
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

INGEGNERIA BIOMEDICA, ELETTRICA E DEI SISTEMI

Ciclo 34

Settore Concorsuale: 09/G2 - BIOINGEGNERIA

Settore Scientifico Disciplinare: ING-INF/06 - BIOINGEGNERIA ELETTRONICA E 
INFORMATICA

INTERPRETABLE CONVOLUTIONAL NEURAL NETWORKS FOR DECODING 
AND ANALYZING NEURAL TIME SERIES DATA

Presentata da: Davide Borra

Supervisore

Elisa Magosso

Esame finale anno 2022

Coordinatore Dottorato

Michele Monaci

Co-supervisore

Silvia Fantozzi



 

This page was intentionally left blank  



 

Table of Contents 
INTRODUCTION ______________________________________________________________ i 

NEURAL DECODING AND OBJECTIVE OF THE PHD RESEARCH _______________________ i 
MACHINE LEARNING AND DEEP LEARNING VIA CONVOLUTIONAL NEURAL 
NETWORKS _______________________________________________________________________ ii 
LIMITATIONS OF THE STATE-OF-THE-ART AND THE PROPOSED APPROACHES TO 
OVERCOME THEM ________________________________________________________________ vi 
THESIS STRUCTURE _______________________________________________________________ xi 
REFERENCES ____________________________________________________________________ xiii 

SECTION I: P300 DECODING FROM ELECTROENCEPHALOGRAPHIC SIGNALS _ 1 
CHAPTER 1: COMPARISON BETWEEN CLASSIC ML AND DL ALGORITHMS _____ 2 

1.1. INTRODUCTION _______________________________________________________________ 3 
1.2. MATERIALS AND METHODS ____________________________________________________ 6 

1.2.1. Experiment Description ________________________________________________________ 6 
1.2.2. Dataset Structure and Contents ___________________________________________________ 7 
1.2.3. Challenge Structure ____________________________________________________________ 8 
1.2.4. Submissions and Approaches ____________________________________________________ 9 
1.2.5. Statistical Analysis ___________________________________________________________ 14 

1.3. RESULTS _____________________________________________________________________ 17 
1.4. DISCUSSION __________________________________________________________________ 18 
1.5. CONCLUSIONS ________________________________________________________________ 20 
1.6. REFERENCES _________________________________________________________________ 21 

CHAPTER 2: A CNN FOR P300 DECODING AND ANALYSIS IN THE SPATIO-
TEMPORAL DOMAIN ________________________________________________________ 25 

2.1. INTRODUCTION ______________________________________________________________ 26 
2.2. MATERIALS AND METHODS ___________________________________________________ 30 

2.2.1. Dataset and pre-processing _____________________________________________________ 30 
2.2.2. CNN-based EEG decoding and analysis ___________________________________________ 31 
2.2.3. Proposed CNN+ET approach ___________________________________________________ 33 

2.3. RESULTS _____________________________________________________________________ 39 
2.3.1. Event Related Potentials _______________________________________________________ 39 
2.3.2. CNN performance ____________________________________________________________ 41 
2.3.3. EEG analysis based on the CNN and explanation technique ___________________________ 42 

2.4. DISCUSSION __________________________________________________________________ 51 
2.4.1. CNN performance ____________________________________________________________ 51 
2.4.2. CNN-based cross-subject analysis _______________________________________________ 52 
2.4.3. CNN-based single-subject and single-trial analysis __________________________________ 52 

2.5. CONCLUSIONS ________________________________________________________________ 55 
2.6. SUPPLEMENTARY MATERIALS ________________________________________________ 56 

2.6.1. EEGNet hyper-parameter details ________________________________________________ 56 
2.6.2. Hierarchical agglomerative clustering details _______________________________________ 57 

2.7. REFERENCES _________________________________________________________________ 60 
CHAPTER 3: DESIGN OF AN INTERPRETABLE CNN FOR P300 DECODING AND 
ANALYSIS IN THE FREQUENCY AND SPATIAL DOMAINS ______________________ 64 

3.1. INTRODUCTION ______________________________________________________________ 65 
3.2. MATERIALS AND METHODS ___________________________________________________ 69 

3.2.1. Dataset description ___________________________________________________________ 69 
3.2.2. Problem definition ___________________________________________________________ 71 
3.2.3. An update of Sinc-ShallowNet: Sinc-ShallowNet-v2 _________________________________ 72 
3.2.4. Performance metric and comparison of Sinc-ShallowNet-v2 with EEGNet and Sinc-ShallowNet
________________________________________________________________________________ 77 
3.2.5. Trainable parameter optimization ________________________________________________ 77 
3.2.6. Hyper-parameter optimization __________________________________________________ 80 
3.2.7. Explanation technique: spectral and spatial features analysis __________________________ 82 
3.2.8. Statistical analysis ____________________________________________________________ 85 

3.3. RESULTS _____________________________________________________________________ 87 
3.3.1. Hyper-parameter search via Bayesian optimization __________________________________ 87 



 

3.3.2. Decoding performance ________________________________________________________ 89 
3.3.3. Subject-specific ASD neural signatures related to P300 ______________________________ 91 

3.4. DISCUSSION __________________________________________________________________ 94 
3.4.1. Hyper-parameter search _______________________________________________________ 94 
3.4.2. Decoding performance ________________________________________________________ 95 
3.4.3. Subject-specific ASD neural signatures related to P300 ______________________________ 96 

3.5. CONCLUSIONS _______________________________________________________________ 100 
3.6. SUPPLEMENTARY MATERIALS _______________________________________________ 101 

3.6.1. ICNN hyper-parameter configuration used in WS-CS models to analyze P300 spectral and 
spatial features in autism ___________________________________________________________ 101 
3.6.2. Performance of WS-WS models with fixed ICNN hyper-parameter configurations derived from 
previous results of Bayesian optimization in BCI scenarios _______________________________ 101 
3.6.3. Representative example of training and validation losses during training ________________ 102 

3.7. REFERENCES ________________________________________________________________ 104 
CHAPTER 4: DESIGN OF A MULTI-SCALE CNN FOR P300 DECODING __________ 110 

4.1. INTRODUCTION _____________________________________________________________ 111 
4.2. MATERIALS AND METHODS __________________________________________________ 115 

4.2.1. EEG decoding via CNNs _____________________________________________________ 115 
4.2.2. The proposed CNN and its variants _____________________________________________ 115 
4.2.3. Data and pre-processing ______________________________________________________ 122 
4.2.4. State-of-the-art algorithms ____________________________________________________ 124 
4.2.5. Training ___________________________________________________________________ 124 
4.2.6. Explaining P300 decision: gradient-based representations ____________________________ 126 
4.2.7. Statistics __________________________________________________________________ 127 

4.3. RESULTS ____________________________________________________________________ 129 
4.3.1. Performance _______________________________________________________________ 129 
4.3.2. Explaining P300 decision: gradient-based representations ____________________________ 132 

4.4. DISCUSSION _________________________________________________________________ 139 
4.4.1. Performance of MS-EEGNet and comparison with state-of-the-art algorithms ____________ 139 
4.4.2. Performance of MS-EEGNet: post-hoc hyperparameter evaluation ____________________ 140 
4.4.3. Performance of MS -EEGNet: transfer learning strategy and variable number of training trials
_______________________________________________________________________________ 141 
4.4.4. Explaining P300 decision _____________________________________________________ 142 

4.5. CONCLUSIONS _______________________________________________________________ 144 
4.6. SUPPLEMENTARY MATERIALS _______________________________________________ 146 

4.6.1. Details about the state-of-the-art CNNs __________________________________________ 146 
4.6.2. Details about the state-of-the-art traditional machine learning pipeline __________________ 148 
4.6.3. Comparison between transferring the knowledge on a small dataset and learning from scratch on 
the entire dataset _________________________________________________________________ 148 

4.7. REFERENCES ________________________________________________________________ 151 
SECTION II: MOTOR DECODING FROM ELECTROENCEPHALOGRAPHIC 
SIGNALS _______________________________________________________________ 154 

CHAPTER 5: DESIGN OF AN INTERPRETABLE CNN FOR MOTOR DECODING AND 
ANALYSIS IN THE FREQUENCY AND SPATIAL DOMAINS _____________________ 155 

5.1. INTRODUCTION _____________________________________________________________ 156 
5.2. MATERIALS AND METHODS __________________________________________________ 160 

5.2.1. Problem definition and notations _______________________________________________ 160 
5.2.2. Datasets ___________________________________________________________________ 161 
5.2.3. Sinc-ShallowNet ____________________________________________________________ 162 
5.2.4. Training ___________________________________________________________________ 169 
5.2.5. Regularization ______________________________________________________________ 171 
5.2.6. Classification performance and comparison with state-of-the-art approaches _____________ 172 
5.2.7. Interpretation _______________________________________________________________ 173 

5.3. RESULTS ____________________________________________________________________ 176 
5.3.1. Classification performance and comparison with state-of-the-art approaches _____________ 176 
5.3.2. Post-hoc hyper-parameter evaluation and training strategy evaluation __________________ 178 
5.3.3. Interpretation _______________________________________________________________ 180 

5.4. DISCUSSION _________________________________________________________________ 186 



 

5.4.1. Classification performance and comparison with state-of-the-art approaches _____________ 186 
5.4.2. Design choices of Sinc-ShallowNet _____________________________________________ 187 
5.4.3. Training strategies ___________________________________________________________ 188 
5.4.4. Interpretation _______________________________________________________________ 188 

5.5. CONCLUSIONS _______________________________________________________________ 192 
5.6. SUPPLEMENTARY MATERIALS _______________________________________________ 193 

5.6.1. State-of-the-art CNNs ________________________________________________________ 193 
5.6.2. FBCSP+rLDA ______________________________________________________________ 195 

5.7. REFERENCES ________________________________________________________________ 197 
CHAPTER 6: DESIGN OF AN INTERPRETABLE AND MULTI-SCALE CNN FOR 
MOTOR DECODING AND ANALYSIS IN THE FREQUENCY AND SPATIAL DOMAINS
____________________________________________________________________________ 200 

6.1. INTRODUCTION _____________________________________________________________ 201 
6.2. MATERIALS AND METHODS __________________________________________________ 204 

6.2.1. Single-trial EEG trajectory decoding via CNNs ____________________________________ 204 
6.2.2. Data description and pre-processing _____________________________________________ 204 
6.2.3. The interpretable CNN for trajectory decoding: MS-Sinc-ShallowNet __________________ 206 
6.2.4. Training strategies ___________________________________________________________ 209 
6.2.5. Interpretation of the spectral and spatial signatures encoding position and velocity ________ 210 
6.2.6. Performance metrics and state-of-the-art decoders __________________________________ 213 
6.2.7. Statistical analyses __________________________________________________________ 213 

6.3. RESULTS ____________________________________________________________________ 215 
6.3.1. Performance _______________________________________________________________ 215 
6.3.2. Spectral and spatial relevance related to position and velocity ________________________ 217 

6.4. DISCUSSION _________________________________________________________________ 219 
6.4.1. Performance _______________________________________________________________ 219 
6.4.2. Spectral and spatial relevance related to position and velocity ________________________ 220 

6.5. CONCLUSIONS _______________________________________________________________ 222 
6.6. SUPPLEMENTARY MATERIALS _______________________________________________ 223 

6.6.1. Continuous trajectory decoding from the EEG _____________________________________ 223 
6.6.2. Hyper-parameter search and hyper-parameter sensitivity analysis _____________________ 223 
6.6.3. Spectral relevance comparison across directions ___________________________________ 227 

6.7. REFERENCES ________________________________________________________________ 228 
SECTION III: MOTOR DECODING FROM NEURONS’ SPIKING RATE _________ 232 

CHAPTER 7: DESIGN OF A CNN FOR NEURONS’ SPIKING RATE DECODING ___ 233 
7.1. INTRODUCTION _____________________________________________________________ 234 
7.2. MATERIALS AND METHODS __________________________________________________ 237 

7.2.1. Data acquisition ____________________________________________________________ 237 
7.2.2. Data pre-processing and preliminary analysis _____________________________________ 240 
7.2.3 CNN-based population decoding ________________________________________________ 240 

7.3. RESULTS ____________________________________________________________________ 250 
7.3.1. Preliminary data analysis _____________________________________________________ 250 
7.3.2. Optimal convolutional feature extractor __________________________________________ 251 
7.3.3. Supervised problem 1: Target decoding __________________________________________ 253 
7.3.4. Supervised problem 2: Hand trajectory decoding ___________________________________ 256 

7.4. DISCUSSION _________________________________________________________________ 259 
7.4.1. A visual to somatosensory gradient over the network is reflected in the decoding accuracy. _ 259 
7.4.2. Decoding movement goals and trajectories from PPC _______________________________ 260 
7.4.3. Feedforward model __________________________________________________________ 261 
7.4.4. Convolutional neural networks for neural decoding _________________________________ 262 
7.4.5. Future directions ____________________________________________________________ 263 

7.5. CONCLUSIONS _______________________________________________________________ 265 
7.6. REFERENCES ________________________________________________________________ 266 

CONCLUSIONS _____________________________________________________________ 271 
 
  



 

This page was intentionally left blank   



 

ABSTRACT 
Machine learning (ML) algorithms are widely adopted to decode neural time series, 

including electroencephalographic (EEG) and single-cell recordings. Recent solutions based 
on deep learning (DL), a branch of ML, outperformed traditional ML decoders by 
automatically extracting relevant discriminative features from raw or minimally pre-processed 
neural signals, instead of using hand-crafted features. The automatic feature learning of DL 
decoders could be exploited also to analyze neural time series in a data-driven way, realizing 
novel analysis tools without adopting a priori assumptions about the underlying neural 
processes, helping to validate and inform cognitive neuroscience knowledge.  

DL algorithms include Convolutional Neural Networks (CNNs), Recurrent Neural 
Networks (RNNs) and Fully-Connected Neural Networks (FCNNs). Among these, CNNs, 
originally used to classify images, have been successfully translated to the EEG and represent 
the most common DL-based EEG decoders adopted in the state-of-the-art (SOA), obtaining 
high performance. However, the current research on CNN-based decoding of neural time series 
is affected by some limitations. First, SOA CNNs for EEG decoding usually exploit deep and 
heavy structures and, thus, introduce a large number of trainable parameters (even >100K) with 
the risk of overfitting small datasets. The CNN architecture (e.g., the number of layers, the size 
and number of convolutional filters per layer) is often defined empirically, without being 
guided by objective and informed choices. Second, CNNs are mainly validated by designing 
within-subject decoders. That is, the SOA scarcely explore other training strategies such as 
transfer learning, which could reduce training times promoting the application of CNNs in 
practice (e.g., in brain-computer interfaces). In addition, the features automatically learned by 
CNNs remain mainly unexplored in the SOA; conversely, the interpretation of the learned 
features may be of great value to use decoders also as analysis tools, highlighting neural 
signatures underlying the different decoded brain or behavioral states in a data-driven way, 
without adopting many a priori assumptions about the underlying neural processes. Lastly, the 
SOA DL-based algorithms proposed to decode neurons’ spiking rate from single-cell 
recordings rely on RNNs and FCNNs, which are more complex, slower to be trained and less 
interpretable than CNNs, and the use of CNNs for decoding this type of neural signals has not 
been investigated. 

This PhD work addresses the previous limitations, with reference to the following decoding 
problems: P300 decoding from EEG, motor decoding from EEG, and motor decoding from 
neurons’ spiking rate. In this research, CNNs were developed with particular care in the design 
of their architecture, keeping them light and compact (i.e., with ≤ 5 trainable layers and few 
thousand of trainable parameters), and adopting specific solutions to increase the 
interpretability of the learned features. Moreover, in this work, CNNs were validated under 
multiple training strategies, including also transfer learning. The proposed CNNs proved to 
outperform deeper, heavier, and non-interpretable solutions (e.g., with an average accuracy 
improvement of 22.3% and 8% while decoding motor imagery and the P300, respectively), and 
transfer learning resulted beneficial as it allowed reducing training times still achieving high 
performance (e.g., achieving accuracies > 80% in P300 decoding with only 160 training 
examples). Furthermore, by incorporating interpretable components into CNNs, and by 
applying ad-hoc techniques to interpret the learned features, CNN-based EEG analyses were 



 

proposed to study neural features in the spatial, temporal and frequency domains, and proved 
to better highlight and enhance relevant neural features related to P300 and motor states than 
canonical EEG analyses. Remarkably, these data-driven analyses could be used, in perspective, 
to design novel EEG biomarkers for neurological or neurodevelopmental disorders. Lastly, 
CNNs were developed and applied to decode neurons’ spiking rate in alternative to other DL-
based algorithms, providing a better compromise between decoding performance and model 
complexity.  
 



 i 

INTRODUCTION 
NEURAL DECODING AND OBJECTIVE OF THE PHD RESEARCH 

Neural decoding uses signals from the brain to make predictions about behavior, perception, 
or cognition, and it is an important field of research at the interface between engineering and 
neuroscience. Each neural decoding problem deals with neural activity recorded in multiple 
sites over a certain period of time, such as BOLD signals in brain voxels (fMRI signals), or 
electric potentials at multiple spatially-distributed electrodes placed on the scalp 
(electroencephalography signals, EEG) or implanted on the cortical surface 
(electrocorticography signals), or neuron’s spiking rates obtained via single-cell recordings. 
Whatever the source of brain signals, the aim is to infer the values of observable variables, i.e., 
behavior (motor or verbal output) or applied stimuli (eliciting different perceptual, attentive, 
affective states or different movement intentions), from the recorded brain activity. Depending 
on the cases, the variables to be decoded can be either continuous (e.g., movement trajectory 
or velocity) or categorical (e.g., perceived stimulus category); in the first case the neural 
decoder will perform regression and in the second case it will perform classification. Two main 
goals can be identified as common to neural decoding: i) design brain-computer interfaces 
(BCIs), where the neural activity is translated into commands used to provide feedback to the 
user and to control an output external device (e.g., a cursor or a wheelchair); ii) help clarifying 
the neural representations of sensory features or movements, and to gain a better understanding 
of the link between neural activity and behavioral, cognitive, perceptual states. Recently, 
advancements in Artificial Intelligence (AI) techniques, especially in Machine Learning (ML, 
a branch of AI focused on applications that learn knowledge from the data), has led to a 
growing interest in applying these techniques to neural decoding. Indeed, the use of modern 
ML algorithms for neural decoding, in particular Deep Learning (DL, a branch of ML that uses 
artificial neural networks inspired by the human brain) has the potential to significantly 
improve the decoding performance and may also boost a better comprehension of neural 
functions (see Figure 1 about AI approaches).  

 

 
Figure 1 – Approaches of artificial intelligence. 
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The objective of this PhD Thesis was the development of novel DL algorithms, based on 
Convolutional Neural Networks (CNNs), for decoding neural time series with reference to 
three main decoding problems:  

i. Decoding of the P300 response from EEG signals. P300 is an attention-dependent event-
related potential that indices high-order selective attention and is usually elicited when a 
relevant target stimulus is presented inside a stream of irrelevant non-target stimuli. In 
this case, classification problems were addressed, and CNNs discriminated among the 
class of the P300-eliciting target stimulus and the classes of the other stimuli. 

ii. Decoding of imagined and executed movements from EEG signals. In this context, both 
classification problems (decoding the body part that was moved or imagined to be 
moved) and regression problems (decoding the arm trajectory in a tracking task) were 
addressed. 

iii. Decoding of executed movements from neurons’ spiking rates obtained from single-cell 
recordings in monkeys while performing an arm-reaching task to assigned points in 
space. In this case too, both a classification problem (decoding the end-point of the 
reaching movement) and regression problem (decoding the movement trajectory) were 
addressed.  

The proposed algorithms aspire to provide methodological improvements in CNN-based 
decoding of neural time series, contributing to overcome some limitations that affect the current 
scientific research on this topic. These improvements can have relevant implications both for 
increasing neuroscience knowledge, as the proposed algorithms may serve as analysis tools of 
neural activities, and also, in perspective, for supporting the advancement in brain-computer 
communication. The focus on P300 decoding and motor decoding has the following main 
motivations. First, detections of the P300 response and of sensorimotor rhythms or movement-
related potentials (representing the main motor correlates) are widely adopted in BCIs for 
medical applications (e.g., rehabilitation) [1,2]. In addition, alterations in these neural 
correlates occur in a variety of neurological and neurodevelopmental disorders, e.g., autism, 
schizophrenia, depression for the P300 response [3,4], or stroke [5] for motor correlates. Thus, 
neural decoding, in particular via DL algorithms as presented in the following, may help 
improving our comprehension of these correlates.  

In the next section, DL and especially CNNs are introduced in more depth. Then the state-
of-the-art limitations in CNN-based decoding are presented and the improvements proposed in 
this Thesis to overcome these limits are illustrated. Finally, the structure of the Thesis is 
described in detail.  
 
MACHINE LEARNING AND DEEP LEARNING VIA CONVOLUTIONAL NEURAL 
NETWORKS  

A ML algorithm is an algorithm capable of learning from data, and Tom Mitchell in 1997 
[6] provided a concise definition: “A computer program is said to learn from experience E with 
respect to some class of tasks T and performance measure P, if its performance at tasks in T, 
as measured by P, improves with experience E”. The algorithm learns from a collection of 
examples (training examples) to solve the target decoding problem during a training stage, and 
then it is evaluated on a separate collection of unseen examples (test examples). Approaches 
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based on ML are widely used to decode brain multi-variate activity, as recorded simultaneously 
from multiple sites (differently spatially distributed) using electrodes placed either on the scalp 
- by means of the EEG recordings - or on the cortex - by means of neurons’ spiking rate via 
single-cell recordings. 

The application of ML algorithms mainly regards the implementation of decoders for BCIs, 
realizing a sequence of steps that transform the input neural time series into an output decision, 
which serves to control an external device and to provide user feedback. Classic ML techniques 
operate on highly pre-processed input neural time series [7], e.g., by removing artefactual 
components, such as blinking and muscular artefacts, by considering only frequency 
components in pre-defined bands, or by considering only a selection of signals at some spatial 
locations (e.g., only parietal or centro-parietal electrodes for the decoding of P300). In this 
way, already at the pre-processing stage some a priori assumptions about the relevant neural 
features encoding the variables of interest are applied. Furthermore, classic ML algorithms are 
based on the composition of different separated stages, which are accomplished by different 
algorithms. The first stages perform feature extraction and selection [8], by extracting and 
selecting the meaningful features from the pre-processed time series; these are followed by a 
stage performing classification or regression [9], that provides the target decision (e.g., 
movement condition) on the basis of the selected features. The feature extraction stage relies 
on a priori assumptions about the relevant features of the neural time series to be processed. 
For example, in case of P300 decoding, features can be extracted in the temporal domain based 
on the moving-average within windows of pre-defined length and stride, assuming that these 
are temporal windows of relevance for the P300, or features can be extracted in the time-
frequency domain based on the continuous wavelet transform within frequency bands assumed 
of relevance for the P300, such as delta and theta bands [10]. That is, pre-processing and feature 
extraction stages are guided in their implementation by a priori assumptions based on some 
known characteristics of the neural time series [11–13], discarding information assumed 
irrelevant. In this way, not all information contained in the recorded data is explored by the 
algorithm, preventing the algorithm to exploit also other useful information to perform the 
decoding; thus, features potentially relevant but so-far unknown may be discarded in these 
stages, and this could also negatively affect the algorithm performance.  

To overcome this limitation, Deep Learning (DL) algorithms can be used. These consist in 
deep neural networks realized by stacking layers of artificial neurons. Depending on the 
established connections between these neurons, feed-forward or recurrent neural networks 
(RNNs), with both feed-forward and feed-back connections, can be designed. Furthermore, 
among feed-forward neural networks, fully-connected (FCNNs) and convolutional neural 
networks (CNNs) can be distinguished. All deep neural networks are characterized by a set of 
trainable parameters and a set of hyper-parameters.  

The set of trainable parameters is composed by the weights characterizing the connections 
between neurons in the architecture and need to be optimized during the training stage. That 
is, the knowledge learned by the network during training is embedded in the set of trainable 
parameters. In particular, the training stage of deep neural networks consists in finding the 
trainable parameters that minimize a loss function (which depends on the target decoding 
problem, e.g., mean squared error for regression), by using gradient descent-based algorithms 
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and backpropagation to compute the gradient of the loss with respect to the trainable 
parameters. 

Conversely, the hyper-parameters are parameters that define the structure of the neural 
network, e.g., the number of layers, the number of neurons per layer, the number of 
convolutional filters (see below for CNNs), and that define the training stage, e.g., the learning 
rate, the number of training epochs, and the optimization algorithm. These hyper-parameters 
need to be set before the training starts and are not known a priori. Thus, their definition usually 
requires an extensive and time-consuming evaluation procedure e.g., hyper-parameters can be 
defined empirically, by evaluating the effect of changing one hyper-parameter at a time. It is 
worth noticing that the evaluation of the hyper-parameters requires the use of validation 
examples different from the training examples and test examples, as the first are used to 
optimize the trainable parameters and the second are used to evaluate the performance of the 
trained algorithm on unseen data.  

Among deep neural networks, CNNs were recently transposed to decode the EEG [14] as 
they require less trainable parameters and are more efficient to train respect to FCNNs and 
RNNs. Figure 2 shows a representative schematization of a CNN applied to neural time series. 
CNNs are feed-forward neural networks composed by the sequence of many layers of neurons, 
i.e., processing units (represented as blue circles in Figure 2), performing the convolution 
operation at least in one layer within the architecture (called “convolutional layer”), and 
followed by one or more fully-connected layers (in Figure 2 only one fully-connected layer is 
reported for brevity). In a fully-connected layer, all possible connections between the local 
input and local output neurons (where “local” refers to a specific layer inside the architecture) 
are realized, each one associated to a weight (see yellow connections in Figure 2). A 
convolutional layer performs the convolution between its local input and a set of trainable 
convolutional filters (see green boxes in Figure 2), providing as output a set of filtered versions 
of the local input, each one called “feature map”. During the training stage, the weights of the 
fully-connected connections and the coefficient values of each filter used in each convolutional 
layer are learned.  

 

 
Figure 2 – Representative structure of a CNN applied to neural time series. In this example, the CNN structure is 
composed by the sequence of 3 convolutional layers and one fully-connected layer, representing the output layer. 
The neural time series is represented as a 2-D matrix with spatial locations by rows and time samples by columns. 
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Neurons are represented as blue circles, while convolutional filters are represented by green boxes. Note that, for 
brevity, only the first and last feature maps are displayed. Purple and yellow connections denote convolutional 
and fully-connected connections, respectively.  

 
At variance with the fully-connected layers, the connections between the local input and 

local output of a convolutional layer are sparse by design, as each output neuron of one feature 
map takes connections only with the subset of input neurons that falls within the convolutional 
filter (see purple connections in Figure 2). This provides a reduction of trainable parameters 
and a reduction of computation time (less operations to perform). Lastly, as each convolutional 
filter is reused at every position of the local input (possibly except for boundary elements, 
depending on the padding of the convolution) the parameters of a convolutional layer are 
shared across different locations of the local input, further reducing the number of parameters 
to optimize [15].  

Each neuron belonging to a feature map of a convolutional layer responds to features 
occurring within the convolutional filter size, and thus, is characterized by a local receptive 
field corresponding to the convolutional filter size. By design, the CNN structure is inspired to 
the hierarchical structure of the ventral stream of the visual system. Indeed, by stacking neurons 
with specific local receptive fields on top of others, global receptive fields of neurons increase 
with the network depth and the learned features (i.e., the set of convolutional filters) increase 
in complexity and abstraction, i.e., simpler and less abstract features are learned in the first 
layers, while more complex and abstract features are learned in the last layers [16].  

CNNs can be viewed as computational (or “functional”) models [17] that learn to 
approximate the transformation to be applied to the neural time series to provide the 
corresponding brain or behavioral state (e.g., movement condition) as output, automatically 
learning useful features to realize this input-output mapping. That is, when applying these 
convolutional models to neural time series, the model input is represented by the multi-variate 
brain activity and the model outputs are represented by the states to be decoded. A classic 
topology of these models, as represented in Figure 2, is defined by the composition of an input 
layer, composed by neurons that simply replicate the brain activity, a convolutional sub-
network, including only convolutional layers as trainable layers, and a fully-connected sub-
network, including one or more fully-connected layers as trainable layers. The last fully-
connected layer (corresponding to the output layer) comprises one neuron for each output 
condition to be predicted, e.g., 2 output neurons if we are interested in predicting 2 different 
movement conditions. The convolutional sub-network is devoted to learning an encoded and 
more convenient representation of the input multi-variate brain activity for the decoding 
problem, exploiting only convolutional features. The fully-connected sub-network is devoted 
to processing the representation provided by the previous convolutional sub-network, to 
associate the correct behavioral or brain state to the input, i.e., it finalizes the decoding problem.  

Contrary to classic ML algorithms, in CNN-based algorithms there is no separation between 
the feature extraction, feature selection and classification (or regression) stages: given a multi-
variate neural time series as input, the decoded decision is provided as output in an end-to-end 
fashion. Furthermore, the requirement of a high decoding-oriented pre-processing is relaxed, 
as the CNN can automatically learn to filter out unrelated information and focus only on the 
most important ones for the decoding problem, exploiting the entire spatial and temporal 
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information contained in the input multi-variate neural time series. Most of the studies focusing 
on neural decoding with deep neural networks, in particular with the EEG, exploited the entire 
set of electrode signals, automatically learning to focus only on a small subset of them; 
furthermore, simple pre-processing pipelines were employed, including broad band-pass 
filtering, downsampling and re-referencing [14]. Lastly, artifacts were not commonly handled, 
and this did not hamper decoding performance [14]. Overall, these properties give CNNs the 
ability to learn the relevant neural features related to the investigated brain or behavioral states 
(end-to-end automatic feature learning), from raw or minimally pre-processed multi-variate 
neural time series, without exploiting a priori assumptions about the characteristics of the 
neural response. It is worth remarking that this represents an important advantage over the 
classic ML approaches, in which only limited characteristics of the input neural time series, 
assumed relevant a priori, are exploited for decoding. Crucially, this property of CNNs not 
only could be beneficial to improve decoding accuracy, but also to realize novel analysis tools 
of neural time series. Indeed, despite the knowledge learned by CNNs is not interpretable and 
these models are often marked as “black boxes”, techniques can be used to increase the CNN 
interpretability and analyze the trained CNN. This could be used for determining, for example, 
which elements of the input or which learned features are most informative for the decoding, 
gaining insights about the neural correlates underling the predicted states. That is, the CNN 
could also represent a key component to design a data-driven analysis technique, potentially 
helping to validate and inform cognitive neuroscience knowledge. 

 
LIMITATIONS OF THE STATE-OF-THE-ART AND THE PROPOSED 
APPROACHES TO OVERCOME THEM  

In the following, the main limitations of the state-of-the-art of CNN-based neural decoding, 
regarding the network architecture, training strategy, feature interpretation and decoding of 
neurons’ spiking rate, are presented together with the approaches proposed in the present 
Thesis to overcome them.  

 
Network architecture (or structure) 

In literature, most of the approaches based on CNNs to decode the EEG arrange the input 
neural time series (and, thus, the input layer of the model) as a 2-D matrix (spatial locations by 
rows and time steps by columns) [14], preserving the original input representation [18–26]. 
Then, first convolutions of the convolutional sub-network separately operate on the different 
domains of the input time series. That is, they operate separately in the temporal domain 
(temporal convolution) – filtering in time each time series – and in the spatial domain (spatial 
convolution) [18–21,23–26] – recombining the time series across spatial locations (see Figure 
2). Less frequent solutions operate simultaneously on both spatial and temporal domains 
(mixed spatio-temporal convolution) [22,27]. Later convolutions generally continue learning 
more complex and abstract features in the temporal domain. Lastly, generally only one fully-
connected layer, corresponding to the output layer, is used in the fully-connected sub-network. 
SOA convolutional models differ in the sequence and type (mixing or not the learning across 
domains) of the first convolutions operating directly on the input spatial and temporal domains, 
and in the number of deeper layers learning more complex temporal features. Despite this 
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common CNN structure across studies [18–21,23–26], many others hyper-parameters of the 
model largely differ across different decoders, and the justification for one choice rather than 
another is unclear and not properly investigated. These hyper-parameters include, for example, 
the number of convolutional filters and the length of these filters of the first two convolutions 
operating in the temporal and spatial domains, and the design of later temporal convolutions. 
Furthermore, as other DL models, in general CNNs are data-hungry algorithms requiring large 
datasets to tune their trainable parameters. However, CNNs can be designed to realize accurate 
decoders for BCI applications with relatively compact EEG datasets, e.g., using from 10 to 
1000 examples/minute of the recorded EEG (most frequent value: approx. 80 examples/minute 
of recording) and recording up to 100 subjects (most frequent value: approx. 10 subjects) [14]. 
Due to the limited size of EEG datasets (both in terms of number of examples per subject and 
of number of subjects), the model size, defined by the number of trainable parameters of the 
decoder, should be carefully designed by keeping limited the number of trainable parameters 
to improve generalization. SOA convolutional models differ in the adoption of a heavy or light 
and parsimonious architecture, thus, SOA models present a high variability in the number of 
trainable parameters introduced. Only few models [20,22] focus on the design of a 
parsimonious model (e.g., including ~2K parameters), while most models consist in deep and 
heavy algorithms (e.g., including ~300K parameters in the network proposed by Schirrmeister 
et al. [24]) that could not generalize well on more compact and limited datasets compared to 
the ones they were tested on.  

Therefore, in this Thesis these limitations related to the CNN architecture were addressed 
by: 

i. Investigating the optimal architecture by evaluating alternative structures obtained by 
changing one hyper-parameter at a time (post-hoc hyper-parameter evaluations) or by 
searching the optimal architecture using an algorithm that performs automatic hyper-
parameter search.  

ii. Adopting models that are not excessively deep (i.e., compact models) and that widely 
use specialized convolutions aimed to reduce the number of trainable parameters 
compared to traditional convolutions.  

Both these solutions allowed to keep limited the overall number of trainable parameters of 
the proposed architectures, promoting the design of parsimonious models. 
 
Training strategy 

In the literature, only few strategies are adopted to train the decoders, mainly training 
subject-specific decoders using subject-specific training examples [18,19,21,22,24–26,28], 
i.e., within-subject training strategy. This could be limiting as, for a more complete evaluation, 
decoders should be evaluated using multiple training strategies, where each training strategy 
could reflect a different BCI practical scenario. For example, it may be useful to assess how a 
CNN trained on data from a group of subjects performs on data from a new subject; this may 
represent the case of a new participant approaching a BCI intervention, and a CNN already 
trained on the previous participants can be directly used on the new one, preventing to waste 
time for a new calibration (training) stage.  
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Therefore, in this Thesis decoders were widely evaluated by adopting different training 
strategies. In particular, when the adopted datasets consisted in multiple recording sessions per 
subject, within-session and cross-session training strategies were analyzed. These consisted in 
training and evaluating decoders with signals collected during one single session, or multiple 
recording sessions. Furthermore, also a cross-subject training strategy was evaluated, where 
signals from multiple subjects were used to train decoders and signals from a new subject were 
used to test decoders. Remarkably, it was also investigated the potentiality and the benefit of 
transferring the knowledge from decoders trained on other subjects to a new one (transfer 
learning). In this case, models were trained on the new participant but, instead of using a 
random initialization of the trainable parameters, models were initialized with the trainable 
parameters learned from other participants, enabling a performance improvement even with 
fewer training examples, thus, reducing the calibration time of BCIs and promoting the use of 
CNNs in practice.  
 
Feature interpretation 

Feature interpretation means interpreting and understanding the knowledge learned by the 
CNN and embedded in its trainable parameters. In most cases, the features are not directly 
interpretable (or they are not in a form that can be easily understood) and specific techniques, 
called “post-hoc interpretability analyses”, must be applied for their interpretation. A CNN can 
also be made directly interpretable in its design, by inserting components learning features that 
are immediately understandable, and thus, realizing an “ad-hoc interpretable model”. It is 
worth noticing that designing an ad-hoc interpretable model generally decreases the number of 
trainable parameters of the model, i.e., it not only increases the interpretability but also 
promotes a light structure.  

When performing EEG decoding, efforts have been made in the literature to interpret models 
by mainly applying post-hoc interpretability analyses with the purpose of verifying that the 
CNN-based decoders rely on neurophysiological features and not on artefactual features. 
Among these methodologies, convolutional filters of layers operating in the easiest 
interpretable domain, such as the spatial domain (each spatial location being weighted more or 
less depending on its importance), can be visualized [18–21,26], see Figure 3 for a 
representative example. 
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Figure 3 – Representative example of the visualization of one spatial filter learned in spatial convolution while 
decoding EEG signals recorded from C spatial locations. The local input for the spatial convolution (represented 
on the left) is extracted from the CNN reported in Figure 2. Each spatial filter is composed by C weights, one for 
each spatial location. Once trained the CNN, the spatial filters can be visualized as heatmaps at the level of scalp, 
by mapping each spatial location to its weight. Higher coefficients of the spatial filter (high values are denoted 
with yellow in the figure) denotes more important electrodes for discriminating among different brain or 
behavioral states (e.g., between movements of the left hand, right hand, and tongue). However, it is worth noticing 
that there is no association between this information and one specific state (e.g., movement of the right hand).  
 

Conversely, convolutional filters operating in the temporal domain are not extensively 
analyzed as they are less interpretable. Other methodologies remove one convolutional filter at 
a time, analyzing how the resulting altered filtering affects the model performance (filter 
ablation) [20], assigning more or less importance to the removed filter depending on the 
performance variation.  

The previous analyses focus on interpreting the learned CNN features without relating these 
features to a specific decoded brain or behavioral state. That is, there is not a strict relation 
between the so interpreted features (e.g., the spatial filter of Figure 3) and one specific output 
neuron corresponding to a specific decoded class (e.g., movement of left hand). Relating 
features separately to each output neuron requires to explain the network decision, i.e., to 
identify the interpretable features that contribute more to a network decision (activation of a 
specific output neuron) given a test example as input, by using so called “explanation 
techniques” [20,23,29]. Explanation techniques might produce more interesting 
representations than the previous techniques, as explanations are, by design, strictly related to 
a brain or behavioral state, enabling a straightforward analysis of the relevant features for a 
state under investigation. These techniques usually provide representations highlighting 
features (typically in the spatial and temporal domains) that contribute more to produce the 
network decision towards one brain or behavioral state. The simplest way to provide an 
explanation of the model is to quantify how much a small change in the values of a local input 
neuron affects the output neuron related to a brain or behavioral state to be decoded [30]. That 
is, a sensitivity analysis [31] is designed, providing representations of the most relevant 
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samples belonging to the local input that drive the decision for a decoded output; this sensitivity 
analysis could be performed by backpropagating through the CNN the gradient from an output 
neuron to local input neurons. When the local input corresponds to the input of the CNN, each 
local input neuron corresponds to each spatio-temporal sample of the neural time series and the 
designed technique explains the network decision at the level of the input (“input explanation 
technique”).  

However, these methodologies proposed in the literature have two main limitations. They 
are proposed only to validate the trained decoders by evaluating whether neurophysiological 
(and not artefactual) features are learned. Therefore, it is not fully exploited the potentiality of 
the automatic feature learning provided by CNNs to propose new analysis tools for neural time 
series aimed to analyze and compare different brain or behavioral states in a data driven way. 
In addition, input explanation techniques are mainly applied, as the domain of the neural time 
series (i.e., spatio-temporal domain) representing the CNN input, is the easiest interpretable 
domain. On the contrary, the subsequent layers of the CNN, in particular the convolutional 
layers operating in the temporal domain, are not easily interpretable; indeed, each filter 
coefficient of temporal convolutional filters is learned during training, resulting in general in 
filters that are not well-defined in type (i.e., they cannot be clearly recognized as low-pass, 
band-pass or high-pass filters) and, thus, the spectral features learned by the bank of filters 
more important for the decoding decision remain essentially unclear. This is limiting as it may 
be interesting to investigate the relevant features for a brain or behavioral state, not only in the 
spatio-temporal domain of the input, but also in other domains such as the frequency domain; 
these features are processed in intermediate layers of the CNN, thus, “intermediate explanation 
techniques” should be designed. Furthermore, if spatial filters are learned after the temporal 
convolution (as performed in the example reported in Figure 2), it is also possible to interpret 
the more relevant spatial locations associated to each frequency content.  

Therefore, in this Thesis these two main limitations were addressed by: 
i. Enabling an intermediate explanation to analyze features in the frequency domain. To 

this aim, the CNN structure needs to be designed interpretable in its temporal 
convolutional filters, realizing a model that incorporates the interpretability itself, 
adopting an ad-hoc interpretable modelling approach. That is, interpreting the model a 
posteriori using a post-hoc interpretation analysis is not enough, and the model needs to 
be renovated by inserting interpretable components directly in the architecture. In this 
Thesis, this was realized by designing temporal convolutions adopting trainable 
parameters that were directly interpretable, e.g., designing the bank of trainable temporal 
filters so that the cut-off frequencies can be directly learned instead of learning each 
coefficient of the filter. Finally, by coupling the interpretable model with an explanation 
technique operating at the level of the temporal convolution (which is an intermediate 
point of the CNN structure, see Figure 2), it was possible to design an explanation in the 
frequency domain.  

ii. Proposing novel EEG analysis tools based on CNNs coupled with explanation 
techniques. These analyses were developed and applied to gain insights into neural 
features underlying brain or behavioral states both in the spatio-temporal domain and in 
the frequency domain (exploiting the methodologies applied in Section Feature 
interpretation-i). 
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Decoding neurons’ spiking rate from single-cell recordings 

In the literature, the decoding of neurons’ spiking rate strongly relies on classic ML 
algorithms and there is a recent growing interest in the application of FCNNs and RNNs [19]. 
However, as stated before, these algorithms require more trainable parameters and are less 
efficient to train than CNNs. Thus, by exploiting the expertise deepened in designing CNNs to 
decode the EEG (especially in Section Network architecture (or structure)-i, ii), CNNs were 
also investigated and proposed in this Thesis to decode neurons’ spiking rate, addressing both 
classification and regression problems. 

 
THESIS STRUCTURE 

This Thesis is structured by presenting the conducted studies without following a 
chronological order (i.e., not presenting the studies by publication date), but on the basis of the 
decoding problem addressed (P300 and motor decoding) and the types of neural time series 
decoded/analyzed (EEG and neurons’ spiking rate). This structure was chosen with the aim of 
increasing its readability.  

Section I is focused on P300 decoding from EEG signals and contains the following 
Chapters.  

- Chapter 1 reports a benchmark study on P300 decoding from the EEG, comparing 
different ML and DL (including CNNs) algorithms. This study was conducted in 
occasion of an international scientific competition (International Federation of Medical 
and Biological Engineering 2019 challenge held during the XV Mediterranean 
Conference on Medical and Biological Engineering and Computing). That is, at first a 
comparison analysis among these families of decoding algorithms is presented, 
identifying the best-performing algorithm for P300 decoding. The CNN-based decoder 
we adopted resulted the best-performing algorithm in the competition and was light in its 
structure (see Section Network architecture (or structure)-ii). This CNN structure 
represents the starting point for the investigations carried out in the following chapters 
of this section.  

- Chapter 2 presents a novel CNN-based analysis of P300 from the EEG by exploiting 
input explanations, investigating the more relevant features in the spatio-temporal 
domain of the input (see Section Feature interpretation-i, ii).  

- Chapter 3 describes a novel interpretable CNN (i.e., by inserting components that are 
directly interpretable) to decode the P300 response from the EEG, and its structure is 
automatically defined by using automatic hyper-parameter search while keeping the 
architecture light (see Section Network architecture (or structure)-i, ii). In addition, by 
using an intermediate explanation technique, a novel CNN-based analysis of P300 is 
proposed, investigating the neural features in the frequency domain (see Section Feature 
interpretation-i, ii). Lastly, different training strategies are investigated (see Section 
Training strategy) and compared.  

- Chapter 4 reports a study on the optimal architecture of a novel light CNN to decode the 
P300 from the EEG, with a particular focus on the design of deeper layers of the 
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convolutional sub-network (see Section Network architecture (or structure)-i, ii). The 
CNN was evaluated on three P300 dataset, acquired in different paradigms. In addition, 
the evaluated models are investigated with multiple training strategies (see Section 
Training strategy).  

Section II is focused on motor decoding from EEG signals and contains the following 
Chapters. 

- Chapter 5 presents a comparison between CNNs and the state-of-the-art ML algorithm 
to decode motor imagery and motor execution conditions from the EEG. In addition, a 
novel light and interpretable CNN is presented, and its optimal architecture is 
investigated (see Section Network architecture (or structure)-i, ii). Then, novel CNN-
based analyses of EEG correlates related to motor execution and motor imagery are 
conducted. These are performed by using intermediate explanations, investigating 
features in the frequency domain (see Section Feature interpretation-i, ii). 

- Chapter 6 presents a novel light and interpretable CNN realized to predict, from the 
EEG, the 2-D hand position and velocity components during upper-limb movements 
(tracking task). The proposed CNN is evaluated adopting different training strategies (see 
Section Training strategy). Then, a novel CNN-based analysis of EEG correlates related 
to position and velocity of executed movements is described. Here, an intermediate 
explanation is used, investigating the neural features in the frequency domain (see 
Section Feature interpretation-i, ii).  

Section III is focused on motor decoding from neurons’ spiking rate and contains the 
following Chapter. 

- Chapter 7 introduces the adoption of CNNs to decode neurons’ spiking rate from single-
cell recordings of monkeys during a 3-D reaching task (see Section Decoding neurons’ 
spiking rate from single-cell recordings). The CNN is light in its design, with its structure 
optimized using automatic search algorithms (see Section Network architecture (or 
structure)-i, ii), and is used to predict both the reached points and the 3-D hand position, 
respectively. 

Finally, a Conclusions section highlights the main results and main implications of the 
conducted studies together with the limitations that can be addressed in the future.  
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CHAPTER 1: COMPARISON BETWEEN CLASSIC ML AND 
DL ALGORITHMS 

The study reported in this chapter refers to the published journal paper entitled “BCIAUT-
P300: A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based 
Brain-Computer-Interfaces” M. Simões*, D. Borra*, et al., Frontiers in Human Neuroscience, 
2020. * These two authors share the first authorship. The first part of this chapter presents the 
P300 dataset that was used in occasion of the 2019 IFMBE scientific competition organized 
during MEDICON 2019 conference; the second part analyzes and compares ML and DL 
techniques to decode the P300 response. 
 
There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly 
available datasets are usually limited by small number of participants with few BCI sessions. 
In this sense, the lack of large, comprehensive datasets with various individuals and multiple 
sessions has limited advances in the development of more effective data processing and 
analysis methods for BCI systems. This is particularly evident to explore the feasibility of 
deep learning methods that require large datasets. Here we present the BCIAUT-P300 
dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-
based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 
2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, 
teams from all over the world tried to achieve the best possible object-detection accuracy 
based on the P300 signals. This paper presents the characteristics of the dataset and the 
approaches followed by the 9 finalist teams during the competition. The winner obtained an 
average accuracy of 92.3% with a convolutional neural network based on EEGNet. The 
dataset is now publicly released and stands as a benchmark for future P300-based BCI 
algorithms based on multiple session data. 
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1.1. INTRODUCTION 
A Brain-Computer Interface (BCI) is a system that provides a direct communication 

between the brain and a computer or external device [1]. In short, it must interpret brain activity 
and translate it into commands that can be used to control devices or programs, from prosthesis, 
orthosis, wheelchairs and other robots to a mouse or a keyboard in a controlled computer 
environment [2–4]. Different types of neuroimaging techniques can be used to implement 
BCIs, i.e., electroencephalography (EEG), magnetoencephalography (MEG), functional 
Magnetic Resonance Imaging (fMRI), functional Near-Infrared Spectroscopy (fNIRS), among 
others [5]. The most common modality is the EEG, since it provides a portable, inexpensive, 
non-invasive solution to measure brain activity with high temporal resolution [6–8,5].  

There are several approaches to generate brain signals that can be interpreted and 
transformed into commands by the BCIs, namely event-related potentials (the most prominent 
being the P300), steady-state visual evoked potentials (SSVEP) or event-related 
synchronization/desynchronization (ERS/D) through mental imagery. The P300 approach, first 
attempted by Farwell and Donchin in the 80s [9], uses an oddball paradigm where an infrequent 
stimulus of interest is presented in a sequence of frequent stimuli of non-interest. With this 
paradigm, a positive deflection of the EEG measured in the central and posterior parts of the 
scalp is observed approximately around 300 ms after the infrequent stimulus of interest is 
presented [10,11]. The most common application of P300-based BCIs is the speller, where a 
matrix of letters flashing at different times is presented to the user. An infrequent event occurs 
due to selective attention to a specific target letter. Thus, a P300 potential is elicited whenever 
the letter the user is paying attention to flashes, and so the target letter can be identified by a 
P300 detection algorithm and then transmitted. The use-cases of P300-based BCIs have greatly 
increased over the past years, from steering a wheelchair [12] to composing music [13].  

Despite the wide range of applications, there are still many challenges facing P300-based 
BCIs to be used more broadly. Achieving portable and practical BCIs that are easy to setup 
and fast to calibrate is currently a research line of big interest, since it would favorably help 
the adoption of this new technology in everyday settings [14,15,5]. However, different issues 
causing low robustness and reliability should be addressed for these systems to be used in real 
life. Indeed, often low performance is obtained by BCI models, even in laboratory conditions. 
The noise sensitivity, non-linearity and non-stationarity characteristics of EEG signals 
represent critical challenges since these properties depend both on the subject and the 
environment [16]. As a consequence of non-stationarity, shifts in EEG signals across trials and 
sessions occur. Therefore, robust feature extraction techniques are needed to overcome these 
perturbations on the signals [17]. Moreover, inter-subject variability, due to anatomical and 
physiological differences among subjects, also represents an important challenge since it 
hinders the design of participant-agnostic BCIs. Due to these main challenges (intra- and inter-
subject variabilities), most BCIs require time-consuming calibrations to maximize their 
performance, which makes the creation of one-model-fits-all solutions difficult [18].  

Nevertheless, the methods used for correctly identifying P300 signals have improved in the 
last years [19]. Traditional decoding algorithms rely on separate feature extraction and 
classification steps. Commonly used P300 features are based on temporal, time-frequency and 
spatial domains [20–22], while Linear Discriminant Analysis (LDA), Support Vector Machine 
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(SVM) and Multi-Layer Perceptron (MLP) are the most prominent classifiers used in P300-
based BCI approaches. Some examples of recent improvements over traditional methods are 
the use of Riemannian geometry [23] or weightless neural networks [24]. Recently, deep 
learning techniques were transposed from the computer vision [25] to the EEG decoding field. 
Among these new solutions, Convolutional Neural Networks (CNN) and CNNs including 
recurrent layers - such as Long Short-Term Memories (LSTM) - on top of the convolutional 
extractor were used (CNN-LSTM) [26]. A key property of these algorithms is that they 
automatically learn the relevant features for a given task (i.e., the features are learned from the 
input data without any a priori feature extraction and selection) and finalize the target decoding 
task in an end-to-end fashion (i.e., without separating these steps). Nevertheless, these 
approaches pose some challenges: they require many hyper-parameters to be tuned (e.g., 
number of layers, number of kernels, etc.), they introduce a large number of parameters to be 
optimized during training (which are also difficult to interpret once trained) and thus, require 
the use of large datasets to achieve state-of-the-art decoding performance [26–28]. However, 
few datasets can be found in the literature matching this last requirement.  

To evaluate the efficacy of new methods, authors need to compare their results with current 
state-of-the-art approaches. One viable approach is to implement both their method and 
established reference methods and apply all of them to the data of interest. Another option is 
to use benchmark datasets. Benchmark datasets are publicly available data usually launched in 
competition events where teams have the same information to start with and try to achieve the 
best possible result with their methods [29]. These competitions tend to disclose these datasets 
afterward, allowing both teams and other researchers to continue developing their methods and 
publish results that are comparable between them, if researchers recreate the original 
competition conditions on their attempts. Thus, these datasets provide a common ground for 
the research areas to assess their methods and improve the state-of-the-art.  

One important contributor in this field has been the Berlin Brain-Computer Interface (BBCI) 
group through the organization of BCI competitions [30–33]. The corresponding datasets have 
been extensively explored and helped significantly the improvement of methods throughout 
the years [19,34]. Nevertheless, those datasets were limited in terms of subjects and sessions-
per-subject, thus constraining the development of methods highly dependent on multi-session 
data.  

In the scope of the XV Mediterranean Conference in 2019, the International Federation of 
Medical and Biological Engineering (IFMBE) launched a scientific competition based on a 
multi-session dataset of P300-based BCI intervention for young adults with autism spectrum 
disorder (ASD) [35]. This intervention was aimed at the rehabilitation of joint-attention, a core 
developmental skill that is altered in ASD and impacts other skills like language development 
[36]. Joint-attention refers to the ability of following social attentional cues of other people, so 
one’s attention can be directed by the interlocutor to an external object or event of interest. 
Amaral et al. [14] developed an interventional BCI based on P300 signals that uses a virtual 
environment with a virtual human character and several objects of interest to train the ability 
of participants to follow the cues of the virtual character to the objects. That system was 
validated in an interventional pilot study [35] where 15 ASD individuals underwent 7 training 
sessions with this system. The database resulting from that interventional study supported the 
2019 IFMBE scientific challenge and is now made public to the scientific community at https:// 
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www.kaggle.com/disbeat/bciaut-p300 (doi: 10.34740/kaggle/dsv/1375326). This paper 
describes the challenge and corresponding dataset, summarizes the approaches by the 
competing teams and draws some conclusions from them, challenging the BCI research 
community to improve the current best performances achieved by the participating teams.  
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1.2. MATERIALS AND METHODS 
1.2.1. Experiment Description 

Overview of the P300-Based BCI System 

The BCI system is composed mainly by two modules: data acquisition module and stimuli 
presentation module. For the data acquisition module, we used the g.Nautilus system (g.tec 
medical engineering GmbH, Austria) to record EEG data from 8 active electrodes positioned 
at C3, Cz, C4, CPz, P3, Pz, P4, POz locations. The reference electrode was placed at the right 
ear and the ground electrode at AFz location. Sampling rate was set to 250 Hz and data were 
acquired notch-filtered at 50 Hz and passband-filtered between 2 and 30 Hz. As for the stimuli 
presentation module, we used the Vizard toolkit to create and display a virtual environment 
consisting of a bedroom with common type of furniture (shelves, a bed, a table, a chair, and a 
dresser) and objects (frames, books, lights, a printer, a radio, a ball, a door, a window, and a 
laptop), as shown in Figure 1.1. 
 

 
Figure 1.1 – Snapshot of the virtual environment, showing the scenario, the virtual avatar and the objects for 
joint-attention targets. 

 
The objects used as stimuli throughout the experiment (and their respective labels) were: 1. 

books on a shelf, 2. a radio on top of a dresser, 3. a printer on a shelf, 4. a laptop on a table, 5. 
a ball on the ground, 6. a corkboard on the wall, 7. a wooden plane hanging from the ceiling, 
and 8. a picture on the wall. The virtual environment was presented via the Oculus Rift 
Development Kit 2 headset (from Oculus VR). 

Each block consists of the user trying to identify one of the objects as the target. For that, K 
runs are repeated. One run is composed by a single flash of each object once for 100 ms at 
different times and random order, with an Inter-Stimulus Interval (ISI) of 200 ms. Figure 1.2 
provides a schematic for this structure. 
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Figure 1.2 – Structure of the paradigm with its subdivisions in blocks, runs and events. (A) Structure of the blocks: 
each block is used to identify a single target object and is composed by K runs. (B) Structure of the runs: each run 
is composed by 8 events, each consisting of the flashing of one of the objects. (C) Structure of an event: it consists 
of the flashing of the corresponding object by 100 ms, followed by an interval of 200 ms. 

 
BCI Session Flow  

Fifteen participants performed 7 identical training sessions in different days, the first four 
on a weekly basis and the last three on a monthly basis. Each training session was divided in 
two parts: calibration and online phase. Data from calibration and online phases were named 
in the dataset as train and test data, respectively.  

The calibration phase was composed of 20 blocks, each block containing 10 runs. Because 
we used 10 runs per block, a total of 200 target P300 signals and 1400 non-target signals were 
acquired at this phase. With these data, the session-specific classifiers were trained for the 
online phase and the number of runs per block (K) to use on the online phase was defined. K 
was defined during the online sessions of the clinical trial as the minimum number of runs for 
which the classifier achieved an accuracy above 80%, in the calibration data.  

Regarding the online phase, 50 blocks were taken for each participant using K runs per 
block. The value of K varied between subjects and sessions, since it was an output of the 
calibration phase, ranging from 3 to 10.  
 
1.2.2. Dataset Structure and Contents  

The dataset folder structure is organized by subjects, with a folder for each subject named 
SBJXX, with XX varying from 01 to 15. Within each subject folder there is a set of folders 
containing the data from each session, named SYY, with YY varying from 01 to 07. Each 
session folder contains a separate folder for the training and testing data, named Train and Test, 
respectively.  
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i. Train folder  

- trainData.mat – Data from the calibration phase, structured as [channels x epoch x event], 
epoch corresponding to the data samples from −200 ms to 1000 ms relative to the event 
stimulus onset (epoch length of 1200 ms; 300 data samples).  

- trainEvents.txt – One label per line (from 1 to 8), corresponding to the order of the flashed 
objects. 

ii. Test folder  
- testData.mat – Data from the online phase, in the same structure as the train data.  
- testEvents.txt – One label per line (from 1 to 8), corresponding to the order of the flashed 

objects.  
- testTargets.txt – 1 or 0 per line, indicating if the flashed object was the target or not, 

respectively.  
- testLabels.txt–Label of the target object per line(from 1 to 8), one for each block.  
- runs_per_block.txt – File containing only one number, corresponding to the number of 

runs per block used in the online phase (from 3 to 10).  
The number of epochs corresponds to # events per run ∗ # runs per block ∗ # blocks. For the 

training data, it represents 8 events per run ∗ 10 runs per block ∗ 20 blocks = 1600 epochs. As 
for the test data, since the number of runs varies between sessions, the number of epochs varies 
in consequence, in a total of 8 events per run ∗ K runs per block ∗ 50 blocks = 400 ∗ K 
epochs.The channels’ order in the data matrices is C3, Cz, C4, CPz, P3, Pz, P4, POz. The first 
sample of each epoch corresponds to the time −200 ms relative to the stimulus onset and the 
last sample to corresponds to the time 996 ms after the stimulus onset (the last sample < 1000 
ms), with a sampling rate of 250 Hz, for a total of 300 samples.  

 
1.2.3. Challenge Structure  

For the 2019 IFMBE Scientific Challenge, teams were asked to maximize the P300-based 
object detection accuracy for the 7 sessions of the 15 ASD participants of the BCIAUT clinical 
trial. For each session, a train and test set were created, without disclosing the true labels of the 
test sets. The challenge was divided into two phases with a different number of attempts per 
phase (Table 1.1). For phase I, sessions 1–3 were provided, without the test labels. At the end 
of phase I, the true test labels of those three sessions were made available to the participants 
along with the remaining 4 sessions (4–7), the latter without the true test labels (phase II). This 
way, teams could use the true labels of the first three sessions to improve their classifiers, if 
working with multi-session data. Teams were allowed to submit 5 attempts during phase I and 
10 attempts during phase II. The best submission of each team throughout the allowed attempts 
on each phase was used to rank the teams. The complete dataset (including all true labels) is 
now available at https://www.kaggle. com/disbeat/bciaut-p300 (doi: 
10.34740/kaggle/dsv/1375326).  

 
  



 9 

Table 1.1 – Timetable and number of attempts for the two phases of the competition. 
Phase Start Date End Date Number of Attempts 

Phase I 01-03-2019 10:00 15-05-2019 23:59 5 
Phase II 20-05-2019 10:00 30-06-2019 23:59 10 

 
1.2.4. Submissions and Approaches  

Fourteen teams participated in phase I of the competition, while 9 teams participated in 
phase II and concluded the challenge. The results shown in this manuscript refer to the phase 
II of the competition. The performance metric used to compare the performance of contesting 
teams was the target object detection accuracy, computed as the ratio between the number of 
correct predicted blocks and the total number of blocks to decode. Based on the average target 
object accuracy across subjects and sessions, the approaches proposed by each team were 
ranked up.  

The following list of IDs reflects the final ranking of the competition:  
- ID-1: D. Borra, S. Fantozzi and E. Magosso [37] 
- ID-2: E. Santamaría-Vázquez, V. Martínez-Cagigal, J. Gomez-Pilar and R. Hornero [38].  
- ID-3: L. de Arancibia, P. Sánchez-González, E. J. Gómez, M. E. Hernando and I. 

Oropesa [39].  
- ID-4: M. Bittencourt-Villalpando and N. M. Maurits [40].  
- ID-5: D. Krzemiñski, S. Michelmann, M. Treder and L. Santamaria [41].  
- ID-6: A. Miladinovic ́, M. Ajc ́evic ́, G. Silveri, G. Ciacchi, G. Morra, J. Jarmolowska, 

P. P. Battaglini and A. Accardo [42].  
- ID-7: B. Chatterjee, R. Palaniappan and C. N. Gupta [43].  
- ID-8: V. S. Adama, S. Benjamin and T. Schmid [44].  
- ID-9: H. Zhao, S. Yu, J. Prinable, A. McEwan and P. Karlsson [45].  
For each team, a brief description of the proposed methodology is reported:  
- ID-1: Epochs were extracted between −100–1000 ms, and the signals were downsampled 

to 128 Hz. The decoding solution was based on a CNN performing classification at the 
level of single trial (EEG response to a single stimulus, without averaging). The input 
was a 2-D representation composed by the EEG channels along one dimension (spatial 
dimension) and time steps along the other dimension (temporal dimension). The CNN 
was an adaptation of EEGNet [27] trained to discriminate between P300 and non-P300 
classes. In this CNN design, depthwise and pointwise convolutions are used to keep the 
number of trainable parameters limited. The architecture in its fundamental subnetworks 
and main connections between neurons is displayed in Figure 1.3. Furthermore, a detailed 
description of these subnetworks including the main hyper-parameters, output activation 
shapes and number of trainable parameters introduced is reported in Table 1.2. The CNN 
is composed by 3 main subnetworks (here labeled as A, B, C), performing different 
operations on the input. These include a temporal and spatial feature extractor (Figure 
1.3A) that learns meaningful temporal and spatial filters, a summary feature extractor 
(Figure 1.3B) that learns to extract temporal summaries for each feature map of the 
subnetwork A individually; and a classification module (Figure 1.3C) that finalizes the 
classification task based on the output of the subnetwork B. The obtained single-trial 
probabilities were then averaged together across runs related to a specific object 
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belonging to each block, and then the object with maximum average probability was 
selected, solving the target 8-way classification task. Different intra-subject training 
strategies were explored, including inter-session (i.e., training subject-specific 
classifiers) and intra-session (i.e., training session-specific classifiers) training strategies. 
The top-performing solution of ID-1 was the one adopting a subject-wise inter-session 
strategy. The code of the CNN and the weights of the trained models are available at 
https://github.com/ddavidebb/ IFMBE2019Challenge-BCIAUT-P300.  

 

 
Figure 1.3 – Architecture schematization of the winning solution ID-1 based on EEGNet. The represented shapes 
correspond to the output of each layer. Green lines represent convolutional connections, red lines pooling 
connections, and blue lines dense connections. The CNN is composed by a temporal and spatial feature extractor 
(A), a summary feature extractor (B) and a classification module (C).  

 
Table 1.2 – Architecture design inspired from EEGNet and adopted in ID-1. K and F are the number and the size 
of the kernels, respectively. P is the padding size, D the depth multiplier, N the number of neurons in the dense 
layer and finally p the dropout rate. Light gray denote layers with trainable parameters. The total number of 
trainable parameters is 1386. *Unitary kernel max-norm constraint. 

Subnet. Layer ID Layer Hyper-
parameters 

# pars Output 
shape 

Activation 

A A.1 Input 
 

0 (1,8,140) 
 

A.2 Temporal Conv2D K=8, F=(1,65), 
P=(0,32) 

520 (8,8,140) Linear 

A.3 BatchNorm2D 
 

16 (8,8,140) 
 

A.4 Spatial Depthwise-
Conv2D* 

D=2, K=16, 
F=(8,1), P=(0,0) 

128 (16,1,140) Linear 

A.5 BatchNorm2D 
 

32 (16,1,140) 
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A.6 Activation 
 

0 (16,1,140) Exponential 
Linear Units 

(ELU) 
A.7 AvgPooling2D F=(1,4) 0 (16,1,35) 

 

A.8 Dropout p=0.25 0 (16,1,35) 
 

B B.1 Temporal 
Depthwise-Conv2D 

D=1, K=16, 
F=(1,17), P=(0,8) 

272 (16,1,35) Linear 

B.2 Temporal 
Pointwise-Conv2D 

K=16, F=(1,1), 
P=(0,0) 

256 (16,1,35) Linear 

B.3 BatchNorm2D 
 

32 (16,1,35) 
 

B.4 Activation 
 

0 (16,1,35) ELU 
B.5 AvgPooling2D 

 
0 (16,1,4) 

 

B.6 Dropout p=0.25 0 (16,1,4) 
 

C C.1 Dense N=2 130 (2,) Linear 
C.2 Activation 

 
0 (2,) Softmax 

 
- ID-2: EEG signals were epoched between 0–1000 ms, applying a baseline (−200-0 ms) 

normalization. The input representation is the same as in ID-1. The task was aced as a 2-
way classification decoding P300 and non-P300 classes for each trial adopting an 
adaptation of the CNN proposed by Manor et al. [46], a CNN-LSTM and a CNN-
BLSTM. Furthermore, these deep learning architectures were compared with a more 
traditional machine learning pipeline including SWLDA. The top-performing algorithm 
proposed by ID-2 was CNN-BLSTM. This network was composed of one convolutional 
layer 1-D that extracts spatio-temporal patterns on the input, two bidirectional LSTM 
layers and one dense layer. The single-trial probabilities were averaged to obtain object-
level probabilities as in ID-1. An intra-subject and inter-session training strategy was 
adopted, training subject-specific classifiers. The code of the models and the weights of 
the trained models are available at https://github.com/esantamariavazquez/ 
IFMBE2019Challenge-BCIAUT-P300.  

- ID-3: EEG signals related to a specific object were averaged across trials of the same 
block. Feature extraction was based on temporal and time-frequency parameters. 
Temporal features were extracted in epochs between 0–1000 ms by downsampling the 
signals with a decimation factor of 10. In addition to temporal features, features based on 
continuous wavelet transform (CWT) were extracted from epochs between 200–712 ms. 
The t-CWT was computed based on a Mexican Hat wavelet on scales corresponding to 
the delta (0.5–4 Hz) and theta (4–8 Hz) bands [20,21]. These temporal and time-scale 
features were concatenated across channels in a single vector. Principal component 
analysis (PCA) was applied for feature dimensionality reduction, which resulted in a final 
vector of 120 features. A comparison of different combinations of linear and non-linear 
machine learning approaches was performed. More specifically, linear discriminant 
analysis (LDA) and support vector machines with linear kernel (LSVM), and a more 
complex support vector machine with radial kernel (RSVM) were employed. The object 
whose corresponding signals yielded a higher probability of containing a P300 event was 
chosen as predicted target object of the block. In addition, the effect on the accuracy of 
the number of EEG events averaged was studied. An inter-session training strategy was 
adopted, comparing both subject-specific and inter-subject classifiers, as well as the use 



 12 

of oversampling and boosting techniques to account for class imbalance. LDA 
outperformed the other classifiers and was used to classify the target object. Best results 
were obtained for > 3 events averaged. Training subject-specific classifiers yielded the 
best performance. Oversampling and boosting did not improve the final performance of 
the classifiers. The developed code and trained models are available at: 
dev.gbt.tfo.upm.es/ioropesa/ifmbe-scientific-challenge-competition---detection-of-
p300/tree/master.  

- ID-4: The approach consisted of the adaptation and parameter optimization of an SVM-
based algorithm that was previously developed for a 4-choice BCI [47] for target 
identification. During the first phase of the challenge, the original algorithm was adapted 
for 8 choices and the pre-processing parameters were defined as follows. First, temporal 
features were extracted in epochs between 0–1000 ms following each event onset and all 
channels were concatenated in a single feature vector per event for each participant and 
session. Then, feature vectors containing EEG signals from target events were pseudo-
randomly averaged across blocks belonging to the same session for noise reduction. 
During the second phase of the challenge, an intra-subject and intra-session training 
strategy was developed, augmenting the dataset with other sessions’ signals, and 
artificially increasing the number of targets per session by adapting the pseudorandom 
averaging procedure. Eight parameters related to data augmentation and SVM input 
parameters were optimized throughout the 9 initial attempts and then compared in terms 
of accuracy. The parameters’ description and settings per attempt are detailed in [40]. In 
the last attempt, the best performing parameter setting was selected, resulting in a 
customized solution per participant and per session.  

- ID-5: This solution exploited Riemannian framework for EEG signal decoding [23]. The 
approach was computationally efficient and recently outperformed other common state-
of-the-art approaches [48]. The Riemannian framework was combined with the ensemble 
learning. The idea was to build upon many "weak" (under-performing) classifiers and 
then combine their outcomes to improve the performance of the final model. The 
ensemble of 8 different data features was constructed by combining 2 different band-pass 
filters (1– 20 Hz or 1–8 Hz), 2 trial lengths (from −200 to 1000 ms or from 0 to 600 ms) 
and 3 different subsets of electrodes (all, central or posterior only electrodes). Then, the 
ERP prototypes were created by calculating the ERP for each channel. Next, the 
regularized covariance matrices of a single trial concatenated with the prototype were 
computed and the resultant matrices were projected into the tangent space of a reference 
matrix. Fisher Geodesic Discriminant Analysis (FGDA) was used to project the matrices 
to a lower-dimensional discriminative subspace. The resultant projections were flattened 
to vectors and used as the features to the ensemble learning algorithm comprising 400 
LDA classifiers. The output probability was aggregated across trials belonging to each 
object to decode the target per each block. An intra-subject and intra-session training 
strategy was adopted. The developed code is available at https://github.com/dokato/bci-
challange.  

- ID-6: The windows mean approach was used to obtain the temporal features on each 
trial. These were computed for each electrode on 50 ms windows without overlap from 
100–1000 ms. Bayesian logistic regression with automatic relevance determination (VB-
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ARD) [49] was used to classify the P300 event on each trial. The method has an 
advantage over other regularization techniques which need a separate validation set to 
eliminate irrelevant features. Besides, this approach generates a posterior distribution 
enabling the authors to model the varying-intercept sparse feature model. The modeling 
applied in this approach is similar to the one proposed by [50] with a variation of 
Automatic Relevance Determination (ARD) that instead of using type-II maximum 
likelihood [51], applies full Bayesian treatment [49]. The primary generative model 
matches the one employed in [50], and the prior is selected to be non-informative, 
modeled by a conjugate Gamma distribution [49]. This makes the model parameter-free 
and easy to use without deep knowledge in the data science domain. The advantage of 
this methodology is that obtained distribution allows the authors to find the inverse of 
the predictors’ covariance matrix (precision matrix) and apply Automatic Relevance 
Determination (ARD) that assigns an individual hyper-prior to each regression 
coefficient separately determining their relevance and produces for each trial a class-
belonging probability. Lastly, single-trial probabilities were averaged together across 
trials for each object belonging and the one with maximum average probability was 
selected. In this method, an intra-subject and intra-session training strategy was 
performed. The demo code is available at https://github.com/miladinovic/ BCILabTS 
under subfolder userscripts.  

- ID-7: Whole signals were used (−200–1000 ms) and the pre-stimulus mean (−200-0 ms) 
was removed. Signals were filtered between 2–12 Hz and the filtered signals were 
downsampled 10-times. Then, these downsampled electrode signals were normalized 
epoch-wise in the range −100–1000 ms. These temporal features were used to classify 
the P300 event for each trial with BLDA, RUSBoost and CNN. The best performing 
classifier for each subject was used (subject-specific classifier). Then, a majority voting 
was done to determine the target object within each specific block. An intra-subject and 
inter-session training strategy was performed.  

- ID-8: EEG signals were averaged across trials related to a specific object belonging to 
each block. Temporal features were extracted for each electrode by averaging for each 
time window from 200–450 ms and decimating the output with a factor of 12. In addition, 
Pearson’s correlation coefficient was computed for each electrode between the time 
window of interest and the time window preceding stimulus presentation (−200-0 ms). 
These temporal features and correlation coefficients were concatenated across channels 
in a single feature vector. An inter-subject and inter-session training strategy was 
performed, by which a variety of competing supervised learning techniques (decision 
tree, random forest, SVM, MLP) were trained to classify the target object within each 
block. From those, MLP performed best on the given data.  

- ID-9: Epochs were extracted from 0–600 ms. An additional 20 Hz low-pass filter was 
applied to the original data. In addition, a custom filter was designed to address each 
subject- and session-specific noise features. The temporal features were selected using a 
linear support vector regression as a pre-selector for features in the data. A comparison 
between linear and non-linear methods was performed, using SVM, LDA, 1D 4-layer 
CNN, 1-layer LSTM. LDA was the top-performing classification algorithm for ID-9 and 
was used to classify the P300 event for each trial. Then, the label that appeared most 
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times within each block was the target object to decode. An intra-subject and intra-
session training strategy was adopted. The code is available at 
https://github.com/hyphenzhao/MEDICON2019ScientificChallenge.  

A summary of the top-performing method of each team adopted for the challenge is shown 
in Table 1.3.  

 
1.2.5. Statistical Analysis  

For each team, the best-performing solution proposed among the phase II attempts – in terms 
of target object accuracy averaged across subjects and sessions – was selected for analysis and 
the algorithms were then ranked up based on this average score. Furthermore, the metrics 
scored by algorithms ID-2:9 were compared with the winning algorithm (ID-1) using Wilcoxon 
signed-rank tests. To correct for multiple tests, a false discovery rate correction at 5% using 
the Benjamini-Hochberg procedure [52] was applied and the corrected p-values are reported.  
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Table 1.3 – Summary of the best-performing algorithm of each team developed for the challenge. 
ID # acc (%) Pre-processing Methodology Post-processing Training strategy Framework 

ID-1 92.3±1.8 • Epochs from -100 to 1000 ms 

• Downsampling to128 Hz 

• CNN based on EEGNet [27] • Average probability across runs 
within a specific block 

• Decoding of the target object as 
the object with maximum average 
probability 

• Intra-subject and 
inter-session 

• Python with 
PyTorch 

ID-2 84.3±3.2 • Epochs from 0 to 1000 ms 

• Baseline normalization from 
-200 to 0 ms 

• CNN-BLSTM • Average probability across runs 
within a specific block 

• Decoding of the target object as 
the object with maximum average 
probability 

• Intra-subject and 
inter-session 

• Python with Scikit-
learn and Keras 

ID-3 82.0±2.5 • Temporal features: 
o Ensemble averaging per 

block 
o Temporal epoching from 

0 to 1000ms  
o Moving-average 

downsampling 

• CWT features: 
o Temporal epoching from 

200ms to 712ms 
o Most differential points 

computed with t-Student 
(t-CWT) 

• Temporal features concat (200 features) 

• Computation of the t-CWT [21] based on Mexican Hat 
wavelet (128 points per channel) and CWT features concat. 
(1024 features) 

• Feature reduction based on PCA (120 features) 

• LDA 

• The object whose corresponding 
signals yield a higher probability 
of containing a P300 was chosen 
as predicted target object of the 
block 

• Intra-subject and 
inter-session 

• MATLAB with 
Statistics and 
Machine Learning 
Toolbox and 
Signal Processing 
Toolbox 

ID-4 81.5±2.6 • Epochs from 0 to 1000 ms 

• Pseudorandom 

• averaging of ERP segments. 

• Feature vector with 2000 elements per ERP (concat. of 8 
channels*250 elements) 

• SVM  

• The feature vectors were sorted 
according to the event (flashed 
object, from 1 to 8) 

• All runs per block were averaged, 
per event 

• The predicted target corresponds 
to the event with the highest 
score. 

• Intra-subject and 
intra-session 

• Data 
augmentation with 
other sessions’ 
signals and with 
pseudorandom 
averaging 

• MATLAB with 
Statistics and 
Machine Learning 
Toolbox 2017.  
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ID-5 81.2±2.1 • Band-pass filtering with two 
different filters (1-20 Hz or 
1-8 Hz) and two variations of 
trial length (whole signal or 
the first 600 ms after stimuli 
onset) 

• Three subsets of electrodes 
were chosen (all, central or 
posterior electrodes) 

• ERP prototypes were created by calculating the ERP for each 
channel 

• Regularized covariance matrices of a single trial signal 
concatenated with prototype were calculated  

• The resultant covariance matrices were projected into the 
tangent space of a reference matrix 

• FGDA was used to project the matrices in tangent space to a 
lower-dimensional discriminative subspace. These were used 
as features. 

• Ensemble of 400 LDA classifiers (taking 40% of data samples 
and 60% of features) operated on ensemble of signal 
preprocessed in 8 different combinations 

• Aggregated probability of trial 
belonging to each of the classes. 

• Intra-subject and 
intra-session 

• MATLAB 

ID-6 80.3±2.2 • Epochs from 100 to 1000 ms • Temporal features computed on 50 ms windows, without 
overlap, producing 18 features per channel for each event 

• VB-ARD  

• Average probability across runs 
within a specific block 

• Decoding of the target object as 
the object with maximum average 
probability 

• Intra-subject and 
intra-session 

• MATLAB  

• BCILAB 

ID-7 76.3±2.9 • Epochs from -200-1000 ms 

• Pre-stimulus mean (-200-0 
ms) was removed. 

• Band-pass filtering 2-12 Hz 

• Normalization epochwise to 
the interval [-1,1] 

• Temporal features were extracted by downsampling with a 
factor of 10 the normalized and filtered signals 

• Three classifiers were trained and tested: 
o BLDA 
o RUSBoost 
o CNN 

• The best performing classifier for 
each subject was used 

• Majority voting within each run 
to determine which flash has been 
classified as target maximum 
number of time and that was 
predicted as target for that 
particular run 

• Intra-subject and 
inter-session 

• MATLAB with 
Classification App 
RUSBoosted 
Trees  

ID-8 70.0±3.8 • Averaging of EEG signals 
across trials related to a 
specific object within each 
block 

• Temporal features (based on [53]): averaging within windows 
from 200-450ms; 56 features per channel (448 total) 

• Pearson’s correlation coefficients: coefficients were computed 
between the time window of interest and the time window 
preceding stimulus presentation (-200-0 ms); 8 features per 
channel (64 total) 

• Concatenation of temporal and pearson’s coefficients across 
channels in a single feature vector MLP 

- • Inter-subject and 
inter-session  

• MATLAB (pre-
processing)  

• Python with Scikit-
learn 
(main algorithm) 

ID-9 67.2±3.3 • Epochs from 0-600 ms 

• Low-pass filter 20 Hz 

• Custom filter to address each 
subject- and session-specific 
noise features deduced from 
non-target epochs 

• Linear support vector regression as feature pre-selector 

• LDA 

• The label that appeared most 
times within each block was the 
target object to decode 

• Intra-subject and 
intra-session 

• Python with Scikit-
learn 
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1.3. RESULTS  

In Tables 1.4, 1.5 the accuracies of the proposed approaches are shown, describing the 
decoding variability across subjects and recording sessions. In particular, Table 1.4 reports for 
each subject the average target object accuracy across sessions (i.e., performance at the level 
of single subjects), while Table 1.5 reports for each session the average target object accuracy 
across subjects (i.e., performance at the level of single session).  

 
Table 1.4 – Performance at the level of single subject as represented by the average target object accuracies of 

the best approach proposed by each team. The mean accuracy (acc) and its standard error (SEM) are reported. 

Wilcoxon signed-rank test was used to compare ID-1 with ID-2:9 and the corrected p-values for multiple tests are 

reported (*p<0.05, **p<0.01, ***p<0.0001). 

 
ID # Accuracy at the level of single subject (%)  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 acc 
(mean±SEM) 

ID-1 81 100 86 96 93.5 96 96.5 100 90.5 98 94 84.5 86.5 81.5 100 92.3±1.8 
ID-2 56  98 67.5 96  80 88 86.5  99 82 93 87.5 80  81 71.5 98.5 84.3±3.2** 
ID-3 73 95 71 91 82.5 86 85 91.5 68.5 88.5 86 80.5 60 84 87.5 82.0±2.5*** 
ID-4 64.5 92 68 94.5 84 86 81.5 94 71 87 87 82 66 77 88 81.5±2.6*** 
ID-5 69 91 67 88.5 79.5 82.5 83 95 82.5 81.5 85.5 79 69 78 87.5 81.2±2.1*** 
ID-6 68 91.5 71.5 92.5 80 84 79 94.5 73.5 82.5 84 78.5 68.5 71.5 85.5 80.3±2.2*** 
ID-7 54 93 62.5 90 73 85.5 76 88.5 71 78 80.5 78 65 65 84.5 76.3±2.9*** 
ID-8 48 84 58 69 69.5 52 84 94 72 87.5 77 64 50 56.5 84.5 70.0±3.8*** 
ID-9 46 85 53 77 65 66.5 67.5 89 57 72 73.5 73 59.5 47 77.5 67.2±3.3*** 

 
Table 1.5 – Performance at the level of single session as represented by average target object accuracies across 

subjects of the best approach proposed by each team. The mean accuracy (acc) and its standard error (SEM) are 

reported. Wilcoxon signed-rank test was used to compare ID-1 with ID-2:ID-9 and the corrected p-values for 

multiple tests are reported. 

ID # Accuracy at the level of single session (%)  
4 5 6 7  

acc 
(mean±SEM) 

p-
value 

acc 
(mean±SEM) 

p-
value 

acc 
(mean±SEM) 

p-
value 

acc 
(mean±SEM) 

p-
value 

ID-1 92.8±2.4 - 90.4±3.5 - 94.8±1.8 - 91.1±3.0 - 
ID-2 85.1±3.1 0.0044 82.0±5.5 0.0026 90.5±2.6 0.0082 79.6±5.6 0.0026 
ID-3 81.5±3.3 0.0023 82.0±4.4 0.0062 84.3±2.6 0.0025 80.3±3.7 0.0015 
ID-4 80.3±3.0 0.0015 80.7±4.4 0.0037 84.9±2.6 0.0015 80.1±4.2 0.0020 
ID-5 79.9±3.3 0.0013 78.4±4.2 0.0015 85.1±2.4 0.0013 81.6±4.2 0.0032 
ID-6 78.1±3.6 0.0015 79.6±4.0 0.0017 83.6±2.6 0.0013 80.0±3.7 0.0013 
ID-7 75.2±3.8 0.0013 72.8±4.9 0.0013 80.3±2.6 0.0013 76.9±3.6 0.0013 
ID-8 70.5±4.3 0.0013 70.3±6.0 0.0013 72.7±3.8 0.0013 66.5±5.7 0.0013 
ID-9 64.8±4.3 0.0013 66.9±4.5 0.0013 69.3±4.2 0.0013 67.9±5.4 0.0013 

 
Averaging across sessions and across subjects, ID-1 significantly outperformed the other 

approaches, with less variability across subjects and sessions. Looking at the performance at 
the level of subjects, ID-1 provided the best performance metric for 14 out of 15 subjects (for 
subject #4, ID-2 provided a top-performance across the proposed solutions too), while ID-3 
provided the best performance metric for 1 out of 15 subjects (subject #14). Averaging across 
subjects, ID-1 significantly outperformed the other approaches within each recording session, 
with less variability across subjects and providing an average performance above 90% for all 
the phase II sessions.  
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1.4. DISCUSSION  

In this study, a large multi-session and multi-subject dataset acquired during a P300-based 
BCI intervention for young adults with ASD was presented. The evolution and the practical 
application of deep learning solutions for EEG decoding depend on the availability of large 
multi-subject datasets. Furthermore, the lack of multi-session datasets hinders the design of 
reliable algorithms across recording sessions. Thus, the described dataset represents a multi-
session collection of signals that can be used as a benchmark to design accurate and reliable 
data-hungry algorithms, such as deep learning solutions, for P300 decoding tasks.  

In fact, the richness of the dataset enabled the use of deep learning approaches in the context 
of the competition. Among the proposed algorithms, a deep learning solution based on a 
lightweight CNN (see ID-1 in Section Submissions and Approaches) outperformed both a 
CNN-BLSTM (p = 0.001, across subjects and sessions, see Table 1.4, ID-2) and more 
traditional machine-learning solutions (p < 0.001, across subjects and sessions, see Table 1.4). 
Furthermore, this was found also for single session recordings (p < 0.005 when comparing ID-
1 with other solutions, see Table 1.5), with average metrics above 90% (far above the chance 
level of 12.5%). The best non-deep learning solution adopted temporal and CWT features, 
alongside with PCA for dimensionality reduction and LDA for classification (see ID-3 in 
Section Submissions and Approaches). The training strategies performed in the approaches ID-
1:3 were both intra-subject and inter-session. In particular for the winning solution, from the 
experiments between inter-session and intra-session trainings performed by ID-1, better results 
were found using all the session signals during the optimization.  

When using deep learning approaches with EEG signals, the input representation and the 
design of spatio-temporal convolutions is not trivial and need to be addressed. Regarding the 
input representation, the time series are related to electrodes placed on a 3D surface. Typically, 
EEG signals can be represented in three different ways to feed the input layer of a neural 
network [27]:  

a. Using the original representation of all the available electrode signals to design a 2D 
representation where EEG channels are reported along one dimension (spatial 
dimension) and time steps along the other dimension (temporal dimension).  

b. Using a transformed representation (e.g., time-frequency decomposition) of all the 
available electrodes.  

c. Using a representation as in (b) with a subset of electrodes.  
Among these representations, the first one is preferred since a representation like (b) 

generally increases the dimensionality [27], leading to more trainable parameters and, thus, to 
the need of more data or an increased regularization. Furthermore, several hyper-parameters 
are introduced depending on the transformation applied. Lastly, representations like (c) share 
the main disadvantages of (b) with an additional needing of a priori knowledge about the more 
relevant subset of electrodes to choose. Therefore, representations that respect the scheme (a) 
are a good compromise between input dimensionality and capability to learn more general EEG 
features on all the electrode signals [27]. Among the best-performing solutions in this 
competition, ID-1 and ID-2 adopted the first input representation scheme.  
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Regarding the design of spatio-temporal convolutions, depending on the information 
processing in the convolutional module, three different solutions can be designed starting from 
the input layer:  

i. The temporal filtering is performed at first and then the spatial filtering.  
ii. The spatial filtering is performed at first and then the temporal filtering.  

iii. Mixed spatio-temporal filtering.  
The CNN adopted by ID-1 used the convolutions ordering as in point i., while the CNN-

BLSTM adopted by ID-2 as in (iii). Furthermore, among the solutions proposed by ID-2, there 
was a CNN based on [46] adopting a convolution ordering as in point ii.. Thus, in this 
competition, the solutions based on convolution ordering as in point i. outperformed the 
solutions following designs as in points i. and ii.  

In addition, the layers of the neural network need to be carefully designed to keep control 
the number of trainable parameters and thus, to avoid overfitting when handling a limited 
collection of training signals. To this aim, architectures like EEGNet [27] were proposed 
including optimized convolutions, such as depthwise and separable convolutions [54]. The 
CNN adapted in ID-1 was inspired from [27] and introduced only 1386 trainable parameters, 
while the CNN-BLSTM designed by ID-2 introduced 10113 parameters. Lastly, among the 
solutions proposed by ID-2 (different from the best-performing algorithm of ID-2), a CNN 
based on Manor et al. [46] introduced 37428963 parameters. Therefore, in this competition the 
use of a lightweight architecture to solve the target P300 decoding task was beneficial. This 
result is in line with the recent growth of interest in the design of optimized layers in CNNs for 
EEG decoding as proposed by [55,56].  

The BCIAUT-P300 dataset presents rare characteristics which reinforce its potentialities to 
work as a benchmark for P300-based BCI methods: 1) the multi-subject dimension, with 15 
participants undergoing the same procedure, enable the possibility of developing inter-subject 
methods for generalized off-the-shelf applications; 2) the multi-session dimension, since each 
subject repeated the same training task 7 times in different weeks, enables the study of stability 
and reliability of subject-specific BCI methods throughout time, and even the inclusion of 
reinforcement learning strategies by approaching the sessions gradually; and 3) the ASD 
clinical dimension, since real-life BCI applications on ASD patients pose several challenges, 
this dataset provide a test bench for data quality and artifactual EEG data on ASD population 
that new projects can use to validate its models before approaching the clinical patients directly.  
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1.5. CONCLUSIONS 

This paper presented the BCIAUT-P300 dataset which combines multi-session and multi-
subject data of 15 ASD participants using a P300-based BCI for training joint-attention skills. 
The dataset was used on the IFMBE scientific competition where 9 teams from around the 
world reach the final phase and presented their methods, which were briefly presented here. 
Overall, deep learning methods were able to overcome the more traditional machine learning 
approaches, with the best method obtaining an average accuracy of 92.3%. Future studies 
should address the multiple dimensions of the dataset to reduce training times while improving 
accuracy.  
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CHAPTER 2: A CNN FOR P300 DECODING AND ANALYSIS 
IN THE SPATIO-TEMPORAL DOMAIN 

The study reported in this chapter refers to the published journal paper entitled “Deep 
learning-based EEG analysis: investigating P3 ERP components” D. Borra and E. Magosso, 
Journal of Integrative Neuroscience, 2021. In this chapter, the CNN structure that resulted the 
best in the comparison analysis of Chapter 1 was used, not only to decode the P300 but also to 
design a CNN-based analysis tool of the P300 response. This analysis was based on an input 
explanation technique to highlight and enhance the relevant neural signatures related to P300 
in the spatio-temporal domain. 

 
The neural processing of incoming stimuli can be analyzed from the electroencephalogram 

(EEG) through event-related potentials (ERPs). The P3 component is largely investigated 

as it represents an important psychophysiological marker of psychiatric disorders. This is 

composed by several subcomponents, such as P3a and P3b, reflecting distinct but 

interrelated sensory and cognitive processes of incoming stimuli. Due to the low EEG signal-

to-noise-ratio, ERPs emerge only after an averaging procedure across trials and subjects. 

Thus, this canonical ERP analysis lacks in the ability to highlight EEG neural signatures at 

the level of single-subject and single-trial. In this study, a deep learning-based workflow is 

investigated to enhance EEG neural signatures related to P3 subcomponents already at 

single-subject and at single-trial level. This was based on the combination of a convolutional 

neural network (CNN) with an explanation technique (ET). The CNN was trained using two 

different strategies to produce saliency representations enhancing signatures shared across 

subjects or more specific for each subject and trial. Cross-subject saliency representations 

matched the signatures already emerging from ERPs, i.e., P3a and P3b-related activity 

within 350-400 ms (frontal sites) and 400-650 ms (parietal sites) post-stimulus, validating 

the CNN+ET respect to canonical ERP analysis. Single-subject and single-trial saliency 

representations enhanced P3 signatures already at the single-trial scale, while EEG-derived 

representations at single-subject and single-trial level provided no or only mildly evident 

signatures. Empowering the analysis of P3 modulations at single-subject and at single-trial 

level, CNN+ET could be useful to provide insights about neural processes linking sensory 

stimulation, cognition and behavior. 
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2.1. INTRODUCTION 

Event-related potentials (ERPs) are small changes in the electroencephalogram (EEG), 
time-locked to a stimulus or an event and reflecting the underlying neural information 
processing [1]. Thanks to the high-temporal resolution of EEG methodology, analysis of ERPs 
allows neural processing of an incoming stimulus to be assessed at different stages: from earlier 
stages, reflected by short-latency (<200 ms post-stimulus) ERP components and mainly 
mirroring early sensory processing and passive experience, to later stages reflected by long-
latency (>250 ms post-stimulus) components and involving cognitive processing of the 
stimulus such as stimulus evaluation and decision-making processes [2]. Since their discovery, 
ERPs have been largely used to provide insights into the neural mechanisms underlying 
sensation, cognition and behavior and have been considered as potential biological markers of 
neurological and neurodevelopmental disorders [3]. In particular, by comparing ERPs from 
neurological patients with those of matched healthy controls, steps forward have been made to 
elucidate impairments in neural processes potentially underlying the investigated 
psychopathological behavior [4].  

Among ERP components, P300 has gaining increasing interest in the last 50 years, since 
this component plays an important role as psychophysiological marker of psychiatric disorders, 
such as schizophrenia, bipolar disorder, autism spectrum disorder and depression [5–8], and 
can also be used as control signal for Brain-Computer Interfaces [9]. The P300 response is an 
attention-dependent ERP that was first reported in EEG signals by Sutton et al. [10]. This 
response is characterized by a positive deflection and can be evoked in an oddball task [11], 
where infrequent deviant (or target) stimuli are presented to the subject immersed in a sequence 
of frequent background (or standard) stimuli (two-stimulus oddball task, representing the 
traditional oddball task). The subject attends to stimuli by responding to targets either mentally 
(e.g., by counting target stimuli) or physically (e.g., by pressing a button when the target 
stimulus occur), while ignoring other stimuli. Then, the P300 response can be analyzed in the 
elicited ERPs and is characterized by a wave peaking within the time window between 250 and 
500 ms after the stimulus onset and it is mostly distributed on the scalp around the midline 
EEG electrodes - Fz, Cz, Pz - increasing its magnitude from the frontal to the parietal sites [12]. 
The oddball P300 wave has been consistently related to attention processes, memory and 
contextual updating, and decision making [12,13].  

Based on results obtained while changing eliciting conditions and stimulus properties 
[14,15], evidence has emerged that, rather than a single entity, the P300 could be modelled as 
a “late positive complex”, consisting of different positive subcomponents. In particular, at least 
two main subcomponents can be distinguished, in part temporally overlapped, namely P3a and 
P3b which have been associated to distinct, although interrelated, neural processes [12]. P3a is 
mostly distributed around the midline fronto-central electrodes [12] and is thought to be the 
marker of orientation of attention [16]. Indeed, P3a has been associated to initial reallocation 
of attention resulting from the detection of attribute changes in rare stimuli compared to 
standard ones [12,17]. Moreover, findings suggest a relationship between stimulus deviance 
and P3a response, that is the greater the mismatch the larger the P3a amplitude [17,18]. Neural 
sources of P3a seem to be localized in frontal structures and anterior cingulate cortex. P3b has 
a more posterior-parietal scalp distribution, and longer latency (by 50-100 ms) compared to 
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P3a. It is assumed to be generated by temporal/parietal structures and to reflect the match 
between the stimulus and voluntarily maintained attentional trace, relevant for the task at hand, 
involving memory processes and context updating. According to the neuropsychological model 
of Polich [12], P3a and P3b reflect two cascade processes, with P3a reflecting attention 
engagement driven by deviant stimuli initiated in frontal structures and P3b linked to the later 
phase of task-related stimulus meaning evaluation and working memory comparison.  

Due to the difficulty of clearly distinguishing these two components in the traditional two-
stimuli oddball task, a modification of this task, resulting in a three-stimulus oddball task, is 
often used to elicit and investigate these two subcomponents. This paradigm is obtained by 
inserting a rare non-target stimulus (distractor or novel stimulus) into the sequence of rare 
targets and frequent standard stimuli, allowing clearly distinguishable P3a and P3b to be 
obtained in response to the distractor stimuli and target stimuli, respectively. In particular, 
being the mismatch with the target stimulus larger for the distractor than for the target, the 
elicited P3a is more evident in the ERPs to distractors than to targets; on the contrary, target 
ERPs contain a more evident P3b component than distractor ERPs, as only targets are task-
relevant stimuli. Investigating both P3b and P3a components is of high interest to study 
cognitive functions, as they can contribute to better characterize distinct neural subprocesses 
and may also better discriminate between healthy and pathological conditions; for example P3a 
has been shown to be more sensitive than P3b in Parkinson’s disease [19], depression [20], 
alcoholism [21] and psychosis [22]. 

EEG signals are inherently noisy; thus, ERP components emerge only after averaging across 
trials and subjects (grand averaging procedure), which is the canonical ERP analysis derived 
from EEG. Therefore, these components and their interpretation may not hold at the subject 
and/or trial level [23,24]. Thus, investigating component peaks after the grand averaging 
procedure may hinder the ability to detect and investigate EEG features at the level of single 
subject or single trial, and consequently, may limit the assessment of relationships between 
these features and behavior [25] and the assessment of meaningful variability across subjects 
and even across trials within the same subject. To overcome this limitation, EEG features can 
be derived without relying on canonical analysis based on ERP component peaks. To this aim, 
time-frequency decomposition and data-driven approaches, such as machine learning and deep 
learning algorithms, may represent useful processing steps to obtain reliable estimates of EEG 
features at the level of single-subject and single-trial, improving the capability to functionally 
relate EEG features to behavioral performance [25].  

In particular, deep learning algorithms - representing a branch of machine learning 
techniques - consist of computational models designed by stacking layers of artificial neurons 
(deep neural networks) learning hierarchical feature representations of the input signals via 
multiple levels of abstraction; that is, deep neural networks learn complex non-linear functions 
that map inputs to feature representations. In the last decade, deep learning has gained large 
popularity in fields such as computer vision, speech recognition and natural language 
processing, to process and classify complex data such as images and time series [26]. Recently, 
deep neural networks have been started to be explored also with EEG, mainly for classification 
purposes e.g., to discriminate among trials corresponding to different conditions during a given 
task [27]. The most common deep learning approach for EEG classification utilizes 
convolutional neural networks (CNNs) [24–26][28]. These are specialized feed-forward neural 
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networks including convolution operators at least in one layer and are inspired by the 
hierarchical structure of the ventral stream of the visual system. In CNNs, neurons with specific 
local receptive fields are stacked on top of others; thus, receptive fields of neurons increase 
with the network depth and learned features increase in complexity and abstraction [29]. When 
CNN is trained in a supervised manner (e.g., in classification), it automatically learns 
classification-relevant features from the input EEG signals (i.e., class-discriminative features) 
based on labelled input examples (training stage), and then exploits this learning to classify 
previously unseen inputs (inference stage). Importantly, CNNs can be fed with raw input 
signals; therefore, these algorithms are capable of exploiting the entire temporal and spatial 
information contained in the EEG signal to extract the most class-discriminative features. This 
represents an important advantage compared to other more traditional machine learning 
techniques (mainly based on linear discriminant analysis, support vector machines, 
Riemannian geometry [30,31]) that can handle only limited aspects and/or timepoints of the 
EEG data [32], thus, not accounting for the overall EEG information; hence, relevant features 
(and the underlying neural processes) may be ignored in these approaches. In the last years 
CNNs have been successfully applied to several EEG classification problems, such as the 
classification of motor activity both imagined and executed [33–37], classification of emotions 
[38,39] and seizure detection [40]; furthermore, CNNs have found large application to detect 
the P300 event from single EEG trials [31,33,41–45], also in the perspective of use these 
algorithms inside Brain-Computer Interface (BCI) systems [9].  

Crucially, CNNs not only represent powerful tools for EEG classification, but may also 
provide novel approaches to improve EEG analysis and interpretation, in particular by 
exploiting post-hoc (i.e., applied after the training stage) explanation techniques (ET). These 
are techniques aimed at explaining the features learned by the CNN and that the CNN mostly 
relies on to discriminate among the classes [46]. Due to the automatic feature learning provided 
by the CNN, the composition CNN+ET represents a useful non-linear tool to explore the neural 
processes involved in the classified conditions in a data-driven manner, possibly contributing 
to validate and also inform cognitive neuroscience knowledge. It is noteworthy that, depending 
on the training strategy adopted for the CNN (e.g., using signals collected across subjects or 
signals within single subjects), the features learned by the CNNs may evidence common neural 
signatures across subjects (representing general task-relevant features), or may evidence neural 
signatures subject-specific and variability among subjects. Among ETs, saliency maps [47] 
outline the features within each single input EEG trial that mostly contribute to drive the correct 
decision (i.e., the correct output class) in the trained CNN; hence, saliency maps represent the 
timepoints and channels in each EEG input trial that are more relevant for the correct 
classification of that input example. Since this technique outlines the relevant features in the 
domain of input EEG signals (which represents a directly interpretable domain), saliency maps 
can be easily put in relation with ERP correlates. In addition, being the classification performed 
at the single trial level, saliency maps outline EEG features at the time scale of single trial.  

The aim of the present study is to go behind the simple application of CNNs for P3 decoding 
– as already amply investigated in literature [31,33,41–45] – but rather to explore the 
potentialities of the combination CNN+ET as a data-driven EEG analysis tool in the 
investigation of the electrophysiological signatures related to P3 (in particular, to its main 
subcomponents P3a and P3b), and to test its ability to enhance relevant signatures already at 
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the level of single-subject and single-trial. Therefore, the novelty of this study is the 
formalization of a procedure CNN+ET useful for analyzing meaningful features in EEG signals 
in response to events, and complementary to (and potentially more powerful than) the more 
classical ERP analysis. To this aim, we used a CNN to classify, at the level of single-trial, the 
EEG responses to target, distractor and standard stimuli in a 3-stimulus oddball task collected 
on several subjects; the CNN was realized using EEGNet, a previously validated CNN for P300 
decoding [33]. Two different training strategies were adopted, training CNNs using EEG trials 
from all subjects and from single subjects, so that the obtained classifiers could learn common 
cross-subject and subject-specific class-discriminative features, respectively. Then, saliency 
maps were used as ET and were applied to the target and distractor classes, to highlight the 
spatio-temporal samples of the input that resulted more class-discriminative, potentially 
highlighting P3b- and P3a-related features. Three different levels of representations and 
analyses were possible with this approach: cross-subject, within-subject and single-trial. The 
contribution of this study is twofold:  

i. Test the capability of a CNN to discriminate trials in a 3-stimulus oddball tasks, 
automatically identifying features in the input data that correspond to relevant 
characteristics of the ERP response (such as different proportions of P3a and P3b 
manifestations), by using CNN-derived representations at the cross-subject level. 

ii. Investigate how the adopted CNN+ET combination may enhance relevant neural 
signatures underlying the task at hand, both at the level of single subject and of single 
trial, overcoming the limitation of the canonical ERP analysis derived from a grand 
averaging procedure over EEG trials.   
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2.2. MATERIALS AND METHODS 

In this section, first we present the three-stimulus oddball dataset. Then, we formalize the 
problem of decoding the EEG signals of the dataset via CNNs and how this approach, coupled 
with an ET, could be used as an analysis tool. Subsequently, the specific CNN architecture and 
training strategies adopted here are illustrated; finally, the computation of the saliency maps, 
used as explanation technique, is described. 

 
2.2.1. Dataset and pre-processing 

In this study we adopted a public dataset [48] (available at 
https://openneuro.org/datasets/ds003490/versions/1.1.0) consisting of EEG signals recorded 
from 64 electrodes during a 3-auditory oddball task. Three stimuli were provided to 25 healthy 
participants for 200 ms using stereo speakers: standard stimuli (70% of trials) were 440 Hz 
sinusoidal tones, target stimuli (15% of trials) were 660 Hz sinusoidal tones and novel 
distractors (15% of trials) were sampled from a naturalistic sound dataset [49]. Participants 
mentally counted the number of target stimuli ignoring standard and distractor stimuli, 
resulting in a covert response (thus removing motor activity influences). A total number of 200 
trials (140, 30 and 30 trials, respectively for standard, target and distractor conditions) were 
recorded for each participant. EEG was recorded at 500 Hz with reference at CPz and ground 
at AFz.  

In order to be consistent with the reference study by Cavanagh et al [48] where these signals 
were first collected and analyzed, we decided to adopt here the same pre-processing pipeline 
as in that previous study, using the same version of the Matlab toolbox EEGlab (version 
14_0_0b, Swartz Center for Computational Neuroscience, UC San Diego, CA, USA) [50]. The 
processing steps are described below: 

i. Removal of the very ventral electrode signals (FT9, FT10, TP9, TP10) as they tend to be 
unreliable. 

ii. Epoching between [-2,2] s respect to stimulus onset. 
iii. Re-referencing to an average reference to recover CPz activity. 
iv. Identification of bad channels. To this aim, channels were separately marked for rejection 

computing the kurtosis of each channel finding outliers (default method used in the 
EEGLAB function “pop_rejchan” to perform automatic channel rejection), and applying 
the FASTER algorithm [51]. Channels that were automatically labelled for rejection from 
both previous algorithms were then rejected. Finally, bad channels were interpolated 
using spherical interpolation. 

v. Bad epochs were marked using the FASTER algorithm [51] and then removed. After this 
step, the average number of trials per participant was reduced to 130±2, 29±1, 29±1 
(mean ± standard deviation across participants), respectively for standard, target and 
distractor conditions. 

vi. Removal of independent components related to eye blinks. 
vii. Re-referencing to an average reference. 

viii. Baseline correction from -0.2 to 0 s pre-stimulus.  
ix. Band-pass filtering between 0.1-20 Hz. This filtering was included in the pre-processing 

pipeline of [42]; furthermore, it is worth noticing that this kind of filtering was performed 
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also in other CNN-based P3 decoding studies [31,42,43,45] (however, as reported in the 
Discussion, we also tested the effect on CNNs performances of maintaining a large 
frequency content of the signals, between 0.1-40 Hz).  

In addition to these steps, to reduce the size of the input in the CNN-based decoding, we 
downsampled signals to 100 Hz and considered EEG in epochs between [0,1] s post-stimulus. 
These steps reduced the time samples of the input to be processed in the CNN-based decoder. 
Thus, after this pre-processing pipeline, each EEG trial was a 2D matrix of shape (", $) =
(60,100) , where " represents the number of spatial channels (electrodes) and $ the number 
of time steps. 
 
2.2.2. CNN-based EEG decoding and analysis 

The EEG dataset of each subject participating in the study consisted of separated pre-
processed trials (see Section 2.1) with each trial belonging to one of the conditions of interest, 
i.e., standard, target and distractor. Each subject-specific dataset can be denoted by: 
*(") = {,-$

("), .$
(")/, … , ,-%

("), .%
(")/, … , ,-&(")'(

("), .&(")'(
(")/},  (2.1) 

indicating with 2(") the number of trials of the s-th subject (0 ≤ 4 ≤ 5 − 1 where 5 is the 
number of subjects).  
-%
(") is composed by the pre-processed EEG signals of the i-th trial, while .%(") is its 

associated label: 

7
-%
(") 	 ∈ ℝ)×+ , 0 ≤ ; ≤ 2(") − 1

.%
(") ∈ < = {=$, =(, =,} = {"standard", "target", "distractor"}	

. (2.2)  

A CNN can be trained to realize a classifier J aimed to discriminate between these 3 
conditions (3 output classes). In this supervised learning framework, during a training stage the 
system automatically learns, from a training set of EEG trials, the more relevant features for a 
correct classification, so that it can subsequently assign the correct class label to new unseen 
trials (belongings to the test set). That is, the CNN describes the function	J: 
J,-%

("); L/: ℝ)×+ → <,  (2.3) 
parametrized in the parameter array L (whose values are learned during training), mapping a 
label to each trial -%("), where -%(") represents the CNN input (2D matrix of shape (", $)).  

Adopting this 2D representation, CNN inputs preserve the original EEG structure. Going 
further deeper in the CNN, the algorithm processes the single-trial representation exploiting 
hierarchically structured features finalized to discriminate among classes (e.g., standard, target 
or distractor conditions). 

Then, the trained CNN processes test trials -%(") to discriminate between conditions of 
interest based on the class-discriminative features learned during training. The knowledge 
behind the discrimination J,-%

("); L/ operated by the CNN using the input trial -%
(") could be 

explained by deriving the most relevant features in that input example that drive the correct 
classification; in this way, meaningful neural signatures in the EEG input trial can emerge, 
related to the neural processes underlying the task at hand. To do so, the CNN can be paired 
with an ET, that computes for each spatio-temporal sample of the input trial -%

("), a relevance 
score indicating how relevant is that sample for the network to provide the correct 
classification. Thus, an ET provides a relevance representation O of the input -%

("): 
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O,-%
(")/:	ℝ)×+ → ℝ)×+, (2.4) 

where the function O depends on the trained classifier J, on the ground truth label .%(") assigned 
to the input trial, and on the specific method adopted to produce the relevance (Figure 2.1A). 

Therefore, according to this approach, each input trial -%
(") is processed by CNN+ET 

exploiting a highly non-linear transformation O,-%
(")/ aimed to enhance, already at the single 

trial level, the meaningful information contained in the EEG signals, by highlighting the spatio-
temporal samples more discriminative for each condition and likely informative of the neural 
processing underlying the type of stimulus provided to the subject.  
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Figure 2.1 – Proposed data-driven EEG analysis tool: workflow and scheme of the adopted CNN. (A) CNN+ET 

analysis framework. The input EEG trial !$(%) is processed by the CNN-based parametric classifier "#!$
(%); %&. 

Using "#!$
(%); %& and the correct output label '$(%), the relevance representation (#!$

(%)& is computed. (B) 

Schematic representation of EEGNet, implementing the parametric classifier ". Only its main layers are 

represented, for a more detailed description see Section CNN design: EEGNet and Supplementary Table 2.1; in 

particular note that non-linear activation layers have been omitted in this figure, but they are present in the 

implementation. The input !$(%) is processed by the CNN through many layers (with the layer name reported on 

the left) organized in 3 main blocks (spatio-temporal block: yellow, temporal block: green, fully-connected block: 

grey) to obtain the output conditional probabilities )#*&|!$
(%)&, - = 0,1,2. The intermediate output of each layer 

is reported as a white box with the spatial and temporal dimensions along rows and columns, respectively. 

Coloured boxes represent the filters of convolutional (blue boxes) and pooling (red boxes) layers.  

 
2.2.3. Proposed CNN+ET approach 
CNN design: EEGNet 

In this study we adopted EEGNet [33], a light (in terms of parameters to fit) CNN previously 
validated to discriminate between target and standard stimuli in a 2-stimuli oddball paradigm. 
This lightweight design was chosen to reduce the risk of overfitting, as the dataset adopted here 
consisted of a small number of examples for each subject (see Section 2.1). In particular, 
EEGNet is the lightest design among others proposed in the literature for P300 decoding [31]; 
using one of the other available CNNs (introducing >10K trainable parameters), the model 
would be more prone to overfitting.  

EEGNet is composed by 3 main blocks (Figure 2.1B). The first one can be referred to as a 
spatio-temporal block (yellow block in Figure 2.1B). It first processes the input EEG trial -%

(") 
to provide temporal features maps by applying convolutional filters to each single electrode 
(see intermediate output 0 in Figure 2.1B). In our implementation, 8 temporal filters were 
learned. Next, spatial filters spanning all the electrodes are learned by applying depthwise 
convolution, where each spatial filter is applied to just one previous feature map; the number 
of spatial filters learned for each temporal filter was set to 1 in our implementation (see 
intermediate output 1 in Figure 2.1B). Then, a layer applying a non-linear activation function 
(Exponential Linear Unit, ELU) to the spatially filtered activations is employed. This layer is 
followed by an average pooling layer, to reduce the computational cost; we adopted average 
pooling over 3-time steps with stride of 3, and these averaged activations are provided to the 
second block (green block in Figure 2.1B). The second block uses depthwise convolution and 
pointwise convolution (overall realizing a separable convolution) to summarize the spatially 
filtered activities (see intermediate output 3 in Figure 2.1B) in the temporal domain; here, 
separable convolution is designed to learn temporal patterns of about 500 ms on the spatially 
filtered activations. As in the first block, a subsequent layer applying an ELU activation 
function was employed, followed by average pooling (in this implementation over 6 time 
samples with a stride of 6) that further reduces temporal samples. Lastly, these activations were 
provided to a single fully-connected layer (see Figure 2.1B, grey block) consisting of 3 output 
neurons activated via a softmax function to produce the output probability distribution. Thus, 
the CNN output provides the conditional probabilities P,=-|-%

(")/, R = 0,1,2 for the conditions 
to be discriminated. Further details about the CNN and about its hyper-parameters (i.e., non-
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trainable parameters defining the unique functional form of the CNN) are reported in 
Supplementary Materials (see Section 2.6.1 and Supplementary Table 2.1).  

The architecture comprises also layers aimed to increase the generalization of the model 
(i.e., regularizers), such as batch normalization and dropout layers (with a dropout probability 
of 0.5, see also Section 2.6.1 of Supplementary Materials and Supplementary Table 2.1 for 
further details), in addition to regularizers applied during the training phase, such as early 
stopping. EEGNet hyper-parameters adopted here were different compared to its original 
formulation [33], as we carefully chose them (see Supplementary Table 2.1) to keep limited 
the overall number of trainable parameters (consisting of only 1259 parameters) in 
consideration of the very small dataset handled here, in view of further reducing the risk of 
overfitting. CNNs were developed in PyTorch [52] and trained using a workstation equipped 
with an AMD Threadripper 1900X, NVIDIA TITAN V and 32 GB of RAM. Codes will be 
released at https://github.com/ddavidebb/CNN-based_P3_analysis.git. 

 
Training strategy 

The training stage of EEGNet (i.e., optimization of parameters contained in	L) was 
performed using two different training strategies, at cross-subject level and within-subject 
level; the former is useful to evidence general EEG signatures common to all subjects, while 
the latter can emphasize possible differences among the subjects. Specifically, the following 
strategies were adopted: 

i. Leave-one-subject-out (LOSO) strategy. In this approach, the data of the s-th subject 
were held out and used as test set (thus, the test set corresponds to the entire dataset *(") 
of that subject), while the data of all other 24 subjects were used as training set. This 
procedure was repeated until each subject was selected as test subject; therefore, 25 
cross-subject CNNs were obtained, each one “agnostic” about the specific s-th subject 
used for testing.  

ii. Within-subject (WS) strategy. In this approach, for each s-th subject, a CNN was trained 
and tested using only data for that subject, thus, realizing a subject-specific CNN (L =
L(")). Since the dataset of each subject was limited, each subject-specific dataset *(") 
was partitioned into a training set and a test set adopting a 10-fold stratified cross-
validation scheme. It is worth noticing that considering all the 10 folds of the cross-
validation procedure, all the trials of the dataset *(") of that subject were tested.  

In both cases, a validation set composed by 20% of the training examples was extracted and 
used to define stop criteria (see early stopping below) for the optimization of the CNN. In WS 
trainings, the validation set was sampled by keeping the same class proportion as in the training 
set (i.e., sampling 20% of each class for each subject). In LOSO trainings the validation set 
was equally sampled from the 24 subjects (by sampling 20% of signals from each participant’s 
training set) and, in this case too, by keeping the same class proportion as in the training set. 

The cross-entropy between the empirical probability distribution (defined by training labels) 
and the model probability distribution (defined by CNN outputs) was used as loss function and 
was minimized using the Adaptive moment estimation (Adam) algorithm [53] with a mini-
batch size of 32, learning rate of 10'. and other parameters set as in its default implementation 
[52]. CNNs were trained for 500 epochs, early stopping the optimization when the validation 
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loss did not decrease for 50 consecutive epochs (set on the basis of the convergence speed of 
the algorithm via empirical evaluations), as also performed previously in [42]. To address class 
imbalance, parameter updates were weighted more or less depending on the class occurrence 
of the input examples. In particular, indicating with 2$

("), 2(
("), 2,

(") the number of trials for 
standard, target and distractor conditions for the generic s-th subject and given that 2$

(") >

2(
(") and 2$

(") > 2,
("), class weights were defined as 1, 2$

(") 2(
(")U , 2$

(") 2,
(")U , 

respectively for standard, target and distractor conditions.  
 

Performance metrics  

In this study, we used the Area Under the ROC curve (AUROC) to evaluate the performance 
of each trained CNN in the 3-class classification task; this metrics is commonly adopted to 
measure performance of P3 decoding at the level of single trials [33,42,44], a task intrinsically 
characterized by class imbalance (since P3 is evoked by infrequent stimuli as opposed to 
frequent ones). In particular, the AUROC (evaluated on the test set for each training strategy) 
of each possible pairwise combination of classes (one-vs-one, OVO) was computed - i.e., 
standard vs. target, target vs. distractor, standard vs. distractor - and then averaged across these 
three combinations, obtaining a multi-class AUROC (referred as av-AUROC in this study) 
[54]. Furthermore, we computed also the F1 score and Area Under the Precision Recall curve 
(AUPR) for the classes whose neural signatures were investigated in this study (i.e., target and 
distractor conditions), and these further metrics are reported in the Supplementary Materials 
(Supplementary Table 2.2).  

 
Statistical analysis 

To compare the OVO AUROCs and av-AUROCs between WS and LOSO strategies, 
Wilcoxon signed-rank tests were performed. To correct for multiple tests (4 in total), a false 
discovery rate correction at V = 0.05 using the Benjamini-Hochberg procedure [55] was 
applied. 

 
Explanation technique: saliency maps computation and processing 

Once networks were trained adopting WS and LOSO strategies, a post-hoc ET was used to 
derive useful representations about input spatio-temporal samples contributing more to the 
discrimination of target and distractor classes to investigate P3b- and P3a-related correlates. 
Here we adopted saliency maps [47] to compute the relevance score of each sample belonging 
to the input layer (overall " ∙ $ samples of the single-trial EEG data) for a specific class 
decision. It is useful to remember that both in case of LOSO and WS strategies, the entire 
dataset *(") of each subject was tested (see Section Training strategy); in the first strategy, 
using a cross-subject CNN (trained on the other subjects), in the second case using subject-
specific CNNs (trained in a cross-validation scheme). 

For each input trial -%(") belonging to the test set of the s-th subject, the relevance X%(") =
O,-%

(")/ was computed by backpropagating the gradient of the output neuron corresponding 
to the correct label .%(") (representing the output activation, immediately before the softmax 
function) back to the input layer (see Figure 2 for a schematic representation of the saliency 
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map computation and processing). The relevance map had the same shape as the input (X%(") ∈
ℝ)×+) and each X%,0-(") sample (indicating with j and k rows and columns, respectively) 
quantified how much a variation in the corresponding YR sample of the single trial, i.e., -%,0-("), 
affected the activation of the correct output neuron. That is, for each subject’s dataset *("), the 
associated collection of relevance was given by: 
X(") = {,X$

("), .$
(")/, … , ,X%

("), .%
(")/, … , ,X&(")'(

("), .&(")'(
(")/}, (2.5) 

containing one saliency map paired to each input trial. Then, these 2D trial-specific saliency 
maps were averaged across trials belonging to target and distractor classes; in this way, a 
saliency map for each output class was obtained for each subject. No post-processing was 
applied to the so obtained maps (e.g., computing the absolute or the square value), preserving 
the entire information. However, as the investigated EEG correlates involve positive 
modulations in ERPs respect to the standard condition (i.e., P3a and P3b), in this study we 
focused on positive values of the saliency maps, i.e., positive (negative) perturbations of input 
samples that increased (decreased) the correct class score. 

The previous procedure was applied both to cross-subject CNNs obtained with the LOSO 
strategy and to subject-specific CNNs obtained with the WS strategy, resulting in LOSO and 
WS saliency maps, respectively (see the diagram in Figure 2).  

In particular, for each subject two saliency maps (corresponding to target and distractor 
classes) were obtained both for the LOSO and WS strategies. LOSO saliency maps, being 
obtained from models trained on multiple subjects’ distributions, are more likely to reflect 
optimal class-discriminative input samples that are shared across subjects. Therefore, these 
representations allowed general task-related class-discriminative input samples to be inspected. 
Conversely, WS saliency maps – obtained from models trained on subject-specific distributions 
– are more likely to reflect subject-specific features. Therefore, these representations allowed 
the investigation of inter-subject variability of the more class-discriminative input samples.  

Then, the LOSO and WS saliency maps (two maps for each subject), were subjected to 
different processing. In the LOSO-CNN+ET analysis pipeline, saliency maps were averaged 
across subjects, separately for each output class of interest, to obtain a “2D cross-subject 
saliency map” for each output class. Then, the 2D cross-subject saliency map was also averaged 
across all electrodes or across all time samples, obtaining a “temporal cross-subject saliency 
pattern” and a “spatial cross-subject saliency pattern”, respectively. In addition, spatial cross-
subject patterns were computed averaging the 2D maps only within selected time windows 
comprising the main peaks of the temporal cross-subject pattern. These representations allowed 
an analysis at the cross-subject level resulting from a grand average procedure, similarly to 
ERPs. Conversely, in the WS-CNN+ET analysis pipeline, saliency maps were analyzed 
separately for each subject. For each subject, the 2D saliency map of each output class was 
averaged across electrodes or time samples to obtain a “temporal subject-specific saliency 
pattern” and a “spatial subject-specific saliency pattern”, respectively. Then, hierarchical 
agglomerative clustering (HAC) [56] was performed on temporal subject-specific patterns 
(separately for each output class of interest), to identify clusters of subjects characterized by 
different temporal saliency patterns. Different clusters denote different strategies adopted by 
the CNN in exploiting input samples to discriminate a specific class and may reflect differences 
across subjects in the underlying neural processes. In particular, HAC was performed using a 
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complete linkage (i.e., farthest neighbour clustering) and adopting the correlation between 
observations as distance metric (see Section 2.6.2 of Supplementary Materials for a description 
of the adopted distance metric). Four clusters were considered and the temporal subject-
specific patterns of the subjects within each cluster were averaged to obtain an average 
temporal saliency pattern at the level of cluster (“temporal cluster-specific saliency pattern”). 
In addition, the spatial subject-specific patterns of the subjects within each cluster (as resulted 
from the clustering in the temporal domain) were averaged, to obtain an average spatial 
saliency pattern at the level of cluster (“spatial cluster-specific saliency pattern”).  

Finally, we performed an analysis to investigate whether the proposed CNN+ET 
combination could be useful to enhance correlates related to P3a and P3b at the level of single 
subject and single trial compared to a canonical analysis based on evoked potentials. To this 
aim, for each condition of interest (target and distractor), we selected a single subject belonging 
to each cluster, as representative of that specific cluster, and we visually evaluated to what 
extent the information contained in the temporal saliency pattern of that subject and condition 
were contained and already visible in the evoked potentials of that subject for that condition 
(obtained by averaging the EEG trials of that subject corresponding to that condition). To 
perform such comparison, for each representative subject selected, evoked potentials were 
averaged together within a subset of electrodes that showed more P3a and P3b components; 
the temporal saliency maps to be compared were obtained by averaging the 2D subject-specific 
saliency maps across the same subset of electrodes too (rather than across all electrodes). These 
subsets of electrodes were P3, P1, Pz, P2, P4, PO3, POz, PO4 (showing more P3b) for target 
condition and F1, Fz, F2, FC1, FCz, FC2 (showing more P3a) for distractor condition (for this 
choice, see ERPs in Section 2.3.1). In this way, the comparison was limited on a small subset 
of electrodes that more expressed the specific ERP component of interest. Lastly, for each of 
the previous temporal patterns (i.e., temporal subject-specific saliency pattern and evoked 
potential, each one averaged across a specific subset of electrodes) that were both obtained by 
averaging across trials, we considered the single constituent trials and compared the associated 
saliency at the level of single trial with the corresponding EEG trial, still maintaining the 
averaging across the specific subset of electrodes. 
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Figure 2.2 – Schematic diagram of the saliency map computation and processing performed on LOSO (left 

branch, characterized by "'()(#!$
(%); %& and ('()(#!$

(%)&) and WS (right branch, characterized by 

"*)#!$
(%); %(%)& and (*)#!$

(%)&) models.  

 
  

2-D cross-subject trial-
specific saliency maps

Average across trials and

across subjects: 2-D cross-
subject saliency maps

2-D subject- and trial-
specific saliency maps

Average across trials: 2-D
subject-specific saliency

maps

Average across electrodes:

temporal cross-subject
saliency pattern

Average across time

samples: spatial cross-
subject saliency pattern

Average across time

samples: spatial subject-
specific saliency pattern

Average across electrodes:

temporal subject-specific
saliency pattern

Hierarchical agglomerative

clustering

Average across subjects

within cluster: temporal
cluster-specific saliency

pattern

Average across subjects

within clusters: spatial
cluster-specific saliency

pattern

Temporal saliency pattern

(subset of electrodes) for one

representative subject of

each cluster considering its

fundamental trials 

Temporal saliency pattern

(subset of electrodes) for one

representative subject of

each cluster



 39 

2.3. RESULTS 

2.3.1. Event Related Potentials 
The grand average ERPs of the target and distractor conditions are reported in Figures 2.3 

and 2.4, respectively. The same representations for the standard condition are reported in 
Supplementary Figure 2.1. These figures represent the conventional grand average across EEG 
trials (of the same condition) and across subjects, to obtain the evoked potentials.  

 

 
Figure 2.3 – Grand average ERP: target. (A) The grand average is reported as a 2D heatmap with electrodes and 

time steps along rows and columns, respectively. (B) The average temporal pattern obtained by averaging the 2D 

heatmap of panel A across the subset of electrodes showing more the P3b subcomponent (P3, P1, Pz, P2, P4, PO3, 

POz, PO4). The shaded area represents the mean value ± standard error of the mean, while the thick line represents 

A
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the mean value. (C) Topological representation of the average contribution of each electrode across all time 

samples of the 2D heatmap.  

 

 
Figure 2.4 – Grand average ERP: distractor. (A) The grand average is reported as a 2D heatmap with electrodes 

and time steps along rows and columns, respectively. (B) The average temporal pattern obtained by averaging the 

2D heatmap of panel A across the subset of electrodes showing more the P3a subcomponent (FC1, FC2, C1, C2, 

CP1, CP2). The shaded area represents the mean value ± standard error of the mean, while the thick line represents 

the mean value. (C) Topological representation of the average contribution of each electrode across all time 

samples of the 2D heatmap. 

 
In particular, grand averages are reported for all electrodes as 2D heatmaps (panels A), 

showing the main P3 components, P3a and P3b, with different proportions. The P3a component 
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can be observed especially in fronto-central/frontal regions (e.g., F1, Fz, F2, FC1, FCz, FC2, 
Figure 2.4A) for the distractor condition while it is less evident in the same regions for the 
target condition (see Figure 2.3A). In addition, the P3b component can be observed for the 
target condition in parieto-occipital/parietal regions (e.g., P3, P1, Pz, P2, P4, PO3, POz, PO4, 
Figure 2.3A), but not for the distractor condition (Figure 2.4A). Lastly, another component 
with a higher latency can be individuated in the distractor condition from centro-parietal to 
fronto-central regions (e.g., FC1, FC2, C1, C2, CP1, CP2, Figure 2.4A). Averaging the activity 
across different subsets of electrodes showing more P3a and P3b, the timing of P3a and P3b 
components became clearer, i.e., averaging across P3, P1, Pz, P2, P4, PO3, POz, PO4 for the 
target condition (Figure 2.3B) and across F1, Fz, F2, FC1, FCz, FC2 for the distractor condition 
(Figure 2.4B) (and standard condition too, Supplementary Figure 2.1B). In particular, the P3a 
and P3b appeared peaking within the time window 325-375 ms and 500-700 ms, respectively. 
Lastly, we reported also the overall spatial contribution by averaging the grand average of each 
electrode across all time samples (panels C), highlighting the overall topology of these 
components over the entire epoch (0-1000 ms). 

 
2.3.2. CNN performance 

At first, the performance of the CNN on the test set in the discrimination between the 
contrasted conditions needs to be analyzed, to validate the CNN in the objective discrimination 
task and thus, evaluate whether the CNN learned useful and robust class-discriminative 
features. This is an important validation stage as successive steps based on the combination 
CNN+ET exploit features learned by this system to derive useful representations and then to 
analyze P3 subcomponents (see Section Explanation technique: saliency maps computation 

and processing).  
OVO AUROCs (mean ± standard error of the mean across the subjects) are reported in 

Figure 2.5A, while av-AUROCs for each subject (the average across the three OVO AUROCs, 
see Section Performance metrics) are shown in Figure 2.5B, both for LOSO strategy and WS 
strategy. Furthermore, F1 scores and AUPRs are reported in the Supplementary Table 2.2. 
EEGNet scored av-AUROCs of 76.2±1.3% and 70.5±1.2%, respectively for LOSO and WS 
models. Cross-subject models (as obtained with the LOSO strategy) achieved higher av-
AUROCs (P = 2.1 ∙ 10'.) respect to subject-specific models (as obtained in the WS strategy). 
This was primarily related to a significant improvement in the discrimination between standard 
vs. distractor conditions (P = 1.7 ∙ 10'1), while other combinations resulted comparable in 
performance between the two strategies (see Figure 2.5A). Lastly, subject-level av-AUROCs 
(Figure 2.5B) were above the value obtained with a random classifier (i.e., \]^_" = 0.5) in 
all cases.  
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Figure 2.5 – CNN performance. (A) One-vs-one AUROCs using LOSO (red bars) and WS (blue bars) strategies. 

The height of bars denotes the mean value across subjects, while the error bar denotes the standard error of the 

mean. (B) Multi-class AUROCs (also referred as av-AUROCs in the manuscript) at the level of single subject 

obtained with the LOSO (red bars) and WS (blue bars) strategies. Note that the participant ID reported on the x-

axis reflects the participant ID of the dataset.  

 
2.3.3. EEG analysis based on the CNN and explanation technique 

In this section, the results obtained analyzing EEG signals with the CNN+ET combination 
are reported. These consisted in relevance representations of the input EEG data that supported 
more the discrimination between the three contrasted conditions, as operated by EEGNet. In 
particular, the relevance is reported for target condition and distractor conditions, as the EEG 
response associated to these stimuli allow the analysis of P3b and P3a.  

 
Cross-subject saliency 

In Figure 2.6 and 2.7 the 2D cross-subject saliency maps together with the derived temporal 
and spatial cross-subject saliency patterns are reported for target condition and distractor 
condition, respectively. These figures are obtained via the application of the LOSO CNN+ET 
procedure (see left branch in Figure 2.2); therefore, they are obtained differently from Figures 
2.3 and 2.4 which represent the canonical grand average ERP derived directly from EEG trials.  

 

A
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Figure 2.6 – Cross-subject saliency: target. (A) The 2D cross-subject saliency map is reported as a heatmap. (B) 

Temporal cross-subject saliency pattern, obtained by averaging the 2D saliency map across all electrodes. The 

time intervals where the saliency is higher are denoted by vertical red lines. For these specific intervals, the 

topological representation of the spatial cross-subject saliency pattern is also reported, obtained by averaging the 

saliency values of each electrode within each time interval. (C) Topological representation of the spatial cross-

subject saliency map, obtained by averaging the saliency values of each electrode over the entire epoch (0-1000 

ms).  

 

A

B C



 44 

 
Figure 2.7 – Cross-subject saliency: distractor. (A) The 2D cross-subject saliency map is reported as a heatmap. 

(B) Temporal cross-subject saliency pattern, obtained by averaging the 2D saliency map across all electrodes. The 

time intervals where the saliency is higher are denoted by vertical red lines. For these specific intervals, the 

topological representation of the spatial cross-subject saliency pattern is also reported, obtained by averaging the 

saliency values of each electrode within each time interval. (C) Topological representation of the spatial cross-

subject saliency map, obtained by averaging the saliency values of each electrode over the entire epoch (0-1000 

ms). 

 
Regarding the temporal cross-subject saliency patterns (Figures 2.6B and 2.7B), the 

temporal windows that mostly contributed to the discrimination were different in the two 
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conditions: they were 0-100 ms and 400-650 ms post-stimulus for the target condition (see 
intervals between vertical red lines in Figure 2.6B), and 300-400 ms and 750-850 ms post-
stimulus for the distractor condition (see intervals between vertical red lines in Figure 2.7B). 
In addition, by visually inspecting the spatial patterns (Figures 2.6C and 2.7C) it is evident that 
the electrodes more class-discriminative over the entire epoch (0-1000 ms) were parietal sites 
(P1, P3, P5, P7, Pz, P2, P4, P5) for the target condition and sites from central to frontal areas 
(C1, C6, FC1, FCz, FC2, Fz) for the distractor condition, indeed these sites are characterized 
by intense red colour in the map. However, distinct relevant intervals (i.e., between the vertical 
red lines in Figures 2.6B and 2.7B) may be related to different electrode contributions, as 
reported in the spatial representations within the vertical red lines in Figures 2.6B and 2.7B. In 
particular, these showed a stronger involvement of sites from parieto-occipital to centro-
parietal areas within 400-650 ms than 0-100 ms post-stimulus for the target condition. In 
addition, for the distractor condition, the spatial distribution related to the interval 300-400 ms 
post-stimulus highlighted a strong involvement of sites from central to frontal areas, while 
within 750-850 ms post-stimulus the more contributing electrodes lied also in backward sites 
(e.g., centro-parietal sites). 

 
Cluster analysis: subject-specific and trial-specific saliency 

In Figures 2.8 and 2.9 the temporal (left panels, thick black lines) and spatial (right panels) 
cluster-specific saliency patterns for each of the 4 clusters are reported for target and distractor 
conditions, respectively. Left panels contain also the temporal subject-specific saliency 
patterns (thin black lines) belonging to each cluster.  
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Figure 2.8 – Cluster analysis: target. For each cluster individuated by hierarchical agglomerative clustering, the 

left panel displays the temporal cluster-specific saliency pattern (thick line) together with the temporal subject-

specific saliency patterns (thin lines) defining each cluster, while the topological map on the right displays the 

spatial cluster-specific saliency pattern.  
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Figure 2.9 – Cluster analysis: distractor. For each cluster individuated by hierarchical agglomerative clustering, 

the left panel displays the temporal cluster-specific saliency pattern (thick line) together with the temporal subject-

specific saliency patterns (thin lines) defining each cluster, while the topological map on the right displays the 

spatial cluster-specific saliency pattern. 

 
For the target condition, most of the temporal subject-specific saliency patterns turned out 

to be grouped into two clusters: one (cluster 4 with 5 = 9 subjects) evidenced higher (positive) 
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saliency in a relatively narrow temporal window centered at around 500 ms, the other (cluster 
2 with 5 = 8 subjects) exhibited higher saliency in a larger temporal window approximately 
around 450 ms. In only a few cases (cluster 3 with 5 = 5 subjects), an earlier time window 
(approximately between 250 ms and 450 ms) appeared more salient, although at lower levels 
compared to previous clusters. For these clusters, mainly centro-parietal and parietal electrodes 
were more discriminative, with a spatial distribution modulated depending on the specific 
cluster, i.e., more right-lateralized distribution for clusters 2, 3 and left-lateralized for cluster 
4. Finally, cluster 1 (with only 5 = 3 subjects) seems to collect exceptions not falling in any 
of the previous clusters (clusters 2-4); the latter ones, although with clear differences between 
one cluster and the other, were characterized by a main positive peak (unimodal patterns) 
mostly developing before 500 ms, while patterns in cluster 1 did not exhibited such trait.  

Conversely, for the distractor condition, bimodal distributions appeared evident (i.e., two 
main peaks can be individuated in the temporal patterns). Indeed, most of the temporal subject-
specific saliency patterns exhibited two peaks within two temporal windows centered at around 
350 ms and 750 ms (cluster 1 with 5 = 14 subjects). A few subjects (cluster 3 with 5 = 3) 
displayed a similar bimodal pattern but with the two peaks slightly anticipated. Only in a few 
cases, unimodal temporal patterns emerged with higher latencies, i.e., within windows centered 
at around 450 ms post-stimulus (cluster 2 with 5 = 5 subjects). For these clusters, mainly 
centro-frontal and frontal electrodes were more discriminative, with a different spatial 
distribution depending on the specific cluster, i.e., a more dispersed centro-frontal distribution 
for cluster 1, a more frontal distribution focused around the midline for cluster 2, and a more 
central distribution focused around Cz for cluster 3. Finally, cluster 4 (with only three subjects) 
is characterized by very small saliency values. 

Lastly, for a single representative subject belonging to each previously computed cluster, 
Figures 2.10 and 2.11 display the EEG evoked potentials (Figure 2.10A and Figure 2.11A) and 
the temporal saliency patterns (Figure 2.10B and Figure 2.11B) for the target condition and 
distractor condition, respectively, at the level of single subject. Specifically, Figure 2.10A and 
Figure 2.11A report the average of EEG (target or distractor) trials for the specific subject (i.e., 
a subject-level EEG-derived representation) while Figure 2.10B and Figure 2.11B report the 
average of the saliency associated to the same trials of the same subject (i.e., the WS CNN+ET 
representation). In the same figures, the corresponding patterns at the level of single trials of 
the same subject (Figure 2.10C and Figure 2.11C reporting EEG over single trials, and Figure 
2.10D and Figure 2.11D reporting CNN-derived saliency over single trials) are shown (see 
Section Explanation technique: saliency maps computation and processing for further details 
about the performed processing). It is worth noticing that in this case, at variance with Figures 
2.8 and 2.9, the displayed quantities (both CNN-based saliency patterns and EEG patterns) 
refer only to a subset of electrodes (more parietal and more frontal in case of the target 
condition and distractor condition, respectively). It appears evident how saliency patterns 
(Figure 2.10B, D and Figure 2.11B, D) could enhance meaningful features not or only little 
evident in quantities directly derived from EEG, i.e., single-subject evoked potentials (Figure 
2.10 A and 2.11A) and single EEG trials (Figure 2.10C and 2.11C), see also Section 2.4.  
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Figure 2.10 – Comparison between CNN-derived saliency and EEG-derived representations at single-subject and 

single-trial levels: target. These representations are displayed for one representative subject for each of the four 

clusters of Figure 2.8 (each column of Figure 2.10 is related to a specific cluster). (A, B) Evoked potentials directly 

derived from EEG trials (Figure 2.10A) and temporal WS CNN-derived saliency patterns (Figure 2.10B) at the 

level of single subject; both these representations involve averaging across trials of the same condition and across 

a subset of electrodes (P3, P1, Pz, P2, P4, PO3, POz, PO4). See Section Explanation technique: saliency maps 
computation and processing for details. (C, D) Single EEG trials (Figure 2.10C) and WS CNN-derived saliency 

pattern (Figure 2.10D) at the level of single trials: each row corresponds to a trial, and the representation in each 

row still involves averaging across the subset of electrodes. In practice, the patterns in Figure 2.10A and 2.10B 

correspond to averaging, across the rows, the representations in Figure 2.10C and 2.10D, respectively.  
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Figure 2.11 – Comparison between CNN-derived saliency and EEG-derived representations at single-subject and 

single-trial levels: distractor. These representations are displayed for one representative subject for each of the 

four clusters of Figure 2.9 (each column of Figure 2.11 is related to a specific cluster). (A, B) Evoked potentials 

directly derived from EEG trials (Figure 2.11A) and temporal WS CNN-derived saliency patterns (Figure 2.11B) 

at the level of single subject; both these representations involve averaging across trials of the same condition and 

across a subset of electrodes (FC1, FC2, C1, C2, CP1, CP2). See Section Explanation technique: saliency maps 
computation and processing for details. (C, D) Single EEG trials (Figure 2.11C) and WS CNN-derived saliency 

pattern (Figure 2.11D) at the level of single trials: each row corresponds to a trial, and the representation in each 

row still involves averaging across the subset of electrodes. In practice, the patterns in Figure 2.11A and 2.11B 

correspond to averaging, across the rows, the representations in Figure 2.11C and 2.11D, respectively.  
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2.4. DISCUSSION 

In this study, the combination of a CNN (here EEGNet) with an ET (here gradient-based 
saliency maps) was adopted as a data-driven EEG analysis tool to investigate the 
electrophysiological signatures associated to P3 subcomponents (i.e., P3a and P3b), using EEG 
signals recorded during a 3-stimulus oddball paradigm. The adopted CNN+ET, by computing 
input saliency representations O,-%

(")/, allows a direct understanding of the more relevant 
spatial and temporal input samples when discriminating between standard, target and distractor 
stimuli. In addition, coupling the CNN+ET with a proper CNN training strategy, such as leave-
one-subject-out strategy and within-subject strategy, the obtained relevance results more 
focused on features shared across subjects (i.e., common task-related features) and on subject-
specific features, respectively. Therefore, depending on the training strategy, CNN+ET could 
provide useful information about the neural signatures belonging to the input domain more 
related to the specific task investigated or more related to the single subject. Furthermore, due 
to the nature of the supervised learning approached, performed to provide a discrimination 
between the contrasted conditions using single EEG trial as input, the provided CNN+ET can 
be used to investigate the more discriminative features already at the level of single trial. In the 
following, once commented the CNN performance in the addressed classification task, these 
aspects will be separately discussed. 

 
2.4.1. CNN performance 

EEGNet scored significantly higher performance when using cross-subject distributions as 
input during training (LOSO) than subject-specific input distributions (WS), especially in 
distinguishing standards vs. distractors (see Figure 2.5). This could be due to the extremely 
compact dataset used in this study, consisting of 188 trials on average per subject (the number 
of trials per subjects depended on the pre-processing procedure, see Section 2.1). Indeed, when 
training EEGNet with subject-specific distributions, only 170 training trials on average were 
used within each fold. Conversely, during LOSO trainings 24 subjects’ signals were exploited, 
leading to 4512 training trials on average. Therefore, despite LOSO trainings were inherently 
more challenging due to the subject-to-subject variability in the input distributions, EEGNet 
performance resulted higher than WS trainings possibly due to the availability of a larger 
training set. In addition, it is worth mentioning that the LOSO performance achieved by 
EEGNet in the addressed 3-classes decoding problem resulted similar to that obtained in more 
common 2-classes P300 decoding problems (i.e., target vs. standard conditions) [42], despite 
the increased difficulty in the classification task due to the discrimination between more than 
two conditions (i.e., standard vs. target vs. distractor).  

Furthermore, EEGNet performance could have been affected by the specific applied pre-
processing. In this study, we kept the pre-processing pipeline unchanged respect to the study 
by Cavanagh et al [48] where the adopted dataset was collected and presented (see Section 
2.1). However, this filtering may limit the capability of the network to autonomously identify 
the bands most relevant for classification. Therefore, we tested also the CNNs performance 
when changing the band-pass filtering from 0.1-20 Hz to 0.1-40 Hz in the pre-processing 
pipeline; in this case the CNN could leverage additional information to solve the decoding task 
or, conversely, choose to filter out unrelated information. Providing a larger frequency content 
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in input, a moderate but significant improvement in CNN performance was obtained; in the 
LOSO strategy, av-AUROCs improved to 77.7±1.1% compared to 76.2±1.3% (P =
1.87 ∙ 10',, Wilcoxon signed-rank test) and in the WS strategy av-AUROCs improved to 
73.7±1.4% compared to 70.5±1.2% (P = 1.29 ∙ 10'2). 

 
2.4.2. CNN-based cross-subject analysis 

When compared to ERPs (Figures 2.3 and 2.4, obtained according to the canonical grand 
average over all EEG trials and subjects), the temporal cross-subject saliency patterns reported 
in Figures 2.6 and 2.7 matched the P3b and P3a timings – 400-650 ms and 350-400 ms post-
stimulus, respectively for target stimuli and distractor stimuli (see Figures 2.3B, 2.4B, 2.6B, 
2.7B). Similarly, the spatial cross-subject saliency patterns matched the P3b and P3a scalp 
distributions, both when the spatial saliency patterns were computed over all time samples 
(Figures 2.3C, 2.4C, 2.6C, 2.7C) and within 400-650 ms and 350-400 ms post-stimulus (see 
Figures 2.6B, 2.7B), respectively for the target condition and distractor condition. It is worth 
noticing that this comparison was made possible as cross-subject saliency patterns were 
computed performing a grand average by construction (see Section Explanation technique: 

saliency maps computation and processing), as done to obtain ERPs. From this analysis 
emerges the first of the main contributions of the proposed approach. Indeed, the findings 
suggest that the CNN, without any a priori knowledge about the neural signatures related to 
target and distractor stimuli, during the supervised learning was able to automatically capture 
meaningful class-discriminative features related to P3b and P3a. In addition, the CNN+ET 
combination evidenced temporal and spatial patterns that were shared across subjects (i.e., 
being robust across subjects), resulting from a common strategy exploited by the learning 
system to distinguish between the three output classes using multiple subjects’ signals (see 
Section Training strategy).  

Moreover, due the supervised task addressed with the CNN – i.e., discrimination from single 
EEG trials between standard, target and distractor stimuli – the CNN+ET was able not only to 
evidence correlates related to P3a and P3b, but potentially also those related to other P3 
subcomponents. Indeed, other ERPs can be elicited by distractor stimuli, such as the novelty 
P300 (which is a third and later subcomponent after the P3b) [12,57]; together with P3a, these 
components appear to be variants of the same ERP, varying on the basis of attentional and task 
demands. In particular, the late relevant window (750-850 ms) in the response to distractor 
stimuli (Figure 2.7), could be related to a later component such as the novelty P300. 

 
2.4.3. CNN-based single-subject and single-trial analysis 

The cluster analysis performed on temporal subject-specific saliency patterns evidenced 
distinct clusters at subject-level in the temporal and spatial domains that deviated from the 
shared pattern across subjects discussed in the previous section (see Figures 2.8, 2.9B,C vs. 
Figures 2.6, 2.7B,C). Therefore, it is possible to better analyze the subject-to-subject 
variability, by defining clusters of subjects that responded similarly to stimuli, and differently 
from other subjects. In particular, temporal subject-specific saliency patterns related to target 
stimuli exhibited two more frequent strategies (see clusters 4, 2 in Figure 2.8). These, although 
presenting a single positive peak and mainly involving parietal electrodes as in the 
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corresponding general cross-subject patterns (Figure 2.6B,C), revealed specific and 
distinguishable traits as they are centered at two slightly different time points (i.e., 500 ms and 
450 ms post-stimulus) with a different dispersion across time points (i.e., cluster 2 resulted 
more dispersed in time) and with a different lateralization of the more contributing electrodes. 
When looking to patterns related to distractor stimuli in the most frequent strategy (see cluster 
1 in Figure 2.9, including more than half of the subjects), these patterns appeared similar to the 
corresponding general cross-subject patterns (in agreement with a large proportion of subjects 
inside the cluster), while patterns in the other clusters exhibited larger deviation from the 
general cross-subject patterns (e.g., see cluster 2 in Figure 2.9, where temporal patterns with a 
single peak occurred as opposed to bimodal patterns). Finally, the cluster analysis evidenced 
some less reliable clusters that are less populated (e.g., cluster 1 in Figure 2.8 which seems to 
collect exceptions rather than representing a real cluster); this may be the consequence of the 
small subject-specific datasets. In case of larger datasets, a larger number of trials per 
participant my favor the identification of meaningful features in one subject similar as in other 
subjects, avoiding the occurrence of cluster seemingly collecting exceptions (this may be tested 
in future studies on larger datasets).  

Importantly, the temporal subject-specific saliency patterns (left panels in Figures 2.8 and 
2.9) showed relevant temporal samples potentially related to the P3b and P3a already at the 
level of single subject. In particular, the potential enhancement of these P3 components in 
saliency representations becomes clearer especially when comparing them with evoked 
potentials at the level of single subject. Indeed, from Figures 2.10 and 2.11, temporal saliency 
patterns at the level of single subject enhanced the relevant processes underlying the task in all 
reported cases compared to the evoked potentials counterpart, where meaningful neural 
signatures were less clear and distinguishable (e.g., see representative patterns in Figure 2.10A 
for clusters 1, 2 or in Figure 2.11A for cluster 1). However, it is worth mentioning that in some 
examples the correlate was noticeable also in evoked potentials at the level of single subject 
(e.g., single-subject representations in Figures 2.10A and 2.11A for cluster 4), but saliency 
representations resulted smoother and sharper. These considerations about saliency patterns 
become even more relevant at the level of single trial, where the saliency patterns seemed to 
preserve the well-defined temporal structure across different trials. On the contrary, single EEG 
trials resulted highly de-structured in time, with only few of them exhibiting P3b- and P3a-
related correlates (e.g., trial 19 for the representative subject of cluster 3 of Figure 2.10C, trials 
19, 20 for the representative subject of cluster 1 of Figure 2.11C), but without any clear 
coherence across recording trials, overall. From these results, the second main contribution of 
this study emerges, consisting in disclosing the potentialities of the CNN+ET combination to 
enhance the correlates related to the main P3 subcomponents (here in healthy controls) already 
at the single-trial level (and scaling up, at the single-subject level); the proposed method 
demonstrates the ability to empower the analysis of P3 modulations at the single-trial and 
single-subject levels, overcoming the main limitations of a canonical analysis based on evoked 
potentials (i.e., grand average across EEG trials and subjects). In particular, this is obtained by 
formalizing a processing CNN-based pipeline, that allows the analysis to be performed at 
multiple scales and domains (across-subjects, within-subject, within-trial, in time-space 
domain, or separately in the temporal and spatial domain). In prospective, the proposed data-
driven analysis tool based on a CNN could be used to advance the investigation at single-
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subject level (e.g., to assess between-subject variability) and also at single-trial level (e.g., to 
assess within-subject variability by analyzing differences between early vs. late recorded trials 
or correct/incorrect response trials), both in healthy subjects but also in patients with 
neurological or psychiatric disorders involving P3 alterations, e.g., Parkinson’s disease or 
schizophrenia. In particular, enhancing neural signatures of stimuli processing at single subject 
scale and at single trial scale is of great relevance to explore the functional relationships of 
these neural features with human performance, and to boost the comprehension of the neural 
processes linking sensory stimulation, cognition and behavior.  

It is worth remark that, despite deep learning-based decoders are known to require large 
datasets during training, the adoption of carefully designed solutions (in terms of number of 
parameters to fit) such as EEGNet-derived algorithms, can be used to derive useful 
representations in a CNN+ET framework even using small datasets, e.g., comprising less than 
200 trials per subject in the addressed 3-stimulus oddball paradigm, as suggested by our results. 
However, the low number of trials for each subject of the adopted dataset may have affected 
the representations at the single-subject level, obtained with the WS strategy, and, thus, the 
performed analysis should be extended on larger datasets (comprising more trials per subject), 
to produce a more robust validation of single-subject representations.  
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2.5. CONCLUSIONS 

In conclusion, we investigated the P3 in its main subcomponents with a CNN+ET workflow, 
analyzing in a data-driven way the more important spatial and temporal samples of EEG signals 
in healthy controls during a 3-stimulus oddball paradigm. The composition CNN+ET, 
depending on the CNN training strategy (cross-subject and within-subject), was able to extract 
EEG neural signatures not only shared across subject (i.e., robust task-related features) as the 
ones obtained with a canonical ERP analysis, but also specific for each subject and for each 
trial, both in the temporal and spatial domains. Therefore, the CNN+ET can be seen as a 
transformation of EEG signals able to enhance EEG neural signatures already at the level of 
single trial (and scaling up at the level of single subject), providing information that could 
increase the understanding of the neural processes underlying the relationship between 
incoming sensory stimuli, cognition and behavior. 

Future developments may involve the inclusion in the workflow of elements aimed to 
further improve the comprehension of the learned CNN features (i.e., adoption of directly 
interpretable layers, not requiring post-hoc interpretation techniques) [35,58], the adoption of 
larger datasets, and the application of this approach to signals recorded from patients with 
psychiatric disorders, for a better characterization of the neural signatures associated to these 
disorders and of their relationships with clinical signs, potentially contributing to characterize 
novel biomarkers for diagnosis and monitoring.  
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2.6. SUPPLEMENTARY MATERIALS 

2.6.1. EEGNet hyper-parameter details 

To describe the CNN in Supplementary Table 2.1 we will refer to the hyper-parameters of 
the involved layers. Each convolutional layer is characterized by the number of convolutional 
kernels (e), kernel size (f), stride size (g) and padding size (h). In addition, depthwise 
convolution introduced also a depth multiplier (*) specifying the number of kernels to learn 
for each input feature map. Hyper-parameters will be denoted by a superscript and a subscript. 
The superscript indicates the specific block the layer belongs to, using the acronyms “ST”, “T”, 
“FC”. The subscript indicates which convolutional layer inside the block the hyper-parameters 
refer to (starting from 0). Lastly, pooling layers were described by pool size (f3) and stride 
(g3), with the corresponding superscript. Both convolutions and poolings were 2D; thus, f, g, 
h, f3, g3 were tuples of two integers: the first referred to the spatial dimension, while the 
second to the temporal dimension. Lastly, the temporal dimension changed across pooling 
operators and was denoted with $3. Regarding the fully-connected layer in the last block, the 
number of neurons was denoted with	54)  and was equal to the number of classes to decode 
(55 = 3).  

 
Supplementary Table 2.1 – Architecture details of the used EEGNet adaptation. Each layer is provided with its 

name, main hyper-parameters and number of trainable parameters. The total number of trainable parameters was 

1259. In all layers, where not specified, stride (2) and padding (3) were set to (1,1) and (0,0), respectively. The 

number of channels and time samples provided as input to the CNN were 6 = 60 and 8 = 100, see Section 2.3 

in the manuscript. The temporal dimension changed from 8 to 8//18 along the entire CNN (where the 

symbol//denotes the floor division) due to average poolings. 

Block Layer name Hyper-parameters Number of trainable 
parameters 

 Input ;+ = 1 0 

Spatio-
temporal 
(ST) 

Conv2D ;+,- = 8, <+,- = (1,51), 3+,- = (0,25) <+,-[0] ∙ <+,-[1] ∙ ;+,-

∙ ;+ 

BatchNorm2D ABACDEFA = 0.99 2 ∙ ;+,- 

Depthwise-

Conv2D 

I.,- = 1, ;.,- = ;+,- ∙ I.,-, 

<.,- = (6, 1) 
<.,-[0] ∙ <.,-[1] ∙ ;.,- 

BatchNorm2D ABACDEFA = 0.99 2 ∙ ;.,- 

ELU  0 

AvgPool2D </,- = 2/,- = (1,3) → 8/,- = 8//3  0 

Dropout ) = 0.5 0 

Temporal 
(T) 

Separable-Conv2D 
I+0 = 1,;+0 = ;.)0 ∙ I+0, 

<+0 = (1,17), 3+0 = (0,8) 
<+0[0] · <+0[1] · ;+0

+ #;+0&
1
 

BatchNorm2D ABACDEFA = 0.99 2 ∙ ;+0 

ELU  0 

AvgPool2D </0 = 2/0 = (1,6) → 8/,- = 8//18 0 

Dropout ) = 0.5 0 
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Fully-
connected 
(FC) 

Flatten  0 

Fully-Connected O23 = 3 O23 ∙ (8/
0 ∙ ;+0 + 1) 

Softmax  0 

 
The adopted EEGNet was lightly different from the original formulation [33]. In particular, 

since EEGNet was designed to accept EEG signals sampled at 128 Hz as input, we scaled down 
the temporal pool sizes and kernel lengths accordingly. In addition, due to the compact size of 
the used dataset, we further reduced the number of trainable parameters to fit by using a unitary 
depth multiplier in all depthwise convolutions (both in the spatio-temporal block and in the 
temporal block). Lastly, we did not exploit kernel max norm constraint in the architecture as it 
resulted detrimental for the performance in previous analyses on the same dataset.  

 

2.6.2. Hierarchical agglomerative clustering details 

In the following, the distance metric adopted to apply the hierarchical agglomerative 
clustering (HAC) is described. During HAC, pairwise distances between observations in T-
dimensional space were computed, indicating with T the number of time samples (as in the 
manuscript). The two observations corresponded to two temporal saliency patterns belonging 
to two different subjects (i.e., subject-specific temporal saliency patterns). The correlation 
between j, k ∈ ℝ6 was computed to define a correlation distance metric l(j, k) as: 

l(j, k) = 1 −
(7'78)∙(:':;)

‖(7'78)‖4‖(:':;)‖4
, 

where jm,	k̅ are the mean values of the arrays j and k, while ∙ denotes the dot product. 
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Supplementary Table 2.2 – F1 scores and AUPRs for the target and distractor conditions while training CNNs 

with the LOSO and WS training strategies (mean value ± standard error of the mean). It is worth noticing that 

these results are similar or slightly lower (for the WS strategy) than state-of-the-art results reported at the level of 

single trial in binary P3 classification tasks (discriminating only standard vs. target) [43], despite here a more 

challenging, three-class classification problem is addressed. 

Training strategy Class F1 score (%) AUPR (%) 

LOSO 
Target 37.3 ± 2.3 38.0 ± 2.7 

Distractor 48.5 ± 1.8 51.0 ± 2.1 

WS 
Target 35.2 ± 1.8 45.1 ± 2.1 

Distractor 34.7 ± 1.8 47.1 ± 2.2 
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Supplementary Figure 2.1 – ERP of the standard condition. (A) The grand average is reported as a 2D heatmap 

with electrodes and time steps along rows and columns, respectively. (B) The average temporal pattern obtained 

by averaging the 2D heatmap of panel A across the subset of electrodes: FC1, FC2, C1, C2, CP1, CP2. The shaded 

area represents the mean value ± standard error of the mean, while the thick line represents the mean value. (C) 

Topological representation of the average contribution of each electrode across all time samples of the 2D 

heatmap. 

  

A

B C
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CHAPTER 3: DESIGN OF AN INTERPRETABLE CNN FOR 
P300 DECODING AND ANALYSIS IN THE FREQUENCY AND 
SPATIAL DOMAINS 

The study reported in this chapter refers to the submitted journal paper entitled “A Bayesian-
optimized design for an interpretable convolutional neural network to decode and analyze the 
P300 response in autism” D. Borra, E. Magosso, M. Castelo-Branco and M. Simões. Submitted 
to Journal of Neural Engineering. In this chapter, a novel interpretable CNN was proposed for 
P300 decoding, by increasing the interpretability of the CNN used in the previous chapters at 
the level of the first temporal convolutional layer. The design (in terms of the hyper-
parameters) of the interpretable CNN was optimized using an automatic hyper-parameter 
search and was evaluated in multiple training strategies. Lastly, an intermediate explanation 
technique was developed to study P300 neural signatures in the frequency and spatial domains. 

 
Event-Related Potentials (ERP), such as P300, can be analyzed in autism spectrum disorder 

(ASD) to derive biomarkers. Furthermore, P300 decoding can be exploited in BCIs to 

reinforce ASD impaired skills. Decoders based on convolutional neural networks (CNNs) 

have been recently proposed, outperforming traditional algorithms but they i) do not 

investigate the optimal design in different training conditions; ii) lack in interpretability. To 

overcome these limitations, we propose an interpretable CNN (ICNN) whose optimal design 

was searched via Bayesian optimization. The ICNN provides a straightforward 

interpretation of spectral and spatial features learned to decode P300 in ASD. The Bayesian-

optimized ICNN design was investigated separately for different training strategies (within-

subject, within-session, and cross-subject). Furthermore, transfer learning (TL) 

potentialities were investigated by assessing how pre-trained cross-subject models 

performed on a new subject vs. random-initialized models. The ICNN was combined with an 

Explanation Technique (ICNN+ET) to analyze P300 spectral and spatial features. The 

ICNN resulted comparable or even outperformed existing CNN approaches, at the same time 

being lighter and more interpretable. Bayesian-optimized ICNN designs differed depending 

on the training strategy, needing more capacity as the training set variability increases. 

Furthermore, TL provided higher performance than networks trained from scratch. The 

ICNN+ET analysis suggested that the frequency range [2, 5.8] Hz was the most relevant, 

and spatial features showed a right-hemispheric parietal asymmetry. The ICNN+ET-derived 

features, but not ERP-derived features, resulted significantly and highly correlated to ADOS 

clinical scores. This study substantiates the idea that a CNN can be designed both accurate 

and interpretable for P300 decoding, with an optimized design depending on the training 

condition. Furthermore, the novel ICNN-based analysis tool was able to better capture and 

highlight ASD neural signatures compared to a traditional ERP analysis and may pave the 

way for the identification of novel biomarkers. 
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3.1. INTRODUCTION 

Autism spectrum disorder (ASD) is a set of neurodevelopmental conditions with persistent 
deficits in social communication and social interaction across multiple contexts, together with 
restricted, repetitive patterns of behavior, interests, or activities [1]. ASD people show 
difficulties in social-emotional reciprocity, in developing, maintaining, and understanding 
relationships, and in non-verbal communicative behaviors used for social interactions, such as 
joint attention [2–6]. Joint attention emerges during the first year of life and involves the non-
verbal coordination of attention of two individuals towards an object or event [7], playing an 
important role in the development of social and language capabilities [8,9].  

Approaches based on neuroimaging, e.g., diffusion tensor imaging and functional magnetic 
resonance imaging, are used to characterize and identify potential neural biomarkers of 
information-processing deficits in children with autism [10,11]. In addition, Event-Related 
Potentials (ERPs) computed from the electroencephalogram (EEG) provide a less expensive 
and portable way to study sensory information processing and are applied to study the neural 
response in autism following an incoming stimulus [12]. Investigations concern alterations in 
both early ERP components reflecting pre-attentive sensory processing and/or initial 
orientation and capture of attention, such as P100 [13] and N100 [14], and later components, 
such as P300 [15,16]. The P300 response is characterized by a positive deflection that occurs 
while attending a target stimulus; it peaks between 250-500 ms after the stimulus onset and it 
is mostly distributed on the scalp around midline electrode sites (Fz, Cz, Pz), increasing its 
amplitude from frontal to parietal sites [17]. This response can be elicited in two-stimuli 
oddball paradigms, where an infrequent (target) stimulus is immersed into a sequence of more 
frequent (standard) stimulus. The amplitude of the P300 response was found to be positively 
correlated with allocation of attention resources, stimulus recognition and updating of working 
memory [18,19]. Abnormalities in the sensory information processing following an incoming 
stimulus were found in ASD, as quantified by a reduced P300 amplitude in auditory and visuo-
spatial tasks compared to healthy subjects, reflecting deficiencies in cognitive, attentional, and 
working memory processes [12,20–27]. 

Besides being potentially useful as an EEG-based ASD biomarker, the P300 response can 
be used for ASD intervention. Indeed, Brain-Computer Interfaces (BCIs) proved to be useful 
personalized therapeutic approaches in ASD [30–34]; these interfaces can be designed to train 
ASD people via an EEG-based neurofeedback aimed to reinforce social interactions and 
communication skills (e.g., joint attention [28,29]). In this scenario, the P300 response elicited 
in visuo-spatial tasks represents an important control signal for the BCI system [28,29]. A 
crucial stage of a BCI is represented by the decoding algorithm, that detects the P300 response 
from the EEG and translates it into a command. Challenges to perform this step arise from the 
noise sensitivity, non-linearity and non-stationarity of the EEG, as these characteristics depend 
on the subject and on the environment [33]. In particular, the non-stationarity causes shifts in 
the EEG across trials and recording sessions. In addition, inter-subject variability across 
subjects, due to anatomical and physiopathological differences, hinders the design of a 
‘participant-agnostic’ BCI. Therefore, due to intra- and inter-subject variabilities, most BCIs 
require long calibration times on each recording session to achieve satisfactory decoding 
performance [31]. Furthermore, due to reduced P300 amplitude in ASD, the decoding of the 
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P300 response is even more challenging and, thus, the decoding performance may be 
negatively affected.  

Machine learning algorithms have been widely adopted to learn discriminative patterns from 
the EEG to perform P300 decoding [32]. Among these algorithms, traditional decoders for 
P300-based BCIs perform a pre-processing step that includes band-pass filtering within fixed 
EEG bands (e.g., 0.5-4 Hz and 4-8 Hz [33]; 2-20 Hz and 2-8 Hz [34]; 2-12 Hz [35]), followed 
by extraction of features in the temporal, frequency and spatial domains; the latter are then 
evaluated by a classifier such as linear discriminant analysis, support vector machine or multi-
layer perceptron [33,35–40]. In addition to these traditional decoders, significant 
improvements in performance were found using convolutional neural networks (CNNs) [41–
43]. CNNs are feed-forward neural networks including the convolutional operator at least in 
one layer. Inspired by the hierarchical structure of the ventral stream of the visual system, 
CNNs are composed by stacked layers of neurons, each neuron characterized by a local 
receptive field. Neurons in deeper layers have larger receptive field and respond to more 
complex features [44], enabling the learning of hierarchically structured features from the input 
signal. At variance with traditional machine learning algorithms, in which a separation between 
feature extraction, selection, and classification occurs, CNNs solve the decoding task in an end-
to-end fashion, by automatically learning the more meaningful features for the addressed 
problem, i.e., discrimination of P300 events from single EEG trials. Therefore, CNNs do not 
rely on some characteristics extracted a priori from the signals (e.g., spectral contents within 
fixed bands), but automatically learn the relevant discriminative features to distinguish the 
P300 response from the input EEG trial. From their first application in P300 decoding with the 
simple design proposed by Cecotti et al. [45], CNNs were improved by including progressively 
more convolutional and regularization layers (e.g., dropout [46] and batch normalization [47]) 
[48]. Among these CNNs, EEGNet [49] and its variants [43,50] were found to be particularly 
suitable for P300 decoding, outperforming traditional machine learning solutions as well as 
other CNN-based approaches, also in case of P300-based BCIs aimed at ASD intervention 
[41,43]. In addition, by adopting specific training strategies (such as within-subject and cross-
session strategy or cross-subject strategy), CNNs were found to be capable of learning robust 
features across sessions and subjects, incapsulating intra-subject and inter-subject variability, 
thus providing the potentiality of significantly reducing BCI calibration times [43]. 

However, despite the previous advantages, these algorithms have some limitations. First, 
they introduce a large number of trainable parameters, i.e., parameters to fit during the training 
process, and require setting many hyper-parameters, i.e., parameters that define the functional 
form of the decoder (e.g., convolutional filter size, number of convolutional filters, type of 
activation function, etc.) that must be set before the training.  

Generally, hyper-parameters are selected by testing only a few configurations via empirical 
evaluations [43,48–50], and, thus, CNNs are built with a sub-optimal design in terms of 
performance. Furthermore, hyper-parameters are kept the same across different training 
strategies [43,50]. In this way, the network capacity (i.e., its ability of approximating a wide 
variety of functions) is kept the same even though the network faces problems with increasing 
difficulty across the different strategies, e.g., when moving from within-subject and within-
session to cross-session and cross-subject decoders, the architecture must learn the relevant 
features from training distributions with increased variability. Searching for an optimal CNN 
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hyper-parameter configuration, which is also specific for a particular training strategy, is even 
more necessary when designing a P300 decoder for a BCI-based ASD therapeutic approach, 
where the P300 response is attenuated and more difficult to distinguish than in case of healthy 
users.  

Moreover, CNNs are scarcely interpretable in their learned features and are often treated as 
black boxes. As pointed out in a recent survey [51], there is a growing interest to interpret the 
feature representations provided by deep neural networks and their relation to clinical outcomes 
quantifying neuropathology. Thus, research is moving from the sole decoding of brain states 
towards the analysis of EEG features derived from the learning system, for example studying 
EEG signatures related to movement [52–56], P300 [43,57,58], or depression [59]. Recently, 
interpretable CNNs (ICNNs), i.e., CNNs that include layers whose learned parameters are 
directly interpretable, were proposed to decode motor imagery and execution. Zhao et al. [53] 
increased feature interpretability in the frequency domain by reparametrizing a convolutional 
layer to learn Morlet wavelets. Recently, we proposed a lightweight (i.e., with a limited number 
of trainable parameters) ICNN [52,55] able to increase the interpretability of both spectral and 
spatial features, by reparametrizing a convolutional layer to learn band-pass filters and by 
learning spatial filters tied to each band-pass filter. In addition to interpretable layers, 
explanation techniques (ET) can be used to explain the CNN decision by highlighting which 
EEG features learned in interpretable domains (e.g., spatial, temporal, spectral) are the most 
discriminative (i.e., most salient) for the decoding of a specific cognitive state, such as the P300 
[43,57,58]. Thus, by leveraging on the increased interpretability embedded into an ICNN, 
combined with an ET (denoted as ICNN+ET in the following), a data-driven non-linear 
analysis tool could be realized able to gain insights into the physiopathological neural 
signatures contained in the EEG associated to P300. 

In this study, we aim to contribute to the decoding and, at the same time, to the analysis of 
the P300 in ASD using an ICNN, to further increase the feasibility of BCI intervention in 
autism and to potentially characterize novel data-driven biomarkers related to ASD visuo-
spatial sensory processing. To this aim, here we adopted an architecture obtained by combining 
two existing CNN architectures: Sinc-ShallowNet [52], i.e., our previous interpretable and 
lightweight design (but previously proposed for decoding tasks other than P300), which allows 
a straightforward interpretation of spectral and spatial features learned by the ICNN, and 
EEGNet, which represents the state-of-the-art (SOA) for P300 decoding [41,50]. Then, using 
this architecture, we address the following two issues as main points of novelty of this study: 

i. Investigate the optimal ICNN design (in terms of performance) and the role of the main 
ICNN hyper-parameters under different training conditions, by performing automatic 
hyper-parameter search (AHPS) based on Bayesian optimization (BO), separately for 
each training condition. The investigated training strategies were within-subject and 
within-session, within-subject and cross-session, and leave-one-subject-out. 
Furthermore, we also tested the capability to transfer the knowledge from other 
participants to a new one, adopting a transfer learning strategy to reduce calibration time. 
Each of these training strategies may represent a different practical scenario of BCI 
intervention to improve joint attention in ASD. 

ii. Design of a novel algorithm based on the combination of the ICNN with saliency 
representations (ICNN+ET) to highlight the most relevant spectral and spatial features 
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that correspond to the visuo-spatial P300 correlate in autism. These features were then 
used to define clusters of subjects characterized by shared neural signatures. Then, we 
investigated whether these features were related to clinical scores measuring the severity 
of ASD symptoms as derived by developmental and behavioral ASD assessment tools, 
and whether the ICNN+ET analysis better enhanced useful ASD neural signatures 
compared to a canonical ERP analysis.   
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3.2. MATERIALS AND METHODS 

3.2.1. Dataset description  
In this study we used the BCIAUT-P300 dataset, an EEG dataset of a feasibility clinical trial 

[28,29] publicly released for the IFMBE 2019 scientific challenge 
(https://www.kaggle.com/disbeat/bciaut-p300). EEG signals were recorded from 15 high-
functioning ASD participants (22 years old, on average) while testing a P300-based BCI (based 
on statistical classifiers) aimed to improve their joint attention. During a baseline visit, the 
following clinical scores, useful also to diagnose ASD, were collected: Autism Diagnostic 
Observation Schedule (ADOS) [60], Autism Diagnostic Interview-Revised (ADI-R) [61], and 
Intelligence Quotients (IQs, measured by WAIS-III [62]). These scores are reported in Table 
3.1. 

 
Table 3.1 – Measured ASD clinical scores, i.e., ADOS, ADI-R, and IQs (mean ± standard deviation across 

subjects). 

Measure Value 
ADOS A: Communication  3.20±0.86 

ADOS B: Social Interaction  6.27±1.29 

ADOS A+B: Communication-Social Interaction  9.47±1.86 

ADI-R 1: Social Interaction  16.14±4.39 

ADI-R 2: Communication and Language  12.14±5.19 

ADI-R 3: Restricted and Repetitive Behavior  6.14±2.33 

FSIQ: Full Scale IQ 102.53±11.24 

VIQ: Verbal IQ 102.33±16.06 

PIQ: Performance IQ 102.46±10.59 

 
For each participant, the BCI paradigm was carried out during 7 recording sessions (over 4 

months) and in each session it was based on an immersive virtual environment presented to the 
user, consisting of a bedroom with an avatar, common furniture (e.g., shelves, a bed, etc.) and 
eight objects of interest. These objects were: 1) books on a shelf, 2) a radio on top of a dresser, 
3) a printer on a shelf, 4) a laptop on a table, 5) a ball on the ground, 6) a corkboard on the 
wall, 7) a wooden plane hanging from the ceiling, and 8) a picture on the wall (see Figure 3.1).  
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Figure 3.1 – Structure of the BCI paradigm in its division into blocks, runs, and trials. Each recording block was 

used to identify one of the eight target objects visualized in the virtual environment, with a total of O5 = 20 

(calibration phase) and of O5 = 50 (online phase) blocks. Within each block, ; runs were recorded, where ; =
10 (calibration phase) and ; = 7.095 (online phase) on average across subjects and sessions. In each run, the 8 

objects randomly flashed (schematized by the green ellipses in the figure) and 8 EEG trials per run where recorded. 

Therefore, overall, within each recording session O5 ∙ ; ∙ 8 EEG trials were recorded, corresponding 1600 trials 

in the calibration phase and 2838 trials on average in the online phase, respectively. 

 
Participants were instructed to read non-verbal social agent cues from the avatar, i.e., avatar 

head turning to a particular object, and to pay attention to that target object. The 8 objects 
randomly flashed in the virtual scene and, thus, a visuo-spatial P300 response was elicited 
when the attended object flashed.  

Each recording session was composed by a calibration phase, consisting of 5= = 20 blocks, 
and an online phase, consisting of 5= = 50 blocks. Each block was related to a particular object 
selected as target by the avatar that the user tried to identify (see Figure 3.1 for a scheme about 
the organization of blocks, runs, and trials). For each block, K runs were repeated (e = 10 in 
the calibration phase, while K varied in the online phase with e = 7.095 on average across 
online blocks); each run consisted of each of the 8 objects flashing once in a random sequence. 
This resulted in 1600 trials (20 blocks x 10 runs x 8 EEG trials) per each participant and session 
during the calibration phase, and in 2838 trials on average during the online phase. During the 
calibration phase, the BCI statistical classifiers were trained to predict the object the participant 
was paying attention to; during the online phase, the trained classifiers were applied to identify 
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whether the subject attended the target object correctly and, in that case, to provide positive 
feedback to the user.  

The IFMBE 2019 scientific challenge was organized to stimulate researchers to develop 
decoders maximizing the object detection accuracy based on the P300 response. In the 
challenge, for each subject and each session, trials recorded during the calibration phase were 
released to tune decoders (i.e., to set their parameters), while trials recorded during the online 
phase were used to test decoders. In the present study, we adopted this same split as defined 
by the challenge, as this choice may also allow a fair and direct comparison with the results of 
decoders that participated to the challenge [41]. More specifically, for each subject and each 
session, we further split the 1600 calibration trials into two sets: 80% of trials (1280 trials), 
were randomly sampled and used as training set to optimize the trainable parameters of the 
decoders, while the remaining 20% of trials (320 trials) were used as validation set to optimize 
the hyper-parameters of the decoders. This further splitting was based on our winning solution 
of the challenge [41,50] to select the number of training epochs (i.e., to perform early stopping). 
Therefore, each subject-specific and session-specific dataset was separated into 3 different sets, 
as commonly performed in the literature [41,43,45,49,50,52,55,57,63]: training set (1280 
trials), validation set (320 trials), and test set (2838 trials on average). However, since different 
training strategies were adopted here, by differently aggregating the training set and validation 
set across sessions and subjects, the overall number of training and validation trials were 
different depending on the strategy (see Section Training strategies). Finally, test trials were 
used to test the tuned decoders on a held-out set.  

EEG signals were recorded at 250 Hz from C3, Cz, C4, CPz, P3, Pz, P4, and POz locations 
(" = 8 electrode sites), with the reference placed at the right ear and the ground at AFz. These 
signals were acquired notch filtered at 50 Hz and filtered between 2 and 30 Hz [61]. In this 
study, as in the winning solution [50] that we proposed for the challenge, each trial contained 
signals from -0.1 s to 1 s relative to the stimulus onset and signals were downsampled to 128 
Hz, so that each trial contained $	 = 	140 time steps.  

 
3.2.2. Problem definition   

Based on the previous description, the collection of trials associated to the s-th subject 
acquired during the r-th recording session can be formalized as the collection *(",>) =
op-$

(",>)
, .$

(",>)
q, … , p-%

(",>)
, .%

(",>)
q, … , p-

&(",7)'(
(",>)

, .
&(",7)'(
(",>)

qr. 2(",>) denotes the total number of 

trials for that subject and that session, -%
(",>)

∈ ℝ)×+ represents the pre-processed EEG signals 
of the i-th trial (0 ≤ ; ≤ 2(",>) − 1), and .%

(",>) represents the label of the i-th trial, i.e., .%
(",>)

∈

< = {=$, =(} = {non-P300, P300}, where the label P300 was assigned to those trials where the 
flashing object coincided with the object the avatar was looking at.  

In this study, each decoder consisted in a parametrized classifier J (representing the ICNN 
and having a different functional form depending on the hyper-parameters), which solves a 
binary classification task: Jp-%

(",>)
; Lq: ℝ)×+ → <, where L represents the array of trainable 

parameters. Thus, the ICNN input was represented by -%
(",>) that can be viewed as a 2D matrix 

of shape (", $) = (8,140) with electrodes along the height and time steps along the width, and 
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the output consisted of two neurons corresponding to either one or the other class. The 
validation set was used to perform the automatic search of ICNN hyper-parameters via 
Bayesian optimization, and the ICNN learned automatically from the training set the relevant 
features to assign the correct label to unseen input trials belonging to the test set. The 
knowledge learned by the ICNN during the training process was stored in its trainable 
parameters L. These parameters, thanks to their increase interpretability, can be exploited to 
gain insights into the neural signatures related to a specific class (e.g., P300 class) in a data-
driven way, without relying on handcrafted features based on expected EEG responses.  

 
3.2.3. An update of Sinc-ShallowNet: Sinc-ShallowNet-v2 

Sinc-ShallowNet [52] is an ICNN that we developed to decode motor imagery and execution 
from single EEG trials. This ICNN is composed of two blocks, each consisting of several 
stacked layers: an interpretable spectral and spatial (ISS) feature extractor followed by a fully-
connected (FC) block that performs classification. The ISS block was designed to increase the 
interpretability of the learned parameters, at the same time keeping limited the model size, i.e., 
the number of trainable parameters, and included a temporal convolutional layer (with a 
reparameterization of the kernels), a depthwise spatial convolution and an averaging pooling 
layer (see also below for a more detailed description of the ISS block). Crucially, in Sinc-
ShallowNet the output of the ISS block was provided directly as input to the FC block. Here, 
we proposed an updated version for P300 decoding, named Sinc-ShallowNet-v2, by integrating 
in the design also structure elements of EEGNet, a CNN proved to be particularly suitable to 
decode the P300 response from EEG [41,49,50] but not designed to be interpretable. 
Specifically, the updated Sinc-ShallowNet-v2 embraces three main blocks by including an 
additional block, the fixed-scale temporal (FST) feature extractor (inspired by EEGNet), 
between the ISS block and the FC classification block. This is an important modification, since 
Sinc-ShallowNet-v2 further processes the output of the ISS block by learning features in the 
temporal domain, and this may help to better capture intra- and inter-subject variability of P300 
in time. A schematization of Sinc-ShallowNet-v2 is reported in Figure 3.2a; a more detailed 
description reporting the hyper-parameters, output shape and number of trainable parameters 
per layer, is reported in Table 3.2. In the following, the blocks are described in detail.  
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Figure 3.2 – Sinc-ShallowNet-v2 (a) and training strategies investigated while performing Bayesian optimization 

(b). In Figure 3.2a, blocks and main layers are listed on the left side. To keep the figure as clear and simple as 

possible, only the main trainable layers (i.e., convolutional and fully-connected layers) in addition to pooling 

layers (to highlight the temporal dimension reduction) were displayed. Boxes represent the output feature maps 

of each layer, and colored rectangles represent convolutional (blue) and pooling (red) kernels. Tuples reported on 

the right side represent the shape of the feature maps. For all outputs except the last, tuples are composed by three 

numbers representing the number of the feature maps, the number of spatial samples and the number of temporal 
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samples within each map, respectively. The input layer provides an output of shape (1, 6, 8) = (1,8,140), as it 

just replicates the original input EEG trial with shape (8,140), providing a single feature map as output. The 

temporal dimension changed from 8 = 140 to 8//4 = 35 and to 8//32 = 4 along the entire CNN due to the 

average pooling operations (where // indicates the floor division operator). See Section 3.2.2, 3.2.3 and Table 3.2 

for further details. Figure 3.2b shows a schematic representation of how training, validation, and test examples 

(by means of black and red arrows) were sampled from calibration (blue boxes) and online (purple boxes) blocks 

recorded in the BCI paradigm when training decoders in Bayesian optimization in within-subject and within-

session (WS-WS), within-subject and cross-session (WS-CS), and leave-one-subject-out (LOSO) training 

conditions. For brevity, in the LOSO strategy the aggregation across blocks is reported only for the s-th subject. 

See Section 3.2.1 and Section Training strategies for further details about the definition of recording blocks and 

the training strategies, respectively. 

 
Table 3.2 – Sinc-ShallowNet-v2. Each layer is provided with its name, main hyper-parameters and number of 

trainable parameters. See Sections 3.2.2 and 3.2.3 for the meaning of the symbols. In all layers, where not 

specified, stride (2) and padding (3) were set to (1,1) and (0,0), respectively. The structural hyper-parameters 

(i.e., hyper-parameters of the architecture structure) reported in bold were searched via Bayesian optimization. 

Block Layer name Hyper-parameters Number of trainable parameters 
 Input ;+ = 1 0 

ISS Sinc-Conv2D Q8
9::

, <+;,, = (1,65), 
3+;,, = (0, <+<))[1]//2) 

2 ∙ ;+<)) ∙ ;+ 

BatchNorm2D  2 ∙ ;+<)) 

Depthwise-

Conv2D 

R=
9::

, ;.<)) = ;+<)) ∙ I.<)), 

<.<)) = (6, 1), S=9:: 

<.<))[0] ∙ <.<))[1] ∙ ;.<)) 

BatchNorm2D  2 ∙ ;.<)) 

ELU  0 

AvgPool2D </<)) = 2/<)) = (1,4) 0 

Dropout T9:: = T>:? = T 0 

FST Separable-

Conv2D 

Q8
>:?

, U8>:?,  

I+2)0 = 1, 3+2)0 = (0, <+2)0[1]//2) 
<+2)0[0] · <+2)0[1] · ;.<)) +;.<))

· ;+2)0
	
 

BatchNorm2D  2 ∙ ;+2)0 

ELU  0 

AvgPool2D </2)0 = 2/2)0 = (1,8) 0 

Dropout T>:? = T9:: = T 0 

FC Flatten  0 

Fully-

Connected 

O23 = 2, S8>@ O23 ∙ (8//32 ∙ ;+2)0 + 1) 

Softmax  0 

 
i. Block 1: Interpretable spectral and spatial (ISS) feature extractor  

The first block was inspired by the ISS block of Sinc-ShallowNet [52] and was devoted to 
separately learn spectral and spatial features from the input EEG trials in an easy interpretable 
way. The very first layer of the ISS block was a temporal sinc-convolutional layer [52,55,64], 
learning e$?@@ filters with filter size f$?@@ = (1,65), unitary stride and zero-padding h$?@@ =
(0,32) to preserve the number of input temporal samples. This temporal convolutional layer 
was devoted to filter each electrode signal in time. By using the sinc-convolutional layer to 
perform such processing step instead of a conventional convolutional layer, each convolutional 
filter is forced to describe a band-pass filter in the temporal domain. Denoting with R0 the j-th 
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convolutional kernel, in a conventional convolutional layer each value of the filter (i.e., 
R0[0, t], t ∈ [0,64]) has to be learned during the optimization process; conversely, in a sinc-
convolutional layer, each value of the filter is defined by a parametrized function, forcing the 
filters to belong to a specific subset of temporal filters (here band-pass filters). Therefore, in a 
sinc-convolutional layer a re-parametrization of each convolutional kernel occurs: 
R0
A
v0, t; {J$,0 , J(,0}w = 2J(,04;tx,2yJ(,0t/ − 2J$,04;tx,2yJ$,0t/. (3.1) 

In Equation 3.1, {J$,0 , J(,0} are the trainable parameters related to the j-th kernel, including 
only the inferior (J$,0) and superior (J(,0) cutoff frequencies of the band-pass filter. In this way, 
the number of trainable parameters reduces from 65 (= f$

?@@[0] ∙ f$
?@@[1]) to 2, for each 

temporal filter. Lastly, to alleviate the effects of the inevitable truncation of R0
A on the 

characteristics of each filter, R0
A is multiplied by a Humming window:  

z
RB,0

Av0, t; {J$,0 , J(,0}w = R0
Av0, t; {J$,0 , J(,0}w ∙ {[t]

{[t] = 0.54 − 0.46 cos p
,CD

4ABCC[(]'(
q

. (3.2) 

Accordingly, the temporal sinc-convolution computes the convolution between the input 
and RB,0

A
v0, t; {J$,0 , J(,0}w, learning only the following 2 parameters for each kernel: 

L"3G5H,0 = {J$,0 , J(,0} ∈ L, 0 ≤ Y ≤ e$
?@@ − 1.  (3.3) 

Thus, the output of this first layer consists of stacked feature maps containing band-pass 
filtered versions of the input EEG trial within specific frequency ranges that were explicitly 
learned during training.  

The use of a temporal sinc-convolutional layer, besides substantially reducing the 
parameters to fit, promotes the learning of more meaningful and well-defined temporal filters, 
and provides a straightforward interpretation of the learned spectral features [64], being the 
cutoff frequencies of the learned band-pass filters. Conversely, in case of a conventional 
temporal convolutional layer, the learned spectral features are not immediately accessible and 
interpretable. 

Downstream the temporal sinc-convolutional layer, a batch normalization layer [47] was 
included. Then, a spatial depthwise convolutional layer was introduced: for each band-pass 
filtered map, *(?@@ spatial filters were learned having size (", 1), unitary stride and no zero-
padding, i.e., *(?@@ spatial combinations of electrodes were learned for each band-pass filtered 
map. Therefore, a total number of e(?@@ = e$

?@@ ∙ *(
?@@ spatial filters were learned and 

constrained to have a norm upper bounded by x(?@@ (kernel max-norm constraint). This type of 
convolution does not exploit dense connections across feature maps as in traditional 
convolutional layers, reducing the number of trainable parameters. In addition, the combination 
of temporal sinc-convolution with spatial depthwise convolution leads to an interpretable 
spectral-spatial feature learning, as each group of *(?@@ spatial filters is strictly tied (via 
depthwise convolution) to a specific band-pass filter, i.e., to a specific frequency range:  
L"3IH,0 = {L0$, … L0- , … , L0JDBCC'(} ∈ L, 0 ≤ Y ≤ e$

?@@ − 1, (3.4) 
indicating with L0- the k-th spatial filter (0 ≤ R ≤ *(

?@@ − 1) tied to the j-th band-pass filter. 
The parameters learned in these two first convolutional layers can be denoted as the set:  
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L?@@ = oL?@@,$, … , L?@@,0 , … , L?@@,KABCC'(r =

o,L"3G5H,$, L"3IH,$/, … , ,L"3G5H,0 , L"3IH,0/, … , pL"3G5H,KABCC'(, L"3IH,KABCC'(qr,  (3.5) 

where each pair ,L"3G5H,0 , L"3IH,0/, 0 ≤ Y ≤ e$
?@@ − 1 contains the cutoff frequencies of the j-

th band-pass filter and the associated *(?@@ spatial filters exploited to decode the input EEG 
trial.   

Output activations of the interpretable spectral-spatial feature extractor were then 
normalized via batch normalization [47] and activated via an Exponential Linear Unit (ELU) 
non-linearity [65], i.e., J(|) = |, | > 0 and J(|) = }|P(|) − 1, | ≤ 0. Average pooling was 
introduced to reduce the temporal dimension of the activations by a factor of 4 (f3?@@ = g3

?@@ =

(1, 4)) from $ = 140 to $//4 = 35 (indicating with // the floor division operator). Lastly, a 
dropout layer [46] was added with dropout rate P?@@. 

 

ii. Block 2: Fixed-scale temporal (FST) feature extractor 
This block was inspired by EEGNet, and in Sinc-ShallowNet-v2 was used to learn how to 

summarize the feature maps provided by the ISS block in the time domain; it contained a 
separable convolutional layer [66], defined by a temporal depthwise convolution with *$4@+ =
1, filter size	f$4@+ , unitary	stride	and	zero	padding	h$4@+ = (0, f$

4@+[1]//2), followed by a 
pointwise convolution with e$4@+ filters. In the first layer of this composition, depending on 
f$

4@+, temporal features were learned on the input ISS feature maps within a temporal window 
of specific size, i.e., at a fixed temporal scale, and without using dense connections across 
feature maps. The temporal window in which features are learned corresponds to 
f$

4@+[1]/	(4J//4) s, indicating with 4J the sampling frequency of the input EEG signals. In 
the second layer of the separable convolutional, feature maps at the output of the previous layer 
are recombined, and, this is performed learning compressed, equal or overcomplete 
representations, depending on whether e$4@+ < e(

?@@, e$4@+ = e(
?@@

 or e$4@+ > e(
?@@

, 
respectively. Then, activations were normalized via batch normalization [47] and activated via 
an ELU non-linearity [65]. An average pooling layer was introduced to further reduce the 
temporal dimension of the activations by a factor of 8 (f34@+ = g3

4@+ = (1, 8)), i.e., from 
$//4 = 35 to $//32 = 4. Lastly, a dropout layer [46] was added with dropout rate P4@+. 

 

iii. Block 3: Fully-connected (FC) block  
This block traduces the activations provided by the FST block into conditional probabilities, 

finalizing the decoding task. At first, the input feature maps of the FC block were unrolled 
along one single dimension using a flatten layer, producing a single feature array. Then, this 
array was provided as input to a single fully-connected layer with 54) = 2 neurons associated 
to the non-P300 and P300 classes. Here, trainable parameters were constrained to have a norm 
upper bounded by x$4) . Lastly, these 2 neurons were activated using a softmax activation 
function to obtain the output conditional probabilities Pp=-Ñ-%

(",>)
q, R = 0, 1.  
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3.2.4. Performance metric and comparison of Sinc-ShallowNet-v2 with EEGNet and 
Sinc-ShallowNet 

In this study, we adopted the object-level accuracy as performance metric, i.e., accuracy in 
decoding the flashing object the participant was paying attention to (among the 8 possible 
objects, see Section 3.2.1 for additional details). This performance metric was the same as 
adopted in the IFBME 2019 competition to evaluate decoders [41]. To this aim, the trial-level 
EEG decoding provided by the CNN (binary classification, i.e., non-P300 vs. P300) was used 
to produce an object-level decoding (8-class classification, i.e., discrimination of the attended 
object among 8 objects). Considering a specific recording block, associated to a specific object 
the participant was paying attention to, the following processing was performed. Indicating 
with =( the P300 condition, we considered the probabilities Pp=(Ñ-%

(",>)
q predicted for the EEG 

trials -%
(",>) within that block when each of the 8 objects flashed (including the attended one). 

These probabilities where averaged across runs separately for each object, obtaining the 
average probability P̅L , 0 ≤ Ö ≤ 7 that the participant was paying attention to the o-th object 
Then, the object with the highest probability was predicted as the one attended in that block.  

We compared the performance of Sinc-ShallowNet-v2 against our approach derived from 
EEGNet [50] that won the IFMBE 2019 challenge. In the competition, that approach 
significantly outperformed traditional machine learning solutions as well as other deep neural 
networks, including both CNNs [48] and recurrent neural networks [41], thus, it can be 
considered the current SOA algorithm for the addressed decoding problem. Furthermore, Sinc-
ShallowNet-v2 performance was compared against Sinc-ShallowNet [52], to assess whether 
the inclusion of the FST block in the updated version led to potential benefit in P300 decoding 
compared to the previous architecture (lacking this block).   

 
3.2.5. Trainable parameter optimization 
Training strategies 

The structure of the adopted dataset BCIAUT-P300 (including several sessions per subject 
and a large number of trials per session), allows to train and evaluate P300 decoders in a large 
spectrum of training conditions, each reflecting a different scenario in which a P300-based BCI 
intervention might be applied. In this study, we assessed the optimal design of the proposed 
ICNN for P300 decoding, separately for each of different training strategies, characterized by 
increasing variability in the dataset, i.e., simulating BCI paradigms applied progressively to 
more sessions and subjects.  

As introduced in Section 3.2.1, the trials of each session and subject were divided into 
training validation sets (80% and 20% of trials of the calibration phase, randomly sampled) 
and test set (trials of the online phase). Then, depending on whether training and validation sets 
were considered separately for each subject or session, or were differently aggregated across 
sessions and subjects, four different training strategies were designed and investigated. It is 
worth mentioning that, despite different training strategies were employed, the definition of the 
test set was the same across training strategies to perform a fair comparison across them, that 
is, the test set always included trials belonging to the 50 online blocks. These strategies are 
described in the following. Furthermore, Figure 3.2b provides a schematization of the adopted 



 78 

strategies, and Table 3.3 a summary of the number of trials belonging to the training, validation 
and test sets in each strategy. 

 
Table 3.3 –Part A: The number of trials in the training set and validation set used to tune the models (under 

Bayesian optimization) and number of trials in the test set used to test the models’ performance, for the different 

training strategies. Part B: The number of trials in the training set, validation set and test sed used to tune and to 

test the WS-WS models and the TL-WS models, to evaluate the beneficial effect of transfer learning. Note that in 

the computational experiments of part B, the validation set was used only for early stopping, as the other hyper-

parameters were inherited from the LOSO models tuned in experiments of part A. The trials in the test set were 

2838 (on average) in each training strategy, as each model was tested separately on each session-specific test set, 

and then the performance was averaged across all sessions for each specific subject. 

 
 Training strategy  No. of trials in 

the training set 
 No. of trials in 

the validation set 
 No. of trials in the 

test set 
A Within-subject and within-session 

(WS-WS) 
1280 320 2838 

Within-subject and cross-session 
(WS-CS) 

8960 2240 2838 

Leave-one-subject-out (LOSO) 125440 31360 2838 

B Within-subject and within-session 
(WS-WS) 

From 128 to 1280 

(step of 128) 

From 32 to 320 

(step of 32) 

2838 

Transfer learning on single 
session (TL-WS) 

From 128 to 1280 

(step of 128) 

From 32 to 320 

(step of 32) 

2838 

 
i. Within-subject and within-session (WS-WS) strategy. In this strategy, subject- and 

session-specific training and validation sets were used to tune subject- and session-
specific CNNs. The test set was defined as the subject- and session-specific test set, i.e., 
trials of the online phase belonging to the subject and session the CNN was trained for 
(see Table 3.3A). Furthermore, to simulate a practical scenario where limited trials are 
available in a single recording session, we trained and validated CNNs using a 
progressively increasing number of calibration blocks (see Section 3.2.1), and thus, using 
variable-sized training and validation sets. This condition was implemented by sampling 
training and validation examples from the first n calibration blocks, where n was 
progressively increased from 2 to 20 with a step of 2 blocks (see Table 3.3B), where 20 
is the overall number of calibration blocks in each session.  

ii. Within-subject and cross-session (WS-CS) strategy. In this strategy, subject-specific 
training and validation sets were used to tune subject-specific CNNs. For the s-th subject, 
training and validation sets were merged across all recording sessions of that specific 
subject (see Table 3.3A). incorporating within-subject variability. The architecture was 
then tested separately on each subject- and session-specific test set, i.e., on trials of the 
online phase of each session belonging to the subject the CNN was trained for.  

iii. Leave-one-subject-out (LOSO) strategy. In this strategy, cross-subject training and 
validation sets were used to tune cross-subject, cross-session and subject-agnostic CNNs, 
i.e., the training and validation sets included only examples sampled from other subject 
distributions. In particular, for each subject s, named “held-back subject”, training and 
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validation sets were merged across all sessions from all the other subjects (different from 
the s-th subject, see Table 3.3A), incorporating between-subject and within-subject 
variability. The architecture was then tested separately on each subject- and session-
specific test set, i.e., on trials of the online phase of each session belonging to the held-
back subject (s-th subject). 

iv. Transfer learning on single sessions (TL-WS). Transfer learning focuses on transferring 
the knowledge across domains/tasks. It is inspired by the human capability to use the 
knowledge learned in a source domain/task to improve the performance and/or reduce 
the training time in a related domain/task [67]. In this strategy, as for the WS-WS strategy 
(Section Training strategies-i), training and validation trials were subject- and session-
specific. In particular, the definition of training and validation sets was the same as the 
one adopted in the WS-WS strategy when analyzing variable-sized training and 
validation sets (depending on the number of included calibration blocks), while keeping 
unchanged the subject- and session-specific test set, i.e., the trials of the online phase of 
that subject and session (see Table 3.3B). However, differently from the WS-WS strategy 
where the trainable parameters were initialized randomly, in the TL-WS strategy, for the 
s-th subject and r-th recording session the CNN was initialized using the CNN trained 
with LOSO strategy when the s-th subject was held-back. That is, the knowledge learned 
during the LOSO strategy from many subjects except the held-back one was transferred 
on the held back subject. The use of TL-WS strategy could be useful when a new user 
approaches the BCI system in a new recording session and a calibration stage, as short 
as possible, is needed to tune an accurate decoder. In this view, the knowledge embedded 
in LOSO models, i.e., incorporating between-subject and within-subject variabilities, 
could represent a better initialization point in the space of parameter L than the random 
one, potentially leading to an improvement in performance and/or to a reduction of 
training and validation examples needed to achieve high performance. The potentialities 
of transfer learning were tested by comparing the performance of the TL-WS models 
with the performance of the WS-WS models, while increasing the size of the training and 
validation sets, thus, assessing the benefits of the use of models pre-trained on other 
subjects compared to models trained from scratch.  

 
Training settings 

CNN optimization consisted of the minimization of the cross-entropy between the empirical 
probability distribution defined by the training labels, and the probability distribution defined 
by the model. This corresponds to minimize the Kullback-Leibler divergence between the two 
probability distributions at trial-level, and thus also at block-level, i.e., object-level. Adaptive 
moment estimation (Adam) [68] was used as optimizer with learning rate =Ü, mini-batch size 
á4 = 64, à( = 0.9 and à, = 0.999 for computing the running averages of the gradient and its 
square, and â = 10'M	to improve numerical stability. To address class imbalance, parameter 
updates were weighted depending on the class occurrence of the training examples: indicating 
with 2$ and 2(, the number of trials for non-P300 and P300 conditions in the training set and 
given that 2$ > 2(, class weights were defined as 1 and 2$ 2( = 7⁄ , respectively for non-
P300 and P300 classes. The maximum number of epochs was set to 1000 and early stopping 
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was performed by interrupting the training loop when the validation loss did not decrease for 
50 consecutive epochs. Besides early stopping, which acts as regularizer, Sinc-ShallowNet-v2 
implicitly included in its structure also many layers devoted to increase the generalization, such 
as batch normalization [47] (with a momentum term ã = 0.99 and â = 1e-3 for numerical 
stability), dropout [46] and kernel max norm constraint.  
 

3.2.6. Hyper-parameter optimization 
Hyper-parameter optimization is devoted to find the optimal hyper-parameter configuration 

of a learning system associated with the best performance measured on a separate validation 
set. In the following, an overview of hyper-parameter tuning via Bayesian optimization (BO) 
[69] is provided; then, the procedure adopted to perform BO hyper-parameter search and to 
report the obtained results is described.  

 
Hyper-parameter search via Bayesian optimization 

Denoting with ℎ the array containing the hyper-parameters of interest (ℎ ∈ ç, where ç is 
the hyper-parameter search space), the aim of hyper-parameter optimization is to find ℎ∗ =
éÜOmin

O∈Q
R(ℎ), that minimizes the objective function R(ℎ) (the cross-entropy loss, in this study) 

evaluated on the validation set. However, the evaluation of the objective function R(ℎ) requires 
a new training stage and a new evaluation stage (on the validation set) for each hyper-parameter 
configuration ℎ. Thus, depending on the number of hyper-parameters to optimize and on the 
complexity of the model, which are generally both high in deep learning-based approaches, 
this process can be expensive. Common hyper-parameter search algorithms, such as grid search 
and random search, do not take advantage of the results of the previous iterations to select the 
next hyper-parameters to evaluate (the latter are, thus, uninformed by past evaluations), often 
wasting computational time on hyper-parameters with poor performance. Conversely, BO 
methods keep track of results related to past evaluations to update a probabilistic model, 
mapping hyper-parameters to the probability to obtain a specific score from the objective 
function. That is, BO can be formalized as a sequential model-based optimization, performing 
several iterations each one considering a specific hyper-parameter configuration and updating 
the probability model. This model is a surrogate of the objective function to be minimized and 
is easier to optimize than the original objective function. BO methods suggest the hyper-
parameters in an informed way after each iteration step, based on a “selection function”. By 
investigating hyper-parameters that seem promising based on past results, BO methods can 
find better configurations than other approaches within fewer iterations compared to 
uninformed algorithms (e.g., grid or random search) [69].  

 
Hyper-parameter search settings and analysis 

Optimal hyper-parameters were searched via BO (using the Python library Optuna [70], 
version 2.3.0), using tree-structured Parzen estimator as surrogate function and expected 
improvement as selection function, and sequential model-based optimization was performed 
for 100 iterations (which is the default value [70]). The hyper-parameters of Sinc-ShallowNet-
v2 subjected to BO, defining the array ℎ ∈ ç, were e$?@@,	*(?@@, x(?@@, P?@@ = P4@+ = P, 
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e$
4@+, f$4@+, x$4)  and =Ü. Within each BO iteration, the hyper-parameters were sampled from 

the distributions specified in Table 3.4. Note that, based on the adopted distributions, since 
e$

4@+ can be equal to or less than (but not greater than) e$?@@ ∙ *(?@@, only compressed or equal 
(but not overcomplete) representations in FST layer were examined. BO was applied to models 
trained with WS-WS, WS-CS and LOSO strategies to investigate the optimal design of Sinc-
ShallowNet-v2 depending on the training strategy (see Figure 3.2b). BO was not applied to 
TL-WS, as models trained in this strategy strictly depended on LOSO models. Indeed, in TL-
WS the ICNN was initialized with LOSO parameters and then trained on the held-back subject. 
Therefore, the hyper-parameter configuration adopted in TL-WS models needed to be the same 
as in the LOSO strategy, i.e., hyper-parameters needed to be kept fixed as the ones of Bayesian-
optimized LOSO models. Therefore, also the WS-WS models used for comparison with TL-
WS models, while training and evaluating decoders with a progressively increasing size of 
training and validation sets, were assigned to the Bayesian-optimized hyper-parameters of the 
LOSO models, for a fair comparison. It is worth remarking that while analyzing the 
potentialities of transfer learning with TL-WS and WS-WS models, where hyper-parameters 
were inherited from LOSO models, the validation set was used only to perform early stopping. 

 
Table 3.4 – Searched hyper-parameters of Sinc-ShallowNet-v2: distributions and admitted values sampled during 

Bayesian optimization. Curly brackets denote discrete admitted values, while square brackets denote interval of 

admitted values.  

Hyper-parameter Distribution Values 
;+<)) uniform {4, 8, 16} 

I.<)) uniform {1, 2, 4} 

W.<)) uniform {None, 0.25, 0.5, 0.75, 1, 1.25, 1.5} 

)<)) = )2)0 = ) uniform {None, 0.25, 0.5} 

;+2)0 uniform {;+<)) ∙ I.<)), 1, 2} 

<+2)0 uniform {(1,5), (1,9), (1,13), (1,17), (1,21)} 

W+23 uniform {None, 0.25, 0.5, 0.75, 1, 1.25, 1.5} 

*X log-uniform [1e-4, 1e-1] 

 
For each training condition (WS-WS, WS-CS and LOSO), and for a given q-th hyper-

parameter ∈ ℎ (0 ≤ ê ≤ 7) the optimal values obtained across the Bayesian-optimized ICNNs 
were extracted (we had 15·7 ICNNs in WS-WS and 15 ICNNs in WS-CS and LOSO). Then, 
the probability (h) to obtain a specific hyper-parameter value via BO across ICNNs was 
computed. This allowed a visualization and a comparison of the optimal model design across 
training conditions. Moreover, for each training condition the importance score ëR was derived 
by using the fANOVA hyper-parameter importance evaluation algorithm proposed in [71] that 
fits a random forest regression model predicting the objective value given a parameter 
configuration. Importance scores sum up to 1 over the investigated hyper-parameters (i.e., 
∑ ëRR = 1) and the higher the score of a specific hyper-parameter, the higher its importance.  

To provide a fair performance comparison with the other two CNN-based approaches, the 
EEGNet adaptation used in [50] and Sinc-ShallowNet [52] (see Section 3.2.4), the optimal 
hyper-parameters of EEGNet and Sinc-ShallowNet were searched using BO for each training 
condition too. In particular, the hyper-parameters of EEGNet and Sinc-ShallowNet were 
sampled using the same distributions defined as for Sinc-ShallowNet-v2 (see Table 3.4); of 
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course, Sinc-ShallowNet lacked the hyper-parameters of the FST block (e$4@+ and f$4@+) as 
this block was absent in this architecture.  
 

3.2.7. Explanation technique: spectral and spatial features analysis 
The interpretation of the features learned by Sinc-ShallowNet-v2 incorporating subject-

specific knowledge (L = L("), in WS-CS) could provide insights about neural signatures 
related to each specific ASD subject in a data-driven way, enabling between-subject variability 
investigation in ASD. For this analysis, we retrained the ICNN in WS-CS using the most 
frequent Bayesian-optimized configuration obtained in WS-WS across all subjects and 
sessions. By doing so, only one fixed hyper-parameter configuration was used to retrain WS-
CS models across all subjects, so that the same number of temporal and spatial filters in the 
ISS block – whose learned features are the objects of the following analysis – was used across 
subjects. In this way, we were able to evidence differences/similarities among ASD subjects in 
terms of the learned features, excluding that these differences may arose from differences in 
ICNN configurations. The fixed configuration was based on the most frequent WS-WS optimal 
configuration, as the Bayesian-optimized WS-WS models resulted the lightest and fastest to 
train (see Figure 3.4 and Table 3.5). It is worth noticing that the WS-CS retrained models 
achieved comparable performance with the Bayesian-optimized WS-CS models (see Section 
3.6.1 of Supplementary Materials). 

As described in Section 3.2.3-i, the adopted architecture was designed to provide 
interpretable parameters in the array L?@@("). The ICNN processes input trials by filtering out 
P300-unrelated spectral and spatial information while preserving only the most significant ones 
for P300 decoding. However, features may have a different importance on the discrimination, 
i.e., a band-pass filtering in a peculiar frequency range and a subset of electrodes may be more 
relevant to distinguish the P300 response. Therefore, the processing of L?@@ should also include 
an explanation technique, devoted to highlight contributions of the more important features in 
ASD related to P300, realizing the combination ICNN+ET.  

In the following, the proposed algorithm based on ICNN+ET for the investigation of 
subject-specific spectral and spatial P300 features is described and a schematic representation 
is reported in Figure 3.3.  
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Figure 3.3 – Schematic representation of the algorithm based on ICNN+ET adopted to gain insights about the 

neural signatures of the visuo-spatial P300 correlate in autism in its three main steps: spectral relevance 

computation, spatial relevance computation, and clustering.  

 
Computation of the relevance of spectral features (spectral relevance) 
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At first, given a single input EEG trial of the s-th subject containing the P300 response 
(-%

(",>)), we computed the saliency [72] for the P300 class of each spatio-temporal sample (" ∙
$ samples) within each feature map provided by the temporal sinc-convolutional layer. This 
ET consists in computing the gradient of the output of the neuron associated to the P300 
condition (immediately before the softmax function) with respect to the feature maps provided 
by the first convolutional layer. The output of the ET is one relevance map for each feature 
map of the first layer (i.e., ∀Y, with 0 ≤ Y ≤ e$

?@@ − 1), and can be interpreted as a 
transformation }p-%

(",>)
q:ℝ)×+ → ℝKABCC×)×+ whose output quantifies how much the spatio-

temporal samples in each filtered version of the input affect the P300 prediction. Relevance 
maps were averaged across P300 trials, and the absolute value of these maps was computed. 
Therefore, an average relevance map X̅0

(")
∈ ℝ)×+ , 0 ≤ Y ≤ e$

?@@ − 1 was obtained, and 
finally, the relevance score of each feature map was computed as: 
O0
(")
= max

5,H
X̅0
(")

max
5,H,0

X̅0
(")

U , 0 ≤ Y ≤ e$
?@@ − 1, 0 ≤ x ≤ " − 1, 0 ≤ ï ≤ $ − 1, (3.6) 

where O0
(")
∈ [0,1] is a scalar quantity that summarizes the importance of each band-pass filter 

for discriminating the P300 response from input EEG trials. 
The spectral relevance scores obtained in Equation 3.6 were used to weight the associated 

passbands of the temporal filters, defined by L"3G5H,0(") (see Equation 3.3), computing Ü0
(")
(J) 

as follows: 

ñ
P0
(")
(J) = 7

1, ;J	J$,0
(S)
≤ J ≤ J(,0

(")
	

0, }=4}{ℎ}Ü}
		0 ≤ Y ≤ e$

?@@ − 1

Ü0
(")(J) = O0

(")
∙ P0

(")(J)																					0 ≤ Y ≤ e$
?@@ − 1

. (3.7) 

In Equation 3.7, P0
(")
(J) indicates the probability that a specific frequency J was included in 

the passband of the j-th band-pass filter, i.e., marking with a probability of 0 and 1 frequencies 
outside and inside the passband, respectively. 

Then, the spectral relevance Ü(")(J), quantifying the relevance of each frequency bin, was 
obtained as: 
Ü(")(J) = max

0
Ü0
(")
(J).   (3.8) 

 
Computation of the relevance of spatial features related to the most relevant spectral features 

(spatial relevance) 

By averaging Ü(")(J) across subjects, the frequency ranges retaining a relevance greater 
than or equal to 0.75 across subjects (∀4) were identified. As described in Section 3.3.3, only 
one frequency range was identified, and it is indicated in the following with [J$∗, J(∗]. This 
interval is characterized by a high relevance with high agreement (≥75%) across subjects, as 
the spectral relevance was normalized for each subject. For each subject the following analysis 
was performed. First, we considered the subset of the band-pass filters, denoted as g("), that 
contained in their passband the frequency bins belonging to [J$∗, J(∗] and we selected the spatial 
filters (i.e., the learned features L0-

("), see Equation 3.4) associated to this subset of band-pass 
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filters (Y ∈ g("), 0 ≤ R ≤ *(
?@@ − 1). As we were interested in the investigation of the relevance 

at the level of single electrode, spatial filters were considered in their absolute value, as done 
in [45,52]. Subsequently, the absolute spatial features	were averaged together electrode per 
electrode (∀x) and normalized to the maximum across electrodes, obtaining the spatial 
relevance: 

L̅"3IH
(")

=
(

T"EFG
(") ∑ éá4(L0-

(")
)0∈@("),- max

5

(

T"EFG
(") ∑ éá4(L0-

(")
)0∈@("),-ò , 0 ≤ x ≤ " − 1, (3.9) 

where 5"3IH
(")  represents the overall number of spatial filters associated to the subset g(") of the 

band-pass filters (*(?@@ spatial filters for each band-pass filter in the subset).  
Based on Equation 3.9, each value of L̅"3IH

(")
∈ ℝ)  quantifies the relevance (normalized 

between [0,1]) of a specific electrode signal filtered in the frequency range most important for 
decoding the P300 response. Abnormalities in P300 (e.g., ASD abnormalities) may modulate 
L̅"3IH
(") .  

 
Clustering 

The spatial relevance L̅"3IH
(")  was clustered, automatically finding clusters of subjects 

characterized by different patterns of L̅"3IH
(") . This was made possible by adopting the WS-CS 

strategy, as it allows the learning of robust subject-specific neural signatures across recording 
sessions. Here, Hierarchical Density-Based Spatial Clustering of Applications with Noise 
(HDBSCAN) [73] was used as clustering algorithm (using the Python library hdbscan [74], 
version 0.8.27), using the Euclidean distance between observations as distance metric. With 
HDBSCAN, clustering is performed without specifying the number of clusters as input 
parameter, including also an outlier detection algorithm [73]. Therefore, the adopted clustering 
algorithm provides the optimal number of clusters 55U7"H	populated by the more reliable 
observations and marks as outliers a subset _ of observations. As observations belonging to 
the same cluster share a common structure, these were averaged together, obtaining L̅5,"3IH for 
the c-th cluster. Therefore, cluster-level representations were obtained by averaging across a 
small subset of subjects sharing a peculiar spatial pattern as learned by the model, reflecting 
neural signatures belonging to different clusters of ASD subjects.  

 
3.2.8. Statistical analysis 
Performance 

As described in Section 3.2.4, object-level accuracy was used as performance metric, and it 
was computed separately for each session-specific test set. In addition, as performed in [41], 
as the performance resulted robust across recording sessions, the performance metric was 
averaged across all sessions for each subject. Then, the following tests were performed.  

i. A Friedmann test was performed to compare the performance obtained by Sinc-
ShallowNet-v2 trained with the three training strategies (WS-WS, WS-CS, LOSO 
strategies). Then, as significant differences were found (see Section 3.3.2), post-hoc 
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pairwise comparisons were performed testing all combinations; a total of 3 tests were 
performed to check for differences between different strategies. 

ii. For each training strategy, pairwise comparisons were performed between Sinc-
ShallowNet-v2 and the other two CNNs that inspired Sinc-ShallowNet-v2 design: the 
winning solution of the IFMBE 2019 challenge based on EEGNet [50], representing the 
SOA for P300 decoding, and Sinc-ShallowNet [52]. A total of 6 tests were performed to 
check for differences between the proposed ICNN and the other two CNN-based 
solutions. 

iii. Pairwise comparisons were performed between Sinc-ShallowNet-v2 trained with TL-WS 
strategy and trained with WS-WS strategy for each number of calibration blocks used for 
tuning the models. This was done to test the benefits of pre-training the models on other 
subjects compared to training models from scratch. A total of 10 tests were performed to 
check for differences. 

All previous pairwise comparisons were performed using Wilcoxon signed-rank tests and 
false discovery rate correction at V = 0.05 using the Benjamini–Hochberg procedure [75] to 
correct for multiple tests. 

 
ASD clinical scores 

Finally, we investigated whether the relevance of spatial features related to the most relevant 
spectral features of the P300 response, as learned by the ICNN, was related to ASD clinical 
scores (ADOS, ADI-R, and IQs, see Section 3.2.1). As the cluster analysis highlighted a strong 
contribution of parietal sites across clusters (see Section 3.3.3), L̅"3IH

(")  was averaged across P3, 
Pz and P4 sites (thus, resulting in a scalar value for each subject s). Then, the Pearson 
correlation coefficient between this ICNN+ET-derived measure and each ASD clinical score 
was computed. Lastly, we performed a similar correlation analysis by using a measure derived 
from subject-specific evoked potentials, to investigate whether useful ASD neural signatures 
were enhanced by the proposed ICNN+ET analysis or they emerged already from evoked 
potentials. To this aim, for each subject, EEG trials of the test set containing the P300 response 
were band-pass filtered in the range [J$∗, J(∗] and were averaged together. Then, the resulting 
evoked potential was averaged across P3, Pz and P4 sites and across the time samples where 
the P300 response was stronger, i.e., between 400-600 ms, see Borra et al. [43]. Thus, after this 
averaging procedure, a scalar value was obtained for each subject s. Then, the Pearson 
correlation coefficient between this ERP-derived measure and each ASD clinical score was 
computed.   
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3.3. RESULTS 

First, this section describes the results of AHPS via BO and the obtained decoding 
performance; then, it shows the results obtained via the proposed ICNN+ET algorithm to 
analyze the neural signatures corresponding to attentional P300 in ASD.  

 
3.3.1. Hyper-parameter search via Bayesian optimization 

The hyper-parameter configurations and their importance scores were separately obtained 
for each tested training strategy (WS-WS, WS-CS, LOSO). Figure 3.4 shows the probability 
to obtain a specific hyper-parameter value (h) among the admitted ones (Figure 3.4a) and the 
hyper-parameter importance scores ë (Figure 3.4b) for each training condition.  

 

 
Figure 3.4 – Hyper-parameter distributions (a) and importance scores (b) when training Sinc-ShallowNet-v2 with 

within-subject and within-session (WS-WS), within-subject and cross-session (WS-CS) and leave-one-subject-

out (LOSO) strategies. Hyper-parameter distributions were reported representing the probability (3) that a specific 
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hyper-parameter value resulted as optimal via BO, and it is reported separately for the different training strategies. 

Hyper-parameter importance scores were reported in their mean values across decoders trained with each training 

strategy, separately. Bar heights represent the mean value, while the error bars represent the standard error of the 

mean.  

 
The more frequent design of the ISS block included a lower number of band-pass filters in 

WS-WS than WS-CS and LOSO (i.e., e$?@@ = 8 vs. e$?@@ = 16) and the same number of 
spatial filters for each band-pass filter across training conditions (i.e., *(?@@ = 4). Among the 
regularization techniques employed, spatial kernel max-norm constraint was applied more 
frequently in the LOSO strategy, while was progressively applied less frequently (i.e., x(?@@ =
5Öt}) moving to WS-CS and WS-WS strategies. The FST block was mostly designed learning 
an equal representation over the input ISS feature maps (i.e., e$4@+ = e$

?@@ ∙ *(
?@@) for WS-

WS and LOSO strategy, while equal representation and compressed representation (with 
e$

4@+ = 2) were almost evenly frequent in WS-CS strategy. Interestingly, the most frequent 
temporal window in which features were learned in the FST block was approx. of 600 ms for 
all training strategies (= f$

4@+[1]/	(4J//4), where f$4@+ = (1,21) and 4J = 128 Hz), and 
this could be related to the temporal dynamics of the P300 response. Regarding the FC block, 
weights were always constrained in case of LOSO strategy mainly with low upper bound (x$4)  
= 0.25 or 0.5), while the probability distribution of this hyper-parameter appeared almost 
uniform for the other strategies.  

Dropout (both in the ISS and in the FST blocks) was mostly absent in LOSO strategy while 
it was included in the other strategies with a more frequent dropout probability of P = 0.25. 
Lastly, higher learning rates were adopted in WS-WS strategy, i.e., =Ü ∈ [5 ∙ 1} − 3, 1} − 2), 
compared to the other strategies where =Ü ∈ [5 ∙ 1} − 4, 1} − 3). 

As shown in Figure 3.4b, the learning rate resulted the most important hyper-parameter to 
optimize in case of WS-WS strategy, while the other hyper-parameters resulted almost equally 
important. Regarding the WS-CS strategy, the number of band-pass filters (e$?@@) and of 
spatial filters for each band-pass filter (*(?@@) were the most important hyper-parameters, while 
regarding the LOSO strategy, the number of band-pass filters (e$?@@) and the dropout 
probability (P) were the most important ones.  

Table 3.5 lists the model size (expressed as the number of trainable parameters) and training 
time (expressed in s/epoch) of the models. As expected, WS-WS models were the lightest 
(overall and within each block) and fastest to train, while LOSO models were the heaviest 
(overall and within each block) and slowest to train. Interestingly, the proportion of trainable 
parameters across blocks between WS-WS and WS-CS models did not change substantially 
(ISS: 28%, 28%; FST: 62%, 63%; FC: 10%, 9%, respectively for WS-WS and WS-CS); 
compared to WS-WS and WS-CS strategies, LOSO models presented a higher concentration 
of the trainable parameters (i.e., higher capacity) in the FST block (i.e., ISS: 12%; FST: 80%; 
FC: 8%).  

 
Table 3.5 – Model size (expressed as the number of trainable parameters) and training time (expressed in s/epoch) 

of Sinc-ShallowNet-v2 for each training condition. The total number of trainable parameters (mean ± standard 

error of the mean) is reported together with the number of parameters specific for each block, indicating within 

brackets the percentage of parameters exploited in each block. 
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 Block Within-subject and 
within-session (WS-

WS) 

Within-subject and 
cross-session (WS-

CS) 

Leave-one-subject-
out (LOSO) 

Model size  
(# tr. parameters) 

- 1207±141 1655±412 4638±559 

 ISS 336±21 (28%) 466±47 (28%) 555±43 (12%) 

 FST 749±121 (62%) 1042±368 (63%) 3689±483 (80%) 

 FC 122±13 (10%) 147±40 (9%) 394±34 (8%) 

Training time 
(s/epoch) 

- 0.980±0.014 6.380±0.319 23.1±1.1 

 
3.3.2. Decoding performance 
Comparison with EEGNet and Sinc-ShallowNet in different training strategies 

The performance metrics averaged across subject-specific and session-specific test sets (see 
Section 3.2.8) are reported here. Figure 3.5 displays the performance metrics of the Bayesian-
optimized EEGNet, the Bayesian-optimized Sinc-ShallowNet, and the Bayesian-optimized 
Sinc-ShallowNet-v2. Sinc-ShallowNet-v2 scored significant different performance across the 
three training strategies (P < 0.001, Friedmann test). As expected, post-hoc comparisons 
highlighted that the network performed significantly worse in LOSO strategy than both WS-
WS and WS-CS (P < 0.001 for both comparisons) strategies. Lastly, the network in WS-CS 
performed significantly better than WS-WS strategy (P = 2.3 ∙ 1} − 3). Sinc-ShallowNet-v2 
scored object-level accuracies of 88.5±2.3%, 91.5±1.8%, 76.0±3.2%, compared to 85.5±2.5%, 
91.7±1.6%, 76.3±3.2%, of EEGNet, and 76.1±3.9%, 84.0±2.9%, 67.6±3.6%, of Sinc-
ShallowNet, respectively in WS-WS, WS-CS and LOSO strategies. Remarkably, despite the 
reduction in model capacity by re-parametrizing part of the architecture to design an 
interpretable spectral and spatial feature extractor, Sinc-ShallowNet-v2 achieved comparable 
performance compared to EEGNet for P300 decoding in WS-CS and LOSO strategies (P =
0.84), while significantly outperformed it in the WS-WS strategy (P = 0.01). Lastly, it is 
worth noticing that the updated version of Sinc-ShallowNet-v2 significantly outperformed 
Sinc-ShallowNet in all training strategies. 
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Figure 3.5 – Accuracies of the Bayesian-optimized EEGNet (black), Bayesian-optimized Sinc-ShallowNet 

(green) and Bayesian-optimized Sinc-ShallowNet-v2 (blue) scored in the WS-WS, WS-CS and LOSO strategies. 

Bigger dots represent the mean value across subjects, while the error bars represent the standard error of the mean. 

Smaller dots represent the accuracy scored for each subject (i.e., 15 data points). See part A of Table 3.3 for details 

about the number of examples defining the training, validation and test sets. Wilcoxon signed-rank tests were 

performed to compare the performance of the Bayesian-optimized Sinc-ShallowNet-v2 with the Bayesian-

optimized EEGNet and with the Bayesian-optimized Sinc-ShallowNet, within each training strategy. P-values 

were corrected for multiple comparisons (6 in total) via the Benjamini–Hochberg procedure and significant 

comparisons are marked once applied the correction (*p<0.05, **p<0.01, ***p<0.001). See Section 3.2.8 for 

further details about the statistical tests. 

 
Transfer learning 

Transfer learning was adopted to test the capability of models to transfer the knowledge 
from other subjects to a new one, for a more practical usage of the decoder in a BCI for ASD 
treatment (i.e., reduction of BCI calibration times). To this aim, Figure 3.6 shows the accuracy 
obtained while transferring the knowledge from the other participants to the held-out 
participant (TL-WS strategy, see Section Training strategies-iv), using a progressively 
increasing number of calibration blocks of the held-out participant (from 2 to 20, where 20 
corresponds to the entire subject-specific calibration set, see Section Training strategies-i, iv). 
The WS-WS performance are reported together with TL-WS performance, to highlight the 
potential benefit of transfer learning compared to a random initialization (proper of the WS-
WS strategy). Remarkably, transfer learning was found to be beneficial with significant 
improvements (P < 0.01) for all the tested number of calibration blocks; using just 2 
calibration blocks per subject, TL-WS reached an object-level performance as high as 
80.3±3.0% with an average improvement as high as 37.1% compared to WS-WS.  
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Figure 3.6 – Results of transfer learning as a function of the number of calibration blocks of the subject. Blue 

distributions show the accuracies obtained with the TL-WS models while transferring the knowledge from 

multiple subjects on a new subject (i.e., using the knowledge embedded in a LOSO model to initialize the WS-

WS model on the held-out subject). Black distributions show the accuracies obtained by randomly initializing the 

CNN (i.e., WS-WS models trained from scratch, without exploiting knowledge from other subjects). The 

performance metric is reported for different numbers of calibration blocks used for training the TL-WS and WS 

models. Bigger dots represent the mean value across subjects, while the error bars represent the standard error of 

the mean. Smaller dots represent the accuracy scored for each subject (i.e., 15 data points). See part B of Table 

3.3 for details about the number of examples defining the training, validation, and test sets. Wilcoxon signed-rank 

tests were performed to compare the performance of TL-WS models and WS-WS models. P-values were corrected 

for multiple comparisons via the Benjamini–Hochberg procedure and significant comparisons are marked once 

applied the correction (*p<0.05, **p<0.01, ***p<0.001). See Section 3.2.8 for further details about the statistical 

tests.  

 
3.3.3. Subject-specific ASD neural signatures related to P300 

Figure 3.7 (top panel) shows the spectral relevance (average ± standard error of the mean 
across subjects). The frequency range retaining most of the relevance (≥ 0.75) resulted 
[J$

∗, J(
∗] = [2, 5.8] Hz. Then, by clustering the relevance of spatial features related to this 

frequency range, two clusters were obtained and their L̅5,"3IH are reported in the bottom panel 
of Figure 3.7 (left). Each of these cluster-level representations evidenced a peculiar strategy at 
the level of scalp that the system automatically learned for P300 decoding. Cluster 0 showed a 
strong and wide contribution of parietal sites (peaking at Pz) symmetrical across hemispheres, 
while cluster 1 – that resulted the most populated cluster (with 10 observations) – showed a 
strong right-lateralized contribution at parietal sites (P4). Lastly, in addition to these clusters, 
two outliers were detected, with a different spatial relevance. 
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Figure 3.7 – Spectral relevance (top) and spatial relevance (bottom). The spectral relevance is reported in its mean 

value (black line) and standard error of the mean (grey shaded area) across subjects. The more relevant frequency 

range (associated to a relevance ≥0.75) is delimited by the two dashed vertical lines. The spatial relevance is 

displayed for the two clusters (averaged within each cluster) and to the outliers detected. The number of subjects 

in each cluster is reported within brackets.  

 
The results of the statistical analysis conducted on the relevance of spatial features (L̅"3IH

(") ) 
at parietal sites is reported in Figure 3.8. Among all clinical scores, ADOS scores (both A-
Communication, B-Social Interaction and A+B-Communication-Social Interaction scores) 
were the ones that mostly correlated to the ICNN+ET-derived measures, with high (r=0.770, 
r=0.657 and r=0.801, respectively) and significant (P < 0.01) positive correlations. 
Conversely, by using ERP-derived measures no significant correlations with clinical scores 
were found. 
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Figure 3.8 – Correlation analysis between each ASD clinical score and the ICNN+ET-derived (black) or ERP-

derived measures (red). Subject-specific observations are reported with dots together with regression lines. 

Pearson’s correlation coefficients together with p-values are reported inside each plot. 
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3.4. DISCUSSION 

3.4.1. Hyper-parameter search 
Depending on the training strategy adopted, AHPS selected different hyper-parameter 

configurations for Sinc-ShallowNet-v2. A peculiar trend of the probability distributions related 
to e$?@@, *(?@@, e$4@+, f$4@+ (see Figure 3.4a) was observed while moving from the WS-WS 
to WS-CS and LOSO strategies. In particular, the probability distributions of these hyper-
parameters progressively moved from distributions more focused on small values (WS-WS) to 
distributions more focused on higher values (LOSO) among the admitted ones (see Table 3.4 
for the admitted values), with the WS-CS strategy exhibiting an intermediate behavior in 
between the previous strategies. As an example, the probability distributions related to e$?@@ 
moved from a distribution more focused on lower values including also the lowest admitted 
value (e$?@@ = 4), in the WS-WS strategy, to a distribution entirely focused on the highest 
admitted value (h(e$?@@ = 16) = 1), in the LOSO strategy. That is, Sinc-ShallowNet-v2, 
moving from WS-WS to WS-CS and LOSO strategies, required progressively more filtered 
versions of the input EEG trial (e$?@@), more electrode combinations tied to each band-pass 
filtered representation (*(?@@), more temporal representations to learn (e$4@+) and a wider 
window size in which learn these representations (f$4@+).  

Among regularization techniques, the needing of dropout was stronger in WS-WS strategy, 
using mostly P = 0.5 and P = 0.25, with a progressively reduction in WS-CS and LOSO 
strategies, up to P = 0 corresponding to no dropout applied (denoted by P = 5Öt}). That is, 
the smaller and less variable (in terms of intra-subject and inter-subject variabilities) the 
dataset, the higher the needing of dropout to provide a better generalization. Similar to other 
regularization techniques, dropout acts reducing the algorithm capacity. Thus, from the 
previous considerations about e$?@@, *(?@@, e$4@+, f$4@+ and from the consideration on P, as 
the training strategy involves a more challenging decoding task, the architecture needs more 
capacity to solve the task with high performance. This is particularly relevant in strategies such 
as WS-CS and LOSO, where single-trial EEG decoding is performed using signals collected 
across several recording sessions (training set with high intra-subject variability) and across 
several subjects and sessions (training set with high intra-subject and inter-subject variability), 
respectively. Interestingly, this result was confirmed by looking to the hyper-parameter 
importance scores (see red and light blue bars in Figure 3.4b), where e$?@@ and *(?@@, and e$?@@ 
and P were the more important hyper-parameters to optimize for the WS-CS and LOSO 
strategies, respectively. Furthermore, the need of an increased capacity as observed in the 
structural hyper-parameters of Sinc-ShallowNet-v2 is reflected onto its model size (see Table 
3.5), resulting in 1207, 1655, and 4638 (on average) trainable parameters for WS-WS, WS-CS, 
and LOSO, respectively. In addition, while progressively increasing the variability in the 
training examples, the capacity of the model increased differently across the network. While 
increasing the intra-subject variability (WS-CS) the number of trainable parameters increased 
by the same proportion across ISS, FST, FC blocks compared to WS-WS, suggesting that 
increasing the capacity equally across the network could help addressing an increased intra-
subject variability in the training examples. Conversely, while also increasing the inter-subject 
variability (LOSO), the network needed more abstract temporal features to learn in deeper 
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layers compared to the models trained in the other strategies, i.e., 80% (vs. ~60%) of the 
parameters were in the FST block (see Table 3.5). This suggests that increasing the capacity at 
the deeper layers of the architecture could help addressing an increased inter-subject 
variability.  

Lastly, the probability distribution of the learning rate was characterized by being more 
biased towards higher learning rates in the WS-WS strategy and towards lower learning rates 
in the LOSO strategy, with the WS-CS representing an intermediate condition. That is, as the 
decoding task became less challenging, i.e., moving from the LOSO to WS-WS strategies, a 
higher learning rate resulted beneficial. As for the previous hyper-parameters, this result was 
confirmed by looking to the importance scores for the WS-WS strategy (Figure 3.4b), where 
the learning rate was the most important hyper-parameter to search.  

 
3.4.2. Decoding performance 

In a preliminary analysis, we investigated the utility of AHPS, by comparing the 
performance of architectures optimized via BO for each session or each subject instead of using 
a fixed configuration. Results showed that the use of a fixed configuration provided 
significantly lower accuracies (see Section 3.6.2 of Supplementary Materials). This suggests 
that when a new subject or a subject in a new session approaches the BCI, BO should be 
performed again to achieve higher performance.  

Object-level accuracy varied using different training strategies. Despite the larger within-
subject variability in the input distributions (due to the involvement of many recording 
sessions), CNNs trained with WS-CS were able to significantly outperform CNNs trained with 
WS-WS, although the improvement is modest. A possible explanation for this result may be 
that some subjects exhibited high variability even intra-session, leading to smaller performance 
in WS-WS than in WS-CS (subjects 1,13,14 in Supplementary Figure 3.1), on average. Indeed, 
in these cases WS-CS took great advantage of the larger training set across all sessions, 
allowing object-level accuracy to be increased up to 8.6% compared to WS-WS. However, 
WS-WS strategy reached high performance (i.e., >90%) with small variance in most of the 
subjects (subjects 2, 4, 6, 7, 8, 10, 11, 15 in Supplementary Figure 3.1), suggesting consistency 
in within-subject responses both intra- and inter-session. In these cases, WS-CS can still benefit 
from the 7-time increased training set, slightly improving accuracy compared to WS-WS. 
Lastly, further increasing the decoding difficulty, by including the cross-subject variability into 
the training distributions, the challenge represented by the LOSO strategy was reflected into 
the lowest performance across all the training strategies.  

 
Comparison with EEGNet and Sinc-ShallowNet in different training strategies 

Sinc-ShallowNet-v2 significantly outperformed the solution based on EEGNet [50] in the 
WS-WS strategy, while it was comparable in the other strategies (WS-CS and LOSO). Due the 
introduction of the temporal sinc-convolution in Sinc-ShallowNet-v2, the number of trainable 
parameters to perform band-pass filtering were only 1.5% of the ones used in EEGNet that 
exploits conventional temporal convolution. This reduction of trainable parameters provided a 
beneficial effect when using the training strategy involving the most compact training set (WS-
WS), in which a limited algorithm capacity resulted optimal, while no effect was observed in 



 96 

the conditions with larger and more variable training sets (WS-CS and LOSO), requiring a 
higher algorithm capacity). Therefore, the introduction of the interpretable spectral and spatial 
feature extractor, not only resulted beneficial for feature interpretability, but also did not 
negatively affect the performance. Indeed, surprisingly the performance of Sinc-ShallowNet-
v2 was comparable or even significantly higher, while providing at the same time a 
straightforward access to the spectral and spatial features. Furthermore Sinc-ShallowNet-v2 
significantly outperformed the previous version Sinc-ShallowNet [52] in all training 
conditions. These results suggest that the inclusion of the FST block in Sinc-ShallowNet-v2, 
by learning temporal features on the output of ISS block, enables the extraction of more 
relevant P300-related features than the ISS block only, easing the discrimination of the P300 
response. In particular, the FST block may better cope with the large variability in time of 
P300; the lower performance of Sinc-ShallowNet is then ascribable to the lack of this block 
and to a reduced ability to catch intra-session, inter-session and inter-subject variability.  

 
Transfer learning 

Transfer learning could be used (TL-WS strategy) to reduce the calibration time on a new 
subject recorded in a new recording session (i.e., requiring WS-WS decoding). Indeed, results 
reported in Figure 3.6 highlight a significant benefit in transferring the knowledge from other 
participants to a new one recorded in a new session, for each calibration set adopted. 
Remarkably, the performance improvement was particularly relevant (on average 37.1%) in 
the lowest data regime (i.e., 2 calibration blocks corresponding to 160 trials), suggesting that 
the proposed interpretable approach was also capable of transferring the knowledge from other 
participants enabling its usage with extremely compact-sized calibration sets. Lastly, transfer 
learning not only improved the performance obtained in a WS-WS strategy using a small 
portion of calibration blocks, which could be useful in practice to reduce calibration time, but 
also improved the performance when using all 20 the calibration blocks (i.e., 1600 trials).  

 
3.4.3. Subject-specific ASD neural signatures related to P300 

The results obtained by analyzing the neural signatures related to P300 response via the 
proposed ICNN+ET algorithm suggest that the more relevant (and shared across subjects) 
features to distinguish P300 were obtained by filtering EEG signals including the frequency 
range [2, 5.8] Hz in the passband. This is in line with other studies performing P300 
classification both on healthy and ASD people, where features from EEG signals were 
computed mainly in [2,4] Hz, [4,8] Hz, [2,8] Hz and [2,12] Hz frequency ranges [33–35]. In 
these previous studies, EEG signals recorded from ASD people were pre-processed based on 
other P300 decoding approaches validated on healthy subjects, adopting fixed cutoff 
frequencies. Conversely, here the learning system was left free to explore all frequency 
contents, adapting them to EEG signals of ASD people in an unbiased way. Indeed, some 
learned filters included also higher cutoff frequencies too, but only the filters containing lower 
frequency content resulted more important to provide the correct discrimination of the P300 
response. Furthermore, the spectral relevance peaked approximatively in [2,4] Hz, matching 
the findings of the wavelet analysis conducted by Demiralp et al. [36] where single EEG trials 
were successfully decoded from features designed in delta ([2,4] Hz) frequency range. These 



 97 

results suggest that future studies on traditional machine learning applications for P300 
decoding in ASD, could design filter banks focusing especially on the interval [2, 5.8] Hz, i.e., 
in the delta and theta ranges. 

The spatial relevance showed a strong right-lateralization for most of the observations (see 
cluster 1 in Figure 3.7). This indicates that the visuo-spatial sensory processing during the BCI 
task involved mainly the right hemisphere, differing from the classic P300 scalp distribution. 
In the literature, there is evidence of hemispheric asymmetries underlying social perception 
[76], e.g., right-lateralization while processing facial expressions related to emotions [77–79]. 
Furthermore, a right-lateralization was found also in the P300 response in Amaral et al. [80] 
and was associated to the high-level characteristics in the realism of the animated paradigms 
provided via the virtual environment (e.g., reflexive attention generated by social gaze 
orientation). The BCI intervention investigated in this study was based on a visuo-spatial 
oddball task which exploits a complex animated paradigm (see Section 3.2.1) and here this 
right-lateralization emerged in the electrode discriminatory power related to P300, as learned 
by the ICNN. Thus, our results further substantiate the idea that neural signatures related to 
social perception (e.g., perception of gaze, faces and related gestures) are characterized by a 
peculiar right-hemispheric asymmetry. Two clusters of spatial relevance for the P300 
discrimination were obtained (see Section 3.3.3), potentially highlighting a modulation of the 
right-hemispheric asymmetry: from an asymmetric involvement of mainly P4 (cluster 1, the 
most populated – 10 subjects) to the symmetric involvement of mainly Pz, P3 and P4 (cluster 
0 – 3 subjects).  

From the correlation analysis between the ASD clinical scores and spatial relevance (L̅"3IH
(") ) 

of parietal electrodes (P3, Pz, P4), a strong positive and significant correlation with ADOS 
scores was observed (see Figure 3.8). This result is particularly interesting, as ADOS together 
with ADI-R are two important assessment tools used to characterize and diagnose ASD [81]. 
In addition, recent results [82] suggested that ADOS-related scores are more useful than the 
combination of ADOS and ADI-R scores to diagnose ASD, which is in line with our finding. 
Notably, at variance with the results obtained with the ICNN+ET-derived measure, no 
significant correlations were found between ASD clinical scores and the P300 ERP-derived 
measure.  

Overall, we believe that the proposed method presents some points of novelty and strength, 
compared to previous CNN-based approaches [41,43,45,48–50,57,58], with perspective not 
only for practical engineering applications but also for theoretical neuroscience knowledge.  

First, from a decoding perspective, we optimized our CNN-based decoders in their structure, 
by tuning their hyper-parameters to achieve higher decoding performance, and this was done 
separately for different training strategies. To the best of our knowledge, this is the first time 
that such analysis is performed on P300 CNN-based decoders, using an automatic strategy 
(Bayesian optimization) and in a training-specific way. Indeed, previous studies mainly 
proposed CNN structures with hyper-parameters manually selected, without discussing the 
specific choice [41,45,48–50,57], or performing sensitivity analysis only on few hyper-
parameters and for a single training strategy [43,58]. A significant result of our analysis is that 
for each investigated training strategy (WS-WS, WS-CS, LOSO), different optimal hyper-
parameters were found, depending on the variability incorporated into the training examples, 
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and that a different architecture with a proper capacity should be adopted depending on the 
specific real-life scenario in which the P300-BCI is used. Thus, the results obtained in this 
study may help researchers in the design of CNN decoders for P300-based BCI applications, 
by driving them in the choice of the more appropriate structure that takes into account the 
adopted training strategy and the level of variability inside the training examples.   

Second, we introduced an interpretable layer in our CNN decoders, using convolutional 
kernels defined as function of only two and directly interpretable parameters per kernel. The 
performance evaluation of our decoders compared to EEGNet (which is the state-of-the-art for 
P300 decoding), indicates that this modification, while decreasing the number of trainable 
parameters, did not reduce the decoding accuracy. Thus, a CNN can be made intrinsically more 
interpretable without losing decoding capabilities. ICNNs are receiving growing interest in 
EEG applications, moving beyond the use of CNNs as black-box decoders only, towards a 
neurophysiological interpretation of the learned features. In this regard, it is highly important 
to fist verify the decoding performance of ICNNs, to ensure reliability of the learned features 
as discriminative of the process under investigation, otherwise the neurophysiological 
interpretation of these features would be unreliable. So far, ICNNs have been adopted in 
literature to decode and analyze motor states [52,53] and not the P300 response and not even 
in neurological disorder conditions such as ASD. Thus, the present study serves also for 
validating ICNNs for P300 decoding in ASD subjects.  

Third and related to previous point, by taking advantage of the interpretability embedded 
into the proposed ICNN, we have formalized an analysis workflow that combines our ICNN 
with an explanation technique (ET) to derive novel ASD biomarkers related to P300 by 
exploiting the knowledge learned by the ICNN. The ICNN+ET combination was able to 
capture and enhance, better than a canonical ERP analysis, meaningful spectral and spatial 
characteristics underlying visuo-spatial sensory and attentional processing that are related to 
autism. The enhancement of P300-related features is in line with the results of our recent study 
[57] on healthy subjects, where representations derived from a CNN+ET framework better 
highlighted P300 subcomponents (i.e., P3a and P3b) from single trial level, compared to ERP 
canonical analysis. The remarkable aspect is that not only the ICNN-derived ASD markers 
obtained here have a straightforward neurophysiological interpretation, but they also appeared 
more sensitive than markers derived from traditional ERP-analysis.   

Of course, the present study has also some limitations that can be the subject of future 
improvements, and can foster further investigations along this line of research.  

First, the optimal models obtained via Bayesian optimization may be task-related i.e., may 
result optimal only for EEG decoding of P300 response elicited through the specific kind of 
stimuli applied during the adopted oddball paradigm (visual stimuli presented inside a virtual 
environment). It would be of great value to test these same models on other BCI-based P300 
paradigms, i.e., using a different type of visual stimuli or a different sensory modality (acoustic 
stimuli), or even on BCI paradigms based on event-related potentials other than P300. This 
would test the ability of the proposed models to generalize across different BCI paradigms. 
This kind of analysis is very important to promote a more efficient use of decoders, limiting 
the proliferation of novel decoders for every new paradigm and task, but it is only rarely 
performed (see [52] as a useful example of this analysis).  
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Another limitation concerns the limited number of subjects included in the examined 
dataset. Despite the high number of trials recorded for each subject (>30000 across 7 sessions), 
the analyzed signals were recorded only from 15 subjects. The need for a larger dataset is even 
more important due to the high heterogeneity in ASD involving a wide spectrum of symptoms. 
Thus, the biomarkers derived from the ICNN+ET analysis that were found to be correlated 
with ASD social impairment scores, although promising, require a more extensive validation 
on a larger set of participants. Furthermore, in future research, the workflow ICNN+ET, 
applied here to study P300 in autism, could be focused on analyzing other ERP components in 
autism, and/or in other neurological and neurodevelopmental disorders that involve ERP 
abnormalities (e.g., schizophrenia, depression, etc.) [83].  
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3.5. CONCLUSIONS 

In conclusion, in this study we investigated the Bayesian-optimized design of an ICNN in 
different training strategies when decoding the P300 response for BCI intervention in ASD. 
While performing AHPS, models were found needing more capacity and lower learning rates 
to decode EEG signals when more variability was included in the training distribution (i.e., 
including progressively intra-subject and inter-subject variabilities), i.e., depending on the 
practical scenario in which the decoder is used in the BCI system. Despite its interpretable and 
lightweight nature, the proposed ICNN performed as well as EEGNet, even significantly 
outperforming it in the strategy with the lowest variability in the training examples (within-
subject and within-session). Furthermore, Sinc-ShallowNet-v2 significantly outperformed the 
previous Sinc-ShallowNet design. Lastly, transferring the knowledge from other users to a new 
one proved to lead to a substantial reduction of calibration times. All these results contribute 
to the development of optimal decoders for P300-based BCI for ASD interventions, by 
specifically improving CNN designs, performance, and calibration times. Furthermore, in this 
study we leveraged the interpretable nature embedded into the ICNN to design an ICNN+ET 
algorithm for the analysis of the visuo-spatial P300 in ASD in the frequency and spatial 
domains. The analysis on spectral features matched known P300-related correlates, and while 
analyzing spatial features, a right-hemispheric asymmetry was found, in line with the literature 
of social perception. The modulation of this asymmetry, as provided by the ICNN+ET analysis, 
was found to be correlated to ADOS scores, while no significant correlations with any clinical 
score were found by using a simpler ERP analysis. This suggests that the ICNN+ET algorithm 
was capable of better characterize and enhance useful ASD-related features than a canonical 
analysis. In the future, the analysis on optimal ICNN designs for P300 decoding may be 
extended to other oddball recording paradigms involving different stimuli properties. 
Furthermore, the proposed ICNN+ET combination could be applied on more subjects for 
further validation, generalized to other ERP components and neurological disorders to study 
alterations in ERP components in a data-driven way, and also possibly extended on other 
recording modalities of neural activity, e.g., magnetoencephalography.  
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3.6. SUPPLEMENTARY MATERIALS 
 

 
Supplementary Figure 3.1 – Accuracies scored for each subject with the Bayesian-optimized Sinc-ShallowNet-

v2 trained with the within-subject and within-session (WS-WS) strategy – black – and with the within-subject and 

cross-session (WS-CS) – blue. Markers (squares and triangles) represent the mean value across sessions, while 

the error bars represent the standard error of the mean. 

 
3.6.1. ICNN hyper-parameter configuration used in WS-CS models to analyze P300 
spectral and spatial features in autism 

To perform the analysis on the spectral and spatial features related to P300 in ASD (see 
Section 3.2.7) by processing the same number of spectral and spatial features across subjects 
(i.e., the same number of temporal and spatial filters in the ISS block), the ICNN was retrained 
in WS-CS using one fixed hyper-parameter configuration. This configuration was defined as 
the most frequent Bayesian-optimized configuration obtained in WS-WS across all subjects 
and sessions, as the Bayesian-optimized WS-WS models resulted the lightest and fastest to 
train (see Figure 3.4 and Table 3.5). Using this fixed configuration for all subjects and sessions, 
Sinc-ShallowNet-v2 scored an accuracy of 90.7±2.0% (mean value ± standard error of the 
mean) vs. 91.5±1.8% scored by the Bayesian-optimized Sinc-ShallowNet-v2 (see Section 
3.3.2). Performing a pairwise comparison with a Wilcoxon signed-rank test, the retrained 
models with a fixed configuration resulted comparable (P > 0.05) in terms of performance 
respect to the Bayesian-optimized models.  
 

3.6.2. Performance of WS-WS models with fixed ICNN hyper-parameter configurations 
derived from previous results of Bayesian optimization in BCI scenarios 

In this section, we evaluated whether the application of Bayesian optimization in each WS-
WS model was beneficial compared to using a fixed hyper-parameters configuration across 
different sessions and subjects, addressing two practical scenarios where a new subject or a 
subject in a new session approaches the BCI: 

i. For each subject and each session, the ICNN hyper-parameter configuration was set using 
the most frequent configuration obtained in BO with the WS-WS strategy resulting from 
all other subjects’ sessions. This condition was devoted to analyzing the effect on 
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performance of using a WS-WS design that resulted optimal for other subjects’ sessions, 
and thus, to evaluate whether BO is beneficial for a new subject compared to a fixed 
configuration resulting from previously performed BO on other subjects. 

ii. For each subject and each session, the ICNN hyper-parameter configuration was set using 
the most frequent configuration obtained in BO with the WS-WS strategy from all other 
sessions of that specific subject. This condition was devoted to analyzing the impact on 
performance when using a WS-WS design that resulted optimal for other sessions of the 
subject and thus, to evaluate whether BO is beneficial for a new session compared to a 
fixed configuration resulting from previously performed BO on other sessions of that 
subject. 

It is worth remarking that the fixed configuration adopted here in points i. and ii. differ from 
the fixed configuration adopted in Section 3.6.1 of Supplementary Materials, where all subjects 
and sessions, including the target subject or session the ICNN was trained on, were considered 
when computing the most frequent hyper-parameter configuration. Conversely, in this section 
the most frequent hyper-parameter configuration is computed in a subject- or session-agnostic 
way, i.e., without exploiting any knowledge about the target subject or session the ICNN was 
trained on. This was done to study practical scenarios where a new subject or session is 
recorded. 

Exploiting Bayesian-optimized configurations obtained from other subjects (point i.) or 
from other sessions of the subject separately (point ii.) to set a fixed ICNN configuration, 
accuracies of 84.0±2.9% (mean value ± standard error of the mean) and 82.3±3.9% were 
obtained, respectively for points i. and ii. Pairwise comparisons (Wilcoxon signed-rank tests 
corrected for multiple tests with false discovery rate as described in Section 3.2.8) between the 
ICNNs defined with the fixed configurations as in point i. and ii. vs. the Bayesian-optimized 
ICNNs trained in WS-WS (88.5±2.3%, see Section 3.3.2), indicated that a significant 
worsening in performance was obtained (P < 0.001 and P < 0.01, respectively) when using 
fixed configurations. Therefore, when a new subject (as modelled in point i.) or a subject in 
new session (as modelled in point ii.) approaches the BCI, BO should be performed again to 
achieve higher performance.  
 
3.6.3. Representative example of training and validation losses during training 

In Supplementary Figure 3.2, the training and validation losses for a representative subject 
(WS-CS and LOSO strategies) and session (WS-WS strategy) are reported as a function of the 
training epochs, for each training strategy.  
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Supplementary Figure 3.2 – Training (black) and validation (red) losses of Sinc-ShallowNet-v2 using different 

training strategies: within-subject and within-session (WS-WS), within-subject and cross-session (WS-CS), leave-

one-subject-out (LOSO). The displayed curves refer to an ICNN trained on the same representative subject (WS-

CS and LOSO); in case of WS-WS a representative session of the same subject was considered.  

 
From Supplementary Figure 3.2, similar loss values were obtained while using WS-WS and 

WS-CS strategies. On the contrary, in comparison with WS-WS and WS-CS, training and 
validation losses during the LOSO optimization exhibited more fluctuations as the training 
proceeded and LOSO optimization ended at higher values of both training and validation 
losses. This behavior can be attributed to the inherently higher difficulty of LOSO training, due 
to the challenging task of capturing P300 relevant features from training examples with high 
variability, including both inter-session and inter-subject variability. This is also reflected into 
the LOSO performance, which resulted the lowest across the different training strategies (see 
Section 3.4.2). However, despite higher losses and expected poorer performance, LOSO 
models provided better initialization points when transferring the knowledge from other 
subjects to a new one (i.e., when performing transfer learning), as discussed in Section 3.4.2. 
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CHAPTER 4: DESIGN OF A MULTI-SCALE CNN FOR P300 
DECODING  

The study reported in this chapter refers to the published journal paper entitled “A 
Lightweight Multi-Scale Convolutional Neural Network for P300 Decoding: Analysis of 
Training Strategies and Uncovering of Network Decision” D. Borra, S. Fantozzi and E. 
Magosso, Frontiers in Human Neuroscience, 2021. In particular, this chapter presents a novel 
structure for the deeper layers of a CNN for P300 decoding, by introducing a light and multi-
scale temporal feature learning. Different variants (differing in the main hyper-parameters of 
the structure) of the novel CNN were investigated. Lastly, the decoding solutions were 
evaluated using multiple training strategies.  

 
Convolutional neural networks (CNNs), which automatically learn features from raw data 

to approximate functions, are being increasingly applied to end-to-end analysis of 

electroencephalographic (EEG) signals, especially for decoding brain states in Brain-

Computer Interfaces (BCIs). Nevertheless, CNNs introduce a large number of trainable 

parameters, may require long training times and lack in interpretability of learned features. 

The aim of this study is to propose a CNN design for P300 decoding with emphasis on its 

lightweight design while guaranteeing high performance, on the effects of different training 

strategies and on the use of post-hoc techniques to explain network decision. The proposed 

design, named MS-EEGNet, learns temporal features at two different time scales (i.e., multi-

scale, MS) in an efficient and optimized (in terms of trainable parameters) way, and was 

validated on three P300 datasets. The CNN was trained using different strategies (within-

participant and within-session, within-participant and cross-session, leave-one-subject-out, 

transfer learning) and was compared with several state-of-the-art (SOA) algorithms. 

Furthermore, variants of the baseline MS-EEGNet were analyzed, to evaluate the impact of 

different hyper-parameters on the performance. Lastly, saliency maps were used to derive 

representations of the relevant spatio-temporal features that drove CNN decisions. MS-

EEGNet resulted the lightest CNN compared to the tested SOA CNNs, despite its multiple 

time scales, and significantly outperformed SOA algorithms. The post-hoc hyper-parameter 

analysis confirmed the benefits of the innovative aspects of our architecture. Furthermore, 

MS-EEGNet did benefit from transfer learning, especially using a low number of training 

examples, suggesting that our approach could be used in BCIs to accurately decode the P300 

event while reducing calibration times. Representations derived from saliency maps matched 

the P300 spatio-temporal distribution, further validating the proposed decoding approach. 

The present study, by specifically addressing the aspects of lightweight design, transfer 

learning, interpretability, can contribute to advance the development of deep learning 

algorithms for P300-based BCIs. 
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4.1. INTRODUCTION 

The P300 response is an attention-dependent event-related potential (ERP) first reported in 
electroencephalographic (EEG) signals by Sutton et al. [1]. This wave is characterized by a 
positive deflection peaking within the time window between 250 and 500 ms after the stimulus 
onset and it is mostly distributed on the scalp around the midline EEG electrodes (Fz, Cz, Pz), 
increasing its magnitude from the frontal to the parietal sites [2]. The P300 can be evoked in 
an oddball paradigm [3], where an infrequent deviant stimulus immersed in a sequence of 
frequent standard stimuli is presented to the user while he/she is attending to it (e.g., by 
counting how many times the rare event occurs). The rare events induce the P300 response; 
this response can be used as neural signal in EEG-based Brain-Computer Interfaces (BCIs), 
enabling a direct communication between the brain and the surroundings without the 
involvement of peripheral nerves or muscles [4]. One of the first P300-based BCIs was 
developed by Farwell and Donchin [3] using a visual stimulation in the oddball paradigm. 
These systems could be especially beneficial for patients suffering from motor neuron disease 
[5] to provide alternative ways of communication; furthermore, they may represent viable 
training tools for patients with attention deficits as recently reported in Amaral et al. [6] where 
a P300-based BCI paradigm was tested in patients suffering from Autism Spectrum Disorder 
(ASD) to improve their social attention.  

Of course, a crucial aspect of a P300-based BCI is the decoding algorithm that translates the 
brain signals into classes (e.g., P300 and non-P300 classes). Machine learning (ML) techniques 
have been recognized to be powerful tools in learning discriminative patterns from brain 
signals. In recent years, deep learning, a branch of ML originally proposed in computer vision 
[7,8], has been applied to decoding problems of physiological signals such as 
electroencephalography, electromyography, electrocardiography and electrooculography [9]. 
At variance with more traditional ML approaches characterized by a separation between feature 
extraction, selection and classification stages [10], deep learning techniques automatically 
learn features from raw or light pre-processed inputs to maximize between-class 
discriminability, and finalize the decoding task in an end-to-end fashion.  

Among deep learning techniques for classification, convolutional neural networks (CNNs) 
are widely used. These are specialized feed-forward neural networks involving the convolution 
operator to process data with a grid-like topology and are inspired by the hierarchical structure 
of the ventral stream of the visual system. Stacking neurons with local receptive field on top 
of others, creates receptive fields of individual neurons that increase in size in the deeper layers 
of the CNN and increases the complexity of the features the neurons respond to [11], realizing 
different levels of feature abstraction. This way, CNNs automatically learn hierarchical 
structured features from the input data, finalized to the classification. However, CNNs have 
some weaknesses: they introduce a large number of trainable parameters consequently 
requiring a large number of training examples, introduce many hyper-parameters (i.e., 
parameters that define the functional form of decoder), and the learned features are difficult to 
be interpreted.  

The field of EEG classification (and in particular P300 classification) has been widely 
exploiting the advantages of CNNs [9,12]; at the same time, solutions to mitigate the 
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weaknesses of these algorithms have been proposed within this field, as reported in the state-
of-the-art (SOA) description below.  

In CNN-based EEG classification, EEG signals can be arranged into a 2D representation 
with electrodes along one dimension and time steps along the other, and fed as input to the 
CNN which predicts the corresponding label. CNN designs for EEG classification include both 
shallow and deep neural networks, and solutions have been proposed either performing spatial 
and temporal convolutions together (i.e., mixed spatio-temporal feature learning) or separately 
(i.e., unmixed spatio-temporal feature learning). Among the latter, several have been 
successfully applied to P300 classification [13–18] and generally have been proved to 
outperform traditional ML approaches. Cecotti and Graser [13] designed a CNN comprising 2 
convolutional and 2 fully-connected layers to decode the P300 event. Remarkably, this was 
also the first attempt of CNN-based P300 decoding. Extensions of this architecture mainly 
focused on the increase of depth and inclusion of techniques such as batch normalization and 
dropout [14,15]. Moreover, Farahat et al. [16] proposed a dual-branched CNN (BranchedNet) 
that learns temporal features at two different time scales with parallel temporal convolutions, 
reporting an increase in performance with respect to a single-scale convolution. While these 
CNNs performed better than traditional ML techniques in P300 decoding, two aspects deserve 
attention: i) they learn spatial features (i.e., spatial convolution, performed across electrodes) 
and then temporal features in the next layers (i.e., temporal convolution, performed across time 
samples); ii) they do not address the challenge of reducing the number of trainable parameters. 
Regarding the first aspect, Shan et al. [17] pointed out that these architectures may lose useful 
raw temporal information related to the P300 event since temporal features are learned from 
spatially filtered signals instead from raw inputs. The authors proved that an architecture with 
the first layer performing a mixed spatio-temporal convolution (OCLNN) improved the 
decoding performance compared to the architecture proposed by Cecotti and Graser [13] and 
other variants [14,15]. Regarding the second aspect, recently Lawhern et al. [18] designed a 
shallow CNN for EEG decoding also applied to P300 detection (EEGNet). This design, besides 
performing temporal convolution in the first layer, uses separable and depthwise convolutions, 
i.e., convolutions specifically devoted to reduce the number of trainable parameters [19]. 

Remarkably, recently we proposed a CNN [20] based on the design of EEGNet, that won 
the P300 decoding challenge issued by the International Federation of Medical and Biological 
Engineering (IFMBE) in 2019, where the dataset (BCIAUT-P300) was a large multi-
participant and multi-session collection of data. Our solution outperformed significantly a CNN 
derived from Manor and Geva [14] with a spatial convolutional layer as first layer, long short-
term memories and traditional ML approaches [21]. These results further substantiate that 
CNNs including a temporal convolutional layer as first layer can represent advantageous 
solutions for P300 decoding, compared to traditional approaches and other CNN designs. 

Techniques have been proposed for interpreting and understanding what the CNN has 
learned [22]; in the field of EEG classification, these are fundamental to validate a correct 
learning, checking that the learning system does not rely on artefactual sources but on 
neurophysiological features. These techniques explain the decoding decision taken by the 
CNN, i.e., features the CNN mainly relies on to discriminate among classes; this way, they 
represent tools to explore and analyze the underlying neurophysiology potentially 
characterizing new features (unknown so-far) and gaining insights into neural correlates of the 
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underlying phenomena. Montavon et al. [22] provided a definition for explanation of CNN 

decision: “the collection of features of the interpretable domain, that have contributed for a 
given example to produce a decision (e.g., classification or regression)”. Among explanation 
techniques proposed in the computer vision domain [22], saliency maps [23] – simple 
representations reporting the gradient of a target class score with respect to each input pixel – 
were recently transposed to P300 decoding [16]. Furthermore, other techniques were adopted 
to understand CNNs for P300 decoding, such as temporal and spatial kernel visualizations 
[13,18], and kernel ablation tests [18]. In addition to these techniques, interpretable layers 
(where the learned features are directly interpretable without the needing of ad-hoc techniques) 
were recently applied to EEG decoding tasks [24-26].  

Within this field of research, the aim of this study is to further contribute to the development 
of CNNs for EEG-based P300 decoding and to their analysis, with particular emphasis on the 
following aspects: keeping limited the number of trainable parameters (also referred to as 
model size) to realize lightweight CNNs suitable also for small datasets; assessing the effects 
of different learning strategies (including transfer learning) in view of the practical usage of 
these algorithms in BCIs; explaining the CNN decision i.e., the neurophysiological aspects that 
resulted in an optimal discriminability between classes. Specifically, the main contribution 
points are: 

i. The realization of a CNN named MS-EEGNet (Multi-Scale EEGNet) combining two 
designs previously proposed in the literature with unique characteristics but treated 
separately, with the aim of jointly exploiting their respective strengths (see Section MS-

EEGNet). On one hand, we adopted a branched architecture, in order to extract features 
at two different time scales, since this may improve the performance of P300 decoding 
(as suggested by Farahat et al. [16]). On the other hand, the branched solution would tend 
to increase the number of convolutional layers (since convolutions are replicated along 
each branch) and consequently the number of trainable parameters. Therefore, we 
adopted solutions to keep limited the number of trainable parameters, by limiting the 
overall number of convolutional layers (designing a shallow network) and at the same 
time implementing computationally efficient convolutions, such as depthwise and 
separable convolutions (as adopted by Lawhern et al. [18]). The latter are characterized 
by a reduced number of required multiplications, hence by a lower computational cost, 
and by a reduced number of trainable parameters compared to conventional convolutions 
(as those adopted by Farahat et al. [16]). In addition, learning compressed temporal 
representations in MS-EEGNet helped to further reduce the overall model size. This way, 
we proposed a multi-scale lightweight design. The so obtained network was then 
thoroughly analyzed to evaluate its performance and potentialities in view of practical 
applications (see points below). 

ii. Analysis of the main hyper-parameters of the architecture, evaluating variant designs to 
investigate the role of multi-scale temporal feature learning (see Section Alternative 

design choices of MS-EEGNet: changing hyper-parameters in the MST block). 
iii. Application of MS-EEGNet to 3 different datasets, to evaluate the proposed approach on 

variable sized datasets and on differently elicited P300 responses, comparing the 
performance with other SOA algorithms both CNNs and a traditional ML pipeline (see 
Sections 4.2.3 and 4.2.4). 
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iv. Training of MS-EEGNet with different strategies including transfer learning. The latter 
is of relevance as it could provide important benefits in practical BCI applications, 
alleviating the need of a large training set and reducing training times when using the 
CNN on a new user (see Section 4.2.5). 

v. Application of an explanation technique based on saliency maps to derive the spatial and 
temporal features that drove MS-EEGNet decision (see Section 4.2.6). 
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4.2. MATERIALS AND METHODS 

In this section, first we introduce the problem of EEG decoding via CNNs. Then, we 
describe the proposed architecture in its baseline and variant versions, P300 datasets, re-
implemented SOA algorithms, training strategies and CNN explanation. Lastly, we illustrate 
the adopted statistical analyses.  

CNNs were developed in PyTorch [27] and trained using a workstation equipped with an 
AMD Threadripper 1900X, NVIDIA TITAN V and 32 GB of RAM. Codes of MS-EEGNet 
are available at https://github.com/ddavidebb/P300_decoding_MS-EEGNet. 

 
4.2.1. EEG decoding via CNNs 

Let us consider an EEG dataset collected from many participants and recording sessions. 
Each single participant- and session-specific dataset is composed by many trials collected by 
epoching the continuous EEG recording respect to the onset of the stimulus (e.g., standard or 
deviant stimulus). Thus, each trial is associated to a specific class (e.g., non-P300 or P300 
class), with a total of 55 classes. Indicating with 2(",>) the total number of trials for the s-th 
subject and the r-th recording session, the corresponding dataset can be formalized as *(",>) =
op-$

(",>)
, .$

(",>)
q, … , p-%

(",>)
, .%

(",>)
q, … , p-

&(",7)'(
(",>)

, .
&(",7)'(
(",>)

qr. -%
(",>)

∈ ℝ)×+ represents the pre-

processed EEG signals of the i-th trial (0 ≤ ; ≤ 2(",>) − 1), indicating with " the number of 
electrodes and $ the number of time steps. .%

(",>) is the label associated to -%
(",>), i.e., .%

(",>)
∈

< = {=$, … , =TH'(}. In the particular case of P300 decoding, i.e., discrimination between 
standard and deviant trials, 55 = 2 and < = {=$, =(} = {"non-P300",	"P300"}.  

The objective decoding problem can be formalized as the optimization of a parametrized 
classifier J implemented by a CNN, Jp-%

(",>)
; Lq: ℝ)×+ → < with parameters L, learning from 

a training set to assign the correct label to unseen EEG trials. Therefore, in the following, we 
refer to -%

(",>) as the CNN input, represented as a 2D matrix of shape (", $) with time steps 
along the width and electrodes along the height. Lastly, each dataset *(",>) was divided into a 
training set, used to optimize the parameters contained in the array L, and a test set, used to 
evaluate the algorithm on unseen data. Furthermore, a separate validation set need to be 
extracted from the training set to define a stop criterion of the optimization. As described in 
Section 4.2.3, here we used 3 datasets: dataset 1 was a large public dataset where each 
participant performed different recording sessions, while datasets 2 and 3 were two small 
private datasets, where each participant performed one single recording session.  

 
4.2.2. The proposed CNN and its variants  
MS-EEGNet  

The proposed shallow architecture was composed by 3 fundamental blocks, each consisting 
of many layers. A schematic representation of the CNN is reported in Figure 4.1. The spatio-
temporal (ST) block extracted temporal and spatial features from the input EEG signals via 
temporal and spatial convolutional layers, respectively. Downstream, the multi-scale temporal 
(MST) block used lightweight parallel temporal convolutions to extract temporal patterns at 
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different scales from the feature maps provided by the previous block. Lastly, the multi-scale 
activations were provided to the fully-connected (FC) block that finalized the decoding task 
using a single fully-connected layer.  

In all layers except the last two, the output was a collection of spatio-temporal feature maps 
and its shape can be described by a tuple of 3 integers, with the first integer indicating the 
number of feature maps, the second and third integers representing the number of spatial and 
temporal samples within each map, respectively. In the following, to describe the CNN we will 
refer to the hyper-parameters of the involved layers. Each convolutional layer is characterized 
by the number of convolutional kernels (e), kernel size (f), stride size (g) and padding size 
(h). In addition, depthwise convolution introduced also a depth multiplier (*) specifying the 
number of kernels to learn for each input feature map. Hyper-parameters will be denoted by a 
superscript and a subscript. The superscript indicates the specific block the layer belongs to, 
using acronyms “ST”, “MST0”, “MST1”, “FC”, where the index in the multi-scale temporal 
block (MST) discriminates between the two scales (in general 2g$%, where 0 ≤ ; ≤ 5= − 1 
and 5= denotes the number of parallel branches). The subscript indicates which convolutional 
layer inside the block the hyper-parameters refer to (convolutional layers inside each block 
were labeled with an increasing index, starting from 0). Lastly, pooling layers were described 
by pool size (f3) and pool stride (g3), with the corresponding superscript. Both convolutions 
and poolings were 2D; therefore, f, g, h, f3, g3 were tuples of two integers: the first referred 
to the spatial dimension, while the second to the temporal dimension. Lastly, the number of 
time samples changed across pooling operators and was denoted with $3. Regarding the single 
fully-connected layer included in the classification block, the number of neurons was denoted 
with	54)  and represented the number of classes to decode (55). 
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Figure 4.1 – Structure of MS-EEGNet. Layers are represented by coloured rectangles, reporting the layer name 

and main hyper-parameters. The tuple outside each rectangle represents the output shape of each layer. For all 

outputs except the last two (Flatten and Fully-connected+Softmax), tuples are composed by three numbers 

representing the number of the feature maps (channel dimension), the number of spatial samples and the number 

of temporal samples within each map, respectively. The input layer provides an output of shape (1, 6, 8) as it just 

replicates the original input matrix with shape (6, 8), providing a single feature map as output. The temporal 

dimension changed from 8 to 8//32 along the entire CNN (where the symbol // indicates the floor division 

operator) due to the average pooling operations. See Sections 4.2.1 and 4.2.2 for the meaning of symbols and see 

Table 4.1 for further details.  

 
MS-EEGNet was analyzed in a baseline version and in many variants by adopting a post-

hoc hyper-parameter evaluation procedure on the main MST block hyper-parameters. The 
baseline version is described in the current section, where the structure and function of each 
block are presented, while the variants in Section Alternative design choices of MS-EEGNet: 

changing hyper-parameters in the MST block. 
i. Spatio-temporal block. This was designed to learn temporal and spatial features 

separately. At first, a temporal convolutional layer was included, learning e$@+ = 8 
temporal kernels with filter size f$@+ = (1,65), unitary stride and zero-padding h$@+ =
(1,32) to preserve the number of input temporal samples. Then, *(@+ = 2 spatial filters 
of size (", 1) were learned for each temporal feature map in a spatial depthwise 
convolutional layer, with unitary stride and without zero-padding [18,20]. Thus, a total 
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number of e(@+ = e$
@+ ∙ *(

@+ = 16 spatial filters were learned and constrained to have 
a norm upper bounded by x = 1 (kernel max-norm constraint) as in previous studies 
[18,20,28]. The feature maps of this layer were not fully-connected with the feature maps 
of the previous layer. This not only reduced the number of trainable parameters, but also 
allowed a more straightforward spatio-temporal feature learning. Indeed, each group of 
*( spatial filters was related to a specific temporal filter [18] (i.e., to specific spectral 
information). Furthermore, the output activations of the temporal and spatial 
convolutional layers were normalized via batch normalization [29]. Downstream the 
spatial depthwise convolution and its associated batch normalization, the neurons were 
activated via an Exponential Linear Unit (ELU) non-linearity [30], i.e., J(|) = |, | > 0 
and J(|) = V · (}|P(|) − 1), | ≤ 0. We adopted this activation function since it was 
proved to allow faster and more noise-robust learning than other non-linearities [30] and 
to outperform other activation functions when using CNNs with EEG signals [31]. The 
V hyper-parameter controls the saturation value for negative inputs and V = 1 was set 
here. Then, an average pooling layer was introduced to reduce the size of the activations 
along the temporal dimension from $ to $3@+, with a pool size of f3@+ = (1,4) and pool 
stride of g3@+ = (1,4), providing activations sampled at 1/4 of the sampling frequency 
of the signals (32 Hz when using signals extracted from dataset 1 and approx. 31.3 Hz 
from datasets 2 and 3). Lastly, a dropout layer [32] (with a different dropout rate P 
depending on the training strategy adopted, see Section 4.2.5) was added. 

ii. Multi-scale temporal block. This block was designed to learn how to summarize along 
the temporal dimension the feature maps provided by the spatio-temporal block. 
Differently from EEGNet where features at a single time scale were learned at this stage, 
here the features were learned at 5= different time scales, inspired from the design of the 
Inception modules [33]. In the baseline MS-EEGNet 5= = 2, thus, two different sets of 
short and large kernels were separately learned in the two parallel branches, respectively. 
This was accomplished via 2 parallel temporal depthwise convolutional layers with a 
unitary depth multiplier, i.e., *$&@+A = *$

&@+D = *$
&@+ = 1 and e$&@+A = e$

&@+D =

e$
&@+ = e(

@+ ∙ *$
&@+, and with different kernel sizes in the two branches extracting a 

summary of roughly 150 ms (f$&@+A = (1,5)) and 500 ms (f$&@+D = (1,17)), for each 
input feature map. That is, each output feature map was a sort of weighted moving 
average of the input feature map using moving windows of 2 different lengths, 
approximately 150 ms and 500 ms, respectively (referred to as scales). The large kernel 
size was chosen to match the temporal kernel size used in the single-scale branch of 
EEGNet [20]. The small kernel size was chosen so that the ratio between the small and 
large kernel was approximately the same as in BranchedNet (Ü&@+ = 1

4U ), keeping odd 
kernel size (i.e., 500 ms/4=125 ms=4 samples at 32 Hz, approximated to 5 samples to 
have an odd integer). The small and large temporal filters should be able to learn high 
and low frequency patterns from the input, respectively [34]. Here, unitary stride and 
zero-padding of h$&@+A = (0,2) and h$&@+D = (0,8) were adopted, preserving the 
number of the input temporal samples. After each depthwise convolutional layer, a 
pointwise convolutional layer (f(&@+A = f(

&@+D = f(
&@+ = (1, 1)) was added to learn 
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how to optimally combine the feature maps at a specific time scale, with unitary stride 
and without zero-padding. At variance with BranchedNet [16] where convolutions were 
not designed to keep limited the number of trainable parameters, the proposed multi-
scale temporal block was designed using separable convolutions (i.e., depthwise 
convolution followed by pointwise convolution), with the specific aim of reducing the 
training parameters. In this same perspective, the number of output feature maps was set 
as low as e(&@+A = e(

&@+D = e(
&@+ = 2 in each branch, learning a compressed 

representation of the input feature maps (i.e., the 16 input feature maps provided by the 
depthwise convolutional layer were recombined into only 2 different feature maps, for 
each branch). Then, for each branch, the output activations of the pointwise convolutional 
layer were normalized via batch normalization [29] and activated with an ELU non-
linearity (V = 1). Finally, an average pooling layer was introduced with a pool size of 
f3
&@+A = f3

&@+D
= f3

&@+ = (1, 8) and pool stride of g3&@+A = g3
&@+D = g3

&@+ =

(1, 8) to reduce the temporal dimension from $3@+ to $3&@+, followed by a dropout layer 
[32] (with a different dropout rate P depending on the training strategy adopted, see 
Section 4.2.5). 

iii. Fully-connected block. This block was devoted to produce the output probabilities from 
the feature maps provided by the multi-scale temporal block. The input feature maps 
were concatenated together along the feature map dimension and unrolled along one 
single dimension via a flatten layer. Then, this multi-scale feature vector was given as 
input to a fully-connected layer with 54) = 55 = 2 neurons (associated to the P300 and 
non-P300 classes). These 2 outputs were transformed via a softmax activation function 
to obtain the conditional probabilities Pp=-Ñ-%

(")
q, R = 0, 1. 

A more detailed description of the structural hyper-parameters and of the number of 
trainable parameters of the baseline version of MS-EEGNet can be found in Table 4.1. The 
overall number of trainable parameters (or model size) and the training time (or computational 
time) of the baseline MS-EEGNet are reported in Table 4.2. Note that in this table, these 
variables are reported also for the variant designs of MS-EEGNet (see Section Alternative 

design choices of MS-EEGNet: changing hyper-parameters in the MST block) and for the 
examined SOA CNNs (see Section 4.2.4). 
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Table 4.1 – Architecture details of MS-EEGNet. Each layer is provided with its name, main hyper-parameters 

and number of trainable parameters. See Sections 4.2.1 and 4.2.2 for the meaning of symbols. The total number 

of trainable parameters was 1154, when using signals from the dataset 1, and 1210, when using signals from 

datasets 2 and 3. In all layers, where not specified, stride (2) and padding (3) were set to (1,1) and (0,0), 
respectively. 

Block Layer name Hyper-parameters Number of trainable 
parameters 

 Input ;+ = 1 0 

ST Conv2D ;+)0 = 8, <+)0 = (1,65), 3+)0 = (0,32) !!"#[0] ∙ !!"#[1] ∙ '!"# ∙ '! 

 BatchNorm2D A = 0.99 2 ∙ '!"# 

 Depthwise-

Conv2D 

I.)0 = 2, ;.)0 = ;+)0 ∙ I.)0,  

<.)0 = (6, 1), kernel max norm=1 

!$"#[0] ∙ !$"#[1] ∙ '!"# ∙ )$"# 

 BatchNorm2D A = 0.99 2 ∙ '$"# 

 ELU Z = 1 0 

 AvgPool2D </)0 = 2/)0 = (1,4) 0 

 Dropout ) = 0.25 or ) = 0.5 0 

MST 
scale 0 

Depthwise-

Conv2D 

I+I)0! = 1, ;+I)0! = ;.)0 ∙ I+I)0!,	 
<+I)0! = (1,5), 3+I)0! = (0,2) 

!!%"#![0] ∙ !!%"#![1] ∙ '$"# ∙ )!%"#! 

 Pointwise-

Conv2D 

;.I)0! = 2, <.I)0! = (1,1) !$%"#![0] ∙ !$%"#![1] ∙ '$%"#! ∙ '!%"#! 

 BatchNorm2D A = 0.99 2 ∙ '$%"#! 

 ELU Z = 1 0 

 AvgPool2D </I)0! = 2/I)0! = (1,8) 0 

 Dropout ) = 0.25 or ) = 0.5 0 

MST 
scale 1  

Depthwise-

Conv2D 

I+I)0" = 1, ;+I)0" = ;.)0 ∙ I+I)0",  

<+I)0" = (1,17), 3+I)0" = (0,8) 
!!%"#"[0] ∙ !!%"#"[1] ∙ '$"# ∙ )!%"#" 

 Pointwise-

Conv2D 

;.I)0" = 2, <.I)0" = (1,1) !$%"#"[0] ∙ !$%"#"[1] ∙ '$%"#" ∙ '!%"#" 

 BatchNorm2D A = 0.99 2 ∙ '$%"#" 

 ELU Z = 1 0 

 AvgPool2D </I)0" = 2/I)0" = (1,8) 0 

 Dropout ) = 0.25 or ) = 0.5 0 

FC Concatenate 

Flatten 

 0 

 Fully-Connected O23 = 2 *&' ∙ (,(%"#! ∙ '$%"#! + ,(
%"#" ∙ '$%"#"

+ 1) 
 Softmax  0 

 
Alternative design choices of MS-EEGNet: changing hyper-parameters in the MST block 

In addition to the baseline MS-EEGNet described previously, we evaluated other alternative 
designs to better investigate the behavior of the proposed MST block, by modifying some 
hyper-parameters (HPs), once at a time. In the following, the alternative designs are described 
and indicated via the modified HP: çh:I>%IDH vs. çh=I"GU%DG.  

i. 5= = {1,3} vs.	5= = 2: use of one or three branches. In this post-hoc analysis, we studied 
whether the proposed dual-scale temporal feature learning was beneficial compared to 
the traditional single-scale learning (5= = 1) and which scale was able to learn more 
relevant class-discriminative temporal features. To this aim, MS-EEGNet was modified 
either by removing the short-scale (scale 0) leaving only the large-scale branch (5= =
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1(large)) or the large-scale (scale 1) leaving only the short-scale branch (5= =
1(short)). It is worth noticing that the single-scale variant design 5= = 1 (large) did not 
correspond to the EEGNet adaptation used in [20] since here we adopted compressed 
representations in separable convolutional layers. In addition, we studied whether a third 
time scale (5= = 3) could be useful, by modifying MS-EEGNet with the inclusion of an 
additional time scale between the ones of the baseline version: this variant learned 
summaries of about 125, 250, 500 ms, corresponding to kernel sizes in the MST block 
of F$VW6A = (1,5), F$VW6D = (1,9), F$VW64 = (1,17), respectively.  

ii. f$
&@+A = (1,9) vs.	f$&@+A = (1,5): enlarging the kernel size in the short-scale branch 

(scale 0 in Table 4.1). This was performed to evaluate the effect of a different ratio 
between the short- and large-scale of the MST block than the one adopted in the baseline 
MS-EEGNet. Specifically, Ü&@+ = 1

2U  vs. Ü&@+ = 1
4U  leading to 500 ms/2=250 ms=8 

samples at 32 Hz, approximated to 9 samples to have odd integer.  
iii. e(

&@+ = {1,8,16} vs.	e(&@+ = 2: different number of feature maps in the pointwise 
convolutions. In particular, e(&@+ was set to 1 in each branch, in order to analyze whether 
the learning of a single recombination of the input feature maps was enough to provide 
accurate decoding performance. In addition, e(&@+ was set to 8 in each branch, in order 
to analyze another compressed representation, but maintaining the total number of 
feature maps across the two different time scales unchanged as in the MST input (i.e., 8 
feature maps in each branch, resulting into 16 feature maps across the 2 scales, as in the 
input of the MST block). Lastly, e(&@+ was set to 16 in each branch, corresponding to a 
condition where no compressed representation was learned in either branch.  

iv. deepMST vs. MST: increasing the depth of MST block. This was performed to evaluate 
the effect on the performance of an increased depth in the MST block (and thus, learning 
more non-linear dependencies), while maintaining the same overall receptive field of the 
neurons in the temporal domain. In each branch we added another depthwise 
convolutional layer after the first one; however, in order to maintain the same receptive 
field as when using a single depthwise convolutional layer in the baseline MST block, 
the kernel size of each depthwise convolutional layer was halved with respect to the 
baseline values, i.e., f$&@+A = f(

&@+A = (1,3) and f$&@+D = f(
&@+D = (1,9). After the 

second depthwise convolutional layer, the pointwise convolutional layer was added 
(f,&@+A = f,

&@+D = f,
&@+ = (1, 1)), and the rest of the block was maintained 

unchanged as in the baseline version.  
Overall, 8 variants were designed by changing a specific hyper-parameter value of MS-

EEGNet while keeping all the other hyper-parameters as in the baseline MS-EEGNet. These 
alternative designs were trained with a within-participant and within-session strategy (as it is 
the most common strategy adopted in literature) and compared with MS-EEGNet trained with 
the same strategy. Lastly, the number of trainable parameters and training time are reported in 
Table 4.2 for each variant design. 

 
Table 4.2 – Number of trainable parameters, also denoted as model size in the text, and training time (referred to 

the WS strategy), also denoted as computational time, of the baseline MS-EEGNet, MS-EEGNet variants and 

SOA CNNs when using signals from the dataset 1 and datasets 2-3. These values were reported for deep learning-
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based decoders to provide a more complete comparison between the proposed CNN and the SOA. For each CNN, 

among dataset 1 and datasets 2-3, the different number of parameters resulted from the different number of EEG 

channels (6 = 8 for dataset 1 and 6 = 12 for datasets 2-3, see Section 4.2.3) and time samples considered (8 =
140 for dataset 1 and 8 = 113 for datasets 2-3, see Section 4.2.3), while the different training time resulted from 

the different number of training examples (1280 trials and 240 trials, for each participant and each session 

respectively for dataset 1 and datasets 2-3, see Section 4.2.3). In addition, the percentage difference (∆) of trainable 

parameters and training time between SOA CNNs or MS-EEGNet variants (“other” condition) and the baseline 

MS-EEGNet (“baseline” condition) is reported, i.e., 100 ∙ ([\*FCJKLMN − [\*FC5O%MP$QM)/[\*FC5O%MP$QM. 

Algorithm Trainable parameters  
(dataset 1/datasets 2-3) 

Training time  
(dataset 1/datasets 2-3) 

 Value ∆ 
(%) 

Value 
(ms/epoch) 

∆ 
(%) 

Baseline MS-EEGNet  1154/1210 - 220/45.5 - 

MS-EEGNet variants  

O5 = 1(*\X(C) 1022/1082 -11.4/-10.6 195/38.1 -11.4/-16.3 

O5 = 1(_ℎBXE) 830/890 -28.1/-26.5 172/38.4 -21.8/-15.6 

O5 = 3 1350/1402 17.0/15.9 282/50.8 28.2/11.6 

<+I)0! = (1,9) 1218/1274 5.5/5.3 221/46.3 0.5/1.8 

;.I)0 = 1 1102/1162 -4.5/-4.0 224/45.0 1.8/-1.1 

;.I)0 = 8 1466/1498 27.0/23.8 287/46.1 30.5/1.3 

;.I)0 = 16 1882/1882 63.1/55.5 240/45.0 9.0/-1.1 

deepMST 1202/1258 4.2/4.0 295/47.0 34.1/3.3 

SOA CNNs  

EEGNet  1386/1418 20.1/17.2 186/40.5 -15.5/-11.0 

BranchedNet  5418/7954 369/557 250/50.3 13.6/10.5 

OCLNN  1650/1874 43.0/54.9 96.2/22.9 -56.3/-49.7 

 
4.2.3. Data and pre-processing 

Dataset 1 

The first dataset is BCIAUT-P300, a public benchmark released for the IFMBE 2019 
scientific challenge (available at https://www.kaggle.com/disbeat/bciaut-p300) [21] consisting 
of a larger number of examples than other public benchmark [35,36] or private [16,18,37] 
datasets. Signals were recorded from 15 participants (all males, age of 22±5 years, mean ± 
standard deviation) with ASD during 7 recording sessions (for a total of 4 months) while testing 
a P300-based BCI [6]. The paradigm consisted in the participant paying attention to one among 
8 objects randomly flashed in a virtual scene, with the P300 stimuli corresponding to the 
flashing of the attended object (this was repeated several times for each different attended 
object). For each participant and recording session, 1600 trials were recorded during the 
calibration stage (training set) and 2838 trials were recorded during the online stage (test set), 
on average. 

Signals were recorded at 250 Hz from 8 electrodes: C3, Cz, C4, CPz, P3, Pz, P4, POz. The 
reference was placed at the right ear and the ground at AFz. These signals were acquired notch 
filtered at 50 Hz and then pass-band filtered between 2 and 30 Hz [21]. EEG signals were pre-
processed as in previous studies [20,38]. In particular, epochs were selected from -100 to 1000 
ms relative to the event stimulus and signals were downsampled to 128 Hz to reduce the 
number of time steps to be processed in the CNN. Architectures were trained as described in 
Section 4.2.5 using the training set of the competition for each session, while the test set was 
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used to test the algorithms. From each participant- and session-specific training set, a validation 
set of 20% of the total training set was extracted (corresponding to 320 trials) to perform early 
stopping, while the remaining percentage of the total training set (corresponding to 1280 trials) 
was used to optimize the architectures.  

 
Datasets 2 and 3 

The second dataset was collected from 7 participants (all males, age 25±8 years) recorded 
in an auditory oddball study during a single recording session and the third dataset was 
collected from 7 participants (5 males, age 22±0.4 years, different participants than dataset 2) 
recorded in a visual oddball study during a single recording session. All participants were 
healthy volunteers not reporting psychological or hearing disorders. Both experiments were 
approved by the Bioethics Committee of the University of Bologna (file number 29146, year 
2019) and were conducted in a controlled laboratory environment. 

 The auditory oddball paradigm consisted of 400 tones presented to the participant through 
a speaker, with the standard and deviant stimuli differing by the frequency of the tones (500 
Hz and 1000 Hz respectively). The visual oddball paradigm consisted of 400 stimuli presented 
to the participant through a bicolour LED with the standard and deviant stimuli differing by 
the LED colour (blu and red, respectively). In both paradigms, each stimulus was reproduced 
for 56 ms followed by a pause of 944 ms (inter-stimuli interval); thus, each trial lasted 1 s. This 
paradigm was similar to the one adopted in [39]. Furthermore, in each paradigm, a total number 
of 325 standard and 75 deviant stimuli were presented to the participant in a randomized order. 
Thus, for participant, a total number of 400 trials were available, with a class imbalance ratio 
of 75:325 for the P300 and non-P300 classes. While listening to the tones or while looking to 
the LED, participants were seated on a comfortable chair in front of a button with their eyes 
opened and were instructed to respond to the deviant stimuli by pressing the button with their 
right index as quickly as possible, minimizing other movements. 

Signals of both datasets 2 and 3 were recorded at 125 Hz using a portable EEG recording 
system (OpenBCI system, using Cyton and Daisy Biosensing boards) from 12 electrodes: C3, 
Cz, C4, CP5, CP1, CPz, CP2, CP6, P3, Pz, P4, PO3, PO4. The reference was placed at the right 
earlobe and the ground at the left earlobe. The same pre-processing was adopted for datasets 2 
and 3. In particular, signals were band-pass filtered between 2 and 30 Hz with a zero-phase 2nd 
order filter and epochs were extracted from -100 to 800 ms relative to the stimulus onset. For 
datasets 2 and 3, the architectures were trained as described in Section 4.2.5, using a 4-fold 
cross-validation scheme. Therefore, in each fold, each participant-specific dataset was divided 
into a training (75%) and test (25%) set, corresponding to 300 and 100 trials, respectively. 
Lastly, a validation set of 20% of the training set (corresponding to 60 trials) was extracted to 
perform early stopping, while the remaining percentage (corresponding to 240 trials) was used 
to optimize the architectures. 

As described in Section 4.2.1, -%
(",>)

∈ ℝ)×+ represented the CNN input. From the previous 
dataset descriptions, " = 8 for dataset 1 and " = 12 for datasets 2 and 3, while $ = 140 for 
dataset 1 and $ = 113 for datasets 2 and 3.  
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4.2.4. State-of-the-art algorithms 
The proposed baseline architecture was compared to other SOA algorithms, including the 

winning algorithm of the IFMBE 2019 challenge based on EEGNet [20], BranchedNet [16] 
and OCLNN [17]. The first was a single-branched CNN performing the temporal convolution 
in the first layer. The second one was a dual-branched CNN exploiting parallel temporal 
convolutions but, at variance with the architecture proposed here, performed the spatial 
convolution in the first layer and did not use optimized convolutions aimed to keep limited the 
number of trainable parameters, resulting in a less parsimonious multi-scale CNN. OCLNN 
was a CNN performing a mixed spatio-temporal convolution in the first layer without using 
optimized convolutions. To allow a more complete comparison between MS-EEGNet and 
other deep learning-based decoders, the number of trainable parameters and training time of 
SOA CNNs are summarized in Table 4.2.  

In addition to these SOA CNNs, we re-implemented xDAWN+RG, a ML pipeline for P300 
decoding. In particular, this solution included a combination of xDAWN spatial filtering 
[40,41], Riemannian Geometry [42], <( feature regularization and classification based on an 
Elastic Net regression. 

Details about SOA CNNs and xDAWN+RG can be found in Supplementary Materials 
(Sections 4.6.1 and 4.6.2). 

 
4.2.5. Training 

MS-EEGNet was trained adopting different training strategies.  
i. Within-participant and within-session training (WS). For each participant and each 

session, EEG signals (see Section 4.2.3) were used to train, validate and test a participant-
specific and session-specific CNN. In addition, we also trained CNNs using only a 
fraction of the participant- and session-specific training set, simulating practical cases of 
reduced numbers of available calibration trials, and investigated how the performance 
changed; this is an important issue in the perspective of limiting the calibration time in 
practical applications. Reduced training sets were defined by extracting 15, 30, 45, 60% 
of the total training set in the corresponding session (corresponding to 192, 384, 576, 768 
training trials for dataset 1, and 48, 96, 144, 192 trials for datasets 2 and 3) maintaining 
the class imbalance characterizing each dataset. For each architecture, 105 (15 
participants *7 sessions per participant) CNNs were trained for dataset 1, while 7 (7 
participants * 1 session per participant) CNNs were trained for datasets 2 and 3. The WS 
strategy (with 100% of training trials) was adopted also with SOA algorithms and to 
perform the post-hoc hyper-parameter evaluation. 

ii. Within-participant and cross-session training (CS). This training strategy was adopted 
only for the dataset 1 due to its multi-session dimension and was the strategy used in our 
winning solution in the IFMBE 2019 challenge [20] using the same dataset. For each 
participant, an overall training set, and an overall validation set were obtained by 
considering all the session-specific training and validation sets belonging to that 
particular participant. Then, these overall sets were used to train and validate a 
participant-specific CNN incorporating inter-session variability. It is worth noticing that 
this participant-specific CNN was then tested separately over each session-specific test 
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set (relative to that participant), for consistency with the test procedure adopted in i). For 
each architecture, 15 CNNs were trained for the dataset 1. This strategy was adopted also 
with SOA algorithms. 

iii. Leave-one-subject-out training (LOSO). The EEG signals of one participant (i-th 
participant) were held back, and the training and validation sets were obtained by 
collecting EEG signals from all the session-specific training and validation sets of the 
remaining participants (j-th participants ∀Y, Y ≠ ;). Thus, for each held back participant 
(∀;) an architecture was trained and validated with signals extracted from 14 participants 
for dataset 1 and from 6 participants for datasets 2 and 3. The so obtained network was 
then tested separately over each session-specific test set of the held back participant, 
consistently with the testing procedure in i) and ii). The residual signals of the held back 
participant not used in the testing procedure remained unused (i.e., 0% of the held back 
participant’s dataset was used to train and validate the model); that is, LOSO models did 
not learn from examples of the held back participant. This training strategy led to a CNN 
incorporating inter-participant and (in case of dataset 1) inter-session variabilities. For 
each architecture, 15 CNNs were trained for dataset 1, while 7 CNNs were trained for 
datasets 2 and 3. This strategy was adopted also with SOA algorithms. Lastly, to design 
LOSO models incorporating the knowledge from a variable number of participants, we 
additionally performed trainings extracting signals from a random subset of participants, 
i.e., using 10, 6, 2 participants for dataset 1, and using 4, 2 participants for datasets 2 and 
3. Thus, the performed LOSO strategy was named “LOSO-M”, where M is the number 
of participants used (2 = {14,10,6,2} when using signals from dataset 1, while 2 =

{6,4,2} for datasets 2 and 3). It is worth noticing that the LOSO-14 strategy for dataset 1 
and LOSO-6 strategy for datasets 2 and 3 corresponded to the conventional LOSO 
strategies for these datasets. 

iv. Transfer learning (TL) on single sessions (WS). As in WS strategy (point i), for each 
participant and each session, EEG signals (see Section 4.2.3) were used to train, validate 
and test a participant- and session-specific CNN. Differently from the WS strategy where 
the trainable parameters were initialized randomly, in the TL-WS strategy the parameters 
were initialized from the ones obtained with LOSO trainings when the specific 
participant of interest was held back. Therefore, the knowledge learned in the LOSO 
strategy (using training examples sampled from many participants except the held back 
participant) was transferred on the held back participant. Then, a fraction of the session-
specific training set of the held back participant was used as training set, using the same 
percentages as in WS strategy (point i); in this way we compared the performance of WS 
and TL-WS strategy, to investigate if and to what extent TL-WS strategy outperformed 
WS strategy with a reduced number of calibration trials. For each architecture, 105 CNNs 
were trained for dataset 1, while 7 CNNs were trained for datasets 2 and 3. 
The transfer learning strategy reflects a practical situation in which a new user 
approaches the BCI system in a new session, and a calibration phase – as short as possible 
– is needed to obtain an accurate participant-specific decoder. Therefore, a pre-trained 
model that incorporates both inter-participant and inter-session variabilities as obtained 
with the LOSO strategy, could be a better initialization point respect to the random one 
(as used in the WS training strategy), leading to a performance improvement especially 



 126 

when using only a small number of training examples of a new user in a new recording 
session.  

The adopted training strategies had a different definition of the training set; however, in all 
cases, CNNs were tested on the same participant-specific and session-specific test sets, 
allowing a fair comparison across different training strategies. In this study the adopted metric 
to quantify the performance for the P300 decoding task at the trial-level was the Area Under 
the ROC Curve (AUC), as done previously [18], and was computed on each participant- and 
session-specific test set. 

EEG signals of the training, validation and test sets were standardized computing the mean 
and variance on the training set. Regarding the TL-WS strategy, the first and second moments 
were computed on the training set used to train the pre-trained models. Except for the TL-WS 
strategy, in which the trainable parameters were initialized from the pre-trained models, in the 
other training approaches the weights were randomly initialized adopting a Xavier uniform 
initialization scheme [43] and biases were initialized to zero.  

The optimization was performed by minimizing the negative log likelihood or, equivalently, 
the cross-entropy between the empirical probability distribution defined by the training labels 
and the probability distribution defined by the model. Adaptive moment estimation (Adam) 
[44] was used as optimizer with à( = 0.9, à, = 0.999 for computing the running averages of 
the gradient and its square, and â = 10'M	to improve numerical stability. The learning rate was 
set to =Ü = 10'2 for WS, CS and LOSO strategies, while for the TL-WS strategy the optimizer 
state was set to the one of the pre-trained models. To address the class imbalance, a single mini-
batch of data was composed by a proportion of 50–50% of the two classes, randomly selecting 
the trials within the dataset as done in [20]. The mini-batch size and the maximum number of 
epochs were set to 64 and 500, respectively, and early stopping was performed by interrupting 
the optimization when the validation loss did not decrease for 50 consecutive epochs.  

In addition to early stopping which acts as a regularizer, other regularizer mechanisms were 
integrated into MS-EEGNet as mentioned in Section MS-EEGNet, comprising batch 
normalization [29], with a momentum term of ã = 0.99 and â = 1} − 3 for numerical 
stability, dropout [32], with a dropout probability of 0.5 for WS and TL-WS trainings and 0.25 
for CS and LOSO trainings, and kernel max-norm constraint.  

 
4.2.6. Explaining P300 decision: gradient-based representations 

MS-EEGNet decision was explained using saliency maps, post-hoc (i.e., obtained once the 
CNN training has ended) gradient-based representations proposed by Simonyan et al. [23] to 
quantify the importance of neurons belonging to a target layer of interest (commonly the input 
layer) for a specific class. These representations are commonly used to explain CNN decision 
when decoding EEG [16,26,28] and offer the advantage of requiring the sole computation of 
the backpropagation. Of course, other more advanced techniques, such as layer-wise relevance 
propagation (LRP), can represent a valid alternative but they introduce many factors that affect 
the representations, such as the propagation rule (e.g., αβ rule) and propagation parameters 
(e.g., α and β) [22], whose setting would require preliminary deep investigations. Hence, we 
preferred to adopt saliency maps. Here, these were computed by backpropagating the gradient 
of the P300 class score (i.e., the output related to the P300 neuron, immediately before the 
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softmax activation) back to the input layer (i.e., the neurons corresponding to the input spatio-
temporal samples), when P300 trials belonging to the test set were fed as input to the CNN. 
Thus, each resulting saliency map was a spatio-temporal representation associated to a test 
trial, quantifying how much each spatio-temporal input sample affects the P300 class score, 
i.e., how much the P300 class score changes with respect to a small change in the input EEG 
signals. For each dataset, these representations were computed using MS-EEGNet trained with 
the LOSO strategy, as this strategy was more likely to enhance input samples relevant for the 
decoding task compared to WS/CS trainings [16]. Indeed, during LOSO trainings, models were 
fed with signals recorded from multiple participants and multiple recording sessions; therefore, 
neural networks were more prone to learn optimal inter-participant and inter-session features 
to generalize properly. Conversely, during WS/CS trainings, neural networks were more prone 
to learn optimal session-specific/participant-specific features. Thus, representations associated 
with LOSO models were more likely to visualize general task-relevant spatio-temporal 
features, while those related to WS/CS models were more likely to include also session-
specific/participant-specific and task-irrelevant features.  

Saliency maps were computed for each deviant trial (containing the P300 response) 
belonging to each participant- and session-specific test set. Then, these maps were averaged 
across trials and folds (only for datasets 2 and 3), obtaining an average participant-specific and 
session-specific representation, named “spatio-temporal representation”. Then, by averaging 
spatio-temporal representations across sessions (7 sessions for dataset 1 and 1 session for 
datasets 2 and 3), a participant-specific representation was computed, then normalized between 
[−1,1] and finally averaged across participants, resulting in a “grand average (GA) spatio-
temporal representation”. This representation could be useful to study similarities between the 
temporal course of the gradients related to more relevant electrodes and the grand average 
ERPs of those specific electrodes. Additionally, the absolute value of each saliency map was 
also computed, and the absolute saliency maps were then averaged across trials, folds (only for 
datasets 2 and 3) and either the spatial or the temporal dimension to obtain an “absolute 
temporal or spatial representation”, respectively, for each participant and session. Then, by 
averaging the absolute temporal/spatial representations across sessions, a participant-specific 
representation was computed, then normalized between [0,1] and finally averaged across 
participants, resulting in a “GA absolute temporal or spatial representation”, respectively. 
These absolute representations allowed the evaluation of the more class-discriminative time 
samples and electrodes for the P300 class, respectively. 

 
4.2.7. Statistics 

Before performing the statistical analyses, AUCs were computed for each participant- and 
session-specific test set and then averaged across sessions (7 sessions for dataset 1 and 1 session 
for datasets 2 and 3), in order to compare the performance metric at the level of participant. 
The following statistical comparisons were performed on the performance metric.  

i. Pairwise comparisons between the MS-EEGNet and SOA algorithms (EEGNet, 
BranchedNet, OCLNN, xDAWN+RG) trained with WS, CS and LOSO strategies. AUCs 
were compared between the contrasted conditions separately for each dataset. 
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ii. Pairwise comparisons between the baseline MS-EEGNet and each of its variants, trained 
with the WS strategy. AUCs were merged together across different datasets and 
compared between the contrasted conditions using CNNs trained with the WS strategy; 
a similar procedure was adopted in [26,31] in order to evaluate the overall effect of the 
hyper-parameters of interest with the post-hoc evaluation. 

iii. Pairwise comparisons between MS-EEGNet trained with the WS and TL-WS strategy, 
for each percentage of training examples of the new user and for each number of 
participants (2) from whom the knowledge was transferred to the new user (see Section 
4.2.5-iv). This test was performed in order to evaluate the effect of the TL-WS strategy 
on the performance, as a function of the percentage of training examples and 2. In these 
pairwise comparisons, AUCs were compared between the contrasted conditions, 
separately for each dataset.  

The statistical analysis performed was the same used in [26,31]. In particular, Wilcoxon 
signed-rank tests were used to check for statistically significant differences between the 
contrasted conditions. To correct for multiple tests, a false discovery rate correction at V =
0.05 using the Benjamini-Hochberg procedure [45] was applied. 
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4.3. RESULTS 

4.3.1. Performance  
MS-EEGNet and state-of-the-art algorithms  

Table 4.3 reports the AUCs at the participant level (mean ± standard error of the mean, 
SEM) obtained with MS-EEGNet and with SOA algorithms using WS, CS and LOSO 
strategies, together with the results of the performed statistical tests.  

 
Table 4.3 – AUC (% mean±SEM) obtained with MS-EEGNet and the re-implemented SOA algorithms adopting 

the WS, CS and LOSO strategies. The results of the performed Wilcoxon signed-rank tests (see Section 4.2.7-i) 

are also reported (*p<0.05, **p<0.01, ***p<0.001, corrected for multiple tests). Within each column, the bold 

characters are used to denote the best performance among the tested algorithms. 

Algorithm Dataset 1 Dataset 2 Dataset 3 

 WS CS LOSO WS LOSO WS LOSO 

MS-EEGNet  83.52±1.67 86.38±1.60 75.40±1.81 89.60±1.73 74.82±3.04 92.63±1.77 86.09±1.88 
EEGNet  82.53±1.83 

** 
85.88±1.63 

** 
75.76±1.71 87.98±2.65 75.15±3.01 91.22±1.92 

* 
83.30±2.53 

BranchedNet  77.43±1.65 
*** 

84.20±1.82 
*** 

76.03±1.86 83.34±2.12 
*** 

72.39±2.89 91.60±1.53 84.84±1.46 

OCLNN  75.95±1.64 
*** 

81.28±1.65 
*** 

71.40±1.42 
** 

79.92±2.78 
*** 

75.21±3.14 89.01±2.03 
*** 

83.73±1.59 

xDAWN+RG 79.17±1.43 
*** 

80.89±1.32 
*** 

67.05±1.71 
** 

82.63±2.07 
*** 

73.83±2.71 90.03±1.87 
* 

82.40±2.77 

 
MS-EEGNet scored an AUC of 83.52±1.67%, 89.60±1.73% and 92.63±1.77%, respectively 

when using signals from datasets 1-3 adopting a WS strategy. The proposed architecture 
significantly outperformed all the tested SOA algorithms when using dataset 1, while 
significantly outperformed BranchedNet, OCLNN and xDAWN+RG with dataset 2, and 
EEGNet, OCLNN and xDAWN+RG with dataset 3. In addition, adopting a CS strategy MS-
EEGNet confirmed its decoding improvement respect to the SOA, scoring an AUC of 
86.38±1.60% outperforming significantly all SOA algorithms. Lastly, adopting a LOSO 
strategy, MS-EEGNet scored an AUC of 75.40±1.81%, 74.82±3.04% and 86.09±1.88%, 
respectively when using signals from datasets 1-3. In this strategy, the proposed solution did 
not perform significantly better than other SOA solutions (see Section 4.4.1) except for dataset 
1 where MS-EEGNet outperformed OCLNN and xDAWN+RG.  

 
Design choices of MS-EEGNet 

In the post-hoc hyper-parameter evaluation, we investigated the effect of particular design 
aspects of MS-EEGNet on the decoding performance, by statistically evaluating the difference 
in the AUCs between each variant MS-EEGNet and the baseline MS-EEGNet (∆XY)=
\]":I>%IDH − \]"=I"GU%DG). The results are reported in Figure 4.2. In particular, the adoption 
of 5= = 1 (large), 5= = 1 (short), e(&@+ = 8, e(&@+ = 16 significantly worsened the 
performance, with an average drop in performance of 1.28, 3.46, 3.51, 1.72%. 
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Figure 4.2 – Impact of alternative design choices of MS-EEGNet on the performance metric. The figure reports 

the difference between the AUC scored with the variant and with the baseline design (i.e., ∆RS3= ab6TON$OQK −
ab65O%MP$QM) for each condition of the hyper-parameter (c3) tested, reported on the x-axis as “c3TON$OQK −
c35O%MP$QM”. The height of each grey bar represents the mean value across participants of ∆RS3, while the error 

bar (black lines) represents the standard error of the mean. The results of the Wilcoxon signed-rank tests (see 

Section 4.2.7-ii) are also reported (*p<0.05, **p<0.01, ***p<0.001, corrected for multiple tests) on top of the 

figure.  
 

Variable number of training examples: within-session and transfer learning strategies  

The performance obtained with MS-EEGNet in the WS strategy as a function of the 
percentage of training examples (reported on the x-axis) is reported in Figures 4.3A-C (white 
bars), respectively for datasets 1-3. In all datasets, a percentage of training trials of 30%-45% 
was sufficient to obtain performance only a few points below that obtained with the entire 
training set, and in particular close or above 80%. 

In addition, the performance obtained with MS-EEGNet in the TL-WS strategy is also 
reported, as a function of: i) the number of participants (2) adopted to design the LOSO-M 
model (grey and hatched bars); ii) the percentage of training examples. Lastly, the AUC 
difference between the TL-WS strategy and the WS strategy using the same percentage of 
training examples is shown in the lower panels of Figures 4.3A-C (∆XY)= \]"+Z'[@ −

\]"[@).  
In case of dataset 1, the TL-WS strategy provided higher performance compared to the WS 

strategy (see the distributions of ∆XY)  reported in Figure 4.3) for each percentage of training 
examples ∀2. This occurred also in case of dataset 3 except in a couple of conditions (2 = 2 
using 30% and 60% of the training examples of the held back participant). Using dataset 2, TL 
was found beneficial only with the lowest number of training examples (i.e., 15%) ∀2 and 
using 60% of training examples with 2 = 4. 
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Figure 4.3 – Panels from A to C: AUC obtained with MS-EEGNet trained with the WS and TL-WS strategies for 

datasets 1-3. Top plot in each panel: The AUC obtained in WS (white bars) is reported as a function of the 

percentage of training examples (reported on the x-axis), while the AUC obtained in TL-WS is reported also as a 

function of the number of participants (d) used to optimize the LOSO-M models (grey and hatched bars). The 

height of each bar represents the mean value of the performance metric across participants, while the error bar 

(black lines) represents the standard error of the mean. Bottom plot in each panel: The AUC difference between 

the TL-WS and WS strategy (i.e., ∆RS3= ab60'U*) − ab6*)) using the same percentage of training examples 

is reported using markers and a red line denotes the mean value. For each percentage, a Wilcoxon signed-rank 

test was performed (see Section 4.2.7-iii) to compare TL-WS vs. WS strategy, and the statistical significance is 

reported (*p<0.05, **p<0.01, ***p<0.001, corrected for multiple tests) on top of each plot. 
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4.3.2. Explaining P300 decision: gradient-based representations 

In this section, we analyze the features of the input variables that most strongly supported 
the P300 classification decision in MS-EEGNet.  

 
Spatio-temporal representations 

The top panels of Figure 4.4 (Figures 4.4A-C) display the grand average spatio-temporal 
representation of MS-EEGNet trained with the LOSO strategy using signals from datasets 1-
3. From these figures, the more class-discriminative electrodes can be identified, i.e., P4, Pz 
and CP1 for datasets 1-3, respectively. The grand average ERPs for the standard and deviant 
stimuli of these representative electrodes are displayed in the lower panels of Figure 4.4 
(Figures 4.4D-F).  

In case of dataset 1, P4 appeared as the most important electrode, in particular from 300 to 
550 ms. Three main peaks can be identified: two positives at 350 and 510 ms, and one negative 
at approximately 410 ms (Figure 4.4A). These peaks correspond to the peaks in the grand 
average ERP of the deviant stimulus at approximately the same times (Figure 4.4D). In case of 
datasets 2 and 3, the most important site was Pz from 300 to 400 ms and CP1 from 350 to 400 
ms, respectively. In these cases, a single positive peak occurred in the spatio-temporal maps at 
about 350 and 390 ms, respectively (Figures 4.4B and 4.4C) and was associated to the peak in 
the grand average ERP of the deviant stimuli at approximately the same time (Figures 4.4E and 
4.4F).  

In the following sections the interpretation of the relevant input features driving MS-
EEGNet P300 decision are analyzed separately in the temporal and spatial domains. 
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Figure 4.4 – Grand average spatio-temporal representations. The top panels (Figures 4.4A-C) show the grand 

average spatio-temporal representation of MS-EEGNet trained with the LOSO strategy using signals from datasets 

1-3. Positive gradients are shown in red, while negative gradients in blue. The bottom panels (Figures 4.4D-F) 

show the grand average ERP for the deviant (black lines) and standard (dashed black lines) stimuli associated to 

the most relevant electrode (the one with the largest gradient values) for datasets 1-3.  
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Absolute temporal representations 

Figure 4.5 displays the grand average absolute temporal representations of MS-EEGNet 
trained with the LOSO strategy using signals from datasets 1-3 (Figures 4.5A-C). These 
patterns highlight, by means of local and global peaks, the more class-discriminative time 
samples for the P300 class across all spatial sites. These waveforms confirm the highest 
importance of time samples approximately between 300 and 550 ms in all cases, with the peak 
at about 410 ms, 350 ms and 390 ms for datasets 1-3, respectively, in agreement with results 
in Figure 4.4. Interestingly, these waveforms synthetically highlight how the network learns 
different temporal profiles of sample relevance depending on the dataset, e.g., more regular 
waveforms in case of dataset 2 and 3 (but more spiking in case of dataset 3) and more irregular 
waveform in case of dataset 1 (with several local maxima, two in particular just next the global 
one, i.e., at 350 and 510 ms). These differences may be linked to the different sensory 
modalities involved (visual vs. auditory) or to the different participants (healthy vs. 
pathological), or to the different paradigms used to elicit P300 (oddball paradigm vs. flashing 
the object under fixation).  
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Figure 4.5 – Grand average absolute temporal representations of MS-EEGNet trained with the LOSO strategy 

using signals from datasets 1-3 (Figures 4.5A-C); the mean value (black line) ± standard deviation (grey shaded 

areas) across participants is represented. 
 

Absolute spatial representations  

Besides the investigation of the more P300-discriminative temporal features, it is also 
interesting to evidence the more P300-discriminative spatial features. To this aim, Figure 4.6 
shows the grand average absolute spatial representations of MS-EEGNet trained with the 
LOSO strategy using signals from datasets 1-3 (Figures 4.6A-C), emphasizing the different 
spatial profiles of the sample relevance.  
The three more class-discriminative electrode sites across all time samples were (in increasing 
order of relevance) Pz, P3 and P4 when the CNN was trained on dataset 1; C3, Cz and Pz when 
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the CNN was trained on dataset 2; Cz, CP2 and CP1 when the CNN was trained on dataset 3. 
Again, these differences can be associated to differences in the sensory modality, participants, 
paradigms adopted across the three datasets.  
 

 
Figure 4.6 – Grand average absolute spatial representations of MS-EEGNet trained with the LOSO strategy using 

signals from datasets 1-3 (Figures 4.6A-C). 

 
Progressive changes of spatio-temporal sample relevance while increasing training examples  

Lastly, the absolute temporal and spatial representations were also used to analyze the 
progressive change in the importance of the spatio-temporal samples while increasing the 
percentage of training examples included when training MS-EEGNet with TL-WS and WS 
strategies. For the TL-WS condition, only CNNs initialized from LOSO models with the largest 
number of participants were considered. The absolute temporal and spatial representations are 
reported in Figure 4.7, in case of a representative participant and session belonging to dataset 
1. 
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Figure 4.7 –Grand average temporal and spatial absolute representations of MS-EEGNet trained on the dataset 1 

for a representative participant and session, adopting the LOSO, TL-WS and WS strategies. In particular, the 

representations obtained with the LOSO strategy in the temporal and spatial domains are reported in Figures 4.7A 

and 7B, respectively. The representations obtained with the TL-WS strategy in the temporal and spatial domains 

are reported, respectively, in Figure 4.7C (coloured lines) and Figures 4.7D-G, as the percentage of training 

examples of the new participant increased (15, 30, 45, 60%, from Figure 4.7D to 4.7G, respectively). The 

representations obtained with the WS strategy in the temporal and spatial domains are reported, respectively, in 

Figure 4.7H (coloured lines) and Figures 4.7I-N, as the percentage of training examples of the participant 

increased (15, 30, 45, 60%, from Figure 4.7I to 4.7N, respectively). Note that in order to maintain the same scale 

across strategies in the spatial absolute representations, in Figures 4.7D-G the maximum gradient value 

represented (2.0e-1) was below the real maximum gradient value (3.3e-1), saturating the value in particular around 

P4. 
 
In particular, Figures 4.7A and 4.7B report the absolute temporal and spatial representations 

as obtained in the LOSO strategy. Figures 4.7C-G show the effects of TL-WS strategy, as the 
percentage of training examples from the held back participant increased. While transferring 
the knowledge from other participants and sessions, the CNN inherited the importance profile 
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from the pre-trained condition. Thus, for each percentage of training examples (Figures 4.7C-
G) the temporal and spatial profiles did not change substantially their shape from the LOSO 
condition since the importance in the temporal and spatial domains was already learned in the 
LOSO training. Nevertheless, the amplitude increased both in the temporal and spatial domains 
while increasing the percentage of training examples, indicating a progressive accumulation of 
the importance. Conversely, adopting a WS strategy (Figures 4.7H-N), the CNN was randomly 
initialized and, therefore, the CNN had to learn from scratch the more class-discriminative 
spatio-temporal samples. Thus, the temporal and spatial profiles changed more respect to TL-
WS as the percentage of training examples increased. In particular, temporal profiles changed 
from a nearly flat profile (e.g., 15% in Figure 4.7H) to profiles more focused on time samples 
in the range 300-550 ms (e.g., 45, 60% in Figure 4.7H) peaking at approx. 410 ms. 
Furthermore, spatial profiles changed from a diffused distribution (Figure 4.7I) to distributions 
more focused on parietal electrodes (in particular P3, Pz and P4 in Figures 4.7L-N). However, 
the absolute gradients resulted lower than in the TL-WS condition, in particular in 
correspondence of the more class-discriminative temporal (i.e., 350, 410, 510 ms) and spatial 
(P3, Pz and P4) samples.  
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4.4. DISCUSSION 

In this study, a lightweight multi-scale CNN design for EEG decoding named MS-EEGNet 
was proposed and applied to decode the P300 event from 3 different datasets. This CNN merges 
the multi-scale temporal learning proposed by Farahat et al. [16], with the lightweight 
characteristics originally proposed in EEGNet [18], operating even a further decrease in the 
number of trainable parameters while learning multi-scale features. MS-EEGNet was 
compared with many SOA algorithms, including CNNs (EEGNet, BranchedNet, OCLNN) and 
a traditional ML pipeline (xDAWN+RG). To better analyze the multi-scale feature learning as 
operated by MS-EEGNet, we performed a post-hoc analysis on the hyper-parameters. In 
addition, MS-EEGNet was extensively evaluated in 4 training conditions, each one reflecting 
a different practical scenario: i) using participant-specific signals of single recording sessions 
(WS); ii) using participant-specific signals of multiple recording sessions (CS); iii) using 
signals from other participants (LOSO); iv) using a fraction of participant-specific signals from 
a pre-trained cross-participant CNN (TL-WS). Lastly, we exploited saliency maps to obtain 
representations aimed to explain MS-EEGNet decision by visualizing the relevant samples in 
the input domain. Both the proposed architecture and the performed analyses represent 
significant expansion compared to our previous work [20], limited to the application of a design 
based on EEGNet to solve the P300 task proposed by IFMBE 2019 scientific challenge 
(corresponding to dataset 1 here). In the following, the performance of MS-EEGNet and the 
results of the performed analyses are critically discussed.  

 
4.4.1. Performance of MS-EEGNet and comparison with state-of-the-art algorithms  

The performance of MS-EEGNet using WS strategy was above 80% for all datasets, 
reaching higher values for datasets 2 and 3 compared with dataset 1 (Table 4.3). This difference 
could depend on several factors such as different paradigms, stimuli and populations (ASD vs. 
healthy), possibly leading to different P300 responses, e.g., with lower or larger amplitude. 
Regarding to this, Figures 4D-F show that the P300 response to the deviant stimulus in the 
dataset 1was indeed characterized by a lower amplitude, perhaps increasing the difficulty in 
discriminating between standard/deviant stimuli. Other contributing factors could be the lower 
proportion between training and test examples, and the lower number of electrodes in dataset 
1 vs. datasets 2 and 3. It is worth noticing that this same difference in WS performance across 
the datasets was notable in the other algorithms too. Using the CS strategy, the performance 
improved compared to the WS strategy for all algorithms and this result is in line with [21]. 
When comparing MS-EEGNet to the other algorithms, our design exhibited the highest 
performance on each dataset, adopting the WS and CS strategies. Interestingly, among the 
tested CNNs, OCLNN (that uses a mixed spatio-temporal convolution), and BranchedNet (that 
performs a spatial convolution first) performed generally lower than MS-EEGNet and EEGNet 
(that perform temporal convolution first). This is in line with [21], where our previous design 
adapted from EEGNet outperformed significantly a CNN design inspired from Manor and 
Geva [14] that used a first spatial convolutional layer. Therefore, these results suggest that a 
CNN design trained on participant-specific signals and based on a first temporal filtering of 
EEG signals, leads to higher P300 decoding performance than other solutions that use a first 
mixed spatio-temporal or a first spatial filtering of the input signals. Hence, higher performance 
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could be achieved learning temporal features directly from raw EEG signals (exploiting useful 
raw temporal information related to the P300 event) instead from signals with a higher level of 
abstraction. Overall, among the tested SOA CNNs, EEGNet is the one exhibiting the closest 
performance to MS-EEGNet; this can be explained by the derivation of MS-EEGNet from 
EEGNet with the addition of multi-scale temporal feature learning and compressed 
representation learning. However, the results denote that the changes included in MS-EEGNet 
can significantly improve the high performance already achieved by EEGNet - especially using 
session-specific (WS) and participant-specific (CS) input distributions, see datasets 1 (p=2e-3 
and p=3e-3 with WS and CS strategies, respectively) and 3 (p=4e-2) in Table 4.3 - using a 
lower number of trainable parameters. 

As expected, adopting the LOSO strategy caused an overall drop of the performance metric 
across all the tested approaches, respect to WS and CS strategies; the different approaches 
generally provided similar performance (MS-EEGNet only performed significantly better than 
xDAWN+RG and OCLNN in dataset 1).  

Hence, overall, MS-EEGNet performed better than the other SOA algorithms in WS and CS 
strategies and behaved similar as other SOA algorithms in the LOSO strategy. This becomes 
more relevant considering that MS-EEGNet is the lightest CNN among the tested ones, as 
EEGNet, BranchedNet and OCLNN introduced more trainable parameters (see Table 4.2). 
Indeed, this is particularly important as in practice it is common to deal with small EEG 
datasets; thus, keeping limited the number of trainable parameters is crucial when designing 
CNNs for EEG decoding, in order to avoid overfitting. Likely, the lightweight design of MS-
EEGNet may explain the absence of higher performance in LOSO strategy, due to the 
peculiarities of LOSO training. In this case, class-discriminative features are learned from input 
distributions with very large variability, involving different participants and possibly different 
sessions (e.g., with dataset 1). Thus, the CNN, besides needing more training examples, may 
need more capacity (i.e., more layers/more parameters) to solve the task with higher 
performance. Considering that our CNN is the lightest among the tested ones (see Table 4.2), 
obtaining performance similar than other CNNs should not be surprising (and rather can be 
still considered a satisfactory result). In LOSO strategy, MS-EEGNet significantly 
outperformed the traditional ML approach only for dataset 1. This may indicate that in a LOSO 
strategy MS-EEGNet can learn more relevant cross-participant features, leading to significant 
higher performance, than a ML pipeline when a larger dataset is used, as in case of dataset 1. 
Lastly, besides performance and parameters to fit, considerations about the training time are 
relevant for practical usage. The multi-scale SOA CNN (BranchedNet) resulted slower to train 
respect to MS-EEGNet, while single-scale SOA CNNs (EEGNet and OCLNN) were faster to 
train. Overall, compared to SOA CNNs, MS-EEGNet represented a good compromise between 
performance, model size and computational time.  

 
4.4.2. Performance of MS-EEGNet: post-hoc hyperparameter evaluation 

We performed a post-hoc hyper-parameter evaluation of 8 variant design choices of MS-
EEGNet by varying 4 different hyper-parameters of the multi-scale temporal block (Figure 
4.2). Using a single-scale variant (5= = 1) including only the large- or the short-scale a 
reduction in trainable parameters and in training time was observed respect to the baseline MS-
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EEGNet (see Table 4.2). At the same time, the performance significantly worsened in both 
cases, indicating the benefit of the multi-scale temporal feature learning respect to single-scale 
feature learning for P300 decoding, at the expense of an increased number of trainable 
parameters and computational time. In addition, the different impact on the performance 
observed in the design 5= = 1 (large) and 5= = 1 (short) suggests that the temporal features 
learned in the large-scale branch were more class-discriminative. Interestingly, using one 
additional intermediate time scale (3-branched variant 5= = 3) a non-significant difference in 
performance was observed compared to the baseline MS-EEGNet while more parameters and 
training time were required (see Table 4.2). These results about the number of branches of MS-
EEGNet suggest that the dual-branched design represented a good compromise between 
performance, model size and training time. 

Furthermore, the alternative ratio Ü&@+ = 1
2U  between the two time scales obtained with 

f$
&@+A = (1,9) (corresponding to learning summaries of about 500 ms and 250 ms), resulted 

in a small not significant (p=0.06) increase in performance respect to the baseline MS-EEGNet 
(Ü&@+ = 1

4U ), requiring few more parameters and training time. In addition, variants learning 
more feature maps (e(&@+ = 8 and e(&@+ = 16), respect to the compressed representation 
exploited in the baseline MS-EEGNet (e(&@+ = 2), not only required more parameters to fit 
and were slower (see Table 4.2), but worsened the performance significantly. This suggest that 
learning compressed representations could be beneficial – both in terms of performance, model 
size and training time – for P300 decoding. Remarkably, the variant architecture including the 
most extreme compressed representation (e(&@+ = 1), i.e., learning only one feature map for 
each time scale, scored similar performance as the baseline MS-EEGNet, while lightly 
reducing the model size and requiring the same training time (see Table 4.2), suggesting that 
future architectures could exploit also this design to further reduce the model size without 
hampering the performance. Lastly, increasing the depth of the MST block, did not provide 
any significant improvement in performance, introduced more parameters to fit and required 
more training time (see Table 4.2). Thus, these last results suggest that a shallower and 
lightweight MST design, as provided in the baseline MS-EEGNet, is preferable for P300 
decoding. 

 
4.4.3. Performance of MS -EEGNet: transfer learning strategy and variable number of 
training trials 

MS-EEGNet was capable to deal with a reduced number of training trials when trained from 
scratch (WS), although not at the smallest percentage of training trials (Figure 4.3). The 
performance increased in TL-WS. Indeed, transferring the knowledge using the smallest 
percentage of training examples of the held back participant (i.e., 15%) resulted beneficial, 
compared to WS, across all datasets and regardless the number of participants from whom the 
knowledge was transferred (Figure 4.3). This beneficial effect of the TL-WS strategy was 
found also when using more training examples (30, 45, 60%) of the held back participant on 
datasets 1 and 3. As expected, the worst performance was obtained when transferring the 
knowledge from LOSO models trained on the smallest subset of participants (2 = 2) for all 
datasets and percentages; however, this condition produced a significant increase in 
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performance compared to randomly initialized models especially when using a small amount 
of signals belonging to the new user (i.e., 15%). Therefore, pre-trained models do not 
necessarily need to be optimized on a large set of participants in order to significantly 
outperform randomly initialized models, especially when using a small amount of data during 
transfer learning (see also Section 4.6.3 in Supplementary Materials for comparison between 
TL-WS and WS with 100% of training trials).  

Overall, these results suggest that the proposed approach could be used to accurately decode 
the P300 event even with a reduced number of standard/deviant stimuli presented to the user 
during the calibration stage. 

 
4.4.4. Explaining P300 decision 

The proposed approach achieved high performance outperforming SOA algorithms. As 
stated by Montavon et al. [22], in practice it is also crucial to verify that the decoding 
performance results from a proper problem representation and not from the exploitation of 
artefacts in the input data. Therefore, in the present study we explained MS-EEGNet decision 
for P300 decoding via saliency maps, providing the GA spatio-temporal, GA absolute temporal 
and GA absolute spatial representations of the relevance of the input samples.  

The GA spatio-temporal representations of MS-EEGNet (Figures 4.4A-C) evidenced higher 
values (both positive and negative) of the gradients, corresponding to more class-discriminative 
input samples, within time intervals (roughly between 300-550 ms) matching the P300 
temporal occurrence for all datasets. The positive/negative peaks in these gradient patterns 
corresponded to peaks in the GA ERPs of the deviant stimulus (Figures 4.4D-F). Indicating 
with i and j the row and column indices, respectively, positive and negative gradients in the 
(i,j) location in Figures 4.4A-C represent the direction in which a change of the (i,j) input 
feature increased the P300 class score and, consequently, the CNN decision toward the P300 
class. Thus, for example analyzing the gradients related to P4 obtained from dataset 1 (Figure 
4.4A), two positive peaks and one negative peak were found. As the P4 input signal of a deviant 
trial increased its value at the two positive peaks (at about 350 and 510 ms), the deviant 
condition differed more than the standard condition, resulting easier to distinguish the deviant 
class and providing a higher score to it. Therefore, these peaks in the deviant GA ERP were 
associated with positive gradient peaks. Conversely, as the P4 input signal of a deviant trial 
reduced its value at the local minimum (at ~410 ms), the negative peak resulted more distant 
from the standard condition, leading to a higher score for the deviant class (negative gradient 
peak). This consideration can be extended to datasets 2 and 3, by analyzing Pz and CP1 
electrodes respectively. Therefore, as already obtained in [16], higher differences in the ERP 
between deviant and standard stimuli are reflected onto the saliency maps by means of positive 
and negative gradients. 

When computing the absolute value of the saliency maps, the absolute gradient at the spatio-
temporal sample (i,j) reflects how much a change in this sample affects the P300 class score. 
We analyzed the absolute saliency maps separately in the time- and spatial-domains (Figures 
4.5 and 4.6), in order to evidence the more discriminative temporal samples and electrodes, 
respectively, independently on the direction (positive or negative) they contributed to the 
decoding result. The GA temporal absolute profile for each dataset peaked approximately in 
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correspondence of the peak of the P300 response. Interestingly, the absolute temporal 
representations exhibit different patterns for the three datasets, evidencing that they are able to 
detect differences embedded in the P300 response across the three datasets. Lastly, the GA 
absolute spatial distributions represented in a topological map allowed a direct analysis of the 
more P300 discriminative electrodes of MS-EEGNet. These were mainly distributed in the 
parietal area and centro-parietal area. This may provide practical hints to reduce the number of 
electrodes in the design of P300-BCIs. Overall, the various gradient-based representations 
(Figures 4.4-4.6) matched the P300 spatio-temporal distribution, confirming that MS-EEGNet 
was able to capture meaningful task-related features, without exploiting artefactual/noisy input 
sources.  

Interestingly, by using a representative example, we show that while transferring the 
knowledge the importance of temporal and spatial samples gradually increased from the LOSO 
condition (Figures 4.7A and 4.7B) as the percentage of training examples increased. In 
particular, it appears that the more task-relevant temporal and spatial samples were already 
learned in the LOSO strategy; however, during transfer learning (Figures 4.7C-4.7G) the 
LOSO temporal and spatial profiles (template profiles) were modelled on the new participant- 
and session-specific training distribution, giving progressively more importance to particular 
temporal intervals/electrode sites starting from the template profiles. The availability of these 
template profiles allowed a rapid learning of the relevant participant-specific and session-
specific input samples (i.e., needing a low number of training examples of the new participant). 
Conversely, when training CNNs from scratch with the WS strategy, the profile distribution 
rapidly changed its shape both in the temporal (Figure 4.7H) and spatial (Figures 4.7I-N) 
domains but reached lower importance values compared to TL-WS strategy. When transferring 
the knowledge, the profile was more focused on the interval 300-550 ms with three distinct 
main peaks and on the sites P4>P3>Pz already at the lowest percentage (15%, Figures 4.7C 
and 4.7D), while at the same percentage, the WS strategy was characterized by more flat and 
homogeneous distributions (Figures 4.7H and 4.7I). These considerations could explain the 
performance improvement obtained in the TL-WS strategy (Figure 4.3): the parameters learned 
using the LOSO strategy overall represented a better initialization point in the parameter space 
compared to a random one.  
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4.5. CONCLUSIONS 

In conclusion, we wish to stress that the present study aims to contribute to uncovering the 
enormous potentialities of deep learning via CNNs for EEG decoding, and to their exploitation 
in practice adopting different training strategies, reflecting different scenarios. Our multi-scale 
design was the most lightweight, at the same time outperforming many SOA algorithms when 
using three different P300 datasets, indicating that care has to be taken to design CNNs for 
EEG decoding keeping limited the parameters to fit, especially when handling small datasets 
(not as large as the ones adopted in the computer vision field, e.g., >100K of examples). In 
addition, the hyper-parameter post-hoc analysis confirmed that the innovative aspects of our 
architecture, i.e., the design of a lightweight multi-scale temporal block implemented via 
separable convolutions and the use of compressed representation learning, were beneficial. 
Crucially, the capability of MS-EEGNet to transfer the knowledge with high performance even 
with a small amount of training examples, could be highly useful in practice to reduce the 
calibration time of P300-based BCIs on a new user.  

Saliency maps confirmed their utility to explain the neural network decision in P300 
decoding tasks; the derived spatial and temporal representations resulted to match the P300 
spatio-temporal distribution. However, the utility of these representations is not limited to 
provide an additional validation of the algorithm. Indeed, the CNN ability to learn 
automatically the most meaningful features to perform classification, gives the possibility to 
use these algorithms as data-driven EEG analysis tools; then, the use of the saliency maps (or 
similar representations) allows to interpret the CNN decision and it is possible to take 
advantage of these interpretations for increasing the comprehension of the brain dynamics 
underlying the decoded events (e.g., P300 response). For example, representations derived 
from saliency maps (in the time- and/or spatial-domain), could be used to study the variability 
between participants (i.e., which features of the input samples are more/less consistent across 
participants) and within-participant (i.e., by comparing representations associated to early and 
late trials, e.g., to investigate the effects of training or treatment). Furthermore, the analysis of 
between-participants and within-participant variabilities could be useful, in perspective, to 
develop biomarkers to diagnose and monitor neurological or psychiatric disorders [16], e.g., 
P300 amplitude, latency and topographical alterations in mild cognitive impairment [46], 
dementia [47] and schizophrenia [48]. In addition, identifying the more class-discriminative 
temporal and spatial input features can also have a relevant practical impact in the design of 
BCIs. For example, the identification of a small subset of more relevant electrodes (as we found 
here) may drive the definition of BCI systems with a very small electrode montage, increasing 
the comfort of the participant and reducing the preparation time. It is worth noticing that 
performing this analysis on within-participant CNNs, the optimal electrode montage could also 
be identified on an individual basis.  

Overall, the present study, by specifically addressing the aspects of lightweight design, 
transfer learning and interpretability of the proposed CNN, can contribute to advance the 
development of deep learning-based decoders for P300-BCIs. Future developments include the 
application of the proposed architecture to other ERP decoding tasks, and the adoption of 
interpretable and more lightweight layers such as the sinc-convolutional layer to perform band-
pass filtering [25,26,49]. In addition, automatic hyper-parameter search [50] will be exploited 
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to further improve MS-EEGNet design and other explanation techniques such as layer-wise 
relevance propagation will be investigated, carefully analyzing the effect of different 
propagation rules and parameters for EEG decoding. 
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4.6. SUPPLEMENTARY MATERIALS 

4.6.1. Details about the state-of-the-art CNNs  

The main details of the architectures considered in this study are reported in the 
Supplementary Tables 4.1-4.3, respectively for our adaptation of EEGNet that won the IFMBE 
2019 competition [20] (code and documentation available at 
https://github.com/ddavidebb/IFMBE2019Challenge-BCIAUT-P300), BranchedNet [16] and 
OCLNN [17]. Since BranchedNet was designed to accept EEG signals sampled at 250 Hz as 
input, we changed the temporal pool sizes and kernel lengths accordingly (i.e., dividing them 
with a factor of 2), as done in previous studies when re-implementing CNNs on other datasets 
[18,26]. Codes of all the re-implemented CNNs are available together with the ones of MS-
EEGNet at https://github.com/ddavidebb/P300_decoding_MS-EEGNet. 

 
Supplementary Table 4.1 – Architecture details of the EEGNet adaptation used in [20]. Each layer is provided 

with its name, main hyper-parameters and number of trainable parameters. See Sections 4.2.1 and 4.2.2 of the 

manuscript for the meaning of the symbols. The total number of trainable parameters was 1386, when using 

signals from the dataset 1, and 1418, when using signals from datasets 2 and 3. In all layers, where not specified, 

stride (2) and padding (3) were set to (1,1) and (0,0), respectively. 

Block Layer name Hyper-parameters Number of trainable 
parameters 

 Input ;+ = 1 0 

ST Conv2D ;+,- = 8, <+,- = (1,65), 3+,- = (0,32) <+,-[0] ∙ <+,-[1] ∙ ;+,- ∙ ;+ 

BatchNorm2D A = 0.99 2 ∙ ;+,- 

Depthwise-

Conv2D 

I.,- = 2, ;.,- = ;+,- ∙ I.,-, 

<.,- = (6, 1), kernel max norm=1 

<.,-[0] ∙ <.,-[1] ∙ ;.,- 

BatchNorm2D A = 0.99 2 ∙ ;.,- 

ELU Z = 1 0 

AvgPool2D </,- = 2/,- = (1,4) 0 

Dropout ) = 0.25 or ) = 0.5 0 

Temporal 
(T) 

Separable-

Conv2D 

I+0 = 1,;+0 = ;.)0 ∙ I+0, 

<+0 = (1,17), 3+0 = (0,8) 
<+0[0] · <+0[1] · ;+0 + #;+0&

1	
 

BatchNorm2D A = 0.99 2 ∙ ;+0 

ELU Z = 1 0 

AvgPool2D </0 = 2/0 = (1,8) 0 

Dropout ) = 0.25 or ) = 0.5 0 

FC Flatten  0 

Fully-

Connected 

O23 = 2, kernel max norm=0.25 O23 ∙ (8/
0 ∙ ;+0 + 1) 

Softmax  0 
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Supplementary Table 4.2 – Architecture details of BranchedNet [16]. Each layer is provided with its name, main 

hyper-parameters and number of trainable parameters. See Sections 4.2.1 and 4.2.2 of the manuscript for the 

meaning of the symbols. The total number of trainable parameters was 5418, when using signals from the dataset 

1, and 7954, when using signals from datasets 2 and 3. In all layers, where not specified, stride (2) and padding 

(3) were set to (1,1) and (0,0), respectively. 

Block Layer name Hyper-parameters Number of trainable parameters 
 Input ;+ = 1 0 

Spatial 
(S) 

Conv2D ;+) = 12, <+) = (6, 1) <+)[0] ∙ <+)[1] ∙ ;+) ∙ ;+ 

 BatchNorm2D A = 0.99 2 ∙ ;+) 

 Tanh  0 

 Dropout ) = 0.25 or ) = 0.5 0 

MST 
scale 0  

Conv2D ;+I)0! = 4, <+I)0! = (1,12) <+I)0![0] · <+I)0![1] · ;+I)0!
	
∙ ;+) 

 BatchNorm2D A = 0.99 2 ∙ ;+I)0! 

 Tanh  0 

 Dropout ) = 0.25 or ) = 0.5 0 

 AvgPool2D </I)0! = 2/I)0! = (1,2) 0 

 Conv2D ;.I)0! = 8, <.I)0! = (1,12) <.I)0![0] · <.I)0![1] · ;.I)0! · ;+I)0! 

 BatchNorm2D A = 0.99 2 ∙ ;.I)0! 

 Tanh  0 

 Dropout ) = 0.25 or ) = 0.5 0 

 Conv2D ;1I)0! = 8, <1I)0! = (1,12) <1I)0![0] · <1I)0![1] · ;1I)0!
	
· ;.I)0! 

 BatchNorm2D A = 0.99 2 ∙ ;1I)0! 

 Tanh  0 

 Dropout ) = 0.25 or ) = 0.5 0 

 Flatten  0 

MST 
scale 1  

Conv2D ;+I)0" = 4, <+I)0" = (1,52) <+I)0"[0] · <+I)0"[1] · ;+I)0"
	
∙ ;+) 

 BatchNorm2D A = 0.99 2 ∙ ;+I)0" 

 Tanh  0 

 Dropout ) = 0.25 or ) = 0.5 0 

 AvgPool2D </I)0" = 2/I)0" = (1,2) 0 

 Flatten  0 

FC Concatenate  0 

 Fully-Connected O23 = 2 O23 ∙ (81I)0! ∙ ;1I)0! + 8/I)0" ∙ ;+I)0"

+ 1) 
 Softmax  0 
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Supplementary Table 4.3 – Architecture details of OCLNN [17]. Each layer is provided with its name, main 

hyper-parameters and number of trainable parameters. See Sections 4.2.1 and 4.2.2 of the manuscript for the 

meaning of the symbols. The total number of trainable parameters was 1650, when using signals from the dataset 

1, and 1874, when using signals from datasets 2 and 3. In all layers, where not specified, stride (2) and padding 

(3) were set to (1,1) and (0,0), respectively. 

Block Layer name Hyper-parameters Number of trainable parameters 
 Input ;+ = 1 0 

Mixed ST 
(mST) 

Conv2D ;+V,- = 16, <+V,- = (6, 9), 
2+V,- = (1,9) 

<+V,-[0] ∙ <+V,-[1] ∙ ;+V,- ∙ ;+
+;+V,- 

ReLU  0 

Dropout ) = 0.25 or ) = 0.5 0 

FC Flatten  0 

Fully-Connected O23 = 2 O23 ∙ (8+V,- ∙ ;+V,- + 1) 
Softmax  0 

 
4.6.2. Details about the state-of-the-art traditional machine learning pipeline  

The traditional machine learning pipeline was inspired from the re-implementation of 
Lawhern et al. [18] of the approach that won the BCI challenge 
(https://www.kaggle.com/c/inria-bci-challenge) proposed as part of the IEEE Neural 
Engineering Conference 2015 (code and documentation available at 
http://github.com/alexandrebarachant/bci-challenge-ner-2015). In particular, our pipeline 
consisted of 4 main steps: 

1. Learn two sets (one for the non-P300 class and one for the P300 classes) of 5 
xDAWN spatial filters [40], using the ERP template concatenation method 
described in [41]. 

2. Project the covariance matrices onto the tangent space using the log-euclidean 
metric [42]. 

3. Feature normalization using a <( ratio of 0.5 (equal weight for <( and <, penalties). 
4. Classification using Elastic Net regression using an V parameter (constant that 

multiplies the penalty terms) of 2 ∙ 10'.. 
The pipeline was maintained the same for the three datasets, except for the number of input 
channels (8 for the dataset 1, 12 for datasets 2 and 3).  
 
4.6.3. Comparison between transferring the knowledge on a small dataset and learning 
from scratch on the entire dataset 

The main text shows the comparison between the TL-WS and the WS strategy (see Figure 
4.3) using the same percentage of training examples and number of participants from whom 
the knowledge was transferred (2). Here, the TL-WS strategy was also compared to the WS 
strategy trained on 100% of training examples of the new user (corresponding to the baseline 
WS strategy, see Section 4.2.3-i of the manuscript). This test was performed in order to 
compare the results obtained while transferring the knowledge (as a function of the percentage 
of training examples and 2) with the traditional WS strategy that used the entire training set. 
The statistical analysis adopted for this test is the same as the one used in Section 4.2.5-iii of 
the manuscript. 



 149 

In Supplementary Figure 4.1, the difference between the AUC scored with the TL-WS 
strategy and the traditional WS strategy (i.e., using 100% of training examples, “¢g100”) is 
reported (∆XY)= \]"+Z'[@ − \]"[@($$). The performance was comparable or even 
significantly higher (see 2 = 10 using 60% of examples) from 45% of training examples for 
dataset 1, especially for higher 2 values. For dataset 3, the performance was comparable for 
each percentage in case of the highest 2 value (2 = 6), from 30% in case of 2 = 4 and for 
60% in case of 2 = 2. Lastly, for dataset 2, no significant difference between the two trainings 
strategies was obtained only when using 60% of training examples and 2 = 4 in the TL-WS 
strategy. 

 
Supplementary Figure 4.1 – AUC difference between MS-EEGNet trained with the TL-WS and WS strategy 

using the entire training set (i.e., ∆RS3= ab60'U*) − ab6*).++) for datasets 1-3 (Supplementary Figures 4.1A-

C). The AUC difference is reported using markers and a red line denoting the mean value, as a function of the 
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number of participants (d) used to optimize the LOSO-M models and of the training examples of the new user 

(reported on the x-axis). For each percentage, a Wilcoxon signed-rank test was performed to compare TL-WS vs. 

WS strategy, and the statistical significance is reported (*p<0.05, **p<0.01, ***p<0.001, corrected for multiple 

tests) on top of each plot. 
  



 151 

4.7. REFERENCES 

[1]  Sutton S, Braren M, Zubin J and John E R 1965 Evoked-Potential Correlates of Stimulus 
Uncertainty Science 150 1187–8 

[2]  Polich J 2007 Updating P300: An integrative theory of P3a and P3b Clinical 

Neurophysiology 118 2128–48 
[3]  Farwell L A and Donchin E 1988 Talking off the top of your head: toward a mental 

prosthesis utilizing event-related brain potentials Electroencephalography and Clinical 

Neurophysiology 70 510–23 
[4]  Nicolas-Alonso L F and Gomez-Gil J 2012 Brain Computer Interfaces, a Review Sensors 

12 1211–79 
[5]  Rezeika A, Benda M, Stawicki P, Gembler F, Saboor A and Volosyak I 2018 Brain–

Computer Interface Spellers: A Review Brain sciences 
[6]  Amaral C, Mouga S, Simões M, Pereira H C, Bernardino I, Quental H, Playle R, 

McNamara R, Oliveira G and Castelo-Branco M 2018 A Feasibility Clinical Trial to 
Improve Social Attention in Autistic Spectrum Disorder (ASD) Using a Brain Computer 
Interface Frontiers in Neuroscience 12 477 

[7]  Guo Y, Liu Y, Oerlemans A, Lao S, Wu S and Lew M S 2016 Deep learning for visual 
understanding: A review Neurocomputing 187 27–48 

[8]  Ismail Fawaz H, Forestier G, Weber J, Idoumghar L and Muller P-A 2019 Deep learning 
for time series classification: a review Data Min Knowl Disc 33 917–63 

[9]  Faust O, Hagiwara Y, Hong T J, Lih O S and Acharya U R 2018 Deep learning for 
healthcare applications based on physiological signals: A review Computer Methods and 

Programs in Biomedicine 161 1–13 
[10]  LeCun Y, Bengio Y and Hinton G 2015 Deep learning nature 521 436 
[11]  Lindsay G 2020 Convolutional Neural Networks as a Model of the Visual System: 

Past, Present, and Future Journal of Cognitive Neuroscience 1–15 
[12]  Craik A, He Y and Contreras-Vidal J L 2019 Deep learning for electroencephalogram 

(EEG) classification tasks: a review J. Neural Eng. 16 031001 
[13]  Cecotti H and Graser A 2011 Convolutional Neural Networks for P300 Detection with 

Application to Brain-Computer Interfaces IEEE Transactions on Pattern Analysis and 

Machine Intelligence 33 433–45 
[14]  Manor R and Geva A B 2015 Convolutional Neural Network for Multi-Category Rapid 

Serial Visual Presentation BCI Frontiers in Computational Neuroscience 9 146 
[15]  Liu M, Wu W, Gu Z, Yu Z, Qi F and Li Y 2018 Deep learning based on Batch 

Normalization for P300 signal detection Neurocomputing 275 288–97 
[16]  Farahat A, Reichert C, Sweeney-Reed C and Hinrichs H 2019 Convolutional neural 

networks for decoding of covert attention focus and saliency maps for EEG feature 
visualization Journal of Neural Engineering 

[17]  Shan H, Liu Y and Stefanov T 2018 A Simple Convolutional Neural Network for 
Accurate P300 Detection and Character Spelling in Brain Computer Interface Proceedings 

of the 27th International Joint Conference on Artificial Intelligence IJCAI’18 (Stockholm, 
Sweden: AAAI Press) pp 1604–10 

[18]  Lawhern V J, Solon A J, Waytowich N R, Gordon S M, Hung C P and Lance B J 2018 
EEGNet: a compact convolutional neural network for EEG-based brain–computer 
interfaces Journal of Neural Engineering 15 056013 

[19]  Chollet F 2016 Xception: Deep Learning with Depthwise Separable Convolutions 
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1800–7 

[20]  Borra D, Fantozzi S and Magosso E 2020 Convolutional Neural Network for a P300 
Brain-Computer Interface to Improve Social Attention in Autistic Spectrum Disorder XV 

Mediterranean Conference on Medical and Biological Engineering and Computing – 



 152 

MEDICON 2019 ed J Henriques, N Neves and P de Carvalho (Cham: Springer 
International Publishing) pp 1837–43 

[21]  Simões M, Borra D, Santamaría-Vázquez E, GBT-UPM, Bittencourt-Villalpando M, 
Krzemiński D, Miladinović A, Neural_Engineering_Group, Schmid T, Zhao H, Amaral C, 
Direito B, Henriques J, Carvalho P and Castelo-Branco M 2020 BCIAUT-P300: A Multi-
Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-
Computer-Interfaces Front. Neurosci. 14 568104 

[22]  Montavon G, Samek W and Müller K-R 2018 Methods for interpreting and 
understanding deep neural networks Digital Signal Processing 73 1–15 

[23]  Simonyan K, Vedaldi A and Zisserman A 2014 Deep Inside Convolutional Networks: 
Visualising Image Classification Models and Saliency Maps arXiv:1312.6034 [cs] 

[24]  Zhao D, Tang F, Si B and Feng X 2019 Learning joint space–time–frequency features 
for EEG decoding on small labeled data Neural Networks 114 67–77 

[25]  Borra D, Fantozzi S and Magosso E 2020 EEG Motor Execution Decoding via 
Interpretable Sinc-Convolutional Neural Networks XV Mediterranean Conference on 

Medical and Biological Engineering and Computing – MEDICON 2019 ed J Henriques, N 
Neves and P de Carvalho (Cham: Springer International Publishing) pp 1113–22 

[26]  Borra D, Fantozzi S and Magosso E 2020 Interpretable and lightweight convolutional 
neural network for EEG decoding: Application to movement execution and imagination 
Neural Networks 129 55–74 

[27]  Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, 
Antiga L and Lerer A 2017 Automatic differentiation in PyTorch NIPS-W 

[28]  Vahid A, Mückschel M, Stober S, Stock A-K and Beste C 2020 Applying deep learning 
to single-trial EEG data provides evidence for complementary theories on action control 
Commun Biol 3 112 

[29]  Ioffe S and Szegedy C 2015 Batch Normalization: Accelerating Deep Network 
Training by Reducing Internal Covariate Shift Proceedings of the 32nd International 

Conference on Machine Learning Proceedings of Machine Learning Research vol 37, ed 
F Bach and D Blei (Lille, France: PMLR) pp 448–56 

[30]  Clevert D-A, Unterthiner T and Hochreiter S 2015 Fast and accurate deep network 
learning by exponential linear units (elus) arXiv preprint 

[31]  Schirrmeister R T, Springenberg J T, Fiederer L D J, Glasstetter M, Eggensperger K, 
Tangermann M, Hutter F, Burgard W and Ball T 2017 Deep learning with convolutional 
neural networks for EEG decoding and visualization Human brain mapping 38 5391–420 

[32]  Srivastava N, Hinton G, Krizhevsky A, Sutskever I and Salakhutdinov R 2014 
Dropout: a simple way to prevent neural networks from overfitting The Journal of Machine 

Learning Research 15 1929–58 
[33]  Szegedy C, Wei Liu, Yangqing Jia, Sermanet P, Reed S, Anguelov D, Erhan D, 

Vanhoucke V and Rabinovich A 2015 Going deeper with convolutions 2015 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR) 2015 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR) (Boston, MA, USA: IEEE) pp 1–9 

[34]  Supratak A, Dong H, Wu C and Guo Y 2017 DeepSleepNet: A Model for Automatic 
Sleep Stage Scoring Based on Raw Single-Channel EEG IEEE Trans. Neural Syst. 

Rehabil. Eng. 25 1998–2008 
[35]  Blankertz B, Muller K R, Krusienski D J, Schalk G, Wolpaw J R, Schlogl A, 

Pfurtscheller G, Millan J D R, Schroder M and Birbaumer N 2006 The BCI Competition 
III: Validating Alternative Approaches to Actual BCI Problems IEEE Trans. Neural Syst. 

Rehabil. Eng. 14 153–9 
[36]  Blankertz B, Muller K-R, Curio G, Vaughan T M, Schalk G, Wolpaw J R, Schlogl A, 

Neuper C, Pfurtscheller G, Hinterberger T, Schroder M and Birbaumer N 2004 The BCI 



 153 

Competition 2003: Progress and Perspectives in Detection and Discrimination of EEG 
Single Trials IEEE Trans. Biomed. Eng. 51 1044–51 

[37]  Solon A J, Lawhern V J, Touryan J, McDaniel J R, Ries A J and Gordon S M 2019 
Decoding P300 Variability Using Convolutional Neural Networks Front. Hum. Neurosci. 
13 201 

[38]  Amaral C P, Simões M A, Mouga S, Andrade J and Castelo-Branco M 2017 A novel 
Brain Computer Interface for classification of social joint attention in autism and 
comparison of 3 experimental setups: A feasibility study Journal of Neuroscience Methods 
290 105–15 

[39]  Justen C and Herbert C 2018 The spatio-temporal dynamics of deviance and target 
detection in the passive and active auditory oddball paradigm: a sLORETA study BMC 

Neurosci 19 25 
[40]  Rivet B, Souloumiac A, Attina V and Gibert G 2009 xDAWN Algorithm to Enhance 

Evoked Potentials: Application to Brain–Computer Interface IEEE Trans. Biomed. Eng. 
56 2035–43 

[41]  Barachant A and Congedo M 2014 A Plug&Play P300 BCI Using Information 
Geometry arXiv:1409.0107 [cs, stat] 

[42]  Barachant A, Bonnet S, Congedo M and Jutten C 2012 Multiclass Brain–Computer 
Interface Classification by Riemannian Geometry IEEE Trans. Biomed. Eng. 59 920–8 

[43]  Glorot X and Bengio Y 2010 Understanding the difficulty of training deep feedforward 
neural networks Proceedings of the thirteenth international conference on artificial 

intelligence and statistics pp 249–56 
[44]  Kingma D P and Ba J 2017 Adam: A Method for Stochastic Optimization 

arXiv:1412.6980 [cs] 
[45]  Benjamini Y and Hochberg Y 1995 Controlling the False Discovery Rate: A Practical 

and Powerful Approach to Multiple Testing Journal of the Royal Statistical Society. Series 

B (Methodological) 57 289–300 
[46]  Medvidovic S, Titlic M and Maras Simunic M 2013 P300 Evoked Potential in Patients 

with Mild Cognitive Impairment Acta Inform Med 21 89 
[47]  Vecchio F and Määttä S 2011 The Use of Auditory Event-Related Potentials in 

Alzheimer’s Disease Diagnosis International Journal of Alzheimer’s Disease 2011 1–7 
[48]  Jeon Y-W and Polich J 2003 Meta-analysis of P300 and schizophrenia: Patients, 

paradigms, and practical implications Psychophysiology 40 684–701 
[49]  Ravanelli M and Bengio Y 2018 Speaker Recognition from Raw Waveform with 

SincNet 2018 IEEE Spoken Language Technology Workshop (SLT) pp 1021–8 
[50]  Snoek J, Larochelle H and Adams R P 2012 Practical Bayesian Optimization of 

Machine Learning Algorithms Advances in Neural Information Processing Systems 25 ed 
F Pereira, C J C Burges, L Bottou and K Q Weinberger (Curran Associates, Inc.) pp 2951–
9 

  



 154 

SECTION II: MOTOR DECODING 
FROM 

ELECTROENCEPHALOGRAPHIC 
SIGNALS 

 
 
  



 155 

CHAPTER 5: DESIGN OF AN INTERPRETABLE CNN FOR 
MOTOR DECODING AND ANALYSIS IN THE FREQUENCY 
AND SPATIAL DOMAINS 

The study reported in this chapter refers to the published journal paper entitled 
“Interpretable and lightweight convolutional neural network for EEG decoding: Application to 
movement execution and imagination” D. Borra, S. Fantozzi and E. Magosso, Neural 

Networks, 2020. This study proposed for the first time the adoption of an interpretable CNN 
for motor decoding, obtained by increasing the interpretability of the first temporal 
convolutional layer (as in Chapter 3). The interpretable CNN was applied to decode motor 
imagery and motor execution, and the role of the main CNN components was investigated by 
analyzing different architecture variants. In addition, the proposed approach was compared 
with other CNNs and with the state-of-the-art ML algorithm. Lastly, the increased 
interpretability enabled the design of an intermediate explanation technique aimed to study 
neural signatures related to motor imagery and execution in the frequency and spatial domains. 
 
Convolutional neural networks (CNNs) are emerging as powerful tools for EEG decoding: 

these techniques, by automatically learning relevant features for class discrimination, 

improve EEG decoding performances without relying on handcrafted features. Nevertheless, 

the learned features are difficult to interpret and most of the existing CNNs introduce many 

trainable parameters. Here, we propose a lightweight and interpretable shallow CNN (Sinc-

ShallowNet), by stacking a temporal sinc-convolutional layer (designed to learn band-pass 

filters, each having only the two cut-off frequencies as trainable parameters), a spatial 

depthwise convolutional layer (reducing channel connectivity and learning spatial filters 

tied to each band-pass filter), and a fully-connected layer finalizing the classification. This 

convolutional module limits the number of trainable parameters and allows direct 

interpretation of the learned spectral-spatial features via simple kernel visualizations. 

Furthermore, we designed a post-hoc gradient-based technique to enhance interpretation by 

identifying the more relevant and more class-specific features. Sinc-ShallowNet was 

evaluated on benchmark motor-execution and motor-imagery datasets and against different 

design choices and training strategies. Results show that (i) Sinc-ShallowNet outperformed 

a traditional machine learning algorithm and other CNNs for EEG decoding; (ii) The 

learned spectral-spatial features matched well-known EEG motor-related activity; (iii) The 

proposed architecture performed better with a larger number of temporal kernels still 

maintaining a good compromise between accuracy and parsimony, and with a trialwise 

rather than a cropped training strategy. In perspective, the proposed approach, with its 

interpretative capacity, can be exploited to investigate cognitive/motor aspects whose EEG 

correlates are yet scarcely known, potentially characterizing their relevant features. 

  



 156 

5.1. INTRODUCTION 

Approaches based on machine learning algorithms provide powerful tools to analyze and 
decode brain activity from electroencephalographic (EEG) data, both in research and 
application areas. In particular, machine learning techniques have been exploited in many 
EEG-based Brain-Computer Interfaces (BCIs). In these systems, a feature extraction stage [1] 
extracts the meaningful characteristics of the pre-processed [2] EEG signals and a downstream 
classification stage [3] makes a decision based on the extracted characteristics, to provide the 
appropriate feedback to the user [4]. One popular and performing feature extraction algorithm 
is the filter bank common spatial pattern (FBCSP) (Ang, Chin, Zhang, & Guan, 2008) that 
applies a bank of bandpass filters (selected a priori) and extracts features for each frequency 
band based on the spatial filtering method. FBCSP has been widely used as EEG feature 
extraction method and won several competitions, such as BCI competition IV datasets 2a and 
2b [5] related to EEG decoding of imagined movements. 

However, the traditional machine learning pipeline described above performs feature 
extraction and classification in separate steps. Furthermore, it strongly relies on a priori 
knowledge in the design of the feature extraction stage (e.g., the filters’ cut-off frequencies in 
the FBCSP) and prevents that other potentially relevant (but unknown) features are extracted 
and used for decoding. For this reason, this approach may also have negative impact on 
decoding accuracy. Recently, machine learning innovations, proposed in the computer vision 
field and represented by convolutional neural networks (CNNs), have been transposed to EEG 
decoding tasks [6], mitigating the need for manual feature extraction. CNNs automatically 
learn features in a hierarchical structure from the input data in an end-to-end fashion, i.e., 
without separating the feature extraction, selection and classification steps. Thus, in the field 
of EEG decoding, CNNs can be trained by feeding EEG signals as input to the neural network, 
obtaining as output the corresponding predicted label. Accordingly, CNNs do not need any a 
priori knowledge about the meaningful characteristics of the signals for the specific decoding 
task and have the potentiality to discover the relevant features (even so-far unknown) by using 
all input information. 

An efficient way to provide EEG signals as input to CNNs is to design a 2D input 
representation with the electrodes along one dimension and time steps along the other [7–18], 
preserving the original EEG representation i.e., non-transformed representation. Other input 
representations, e.g., transformed representations such as time-frequency decomposition [19–
21], generally increase data dimensionality requiring more training data and/or regularization 
to learn meaningful features. CNNs with a non-transformed representation are typically 
designed by stacking individual temporal and spatial convolutional layers or a single spatio-
temporal convolutional layer, and eventually deeper convolutional layers that learn patterns on 
the spatially filtered activations. CNNs based on these architectures have been successfully 
applied to several EEG decoding tasks, such as P300 detection tasks [7,9–11,13,15], motor 
imagery and execution decoding tasks [14,11,16,18,8], anomaly detection tasks [12], emotion 
classification [17], and they have been generally proved to outperform traditional machine 
learning approaches. Despite these effective applications of CNNs in EEG decoding, there are 
still a number of critical issues that require further investigation. Indeed, CNNs introduce a 
large number of trainable parameters requiring large training datasets to obtain a good fit, have 
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a longer training time compared to simpler models, introduce many hyper-parameters (e.g., 
number of kernels, kernel sizes, number of layers, type of activation functions, etc.), and the 
automatically learned features are difficult to be interpreted. In particular, techniques that 
increase the interpretability of the learned features are receiving growing interest as key 
ingredients to achieve more robust validation when using CNNs [22]. In the field of CNN-
based EEG decoding, increasing the interpretability may be particularly relevant for 
neuroscientists as to the following aspects: (i) check the correct learning by verifying that the 
models do not rely on artefactual sources but on neurophysiological features; (ii) enable the 
understanding of which EEG features better discriminate the investigated classes; (iii) 
potentially characterize new features exploited by the network for the classification, and thus 
increase the insight into the neural correlates underlying the classified behaviors. 

Several efforts have been made to increase CNN interpretability via post-hoc interpretation 
techniques (i.e., techniques that analyze the trained model). These techniques include temporal 
and spatial kernel visualizations [9,11], kernel ablation tests (i.e., selective removal of single 
kernels) [11], saliency maps (i.e., maps showing the gradient of CNN prediction with respect 
to its input example) [10], gradient-weighted class activation mapping [23], correlation maps 
between input features and outputs of given layers [14]. Some of these works face the 
interpretability issue together with other key issues previously cited, such as model complexity 
(in terms of number of layers and numbers of trainable parameters) and the size of the training 
dataset. Schirrmeister et al. [14] tested both a deeper CNN (DeepConvNet, with 5 
convolutional layers and one fully-connected layer) and a shallower CNN (ShallowConvNet, 
with 2 convolutional layers and one fully-connected layer) for decoding movement execution 
and motor imagery, analyzed the effect of increasing the amount of training examples (via 
cropped training), and used correlation maps to interpret the CNN learned features. Lawhern 
et al. [11] designed a shallow and lightweight CNN (EEGNet, with 3 convolutional layers and 
one fully-connected layer) by introducing depthwise and separable convolutions that reduced 
the number of parameters to fit, tested a range of EEG decoding tasks with various training 
sizes, and interpreted the learned features via kernel visualization and ablation.  

Besides post-hoc techniques, network interpretability may be increased by introducing 
directly interpretable layers within the network architecture; importantly, these layers may 
intrinsically reduce the number of trainable parameters too, promoting more interpretable and, 
at the same time, lightweight CNNs. Very recently, few studies have explored this approach in 
CNNs for EEG decoding. Zhao et al. [18] introduced a time-frequency convolutional layer in 
an architecture inspired by ShallowConvNet [14] to learn time-frequency filters designed by 
real-valued Morlet wavelets. In a previous preliminary work [8], for the first time we used a 
temporal sinc-convolutional layer [24] for EEG decoding, included in an architecture based on 
DeepConvNet [14], to learn temporal filters defined by parametrized sinc-functions that 
implement band-pass filters. Instead of learning all the kernel values as in a traditional 
convolutional layer, both in the wavelet- and sinc-convolutional layer only 2 parameters for 
each kernel need to be learned and they are directly interpretable: the bandwidth of the 
Gaussian and the wavelet central frequency in one case [18], and the two cutoff frequencies of 
the band-pass filters in the other case [8]. While this approach appears promising, its use in 
EEG decoding is still limited and the so-far proposed CNNs [8,18] have some limitations. 
Indeed, except for a single directly interpretable convolutional layer, the rest of these CNNs 
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uses traditional less interpretable convolutional layers. This aspect, not only may hinder the 
overall interpretability of the learned features, but also requires a large number of trainable 
parameters leading to models more prone to overfitting and this is especially true in case of the 
deep CNN we previously proposed [8]. Furthermore, each of these CNNs has been tested only 
on a single decoding task (movement imagination [18], and movement execution [8]), and the 
ability of each network to generalize across motor paradigms has not been verified. 

The purpose of this work is to contribute to the recent developments of CNN-based EEG 
decoding by designing and analyzing a novel CNN that includes interpretable and optimized 
layers, able to increase the overall interpretability of the network, reduce the number of 
trainable parameters and, at the same time, ensure good performances compared to existing 
state-of-the art (SOA) algorithms. The CNN proposed here is a lightweight shallow CNN, 
named Sinc-ShallowNet, obtained by stacking two convolutional layers that extract spectral 
and spatial EEG features respectively, followed by a fully-connected layer finalizing the 
classification. The two convolutional layers are specifically devised to increase interpretability 
and decrease the number of trainable parameters and consist of a temporal sinc-convolutional 
layer and a spatial depthwise convolutional layer. The spatial depthwise convolutional layer 
ties spatial filters to each particular band-pass filter learned by the temporal sinc-convolutional 
layer, enabling the learning of spatial features related to specific frequency ranges. The 
proposed architecture was applied to decode sensorimotor rhythms both during motor 
execution (ME) and motor imagery (MI) using public benchmark datasets. Moreover, an 
extensive analysis of Sinc-ShallowNet was performed including the following aspects:  

i. Comparison of the decoding performance of Sinc-ShallowNet with SOA decoding 
algorithms, including one traditional machine learning pipeline based on FBCSP coupled 
with regularized Linear Discriminant Analysis (rLDA) and other three CNNs 
(ShallowConvNet and DeepConvNet [14], EEGNet [11]).  

ii. Assessment of some design choices on Sinc-ShallowNet performance in a post-hoc 
hyper-parameter evaluation procedure inspired by Schirrmeister et al. [14]. The 
evaluated design choices concern: the number of the temporal band-pass filters, the 
number of spatial filters for each temporal filter, the introduction of an optional 
recombination of the spatial activations, and the size of activation aggregation (average 
pooling) before the fully-connected layer.  

iii. Evaluation of the effect of increasing the training data size via cropped training compared 
to trialwise training. Indeed, the effect of cropped training on different CNN architectures 
is still unclear. Schirrmeister et al. [14] found that cropped training significantly 
increased the performance of deep architectures (DeepConvNet), while no significant 
effect was obtained with shallow architectures (ShallowConvNet). Despite this, other 
shallow architectures [18] were trained with a cropped strategy. Therefore, we evaluated 
the effect of the training strategy on the performance of Sinc-ShallowNet and of the re-
implemented SOA CNNs.  

iv. Feature interpretation. Since the trainable parameters of the temporal sinc-convolutional 
layer are the cutoff frequencies of the learned band-pass filters, the learned spectral 
features can be directly visualized and interpreted once the training ends. Furthermore, 
inspired from the saliency maps [25], we designed a post-hoc interpretation technique 
named “temporal sensitivity analysis” (as it acts on the kernels of the temporal sinc-
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convolutional layer). This technique enables the identification of the more relevant and 
more class-specific band-pass filters and the spatial features (as learned in the depthwise 
convolutional layer) related to these band-pass filters can be visualized.  
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5.2. MATERIALS AND METHODS 

This section is devoted to the description of the proposed CNN for EEG motor decoding. 
At first, we define the problem of EEG decoding into the framework of supervised 
classification learning via CNNs and provide notations useful for the following description. 
Subsequently, we illustrate the benchmark datasets used to train and test the CNNs (the 
proposed one and the SOA CNNs), the architecture of the proposed CNN, the training 
procedure, and finally the post-hoc interpretation technique. The CNNs were developed in 
PyTorch [26] and trained from scratch using a workstation equipped with an AMD 
Threadripper 1900X, NVIDIA TITAN V and 32 GB of RAM.  

 
5.2.1. Problem definition and notations  

Let us assume to have an EEG dataset collected from each subject. Each dataset consists of 
separated trials (e.g., obtained by epoching the original continuous EEG recording), with each 
trial belonging to one of several classes (let’s say 55 classes). By indicating with 2(") the total 
number of trials for s-th subject, the corresponding dataset can be denoted by *(") =
op-$

(")
, .$

(")
q, p-,

(")
, .,

(")
q, … , p-

&(")'(
(")

, .
&(")'(
(")

qr. -%
(")
∈ ℝ)×+ contains the pre-processed 

EEG signals of the i-th trial (0 ≤ ; ≤ 2(") − 1), collected at " electrodes and $ time samples; 
.%
(") is the class label of the i-th trial and assumes one value among the 55 possible values, i.e., 
∀	;, .%

(")
∈ < = £=$, =,, … , =TH'(§. The two public EEG datasets used here were EEG signals 

collected while the subjects executed (High-Gamma dataset, see Section Motor execution: 

High-Gamma dataset) or imagined (BCI-IV2a dataset, see Section Motor imagery: BCI-IV2a 

dataset) movements of different body parts. Thus, the classes discriminate among the specific 
body part moved (or imagined to be moved) during each trial (e.g., =$ = “Right Hand”,	=( = 
“Left Hand” etc.). 

The problem at hand is to train a classifier J so that it learns, from a training set of EEG 
trials, to assign the correct label to previously unseen EEG trials. Specifically, the parametric 
classifier is Jp-%

(")
; L(")q ∶ 	ℝ)×+ → <, parametrized by parameters L("), which assigns a label 

.%
(") to the trial -%

("), i.e., .%
(")
= Jp-%

(")
; L(")q. The classifier Jp-%

(")
; L(")q can be formally 

interpreted as the composition of two functions: (i) a first function ¶ that extracts a (vector-
valued) feature representation ¶ p-%

(")
; L\

(")
q:	ℝ)×+ → ℝTW (5\ denoting the number of 

extracted features) having parameters L\
("); (ii) a second function Op¶("); L]

(")
q:ℝTW → < with 

parameters L]
(") that exploits the extracted features to finalize the classification, that is 

Jp-%
(")
; L(")q = O p¶ p-%

(")
; L\

(")
q ; L]

(")
q. When the decoder J is implemented by a CNN, the 

two stages (feature extraction and final classification) are learned jointly with all parameters 
L(") optimized simultaneously. By keeping superscript 4 in the classifier parameters, we 
emphasize that the parameters are optimized separately per subject, as here a within-subject 
training procedure (see Section 5.2.4) was adopted. The overall set of trials *(") of each subject 
is divided into a training set, used to optimize the parameters L(") for the specific subject, and 
a test set used to evaluate the performance of the learned subject-specific decoder.  
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Of course, besides the trainable parameters L("), the network hyper-parameters (i.e., 
parameters that define the functional form of decoder J not adapted by the learning itself, such 
as the number of layers, number and size of convolutional kernels, type of activation function, 
etc.) may affect the decoding accuracy. 

In the following, we assume that the generic trial -%
(")
∈ ℝ)×+ is given in input to the CNNs 

as a 2D matrix of shape (", $), having the time steps along the width and the electrodes along 
the height. 

 
5.2.2. Datasets 

The datasets used in this study are two common benchmark MI- and ME-EEG datasets for 
sensorimotor rhythm decoding. It is known that the α, β and γ bands are associated with 
movement-related spectral power modulations and thus provide class-discriminative 
information [27–34]. In the following, these datasets are described together with the light pre-
processing applied to obtain the trials -%

(") used to train and test the CNNs.  
 

Motor execution: High-Gamma dataset  

High-Gamma dataset is a 128-channel ME-EEG dataset acquired from 14 healthy subjects 
(age 27.2±3.6, 6 female, 2 left-handed) by Schirrmeister et al. [14] and made freely available 
(https://web.gin.g-node.org/robintibor/high-gamma-dataset). Each subject performed roughly 
1000 (963.1±150.9 mean ± standard deviation (std) across participants) four-second trials of 
movement execution (three different movements) and of rest. The three movements were 
repetitive right- and left-hand sequential finger tapping, and repetitive toes clenching. 
Therefore, the decoding problem is a 4-way classification task. This dataset is well-suited for 
extracting information from the high γ band (> 50Hz) since it was acquired in a laboratory 
optimized for the recording of high-frequency movement-related EEG components [14]. High-
frequency components, approx. between 60-90 Hz were found modulated during movement 
execution and may contain useful movement-related information [27, 28, 34]. Therefore, this 
dataset could be exploited to investigate neural correlates in γ band in addition to the well-
known motor modulations in α and β bands [29-33].  

EEG signals were downsampled from 500 to 250 Hz, the same sample frequency as the 
other analyzed dataset (see Section Motor imagery: BCI-IV2a dataset), so that the CNN hyper-
parameters related to the temporal dimension (i.e., temporal kernel and pooling sizes) were 
kept the same. The 44 signals relative to the electrodes covering the motor cortex were selected 
(Figure 5.1a) as done in [14] and a high-pass 3rd order Butterworth filter was applied with a 
cutoff frequency of 4 Hz. Then, each electrode signal was standardized by applying an 
exponential moving average window with a decay factor of 0.999 as done in [14]. Each signal 
was epoched between -0.5 and 4.0 s relative to the movement onset, so that each trial contains 
EEG values at " = 44 electrodes and at $ = 1125 time samples organized in a single input 
feature map (e = 1, denoting with e the number of the input feature maps). Finally, the 
resulting trials were cleaned from high-amplitude artefacts by removing those with at least one 
electrode signal with absolute value > 800ß®. Based on the previous description, the CNN 
input (corresponding to a single trial) had shape (e, ", $) = (1,44,1125) in this case.  
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For the sake of reproducibility of the results, the trial set *(") of the s-th subject was split as 
in the original paper [14] for training and testing: for each subject, 160 trials (40 for each class) 
were used as test set and the remaining as training set. In addition, the training set was further 
split into a validation set (20% of the training set) in order to perform early stopping during the 
first step of the optimization process (see Section 5.2.4).  

 
Motor imagery: BCI-IV2a dataset  

BCI-IV2a dataset is a 22-channel MI-EEG dataset collected for the BCI Competition IV 
[35]. This set comprises four classes of imagined movements of left and right hands, feet and 
tongue, acquired from 9 participants and made freely available 
(http://www.bbci.de/competition/iv/). Therefore, the decoding problem is a 4-way 
classification task. The organizers of the challenge provided the dataset sampled at 250 Hz and 
band-pass filtered between 0.5 and 100 Hz. All 22 signals were used, and the montage is shown 
in Figure 5.1b.  

The EEG signals were band-pass filtered between 4 and 38 Hz with a 3rd order Butterworth 
filter and each electrode signal was standardized by applying an exponential moving average 
window with a decay factor of 0.999 [14]. Then, the signals were epoched between 0.5 and 2.5 
s relative to the movement onset of movement imagination, as done in previous studies 
[11,20,36]. In this case, the CNN input (i.e., the single trial) had shape (1,22,500).  

Here we used the same training set (288 trials per subject, balanced between the classes) 
and test set (288 trials per subject, balanced between the classes) provided by the organizers of 
the competition. The training set was further split into a validation set (20% of the training set) 
in order to perform early stopping during the first step of the optimization process (see Section 
5.2.4).  

 

 
Figure 5.1 – Electrode locations for the two examined datasets. (a) ME-EEG dataset. (b) MI-EEG dataset.  

 

5.2.3. Sinc-ShallowNet  

The proposed architecture is designed with three fundamental blocks, each of them 
composed by a few layers. The blocks of the proposed architecture and their fundamental layers 
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are shown in Figure 5.2; a detailed description of the architecture (including the name, output 
shape and number of trainable parameters of each layer) is reported in Table 5.1. Block 1 has 
the function to extract spectral and spatial features from the input data, via temporal and spatial 
convolutional layers, respectively. The performed convolutions are designed to reduce the 
number of trainable parameters while increasing their interpretability. As to the temporal 
convolution, this is achieved via a sinc-convolutional layer (see Section Sinc-convolutional 

layer), while for the spatial convolution, this is achieved via a depthwise convolutional layer 
[37]. Block 2 is devoted to perform a temporal aggregation (via a pooling layer) of the first 
block feature maps. Block 3 is designed to finalize the classification including a single fully-
connected layer. The term “sinc” of Sinc-ShallowNet is related to the inclusion of the temporal 
sinc-convolutional layer within the first block; the term “shallownet” refers to the relative low 
number of trainable layers.  

 

 
Figure 5.2 – Architecture of Sinc-ShallowNet. For simplicity, the figure shows only the more significant layers 

within each of the three blocks (see also Sections Block 1: Spectral and spatial feature extraction, Block 2: 
Aggregation, Block 3: Classification and Table 5.1).  
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Table 5.1 – Architecture details of Sinc-ShallowNet. The architecture corresponding the hyper-parameters 

reported here is denoted as “basal” Sinc-ShallowNet (variants of this basal architecture are also tested, see Table 

5.2). Each layer is provided with its name, main hyper-parameters, output shape and number of trainable 

parameters and adopted activation function. 6	and 8 represent the number of electrodes and time samples of the 

network input, respectively. OX is the number of the classes. See Section 5.2.3 for the meaning of the other 

symbols. The output shapes of the layers within the first and second blocks are described by tuples of three integers 

(in brackets) denoting the number of feature maps (CNN channel dimension) and the number of spatial and 

temporal samples within each map, respectively. The input layer provides an output of shape (1, 6, 8) since it is 

assumed to just replicate the original input matrix with shape (6, 8), providing a single feature map as output 

(coincident with its input). The output shapes in the third block are 1D, thus described by a single number. *Kernel 

maximum norm constraint was used, enforcing an absolute upper bound on the magnitude of the weights. 

Block Layer name Hyper-
parameters 

Output shape Number of 
parameters 

Activation 

1 Input  (1, 6, 8) 0  

Sinc-Conv2D ;. = 32 (;., 6, 8.) 2 ∙ ;. Linear 

 <. = (1,65)    

 2. = (1,1)    

 3. = (0,0)    

BatchNorm2D A = 0.99 (;., 6, 8.) 2 ∙ ;.  

DW-Conv2D* ;1 = ;. ∙ I1 (;1, 1, 8.) <1[0] ∙ ;1 Linear 

 <1 = (6, 1)    

 I1 = 2    

 21 = (1,1)    

 31 = (0,0)    

2 BatchNorm2D A = 0.99 (;1, 1, 8.) 2 ∙ ;1  

Activation Z = 1 (;1, 1, 8.) 0 ELU 

AvgPool2D </ = (1,109) (;1, 1, 8/) 0  

 2/ = (1,23)    

Dropout ) = 0.5 (;1, 1, 8/) 0  

3 Flatten  (;1 ∙ 8/) 0  

Fully-Connected* OX = 4 (OX) OX ∙ 8/ ∙ ;1
+OX 

 

Activation  (OX) 0 Softmax 

 
In the first two blocks, the output of each layer can be interpreted as a collection of spatio-

temporal feature maps. Thus, its shape can be described by a tuple of 3 integers, with the first 
integer indicating the number of feature maps provided by the layer, the second and third 
integers the number of spatial and temporal samples within each map, respectively. Each 
convolutional layer in these blocks is characterized by the number of convolutional kernels 
(e), kernel size (f), stride size (g), and padding size (h). In addition, depthwise convolution 
introduces also a depth multiplier (*), that specifies the number of kernels to learn for each 
input feature map. Since Sinc-ShallowNet has two convolutional layers, the previous symbols 
are provided with subscript (“1”, “2”). The pooling layer in block 2 is described by the pool 
size (f3) and pool stride (g3). Since the adopted convolutions and pooling are 2D, the hyper-
parameters f%, g%, h% (; = 1, 2), f3, g3 are tuples of two elements: the first element refers to the 
spatial dimension, while the second to the temporal dimension. 
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Block 1 and block 2 stacked together can be seen as implementing the function 
¶ p-%

(")
; L\

(")
q:	ℝ)×+ → ℝTW (described in Section 5.2.1), where 5\ is the overall number of 

units provided as output by block 2. Block 3 receives this flattened feature map and finalizes 
the classification, implementing a dense softmax classification. Thus, this block realizes the 
function Op¶("); L]

(")
q:ℝTW → < (described in Section 5.2.1). Of course, all parameters of the 

three blocks are optimized simultaneously during the training, without any separation between 
the feature extraction and classification stages. 

In the following, we will first describe the mathematical aspects of the temporal sinc-
convolutional layer and the motivation for its inclusion. Then, the structure and function of 
each block will be detailed. 

 
Sinc-convolutional layer  

Recently, Ravanelli and Bengio (2018) designed a CNN for speaker recognition (SincNet) 
including a “sinc-convolutional layer”, that forces each kernel to describe a band-pass filter. In 
a traditional convolutional layer, each value of a kernel is learned during the optimization. In 
a sinc-convolutional layer, each value of a kernel is defined by a parametrized function, forcing 
the kernel description to belong to a specific subset of temporal filters (here only band-pass 
filters) and at the same time reducing the number of trainable parameters. This implementation 
promotes the learning of more meaningful and well-defined temporal filters.  

Considering the i-th electrode signal |% (here, for simplicity the superscript 4 referring to a 
specific subject is omitted), the 1D convolution between this signal and the j-th kernel R0 is 
(Equation 5.1): 
Ö%,0[t] = |%[t] ∗ R0[t] = ∑ |%[t − =] ∙ R0[=],

4'(
U^$  (5.1) 

where ; ∈ [0, " − 1] with " representing the number of EEG electrodes, Y ∈ [0, e − 1] with 
e representing the number of temporal kernels, and f is the kernel size. Since, for brevity, we 
are describing a 1D convolution, here	f is 1D (i.e., f represents the length of the filter along 
the temporal dimension). For instance, let’s say f = 65 for capturing frequencies at ∼ 4 Hz 
and above in case of data at 250 Hz sampling rate [11].  

The kernel values of a sinc-convolutional layer can be obtained by evaluating the 
parametrized function R0

A
vt; L0w with a specific set of trainable parameters L0 defining the j-th 

band-pass filter. To describe band-pass filters in the frequency domain, the amplitude e0A can 
be expressed as (Equation 5.2):  

e0
AvJ; J(,0 , J,,0w = Ü}xï ´

_
,_4,Y

¨ − Ü}xï ´
_

,_D,Y
¨,  (5.2) 

where L0 = {J(,0 , J,,0} is the set of the trainable parameters of the j-th kernel. This set 
includes only the inferior (J(,0) and the superior (J,,0) cutoff frequencies of the j-th band-pass 
filter, reducing the number of trainable parameters of the temporal convolutional layer from 
f	 = 	65 to 2 for each temporal kernel. In the temporal domain, R0

A can be expressed as 
(Equation 5.3):  
R0
A
vt; J(,0 , J,,0w = 2J,,04;tx,2yJ,,0t/ − 2J(,04;tx,2yJ(,0t/. (5.3) 
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To alleviate the effects of the inevitable truncation of R0
A on the characteristics of the filters 

(e.g., passband ripples, reduced stopband attenuation), the function is multiplied by a Hamming 
window (Equation 5.4) [24]: 

z
RB,0

Avt; J(,0 , J,,0w = R0
Avt; J(,0 , J,,0w ∙ {[t]

{[t] = 0.54 − 0.46 cos p
,CD
4'(

q
. (5.4) 

The so-defined convolutional layer can be integrated into a traditional CNN to learn band-
pass filters in the first layer, with only the two cutoff frequencies as trainable parameters. In 
this study, these frequencies were randomly initialized from a uniform distribution in the 
frequency range of interest: (4,125] Hz and (4,38] Hz for ME- and MI-EEG signals, 
respectively. During the optimization, these frequencies were updated in the range of interest 
by keeping J,,0 > J(,0.  

 
Block 1: Spectral and spatial feature extraction  

The first block (see Figure 5.2 and Table 5.1) performed a separate spectral and spatial 
feature learning. The first layer of this block was a 2D temporal sinc-convolutional layer that 
learned e( = 32 band-pass temporal filters with a low number of learnable parameters. The 
filter size f(	was set to (1,65) to extract information at 4 Hz and above, since the CNN input 
data were high-pass filtered at 4 Hz in the pre-processing stage (see Section 5.2.2). Following 
this layer, batch normalization (see Section 5.2.5) [38] was introduced along the feature map 
dimension. Then, a 2D spatial depthwise convolutional layer was introduced to learn *, =
2	spatial filters of size (", 1) for each temporal feature map, with a total number of e, = e( ·

*,	spatial filters. The depthwise convolution is not fully-connected with the previous temporal 
feature maps (see Figure 5.2), reducing the number of trainable parameters. Moreover, it allows 
a straightforward extraction of the spatial distribution of each band-pass filter, making the 
interpretation of the learned CNN features easier. In this layer, kernel maximum norm 
constraint was used.  

 
Block 2: Aggregation  

The second block (see Figure 5.2 and Table 5.1) was designed to perform a temporal 
aggregation of the first block output. First, batch normalization (see Section 5.2.5) [38] along 
the feature map dimension was applied to the neurons of the spatial depthwise convolutional 
layer, followed by a non-linear activation function. In this study, Exponential Linear Units 
(ELUs) were adopted with activation function J(|) = |, | > 0 and J(|) = V · (}|P(|) −

1), | ≤ 0, as this non-linearity allows faster and more noise-robust learning than other non-
linearities [39]. Furthermore, Schirrmeister et al. [14] reported better performance for shallow 
and deep CNNs applied to EEG motor decoding when using ELUs compared to other activation 
functions. The V parameter is the ELU hyper-parameter that controls the saturation value for 
negative inputs and V = 1 was set for the proposed architecture. Then, an average pooling layer 
was introduced to reduce the number of trainable parameters in the transition from the block 2 
and the subsequent fully-connected layer in block 3, i.e., the convolutional-to-dense 
connections. A pool size of f3 = (1, 109) and pool stride of g3 = (1, 23) were used. These 
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hyper-parameters allow the extraction of averaged spatial activations of ∼	500 ms with a stride 
of ∼	100	ms.	Lastly, a dropout layer [40] was introduced (see Section 5.2.5).  

 
Block 3: Classification  

After the second block, a flatten layer was introduced to unroll the second block output 
values, resulting in a 1D array of features extracted by the previous layers. These values are 
densely connected with a single fully-connected layer containing 55 = 4 neurons.  

Accordingly, the entire CNN maps the input data of the i-th trial -%
(") to one real number 

per class, i.e., ℎp-%
(")
; L(")q:	ℝ)	×	+ ⟶ℝTH. These 55 	outputs are transformed via a softmax 

activation function to obtain the conditional probabilities of the labels =- 	∀R ∈ < =

{=$, =(, … , =TH'(}: Pp=-Ñ-%
(")
, L(")q =

abcOZ(d[
(");f("))

∑ OY(d[
(");f("))\H]D

Y^A

. Since the training strategy adopted was 

a within-subject training (see Section 5.2.4), the softmax provides subject-specific conditional 
distribution over the 55 classes for each example. The final classification is performed by 
assigning the label with the maximum conditional probability to the trial -%

("), i.e., .%
(")
=

Jp-%
(")
; L(")q = éÜO	ãé|

UZ
P p=-Ñ-%

(")
, L(")q. 

Based on the number of trainable parameters within each layer (see Table 5.1), Sinc-
ShallowNet introduced a total number of trainable parameters of 13828 and 5508, for ME- and 
MI-EEG signals, respectively.  

 
Design choices 

In the following, the Sinc-ShallowNet described as in the previous sections (with the 
corresponding hyper-parameters, see Table 5.1) will be denoted as the “basal” Sinc-
ShallowNet. In order to evaluate the influence of specific hyper-parameters of interest on the 
performance metric, a post-hoc hyper-parameter evaluation was performed by testing some 
variants compared to the basal architecture. The investigated hyper-parameters were: (i) the 
number of the temporal filters in block 1 (e(); (ii) the number of the spatial filters per temporal 
filter in block 1 (*,); (iii) the pooling size f3	and stride g3	of the average pooling in block 2; 
(iv) the recombination of the spatial activations. In the condition (iv), a pointwise convolution 
was included as the first layer in block 2 (fed by the outputs of the spatial depthwise 
convolution), followed by the other layers of block 2 (i.e., batch normalization, non-linear 
activation, average pooling, dropout).  

These alternative design choices were evaluated through an extensive experimentation as 
described and motivated in Table 5.2.  

 
Table 5.2 – Investigated design choices.  

Architectural 
aspect 

Basal Variants Motivation 

Number of 
temporal filters ;. 
of block 1 

;. = 32 ;. = 8	
;. = 16 

We wanted to test if lowering the number of the 

temporal kernels worsened the performance, i.e., to 

check if all the 32 temporal filters were needed or 

some of them were redundant. Furthermore, since 
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there is a consistent variability in the number of 

temporal kernels within CNNs for EEG decoding 

(e.g., 8 in EEGNet, 25 in DeepConvNet, 40 in 

ShallowConvNet), this test on Sinc-ShallowNet 

may gain insights about the effect of this hyper-

parameter on the decoding performance. Of course, 

a larger number of the band-pass filters implied a 

larger number of trainable parameters but this effect 

was limited since the sinc-convolutional layer 

learns only 2 parameters for each temporal filter. 

Number of spatial 
filters per 
temporal filter I1 
of block 1 

I1 = 2 I1 = 4 We wanted to test if increasing the number of the 

spatial filters for each band-pass filter increased the 

performance. We expected that a higher I1 was 

more beneficial for those applications in which the 

band-pass kernels were more dispersed across a 

large frequency range, i.e., in case the signals 

contained more frequency components, such as the 

investigated ME-EEG signals. In case of less 

dispersed band-pass filters, there is high probability 

that neighbor band-pass kernels are learned; the 

neighbor band-pass kernels can compensate for the 

reduction in I1 as they may be tied with different 

spatial filters learned during training, actually 

providing an augmented set of spatial filters for a 

given band-pass filtering. The drawback of an 

increase of I1 was an increased number of trainable 

parameters. 

Pooling size </ 
and stride 2/ of 
block 2 

</ = (1,109) 
2/ = (1,23) 

</ = (1,71) 
2/ = (1,15) 

We wanted to evaluate the impact of a shorter 

average pooling on the performance. The modified 

values of these hyper-parameters corresponded to 

the extraction of averaged spatial activations of 325 

ms with a stride of 70 ms (similarly as done in 

[14,18]). This variant resulted in an increased 

number of trainable parameters due to a 

convolutional-to-dense transition involving more 

units. 

Recombination of 
the spatial 
activations via an 
additional 
pointwise 
convolution in 
block 2 

No recomb. Recomb. We wanted to evaluate the impact of the 

recombination of the spatial activations on the 

performance. A pointwise convolutional layer was 

introduced immediately after the spatial depthwise 

convolutional layer, in order to recombine the 

learned spatial activations across the feature map 

dimension. The hyper-parameters of this layer were 

;_ = ;1 = ;. ∙ I1, <_ = (1,1), 2_ = (1,1),	3_ =
(0,0). The combination of a depthwise and a 

pointwise convolution is called separable 

convolution [37]. The introduction of pointwise 

convolution increase the number of trainable 

parameters by (;1)1 and the resulting architecture 

may need a large training set. Thus, this 

modification could be more beneficial in case of the 

investigated ME-EEG signals. 
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From the specifications reported in Table 5.2, five variants of Sinc-ShallowNet were 

designed by changing one specific hyper-parameter at a time while keeping all other hyper-
parameters fixed, as previously done in Schirrmeister et al. [14] and Farahat et al. [10], and 
were trained as specified in Section Trialwise training strategy.  

 
5.2.4. Training 

Trialwise training strategy  

For each subject, the entire trial was used as input and the corresponding trial label as target 
to optimize one CNN per subject (within-subject training). Weights were randomly initialized 
adopting a Xavier uniform initialization scheme [41] and biases were initialized to zero. The 
cutoff frequencies of the temporal sinc-convolutional layer were initialized as described 
previously (see Section Sinc-convolutional layer). The trainable parameters L(") were 
optimized such that the parametric classifier assigned high probabilities to the correct labels by 
minimizing the sum of the per-example losses computed on the 5 training examples, 
converging to an optimal trainable parameter set L(")∗ (Equation 5.5):  

L(")∗ = argmin
f(")

∑ =Ö44 ´.%
(")
, Pp=-Ñ-%

(")
, L(")q¨T'(

%^$ , (5.5) 

where 

=Ö44 ´.%
(")
, Pp=-Ñ-%

(")
, L(")q¨ = ∑ −log	 ´Pp=-|-%

(")
, L(")q¨ ∙ Æ(.% = =-)

TH'(
-^$  (5.6) 

is the negative log likelihood of the labels. The minimization of the negative log likelihood is 
equivalent to the minimization of the cross entropy between the empirical probability 
distribution defined by the training labels and the probability distribution defined by the model. 
The parameters were optimized via mini-batch stochastic gradient descent, using gradients 
computed via backpropagation. Adaptive moment estimation (Adam) [42], a commonly used 
adaptive learning rate optimization algorithm, was used as optimizer with a learning rate of 1e-
3 and a mini-batch size of 64 trials.  

The training phase was divided into two steps [43]. During the first training step (800 
maximum number of epochs), the CNN was trained until the validation loss reached its 
minimum, performing early stopping. The training loss recorded at the first run minimum 
became the target threshold for the second run. During the second training step (800 maximum 
number of epochs), the validation set was included in the training set and the optimization 
continued until the validation loss reached the threshold loss.  
This trialwise training strategy was applied to the basal Sinc-ShallowNet (Table 5.1), and all 
its variants (Table 5.2) on both ME- and MI-EEG dataset, to test the effect of different design 
choices on the decoding accuracy (see Section Design choices). Moreover, this strategy was 
applied to the three re-implemented SOA CNNs on both datasets, for a comparison with Sinc-
ShallowNet performance (see Section 5.2.6), as well as to evaluate how the two training 
strategies affect different CNN architectures (see Sections Cropped training strategy and 
5.2.6).  
 

Cropped training strategy  
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Schirrmeister et al. [14] introduced a cropped training strategy for EEG decoding: they used 
crops of trials (i.e., sliding time windows within the trial) as input for the CNNs instead of the 
entire trial and set the target label of each crop equal to the label of the trial the crop belonged 
to. This leads to an augmented dataset that could increase the performance on the test set (i.e., 
additional regularizer effect). Actually, Schirrmeister et al. [14] reported a statistically 
significant improvement of cropped training only for deep architectures. Here, cropped training 
was applied to Sinc-ShallowNet (in its basal version), as well as to the re-implemented SOA 
CNNs, to compare trialwise training with cropped training for each network, in order to further 
study the effect of cropped training depending on the CNN architecture. To perform cropped 
training and allow a strict comparison with results of Schirrmeister et al. [14], the pre-
processing of the MI dataset had to be modified by epoching signals between 0.5-4.0 s to keep 
the same epoching procedure as in [14] (i.e., an epoching procedure that allows the extraction 
of a few overlapped crops of 2 s), resulting in EEG patterns of shape (1,22,875) as input. This 
is at variance with the 0.5-2.5 s epoching of the MI dataset adopted here for the other analyses 
(since such epoching was in agreement with other studies [11,20,36], see also Section Motor 

imagery: BCI-IV2a dataset). Therefore, for each CNN, the trialwise training on the MI dataset 
had to be performed also with the 0.5-4 s epoching to evaluate the effect of cropped training 
against trialwise training. Crops of 2 s (corresponding to 500 time samples) with a stride of 0.5 
s (corresponding to 125 time samples) were extracted for each trial and these crops represented 
the CNN inputs. For each subject, this cropping procedure resulted in 6 crops (1,44,500) per 
trial for the ME-EEG signals and 4 crops (1,22,500) per trial for the MI-EEG signals, 
augmenting the available dataset. Adopting this training strategy, the CNNs output one 
prediction for each crop and thus several crop predictions belong to the same trial. To further 
regularize CNNs trained with cropped training, the same loss function designed by 
Schirrmeister et al. [14], named “tied sample loss function” (Equation 5.7) was employed. In 
particular, the cross-entropy of two neighbouring crop predictions is added to the usual 
negative log likelihood of the labels to drive the optimization towards more stable features 
across crops. Let us denote with ï5 the start frame of the c-th crop, with $ the crop size (i.e., 
number of crop temporal samples) and with -%,5

(")
= -%

(")
[: , : , ï5: ï5 + $] the c-th crop (0 ≤ x ≤

5 and 0 ≤ x ≤ 3 for the ME- and MI-EEG signals, respectively) belonging to the i-th trial of 
the s-th subject. Hence, the loss was modified to depend also on the prediction for the next crop 
x + 1:  

=Ö44 ´.%
(")
, Pp=-Ñ-%,5

(")
, L(")q¨ = ∑ − log ´Pp=-Ñ-%,5

(")
, L(")q¨ ∙ Æ(.% = =-)

TH'(
-^$ +

																																																										∑ − log ´Pp=-Ñ-%,5
(")
, L(")q¨ ∙ Pp=-Ñ-%,5h(

(")
, L(")q

TH'(
-^$ . (5.7) 

Except for the loss function, cropped training follows the setting adopted for the trialwise 
training, sharing the same hyper-parameters (e.g., same optimizer, regularizers, learning rate, 
mini-batch size, etc.) and the same two-runs training procedure. Cropped training was applied 
to Sinc-ShallowNet (its basal version, see Table 5.1) and to the other three re-implemented 
CNNs. 
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5.2.5. Regularization  

In addition to early stopping and cropped training which act as regularizers, other 
regularizing techniques were used and implicitly integrated in Sinc-ShallowNet, as specified 
in its description (see Sections Block 1: Spectral and spatial feature extraction, Block 2: 

Aggregation, Block 3: Classification). These are highlighted here:  
i. Dropout [40]. This technique randomly sets the outputs of the previous layer to zero with 

a probability p, during each training update. This helps to prevent co-adaptation (i.e., that 
some neurons are highly dependent to others) which could lead to overfitting. In the 
proposed network, dropout with P = 0.5 was introduced in block 2 immediately after the 
average pooling layer.  

ii. Batch normalization [38]. This technique mitigates a phenomenon named “internal 
covariate shift”, i.e., the change in the distribution of the layers’ activation due to the 
change of the trainable parameters during training [38]. This phenomenon hinders the 
learning since the layers continuously need to adapt to the changed distribution while 
training and is particularly severe in deep neural networks. Batch normalization reduces 
the internal covariate shift, and consequently accelerates the training, by normalizing the 
output feature maps of intermediate layers to zero mean and unit variance across each 
training mini-batch. This technique introduces two trainable parameters since the 
normalization is followed by a channelwise affine transformation (that serves to maintain 
the expressive power of the network), whose parameters of scaling and shift are learned 
during training. Batch normalization enables higher learning rates without the risk of 
divergence, reduces the influence of a specific initialization scheme on the training, and 
also regularizes the model [38]. While this technique is commonly used in deep neural 
networks, also shallow neural networks adopting batch normalization have been 
proposed in the literature. In particular, shallow CNNs including batch normalization 
have been recently applied to EEG signals for ME and MI decoding tasks [11,14], and 
for P300 detection [44]. Importantly, Schirrmeister et al. [14] reported an improved 
performance both in their shallow and deeper neural networks when using batch 
normalization compared to omitting it. Motivated by these previous results, we adopted 
this technique in our shallow CNN (blocks 1, 2) too, by applying it to the output of the 
convolutional layer immediately before the non-linearity, as recommended in the original 
paper [38], with a momentum term of ã = 0.99 and with â = 1} − 3 for numerical 
stability.  

iii. Kernel max-norm regularization. This technique constraints the norm of the trainable 
parameters to be upper bounded by a fixed constant c. Typically, it improves the 
performance of mini-batch stochastic gradient descent training and it was found to be 
especially useful with dropout [40]. This technique was applied to the spatial depthwise 
convolutional (block 1) and to the fully-connected (block 3) layers similarly to [11], 
using x = 1 and x = 0.5, respectively.  

These regularization techniques were also used in the other re-implemented CNNs, as 
proposed in their original formulation.  
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5.2.6. Classification performance and comparison with state-of-the-art approaches  

The performance of Sinc-ShallowNet in its basal form (Table 5.1) was compared to the five 
variants (Table 5.2) and to the re-implemented SOA algorithms. The latter comprise three 
CNNs (EEGNet [11], DeepConvNet and ShallowNet [14]) and one traditional machine 
learning approach (FBCSP [45]+rLDA).  

The three SOA CNNs (more details in Section 5.6.1 of Supplementary Materials) include 
different convolutional modules, while keeping a single fully-connected layer in the 
classification module. EEGNet consists of three convolutional layers (one of them depthwise 
and one separable), DeepConvNet of five convolutional layers, and ShallowConvNet of two 
convolutional layers. The first two CNNs are general-purpose architectures; the last CNN is 
designed specifically for oscillatory signal classification, learning features related to log band-
power by the introduction of a squaring nonlinearity, an average pooling layer and a log 
nonlinearity after the convolutional module. As EEGNet was designed for 128 Hz EEG signals 
[11], we multiplied the lengths of its temporal kernels and pooling sizes by a scaling factor of 
2 to learn features coherently with the sampling frequency used here (a similar procedure was 
adopted in [11] when previous CNNs were re-implemented for comparison with EEGNet). 
Then, as explained in Sections Trialwise training strategy and Cropped training strategy, these 
CNNs were trained as Sinc-ShallowNet, with trialwise and cropped training strategies. 
Compared to Sinc-ShallowNet (in its basal form having 13828 and 5508 trainable parameters 
in case of ME- and MI-EEG signals, respectively), the other three CNNs (EEGNet, 
ShallowConvNet and DeepConvNet) have a total number of trainable parameters of 2604, 
82564, 298229 in case of ME-EEG signals, and of 1932, 40644, 278079 in case of MI-EEG 
signals, respectively. EEGNet and ShallowConvNet are both shallow architectures, the first 
one having an extremely low number of trainable parameters due to the low number of temporal 
kernels adopted in the first layer (e( = 8) and the use of depthwise and separable convolutions. 
These two architectures were chosen as reference shallow architectures (both general-purpose 
and specific for sensorimotor rhythm classification) to be compared with Sinc-ShallowNet. 
DeepConvNet was chosen as reference deep architecture (general-purpose) to be compared 
with Sinc-ShallowNet.  

The traditional decoding pipeline adopted included FBCSP – a commonly used algorithm 
in EEG decoding and the winner of the BCI competition IV datasets 2a and 2b – coupled with 
rLDA. More details about the implementation of FBCSP+rLDA can be found in Section 5.6.2 
of Supplementary Materials. This algorithm was used as the best-performing traditional 
approach in movement-related EEG decoding to be compared with Sinc-ShallowNet. 

We adopted the decoding accuracy as performance metric of the classifiers; furthermore, 
for completeness, the confusion matrices of basal Sinc-ShallowNet and the benchmark 
traditional approach FBCSP+rLDA were computed. Wilcoxon signed-rank test was used to 
check for a statistically significant difference between the contrasted conditions. To correct for 
multiple tests, a false discovery rate correction at V = 0.05 using the Benjamini-Hochberg 
procedure [46] was applied.  
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5.2.7. Interpretation  

Post-hoc interpretation techniques were applied to Sinc-ShallowNet (in its basal version) at 
the end of the optimization. These include temporal and spatial kernel visualizations and an 
additional gradient-based technique, denoted as “temporal sensitivity analysis” (since it is 
applied to the features learned by the temporal sinc-convolutional layer).  

 
Temporal and spatial kernels visualization  

The visualization of the learned kernels of the first block allows the interpretation of the 
temporal and spatial convolutional layers. The temporal sinc-convolutional layer introduced in 
the Sinc-ShallowNet architecture allows a direct interpretation of the learned parameters, 
which are the lower and upper cutoff frequencies J(,0 and J,,0 of the e( band-pass filters. Hence, 
for each subject, the distribution of the learned temporal kernels can be visualized by displaying 
how their passbands are distributed within the frequency range of the input signals (i.e., (4,125] 
Hz for ME- and (4,38] Hz for MI-EEG signals), and the preferred EEG rhythm (e.g., α, β, etc.) 
can be immediately derived. In particular, the following EEG bands á were considered: θ = 
(4,8] Hz, α = (8,12] Hz, β = (12,30] Hz, low γ = (30,50] Hz, high γ = (50, 125] Hz. A temporal 
filter was considered belonging to a specific band á if its central frequency fell within that band 
(actually, in most cases the band-pass filters had narrow passbands totally falling within a 
specific band range, see also Section 5.3.3 in Results).  

Moreover, since the spatial depthwise convolution applies separate spatial kernels to each 
temporally-filtered version of the input, the learned spatial kernels can be interpreted as the 
spatial features associated to a specific band-pass filter and can be visualized as scalp maps. 
Since we were interested in the evaluation of the discriminant power at the level of single 
electrode, here the absolute spatial kernel values were considered, as done by [9]. This 
visualization was limited to the spatial filters related to the more relevant and more class-
specific band-pass filters (selected as described in Section Temporal sensitivity analysis).  

 
Temporal sensitivity analysis  

The visualization of the learned band-pass filters (see Section Temporal and spatial kernels 

visualization) provides information about their frequency-range preference but does not 
provide any information about their importance for the classification task. Hence, in order to 
quantify the relevance of the band-pass filters for the classification task, we designed the 
temporal sensitivity analysis inspired by the saliency maps [25]. This analysis allows the 
quantification of the importance of the different temporal kernels based on the gradient values, 
as described in the following (for simplicity, here we omit the superscript s referring to the 
specific subject).  

i. Gradient computation. Given a class k of interest and the i-th test trial of the s-th subject 
-% ∈ ℝ

)×+ as input, let ∞0 ∈ ℝ)×+D (∞%,0when -% is fed as input) be the output of the j-th 
temporal kernel (i.e., the j-th feature map) of the sinc-convolutional layer and ë- =
ℎ-(-; L) ∈ ℝ

TH (ë%,- when -% is fed as input) be the class score (i.e., output of the block 
3 fully-connected layer, immediately before the softmax activation function). The class 
score ë- is a highly non-linear function of ∞0; given the input test trial -%, this function 
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can be approximated by a linear function in the neighbourhood of ∞%,0 by computing the 
first-order Taylor expansion [25] (Equation 5.8):  

ñ

ë- = ë-,∞0/ ≈ X%,0,-
∗+ ∙ ∞0

∗ + á%,0,-

X%,0,-
∗ =

ijZ
ikY
≤
k[,Y
∗

. (5.8) 

In the Equation 5.8, the superscript ∗ denotes a vectorized form (column vector), 
superscript $ represents the transposition of the vector, and á%,0,- a bias term. In this 
linearized expression, the magnitude of each element of X%,0,-∗  quantifies how much the 
corresponding spatio-temporal sample within the j-th feature map (i.e., the j-th 
temporally filtered version of the input trial) affects the score for the k-th class ë- when 
presenting the input -%. In other words, this quantifies how the value of an output 
category (e.g., output of the neuron related to class “Right Hand”) changes with respect 
to a small change in the temporally filtered EEG signals.  

ii. Gradient processing  
a) For each X%,0,- (i.e., ∀	;, Y, R), the absolute value |X%,0,- | was computed and averaged 

across the spatial and temporal dimension to obtain a scalar value |Xl,m,-|mmmmmmmm.  
b) Quantities |Xl,m,-|mmmmmmmm related to trials belonging to each specific class were averaged 

together, resulting in the absolute gradient value O0,- (scalar value):  

O0,- =
(
&Z
∑ |Xl,m,-|mmmmmmmm% . (5.9) 

In Equation 5.9, the sum runs over the 2- trials belonging to the class R, i.e., 
{; ∶ 	 .% = R}. Hence, O0,- quantifies how much, on average, the j-th temporal filter 
affects the score of the class R.  

c) The gradients O0,- (Equation 5.9) were normalized dividing by the maximum across 
the classes and kernels (Equation 5.10):  
O≥0,- =

]Y,Z
nob
Y,Z

]Y,Z
 . (5.10) 

This was done in order to facilitate the comparison across kernels and classes.  
Then, the normalized gradients O≥0,- from Equation 5.10 were further processed in two 
ways for different purposes (d.1 and d.2). 

d.1) Temporal sensitivity analysis at the level of EEG bands – For each considered EEG 
band á, O≥0,- were averaged across the band-pass filters belonging to a specific EEG 
band á (see Section Temporal and spatial kernels visualization). The resulting score 
O≥=,- (Equation 5.11) quantifies the overall importance of the specific band á for the 
classification of the specific class R: 
O≥=,- =

(
KD,a

∑ O≥0,-0 . (5.11) 

In Equation 5.11, the sum runs over the e(,= band-pass filters belonging to the á band, 

i.e., oY ∶ 	 J5,0 =
_D,Yh_4,Y

,
∈ (J(,= , J,,=]r, where (J(,= , J,,=] denotes the frequency range 

of the band.  
d.2) Temporal sensitivity analysis at the level of single band-pass filter – This step was 

introduced to select the more relevant and more class-specific band-pass filters (i.e., 
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the filters that are relatively more discriminative for a specific class than for the other 
classes) and to limit the visualizations of the learned spatial features to these selected 
temporal filters. Indeed, the normalized gradients O≥0,- (Equation 5.10) corresponding 
to a specific temporal filter, can assume large values across all classes, indicating a 
large importance in the use of that temporal filter shared across the classes. To 
emphasize the specificity of each filter for a single class or a subset of classes, the 
gradient O≥0,- was rescaled. The rescaling (Equation 5.12) was designed so that a 
gradient resulting higher (or lower) for a specific class than for the other classes on 
average, was scaled more (or less). This way, the differences of the filter relevance 
across the classes were emphasized: 

¥

O≥0,-
A = µ0,- ∙ O≥0,- ,

µ0,- =
2∙]pY,Z

∑ ]pY,bc
b^A,bdZ

. (5.12) 

Based on this scaling, the quantity O≥0,-A  assumes larger values (µ0,- > 1) when the 
impact of j-th temporal filter on the score of the specific class k is higher than its 
average impact on the other three classes; vice versa it assumes lower values (µ0,- <
1) when the j-th temporal filter impacts on average more on the other three classes 
than on the considered k class. Therefore, given a class R, filters having O≥0,-A > O≥0,- 
(i.e., with µ0,- > 1) represent the filters having a discriminative power relatively 
heavier for that class than for the other classes on average. Thus, considering a class 
R, the more relevant and more class-specific temporal band-pass filters can be 
identified as the filters with µ0,- > 1 and that scored higher O≥0,-A  values. Lastly, the 
spatial kernels associated with the so selected band-pass filters can be visualized as 
described in Section Temporal and spatial kernels visualization.  
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5.3. RESULTS  

5.3.1. Classification performance and comparison with state-of-the-art approaches  

In this section, the performances of the basal Sinc-ShallowNet (trained via trialwise 
strategy) are compared with the traditional machine learning algorithm and with the three re-
implemented CNNs (trained via trialwise strategy).  

Figure 5.3 reports the confusion matrices obtained with the proposed architecture and with 
the machine learning algorithm FBCSP+rLDA, with ME- and MI-EEG signals. Each of these 
matrices represents the confusion matrix across the subject-specific classifiers. Denoting with 
i and j the i-th row and j-th column, the entry in the (i,j) location represents the total number of 
test trials across subjects predicted as class i when the true class is j (together with the % ratio 
between this number and the total number of trials for each class j). For each (i,j) location (16 
in total), a Wilcoxon signed-rank test was performed between the entries of the subject-specific 
confusion matrices obtained with FBCSP+rLDA and with Sinc-ShallowNet, separately for the 
two datasets; that is, for each (i,j) location, we compared two samples of 14 values in case of 
the ME dataset and two samples of 9 values in case of the MI dataset. In order to correct for 
multiple comparisons (16 in total within each dataset), the Benjamini-Hochberg procedure was 
applied. The corrected p-value resulting from each comparison is displayed inside the 
corresponding cell of the matrices reporting Sinc-ShallowNet results (matrices on the right in 
Figure 5.3). 

 

 
Figure 5.3 – Confusion matrices of FBCSP+rLDA ((a) and (c)) and of Sinc-ShallowNet ((b) and (d)). Sinc-

ShallowNet was trained with trialwise strategy (see Section Trialwise training strategy). Matrices (a) and (b) were 
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computed across subject-specific classifiers on ME-EEG signals belonging to the test set, while (c) and (d) were 

computed on MI-EEG signals belonging to the test set. Each cell contains the total number of trials across subjects 

given a specific prediction and target label, and the ratio between this number and the total number of trials for 

each target label. For each (i,j) location (16 in total) of the confusion matrix (predicted class i, true class j), a 

Wilcoxon signed-rank test was performed between the entries of the subject-specific confusion matrices obtained 

with FBCSP+rLDA and with Sinc-ShallowNet, separately for the two datasets. Correction for multiple 

comparisons was obtained via the Benjamini-Hochberg procedure. The corrected p-value resulting from each 

comparison is displayed inside the corresponding cell of the matrices reporting Sinc-ShallowNet results.  

 
The confusion matrices were similar between the approaches, with only 4 entries 

significantly different (h < 0.05) in case of ME-EEG signals. In particular, Sinc-ShallowNet 
classified significantly better “Left Hand” and “Feet” classes (h = 0.036) and produced a 
significantly lower number of misclassifications between “Right Hand” and “Rest” classes. In 
both algorithms, the majority of the misclassifications were associated with a wrong 
discrimination between “Right Hand”-“Left Hand” classes (110 misclassified trials for 
FBCSP+rLDA and 90 for Sinc-ShallowNet) in case of ME-EEG signals, and between “Right 
Hand”-“Left Hand” classes (196 misclassified trials for FBCSP+rLDA and 179 for Sinc-
ShallowNet) and “Feet”-“Tongue” classes (181 misclassified trials for FBCSP+rLDA and 160 
for Sinc-ShallowNet) in case of MI-EEG signals.  

Tables 5.3 and 5.4 show the accuracies obtained with Sinc-ShallowNet, the three SOA 
CNNs, and the algorithm FBCSP+rLDA on ME- and MI-EEG signals, respectively. Results of 
the statistical analyses are reported too.  

 
Table 5.3 – Accuracies (mean ± std across subjects) of the basal Sinc-ShallowNet and SOA algorithms, obtained 

with ME-EEG signals belonging to the test set. Here, the trialwise training was adopted. For each CNN, the total 

number of trainable parameters is reported in brackets. The corrected P values are reported (3. for each CNN vs. 

FBCSP+rLDA, 31 for Sinc-ShallowNet vs. each SOA CNN).  

Algorithm Accuracy (%) e= ee 
FBCSP+rLDA 86.0±9.0   

EEGNet (2604) 88.5±11.0 0.158 0.158 

DeepConvNet (298229) 88.4±8.8 0.158 0.026 

ShallowConvNet (82564) 93.9±9.3 0.024 0.040 

Sinc-ShallowNet (13828) 91.2±9.1 0.024  

 
Table 5.4 – Accuracies (mean ± std across subjects) of the basal Sinc-ShallowNet and SOA algorithms, obtained 

with MI-EEG signals belonging to the test set. Here, the trialwise training was adopted (signal epoching 0.5-2.5 

s). For each CNN, the total number of trainable parameters is reported in brackets. The corrected P values are 

reported (3. for each CNN vs. FBCSP+rLDA, 31 for Sinc-ShallowNet vs. each SOA CNN).  

Algorithm Accuracy (%) e= ee 
FBCSP+rLDA 67.5±13.9   

EEGNet (1932) 66.0±13.1 0.575 0.027 

DeepConvNet (278079) 50.5±19.6 0.031 0.027 

ShallowConvNet (40644) 71.6±14.2 0.046 0.302 

Sinc-ShallowNet (5508) 72.8±12.9 0.031  

 
The proposed architecture scored an accuracy across subjects (mean ± std) of 91.2±9.1 % 

(inferior only to ShallowConvNet) and of 72.8±12.9 % (best overall) on ME- and MI-EEG 
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signals, respectively. Compared to the baseline FBCSP+rLDA algorithm, ShallowConvNet 
and Sinc-ShallowNet performed significantly better on both ME- (h = 0.024, h = 0.024, 
respectively) and MI-EEG signals (h = 0.046, h = 0.031, respectively). Sinc-ShallowNet 
significantly outperformed DeepConvNet (h = 0.026) on ME-EEG signals, and both EEGNet 
(h = 0.027) and DeepConvNet (h = 0.027) on MI-EEG signals. Lastly, ShallowConvNet 
significantly outperformed Sinc-ShallowNet (h = 0.040) on ME-EEG signals; however, 
regarding this point, further considerations can be drawn from the results of the post-hoc hyper-
parameter evaluation (see Section 5.4.2 in the Discussion).  

 
5.3.2. Post-hoc hyper-parameter evaluation and training strategy evaluation  

The performance obtained with the basal Sinc-ShallowNet with ME- and MI-EEG signals 
was compared to the Sinc-ShallowNet variants, obtained by changing the hyper-parameters 
e(, *,, f3, g3 and by introducing an additional pointwise convolutional layer as first layer in 
block 2 (see Section Design choices). Specifically, each variant was obtained by changing one 
hyper-parameter at a time while keeping the other hyper-parameters unchanged (see Table 5.2). 
In this comparison, both the basal Sinc-ShallowNet and each variant were trained adopting the 
trialwise training strategy (see Section Trialwise training strategy). The overall effect of each 
hyper-parameter change was quantified jointly on ME- and MI-EEG signals by computing the 
difference in accuracy between the tested (variant) and basal configurations ∆I55= éxxHG"HGq −

éxx>G_ (e.g., ∆I55= éxxKD^M − éxxKD^2, for the comparison “e( = 8−e( = 32”, contrasting 
the configuration with e( = 8 temporal filters and the basal configuration having e( = 32 
filters). The results are shown in Figure 5.4a: a significant worsening of the performance 
occurred when e(	decreased	(h = 0.005 and h = 0.010 when comparing e( = 8 vs e( = 32 
and e( = 8 vs e( = 16, respectively), while no significant effect was induced by the other 
hyper-parameter changes.  

We evaluated the impact of cropped training compared to trialwise training on Sinc-
ShallowNet (in its basal configuration) and on each re-implemented SOA CNNs. As detailed 
in Section Cropped training strategy, the trialwise training strategy adopted for this analysis 
was designed with a different epoching of the MI-EEG signals (0.5-4 s rather than 0.5-2.5 s as 
adopted in the rest of the presented results) in order to follow the procedure used in [14]. 
Nevertheless, we verified that no statistically significant difference in performance emerged 
between the trialwise training implemented with the different epoching of MI-EEG signals 
(h = 0.441, h = 0.345, h = 0.347, h = 0.346, respectively for DeepConvNet, 
ShallowConvNet, Sinc-ShallowNet and EEGNet.). The overall effect of cropped training on 
each CNN was quantified jointly on ME- and MI-EEG signals by computing the difference in 
accuracy between the cropped and the trialwise training strategies ∆I55= éxx5>L33Gq −

éxxH>%IUB%"G. The corresponding results are shown in Figure 5.4b. Only the deep architecture 
DeepConvNet significantly benefited from the cropped training strategy (h = 0.002), while 
shallower architectures such as Sinc-ShallowNet and EEGNet performed significantly worse 
when trained with the cropped strategy (h = 0.008 and h = 0.009).  
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Figure 5.4 – Results of the analyses on Sinc-ShallowNet design choices and on training strategies. (a) Effect of 

the changes in the hyper-parameters of Sinc-ShallowNet (see Table 5.2) on the performance metric. The changes 

in accuracy (∆OXX) were computed as the difference between the tested and the reference (i.e., basal) configuration 

(∆OXX= \WWKM%KMf − \WWNMg , e.g., \WWh"ij − \WWh"i_1). (b) Effect of the two different training strategies applied 

to each SOA CNN and to Sinc-ShallowNet on the performance metric. The changes in accuracy (∆OXX) were 

computed as the difference between the cropped and trialwise training strategies (∆OXX= \WWXNJ//Mf −
\WWKN$OPk$%M). For this comparison, MI-EEG signals were epoched between 0.5 and 4 s (see Section Cropped 
training strategy). In both panels, ∆OXX obtained with ME-EEG signals (◦) and with MI-EEG signals (+) were 

grouped together. The corrected P values are reported (Sinc-ShallowNet vs. each variant, trialwise vs. cropped 

training). 
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5.3.3. Interpretation  

In order to illustrate feature interpretability and feature relevance evaluation enabled by the 
proposed approach, we provide the results of the interpretation techniques for one 
representative subject for each dataset (ME- and MI-EEG signals). These results refer to the 
basal Sinc-ShallowNet trained with the trialwise training strategy. 

Figures 5.5a and 5.6a display the distribution of the temporal filters learned by the network 
for a specific subject in case of the ME- and MI-EEG signals, respectively. Most of the 
temporal band-pass filters belonged to specific EEG bands (a filter is considered belonging to 
an EEG band based on its central frequency, see Section Temporal and spatial kernels 

visualization). The learned band-pass filters mainly belonged to the β, low γ and high γ bands 
in case of ME-EEG signals (Figure 5.5a) and to the α, β and low γ bands in case of the MI-
EEG signals (Figure 5.6a). The corresponding gradients O≥=,- (see Equation 5.11 in Section 
Temporal sensitivity analysis) obtained from the temporal sensitivity analysis at the level of 
EEG bands are displayed in Figures 5.5b and 5.6b. These visualizations suggest that the 
classification tasks rely differently on the EEG bands depending on the class. The high γ band 
resulted the most important EEG band for each class of ME-EEG signals (Figure 5.5b) in 
addition to the β band – for the “Right Hand” and “Left Hand” classes – and low γ band for the 
“Rest” and “Feet” classes. The β band resulted relevant for each class of MI-EEG signals 
(Figure 5.6b) in addition to the α band – in particular for the “Left Hand” but also for the “Right 
Hand” classes – and low γ in particular for “Tongue” and also for “Feet” classes.  
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Figure 5.5 – Visualization and interpretation of the features learned by the temporal sinc-convolutional layer of 

Sinc-ShallowNet in case of ME-EEG signals of subject 12 (decoding accuracy 95.6%). (a) Visualization of the 

passband learned by each of the 32 filters. Each passband is displayed as a black line, with the end points 

representing ".,l and "1,l of the j-th learned filter. The colour-code used is: gray-θ, green-α, yellow-β, red-low γ, 

blue-high γ. (b) Results of the temporal sensitivity analysis at the level of EEG bands: the normalized gradient 

averaged across the band-pass filters belonging to a specific EEG band ((f5,&) is displayed (colour-coded) for each 

class and each EEG band.  
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Figure 5.6 – Visualization and interpretation of the features learned by the temporal sinc-convolutional layer of 

Sinc-ShallowNet in case of MI-EEG signals of subject 3 (decoding accuracy 86.1%). (a) Visualization of the 

passband learned by each of the 32 filters. Each passband is displayed as a black line, with the end points 

representing ".,l and "1,l of the j-th learned filter. The colour-code used is: gray-θ, green-α, yellow-β, red-low γ. 

(b) Results of the temporal sensitivity analysis at the level of EEG bands: the normalized gradient averaged across 

the band-pass filters belonging to a specific EEG band ((f5,&) is displayed (colour-coded) for each class and each 

EEG band. 
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Figures 5.7 and 5.8 report the results of the temporal sensitivity analysis performed at the 
level of the single band-pass filter for each decoded class, as to the same exemplary cases of 
Figures 5.5 and 5.6 (ME- and MI-EEG signals, respectively). In each panel (bar plot), both the 
normalized gradient O≥0,- (Equation 5.10, length of the black line) and the rescaled gradient O≥0,-A  
(Equation 5.12, length of the coloured bar), are displayed for each learned filter, together with 
the indication (colour-coded) of the band the filter belong to. By looking at O≥0,- , the filters 
belonging to each band assumed different importance depending on the class, in agreement 
with Figures 5.5b and 5.6b. For example, as to Figure 5.7, filters in the low γ band had on 
average larger values of O≥0,- for the “Rest” and “Feet” classes than for the “Hand” classes. 
Moreover, within each class, filters in the high γ band had on average larger values of O≥0,- 
compared to filters in the other bands, especially for the “Rest” and “Feet”. However, by 
looking at the single filters, some of them had very similar gradient values O≥0,- across all 
classes (for example filters #26, #28, #30 in Figure 5.7a, and filters #1, #7 in Figure 5.8b). The 
rescaled gradient O≥0,-A  allows the identification of the more relevant and more class-specific 
band-pass filters, as described in Section Temporal sensitivity analysis. Specifically, for each 
of the two more discriminative EEG bands (as obtained via the temporal sensitivity analysis at 
the level of EEG bands, Figures 5.5b and 5.6b), the two more relevant band-pass filters were 
selected as the two filters (belonging to that band) that scored the two highest values of O≥0,-A  
with O≥0,-A > O≥0,-. For the so-selected temporal filters, the *, = 2 learned spatial filters were 
displayed as to their absolute values (insets within each panel of Figures 5.7 and 5.8). The blue 
regions correspond to weights that are around 0 indicating electrode locations with a low 
discriminant power, and vice versa for the red regions. Thus, spatial filters extremely focalized 
to specific subsets of electrodes were learned for both the decoding tasks. In particular, a clear 
contra-laterality in the scalp weight distributions can be observed in case of the hand 
movements (both executed and imagined) compared to the other classes.  
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Figure 5.7 – Spatial distribution of the more relevant and more class-specific band-pass filters learned by Sinc-

ShallowNet in case of ME-EEG signals of subject 12 (the same as in Figure 5.5). Each panel refers to a specific 

class (a-d for “Right Hand”, “Left Hand”, “Rest”, and “Feet”, respectively) and shows the results of the temporal 

sensitivity analysis at the level of each single band-pass filter by displaying both the normalized gradient ((fl,&) 

and rescaled ((fl,&m ) gradient of the single filters for that specific class. The coloured bars denote the rescaled 

gradients (the colour indicates the EEG band the filter belongs to, i.e., gray-θ, green-α, yellow-β, red-low γ, blue-

high γ), while the black lines denote the normalized gradients. The latter are reported in order to identify an 

increase in the rescaled gradients. For each class, the two more important band-pass filters within each of the two 

more important EEG bands (according to Figure 5.5b) are selected depending on the value of the increased 

rescaled gradients. For the so-selected band-pass filters, the spatial distribution is displayed by drawing the 

absolute values of the corresponding two spatial filters. In case of the “Right Hand” class, only one band-pass 

filter (#26) within the high γ band was selected for this visualization since it was the only one having (fl,&m > (fl,&.  
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Figure 5.8 – Spatial distribution of the more relevant and more class-specific band-pass filters learned by Sinc-

ShallowNet in case of MI-EEG signals of subject 3 (the same as in Figure 5.6). Each panel refers to a specific 

class (a-d for “Left Hand”, “Right Hand”, “Feet”, and “Tongue”, respectively) and shows the results of the 

temporal sensitivity analysis at the level of each single band-pass filter by displaying both the normalized gradient 

((fl,&) and rescaled gradient ((fl,&m ) of the single filters for that specific class. The coloured bars denote the rescaled 

gradients (the colour indicates the EEG band the filter belongs to, i.e., gray-θ, green-α, yellow-β, red-low γ), while 

the black lines denote the normalized gradients. The latter are reported in order to identify an increase in the 

rescaled gradients. For each class, the two more important band-pass filters within each of the two more important 

EEG bands (according to Figure 5.6b) are selected depending on the value of the increased rescaled gradients. 

For the so-selected band-pass filters, the spatial distribution is displayed by drawing the absolute values of the 

corresponding two spatial filters. In case of the “Right Hand” class, the band-pass filters within the α band (#1 

and #7) were not selected for the visualization since (fl,&m < (fl,& for these filters. 
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5.4. DISCUSSION  

In this study Sinc-ShallowNet, a novel lightweight and interpretable CNN for EEG 
decoding, was designed and applied to motor execution and imagery tasks. The use of a band-
pass filtering specialized convolutional layer (sinc-convolutional layer) and a spatial filtering 
with a reduced CNN channel connectivity (depthwise convolutional layer) enables the learning 
of band-pass filters and directly associated spatial filters. Thus, the proposed CNN is fully-
interpretable and optimized in its convolutional module (i.e., feature extractor). In particular, 
the following points of strength can be emphasized:  

i. Easy interpretation of both spectral and spatial features. The trainable parameters of the 
sinc-convolutional layer are directly interpretable (cutoff frequencies instead of mere 
kernel values as in a traditional convolutional layer) and the spatial filters are directly 
tied to specific band-pass filters.  

ii. High optimization in terms of number of trainable parameters. The adopted sinc-
convolution trains only 2 cutoff frequencies for each temporal filter and the depthwise 
convolution reduces the connections across the CNN channels.  

iii. Computational efficiency. Due to the symmetry of the parametrized function adopted in 
the sinc-convolution, only half of the kernel values need to be computed.  

In addition, the interpretation of the learned spectral and spatial features was further 
enriched thanks to the temporal sensitivity analysis; this analysis allows the identification of 
the more discriminative EEG bands (temporal sensitivity analysis at the level of EEG bands), 
and the more relevant and more class-specific band-pass filters (temporal sensitivity analysis 
at the level of single band-pass filter) together with their spatial distribution.  

 
5.4.1. Classification performance and comparison with state-of-the-art approaches  

The results on the ME and MI decoding tasks suggest that Sinc-ShallowNet significantly 
outperformed the traditional FBCSP+rLDA decoding pipeline. Among the re-implemented 
SOA CNNs, only ShallowConvNet (but not DeepConvNet and EEGNet) performed 
significantly better than the traditional machine learning approach, in agreement with results 
by Schirrmeister et al. [14].  

By comparing Sinc-ShallowNet with the re-implemented CNNs, the following 
considerations can be drawn. First, ShallowConvNet significantly outperformed Sinc-
ShallowNet on ME- but not on MI- EEG signals (see Table 5.3). This is the only case in which 
Sinc-ShallowNet performed worse compared to the other considered CNNs. Nevertheless, it is 
worth noticing that Sinc-ShallowNet introduces 13828 and 5508 trainable parameters, that 
corresponds only to the 16.7% and 13.6% of those introduced by ShallowConvNet in case of 
ME- and MI-EEG signals (82564 and 40644), respectively. Therefore, the proposed 
architecture finalized the classification tasks in a more computationally efficient way, by 
introducing a lower number of trainable parameters. Furthermore, ShallowConvNet 
architecture was developed specifically for sensorimotor rhythm classification forcing the 
extraction of log band-power features (task-specific CNN), while Sinc-ShallowNet was not 
restricted to specific feature learning. Second, in the comparison with a general-purpose 
shallow architecture (EEGNet), Sinc-ShallowNet performed significantly better on MI-EEG 
signals, while performed comparably on ME-EEG signals. The lower performance of EEGNet 
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may derive from the extremely lightweight architecture that used only e( = 8 temporal filters. 
Accordingly, the decoding of MI-EEG signals may benefit from a higher number of temporal 
filters (e.g., 32 as in the architecture proposed here). The introduction of the temporal sinc-
convolutional layer that reduces the number of trainable parameters (i.e., only the two cutoff 
frequencies for each temporal filter) may be particularly beneficial for the decoding of MI-
EEG dataset. Indeed, this dataset is characterized by a low number of training examples that 
requires the number of trainable parameters to be carefully maintained limited in order to avoid 
overfitting and achieve a good fit. Furthermore, when comparing Sinc-ShallowNet with 
DeepConvNet, the first provided significantly higher decoding accuracy on both ME- and MI-
EEG signals. This may be attributable to the higher number of trainable parameters introduced 
by DeepConvNet (298229 and 278079 in case of ME- and MI-EEG signals, respectively), 
leading to an architecture more prone to overfitting especially in case of small datasets as for 
the adopted MI dataset.  

 
5.4.2. Design choices of Sinc-ShallowNet  

The post-hoc hyper-parameter evaluation (Figure 5.4a), revealed a significant negative 
effect of lowering e(	on Sinc-ShallowNet performance, with an average ∆I55= −4% and 
∆I55= −2%, when using 8 and 16 band-pass filters compared to 32 filters, respectively. Thus, 
Sinc-ShallowNet benefits from an increased set of band-pass filters that enrich the temporally 
filtered representation of the input. Furthermore, Sinc-ShallowNet performance on both 
datasets when using e( = 8 was not different from EEGNet that uses this number of temporal 
filters.  

The analysis on *, and on the optional recombination deserves some comments. Increasing 
*, did not lead to significant increase in the performance. However, it is interesting to note 
that when the effect of *, was disaggregated between the two datasets (ME-EEG and MI-EEG 
dataset), an opposite behavior tends to appear, with an average ∆I55= +0.4% and ∆I55=
−0.2% on ME- and MI-EEG signals respectively (although not statistical significance was 
reached in either dataset). This different behavior might be explained considering that when a 
CNN is trained with EEG signals containing a lower number of frequency components (such 
as MI-EEG signals), the band-pass temporal filters lie into a narrower frequency range and thus 
the probability that two different temporal filters have similar cutoff frequencies is higher. In 
this scenario, a lower number of spatial filters (*,) for each temporal filter could be sufficient 
to retain enough capacity of the CNN, because close temporal filters could compensate for the 
lower *,. Indeed, different spatial filters could be learned for similar temporal filters obtaining 
a cumulative set (across similar temporal filters) of band-specific spatial filters. Conversely, 
ME-EEG signals having wider frequency content can benefit from a larger number *, of 
spatial filters. Recombining the spatial activations via an additional pointwise convolutional 
layer did not improve accuracy. However, in this case too, by disaggregating the effect on the 
two datasets, an opposite behavior tends to appear with an average ∆I55= +0.5%	and ∆I55=
−2.6%	in case of ME- and MI-EEG signals respectively (although not statistical significance 
was reached in either dataset). This may be due to the learning of a useful recombination of 
frequency-specific spatial features learned across a wide frequency range, in case of signals 
with broad frequency content as ME-EEG signals. Finally, it is worth noticing that both 
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increasing *, and including a pointwise convolutional layer lead to an increase in the number 
of trainable parameters that might be critical in applications involving small datasets (e.g., the 
adopted MI dataset). Overall, these considerations remain quite speculative and further 
experiments are required, for example testing Sinc-ShallowNet and its different design choices 
on other datasets having larger and smaller size than those used here and having various 
frequency contents. However, it is interesting to note that the small accuracy increase (∆I55=
+0.5%) in case of ME-EEG signals obtained introducing the pointwise convolutional layer led 
to a significant better performance of Sinc-ShallowNet compared to EEGNet (h = 0.046) and 
to comparable performance with ShallowConvNet (h = 0.090); at the same time, the accuracy 
decrease in case of MI-EEG signals (∆I55= −2.6%) did not change the statistical significance 
(h = 0.049 vs. EEGNet and DeepConvnet, h = 0.340 vs. ShallowConvNet). Thus, the 
proposed Sinc-ShallowNet architecture integrated with the recombination of the spatial 
activations led to a CNN that performs better than or at least as well as the SOA CNNs on both 
datasets, at the expense of the number of trainable parameters (17924 and 9604 in case of ME 
and MI datasets respectively).  

Lastly, changing the average pooling strategy by using larger pool and stride sizes did not 
affect the performance.  

In conclusion, this analysis suggests that the proposed Sinc-ShallowNet in its basal version 
(see Table 5.1) resulted in a good compromise between performance and parsimony with 
enough capacity to solve both the decoding tasks. 

 
5.4.3. Training strategies  

The overall effect of the training strategy on the performance metric (Figure 5.4b) resulted 
in a significantly increase of the decoding accuracy for a deeper architecture as DeepConvNet 
(on average ∆I55= +4.6%), while a significant worsening of the performance was observed 
as the CNN architecture becomes shallower and more lightweight (no significant effect on 
ShallowConvNet, ∆I55= −2.9% for Sinc-ShallowNet and ∆I55= −4.7%	for EEGNet on 
average ). This different behavior of cropped training on shallow and deep architectures is in 
line with the results reported by Schirrmeister et al. [14] when examining ShallowConvNet and 
DeepConvNet, i.e., no improvements for ShallowConvNet and significant improvement for 
DeepConvNet. The present study further confirmed those previous results and extended them 
to other shallow architectures (i.e., EEGNet and Sinc-ShallowNet). Thus, a data-intensive CNN 
(e.g., DeepConvNet) improved its performance with cropped training – which acts as a data 
augmentation procedure – while lightweight CNNs did not. In contrast to deeper network, 
shallow CNNs like EEGNet and Sinc-ShallowNet performed well in both the decoding tasks 
without the need of any data augmentation procedure that, conversely, worsened their 
performance.  

 
5.4.4. Interpretation  

The band-pass filters mainly belonged to the β, low γ and high γ EEG bands when the 
network was trained with ME-EEG signals (Figure 5.5a), and to the α, β and low γ EEG bands 
when the network was trained with MI-EEG signals (Figure 5.6a). The latter result agreed with 
that obtained by Lawhern et al. [11] using EEGNet on the same decoded subject. In particular, 
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Lawhern et al. [11] estimated each band-pass filter learned by the temporal convolutional layer 
simply by counting the number of cycles of the specific temporal kernel in the corresponding 
temporal window. In Sinc-ShallowNet, each band-pass filter is implicitly defined by the 
temporal sinc-convolutional layer that directly provides the two cutoff frequencies. 

When the CNN was trained on ME-EEG signals, the temporal sensitivity analysis at the 
level of EEG bands (Figure 5.5b) indicates that the most relevant bands were β, high γ for the 
“Right Hand” and “Left Hand” classes, and low γ, high γ for the “Feet” and “Rest” classes. In 
addition, the high γ band emerged as more important than the β and low γ bands for each 
decoded class, confirming the relevance not only of the β but also of the high γ band in the 
decoding task as previously evidenced by Schirrmeister et al. [14]. Ball et al. [27] found an 
increase in the high γ activity within the 60-90 Hz range, in addition to lower frequencies 
activity (α, β), in human sensorimotor cortex during ME. Interestingly, in the exemplary case 
shown in Figure 5.5, most of the band-pass kernels belonging to the high γ band fell within this 
range (7 out of 10).  

When the CNN was trained on MI-EEG signals, the temporal sensitivity analysis at the level 
of EEG bands (Figure 5.6b) indicates that the most relevant bands were α, β for the “Left Hand” 
and “Right Hand” classes, and β, low γ for the “Feet” and “Tongue” classes. These results are 
in line with previous studies showing that also the low γ band, together with the α and β bands, 
provides information on MI [28]. This was further confirmed by [47], where adding low γ 
features to α and β features led to better performance using the same MI dataset.  

Thanks to the use of spatial depthwise convolution, the proposed architecture ties spatial 
kernels to each band-pass filter and thus, the relevance, as quantified by the temporal sensitivity 
analysis, can be propagated from each band-pass filter to the associated spatial filters. In 
particular, the more relevant and more class-specific spatial filters can be identified – as those 
associated to the band-pass filters scored by the highest rescaled gradients O≥0,-A , (i.e., temporal 
sensitivity analysis at the level of single band-pass filter) – and visualized. These spatial filters 
show a highly localized distributions in the scalp maps (Figures 5.7a-5.7d and 5.8a-5.8d, 
respectively for ME- and MI-EEG signals). Among the spatial filters specific for the hand 
movements, some filters have the most discriminative electrodes located in the contralateral 
hemisphere to the executed and imagined hand movement, approximately above the primary 
sensorimotor hand representation areas (i.e., around C3 and C4). Regarding the executed and 
imagined feet movements, some filters have the most discriminative electrodes located more 
centrally, approximately above the primary motor foot area (i.e., around CPz, Cz and FCz). 
Finally, regarding the imagined tongue movement, the most discriminative electrodes are 
placed not only around C3 and C4, but also approximately above the somatosensory cortex 
(i.e., area below Cz), representing the brain region triggered by the imagination of tongue 
movements [18].  

Therefore, by interpreting the features exploited by the network for the classification task, 
it turns out that Sinc-ShallowNet was capable of learning features related to known 
neurophysiological phenomena without relying on artefact or noise sources in the EEG signals.  

As underlined previously, the interpretation capabilities of the network are provided by 
coupling an interpretable layer (sinc-convolutional layer) with an optimized layer (depthwise 
convolutional layer), and by using a post-hoc gradient-based technique alongside with spatial 
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and temporal filter visualizations. Therefore, interpretation capabilities of Sinc-ShallowNet are 
intrinsically linked to some specific design choices and specifically implemented post-hoc 
analyses. However, other more general-purpose techniques adopted in our network (e.g., batch 
normalization or dropout), that introduce a regularization effect, contribute to increase the 
neurophysiological reliability of feature interpretation by improving the performance on 
unseen examples. For example, we verified that when training Sinc-ShallowNet by removing 
the batch normalization layers in the blocks 1, 2 (and leaving all the other hyper-parameters 
unchanged), a significant decrease of the decoding accuracies occurred: ∆I55= −4.8% (h =
0.002, Wilcoxon signed-rank test), ∆I55= −14.8% (h = 0.008, Wilcoxon signed-rank test) 
respectively for ME- and MI-EEG signals, where ∆I55= éxxB/L	sT − éxxB/	sT. These 
simulations confirmed the important regularization introduced by batch normalization that 
significantly increased network accuracy on unseen examples. Accordingly, although batch 
normalization does not contribute directly to the interpretation capabilities of the network 
(omitting it the inner interpretation capabilities of the network are not altered), its inclusion 
increases the neurophysiological significance of the interpreted features via accuracy 
improvement. Indeed, the band-pass filters and spatial filters learned by the batch-normalized 
Sinc-ShallowNet turn out to be more class-discriminative (as they provide higher accuracies). 
Therefore, the learned spectral and spatial features are more likely to reflect neurophysiological 
aspects (in terms of more relevant EEG bands and electrodes) linked to the investigated tasks 
(i.e., motor execution and motor imagery decoding). 

Finally, we would like to provide some comments on other CNNs in the literature that adopt 
a non-traditional convolutional layer designed to perform a specific input transformation (here 
the sinc-convolutional layer forcing band-pass filtering). First, it is worth noticing that, at best 
of our knowledge, only two previous (and very recent) studies [17,18] include a similar layer 
within a CNN architecture, indicating that this represents an innovative and emerging approach 
in the field of EEG decoding. Zhao et al. [18] proposed a CNN for MI classification including 
a time-frequency convolutional layer based on wavelets and interpreted the learned features. 
Differently from the architecture proposed here, they adopted a traditional spatial convolutional 
layer and tested the network only on MI decoding tasks. Comparing the decoding accuracy 
reported in the original paper [18] with Sinc-ShallowNet accuracy on the same MI-EEG 
signals, Sinc-ShallowNet scored an average accuracy +5.8% with respect to the architecture 
proposed by Zhao et al. [18], although without reaching statistical significance (h = 0.086, 
Wilcoxon signed ranked test). However, the network by Zhao et al. [18], due to the adoption 
of a standard spatial convolutional layer (that by itself involves 13775 trainable parameters, 
including bias), has a larger number of trainable parameters compared to Sinc-ShallowNet 
(1408 for MI-EEG signals). In an even more recent paper, Zeng et al. [17] included a sinc-
convolutional layer into a deep 1D CNN (3 convolutional layers and 4 fully-connected layers) 
for EEG emotion classification. The proposed solution appears more robust and more 
performing than other classifiers (and thus possibly confirming the potentiality of this kind of 
layer). However, the network by Zeng et al. [17] introduced a large number of trainable 
parameters, especially due to the use of 3 hidden fully-connected layers having thousands of 
neurons. Moreover, the authors did not face the interpretation of the learned features; in 
particular, the adoption of a reshaped input representation (2D-to-1D reshaping) and of 
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traditional convolutions hinder the interpretability of the CNN. In future, it will be interesting 
to test Sinc-ShallowNet on the same decoding task tackled by Zeng et al. [17].  
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5.5. CONCLUSIONS  

In conclusion, we proposed a novel CNN named Sinc-ShallowNet, characterized by an 
interpretable and efficient (in terms of number of trainable parameters) convolutional module. 
This module includes a temporal sinc-convolutional layer, forcing the learning of band-pass 
filters with only two trainable parameters per filter, and a spatial depthwise convolution that 
learns spatial features tied to each band-pass filter. The proposed design provides direct 
interpretability of the learned spectral-spatial features, at the same time limiting the number of 
trainable parameters. Furthermore, a gradient-based technique (temporal sensitivity analysis) 
was introduced in order to identify the more relevant and more class-specific features. Overall, 
the proposed CNN, tested on motor execution and motor imagery EEG signals, outperformed 
other state-of-the-art CNNs and a traditional machine learning algorithm. The analyses on the 
design choices and training strategies confirmed that the proposed architecture is a good 
compromise between decoding performance and an efficient use of trainable parameters. The 
post-hoc interpretation techniques suggest that the features learned by the convolutional 
module matched well-known EEG motor-related activity, both in the frequency and spatial 
domains. While Sinc-ShallowNet was applied only to motor-related EEG decoding, it was not 
specifically tailored to decoding sensorimotor rhythm and may be used also in other EEG 
decoding tasks (e.g., P300 detection or other ERP classification tasks). Furthermore, if a 
specific decoding task benefits from deeper architectures, the interpretable and optimized 
convolutional module proposed in Sinc-ShallowNet could be easily employed to design deeper 
CNNs by stacking more convolutional layers on it. In particular, due to its augmented 
interpretability, Sinc-ShallowNet or a deeper CNN based on it, may be applied to investigate 
cognitive and/or motor aspects for which the distinctive EEG correlates are less known (e.g., 
attention, emotion, creativity, movement trajectory/kinematics etc.).   
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5.6. SUPPLEMENTARY MATERIALS 

5.6.1. State-of-the-art CNNs  

The SOA CNN architectures considered for the comparison with Sinc-ShallowNet are 
reported in Supplementary Tables 5.1, 5.2 and 5.3, respectively for EEGNet [11], 
DeepConvNet and ShallowNet [14].  

 
Supplementary Table 5.1 – Architecture details of EEGNet. Each layer is provided with its name, main hyper-

parameters, number of trainable parameters and activation function. See Section 5.2.3 for the meaning of the 

symbols. *Kernel maximum norm constraint at 1 and 0.25, respectively for the depthwise convolutional and fully-

connected layers. 

Layer name Hyper-parameters Number of parameters Activation 
Input  0  

Conv2D ;. = 8 <.[1] ∙ ;. Linear 

 <. = (1,65)   

 2. = (1,1)   

 3. = (0,32)   

BatchNorm2D A = 0.99 2 ∙ ;.  

DW-Conv2D* ;1 = ;. ∙ I1 <1[0] ∙ ;1 Linear 

 <1 = (6, 1)   

 I1 = 2   

 21 = (1,1)   

 31 = (0,0)   

BatchNorm2D A = 0.99 2 ∙ ;1  

Activation Z = 1 0 ELU 

AvgPool2D </. = (1,8) 0  

 2/. = (1,8)   

Dropout ) = 0.5 0  

Sep-Conv2D ;_ = ;1 ∙ I_ <_[1] · ;_ + (;_)1
	
 Linear 

 <_ = (1,33)   

 I_ = 1   

 2_ = (1,1)   

 3_ = (0,16)   

BatchNorm2D A = 0.99 2 ∙ ;_  

Activation Z = 1 0 ELU 

AvgPool2D </1 = (1,16) 0  

 2/1 = (1,16)   

Dropout ) = 0.5 0  

Flatten  0  

Fully-Connected* OX = 4 OX ∙ 8/1 ∙ ;_ +OX  

Activation  0 Softmax 
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Supplementary Table 5.2 – Architecture details of DeepConvNet. Each layer is provided with its name, main 

hyper-parameters, number of trainable parameters and activation function. See Section 5.2.3 for the meaning of 

the symbols. *Kernel maximum norm constraint at 2 and 0.5, respectively for the convolutional and fully-

connected layers. For numerical stability, batch normalization i parameter was set to 1e-5.  

Layer name Hyper-parameters Number of parameters Activation 
Input  0  

Conv2D* ;. = 25 <.[1] ∙ ;. +;. Linear 

 <. = (1,10)   

 2. = (1,1)   

 3. = (0,0)   

Conv2D* ;1 = 25 ;. ∙ <1[0] ∙ ;1 Linear 

 <1 = (6, 1)   

 21 = (1,1)   

 31 = (0,0)   

BatchNorm2D A = 0.9 2 ∙ ;1  

Activation Z = 1 0 ELU 

MaxPool2D </. = (1,2) 0  

 2/. = (1,2)   

Dropout ) = 0.5 0  

Conv2D* ;_ = 50 ;1 ∙ <_[1] ∙ ;_ Linear 

 <_ = (1,10)   

 2_ = (1,1)   

 3_ = (0,0)   

BatchNorm2D A = 0.9 2 ∙ ;_  

Activation Z = 1 0 ELU 

MaxPool2D </1 = (1,2) 0  

 2/1 = (1,2)   

Dropout ) = 0.5 0  

Conv2D* ;n = 100 ;_ ∙ <n[1] ∙ ;n Linear 

 <n = (1,10)   

 2n = (1,1)   

 3n = (0,0)   

BatchNorm2D A = 0.9 2 ∙ ;n  

Activation Z = 1 0 ELU 

MaxPool2D </_ = (1,2) 0  

 2/_ = (1,2)   

Dropout ) = 0.5 0  

Conv2D* ;o = 200 ;n ∙ <o[1] ∙ ;o Linear 

 <o = (1,10)   

 2o = (1,1)   

 3o = (0,0)   

BatchNorm2D A = 0.9 2 ∙ ;o  

Activation Z = 1 0 ELU 

MaxPool2D </n = (1,2) 0  

 2/n = (1,2)   

Flatten  0  

Fully-Connected* OX = 4 OX ∙ 8/n ∙ ;o +OX  

Activation  0 Softmax 
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Supplementary Table 5.3 – Architecture details of ShallowNet. Each layer is provided with its name, main 

hyper-parameters, number of trainable parameters and activation function. See Section 5.2.3 for the meaning of 

the symbols. *Kernel maximum norm constraint at 2 and 0.5, respectively for the convolutional and fully-

connected layers. For numerical stability, batch normalization i parameter was set to 1e-5, while the log function 

input was clipped at i = 1C − 6.  

Layer name Hyper-parameters Number of parameters Activation 
Input  0  

Conv2D* ;. = 40 <.[1] ∙ ;. +;. Linear 

 <. = (1,25)   

 2. = (1,1)   

 3. = (0,0)   

Conv2D* ;1 = 40 ;. ∙ <1[0] ∙ ;1 Linear 

 <1 = (6, 1)   

 21 = (1,1)   

 31 = (0,0)   

BatchNorm2D A = 0.9 2 ∙ ;1  

Activation Z = 1 0 Square 

AvgPool2D </ = (1,75) 0  

 2/ = (1,15)   

Activation  0 Log 

Dropout ) = 0.5 0  

Flatten  0  

Fully-Connected* OX = 4 OX ∙ 8/ ∙ ;1 +OX  

Activation  0 Softmax 

 
5.6.2. FBCSP+rLDA  

As traditional machine learning decoding algorithm, we used a pipeline previously validated 
and adopted in Schirrmeister et al. [14]. Two different overlapped filter banks were designed 
for ME and MI-EEG signals. Starting from a frequency value of 4 Hz, frequency bands were 
selected with 6 Hz width and overlap factor of 3 Hz up to 16 Hz, and frequency bands with 8 
Hz width and overlap factor of 4 Hz for frequencies above 13 Hz (up to 121 Hz and 37 Hz for 
ME- and MI-EEG signals, respectively). Thus, 29 and 8 band-pass filters were computed for 
ME- and MI-EEG signals. For each of these manually designed filters, EEG signals were band-
pass filtered. Two CSP filter pairs (four filters total) for each filter bank were computed on the 
training data. Since a few spatial filters computed often are enough to reach good decoding 
performance while using all the spatial filters may lead to overfitting [48,49], we included the 
feature selection procedure adopted in [14]. 

As the decoding task is multi-class, the problem was transformed into several binary 
classification tasks via a one-vs-one reduction (OVO), where binary classifiers learned to 
discriminate each pair of classes. Then, a majority weighted voting was applied at prediction 
time. To do so, we trained a rLDA classifier with shrinkage regularization [50], widely used in 
EEG decoding [3] for each pair of classes, summed up the classifier outputs and the class with 
higher sum was decoded as the predicted one [49].  
Comparing FBCSP+rLDA results – obtained by re-implementing the steps adopted in [14] – 
with another study [20] that used the same MI dataset, no significant difference was observed 
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(h = 0.441 Wilcoxon signed-ranked test, average accuracy across subjects: 67.5 vs. 67.0 % 
[20]). This validated the FBCSP+rLDA re-implementation adopted in this study.  
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CHAPTER 6: DESIGN OF AN INTERPRETABLE AND MULTI-
SCALE CNN FOR MOTOR DECODING AND ANALYSIS IN 
THE FREQUENCY AND SPATIAL DOMAINS 

The study reported in this chapter refers to the submitted journal paper entitled “An 
interpretable multi-scale convolutional neural network for EEG motor trajectory decoding and 
analysis of kinematic neural signatures” D. Borra, V. Mondini, E. Magosso, G. R. Müller-Putz. 
Submitted to IEEE Transactions on Neural Networks and Learning Systems. In this study, the 
interpretable CNN presented in Chapter 5 was modified by exploiting the promising results 
obtained for P300 decoding in Chapter 4. In particular, the multi-scale structure of deeper 
layers operating in the temporal domain (see Chapter 4) was included in the interpretable CNN 
structure used in Chapter 5, thus obtaining a novel interpretable and multi-scale CNN for motor 
decoding. Notably, the motor decoding problem faced here was more difficult than that in 
Chapter 5 since it required the prediction of 2D position and velocity trajectories, instead of a 
simpler categorical variable. Different training strategies were used to evaluate the 
interpretable multi-scale CNN. Lastly, an intermediate explanation technique was developed 
to investigate the neural signatures related to position and velocity in the frequency and spatial 
domains. 
 
Continuous decoding of voluntary movement has been recently explored to provide natural 

control in EEG-based Brain-computer interfaces (BCIs). This is typically performed on low-

frequency (< 3 Hz) electroencephalogram (EEG) with linear regression techniques such as 

partial least square regression, which may be combined with unscented Kalman filters 

(PLS+UKF) to better reconstruct the amplitude of the trajectories. Convolutional neural 

networks (CNNs), by exploiting automatic feature learning from slightly pre-processed 

signals, are emerging as powerful algorithms to decode information from neural time series, 

and to highlight the neural signatures related to the decoded brain states. In this study, we 

designed a light, multi-scale and interpretable CNN (ICNN) to decode upper-limb 2-D 

positions and velocities in a pursuit tracking task performed by 13 participants, leaving the 

ICNN free to explore also high frequencies of the EEG. The network incorporates 

interpretable components in its design to ease the interpretation of the spectral and spatial 

features. A data-driven analysis framework based on the ICNN was designed to highlight 

the most relevant spectral and spatial EEG signatures encoding position and velocity. The 

ICNN better reconstructed the trajectory amplitudes than the PLS+UKF, while performing 

on par or even outperforming state-of-the-art CNNs, and providing at the same time a more 

interpretable spectral and spatial feature learning. The ICNN was evaluated under different 

training conditions, including within-subject, cross-subject, and transfer learning, to 

simulate its application in different BCI scenarios. Transfer learning improved the 

performance when using few training trials, which may enable in the future a reduction of 

BCI calibration times. The ICNN-based analysis framework highlighted the highest 

relevance of delta range for kinematics, and of higher frequencies, namely, alpha, beta, low-

gamma, for a cluster of subjects. Furthermore, contralateral central to parieto-occipital 

sites were the most relevant, reflecting the involvement of both sensorimotor, visual 

processing, and eye-hand movement coordination areas. 
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6.1. INTRODUCTION 

Recent efforts in Brain-Computer Interfaces (BCIs) research have been focusing on the fine 
reconstruction of voluntary movement trajectories from brain signals, so to be able to control 
an actuator (e.g., a robotic arm, or a neuroprosthesis) in a more intuitive and natural way [1–
5]. Voluntary movement trajectories have been decoded from invasively recorded signals, like 
electrocorticographic [6,7] or intracortical recordings [5,8], and from non-invasive recordings 
as well, like magnetoencephalographic [9–13] and electroencephalographic (EEG) recordings 
[13–20]. More recently, EEG-based trajectory decoding was also employed for closed-loop 
control [21,22]. Trajectory decoding from the EEG mainly exploits the low-frequency (LF) 
range of the signal, i.e., < 3 Hz [23], and uses low-pass filtered EEG signals as input to decoders 
[24] to predict the end-effector positions and velocities [16]. Recent research, however, 
suggests that higher frequency components (e.g., beta and low-gamma) may carry additional 
information on the movement [17,20] and, therefore, using only LF-EEG as input might 
negatively affect trajectory decoding. 

The state-of-the-art (SOA) widely adopts linear models for trajectory decoding, such as 
partial least squares (PLS) regression [15,21,25], or the combination of PLS with Kalman 
filters (KF), i.e., PLS+KF, to integrate the information of different decoding models [21]. 
However, when the only information of directional parameters (e.g., positions and velocities) 
was used for the decoding, an amplitude mismatch between the decoded and the actual 
trajectories could be observed [15,21], thus, suggesting a role of non-directional parameters 
(e.g., distance and speed) in reconstructing the amplitude [22], [13]. To integrate both types of 
information, a new PLS + Unscented Kalman Filter (PLS+UKF) decoder was introduced 
[6,13,22]. The PLS+UKF model was successful in alleviating the amplitude mismatch, and 
used both offline [13] and online [22] to decode the movement from the LF-EEG. 

Overall, these decoders have been mainly trained separately for each subject (within-
subject), due to inter-subject EEG variability, while the possibility to transfer the knowledge 
from other subjects to a new one (transfer learning, TL), a practice useful to reduce BCI 
calibration times, has not been explored. 

Deep Learning (DL) algorithms, in particular Convolutional Neural Networks (CNNs), have 
been recently applied to EEG decoding in several domains [26,27] such as emotion 
classifications, classification of executed or imagined movements (typically decoding the body 
part involved in the movement, e.g., hand vs. feet), and event-related potential detection (e.g., 
P300). In general, deep neural networks consist in the sequence of layers of artificial neurons 
and, depending on the established connections between neurons, feed-forward or recurrent 
neural networks can be designed. CNNs are feed-forward neural networks that perform 
convolution at least in one layer within the network. CNNs learn hierarchically structured 
features [28] from the input EEG and, in contrast to traditional machine learning approaches, 
are able to automatically learn the most relevant features from raw or slightly pre-processed 
signals, without discarding a priori components or features of the input EEG. CNNs have been 
proven to outperform traditional machine learning decoders in EEG decoding tasks, including 
motor classification [29–40]. In addition, CNN-based EEG decoders have been evaluated 
under different training strategies, including within-subject, cross-subject and TL, thus 
promoting the use of CNNs in practice for BCIs [33,35,41]. Across studies, the CNN 
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architectures adopted for EEG motor classification share some common elements in their 
structure. Typically, CNNs first learn features in the temporal and then in the spatial domains, 
by separately performing convolutions in the time and space domains of the multi-variate EEG 
input [29,30,32,36,39]. Then, more abstract features in the temporal domain are learned in 
subsequent deeper layers. One recent solution to learn deep temporal features better capturing 
intra- and inter-subject variability, consist in learning features at multiple time scales, realizing 
multi-scale CNNs; this solution resulted beneficial compared to learning features at a single 
time scale in EEG classification tasks, including motor [37–39] and P300 [33,35] classification.  

Despite the promising results of CNN-based EEG decoding, CNNs suffer of some 
drawbacks. i) They introduce many trainable parameters (even >100K [29]), i.e., parameters 
to fit during training, leading to decoders prone to overfit small datasets. ii) They introduce 
many hyper-parameters, i.e., parameters that define the functional form of the CNN (e.g., 
number of convolutional filters) and, thus, the optimal structure of the network (in terms of 
performance) is not known a priori. iii) They lack in interpretability of the learned features. 

In the context of EEG decoding, efforts have been made to overcome these limitations. In 
particular, lightweight CNNs have been proposed, adopting specialized light convolutions (i.e., 
that introduce less trainable parameters) [30,32,33], such as depthwise and separable 
convolutions [42]. Furthermore, sensitivity analyses on hyper-parameters have been performed 
to examine the role of each hyper-parameter in terms of network performance [29,32,33]. 
Lastly, recent methodological advancements have been proposed to increase the 
interpretability of the learned features and to exploit the full potentialities of the automatic 
feature learning performed by the CNN. To this aim, interpretability has been directly 
incorporated into the CNN structure by designing interpretable layers, i.e., layers whose 
trainable parameters are directly interpretable in a given domain (e.g., frequency domain), 
realizing an interpretable CNN (ICNN) [32,40]. In addition to interpretable layers, explanation 

techniques (ETs) such as saliency representations [43], reporting the gradient of a target output 
(e.g., a motor state) with respect to each input sample, have been used to explain the CNN 
decision [32,35,41,44], highlighting the EEG features in the spatial, temporal or spectral 
domains that resulted most discriminative for the specific output. Therefore, by properly 
designing an ICNN and combining it with an ET, a data-driven non-linear analysis tool 
(ICNN+ET) can be realized to study EEG signatures associated to the decoded outputs.  

All the previous approaches have been applied to different EEG classification problems, 
including movement classification. However, their application to the continuous regression of 
movement kinematics from EEG remains unexplored. This represents an important limit; 
indeed, not only CNNs could increase the performance of EEG-based trajectory decoding by 
exploiting also high-frequency components of the input, but also the automatic feature learning 
performed by CNN may be employed to investigate the EEG signatures related to kinematics 
in a data-driven way.  

In this study, we aim at contributing to EEG trajectory decoding by using a non-linear 
decoder based on an ICNN. The addressed decoding problem is the continuous reconstruction 
of the upper-limb 2-D velocities and positions in a pursuit tracking task. In particular, the 
following issues were addressed: 

i. Perform trajectory decoding from the EEG without focusing only on LF components but 
leaving the learning system the capability to freely explore also higher frequency 
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components of the input EEG that may result relevant for the decoding. 
ii. Design a light and interpretable multi-scale CNN to continuously predict position and 

velocity from the EEG; this was obtained by integrating inside the CNN an interpretable 
spectral and spatial feature extractor, previously validated for motor classification [32], 
and a light temporal feature extractor that learns temporal patterns at two different time 
scales in parallel. This approach was compared with SOA decoders, including a 
traditional non-linear PLS+UKF algorithm [13] specifically proposed for trajectory 
decoding, and decoders based on CNNs (DeepConvNet and ShallowConvNet) [29] that 
were previously proposed for motor classification. 

iii. Study the decoder using different training strategies, including within-subject, leave-one-
subject-out (i.e., cross-subject) and transfer learning, to explore the potentialities of 
CNNs to transfer the knowledge from previously recorded users on a new user 
approaching the BCI, to reduce calibration time on the new user. 

iv. Design an ICNN+ET algorithm devoted to highlight - in a data-driven way - the most 
relevant EEG signatures encoding positions and velocities in the frequency and spatial 
domains. That is, in this study we focused on the design of a framework for decoding 
kinematics from the EEG and for analyzing kinematic-related EEG signatures. 
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6.2. MATERIALS AND METHODS 

6.2.1. Single-trial EEG trajectory decoding via CNNs 
Let’s assume that from each subject, EEG signals and a set of variables to be predicted were 

continuously recorded for several trials. Then, the dataset *(") associated to the s-th subject 
can be expressed as:  
*(") = op-$
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where -%
(")
∈ ℝ)×+ (0 ≤ ; ≤ 2(") − 1) contains the pre-processed EEG signals of the i-th trial 

recorded from the " electrode sites and consisting of $ time samples, while ∞%
(")
∈ ℝK×+ 

contains the e pre-processed time series to be predicted organized by rows, recorded for $ time 
samples (same as EEG). When performing 2-D kinematic decoding, these variables could 
correspond to the 2-D position and/or 2-D velocity components of the hand (see Section 6.2.2), 
resulting in a continuous decoding of kinematics variables from single-trial EEG. To perform 
such decoding, the learning system predicts the kinematic variables at each time sample by 
using a buffer of EEG signals, hereafter denoted as “chunk”, and consisting of $j time samples 
sampled from the original multi-variate time series. By indicating with $" the stride used to 
sample these chunks (see Section 6.6.1 of Supplementary Materials), we can write: 
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where < denotes the number of chunks that could be extracted using $j and $" as chunk size 
and stride, respectively, i.e., < = ($ − $j)/$" + 1. 

The objective decoding problem can be formalized as the optimization of the parametrized 
regressor J implemented with a CNN, Jp∑%,0

(")
; Lq: ℝ)×+p → ℝK, with its parameters contained 

in L and that must be learned from a training set of examples to assign the correct label to 
unseen examples. ∑%,0

(") represents the CNN input, containing a chunk of the multi-variate brain 
activity organized in a 2D array of shape (", $j), with electrodes along the height and time 
steps along the width. .%,0

(") represents the CNN output, containing the e values of the variables 
to predict organized in a 1D array of shape (e, 1). See Section 6.2.2 for the definition of " , 
$j,	e in this application. The dataset *(") (see Equation 6.1) was divided into a training set 
used to optimize L, and a test set used to test the algorithm on unseen examples. In addition, a 
separate validation set was extracted from the training set to define the stop criterion of the 
optimization. See Sections 6.2.2 and 6.2.4 for additional details. 
 
6.2.2. Data description and pre-processing 

In this study, we reanalyzed the data of the Graz BCI group recorded in [21] and [22], 
including the EEG signals of 13 healthy subjects (aged of 27±4 years, mean±standard 
deviation, 7 females, 1 left-handed) as they were performing a pursuit tracking task with their 
right hand/arm. During the experiment, subjects were asked to track a moving object displayed 
on a screen using a robotic arm; the latter was controlled by a mixture of hand kinematics and 
trajectories decoded from the EEG (see Figure 6.1A). The experiment was composed by a 
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calibration and online feedback phases, both collected in runs (5 calibration runs, 6 feedback 
runs). Each run was composed of 10 trials in which the object was tracked for 23s. Crucially, 
the trajectories of the object were generated offline to ensure uncorrelated positions and 
velocities across and within horizontal (|) and vertical (.) coordinates. Two additional special 
runs, called “eyeruns”, were performed to collect rest data, saccadic eye movements, and 
blinks, to fit a regression model to attenuate eye movement artifacts [45]. During the calibration 
phase, the robot was entirely controlled by the hand kinematics. Afterwards, a linear [21] or 
non-linear [22] decoder could be fitted so to predict the kinematics from the EEG. During the 
online feedback phase, the subject could then gradually receive feedback on the decoded 
movements, as the control signal of the robot was progressively switched from hand kinematics 
to EEG-based decoded trajectories. In this study, we used the signals collected during the 
calibration phase as training set, and the signals collected during the online feedback phase as 
test set, as performed in [21,22]. Therefore, the training and test sets were composed by 50 and 
60 trials (each one lasting 23 s), respectively.  

 

 
Figure 6.1 – (A) Schematics of the recording setup. (B) MS-Sinc-ShallowNet structure. The input had shape of 

(6, 8q) = (53,100), while the output of (;, 1) = (4,1). The main layers are listed on the right side, while block 

IDs are reported within brackets. Boxes represent the output feature maps of each layer, and colored rectangles 

represent convolutional and pooling (red) kernels. 

 
During the recordings, the 2-D positions and velocities of the right hand (e = 4) were 

recorded using an optical hand tracking module, together with the EEG signals from 64 [21] 
or 60 [22] electrodes placed on the scalp according to the 10-10 system, of which a common 
subset of 53 electrodes between the two studies (" = 53) was used here to perform trajectory 
decoding. Reference and ground electrodes were placed at the right mastoid and AFz, 
respectively. Additional electrodes were placed around the eyes to record the electrooculogram 
(EOG). Both the EEG and EOG signals were recorded at 500 Hz, while the hand trajectories 
with a variable sampling rate depending on the speed of the movement. The 2-D kinematic 
hand trajectories were low-pass filtered using a cut-off frequency of 4 Hz and downsampled at 
100 Hz. Regarding the EEG, a pre-processing similar to the ones in [21,22] was used; however, 
as in this study we were interested in leaving the learning system free to explore more 
frequency components than in [21,22], the EEG signals were band-pass filtered more broadly. 
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Specifically, the EEG pre-processing included: 1) Zero-phase, high-pass filtering (1st order 
Butterworth) with a cut-off frequency of 0.18 Hz; 2) Zero-phase, low-pass filtering (4th order 
Butterworth) with a cut-off frequency of 40 Hz; 3) Notch filtering at 50 Hz and 100Hz; 4) 
Downsampling at 100 Hz; 5) Bad channel marking via visual inspection, and linear 
interpolation from the 4 nearest neighboring channels; 6) Eye artifact correction based on 
SGEYESUB algorithm [45] (after fitting the algorithm on signals of the eyeruns); 7) Common 
average referencing; 8) Interpolation of the slow drifts/occasional electrode pops via HEAR 
algorithm [41] (fitting the algorithm on eye-corrected signals of the eyeruns).  

Subsequently, the signals were subjected to the processing reported in Equation 6.2, 
specifically by using $j = 100 (i.e., buffer of 1 s), and $" = 10 (i.e., stride of 0.1 s) for EEG 
trials belonging to the training set, while $" = 1 (i.e., stride of 0.01 s) for the ones belonging 
to the test set. This was performed to provide an inference on the test examples at the same 
sampling rate as the kinematics (i.e., 100 Hz), at the same time keeping limited the training 
time by using a higher stride for the training examples. That is, the number of training EEG 
chunks per trial resulted < = (2300 − 100)/10 + 1 = 201. 
 
6.2.3. The interpretable CNN for trajectory decoding: MS-Sinc-ShallowNet 

The ICNN developed in this study, named MS-Sinc-ShallowNet, is a modified version of 
an ICNN (Sinc-ShallowNet [32]) that we recently proposed for motor classification. 
Specifically, MS-Sinc-ShallowNet exploits the interpretable spectral and spatial feature 
extractor of Sinc-ShallowNet [32], placed (at variance with the latter) on top of a light multi-
scale (MS) temporal feature extractor. Overall, MS-Sinc-ShallowNet realizes an interpretable 
architecture that processes the input time series at multiple time scales. The adoption of the 
fully interpretable spectral and spatial feature extractor allows an easier interpretation of 
features useful to decode kinematics in the frequency and spatial domains, at the same time 
keeping limited the model size (defined by the number of trainable parameters). In addition, 
the adoption of a multi-scale temporal feature learning enables to learn relevant temporal 
patterns within different time scales simultaneously, without focusing only on one single time 
scale, a strategy that was already found beneficial while decoding motor [37–39] and cognitive 
[33,35] states from the EEG.  

MS-Sinc-ShallowNet (see Figure 6.1B) was composed by three main blocks, each defined 
by the sequence layers. Supplementary Table 6.1 reports additional details about the network. 
Here, the fundamental blocks are described. 

 
i. Interpretable spectral and spatial (ISS) feature extractor 

The first block was based on the first layers of Sinc-ShallowNet [32] and was devoted to 
separately learn spectral and spatial features from the input EEG chunk in an easy interpretable 
way. The very first layer of the ISS block was a temporal sinc-convolutional layer [32,46,47], 
learning e$?@@ = 16 filters with filter size f$?@@ = (1,51), unitary stride and zero-padding to 
preserve the number of input temporal samples. This temporal convolutional layer is devoted 
to filter each electrode signal in time. Thanks to the use of a sinc-convolutional layer to perform 
such processing step instead of a conventional convolutional layer, each convolutional filter 
can be forced to describe a band-pass filter in the temporal domain. Denoting with RU the l-th 
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convolutional kernel, in a conventional convolutional layer each filter value (i.e., RU[0, t], t ∈
[0,50]) has to be learned during the optimization process; conversely, in a sinc-convolutional 
layer, each filter value is defined by a parametrized function, forcing the overall filter 
distribution to belong to a specific subset of temporal filters (here only band-pass filters). 
Therefore, in a sinc-convolutional layer a re-parametrization of each kernel occurs: 
RU
A
v0, t; {J$,U , J(,U}w = 2J(,U4;tx,2yJ(,Ut/ − 2J$,U4;tx,2yJ$,Ut/, 0 ≤ = ≤ e$

?@@ − 1. (6.3) 
In Equation 6.3, {J$,U , J(,U} is the set of trainable parameters related to the l-th kernel, 

including only the inferior (J$,U) and superior (J(,U) cutoff frequencies of the band-pass filter. In 
this way, for each temporal filter the number of trainable parameters reduces from 51 (=
f$

?@@[0] ∙ f$
?@@[1]) to 2. Lastly, to alleviate the effects of the inevitable truncation of RU

A on the 
characteristics of each filter, the multiplication by a Humming window is performed:  

z
RB,U

Av0, t; {J$,U , J(,U}w = RU
Av0, t; {J$,U , J(,U}w ∙ {[t]

{[t] = 0.54 − 0.46 cos p
,CD

4ABCC[(]'(
q

. (6.4) 

Accordingly, the temporal sinc-convolution computes the convolution between the input 
and RB,U

A
v0, t; {J$,U , J(,U}w, learning only the following 2 parameters for each kernel: 

L"3G5H,U = £J$,U , J(,U§ ∈ L, 0 ≤ = ≤ e$
?@@ − 1.  (6.5) 

Thus, the output of this first layer consists of stacked feature maps containing band-pass 
filtered versions of the input EEG chunk within specific frequency ranges that were explicitly 
learned during training.  

Downstream the temporal sinc-convolutional layer, a spatial depthwise convolutional layer 
was introduced: for each band-pass filtered map, *(?@@ = 2 spatial filters were learned having 
size (", 1) and unitary stride, i.e., *(?@@ spatial combinations of electrodes were learned for 
each pass-band filtered map (*(?@@ indicates the depth multiplier). Therefore, a total number 
of e(?@@ = e$

?@@ ∙ *(
?@@ = 32 spatial filters were learned and constrained to have a norm upper 

bounded by x = 1 (kernel max-norm constraint). This type of convolution does not exploit 
dense connections across feature maps as in traditional convolutional layers, thus, reducing the 
number of trainable parameters. In addition, the combination of temporal sinc-convolution with 
spatial depthwise convolution provides an interpretable spectral-spatial feature learning, as 
each group of *(?@@ spatial filters is strictly tied to a specific band-pass filter, i.e., to a specific 
frequency range: 
L"3IH,U = {LU$, … LU- , … , LUJDBCC'(} ∈ L, 0 ≤ = ≤ e$

?@@ − 1, (6.6) 
indicating with LU- the k-th spatial filter (0 ≤ R ≤ *(

?@@ − 1) tied to the l-th band-pass filter. 
This combination enables the design of a fully interpretable spectral-spatial feature 

extractor, as the parameters of these two first convolutional layers (see Equations 6.5 and 6.6) 
directly provides the e$?@@ pair of cutoff frequencies of the band-pass filters and the associated 
*(

?@@ combinations of electrodes exploited to decode the input EEG trial. Hence, the 
interpretable features are:  

z
L?@@ = oL?@@,$, … , L?@@,U , … , L?@@,KABCC'(r

L?@@,U = ,L"3G5H,U , L"3IH,U/	
.  (6.7) 

Outputs of the ISS feature extractor were activated via an Exponential Linear Unit (ELU) 
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non-linearity [11], i.e., J(|) = |, | > 0 and J(|) = }|P(|) − 1, | ≤ 0, and dropout [49] was 
applied with dropout rate P = 0.5.  

 
ii. Dual-scale temporal (DST) feature extractor 

This block was designed to learn temporal features at two time scales from the feature maps 
provided by the ISS block. Two different and parallel time scales, hereafter called “large” and 
“short” scales, were used, realizing a sub-network consisting of 2 branches. Separable 
convolutions were used in each branch to reduce the number of trainable parameters [42], thus, 
realizing a light dual-scale temporal feature extractor. 

At first, each parallel branch included a temporal separable convolutional layer, defined by 
a temporal depthwise convolution followed by a pointwise convolution. The temporal 
depthwise convolutional layer learned one temporal pattern per input feature map (i.e., depth 
multiplier set to 1), unitary stride and zero-padding within each branch. However, it differed 
in the kernel size f$J@+ across the two branches, to learn features on different time scales. In 
particular,	f$J@+ = (1,51) and	f$J@+ = (1,25), respectively in the large and short scales, 
corresponding to learning temporal features within windows of approx. 500 and 250 ms. Then, 
the pointwise convolutional layer learned e(?@@ = 32 filters of size (1,1) with unitary stride, 
within each branch. This layer optimally recombined the feature maps provided by the 
depthwise convolution within each scale, separately. That is, at each time scale, one temporal 
pattern was learned, separately, for each feature map provided by the ISS layer (see Figure 
6.1B), and afterwards the optimal combinations of these activations were learned.  

Within each branch, the output provided by the temporal separable convolution was 
activated via ELU non-linearity, and average pooled with pool size and stride of f3J@+ =
(1,10) to reduce the number of time steps to be processed in the fully-connected layer of the 
following block (i.e., reducing from $j to $j//10, indicating with // the floor division operator). 
Lastly, dropout [49] was applied with dropout rate P = 0.5. 

 
iii. Regressor 

This block transforms the feature maps at the output of the DST block into the predicted 
trajectory values. At first, the feature maps provided by the two parallel branches were 
concatenated together and reshaped as an array with a single dimension. Then, the flattened 
feature maps were given as input to a fully-connected layer with 5 = e = 4 units, establishing 
dense connections with the input feature maps and constraining the weights of these 
connections to have a norm upper bounded by x = 1 (kernel max-norm constraint). 

The total number of trainable parameters was 8932 (see Supplementary Table 6.1). The 
main network hyper-parameters defining the ICNN block 1 and 2 (e.g., the number of band-
pass filters, number of spatial filters, and inclusion of batch normalization [50], etc.) and 
defining the network training (e.g., learning rate) were automatically searched in a preliminary 
analysis by performing Bayesian optimization [51] (see Section 6.6.2 of Supplementary 
Materials for further details). The configuration adopted for the ICNN (see Supplementary 
Table 6.1) was the most frequent configuration across the Bayesian-optimized models. In 
addition, a sensitivity analysis on the main structural hyper-parameters was conducted (see 
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Section 6.6.2 of Supplementary Materials), by changing one hyper-parameter at a time and 
evaluating the performance change compared to the adopted Bayesian-optimized architecture, 
to understand to what extent hyper-parameters affect the performance, as done in [29,32,33]. 
 
6.2.4. Training strategies 

In this study, we trained the ICNN with 3 different training strategies, by differently defining 
the training sets. It is worth noticing that the definition of the test set was the same across 
training strategies, enabling a fair comparison across them. The training strategies were: 

i. Within-subject (WS). Each subject-specific decoder was trained using the subject-
specific training set *("), consisting of the 50 trials of the calibration phase. The ICNNs, 
besides being trained using all the 50 training trials, were trained by using a progressively 
increasing number of trials, i.e., from 2 to 10 with a step of 2 trials, randomly sampling 
the trials to be included in the reduced training set by 10 times. This was performed to 
simulate practical BCI scenarios where limited training trials are available. Lastly, the 
test set was defined as the one belonging to the subject the ICNN was trained for, 
consisting of the 60 trials of the online phase. 

ii. Leave-one-subject-out (LOSO). Each decoder was trained using a cross-subject training 
set. Specifically, for each subject s, named “held-out subject”, the training sets of all 
other subjects were aggregated, i.e., *('") = £*(3)§, ∀P ∈ [0,12], P ≠ 4, denoting with 
“-s” the aggregation across subjects except the held-back one. Therefore, the training set 
comprised 12*50=600 training trials. Lastly, the test set was defined as the one belonging 
to the held-out subject (s-th subject). In this way we trained decoders that are cross-
subject, because of the training set, and subject-agnostic, as the test set is relative to the 
subject held out from the training set. 

iii. Transfer learning on single subjects (TL-WS). Transfer learning is inspired by the human 
ability to exploit the knowledge learned in a given domain/task to improve the 
performance and/or reduce the training time in a different but related domain/task [52]. 
In this strategy, the knowledge learned on other subjects was transferred to a new subject. 
As with the WS strategy, subject-specific training sets were used to train subject-specific 
decoders on the s-th subject, and, thus, the definition of the training and test sets was the 
same as in the WS strategy. However, differently from the WS strategy in which ICNNs 
were initialized randomly, in the TL-WS strategy ICNNs were initialized using the 
trainable parameters obtained during the LOSO strategy when the s-th subject was held-
back. Therefore, the knowledge learned during the LOSO strategy, which incorporated 
inter-subject variability from all other subjects except the held-back one, was transferred 
on the held-back subject. That is, in this strategy a different initialization is used, 
potentially representing a better initialization point in the parameter space than the 
random one, and possibly leading to an improvement in performance and/or to a 
reduction of the training trials needed to achieve high performance. Therefore, the TL-
WS strategy could be useful in a real-life scenario when a new user approaches the BCI 
and a calibration, as short as possible, is needed to design an accurate decoder. 

From the training trials, a validation set was selected by extracting the first 20% portion 
from each training trial, i.e., by extracting the first 20% of EEG chunks and the corresponding 
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kinematic values. The ICNN optimization consisted in the minimization of the mean squared 
error between the predicted and true trajectory values. Adaptive moment estimation (Adam) 
[53] was used as optimizer with learning rate =Ü = 1} − 4, mini-batch size á4 = 64, à( = 0.9 
and à, = 0.999 for computing the running averages of the gradient and its square, and â =
10'M	to improve numerical stability. The maximum number of epochs was set to 250 and the 
training ended when the validation loss did not decrease for 50 consecutive epochs (early 
stopping). Besides early stopping, MS-Sinc-ShallowNet directly implemented in its structure 
methodologies devoted to improve generalization, such dropout [49] and kernel max norm 
constraint. 

 
6.2.5. Interpretation of the spectral and spatial signatures encoding position and velocity 

Interpreting the features learned by MS-Sinc-ShallowNet in the WS strategy (L = L("), in 
WS strategy) can provide insights on the most relevant neural signatures of each subject in a 
data-driven way. The adopted ICNN structure provides interpretable parameters in the array 
L?@@

("). As the ICNN processes the input EEG chunks, it filters out motor-unrelated spectral 
and spatial components while preserving only ones most relevant for the trajectory decoding 
task. However, these features may have a different importance for the discrimination, meaning 
that a band-pass filtering in a peculiar frequency range and a subset of electrodes may be 
relevant to predict position and velocity. Therefore, an explanation technique (ET) was 
included to highlight the most relevant features (L?@@(")) of each subject for the decoding of 
positions and velocities. The proposed data-driven EEG analysis consists of the following 
steps. 

 
Spectral relevance computation 

To compute the relevance of each spectral component to predict the positions and velocities, 
we focused on the e$?@@ feature maps from the sinc-convolutional layer. These maps contain 
the input filtered with the learned band-pass filters. A schematization of the following steps is 
reported in Figure 6.2. 
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Figure 6.2 – Scheme of the spectral relevance computation. The learned ICNN spectral features %%/MXK,P

(%) , 0 ≤ * ≤
;+<)) − 1 are extracted and )P

(%)(") computed (blue boxes and lines). By combining the ICNN with an explanation 

technique, relevance scores related to each spectral feature are obtained (P,J
(%), B ∈ l)r , )s, [r , [sm (red boxes and 

lines). Then, spectral features and relevance scores are combined to derive the subject-specific spectral relevance 

of each frequency bin, XJ
(%)("), B ∈ {), [}. 

 
For the EEG chunks of the test set, we evaluated the relevance of each spatio-temporal 

sample in the feature map to decode the 2D position and velocity components. To do this, we 
computed saliency maps [43] to quantify, by using gradients, how much a spatio-temporal 
sample in each filtered input affects the prediction of each kinematic variable (Pt , Pu , kt , ku). 
Therefore, we obtained, for each output variable, one saliency map for each feature map of the 
first convolutional layer, i.e., }p∑%,0

(")
q:ℝ)×+p → ℝKABCC×)×+p. The so computed saliency maps 

were averaged across trials (∀;), chunks (∀Y), and in the temporal domain (∀ï, 0 ≤ ï ≤ $j −

1). By finally computing the absolute value, the vector quantities ℎU,L
(")
∈ ℝh

) , 0 ≤ = ≤ e$
?@@ −

1, Ö ∈ {Pt , Pu , kt , ku} can be obtained, with Ö indicating the output kinematic variable. Finally, 
the relevance score OU,L

(") was computed as: 

OU,L
(")
= ékO

5
pℎU,L

(")
q max

U
´ékO

5
pℎU,L

(")
q¨ò , 0 ≤ x ≤ " − 1, (6.8) 

with OU,L
(") being a scalar quantity ∈ [0,1] summarizing the importance of the l-th band-pass 

filter for the o-th variable. 
Subsequently, the frequencies belonging to the passband of the filter associated to the l-th 

feature map and defined by L"3G5H,U(") (see (5)) were assigned to the corresponding relevance 

score OU,L
("):  

ñ
PU
(")
(J) = 7

1, ;J	J$,U
(S)
≤ J ≤ J(,U

(")

0, }=4}{ℎ}Ü}

êU,L
(")(J) = OU,L

(")
∙ PU

(")(J)

,  (6.9) 
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where PU
(")(J) indicates the probability of a frequency J to be included in the passband of the 

l-th band-pass filter. Finally, the spectral relevance êL
(")(J), quantifying the relevance of each 

frequency bin for the o-th kinematic variable, was obtained as: 
êL
(")(J) = avg

U
êU,L
(")
(J).   (6.10) 

From a preliminary analysis, the spectral relevance êL
(")(J) resulted to be comparable across 

x- and y-axes for both position and velocity (permutation cluster test with threshold-free cluster 
enhancement [54], see Section 6.6.3 of Supplementary Materials). Therefore, the êL

(")(J) was 
averaged along the axes, thus, obtaining only one average spectral relevance profile ÜL

(")(J) for 
the position and one for the velocity, where the index o hereafter denotes the kinematic 
variable, i.e., Ö ∈ {P, k}: 

ñ
Ü3
(")(J) =

REt
(")(_)hREu

(")(_)

,

Ü:
(")(J) =

Rvt
(")(_)hRvu

(")(_)

,

.  (6.11) 

Finally, the spectral relevance for each kinematic variable was averaged within EEG bands 
(hereafter named “EEG band relevance”), in the delta (0.18-4 Hz), theta (4-8 Hz), alpha (8-13 
Hz), beta (13-30 Hz), and low-gamma (30-40 Hz) bands, so to identify the most relevant 
spectral features predicting the position or velocity. 

 
Spectral clustering and spatial relevance computation 

In a second processing stage, we performed clustering to reveal whether certain groups of 
subjects were sharing common neural signatures in the frequency domain, i.e., sharing similar 
patterns of relevance in the EEG rhythms. To do so, the EEG band relevance of both position 
and velocity was clustered using Hierarchical Density-Based Spatial Clustering of 
Applications with Noise (HDBSCAN) [55], and the correlation between observations as 
distance metric. As HDBSCAN does not require to specify the number of clusters as input 
parameter, the optimal number of clusters according to correlation is automatically learned 
from the observations. The EEG band relevance was chosen as it summarizes the features of 
the spectral relevance profile ÜL

(")(J) in a compact way (i.e., 2*5 features per subject, instead 
of 2*frequency bins per subject), being the clustering applied to a limited number of subjects 
(13 in this study).  

For each cluster, the following processing was performed. At first, the spectral relevance 
was averaged across subjects defining the cluster. Then, the spatial relevance was computed as 
follows. Let us denote with vJ$,> , J(,>w, 0 ≤ Ü ≤ 5=IDq" − 1 the r-th frequency range defining 
each EEG band (see previous step) and with 5=IDq" = 5 the number of bands. For the s-th 
subject and for the r-th frequency range we considered the subset of the ICNN band-pass filters, 
denoted as g	>

(")
, containing in their passband the frequency bins belonging to vJ$,> , J(,>w, and 

we extracted the spatial filters associated to this subset of band-pass filters, i.e., L"3IH,U(") =

oLU-
(")
r (see Equation 6.6), = ∈ g	>

(")
, 0 ≤ R ≤ *(

?@@ − 1. Spatial filters were considered in their 
absolute value, as done in [32,56]. Subsequently, the absolute spatial features	were averaged 
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together, electrode per electrode (∀x, 0 ≤ x ≤ " − 1), and normalized to the maximum across 
electrodes, obtaining the spatial relevance: 

π	>
(")
= avg

U∈@("),-
éá4(LU-

(")
) max

5
∫ avg
U∈@("),-

éá4(LU-
(")
)ªò .  (6.12) 

Lastly, π	>
(") was averaged across subjects defining the cluster. 

 
6.2.6. Performance metrics and state-of-the-art decoders 

Once trained, the ICNN was evaluated on the EEG chunks belonging to the test set, 
obtaining the predicted trajectories of the 2-D position and velocity during each trial. The 
predicted trajectories were compared with the recorded ones by computing, for each subject, 
the Pearson’s correlation coefficient (r) and the Root Mean Squared Error (RMSE). The 
proposed ICNN was compared with DeepConvNet and ShallowConvNet [29], representing 
two SOA CNNs performing single scale temporal feature learning but with a different depth: 
the first included 5 convolutional layers, while the second included 2 convolutional layers. 
These networks were originally proposed for motor imagery and execution classification from 
EEG signals sampled at 250 Hz. Therefore, we modified the activation function of the CNN 
last layer to solve regression instead of classification (i.e., linear instead of softmax activation). 
In addition, kernels (both convolutional and pooling) operating in the temporal domain were 
scaled down in their size by a factor of 2, due to the different sampling rate adopted in the 
original implementation, as done in [30,32]. Except for these changes, SOA CNNs were used 
with their original hyper-parameters, as proposed in Schirrmeister et al. [29]. Lastly, we 
compared our ICNN to a more traditional SOA algorithm, the non-linear PLS+UKF decoder 
as proposed in Kobler et al. [13], which was carefully designed to alleviate the amplitude 
mismatch problem characterizing linear decoders.  

The same data preparation used for the ICNN (see Sections 6.2.1 and 6.2.2) was used for all 
SOA decoders, i.e., DeepConvNet, ShallowConvNet [29], and PLS+UKF [13]. In addition, the 
SOA CNNs were trained using the same training hyper-parameters (i.e., optimizer, learning 
rate, batch size, etc.) as those used for our ICNN, to provide a fair comparison. 
 
6.2.7. Statistical analyses 

The following statistical analyses were conducted. 
i. To compare the proposed ICNN with the SOA, for each predicted trajectory (i.e., 

Pt , Pu , kt , ku), a pairwise comparison was performed between the performance obtained 
with MS-Sinc-ShallowNet and each SOA decoder, both trained using WS strategy (12 
total tests).  

ii. The performance obtained with MS-Sinc-ShallowNet trained with the WS strategy and 
with the LOSO strategy were compared via a pairwise comparison for each predicted 
trajectory (4 total tests). 

iii. To compare the potential benefit in transferring the knowledge on a new subject from a 
pre-trained network on other subjects, for each trajectory and each number of training 
trials (see Section 6.2.4), a pairwise comparison was performed between MS-Sinc-
ShallowNet trained using WS strategy and using TL-WS strategy (20 total tests). 
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iv. A Friedmann test was performed to compare the EEG band relevance across bands, 
separately for position and velocity. Then, as significant differences were found (see 
Section 6.3.2), post-hoc pairwise comparisons were performed testing all combinations 
(10 total tests), separately for position and velocity. This analysis was performed to 
evaluate which EEG band was the most relevant for decoding position and for decoding 
velocity. 

Pairwise comparisons were performed using Wilcoxon signed-rank tests and false discovery 
rate correction at V = 0.05 (Benjamini–Hochberg [57]) to correct for multiple tests. 
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6.3. RESULTS 

6.3.1. Performance 
Figure 6.3 reports the performance metrics obtained with MS-Sinc-ShallowNet and with 

SOA decoders, trained using the WS strategy, together with the results of the statistical 
analysis. When comparing MS-Sinc-ShallowNet to the PLS+UKF algorithm, the two decoders 
scored comparable Pearson’s correlation coefficients for all the decoded trajectories. However, 
the proposed ICNN scored significantly lower RMSEs than the PLS+UKF algorithm for all 
decoded trajectories (P < 0.05), reflecting a better amplitude reconstruction, especially for the 
prediction of the velocity components (P < 0.001). Compared to the others SOA CNNs, MS-
Sinc-ShallowNet significantly outperformed ShallowConvNet in both correlations and RMSEs 
(P < 0.01), and scored comparable correlations as DeepConvNet, though outperforming it as 
to the RMSEs in the x-axis. 

 
Figure 6.3 – Performance comparison between MS-Sinc-ShallowNet and state-of-the-art (SOA) decoders. 

Pearson’s correlation coefficients (r, on the left) and RMSEs (on the right) for each decoded variable 

()r , )s, [r , [s) scored with MS-Sinc-ShallowNet and SOA decoders, including DeepConvNet (red), 

ShallowConvNet (black), and PLS+UKF (magenta) are reported. All decoders were trained according to the 

within-subject strategy. The number of trainable parameters introduced in the CNNs is included within brackets 

in the legend. Smaller dots represent the performance metric scored for each subject, while bigger dots represent 

the median of each distribution and whiskers represent the 25th and 75th percentile. Significant corrected 

(Benjamini–Hochberg [57]) p-values are reported (*p<0.05, **p<0.01, ***p<0.001). 

 
The decoding performance of MS-Sinc-ShallowNet was further investigated by adopting 

additional training strategies, such as the LOSO strategy and the TL-WS strategy. In Figure 
6.4 the performance obtained with MS-Sinc-ShallowNet trained in LOSO is reported. As 
expected, due to the inter-subject EEG variability, significantly lower correlations were scored 
in LOSO compared to WS strategy (P < 0.001). However, LOSO models can be used to enable 
other training strategies such as TL-WS, where the knowledge learned from the other subjects 
is used as initial point for training the network on a new subject. Figure 6.5 shows the decoder 
performance, as measured by the Pearson’s correlation coefficient, when TL-WS strategy was 
adopted, using a progressively increasing number of training trials that were randomly sampled 
from the training set of the held-out subject. Here, 2, 4, 6, 8, 10 training trials were randomly 
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sampled 10 times from the overall training set. For each reduced training set, the performance 
obtained by the WS decoders are reported together with the TL-WS performance, to highlight 
the potential benefit of transfer learning compared to the random initialization used in the WS 
strategy. 
 

 
Figure 6.4 – Performance obtained with the leave-one-subject-out (LOSO) strategy. Pearson’s correlation 

coefficient (r) is reported for each decoded variable obtained with MS-Sinc-ShallowNet trained in the LOSO 

strategy (black). The within-subject (WS) performance (blue) is reported too (same as the ones reported in Figure 

6.3). Significant corrected (Benjamini–Hochberg [57]) p-values are reported (*p<0.05, **p<0.01, ***p<0.001). 

 

 
Figure 6.5 – Performance obtained while transferring the knowledge on single subjects (TL-WS). Pearson’s 

correlation coefficient (r) is reported for each decoded variable ()r , )s, [r , [s) obtained when training MS-Sinc-

ShallowNet with a more compact training set sampled from the original training set, by randomly sampling 2, 4, 

6, 8, 10 trials by 10 times (see Section 6.2.4). MS-Sinc-ShallowNet was trained by adopting a random initialization 

(black), corresponding to the WS strategy, or importing weights from a pre-trained network with LOSO strategy 

(blue), corresponding to the TL-WS strategy. Significant corrected (Benjamini–Hochberg [57]) p-values are 

reported (*p<0.05, **p<0.01, ***p<0.001). 

 
Remarkably, transfer learning was found to be widely beneficial across the decoded 

variables (Pt , Pu , kt , ku), especially when using extremely compact training sets, e.g., with only 
2, 4 training trials, providing significant improvements in performance for all variables. 
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Furthermore, significant improvements were maintained also when using more training trials 
(e.g., 6, 8, 10) for the position and velocity along the x-axis. 
 
6.3.2. Spectral and spatial relevance related to position and velocity 

The spectral relevance and the EEG band relevance are reported in Figure 6.6 respectively 
within the top and bottom panels. The frequency components in the delta band are the ones 
with highest relevance, for both position and velocity. This is further confirmed by the 
statistical analysis of the EEG band relevance: for both position and velocity, significant 
differences were found in the EEG band relevance across bands (P < 0.001, Friedmann test) 
and, in particular, these significant differences resulted between delta and each of the other 
bands (theta, alpha, beta, low-gamma, P < 0.001 post-hoc pairwise tests).  
 

 
Figure 6.6 – Spectral relevance (top) and EEG band relevance (bottom) of position (black) and velocity (blue), 

as obtained with the proposed ICNN+ET analysis. Mean and standard error of the mean across subjects of the 

spectral relevance (thick line and shaded area) and of the EEG band relevance (height of the bars and error bar) 

are reported. 

 
When clustering the subjects based on EEG band relevance two clusters were obtained from 

the HDBSCAN algorithm (cluster 0 with 6 subjects, cluster 1 with 7 subjects). The clusters 
gave information on the most common strategies picked by the ICNN in the frequency domain 
to decode position and velocity. From Figure 6.7, it is evident that the delta band had the highest 
relevance in both clusters, meaning that the delta band was widely exploited across subjects. 
Nevertheless, subjects in cluster 0 additionally exhibited relevance of higher frequency ranges 
such as alpha, beta and low-gamma, for the decoding task. Regarding the spatial relevance, this 
was investigated separately for each cluster. According to the results of spectral relevance 
analysis (upper panels of Figure 6.7), we considered the spatial relevance in the delta range for 
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both clusters and, in addition, in the alpha, beta and low-gamma ranges for cluster 0. In these 
EEG bands, the most relevant electrodes to decode hand position and velocity covered the 
contralateral central/centro-parietal and parietal/parieto-occipital sites. 

 

 
Figure 6.7 – Cluster analysis of spectral features and spatial features encoding kinematics. Two clusters were 

obtained: cluster 0 (left) with 6 subjects, and cluster 1 (right) with 7 subjects. The number of subjects is reported 

within brackets. For each cluster, mean and standard error of the mean across subjects of the EEG band relevance 

(height of the bars and error bar, on top) and of the spectral relevance (thick line and shaded area, on bottom) are 

reported. Lastly, the spatial relevance linked to the analyzed EEG bands (black lines on the x-axis) is displayed. 
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6.4. DISCUSSION 

In this study, a light and interpretable CNN was designed and validated for EEG-based 
trajectory decoding of 2-D position and velocity during a pursuit tracking task. The ICNN was 
designed to learn interpretable spectral and spatial features in its first layers, while learning 
deep temporal features at two different time scales. ICNN layers were designed to ensure a 
limited model size, e.g., by adopting interpretable, depthwise and separable convolutions. 
Conversely to the SOA, in which trajectory decoding is mostly performed by exploiting LF-
EEG, in this study the learning system was left free to explore also higher frequencies EEG 
components, potentially encoding kinematic information. The proposed light ICNN was 
compared to other SOA CNNs [29], previously validated for motor classification and adapted 
here for trajectory decoding, and to the SOA non-linear PLS+UKF algorithm proposed for 
trajectory decoding by Kobler et al. [13]. Furthermore, the ICNN was trained with different 
strategies including within-subject, leave-one-subject-out, and transfer learning, to test the 
potentialities of the ICNN under different practical scenarios involving more variable or 
compact calibration sets. Lastly, the increased interpretability of ICNN spectral and spatial 
features, was coupled with an ET to highlight the most relevant neural signatures encoding 
position and velocity, as learned by the learning system in a data-driven way. 
 
6.4.1. Performance 

The correlations between the predicted and actual hand kinematics obtained via the 
proposed ICNN were comparable to those obtained via the traditional non-linear PLS+UKF 
decoder, but with a significantly better amplitude reconstruction, as denoted by the 
significantly lower RMSEs scored by the ICNN (see Figure 6.3). This is of relevance as, despite 
the adopted non-linear PLS+UKF was designed to alleviate the amplitude mismatch problem 
in trajectory decoding [13], the proposed non-linear decoder based on an interpretable deep 
neural network provided a better estimation of both positions and velocities. 

Compared to the other tested SOA CNNs, our CNN was lighter, introducing only about 9K 
trainable parameters compared to about 273K and 87K trainable parameters of DeepConvNet 
and ShallowConvNet, respectively, and resulting in a design more suitable for small datasets. 
In addition, our CNN by integrating layers devoted to ease the interpretability, i.e., employing 
an interpretable spectral and spatial feature extractor based on sinc- and depthwise 
convolutions, resulted more interpretable in the learned spectral and spatial features than SOA 
CNNs that employ standard convolutions. The increased interpretability was implemented by 
exploiting a re-parametrization that limits the ICNN to explore only band-pass filters in the 
temporal domain. Despite this solution reduced the capacity of the learning system (i.e., the 
ability of approximating a wide variety of functions), the ICNN outperformed ShallowConvNet 
both in terms of correlations and RMSEs, and performed similarly or slightly better than 
DeepConvNet. Therefore, overall, the proposed decoder performed on par or even 
outperformed heavier and less interpretable CNN designs, representing a better trade-off 
between performance, interpretability, and model size. 

Lastly, it is worth noticing that for all decoders correlations were lower for trajectories 
predicted in the y-axis than in the x-axis, as found in a previous study on a subset of the adopted 
dataset [22]. This might be related to the experimental setup, where the screen was tilted 
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towards the y-axis to facilitate the movements of the robot. Thus, the perception of movements 
of the moving object along the y-axis may be ambiguous in comparison with the ones along 
the x-axis [22].  

From the sensitivity analysis on the hyper-parameters (see Section 6.6.2 of Supplementary 
Materials), a reduction in the number of band-pass filters and spatial filters resulted in general 
detrimental in terms of performance. Conversely, by increasing the number of filters, only 
small performance improvements were observed, suggesting that the adopted ICNN 
architecture (see Section 6.2.3 and Supplementary Table 6.1 for details about the hyper-
parameters) already had enough capacity for trajectory decoding. Interestingly, despite CNN-
based motor classification proved that batch normalization provides a significant improvement 
in performance [29,30,32,47], this technique worsened the performance in the trajectory 
decoding problem addressed in this study. This may be due to low capacity of the ICNN, which 
might require less regularization, and to the different nature of the decoding problem. Indeed, 
batch normalization was mainly adopted in the literature in classification problems from single 
EEG trials [29,30,32,47], while in this study we aimed to solve a regression problem from 
overlapped EEG chunks extracted from EEG trials.  

The ICNN was further evaluated by testing its ability to transfer the knowledge learned from 
other subjects to a held-out subject, with the aim of reducing the training time of the decoder. 
To perform transfer learning, an architecture pre-trained on other subjects (different from the 
held-out one) was used, corresponding to the LOSO model (see Figure 6.4). TL-WS results 
(Figure 6.5) highlighted a significant increase in decoding performance when using transfer 
learning (up to a median increase of 0.18 in correlations), especially in case of the lowest data 
regime (e.g., 2, 4 training trials). Therefore, the LOSO model, by capturing relevant cross-
subject features, resulted a significantly better initialization point in the parameter space than 
the random one, for training the network on a new subject. These results suggest that the 
proposed interpretable non-linear decoder, besides improving amplitude reconstruction 
compared to SOA non-linear PLS+UKF, was also capable of transferring the knowledge from 
other subjects, enabling its usage with extremely compact-sized training sets. This could have 
prospective implication for a practical usage of the decoder in BCI systems, thanks to the 
potentiality of TL of reducing training times during BCI sessions.  
 
6.4.2. Spectral and spatial relevance related to position and velocity 

We took advantage of the proposed ICNN combined with ET (ICNN+ET algorithm) to 
highlight the relevant neural signatures encoding position and velocity in the frequency 
domain. For both kinematic variables, the delta band resulted to be the most relevant EEG band 
(see Figure 6.6), while higher frequency ranges (e.g., alpha, beta and low-gamma) appeared to 
be relevant, in addition to delta, with more variability across subjects. The involvement of these 
bands in addition to the delta band might reflect the involvement of sensorimotor rhythms. 
Specifically, the contributions of higher frequency ranges emerged while analyzing the spectral 
relevance and the EEG band relevance at the level of each cluster of subjects. As reported in 
Figure 6.7, the relevance for the delta band resulted the highest for both clusters, and the two 
clusters of subjects did not differ for the delta contribution; however, one of the two clusters 
(cluster 0) additionally showed higher relevance values for higher frequencies, like alpha, beta 
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and low-gamma ranges, with respect to the second (cluster 1). This result suggests that the 
ICNN widely exploited the delta band across all subjects, while the contribution of higher 
frequency ranges to solve the decoding problem was modulated depending on the subject-
specific neural signatures.  

The highest relevance found for the delta band agrees with what has been reported in 
literature, supporting the hypothesis that the low-frequency (< 3 Hz) band of the EEG overall 
contains highly relevant information for the decoding of voluntary movement [14–
16,18,19,21,22], and widely across subjects. The results further suggest that higher frequency 
ranges like beta and low-gamma also have a role and carry information about the movement, 
although the extent of their contribution is more variable across subjects. This is in line to what 
already was observed in [20], where circular arm movements were decoded from both low-
frequency amplitude features and higher-frequency power features. In particular, while the 
trajectories could be reconstructed from all subjects when using the low-frequency features, 
they could not always be successfully estimated when using the higher-frequency components 
alone [20]. 

Previous decoding studies suggested how the kinematic information can be best decoded 
from amplitude features in the low-frequency range, however, power features should be used 
for higher frequencies [16,17,20], as they likely reflect the well-known modulation of 
sensorimotor rhythms with voluntary movement. Provided that, in our approach, the network 
takes as input the amplitude of the signal in a wider frequency range, it might appear like the 
amplitude features only are used, independently of the frequency content. It should, however, 
be noted that the CNN generally approximates a non-linear function, which may produce an 
equivalent effect of computing the power of the signal. Therefore, it might not be excluded that 
non-linear features extracted from the signal (equivalent, for example, to computing the power) 
are being exploited by the network at higher frequency components, with the advantage that 
the band-width of the filters is not to be determined “a-priori”, but is automatically learned by 
the network, according to the most relevant and subject-specific content to solve the decoding 
task. 

Through the spatial relevance analysis, we examined which electrodes were more important 
for encoding position and velocity inside relevant EEG bands. The electrode sites encoding 
more kinematics were the ones approximately covering the sensorimotor and parieto-occipital 
area. Especially, across frequency bands, the most relevant electrodes were covering the 
contra-lateral (i.e., left) primary sensorimotor areas (Figure 6.7), therefore likely reflecting the 
modulations of sensorimotor rhythms accompanying voluntary movement, and in line with the 
findings of previous studies [17,20,58]. Nevertheless, along with the sensorimotor areas, the 
ICNN was found to rely also on parieto-occipital sites to decode the kinematics, similarly to 
the findings of [15,21,22] for the delta band, and [16,17,20] for the beta band. This could be 
explained by the nature of the task, which not only involved the hand movement, but also visual 
processing and eye-hand movement coordination [59]. 
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6.5. CONCLUSIONS 

In this study we proposed a novel light and dual-scale ICNN for trajectory decoding, that 
learns interpretable spectral and spatial features, and deep temporal features at two time scales. 
At variance with the SOA of trajectory decoding, the ICNN was not only restricted to using 
low frequency EEG but was left free to exploit also higher frequencies. The ICNN provided a 
significant better amplitude reconstruction compared to a more traditional non-linear decoder 
based on PLS+UKF. Thus, future non-linear decoders for trajectory decoding may benefit from 
using the proposed ICNN to better reconstruct the amplitude of movements, and to provide a 
more natural control of actuators in BCIs. Furthermore, the proposed ICNN performed on par 
or even outperformed other SOA CNNs, at the same time providing a more interpretable 
spectral and spatial feature learning and a lighter design. Therefore, compared to SOA CNNs, 
our decoder resulted a better compromise between interpretability, performance and model 
size. 

In addition, transfer learning significantly improved the performance especially when using 
few training trials and, thus, could enable a reduction of BCI calibration times in future studies. 
All these results contribute to the development of accurate and plug-and-play decoders for 
trajectory decoding. 

Next, in this study we exploited the interpretable structure of the proposed non-linear 
decoder to design an ICNN+ET algorithm devoted to analyzing the spectral and spatial features 
that mostly encode position and velocity. This analysis enabled to leverage the automatic 
feature learning of the ICNN to provide useful data-driven representations in the frequency and 
spatial domain about the underlying neural processes. The analysis of spectral features widely 
matched across subjects the well-known delta relevance for trajectory decoding. However, in 
addition to delta, the results of the ICNN+ET analysis confirmed that for some subjects also 
alpha, beta and low-gamma may encode relevant position and velocity information for 
decoding, although this second feature is exploited less consistently across subjects. Lastly, the 
analysis of spatial features showed that sensorimotor and parieto-occipital sites most encode 
the position and velocity, in line with previous studies and with the visuomotor nature of the 
task. All these results suggest that the ICNN+ET algorithm was capable of characterizing the 
neural encoding of position and velocity, and that future studies may benefit from using the 
proposed ICNN+ET algorithm to analyze the most relevant neural features related to 
kinematics. 
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6.6. SUPPLEMENTARY MATERIALS 

6.6.1. Continuous trajectory decoding from the EEG 
To perform continuous decoding of 2-D positions and velocities, the CNN input was a buffer 

of EEG data (“EEG chunk”), consisting of $j time samples of the multi-variate input time 
series recorded during each trial (see Section 6.2.2), extracted with a stride of $" samples. This 
procedure is reported in the Supplementary Figure 6.1 and described in Section 6.2.1. 
 

 
Supplementary Figure 6.1 – Schematic of the extraction of EEG chunks and trajectory values from EEG trials. 
Each red shaded area (top) denotes the buffer of EEG data forming the EEG chunk, and its 4 associated red dots 

(bottom) denote the kinematic values. 
 
6.6.2. Hyper-parameter search and hyper-parameter sensitivity analysis 

To select the optimal hyper-parameters defining the architecture and to train the 
architecture, Bayesian optimization [51] was performed while training within-subject models. 
The searched hyper-parameters were f$?@@, e$?@@, *(?@@, the number of parallel branches each 
learning features at a different time scale (5"), e(J@+, use of batch normalization [50], P, and 
the learning rate. The meaning of these symbols is described in the Sections 6.2.1 and 6.2.3. 
Batch normalization [50] normalizes the network intermediate outputs, speeding up training, 
reducing the influence of a specific parameter initialization scheme, and introducing a 
regularizer effect. SOA CNNs widely exploit this normalization for motor classification 
problems (e.g., [29,30,32,47]). To evaluate whether this technique could be useful also for 
trajectory decoding, batch normalization was applied to the output of each convolutional layer 
before the activation function, as suggested in [50]. The following procedure was performed 
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to select the kernel sizes of the multi-scale temporal feature extractor. At first, the kernel size 
of the largest scale was set the same as the searched value of f$?@@, denoting the temporal 
kernel size of the first layer. Then, depending on the number of scales selected, the kernel size 
of the i-th parallel branch (1 ≤ ; ≤ 5") is defined automatically as (1, f$?@@[1]/;), 1 ≤ ; ≤ 5", 
taking the nearest odd number, e.g., when f$?@@ = (1,51), then kernel sizes of the multiple 
scales are set to (1,51) and (1,25) if 5" = 2, or (1,51), (1,25), (1,17) if 5" = 3. Bayesian 
optimization was performed for 100 iterations using the validation loss as metric to minimize, 
tree-structured Parzen estimator as surrogate function and expected improvement as selection 
function. The optimal configuration of the ICNN was selected as the most frequent one across 
the subject-specific Bayesian-optimized models and corresponds to the one described in 
Supplementary Table 6.1. Details on the source space are reported in Supplementary Table 6.2. 
 
Supplementary Table 6.1 –MS-Sinc-ShallowNet. Each layer is provided with its name, main hyper-parameters, 

number of trainable parameters, and output shape. See Sections 6.2.1 and 6.2.3 for the meaning of the symbols. 

In all layers, where not specified, stride (2) and padding (3) were set to (1,1) and (0,0), respectively. 

Block Layer name Hyper-parameters Number of tr. 
parameters 

Output shape 

 Input ;+ = 1 0 (1,53,100) 

ISS Sinc-Conv2D ;+<)) = 16, <+;,, = (1,51), 
3+;,, = (0,25) 

32 (16,53,100) 

Depthwise-Conv2D I.<)) = 2, ;.<)) = 32, 

<.<)) = (53,1), W = 1 

1728 (32,1,100) 

ELU  0 (32,1,100) 

Dropout ) = 0.5 0 (32,1,100) 

DST-large 
scale 

Separable 

(Depth.+Point.)-

Conv2D 

;.w)0 = 32, <+w)0 = (1,51),  
I+w)0 = 1, 3+w)0 = (0,25) 

2720 

(1664+1056) 

(32,1,100) 

ELU  0 (32,1,100) 

AvgPool2D </w)0 = (1,10) 0 (32,1,10) 

Dropout ) = 0.5 0 (32,1,10) 

DST-short 
scale 

Separable 

(Depth.+Point.)-

Conv2D 

;.w)0 = 32, <+w)0 = (1,25), 
I+w)0 = 1, 3+w)0 = (0,12) 

1888 

(832+1056) 

(32,1,100) 

 ELU  0 (32,1,100) 

 AvgPool2D </w)0 = 2/w)0 = (1,10) 0 (32,1,10) 

 Dropout ) = 0.5 0 (32,1,10) 

Regressor Concatenate  0 (64,1,10) 

Flatten  0 (640) 

Fully-Connected O = ;, W = 1 2564 (4) 

   8932  

 
Then, the main hyper-parameters of the proposed ICNN were investigated by changing one 

hyper-parameter at a time and evaluating the change in the performance, i.e., performing a 
sensitivity analysis on the hyper-parameters, as performed to study hyper-parameters in 
[29,32,33]. Hereafter, the ICNN with the baseline hyperparameters defined in Supplementary 
Table 6.1, will be referred as “baseline” architecture. Then, we changed the value of one hyper-
parameter at a time of the baseline architecture, realizing a “variant” architecture. Both 
architectural (i.e., parameters affecting the overall architecture design) and training hyper-
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parameters were investigated (i.e., parameters influencing the training). These were: 
i. The number of trainable band-pass filters in Block 1 (e$?@@). In the baseline architecture, 

16 band-pass filters were learned. To investigate designs using less or more filters, two 
variant architectures were developed, by setting e$?@@ = 8 or e$?@@ = 32. Of course, 
using less or more filters is associated to a reduced or increased model size, respectively. 

ii. The number of spatial filters tied to each band-pass filter in Block 1 (*(?@@). In the 
baseline architecture, 2 spatial filters were learned for each band-pass filter. To 
investigate designs using less or more spatial filters, two variant architectures were 
developed, by setting *(?@@ = 1 or *(?@@ = 4. Of course, using less or more filters is 
associated to a reduced or increased model size, respectively. 

iii. The inclusion of batch normalization [50]. In the baseline architecture, batch 
normalization was not adopted. To evaluate whether this technique could be useful also 
for trajectory decoding, batch normalization was included in the architecture, as specified 
at the beginning of Section 6.6.2 of Supplementary Materials. 

 
Supplementary Table 6.2 – Searched hyper-parameters of MS-Sinc-ShallowNet: distributions and admitted 

values sampled during Bayesian optimization. Curly brackets denote discrete admitted values, while square 

brackets denote interval of admitted values.  

Hyper-parameter Distribution Values 
<+<)) uniform {(1,25), (1,51)} 

;+<))  uniform {8,16,32,64} 

I.<))  uniform {1,2,4} 

O%  uniform {1,2,3} 

;.w)0  uniform {;+<)) ∙ I.<)), 1, 2, 4} 

Use of batch norm. uniform {False, True} 

)  uniform {0, 0.25, 0.5} 

Learning rate log-uniform [1e-5, 1e-2] 

 
Performance metrics were computed for these variant conditions as described in Section 

6.2.6. The performance difference between each of the previously described variants and the 
baseline architecture was computed. Then, for brevity the performance difference was 
averaged across x- and y-axis components, and the effect of each hyper-parameter was studied 
for position and velocity, separately. The performance of the baseline MS-Sinc-ShallowNet 
was compared with the performance obtained with each variant MS-Sinc-ShallowNet design 
with pairwise comparisons (10 total tests). Pairwise comparisons were performed using 
Wilcoxon signed-rank tests and false discovery rate correction at V = 0.05 (Benjamini–
Hochberg [57]) to correct for multiple tests. 

Correlation and RMSE differences between variant ICNNs and the baseline ICNN are 
reported in Supplementary Figure 6.2, together with the results of the statistical analysis. 
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Supplementary Figure 6.2 – Sensitivity analysis on the main ICNN hyper-parameters. Difference of the 

Pearson’s correlation coefficients (∆X in Supplementary Figure 6.2A) and of the RMSE (∆pd2q, in 

Supplementary Figure 6.2B) between each MS-Sinc-ShallowNet variant and the baseline MS-Sinc-ShallowNet, 

both trained in within-subject (WS) strategy. Smaller dots represent the performance difference for each subject, 

while bigger dots represent the median of each distribution and whiskers represent the 25th and 75th percentile. 

Significant corrected (Benjamini–Hochberg [57]) p-values are reported (*p<0.05, **p<0.01, ***p<0.001). 

 
In addition to significant higher RMSE (P < 0.05), significantly lower correlations were 

obtained when using a lower number of band-pass filters in Block 1 (P < 0.05), and when 
including batch normalization (P < 0.01), for both position and velocity. Lower correlations 
(P < 0.05) were also found when using less spatial filters in Block 1, but with a significant 
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worsening in performance only for velocity component. Using more filters in Block 1 (both 
band-pass and spatial filters) only slightly increased the performance, with a small but 
significant (P < 0.05) improvement for position correlations. 

 
6.6.3. Spectral relevance comparison across directions 

In this study, the spectral relevance was computed for each decoded trajectory, i.e., 
Pt , Pu , kt , ku, see Equation 6.10, and is reported in Supplementary Figure 6.3 for each 
coordinate. A permutation cluster test with 5000 permutations and by using threshold-free 
cluster enhancement [54] was performed between the relevance values in the x- and y-axes, 
separately for position and velocity. This was done to test whether there are significant 
differences between the two different directions. No significant differences were obtained, 
highlighting that the spectral relevance between the two directions was comparable. 

 

 
Supplementary Figure 6.3 – Spectral relevance for position and velocity. The spectral relevance is reported in 

its mean value (tick line) and standard error of the mean (shaded area) across subjects. 
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CHAPTER 7: DESIGN OF A CNN FOR NEURONS’ SPIKING 
RATE DECODING 

The study reported in this chapter refers to the published journal paper entitled “Decoding 
sensorimotor information from superior parietal lobule of macaque via Convolutional Neural 
Networks” M. Filippini, D. Borra, M. Ursino, E. Magosso, P. Fattori, Neural Networks, 2022. 
In this study we adopted CNNs for neurons’ spiking rate decoding. Both classification and 
regression problems were addressed, to provide a more complete evaluation of CNNs. In 
addition, the CNN structure was kept light, and the hyper-parameters were optimized via an 
automatic hyper-parameter search algorithm. 

 
Despite the well-recognized role of the posterior parietal cortex (PPC) in processing sensory 

information to guide action, the differential encoding properties of this dynamic processing, 

as operated by different PPC brain areas, are scarcely known. Within the monkey's PPC, 

the superior parietal lobule hosts areas V6A, PEc, and PE included in the dorso-medial 

visual stream that is specialized in planning and guiding reaching movements. Here, a 

Convolutional Neural Network (CNN) approach is used to investigate how the information 

is processed in these areas. We trained two macaque monkeys to perform a delayed reaching 

task towards 9 positions (distributed on 3 different depth and direction levels) in the 3D 

peripersonal space. The activity of single cells was recorded from V6A, PEc, PE and fed to 

convolutional neural networks that were designed and trained to exploit the temporal 

structure of neuronal activation patterns, to decode the target positions reached by the 

monkey. Bayesian Optimization was used to define the main CNN hyper-parameters. In 

addition to discrete positions in space, we used the same network architecture to decode 

plausible reaching trajectories. We found that data from the most caudal V6A and PEc areas 

outperformed PE area in the spatial position decoding. In all areas, decoding accuracies 

started to increase at the time the target to reach was instructed to the monkey, and reached 

a plateau at movement onset. The results support a dynamic encoding of the different phases 

and properties of the reaching movement differentially distributed over a network of 

interconnected areas. This study highlights the usefulness of neurons’ firing rate decoding 

via CNNs to improve our understanding of how sensorimotor information is encoded in PPC 

to perform reaching movements. The obtained results may have implications in the 

perspective of novel neuroprosthetic devices based on the decoding of these rich signals for 

faithfully carrying out patient's intentions. 
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7.1. INTRODUCTION 

The posterior parietal cortex (PPC) houses several areas implicated in the integration of 
sensory stimuli (e.g., visual, somatosensory) to guide interaction with the surrounding 
environment [1,2]. Sensory information flows through different parietal areas, and different 
steps of integration support the movement control required for the interaction. A first functional 
subdivision was proposed by Ungerleider and Mishkin [3,4] with the division into ventral 
stream, from occipital to temporal lobe, the what way, and dorsal visual stream, to the parietal 
lobe, the where way. Subsequent division of the dorsal pathway into medial and lateral streams 
attributed the superior parietal lobule (SPL) to the branch of the medial dorsal stream, which 
host areas implicated in the spatial control of the action, against the areas of the inferior parietal 
lobule, more involved in the control of the properties of grasping [5,6]. In humans, lesions 
localized in the SPL lead to severe deficits in estimation and awareness of the spatial position 
of objects to be reached, such as those reported in optic ataxia [7,8].  

Within PPC, V6A, PEc and PE are three contiguous areas located in the medial part of the 
SPL. V6A, the most caudal area of the SPL, hosts neurons modulated by different parameters 
linked to visuomotor coordination, including gaze signals [9–11], direction and amplitude of 
reaching [12,13] and spatial attention [14]. Rostrally to V6A, PEc maintains visual and reach 
related modulations but corroborated by increasing somatosensory inputs [15,16]. Finally, PE 
strongly respond to proprioceptive stimulation with a limited presence of visual information 
[17,18]. The segregated functional properties of these areas support the idea that caudal SPL 
(V6A) encodes for spatial position of targets, while rostral areas (PEc-PE) actively support the 
movement control and execution relying on prominent sensory feedbacks [15,16,19,20]. Given 
the latency in the feedback inputs, the system must implement an internal model of surrounding 
environment (and the consequences of actions performed in the environment) and expected 
feedbacks. Indeed, comparing expected with real feedback enables a much more powerful 
dynamical interaction with the environment. This model has been proposed to run in the PPC 
[21–23].  

Despite the presence of numerous studies, a clear understanding of how these PPC’s areas 
differentially encode visuomotor information to dynamically guide action is still lacking. In 
particular, these areas have been mostly characterized at single cell level [13,15,18] while, at 
the best of our knowledge, no work has comprehensively considered and directly compared the 
dynamics of information encoded, at the population level, in these three areas. Neural 
decoding, i.e., the use of activity recorded from multiple brain sources to predict variables in 
the external word, represents a useful tool to characterize how much information a given area 
contains about an external variable and how this information differs across different areas [24]. 
The attainment of different decoding performances when building separate decoders, e.g., each 
using neural activity from a different PPC area, may be indicative of a different amount of 
information encoded in each population.  

Machine learning (ML) algorithms are widely used to design neural decoders [24]. Deep 
learning – a recently proposed branch of ML [25] – exploits models designed by stacking layers 
of artificial neurons, i.e., deep neural networks (DNNs). Remarkably, DNNs are capable to 
handle raw/lightly pre-processed neural time series as input, automatically learning during a 
training process the more relevant features to decode the brain states of interest while exploiting 
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all the information contained in the input signals. Therefore, DNNs represent an important 
advantage over more traditional ML approaches; the latter first extract and select features from 
input neural time series, and then finalize the decoding task, resulting in a workflow more 
driven by a priori knowledge about the expected underlying neural correlates. Furthermore, 
conversely to ML algorithms, DNNs provide a direct processing of the information from the 
neural signals to the desired output (in an end-to-end fashion), describing in general a complex 
non-linear function mapping input signals to desired outputs. Nevertheless, DNNs have some 
limitations, such as the introduction of many trainable parameters and the introduction of a 
second set of parameters, named hyper-parameters, that define the functional form of the 
decoder and must be set before the DNN training (e.g., the number of layers, the number of 
neurons per layer, etc.). Among DNNs, Recurrent Neural Networks (RNNs) were used to 
decode arm kinematics from spiking activity [26,27] also from PPC signals [28,29], generally 
using complex and heavy architectures (in terms of architecture structure and number of 
trainable parameters, respectively), with a fixed configuration selected via empirical 
evaluations (i.e., manual selection) or selected without any explicit criterion, and hardly 
interpretable. Therefore, these DNNs do not represent a parsimonious use of trainable 
parameters and, due to the high number of trainable parameters, DNNs could be more prone to 
overfit small datasets (commonly recorded in practice). Furthermore, the adoption of manual 
selection to define the DNN structure and assign hyper-parameters could lead to suboptimal 
decoding results, limiting the potentialities of DNNs, and require manual effort to be 
performed. Convolutional Neural Networks (CNNs) could also be used without hampering the 
decoding performance, reducing the number of trainable parameters with respect to RNNs and 
being easier to be interpreted in the learned features [30]. These algorithms are inspired by the 
hierarchical structure of the ventral stream of the visual system and thus, automatically learn 
hierarchical representations of the input signal with multiple levels of abstraction [31]. Despite 
being scarcely applied for the decoding of brain states directly from the neuron activity, there 
is a growing interest in the design and application of CNNs over other DNNs (such as RNNs), 
as reported in related fields of electroencephalogram decoding [32,33]. In addition, techniques 
aimed to automatically search the optimal hyper-parameter configuration of the decoder, such 
as Bayesian Optimization (BO), could be used to automatically design decoder functional 
forms without relying on mere empirical evaluations. 

The aim of this study is to develop and use CNNs to accurately decode external variables 
(reaching goal and trajectory) from PPC neural activity. CNNs were used to catch temporal 
dynamics and model non-linearity distinctive of high-order areas. To this end, we recorded the 
activity of single neurons from macaque V6A, PEc, and PE areas while monkeys were 
performing a delayed reaching 3D task to 9 reaching targets. We approached two different 
decoding problems for a wider validation of CNNs. At first, we performed the classification of 
the 9 discrete spatial positions; this problem was addressed by predicting the output class as a 
function of time within the reaching trials, providing a dynamic decoding of the end-point 
during the reaching phases. To test whether the non-linear input/output mapping as performed 
by DNN methods was superior then simpler linear mapping, CNN classification performances 
were compared against a linear classifier. Then, a regression problem consisting in predicting 
the 3D hand trajectory of reaching was tackled; this problem was also useful to explore internal 
PPC model. Remarkably, to overcome the current limitation in designing and using DNNs for 
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neural decoding, the CNN structure and hyper-parameters were tuned using an automatic 
hyper-parameter search algorithm based on BO. With this approach, we mainly aspire: 

i. To improve the state-of-the-art of decoding techniques. Indeed, at best of our knowledge, 
this is the first time that CNNs are validated and used to decode spiking neuron activity, 
and that Bayesian optimization is used in this context. This may represent a significant 
step forward, as CNNs may result highly lighter and faster than RNNs on one hand, and 
more accurate than simpler linear decoders on the other. The possibility to obtain 
decoders less handcrafted, more efficient, and accurate than other solutions may not only 
boost a better comprehension of the characteristics of information contained inside the 
decoded neural populations, but also have implications in neural engineering, such as 
helping advancement in brain-computer communication tools.  

ii. To investigate how the reaching target position and the hand kinematics (3D position) 
are differently encoded in the three examined PPC areas at the population level, by 
analyzing the performance of the tested decoders across the three areas. Via this analysis, 
we wish to evidence how neural decoders, via data-driven input-output mapping, can 
have significant potential to inform about the nature of information contained in neural 
populations. We also expect that, when compared to the linear classifier, CNNs, taking 
into account nonlinearity and the temporal dynamics (via temporal convolutions) can 
better catch the characteristics of each area.  
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7.2. MATERIALS AND METHODS 
The experimental part of this study was performed in accordance with the guidelines of the 

EU Directives (86/609/EEC; 2010/63/EU) and the Italian national law (D.L. 116–92, D.L. 26–
2014) on the use of animals in scientific research. Protocols were approved by the Animal-
Welfare Body of the University of Bologna. During training and recording sessions, particular 
attention was paid to any behavioral and clinical sign of pain or distress. More details on the 
experimental procedures can be found in [13,34–36]. 
 
7.2.1. Data acquisition 
Electrophysiological recordings 

Two male macaque monkeys (Macaca fascicularis) weighing 4.4 kg (Monkey 1, M1) and 
3.8 kg (Monkey 2, M2) were used. Extracellular single-cell activity was recorded by means of 
single electrode from areas V6A, PEc and PE (Figure 7.1a). V6A is localized in the anterior 
bank of the parieto-occipital sulcus (POs) [35]. Next and rostrally to V6A, on the exposed 
surface of SPL, there is PEc. Finally, between somatosensory cortex and PEc, we recorded 
from the posteromedial part of PE [18]. Recording sites were assigned to V6A, PEc, and PE 
according to cytoarchitectural analyses of histological sections of the brain [35]. The procedure 
is based on the study of marking lesions and on other cues (e.g., coordinates of penetration 
within the recording chamber, distance of recording site from the surface of the hemisphere, 
etc.) [35]. We performed multiple electrode penetrations using a five-channel multielectrode 
recording system that permitted to record from up to five single electrodes at once (Thomas 
Recording GmbH, Giessen, Germany). We recorded the activity of 258 V6A neurons, 120 cells 
from M1 and 138 cells from M2, 214 neurons from PEc, 94 and 120 from M1 and M2 
respectively, 141 from area PE, 71 and 70 from M1 and M2 respectively. Action potentials 
(spikes) in each channel were isolated with a waveform discriminator (Multi Spike Detector; 
Alpha Omega Engineering Nazareth, Israel) and were sampled at 100 kHz. The quality of the 
single-unit isolation was determined by the homogeneity of spike waveforms and clear 
refractory periods in ISI histograms during spike-sorting. Only well-isolated units not changing 
across tasks were considered. 
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Figure 7.1 - Recording areas and Behavioral Task. (a) Dorsal view of left hemisphere (left) and medial view of 

right hemisphere (right) reconstructed in 3D. Caret software (http://brainvis. 

wustl.edu/wiki/index.php/Caret:Download) was used, showing the location and extent of V6A (magenta), PEc 

(green), PE (orange), MIP/PRR, medial intraparietal area/parietal reach region [38] (blue), and V6 [35] (yellow); 

cal, calcarine sulcus; cin, cingulate sulcus; cs, central sulcus; ips, intraparietal sulcus; lf, lateral fissure; ls, lunate 

sulcus; pos, parieto-occipital sulcus; ps, principal sulcus; sts, superior temporal sulcus; D, dorsal; P, posterior. (b) 

Schematic representation of the experimental setup for the reaching task. Exact distances are indicated in the 

lateral (left) and top (right) views. Nine LEDs are used as targets, embedded in a panel located at eye level. HB = 

home button. (c) Time courses and behavioral epochs in reaching tasks. The task starts with the animal holding 

down the HB (FREE 1sec, epoch 0), then a fixation LED lights up on one of the 9 positions, the animal starts to 

fixate and waits (first 1 sec of DELAY, EARLY DELAY, epoch 1) for the change of color of the LED that occurs 

at the end of the delay (LATE DELAY, last 1 sec of DELAY, epoch 2) with the GO event. The reaction time 

(epoch 3) is then from the GO signal to the actual release of the HB. The animal releases the HB to perform the 
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movement (MOV, epoch 4) then keeps the LED target pressed for the HOLD interval (epoch 5) to then return to 

the HB and begin the next trial. 

 
Behavioral task 

Monkeys sat in a primate chair (Crist instruments, Hagerstown, MD, USA) and were trained 
to perform a Fixation-to-Reach task under controlled conditions. This task was performed in 
darkness with the arm contralateral to the recording hemisphere. During the task, the animals 
maintained steady fixation on the cued (green) reaching target with their head restrained. 
Before starting the arm movement, the monkeys kept their hand on a button (home button [HB], 
2.5 cm in diameter) located 5 cm in front of the chest on the midsagittal plane (Figure 7.1b 
left). Reaches were performed to one of nine light-emitting diodes (LEDs, 6 mm in diameter). 
The LEDs were mounted on a horizontal panel located in front of the animals, at different 
distances and directions with respect to the eyes but always at eye level, so the movement 
performed by the monkeys to reach and press the LED was upward. Target LEDs were 
arranged in three rows: one central, along the sagittal midline, and two laterals, at version 
angles of -15° and +15°, respectively (Figure 7.1b right). Along each row, three LEDs were 
located at vergence angles of 17.1°, 11.4°, and 6.9°. The nearest targets were located at 10 cm 
from the eyes, whereas the LEDs placed at intermediate and far positions were at a distance of 
15 and 25 cm, respectively. The range of vergence angles was selected to include most of the 
peripersonal space in front of the animals, from very near (10 cm) to the farthest distances 
reachable by monkeys (25 cm).  

The trial began when the animals pressed the button near their chest, outside the field of 
view (HB press). After 1s, one of the nine LEDs was switched on to green (Green-on). The 
monkeys had to fixate the LED within 500 ms, while keeping the HB button pressed. Then, the 
monkeys had to wait 1.7–2.5 s for a change in the color of the LED (from green to red) without 
performing any eye or arm movement. The latter color change was the go signal (Go) for the 
animals to release the home button and to start an arm movement toward the foveated target. 
Then, the monkeys reached the target and held their hand on the target for 0.8–1.2 s. When the 
target cue was switched off, the monkeys had to release this cue and return to the HB, which 
ended the trial and allowed the monkeys to receive a reward. 

The task was performed in blocks of 90 randomized trials, including 10 repetitions for each 
target position (out of the 9 possible target positions). According to Figure 7.1c we divided 
each recording trial in 5 functional epochs. Epoch 0 represented the interval in which the 
monkey was not engaged in the task waiting for the LED turning on; Epoch 1 and Epoch 2 
labelled the delay interval, specifically since the delay interval has random duration, it was 
separated in its first second (epoch 1) and last second (epoch 2); Epoch 3 represented the 
reaction interval; Epoch 4 was the movement interval (reaching movement towards the target 
point); Epoch 5 represented the holding interval (hold on the target point).  

The luminance of LEDs was regulated to compensate for difference in retinal size between 
LEDs located at different distances. To prevent dark adaptation, the background light was 
switched on between blocks. The presentation of stimuli and the animals’ performance were 
automatically controlled and monitored by LabVIEW-based software (National Instruments) 
as described previously in Kutz et al. [39], enabling the interruption of the trial if the monkey 
broke fixation, made an incorrect arm movement, or did not respect the temporal constraints 
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of the task described above. The correct performance of movements was monitored by pulses 
from microswitches (monopolar microswitches, RS Components, UK) mounted under the 
home button and each LED. At the beginning of each recording session, the monkeys were 
required to perform a calibration task to calibrate an eye tracker (ISCAN, see below). 
Calibration data was used to correct eye signals as they are dependent on the position of the 
cameras which can potentially change from day to day. For the calibration, animals 
sequentially fixated 5 LEDs mounted on a vertically arranged panel placed at a distance of 15 
cm from the eyes. For each eye, we extracted signals for calibration during fixation of five 
LEDs, arranged in the shape of a cross. One LED was centrally aligned with the eye’s straight-
ahead position and four LEDs were peripherally placed at an angle of ±15° (distance: 4 cm) 
both in the horizontal and vertical axes. From the two individually-calibrated eye position 
signals, we derived the mean of the two eyes (version signal) and the difference between the 
two eyes (vergence signal) using the following equations: k}Ü4;Öt = (^ + <) 2⁄ , k}ÜO}tx} =
^ − <, where ^ and < are the gaze direction of the right and left eye respectively, expressed in 
degrees of visual angle from the straight-ahead direction. Eye signals were monitored to be 
sure that the animal was staring at the target while performing the task, reducing possible 
modulation of neurons’ firing rates due to saccade execution [40]. 

 
7.2.2. Data pre-processing and preliminary analysis 

For each neuron and each individual recording trial, the activity was initially binned at 20 
ms. Since the trials and epochs have a different duration, the use of a constant temporal window 
produces a different number of bins across trials, not allowing to construct a uniform dataset. 
Therefore, the average number of bins (across different neurons and trials) of each epoch was 
computed; then, the activity of each neuron and trial was re-binned by using that number of 
average bins per epoch. This procedure led to an activity binned slightly more or less with 
respect to the original 20 ms binning (20.1±1.9, mean ± standard deviation across monkeys and 
areas). Thus, to address this, we computed firing rates by dividing the number of spikes 
occurring within the bin by the temporal length of the bin. In the following, the neuron activity 
is described by means of its firing rate and to study the temporal dynamics of neural coding we 
constructed some short signals (named “chunks” in the following) composed of overlapped 
windows of º bins, extracted with stride of g bins to be used as inputs to the CNN. 

As preliminary analysis, we looked for the neurons modulated by the reaching task. Only in 
this case, the neuron activity was divided into non-overlapped chunks of º = 5 bins (i.e., 
extracted with a stride of g = 5) bins and was analyzed using a sliding ANOVA to assess the 
variance in neuronal activity between the different conditions tested. One neuron was 
considered significantly modulated with P < 0.01. Results were plotted as number of 
modulated neurons over time. 

 

7.2.3 CNN-based population decoding 
Problem definition 

Firing rates from every single neuron of the investigated population obtained from a specific 
monkey – identified with ã = {“21”, ”22”} – and a specific recording area – identified with 
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é = {"®6\", "høx", "hø"} – were processed as follows to perform decoding. At first, 
overlapped chunks of shape (5, º) were extracted using a stride parameter g, where 5 denotes 
the number of neurons recorded for a given animal and area (variable across animals and areas, 
representing the spatial dimension, see Table 7.1 for N values across animals and areas), and	º 
denotes the number of bins in each extracted chunk (representing the time dimension).  

 
Table 7.1 – Number of recorded neurons for each animal and each recording area. In addition, the total number 

of training, validation and test examples in supervised problems 1 and 2 as resulting from the trial chunking 

procedure (see Section 7.2.2) are reported. Note that that the reported values for supervised problem 2 refer to the 

default assignment of the desired output (i.e., with no offset in the assignment).  
   Supervised problem 1 

(epochs 0-5) 
Supervised problem 2 

(epochs 2-5) 
Monkey Area N Training Validation Test Training Validation Test 
M1 V6A 138 3312 414 2070 1872 234 1170 

 PEc 120 3384 423 2079 1944 243 1179 

 PE 70 3312 414 2061 1872 234 1161 

M2 V6A 120 3312 414 2052 1872 234 1152 

 PEc 94 3312 414 2061 1872 234 1161 

 PE 71 3312 414 2043 1872 234 1143 

 
By denoting with -H the firing rates of each entire trial, and with -H[;] the i-th bin, chunks 

of neural activity were extracted as follows: 
-H,% = -H[: , ;g: ;g + º − 1], 0 ≤ 	; ≤ 2 − 1, (7.1) 

indicating with -H,% ∈ ℝT×s the i-th extracted chunk of firing rates for the t-th trial (see Figure 
7.2a for a schematization of this chunking procedure), and with 2	the total number of chunks. 
-H,% represented the CNN input, while .H,% denotes the corresponding desired output. Thus, each 
so labelled dataset can be denoted by *(v,I): 
*(v,I) = {,-H,$, .H,$/, … , ,-H,% , .H,%/, … , ,-H,&'(, .H,&'(/}

(v,I) (7.2) 
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Figure 7.2 – Schematic representation of the dataset construction (a) and of the CNN design (b). (a) Neuron 

activities (left) and the desired output (right, corresponding to the reaching targets or hand trajectories) were 

processed to obtain (!K,$ , 'K,$), see Section 7.2.2. (b) !K,$ is fed to the CNN, which provides ')K,$ as output 

(predicted output). The CNN is composed by a convolutional feature extractor (blue box), followed by a 

classification or regressor module (purple box), see Section CNN architecture for the meaning of the symbols. 

Layers are represented by white boxes; layers introducing trainable parameters are denoted by the italic font, with 

the main associated hyper-parameters reported within brackets (see Section CNN architecture for the meaning of 

the symbols). 

 

In this study, two different supervised problems were addressed using the same dataset. At 
first, we deepened the classification of targets to reach. In this case (supervised problem 1), 
.H,% ∈ < = {=$, … , =M} was the desired class label assuming one among 9 possible values, 
corresponded to each target point that was constant in time during the trial (i.e., the end-point 
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to reach did not change within each trial). The supervision during classification was provided 
using one-hot encoded labels, i.e., forming an array corresponding to the true probability 
distribution with zeros for all classes except for the desired one which is 1. In addition, we 
investigated a regression problem consisting in the prediction of the 3D hand position while 
reaching targets (the same targets classified in the first supervised problem). In this case 
(supervised problem 2), .H,% ∈ ℝ2 = [Pt , Pu , Pj] and corresponded to the 3D hand position 
coordinates at a specific time point to be predicted in the regression problem related to semi-
synthetic trajectories (see Section Supervised problem 2: Hand trajectory decoding for further 
details). That is: 

7
.H,% ∈ < = {=$, … , =M}, 4jP}Ük;4}l	PÜÖá=}ã	1

.H,% ∈ ℝ
2 = [Pt , Pu , Pj], 4jP}Ük;4}l	PÜÖá=}ã	2

. (7.3) 

Concerning the regression problem, as the hand position changed during each reaching trial, 
the desired output .H,% was assigned the 3D position coordinates in correspondence of the last 
bin of -H,% (referred as “default assignment”, see Section Supervised problem 2: Hand 

trajectory decoding for further details), i.e., the prior neural activity of º ∙ 20	ã4 (e.g., 300 ms 
in case of º = 15	bins) was assigned to the current observable parameter, see Figure 7.2a for 
a schematization of this output association procedure. This corresponds to define .H,% as: 
.H,% = vPt , Pu , Pjw[(;g + º − 1) + Ö],  (7.4) 

where ;g + º − 1 denotes the time sample corresponding to the last bin of the chunk -H,%, and 
Ö denotes an additional offset factor. The latter is set to 0 in the default assignment, while 
assumes positive or negative values in the latency analyses performed in Section Supervised 

problem 2: Hand trajectory decoding.  
For both these supervised problems, the objective is to optimize - using a training set of 

examples (training stage) - a CNN described by a parametric model J,-H,%; L/ parametrized in 
its trainable parameters L, implementing a classifier in the first supervised problem, i.e., 
J,-H,%; L/: ℝ

T×s → <, or a regressor in the second supervised problem, i.e., J,-H,%; L/: ℝT×s →

ℝ2. As mentioned above, the CNN accepts as input the i-th chunk -H,% and provides the 
predicted output .PH,%. This optimization corresponds to find the optimal L∗ = éÜOmin

f
Y(L), 

where Y(L) denotes the loss function which is computed based on the prediction error between 
the desired output .H,% and the predicted output .PH,%. Afterwards, once the model is trained, it 
is tested on a separate test set (inference stage). Besides the trainable parameters contained in 
L, the parameters defining the specific functional form of the decoder (e.g., number of 
convolutional layers, number of kernels to learn, etc.), called hyper-parameters, need to be set 
before training starts. However, the optimal hyper-parameter configuration is not a priori 
known and can be chosen either via an extensive empirical evaluation or via automatic hyper-
parameter search. For both these solutions, to study the influence of different hyper-parameter 
configurations, the decoder needs to be validated on a separate set (different from the training 
and test set). Therefore, the dataset *(v,I) needs to be partitioned into separate training and 
test sets, respectively to optimize the parameters contained in L and to evaluate the performance 
of the learning system on unseen data. In addition, to select the optimal hyper-parameter 
configuration (see Section Hyper-parameter search via Bayesian Optimization (BO)) a 
separate validation set needs to be designed. To perform such data partitioning, *(v,I) was 



 244 

divided using a 10-fold cross validation scheme. Starting from 10 trials recorded for each 
spatial position (a total of 90 trials were available), each cross-validation fold included 72, 9, 
9 trials in the training, test and validation sets, respectively, balancing across reaching targets 
(i.e., sets contained the same proportion among the 9 reaching targets). During the training 
stage, the parameters used to design *(v,I) were º = 15 and g = 5, while during the inference 
stage, these were º = 15 and g = 1. This choice allowed to train decoders with overlapped 
chunks of data i.e., augmenting the overall training set, but without increasing excessively the 
computational time (g = 5 during training), and to test the decoders on all possible chunks 
(g = 1 during testing). See Table 7.1 for the total number of training, validation and test 
examples, for each animal and recording area. 

 
CNN architecture 

The general structure of the CNN architecture is reported in Figure 7.2b and it is described 
in the following. The input layer of the CNN was represented by a 2D input feature map 
replicating in each neuron the corresponding value of the input example -H,% ∈ ℝT×s, i.e., the 
input layer was a 2D matrix with 5 rows and º columns representing the firing rates, of 5 
neurons in º time bins. Afterwards, the input example was processed through a convolutional 

feature extractor to learn and extract relevant feature maps from the input example, followed 
by a classification or regression module that finalized the decoding depending on the addressed 
supervised problem addressed and based on the feature maps provided by the first module. 
Regarding the convolutional feature extractor, this was composed by stacking 5= convolutional 
blocks. Each convolutional block is composed by 55 repetitions of 1D temporal separable 
convolutional layers [41], each one learning e temporal kernels with a size of f, followed by 
batch normalization [42] (optional, depending on the hyper-parameter search) and a non-linear 
activation function. Then, after these 55 repetitions, each convolutional block included also a 
pooling layer – aimed to reduce the temporal dimension and thus, to reduce the overall model 
size by applying a pooling function (which is a hyper-parameter too, e.g., max or average 
pooling) – and a dropout layer [43], with dropout probability P. All convolutional layers were 
constrained (optional, depending on the hyper-parameter search) in their norm, keeping the 
norm of their parameters upper bounded at a constant x. Overall, batch normalization, dropout 
and kernel max norm constraints were introduced in the convolutional feature extractor to 
reduce overfit (i.e., regularization mechanisms). In addition, this module was designed using 
convolutional layers devoted to keep limited the number of trainable parameters, i.e., separable 
convolutions, preventing overfitting small datasets as the ones used in this study. The main 
hyper-parameters of the convolutional feature extractor were searched using an automatic 
hyper-parameter search algorithm (see Section Hyper-parameter search via Bayesian 

Optimization (BO) for further details). 
The classification or regression module reshaped (flatten layer) at first the feature maps 

provided by the first module and included a fully-connected layer with 5L7H output artificial 
neurons to output the desired variables (target positions, 5L7H = 9 or hand position coordinates, 
5L7H = 3). Depending on the addressed decoding problem, the activation function of the fully-
connected layer changed. In case of classification, 5L7H = 9 neurons were activated using a 
softmax function, to provide as output the array .PH,% = P,=-|-H,%/ ∈ ℝ

w, 0 ≤ R ≤ 8 of the 
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predicted conditional probabilities associated to each target. Then, the most probable class was 
computed, i.e., éÜOmax

UZ
P,=-|-H,%/, and the decoded class obtained (∈ < = {=$, … , =M}). In case 

of regression, 5L7H = 3 neurons were activated using a linear function, to directly provide as 
output the hand position coordinates .PH,% ∈ ℝ2while reaching targets. 

 
Supervised problem 1: Target decoding 

In the case of the classification problem, signals of the training, test and validation sets were 
standardized using the mean and standard deviation computed on the training set. The network 
used as input the signals pre-processed as described in Section 7.2.2 from epochs 0-5 (see 
Section Behavioral task) and provided as output the conditional probabilities for each target 
position. During the training stage, the loss function Y(L) was defined as the cross-entropy 
between the predicted distribution (provided by the CNN) and the empirical distribution 
(provided in the labeled dataset). During the inference stage on the test set, the CNN provided 
as output the probabilities that the input chunk belongs to each class; the predicted class was 
computed as the one with the highest probability among the 9 possible classes (see the possible 
reaching targets n Figure 7.2a right). Then, the decoding accuracy was computed based on the 
predicted and true classes. Accuracies on the test set were computed for each monkey and each 
recording area as a function of time, i.e., computing accuracies chunk by chunk. To provide a 
comparison with a state-of-the-art linear algorithm, a Naïve Bayes (NB) classifier as the one 
adopted in [44] was trained and evaluated with the same procedure adopted for the proposed 
CNN.  

As the number of neurons recorded from the three areas differed (e.g., 70 neurons for PE 
vs. 100+ neurons in the other areas, see Table 7.1), we assessed whether differences in 
performance among different areas may be the consequence of a different number of neurons 
rather than intrinsically depend on differences in the information provided by neuron activities. 
To this aim, a dropping analysis was performed. During the d-th step of the dropping analysis, 
in each monkey and in each area, 5q neurons were randomly selected from 5q = 2 to 5q = 5 
with a step of 5 cells. That is, a subset containing 5q cells was randomly sampled from the 
original distribution and used to train, validate and test CNNs (using the same cross-validation 
scheme as described in Section Problem definition). In this way, the decoding performance 
was evaluated using the same number of 5q neurons in each area. In addition, this analysis 
simulates conditions of a reduced set of cells to decode, e.g., due to fibrosis around implanted 
electrodes, at different levels. The random sampling was performed 20 times for each d-th step 
of the dropping analysis and was performed for each monkey and each recording area. Due to 
the high computational cost of such simulation (involving >50K CNN optimizations), we 
applied the dropping analysis only for the supervised problem 1.  

 
Supervised problem 2: Hand trajectory decoding 

In the case of the regression problem, signals of the training, test and validation sets were 
standardized using the statistics computed on the training set, and the target coordinates were 
normalized between [-1,1] (centered on the mid sagittal axis of the animal), [0,1] (with 0 the 
position of the home button and 1 the maximum distance from the body corresponding to the 
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farthest target), and [0,1] (with 0 the elevation of the home button and 1 the height of the panel 
at eye level), respectively for the x-, y-, z-axis . To decode the hand trajectory, the network 
used as input the signals pre-processed as described in Section 7.2.2 from the epochs 2-5 (see 
Section Behavioral task) and provided as output the x, y, z hand position coordinates during 
the reaching of each target position.  

Kinematic data of hand trajectories was not available for recorded neurons, therefore the 
reference trajectory of the hand during the experiment was reconstructed semi-synthetically, 
modelling the movement as a straight ballistic motion from the button near the chest to one of 
9 positions on the panel (see the trajectories in in Figure 7.2a right) and imposing a classic bell-
shaped profile for the acceleration and deceleration [45]. The bell-shaped profile (a Gaussian 
bell) was fitted to the average speed profile collected from real kinematic data, calculated over 
144 trials on a separate monkey executing the same 3D reaching task, using as reference the x, 
y, z position of index finger. A motion capture system (VICON 460, 100 Hz sampling rate) 
recorded the 3D position of a reflective marker placed on the monkey’s index finger. Data were 
run through a fifth-order Butterworth low-pass filter, finally trajectory were downscaled to 0-
100% of movement to make possible aligning the different trials collected. Mean and standard 
deviation of the Gaussian bell determined the peak of maximum velocity (43% of movement 
time) and acceleration/deceleration ramp (σ=18% of movement time) and were used to 
reconstruct the reference hand trajectory for all cells.  

As here we were interested in epochs including the last part of the waiting period until the 
target was maintained, the CNN had to learn to hold the initial position during the waiting time 
(0,0,0), gradually move toward the target during the movement interval, and hold the position 
during the last interval. During the training stage, the loss function Y(L) was defined as the 
mean squared error between the predicted trajectory value (provided by the CNN) and the 
empirical trajectory value (provided in the labeled dataset). During the inference stage on the 
test set, the network output was directly the predicted trajectory value for the corresponding 
input firing rate chunk. The predicted trajectory was then obtained by rearranging all values in 
the time-domain, and was compared with the semi-synthetically reconstructed trajectory, used 
as a ground truth. R-squared values were computed for each monkey and each recording area 
(reporting mean and standard deviation across folds). 

In addition, only for the supervised problem 2, we conducted an analysis to study possible 
latencies, i.e., -120 ms, -40 ms, 40ms, 120 ms, between neuron activity (firing rates contained 
in each chunk -H,%) and detected behavior (instantaneous trajectory value in its x, y, z position 
coordinates). To this aim, we introduced a time shift Ö between the desired output (x, y, z 
position coordinates) assignment and the neuron activity when designing the datasets *(v,I) 
and we trained, validated and tested CNNs for each offset condition. By default (see Section 
Problem definition), a zero offset (Ö = 0) was used, indicating that the assigned 3D trajectory 
value was sampled in correspondence of the last bin of the input chunk (i.e., to the 15th bin, see 
Section Problem definition). In addition to the default assignment, we deepened other 
conditions, by using offsets Ö = {−6,−2, 2, 6}. Positive (or negative) offset values denote 
conditions where CNNs were forced to learn features from past (or future) neuron activity 
(-H,%). This suggests that neurons are coding for future trajectories (feedforward anticipation) 
or past trajectories (sensory feedback). As an example, when Ö = +2, position coordinates 
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sampled at +40 ms(= Ö ∙ 20	ã4, see Section 7.2.2) in the future respect to input neuron activity 
were decoded. 

 
Hyper-parameter search via Bayesian Optimization (BO) 

Deep learning-based algorithms are defined by many hyper-parameters that are not a priori 
known. Therefore, in this study, to identify the optimal configuration of the convolutional 
feature extractor, automatic hyper-parameter search via BO [46] was adopted. This algorithm 
was applied to the identification of the optimal hyper-parameter set in the supervised problem 
1. Due to the performed data split (10-fold cross-validation scheme) and to the nature of the 
dataset (2 monkeys and 3 recording areas), BO led to an optimal configuration specific for each 
fold, monkey, and area (60 configurations in total). Once BO was performed, the most frequent 
value (across folds, monkeys and areas) of each hyper-parameter was computed and used to 
design the CNNs to be trained from scratch in both supervised problems 1 and 2. Therefore, 
this BO-based procedure was used to identify a single configuration of hyper-parameters 
occurring more frequently across folds, monkeys and areas, i.e., a single functional form of the 
decoder J that was then exploited to train CNNs in both supervised problems. CNNs were 
trained – within each BO iteration and while training the most frequent CNN configuration in 
the supervised problems 1 and 2 – using Adam optimizer [47] with a batch size of 64 for a 
maximum number of 1000 epochs and applying early stopping on the validation loss. 

In the following, an overview of automatic hyper-parameter search and of BO is reported. 
Hyper-parameter optimization is devoted to find the hyper-parameter configuration of a 
learning system (e.g., a CNN) associated with the best performance measured on a separate 
validation set. Let us denote with ℎ the array containing the hyper-parameters of interest, with 
ℎ ∈ ç where ç is the hyper-parameter search space. In this study, we investigated the main 
hyper-parameters defining the convolutional feature extractor: 5= (number of blocks), 55 
(number of separable convolutional layers per block), e (number of filters per layer), f (filter 
size), x (max norm constraint), the use of batch normalization, the activation function for the 
convolutional layers, the pooling function, the dropout probability P and the learning rate. 
Formally, hyper-parameter optimization consists in finding ℎ∗ = éÜOmin

O∈Q
R(ℎ), where 

R(ℎ): ç → ℝ represents the objective function to be minimized on the validation set (the loss 
function in this study). To evaluate R(ℎ) for each configuration ℎ the learning system needs to 
be trained on the training set and then evaluated on the validation set.  

Depending on the model complexity (typically high for deep learning-based decoders) and 
on the number of hyper-parameters to optimize, the evaluation of a trained model on the 
validation set can be expensive. Common hyper-parameter search algorithms (e.g., grid search 
or random search), perform many evaluations on the validation set, each one using a trained 
model with a hyper-parameter configuration based on a pre-defined rule (e.g., by sampling all 
possible hyper-parameter configurations or by randomly sampling a fixed number of 
configurations) ignoring the results of past evaluations. This often leads to wasting time in 
evaluating ‘bad’ hyperparameters. Bayesian optimization methods overcome this limitation, as 
they suggest in an informed way the next hyper-parameter configuration to be evaluated, thus, 
investigating hyper-parameters that seem promising based on past evaluations. Specifically, 
these methods build a Bayesian statistical model P(R|ℎ) of the objective function, called 
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surrogate probability model, which maps hyper-parameter values to the probability of getting 
a certain value of the objective function. The surrogate model is formed by keeping track of 
the past evaluation results and is easier to optimize than the actual objective function R(ℎ); 
thus, the next set of hyper-parameters to be evaluated on the actual objective function is chosen 
by selecting the hyper-parameters that perform best on the current surrogate model. Once the 
surrogate P(R|ℎ) has been initialized, the procedure involves several optimization iterations 
(100 iterations were performed in this study), run sequentially one after another, with each 
iteration consisting of the following steps:  

i. Optimize the surrogate finding the hyper-parameters that perform best on the surrogate. 
The criterion used to optimize the surrogate is called “selection function”. 

ii. Design the learning system using the hyper-parameters selected at point i. Train the 
learning system and evaluate the objective function R. 

iii. Update the surrogate probability model depending on the history of past evaluations, 
including the last evaluation result (at point ii). 

Different choices exist for the surrogate probability model and criterion function used to 
optimize it. In this study, as commonly adopted [48], Tree Parzen Estimator (TPE) and 
Expected Improvement (EI) were used as surrogate model and selection function, respectively. 
By applying the Bayes rule, the surrogate probability model can be expressed as P(R|ℎ) =
P(ℎ|R)P(R) P(ℎ)⁄ , and by using TPE, P(ℎ|R) is modelled as: 

P(ℎ|R) = ¡
=(ℎ), R < R∗

O(ℎ), R ≥ R∗
,  (7.5) 

where =(ℎ) andO(ℎ) are the distributions of the hyper-parameters, one modelled by using the 
previously evaluated hyper-parameters that resulted in objective function below the threshold 
R∗, and the other by using the previously evaluated hyper-parameters that resulted in objective 
function above the threshold R∗. These distributions are modelled with Gaussian mixture 
models in TPE. To initialize the algorithm (i.e., initialize the values needed to model the 
distributions) 20 iterations were performed by randomly sampling the hyper-parameters (i.e., 
performing random search). Furthermore, the TPE algorithm depends on the threshold R∗, the 
latter is chosen larger than the lowest observed R so that some points can be used to model 
=(ℎ). The algorithm selects R∗ so that µ = P(R < R∗), but no specific modelling for P(R) is 
needed [48]. In this study, hyper-parameter values were all sampled from uniform distributions 
(defining P(ℎ)) over the values reported in Table 7.2. Then, the expected improvement (EI, 
expectation that the surrogate model, by using ℎ, assumes values below the threshold R∗) can 
be computed as:  
ø¬-∗(ℎ) = ∫ max	(R∗ − R, 0)

x
'x P(R|ℎ)	lR = ∫ (R∗ − R)

-∗

'x P(R|ℎ)	lR. (7.6) 
In this scenario, the optimization problem (point i.) is reduced to a maximization of the EI. 

As reported in [48], by expressing P(R|ℎ) using the TPE modelling (Equation 7.5): 
ø¬-∗(ℎ) ∝ ,µ + (O(ℎ)/=(ℎ))(1 − µ)/

'(
∝ =(ℎ)/O(ℎ).  (7.7) 

Therefore, maximizing ø¬-∗(ℎ) corresponds to maximizing the ratio =(ℎ)/O(ℎ), i.e., find the 
optimal ℎ with high probability under =(ℎ) and low probability under O(ℎ). Then, the true 
objective function R(ℎ) is evaluated with this optimal ℎ (point ii.) and, subsequently, the two 
distributions =(ℎ) and O(ℎ) defining P(ℎ|R) are updated depending on the history of the past 
evaluations by taking into account the result of this last iterations (point iii.).  
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Table 7.2– Hyper-parameter space of the convolutional feature extractor. O5 and OX denote the number of 

convolutional blocks and temporal separable convolutions per block, respectively. ; and < denote the number of 

temporal kernels and the kernel size, respectively. Lastly, W and ) indicate the maximum norm to use in max-

norm constraint and the dropout probability, respectively. The hyper-parameter values were sampled using 

uniform distributions during the hyper-parameter optimization. Among the values, “None” denotes no usage of a 

specific technique (i.e., no use of kernel max norm constraint and no use of dropout).  

Hyper-parameter Values 
O5 [1, 2] 

OX [1, 2, 3, 4] 

; [4, 8, 16, 32] 

< [3, 5] 

W  [None, 0.25, 0.5, 0.75, 1] 

Use batch norm. [False, True] 

Activation function [ReLU, ELU [49]] 

Pool function [max, avg] 

)  [None, 0.25, 0.5] 

Learning rate [0.0001, 0.0005, 0.001] 
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7.3. RESULTS 

We recorded the activity of single neurons from 3 contiguous areas, V6A, PEc, and PE, in 
the superior parietal lobule of 2 macaques. In this study we were interested in testing if these 
three areas encode spatial information about the reaching goal and reaching trajectories with 
the same strength, and if they encode the temporal dynamics of this encoding. CNNs were used 
as decoders for the addressed supervised problems, and we were also interested in searching 
an optimal CNN design via automatic hyper-parameter using BO. In the following, the main 
results are reported. 

 
7.3.1. Preliminary data analysis 

A simple sliding ANOVA (Figure 7.3) was enough to show that the percentage of neurons 
modulated by spatial position of reaching targets was different depending on the considered 
area. PE showed half of neurons modulated (with peaks of approx. 20%) compared to V6A 
and PEc (with peaks between 50-60%) which were very similar. It is also interesting to note 
that the percentage of modulated cells was not stable over time but roughly was characterized 
by 2 prominent peaks in all areas: a first increase of modulated cells in the first phase of target 
presentation (Epoch 1), a second peak during the execution of the reaching movement (Epoch 
4). These differences prompted us to decode the overall dynamics, which also reflect non-linear 
interactions and temporal aspects. Such dynamics can be shown with deep learning-based 
decoders such as CNNs and are reported in the following sections. 

 

 
Figure 7.3 - Percentage of modulated neurons as obtained with a sliding ANOVA. The modulation is reported 

over time for each monkey (M1 on top and M2 on bottom) and each recording area (V6A black, Pec red, PE blue). 

Vertical bars denote the separation between epochs 0-5.  
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7.3.2. Optimal convolutional feature extractor 

The convolutional feature extractor of the adopted CNN underwent automatic hyper-
parameter search via BO in the supervised problem 1. Convolutional filters slide over the 
temporal dimension catching temporal patterns in firing rates; each training sample included 
15 temporally consecutive bins, each bin represented the firing rate of a time interval of 20ms 
(see methods for more details). In Figure 7.4 the distributions of the searched hyper-parameters 
are reported in cumulative histograms, considering all the optimal configurations across folds, 
monkeys, and areas (60 configurations in total). From these results the most frequent 
configuration (higher bar on each plot corresponding to a given hyper-parameter in Figure 7.4) 
was a simple shallow CNN, characterized by a number of blocks 5= = 1, number of 
convolutional layers per block 55 = 1, number of convolutional filters e = 32, filter size f =
5, and max norm x = 1. Furthermore, options such as no batch normalization, ReLU activation 
functions for hidden units, and average pooling were more frequently adopted. Lastly, a 
dropout probability P = 0.5 and a learning rate of 0.001 were optimal. The CNN defined by 
this specific hyper-parameter configuration was used to solve the decoding problems 1 and 2, 
and the subsequent reported results are related to this specific functional form of the decoder.  
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Figure 7.4 - Hyper-parameter probability distributions of the convolutional feature extractor resulting from BO. 

On the x-axis the hyper-parameter values are reported, while on the y-axis the probability that BO selected as 

optimal each hyper-parameter value is reported. O5 and OX denote the number of convolutional blocks and 

temporal separable convolutions per block, respectively. ; and < denote the number of temporal kernels and the 

kernel size, respectively. Lastly, W and ) indicate the maximum norm to use in max-norm constraint and the 

dropout probability, respectively. 
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7.3.3. Supervised problem 1: Target decoding 

In Figure 7.5 decoding accuracies are reported as a function of time, for both monkeys and 
all areas. CNNs learned to accurately map the activity of the collected neurons to the spatial 
location of the targets, as demonstrated by the average accuracy well above the chance level 
(11%) in both monkeys and in each area.  

 

 
Figure 7.5 - Decoding accuracy over time. The performance metric obtained in the supervised problem 1 for each 

monkey (M1 on top and M2 on bottom) and each recording area (V6A, PEc, PE) used in the decoding is reported 

as a function of time. Mean values are reported (thick lines) ± standard error of the mean (overlayed shaded areas) 

across folds. Vertical bars denote the separation between epochs 0-5.  

 
Accuracies began to increase with target detection (epoch 1), remained sustained with a 

ramping trend during movement preparation (epoch 2), peaked during movement execution 
(epoch 4), and then began to decline as touch on the target was maintained (epoch 5). In the 
case of V6A and PEc a maximum accuracy in decoding the correct target position above 80% 
was reached in epoch 4. Although the trend was similar for the 3 areas, PE had significantly 
lower accuracies than V6A and PEc, varying between 20-40%. This lower accuracy of 
decoding in area PE could be due to the lower percentage of modulated cells in PE within each 
epoch (see Figure 7.3) and/or to the smaller population available (roughly 1/3 of neurons were 
available for PE with respect of V6A and PEc, see Section Electrophysiological recordings). 
To better explore this last point, a dropping analysis (see Section Supervised problem 1: Target 

decoding) was applied, and its results are reported in Figure 7.6.  
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Figure 7.6 - Neuron dropping analysis. The decoding accuracy in the supervised problem 1 for each monkey (M1 

on top and M2 on bottom) and each recording area (V6A, PEc, PE) used in the decoding is reported as a function 

of the number of cells used to classify reaching targets. For each step of the dropping analysis, the performance 

was averaged across folds. The figure reports the mean values (thick lines) ± standard error of the mean (overlayed 

shaded areas) across the 20 random samplings.  

 
Here, accuracies as a function of the number of cells (5q) used to decode the reaching targets 

are reported for each monkey and each recording area. For V6A and PEc, few neurons were 
enough to obtain accuracies well above the chance level, e.g., from 7 sampled neurons 
accuracies >30% were achieved both in monkey 1 and 2 (M1 and M2). Furthermore, the initial 
slope of the curve ‘accuracy vs. number of cells’ followed V6A>PEc>PE. Lastly, in V6A and 
PEc the trend kept improving more than PE as the number of neurons available increased. The 
dropping analysis therefore confirmed a lower ability to decode spatial information from area 
PE neurons compared to the better performance on V6A and PEc. These last two areas appear 
very similar in their ability to encode the information of the target position with the same 
strength.  

Finally, Figure 7.7 shows the comparison between the decoding accuracy as a function of 
time obtained with the CNN-based decoder and the NB-based decoder.  
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Figure 7.7 - Decoding accuracy over time obtained with the proposed CNN and with a NB linear classifier. The 

accuracy scored with both the CNN (black) and NB (red) in the supervised problem 1, for each monkey (M1 and 

M2) and each recording area (V6A, PEc, PE), is reported as a function of time. The figure reports the mean values 

(thick lines) ± standard error of the mean (overlayed shaded areas) across folds. Vertical bars denote the separation 

between epochs 0-5. Permutation cluster t tests were performed for each monkey and each recording area to 

analyze differences between the two algorithms; temporal intervals with significant performance differences () <
0.05) between the two algorithms are reported on top of each panel with thick horizontal bars.  

 
Overall, our proposed decoder exhibited higher accuracy scores. Moreover and 

interestingly, the time pattern of accuracy during the reaching movement differed across the 
two classifiers. The NB classifier after the initial increase in epoch 1, tended to exhibit an about 
constant (or slightly decreasing) accuracy across the other epochs, declining in epoch 5, and 
did not show the increasing trend peaking in the movement and hold phases as the CNN 
classifier. Statistical analysis shows that CNN outperformed (p<0.05) the NB-based decoder 
for all monkeys and areas, especially after the movement onset (e.g., during epoch 4 and 5), 
with improvements up to 46% (in M2 decoding from V6A, during epoch 5). These differences 
may arise from the capability of the CNN to learn non-linear dependencies exploiting complex 
hierarchical features in the temporal domain from the input temporal samples, while the classic 
linear algorithm based on NB is plausibly unable to catch these dynamics as it linearly 
combines the inputs and assumes conditional independences between the input temporal 
samples.  

In this problem, we reconstructed discrete spatial positions, targets of the reaching. The 9 
positions (9 classes) were recognized by CNN with high accuracy during all time intervals in 
which the animal was aware of the reaching position, from the first stages of target fixation to 
the holding of touch on the target. Besides decoding target position, we also tested whether and 
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to what extent other movement aspects, such as hand trajectories, could be potentially decoded 
from the activity of neurons in the investigated PPC areas.  

 
7.3.4. Supervised problem 2: Hand trajectory decoding  

A representative result while decoding position coordinates using V6A signals is reported 
in Figure 7.8a (with an offset=0 in the kinematic association, see Section Supervised problem 

2: Hand trajectory decoding).  
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Figure 7.8 - Representative example of 3-D decoded trajectory (a) and R2 regression scores (b). (a) A 

representative example of decoded trajectory (red) alongside with the ground truth (black) over time (epochs 2-

5) using V6A neural activity from M2 is reported. Coordinates are reported in their scaled units (s.u., see Section 

Supervised problem 2: Hand trajectory decoding). Mean and standard deviations (shaded area) are calculated 

over cross validations. (b) The performance metric obtained in the supervised problem 2 while decoding position 
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coordinates is reported for each monkey (M1 on top and M2 on bottom) and recording areas (V6A, PEc, PE) used 

in the decoding. Each plot reports R2 also as a function of the offset chosen while associating the target label (see 

Section Supervised problem 2: Hand trajectory decoding), where the default association is denoted by offset=0. 

R2 scores are reported in their mean values (bar height) ± standard deviation (vertical line) across folds. Horizontal 

black bars connect the areas found with significantly different R2. 

 
Epochs 2-5 for the 9 targets are concatenated one after the other to show the range of x, y 

and z along the whole movement executed by the monkey. Predictions are plotted against 
ground truth trajectories. In this example, it is clear how V6A strongly contains enough 
information to accurately decode movement 3-D trajectory. However, not all areas allowed to 
reconstruct the movement trajectory with the same fidelity. In agreement with previous results 
as to target position decoding, area PE contains less useful information for the reconstruction 
of the trajectory, as shown by Figure 7.8b reporting the CNN performance metric for each 
monkey and recording area. Decoding performance using the default kinematic assignment 
(i.e., Ö = 0, see Section Supervised problem 2: Hand trajectory decoding) of the x-coordinate 
in V6A were significantly lower (for both monkeys, p<0.01, Wilcoxon signed-rank test 
corrected for multiple tests using the Benjamini-Hochberg procedure [50]) than y- and z-
coordinates, but no differences were found between y- and z-coordinates in the same area. This 
may be multifactorial, in part given by a methodological drawback, the greater spread of the x 
(between -1 and 1) with respect to y and z (both between 0 and 1), but has also physiological 
substantiation. Indeed, previous studies (see Section 7.4.2) have demonstrated a prominent 
encoding of the depth component in areas of the superior parietal lobule, and this could be the 
cause of a greater difficulty in reconstructing the x component of trajectories.  

In Figure 7.8b, decoding performance were reported also as a function of the offset used in 
the multi-lag kinematic association adopted in this study, i.e., ±6, ±2, 0 (see Section Supervised 

problem 2: Hand trajectory decoding). This has allowed us to probe whether feedback or 
feedforward information is prominent in the areas: in the case of negative offsets a possible 
increase in decoding accuracy indicates the importance of feedback information, i.e., the 
current activity of the neurons explains an event that has already happened; in the case of 
positive offsets the increase in accuracy is related to a greater prominence of the elaboration of 
the movement plan that will be realized in subsequent times. While evaluating differences 
across offsets for each coordinate, area and monkey, significant differences (P < 0.01, 
Friedman test) across offsets were only found for V6A for the x-coordinate for both monkeys, 
where a positive linear trend from negative to positive offsets was observed. By focusing only 
on the performance obtained with zero-lag, we observed that PE scored lower R2 than other 
areas (p<0.01, Wilcoxon signed-rank test corrected for multiple tests using the Benjamini-
Hochberg procedure), for all monkeys and coordinates (see statistical analysis results displayed 
as solid bars in Figure 7.8b).  
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7.4. DISCUSSION 
In this study we explored the possibility to predict reaching goals and movement trajectories 

by decoding the activity of single neurons recorded from different areas of the SPL. To decode 
neural signals, CNNs were used to extract temporal dynamics via temporal convolutions, and 
their design was defined by automatic hyper-parameter search using BO. This is particularly 
relevant as in the literature [24,26,27] DNN designs are commonly defined by empirical 
evaluation (i.e., test a limited bunch of configurations and using the best performing one) which 
is a time-consuming process, often leading to sub-optimal DNN configurations. CNNs were 
used in this study with two main purposes: i) leveraging temporal convolution to better 
characterize encoding dynamics in the different areas of SPL reaching network; ii) validating 
for the first time (to best knowledge of the authors) CNNs in decoding spiking activity, as 
CNNs among DNNs (e.g., respect to RNNs) achieve good performance and explainability, 
while keeping a lower number of trainable parameters. Finally, we probed CNNs superiority 
compared to simpler linear classifiers. Decoding results allowed to uncover the amount and 
characteristics of information each area contains about the external variables (end-point 
position and effector trajectory) and the differences across the different areas.  

Signals collected from neurons of SPL were predictive of reaching targets also before the 
movement onset. Decoding performances were different between areas: while the decoding 
accuracies for V6A and PEc were very similar (over 80% of accuracy in detecting the correct 
spatial position), PE diverged by obtaining lower values (lower than 40%), suggesting a 
different role in the circuit for the different areas. Similarly, moving from decoding reaching 
goals to movement trajectories, V6A and PEc maintained good R2 values, PE regained some 
points in the reconstruction of the depth (y) and elevation (z) components of the movement 
while reconstruction of the direction (x) remained more difficult. Neural networks have proven 
to be robust and easily adaptable to the required task, preferring simple architectures (see the 
more frequent optimal configuration in Section 7.3.2) and therefore quickly trainable and 
generalizable, being able to capture the dynamics of neuronal activity.  

 
7.4.1. A visual to somatosensory gradient over the network is reflected in the decoding 
accuracy. 

The posterior parietal cortex sits in a crucial node for integration of sensory stimuli to guide 
action receiving visual input, somatosensory and proprioceptive feedback, and afferent motor 
copy from premotor cortex [51,52]. In agreement with this, electrophysiological studies that 
probed different areas of the PPC found different levels of activation for these neurons, mostly 
linked to visual stimuli for caudal regions close to extrastriate cortex, tactile and proprioceptive 
moving rostrally toward somatosensory cortex. The network we studied bridges visual and 
somatic domains, with area V6A bordering the extrastriate visual area V6 [9,53], PE bordering 
Brodmann’s area 2 and PEc in between [20]. In agreement with this, the number of neurons 
modulated by the spatial goal position (see sliding ANOVAs of Figure 7.3) was already high 
in V6A in the first part of the trial (epoch 1), being the visual input of great relevance in V6A. 
The number of neurons modulated by goal position is maximal in PE in the second part of the 
trial, that was associated with the execution of the reaching movement (epoch 4-5). Although 
even in the second part of the task the percentage of modulated neuron of PE was not exceeding 
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those of V6A and PEc, the stronger representation of the goal position in the movement epoch 
reflects a stronger somatomotor than visuospatial representation in PE. The neural activity from 
the first visualization of the target to the movement onset has been associated with the 
elaboration of the motor plan, the maintenance of spatial attention toward relevant targets and 
the integration of sensorimotor inputs [52,54]. 

Moving from the previous ANOVA analysis, we then performed a more sensitive decoding 
analysis using CNN; the latter, taking into account neural dynamics and non-linearity, can 
guide a more robust comparison. Given the link between preparatory activity and the spatial 
positions of the targets, decoders successfully extracted the correct position given the 
preparatory spiking activity. Our results suggest that V6A and PEc strongly encode 
visuospatial information already in the first part of the task, enabling the decoders to easily 
extract useful information about the goal spatial positions. During the planning epoch, 
visuospatial inputs are converted to visuomotor signals which are required to guide execution 
phase. During this second part of the task, signals related to goal position remained strong and 
easily decodable. PE in comparison, presents a less pronounced activation in relation to the 
task tested, nevertheless during the execution phase stronger sensorimotor signals can be 
decoded by CNNs. It is worth noticing that gaining accuracy in the movement phases, in all 
areas and especially in PE, is a peculiarity of the CNN classifier, not exhibited by the linear 
NB classifier (see Figure 7.7); this may indicate that CNNs are more apt to catch the richness 
of information contained in these areas. Ultimately, PE and PEc both part of the Brodmann’s 
area 5 [55] appear more different than expected: the activity of PEc is much more similar to 
V6A, part of Brodmann’s area 7, and should therefore be considered part of the latter area 7. 
This idea, advanced by [51] is supported by present data.  

 
7.4.2. Decoding movement goals and trajectories from PPC 

Decoding of reaching goals is particularly efficient in different areas of the PPC especially 
from areas of the dorso medial network. The Parietal Reach Region (PRR) has been used as a 
source of these signals in several studies [56–59]. Interestingly, the PRR is close to areas V6A 
and PEc and mostly overlap with area MIP (anterior bank of the medial intraparietal sulcus) 
[38]. Homologue of PRR in humans, together with the more lateral anterior intraparietal area 
(AIP), were used to decode motor imagery in a center-out task by a tetraplegic implanted 
patient [60]. Thus, the interest in decoding movement intention from PPC remains high in light 
of the possibility to extract several parameters related to cognitive processing rather than 
simpler motor kinematics [61]. Most of the studies used a task with reaching movements 
towards a monitor placed in front of the subject, without studying the movement in depth. 
Conversely, in our study the movements were made on three different degrees of depth 
simulating more naturalistic movements. Several pieces of evidence support the diversity of 
networks processing direction and depth information, with different percentages of cells 
modulated in depth and direction for the different areas tested [13,15,62,63]. Depth encoding 
is plausibly stronger for areas that rely more on proprioceptive (such as PE) rather than visual 
[18]. We did not find different accuracies by decoding the two components separately when 
we decoded reaching goals (data not shown). While decoding the 9 reaching targets (supervised 
problem 1), not only movement attributes, planning and execution could be exploited in the 
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learning system, but also spatial attention, sensory feedback, and movement imagery. All these 
types of information are known to be encoded in PPC (Section 7.4.1) and contribute to the 
generation of patterns in the discharge of neurons, patterns that can be extracted from the neural 
network and mapped to the classes corresponding to spatial locations. We then tried to predict 
the trajectories of hand position (supervised problem 2) from the population activity of neurons 
providing the algorithm with past neural activity up to 300 ms before the current movement 
(corresponding to an offset=0, see Section Supervised problem 2: Hand trajectory decoding 
and Figure 7.8b). Unfortunately, the real trajectories were not available, so we have 
reconstructed the plausible trajectories of movement semi-synthetically (see Section 
Supervised problem 2: Hand trajectory decoding), from the pressure of the home button to the 
reaching movement up to the holding of goal position. Remarkably, while V6A and PEc R2s 
were high (over 0.6) obtaining a good trajectory reconstruction, R2s of PE were lower (see 
Figure 7.8b), especially for the x-coordinate (corresponding to the direction of movement) 
supporting the view of preferential depth (y) encoding from rostral SPL. Our task was ideal for 
testing visuospatial transformations and probably little activates areas more devoted to 
somatomotor control. Nevertheless, it is plausible that the semi-synthetic trajectories we used, 
forcing a non-natural straight-line trajectory, could be not optimal for decoding. While reaching 
goal location and trajectory decoding were good for both V6A and PEc, and no particular 
difference emerges between the two methods, trajectory decoding from PE seems to perform 
slightly better than classification (especially for depth and elevation). This could be related to 
the specialization of the area PE in dealing with proprioceptive signals, so that information of 
the absolute position of the target (used for classification problem) is scarcely useful, and 
signals are more related to the movement of the limbs than visuospatial representation. 

 
7.4.3. Feedforward model 

To perform rapid, targeted movements, our brain must rely on a feedforward predictive 
model given the latency of incoming sensory feedback signals. One of the theories that is 
gaining momentum is that the brain must continuously integrate the state of the environment 
and the body into a feedback control loop to perform congruent movements in real time [64]. 
The SPL fits nicely into this framework with caudal regions encoding the environment in 
relation to the body and more rostral regions encoding the state of the body [22]. Within this 
model it is possible to frame the generation and deployment of the trajectories of movement. 
We found that it is possible to predict the instantaneous position of hand in the space by 
providing the activity of neurons in a short prior interval, but also with increasing lags. 
Negative lags extract features related to sensory feedback (sensory outcomes of action), 
positive lags suggest the existence of a predictive model or motion planning. Mulliken and 
colleagues [23] observed how PRR neurons encode for either the movement angle or goal angle 
(or both), finding single-cell preferences for encoding future states (positive lag), past states 
(negative lag), and many cells that represented the current state (zero lag, in particular for a 
task that used an obstacle on the trajectory requiring a more dynamic control), demonstrating 
the existence of the feedforward model. Our decoding analysis loses sensitivity to a single 
neuron combing all contributions at the population level but still gives us clues about the 
existence along the entire network of the SPL of the running feedforward model. The fact that 
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the areas we studied simultaneously contain a representation of sensory feedback and signals 
related to the planning of future movements, supports the existence of an inner model that 
compares the expected outcome of an action with the real outcome, even if with intrinsic 
latency. While in most cases the decoding accuracy was not affected by the different offsets, 
only the x component for the V6A area shows significant dependence (Figure 7.8b). We think 
that this reflects two properties of the network we are studying. Previous work from our lab 
found that direction information (x-axis) is processed earlier than depth (y-axis, see 
Hadjidimitrakis et al. [13]) that relies more on somatosensory signals arriving later as sensory 
feedback from the moving arm. In addition, somatosensory afferents are greater for more 
rostral areas (PEc and PE, see Introduction). Accordingly, V6A decoding accuracy is more 
affected by offsets that rely less on feedback signals (see lower accuracy for negative offset in 
Figure 7.8b), where a high accuracy is maintained using movement preparatory signals 
(positive offsets). The offset effect is less evident in PEc, with a trend that is not statistically 
significant and in PE it is not present (although it could be masked by the lower overall 
accuracy). 

 
7.4.4. Convolutional neural networks for neural decoding  

The revival of neural networks supported by a large variety of applications in computer 
vision has led to the widespread use of neural networks in various fields that can now benefit 
from advanced pattern recognition techniques [65]. We have borrowed techniques from time 
series analysis and have shown how neural networks are well suited for the study of neural 
dynamics. Since our CNN-based algorithm is able to extract and leverage temporal features, 
the decoding performance significantly increases (Figure 7.7) compared to a classic algorithm 
based on Naïve Bayesian.  
Conversely to other studies [24,26,29], in this study we adopted CNNs to decode neural signals 
while automatically searching for its best configuration using BO. Therefore, it is worth 
remarking that the main CNN structural hyper-parameters were automatically optimized within 
the search space exploiting an automatic search algorithm, rather than manually select them 
based on a trial-and-error procedure. From BO, a shallow CNN architecture (i.e., 5= = 1, 55 =
1) with one separable convolutional layer and one fully-connected layer resulted optimal for 
decoding the neural activity during reaching. The adoption of a shallow CNN has the advantage 
of lower training times and good generalization with limit-sized datasets as the one adopted in 
this study, achieving high decoding performance both in classifying the target reaching end-
point, and in predicting semi-synthetic trajectories. Indeed, results suggest that with the 
adopted optimal shallow CNN few trials (72 in the training set, see Section Behavioral task) 
are enough to train the networks with the chunking procedure (augmenting the training set up 
to 3384 examples, see Table 7.1), achieving high performance. Temporal patterns of the single 
separable convolutional layer led to an optimal decoding when extracted within a window of 
100 ms (i.e., f = 5 bins). Interestingly, despite being a shallow CNN, the optimal architecture 
learned the highest number of features among the admitted values of hyper-parameter space 
(i.e., e = 32 feature maps were learned, see Table 7.2). Thus, instead of selecting a deep 
convolutional neural network (e.g., 2 blocks with 4 convolutional layers per block, 
corresponding to the maximum depth in the defined search space) and a low number of filters 
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per layer (e.g., 4 filters), which is a common design principle in computer vision applications 
[66], BO selected a simple shallow CNN learning the highest possible number of filters in the 
single convolutional layer included. Therefore, by analyzing these structural hyper-parameters, 
results suggest that the information contained in the input neural chunks did not require 
extracting high-level and more abstract features (e.g., as resulting from a deep CNN in deeper 
layers) to perform an accurate decoding, but rather learning many low-level and less abstract 
features directly from the raw input chunks was more beneficial. This result may depend on 
the fact that some high-level features have already been extracted upstream, from the visual 
and somatosensory processing flows that precede the posterior parietal lobule, i.e., the inputs 
to our network are not directly taken from the external world, as usually done in deep neural 
networks, but have been significantly pre-processed by the primary brain areas. Future 
applications in neural decoding could benefit in designing shallow but wide CNNs rather than 
deep and narrow CNNs. Furthermore, regarding regularization hyper-parameters, constraints 
such as kernel max-norm constraint (with x = 1) and dropout (selecting the highest dropout 
probability, i.e., P = 0.5, see Table 7.2) proved their utility improving the generalization in the 
addressed decoding tasks. Interestingly, batch normalization did not result as useful as the 
previous regularization methods (BO selected less frequently this regularizer). Thus, in 
perspective, neural decoders could benefits in applying the specific combination between 
kernel max-norm constraint and dropout (with a high dropout probability, e.g., set to 0.5 as in 
this study) to perform regularization.  

Despite the main objective of this study was to propose a CNN architecture for decoding 
neural activity and enabling the analysis of three different PPC areas, some methodological 
aspects may prospectively have significant implications for BCI. First, the proposed CNN 
structure resulted from an automatic algorithm (BO) and resulted optimal in terms of 
performance on a separate validation set, significantly outperforming a linear classifier. 
Furthermore, the design included separable convolution that are lighter and more efficient than 
standard convolutions, [41], providing a neural network that is less prone to overfit small 
datasets and that produces a fast inference. That is, the proposed CNN resulted in an accurate, 
light, and efficient non-linear decoder of neurons’ spiking rate that, in prospective, may find 
some applicability in BCI systems. 
 
7.4.5. Future directions 

Although we focused on CNNs in our analysis because we think they should be better 
explored as method for neural decoding thanks to their simplicity and interpretability [30], 
many studies used different implementations based on RNNs (as mentioned in the introduction) 
obtaining good results especially in the decoding of trajectories for practical applications 
(despite RNNs remain in many cases black boxes). RNNs are being trained to simulate the 
frontoparietal network of grasping (dorso-lateral pathway rather than dorso-medial of 
reaching), with artificial units resembling the neural activity of real neurons recorded in areas 
of grasping circuits. In such model, virtual lesion to the artificial network produced outputs 
similar to lesion/inactivation studies on monkeys [67]. Given the interconnections between the 
reaching and grasping networks with neurons sensitive to grip types found in V6A [68] and 
neurons sensitive to reach locations in anterior intraparietal area [69] it is expected that a similar 
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RNN architecture can also be applied to the dorso-medial network. Future developments 
include the adoption of RNN to compare with CNNs in a benchmark (with many datasets and 
decoding algorithms) and evaluate which decoding approach represents the best compromise 
between performance, training time and model size (i.e., number of trainable parameters). 
Furthermore, techniques aimed to improve the interpretability of the CNN (e.g., occlusion 
techniques and saliency maps [70]), recently exploited to investigate neural signatures in the 
electroencephalogram while decoding brain states [71,72], can be of value also to explain 
network’s decision when decoding neurons’ spiking rates. In particular, these explanation 
techniques could help to characterize the impacts of individual input neurons or subpopulations 
of neurons (e.g., at different locations) inside each specific area in the decoding process, as 
well as the importance of specific time bins, contributing to understand their role at the level 
of brain network dynamics. Working on these two points, i.e., developing algorithms that 
decode efficiently and accurately neural dynamics, and explaining decoding decision could 
bring great benefits. First, it may further increase our knowledge about the link between neural 
activity and behavioral outcome; second, and prospectively, it may contribute to advance BCI 
technologies by driving improvements aimed to maximize brain information extraction and 
better brain-computer communication. 

Finally, it is important to stress that neural decoders as the ones proposed here are of 
significance to determine the amount and nature of information neural populations contain 
about specific external variables, but are not designed for mechanistic interpretation, i.e., for 
explaining the neural mechanisms underlying multisensory and sensorymotor integration in 
PPC for guide actions. To this aim, biologically inspired neural networks are needed, designed 
to functionally and structurally resemble specific parts of the brain and to implement more 
biological learning rules than back-propagation. Data-driven deep learning approaches and 
biologically constrained interpretative networks are complementary approaches that can both 
boost a better comprehension of how information is encoded and processed in the brain and 
each one can support the advancement of the other; for example, a better description of the 
information encoded by the different neural populations gained by CNNs decoders may guide 
the design of interpretative models [73].  
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7.5. CONCLUSIONS 

We decoded the activity of neurons from three areas of the reaching network within the 
superior parietal lobule of macaque, V6A, PEc, and PE to reconstruct the position of the goal 
in space and the trajectory required to accomplish the reaching. CNNs were used as neural 
decoders and proved to accurately decode both the reaching target and 3D hand position. The 
optimal design of the CNNs, as obtained with hyper-parameter search, resulted in shallow (but 
wide) architectures with only one hidden separable convolutional layer. While the more caudal 
V6A and PEc encoded more strongly the position of the target in space (decoding accuracy 
was already good at the presentation of the target) the area PE, more rostral, was weaker in this 
representation, its accuracy reaching a peak during the execution of the movement. This 
supports a model of the PPC where the more caudal areas represent the body-environment 
relationship and the more rostral areas the effects of the action on the body. The results can be 
framed in the role played by PPC in the neural control of reaching movements. New 
generations of BCIs can gain benefits from a better combined study between system 
neuroscience and renewed deep learning technologies. 
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CONCLUSIONS 
The investigations carried out in this PhD work aimed to overcome some limitations 

currently affecting CNN-based decoding of neural time series; these limitations mainly regard 
the network architecture, training strategy, feature interpretation, and the decoding of neurons’ 
spiking rate.  

Concerning the network architecture, the results of the present research have shown that the 
optimal CNN structure, in terms of performance, exploited less features to learn in the temporal 
and spatial domains in case of within-subject decoders (i.e., decoders trained with subject-
specific examples), both for P300 and motor decoding from the EEG. Conversely, when the 
set of the training examples included more variability, e.g., when designing cross-subject 
decoders, the optimal structure did benefit from learning more features in the temporal and 
spatial domains. In addition, when designing deeper temporal convolutions, benefits, in terms 
of performance, resulted from including a multi-scale temporal feature learning, i.e., learning 
temporal filters having different size, and, thus, learning temporal features at multiple time 
scales over the input. These analyses and the obtained results are valuable to better clarify how 
to design the network layers, including deeper temporal convolution layers, by suggesting the 
proper setting of their hyper-parameters. Lastly, both for P300 and motor decoding from the 
EEG, the obtained results suggested that the proposed light architectures outperformed heavier 
and deeper neural networks presented in the literature, proving that a careful design of CNNs 
should be performed to achieve higher performance on unseen data when handling small 
datasets of neural time series, as commonly available in practice.  

The investigation of multiple training strategies has allowed to obtain an extensive 
validation of CNNs as accurate EEG decoders, both in P300 and motor decoding problems. 
Furthermore, transfer learning, i.e., transferring the knowledge on a new subject from a model 
previously trained on other subjects, significantly increased the performance, especially in the 
very-low training data regime (i.e., in case of only a few or no training trials). This enables the 
design of accurate decoders (when based on CNNs) also in conditions where extremely 
compact training sets are available (calibration-limited condition), or even in absence of any 
training example (calibration-free condition). 

In addition, the issue of interpreting the features learned by CNNs was extensively 
investigated in this research, with reference to P300 and motor decoding from the EEG. This 
analysis was performed by using both an input explanation technique and intermediate 
explanation technique, with the aim of increasing our knowledge about the neural features 
associated to P300 and of motor correlates in the spatio-temporal and frequency domains. It is 
worth noticing that, to enable intermediate explanations, we developed interpretable CNNs 
(incorporating interpretability directly inside the structure). These CNNs, besides being lighter 
and more interpretable, performed on par or even outperformed the non-interpretable solutions 
of the state-of-the-art across the presented chapters. This is of great relevance, as the results of 
this research also point out that an accurate DL-based decoder can be designed interpretable 
without sacrificing its decoding capabilities. Input explanations were performed to study the 
P300 response and proved to better highlight and better enhance relevant P300 features in the 
spatio-temporal domain even at the single-trial or single-subject level, overcoming the 
limitations of a traditional analysis (ERP analysis) that requires averaging across multiple trials 
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and subjects. Advantages compared to a traditional analysis were also derived from 
intermediate explanations, that proved to better highlight P300 features related to autistic 
subjects in the frequency and spatial domains. Furthermore, intermediate explanations 
provided also useful representations related to motor correlates. Overall, the CNN-based EEG 
decoders, not only serve as accurate classifiers of different brain and behavioral states, but, if 
appropriately designed and inspected in their learned features, may represent valuable analysis 
tools able to highlight and disclose meaningful features of the underlying neural processes.  

Lastly, CNNs were introduced to decode neurons’ spiking rate from single-cell recordings 
of monkeys. Light CNNs outperformed the current ML state-of-the art and represented a valid 
alternative to decoders based on FCNNs and RNNs that are heavier and require longer training 
times.  

In perspective, the present research may be useful not only for practical engineering 
applications, by adopting CNNs to increase the performance of BCI decoders and to reduce 
BCI calibration times (e.g., via transfer learning), but also for theoretical neuroscience 
knowledge. In this regard, by taking advantage of the learned knowledge of CNNs, it is possible 
to analyze in a data-driven way how the brain or behavioral states under investigation are 
encoded in the neural activity, by highlighting their more meaningful features in the temporal, 
spatial and frequency domains without relying on a priori assumptions about the underlying 
neural processes. These features may be used, in perspective, to automatically design novel 
EEG biomarkers for neurological or neurodevelopmental disorders. 

As described above, the present research brings some innovations and improvements. 
However, it also suffers from some limitations that can be addressed in the near future. First, 
the decoding problems were addressed, across chapters, adopting different decoders often 
specialized to solve a specific decoding problem (e.g., P300 decoding). In particular, we can 
observe that the CNN structures adopted in the different chapters shared a common sub-
network consisting of the first temporal convolutional layer immediately followed by a spatial 
convolutional layer, but they also presented relevant differences. Indeed, the first temporal 
convolution was designed interpretable or not depending on the cases. Furthermore, the 
adopted structures differed in the design of subsequent layers, as they either did or did not 
include another convolutional layer and the latter, when included, learned temporal features at 
a single or multiple time scales depending on the cases. It could be of interest to investigate a 
unique CNN structure able to perform well across multiple recording paradigms and datasets, 
to provide a unique decoder and CNN-based analysis tool that could be applied to decode and 
analyze many behavioral and brain states. Second, CNN-based decoders and analyses were 
applied in this research on datasets consisting of a limited number of subjects (≤ 25). This could 
have limited the validation of CNNs for EEG decoding and analysis, not only on healthy 
subjects but especially on patients where the disorder involves a high heterogeneity across 
subjects, e.g., the high heterogeneity of the behavioral symptoms in autism (see Chapter 3). 
Third, the analyses of the features learned by the CNNs while decoding neural time series was 
performed only on EEG signals and not on single-neuron recordings.  

Therefore, future investigations will focus on: i) the design of a unique CNN architecture 
that generalizes well across paradigms and tasks; ii) the adoption of larger datasets to provide 
a more robust validation of CNNs as neural decoders and data-driven analysis tools, able to 
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highlight robust neural signatures underlying behavioral and perceptual phenomena; iii) the 
study of the features learned by the CNN from single-cell recordings, to validate the data-
driven analysis approach presented in this Thesis when using a different recording modality of 
the neural activity. In addition to these future developments related to the main limitations of 
the present research, the analyses described in this Thesis will be extended as follows. As 
described in the Introduction, CNN-based decoders generally achieved high decoding 
performance without handling artifacts (e.g., as presented in Chapter 1), leaving the learning 
system free to explore raw or minimally pre-processed EEG signals. However, it remains 
unclear to which extent CNNs and different CNN structures are robust to artifacts. Therefore, 
the analysis on the proper design of CNNs will be extended by also evaluating CNN robustness 
to artifacts, by analyzing CNN decoding capabilities and CNN designs while progressively 
cleaning EEG signals from artifacts. Lastly, the CNN-based analyses of the EEG at the scalp 
level presented in this Thesis will be extended to study neural features of source activations, as 
computed from the EEG, within region of interests. 


