
Alma Mater Studiorum – Università di Bologna
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Abstract

This manuscript is the result of an industrial PhD done in collaboration with
the University of Bologna and Optit srl, a company started as a spin-off of the
Department of Industrial Engineering of the University of Bologna and active
in the area of Operations Research (OR).

In the framework of industrial problems, the application of Constrained Opti-
mization is known to have overall very good modeling capability and perfor-
mance and stands as one of the most powerful, explored, and exploited tool to
address prescriptive tasks. The number of applications is huge, ranging from
logistics to transportation, packing, production, telecommunication, schedul-
ing, and much more. The main reason behind this success is to be found in
the remarkable effort put in the last decades by the OR community to de-
velop realistic models and devise exact or approximate methods to solve the
largest variety of constrained or combinatorial optimization problems, together
with the spread of computational power and easily accessible OR software and
resources.

On the other hand, the technological advancements lead to a data wealth
never seen before and increasingly push towards methods able to extract use-
ful knowledge from them; among the data-driven methods, Machine Learning
techniques appear to be one of the most promising, thanks to its successes
in domains like Image Recognition, Natural Language Processes and playing
games, but also the amount of research involved.

The purpose of the present research is to study how Machine Learning and
Constrained Optimization can be used together to achieve systems able to
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leverage the strengths of both methods: on the one hand, this would open the
way to exploiting decades of research on resolution techniques for COPs while,
on the other hand, construct models able to adapt and learn from available
data. In fact, the latter can result in a tremendous advantage, given that col-
lecting data has now become a common, affordable practice in many industrial
contexts.
In fact, the interplay between these two areas has drawn a lot of attention
in recent years. In the first part of this work, we will survey the existing
techniques and classify them according to the type, method, or scope of the
integration; subsequently, we move to the main topic of the present research:
integrating constraints in learning models. To this aim, we introduce a novel
and general algorithm devised to inject knowledge into learning models by
means of constraints, Moving Target. The method expands the existing tech-
niques for constraint injection, with a relatively simple framework suitable to
tackle non-differentiable and global constraints. In the last part of the thesis,
two applications stemming from real-world projects and done in collaboration
with Optit will be presented.
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Chapter 1
Introduction

The field of Machine Learning has experienced an incredibly rapid growth
in the last decades, thanks to unprecedented achievements in technologically
important fields, such as Image Recognition, Natural Language Processing,
Anomaly Detection and so on, as well as the combination of more efficient
algorithms and widespread computational power.
These learning techniques were originally conceived to be purely data-driven,
being able to abstract and build inner representations from mere data sets.
Recently, more and more practitioners have started to investigate how to de-
sign more controlled learning models, able to combine the traditional knowl-
edge extraction capability with (logic) rules and/or reasoning, allowing the
user to inject domain knowledge into the modelling process as well as bias-
ing the learning model towards a preferred behavior. Among the techniques
that can be employed to this aim, many concepts are derived from constrained
optimization, for instance regularization methods, Lagrangian relaxations, or
data processing techniques where knowledge is represented in the form of con-
straints.

Another, complementary, line of work is that of exploiting the unstructured
information extracted by such data-driven models within more complex sys-
tems. A recent trend is that of combining Machine Learning with Optimization
processes, with the aim of devising systems able to build inner representation
from external (and possibly mutable) data while preserving the possibility of a
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1. Introduction

precise mathematical formulation of the process at hand. In fact, data-driven
model can play a major role in real-world applications of Operations Research
models: for example, such a model can enter the modelling part of the process
at hand, by replacing an analytical description with an inferred one. Or it
can help the resolution process, replacing heuristic decisions with new ones,
learned from historical data or by imitation of existing policies.

The two worlds of Machine Learning and Constrained Optimization, although
conceived to tackle different tasks, i.e. predictive and prescriptive analytics,
are more and more often used together. In this research work, we aim at un-
derstanding better the interplay, strengths and limitations of such integration.
After surveying the more recent integration methods, we propose an algorithm
to provide constraint support to learning models, by leveraging on the interac-
tion between learning and constrained optimization. Finally, we present two
practical examples that combine both predictive and prescriptive models to
tackle real-world optimization problems.

1.1 Summary of Research Contributions

This thesis can be divided in three parts: in the first part, presented in Chap-
ter 2, an overview of the existing techniques to integrate Machine Learning
algorithms within optimization problems will be presented. We will divide the
different methods according to the part of the optimization process in which
they are involved.

• In Section 2.2.1 we review the methods aiding the formulation of the
optimization problem.

• In Section 2.2.2 we analyze those methods exploiting a data-driven pre-
dictor to support the resolution process of an optimization problem.

• In Section 2.3 we list methods that belong to neither of the above, but
rather use learning models to replace both the modelling and solving
phase.

In Chapter 3 we present one of the major contribution of the present work, the
Moving Targets algorithm. This latter expands the current set of method-
ologies to inject (hard) constraints in learning models, with a special focus on
the type of constraints that are complex to tackle: 1) constraints without a
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1.2. Preliminaries and Background

differentiable formulation and 2) global constraints, involving average values
or, more generally, operators defined over large number of examples.

• In Section 3.3 the algorithm is presented.

• In Section 3.4 we provide a thorough comparison on existing methods,
highlighting the major differences and range of applications.

• In Section 3.5 the algorithm is tested with a substantial empirical eval-
uation; benchmarks with existing methods will be presented.

In the last part, presented in Chapter 4, we move to the application of inte-
gration methodologies to a couple of real-world problems.

• In Section 4.1 a data-driven model will be used to estimate the failure’s
probability associated to components for predictive maintenance.

• In Section 4.2 we use a Machine Learning model to estimate the number
of bins needed to pack a given set of items.

1.2 Preliminaries and Background

The content in this thesis builds upon several topics; in this Section we briefly
review the theoretical background, although we will not give a detailed descrip-
tion but rather pointers to external resources. The reader should be acquainted
with constraint and discrete optimization problems and their resolution algo-
rithms. Furthermore, our contribution largely depends upon the theory of
statistical machine learning, in particular the supervised learning setting. In
Chapter 2, we will overview a large variety of methods involving, at different
levels, optimization methods and machine learning algorithms. Although a
deep understanding of the fields would be beneficial, a rough comprehension
of the topics is sufficient to grasp the main ideas.

1.2.1 Optimization with Constraints

An optimization problem answers the question of which is the best possible
solution among a set of candidates, given an objective function that measures
the fitness of each candidate. Denoting by X the domain and assuming the
fitness function is f : X → R, the problem is formulated as

x∗ = argmin
x∈X

f(x) (1.1)
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1. Introduction

When the fitness function is convex over the domain X, the function is guar-
anteed to have only one minimum that is global; for this reason, it results easy
to solve Equation (1.2), for instance by means of gradient-based techniques

xk+1 ← xk − α∇f |xk
, α > 0

Conversely, when the fitness function f is non-convex, the optimality guar-
antee does not hold and many local minima may exist, requiring a complete
exploration of the domain region X. It is often the case that the process under
examination can not be entirely expressed through Equation (1.2), because of
additional requirements that the candidate solution must satisfy. These lat-
ter can be expressed as a set of constraints, i.e. relations between the variable
involved; the subset of X in which all the constraints are satisfied is named fea-
sible region and contains all the candidate solutions. Formally, a constrained
optimization problem is defined as

x∗ = argmin
x∈X
{f(x)|x ∈ C} (1.2)

Depending on the type of fitness function f , the constraints C and the variables
involved, different paradigms emerge; we review the ones that will appear more
frequently in this thesis.

Constraint Satisfaction Problem A Constraint Satisfaction Problem (CSP)
is a triple ⟨X,D,C⟩ where X is the variable set, X = {x1, . . . , xN}, D =
{D1, . . . , DN} is the domain set, i.e. it specifies the possible values of each
variable xi ∈ Di and C is the constraint set. A constraint c ∈ C is a pair
(σ, ρ) where σ constitutes the list of variables involved and σ their relation; it
is a subset of the Cartesian product of their domains. The constraint set C
describes all the variable relations that must be satisfied by the solution to the
problem. A variable assignment is a pair (xi, a), which denotes that variable xi

has been assigned the value a ∈ Di. Then, a solution of the CSP is a complete
variable assignment A = {(x1, a1), . . . , (xN , aN)} that satisfies the constraints
C. If the set of solutions is empty, then the CSP is unsatisfiable.

The CSP formulation is in fact powerful and can be used to tackle several
problems in the fields of planning, scheduling, operations research, just to name
a few. The resolution algorithms are usually based on the concepts of inference
and search, rather than the brutal exploration of the domain region. Inference
is related to constraint progagation and the idea is to eliminate portions of
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1.2. Preliminaries and Background

the domain region that provably do not contain any solution. Depending on
the arity of constraints, different propagation techniques may be used. Search,
on the other hand, takes care of exploring the domain region, i.e. provides
variable assignments, and combined with backtracking methods makes sure
the exploration is complete. See [RVBW06] for a thorough overview.

Constrained Optimization Problem It is often the case that there exists
a preference among the possible solutions of a CSP. If this is the case, then the
most suitable language to describe our process is that of Operations Research
(OR). This field is concerned with providing prescriptive tools, i.e. techniques
to advise the best possible actions given a problem instance, usually expressed
through a cost to be minimized and a set of rules to be satisfied. Although
similar in scope to CSP, there exists a fundamental difference between Con-
straint Programming (CP) and OR: CP exploits constraints in a procedural
way to act on the solution space, removing portion that provably do not con-
tain solutions and thus iteratively constructing a solution. Conversely, in OR
the feasible set is considered as a whole during the resolution process, with the
resolution acting as a global search process. Formally, we define a Constrained
Optimization Problem (COP) as

min
x

f(x) (1.3)

s.t. gk(x) ≤ 0 ∀k = 1, . . . C

xi ∈ Di ∀i = 1, . . . N

where x = (x1, . . . xN) represents the N decision variables, the objective func-
tion f : X → R is real-valued, gi : x→ R the C constraints and we specify the
domains of the decision variable x. The combinatorial nature of the problem
derives from the fact that the set of possible solutions is finite because (some
of) the decision variables involved have integrality constraints. The objective
function can be omitted if we are only interested in finding a feasible solution:
in this case, we end up with a Constraint Satisfaction Problems (CSPs) but
formulated in the OR language.

When the objective function f and the constraints gk are linear function, and
variables xi are continuous, we obtain a Linear Programming Problem (LP).
The problem has a finite set of solutions and is combinatorial, for the candidate
solutions lie at the vertices of the polytope defined by the constraints. LP
problems are rapidly solved with the Simplex Algorithm or variations of it. If
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1. Introduction

the objective function and the constraints are convex and the variables involved
belong to continuous domains, Equation (1.3) becomes a Convex Programming
Problem. Conditions sufficient to guarantee optimality are provided by the
Karush-Kuhn-Tucker equations.

Until now we have considered only continuous decision variables; when we
turn to integer decision variables, i.e. (some of) the domains Di are discrete
sets, new and more complicated classes of problems come into play. Linear
programs with discrete domains sets are called Integer Linear Programs (ILP)
and are NP-complete. When we have both integer and continuous variables,
the associated problems are called Mixed-Integer Linear Programs (MILP) and
similarly, when either the objective function or the constraints are non-linear
we have Mixed Integer Non-Linear Programs. Good resources for Combinato-
rial and Convex Optimization are [PS98] and [BBV04], respectively.

Generally speaking, constrained optimization is founded on two milestones:
modelling and solving. Modelling refers to the act of explicitly describing the
problem, i.e. formulating the mathematical equations of each of its components
as in Equation (1.3): this requires an expert to enumerate all the constraints
that compose the model and (possibly) design a suitable objective function
to properly rank each configuration. As it is usually the case, the modelling
phase of a problem is in fact a reiterated process, where the components are
refined until the problem’s solution meets the expectation. This can result in
a very time-consuming process, for instance because the system at hand is not
simple to model or because of some unknown or hidden components.

On the other end, solving deals with the algorithmic resolution of the math-
ematical problem, and can range from exact methods to approximate ones,
depending on the complexity of the problem. Intuitively, as the complexity
of the model increases, one has to resort to approximate methods in order to
tackle it efficiently, that is, within a reasonable amount of resources (being
it time or computational power). In general, a fine-tuned balance between
modelling and solving is required for the model to be effective and of practical
use.

1.2.2 Machine Learning

Following [MRT18], Machine Learning (ML) can be intended as the set of com-
putational methods that use experience to predict on unseen or unknown data.
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The term experience may refer to multiple scenarios and is left undefined on
purpose; in fact, ML techniques can employ different forms of information, for
instance data sets, or active interactions with an environment. The grounding
idea is to learn a statistical model from a data source and then use it to infer
the most likely outcomes for new, unseen inputs.
The popularity of machine learning is mostly due to the success achieved by
deep learning in the domains of image and speech recognition, natural language
processing as well as playing games [Pou+18]. We will briefly introduce the
most popular paradigms and refer to specific material for an in-depth review:
for supervised and unsupervised learning, see [MRT18; GBC16; Bis07] and for
Reinforcement Learning see [SB18].

Supervised Learning In the classical machine learning scheme we are pro-
vided with a data set D containing labelled input pairs (xi, yi) ∈ D, and
the task is to find the model that best describes the data, out of a family of
available ones. The method lies in building a representation of the statistical
distribution of the output variables in terms of the input ones, that can be
later used for inferring values over the whole domain. This is an approximate
representation, since the data set is just a sample of the true underlying dis-
tribution, D = (X, Y ) ∼ X × Y ; in practical terms, a mathematical model is
fitted to the set of data so as to minimize a predefined loss function, measur-
ing the prediction error. This operation is termed training, or also learning by
example, and it essentially consists of an optimization problem, usually solved
via heuristic methods. Given the input and output data pairs, x ∈ X and
y ∈ Y , the learning problem can formally be stated as:

h∗ = argmin
h∈H
{L(y∗, h(x))} (1.4)

where H is the set of available models, that is a function space of mappings
h : X → Y and L : Y × Y → IR is a loss function. The loss function is
usually a (semi) metric in the target space Y and defines how to measure the
score of each model h. For example, a neural network model is represented
as h = h(θ), with θ parametrizing the neuron connections, i.e. weights and
biases. Depending on the target domain Y we distinguish between classifica-
tion and regression tasks: in classification, the target domain is discrete and
the purpose of the learning model is to assign the correct class to each given
input. Conversely, in regression the target domain is continuous.
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For a family of model parametrized by the vector θ and a training data set D,
Equation (1.5) becomes

h∗ = argmin
θ

1

|D|
∑

(xi,yi)∈D

L(yi, h(xi; θ)) (1.5)

which corresponds to minimizing the expected error over the input data set.

Semi-Supervised Learning In semi-supervised learning only a fraction of
the available data is labelled. This is often the case when the labelling of input
data is an expensive operation and data sets are not available: for example, in
order to build a data set for image classification it is required to manually label
each image, which can be very expensive when the data needed for training is in
the order of (ten of) thousands examples. In semi-supervised learning the ML
model receives both labelled and unlabelled data; the hope is that accessing
the unlabelled data, the learner is able to reach performances superior than
the ones obtained using solely labelled data.
As an extreme case, in unsupervised learning, the targets y ∈ Y are not avail-
able and the learner is exclusively trained on the input. This kind of learning
is usually aimed at finding underlying structures in the data; however, because
of the absence of target labels, it is difficult to evaluate the performance of the
learning model as well as to devise a suitable loss function for the task at hand.
Examples of unsupervised learning problems are clustering problems, where
a collection of data is grouped according to the similarity of their features,
or methods involving component analysis, for instance Principal Component
Analysis.

Reinforcement Learning Reinforcement learning is based on the idea of
learning by interacting with an external environment. There are three key
elements characterizing a RL problem: a learning agent connected with its
surrounding environment, a possible set of actions with which it can interact
and modify it and a goal to achieve. The learning paradigm differs from both
supervised and unsupervised settings, for there is no labelled data but there is
a quantitative reward to be maximized.

Reinforcement learning is usually framed as a Markov Decision Process, a
structure that conveniently models sequential decision making processes. Broadly
speaking, RL can be distinguished into two main schemes: model-based and
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model-free learning. In the first scenario, we are given a restricted set of
possible actions on the environment, while in the second case the model is
completely free to devise how to interact with the environment. Moreover,
model-free RL can be divided in diverse paradigms, depending on the object
of the learning process. In value-based methods, the learner tries to estimate
the expected reward associated to a given policy and action; the agent will then
choose the action that maximizes the expected reward. Conversely, in policy-
based methods, the agent’s policy is parametrized and optimized by leveraging
on the past experience, such that the final reward will be maximum.
The policy optimization problem can be formulated as

π∗ = argmax
π∈Π

E

[
T∑
t=0

γtR(st, at)

]
(1.6)

where Π represents the space of policies, R is the reward obtained performing
action at on state st and γ is a discount factor.
The field of Reinforcement Learning is vast and difficult to briefly summarize,
therefore we refer to [SB18] for an in-depth overview.

1.3 Methodology

In the present thesis we overview many and diverse methods for the integra-
tion between ML models and Constraint Optimization Problems. Therefore,
we introduce a methodological framework that will be used to support the de-
scription of such techniques; since the works that bring together the two fields
can be very different, it can be difficult to abstract a general perspective on
the integration. We find that a framework based on transition systems results
very convenient, both to establish a high-level description of an optimization
process and to effectively capture its components. Transition systems [BK08]
are very popular in computer science since they establish a very powerful tool
to describe dynamic systems; in particular, we adopt the notions of states and
transitions. This notation, although usually employed in different contexts, al-
lows us to highlight where and how learning models are effectively integrated
in constrained optimization problems. For our purpose, that is surveying and
classifying the recent trends in the field, we will not need an in-depth formal-
ization; in fact, the methodology is loosely inspired by works such as [JM94],
where transition systems are employed to abstract an operational semantics
for Constraint Logic Programming, or [MR04], where authors devise a general
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1. Introduction

framework to describe metaheuristics under a multi-agent architecture, but
departs from them for we do not aim at giving an exact representation of the
process, but rather a qualitative description of it.

1.3.1 Optimization as a transition system

In the following, both the modelling and solving processes will be formulated
by means of transition systems. While this choice is well-suited for the solv-
ing phase of a (combinatorial) optimization process, it results unusual for its
modelling phase; however, subsequent examples on integration of learning com-
ponents into the modelling of COPs will show the benefits of such formulation.

Transition systems are based on the concepts of state and transition: a state
S = ⟨A,B,C⟩ is a generic tuple of elements. A transition is a mapping between
a state S and another state S ′ and will be denoted as →, i.e. S → S ′.
Transitions can be applied one or more times: when the number of a transition
application is known to be n, it is indicated as →n, if it is not known, then it
will be denoted with the symbol →∗; if a transition has to be applied at least
one time, it will be denoted as→+. A transition can also be performed as long
as a stopping condition is not met: transitions of this kind are represented as
(→)c, where c is the termination condition on the current state. Labels can
be used to distinguish transitions performing different operations, for example
→
a
,→

b
, . . .. As for single transitions, sequences of labeled transitions can be

applied several times as well, and this is denoted as before (→
a
→
b
)n.

This is loosely related to Labelled Transition Systems [BK08; VG01]: in LTS
we have a pair (P ,→) with P a set of processes and →⊆ P ×Act×P . Act is
the set of possible actions that can be performed by the processes, for instance
p

a→ q means that by executing action a on process p, process q is reached.

In the following we will characterize the states and transitions that will be
necessary to describe the modelling and solving processes of a COP.

Modelling process

A model state M = ⟨X, f, g⟩ is a tuple of elements describing a problem
instance (at a given time instant) through the following components: the set
of decision variables X = {xi : xi ∈ Di, i = 1, . . . ,M} where Di can have either
infinite or finite cardinality, the objective function f : {X × Cf → R} and N
constraints g : {X×Cg → R}. Both the objective function and the constraints
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1.3. Methodology

are parameterized by the matrix C = (Cf , Cg) ∈ R(N+1)×M representing the
coefficient of the decision variables X.
We can define a general, high-level, refine transition that operates on a model
state →

r
:M→M′ by modifying (some of) its components

⟨X, f, g⟩ →
r
⟨X ′, f ′, g′⟩

The application of the refine transition can have multiple outcomes, that can
be fully specified when it comes to each problem; examples of such operations
are:

• adding a new constraint gi

• adding a new decision variable xi

• fixing the value of a decision variable xi = x̄i

• modifying the loss function

Observe that this model state formulation allows to describe models with par-
tial variable assignments, i.e. such that X = {Xi}i ̸=j ∪ {x̄j} where we denote
by x̄j a variable that has been assigned to a given value. Moreover, when all
the variables have been assigned, i.e. X = x̄ we are left with a complete as-
signment of the decision variables; the assignment x̄ is a feasible solution of the
model M iff g(x̄) ≤ 0. We represent a feasible solution as S = ⟨x̄, f(x̄), true⟩;
in a minimization problem the solution is optimal iff ∀S ′ ̸= S, f(x̄) ≤ f(x̄′)
(in a maximization problem we have instead f(x̄) ≥ f(x̄′)).
By denoting the optimal solution of a model M by S∗, we have

S∗ =

〈
x̄ = argmin

x∈X
{f(x) | g(x) ≤ 0} , f(x̄), true

〉
The act of modelling a constrained optimization problem is usually performed
by an expert and can be seen as encapsulating the domain knowledge into a
mathematically equivalent formulation. This process can be described within
the transition system framework as a sequence of transitions that progres-
sively refine the problem formulation. In particular, given the current model
M = ⟨X, f, g⟩, a target process specification P and the requirements it induces
on the solution Ω(P), the modelling phase consists of a sequence of refine tran-
sition until sol(M) ̸= Ω(P).

11
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We summarize the whole process of modelling as follows: first, an initial draft
of the model is realized

⟨∅, ∅, ∅⟩ →
r
⟨X, f, g⟩

Then, it is iteratively refined until the solution meets all the process require-
ments, i.e.

⟨X, f, g⟩ (→
r
)sol(M)̸=Ω(P) ⟨X ′, f ′, g′⟩ =M

We introduce a new label for the transition →
m
= (→

r
)solution(M)̸=Ω(P), which

denotes the process of constructing an expert-designed model. This constitutes
a special case of the refine transition and furnishes a compact way to represent
the act of problem modelling

⟨∅, ∅, ∅⟩ →
m
⟨X, f, g⟩

Solving process

The scope of the resolution process of a COP is to explore the space of so-
lutions searching for the one maximizing a model scoring function ẑ: this
scoring function is identified with the (opposite of the) objective function of
the optimization problem. The process can be formalized in terms of transition
systems with the introduction of a resolution state R = ⟨M,C, b⟩, consisting
of the set of open model states to be processed M = {Mi} = {⟨X, f, g⟩i},
the set of models under examination in the current resolution state C, with
C ∩M = ∅ and the model state b with the best score ẑ obtained so far.
The resolution process begins with a set of models M resulting from one or
more modeling processes. For instance, a tree search-based resolution pro-
cess would start from the singlet M = {M}, whereas for a population-based
resolution process M = {M1,M2, . . .}. The initial state is then ⟨M, ∅, b =
argmaxM∈M ẑ(M)⟩.

Once the resolution state is defined, we can introduce the following transitions:

• The select transition →
s
: R → R′ chooses a set of models C to be pro-

cessed according to a select scoring function ŝ and removes it from the
current pool M

⟨M ⊇ C, ∅, b⟩ →
s
⟨M ∖ C,C, b⟩

where C = argmaxkM∈M ŝ(M) is the set of the best k models according
to ŝ.
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• The generate transition →
g
: R → R′ produces a number of model states

from C by means of a generating function ĝ : {⟨X, f, g⟩} → {⟨X ′, f ′, g′⟩}.
Then, it adds them to the set of open model states M .

⟨M,C, b⟩ →
g
⟨M ′ = M ∪ g(C), ∅, b⟩

• The evaluate transition →
z
: R → R′ evaluates the current model pool

according to the model scoring function ẑ and possibly updates the best
model state b

⟨M,C, b⟩ →
z

〈
M, ∅, b′ = arg max

M∈M∪{b}
ẑ(M)

〉

The resolution process can be described with the formalism of transition sys-
tems as a sequence of select, generate and evaluate transitions. On a practical
level, this means that the resolution process is completely defined by specifying
the transition functions ŝ, ĝ and ẑ and can be described as (→

s
→
g
→
z
)∗.

Complete exploration processes will end in a resolution terminal state ⟨∅, ∅, b⟩
with b the best model state according to ẑ. The completeness of the resolution
process can however be relaxed and for example replaced by a termination cri-
teria based on a number N of iterations. In this scenario, a resolution terminal
state will be the state ⟨M,C, b⟩ obtained after the sequence (→

s
→
g
→
z
)N .

Let us consider two practical examples: a tree search-based resolution algo-
rithm and a population-based one. In a tree search-based resolution process,
we start from a single model state and perform a binary branching operation
on the current model to iteratively partition the solution space and eventually
isolate the optimal solution. On the other hand, in a genetic algorithm we
setup an heuristic exploration of the feasible region: starting from a pool of
candidate solutions, we modify them at each iteration to guarantee a proper
covering of the feasible solution space, while keeping track of the best solution
found.
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Tree Search

1. Initial resolution state starts
from the modelM

R = ⟨M =M, ∅, ∅⟩

2. Select function ŝ reflects the
node exploration strategy

ŝ({M}) =M

3. Generate function ĝ is typically
based on a binary branching
strategy

ĝ({M}) = {M1,M2}

s.t. int(M) = int(M1) ∪
int(M2) with int(·) denoting
the sets of integer solutions ob-
tainable from its argument

4. Evaluate function ẑ corresponds
to the model objective function.

Population-based heuristic

1. Initial resolution state starts
from a solution pool {Mi}

R = ⟨M = {M1, . . . ,MN}, ∅, ∅⟩

2. Select function ŝ isolates a sub-
set of models that will be used
to generate the new distribution

ŝ({M1, . . . ,MN}) = Ms, |Ms| ≤ N

3. Generate function ĝ provides a
new set of solutions, balanc-
ing between exploration and ex-
ploitation of the feasible region

ĝ(Ms) = {M′
1, . . . ,M′

N}

4. Evaluate function ẑ corresponds
to the model’s objective func-
tion.

1.3.2 Supervised Learning as a transition system

As mentioned in Section 1.2.2, in Supervised Learning the act of training is
usually performed via heuristic algorithms that iteratively refine the model’s
parameters until a stopping criterion is met. For example, Neural Networks
employ gradient-based methods (SGD [Bot10], ADAM [KB14], ...), tree-based
models construct partitions of the domain, SVM may involve either COPs
algorithms as cutting planes [Joa06] or, more recently, gradient-based methods
[SS+11].

The training process is based on a data, used to find the optimal configuration
of the learner parameters, such that the chosen loss function is minimized (as
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described in Section 1.2.2). Since the training data D is fixed, we can regard
the process of learning as a pure optimization process, with the data infor-
mation being contained in the loss function (that is precisely the objective
function of the optimization problem).

At the beginning of the process, the machine learning model is specified: this
is exactly a modelling process that results in an unconstrained optimization
problem

⟨∅, ∅, ∅⟩ →
m
⟨θ, ℓ, ∅⟩

with

lh(θ) =
1

|D|
∑

(xi,yi)∈D

l (yi, h(xi; θ))

being lh the learning model parameterized by θ. The resulting optimization
process is described, as seen before, through a transition (→

s
→
g
→
z
)c until a

stopping condition c is satisfied (we usually set a limit on the iterations).

Since the learning process boils down to finding the optimal solution of the
optimization problem described by θ and l, the resolution state representation
is very simple, with the helper functions ẑ and ŝ being identities, while the
generating function ĝ acts on the model state M by refining the variable
assignment:

• g(M) =M′ whereM′ = ⟨θ′, ℓ, ∅⟩ and θ′ is updated via, for example, a
gradient-based algorithm, θ′ ← θ − α∇θL.
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Chapter 2
Integration Approaches

This Chapter surveys a trend that has recently received a lot of attention: the
integration of data-driven models in prescriptive problems. The reasons behind
the ever-growing interest in the field can be reduced to two main factors: on
one hand, the availability of data describing (part of) a process is an even more
common factor, naturally leading to the employment of data-driven solutions.
On the other hand, the recent successes of Machine Learning arose questions
in the OR community on whether such models can be effectively employed to
support existing algorithms and models.

In this Chapter we review the State Of The Art and classify the existing meth-
ods according to the type of integration and/or task of the Machine Learning
model, by leveraging on the methodology described in Section 1.3. 1

2.1 Motivation

When facing a decision involving multiple choices, it is very useful to carefully
balance all the possible outcomes, taking into account the related costs and
benefits and then choosing the best one. If such a problem can be mathe-
matically formulated, by associating one (or more) variable to each possible
outcome and a virtual ”cost” to weight it, then an optimal solution can be

1The work presented in this Chapter has been done together with Luca Accorsi and is
part of a manuscript still unpublished.
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recovered, that is the mathematically most convenient one among all the pos-
sibilities. However, it is often the case that the formulation requires additional
constraints, for the problem to resemble more realistically the original coun-
terpart, or to prevent undesired outcomes. These constraints, upon proper
translation into a mathematically consistent formulation, can be added to the
mix and become part of the problem to solve. If the set of possible outcomes
is finite, then we have a Combinatorial Optimization Problem.

In the framework of industrial problems, the application of constrained opti-
mization is known to have overall very good performance and stands as one of
the most powerful, explored, and exploited tool to address prescriptive tasks.
The number of applications is huge, ranging from logistics to transportation,
packing, production, telecommunication, scheduling, and so on. The main
reason behind this success is to be found in the remarkable effort put in the
last decades by the operations research community to develop realistic models
and devise exact or approximated methods to solve the largest variety of con-
strained and/or combinatorial optimization problems, together with the spread
of computational power and easily accessible OR software and resources.

2.1.1 Common Issues in Practice

The use of off-the-shelf combinatorial optimization models is often limited by
the type of problem one encounters, especially when it comes to real-world
scenarios.
There are many different reasons that can undermine the straightforward ap-
plication of exact combinatorial models to the problem at hand, for instance:

(i) Peculiarity : the problem has system-specific parts that make the relative
model not reducible to those present in the literature; an ad-hoc solution
is then required. This is often the case in industrial problems, where
specific behaviors and business-tailored solutions are required.

(ii) Non-declarative structure: some problem components of the problem do
not have a declarative description, but need to be encoded in a mathe-
matical model. For instance, a relation between variables is obtained via
another model or a simulator.

(iii) Complexity : the model has a huge number of variables and/or constraints
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and it requires a lot of computational time to be solved to optimality,
thereby it has limited practical use.

In order to tackle these circumstances, the usual practice is to rely on heuristic
algorithms. When the issue is the complexity or the peculiarity of the model,
one can put aside the optimal solution and implement instead greedy algorithms
to favor velocity over accuracy of the resulting solution or meta-heuristics for
a better solution quality with an increase in computational resources; for in-
stance, one can rely on local search approaches, or backtracking-based meth-
ods until a good solution is found. A slightly different method is to introduce
heuristic elements in the model itself, based on how the modeler expects the so-
lution to be. This can be done by relaxing a few constraints of the exact model,
or by simplifying the objective function. The method also applies to problems
lacking a declarative description, through the introduction of approximated
heuristic elements. All these methods have the advantage that, despite the so-
lution being sub-optimal, the model becomes of real use and has usually good
computational scalability. Unfortunately, there are some major drawbacks, as
well: apart from being approximated models, heuristic approaches result very
problem-specific, lacking any sort of generality, and they may require a certain
expertise to be efficient and provide satisfactory results.

2.1.2 A recent trend

In recent years, a growing number of works have faced the possibility of em-
ploying methods coming from the automatic learning field in combinatorial
optimization. Indeed, it is nowadays established the role of machine learning
as a major tool to address data-driven problems, with the technology provid-
ing a huge amount of data and learning models the tools for extracting useful
knowledge from them. The spread and availability of sensor technology, com-
bined with a pervasive IT infrastructure, allow private companies to gather
quantitative information describing the functioning of their processes, which
can be turned into valuable knowledge via the proper learning tools. At the
same time, the recent advancements and unprecedented achievements of ma-
chine learning, especially when it comes to neural networks, lead to thinking
about potential applications even to complex problems, as is the case of most
combinatorial optimization models.
The two worlds of machine learning and combinatorial optimization, which we
may call predictive and prescriptive analytics, are always more frequently used
in similar - if not identical - contexts, although for different tasks. On the
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one hand, machine learning algorithms are well-suited to construct statistical
representation from examples, fostering the analysis of large amounts of data
while giving up on an exact control of the outcome; on the other hand, op-
timization problems are based on strict mathematical modeling of the given
process, that answer to specific requirements and can (ideally) be solved ex-
actly.

In this Chapter we aim at surveying the existing research directions and orga-
nizing the established methods in a schematic manner, to better express the
interaction between the two fields.

2.2 Integration Schemes

In Figure 2.1 we identify the main techniques of how combinatorial problems
can leverage learning algorithms. Generally speaking, learning algorithms can

Figure 2.1: Integration schemes to boost combinatorial problems with learning.

be employed both in the modeling and solving phases of a COPs. In the first
case, learning can be used to model (part of) the constraints [BS12; DRPT18;
Lal+10; PK17], the objective function, or both[Kum+21]; for instance by mak-
ing use of historical data, examples, or sources of external knowledge. It can
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also be used to learn a feasible mathematical formulation of the problem: this
is achieved with constraint acquisition algorithms [Bes+17], where a model is
built from scratch by repeatedly stacking constraints consistent with a set of
solutions.
As for the solving phase, the central question is whether it is possible to exploit
a learner for improving the resolution of a given problem. We can classify the
methods on the basis of the task the learner is required to do:

• In Algorithm Selection, a learner is used to select from a pool of algo-
rithms the best performing one.

• A similar setting is found in Parameters Tuning, where learning is used
to choose the most promising configuration of an algorithm, once this
latter has been selected.

• Guided Search, where a learner is used to guide the exploration of the
variable configuration space, indicating the most promising direction of
search.

• Bounding, where a learner estimates the cost associated with a partial
variable configuration in order to speed up the exploration of the feasible
solution space.

There exist other methods that can be identified neither with modeling nor
with solving, because they combine both categories. For example, surrogate
models are used in black-box optimization to provide a mathematical approx-
imation of the true underlying problem structure, when this latter does not
have a clear algebraic formulation, or we do not know it, but an oracle is ac-
cessible and can be queried (for instance a simulator). In this scenario, we
could be able to evaluate the objective function by interacting with the simu-
lator and hence construct a surrogate function based on such outcomes. The
surrogate mimics the original system and makes it possible to devise an ap-
proximate model for the process at hand. Machine learning models are in fact
an example of surrogate models, although the latter usually come with a more
suitable algebraic form.
Task-based learning is similar to what is done when modeling part of the COP
with machine learning, with the fundamental distinction that here the learner
is not trained beforehand, but instead, it is updated while solving the opti-
mization problem. In this sense, such methods lie in between modeling and
solving.
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Figure 2.2: Machine learning is used to boost the modeling phase of an opti-
mization problem.

Another way to exploit a learner to solve a COP and bypass entirely its ex-
plicit formulation is to use reinforcement learning. A learner can be used to
solve graph-based combinatorial problems (for instance Travelling Salesman
Problem or Vertex Coloring) by embedding the problem’s structure within a
neural architecture. In general, this requires thorough crafting but has the po-
tential of scaling to different instances and, even more interesting, to multiple
instance sizes. The key idea is to inject the learner with external knowledge of
the combinatorial structure of the problem, making it implicitly aware of the
existing constraints: the combinatorial structure of the problem is introduced
in the learner by piloting its loss function.

In the next Sections we overview each integration scheme and summarize the
main works pertaining to it.

2.2.1 Modeling

As mentioned before, the modeling phase of a COP requires a thorough knowl-
edge of the domain in order to formulate a model that is representative of the
problem at hand. To aid the modeling task, part of the declarative process
can be demanded to learning models, as depicted in the integration scheme in
Figure 2.2. The expert might in fact be replaced by an algorithm able to learn
from data: this comes with a double advantage. On one hand, it speeds up the
modeling phase, provided a good data source is available; on the other hand, it
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allows to measure the descriptive performance of a model, that is how good the
model represents the specific process. In the case of a machine learning model,
we may measure its performance by simply looking at the loss function, or
estimating the prediction error. On the downside, such a parametric descrip-
tion of (part of) the model can lead to difficulties: first of all, the learner may
come with complex mathematical functions, making the optimization problem
hard to solve. Furthermore, the learned relations heavily depend on the data
used in the training phase; such data has to be representative of the process
at hand, for the COP to be effective and generalize well on unseen scenarios.

Constraint Learning

Several works focus on the problem of learning constraints from data in an
inductive learning framework, that is construct a constraint theory (or con-
straint network) from examples, see [DRPT18] for an overview. This learning
paradigm can be used not only for predicting the satisfiability of unknown
instances, but also for completing partial instances, or optimizing the com-
pletion when a loss function is given. Constraint learning can either address
hard satisfaction problems, e.g. SAT or CSP problems, or soft constraints, for
instance, MAXSAT or problems with preferences over constraints.

The representation of constraints can be Boolean or First Order Logic, and
the method either leverages active or passive learning. In passive learning,
the algorithm is provided with already collected examples, as is the case of
historical data, which imposes an upper bound to the available knowledge. On
the other hand, in active learning it can interact with an external oracle, either
human or simulated, and query it with a specific configuration; this enables the
algorithm to actively guide the exploration towards the domain regions that
appear to be most promising, e.g. verifying the constraints that result more
convenient for constructing the constraint theory. In this case, the problem
of acquiring constraints can be regarded as an interactive process, with the
learner trying to formulate the best representation of the problem through the
oracle.

In [BS12] the authors propose Model Seeker, an approach to extract global
constraints from positive examples of structured problems. They rely on Con-
straint Seeker, a tool for ranking the best matching constraints, given an input
sample, and an existing library for global constraints as a learning bias, i.e.
the global constraint catalog. The approach is well suited for problems with
an underlying structure, as it involves different transformations of the problem
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data to identify recurrent patterns; the use of a fixed bias gives an advantage
over methods that construct it from scratch, although global constraints can
be expensive to be verified.

In [Lal+10] a constraint acquisition approach based on inductive logic pro-
gramming (ILP) is presented. The goal is to acquire an abstract description
of the model, resulting better than other constraint acquisition methods, for
example, CONACQ, in that it can learn from mere examples rather than so-
lutions to the original problem. In the learning phase, the algorithm needs es-
sentially three things: positive examples, negative examples, and background
information. Starting from this knowledge and by means of a rule-based lan-
guage, it learns the CSP definition that best discriminates between solutions
(positive examples) and non-solutions (negative examples).

In the field of active learning, we find QUACQ [Bes+13], an algorithm able to
ask the master partial queries and use these to construct a constraint network.
A partial query is an assignment to only a subset of the problem variables. A
similar setting is presented in CONACQ [Bes+17]: the basic idea is to build
a bias, which comprises all the possible constraints that can be built out of
the problem’s variables and the admitted constraint relations. The algorithm
then proceeds with the validation of constraints by interacting with the user,
thus building the problem’s constraint network.

A different line of work is to use an exact formulation to learn constraints all at
once, by solving a proper optimization problem. In [PK17] a MILP formulation
is used to generate constraints with a definite algebraic form from constraint
synthesis problems, that is, a list of potential variable assignments and the
corresponding feasibility. The usage of an optimization problem allows total
control over the algebraic form of the constraints to generate and guarantees
their satisfaction while giving free choice on the objective function to minimize:
by choosing to minimize the number of terms used in the constraints, we
can produce more compact and human-readable constraint sets. As a major
drawback, the scaling rapidly becomes an issue as the number of variables
grows.

In [Kum+20] the authors present a technique to learn (part of) a MAX-SAT
Optimization Problem from data, but explicitly take into account the con-
text of each example. A context can be intended both as a partial variable
assignment or as a set of constraints that influence the outcome of an optimiza-
tion problem. This feature is often underestimated by learning methods but
can lead to substantial sub-optimalities when the context changes at inference
time, or in scenarios where a given assignment is discarded either for being
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infeasible or sub-optimal. After showing that Empirical Risk Minimization
can be used to learn low-risk MAX-SAT problems for any context, the authors
introduce HASSLE: the method leverages a MILP formulation to learn the
parameters of soft and hard constraints of the MAX-SAT, by providing a tight
approximation to the original learning problem. Besides, by parameterizing
both hard constraints and the objective function with soft constraints, the
method is capable of learning the two of them at training time.

Generally speaking, the learning of constraints from data is firmly grounded
on symbolic representations of the rules, whose parameterization is learned
from data. A sub-symbolic alternative is presented in [Cir+20], where the set
of learnable constraints is modeled by means of neural networks. A set of task
functions is learned from data, with the additional complexity of a constraint
regularization. Then, the acquisition of new constraints boils down to maxi-
mizing the transfer of information between them and the task functions: the
transfer is modeled via the Mutual Information method. A general framework
is considered: given a classification problem together with a set of pre-defined
constraints, a set of task functions (i.e. one for each possible outcome class),
and a set of learnable constraints, the problem is split into three different levels:
input data constitutes the input space, task functions define the concept space
(containing high-level functions) whereas the constraints belong to the rule
space, that embeds both historical and new knowledge. In order to interpret
the sub-symbolic rules learned by the neural network, the resulting network
is interpreted as a logic network, reducing its predictions to First-Order Logic
formulas. This constitutes the bridge between the sub-symbolic learning tech-
nique and standard constraint theories, formulated through First Order Logic.
It is interesting to notice that, in addition to extracting useful knowledge from
the tasks, the new constraints act as a regularization of the former, impact-
ing their generalization skills. The method beats the baseline (uninformed)
learner, especially when the number of samples is low, although the scaling to
a large number of constraints results computationally very expensive.

Constraint acquisition processes as transition systems

We can describe the process of constraint acquisition within the transition
systems framework as follows:
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1. Start from the empty model state

M = ⟨∅, ∅, ∅⟩

2. Build the bias set B of all the possible constraints, either from the
training data set D = {xi}, i = 1, . . . , N , or by exploiting an existing
constraint dictionary

3. Build the constraint set, i.e. ∀xi ∈ D

(a) check the set of constraints {gj}i ⊆ B compatible with xi (either
via a generating procedure or extracting them from a bias set)
and involving the decision variables zi

(b) Add the newly generated constraints and variables

⟨X, 0, g⟩ →
r
⟨X ∪ {zi}, 0, g ∪ {gi}⟩

(c) Prune constraints {ĝi} that are no longer compatible with the
training examples seen so far

⟨X, 0, g⟩ →
r′
⟨X, 0, g ∖ {ĝi}⟩

We can summarize the process with a single transition

⟨X, 0, ∅⟩ (→
r
→
r′
)N ⟨X, 0, g⟩

that takes the place of the modeling transition→
m
; note that we have as many

atomic transitions as the number of training examples.

Learner embedding

The modeling phase of a combinatorial problem can be boosted by embedding
a learner directly in the definition of the problem. The learner can be em-
ployed to model relations that are unknown or better modeled from data, for
instance in the case of functions that evolve over time. Or else, the relations
could be better handled by learning models, because of their complexity - think
for example to hydrodynamic systems, where a physical description exists but
is computationally intractable. In all the cases where there is available data
describing part of the problem and a machine learning model that fits well the

26



2.2. Integration Schemes

data, we might be interested in replacing the formal definition of the relations
with the model: the embedding can be done either in the form of a constraint
or within the objective function.
This is what is done in [BLM15; LG16; LMB17], where the authors provide ex-
amples of how to directly insert pre-trained learning models (decision trees and
neural networks) in the form of constraints within CP and MILP, preserving
the original language of the optimization problem. For instance, in [BLM15]
a decision tree is used to approximate a complex cost function and embedded
in a CP model. The training set is composed of a set of attributes represent-
ing the dependence between decision variables and cost function. The trained
decision tree h∗ can be embedded into a CP by encoding each path root to
leaf as a set of constraints Ξ(h∗) = g′ containing a conjunction of disjunctions
associated with the attributes and values of the decision tree nodes.
Although with a different aim, this is similar to what is done in [AAV19], where
the authors devise a fair classifier by encoding a decision tree within a MILP
and adding an unfairness penalty to the objective function of the problem. In
[FJ18] a feed-forward artificial neural network with ReLU activation functions
is inserted in a MILP, with the goal of probing the robustness of the network
at image classification.
These approaches do not lack drawbacks: only a fairly simple model (e.g lin-
ear or piece-wise linear) can be inserted in an optimization problem without
making it nearly impossible to solve. Moreover, embedding a fully-fledged
model usually requires the introduction of many variables and (integrality)
constraints, which can again result in an overkill for the solver.
Another recurrent problem, especially when combining learners with the ob-
jective function, lies in the fact that the learner’s uncertainty is not taken into
account by the optimizer. This might result in the optimizer ending in regions
of the configuration space for which the learner hasn’t been trained properly,
with very poor outcomes. In the upcoming subsections, we will overview meth-
ods that try to overcome these limitations.

Embedding of a learner as transition systems

Suppose we are given a trained machine learning model h∗, that we can rep-
resent as a mapping on the feature space, h∗ : X → R. The learning model
can be embedded (or encoded a) into a combinatorial problem by introducing
a set of constraints ĝ generated by its embedding (or encoding) Ξ(h∗). This
can be defined in our transition system as follows.
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1. First, the model is designed by an expert

⟨∅, ∅, ∅⟩ →
m
⟨X, f, g⟩

2. Then, the trained machine learning model h∗ is inserted into the model

⟨X, f, g⟩ →
r
⟨X, f, g ∪ ĝ⟩

by means of the embedding in terms of host language elements

ĝ = Ξ(h∗)

3. Finally, the resolution process remains unaltered.

aWe refer to encoding when the machine learning model can be directly formulated
in the host language of the problem, whereas we use the term embedding when it is
required to define an operational semantics along with the encoding

2.2.2 Solving

The resolution phase of an optimization problem is the core part of any op-
timization process and its study still draws a lot of attention. The first algo-
rithms trace back to the ’40s, when several independent statements of the LP
problem, as well as resolution approaches, appeared: Dantzig’s famous Sim-
plex Algorithms was invented in 1947, and published in 1951 [Dan51; Dan90]
and shortly after, in 1960, the branch-and-bound algorithm was introduced
[LD60]. This latter opened the way for Mixed-Integer Linear Programming
(MILP) problems. The work faced the problem of dealing with discrete vari-
ables in LP problems, by means of a divide-and-conquer strategy: the search
in the feasible space is boosted by repeatedly partitioning the original space
into smaller and smaller subsets, by means of bounding and pruning, which
makes the problem easier to tackle.
The novel algorithms provided a fast way to solve problems that would oth-
erwise be intractable while retaining a good level of modeling, which lead to
a rapid expansion of the field both in academic and industrial environments.
In the subsequent years, new solving algorithms were introduced, extending
the range of applicability to Quadratic Programming (QP) [NW06], Convex
Programming (CP), [BBV04] and also Mixed-Integer non-Linear Programming
[PS98].
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However, except for the simple case of LP problems, the research on resolution
algorithms is still ongoing: in fact, even well-established algorithms such as
Branch-And-Bound are partially guided by heuristic choices, usually backed
by empirical evidence. For example, in B&B the decision on the variable to
branch on, or the policy to adopt for selecting the node to explore are usually
based on experience. Notice that, although these choices will affect the perfor-
mance of the resolution process, they don’t undermine the optimality of the
solution. In fact, the incorporation of heuristic arguments can speed up the
exploration of the feasible space while preserving its completeness.

In the last decade, thanks to the popularity gained by ML, there have been
many attempts at exploiting learning methods to boost resolution algorithms,
as it is summarized in Figure 2.1. A general representation of such integration
is given in Figure 2.3: the learning algorithm can be fed with information about
the target process and features from the resolution algorithm. At inference
time, the trained algorithms will be employed by the resolution process. In
this section, we will focus on such works.

Figure 2.3: Machine learning is used to boost the solving phase of an opti-
mization problem.
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Search guidance

Guiding an exact or heuristic resolution process by means of offline or online
generated knowledge consists of a natural way to integrate machine learning
approaches within the more traditional COP resolution process. However,
to be effective and of practical use, the two approaches must be carefully
balanced. Offline learning can be used to extract rules that are then hard-
encoded into the search process. As an example, consider [AS19], in which a
graph-based COP is solved by using a meta-heuristic approach: a few simple
rules, derived from a preliminary analysis with a decision tree classifier, are
used to change the value of some arcs to improve the process of escaping from
local optima. This is the simplest possible setting in which machine learning
supports a resolution process without any overhead at runtime. Moreover, the
preliminary analysis cost is amortized over all the future resolutions, when
the predictor provides useful knowledge. However, for the derived rules to be
meaningful, the training data must be representative of all possible instances,
i.e. instances must be related to the training distribution. Unfortunately, this
is very unlikely in COPs since even ad-hoc algorithms tend to behave very
differently on instances with a different structure or scale.
Learning, either online or offline, can be combined with a runtime model in-
ference. A seminal work not based on ML algorithms is presented in [KNS09]:
the authors resort to a restarting policy to exploit incomplete explorations of
the search tree of a binary MILP and guide the successive branching decisions.
At each fathomed node, the branching decisions that lead to the fathoming
are identified by generating a corresponding minimum cardinality clause.

Many researchers focused on the problem of branching [ALW17; Kha+16;
HDIE14; LZ17; MAWL16; Gas+19]; we summarize the main elements of these
works in Table 2.1. The framework is usually that of supervised learning, where
a model is trained to replace the desired branching policy. In [ALW17] a B&B
algorithm is placed side by side with a learning component imitating a Strong
Branching policy: during the branching process, the learner identifies the vari-
able to branch on by assigning a strong branching score to each fractional vari-
able and picking the most promising one. The data set on which the learner is
trained is built by optimizing a number of training problems with a B&B and
strong branching. At each B&B node, a fixed number of features Φ(x) are used
to characterize fractional variables x and a strong branching score sx is com-
puted by performing strong branching on them. The data set thus consists of
pairs (Φ(x), sx) for each fractional variable x found during the B&B execution
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on the training problems. A similar setting is devised in [Kha+16], but ML
is employed in a learning-to-rank fashion, with a SVM ordering the branching
variables according to their expected outcome. Moreover, the learner is used
in an online setting: at the beginning of the resolution process data is collected
and used to train the learner; then, the algorithm switches to inference mode
replacing the original Strong Branching policy with the learned one. In this
way, the algorithm is also able to adapt to different instances on the fly. The
problem of node selection in B&B is tackled in [HDIE14]: here ML is used to
select both the most promising node to be explored and to decide whether to
prune it or not, thus effectively guiding the search process. The training data is
constructed by taking as a label the node containing the optimal solution, and
the goal of the learner is to predict the best policy (i.e. choose the best node to
expand), given a set of candidates. Since the policy corresponds to a sequence
of explored nodes and thus the error propagates through the learner’s deci-
sions, errors close to the root node are weighted more. The idea of learning a
policy to guide the exploration is further investigated in [Gas+19]: the authors
parametrize a variable selection policy with a Convolutional Neural Network
that acts on an encoding of the current state of the B&B process. Such en-
coding is given by a graph that represents the relational dependence between
the variables and constraints of the problem, enriched with additional features.

Learner Task Strategy

[ALW17] XRT 2 Regression Variable Selection
[Kha+16] SVM 3 Learning to rank Variable Selection
[HDIE14] SVM 3 Policy Learning Node Selection / Pruning
[Gas+19] GCNN Policy Learning Variable Selection

Table 2.1: Examples of integration of ML models within a Branch & Bound
algorithm

Learning can also be used to decide when to perform expensive operations,
for example as done in [KLP17]: here a predictor is used to decide whether to
perform a Dantzig-Wolfe decomposition. In [Kha+17] authors employ learning
to decide when and where to run primal heuristics in MIP problems, given the
trade-off between advantage and complexity. However, online learning may

2Extremely Randomized Tree [GEW06]
3Support Vector Machines [CV95]
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not be suitable for contexts in which the resolution process is too short or
has time constraints, as it can introduce a computational overhead that sig-
nificantly impacts the process. Moreover, one has to keep in mind that the
generated knowledge might produce decisions strongly biased by the history
of search that lies in the training data. This can have a dramatic effect when
switching from different class of MILPs: an attempt to devise a method capa-
ble of generalizing the problem of branching variable selection across multiple
problems is proposed in [Zar+20]. A DNN is used, together with a set of gen-
eral features, to learn a branching policy that also considers the actual state
of the branching tree.

Querying the model during the search process requires the careful balancing
of state accuracy and prediction meaningfulness with resolution speed. On
the one hand, the representation associated with the current exploration state
must be expressive enough to allow for meaningful decisions. However, this
contrasts with the speed requirements needed for being competitive with tra-
ditional resolution algorithms. In fact, the computational effort for computing
such representations (and for keeping them updated throughout the algorithm
evolution) may instead be detrimental to the overall solution process. An-
other crucial aspect concerns where and when a model should be queried,
that is whether performing fine or coarse-grained decisions and how often to
update them (query frequency). The investigation of strategies to effectively
guide a search process is an open and challenging topic that is becoming more
and more relevant given the increasing capacity of exploiting large amounts of
collected data.

Apart from tree search based resolution algorithms, a lot has been done in the
area of metaheuristics with a special focus on fast objective function approxi-
mation (especially in population-based algorithms), initial solution generation,
runtime operator selection (e.g. mutation in GA), restricting local search appli-
cation to the best candidates. For works surveying the SOTA refer to [STÖ19;
Cal+17].

Despite the challenges, a balanced integration may be beneficial for the resolu-
tion of the optimization problem. In fact, there are several strategic decisions
that right now are made by following the designer’s sensibility and past experi-
ence, e.g. when to switch between intensification and diversification, whether
to accept worsening solutions, etc, or where full enumeration is still used.
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Search Guidance as a transition system

In [ALW17], a trained learner h∗, defined over an (augmented) decision vari-
able’s space, is queried at each B&B node to estimate the strong branching
score associated with fractional variables. Assuming a minimization MILP,
this can be defined in our transition system as follows.
The combinatorial model is designed by an expert

M = ⟨∅, ∅, ∅⟩ →
m
⟨X, f, g⟩

and it is used as the starting point for the (→
s
→
g
→
z
)∗ resolution process, R =

⟨{M}, ∅,M⟩.
To fully specify the approach we define

• the model scoring function

ẑ(M) = ẑ(⟨X, f, g⟩) =

{
f(X), if g are satisfied

∞, otherwise

• the select scoring function

ŝ(M) = {M} according to the default solver node selection strategy

• the generating function

g({M}) = g(⟨X, f, g⟩) = ∪cut∈branch(x∗)(⟨X, f, g⟩ →
r
⟨X, f, g ∪ cut⟩)

with the branching variable x∗ selected according

x∗ = arg max
x∈X∖Xint

{h∗(Φ(x))}

Other works, for instance [HDIE14], employ h∗ for node selection, hence
replacing the select scoring function ŝ.

Heuristic bounding

The bounding procedure is of paramount importance during the resolution of
an optimization problem: the idea is to cut out regions of the feasible space
that do not contain the optimal solution to the problem at hand. This can
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have a massive impact on the computational performance of the resolution al-
gorithm. Finding an explicit formulation for a bounding function, or designing
an algorithm to compute it, is often impossible and bounding mechanisms rely
either on historical solutions or relaxations of the current problem.

Moreover, defining a bounding function can be seen both as an aid to the
resolution procedure, but also a tool to empirically evaluate the quality of
an optimization algorithm on newly introduced problem instances for which
no optimal solution is available and a compact and tight formulation is not
available.

In this sense, bounding functions can be used to evaluate actions before actu-
ally performing them. As an example, in [BL+18] a neural network is used to
estimate the improvement associated with variable cuts in order to select the
most promising one (in accordance with the predicted bounds). Alternatively,
a tree search process can be boosted by estimating a bound at each node via a
predictor; in [HTT20] a neural network is used to prune branches in a heuristic
tree search. This can dramatically speed up the solving process at the expense
of optimality. In [Nai+20], authors exploit a learner for neural branching in a
MIP problem; a trained deep network imitates a Full Strong Branching policy
(here they use the ADMM as the target policy). The MIP parameters are
embedded in a bipartite graph structure and fed to a Graph Convolutional
Networks to extract a node embedding: this latter serves as input to a MLP
that infers a bound on the current problem, imitating the way a primal heuris-
tic works. In [FF19; Pra+18] ML is used to predict the optimal solution value
of a problem instance, once the cost coefficients are known. Learning models
can be also employed to predict constraint satisfaction, as done in [XKK18].
On the same line of research, in [Sel+18] a learner based on Neural Networks
is exploited for predicting the satisfiability of SAT problems, using as a target
a single bit (0 if false, 1 if true). The architecture of the network is based on a
graph embedding, assuming each SAT problem to be formulated in Conjunc-
tive Normal Form; the architecture maps literals and clauses to nodes, linked
to each other to match the CNF of the input problem. Then a RNN is in
charge of taking care of the Message Passing between nodes, at each iteration.
The process is repeated until a general agreement between so-called ’voting’
nodes is reached and the problem’s output is clear. Although simple and not
competitive with SOTA SAT solvers, the learner is able to have an accuracy
of around 85% on SAT instances of the test set and moreover to retain a good
accuracy also on instances of bigger size and coming from different problems
(in fact, an advantage of the method is that any Boolean satisfiability problem
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can be reduced to CNF).

In general, exploiting a ML model for bounding requires extra care: the train-
ing data set is required to be representative of the instance population, and the
resolution process should pay close attention to eventual mispredictions. On
one hand, when the bound is overestimated, it could lead to cutting feasible
regions containing good (or optimal) solutions; in the case of underestimation,
instead, the bound will be impossible to reach.

A technique to overcome these problems is presented in [SG20]; the authors
introduce BION, a method for boundary estimation in constrained optimiza-
tion problems: the idea is to learn, starting from historical solutions, to infer
the value of the objective function. By enriching the instance features with
additional hand-crafted ones, the method can be extended to different models
and solvers, while the existence of a solution is guaranteed by introducing a
rollback mechanism in charge of relaxing the stricter constraints.

A novel framework for ML-based bounding is proposed in [Cap+21b], where
the authors combine Reinforcement Learning and Constraint Programming to
boost the resolution process of a COP. The idea is to encode a COP within a
Dynamic Programming framework by means of the Bellman equations, which
allows to formulate the problem in both RL and CP environments. First, the
agent is trained on randomly generated COP instances and then, during the
B&B resolution algorithm, bounds are added to the CP problem based on
the policy learned previously. This allows the author to solve complex COP
problems like the TSP with Time Windows and the 4-Moments Portfolio Opti-
mization. The approach can retain optimality and feasibility guarantees while
reducing the computational time and is competitive with SOTA algorithms.

Heuristic Bounding as a transition system

Suppose we have an estimated bounding function (or procedure) h∗; there
exist two main ways of exploiting it:

• Global bounding : predicting the optimal value associated to an instance
I to support and ease the model resolution by pruning unpromising
search trajectories

1. The optimal solution value for instance I is estimated by using a
trained machine learning model h∗

z∗ = h∗(I)
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2. A new constraint on the objective function f is added to the initial
model

⟨X, f, g⟩ →
r
⟨X, f, g ∪ {f(X) < z∗}⟩

This new constraint is considered by the generating function g that
will skip all models having an objective function greater than z∗.

• Local bounding : predicting whether to explore a given model state

1. When an optimization model M is generated by the generat-
ing function ĝ, the bounding estimator h∗ is queried to predict
whether to addM in the subsequent pool of open model states

g = h∗ ◦ ĝ
ĝ({M} = {M1,M2, . . . ,Mn}

h∗({M1,M2, . . . ,Mn}) = {M′
1,M′

2, . . . ,M′
ℓ}

Algorithm selection and parameters tuning

Machine learning can be employed to rank resolution algorithms from a port-
folio based on their expected success rate on a specific instance, in order to
select the best strategy given a task and its boundary conditions [Kot16] or
to promptly adapt algorithm parameters to the solution space currently under
evaluation [BB10]. With similar scope, in [Bal+18] the authors study algo-
rithm configuration via machine learning in the tree search context. More
precisely, they examine how to use machine learning to determine the optimal
weighting of branching policies in B&B contexts. An offline classifier is em-
ployed in [BLZ18] to predict the most suited resolution approach to quadratic
problems with the CPLEX solver. In this case, the classifier has to decide
whether to linearize or not the quadratic part of the problem, based on the
instance features.

Other works can be broadly classified in this category, although they do not
strictly deal with algorithmic tuning: for instance, learning models can be used
to provide hints to optimization problems. In [XQA21], the authors exploit a
parameter vector to provide a COP with additional features, used to represent
different aspects of the model to be solved, in particular: 1) the constraints to
be used, 2) potential warm-start configuration of variables and 3) affine space
where the solution is likely to lie. The method preserves the feasibility of the
obtained solution, although can lead to sub-optimalities or slow resolution;
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the idea is to learn recurrent features from historical solutions and use them
to boost future resolutions.

2.3 Hybrid methodologies

The methods presented in this Section are strictly connected with ML, except
for surrogate models. However, even if the scope of application is different,
the process of constructing a surrogate model is loosely related to the training
operation. For this reason, the schematic representation in terms of transition
systems results very similar for all of the methods we will present.

2.3.1 Surrogate models

In Section 2.2.1 we have seen different techniques to tackle the scenario in
which we need to devise an optimization problem but cannot model part of
the process. If we have access to labeled data we can train a machine learning
algorithm to emulate the real process. A similar situation can be found in
black-box optimization: as the name suggests, we deal with unknown processes
but have access to an oracle that can tell us the outcome for any given input.
In other words, we cannot look inside the black box, but we can control what
goes in and see what comes out. As a mere example consider simulation
programs that may consist of several nested operations and can take hours to
run, or quantities not having an analytical form as the results of numerical
computations.

Problems of black-box optimization can rely on different techniques, namely
heuristic methods, where queries to the oracle are guided by a heuristic algo-
rithm, or Derivative-Free Optimization (DFO). This latter deals with the fact
that, since we do not know the mathematical equations describing (part of) the
process, it results impossible to use any method that employs gradient-based
algorithms. An alternative solution is to use surrogate-based techniques to
learn a simplified algebraic model, that is the surrogate, via interactions with
the oracle. This is a modest but reliable shadow of the true underlying process
and will be used as an approximation of the original one. The fundamental
requirement is for such a model to be easy to optimize. More generally, the
method applies whenever part of the process does not have a closed form ex-
pression, although is mostly suited for computationally expensive cases. Surro-
gate models were initially conceived for unconstrained continuous optimization
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problems: constraints can be introduced either as restrictions on the domain
of the surrogate model or penalizing undesired regions.

Although similar to the standard ML techniques, surrogate-based methods
focus on the algebraic structure to deal with very low numbers of available
samples. The grounding idea is to have a controlled model that is used for lo-
cal search and iteratively refined during the process, on the basis of its perfor-
mances. Different strategies are characterized by the way the data are sampled,
i.e. the Design of Experiment (DOE), which requires a careful balancing be-
tween exploration of the domain region and computational tractability, and in
the algebraic form of the surrogate model. This latter is usually constructed by
summing up known functions, for instance, polynomials, Gaussian functions,
Radial Basis Functions (RBFs), and so on.

A very good introduction to surrogate models can be found in [Que+05], while
in [Vu+17] different methods are surveyed with a special focus on both the
sampling of the domain space and the construction of algebraic models; finally,
their application to black-box optimization problems is studied. In [CSM14],
the authors devise a regularization approach to reduce the complexity of mod-
els constructed as a linear combination of non-linear basis functions (polyno-
mials, transcendent functions, and so on). They resort to a model reduction
analysis, also known as the ”best subset problem” to find a subset of the
original basis functions that minimize a given goodness-of-fit measure while
reducing the number of basis functions used. Through mathematical reformu-
lations, they can cast it as a MILP problem, which allows them to consider a
large number (ca. 250) of basis components.

Surrogate Models as a transition system

We can depict the process of building and fitting (or training) a surrogate
model as follows:

1. The functional form of the surrogate is defined, along with its loss
function l (usually describing an error w.r.t. the target data)

⟨∅, ∅, ∅⟩ →
m
⟨θ, ℓ, ∅⟩ =M

2. The initial resolution state is then represented by

⟨M, C = ∅, b =M⟩
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Figure 2.4: Machine learning is used to boost the modeling phase of an opti-
mization problem in an End-to-End scheme.

3. A set of input examples are drawn from the domain, xi ∈ D and
the surrogate model is trained by means of a (sequence of) transitions
(→
s
→
g
→
z
)N as done with learning models.

4. The model is updated by sampling new points in correspondence to
the most promising areas. This is very similar to the description of
supervised learning as a transition system, given in Section 1.3.1, but
the data sampling process implies an additional modification to the
objective function ofM.

2.3.2 Task-Based Learning

The methods seen in Section 2.2.1 treat learning and optimization as com-
pletely separated processes: first, we train the machine learning model on a
given task, then we embed it into the optimization problem and solve the
latter, which results in a two-stage process.
However, keeping two phases completely independent of each other is not al-
ways a good practice, for the learning and optimization phase could be guided
by different loss functions, which eventually leads to poor overall performances.
A solution that has recently been proposed is that of pulling together learning
and optimization in an end-to-end scheme, as depicted in Figure 2.4: as before,
the learner is used to model unknown relations or parameters on which the op-
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timization problem depends. However, and here lies the novelty, the learner is
not pre-trained on a given dataset and then embedded in the optimization, but
is trained on-the-fly during the resolution process, computing the loss on the
optimization results it induces: this is done by back-propagating the loss of the
objective function up to the original source, that is the learning model. The
approach is radically different from the usual two-stage one and is grounded
on the intuition that, when used in a larger process, we are not seeking the
most accurate learning models, but those producing the overall best solutions,
evaluated with respect to the objective function of the decision problem. That
is, we evaluate the models on the final objective function of the process, which
can correspond to a sub-optimal learner configuration.

The methodology is usually referred to as task-based learning or decision-
focused learning and a seminal concept can be found in [Ben97]. A first
application of the method in the context of stochastic programming can be
found in [DAK17], in [WDT19] it is extended to combinatorial problems such
as linear programming and submodular maximization; both works make use
of the KKT condition to differentiate through the argmin operator of the pre-
scriptive problem (provided the constraints are differentiable!). In [Fer+19] a
framework for general MIP problems is proposed: the idea is to deal with inte-
grality constraints by generating cutting planes - as in the usual branch-and-
bound algorithm - until the corresponding LP relaxation is integer; then the
algorithm proposed in [WDT19] is applied. Another approach for task-based
learning is proposed in [EG17], where the predictor is in charge of producing
the costs associated with a linear objective function: the authors introduce a
convex surrogate loss function to overcome the problem of a discontinuous loss
function, which allows them to tackle any convex or MIP problem with a linear
objective function. By explicitly computing the gradient of such loss function,
they can employ a gradient-based method for solving the whole problem.

Note that task-based learning is usually done by hand-crafting a problem spe-
cific surrogate loss function that is convex and differentiable. This recalls what
is done in optimization with heuristic approaches and shares the same prob-
lems: it might require an expert hand a considerable amount of effort to craft
the proper surrogate function. In [Che+19] the authors tackle the problem of
crafting a surrogate task-based loss function and propose an algorithm to learn
it from the true task loss, instead of modeling it. [Pau+21] extend the idea of
embedding COPs within a neural architecture to Integer Linear Problems: the
backward pass is computed by differentiating through a proper proxy function
that embeds both the integrality constraints and the problem specifics. This
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makes it possible to extract ILP parameters, such as costs and constraints, as
higher-level features from data, while using the network to directly output the
solution to the combinatorial problem. The methodology is tested on synthetic
datasets, a knapsack problem, and a keypoint matching problem, proving to
be superior to any method relying on LP relaxation.

Task-Based Learning as a transition system

In task-based learning, we aim at training a machine learning model that will
eventually be used to define some components of an optimization problem.
With respect to standard ”Predict, then Optimize” methods, where training
and optimization phases are independent of each other, these approaches are
characterized by a training process that now takes into account the solution
of the model induced by its current parameters.

1. First a model state is defined by initializing the learner’s parameters

⟨∅, ∅, ∅⟩ →
m
⟨θ, ℓ, ∅⟩ =M

2. The initial resolution state is defined

⟨M =M, C = ∅, b =M⟩

3. The learner parameters are optimized by the (→
s
→
g
→
z
)N sequence of

transitions in which

ŝ(M) =M
ĝ(M) =M′

ẑ(M) = min(−l(θ),−l(θ′))

where M ′ = ⟨θ′, ℓ, ∅⟩ is a minimization problem and θ′ is defined by
a gradient descent application dependant on the resolution of an op-
timization problem P = ⟨X, f(X, θ), g(X, θ)⟩ by means of a (→

s
→
g
→
z
)∗

inner resolution process starting from ⟨M = P,C = ∅, b = P⟩

4. The model produces an instance of the optimization problem and its
solution used to refine the learner’s parameters
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Figure 2.5: Machine learning is used to entirely replace the usual optimization
scheme and directly output the solution to the COP.

2.3.3 End-To-End Learning

When a combinatorial problem is NP-hard, it often becomes prohibitive to
solve it with exact methods: the resolution time can be impractical for the
problem to be of any use, therefore it is often handled via heuristic search
procedures.

Many authors have been studying if, and how, the heuristic search can be
replaced with automatic learning methods: the underlying idea is to leave to
the learner the task of devising an effective search procedure and then use it to
output an entire solution, in an end-to-end fashion, as sketched in Figure 2.5.
This has a double advantage over handcrafted heuristics: the agent might be
able to capture the problem’s structure more efficiently than an expert and it
can adapt when the problem’s boundary conditions change. In fact, one of the
recurrent problems with heuristic methods is their scarcity of generalization,
which makes them very problem-specific; this can be partly mitigated by means
of meta-heuristics and hyper-heuristics algorithms, however, it results hard to
balance the trade-off between generalization and accuracy of the methods.

When it comes to End-To-End Learning, the most preferred paradigm is that
of Reinforcement Learning. There is an important aspect behind this precise
choice: supervised learning needs labeled data to be trained. In the case of a
combinatorial problem, each example of the training data set corresponds to
an optimal solution; however, it could happen that we cannot afford to com-
pute the exact solutions to NP-hard problems, or it is too expensive to retrieve
enough solutions for a deep, highly parametric learning model to be properly
trained. Thus, the paradigm of reinforcement learning comes in handful: we
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just need to formulate a proper reward function to rank each of the agent’s
possible actions and a policy to choose among them. The former is straightfor-
ward in our case, as we can simply use the objective function of the problem.
Furthermore, once the reinforcement learning environment is set up, we can
allow the learner to explore all the configuration space, rather than feeding it
with a (small and) finite set of solutions, as in the case of supervised learning.
Another advantage of reinforcement learning over supervised learning is that
we are able to devise novel, and possibly competitive, solutions rather than
replicating the results of known algorithms.

A seminal work was first proposed in [Bel+16], where the authors face the Trav-
elling Salesman Problem (TSP) in two dimensions. The approach is grounded
on Pointer Networks [VFJ15], a neural architecture introduced to deal with
outputs of variable size and used for combinatorial problems in a supervised
learning setting. In pointer networks, sequence modeling is blended with an
attention mechanism; the latter is in charge of selecting the next element of the
output sequence from the input one and can thus be applied to problems with
discrete variables and different input sizes. In [Bel+16], the authors rely on
learning a policy with the REINFORCE algorithm to choose the order of points
to visit, such that the overall tour length is minimal. The policy is learned
through an actor-critic dual network, where the latter is used in the REINFORCE
algorithm to estimate the tour length for a given policy. The results improved
with respect to the supervised learning baseline [VFJ15] and achieved solu-
tions close to optimality for instance with up to 100 nodes, with performances
decaying with the increasing of the number of nodes.
In [Naz+18], the authors replace the encoder used in Pointer Network, a Re-
current Neural Network, to get a sequence-invariant embedding of the inputs
and tackle the Vehicle Routing Problem with split deliveries and a stochastic
variant. The same approach is investigated in [KVHW18], with the authors
improving the learning algorithm and network architecture: the encoder takes
care of embedding the input graph by means of a Multi-Head Attention mecha-
nism and the decoder is fed with an additional context embedding to represent
the different instance features. They extend it to two variants of the Vehicle
Routing Problem (VRP) and can improve against previous results. A very
similar architecture is used in [Deu+18] and applied to TSP instances.

A different approach, specifically intended for combinatorial problems defined
over graphs, is proposed in [Dai+17]. They design an algorithm that com-
bines reinforcement learning and graph embedding to learn a greedy policy
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that iteratively builds a feasible solution. In contrast to sequence-to-sequence
approaches [VFJ15], the solution will be constructed by adding one element
at a time by greedy selecting the most promising node to add to the current
solution. The graph embedding is represented by a non-linear propagation be-
tween neighboring sites, entrusted to a neural network named structure2vec

[DDS16]. The method is applied to a range of combinatorial problems over
graphs such as Minimum Vertex Cover, Maximum Cut, and TSP and outper-
forms standard heuristic and sequence-to-sequence approaches.

These works require in general thorough crafting but have the potential of
scaling to different instances and, even more interesting, to different instance
sizes.

Following [Dai+17], many works focused on Graph Neural Networks [Sca+08]
to deal with COP data: as the name suggests, this architecture is explicitly
made to deal with graph-like inputs. the idea is to associate to each node
of the graph a vectorial representation and, by means of neural connections,
represent the graph topology by stacking network layers. A GNN is then
made of several layers and each of them aggregates the local information of
a node’s neighbors. Here we list just a few of the many recent works that
explored this novel area, while we redirect the interested reader to the good
survey [Cap+21a] that specifically reviews the use of GNN in COP and how
the former can be employed to aid the resolution, but also explore algorithmic
reasoning with GNNs, i.e. introducing in the network’s structure or learn-
ing paradigm concepts from classical algorithms to bias the learning process
towards known structures. One of the initial works in the field of reasoning
with GNN is [Xu+19], showing how GNNs architectures align with Dynamic
Programming, a language that can represent most of the combinatorial algo-
rithms. The algorithmic alignment seems an important feature for the learned
reasoners to work well in extrapolation regime.

[Ma+19] introduces Graph Pointer Networks, which inherits the architecture
of Pointer Networks with an additional graph embedding layer on the input.
The idea is to feed all the node coordinates of the problem to a Graph Neural
Network, instead of a single point, to produce a vector context that contains
much richer information; this extends the original Pointer Network structure
to comprehend the full graph feature. In addition to this structure, the authors
use a hierarchical methodology to gradually learn the final probability distri-
bution over the nodes; the idea is to define different learning policies, with the
lowest providing constraint satisfaction, and the highest refining the solution
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to minimize the true original loss function: the original hard constraints are
relaxed ad added as penalty terms in the objective function. By combining the
GPN architecture with reinforcement learning, the authors are able to solve
the TSP with Time Windows and also scale to instances with bigger sizes at
inference time.

In [JLB19], the TSP problem is tackled by means of a non-autoregressive
approach based on a neural network that outputs a heatmap over the edges to
be used in the solution of the COP. This latter is combined with a heuristic
search procedure (greedy or beam) to produce a valid solution. The learner
architecture is based on a Graph Convolutional Network, which is fed with
the encoded graph instance and has a MLP on the output, to convert the
edge/node embeddings into the corresponding probability. The loss function is
constituted by a (weighted) binary cross-entropy, using as a reference the exact
solution to the TSP problem and having non-zero values in correspondence
with the used edges.

In [Dro+20], the authors first define a unified framework for graph COP, by
means of line graphs; the latter is the dual of a graph, obtained by switching
its vertices with edges and vice versa. This allows using the same learning
paradigm to deal with different COPs, i.e. the VRP, the Minimum Spanning
Tree (MST), and Shortest Path (SSP). The learner is constituted by a Graph
Attention Network (see [Vel+17]) and trained via Reinforcement Learning in a
Single Player Games fashion (searching the tree representing all possible solu-
tions to the problem), in the classic encoder-decoder scheme, with an attention-
based decoding scheme. In this way, the network provides probabilities over
the embedded graph nodes, which are then passed to a greedy selection policy.
The results show competitive performance with SOTA heuristic algorithms
as well as an overall improvement with respect to other End-To-End learning
schemes, with the method being able to generalize to different COPs and also
to different instance scales.

Other works include [Lem+19], where a GNN is employed to solve the Graph
Coloring Problem, in [YP19] a RL scheme is employed to learn a SAT solver
heuristic from scratch with curriculum learning (training on instances of in-
creasing difficulty).

We can depict the general structure of End-To-End learning methods as shown
in Figure 2.6 and distinguish them on the basis of the different sub-tasks that
are usually employed.
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Figure 2.6: General architecture of the End-To-End learning schemes: a graph
instance is passed to an encoder to obtain a suitable graph embedding. A de-
coding scheme acts on the embedding and is coupled to a generating algorithm
to output the complete solution.

End-To-End Learning as a transition system

Reinforcement learning can be employed to learn the best policy to solve an
optimization problem, once the objective function is given. The policy is then
used to construct the solution associated with any instance and acts, in fact,
as a constructive algorithm. In the examined works, the points of contact
between machine learning and optimization can be summarized in two key
concepts:

• Encoding/decoding of the combinatorial structure of the solution: this
can be done by means of ad-hoc embedding algorithms (structure2vec,
graph embedding) or learning models (pointer networks, attention mod-
els)

• The reward function takes into account the true objective function of
the combinatorial problem to identify the best policy; this latter is
used to compute the solution associated with any instance and its cor-
responding loss ℓ̃.

In the transition system framework, these methods can be described in a very
similar way to task-based learning, with an initial model state

⟨∅, ∅, ∅⟩ →
m

〈
θ, ℓ̃, ∅

〉
=M

in which the loss function is ℓ̃ and can describe either supervised or reinforce-
ment learning algorithms. For instance, in the case of [KVHW18], the learner
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is composed of a multi-head attention encoder coupled with a decoder built
upon recurrent neural networks. The model’s parameters are updated via the
REINFORCE algorithm, which provides a gradient estimator given a baseline
b(s), given an instance s:

∇ℓ(θ|s) = Epθ [(L(π)− b(s))∇ log pθ(π|s)]

and the gradient update is

θ′ = Adam(θ,∇ℓ)

Category Training Method Encoding Decoding Generator Applications
AR Supervised [VFJ15] LSTM LSTM + Attention Greedy TSP

RL [Bel+16] LSTM LSTM + Attention Greedy TSP, Knapsack
RL [Dai+17] Structure2Vec Q-learning Greedy TSP, MaxCut, MVC
RL [Naz+18] D-dim embedding LSTM + Attention Greedy VRP, CVRP
RL [KVHW18] Multi-Head-Attention LSTM + Attention Greedy TSP, OP, PCTSP
RL [Deu+18] Multi-Head-Attention LSTM + Attention Greedy TSP
RL [Ma+19] GNN + Attention LSTM + Attention Hierarchical RL TSP, TSPTW
RL [Dro+20] GNN + Attention RNN + Attention Greedy TSP, MST, SSP

Non-AR Supervised [JLB19] GCN MLP Beam Search TSP
Non-AR Supervised [Now+17] GNN - Beam Search QAP

Table 2.2: End-To-End methods classified by category (AutoRegressive or not),
training algorithm and components, as sketched in Figure 2.6

.

2.4 Common Themes

The methods presented in this Chapter span a diversity of situations, both for
the type of learning algorithm employed and the interaction with the resolution
process. However, we can identify some common traits that permeate the field
of integration between Machine Learning and Constrained Optimization.

Modelling Hints Learning models can be used to extract inner representa-
tions that can be used to gain insights on the problem structure and charac-
terize novel heuristics. This is especially true for methods employing RL, for
the policy optimization process is agnostic of the problem resolution methods,
but guided solely by the reward function. The learned heuristic policy can
thus exploit structures of the problem that were not known before. On the
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other hand, algorithms based on Imitation Learning are implicitly aware of the
resolution methods, for these are employed to generate the solution on which
the learners are trained.

Generalization Supervised learning models are trained on a subset of the
configuration space corresponding to the training set D; this may cause trou-
bles when the learner is integrated within a COP, for the latter usually entails
a complete exploration of the feasible space. For this reason, devising a proper
test set to evaluate the performance of the learned heuristic requires extra care-
fulness and yet does not guarantee the same performances will be preserved
during the optimization process.

Optimality The feasibility of solutions generated by learning algorithms
is usually impossible to guarantee from a theoretical point of view. This is
especially true for methods employing ML to produce complete solutions for
the COPs. The drawback can be partially mitigated, or completely avoided,
when the output of the learner is employed within the resolution process but
the latter is carried on by a solver.

Scaling Learning models show high computational demand for training,
both in terms of computational power and resources needed to generate the
instances. However, their generalization capability may not compensate for
the effort. The novel methods (i.e. RL for COPs) that have appeared brought
unprecedented results, that were inconceivable before; however, their extension
to more complex problems, larger instance sizes, or even real-world scenarios
already seem out of reach. For example, consider the results on the resolution
of TSP: they have been successfully extended to more complex variations of
the problem, such as the VRP, OP, and CVRP. However, graph sizes of a few
thousand nodes are already very challenging for such methods, while being
standard if not small size for real-world instances (and we are disregarding the
constraint aspect).

2.5 Conclusions

In this Chapter we reviewed several methods in the field of integrating learning
methods in COPs; although research is at a very early stage, promising results
and expected potentialities are driving an intense research work. This survey
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is not exhaustive and surely misses many works (also due to the ever-increasing
number of publications in the sector), however, tries to give a classification of
the methods according to the integration aim, together with a methodological
description of how such integration is carried out and affects either the mod-
eling or the resolution phase of an optimization process.

The research direction that has received more attention in the last years is
probably the one we classified as hybrid algorithms ; these novel methods dis-
rupt the traditional COP distinction between modeling and solving phases but
instead combine them together. In particular, methods exploiting Reinforce-
ment Learning are considered very well-suited to deal with COP because of
the easy identification of the policy reward with the problem objective function
and the possibility to fully exploit computational resources in an end-to-end
training scheme, rather than restricting to an offline generated data set. As
seen before, this comes at the cost of potentially complex hand-crafted repre-
sentations of feasible solutions. On the other hand, algorithms based on Imi-
tation Learning, despite being the first to appear, present several limitations
that have to be taken into account, for instance, their generalization capability.

A further promising direction is that of using ML to replace heuristic choices
within the resolution process of COPs. This doesn’t undermine the optimality
and feasibility guarantees of the resolution process while having the potential
to boost the computational performance and devise more efficient algorithms.
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Chapter 3
Moving Targets

This chapter introduces Moving Targets, an algorithm conceived to inject
constraints into Machine Learning models by coupling the training process
together with a Constraint Optimization solver. This latter acts in fact as a
validator of the learner and evaluates it on the basis of its predictions.
The training phase of the predictor is guided by the validator, which adjusts
the targets against which the predictor is trained, thus dynamically driving it
towards the feasible region but retaining the two problems independent of each
other. Unfortunately, the bi-level optimization setup lacks theoretical conver-
gence guarantees, except for simple scenarios. Thorough experiments will try
to compensate for this shortcoming, together with a comparison with well-
known methods; this chapter contains results published in [DLM21]. Our code
and results are publicly available at github.com/fabdet/moving-targets.

3.1 Motivation

The possibility of dealing with constraints in Machine Learning (ML) would
add enormous value to the field and has the potential to address outstanding
issues in data-driven AI methods. Constraints can be seen as mathematical
representations of external knowledge that can be used to boost the perfor-
mance of a ML model. This, coupled with the expressiveness and flexibility
that constraints are capable of, opens the way to a more controlled, robust,
and user-tailored AI.
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For example, constraints representing physical laws can be employed to correct
misbehavior but also to improve the generalization capability of the learned
model by biasing its behavior in extrapolation regime; they can encode known
patterns among the data (e.g. excluded classes) or relational information be-
tween multiple examples. Furthermore, constraints can be used to guarantee
the satisfaction of required properties, such as fairness, safety measures, law-
fulness, and so on. They can even be used to extract symbolic information
from data.
As a mere example, consider the case of a physical system that is partially
known (e.g. we know the physical laws between some variables): a data-
driven model could be able to correctly interpolate the relation between the
observed data, but it is very likely that will fail as we move further from the
training set distribution. However, since we know how some of the variables
are related, we can force the model to be consistent with the physical laws by
superimposing these latter as constraints.

However, the high flexibility that can be expressed via constraints often comes
with a high cost: this external knowledge has to be injected into learning
techniques. The vast majority of approaches to deal with it in ML make
assumptions that either restrict the type of suitable constraints, usually dif-
ferentiability and no relational information, the type of models, for instance,
Decision Trees or gradient-based learning models, and often force modification
in the employed training schemes (e.g. specialized loss terms).

In this Chapter, we propose a decomposition-based method, that we callMov-
ing Targets, to enable supervised learning with constraints. In our bi-level
optimization scheme, a master step “teaches” constraint satisfaction to a learn-
ing algorithm by iteratively adjusting the sample labels. This indirect com-
munication guarantees that master and learner have no direct knowledge of
each other, which provides several advantages: 1) any ML method can be used
for the learner, off the shelf, and without further modifications; 2) the master
can be defined via techniques such as Mathematical or Constraint Program-
ming, to support discrete values or non-differentiable constraints, but can also
be replaced by heuristic algorithms. Our method is well suited to deal with
relational constraints over large populations (e.g. fairness indicators), as the
experiments show. Moving Targets subsumes the few existing techniques –
such as the one by [KC09] – capable of offering the same degree of versatility.

As will be clear in the subsequent sections, our approach prioritizes constraint
satisfaction over accuracy. For this reason, it is not well suited to deal with
fuzzy information or unreliable constraints. Moreover, due to the very open
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setting of Moving Targets, convergence properties are very hard to be
established.
However, due to its combination of simplicity, generality, and the observed
empirical performance, Moving Targets can represent a valuable addition
to the arsenal of techniques for dealing with constraints in Machine Learning.

3.2 Problem Statement

We restrict to the case of supervised learning, where labeled data is available
and the training process consists of minimizing the empirical loss function over
the training data set (see Section 1.2.2). In the presence of constraints, we can
represent the latter via a feasible set C, such that the original optimization
problem can be formulated as follows:

argmin
θ
{L(y, y∗) | y = f(X; θ), y ∈ C} (3.1)

where f represents the ML model and θ its parameter vector. With some abuse
of notation, we refer as f(X; θ) to the vector of predictions for the examples in
the training setX. Since the model input at training time is known, constraints
can be represented as a feasible set C for the sole predictions y. Let L(y, y∗)
be the loss function, where y is the prediction vector and y∗ is the label vector.
We make the (non restrictive) assumption that the loss is a pre-metric – i.e.
L(y, y∗) ≥ 0 and L(y, y∗) = 0 iff y = y∗. Examples of common loss functions
can be found in Table 3.1.
The problem described by Equation (3.1) is generally difficult to tackle, except
for simple cases. An exact resolution would require the use of methods from
Constrained Optimization (Section 1.2.1), however, this has poor outcomes
because 1) the learning function could be non-linear, which makes the opti-
mization problem really hard and 2) we need to model this function for each
example of the training set, that can result in many thousands of constraints.
Both factors contribute to yield the constrained learning problem intractable
with standard techniques.

3.3 The Algorithm

Our objective is to find a solution to Equation (3.1), which boils down to
finding the best parameters θ of a ML model. We acknowledge that any
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Loss Function Expression Target Space

Mean Squared Error
1

m
∥y − y∗∥22 Rm

Mean Absolute Error
1

m
|y − y∗| Rm

Hamming Distance
1

m

m∑
i=1

I[yi ̸= y∗j ] {1..c}m

Cross Entropy
1

m

m∑
i=1

c∑
j=1

y∗ij log yij [0, 1]m

Table 3.1: Notable loss functions for the Supervised Learning problem (m is
the number of examples and c the number of classes)

constrained learning problem must trade prediction mistakes for a better level
of constraint satisfaction, for the feasible region C will inevitably affect the
solution space. We attempt to control this process by carefully selecting which
mistakes should be made. This is similar to [KC09; KC12; LRT11], but: 1)
we consider generic constraints rather than focusing on fairness, and 2) we
rely on an iterative process (which alternates “master” and “learner” steps) to
improve the results.
The problem described by Equation (3.1) can be rewritten without loss of
generality by introducing a second set B corresponding to the bias of the
learning model. This leads to a formulation that is entirely expressed in label
space:

argmin
y
{L(y, y∗) | y ∈ B ∩ C} (3.2)

where B = {y | ∃θ, y = f(X; θ)}.
The Moving Targets method is described in Algorithm 1, and starts with a
learner step w.r.t. the original label vector y∗, that we term pretraining. Each
learner step, given a label vector as input, solves approximately or exactly the
following problem:

l(z) = argmin
y
{L(y, z) | y ∈ B} (3.3)
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Algorithm 1 Moving Targets

input label vector y∗

scalar parameters α, β, n
1: y1 = l(y∗) ▷ pre-training (Equation (3.2))
2: for = 1..n do
3: if yk /∈ C then
4: zk = mα(y

k) ▷ infeasible master step Equation (3.4))
5: else
6: zk = mβ(y

k) ▷ feasible master step Equation (3.5))
7: end if
8: yk+1 = l(zk) ▷ learner step (Equation (3.2))
9: end for

Note that this is a traditional unconstrained learning problem since B simply
represents the model and/or algorithm bias. The result of the first learner step
gives an initial vector of predictions y1. In other words, the vector y1 is the
result of training the ML model f on the data set X.
Next comes the master step to adjust the label vector: this can take two forms,
depending on the current predictions.

• In case of infeasibility, i.e. yk /∈ C, we solve:

mα(y) = argmin
z

{
L(z, y∗) +

1

α
L(z, y) | z ∈ C

}
(3.4)

Intuitively, we try to find a feasible label vector z that is close (as mea-
sured by the loss function) to both the original labels y∗ and the current
prediction y. The parameter α ∈ (0,∞) controls which of the two ex-
tremes should be preferred.

• In case of feasibility, i.e. yk ∈ C, we instead solve:

mβ(y) = argmin
z
{L(z, y∗) | L(z, y) ≤ β, z ∈ C} (3.5)

i.e. we look for a feasible label vector z that is not too far from the
current predictions (e.g. in the ball defined by L(z, y) ≤ β) and closer
(in terms of loss) to the true labels y∗. When the current prediction
vector satisfies the constraints, we seek an accuracy improvement within
the feasible region C.

55



3. Moving Targets

Figure 3.1: Sketch of the Moving Targets process: the prescriptive model
acts as a validator of the current learner predictions and acts on the data by
moving the target labels. These latter are then fed again to the learner until
convergence or a stopping criterion is met.

After the master step, we proceed to a novel learner step trying to reach the
adjusted labels; the new predictions will be adjusted at the next iteration, and
so on. In the case of convergence, the predictions yk and the adjusted labels
zk become stationary (but not necessarily identical). An example run, for a
Mean Squared Error loss and convex constraints and bias, is in Figure 3.2,
while the process behind Moving Targets is sketched in Figure 3.1.

3.4 Analysis and Convergence

A crucial aspect of any algorithm is given by its convergence behavior: in
theory, we’d require any algorithm to have solid theoretical convergence guar-
antees, however, a thorough demonstration often becomes impractical. In the
case of Moving Targets major difficulties arise because of the bias set B,
which is often non-convex, and the discrete domain when it comes to classi-
fication problems. In this section, we will first review the main properties of
the algorithm and then move to some important yet qualitative observations
about its convergence features.
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y*

B

y1

z3...z2/y3...

Figure 3.2: Example run of the algorithm: the pre-training step from y∗ to y1 is
followed by a (infeasible) master step mα from y1 to z1; then a learner iteration
brings the predictor from y1 to y2 and is followed by a (feasible) master step
mβ, from y2 to z2. The process continues until convergence is achieved, or a
maximum number of iterations is reached.

3.4.1 Properties

The learner is not directly affected by the constraints, as expressed in Equa-
tion (3.3), thus enabling the use of arbitrary ML approaches without any
modification. In the same way, the master problem does not depend on the
structure of the ML model but uniquely on its predictions, often leading to
clean structures that are easier to solve. For this reason, the master step
can be addressed via any suitable solver, so that discrete variables and non-
differentiable constraints can be tackled via (e.g.) Mathematical Programming,
Constraint Programming, or SAT Modulo Theories. Notice that, depending
on the constraints, the loss functions, and the label space (e.g. numeric vs
discrete) the master problems may be NP-hard. Even in this case, their clean
structure may allow for exact solutions for data sets of practical size. More-
over, for separable loss functions (e.g. all those from Table 3.1), the master
problems can be defined over only the constrained examples, with a possibly
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significant size reduction. When scalability becomes a concern, the master
step can be solved in an approximate fashion.

3.4.2 Convergence

Due to its open nature and minimal assumptions, establishing the convergence
properties of our method is hard. Here we provide some considerations and
connect the approach to existing algorithms. First, we make the simplifying
assumption that the learner problem from Equation (3.3) can be solved exactly.
This holds for a few cases (e.g. convex ML models trained to close optimal-
ity), but in general the assumption will not be strictly satisfied. Observe that
solving Equation (3.3) to optimality is usually undesired from a ML perspec-
tive, for it could lead to overfitting on the training data, while it is generally
preferred to keep the model less biased to increase its generalization capabil-
ity over unseen data. Observe also that Equation (3.2) simply corresponds
to the Best Approximation Problem (BAP), which involves finding a point in
the intersection of two sets (in our case the bias set B and the constraint set
C) that is as close as possible to a reference point (the true label y∗). For
closed convex sets in Euclidean spaces, the BAP can be solved optimally via
Douglas-Rachford splits or other methods relying on projection operators, as
described in [AC18]. Moreover, notice that our learner, equipped with a loss
function that is a pre-metric, corresponds to a projection operator on B; then
it would seem reasonable to couple the learning step with a projection oper-
ator onto the feasible set C to retrieve the aforementioned methods together
with their convergence properties. Unfortunately, we cannot reliably assume
convexity of the bias set B and we do not work solely in continuous space;
in a discrete space, the Douglas-Rachford splits may lead to “label” vectors
that are meaningless for the learner (in other words, they do not belong to the
original discrete label space).

We, therefore, chose a heuristic design that may appear less elegant in the
form and doesn’t come with convergence guarantees but results less sensitive
to which assumptions are valid, therefore more suitable for our general-purpose
approach. In particular:

1. in the mα step, we use a modification of a suboptimal BAP algorithm
to find a feasible prediction vector: it is suboptimal because the training
process can be carried out with heuristic methods, and modified for it
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doesn’t directly point to the projection of the original labels y∗ onto the
intersection B ∩ C;

2. in mβ we apply a modified proximal operator to improve its distance (in
terms of loss) w.r.t. the original labels y∗.

For reasonable α values, our mα steps balances the distance (loss) from both
the predictions yk and the targets y∗. Convergence, in this case, is an open
question, but especially in a non-convex or discrete setting (where multiple
projections may exist), this modification helps escape local minima and accel-
erate progress. The behavior for a few values of α is depicted in Figure 3.3 for
continuous labels and MSE loss.
When a feasible prediction vector is obtained, our method switches to the mβ

step; we then search for a point in C that is closer to the true labels, but also
not too far from the predictions. This is related to the Proximal Gradient
method, discussed e.g. in [PB+14], but we limit the distance via a constraint
rather than a squared norm, and we search in a ball rather than on a line. As
in the proximal gradient, a too large search radius prevents convergence: for
β → ∞ the mβ step always returns the same adjusted labels, corresponding
to the projection of y∗ on C set.

3.4.3 Comparison with other methods

We compare our method to other algorithms with known convergence proper-
ties and sketch alternative methods to constrained ML.

• Alternating Projection: in the limit α → 0 the infeasible master
problem mα(y

k) becomes

zk = argmin
z
{L(z, yk) : z ∈ C}

which is exactly a projection of yk onto C, for the loss function is a
pre-metric. Recall that the learning step, when solved to optimality,
corresponds to either a projection of the target labels zk onto the ML
bias set B, when zk /∈ B, or the identity operator. In the first case,
this is very similar to the Alternating Projection (AP) method [BD+03],
where, as the name suggests, we alternate projection on two sets. The
grounding idea is that at each projection we get closer to the point of
minimal distance between the two sets. The method is proved to converge
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y*

B
y1

z1 (⍺→0) 1

Figure 3.3: Effect of α in the infeasible master step when the target labels are
continuous and the loss function is the MSE: for α→ 0, the infeasible master
problem mα becomes a projection of the current predictor output yk onto the
feasible region. Conversely, when α → ∞, mα becomes a projection of the
true target y∗ onto the feasible region C.

if the two sets are convex (also in the case their intersection is null). To
compare with the AP method, we pick our sets to be the feasible region
C and the model’s bias region B: in most cases, C is convex but B does
not, as is the case with neural networks. The AP algorithm is sketched
in Figure 3.4.

• Preprocessing: in the limit α→∞ we obtain essentially a pre-processing
method as the one introduced in [KC09]: mα becomes a projection of
the true labels y∗ on C, and subsequent iterations have no further effect;
convergence to a feasible point is achieved only if the pre-processed labels
are in B, which may not be the case (e.g. a quadratic distribution for a
linear model).

• Proximal Point: the Proximal point (PP) method belongs to the fam-
ily of proximal algorithms, described in [PB+14], and generalizes the
concept of projection. A proximal point is defined as

z = proxλf (x) = argmin
ξ

{
f(ξ) +

1

2λ
||x− ξ||22

}
where the parameter λ controls the cost to pay to move from x and f
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y*

B
y1

z*

Figure 3.4: The behavior of the Alternating Projections method (continuous
labels, MSE); just the first projections are depicted in the figure: when both
sets B and C are convex, and B ∩C ̸= ∅, the algorithm is proved to converge
to z∗ = argminz∈B∩C L(z, y∗).

is the function to be minimized. We can recover a projection by taking
f as the indicator function over the set C, e.g the indicator function
IC(y) = 0 if y ∈ C and infinite otherwise. In this case, the previous
equation becomes

zk = proxλIC (y
k) = argmin

ξ

{
||yk − ξ||22 | ξ ∈ C

}
This corresponds to the Euclidean projection onto the feasible set when
ξ /∈ C; conversely, it coincides with the identity operator. For this rea-
son, proximal algorithms can be viewed as generalized projections. The
method is guaranteed to converge as long as f is a closed proper convex
function. The master step mβ is similar to a proximal algorithm in the
sense that we minimize the loss function but restrain to the radius of the
ball specified by the parameter β.

• Data Augmentation: instead of solving Equation (3.1), we can provide
the learner with additional synthetic data representative of the external
knowledge and train the model as always. The idea is to bias the ML
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model by directly acting on the train set: the advantage is that the
learning phase remains unaltered, at the cost of the data manipulation
(generating artificial data can be expensive and lead to undesired biases).
We can express the method as:

h∗ = argmin
h∈H
{L(y∗, h(x)) + L(y′, h(x′))}

where we use apices to denote synthetic data and data are generated
such that y′ ∈ C.

• Regularization techniques: regularization techniques are inspired by
penalty methods in Constrained Optimization [Ber75]. The regulariza-
tion term is usually added to the loss function as a penalty term so that it
favors the preferred variable configurations, but it has to be crafted care-
fully to retain a good balance between bias and accuracy of the model.
In other terms, by adding a penalty term to the loss function we are
moving its minima in the desired direction, which is exactly the trade-off
between accuracy and bias. The original problem formulation becomes:

h∗ = argmin
h∈H
{L(y∗, h(x)) + Lρ(y

∗, h(x))}

where Lρ indicates the penalty term.

3.5 Experimental Results

In this Section we describe our experimentation, which is designed around a
few main questions:

1. How does the method work on a variety of constraints, tasks, and data
sets?

2. What is the effect of the α, β parameters?

3. How does the approach scale?

4. How different is the behavior with different ML models?

5. How does the method compare with alternative approaches?

6. How does the method behave in the long run?

In the following, we will try to give an answer to each question by means of
appropriate experiments.
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3.5.1 Tasks and Constraints

We experiment on three case studies, both for the classification and regression
scenarios. First, we consider a (synthetic) classification problem augmented
with a balance constraint, which forces the distribution over the classes to be
approximately uniform: this constraint clearly represents a forcing over the
original data distribution, but the resulting scenario is well suited to check our
algorithm. The classification setting will then be used together with a fairness
constraint: this is a realistic constraint that forces the outcome of the predictor
to be unbiased with respect to some protected attributes. The third example
will involve a fairness constraint in a regression scenario.

Classification

Both experiments will use the Hamming distance (accuracy) (see Table 3.1) as
a loss function; the choice to measure accuracy with the Hamming distance,
in place of the more popular cross-entropy, is partially due to computational
reasons; this metric is indeed a relaxation of the cross-entropy in the case of
binary labels. The target space is {1..c}m and the mα(y) problem is formu-
lated as a Mixed Integer Linear Program (MILP) with binary variables zij,
such that zij = 1 iff the adjusted class for the i-th example is j.

Infeasible master step mα(y):

min
1

m

m∑
i=1

(1− zi,y∗i ) +
1

αm

m∑
i=1

(1− zi,yi) (3.6)

s.t.
c∑

j=1

zij = 1 ∀i = 1..m (3.7)

m∑
i=1

zij ≤
⌈
(1 + ξ)m

c

⌉
∀j = 1..c (3.8)

zij ∈ {0, 1} ∀i = 1..m, j = 1..c (3.9)

The summations in Equation (3.6) encode the Hamming distance w.r.t. the
true labels y∗ and the predictions y. Equation (3.7) prevents assigning two
classes to the same example. Equation (3.8) requires an equal count for each
class, with tolerance defined by ξ > 0 to ensure the problem admits a solution;
we set ξ = 0.05 in all our experiments. The balance constraint is stated in
exact form, thanks to the discrete labels. The mα formulation generalizes the
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knapsack problem and is hence NP-hard; moreover, since all examples appear
in Equation (3.8), no problem size reduction is possible. The mβ problem can
be derived from mα by changing the objective function and by adding the ball
constraint as in Equation (3.5).

Feasible master step mβ(y):

min
1

m

m∑
i=1

(1− zi,y∗i ) (3.10)

s.t.
c∑

j=1

zij = 1 ∀i = 1..m (3.11)

m∑
i=1

(1− zi,yi) ≤ β (3.12)

m∑
i=1

zij ≤
⌈
(1 + ξ)m

c

⌉
∀j = 1..c (3.13)

zij ∈ {0, 1} ∀i = 1..m, j = 1..c (3.14)

Our second use case of study is a classification problem with realistic fairness
constraints, based on the Disparate Impact Discrimination Index (DIDI) from
[AAV19]:

DIDI c(X, y) =
∑
k∈K

∑
v∈Dk

c∑
j=1

dkvj (3.15)

dk,v,j =

∣∣∣∣∣∣ 1m
m∑
i=1

I[yi = j]− 1

|Xk,v|
∑

i∈Xk,v

I[yi = j]

∣∣∣∣∣∣
where K contains the indices of “protected features” (e.g. ethnicity, gender,
etc.). Dk is the set of possible values for the k-th feature, and Xk,v is the set
of examples having value v for the k-th feature. The DIDI indicator measures
whether there exists a disparate outcome for examples belonging to protected
groups; this gap is null for unbiased models. Note the disparate impact index
does not explicitly makes use of the protected features, but measures whether
they systematically lead to measurable differences. We can use a Mixed Inte-
ger Linear Programming formulation to express both master steps.

64



3.5. Experimental Results

Infeasible master step mα(y):

min
1

m

m∑
i=1

(1− zi,y∗i ) +
1

αm

m∑
i=1

(1− zi,yi) (3.16)

s.t.
c∑

j=1

= 1 ∀i = 1..m (3.17)

∑
k∈K

∑
v∈Dk

c∑
j=1

dkvj ≤ ϵ ∀j = 1..c (3.18)

dkvj =

∣∣∣∣∣∣
m∑
i=1

zij
m
−

∑
i∈Xk,v

zij
|Xk,v|

∣∣∣∣∣∣ (3.19)

zij ∈ {0, 1} ∀i = 1..m, j = 1..c (3.20)

where Equation (3.18) is the constraint on the DIDI value and Equation (3.19)
is then linearized using standard MILP methods. The DIDI scales with the
number of examples and has an intrinsic value due to the discrimination in
the data. Therefore, we compute DIDI tr for the training set, then in our
experiments we have ϵ = 0.2 · DIDI tr. This is again an NP-hard problem
defined over all training examples. The mβ formulation can be derived as in
the previous case by removing the second term in Equation (3.16) from the
loss function and setting it as a constraint.

Regression

Our third case study is a regression problem with fairness constraints, based
on a continuous DIDI version from [AAV19]:

DIDI r(X, y) =
∑
k∈K

∑
v∈Dk

dkv (3.21)

dk,v,j =

∣∣∣∣∣∣ 1m
m∑
i=1

yi −
1

|Xk,v|
∑

i∈Xk,v

yi

∣∣∣∣∣∣ (3.22)

As in the classification case, the index measures the dissimilarity between the
outcomes of protected features: in the continuous case, this boils down to the
comparison between the means of the total distribution and those belonging
to different protected realizations. We formulate our regression problem using

65



3. Moving Targets

the Mean Squared Error (MSE) as a loss function, and the label space is Rm.
The mα problem can be defined via the following Mathematical Program:

Infeasible master step mα(y):

min
1

m

m∑
i=1

(y∗i − zi)
2 +

1

αm

m∑
i=1

(zi − yi)
2 (3.23)

s.t.
∑
k∈K

∑
v∈Dk

dkv ≤ ϵ ∀j = 1..c (3.24)

dkv =

∣∣∣∣∣∣
m∑
i=1

zi
m
−

∑
i∈Xk,v

zi
|Xk,v|

∣∣∣∣∣∣ (3.25)

zi ∈ R ∀i = 1..m (3.26)

After a standard reformulation of Equation (3.25), this is a linearly con-
strained, convex, Quadratic Programming problem that can be solved in poly-
nomial time.

Feasible master step mβ(y):

min
1

m

m∑
i=1

(y∗i − zi)
2 (3.27)

s.t.
∑
k∈K

∑
v∈Dk

dkv ≤ ϵ ∀j = 1..c (3.28)

dkv =

∣∣∣∣∣∣
m∑
i=1

zi
m
−

∑
i∈Xk,v

zi
|Xk,v|

∣∣∣∣∣∣ (3.29)

m∑
i=1

(zi − yi)
2 ≤ β (3.30)

zi ∈ R ∀i = 1..m (3.31)

The mβ problem, while still convex, is in this case a Quadratically Constrained
Problem because of the constraint in Equation (3.30).

3.5.2 Datasets, Preparation, and General Setup

We test our method on seven datasets from the UCI Machine Learning repos-
itory [DG17], namely iris (150 examples), redwine (1,599), crime (2,215),
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whitewine (4,898), adult (32,561), shuttle (43,500), and dota2 (92,650). We use
adult for the classification/fairness case study, crime for regression/fairness,
and the remaining datasets for the classification/balance case study.

For each experiment, we perform a 5-fold cross-validation (with a fixed seed).
Hence, the training set for each fold will include 80% of the data. All our
experiments are run on an Intel Core i7 laptop with 16GB RAM and no GPU
acceleration, and we use Cplex 12.8 to solve the master problems. For sake of
simplicity, we opted for a straightforward setup of the constraint solver (default
parameters, exact solution of even NP-hard problems).

All the datasets for the classification/balance case study are prepared by stan-
dardizing all input features (on the training folds) to have zero mean and unit
variance. The iris and dota2 datasets are very balanced, while the remaining
datasets are quite unbalanced. In the adult (also known as “Census Income”)
dataset the target is “income” and the protected attribute is “race”. We re-
move the features “education” (duplicated) and “native country” and use a
one-hot encoding on all categorical features. Features are normalized between
0 and 1. Our crime dataset is the “Communities and Crime Unnormalized”
table. The target is “violentPerPop” and the protected feature is “race”. We
remove features that are empty almost everywhere and features trivially related
to the target (“murders”, “robberies”, etc.). Features are normalized between
0 and 1 and we select the top 15 ones according to the SelectKBest method
of scikit-learn (excluding “race”). The protected feature is then reintroduced.

3.5.3 Parameter tuning

We know that extreme choices for α and β can dramatically alter the method
behavior, but not what effect can be expected for more reasonable values. With
this aim, we perform an investigation of the impact of α and β by running the
algorithm for 15 iterations (used in all experiments), with different parameter
values. As a ML model, we use a fully-connected, feed-forward Neural Network
(NN) with two hidden layers with 32-Rectifier Linear Units. The last layer
has either a SoftMax activation (for classification) or Linear (for regression).
The loss function is respectively the categorical cross-entropy or the MSE.
The network is trained with 100 epochs of RMSProp in Keras/Tensorflow 2.0
(default parameters, batch size 64).

The results are in Table 3.2. We report a score (row S, higher is better)
and a level of constraint violation (row C, lower is better). The S score is the
accuracy for classification and the R2 coefficient for regression. For the balance
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constraint, the C score is the standard deviation of the class frequencies; in
the fairness case studies, we use the ratio between the DIDI of the predictions
and that of the training data. Both indicators are then normalized over the
constraint satisfaction threshold and capped at 1 for readability (capped values
are marked as 1+). Cells report mean and standard deviation for the 5 runs.
All columns labeled with α and β values refer to our method with the specified
parameters. The ideal case refers to a simple projection of the true target y∗ on
the feasible space C. This corresponds to an upper bound on the performance
of a constrained learner: it exactly matches the constraint threshold while min-
imizing the loss function, however, it doesn’t need to be feasible for the learner,
for we don’t know the bias set B. The ptr column reports the results of the
pretraining step, as defined in Algorithm 1, i.e. a constraint-agnostic behavior.
Our method lies in between the two extreme cases. Accuracy comparisons are
considered fair only for similar constraint violation scores.
The Moving Targets algorithm can significantly improve the satisfaction
of non-trivial constraints : this is evident for the unbalanced datasets redwine,
whitewine, and shuttle and all fairness use cases, for which feasible (or close)
results are almost always obtained. As one can expect, satisfying very tight
constraints (e.g. in the unbalanced dataset) comes at a steep cost in terms of
accuracy. From this point of view, Moving Targets tries to get the most
accurate result while satisfying the imposed constraints. Finally, reasonable
parameter choices have only a mild effect on the algorithm behavior, thus sim-
plifying its configuration. Empirically, α = 1, β = 0.1 seems to works well and
is used for all subsequent experiments.
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NN (α, β) Ptr α = 1 α = 1 α = 1 α = .1 α = 0+ Ideal case
β = .01 β = .05 β = .1 β = .01 β = 0.1

Iris S .970± .002 .99± .01 .997± .004 .997± .004 .99± .02 0.995± 0.008 .9968± .0004
C .23± .08 .08± .3 .0± .3 .0± .3 .15± .4 .0± .3 .0± .3

Redwine S .709± .005 .508± .006 .511± .009 .506± .006 .484± .007 .50± .01 .525± .002
C .05± .05 .0± .05 .0± .03 .0± .04 .0± .02 .0± .05 .0± 0

Whitewine S .644± .002 .446± .006 .437± .009 .439± .009 .40± .02 .401± .009 .524± .002
C 1+ ± .2 .0± .1 .0± .3 .0± .2 .0± .3 .0± .3 .0± .1

Shuttle S .999± 0 .39± .04 .37± .01 .375± .007 .37± .03 .37± .03 .3608± .0008
C 1+ ± 0 1+ ± 1 .7± .2 .6± .4 1+ ± 1 1+ ± 1 0± 0

Dota2 S .686± .002 .666± .007 .661± .002 .66± .01 .672± .004 .656± .006 .9984± .0009
C 1+ ± .3 .6± 1 .6± 1 1+ ± 1 .0± .2 1+ ± 1 .0± 0

Adult S .867± 0.001 .818± .005 .86± .02 .841± .006 .852± .004 .84± .02 0.992± .0005
C 1+ ± .2 .0± .2 .0± .1 .1± .4 .1± .2 .1± .2 0.± 0

Crime S .56± .02 .49± .01 .46± .04 .48± .03 .45± .05 .46± .06 .910± .007
C 1+ ± .1 .1± .4 .0± .4 .0± .5 .0±.1 .05± .2 .0± 0

Table 3.2: Effect of parameters α and β on different data sets. Each row corresponds to a data set and the
performance of the associated model in score (S) and constraint satisfaction (C).
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Figure 3.5: Average computational time required by the master step, compared
to NN training

3.5.4 Alternative Approaches

Here we describe the setup of alternative approaches that will be used for com-
parison. Namely, we consider the regularized linear approach from [Ber+17],
referred to as RLR, a Neural Network with Semantic Based Regularization
[DGS17], referred to as SBR, and the Lagrangian approach from [Cot+19],
referred to as TFCO. The first two approaches introduce constraints as regu-
larizers at training time. Their loss function is in the form:

L(f(X; θ), y∗) + µg(f(X; θ)) (3.32)

The regularization term must be differentiable and the multiplier µ needs to be
hand-tuned. The TFCO approach is similar, but it optimizes both the model
parameters and the multipliers by alternating loss minimization and constraint
satisfaction.

We use SBR only for the case studies with the balance constraint, which we
are forced to approximate to obtain differentiability:

g(f(X; θ)) = max
j=1..c

m∑
i=1

f(X; θ) (3.33)
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µ 0.01 0.1 1

SBR Iris S 0.984 0.97 0.4
C 0 1 1+

Redwine S 0.15 0.15 0.17
C 1+ 1+ 1

Whitewine S 0.17 0.15 0.14
C 1+ 0.3 1

Shuttle S 0.7 0.31 0.14
C 1+ 0.8 0.8

Dota2 S 0.61 0.48 0.49
C 1+ 1+ 1+

RLR Adult S .83 .75 .75
C 1+ 1+ 1+

Crime S .39 0.30 0.30
C 1 0 0

Table 3.3: Effect of parameter µ in regularization methods

i.e. we use the sums of the NN output neurons to approximate the class
counts and the maximum as a penalty; this proved superior to other attempts
in preliminary tests. The L term is the categorical cross-entropy.

Our SBR approach relies on the NN model from the previous paragraphs.
Since access to the network structure is needed to differentiate the regularizer,
SBR works best when all the examples linked by relational constraints can
be included in the same batch. When this is not viable the regularizer can
be treated stochastically (via subsets of examples), at the cost of additional
approximation. We use a batch size of 2,048 as a compromise between memory
usage and noise. The SBR method is trained for 1,600 epochs.

The RLR approach relies on linear models (Logistic or Linear Regression),
which are simple enough to consider a large group of examples simultaneously.
We use this approach for the fairness use cases. In the crime (regression)
dataset L is the MSE and the regularizer is simply Equation (3.22). In the
adult (classification) dataset L is the cross-entropy; the regularizer is Equa-
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tion (3.15), with the following substitution:

dk,v,j =

∣∣∣∣∣∣ 1m
m∑
i=1

θ⊤xi −
1

|Xk,v|
∑

i∈Xk,v

θ⊤xi

∣∣∣∣∣∣
This is an approximation obtained according to [Ber+17] by disregarding the
sigmoid in the Logistic Regressor to preserve convexity. We train this approach
to convergence using the CVXPY 1.1 library (with default configuration). In
RLR and SBR classification, the introduced approximations permit to satisfy
the constraints by having an equal output for all classes, i.e. completely random
predictions. This undesirable behavior is countered by the L term.
The results of a hand-tuning process for SBR and RLR are reported in Ta-
ble 3.3. In most cases, larger µ values tend as expected to result in better
constraint satisfaction, with a few notable exceptions for classification tasks
(iris, dota, and adult). The issue is likely due to the approximations introduced
in the regularizers, since it arises even on small datasets that fit in a single
mini-batch (iris). Further analysis will be needed to confirm this intuition.
The accuracy decreases for a larger µ, as expected, but at a rather rapid pace.
In the subsequent experiments, we will use for each dataset the RLR and SBR
that offer the best accuracy while being as close to feasible as possible: these
are the cells in bold font in Table 3.3. For the TFCO approach, we use again
the NN from previous paragraphs, a minibatch of size 200 and 100 iterations
with 200 iterations per loop. The optimizer is ADAM with default parame-
ters. The method is in principle able to reach an optimal solution, but only
in expectation, at the price of having a stochastic classifier. To enable a fair
comparison, we obtain a single classifier using the “best” method from the
reference implementation.
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Regularized methods TFCO NN LR Ensemble trees NNpp

Iris S .984± .006 .95± .003 .997± .004 .96± .02 .995± .004 .96± .01
C .0± 0.2 1+ ± 1 .0± 0.3 .1± .4 .0± .2 .07± .4

Redwine S .17± .05 .3± .2 .506± .006 .32± .01 .40± .02 .480± .001
C .1+ ± .5 1+ ± 1 .0± .05 .6± .2 1+ ± .5 1+ ± .3

Whitewine S .15± .03 .3± .1 .439± .009 .025± .009 .37± .04 .47± .02
C .3± .3 1+ ± 0 .0± .2 .8± .2 1+ ± 1 1+ ± 1

Shuttle S .31± .04 .2± .3 .375± .007 .332± .007 .51± .05 .5± .1
C 1± 1 1+ ± 0 .6± .3 .4± .4 1+ ± .6 1+ ± 1

Dota2 S .61± .02 .53± .01 .66± .01 .592± .005 .53± .01 .689± .003
C 1+ ± 1 1+ ± 0 1+ ± 1 .5± 0 1+ ± 1 .0± .8

Adult S .834± .001 .87± .01 .841± .006 .805± .006 .76± .01 .865± .003
C 1+ ± .2 1+ ± .05 .1± .4 .0± .2 .0± .2 .0± .4

Crime S .30± .01 .58± .05 .48± .03 .369± .008 .49± .01 .484± .008
C 0± 0 .0± .1 .0± .5 .0± 0 .2± .05 .0± .1

Table 3.4: Benchmarks between Moving Targets with different ML models and alternative approaches on
several data sets
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We can now compare the performance of Moving Targets using different
ML models with that of the alternative approaches presented above, plus a pre-
processing approach adapted from [KC09], referred to as NNpp and obtained
by setting α, β →∞ in our method.

For our method, we consider the following ML models: 1) the NN from the
previous section with α = 1, β = 0.1; 2a) a Random Forest Classifier with 50
estimators and a maximum depth of 5 (used for all classification case studies);
2b) a Gradient Boosted Trees model, with 50 estimators, maximum depth 4,
and a minimum threshold of samples per leaf of 5 (for the regression case
study); 4a) a Logistic Regression model (for classification); 4b) a Linear Re-
gression model (for regression). All models except the NN are implemented
using scikit-learn [Ped+11]. In Table 3.4, the tree ensemble methods are re-
ported on a single column, while another column (LR) groups Logistic and
Linear regression.

Our algorithm seems to work well with all the considered ML models: tree
ensembles and the NN have generally better constraint satisfaction (and higher
accuracy for constraint satisfaction) than linear models, thanks to their larger
variance. The preprocessing approach is effective when constraints are easy to
satisfy (iris and dota2 ) and on all the fairness case studies, though less so on
the remaining datasets. All Moving Targets approaches tend to perform
better and more reliably than RLR and SBR. The case of RLR and LR is
particular, since in principle the two approaches can be expected to behave
identically (convex problem and same constraint formulation): the gap is due
to an incomplete exploration of the space of the multiplier µ. The example
emphasizes a practical problem that often arises when dealing with regularized
loss functions: the value of the multiplier has to be thoroughly calibrated by
hand, while Moving Targets allows to directly define the desired constraint
threshold and is quite robust to different parameter values.

3.5.5 Scalability and Convergence

We next turn to investigate the method scalability. Our examples can be
considered worst cases, since all examples appear in the single constraints and
in some cases involve NP-hard problems. We report the average time for a
master step in Figure 3.5, with the average time for a learner step (100 epochs
of our NN) for reference. At least in our experimentation, the time for a
master step is always very reasonable, even for the dota2 data set for which we
solve NP-hard problems on 74,120 examples. This is mostly due to the clean
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structure of the mα and mβ problems. Of course, for sufficiently large training
sets, exact solutions will become impractical and non-exact optimization will
need to be considered (e.g. meta-heuristics or matheuristics). However, the
structure of the algorithm allows for heuristic resolution approaches, which
can address the computational burden of very large data sets.

The convergence properties of Moving Targets are verified experimentally,
by running the method for up to 40 iterations; results are shown in Figure 3.6.
We run the experiment for two tasks: classification on the redwine data set with
balance constraint and regression on the crime data set with fairness constraint.
The comparison shows both score and constraint satisfaction performances for
three different ML models: LR, RF (GB in the regressive scenario), and NN.
As we can see, the NN model is the one with the highest variance, although
it achieves the best performances in the classification task, stabilizing after
roughly 20 iterations. The LR model, on the other hand, requires a very small
amount of iterations to converge, as well as the ensemble tree methods. Notice
that in the regressive task all ML methods reach convergence in just a few
iterations: this is due to the convexity of the problem.

3.5.6 Generalization

Since our main contribution is an optimization algorithm, we have focused
so far on evaluating its performance on the training data, as it simplifies its
analysis. We now assess its performance on the test data. In addition to the
models of the previous paragraphs, we consider a Random Forest with very low
bias (100 estimators with no depth limit), denoted as LBRF, simply trained
over the ideal case results. Due to the low bias, even this simpler training
method obtains feasibility and matches closely the accuracy of the ideal case
on the training set.

The results of this evaluation are reported in Table 3.5, in the form of the
average ratio between the scores and the level of constraint satisfaction in the
test and the train data. With a few exceptions (e.g. satisfiability in iris), the
models generalize well in terms of both accuracy and constraint satisfaction.
Given the tightness of some original constraints and the degree to which the
target was altered, this is a remarkable result. The simpler LBRF approach
performs poorly on the test set: while the low bias simplifies training, the price
to pay in terms of lack of generalization is quite steep.
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Figure 3.6: Long-run results for different ML models and tasks: on the left,
balance constraint on the Red Wine data set; on the right, fairness constraint
on the Crime data set. We report score and constraint satisfaction (top and
bottom) over 40 iterations.

3.6 Conclusion and Future Work

In this Chapter we have presented and tested Moving Targets, a decompo-
sition approach designed to augment a generic supervised learning algorithm
with constraints, by iteratively adjusting its training labels. The method is
devised to prioritize constraint satisfaction over accuracy and proved to behave
well on a selection of tasks, constraints, and datasets. Its relative simplicity,
reasonable scalability, and the ability to handle any classical ML model and
any state-of-the-art constraint solver make it well suited for use in real-world
settings.

Many open questions remain: we highlighted limitations of regularization-
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NN Ens. Trees LR LBRF

Iris Sts/Str 0.96 0.96 0.99 0.96
Cts/Ctr 5.68 5.17 4.31 5.16

Redwine Sts/Str 0.62 0.92 0.94 0.72
Cts/Ctr 1.22 1.04 1.35 2.68

Whitewine Sts/Str 0.70 0.96 1.00 0.71
Cts/Ctr 1.11 1.00 0.99 2.92

Shuttle Sts/Str 0.99 1.00 0.99 1.02
Cts/Ctr 0.97 1.00 1.01 1.35

Dota2 Sts/Str 0.83 1.00 0.99 0.58
Cts/Ctr 1.10 1.00 1.03 2.79

Adult Sts/Str 0.99 1.00 1.00 0.86
Cts/Ctr 1.55 1.92 0.98 4.21

Crime Sts/Str 0.75 0.73 0.93 0.50
Cts/Ctr 0.74 1.05 1.03 1.53

Table 3.5: Generalization of various models in the test scenario

based techniques that deserve much deeper analysis. From a high-level per-
spective, Moving Targets seems to be better suited to deal with relational
constraints, or constraints defined over (part of) the input examples, while
regularization techniques constitute a more viable option when it comes to
shape constraints (e.g. monotonicity of the predictor with respect to one or
more input feature). The convergence properties of our method still need to
be properly characterized. The method scalability should be tested on larger
datasets (for which using approximate master steps will become necessary),
so as to assess the effect of using meta-heuristics or matheuristics. Moreover,
since we allow the use of any ML model, it may be interesting to combine
Moving Targets with other approaches for constraint injection in ML.

As for future perspectives, Moving Targets has already been extended to a
broader spectrum of constraints, including global inequalities and fairness mea-
sures such as Equal Opportunity and Equalized Odds. In a joint project with
a partner University, the method was implemented in the AI Domain Defini-
tion Language (AIDDL), which provides a modeling language and framework
for integrative AI1. This results in a modular framework that makes it possi-
ble to use Moving Targets in a wider system, able to provide custom AI

1see https://www.ai4europe.eu/research/research-bundles/ai-integration-languages
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models. By specifying the type of task (i.e. classification or regression), the
learning model, and additional constraints, the end-user can shape a custom
and human-oriented predictive model.
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Chapter 4
Applications

This Chapter presents two practical applications that were done together with
Optit within larger business projects. They both involve, at different levels,
an example of integration of a data-driven model and a Combinatorial Op-
timization problem: in the first case, a Survival Analysis method is used to
estimate the fault probability associated with water pipelines, starting from
historical data. The model predictions are then incorporated in the formula-
tion of the optimization model via offline generation of a failure probability
table. Although not involving a Machine Learning model, we can regard this
application as a general example of leveraging data-driven models for the mod-
eling of a COP, as seen in the paragraph on learner embedding in Section 2.2.1.
Results of this work are published in [Poz+21].

In the second experiment, the problem at hand is a three-dimensional Bin
Packing Problem (3D-BPP). We use a learning model to estimate the number
of bins required to pack a set of items, given a problem instance. Because of the
scarcity of realistic instances, we resort to synthetic records to enlarge our data
set; the learner is then trained in a supervised manner over the resulting data
set, where each synthetic instance is paired with the corresponding solution
of the 3D-BPP problem. Finally, the bin estimator is integrated within the
resolution algorithm to infer promising (partial) solutions and hence guide the
process. Depending on how the integration is carried out, the approach can
be classified as either a search guidance method or a bounding mechanism, as
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seen in Section 2.2.2.

4.1 Predictive Maintenance

Maintenance is a key activity in industrial environments, for it involves costs
that can heavily affect the business and malfunctioning that can lead to major
issues; indeed, the failure of a single component might be associated not only
with the cost required for its replacement but may also cause system downtime,
potentially resulting in a serious penalization of the operations and customer
disservices.

There are three leading maintenance strategies: Reactive Maintenance, Pre-
ventive Maintenance, and Predictive Maintenance. Reactive Maintenance, as
the name suggests, is concerned with maintenance operations planned as a
consequence of failures or when the malfunctioning level reaches a certain
threshold. This is a run-to-failure strategy that exploits the system elements
until they reach the maximum production output. However, the cost of re-
pairing or replacing a component, together with its side effects on other parts
of the systems or downtime penalization, could overcome the savings resulting
from running it to failure.

A safer approach is constituted by Preventive Maintenance, where components
are replaced on a regular basis by assigning to each component an expected
useful lifetime, which is estimated according to the historical malfunctions.
In practice, this results in a better-safe-than-sorry strategy, with potential
unnecessary maintenance operations; in addition, unexpected failures due to
faulty components may still occur.

Predictive Maintenance, on the other hand, aims at exceeding the shortcomings
of the above strategies by estimating the best time for replacement interven-
tions. The idea is to collect real-time data describing the component behavior
and use it to identify critical situations. This latter strategy combines the
advantages of reactive and preventive maintenance: by monitoring the state
of each component, its replacement is scheduled such that its remaining useful
life is minimal and failures are avoided. This requires both accurate sensors to
track the state of the system and sound models to predict a malfunction before
it occurs. It goes without saying that Predictive Maintenance can be affected
by unexpected events: by definition, these cannot be completely avoided, how-
ever, the policy tries to maximize the production output of each component.
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4.1.1 Problem Overview

A major Italian multi-utility operating in the city of Brescia detains a system
for District Heating. The latter is constituted by a network of pipes, laid
in the 70s, and related infrastructures and provides the customers with hot
water. Good management of such a network is of paramount importance,
both for the company’s revenue and for the user service. In fact, failures due
to pipe breaking implicate water leaking, customer dissatisfaction, and the
costs associated with either repairing or replacing the network component.

The network features over 650 km long pipelines, serving more than 20,000
consumer points and covering almost 60% of the heat demand of the city. A
wide range of piping technologies is present, from newer pre-insulated pipes
(PR) to older traditional hooded pipes, characterized by different installation
types (e.g. non-pre insulated steel, fiber-cement sheath, wanit, etc). Another
factor to take into account is the presence of operational manholes, which are
network elements functional to interventions on pipes with old technologies
that require expensive upkeep operations.

Thanks to forward-thinking practices, the company has recorded every inter-
vention on the pipeline since the late 70s, allowing for a historical analysis
of failures. In fact, while the accurate knowledge of the composition of the
network is obviously valuable, it cannot provide, alone, definitive information
about potential future failures, which is key for the long-term planning of main-
tenance operations. To this end, we will exploit the available records of failure
events from the year 1999 to the year 2016. Each failure event is characterized
by the year of occurrence, the year of the initial installation of the affected
pipe, its geographical coordinates, technology, and other physical properties.
This data constitutes only a partial representation of the full evolution of the
network; since pipes could be either fixed or replaced and most records specify
the occurrence of the event, but not necessarily how it was addressed. Yet, for
simplicity’s sake, it can be assumed that each failure originated a replacement
that fully restored functionalities as if the asset was fully renewed.

4.1.2 The approach

Given the historical data set of recorded failures and the cartographic repre-
sentation of the pipeline, we address the problem of maintenance planning in
three steps:
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Figure 4.1: Geographic Distribution of the recorded failure events. Colors
correspond to the technology of the pipe.

1. Network Aggregation: the input structure of the network comprises a
large number of pipes. This has two drawbacks: on one hand, when the
network is fragmented and composed of many pipes, it is more likely
that interventions will involve small pipes, which may not justify the
opening of a construction site (since this causes several disservices); on
the other hand, we will later see that the optimization model scales with
the number of pipes, thus becoming of impractical size when this number
is large. For these reasons, the input network will be aggregated to create
a simpler and more homogeneous representation.

2. Risk Analysis : by comparing the aggregated network with the historical
data of failures, a statistical analysis is used to estimate the risk of failure
associated with each pipe of the network.

3. Optimization: once the network has been aggregated and an estimator for
the pipe failure risk is available, we have all the ingredients to formulate
an optimization problem. The objective is to minimize the failures on
the pipeline over a given planning horizon.

Network Aggregation From a cartographic data point of view, the net-
work provided is too fine-grained and heterogeneous, both for analysis and
maintenance planning purposes. Thus, the network has been homogenized
by coalescing adjacent pipes with compatible characteristics and subsuming
customers’ feeding branches by their respective backbone pipes, bringing the
original network from 30,000 pipes to 5,000 pipes. This allows a much more
manageable data set. In particular, adjacent pipes are aggregated if they share
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the same values of diameter, installation year, and type of installation. The re-
sulting graph implicitly avoids maintenance interventions involving short pipes
that are to be penalized because unfavorable.

Risk Analysis The goal of Risk Analysis is to provide an estimator able to
predict the probability of failure associated with each pipe in the network. In-
deed, in order to devise a meaningful plan for maintenance operations, we need
a measure for the effect of the failures or, from a complementary perspective,
the effect of the maintenance.

To this end, we analyze the data of historical failures and track the impact of
pipe features: in particular, we consider the diameter of the pipe, the instal-
lation year, the technology, and the geographical risk. The geographical risk
is the result of an ad-hoc analysis that assigns a score to different areas of the
city of Brescia, attempting to identify regions where pipes are more likely to
undergo failure events.

Moreover, the data containing the history of failures presents some character-
istics that might hinder the analysis process: as is usual for historical data,
we have records of failures only for a limited period of time, in particular from
the year 1999 to the year 2016. This leads to the following scenarios:

• there are pipes for which we know both the installation year and the
failure year;

• there are pipes for which we know neither the installation year nor the
failure year because both values fall outside of the observed interval
(these are referred to as left-truncated, see [KM03])

• there are pipes for which the installation year is known, but hasn’t ex-
perienced any failure yet (these are referred to as right-censored, see
[KM03])

A variety of approaches can be applied to devise a risk estimator based on the
input data: the two main categories are represented by ML models and Sur-
vival Analysis (also named Stochastic Survival Models [KM03]). We opt for
the latter, which is specifically made to deal with the kind of data at our dis-
posal, results easier to interpret and analyse, and has already been employed
in cases similar to our [Chr11].
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We briefly overview the basic equations of Survival Analysis: given the proba-
bility density function f of failure events, the associated cumulative distribu-
tion function F is given by

F (t) =

∫ t

0

dx f(x) (4.1)

From this equation, it is possible to define the survival function S, which
represents the probability that the failure event has not occurred by time t
and is therefore obtained as the complement of F

S(t) =

∫ ∞

t

dx f(x) = 1− F (t) (4.2)

Our analysis boils down to estimating the value of the function S, which in
turn allows to model the optimization problem. From a practical perspective,
several techniques exist to estimate the value of Equation (4.2); for the sake
of simplicity we choose the non-parametric Kaplan-Meier estimator [KM03],
which can be defined as

Ŝ(t) =
t∏

i=0

(
1− di

ri

)
(4.3)

where di is the number of failures that occurred at time ti and ri is the number
of pipes at risk at the same time instance, i.e. pipes still functioning just before
ti.
It is important to point out that Equation (4.3) considers only the time com-
ponent, regardless of the remaining features characterizing the pipes. In order
to handle such covariates, it is necessary to estimate separate functions (for
instance, one for each technology type).

To evaluate the impact of each variable in assessing the risk, we performed
various experiments and estimate survivor functions with different groupings
of the pipes, with varying feature values. We assessed the resulting groupings
through the log rank test [BA04], used to test the null hypothesis against
potential differences between the populations of pipes in the probability of
a failure event. Furthermore, we verified the resulting risks estimate on a
test sample of pipes with the aid of domain experts. Interestingly, in many
cases the log rank test pointed out a significant difference between the groups
(e.g., different technologies showed different behavior); however, an in-depth
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analysis showed that the differences could have been the result of biased and
anomalous data. A confrontation with domain experts confirmed the latter
interpretation.
The result of the evaluation process led us to choose the hazard curves shown
in Equation (4.2), which consider only the geographical risk as a discriminant
factor for the estimation of failure probability. These are simple models with
a straightforward interpretation and, as confirmed by experts, give reasonable
insights to assess the probability of pipe malfunctioning.

Figure 4.2: Estimated survival probability function used for predicting main-
tenance planning: the two curves correspond to different value of the pipe
geographical risk.

Optimization In this paragraph, we give a formal description of the opti-
mization model used. We want to devise the optimal plan of the intervention
operations on the network, such that the costs involved are minimized (e.g.
maintenance cost, intervention cost, cost due to disservices, etc). We choose
a time granularity corresponding to years, in accordance with the historical
data provided. This sets up the discretization of the model decision over time:
in particular, we plan the operations over a time horizon of Yplan years such
that the Net Present Value (NPV) of the related cost is minimized over the
next Ycost years. That is, the first interval defines when the interventions can
take place, while the second is used to compute the final revenues. Two types
of elements constitute the network: pipes and manholes. A pipe p ∈ P is
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Figure 4.3: Survival analysis validation for the years 2013 to 2016. Labels 1
and 2 denote the distribution of the risk-index for non-faulty and faulty pipes,
respectively.

characterized by its diameter d, length l, technology t and age a. A manhole
m ∈M is uniquely characterized by a risk factor r, which is directly related to
the number of years after which the manhole will require maintenance works;
these elements were conceived to facilitate interventions on the pipes, but are
no longer required thank to modern technologies and should be removed from
the network whenever possible as they only represent a cost. To state the
decision support model, we need to declare all the expenses involved in the
process; the company provided us with several tables of the relevant costs,
that we briefly describe and characterize in the following.

A pipe p ∈ P is associated with

• a maintenance cost cm(p), corresponding to the cost for repairing the
pipe after a failure event;

• a substitution cost cs(p), required for its replacement with a new one;
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• a malfunctioning cost cf (p), corresponding to the cost of leaking and
other disservices following a failure event;

• a reduced heat loss ch(p), due to the replacement of the pipe with a new
one with better thermal insulation.

Likewise, a manhole m ∈M is associated with

• a demolition cost cd(m);

• a maintenance cost cn(m), directly related to its risk factor.

The optimization model has to decide if and when to replace a pipe or demol-
ish a manhole over the time horizon Yplan, taking into account the trade-off
between the benefits connected to a newer pipe and its substitution cost: to
do so, we compute for each year the corresponding total network cost, that
represents the sum of all the expected costs over pipes and manholes. We
represent the average charge for a pipe p and a cost term c, by multiplying its
failure probability on the year i, λ(i)(p), by the specified expense. The same
reasoning can be done to compute the costs associated with the set of man-
holes. It is clear that the costs computed in this way become a good statistical
approximation of the true value when the network size is big enough; a direct
verification with domain experts ensured our computed expected costs resulted
close to their annual expenses.

The probability λ(i)(p) can be obtained from the survival function of Equa-
tion (4.2) by imposing the condition that the pipe breaks exactly in the time
interval comprised between year i and the following, given its age a. Denoting
by T the time at which the failure event takes place, we have

λ(i)(p) = F (T ≥ a+ i, T < a+ i+ 1 | T > a)

=
S(a+ i)− S(a+ i+ 1)

S(a)
(4.4)

The function λ(i)(p) is represented in Figure 4.4: notice that the effect of the
pipe age a is that of shifting and rescaling the probability function, as can be
seen also in Equation (4.4).
In a similar way, the costs associated with a manhole are distributed linearly
over the years, knowing that the risk factor is proportional to the number of
years after which maintenance works will become necessary.
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Figure 4.4: Estimated failure probability function for maintenance planning:
the different curves correspond to pipes of different ages.

An element replacement is modelled with a Boolean decision variable: a pipe
p ∈ P is represented by the variable x

(i)
p ∈ {0, 1}, i ∈ {1, . . . , Yplan}, which

has non-zero value if the pipe p is replaced during year i. Likewise, a manhole
m ∈M is represented by a variable y

(i)
m ∈ {0, 1}, i ∈ {0, . . . , Yplan}.

We now have all the elements to state the costs sustained over the interval Ycost.
For each cost invoice, we distinguish two separate addends: the expenses due
to non-replaced elements and those due to replaced ones. For the set of pipes
and a generic cost term c, we can write

Costs associated with non-replaced pipes

ξ(i)nr (c) =
∑
p∈P

c(p) · λ(i)(p)

1−
min(i,Yplan)∑

k=1

x(i)
p

 (4.5)

Costs associated with replaced pipes

ξ(i)r (c) =
∑
p∈P

min(i,Yplan)∑
k=1

c(p) · λ(i−k)(p)x(i)
p (4.6)
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By substituting the generic cost term c with the proper specific cost, described
in Section 4.1.2, we obtain all the needed terms: the total maintenance cost
for each year for both replaced and non-replaced pipes, C

(i)
m,r = ξ

(i)
r (cm) and

C
(i)
m,nr = ξ

(i)
nr (cm), the malfunctioning costs of pipes C

(i)
f,r = ξ

(i)
r (cf ) and C

(i)
f,nr =

ξ
(i)
nr (cf ) and their reduced heat loss C

(i)
h,r = ξ

(i)
r (ch). In analogous way, by

substituting x
(i)
p with y

(i)
m in Equation (4.5), we obtain the maintenance cost

for the non-demolished manholes C
(i)
n,r. The total investment cost in year i

amounts to the sum of the cost due to the substitution of the pipes and the
demolition of the manholes

C(i)
s =

∑
p∈P

cs(p)c · x(i)
p +

∑
m∈M

cd(m) · y(i)m (4.7)

The objective function f to be minimized is expressed as the sum of all costs
undertaken over the revenue interval Ycost, discounted by the company’s cost
of capital

f(x, y) =
Ycost∑
i=1

z(i)(x, y)

(1 + w)i
(4.8)

z(i)(x, y) = C(i)
s + C(i)

m,r + C(i)
m,nr + C(i)

n,r + C
(i)
f,r + C

(i)
f,nr + C

(i)
h,r (4.9)

where we fix C
(i)
s = 0 ∀i > Yplan and w is the company’s cost capital. Apart

from integrality constraints on the variables x
(i)
p and y

(i)
m , there are additional

rules reflecting the company’s policies as well as the external regulations. We
list some of them below:

1. a pipe is repaired at most once. This goes hand-in-hand with the initial
assumption that a pipe can break at most once, which is reasonable for
the considered time interval;

2. a manhole can be demolished when all the incident pipes belong to the
technology PR. After demolishing, the manhole is removed from the
network;

3. there is a specific budget for retrofitting investments and a separate one
for maintenance
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4. in order to avoid spot interventions, the substitution of pipes has to
be planned such that the involved elements exceed a minimum total
length. This compensates for the absence of the cost required to open a
construction site in the optimization model.

The model obtained is an Integer Linear Programming model (ILP); the num-
ber of variables scales linearly with the number of pipes: as stated before, this
takes advantage of the network aggregation previously described.

4.1.3 Results

We applied the methodology described in Section 4.1.2 to our use case. First,
the risk analysis estimator was validated, simulating to be in 2012 and com-
puting the expected failures for the following years. Figure 4.3 shows boxplots
for the results over the years 2013 to 2016: the thicker line is the median value,
while the box represents the interquartile range (IQR) between the first and
third quartiles. Results indicate how the estimated risk values are higher for
pipes that actually experienced a failure event. In fact, the left column of
each plot (labeled as ’1’) corresponds to pipes that did not fail in the specified
year, while the right column (labeled as ’2’) to those that actually failed. As
expected, the confidence interval widens as we move further from the reference
year; nevertheless, the number of expected failures per year is in line with the
trends observed in the previous years.

Once validated the risk estimator, we implemented the optimization model and
analyzed the optimal maintenance plans over the revenue horizon. The study
had two goals: 1) identify the most critical segments of the network, both in
terms of risk index and potential economic impact of an eventual failure and
2) analyze how different drivers influenced the number of expected faults in
the network, e.g., what would be the necessary budget to keep the number of
faults steady through the years and whether that would be worth it from an
economic standpoint. Given a 5-year maintenance plan (i.e. Yplan = 5) and a
time horizon for revenues of 30 years (i.e. Ycost = 30), we benchmarked scenar-
ios with different budget allocations, expressed as percentages with respect to
the actual company’s resource allocation in the reference year. The Baseline
scenario represents the case in which no pipe replacement is foreseen and only
emergency operations are taken; this corresponds to a Reactive Maintenance
policy. The objective function of our model considers not only the investment
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cost of the piping replacement but also the contribution of the potential in-
efficiencies caused by failures, which determine water and heat losses as well
as operational disservices that may or may not be overcome by regulation
strategies. Intuitively, we desire to have a small number of pipe failures and to
address high-risk pipes, favoring the substitution of bigger pipes for their mal-
functioning has a bigger impact, both in terms of incurred costs and customer
disservices. The benchmark in Figure 4.6 highlights how the break-even point
with respect to the baseline is shifted forward as the budget increases, reflect-
ing higher initial capital costs. Yet, a higher budget (which triggers a higher
replacement ratio) ensured a reduction of the expected fault occurrences, with
significant impacts not only from an economic standpoint but also from a
quality of service (and customer satisfaction) one. The smaller NPV of the
maintenance costs evaluated over 30 years is linked to the BDG-100% scenario
and the Baseline featured the highest figure, while the BDG-200% scenario
performed halfway, yet with a 2.6% improvement with respect to the Baseline.
The payback time was 15 years for BDG-100% and 25 years for BDG-200%,
as shown in Figure 4.5. As shown in Figure 4.6, the Baseline scenario (i.e.,
no replacement) outlined an increase of breakdowns by a factor of 20% in the
time interval considered, which could be mitigated by 10% with the current
budget (BDG 100%) and be neutralized (i.e., steadying the number of failures)
with a threefold increase in the set budget, while even higher figures (1500% of
the current budget) would have been necessary to halve the number of failures
in a 5-year span. Nevertheless, these scenarios proved to be not economically
convenient, because the 30-year horizon is not enough to recover such high in-
vestments. Moreover, a large budget also meant intervening in less significant
areas, where the risk factors are lower, thus less impactful. However, it is to
be pointed out that some cost sources are excluded from the current computa-
tion, for instance, incentives and discounts that may be granted to companies
to modernize their infrastructures.

4.2 Bound Estimation

In this second part of the Chapter we present an experimentation on a practical
case of COP; our experimentation has two goals: 1) learn a fast approximation
of the objective function of an optimization problem and 2) use the learned
model for bounding within the resolution process to boost the performances.
The approach is very similar to [FF19], where a ML model is used to estimate
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Figure 4.5: Expected number of pipe faults over the years, for different budget
allocations, as a result of maintenance planning.

Figure 4.6: Cumulative maintenance costs for different budget allocations,
expressed as percentages of the current baseline, as a result of maintenance
planning.
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the objective function of an optimization problem without solving it, but our
data generation is more general and we then integrate the learning model in
the resolution process. This second part is similar to [HTT20], where a tree
search exploration is combined with a DNN to learn novel heuristic strategies;
however, we build on a heuristic resolution method based on creation and
destruction operators. Other works tackle the 3D-BPP through Reinforcement
Learning [Zha+20], or by devising data-driven tree search strategies [Zhu+21].

4.2.1 Problem Overview

A major company operating in the logistic sector delivers goods by means
of several vectors, including airplanes. The cost related to flights makes the
number of airplanes one of the major cost drivers, therefore it is crucial to
efficiently manage the number of goods that are transported by each flight,
in order to minimize the airplanes used. On a more atomic scale, items are
first loaded on pallets, i.e. bins of fixed size, and then the pallets are loaded
into airplanes: the goal is then to load a given item set on the least possible
number of pallets.

The resulting optimization model is a three dimensional Bin Packing Problem
(3D-BPP) [MPV00], a well-known problem in the literature of COP. As is often
the case with real-world processes, this 3D-BPP has many custom constraints
that reflect either company policies, structural constraints, or item-specific
constraints.

However, here we are not concerned with solving the optimization problem
per se, for which a heuristic-based solver is available, but rather in studying
whether a learner is able to infer some major characteristics of the problem
solution, in particular the number of bins required to load a given set of goods.
In fact, such learner can be used for two reasons: 1) having a quick estimation
of the bins required to load the products facilitates the loading organizational
process, and 2) it can be used to provide an estimated bound on the number of
bins of the problem solution and thus boost the performance of the resolution
process.

We will first give an overview of the methodological approach employed, then
evaluate the performance of ML models in estimating the number of bins, and
finally, propose a couple of algorithmic customization to blend the estimator
together with the heuristic resolution.
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Figure 4.7: Graphical representation of the solution of the 3D-BPP.

4.2.2 The approach

For the optimization process under consideration, we are given the complete
list of the problem specifics and are provided with realistic instances for vali-
dating it. Unfortunately, the number of instances is small compared to what
is generally required for a data-driven model to reach a good level of approxi-
mation; to overcome the issue, we will resort to a data generation process that
enables us to sample from an estimated distribution of the instance attributes.

In particular, we address the problem by dividing it into the following steps:

• Distribution Inference: the available instances are used to estimate the
distribution of each attribute, e.g. the number of items to load or the
physical attributes of the item (weight, length, etc).

• Data Generation: starting from the distributions inferred at the pre-
vious point, new instances are generated via standard sampling and a
significant set of synthetic instances X is constructed.

• Optimization: for each synthetic instance x ∈ X , the corresponding
optimization problem is solved to produce a labelled pair (x, y) that will
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be added to the data set D that we represent, with a little notation
abuse, as D = {(xi, yi)} = (X ,Y).

• Learning : once we have a proper data set D for training ML models,
we run benchmark tests to identify the algorithms that perform best in
inferring the number of bins from the instance attributes.

• Integration: we devise two different strategies to integrate the learned
model within the heuristic resolution process.

Distribution Inference We are given a total of ca. 650 instances involving
real sets of items. Unfortunately, most of the available instances are used by
the company as test cases to check the correctness of the algorithm and, for this
reason, they are not representative of the real-world scenarios we are interested
in. Figure 4.8 represents the bin distribution over the input instances: the
distribution is condensed around a small number of bins (in fact, around 80% of
the input examples have 5 bins or less), while realistic instances usually involve
tens of bins (a single airplane can load up to 8 bins). In order to overcome
the issue, we resort to a data generation process, intended to provide a more
realistic data set that will be used to train a ML model: more specifically,
instead of using the input instances to train our learning model, we exploit
them to infer how item features are distributed. The idea is to generate new
instances with very low effort once we are able to sample items from a realistic
item distribution. In fact, it seems reasonable to assume that each instance is
characterized by the number and features of the items it contains, rather than
the items themselves.
Furthermore, we make the strong assumption that item features are indepen-
dent of each other, except of course for the computed ones (e.g. volume is the
product of the dimensions of an item). Although this hypothesis may seem
very strict, it also enables the verification of the optimization problem over a
wide variety of item specifics; moreover, dimensional features such as length
and width are likely to have no correlation with each other. There might be
physical limitations on joint features, for example, volume and weight should
be bounded for the density to be realistic, however, such items are very un-
likely to be generated.

We start by collecting all the input items in a single item set I; an item i ∈ I
is characterized by a set of features F , where we distinguish between numeri-
cal features F r and categorical features F c. The inference procedure uses the
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Figure 4.8: Distribution of the number of bins (histogram, left axis) and asso-
ciated cumulative distribution (line, right axis) in the set of input instances.
Note the double y-axis.

K-Medoids clustering algorithm [KR09] to group the initial item set I into
K cluster {I1, . . . , IK} and identify the seeds sk, k = 1, . . . , K, that coincide
with the cluster medoids. The seeds are regarded as the items most represen-
tative of the associated item population and will be the starting points for the
generation of synthetic data. The dissimilarity measure used for the clustering
process is the Euclidean distance between the item features after they have
been standardized.

Each cluster is appointed with different feature distributions: in this way, each
item seed will be enhanced with additional data reflecting the distribution of its
neighbors. In practice, for each item feature fj ∈ F we introduce a parametric
distribution that we infer for each cluster k via regression on the corresponding
data; we express the probability distribution as Pk(fj). We employ two näive
but practical distributions: numerical features are represented by continuous
uniform distributions, f

(r)
j ∼ Uni(a, b), whose extremes correspond to the

maximum and minimum value of the feature over the considered cluster, while
discrete features are described by categorical distributions with probabilities
equal to the frequency of the corresponding value.
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Name Categorical Numerical
height ✓
width ✓
length ✓
rotable ✓
heavy ✓
weight ✓
volume ✓
needStability ✓
needRopes ✓
riskCategory ✓

Table 4.1: List of features characterizing an item of the 3D-BPP instance and
relative type.

sk = {(fj, Pk(fj)) ∀fj ∈ F} ∀k ∈ K (4.10)

Pk(fj) =

{
Uni (minIk fj,maxIk fj) if fj ∈ F (r)

Cat (fj) if fj ∈ F (c)
(4.11)

Data Generation Once the distribution of each item feature has been es-
timated, synthetic items can be generated from Equation (4.11). Because we
assume that the features are independent of each other, the total feature dis-
tribution is simply given by the product of the single distributions.

P (f1, . . . , fn) =
N∏
j=1

P (fj) (4.12)

We generate a synthetic instance as follows: we first sample a random number
of items n comprised between 50 and 150, n ≃ Uni(50, 150); then we have to
decide upon the distribution of the items over the seeds sk. We extract random
vector of positive numbers m = (m1, . . . ,mK), ∥m∥1 = 1, that will define the
approximate mixture of seeds in the resulting item set. The seeds are used
uniquely as the starting point of the generation process (in practice, they are
needed to encode constant parameters): the generation of a synthetic item
from a seed sk corresponds to sampling each feature value fj ∈ F according
to the distribution Pk(fj).

99



4. Applications

Optimization The 3D-BPP [MPV00] is a generalization of the well-known
Bin Packing Problem and results strongly NP-hard. Exact resolution methods
exist, for instance exploiting Branch&Bound method on a decomposed two-
stage version of the original problem [MPV00], however, they usually involve
a huge computational effort. Such computational burden is often made even
bigger by the presence of additional constraints, for instance, balance con-
straints, item stacking constraints, or ad-hoc limitations on how certain items
can be placed within the bin (e.g. an item may need ropes for stability, or it
may or may not be rotated before loading). Given the complexity of the prob-
lem, many heuristic approaches have been developed: Guided Local Search
[FPZ03], Tabu Search [LMV04; CPT09], Biased Randomized Key Genetic
Algorithm [GR13], Extreme Point Heuristics [CPT08], Greedy Randomized
Adaptive Search Procedure [Par+10]. Such approaches have the advantage of
finding good solutions in a reasonable time, making the problem of real use in
practical scenarios.
In our case, the resolution process is based on a Ruin&Recreate heuristic al-
gorithm, a constructive approach that alternates different heuristic methods.
The solution is progressively constructed from scratch by means of creation
operators; once a complete solution is found, it is (partially) deconstructed, re-
moving the less promising element-bin assignments, to be reconstructed again
at the following iteration. In fact, this process allows to explore the feasible
space by means of stacked moves. The choice of which operator to use is en-
trusted to a probability vector, which is dynamically updated and keeps track
of each operator performance, favoring the ones that produced better solutions
in past iterations.

For the scope at stake, we will not go into the detailed description of the
problem constraints, nor give the exact implementation of the operators, but
rather provide a high-level description of the resolution process, as it is needed
to understand the integration methods that will be introduced later on. To
some extent, we consider the solving process as a black-box and use the bound
estimator to guide its exploration over the feasible space.
Among the creation operators we have:

• LayerFiller operator : selects the extreme point with the largest residual
space and tries to fill it with available items.

• BestFit operator : given an item i ∈ I, finds the best available position
among the existing bins.
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• RandomizedBestFit operator : it is the randomized version of the BestFit
operator ; for a given item, the best positions are evaluated and ranked
according to a fitness function and one among them is randomly selected,
with a probability corresponding to the position (inverse) ranking.

• SSBestFit operator : acts in a way similar to the BestFit operator, but
randomly selects a rotation for all the items of the same size, before
placing them in the bins.

On the other hand, we have a single destruction operator that clears the B bins
having the biggest unused volume. The number B amounts approximately to
one third of the current bins.

Given an instance, corresponding to a set of items I, we denote the set of
feasible solutions with S(I) = {Sm(I)}, m = 1, . . . ,M and with Ŝ(I) the
incomplete solutions, corresponding to partial assignments of items to bins.

A creation operator Ci, i = 1, . . . , C takes as arguments a (partial) solution
and a set of items and outputs a complete solution

Ci : Ŝm(I)→ Sm(I) (4.13)

A destruction operator Di acts on a (partial) solution and eliminates some
assignments of items to bins

Di : Ŝm(I)→ Ŝm(I) (4.14)

Within the formalism introduced in Section 1.3, both operators can be repre-
sented as refine transitions acting on the current model state,M = ⟨X, f, g⟩.
The heuristic resolution algorithm is represented by a resolution state, initial-
ized as R = ⟨M, ∅, ∅⟩, solved by means of the usual →

s
→
g
→
z

transitions

⟨M, ∅, ∅⟩ →
s
⟨∅,M, ∅⟩ →

g
⟨M′, ∅, ∅⟩ →

z
⟨M′, ∅, z(M)⟩

where the generating function g coincides with the application of destruction
and a creation operator, as described in Equations (4.13) and (4.14). The idea
behind this algorithm is that creation operators act in different ways and lead
to distinct feasible solutions, thus allowing to explore various regions of the
feasible space. Notice we have two extreme cases, corresponding to a complete
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Algorithm 2 Ruin & Recreate

input item set I, problem parameters, operators Ci and Di, probabilities p
Initialize iteration counter k = 0, empty solution S = ∅, set of solutions
S = {∅}
while stopping criterion not met do
Ŝk+1 ← D(Sk) ▷ ruin operator
C ← Choose(Ci; pk)
Sk+1 ← C(Ŝk+1) ▷ create operator
S ← S ∪ Sk+1

Update(pk;Sk+1, Sk) ▷ operator probabilities updated
k ← k + 1

end while

Figure 4.9: Bound estimation problem: graphical representation of the resolu-
tion process in the unbounded (left) and bounded (right) cases.

solution and the empty solution, for the creation and destruction operators,
respectively. In fact, Ci(S(I)) = S(I) and Di(∅) = ∅.
The resolution process is described in Algorithm 2 and depicted in Figure 4.9
(left); it is an iterative process that refines the solution until a stopping cri-
terion is met, usually expressed in terms of the number of iterations. The
iteration number corresponds to the creation operations (the number of cre-
ation and destruction operations may not coincide).

Learning The goal of the learning model is to estimate the number of bins
yi needed to load all the items of the input instance I; because the instance
consists of a collection of items and thus has a variable size, we first need to
transform data in a representation acceptable by the ML models. Standard
models work with input of fixed size, that requires us to compress each instance
in a fixed number of input features: for numerical features, we use the first two
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order moments obtained by the feature values, i.e. mean and variance, and the
total sum, to account for extensive quantities, while categorical features are
transformed via standard One-Hot Encoding. An alternative approach would
be to use models working on input of variable size, for instance, Recurrent
Neural Network and architectures alike; we do not implement such an approach
for now.

The features used are the ones described in Table 4.1, augmented with the
following ones: the number of items in the instance, the compactness of each
item, and two binary features to distinguish heavy or long items.

Integration We devise three bounding strategies, with the last being a san-
ity check of the formers:

1. Bounded Search (S1): after each ruin operation, the learned bound esti-
mator is used to evaluate whether the actual number of bins used can be
improved or not, i.e. if the number of bins required to pack the items that
have just been removed could be smaller than the current. If this is the
case, we proceed with a create operator to build a complete solution; on
the contrary, the ruin operator will be applied (see Algorithm 3). More
specifically, given a complete solution S(I) with an associated number
of bins n(S), the ruin operator produces a partial solution and an item
set Ŝ(I) and Î such that Î encodes the unassigned items of Ŝ; the latter
becomes the input of the bound estimator lb(Î) = n̂ and we have an
estimated improvement when n(Ŝ) + n̂ < n(S).

2. Global bound (S2): at the beginning of the resolution process, we use the
learner lb to infer the number of bins required to pack the item set I,
n̂I = lb(I). Then, the resolution process proceeds as always, but we stop
as soon as the current solution has a number of bins equal to or smaller
than the estimated bound.

3. Random Search (S3): in order to have a näive benchmark for comparison,
a third strategy is devised: it is specular to the Guided Search one, except
that the decision upon proceeding to the creation or not is now taken at
random. This provides a baseline for comparing the strategies based on
learning methods.
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Algorithm 3 Ruin & Recreate With ML Bounding

input item set I, problem parameters, operators Ci and Di, probabilities p,
model lb
Initialize iteration counter k = 0, empty solution S = ∅, set of solutions
S = {∅}
while stopping criterion not met do
Ŝk+1 ← D(Sk) ▷ ruin operator
n̂← lb(Ŝk+1) ▷ bound estimation
if n̂ < n(Sk) or Ŝk+1 = ∅ then
C ← Choose(Ci; pk)
Sk+1 ← C(Ŝk+1) ▷ create operator
S ← S ∪ Sk+1

Update(pk;Sk+1, Sk) ▷ operator probabilities updated
end if
k ← k + 1

end while

4.2.3 Experimental Results

In Figure 4.10 are reported the scores of different models on synthetically
generated instances: we constructed 2000 synthetic instances of varying sizes
and use an 80-20 split for the train and test set. Learning models are validated
with a 5-fold cross-validation (with a fixed seed), while test instances are kept
for evaluating the bounding strategies. The metric used for comparison is the
Mean Absolute Error

MAE(y, ŷ) =
1

N

N∑
i=1

|yi − ŷi|

The models used are the following: Linear Regressor (LR), Random Forest Re-
gressor (RFR), Extreme Gradient Boost Regressor (XGB), Support Vector Re-
gressor (SVR), K-Nearest Neighbor Regressor (KNN), and a Fully-Connected
Deep Neural Network (DNN). Except for XGB and DNN, models are taken
from SciKit-Learn library [Ped+11] and implemented with standard parame-
ters; XGB is taken from [CG16] and the DNN is a fully connected feed-forward
network with three layers of respectively (32, 32, 16) neurons and ReLU ac-
tivation function. Notice that all the above-mentioned models are regressors,
meaning their output is a real value, while the number of bins is discrete by def-
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Figure 4.10: Mean Absolute Error for bin estimation on the train and vali-
dation sets for different ML models. Mean value and error bars are obtained
after a 5-fold Cross-Validation procedure.

inition. Therefore, the output is trimmed by rounding it to the biggest integer
value, i.e. with a ceiling operation ŷi = ⌈f(xi; θ)⌉.
The learning models show similar performances both on train and validation
data, with an error estimate of ca. half bin and a limited over-fitting. In par-
ticular, the LR model shows good performance despite its reduced complexity:
this is mostly due to the fact that the number of bins has a very high linear
correlation with extensive quantities such as the total volume of the items to
be packed. Moreover, extensive and intensive quantities result quite dissimilar
in behavior, with the former containing the most useful information, as can be
seen from Figure 4.11.

The performances of the ML models appear more than acceptable. However,
since we want to devise a bounding mechanism, we are also interested in the
distribution of the error, in particular, we want to study whether our estimator
tends to overestimate or underestimate the target distribution. This is shown
in Figure 4.12: the error distribution is very similar among the learning models
used. The error is computed as Erri = yi − ŷi and results are biased towards
positive numbers, meaning the models tend to underestimate the true number
of bins. We can draw two considerations from this: 1) the bias is quite un-
expected since the ceiling operation that trims the model’s continuous output
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Figure 4.11: Distribution of intensive (left) and extensive (right) features with
respect to the number of bins.

should pull towards an overestimation of the number of bins; 2) since we are
interested in a bounding mechanism, it is preferable an underestimate of the
number of bins rather than the contrary.

For the bounding tests, we select the two ML models that have the best val-
idation error and also result more suited in limiting the overfitting, that are
the Linear Regressor and the Random Forest Regressor models.

The experimentation is carried out as follows: for each bounding strategy
and learning model, we optimize the 400 test instances with and without the
bounding mechanism. For each test instance, we keep track of the final num-
ber of bins and the iterations needed to reach the best solution; we did the
same experimentation setting the maximum number of iterations to 1000 and
10000, respectively. In Table 4.2 we report the results of the bounding ex-
periments: each row represents a different pair of ML models and bounding
strategy. We report the percentage of instances in which the bounded (B)
(or unbounded (UB)) method resulted in better performances w.r.t the un-
bounded (or bounded), i.e. the solution has a smaller number of bins or, being
equal to the number of bins, the number of iterations needed to reach the best
solution is smaller. For example, the first row of the lower table corresponds
to the bounding experiment using Linear Regressor, strategy S1 and 10000
iterations: in this case, out of the 400 test instances, the bounding strategy
resulted in a solution with fewer number of bins 6.5% of the time. With an
equal number of bins, the bounding strategy resulted in a fewer number of
iterations to reach the solution in 10.8% of the cases.

The outcome of the bounding experiment is not satisfactory nor completely
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Max Iterations = 1000

Model Strategy Bin Number Best Iteration
UB B UB B

LR S1 3 9 85.5 0
S2 91.5 1.3 4.2 0
S3 17.8 22.5 59.7 0

RFR S1 3 9 85 0
S2 91.5 1.3 4.3 0
S3 20 21 59 0

Max Iterations = 10000

Model Strategy Bin Number Best Iteration
UB B UB B

LR S1 4.5 6.5 7.8 10.8
S2 93.5 1.3 3 2.3
S3 54 8 24 13.8

RFR S1 4.5 7.5 11.5 13
S2 93.5 1.3 3 2.3
S3 55.5 7.5 22 15

Table 4.2: Results of bounding experiments: each row corresponds to a dif-
ferent bounding strategy. We report the percentage of instances in which the
bounded method (B) and unbounded method (UB) resulted in an improve-
ment for the number of bins or best iteration. The two tables correspond to
different number of iterations in the heuristic algorithm.
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Figure 4.12: Error distribution for bin estimation for different learning models.
The error corresponds to the difference between the true number of bins and
the estimated one, yi − ŷi.

clear: while the ’bounded search’ (strategy S1) sometimes improves over the
unbounded solution, its success is not robust. The global bound strategy (S2),
on the other hand, has very poor results in the bin estimation, in spite of the
prediction results seen before; this heavily affects the optimization results. The
third strategy was added as a control experiment and confirms that by making
random choices, the performance of the algorithm do not improve. This con-
firmation slightly ameliorates the results of bounded search (S1). The RFR
model shows performances in line with the LR model and its results are con-
sistent with the previous interpretations. The best results are obtained when
the maximum iteration number is smaller: when the exploration is limited,
it benefits more from the learning model. Conversely, a long random search
corresponds to a thorough exploration, nullifying the positive impact of the
bound estimator.

4.3 Conclusion

In this Chapter two applications have been presented: in the first one, a data-
driven model is encoded within a COP. Given the simplicity of the prediction
task and the structure of the COP, a lookup-table approach was preferred; how-
ever, the prediction rule λ(i)(p) of Equation (4.4) could be estimated through
a learning model, as seen in Section 2.2.1 (for instance, encoding a tree-based
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method using EML). The second experiment exhibits several issues that are
frequently encountered when dealing with private companies and proposes a
methodological approach: the scarcity of data is partially overcome with a
data generation procedure, the optimization problem is tackled with an heuris-
tic approach and a learning model is used to quickly estimate major KPIs of
a solution without solving it. Furthermore, the learning model is exploited
to boost the resolution process by either guiding heuristically the search or
to define a bound on the objective function. Unfortunately, in spite of the
promising results obtained in the predictive task, the integration experiments
we performed did not give the expected improvements in performance; the
best strategy is the one using the bin estimation to guide the search process,
although it doesn’t show sound result
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Chapter 5
Conclusions and Future
Directions

In this thesis, we have investigated the state of the art in the field of integration
between Machine Learning and Constrained Optimization. The field is recent
and still lacks a solid background, both from a theoretical and experimental
point of view but results still very promising; we surveyed many of the latest
works that we deemed to contain the most innovative contribution to the state
of the art and we tried to classify them according to their integration scope.

We then introduced Moving Targets, a novel supervised training procedure
to inject hard constraints into generic predictive models: the method, although
relatively simple, shows good performances on the data sets and constraints
considered and can be added to the arsenal of methods able to provide Ma-
chine Learning models with constraint support. Such techniques can highly
improve the learning process both in terms of versatility and control. There-
fore, Moving Targets constitutes a step forward in the direction of a more
human-oriented AI, as it is general and allows for the realization of learning
models that satisfy specific user requirements. This is a fundamental and es-
sential behavior in contexts where there exist external constraints, which the
trained AI model has to acknowledge.

Furthermore, we presented two real-world applications that integrate data-
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driven models within a Combinatorial Optimization problem, either in the
modeling or in the solving phase. In the first case, we leverage on learning a
model to infer the failure probability of a network component from the his-
torical track of failures. The model is directly encoded in the optimization
problem and thus constitutes an example of full integration between the two
fields. In the second scenario, a learning mechanism is employed for inferring
the characteristics of a COP solution, without solving it; this aims at boosting
the resolution process by providing a bounding mechanism. Unfortunately,
results show that the integration is perhaps too näive and requires more thor-
ough crafting.

The methods presented in this thesis cover different situations, both for the
type of learning algorithm and optimization problem, and the interplay be-
tween the two of them. However, getting back to what was discussed in Chap-
ter 2, techniques to integrate learning methods in Constrained Optimization
Problems are affected by some common traits:

• Modelling Hints: learning models can be used to extract inner repre-
sentations that can be used to gain insights on the problem structure of
a combinatorial optimization problem.

• Generalization: devising a proper test set to evaluate the performance
of the learned model on optimization instances requires extra carefulness
and yet does not guarantee the same performances will be preserved
during the optimization process.

• Optimality: optimality, as well as feasibility, of solutions generated by
learning algorithms, is usually impossible to guarantee from a theoretical
point of view. This is especially true for methods employing ML to
produce complete solutions for the COPs.

• Scaling: learning models show high computational demand for training,
both in terms of computational power and resources needed to generate
the instances. However, their generalization capability may not compen-
sate for the effort.

On the other side, learning models can hugely benefit from the theory and
algorithms of Constrained/Combinatorial Optimization, both to boost model
performances and to provide novel learning schemes, such as the one we pre-
sented in Chapter 3.
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