic nature of DFAI algorithms (the outcome of which may be random), 

the error rates are estimated in terms of false positive and false negative rates (which we 
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discussed earlier in this Chapter). Depending on the percentages of these errors, and as long as 

there is sufficient trust in the algorithm’s optimality, the error rates will merely describe the 

technique’s limitations; not its true efficiency. Reporting and publishing error rates in a 

technique should be encouraged in DF domain, and this should be particularly true for DFAI. 

This increases method’s transparency and ensures that the expected outcome is known in the 

event of method replication. Additionally, disclosing error rates provides prospective 

researchers with a baseline understanding of the components that function efficiently, where 

improvements are anticipated, as well as prevent potential biases in interpretation. Mitigating 

this error may not be straightforward scientifically, as it is dependent on a variety of factors; 

however, algorithm optimization, sufficient datasets, accurate labelling (in supervised 

settings), and strong domain knowledge (for proper interpretations) are some of the ways to 

achieve a fairly reasonable success. Additional mitigating strategies for systematic errors 

include training, written procedures, documentation, peer review, and testing (SWGDE, 2018). 

Optimizing an AI algorithm can be a difficult challenge, all the more so when the 

approximation function contains a large number of inputs, an unknown functional structure, 

non-differentiable elements, and noise. The key aim of ML is to solve some kind of 

optimization problem. Thus, constructing a ML model entails initializing and optimizing 

weight parameters using an optimization algorithm until the objective function tend towards 

minimum value or towards a maximum value in terms of accuracy (Sun et al., 2020). In 

addition to learning in predictive modelling, optimization is necessary at several stages of the 

process, and it includes selecting: 1) the model’s hyper-parameters (HPs); 2) 

the transformation techniques to apply to the model prior to modelling; and 3) the modelling 

pipeline to apply. This section is not intended to discuss the depth of optimization in AI, but to 

briefly discuss hyper-parameters optimization (HPO) (Steinholtz, 2018) as a critical 

component in optimizing a DFAI model.  

Two parameters are crucial in ML models: 1) the model parameters, which are initialised and 

updated throughout the learning process; and 2) the HPs, which define the model’s 

structure, not directly estimable from data, and must be set prior to training (Kuhn and Kjell, 

2013). The traditional method, which is still used in research but requires knowledge of the 

ML algorithm’s HP value configurations, entails manually tuning the HP until the desired result 

is achieved (Abreu, 2019). This is ineffective in some cases, particularly for complex models 
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with non-linear HP interactions (Yang and Shami, 2020). However, HPO is an automatic 

technique that improves the effectiveness of applying ML to practical problems (Elshawi, 

Maher and Sakr, 2019). Numerous circumstances may necessitate the application of HPO 

techniques (Hutter, Kotthoff and Vanschoren, 2019); we zero-in on a few of them below, 

focusing on forensic investigation tasks in the context of DFAI. 

i. Conducting a digital forensic investigation takes an inordinate amount of time. Over 

the years, reducing this time has been a key focus of research in this domain. Similarly, 

machine-driven techniques can be time intensive, depending on the size of the dataset 

or the number of HP, and applying AI techniques to already difficult forensic 

investigation will almost certainly increase the complexity. HPO can significantly 

reduce the amount of human effort required to tune these HP, hence reducing the overall 

analysis time. 

ii. We already discussed the importance of performance in the overall scheme of DFAI 

operations. ML methods have a variety of HP settings necessary to achieve optimality 

for different dataset and problem. Numerous techniques exist in HPO that can aid in 

optimizing the performance of AI-based models by searching across multiple 

optimization spaces in pursuit of the global optimum for a particular problem. 

iii. As previously stated, reproducibility is a fundamental need for a standard DF approach. 

HPO can assist in achieving this goal in a variety of ways. For instance, when 

comparing the efficacy of various AI algorithms on a specific analysis, using the same 

HP settings across all models creates a fair comparison mechanism. This can also aid 

in determining the most appropriate algorithm for a given problem. Reporting these HP 

configurations can be beneficial in the event of replication. 

As with conventional AI models, developing a DFAI model with HPO in mind entails the 

following steps: defining an estimator (a classifier or regressor) and its objective function, 

defining a search (configuration) space, defining an optimization method for 

determining suitable HP combinations, and defining an evaluation function for comparing the 

performance of different HP configurations (Yang and Shami, 2020). A typical HP 

configuration can be discrete (for example, the number of clusters, k), continuous (as for 

multiple LR values),  categorical (e.g., optimizer type), or binary (for early stopping or not) all 

of which can be combined to produce an optimized model. Because the majority of ML 

algorithms have well-defined open-source frameworks (such as scikit learn) that can assist in 

solving problems by tuning (changing values) some already pre-set HPs, we will focus on 
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HPOs related to DL models because they have more parameters to set. HP in DL are 

configured and tuned in accordance with the complexity of the dataset and task, and they are 

proportional to the number of neurons in each layer (Koutsoukas et al., 2017). The initial 

parameter setting for a DL model is to specify the loss function (binary cross-entropy, multi-

class cross-entropy, or squared error loss) appropriate for the problem type. Then comes the 

type of activation function (e.g., ReLU, sigmoid, tanh, SoftMax, etc.) that describes how the 

weighted sum of the input is transformed into the output. Finally, the optimizer type is 

specified, which may be stochastic gradient descent (SGD) (Goodfellow, Bengio and 

Courville, 2016), Adam, or root mean square propagation (RMSprop) (Tieleman and Hinton, 

2012). In what follows, we describe several optimization techniques that can be vital to the 

optimization of a DFAI model. 

This method involves tuning parameters manually. It entails testing a large number of HP 

values based on past experience, guesswork, or analysis of prior results. The approach is to 

improve parameter guesses iteratively until a satisfying result is obtained. This approach may 

be impractical for a variety of issues, particularly those involving DF analysis, that could 

involve large number of HP or complex models (Yang and Shami, 2020). However, this 

technique can improve interpretability by allowing for the assessment of the model’s various 

working parts as the parameters are tuned. 

This is a frequently used technique for exploring the HP configuration space (Injadat et al., 

2020). It does an extensive, parallel (i.e., independent of time sequence and previous search) 

search of the configuration space, and it is suitable within a limited search space; otherwise, it 

may suffer from the “curse of dimensionality” (Bach, 2017). This strategy is nearly always 

preferred when the examiner has sufficient knowledge of the HP to specify a finite set of values 

(Hutter, Kotthoff and Vanschoren., 2019) for the search space (for example, recognizing that 

no more than three HPs should be tuned concurrently) (Yu and Zhu, 2020). Due to the 

computational complexity of GS (Lorenzo et al., 2017), its application in DFAI is mostly 

focused on comparing different algorithms (Rami and Mohammed, 2019) in order to determine 
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the one that performs the best on a particular forensic task. A botnet detection method using 

GS optimization technique is described in (Gonzalez-Cuautle et al., 2019). 

RS was proposed in (Bergstra and Bengio, 2012) as a way to circumvent GS’s limitations. 

Unlike GS, however, RS randomly selects a predefined number of candidate samples between 

a specified upper and lower bound and trains them until the target accuracy is achieved or 

specified budget is exhausted. RS explores, in parallel, a bigger space on a limited budget by 

allocating resources to best performing regions (Krivulin, Dennis and Charles, 2005) to 

discover optimal configurations set (referred to as the Monte Carlo technique (Harrison, 

2010)).  

Due to the simplicity with which RS parallelizes, it is an excellent candidate for DFAI tasks 

involving CNNs, such as multimedia forensics (e.g., audio and video), image forensics, and 

others, in which (low-dimensional) features are mapped from one layer to the next. This 

method is time and memory consuming. To optimise the process, a batching technique (Pavlo, 

2014) is used that makes use of the batch size and learning rate to reduce training time without 

compromising on performance. RS may be advantageous in this scenario for determining the 

optimal range of values for these parameters (Ari and Heru, 2020) because just the search space 

must be specified. Furthermore, RS’ application in optimising multimedia forensics analysis 

suggests that it may be crucial for RNN, however RS has the disadvantage of not factoring-

in previous results during evaluation (Yang and Shami, 2020). Therefore,  when used in 

recursive tasks such as event reconstruction in DFAI, RS may produce less-than-optimal 

outcomes. 

The gradient descent (Bengio, 2000) optimization computes the gradient of variables so as to 

determine the most promising path to the optimum. Gradient-based optimization techniques 

converge faster to the local minimum than the previously described techniques, but they are 

only applicable to continuous HP, such as the learning rate in NN (Maclaurin, Duvenaud and 

Adams, 2015), as other types of HP (e.g., categorical) lack gradient direction. The application 

of GD is almost ubiquitous in DFAI, as it is utilised in virtually all DL models. This is one of 

the simplest optimization architectures to comprehend and interpret. However, the findings in 

(Goodfellow, 2014b) established the existence of  “Catastrophic Forgetting” when GD is 
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utilized, most notably in reproduction. That is, when trained on a new task using solely gradient 

descent, ML models may forget what they learned on a previous assignment. However, a 

combination with dropout (Dahl, Sainath and Hinton, 2013) is recommended. 

BO (Jones et al., 1998; Snoek et al., 2012) is an iterative algorithm that calculates future 

evaluation points based on the prior results. It is a typical model for all sorts of global 

optimization, with the goal of becoming less incorrect with more data (Koehrsen, 2018). BO 

attempts to locate the local optimum with the fewest possible trials which enables it to operate 

faster regardless of whether the objective function is stochastic, continuous, convex, or non-

convex. BO, on the other hand, is a sequential approach that is difficult to parallelize (Yang 

and Shami, 2020). Gaussian process (GP) (Seeger, 2004), Sequential Model-based algorithm 

configuration (SMAC) (Hutter, Kotthoff and Vanschoren., 2011), and Tree Parzen Estimator 

(TPE) (Bergstra et al., 2011) are also examples of common BO algorithms.  

BO is particularly advantageous with tools such as the Waikato Environment for Knowledge 

Analysis (WEKA) (Hall et al., 2009), an open-source set of ML and data processing 

algorithms. Numerous DF analysis approaches (Bhat et al., 2011; Nirkhi, Dharaskar and 

Thakare, 2012; Uma and Nikkath, 2021) have been proposed or implemented using WEKA – 

exploiting its extensive data mining capabilities and the ability to choose from or compare a 

diverse set of extensible, base learning algorithms for a specific forensic task. Selecting the 

best method and HPs for a WEKA-based DFAI analysis might be hard. In this case, BO’s 

excellent properties can assist in selecting the appropriate ML approach and HP settings to 

minimize analytical errors. The works presented in (Thornton et al., 2013) and (Kunang et al., 

2020) demonstrates how BO can be utilized as meta-learning (specifically, with SMAC and 

TPE) to guide the selection of ML algorithms and HPO settings that outperform conventional 

selections on a classification task. 

MFO techniques are frequently used to overcome the time constraints limitations imposed by 

other HPO due to huge configuration space and datasets. MFO evaluates practical applications 

by combining low- and high-fidelity measures (Zhang et al., 2016). In low-fidelity evaluation, 

a small subset is examined at a low cost, resulting in poor generalization performance; while 

in high-fidelity evaluation, a larger subset is examined at a higher cost, but with improved 
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generalization performance (Yang and Shami, 2020). MFO techniques include “Bandit-based” 

(Karnin, Koren and Somekh, 2013) methods that allocates computational resources to the “best 

arm” (most promising) HP configurations. The two most commonly used bandit-based 

techniques are successive halving (SHA) (Jamieson and Talwalkar, 2015) and hyperband (HB) 

(Jamieson and Talwalkar, 2015; Li et al., 2017). Transfer learning (TL) (Zhan et al., 2017); 

which is the process by which previously stored knowledge is used to solve unrelated but 

related problems, is a technique for applying MFO in DFAI. TL has been applied to a range of 

DFAI problems (Zhan et al. 2017; Al Banna et al., 2019), most notably image forensics and 

detection problems using labelled samples. Thus, depending on the size of the stored 

information (dataset), the investigative problem, and available computational resources, low or 

high fidelity optimization can be beneficial for determining the optimal solution. Prasse et al. 

(2019) illustrates how to detect (signature-based and unknown) malware-infected domain 

based on HTTPS traffic, using TL and HB optimization. Additionally, a state-of-the-art hyper-

parameter optimization technique called Bayesian Optimization Hyperband (BOHB) (Falkner, 

Klein and Hutter, 2018), which combines BO and HB to maximize the benefits of both, is 

gaining attention, and it will be interesting to see how DF research employs this promising 

technique in the future. 

Metaheuristic algorithms are a popular type of optimization technique that are primarily 

inspired by biological evolution and genetic mutations. Metaheuristic techniques are capable 

of resolving problems that are not continuous, non-convex, or non-smooth (Yang and Shami, 

2020). Population-based optimization algorithms (POAs) (Eggensperger, 2013) are an 

excellent example of metaheuristic algorithms since they update and evaluate each generation 

within a population until the global optimum is found. The two most frequently utilized types 

of POA are genetic algorithms (GA) and particle swarm optimization (PSO) (Shi and Eberhart, 

1998). PSO, specifically, is an evolutionary algorithm that functions by allowing a group of 

particles (swarm) to traverse the search space in a semi-random fashion (Steinholtz, 2018), 

while simultaneously discovering the optimal solution through information sharing across 

swarms.  

PSO is well-suited for network forensics, as training such models can be time-consuming due 

to the requirement of identifying complex patterns from vast volumes of data. Iterative reverse 

engineering of parser and network traffic logs is required to discover network intrusion or 
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attack; this might be challenging for humans (Koroniotis, Moustafa and Stinikova, 2020). The 

work described in (Koroniotis, Moustafa and Stinikova, 2020) demonstrates the efficacy of 

PSO as a useful tool for minimizing/maximizing an objective function and determining the best 

HPs (such as epochs, LR, and batch size) that contribute to the AUC accuracy and false alarm 

rate reduction of the deep forensic model. 

It is worth emphasizing that the techniques discussed here are by no means exhaustive in terms 

of definition, components, and applicability. These few are chosen for their popularity and as 

a means of briefly discussing optimization techniques in the context of DFAI-models. As such, 

in depth discussions about HPOs are available in (Sun et al., 2020; Yu and Zhu, 2020; Yang 

and Shami, 2020). In general, depending on the size of the data, the complexity of the model 

(e.g., the number of hidden layers in a neural network or the number of neighbours in a KNN), 

and the available computational resources, an HP configuration may lengthen the time required 

to complete a forensic task. Further along this line, in most cases, only a few HP have a 

substantial effect on the model’s performance in ML methods (Yang and Shami, 2020). Hence, 

having many HP configurations exponentially increases the complexity of the search space. 

However, with deep learning, HPO techniques will require significant resources, particularly 

when dealing with large datasets. Considering all of these complexities, especially in the 

context of DFAI, where timeliness, transparency, and interpretability are critical, a well-chosen 

HPO technique should aid in rapid convergence and avoid random results. Given that DF 

analysis are case-specific, often distinctive, with interpretability as a fundamental requirement, 

decomposing complexity should be a priority. Summarily, unless forensic investigators have 

sufficient computing resources and a working knowledge of the parameter settings for various 

HPO techniques, they may choose to consider the default HP settings in major open-source 

ML libraries, or make use of a simple linear model with reduced complexity, where necessary. 

In case of a self-defined DNN model, basic HP settings and early stopping techniques can be 

considered. 

Finally, to summarize the various HPO algorithms mentioned thus far, Table 5.4 compares 

these HPO algorithms and their respective strengths and drawbacks, as adapted from (Yang 

and Shami, 2020). 
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HPO 

Technique 
Strengths Drawbacks 

Time 

Complexity 
Use case in DFAI 

GS 

• Simple 

• Independent 

(Parallelization) 

• Exhaustive use of 

the search space  

• Effective with 

categorical HP 

• Time-

consuming 

• HP grows 

exponentially 

• Possible 

overfitting 

𝑂(𝑛𝑘) 

Comparison of 

DFAI algorithms, 

botnet detection, etc. 

RS 

• Effective 

parallelization 

• Improvement 

over GS 

• Better with low-

dimensional data 

• Reduce 

overfitting 

• No HP tunning 

except for 

specifying search 

space 

• Less-effective 

with conditional 

HP  

• Ignores 

previous result 

during 

evaluation 

• Potential for 

variance since it 

is random 

𝑂(𝑛) 

Multimedia 

forensics, 

identifying HPs 

(e.g., batch size, 

learning rate, etc.) 

for optimal forensic 

analysis. 

GD 

• Fast convergence 

speed for 

continuous HP 

such as learning 

rates 

• Support only 

continuous HP 

• Detects only a 

local optimum 

𝑂(𝑛𝑘) 

Event 

reconstruction, text 

analysis, multimedia 

forensics, etc. 

BO (BO-

GP, 

SMAC, 

BO-TPE) 

• Fast convergence 

speed for 

continuous HP 

• Effective with all 

types of HP (in 

SMAC and BO-

TPE cases) 

• Computes mean 

and variance 

• Poor 

parallelization 

capacity 

• Slow 

convergence 

with dimension 

> 1000 

• Specification of 

prior is difficult 

𝑂(𝑛3)(𝐵𝑂 −

𝐺𝑃), 

𝑂(𝑛𝑙𝑜𝑔𝑛) 

(SMAC, BO-

TPE) 

Useful for WEKA, 

identifying best 

algorithm for 

forensic task, Meta-

learning, etc. 

HP 
• Better 

parallelization 

• Less effective 

with conditional 

HP 

𝑂(𝑛𝑙𝑜𝑔𝑛) 

Malware detection, 

Network intrusion 

analysis, Transfer 
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• Subset with 

small budget 

required 

learning for 

forensics, etc. 

BO-HB 

• Effective with all 

types of HP 

• Better 

parallelization 

• Subset with 

small budget 

required 

𝑂(𝑛𝑙𝑜𝑔𝑛)  

GA 

• No initialization 

• Effective with all 

types of HP 

• Produces 

multiple optimal 

solutions 

• Possible global 

optimal solution 

• Large solution 

space 

• Supports multiple 

objective 

function 

• Poor 

parallelization 

capacity 

• Computational 

complexity 

𝑂(𝑛2) 

Best performing 

parameter selection 

for forensic task 

PSO 

• Better 

parallelization 

• Effective with all 

types of HP 

• Efficient global 

search algorithm 

• Insensitive to 

scaling of design 

variables 

• Initialization 

required 

• Weak local 

optimum search 

space 

𝑂(𝑛𝑙𝑜𝑔𝑛) 

Network forensics, 

optimal HP 

configuration for 

DFAI analysis. 

Table 5.4: The comparison of HPO techniques (n denote the number of HP values and k is the number of HP) 

In this chapter, we lay the groundwork for defining “Digital Forensics AI” (DFAI) and 

dispelling the common notion that it is synonymous with Forensic AI. As a result, we covered 

the primary evaluation techniques for AI-based methods such as classification, regression and 

clustering that are utilized in DF analysis, as well as the critical metrics that should not be 

overlooked when reporting forensic results. Additionally, we reviewed some fundamental 

DFAI standards. In this case, we focused on two fundamental factors: datasets and error rates, 
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both of which are critical to DFAI. We stressed the significance of exercising caution while 

working with synthetic datasets and of reporting error rates in DFAI. Finally, we compared the 

strengths and drawbacks of numerous hyperparameter optimization techniques. 
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Over the last few decades, objectivity in fact finding has switched from human to machine-

generated proofs, and to an extent, with improved accuracy (Roth, 2015). Just as human 

experts’ analysis of the same case can result in divergent opinions, machines have also 

expressed different viewpoints on the same scientific evidence, raising serious concerns about 

the challenges that machine-generated evidence poses for the legality of digital evidence. 

Further along this line, just as out-of-court testimony, such as hearsay (Goodison et al., 2015); 

poses a risk to the justice system in terms of ambiguity; dishonesty, misconceptions; and 

memory loss (Morgan, 1948), machine testimonies (sources) may indeed present closed-box 

challenges (Carr, 2014; Pasquale, 2015) that may lead fact finders to drawing 

incorrect/incomplete inferences (Roth, 2015). When the output of a machine-driven analysis is 

imprecise or ambiguous, or in a situation where an event is incorrectly interpreted, several 

factors may be responsible, including but not limited to design (e.g., erroneous 

algorithms/code), input (e.g., skewed, or disproportionate dataset), model (e.g., defective 

functional components of the system), and environmental forces (e.g., OS, distributed 

platforms, etc.). All of a machine’s vital components (design, input, and operational modules) 

are designed and structured by humans, which is why some scholars argue that machine’s 

credibility is highly dependent on human. Thus, human being is the true declarant126 of any 

output conveyed by a machine (Wolfson, 2005). While the designer or operator of a machine 

may share or bear moral responsibility for the assertions made by the machine, she is not the 

only source for the assertions (Roth, 2015). She is only regurgitating the output of a machine-

driven operation. As the expert’s opinion is the product of “distributed cognition” between the 

expert and other experiential influences (Dror and Mnookin, 2010), so is the result of a 

 
126 “Declarant” is a term used in the context of hearsay as a label for the witness tendering evidence statement as 

truth of the matter asserted. 
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machine-driven forensic investigation; it is driven by the distributed cognition of humans and 

technology (Dror and Mnookin, 2010).  

The foregoing demonstrates the connections between humans and machines, as well as the 

impact of the former on the entire range of machine-generated evidence, the closed-box, and 

the determination of responsibility. The subject of AI and its inscrutability (opaqueness) is still 

an area of ongoing research; and given the widespread misconceptions about whether AI 

systems should be explainable or interpretable, the road to a unifying consensus may be further 

away. AI/ML-powered systems are being deployed in a variety of sectors of our daily lives, 

with diverse consequences in each of these sectors. There is a rising concern over AI systems’ 

inexplicability, particularly in fields where decisions have significant consequences for 

individuals affected, and where transparency, accountability, or legal compliance are required 

(such as health and law) (Coyle and Weller, 2020). Particularly, in DF, AI-based technologies 

have been instrumental for identifying or detecting interesting clues that are subsequently 

analyzed to support or rebut a certain claim. The outcome of a forensic investigation must be 

presented in an understandable and comprehensible manner, but when the processes that 

produced them are debatable scientifically, or are insufficiently transparent to establish a 

conclusion, then the additional level of complexity must be addressed. Conventional (i.e., non-

AI-based) methods utilizing specialized forensic tools (that lawyers, jurors, and others are 

familiar with) have been helpful in the extraction, analysis, and reporting of digital evidence 

over the years; however, the sophistication of technology today, and the manner in which it is 

used to commit crime, necessitates the deployment of more robust, autonomous, and equally 

intelligent systems such as AI to identify potential evidence. 

This chapter’s primary objective is to examine, first, the differing views on explainability and 

interpretability in AI, with a particular emphasis on how they affect DF and evidence mined 

using AI algorithms. This is necessary to provide the proper foundation for these 

ambiguous concepts. To put things in the right perspective, guidance through literature will, 

presumably, assist to draw the right conclusions, particularly as they pertain to DFAI. Second, 

the concerns about closed-boxes are examined, as are the numerous approaches and attempts 

to discover a practical solution (even though that remains elusive). After discussing the 

numerous work-around proposed, domain-specific recommendations to mitigate mistrust in 

AI-powered digital forensics analysis are then offered. Furthermore, a formal pre-concept for 

explainable digital forensics AI is offered, along with a number of relevant methods for 
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delivering comprehensible interpretations for AI models and their applicability to AI-based DF 

analysis. 

While the promise of AI was that it would enable better decision-making, as seen in some 

forms of medical diagnostics (De Fauw et al., 2018) or monitoring attempted financial frauds 

(Aziz and Dowling, 2019), questions have been raised concerning its usage in critical contexts 

such as the justice system and policing (Coyle and Weller, 2020). The underlying issue or 

demand is the need to explain to interested parties, the conclusions reached as a result of 

algorithmic decisions. Explainability of AI closed-box systems (Samek, Weigand and Muller, 

2017; Pedreschi et al., 2018; Samek et al., 2019; Guidotti et al., 2019), also known as 

Explainable AI (XAI), is a field of research devoted to making AI systems and the data they 

use transparent (Gross-Brown, 2015) by “glass-boxing” the system’s operating components. 

As a result of AI’s pervasiveness across several disciplines, explanation connotes different 

things to different fields, and emphasis is assigned based on technical requirements and the 

consequences of the outcomes. For example, while the decision-making process of a 

recommender system will require little or no explanation, questions about the decision-making 

mechanism of a crime prediction or recidivism algorithm will continue to be raised. XAI carries 

a huge amount of weight in law and everything that surrounds the justice system, including 

policing, law enforcement, and DF, because the implications of a wrong machine-generated 

decision in these areas could be grave. As a result, arguments have developed about whether 

the results of a closed-box AI system should be explainable (Arrieta et al., 2020) or 

interpretable (Rudin, 2019); whereas some argue in favour of understandable or responsible 

(Benjamins, Barbado and Sierra, 2019) systems instead. However, these notions — 

particularly, interpretable and explainable AI — have been used interchangeably across 

literatures. To demonstrate these misconceptions over time and the gradual shift in reasoning 

toward interpretability in literatures, a simple search in the Scopus®127 database was conducted 

for publications whose keywords, title and abstract contained the terms “Interpretable Artificial 

Intelligence”, “Explainable Artificial Intelligence”, or “XAI.” The outcome is depicted in 

Figure 6.1. In a similar vein, figure 6.2 illustrates the application of these concepts across 

multiple domains of knowledge. This is to demonstrate the critical nature of transparent AI 

across these disciplines, as evidenced by the volume of literature devoted to it. Further 

discussions about the figures are presented later in this chapter. But first, to gain a better 

 
127 https://www.scopus.com/home.uri 
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understanding of these concepts, definitions and distinctions among terms may be necessary; 

and in what follows, the summary of the most commonly used nomenclatures are presented. 

Explainability: is a term that refers to the concept of explanation as a link between humans 

and a machine’s decision-making process that is both accurate and understandable to humans 

(Guidotti et al., 2019). It embodies the notion that an AI model’s high abstraction level and its 

output can be rationally explained in a way that is acceptable and understandable to humans.  

 

Figure 6.1: represent the evolution of publications with titles, abstracts and/or keywords that refers to 

explainable/interpretable AI over the last years. This chart depicts the numbers as of 10th January, 2022 as retrieved 

from the Scopus database. The legends indicate the exact search terms used in the query.  

 

Figure 6.2: depicts the number of published works with title, abstract and/or keywords that refers to the terms in 

the legend. The figures are as derived from the Scopus database as of 10th of January, 2022.  
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Classical ML models tends to be readily explainable; albeit with less performance, while others 

such as DNN/DL performs better, but remains much harder to explain. Inexplicability may lead 

to misunderstanding and distrust in AI-enabled systems.  

To contextualize explainability within the framework of AI, a truly explainable AI makes use 

of knowledge bases during analysis and provides a technique for deconstructing the output in 

a way that logically justifies the interpretation provided to the input data (Hall et al., 2021). 

According to Gunning in (Gunning, 2019), “XAI will create a suite of machine learning 

techniques that enables human users to understand, appropriately trust, and effectively 

manage the emerging generations of artificially intelligent partners.” The emphasis on XAI 

gained traction when it became apparent that in order for AI systems to be trusted, they must 

always prioritize the plight of end users (e.g., different stakeholders in a legal system). It is 

self-evident that when a machine-derived decision has an impact on humans’ lives (as is the 

case in medicine, law, or defense), satisfactory explanation becomes imminent (Lipton, 2018). 

Interpretability: refers to the capacity to convey an explanation or meaning in a human-

comprehensible manner (Arrieta et al., 2020). Due to the fact that interpretability is domain-

specific (Rupin, 2006; Huysman et al., 2011), a universal definition is unattainable. 

Nonetheless, interpretability in the context of machine-generated output should be viewed in 

terms of conformance to structural domain knowledge, causality, or physical constraints 

(Rudin, 2019), as well as sparsity (of data); the latter of which can be measured in terms of 

human cognitive capacity (all at once) (Miller, 1956; Cowan, 2010). 

Not only does an interpretable system enable users to visualize the model, but also to study and 

comprehend the mathematical underpinnings of how the input is mapped to the output (Doran, 

Schulz and Besold, 2017). It implies transparency and understandability. Interpretable 

consideration for an AI model is an additional driver that, according to (Arrieta et al., 2020), 

can improve its implementation in three (3) ways: 1) ensure objectivity in decision-making, 

i.e., transparent management of bias in the training dataset; 2) resilience towards adversarial 

perturbations that may impede prediction; and 3) ensure that only correct variables are used in 

output’s inferencing, i.e., assurance that model reasoning is premised on true causality. The 

above indicates that the practicality of an interpretable AI system is contingent upon the 

understandability of its predictions, the visualization of its discriminating rules, or the 

disclosure of factors that might perturb the model (Hall, 2018). 
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Understandability: or intelligibility, concerns model’s characteristic that enable it to be self-

explicit in terms of its operational functionality — without the need to explain its internal 

structure or the underlying algorithms used to process data (Montavon, 2018). 

Comprehensibility: is typically measured in terms of the model’s complexity (Guidotti et al., 

2019), which includes the model’s capacity to describe its learning process in an 

understandable manner (Craven, 1996; Gleicher, 2016). According to Michalski’s theory 

(Michalski, 1983) model’s comprehensibility and as quoted in (Arrieta et al., 2020), which 

states that: “the result of computer induction should be symbolic descriptions of a given 

entities, semantically and structurally similar to those a human expert might produce observing 

the same entities. Components of these descriptions should be comprehensible as single 

‘chunks’ of information, directly interpretable in natural language, and should relate 

quantitative and qualitative concepts in an integrated fashion.” 

In contrast to a closed-box system, a comprehensible system adds additional remarks to its 

output, sometimes, in the form of confidence scores (e.g., the C-scale measure described in 

Chapter 5) — which fosters trust — or by offering contrastive insights into the model’s 

operational functions (Chari et al., 2020). 

Transparency: a transparent model is self-explanatory; it possesses characteristics such as 

simulatability (i.e., the simplicity with which the system may be replicated), decomposability 

(i.e., chunking, and easy analysis of the functional components), and algorithmic transparency 

(Lipton, 2018). Transparency in a system may be fairly uneasy to achieve; nonetheless, what 

could be attainable is a post-hoc explanation that tends to justify the rationale for a system’s 

decision rather than the system’s real operational structure (Preece et al., 2018). 

Having defined all of these core tenets, which are critical for the advancement of the viewpoints 

this chapter seeks to develop, few points are up for discussion, particularly regarding DFAI. 

As a result, subsequent discussions are contextualized within the paradigm of 

explainable/interpretable AI’s application to DF.  

To begin, explainable AI (or XAI thereof) widely appears to be a generalized notion of 

explanation or a constant effort to minimize (or eliminate entirely) the opacity of AI systems 

through deconstruction of complex variables, while maintaining a good balance between 

transparency, performance, and correctness. Meanwhile, as supposedly observed, the idea 

underlying all of these concepts appear to be intertwined, with all highlighting the importance 

of AI models being understandable, precise, and objective in their decision-making process. It 
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is easy to misinterpret the fundamental meanings of these concepts, and of course, they are 

used interchangeably in this chapter — albeit with consciousness of the exact thought they 

intend to convey. Most significantly, this chapter places considerable emphasis on two 

concepts: explainability and interpretability, and while the other concepts are mentioned 

accordingly, the goal is to identify which is more fundamental to DFAI. As illustrated in figure 

(6.1), it is apparent (from the literatures) that “interpretable AI” became more prevalent over 

time until 2018, when it appears that explainability began to get formalized. The sheer volume 

of articles devoted to it attests to the gradual tremendous shift. However, as research becomes 

more critical in that direction, and reasoning in the domain tends northward, there is 

considerable evidence that interpretability is gaining traction and receiving the attention it 

deserves. Similarly, as illustrated in Figure 6.2, which depicts the use of interpretable AI 

(IAI)/XAI across multiple disciplines of study, the consistent trend toward the adoption of IAI 

is readily apparent. Although XAI receives more research attention and mention, this is 

presumably because it is the primary generic phenomenon whose critical reasoning gave birth 

to the expansion of others, i.e., the ambiguities and arguments over how explainable systems 

should work gave rise to other forms of white-boxing concepts. However, it should be noted 

that larger body of works may have more references to explainability/interpretability than the 

title, abstract, or keywords that we considered from a single database. What is clear from the 

illustration is that, apart from the main fields from which the idea of AI originates (e.g., 

computer science, mathematics, engineering, and so on), AI research in fields such as medicine 

and decision sciences (to which, believably, DF belongs) has begun to focus on XAI and IAI. 

These domains have seen a substantial deployment of AI in numerous areas of its operations 

over the years, and most crucially, they deal with humans, on whom the impact of the machine 

decision may be severe.  

It is self-evident that courts do not produce evidence; they are not witnesses and are not bound 

by evidentiary rules. Likewise, Law and case law are not evidential. Nonetheless, the court 

exists to enforce rules and interpret evidence (Marcinowski, 2021). This means that while the 

prosecuting and defence parties (most of whom are attorneys) present evidence in a legal 

proceeding, the duty of finding this evidence falls on law enforcement agencies or forensic 

practitioners (in this case, digital forensics experts). The commissioner is therefore required to 

prove (with convincing explanation) the validity of the methods and approaches employed to 
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establish the facts presented as evidence. When these techniques entail implicitly complex 

application (e.g., closed-box system), both the prosecution and defence have one critical right: 

the right to explanation (Doshi-Velez, 2017). 

In a practical legal context, “justice must not only be done, but also seen to be done;” hence, 

the necessary transparency that establishes the veracity of a case’s outcome may be missing 

without explanation (Atkinson, Bench-Capon and Bollegala, 2020). It is fairly arguable that, 

before mathematical science fields (where modern AI algorithms originate) recognized the 

necessity to explain in AI systems, the Law discipline did; and it has been the driving factor in 

that direction in recent times.  Miller (2019) outlined four crucial characteristics of 

explanations (in AI) in his fascinating review of AI from a social science perspective (though 

naturally relates to Law too), which he claimed the majority of AI researchers are unaware of. 

According to the author, explanations should be:  

• Contrastive: often in the form of a counterfactual hypothesis; for example, if a 

predictive analysis classifies certain image as containing CSEM, a balanced 

explanation for this classification will explain what influences such inference (and why 

not something else). The HYPO (Rissland and Ashley, 1987; Ashley, 1991) is an 

excellent example of a contrastive, case-based system in law, as it examines whether 

hypothetical alterations on cases would affect their conclusion. This approach, 

however, is already ubiquitous in forensic science. Indeed, as discussed in Chapter 5, 

establishing facts in DF includes the definition of working hypothesis, one or more of 

which include alternative counter-hypothesis to test the outcome’s veracity in an 

unlikely scenario. 

• Selective: frequently impacted by cognitive biases — implying that a perfectly detailed 

explanation of the cause of an event is rarely offered logically. Rather, on the 

assumption of common background knowledge among stakeholders — which is 

sometimes not the case — a few (salient; supposedly only persuasive) causes are 

selected for explanation from an infinite number of causal events.  

• Rarely probabilistic: while truth and likelihood (in ratio terms) are crucial in forensic 

science, employing “most likely” as a semantic explanation for a causal event may be 

unsatisfying. Thus, explanations based on probabilities or statistical relationships as a 

generalization of the rationale for the occurrence of an event are ineffective unless a 

causal explanation for why that generalization is typical is provided. This is compatible 

with the discussion on standardization of probabilistic outcomes in DF in Chapter 5. 
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Because, even when Bayesian reasoning (or a probabilistic model) is used in DF, it 

could be more effective to explain degree of certainty/uncertainty in terms of scenarios 

(Vlek et al., 2016) or arguments (Timmer et al., 2015). 

• Social: entails the conveyance (or transfer) of knowledge through conversation or 

interaction. Thus, the explanation is offered in light of the explainer’s 

assertions regarding the audience’s beliefs.  

Explanation as a right can be expressed in the form of examples (Atkinson, Bench-Capon and 

Bollegala, 2020), i.e., in order to persuade juries or judges, it is a common law tradition to 

present distinguishing precedent cases in a contrastive manner (with positive and negative 

examples), which may favour one side over the other. Additionally, presenting hypothetical 

features of a prior case that provide an argument that the outcome of a case would have changed 

had the features been different is a sort of explanation by example (Rissland and Ashley, 1987). 

Likewise, explanations can be expressed as rules; this is especially true in European Civil Law 

culture. The practice entails the extraction of conceptual features and definitions from statutes 

(as well as cases and commentaries), such as those governing immigration, copyright, labour, 

benefits, etc., and formalizing them as logical rules (Sherman, 1987; Johnson and Mead, 1991) 

that law practitioners can easily use to bolster their arguments in court. Alternatively, 

knowledge gathered from domain experts can be codified as rules (in an inference engine) for 

a rule-based or expert system (Schlobohm and Waterman, 1987). In the case of rule-based 

systems, explanations are provided through the expert system in the form of queries — as in 

how, why, and what-if (Atkinson, Bench-Capon and Bollegala, 2020).  

The above discussion demonstrates that Law is a significant domain for studying explainable 

AI because explanation is an inevitable requirement for all fielded legal applications to which 

DF belongs. DFAI, in particular, must consequently learn to deal with the intricacies of the 

legal domain.  

In what follows, the concerns with closed-box systems and why they pose additional challenges 

for DF are discussed. 

To guide the scope of this chapter, the reference to “closed-box” system is viewed in the light 

of DL/DNN models (not necessarily in ML models) employed in DF.  While the emphasis is 

on neural networks, other ML models with considerably complex algorithmic structures, such 
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as SVMs or Random Forests, are included in the closed-box category as well. Further on this, 

the reference on closed-box herein excludes (even though sometimes regarded as same) 

proprietary systems whose internal working structures and codes are safeguarded to protect 

trade secrets or illicit copyrighting. One reason for making the majority of proprietary systems 

closed-box is to prevent them from being gamed (or exploited) or reverse engineered (Rudin, 

2019). Nonetheless, closed-box refers to a system (or algorithmic function) that is 

incomprehensible to humans.  Apparently, we employ machines because they possess 

superhuman abilities to detect patterns, discriminate, and draw conclusions. Our understanding 

of these processes, however, is contingent upon the model’s output, which we cannot 

follow (Yampolski, 2020). DL fall into this category due to their high recursive nature (Rudin, 

2019) and deeply nested structures. A closed-box system does not necessarily imply 

inefficiency; it frequently works for the purpose for which it was designed. The concern is that 

if the system claims to possess significant reasoning powers comparable to those of humans 

and the ability to make decisions almost as accurate as humans in various situations, it should 

be able to offer explanations about how it arrived at a certain conclusion. To audiences in a 

high-stakes domain such as law, a low-fidelity explanation of a system’s decision-making 

process undermines trust in both the system and the explanation. The crucial point here is that 

explanation is just as important as the model itself, and this is an area that requires immediate 

attention in DFAI. As Rudin correctly points out, if an explanation for a model is true 90% of 

the time, a tenth of the time, it is still incorrect, lowering the level of confidence in the 

explanation and model (Rudin, 2019). The challenge with closed-box systems’ 

unexplainability stems from their architecture — they are modelled on the natural neurological 

impulses of humans, and as such, humans can also be thought of as “closed-boxes” (Yampolski, 

2020). For example, a series of split brain experiments in (Gazzaniga, 2015) demonstrate that 

humans instinctively invent explanations (or justification) for already decided actions. That is, 

humans have an unconscious tendency to rationalize their choices or the process by which they 

made them after the fact (Shank, 2006). Can we then deduce that machines are only exhibiting 

human’s cognitive rationalization? The problem that forensic practitioners must be aware of is 

that by introducing an additional layer of distrust through unconscious irrational explanations, 

the full adoption of AI in DF can be impeded.  

Another worrisome trend that may be misleading in the explanation for closed-box systems is 

the provision of explanation mainly for correctly classified labels. An excellent use case is the 

description of the saliency map (Li, 2002; Underwood et al., 2006; Alqaraawi et al., 2020) in 
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a typical object detection/recognition task. In computer vision, a saliency map highlights the 

region of an image that attracts the most attention. It aims to convey the significance of a given 

pixel to the human visual system. In a saliency map, multiple edges are highlighted or 

segmented, and in most cases, explanations given for each class are identical; this 

also occur even if the classes are incorrect. The explanation on the saliency map reflects the 

“likely” imprecision of closed-box predictions; as the reason behind them may be unknown 

(Rudin, 2019). Additionally, a recent study on medical imaging (Arun et al., 2021; Saporta et 

al., 2021) discovered that using saliency to interpret DNNs failed to meet several critical utility 

and robustness criteria. These works make apparent the critical issues that DF analysts should 

be aware of while providing explanations for evidence or testifying as an expert. It may be 

difficult to justify a decision made by saliency maps, and a lack of explanation will make 

troubleshooting the closed-box even more difficult (Rudin, 2019). 

Despite their expressiveness, research has demonstrated that DNN models can, nevertheless, 

learn counter-intuitive solutions (Szegedy et al., 2013). Specifically, by introducing a small but 

deliberate undetectable perturbation to examples of a deep learning-based classifier showed 

erroneous predictions with “high confidence” when a minor but deliberate undetectable 

perturbation is introduced to the examples (Goodfellow, 2014a). The authors demonstrate that 

given a particular example, a correctly classified example with a confidence level of 57% can 

be disrupted with adversarial examples (such as noise), resulting in the model making a false 

prediction with a confidence level of 99%. Similarly, a slight change in the stop signal of an 

autonomous vehicle’s computer vision system, invisible to human eye, caused vehicles to 

interpret it as a 45mph signal (Eykholt et al., 2017). Neural networks operate by multiplying 

and summing sample features with weight coefficients in a recursive fashion. Then, based on 

whether or not the weighted-sum exceeds a predefined threshold, a prediction is made 

(Atkinson, Bench-Capon and Bollegala, 2020). It is possible to discover considerably different 

adversarial examples in the latent space that have identical weighted sums, making 

discrimination challenging for the model. This could (and most likely will) have a seemingly 

daunting implication on legal decisions. Consider a counterfactual claim (such as the impact of 

adversarial examples) made by an opposing party showing that a forensic conclusion may be 

inaccurate, and that the decisions deduced using the same technique are unreliable. A 

reasonably informed audience about AI, much alone the less informed, can readily be 

convinced by such an example. Although this adversarial discovery has resulted in the 

development of more robust deep generative models such as the Generative Adversarial 
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Network (GAN) (Goodfellow et al., 2014b; Goodfellow et al., 2020) and VAE. A generative 

model is trained by introducing small amounts of noise to the input vector, which is 

subsequently represented as latent variables (embeddings). These latent representations can be 

manipulated and their contributions on the output examined. It is possible to derive insights 

and detect specific patterns about the predicted class from the output. The generative models 

have also continued to present unique challenges, one of which being GAN's game-theoretic 

foundation.  

There is a growing concern that machines may augment their operating parameters in ways that 

result in analytical inaccuracies (Roth, 2017). This may occur when training sets contain fewer 

samples, are less reflective of current real-world use cases, or are insufficient to 

make inferences on future observations. Accounting for an excessive number of variables may 

potentially cause the machine to learn illogical representations. For example, in reinforcement 

learning, an AI model is trained to react to its environment in order to solve complex problems 

that are intractable using conventional ML techniques. While the technique requires large data 

for robustness, it may suffer from learning state overload, diminishing its results overtime. 

Consider, for example, a predictive crime-detecting algorithm128 deployed in surveillance 

cameras that tracks criminal movements and alerts officers before or right as crime is being 

committed. The technology was developed by simulating specific patterns associated with 

crime. According to reports, the algorithm learned to distinguish three handshakes in 

succession as possible narcotic transactions by examining crime-related sample. While this 

decision could be reasonable based on training samples, it may overlook future real-world 

drug-related cases if the pattern does not occur (Roth, 2017). Exemplifying  this as a 

justification for drawing inference in a court case will only serve to increase public distrust of 

machine-generated evidence. 

Consider an NLP and ML-based (SVM) classifier developed to predict the outcome of EU 

Court of Human Rights cases, as illustrated in (Aletras et al., 2016). The predictions are 

classified according to the most likely topics related to the article. Specifically , the terms that 

represent topic 23 (on the most predictive topics) for Article 6 violations are:  

 
128 See SmartSensory - https://www.govtech.com/public-safety/smart-cameras-aim-to-stop-crimes-before-they-

occur.html 
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“court, applicant, article, judgement, case, law, proceeding, application, government, 

convention, time, article convention, January, human, lodged, domestic, February, September, 

relevant, represented” 

Apparently, looking at these terms, one would notice that they do not provide any explanation. 

Perhaps some phrases, such as court, law, judgment, and proceedings, show a common phrase 

associated with decisions or violations, but others, such as month names, appear to have been 

randomly picked from the dataset based on frequent occurrence. As previously mentioned, 

explanation is relative; while an expert in topic modelling may easily comprehend and deduce 

the phenomenon to which these phrases refer (perhaps, with low confidence), layperson(s) 

would undoubtedly fail to comprehend this. Topic modelling (covered in Chapter 4) is one of 

the most intuitive components of ML and NLP for identifying abstract topics within a 

collection of documents. It can model topics with great accuracy if a large amount of data is 

available. However, factfinders or forensic experts may be required to demonstrate how it 

operates when used to infer evidence. 

The resulting value of a digital forensics investigation is the evidence; mined (extracted, 

uncovered) by a forensic expert and communicated to fact finders (e.g., legal practitioners, law 

enforcements, organizations, etc.). Evidence is mostly presented as facts, inferred from a series 

of correlations of causal relationships; which involves decoupling intricate interrelationships 

between multiple heterogeneous artifacts. The court or commissioning agency determines the 

weight, relevance, and substantiveness of the evidence. However, it is the forensic expert’s 

responsibility to present an intelligible explanation of the methodologies and hypothetical 

approaches used in reaching the conclusion.  

Explaining an AI-based DF analysis may entail balancing, comparing, or persuading the 

audience via logic-based formalization of (counter) arguments (Besnard and Hunter, 2008), or 

reducing the complexities to simplify the output. Whichever way, given the high-stakes 

audiences in an evidence-oriented context for whom presentation is crucial, an explainable 

DFAI “is an AI-based digital forensics method(s) that provides explicit and intelligible (as 

well as assessable) rationale for its functions and the specifics of its inferential reasoning.” 
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Figure 6.3 xDFAI Goals 

This description can serve as a preliminary (tentative) conceptualization of explainable DFAI 

(xDFAI) idea, with a more refined and generic formalization envisaged as research in the 

domain advances. According to Clancey (1983) notion of explanation, which is adaptable to 

DFAI, xDFAI should aim to provide explanations for the following : why was a specific fact 

used? Why was a certain fact ignored? How was a particular conclusion arrived at? How was 

a different conclusion not reached? Notably, research outputs on the application of AI in DF 

have placed much premium on the performance and accuracy of the methodologies employed, 

with little concern for the interpretability of the process. This seem an unhealthy practice, 

especially that the process’ outcome is the interest of law and society — the domains that are 

primarily driving AI system’s transparency. The pursuit of an explicable DFAI can aid in 

further improving the practicality of the techniques. Bearing the foregoing in mind, we can 

elaborate a bit more on the goals of  xDFAI by relating it to concepts that have been frequently 

associated with XAI in research. Specifically, these goals are adapted from the work of Arrieta 

et al. (2020), and while the authors contextualized them to fit a different narrative, they are 

expressed here in alignment with the requirements of DFAI. The following are the goals that 

an xDFAI should pursue during the examination process and while reporting/presenting the 

derived results: 

• Trustworthiness – While this is not a guarantee that a model is explainable, it is an 

assessment of a model’s ability to behave (at all times) as expected (or defined) in a certain 

context. Trust in a model grows over time as long as it continues to behave consistently in 

accordance with the stakeholder’s mental model and provide consistent accurate and 

verifiable predictions (Bhatt et al., 2020). If an unanticipated failure occurs in a trusted 

system, stakeholders may overlook it, as it will not significantly erode their confidence. 
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However, in the case of DFAI, where a system is expected to work optimally at all times 

due to the grave consequences of its failure, then the popular Russian adage “trust but 

verify” may apply: i.e., even if the model behaves appropriately, it still requires a human 

gatekeeper (Desai and Kroll, 2017). As a result, if an unexpected error occurs, it should be 

adequately reflected in the output and sufficiently reported. The stakeholders can then 

assess the extent to which the failure is acceptable given the circumstances. 

• Discovering Causality – This involves a significant amount of prior knowledge and is a 

key quality expected from an experienced investigator. Causality is the process of 

establishing (or inferring) causal relationships between observed data (Pearl, 2009). 

Explainable models may aid in inferring causal relationships between variables (Rani et al., 

2006). While a ML model can be instrumental in identifying correlations between learned 

data, such correlations does not imply causation. Thus, a robust xDFAI should provide 

intuitive evidence of causal relationships within observed artifacts or aid in validating the 

output of a causality inference technique. Nevertheless, a human validator should not be 

dismissed. 

• Reproducibility – The training and testing (as well as validation) phases in a learning 

process are used to confirm the model’s applicability and its parameter reusability in 

various circumstances. Thus, explainability in this case entails elucidating the model’s 

operational functionality in order to facilitate the understanding of its constraints (or 

boundaries) and the seamless transfer of knowledge for reproduction in another system 

(Arrieta et al., 2020). The absence of explanation, on the other hand, may influence 

incorrect assumptions about the model (Kim et al., 2017). Transferability also 

drive improvement on the performance of a system. This is particularly evident in the 

ML research domain, where the explanations provided in literature have inspired 

improvements of the state-of-the-arts. Consequently, confidence in DFAI models is likely 

to increase when the functional parameters are explicitly elucidated, and its method 

extensively reproduced. 

• Informativeness – The output of a DFAI model is almost always numerical (probabilistic 

of some sort). It will take much work to connect these values to the real-world problem for 

which a solution is sought. To avoid misinterpretation, xDFAI should provide thorough 

details of how these values are represented and how they aid in inferring facts through 

investigative analysis. This is exemplified in Table (5.1), where we proposed a verbal 

expression for the evaluation of strength of probabilistic evidence. Explanation and 

information are complementary; neither can exist without the other. Once the model’s 
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capacity to predict reliably in multiple scenarios is established, the extent to which it is 

credible will slightly depend on the quantity of information provided regarding its 

inferential processes and the accuracy of its output. 

• Confidence – This is nearly synonymous with trustworthiness; it is a characteristic of a 

stable system. Confidence is relative; it is tangible in cases where reliability is demanded 

(Arrieta et al., 2020). It might be expressed by the one who presents the facts or by the 

person to whom the facts are presented. As with trustworthiness, confidence in DFAI might 

not easily lend itself to the notion of explainability because it is earned via operational and 

result consistency — not necessarily by explanation of its operational parameters. 

Nonetheless, an xDFAI can be critical in providing information on the confidence level of 

each modular component of the system. This way, each component of the decision-making 

process can be evaluated, and appropriate confidence scales assigned. 

• Algorithmic Fairness – One of the aims of explainability in AI might be seen to be 

ensuring fairness in relation to the system’s specified objectives. Fairness is considered in 

the legal domain in terms of adherence to ethical principles, the right to be informed, and 

the right to contest decisions (Goodman and Flaxman, 2018; Wachter, Mittelstadt and 

Floridi, 2017). This may be accomplished by clearly visualizing the relationship between 

hypothetical components affecting the decision. Algorithmic fairness (or unfairness) is 

largely connected to decision-making biases, and it is widely believed that enforcing XAI 

will help mitigate this. While biases are spontaneously learned from data, it may be vital to 

preserve the alleged biased features in order to maintain the quality of the original data. 

Several elements that may contribute to algorithmic decision-making being unfair or bias  

include skewed data, limited features in the data, disparities in sample sizes, an erroneous 

problem definition, and the presence of correlated variables that generate bias even when 

sensitive features are eliminated (Barocas and Selbst, 2016). One critical part of DF fairness 

that should not be ignored is the presentation of the results of AI-based analysis in the most 

justifiable manner possible. Occasionally, an investigator’s subjective inclination toward a 

particular outcome may cause her to disregard evidence to the contrary. As a result, 

unjustified conclusions are reached. If this conclusion is obtained algorithmically, it has the 

potential to further undermine trust in machine-generated results; this should be avoided. 

Thus, xDFAI should be considered as a mechanism for avoiding unethical or unfair 

algorithmic conclusions (Arrieta, 2020). 

• Availability – This is connected to transferability, and it entails considering explainability 

as a way of involving end users in the process of improving certain AI models (Miller, 
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Howe and Sonenberg, 2017). While open-sourcing the algorithm and publishing it with 

peer review will ideally help technical users better grasp the technique, xDFAI will almost 

likely lessen the difficulty that non-technical users will face when interacting with the 

algorithm. Thus, if a forensic expert is required to report (or testify) on an algorithm’s 

decision in a legal proceeding, an already available open-sourced and/or peer-reviewed 

procedure is likely to be understood and accepted. 

This section discusses numerous explainability techniques for AI models. The goal is to 

elaborate on XAI and to establish meaningful connections with xDFAI when necessary.  

There has been debate over whether it is appropriate to oversimplify AI models in order to 

make them more interpretable at the expense of performance and accuracy. XAI approaches 

aim to balance interpretability and model performance. As a result, post-hoc explanation has 

grown in popularity. Conversely, the intrinsic approaches (not discussed in detail) that are 

based on simpler, self-explicit models (e.g., rule-based, linear models, Decision Trees, etc.) are 

possible. Figure 6.4 is an illustration of the xDFAI structural model. 

A post-hoc explanation sheds light on a model by elucidating its salient features (Ribeiro, Sigh 

and Guestrin, 2016; Lundberg and Lee, 2017; Davis et al., 2020), training points (Koh and 

Liang, 2017; Yeh et al., 2018), counterfactual reasoning (Wachter, Mittelstadt and Rusesell, 

2018), or decision boundaries (Bhatt et al., 2020). Some post-hoc explanations exist to convey 

information about the model to stakeholders; however, few solutions allow for the model to be 

toggled and updated in response to stakeholders’ perceptions (Bansal et al, 2019; Lee et al., 

2020). To increase the practicality of AI models and to foster greater trust in their decisions, a 

variety of post-hoc explanation approaches have been proposed for deep learners, including 

explanation by: model simplification, visualization,  feature importance estimation, 

localization, text, and example. Post-hoc explanation can be examined in two unique context: 

model-agnostic and model-specific.  

The model-agnostic approach, one the one hand, incorporates interpretability within its internal 

mechanism, is independent of the model’s internal structure and is applied after the model’s 

training (Molnar, 2019). This generic technique is intended to extract information about a 
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model’s prediction procedure (Arrieta et al., 2020). On the other hand, model-specific approach 

are restricted, and only applicable to specific algorithm types. In fact, most intrinsic 

explainability method are model-specific. This chapter discusses model-specific approaches 

from the perspective of their application to DNNs — the emphasis is mostly on methods 

applicable to deep-layered neural networks, but shallow models (e.g., SVM, RF, etc.) are 

mentioned in a few instances. It is worth emphasizing that the explainable models covered in 

this section are by no means exhaustive; they represent only a subset, and their selection is 

motivated by their possible applicability for DFAI. Tables 6.1 and 6.2 summarise model-

agnostic and model-specific post-hoc approaches and their probable applicability for DFAI 

tasks. The next sections describe post-hoc explanation methods for improving the 

interpretability of closed-box models. 

 

Figure 6.4: Mind map representing an illustration of the explainable digital forensics AI (xDFAI) Model 

 

Model simplification appears to be the broadest of the model-agnostic post-hoc explanations. 

They are largely based on rule extraction techniques, however, (Bastani, Kim and Bastani, 

2018) proposed a model extraction process based on approximating a transparent model to a 

complex one. Popular techniques for extracting information in the form of rules to improve 
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interpretability includes the Genetic Rule Extraction (G-REX) (Johansson, Kong and 

Niklasson, 2004a; Johansson, Niklasson and Konig, 2004b; Konig, Johansson and Niklasson, 

2008), which is based on genetic algorithms, and CNF (Conjunctive Normal Form) or DNF 

(Disjunctive Normal Form) (Su et al., 2016). 

 

This approach elucidates a closed-box model’s operationality by quantifying and evaluating 

the influence, relevance, and significance of each training variable on the model’s prediction. 

The SHAP (SHapley Additive exPlanation) SHAP (Lundberg and Lee, 2017) framework,  and 

approach for explainable image analysis based on saliency detection method proposed in 

(Dabowski and Gal, 2017), offers a significant contribution to feature importance. 

Additionally, the Automatic STRuctured IDentification (ASTRID) (Henelius and Ukkonen, 

2017; Henelius, Puolamaki and Ukkonen, 2014) is a useful tool for determining feature 

importance in a predictive model. However, several alternative approaches have been proposed 

that go beyond the relevance measure, e.g., in (Koh and Liang, 2017), an influence function is 

used to trace (back to training data) a model’s prediction through its learning algorithm, 

therefore identifying the feature points most responsible for a given prediction. Basically, the 

approaches mentioned here provides highly valuable techniques for xDFAI, which can be 

explored further in future research. 

 

Visual explanation is likewise a technique for achieving model-agnostic explanations, but it is 

highly effective, and most common in model-specific approaches; particularly with DNNs. In 

a typical model-agnostic settings, developing visualizations based just on the inputs and outputs 

of an opaque model may be a difficult task (Arrieta et al., 2020). A frequently used technique 

in this approach is to use feature importance techniques to provide explanations. Notable 

methods for visualization of shallow ML models (e.g., SVM, RF, etc.) are proposed in (Cortez 

and  Embrechts, 2011; 2013), based on Sensitive Analysis (SA), and Individual Conditional 

Expectation (ICE)  (Goldstein et al., 2013) for estimating any supervised learning techniques. 

While feature relevance is advantageous for xDFAI, visualization techniques offer an intuitive 

way to visualize the interaction of influential variables during training. Although the approach 

is relatively complicated, it demonstrates a promising research direction from which xDFAI 

can benefit. 
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Considering that DL models have a high degree of dimensionality and curvature, the concept 

of local explanation stems from the fact that insight-generating interpretable methods can be 

applied to a tiny region with detectable changes in individual or grouped features. Using the 

network’s feature space to represent each case (data point) or its neighbours, local explanation 

provides a semantic explanation for specific cases (Leslie, 2019). However, a global 

explanation entails capturing the internal logic and function of each prediction or classification 

made by an opaque model as a whole (rather than a tiny region) (Leslie, 2019). The technique, 

known as LIME (Local Interpretable Model-Agnostic Explanations) (Ribeiro, Sigh and 

Guestrin, 2016) is an example of a model-agnostic approach designed to simplify explanations, 

which explains model predictions by learning interpretable models locally and modeling them 

as a sub-modular optimization problem. In the local context, an explanation for a single 

prediction is provided, which could enhance user's confidence in the result (Kelly et al., 2020). 

Although it is not often discussed in the literature, this method entails enhancing closed-box 

models to provide explanations, most likely in natural language. With this approach, naive 

methods may include associating text with each model’s decisional components. In some cases, 

text explanations are incorporated in a rule-based (or if...then) style, in which all decision-

making components are semantically explained. This approach, when combined with other 

approaches (e.g., feature importance and visualization), can be quite beneficial for xDFAI. 

This section discusses the explainability of DNNs briefly. Three distinct neural network 

architectures are considered: multi-layered networks (MLNNs), CNNs, RNNs. The criteria for 

selection are their utility/applicability to DFAI. However, because the descriptions provided 

here are mostly limited in scope and depth, detailed reviews are available in Linardatos, 

Papastefanopoulos and Kotsiantis (2021) and Arrieta et al. (2020) for a comprehensive survey 

of explainable approaches. 

MLNNs are a type of closed-box, yet adaptable AI model that excels at inferring intricate 

relationships between data variables but is frequently unable to justify their underlying 

assumptions. Three fundamental explainable methodologies are utilized to explain multi-layer 
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neural networks: model simplification through rule extraction from hidden layer of a neural 

network (DeepRED) (Zilke, Mencía and Janssen, 2016; Sato and Tsukimoto, 2001) feature 

importance of contributing elements with models such as Deep Taylor (Montavon et al., 2017) 

and DeepLift (Shrikumar, Greenside and Kundaje, 2017) and visualization for which TreeView 

(Thiagarajan et al., 2016) was proposed. DeepLift uses backpropagation to evaluate the 

contributions of input components similarly to deep Taylor, but compares each neuron’s 

activation to its reference activation and assigns scores to contributing elements depending on 

the difference. Due to the fact that DeepLift and deep Taylor are exemplified with image 

classification, they may be excellent xDFAI options for forensic image analysis as well as 

pattern recognition-based investigations. 

CNNs structure reflects DNN’s extremely complex internal cores. They lay the groundwork 

for computer vision’s unique underpinnings — from object identification and image 

classification to instance segmentation (Arrieta et al., 2020). Due to the visual nature of CNN’s 

representations, they connect well with human reasoning, making them somewhat explicable. 

To explain CNN functionality, one can either map the output back to the input to determine 

which input data were discriminative of the output, or create interpretations depending on how 

the layers see the external world. A common feature importance and local explanation method 

Explainability 

Technique 

Post-hoc 

Explanation 
Tools Potential Applicability t DF 

Model-

Agnostic 

Model 

Simplification 
G-REX, CNF or DNF 

Pattern recognition, digital file 

forensic analysis, text analysis etc. 

Feature 

importance 

SHAP, ASTRID, Influence 

function, Saliency detection 

(Koh and Liang, 2017; 

Dabowski and Gal, 2017) 

Image forensics, object classification, 

predictive analysis, etc. 

Visualization SA and Global SA, ICE 

Pattern recognition, object 

identification/classification, document 

classification, etc. 

Local 

LIME, Fairness (Dwork et al., 

2012), L2X (Chen et al, 2018), 

AIX360 (Dhurandhar et al., 

2018) 

Object classification, predictive 

analysis, multimedia forensics, etc. 

Text 
TextAttack (Gao et al, 2018), 

HotFlip (Ebrahimi et al., 2018) 

Spam message detection, e-mail 

forensics, attribution, malware 

detection, etc. 
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Table 6.1: An overview of some model-agnostic explainability methods, proposed tools, and their potential applications to 

digital forensics 

Explainability 

Technique 

Post-hoc 

explanation 
Tools Potential Applicability in DF 

Model-specific 

MLNN 

Model 

simplification 
DeepRED 

Forensic image classification, object 

identification/detection, pattern 

recognition, CSEM analysis, etc. 

Feature 

importance 

Deep Taylor, 

DeepLift, 

Deconvnet 

Visualization TreeView 

CNN 

Visualization 

LRP, DGN, Grad-

CAM, 

CNN+CRF_bi-

LSTM (Ma and 

Hovy, 2016) 

Forensic image/video reconstruction, 

forensic data visualization, object 

identification, source identification, 

deep fakes analysis, image 

recognition, etc. 
Text 

CNN+RNN (Xu et 

al., 2015) 

RNN 

Feature 

importance 
RETAIN 

Speech recognition, authorship 

attribution, determination of intent, 

forensic linguistics, timeline/event 

reconstruction, malware detection, 

email forensics, e-Discovery, IoT 

Forensics, Network intrusion 

detection, etc. 

Visualization 
Finite n-gram 

horizon+RNN 

Local 

RNN+Hidden 

Markov Model 

(HMM) 

Table 6.2: An overview of some model-specific explainability techniques based on DNNs, proposed/developed tools, and 

their potential application to digital forensics 

is Deconvnet (Zeiler et al., 2010; 2011; Zeiler and Fergus, 2013) that repeatedly occludes 

sensitive region of an image during training to determine which portion produces desired 

impact. Another approach based on feature importance and localization is the Gradient-

weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017). Layer-wise 

Relevance Propagation (LRP) (Bach et al., 2015) proposes a method that visualizes relevant 

elements that contributes to prediction. Other methods (Dong et al., 2017; Xu et al., 2015) 

combines CNN models and RNN such as bi-directional LSTM encoder (Ma and Hovy, 2016) 

for the purpose of describing visual material via textual explanations. As presented in (Zhou et 

al., 2015), a simple and intuitive method identifies image regions that are related to a particular 

object class by interposing a global average pooling layer between the final convolution and 

the fully-connected layer that predicts the object class. Perhaps an excellent and easily 

interpretable approach is the deep generator network (DGN) (Nguyen et al., 2016), which not 
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only generates an incredibly realistic synthetic image, but also reveals the features learned by 

each neuron. Given that certain DF analysis will require object identification, the DGN 

approach appears to possess both quality and suitable characteristics for the development of 

xDFAI. 

RNNs are one of the most important techniques for DFAI because they are capable of solving 

prediction problems using sequential data — which is critical for forensic event reconstruction 

(Solanke et al., 2021). RNNs take pride in their capacity to retain information about data’s 

time-dependent relationships. There have been two approaches to explaining RNN models: 1) 

through feature importance techniques that seek to understand what the model has learned over 

time; and 2) by providing insights into (or explanations of) the model’s decision-making 

process through modification of its architecture (local explanations) (Arrieta et al., 2020). 

Numerous proposals are offered in this respect, which may spark the interest of DFAI 

professionals. With RNN, some explanation approaches (Donadello, Serafini and Garcez, 

2017; Donadello, 2018; Garcez et al., 2019) have demonstrated the possibility of merging 

probabilistic and logical reasoning (Manhaeve et al., 2021) (based on background knowledge) 

in a symbolic/sub-symbolic (Haugeland, 1989; Ilkou and Koutraki, 2020) fashion. Some other 

approaches include visualization approach based on finite horizon n-gram models (Karpathy, 

Johnson and Fei-Fei, 2016) to study predictions, combination of RNN with a simple and 

transparent hidden Markov Model (HMM) (Krakovna and Doshi-Velez, 2016) to interpret 

speech recognition representations, and the RETAIN (Reverse Time Attention) model 

introduced in (Choi et al., 2016) for detecting influential past visit patterns and significant 

variables within the patterns. This technique could be useful, for example, in performing 

forensic analysis on users' log history (e.g., internet browsing history) during a CSEM 

investigation. 

In contrast to the preceding methods, which are either model-agnostic or model-specific, a 

novel technique dubbed Contextual Importance and Utility (CIU) is proposed (Framling, 2020; 

Anjomshoae, Framling and Amro, 2019; Framling, 2022). It is based on Contextual 

Importance/Influence (CI) and Contextual Utility (CU) theory. CIU appears promising as it is 

applicable to both linear and non-linear models and may be represented visually or in natural 

language. Additionally, feature representations can be read and validated directly from input-

output graphs. Although the CIU approach is just developing, its features indicate that it has 

the potential to considerably aid in xDFAI. 
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To be trustworthy, a system must go beyond accuracy evaluation — which, in many cases, 

does not correctly reflect the real-world use case. Trust is determined in part by how users 

perceive the system’s decisions. On the other hand, users’ perceptions of a system are 

contingent upon how interpretable, or easily comprehensible its features are. Incorporating 

interpretable components into a closed-box model might be challenging due to the model’s 

domain-specific constraints. In general, constrained problems are more difficult to solve than 

unconstrained problems. Thus, when the complexities of DF investigations are considered, 

particularly when AI models are used, interpretability practically translates to a set of 

application-specific constraints. As such, domain expertise will be required for the model to 

incorporate interpretable features. Interpretability not only provides an answer to the question 

of what was predicted (which is only a partial solution to the problem), but also to the question 

of why such predictions were made (or what caused them). By incorporating interpretable 

features into DFAI, it is possible to harmonize and update gaps in domain knowledge, as by 

attempting to answer why a particular decision was made, new dimensions to the problem or 

solution can be uncovered, and methods for debugging or auditing can be established. 

Additionally, an interpretable model aids in determining the root cause of an error and may 

also suggest strategies to resolve it. For example, during an investigation of child sexual 

exploitation material, a classifier may incorrectly classify a person as an adult rather than an 

underage. We may discover through interpretable models that the misclassification was caused 

by an underage person wearing adult facial makeup. In an inquisitorial tradition, opposing 

parties may request access to the tool used to infer facts; in this situation, interpretable models 

will ensure simulatability (of the model’s reasoning being provable and reproducible), 

decomposability (sub-component interpretability), and algorithmic transparency. It should be 

highlighted that constructing interpretable models can be time-and-resource-intensive; yet, for 

high-stakes decisions such as those involving digital evidence, it is less expensive than the 

expense of creating a flawed model (Rudin, 2019) that could result in eventual exculpation or 

inculpation of the wrong entity. Which indicates that, even as timeliness remains an issue in 

DF, which is one of the reasons automation systems are necessary in the first place, dedicating 

additional effort and cost to building a high-quality interpretable model would be worthwhile.  
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As traditional (non-AI) forensic investigation requires clarity, conciseness, and 

understandability of the techniques used to arrive at a conclusion, interpretability in DFAI 

approach is critical. However, because interpretations vary across disciplines, it is important to 

consider the interests, demands, and expectations of the stakeholders whose lives are impacted 

by the design, consumption, and subsequent consequences of the decision. AI literally refers 

to making computer do things that require intelligence when performed by a human. Keeping 

this in mind, explaining algorithmic decisions will involve a cognitive reasoning process. This 

explanation should be explicit about the factors that influenced the outcome and their 

contributions to the conclusion reached. The following paragraphs contains a set of 

recommendations that may be critical for achieving robust interpretability in DFAI. They are 

partly adapted from the guidelines offered in (Leslie, 2019). 

First, prior to implementing AI models in DF, it is essential to contextualize the scenario, 

potential impact, and available AI tools for analysis while assessing the investigation’s 

interpretability requirements. This implies that deployment should be preceded by an 

examination of the context in which the application will be used — for example, a civil, or 

criminal case. Apparently, there is a significant difference (in terms of techniques and 

interpretation requirements) between analyzing e-mails for suspicious deletions intended to 

conceal incriminating activities, and determining responsibility in an e-contract agreements 

between two or more parties, concluded via e-mails. This contextual understanding provides a 

clearer picture of the stakes involved and the scope of interpretability requirements. 

Furthermore, apart from having the technical capability to analyse artifacts using the 

appropriate tools, acquiring domain knowledge to gain insight into domain-specific 

explanation standards would be vital to the interpretability approach. Seeking domain 

knowledge might also provide pertinent insight into previous use cases. Another factor to 

consider before deployment is whether to use pre-existing AI algorithms or to develop a new 

one. In any case, employing existing algorithms may necessitate a thorough study or 

assessment of their functionality, expressiveness, complexity, performance, and 

interpretability. Alternatively, a custom algorithm addressing the aforementioned components 

as well as the investigative task could be considered.  

Obviously, the DF domain and its constituents are sensitive — they are task-critical and require 

transparency and accountability. Thus, when DFAI is required, less-sophisticated, non-opaque, 
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interpretable evidence mining techniques (such as decision tree, linear/logistic regression, case-

based reasoning, rule-based list, etc.) should be considered. Simple interpretable models are 

usually preferred when forensic data is well-structured, sufficient domain knowledge with 

meaningful representations is present, or if computational resources are constrained. This is 

also highlighted in (Rudin, 2019). The situation in which “when there is a hammer, everything 

else becomes a nail” should be avoided. Closed-box models should be a matter of choice 

influenced by the nature of task, not a necessity. Which implies that, unless inefficiencies with 

native ML models are observed, relying on closed-box models (such as deep learners) to 

improve performance and accuracy may not be appropriate. 

Majority of digital forensic investigations may require the use of complex, opaque systems that 

typical linear models are incapable of handling. Cases involving image classification, speech 

recognition/audio analysis, or object identification in video footage, as well as anomaly 

detection in unstructured data, typifies the tasks in a DF investigation. Given that only non-

linear DL models are viable for these purposes, investigators are urged to consider available 

options for interpretability (some of which are mentioned in Section 6.5), or to incorporate 

features into a custom-built model that: fits the specifics of the case;  assesses the impact of the 

decision; and addresses the need of the audience, prior to deployment. To break this down, the 

foregoing suggests that: 

• the potential impact of the decision and the risks associated with incorrect 

interpretations should be thoroughly considered in advance, ensuring that the design 

promotes fairness and accountability; 

• the use of supplemental interpretability tools should ensure that: the semantic 

explanation it provides meet the needs of the stakeholders; the technical method of 

explanation-support satisfies both interpretability need and appropriate for the 

algorithmic approach of the use case. The tool should also provide reasonably sufficient 

level of mitigation against unethical/unfair outcome or interpretations.  

Considering that interpretable methods will be assessed based on their ability to articulate the 

logical rationale behind their decisions and behaviours in a given scenario, as well as on their 

users’ ability to give account of the generated output in a decent, coherent, and reasonable 

manner, a few critical questions should be asked prior to selecting a method. They are: 1) what 

is the affected audience’s mental capacity for comprehending the outcome? 2) will the method 

assist decision-makers (e.g., judges, organizations, etc.) in making informed/justifiable 
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evidence-based judgments? 3) will the method generate counterfactual, misleading, or 

confusing explanation? 

A critical point to emphasis is the modularization of design. Digital investigation, without a 

doubt, entails the study of digital data artifacts that may be heterogeneous and unstructured. 

Prior to imbuing data into a DL model, it must be pre-processed. Ordinarily, the pre-processing 

stage does not involve AI techniques, and even when it does, as in the case of NLP or 

probabilistic language models, the techniques are fairly interpretable. Additionally, in a 

communication-related investigation, it may be essential to generate a graph of subjects’ 

relationships; this is not AI, and the construction can be simply understood. In case the entire 

process involves AI, submodules with independently interpretable methods can assist in rapidly 

identifying deviations. This implies that modularization enables the building of structured 

applications where AI application is responsible for a certain component of the investigative 

tasks rather than for the entire process (Asatiani et al., 2020). This can ensure proper control 

over the functionalities, reduce the investigator’s explainability burden, and enhance the 

understanding and confidence of the audience. 

To leverage on the benefits of cloud computing, Digital Forensics as a Service (DFaaS) is 

projected to impact the future of forensics (Van Baar, van Beek and Van Eijk, 2014; van Beek 

et al., 2015; Du, Le-Khac and Scanlon, 2017; van Beek et al., 2020). In such situation, DFAI 

as a service may also include online learning, in which a model learns to adapt to environmental 

changes and continuously updates its best predictor. While online learning can be advantageous 

for reconstructing events — especially with data that is generated as a function of time — it 

becomes more difficult to monitor and explain variable interactions in the feature space over 

time. Online learning issues may involve the inability to control the working parameters of the 

model, which may be problematic in high-stakes domains (Asatiani et al., 2020). The same 

might be said for transfer learning (TL) (especially when offered as a service), which entails 

applying previously learned knowledge to a different but related problem. They may benefit 

DF in terms of sample efficiency (Karimpanal and Bouffanais, 2018), investigation time 

reduction, and decreased false positives and negatives. However, they provide little 

information about how the models were trained or implemented, or how trustworthy are the 

platforms that host them (Aditya, Grzonkowski and Le-khac, 2018). Explainable TL methods 

are still limited, and their selection for DFAI should be done cautiously. 
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Legal practitioners are generally conversant with symbolic algorithms (e.g., expert systems, 

case-based reasoning, etc.) because they are used in legal rule mining and in the modelling of 

philosophical norms. It may not be difficult for laypeople to comprehend the logical foundation 

upon which they are built. As such, DFAI techniques that make use of symbolic algorithms 

should find it relatively straightforward to explain its findings. However, symbolic algorithms 

have a number of limitations, rendering them insufficient for most forensic investigations. 

Researchers have proposed a hybridization (Zeleznikow and Stranieri, 1995; Mao et al., 2019) 

of non-symbolic (such as NN models) and symbolic approaches that takes advantage of the 

former’s robust unsupervised capacity to learn from complex data and the latter’s ease of 

explanation to produce an explainable model. Neurosymbolic AI (Garcez and Lamb, 2020) is 

one of such methods. Although pioneers in DL, such as Yoshua Bengio, have argued 

strenuously against this method129, stating that future DLs will be able to perform inferential 

reasoning in the same way that symbolic models can (Atkinson, Bench-Capon and Bollegala, 

2020). While such systems are still in their infancy, hybrid techniques are likely to give the 

necessary level of interpretation for predictive decisions. Furthermore, an equally helpful 

method is to incorporate a “human-in-the-loop” or “man-machine” approach (Nguyen and 

Choo, 2021) with the hybrid technique. That way, automated decisions can be verified by the 

gatekeeper (Desai and Kroll, 2017) at different levels and appropriate validations performed 

prior to reaching a final conclusion. 

Finally, the description of generative models was presented earlier in this chapter, and they do 

offer a potentially beneficial solution to interpretability problems. Generative models can be  

extremely advantageous for DFAI when it comes to solving specific tasks, given their 

robustness in terms of performance and accuracy. With an appropriate visualization 

mechanism, the latent features, which are the direct random low-dimensional representations 

of the input data, can be examined and tracked during training to determine which features 

contribute to a particular prediction. In this case, providing interpretations for such glass-box 

operations should be straightforward. Therefore, the use of generative models for complex  DF 

analysis (such as pattern/speech recognition, object classification, event reconstruction, etc.) is 

highly recommended.  

 
129 See https://bdtechtalks.com/2019/12/23/yoshua-bengio-neurips-2019-deep-learning/ 
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Figure 6.5: A typical structure of an interpretable DFAI model 

According to the surveyed literatures on XAI and interpretable AI, it is apparent that numerous 

attempts have been made to dissect, demystify, or improve the transparency of closed-box AI 

models. Thus, from a technical standpoint, it is arguably obvious that AI researchers now have 

a good grasp of the fundamental underpinnings of AI algorithms, which explains why there has 

been a surge of research output introducing novel approaches or improving on existing state-

of-the-arts. However, the non-technical people, that makes up the majority of AI system users 

or those who are impacted by AI decisions, seems to struggle to comprehend the intricacies 

upon which AI systems are based. In a slightly trivial opinion, one can assume that, while 

algorithmic biases have been reported and confirmed in some AI-generated decisions —  which 

are more related to training data than to the technicalities of data processing (and of course, 

deserves the attention it is getting) — the distrust is “partly, arguably” influenced and amplified 

by the discovery of a new research gold mine. While advocacy for transparent and explainable 

AI (led largely by the Social Science discipline) has aided its penetration and understanding 

across disciplines, it is hoped that, along-side calls for regulations or explainability from the 

business side of AI, we will continue to push for a more standardized and responsible approach 

to designing an AI-powered systems. One of these standards could be to make proprietary AI-

based technologies that affect the public (DFAI falls into this category) more programmatically 

transparent (this, of course, has been well pushed in the EU), or to mandate that no closed-box 

should be used for certain high-stakes decisions when an interpretable model with the equal 

performance ability exists (Rudin, 2019). This, however, may be challenging, particularly in 

light of legislation protecting trade secrets and the recent innovations enabled by AI that were 
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hitherto considered practically unimaginable. Nonetheless, science advances rapidly, 

responding to (internal or external) reactions along the way. What could be concerning is an 

attempt to oversimplify science for the sake of comprehension. This is why explanations based 

on simplification should be used with caution. “Some things in life are too complicated to 

explain...Not just to explain to others but to explain to yourself. Force yourself to try to explain 

it and you create lies.130” While there is a significant difference between comprehending and 

nearly comprehending something, a correct explanation may result in decreased 

comprehensibility; conversely, a more comprehensible explanation may result in decreased 

accuracy (Yamploskiy, 2019). It may, therefore, seem illogical or counter-intuitive to presume 

that technical explanations provided post-hoc, or modelled with the internals of AI models will 

be understood by the intended audience even after simplification. Perhaps at that point, an 

evaluation of comprehensibility will be required. As a result, explanation of an AI-enabled 

outcome should justify not just the mathematical basis, technical underpinnings, and social 

context, but also the impact on people.  

Lastly, it is worth emphasizing, however, that the discussion in this section is a trivially 

expressed opinion of the author; based entirely on personal social observations. They are 

merely offered to lessen the escalation of debate about whether AI (with its perceived opacity) 

should be applied to DF investigation. 

According to a famous Albert Einstein quotation, which reads as follows:  

“It would be possible to describe everything scientifically, but it would make no sense. It 

would be a description without meaning – as if you described a Beethoven symphony as a 

variation of wave pressure.131” 

The chapter explored the human-machine relationships that involve explaining machine-

generated output, while demystifying the interchangeable usage of many words such as 

explainability, interpretability, and understandability. The relationship between artificial 

intelligence and law, as well as the right to explanation, is briefly discussed. Additionally, the 

goals and methods of explainable AI were elaborated on by deviating the concepts into Digital 

Forensics AI (DFAI). During this process, a working definition for explainable DFAI was 

 
130 Quote of Haruki Murakami - https://bukrate.com/quote/544024 
131 Quoted in Max Born, Physik im Wandel meiner Zeit, (Braunschweig: Vieweg, 1966) 
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proposed (xDFAI). The case for interpretability in DFAI was discussed, and some 

recommendations for an interpretable DFAI model were offered. Finally, a trivial discussion 

was added to express the author's personal opinion. 
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Digital forensics as a field has advanced significantly over the last few decades, 

charting its own path while simultaneously lending itself to the intricacies of forensic 

science. More criminal and civil cases are being resolved on the basis of evidence 

derived from digital data analysis, while digital forensic practitioners are providing 

expert testimony in high-stakes cases, including those involving national security. 

Hence, it is fair to assume that digital forensics is approaching the maturity level 

expected of a scientific field. However, there are obstacles along the way, and so many 

more are being unravelled on a regular basis. Notably, the sophistication of modern 

digital devices and the rapid growth of technological innovations have posed the most 

significant challenges to digital forensics as a domain to date. As criminals develop 

new techniques of crime, digital forensics as a domain has been grappling with how to 

respond. The advent of AI and its associated models (such as data mining, machine 

learning, and deep learning, among others) has proven to be a game changer when 

applied to a variety of complex tasks for which a solution had previously appeared 

elusive. While the advent of AI has created a new avenue for crime (with rapidly 

growing dynamics), it has also demonstrated that it may be beneficial in combating, 

identifying, and preventing crimes in many instances. Nevertheless, the forensic 

science community have expressed concerns about inferred facts using an AI-based 

methods; and rightly so, the broader social discussions have been centred around 

whether AI systems (sometimes referred to as closed-boxes) are sufficiently 

transparent or trustworthy to foster belief. The same issues have permeated the legal 

system, where evidence obtained using probabilistic algorithm procedures has been 

subjected to intense review.  

This work takes a contrasting position and provides a practical use case to demonstrate 

that AI has shown promising and persuasive outcomes on complex tasks and is 

sufficiently robust to be considered as a suitable tool for “digital evidence mining.” 

Numerous studies have proposed AI-based approaches for analyzing digital evidence, 

the majority of which did not consider the intricacies of the law. We view the 

application of AI to digital forensics as a distinct body of knowledge that bridges three 
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domains: digital forensics, artificial intelligence, and law. As a result, we advocated 

formalizing “Digital Forensics AI” (DFAI) as a subfield or as an integral component 

of the existing framework in digital forensics. This enabled us to develop a holistic 

view of the proposed field’s sub-components. 

In the first part of this thesis, we explored in depth the subject domain’s intersecting 

components: digital forensics, digital evidence and its legality, and AI. This is intended 

to provide the required context for the appropriate comprehension of the concept that 

this work aims to promote. 

The second part demonstrates an automated approach for the examination of e-mail 

artefacts to demonstrate the efficacy of AI in seemingly complex forensic tasks that 

would take an unimaginable amount of time (with the possibility of errors) if 

performed manually. To be specific, we hypothesised that investigators are searching 

for evidence of a suspected fraud cover-up. We described a temporal analysis of e-

mail exchange events in the experiment to determine whether suspicious deletions of 

communication between suspects happened and whether the deletions were intended 

to conceal evidence of discussion about certain incriminating subjects. In the use case, 

our model was able to identify with “strong evidence” that deletions did occur, while 

also accurately predicting the possible subjects they discussed. This method present a 

novel event reconstruction approach to address such investigation. 

In the other parts, a preliminary conceptualization of DFAI was offered that could 

serve as a springboard for a more refined advancements in the future. Additionally, the 

conceptualization attempts to distinguish between “Digital Forensic AI” and “AI 

Forensics,” those of which have been used interchangeably or colloquially to mean the 

same thing. Further on this line, several techniques for evaluating AI models were 

discussed, with a major emphasis on the most important metrics for evaluating digital 

forensics tasks conducted using AI-based methods. In a similar vein, we examined the 

standardization of DFAI processes as they relate to the Daubert standards, with a 

particular focus on the processing and reporting of forensic datasets and error rates. 
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Numerous optimization techniques for AI models were examined, as well as their 

potential consequences, time complexity requirements, and their potential suitability 

for a typical DFAI task. 

In this part, additionally, the significance of explaining the processes that resulted 

in the conclusions reached during a digital forensics investigation as a prerequisite for 

the admissibility of digital evidence is elaborated. The technique for machine-

generated inferences must be transparent, trustworthy, fair, and 

justifiable.  Explainable AI is a concept that encompasses all methods and proposals 

for making closed-box artificial intelligence models understandable. Our emphasis 

was on the domain-specific nature of explanation in digital forensics, and therefore the 

divergence of explainable AI into DFAI was established. The importance of 

interpretability was highlighted, and recommendations were offered on how to 

mitigate mistrust in AI-based digital forensic investigation through interpretable 

approaches. 

In the future, it is envisaged that some of the use cases highlighted in this research will 

be refined through practical experiments in order to establish the validity of some of 

the methodologies (shallowly) described in a general sense. Equally as promising as 

the results of the e-mail analysis are, the method does not account for the possibility 

of a malicious use of a suspect's email account to falsely implicate them or conceal 

detection. Future works will attempt to build upon this reality. In light of the fact that 

the application of AI to digital forensics lacks a standardized approach and the domain-

specific requirements have not been fully conceptualized, future research will seek to 

review developments in the law and AI domains in order to adapt practical, 

standardized, and interpretable mechanisms. 
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Dataset Chapter Source 

Enron Dataset 4 https://www.cs.cmu.edu/~enron/ 

Software Source 

Experiment Codes 
https://github.com/spyderweb-abdul/Deletion-

Detection-in-Unstructured-Data 

NLTK https://www.nltk.org/ 

Tokenizer https://www.nltk.org/api/nltk.tokenize.html 

Part-of-Speech Tagger https://nlp.stanford.edu/software/tagger.shtml 

NLTK Wordnet 
https://www.nltk.org/_modules/nltk/stem/wordne

t.html 

NetworkX https://pypi.org/project/networkx/ 

LDA/NMF (Gensim) 
https://github.com/RaRe-

Technologies/gensim 
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