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Abstract

The Belt and Road Initiative (BRI) is a project launched by the Chinese Government
whose main goal is to connect more than 65 countries in Asia, Europe, Africa and Oceania
developing infrastructures and facilities. To support the prevention or mitigation of landslide
hazards, which may affect the mainland infrastructures of BRI, a landslide susceptibility
analysis in the countries involved has been carried out during the presented PhD research
activity.

Due to the large study area, the analysis has been carried out using a multi-scale
approach which consists of mapping susceptibility firstly at continental scale, in order to
have an overview of the large study area, and then at national scale, where a detailed
susceptibility map is required.

The study area selected for the continental assessment is the south-Asia, where a
pixel-based landslide susceptibility map has been carried out using the Weight of Evidence
method and validated by Receiving Operating Characteristic (ROC) curves. The results
highlighted several areas which require a second landslide susceptibility analysis at national
scale, such as: the 83% of Tajikistan, the 92% of Nepal, the 98% of Bhutan, the 84%
of Myanmar and the 94% of Laos which are moderately to very highly susceptible. In
particular, we selected the regions of west Tajikistan and north-east India to be investigated
at national scale.

Data scarcity is a common condition for many countries involved into the Initiative.
Therefore in addition to the landslide susceptibility assessment of west Tajikistan, which
has been conducted using a Generalized Additive Model and validated by ROC curves, we
have examined, in the same study area, the effect of incomplete landslide dataset on the
prediction capacity of statistical models. Differently from what we expected, the variation
in landslide presence significantly influences in a negative way the model prediction capacity
only in the worst scenarios reproduced.

The entire PhD research activity has been conducted using only open data and open-
source software. In this context, to support the analysis of the last years an open-source
plugin for QGIS has been implemented. The SZ-tool allows the user to make susceptibility
assessments from the data preprocessing, susceptibility mapping with statistic-based models,
to the final classification. The SZ-tool has been tested in the study area of north-east
India which demonstrated the possibility to compute a complete landslide susceptibility
assessment in few steps.

All the output data of the analysis conducted during the presented PhD research are
freely available and downloadable.

This text describes the research activity of the last three years which is summed up in
three main chapters. Each chapter reports the text of the articles published in international
scientific journal during the PhD, titled: ’Landslide susceptibility in the Belt and Road
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Countries: continental step of a multi-scale approach’, ’When enough is really enough? On
the minimum number of landslides to build reliable susceptibility models’ and ’Mapping
susceptibility with open-source tools: a new plugin for QGIS’.
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1. Introduction

The Belt and Road Initiative (BRI) is an almost world-wide project launched in 2013 by
the President of the Popular Republic of China. The project aims at the development of
facilities with commercial purposes such as infrastructures for: products, energy, oil & gas
transportation and international programs to support economical relations between the
involved countries which are more than 65 from 4 continents: Europe, Asia, Oceania and
Africa (Lei et al., 2018).

The Silk Road Economic Belt together with the 21st Century Maritime Silk Road are
the main components of the Belt and Road Initiative. They represent the principal routes
of economic and cultural exchanges between Europe and Asia, the former on the mainland,
the latter by the sea. The Silk Road Economic Belt is divided in 6 sections: China-
Mongolia-Russia Corridor, New Eurasia Continental Bridge, China-Central Asia-West
Asia Corridor, China-Indochina Peninsula Corridor, China-Pakistan Corridor, Bangladesh-
China-India-Myanmar (Cui et al., 2017).

To support the development of new infrastructures or the renovation of already existing
ones and prevent or mitigate the effects of natural hazards to people and buildings in the
Belt and Road countries, a new sub-project of the Silk Road Economic Belt has been
initiated: the Silk Road Disaster Risk Reduction (SiDRR) (Lei et al., 2018).

In this framework, the activity here presented is focused on the assessment, prevention
and mitigation of landslide risk. The main goal of the PhD research was to map the
landslide susceptibility of the Silk Road Economic Belt area. Susceptibility is probably
the most common way to prevent natural hazard effects during the planning phase of land
development. Assess the landslide susceptibility of a specific area means to estimate how
much the study area is prone to landslide according to predisposing factors.

Due to the large extension of the study area, we preferred to investigate only a portion of
the Silk Road Economic Belt area focused in south-Asia in order to prevent technical issues
related to the management of a huge amount of heterogeneous data coming from about 65
countries. In total 14 countries have been selected (Fig. 2.1) where landslides produced 8377
deaths and more than 200 Billion $ of damages in the last 20 years according to the EM-
DAT database (Guha-Sapir et al., 2016): China, Pakistan, India, Tajikistan, Bangladesh,
Nepal, Afghanistan, Bhutan, Myanmar, Cambodia, Kyrgyzstan, Laos, Thailand and Viet
Nam.

The selected area has been investigated using a multi-scale approach. The idea is to deal
with the continental extension of the study area through a two steps analysis: the first at
continental scale, the second at national scale. The continental analysis would investigate
the 14 countries using coarse data, light enough to be computed in a reasonable time
with common machines. The output of such analysis carried out a landslide susceptibility
overview of the investigated region from where the sub-regions, which require more detailed
analysis at national scale, may be highlighted.
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In total three landslide susceptibility maps in south-Asia have been produced from the
multi-scale analysis. The first is a continental landslide susceptibility map which has been
used to highlight the most susceptible regions crossed by the Silk Road Economic Belt
path (see Chapter 2). In particular the west-Tajikistan and north-east of India, have been
selected to be analysed in detail at national scale. Their results have been described in
Chapter 3 and Chapter 4 of this document respectively. Figure 1.1 shows the work-flow of
the research activity conducted during the PhD resulting in three scientific papers.

South Asia

Susceptibility analysis

West Tajikistan North-east India

LSI

>= Moderate

Susceptibility
assessment

< Moderate

Selection
of national study  

area

Susceptibility analysisProportional study Susceptibility analysis Test of SZ-plugin

LSI LSIMinimum number of
landslides

Publication of 
SZ-plugin

Test of SRT

Publication of
 SRT

New silk road path

Tier 1
 continental scale

Tier 2 - national scale

Paper 1: Landslide susceptibility in the Belt and R
oad C

ountries:
continental step of a m

ulti-scale approach

Paper 2: When Enough Is Really Enough? On the
Minimum Number of Landslides to Build Reliable
Susceptibility Models

Paper 3: Mapping susceptibility with open-source tools: a new plugin for QGIS

Figure 1.1: Work-flow of the overall activity.

Taking advantage of these landslide susceptibility evaluations, additional analysis have
been conducted in the same regions in order to improve and make the results so far reached
reproducible. In particular, during the assessment in Tajikistan we asked ourselves: When
enough is really enough? How many landslides are necessary to produce a reliable landslide
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susceptibility map with statistical models? To what extent should I collect landslides
to have a ’complete’ landslide inventory? In the Tajikistan study area we compared the
prediction capacity of several landslide susceptibility maps carried out changing gradually
the number of considered landslides. In this manner we reproduced realistic scenarios of
scarcity data environments which is a common condition in the countries of the Silk Road
Economic Belt (see Chapter 3).

During the last years, in order to conduct the analysis described in this text, several
codes, tools, functions and graphs have been produced. All of them have been collected in
two tools: the SZ-plugin for QGIS and the SRT tool for Google Earth Engine. The former
allows the user to carry out a spatial susceptibility assessment using statistical/data-driven
models, whereas the latter allows the user to collect and reduce spatially data from global
datasets. Both have been tested in north-east India to produce a national scale landslide
susceptibility map (see Chapter 4).

The basic idea behind this project is that the extension of the Silk Road Economic
Belt area doesn’t allow to investigate the landslide susceptibility of the countries involved
into the initiative all at once. Therefore, in this research, the analysis carried out may
be considered as a pilot model which could be replicated in the areas not analysed yet.
In doing so, different approaches have been tested to evaluate the landslide susceptibility.
Relevant differences between the three landslide susceptibility studies are represented by
the mapping unit and the data-driven method used (Tab. 1.1). A mapping unit is the
minimum geographic object which composes a study area and to which a unique value of
susceptibility is assigned. Some example of mapping units are: grid cells, terrain units,
Unique Condition Units, slope units and others. In this work three different mapping units
have been adopted: grid cells for south Asia, Unique Condition Units for west Tajikistan
and slope units for north-east India.

Tier 1
Tier 2

A B

Study area south Asia west Tajikistan north-east India

Mapping units Pixel Unique Condition Units Slope units

Method Weight of Evidence Generalized Additive Model Logistic regression/Weight of Evidence

Validation Simple cross-validation 10-fold cross-validation 10-fold cross-validation

# of mapping units 2779933 16020 124553

Unstable units 759 677 3078

Table 1.1: The different methodologies used in the case studies

As regard the methods adopted, based on the literature, they can be distinguished in
qualitative or knowledge-driven and quantitative or data-driven methods. The former are
based on the experience of the operator which make the analysis. The latter replicates
the correlation between the predisposing factors and the dependent variable which may be
physically-based or statistics-based. In particular the statistics-based models determine
the numerical relation between the spatial distribution of a binary classifier (landslide
presence/absence) and the geo-environmental factors which predispose the landscape to
failure. Under the assumption that “the past is the key to the future” (Carrara et al.,
1995) the model evaluates the spatial probability of landslide occurrence and assigns a
value from the Landslide Susceptibility Index (LSI) per mapping unit.

In respect to the principle of reproducebility, the models applied in the three study
areas are quantitative and thus more objective than the qualitative models: Weight of
Evidence, Generalized Additive Model and Logistic Regression.
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Nowadays, the open science is a very current topic in the scientific community. The pos-
sibility to share information, knowledge and data has a priority role in the scientific and tech-
nological progress. This awareness led to the development of a number of IT media to share
materials. Following this direction, this research activity promotes the open science using
only open data and open-source software, providing source codes of any analysis conducted,
source information about data and how to download them. Moreover, we published open ac-
cess articles which summarize three years of researches. Most of the materials are available in
the GitHub repositories: https://github.com/giactitti and https://github.com/CNR-IRPI-
Padova. Finally, to support the user we published a tutorial video describing how do suscep-
tibility with the tools implemented (https://www.youtube.com/watch?v=XpsiCkVF11s).

The three-years research activity has been finalized in three scientific articles reported
in the next three chapters of the current text, which are titled ”Landslide susceptibility
in the Belt and Road Countries: continental step of a multi-scale approach” published
in Environmental Earth Sciences (Chapter 2), ”When Enough Is Really Enough? On
the Minimum Number of Landslides to Build Reliable Susceptibility Models” published
in Geosciences (Chapter 3) and ”Mapping susceptibility with open-source tools: a new
plugin for QGIS” published in Frontiers in Environmental Sciences (Chapter 4). Each of
the three articles reports the state of the art related to their contents. The former article
reports information regarding the landslide susceptibility at continental scale available
in the literature, the second reports details about the available approaches to investigate
the effect of lack of landslide data, and the latter article lists tools comparable with the
category of the SZ-plugin. As regard the scientific articles, reports, repositories and other
information sources cited into the text, their references have been listed in the end of this
text in one single section: Chapter 5.
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2. Landslide susceptibility in the Belt and
Road Countries: continental step of a
multi-scale approach

This chapter has been published in Environmental Earth Sciences journal in 2021 and
authored by: Giacomo Titti1,3, Lisa Borgatti1,3, Qiang Zou2, Peng Cui2, Alessandro
Pasuto3 (Titti et al., 2021a).

2.1 Introduction

The Belt and Road Initiative (BRI) is a collaboration project launched by the Chinese
Government to connect more than 65 countries all over the word by developing infrastruc-
tures, facilities and support among the involved Countries and to encourage innovation in
less developed Countries (Cui et al., 2017; Liu and Dunford, 2016).

The Silk Road Disaster Risk Reduction (SiDRR) project (Lei et al., 2018) is one of the
prioritized sub-projects of the BRI. The purpose of the SiDRR is to carry out a long-term
research project dealing with natural hazard assessment and risk mitigation in the Belt
and Road Countries. A group of experts, with the role of scientific coordination of the
activities carried out by the involved Countries, as well as the dissemination of the results,
has been created. The expected outcomes of the research activities of the group are the
assessment of geo-hydrological hazards in the Belt and Road Countries and the definition
of risk mitigation measures.

Risk, hazard and susceptibility zoning are three complementary approaches to support
land planning. They implicate a decreasing complexity in method and in data types,
respectively. Considering the small scale of the SiDRR analysis and the available data,
a landslide susceptibility zoning has been proposed to build a map which should give a
general overview of the landslide-prone areas in the Belt and Road Countries. The goal
is to individuate the most susceptible areas where to focus further and more detailed
assessments. “In mathematical form, landslide susceptibility, is the probability of spatial
occurrence of known slope failures, given a set of geoenvironmental conditions” (Guzzetti
et al., 2006). Otherwise, landslide susceptibility can be defined as the spatial component of
the hazard (Reichenbach et al., 2018) which, in turn, is the combination of the frequency

1Department of Civil, Chemical, Environmental and Materials Engineering, Alma Mater Studiorum
University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy

2Institute of Mountain Hazards and Environment, Chinese Academy of Science, South Renmin Road,
Section 4, 9, Chengdu 610041, China

3Research Institute for Geo-Hydrological Protection, Italian National Research Council, C.so Stati Uniti,
4, 35127 Padova, Italy
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of landslide occurrence and the susceptibility map (Fell et al., 2008). Thus, landslide
susceptibility can be considered a fundamental part of the process to reach landslide hazard
and risk assessment. At the same time, it can be used in land use planning for large areas
or in analyses characterized by scarcity of data (Corominas et al., 2014).

This work will support the development of landslide hazard prevention and mitigation
measures proposing a multi-scale approach for landslide susceptibility zoning and discussing
its first application in a test area.

The used scale classification has been derived by Glade and Crozier (2012) and in-
troduced by Soeters and van Westen (1996). One class has been added to the original
ranges: large scales (> 1:10,000), medium scales (1:15,000-1:100,000), regional scales
(1:125,000-1:500,000), national scales (1:750,000-1:2,000,000) and continental scales (<
1:5,000,000).

An approach to landslide susceptibility assessment based on the analysis of the state-of-
the-art is presented, where the terms “large area” and “small scale” are used as synonyms
and they refer to continental scale. To show the feasibility and the robustness of the
suggested approach, the case study of south-Asia has been analyzed. The results have been
evaluated and validated by means of ROC analysis.

2.2 State of the art

Landsliding is a complex process driven by several possible predisposing and triggering
factors. Numerous causative factors (geo-environmental factors) may predispose slope to
failure, such as: geology, topography, tectonics, land cover and use, hydrology, and others
(Eckelmann et al., 2006). On the other hand, the processes which trigger a landslide can
be different and include: intense or prolonged rainfall, earthquakes, rapid snow melting,
volcanic activity, human actions and others (Guzzetti et al., 2012).

The goal of landslide susceptibility zoning is to analyze the probability of landslide
occurrence under the influence of a combination of factors, not including landslide frequency.
Therefore, the temporal factor is not taken into consideration (Chacón et al., 2006).

Many different methods have been proposed for landslide susceptibility zoning in the
scientific literature. The choice of a susceptibility mapping method significantly influences
the prediction capacity of the analysis. According to Corominas et al. (2014), the methods
can be categorized as qualitative (knowledge-driven methods) and quantitative (data-driven
methods). The former take advantage of the theoretical and empirical knowledge of the
researchers to make scientific analysis and judgment (Axing et al., 2010; Ayalew et al., 2004;
Barredo et al., 2000; Günther et al., 2014; Saaty, 1990). The latter recreates the relation
between landslides and their controlling factors using a mathematical model: physically
(Chung and Fabbri, 2003; Goetz et al., 2011; Gorsevski et al., 2006) or statistics-based
(Agterberg et al., 1989; Bonham-Carter et al., 1988; Bui et al., 2016; Carrara et al., 2008;
Catani et al., 2013; Chen et al., 2016, 2017; Constantin et al., 2011; Eeckhaut et al., 2012;
Gorsevski et al., 2000; Pham et al., 2016; Yao et al., 2008).

Reichenbach et al. (2018) pointed out that Logistic Regression is one of the most
diffuse statistics-based models for landslide susceptibility on both large and small scales.
Concerning landslide susceptibility assessment at continental, or similar scale, several
different methodologies have been used so far. Most of them are knowledge-driven methods
and statistic-based methods. In addition, physically based methods are excluded in small
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scale analyses, because they require a detailed knowledge of the landslide dynamics, which
is not feasible for large areas.

The scarcity of data, which is very common in small-scale analyses, may be a driven
factor in model selection. In particular, the lack of landslide inventories may affect the
robustness and quality of the results. However, as stated by Hong et al. (2007) this is not
always true: “more information does not necessarily lead to better results, depending on
the quality of the data”.

Due to the lack of a global landslide data set at that time, Hong et al. (2007) have
produced a global landslide susceptibility map without landslide inventories. They have
weighted the causative factors on the base of reference studies and information available
combined through a linear combination method. Following a similar idea, Eeckhaut et al.
(2012) proposed a statistical model application with limited landslide inventory data. They
evaluated the landslide susceptibility over Europe with the Logistic Regression model.

The recent development of global landslide inventories has supported new analyses at
global scale (Kirschbaum and Stanley, 2018; Stanley and Kirschbaum, 2017, e.g.) which
have produced a global landslide susceptibility map for rainfall-triggered landslides based
on the fuzzy overlay method. This approach combines landslide inventories with expert
opinions to develop a heuristic model.

At the continental scale, Günther et al. (2014) and then Wilde et al. (2018) presented
the landslide susceptibility maps of Europe, named ELSUSv1 and ELSUSv2, respectively.
Despite that, they had numerous national landslide inventories heterogeneously distributed,
they have proposed a qualitative model (Spatial Multi Criteria Evaluation) using Analytical
Hierarchy Process.

A different approach at continental scale has been used by Broeckx et al. (2018) who
analyzed the landslide susceptibility all over Africa based on a well-distributed inventory
applying Logistic Regression model.

As a concern, the study area here considered (south-Asia) numerous landslide suscep-
tibility maps at national or smaller scale have been produced in recent years. Some of
those, based on the Neural Network method with about 1300 landslides all over China are
reported in Liu et al. (2013). Recently, Saponaro et al. (2015) have covered Uzbekistan,
Tajikistan and Kyrgistan, using the Weight of Evidence method.

In the context of the European Union’s Thematic Strategy for Soil Protection (EC,
2006), the Soil Information Working Group (SIWG) of the European Soil Bureau Network
(ESBN) has promoted a project for the identification of landslide hazard priority areas.
The European Landslide Expert Group (Günther et al., 2013a) has then put forward a
multi-Tier susceptibility analysis in the Guidelines for Mapping Areas at Risk of Landslides
in Europe (Hervás, 2007). Taking inspiration from the latter, and considering, the extension
of the study area and the geomorphological, geological, cultural, scientific heterogeneity
of the context, the Weight of Evidence (WoE) method has been selected. Therefore, the
application of the selected method and the Tier 1 approach at the south-Asia region is
presented here.

2.3 Case study

The Belt and Road Initiative involves 3 continents (63% of the world), and more than 65
countries (Cui et al., 2017). The study area selected includes a relevant part of the Belt
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and Road Countries (Fig. 2.1), namely: China, Pakistan, India, Tajikistan, Bangladesh,
Nepal, Afghanistan, Bhutan, Myanmar, Cambodia, Kyrgyzstan, Laos, Thailand, Viet Nam.
The study area comprises a high density of landslides mainly triggered by heavy rainfall
(more than 1600 mm/y) (Fig. 2.7) as well as some of the most disastrous earthquakes that
have recently occurred in the world (i.e., Nepal 2015 and Wenchuan 2008). The diversity
of climate, topography, geological features and land cover result in an extremely complex
environment on which to assess landslide susceptibility.

Figure 2.1: Study area of the south-Asia.

2.4 Materials and methods

The Tiers-based workflow produced consequential susceptibility zoning of the same study
area by growing scales (Fig. 2.2). The smallest scale provides an overview of the object of
study and it delineates the priorities, i.e., the most susceptible regions. Therefore, Tier
1 assessment exploits low-resolution data and incomplete spatial information. With the
increase of the scale of analysis, the Tier 2 approach is intended to detail the landslide
susceptibility analysis conducted by the Tier 1 (Günther et al., 2013b). The scale of Tiers
cannot be defined a priori, since it depends on the available data resolution and the spatial
extent of the study area. This means that the results should reflect, at least, the minimum
resolution of the data input.

The landslide prediction model represents the core of the entire analysis. The model
proposed here is: (i) temporally/geographically reproducible; (ii) simple and thus clear to
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Figure 2.2: Workflow of the Tiers-based approach.
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the people involved; (iii) as realistic as possible. A qualitative assessment for Tier 1 level has
been proposed by Günther et al. (2007). It was based on the expertise of the researchers
responsible for the analysis, thus the reproducibility depends on the investigator. To
make the results reproducible in time and in all areas, the assessment technique should be
quantitative and as objective as possible. The use of physical predictors and of the validation
procedure define the physical relevance of the model in accordance with the geological and
geomorphological features of the study area. Therefore, to create a reproducible, simple,
realistic landslide susceptibility map not affected by subjectivity, misunderstanding and
abstraction, a limited number of causative factors related to all types of landslides and
a quantitative susceptibility modeling technique, suitable to the specific Tier, have been
assumed.

The landslide susceptibility concept is based on the simple principle that landsliding
will occur more frequently in the most susceptible areas characterized by similar geo-
environmental factors which predispose towards slope failures. A landslide inventory and
selected causative factors are the preliminary requirements for susceptibility analysis (van
Westen et al., 2008), especially if a statistic-based correlation analysis is applied (Bui et al.,
2016) in accordance with the scale of mapping, the required usage, and the quality of the
data available (Fell et al., 2008).

A landslide inventory is an essential part of the input dataset in landslide susceptibility
mapping. It generally records the location, the date of occurrence and type of mass
movements (Margottini et al., 2013). In this analysis, three different alternatives have been
taken into consideration: (i) aggregation and homogenization of all local landslide datasets
available in the Countries involved in the project; (ii) development of a new landslide
dataset; and (iii) collection of global landslide datasets. The latter solution has been
selected due to the complexity of the aggregation processes and the lack of information.
Indeed, the regional slope failure database is sometimes not complete or, more often, it is
absent completely. The few data available locally are often limited to recent years and,
therefore, not representative of the instability condition as it is.

The NASA-COOLR dataset (Juang et al., 2019) has been selected for the purpose
of this work. It is an open database for landslide events launched in 2018 which collects
different inventories from different sources: Landslide Reporter Catalog (LRC) (Juang
et al., 2019), NASA Global Landslide Catalog (GLC) (Kirschbaum et al., 2010, 2015) and
collated inventories from external local sources. The LRC includes landslide reports by
citizen scientists through the Landslide Reporter and checked by NASA. The GLC is a
global inventory of rainfall-triggered landslides compiled by NASA since 2007 and is based
on online media reports, disaster databases, scientific reports and more (Kirschbaum et al.,
2015). The rest of the landslides are added into the COOLR by the LRC and other sources
such as the SERVIR-Mekong team for Myanmar landslides (SMMML). The team collected
landslides based on Google Earth imagery (Juang et al., 2019).

The landslide inventory of COOLR used for the analysis was downloaded in June 2020.
Each point in the inventory has been assigned a radius of confidence between 1 and 75
km. In accordance with the spatial resolution of the analysis the landslide locations with 1
km of accuracy have been selected (1549 landslides). The landslide attributes are shown
in Fig. 2.3 and Table 2.1. The heterogeneity of data sources implicates the variability
of information. As a consequence, some information such as the exact location of the
landslides have been collected but others remain unknown (e.g., landslide category and
trigger).

Considering the limited information available on each event, a cross-check has been
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Figure 2.3: Landslide frequencies classified by attributes of 1 km location accuracy dataset
(1549). The attributes include ‘unknown’, ‘others’ and empty records which are not reported
into the graphs. They are 1142 of ‘landslide category’, 1053 of ‘landslide size’, 1109 of
‘landslide trigger’, 1040 of ‘date of the event’ and 880 of ‘landslide setting’.
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Country Number of COOLR landslides

China 44

Afghanistan 1

Burma 1038

Cambodia 1

Bangladesh 14

Viet Nam 2

Thailand 4

Tajikistan 7

Nepal 51

Pakistan 27

Kyrgyzstan 6

Laos 2

Bhutan 1

India 351

Table 2.1: Number of COOLR landslides per country with location accuracy ‘exact’ or
equal to 1 km

conducted to evaluate the reliability of the inventory for the purposes of this analysis.
DEM and satellite images, along with a number of pictures, available for 118 landslides
have been analyzed. The 250 m DEM has been downloaded from CIAT website (Reuter
et al., 2007) which is the result of a resampling process from the 30 m SRTM data.

The sample is not properly representative of the inventory, but, it allows some possible
incompatibilities with the goal of the analysis to be highlighted. As a result, some features
have been removed from the inventory. For example: 3 events are classified as snow
avalanches, whereas 47 landslides appear to be related with human alterations of the
natural landscape (mining, engineered slopes and retaining walls) which are strictly site-
specific. In particular, for 6 of the latter a photo link is available. They show that slope
instability events occurred during mining activities and construction works which are
different from slope cutting, these are probably triggered by anthropic activities. It could
be argued that all the 47 landslides have been probably triggered by antrophic activities
as well and caused by the same conditions. Therefore, they have been deleted from the
inventory. Then, given a radius of confidence of approximately 1 km around each feature
(9x9 cells of 250 m-side pixel), some features have been removed, since the slope of the
terrain is lower than 3° , thus, they may be considered excavation collapses (38 events). At
the end of this cross-check activity, 1461 landslides have been selected for the susceptibility
zoning (Fig. 2.4).

The analysis focuses on the development of future scenarios based on the prediction of
landslides spatial distribution. It reproduces spatially the combination of factors responsible
for previous events.

The selection of the causative factors for the multi-scale analysis depends on the Tier.
In the context of the Tier 1 analysis, the considered causative factors are: slope degree, plan
curvature, profile curvature, relative relief, lithology, land cover, Peak Ground Acceleration
(PGA) and annual rainfall (Table 2.2).

As stated by Fell et al. (2008), “areas with similar topography, geology and geomorphol-
ogy as the areas which have experienced landsliding in the past are also likely to experience
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Figure 2.4: Landslide dataset used for the analysis and the features removed after the
cross-check.
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Class factor Factor

Tier 1

Morphological

Slope angle

Plan curvature

Profile curvature

Relative relief

Geological Lithology

Environmental

Land cover

PGA

Annual rainfall

Table 2.2: Causative factors.

landsliding in the future”. To identify the causes of past landslides and predict future
scenarios, the statistical approach proposed in this work requires the classification of the
causative factors. The classification significantly affects the prediction skill of the analysis.
Therefore, classifications previously proposed in papers and technical reports have been
assigned to the causative factors considered here. The diagram in Fig. 2.5 shows how the
causative factors have been pre-processed.

Figure 2.5: Pre-processing of the causative factors.

The morphological factors for Tier 1 assessment have been classified according to
the slope angle, plan curvature (curvature tangent to the contour line), profile curvature
(curvature tangent to the slope line) and relative relief (the maximum range of elevation in
a neighborhood of 1 km of radius).

The morphological factors have been derived from the 30 m Shuttle Radar Topography
Mission (SRTM) DEM (Farr et al., 2007; Florinsky et al., 2019). The morphological factors
have been calculated in Google Earth Engine (GEE) (Gorelick et al., 2017) using Terrain
Analysis in Google Earth Engine (TAGEE) a GEE package for terrain analysis (Safanelli
et al., 2020). GEE allowed us to calculate slope angle, plan and profile curvature and
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relative relief with a pixel size of 30 m then resampled into a square grid of 3x3 km by
average calculation. To reduce the computational cost and balance the amount of stable
and unstable cells of the dataset, the 30 m cells with slope degree lower than 8° have been
masked for all the causative factors. This value has been selected considering the average
slope of the debris flow fans which represent the steepest terrain in which landslides are
not expected but accumulation landforms. Therefore, the valley bottoms along with all
the depositional forms that couldn’t be affected by instability processes in the mountain
areas have been excluded from the analysis. The relief has been calculated as the range
between the maximum and the minimum elevation in a buffer radius of 1 km around each
30 m pixel.

The slope angle (terrain gradient) classification reflects the classes used for the ELSUSv1
(Günther et al., 2014): 0° , 1-3°, 4-6°, 7-10°,11-15°, 16-20°, 21-30°, > 30° . The curvatures
have been classified in quartiles. Therefore, profile curvature has been classified in:< -2.6
10−4, -2.6 10−4 to -1.4 10−4, -1.4 10−4 to -5.4 10−5, -5.4 10−5 to 4.2 10−5, > 4.2 10−5.
Plan curvature has been classified in: < 1.3 10−7, 1.3 10−7, -1.2 10−4, 1.2 10−4, -2.2 10−4,
2.2 10−4, -3.8 10−4, > 3.8 10−4. Relative relief has been divided in deciles: 0-9 m, 9-18 m,
18-34 m, 34-65 m, 65-120 m, 120-194 m, 194-288 m, 288-424 m, 424-625 m, > 625 m (Fig.
2.6).

Figure 2.6: Causative factors selected for the Tier 1 landslide susceptibility: a slope, b
profile curvature c plan curvature and d relief.

The geological factor has been proposed by Hartmann and Moosdorf (2012). They
have mapped the lithology of the globe into 16 classes, all of them present in south-Asia.
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They have been grouped into 7 classes: (1) ice, glaciers and water bodies; (2) siliciclastic
sedimentary rocks, mixed sedimentary rocks, carbonate sedimentary rocks and pyroclastics;
(3) mixed sedimentary rocks; (4) evaporites; (5) acid volcanic rocks, intermediate volcanic
rocks, basic volcanic rocks; (6) acid plutonic rocks, intermediate plutonic rocks, basic
plutonic rocks; and (7) metamorphic rocks (Fig. 2.7e).

Figure 2.7: Causative factors selected for the Tier 1 landslide susceptibility: e lithology, f
land cover, g PGA and h. precipitation.

In regards to the land cover classification, the ESA GlobCover 2009 Project has
classified the land cover information into 22 classes (Bontemps et al., 2011) which have
been grouped into 8 categories (Table 2.3) according to the United Nations (FAO) Land
Cover Classification System (LCCS) (Di Gregorio, 2016). Therefore, the 8 LCCS classes
have been suggested for Tier 1 land cover factor subdivision (Table 2.3) (Fig. 2.7f).

Since most of the landslides in Asia are mainly triggered by rainfall and earthquakes,
two factors have been included: annual rainfall and PGA.

The annual rainfall factor has been calculated from the annual sum of the daily
precipitation measured by the Multi-satellitE Retrievals for Global Precipitation Measure
(IMERG) (Huffman et al., 2019a) with a cell size of 10x10 km. The final result is the
average of the annual precipitation over 11 years (2009-2019) resampled to a 3 km square
grid using the bilinear resampling method of SAGA GIS. The map has been classified
into deciles: 0-111 mm/y, 111-217 mm/y, 217-339 mm/y, 339-478 mm/y, 478-605 mm/y,
605-769 mm/y, 769-1003 mm/y, 1003-1340 mm/y, 1340-1731 mm/y, >1731 mm/y (Fig.
2.7h).
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GlobCover legend LCCS

Post-flooding or irrigated croplands

A11 Managed Lands Cultivated Terrestrial
Areas

Rainfed croplands

Mosaic Cropland (50-70%) / Vegetation (grassland, shrubland,
forest) (20-50%)

Mosaic Vegetation (grassland, shrubland, forest) (50-70%) /
Cropland (20-50%)

Closed to open (>15%) broadleaved evergreen and/or semi-
deciduous forest (>5 m)

A12 Natural and Semi-Natural Terrestrial
Vegetation:Woody—Trees1

Closed (>40%) broadleaved deciduous forest (>5 m)

Open (15-40%) broadleaved deciduous forest (>5 m)

Closed (>40%) needleleaved evergreen forest (>5 m)

Open (15-40%) needleleaved deciduous or evergreen forest (>5
m)

Closed to open (>15%) mixed broadleaved and needleleaved
forest (>5 m)

Mosaic Forest/Shrubland (50-70%) / Grassland (20-50%)

Mosaic Grassland (50-70%) / Forest/Shrubland (20-50%)

Closed to open (>15%) shrubland (< 5 m) A12 Natural and Semi-Natural Terrestrial
Vegetation:Shrub

Closed to open (>15%) grassland A12 Natural and Semi-Natural Terrestrial
Vegetation:HerbaceousSparse (>15%) vegetation (woody vegetation, shrubs, grassland)

Closed (>40%) broadleaved forest regularly flooded—Fresh water
A24 Natural and Seminatural Aquatic
Vegetation

Closed (>40%) broadleaved semi-deciduous and/or evergreen
forest regularly flooded—Saline water

Closed to open (>15%) vegetation (grassland, shrubland, woody
vegetation) on regularly flooded or waterlogged soil—Fresh,
brackish or saline water

Artificial surfaces and associated areas (urban areas > 50%) B15 Artificial surfaces

Bare areas B16 Bare areas

Water bodies
B28 Inland waterbodies, snow and ice

Permanent snow and ice

Table 2.3: Land cover classification conversion from GlobCover classification to LCCS
(Bontemps et al., 2011; Di Gregorio, 2016).

The PGA map has been developed from a collaboration among the Columbia University
Center for Hazards and Risk Research (CHRR) and Columbia University Center for
International Earth Science Information Network (CIESIN) using Global Seismic Hazard
Program (GSHAP) data. It includes areas with a probability to exceed at least 10% the
PGA in a time span of 50 years (>2 m/s2). The PGA have been classified into deciles
from the 1th to the 10th (Dilley et al., 2005; CHRR and CIESIN, 2005). The zero class
has been added (Fig. 2.7g).

The details about the data type, source and quality are reported in Table 2.4. All the
data used for the analysis are freely available from different global databases (Table 2.4)
(Figs. 2.6, 2.7).

The WoE technique has been proposed for the mathematical evaluation of the Landslide
Susceptibility Index (LSI). The WoE model introduced by Agterberg et al. (1989) and
then by Bonham-Carter et al. (1988) is a bivariate statistical analysis, which compares
dependent (landslide inventory) and independent variables (causative factors), it is used
to evaluate landslide susceptibility (Pasuto and Tagliavini, 2007). It assigns two weights
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Data type Data set Extent Data extension Pixels size EPSG4 Data source

Morphological DEM global GEOTIFF 30x30 m 4326 SRTM5

Geological Vector global WFS - 4326 GLIM6 (Hartmann and
Moosdorf, 2012)

Environmental Raster global GEOTIFF 300x300 m 432 ©ESA 2010 and
UCLouvain7

PGA Raster global GEOTIFF 90x90 m 4326 CHRR-CIESIN8

(CHRR and CIESIN,
2005)

Precipitation Raster global txt 10x10 km 4326 IMRG9 (Huffman et al.,
2019a)

Landslide inventory Vector global shp - 4326 NASA-COOLR10

(Kirschbaum et al.,
2010)

Table 2.4: Data freely available from published databases for Tier 1 application.

(W+, W−) to the classes of each causative factor. The weights W+ and W− mean that
the presence of the factor is favorable to slope instability and the presence of the factor
is favorable to slope stability, respectively. The general formulations of Agterberg et al.
(1989) are the following:

W+ = ln
P (B|D)

P (B|D1)
(2.1)

W− = ln
P (B1|D)

P (B1|D1)
(2.2)

Wf = W+ −W− (2.3)

where P is the probability, B is the presence of a potential landslide causative factor,
B1 is the absence of a potential landslide causative factor, D is the presence of a landslide
and D1 represents the absence of a landslide. Wf is called weight contrast: the magnitude
of the contrast reflects the overall spatial relation between causative factors and landslides
(Dahal et al., 2008).

The landslide susceptibility is mapped by the sum of ith weights contrast of the classified
maps for the n causative factors:

SI =
n∑

i=1

Wfi (2.4)

The result is the Landslide Susceptibility Index (LSI). Once standardized, it represents
a measure of the landslide likelihood of occurrence or a measure of the potential spatial
distribution of future landslides.

To evaluate the ability of the susceptibility model to predict the spatial distribution of
the landslides and to evaluate the robustness of the model fitting capacity, the Area Under
the Curve (AUC), calculated from the Receiving Operating Characteristic (ROC) curve
(Chung and Fabbri, 2003; Fawcett, 2006) has been proposed. The ROC curve explores
the relation between the True Positive Rate and the False Positive Rate by consecutive
cutoffs of the LSI. Formally, each map-unit of the susceptibility map is labeled with True
Positive (tp), False Positive (fp), True Negative (tn) and False Negative (fn) tags. In the
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susceptibility map, a map-unit is True or False according to the presence or the absence of
landslides, respectively. Moreover, the unit is considered Positive or Negative if the relative
susceptibility value is higher (stable unit) or lower (unstable unit) than the cutoff. The
ROC curves are graphed coupling tprate (y-axis) and fprate (x-axis):

tprate =
tp

tp− fn
(2.5)

fprate =
fp

fp− tn
(2.6)

The area underlying the ROC curve (AUC) can be used as a metric to assess the overall
quality of a model: the larger the area, the better the performance of the model over the
whole range of possible cutoffs. Therefore, if the AUC is equal to 1 it means that the
results are perfect, whereas if it is equal to 0.5 the scenario predicted is unlikely.

Considering the accuracy of the landslide inventory, the analysis has been conducted
with the pixel size of 3 km x 3 km. Thus, the causative factors have been resampled to
the same size before the statistical analysis. The categorical factors have been resampled
taking into account the predominant class, while for the continuous factors, the average
of the included values have been calculated. The landslide inventory has been divided
randomly in two datasets: 70% and 30%, to train and validate the model. The software
used for the analysis are QGIS, SAGA-GIS. The simulation based on the WoE and the
validation have been processed with the SZ-plugin (Titti and Sarretta, 2020) developed for
QGIS. The ROC analysis has been carried out using the Scikit-learn module(Pedregosa
et al., 2011).

2.5 Results and discussion

The landslide susceptibility map, resulting from the analysis, is shown in Fig. 2.8a and the
class weights are reported in Table 2.5.

The WoE is a bivariate approach which evaluates the single predisposing factor in
relation with the dependent variable, Table 2.5 reports the W+, W−, Wf values and the
percentage of landslide cells and area of each class factor. The weight contrasts of slope
factor show an almost constant increase in instability from 0° to > 30° , with a peak around
21° - 30° and a negative value between slope angle of 7° and 15° . Noticeably, the mask
until 7° of slope adopted for the factors has excluded the first three classes of the slope
factor, since their cell value is equal to the average of 30 m slope. Even though the pixel
size of the analysis cannot perfectly describe the land surface morphology, the trend of the
Wf is realistic. Moreover, the highest number of landslides is present in the class 21° - 30°
, which includes the 52% of the landslide cells, revealing the highest Wf of the slope factor.
The slope factor also includes the most stable class of all factors which is the class 7° - 10°
with Wf equal to -6.

Plan and profile curvatures represent the convexity and concavity of the surface tangent
to the contour line and to the slope line, respectively. The former is related to the lateral
flow convergence or divergence, while the second to the acceleration and deceleration of
a flow along the gravity direction. Based on the Wf values of these factors, there is not
a relevant difference between them. The landslides percentage per class and the area
percentage are very balanced. (Table 2.5).
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Figure 2.8: a 3x3 km landslide susceptibility map of south-Asia. b Spatial distribution of
the LSI. c Prediction rate curve and Success rate curve of the landslide susceptibility map.

The relative relief presents an increasing trend from 18 m to > 625 m. Since the classes
represent deciles, the area of each class is almost 10% of the total. Therefore, the trend of
the Wf is dependent on the landslide included. The most unstable classes are the 424-625
m and > 625 m which include the 58% of the total landslide cells (Table 2.5).

As regards the lithology factor, the results confirm that Wf parameters must be
analyzed in relation to the other classes and with reference to the specific study area.
Indeed, depending on the geological context, some unconsolidated lithologies might have
lower strengths compared to metamorphic ones. Here, “unconsolidated sediment” is the
most stable class, while “metamorphic rocks” is the least stable. In particular, the stability
of the former comes from the high extension of the area (31% of the total area), although
it includes the 10% of the landslide cells, while the instability of the latter is due to the
balance between the number of landslides included (15% of the total landslide cells) and
the area covered by the class (7% of the total). The second highest Wf is the “sedimentary
rocks” which covers about 42% of the total area and the 60% of the landslide cells (Table
2.5).

Regarding the land cover, it contains one of the most stable classes and the most
unstable class of all considered factors. Indeed, the land covered by “shrub” reflects a Wf

value equal to 2.35, while “bare areas” display the lowest value, equal to -3.77 (Table 2.5).

The Wf values of the PGA and precipitation classes reveal that the landslides included
in the inventory are mainly triggered by precipitation (Fig. 2.3). The PGA Wf are
variable between -1.57 and 2.01 without a precise trend. The precipitation classes have an
increasing trend similar to relief and slope. The higher the annual precipitation, the higher
the instability up to a Wf value of 2.55.

The standardized LSI (0-1) has been divided into 5 classes (Fig. 2.9) to fit the success
curve as best as possible: 0-0.54 “very low”, 0.54-0.64 “low”, 0.64-0.74 “moderate”, 0.74-
0.80 “high”, 0.80-1 “very high”. Statistically, in the 5-classes susceptibility map (Fig. 2.9a),
the highly susceptible terrain covers 5% (Fig. 2.9b) of the total mapped area, more than
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the 93% of that is steeper than 15° and the 92% has a relief higher than 194 m. On the
contrary, the 68% of the “very low” susceptibility areas, which cover the 68% (Fig. 2.9b)
of the study area, respectively, has a relief lower than 120 m (87% lower than 288 m).

Figure 2.9: a Classified 3x3 km landslide susceptibility map of south-Asia. b Spatial
distribution of the LSI and the area covered by the relative classes. c Prediction rate curve
and Success rate curve of the landslide susceptibility map.

The weights W+ and W− are calculated from the relation between the number of
landslides included or excluded into the class factor and the size area of the class factor.
The result of the difference between W+ and W− plays a significant role to determine
if the specific class is favorable to the instability of the slope. In particular, the areas
represented by negative Wf values can be considered stable and the areas represented by
positive Wf values, unstable with respect to a specific predisposing factor. Therefore, the
LSI resulting from the sum of the Wf may range between negative and positive values
which allow for evaluating the stability or instability of the area.

To select the most susceptible area to analyze in detail in the Tier 2 assessment,
a susceptibility class has been assigned to each administration unit of the study area.
Different levels of administration units are available in GADM website.Footnote 1 Since
different levels are available for different countries, a specific level has been assigned to
each country to homogenize the dimension of the administration units all over the study
area. Taking inspiration from Arup (2020) the relative landslide susceptibility of the single
administrative unit has been evaluated as the 80th percentile of the LSI pixel-based map
(Fig. 2.8) and then classified from very low to very high to optimize the ROC curve
weighted over the extension area of the administrative units area. The result is shown in
Fig. 2.10.

The prediction performance and the success of the Tier 1 analysis have been evaluated
by the ROC curves (Fawcett, 2006), which are reported in Fig. 2.9c. The curves have been
plotted using the validation dataset and the training data set, respectively. The resulting
AUC is equal to 0.91 for the prediction curve and equal to 0.90 for the success curve.
Overall, the model applied to the selected study area has demonstrated good reliability to
evaluate potential instability areas.
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Figure 2.10: Landslide susceptibility map based on administrative units.
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An additional way to evaluate the prediction capacity of the model is presented in
Fig. 2.11. It compares the ROC curve of the single causative factor with the curve of
the landslide susceptibility map. The significant differences among the ROC curve of the
susceptibility map (AUC=0.91) and the curve of the slope (AUC=0.77), relief (AUC=0.77),
precipitation (AUC=0.90) along with the lower values of the AUC of the other causative
factors, confirm the goodness of the prediction performance based on the combination of
multiple factors (slope, curvatures, relief, land cover, lithology, PGA and precipitation) in
comparison with the use of single factor alone (Günther et al., 2013b; Remondo et al., 2003).
The factors that appear to play a major role in predisposing slope instability phenomena
with respect to the landslide inventory used are slope, relief and precipitation.

Figure 2.11: ROC curves and relative prediction performances (AUC) of the causative
factors and of the susceptible map.

2.6 Conclusions

The work is aimed to map the landslide susceptibility in the Belt and Road Countries. In
this framework, the landslide susceptibility zoning through the multi-Tier approach has
been carried out.

The landslide susceptibility map of south-Asia has been modeled using a quantitative,
statistical method. Eight independent variables, i.e., Slope, Plan curvature, Profile curva-
ture, Relative relief, Lithology, Land cover, PGA, Precipitation, have been classified and
then weighted by the WoE. The analysis has been based on the NASA-COOLR landslides
inventory. It is a global landslides catalog that collects data from online media reports,
disaster databases, scientific reports, citizen reports, and others. All the data and software
used in this work are open and open-source.

The result is a 5 classes landslide susceptibility map. The ability of the susceptibility
model to predict the spatial distribution of the landslides and the goodness of the model
fitting have been evaluated by the comparison of the ROC curves calculated from the
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Causative factors Classes W+ W− Wf Landslides
(%)

Area
(%)

Slope (°)

0 - - - - -

1-3 - - - - -

4-6 - - - - -

7-10 -5.55 0.46 -6.01 0.14 36.78

11-15 -1.10 0.14 -1.24 6.27 18.74

16-20 0.08 -0.01 0.09 13.96 12.90

21-30 0.94 -0.51 1.44 52.14 20.43

>30 0.90 -0.20 1.11 27.49 11.15

Plan curvature

<1.3 10−7 -0.28 0.06 -0.33 15.10 19.93

1.3 10−7 to 1.2 10−4 0.30 -0.09 0.39 27.07 20.09

1.2 10−4 to 2.2 10−4 0.16 -0.04 0.20 23.50 20.05

2.2 10−4 to 3.8 10−4 0.10 -0.03 0.13 22.22 20.02

>3.8 10−4 to 0.50 0.09 -0.59 12.11 19.92

Profile curvature

<-2.6 10−4 0.16 -0.04 0.20 23.50 20.01

-2.6 10−4 to -1.4 10−4 0.18 -0.05 0.24 24.07 20.02

-1.4 10−4 to -5.4 10−5 -0.11 0.03 -0.14 17.95 20.04

-5.4 10−5 to 4.2 10−5 -0.09 0.02 0.01 18.38 20.04

>4.2 10−5 -0.21 0.05 -0.25 16.10 19.89

Relief (m)

0-9 0.00 0.11 -0.11 0.00 10.50

9-18 0.00 0.10 -0.10 0.00 9.46

18-34 -4.22 0.10 -4.33 0.14 9.74

34-65 -1.95 0.09 -2.04 1.42 10.05

65-120 -0.86 0.06 -0.92 4.27 10.10

120-194 -0.29 0.03 -0.32 7.41 9.92

194-288 0.08 -0.01 0.09 10.83 10.00

288-424 0.50 -0.07 0.57 16.52 10.05

424-625 1.17 -0.29 1.46 32.48 10.07

>625 0.98 -0.21 1.18 26.92 10.12

Lithology

Unconsolidated sediment -1.10 0.27 -1.37 10.40 31.40

Volcanic rocks -0.89 0.05 -0.94 3.42 8.31

Sedimentary rocks 0.35 -0.37 0.72 60.54 42.64

Plutonic rocks 0.02 -0.00 0.02 10.11 9.88

Metamorphic rocks 0.78 -0.09 0.87 15.53 7.17

Ice, Glaciers and Water 0.00 0.00 0.00 0.00 0.40

Evaporites 0.00 0.00 0.00 0.00 0.20

Land cover

Cultivated areas -0.56 0.25 -0.81 22.79 39.81

Woody/trees 0.69 -0.21 0.90 31.77 15.87

Shrub 1.92 -0.42 2.35 38.32 5.62

Herbaceous -1.69 0.11 -1.79 2.28 12.30

Aquatic vegetation 0.00 0.00 0.00 0.00 0.07

Artificial surfaces 2.08 -0.03 2.11 3.42 0.43

Bare areas -3.51 0.26 -3.77 0.71 23.77

Water/snow/ice -1.10 0.01 -1.11 0.71 2.13
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Causative factors Classes W+ W− Wf Landslides
(%)

Area
(%)

PGA (deciles)

0th -0.54 1.03 -1.57 47.29 81.21

1th -0.60 0.01 -0.61 1.00 1.83

2th -0.24 0.0035 -0.25 1.28 1.63

3th 0.53 -0.01 0.54 3.13 1.84

4th 1.66 -0.07 1.74 8.69 1.65

5th 1.18 -0.04 1.23 5.70 1.74

6th 1.00 -0.023 1.03 4.56 1.68

7th 1.47 -0.06 1.54 7.98 1.83

8th 1.90 -0.11 2.01 12.25 1.84

9th 1.01 -0.04 1.05 5.56 2.02

10th -0.06 0.001 -0.06 2.56 2.71

Precipitation
(mm/y)

0-111 0 0.10 -0.10 0.00 9.96

111-217 -3.55 0.10 -3.65 0.28 9.95

217-339 -3.55 0.10 -3.65 0.28 9.94

339-478 -1.84 0.09 -1.93 1.57 9.85

478-605 -2.06 0.09 -2.15 1.28 10.02

605-769 -2.86 0.1 -2.96 0.57 9.93

769-1003 -0.81 0.06 -0.87 4.42 9.94

1003-1340 0.22 -0.03 0.24 12.68 10.21

1340-1731 0.67 -0.11 0.79 19.80 10.08

>1731 1.77 -0.79 2.55 59.12 10.11

Table 2.5: Causative factors.

validating and training datasets. The prediction and success performance are 0.91 and
0.90, respectively. Among the causal factors slope, relief and precipitation play a major
role. The administrative units, displaying moderate to very high susceptibility class, have
been selected for further analysis to be carried out at a national scale (Tier 2).
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3. When Enough Is Really Enough? On
the Minimum Number of Landslides to
Build Reliable Susceptibility Models

This chapter has been published in Geosciences journal in 2021 and authored by: Giacomo
Titti1,3, Cees van Westen2 Lisa Borgatti1,3, Alessandro Pasuto3 , Luigi Lombardo2 (Titti
et al., 2021c).

3.1 Introduction

Landslide susceptibility assessment is the most common approach to assess how prone a
given landscape is to generate landslides. At the scale of a single slope this is commonly
achieved by solving geotechnical relations that express the equilibrium of a potential
unstable mass (Van Den Bout et al., 2018, 2021). For broader geographic contexts, i.e.,
from catchments to regional and even continental scales, landslide susceptibility is commonly
generated via data-driven or expert-driven methods. Expert-driven models are based on
the standardization and weighting of causative factor maps, even without the availability of
a sufficiently complete landslide inventory. Data-driven methods use binary classifiers, of a
statistical or machine learning origin. Irrespective of the specific algorithm at hand, certain
conditions need to be met for a data-driven-based susceptibility assessment. The first
condition is to have access to a series of spatially-explicit instances describing landslides
that have already occurred. Under the assumption that “the past is the key to the future”
(Carrara et al., 1995), the model learns how to discriminate landslide presences from the
absences on the basis of a set of predisposing factors. Any classifier, essentially, measures
the correlations existing among the proportion of presence/absence data and the range or
classes described by each predisposing factor under consideration. Due to this, variations
in the distribution and proportion of presence/absence data have an impact on the model
results. Some articles have already investigated this effect. The first attempt was made by
Guzzetti et al. (2006), who assessed the variation in model performance as the input data
changed by randomly sub-sampling the whole number of mapping units available in their
study area. A mapping unit corresponds to the basic geographic objects in which a study
area is partitioned and to which probability values of landslide occurrence are assigned to
Guzzetti et al. (2006) concluded that the random sampling did not have any major effect

1Department of Civil, Chemical, Environmental and Materials Engineering, Alma Mater Studiorum
University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy

2Department of Earth Systems Analysis, Faculty of Geo-Information Science and Earth Observation
(ITC), University of Twente, P.O. Box 6, 7514 AE Enschede, The Netherlands

3Research Institute for Geo-Hydrological Protection, Italian National Research Council, C.so Stati Uniti,
4, 35127 Padova, Italy
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on the proportion of stable and unstable units, which remained relatively constant for the
replicates they produced. A similar conclusion was later reached by Heckmann et al. (2014)
who tested a similar assumption but adding a step where the size of the dataset changed
while contextually checking auto-correlation issues as many susceptibility replicas were
built. Frattini et al. (2010) initially constrained the input data, combining an equal amount
of mapping units with absence and presence of landslides. They highlighted variations in
the model performance as the proportion of absences became increasingly unbalanced. This
topic was further investigated in several contributions such as Van Den Eeckhaut et al. (2006);
Petschko et al. (2014); Conoscenti et al. (2016); Lombardo and Mai (2018).

It must be highlighted that all the scientific efforts mentioned above were carried out
by keeping the presence information essentially constant and varying the number of the
absence instances putted into the model. This is clearly a reasonable assumption because
it is important to use as much landslide data as possible in building the best susceptibility
model. Fewer articles have tested the implications of varying the presence conditions. This
specific topic involves a slightly different scientific domain, where the research question is
related to the effects of incomplete inventories onto the resulting susceptibility map (Steger
et al., 2017), which means also investigating the minimum requirement with respect to
landslide data in order to be able to use data-driven models at all.

In this case, the thread linking the scientific research gravitates around landslide
positional errors (Steger et al., 2016) or the missing information of landslide presences at
certain locations (Lin et al., 2021). The common denominator among these is to assess the
effect of incomplete landslide inventories and test approaches aimed at removing the bias
induced by the incompleteness, from an optimal reference model (Steger et al., 2021).

From this particular setting we took inspiration for the present work. However, instead
of seeking ways to adjust a model built on the basis of a less numerous landslide inventory,
here we pose a different key question: when would a model built on a small number
of landslides be sufficiently capable to describe the landslide susceptibility theoretically
obtained by training a model on the basis of a much larger dataset, without any specific
bias adjustment? The reason for such a question is the fact that in data scarcity situations
(Jacobs et al., 2016), it is very common to have limited information on the distribution
of landslides (Jacobs et al., 2017), and globally, it is very common to hardly have access
to any landslide data at all (Jacobs et al., 2018). Therefore, mapping landslides is a
mandatory step without which no data-driven susceptibility model could be built in these
areas (Dewitte et al., 2021; Depicker et al., 2021).

More specifically, in the context of the research project ‘Silk Road Disaster Risk
Reduction’, aimed at assessing unstable slopes along the new silk road (Belt and Road
Initiative) (Lei et al., 2018), the already existing landslide inventories in this famous
pathway are very limited. Based on the landslide susceptibility evaluation carried out
at a continental scale in central Asia, Titti et al. (2021a) show the necessity to build
more detailed susceptibility models at a national scale even where national scale landslide
inventories are not available or very incomplete at best. Considering the vast area and
the complexity of the mountainous landscape in the countries of central Asia, to map a
complete landslide inventory would take a very long time.

In this context we tried to answer our key question, evaluating the landslide susceptibility
in Tajikistan applying several constraints. At the beginning of this work, a limited number
of landslide inventories were already available in the study area. To safely consider a
landslide inventory that is enough populated to support our analysis, we decided to integrate
the existent catalogs with an intense landslide mapping activity from satellite images that
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required long additional time, after which, we assumed the inventory to be reliable (see
Figure 3.1). Then, the analysis was carried out, reducing the number of presence cases in
our dataset and actually converted them to absences, mimicking a situation where we did
not know that landslides were there. After that, we compared the effect of an increasingly
smaller number of landslide presences to a landslide susceptibility model built by using a
binomial Generalized Additive Model (Goetz et al., 2011, 2015; Lombardo and Tanyas,
2020), implemented in INLA (Lombardo et al., 2018, 2019, 2020a). INLA is an R (R Core
Team, 2020) package developed by Lindgren and Rue (2015) that allows users to implement
a number of statistical models in a Bayesian framework, providing analogous and much
faster results than traditional MCMC (Bakka et al., 2018; Krainski et al., 2018).

Figure 3.1: Panel (a) locates Tajikistan in yellow. Panel (b) shows the study area corre-
sponding to the western sector of Tajikistan. Panel (c) reports the Landslide Identification
Points (LIP) for the mapped landslides.

3.2 Materials and methods

3.2.1 Tajikistan and its reference landslide inventory

Tajikistan is characterized by an extremely complex rough terrain, with approximately
44% of its territory potentially hosting permafrost, which is rapidly thawing (Mergili
et al., 2012). Thick soils with a relatively high erodibility index (Bühlmann et al., 2010)
characterize the area. In conjunction with these peculiarities, high intensity precipitation
affects the whole territory and strong earthquakes have been reported throughout the
history of the country. This combination makes Tajikistan particularly prone to landslides.
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Shallow and fast landslides are mainly visible in Tajikistan, such as debris slides and debris
flows.

Numerous examples of earthquake-induced landslides (Havenith et al., 2003; Evans et al.,
2009; Havenith et al., 2015), rainfall-induced
ones (Wang et al., 2021; Schneider et al., 2010; Wolfgramm et al., 2014), and a com-
bination of both effects exist (Torgoev et al., 2013). This has even produced the highest
landslide dam in the world (Hanisch, 2018) after a coseismic failure.

Due to the large area of the country, we focused on the western part, excluding the
eastern region of Gorno-Badakhshan, which is characterized by the presence of numerous
glaciers and by the very low density of population and infrastructure.

Geologically, the western part of Tajikistan is extremely complex, with 12% of its
lithologies being of igneous origins, 11% metamorphic, 72% sedimentary, and 3% covered
by glaciers (see Figure 3.2a). In terms of land use, the anthropic control on the natural
environment is very limited, with relatively small pockets of croplands and large areas with
bare land or sparse vegetation (see Figure 3.2b).

As for the main landslide triggers, the strongest seismic activity is registered in the
central eastern regions, partly overlapping with the areas with the highest amount of
rainfall (see Figure 3.2c,d).

Landslides were mapped as individual points, without any attributes on the classification
with respect to type and age, focusing on the initiation areas. Some information has been
collected from Havenith et al. (2015); Nazirova and Saidov (2015), and others have been
mapped using image interpretation from Google Earth Images. In addition to this, we used
the earthquake-induced landslide inventories for some of the historical earthquakes (e.g.,
the Khait earthquake 1949) (Yablokov, 2001; Evans et al., 2009). Each point representative
of a landslide was assigned to the highest point along the landslide crown. We chose
this representation instead of the common alternative of a centroid (see (Hussin et al.,
2016)) because of the shallow nature of the recognized landslides. This is in fact the most
conservative choice in case of shallow flow-like landslides although a laboratory test have
also highlighted that the same processes can also exhibit a marked retrogressive behavior
(e.g., (Acharya et al., 2009)). Nevertheless, due to the relatively coarse size of the mapping
unit we chose (see Section 3.2.3), the models we tested would not be sensitive to either
point representation criteria. In other words, both the centroid or the highest point along
the landslide crown would fall within the same mapping unit, thus labeled as unstable for
the following analyses.

3.2.2 Covariates

Nine morphometrical, seismic, and meteorological covariates were selected and pre-processed
(see Table 3.1), seven of which are continuous and two categorical.

Relative relief, slope degree, plan curvature (curvature tangent to the contour line),
and profile curvature (curvature tangent to the slope line) have been derived from the 30-m
Shuttle Radar Topography Mission (SRTM) DEM (Farr et al., 2007). The former has been
calculated as the range between the maximum and minimum elevation in a neighborhood
of 1 km of radius, the others using the formula by Zevenbergen and Thorne (1987).

The annual rainfall map is the result of the cumulative daily precipitation of one year
averaged over 10 years of data (2010–2019). The precipitation data was obtained from
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Figure 3.2: Four of the nine covariates used in this study: (a) Land use, (b) lithology, (c)
PGA maps of the 475-year Return Period, and (d) average annual precipitation (over a
10-year period).
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the Multi-Satellite Retrievals for Global Precipitation Measure (IMERG) (Huffman et al.,
2019b) with a cell size of 10 × 10 km.

The PGA has been mapped with the 475-year Return Period by Ischuk et al. (2017).

Lithology provided by the Tajikistan General Office of Geology (1974), which has been
classified into 13 classes (see Figure 3.2a) and Land use in 14 classes (see Figure 3.2b).

Covariate Original Type Acronym Unit

Slope degree Continuous Slope degree (°)
Relative relief Continuous Rlf m

Plan curvature Continuous PlC m−1

Profile curvature Continuous PrC m−1

Peak Ground Acceleration Continuous PGA m/s2

Annual precipitation Continuous Rn mm/y

Land use Categorical LU unitless

Lithology Categorical Litho unitless

Area with Slope > 10° per map unit Continuous Area m2

Table 3.1: Covariates used in the analysis, types, acronyms, and units.

Grid-cells with a slope steepness less than 10 degrees were masked out before computing
any of the covariates mentioned above, as these were considered a priori as not being
susceptible to landslide initiation. Before any susceptibility analyses was run, a mean zero,
unit variance rescaling procedure was applied to all numerical variables.

3.2.3 Mapping units

Different methods may be used to obtain the terrain objects in which a given study area
is partitioned. In the landslide susceptibility literature, these objects commonly consist
of grid cells, terrain units, Unique Condition Units (UCUs), slope units, geo-hydrological
units, topographic units, and administrative units (Reichenbach et al., 2018).

To evaluate the landslide susceptibility in Tajikistan, the study area was subdivided
into mapping units that take into account the landslides predisposing factors according
to the concept of the Unique Condition Unit (UCU) (Ermini et al., 2005; Chiessi et al.,
2016). The reason behind such a choice was meant to partition the study area into spatial
object that are as independent as possible from the adjacent once while respecting the
natural hydrological, geomorphological, and geological structure of the landscape under
consideration. This is particularly relevant in case of statistical models, for they assume
independence among each instance of the target variable.

Specifically, we intersected a catchment partition (obtained via ’r.watersheds’ in QGIS)
with the lithology map (scale 1:2,800,000). This operation produced 16020 UCUs with a
maximum size of 738 km 2. These UCUs were assigned with a binary status 1/0 according
to the presence/absence of landslides. After this operation, 677 UCUs contained at least
one landslide and 15,343 were considered stable (Figure 3.3).

As for the covariate information associated to each of the UCUs, we opted to summarize
the distribution of each continuous parameter via its mean and standard deviation (with

33



Landslide susceptibility in the BRI Giacomo Titti

the exception of the area). Conversely, the categorical covariates have been expressed in
terms of the predominant class per UCU. Overall, this operation led to the generation of
15 covariates. Their specific use within the model will be explained below.

Figure 3.3: Landslide distribution per UCU.

3.2.4 Modeling strategy

Generalized Additive Model

To estimate the landslide susceptibility of Tajikistan, we chose a Bayesian version of a
binomial Generalized Additive Model (GAM) (Goetz et al., 2011; Lombardo et al., 2020b).
This is being implemented in INLA (Rue et al., 2017; Lombardo and Tanyas, 2021).

The binomial GAM we implemented can be denoted as follows:

η(P ) = β0 +

J∑
j=1

βjxj + f(Litho) + f(LU) + f(Rnµ) + f(Slopeµ), (3.1)

where:

• η is the logit link;

• P is the probability of landslide occurrence;

• β0 is the global intercept;
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• βj are the jth regression coefficients estimated for the xth covariates which we
modeled as fixed effects (or linear properties);

• f(Litho) and f(LU) are two random effects (non linear properties), which we modeled
as independent and identically distributed (iid) covariates. This implies that the
regression coefficient associated with each class is estimated independently from the
other classes;

• f(Rnµ) and f(Slopeµ) are two random effects (non linear properties) that we modeled
as random walks of the first order (rw1) covariates. This implies that the regression
coefficient associated with each class is estimated with an adjacent class dependence.
In other words, the coefficient of a single class depends on the coefficient estimated
for the class before and after. The use of a random walk allows one to retain the
ordinal structure of a covariate that was originally continuous in nature, which we
reclassified to obtain a non linear function of the same.

The choice of which variable have to be used linearly or non linearly was tested in a
pre-processing step where a bivariate binomial GAM was fitted by using one covariate at a
time, with a rw1 structure. Then, the covariates that exhibited a nonlinear relation with
respect to landslide occurrences have been used accordingly, leaving the others as linear
properties.

Performance assessment

To measure the modeling performance throughout the analyses implemented in this work,
we use the Receiver Operating Characteristic (ROC) curves and their Area Under the
Curve (AUC), following the performance classification scheme proposed by Hosmer and
Lemeshow (2000).

Specifically, we tested the performance of the reference susceptibility model by using a
standard 10-fold cross-validation. This means that 10 times the 90% of the UCUs is used to
calibrate the model and the remaining 10% of the whole data are used to test the prediction
skill. Notably, each 10% subset was randomly selected with the constriction to not appear
in the subsequent sample, ensuring that each testing dataset was mutually exclusive with
the others and each sample maintain the exact proportion between presence/absence UCUs
of the original dataset.

For models built by using a grid-cell partition, it is more advisable that the cross-
validation subsets are also spatially constrained. When this condition is met, we refer to
this procedure as spatial cross-validation (Brenning, 2005, see ), and it is of fundamental
importance to remove any residual dependence in space from the performance assessment.
In our case, being the mapping unit a UCU, which is assumed to be independent from the
neighboring ones by definition, we did not use an explicit spatial cross-validation although
we stress here that this is of fundamental importance whenever the mapping units finely
discretize the study area at hand.

Taking one step back, the idea behind a ROC curve is that the spectrum of susceptibility
values can be cut into two parts, turning the continuous probability values into two binary
label, one consisting of stable slope conditions and the other of unstable ones. These
instances can then be matched with the observed data on mapping units that actually
contain at least a landslide or not, allowing one to compute confusion matrices reporting
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True and False Positives as well as True and False Negatives (Rahmati et al., 2019). A ROC
curve is then defined by slicing the susceptibility spectrum via multiple cutoffs, storing the
True and False Positives Rates each time.

In this work, not only were the ROC curves used to assess the model performance but
we also took inspiration to produce a robust classification of the susceptibility map. The
literature is rich of articles where different approaches to classify the susceptibility are
used. These span from using a quantile description to more robust statistical criteria with
no justification at all (Lombardo et al., 2020a, details in ). In this study we decided to
classify the maps in four susceptibility classes: Very low, low, high, and very high. To
select the best four probability cutoffs, we tested a large number of combinations through
an optimization algorithm (Genetic Algorithm-based) and extracted the four thresholds
that yielded the highest AUC value (Titti et al., 2021b). This was done both by using
a cutoff that best replicates the number of unstable UCUs per probability bin (classical
ROC), and by using the cutoff that best replicates the area (with slope >10°) of unstable
UCUs per probability bin (ROC weighted over the UCUs area).

Fitting different presence data proportions

To investigate the effect of partially-mapped landslides in a data scarce environment, we
fitted several binomial GAMs at varying proportions of presence information in the model.
Specifically, we used a reference model fitted by using the whole landslide presence/absence
information and then, we compared to the reference, a series of models fitted by randomly
changing the presence instances into absences. This operation numerically mimics a
situation where an actual mapping unit containing a landslide is not properly scanned,
thus leading one to miss the landslide occurrence at that location and assigning an absence
condition to that UCU. Our random substitution of presences into absences has been
gradually run, switching 5% of the total presences at a time, from 0% of the total presence
to the 95%. This means that the second run has included 95% of the landslide inventory
(5% turned into absences) and the last run with 5% of the inventory. In this manner, each
run is linked to the previous by the same landslides sample minus its 5% (as absolute value,
the 5% is always relative to the total presences with no switches). Each substitution has
been tested with a 10-fold cross-validation. The entire operation has been repeated 10
times for each substitution, creating a routine for which the prediction was tested with
respect to the remaining data, which was left unchanged (landslide presences were still
presences). In total, 2000 runs has been completed.

As a result of this procedure, we monitored the variation in AUC as the landslide
presence information decreased to just 5% of the data we used in the reference model. We
also monitored the variation in the regression coefficients estimated for each covariate,
being either linearly or nonlinearly used in our model.

A graphical summary of the analytical protocol we proposed is shown in the flow-chart
of Figure 3.12.
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3.3 Results and discussion

3.3.1 Reference susceptibility model

The first model we tested represents the benchmark for the subsequent analyses. It is trained
by fitting a model informed of the total number of unstable UCUs and by featuring all the
stable UCUs at the same time. The associated area under the ROC curve (AUC) is 0.88,
which is considered an outstanding performance class according to the criteria proposed by
Hosmer and Lemeshow (2000). The corresponding susceptibility map (measured in terms
of posterior mean and its 95% credible interval) is shown in Figure 3.4, where we use the
continuous spectrum of probability values to plot it in the left panel.

We present each model component in Figure 3.5. Here the three panels in the first
row report the nonlinear effects of the mean slope steepness (Figure 3.5a), mean relief
(Figure 3.5b), and mean annual precipitation (Figure 3.5c). The first two appear to
share a similar effect: Relatively low steepness and relief values being associated with
high regression coefficients whereas the remaining distribution appears to be either not
correlated or even negatively correlated to landslide occurrences. As for the rainfall, the
pattern appears to be reasonable, with low annual average precipitations being associated
with negative regression coefficients, which rapidly increase as the rainfall amount increases.

(a) (b)

Figure 3.4: (a) Landslide susceptibility map of Tajikistan. (b) 95% of Confidence Interval
(CI) of the landslide susceptibility map of Tajikistan.

In Figure 3.5d, the linear contributions of the UCU area and PGA appear to be
significant, increasing the probability of landslide presences per mapping unit. It should
be noted, however, that there is only one major earthquake-induced landslide inventory
available (for the Khait earthquake in 1949) and that therefore the mapped landslides do
not reflect earthquake-triggered events in their majority. Conversely, the plan and profile
curvatures were estimated to be not significant and with a posterior mean value around
zero. This is related to the selection process of the UCU, which contains often fairly large
units with large topographical variations.

The categorical variables, land use (Figure 3.5e) and lithology (Figure 3.5f), present a

37



Landslide susceptibility in the BRI Giacomo Titti

LithologyLand use

Slope (°) Relief (m) Rain (mm/y)
R

e
g

re
ss

io
n
 c

o
e
ffi

ci
e
n
t

R
e
g

re
ss

io
n
 c

o
e
ffi

ci
e
n
t

R
e
g

re
ss

io
n
 c

o
e
ffi

ci
e
n
t

R
e
g

re
ss

io
n
 c

o
e
ffi

ci
e
n
t

R
e
g

re
ss

io
n
 c

o
e
ffi

ci
e
n
t

R
e
g

re
ss

io
n
 c

o
e
ffi

ci
e
n
t

a b c

d e f

Figure 3.5: Performance of the single covariate used to model the landslide susceptibility
map: a) slope, b) relative relief, c) annual precipitation, d) covariates modeled as fixed
effects, e) land use, f) lithology. See Table 3.1 for the explanation of the abbreviations of
the covariates.
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large variation in significance per each category. In detail, land use reveals a significant
contribution to increase the probability of landslide presence per UCU with several land
use types that have a positive contribution to the presence of landslides. The class with
bare or sparse vegetation seems to have less contribution to landslide occurrence that we
originally expected. The units with waterbodies have a higher contribution than expected,
due to the fact that the slopes around existing hydropower dams have a relatively high
landslide density, and the available inventories were more detailed for the areas surrounding
hydropower projects. The areas covered by snow and ice decrease the probability of
landslide presence per mapping unit. This can also be explained by the difficulty of
mapping landslides in these high mountain terrains, where many of the available satellite
images have a snow cover, thus leading to a possible (or not) under representation of
landslides mapped in these areas.

As regard the role of lithological classes, a large number was estimated to be significant
and most were recognized to positively contribute to the susceptibility estimates. These
correspond to: Igneous intermediate, igneous intrusive, metamorphic, sedimentary chemical,
and sedimentary clastic rocks. Among these, the highest mean regression coefficient is
estimated for an igneous intermediate substratum. This could imply that the detrital
mantle and soil draping over this bedrock type can be rich in clay as this mineral is the
natural product of the long-term weathering effect on igneous rocks (Cawsey and Mellon,
1983). In turn, clays could be responsible for shallow landslides (Ubaidulloev et al., 2021)
as they are subject to shrink and swell processes at varying soil moisture conditions. Similar
to the land use class, the posterior mean value of glaciers in the lithology map is highly
negative.

3.3.2 First set of cross-validations

From the 10-fold cross-validation, we extracted the posterior mean to compute the AUC
for each replicate. The average AUC out of the 10 calculations is 0.87, and a variability
measured with a two-times standard deviation is equal to 0.02. The continuous spectrum of
probability which composes the susceptibility map resulting from the first set of traditional
cross-validation runs has been classified using two different criteria. The maps are shown
in Figure 3.6a,c. We classified the probabilities using the SZ-plugin developed by Titti
et al. (2021b). The upper map (Figure 3.6a) is classified by selecting the edges of each class
equal to the cutoffs that maximize the AUC of the segmented ROC curve, which means to
maximize the number of unstable UCUs per probability bin. Therefore, being the UCUs
irregular spatial objects, the map appears dominated by very high susceptibility conditions.
Conversely, the bottom map is generated by cutoffs that maximize the area (with slope
>10°) of unstable UCUs per probability bin (the relative ROC curve is weighted over the
area extension). Here the maps appear much more realistic and similar to the benchmark
presented in Figure 3.4 with the main difference being expressed in the extension of the red
area, which covers 43,058 km2 (43% of total area, see Figure 3.6b) in the first classification
and 10012 km2 (13% of total area, see Figure 3.6d) in the second classification.

Figure 3.7a provides two interesting perspectives on the analyses we have run. It
demonstrates that the susceptibility pattern (taken from Figure 3.6c) closely reproduce the
spatial distribution of landslides at the scale of the UCUs. Figure 3.7b complements this
information by highlighting that the highest susceptible zones are not necessarily those
with the highest relief, but with the most susceptible lithologies, in combination with the
highest levels of rainfall and earthquake acceleration. The relatively lower susceptibility
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Figure 3.6: (a) Tajikistan landslide susceptibility map classified by maximizing the AUC
and the relative ROC curves with respect to the unstable UCUs. (c) Tajikistan landslide
susceptibility map classified by maximizing the AUC of the area-weighted ROC curve and
the relative ROC curves. Panels (b,d) show the corresponding classification schemes and
the relative percentage area per class.
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of the high elevation, snow- and ice-covered regions is due to the limited availability of
inventories for these areas, and may not reflect the actual situation, or the possible future
situation, where climate change will contribute to decreasing glacial coverage.

Figure 3.7: (a) 3D representations of the landslides distribution on the classified, area-based
(Figure 3.6c) susceptibility map. (b) 3D representation of the landslides distribution and
of the relative relief.

3.3.3 Sensitivity analyses at varying landslide presence

In this section, we evaluate the results from the varying proportions of landslide presences
per UCU, and compare them with the reference susceptibility model presented in Section
3.3.1. Figure 3.8 reports the AUC values obtained for each cross-validation routine from
an initial landslide presence sample of 50 UCUs (5% of the reference inventory) up to
677 UCUs (100% of the reference inventory). Surprisingly, the corresponding difference in
performance is not as evident as we initially assumed. In fact, just 5% of the reference
inventory is enough to reach a median AUC of approximately 0.79. Conversely, 100% of
the reference inventory produced a median AUC of 0.87. The latter corresponds to an
outstanding performance according to the classification scheme proposed by Hosmer and
Lemeshow (2000), being clearly preferable to a 0.79 (all the ROC curves are visible in
Figure 3.19). However, in reality the difference in the time and efforts required to map less
than one hundred or several hundreds of mapping units with landslides is very large. Thus,
specifically for Tajikistan, such a result inevitably raises the question why this happens and
whether it is worth to invest resources in mapping landslides when fewer mass movements
already produce suitable predictive performances.

Comparing the classified susceptibility maps assessed as the median of the 10 runs with
100% (Figure 3.9a) and 5% (Figure 3.9b) of total landslide inventory, it is evident how
much the latter is less reliable than the former. In particular, this is clearly visible in the
southern and northern part of Tajikistan where, on the contrary to the map in Figure 3.6c
and to the map in Figure 3.9a, in the susceptibility map modeled with the 5% of total
landslides available (Figure 3.9b), the classes ‘high’ and ‘very high’ cover a larger area.

To investigate this result further, we carefully checked the area and recognized, as
also shown in Figure 3.5, that landslides generally occur in very similar morphometric
situations in Tajikistan. At a medium slope and medium relative relief values they are
abundant, whereas they tend not to be represented where snow and ice cover the landscape
(mainly at high relative relief values). This is interesting because we cannot know whether
this effect is real. In fact, snow cover tend to hide landslides or make it impossible to
separate a landslide from other active processes, such as snow avalanches, that dominate a
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high portion of relief. Therefore, with the same probability, landslides may actually be
considered absent and present.

A
U

C

Q1, Q3 Median # Boxplot 95% CI Outliers

Number of UCUs assigned with a landslide presence condition

Figure 3.8: Distribution of the Area Under the ROC Curve (AUC) values of the 2000
model runs with different proportions of number presence condition.

Landslides tend to cluster in the wettest portion of the Tajikistan territory. As for
the signal captured by categorical properties, many lithologies are quite susceptible to
landslides, and contribute more to susceptibility than land use types. The lithological units
were grouped into rather broad classes, and therefore the combination of covariates that
results in high susceptibility can be characterized by using a relatively small number of
UCUs. However, the high AUC values could also be related to the large dimension of the
UCUs. Lima et al. (2021) states that a “too detailed representation of the terrain may be
detrimental in the presence of inaccurate landslide data”. In our case, since the UCUs are
rather large terrain units, this could attenuate the effect of the incompleteness we induced
by decreasing the number of presences.

We justify the relatively similar predictive performance through the considerations
provided above. However, to support them numerically we checked their validity by
examining the variations in the estimated regression coefficients as the proportion of
presences changed. For conciseness, a brief overview of this procedure is provided in the
main text through Figure 3.10. There we exemplify for the reader the variation of the
regression coefficients related to six covariates (one fixed effect, and five classes extracted
from five respective random effects), plotted as the information on landslide presence data
increases. In Appendix 3.5, we report the variation of the regression coefficients for all the
model components estimated to be significant. Specifically, Figure 3.13 shows the variation
for the four fixed effects. The PGA and the two curvatures essentially exhibit the same
regression coefficient irrespective of the number of presence conditions in the dataset and
among each of the bootstrap replicates. Conversely, the UCU area over 10° of the slope
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Figure 3.9: (a) 10-runs median susceptibility map with 100% of total landslide inventory
(AUC = 0.87) classified in quartiles and the contour lines of the landslides density distribu-
tion; (b) 10-runs median susceptibility map with 5% of total landslide inventory (AUC =
0.79) classified in quartiles and the contour lines of the landslides density distribution.

becomes more positive as the proportion of presences increases.

To provide an overview of what happens with a covariate used in a non linear fashion,
we report the effects estimated for each of the mean slope steepness classes, mean relative
relief classes, and mean annual rainfall classes. The behavior of the slope steepness is
shown in Figure 3.14 where the variations as the number of presence instances in the
dataset appear to be stronger than for the linear covariates mentioned before. Specifically,
as the number of landslide presences increase, the mean steepness classes 20°–22°, 23°–25°,
and 26°–28° are estimated with an increasingly positive contribution to the susceptibility.
This trend appears to be interrupted from the class 29°–31° and to invert itself for the
classes from 38° to 69° where the regression coefficients become increasingly negative as
the proportion of landslide presences increases.

Mean relative relief has been subdivided into 20 classes (Figure 3.15). The first 7 classes
show positive regression coefficients, whereas the others became increasingly negative as
the relative relief increases. As the proportion of landslide presences change in each relief
class, the regression coefficients remain constant.

On the contrary of the sinusoidal behavior of the slope covariate, precipitation presents
a discontinuous trend between the minimum and maximum annual rainfall recorded in
10 years in Tajikistan (Figure 3.16). In particular, increasing the number of landslides
in sample, it contributes negatively to susceptibility from 243 mm/y to about 375 mm/y
where the trend inverts itself, the regression coefficients became increasingly positive as
the proportion of landslide presences increases from 486 mm/y. The classes between 375
mm/y and 486 mm/y do not significantly contribute to estimate the susceptibility.

The situation for the categorical properties is also quite interesting (see Figure 3.17 and 3.18).
Metamorphic lithotypes (Figure 3.17) exhibited the largest variation as the proportion of
landslide presences increases. Specifically, they increasingly contribute in a negative manner
to the susceptibility model. Other examples exist where the situation is the opposite albeit
with a less striking pattern, these being mixed igneous rocks and chemical sedimentary

43



Landslide susceptibility in the BRI Giacomo Titti

Q1, Q3 Median # 95% CI Outliers

e       Land use: Snow ice

R
e
g
re

ss
io

n
 c

o
e
ffi

ci
e
n
t

f   Relative relief: 394-517 m

R
e
g
re

ss
io

n
 c

o
e
ffi

ci
e
n
t

d           Slope: 26°-28°

R
e
g
re

ss
io

n
 c

o
e
ffi

ci
e
n
t

b    Rainfall: 508-529 mm/y

R
e
g
re

ss
io

n
 c

o
e
ffi

ci
e
n
t

c     Lithology: Metamorphic

R
e
g
re

ss
io

n
 c

o
e
ffi

ci
e
n
t

a                 Area
R

e
g
re

ss
io

n
 c

o
e
ffi

ci
e
n
t

Number of UCUs assigned with 
a landslide presence condition

Number of UCUs assigned with 
a landslide presence condition

 

Figure 3.10: Example of covariate effects estimated at a varying proportion of landslide
presence data for: (a) Area, (b) annual rainfall, (c) lithology, (d) slope, (e) land use, and
(f) relative relief.
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materials.

The land use classes (Figure 3.18) show a much more stable response to the landslide
presence content in the dataset and across cross-validation replicates. The only exception
consists of the snow/ice class, which contributes to decreasing the estimated probability of
landslide occurrences per UCU.

Notably, across all these plots not a single example exists where we monitored an
inversion of the regression coefficient sign as the proportion of landslides increased. This is
a fundamental point which justifies the fact that performance-wise, no extreme changes
can be observed at varying presence conditions in the training dataset.

To answer the main question of this paper, starting from a complete landslide inventory,
we mapped the landslide susceptibility of west Tajikistan and repeated the same analytical
protocol, gradually reducing the amount of landslides presence condition of each UCU,
labeling them as stable. As a result, we induced systematic incompleteness and associated
biases (Lima et al., 2021) in the the analyses. We did this in the hope of finding a numerical
threshold above which the susceptibility map is not sensitive to the addition of new unstable
mapping units. However, the AUC distribution plotted in Figure 3.8 was quite smooth.
Although, the transition from median AUC values of 0.79 to 0.87 is an interesting trend
to monitor, recognizing a single number of unstable UCUs that separates two different
predictive behaviors could not be found.

To further deepen our observation, we opted to calculate the rate at which the median
AUC shown in Figure 3.8 varies from small to large samples of unstable UCUs passed to
the model. This is shown in Figure 3.11 where the rate of change between the subsequent
AUC median has been measured with a function f(x), explained as follows:

f(x) = ∆g(x)′k −∆g(x)′k−1 (3.2)

where, g(x) is the median function, ∆g(x)′ is the gap between two consecutive first
order derivatives of g(x) in sliding windows, and f(x) evaluates how fast the curve trend
changes by the difference between the gaps ∆g(x)′ of the sliding windows and the previous.
Interestingly, the maximum of f(x) corresponds to 220 UCUs assigned with a presence
condition (32% of unstable UCUs and 1.5% of the total UCUs). After this, the model does
not significantly improve and therefore, we consider this value as the minimum amount of
presence condition required for this study area.

This framework raised the question of when shall the inventory be considered complete
and what would have been the implications if we would have stopped mapping earlier than
the deadline we set. All the analyses we then performed have been voted to address this
issue. A series of sensitivity checks have been tested at decreasing numbers of unstable
UCUs.

This observation is much more interesting than the one based on Figure 3.8 and it does
answer the main question posed at the beginning. However, this result may be site-specific
and not generalizable to other study sites or to other kinds of mapping units.

3.4 Conclusions

This research was part of a large international project for which a landslide susceptibility
assessment was required for landscapes intersected by the new silk road. The first limitation
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-

Figure 3.11: Graph in dots of the median AUC also visible in Figure 3.8 and the relative f
function (Equation 3.2) which measure how much the trend of the median graph varies.

we found was to access landslide inventories in countries with scarce data availability, among
which is Tajikistan. As a result, we mapped landslides under the assumption that we could
not map them all and that at a certain point, we should have stopped and considered our
inventory suitable for susceptibility modeling.

This framework raised the question when the landslide inventory can be considered
complete enough to serve as a basis for susceptibility modeling and what would have been
the implications if we would have stopped mapping earlier than the deadline we set. All
the analyses we performed were aimed to address this issue, including sensitivity checks
tested at decreasing numbers of unstable UCUs. The susceptibility patterns and associated
performances appeared quite robust, with relatively small differences when using a small
or a large sample of unstable UCUs. This may be due to the relatively coarse spatial
partition we adopted, and the use of the UCUs, which were defined as the intersection
between catchments and geological units.

The susceptibility analysis measures the propensity of the territory to generate landslides,
from the presence/absence information associated to the mapping units and from the
selected covariates. The small variations we found may imply that UCUs are already
sufficient to capture the landslide distribution even with a relatively small sample of
landslides, and that UCUs that are unstable share very specific characteristics. In fact,
the difference in AUC between a median model yielding 0.79 and a median model yielding
a 0.87 approximately corresponds to just 80 km2, for the very high susceptible class in
quartile classification. Therefore, from a pure performance perspective, it seems that it
could have been convenient to stop mapping long before the deadline we set for ourselves.
However, merely looking at the absolute performance would be a mistake. In particular,
the spatial distribution of the probability with an AUC of 0.79 shows high and very high
levels of susceptibility in areas where we expected stable conditions.

Therefore, we further investigated the best compromise in between the two extremes.
This is shown in Figure 3.11 where we measured the rate of variations in AUC as the
unstable sample increased. There, the largest variation coincides with 220 unstable UCUs,
after which the improvement rate of the susceptibility significantly drops.

One of the limitations in the generalization of the results we obtained may be due to
the mapping unit we chose. In fact, coarser mapping units are less sensitive to variations in
the number and distribution of landslides. Conversely, smaller mapping units would likely
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capture the variations induced by our modeling strategy at varying landslide proportions.
This in turn may have led to variations in model performance and covariate effects. We are
currently testing the same analytical protocol on the basis of a slope unit-based partition to
monitor whether the choice of finer mapping units may yield to slightly different conclusions.

All these considerations could still be very local and not relevant to any landslide
susceptibility studies outside Tajikistan. However, we believe the protocol developed is
a very interesting tool to investigate a problem that is heavily underestimated in the
literature. We envision future development to measure whether the spatial incompleteness
we tested here can be extended to its spatio-temporal counterpart.

To promote reproducible and repeatable analyses and to stimulate further research on
this topic, we have shared the R codes at this repository GAM-Tajikistan.

3.5 Appendix

Figure 3.12: Flow-chart summarizing the analytical protocol we implemented.
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Figure 3.13: PGA, area, profile curvature, and plan curvature effects graphical summary
at a varying proportion of landslide presence data.
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Figure 3.14: Mean slope effect graphical summary at a varying proportion of landslide
presence data.
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Figure 3.15: Mean relative relief effect graphical summary at a varying proportion of
landslide presence data.
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Figure 3.16: Mean annual precipitation effect graphical summary at a varying proportion
of landslide presence data.

51



Landslide susceptibility in the BRI Giacomo Titti

Sedimentary Chemical Sedimentary deposit Sedimentary Mixed Glacier

Igneous Mixed MetamorphicIgneous intrusive Sedimentary Clastic

Igneous mafic Igneous effusive Igneous felsic Igneous intermediate
R

e
g

re
ss

io
n
 c

o
e
ffi

ci
e
n
t

R
e
g

re
ss

io
n
 c

o
e
ffi

ci
e
n
t

R
e
g

re
ss

io
n
 c

o
e
ffi

ci
e
n
t

Q1, Q3 Median # 95% CI Outliers

Number of UCUs assigned with a landslide presence condition

Figure 3.17: Lithology effect graphical summary at a varying proportion of landslide
presence data
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Figure 3.18: Land use effect graphical summary at a varying proportion of landslide
presence data.
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Figure 3.19: ROC curves from the 1st to 10th run at a varying proportion of landslide
presence data. Each figure shows 10 ROC curves of cross-validation per 20 different
landslide presence proportions (200 curves in each figure).
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4. Mapping susceptibility with open-source
tools: a new plugin for QGIS

This chapter is under review in Frontiers in Earth Sciences journal in 2022 and authored
by: Giacomo Titti1,2, Alessandro Sarretta2, Luigi Lombardo3, Stefano Crema2, Alessandro
Pasuto2, Lisa Borgatti1,2. The paper is waiting for the final decision of the editor after a
first minor review.

4.1 Introduction

The measure of how much a specific area is prone to natural hazards is called susceptibility.
It does not evaluate when or how often the given hazard may occur (Guzzetti et al., 2006)
but it provides the expected locations where such processes may take place in the future.
Mathematically, the susceptibility is the estimation of the likelihood of spatial occurrence
of natural hazard evaluated on the basis of terrain and environmental conditions (Brabb,
1985). In most cases, this likelihood can be obtained via rigorous probabilistic models,
although other tools are also able to convey a similar information without relying on
complex multivariate statistics (e.g., Lombardo et al., 2020a; Ciurleo et al., 2017). All
these methods fall under the definition of data-driven models and they empirically classify
a landscape, labeling it as prone or not prone to slope failures. The way a classifier
specifically works is to weigh the contribution of each predisposing factor to the occurrence
of natural hazards, taking into account the presence/absence proportion of past records,
given other predisposing factors in the model. The basic idea behind data-driven models is
that “the past is the key to the future” (Carrara et al., 1995). Thus, an area that has been
affected by natural hazards in the past under certain circumstances, may undergo similar
environmental stresses and suffer from analogous hazards in the future. Therefore, the
statistical analysis of susceptibility is based on a spatial dataset of past events, which acts
as the dependent variable of any given model, together with a set of geo-environmental
factors acting as explanatory variables.

This paper presents the Susceptibility Zoning (SZ) plugin, a new tool for susceptibility
analysis integrated within one of the most common open-source GIS platforms, QGIS
(QGIS.org, 2021). Specifically, the SZ-plugin is a collection of functions implemented
as a QGIS plugin, supporting a number of pre-processing requirements, as well as the

1Department of Civil, Chemical, Environmental and Materials Engineering, Alma Mater Studiorum
University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy

2Research Institute for Geo-Hydrological Protection, Italian National Research Council, C.so Stati Uniti,
4, 35127 Padova, Italy

3Department of Earth Systems Analysis, Faculty of Geo-Information Science and Earth Observation
(ITC), University of Twente, P.O. Box 6, 7514 AE Enschede, The Netherlands
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susceptibility mapping and validation itself. Moreover, the plugin is equipped with a series
of plotting routines aimed at exploring and interpreting each model components as well as
estimating the predictive ability of the model when dealing with unknown data.

A number of tools for susceptibility zoning are already available in the literature. These
among others LSAT (ArcGIS toolbox) (Torizin, 2012; Polat, 2021), BSA tool (ArcMap
tool) (Jebur et al., 2015), LAND-SE (R script) (Rossi and Reichenbach, 2016), frmod
(Python script) (Dávid, 2021), GeoFIS (standalone) (Osna et al., 2014). The SZ-plugin, to
our knowledge, is the first tool that enables susceptibility routines within QGIS.

This paper describes in detail the SZ-plugin graphical user interface together with all
its functions and provides a sample application to landslide susceptibility in north-east
India. A previous version of this plugin (v0.1) was already published in 2020 by Titti
and Sarretta (2020) but here we have extended the available options encompassing other
modeling approaches within the same plugin and we have equipped the SZ-plugin with a
suite of plotting and performance evaluation tools. The current version (v1.0) is available
in the following GitHub repository CNR-IRPI-Padova/SZ.

4.2 Plugin description

The SZ-plugin has been developed specifically for landslide susceptibility zoning, however,
it can be used to map any kind of susceptibility. The code has been written in Python
language and developed as a QGIS plugin. QGIS is a software for Geographic Information
System (GIS) that is completely open-source and supported by a large community of users
and developers. A positive consequence of this open approach is that anyone can develop
their own plugin to address specific needs. Hundreds of plugins are freely available from
official and non official repositories, but none has focused on susceptibility modeling.

In order to better integrate the plugin with the Graphical User Interface (GUI) of
QGIS and simplify its usability, the SZ-plugin can be accessed from the QGIS processing
toolbox, the main element of the processing GUI. In detail, the SZ-plugin is a collector
of QGIS processing scripts. Some functions can pre-process data according to the asset
required by the core model functions, which can estimate and validate the susceptibility
using a suite of possible models. These include: Weight of Evidence (WoE, Hussin et al.,
2016), Frequency Ratio (FR, Arabameri et al., 2019), Logistic Regression (LR, Lombardo
et al., 2020b), Random Forest (RF, Catani et al., 2013), Support Vector Machine (SVM,
Lin et al., 2017) and Decision Trees (DT, Yeon et al., 2010). The evaluation of the results
and the classification of the final map proposed are based on the Receiving Operating
Characteristic (ROC) curves (see Sec. 4.3.2).

Working mainly with vector layers, the SZ-plugin allows to use any shapes or form
of mapping unit. In landslide susceptibility, the most common ones consist in grid cells
(Reichenbach et al., 2018), terrain units (Van Westen et al., 1997), unique condition units
(UCU, Ermini et al., 2005), slope units (Alvioli et al., 2016), geo-hydrological units (Zêzere
et al., 2017), topographic units (Eeckhaut et al., 2009) and administrative units (Lombardo
et al., 2019).

Figure 4.1 shows the GUI of the plugin inside QGIS, listing the implemented functions,
which are separated into four groups: Data preparation, SI, SI k-fold, Classify SI.

’Data preparation’ includes pre-processing functions for vector data. ’SI’ and ’SI k-fold’
are the core groups, which allow users to choose among a number of possible statistical
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Figure 4.1: SZ-plugin GUI.

models. ’SI’ and ’SI k-fold’ allow to fit or cross-validate (CV) the selected model. If a
cross-validation is selected, the ’SI’ functions use a binomial sampler splitting randomly the
dataset into train and test samples. While, ’SI k-fold’ functions use k-fold cross-validation
(see Sec. 4.3.1) method where the user can choose the number of subsamples. ’Classify SI’,
instead, provides performance metrics to evaluate the goodness-of-fit or predictive skills in
case of cross-validation. The former case returns a single performance value whereas the
latter provides summary statistics for the number of cross-validations opted by the user.

It must be stresses that, to maximize the model performance, its assessment offers a
new ROC-based classification method which selects the cutoffs required to build the ROC
curves to maximizes the relative Area Under the Curve (AUC). Details are reported in
Section 4.3.2.

4.2.1 Functions description

The sub-section of SZ-plugin called ’Data preparation’ is useful to pre-process and set the
data to be used by the ’SI’ and ’SI k-fold’ functions. These functions are:

• 01 Clean points by raster kernel value: it is a filter function that removes all the points
of a layer that do not satisfy the minimum value selected in a fixed neighborhood.
The values of the neighborhood are collected from an overlapping raster layer.

• 02 Attribute table statistics: this function detects, field by field, the unique values
and lists the ID of the feature which reports the same value. Moreover, it produces
histograms of the unique values frequency using the Plotly library.

• 03 Points kernel statistics: it calculates the effective, maximum, minimum, standard
deviation, sum, average and maximum range value of the points neighborhood.
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• 04 Points kernel graphs: the results of the previous function are plotted by this
function as frequency graphs.

• 05 Points sampler: this function randomly samples the vector points according to
the train/test scheme selected by the user.

• 06 Classify field by file.txt: to apply the WoE or FR method, the covariates should
be cut in a number of classes. This function classifies the vector fields according to
the bin limiting values that the operator may choose. These need to be reported in a
text file.

• 07 Classify field in quantiles: if the operator does not wish to provide the bin limiting
values, the vector fields can be classified according to any quantile representation
(i.e., deciles, quartiles).

’SI’ and ’SI k-fold’ functions applies WoE, LR, DT, RF or FR to calculate susceptibility.
They require a polygonal layer which includes one field per each covariate and one field
with the dependent variable (number of i.e., landslides, tornado, floods) per mapping unit.
The ’SI’ functions allow to cross-validate the results selecting the sample percentage of
training and test or allow to fit the model to the whole dataset. Whereas, ’SI k-fold’
functions allow to cross-validate the results with a k-fold method (see Sec. 4.3.1) or also fit
the model to the whole dataset.

The functions produce vectors of training/testing or fitting results and report in a text
file the relative weights or regression coefficients (depending on the model the user has
chosen). And, it produces a graph of the ROC curves with the associated AUCs. The close
the AUC is to 1, the higher the capacity of the given model is to suitably classify the study
area into stable or unstable conditions. The ROC analysis as well as all the probabilistic
models available within the SZ-plugin (LR, DT, RF and SVM) are based on the library
Scikit-learn (Pedregosa et al., 2011). As for the bivariate statistical models (WoE and FR),
they have been implemented manually and added to the collection because largely used in
the literature from many years (van Westen et al., 2000).

The last group of functions is the ’Classify SI’ which includes: ’01 Classify vector by
ROC’, ’02 Classify vector by weighted ROC’ and ’03 True/False’. Using Genetic Algorithms
(GA) the 01 and 02 ’Classify SI’ functions classify the Susceptibility Index (SI) into the
indicated number of classes through the reconstruction of the segmented ROC curve in
order to maximize the AUC (for more details see Sec. 4.3.2).

The only difference between the ’01 Classify vector by ROC’ and the ’02 Classify vector
by weighted ROC’ is the use of weighted ROC curve. The weights can be established
among the input vector fields.

’03 True/False’ produces a map of mapping units labeled as: True Positive, True
Negative, False Positive, False Negative according to a selected cutoff of the susceptibility
index.

4.2.2 Software availability

The SZ-plugin has been implemented in Python 3. It requires many dependencies such
as: Numpy, Scipy, GDAL, Scikit-learn (Pedregosa et al., 2011), Pandas (The pandas
development team, 2019), Matplotlib (Hunter, 2007), Plotly (Plotly Technologies Inc.,
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2015). The version of SZ-plugin used in this work is the v1.0 (Titti et al., 2021b). The latest
version of the SZ-plugin is always available on the GitHub repository CNR-IRPI-Padova/SZ.

The plugin has been tested with QGIS 3.16 on Ubuntu 20.04 and Windows 11. To
support and increase the usability of the plugin a video tutorial has been published here
https://www.youtube.com/watch?v=XpsiCkVF11s.

4.3 Background

To understand the functionalities of the plugin, the explanation on how the plugin handles
the cross-validation, performance assessment and susceptibility index is reported hereafter.
Moreover, the Section 4.4 shows the application of the tool to landslide susceptibility zoning
using the WoE and LR.

4.3.1 Cross-validation

Validation routines involve the test of the performance of a data-driven model with respect
to unknown data. Ideally, the unknown data should belong to a temporal replicate of the
modeled process. However, geomorphological studies often lack of multitemporal inventories.
Thus, testing the model performance most of the times requires the implementation of
cross-validation routines. These are commonly performed by splitting the entire input
dataset into two subsets, one used for training the given data-driven model and the other
one to test. This structure revolves around considering a subsample of the whole dataset
in the same way as one would consider future landslide occurrences, thus offering the
chance to compare locations labeled to be stable/unstable with respect to a set of actual
stable/unstable instances.

The literature reports few ways to extract the testing subset. The most common in the
geomorphological literature is to extract a random sample from the full dataset. Most of the
times this is done just once (Arabameri et al., 2020), in this case most of the variability of
a study area is disregarded. In other cases, the random samples are extracted, without any
constraint, a large number of times with the purpose of depicting the potential variability
of a test site (Amato et al., 2019). In fewer cases, the variability of a given study area is
accounted for by extracting samples that are constrained to be selected just once across
replicates, leading to two-fold (Yeon et al., 2010), five-fold (Dang et al., 2019) or ten-fold
(Lombardo and Tanyas, 2021) cross-validations. All the examples mentioned above adopt a
cross-validation scheme where the extraction, constrained or unconstrained, is randomized
in space. However, this operation is statistically appropriate only if one assumes that the
presence/absence label assigned to a given mapping unit of choice is independent from
the labels of the surrounding mapping units. In other words, these procedures assume
that there is no spatial structure in the data other than the one captured by the selected
explanatory variables. This is an acceptable assumption for medium (e.g., slope units) to
large (e.g., catchments) mapping units but it is not valid for fine mapping units such as
grid-cells. In such cases, the most appropriate way to implement cross-validation routines
is to constrain the testing subsets in space, each one being representative of a specific sector
of the study area. In turn, this operation ensures that any residual spatial structure in the
data, not captured by the explanatory variables, would not affect the validation estimates.
In other words, the testing is free or as free as possible from any spatial effect that may
bias the performance toward results that are forcefully better than what they should be.
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This operation is commonly referred to as spatial-cross validation (e.g., Petschko et al.,
2014).

Out of the cross-validation schemes described above, the current version of the SZ-plugin
offers two options. The first is a cross-validation where the train/test split is performed
just once as per the majority of cases in the geoscientific literature (’SI’ functions). This is
achieved by using the train test split function in Scikit-learn. The second is a k -fold cross-
validation where from the whole dataset, the test data is randomly extracted according
to number (k) of mutually exclusive subsets (’SI k-fold’ functions). The training data
is represented by the complementary subsets. In other words, if k is equal to 10, then
ten non-overlapping test sub-samples (each one made of 10% of the total mapping units)
are created to test the prediction skill of the model and the ten complementary 90%
subsets are used to calibrate the model instead. Thus, the union of the ten 10% subsets
returns the whole study area, in such case the resulting susceptibility map would have
been generated by fully predicted instances. Any test sample is balanced in terms of
presence/absence. The presence/absence proportion of the test sample is equal to the
proportion of presence/absence of the complete dataset. The spatial-cross validation is not
implemented in the current version of the SZ-plugin but it is part of the development plan
for the subsequent versions.

4.3.2 Performance assessment

The model performance is evaluated via the Receiving Operating Characteristic (ROC)
curves and their relative AUC (Fawcett, 2006; Chung and Fabbri, 2003).

Each mapping unit of a susceptibility map can be labeled as True Positive (TP ), True
Negative (TN), False Positive (FP ) and False Negative (FN) unit (Rahmati et al., 2019)
according to the presence/absence of the dependent variable (landslides in our application)
and to positive/negative (stable/unstable) label assigned. After sorting the susceptibility
index by descending order, the spectrum of susceptibility values can be split into two
categories, prone or not to the occurrence of the hazard. The susceptibility cutoffs, which
assign the binary label (stable/unstable), are assigned continuously until the lowest value
of susceptibility. The ROC curve then plots the relation between TPrate and FPrate:

TPrate =
TP

TP + FN
FPrate =

FP

FP + TN
(4.1)

4.3.3 Susceptibility index classifier

In the literature, several methods have been used to segment the susceptibility index into
discrete classes. The continuous spectrum of susceptibility values has been sliced into
quantiles, other cases report their classification on the number of landslides per class or on
the ratio between the landslide area and the surface area of each class in comparison to
the entire study area (Lombardo et al., 2020a). The SZ-plugin proposes a new Genetic
Algorithm-based classifier.

The Genetic Algorithm (GA) is an iterative meta-heuristic algorithm based on the
numerical reproduction of the Charles Darwin natural selection theory (Chatterjee et al.,
1996). The meta-heuristic algorithms are designed to explore the search space from several
points of view and to get the solution as near as possible to the optimal (Said et al., 2014).
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A GA near-optimal solution is reached through the iterative delineation of the best
object selected from a group of admissible solutions which are evolved by operators such
as: crossover, mutation, inversion and others (Chatterjee et al., 1996). The quality
evaluation of the solutions is indicated by the fitness function that assigns a score or fitness
determining the minimum requirement for the potential solutions (Mitchell, 1995). During
the iterations, the best subsequent population is selected and the worst excluded to avoid
future reproduction (Razali, 2015). The result may be an exception of the population (as
unexpected genetic mutation) or the effect of continuous and slow improvements.

The idea behind the new GA tool featured in the SZ-plugin is to classify the SI into a
number of classes, by optimizing their respective boundaries. These represent the cutoffs
necessary to build the ROC curve and to maximize the relative AUC. The maximization
of the AUC of the segmented ROC is the fitness function of the iterative meta-heuristic
algorithm. Figure 4.2 shows the classifier workflow. The ROC curve maybe weighted or
none.

4.4 Application to landslide susceptibility

The SZ-plugin was born from the necessity of specific functions not available in QGIS with
the goal of producing a landslide susceptibility map of south-Asia using WoE method (Titti
et al., 2021a) in the context of the Belt and Road Initiative (Lei et al., 2018). After that,
several other applications have supported the SZ-plugin development. Among these, in
Titti et al. (2021c) the classifier (’Si classify’ functions) of the plugin was built to reclassify
the landslide susceptibility in Tajikistan. Subsequent experiments have then stimulated
the development of additional functions, leading to the current version of the SZ-plugin.

Here we present the current set of functionalities offered through the SZ-plugin in the
context of landslide susceptibility, although we recall that these can be used even outside
the geomorphological context. The selected study area corresponds to the north-eastern
sector of India, including Assam, Manipur, Meghalaya, Mizoram, Nagaland and Tripura
(Fig. 4.3). This area has been selected because it appears to be one of the areas most
susceptible to landslides in south Asia, according to the analysis conducted by Titti et al.
(2021a). In their work, the authors’ goal was to highlight regions mostly prone to landslides
across countries involved into the Belt and Road Initiative. The application here presented
and the analysis conducted in Tajikistan (Titti et al., 2021c) follow an analogous criterion.

All the data used in the application here presented are open-data. The landslide
inventory used for the analysis was provided by the Gological Survey of India and is
available at the Bhukosh website ( https://bhukosh.gsi.gov.in , accessed 15 November 2021).
It is an open database developed to evaluate the spatial distribution of natural hazards in
India. In the selected study area, it includes 5759 Landslide Identification Points (LIP).
The catalog includes landslides triggered by: rainfall, anthropogenic activity, road/slope
cut, quarrying, toe erosion and ground motion.

Slope units have been used as the reference mapping unit. A slope unit is a terrain unit
derivable from a DEM, under the constraint of internal aspect homogeneity in areas defined
between ridges and streamlines (Alvioli et al., 2020). The shapes have been calculated
using r.slopeunits, a tool developed in GRASS GIS by Alvioli et al. (2016). In this case
,we parameterized r.slopeunits with a flow accumulation threshold of 5,000,000 m2, a
minimum unit area of 500,000 m2 and a circular variance of 0.3. The alluvial plains have
been excluded from the analysis because considered not susceptible a-priori. As a result,
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Figure 4.2: Workflow of the GA-based classifier functions.
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Figure 4.3: Study area and relative slope units of the SZ-plugin application to landslide
susceptibility (Map data panel c ©Google). Panel b shows in white and red the slope
units investigated after the exclusion of the alluvial plains. The red zones represent the
unstable slope units, whereas the white zones the stable ones.
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124,553 slope units were generated with a maximum surface extension of 27 km2, a mean
of 1 km2 and a standard deviation of 1.1 km2.

All the data used as predisposing factor are also open data. They consist of: lithology,
land cover, slope, plan curvature (tangent to the contour line), profile curvature (tangent
to the slope line), relative relief (maximum elevation range in a circular neighborhood of 1
km of radius), Peak Ground Acceleration (PGA), annual rainfall, Normalized Difference
Vegetation Index (NDVI) and area of each mapping unit (see Tab. 4.1 for the respective
data sources).

Data type Layer Pixels size Data source

1 Morphology Raster 30x30 m SRTM (Farr et al., 2007)

2 Geology Vector - USGS

3 Land cover Raster 300x300 m ESA 2010 and UCLouvain

4 PGA Raster 90x90 m CHIRPS (Funk et al., 2015)

5 Precipitation Raster 5x5 km IMRG (Huffman et al., 2019a)

6 NDVI Raster 30x30 m Landsat 7 C1 Tier 1

Table 4.1: Predisposing factors and their acronyms. See more details at the end of the
Section 4.4

The landslide susceptibility zoning of the study area is carried out using the methods
Weight of Evidence (WoE) and Logistic Regression (LR). The Weights of Evidence technique
is a bivariate statistical approach (Bonham-Carter et al., 1988; Bonham-Carter, 1989). It
quantifies how prone an event occurrence is according to the proportion of presence/absence
for each predisposing factor class. The WoE assigns two weights per class: W+ and W-.
The weights represent, respectively, the positive and negative influence of the predisposing
factors on a potential natural hazard. They are calculated by:

W+ = ln
M1

M1+M2

M3
M3+M4

(4.2)

W− = ln
M2

M1+M2

M4
M3+M4

(4.3)

Wf = W+ −W− (4.4)

where, M1 is the number of mapping units where the factor class and the event are
both present; M2 is the number of mapping units where the factor class is absent while
the event is present; M3 is the number of mapping units where the factor class is present
while the event is absent; M4 is the number of mapping units where the factor class and
the event are both absent. The weight contrast (Wf ) is the final weight assigned to each
class factor. It evaluates the relation between the spatial distribution of the causes and the
spatial distribution of the events (Dahal et al., 2008).

The local sum of the factor weight contrasts produces the Susceptibility Index (SI):

SI =
n∑

i=1

Wfi (4.5)
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The second model tested is the Logistic regression. It is an extension of the classical
linear regression analysis. The latter commonly requires a continuous target variable (y),
whose estimation is achieved as a linear combination of n input covariates (x):

y = β0 +
n∑

i=1

βixi (4.6)

where β0 is the intercept and βi are the covariate coefficients.

However, the above scheme is not suitable to model a discrete target variable. In such
cases, and specifically for a target variable that can take only two discrete values, a logistic
regression represents the most common solution. Its structure takes a vector (y) reporting
a series of zero and one. The zero conventionally conveys the absence of a given process in
space, time or both, whereas one conveys the opposite case where the process is present.
The model still linearly regresses, this time the odd ratio (see, Szumilas, 2010), with respect
to n input covariates x. The use of the logit link function, then transforms this quantity
into a probability (Menard, 2002), commonly referred to the actual occurrence of the
process of interest:

P (y = 1) =
1

1 + exp(−(β0 +
∑n

i=1 βixi))
(4.7)

As a result, one can interpret an increase in the estimated regression coefficients as a
linear increase or decrease of the probability P (y = 1), determined by the sign of βi.

The application and validation of the WoE and LR results are described in detail by
the schema in Figure 4.5. The data pre-process, instead, is described in Figure 4.4. The
flow-charts outline step by step how the SZ-plugin functions have been used to carry out
the landslide susceptibility map of the north-east of India.

As described in Figure 4.4, the average per mapping unit of slope, plan curvature,
profile curvature, relative relief, annual precipitation and NDVI have been calculated using
a script implemented by us in Google Earth Engine (GEE) (Gorelick et al., 2017) called
Spatial Reduction Tool (SRT). Using the TAGEE package for terrain analysis developed
by Safanelli et al. (2020), the SRT allows to calculate, terrain variables that are DEM
derived such as: slope, elevation, aspect, northness, eastness, mean curvature, gaussian
curvature, minimal curvature, maximal curvature, shape index, horizontal curvature and
vertical curvature. Moreover, the SRT allows to calculate the relative relief and collect
data from various databases such as: precipitation, temperature and NDVI. Finally, the
SRT spatially reduces the pixel based variables into their mean and standard deviation per
selected mapping unit. Notably, any shape can be used as a reference mapping unit.

As regards other predictors, the majority of the continuous variable (PGA) and the
majority of the categorical variables (lithology and land cover), per mapping units, have
been calculated using QGIS basic functions and aggregated in one vector layer.

The next steps are described in Figure 4.5. To verify the quality of the landslide
inventory and to avoid mistakes related to the landslides survey, the landslide catalogue
has been filtered using the function ’01 Clean points by raster kernel value’ assuming a
minimum slope degree of 8° in a neighborhood of 500 m of radius. One landslide only
has been deleted. Then, the resulting inventory attributes has been investigated using
the functions: ’02 Attribute table statistics’ i.e. to know the landslide triggers, then ’03
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Figure 4.4: Flow-chart of the data collection and pre-processing using the SRT (GEE) and
QGIS.
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Figure 4.5: Step by step flow-chart of the functions used form the SZ-plugin.
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Points kernel statistics’ and ’04 Points kernel graphs’ to plot the frequency distribution of
the effective, maximum, minimum, standard deviation, sum, average and maximum range
value for a specific thematic map of the LIPs neighborhood. To provide an example of the
functions ’03 Points kernel statistics’ and ’04 Points kernel graphs’, Figure 4.6a shows the
cumulative effective PGA value across LIPs, whereas Figure 4.6b depicts the cumulative
average PGA value in a LIP around of 5x5 km.
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Figure 4.6: Results of the functions ’03 Points kernel statistics’ and ’04 Points kernel
graphs’. a) shows the cumulative effective LIP PGA value; b) cumulative average PGA
value in a LIP around of 5x5 km.

The landslide susceptibility zoning of the study area is carried out using the methods
WoE and LR. To apply the WoE, the variables need to be classified. This step is done by
using the functions ’06 Classify field by file.txt’ and ’07 Classify field in percentile’. The
slope has been classified in eight classes: 0°, 1–3°, 4–6°, 7–10°, 11–15°, 16–20°, 21–30°, >30°,
whereas the other continuous factors, in deciles.

After that, the susceptibility can be modeled with WoE. At the beginning the reference
map has been built fitting the entire dataset with an AUC equal to 0.79, then the model
has been 10-fold cross-validated. The relative ROC curves are visible in Figure 4.7a with
an AUC mean equal to 0.8 and a variability measured with a standard deviation equal to
0.07. Both the runs were tested by using ’SI k-fold: 01 WoE Fitting/CrossValid’, selecting
different input parameters. The weight contrasts of the slope, relative relief, area and
annual precipitation resulting from the cross-validation are reported in Figure 4.8.

To apply the LR method, the categorical covariates have been processed to generate
one variable per category, measuring the percentage of surface covered by each category
with respect to the extent of each slope units. Then, to avoid multi-collinearity issues (the
sum of all percentage classes always returns 100%, thus being a linear combination by
definition), the most representative class across all slope units has been removed. This
operation should sufficiently perturb the dependence structure among the remaining classes,
ensuring that a linear combination of their respective values would not yield the same
result.

Finally, the susceptibility can be modeled, first by fitting the complete dataset (AUC=0.81)
and then through a 10-fold cross-validation (AUC mean equal to 0.81 and standard devi-
ation equal to 0.06). Both the analysis have been carried out via the ’SI k-fold: 03 LR
Fitting/CrossValid’. The ROC curves of the cross-validation are shown in Figure 4.7b
whereas the regression coefficients are reported in Figure 4.9.
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Figure 4.7: ROC curves of the 10-fold cross-validation. On the right the ROC of the WoE
cross-validation, on the left the ROC of the LR cross-validation

Figure 4.8: Boxplots from the WoE 10-fold cross-validation weight contrast of: a) slope, b)
relative relief, c) area, d) annual precipitation.
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Figure 4.9: Boxplots from the LR 10-fold cross-validation regression coefficients of: a)
continuous covariates, b) lithology, c) land cover.
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To make the maps suitable for stakeholders and end users involved in land planning,
the final maps have been classified into 4 classes by using the ’01 Classify vector by ROC’
(Fig. 4.11a, Fig. 4.11c) and ’02 Classify vector by weighted ROC’ functions (Fig. 4.11b,
Fig. 4.11d). The latter classification has been weighted according to the slope units’ area.

Figure 4.10 shows the result of the function ’Classify SI/03 True/False’ which maps the
distribution of the True Positive, True Negative, False Positive, False Negative mapping
units respect to a cutoff value equal to the median of the LR susceptibility index.

Figure 4.10: True Positive, True Negative, False Positive, False Negative mapping units
respect to a cutoff value equal to the median of the LR susceptibility index.

In figure 4.11, it is evident that the susceptibility patterns produced by WoE and LR are
quite similar. Differences become more visible when using the weighted and non-weighted
classifiers. In both models (WoE and LR), the ’very high’ class covers a larger area in the
none weighted-classified map than in the weighted ones. The ’very high’ class in the WoE
non weighted-classified map covers the 31% of the total surface mapped (130,736 km2) and
the 14% in the weighted ones. The LR classified maps have given a similar response to the
classification: 31% and 12% of the total surface mapped for the non weighted-classified
map and weighted-classified map, respectively.

We report additional references about the predisposing factors and landslide inventory:
lithology (https://catalog.data.gov accessed 2021-08-23), land cover (http://due.esrin.esa.int
, accessed 2021-04-15), PGA (https://sedac.ciesin.columbia.edu , accessed 2021-04-15),
annual precipitation from Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS), NDVI from Landsat 7 Collection 1 Tier 1 composites for 32-day period pro-
vided by U.S. Geological Survey, landslide inventory (https://bhukosh.gsi.gov.in , accessed
2021-11-15).

The effective reduced data and the outputs of the application described above are
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Figure 4.11: Landslide susceptibility maps classified using the WoE and the LR model. a)
the classifier has maximized the AUC of the ROC curve derived from the WoE map; b)
the classifier has maximized the AUC of the area-weighted ROC curve derived from the
WoE map. c) the classifier has maximized the AUC of the ROC curve derived from the
LR map; d) the classifier has maximized the AUC of the area-weighted ROC curve derived
from the LR map.
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downloadable from the GitHub repository CNR-IRPI-Padova/SZ.

4.5 Conclusions

A new plugin for landslide susceptibility zoning is introduced here. The SZ-plugin is a
collection of processing scripts in Python language which runs as part of the QGIS platform.
This framework has been chosen to maximize the accessibility to our plugin. QGIS is the
most widely used open-source GIS environment.

The implemented functions have been organised into four groups: ’Data preparation’,
’SI’ (Susceptibility index), ’SI k-fold’, ’Classify SI’ which allow to carry out a complete
susceptibility analysis from the data pre-processing, the prediction analysis, to the reclassi-
fication of the susceptibility index. The susceptibility can be generated using 6 different
classifiers: Weight of Evidence, Frequency Ratio, Support Vector Machine, Decision Tree,
Random Forest, Logistic Regression. The statistical models may be applied to fit the
input dataset or cross-validate the final map. In particular the latter can be done by a
simple random split in test/train samples or by a k-fold method. Both are completed by a
Receiving Operating Characteristic (ROC) analysis for performance assessment. Finally, a
GA-based (Genetic Algorithms) classifier has been implemented to classify the susceptibility
index.

Many libraries in R and other libraries such as Scikit-learn in Python are probably
the best solutions to perform susceptibility with statistical models, but they require a
good knowledge in coding. Overall, the tool proposed can simplify the access to statistical
assessments of susceptibility for users who are not familiar in coding or for those who wish
to achieve results rapidly.

In this paper the version 1.0 of the SZ-plugin has been presented to the geoscientific
community. Several improvements and new functionalities are under development which
will be uploaded with the further versions of the plugin.
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5. Conclusions

This text presents a multi-scale approach to the landslide susceptibility in the countries
involved in the Silk Road Economic Belt project. A first landslide susceptibility map at
continental scale has been produced in south-Asia. The evaluation has been conducted with
a pixel-based approach using 8 predisposing factors within a Weight of Evidence model.
This method allows us to make a quantitative, and thus objective, zonation through the
use of a simple, and easy to replicate, model. The results of the validation reveals a good
prediction capacity of the model with an AUC of validation equal to 0.9. The resulting
landslide susceptibility map of south-Asia shows the most susceptible administrative units
crossed by the new silk road which have then been analysed in detail at national scale.
Figure 5.1 shows the areas which are moderately, highly and very highly susceptible to
landslides. In our opinion those regions require a second investigation at national scale.
In total, they cover the 28% of China, the 17% of Pakistan, the 28% of India, the 83% of
Tajikistan, the 15% of Bangladesh, the 92% of Nepal, the 18% of Afghanistan, the 98% of
Bhutan, the 84% of Myanmar, the 35% of Cambodia, the 71% of Kyrgyzstan, the 94% of
Laos, the 61% of Thailand and the 81% of Viet Nam. In this study, we focused our efforts
at national scale in the areas of west Tajikistan and North-east India.

The detailed dataset available in Tajikistan allows us to compile a good-quality ex-
planatory susceptibility map based on 9 predisposing factors spatially reduced by Unique
Condition Units. The analysis has been processed using a Generalized Additive Model. The
landslide susceptibility map proposed in Figure 3.6c can support the design of infrastruc-
tures at national scale indicating which area is affected by high and very high probability
of landslide occurrence and thus which requires solutions to avoid or mitigate the effects
induced by probable landslides. For sure, this type of maps can support the decision process,
even though, the final choice is of the local authorities. Moreover, unfortunately, we cannot
indicate which section of the Silk Road Economic Belt infrastructures in Tajikistan may
require mitigation measures because the executive design of the path is not available.

In addition, to investigate the possibility to replicate the analysis in the rest of the high-
susceptible countries which are characterized by data scarcity we repeated the evaluation
of the landslide susceptibility in 2000 different scenarios by varying the number of the
landslide available from the original dataset. The result shows that a dataset of at least
220 unstable UCUs, on average, which corresponds to the 32% of the total unstable UCUs
(1.5% of all UCUs), could be enough to produce a reliable landslide susceptibility map
of west Tajikistan. The relative valiation AUC mean of the scenarios with 220 unstable
UCUs is equal to 0.85.

Despite the fact that the result is extremely site-specific and mapping unit-specific
the protocol proposed reveals a new perspective which would be investigated in further
analysis.

In the end of the PhD project, thousands rows of code have been written. Most of
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Figure 5.1: From moderate to very high susceptible administrative units of south-Asia.
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these have been collected in two open-source tools: the SZ-plugin and the SRT. We tested
both in the study area of North-east India to carry out a complete landslide susceptibility
assessment from data collection to interpretation. The results are two slope units-based
susceptibility maps modeled using the Logistic Regression and Weight of Evidence models.
The analysis confirms the user-friendly properties of the published tools and their effective
capacity to support the user during the result interpretation.

The results of the last three years of research have been summarized in three open
access articles published by international journals. All the data used are open and the
tools used are open-source. Moreover, all the data and tools produced are freely available
in open and open-source forms.

In conclusion, in this research we faced a very challenging project with the practical
goal to support the development of infrastructures through the prevention of damages
induced by some geological hazards. The dimension of the study area and the resulting
induced obstacles make difficult the evaluation of a detailed landslide susceptibility map of
the entire study area, in particular in a limited time of three years. Therefore, we focused
all our resources to promote a way to approach the problem and to provide tools in order
to make reproducible the solutions carried out in the tested study area of south-Asia.
Therefore we encourage the use of the tools provided to analyse the regions where a
landslide susceptibility map is necessary.
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