
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

DOTTORATO DI RICERCA IN

INGEGNERIA ELETTRONICA, TELECOMUNICAZIONI

E TECNOLOGIE DELL’INFORMAZIONE

CICLO XXXIV
SETTORE CONCORSUALE 09/F2

SETTORE SCIENTIFICO DISCIPLINARE ING-INF/03

AUTOMATED SERVICE PROVISIONING IN
PROGRAMMABLE NETWORK

INFRASTRUCTURES

Presentata da Supervisore

DAVIDE BORSATTI Prof. WALTER CERRONI

Coordinatore Dottorato

Prof. ALDO ROMANI

ESAME FINALE ANNO 2022

Contents

Abstract i

1 Introduction 1

1.1 Programmable Network

Infrastructures . 1

1.2 Virtualized Network Service Provisioning 3

1.3 Network Automation 7

2 Programmable network infrastructure 9

2.1 SFC with Openflow . 9

2.1.1 The OpenStack SFC extension 9

2.1.2 Experimental setup 13

2.1.3 Experimental results 17

2.2 SFC with Segment Routing 22

2.2.1 The Network Scenario 24

2.2.2 Test bed Implementation 27

2.2.3 OpenSource MANO 28

2.2.4 Experimental Results 30

2.2.5 Comparison with Openstack SFC 34

3 Network Service Provisioning 37

3.0.1 Physical testbed validation with OSM 37

4 5G Network Slicing 41

4.1 Network architecture and system components 41

4.1.1 The MC server 43

4.1.2 The mobile access network 44

Contents 1

Contents

4.1.3 Data center management infrastructure deploy-

ment . 45

4.2 A Network Slice for MC communications 45

4.2.1 Actors and Roles 45

4.2.2 Network Slice Architecture and Characteristics . 47

4.2.3 Network Slice Delivery and Lifecycle management 50

4.3 Experimental Results 51

5 Enabling Industrial IoT as a Service with Multi-access

Edge Computing 56

5.1 Introduction and related works 57

5.2 Reference Scenario for IIoT as a Service 59

5.3 Features and Components in a MEC-enabled IIoTaaS

Framework . 62

5.4 Proof-of-Concept Implementation 65

5.5 Evaluation . 70

5.6 MEC011 Extension . 75

6 Intent Based Networking 78

6.1 Preliminary work . 78

6.2 Formal definition of IBN 84

6.3 Future research tracks 98

7 Conclusion 100

Acronyms 102

Bibliography 104

Contents 2

Abstract

Modern networks are undergoing a fast and drastic evolution, with

software taking a more predominant role. Virtualization and cloud-

like approaches are replacing physical network appliances, reducing

the management burden of the operators. Furthermore, networks now

expose programmable interfaces for fast and dynamic control over traf-

fic forwarding. This evolution is backed by standard organizations

such as ETSI, 3GPP, and IETF. This thesis will describe which are

the main trends in this evolution. Then, it will present solutions de-

veloped during the three years of Ph.D. to exploit the capabilities

these new technologies offer and to study their possible limitations

to push further the state-of-the-art. Namely, it will deal with pro-

grammable network infrastructure, introducing the concept of Service

Function Chaining (SFC) and presenting two possible solutions, one

with Openstack and OpenFlow and the other using Segment Routing

and IPv6. Then, it will continue with network service provisioning,

presenting concepts from Network Function Virtualization (NFV) and

Multi-access Edge Computing (MEC). These concepts will be applied

to network slicing for mission-critical communications and Industrial

IoT (IIoT). Finally, it will deal with network abstraction, with a fo-

cus on Intent Based Networking (IBN). To summarize, the thesis will

include solutions for data plane programming with evaluation on well-

known platforms, performance metrics on virtual resource allocations,

novel practical application of network slicing on mission-critical com-

munications, an architectural proposal and its implementation for edge

technologies in Industrial IoT scenarios, and a formal definition of in-

tent using a category theory approach.

i

Chapter 1

Introduction

In the last years, the way networks are controlled and managed is

undergoing radical changes. Software is taking a predominant role in

modern networks to help reach the stringent requirements of current

services. The title of this thesis underlines three important trends in

the evolution path modern networks are undergoing:

– Programmable Network Infrastructures;

– Virtualized Network Service Provisioning;

– Network Automation.

1.1 Programmable Network

Infrastructures

The first one of these evolution trends revolves around having network

resources that could be programmed dynamically through software.

The most famous paradigm for that is Software Defined Networking

(SDN). SDN was standardized in 2011 by the Open Networking Foun-

dation (ONF), which is a user-driven organization dedicated to the

promotion and adoption of SDN, and implementing SDN through open

standards [...] necessary to move the networking industry forward [B1].

ONF is also the organization behind the development and distribution

of OpenFlow, one of the most used switch protocols for providing an

1

Chapter 1. Introduction

open interface for controlling connectivity and flows within that con-

nectivity in a Software Defined Network [B2].

The main aim of SDN is to support a scalable and dynamic varia-

tion of communication resources employing a unified, open, and pro-

grammable interface for controlling network switches from different

vendors. SDN achieves this by decoupling the control plane (i.e. the

part of the system that takes decisions on how to forward packets)

from the data plane (i.e. the part of the system that physically re-

ceives, stores, and forwards the packets) [B3]. A typical application

of this paradigm is Service Function Chaining (SFC). The concept of

Service Function Chaining has been introduced to describe the deploy-

ment of composite networked services obtained by a concatenation,

i.e., a chain, of one or more basic services, or Service Functions [B4].

Equivalently, a Service Function Path (SFP) is defined as the series

of service functions that network traffic must traverse for a given ser-

vice to be correctly delivered. SDN principles are typically adopted

to enable dynamic traffic steering across the data plane interconnect-

ing service functions [B5]. SDN concepts can also be used to enhance

the efficiency and flexibility of the control and management planes of

SFP deployments: in fact, the SDN architecture can be taken as a

reference scenario for the definition of the SFC Control Plane, i.e., the

Service Plane [B6]. The main idea behind SFC has been conceived as

a possible answer to the need for improved and flexible management of

middleboxes and service deployment that network operators and ser-

vice providers have been facing in the past decade [B7], [B8]. Recently,

SFC has become a hot topic in the research community [B9], and is

part of a standardization initiative by the IETF [B4]. SFC makes use

of a service-specific overlay that creates the required service topology,

possibly spanning multiple technological or administrative domains

[B10]. Such a service plane lies between the application and control

planes and includes all the processes that allow the infrastructure to

provide services to users and maintain the state of those services, re-

lying on control and management plane functions to suitably program

the data plane.

1.1. Programmable Network
Infrastructures

2

Chapter 1. Introduction

Figure 1.1: Simplified representation of three Service Function Paths

over the same network topology.

Among the several research issues concerning SFC currently under

investigation, it is worth mentioning service orchestration [B11], phys-

ical resources allocation to data plane components [B12], a trade-off

between optimized performance and resource cost in SFP deployments

[B13], service function overload and failure management [B14]. From

a theoretical perspective, recent studies include the analysis of the al-

gorithmic complexity of traffic steering in SFC, which is a particular

case of the more general waypoint routing problem [B15], as well as

performance modeling using network calculus concepts [B16].

1.2 Virtualized Network Service Provi-

sioning

Virtualization has taken an important role in computing. Cloud com-

puting has opened new business opportunities for different market sec-

tors. Telecommunications is one of these, where the Network Function

Virtualization (NFV) paradigm is decreasing the operational cost of

infrastructure management while increasing its flexibility, thanks to

the virtualization of physical network appliances. An Industry Stan-

1.2. Virtualized Network Service Provisioning 3

Chapter 1. Introduction

Figure 1.2: NFV reference architectural framework [B17].

dardization Group (ISG) of the European Telecommunications Stan-

dards Institute (ETSI), NFV, has defined an architecture to manage

and orchestrate this type of system.

In [B17], the NFV-MANO (NFV Management ad Orchestration)

architectural framework is presented Fig. 1.2. The most important

components of this architecture are:

– NFV Orchestrator (NFVO): in charge of orchestrating the NFV

infrastructure, triggering the actions to be taken to deploy the

service required by the user;

– NFV Infrastructure (NFVI): the totality of all hardware and

software components that build up the environment where Vir-

tual Network Functions (VNFs) are deployed. It contains the

physical resources that the virtualization layer can use to pro-

vide the virtual resources needed to host the required service;

– VNF Managers (VNFM): responsible for VNF lifecycle manage-

ment (e.g., instantiation, update, query, scaling, termination);

– Virtualised Infrastructure Managers (VIM): provides the func-

tionalities needed to interact with the NFVI.

1.2. Virtualized Network Service Provisioning 4

Chapter 1. Introduction

Figure 1.3: Multi-access edge system reference architecture [B19]

As a reference implementation of this system, I used Open Source

Mano (OSM) [B18] for all the works requiring a MANO system. More

details on this project will be given in the following chapters.

Another relevant evolution in this field is Multi-access Edge Com-

puting (MEC). It is an ETSI ISG aiming at providing computing ca-

pabilities for IT and networking services at the edge of the network.

Thanks to that, it is possible to host applications requiring high band-

width and reduced latency. Furthermore, the applications could con-

sume radio network information to better tune their behavior to the

current working conditions. As for the NFV ISG, the group produced

a reference architecture for these systems Fig. 1.3 [B19]. It follows

similar principles as the NFV-MANO architecture, with an additional

key component: the MEC Platform (MEP). The MEC Platform is

an entity in charge of “helping” running applications by exposing a

set of different Application Programming Interfaces. For example, the

MEC 011 API [B20] enables MEC applications to register the services

they are exposing to the Service Registry maintained by the MEC

Platform, allowing other applications to discover these services and

consume them by querying the registry. Furthermore, the MEC Plat-

1.2. Virtualized Network Service Provisioning 5

Chapter 1. Introduction

form handles the Domain Name System (DNS) name resolutions for

the applications. Finally, the MEC Platform can also expose other

services to the applications, using standardized interfaces (e.g., MEC

013 for device localization) or custom ones.

Of course, these concepts bring new challenges to be addressed.

Research activities tried to solve the open problem of deciding where

the Virtual Functions should be deployed, i.e., which combination of

available computing resources is the best one to host the required ser-

vice. These decisions must consider the current status of the available

infrastructure and the requirement of the desired service. Of course,

these problems become even harder to solve with the increased geo-

graphical distribution of the computing resources (e.g., edge and ex-

treme edge) and the variety of requirements demanded by modern

types of services. At the same time, it’s essential to understand which

are the most common techniques and tools employed to build these

systems. Consequently, their performance and limitations need to be

studied and addressed to push forward their adoption. Furthermore,

given the novelty of these paradigms, well-defined tools for them do

not always exist, thus opening up the opportunity for researchers to

propose new implementations advancing the state-of-the-art.

Regarding the platform choice for operating telecommunication

services, it’s worth recalling the initiative called CloudiNfrastructureTel-

coTask Force (CNTT) [B21]. It was started by the Linux Foundation

and GSMA, and it is now backed by a community of global telco op-

erators and vendors. The main idea behind this task force is to define

what a “telco cloud” is (i.e., a cloud infrastructure for NFV-based

telco applications), by identifying a robust infrastructure model, se-

lecting a set of architectures coherent with the model, and providing

tools for their validation. In detail, they identified two main tools

to operate this type of system: Openstack for virtual machine-based

deployments and Kubernetes for container-based ones.

A perfect example showing where these new concepts take a piv-

otal role is 5G. Firstly, 5G adopts a cloud-native-oriented approach

for the deployments of its internal components. Specifically, it relies

1.2. Virtualized Network Service Provisioning 6

Chapter 1. Introduction

on a Service-Based Architecture (SBA), in which its principal func-

tionalities (e.g., Session Management Function, Access Management

Function, etc.) are built as independent software components talk-

ing through standardized APIs. Furthermore, 5G introduces a new

Figure 1.4: SBA 5G System architecture (Figure 4.2.3-1 [B22])

important paradigm that allows the coexistence of multiple logical

networks on top of the physical one, enabling the support of different

types of services with their specific requirements. This new concept,

called network slicing, builds on top of the technologies presented in

this chapter (i.e., network programmability and dynamic service pro-

visioning). In detail, the three main network segments (i.e., Access,

Transport, and Core) are sliced into different logical ones thanks to

the aforementioned technologies. For example, on top of the trans-

port network connecting the access and the core segments, several

overlay networks can be deployed thanks to network programmability

tools (e.g., SDN), each with their target QoS. Alternatively, the core

segments could host many virtualized services managed by an NFV

orchestrator based on the users’ needs.

1.3 Network Automation

Both network virtualization resources and programmable network fa-

cilities offered by infrastructure providers should be considered as in-

terconnected components of a holistic system, which allows service

1.3. Network Automation 7

Chapter 1. Introduction

Figure 1.5: Intent Lifecycle [B23]

providers and/or customers to express service requirements, as well

as to manage service lifecycle, by using high-level specifications that

are independent of the particular solutions and technologies adopted.

A step further in terms of network abstraction could be considered,

to ease the network management burden, thus decreasing the overall

operational cost. A declarative network service specification (i.e., an

intent) is thus considered a promising approach to achieve the required

level of abstraction, as it allows to declare the requested service in

terms of ”what” must be achieved and not ”how” to achieve it. Specif-

ically, in [B23], the Network Management Research Group (NMRG)

defined an intent as:”A set of operational goals (that a network should

meet) and outcomes (that a network is supposed to deliver), defined

in a declarative manner without specifying how to achieve or imple-

ment them“. In the same document, they also propose the lifecycle

an intent should undergo inside an Intent Based Networking (IBN)

system, Fig. 1.5.

After its generation, the intent is then translated into the set of ac-

tions required to fulfill the user’s demands. The IBN system will then

interact with the underlying infrastructure to provide the required

service. Furthermore, it will continue to monitor it to verify the re-

quirements are satisfied during the whole intent life span. Relevant

works in the field of Intent-driven networks can be found in [B24].

1.3. Network Automation 8

Chapter 2

Programmable network

infrastructure

In this chapter, the results obtained regarding network programma-

bility will be presented. The first part of the chapter will describe

how SFPs are created inside an OpenStack cluster, which technology

they use, and how they perform. Therefore, it offers a benchmark

for future works employing this technology and highlights some of its

limitations. The second part will show a practical evaluation of dy-

namic traffic steering using Segment Routing and IPv6, extending the

built-in features offered by OSM. These results are also published in

[0] and [0]

2.1 SFC with Openflow

2.1.1 The OpenStack SFC extension

OpenStack is an open-source software platform consisting in a rich set

of services allowing the deployment and management of public and pri-

vate cloud infrastructures [B25]. Taking advantage of different kinds

of virtualization technologies, ICT resources such as storage, CPU,

RAM, and network are decoupled from a variety of vendor-specific im-

plementations and exposed as abstractions to multiple tenants. Open-

Stack defines a consistent set of Application Programming Interfaces

9

Chapter 2. Programmable network infrastructure

(APIs) to manage those virtual resources as discrete pools, with which

administrators and users can interact directly by means of standard

cloud management tools, e.g., RESTful HTTP clients. The Open-

Stack platform can rely on a quite large set of extensions, including

one dedicated to SFC [B26], which provides an API to support SFP

creation and deployment in Neutron, the well-known OpenStack’s net-

work virtualization component.

The documentation of the OpenStack SFC extension defines a ser-

vice function as a virtual or physical machine that perform a specific

network function such as firewall, content cache, packet inspection, or

any other function that requires processing of packets in a flow ex-

changed between two endpoints in the network. The extension allows

for the creation of SFPs, it natively supports interaction with Open

vSwitch (OvS), it implements a flow classification mechanism (i.e., the

ability to classify traffic based on service-level characteristics), and it

provides a vendor-neutral API.

The SFC extension defines and deploy a SFP according to a four-

step approach. The first element to be instantiated is the Flow Clas-

sifier (FC), which is needed to classify the incoming traffic based on

predefined policies (e.g., header matching rules), in order for the flow

to be properly steered through the required set of service functions.

In other words, the FC contains the set of matching criteria that will

be used to determine whether a specific traffic flow must traverse the

associated SFP or not. Those criteria can be specified by various pa-

rameters, spanning from data link to transport layer header fields, as

well as OpenStack metadata, such as the port ID assigned by Neutron

to the source and destination ports.

As a second step, Port Pairs (PPs) must be created. A port pair

represents a service function instance that includes an ingress and

egress port. In other words, it represents a single hop of the SFP,

specifying the network ports, as defined by Neutron, attached to a

given service function instance. A port pair can be either uni- or bi-

directional, depending on how the associated service function can be

traversed by the flow. Also, a port pair may have a weight associated

2.1. SFC with Openflow 10

Chapter 2. Programmable network infrastructure

to it, to be used to perform load balancing over the SFP.

A Port Pair Group (PPG), whose definition is the third step in

the creation of a SFP, is a collection of one or more port pairs. If a

port pair represents entry and exit points of a particular service func-

tion instance, a port pair group can be considered as a list of different

instances implementing the same service function. The definition of a

port pair group enables load balancing for the corresponding service

function: in fact, each new traffic flow traversing a given chain will

be forwarded to one of the port pairs belonging to the same group ac-

cording to a weighted round-robin policy, based on the specific weight

that was assigned to each port pair at creation time. Another inter-

esting feature is that a port pair group can be configured with a tap

attribute. The port pairs belonging to this kind of group will not play

an active part in the chain, as they will simply receive a copy of the

flow traversing the SFP, without the need of forwarding it to the next

hop. This functionality can be useful for those VNFs, such as a packet

analyzer, that do not perform any action on the traffic passing though

the chain but that just need to receive information about the incoming

flows.

Finally, a Port Chain (PC) is instantiated as a binding between

one or more flow classifiers and an ordered list of port pair groups, thus

defining and implementing the actual SFP. All incoming traffic flows

matching the rules of the flow classifier(s) specified in the port chain

will have to traverse a port pair of each port pair group associated to

the port chain, according to the specified order. A port chain may be

uni- or bi-directional as well. In the former case, the chain will only be

traversed by flows matching the criteria specified in the flow classifiers,

whereas, in the latter case, the chain will be traversed also in the

opposite direction by flows matching the “symmetric” version of those

matching criteria. A visual representation of the different components

of an SFP inside Openstack is depicted in Fig. 2.1. Moreover, the SFC

extension allows linking together different port chains, creating the so

called Service Function Graph.

After a SFP (i.e., a port chain) has been defined and deployed, the

2.1. SFC with Openflow 11

Chapter 2. Programmable network infrastructure

Figure 2.1: Visual representation of the different components of an

SFP inside Openstack, namely Flow Classifier, Port Pair, and Port

Pair Groups.

relevant traffic steering policies are installed in the OpenStack net-

work subsystem by adding suitable OpenFlow rules to the OvS-based

virtual switches found in each compute node. In particular, the in-

tegration bridge (br-int), to which all instances running in a given

physical node are connected, and the tunneling bridge (br-tun), from

which tunnels depart toward other physical nodes, are configured with

internal and external traffic steering rules, respectively. In particular,

when the SFP involves instances running on multiple compute nodes,

correct forwarding operations on the physical network infrastructure

require to identify which hop of which SFP each packet is currently

traversing. To this purpose, each packet must carry a Service Path

Identifier (SPI) and a Service Index (SI), and then be encapsulated

using a suitable data plane transport technology. The current im-

plementation of the OpenStack SFC extension supports either Multi-

Protocol Label Switching (MPLS) [B27] or Network Service Header

(NSH) [B28] encapsulation.

Two different kinds of traffic steering rules are added to the vir-

tual switches by the SFC extension when a new port chain is deployed.

First, each compute node includes matching rules that follow the crite-

2.1. SFC with Openflow 12

Chapter 2. Programmable network infrastructure

ria as defined by the corresponding flow classifier. These rules are used

to intercept packets transmitted by source nodes or service functions,

which are typically unaware of the underlying traffic steering technol-

ogy being used, and to push the additional headers required by the

chosen encapsulation method. Second, additional steering rules are

included, with matching conditions that depend on the encapsulation

technology and refer to the specific switch ports to which the relevant

service functions are attached.

All the interactions with the OpenStack SFC extension can be car-

ried out either by using the native command line utilities, or through

its REST API. The latter is a more general approach that enables ser-

vice chain management and orchestration from authorized third-party

applications through a standardized interface. Therefore, in this sec-

tion, we choose to evaluate the SFC extension response time via the

REST API, testing the creation of increasingly long SFPs. This re-

sult can be used as a benchmark to assess the overall time needed

from an Openstack environment to deploy the required SFP. We also

show that, after the deployment of an SFP, traffic is correctly steered

through specific instances that would not otherwise be crossed with

traditional forwarding, thus validating the SFC plugin functionalities.

2.1.2 Experimental setup

To measure the performance of the SFC extension, we installed Open-

Stack (Rocky release via Devstack) on a test bed consisting of 7 bare-

metal servers from the CloudLab facilities [B29], as shown in Fig-

ure 2.2. Out of those servers, 4 are used as OpenStack compute

nodes (contr01, comp02, comp03, and comp04), including one act-

ing as a controller (contr01). These nodes are physically connected

through separate management and data networks. Out of the remain-

ing servers, 2 of them (ovs01 and ovs02) host instances of OvS, thus

implementing an SDN-enabled data network1, while the last one (ext)

1Although in this chapter we do not take advantage of the SDN capabilities of

the physical data network and rely only on the SFC extension to the OpenStack

networking service, we plan to use the same test bed setup in the near future

2.1. SFC with Openflow 13

Chapter 2. Programmable network infrastructure

Figure 2.2: Physical setup of the OpenStack test bed deployed in

CloudLab, as displayed by the jFed experiment management tool.

is used as access gateway to reach the instances. Multi-tenant traf-

fic isolation over the data network is operated via VXLAN tunneling.

Since the operating system kernel does not support NSH, we adopted

MPLS for SFC encapsulation [B30]. The packet overhead introduced

by VXLAN tunnels plus MPLS encapsulation is such that we had to

reduce the MTU of all instance interfaces to 1418 bytes. All physical

servers are equipped with 10 Gigabit Ethernet interfaces.

Virtual machines and networks were instantiated in the OpenStack

cluster, yielding the logical network topology shown in Figure 2.3.

With the chosen topology, instances representing endpoints (i.e., cus-

tomer nodes) reside on the customerVxlan network, which is also

shared with service function instances. The latter are also connected

to a dedicated internalVxlan network, used for intermediate com-

munication along the SFP. Having two distinct networks in the SFC

test bed enables the emulation of realistic scenarios where a single ser-

vice function may need to have interfaces connected to two separate

networks, e.g., as in the case of WAN Accelerator or NATs. While

this topology opens the possibility to create SFPs with asymmetric

to investigate a possible integration of the SFC extension with an external SDN

controller in charge of programming the physical network

2.1. SFC with Openflow 14

Chapter 2. Programmable network infrastructure

Figure 2.3: Virtual network topology and deployed instances. The

boxes in the image represent the computing resources (i.e., VMs) de-

ployed in the Openstack cluster.

connectivity, the actual direction of the traffic crossing a given service

functions can still be configured when creating the corresponding port

pair. The placement of the VNF instances over the four OpenStack

compute nodes is depicted in Figure 2.4, where each block represents a

physical node and the circles inside it symbolize the virtual machines

(i.e., VNFs, source and destination) running on it. Since we are inter-

ested in evaluating the performance of the traffic steering mechanism

implemented by the SFC extension, the deployed VNFs do not ap-

ply any specific processing or conditioning action to the traffic flows

traversing them, apart from simple packet forwarding.

S v1 v2 v3 S v1 v6 v7v4 v5 D

Node 1 Node 2 Node 3 Node 4

Figure 2.4: Instance placement over the physical nodes of the test bed.

In order to carry out the performance assessment tests, a REST

client for the SFC extension API was developed, in the form of a

Python script. The client operates calls to the mentioned REST API

in order to define and deploy a predefined service chain. The details of

2.1. SFC with Openflow 15

Chapter 2. Programmable network infrastructure

the requested SFP are provided to the client by a user-defined JSON

file, in which the user can specify the endpoints of the SFP as well as

flow classifying parameters and the ordered sequence of service func-

tions to be traversed. The structure of the JSON file is as follows:

{

"source": "node_name",

"destination": "node_name",

"match_fields": {

"match_field": "field_value",

...

},

"chain": [

{

"name": "vnf_name",

"direction": "direction_value"

},

...

]

}

where: source and destination represent the endpoint nodes of the

service chain, expressed as names of instances known to OpenStack;

match fields is a list of key-value pairs identifying matching fields

(e.g., protocol) and values (e.g., udp) to be specified in the flow clas-

sifier criteria; chain is the ordered list of service functions to be tra-

versed, each specified by the name of the corresponding VNF instance;

for each service function, the direction attribute is used to specify

whether the service function must forcibly eject the output traffic on

the internal network (in), on the customer one (out), on the same one

it received it from (same), or whether the VNF instance must simply

receive a copy of the flow (tap).

After parsing the JSON file and retrieving the service chain speci-

fications, the SFC client executes the four steps of definition and de-

ployment of a SFP that were described in Section 2.1.1. The sequence

of operations carried out by the client and the corresponding timings

2.1. SFC with Openflow 16

Chapter 2. Programmable network infrastructure

Definition of m Flow Classifiers

Creation of M Port Pairs

Creation of N Port Pair Groups

Deployment of the Port Chain

SFC
client

SFC
extension

Parse JSON input

Creation of requests for all FCs

Creation of requests for all PPs

Check if PPs exist

Creation of requests for all PPGs

Check if PPGs exist

tFC

tPP

tPPG

tPC

parallel requests

Figure 2.5: Execution flow and related timings of the SFC REST client

application for a single port chain deployment.

are sketched in Figure 2.5, considering the general case of the complete

deployment of a single port chain, including m flow classifiers, M port

pairs, and N ≤ M port pair groups.

2.1.3 Experimental results

To evaluate the response time of the SFC extension REST API, we

timed the execution of each of the four requests listed in Figure 2.5

needed to deploy a single SFP. We measured the response time at the

client side for an increasing number N of traversed service functions,

with a single flow classifier (m = 1) and a single port pair per port

pair group (M = N). We considered each of the four steps separately,

so as to be able to determine how each operation scales with the chain

length. We repeated the tests ten times for statistical significance. It

2.1. SFC with Openflow 17

Chapter 2. Programmable network infrastructure

is relevant to mention that these operations can’t be parallelized. Only

the Flow Classifiers can be defined while creating the Port Pairs or the

Port Pair Groups. The reason is that most of these steps depend on

previous ones. For example, the Port Pair Groups creation depends

on the identifiers assigned to the Port Pairs created in the prior step.

Figure 2.6 shows the average response time for each of the four

REST endpoints, as well as the average total time needed to define

and deploy a SFP via the REST interface provided by the SFC exten-

sion. Our experiments show that a few seconds are needed to deploy

a SFP, with a linear increase of approximately half a second for each

service function added to the chain. The timing of client-side oper-

ations performed before and after each request are not shown here

because their duration is negligible with respect to the SFC exten-

sion response time. We verified experimentally that the REST API

of the SFC extension responds only after executing the request and

not immediately after receiving it as an acknowledgment. Therefore,

the measured time includes the time needed for the SFP to be actu-

ally deployed. That was verified by monitoring the flow tables of the

Openstack Switches (e.g., br-int) and by checking that the required

flow rules were added to the tables before the REST API response..

The time needed to define the flow classifier, tFC , appears to be

unaffected by the increase in SFP length. This is reasonable, not

only because we assumed m = 1, but also because to define a flow

classifying policy the OpenStack controller does not need to interact

with the compute nodes involved in the SFP yet. More precisely,

for the first three steps the controller must only update its internal

database with the information received from the SFC client. In fact,

it is possible to see that tPP and tPPG do increase with N , but not as

much as tPC . This can be explained by the increasing number of entries

that the controller has to introduce inside the database when creating

port pairs and port pair groups. On the other hand, the step which is

most affected by the increase in SFP length is the actual deployment

of the port chain (tPC). This is reasonable too, as the deployment of

the port chain requires the controller to install flow rules on virtual

2.1. SFC with Openflow 18

Chapter 2. Programmable network infrastructure

 0

 1

 2

 3

 4

 5

 6

 7

2 3 4 5 6 7

 R
es

p
o

n
se

 t
im

e
[s

]

 Number of Service Functions in the SFC

tFC

tPP

tPPG

tPC

Figure 2.6: Average response time (with 95% confidence intervals)

of the SFC extension REST API as a function of the length of the

SFP. The histogram shows the contribution of each of the four steps

required to deploy a SFP.

switches residing in all physical compute nodes involved in the SFP.

In order to prove the correctness of the traffic steering operated

by the SFC extension, a proof-of-concept test was carried out. We

defined the following 3-hop SFPs and deployed them:

SFP1 : S → v1 → v4 → v7 → D (2.1)

SFP2 : S → v2 → v4 → v6 → D (2.2)

SFP3 : S → v3 → v4 → v5 → D (2.3)

An iperf3 session was launched between the two endpoints for

each SFP using different UDP port numbers. The first session (1

Mbps, over SFP3) lasted for 30 seconds, the second one (2 Mbps, over

SFP2) for 60 seconds, and the third one (3 Mbps, over SFP1) for 90

seconds.

2.1. SFC with Openflow 19

Chapter 2. Programmable network infrastructure

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90 100

 D
at

a
ra

te
 [

M
b

p
s]

 Time [s]

v1
v2
v3
v4

Figure 2.7: Throughput measured at the egress interface of some rel-

evant service function instances.

The throughput measured at the egress port of some of the involved

service functions is shown in Figure 2.7. v4, which is crossed by all

chains, sustains the combined traffic of the three SFPs. When the

iperf3 session over SFP3 ends, i.e. when the throughput measured at

v3 goes to zero, the remaining active traffic keeps traversing v4 as well

as the other service functions of SFP1 and SFP2. In the last 30 seconds,

only traffic over SFP1 is still active, therefore the overall traffic crossing

v4 is coincident with the traffic crossing v1. This outcome proves the

correct deployment of the requested SFPs in our test bed.

We then carried out another set of experiments to evaluate the

impact of the introduction of a service chain of increasing length on the

TCP throughput measured between two endpoints. Table 2.1 reports

the list of SFPs that were deployed to perform the TCP throughput

test, where chain Ci includes i service functions. The throughput

measured for the first chain C0 is used as a reference, as it is the

2.1. SFC with Openflow 20

Chapter 2. Programmable network infrastructure

maximum achievable value obtained from source S to destination D

without any VNF in between. Then the order of the VNFs chosen for

the other chains is not random. From C1 to C4 the chain length is

increased by adding one VNF from each physical node according to the

placement shown in Figure 2.4, starting from the nodes where S andD

reside. For the last two chains, the order of the two additional VNFs

is chosen as to maximize the number of transitions through different

compute nodes over the physical network. This can be considered as

the worst-case scenario in terms of throughput.

The throughput values of TCP sessions generated with iperf3

over the chains in Table 2.1 are reported in Figure 2.8. While the

maximum achievable throughput for C0 is above 8 Gbps, as expected

the use of SFC affects the performance of the network, reducing the

throughput for each VNF added to the chain. Interestingly, a sig-

nificant penalty is caused by the transition through different physical

nodes, as in the case of chains C2 to C6. So the location of a VNF

can drastically change the throughput achievable between source and

destination. This is also easy to see from the results presented in Ta-

ble 2.2, which reports the throughput measured with just one VNF

between S and D and placed in three different positions: co-located

with S, co-located with D, or in a separate physical node. From

these results it is clear that the transit through the physical network,

which involves MPLS labelling and VXLAN encapsulation, as well as

forwarding through the OvS switches implementing the SDN-enabled

data network, introduces a significant processing overhead that limits

the throughput between the endpoints of the chain. The adoption of

packet processing acceleration technologies could provide a possible

solution to this performance problem [B31].

Lastly, a brief consideration is due on the port pair group tap

attribute mentioned in section 2.1.1, as implemented by the SFC ex-

tension. After some tests we found that this functionality actually

works only if the VNF that is supposed to act as a tap is running

on the same physical node as the previous hop of the chain. In other

words, if the mirrored flow has to go through the OpenStack tunneling

2.1. SFC with Openflow 21

Chapter 2. Programmable network infrastructure

Table 2.1: List of service chains used for TCP throughput measure-

ments

Chain hop sequence

C0 = S → D

C1 = S → v1 → D

C2 = S → v1 → v6 → D

C3 = S → v1 → v2 → v6 → D

C4 = S → v1 → v2 → v4 → v6 → D

C5 = S → v1 → v2 → v4 → v3 → v6 → D

C6 = S → v1 → v2 → v4 → v3 → v5 → v6 → D

Table 2.2: Single VNF performance for different locations

VNF location Same as S Same as D Other node

Throughput (Gbps) 7.01 3.39 1.99

bridge, then it will not reach the tap VNF. This is probably caused by

a bug in the SFC extension version we tested, which does not install

the necessary OpenFlow rules in the tunneling bridge to properly mir-

ror the flow. Furthermore, another bug of the SFC extension related

to the NSH was identified. The OpenFlow version employed couldn’t

process flow entries requiring an NSH encapsulation and decapsula-

tion action on the same virtual switch, thus failing the creation of an

NSH-based SFC composed of two SF hosted in the same physical node

(i.e., served by the same integration bridge).

2.2 SFC with Segment Routing

Another important technology adopted to realize dynamic traffic steer-

ing and achieve adaptive service composition is Segment Routing. Seg-

ment routing (SR) is based on the well-known source routing concept

coupled with the SDN paradigm. By inserting an ordered list of Seg-

ment IDs (SIDs) identifying the VNFs to be traversed, it is possible

2.2. SFC with Segment Routing 22

Chapter 2. Programmable network infrastructure

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

C0 C1 C2 C3 C4 C5 C6

 M
ea

su
re

d
 t

h
ro

u
g

h
p

u
t

[G
b

p
s]

Figure 2.8: TCP throughput measured with increasing chain length

(95% confidence intervals are not shown due to their negligible width).

to ensure an end-to-end connection that crosses the desired VNFs be-

tween the ingress and egress routers of the network. The general seg-

ment routing architecture has been recently standardized [B32], laying

the basis for both the MPLS and IPv6 implementation versions. On

top of that, the required data plane functionalities have been defined

in order to achieve service programming [B33]2. Furthermore, this

architecture has been extended to support network programmability

using SRv6 (i.e., Segment Routing with IPv6) [B34], defining the list of

functions needed to enable advanced networking functionalities to sup-

port service programming. An example of these functionalities is the

support of overlay networks. Thanks to these extensions, the segment

routing architecture has become one of the most relevant solutions to

realize SFC. A first solution to integrate SRv6 inside an NFV infras-

tructure has been proposed in [B35]. However, the solution that we

2The IETF Draft is now in expired and archived state

2.2. SFC with Segment Routing 23

Chapter 2. Programmable network infrastructure

Network	slice instance lifecycle

Preparation OperationCommissioning De-commissioning

Design On
boarding

Network	Environment	
Preparation

Creation TerminationActivation De-activation

Supervision Reporting

Modification

Figure 2.9: Schematic of the 5G network slice lifecycle.

are presenting here goes beyond that, as we properly define the oper-

ations to be performed by the different NFV-MANO components. We

also propose a possible implementation with well known open source

software platforms. Several metrics have been introduced to measure

the performance of different southbound API solutions to configure

SRv6 devices, both in terms of time required to send a command for a

new SRv6 route and in terms of CPU utilization [B36]. The impact of

an insertion of a new steering rule on packet loss is also evaluated. An

open source project that grants the possibility of deploying a Linux

Node acting as an SFC proxy [B4] for unaware service functions in-

side a segment routing enabled infrastructure has also been developed

[B37]. For the sake of clarity, following the definition given in [B4],

an unaware service function is a service function in a given SFP that

can’t decode the mechanism used in the chain to steer traffic (e.g., it

can’t understand the NSH header). For this reason, an SFC proxy is

needed to decode and re-encode the packets of the SFP before and

after the unaware service function.

2.2.1 The Network Scenario

The lifecycle of a 5G network slice is decomposed in a number of

sub-phases [B38], as sketched in Fig. 2.9. In this work we focus on:

preparation, creation, activation, and modification. In this section we

describe how to integrate NFV-MANO and segment routing to imple-

ment those phases. This integration would allow a method to create

dynamic SFP with segment routing using the interfaces granted by

the NFV-MANO framework. Without loss of generality, the network

2.2. SFC with Segment Routing 24

Chapter 2. Programmable network infrastructure

VNFVNF VNFVNF

VNFVNF

NFVOVNFMVNFMVNFM

Ingress
Router

Egress
Router

Cloud
Domain

Cloud
Domain

SR Enabled
Network

Figure 2.10: Network scenario for NFV-MANO and segment routing

integration.

scenario considered here is depicted in Fig. 2.10. The NFV-MANO

framework deploys the Virtual Network Functions (VNFs) compos-

ing the network service, possibly across different cloud domains. The

VNFs are interconnected by a segment-routing-enabled network.

Segment Routing

With reference to Fig. 2.10, the ingress router classifies incoming pack-

ets and inserts in their header the SIDs corresponding to the ordered

list of cloud domains where the VNFs needed for the particular service

are deployed. The ingress router can obtain this information by inter-

acting with the orchestration layer (i.e., the NFVO). Once the packets

reach a given cloud domain, all the forwarding operations inside that

domain are performed by inserting an additional stack of SIDs rep-

resenting the ordered list of VNFs that need to be traversed. For

instance, the ingress router of the SR network may classify the flow

corresponding to a given service as <CD1,CD2,ER>, meaning that the

required VNFs are hosted in “Cloud Domain 1” and “Cloud Domain

2”. This does not require the knowledge of the exact SIDs associated

to the single VNF, which can be kept local to each cloud domain.

2.2. SFC with Segment Routing 25

Chapter 2. Programmable network infrastructure

Then at the ingress of each cloud domain, after a local classification

step (e.g., based con the traffic characteristics), an additional stack

of SIDs is added to incoming packets, containing the list of VNFs

the packets have to traverse inside of the cloud domain, for instance

<F1,F2>. This secondary list is then removed before the packets leave

the cloud domain.

The described stacking operations require that each cloud domain

is equipped with SR ingress and egress routers that work similarly to

the ones in the SR-enabled network. Several solutions exist to achieve

this. For example, it is possible to use a single physical router at the

edge of the cloud domain acting both as an ingress and egress router

for all services. Alternatively, a VNF dedicated to a given service (or

class of services) can be used as an ingress and/or egress router. In

the latter case, the operations of inserting and removing the local SIDs

can be easily and dynamically controlled by the relevant VNFM, thus

enhancing the flexibility of the proposed solution. This solution can be

further improved by using more than one SID for each cloud domain:

reserving a SID to each tenant (or customer) of the cloud domain

allows to keep their SID lists separated, enabling differentiated SFC

management.

NFV-MANO Operations

To deploy and dynamically reconfigure the SFC within each cloud do-

main, the NFV-MANO components must perform a number of con-

figurations. We describe these operations adopting the Day 0/1/2

terminology commonly used in network automation. Day 0 config-

urations are those related to the initial state of the VNF instance,

including information such as the image to be used, its computing

characteristics (e.g. RAM, storage, CPUs), and the initial network

configuration. Day 1 configurations include the sequence of opera-

tions to be performed immediately after launching the instance. For

example, configuring additional network features, enabling system pa-

rameters, installing packages and applications setup. Finally, Day 2

configurations relate to any additional reconfiguration made during

2.2. SFC with Segment Routing 26

Chapter 2. Programmable network infrastructure

the lifecycle of the instance.

With reference to our network scenario, Day 0 configurations are

made jointly by NFVO and VIM that select the required VNFs and

their characteristics based on the service requirements. The NFVO is

able to get this information from the Network Slice Template (NST)

derived from the NEtwork Slice Type (NEST), which is defined accord-

ing to the Service Level Agreement (SLA) required by the customer

of that particular service, as expressed by GSMA [B39].

Day 1 configurations instead can be performed by either the VNFM(s)

or the VIM depending on the specific solution adopted. In this specific

scenario it is required to enable the processing of SR packets in each

VNF. An alternative Day 1 configuration consists in the insertion of

the first SIDs of an SFC that the user wants to deploy immediately.

Lastly, Day 2 configurations are typically performed by the VNFM(s),

that can add, remove or modify the list of SR functions present in each

Service Function Path, as well as act on the routing table of the node,

if necessary.

Mapping with 5G network slice lifecycle

All the operations described before can be easily mapped inside the

Network Slice Infrastructure (NSI) lifecycle [B38]. Referring to Fig. 2.9,

Day 0 configurations are part of the Creation step in the Commission-

ing phase, whereas Day 1 and Day 2 are the Activation and Modifi-

cation steps inside the Operation phase, respectively.

2.2.2 Test bed Implementation

In this section we describe how we implemented the network slice life-

cycle management using open-source software tool currently available,

such as Open Source MANO and OpenStack. We applied our config-

urations on the vanilla versions of those tools, without any change to

the source code.

2.2. SFC with Segment Routing 27

Chapter 2. Programmable network infrastructure

2.2.3 OpenSource MANO

For this work we made use of Open Source MANO (OSM) [B18],

an ETSI-hosted open source project that allows to develop an Open

Source NFV Management and Orchestration (MANO) software stack

compliant to the ETSI specifications [B17]. OSM consists of different

functional blocks.

The most important ones, shown in Fig. 2.11, are the NBI (North-

bound Interface), the LCM (Life Cycle Management), the RO (Re-

source Orchestrator) and the VCAs (VNF Configuration Adapter).

The NBI is in charge of receiving requests from the user, from

either the GUI or the command line, checking whether they are com-

pliant with the Information Model (IM) of OSM, and passing them

on to the LCM. The LCM is the component that supervises the whole

process of creation, management and deletion of the different network

services. It takes the requests from the NBI and it interacts with the

other functional blocks to serve them. The RO is the component that

interacts directly with the VIMs (e.g. OpenStack, AWS or VMware

vCD) requesting or freeing up the resources needed by the network

service. Finally, the VCAs are the components used to perform Day

2 configurations on the VNFs of the service. More specifically, these

components are implemented leveraging JUJU proxy charms. JUJU is

an open source project backed by Canonical which aims at simplifying

the deployment and configuration of applications over different types

of infrastructure [B40]. To interact with the different components of

an application, JUJU uses charms, which are a collection of actions

(i.e., on-demand functions) employed to perform Day 1 and Day 2

configurations for the application. JUJU supports different types of

charms, however OSM uses only one of them, the proxy charms. This

type of charms can work both with Physical and Virtualized Network

Functions. Moreover the whole charm logic runs in separate Linux

Container Daemon containers, one for each VNF, running on the ma-

chine hosting OSM. The required commands needed for Day 1 and

Day 2 configurations are exchanged between the LXD container and

the relative VNF through Secure SHell.

2.2. SFC with Segment Routing 28

Chapter 2. Programmable network infrastructure

In OSM, composition of network services is obtained by using two

types of descriptors, both written in the YAML format. The first

one is the VNF descriptor [B41] which defines the characteristics of

the virtual function, including quantity and type of interfaces, name

of the image for the virtual machine, Day 1 configuration files (e.g.,

cloud-init [B42]) and a list of possible actions that can be launched

when needed (i.e., Day 2 configurations). The other type of descriptor

is the Network Service Descriptor [B43] which defines the list of VNFs

composing the service, and their interconnection.

With the JUJU tools it is possible to build the proxy charm package

containing all the actions a VNF needs. In addition, it is possible to

define the set of commands (e.g., bash commands) that has to be

launched in the VNF whenever a specific event takes place.

The actions and their parameter defined in the proxy charm must

be included in the descriptor of the VNFs where we want to use them.

The syntax is structured as follows:

vnfd:vnfd-catalog:

vnfd:

...

vnf-configuration:

juju:

charm: CHARM_NAME

config-primitive:

- name: ACTION_NAME

parameter:

- name: PARAMETER_1

data-type: STRING

default-value: ’’

...

The CHARM NAME must correspond to the one of the charm included

inside the package of the VNFD. The same applies also to ACTION NAME

and its parameter, that must match the ones in the actions.yaml

file of the proxy charm folder. It is important to notice that this

definition is completely independent from the characteristics chosen

2.2. SFC with Segment Routing 29

Chapter 2. Programmable network infrastructure

for the Virtual Deployment Unit of the VNF. After the definition of the

VNFD it is possible to use it to compose Network Service Descriptors.

For this particular implementation we defined a VNFD able to support

all the available SRv6 functionalities [B44].

Hardware configuration

To recreate the scenario described before, we used three bare-metal

servers hosted by the CloudLab facilities [B29]. Two of them were

used both to host an Openstack node (Stein release via Devstack)

acting as controller and compute node. The last server was used to

run OSM Release SIX, an open source solution compliant with the

ETSI MANO framework. The same node was also used to emulate

the network interconnecting the two different cloud domains. Finally,

for simplicity we placed the ingress and egress router inside Cluster1

and Cluster2 respectively. Each one of the virtual machines deployed

in the Openstack clusters used a clean image of Ubuntu 18.04.2 LTS

with kernel version 4.15.0-50-generic, which supports the creation of

SRv6 functions using iproute2.

2.2.4 Experimental Results

Validation

To prove the feasibility of the proposed solution, we present a simple

scenario composed by two services with different priorities. Both con-

sist of three different VMs, one acting as source of the traffic, another

one as destination, and the last one as an example of a possible VNF

required from the service. A single VNF was used to ease the read-

ability of the experimental validation. However, the approach would

not change with a larger number of VNFs. Recalling the scenario

described in Section 2.2.2, the first two VMs can be considered as

the ingress and egress point of the whole cloud domain, respectively.

Nonetheless, our solution would also work in deployments with just

one ingress and egress point shared by all services hosted by the cloud

domain. For this demonstration, we choose to have specific ingress and

2.2. SFC with Segment Routing 30

Chapter 2. Programmable network infrastructure

VNFVNF

ROVNFMVNFMVCA

Cloud
Domain

Cloud
Domain

NBI LCM
Users

Requests

VNFVNF

Figure 2.11: Proposed Scenario.

egress nodes for each service to ease the traffic classification phase (i.e.,

each service is identified univocally with its ingress point).

In our test scenario, the bandwidth of the service with lower prior-

ity must be reduced when the one with higher priority is instantiated.

This can be achieved simply by adding to the segment list of the ser-

vice with lower priority another VNF, acting as a Traffic Shaper, which

can then be removed when the other service finishes transmitting its

traffic. This way it is possible to validate both the setup of new SFCs

and their dynamic reconfiguration. Figures 2.12 and 2.13 show the

behavior in terms of bandwidth of the low priority service and of the

high priority one, respectively. The former reports measures obtained

from the destination of the packets (LP-D), the VNF of the service

(LP-VF) and the VNF acting as a traffic shaper (LP-TS), which is

active only when the higher priority service is present. The latter re-

ports measurements obtained from the destination (HP-D) and from

the VNF (HP-VF) of the higher priority service. For the first 50 sec-

onds, the lower priority service is the only one active, therefore it is

2.2. SFC with Segment Routing 31

Chapter 2. Programmable network infrastructure

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17

 0 25 50 75 100 125 150

 D
at

a
ra

te
 [

G
b

p
s]

 Time [s]

LP-D
LP-VF
LP-TS

Figure 2.12: Throughput achieved by the lower priority service.

saturating all the available bandwidth. Then the higher priority ser-

vice starts and the two services share the channel for about 5 seconds,

which is the time needed from the system to reconfigure the segment

list of the lower priority service in order to include the Traffic Shaper,

which limits the throughput to 3 Gbit/sec. A zoomed-in version of

this process can be seen in Figure 2.14. After the end of the higher

priority service, the other one can go back to using the whole available

bandwidth. This is accomplished by updating the segment list of the

chain again, and this also explains the delay between the end of the

higher priority service and the rise in achieved throughput of the lower

priority one.

Performance Evaluation

We evaluated the amount of time needed to deploy chains of increas-

ing length inside a single cloud domain. It is important to recall the

different steps required by OSM to setup the instances of the service

2.2. SFC with Segment Routing 32

Chapter 2. Programmable network infrastructure

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17

 0 25 50 75 100 125 150

 D
at

a
ra

te
 [

G
b

p
s]

 Time [s]

HP-D
HP-VF

Figure 2.13: Throughput achieved by the higher priority service.

and their VCA container. The LCM of OSM first instantiates each

one of the Ubuntu-based containers (t1) that will run the VCA in

charge of controlling the VNF of the service. Then, it proceeds with

the installation of the proxy charms components (at t2) and the in-

stallation of an ssh key inside each one of them (at t3). Then the LCM

contacts the RO (at t4). Finally, the VCA containers obtain addresses

on the management network, and the LCM verifies their reachability,

the correctness of the SSH parameters defined in the VNF descriptors,

and oversees the application of the desired Day 1 configurations (at

t5).

By analysing the results we can see how much the setup of the LXC

containers impacts on the time needed to deploy the overall service.

However, it is important to highlight the fact that this affects only

the deployment phase, as the additional configurations do not require

to go through the whole process again. In fact, after the deployment,

all the configurations will be made through commands launched from

2.2. SFC with Segment Routing 33

Chapter 2. Programmable network infrastructure

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17

 0 2 4 6 8 10 12 14 16 18 20 22

 D
at

a
ra

te
 [

G
b

p
s]

 Time [s]

LP-D
HP-D

Figure 2.14: Throughput achieved by the two services during the up-

date of the segment list.

the VCA container to its related VNF via SSH, therefore the only

factor will be the time needed by the packets traveling between the

two entities. In the test bed, the server hosting OSM and the one

hosting Openstack were located inside the same data center, and the

round trip time between the two was around 0.4 ms. Bearing this

in mind, we measured the total time needed by OSM to perform an

action, and the average measured time was 5.28 s, which is in line

with the behavior shown in Fig. 2.12.

2.2.5 Comparison with Openstack SFC

The solution for deploying SFC natively supported by OSM leverages

directly the “SFC-plugin” [B26] of Neutron (the networking compo-

nent of OpenStack), but with some limitations. These include the fact

that OSM only allows to instantiate chains that make use of the Net-

work Service Header (NSH) as encapsulation method, therefore lacking

2.2. SFC with Segment Routing 34

Chapter 2. Programmable network infrastructure

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5 6 7 8 9 10

 C
re

at
io

n
 t

im
e

[s
]

 Number of VNF in the NS

t1
t2
t3
t4
t5

Figure 2.15: Average creation time (with 95% confidence intervals) of

a NS as a function of the number of VNF in it. The histogram shows

the contribution of each of the five steps required to setup the NS.

the support for MPLS encapsulation, and does not allow the instan-

tiation of SFC-unaware VNFs. Contrarily, the solution proposed here

can be easily expanded to support SFC-unaware VNFs, for example

by creating an image, at VIM side, containing a modified Linux Ker-

nel that supports SR-proxy [B37] and by adding the actions needed to

configure it to the charm. We recall from Section 2.2.4 that the time

needed to deploy a service increases by adding the framework for proxy

charms. By using the native solution for SFC this overhead would not

be present, therefore decreasing the overall deployment time. In other

words, we would notice only the time marked as t4 in Fig. 2.15, plus

an additional time contribution needed from OpenStack to insert the

required OpenFlow rules in its internal switches. Assessments of this

new contribution can be found in [B45]. Nonetheless, the use of proxy

charms allows to dynamically reconfigure the chains, a feature the na-

2.2. SFC with Segment Routing 35

Chapter 2. Programmable network infrastructure

tive solution does not have, requiring the re-instantiation of the whole

network service. Moreover, once the proxy charm framework is up

and running, it can be also used for other application-specific configu-

rations, simply by implementing the required actions. Therefore, the

adoption of proxy charms introduces an overhead in the instantiation

of the service, but at the same time it grants the possibility of real-

izing SFP with SRv6 inside different cloud domains, making this an

alternative solution to automate the creation of SFC with OSM as an

orchestrator.

To conclude, I developed a method to deploy SFPs using Segment

Routing through the functionalities offered by OSM. This method

might increase the overall time required to deploy a Network Service

(see Fig). However, this overhead might be reduced in future versions

of OSM, optimizing the deployment of the Juju components required

to perform these actions. Nonetheless, this approach overcomes the

limitations suffered by the OSM built-in method for the creation of

SFCs. Firstly, allowing dynamic SFP creations/modifications/dele-

tions, while the built-in one allows the creation of SFPs only during

the Network Service deployment phase. Secondly, this method eases

the integration with service functions not directly managed by OSM

or outside the Openstack cluster in which the virtual functions are

deployed.

2.2. SFC with Segment Routing 36

Chapter 3

Network Service

Provisioning

Chapter 1 introduces the resource allocation problem for network ser-

vices composed of many VNFs over distributed environments. Like-

wise, I mentioned the need of evaluating how these algorithms perform

over real testbeds with well-known open-source tools to understand

their limitations and drive their development. To these ends, [0] pro-

poses a prototype of an architecture for robust service function chain

instantiation with convergence and performance guarantees. To es-

tablish the practicality of this solution, the system performance was

evaluated via simulations and through a prototype implementation.

This chapter will focus on the latter since I dealt mainly with that

evaluation step, showing how the deployment time required by OSM

scales with different numbers of hosting nodes.

3.0.1 Physical testbed validation with OSM

Necklace is an allocation algorithm for resilient service chain instanti-

ation proposed in [0]. It does so thanks to a fully Distributed Asyn-

chronous Chain Consensus Algorithm (DACCA) that maps the re-

quired service chain to the current state of the underlying infrastruc-

ture interaction enabled through a southbound interface. This sec-

tion will report the validation results obtained by applying this algo-

37

Chapter 3. Network Service Provisioning

rithm to a real testbed. The testbed is managed by the OpenSource

MANO (OSM) orchestrator (Release 7). The orchestrator controls

three OpenStack clusters (Stein Release), each including two compute

nodes, for a total of six individually-addressable servers on which the

service chain can be mapped. Moreover, the physical testbed is com-

posed of full-fledged servers, making their performances comparable

to those that would be observed in a production environment.

We defined a format for the exchange of information between the

allocation algorithm and the hardware orchestrator, using the JSON

formalism:

{ "sfc-id": "id_value",

"vnfs": [

{

"type": "type_value",

"node": "node_value"

}, ...]

}

where: sfc-id is a unique identifier associated with the specific chain,

in the form of a text string id_value; vnfs is the ordered list of ser-

vice functions forming the chain; each service function is described

by fields type and node, with type_value and node_value being

strings identifying a predefined Virtual Network Function Descriptor

in the orchestrator, and the physical node the service function has

been mapped onto, respectively.

The allocation algorithm sends these messages to a custom-built

Python script exposing a REST API. This script takes these messages

and constructs the Network Service Descriptors composed of the VNFs

specified in the JSON files, with each type mapping to a different

VNF Descriptor. Then, it onboards them on OSM and triggers their

deployment, selecting for each VNF of a Network Service the compute

node chosen by the allocation algorithm. In other words, the Python

script acts as a ”translation layer” between the southbound interface of

38

Chapter 3. Network Service Provisioning

Figure 3.1: OpenSource MANO (OSM) deployment time as a function

of chain length and number of hosting nodes.

the allocation algorithm and the orchestrator, mapping the algorithm

decisions to OSM directives.

In the physical experimental testbed using OSM, a progressively

larger number of chain deployment requests was injected, allowing ser-

vice functions to be mapped onto one, then three, then all six physical

nodes. For each case, I submitted requests for twenty different values

of chain length, ranging from 1 to 20. I measured the deployment

time of each chain, then removed the chain before running the next

experiment, to have independent measurements. I performed 30 mea-

surements per chain length and plotted the average deployment time

with confidence intervals. Each measurement campaign took anywhere

between 8 and 14 hours. As Figure 3.1 shows, having more hosting

nodes results in better chain resource management, as service func-

tions can be allocated on more nodes thus balancing loads, therefore

resulting in a shorter chain deployment time. While this is an ex-

pected result, it demonstrates that the proof-of-concept implementa-

39

Chapter 3. Network Service Provisioning

tion with OSM is functional, hence Necklace can be adopted to deploy

service chains on real systems within reasonable time scales (tens of

seconds). This means that new services could be deployed on-demand

promptly and autonomously, thus proving the effectiveness of these

new network paradigms since in past networks the services and their

interconnection were man-managed and realized through specialized

physical equipment. For clarity’s sake, these results differ from the

ones presented in Chapter 2 for several reasons. Firstly, these deploy-

ment times account for both VNFs instantiation and Service Chain

deployment, while the others only account for Service Chain deploy-

ment. Secondly, this testbed is composed of three Openstack clusters

while the other of a single one, so there is actual load distribution. Un-

fortunately, during this performance campaign, I identified a bug on

the OSM platform that was preventing the SFC creation with Open-

stack. To solve this problem, I developed a patch fixing it that was

then merged into the master distribution of OSM.

40

Chapter 4

5G Network Slicing

As stated in the introduction, Network Slicing is a pivotal paradigm

for 5G networks. This chapter reports a real implementation of net-

work slicing applied to Mission-critical (MC) communications. In this

work, the architecture for an MC slice was designed, having in mind its

possible distribution among different cloud infrastructures and keep-

ing a separation between the infrastructure and the service providers.

This slice was then deployed and tested using open-source tools over

physical servers. The result presented here can also be found in [0].

4.1 Network architecture and system com-

ponents

The implementation scenario considered in this work is in line with

the current trends and uses:

– Cloud computing, allowing virtualization of computing resources

in data centers equipped with general purpose hardware;

– Network Function Virtualization (NFV), that fosters flexible and

cost-effective service orchestration through the deployment of

virtualized network functions;

– Software Defined Networking (SDN), that decouples software-

based network control and management planes from the hardware-

41

Chapter 4. 5G Network Slicing

!"#$%&'"(

$)(*'"+

,#-.'/011)%%/

2)(*'"+

!"#$%&'()% !"#$%&'()%

!"#$!"#$

!"#$%&'%&#()*% !"#$%&'%&#"+&%

*+,$-./0/-1$20$% 1)%$-./0/-1$20$%

,"-./$$

!!(

$01 ,01

*31

3344 5)%6$(

)2-07$-,%)82+

3.4)- 011)%%/

2)(*'"+

Figure 4.1: General network slicing architecture for MC communica-

tions.

based forwarding plane, turning traditional vendor locked-in in-

frastructures into communication platforms that are fully pro-

grammable.

The general network architecture considered here is depicted in

Fig. 4.1. To resemble a general networking scenario both mobile and

fixed access are considered. The network building blocks are all im-

plemented as VNFs located in two data centers interconnected by

a transport network, the Edge Data Center (E-DC) and the Core

Data Center (C-DC). The E-DC emulates the access network, with

its processing capabilities, close to the fronthaul of the mobile net-

work, therefore more suitable to support functionalities with stringent

latency requirements. The C-DC is in the backhaul of the mobile net-

work and will be devoted to more data-intensive applications with less

critical latency constraints.

The Mission Critical (MC) communication network is deployed as

a NS that includes all the logical components of the mobile network,

as well as the server for the MC communication support, compliant

with the 3GPP specifications [B46].

4.1. Network architecture and system components 42

Chapter 4. 5G Network Slicing

4.1.1 The MC server

Leonardo MCX (Mission Critical Services) is part of the Leonardo

CSP (Communications Service Platform) product family [B47]. It

extends the portfolio of standard solutions for Public Protection and

Risk Reduction (PPRR) communications, ranging from Digital Mobile

Radio (DMR) to Terrestrial Trunked Radio (TETRA) technologies,

with next generation broadband capabilities. It is a complete Mission

Critical solution compliant with 3GPP standards on MCX. It includes

features from MC Push-to-Talk (PTT), MC Video and MC Data,

providing PPRR users with the next generation platform for critical

communications over 4G/5G networks. The full solution for MCX is

made of the following components:

– an Android Client designed for on-field operations, with a com-

plete set of functionality, that can be installed in off-the-shelf

smartphones as well as on ad-hoc terminals;

– a Web based dispatcher, providing control, monitoring and man-

agement of the operations of the teams;

– a Management interface for the management and monitoring of

the platform KPIs;

– a Session Initiation Protocol (SIP) Core for IP Multimedia Sub-

system (IMS)-less scenarios and that can inter-operate with ex-

ternal IMS.

The MCX server can be deployed in a distributed fashion, with a

sharing of roles. In particular the media servers, i.e. the SIP servers

that will manage and deliver the media streams, can be de-coupled

from the registration server used for signalling. This is the feature

that was exploited in our experiment, with the goal to keep the media

servers as close as possible to the final users and guarantee optimal

performance.

4.1. Network architecture and system components 43

Chapter 4. 5G Network Slicing

4.1.2 The mobile access network

The mobile access network is fully virtualized exploiting well known

open-source software components. The focus is on the Evolved Packet

Core (EPC), assuming that the Radio Access Network (RAN) will be

deployed already on the ground either with dedicated resources or by

sharing the resources of the public mobile network.

In our experiment the RAN was simulated. Both user equipment

(UE) and eNodeB were simulated with the L2 network Functional Ap-

plication Platform Interface (nFAPI) Simulator provisioned by Ope-

nAirInterface [B48]. This simulator does not require any specific hard-

ware and simulates L2 and above stack layers, short-cutting the phys-

ical layer. Furthermore, it gives the possibility to simulate multiple

UEs with a single instance. The EPC was implemented with the Nex-

tEPC platform [B49]. NextEPC implements a fully functional LTE

EPC in a similar way to other platforms, such as for instance Ope-

nAirInterface. We opted for NextEPC because of its flexible modular

architecture that has been designed already to be deployed in a vir-

tualized environment. The NextEPC software suite is composed of

5 modules (nextepc-mmed, nextepc-sgwd, nextepc-pgwd, nextepc-hssd

and nextepc-pcrfd) that can be individually installed as packages in

several Linux distributions and can be managed as daemons with the

respective native system and service managers. Each module provides

one or more dedicated configuration files that must be modified accord-

ing to the actual set-up of the data plane and control plane interfaces

compliant with the 3GPP standards. In addition, this software suite

gives the possibility to install a Web User Interface that allows to add

in the Home Subscriber Server (HSS) database the information related

to users and service subscriptions, and ease their further management.

Although NextEPC does not yet provide the Control and User

Plane Separation (CUPS), its modular architecture allows a deploy-

ment of the various components in different data centers. We exploited

this feature to implement ad-hoc a partial CUPS, as will be described

in the remainder of this manuscript. CUPS is a design choice made for

5G network architecture aiming at separating the control plane com-

4.1. Network architecture and system components 44

Chapter 4. 5G Network Slicing

ponents from the user plane ones, thus reducing the network overhead

due to control traffic on the data plane and dividing the management

effort.

4.1.3 Data center management infrastructure de-

ployment

In our experiment, OpenStack was used as a cloud management plat-

form [B18]. OpenStack represents the VIM used for the resource man-

agement in each data center. The OpenStack installation was carried

out via Kolla-Ansible, which allows to quickly get a production-ready

container-based OpenStack environment. Each component (i.e., Nova,

Neutron, Cinder, etc.) is deployed inside a separate Docker container,

thus granting a separate working environment for each one of them.

The installation strictly follows the official guide and only the most

common components were used (only the traditional software update

and upgrade was carried out on bare metal machines prior to the in-

stallation process).

4.2 A Network Slice for MC communica-

tions

4.2.1 Actors and Roles

Network slicing is a process that involves three main actors:

– Infrastructure Provider (IP): the owner of the infrastructure pro-

viding all the infrastructural management actions, in the specific

example a network provider acting at a local or national scale

operating a private network to support the MCX services;

– Network Slice Provider (NSP): the provider of the communica-

tion service implemented with the network slice, in this specific

case the governmental agencies that provide the MCX support

and/or third parties under contract to provide this kind of ser-

vice;

4.2. A Network Slice for MC communications 45

Chapter 4. 5G Network Slicing

– Network Slice Customer (NSC): the user of the communication

service, in this specific case the PPRR forces that will use the

MC network during operations (police, firefighters, hospital ER,

etc.).

These actors must have rights according to their respective roles,

with IP and NSP having specific management roles to keep the in-

frastructure up and running. Therefore the slice architecture must

be defined in such a way that allows a seamless co-existence of these

actors and provides all of them with the required functionalities.

An important characteristic of the NS under investigation is that

it is not bound to a single data center, but is basically split into 4

logical sections:

1. Mobile and fixed access network;

2. Edge Data Center (E-DC) virtualizing the access part of the

EPC and the edge MCX server;

3. Core Data Center (C-DC) virtualizing the core part of the EPC

and the core MCX server;

4. Interconnection network between the DCs, that could be either

a public network or a private geographical interconnection.

Moreover, the NS must be designed to satisfy the following main

characteristics:

– interconnection with the outside of the DC using two logical

networks, the former dedicated to inter-DC connectivity, the

latter used to connect to the outer world;

– capability to establish tunnels and/or specific routing policies on

the external networks;

– VNFs must be manageable objects as required by the NFV-

MANO architecture;

4.2. A Network Slice for MC communications 46

Chapter 4. 5G Network Slicing

Table 4.1: Example of some NEST parameters for the MC communi-

cations network slice

ATTRIBUTE VALUE

Coverage Local (Outdoor)

Guaranteed Downlink Throughput 391600 (391.6Mbps, band 3,

per Network Slice channel 20MHz(100RB), 256QAM, 4x4MIMO)

Mission Critical Support 1. mission critical

+ Mission-Critical Capability Support 1: Inter-user prioritization, 2: Pre-emption,

3: Local control

+ Mission-Critical Service Support 1: MCPTT, 2: MCData, 3: MCVideo

– VNFs must be protected, meaning that their interfaces must

not be directly exposed on the interconnection network to the

outside of the data center;

– separate management must be guaranteed for the IP and for the

NSP;

– specific management console for the NSP must be reachable from

outside the data centers, to keep NS management fully transpar-

ent to the IP.

In the following we will explain the principles and the instruments

that we used for the slice design and deployment.

4.2.2 Network Slice Architecture and Character-

istics

According to [B50] the NS specifications are described with the NEt-

work Slice Type (NEST), a set of parameters with associated values

that are defined using a generalized dictionary (Generic Slice Tem-

plate or GST) but referring to a specific service or set of services. A

possible NEST for the network slice here considered is presented in

Table 4.1.

4.2. A Network Slice for MC communications 47

Chapter 4. 5G Network Slicing

The GST acts as a template for the NEST and the NEST provides

QoS and/or functional specifications for the NS. None of them says

how the NS should be implemented. The specific implementation of

the NS is usually called the Blueprint, i.e. the collection of all the

technical details that are necessary to implement that particular NS.

As we will see in the following, the NS implemented in this work is

rather complex and its deployment was split into several steps, to

make configuration and debugging easier and more controllable.1

Every section of the slice is specified by means of several NFV-

MANO descriptors, including one that describes how to put together

the various components. Some of these descriptors are common to the

various slice sections and can be re-used. The full set of these descrip-

tions and related configuration files represents the NS Blueprint.

Figures 4.2 and 4.3 show the deployment architectures for the two

sections of the slice to be hosted in E-DC and C-DC. The section in

the E-DC (Fig. 4.2) will host the two gateways of the EPC, namely

the Serving Gateway (SGW) and the Packet Data Network Gateway

(PGW). Together with them, we added two other components needed

to guarantee full slice functionalities, mainly addressing slice security

and management plane connectivity. These additional components

are:

– Network Slice Provider management console, connected to the

various slice components for management purposes;

– Network gateway, providing the network functionalities required

for correct traffic routing between the slice components and the

external networks, thus also providing the required traffic isola-

tion for security purposes.

In this scheme the SGW and the PGW will carry data traffic to

the Internet, basically being devoted to the user data plane. Control

1It is also worth underlining that the slice architectures presented here are a

graphical sketch. The actual implementation in OpenStack is even more complex

since many VNFs are made of two VMs, one for production and one for manage-

ment, with an additional network in between to connect them.

4.2. A Network Slice for MC communications 48

Chapter 4. 5G Network Slicing

!"#$%&'() $*%+#",

-*%+#",./)01* 2"#304*"

565% 1#$7#)*

8$!"'7%"(1%("* 2"#304*".5'$'6*5*$%.$*%+#",

79(

/*"301*.2"#304*".5'$'6*5*$%.$*%+#",

/:0

/99;:<

-*%+#",.

6'%*+'=

/:>

2:>

?;@?

@'%'.?*$%*".

A<%*"$') -*%+#",

B0<*4

C11*77

-*%+#",

D?E.

A46*

D
?
E

A2?

@CFC

8$%*";?@.

F"'$7G#"%

Figure 4.2: Architecture of the access section of the slice (E-DC), with

SGW and PGW still shared according to the LTE architecture.

plane traffic will be routed directly to the control plane components

in the C-DC by the network gateway. In this way we achieve a basic

CUPS, that can be extended gradually to a fully fledged 5G compliant

architecture. In this schematic we assume the eNodeB is also hosted

directly in the E-DC and connected to the gateway via an external

network of the DC. This is not mandatory in general: in case one or

more eNodeBs are implemented with dedicated hardware outside the

data center, the interconnection will be exactly the same and therefore

the slice blueprint would not need any variation. Together with the

components of the mobile network the E-DC will also host the edge

MCX server, that will be responsible mostly for the data traffic among

end users.

The section in C-DC (Fig. 4.3) will host the control plane com-

ponents, i.e. Mobility Management Entity (MME), HSS and Policy

and Charging Rules Function (PCRF) as well as the MCX core server.

The slice section also includes a NSP management console and net-

work gateway. The control plane traffic will be routed to the slice

components by the network gateway via an internal network, accord-

ing to the proper addressing configured at the eNodeB. Similarly, the

interconnection between the MME and the SGW will be guaranteed.

4.2. A Network Slice for MC communications 49

Chapter 4. 5G Network Slicing

!

!""

#$%

&'()

**+

*',-'./0

"1#

$023./4

5"&-6.$7.80

+9:'

;<

"==

:#2#-'0$20/-

+<20/$#8 5023./4

*

'

,

+

&

'

)><0%

?66077

5023./4

Figure 4.3: Architecture of the core section (C-DC) of the slice with

control plane components.

A general comment is related to the external network intercon-

necting the two DCs. In our architecture it is split in two logical sec-

tions, the former devoted to DC interconnection, the latter devoted to

WAN connectivity. However, this splitting has the aim to show that

these could be two different infrastructures, as well as just a single

infrastructure with two logical roles, maybe mapped on different IP

networks.

4.2.3 Network Slice Delivery and Lifecycle man-

agement

In [B51] the various steps implementing a full NS lifecycle management

are defined and described as in Fig. 2.9. All these steps have been

implemented in the test-bed described in this work. The preparation

phase includes the NS description and the environment preparation.

The NS description consists in creating the OSM descriptors that,

according to ETSI MANO approach, provide all information regard-

ing:

1. the VNF packages to be run in the slice;

2. the interconnections between them (Virtual Links in NFV-MANO

4.2. A Network Slice for MC communications 50

Chapter 4. 5G Network Slicing

terminology), described in the Network Service Descriptors (NSD)

and Virtual Link Descriptors (VLD);

3. the Network Slice Template (NST) as a combination of Network

Service Descriptors (NSDs);

4. the details of the VIMs where the NS has to be instantiated;

5. the VNF Forwarding Graph Descriptor (VNFFGD), specifying

the traffic path from one VNF to another, which has to be im-

plemented in the NS.

The preparation phase includes the setup of that part of the in-

frastructure which is not NS specific. In this particular case it refers

to the networks in the cloud platform that must be shared between

slices and must exist before the NS is started. Three such networks

were set up by the administrator of OpenStack (acting as IP):

– the management network of the IP, that will be connected to the

parts of the NS that the IP has to control in case of some emer-

gency event, collaborating with or overriding the management

actions from the NSP;

– the inter-DC interconnection network;

– the external networks that will be used to connect to the access

networks, either mobile or fixed.

4.3 Experimental Results

All the experiments were run in a private data center, with two sepa-

rate OpenStack clusters for the E-DC and C-DC, respectively. Each

one of them is composed by two physical servers, equipped as fol-

lows: 64 GB of RAM; 40 CPUs; 1.2 TB of disk; 1 Gbit/sec interfaces;

Ubuntu 18 LTS as OS.

The overall scenario considered is shown in Fig. 4.4. From the

SIP Uniform Resource Identifier (URI) point of view the domain is

simply called test and two UEs are registered as user1@test and

4.3. Experimental Results 51

Chapter 4. 5G Network Slicing

!"# $%&

$""'%(

$%)

*%)

+',+

-./0!12.3

45362.7

8+9:

;<=5

!""

#$%

&'()

**+

*',-'./0

"1#

$023./4

56

"77

!"#$%&'()*+,-)+*

./0'()*+,-)+* 1)+2-34)+*)+(5,+5 67((,*)+*8

.74),'59,+(:79'1;<)27$;)47<8

Figure 4.4: Full slice blueprint with signalling and data traffic flows,

for the test where both user1 and user2 are connected via the emulated

eNodeB.

user2@test. The paths of the signalling traffic flows are also shown

in Fig. 4.4. Although the gateways (such as SGW and PGW) are not

split and will carry both control and user plane traffic, according to the

LTE architecture implemented in NextEPC, the Figure 4.4 shows that

the slice is ready for CUPS and enables splitting the various control

plane components between the E-DC and the C-DC, leaving closer to

the user the components that may help providing better performance.

Coming to the experiments, at first we tested the correct func-

tional splitting of roles of the two MCX servers according to the

planned split of workload. In the considered scenario the core MCX

server is dedicated to handle signalling traffic, such as SIP registra-

tion and call set-up messages, while the edge MCX server acts as

media server only. Figure 4.5 shows the flow of an MCVIDEO call

from the point of view of the caller (user1@test 10.250.123.101) to

the callee (user2@test 10.250.123.102). The call flow is produced

with Wireshark out of the traffic traces. The core MCX is located at

10.250.2.249 while the edge MCX is located at 10.250.2.35. The

MCX servers are configured in order to force the communication to

go through the media server coupled with the signalling server. Fig-

ure 4.4 shows that the split of roles is correctly realized in the slice.

Indeed, the call forwarded by the MCX servers to the callee shows

a clear separation of the signalling from data. The SIP traffic re-

4.3. Experimental Results 52

Chapter 4. 5G Network Slicing

quired to set-up and close the multimedia call between the two users

is routed to the core MCX server. In fact, we see that SIP messages

such as INVITE, TRYING, RINGING flow between the core MCX

server (10.250.2.249) and the callee (10.250.123.102). Instead,

the Real-time Transport Protocol (RTP) media traffic is exchanged

between the edge MCX server and the users. In particular, with ref-

erence to the reported traffic trace, the RTP packets are forwarded

from the edge MCX (10.250.2.35) to the callee.

Then to prove the effectiveness of the CUPS approach we exploited

the performance measure feature of the MC mobile app. This is an

Android app that can be installed in a commercial smartphone or in

an Android emulator and provides all the MC service implementations

as per the 3GPP standard, in particular MCDATA, MCVOICE and

MCVIDEO as required by the NST. The performance feature of the

app provides a series of evaluation tools for measuring network latency

and capacity as shown in Fig. 4.6. To emulate a greater latency when

connecting to the core infrastructure we forced a delay of T = 200 ms

on the inter-DC connection. This delay was forced with Linux traffic

control on the outgoing interface of the PGW. We asked the app to

register on both the MCX core and on the MCX edge.

Obviously the MCX core is the only one which allows the regis-

tration of a SIP user since it is the only one running the management

functions. When we ask the MC app to register on the MCX edge

which is acting as media server only, the registration is not successful

but still the app allows the execution of the performance test, even

though in a limited way. As a consequence the two screenshots are

different. For the scopes of this research the field of relevance that can

be compared are: 2. CONNECT TCP and 3. HTTP PING.

These values depend on the round trip time (RTT) of the data

connection. We can see that in both cases they are approximately

200ms larger in the connection to the MCX core than to the MCX

edge. This is perfectly in line with the additional latency introduced

in the path towards the C-DC, that is in this experiment 200ms.

Therefore we can conclude that, in case of a real call, the RTT of

4.3. Experimental Results 53

Chapter 4. 5G Network Slicing

!!!!!!!!!!!!!!!!!!!

Figure 4.5: SIP flows of an MCVIDEO call obtained by capturing the

traffic on the callee (user2@10.250.123.102).

the media flows (voice and video) would be significantly lower when

compared to the RTT of the signalling towards the MCX in the core.

This is one of the advantages expected by the CUPS approach.

To conclude, in this chapter, I have reported a proof-of-concept

implementation of NFV orchestration and network slicing applied to

mission-critical applications.

It included the definition of a network slice blueprint including

both 5G and Mission Critical core network functions. Furthermore, it

reported a demonstration of the complete automation of its lifecycle

management, compliant with the NFV-MANO specifications, exploit-

ing the ETSI Open Source MANO platform.

This chapter showed that a complete separation between the con-

4.3. Experimental Results 54

Chapter 4. 5G Network Slicing

Figure 4.6: Screenshot of the MC application executing performance

measurements towards the MCX in the edge and in the core.

trol and data plane could be achieved at both the network (5G) and

the service (MC) levels. Some numerical examples are provided that

demonstrate the effectiveness of this approach in terms of performance.

Overall, the results presented prove the effectiveness of the 3GPP

architectural approach to MC communications and can be a valuable

guideline for future MC network implementations at the European

level.

4.3. Experimental Results 55

Chapter 5

Enabling Industrial IoT as a

Service with Multi-access

Edge Computing

Another relevant scenario that will benefit from the technologies pre-

sented in the previous chapters is Industrial IoT (IIoT). The sheer

amount of data produced from these systems and their distributed na-

ture demand a networking infrastructure carefully thought for them.

This chapter will present an architecture for IIoT systems merging the

Multi-Access Edge Computing (MEC) and Fog paradigms. Further-

more, the chapter also contains a proof-of-concept implementation of

this architecture developed with open-source tools. Lastly, an exten-

sion to the standardized MEC APIs is presented, helping the discovery

of IoT data sources available in a MEC system. To the best of my

knowledge, there are not a lot of works merging the fog and edge

paradigms proposing both a high-level architecture and its practical

implementation. Furthermore, the same applies to systems using the

APIs standardized by ETSI MEC. The work presented here has been

published in [0] and [0].

56

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

5.1 Introduction and related works

The Internet of Things (IoT) concept has evolved in the last decade,

and has expanded in many fields of today’s society. An increasing

number of smart environments are being created, unlocking unprece-

dented potentialities for innovative applications and developments [B52].

One of the context attracting increasing interest for extensive IoT ap-

plications and adoption of advanced communication network technol-

ogy is represented by smart industry and manufacturing, often re-

ferred to as Industry 4.0 [B53]. Smart connectivity capabilities of a

large number of sensors and devices, the availability of cloud comput-

ing platforms, and the implementation of software-defined network

control and management techniques bring the opportunity to support

rapid material handling, efficient information sharing, fault detection

time reduction, and flexible production processes in manufacturing

environments.

Recently, 5G technologies have been making their way inside fac-

tories as well, enabling the capability to manage a high density of de-

vices and different classes of service, including massive machine-type

communications, enhanced mobile broadband, and ultra-reliable low

latency communications [B54]. That is expected to make the integra-

tion of components easier, by improving the communication between

heterogeneous devices. That is possible thanks to the flexibility offered

by 5G networks. As was explained in the previous chapters, 5G net-

work slicing allows the co-existence of multiple logical networks, with

different requirements, on top of the same physical one. Therefore,

diverse industrial services can be successfully supported by the 5G

networks, even with very diverse service requirements. Also, Cyber-

physical Systems (CPS), such as machine digital twins, which combine

statistics, computer modeling, and real-time data measured on phys-

ical systems, can help in modeling the response of a system under

multiple working scenarios. Industrial systems can benefit from the

combination of multiple technologies and agents, in order to take real-

time decisions and reach the common goal of improving the efficiency

and responsiveness of production systems [B55].

5.1. Introduction and related works 57

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

As an Internet-based commodity to share computing, storage, and

network resources, cloud computing can be part of the answer to the

increasing need of manufacturers for data processing. New cloud-

based manufacturing models can be defined, where all resources and

capabilities are virtualized and offered “as a service” allocated on-

demand through the cloud, leading to the concept of smart manu-

facturing [B56]. However, exchanging data between machines/sensors

and remote cloud locations may result in delayed responses, high us-

age of bandwidth, and energy consumption. Besides, the long-distance

communication exposes the system to the risk of external network

faults and security breaches, which represent highly critical challenges.

To overcome those problems, fog and edge computing solutions

have been proposed to bring compute, storage, and network capabili-

ties closer to or even within the user premises. As a consequence, data

collected from smart machines and sensors can be processed locally or

at the edge, without reaching the cloud, to fulfill stringent require-

ments on latency, real-time responsiveness, limited network traffic,

and protection of sensitive data. In particular, considering the na-

ture of devices and equipment used in a factory, peripheral processing

in support of highly reactive systems could be more effective than a

typical cloud-based approach [B57].

All the discussed aspects should be considered in order to reach

the original objective of Industry 4.0 of achieving much higher gains

in operational efficiency with respect to the marginal improvements

expected from traditional cost-cutting measures. Therefore, it is clear

that the transition to Industry 4.0 will depend on the successful adop-

tion of many new information and communications technologies, which,

in addition to enhanced IoT connectivity and processing, will provide

highly flexible control and management capabilities, as well as high re-

liability and security. All of this will be offered to the customers in a

fully automated and collaborative environment through suitable pro-

grammable platforms, thus fostering the introduction of an Industrial

IoT as a Service (IIoTaaS) model.

Despite the availability of technologies at an adequate level of ma-

5.1. Introduction and related works 58

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

turity, there still exist the need for a suitable framework in which the

different communication and software technologies can operate effi-

ciently to achieve the objectives of smart manufacturing and IIoTaaS.

The main contribution of this chapter is the definition of an architec-

ture for IIoTaaS applications which takes advantage of a multi-level

computing platform, consisting of edge, fog and cloud environments.

In particular, the proposed approach aims at unifying the orchestra-

tion of heterogeneous fog and edge computing resources under a single

framework, which is designed to be compliant with existing standards

for Multi-access Edge Computing (MEC) [B19], rather than defining

a new set of interfaces. This brings all the advantages of MEC-based

service management to the development and deployment of IIoTaaS

applications. In this chapter, a reference operational architecture, the

different components of the framework, and a proof-of-concept imple-

mentation are reported, showing how the MEC-based approach and

the supporting information and communication technologies enable

the automated deployment of IIoTaaS applications in a matter of sec-

onds. Smart industry environment is considered here, representing

one of the most challenging and demanding application of the pro-

posed framework. In any case, the proposed methodology has a high

potential to be reused in other fields. Indeed, the high-level architec-

ture designed is general, thus supporting applications even outside the

IIoT scope.

5.2 Reference Scenario for IIoT as a Ser-

vice

In a smart manufacturing environment, production line appliances are

equipped with sensor nodes that generate and exchange monitoring

data over a (wireless) network, according to IoT principles [B54]. Such

data then needs to be processed, to evaluate production performance

and recognize faults in the procedure, as well as for other purposes. To

this aim, several diverse compute and network resources are available,

ranging from nearer and less powerful ones located at the edge or in

5.2. Reference Scenario for IIoT as a Service 59

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

one or multiple fog clusters, to farther but more powerful ones located

in a remote cloud, as depicted in Fig. 5.1.

According to its original definition, the fog domain includes com-

pute resources offered by infrastructures located anywhere from the

cloud to the edge. For the purpose of this work, however, only fog

resources located in the edge domain are considered. Therefore, in

the following, the term fog resources identifies computing resources

located in the local network of the factory, including mobile devices

being carried around the premises by personnel as well as devices

located on production line machinery. On the other hand, the term

edge resources identifies local datacenters, closer to the access network

or within factory premises, and possibly including high-performance

servers normally employed to perform specific low-latency tasks.

Considering that IIoTaaS applications can include software com-

ponents that must take advantage of the proximity to the source of

data, both edge and fog resources should be used to deploy them,

based on their availability. Orchestrating edge and fog resources in

a unified way according to the ETSI MEC framework [B19] allows

to benefit from its additional features. The MEC approach can be

used to facilitate the interoperability between services hosted on dif-

ferent domains and implemented with different technologies, towards

a seamless integration of heterogeneous service components. It also

allows for a direct interaction with the 5G access network, including

direct knowledge of end-system position and connection quality, for

which standard APIs already exist (e.g., MEC 013 for Location API,

or MEC 012 for Radio Network Information API), thus enabling the

support of new types of services. This reference scenario still supports

a more classic cloud-based approach, in which the computational re-

sources are located in remote datacenters, public or private, offering

higher capacity than the one provided by local resources.

Recent work includes valuable examples of the adoption of fog and

edge paradigms in 5G and Industrial IoT contexts. A number of such

scenarios are presented in [B58], but no specific management architec-

ture dealing with the diversified infrastructure is proposed. On this

5.2. Reference Scenario for IIoT as a Service 60

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

Factory premises Operator premises

Fog
resources

Edge
resources

Edge
resources

Remote datacenter

Cloud
resources

IoT-enabled
manufacturing

appliances
WAN

Figure 5.1: Reference scenario, where cloud, edge and fog computing

resources are available; in specific cases, only fog or edge resources

may be available in addition to cloud ones.

matter, some architectures integrate NFV and Fog [B59], but do not

adopt standardized functionalities that can be provided at the edge.

Other research efforts target a scenario that is very similar to the one

presented here [B60] [B61], but consider a fog infrastructure including

fixed hardware only. In contrast, this chapter proposes a management

architecture based on ETSI MEC and ETSI NFV standards to super-

vise remote cloud, edge and fog resources, with the benefits that come

with the integration of a MEC system, including service discovery,

location services, and more. Also, in this work fog clusters comprise

devices that are not necessarily known a-priori, considering the pos-

sibility of allocating services on them in a dynamic and automated

fashion. Finally, the fog domain service orchestrator employed here is

able to allocate the service according to multiple allocation models,

and to choose the most efficient allocation technique available at the

time of service request [B62].

In line with one of the use cases presented in [B58], a possible ex-

ample of an IIoT service spanning across multiple domains could be

based on data exchanged according to a publish-subscribe paradigm.

A set of remote cloud resources could be allocated to store and ana-

lyze long-term data received from the factory premises. A set of edge

resources may be allocated to act as brokers between the sources of

5.2. Reference Scenario for IIoT as a Service 61

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

IoT data and their subscribers, being them running in the local or

remote domain. Furthermore, local processing of the aforementioned

data may be needed to comply with the requirements of low latency

services. Finally, exploiting the proximity and mobility of fog devices,

their resources may be used on demand to collect data from specific

areas and/or appliances of the factory, to perform light processing on

them, and to redirect pre-processed information toward the message

broker and, in turn, to interested subscribers when needed. All the

data exchanges just described could use typical IoT messaging proto-

cols, whose components must then be dynamically deployed according

to the specific service needs.

5.3 Features and Components in a MEC-

enabled IIoTaaS Framework

A framework and reference architecture for MEC is introduced in [B19],

along with the description of relevant functional elements. Based on

this reference architecture and the scenario described in Section 5.2,

the proposed MEC-compliant architecture for IIoTaaS application de-

ployment and resource allocation across edge and fog computing en-

vironments is shown in Fig. 5.2. The supervising entity is the Op-

eration/Business Support System (OSS/BSS), representing users or

third-party services that manage service deployment, enforce company

policies, or react to computational needs.

Service deployment in the fog computing subsystem is managed

by FORCH [B62] (Fog ORCHestrator, or FO for brevity), a mod-

ular orchestrator for flexible deployment of computing services over

dynamic fog computing infrastructures. The components of FORCH

can be mapped onto functional blocks described in the reference MEC

standard. With reference to the left side of Fig. 5.2, this mapping is

described as follows:

– the functionalities of the Multi-access Edge Orchestrator are re-

alized by the FO mediator module, which receives service re-

5.3. Features and Components in a MEC-enabled IIoTaaS
Framework

62

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

MEC host

MEC in NFV architecture
for Edge Cloud domain

MEC architecture
for Fog domain

Multi-access
Edge

Orchestrator

MEC Platform
Manager

VIM

MEC app

Service
MEC app

MEC
Application

Orchestrator

VNFM
(for MEP and

MEC apps LCM)

MEC app
(VNF)

Service

NFVO

VIM

MEC Platform
Manager - NFV

OSS / BSS

MEC app
(VNF)

Fog
Virtualization Infrastructure

Edge Cloud
NFV Infrastructure

MEC Platform
(VNF)

Figure 5.2: MEC-compliant proposed architecture, incorporating ele-

ments from the edge (highlighted in red) and fog (highlighted in blue)

computing environments.

5.3. Features and Components in a MEC-enabled IIoTaaS
Framework

63

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

quests and selects the appropriate resources to be allocated to

the service;

– tasks pertinent to the MEC Platform Manager are executed by

the FO aggregator module, which gathers and aggregates infor-

mation on service deployment and resource usage;

– the Virtualization Infrastructure Manager (VIM) defined in the

MEC standard is mapped onto the FO VIM module, which

manages the activation of services on fog resources, handling

technology-specific details required by allocation and deploy-

ment procedures, and collecting monitoring information;

– the Fog Virtualization Infrastructure (VI) is represented by the

VI offered by each of the fog nodes, which hosts activated ser-

vices running on local resources, and reports monitoring infor-

mation to the FO VIM module.

The latter component is meant to be configured on each of the

nodes offering resources to the fog system. The resource utilization

of every node is monitored, and this information is passed to the fog

orchestrator, along with the set of services that the node can host, al-

lowing the orchestrator to make informed decisions on the allocation

of services on nodes. Allocation policies are configurable to meet spe-

cific needs, via a multi-tenant system, based on an approach similar

to that of major cloud orchestrators.

Considering the right side of Fig. 5.2, the architecture proposed

for the edge domain is essentially based on the “MEC in NFV” archi-

tecture defined by ETSI in [B19], which aims at re-using components

from the Network Function Virtualization (NFV) framework to fulfill

a part of the MEC management and orchestration tasks, thus allowing

to instantiate both MEC applications and Virtualized Network Func-

tions (VNFs) within a unified framework. Specifically, the function-

alities offered by the Multi-access Edge Orchestrator (MEO) are split

into two different functional blocks, the NFV Orchestrator (NFVO)

and the MEC Application Orchestrator (MEAO). The former is in

5.3. Features and Components in a MEC-enabled IIoTaaS
Framework

64

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

charge of managing MEC applications as if they were typical VNF

instances. The latter is in charge of the remaining MEO functions,

such as enabling the instantiation and termination of MEC applica-

tions and maintaining a view of the status of the MEC system (e.g.,

deployed MEC hosts, available resources). The MEC Platform Man-

ager becomes the MEC Platform Manager - NFV (MEPM-V), which

is in charge of the same tasks as the MEC Platform Manager but

without any Life-Cycle Management (LCM) action on the MEC Plat-

form. These actions are instead delegated to a Virtualized Network

Function Manager (VNFM), being the MEC Platform itself deployed

as a VNF.

The edge and fog computing environments are merged at the MEC

host level. A MEC host functional block can be implemented as a sin-

gle physical or virtual machine offering computing resources, or as a

cluster of such machines, operating behind a single abstraction. There-

fore, the set of fog nodes and edge resources can be grouped into a

single MEC host, operating with a single MEC Platform (MEP). The

choice of considering both the edge and fog domains as a single MEC

host is motivated by the particular characteristics of fog nodes. Having

assumed the set of fog resources to be mutable over time, instantiat-

ing and maintaining an active MEC Platform in this kind of scenario

could be challenging. For this reason, the proposed architecture relies

on a single MEC Platform for both domains, hosted in the edge, con-

sidering it to be a more stable infrastructure over time. This solution

also enables the adoption of a single abstraction for heterogeneous

computing environments (fog and edge) and simplifies the interoper-

ability between the two domains since it does not require to handle

the communication between different MEC Platforms.

5.4 Proof-of-Concept Implementation

In order to demonstrate the feasibility of the proposed MEC-based

architecture for IIoTaaS applications and how it enables interoper-

ability between the edge and fog domains, a proof-of-concept (PoC)

5.4. Proof-of-Concept Implementation 65

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

implementation1 has been developed and tested on commercial off-

the-shelf servers under a use case relevant to Industry 4.0 scenarios.

The example briefly discussed in Section 5.2 is considered, where the

widely adopted Message Queuing Telemetry Transport (MQTT) pro-

tocol has been chosen as a publish-subscribe solution: an MQTT bro-

ker is deployed on edge resources, multiple sensing applications are

instantiated on available fog nodes and edge nodes, acting as MQTT

publishers sending data to the MQTT broker, and a sink application

running in the cloud acts as an MQTT subscriber receiving data from

the MQTT broker. All the required software components running in

the edge and fog environments are instantiated on demand using the

automated procedures offered by the proposed framework architecture

and detailed below. By taking advantage of the MEC-based approach,

those software components are deployed and made capable of interact-

ing with each other independently of the specific computing platform

being used, resulting in an Industrial IoT application truly offered “as

a service.”

The interoperability among the different computing domains intro-

duced in Section 5.2 is achieved by making use of a testbed composed

of several platforms:

– OpenStack is employed in the core cloud domain to instantiate

Virtual Machines (VMs). For the PoC no specific configuration

was needed.

– Kubernetes orchestrates the deployment of containers that exe-

cute MEC applications in the edge domain. For this PoC, the

Kubernetes cluster was configured with Docker as a container en-

gine, CoreDNS as DNS service, Calico as container networking

solution, Metallb as load balancer, and OpenEBS as persistent

volume manager.

– Open Source MANO (OSM) handles the deployment of NFV

Management and Orchestration services in the edge. Specifi-

1https://github.com/DavideBorsatti/IIoTaaS

5.4. Proof-of-Concept Implementation 66

https://github.com/DavideBorsatti/IIoTaaS

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

cally, it is used to deploy MEC applications in the Kubernetes

cluster.

– FORCH takes care of the deployment of containers that execute

MEC applications in the fog cluster.

As mentioned in Section 5.3, the fog orchestrator FORCH is a

Python-based original solution for fog computing service deployment

recently developed at the University of Bologna [B62], composed of

several cooperating modules. In this PoC, a subset of the APIs offered

by the fog orchestrator is utilized to deploy MEC services in the fog

domain.

The MEC applications employed to test this solution are based

on the “Unibo MEC API Tester,” also developed at the University

of Bologna as part of the ETSI NFV&MEC Plugtests 2020 [B63].

It already implements most of the MEC 011 APIs [B20], which were

integrated with a simple MQTT client service that can be exposed and

consumed through the aforementioned APIs. Due to the limited scope

of this PoC and constraints in the experimental platform, this setup

only employs the MEC 011 APIs for service registration/discovery.

However the same architecture is also capable of supporting different

MEC-enabled services.

To the best of our knowledge, a working open-source software tool

that implements all the functionalities of a MEC Platform is not avail-

able yet. Therefore, a Python-based custom solution has been devel-

oped to implement the set of MEC Platform features required by the

PoC. This custom solution follows the directive defined by ETSI in

terms of API specification.

The MEC 011 APIs are adopted to aid the interaction between dif-

ferent MEC applications and their services, even if they are deployed

on different infrastructures. More specifically, each MEC application

can register its own services to the MEC Platform through a REST

API POST request to the /applications/{appInstanceId}/services
endpoint. This request includes all the details of the specific service

being registered, such as hostname or IP address, transport layer pro-

tocol, and port, and/or other endpoint information. The MEC Plat-

5.4. Proof-of-Concept Implementation 67

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

form receives this request and loads it into its internal database. The

list of registered services can be retrieved by any other MEC applica-

tion via the /services REST endpoint of the MEC Platform. This

way, MEC applications can discover the list of available services and

how to consume them. An example of the format standardized by

ETSI used to describe MEC services is included below.

As specified in the ETSI MEC standard, the MEC Platform should

also provide DNS resolution to all MEC applications in its domain. In

the presented scenario, this would ease the communication between

services deployed on the edge and the fog computing domains. It

would also partly justify the choice of considering both edge and fog

nodes as parts of a single MEC host abstraction. The internal DNS

service of Kubernetes was configured to be exposed outside of the

Kubernetes cluster, to be used also by MEC applications deployed in

the fog domain. Then, two different DNS zones were defined, one for

services running in the edge domain and another for those running in

the fog domain. For the former, CoreDNS was configured to resolve

all incoming requests related to the mec.host zone to external IP

addresses used by the Kubernetes cluster, thus reachable by any other

MEC application running in either edge or fog nodes. As for the

DNS zone related to services running in the fog, the fog orchestrator

adds its DNS associations to a DNS zone file that is shared with the

Kubernetes DNS service, which refers to it for all the requests directed

to the fog.host zone.

Having deployed all the necessary components, the practicability

of the proposed solution is verified through an experiment that follows

these steps:

1. Deployment of the MEC Platform as a Kubernetes application

in the edge.

2. Instantiation of the data sink as a VM in the core cloud, which

may happen before, during, or after the execution of the previous

step.

3. Deployment via OSM of an MQTT broker as a MEC application

5.4. Proof-of-Concept Implementation 68

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

running in the edge. The MQTT broker registers its service

to the MEC Platform, providing details of the exposed MQTT

endpoint according to a standardized JSON format, as reported

in the following extract:

{"serInstanceId": "Mec-Broker",

...

"transportInfo":{

...

"type": "MB_TOPIC_BASED",

"protocol": "MQTT",

"endpoint":{

"addresses":[{

"host" : "mec-broker.mec.host",

"port" : "1883"}]

} } }

Specifically, the transportInfo section contains information such

as the type of messaging mechanism used (e.g., a topic-based

message bus which routes messages to receivers based on topic

subscriptions), the protocol used (MQTT in the example) and

on which endpoint the service is available.

4. Subscription by the sink in the core cloud to the MQTT broker

application.

5. Deployment via the fog orchestrator of an MQTT publisher as

a MEC application running in the fog domain.

The application Mec-app registers its service to the MEC Plat-

form by simply exposing the REST endpoints to be used to start

or stop the generation of MQTT traffic, therefore the value of the

key endpoint will change to uris, which is a list of two elements

mec-app.fog.host/start-sensing and mec-app.fog.host/stop-sensing

respectively. Of course in this case the type and protocol

fields in the service descriptor will be different, with "type":

"REST HTTP" and "protocol": "HTTP".

5.4. Proof-of-Concept Implementation 69

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

6. Generation of MQTT traffic from the MEC application in the fog

node, initiated by a REST call to its /start-sensing endpoint.

7. Deployment via OSM and Kubernetes of another MQTT pub-

lisher as a MEC application running in the edge domain. The

application registers its service (start/stop sensing) to the MEC

Platform.

8. Generation of MQTT traffic from the MEC application in the

edge node.

9. Interruption of MQTT traffic generated by the MEC application

in the fog domain, caused by a REST call to its /stop-sensing

endpoint.

10. Interruption of MQTT traffic generated by the MEC application

in the edge domain.

The described steps are represented in the sequence diagram of

Fig. 5.3, limited to steps 3) to 6) for readability reasons. The deploy-

ment of any new MEC application in the fog or edge domain will follow

the same steps as for the deployment of the first MEC application in

the fog or the MQTT broker in the edge domain, respectively. In the

experiment, multiple MQTT publishers were deployed in the form of

additional MEC applications, following the steps described above.

In this PoC, MQTT was the only protocol employed to transmit

sensor data. However, the system is completely agnostic to the proto-

col of choice. For example, OPC UA, a common industrial protocol,

still uses TCP or HTTP/S as underlying transport, therefore its MEC

011 service definition would still be similar to the one described for

MQTT, with "protocol": "TCP/HTTP" and of course with the cor-

rect host and port pair.

5.5 Evaluation

The proposed architecture implementation is evaluated by measur-

ing the response time of the most relevant APIs and the footprint

5.5. Evaluation 70

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

User

MQTT+MEC
Application N

MEC MQTT
Broker

MEC
Platform OSM+K8s FORCH

MQTT
Sink

Deploy

Deploy

Deploy OK

Deploy MQTT
Broker
 15.98s

POST /applications/{appInstanceId}/services

201 Created

Register MQTT
Broker Service

6ms

MQTT sub
on any topics

Deploy

Deploy

Deploy OK

Deploy MEC app N
1.13s

POST /applications/{appInstanceId}/services

201 Created

Register MEC app
 Service
6ms

GET /services

200 OK Service List

Retrieve the Endpoint
 of the MQTT+MEC API

 21ms

GET /start-sensing

Start MQTT traffic
 generation
~21ms

GET /services

200 OK Service List

Retrieve the Broker
Endpoint(s)
 21ms

MQTT Publish Sensor
 Data Stream

200
Broker.appInstanceId

start-sensing

Figure 5.3: Sequence diagram of part of the described PoC evaluation,

with measured response times.

5.5. Evaluation 71

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

of the required running components. The interoperability of differ-

ent computing platforms is validated by observing the MQTT traffic

generated by MEC applications in different domains. Along with the

partial representation of the PoC steps, Fig. 5.3 reports the average

values of the measured time required for the system to perform each

individual action. This assessment shows that the time needed to de-

ploy an MQTT MEC application and start the MQTT message flow

towards a broker heavily depends on the domain chosen, ranging from

slightly more than 1s for deployments in the fog domain, to almost

16s in the edge domain. It is however worth to mention that the to-

tal time required to deploy from scratch the first complete working

MQTT mechanism for this PoC, including the MQTT broker in the

edge and an MQTT publisher in the fog, is marginally higher than 17

seconds, proving the advantage offered by the proposed MEC-based

architecture to automate the deployment of IIoTaaS applications.

A foreseeable bottleneck resides in the MEC Platform itself. As

shown in Fig 5.3, MEC applications need to interact with it to register

and discover services. The time required to perform this operation

has been observed to grow linearly with the amount of simultaneous

requests and the number of registered services. However, improved

performance of the MEC Platform can be achieved by applying the

scaling mechanisms offered by Kubernetes.

Table 5.1 reports the amount of storage and memory resources each

node needs to support hosting MEC applications, in the two consid-

ered domains. Both Kubernetes and FORCH are configured to use the

same container runtime engine (i.e., Docker), but the former platform

is designed for more general and complex scenarios, thus requiring

more software components running in the edge nodes to operate the

cluster. As expected, the results highlight that the resource utiliza-

tion on fog nodes is smaller compared to edge nodes. Furthermore, the

resource consumption of the employed MEC Platform is comparable

to that of MEC applications. Their container images occupy about

60 MB of storage space and require approximately 21 MB of RAM to

be run.

5.5. Evaluation 72

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

Table 5.1: Resource utilization in different computing domains.

Domain Disk util. [MB] RAM util. [MB]

Edge 1366 202

Fog 124 180

In Fig. 5.4, every rising/falling edge of the curve represents the ac-

tivation/deactivation of an MQTT message flow, as perceived by the

only subscriber deployed, i.e., the sink application located in the cloud

domain and subscribed to all MQTT topics. The line represents the

amount of MQTT traffic received by said subscriber, corresponding to

the sum of all MQTT data flows generated by all MQTT publishers

that are active at a given time. MQTT publishers are deployed as

MEC applications both in the fog and in the edge domains and are

activated according to an alternating pattern. Specifically, the first

publisher to be activated resided in the fog domain, the second one in

the edge domain, the third one in the fog, and so on. MQTT traffic

generation only lasts for a limited amount of time, after which the

publisher stops generating data and remains silent. In this particular

example, in order to keep the figure readable, a maximum of five con-

current MQTT clients were kept active at any given time. However,

this is not a generic upper bound, which would depend on available

resources. The asynchronous activation of publishers causes a vari-

able superposition of MQTT traffic at the subscriber, resulting in a

step-shaped curve. The fact that the subscriber receives MQTT traf-

fic from all publishers, regardless of the technological domain they are

deployed onto, proves the effective interoperability of the proposed

solution.

In this chapter we focus on the application/service deployment pro-

cess and limit our proof of concept to the management plane aspects of

the proposed architecture. As for the data-plane performance, which

depends on hardware capacity, adopted technology, and geographic lo-

cation, there is no general consensus on typical values for the latency

in the three different domains this work considers, and only generic

assumptions are typically made [B64].

5.5. Evaluation 73

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

0 5 10 15 20 25 30 35 40 45 50 55 60
Time [s]

0

1

2

3

4

5

M
QT

T
tra

ffi
c

at
 si

nk
 [K

B
/s

]

Figure 5.4: Evolution of MQTT traffic received by the MQTT sub-

scriber (sink) running in the core cloud, while varying the number of

MQTT publishers and their deployment domain.

5.5. Evaluation 74

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

MQTT
Broker
Service

Service Registry

Traffic
Rules

Control

DNS
Handling

MEC
Service
MEC

Service

Virtualisation Infrastructure

Data Plane

IOT
Client OPC UA

Server

Service

MEC Platform

Virtualisation Infrastructure
Manager

MEC Platform
Manager

Multi-access edge
orchestrator

OSS/BSS

MQTT
Publisher

Figure 5.5: High Level MEC System Architecture

However, based on practical experience, it is reasonable to consider

the data plane latency to be below 1ms for fog resources, around 5ms

for edge resources, and around 50ms for core cloud resources.

5.6 MEC011 Extension

The approach presented was further developed to ease the IoT data

discovery thanks to a custom extension to MEC011 APIs. Further-

more, more IIoT components were integrated inside the MEC Archi-

tecture, Fig: 5.5. In this implementation, the MQTT Broker is exposed

by the MEC Platform as one of the MEC services offered with a cus-

tom interface. Other MEC applications requiring an MQTT broker

(e.g., the MQTT Publisher in Fig. 5.5) can discover its endpoint using

the MEC 011 API for service discovery. Since the standard service

endpoint in MEC 011 contains only the URI or the IP/Port pair to

use to consume the service, in our implementation we defined an al-

5.6. MEC011 Extension 75

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

ternative endpoint type named mqtt-topic, to transport also the list

of topics that the MQTT broker is serving. An example of this new

endpoint definition is reported here:

...

"endpoint": {

"alternative":{

"mqtt-topics":{

"host" : "mqtt-broker",

"port" : "1883",

"topics" : [dev1/topic1]

} } }

...

In order to add topics to this list, an additional REST endpoint

was added to the MEC Platform, through which MQTT publishers

can add, modify, or delete topics. This could be configured as an au-

tomated Day 1 operation performed at start-up time. Like MQTT,

OPC UA is a protocol commonly used in IoT scenarios. It is a vendor-

independent platform that gives the operator the possibility to design

its own information model: objects, variables, and methods that are

offered by the server [B65]. It is based on a publish/subscribe mech-

anism to create a standardized client-server architecture. When an

entity requires a certain service (Client), it asks a third component

(Discovery Server (DS)) for the list of services. The DS keeps track of

the endpoint information of all the entities registered (Servers). In this

way, the client can directly connect to the server it is looking for. Since

the DS acts as a sort of catalog, in our implementation it is integrated

directly inside the Service Registry of the MEC Platform. Therefore,

all the OPC UA entities offering any functionality need to register their

endpoints and details about their services to the MEC Platform. As

for MQTT, the service registration is made through the adoption of the

MEC 011 API, in particular by means of a REST API POST request to

the corresponding /applications/{appInstanceId}/services end-

point. An OPC UA Server will automatically register its services to

the MEC Platform during its start-up phase. Similarly to what was

5.6. MEC011 Extension 76

Chapter 5. Enabling Industrial IoT as a Service with Multi-access
Edge Computing

done for MQTT, an extension to the MEC 011 service endpoint defi-

nition was defined, as reported in the following example:

...

"endpoint": {

"alternative": {

"opcua": [{

"port": "4840",

"host": "opcua-server",

"uri": "namespace.uri",

"objects": [{

"object_name": "My_Object",

"variables": [

"Temperature_Sensor",

"Water_Sensor"] }]

}] } }

...

As can be seen from the example, in this case, the OPC UA server

not only registers its host/port pair but also adds information about

its internal information model. Specifically, inside the opcua list, we

can find all the details that an external client can use to access those

services, such as the fields host and port. Then the field uri is

used for the identification of a particular “object” among the ones

listed by the server. Each object is identified by its object name and

includes all the variables that a client may be interested in for the

subscription.

With proper extensions to the standard interfaces defined by ETSI,

it is possible to further simplify the interaction between IoT services

even in a multi-vendor/multi-protocol scenario. With this addition, an

IoT client could not only discover the endpoint used by the IoT data

sources available but also what protocols they are using and which

type of data.

5.6. MEC011 Extension 77

Chapter 6

Intent Based Networking

6.1 Preliminary work

As stated in Chapter 1, a step further from the concepts of net-

work programmability and virtual service provisioning is Intent Based

Networking (IBN). Recalling the content of the introduction, this

paradigm tries to abstract the physical detail of the underlying in-

frastructure offering a declarative interface for the users. Therefore,

it allows easier interaction with the networking environment. A pre-

liminary work done in this direction was [0], in which a JSON format

to specify intent was proposed. The scope of this intent was limited

to SFC deployment over Openstack datacenters managed by OSM. At

the time of publication, there were not a lot of works proposing prac-

tical implementations of this problem. The architecture of the test

bed used to test and prove this approach is depicted in Fig. 6.1. The

test bed is deployed on bare-metal servers from the CloudLab facilities

[B29]. OpenStack (Stein release via Devstack) is the open-source solu-

tion chosen to realize the cloud infrastructure where virtualized service

components are instantiated[B25]. A small-scale cluster composed of

four OpenStack compute nodes is used, including one node acting also

as a controller. An additional node is used to host OpenSource MANO

(Release SIX) [B18] and the Intent Layer implementation. The for-

mer is an open-source implementation of the ETSI MANO framework,

officially supported by ETSI. The latter is an original software compo-

78

Chapter 6. Intent Based Networking

Analysis
Verification

Management Translation

Users
Intents

Decision

Intent
Layer

OpenStack
Controller Node

Figure 6.1: Testbed architecture.

nent we developed for the purpose of this demonstrator, implemented

though a Python script which exposes a REST interface to accept

users intents in a JSON format. The SFC intent specification format

6.1. Preliminary work 79

Chapter 6. Intent Based Networking

is structured as follows:

{

"name": "intent_name",

"service_blocks": [

{

"block": "service_block_name",

"managed": Bool:Management_Required,

"order": int:Order_inside_SFP ,

"symmetric": Bool:Block_On_Reverse_Path

},

...

],

"service_requirements": {

...

}

}

Each "block" included in the intent specification represents a com-

ponent of the service chain. The choice of a list of service blocks is

similar to the one made in [B66], which uses a list of middleboxes

to specify a service chain. The "managed" property specifies whether

that component must be equipped with an interface connected to a

management network; the "order" attribute is used to determine the

sequence of blocks in the service chain; the "symmetric" attribute

specifies whether the same component must be traversed in both traf-

fic directions. An additional section named "service requirements"

can be included to specify some kind of quality of service envelope (e.g.,

required service level, latency, etc.) The intent specification presented

above is to be considered as a service-level intent. The block proper-

ties were defined as the result of an abstraction process determining

what a SFC must achieve, i.e. an ordered list of service components,

possibly managed, to be selectively applied to one-way or two-way

traffic flows. Although we believe these properties are general enough

to be applied to any specific type of service, the intent specification

can be extended by defining additional properties along with their

mapping to the SFC configuration.

6.1. Preliminary work 80

Chapter 6. Intent Based Networking

User
Intent
Layer OSM Openstack

Intent
Request

NSD
Creation

NS
Deployment

SFC
Creation

200 OK
200 OK

200 OK

200 OK

Figure 6.2: Service deployment workflow.

Following the architecture proposed in [B67]1, a valid intent re-

ceived through the REST interface is translated into the required set of

operations to be applied on the underlying infrastructure. More specif-

ically, according to the list of blocks requested in "service blocks",

the translator composes the Network Service Descriptor (NSD) in the

OSM format [B43]. The descriptor includes the details of the Vir-

tualized Network Functions (VNFs) needed to deploy the requested

service blocks, as well as their interconnecting networks. We assume

that the implementation details of the VNFs are stored in a service

component catalogue that represents the knowledge base on which

the translator is able to map high-level intents into implementation-

specific service components. In order to allow further customization,

the single generic service component can be adjusted by the transla-

tor to the service needs by taking advantage of a specific list of OSM

configurations, including “Day 0” configurations (related to the initial

set of computing and network resources) and “Day 1” configurations

1This is the updated version of the IETF draft. However, at the time of pub-

lication, the version was [B68]

6.1. Preliminary work 81

Chapter 6. Intent Based Networking

(including the sequence of operations to be performed immediately af-

ter launching the VNF instance). Additional “Day 2” (i.e., run-time)

configurations are possible through the management network, but only

for blocks with the "managed" property set to true.

The NSD is then onboarded on OSM by the decision block, which

triggers the instantiation of the VNFs in the OpenStack cluster by

sending the correct command to OSM. The decision block is also in

charge of deploying the Service Function Path (SFP) that traverses

all the blocks requested in the intent specification in the given order.

To do so, we chose to use directly the OpenStack SFC-plugin [B26].

The main reason is that OSM currently supports only a subset of

the capabilities granted by the plugin, whereas controlling directly

the OpenStack plugins increases the flexibility of the service chaining

operations. In particular, the decision block is also enabled to select

the encapsulation method (i.e., NSH or MPLS) used to implement

the SFP, and to determine whether the VNFs along the path are

aware or unaware of that. In case of so-called “SFC unaware” service

functions, an SFC proxy function must be deployed [B4]. The detailed

steps required to create a SFP with the SFC-plugin of OpenStack are

described in [B45].

The different phases needed for a service deployment are depicted

in Fig. 6.2.

To better understand the procedure of mapping an intent to an

NSD, an example is given. The service intent is expressed as follows:

{ "name": "serviceA",

"service_blocks": [

{

"block": "dpi",

"managed": true,

"order": 1,

"symmetric": true

},

{

"block": "firewall",

"managed": false,

6.1. Preliminary work 82

Chapter 6. Intent Based Networking

"order": 0,

"symmetric": true }] }

The requested service is composed by two different symmetric

VNFs, a deep packet inspector (dpi) and a firewall (firewall). The

former requires a connection to a management network, while the lat-

ter does not need it. The intent is then mapped by the translation

component into the following NSD, represented in the YAML format

used by OSM:

nsd:nsd-catalog:

nsd:

- constituent-vnfd:

- member-vnf-index: 0

vnfd-id-ref: firewall_vnfd

- member-vnf-index: 1

vnfd-id-ref: dpi_vnfd

...

vld:

- id: dataNet

type: ELAN

vnfd-connection-point-ref:

- member-vnf-index-ref: 0

vnfd-connection-point-ref: vnf-cp-data

vnfd-id-ref: firewall_vnfd

- member-vnf-index-ref: 1

vnfd-connection-point-ref: vnf-cp-data

vnfd-id-ref: dpi_vnfd

- id: mgmtNet

type: ELAN

vnfd-connection-point-ref:

- member-vnf-index-ref: 1

vnfd-connection-point-ref: vnf-cp-mgmt

vnfd-id-ref: dpi_vnfd

As can be seen, the descriptor includes the two required VNFs by

calling their respective VNF descriptors (firewall vnfd and dpi vnfd)

6.1. Preliminary work 83

Chapter 6. Intent Based Networking

taken from a catalog maintained by OSM. These two VNFs are then

connected to their respective virtual networks, as specified by the vir-

tual link descriptors (dataNet and mgmtNet).

Recalling Fig. 6.1, at the current state our Intent Layer implemen-

tation does not implement any management and analysis/verification

functionality yet. In particular, the latter should monitor whether the

service requirements specified in the intent are respected.

A live demo of this work was presented during the IETF 108

Hackathon coupled with the “Slice Intent” proposed by Molka Ghar-

baoui and Barbara Martini (CNIT, Italy). After the demo, these two

types of intent were used as intent classification examples and are now

part of the related IETF Draft from the NMRG group [B69].

To conclude, this work can be considered a first step in the IBN

domain with a practical implementation of this type of system, even if

limited. An insight gained from this work and corroborated by other

related publications was the lack of a formal and general description

of these concepts. Specifically, this work and others tackling the same

problems (e.g., [B70]) tend to propose their own data models to de-

scribe intents for their specific, and sometimes limited, application

areas. The next section of this chapter contains a formal way to for-

malize the intent using mathematical tools trying to overcome these

limitations.

6.2 Formal definition of IBN

Intents are inherently a flexible and abstract way to express network

operation. They should support composition since the network actions

could be composed in different ways by different intent specifications.

For this reason, category theory could be the suitable mathematical

tool to reason about IBN. Since the main aim of this branch of mathe-

matics is to provide a way to describe and work on abstract concepts,

even on math itself. Furthermore, category theory has a strict con-

nection with (functional) programming, which could lead directly from

the theoretical representation of the problem to its realization. Func-

6.2. Formal definition of IBN 84

Chapter 6. Intent Based Networking

tional programming could be a good fit for the IBN world thanks to

its declarative nature, conversely to the imperative one adopted by

other programming languages (e.g., C).

Applied Category Theory is becoming a relevant field in research,

showing how category theory can be applied to different fields outside

of “pure mathematics”. For example, in [B71] Coecke, Sadrzadeh,

and Clark applied category theory to natural language processing,

defining a model that characterizes natural language expressions and

their meaning leveraging tools from category theory. These concepts

are also adopted in the area of modeling cyber-physical systems [B72]

[B73]. Jacobs et al., in [B70] propose a process for intent refinement,

which uses AI to process intent request expressed in natural language

and transform them into an intermediate format Nile, that can be fed

back to the operator/user to be validated before its deployment. The

same formalism is used and extended in [B74] to cover a broader set

of use cases, specifically ones related to traffic rerouting and service

traffic protection. The formalism that will be presented in the remain-

der of this section would still be valid to describe the aforementioned

approaches.

First of all, it is necessary to define concepts of category theory

that will be use in the remainder of the text. The first of course would

be the introduction of a category. Following the definition given by

Fong and Spivak in [B75], to specify a category C:

i one specifies a collection Ob(C), elements of which are called

objects.

ii for every two objects c, d, one specifies a set C(c, d), elements

of which are called morphisms from c to d.

iii for every object c ∈ Ob(C), one specifies a morphism idc ∈
C(c, c), called the identity morphism on c.

iv for every three objects c, d, e ∈ Ob(C) and morphisms f ∈
C(c, d) and g ∈ C(d, e), one specifies a morphism f ◦g ∈ C(c, e),

called the composite of f and g.

6.2. Formal definition of IBN 85

Chapter 6. Intent Based Networking

We will sometimes write an object c ∈ C, instead of c ∈ Ob(C). It

will also be convenient to denote elements f ∈ C(c, d) as f : c → d.

Here, c is called the domain of f , and d is called the codomain of f.

These constituents are required to satisfy two conditions:

a unitality : for any morphism f : c → d, composing with the

identities at c or d does nothing: idc ◦ f = f and f ◦ idd = f .

b associativity : for any three morphisms f : c0 → c1 , g : c1 → c2 ,

and h : c2 → c3 , the following are equal: (f ◦ g)◦h = f ◦ (g ◦h).
We write this composite simply as f ◦ g ◦ h.

Another important concept to introduce is the functor. A functor

maps all objects of a category C to objects of a category D, while pre-

serving its structure (i.e., identities and composition). More formally

[B75], let C and D be categories. To specify a functor from C to D,

denoted F : C → D,

i for every object c ∈ Ob(C), one specifies an object F (c) ∈
Ob(D);

ii for every morphism f : c1 → c2 in C, one specifies a morphism

F (f) : F (c1) → F (c2) in D.

Which must satisfy two properties:

a for every object c ∈ Ob(C), we have F (idc) = idF (c);

b for every three objects c1 , c2 , c3 ∈ Ob(C) and two morphisms

f ∈ C(c1, c2), g ∈ C(c2, c3), the equation F (f ◦ g) = F (f) ◦F (g)

holds in D.

The link between Haskell, or functional programming in general,

and category theory might not be easy to see. However, it is possi-

ble to construct a category Hask [B76] in which Ob(Hask) contains

all Haskell data types (e.g., Int, Bool, etc.) and morphisms between

these are function between types (e.g., isEven :: Int → Bool). This

construction can be considered a category, up to some minor approx-

imation. For example, let’s consider a function f :: A -> B be-

tween types A and B. In Haskell, we could define an identity morphism

6.2. Formal definition of IBN 86

Chapter 6. Intent Based Networking

id such that id . f = f . id = f. However, since Haskell sup-

ports polymorphic functions this syntax is completely correct but does

not directly translate into the unitiality condition presented. In cate-

gory theory morphisms are only monomorphic (i.e., a morphism has a

unique source and target objects). Therefore, by rewriting the above

formula and by properly instantiating (i.e., fixing the input and out-

put data types) each identity function, (id :: B -> B) . f = f .

(id :: A -> A) = f, the condition is now satisfied. By considering

Hask as a category we can of course use all the other construction

defined in category theory (e.g., functors, monad, etc.). For example,

a new type definition in Haskell could be seen as an endofunctor on

Hask (a functor from Hask to Hask). Since it maps types to a new

type and with its fmap it preserves morphisms (functions) between the

starting types.

The focus of this work is trying to formalize an approach for an

IBN system using a categorical approach, to be then implemented with

Haskell. First of all, a category to represent intents was designed. The

object of this category can be seen as a subset of all possible text in

English (or even in other languages), in other words the objects are

all possible well formed text related to network management that can

be constructed. While morphisms can describe relationship between

“similar” intent requests. Specifically, a kind of ordering can be intro-

duced between element of this set, represented by the symbol ≤. For

example, let Intent1 be “Deploy low-latency Service X” and Intent2

be “Deploy Service X”, then Intent1 ≤ Intent2, since the deployment

of a service X with a low-latency requirement of course implies the de-

ployment of service X. Then, it is easy to prove that this construction

is actually a category, since:

– for every Intent Ii in the object set, we have Ii ≤ Ii. This

is trivial since it is clear that an Intent implies itself (identity

morphism).

– for every three Intent I1, I2, I3 in the object set, and I1 ≤ I2, I2 ≤
I3, then I1 ≤ I3. In other words if I1 implies I2 and I2 implies

I3 then of course I1 will imply I3 (composition rule).

6.2. Formal definition of IBN 87

Chapter 6. Intent Based Networking

Furthermore, this category is a partially ordered category. In fact,

if exists a morphism between two objects then they are related as

described, and that morphism is unique. Partially since there might be

object not correlated with others. Alternatively, this category can be

seen as the free category obtained from a partially ordered set, which

is a set with an “ordering” function defined between its elements.

Inside this category a ”product” operator can be defined ⊗ acting

between its objects. This operator could be used to link different

intent expression, its use could resemble a logical and. For example,

let Intent1 be “Deploy a web server” and Intent2 “Deploy a Firewall”,

then Intent1 ⊗ Intent2 would be “Deploy a web server and deploy

a Firewall”. For this reason, this operator could be used to build

a structure inside the category in which complex intent request are

linked to their constituent components through this operator. By

defining an identity object for this operator, it is possible to prove

that the “Intent category” equipped with this product is a “monoidal

preorder” (i.e., a free category obtained from a preorder set equipped

with a monoidal product). The identity object for this operator should

represent an intent request that if multiplied, or logically linked, to any

other intent the resulting intent would not change. Thus, this identity

object would be something like a Null Operation intent. Then to prove

that ⊗ is actually a monoidal operator, the following properties need

to hold:

– Monotonicity: For all x1, x2, y1, y2 ∈ I, if x1 ≤ y1 and x2 ≤ y2,

then x1 ⊗ x2 ≤ y1 ⊗ y2;

– Unitality: Let Id be the identity object for ⊗, then for all x ∈ I

the left and right identities hold Id⊗ x = x⊗ Id = x;

– Associativity: For all x, y, z ∈ I (x⊗ y)⊗ z = x⊗ (y ⊗ z)

Let’s give an example for the first property, fixing x1 =“Deploy low-

latency Service X”; y1 =“Deploy Service X”; x2 = “Activate a firewall

between 8 am and 10 pm”; y2 = “Activate a firewall”. So following

the definition, x1 ⊗ x2 and y1 ⊗ y2 would be equals to “Deploy low-

latency Service X and activate a firewall between 8 am and 10 pm”

6.2. Formal definition of IBN 88

Chapter 6. Intent Based Networking

and “Deploy Service X and activate a firewall” respectively. Since

x1 ≤ y1 and x2 ≤ y2, it’s easy to see that also x1 ⊗ x2 ≤ y1 ⊗ y2, thus

satisfying the monotonicity property. An additional property that

could be discussed and proven is symmetry, meaning given x, y ∈
I, x⊗ y = y ⊗ x.

Another definition of this product between objects could be also

obtained by means of universal construction. For any Intent Ii having

two projection towards I1 and I2, meaning Ii implies both I1 and I2.

It exists an object I1 ⊗ I2 such that there is an unique morphism

going from Ii and I1 ⊗ I2 that makes the two “triangles” in Fig. 6.3

to commute.

Ii I1

I2 I1 ⊗ I2

Figure 6.3: Commuting diagram for categorical product.

This could be interpreted as if objects Ii are all the possible intent

specifications requiring a service composed by the ones requested by

I1 and I2, being I1 ⊗ I3 the way of describing the composite service in

which its component are “easier” to identify. Here an example that

may clarify this, let I1 be “Deploy a web server” and I2 “Deploy a

firewall”, then I1 ⊗ I2 would be “Deploy a web server and a firewall”.

In this example the “Iis” would be expressions like “Deploy a secured

HTTP server” or “Deploy a HTTP server and secure it”.

Having defined the category representing the intent requests (I),

the next step could be to define a category representing the “ser-

vices required”(Services), in other words what an intent is requiring.

The intent category could then be linked to this new one through

a functor. Which would map all object from I (i.e., the intents)

to object in Services, while preserving the structure of the start-

ing category. Meaning, let F :: I → Services be the functor be-

tween the two categories and I1, I2 ∈ I such that ∃f :: I1 → I2 then

6.2. Formal definition of IBN 89

Chapter 6. Intent Based Networking

∃F (f) :: F (I1) → F (I2). The object of this category represent all the

services that can be asked by an intent. While morphisms between

these objects could embed composition rules between them.

A similar approach could be followed for another category repre-

senting the “service requirements” (Requirements). This category

will embed all the modifiers that a particular intent could ask, for ex-

ample specific QoS values to satisfy (e.g., bandwidth, latency etc.) or

period of time in which the intent will be active (e.g., “everyday”,“all

Mondays”, “only between 8 a.m. and 10 a.m.). Also for this category

a functor from Intent can be defined, with the same properties as

above.

To recap a category containing all possible intent requests has been

defined (Intent), with two functors mapping it to other two categories,

Services and Requirements. The former representing the services

that can be required by intents. The latter embedding all possible

“modifiers” that an intent could ask. Going a step forward with this

abstraction, the category Cat can be considered. Cat is a large cate-

gory in which its objects are categories, and morphism between these

objects are functors between categories. Recalling the universal con-

struction used for the monoidal product inside Intent a similar ap-

proach could be applied here with the three category defined. Specif-

Intent Services

Requirements

ically we see that Intent has two projections, one going to Services

and the other one to Requirements. Recalling the construction of

product in a category, then an object “Services⊗Requirements” can

be defined, such that it exists a unique morphism going from Intent

to that object.

It is important to remind that the last definition given was ob-

tained reasoning on the category of categories. Therefore, Services⊗
Requirements is actually a whole category and the unique morphism

6.2. Formal definition of IBN 90

Chapter 6. Intent Based Networking

Intent Services

Requirements Services⊗Requirements

is a functor from the Intent category.

The idea here is that the objects in the category Services⊗Requirements

contains all the information about what an intent is asking. These

objects can be seen as pairs, combining the services (or generally ac-

tions on the network) and the specific requirements from them. In

other words, the object set of category Services⊗Requirements can

be seen as the cartesian product of the object sets of Services and

Requirements, Ob(Services⊗Requirements) = {(s, r)|s ∈ Ob(Services), r ∈
Ob(Requirements)}. While for morphisms, for any (s1, r1), (s2, r2) ∈
Ob(Services ⊗ Requirements) then a f : (s1, r1) → (s2, r2) exists if

and only if g1 : s1 → s2 and g2 : r1 → r2 exist in Services and

Requirements respectively. This could be seen as a proof that given

a way to map an intent to the services it is asking for and to the

requirements of this request, then it exist a mapping of this intent

to a couple (service, requirements), which contains all the informa-

tion carried by the intent, and this mapping is unique (by universal

construction).

A key aspect that it’s worth highlighting is the following. No

details were given on the internal structure of the ”Service” and ”Re-

quirement” categories, but only to the Intent one. By leveraging the

abstraction granted by the category theory’s tools, it’s possible to rea-

son and define a structure at the ”natural language level” (i.e., at the

intent level). This structure is preserved in the linked categories (e.g.,

Service and Requirement) through categorical relationships (e.g., func-

tors), without the need of ”looking inside” them. In other words, we

could say that the ”Service” and ”Requirement” categories can be seen

as intermediate steps between an intent reception and its actuation on

the system, the Translation/Intent-Based System (IBS) Space in the

intent lifecycle [B77]. However, we don’t need to define precise data

6.2. Formal definition of IBN 91

Chapter 6. Intent Based Networking

models for these intermediate steps to derive their properties since

they are inherited by the structure of intents expressed in natural

language.

In this view, the functors going from the Intent category to the

other two can be seen as ”meaning extracting” functions, extract-

ing services and their requirements contained in natural expressions.

More than one functor could exist between two categories (i.e., two

different mappings). Natural transformations are a way to introduce

a relationship between two functors acting on the same couple of cat-

egories. Following Definition 3.49 given in [B75], let C and D be

categories, and let F,G : C → D be functors. To specify a natural

transformation α : F =⇒ G, for each object c ∈ C, one specifies a

morphism αc : F (c) → G(c) in D, called the c-component of α. These

F (c) G(c)

F (d) G(d)

F (f)

αc

αd

G(f)

Figure 6.4: Commuting diagram for the naturality condition (natural-

ity square)

components must satisfy the following rule, called the naturality con-

dition:

a for every morphism f : c → d in C, the following equation must

hold: F (f) ◦ αd = αc ◦G(f) Fig. 6.4.

In this scenario, since the categories considered are constructed on

top of preorders, we could say that given two functors F , G a natural

transformation between them, α : F =⇒ G, exists if for every c in

the starting category F (c) ≤ G(c). In other words, G could be seen

as a map with a “lower resolution” concerning the one done by F .

Intuitively, this means that G is a “lossy” function, that loses parts of

information carried by natural language intents during its map. An

6.2. Formal definition of IBN 92

Chapter 6. Intent Based Networking

extreme example of that could be a trivial functor that maps every

object in Intent to the terminal object in Services (or Requirements).

Having defined these categories and how they relates with each

other, the next step would be to look deepen in each one of them,

using a Haskell-like syntax to start building the bridge between the

theoretical construct and a possible implementation.

First of all, the objects of Intent could be described with a type

defined as data Intent = Intent String | NullOperation. This

example could also be used to explain how types can be defined in

Haskell. The first “Intent” keyword here is a type constructor which

will identify the type name. While the other two keywords on the

right side of the equality sign, “Intent” and “NullOperation”, are the

data constructors. These specify how data of type Intent can be con-

structed. For this example, a value of type Intent can be constructed

using either NullOperation without any parameter or Intent fol-

lowed by a String. Here two examples, intent1 = Intent "Deploy

a firewall" or nullOpIntent = NullOperation. In other words,

an object of the category Intent is either a string (i.e., an actual in-

tent request in natural language) or a null operation (i.e., the identity

object defined for the internal monoidal product).

Then the same thing could be done for the object of the Services

category. The related type could be defined as data Action = Service

(Phase, BasicService) | TemporalCompose [Action] | LogicalCompose

[Action] | NoAction. This is a recursive data type, a common type

definition in functional programming. The new type Action can be

a single Service, specified through a pair of new data types (Phase

and BasicService) that will be described later, or by a composition

of a list of Action. Specifically, two different kind of composition

are defined, temporal and logical. The former represents a list of

actions that need to be executed in a specific temporal order (e.g.,

deploy a firewall and after configure it). The latter describes an ac-

tion that depends on a series of other logical components without a

precise order, for example the deployment of a 5G core depends on the

deployment of a set of other function (e.g., AMF, SMF, PCF etc.).

6.2. Formal definition of IBN 93

Chapter 6. Intent Based Networking

Lastly, the type constructor NoAction represents an “empty” Action

object (i.e., an action that does nothing on the system), similar to

empty list constructor Nil in classic recursive list definitions [B78].

The BasicService type is used to represent basic services or actions.

The idea here is that this new type definition should contain all possi-

ble “building blocks” that can be composed (temporally or logically)

together to construct a complex service required by an intent. A basic

definition of this new type: data BasicService = VnfId String |

RouterConfig (String, String)| PathCreate (String,String). Of

course, this type could be extended with other basic services that users

may require (i.e., adding new data constructor), or by using more

complex structures as input for them. Finally, the Phase type sim-

ply defines the phase of the lifecycle in which that action will take

place. A basic definition of this new type: data Phase = Add |

Update | Restart | Remove. Having defined objects in Services,

the next step would be to define the structure of this category, in other

words its morphisms. Morphisms can describe how services may be

composed by other ones, for example: let x, y ∈ Ob(Services) with

x = Deploy a 5G Core Network and y = Deploy an SMF function,

then ∃ f : x → y meaning x is composed by y. To clarify, the defini-

tion of x and y used in the example is not completely correct, since

they don’t follow the definition given. However, a functor from the

Intent and the Services has been defined, therefore each object in

the first category is mapped to an object of the other one. For this

reason, x and y can be seen as the objects that are mapped by intents

Deploy a 5G Core Network and Deploy an SMF function respectively.

To better understand what the functor does between these two

categories Fig. 6.5 is presented. The dashed lines connects intents

to the objects in Services, or in other words to the service they are

requiring. The same color has been used to highlight how the functor

maps morphisms between the two categories.

From Fig. 6.5, it is possible to gain an insight on what is necessary

to satisfy an intent request by taking into account the sub-tree having

as root the mapped service. In other words, by knowing how to deploy

6.2. Formal definition of IBN 94

Chapter 6. Intent Based Networking

SMF

PCF
NEF

5G Core

...

Services

MC
Network Slice

MC
Server

Intent

Deploy a SMF
function

Deploy a 5G
Core

Deploy a Mission
Critical Network

Slice

Deploy a MC
Server

Deploy MC
Server and 5G

Core

Figure 6.5: Graphical representation of the functor between the two

categories Intent and Services.

the leaves of these trees and how to compose them, then it should be

possible to deploy the required service.

For example the leaves in Fig. 6.5, using the type definition intro-

duced above, can be defined as follows: smf = Service (Add, VnfId

"smfId"), meaning variable smf of type Action is defined using its

data constructor Service since we can consider it as a single vnf,

thus not requiring any composition. This data constructor takes as

argument a pair of objects. One of type BasicService, which was

constructed using its data constructor VnfId followed by a string rep-

resenting the identifier given to that specific function, "smfId" in the

example. The other of type Phase built with its data constructor

Add, since the intent in the example is requiring the deployment of

a function. The same procedure can also be applied to the other

leaves represented in the figure, of course with the correct VNF iden-

tifiers. Then these leaves can be composed together to construct,

for example, the object representing a 5G core deployment: 5gCore =

LogicalCompose[(Service (Add, VnfId "smfId")), (Service (Add,

VnfId "pcfId")), ...]. Here, the data constructor LogicalCompose

is used to identify the list of VNFs that are part of the 5G core service

(e.g., SMF, PCF, etc.). The logical composition is simply grouping

them together without a particular ordering in which the VNFs need

to be deployed (i.e., in NFV-MANO terminology, a network service

6.2. Formal definition of IBN 95

Chapter 6. Intent Based Networking

composed by several VNFs without any specific Virtual Network For-

warding Graphs).

Of course, similar type definitions could be given for theRequirements

category as well. In which, its objects can be seen as a composi-

tion of basic “intent modifiers”, such as: Scope, to whom the intent

is (e.g., network wide, single user); Time, when the intent should

be active (e.g. “everyday from 2pm to 5pm”, “always”); Latency

Constraints Throughput Constraints. Using Haskell notation, data

SrvRequirement = Requirement BasicReq | ComposeReq [SrvRequirement]

| NoReq, with

BasicReq = Latency | Bandwidth | Scope | Uptime . As

for the other data type, also BasiqReq could be expanded to cover a

larger set of requirements. After the definition of these new types,

the ordering has to be defined. This ordering will map the relation-

ship between two variables of the same type, embedding the concept

of morphisms between objects in the categories from which the types

derive. Since the categories were partial orders, the class Ord present

in Haskell’s prelude would not be the correct choice. Therefore a new

class has to be defined for them. Since in a partial order, two ob-

jects may be related (e.g., less/equal/greater) or not a possible way to

program this is using a construct like Maybe Ord.Ordering. In other

words, if the relationship exists the comparison of the two variables

will return Just Ord (e.g., LT,EQ,GT), while if it doesn’t Nothing.

An object of these new types would less than another one if it is a

components of the latter.

Having defined the types describing the three categories consid-

ered, the next step would be the definition of the functors connecting

them. In Haskell, this would mean defining functions taking as input

objects of type Intent and returning Action or SrvRequirement (or

directly a pair (Action, SrvRequirement)). For example, extractAction

:: Intent -> Action or processIntent :: Intent -> (Action,

SrvRequirement). These functions should take natural language ex-

pressions and construct the trees representing the network operations

they are asking for and their requirements.

6.2. Formal definition of IBN 96

Chapter 6. Intent Based Networking

To start testing these operations, I implemented a preliminary ver-

sion of one actuation function, specifically, the one able to construct

the Open Source Mano (OSM) Network Service Descriptor (NSD) re-

quired by a specific action. In detail, if the function is called with as

input an action like Service(Add, VnfId "vndfid"), the Vnf identi-

fier is added to the required fields of an OSM NSD data model, namely

in the vnfd-id and vnf-profile lists. Alternatively, if the input of

the function is a logical composition of a set of VNFs, then using a fold

function (foldr) the behavior just described is applied recursively to

all the elements in the list, accumulating all the results in the same

network service descriptor. In a Haskell-like syntax:

generateNsd :: Action -> Nsd -> Nsd

generateNsd (Service (Add, VnfId vnfid))

nsd = [...]

generateNsd (LogicalCompose actions) nsd =

foldr generateNsd nsd actions

For example, assuming an input action like:

LogicalCompose[

(Service (Add, VnfId "smfId")),

(Service (Add, VnfId "pcfId"))]

the function constructs a valid OSM NSD containing the required

VNFs. The relevant components of the descriptor generated from the

previous example are:

nsd:

nsd:

df:

- id: default-df

vnf-profile:

- id: pcfid

virtual-link-connectivity:

- constituent-cpd-id:

- constituent-base-element-id:

6.2. Formal definition of IBN 97

Chapter 6. Intent Based Networking

pcfid

constituent-cpd-id: mgmt-ext

virtual-link-profile-id: mgmtnet

vnfd-id: pcfid

- id: smfid

virtual-link-connectivity:

- constituent-cpd-id:

- constituent-base-element-id:

smfid

constituent-cpd-id: mgmt-ext

virtual-link-profile-id: mgmtnet

vnfd-id: smfid

vnf-id:

- pcfid

- smfid

[...]

The NSD descriptor created with this function can then be on-

boarded on the OSM platform, and its deployment can be initialized.

Furthermore, thanks to the type checking features of Haskell, the NSD

format is automatically validated during every parsing and rendering

of the YAML file, thus increasing the robustness of the code.

6.3 Future research tracks

This work has directly applied category theory concepts to IBN to

build a formal representation of the intent specifications. This repre-

sentation aims to help with the reasoning about this new paradigm

while keeping a close relationship with functional programming and

the possible implementations. I have shown a preliminary implemen-

tation of the categories for intent using Haskell. This implementation

can take a definition of a service and constructs a valid OSM NSD

containing the required VNFs, by generating its relevant components.

Further works can be made in both directions. For example, lenses

in category theory [spivak-lenses] are used to describe in mathemati-

6.3. Future research tracks 98

Chapter 6. Intent Based Networking

cal terms the concepts of agent and environment, thus they could serve

as a suitable tool to model the interaction between the Intent System

and the network infrastructure it is managing. They are also widely

used in Haskell since they are one of the most powerful tools to access

and modify data structures. Also, other mathematical concepts might

expand and improve the proposed formalism. For instance, the intent

resolution might be mapped into a Kolmogorov Problem. Therefore,

works on Dialetica categories may link well with IBN. Likewise, the

Yoneda lemma might also reveal interesting properties for the extrac-

tion of meaning from intent specifications.

6.3. Future research tracks 99

https://www.youtube.com/watch?v=LxhOSVoyar8

Chapter 7

Conclusion

This thesis has presented the main evolution trends networks are un-

dergoing today, proposing relevant works carried out for each one of

them. Specifically, Chapter 3 presented two possible implementations

for SFC. The former uses OpenFlow inside Openstack clusters while

the latter proposes an Srv6 approach in an NFV-MANO environment.

For both solutions, performance metrics are presented, showing the

advantages and drawbacks of both (e.g., deployment times or the flex-

ibility offered). Chapter 4 briefly reports deployment time results

obtained using OSM. OSM is also the platform of choice for the two

following chapters. Chapter 5 dealt with 5G network slicing applied

to Mission Critical Communications. In this work, OSM is used to

deploy a network slice composed of both the mobile core network

components and the mission-critical ones over a multi-domain envi-

ronment. It proves how an NFV architecture could support dynamic

services with specific QoS indicators. Chapter 6 showed an applica-

tion of MEC in IIoT environments. The described approach enables

an Industry 4.0 infrastructure to configure and provide services with

a high degree of flexibility and adaptability. As demonstrated by the

proof-of-concept implementation, a sensing and data gathering ser-

vice can be deployed on-demand over multiple technological domains

(i.e., fog and edge cloud) in a seamless way and in a matter of tens of

seconds. Furthermore, with proper extensions to the standard inter-

faces defined by ETSI, it is possible to further simplify the interaction

100

Chapter 7. Conclusion

between IoT services even in a multi-vendor/multi-protocol scenario.

Finally, Chapter 7 presents results in the field of network automation,

specifically about intent. This chapter builds up from the previous

ones, trying to move further by abstracting the concepts described in

the first chapters. It presents an intent approach to deploy network

resources and create the correct SFP in an NFV environment. Then,

it proposes a formal model, using category theory, to describe intent.

This approach could be beneficial because it allows to reason about

intent-related concepts abstracting from specific, and maybe limited,

implementations.

101

Acronyms

API Application Programming Interface. 5,

CLI Command Line Interface.

DC Data Center.

DNS Domain Name System.

DPI Deep Packet Inspection/Inspector.

IBN Intent-based Networking.

IC Integrity Check(er).

IDS Intrusion Detection System.

IETF Internet Engineering Task Force.

IoT Internet of Things.

LXD Linux Container Daemon. 28,

MANO Management and Orchestration.

MEC Multi-access Edge Computing.

NAT Network Address Translation/Translator.

NBI North-Bound Interface.

NFV Network Function Virtualization.

Acronyms 102

Acronyms

NFVO Network Function Virtualization Orchestrator.

NSD Network Service Descriptor. 30,

NSH Network Service Header.

QoS Quality of Service.

SDN Software-Defined Network(ing).

SF Service Function.

SFC Service Function Chain(ing).

SSH Secure SHell. 28,

TC Traffic Controller/Shaper.

VDU Virtual Deployment Unit. 30,

VIM Virtualized Infrastructure Manager.

VNF Virtual Network Function.

VNFM Virtual Network Function Manager.

WAN Wide Area Network.

WIM WAN Infrastructure Manager.

XaaS Everything-as-a-Service.

Acronyms 103

Bibliography

[B1] Open Networking Foundation (ONF). url: https://opennetworking.

org/.

[B2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, S. Shenker, and J. Turner. “OpenFlow:

Enabling Innovation in Campus Networks”. In: SIGCOMM

CCR 38.2 (Mar. 2008), pp. 69–74. url: http://doi.acm.

org/10.1145/1355734.1355746.

[B3] F. Hu, Q. Hao, and K. Bao. “A Survey on Software-Defined

Network and OpenFlow: From Concept to Implementation”.

In: IEEE Communications Surveys Tutorials 16.4 (Fourth quar-

ter 2014), pp. 2181–2206.

[B4] J. M. Halpern and C. Pignataro. Service Function Chaining

(SFC) Architecture. RFC 7665. Oct. 2015. url: https://rfc-

editor.org/rfc/rfc7665.txt.

[B5] F. Callegati, W. Cerroni, C. Contoli, R. Cardone, M. No-

centini, and A. Manzalini. “SDN for dynamic NFV deploy-

ment”. In: IEEE Communications Magazine 54.10 (Oct. 2016),

pp. 89–95.

[B6] G. Davoli, W. Cerroni, C. Contoli, F. Foresta, and F. Callegati.

“Implementation of Service Function Chaining Control Plane

through OpenFlow”. In: 2017 IEEE Conference on Network

Function Virtualization and Software Defined Networks (NFV-

SDN). Nov. 2017.

Bibliography 104

https://opennetworking.org/
https://opennetworking.org/
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
https://rfc-editor.org/rfc/rfc7665.txt
https://rfc-editor.org/rfc/rfc7665.txt

Bibliography

[B7] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,

and V. Sekar. “Making Middleboxes Someone else’s Problem:

Network Processing As a Cloud Service”. In: ACM SIGCOMM

2012 Conference. Helsinki, Finland: ACM, 2012.

[B8] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A.

Manzalini, F. Risso, D. Staessens, R. Steinert, and C. Meirosu.

“Research Directions in Network Service Chaining”. In: 2013

IEEE SDN for Future Networks and Services (SDN4FNS).

Nov. 2013.

[B9] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Co-

vaci, and T. Magedanz. “Service Function Chaining in Next

Generation Networks: State of the Art and Research Chal-

lenges”. In: IEEE Communications Magazine 55.2 (Feb. 2017),

pp. 216–223.

[B10] H. Chen, S. Xu, X. Wang, Y. Zhao, K. Li, Y. Wang, W. Wang,

and L. M. Li. “Towards optimal outsourcing of service func-

tion chain across multiple clouds”. In: 2016 IEEE International

Conference on Communications (ICC). May 2016.

[B11] A. M. Medhat, G. A. Carella, M. Pauls, M. Monachesi, M.

Corici, and T. Magedanz. “Resilient orchestration of Service

Functions Chains in a NFV environment”. In: 2016 IEEE Con-

ference on Network Function Virtualization and Software De-

fined Networks (NFV-SDN). Nov. 2016.

[B12] M. T. Beck, J. F. Botero, and K. Samelin. “Resilient alloca-

tion of Service Function Chains”. In: 2016 IEEE Conference

on Network Function Virtualization and Software Defined Net-

works (NFV-SDN). 2016, pp. 128–133.

[B13] T. Soenen, S. Sahhaf, W. Tavernier, P. Sköldström, D. Colle,

and M. Pickavet. “A model to select the right infrastructure

abstraction for Service Function Chaining”. In: 2016 IEEE

Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN). 2016, pp. 233–239.

Bibliography 105

Bibliography

[B14] J. Lee, H. Ko, D. Suh, S. Jang, and S. Pack. “Overload and fail-

ure management in service function chaining”. In: 2017 IEEE

Conference on Network Softwarization (NetSoft). July 2017.

[B15] S. A. Amiri, K.-T. Foerster, R. Jacob, and S. Schmid. “Chart-

ing the Algorithmic Complexity of Waypoint Routing”. In:

SIGCOMM Comput. Commun. Rev. 48.1 (Apr. 2018), pp. 42–

48.

[B16] Q. Duan. “Modeling and Performance Analysis for Service

Function Chaining in the SDN/NFV Architecture”. In: 2018

4th IEEE Conference on Network Softwarization and Work-

shops (NetSoft). June 2018.

[B17] Network Functions Virtualisation (NFV); Architectural Frame-

work. Accessed Jun. 16, 2019. The European Telecommunica-

tions Standards Institute (ETSI). 2013. url: http://www.

etsi.org/technologies-clusters/technologies/nfv.

[B18] Open Source MANO. url: https://osm.etsi.org/.

[B19] Multi-access Edge Computing (MEC); Framework and Ref-

erence Architecture. Accessed Dec. 30, 2020. The European

Telecommunications Standards Institute (ETSI). url: https:

//www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.

02.01_60/gs_mec003v020201p.pdf.

[B20] Multi-access Edge Computing (MEC); Edge Platform Applica-

tion Enablement. Accessed Dec. 30, 2020. url: https://www.

etsi.org/deliver/etsi_gs/MEC/001_099/011/02.02.01_

60/gs_MEC011v020201p.pdf.

[B21] Cloud iNfrastructure Telco Taskforce. Accessed Oct. 2021. url:

https://cntt.readthedocs.io/en/stable- kali/gov/

chapters/chapter01.html.

[B22] 5G; System architecture for the 5G System (5GS) (3GPP TS

23.501 version 16.6.0 Release 16). url: https://www.etsi.

org/deliver/etsi_ts/123500_123599/123501/16.06.00_

60/ts_123501v160600p.pdf.

Bibliography 106

http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv
https://osm.etsi.org/
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.02.01_60/gs_mec003v020201p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.02.01_60/gs_mec003v020201p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.02.01_60/gs_mec003v020201p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/011/02.02.01_60/gs_MEC011v020201p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/011/02.02.01_60/gs_MEC011v020201p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/011/02.02.01_60/gs_MEC011v020201p.pdf
https://cntt.readthedocs.io/en/stable-kali/gov/chapters/chapter01.html
https://cntt.readthedocs.io/en/stable-kali/gov/chapters/chapter01.html
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf

Bibliography

[B23] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura.

Intent-Based Networking - Concepts and Definitions. Internet-

Draft draft-irtf-nmrg-ibn-concepts-definitions-06. Work in Progress.

Internet Engineering Task Force, Dec. 2021. 28 pp. url: https:

//datatracker.ietf.org/doc/draft- irtf- nmrg- ibn-

concepts-definitions.

[B24] L. Pang, C. Yang, D. Chen, Y. Song, and M. Guizani. “A

Survey on Intent-Driven Networks”. In: IEEE Access 8 (2020),

pp. 22862–22873.

[B25] OpenStack: Open Source Cloud Computing Software. url: https:

//www.openstack.org/.

[B26] Service Function Chaining Extension for OpenStack Network-

ing. url: https://docs.openstack.org/networking-sfc/

latest/.

[B27] A. Farrel, S. Bryant, and J. Drake. An MPLS-Based Forward-

ing Plane for Service Function Chaining. RFC 8595. June 2019.

url: https://www.rfc-editor.org/info/rfc8595.

[B28] P. Quinn, U. Elzur, and C. Pignataro. Network Service Header

(NSH). RFC 8300. Jan. 2018. url: https://www.rfc-editor.

org/info/rfc8300.

[B29] CloudLab. url: https://www.cloudlab.us.

[B30] A. Farrel, S. Bryant, and J. Drake. An MPLS-based forward-

ing plane for Service Function Chaining. Internet-Draft. IETF,

Aug. 2018. 28 pp. url: https://datatracker.ietf.org/

doc/html/draft-ietf-mpls-sfc-02.

[B31] M. Kourtis, G. Xilouris, V. Riccobene, M. J. McGrath, G. Pe-

tralia, H. Koumaras, G. Gardikis, and F. Liberal. “Enhancing

VNF performance by exploiting SR-IOV and DPDK packet

processing acceleration”. In: 2015 IEEE Conference on Net-

work Function Virtualization and Software Defined Network

(NFV-SDN). Nov. 2015.

Bibliography 107

https://datatracker.ietf.org/doc/draft-irtf-nmrg-ibn-concepts-definitions
https://datatracker.ietf.org/doc/draft-irtf-nmrg-ibn-concepts-definitions
https://datatracker.ietf.org/doc/draft-irtf-nmrg-ibn-concepts-definitions
https://www.openstack.org/
https://www.openstack.org/
https://docs.openstack.org/networking-sfc/latest/
https://docs.openstack.org/networking-sfc/latest/
https://www.rfc-editor.org/info/rfc8595
https://www.rfc-editor.org/info/rfc8300
https://www.rfc-editor.org/info/rfc8300
https://www.cloudlab.us
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-sfc-02
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-sfc-02

Bibliography

[B32] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski,

and R. Shakir. Segment Routing Architecture. RFC 8402. IETF,

July 2018.

[B33] F. Clad, X. Xu, C. Filsfils, D. Bernier, C. Li, B. Decraene, S.

Ma, C. Yadlapalli, W. Henderickx, and S. Salsano. Service Pro-

gramming with Segment Routing [EXPIRED, ARCHIVED].

Internet-Draft draft-xuclad-spring-sr-service-programming-05.

IETF, Apr. 2019. 31 pp.

[B34] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima,

and Z. Li. Segment Routing over IPv6 (SRv6) Network Pro-

gramming. RFC 8986. Feb. 2021. url: https://www.rfc-

editor.org/info/rfc8986.

[B35] A. Abdelsalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano,

and L. Veltri. “Implementation of virtual network function

chaining through segment routing in a linux-based NFV infras-

tructure”. In: 2017 IEEE Conference on Network Softwariza-

tion (NetSoft). July 2017, pp. 1–5.

[B36] P. L. Ventre, M. M. Tajiki, S. Salsano, and C. Filsfils. “SDN

Architecture and Southbound APIs for IPv6 Segment Rout-

ing Enabled Wide Area Networks”. In: IEEE Transactions on

Network and Service Management 15.4 (Dec. 2018), pp. 1378–

1392.

[B37] A. Mayer, S. Salsano, P. L. Ventre, A. Abdelsalam, L. Chiar-

aviglio, and C. Filsfils. “An Efficient Linux Kernel Implemen-

tation of Service Function Chaining for legacy VNFs based

on IPv6 Segment Routing”. In: 2019 5th IEEE Conference on

Network Softwarization and Workshops (NetSoft). June 2019,

pp. 333–341.

[B38] 5G; Management and orchestration; Concepts, use cases and

requirements. Tech. rep. 3GPP TS 28.530 ver. 15.1.0 rel. 15.

3GPP, 2019.

[B39] From Vertical Industry Requirements to Network Slice Char-

acteristics. Tech. rep. The GSM Association, 2018.

Bibliography 108

https://www.rfc-editor.org/info/rfc8986
https://www.rfc-editor.org/info/rfc8986

Bibliography

[B40] JUJU. url: https://jaas.ai.

[B41] Virtual Network Function Descriptor Information Model. url:

http://osm-download.etsi.org/repository/osm/debian/

ReleaseSIX/docs/osm-im/osm_im_trees/vnfd.html#.

[B42] Cloud-Init Documentation. url: https://cloudinit.readthedocs.

io/en/latest/.

[B43] Network Service Descriptor Information Model. url: http:

/ / osm - download . etsi . org / repository / osm / debian /

ReleaseSIX/docs/osm-im/osm_im_trees/nsd.html#.

[B44] SRv6 - Linux Kernel Implementation - Advanced Configura-

tion. url: https://segment- routing.org/index.php/

Implementation/AdvancedConf.

[B45] D. Borsatti, G. Davoli, W. Cerroni, C. Contoli, and F. Calle-

gati. “Performance of Service Function Chaining on the Open-

Stack Cloud Platform”. In: 1st Workshop on Segment Rout-

ing and Service Function Chaining (SR+SFC 2018), 14th In-

ternational Conference on Network and Service Management

(CNSM). Nov. 2018, pp. 432–437.

[B46] Mission Critical Services in 3GPP. Accessed May 12, 2020.

url: https://www.3gpp.org/news-events/1875-mc%5C_

services.

[B47] Leonardo s.p.a. LTE broadband solutions. url: https://www.

leonardocompany.com/it/security-cyber/professional-

communications/.

[B48] OpenAir Interface. Accessed March 2020. url: https://www.

openairinterface.org.

[B49] NextEPC. Accessed March 2020. url: https://nextepc.org.

[B50] GSMA. From Vertical Industry Requirements to Network Slice

Characteristics.

[B51] 3GPP TS 28.530, Management and orchestration; Concepts,

use cases and requirements, release 15.3.

Bibliography 109

https://jaas.ai
http://osm-download.etsi.org/repository/osm/debian/ReleaseSIX/docs/osm-im/osm_im_trees/vnfd.html#
http://osm-download.etsi.org/repository/osm/debian/ReleaseSIX/docs/osm-im/osm_im_trees/vnfd.html#
https://cloudinit.readthedocs.io/en/latest/
https://cloudinit.readthedocs.io/en/latest/
http://osm-download.etsi.org/repository/osm/debian/ReleaseSIX/docs/osm-im/osm_im_trees/nsd.html#
http://osm-download.etsi.org/repository/osm/debian/ReleaseSIX/docs/osm-im/osm_im_trees/nsd.html#
http://osm-download.etsi.org/repository/osm/debian/ReleaseSIX/docs/osm-im/osm_im_trees/nsd.html#
https://segment-routing.org/index.php/Implementation/AdvancedConf
https://segment-routing.org/index.php/Implementation/AdvancedConf
https://www.3gpp.org/news-events/1875-mc%5C_services
https://www.3gpp.org/news-events/1875-mc%5C_services
https://www.leonardocompany.com/it/security-cyber/professional-communications/
https://www.leonardocompany.com/it/security-cyber/professional-communications/
https://www.leonardocompany.com/it/security-cyber/professional-communications/
https://www.openairinterface.org
https://www.openairinterface.org
https://nextepc.org

Bibliography

[B52] E. Ahmed, I. Yaqoob, A. Gani, M. Imran, and M. Guizani.

“Internet-of-things-based smart environments: state of the art,

taxonomy, and open research challenges”. In: IEEE Wireless

Communications 23.5 (2016), pp. 10–16.

[B53] T. Taleb, I. Afolabi, and M. Bagaa. “Orchestrating 5G Net-

work Slices to Support Industrial Internet and to Shape Next-

Generation Smart Factories”. In: IEEE Network 33.4 (2019),

pp. 146–154.

[B54] J. Cheng, W. Chen, F. Tao, and C.-L. Lin. “Industrial IoT in

5G environment towards smart manufacturing”. In: Journal of

Industrial Information Integration 10 (2018), pp. 10–19.

[B55] Y. Cai, B. Starly, P. Cohen, and Y.-S. Lee. “Sensor data and

information fusion to construct digital-twins virtual machine

tools for cyber-physical manufacturing”. In: Procedia Manu-

facturing 10 (2017), pp. 1031–1042.

[B56] F. Tao, L. Zhang, Y. Liu, Y. Cheng, L. Wang, and X. Xu.

“Manufacturing service management in cloud manufacturing:

Overview and future research directions”. In: J. Manuf. Sci.

Eng. 137.4 (2015).

[B57] Q. Qi and F. Tao. “A smart manufacturing service system

based on edge computing, fog computing, and cloud comput-

ing”. In: IEEE Access 7 (2019), pp. 86769–86777.

[B58] G. S. S. Chalapathi, V. Chamola, A. Vaish, and R. Buyya. “In-

dustrial Internet of Things (IIOT) applications of edge and fog

computing: A review and future directions”. In: arXiv preprint

arXiv:1912.00595 (2019).

[B59] P. Habibi, S. Baharlooei, M. Farhoudi, S. Kazemian, and S.

Khorsandi. “Virtualized SDN-based end-to-end reference ar-

chitecture for fog networking”. In: 2018 32nd International

Conference on Advanced Information Networking and Appli-

cations Workshops (WAINA). IEEE. 2018, pp. 61–66.

Bibliography 110

Bibliography

[B60] R. Vilalta, V. López, A. Giorgetti, S. Peng, V. Orsini, L. Ve-

lasco, R. Serral-Gracia, D. Morris, S. De Fina, F. Cugini, et al.

“TelcoFog: A unified flexible fog and cloud computing archi-

tecture for 5G networks”. In: IEEE Communications Magazine

55.8 (2017), pp. 36–43.

[B61] P. Pop, B. Zarrin, M. Barzegaran, S. Schulte, S. Punnekkat, J.

Ruh, and W. Steiner. “The FORA fog computing platform for

industrial IoT”. In: Information Systems 98 (2021), p. 101727.

[B62] G. Davoli, D. Borsatti, D. Tarchi, and W. Cerroni. “FORCH:

An Orchestrator for Fog Computing service deployment”. In:

2020 IFIP Networking Conference (Networking). IEEE. 2020,

pp. 677–678.

[B63] Unibo MEC API Tester. Accessed Dec. 30, 2020. url: https:

//mecwiki.etsi.org/index.php?title=MEC_Ecosystem.

[B64] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A.

Leon-Garcia. “Fog computing: a comprehensive architectural

survey”. In: IEEE Access 8 (2020), pp. 69105–69133.

[B65] OPCUA - Specification. Accessed July 2021. url: https://

opcfoundation.org/about/opc-technologies/opc-ua/.

[B66] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville.

“Refining Network Intents for Self-driving Networks”. In: SIG-

COMM Comput. Commun. Rev. 48.5 (Jan. 2019), pp. 55–63.

url: http://doi.acm.org/10.1145/3310165.3310173.

[B67] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura.

Intent-Based Networking - Concepts and Definitions. Internet-

Draft draft-irtf-nmrg-ibn-concepts-definitions-09. Work in Progress.

Internet Engineering Task Force, Mar. 2022. 29 pp. url: https:

//datatracker.ietf.org/doc/html/draft-irtf-nmrg-

ibn-concepts-definitions-09.

[B68] Q. Sun, W. (LIU, and K. Xie. An Intent-driven Manage-

ment Framework [EXPIRED]. Internet-Draft draft-sun-nmrg-

intent-framework-00. Work in Progress. Internet Engineering

Bibliography 111

https://mecwiki.etsi.org/index.php?title=MEC_Ecosystem
https://mecwiki.etsi.org/index.php?title=MEC_Ecosystem
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
http://doi.acm.org/10.1145/3310165.3310173
https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-ibn-concepts-definitions-09
https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-ibn-concepts-definitions-09
https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-ibn-concepts-definitions-09

Bibliography

Task Force, July 2019. 13 pp. url: https://datatracker.

ietf.org/doc/html/draft-sun-nmrg-intent-framework-

00.

[B69] C. Li, O. Havel, A. Olariu, P. Martinez-Julia, J. C. Nobre,

and D. Lopez. Intent Classification. Internet-Draft draft-irtf-

nmrg-ibn-intent-classification-06. Work in Progress. Internet

Engineering Task Force, Feb. 2022. 47 pp. url: https: //

datatracker.ietf.org/doc/html/draft-irtf-nmrg-ibn-

intent-classification-06.

[B70] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville.

“Refining Network Intents for Self-Driving Networks”. In: Pro-

ceedings of the Afternoon Workshop on Self-Driving Networks.

SelfDN 2018. Budapest, Hungary: Association for Computing

Machinery, 2018, pp. 15–21. url: https://doi.org/10.

1145/3229584.3229590.

[B71] B. Coecke, M. Sadrzadeh, and S. Clark. Mathematical Foun-

dations for a Compositional Distributional Model of Meaning.

2010.

[B72] A. Speranzon, D. I. Spivak, and S. Varadarajan. “Abstraction,

Composition and Contracts: A Sheaf Theoretic Approach”. In:

CoRR abs/1802.03080 (2018). url: http://arxiv.org/abs/

1802.03080.

[B73] G. Bakirtzis, C. Vasilakopoulou, and C. H. Fleming. “Com-

positional Cyber-Physical Systems Modeling”. In: Electronic

Proceedings in Theoretical Computer Science 333 (Feb. 2021),

pp. 125–138. url: http://dx.doi.org/10.4204/EPTCS.333.

9.

[B74] M. Bezahaf, E. Davies, C. Rotsos, and N. Race. “To All Intents

and Purposes: Towards Flexible Intent Expression”. In: 2021

IEEE 7th International Conference on Network Softwarization

(NetSoft). 2021, pp. 31–37.

[B75] B. Fong and D. I. Spivak. Seven Sketches in Compositionality:

An Invitation to Applied Category Theory. 2018.

Bibliography 112

https://datatracker.ietf.org/doc/html/draft-sun-nmrg-intent-framework-00
https://datatracker.ietf.org/doc/html/draft-sun-nmrg-intent-framework-00
https://datatracker.ietf.org/doc/html/draft-sun-nmrg-intent-framework-00
https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-ibn-intent-classification-06
https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-ibn-intent-classification-06
https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-ibn-intent-classification-06
https://doi.org/10.1145/3229584.3229590
https://doi.org/10.1145/3229584.3229590
http://arxiv.org/abs/1802.03080
http://arxiv.org/abs/1802.03080
http://dx.doi.org/10.4204/EPTCS.333.9
http://dx.doi.org/10.4204/EPTCS.333.9

Bibliography

[B76] Category Hask. url: https://wiki.haskell.org/Hask.

[B77] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura.

Intent-Based Networking - Concepts and Definitions. Internet-

Draft draft-irtf-nmrg-ibn-concepts-definitions-05. Work in Progress.

Internet Engineering Task Force, Sept. 2021. 27 pp. url: https:

//datatracker.ietf.org/doc/html/draft-irtf-nmrg-

ibn-concepts-definitions-05.

[B78] J. Hughes. “Why Functional Programming Matters”. In: Com-

puter Journal 32.2 (1989), pp. 98–107.

Bibliography 113

https://wiki.haskell.org/Hask
https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-ibn-concepts-definitions-05
https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-ibn-concepts-definitions-05
https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-ibn-concepts-definitions-05

	Abstract
	Introduction
	Programmable NetworkInfrastructures
	Virtualized Network Service Provisioning
	Network Automation

	Programmable network infrastructure
	SFC with Openflow
	The OpenStack SFC extension
	Experimental setup
	Experimental results

	SFC with Segment Routing
	The Network Scenario
	Test bed Implementation
	OpenSource MANO
	Experimental Results
	Comparison with Openstack SFC

	Network Service Provisioning
	Physical testbed validation with OSM

	5G Network Slicing
	Network architecture and system components
	The MC server
	The mobile access network
	Data center management infrastructure deployment

	A Network Slice for MC communications
	Actors and Roles
	Network Slice Architecture and Characteristics
	Network Slice Delivery and Lifecycle management

	Experimental Results

	Enabling Industrial IoT as a Service with Multi-access Edge Computing
	Introduction and related works
	Reference Scenario for IIoT as a Service
	Features and Components in a MEC-enabled IIoTaaS Framework
	Proof-of-Concept Implementation
	Evaluation
	MEC011 Extension

	Intent Based Networking
	Preliminary work
	Formal definition of IBN
	Future research tracks

	Conclusion
	Acronyms
	Bibliography

