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Abstract

The multi-faced evolution of network technologies ranges from big data centers to specialized net-
work infrastructures and protocols for mission-critical operations. For instance, technologies such
as Software Defined Networking (SDN) revolutionized the world of static configuration of the net-
work - i.e., by removing the distributed and proprietary configuration of the switched networks -
centralizing the control plane. While this disruptive approach is interesting from different points of
view, it can introduce new unforeseen vulnerabilities classes. One topic of particular interest in the
last years is industrial network security, an interest which started to rise in 2016 with the introduc-
tion of the Industry 4.0 (I4.0) movement. Networks that were basically isolated by design are now
connected to the internet to collect, archive, and analyze data. While this approach got a lot of mo-
mentum due to the predictive maintenance capabilities, these network technologies can be exploited
in various ways from a cybersecurity perspective. Some of these technologies lack security measures
and can introduce new families of vulnerabilities. On the other side, these networks can be used
to enable accurate monitoring, formal verification, or defenses that were not practical before. This
thesis explores these two fields: by introducing monitoring, protections, and detection mechanisms
where the new network technologies make it feasible; and by demonstrating attacks on practical
scenarios related to emerging network infrastructures not protected sufficiently. The goal of this
thesis is to highlight this lack of protection in terms of attacks on and possible defenses enabled
by emerging technologies. We will pursue this goal by analyzing the aforementioned technologies
and by presenting three years of contribution to this field. In conclusion, we will recapitulate the
research questions and give answers to them.
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Part I
Introduction and Motivations





Introduction1

This Thesis focuses on Security, term which definition is not easy to introduce. That is because
Security is a property but it is just a part of the puzzle [297] composed of Actors, Protectors, and
Threats. To define Security, the value of the items you want to protect and the kind of actions you
consider attacks needs to be analyzed.

Security is therefore a two-faced coin: from one side you can use software to increase the overall
Security property of the systems or networks (increasing Protectors against Threats) from the
other you can act as an attacker to demonstrate the vulnerability before a real attacker can do so
(increasing Actors and Threats against Protectors).

This Thesis focuses on emerging networking technologies, while being an extremely broad
topic [10, 153, 21, 436, 477], we will focus on two topics that got research attention in the last
years, namely: industrial systems (also known as Industrial Internet of Things) and Data Cen-
ters. These two scenarios have different network requirements in terms of bandwidth, real-time and
applications, we will get into the details inside the core of this Thesis.

When the first of these topics is introduced, a property called “Safety” can be met in litera-
ture [268]. Security and Safety are similar to certain degrees and share some concepts, but they are
not considered the same [278]: while Security of a system is the protection from the outside threats,
the Safety propriety of a system is the inability to affect the near actors. For instance, Security in
the computer world is the protection against unauthorized uses of an Automatic Teller Machine,
Safety is the guarantee that the Machine will not close your hand inside the lid.

Therefore, the Threat consideration should consider the system required Safety Integrity Level [300]:
that is, if a system is compromised, to which degree its Safety requirements can be compromised?

The application worlds which this Thesis focuses on also uses closed source software and hard-
ware [18]. That is, the protocols and operating systems in industrial applications can be proprietary
and not easily analyzable.

This concept is opposed to the concept of Security by obscurity [306]. This point of view enforce

1



2 CHAPTER 1. INTRODUCTION

the usage of public algorithms, protocols, and implementations and not rely on the Security of the
system because a small set of people knows the internals of the systems. Security trough obscurity
has been demonstrated to be completely ineffective against malicious agents in this set, the so-called
Insider Threat [66].

Insider threat was extensively explored in the literature of the last years [497, 262]: it can be
defined as a malicious entity inside the organization (e.g., contractors) who can pose a threat with
the support of information accessible only to internal users.

From the Actors perspective, the action can be performed in two ways: Reactive, in which a
cause triggers an action and Proactive, in which the action is done ahead of time, to (hopefully),
remove the possibility of a threat.

Having narrowed the scope of the study, this Thesis aims to reply to the following research
questions:

RQ1 Which are the emerging network technologies that can increase the protection part of the
Security of a system in proactive or reactive ways?
Technologies such as SDNs and network programmability can be used to increase the overall
security of the network in terms of monitoring and flow hijacking. The efforts to answer this
question can be found in Chapter 4.

RQ2 Are emerging network technologies introducing new classes of threats?
While being appealing for the enhanced performances, new network paradigms can introduce
security threats. This question was investigated by discovering and implementing attacks on
technologies, an answer can be found in Chapter 5.

RQ3 Are emerging network technologies re-introducing well-known problematics that should be
included in a Threat Modelling methodology?
Aside from novel attacks, security vulnerabilities well known for other fields or protocols
(e.g. attacks on HTTPS) can be modified to work on different technologies. These kinds of
attacks should be considered when analyzing the security of the infrastructure, e.g. during a
penetration test. Re-introduced attacks and threat analysis can be found in Chapter 5.

RQ4 Can test-bed, resembling the real systems to some degrees, be built to make the process of
Security testing in critical scenarios more feasible?
To demonstrate attacks and effectively measure the consequences of an exploit on real sce-
narios, the so-called Digital Twins can be created. These demonstrator are mainly used for
industrial scenario, one of which can be found in Chapter 5.

To answer these questions, this document is structured using the following layout:
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• Before the core of the Thesis, is presented a list of the repository with implementations of the
results and projects described in the document.

• The first part of the Thesis collects the requirements, dividing them into two parts: Chapter 2,
the infrastructure and technologies that we focus on are presented, specifying only the features
required for the subsequent Security enhancements proposed from the state of the art or
our contributions. This chapter also includes the technologies, with the various tools and
theoretical requirements used by our contributions are presented for reference for the next
part.

• In the second part of the Thesis, our contributions are presented in terms of analysis of the
current attacks and reconnaissance of specific technology such as micro-services in Chap-
ter 3; offensive technologies (attacks) in Chapter 5; and monitoring, detection, and defensive
technologies (protections) in Chapter 4.

• The third and last part of the Thesis includes the bibliographical references, the various
appendices and conclusions.

1.1 Software

The following software was developed during the years spanning the Ph.D program. The license
they are released under may vary, while mainly being Free or Open Source.

5G MEC Test a web application compatible with 5G MEC 011 APIs [6]. The application is a
MEC 011 API tester, which can be used to validate the workflow of the APIs automatically.
It was presented and tested during one of the ETSI MEC workshops.
https://github.com/berdav/unibo-test-mec

PEF and PTP testbed PTP Exploitation framework and testbed, the latter projects can set up
a virtual PTP testbed. The former one can be used to attack the system and analyze the
security and outcome of the attacks.
https://github.com/berdav/PTP-Security-Testbed

cado a capability-based frontend to manage the Linux privileges system.
https://github.com/berdav/cado

CTF Infra a demonstrator used to highlight the lacking of insider threat analysis. It is a series
of scripts that injects in the cloud various operating systems and creates an infrastructure to

https://github.com/berdav/unibo-test-mec
https://github.com/berdav/PTP-Security-Testbed
https://github.com/berdav/cado
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play Capture The Flag (CTF) competitions.
https://github.com/berdav/ctf-infra

TechNetium is a network policy formal verification framework. It can be used to verify various
policies such as layer 2 and layer 3 reachability, full reachability, and to waypoint. It is
developed as a standalone module, while it was mainly used with software defined networks.
https://github.com/berdav/TechNETium

1.2 Contributions

During the Ph.D. research, various research papers have been published.
Here we list the contributions to the research we developed and lead to the creation of this

Thesis.

Microservices 2022: Microservice security: a systematic literature review
Authors: Davide Berardi, Saverio Giallorenzo, Jacopo Mauro, Andrea Melis, Fabrizio Mon-
tesi, Marco Prandini
Type: Journal Article (PEERJ. COMPUTER SCIENCE)
Abstract:
Microservices is an emerging paradigm for developing distributed systems. With their widespread
adoption, more and more work investigated the relation between microservices and security.
Alas, the literature on this subject does not form a well-defined corpus : it is spread over many
venues and composed of contributions mainly addressing specific scenarios or needs. In this
work, we conduct a systematic review of the field, gathering 290 relevant publications—at the
time of writing, the largest curated dataset on the topic. We analyse our dataset along two
lines: (a) quantitatively, through publication metadata, which allows us to chart publication
outlets, communities, approaches, and tackled issues; (b) qualitatively, through 20 research
questions used to provide an aggregated overview of the literature and to spot gaps left open.
We summarise our analyses in the conclusion in the form of a call for action to address the
main open challenges.

P-SCOR 2021: P-SCOR: Integration of Constraint Programming Orchestration and Programmable
Data Plane
Authors: Andrea Melis, S. Layeghy, Davide Berardi, Marius Portmann, Marco Prandini,
Franco Callegati
Type: Journal Article (IEEE TRANSACTIONS ON NETWORK AND SERVICE MAN-
AGEMENT 2021)

https://github.com/berdav/ctf-infra
https://github.com/berdav/TechNETium
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Abstract:
In this manuscript we present an original implementation of network management functions
in the context of Software Defined Networking. We demonstrate a full integration of an artifi-
cial intelligence driven management, an SDN control plane, and a programmable data plane.
Constraint Programming is used to implement a management operating system that accepts
high level specifications, via a northbound interface, in terms of operational objective and
directives. These are translated in technology-specific constraints and directives for the SDN
control plane, leveraging the programmable data plane, which is enriched with functionalities
suited to feed data that enable the most effective operation of the “intelligent” control plane,
by exploiting the P4 language.

Microservices 2020: A Survey on Microservices Security: Preliminary Findings
Authors: Davide Berardi, Saverio Giallorenzo, Jacopo Mauro, Andrea Melis, Fabrizio Mon-
tesi
Type: Conference Abstract (Microservices 2020)
Abstract:
In recent years Microservices have become the state-of-the-art architectural style for dis-
tributed systems. Despite its widespread adoption—and possibly due to its recent introduction—
we notice the lack of comprehensive guidelines on Microservices Security. Motivated by this
observation, we started an ongoing Systematic Literature Review process to categorise the
literature on Microservices Security, with the intent to overview the current status of the
field, to provide an initial guideline to researchers and practitioners, and to possibly identify
uncovered areas and orient future research.

Password Similarity 2020: Password Similarity Using Probabilistic Data Structures
Authors: Davide Berardi, Franco Callegati, Andrea Melis, Marco Prandini
Type: Journal Article (JOURNAL OF CYBERSECURITY AND PRIVACY MDPI)
Abstract:
Passwords should be easy to remember, yet expiration policies mandate their frequent change.
Caught in the crossfire between these conflicting requirements, users often adopt creative
methods to perform slight variations over time. While easily fooling the most basic checks
for similarity, these schemes lead to a substantial decrease in actual security, because leaked
passwords, albeit expired, can be effectively exploited as seeds for crackers. This work de-
scribes an approach based on Bloom Filters to detect password similarity, which can be used
to discourage password reuse habits. The proposed scheme intrinsically obfuscates the stored
passwords to protect them in case of database leaks, and can be tuned to be resistant to
common cryptanalytic techniques, making it suitable for usage on exposed systems.
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Goodtechs 2020: Sustainable Infrastructure Monitoring for Security-Oriented Purposes
Authors: Davide Berardi, Franco Callegati, Andrea Melis, Marco Prandini
Type: Conference Paper (GOODTECHS 2020)
Abstract:
As computing and communication infrastructures have gained an ever-increasing role in ev-
erybody’s life, guaranteeing their reliability has become a critical endeavor. In the face of
threats that grow more and more sophisticated, we must turn our attention to the techniques
that have the potential to match them and scale with the infrastructure complexity. The cur-
rent trend in the telecommunication industry towards ”softwarized infrastructures” by means
of new technologies such as Software Defined Networking and Network Function Virtualiza-
tion may provide a innovative and effective solutions from this point of view. In this work,
we outline a network security monitoring architecture aimed at striking the best trade-off be-
tween effectiveness and efficiency. This result is achieved by exploiting the possibility, already
enabled by state-of-the-art, yet well tested components for infrastructural orchestration, of
dynamic instantiation and composition of functions. We conclude that efficient detection of
some classes of network-based denial-of-service attacks is possible, and open the path to mit-
igation strategies that optimize the usage of resources by deploying and re-configuring them
as needed in real-time.

CCNC 2020: TechNETium: Atomic Predicates and Model Driven Development to Verify Secu-
rity Network Policies
Authors: Davide Berardi, Franco Callegati, Andrea Melis, Marco Prandini
Type: Conference Paper (CCNC 2020)
Abstract:
Fifth-generation (5G) networks will deliver unprecedented levels of quality of service for online
gaming and multimedia-rich social interaction, providing virtual environments optimized for
vertical applications through innovative approaches to physical resource management. These
techniques must consider security aspects in all phases and at every layer. Trusted communi-
cations between individuals and reliable platforms running services for social good depend on
the resiliency to network-level attacks such as hijacking and denial-of-service. The verification
of topological properties represents a well-suited approach to address these issues in a 5G en-
vironment. This paper illustrates moves from formal methods existing in literature, namely
atomic predicates (AP) and header space analysis (HSA). It describes a method of integrat-
ing AP in Software Defined Network architectures, achieving the same expressive power as
HSA without its performance hit, to make topology verification viable for real-time security
applications.



1.2. CONTRIBUTIONS 7

CSNet 2018: A Policy Checker Approach for Secure Industrial SDN
Authors: Andrea Melis, Davide Berardi, Chiara Contoli, Franco Callegati, Flavio Esposito,
Marco Prandini,
Type: Conference Paper (CSNet 2018)
Abstract:
Industry 4.0 is a new strategic industrial development that is changing the way business
develop communication and management protocols on their networks. Software-Defined Net-
working (SDN) can help this revolutionary process but to make the most of its potential,
more abstract and customizable development paradigms are needed. In this work we present
a toolkit whose scope is to allow a system network administrator to implement and verify
in a formal way security policies, in the context of an industrial network. The prototype of
our tool suite is based on four application plug-ins of the ONOS controller. Our SDN-based
toolkit is able to detect compromised network boxes as a result of bogus injected flow-rules,
inner loops and black-holes (notoriously difficult to detect via normal network scans), flow-
rule replacements or removal and other SDN controller exploitations that may compromise
the forwarding activities. We argue that our set of tools is already effective despite being at
its development infancy, and its design easily extensible to other use cases.

ITNAC 2018: Security network policy enforcement through a SDN framework
Authors: Davide Berardi, Franco Callegati, Andrea Melis, Marco Prandini
Type: Conference Paper (ITNAC 2018)
Abstract:
In this work we present an exploitation of the Software Defined Networking paradigm to
implement an architecture allowing a system network administrator to implement and verify
in a formal way security policies. The main result is a framework that support the network
administrator in the security management process providing services during all this phase,
from automated traffic analysis during the prevention phase to tools for the exclusion of
malicious traffic from the main flow in the reaction phase. In order to validate the proposed
architecture we will showcase an industrial network applied scenario, simulating attacks and
countermeasures techniques.





Infrastructures and Technologies2

Various types of network infrastructures are developed in the literature, micro-services, Software
Defined Networking (SDN), Network Function Virtualization (NFV), etc [10, 153, 21, 436].

Mainly, these infrastructures are not usually developed with security as the first principle [117]
but focusing on bandwidth, resilience, interoperability between vendors, easiness of configuration.

We will focus mainly on network virtualization, microservices, and virtualization of network
functions. These infrastructures are disruptive in traditional terms [207]. For instance: the
paradigm is shifted from a distributed to centralized for networking (SDN) to ease the process
of logging or managing the control plane. On the opposite side, from centralized to distributed
flavor, the microservices approach removes the burdens of a monolithic server that is not easily
maintainable or scalable [143].

In these sections, we will introduce the main definitions of the infrastructures.

Micro-services

Micro-services is an emerging development paradigm, where software is built as a composition of
multiple services (the “micro-services”). Each micro-service implements the business logic of a
component of the application and is independently executable and deployable. Micro-services in-
teract with each other via via message-passing APIs [143]. Over the last 6 years, micro-services
have become a popular topic and one of the go-to approaches for many cloud computing projects.
According to Web of Science, more than 1,000 articles about micro-services have been published
since 2014. The year 2020 accounts for more than 400 of them, which points out that interest in
the topic is still rising. Micro-services are popular because they bring substantial advantages with
respect to scalability in cloud environments and flexibility in the process of software development.
By separating application components as independent services, software designers can specialise
each component by using a dedicated technology and then integrate all such heterogeneous compo-
nents via technology-agnostic APIs.

9
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Alas, the advantages of microservices come at a cost: distributed systems are hard to man-
age, and increasing the number of services of an application gives malicious actors a larger attack
surface [143]. Several security concerns that are particularly relevant for microservices have been
identified by [98], and early research has already shown that the application of standard patterns
for system reliability needs to take new parameters into consideration—like the locations at which
the patterns are deployed [317].

2.1 SDN Networks

The Software Defined Networking principle aims at a full decoupling between network control (the
configuration of network instruments) and data (the actual data flowing in the network) planes.
The control plane is typically implemented with controllers that communicate with switches imple-
menting the data plane that forward messages along the network.

The controller provides switches with a set of flow-rules that instruct them on how to forward the
different streams of messages they receive from end hosts or other switches. The main innovations
brought forward by SDN are that:

• a flow may typically be identified by a subset of the packet header field that may belong
to different protocol layers (for instance IP source and destination and some combination of
TCP/UDP ports);

• forwarding rules may change over time as the controller dynamically makes new decisions on
how to route individual flows, possibly reacting to some sort of network behavior.

The communication between control and data planes can be implemented in various ways;
nowadays, the de-facto standard is OpenFlow [301], and an SDN switch has one or more flow
tables, configured by the SDN controller via the OpenFlow API.

In normal operations a flow table contains rules that match a given packet header with common
networking actions such as prioritization, queuing, packet switching, etc.; but the same approach can
be used to trigger more complex functions, such as intrusion detection, load balancing or firewalling,
that are traditionally implemented as dedicated hardware devices with proprietary architectures.
Therefore SDN raises the opportunity to develop security-oriented network functions in a software
defined fashion that makes them more flexibile, general and scalable.

SDN may be integrated with the current virtualization and cloud computing technologies to
implement cheaper and more agile network infrastructures, while an automated management of the
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lifecycle of such infrastructures is provided by the Network Function Virtualization approach [21].
NFV provides the architecture, components and interfaces specifications to orchestrate and manage
virtualized networking functionalities in a coordinated way.

It follows that by exploiting SDN and NFV, security network functions such as Intrusion De-
tection System (IDS), Intrusion Prevention System (IPS), firewalls, etc. can be deployed as virtual
components of a cloud infarastructure orchestrated through the SDN control mechanisms for proper
operations, and exploiting NFV for lifecycle management [401, 303].

Finally, they can be combined with a forwarding plane that can be also integrated in the virtu-
alized environment, for instance by exploiting Open vSwitch (OvS), which is now tightly integrated
with various cloud platforms, including OpenStack, openQRM, OpenNebula and oVirt [469].

A survey of previous works in the SDN field specifically regarding network performance mea-
surement revealed attempts to overload the SDN controllers [403, 256, 505] in a simulator; however,
simulated network components do not provide realistic results that reflect the SDN controller limits.

Indeed, for the same reasons, virtualized switches cannot offer a realistic view of the test envi-
ronment of the SDN network. The evaluation of network emulator capabilities have been brought
from [437] et al. 2015] in the field of network emulation to estimate network boundaries and
implement configuration scenarios for experiments

Numerous traffic monitoring tools have been proposed for OpenFlow networks. OpenNet-
Mon [281] was developed to determine whether end-to-end QoS parameters are met and to allow
applications to calculate appropriate routes. It is implemented as a module for SDN controllers,
polling the edge switches to collect flow statistics at an adaptive rate to determine throughput,
packet loss and delay.

It provides a rich set of statistics, but only on predefined endpoints. (in contrast, the approach
that we will present in this thesis controls port throughput, rather than flows, between any two
points on the network, while not measuring packet loss and delay). As stated in [370] an available
bandwidth measurement application has been proposed in work [302]. This application can travel
on the network topology and track bandwidth guidance on network connections. As a result of this
procedure, it is possible to calculate the available bandwidth between two points on the network.

Another interesting work has been done in [288], where authors proposed a solution for link traffic
throughput monitoring for the control plan. In this solution, throughput statistics are computed on
each port to provide aggregate data at different levels of resource monitoring. Yet another solutions
has been devised in [410], where authors proposed an online approach for flow and monitoring and
measurement, port by port, to provide statistics on packet loss in SDN.

Eventually a comprehensive example of infrastructure monitoring with SDN was shown in [414].
Based on the monitoring of the network status in this paper, the authors showed that the status of
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monitoring the network against network failures, congestion, incorrect configuration and security
attacks should be an integral part of creating reliable network services.

Further research in the area of monitoring the state of the SDN network revealed that the main
problem of such tools is the ability to scale following the increasing number of network nodes.
Another large SDN security survey [400] showed that logging network events adds high value to
network operations and can improve security and infrastructure reliability.

The exploitation of SDN to improve the security awareness of the network is not something
new in the literature. Since the first implementations of SDN, the research community has seen a
huge potential in security-related applications. These solutions tackle the problem from different
directions

RFC8329 [282] proposes a reference model for defining the interfaces to the deployment and
configuration of network security functions, be they physical or virtual.

In [498] SDN was used to create either IDS or IPS components as needed, exploiting its ability
to dynamically adapt the network topology. The same property was exploited in other works about
DDoS mitigation over SDN-based infrastructure.

In [144] authors proposed a novel SDN application that protects SDN networks against DoS
attacks and mitigate their impact on the SDN controller performance, on the consumption of the
control plane bandwidth, and on switches workload. This tool was designed to mitigate simulta-
neously these issues by dynamically managing flow routes, rule entry timeouts, and the aggregate
flow rule entries based on the flow threat probability provided by an IDS.

In [503] authors instead proposed an SDN solution for monitoring the deployment of an SNMP
server, based on security attacks heuristics.

In [406] authors developed a flexible sampling extension for OpenFlow that enables the controller
to access packet-level information. In particular, this extension has the advantage of generating
a more accurate estimate of traffic statistics in comparison to per-packet sampling methods that
were commonly used in previous literature. This kind of solution can also exhibit a better fit for
security applications (such as IDS) that need data about short-lived flows, which can be missed by
uniform sampling or flow-based sampling techniques that focus on heavy-hitters.

As already outlined, SDN aims at separating the network control plane from the forwarding
plane. Controllers interact with forwarding devices via the so called SouthBound Interface. Open-
Flow is the de-facto standard for southbound interfaces to date [301].

OpenFlow started simple, with the abstraction of a single table of forwarding rules that could
match packets on a dozen header fields (MAC addresses, IP addresses, protocol, TCP/UDP port
numbers, etc.) but, over the past five years, the specification has grown and OpenFlow is now more
complex and feature-rich [84].
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In the first version of OpenFlow, just 4 header features were available, now there are more
than 50 [4]. This is not necessarily a positive trend. There is a widespread belief that, rather
than repeatedly extending the OpenFlow specification, the future switches should support flexible
mechanisms for parsing packets and matching header fields directly, allowing controller applications
to leverage these capabilities through a common, open interface [229].

A good example has been shown in [71], where data-center network operators increasingly want
to apply new forms of packet encapsulation (e.g., NVGRE, VXLAN, and STT), for which they
resort to deploying software switches that are easier to extend with new functionality.

P4

The idea of programmable switches has been around for a long time; in the past it was hindered by
the performance degradation of programmable switches, due to the fact that the vendor chips had to
adapt to different specifications instead of focusing on a subset of features and making them perform
at their best. More recently, thanks to the advances in ASICs design, it was demonstrated [307]
that programmable forwarding can be achieved at terabit/s speeds, thus making programmable
switches comparable to legacy ones. These are the main motivations that inspired the development
of a programming language for the data plane: the P4 language.

P4 is an open-source programming language which lets the end users describe how the switch
should process the packets. It controls silicon processor chips in network forwarding devices, en-
abling a paradigm change from a “bottom-up” approach where fixed-function switches are built-in,
to a programmable “top-down” approach where the user decides which functionalities to install. [83]

Basically P4 has three main goals.

• Reconfigurability. The controller should be able to redefine the packet parsing and processing
in the field.

• Protocol independence. The switch should not be tied to specific packet formats. Instead, the
controller should be able to specify a packet parser for extracting header fields with particular
names and types and a collection of typed match/action tables that process these headers.

• Target independence. The controller programmer should not need to know the details of
the underlying switch. The P4 compiler should translate the program features into target-
dependent capabilities.
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2.2 Formal Network Verification

Security tools based on formal verification have recently attracted much interest; this is especially
true for network verification [52, 205, 16]. A recent work by Beckett et al. [52] proposes a tool
called Minesweeper following the study of several tools developed by the research community with
the goal of finding network misconfigurations. The studies are classified into two categories: control
plane oriented, i.e., able to discover flawed configurations proactively, and data plane oriented, i.e.,
able to discover misconfigurations reactively, by observing the events happening in the network
while traffic is flowing.

Both categories have pros and cons. Proactive approaches are particularly useful to predict
potential network misconfigurations that might lead to security issue (e.g., BGP prefix hijacking);
however security breaches in the most general sense are hard to predict a priori, therefore, the
reactive approach is essential to detect unwanted (dynamic) network behavior occurring as a con-
sequence of malicious activity. Following the same line, we argue that both proactive and reactive
approaches should be adopted and combined to exploit synergies between them at best.

At the same time, the spread of the SDN has sparked a debate about the security of software
defined solutions. Here we will not address the whole of this large subject, concentrating our
attention on some issues regarding the correctness of topology and routing. Studies like [16, 251]
have analyzed the attack surface highlighting the vulnerabilities and security requirements of the
architecture. In [16] it is suggested the combined adoption of proactive and reactive approaches,
however, works like [304] emphasize the importance of reactive solutions for verification of invariant
in the data plane: the problem consists in checking if certain (security policies) are respected
starting from the Forwarding Information Base, that is from the rules of forwarding and from the
topology of the network.

This is a complex problem since it requires analyzing the behavior of all possible packet head-
ers. The header space, as it is called in [238], can be very large (the IP header being at least
160 bit long), and the union and intersection of packets are computationally expensive operations
(complexity (O (2n)) in the worst case, where n is the number of bits in the header [484]), thus
verification of properties in a network with thousands of devices can take a very long time. To
improve performance, Yang and Lam propose [484] to reduce the space to be explored: instead of
working on individual headers, they use sets of packets which are equivalent from the viewpoint
of forwarding, called Forward Equivalent Class (FEC), and a symbolic representation is adopted
to reduce computational complexity. The same researchers as well as other research groups [67]
performed experiments supporting their idea. The code of these experiments is available at [486].
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Atomic Predicates for Transformations

The fundamental idea of the method of Atomic Predicate (AP) consists in the representation of
port predicates through the FECs that are forwarded through the corresponding port. The boolean
functions, or predicates, used for the match of the packets are represented by Binary Decision
Diagram (BDD), an acyclic direct graph data structure whose nodes represent Boolean variables;
each node of a BDD has an low child and an high child and the arcs linked to child nodes represent
the assignment of the false and true value to the node variable, respectively. The evaluation of a
predicate proceeds recursively by choosing the child up or down based on the value of the variable,
up to the result of the evaluation reaching a terminal node true or false [15]. The representation with
BDD is flanked by the set of FECs that pass through the predicate gate. This is possible because
within each device the packets belonging to an FEC are forwarded on a single port, therefore the
predicates are seen as disjoint sets of FECs. At this point a further step is taken: the FECs are
uniquely associated with integer identifiers. It follows that the set of identifiers of the FECs that
pass through a port is equivalent to the original information of the predicate and can be used
for calculating the properties of the network. The equivalence between these representations is
demonstrated in [484, 487] and is indicated in [362] as equivalence of Yang and Lam.
In this way the disjunction and conjunction operations on the predicates are mapped on union and
intersection operations on sets of integers, with a considerable reduction in complexity.

Figure 2.1: Atomic predicates Verifier - Differences between header space and quotient space

In the example shown in figure 2.1, taken from [67], we illustrate the differences between atomic
predicates and analysis in header space:
For simplicity, suppose we have 2-bit long headers. In the image we have two routers that adopt
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the longest match semantics: in the first one there is only one rule that involves the forwarding
of all the input (wildcard expression (**)) of the p0 port on the p1 port, in the second router, is
specified that the traffic with prefix (1 *) must be forwarded to port 3, the rest of the traffic must
flow to the p2 port instead.
Using NetPlumber [237] we would have 3 rule nodes, one for each rule, an intra-table dependency
in the second router table and an pipe filter for port 2 of the type: (** - 1 *). Furthermore, the
difference between the two prefixes, which in this simple case is (0 *), must be computed at run
time, requiring an expensive operation of intersection between wildcard expressions.

Calculation of atomic predicates

Once demonstrated that APs correspond to equivalence classes, we need a way to extrapolate them
quickly from a set of port predicates. For this purpose, we need the following two formulas and the
algorithm inspired by [484].

Theorem 1. Atomic Predicates, Cardinality Set 1 Given a Predicate p we denote A({p}) as
the set of APs of the set compose only by the predicate p and:

A({p}) =

{true} se p = true or false

{p,¬p} else
(2.1)

Theorem 2. Atomic Predicates of the union of two sets of predicates Given P1 =

{b1, b2,…, bm} e P2 = {c1, c2,…, cn} 2 Atomic Predicates set. AP = {a1, a2,…, ak} is the result
of:

{ai = bi1 ∧ ci2 |ai ̸= false, i1 = {1, ...,m}, i2 = {1,…, n}} (2.2)

AP = A({P1 ∪ P2}) in [484].

The following algorithm applies the given formulas to calculate the APs of a set of one element
and the union of two sets to obtain the APs of an arbitrary set of predicates.
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Algorithm 1 Atomic Predicates calculation algorithm
Input: set of predicates {p1, p2,…, pN}
Output: atomic predicates input set, A({p1, p2,…, pN})

1: for i = 1 to N do
2: Compute A({pi}) using (2.1)
3: end for
4: for i = 2 to N do
5: Compute A({p1, ..., pi}) using (2.2) with A({p1, ..., pi−1}) e A({pi})
6: end for
7: return A({p1,…, pN});

Alterations in the state of the topology do not modify the APs, however, the policy tree could
vary and an update is therefore necessary. When the rules are updated, three operations must be
performed:

1. Verifying that altered predicates call for a recalculation.

2. Updating atomic predicates.

3. Updating the reachability tree item.

Operations 2 and 3 can be carried out concurrently.
For port upgrading, the rules are organized in a forest. Each tree is constructed by iterating over
the forwarding table of a device and setting the rules whose prefix is contained in the current prefix
as daughters of the current rule.

Finally, we need also to consider updates of APs. Here we have to consider of course two cases:

1. Addition of a predicate: just apply the formula (2.2), to calculate the APs of the union of
two sets.

2. Deletion of a predicate Pj : the old set of APs is still representative of the set of port
predicates, but some predicates could be redundant.

To minimize the set of APs we consider all the APs that represented Pj : of these the ones that
are not used in the description of other gate predicates are eliminated. The complete algorithm is
described in [484].

Improvements Introduced

With the update algorithm, we can maintain a temporary tree in the event of a rule update.
Reachability queries thus can be answered anytime without waiting for the APs to be updated.
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Updating, taking 10 ms on average in our test-beds, occurs concurrently. The temporary tree is
expanded with the new unresolved predicates, causing a slight decrease in efficiency as for [243].
If the unresolved predicates are in a number less than a certain threshold (configurable) and there
are no changes of APs it is sufficient to calculate the AP representation of the new predicates. Vice
versa if the number of unresolved predicates exceeds the threshold or if the set of APs has changed,
the temporary tree is eliminated and a new one is calculated.

Some limitations of the FEC-based approach emerge at this point. First of all, the network
model excludes a priori any device that modifies packets, cutting out widespread cases such as
NAT, MPLS, IP-in-IP tunnels. However, the theory has been extended to include some types of
changes in [485], although, to the best of our knowledge, a version of this upgraded library is not yet
available. Furthermore, as we have seen, the forwarding rules only use the IP address to construct
the match predicates. A solution for the application of the method to the SDN consists in the
use of the headers indicated in the OpenFlow specification, instead of just the IP address. Finally,
considering the BDDs, [67] suggests the use of a more efficient data structure for the representation
of predicates, attributing to BDDs an overhead due to the excessive number of calls to library
functions. It is also known from [15] that the BDDs are sensitive to the ordering of the variables:
an incorrect ordering can lead to a sensible efficiency reduction of the system.

2.3 Time syncronization between devices

The field of time-synchronization between electronic devices might appear trivial at a shallow
glance, but it has many caveats. The typical example is the clock drift: two digital clocks, initially
synchronized with a reference time T1 = τ and T2 = τ will not increment their internal time at the
same rate. That is, defining ∆τ = T1− T2, it may happen that after some time |∆τ | >> 0. These
sort of problem demands some form of distributed communication among nodes to be synchronized.

The Precision Time Protocol (PTP, IEEE-1588) [211] was proposed in 2002 to provide time
synchronization for industrial machines and cyber-physical systems. Dedicated hardware is used to
reach high resolution and precision. PTP plays a fundamental role in the new IEEE 802 standards
on Time-Sensitive Networking (TSN) and includes protocols for packet replication, time synchro-
nization and traffic prioritization [158].

The TSN standard specifies a new kind of IEEE 1588 protocol called Generalized Precision Time
Protocol (gPTP), introducing a specific profile of IEEE-1588 PTP which defines time constraints
and maximum jitter between packets. Although the standard specifies a number of security aspects
(i.e., an optional internal security layer to sign packets with a MAC), neither key distribution nor
application-layer authentication are addressed. Prior work on security of PTP focused on attacks
on the synchronization mechanism, such attacks are expensive as they require continuous traffic
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manipulation [321]. Other aspects of PTP security, such as the management protocol, were not
assessed for their security before. In particular, security assessment of management schemes in
practical PTP deployments are difficult, as those measures are implementation-dependent. So far,
no framework or generic infrastructure is available to perform such general security assessments of
PTP implementations.

In this work, we design and implement a PTP testbed for security assessment, and use it to
examine the IEEE-1588 PTP standard. We emphasize that implementing a testbed for this sort of
infrastructure is challenging either because of closed implementations in specific products or because
of lack of implementation details when reporting it [36, 127, 29]. Our testbed implementation is
based on the Linux PTP reference implementations and the whole code used to develop it, is released
under an open source license.

As a result of our security assessment leveraging our test testbed, we conclude that most of
existing products are all stemming from the Linux PTP implementation, and the MAC-based
authentication specified in the standard is in general not used. Instead, the solutions choose their
own approach to isolate security-relevant API calls, and some do not protect the API calls at all.

We propose a set of attacks and implement them in the testbed, which are successful in altering
the clock synchronization using only management frames. In particular, we show that Type Length
Value (TLV) frames can be abused by an attacker to reconfigure, manipulate, or shut down time
synchronization. TLV frames are defined in the standard to manage the infrastructure. To the best
of our knowledge, the security threats posed by such manipulation of TLVs have not been addressed
in the literature so far, in spite of requiring minimal bandwidth and allowing the attacker to gain
useful advantages to break time-related applications, such as Public Key Infrastructure services.

In this work, we provide an extensive analysis of how TLVs can be abused by an attacker, and
demonstrate the effectiveness of such attacks on our open-source-based testbed.

The contributions of this part of work are:

• We show that the PTP standard fails to define appropriate security requirements for TLVs,
although PTP will be critical for infrastructures such as 5G. As a result, implementations can
be expected to have security issues related to TLV authentication.

• We propose several different attacks that leverage this lack of security requirements in the
standard, and are aimed at desynchronizing clocks and introducing clock drifts.

• We design and implement a PTP testbed using LinuxPTP [111] and PTPD [350] that allows
to reproduce the complex PTP setup in a virtual environment.
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gPTP (802.1AS)

TSN switches

TSN Clock distributor

Figure 2.2: A simple example of TSN network using the specialized PTP protocol (IEEE 1588),
with a specialized profile called gPTP (802.1AS).

IEEE-1588 (PTP) and TSN

Every systems which operates according to a specific time frame, used to coordinate remote actors,
suffers from the clock drift phenomenon. Specific synchronization protocols were designed to this
end: the Precision Time Protocol (PTP), standardized as IEEE-1588 being one of the most sig-
nificant examples. There are three major releases of PTP: IEEE-1588 2002, v1.0, which was the
first version, currently deprecated; IEEE-1588 2008, v2.0, which is, at the time of this writing, the
main version of the protocol; IEEE-1588 2019, v2.1, which is a new version, typically found in the
industrial devices now in production. This protocol family corrects the error introduced by clock
drift through continuous handshake between the devices that must be kept synchronous.

To achieve high resolution and precision, a hardware device with packet-time-stamping capa-
bilities can be used. It will process network communications using a high precision clock, without
passing the packets through any further stack layer that can alter the effective time and reduce the
determinism of the process. The application level of PTP encompasses many PDUs. In this thesis
we will focus on PDUs which can be used to configure parameters of the nodes. This family of data
units is referenced as Type Length Value (TLV) due to its packet form 2.3.

Currently, TSN standard exploits a specific profile of PTP that is called Generalized Precision
Time Protocol (gPTP). A device compliant with this profile must communicate with PTP using
Ethernet packets. Which is a constraint introduced to ensure low jitter and maximum delays
between two synchronized nodes. Figure 2.2 describes the protocol placement of IEEE-1588 in
a TSN with two enabled switches. The clocks of the switches use a single logical time source –
pictured as the TSN clock distributor – which grants to the leaf switch devices synchronization
references using gPTP.

TLVs are the management PDUs of PTP and are be used to configure the protocol settings. For
instance, TLVs can be used to set or retrieve the name of the node set by the network administrator
or get the PTP version implemented by the device. Also, these methods, can be used to set critical
parts of the systems, such as the state of the port (e.g., by disabling it) or the position of the node
in the hierarchy. This part of thesis aims to be a reference for the main security implications of
the TLVs of PTPv2.0. A detailed list of TLVs usage can be found in the standards [211] and their
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Type (Unsigned integer enumerator) Length (Unsigned integer)
Value (Type - specific)

}
Length bytes

Figure 2.3: TLV packet formats. The mapping between the type name and 16-bit unsigned integer
value can be found in the IEEE standard. Type and Length are represented by two unsigned 16-
bit integers. Value interpretation is dependent from the Type field and its length is based on the
homonym field, interpreted as the number of octects.

security classification can be found in Appendix B.

The PTP and 5G

The 5G standard includes Mobile-Edge Computing (MEC) [240]. MEC is a common standard to
exploit virtualization mechanisms such as Docker, Kubernetes and IaaS clouds. These technologies,
are employed to provide access to applications designed for the mobile network. This approach
allows deployment of user-oriented applications in the network at the most suitable location, al-
leviating the need for global routing in service provisioning. A common platform facilitates the
deployment of applications, that can use a set of standardized APIs. These APIs encapsulate
the common infrastructure’s properties that are accessed by applications, for instance, methods to
search for other registered services with specific features. One of these methods is the query of the
wall-clock time and the status of time synchronization with the other applications. These features,
as specified in the ETSI MEC standard [6], could be implemented by using standardized protocols,
such as Precision Time Protocol (PTP).

PTP Hierarchy

PTP exploits an hierarchical structure, as described in Figure 5.2. Here the Grand Master is a
logical node in charge of synchronizing the entire hierarchy.

While a least one Grand Master is always required, the presence of additional Master nodes is
optional. Additional Master nodes are in charge of the distribution of the Grand Masters’ clocks
to the lower layer of the hierarchy. The Ordinary clocks are leaf nodes with no responsibility on
redistributing the clock to other part of the network. On the other hand, boundary clocks are
bridge devices which interconnect parts of the network and keep their internal clock synchronized
with the upper layers of the hierarchy. The transparent clock shown in the figure is a passive bridge
of the network which is limited to the transmission of network packets. This kind of ‘clocks’ do
not take part in synchronization and do not have internal references. To elect the hierarchy, an
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algorithm called Best Master Clock Selection (BMCS) is employed. This algorithm uses parameters
configurable in the PTP devices of the infrastructure which will take part to the selection.

The IEEE-1588 standard defines a Clock manager entity which is not part of the clock hierarchy.
This manager is responsible of the configuration of the network using Management frames (TLVs).
These configurations, in IEEE-1588-2008 are, in order of priority, from the most significant to the
less significant one:

1. Priority1, an integer value configurable by the Clock manager which identifies the priority of
the clock.

2. clockClass, a integer which identifies the synchronization’s type of the clock, this value is
configurable by the manager.

3. clockAccuracy, an integer which specifies the time resolution at which the clock can operates,
configurable by the manager.

4. offsetScaledLogVariance, a value that specifies the precision of the clock when not synchronized
to other ones, computed by the single nodes.

5. clockIdentity, an unique identifier associated with every clock. In a way like Bridge ID in
STP for root selection, this is used to resolve tie break among master nodes which have equal
proprieties.

The BMC algorithm messages are protected in the same way as the other protocol PDUs,
therefore they can be tampered with, producing fake messages, if the network is not segmented or
isolated.

Use Case Scenarios

These synchronization can provide to applications low latency requirements such as video and audio
streaming in real time or be the core element of safety-related scenarios.

One of these examples (pictured in Figure 5.1) is safety systems composition. Let’s consider
devices that can analyze spatial regions for intrusions1. A distributed interaction between such
systems can enable two-dimensional vision which can be extended over obstacles providing a more
complete view on the observed space. This kind of systems needs a fine-grained time synchronization
to build a consistent image and provide the correct measurements. The maximum delay and jitter
allowable in a network vary according to the safety level which one wants to obtain [56]. Scanners
can therefore exploit synchronization mechanisms provided by the IEEE-1588 protocol.

1For instance, laser scanners.
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Another scenario in which time synchronization could be employed to gain advantages is the
Audio-Video Distribution. In this case, multimedia plays from different systems must be synchro-
nized. When clock drifts occurs, the delay between the two plays could be heard by the audience.

PTP and other time synchronization protocols

Previous works in the field of timing synchronization have their roots in the secure time synchro-
nizations protocols, as [166, 167].

The Precision Time Protocol security has been extensively explored by several works: starting
from Ullmann’s work which explores this protocol compared to NTP [452], culminating with recent
works on the security of the PTPv2.1 standard [195, 405]. As these works state, the clocks alter-
ations that can be introduced controlling the infrastructure will still be present in the last PTP
standard. Several options that can improve PTP security could be found in works by Moussa et
al. [322] and Neyer et al. [332]. These papers address the field of time synchronization and en-
cryption, a theme which will return in the recently emerging TSN infrastructures. As stated by
previous works [327], this standard do not specifies any security profile and, like the PTP protocol,
relies on specialized standards such as MACSec [312]. This document states also the possibility
of interoperation between the TSN network synchronization capabilities and the emerging 5G net-
work infrastructures, focusing on the Ultra Low Latency layer of the communication platform. On
a different part of this mobile 5G network infrastructure, time synchronization protocol support
can be found in the MEC platform [240].

Finally, most of the presented work is based on the official standardization documents of PTP
protocols [210, 211, 212], TSN [213] and 5G MEC API specification [6].

PTP Security

From a security perspective, the PTP protocol can implement a security layer to sign packets with
a Message Authentication Code2. The distribution of the key is not specified in the IEEE-1588
standard. Moreover the protocol can be also tunneled in secure layers like IPSec. These solutions
are far from optimal for a clock distribution service as stated in [452]. Controlling the network
infrastructure hosting the PTP communication, attackers can control the speed of PTP PDUs:
they can delay or accelerate the clock synchronization packets3, even acting on different ISO/OSI
layers.

Exploiting this kind of delays will therefore control the time reference of the victims.

2Standardized as an option in the Annex-K of the IEEE-1588 2008 document [211]
3While delaying packets is trivial, Ullmann et al. in [452] describe a method to accelerate packets by exploiting

changes on the infrastructure itself by using faster routes.
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PTP attacks

A family of possible attacks to PTP are discussed in [452], where a list of vulnerabilities that affects
PTP networks is presented. The main attacks on this kind of networks are classified as:

Byzantine masters. Spoofing a Master node, the dependant clocks can be induced to a time
drift or sensible clock skews. If the system is misconfigured, e.g., with max correction applicable
to the clocks, ϵ. These configurations can be broad enough to be bypassed by an attacker with
active-attack possibility. If no limit is imposed on ϵ, the clock can be manipulated to the point to
make it faster or slower than others. That is, an attacker can announce an arbitrary clock offset to
the clients, changing all the hierarchy’s references.

Boundary clock alteration. An interposed device (boundary or transparent clock) can alter
the timing between the packets. This operation can be made on data-link or networking layer,
using network routes or dropping packets with a certain rate. These manipulations can effectively
change the heuristics used in the BMC selection algorithm or the synchronization between the
clocks. Encrypted connection do not mitigate the possibility of this attack [34].

2.4 Insider Threat

Insider threats pose a complex challenge. They represent one of the most expensive security issues
for companies [417] in general. Furthermore, they have the potential to obliterate companies work-
ing in specific fields where customers’ trust is the tool of the trade. A prime example is the offensive
security sector, e.g., firms offering penetration testing services, which have a mission to uncover
unbeknownst ways to access sensitive data or to interfere with the processes of their customers.

While initial vetting of prospective employees and a sane trust relationship built on close co-
operation remain fundamental, it is only prudent to deploy technological aids to detect possible
malicious behaviors and to contain their effects.

In a classic cybersecurity framework, e.g., NIST’s, five main phases are defined: Identification,
Prevention, Detection, Response and Recovery [340].
The first 3 phases are obviously those related to the analysis and monitoring of the behavior of all
the agents in the game, trying to discover a malicious one. After that, the Response and Recovery
phases focus on how to react to the attack once it is identified, to contain damages and restore
normal operations.
When dealing with insider threats, not all phases are created equal. Prevention would require
to know in advance which actions – among the ones legitimately granted to insiders to perform
their duties – can be used to perform an attack, which is clearly impossible to scale out of the



2.4. INSIDER THREAT 25

simplest scenarios. Response and recovery are next to pointless after highly sensitive data have
been exfiltrated or devastating vulnerabilities have been exploited.

Identifying insider threats usually requires a mix of detection mechanisms. While for other
common threats such as vulnerability exploitation, human exploitation, etc. it is possible to define
what a malicious activity is, insider threats require a monitoring phase which must tell malicious
from non-malicious intents often appearing as similar activities. Insiders can perform actions that
are “syntactically” legitimate but may have a malicious semantics, such as the usage of external
USB devices. For this reason, traditional activity tracing must be complemented by a monitoring
approach including deep understanding of the context and observation of the user behavior.

Detection tools - deep packet inspection

Deep Packet Inspection (DPI) is considered one of the main techniques for traffic analysis. It
resembles packet filtering in that it examines traffic transparently traversing an inspection point.
Instead of noting the headers only, it takes a holistic view at the packet data, looking for protocol
non-compliance, attempted malware delivery or possible exfiltration of sensitive data.
Result of the DPI can be corrected, marked for the purposes of quality of service, blocked, at a
limited rate and/or reported to a reporting agent in a network.
DPI is resource-intensive; it is experiencing an increasing diffusion thanks to the advent of modern
virtualized infrastructures, enabling its provisioning as a softwarized component (a Virtual Network
Function, or VNF), which can be easily deployed or even invoked “as-a-service”. Authors in [381],
for example, proposed an Efficient Verifiable Deep Packet Inspection scheme (EV-DPI) with privacy
protection over two non-colluding cloud servers. The DPI was implemented as a service into an
outsourced MiddleBox (MB).
Similar work has been done in [187], which is focused mainly on how to create an architecture acting
as an enabler for a DPI service.

Also [270] proposed two practical approaches for the implementation of a cloud-based DPI MB.
Its services can be invoked to perform payload inspection over encrypted traffic while preserving
the privacy of both communication data and inspection rules.

Detection tools - behavioral analysis

Recently, thanks in particular to the advent of Machine Learning techniques, significant work has
been done to map the nature of an internal user using advanced AI analysis. This approach looks
promising to limit the rate of false positives, which is a typical shortcoming of simple activity
detection methods.
Already in 2016, authors in [392] listed several proposed techniques for insider threat detection based
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on machine learning classification. Shortly afterwards, an interest emerged for the application
of these techniques as a means to integrate environmental and behavioral parameters into the
detection process. In [63], insider threat is detected through AI-based behavioral analysis. More
specifically, [393] proposed an insider threat detection model that performed monitoring through AI
techniques for facial recognition. Another integrated approach to monitoring is shown in [100]. Its
authors studied the effect of combining the usual technological techniques with social, political, legal,
and cultural influences considerations from disciplines in human behavior. Lastly, [309] proposes a
method to identify specific malicious patterns and to predict a user’s next move, based on a deep
analysis with regression methods.

Contextualization and integration

Literature abounds with guidelines and principles aimed at providing general descriptions of the
context and the identity of the insiders [162, 90]. However, experts agree that the strong contex-
tual variance of threats [88, 397] makes providing a general yet precise identification of all possible
insiders difficult.
So it’s important first to build a set of rules or guidelines on how we could define the malicious
behavior of an insider. In [181], for example, authors describes approaches to assemble knowledge
about insider threats and to apply this knowledge in support of insider threat assessment.
Similar work has been done in [148] where authors defined a strict methodology to identify insider
threats based on a better collaboration process between the Information Technology (IT) man-
agement and the Human Resources (HR) department. In [182] authors proposed a research on a
comprehensive ontology of sociotechnical and organizational factors for insider threat.
One of the most recent works on this same approach is [183]. This research aims to catalog human
as well as technical factors associated with insider threat risks to inform the development of more
proactive approaches to insider threat assessment.
In [423], the detection of the insider is based on a real-time testing simulation of real users, gen-
erating user data to test the detection of malicious users. We found other updated and relevant
resources in [204] which is one of the latest surveys that summarized techniques for insider threat
identification and detection.

2.5 Constraint Programming

We will use extensively constraints and Constraint Programming in policy verification.
In Constraint Programming (CP), problems are solved by defining the requirements (constraints)

to be applied to the problem variables and the goal is to find a solution that satisfies all the con-
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straints. [385]. The main idea behind CP as stated by E. Freuder is: “Constraint Programming
represents one of the closest approaches computer science has yet made to the Holy Grail of pro-
gramming: the user states the problem, the computer solves it.”

Therefore CP is very suitable to implement a declarative northbound interface, that network
operators or network users may exploit to express general constraints and goals in a way that is
not bound to the specific underlying technology [165].

The essential step in modelling a real-world problem as a CP model, which can be solved using
CP techniques, is to determine the decision variables of the problem and their relationship in terms
of constraints, representing in very general terms the restrictions or cross bounds on values that all
decision variables can have. Solving a CP model is the action of finding the values of the decision
variables that simultaneously satisfy all the constraints. In this case CP problems are also called
Constraint Satisfaction Problem (CSP) [49].

However, in many cases, there may be many subsets of the variables domains that satisfy the
constraints. The solver program can be tuned to provide the first solution found, without any
further processing, or all possible solutions. In addition, if an objective function can be defined
on decision variables, the solver program can also be asked to provide a subset of values that
maximises or minimises such a function. In this case CP problems are also called Constraint
Satisfaction Optimisation Problem (CSOP) [49].

High level languages exists to state problems and constraints, like the open-source Minizinc
language4, as well as high performance solvers that can solve problems in a very efficient way [75].
Indeed the performance of a CP solver depends on its implementation but also on the description
of the problem, with a mixed combination of computation efficiency and human optimization in
problem design. The ease of implementation, simplicity, expressiveness and compatibility with
many solvers has made MiniZinc the de-facto standard CP modelling language.

4https://www.minizinc.org
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Analysis3

One of the points of our research was the analysis of the families of attack present in literature,
that composes a good state of the art of the micro-services attacks. It can be useful to analyze a
future direction for attacks or defences (e.g., where the defences are lacking).

3.1 Microservices security

The importance of security in micro-services creates the need for understanding and analysing the
state of the art for securing this kind of architectures. It is particularly important to understand
which problems are especially relevant for micro-service systems, and how existing techniques can
contribute to addressing them. However, there is still a lack of systematic investigations of studies
at the intersection of security and micro-service architectures.

We followed a structured approach, which led us to select and gather 290 peer-reviewed publi-
cations. At the time of this writing, this constitutes the largest curated dataset on the topic. We
first perform a quantitative analysis on the metadata of the publications, for example, publication
outlets and keywords. This provides insight into the communities and key research concepts that
currently characterise the field. We then map each publication to a vector of 20 different mark-
ers, corresponding to 20 research questions on micro-services security that we formulated based on
established security techniques and the field of micro-services as a whole.

Our research questions focused on threat models, security approaches, infrastructure, and de-
velopment approach. We perform correlation analysis to show that our questions are well-posed
(independence), and also to confirm that some topics correlate positively (e.g., Intrusion Detection
and Intrusion Prevention, and Agile Development and DevOps as well). Findings from our analysis
include: issues with technology transfer from academia to industry on micro-services security; lack
of guidelines for adopting security by design in micro-services; lack of appropriate threat models;
lack of guidelines for addressing the attack surface given by technology heterogeneity; and security
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issues when migrating systems to micro-services. Our data, findings, and discussions form a useful
basis for orienting future developments of the field.

In summary, the main contributions of this part of work are:

• the characterisation of Micro-services Security as an early-stage, growing research field in
need of systematisation and more mature contributions (“Publication Outlets”, “Types of
Publications”);

• the identification of the main research communities on the Micro-service Security field and
the clustering of authors (Research Communities);

• a presentation of the trends of the main security attacks involving micro-service architec-
tures, both from the points of view of threat model (Threat Model) and mitigation (Security
Approach (Mitigation));

• a report on the current infrastructural security solutions for micro-services (Infrastructure)
as well as the interaction between the main micro-services development approaches (such as
DevOps and Agile) and security (Development);

• a correlation analysis of the answers to our research questions in papers, which sheds light
on relationships among the different aspects of micro-service security (Correlation between
Research Questions);

• a summary of the main open challenges that emerged from our study, which form a call for
action for the community of researchers and practitioners working in the field of micro-service
security (Discussion and Future Directions).

[455] present a systematic mapping that identifies the security mechanisms used in microservice-
based systems. Contrary to our work, which provides a general overview on the state of the art
of microservices security, the authors narrow their focus on cataloguing the security technologies
and mechanisms adopted by developers of microservice-based systems—e.g., authentication and
authorisation—leaving out other subjects related to security, like threat models and development
methods. Similarly to [455], [24] concentrate on surveying the technologies and standards for
security, privacy, and communication used in the area of microservice architectures in the cloud.

Extending our view to articles that, at the time of this writing, are not available as peer-reviewed
publications, we mention the work by [197] and [363]. [197] present a systematic categorisation of
threats on microservice architectures and propose a selection of possible mitigations. [363] look at
how “security smells” affect microservice-based applications and how to mitigate the effects of such
smells through refactoring. As for the proposals by [455] and [24], the difference between our work
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and [197] lies on generality: [197] narrow their investigation down to the threats identified in the
literature. Similarly, the work of [363] focuses on the programming of microservices.

In addition to the related work discussed above, there are quite a few neighbouring surveys with
respect to our work that are interesting to discuss: while these studies are not dedicated to the topic
of microservice security, they explicitly mention security as an important concern for microservices
in different contexts—software engineering, Internet of Things, containerisation, etc. The purpose
of reviewing neighbouring related work is twofold:

1. It shows the multifaceted nature of microservice security, giving concrete evidence of the need
for an investigation which is both wider and deeper, as we do in this work.

2. It provides a general overview of the challenges and possible uncovered research topics related
to security in microservices—which inspired some of the questions presented in Section 3.1.

[143] present an overview of microservices, including a discussion of the origins of the paradigm,
its state of the art, and future challenges. They identify a number of trust and security challenges
posed by the paradigm. We mention a few examples. Service reuse, one of the key benefits pushed
for in the microservice paradigm, requires adopting secure mechanisms for service authentication
and authorisation. The increased granularity and heterogeneity of microservice architectures ex-
tends considerably the attack surface of these systems. The sophisticated DevOps infrastructure
required to operate microservices effectively is a new attack vector.

[169] conducted a preliminary analysis toward a taxonomy of microservices architectures. While
not addressing in particular security concerns, [169] reports that the security subject is not exten-
sively addressed, highlighting how monitoring and microservice communication trust chains should
receive particular attention.

[228] reviewed approaches proposed in the literature to deal with the various concerns of
microservice-based systems. The authors mention the large attack area offered by microservices
subject to insider/privilege-escalation attacks and network security issues.

[93] surveyed the topics of European research projects in the area of software engineering. Re-
garding microservices security, they highlight four main challenges: increasing the usage of software
validation and verification methods; improving the trust and interoperability of services through
(self/federated)-certification of outputs based on standards; adopting a security-by-design approach
on the whole software lifecycle; and helping developers with addressing discontinuities in the chain
of compositionality between services and execution environments—e.g., due to data leakages derived
from fragile container-host interactions.

[276] investigate and discuss the challenges of migrating monoliths to microservices. They ob-
serve that security should be part of the migration planning phase to begin with, and that developers
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need models and frameworks to help them elicit, track, and manage the (frequently implicit) as-
sumptions and invariants induced by the migration of the legacy system. These observations are
shared with [135], who suggest that the microservice architectural style has a direct impact on the
design of a system and that researchers are still investigating how to leverage its characteristics
with respect to system quality and security. [135] note that there exists uncertainty about the
realisation of microservices, indicating the need for comprehensive references to help programmers
in the multifaceted aspects of microservice development.

[343] address the open challenges of interoperability in the Internet of Things (IoT), noting how
microservices can constitute a solution for the programming of highly distributed IoT networks
and provide two decades worth of research and industrial experience to tackle interoperability in
heterogeneous systems. Regarding the general security of IoT systems, [343] note the emergence of
security issues (e.g., authentication and access control) when system design permits direct access to
resource-constrained devices. Reviewing the many solutions and levels at which IoT interoperability
can be tackled, [343] note the challenge of both maintaining and guaranteeing the same level of
security when mediating among different technologies.

[299] examine microservice availability tactics to detect, prevent, mitigate, and recover from
faults. They highlight how the tactics for the availability of microservices mainly focus on preventing
faults, whereas detection, reaction, and recovery are scarcely addressed. Commenting on related
challenges, [299] report a deficit of solutions to support the restoration of normal functionalities
after a microservice architecture suffered from some faults.

[13] surveyed robust and flexible service management platforms for IoT systems. Like [343],
they identify microservice architectures as the most suitable architectural pattern to handle the
heterogeneity of IoT systems and that the foremost challenge in the field is the robust integration
of different technologies. [13] also report how conventional security solutions and practices are not
suitable to handle the expansion, mobility, resource constraints, and new security requirements of
the considered systems.

[95] investigate service integration from the perspective of separation of concerns and identify
problems with conventional service integration design/technologies. They report that the lack of
proper cross-cutting concerns in programming technologies make it difficult to capture and guar-
antee that invariants of a given microservices—specifically, on security—hold when paired with
integration components.

[488] survey how cloud computing systems can help scientific research. In their report, they
notice how the (micro)service paradigm is useful to make resources available to collaborating re-
searchers by providing a well-defined interface specifying the operations that can be performed on,
or with, a given resource. However, they also report that privacy and trust issues are of partic-
ular concern to researchers, especially in fields that are processing sensitive data such as medical
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research. For this, appropriate provenance metadata is required, both to understand how and by
whom the data was created and modified, as well as to understand where it has been potentially
exposed to corruption. Similar comments are shared also by [361] in the context of healthcare cyber-
physical systems. In particular, proper encryption is reported as a key component for (real‐time)
data acquisition.

[413], reviewing the “pains and gains” of microservices in the grey literature, found how security
generates pains at design-time. Like [488], [413] comment that microservice-based applications
should support the consistent determination of the provenance and authenticity of data, noting
the paradox of that being in contrast with the heavily-distributed nature of microservice systems.
Another (meta)observation by [413] is how there is a gap between the industrial understanding and
state-of-practice on microservices and the state-of-the-art of academic research, one possible reason
being that academics have limited access to industrial-scale microservice-based applications.

[134] identify, classify, and evaluate the state of the art on architecting with microservices from
the perspectives of publication trends, the focus of research, and potential for industrial adoption.
On security, they report that it is attracting insufficient research. The works by [463] and [25]
follow similar modalities and results.

[55] surveyed security of containers, a technology frequently paired with microservices. They
report how container security is still in an early phase and it faces unsolved challenges. The results
presented by [55] match those by [424], who report the presence of a large number of challenges linked
to containerisation because OS Kernel sharing introduces security issues absent from virtualisation
solutions.

[424] also highlight the importance of enhancing vulnerability management, digital investigation,
and container alternatives.

[368] present a survey on the employment of fog computing to support IoT devices and (mi-
cro)services. In their study, they report how security is the largest cross-cutting technical concern
within critical IoT systems, which necessitates a common baseline and interoperable standards to
address security challenges within both hardware and software. In particular, [368] advocate for
solutions to provide a full-stack secure chain of trust from devices to fog/cloud components, which
has been only preliminary explored (as remote attestation techniques). [446] and [368] report also
the importance of addressing the concerns of context-aware security (in IoT systems), especially for
authentication and authorisation.

Also [495] surveyed the literature on microservice-based fog applications to elicit the security
risks threatening them. The main threats highlighted include: kernel-level leakage vulnerabili-
ties linked to containerised deployment; man-in-the-middle/insider attacks on data-transmission
interception; the need to verify when services become compromised/misbehave; and network-level
vulnerabilities on data-routing alteration.
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Publication Year Type Num. White L. Grey L. Sources

This work 2021 SLR 290

ACM Digital Library
IEEE Xplorer
SpringerLink

Scopus
Science Direct

Wiley
Google Scholar

[455] 2019 SLR 26

ACM Digital Library
IEEE Xplorer
SpringerLink

Science Direct
Wiley

Google Scholar

[24] 2017 Survey N.A. N.A.

[197] 2020 SLR 46

ACM Digital Library
IEEE Xplorer
SpringerLink

Science Direct
Wiley

[413] 2018 SLR 51

Google
Bing

Duck Duck Go
Yahoo!

Webopedia

Table 3.1: Summary table and comparison with related works. For each row/work in the table,
we report: its reference; its publication year; its type (Systematic Literature Review (SLR), sur-
vey, etc.); the number of publications it encompasses; whether it analyses white (peer reviewed)
literature; whether it analyses grey (blog posts, etc) literature; the sources it used to search its
dataset.

The table 3.1, shows the differences between these various works, in numerical and boolean
terms. As clearly evincible, our work expands the previous works by adding a conspicuous amount
of analysed publications; using white literature at its roots and following the trend and methods of
the main Systematic White Literature Reviews.

Methodology

Following the guidelines by [411], and as depicted in Figure 3.1, we started by searching and retriev-
ing the literature for relevant publications from several data sources by using the same keyword
query. We then performed a manual revision process of the automatically selected publications
to exclude publications out of the scope of this study and perform snowballing—i.e., recursively
adding to the dataset relevant publications cited by the already selected publications. The result-
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Peer-Reviewed Data Sources

Query: 
Microservice AND SecurityIEEE ACM Scopus

Springer
Science
Direct

Initial Dataset

First Filter: Coarse

Second Filter: Refined

Publication Analysis for RQ

Snowballing

Final dataset

Wiley

Re-Iterate over
publications from 

snowballing

1st Step

2nd  Step

3rd Step

4th Step

5th Step

Exclusion Criteria:
- Duplicates 
- Non-english paper
- Short papers
- Improper keyword 
attribution

Exclusion Criteria:
- Title 
- Abstract
- Conclusions

Figure 3.1: Schema of the method followed to gather the dataset for this review.

ing dataset consists of 290 publications. We analysed these publications to collect statistical and
transparent answers to our research questions, which are detailed in Section 3.1.1

Security in microservices includes complex and heterogeneous topics, ranging from development
to infrastructural concerns. In our choice of a selection query to gather an initial dataset, it was
important to pick a sufficiently general query. For this reason, we adopted the query “Microservice
AND Security” for our initial search, capturing all the publications containing both terms in any
of their title, abstract, or body.2

[134, 361, 413] reported how publications on the topic of Microservice started in 2014. Taking
into account this fact, we limited our research to contributions published since 2014.

During the seven years covered by our work, the body of knowledge on this topic has grown
significantly. For this reason, we deemed it useful to consider white literature only: in terms of

1The list of the publications and their bibliography information is publicly available at https://doi.org/10.
5281/zenodo.4774894.

2We performed experiments with potentially more inclusive queries, such as “Microservice AND (Security OR
Authorisation)”, as well. The tried queries, however, did not extend the search in any useful way since the term
“Security” proved to be general enough to cover specialised aspects like authentication, authorisation, and (safe)
communication.

https://doi.org/10.5281/zenodo.4774894
https://doi.org/10.5281/zenodo.4774894
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quantity, it represents a very meaningful sample of the research produced during the considered
time frame, and in terms of quality, it allowed us to rely on peer review. Thanks to the more
uniform organisation of white literature, we are also more confident in the level of consistency of
our choice and application of the selection criteria. This is not to say that grey literature is not
worth investigating. Blog posts, personal websites, technical reports, white papers, etc., are often
the preferred venues for practitioners to share ideas. However, as also pointed out in [412], “it
is very difficult to uniquely measure the quality of grey literature when conducting a systematic,
controllable, and replicable secondary study” and we are not aware of a standard method for the
evaluation of grey literature. Analysing the grey literature was beyond the quality goal of this
article and we leave it as future work.

Accordingly to this strategy, we collected publications from 6 different publishers, focusing on
peer-reviewed publications. We did not, for example, use Google Scholar or arXiv, since they also
list resources that are not peer-reviewed.

• ACM3, 478 publications;

• IEEE explore4, 181 publications;

• Springer5, 345 publications;

• Scopus6, 134 publications;

• Science Direct7, 358 publications;

• Wiley8, 208 publications.

This gave us an initial dataset of 1,704 publications in total. We collected publications published
up to the 31st of December 2020, using the academic subscriptions provided by University of
Bologna and University of Southern Denmark. To guarantee the same level of trustworthiness and
authenticity, we retrieved the publications only from the official entries, avoiding external sources
such as the authors’ personal websites.

3https://dl.acm.org/
4https://ieeexplore.ieee.org/
5https://link.springer.com/
6https://www.scopus.com/home.uri
7https://www.sciencedirect.com/
8https://onlinelibrary.wiley.com/

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://link.springer.com/
https://www.scopus.com/home.uri
https://www.sciencedirect.com/
https://onlinelibrary.wiley.com/
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Publications Triage

The publications retrieved from the publishers were processed in three steps to check if they should
be excluded according to distinct exclusion criteria. Graphically, in Figure 3.1, these steps are
labelled as 2nd, 3rd, and 4th Step(s).

In the 2nd Step, we looked at whether the keywords “Microservice” and “Security” were used.
We excluded a publication if the keywords appeared only in the bibliography. Moreover, we excluded
the publication if it was too short (less than two pages), publications not written in English, and
duplicate publications already listed in another publisher source.

In the 3rd Step, we looked at the title, abstract, and conclusion of each publication. Publications
that do not treat or discuss topics related to micro-services and security were excluded. In this step,
we also excluded publications in which the security topic was orthogonal or incidental. In this way,
we excluded publications where “microservices and security” was one of the possible application
scenarios, but not the main subject of the study.

We also excluded cases in which the work tangentially mentioned the satisfaction of some secu-
rity aspects, without detailing the design/development of the security technologies to accomplish
them. For example, we excluded publications focusing on blockchain technologies where the au-
thors incidentally mention authentication and integrity protection as inherent security properties
of blockchain-based implementations.

In the 4th Step, we performed an analysis of the publications, answering to the Research Ques-
tion (RQ) detailed in Research Questions. No publications were excluded at this step.

At this point, the following publications remained in the dataset (268 in total):

• ACM, 67 publications;

• IEEE explore, 59 publications;

• Springer, 46 publications;

• Scopus, 28 publications;

• Science Direct, 53 publications;

• Wiley, 15 publications

Snowballing

As the last (5th) step for the systematic literature review, we performed a backward snowballing
process [473] with the objective of identifying additional relevant references for our study from the
works cited by the already selected publications.
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All references collected in this way underwent the triage by following the Steps 2, 3, and 4.
Each referenced publication accepted for inclusion by these steps was then added to the dataset
of selected publications. Snowballing was recursively performed on these newlyadded publications
until reaching a fixed point; i.e., until no new publications was added to the dataset.

The outcome of repeatedly applying the snowballing process led to the following results:

• 40 references in the first round, from which we selected 9 publications;

• 22 references in the second round, from which we selected 8 publications;

• 5 references in the third round, from which we selected 5 publications;

• 4 references in the fourth round, where we selected 0 publications.

The 4 cycles of snowballing yielded 22 additional publications that were included in the dataset
to reach the final size of 290 publications.

Research Questions

In this section, we detail the research questions that guided our systematic review. Usually, the
research questions for systematic literature reviews are fairly broad and do not amount to more
than six. In our case, we chose to adopt more questions (20) but dichotomous (i.e., with yes-or-
no answers), to favour precision and objectiveness. To define the questions and seek guidance in
categorising the relevant security issues for microservices, we took inspiration from the related work
presented Section 3.1, as well as from the state of the art in standards and methods, namely the NIST
Special Publication 800-204 “Security Strategies for Microservice-based Application Systems” [98].

Our questions are collected in four macro groups (Gs), each covering a different concern.

• G1: Threat Model. Questions on threat modelling and how threats are dealt with.

• G2: Security Approach. Questions on the security approach, e.g., whether it is preventive,
adaptive, proactive, or reactive.

• G3: Infrastructure. Questions on the infrastructure that micro-services run on.

• G4: Development. Questions on the development process.

The questions in each group are reported in the remainder of this section.
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G1: Threat Model

Mapping the usage of threat models is important to see gaps when a security violation must be
handled, or if known models are outdated and need to be adjusted. The NIST report, for instance,
hints at the importance of identifying the threats looming over a microservices architecture [98].

The usage of a formal threat model has proven to be extremely useful in the identification of
attack types and their strategic countermeasures [126].

Several threat models exist in the literature. The most famous one is STRIDE [247] named
after the Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and Ele-
vation of privilege security threats. Other threat models however exists, such as PASTA [451] or
OWASP [349].

In our review and with this first group of questions, we aimed to understand whether a pub-
lication followed a known model, strategy, or guideline. Alternatively, we wanted to know if new
security models were proposed.

This group consists of the following questions:

Q1 Does the publication mention STRIDE, or at least consider all of its aspects?

Q2 Even without explicitly mentioning STRIDE, does the publication involve at least one of its
aspects (Spoofing, Tampering, ...)?

Q3 If STRIDE aspects or equivalent are considered, does the publication propose/ discuss a con-
crete implementation/solution (either developed by the same author or one taken from the
literature)?

Q4 Does the publication consider or follow another threat model rather than STRIDE without
introducing a new one?

Q5 Does the publication mention policies, workflows, or guidelines to handle violations?

In particular, with question Q1 and Q3 we looked for the adoption of STRIDE, being the most
popular threat model. In the remaining questions, we investigate if the publication defined some
threat model–either from the literature or a newly one introduced in that publication–or at least
discussed equivalent principles or guidelines without mentioning STRIDE.

G2: Security Approach

Many related works cite the usage of preventive measures to secure microservices [299, 455, 169,
24, 13, 413] while some indicate the need for further research in the other directions of proaction,
reaction, and adaptation [455, 299]. With this second block of questions, we wanted to go deeper
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into the security aspects, considering the specific security approaches, solutions, and also the role
that micro-services play.

This group consists of the following questions:

Q6 : Does the publication mention Intrusion Detection System (IDS) functionalities?

Q7 : Does the publication mention Intrusion Prevention System (IPS) functionalities?

Q8 : Does the publication mention Threat Intelligence?

Q9 : Does the publication mention Exfiltration Leaks?

Q10 : Does the publication address Insider Threats?

Q11 : Are micro-services part of the solution?

Q12 : Are privacy and GDPR considered?

G3: Infrastructure

The NIST report by [98] dedicates a large part of its content to infrastructural security solutions
for microservices. Similarly, the majority of the mentioned related work in Section 3.1 presents
or at least cites infrastructural solutions for security, acknowledging that the infrastructure of
microservice systems is typically complex, encompassing concerns that span from service deploy-
ment and service-to-service coordination (discovery, composition, consistency) to the definition of
security-specific mechanisms (authorisation, authentication).

In this group of questions, we aimed at finding information on the infrastructure configurations
considered in the publication. This group consists of the following questions.

Q13 : Does the publication specify how the proposed architecture is controlled or managed (e.g.,
in a centralised, decentralised, or hybrid way)?

Q14 : Does the publication mention Infrastructure-as-a-Service?

Q15 : Does the publication mention service discovery?

G4: Development

Micro-services are often associated with software development practices like DevOps and Agile [45,
453] which, in turn, are heavily influenced by the inclusion of security-oriented practices [93, 276,
95, 413].
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In this last set of questions, we aimed at checking the extent to which these practices are used
also in the setting of security, for example by verifying whether specific development processes and
security standards are considered.

This group consists of the following questions:

Q16 Does the publication mention DevOps, Continuous Integration, Continuous Deployment, or
Continuous Delivery?

Q17 Does the publication mention Agile, or how security experts are integrated from a development
process point of view?

Q18 Does the publication mention Domain Driven Development?

Q19 Does the publication mention Model Driven Development?

Q20 Does the publication mention certifications, such as ISO27000 9, or technological standards
such as X.509 10?

Review Results

In this section, we present the outcome of the literature review. We start by presenting quantitative
results obtained from the metadata of the publications in our dataset. This is useful to map the
trends over time and the current shape of the field, in terms of the number of contributions, type
(proceedings, articles), communities, and keywords (and their relations). Then, we present results
derived from the analysis of the types of contributions (theoretical, applicative, etc.) and of the
relation between the selected dataset and our research questions (cf. Section 3.1). This part is aimed
at providing a detailed insight on existing research patterns, gaps, and uncovered areas of the field.
We close the subsection with a correlation analysis of the questions, providing a quantitative look
over the relationships between them. For reference, we also report our dataset in tabular form,
where each entry is associated with the positive answers given to our research questions.

Insights. In the following subsections, we highlight in separate paragraphs (like this one) the
main insights that emerge from our analysis. Each insight motivates an open challenge, which we
write in bold as the heading of the insight. We will use these challenges in “Discussion and Future
Directions” to structure our discussion about useful future directions for research on micro-service
security

Metadata Results. We start our quantitative analysis of the collected dataset by presenting in
Figure 3.2(a) the time distribution of the selected publications. As expected, security in microservice

9https://www.iso.org/isoiec-27001-information-security.html
10https://tools.ietf.org/html/rfc5280

https://www.iso.org/isoiec-27001-information-security.html
https://tools.ietf.org/html/rfc5280
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Figure 3.2: Time and category distribution of publications.

systems gained a lot of academic interest in the latest years. This is reflected by the sharp increase
in the number of publications since 2014. In Figure 3.2(a), we report the number of collected
publications per year. As a reference to indicate the degree of growth of the field, we report in
Figure 3.2(b) the yearly ratio (in parts per million) between the collected publications and the
overall number of publications in computer science11.

Publication outlets. From the plot in Figure 3.2(c) we see that conferences and journal
venues are the most common outlets, while books/collections are underrepresented. This last
fact indicates the early stage of the field, where established references are still lacking. However,
conference proceedings are almost matched by journal articles, marking a maturing trend of results
that are solid enough to constitute material for more structured contributions, as those found in
peer-reviewed journals.

We now concentrate on the specific conferences and journals where the publications in our
dataset have been published. In Figures 3.33.4, we report this result in two versions: i) in tabular
form, on the left-hand side of Figures 3.33.4, with the acronym, the full name, and the number of
contributions in our dataset of the venues with the most contributions and ii) on the right-hand
side of Figures 3.33.4, showing the data on the left as a pie chart.

Regarding the distribution of publications over the different categories of venues, we note how
the audience of journals and conferences vary. In fact, there is no predominance of security-oriented

11Source: https://dblp.org/statistics/publicationsperyear.html.

https://dblp.org/statistics/publicationsperyear.html
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Acronym Name # in
dataset

ARES International Conference on Avail-
ability, Reliability and Security

2

CCGRID IEEE/ACM International Sympo-
sium on Cluster, Cloud and Inter-
net Computing

2

EuroS&P European Symposium on Security
and Privacy

2

ICSA IEEE International Conference on
Software Architecture

3

IFIP The International Federation for
Information Processing Conference

3

MEDES ACM Conference on Management
of Digital EcoSystems

2

NOMS Network Operations and Manage-
ment Symposium

2

SEC Security Conference 3
STAF Software Technologies: Applica-

tions and Foundations Interopera-
ble Systems

2

ARES

CCGRID

EuroS&P

ICSA

IFIP

MEDES

NOMS
SEC

STAF

Figure 3.3: Conferences with the largest number of publications in our dataset.

Acronym Name # in
dataset

CC Cluster Computing 4
CCPE Concurrency and Computation:

Practice and Experience
4

ESE Empirical Software Engineering 2
FGCS Future Generation Computer Sys-

tems Conference
7

FI Future Internet 2
IEEE
Access

IEEE Access Multidisciplinary
open access journal

5

IEEE IC IEEE Internet Computing 3
IEEE
PDS

IEEE Transactions on Parallel and
Distributed Systems

3

IST Information and Software Technol-
ogy

2

JSS Journal of Systems and Software 8
MNA Mobile Networks and Applications 2
MTA Multimedia Tools and Applications 2
PCS Procedia Computer Science 3
Queue ACM Queue 3
SICS Software-Intensive Cyber-Physical

Systems
2

SPE Software: Practice and Experience 4
Sensors IEEE Sensors Journal 3

CC

CCPE

ESEFGCSFI
IEEE Access

IEEE IC

IEEE PDS

IST

JSS
MNA

MTA PCS
Queue

SICS

SPE

Sensors

Figure 3.4: Journals with the largest number of publications in our dataset.
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or even software engineering venues, which could have been the most likely targets. Instead, the
analysed publications appear at venues addressing a broad range of topics, from networking to
cloud computing, and on open journals such as IEEE Access and ACM Queue. Furthermore, there
is no clear preferred venue that dominates the others, but contributors are rather scattered over
many neighbouring venues.

We give a twofold interpretation to the phenomenon. On the one hand, this fact can indicate that
micro-service security is perceived as of cross-disciplinary interest, each contribution seeing it from
the lens of its specific area (whether it be software engineering, networks, sensors, cloud computing,
etc.). On the other hand, we notice the lack of specific venues dedicated to micro-services, and least
of all, dedicated to micro-service security.

Insights. Fragmentation of outlets: there are no reference venues for the area of micro-service
security (neither journals nor conferences). This makes it difficult for researchers and practitioners
to keep up with the state of the art, as well as to find dedicated conventions where they can discuss
this topic

Research Communities. To add more insight on the communities of the field, we also
perform a network analysis to identify and explore the clusters of the most prolific authors and their
research collaborations. Specifically, we are interested in analysing the networks of collaboration of
“core authors”, i.e., prolific authors that, by working with different people, act as a liaison among
separated groups of authors.

To find the clusters of core authors in our dataset, we consider all the authors in the dataset
and we aggregate them in clusters such that each member of a cluster has at least one contribution
published with one of the members of the cluster. Since we are interested in “core authors”—i.e.,
authors with more than 2 works in the dataset—we remove all those clusters formed around just
one work—i.e., where the maximum number of publications published by the most prolific author
is one.

Our analysis extracted 16 clusters from our dataset. We report in Figure 3.2 the result of our
analysis, labelling each cluster from A to P. For each Cluster, we report the name of the author,
the number of publications (# pub.) in our dataset and their affiliation.

The measure gives some interesting insights. First, clusters F, G, J, and L are totally localised
in one country or the same University/Institute, they are relatively small (compared to the others
in the Table), and include some of the most prolific authors (J and L in particular). Four other
clusters follow a different trend: C,H,P and I. They are big-size clusters (respectively 6,10,8 and
6), they count one core author (respectively with 3,3,4 and 3 publications) but they are rather
homogeneous, the first mainly including authors from Brazil, Finland and the fourth one is from
Portugal. Clusters A, B, D, K, M, N and O are the most varied. Cluster A, is the largest
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Cluster Author # pub. Affiliation Cluster Author # pub. Affiliation
A Fetzer Christof 3 TU Dresden G Makitalo Niko 1 University of Helsinki
A Brito Andrey 2 Universidadede Campina Grande H Jin Yike 1 Unknown affiliation
A Kopsell Stefan 2 TU Dresden H Yu Dongjin 1 Hangzhou Dianzi University
A Pietzuch Peter 2 Imperial College London H Zhang Yuqun 1 Southern University
A Pasin Marcelo 2 University de Neuchâtel H Zheng Xi 3 Xi’an Jiaotong University
A Felber Pascal 2 University of Neuchâtel H Zhang Chong 2 Chong Qing Hospital
A Fonseca Keiko 1 Universidade do Paraná H Liu Xiao 2 Tsinghua University
A Rosa Marcelo 1 University of Melbourne H Li Rui 2 Facebook
A Gomes Luiz 1 Arizona State University H Liu Huai 2 University of Washington
A Riella Rodrigo 1 Universidade do Paraná I Donahoo Michael J 2 Carnegie University
A da Silva MS Leite 1 Universidade Campina Grande I Cerny Tomas 6 Baylor University
A de Oliveira SV Fernando 1 Universidade de Campina Grande I Sedlisky Filip 1 University In Prague
A Kelbert Florian 1 Elastic I Walker Andrew 2 Carnegie University
A Gregor Franz 1 TU Dresden I Svacina Jan 2 Baylor University
A Pires Rafael 1 University of Sao Paulo I Bushong Vincent 2 Baylor University
A Schiavoni Valerio 1 University of Neuchâtel I Bures Miroslav 2 University In Prague
A Mazzeo Giovanni 2 MDM-IMM-CNR lab I Tisnovsky Pavel 2 University In Prague
A Oliver John 1 UC Berkeley I Frajtak Karel 2 University in Prague
A Romano Luigi 1 Università della Campania I Shin Dongwan 2 Korea Institute of Energy Research
A Brenner Stefan 1 TU Braunschweig I Huang Jun 2 Duke University
A Hundt Tobias 1 UCL Institute of Child Health J Yarygina Tetiana 4 University of Bergen
A Kapitza Rudiger 1 TU Braunschweig J Otterstad Christian 3 University of Oslo
B Artac 1 Necmettin Erbakan University J Lysne Olav 1 Simula Research Laboratory
B Casale Giuliano 2 Imperial College London J Hole Kjell J 1 Simula Research Laboratory
B Van Den Heuvel W-J 2 Tilburg University J Ytrehus 1 University of Tromso
B van Hoorn Andre 5 University of Stuttgart J Aarseth Raymond 1 University of Tromso
B Jakovits Pelle 1 University of Tartu J Tellnes Jorgen 1 University of Bergen
B Leymann Frank 1 University of Stuttgart J Bagge Anya Helene 1 University of Bergen
B Long Madeleine 1 University of Oslo K Cecconi Alessio 1 Vienna University
B Papanikolaou Vicky 1 National School of Public Health K Di Ciccio Claudio 1 Sapienza University of Rome
B Presenza Domenico 1 University of Rome K Dumas Marlon 1 University of Tartu
B Russo Alessandra 1 University of Catania K Garcia-Banuelos Luciano 1 Tecnologico de Monterrey
B Chesta Cristina 1 University of Chester K Lopez-Pintado Orlenys 1 University of Tartu
B Di Nitto Elisabetta 1 Politecnico di Milano K Lu Qinghua 3 universtiy of delaware
B Gouvas Panagiotis 2 University of Athens K Mendling Jan 1 Humboldt-Universität zu Berlin
B Stankovski Vlado 2 University of Ljubljana K Tran An Binh 1 CSIRO
B Symeonidis Andreas 1 University of Thessaloniki K Weber Ingo 3 TU Berlin
B Zafeiropoulos Anastasios 2 University of Athens K Binh Tran An 2 CSIRO
B Soldani Jacopo 1 University of Pisa K O’Connor Hugo 2 CSIRO
B Avritzer Alberto 4 eSulabSolutions K Rimba Paul 2 CSIRO
B Ferme Vincenzo 3 Kiratech S.p.A. K Xu Xiwei 2 National Institute of Natural Hazards
B Janes Andrea 3 The James Hutton Institute K Staples Mark 2 CSIRO
B Russo Barbara 3 Free University of Bozen-Bolzano K Zhu Liming 3 CSIRO
B Schulz Henning 3 Novatec Consulting GmbH K Jeffery Ross 2 Mayo Clinic
B Menasche 3 University of Rio de Janeiro L Mirri Silvia 2 University of Bologna
B Rufino Vilc 3 UFRJ L Melis Andrea 4 University of Bologna
B Trubiani Catia 1 Gran Sasso Science Institute L Prandi Catia 2 University of Bologna
B Bran Alexander 1 University of Exeter L Prandini Marco 4 University of Bologna
C Rocha Carla 1 Rutgers University L Salomoni Paola 2 University of Bologna
C Leite Leonardo 3 University of São Paulo L Callegati Franco 3 University of Bologna
C Kon Fabio 3 University of São Paulo L Giallorenzo Saverio 2 University of Bologna
C Milojicic Dejan 1 Hewlett Packard Labs L Delnevo Giovanni 1 University of Bologna
C Meirelles Paulo 3 University of São Paulo L Monti Lorenzo 1 University of Bologna
C Pinto Gustavo 2 University of São Paulo M Panichella Annibale 4 Delft University of Technology
D Hou Kaiyu 3 Northwestern University M Jan Sadeeq 1 Technology Peshawar Pakistan
D Wu Xiaochun 3 Zhejiang University M Arcuri Andrea 1 Kristiania University College
D Leng Xue 3 Zhejiang University M Briand Lionel 1 University of Ottawa
D Li Xing 3 University of Chicago M Olsthoorn Mitchell 2 Delft University of Technology
D Yu YinBo 1 Wuhan University M van Deursen Arie 2 Delft University of Technology
D Wu Bo 3 Google Inc. N Zimmermann Olaf 5 HSR University of Rapperswil
D Chen Yan 3 Lunghwa University N Stocker Mirko 1 HSR University of Rapperswil
D Yu Yinbo 2 Wuhan University N Zdun Uwe 3 University of Vienna
E Nikouei Seyed Yahya 3 Binghamton University N Lubke Daniel 1 Leibniz Universität Hannover
E Xu Ronghua 2 Binghamton University N Pautasso Cesare 1 University of Lugano
E Chen Yu 3 University of Singapore N Kapferer Stefan 2 Witten/Herdecke University
E Blasch Erik 2 Air Force Research Lab N Wittern Erik 2 Witten/Herdecke University
E Aved Alexander 2 US Air Force Research Lab N Leitner Philipp 2 University of Gothenburg
E Nagothu Deeraj 1 Binghamton University O Michalas Antonis 1 Tampere University of Technology
E Faughnan Timothy R 1 Binghamton University O Paladi Nicolae 1 Research Institutes of Sweden
F Sukaridhoto Sritrusta 3 Politeknik Surabaya O Dang Hai-Van 3 University of Westminster
F Panduman YY Fridelin 1 Politeknik Surabaya O DesLauriers James 2 CNRS
F Tjahjono Anang 1 Politeknik Surabaya O Kiss Tamas 2 CNRS
F Falah Muhammad Fajrul 2 Politeknik Surabaya O Ariyattu Resmi C 2 Carleton University
F Al Rasyid MU Harun 2 Politeknik Surabaya O Ullah Amjad 2 Carleton University
F Wicaksono Hendro 2 Politeknik Surabaya O Bowden James 2 Carleton University
G Kilamo Terhi 1 Aalto University O Krefting Dagmar 2 HTW Berlin
G Lwakatare Lucy Ellen 1 University of Helsinki O Pierantoni Gabriele 2 University of Westminster
G Karvonen Teemu 1 University of Helsinki O Terstyanszky Gabor 2 University of Westminster
G Heikkila 1 University of Oulu P Basso Tania 1 Universidade Estadual de Campinas
G Itkonen Juha 1 Aalto University P Antunes Nuno 3 University of Coimbra
G Kuvaja Pasi 1 Aalto University P Vieira Marco 1 University of Coimbra
G Mikkonen Tommi 2 University of Helsinki P Santos Walter 1 Universidade Estadual de Montes Claros
G Oivo Markku 1 University of Oulu P Meira Wagner 1 Universidade Federal de Minas Gerais
G Lassenius Casper 1 Aalto University P Flora Jose 4 University of South Carolina
G Kalske Miika 1 University of Helsinki P Goncalves Paulo 2 Universidade de São Paulo

Table 3.2: Cluster Authors Correspondence.
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(22 authors) and most heterogeneous one: it includes 6 core authors from 5 different countries
(Brazil, Germany, Italy, Switzerland, and the UK) and 12 co-authors from 4 countries different
from those of the core authors (Australia, France, Portugal and the US). Cluster B includes 6 core
authors over 24 members, distributed over just 5 countries (Brazil, Germany, Italy, Greece and
Switzerland). Cluster D includes 8 authors, of which 6 are core and come both from either China
or the US. Cluster K is another big cluster of 16 authors with include 3 core authors from the US
and Germany. Clusters M, N and O follow the same trend of cluster D. This means that these
clusters are built around 2 core authors which represent the main affiliation provenance, respectively
Holland, Germany and Switzerland, US and UK.

Overall, the communities of core authors in the dataset is distributed among three types of
clusters:

• “open” clusters (A, B, D, K) of co-authors linked by a few (if not one) core authors and
diverse affiliations;

• “semi-open” clusters (C, G, M, N and O ) of localised collaborators with sporadic, external
collaborations;

• “closed”, localised clusters (F, L, , P) that tend to be small but whose core authors tend to
be the most prolific (L).

Given their larger reach, semi-open and open clusters have a better chance to gather an impactful
community around the topic. Our call to the authors in the field (particularly the closed clusters that
tend to be prolific but rather localised) is to establish international collaborations and coordinate
to foster the advancement and growth of the field.

Concepts and Keywords

We conclude our quantitative analysis by providing a graphical representation of the main key-
words present in the abstract of the contributions in our dataset. To conduct our analysis, we
used VOSviewer by [456], a software that offers text mining functionalities for constructing and
visualising co-occurrence networks of important terms extracted from a given corpus. Specifically,
we ignored basic words and copyright statements and performed a full count of the words present
in the text. We considered only words occurring more than fifteen times, sizing them by their
relevance in terms of occurrences. The resulting graph, however, is still too large and dispersive to
convey useful information: for the sake of clarity, we present here a visualisation including only the
top 60% most-occurring words.

We report the visualisation of the analysis in Figure 3.5.
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VOSviewer automatically clustered the words in 4 areas using its modularity-based clustering
algorithm, which is a variant of the cluster algorithm developed by [109] to detect communities
(clusters) in a network that also considers modularity.

We can interpret the clusters as follows:

• The blue (■ ) area in the right of the figure marks the main terms of this study, grouping
words like microservice and system. The result does not surprise, since those words describe
the design of the systematic selection we performed.

• The green (■ ) area at the bottom marks technical terms as container or attack.

• The red ( ■ ) area in the left identifies application terms, e.g., the targets or reasons of
the research, if it is an industrial or research-focused article. We find for instance the word
Internet-of-Things, as it is mainly cited with industry and research applications rather than
along with terms like container and cloud.

• The magenta ( ■ ) area at the top includes words that identify the subject of a study,
whether it be some tool, data (of the system, of the users), users, and they privacy. The
word tool here is peculiar, as it acts as a bridge between the other areas. Also, this finding
is somehow expected, as the field of microservice security is marked by a fairly practical
orientation towards automatisation of processes and control.

Publication Context Analysis

In this section, we discuss trends and considerations derived from reading the selected publications
and the research question detailed in Section 3.1.

Types of Publications

In Figure 3.6 we report the distribution of the type of research contribution—whether theoretical,
practical, mixed or a review.

More precisely, regarding the type of research contribution, we mapped every publication in our
dataset to one of the following types:

• Theoretical for publications that present an approach for a specific problem without any
implementation artefact.

• Applicative for publications that describe an implemented application possibly with its vali-
dation.
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Figure 3.5: Word-Net of the abstracts in our dataset.

• Theoretical and Applicative for publications that develop a theory and provide a practical
tool, framework, program, or application.

• Review for both literature reviews and social studies (e.g., on developers).

Reviews constitute 15% of the works, marking the fragmented shape of the field, which is in rapid
expansion and in need of studies to map its research landscape. Besides reviews, the other con-
tributions in the field are distributed among a 52% share that introduces new theoretical results,
a 20% share that contributes by pairing new theoretical proposals with implementations, and the
remaining 11% describing pure applications. The fact that the main publications in the field are
theoretical is surprising, given the prominently applied nature of microservices. Indeed, excluding
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20% Theoretical and Applicative (59)

11% Applicative (34)

52% Theoretical (153) 15% Review (44)

Figure 3.6: Type of publications.

reviews, we have that for every 5 publications slightly more than 3 (64% of them) are purely theo-
retical. We attribute this figure to two phenomena. The first marks the current exploratory trend
of the field, which is still engaged in proposing new ideas and in evaluating and maturing them into
models amenable to implementation. The second phenomenon relates to the impact that microser-
vices have at the processes/organisational level, with works that are intrinsically theoretical because
their contribution can be hardly crystallised into automated implementations, e.g., for proposals
of attack models or techniques for handling security within organisations and development teams.
Notwithstanding the possible explanations above, it is worth noting the (quantitative) distance
between contributions from academia and applications available to practitioners and the industry,
which is an indicator of untapped potential for joint synergies between the two communities.

After having characterised the type of publications in the field, we proceed by exploring the
results from the answer of the research questions following the 4 macro-groups presented in Sec-
tion 3.1.

Insights. Technology transfer: the field of microservice security is still in the early phase of
new idea proposals. There are just a few implementations of these ideas, which hinders industrial
adoption.

Threat Model

176 publications (ca. 65% of the dataset) give a positive answer to at least one question of this
category. However, only 53 publications among those 120 (ca. 30% of the total dataset) men-
tioned the usage of at least one threat model to analyse or classify threats The reason for those
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40% Spoofing (34)

40.5% Denial of service (35)
10.8% Information disclosure (9)

7.3% Repudiation (7)

4.8% Tampering (4)

1.2% Elevation of privileges (1)
4.8% Anomaly Detection (6)

Figure 3.7: Attack type identified following the STRIDE classification.

publications to adopt a threat model vary, from publications that use the model to motivate their
proposed solutions to reviews that use the model to structure their overview of the state of the art.
Interestingly, in ca. 80% of those publications that mention the usage of at least one known threat
model, the model is tailored to work on a specific application scenario. This is an indication of the
lack of usage of a generic threat model for microservice security. We conjecture that this lack of
usage of generic threat models is due to the fact that the majority of research done on microservice
security comes from the software (engineering, languages) side of the field, rather than from the
side of security, which advocates for a security-by-design approach.

A complementary explanation of that phenomenon is that there is no affirmed threat model
for microservices, e.g., due to the difficulty of making the model specific enough for microservices
yet avoiding the infamous problem of threat explosion, where the effort required to prioritise and
consider all threats starts exceeding the benefits of proposing methods to manage them [478].
Threat explosion is a known problem of neighbouring areas to microservices, like cloud, edge, and
fog computing [135, 208, 186, 283, 159, 449, 388] where the authors resorted to defining smaller,
customised threat models rather than adopting standard ones, due to the problem of requiring
conspicuous adaptation efforts to tailor them to such complex and multifaceted architectures.

Regarding the possible attacks addressed in the publications, Figure 3.7 categorises the publica-
tions based on the STRIDE threats, following up on question Q2 asking if the publication involves
at least one of threats of the STRIDE classification. The most commonly tackled attacks are of
the “spoofing” and “denial of service” kinds. This is an effect of the push for fine-granularity and
independence of services advocated by microservices, where applications result from several small
(in size), independent software components that communicate with each other. Such decentralised
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communication/coordination is one of the most important attack vectors for microservice applica-
tions, in particular, the possibility to disguise a communication from an unknown source as being
from a known, trusted source, which matches the spoofing attack category. Such attacks, along
with tampering and repudiation ones (which together represent more then half of the attack types
found in our collection), entail the need for solutions to address attacks centred around exploits of
data provenance.

A similar consideration can be made for denial-of-service attacks, where the flexible scalability
of microservices allows malicious intruders to, e.g., scale up peripheral microservices and hit more
central and well-protected components with (distributed) overpowering attacks.

Insights. Adoption of security-by-design: security in microservice frequently comes as an
afterthought, whereas it should be one of the main concerns for their engineering.

Data provenance: the quantity of spoofing, tampering, and repudiation attacks highlights the
need to address the general problem of data provenance in microservices.

Dedicated attack trees and threat models: while there are attacks that specifically pertain
to microservices, such as those that leverage the scalability of microservice architectures to cause
denial of service, there are no dedicated threat models to help developers become aware of those
particular threats.

Security Approach (Mitigation)

In terms of mitigation solutions to security issues proposed by the publications (questions Q6–
Q10), the most common approach (45 publications) is to address specific problems, such as au-
thentication or exfiltration, rather than suggesting a general approach. Publications dealing with
architectural aspects rarely address the overall picture (only 25, roughly 8%, publications focus
on IDS, IPS, Exfiltration Leaks and Threat Intelligence). Again, they focus on local threats like
intra-communications or authentication (question Q11). These observations suggest that there is a
lack of security approaches that address applications across the full stack.

As far as privacy and GDPR are involved (question Q12), surprisingly, only 9 publications
consider privacy protection as relevant or worthy of analysis. In particular, only one publication [43]
considers the GDPR as a guideline to follow in order to protect the privacy of users. Examples
of this kind of guideline application are shown in [462]. Considering that many of the solutions
included in the dataset are Cloud-based solutions, it is surprising to note that only one publication
claims to be GDPR compliant.

Insights. Global view/control: the distributed nature of microservices introduces the need
for technologies that provide global yet decentralised observability and control, i.e., tools that aid
in the enforcement of security policies over a whole architecture without single points of failure.
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React & recover techniques: while we found solution to prevent and detect attacks, there
are only a few proposals about how microservice systems could react to and recover from them.

Comprehensive technological references: microservices use diverse sets of technology
stacks, each characterised by peculiar exploits. To secure microservice architectures effectively,
implementors need dedicated technological references to avoid known threats.

Infrastructure

We start the discussion by first focusing on the type of microservice infrastructure used by the
various contributions. Specifically, we have 205 publications in our dataset that answer positively
to question Q13. The breakdown of the answers is:

• 39% (80) describe a centralised approach;

• 24% (49) use a decentralised approach;

• 17% (35) resort to a hybrid approach;

• 20% (41) do not specify which approach they use.

The most widely adopted turns out to be the centralised one. We conjecture two explana-
tions behind this observation. First, the centralised approach has the merit of simplifying the
definition, deployment, monitoring, and evolution of policies holding over all the components in
a given architecture—traded off with scalability issues and single-point-of-failure concerns. Sec-
ond, we note that, among the approaches that appeared early in the literature, many focused on
converting monolithic applications into microservice applications. Clearly, having a centralised
controller that manages the orchestration of microservices helps this process and is closer in spirit
to the monolithic workflow. However, the advent of federated, multi-cloud solutions (that prevent
the identification/deployment of a centralised authority over the whole peer network) as well as
new distributed-consensus technologies (e.g., blockchains), has led to a decentralisation of control,
making new decentralised or hybrid solutions emerge (in our dataset) starting from 2018. As an
example, in 2015 and 2016, we find publications such as [89] and [290] which presented centralised
approaches to enable security in microservice platforms, while starting from 2018 hybrid and decen-
tralised solutions appear like [353] for certificate-based authentication or [32], [31] where authors
propose a decentralise high-fidelity city-scale emulation to verify the scalability of the authorisation
tier.

We notice that the advent of new distributed-consensus technologies also affected the orchestra-
tion approach of microservice solutions. For example, works such as [480] propose a decentralised,
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blockchain-based data-access control for microservices. Recent contributions also tackled the prob-
lem of authentication and authorisation in decentralised settings, e.g., [46] develops a workflow-
oriented authorisation framework to enforce authorisation policies in a decentralised manner, [431]
presents a new algorithm that distribute tasks on clusters of vehicular ad-hoc networks, [504] pro-
poses a secure decentralised energy management framework, and [443] describes a decentralised
data-centric SECurity as a Service (SECaaS) framework for elastic deployment and provisioning
of security services. Another interesting work has been done in [156] where authors brought the
concept of a digital twin to show how a microservice infrastructure approach can speed up the
process of deploy complex infrastructure components.

Infrastructure as a Service (IaaS), which is the focus of question Q14, is also a recurrent topic in
our dataset, with 66 publications yielding a positive answer. IaaS include solutions that provide and
manage low-level infrastructural components, like computing resources, data storage, network com-
ponents, etc. We notice that IaaS is mentioned mainly as the modality used to deploy the solution
but is not studied as a security subject/mechanism per se. Works such as [424] emerge as excep-
tions; their authors analysed the security benefits obtained using a container-based infrastructure
exposed as a service.

Question Q15 investigates Service Discovery, i.e., the automatic detection of services and their
functionalities available in a given architecture/network. 16 publications mention Service Discovery
in the context of security. Mainly, they propose architectures that support reactive mechanisms
for the detection of security issues. Of those, only 2 mention service registration procedures that
include data for performing the preventive analysis of the composition, with the goal of statically
finding and fixing possible vulnerabilities and misconfigurations: [90] and [232].

Insights. Global view/control: while there is not a definitive approach to microservice
security control (whether it be centralised, decentralised, or hybrid), there is a recognised need for
applying security control policies in a consistent way across all microservices belonging in the same
architecture.

Development

DevOps and Agile are recurring topics in our dataset. Based on the answer to question Q16,
76 publications used the DevOps approach, while, answering to Q17, 57 used Agile methods—of
those 99 publications which represent the 40% of all publications in our dataset, 10 mention both
approaches. There is a common consensus in these publications that Agile/DevOps is important in
security because microservices seem to be the perfect match for this type of software development
model [461, 206]. In particular, microservices align with the tenet of both approaches: to assign
dedicated, independent teams to the development of small and independent components within the
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architecture Continuous Integration (CI) process. However, the majority of the selected publications
provide no in-depth security analysis of any of the two development approaches, but rather indicate
the inclusion of generic security measures in the steps of the development methods. Only three
works, namely [295], [33] and [254], propose concrete and specific variants of the DevOps approach
that tackle security issues—in particular [295] explicitly cites the guidelines of DevSecOps [206].

Migration is one of the main challenges faced in this context; migrating applications introduces
important security concerns [289] that are difficult to track, due to the lack of appropriate devices
(both organisational and linguistic) to elicit them from the source codebase and make sure they
hold in the migrated one. Another major challenge is the coordination between development teams
in the context of privacy-handling issues [188]. Also, security becomes a challenging aspect since the
(small, independent) teams need to know many aspects of security [265] and those DevOps criteria
for testing, building, and deployment automation are often neither properly followed in industrial
environments [70], nor for automated scans [106].

When considering domain- and model-driven approaches (questions Q18 and Q19), 16 publi-
cations consider domain-driven approaches and 26 consider model-driven ones, such as [235, 40].
These topics are therefore not as widespread as DevOps. Moreover, all citations in these cases are
just brief references of the development approach, and lack a discussion on how one of the two
approaches can be used in a security context on microservices.

The last question in this category, Q20, concerns security standards, i.e., curated sets of tech-
nologies, policies, concepts, safeguards, guidelines, assessments, procedures, training programmes
that should be adopted to reduce security risks and mitigate attacks. The answers we gathered
for this question surprised us. Indeed, security standards are a staple element of industries and
organisations that want to impose and guarantee a certain level of security on their members and
collaborators (often also for certification purposes– [419], [277]). Despite their widespread use in
practice, only 7 publications mention security standards. In particular, [415] mentions the usage
of X.509 to verify a secure method for key exchange between microservice. In [74] the authors
show a solution for securing microservices through the SGX Intel Standard. The authors of [459]
analyse the concept of Small-Cell-as-a-Service, i.e., a technological paradigm for the development of
Virtualised Mobile Edge Computing Environments, using several mobile standards for 5G and SDN
networks (e.g., MobileFlow [358] and VNFs [9]). Finally, [490] performs a deep analysis on securing
microservices, citing and analysing several know standards for both microservice management and
security purposes.

Insights. Migration to microservices: there are no established techniques to help developers
migrate legacy systems to microservice architectures, and in particular to identify the possible
security threats that come from such a migration.
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Figure 3.8: Blockchain trend.

DevSecOps: agile and DevOps practices are widely used when developing microservices, yet
only a few publications address how security is addressed and combined in these practices.

Additional considerations

By analysing our dataset, we were surprised to find many citations to blockchain technologies (as
reported above) as well as the lack of mainstream technologies like service mesh and serverless.

Regarding blockchain technologies, we found 31 publications mentioning or explicitly using
blockchains. The decentralisation and independence of microservices constitute a good pairing
for the usage of blockchain technologies. Figure 3.8 presents also the trend of publications using
blockchain in the dataset. There is an increasing interest in blockchain applications for microservice
architecture. Examples of that pairing include works such as [326, 480], where the trust-chain of the
blockchain is combined with a decentralised microservice architecture to create strong smart con-
tract systems or [285] where authors proposed a model-driven engineering approach for blockchain
applications with microservice.

New approaches for microservices design and usage such as service mesh [272], i.e., a dedicated
infrastructure layer for facilitating service-to-service communications between microservices is just
mentioned by 3 works: [353], where the authors indicate a service mesh architecture for authenticat-
ing services—securely adding information to their executables and validating the correct execution
of distributed entities with such certificate-based approach—and [427], which mentions the service-
mesh sidecar pattern used to control security. Another interesting work regarding service mesh
is [192] where authors analysed under several scenarios issues and challenges in Service Meshes
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Similarly, serverless [202] is mentioned only in 4 publications. We did not expect to find (50%)
more citations of serverless than those regarding service mesh. Serverless is a cloud computing
execution model in which the cloud provider dynamically manages the allocation/scaling of machine
resources depending on inbound requests. Indeed, while the service mesh is a technology born within
the (micro)service-oriented context, serverless is a more neighbouring concept to that of stateless
microservice deployment.

In this context, the most relevant publication is [92], which presents the results of a European re-
search project to develop a model-driven DevOps framework for creating and managing applications
based on serverless computing. Its main result consists in designing applications as fine-grained and
independent microservices that can efficiently and optimally exploit the serverless paradigm. The
serverless term, despite starting to get momentum, is still loosely related to microservices.

Given their increasing importance and impact in the industry and their close relation with
microservices, we argue that both service mesh and serverless will attract the general attention of
the research community in the near future, as well as that of security research.

Insights. Comprehensive technological references: the progressive adoption of new tech-
nologies in the world of microservices (such as blockchains, service meshes, and serverless) calls for
dedicated investigations and reports on their impact on the security of these systems.

Correlation between Research Questions

The amount of data collected in our dataset is large enough to represent a statistically-relevant
sample. In this section, we leverage this to study correlations between our research questions, by
way of the answers that the publications in our dataset give to each of them. Correlations can be
used to understand which of the different aspects of microservice security are most commonly in
a positive correlation (paired) in the dataset, and which ones are negatively correlated (mutually
exclusive).

We report in Table 3.3 the correlation matrix—excluding research question Q1, since no publi-
cation answered it. While the obtained matrix is symmetric and we could report just one half, in
Table 3.3 we report the full matrix for convenience, to provide a more immediate view of how each
question correlates with all of the other ones.

We conditionally colour the cells of the Table, first, attributing colour intensity according to cor-
relation absolute value—maximal intensity for 100% and degrading towards 0%—, second, setting
a transition threshold above 30% (absolute value) from green to orange, to help to spot relevant
correlations. Looking at the Table, we notice the predominance of light-coloured cells. This re-
sult can be interpreted as an indication that the research questions used in this work are mostly
orthogonal, and thus suited to cover the reviewed subject with almost no wasteful overlap.
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Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
Q2 27.11% 32.80% 8.10% 13.75% 3.19% -7.74% 12.36% 0.41% 24.68% -4.12% -22.74% -8.06% 6.27% -3.88% -6.71% 8.45% 0.19% 0.41%
Q3 27.11% 28.59% 7.37% 18.93% 29.11% 7.49% 8.68% 12.81% 16.69% 8.54% 0.75% 5.51% 15.10% -6.93% -10.82% 3.57% 2.26% 12.81%
Q4 32.80% 28.59% 12.18% 6.30% 5.05% 10.50% 6.05% 8.45% 17.28% 9.01% -10.39% -7.34% -0.42% 1.05% 1.34% 6.88% -6.90% 8.45%
Q5 8.10% 7.37% 12.18% 6.15% 8.26% 12.31% 5.58% 13.51% -12.44% 5.04% -2.41% 5.31% 9.24% -10.48% -7.12% -13.61% -9.07% 8.06%
Q6 13.75% 18.93% 6.30% 6.15% 77.49% 22.89% 14.23% 14.86% 3.83% 5.58% 0.88% 17.76% 14.23% -0.42% 2.99% 6.90% 4.96% -5.83%
Q7 3.19% 29.11% 5.05% 8.26% 77.49% 20.77% 12.55% 17.68% 1.97% 0.88% 0.78% 15.67% 12.55% 4.41% -1.48% 10.17% 7.44% -5.14%
Q8 -7.74% 7.49% 10.50% 12.31% 22.89% 20.77% 10.03% 14.15% -5.27% 20.31% 20.12% 31.15% 13.76% 8.28% 9.01% 4.83% -4.89% -8.03%
Q9 12.36% 8.68% 6.05% 5.58% 14.23% 12.55% 10.03% 25.72% 3.19% 13.09% -0.84% 15.70% 14.01% -0.66% 3.25% 8.28% 14.01% -3.80%
Q10 0.41% 12.81% 8.45% 13.51% 14.86% 17.68% 14.15% 25.72% 8.88% 10.14% 0.37% 7.54% 6.04% 5.95% 3.53% 2.93% 6.04% 12.17%
Q11 24.68% 16.69% 17.28% -12.44% 3.83% 1.97% -5.27% 3.19% 8.88% 0.36% 5.13% -17.71% 0.15% 12.62% 9.16% 9.02% 6.24% 8.88%
Q12 -4.12% 8.54% 9.01% 5.04% 5.58% 0.88% 20.31% 13.09% 10.14% 0.36% -1.44% 9.26% 4.38% -1.62% 6.16% 1.34% -4.32% -2.81%
Q13 -22.74% 0.75% -10.39% -2.41% 0.88% 0.78% 20.12% -0.84% 0.37% 5.13% -1.44% 26.24% 9.08% 11.22% 13.12% 7.16% 5.77% 5.29%
Q14 -8.06% 5.51% -7.34% 5.31% 17.76% 15.67% 31.15% 15.70% 7.54% -17.71% 9.26% 26.24% 22.90% 10.67% 12.47% 11.75% 8.50% -3.18%
Q15 6.27% 15.10% -0.42% 9.24% 14.23% 12.55% 13.76% 14.01% 6.04% 0.15% 4.38% 9.08% 22.90% 13.07% 10.85% 18.85% 14.01% -3.80%
Q16 -3.88% -6.93% 1.05% -10.48% -0.42% 4.41% 8.28% -0.66% 5.95% 12.62% -1.62% 11.22% 10.67% 13.07% 57.34% 25.21% 19.94% 0.85%
Q17 -6.71% -10.82% 1.34% -7.12% 2.99% -1.48% 9.01% 3.25% 3.53% 9.16% 6.16% 13.12% 12.47% 10.85% 57.34% 33.08% 10.85% -2.13%
Q18 8.45% 3.57% 6.88% -13.61% 6.90% 10.17% 4.83% 8.28% 2.93% 9.02% 1.34% 7.16% 11.75% 18.85% 25.21% 33.08% 40.00% -4.94%
Q19 0.19% 2.26% -6.90% -9.07% 4.96% 7.44% -4.89% 14.01% 6.04% 6.24% -4.32% 5.77% 8.50% 14.01% 19.94% 10.85% 40.00% -3.80%
Q20 0.41% 12.81% 8.45% 8.06% -5.83% -5.14% -8.03% -3.80% 12.17% 8.88% -2.81% 5.29% -3.18% -3.80% 0.85% -2.13% -4.94% -3.80%

Table 3.3: Correlation matrix among research questions.

No anti-correlation was found, i.e., negative correlations over the 30% threshold in absolute
value. In the following, we comment on all positive correlations above 30%.

Q2–Q4 (32,80%) The questions relate the use of STRIDE threat model with one of is identified
specific threats. This seems to be an obvious correlation since we are looking for a specific
STRIDE path or at least one of his threats.

Q7–Q6 (77,49%). The questions ask if the publication mentions IPS or IDS functionalities re-
spectively. The strong correlation indicates how IPS and IDS are strictly related. Indeed, in
practice, IDS may exist without IPS, but not the opposite, because prevention mechanisms
are typically built as a reaction to a detected attack;

Q8–Q14 (31,15%) The questions relate Threat Intelligence functionalities with Infrastructure as
a Service deployment, which can define a campaign strategy for a Threat Intelligence analysis.

Q17–Q16 (57,34%) The questions relate the Agile development practice with DevOps and Con-
tinuous Integration. As also emphasised in other studies like [289], this correlation can be
easily explained by the fact that DevOps is sometimes considered an Agile method or its
evolution. Processes adopting DevOps, therefore, adopt also Agile;

Q19–Q18 (40,00%) The questions relate Domain-Driven Development and Model-Driven Devel-
opment. We conjecture that this correlation is present because mentions of Domain-Driven
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Development often mentions Model-Driven Development as an alternative approach and vice
versa;

Q18–Q17 (33,08%) The questions relate Domain-Driven Development and Agile methods, indi-
cating a correlation, mainly because often Agile methods employ Domain-Driven Develop-
ment.

Threats to validity

Our study is subject to limitations that can be categorised into construct validity, external validity,
internal validity, and reliability following the guidelines of [387].

Construct validity “reflects to what extent the operational measures that are studied really
represent what the researcher has in mind and what is investigated according to the research
questions.”. To mitigate a potential misinterpretation and making sure that the constructs discussed
in the interview questions are not interpreted differently by the researchers, we adopted various
triangulation rounds using online meetings and we designed a set of binary research questions to
foster objectivity in answering them.

Another potential risk regards whether we were exhaustive during data collection, i.e., whether
we may have missed any significant publication in our review. This risk cannot be completely
mitigated but to minimise this risk we deliberately chose to have simple and broad keywords giving
more initial hits that later were further filtered out. Moreover, we conducted a snowballing process
to extend our initial dataset looking for potentially relevant publications that our query did not
select.

External validity regards the applicability of a set of results in a more general context and is not
a concern for this study since we focus on the intersection of the fields of microservices and security
without any attempt of generalising the findings to a broader context. We do not claim that either
our qualitative or our quantitative findings should also hold for other large fields.

Internal validity is of concern when causal relations are examined when there is a risk that
the investigated factor is also affected by a third factor. This thread is not a concern for this
study because we presented only correlations between different factors but did not examine causal
relations.

Reliability concerns to what extent the data collection and analysis depend on the actual re-
searchers. This risk has been partially mitigated by selecting as many objective criteria as possible
for the filtering and by requiring at least a two-people consensus in case of more subjective decisions.
In particular, the retrieval of the publications was performed by using search engines. The first
filtering of the results (Step 2, cf. Section 3.1) was conducted by running a script that uses objective
criteria such as counting the number of keywords present and the length of the publication. These
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automatically computed results were double-checked by at least one person (including This thesis
author) to prevent problems due to the parsing of PDFs and to make sure that the language of the
publication was English. The second filtering (Step 3, cf. Section 3.1) performed by reading the
title, abstract, and (if needed) the body of the publication, was performed in parallel by two persons
(including the Thesis author). Decision conflicts were solved by discussion involving at least two
persons (including the Thesis author) until a consensus was reached. For the publication analysis
(Step 4, cf. Section 3.1), due to the binary nature and formulation of the questions, the 20 research
questions were answered by the author assigned to the publication. To detect possible observer
bias and errors, we selected a random subset of 15 papers and had a different author answer to the
research questions. The calculation of the kappa index of agreement as proposed in [112] over the
two result sets yielded a value of κ = 0.99998, giving us statistical confidence over the perceived
precision of questions and objectiveness of answers.

The reliability of the study is strengthened by being open and explicit about the process of data
collection and analysis. For transparency, reproducibility, and reuse, we report the data used in
this study at https://doi.org/10.5281/zenodo.4774894, which includes both the final dataset
with the answers to all the research questions and also the set of rejected publications along with
the reason for exclusion.

We also report in the Appendix C each entry of our dataset and its answers to our research
questions.

Discussion

In the following, we draw a summary of the main open challenges that emerged from our study,
which forms a call for action for the community of researchers and practitioners working in the field
of microservice security and its neighbouring areas.

Data provenance: the distributed nature of microservices calls for the certification of their out-
puts, which other federated services receive as input and need to trust. However, there is a
lack of best practices and/or standards for such a task.

Technology transfer: there exists a sensible amount of research on microservices security, but
transferring those results—e.g., viable methods and tools for validation and verification—to
the industry is difficult and applications are almost non-existent.

Security-by-design adoption: while many advocate for adopting security-by-design at all stages
of a microservice lifecycle (from design to monitoring), there are no established references nor
guidelines on how these principles can be reliably adopted in practice.

https://doi.org/10.5281/zenodo.4774894
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Dedicated attack trees and threat models: threats in microservice systems can come from
multiple sources, from the interaction of the layers of a chosen technology stack to how
microservices interact with each other—e.g., in an exclusive network, on a federated basis,
on the Web, etc. Practitioners lack dedicated attack trees and threat models to help them
consider and tackle the multifaceted attack surface of microservice architectures.

Comprehensive technological references: microservice development entails the use of (het-
erogeneous) technology stacks, whose combinations and interactions give way to exploits at
different levels. These include data leakage due to host-container interactions, threats to en-
cryption reliability due to interacting heterogeneous standards and data-format conversions,
as well as surreptitious attacks through software libraries hijacking. Besides the lack of dedi-
cated threat models, there is also a need for concrete references to secure specific technology
stacks.

Migration to microservices: several works provide structures and methods to migrate legacy
systems to microservices architectures. However, there are no established techniques to elicit
the assumptions and invariants (e.g., on shared-memory communication, runtime environ-
ment, concurrent/interleaved database accesses, etc.) of the legacy system that the devel-
opers of the microservices must deal with—least of all considering how those factors impact
the security aspects of the migrated architecture. An additional step in this direction would
benefit from following principled security-by-design disciplines.

Global view/control: the distributed nature of microservices makes it difficult to check the cor-
rect implementation of architecture-wide security policies, especially when each microservice
has a dedicated security configuration. The issue is further exacerbated by the DevOps
practice of having different teams deal separately with all aspects of the microservices they
develop, including the implementations of their security policies. This fact highlights the need
for tools that provide global overviews and guarantees on the security policies, protocols, and
invariants of microservice systems.

React & recover techniques: while the literature on preventive and detective measures against
attacks abound, little has been done on how microservices should react to attacks and, as a
consequence, recover their normal behaviour.

DevSecOps: Agile and DevOps practices are widely used when developing microservices, yet
there is no established reference on how these approaches should integrate security in all their
aspects (from team culture, management and communication to develop technologies and
techniques) and into the lifecycle of microservices.
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Fragmentation of outlets: researchers (and practitioners) working on microservices security do
not have reference venues (neither journals nor conferences). This has at least two negative
consequences. First, it makes it more difficult to gather the relevant work that constitutes the
current state-of-the-art of their field—a need to which this study provides a partial solution,
in the form of a snapshot of the current field landscape. Second, reference venues work also as
gathering and exchange points for researchers to discuss current problems and new ideas, form
interest groups, and concretise new contributions and projects to advance the knowledge in
the field. Here, our call for action is at the community level, advocating for the establishment
of a few reference, high-quality venues able to focus, inform, and orient the agenda of the
field.





Defense and detection4

Monitoring, policies, detection and prevention are mechanisms to increase the defense of a system
or a network. These mechanisms can sometime be enforced or implemented by using the previously
introduced network technologies and infrastructures.

In this chapter, we will present the main contribution we implemented for this side of security
and the metrics used to evaluate the security improvements in order to answer to RQ1: Which are
the emerging network technologies that can increase the protection part of the Security of a system
in proactive or reactive ways?

These contributions are implemented to cover vulnerabilty which are common in complex sys-
tems, mainly:

Insider Threats and password managements : which are addressed by a novel system to an-
alyze password security in Section 4.2 and an infrastructure to perform penetration test and
minimize the possibility of insider threats, presented in Section 4.3.

Denial of Services : network programmability such as SDN, NFV and P4 can be employed
to fight DoS attacks. In Section 4.1, and 4.5 we present two systems built with different
technologies and capabilities. These systems can be used – singularly or by combining them
– to defeat DoS attacks.

Policies : when updating network-flows trough firewalls or hijacking paths, configuration errors
can occur. While not directly being classified as attacks, this can also be reconducted to
malicious behaviours (e.g. insider threats) or an involuntary DoS. To prevent this kind of
problems, in Section 4.4 we present a formal verification system to check if the network
configuration meets formal constraints.

65
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4.1 SDN and NFV for Network Monitoring

Microservices is used to separate the various business logic in different functions and services. In this
Chapter we move from this business logic to the lower layer: the network infrastructure, network
metrics, virtual functions managements and control plane configuration. The main technologies
used for this kind of tasks are Software Defined Networking (SDN) and Network Function Virtual-
ization (NFV).

A very commonplace scenario of a network-based attack is a DoS in which the attacker over-
whelms the resources of the network, by firing packets or trying connections to given services at a
rate exceeding the available capacity of links and devices.

As a part of this thesis, we propose an NFV-based architecture to detect and respond to such
attacks, and describe how its deployment can be fully automated. The final goal is to show how
such a system can be easily deployed with high level orchestration and how it can provide automatic
detection of network traffic spikes, as well as mitigate the attack with redirection of the traffic or
automatic activation of firewalls, load balancers, or additional instances of the attacked service.
Using these techniques, it is possible to reach a degree of automation that guarantees reaction
times fast enough to withstand the attack and keep the systems available.

The framework components we used to monitor the network are: Open Source MANO, an open
source MANagement and Orchestration infrastructure for NFV, fully compliant with the ETSI
specifications; Prometheus, a Time Series Data Base (TSDB); and Grafana, a visualization and
alerting platform. Using these tools we built the proposed NFV-based monitoring system. To
simplify the complex installation process we configured an automatic installation procedure that
can be exploited to automatically reproduce the system for experiments, but also to rapidly deploy
production environments.

This infrastructure is designed for modularity: the various parts may be easily interchangeable,
by replacing the TSDB or the visualization platform. Another benefit of this modular approach is
that functionalities can be extended by chaining, if they logically support this model. For example,
traffic analysis could be performed in stages, and any engine (e.g., a machine learning-based one)
compatible with the network probe can be added to the analysis pipeline.

It is worth to outline here that, besides the standard interfaces and protocols, the virtualization
of the network infrastructure is a core feature of the proposed design. Using this technology in
conjunction with SDN, network configuration, network scaling, and provisioning can be achieved
automatically, taking the burden of micro-management of the single machines or the single network
devices away from the system/network administrator. Again, the final goal is to achieve reaction
times that are as short as possible, thus reaching reactivity performances that prove effective to
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Figure 4.1: Schematic of the building blocks and interactions of the NFV architecture

contrast realistic attacks.

Fig. 4.1 shows a logical schematics of the overall architecture. The orchestrator is in charge of
the various actions that are needed to create and run the virtual infrastructure. Virtual Network
Function (VNF) are virtualized components that include both a management part, in charge of
the communication with the Virtual Network Function Manager (VNFM) which manages their
lifecycle, and a production part in charge of the actual tasks of the VNF. Finally the the Virtual
Infrastructure Manager (VIM) is the logical component that will run the virtualized infrastructure,
for instance OpenStack in case of a single cloud etc., an SDN controller in case of a network section
etc. In this work we used OpenSourceMANO (OSM) [154] as our VNF manager. OSM is an open
source implementation of the ETSI MANO specifications [153] supported by the ETSI itself and is
the reference implementation for this kind of tasks. At the time of writing, it is compatible with
many local and cloud-based VIMs like OpenStack, OpenVIM, VMWare, and Amazon AWS. For
the management of the network, it can configure different open-source and commercial solutions
such as Open Network Operating System (ONOS), OpenDayLight (ODL), and Floodlight.

Installing and running the whole infrastructure depicted in 4.1 is not trivial. The installation
procedure of the various components is time consuming and also aligning their configuration for
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Figure 4.2: Testbed with database and network probes placement

smooth inter-operation is not simple. In the case of OSM, Canonical1, the company behind Ubuntu,
has developed a fully containerized package which can be installed in modern Ubuntu GNU/Linux
distributions. This installation procedure2 contains the most common free and open-source packages
to setup and maintain a demonstration environment to run OSM. The software bundle contains,
among others:

JUJU an application and service modelling tool. This tool is in charge of easing the installation
and configuration of the software packages. It manages configurations so that they are re-
producible between different builds and offers an easy interface to the customization of the
various installations [99]. The modules of this tool are called charms, therefore this bundle is
called charmed-OSM as the installation procedure uses JUJU to install and set OSM up.

microk8s a self-contained Kubernetes3 setup. In the current Ubuntu distribution version, the
installation procedure is based on snap, a system based on GNU/Linux containers, which
can automatically enable the distribution and dynamic update of packages on GNU/Linux
distributions.

microstack a minimal OpenStack4 setup also installed via snap. This OpenStack setup is already
configured to be managed by OSM. Its main focus is the easy installation for the developers,
which therefore do not need to configure the entire OpenStack infrastructure, especially the
parts which require deep knowledge of the network infrastructure, such as Nova or Neutron.

osm-k8s a complete installation of Open Source Mano running inside a container in kubernetes.
This part of the system can be enabled to communicate with the installed microstack VIM
using JUJU configurations.

1https://canonical.com
2https://jaas.ai/tutorials/charmed-osm-get-started
3...
4An Open Source containers orchestration platform developed by Google.

https://canonical.com
https://jaas.ai/tutorials/charmed-osm-get-started
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Figure 4.3: An example Grafana dashboard with network and system loads.

To detect significant network spikes and uncommon load patterns, we have considered a minimal
infrastructure setup as the one described in figure 4.2. Prometheus is currently organized in two
parts: the database, which is an implementation of a TSDB [323] and a collector which, in our
case, is the mon collector, placed on the machines. Many collectors can be used as network probes
to replace mon if needed, e.g.: telegraf, collectd, node-exporter, zabbix-agent; the analysis of the
differences and the performance of this software in specific scenarios is outside of the goal of this
document.

When packets are received, the present load is saved in the database along with a timestamp,
enabling clients to perform queries over a time window. This is the case of Grafana, which will query
the databases and visualize the graphs in a real-time fashion, allowing administrators to immediately
analyze and check the detected anomalies. The Grafana administrator can also declare customized
thresholds and callbacks for values, for example to send an e-mail to the operation center if the
network load crosses a pre-determined threshold or if the disk of the network function is reaching
its capacity limit. In figure 4.3 an example Grafana dashboard is presented. This image covers only
the visualization part of this tool.

To setup the entire infrastructure, we used a set of provisioning tools. This approach, called
Infrastructure as Code (IaC), also enables the reproducibility of the test. Infrastructure as Code
(IaC) is a process based on the concept of maintaining the infrastructure description as a source
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code, enabling the use of techniques such as versioning (e.g., with software like git) and code
auditing. That is, this approach can be pictured as a series of scripts to configure the system.
These configuration scripts are commonly written in languages that check whether the run of an
instruction is required or the result of the command would not have any new effect on the system,
making the scripts idempotent. Commonly used languages are, among others:

• ansible: https://www.ansible.com/

• chef: https://www.chef.io/

• puppet: https://puppet.com/

• salt-stack: https://www.saltstack.com/

• cloud-init: https://cloud-init.io/

For our system we selected ansible and cloud-init, mainly because the former does not have as
cumbersome dependencies as the other ones presented above (e.g., puppet, chef, and salt-stack re-
quire the configuration of a daemon on the target machine), while the latter is automatically shipped
with the VNFs created by OSM, enabling automatic provisioning of the instantiated functions.

These two tools are used for different phases: while cloud-init is ideal for first-time initialization,
it is more limited and hard to use for run-time configuration. Thus, to allow run-time configuration
of our infrastructure we chose to use ansible.

To test the effectiveness of our setup we have instantiated a virtual machine, managed by OSM
and interconnected using a network managed by ONOS. This machine network behaviour was
analyzed using an external probe, implemented as a second virtual machine and using Prometheus
as traffic analyzer. A third virtual machine with Grafana was configured and connected to the
Prometheus TSDB. The various virtual machines are equipped with two vCPUs and 4GB of RAM
each. They run the Ubuntu 18.04 GNU/Linux operating system, as this distribution is one of the
most commonly found in cloud infrastructures. The hypervisor was installed on a hexa-core Intel
Core i7-8700 CPU, with a nominal clock frequency of 3.20GHz.

To analyze and simulate real-world workloads, the Nginx5 web server was installed on the
target virtual machine. To analyze security problems, a denial of service attack was simulated
using hping6, ab7 and hey8.

5https://www.nginx.com/
6http://www.hping.org/
7https://httpd.apache.org/docs/2.4/programs/ab.html
8https://github.com/rakyll/hey

https://www.ansible.com/
https://www.chef.io/
https://puppet.com/
https://www.saltstack.com/
https://cloud-init.io/
https://www.nginx.com/
http://www.hping.org/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/rakyll/hey
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Figure 4.4: Network testbed

This attack was profiled on a realworld scenario we have observed some months before our
analysis. The first tool can perform a set of TCP related attacks like SYN flooding, transport-
related attacks like XMAS scan, and other kinds of network reconnaissance operations; the second
and the third ones are tools to analyze the performance of a running web-server by flooding it with
requests.

Figure 4.4 represents this layout, in which the attacker can reach the web server from the internet,
traversing the network probe. In this case, the probe, Grafana and the web server are instantiated
as network functions, to enable the application of countermeasures like network reconfiguration.

As this layout is relatively easy to instantiate with some sort of automated provisioning tools9,
it can be extended and analyzed from a security perspective, as the configuration is never done by
hand but, instead, using IaC.

When a denial of service attack is detected (e.g., by looking at network spikes), an automatic
callback can be called by Grafana. In this case, a simple callback was registered, alerting the
network administrator when the system was under attack.

As shown in graphs 4.5a and 4.5b, which respectively represent a simulation of standard network
load and of a denial of service attack over a time span of one hour, the network load between the
two cases is considerably different and easily detectable by Grafana.

Monitoring complex infrastructures is a relevant topic nowadays, and a challenge for the future.
The impact that an effective, innovative monitoring approach can have on a complex infrastructure
reverberates in different areas. It can improve resource utilization, positively affecting energy
consumption. It can enable smarter usage of virtualization hardware, reducing hardware waste and
pollution. All of this, at the same time pursuing its main purpose, i.e., preventing and mitigating
attacks on the infrastructure that can cause disruptions in services that modern society gives for
granted (or that are outright essential).

9This kind of provisioning is actuated by cloud init
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(a) Network load detected by network probes in nor-
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(b) Network load detected by network probes under
simulated DoS attack.

Figure 4.5: Statistics extracted from the network load scenarios. The DoS attack was simulated
using tools described in Section 4.1.

4.2 Users’ password enforcement

Text-based passwords are still the most common way to authenticate users against services [396].
According to a typical authorization mechanisms classification, they fall in the “what you know”
category. The other categories, “what you are” and “what you have”, are most commonly used
only as a second factor in the so-called Multi Factor Authentication (MFA) schemes [291]. An
example of MFA is the, today very popular, one time password available on a personal device (e.g.,
smartphone) at each login attempt into a critical service. Ideally, passwords should be easy to
remember, but hard to guess. In a long term game of cops and robbers, users try to base them
on dictionary words [420] in order to make them easier to remember, and system administrators
write policies to block these attempts, to limit the probability of password guessing. As a common
reaction, users make simple variations to hide the base, easy-to-remember common word. This
makes the password harder to remember, so users try to stick to the same one forever, but system
administrators add expiration times to their policies. Users then adapt by making the smallest
possible change at each password update. Unfortunately this still results in an insecure behavior,
making life much easier to malicious actors trying to guess current passwords, because old ones are
often available through leaked databases. The countermeasure to discourage this behaviour is to
prevent choosing a password too similar to the previous one(s). The problem with the simplest
approaches to similarity estimation—for example based on the Levenshtein distance [267] between
two clear-text strings—is that passwords are sensitive and personal data. Storing them to enable
similarity checks exposes users to an additional high risk of breaches into their accounts. This
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demands for tools to implement similarity check among passwords of different age that can work
without storing the password history.

We proposed a Bloom Filters based system to solve this issue, which checks passwords similarity
over obfuscated data. The effectiveness of the schemes depends on the tuning of the filter which
is thoroughly analyzed to determine the values of the parameters that ensure password secrecy,
yet allowing an effective detection of similarity. The scheme natively allows the integration of a
cryptographic access control method.

The foundations for this work can be traced back to the work of Schnell et al. [398], which
describes a method for querying private data over a Bloom Filter structure, with focus on medical
records. The goal is to extract data which cannot be linked to the owner, which is different from the
password similarity scenario considered here. In particular an attack such as the one presented in
Section 5.1, could lead to a complete compromise of the scheme. Our work propose then a solution
which can address the Anagram attack. Another work presented in [19] describes the application
of privacy methods like differential privacy to probabilistic data structures such as Bloom Filters.
This approach is vulnerable to an attack called the “‘profile reconstruction attack”, a weakness that
is due to differential privacy methods (which are not considered in our work) and not to the filter
itself. Anonymized datasets, using techniques such as differential privacy, purposely introduces
errors and noise in the data in order to hide the presence of specific information or to ensure that
links between users and their correspondent data cannot be established. These controlled errors
are compensated in large dataset: the errors do not effect the quality of the evaluations. In our
use cases, users—even if forced to change password regularly—cannot generate a password dataset
big enough to compensate the introduced noise. That is, anonymization techniques can affect the
quality of password similarity queries, with several false positives compared to the proposed Bloom
Filter approach. RAPPOR [150] is a system used by Google to get data from the Chrome browser.
The data is hashed in a Bloom Filter, anonymized by introducing a perturbation on the values,
and then retrieved and reconstructed at server side.

RAPPOR is used to collect binary statistic, therefore cannot be used to detect similarities be-
tween responses. It is based on binary queries and not on difference between sets. These exact
matches (without false negatives and with a probability of false positives), are considered in other
works. That is due to the construction and the use of the Bloom Filters. One of the closest work
to this one, referenced as SSDD, is presented in [163]. It employs Homomorphic Encryption to
compute the Jaccard coefficient between two Bloom Filters. One of the downsides of Homomorphic
Encryption is the exponential-order complexity of the algorithms, which makes it unfeasible for
many systems such as embedded ones. As the authors say, it can leverage on pre-computed values,
that can be saved in a sort of cache that can speed up the encryptions and decryptions. Unfortu-
nately if the output of the pre-computation is not saved in a secure way, this can leak information
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to an attacker. In SSDD as well as in the method proposed in this manuscript, the filters are used
to return a real number which represent the similarity, not a boolean value, placing at the opposite
side of the spectrum, with respect to RAPPOR.

Moreover in general the aforementioned work do not explicitly consider the use of secure hash
functions (such as cryptographic secure hashes). The added security of these methods is therefore
not in the scope of the cited papers. Other related works, which are not directly based on Bloom
Filters, are the ones which employs fuzzy hash functions. The main work in this area is called
Context Triggered Piecewise Hash (CTPH) [9]. CTPH fuzzy hash function is extensively used in
its reference implementation, ssdeep10, by platforms such as VirusTotal11. This implementation
is particularly useful to check the similarity of uploaded samples with known malware files and to
perform forensic analysis [273]. To the best of our knowledge, the security of this hash function
was not extensively compared to “classic” families of hash functions such as SHA512 and MD5.
To provide a more straightforward comparison of the characteristics of existing methods and our
proposal, in Table 4.1 we lists the main peculiarities of the various proposed approaches, and
compare the different goals.

Table 4.1: Comparison between similar approaches. The symbol defines a full compliance to the
row, the symbol denotes a partial compliance, and the symbol denotes an absence of compliance
to the row. The acronyms legend is the following one. BF: Bloom Filter, HE: Homomorphic
Encryption, PHFs: Piecewise Hash Function.

Peculiarity RAPPOR SSDD Schnell et al. [398] CTPH Our Method
Úl. Erlingsson et al. [150] S. Forman et al. [163] J. Kornblum [248]

Detect exact matches
Detect similarities

Can be (natively) encrypted locally
Uses or can use secure hash function

Main focus Crowdsourcing Documents Medical Records Malware analysis Passwords
Main technology BF (binary) BF + HE BF PHF BF

While these works are mainly related to privacy scenarios, in the password strength evaluation
implementation we often see clear-text mechanisms to check the similarity of the last passwords.
Another approach is to require the last password, but, if lost, it can result in a total lockout for the
user or a subvert of the password change mechanism. Current guidelines of the National Institute
of Standards and Technology (NIST) [180] do not provide any rule against password reuse, only for
temporary secrets.

To the best of our knowledge, in the literature there is not a use case of application of Bloom
Filters to a password management scenario. Nowadays, companies and research groups try to deal

10https://ssdeep-project.github.io/ssdeep/index.html
11https:/virustotal.com

https://ssdeep-project.github.io/ssdeep/index.html
https:/virustotal.com


4.2. USERS’ PASSWORD ENFORCEMENT 75

with such attacks by mixing different strategies. Companies such as Facebook claimed to have
bought black-market passwords in order to analyze the similarity among passwords in order to
defeat The No. 1 cause of harm on the internet [2].

Other research groups otherwise proposed the idea of changing the structure of the password
file in such a way that each user would have multiple possible passwords, sweetwords and only one
of them is real. The false passwords are called honeywords. As soon as one of the honeywords is
submitted in the login process, the adversary will be detected.

Despite these attempts, we claim that research has not yet provided an extensive analysis of
this field. For this reason the aim of this part of thesis is to study it, illustrate the advantages it
brings, and discuss the security-related issues that it introduces.

Password similarity

It is widely known that password reuse is a common behaviour which can turn into a threat if pass-
words get leaked online [216]. Password leaks are a common form of information leak that happens
regularly 12. A similar threat appears when users are allowed to choose a new password with lit-
tle variations from the previous one (e.g., password2020 changing password from password2019).
This behavior is tempting especially in corporate settings which enforce a policy of frequent pass-
word expiration. This can make brute force attacks very effective, since the new password is easily
computed by a limited number of mutations starting from a dictionary of leaked ones. We can de-
scribe the password mutation as a perturbation of the password with slight variants. Tools such as
password crackers or word-lists generators like cupp (A password generator based on personal and
open source data: 13 or johntheripper (johntheripper is a common password cracker and generator
14 implement various combination methods for password generation; passwords can also be gen-
erated by neural-based techniques such as adversarial generation [280]. Against these approaches,
choosing a similar password is almost as insecure as choosing a dictionary password [475]. It is
worth noticing that common methods to guide users to choose “robust” passwords are focused on
avoiding the direct use of dictionary words. These methods have two shortcomings: users resort
to variations that are easily discovered by mutation by the aforementioned tools, and there is no
detection of password similarity when a password change is mandated.

For the purpose of this work, password similarity can be informally defined as the structural
similarity of the text composing two password being compared, i.e., it has nothing to do with
the possible underlying meaning of the string. This definition of password similarity can be used
to guarantee that a user is not recycling what, in terms of actual entropy, can be considered

12https://us.norton.com/internetsecurity-emerging-threats-2019-data-breaches.html
13https://github.com/Mebus/cupp
14https://www.openwall.com/john/

https://us.norton.com/internetsecurity-emerging-threats-2019-data-breaches.html
https://github.com/Mebus/cupp
https://www.openwall.com/john/
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the same password every time. A straightforward method to detect password similarity over a
meaningful time span would require saving old passwords in clear-text into a database, which is
obviously a despicable approach. We propose a solution based on Bloom Filters that overcomes
this shortcoming.

Bloom filter for Text Similarity

A Bloom Filter, denoted in this work as β, is a probabilistic data structure which can be used to
cache data and speed up operations such as lookup in databases [68, 311, 184]. It is composed by:

• a bucket which can be an array of bits initially set to the false value (0), we reference to its
size in the number of bits as κ;

• Γ, a set of hash functions which will be used to insert and check values.

The relevant operations on a filter to measure similarity are:

• Create(Γ, κ) → β which generates a Bloom Filter β using the hash functions present in the
set Γ with a bucket of size κ.

• Insert(β, s) which inserts the bit string s in the Bloom Filter.

• Check(β, s)→ Boolean which checks if the value s is not present in the filter or if it collides
with a value which is already there.

• QInsert(β, s, ν) that inserts the string s splitting it in ν-grams.

• Distance(β1, β2) → Real that returns the distance between two Bloom Filters. To be com-
parable, two Bloom Filters must have the same bucket size κ, and need to use the same set
of hash functions Γ.

An insertion operation (Insert(β, s)) of a string s in a Bloom Filter β is performed according
to the following steps:

• the value that must be inserted into the bucket is hashed using the set of hash functions; The
hash functions output must be re-mapped to provide indexes in the co-domain of cardinality
κ.

• every bucket slot indexed by the keys got using the hash functions is set to the true value (1).

This operation therefore inserts the hashed value into the filter, setting the corresponding hash
values to the true value. The process is described in Figure 4.6 which pictures an insertion of the
strings password1234 and password123!.
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0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0

password1234

password123!

Figure 4.6: Insertion procedure with two strings. The strings password1234 and password123! are
hashed independently. This insertion procedure processes the passwords as single items, leading to
different hashed values.

The verification process of the string s presence in the filter β (Check(β, s) → Boolean) is
analogous to the insertion case:

• The element s is hashed against all the functions to get a list of indexes;

• If any index points to a false value, then the element is not present in the filter for sure.
The Bloom Filter never exhibits false negatives.

• Otherwise the value could be present in the filter, but due to the collision possibility of the
hash functions, the result can be a false positive.

This procedure is illustrated in Figure 4.7.

0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0

password1234 → Maybe present

helloworld → Not Present

Figure 4.7: Check procedure with two strings. The strings password1234 and helloworld are hashed
independently and the resultant indexes from the hash functions are checked in the bucket. If the
lookup lead to a 0 value, the string is not present in the filter. Otherwise, it can be a value that is
present in the filter or can be a collision (a false positive).

Bloom filters can be used for text similarity using distance-sensitive hash functions [39] such
the ones introduced by Kirsch et al. in [245], or using an n-gram approach. This latter technique
divides the string in n-grams and hashes every resultant n-gram with the hash functions present in
the set, constructing a solution similar to locality-sensitive hashing [209, 178]:
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The hashing procedure to enable the measure of distance is presented in Figure 4.8. The
similarity of the two sets can be calculated by using various distance definitions, by extending the
check procedure to yield the number of n-grams which are the same in the two strings, independently
of the order. The similarity distance of two Bloom Filters can be expressed using distance and
similarities coefficients [80]. The main ones are The Jaccard coefficient [217] (which we will denote
with J), the Dice coefficient [140] (which we will denote with δ) and the Cosine similarity [48]
(denoted by ϕ). These coefficients can be calculated as functions between two Bloom Filters and
are defined as:

J(β1, β2) =
γβ1,β2

kβ1 + kβ2 − γβ1,β2

δ(β1, β2) =
2γβ1,β2

kβ1 + kβ2

ϕ(β1, β2) =
γβ1,β2√

kβ1
∗
√

kβ2

where γβ1,β2
is the common number of true values in the sets of the two Bloom filters β1 and β2,

and kβ1 and kβ2 are the number of true values of, respectively, the β1 filter and β2 filter.

0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1

pa ss wo rd 12 34

password1234

pa ss wo rd 12 3!

password123!

Figure 4.8: n-gram insertion procedure with two strings. The strings are divided into n-grams (in
this case bi-grams) and hashed using an Insert operation for every n-gram.

The Jaccard coefficient between two filters has already been exploited, and found to be an
effective method, for computing Bloom Filter similarity. This coefficient, introduced in [217] by
Paul Jaccard, is shown to be suited to calculate the difference between two bit-sets, such as the
one at the basis of the structure of the filter. Therefore, this coefficient is a common root of the
systems based on the similarity between sets and Bloom Filters [341, 460, 335]. The main related
previous works for its applications are [163, 383]: these exploit the Jaccard coefficient for private
documents, but are not tied to the password similarity field. The other functions were extensively
analyzed in the works which we reference [398, 311, 224]. The choice of the best distance function
is related to the application case. We propose a comparison between their performance in the field
of password similarity using Bloom filters in Section 4.2.
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As stated before, the structure of a Bloom Filter makes possible to have no false negatives
(values that are returned as not inserted in the filter while they actually were there) and a number
of false positives (values that are returned as inserted in the filter but no insertion procedure was
applied on them). The percentage of false positives can be limited using the formulae presented in
this section which are based on the choice of the hash function set Γ and the size of the bucket κ.
The tuning of these parameters is essential to achieve a satisfactory trade-off between the utility of
the query and the number of false positives. A wrong sizing of buckets or a choice of low-randomness
hash functions can easily lead to a vulnerable filter (as detailed in Section 5.1) or to an unstable
filter that exhibits too many false positives. This latter case is formally defined by the formulae
presented in Section 4.2 and experimentally analyzed in Section 4.2.

Privacy Guarantees

To size the filter, some criteria can be derived from the following formula, as stated in the “classical”
work by Burton H. Bloom [68],

fpp =

(
1−

(
1− 1

m

)kn
)k

(4.1)

where fpp is the false positive probability of the filter. This can be calculated a-priori from the
variables m, k and n, defined as:

• m, the cardinality of the set on which the filter is built;

• k, the number of different hash functions that are used to hash values into the filter;

• n, the number of elements which will be inserted into the filter.

The formula is derived from the evaluation of the probability of an item to be represented by
only 0 in the Bloom Filter set. In cases of uniform distribution, as it happens with hash functions
used by a Bloom Filter, this probability is defined as 1− 1

m . This value needs to be exponentiated to
the number of hash functions k multiplied by the number of elements. That is a consequence of the
construction of the Insert operation: an operation of this kind is required for every inserted value.
A single Insert operation will hash a single input string for every hash function in the hash-set Γ.
The resultant false positive probability is therefore the probability of having only value set to 1 for
every result of our hash function set.

From this formula we can derive the optimal values for the filter size and the number of hash
functions to use. For a specific number of elements, that will be inserted in the filter, we can
choose a fixed fpp to get a desired percentage of false positives. To get the formulae to calculate
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these optimal values, we first need to approximate the value of fpp to fpp ≈ (1 − e−kn/m)k. As
explained in [77] the optimal number of hash functions can be found from the derivative of the
fpp. Let us declare g = k ln(1 − e

−kn
m ), minimizing this function g will lead us to the optimal

(minimum) number of hash function. Therefore we can find that the global minimum is defined as:
k′ = m

n ln(2). From this formula we can derive the optimal value for the size of the array. Replacing
k’ to k in the Equation (4.1) we find

fpp ≈ (1− e
−kn
m )k = (1/2)

m
n ln(2)

Which can be resolved for m, obtaining its optimal value, which is:

mopt = −
n ln(fpp)
(ln(2)2

Obviously, these values must be integers, therefore we can apply a ceil to the result of the
formulae, obtaining:

m′ = ⌈mopt⌉ =
⌈
−n ln fpp
(ln(2))2

⌉
k′ =

⌈
m′

n
ln(2)

⌉
The rationale behind these sizing formulae comes from the observation that as the size of buck-

ets increases, the probability of collisions decreases. Using this approach, a Bloom Filter with a
controllable number of false positives can be tuned to fit any specific scenario. Conversely, as it
is useful for the proposed application in order to enhance password confidentiality, a Bloom Filter
can be designed in such a way to have a big number of false positives, thus obfuscating data by
forcing collisions. Password confidentiality could be protected also by adopting privacy-preserving
approaches, such as δ-presence [330] or differential privacy [147]. These approaches take in consid-
eration the amount of data stored into a database, or the filter in this case, and try to anonymize
the data among many false positives. In this case the approach is directly applicable to the filter
which can gain a lot of advantages in terms of privacy from this approach. Specific metrics for
these scenarios were studied by Bianchi et al in [65], which proposed γ-deniability and after Xue et
alii in [482].

Analysis of the Hash Function Family

Another key component of the filter, which impacts on confidentiality, is the distribution of the
values returned by the chosen hash function family. In this kind of probabilistic data structures,
it may be necessary to deploy a huge number of hash functions. Using a different algorithm for every
index can be unfeasible, and in any case a large variability within the hash function set hinders a
precise analysis of the randomness of the generator. To overcome these problems, the hash function
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set can be generated by using the well-known salt approach, as described in Figure 4.9. When a
value has to be inserted, many random numbers (salts) are generated. Prepending these numbers
to the value, and using a fixed hash function, the effect is analogous to having adopted different,
random hash functions. In our implementation we used MD5 as the base hash function. The salts
can be generated using different hash functions, such as Murmur hash [37] or secure cryptographic
hash functions, such as SHA512. These are easily interchangeable, as libraries such as OpenSSL 15

implement the various methods using interfaces that facilitate high-level use of an hash function.
In Section 4.2 we propose a compared analysis of the speed of two hash cryptographic functions:
MD5 and SHA512. The security of the hash function was studied in numerous works [185, 177, 244],
in this case, the security of the system also relies on the division in n-grams. The salts are saved
in the same location as the filter set, to allow reloading the state in subsequent invocations of the
algorithm. We acknowledge that this trivial solution is vulnerable to attacks if the file is saved in
clear-text form, like the one described in Section 5.1.

Saving salts in a secure way seems not too challenging, and is the subject of current and future
investigation aimed at making the filter immune to this kind of attacks. For example, a salt can
be generated using a cipher like AES using an user provided key and a fixed payload similarly
to AES-CTR mode [28]. AES, in this mode, generates an encryption stream starting from a
counter c. The encryption stream is derived by encrypting this counter, initialized to a random
IV. After this generation step, the encryption stream can be combined with the payload, using
a xor operation. Similarly, we can extend the hash functions set of the filter with a function
GenerateHashes(key)→ Γ which generates the set of hash functions Γ starting from the key key.
The salt of the functions is generated and encrypted with a key using a symmetric cypher such as
AES. The security in this case relies on the key, which must be chosen by the user so as to withstand
known attacks such as brute force and dictionary attacks. Using this technique, the filter set can be
saved without specific protections, since it can be verified only using the chosen secret key. An in-
depth analysis of the security of the encryption scheme, particularly concerning the peculiarity of
having very short payloads due to the division in n-grams, will be the focus of ongoing research
work. These approaches to the generation of hash functions are described in Figure 4.9. In the first
hash set we can see that h1 and h2 are two functions generated with a random padding applied
to the MD5 hash function. In this scenario we suppose to have a Random(n) function that can
generate a random string of length n. This generation, when re-applied will lead to a totally
different set of hash functions, making the distance function inapplicable. That is the concept of
the construction of h1′ and h2′. These functions can return different results from the functions h1
and h2 described before. Reusing the same value for the salt applied to the functions will lead to

15https://openssl.org

https://openssl.org
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the same set of results, making the distance calculation possible. This is the concept of the third
figure (bottom-left), which describes how, applying a fixed salt to a symmetric cipher using a secret
key k the filter will lead to the same set of results.

h1(s) = MD5(Random(10) + s)

h2(s) = MD5(Random(10) + s)

Insert(β,′ password1234′) → {6, 15}

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

h1′(s) = MD5(Random(10) + s)

h2′(s) = MD5(Random(10) + s)

Insert(β′, password1234) → {9, 14}

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

h1′′(s) = MD5(fixedsalt1 + s)

h2′′(s) = MD5(fixedsalt2 + s)

Insert(β′′, password1234) → {3, 11}

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

ĥ1(s) = MD5(AES(k, fixedsalt1), s)

ĥ2(s) = MD5(AES(k, fixedsalt2), s)

Insert(β̂, password1234) → {5, 9}

0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

Figure 4.9: Different hash functions generation. These functions will lead to different use-cases.
In the first two figures (the top-right and top-left ones) we have a fully random generation which
leads to different cases every time as we cannot predict the output got from Random function.
The fourth case employs a cryptographic function and a set of fixed strings (fixedsaltn) to generate
the same set of hash function based on a secret key k.

Experimental Analysis

The specified method to check password similarity was been implemented in C language. The hash
functions used was the standard OpenSSL16 implementations of hash functions, in this case MD5.
The system was checked on a Ubuntu 18.04 system running in a VirtualBox virtual machine with 2
virtual CPUs and 1GB of memory. The hypervisor ran over an Intel core i7-8700 CPU which clock
frequency runs at 3.2 GHz, and the host was used exclusively to run the test VM. The random data
were provided by /dev/urandom to avoid blocking behaviour [191] and read to generate random
hash functions. We used the following queries used to check the filter:

1. β ← Create(Γ, κ)

2. Insert(β,AAAA)

3. Insert(β,BBBB)

4. Check(β,AAAA)

5. Check(β,CCCC)

16https://www.openssl.org/

https://www.openssl.org/
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6. Check(β,BBBB)

In this case the hash dimension seemed not to influence the performances of the filter. The com-
putational load was dominated by the generation of the salt string. The performance of the salt
string generation presented in Figure 4.10 is the average of the results of five runs of experiments,
in which the size of the salt changed from 1 (really easy to brute-force) to 1000 (really hard to brute-
force). As shown in the graph, the performance decreased linearly when the salt size increased.
This happened because a single random character of the salt must be multiplied by the number of
hash functions present in the filter. The QInsert and Distance performances were evaluated using
the following querying pattern:

1. β1 ← Create(Γ, κ)

2. QInsert(β1, thisismypassword, 2)

3. β2 ← Create(Γ, κ)

4. QInsert(β2, thisismyp4ssword, 2)

5. β3 ← Create(Γ, κ)

6. QInsert(β3, thisismypassw0rd, 2)

7. Distance(β1, β2)

8. Distance(β1, β3)
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Figure 4.10: Speed of initialization of the filter and performances compared to edit distance. (a) Cre-
ation time of the filter changing the size of the salt strings. (b) Performances of the filter compared
to the edit distance applied to the password data set.

In this test run, as in the Insert evaluation, the computational load was dominated by the filter
generation.
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This system was also tested using ca. 5000 credentials from real-world leaked institutional logins.
Data were clustered and analyzed using the filter, to observe which values were correctly identified
as similar. The graph in Figure 4.10 represents the analysis of the filter’s precision. The graph also
shows the edit distance between the various strings.

The plots in Figure 4.11a–d are the experimental confirmations of the sizing criteria presented
in Section 4.2. These graphs were generated using different credentials from the ones in Fig-
ure 4.10a,b, to confirm the general applicability of the filter. The data set was generated taking
the common password database rockyou.txt (The one available in Kali Linux Distribution, 17, under
/usr/share/wordlists/rockyou.txt.gz), inserting in the filter 5000 random-chosen credentials,
and comparing them with 5000 other credentials randomly generated using a password generator
tool such as APG [170]. As clearly highlighted from the graphs, there was not a big performance
gap between the two algorithms used, the secure cryptographic hash function SHA512 and the in-
secure MD5. Furthermore, the behaviour of the system respects the previously described formulae:
a bigger filter size reduced the probability of a false positive. The hash functions number had a
different impact on the scheme: it could degrade the performances if we chose a non-optimal num-
ber of functions. Choosing a low number of functions resulted in collisions by the same function,
choosing too many functions resulted in filling the buckets easily, accelerating the occurrence of
false positives.

17https://www.kali.org/

https://www.kali.org/
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Figure 4.11: Performance of the filter in terms of False Positive Percentage with different sizing
of Γ (number of hash functions employed) and κ (size of the internal bucket). (a) Performance
of a Bloom Filter based on MD5 hash functions in respect to number of hash functions used. (b)
Performance of a Bloom Filter based on SHA512 hash functions in respect to number of hash
functions used. (c) Performance of a Bloom Filter based on MD5 hash functions in respect to size
of the internal bucket. (d) Performance of a Bloom Filter based on SHA512 hash functions in
respect to size of internal bucket.

Figure 4.12a represents the performances of the system, in terms of time required to execute a
QInsert of a random string divided in bi-grams or a Distance operation. The graph shows that the
system had a linear response to the length of the input. We analyzed lengths from 1 to 64 chars,
which included the most common lengths of password strings (7, 20) [161]. Furthermore, the plot
shows that the SHA512 hashing method was clearly slower than MD5. This speed gap was due to
the intrinsic complexity of the algorithm. That introduced a trade off between the security of the
scheme in terms of resistance to collisions and the speed of the overall procedure.
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Figure 4.12: Comparison of the two hash functions implemented (MD5 and SHA512) and perfor-
mances of the different distance metrics (Jaccard coefficient, Dice coefficient and Cosine similarity)
compared to a reference implementation of CTPH [248] (ssdeep). (a) Performance of the system by
inserting and checking random password of different lengths. (b) Comparison of different functions
to calculate distance. Namely: Jaccard coefficient, Dice coefficient and Cosine similarity.

The last graphical representations in Figure 4.12b describe the difference between the three
implemented distance measures presented in Section 4.2. The behaviour of the three functions was
comparable across the spectrum of passwords lengths employed to generate the plots in Figure 4.12a.
From the plot it is clear that Dice’s method and the Cosine-based one gave more accurate results
than the the Jaccard-based solution. The plot also shows the performance difference of our C
implementation with a reference implementation of the CTPH scheme: ssdeep. Comparisons with
the system presented in Table 4.1 would be infeasible due to the difference of application field
(RAPPOR), or the unavailability of reference implementations and original data set used in the
paper (SSDD and Schnell’s solution). The data visualized in the plot confirm the fact that ssdeep
was not well suited to process small inputs such as passwords. We claim that the proposed method
can be integrated as a modular component in any kind of authentication system, to discourage the
use of similar passwords over time and to prevent their use over different domains as pictured in
Figure 4.13.
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Service 1
P4ssword123!

Service 2
P4ssw0rd123!

Browser

□□□□□□□□□
β

Figure 4.13: Application scenario: The browser can insert the passwords P4ssword123! and
P4ssw0rd123! into the Bloom filter, checking if they are similar enough to trow a warning of
password similarity.

The typical application could be a browser’s plug-in that issues a warning when the distance
between a new password chosen by the user and the strings saved in the plug-in is below a pre-
declared threshold.

The application can be instrumented to report the results of equations in Section 4.2 regard-
ing not only the similarity check result, but also the various parameters characterizing the filter,
to evaluate the quality of the classification process.

4.3 Insider Threat Analysis

In this part of thesis, we describe the initial release of an architecture for the automated deployment
of a penetration testing environment including insider threat management features. The Castrum
Obsidiis model is the result of a cooperation between Obsidium, a young start-up and a university
research group at the University of Bologna, Italy to devise a system incorporating scientifically
sound, state-of-the-art methodologies, at the same time taking into account real-world needs.

For the reasons described in 2.4 we decided to focus mainly on the detection phase, implementing
an efficient way to deploy a monitoring infrastructure for suspicious insider activities, based on a
customer-oriented insider definition. We argue that this approach is more cost and resource efficient.

What we argue is different in our approach is not the definition of an insider threat behavior
but rather how we are able to detect it within a penetration testing scenario.

The architecture we are going to describe has two elements worth highlighting, namely: (i) the
inclusion of an easily extensible set of detection tools, and (ii) the automated deployment of said
tools and of the complementary data gathering and processing infrastructure.
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Figure 4.14: Infrastructure layout with the main functions implemented by the insider threat de-
tection platform.

In Figure 4.14, the main elements of the insider threat infrastructure are depicted. Automation
is of paramount importance to ensure the consistent deployment and management of all the needed
components. Besides technical correctness, it also provides a guarantee that all employees’ work
will get profiled to detect anomalies in behavioural patterns, acting as a deterrent.

The approach to automatic configuration is based on the Infrastructure as Code (IaC) paradigm.
As described in Section 4.3, using such a technology it is possible to configure the entire infras-
tructure from a single centralized system. The attack surface of the provisioned systems and the
process itself is accordingly reduced, since manual code execution is entirely disabled on the con-
figured hosts.
This approach grants the possibility of tailoring security configurations with the most appropriate
method for each component, limiting conflicts between subsystems and eliminating the need for
manual replication.
During its life-cycle, the infrastructure is going to be continuously updated. To properly manage
this process, an automated supply chain that can replicate the production environment and audit
the developers changes is needed. To ensure traceability and cope with the incremental develop-
ment of the infrastructure, our proposal uses a role called Infrastructure Source Management. This
role is in charge of maintaining the versioned source code and execute analyses on code smells.
These automatized analyses and Continuous Development (CD) cycle could be reflected in test
and production environment interacting with the provisioning entities, lowering the complexity of
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managing a flexible and non-trivial infrastructure.
Although proven to be effective, the CD approach could exhibit many pitfalls regarding secrets
management. That is, a secret obviously requires specific manipulation, different from what can be
applied on not-sensitive data. For instance, an encrypted enclosure and a correct erasing process
must be setup to protect secrets from offline attacks, like forensic analysis on disks.
The Secret Management role employs these measures, providing a standardized way to access data
from clients, maintaining security as the first principle, and automating as many aspects as possible,
to reduce error-prone manual intervention at the bare minimum required by specific processes.
The services of the infrastructure should communicate with the other roles using domains names,
not lower layer addresses. That is, a standard way to list services, roles and contact the machines
using a communication based on their role, and not on their physical network location, should
be employed. This will also enable the distribution of the platform over multiple physical net-
works/clusters and the development of scripts and tools with the concept of role, not based on
communication technologies.

Similarly, users and their roles are managed through a database, conforming to the Identity
Management role, which is mainly used by the Secret management and Infrastructure source man-
agement roles. Therefore, the Identity Manager, will supervise over the access to the other roles,
enabling a centralized control over the set of credentials that can be used to access the platform.
Exploiting its centralized nature, it can be efficiently audited, looking for new users and for pass-
word changes, triggering alarms in case of unexpected or unsolicited credential changes.

The aforementioned components functionally manage their own data-sets, producing a detailed
audit trail for the Log and analysis role. Upon the reception of logs from the other machines, it will
save them in an unalterable vault and analyze them, searching for anomalous patterns.
Whenever a log entry or combination thereof raises suspicion of malicious activity, the insider
threat managers will be notified, giving them the possibility of further investigating and suggesting
a response.

The last part of the infrastructure, that is not explicitly presented in Figure 4.14, are the probes
placed on the roles and users machines. These elements retrieve statistics like process owners, the
amount of RAM and CPU used, the suspicious packets that are leaving the network, etc.
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Infrastructure as Code and environment replication

To set the entire infrastructure up, we used a set of provisioning tools according to the Infras-
tructure as Code (IaC) paradigm. IaC entails a process based on the concept of maintaining the
infrastructure description as source code, enabling the use of techniques such as versioning (e.g.,
with software like git) and code auditing. That is, this approach can be pictured as a series of
scripts to play to configure the system.

Most importantly, all these operations are traceable through a Version Control System (VCS)
which ensures the portability and replication of such infrastructure. IaC ensures continuity, as
all the environments are provisioned and configured automatically, which greatly speeds up and
simplifies infrastructure tests.

Seamless updates positively affect security too, since legacy components gone useless and bugged
software for which patches exist are immediately taken care of. IaC also brings Continuous Inte-
gration (CI) capabilities along. CI and IaC combine to enable rapid provisioning and configuration
of the environments where code is developed and tested; new tools and features can be reliably
integrated into the main project trunk, following flexible delivery roadmaps, without jeopardizing
system performance and stability.

Traffic inspection

One of the core features of our proposed architecture is traffic analysis via deep packet inspection.
This kind of monitoring could be quite expensive if centralized on a dedicated machine, which
may need to employ hardware offloading or proprietary solutions to accelerate the analysis. A
different way to tackle the computational load problems is to distribute traffic analysis on the
single hosts, feeding pre-processed results to the Log and analysis machine described in Section 4.3.
The drawback of this solution is clear: we shall trust the hosts that analyze the traffic, which are
in the hands of potentially malicious insiders, and thus subject to being tampered to not send true
logs. On the other hand, the centralized solution exhibits the dedicated inspection machine as a
valuable target; it could hog the network sending raw, unprocessed traffic from the probes to the
inspector.

Given these preconditions, we chose to implement a distributed approach by default, with the
possibility to switch to a centralized DPI platform.

It is important to highlight that the proposed architecture foresees specific organizational roles
for each activity. An important role will be that of insider threat manager, the person(s) in charge,
and the only authorized one(s), to receive notifications of suspicious events and to be able to access
the related details. The insider threat managers should also participate in a continuous analysis of
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DASHBOARD

CONTROL

ROOM

Figure 4.15: Grafana dashboard, the two circles indicates the number of process running in the
machines and the number of alarms. At the bottom the information on the status of the machines
is presented such as disk space, memory and CPU usages. The two buttons could be used to power
off and reboot the machine promptly.

the protocols that should be allowed and subjected to inspection.

In this work, to provide a complete case study, we focus on a specific threat that can come from
insiders, i.e., data exfiltration.

To detect sensitive data spill-out, we need to identify it in the flowing traffic. A well-known
method to to achieve this goal is using the so-called HoneyTokens [364].

This countermeasure is obviously not a silver bullet against exfiltration, as the tokens could be
identified and removed from the outgoing stream, but we argue that, in a constantly monitored
environment, with a limited time, an attacker unaware of the tokens will trip onto them with high
probability.

Relying only on the tokens would be security by obscurity, therefore we see them as an addition
to any other analysis that can be made, such as raising warnings for any access to specific file.

This infrastructure has already been tested on several real-world use cases. The goal is not
to illustrate the whole process of testing a specific target, but rather to show some of the main
interesting results that we are able to proof.

The main threats we have analyzed are the ones we identified as preeminent for this scenarios,
namely Network exfiltration and External memory exfiltration. Other methods, such as, Physical
exfiltration using covert channels, described in [190] or that use creative ways to generate audio
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signals like FanSmitter [189] - are not taken in consideration in this, initial release.
As a demonstration for the possibility introduced by our analysis platform, we have evaluated

Network exfiltration via secure channels, such as HTTPS. We argue that this kind of threat is a
good candidate for the evaluation of our system, for the measures that every modern browser act
to remove the attacks possible by eavesdroppers.

The analysis of HTTPS can occur on different levels. One of the most common and reliable
ones is to use a MitM attack on the protocol [87], without introducing weak ciphers or reducing
the overall security of the protocol. To implement this probe, we had to intervene on one of the
measures introduced to defeat the MitM attacks, the so-called Certificate Key Pinning: the browser
keeps the certificate of critical sites in its internal environment to ensure that a MitM attack will
not invalidate the security of the system.

Even without key-pinning, SSL/TLS traffic is not readable by an attacker with only eavesdrop-
ping capabilities. This attack is prevented by a technique called Perfect Forward Secrecy.

Disabling this kind of support will reduce the security of the system, therefore, the implemen-
tation of the network inspection part of the platform relies on the termination of the connections
using SSLsplit and the inspection of the packets on the SSLsplit server. The inspection acted by
this server can be split in three parts: the first component redirects all the encrypted connections
to the SSLsplit server which can therefore open it using its certificate; then, it analyzes the contents
using a classic Network intrusion detection system, in our case Zeek; finally, SSLsplit will re-encrypt
the traffic, sending it to its original destination.
As stated in Section 4.3, the analysis of traffic can burden a system with excessive load if it is in
charge of analyzing the entire list of packets that roam the network. As we consider the monitored
machine under control, we offload the analysis of the traffic to the single machines, distributing the
load and double checking this traffic behaviour against the statistics sent to the logger machine.
To optimize the network load and the work of the analysis machine furthermore, we have designed
a filter for the Network intrusion detection module to search for the HoneyTokens.

When encrypted traffic is detected, it will be sent to the analysis platform as a warning. After
that, regardless of the previous choice, the detection system will check if a token, pre-injected in
databases or in critical files, is present in the traffic. If the token is found, it means that specific
data are being exfiltered.

The External memory exfiltration detection exploits the same concepts seen for network exfil-
tration. Because the insertion and removal of external devices is a critical operation, it has more
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ALERT SYSTEM

Figure 4.16: Alert originated by the insertion of a not allowed USB device. In this case the metadata
of the analyzed machine and USB dongle are presented in the alert report.

strict policies implemented by default in our platform.

A difference between network and External memory exfiltration is that the former is directed to
a potentially huge number of endpoints that could not be blocked a-priori, e.g., by constructing a
block list in advance. The latter is at the opposite side of the spectrum, the employee can declare a
list of external devices that he intends to attach to the computer, and a manager will then proceed
to evaluate the possibility of registering them in a predefined allow-list.
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When a device is inserted or removed, the system will register the event information in a log
file. For instance, in case of USB devices, the log will contain the timestamp of the insertion or the
unplugging, and information on the device such Vendor and Product IDs. This log will be sent to
the analysis machine. If this device is not present in the pre-compiled allow-list, an alarm will be
triggered and sent to the responsible team.

We focused mainly on USB devices, but the procedure can be extended to every external device
that has some fixed information and issues events in the Linux operating system: for instance, logs
in the kernel buffer which are readable using dmesg.

Performances and Evaluations

To evaluate the usability of the method, we have used our implementation in a test environment.
To get a more balanced picture, we let different users groups perform realistic work; some of them
were aware of the monitoring platform, some were not. In detail, the overall effectiveness of the
platform was tested over 4 teams using 4 machines each, for a total of 12 monitored Unix machines.
We tested the system asking users to insert unregistered USB devices in the running systems and to
exfiltrate a sensitive file, (/etc/shadow) pre-loaded with HoneyTokens, from the analyzed machines
using plain-text (HTTP) and encrypted (HTTPS) connections to public websites. In all these cases,
the alerts were promptly reported to the insider threat manager to immediately analyze the anoma-
lies with the help of the Grafana dashboard or the Kibana query platform.
An example of the alert and the associated metadata which are sent to the email address of the
insider threat manager is visible in Figure 4.16. In this e-mail, various metadata, useful to identify
the target device and machine, are presented to the insider threat manager. A link pointing to
the relative Grafana dashboard is available, giving to the user the possibility to investigate more
on the alert and take actions as soon as possible. This enables a prompt response of the insider
threat manager, that can SSH into the target machine as the administrator and stop the exfiltration.

In Table 4.17 the performance impact of the implementation of traffic inspection described in
Section 4.3 are shown.

This test was conducted using a VirtualBox virtual machine with 2GiB of RAM, a single virtual
(uncapped) CPU and our custom Kali Linux distribution. The hypervisor was running over an
Intel Core i7 CPU 870 with a nominal clock frequency of 2.93GHz. During these runs the machine
under test was executing common penetration test tasks, such as network scanning using nmap,
bruteforce attacks using hydra. To test the analysis of unencrypted and encrypted network traffic
the machine were running speed tests and file download over HTTP and HTTPS.



4.4. TECHNETIUM: FORMAL NETWORK VERIFICATION USING SDN 95

Software Avg. CPU CPU max Avg. Mem Mem max
Zeek IDS 22.45% 100.00% 35.65% 62.81%
SSLsplit 2.83% 12.50% 0.27% 0.34%
Traffic Mir-
ror

1.18% 1.89% 0.15% 0.34%

Figure 4.17: SSL Inspection performances. The test was conducted over one hour of network
downloads, brute-forces and network scans.

The results show that the system load is bearable on modern hardware; most of the processing
power is required by Zeek, while SSLsplit and the inspection chain are not relevant for the system
load.

4.4 TechNETium: Formal network verification using SDN

For the reasons highlighted in 2.2, an important part of the work presented in this thesis will been
focused on improving the current state of the art tools to attenuate or remove such limitations.
That is, to formally verify policies on the network, we need to have a system which can be used
to express, translate and check formal constraints on the network topology. We will see that these
constraints can be expressed in terms of Reachability or combined rules.

Our contributions include:

1. HashTable: a “reverse” tree is kept in a hash-table for each reachability tree. This table
correlates a port and the reachability tree nodes that refer to it, for quicker update of trees.

2. Ports along the route: all common ports are kept in the path from s a d, to ease loop
detection.

3. Complementary set of atomic predicates: if a set of APs, used to represent a predicate,
becomes larger than half of S(true), save the complement of the set with respect to S(true)

instead of the original set, to save space.

4. OpenFlow Integration: is it possible now to feed the BDD with OpenFlow rules taken
from the SDN controller (as it is shown in the next section using ONOS).

5. Multiple Match Key Forwarding Rule: Thanks to the OpenFlow and ONOS integration
we are also able to use three different types of matching keys for the forwarding rules: exact-IP,
ternary, and long-prefix match.

6. Improved domain atomic predicates to integer translation: We rewrote the algorithm
for the domain conversion from to integer tree implementing a cache that keeps track of the
last conversions.
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In this chapter, we will show TechNETium: our security policy checker tool. It is designed
according to Model Driven Development (MDD) [136, 115], an approach that adopts Uniform
Modeling Language (UML) as domain-specific modeling language. The goal of MDD is to model
entities, relations and behaviors of the elements of the system as high-level abstractions. In the
MDD approach, the definition of the specific domain of the problem to be modeled is required. In
TechNETium, this involves both security and networking verification tools.

TechNETium exploits a network model-checking based on policies. By policy, we mean a variant
aspect of any network (forwarding) mechanism, i.e., a desirable high-level goal expressed in the form
of a rule or a configuration. We build a network model to formally check if those policies are met.
The basic idea is to create and maintain a model of the network and a set of policies that such
model must satisfy. Consequently, the model allows us to continuously verify whether or not the
policy set is satisfied on the network. As specified in the previous section, we consider the SDN
paradigm as the enabler for this technology, since it natively exhibits the separation between the
data plane level and the control plane.

TechNETium aims to be portable and architecture-independent. For this purpose, it is written
in Java; however, to perform a first test we choose a specific architecture on which to deploy it:
ONOS [60]. which has also been proven as one of the most DoS-tolerant SDN controllers [22].

TechNETium is a tool composed of two main modules that work on two levels of an SDN
architecture stack. At the Data Plane level the tool, through the predicates of a typical SDN
controller, it generates a representation of the network model using the previously described AP
technique. The result of this graph will, therefore, represent a snapshot of all the possible paths of
a data traffic divided according to the flow rules of the switches.
The Control Plane level module, on the other hand, will input a “high level” security policy defined
and described by the user and / or network administrator, and will perform the verification of this
by computing it on the AP graph, in the form of Reachability and ToWayPoint queries.

Atomic Predicates BDD generator

The first part of TechNETium creates the APs trees. Following what has been described in section
2.2 according to the APs theory, we need two distinct sets of data to generate it:

• Physical data related to switches and hosts (links, ports, interfaces);

• All the installed flow rules.

From these two sets, a PolicyGraph is then created. It represents the whole set of possible
paths of a packet within the network, according to the currently installed flow rules. As underlined
in 2.2 we have been inspired by the AP Verifier tool described in [487], but we introduced many
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improvements in terms of performance and efficiency.
The BDD generator has been integrated as a core service of the ONOS Engine. In this way, we can
easily query the extended classes of the Topology module of ONOS to query it and obtain the data
set of the network devices, links and hosts and the correspondent flow rules, to create the BDD
tree of APs.

Policy Checker Application

Once the BDD tree has been created, it is possible to verify the security network policy. The
strength of TechNETium is that a policy is simply seen as a property of the network. A property
can then be formally verified on its representation as BDD. However, to make the whole process
automatic and user-customizable, TechNETium can interpret the high-level policy defined by the
user by breaking it down into elementary graph operations. The user is enabled to define a policy
as desired properties regarding the routing of network traffic through the various nodes, while the
policy verification is efficiently implemented as a sequence of Reachability checks.

The Reachability policy can be verified as a property of the BDD tree. The APs representation
allows us to calculate the set of packets that can reach a destination port starting from source port
using the following algorithm:

Algorithm 2 Reachability algorithm from port s to port d
Input: S(F1),…, S(Fj): quotient space representation of forwarding predicates among the path s
and d (F1, F2, ..., Fj)
Input: S(A1),…, S(Ak): quotient space representation of access control predicates among path
between s and d (A1, A2, ..., Ak)
Output: set of packets that can effectively reach d from s

1: SF ← SF ∩ S(F1) ∩ … ∩ S(Fj)
2: if SF = ∅ then
3: return false
4: end if
5: SA ← SA ∩ S(A1) ∩ … ∩ S(Ak)
6: if SA = ∅ then
7: return false;
8: end if
9: return SF , SA

The FullReachability and the ToWayPoint policy as a consequence are decomposed as high-level
policies to a set of reachability ones. This because when a model checking tool is able to construct
the reachability graph of a system, it can in principle answer any reachability question by simply
examining this graph [86].
The FullReachability policy is just a simple example of this kind of decomposition. It expresses the
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Figure 4.18: Average BDD Creation time / Policy time check after a link up / link down upgrade
and node, links and forwarding rules increase.

Reachability from A to B in a duplex way, for this reason, is it simply calculated as:

FullReach(A,B) = Reachability(A,B) ∧Reachability(B,A) (4.2)

and no need for an additional reachability graph is necessary.
The ToWayPoint policy is more complex and it calls for a modification of the reachability graph.
In order to be expressed in terms of Reachability, ToWayPoint is defined as follows. Considering:

α ̸= β, ω ̸= α, ω ̸= β (4.3)

Reachability(α, ω) ∧Reachability(ω, β) ∧ ∀ω ̸= ω|¬Reachability(α, ω) ∨ ¬Reachability(ω, β)

These policies, however simple, can be considered the first step for a network administrator to
define his security policies for network management. In fact, considering the most common network
attacks such as distributed / reflection denial of service, network administrators can use this policy
in a proactive or reactive mode.

Performance

In this section, we will describe some of the main experiments/tests we performed.
The goals of such tests were mainly 3:
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Figure 4.19: Policy time check after a link up / link down upgrade and node, links and forwarding
rules increase.

• Showing the performances of the network graph creation.

• Showing the performance difference for reachability verification with related works such as
NetPlumber.

• Showing the performance difference for generic policy verification with related works such as
NetPlumber.

We decided to compare only our proposal with the NetPlumber solution. The main reason is that
NetPlumber appears to be the most cited, documented and tested solution for formal network
verification. Other solutions cited in the background section (2.2), instead have several problems.
Veriflow and Delta-Net e.g, nowadays do not seems to have open-source code available for private
tests, and other works such as Minesweeper [52] have been already tested with NetPlumber [237].
The experiments were performed on several VirtualBox dual-core virtual machine with 4 GB of
RAM and Ubuntu Linux 18.04 operating system. The network sample that we used is the i2 Stand-
ford Network18.
This network is composed of 161 Nodes, 11450 Links, and 77451 Forwarding Rules.

18https://uit.stanford.edu/service/network/internet2

https://uit.stanford.edu/service/network/internet2
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The first set of tests has been made to verify the performances on the BDD graph creation. We
executed TechNETium increasing the amount of 3 different items: links, nodes and rules. As a
result of these numbers, we have therefore measured the creation time of the BDD fee.
On the first graph of figure 4.18, we can see the required time for TechNETium to create the BDD,
as we predicted, the growth of creation time is roughly linear in the number of links and nodes.
Considering the forwarding rules, instead, the time increases linearly up to 60% of the rules, then
it stabilizes. This is due to the fact that we increase the forwarding rules shuffling them at every
step but in ae equivalent number for each device. For this reason, after a certain threshold the
complexity of the network due to the calculation of all possible paths of a packet becomes constant.
The second set of tests that we performed aimed to calculate the policy verification time while up-
grading the reachability graph. We calculated the time required to verify the same policy changing
the network graph as we previously did.
The remaining graphs of figure 4.18 shows the results of such tests. The left graph shows the time
to verify an increasing number of Reachability policies when adding or removing one link. These
events modify the reachability graph, yet the verification time still increases linearly with the num-
ber of policies only.
The graph on the right confirms this result generalizing the test approach. The verification time
linearly increases with the cardinalities of the sets of nodes, links, and forwarding rules. There is
only an anomalous behavior after the inclusion of 70% of forwarding rules set. In this case, the
behavior is due to the fact that, as the forwarding rules increase, many more direct links are con-
figured so that the reachability is much more likely to be successful in less time. Finally, we tested
the performance difference between the NetPlumber tool (based on Hassel header space analysis)
and TechNETium with atomic predicates. From graphs in figure 4.19 we can, therefore, infer some
important data. Policy verification with TechNETium is 3 orders of magnitude more efficient. The
growth is also linear for both, therefore the performance difference grows with the number of poli-
cies to be verified. Furthermore, linear growth is different. While NetPlumber shows a growth,
albeit small, in the verification times with the increase in the number of policies due to the size
of the reachability graph this is much less evident on TechNETium, whose growth is much less
pronounced.

4.5 P-SCOR: Artificial Intelligence and Programmable Data Plane

To defeat attacks and increase the security of a network, the flexibility of Programmable Data
Plane can be combined with constraint programming, in a similar way to the system proposed
in Section 4.4. This system can be considered an extension of TechNETium, built using P4 and
Constraint Programming (CP) checkers.
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The proposed CP orchestration discussed in this part of thesis is an extension of the SCOR
system introduced in [260].

SCOR was implemented in Minizinc [331]. In addition to its pre-packaged solvers, e.g., Gecode [399],
MiniZinc can utilise other available solvers, such as Jacop [253] and ECLiPSe [418].

SCOR provides a new SDN northbound interface with powerful CP-based abstractions that
allows complex routing problems to be expressed in only a few lines of code. More importantly, the
problem only needs to be declared, while the solving of the corresponding constraints satisfaction
problem is delegated to the powerful, general CP solvers, provided all data are available.

As an example, let us consider minimum delay routing, where we aim to find the path with the
minimum end-to-end delay between two network nodes. As discussed in [261], this routing problem
can easily be expressed and solved in SCOR. However, what is missing is the information about
link delays in the network. This information is currently not provided by SDN controllers. This
is mainly due to the limitation of OpenFlow, which does not provide the required functionality for
data plane instrumentation and monitoring. With P4 we can overcome this limitation, by utilizing
its capability for in-band data plane monitoring. By integrating P4 and SCOR, P-SCOR allows
combining the benefits of both.

P4 has the ability to monitor critical link information from the data plane, and can provide this
information to SCOR, which in turn uses it to very efficiently implement QoS routing applications,
such as those discussed in detail in [260]. The focus of this work is neither P4 nor SCOR, but the
integration of the two, which is demonstrated in the following sections via two use-case applications.

The P-SCOR architecture is summarized in Fig. 4.20, showing the three components (CP-
based orchestrator, SDN controller, and P4-based programmable data plane) and their mutual
relationships, focusing on one of the key contributions of this work, i.e., the communication channels
between the components.

The key components

Programmable data plane with P4

P4 is not a protocol or device API for run-time control or configuration, i.e., once a P4 program
is deployed to a device, P4 does not offer primitives, for example, to add or remove entries in
match/action tables, or to read the value of a counter.

To carry out this kind of tasks, the P4-runtime API [493] has been developed to interact with
the program. The main purposes of this new standard API are:

• enabling run-time control of P4-defined switches;
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Figure 4.20: P-SCOR Overview of the three main component level



4.5. P-SCOR: ARTIFICIAL INTELLIGENCE AND PROGRAMMABLE DATA PLANE 103

!"#$%!&

!"#$%'()#

!"#$%*'(
+,'-./012'.

3&0"4(-'56 26"76"

8"'76"

3&0"4(-'56 9:'6(-

3'!6:'(6;<,<"6

1!!

!"#

$%&'()*+

!"#,-./)*0 12(345

3&0"4(-'56 =:#,0

>4:6

3'!6:'(6"

3'!6:'(6;<$(#2-'.

1!!

6761

Figure 4.21: A block diagram showing the interaction of the various components with the integration
between ONOS and P4 via P4-runtime and the ONOS pipeline. The components that have been
originally implemented for this specific work are those highlighted with thicker lines.

• defining program-independent interaction (the API does not change if the P4 program is
modified);

• enabling to push a new P4 program without recompiling the switch software stack.

It adheres to a client-server model; the server resides in the data plane, integrated within the
switch. A client integrated within a local or remote control plane interacts with the server to load
the pipeline/P4 program, write and read pipeline state (e.g., table entries, meters, groups, etc.)
and sends/receives packets. P4-runtime uses a gRPC/protobuf-based language to define its own
API, called p4runtime.proto. What P4-runtime needs in order to work is a set of specifications
which are defined in the P4 program and retrieved at compile time. The typical workflow of such
process is defined in Fig. 4.21.

A significant part of our work regarded this layer of the architecture, in which we exploited P4
to create an entity able to interact with the upper layer according to the specification required by
P4-runtimen. This P4 program is then used as a wrapper for the specific data plane functionalities
that were implemented and tested, as it will be explained in the following section.
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SDN control plane

ONOS was chosen to implement the SDN control plane. It offers a number of features, besides the
basic SDN controller capabilities, that qualify it as a real Network Operating System. ONOS was
used as:

• the network controller, i.e., a component capable of controlling a whole network composed of
several nodes and with a general topology;

• the communication channel between the data plane and the CP orchestrator.

This was achieved by exploiting the work of the ONOS P4 brigade19 which implemented a
component that allows the integration of any P4 program with ONOS.
The idea behind the P4 brigade project is shown in Figure 4.21. The pipeline-agnostic application
is any sort of ONOS application that may collect relevant data from the network and apply relevant
control plane actions. The Pipeliner is a wrapper that gives to the ONOS application the capability
to interact with P4-runtime without the need to know the details of the P4 implementation (which
would not be case for the pipeline aware application).

In this scenario the deployment of novel software functions can be seen as composed of three
steps:

• a new P4 program is deployed; it becomes immediately available thanks to the P4-runtime
Standard API but it is not automatically integrated with the controller applications.

• a suitable pipeline is designed and implemented to guarantee a proper communication with
the P4 program (via P4-runtime).

• a new ONOS pipeline-aware application can be deployed at any time to access the P4 program
functionalities.

In ONOS we can perform this task defining what is called an “ONOS pipeconf”. This compo-
nent is essentially a regular application that can be loaded in ONOS at run-time and that, once
loaded, registers the pipeline, which is the wrapper from the application to southbound API. Once
registered, an ONOS application can add this registered pipeline to use a P4-runtime-capable de-
vice as shown in figure 4.21. This process gives ONOS the novel ability to create “wrappers” to
P4-runtime.
We implemented all the necessary pipelines to allow the SCOR level to talk to the P4 plane. We
wrote the pipeconf that tells ONOS the mapping between the table IDs, header fields, and the

19https://wiki.onosproject.org/display/\acrshort{ONOS}/P4+brigade visited on May 27, 2020

https://wiki.onosproject.org/display/\acrshort {ONOS}/P4+brigade
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instructions used in the FlowRule generated by the SCOR apps, and the P4 table names, match
fields, and actions as in the P4 program, queried through P4-runtime.

If SCOR interacted only with the SDN control plane, as it happens in the original paper, it could
not work on detailed run-time information, because the SDN controller would not have visibility of
them. Most commonly, the SDN controller provides only aggregated information on the network
behavior and high level information about topology etc.

On the other hand, were SCOR simply integrated with the P4 layer via the P4-runtime interface,
it could access run-time information only on a per-device basis, thus missing the overall network
view.

By integrating ONOS with P4 we enabled the collection of additional and more detailed infor-
mation about network run-time properties in the SDN controller, which can pass them to the CP
orchestrator implemented with SCOR. As a result, SCOR has access both to the high level net-
work information provided by the SDN control plane and to the low level run-time and node-based
information provided by the P4 program.

Consequently, CP becomes applicable to solve problems that could not even be stated otherwise
because of the lack of the needed variables and constraints. Moreover, SCOR may instruct the
SDN controller to inject in the network specific packets, built by means of the P4 program. The
architectural enhancement we achieved, thus, extends its reach to the realm of action on the network
flows; it is not limited to a better way of capturing and processing information.

Examples of Applications: Link Delay and Asymmetric Flow Detection

A test-bed of the P-SCOR architecture was implemented. The various components described above
were all deployed appropriately, and in the data plane two P4 applications were implemented to
test the effectiveness of the proposed approach:

• link delay measurement;

• asymmetric flow detection (possible DoS detection).

The knowledge of the link delay is needed by many routing protocols, and in packet networks
is indeed one of the main indicators of performance. In a conventional SDN network, analysing
packets coming from the data plane is time- and resource-consuming especially if high accuracy is
needed [371, 22]. Most SDN controllers do not encompass a built-in application able to do that,
and also the original test-bed of SCOR used hard-coded (i.e., emulated, not real time) link delays
for the tests.

Asymmetric flow detection can be used as a warning of potentially incorrect network behavior
and also to trigger a remediation action (in our test application, raising a warning or rejecting every
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packet related to a network node identified as responsible). In SDN, the controller is informed only
of the first packet of any new flow; this is enough to decide upon packet forwarding. Counting
single packets per flow is not a viable feature of the control plane, as it would entail an unbearable
overhead. With P4 we are able to perform such action in the device directly and not at the control
plane level, sending only the eventual warning to the CP orchestrator.

Link delay evaluation

The overall latency a packet experiences when traversing a network is due to many different con-
tributions [128]:

• Processing delay – time it takes for routers to process the packet header

• Queuing delay – time the packet spends in routing queues

• Transmission delay – time it takes to push the packet’s bits onto the link

• Propagation delay – time for the packet-bearing signal to reach its destination

Some of these quantities are known and unalterable; they either depend on hardware (e.g., the
transmission delay is a feature of the network interface) or are physically constrained (e.g., the
propagation delay is a function of the distance between the network nodes). The processing and
queuing delays are the main random components and also the ones that can be controlled – and
ideally reduced – by enhanced network protocols, scheduling policies, etc.. For example, MultiProt-
col Label Switching [120] was introduced to implement dedicated virtual circuit connection (the
Label Switched Paths) and reduce the time needed to take the packet routing decisions.

In general, the delay measurement can be [315]:

• passive, i.e., non-intrusive and based on capturing packets, in order to store and collect
information from various fields within the packet header.

• active, i.e., by injecting probe packets, measuring the performance they experience, and
taking it as representative of the performance of all the traffic.

The measurement strategy we opted for belongs to the active category. In standard SDN, active
measurement is not practical, because the switches act just as forwarders and all the intelligence is
in the controllers. Therefore any real life packet measure made at the controller is affected by the
switch-controller delay that may impair the measure reliability. P4 shows all its potential in this
scenario, because it allows us to perform an active measurement in a simple and automatic way at
the switch level.
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Figure 4.22: Delay Link program work-flow

Since the controller knows the network topology of the data plane, we chose to use a packet-
probing technique to estimate the delay of each link of the network, following [372]. The idea is
simple:

• the controller targets a link to measure the average delay;

• the controller picks the two switches at the ends of the target link, called S1 and S2;

• the controller sends to S1 two packets, P1 and P2, to be sent through the target link to S2;

• the P4 program installed in S1 instruments the packets by adding specific custom headers,
that will be used to calculate the delay;
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• when the two packets reach S2, the P4 program there adds the results of the measurement,
again as custom headers, and makes S2 send them to the controller as Packet-In;

• the controller gets the information about the delay on the link reading the packets.

The process is summarized in Fig. 4.22.
The custom headers added to the packets are called:

• WHICH : a header to identify the packet ordering;

• WHERE: a value to specify whether the switch which added this header is the source or the
sink of the link;

• PORT : the port through which the source switch has to forward the packet to reach the sink
of the link;

• TIME: the current time-stamp;

• DELAY : a time-stamp that is used with a different purpose on P1 and P2, in P1 it is used to
calculate the total end-to-end delay of the packet, in P2 it is used to calculate the processing
delay to be subtracted from the total delay of P1 to estimate just the link delay.

With reference to Fig. 4.22, assuming the target link is L1, an example of measurement can be
described as follows:

1. the controller sends two packets to S1 – let us call them P1 and P2 – with the information
about their destination embedded into the custom header PORT: in the form of the port
number of S1 towards S2;

2. when P1 goes to the egress queue, a time-stamp is taken and saved in a register entry of S1
for L1;

3. P1 is forwarded to S2, ;

4. when P2 arrives at the egress queue, S1 calculates the difference between the current time-
stamp and the time-stamp of P1; in this way we get an estimate of the processing time in S1,
which is called TP1, and which is saved in the correspondent header field DELAY of P2;

5. P2 is also forwarded to S2;

6. S2 behaves in the same way as S1, in calculating the processing delay of the packets, but also
knows it is the end node of the measurement from the custom header WHICH ;
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Figure 4.23: Asymmetric flow detection, example of work-flow. Three data flows are active and the
P4 application is active in all switches. In S2 and S3, anomalies are detected since some flows show
sensible asymmetries between packet numbers observed in the two directions.

7. the processing time in S2, called TP2 is calculated as in S1 and the total time P1 and P2
have been around are also calculated.

8. the delay due to the link is calculated as:

Delay = TT (P1, P2)− TP (S1)− TP (S2) (4.4)

where TT is the total time required by the packets to cross S1,S2 and the link L1, which can
be seen as the transmission plus the propagation delay.

9. the calculated value is stored in the custom header DELAY of P2 before sending the packets
to the SDN controller.

In this way we get a measure of the propagation delay on the link plus the queuing delay, if any.

Asymmetric flow detection

The second application we implemented, as an additional example of the effectiveness of the P-
SCOR approach, aimed at providing a real time aid to the identification of possible DoS attacks
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to the network. This information is passed to the CP orchestrator that will make decisions about
possible countermeasures, with an approach similar to the QoS routing already mentioned above.

It is well known that DoS attacks are a serious threat to the availability of networks; even more
so in SDN networks where a DoS attack can be mounted against the controller and not just towards
the network nodes and terminals.

Typical countermeasures rely on traffic measures to identify anomalies in the traffic profiles,
such as for instance [474], [324], [144], [59], [58]. Solutions to safeguard the controller from the risk
to be overloaded have also been proposed in the literature [249].

Nonetheless the implementation of DoS detection in the SDN control plane involves data storage
and analysis which consumes memory, requires complex computations, and presents the risk of false-
positives and false negatives [51].

By programming the data plane, for instance with P4, it is possible to overcome such limitations,
implementing a program which is able to produce an aggregated result of a possible DoS attack
warning. In this work, we implemented as an example a P4 program for asymmetric flow detection.
It calculates the ratio between the amount of incoming and outgoing traffic for a specific IP entity.
The basic idea is that a very large asymmetry is an indication of a possible DoS attack.

Figure 4.23 shows a schematic of how this works. The P4 program on the switches maintains
a registry entry for each IP address or IP class of interest. The program works on a pre-defined
time scale, storing packets flowing in both directions between two sets of destinations. If a severe
difference is detected between packets flowing one way and packet flowing the opposite way, this is
considered a possible anomaly, causing the switch to send a P4-runtime packet-in to the controller
to raise a warning of a possible DoS attack. As an example, in the figure, three connections are
monitored and only one of them, the one involving 10.10.10.1, is not malicious.

The threshold triggering the warning is implemented in a dynamic way, so that the controller can
progressively track the level of the asymmetry and decide which action to perform. The threshold
starts at an initial value, and every time the flow reaches it, the value is increased by a factor of 2.
In Listing 4.1, a small block code of the P4 application is shown, performing the calculations and
the checks for the threshold.

Listing 4.1: Threshold computation and checks using P4.

apply
if (hdr.ipv4.isValid()) {

ipv4_lpm.apply();
...
window.read(last_time ,flow);
threshold.read(currentThreshold ,flow);
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// first time initialize
...
intertime = standard_metadata.ingress_
global_timestamp - last_time;
window.write((bit <32>)flow,

standard_metadata.
ingress_global_timestamp);

// check window
if(intertime > WINDOW){

restore_flow(flow,flow_opp);
}
last_seen.read(last_pkt_cnt ,flow);
last_seen.read(last_pkt_cnt_opp ,flow_opp);
tmp = last_pkt_cnt - last_pkt_cnt_opp + 1;

if(tmp < (bit <48>)currentThreshold) {
get_inter_packet_gap(last_pkt_cnt ,flow);

}
else{

// threshold is reached , drop it
// (send packetin to the controller)
if(currentThreshold > 1000){

drop();
}
// else i increase your threshold ,
// and restore the flow
else {

threshold.write(flow,
currentThreshold+200);

// increase your threshold ,
// restore the flow
restore_flow(flow,flow_opp);

}
}

}
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4.6 Test Bed and Experimental Results

P-SCOR was implemented in a virtualized environment on a server with Ubuntu Linux 18.04, 8
GB of RAM and dual core CPU.

The components used were:

• ONOS controller, version 1.14, the most recent version supported by the ONOS brigade
community;

• P4 version 16;

• Bmv220 as switches supporting P4;

• mininet21 to implement virtual network topologies;

• some well known tools for traffic generation, such as MiniCPS [35], iperf22, hping23, and the
Python scapy library24 to forge custom packets.

With this test bed it was possible to run and test P-SCOR with the aim to:

• verify the correct functionalities of the P4 program implementation and of the architecture
as a whole;

• verify the overhead introduced by our solution;

• compare the P-SCOR solution with competing, existing ones.

The tests were performed on a simple ring network topology with three switches, unless otherwise
specified.

At first we compared the performance of the switches with the P4 programs used by P-SCOR
with conventional switches and with OpenFlow controlled switches. The goal is to check how much
overhead (if any) is introduced by the P-SCOR components.

Following [64] we performed two different types of tests. We measured the average Round Trip
Time (RTT) to transmit a set of ICMP packets of size 512 and 8192 Bytes. Each of these tests were
performed 10 times for each set of packets, and the results are the average of the 10 rounds. The
aim of such test is to measure the forwarding-behaviour performances of each switch. Is important
to mention that for tests on the OpenFlow switches we had to limit the bandwidth to 18 Mbit/s.

20https://github.com/p4lang/behavioral-model
21http://mininet.org/
22https://iperf.fr/iperf-doc.php
23http://www.hping.org/
24https://scapy.net/

https://github.com/p4lang/behavioral-model
https://iperf.fr/iperf-doc.php
http://www.hping.org/
https://scapy.net/
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This because it was the maximum amount of stable bandwidth that we were able to obtain for the
Bmv2 P4 switch and we needed a consistent environment for the evaluation tests.

These results are shown in Fig. 4.24, where the confidence interval of the measure is also shown
as error bar on top of the histograms bars. The confidence interval is very small, meaning that
the measures are very consistent. They show the rather obvious fact that forwarding long packets
takes longer than forwarding short ones, but they also show that the switch exhibiting the worst
performance, albeit for just a few ms, is the OpenFlow-based one.

This was an expected result, since the basic P4 switch is the lighter one; it implements only
the essential forwarding reactive behavior and it does not have all the tables and features that a
standard OpenFlow switch has. Otherwise our modified version of the P4 delay link switch includes
only the new feature to process special crafted packets, and the performances are slightly worse
than those of the basic P4 switch but a bit better than those of the OpenFlow one.

This is confirmed by the histogram in Fig. 4.25, where we measured the Total Transmission
Time of bursts of packet of increasing length, from 20 to 200, both for packet size 512 and 8192
Bytes and in the same conditions as before. Again, the performances of the three variants of the
switches are very similar; the times needed to send the train of packets are similar as well, since
the transmission delay becomes negligible, when compared to the sum of the propagation delay of
the all the packets in the burst.

The same comparison has been performed on the asymmetric flow detection switch. The results
very closely matched the ones we just illustrated for the delay case, so we deemed not necessary to
include an additional graph.

These first experiments therefore allow us to conclude that the performance of our switch is in
line with the existing state of the art, despite the fact that we have introduced some important
changes.

Table 4.2: The link delay calculated by the P4 program.

Number of Measurements 100
Interval Measurements 1000ms
Min value 6
Max value 110
Average delay 37.42ms
Variance 5676.79

The second set of tests was used to validate the correct integration of the three layers by means
of the two applications implemented in P4. The link delay was supposed to be a key input even
in the original implementation of SCOR, with the goal to perform QoS-based routing strategies to
minimize the overall packet latency, but it was not implemented with real time measurement. The
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Figure 4.24: Comparison of the forwarding performance of an OpenFlow switch, a P4 enabled
switch and a P4 enabled switch running the P-SCOR related programs.

asymmetric flow detection is used as an input to trigger remediation actions, in this case with packet
drop as explained later. The CP orchestration programming will not be discussed here because it
follows what presented in [260].

Table 4.2 summarizes the first set of tests on link delay measurement. We sent a set of four
consecutive pairs of packet probes every second, and we measured the delay of the link. In this
case we expected a small delay just due to the packet transfer in the virtualized environment. The
average measured delay was 37.42 ms and is taken as a reference for the subsequent tests, in which
a delay was introduced on the link, increasing from 1 second to 20 seconds in 1-second steps. The
goal was to check that the application could keep measuring the correct delay. The results are
shown in Fig. 4.26.

Here every point of the graph represents the average of 5 tests, therefore the 95% confidence
interval of the measure is also shown, confirming that the measure is rather accurate.

The tests on asymmetric flow detection were also run in a similar way. In this case, providing
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Figure 4.25: Comparison of the total time transmission time of a burst of packet (with burst size
from 20 to 200)



116 CHAPTER 4. DEFENSE AND DETECTION

 0

 5000

 10000

 15000

 20000

 25000

 0  2  4  6  8  10  12  14  16  18  20

E
xt

im
at

ed
 li

nk
 d

el
ay

 (
m

s)

Delay introduced (time between P1 and P2)

Figure 4.26: The link delay calculated by the P4 program, with an increased delay on the link from
1 to 20 s. The 95% confidence interval is plotted with the average. This confidence interval is quite
good and was achieved with 5 experiments per point.

evidence of the effectiveness of the operations of P-SCOR is slightly more complicate. We set up
the P4 application performing the tests on the flow asymmetry with a threshold T . A time window
of W = 15 seconds was set. The time in the example is measured as a multiple of W , therefore
t = 1W means T = 15 seconds. Every W we use iperf3 to send N(t) packets, a number increasing
with t. These packets emulate the asymmetry of the bidirectional connection, i.e., the difference
between the number of packets flowing in one direction and the number of packets flowing in the
other direction. A warning of asymmetric flow detection is sent, as specified in Section 4.5, every
time the asymmetry of the flow hits the intermediate threshold.

The threshold T starts at 300 packets per W ; it is increased by 100 packets at every window in
which no warning occurs, up to a value of TM = 600 packets. The CP orchestrator, upon receiving a
warning, simply asks the control plane to drop the packets of the flow; the rule is then programmed
in the switches.
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Figure 4.27: A graphical example of the application for asymmetric flow detection. The adopted
policy is to drop until the number of packet in the overloaded direction decreases. The figure plots
the link bandwidth used by the source, the number of sent packets and the threshold. When the
threshold is reached and overcome the packets are dropped (used bandwidth goes to 0).

When the number of packets in the flow decreases, the threshold T is brought back to the
starting value and packets are allowed to cross the network again.

This behavior is shown in the example of Fig. 4.27, where we plotted three curves as a function of
time. The threshold T is the dotted curve that increases, reaches its maximum and then decreases
again when the traffic falls back within the pre-set limits. The number of packets N sent per W

is the continuous line, and goes up from 100 to more than 600. Then it drops to 0 and stays at
0 for a minute (4W ), which is the flat section of the continuous curve. Then iperf3 starts sending
packets again as before. After a minute also T is reset as shown by the dotted curve. The dashed
curve in the figure is the bandwidth B used by the flow as measured by iperf3. As it can be seen,
when the number of packets sent overcomes the threshold T , then B drops to 0, meaning that the
packets are dropped and iperf3 cannot see any capacity available for the traffic flow.

Otherwise, when the network behaves normally, B is constant and equal to the link capacity.
The specific values of these quantities are just an example, to show how the P4 application

works and interacts with the CP orchestrator; in the same way, dropping packets is just one of the
possible countermeasures to be taken.

The last set of tests aimed at comparing the proposed solution with similar ones from the
literature. The approach presented in [14] is the closest to ours: there, a ratio between packet
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Figure 4.28: Detection time of traffic flows very asymmetric of P-SCOR, compared with the detec-
tion time reported in [14]. The threshold of detection is set to 100 packets per window.

entering and leaving the switch is computed, in order to look for an asymmetry of the traffic
flow, but the authors had to implement the calculation at the controller level. To the best of our
knowledge, there is no solution like the one we proposed, in which the asymmetric flow calculation
is performed directly and dynamically at the data plane level.
Graph 4.28 presents a comparison between our work and the results reported in [14]. We simulated
the same attack traffic with the same ratio threshold of 100 packets per second. The network
topology for this test is the same used for the previous ones, i.e., three switches connected in a ring.

What we compare is the time taken to detect the traffic as malicious, before and after reaching
the threshold. The graph shows that when the attack rate reaches the threshold, the detection
time stabilizes. Comparing the P-SCOR solution with that proposed in [14], we can see the clear
advantage coming from not having to send packets to the controller level for ratio computations.



Attack and testing5

In this section, we focus on the offensive part of the thesis. We will describe some attacks to the
aforementioned systems, and how to emulate various testbeds to demonstrate our attacks. We
will mainly focus on industrial networks, introducing attacks to these kind of networks, in specific
scenarios such as time synchronization between devices.

The goal of this chapter is to answer to RQ2: RQ2: Are emerging network technologies intro-
ducing new classes of threats?
While being appealing for the enhanced performances, new network paradigms can introduce secu-
rity threats. This question was investigated by discovering and implementing attacks on technolo-
gies, an answer can be found in Chapter 5. RQ3: Are emerging network technologies re-introducing
well-known problematics that should be included in a Threat Modelling methodology?
and RQ4: Can test-bed, resembling the real systems to some degrees, be built to make the process
of Security testing in critical scenarios more feasible?
These answers are analyzed trough the discovery of new attacks and the applications of well

known vulnerabilities to new domains. The testbed part is therefore used to replicate the attacks
over realistic scenarios to highlight and measure the outcomes.

5.1 Anagram Attack to password similarity systems

The system described in section 4.2 is vulnerable to an attack which exploits the order of the
discovered n-grams. This attack aims to reconstruct the password as the anagram of the various
n-grams. The attack is composed of four steps:

1. Generate all the hashes for a specific n-gram;

2. Hash the n-grams into a Bloom Filter;

3. Analyze the Bloom Filter and get the position of bits set to the true value;

119
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4. Compose the various n-grams to create a password.

This scenario can be disruptive and can lead to the full disclosure of hashed password in no
time. Additionally, this kind of attack can be enhanced with the help of a word dictionary similar
to the one used in classical password attacks: the search tree can be pruned by excluding the words
which do not contain the n-gram. For instance, let us imagine that a user inserts the password
“password!!” in the filter and splitting the input in a list of bi-grams. In this work, we use a general
definition of ν-grams functions, a ν-gram function will split the input in its ν-grams, where ν is
the number of characters in each substring. In the case of bigrams, obviously ν = 2. Accordingly,
the attacker will generate all the possible bi-grams. This, using an alphabet ∆ will result in a
generation of |∆|2 bi-grams which, for the ASCII case, is (127−32)2 = 9025 bi-grams, an operation
which requires at most a couple of milliseconds on any modern CPU. After this step, the attacker
will hash the bi-grams inserting them into the filter, which requires Θ(n) insertions with n as the
number of bi-grams. Subsequently, the attacker can create all the possible combinations in the
search space generated by the pruned alphabet of bi-grams ∆II . The research can be conducted
by using an incremental number of repetitions. Therefore, the number of combinations which can
be generated using the corresponding Bloom Filter are:(

∆ν
n

ν

)
(5.1)

with n as the length of the searched string. In the case of a common password of 8 ASCII characters
and a Bloom Filter constructed with bi-grams the formula will result to:(

9025
8

2

)
≈ 2.76× 1014 (5.2)

combinations. If we consider the worst case with repetitions the formula becomes

(∆ν +
n

ν
− 1

n

ν

)
(5.3)

which, in this example, will result to
(
9025+4−1

4

)
which is almost the same value as seen for the non-

repetition case. Passwords can be longer than eight characters to provide enough security against
brute-force or dictionary attacks. For a password varying from n characters to N the number of
combinations are:

N∑
i=n

(∆ν +
i

ν
− 1

i

ν

)
(5.4)
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In our data-set the average password size was 11.56, therefore, limits between 8 and 14 can be
evaluated resulting in:

14∑
i=8

(9025 + i

2
− 1

i

2

)
≈ 9.96× 1023 (5.5)

The crypto-analysis of the attack should include the details of the filter like the size of the bucket
or the number of hash functions used similar to the analysis present in section 4.2.

5.2 Our Attacks on PTP

In this section, we present the main research questions and challenges, and present an high-level
description of our attacks. In general, we leverage the lack of authentication of TLV frames, that
allows persistent compromise of PTP infrastructure, without requiring consistent traffic manipula-
tion.

Research Question and Challenges

In this part of work, we address the following main research question: Does the PTP standard
define sufficient security features to ensure that standard-compliant implementations are secure
against manipulation?

Answering this question is non-trivial due to the complexity of the standard, and the need to
investigate practical implementations.

The main drawback of the PTP protocol is the lack of authentication between nodes, that opens
the door to many kind of attacks, like altering the Master election protocol (BMCS) or the network
management TLVs, as will be described.

This is in general a known issue and, as a consequence, PTPv2.1 (IEEE-1588-2019 [212]) intro-
duces new specifications to overcome it. Two different way to secure the protocol are introduced:
internal security and external security [405]. Nonetheless the proposed remediations are too specific
and shallow for many cases. For instance the TLV attacks that will be presented in Section 5.2 are
not directly addressed by this remediation. TLVs could be authenticated but this is not common
practice because the focus is mostly placed on the information exchange directly focusing on the
synchronization process.

Moreover focusing on PTPv2.0 (IEEE-1588 2008) the security of the TLVs and management
part of the protocol is fully implementation-dependant; i.e., different implementation may have
different vulnerability degrees (for instance LinuxPTP implements stricter security methods than
PTPd by exploiting UNIX sockets).
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TSN Clock
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Figure 5.1: TSN with safety scanners. In this case the field of view of the scanners is synchronized
using TSN/clock synchronization protocols to cover complex view (e.g., 3d) areas.

To the best of our knowledge, existing works mostly focus on attack scenarios on the synchroniza-
tion part of the protocol (i.e., briefly reviewed in Section 2.3). As a consequence, countermeasures
have been studied and proposed mostly in this perspective [405].

To date, vulnerabilities stemming from the TLVs have mostly been neglected. In the following,
we show that not securing the TLV PDUs leads to security flaws that can easily have effects on the
synchronization similar to the ones described in Section 2.3. Therefore the answer to the research
question is ”no”, unless proper attention is given to all the components of the protocol, included
management messages.

System Model

The target network implements PTP version 2.0 (IEEE-1588-2008). Using two PTP enabled de-
vices, we created a minimal setup. These devices are interconnected by a single boundary device.
The configuration in Figure 5.3 is similar to the one we are referring on. The figure presents two
active clocks, an interconnection device and an attacker. Therefore we experimented our attacks in
an unsecured scenario, where correctly placed network segmentation – e.g., VLANs – is bypassable
or not present. In this scenario we focus on the security of TLVs, analyzing the possibility of various
exploitations, with different outcomes.

There are two ways to communicate with PTP nodes: using UDP communication or Ethernet
packets. We do not focus strictly on a specific communication technology. If PTP is used as a
protocol at Layer 7 of the ISO/OSI model, the system could be synchronized on the internet using
a network route. The downside of this approach is the conspicuous network latency compared to
the Layer 2 solution. While a UDP-based solution is easier to setup, the attacker could bypass
firewalls using IP spoofing attacks. In Ethernet communication, every PTP-capable node must be
connected to the same LAN. In our attacker design we consider it directly connected to the PTP
network. Such network can be protected by segmentation or cryptographic technologies such as
VLANs or MACsec. How to bypass these defensive technologies is outside of the scope of this
document. Tools and techniques to perform IP spoofing or VLAN hopping attacks are present in
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Grand Master/Master Transparent clock

Ordinary clock

Figure 5.2: PTP hierarchy. The clock symbol specifies which nodes are synchronized each other
using PTP.

literature [200, 26]. Having a direct foothold in the network can lead to worse scenarios that the one
presented in this work such in total denial of service of the traffic or data breaches. These attacks
usually requires a lot of bandwidth [259] or vulnerable applications. We argue that this scenarios
are outside of the scope of application of PTP, which is usually tied to very field-specific machines,
with very little processing power and network bandwidth.

Attacker Model

Our attacker workflow is modeled after the cyber-security kill-chain, as described by Yadav et al.
in [483]. Acting as described by the kill-chain model, the attacker will try to get information on the
network topology and configuration; get an initial foothold in the network and alter parameters;
then he/she will try to maintain the access and keep the network under control, cleaning up any
trace of the attack. This model describes a very broad scenario, applicable to almost every attack;
to narrow the goals of an attacker, we have identified three possible outcomes.

Disruption of safety constraints. Safety Integrity Levels (SIL) [56] are requirements classes
which specify threshold values to obtain context-specific safety. For instance, medical devices
have specific parameters to ensure safety. This kind of requirements, can be disrupted if the time
synchronization between the devices is altered. In general, devices implementing these requirements
must have a procedure that handles failures. This kind of procedures could include the complete
stop of the system. For instance, in the scenario introduced in Section 2.3, the robotic arm could
be stopped indefinitely if the scanners are not synchronized. The attacker can therefore subvert
these safety measures, transforming them in a Denial of Service attack.

Downgrade of endpoint confidentiality and authentication schemes. Public key infras-
tructure technologies are heavily dependent on the timing aspect of the various clocks. While the
time requirements of these technologies is sensibly different from the application target of PTP,
time de-synchronization can occur continuously to alter the wall-time clock of the endpoint. This
will enable attacks on the validity of the certificate, enabling expired ones to be validated by the
endpoint. Other protocols rely on a more strict synchronization than the one used by PKI; a typical
example is the Kerberos protocol. Since this protocol uses timestamps extensively, if the clock is
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not precisely synchronized between machines, it can be tricked into authenticating an entity using
an old authenticator request. This replay attack, described by Bellovin et al. in [57], can be eased
if de-synchronizations of the clocks are possible.

De-synchronization of 5G edge applications. As MEC-API 011 specifications states [6], a
MEC application can request time synchronization to the MEC platform. This can be made using
PTP and enables the attacks to the time synchronization PDUs as well as attack to management
frames. If the PTP daemon of the MEC platform is not secured, it can suffer from time de-
synchronization by communicating with the application using TLVs. That is, an application can
alter the time reference of the clock by interacting with the platform. If not segmented correctly,
the application can spoof a valid master, altering the synchronization of other application. This
alteration will make the downgrade presented in the previous point, feasible.

Implementation

As anticipated in the Introduction, the attacks here presented exploit the TLV frames included in
the PTP protocol. The scope of TLVs is to enable massive, remote and automated management of
the PTP network, an action which is usually not required in small and closed contexts. On the other
hand, these features is key to the deployment of larger scale implementations, as those foreseen in
the use cases presented in Section 2.3, as well as to more complex operations like topology discovery,
etc [38].

Therefore we assume a deployment scenario where TLVs are enabled and used for the scopes
mentioned above. At the best of our knowledge when this happens TLVs are not authenticated and
can be exploited as an attack vector.

Along this line here we present the core idea for three different attacks and introduce the related
TLVs and how they map to the (abstract) attacks. We present the PTP testbed we implemented,
demonstrate the effectiveness of the proposed attacks and finally compare their efficiency with
respect to prior work.

We conclude with further attack validation results, obtained from an alternative second (phys-
ical) testbed, demonstrating very similar behavior with respect to the simulated one.

Exploiting TLVs in PTP Implementations

We propose three attacks, which all exploit TLVs (Reconnaissance, Clock Disable Port, and Clock
Accuracy Attacks). The TLVs of PTP have three different verbs, GET, SET and COMMAND. While the
first two are used to change or retrieve a value of the running daemon, the third can issue commands
in the configuration (e.g., enabling or disabling a network port using the DISABLE_PORT command
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TLV Security Problem
DISABLE_PORT Exploitation: Denial of service

DELAY_MECHANISM Exploitation: Denial of service
CLOCK_DESCRIPTION Reconnaissance: Topology map
USER_DESCRIPTION Reconnaissance: Topology map

PRIORITY1 Exploitation: BMC tampering
PRIORITY2 Exploitation: BMC tampering

CLOCK_ACCURACY Exploitation: BMC tampering

Table 5.1: Exploited TLVs, details on attacks possible with these TLVs are presented in Section 5.2.

TLV). Our proposed attacks target those TLVs, as they are most relevant for the security of the
network.

The specific commands/TLVs we are attacking are summarized in Table 5.1. We provide addi-
tional details on attack implementation and results in Section 2.3.

• Reconnaissance Attacks leverage commands such as CLOCK_DESCRIPTION and USER_DESCRIPTION
for reconnaissance attacks, aiming to to map the topology of the PTP enabled network. The
CLOCK_DESCRIPTION TLV can be the first reconnaissance available to the attacker, if not cor-
rectly limited to specific users (such as the tactic used by LinuxPTP) or not correctly confined
in the network;

• Clock Disable Port Attacks disrupt synchronization between nodes using enable or disable
network ports with ENABLE_PORT and
DISABLE_PORT commands;

• Clock Accuracy Attacks change the parameters used by the Best Master Clock Selection al-
gorithm using PRIORITY related TLVs.

In addition to the TLVs in Table 5.1, there are others TLV which can be exploited for security
advantages: these were not used in this work but were analysed and a taxonomy is presented in
Appendix B.

The relevance and the possible risks of a mis-use of some TLVs is not a new issue, since it is
also highlighted in the notes of the PTP Standard documents. For instance, an extract from the
IEEE-1588-2008 document [211] specifies a note on the CLOCK_ACCURACY TLV:

The accuracy and the time in the grandmaster clock is normally determined by interact-
ing with a primary or application-specific time source, e.g., GPS, by means outside the
scope of this standard. If the time is set in the grandmaster by means of the TIME TLV,
then the accuracy should also be set. Since the clockAccuracy attribute is considered in
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the operation of the BMC algorithm, the setting of the clockAccuracy attribute in any
clock by means of this TLV can result in a change of grandmaster the next time the
BMC algorithm is performed.

Nonetheless this critical role of such TLVs is not directly associated with a security threat, in spite
of the fact that the quoted TLV can be used to control the BMC algorithm outcome, resulting in
election of different grandmaster and master clocks.

Virtualized Testbed Design and Implementation

To demonstrate the attacks proposed in Section 5.2, a practical testbed is required. We now
summarize the testbed which we designed and implemented for this purpose. We note that, in
addition to demonstrating our new attacks, the testbed is also able to reproduce attacks from prior
work, such as byzantine master. After acceptance of this work, we plan to release the testbed
framework as open source for others to replicate.

In general, the virtualized testbed leverages virtualization that allows us to run actual PTP
programs on guests connected by virtual networks. This setup allows for a portable and self-
contained specification of attacks, and allows to easily replicate results. We also tested our attacks
in a second physical testbed, which is introduced in Section 5.2.

The architecture of our virtualized testbed can be seen in Figure 5.3 and Figure 5.6. The
configuration relies on LinuxPTP, PTPD, and PTPv2 software time-stamping. The testbed can
show the results of clock alteration on the target system, accelerating or slowing the clock difference
between nodes. We configured the PTP hosts to enable configuration via TLVs, to replicate a setting
in which TLVs are in general used for remote PTP management. Initially, TLVs are correctly
configured (e.g., priority1 and priority2 in LinuxPTP), but can be reconfigured remotely.

The testbed is implemented as a virtualized infrastructure using Vagrant1 and Ansible2 to
automate the tests. All the nodes of the infrastructures run the same operating system: Ubuntu-
18.04.

The nodes are virtualized as VirtualBox guests equipped with E1000 GigE virtual NICs. In
our setup, the system was tested using an Intel Core i7-8700 CPU, with a nominal clock frequency
of 3.20GHz. The Hypervisor does not offer support for PTP or TSN-enabled virtual NICs. To
overcome this problem we configured software time stamping in the PTP daemons. Therefore,
we connected the virtual machines with the default hypervisor network support (NatNetwork, in
the terminology of VirtualBox). We implemented PTP synchronization in virtual testbed with

1A tool to build portable development environment in form of virtual machines or containers:
https://vagrantup.com

2A configuration toolkit to build and configure environments using SSH: https://ansible.com
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(a) Setup part of the testbed. the entities are con-
figured and setup using a modular approach. In the
first slot the topology is designed, in the second slot,
the clock are initialized.

DISABLE_PORT
TLV

Attack
Transparent clock

Clock1 Clock2

Attacker

Results
Transparent clock

Clock1 Clock2
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(b) Attack part of the testbed. In the first slot, the
TLV is sent to the victim, in the second part the
result of the attack are shown.

Figure 5.3: Testbed design, all entities in the figure are optional and configurable. The system is
built with IaC technologies and it can be reconfigured to include many clocks, attacker or different
topologies. In black, entities that are not part of the time synchronization platform; in green entity
mutually synchronized; in red de-synchronized entities.

software timestamps using UDP, therefore it is completely transparent to layer 2 topology and
protocols employed.

The workflow of using the virtualized testbed is as follows:

1. we define a topology using configuration files, in this case a topology with two legitimate
entities, a network switch and an attacker;

2. we chose the nodes on which to instantiate a PTP clock, in this case a PTPd daemon in the
two servers, which became Ordinary Clocks,

3. the other entities are left as passive elements and the switch became a Transparent Clock and
not a Boundary Clock;

4. the attacker is issuing the TLVs to execute the attack;

5. the various nodes are observed to highlight clocks behavior.

Software Tools

To support the attacks operations three different software tools where developed a modular software
tool that we are about to publish as open-source. The tool is named PEF that stays for PTP
Exploitation Framework.

The main modules of PEF are:

1. TLV forging module baseline to forge and send TLV frames;

2. reconnaissance module used to investigate the topology and active functionality of the PTP
network;
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3. indirect attack module used to modify the PTP network behavior by means of indirect mis-
configuration of nodes, meaning that a node (the attacker) will modify the behavior another
node by sending a specific TLV to a third node;

4. direct attack module used to directly interact and modify the PTP network behavior by means
of specific TLVs, sent to the target by another node (the attacker).

The PEF tools was implemented for GNU/Linux systems in Python 3 and interfacing it with C
APIs and reference tools such as ptp4l.

Attack Implementation and Evaluation

In this section we discuss the implementation of the three attack strategies, as explained in Sec-
tion 5.2, and quantitatively demonstrate their effectiveness.

Reconnaissance We implemented the Reconnaissance attack as exploitation module for PEF.
The module starts by analysing the network to identify hosts that are the running PTP daemons,
leveraging TLV-based queries. The queries allow to scan the network for PTP hosts and retrieve
the version of the running daemon.

In particular, our queries use CLOCK_DESCRIPTION management TLVs. Sending this TLV to all
the hosts (e.g. using a multicast or broadcast address) will cause all TLV-capable hosts to reply
to the scanning hosts. The results are then aggregated by PEF, and presented to the user as a
list of all PTP-capable nodes, and meta-data for that host such as the name of the network clock,
the specific PTP daemon used, and its version number. In addition, the information on each host
contains details on the BMC algorithm properties of a node, therefore the attacker can get a clear
view of the topology and capabilities of the network. This behaviour is pictured in Figure 5.4

After this phase, we analyzed the list of running daemons. If a daemon is known to be vulnerable,
it can be exploited with some attacks, leading to the problems described in Section 5.2.

Clock Disable Port Attack This attack exploits the direct attack module of PEF. The attacker
will misconfigure the target by sending directly a TLV that will then result in a synchronization
failure.

The general steps of the attacks are described in Figure 5.3. The attack starts after the systems
is running for thirty minutes of wall-clock synchronization using PTP – visible in purple at the
bottom left corner.
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Figure 5.4: PTP Exploitation Framework demonstration, the reconnaissance module displays the
information got from the running PTP daemons.

• The first two steps (Figure 5.3a) show the topology and the start up of the scenario with the
two synchronized hosts and the attacker. The latter does not require to be synchronized with
the hosts.

• A DISABLE_PORT TLV is sent to the victim, and the PTP port is disabled for two minutes
(Figure 5.3b).

• In this short time window, pictured as the two red bars in the figure, the daemon port is
disabled, without any synchronization capability.

After this time frame we stopped the attack and the drift is measured3, with results summarized
in Figure 5.5. The PTP leaves continues to drift from the reference master. If the drift reaches
values higher than the maximum correction values specified in the configuration of the daemons,
the clocks could continue to drift indefinitely even after a ENABLE_PORT command is issued on the
victim, without any re-synchronization from the daemons. This is shown by the green curve in the
rightmost part of the figure.

3We disabled the time synchronization by re-instantiating the daemon in dry-run mode to measure the drift
between the clocks.
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Figure 5.5: Results of a clock de-synchronization attack in the virtualized testbed. In this attack
we have exploited a DISABLE_PORT TLV. The clock then proceed to drift from the reference master,
during the attack we keep the port disabled and then proceed to re-enable it after one minute.

Our attack successfully introduced a significant clock drift after few minutes, continuing and
eventually reaching a value of 8ms after thirty minutes. As a typical PTP synchronization is precise
within 10ns to 100ns [308], we argue that the drift of ≈ 4µs/s introduced by our attack is significant.

Clock Accuracy Attack This attack exploits the indirect attack module of PEF. The attacker
will send a TLV that cause the target to choose a wrong reference clock and therefore lock on a
wrong synchronization.

The concept of this attack is show in Figure 5.6.

• In a first phase, referred as the learning phase, we synchronized the attacker node with
the leaf nodes. This phase is required because the synchronization of PTP leaves can have
some constraints like the maximum amount of µs which can be corrected. To speed up the
synchronization of the victims we synchronized with the legitimate master. As, for now,
there is no authorization mechanism over the synchronization of new leaves, this operation is
completely transparent to the clock master.

• After the learning phase, we spoofed and taken over the master-clock role. This can be made
in various ways, in our proposal by a TLV announcing a clock with more priority.

– We send the CLOCK_ACCURACY TLV.
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Figure 5.6: Hierarchy-related attack: In the testbed the attacker issue a CLOCK_ACCURACY
TLV. This TLV will poison the hierarchy management algorithm, when an election occours, the
attacker will become the Master / Grand-Master of the system. The synchronized clocks not
controlled by the attacker are represented in green, in red the ones controlled by the attacker in
every step.

– We change the declared ACCURACY of the clocks in order to alter the outcome of the next
Best Master Clock Election (BMC). Also, we set our node exposed accuracy to a value
higher than the one set into the victims.

– The new hierarchy is then pictured. When a BMC protocol run is triggered (after a
time configured in the various daemons or after a loss of connectivity between clock1
and clock2), we will win this election.

• After this spoofing phase, we had completely control of the Ordinary clocks’ reference.

The final result is shown in Figure 5.7 where the clock is synchronized with the attacker once
and then it is continuously altered by bringing the system clock back by a second every ten seconds.
In terms of accuracy, this attack is even more efficient than the previous one. The clocks of the
system are kept back from flowing normally.

Comparison to Prior Work Attacks

To implement each of our attacks, the attacker just needs to learn the network topology and send
few management frames (as low as one frame for the Disable Port Attack). As a consequence, the
bandwidth requirements for our attacks are near to zero, enabling this attack even from embedded
network platforms such as low powered micro controllers4.

Compared to attack strategies to PTP already presented in the literature, such as for in-
stance [452, 321], our attacks obtain similar effects at less bandwidth cost. As mentioned in the
introduction these attacks require a persistency in the attack phase, either based on denial of ser-
vice for bandwidth exhaustion or on network addressing poisoning, that is not needed in the cases
presented in this work.

4TLV size is, on average, under a few hundreds of bytes. For instance, DISABLE_PORT TLVs have 44 bytes of PDU
header, 4 Bytes of Type and Length fields and an empty Value.
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Figure 5.7: When the attacker is elected as the master, the other clocks in the system are completely
controllable. This representation of the clock is a query of the internal clock of a victim and
compared with the internal clock value of a previously synchronized external observer.
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Figure 5.8: Comparison between Bandwidth-requirements of a Denial of Service (DOS) attack and
normal PTP operations (PTP). The data are a result of an average between five runs of 10 minutes
and represented using logarithmic scale. The Denial of Service attack was done using hping3.
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This is confirmed by the Plot 5.8, a comparison with a Bandwidth Denial of Service and Normal
PTP operations. A bandwidth attack would be extremely more detectable by Bandwidth-related
alarms, to which our attack would be totally transparent.

Alternative Physical Testbed

The results presented in the previous sections were obtained, as explained, into a laboratory envi-
ronment based on a virtualized infrastructure. A further question we wanted to answer as part of
this work is whether our virtual environment can be considered a realistic implementation of real
life PTP network based on physical devices. To answer this question we implemented a second
testbed with the same topology but using physical hardware.

The physical testbed is based on a network constructed with three GNU/Linux physical devices.
These hardware devices mounts NICs capable of time-stamping conforming to IEEE-1588-2008 stan-
dard. We equipped two leaf devices with Intel 82579LM GigE controllers. We interconnected these
devices by a third node, equipped with a double-port Intel 82576 GigE NIC, that can act as bound-
ary/transparent clock. We used LinuxPTP to test the vulnerability. While in the virtual case the
LinuxPTP daemon is directly connected to the system clock, in the physical case the system clock
is synchronized using the Linux kernel physical hardware clock (PHC) API.

Aruba’s switches A proprietary implementation of PTP can be found on Aruba Switches. We
have tested the implementation of IEEE-1588-2008 of an Aruba switch, model 2930M 5. Unfortu-
nately, this switch series implements only Transparent Clocks. Therefore, the switches, only correct
the in-transit PDUs, not analyzing them in depth. This behaviour is totally transparent to our
attacks.

Open source and free software daemons
NetLeap 6 and RELYUM (RELY-TSN-BRIDGE) can be used to create TSN-enabled switches

and network nodes, then used by companies to develop and integrate TSN in industrial products.
These products mainly use hybrid systems, employing Microprocessors running Linux kernel and

FPGA to manage the communication. While the synchronization PDUs are managed by FPGA,
in dedicated IPcores, the TLV and configuration part is done by an userspace daemon which is
usually PTPd2 or LinuxPTP. That is very similar to what the Intel NICs do, on which our physical
testbed is based on. Furthermore, this pattern can be found in other vendors such as Xilinx [3] or
Altera. Quoting Altera 1588 Reference Design [1]:

5https://www.arubanetworks.com/products/switches/access/2930m-series/
6https://novtech.com/products/netleap.html

https://www.arubanetworks.com/products/switches/access/2930m-series/
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Figure 5.9: Clock accuracy attack in the physical testbed. In this scenario, a slightly modified
version of the previously presented attack is pictured. Over a time span of thirty minutes, the clock
is taken back by the spoofed master by 10 seconds every 60 seconds.

The objectives of the reference design include the following: 6.99ns timestamp accuracy
using Altera 1588 hardware IP and Linux PTP software stack for 10Gbps speed.

At the moment of writing, no stable implementation of IEEE-1588-2019 is present on the market.
For these reasons we implemented the main Free and Open Source Software (FOSS) solutions using
LinuxPTP and PTPd (version 1 and 2), interchangeably.

Results In these infrastructures we executed the same attacks as already explained in the previous
section with almost identical results. Just as an example Figure 5.9 shows what happens when a
clock accuracy attack is executed in the physical testbed. This attack is a little less intrusive than
the one against virtual infrastructure, due to physical constraints and implementation of interface.
As evinctable from the plot, the wall clock time of the interfaces is left flowing for sixty seconds,
and then a jump of 10 seconds occurs. In this time lapse, the victim’s clock is kept stall and
the reference to the UNIX epoch is frozen. This will give us an advantage on the target clock,
gaining a relative control of the target wall clock time. We concluded that the results obtained in
the software implementation of the test-bed are realistic and basically executable also in physical
implementations.
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Conclusions6

In this Thesis, we described the security of emerging networks and infrastructures.

We designed the Thesis and the research focusing on three aspects that are fundamental for se-
curity: Analysis, Attacks, and Defenses. These three aspects were analyzed for modern technologies
such as Software Defined Networking (SDN), Network Function Virtualization (NFV), Industrial
Networks with clock distribution, and Microservices.

The various cores of this Thesis focus on the analysis of the literature attacks and defenses
and their distribution (in the Analysis chapter), the showcase of novel attack techniques (Attacks),
and the analysis of how the aforementioned technologies can improve the overall protection of the
network or of the systems (Defenses).

This approach answered to the following research questions presented in Chapter 1.

RQ1 Which are the emerging network technologies that can increase the protection part of the
Security of a system in proactive or reactive ways?
As demonstrated by TecnNetium and P-SCOR, network programmability can increase the
overall security of the system, introducing new monitoring and hijacking capabilities. This
approach can add more flexibility to the system, therefore giving to the defenders more time
to react to the attacks.

RQ2 Are emerging network technologies introducing new classes of threats?
To asnwer this question, the approach of this Thesis is to present new attacks to new protocols.
In Chapter 5, new attacks to novel systems and to well-known protocols are presented with
their relative impact factors.
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RQ3 Are emerging network technologies re-introducing well-known problematics that should be
included in a Threat Modelling methodology?
As RQ2, the answer to this question is presented in Chapter 5, old attacks to PTP are
presented and described. Also, in Chapter 3, the reintroduction of spoofing and denial-of-
service is addressed in the field of Microservices.

RQ4 Can test-bed, resembling the real systems to some degrees, be built to make the process of
Security testing in critical scenarios more feasible?
Testbed can be employed to emulate and isolate the vulnerable component of the infrastruc-
ture. This approach can be used as demonstrated for PTP in Chapter 5, where the protocol
is emulated and the critical part can be easily pinpointed.

We believe that analysis, attack and defenses fields should ideally be completely balanced. While
this thesis is slightly unbalanced on the defense side, we believe that the attacks we described can be
expanded to various field bus or network technologies. That holds also for the defense and analysis
part of the thesis. We believe that these research directions can be expanded to cover a plethora
of novel possibilities in research as well as in industrial applications.



Appendices
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TSN protocolsA

The IEEE specification for time sensitive networking is based on IEEE Tag VLAN (802.1Q). This
make Time-Sensitive Networking (TSN) an extension of this protocol, adding time-based enhance-
ments to this one. IEEE TSN is composed of the following protocols:

• 802.1Q - VLAN tagging;This protocol assigns to every L2 packet a tag which will be used to
treat the traffic as flowing trough a different LAN.

• 802.1AS - Timing and synchronization; which specifies the Generalized Precision Time Pro-
tocol (gPTP).

• 802.1CB - Frame replication; which specifies Parallel Redundancy Protocol (PRP) for the
network. The traffic can be replicated to have a strong availability of the network and, at the
same time, discover network link problems.

• 802.1Qat - Stream Reservation protocol; nodes can announce and retrieve network capacity.
This can be used to reserve paths for a specific bandwidth.

• 802.1Qbu & 802.1Qbv - Preemption and Scheduled Traffic. This standards declare the inner
scheduler workflow, declaring how traffic in TSN can coexist with standard traffic.

• 802.1Qca - Path control; path in TSN can be chosen using different algorithms, IS-IS, Con-
straint based routing or explicit routing.

• 802.1Qcc - TSN Configuration; the configuration of the TSN networks can be made using a
single Centralized system configuration which will use configuration protocols like NETCONF
to configure the network equipments.

• 802.1Qch - Cyclic queueing and forwarding. This standard specifies cyclical buffer with coor-
dinate clocks.
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• 802.1Qci - Per stream filtering. This standard specifies the security policies to apply to TSN
switches. This can be viewed as a firewall on the TSN networking.

• 802.1Qcr - Asynchronous shaping; introduces a non-global time based scheduler algorithm
based on slice allocation providing determinism.



Taxonomy of PTP TLVs for securityB

TLVs can have different level of security problematics, in this appendix the TLVs are grouped by
the attack which them can lead to. We tested different implementations of PTP daemons, namely
LinuxPTP and PTPd, that seems to be the main implementation of the protocol under Linux and
BSD systems. The implementation that was used in the security testbed is present in every table in
column PTP implementation. The score of the attack is calculated using the CVSS scoring system1.
In this system we classify the different score based on the following table:

AC Complexity of the attack H → high, M → medium, L → low.

C Confidentiality is harmed: N → none, P → partial, C → complete.

I Integrity is harmed: N → none, P → partial, C → complete.

A Availability is harmed: N → none, P → partial, C → complete.

TLVs that seem unexploitable.
We have not found any security problem from the use the TLVs presented in Table B.1.

The attacker model will follow different phases, nominally:

1. Reconnaissance;

2. Intrusion and delivery of the attack;

3. Exploitation of the vulnerability;

4. Persistence of the attack;

5. Cleanup of the traces.
1https://nvd.nist.gov/vuln-metrics/cvss visited 2020-06-04
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TLV name Scope Simulated
with PTP
testbed

PTP Im-
plementa-
tion

Score

NULL_MANAGEMENT - LinuxPTP,
PTPd

-

ALTERNATE_TIME_OFFSET_ENABLE - -
ALTERNATE_TIME_OFFSET_NAME - -
ALTERNATE_TIME_OFFSET_MAX_KEY - -
ALTERNATE_TIME_OFFSET_PROPERTIES - -
TRANSPARENT_CLOCK_DEFAULT_DATA_SET - -
TRANSPARENT_CLOCK_PORT_DATA_SET - -
PRIMARY_DOMAIN - -
LOG_MIN_PDELAY_REQ_INTERVAL - -
TIME_PROPERTIES_DATA_SET - -
TRACEABILITY_PROPERTIES - -
UNICAST_MASTER_MAX_TABLE_SIZE - -
ACCEPTABLE_MASTER_MAX_TABLE_SIZE - -
ENABLE_PORT - -

Table B.1: PTP IEEE-1588 2008 TLVs that seems to be unexploitable.

Mimicking this model, we can separate the various unsecure TLVs in the following clusters.
These TLVs can imply security in different scopes, these scopes include:

Network General PTP network domain;

Time Time syncronization;

BMCS Best Master Clock Selection (BMCS) algorithm;

Log Log management;

Extension PTP-2008 standard extensions.

TLVs that can be used for Reconnaissance.
The reconnaissance phase is the first foothold in the network, it analyzes the network to search for
the exploitable vulnerabilities.
In Table B.2, is presented a list of TLVs that can be used to scan the network or gain sensible
information that can be used in subsequent phases.

TLVs that can be used to exploit the network.
In the exploitation phase, the attacker will exploit the discovered vulnerabilities and try to maximize
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TLV name Scope Simulated
with PTP
testbed

PTP im-
plemen-
tation
used

Score

CLOCK_DESCRIPTION Network LinuxPTP,
PTPd

AC:L/C:N/I:N/A:N

USER_DESCRIPTION Network LinuxPTP,
PTPd

AC:L/C:N/I:N/A:N

FAULT_LOG Log AC:M/C:N/I:N/A:N
DEFAULT_DATA_SET BMCS PTPd AC:L/C:N/I:N/A:N
CURRENT_DATA_SET BMCS PTPd AC:L/C:N/I:N/A:N
PARENT_DATA_SET BMCS PTPd AC:L/C:N/I:N/A:N
PORT_DATA_SET BMCS PTPd AC:L/C:N/I:N/A:N
PATH_TRACE_LIST Extension AC:L/C:N/I:N/A:N
PATH_TRACE_ENABLE Extension AC:L/C:N/I:P/A:N

Table B.2: PTP IEEE-1588 2008 TLVs that can be used in the Reconnaissance phase.

the damage of his attack. The TLVs in Table B.3 can be employed to do so:

TLVs that can be used to tamper the network.
After the exploitation phase, the attacker can try to maintain the access to the system. To do so a
set of TLVs, listed in Table B.4, can be employed.

TLVs that can be used to cleanup traces of attack.
TLVs can also be employed to cleanup the trace of an attack, e.g., to hide the presence of a trojan
horse in the network. This can be the first step in the track covering, making difficult for an incident
response team to reconstruct the dynamics of the attack. In Table B.5, is presented a set of TLVs
of the PTP standard that can be used to do so.
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TLV name Scope Simulated
with PTP
testbed

PTP Im-
plementa-
tion

Score

INITIALIZE BMCS AC:M/C:N/I:N/A:C
UTC_PROPERTIES Network,Time AC:L/C:N/I:N/A:C
VERSION_NUMBER Network,Time AC:L/C:N/I:N/A:C
LOG_SYNC_INTERVAL Network,Time AC:L/C:N/I:P/A:C
ANNOUNCE_RECEIPT_TIMEOUT Network,Time AC:L/C:N/I:N/A:P
LOG_ANNOUNCE_INTERVAL Network,Time AC:L/C:N/I:N/A:P
DOMAIN Network,Time AC:L/C:N/I:N/A:P
SLAVE_ONLY Network,Time AC:L/C:N/I:N/A:P
DISABLE_PORT Network AC:L/C:N/I:N/A:C
TIME Time AC:L/C:N/I:N/A:C
CLOCK_ACCURACY BMCS AC:L/C:N/I:P/A:P
PRIORITY1 BMCS AC:L/C:N/I:P/A:P
PRIORITY2 BMCS AC:L/C:N/I:P/A:P
DELAY_MECHANISM Network AC:L/C:N/I:P/A:C
TIMESCALE_PROPERTIES Time AC:L/C:N/I:P/A:P
UNICAST_NEGOTIATION_ENABLE Network AC:L/C:N/I:P/A:P
GRANDMASTER_CLUSTER_TABLE Network AC:L/C:N/I:C/A:P
UNICAST_MASTER_TABLE Network AC:L/C:N/I:C/A:P
ACCEPTABLE_MASTER_TABLE BMCS AC:L/C:N/I:P/A:P
ACCEPTABLE_MASTER_TABLE_ENABLE BMCS AC:L/C:N/I:P/A:P
ALTERNATE_MASTER Network AC:L/C:N/I:P/A:P

Table B.3: PTP IEEE-1588 2008 TLVs that can be used to exploit the network.

TLV name Scope Simulated
with PTP
testbed

PTP Im-
plementa-
tion

Score

SAVE_IN_NON_VOLATILE_STORAGE BMCS,Time AC:M/C:N/I:P/A:N
RESET_NON_VOLATILE_STORAGE BMCS,Time AC:M/C:N/I:P/A:N

Table B.4: PTP IEEE-1588 2008 TLVs that can be used to tamper the network.

TLV name Scope Simulated
with PTP
testbed

PTP Im-
plementa-
tion

Score

FAULT_LOG_RESET Log AC:L/C:N/I:P/A:N

Table B.5: PTP IEEE-1588 2008 TLVs that can be used to cover tracks of a PTP attack.



MicroServices Dataset and R.Q.C

We partition the dataset into four tables, each representing the categorisation described in subsec-
tion “Qualitative results” of section “Results of the survey” section in the paper — i) Theoretical,
ii) Applicative, and iii) Theoretical and Applicative publications and iv) Survey. For each table
we have 5 columns. The first 4 columns from the left (after the column containing the reference
(“Ref.”) to the publication from the publications dataset) and grouped under the column group
“Group” report the 4 Research Questions Groups as defined in the “Research questions” section
of the paper. The value shown indicates the amount of questions of each group the publications
answered. The last column labeled “Q.Num.” presents the number of questions having a positive
answer.
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Theoretical Publications (2/3)
Ref. Group Q. Num.

G1 G2 G3 G4
[89] 2 4 1 0 3,4,6,7,8,11,13
[367] 1 0 2 1 5,13,14,16
[5] 3 1 2 0 3,4,5,8,13,14
[42] 0 0 1 0 13
[201] 1 1 0 1 3,11,16
[409] 0 1 0 0 11
[76] 1 3 1 0 4,8,11,12,13
[334] 0 0 0 1 17
[284] 3 0 2 0 2,3,5,13,15
[53] 2 0 1 0 2,5,13
[429] 3 0 2 0 2,4,5,13,15
[430] 2 0 3 1 2,4,13-16
[62] 0 3 1 0 6,7,8,13
[502] 0 2 3 0 6,7,13-15
[499] 1 0 1 0 5,13
[465] 0 0 1 0 13
[442] 1 2 2 2 2,6,11,13,14,16,17
[108] 0 0 2 0 13,14
[96] 0 0 2 2 13,14,18,19
[443] 1 3 3 0 3,6,7,8,13-15
[103] 1 1 1 0 5,8,13
[33] 0 0 1 2 15,16,17
[265] 0 0 2 2 13,14,16,17
[427] 0 2 1 0 8,11,13
[395] 0 0 1 2 13,16,17
[394] 0 0 1 2 13,16,17
[186] 4 0 1 0 2,3,4,5,13
[151] 2 0 0 0 2,5
[188] 0 0 0 2 16,17
[447] 2 0 2 0 2,3,13,14
[433] 0 1 0 0 11
[425] 2 5 2 0 3,5-8,10,11,13,14
[435] 2 3 1 2 2,5,6,7,8,13,16,17
[11] 0 0 1 0 13
[241] 0 0 2 0 13,14
[152] 1 0 1 0 2,13
[440] 2 3 1 2 4,5,8,11,12,14,16,17
[491] 1 0 1 2 4,13,17,18
[445] 0 0 1 1 13,16
[46] 3 0 2 0 2,3,5,13,14
[352] 1 0 1 0 5,13
[141] 0 0 1 1 13,17
[444] 0 0 2 1 13,14,16
[329] 0 0 1 2 13,16,17
[441] 1 1 1 0 4,8,13
[172] 1 0 1 0 5,13
[70] 0 0 1 4 13,16-19
[360] 2 0 1 0 2,5,14
[346] 1 2 2 0 5,6,7,13,14
[101] 1 1 1 0 4,8,13
[476] 1 1 1 0 2,11,14
[274] 1 1 0 0 2,11
[295] 1 1 1 1 4,8,13,16
[448] 3 1 0 1 2,4,5,8,16
[250] 1 0 1 0 5,13
[458] 0 0 1 0 13
[149] 1 1 1 0 4,8,13
[382] 1 0 1 0 2,13
[457] 0 0 1 0 13
[246] 0 0 2 0 13,14
[289] 0 2 0 2 8,11,16,17
[40] 1 2 0 0 2,6,8
[326] 1 1 0 0 2,11
[44] 3 2 0 0 2,4,5,9,11
[85] 1 1 0 0 2,11
[496] 0 0 2 0 13,14
[366] 1 0 1 0 5,13
[431] 1 1 1 0 2,8,13
[122] 1 3 2 0 2,8,9,11,13,14
[174] 0 2 1 0 8,11,13
[481] 2 1 1 0 2,3,8,13
[504] 0 0 1 0 13
[507] 0 1 1 3 11,13,16-18
[439] 2 1 0 0 2,5,6
[345] 0 0 1 0 13
[81] 1 0 1 0 5,13
[252] 2 0 2 1 2,5,13,14,17
[390] 1 0 0 0 2
[333] 1 0 1 0 2,13
[369] 4 1 2 0 2-6,13,15
[471] 0 1 1 1 11,15,16
[168] 1 1 0 2 5,11,16,17
[415] 3 3 1 2 2,4,5,8,10,11,13,16,17
[74] 0 1 0 0 11
[459] 0 0 0 0
[490] 1 3 2 2 2,6,8,11,13,14,16,17
[72] 1 0 1 2 2,13,16,17
[110] 1 0 0 0 2
[380] 1 0 0 0 2
[41] 3 3 1 0 2-,6,7,11,13
[271] 1 1 1 2 2,11,13,16,17
[426] 1 1 0 0 2,11
[404] 2 1 1 0 2,5,11,13
[464] 1 1 1 0 2,11,13
[264] 1 1 1 2 2,11,13,16,17
[388] 3 1 1 3 2,3,4,11,13,16-18
[314] 4 2 0 0 2,3,4,5,6,7
[123] 0 1 2 2 11,13,14,16,17
[239] 2 0 0 0 2,4
[450] 3 1 0 0 2,3,4,6
[472] 3 1 1 3 2-4,11,13,16-18
[193] 3 1 1 0 2,3,4,11,13
[106] 4 1 1 0 2,3,4,5,11,13
[275] 3 1 0 0 2,3,4,11
[279] 0 1 1 0 11,13
[179] 3 1 1 0 2,3,4,11,13
[97] 1 1 1 1 2,11,13,18
[434] 2 1 1 0 2,4,11,13
[226] 2 1 1 0 2,4,11,13
[466] 2 1 1 0 2,4,11,13

· · ·

Theoretical Publications (3/3)
Ref. Group Q. Num.

G1 G2 G3 G4
[43] 2 2 1 0 3,5,11-13
[489] 1 1 1 0 4,8,13
[234] 0 0 2 0 13,14
[92] 0 0 2 3 13,14,16-18
[133] 0 2 1 1 9,10,14,19
[236] 0 1 1 0 11,13
[258] 0 1 1 0 11,13
[263] 0 1 1 0 11,13
[379] 1 1 1 0 3,8,13
[73] 0 0 1 1 13,19
[402] 0 0 1 2 13,16,17
[506] 0 0 2 0 13,14
[507] 0 1 1 3 11,13,16-18
[439] 2 1 0 0 2,5,6
[345] 0 0 1 0 13
[81] 1 0 1 0 5,13
[252] 2 0 2 1 2,5,13,14,17
[390] 1 0 0 0 2
[333] 1 0 1 0 2,13
[369] 4 1 2 0 2-6,13,15
[168] 1 1 0 2 5,11,16,17
[415] 3 3 1 2 2,4,5,8,10,11,13,16,17
[74] 0 1 0 0 11
[459] 2 0 0 0 2,4
[490] 1 3 2 2 2,6,8,11,13,14,16,17
[53] 2 0 1 0 2,5,13
[429] 3 0 2 0 2,4,5,13,15
[430] 2 0 3 1 2,4,13,14,15,16
[62] 0 3 1 0 6,7,8,13
[502] 0 2 3 0 6,7,13,14,15
[499] 1 0 1 0 5,13
[465] 0 0 1 0 13
[442] 1 2 2 2 2,6,11,13,14,16,17
[108] 0 0 2 0 13,14
[96] 0 0 2 2 13,14,18,19
[443] 1 3 3 0 3,6,7,8,13,14,15
[103] 1 1 1 0 5,8,13
[33] 0 0 1 2 15,16,17
[265] 0 0 2 2 13,14,16,17
[427] 0 2 1 0 8,11,13
[395] 0 0 1 2 13,16,17
[394] 0 0 1 2 13,16,17
[186] 4 0 1 0 2,3,4,5,13
[151] 2 0 0 0 2,5
[188] 0 0 0 2 16,17
[447] 2 0 2 0 2,3,13,14
[433] 0 1 0 0 11
[425] 2 5 2 0 3,5,6,7,8,10,11,13,14
[89] 2 4 1 0 3,4,6,7,8,11,13
[435] 2 3 1 2 2,5,6,7,8,13,16,17
[11] 0 0 1 0 13
[241] 0 0 2 0 13,14
[171] 2 0 1 0 2,5,13
[152] 1 0 1 0 2,13
[440] 2 3 1 2 4,5,8,11,12,14,16,17
[491] 1 0 1 2 4,13,17,18
[445] 0 0 1 1 13,16
[46] 3 0 2 0 2,3,5,13,14
[352] 1 0 1 0 5,13
[141] 0 0 1 1 13,17
[444] 0 0 2 1 13,14,16
[329] 0 0 1 2 13,16,17
[441] 1 1 1 0 4,8,13
[172] 1 0 1 0 5,13
[70] 0 0 1 4 13,16,17,18,19
[360] 2 0 1 0 2,5,14
[346] 1 2 2 0 5,6,7,13,14
[367] 1 0 2 1 5,13,14,16
[101] 1 1 1 0 4,8,13
[476] 1 1 1 0 2,11,14
[274] 1 1 0 0 2,11
[386] 0 0 0 0
[295] 1 1 1 1 4,8,13,16
[42] 0 0 1 0 13
[448] 3 1 0 1 2,4,5,8,16
[250] 1 0 1 0 5,13
[458] 0 0 1 0 13
[149] 1 1 1 0 4,8,13
[382] 1 0 1 0 2,13
[457] 0 0 1 0 13
[246] 0 0 2 0 13,14
[289] 0 2 0 2 8,11,16,17
[40] 1 2 0 0 2,6,8
[326] 1 1 0 0 2,11
[44] 3 2 0 0 2,4,5,9,11
[85] 1 1 0 0 2,11
[496] 0 0 2 0 13,14
[366] 1 0 1 0 5,13
[431] 1 1 1 0 2,8,13
[201] 1 1 0 1 3,11,16
[424] 3 2 2 1 2,4,5,8,11,13,14,16
[122] 1 3 2 0 2,8,9,11,13,14
[174] 0 2 1 0 8,11,13
[504] 0 0 1 0 13
[409] 0 0 0 0
[481] 2 1 1 0 2,3,8,13
[43] 2 2 1 0 3,5,11,12,13
[489] 1 1 1 0 4,8,13
[137] 0 0 1 1 13,16
[234] 0 0 2 0 13,14
[76] 1 3 1 0 4,8,11,12,13
[92] 0 0 2 3 13,14,16,17,18
[133] 0 2 1 1 9,10,14,19
[236] 0 1 1 0 11,13
[258] 0 1 1 0 11,13
[263] 0 1 1 0 11,13
[379] 1 1 1 0 3,8,13
[73] 0 0 1 1 13,19
[402] 0 0 1 2 13,16,17
[506] 0 0 2 0 13,14
[500] 0 1 1 2 11,13,16,19
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Survey Publications
Ref. Group Q. Num.

G1 G2 G3 G4
[424] 3 2 2 1 2,4,5,8,11,13,14,16
[95] 0 0 1 0 13
[471] 0 1 1 1 11,15,16
[47] 0 0 2 0 13,14
[13] 0 1 1 0 8,13
[137] 0 0 1 1 13,16
[55] 0 0 2 0 13,14
[299] 2 0 2 0 2,4,13,14
[368] 1 0 0 0 2
[296] 0 2 1 1 8,11,13,17
[290] 2 0 1 0 3,4,13
[355] 1 0 0 0 2
[93] 0 0 1 1 13,16
[413] 1 1 2 3 4,8,13,14,16-18
[24] 1 0 1 0 2,13
[494] 0 1 1 0 11,13
[446] 0 0 1 0 13
[8] 1 1 2 0 3,8,13,14

[276] 0 1 1 0 11,13
[316] 0 1 1 1 11,13,17
[343] 0 0 1 0 13
[375] 0 1 1 0 11,13
[488] 1 1 1 0 3,11,13
[495] 1 1 2 1 2,8,13,14,16
[94] 2 1 1 0 2,5,11,13
[361] 0 0 0 1 17
[135] 2 0 0 2 4,5,16,17
[215] 3 1 0 0 2,4,5,8
[454] 2 2 0 0 2,5,9,11
[55] 0 0 2 0 13,14
[299] 2 0 2 0 2,4,13,14
[368] 1 0 0 0 2
[296] 0 2 1 1 8,11,13,17
[290] 2 0 1 0 3,4,13
[355] 1 0 0 0 2
[93] 0 0 1 1 13,16
[413] 1 1 2 3 4,8,13,14,16,17,18
[24] 1 0 1 0 2,13
[494] 0 1 1 0 11,13
[424] 3 2 2 1 2,4,5,8,11,13,14,16
[13] 0 1 1 0 8,13
[446] 0 0 1 0 13
[95] 0 0 1 0 13
[12] 2 7 3 3 2,3,6-18
[8] 1 1 2 0 3,8,13,14

[276] 0 1 1 0 11,13
[316] 0 1 1 1 11,13,17
[334] 0 0 0 0
[343] 0 0 1 0 13
[375] 0 1 1 0 11,13
[488] 1 1 1 0 3,11,13
[495] 1 1 2 1 2,8,13,14,16
[94] 2 1 1 0 2,5,11,13
[361] 0 0 0 1 17
[135] 2 0 0 2 4,5,16,17
[471] 0 1 1 1 11,15,16
[215] 3 1 0 0 2,4,5,8
[454] 2 2 0 0 2,5,9,11
[277] 2 1 0 3 3,4,11,16,17,20
[23] 4 0 0 0 2,3,4,5
[124] 2 1 1 2 2,3,11,13,16,19
[7] 2 0 0 0 2,5

[129] 3 0 0 0 2,4,5
[313] 2 0 0 1 2,4,18
[468] 2 1 2 4 2,4,11,13,14,16-19
[310] 1 1 1 2 2,11,13,16,17
[336] 1 1 0 0 2,11
[320] 2 0 0 0 2,4
[121] 4 2 0 0 2,3,4,5,6,7
[313] 2 0 0 1 2,4,18
[378] 2 1 3 4 2,3,11,13-19
[476] 1 2 0 0 2,6,11

Applicative Publications
Ref. Group Q. Num.

G1 G2 G3 G4
[171] 2 0 1 0 2,5,13
[438] 1 1 1 0 5,8,13
[107] 0 1 1 1 11,13,17
[319] 2 2 1 0 3,5,8,11,13
[157] 2 3 2 1 2,3,6-8,13,14,16
[227] 1 0 2 0 2,13,14
[359] 0 0 1 1 13,17
[351] 1 0 2 0 3,13,14
[408] 0 0 1 0 13
[146] 1 1 1 0 3,8,13
[231] 1 1 2 1 2,8,13,14,16
[328] 1 1 1 0 2,8,13
[338] 0 2 1 0 8,11,13
[391] 0 0 2 1 13,14,16
[416] 3 1 0 0 2,3,5,7
[319] 2 2 1 0 3,5,8,11,13
[157] 2 3 2 1 2,3,6,7,8,13,14,16
[227] 1 0 2 0 2,13,14
[359] 0 0 1 1 13,17
[351] 1 0 2 0 3,13,14
[408] 0 0 1 0 13
[95] 0 0 1 0 13
[146] 1 1 1 0 3,8,13
[231] 1 1 2 1 2,8,13,14,16
[328] 1 1 1 0 2,8,13
[338] 0 2 1 0 8,11,13
[391] 0 0 2 1 13,14,16
[416] 3 1 0 0 2,3,5,7
[356] 1 1 1 0 2,11,13
[479] 0 1 1 1 11,13,16
[79] 1 2 1 0 2,6,11,13
[292] 1 1 0 1 3,7,16
[344] 1 1 0 1 3,7,16
[102] 2 1 0 0 2,3,11
[508] 2 1 1 0 2,3,11,13
[286] 1 3 1 2 2,6,7,11,13,16,19
[175] 3 1 0 0 2,3,4,11
[173] 1 1 0 0 2,11
[501] 1 1 0 0 2,11
[196] 3 1 0 0 2,3,4,11
[164] 3 3 1 0 2,3,4,6,7,11,13
[421] 2 0 0 1 2,4,18
[199] 1 0 1 0 2,13
[230] 2 1 1 0 2,4,11,13
[30] 2 1 0 0 2,4,11
[384] 3 1 1 0 2,3,4,11,13
[78] 2 4 1 2 2,3,6-8,11,13,16,18
[223] 2 1 1 0 2,4,11,13

Theoretical Publications (1/3)
Ref. Group Q. Num.

G1 G2 G3 G4
[407] 3 1 1 0 2,3,4,11,13
[142] 4 1 1 0 2,3,4,5,11,13
[159] 3 3 1 0 2,3,4,6,7,11,13
[160] 3 3 0 0 2,3,4,6,7,11
[69] 2 0 0 0 2,4
[118] 3 1 0 0 2,3,4,11
[214] 3 1 1 0 2,3,4,11,13
[132] 3 1 1 0 2,3,4,11,13
[82] 1 0 0 0 2
[176] 2 0 0 2 2,4,16,17
[266] 2 1 1 2 2,4,11,13,16,17
[294] 3 1 0 1 2,3,4,9,16
[114] 0 1 1 3 11,13,16,17,18
[155] 1 0 0 2 2,18,19
[377] 1 0 0 0 2
[432] 0 1 1 0 11,13
[389] 2 1 0 0 2,4,11
[125] 0 1 1 1 11,13,16
[27] 0 1 1 3 11,13,16,17,19
[235] 0 0 1 2 13,16,19
[379] 2 1 0 0 2,3,11
[119] 2 1 0 0 2,3,11
[255] 3 1 0 0 2,3,4,11
[242] 1 1 1 3 2,11,13,16,17,18
[131] 1 1 1 2 2,11,13,16,17
[61] 0 1 1 1 11,13,16
[138] 2 1 0 1 2,4,11,16
[318] 2 1 1 2 2,4,11,13,16,17
[274] 2 1 1 0 2,3,11,13

· · ·



150 APPENDIX C. MICROSERVICES DATASET AND R.Q.

Theoretical and Applicative Publications
Ref. Group Q. Num.

G1 G2 G3 G4
[12] 2 7 3 3 2,3,6-18
[164] 0 0 2 0 13,14
[139] 2 1 1 0 4,5,11,13
[194] 3 1 1 0 2,3,5,9,13
[354] 2 4 2 1 2,4,6,8,9,12,13,14,17
[422] 2 2 1 0 2,5,8,12,13
[32] 3 2 2 0 2,3,4,8,11,13,14
[32] 3 2 2 0 2,3,4,8,11,13,14
[269] 4 5 3 2 2-9,11,13-15,18,19
[17] 1 3 2 0 3,6,7,9,13,14
[339] 1 1 2 0 5,8,13,14
[325] 4 1 1 0 2-6,13
[467] 2 0 0 1 2,3,16
[50] 1 1 1 0 2,9,13
[298] 2 0 2 0 2,3,13,14
[130] 3 0 0 0 2,3,5
[353] 1 0 2 1 5,13,14,20
[233] 2 1 2 1 3,4,8,13,14,17
[347] 0 0 0 1 17
[480] 2 1 1 1 2,3,11,13,18
[116] 2 1 0 0 2,4,9
[225] 3 1 0 0 2,3,4,12
[470] 2 2 0 0 3,4,8,12
[90] 3 1 2 0 2,4,5,8,13,14
[219] 2 1 1 2 2,3,11,13,16,20
[220] 2 1 1 1 2,3,11,13,20
[428] 3 1 1 1 3-5,10,13,20
[203] 4 2 3 1 2,3,4,5,8,11,13-15,16
[376] 4 1 2 2 2-5,8,13,14,16,17
[348] 2 3 2 1 2,3,6,7,8,13,14,17
[492] 1 3 2 0 3,6,7,8,13,14
[287] 0 1 3 3 8,13-18
[91] 2 1 3 4 2,3,8,13-19
[342] 3 3 3 1 2,3,5,8,9,11,13-15,17
[54] 0 1 2 0 9,13,14
[105] 2 0 1 0 3,5,13
[218] 1 3 1 0 5,6,7,8,14
[305] 1 1 2 0 3,12,13,14
[357] 2 0 2 0 2,3,13,14
[365] 0 0 1 0 13
[208] 3 0 1 2 2,3,4,13,16,17
[374] 2 0 1 0 2,3,13
[194] 3 1 1 0 2,3,5,9,13
[354] 2 4 2 1 2,4,6,8,9,12-14,17
[422] 2 2 1 0 2,5,8,12,13
[32] 3 2 2 0 2,3,4,8,11,13,14
[269] 4 5 3 2 2-9,11,13-15,18,19
[17] 1 3 2 0 3,6,7,9,13,14
[339] 1 1 2 0 5,8,13,14
[325] 0 0 0 0
[467] 2 0 0 1 2,3,16
[50] 1 1 1 0 2,9,13
[298] 2 0 2 0 2,3,13,14
[130] 3 0 0 0 2,3,5
[353] 1 0 2 1 5,13,14,20
[233] 2 1 2 1 3,4,8,13,14,17
[347] 0 0 0 1 17
[480] 2 1 1 1 2,3,11,13,18
[116] 2 1 0 0 2,4,9
[225] 3 1 0 0 2,3,4,12
[470] 2 2 0 0 3,4,8,12
[5] 3 1 2 0 3,4,5,8,13,14
[90] 3 1 2 0 2,4,5,8,13,14
[438] 1 1 1 0 5,8,13
[219] 2 1 1 2 2,3,11,13,16,20
[220] 2 1 1 1 2,3,11,13,20
[428] 3 1 1 1 3,4,5,10,13,20
[107] 0 1 1 1 11,13,17
[139] 2 1 1 0 4,5,11,13
[203] 4 2 3 1 2-5,8,11,13-16
[376] 4 1 2 2 2-5,8,13,14,16,17
[348] 2 3 2 1 2,3,6,7,8,13,14,17
[492] 1 3 2 0 3,6,7,8,13,14
[287] 0 1 3 3 8,13,14,15,16,17,18
[91] 2 1 3 4 2,3,8,13,14,15,16,17,18,19
[12] 2 7 3 3 2,3,6-18
[342] 3 3 3 1 2,3,5,8,9,11,13-15,17
[54] 0 1 2 0 9,13,14
[105] 2 0 1 0 3,5,13
[218] 1 3 1 0 5,6,7,8,14
[305] 1 1 2 0 3,12,13,14
[357] 2 0 2 0 2,3,13,14
[365] 0 0 1 0 13
[208] 3 0 1 2 2,3,4,13,16,17
[374] 2 0 1 0 2,3,13
[373] 2 1 1 0 2,3,11,13
[145] 2 1 2 0 2,3,11,13,15
[198] 4 1 1 2 2,3,4,5,11,13,16,17
[40] 3 4 1 4 2-4,6,7,9,11,13,16-19
[20] 3 1 0 0 2,3,4,11
[156] 1 1 0 0 2,6
[449] 2 1 1 1 2,4,11,13,16
[337] 3 1 2 0 2,3,4,11,13,14
[254] 2 4 2 3 2,4,6,7,8,11,13,14,16,17,18
[221] 3 1 1 1 2,3,4,11,13,20
[192] 3 4 1 1 2,3,4,8,9,10,11,13,16
[104] 2 0 0 0 2,3
[257] 0 1 1 0 11,13
[222] 2 0 1 0 3,4,13
[283] 4 4 0 0 2,3,4,5,6,7,10,11
[293] 4 0 0 0 2,3,4,5
[285] 2 1 0 2 2,3,11,18,19
[113] 3 1 1 1 2,4,5,11,13,20
[373] 2 1 1 0 2,3,11,13
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