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Abstract 
 

To ensure food safety and to prevent food-borne illnesses, rapid and accurate detection of pathogenic 

agents is essential. Public authorities are pushing the food industry to develop comprehensive quality 

management systems to improve food safety. Progress in next-generation sequencing (NGS) 

technologies have revolutionized the study of bacterial populations, understood those present in 

foods, supporting the search of methods to better food safety by assessing the presence of specific 

undesirable microorganisms and genes. It has already been demonstrated that whole-metagenome 

shotgun sequencing can be used to detect pathogens in food and has the potential to become a 

powerful tool in the field of modern food safety since it allows the detection, identification, and 

characterization of a broad range of pathogens and their antibiotic resistance genes. Considering these 

aspects, in the studies presented in this thesis, the application shotgun metagenomic sequencing has 

been applied to investigate both the microbiome and resistome of foods of animal origin in order to 

assess the advantages and disadvantages of shotgun metagenomic sequencing in comparison to the 

cultural methods used to verify food safety and map ecosystems associated to food systems from farm 

to fork. The specific food chains addressed are those detailed in the 4 research studies performed to 

reach the main objective.  

In particular, in the first study, to contribute to assess the suitability of shotgun metagenomics to 

detect a wide range of target microorganisms in foods, we characterized and quantified 

microorganisms belonging to different domains experimentally spiked in cold-smoked salmon at 

known concentrations, using shotgun metagenomics. In addition, we compared the sequencing results 

using four bioinformatic tools, to evaluate the suitability to detect six species of bacteria, including 

potential food-borne pathogens, as well as Cryptosporidium parvum, Saccharomyces cerevisiae, and 

Bovine alphaherpesvirus 1. The results of this study showed that shotgun metagenomics can be 

applied to detect microorganisms belonging to different domains in the same food sample. 

Nevertheless, a direct correlation between cell concentration of each spiked microorganism and 

number of corresponding reads cannot be established yet.  

In the second study, we investigated whether the efforts of raising chickens without the use of 

antibiotics make any difference in the microbiome of poultry meat consumers eat. To this aim, we 

compared the microbiomes characterizing caeca and the corresponding carcasses of two groups of 

chickens reared one in a conventional farm and one in an antibiotic free intensive farm. Moreover, 

with the view of planning future studies, we investigated whether checking the correlation between 

the microbiome and resistome in the caeca and the carcass of the same animal provides more insight 

than the same analysis performed at flock level. The results showed a clear separation between the 

taxonomic, functional, and antibiotic resistant genes in the caeca of the birds reared in the 
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conventional and antibiotic free farms. However, that separation was completely lost on carcasses. 

The antibiotic free production resulted in statistically significant lower antimicrobial resistance load 

in the caeca of chickens in comparison to the conventional production. Moreover, the antimicrobial 

resistance load on carcasses was much higher than in the caeca, without any significant difference 

between carcasses coming from the two types of farms. All in all, the results of this research 

highlighted the need to reduce sources of microbial contamination and antimicrobial resistance not 

only at the farm level but also at the post-harvest one.  

In the third study, additional samples of poultry carcasses reared in antibiotic free and conventional 

flocks were tested, confirming the difference between the three tested groups with are still under 

investigation for possible correlations with feeding and environmental covariates. 

In the fourth study, we started the shotgun metagenomic investigation of an Italian fermented artisanal 

product, addressing the question if testing one or three aliquots of artisanal food homogenate is 

representative of the whole homogenate. The results clearly showed that the metagenomes obtained 

from replicates of the homogenate displayed overlapping taxonomic and functional composition. 

Therefore, shotgun metagenomics of a single aliquot of an artisanal fermented food is representative 

of the whole homogenate.  

Altogether, the results presented in this thesis confirmed that the application of shotgun metagenomic 

sequencing represents a powerful tool that can be used in the identification of both spoilage and 

pathogenic microorganism, their resistome and associated set of functional genes. However, the full 

implementation of shotgun metagenomics in food safety and inspection of food of animal origin 

within a regulatory framework required a full standardization of the laboratory and bioinformatic 

parts. Moreover, a robust relationship between sequence read abundance and concentration of colony-

forming unit must be still established.  
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1. Introduction  
 

1.1 Food Safety investigations: from traditional techniques to metagenomic 

analysis 
 

Food, an essential part of everyday life, undergoes many processing steps. The quality and safety of 

a food is largely influenced from relationship with its microbiome (De Filippis et al., 2018). The 

microbiome, play important roles in any food matrix ranging from fermentation, contamination, and 

spoilage. Deep taxonomic knowledge of the microorganisms and their communities is necessary 

either to promote desired food processes (i.e., fermentation), to better comprehend microbiological 

processes involved in food processing and ripening, and to improve microbiological safety by 

monitoring in situ pathogenic bacteria, hence, to limit damaging events (i.e., contamination and 

spoilage). 

Further evolution was stimulated in the field of microbial ecology by the advent and development of 

metagenomics. Metagenomics is defined as study of genetic materials from environmental or host-

associated microbiota to identify the microbial diversity and its functions (Choi et al., 2015) and thus 

gives a broader description than phylogenetic surveys, which are often based only on the diversity of 

one gene (i.e., 16S rRNA gene). Within this framework, metagenomics gives genetic information on 

potentially novel biocatalysts or enzymes, genomic linkages between function and phylogeny for 

uncultured organisms, and evolutionary profiles of community function and structure. In addition, 

applies a set of genomic technologies and bioinformatics tools to directly access the genetic content 

of entire communities of organisms (Thomas et al., 2012).  

Microbiome outputs are completed with a certain amount of metadata, the more the better. A great 

potential of taxonomic studies is the option to correlate the abundance of microbial taxa with other 

variables, taking into account that the results should be considered carefully, as the correlative link is 

not always due to ecologically meaningful relationships. Nevertheless, the correlations that result 

statistically relevant can be very useful in assuming a hypothesis on the role of certain microbial 

species in the food. Correlation analysis between the abundance of microbial taxa and chemical 

determinations may highlight the possible species responsible for the production of metabolites 

important for the properties of the final products (Lattanzi et al., 2013; De Pasquale et al., 2014; De 

Filippis et al., 2017a; De Filippis et al., 2018). 

Traditionally, conventional techniques including the Gram stain along with plate culture on selective 

growth media, and subsequently individual biochemical characterization came used for the 

identification and characterization of bacteria from clinical, food, or environmental origins. In food 
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systems, estimates of effective microbial diversity are still difficult because the majority of the food-

associated microorganisms cannot be cultivated on standard laboratory media. However, these 

techniques are not feasible for all microorganisms (Amann et al., 1995). For example, the selective 

isolation of microorganisms requires sometimes unknown growth factors and/or growth conditions 

that cannot be reproduced in the laboratory. It is widely accepted that there are many more 

microorganisms than those obtainable in plates (Ercolini et al., 2001) due to the fact of the inability 

of detecting novel microorganisms (which might not be cultivable with known media), and of the 

inability of recovering known microorganisms which are viable but enter a non-cultivable state 

(Giraffa and Neviani, 2001). Culture-dependent techniques can only detect a little portion (0.1%) of 

a complex community, indeed, to expand the understanding of the ecological niche of the food, 

techniques are necessary to identify or characterize microorganisms and predict the functional 

interactions of different microbiological communities present in the sample. In the last few decades, 

many culture-independent methods have been developed to solve this limit and extended to the food 

system. These techniques allow the identification and, in some cases, the quantification of food 

microbial groups and offer rapid and sensitive methods for determining the composition and diversity 

of complex microbial communities (Mayo et al., 2014). Different methods like denaturing gradient 

gel electrophoresis (DGGE), temporal temperature gradient electrophoresis (TTGE), and real-time 

quantitative polymerase chain reaction (qPCR) have been used in food microbial ecology (Cocolin et 

al., 2013). 

In this respect advances in multi-omic technologies have permitted the characterization of different 

microbial species in food matrices, microbial community profiling and monitoring population 

fluctuations in different microbial ecosystems. The increment of sequencing technologies, the 

ubiquitous nature, and specificity of nucleic acids over the past four decades have favored the capacity 

to characterize the microbiomes of matrices food or environment. DNA sequencing progressively 

evolved, through significant advancements in sequencing chemistries, from low throughput DNA 

fragment sequencing to high throughput next generation (i.e., NGS) and third-generation sequencing 

techniques (Loman and Pallen, 2015; Cao et al., 2017). 

The first shotgun DNA sequencing strategy was the Sanger. The Sanger methodology dominated 

research and represented a significant breakthrough that permanently changed the way prokaryotes 

in the environment were analyzed, leading to the advent of the metagenomic analysis era trough 

sequencing techniques (Hiergeist et al., 2015). Sanger et al., (1977) introduced the concept of DNA 

sequencing named the "chain terminator method". This first-generation sequencing technology is 

focused on incorporation of fluorescently labeled dideoxyribonucleotide (ddNTP) and a primer into 

a PCR machine that set the stage for automated high-throughput DNA sequencing. With the 
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information generated from the last terminator base in the four individual base reaction tubes after 

size separation, the original sequence is determined (Diaz-Sanchez et al., 2013). At the same time, 

Sanger sequencing method presented a high number of disadvantages associated with both the low 

yield of the DNA sequences obtained and the high cost. Nevertheless, low throughput results and 

high operational costs, restricted the utilization of the method Sanger (Cao et al., 2017). 

That said, other sequencing technologies were developed during the following years, including 

several next-generation sequencing (NGS) technologies (Metzker, 2010; Diaz-Sanchez et al., 2013). 

The study of microbial diversity can now be achieved by using high-throughput sequencing (HTS) 

approaches after direct nucleic acid extraction from the matrix to be studied. HTS assures higher 

sensitivity, enabling the detection of nondominant communities that play an important role in the 

studied ecosystem. The great advantage of these methods is the unprecedented potential for 

quantitative detection of the structure of microbial communities, in fact, the number of reads detected 

for a given organism is proportional to its abundance in the sample. Furthermore, HTS greatly reduced 

the price per base compared to Sanger sequencing (De Filippis et al., 2018). 

The first commercial HTS platform, the 454 Pyrosequencer, was released in 2000. This technique 

was based on the combination of single-molecule emulsion PCR with pyrosequencing (shotgun 

sequencing procedure) (Schadt et al., 2010). DNA molecule is first sheared with enzymatic based 

digestion or sonication, and later ligated with oligonucleotide adapters. Each ligated fragment is 

attached bead, PCR amplified, and pyro sequenced (Ronaghi et al., 1996). The disadvantage of this 

technique is that prone to high error rates, that is to say, on occasion n nucleotides are read as n-1 

nucleotides. This method was used for the first time in an investigation of microbial populations from 

water, marine, fresh water, fish, corals terrestrial animals (Dinsdale et al., 2008). 

This way, the development of this technology resulted in advances in the next-generation devices, 

such as the second-generation (High‐throughput next-generation sequencing, HT-NGS) platforms as 

marketed by Roche, Illumina-Solexa, Life Technologies, and Helicos. The second-generation NGS 

platforms methods are based on a parallel process in which each single DNA fragment is sequenced 

individually and separated in clonal amplicons for further analysis among the total sequences 

generated (Pareek et al., 2011). A diversity of sequencing platforms is available from several 

manufacturers, which vary in sequencing chemistry, read length, and/or throughput (Walsh et al., 

2018). Presently, Illumina's range of sequencers (MiSeq, NextSeq 500, and the HiSeq series) and the 

Ion Torrent Personal Genome Machine (PGM) are the most commonly used sequencing platforms 

(Reuter et al., 2015). The Illumina and Ion Torrent sequencers use several sequencing chemistries but 

follow such principles. Illumina sequencing technology, recent success in its application to 

metagenomics, is based on reversible dye-terminators. Briefly, adaptor-ligated DNA fragments on 
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the surface of a flow cell are amplified by bridge PCR, generating clusters of identical DNA 

fragments. These are then sequenced using a sequencing-by-synthesis approach that involves cyclic 

rounds of single-base extension with a mixture of fluorescently labeled dNTPs and imaging to 

identify the incorporated base (Bentley et al., 2008). Because all dNTP are present as single, separate 

molecules, natural competition minimizes incorporation bias. After the incorporation of reversibly 

terminating nucleotides, a camera capture images of the fluorescence, and the dye along with the 

terminal 3′ blocker is chemically removed from the DNA allowing the next cycle. Continuous 

sequence information of nearly 300 bp can be obtained from two overlapping 150 bp paired-reads 

from a single insert, hence yields of ~60 Gbp can be expected in a single channel. The only limitation 

of Illumina technology is the limited read length. For this reason, a greater proportion of unassembled 

reads might be too short for functional annotation (Wommack et al., 2008). Although, some current 

software packages (i.e., MG-RAST) are capable of analyzing unassembled Illumina reads of 75 bp 

and longer (Thomas et al., 2012, Diaz-Sanchez et al., 2013; Walsh et al., 2017). The Illumina 

platforms are distinguished in their total output and maximum read length. The Illumina MiSeq is 

suitable for amplicon sequencing, faster runtime can be achieved, although has a higher error rate 

(Thomas et al., 2012; Salipante et al., 2014), can be useful to assess library concentrations, barcode 

pool balancing, and for sequencing a limited number of samples. Generates low volume of sequence 

data (15 Gb) and is more suited to whole metagenome shotgun sequencing and metatranscriptomics 

(high-throughput applications) (Reuter et al., 2015; Quince et al., 2017). The Illumina NextSeq 500 

and the Illumina HiSeq 2500 generate a high volume of sequence data (120 Gb and 1.5 Tb, 

respectively) and are well suited for metagenomics studies, but NextSeq costs less than half the price 

of the HiSeq (Quince et al., 2017; Walsh et al., 2017). 

High‐throughput next-generation sequencing (HT-NGS) techniques have contributed to change the 

way to study food microbial ecology, leading to consider microbial populations as consortia (Cocolin 

and Ercolini, 2015). In recent years, high‐throughput sequencing has yielded insights into microbial 

populations within different environments such as soil (Fierer et al., 2012), ocean (Frias-Lopez et al., 

2008), human (Human Microbiome Project Consortium, 2012), including many foods and food 

production facilities, although the number of scientific publications on the subject is still rather 

limited compared to other ecosystems (Ercolini, 2013; Bokulich et al., 2016). For the moment, most 

of the HTS-based studies examined have centred on the monitoring of microbial populations during 

food fermentations (De Filippis et al., 2017b). 

The advantage of shotgun sequencing firstly offers the possibility to monitor the abundance of 

microbial activities directly in the food matrix; secondly, to collect information on the genetic 
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capacity of the whole microbial community; thirdly, to recover complete or draft microbial genomes 

from the metagenomes, achieving a strain‐level resolution (De Filippis et al., 2017b). 

Different whole metagenome shotgun sequencing approaches are applied in food. Specifically, these 

methods can be used to detect and trace outbreaks of food-borne pathogens also through food 

production chains, study starter cultures and probiotics, and understand the microbial dynamics of 

food fermentations (Walsh et al., 2017). Another key topic for those who interface with the field 

of food microbiology is the understanding of the evolutionary dynamics of specific spoilage 

organisms (product spoilage). Most of the studies in the literature focus on fresh meat spoilage, 

monitoring of spoilage bacteria during storage (De Filippis et al., 2018). Beef carcasses included high 

microbial diversity and the well-known genera associated with meat spoilage (De Filippis et al., 

2013), with differences due to slaughtering practices and occurring at different areas of the carcass 

(Korsak et al., 2017). De Filippis et al., (2013) suggested that bacteria originally present on the 

carcass colonize the butchery environment, where they become resident at low temperatures. This 

microbiota constitutes a primary contamination source for fresh meat (De Filippis et al., 2013). HTS 

has been widely used to track contamination sources in different types of food processing plants as 

in the cooked sausages (Hultman et al., 2015), in the salmon fillets (Møretrø et al., 2016), and in the 

fresh meat (Stellato et al., 2016). In all cases of application, a resident microbiota in the plant was 

highlighted and its importance as a primary contamination source was highlighted, as was the need 

to adopt adequate cleaning and hygiene practices in food handling environments (De Filippis et al., 

2018). Whole metagenome shotgun (WMS) can also be employed to detect pathogens in food, as 

revealed by Leonard et al., (2015). In this regard, have applied this approach to detect Escherichia 

coli in fresh spinach. Yang et al., (2016) stated that WMS is useful for investigating the transmission 

of pathogens through food production chains (food-borne pathogens). Was used to investigate how 

food processing affected the microbial composition of beef. Although processing reduced the total 

number of bacteria in the meat, it was noted that it resulted in an increase in the relative abundance 

of Salmonella enterica, Escherichia coli, and Clostridium botulinum, potentially because of their 

ability to survive antimicrobial interventions. Thus, WMS can be used to identify the control points 

in the food production chain that best reduce contamination by food-borne pathogens (Walsh et al., 

2017). Nevertheless, beyond simply cataloguing the microorganisms the WMS approaches also 

elucidate their roles (Hanage, 2014). Several studies have demonstrated that WMS can identify the 

microorganisms that are most important during fermentation and enhance the qualities of fermented 

foods. For example, Illeghems et al., (2015) detected in a cocoa bean fermentation sample that genes 

associated with carbohydrate catabolism (specially heterolactic fermentation and pyruvate 

metabolism) were enriched in Lactobacillaceae while genes associated with pectinolysis, and citrate 
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metabolism were detected in Enterobacteriaceae. This implies that these bacteria might contribute to 

degradation of cocoa pulp and flavour formation. Similar, WMS can provide insights into the role of 

specific microorganisms in flavour production during fermentation and cheese ripening. Monitoring 

microbial gene expression during ripening of a surface‐ripened cheese (Dugat‐Bony et al., 2015) 

revealed the presence of microbial genes involved in flavour production from amino acids and 

highlighted that these activities were enhanced in the first phase of ripening. In another study, Wolfe 

et al., (2014), conducted an analysis of bloomy-rind, natural-rind, and washed-rind cheeses microbial 

communities. These included cysteine and methionine metabolism pathways (associated with the 

production of volatile sulfur compounds) and valine, leucine, and isoleucine degradation pathways 

(associated with putrid and sweaty aromas). Furthermore, in the same study genes encoding lipases, 

proteases, and methionine-γ-lyase (important enzyme in the production of sulfur compounds) were 

identified in Pseudoalteromonas, suggesting that this genus is involved in flavour production in 

cheese. These studies provided an in-depth analysis of the cheese maturation process and allowed us 

to better understand the metabolic activities of the different community members and their possible 

interactions (De Filippis et al., 2017b). WMS approach it can also be employed to identify, microbes 

associated with defects. For example, was used to determine the causal agent of a pinking defect in 

cheeses. Quigley et al., (2016) have discovered that Thermus thermophilus (which had not previously 

been associated with the cheese microbiota) was enriched in defect cheeses and hence associated 

genes involved in carotenoid production were enriched in these samples. This implies, that this 

approach could be employed to identify the causes of other defects in cheeses and eventually to inform 

control measures to prevent such defects. 

The application of HT-NGS sequencing is emerging and moving toward the development and the 

improvement of the poultry industry, improving animal production, increasing the food safety 

measures and preventing food-borne pathogens. Multiple studies have focused on the sequencing of 

food production animals including chickens. HT-NGS techniques have permitted the research 

diversity and functions of microbiota from the gastrointestinal tract (GIT) of various livestock animals 

creating great volumes sequence data comprising genetic information (Metzker, 2010). For this 

reason, allows hypothesis-driven research on chicken GIT microbiota, thereby highlighting the roles 

of previously unknown and rare microbial GIT species (Medinger et al., 2010; Diaz-Sanchez et al., 

2013; Choi et al., 2015). 

 

1.2 Historical overview and definitions of the term’s microbiome and microbiota 
 

Etymologically the term microbiome comes from ancient Greek, “micro” (small) and “biome” is 

composed of the word bíos (life) and modified by the ending “ome”, while the term microbiota is a 
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combo of “micro”, (small), with the term “biota”, which means the living organisms of an ecosystem 

or a particular area. Microbial communities were termed as the collection of microorganisms living 

together (multi-species assemblages) that interact with each other in a bordering environment 

(Konopka, 2009). The variety of perspectives on the term microbiome was a discussion for many 

years. The currently most cited definition in various papers stated that the term microbiome and 

microbiota were coined by Nobel laureate-microbiologist Joshua Lederberg in 2001 (Podolsky, 2017) 

in which it is defined microbiomes (within an ecological context) as a community of commensal, 

symbiotic, and pathogenic microorganisms within the environment. Actually, holding the search to 

pre-2001, the term microbiota is a term that is use from at least 50 years in basic microbiology (Lane-

Petter, 1962) while, the term microbiome was used for defining a very small ecological niche 

incorporating plant and animal life. Particularly, in 1988 Whipps, Lewis and Cooke, working on the 

ecology of microorganisms provided the first definition of the term microbiome: “A convenient 

ecological framework in which to examine biocontrol systems is that of the microbiome. This may 

be defined as a characteristic microbial community in a reasonably well-defined habitat which has 

distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but 

also encompasses their theatre of activity”. This notion represents an advancement of the definition 

of the microbial community, considering that it defines a microbial community with distinct 

properties and functions and its interactions with its environment, which implies the formation of 

specific ecological niches. Nevertheless, there are many other microbiome definitions that have been 

published over the years. Marchesi and Ravel, 2015 focused on their definition of microbiota as the 

set of microorganisms present in a defined environment while the term microbiome refers to the entire 

habitat, including the microorganisms' bacteria, archaea, fungi, protozoa, and viruses, their genomes 

(i.e., genes/microbial gene expression), and the nearby environmental conditions and its prevailing 

biotic and abiotic conditions. Sender et al., (2016) and Roto et al., (2015), have described the 

microbiota as a microbial community composed of commensal, symbiotic and pathogenic 

microorganisms, which usually colonize an area of human and animal (live in an environment such 

as the intestine) and are around 2 times more plentiful than somatic and germinal cells of the host. 

Hence, collective genomes and gene, and gene products (host and microbiota metabolites and 

proteins) of these symbionts is known as the microbiome. Nevertheless, when discussing the 

microbiota in the chicken intestine one is refers to the bacterial population (Marchesi and Ravel, 

2015; Prescott, 2017; Clavijo and Flòrez, 2018; Kogut, 2019; Berg et al., 2020). 

The microbiota includes all living members constitute the microbiome. Microbiome, defined by 

Whipps et al., (1988) includes the concept “theatre of activity”, involving the of molecules produced 

by the microorganisms, including their nucleic acids, proteins, lipids, polysaccharides (structural 
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elements), organic and inorganic molecules, signaling molecules and toxins (metabolites) and 

molecules generated by coexisting hosts and structured by the neighboring environmental conditions. 

Several definitions limit the definition of microbiome as encompassing the genes and genomes of 

microorganisms only. It is claimed that this is the definition of metagenome, which combined with 

the environment constitutes the microbiome. Metagenome and microbiome are often used 

interchangeably, but the metagenome is defined as a collection of genomes of microbial populations, 

the genes within the microbial populations and includes the plasmids within the different bacterial 

population from the members of a microbiota (Roto et al., 2015). In contrast to the microbiota, which 

can be studied separately, the microbiome is always composed by all members living, which interact 

with each other, live in the same habitat, and form their ecological niche together. The microbiome 

is characterized by the application of multi-omics technologies (metagenomics, metatranscriptomics, 

metaproteomics, or metabolomics approaches) combined with environmental metadata provide 

detailed information on microbial activities in the environment (Marchesi and Ravel, 2015; Berg et 

al., 2020). 

Historically, of microbiome research has emerged from environmental microbiome study (microbial 

ecology) and has evolved rapidly over the past few decades providing an interdisciplinary platform 

for agriculture, food science, biotechnology, and human medicine. This rapid evolution of 

microbiome research covering different fields, faces a variety of challenges due to lack of a clear or 

agreed of the vocabulary used to describe the term microbiome, and of lacking consensus on best 

practices in microbiome research is missing. Research progress has been driven by the development 

of new techniques and equipment. From the development of the first microscopes (that allowed the 

discovery of a new and unknown ecosystem and the identification of microorganisms), shifting the 

focus of the research community on the role of microorganisms as disease-forming agents that needed 

to be eliminated. Nevertheless, extensive research has shown that only a small proportion of 

microorganisms are associated with diseases, differently, the majority of microorganisms were 

known for beneficial interactions with other well microorganisms hence essential for ecosystem 

functioning. Subsequently, find of DNA, PCR, cloning techniques and the development of 

sequencing technologies, allowed the investigation of microbial communities using cultivation-

independent, DNA-based and RNA-based approaches (Brul et al., 2008). New sequencing 

technologies and sequence data showed both the critical roles of microorganisms in human and 

animals and the ubiquity of microbial communities in association within higher organisms (Lozupone 

et al., 2012).These new potential (at the beginning of this century and continues through today), have 

reshaped microbial ecology, because the analysis of genomes and metagenomes (in high-throughput) 

manner provides powerful methods for addressing the functional potential of individual 
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microorganisms and of whole communities in their natural habitats (Venter et al., 2004; Liu et al., 

2012; Berg et al., 2020). 

 

1.3 Whole shotgun metagenomic sequencing of food products 
 

Whole shotgun metagenomic sequencing is an alternative approach that seeks to avert all 16S rRNA 

gene metataxonomic sequencing limitations. Shotgun metagenomics consists in the sequencing of 

bacterial DNA isolated from the whole microbial community (after fragmentation and library 

preparation), without any prior PCR step, avoiding the possibility of amplification biases (De Filippis 

et al., 2017b; Laudadio et al.,2018). DNA molecules are randomly broken by enzymatic or 

mechanical methods into tiny fragments that are then independently sequenced (Sharpton, 2014; 

Durazzi et al., 2021). The final output represents the metagenome of the microbial populations present 

in the sample. The sequencing reads obtained are aligned to various genomic locations for the myriad 

genomes present in the sample, including non-microbes or microbes with unknown taxonomically 

informative genetic markers. The DNA sequences are sampled from taxonomically informative 

genomic loci (e.g.,16S rRNA gene) while others from coding sequences that provide insight into the 

biological functions encoded in the genome (Sharpton, 2014). As a result, metagenomic data deliver 

knowledge on mapping of the taxonomic composition of the ecosystem under study, allowing a more 

accurate resolution at the species level and potentially strain-level. Moreover, it is possible to tracking 

and comparing the abundance of microbial activities directly in the food matrix, and hence to collect 

information on the genic contribution of the whole microbial community in terms of functional genes 

(De Filippis et al., 2017b; Truong et al., 2017; Laudadio et al., 2018; Durazzi et al., 2021). But even 

so, metagenomic sequence data include several challenges. Metagenomic data, other than being 

relatively complex, and large, entail computational problems in informatics analysis. Furthermore, it 

can be difficult to determine the genome from which a read belongs. Indeed, communities are so 

different that genomes are not fully represented by reads and two reads from the same gene may not 

overlap and are thus unimaginable directly compare through sequence alignment (Schloss and 

Handelsman, 2008; Sharpton et al., 2011). Once the reads overlap, it does not mean that they belong 

to the same genome: in fact, when there is a correspondence between reads, they could also derive 

from different genomes that have modified their assembly during sequencing (Mavromatis et al., 

2007; Mende et al., 2012). Furthermore, metagenomic analysis provide a large volume of data to 

obtain significant results, entail computational problems in information processing. To help 

researchers, the development and progress of informatics software is very rapid and allows to improve 

the efficiency of metagenomic analysis (Sharpton et al., 2014). Bioinformatics is in fact a new 

discipline that deals with the development and integration of information science applications at the 
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service of research in the biotechnology field. Future explorations of this technique will allow us to 

study how the microbiota of food modulates in relation to the different conditions of storage 

temperature, heat treatment, pH, and aw, all thanks to the data obtained from sequencing. Another 

challenge is characterized by the fact that DNA extracted many times contains unwanted DNA inside. 

Sometimes, this DNA can exceed the one of interest and this makes the method to be used more 

complex (enriching the microbial DNA before to sequencing). Bioinformatics software and molecular 

methods is able to filter this DNA from the metagenomic one of interest (Woyke et al., 2006; Chew 

and Holmes, 2009; Delmotte et al., 2009; Schmieder and Edwards, 2011a; Garcia-Garcerà et al., 

2013). Finally, another challenge of metagenomic analysis that should not be underestimated is 

represented by the eventual contamination of the metagenomic sequence. Once the genetic material 

is sequenced, is difficult to determine which reads belong contaminant’s genome. This contamination 

could misdirect analyses of community genetic diversity if the contaminant’s genome is enriched of 

genes that are uncommon in the community (above all when the contaminant is abundant) or has a 

large genome. Nevertheless, other than limiting the contamination by applying good sampling and 

DNA extraction practices, exist bioinformatic software allows identification and filter of contaminant 

sequences in the metagenomic data (Schmieder and Edwards, 2011b). Whole shotgun metagenomic 

sequencing, thanks to the large amount of data generated, has become the largely used method in 

laboratories, even because the limits being overcome by the development in bioinformatics. In recent 

years, metagenomic sequencing has been utilized to determine new viruses, reveal novel and 

ecologically important proteins, determine taxa and metabolic pathways that differentiate gut 

microbiota, and characterize the genomic diversity and function of uncultured bacteria (Godzik, 2011; 

Yozwiak et al., 2012; Wrighton et al., 2012; Sharpton, 2014). Generally, a classic shotgun 

metagenomic study contains five phases:  

1. the sampling, processing and sequencing of the samples  

2. preprocessing of the sequencing reads  

3. sequence analysis to profile taxonomic, functional and genomic features of the 

microbiome  

4. statistical and biological post-processing analysis  

5. validation.   

To carry out each phase, researchers can interface with the choice of different experimental and 

computational approaches (Qiunce et al., 2017). 

 

1.3.1 Sampling and processing 
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Collection and storage methods are the first and decisive step in any metagenomics project. The DNA 

extracted should be representative of all cells present in the sample and in the same way sufficient 

amounts of high-quality nucleic acids must be obtained for successive library production and 

sequencing. Key objectives of this phase are the collection of sufficient microbial biomass for 

sequencing and to minimize contamination of samples. Sample collection and preservation protocols 

should specifically protocol for each sample type, due to the fact can affect both quality and accuracy 

of metagenomics data. Collection and storage methods that have been validated for one sample type 

cannot be assumed to be optimal for other sample types. As such, careful preliminary work to 

optimize processing conditions for sample types is often necessary. Cuthbertson et al., (2014) have 

shown that length of time between sample collection and freezing and the number of freezes–thaw 

cycles a sample undergoes can affect the microbial community profiles that are detected. DNA 

extraction methodology must be able to cause cell lysis of the diverse microbial taxa, otherwise, 

sequencing findings may be dominated by DNA derived from easy-to-lyse microbes. DNA extraction 

methods that comprise mechanical lysis (or bead beating) are considered to be more effective than 

those that rely on chemical lysis (Yuan et al., 2012). Extraction techniques, based on bead beating 

result in shortened DNA fragments. This way can contribute to DNA loss during library preparation 

methods that use fragment size–selection techniques. Contaminants that could interfere with the 

analysis may derive from kit reagents or from the laboratory environment (Tanner et al., 1998), from 

the sequencing reads of previous analyzes or from human DNA of other hosts (Thomas et al., 2012; 

Quince et al., 2017). 

 

1.3.2 Library preparation and sequencing 
  

A wide variety of library preparation protocols exist, but they all have in common the fact that 

fragments of DNA, with a length of 50-500 bp, at the ends are fused with platform-specific adapters. 

The choice of library preparation and sequencing method depends on the availability of materials, 

cost, ease of automation and DNA sample quantification. The Illumina platform has become 

dominant as a choice for shotgun metagenomics due to its wide availability, high outputs (over 1.5 

Tb per run), and high accuracy (with a typical error rate of 0.1-1%). There are several methods for 

generating Illumina sequencing libraries, depending on the method of fragmentation used. 

Transposase-based "tagmentation", for example in Illumina Nextera and Nextera XT instruments, is 

a popular method due to its low cost, and dilution methods could reduce these costs ulteriorly (Baym 

et al., 2015). Tagmentation approaches require small DNA inputs (1 ng of DNA), due to the 

subsequent PCR amplification step. PCR is performed to choose for molecules containing adapters 

at both ends and to produce sufficient quantities for sequencing. The adapters, at their extremities, 
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usually contain elements for the immobilization of library molecules on a solid surface (surface of a 

glass slide) and amplification. One or both adapters may contain sequencing priming sites. In Illumina 

libraries one adapter includes a ‘read 1’ (sequencing primer site), in which only one end is sequenced 

(single-end sequencing) or in which both ends are sequenced (paired-end sequencing) containing a 

‘read 2’ (primer site) and a site for an index primer, which is applied to read the unique index 

sequence, allowing libraries in a multiplexed run to be distinguished (Quince et al., 2017; Van Dijk 

et al., 2014). 

 

1.3.3 Analysis of taxonomic diversity 
 

One of the first classifications that are carried out in a microbial community is the quantification of 

its taxonomic diversity, which consists in determining which microorganisms are present in a 

community and their abundance. Taxonomic diversity serves to identify the similarity between two 

communities. Furthermore, when the biological functions of taxa are known, taxonomic analysis links 

these biological functions to the microbial community. Taxonomic diversity is quantified through 

different strategies: 

1) Analyzing taxonomically informative marker genes. The analysis of marker genes is one of the 

simplest and most computationally efficient ways to quantify the taxonomic diversity of a 

metagenome. Each read is compared to a reference database in which there are sequences that provide 

taxonomic or phylogenetic information (marker genes), through an algorithm able to recognize if a 

read is equal to the marker gene and to classify the reads based on their similarity with the sequences 

of the marker genes. Since this approach determines the comparison of metagenomic reads with a 

relatively small database for the purpose of a similarity search, marker genes analysis can be a quick 

method for estimating the diversity of a metagenome. 

2) Binning: grouping sequences into defined taxonomic groups. 

3) Assembling sequences into distinct genomes. 

These strategies are not mutually exclusive and may be synergistic. In some situations, it may be 

suitable to bin sequences into taxonomic groups and then subject each group’s sequences to assembly, 

while other instances may warrant conducting an initial assembly and then subjecting the assembled 

sequences to binning (Sharpton, 2014). 

 

1.3.4 Assembly 
 

When conducts shotgun metagenomics, the complete sequences of protein coding genes (previously 

characterized or novel) as well as full operons in the sequenced genomes can offer inestimable 

functional knowledge about the community. Hence the first approach is an assembly of shorter reads 
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into genomic contigs and orientation of these into scaffolds is often executed to offer a more compact 

and concise view of the sequenced community under investigation. Two strategies can be employed 

for assembly shorter reads into contigs: reference-based assembly (co-assembly) and de novo 

assembly. Reference-based assembly relates for use of one or more reference genomes as a “map” in 

order to create contigs, which can constitute genomes or parts of genomes belonging to a specific 

species or genus. Tool’s software such as Newbler (Roche), MIRA 4 (Chevreux et al., 2004) or 

AMOS, and MetaAMOS (Treangen et al., 2013) are commonly used in metagenomics for performing 

referenced-based assemblies. These tools are not computationally intensive and perform well when 

metagenomic samples contains sequences where closely related reference genomes are available. In 

such cases, sequences from closely related organisms would have already been deposited in online 

databases, enabling them to be used as references for the assembly procedure (Oulas et al., 2015). 

De novo assembly refers to the generation of assembled contigs using no prior reference to known 

genome(s) (Paszkiewicz and Studholme, 2010). Assembly merges collinear metagenomic reads from 

the same genome into a single contiguous sequence (i.e., contig) and is helpful for produce longer 

sequences, which can simplify bioinformatic analysis relative to unassembled short metagenomic 

reads. If utilized to quantify taxonomic abundance, one must be careful to track contig coverage (i.e., 

the number of assembled reads that align to the average base in the contig), as contigs are later treated 

as a single sequence in most downstream analyses, likely may thus not accurately quantify the 

abundance of the taxon as it is represented in the raw data (Sharpton, 2014). This task 

is computationally expensive, requires larger computational resources and relies heavily on de Bruijn 

graphs tools. Despite these tools were built with the assumption of assembling a single genome, often 

underperform when used for metagenome assemblies. Metagenome assembly is more difficult 

because the coverage of each constituent genome depends on the abundance of each genome in the 

community. Low abundance genomes may end up fragmented if overall sequencing depth is 

insufficient to form connections in the graph (Quince et al., 2107). Which is why, were developed of 

the next generation of assembly tools, the assemblers MetaVelvet (Namiki et al., 2012) and Meta-

IDBA (Peng et al., 2011). These tools employ a combined binning and assembly approach to create 

more accurate assemblies from datasets containing a mixture of multiple genomes. Both assemblers, 

they make use a multiple k-mer approach to detect kinks in the de Bruijn graph and then use these k-

mer thresholds to decompose the graph into subgraphs. In addition, avoid the task of choosing a k-

mer length that works well for both low- and high-abundance species. These tools further assemble 

contigs and scaffolds based on the decomposed subgraphs, and thus perform a more efficient 

grouping/ assembly of contigs, effectively separating those belonging to different species (Oulas et 

al., 2015). 
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There are various considerations associated assembling metagenomic sequences. First, assembly 

tends to be restricted to the most abundant taxa in the community. Second, assembly may produce in 

silico chimeras, so it should have been applied cautiously and with consideration. Repetitive regions 

within a genome are also difficult to assemble. Third, assembly can be computationally intensive, 

especially in its requirements for RAM. For these reasons, binning sequences prior to assembly can 

be a good way to cut reduce on the computational complexity (Sharpton, 2014). 

 

1.3.5 Binning 
 

Binning refers is the process of grouping reads or contigs into individual genomes and assigning the 

groups to specific species, subspecies, or genus. Binning plays an essential position in the analysis of 

metagenomes. Firstly, depending on the method used, binning can provide indications of the presence 

of new genomes that are difficult to identify. Second, it can provide information on the distinct 

number and type of taxa present in the community. Furthermore, binning provides a way to reduce 

the complexity of the data, so that post-binning analyzes (e.g., mounting) can be performed 

independently for each read rather than the totality of the data. Binning can be performed on 

assembled or unassembled data, although most algorithms manage to be more precise as the length 

of the reads increases. Two methods have been developed, on the information used to group the 

sequences: 1) compositional based binning, makes use of the fact that genomes have conserved 

nucleotide composition (e.g., a certain GC or the abundance distribution of k-mers). Using this 

conserved species-specific nucleotide composition, these methods are able of grouping sequences 

into their respective genomes. Composition-based binning when performed on short reads (i.e., 150 

bps), is not reliable as they do not contain enough information, in fact, is performed composition-

based binning on assembled datasets. Thus, longer contigs can provide the required k-mer distribution 

information, which will allow effective binning and taxonomic assignment of the binned fragments. 

2) similarity or homology-based binning, in which the unknown DNA fragment might encode for a 

gene and the similarity of this gene with known genes in a reference publicly available database (e.g., 

NCBI's nonredundant database - nr or PFAM) can be used to classify and hence bin the sequence. 

This way may provide higher annotation accuracy and resolution compared to compositional based 

binning. This method requires more computational research since each read is aligned and compared 

with a large number of sequences. This method is obviously not ideal for the identification of new 

genomes, however similarity-based binning of the reads allows for greater accuracy and resolution 

(Thomas et al., 2012; Sharpton, 2014; Oulas et al., 2015). Composition based binning algorithms 

feature the tools TETRA (Teeling et al., 2004), S-GSOM (Chan et al., 2008) PhylopythiaS (Patil et 

al., 2012), and ClaMS (Pati et al., 2011). Exist there are also tools that employ similarity-based 
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binning algorithms in their metagenomics analysis pipelines such as MG-RAST and MEGAN. 

MEGAN compares the reads to the database in which the sequences are inserted according to the 

NCBI taxonomic classification (Huson and Weber, 2013). MG-RAST uses phylogenomic 

reconstruction of database sequences to which a read is similar (Meyer et al., 2008; Glass et al., 

2010). 

 

1.3.6 Annotation of biological functions 
 

Metagenomics seeks to clarify what are the collective functions that are encoded in the genomes of 

organisms that are part of a community. The functional diversity of a community can be quantified 

by correlating metagenomic sequences to particular functions. Reads that contain coding sequences 

for specific proteins are identified through particular algorithms (gene prediction). Each coding 

sequence is then compared with other genes, proteins, protein families or metabolic pathways present 

in the database, of which some functional annotation is known (functional annotation). This 

metagenomic analysis produces a profile describing the number of distinct functions and their relative 

abundance and can be used to compare various metagenomes and identify communities that are 

metabolically similar (Human Microbiome Project Consortium, 2012), knowing that specific 

treatments affect the functional composition of the community (Looft et al., 2012). The metagenomes 

resulting from shotgun sequencing may also reveal the presence of novel genes (Nacke et al., 2012) 

or provide information into the ecological conditions associated with those genes whose function is 

not yet known (Buttigieg et al., 2013; Sharpton, 2014). 

Gene prediction determines which metagenomic reads contain coding sequences. Once identified, 

these coding sequences can be related to a function (Sharpton, 2014). Feature prediction is the process 

of labelling sequences as genes or genomic elements. For completed genome sequences a number of 

algorithms were developed (Delcher et al., 1999) that identify CDS with more than 95% accuracy 

and a low false negative ratio. Gene prediction can be carried out on assembled or unassembled 

metagenomic sequences. For the assembled sequences, gene prediction is very similar to the sequence 

analysis that is performed on the whole genome, through prediction algorithms that require species-

specific parameters. A number of tools were specifically designed to handle coding DNA sequences, 

including MetaGeneMark (McHardy et al., 2007), FragGeneScan (Rho et al., 2010), Orphelia (Hoff 

et al., 2009) and Metagene (Noguchi et al., 2008) and all of which utilize ab initio gene prediction 

algorithms. Often, annotation pipelines use an intersection of these tools to obtain a more informative 

prediction of the protein coding genes. Gene prediction tools utilize codon information (i.e., start 

codon-AUG) to identify potential open reading frames and hence to classify sequence stretches as 

either coding or non-coding. Most tools can be trained by using the desired training sets (Thomas et 
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al., 2012; Oulas et al., 2015). For example, FragGeneScan is trained for prokaryotic genomes only 

and is used by IMG/MER and MG RAST as well as EBI Metagenomics. It is believed to be one of 

the most accurate gene-prediction tools currently available. The unassembled sequences, the problem 

is when there are partially coding sequences in which the coding part, or the gene, starts upstream or 

stops downstream of the read. One of the simplest methods of identifying coding sequence is binning 

which map the reads to a database of gene sequences. This method also allows to provide the 

functional annotation of the analysed gene (Deshpande et al., 2013). 

This method has been used to quantify the genetic diversity in marine microbial communities (Rusch 

et al., 2007), and the gut microbiota (Qin et al., 2010) and is helpful for cataloguing the specific genes 

present in a metagenome. This method is high-throughput gene prediction since it relies on algorithms 

that are able to associate a genomic fragment with a very similar sequence present in the database. If 

the objective is to identify novel or highly divergent genes within a microbial community, this is not 

the best method. Another method for gene prediction involves transduction of each read into six 

possible proteins coding and the confrontation of each of the resulting proteins in a database of protein 

sequences by aligning the sequences. Hence, the sequence alignment can be useful to identify those 

metagenomic sequences that encode peptides homologous to proteins present in the database 

(Sharpton, 2014). 

The coding sequences identified, can be associated with a precise biological function, by classifying 

the predicted metagenomic proteins into protein families. A protein family is a group of evolutionarily 

related protein sequences or subsequences (Finn et al., 2014). On the other hand, the proteins within 

a family share a common predecessor and hence encode similar biological functions and to that, the 

sequence encodes the family’s function. Altogether, metagenomic annotation involves functional 

assignment to the protein coding genes, achieved by homology-based searches of query sequences 

against databases containing known functional and/or taxonomic information (Oulas et al., 2015). 

Classification of a metagenomic protein sequence within a protein family demands its comparison 

within a database in which there are known sequences that code for certain proteins (sequence 

database) or a comparison of the sequence with a probabilistic model describing the diversity of 

proteins in a family (HMMs database). Comparing metagenomic reads to a database of sequences 

tends to be fast and produces results more specific hits for reads that are closely related to sequences 

in the database while comparing metagenomic reads to a database of HMMs tends to identify more 

distantly related and diverged members of a family. Many functional annotation databases are 

available to obtain annotation for metagenomic datasets, such as SEED subsystems (Overbeek et al., 

2005), eggnog (Muller et al., 2010), KEGG (Kanehisa et al., 2004), and COG/KOG (Tatusov et al., 

2003), that are sequence database. For example, SEED annotation system (employed by MG-RAST) 
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links specific family level functions into higher-order functional subsystems (Overbeek et al., 2014) 

while EggNOG is a database of non-supervised orthologs groups of proteins that tends to be 

frequently updated so as to include a relatively large amount of sequence diversity (Powell et al., 

2014). Finally, HMM databases in metagenomic analyses tend to be limited to PFAM, which uses 

HMMs to model protein domains (Finn et al., 2014). On the other hand, no reference database covers 

all biological functions, the ability to visualize and merge the interpretations of all database searches 

within a single framework is important. For these reasons, there are several web servers such as MG-

RAST, IMG/M and CAMERA (Glass et al., 2010; Markowitz et al., 2008; Sun et al., 2010) that 

interface with distributed computing clusters to conduct gene prediction, the database search, family 

classification and annotation. 

Protein family classification of reads requires complex calculations as all metagenomic peptides are 

compared to all protein sequences in the database. Each comparison is independent so that the 

calculation clusters and servers can distribute the computational load in parallel and improve the 

throughput achieved. Protein family classification of metagenomic reads has some drawbacks. Since 

a microbial community is very heterogeneous, the functional diversity encoded in the metagenome 

can only approximate the functional activity of a community. Furthermore, most databases 

contain families whose biological function is not yet known, so the reads homologous to these 

families of proteins still cannot find a functional association. Finally, each database uses different 

approaches so each can annotate different gene portions, which can then produce different functional 

profiles to describe a microbial community (Sharpton, 2014). 

A complementary approach to metabolic function profiling of metagenomes is an in-depth 

characterization of specific functions of interest. For example, the identification of genes involved in 

antibiotic resistance, in a microbial community can inform on the spread of antibiotic resistance 

(Pehrsson et al., 2016). Ad hoc methods and manually curated databases of antibiotic-resistance genes 

have been crucial to this approach. ARDB (Liu and Pop, 2009) was the first widely adopted resistance 

database and is now complemented by additional resources, such as Resfams (Gibson et al., 2015). 

Comparably large efforts are also devoted to reporting the virulence repertoire of a metagenome; 

targeted analyses of metagenomes for specific gene families of interest can also be used to validate 

findings from single, cultivation-based isolate experiments (Quince et al., 2017). 

 

1.3.7 Online software for metagenomic sequencing data 
 

There is several online software that can be useful for processing metagenomic data, some of them 

are free servers. In order to meet the computational needs for metagenomic data analysis, MG-RAST 

(http://metagenomics.anl.gov) (Meyer et al., 2008) was launched in 2007 at Argonne National 
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Laboratory as a free server and has grown into a dominant resource for the metagenomic research 

around worldwide. MG-RAST is open-source bioinformatics software for processing, analysing, 

sharing and disseminating metagenomic datasets. Receives user DNA sequence data and processes 

the data utilizing the databases (inside) for annotation mapping, as well as the NCBI taxonomy. When 

the data obtained from the sample is uploaded, these are comparable with those contained in the 

database. The primary data product displayed to the user by MG-RAST is in the form of abundance 

profiles for specific taxa, and taxonomic information is projected against this data. The sequences are 

normalized and processed, and the results are generated automatically. Supported are the comparison 

of NCBI taxonomies derived from whole genome shotgun data and the comparison of relative 

abundance for KEGG, eggNOG, COG/KOG and SEED subsystems on multiple levels of resolution. 

Both IMG/MER and MG-RAST are widely used data management repositories and comparative 

genomics environments. They are fully automated pipelines that provide quality control, gene 

prediction, and functional annotation. The system makes the results visible on the display and allows 

the user to change the parameters. Access to data is password protected and all data generated by the 

automatic pipeline is available through the download of data products generated, as well as optional 

sharing and publishing within the respective portals. MG-RAST predicts all genes in the metagenome 

and identifies the homologs of those genes present in the isolate genomes using a tool named BLAT 

(BLAST-like alignment tool) (Kent, 2002). BLAT misses’ similarities below 70% identity, so many 

strong hits to other genes are missed. After the best hits to genes from an isolated genome are 

identified, all subsequent analysis is done using the genes of the isolate genomes and not the genes 

of the metagenome at hand. This creates many limitations since the analysis is not performed on the 

original genes of the metagenome, but on the “proxy” genes to the isolated genomes instead. The 

advantage of this method is its computational speed. The only computationally intensive step is to 

find the best hits of the metagenomes against the isolates. Once this is done, all other comparisons 

are pre-existing. The MG-RAST web interface enables comparison using a number of statistical 

techniques and enables the incorporation of metadata into the statistics. MG-RAST system supports 

shotgun and amplicon metagenomes from any platform in FASTQ or FASTA format and, in addition, 

requires a minimum read length of 75 bp and a minimum dataset size of 1 megabase (Thomas et al., 

2012; Oulas et al., 2015; Wilke et al., 2016). Hence, within this framework the tasks can be divided 

into three conceptual steps: 1. data cleansing/quality evaluation, 2. data transformation/reduction, and 

3. data analysis/interpretation. In the first step, the objective is to filter the noisy sequences and 

includes “Preprocessing” removes some ambiguous sequences or low-quality sequences; 

“Dereplication” removes duplicated sequences; “Screening” removes human genomic sequences that 

may have been mixed accidentally, using a sequence alignment tool, Bowtie (Langmead et al., 2009). 



24 
 

In the second step, provides for “gene prediction” finds genes within the DNA sequence, using an 

HMM-based gene prediction tool for short and error-prone sequences, FragGeneScan (Rho et al., 

2010); “Clustering” further compresses the data by grouping similar sequences and presenting only 

one consensus sequence, using a search-based clustering tool, Uclust (Edgar, 2010). In the third step, 

provides for “identify proteins or RNAs” by comparing with data in public databases and then to do 

“annotation,” using the sequence alignment tool BLAT (Tang et al., 2014). MGmapper is software 

used to process raw sequence data and ensure access for routine analysis of complex datasets. 

Performs reference-based sequence assignment, followed by a post-processing analysis to make 

reliable taxonomy annotation at species and strain levels. MGmapper pipeline enabling usage of any 

custom database based on a set of fasta sequences, the usage of databases antimicrobial resistance 

genes and 16S rRNA. The current version of MGmapper includes 18 databases. MGmapper processes 

fastq reads in four steps: 1) pre-processing (an optional trimming and filtering) of raw reads to remove 

potential positive control reads, by using the Cutadapt program (Martin, 2011); 2) mapping of reads 

to specified reference databases and alignment-based filtering. However, in doing so, properly paired 

read may align to more than one reference sequence, located in different reference sequence 

databases; 3) identification the best hits, assigning a read-pairs to only one specific reference 

sequence; 4) post-processing of taxonomy annotations and preparation of excel and text files which 

includes normalized abundance statistics, read and nucleotide count (Petersen et al., 2017). The 

CosmosID platform a simple and easy-to-follow algorithm, has the potential to provide fast, reliable 

bacterial detection and identification down to the species and strain level from metagenomic shotgun 

sequencing data. Identifies metagenomic sequences using statistical and computational methods, uses 

raw and not assembled reads as inputs and compares them with the sequences present in the reference 

databases of bacteria, viruses, fungi, protists and antibiotic resistance genes. Nevertheless, strategies 

for metagenomic detection of antibiotic resistance genes need further development (Yan et al., 2019). 

The One Codex data platform developed for the taxonomic and functional analysis of metagenomes 

(WGS), 16S and other sequencing data, is used freely to analyse public data and was drawn up to 

identify microbial sequences employing a “k-mer based” taxonomic classification algorithm through 

a web-based data platform (Wood and Salzberg, 2014). One Codex uses two reference databases, the 

full One Codex database which currently includes approximately 40.000 genomes of bacteria, viruses, 

fungi, archaea and protists and a smaller database, NCBI RefSeq database which includes over 8.000 

microbial genomes. Samples are uploaded (through a graphical upload tool) in FASTA or FASTQ 

format to the One Codex platform with both drag-and-drop and folder navigation options. Once 

uploaded, reads are taxonomically classified and the interactive report is populated and linked to the 

user’s account (Minot et al., 2015). 
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1.3.8 Biostatistical analysis of metagenomic sequencing data 
 

Independently of the methods used for shotgun metagenomic sequence analyses, the outputs will 

understand data matrices of samples versus microbial features (i.e., species, taxa, genes and 

pathways). Analysis statistical uses tools to interpret matrices and decipher how the findings relate to 

the test sample metadata. Numerous tools and software packages exist for performing statistical 

analysis of metagenomic data which include multivariate statistics and machine learning. 

Unsupervised methods include clustering and correlation of samples, and visualization techniques 

such as heat maps, ordination (e.g., principal component analysis and principal coordinates analysis) 

or networks, which allow patterns in the data to be revealed graphically whereas supervised methods 

include statistical methods. For example, multivariate analysis of variance (ANOVA) for direct 

hypothesis testing of differences between groups, or machine learning classifiers that train models to 

label groups of samples (Pasolli et al., 2016). Both of these methods deem the community as a whole. 

In recent years, the R statistical programming language (Team, 2008) has gained popularity and is 

currently used for multivariate statistics. Packages such as vegan (Oksanen et al., 2007) Bioconductor 

(Gentleman et al.,2004) and phyloseq (McMurdie and Holmes, 2013) provide multiple in-built 

functions and libraries for performing a wide range of statistical analyses required for metagenomic 

datasets (Oulas et al., 2015). Numerous tools and software packages exist for performing statistical 

analysis of shotgun metagenomic data. For example, alpha diversity (which measures variability, 

richness, dominance, and evenness within a single population) is supported through software such as 

Shannon entropy (Gorelick, 2006) and Phylogenetic Diversity (PD) (Chao,1984). Rarefaction 

analysis is used to assess the coverage of the microbial community in the sample. Rarefaction curves 

plot the sample size with respect to the esteemed number of genera (Jaenicke et al., 2011). Beta 

diversity (which is the diversity across many populations or samples) is calculated using several 

matrices, such as unweighted and weighted UniFrac (Lozupone et al., 2006) and PCoA (Principal 

Coordinate Analysis) (Oulas et al., 2015; Ghosh et al., 2019). There are two main approaches for 

quantifying β-diversity: those that take into account the evolutionary differences between 

communities (phylogenetic β-diversity), and those that do not (taxon-based or non-phylogenetic 

methods) (Jovel et al., 2016). Finally, one of the aims of metagenomics is to link functional and 

phylogenetic information to the chemical, and physical that characterize an environment. While 

measuring all these parameters can be time-consuming and cost-intensive, it allows retrospective 

correlation analysis of metagenomic data that was perhaps not part of the initial aim of the project or 

might be of interest for other research questions. The value of such metadata cannot be overstated 
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and, in fact, has become mandatory or optional for the deposition of metagenomic data into some 

databases (Markowitz et al., 2008; Thomas et al., 2012). 

 

1.4 Safety and hygiene of poultry meat production 
 

Microbial diversity is shaping the ecology of diverse ecosystems. Studying microbial diversity and 

its interactions is a challenge due to the variability, which can occur between sources. In relation to 

poultry meat production, the microbial diversity and its dynamics can influence the product shelf life 

and safety, if spoilage bacteria are favoured and pathogenic bacteria are present and able to grow 

(Rouger et al., 2017a). In the poultry meat agri-food industry, contaminating bacteria came from 

faeces, skin, or feathers (animal microbiota), air, equipment, surfaces (production plant environment) 

and from human manipulators (Chaillou et al., 2015). Moreover, the microbiological quality of meat 

depends on various factors, such as the level of contamination during slaughter and processing stages, 

the temperature and conditions of storage, and the physiological status of the animal at the time of 

slaughter (Nychas et al., 2008). During food processing, the carcasses come into contacts with various 

surfaces that can result in cross‐contamination events which implies that during processing of poultry 

carcasses, microbial contamination often occurs as a result of the processing procedures employed. 

Another source of contamination can be represented by other birds which can enter in contact with 

carcasses (Rouger et al., 2017b). Most food-borne outbreaks are caused by cross-contamination 

phenomena due to food contact with contaminated surfaces (Griffith et al., 2015). In particular, at the 

slaughterhouse, the microbial contamination that occurs during the path of the carcasses along the 

line occurs mainly at the surface level and is not limited to zoonotic agents only, although the 

remaining part of microorganisms (such as the spoilage ones) is also very important (Bolder, 2007; 

Luber, 2009). During the scalding and de-feather removal phases, the epidermis, already colonized 

by different microbial communities, is usually damaged or removed, and consequently, the exposed 

portion is more vulnerable to contamination caused by gram-negative bacteria from the intestinal 

contents or from other animals (Thomas and McMeekin, 1980). At the time the carcasses are 

conveyed along the slaughter line, they can be subject to cross-contamination phenomena by aerosols 

or condensation formed on the equipment or on the ceiling, thus compromising the shelf life of the 

final product. Another way of cross-contamination can be represented by the evisceration phase, 

following the expulsion of faecal material or through the contact plant. Furthermore, in the 

evisceration phase, it is important that during the removal of the gut it remains intact, in order to 

prevent the spread of faecal material and bacteria on the carcasses, suggesting that evisceration is a 

phase that, if performed incorrectly, can cause a significant increase in the levels of microbial load 

on the carcasses (Mead, 2004; Bolder, 2007). The gastrointestinal tract of poultry hosts many bacteria, 
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such as Campylobacter spp. or Salmonella spp., that can be potentially dangerous. Poultry gut 

microbiota has been studied to correlate gut microbiota, animal feeding and their health (Shaufi et 

al., 2015; Ranjitkar et al., 2016). According to Hue et al., (2011) and Pacholewicz et al., (2016), there 

is a correlation between the number of Campylobacter in the ceca and the contamination level seen 

on carcasses by measuring an average contamination level of 8.05 log CFU/g of ceca and 2.39 log 

CFU/g of carcasses. Some of the microorganisms originated from the animal’s gastrointestinal tract 

as well as from the environment with within the animal had contact at some time before or during 

slaughter (Koutsoumanis et al., 2004). This can be assessed with studies on the origin of the 

contaminants showing an association between work surfaces and the presence of Enterobacteriaceae 

on meats. Psychrophilic bacteria (capable of developing at low temperatures) are also regained from 

hides and work surfaces (within the slaughterhouse) just like from carcasses and slaughtered meat at 

all stages of processing (Gill, 2005). As regards the chilling phase of the carcasses, air-chilling is 

becoming popular all over the world, although according to various studies the latter does not show 

any reduction in the total or pathogenic microbial load (Allen et al., 2000; Fluckey et al., 2003). The 

storage temperatures of the carcasses and their maintenance during the chill chain are equally 

important, as this allows to keep under control the growth of spoilage bacteria, especially 

psychrophilic ones. The incorrect maintenance of the chill chain could lead to the formation of 

condensation on the surfaces of the carcasses, which can constitute a favourable environment for the 

development of bacteria; however, even in the absence of condensation, the activity water (aw) of 

these surfaces must still be adequate in order to avoid unwanted bacterial proliferation (Hinton, 2000). 

 

1.5 Microbiological criteria and sampling plans: Regulation (EC) No. 2073/2005 
 

Developing microbiological criteria for a food is a complex process that requires considerable effort 

since their application demands considerable demands (Van Schothorst et al., 2009). According to 

the International Commission on Microbiological Specifications for Foods defined the term 

“Microbiological criterion” as the presence of microorganisms or their toxins or the number of 

organisms per unit of mass/volume/ area, determined by use of defined procedures and applied in 

acceptance sampling of food (ICMSF, 1986). The microbiological criterion, it is expressed (whatever 

type of criterion is used) as a definite value, which may be a number of microorganisms or the absence 

of a given organism in a defined quantity of sample (i.e., no Salmonella in 25 g) (Simonsen, 1995).  

At the level of the European Union, the EU legislation, containing the "microbiological criteria for 

foodstuffs", is represented from Commission Regulation (EC) No 2073/2005 and its amendments, 

lays down the microbiological criteria for certain microorganisms and the implementing rules to be 

complied with by food business operators that they must respect during the performance of the 
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activities. The Regulation provides in Annex I of Chapter 1 the food safety criteria of products placed 

on the market during their shelf life. Definition of food safety criterion as established in the 

Commission Regulation (EC) No 2073/2005 means a criterion defining the acceptability of a product 

or a batch of foodstuff applicable to products placed on the market. In Annex I of Chapter 2 reports 

the process hygiene criteria to assess the adequacy and the level of hygiene of the production process. 

Definition of process hygiene criterion as established in the Commission Regulation (EC) No 

2073/2005 means a criterion indicating the acceptable functioning of the production process. Such 

criterion is not applicable to products placed on the market. It sets an indicative contamination value 

above which corrective actions are required in order to maintain the hygiene of the process in 

compliance with food law (European Commission, 2005).  

All the analytical reference methods listed in the EU Regulation 2073 to verify the compliance of 

food lots to both food safety criteria and process hygiene criteria are based on ISO cultural methods 

to both detect and/or quantify bacteria pathogens or groups of indicator microorganisms. Alternative 

methods, including molecular methods such as PCR, can be applied. However, whenever a sample 

positive for a pathogen is detected, the result must be confirmed using the ISO reference method.  In 

this context, the possibility to detect all pathogens in the same sample using sequencing methods such 

as metataxonomics or metagenomics should be always couple with the possibility to double check 

the presence of detected pathogens using the reference ISO method.  

 

1.6 Foods of animal origin and food-borne outbreaks 
 

The EU regulations are structured to prevent the occurrence of biological hazards in feed and food to 

prevent the risk those hazards can cause for human health. Unfortunately, the implementation of such 

regulations cannot prevent the occurrence of food-borne outbreaks that in the EU Member States in 

2019 were 5.175 involving 49.463 cases of illness, 3.859 hospitalizations and 60 deaths. In addition, 

117 outbreaks, 3,760 cases of illness and 158 hospitalizations were communicated by six non-MS. 

Salmonella was the agent most identified in food-borne outbreaks and caused the highest number of 

hospitalizations (49.6% of all outbreak-associated hospitalizations). At the EU level, the consumption 

of food of animal origin (i.e., fish and fishery products, eggs and egg products, meat and meat 

products, milk and milk products) was associated with most of the food-borne strong-evidence 

outbreaks (EFSA and ECDC, 2021a).  

At the EU level and reported to ECDC, Campylobacter was the third most frequently reported 

causative agent for food-borne outbreaks. Campylobacteriosis has been the most commonly reported 

zoonosis in humans in the EU since 2005. The specific notification for campylobacteriosis is 

mandatory in Iceland, Norway, Switzerland and in twenty-one EU Member States. The reporting of 
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food-borne campylobacteriosis disease outbreaks in humans is binding according to the Zoonoses 

Directive 2003/99/EC. In 2019, 220.682 confirmed cases of human campylobacteriosis were reported 

by 28 EU MS with notification rates of 59.7 cases per 100.000 population, confirming a decrease of 

6.9% compared with 2018 (Table 1). The lowest country-specific notification rates (≤8.6 per 100.000) 

in 2019 were ascertained in Bulgaria, Cyprus, Greece, Latvia, Poland, Portugal and Romania while 

the highest rates were ascertained in Czechia, Slovakia, Denmark and the United Kingdom (EFSA 

and ECDC, 2021a). 

 

Table 1: Reported human cases by country and year of campylobacteriosis and notification rates per 

100.000 population in the EU/EFTA, from 2015 to 2019 (EFSA and ECDC, 2021a). 

 

 
(a): Y: yes; N: no; A: aggregated data; C: case-based data.  

(b): Sentinel surveillance: notification rates calculated with estimated coverage of 20%.  

(c): Sentinel surveillance: notification rates calculated with estimated coverage 52%.  

(d): Sentinel surveillance; no information on estimated coverage. So, notification rate cannot be estimated.  

(e): Switzerland provided data directly to EFSA. The human data for Switzerland include data from Liechtenstein.  

(f): Data not complete in 2019, rate not calculated. 

 

Between 2015 and 2019, the number of confirmed campylobacteriosis cases reported in the EU/EEA 

they have had a characteristic seasonality, with peaks cases in the summer months. However, between 

2012 and 2019 in the EU a smaller but distinct winter peak has become apparent in Austria, Germany, 
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Finland, Belgium, Luxembourg, the Netherlands, Switzerland and Sweden. The EU /EEA trend was 

stable from 2015 to 2019, the only Member State that indicated decreasing trend was Hungary, while 

Italy, Latvia, Romania and Portugal indicated increasing trends (Figure 1). One Member State advised 

that the reported number of campylobacteriosis cases is lower than expected (due to the COVID-19 

situation in 2020) (EFSA and ECDC, 2021a). 

 

Figure 1: Trend in reported between 2015 to 2019 by month human cases of campylobacteriosis in 

the EU /EEA (EFSA and ECDC, 2021a). 

 

 
Source(s): Austria, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, 

Luxembourg, Malta, the Netherlands, Norway, Poland, Romania, Slovakia, Slovenia, Sweden and the United Kingdom. Belgium, 

Bulgaria, Croatia, Greece, Portugal and Spain did not report data to the level of detail required for the analysis.  

 

  

Salmonellosis is the second most common zoonosis in humans in the EU after campylobacteriosis 

and an important cause of food-borne outbreaks in the EU/EEA. In the EU, notification and 

surveillance of food-borne salmonellosis in humans is mandatory in accordance with European 

Commission Decision 2000/96/EC and Decision No 2119/98/EC in Iceland, Norway and Switzerland 

and twenty-two EU Member States, whereas in six Member States (Belgium, France, Luxembourg, 

Netherlands and the United Kingdom) is based on other systems. Since 2007, EU and EEA countries 

report their public health surveillance data to The European Surveillance System (TESSy) at 

European Centre for Disease Prevention and Control (ECDC). The reporting of food-borne 

salmonellosis disease outbreaks in humans is binding according to Zoonoses Directive 2003/99/EC. 

In 2019, 87.923 confirmed cases of human salmonellosis were reported by 28 EU Member States 
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with a notification rate of 20.0 cases per 100.000 population, confirming at the same level as in 2018 

(20.1 cases per 100.000 population) (Table 2) (EFSA and ECDC, 2021a). 

 

Table 2: Reported human cases by country and year of salmonellosis and notification rates per 

100.000 population in the EU/EFTA, from 2015 to 2019 (EFSA and ECDC, 2021a). 

  

 
(a): Y: yes; N: no; A: aggregated data; C: case-based data.  

(b): Sentinel system; notification rates calculated with an estimated population coverage of 48%.  

(c): Sentinel system; notification rates calculated with an estimated population coverage of 64%.  

(d): Sentinel surveillance; no information on estimated coverage 2015–2018. So, notification rate cannot be estimated. (e): Switzerland 

provided data directly to EFSA. The human data for Switzerland include data from Liechtenstein.  

(f): Data not complete in 2019, rate not calculated.  

 

The highest notification rates in 2019 were ascertained in Czechia and Slovakia (122.2 and 91.6 cases 

per 100.000 population) while the lowest rates were ascertained by Cyprus, Greece, Ireland, Italy, 

Portugal and Romania (≤7.1 cases per 100.000 population). Between 2010 and 2019, the number of 

confirmed salmonellosis cases in the EU/EEA they reported with more cases during the summer 

months (Figure 2). The EU/EEA trend for salmonellosis was flat from 2015 to 2019, with no Member 

States with an increasing trend. One Member State (Finland) was the only one reporting a 

significantly decreasing trend (EFSA and ECDC, 2021a). 
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Figure 2: Trend in reported between 2015 to 2019 by month human cases of salmonellosis in the 

EU/EEA (EFSA and ECDC, 2021a). 

  

 
Source: Austria, Belgium, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, 

Lithuania, Luxembourg, Latvia, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Sweden and the 

United Kingdom. Bulgaria, Croatia and Spain did not report data to the level of detail required for the analysis.  

 

As in previous years and  2019, the four most commonly reported Salmonella serovars in the humans, 

food and animals were S. Enteritidis (50.3%), S. Typhimurium (11.9%), monophasic S. Typhimurium 

(1,4,[5],12:i:-) (8.2%) and S. Infantis (2.4%) (Table 3). The fifth most common serovar S. Newport 

decreased by 20.0% compared with 2018. Serovar S. Mikawasima increased by 92.1% and 137.1% 

compared with 2018 and 2017, respectively (EFSA and ECDC, 2021a). 
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Table 3: Distribution from 2017 to2019 of reported confirmed cases of human salmonellosis, by the 

20 most frequent serovars in the EU/EEA in 2019 (EFSA and ECDC, 2021a). 

MS: Member State.  

(*): Target Salmonella serovars in poultry populations.   

Source(s): 27 MS: Austria, Belgium, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, 

Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, 

the United Kingdom; and two non-MS: Iceland and Norway.  

 

1.7 Antimicrobial resistance and animal, environmental and human resistomes 
 

The beginning of the antibiotic era began with the discovery of penicillin in 1928 and later with the 

introduction to the medical industry in the 1940 (Fleming, 2001). Antibiotics have revolutionized 

modern medicine and are specific antimicrobial substances that either inhibit or kill the growth of 

bacteria without damaging host cells and tissues (Aminov et al., 2010). Antibiotics have been used 

in human and veterinary medicine for more than 70 years and have greatly contributed to tackling 

pathogenic bacteria and protecting human and animal health; for this reason, antibiotics are widely 

used in the prevention and treatment of bacterial infections (Oniciuc et al., 2018; Zhao et al., 2021). 

Initially, most antibiotics (naturally occurring substances) were used for treating infections in 

humans, but subsequently, the use was extended to disease treatment/prevention in food animals (Van 

Boeckel et al., 2015). One of the main threats to the worldwide public health and food safety is 
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considered the increasing incidence of antimicrobial resistance (AR) (Roca et al., 2015; World Health 

Organization Antibiotic resistance, 2018). Although AR is not a new phenomenon (D'Costa et al., 

2011), over the past several decades, the emergence of new antibiotic resistance genes (ARGs) that 

can spread worldwide have been discovered. The collective pool of ARGs (intrinsic and acquired 

resistance genes) in a given environment, their precursors in pathogenic and non-pathogenic bacteria 

and potential resistance mechanisms within microbial communities is termed resistome (Wright, 

2007; Kim and Cha, 2021). Each year, hundreds of thousands of people die due to infections by 

antibiotic resistant bacteria (ARB) and it is estimated that 10 million people will die each year due to 

a continued rise in AR (Yang et al., 2021). Therefore, the controlling the spread of antibiotic resistant 

bacteria (ARB) is one of the most urgent tasks for human health management in the 21st century 

(Laxminarayan et al., 2013). Over of years, several microorganisms have modified the ability to make 

chemicals such as antibiotics or antimicrobials, used to prevent microorganisms from growing and 

multiplying and even to kill them and they are commonly used in human and veterinary medicine to 

treat a variety of infectious diseases. Antibiotic resistance (also known as antimicrobial resistance, 

AMR) a gloomy and very common phenomenon around the world, is defined as the reduced ability 

or inability of an antimicrobial agent to inhibit the growth of a bacterium, such as pathogenic bacteria 

leading to therapy bankruptcy (EFSA and ECDC, 2021b). A bacterial strain can acquire resistance in 

different ways: by the uptake of exogenous genes, by the activation/triggering of a genetic cascade, 

(inducing the expression of resistance mechanisms) and by horizontal gene transfer (HGT) from other 

bacterial strains or by mutation (EMA and EFSA, 2017). ARGs and ARB have been widely detected 

in various environments, such as in livestock farming environments, that can be transmitted to 

humans through the food chain, air, and water; in wastewater treatment plants (Zhang et al., 2011); 

in surface water, drinking water (Chao et al., 2013); in soil and also animal and human faeces (Smith 

et al., 2002). Undoubtedly, animal and human guts may constitute reservoirs for ARG and ARB 

(Wang et al., 2021). The same Wang et al., (2020) have conducted studies of gut resistance groups 

in humans, pigs, and chickens, deepening the evolution, distribution, and transmission of ARGs in 

the gut microbiota. The emergence and spread of AMR can be sparked by several factors such as poor 

hygiene conditions/practices in the food chain, that can may facilitate the transmission of resistant 

microorganisms or the continuous use of antibiotics in human medicine and animal husbandry, 

considering livestock an important source of AMR (Oniciuc et al., 2018). Chantziaras et al., (2014) 

have shown that the use of antimicrobials in animals will lead to an increase of AMR and that the 

reduction of usage will lead to reduced resistance. Nevertheless, overuse of antibiotics in farm 

animals and humans is speeding up the enrichment and spread of ARB and ARGs, contributing to the 

resistance crisis (Raffatellu, 2018; Munk et al., 2018). The inappropriate use of antimicrobials has 
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been linked to the appearance/spread of microorganisms which are resistant to them, over time, 

rendering treatment less effective or ineffective and representing a serious risk to public health and 

food safety. In Europe, the antibiotics used in food-producing animals and in human medicine belong 

to the same classes or are frequently the same while the administered quantities and the route of 

administration may differ between humans and food-producing animals. There are important 

variations between different countries globally and also within Europe and between and within food-

producing animal populations (EFSA and ECDC, 2021b). 

 

1.8 Whole shotgun metagenomic sequencing to investigate the resistome in the 

food of animal origin ecosystems 
 

Over the years, the research of AR has grown from focusing on single pathogenic organisms in culture 

to research AR in pathogenic, environmental and commensal bacteria at the level of microbial 

communities (Crofts et al., 2017). As not all microorganisms can be grown in the standard laboratory 

conditions, as in the case of the microbiome, culture-independent strategies are urgently needed to 

explore the resistomes in living and non-living environments. High-throughput sequencing-based 

metagenomic analysis has become important tool for characterizing resistomes, and has been widely 

used to explore the diversity, abundance and distribution of ARGs between human and food animal 

environments. For example, metagenomic sequencing has been employed to study ARGs in several 

environmental microbial community (Schmieder and Edwards, 2012), poultry and pig faeces (Tong 

et al., 2017; Munk et al., 2018), cattle rumen (Singh et al., 2012), air (Yang et al., 2018), soil and 

wastewater (Tang et al., 2016), drinking water (Ma et al., 2017) and human gut (Hu et al., 2013). 

Using shotgun sequencing, Wang et al., (2019) have revealed that poultry faeces include multiple 

ARGs, and their abundance in poultry is greater than in humans. However, metagenomics is also a 

powerful tool that allows potential applications in AMR selection and surveillance and therefore 

could assist the tracking of AMR genes and mobile genetic elements, giving the information to 

identify hotspots and routes of transmission of AMR across the food chain and to carry out 

quantitative risk assessments (Oniciuc et al., 2018; Wang et al., 2020) for example, in swine herds 

(Munk et al., 2017). The EFSA BIOHAZ Panel (2019) a SWOT analysis of different uses of 

metagenomics for risk assessment of food-borne microorganisms, understood metagenomics-based 

AMR monitoring, was performed concluding that metagenomics can be used for risk assessment of 

food-borne pathogens, especially in relation ARGs. Although the screening AMR genes in food 

samples within surveillance schemes are encouraging, there are still difficulties and obstacles to 

overcome. One of the greater obstacles in WMS reads is the databases used for ARGs which produce 

a high rate of false negatives. In addition, despite the recognized role of the food production chain in 
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the spread of ARB, WMS has hardly been used to study AMR in food ecosystems, because the 

number of available scientific publications is limited. Nevertheless, represents 13% of all WMS 

related reviewed publications treating of the AMR. For this reason, some studies have followed 

functional metagenomics approaches to detect novel and differing ARGs in the food chain reservoir 

(Oniciuc et al., 2018). Here are some publications of WMS treating of the AMR. Specifically, Naik 

et al., (2018) carried out an inducted into the microbiota of five marine fish species. Photobacterium, 

Vibrio, Acinetobacter, Psychrobacter and Flavobacterium were the most and human pathogens 

detected. Many different AMR genes were detected, including some on mobile plasmids and Class I 

integrons, which could be transferred to other bacteria in the food chain. Furthermore, metagenomic 

approaches (i.e., WMS) can be useful in studies on the use of antibiotics in animal husbandry. AMR 

genes can spread from this reservoir to the environment and from there to humans, either directly or 

indirectly via the food chain (Capita and Alonso-Calleja, 2013). Noyes et al., (2016a) investigated 

how the profile of the resistome is widespread in cattle and how these genes are passed along the 

meat processing chain to retail. Over and above, demonstrated the importance of this type of study to 

understand the mechanisms that leading to the spread of ARB in foodborne. Pitta et al., (2006), using 

a WMS approach, identified 18 AMR gene classes in dairy agroecosystems, with the most abundant 

AMR genes such as multidrug transporters, tetracycline, vancomycin, β-lactam resistance 

determinants, bacitracin. Munk et al., (2018) investigated the abundance, diversity and structure of 

the acquired pig and broiler resistomes in Europe, including Italian farms, through metagenomic 

shotgun sequencing strategy. This study represents the largest metagenomic AMR monitoring effort 

of livestock and sequencing effort >5.000 Gb. Were able to observe that the number of unique AMR 

genes predicted significantly correlated between pig and poultry farms across countries and that the 

metagenomic resistome varied significantly between the pig and poultry reservoirs, but also within 

each species, in a country-dependent manner. 

 

1.8.1 Bioinformatics processing for establish antibiotic resistance in sequencing 

data 
 

Through the study and characterization of ARGs metagenomes, we are now able to obtain important 

insights into antibiotic/antimicrobial resistance (AR) supplying novel ecological and epidemiological 

perspectives. A suite of bioinformatics pipelines and ARG databases are currently available for 

metagenomic data analyses. However, it is crucial to choose the tools that are most suitable for the 

specific analysis being conducted, since platforms may significantly vary (Gupta et al., 2020). 
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1.8.2 Quality Control 
 

Using HTS data, an advisable bioinformatics pipeline for determining environmental resistomes is 

presented in Figure 3. Initially, FastQC and Trimmomatic are used for removing low-quality 

sequences and contamination (Breitwieser et al., 2019). Moreover, if the metagenomics data comes 

from humans, animals, plants etc. it is important to filter out host sequences before the analysis. After 

quality control, reads can either be assembled into longer contigs and subsequently mapped (for 

characterization/quantification of ARGs). In recent times, hybrid assembly approaches that combine 

more accurate (short) and less accurate (long) read sequences have been implemented to achieve 

better resolution of AR profiles (Wick et al., 2017); in contrast, reads can either be directly mapped 

to ARG databases. 
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Figure 3: A workflow for determining the distribution of resistome in complex environments using 

metagenomic data (Gupta et al., 2020). 

 
Tools for specific analysis are shown in the parenthesis. MDR: Multi-drug resistance; * tool for adapter trimming from long reads; & 

tool for hybrid assembly of short and long reads from bacterial genomes; # tool for hybrid assembly of short and long reads from 

complex metagenomes.  

 

1.8.3 Read-based vs assembly approaches 
  

Sequencing data can either be subjected to direct profiling (unassembled reads) or de novo assembly-

based profiling, for the characterization of ARGs in metagenomic datasets (Chen et al., 2019). Read-

based approaches have earning attention in clinical ARG surveillance due to their speed and ease of 

computation. Significantly, read-based approaches allow users to detect ARGs (that might be 
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undetectable by assembly-based methods) from low-abundance organisms present in complex 

communities (Boolchandani et al., 2019). However, direct mapping of unassembled reads to large 

data sets can result in high false positive predictions due to spuriously alignment of reads to other 

genes because of local sequence homology (Jovel et al., 2016). High-quality reads are directly aligned 

to reference ARG database applying pairwise alignment tools such as BWA (Li and Durbin, 2010), 

Bowtie2 (Langmead and Salzberg, 2012) and KMA (Boolchandani et al., 2019). De novo assembly 

allows better exploration of upstream and/or downstream factors and more accurate detection of 

protein-coding genes, but can may result in loss of data (Hendriksen et al., 2019). The reads are firstly 

assembled using de novo metagenome assemblers such as MetaSPAdes (Nurk et al., 2017) Velvet 

(Zerbino and Birney, 2008) and MEGAHIT (Li et al., 2015), generate contiguous fragments (contigs) 

and identified protein-coding regions on assembled contigs. After which the predicted protein-coding 

regions are annotated for resistance determinants and then compared them against antimicrobial 

resistance reference databases that using similarity-based search tools, such as DIAMOND (Buchfink 

et al., 2015), BLAST (Altschul et al., 1990) and USEARCH (Edgar, 2010). 

 

1.8.4 Determining e-values, identity, query coverage levels, cut-off values and data 

normalization 
  

The stringency of e-values, identity and query coverage levels applied to compare reads and/or 

contigs to reference databases affect ARG classification. Therefore, choosing a proper sequence 

identity cut-off becomes important for characterizing a matching read as a resistance gene (Sabino et 

al., 2019). Many of the available ARG databases are biased to genes in clinically associated pathogens 

and commensals. This stems from the fact that the selection of ARGs (using stringent cut-offs) can 

increase the probability of targeting genes that are actually functional but may omit environmentally 

relevant ARGs that can be more diverse. Differently, the selection of ARGs (using less stringent cut-

offs) can increase the probability of false positives, by increasing the scope of identified hits to 

encompass environmentally relevant ARGs (Bengtsson-Palme et al., 2017). Even if a read is 100% 

identical to a documented resistance gene and is short reads, this fragment may be identical to similar 

genes that do not confer resistance or may be part of a truncated non-functional gene. Annotation of 

metagenomic samples references a list of putative ARGs and subsequently, the metagenomic data 

can be analysed to indicate the total abundance and diversity of ARGs. As the number of generated 

metagenomic reads can vary between samples, the normalization of data is fundamental to make 

libraries from different samples comparable (McMurdie, 2018). 

  



40 
 

1.8.5 Biostatistical analysis of metagenomic dataset of ARGs 
  

In recent years there have been significant advancements in statistical methods for analysis of 

metagenomic dataset of ARGs (Waldron, 2018). Significance in a given sample is based on a cut-off 

of probability value (i.e., p-value of 0.05 or 0.01). However, the probability of committing false 

observations increases when multiple tests are multiple performed (Noble, 2009; Chen et al., 2017). 

To characterize significant differences in the abundance of ARGs in metagenomic data Jonsson et 

al., (2016) evaluated the capacity of 14 currently available statistical methods, finding large 

differences in the performance of the methods; ShotgunFunctionalizeR (software package for R) 

allows for regression type approaches applying generalized linear models (Kristiansson et al., 2009). 

Such models are also implemented in DESeq2 (Love et al., 2014a) edgeR (Robinson et al., 2010) 

packages; IMG/M is based on Gaussian approximation (Markowitz et al., 2008) while STAMP 

focuses on comparisons of pairs of metagenomes using Fisher’s exact test, but also Welch’s t-test and 

MetaStats (White et al., 2009; Gupta et al., 2020). 

 

1.8.6 Abundance and diversity in the resistome analysis 
 

Not only the abundance of resistance genes may be of importance for determining risks, but also the 

diversity of such genes found (Bengtsson-Palme et al., 2017). It is still not very much clear 

which diversity indices would be preferable measure for total resistome diversity from metagenomic 

sequencing, because extrapolated resistome data are represented by thousands of different ARGs, and 

therefore the significant results are dependent on the diversity of associated ARGs (i.e., scope of the 

resistome) but also on the abundance of individual ARGs. Similar to approaches used for determining 

differences in the microbiome, the variation in ARG distribution within and between samples is 

evaluated by calculating beta and alpha diversity indices (Munk et al., 2018). Beta diversity indices 

used to compare the feature dissimilarity between different samples can provide essential data how 

specific treatments/environments influence of the resistome. To generate a distance matrix between 

pairs of samples different metrics can be employed such as Bray-Curtis, Canberra and weighted 

UniFrac (quantitative metrics) for feature abundance data, or binary-Jaccard and unweighted UniFrac 

(qualitative metrics) for the presence or absence of features (Barwell et al., 2015). Furthermore, to 

assess the significant clustering between groups, are employed non-parametric permutation tests such 

as PERMANOVA and/or ANOSIM (Pehrsson et al., 2016) will come displayed in easy and 

interpretable 2D or 3D illustrations through principal component analysis (PCA), principal coordinate 

analysis (PCoA) and ordination techniques such non-metric dimensional scaling (NMDS) (Calle, 

2019). For the alpha diversity can be employed indices ecological that combine richness and evenness 
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(i.e., Shannon index) (Knight et al., 2018a) or ACE (Chao and Lee, 1992) and Chao1 (Chao, 1984) 

sensitive to the number of sequences per sample. Bengtsson-Palme, 2018 has identified that Chao1 

index performed very well advising use for estimating resistance gene diversity. In contrast, Shannon, 

Simpson and ACE indices were not very satisfactory. In literature, it has also been reported that 

VEGAN (a software package in R) is used to perform beta and alpha diversity analyses (Dixon, 2007). 

 

1.8.7 Web tools to detection of ARG 
 

Based on the user's experience, the detection of the ARG can be reached on commercial platforms 

with open access accessible online or downloadable for installation and usage. The most applied and 

currently suitable open access pipelines for identifying ARGs in metagenomic data are: ARGs-OAP, 

Resistance Gene Identifier (RGI), Graphing Resistance Out of meTagenomes (GOOT), Mutation 

Mapping in Metagenomes (Mumame) and fARGene. Below, the online bioinformatics pipelines that 

were used in this thesis project are described. ARGs-OAP uses its own non-redundant ARG database, 

Structured ARG reference database (SARG) constructed from CARD (Jia et al., 2017) and ARDB 

(Liu and Pop, 2009) with a hybrid BLASTX and UBLAST algorithm developed for rapid annotation 

and classification of ARG-like sequences from metagenomic data (Yang et al., 2016b). RGI, applies 

one resistance detection approach based on functional resistance homologues (Protein Homologue 

Model) and one resistance detection approach based on detecting mutations conferring resistance in 

sensitive targets (Protein Variant Model). RGI uses CARD's being organized AR detection model to 

predict ARGs, to predict intrinsic antimicrobial resistance genes and can be used within the conda 

open-source package through the Bioconda project (https://bioconda.github.io) (Jia et al., 2017; 

Boolchandani et al., 2019; Gupta et al., 2020). 

 

1.8.8 ARG databases, online public platforms 
 

ARG databases along-with web tools for sequence analysis and annotation of ARGs offer 

antimicrobial resistance related reference data. The selection of reference databases has 

consequences for the quality of the information obtained. For this reason, annotation based on 

bioinformatics analysis of sequence similarity will never be more accurate than that of reference 

sequences, so it is fundamental to select a reference database with high-quality annotations 

(Bengtsson-Palme et al., 2016). These databases contain the function of genes and describe 

phenotypic information accumulated from various studies that include antimicrobial susceptibility 

testing of bacteria harbouring specific antimicrobial resistance genes. A number of public databases 

containing ARGs information exist may vary in the scope of the resistance mechanisms and the type 

of annotations that they contain (Bengtsson-Palme et al., 2017; Arango-Argoty et al., 2020; Gupta et 
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al., 2020). For these reasons, can be divided into specialized AR databases and generalized AR 

databases. Specialized AR databases were created to provide complete information for specific gene 

families such as β-lactamase encoding genes (Boolchandani et al., 2019) a family of antimicrobial 

resistance enzymes that facilitate hydrolyzation of the key β-lactam rings in β-lactam antimicrobials, 

thus protecting the bacteria from the antimicrobial activity. Specialized AR databases incorporate the 

Comprehensive β-lactamase Molecular Annotation Resource (CBMAR) (Srivastava et al., 2014), 

Lactamase Engineering Database (LacED) (Thai et al., 2009) and β-lactamase database (BLDB) 

(Naas et al., 2017). The CBMAR β-lactamases database includes molecular and biochemical 

information that could divulge understanding of known and novel β-lactamases. LacED offers 

integrated tools for sequence analysis and features structural data specific for SHV and TEM β-

lactamases (Boolchandani et al., 2019; Gupta et al., 2020). Generalized AR databases incorporate a 

wide range of ARGs and mechanistic information and include MEGARes (Lakin et al., 2017), 

Resfinder (Zankari et al., 2012), Resfams (Gibson et al., 2015), Comprehensive Antibiotic Resistance 

Database (CARD) (Alcock et al., 2020), Antibiotic Resistance Genes Database (ARDB) (Liu and 

Pop, 2009), Antibiotic Resistance Gene Annotation (ARG-ANNOT) (Gupta et al., 2014), Functional 

Antibiotic Resistance Metagenomic Element (FARME) database (Wallace et al., 2017), SARG(v2) 

(Yin et al., 2018), Mustard (Ruppé et al., 2019) and Antibiotic Resistance Gene miner (ARG-miner) 

(Arango-Argoty et al., 2020). Among the ARG databases, ARDB and ARG-ANNOT are currently 

archived. ARDB database is the first established manually curated resource of ARG sequences 

established in 2008. Each gene was annotated to include resistance mechanism, resistance type, COG 

characterization and ontology but its last update was in July 2009, meaning that any resistance gene 

discovered after that date is not included in the database. However, all the ARDB sequences were 

integrated into CARD. In addition, ARDB does not make any distinction between resistance genes 

with a confirmed resistance function and those predicted to confer resistance based on homology, for 

this it is possible to define it as a database containing, therefore, sequences that in fact are not 

functional resistance genes (Bengtsson-Palme et al., 2017; Gupta et al., 2020). Similar problems also 

haunt the ARG-ANNOT database, however, employs the relaxed search criteria to identify resistance 

genes, meaning that the database includes many sequences with poor annotation information and that 

many entries are unlikely to be functional resistance genes by limiting the identification of true 

resistance genes (Bengtsson-Palme et al., 2017). ARG-miner is a resource for the inspection and 

curation of ARGs based on crowdsourcing. Integrates multiple ARG databases including SARG, 

CARD, etc. into a common nomenclature by removing redundant information (Arango-Argoty et al., 

2020; Gupta et al., 2020). MEGARes, can easily detect AR determinants in large metagenomic 

datasets. It has an accessible, user-friendly service (called AmrPlusPlus) for analyzing metagenomic 
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data. At the nucleotide and protein levels, each entry in MEGARes has been manually validated and 

comprises several sources, including the curated CARD database (Bengtsson-Palme et al., 2017; 

Doster et al., 2019). 

Resfinder (Zankari et al., 2012) is one of the oldest databases, a web-based and standalone tool that 

keeps its sequences up to date and only contains sequences of acquired antibiotic resistance genes 

that also accept short reads as input for comparison against known acquired resistance genes. In 

addition, it extracts information from other databases (i.e., ARDB and Lahey database) and also from 

published literature, including reviews (De Abreu et al., 2021). The Mustard (Ruppé et al., 2019) 

antimicrobial resistance determinants database, characterizes ARGs based on three-dimensional 

protein structures to help predict resistance genes, suggesting higher sensitivity (Boolchandani et al., 

2019; Gupta et al., 2020). FARME is the first ARG database that comprises a curated set of microbial 

sequences functionally screened to confer resistance in various functional metagenomics studies in 

environmental samples. One of the benefits of the FARME database is that it contains over seven 

times the number of non-redundant protein sequences compared with other ARG databases (i.e., 

CARD and ARDB) and  also includes regulatory elements, predicted proteins flanking antimicrobial 

resistance genes and mobile genetic elements (Boolchandani et al., 2019; Gupta et al., 2020). CARD 

database focuses on providing high-quality reference data and molecular sequences within a 

controlled vocabulary, the Antibiotic Resistance Ontology (ARO); is the most comprehensive 

resource for ARGs information available and uses its own tool RGI, which employs curated AR 

detection models. This resource manually curated ontology-based provides extensive information on 

ARGs and their resistance mechanisms. CARD curation occurs monthly with an interplay of text 

mining and contain a user-friendly graphical interface that provides function-based classification of 

ARGs (Jia et al., 2017). In CARD, the use of a single reference sequence for every resistance gene 

increases the likelihood that each sequence has been confirmed to confer resistance in at least some 

species (Bengtsson-Palme et al., 2017; Boolchandani et al., 2019; Alcock et al., 2020; Gupta et al., 

2020). For AGR identification across less commonly studied bacteria are used Hidden Markov 

model-based databases (HMM). Resfams, a curated resource of protein families that are linked to 

their profile HMM associated with antimicrobial resistance functional, derived from multiple AR 

protein sequence alignments collectively acquired from the LacED, CARD, and Lahey databases. 

Relative to the other platforms concentrated on pathogen associated ARGs, Resfams provides an 

ecological/environmental overview of the resistome. For this reason, it can identify a greater number 

of novel ARGs and remote homologues of known ARGs than other databases such as CARD and 

ARDB that rely on BLAST-based methods for gene identification. This increased sensitivity relative 

to other ARG databases demonstrates the versatility of the HMM (Boolchandani et al., 2019; Gupta 
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et al., 2020). It is important to emphasize that the choice of databases can influence the interpretation 

of risk associated with AMR in public health and thus, it is important to keep these databases up to 

date and standardize them for further research (Bengtsson-Palme et al., 2017). 

 

1.9 Food chain: the role of the environment as source of antibiotic resistance 
 

As recognized by all international organizations and WHO, antibiotic resistance is currently a major 

global threat, with estimates of 33.000 annual fatalities human in the EU (Cassini et al., 2019). Since 

2011, the European Commission (EC) published covering the 2011-2016 period, its first Action Plan 

against the rising threats from AR, including the intention to contain the risks of spreading AR via 

the environment (Smith et al., 2016). The EC action plans were building on addressing the threat 

from a holistic approach (One Health approach), also considering animal, environmental and human 

sectors. Nevertheless, the international organizations such as FAO, OIE and WHO have also 

recognized the need to further investigate (http://www.who.int/foodsafety/areas_work/antimicrobial-

resistance/tripartite/en). In the last years, increasing importance has been given to the role of the 

environment as a source of ARGs for both animals and humans, but still their uncertainties about the 

role played by the spread and persistence of AR. Food-producing environments are spaces where the 

food of animal origin is produced/processed, first at the primary production level (i.e., preharvest) 

and later processing level (i.e., slaughterhouses, processing plants) (postharvest). In general, these 

environments can be contaminated by ARG/ARB deriving from several environmental sources, such 

as from terrestrial/aquatic food-producing animals and residues from post-harvest food plants (i.e., 

slaughterhouses and food processing plants). In this way, if ARG/ARB contaminate food-producing 

spaces, they can spread throughout the food chain through several routes and constitute a threat to 

public health (EFSA BIOHAZ Panel, 2021). 

It is approved that the usage of antimicrobials, (AMU) is an important factor for the 

selection/diffusion of antimicrobial resistance in food-producing systems. In general, the major risk 

factor of AMR is related to antimicrobial use on the farms (EMA and EFSA, 2017; Jayarao et al., 

2019). For this reason, in the food animal sector in the EU, the sales of antimicrobials declined by 

34.6% in the period between 2011 to 2018 (EMA, 2020; More, 2020). Regardless from prudent of 

AMU the most important measures to limit AMR, both at pre- and post-harvest, involve the correct 

implementation of effective measures such as hygiene practices and biosecurity. We can say that 

ARB/ARGs present in food are related to the AMU, the livestock management and density (i.e., 

housed or free-range animals), type of commercial feeds, the influence of waterborne pollution and 

management strategies in the production environment. Nevertheless, the antimicrobial resistance in 

food can associate with processing methodologies and the probability of faecal and environmental 

http://www.who.int/foodsafety/areas_work/antimicrobial-resistance/tripartite/en
http://www.who.int/foodsafety/areas_work/antimicrobial-resistance/tripartite/en
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contamination of the final food item. Li et al., (2020) examined the microbiome of the chicken breasts 

through shotgun metagenomic sequencing to allow ARG profiling and to inform multiple food safety 

and quality characteristics. The samples represented different production and processing practices, 

including “No Antibiotics Ever” (ABF) versus conventional (CONV) products. This study suggests 

that resistome comparison between CONV and ABF samples identified no significant difference in 

ARG abundance and composition between the two production practices. Furthermore, ARG 

abundance of the chicken breast samples was considerably lower than that of any other livestock 

samples and environmental samples analysed in the current study. This is demonstrated clearly these 

results indicate a low risk of ARG accumulation on chicken breasts regardless of antibiotic usage in 

live production. Finding is consistent with AR surveys in beef production examined by Noyes et al. 

(2016b). This study suggests that no ARG was detected on beef products and that interventions during 

slaughtering and beef processing might reduce the risk of ARG transmission to consumers. 

  

1.10 Sources and transmission routes AMR in the poultry production sector 
  

The total poultry population within 2030 will reach 8.5 billion, defining the poultry production as one 

of the most rapidly expanding global industries (DeSa, 2015) with 13.3 million tonnes of poultry meat  

(carcass weight) https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Agricultural_production_-_livestock_and_meat&oldid=470510#Poultry 

(Eurostat). In 2019, poultry meat production was largest in France, Germany, Italy, Spain and Poland 

(Eurostat, 2021). Antibiotic resistance bacteria and then antibiotic resistance genes may be found in 

meat, in particular from those regions (poultry meat exporters) where the control of antimicrobials is 

less present (Rozman et al., 2019; Rabello et al., 2020; EFSA BIOHAZ Panel, 2019; Xu et al., 2020; 

EFSA and ECDC, 2021). 

Previously to Regulation (EC) No 1091/2005, antibiotics were used in the EU to eliminate Salmonella 

infection at the farm level and in meat broiler prior to slaughter. Nevertheless, despite dramatically 

reduced usage in most EU countries, routine use selected other bacteria such as Campylobacter and 

fluoroquinolone resistant E. coli which are still circulating in the poultry industry (Mouttotou et al., 

2017; Perrin-Guyomard et al., 2020). Nhung et al., (2016) showed that AR commensal bacteria and 

zoonotic pathogens are widespread in poultry farming and at the production level for two fundamental 

reasons, both due to persistence in the farming environment (due to suboptimal cleaning conditions 

and disinfection) and in response to the current selection given by drugs, and which both reasons may 

select for AMR in surviving bacteria. Aspects of biosecurity/farm hygiene have also always been 

identified as factors responsible for the introduction/environmental persistence of AMR on farm, even 

date there are some gaps in understanding of the risk factors and the most effective interventions 

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_livestock_and_meat&oldid=470510#Poultry
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_livestock_and_meat&oldid=470510#Poultry
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(Davies and Wales, 2019). However, the intensity of antimicrobial use is the major driver for complex 

patterns of resistance and associated metagenomes on poultry farms (Pesciaroli et al., 2018; Xiong et 

al., 2018). The main factors that contribute to the introduction of AMR and allow the transfer of AMR 

between different food production systems and in food products from terrestrial animals, include pre-

harvest and post-harvest factors. Often, pre-harvest data based on the presence of AMR in various 

sources, but often not on transmission of AMR from such a source to a food production system. These 

sources could introduce AMR into food production environments. Differently, in the post-harvest, 

the information can be only found for the transmission of pathogens pretty than transmission of ARB 

and ARG. In the following, the factors contributing to the introduction of AMR from environmental 

sources (the production pyramid environment) into poultry sector are presented.  

  

1.10.1 Pre-harvest factors 
  

Mixed farms or co-grazing: in poultry farms in which co-grazing occurs (i.e., with sheep, horses 

and cattle) animals may be potential sources of ARB in the food-producing environment, as they can 

be a reservoir for different pathogens. One study showed that cattle were potential reservoirs of 

Campylobacter for commercial broilers (Frosth et al., 2020). Wildlife, rodents and arthropods: 

arthropods and wildlife have been shown to source and transmission route of AMR (Darwich et al., 

2019; Dolejska, 2020). Insects and flies attracted to manure stores, or the droppings pits can be vectors 

of ARB and ARGs (Zurek and Ghosh, 2014; Poudel et al., 2019). Migratory birds can transport ARB 

and ARGs internationally (Cao et al., 2020). Starting from the fact that wildlife species can acquire 

ARB from flies (Royden et al., 2016) but are relevant sources of ARB as they are more likely to be 

able to access housing and feed or bedding stores (Jahan et al., 2021). All in all, from the limited 

studies of the wildlife microbiome the likelihood of a particular species being acquired within the 

microbiome by wildlife species and the ability to transmit it locally is unknown, limiting efforts to 

assess AMR dissemination. Waste, litter, soil and surface water in poultry farm: with poor 

cleaning and disinfection of the house surrounding and litter or waste from other animals, external 

environmental contamination with Campylobacter that carry varying AMR determinants around 

poultry farms can happen (Graham et al., 2009; Battersby et al., 2017). In species in which bedding 

is frequently used (if contaminated with faecal material), can be also a potential source of AMR, some 

studies, especially chickens, have emphasized the role of litter as a vector where ARB from faeces 

persists in large numbers and becomes source of contamination for animals which come into contact 

with this ARB-contaminated bedding (Yang et al., 2006). The application of animal manure as a 

fertilizer and sewage sludge application can introduce AMR into soils, so leading to dissemination of 

ARB and ARGs of animal origin to the soil. Subsequently, from the soil, the ARB and ARGs can 
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enter different production systems, not limiting the transmission within-sector but between sectors. 

Furthermore, the ARB and ARGs from manure can spread to surrounding watercourses and if farm 

animals are exposed to waterways contaminated exposure to ARB and ARGs that originated from 

another animal sector can occur (Moore et al., 2010), but there is no evidence of the impact of this 

on the EU level. Drinking water and feed: drinking water can be a source of ARB entry into farms, 

especially if the drinking water is drawn from a well or from local surface waters (Tanner et al., 2019; 

O ' Dwyer et al., 2018). Feed contamination has been primarily identified for pathogens rather than 

for ARB or ARGs, for this reason, feed processing practices can result in the presence of pathogens 

and ARB in feed during cooling, transportation, storage and finally, on farm (Sapkota et al., 2007). 

Heat treatment reduces the risk of the presence of pathogenic bacteria and consequently reduces the 

risk of AMR (Torres et al., 2011). Dust/air: with respect to AMR in dust and air samples, research 

has focused on the presence of ARB and ARGs within animal housing and in the nearby environment 

(Luiken et al., 2020). In the literature, it has been reported that ARB can be found in the air within 

and around poultry houses, including during the empty inter-crop period (albeit at lower levels than 

during the life of the flock) and can disseminate organisms over a wide area (where powerful extractor 

fans are used) (Brooks et al., 2010). Poultry house manure, dust, or litter includes a matrix 

of faecal bacteria, nutrients for microbial growth such as feed additives and antimicrobial agents, and 

heavy metals (Deng et al., 2020). In addition, dust contaminated by ARB is also created after the 

spreading of poultry litter and manure on land, such as on poultry farms observed in the UK 

(APHA/Defra, 2020). Human: human as a breeder, veterinarian or worker is a primary source of 

ARB for farm animals, involving organisms such as LA-MRSA (Monecke et al., 2013).  

 

1.10.2 Post-harvest factors 
 

In many European countries, most of the poultry meat used for processing is imported from third 

countries (https://ec.europa.eu/info/food-farming-fisheries/animals-and-animal-products/animal-

products/poultry_en), where problems with the widespread emergence of AmpC resistance are 

increasing in the Salmonella Heidelberg, representing a threat of introduction (vertically transmitted) 

into the EU poultry production environment (Souza et al., 2020). Data on the introduction and spread 

of AMR relate also to pathogen bacteria, such as Salmonella or Campylobacter (if no information is 

available on AMR). A wide variety of ARB and ARGs have been marked from the poultry intestinal 

tract and, to a lesser extent, the poultry farm environment and production chain, suggesting a 

relationship between the finding of the same organism in the poultry environment and its occurrence 

in birds. These AMR threats have rarely been described in poultry environments in European 

countries. Although there is a small amount of information on the occurrence of AMR, so all current 

(https:/ec.europa.eu/info/food-farming-fisheries/animals-and-animal-products/animal-products/poultry_en)
(https:/ec.europa.eu/info/food-farming-fisheries/animals-and-animal-products/animal-products/poultry_en)
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evidence is based solely on observations of potential correlations. Most of post-harvest studies are 

focused on the study of carcass contamination and therefore are necessary more research is needed to 

evaluate the impact of the post-harvest environment on meat contamination of ARB. Transport: a 

fundamental route of transmission could be transport, in a particular vehicle, crates and modules. 

Trucks usually visit different farms (mixing animals from different origins) and can spread pathogen 

contamination between farms where partial the thinning is practiced, between slaughterhouse and 

poultry farms (Rasschaert et al., 2020). Slaughterhouse: the lairage area, where several batches of 

animals are housed within the same structures, may be a source of AMR for the animals entering the 

abattoir, furthermore, the animals can come into contact with ARBs or pathogens that are present in 

the environment. Therefore, there is a risk of introducing ARBs and pathogens into the slaughterhouse 

environment (i.e., from contaminated skin and intestines) as their load can be high within this area 

(EFSA BIOHAZ Panel, 2021). Slaughter line and equipment: all activities carried out within the 

slaughterhouse can introduce/spread pathogens through the carcasses into the food chain and thus can 

act as a source of antimicrobial resistance. Broilers transport ARBs on the integument and internally 

even when antimicrobials have not been given that's why cross-contamination of poultry at slaughter 

contributes helps to greater microbial diversity in retail chicken than in live birds (Althaus et al., 

2017; Montoro-Dasi et al., 2020). Even the semi-automated or automated processes are possible 

sources of disseminating ARB. For example, in the scalding, defeathering and evisceration 

stages they are the main sources of release of microorganisms in the slaughtering environment and of 

carcass contamination via spillage of intestinal contents and there is no stage of the process that can 

reduce contamination of carcasses and indirectly AMR transmission (Pacholewicz et al., 2015; 

Rasschaert et al., 2020). A study by Cornejo et al., (2018) argued that despite the drug withdrawal 

period being observed, feathers can serve as a means of introducing antimicrobial contamination into 

the poultry slaughter process. Waste, wastewater and air: contamination of wastewater, 

slaughtering process water, the abattoir waste, the airflow and aerosols from slaughter facilities may 

also introduces and spread of ARB and ARGs. (Savin et al., 2020). Slaughterhouse waste (low-grade 

category 3) are used for the manufacture of feed for farmed fish and pets, indicating further 

dissemination of AMR beyond the food chain (Groat et al., 2016). Occupational transmission of 

workers through their hands or equipment (i.e., cross-contamination) may act as sources of AMR 

and so how sources of ARB and ARG, influencing the further processing stages for chicken carcasses 

at slaughterhouses (Mulders et al., 2010; Van Gompel et al., 2020), often with disinfection and 

cleaning procedures being inadequate to eliminate bacteria contamination between working days, as 

shown for pathogens (Samapundo et al., 2019; Obe et al., 2020). In addition, mitigation measures 

must be implemented to reduce contamination during transport, lairage and post-harvest processing. 



49 
 

For example, during transport and lairage, management measures (batch separation), good hygiene 

practices and disinfection may reduce the spread of ARB (Obe et al., 2020). Differently, in the post-

harvest environment are based on ordinary general measures such as good manufacturing practices 

and hygiene (are not specific for ARB/ARGs). Even though useful, such measures require validation 

regarding their impact on AMR (West et al., 2018). 

 

1.11 Targets for monitoring of AMR 
 

AMR monitoring in zoonotic and indicator bacteria in food-producing animals and their food 

products involves continuous data collection, analysis and reporting. In addition, allows you to 

comprehend the development/diffusion of resistance, to follow temporal trends in the 

occurrence/distribution of AMR and well as provide risk assessment data, and evaluates targeted 

interventions. The European Union Summary Report on AR in zoonotic and indicator bacteria from 

animals, food and humans in 2018/2019 gives the findings of the AMR monitoring in the food-

producing animal populations (carcasses and meat) and in humans. Data on AMR in zoonotic and 

indicator bacteria are collected annually from EU MS, and analysed by EFSA and ECDC. The 2018 

monitoring and reporting has been concentrating on poultry, while the monitoring and reporting 2019 

has been concentrating on pigs and calves (under 1 year of age) and included data regarding resistance 

in zoonotic Campylobacter and Salmonella from animals and food and humans, and resistance in 

indicator Escherichia coli and meticillin-resistant Staphylococcus aureus (MRSA) from food and 

animals. In line with Commission Implementing Decision 2013/652/EU, monitoring of AMR from a 

public health perspective is obligatory in Campylobacter jejuni, Salmonella, and indicator commensal 

E. coli in the domestically produced animal populations and their derived meat (EFSA and ECDC, 

2021b). 
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2. Aims of the work 
 

Food safety and the protection of consumer's interests is of increasing concern to the European 

community, including policy makers, food business operators (FBOs), citizens, non-governmental 

groups, professional associations, international trade organizations. The SarsCov2 pandemic 

increased the concern on emerging food safety risks and threats, highlighting that early identification 

of existing as well as emerging risks is at the heart of protecting public health and the environment, 

while avoiding both short and medium term negative economic and societal impacts. In this 

framework untargeted throughout analytical methods able to detect and mitigate all microorganisms 

within a food system can help to quickly detect the increase of specific biological hazards in foods. 

The main objective of this research project has been to apply shotgun metagenomic sequencing to 

investigate both microbiome and resistome of foods of animal origin in order to assess advantages 

and disadvantages of shotgun metagenomic sequencing in comparison to the current analytical 

methods used to guarantee food safety and map ecosystems associated to food systems.   

In order to achieve this main objective four studies have been performed with 5 specific objectives 

(SO).  To contribute to assess the suitability of shotgun metagenomics to detect a wide range of target 

microorganisms in foods, in the study 1 a proficiency test (PT) was organised as part of the 

COMPARE project which used to be a multidisciplinary research network that has the common vision 

to become the enabling analytical framework and globally linked data and information sharing 

platform for the rapid identification, containment and mitigation of emerging infectious diseases and 

food-borne outbreaks. Within the activities scheduled in COMPARE study 1 of my research project 

aimed at characterising and quantifying microorganisms belonging to different domains 

experimentally spiked in cold- smoked salmon at known concentrations, using shotgun metagenomics 

(SO1). To analyse the metagenomic results, many European and global institutions use internal 

pipelines which are not publicly available or pipelines which are in the public domain but combined 

in an unknown way. Among the few bioinformatic tools publicly available there are MG RAST 

(Keegan et al., 2016), which is public and free (https://www.mg-rast.org); OneCodex (Minot et al., 

2015) (www.onecodex.com) and CosmosID (Yan et al., 2019) (https://app.cosmosid.com/) which are 

public but not free; MGmapper (Petersen et al., 2017), hosted at the CGE, now call CCMetagen 1.0 

(https://cge.cbs.dtu.dk/services/MGmapper/ ) which is public, free but not always updated in the web 

version. The outputs obtained testing the metagenomes of study 1 using these different bioinformatic 

tools were comparatively assessed to evaluate the suitability of the different tools to detect all 

microorganisms spiked in the salmon (SO2).  

https://www.compare-europe.eu/
https://www.mg-rast.org/
http://www.onecodex.com/
https://app.cosmosid.com/
https://cge.cbs.dtu.dk/services/MGmapper/


51 
 

In 2019 the European Union (EU) produced an estimated 13.3 million tonnes of poultry meat, 

representing an increase of around 27% in comparison to 2010 (Eurostat, 2121). Poultry meat is 

characterized by high-quality proteins, vitamins, and minerals important for the human diet 

(Marangoni et al., 2015). Since the poultry rearing cycle lasts 35 to 42 days, poultry meat can be 

produced without the use of antimicrobials more easily than pork and beef meat having rearing cycles 

of months. Moreover, the mean values, expressed in number of defined daily doses 

(DDDvet)/biomass for poultry, of antimicrobial agents obtained from the technical estimates of the 

sales of veterinary antimicrobials in the European Union in 2016 were 0.5 for poultry versus 1.3 for 

pigs (ECDC, EFSA, EMA, 2021). There are different strategies to achieve antibiotic free poultry 

flocks as the implementation of effective biosafety measures and management options as well as 

promoting beneficial microbes in the chicken gastrointestinal (GI) tract of chicken to enhance animal 

health and inhibit pathogen colonization. To this aim feed can be supplemented with probiotics and 

prebiotics, also blended in the same supplement (i.e., a symbiotic), to ensure diversity and stability 

of the GI microbial community, as well as positive interactions with host’s gastroenteric epithelium 

and immune system (Brugaletta et al., 2020). As an alternative, probiotics can be also supplemented 

in the litter and up take by the animals (De Cesare et al., 2019). Whenever a poultry disease occurs 

in an antibiotic free flock the animals are treated with antibiotics and the flock turns into conventional. 

Therefore, poultry farms can occasionally rear antibiotic free flocks along with conventional ones. In 

the studies 2 and 3 it was investigated whether the efforts of raising chickens without the use 

antibiotics make any difference in the microbiome of poultry meat consumers eat (SO3). To this aim 

in study 2 I compared the microbiomes characterizing caeca and corresponding carcasses of two 

groups of chickens reared in one conventional and one antibiotic free intensive farm. Moreover, I 

investigated if the correlation between the microbiome and resistome in the caeca and the carcass of 

the same animal provide more insights than the same analysis performed at flock level before 

planning future studies (SO4). In study 3, additional samples of poultry carcasses reared in antibiotic 

free and conventional flock were tested within the EU project CIRCLES which has the overall aim 

to investigate how the microbiomes associated to poultry food system interact and impact one with 

the other.   

To date, the microbial composition associated to fermented foods has been investigated using 

amplicon-based sequencing (Knight et al., 2018b; Diaz et al., 2019) and few studies have applied 

shotgun metagenomic sequencing to obtain a higher insight into the taxonomy and functional 

potential of fermented foods (Wu et al., 2017; Walsh et al., 2020). Within the PRIMA project 

ArtiSaneFood, in study 4 I started the metagenomic investigation of an Italian artisanal product and 

https://circlesproject.eu/
http://www.ipb.pt/artisanefood/
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the question I tried to answer was if testing one aliquot of artisanal food homogenate is representative 

of the whole homogenate (SO5). 
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3. Materials and methods 
 

3.1 Materials and methods of study 1 
 

Samples tested 

 

The samples tested in the Study 1 were 3 aliquots of 0.2 g of Salmo salar, cold-smoked and vacuum 

packed. Each aliquot was spiked with 50 µL of a mock microbial community consisting of six bacteria 

(Staphylococcus aureus, Propionibacterium freudenreichii, Bacteroides fragilis, Escherichia coli, 

Fusobacterium nucleatum and Salmonella enterica), one parasite (Cryptosporidium parvum), one 

fungus (Saccharomyces cerevisiae) and 10 µL of heat-inactivated virus (Bovine alphaherpesvirus 1) 

(Table 4). The spiked samples were shipped frozen by the Technical University of Denmark (DTU) 

to the University of Bologna for a proficiency test organized within the H2020 COMPARE project. 

At the arrival, the 3 samples were submitted to DNA extraction.  

 

Table 4: Combination of the mock community used to spike the samples of cold-smoked salmon and 

concentration of each microorganism. 

 

Taxon Feature 

Quantity per 

subsample 

(cells/virus gene 

copies) 

Bacteria     

Staphylococcus aureus subsp. aureus NCTC 8325 Gram + 500.000.000 

Propionibacterium freudenreichii subsp. freudenreichii DSM 

20271 
Gram + 500.000.000  

Bacteroides fragilis NCTC 9343 / DSM 2151 Gram - 50.000.000 

Escherichia coli ATCC 25922 Gram - 50.000.000  
Fusobacterium nucleatum subsp. nucleatum ATCC 25586 / 

DSM 15643 
Gram - 50.000.000  

Salmonella enterica subsp. enterica serovar Typhimurium str. 

ATCC 14028S / DSM 19587 
Gram - 50.000.000  

Parasite   

Cryptosporidium parvum IOWA II isolate   1.000.000 

Fungus   

Saccharomyces cerevisiae S288C  5.000.000 

Virus   

Bovine alphaherpesvirus 1  Ds DNA visus 1.20E+10 

 

DNA extraction from smoked salmon  

 

Total DNA from each cold-smoked salmon sample was extracted using PowerFood® Microbial DNA 

Isolation Kit (MoBio-Qiagen) according to manufacturer’s directions with some modifications. 
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Briefly, each sample was suspended in 1 ml of sterile physiological solution (NaCl 0.90%) and 

homogenized in vortex for 1 minute. At the end of the homogenization step, the liquid part of the 

sample was transferred inside a 2 ml tube and centrifuged at room temperature for 5 minutes at 11000 

rpm. Once the supernatant was removed, the pellet was suspended again in 1 ml of sterile 

physiological solution (NaCl 0.90%), homogenized in vortex for 1 minute and centrifuged at room 

temperature for 5 minutes at 11000 rpm. At the end of the centrifugation step, the formed pellet was 

suspended in 450 ml of PF1 solution. Subsequent steps of the extraction protocol were performed in 

accordance with the handbook that came with the extraction kit.  

 

Quantification of total DNA  

 

The total DNA isolated from each cold-smoked salmon sample were quantified on a 

BioSpectrometer® (Eppendorf, Milan, Italy) and Fragment Analyzer Automated CE System 

(Advanced Analytical). In particular, in the first quantification obtained through BioSpectrometer® 

(Eppendorf, Milan, Italy), was assessed DNA yield, in terms of quantity and quality. The parameters 

of interest were the concentration of DNA in µg / ml, an absorbance value at 260 nm and the value 

of DNA quality that was assessed in terms of absence of contaminants according to the value of the 

A260 / A280 nm ratio, used for indication of sample purity. This protocol is generally accepted for 

DNA with absorbance ratio values of 1.8-2.0, which indicates a pure DNA sample (Manual 

instruction PowerFood Microbial DNA Isolation Kit). All samples complying with DNA quality 

scores were subjected to library preparation.   

 

Library preparation and metagenomic sequencing  

 

The DNA extracted and assessed for quality and quantity was submitted to the library preparation 

procedure with the Nextera® XT DNA Library Preparation Kit (Illumina, San Diego, CA). Illumina's 

Nextera technology provides an input DNA enzymatic fragmentation (termed tagmentation) and adds 

partial adapter sequences (in a single step). During tagmentation, the transposase enzyme fragments 

the DNA and simultaneously adds specific adapters to both ends of the fragments, that allow for 

subsequent PCR amplification to introduce index sequences (barcode) (McElhoe et al., 2014). 

Nextera® XT DNA Library Preparation Kit was chosen because this method improves traditional 

protocols, is the fastest for sample preparation for any Illumina sequencing platform, reduces the 

sample handling and finally allows to analyse of up to 96 samples (Marine et al., 2011; McElhoe et 

al., 2014).  

In particular, after to the second quantification obtained through Fragment Analyzer Automated CE 

System (Advanced Analytical), the DNA was diluted, in molecular-grade water, to the concentration 
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required (0.2 ng/µL) through others intermediate dilutions (i.e., 10 and 2 ng/µL). After the DNA 

tagmentation step with Amplicon Tagment Mix (ATM), Tagment DNA Buffer (TD) and Neutralize 

Tagment Buffer (NT), the samples were amplified using a limited-cycle PCR program in which the 

sequencing primers (Index 1 and 2) and adapters were inserted. Before moving to the next step of 

library quantification, a “clean up” step was carried out using the AMPure XP beads, to purify the 

library DNA and remove short library fragments. Once the libraries have been prepared, it was 

necessary to validate the concentration, nano molarity and average length of the DNA with Fragment 

Analyzer Automated CE System (Advanced Analytical) and Quant-iT™ PicoGreenâ dsDNA Assay 

Kit and through Chip DNA Hi Sensitivity analysis on Bioanalyzer 2100 (Agilent Technologies). 

Typical libraries indicate a broad size distribution of ~250-1000 bp. Various libraries can be 

sequenced with average fragment sizes as small (250 bp) or large (1500 bp) (Nextera XT DNA 

Library Prep Kit). Each library pool was adjusted to a nano molarity of 4 to be sequenced. A total of 

3 µL of each library (4 nM) were pooled together. Each pool was loaded into a flow cell of the glass 

slide. Each fragment of DNA library was anchored on complementary oligo-adapters placed on the 

flow cell and clonally amplified through a solid-phase amplification called bridge amplification and 

then sequenced by synthesis. Libraries were sequenced using the NextSeq 500 sequencer (Illumina) 

with NextSeq 500/550 High Output Reagent Kit v2 (300 cycles) (Illumina) at 2x150 bp in paired-end 

mode. The metagenomes were featured by an average output of 7 Gbp. 

 

Bioinformatics and statistical analysis  

 

Filtering, trimming, and taxonomic classification of raw reads were analysed using 4 different 

bioinformatics software represented by MG-RAST (Keegan et al., 2016) (https://www.mg-rast.org), 

MGmapper (Petersen et al., 2017) (https://cge.cbs.dtu.dk/services/MGmapper/), CosmosID (Yan et 

al., 2019) (https://app.cosmosid.com/) and OneCodex (Minot et al., 2015) (www.onecodex.com). In 

MG-RAST, the abundances of taxonomic composition were performed using the RefSeq reference 

database (NCBI reference sequences) (Pruitt et al., 2005), RDP (Ribosomal database project), Silva 

LSU (large subunit-23S/28S), Silva SSU (small subunit-16S/18S) and Greengenes and narrowing 

down the analysis only to those annotations marked as Bacteria. In all databases, the following quality 

parameters were set: maximum e-value cut-off <1e-5, minimum identity cut-off 60%, and minimum 

alignment length cut-off 15 bp. In MGmapper the database selected was Silva and in OneCodex the 

One Codex database. Finally, for CosmosID the GenBook database was used with the following 

parameters set: taxonomy switcher and results-total. The results of abundance of each taxonomic 

level for each sample were analysed using the Statistical Analysis of Metagenomic profile Software 

v 2.0.9 (STAMP) (Parks et al., 2014). The statistical differences between the outputs of different 

https://www.mg-rast.org/
https://cge.cbs.dtu.dk/services/MGmapper/
https://app.cosmosid.com/
http://www.onecodex.com/
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bioinformatics tools were not assessed because only three samples were available for each 

combination of databases.  

 

3.2 Materials and methods of study 2 
 

Animals and Treatments  

 

In this study a total of 30 broilers were investigated: 15 were reared in a conventional farm and 15 

belonged to a poultry flock reared in a conventional farm but never treated with antibiotics. The 

farming types did not differ with respect to animal age at slaughter. All tested animals were female, 

ROSS, fed with no medicated feed and slaughtered at 47 (antibiotic free) and 48 (conventional) days. 

According to the European legislation, in the conventional production a treatment with antibiotics 

was performed for therapeutic purposes upon veterinary prescription. On the contrary, any antibiotic 

was not administered to the animals reared in the antibiotic free farm. In the group reared in the 

conventional farm amoxicillin was administered at 8 and 29 days at the recommended doses of 20–

30 mg/kg of live weight in drinking water for three to five days and sulfadimethoxine/trimethoprim 

was administered at 24 days as an antimicrobial for the coccidiosis treatment and/or prevention, 

according to the manufacturer’s recommendation (100 mg/20 mg in 1–2 L of drinking water once a 

day for five days). All 30 slaughtered broilers were randomly sampled at the slaughterhouse within 

the first group of animals processed at the start of the working day, when the slaughterhouse was still 

clean and disinfected to avoid bias due to cross-contamination. 

 

Sample collection  

 

In each sampled animal both the gastrointestinal tract and the carcass were collected. For each 

selected animal, the GIT was collected at the evisceration step (during slaughtering,) and immediately 

stored at 4°C in a refrigerated box; at the same time a sterile plastic flag was attached to the hook 

transporting the carcass from which the GIT was collected in order to pick up that specific carcass at 

the end of the refrigeration tunnel. After sampling, the carcass was kept refrigerated in a box different 

from that containing the GIT samples. All samples were transported to the laboratory and processed. 

Each gastrointestinal tract was dissected out and a small portion (i.e., 0.5 to 2 g) of caeca content was 

collected, transferred into a 2 ml sterile plastic tubes, flash-frozen in liquid nitrogen before storage at 

-80°C until DNA extraction (De Cesare et al., 2017). In a sterile environment, approximately 10 g of 

neck and breast skin were collected from each carcass and placed inside a sterile bag. Subsequently, 

each sample was diluted in 90 ml of sterile physiological solution (NaCl 0.90%), homogenized in the 

stomacher (MAYO homogenius HG400V) at normal speed for 1 minute. At the end of the 
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homogenization step, all the liquid part of the sample was transferred inside a 50 ml sterile falcon 

tube and centrifuged at 4°C for 20 minutes at 9980x g. The supernatant that formed was removed 

from the sterile falcon tube, and the remaining pellet was resuspended in 5 ml of sterile physiological 

solution cold before storage of the pellet at -80°C until DNA extraction. Two different protocols and 

kits were applied depending on the type of sample to be performed. 

 

DNA extraction from broiler cecal contents 

 

The DNA was extracted from each sample of cecal content using a modified QIAamp® DNA Stool 

Mini Kit protocol (Qiagen, Milan, Italy), as previously described (De Cesare et al., 2017). One major 

modification is the addition of a bead-beating step at the beginning of DNA extraction. Briefly, 0.25 

g of caecal content were suspended in 1 ml lysis buffer (500 mM NaCl, 50 mM Tris-Cl, pH 8.0, 50 

mM EDTA, 4 % SDS) with steel beads, 2 mm size and 5 mm size (Retsch, Germany) and 

homogenized on the Mixer Mill MM 400 (Retsch, Germany) for 2 minutes at frequency 1/s 300. The 

samples were then heated at 70°C for 15 minutes, followed by centrifugation at 4°C for 5 minutes at 

13000 rpm, to separate the DNA from the bacterial cellular debris. This process was repeated with a 

second 300 μL aliquot of lysis buffer. The samples were then subjected to 10 M v/v ammonium 

precipitation and a 70% ethanol (Carlo Erba, Milan, Italy) wash and re-suspended in 100 ml TE buffer 

(10 mmol l -1 Tris-HCl; 1 mmol l -1 EDTA, pH 8.0). The samples were treated with DNase-free 

RNase (Roche) and incubated overnight at 4°C, before being processed through the QIAamp® DNA 

Stool Mini Kit (Qiagen, Milan, Italy) according to manufacturer’s directions with some 

modifications.  

 

DNA extraction from broilers carcasses  

 

Total DNA from each carcass sample was extracted using PowerFood ® Microbial DNA Isolation Kit 

(MoBio-Qiagen) according to manufacturer’s directions with some modifications. Briefly, 2 ml of 

solution was taken from each sample and centrifuged at 4°C for 20 minutes at 6800 rpm. Once the 

supernatant was removed, the formed pellet was suspended in 450 ml of lysing solution, which 

includes a detergent to break the cell walls (PF1) (Manual instruction PowerFood Microbial DNA 

Isolation Kit). Subsequent steps of the extraction protocol were performed in accordance with the 

handbook that came with the extraction kit. 

 

Quantification of total DNA  

 

The total DNA isolated from each cecal content samples and each carcasses sample were quantified 

on a BioSpectrometer® (Eppendorf, Milan, Italy) and Fragment Analyzer Automated CE System 
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(Advanced Analytical). All samples complying with DNA quality scores were subjected to library 

preparation. 

 

Library preparation and metagenomic sequencing  

 

Total DNA from caeca and carcass samples was fragmented and tagged with sequencing indexes and 

adapters using the Nextera® XT DNA Library Preparation Kit (Illumina, San Diego, CA). Shotgun 

metagenomic sequencing was performed using the NextSeq500 (Illumina) with NextSeq500/550 

High Output Reagent Kit v2 (300 Cycles) (Illumina) at 2x150 bp in paired-end mode. One caeca 

sample was removed later in the process for technical reasons (linked to sequencing yield) resulting 

in a total of 59 samples (broilers caeca: N=29, broiler carcasses: N=30). 

 

Bioinformatic and biostatistics analysis 

 

Filtering and trimming of raw reads were performed using MG-RAST https://www. mg-rast.org 

(accessed on 14 December 2021) (Keegan et al., 2016) bioinformatics pipelines. In the taxonomic 

analysis, only taxa from the bacterial domain were considered. Moreover, taxa present in less than 4 

samples or represented by less than four reads were discarded. Analogously, in the functional 

analysis, functional genes present in less than four samples or represented by less than 4 reads were 

discarded. 

The statistical analysis of both the taxonomic and functional gene composition was performed using 

R 3.6.3 and the libraries phyloseq 1.30.0 (McMurdie and Holmes, 2013) and DESeq2 1.26.0 (Love 

et al., 2014b). Relative abundances displayed in the bar plots were computed normalizing to sum to 

1 the read counts obtained from MG-RAST. Then, in the bar plots only the first (at most) 20 

taxa/functional elements with relative abundance greater than 1% were shown. 

Before proceeding with the statistical analysis, read counts were normalized with DESeq2 to take 

into account the different sizes of the samples. In this step, size factors were estimated using the 

function estimateSizeFactors of DESeq2 with the “poscount” option, as suggested when dealing with 

sparse data. Then, DESeq2 was used to assess whether the taxa/function abundances differed between 

groups. Specifically, the Wald test was used to determine the statistical significance and the Log Fold 

Changes were shrunk using the apeglm method (Zhu et al., 2019). Finally, p-values were adjusted for 

multiple testing using the Benjamini-Hocheberg procedure (Benjamini and Hochberg, 1995). A 

threshold of 0.05 was used in all analyses to assess their statistical significance. 

Alpha diversity was estimated using the InvSimpson/Shannon/Chao1 index, and differences in alpha 

diversity between groups were evaluated fitting a linear regression model and using the Student’s t-

test to assess whether the linear relationship between alpha diversity and the grouping was negligible. 
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Beta diversity was estimated starting from the read counts normalized with DESeq2 and computing 

the Bray-Curtis dissimilarity (Bray and Curtis, 1957) among samples. Principal Coordinate Analysis 

(PCoA) was used to visualize the results. After applying the rlog transformation (Love et al., 2014b) 

to DESeq2 normalized counts, Principal Component Analysis (PCA) was performed using the 

function prcomp of the library stats 3.6.3 in R and the correlation between samples was computed 

using Kendall’s coefficient. 

The resistome of each sample was predicted using the Resistance Gene Identifier (RGI) (Alcock et 

al., 2020). Fastq reads were aligned using the bowtie2 algorithm (Langmead and Salzberg, 2012) to 

the ‘canonical’ curated CARD reference sequences (Alcock et al., 2020), as well as to the in silico 

predicted allelic variants available in CARD’s Resistomes & Variants data set (Alcock et al., 2020), 

as suggested in the resistance gene identifier (RGI). The alignments were obtained at the allele level 

and were filtered so that only entries with >95% identity to the CARD reference sequences and with 

more than 50 base pairs of reference allele covered by reads were kept. RGI mapping counts were 

adjusted for differences in both gene lengths and bacterial sequence abundances by computing 

fragments per kilobase reference per million bacterial fragments (FPKM). Results at the AMR gene 

family and drug class level were obtained by aggregating the counts at the allele level. The beta 

diversity of the samples based on the resistome was obtained by computing the PCoA. To this aim, 

the counts were normalized with DESeq2 as previously described, and the Bray-Curtis distances 

between all samples were calculated using the R packages vegan 2.5.7 (Legendre and Gallagher, 

2001) and phyloseq 1.28.0 (McMurdie and Holmes, 2013). The PCoA was computed separately for 

caeca and carcass samples, and the effect of the origin of the sample on the sample dissimilarities 

were determined using permutational multivariate analysis of variance using distance matrices (the 

‘adonis2′ function in the vegan v2.5.7 package). Finally, conventional and antibiotic free AMR gene 

families were compared using the same DESeq2 pipeline previously described for the taxonomic and 

functional analysis. 

 

3.3 Materials and methods of study 3 

 

Broiler farms and sample collection  

 

In this study, three groups of carcasses (i.e., Group 1, Group 2 and Group 3) reared in three broiler 

farms have been tested. All farms were located in Northern Italy. The animals of group 1 were 

slaughtered at 35 days and treated with antibiotics at 28 days; the animals of group 2 were slaughtered 

at 34 days and never treated with antibiotics; the animals of group 3 were slaughtered at 33 days and 

never treated with antibiotics. A total of 15 carcasses from each tested group were randomly sampled 
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at the slaughterhouse at the end of the refrigeration tunnel and immediately stored in a sterile plastic 

bag kept at 4°C in a refrigerated box. After each sampling, the samples were transported to the 

laboratory within two hours and immediately processed. Approximately 10 g of neck and breast skin 

were collected from each carcass and diluted in 90 ml of sterile physiological solution (NaCl 0.90%) 

inside a sterile bag and homogenized in the stomacher (MAYO homogenius HG400V) at normal 

speed for 1 minute. Subsequently, all the liquid part of the sample was transferred inside a 50 ml 

sterile falcon tube and centrifuged at 4°C for 20 minutes at 6800 rpm. The supernatant that formed 

was removed from the sterile falcon tube, and the remaining pellet was resuspended in 5 ml of sterile 

physiological solution cold before storage of the pellet at -80°C until DNA extraction. 

 

Microbiological analysis of the carcasses  

 

Sample enrichment and enumeration were both used to detection Campylobacter from carcasses 

according to parts 1 and 2 respectively of the EN ISO 10272-1:2006 standard. In brief, in the first 

stage of enrichment, a total of 10 g of skin from the breast and the neck were put into a sterile bag 

and diluted 1:10 in selective liquid medium, Bolton broth (Oxoid) (Bolton et al., 1984), incubated in 

microaerobic atmosphere (85% N2, 10% CO2, 5% O2) obtained by Oxoid CampyGenTM 3.5L Sachet 

(ThermoFisher) inside an OxoidTM Anaerobic 3.5L Jar at 37°C for 4 h to 6 h followed by 42°C for 

44 h ± 4 h. At the end of the incubation period (isolation and selection for conformation phase) carried 

out to give the pathogen cells the possibility to multiply if they were present, the enrichment broth 

was streaked with a sterile loop on superface of selective isolation medium, modified charcoal 

cefoperazone deoxycholate agar (mCCD agar) (Oxoid) in triplicate and incubated at 42°C in a 

microaerobic atmosphere (as previously described) for 44 ± 4 h. ISO 10272 requires that the 

enrichment culture is streaked onto two selective media after 48 h, however, due to constraints on 

resources, only modified charcoal cefoperazone deoxycholate agar (mCCDA) was used in this study. 

The reference method for the detection of Salmonella in carcasses was performed according to the 

international reference standard method EN ISO 6579:2002/Amd.1:2007. In brief, a further aliquot 

of 10 g was put into a sterile bag and dilute 1:10 in non-selective broth, Buffered Peptone Water 

(BPW). The mix was then homogenized for 1 minute in a stomacher and incubated at 37 °C ± 1° for 

18 h ± 2 h (non-selective pre-enrichment phase), followed by a phase of selective enrichment in 

Modified Semi-solid Rappaport Vassiliadis Agar (MRVS) (Oxoid) incubated at 41.5 ± 1°C for 24 h 

± 3 h and Muller-Kaufmann tetrathionate-Novobiocin Broth (MKTTn) incubated at 37°C ± 1°C for 

24 h ± 3 h. The RVS plates were inoculate with 3 drops of incubated BPW culture. The 3 drops were 

total 0,1 ml and were placed separately and equally spaced on the surface of the medium. Both 

enrichment broths were streaked on selective solid media, xylose lysine deoxycholate (XLD) and 
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Brilliant Green Agar (BGA); overall, were identified furthest point of spread of opaque growth from 

the inoculation points and was dip a 1 μl loop just inside the border of the opaque growth and streaked 

in the XLD and BGA plate, so that well-isolated colonies will be obtained. The XLD and BGA plates 

were Incubated at 37°C ± 1°C for 24 h ± 3 h (selective plating and identification phase). 

 

DNA extraction and quantification from broilers carcasses 

 

DNA was extracted from each carcass sample using the PowerFood® Microbial DNA Isolation Kit 

(MO BIO-Qiagen), as reported in Study 2. The purity and concentration of DNA samples were 

determined according to the 260/280 nm absorbance ratio using a biospectrophotometers, 

BioSpectrometer® (Eppendorf, Milan, Italy) and Fragment Analyzer Automated CE System 

(Advanced Analytical). All samples complying with DNA quality scores were subjected to library 

preparation. 

 

Library preparation and metagenomic sequencing 

 

Total DNA from carcasses sample was fragmented and tagged with sequencing indexes and adapters 

using the Nextera® XT DNA Library Preparation Kit (Illumina, San Diego, CA). Shotgun 

metagenomic sequencing was performed using the NextSeq 500 sequencer (Illumina) with 

NextSeq500/550 High Output Reagent Kit v2 (300 Cycles) (Illumina) at 2x150 bp in paired-end 

mode. Three carcasses breast and neck skin samples were removed later in the process for technical 

reasons (linked to sequencing) resulting in a total of 42 samples (Group 1 carcasses: N = 12; Group 

2 carcasses: N = 15; Group 3 carcasses: N = 15).  

 

Bioinformatic analysis 

 

The metagenomic sequences (filtered and trimmed) were analysed using the MG-RAST 

metagenomics analysis server, bioinformatics pipeline. MG-RAST is a software built to provide users 

of a complete analysis of environmental DNA (metagenomic sequences), in terms of alignment of 

sequences and taxonomic and functional assignments (Meyer et al., 2008). The system provides 

answers to several applications, and in particular, for our purpose, it helps to identify the composition 

of a microbial community and function by deriving community composition from shotgun 

metagenomic data using sequence similarities. For this purpose, the MG-RAST software performs 

quality control, protein prediction, clustering and similarity-based annotation on nucleic acid 

sequence datasets using several bioinformatics tools (Wilke et al., 2017). 

After applying the quality control procedure, following the instructions of the MG-RAST manual 

(Keegan et al., 2016) (https://www.mg-rast.org), were identified the mean values of the relative 
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frequency of abundances of taxonomic composition of the sequencing data, performing a search the 

RefSeq database (NCBI reference sequences) (Pruitt et al., 2005) and narrowed down the analysis 

only to those genera annotations marked as Bacteria, in order to study the relevant component of 

chicken carcasses. Moreover, mean values of the relative frequency of abundances of the functional 

composition of the sequencing data were performed using the SEED Subsystems database (Overbeek 

et al., 2014) using database hits at the function level with a focus on ARGs (level 3 and function 

level). In both cases, the following quality parameters were set: maximum e-value cut-off <1e-5, 

minimum identity cut-off 60%, and minimum alignment length cut-off 15 bp.  

 

Statistical analysis  

 

The relative frequency of abundance of each taxonomic level, of the functional genes and ARGs were 

obtained by the normalized read counts and compared in the software Statistical Analysis of 

Metagenomic Profile v2.1.3 (STAMP) (Parks et al., 2014). The first step was to convert the tsv format 

to the txt format (MS-DOS). Subsequently, the metadata file necessary to associate the reads obtained 

with the belonging samples (Group1, Group 2, Group 3) was created. Statistical processing for 

comparing three groups of profiles was carried out applying the ANOVA test, without multiple test 

correction method. For the statistically significant features were further examined with Tukey-

Kramer (post hoc tests) setting a significance value of the p-value ≤0.05, determining which groups 

of profiles differ from each other. The software was asked to remove unclassified reads. Additionally, 

we chose ≥1% relative abundance as an arbitrary cut-off to compare taxa or pathways, whereas, in 

reality, genera, species, function level of functional genes, level 3 and function level of ARGs may 

be present below this threshold.  

Diversity indices were analysed at genus and species level in free software for statistical computing 

and graphics, R 3.6.3 (McMurdie and Holmes, 2013). The vegan package (version 2.5.6) (Oksanen 

et al., 2020) was used for alpha diversity analysis by choosing Shannon, Simpson, and Inverse 

Simpson indices, while for beta diversity analysis Bray-Curtis distance matrix method. Alpha indices 

were analysed with one-way ANOVA and Tukey’s post-hoc test by considering “group” as the 

experimental factor and the individual sampled animal as the experimental unit. Beta diversity was 

graphically examined through principal coordinates analysis (PCoA) and analysed with permutational 

multivariate analysis of variance (PERMANOVA) by using “adonis” function with 10.000 

permutations, followed by pairwise permutation MANOVA with RVAideMemoire package (Hervé, 

2021).  
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3.4 Materials and methods of study 4 
 

In this very preliminary study, 1 artisanal salame manufactured in a local meat factory in the Emilia- 

Romagna area was investigated. Meat batter was then stuffed into casings, resulting in the sausage of 

about 20 cm long and about 500 g in weight. Fermentation and ripening for 126 days (18 weeks) were 

carried out in a climatic chamber before collecting the sample for analysis. The sample was placed in 

a sterile plastic bag and transferred to the laboratory immediately in a refrigerated cold box of about 

4°C and processed. A portion of 25 g of salami (casing and meat) was sampled at three different 

points using a sterile scalpel and placed in a stomacher bag. Then, 225 ml of BPW (Oxoid) was added 

to the bag. The content was homogenized in a stomacher (MAYO homogenius HG400V) at normal 

speed for 1 minute. Next, the homogenized solution was transferred in 3 falcons of 50 ml. Three 

aliquots of 100 μl each were obtained from each tube and spread plated onto Baird Parker (Oxoid) 

with added egg yolk tellurite emulsion (Oxoid) incubated at 37°C for 48 h according to the ISO 6888-

1/A1:2003. The rest of the tube content was centrifuged at 5000 rpm at 4°C for 20 minutes. The 

supernatant was discarded, and the pellet was resuspended in 6 ml of cold sterile physiological 

solution, pelleted again before storage at -80°C until DNA extraction.  

 

DNA extraction and quantification from pellet obtained from the sample homogenate 

 

The DNA was extracted from each of the three pellet aliquots using the PowerFood® Microbial DNA 

Isolation Kit (MO BIO-Qiagen, Milano, Italia) as previously described (De Cesare et al., 2019). The 

purity and concentration of DNA samples were determined according to the 260/280 nm absorbance 

ratio using a biospectrophotometers, BioSpectrometer® (Eppendorf, Milan, Italy) and Fragment 

Analyzer Automated CE System (Advanced Analytical).  

 

Library preparation and shotgun metagenomic sequencing  

 

Total DNA from each aliquot of pellet was fragmented and tagged with sequencing indexes and 

adapters using the Nextera® XT DNA Library Preparation Kit (Illumina, San Diego, CA). Shotgun 

metagenomic sequencing was performed using the NextSeq 500 sequencer (Illumina) with 

NextSeq500/550 High Output Kit v2.5 (300 Cycles) (Illumina) at 2x150 bp in paired-end mode.  

 

Bioinformatic analysis 

 

The metagenomic sequences were analysed using the MG-RAST metagenomics analysis server 

(Keegan et al., 2016) (https://www.mg-rast.org), to identify the relative abundances of taxonomic 

composition using a search in the RefSeq database (NCBI reference sequences) (Pruitt et al., 2005). 

Moreover, the relative abundances of the functional composition of the sequencing data, was 
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performed using the SEED Subsystems database (Overbeek et al., 2014) using database hits at the 

level1and function level. Statistical differences in MG-RAST outputs were not evaluated because 

only three samples were analysed.  
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4. Results 

 

4.1 Study 1 
 

In the study 1, three metagenomes were sequenced and analysed with different bioinformatic tools to 

assess their performance in the detection and quantification of all microorganisms spiked in the 

salmon samples. The output of each metagenome is shown in Table 5. Each metagenome was 

analysed using the bioinformatic tool named MG-RAST selecting the databases RefSeq, SILVA 

LSU, SILVA SSU, and Greengenes. Moreover, the same metagenomes were analysed using 

OneCodex, MG-mapper and CosmosID. Among these tools, MG-RAST is freely available online at 

the link https://www.mg-rast.org/; Mg-mapper is freely available at the link 

https://bitbucket.org/genomicepidemiology/mgmapper/src/master/ but is not always updated in the 

on-line version; OneCodex, at the link https://www.onecodex.com/, and CosmosID, at the link 

https://www.cosmosid.com/, are available online but they use requires the payment of a fee.  

 

Table 5: Sample ID with the corresponding metagenome and outputs.  

 

Sample ID Length of the library (bp) N. of reads Gbp 

1216 386 104251249 9.81 

1217 391 108914800 8.44 

1218 541 128316548 7.97 

 

Reads belonging to microorganisms different from those spiked in the salmon were identified in the 

analysed metagenomes because the salmon was not sterilized. However, the description of the results 

focuses on the spiked microorganisms. 

 

Metagenomes analysis using MG-RAST 

 

Table 6 summarises the relative abundance (%) calculated in the tested metagenomes using MG-

RAST and the database RefSeq. The database RefSeq identified all the taxonomic groups belonging 

to the bacteria species spiked in the salmon. Among the spiked bacteria, P. freudenreichii and S. 

aureus showed the highest relative abundance values, reflecting the highest concentration of both 

these species spiked in the salmon at Log 8 cfu/g. For the other bacteria species, spiked in the salmon 

at Log 7 cfu/g, a clear correspondence with the relative abundance values was not observed. Indeed, 

F. nucleatum showed a relative abundance of 1.62% while E. coli a relative abundance of 4.79%. 

Moreover, S. enterica and B. fragilis displayed comparable values but around 9%.  

https://www.mg-rast.org/
https://bitbucket.org/genomicepidemiology/mgmapper/src/master/
https://www.onecodex.com/
https://www.cosmosid.com/
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Among the other microorganisms (i.e., non-bacteria microorganisms) spiked in the salmon (Table 7), 

RefSeq was able to identify the yeast with a mean value of relative abundance of 0.01% and the 

parasite with a mean value of relative abundance of 0.15%. On the contrary, the spiked virus was not 

detected.  

 

Table 6: Relative abundance of the bacteria spiked in the tested samples calculated using MG-RAST 

and the database RefSeq.  

 

 Metagenome ID  

1216 1217 1218 Mean SD 

Phylum Proteobacteria 29.08 35.99 28.37 31.15 3.43 

 Firmicutes 36.31 35.73 34.13 35.39 0.92 

 Actinobacteria 31.05 37.18 29.52 29.25 1.59 

 Bacteroidetes 16.54 18.57 18.43 17.84 0.92 

 Fusobacteria 2.56 1.31 1.47 1.78 0.55 

Class Gammaproteobacteria 28.79 35.70 28.08 30.86 3.43 

 Bacilli 26.13 25.56 23.95 25.21 0.92 

 Actinobacteria 31.26 27.33 29.75 29.44 1.61 

 Bacteroidia 16.60 18.62 18.52 17.91 0.93 

 Fusobacteria 2.58 1.31 1.48 1.79 0.56 

Order Enterobacterales 23.45 23.69 22.29 23.14 0.60 

 Bacillales 18.00 19.44 23.83 20.42 2.48 

 Propionibacteriales 25.71 22.49 24.49 24.23 1.41 

 Bacteroidales 16.56 18.58 18.49 17.88 0.93 

 Fusobacteriales 2.57 1.31 1.48 1.79 0.56 

Family Enterobacteriaceae 23.35 23.62 22.17 23.05 0.62 

 Staphylococcaceae 15.88 15.33 13.73 14.98 0.91 

 Propionibacteriaceae 25.71 22.49 24.49 24.23 1.31 

 Bacteroidaceae 16.34 18.37 18.23 17.65 0.92 

 Fusobacteriaceae 2.56 1.31 1.47 1.78 0.55 

Genus Escherichia 5.87 5.33 3.72 4.97 0.91 

 Staphylococcus 11.56 11.57 9.95 11.03 0.76 

 Propionibacterium 25.69 22.48 24.47 24.21 1.32 

 Bacteroides 16.33 18.37 18.22 17.64 0.92 

 Salmonella 8.56 8.56 9.10 8.74 0.25 

 Fusobacterium 2.55 1.30 1.46 1.77 0.55 

Species E. coli 5.65 5.14 3.58 4.79 0.88 

 S. aureus 10.62 10.63 9.14 10.13 0.70 

 P. freudenreichii 25.15 21.10 23.01 23.08 1.65 

 B. fragilis 8.70 9.82 9.72 9.41 0.50 

 S. enterica 8.55 8.54 9.08 8.72 0.25 

 F. nucleatum 2.34 1.19 1.13 1.62 0.51 
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Table 7: Relative abundance of the fungus, parasite and virus spiked in the tested samples calculated 

using MG-RAST and the database RefSeq.  

 

 Metagenome ID   
 1216 1217 1218 Mean SD 

Species 

Saccharomyces cerevisiae 0.02 0.02 0.01 0.01 >0.00 

Cryptosporidium parvum 0.16 0.18 0.11 0.15 0.02 

Bovine alphaherpesvirus 1 - - - - - 

 

 Table 8 summarises the relative abundance values (%) calculated using MG-RAST and the database 

SILVA LSU for the bacteria groups spiked in the salmon samples. The database Silva SSU identified 

all the bacteria species spiked in the salmon. Moreover, using this database P. freudenreichii and S. 

aureus displayed a comparable level of relative abundance reflecting their equal level of 

concentration in the salmon. A good level of correspondence was also observed for the species spiked 

at Log 7 cfu/g as E. coli, B. fragilis, S. enterica and F. nucleatum. Among the other microorganisms 

spiked in the salmon (Table 9) Silva LSU identified the yeast and the parasite but the virus was not 

detected. 
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Table 8: Relative abundance of the bacteria spiked in the tested samples calculated using MG-RAST 

and the database SILVA LSU. 

 

  

Table 9: Relative abundance of the fungus, parasite and virus spiked in the tested samples calculated 

using MG-RAST and the database SILVA LSU. 

 

 Metagenome ID   
 1216 1217 1218 Mean SD 

Species 

Saccharomyces cerevisiae 0.005 0.006 0.006 0.005 <0.001 

Cryptosporidium parvum 0.019 0.018 0.018 0.018 <0.001 

Bovine alphaherpesvirus 1 - - - - - 

 Metagenome ID    
1216 1217 1218 Mean SD 

Phylum 

Proteobacteria 10.72 23.12 6.17 13.33 7.16 

Firmicutes 3.34 2.96 1.30 2.53 0.89 

Actinobacteria 4.141 5.022 4.80 4.65 0.37 

Bacteroidetes 2.23 2.99 2.05 2.42 0.41 

Fusobacteria 4.31 2.26 2.16 2.91 0.99 

Class 

Gammaproteobacteria 10.71 23.09 6.18 13.32 7.15 

Bacilli 3.24 2.89 2.62 2.91 0.25 

Actinobacteria 4.14 5.02 2.81 3.99 0.91 

Bacteroidia 2.23 2.99 2.06 2.42 0.40 

Fusobacteria 4.32 2.26 2.16 2.91 0.99 

Order 

Enterobacterales 4.97 6.68 3.83 5.16 1.17 

Bacillales 3.61 3.07 1.40 2.69 0.94 

Propionibacteriales 4.09 4.94 2.76 3.93 0.90 

Bacteroidales 2.58 3.33 2.41 2.77 0.40 

Fusobacteriales 4.98 2.52 1.36 2.95 1.50 

Family 

Enterobacteriaceae 4.30 6.00 3.26 4.52 1.13 

Staphylococcaceae 3.12 2.75 1.18 2.35 0.84 

Propionibacteriaceae 4.04 4.88 2.72 3.88 0.89 

Bacteroidaceae 2.23 2.99 2.05 2.42 0.41 

Fusobacteriaceae 4.31 2.26 2.16 2.91 0.99 

Genus 

Escherichia 2.13 2.68 1.42 2.07 0.52 

Staphylococcus 3.12 2.75 1.18 2.35 0.84 

Propionibacterium 4.04 4.88 2.72 3.88 0.89 

Bacteroides 2.23 2.99 2.05 2.42 0.41 

Salmonella 1.19 1.54 1.06 1.26 0.20 

Fusobacterium 4.30 2.26 2.09 2.88 1.00 

Species 

E. coli 2.12 2.67 1.42 2.07 0.51 

S. aureus 3.08 2.72 1.18 2.32 0.82 

P. freudenreichii 3.97 4.82 2.67 3.82 0.88 

B. fragilis 1.42 1.90 1.30 1.54 0.26 

S. enterica 1.18 1.53 1.05 1.25 0.20 

F. nucleatum 1.78 1.56 1.43 1.59 0.14 
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Table 10 summarises the relative abundance (%) calculated using Mg-RAST and the database SILVA 

SSU for the bacteria groups spiked in the salmon samples. The database SILVA SSU identified all 

the bacteria species spiked in the salmon. Among the bacteria, P. freudenreichii and S. aureus spiked 

at Log 8 cfu/g showed comparable mean relative values of abundance, while for the species spiked 

at Log 7 cfu/g comparable values of abundance were not detected. Indeed, S. enterica and F. 

nucleatum showed lower relative abundance than B. fragilis and E. coli, although were spiked at 

higher concentrations. Among the other microorganisms spiked in the salmon (Table 11) the database 

SILVA SSU was able to detect the yeast with a relative abundance as low as 0.005%, while 

Cryptosporidium parvum was quantified with a relative abundance of 0.137%. The spiked virus was 

not identified by the database Silva SSU 

 

Table 10: Relative abundance of the bacteria spiked in the tested samples calculated using MG-RAST 

and the database SILVA SSU. 

 

 Metagenome ID    
1216 1217 1218 Mean SD 

Phylum 

Proteobacteria 34.23 53.67 39 42.30 8.27 

Firmicutes 16.91 10.43 10.61 12.65 3.01 

Actinobacteria 22.67 19.98 25.65 22.76 2.32 

Bacteroidetes 10.85 10.42 17.68 12.98 3.33 

Fusobacteria 14.84 5.39 6.12 8.78 4.29 

Class 

Gammaproteobacteria 34.12 53.44 37.17 41.57 8.48 

Bacilli 16.92 10.48 11.05 12.81 2.91 

Actinobacteria 22.69 20.09 26.72 23.16 2.73 

Bacteroidia 10.83 10.44 18.42 13.23 3.67 

Fusobacteria 14.85 5.42 6.38 8.88 4.24 

Order 

Enterobacterales 16.09 15.19 20.85 17.37 2.48 

Bacillales 16.39 10.24 10.49 12.37 2.84 

Propionibacteriales 22.66 20.32 26.44 23.14 2.52 

Bacteroidales 10.87 10.61 18.29 13.25 3.56 

Fusobacteriales 14.90 5.51 6.34 8.91 4.24 

Family 

Enterobacteriaceae 16.09 15.19 21.02 17.43 2.56 

Staphylococcaceae 12.32 9.47 9.88 10.55 1.26 

Propionibacteriaceae 21.18 19.47 25.20 21.95 2.40 

Bacteroidaceae 10.55 10.35 11.17 10.69 0.35 

Fusobacteriaceae 6.90 5.51 6.39 6.26 0.57 

Genus 

Escherichia 7.51 5.88 8.45 7.28 1.06 

Staphylococcus 11.23 9.45 9.59 10.09 0.81 

Propionibacterium 21.24 19.59 24.81 21.88 2.18 

Bacteroides 10.63 10.44 18.09 10.72 0.27 

Salmonella 1.79 1.65 2.46 1.96 0.35 

Fusobacterium 5.77 5.43 6.24 5.81 0.332 
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Species 

E. coli 4.49 3.24 5.23 4.32 0.82 

S. aureus 6.86 5.87 5.96 6.23 0.45 

P.freudenreichii 14.52 12.33 15.90 14.91 1.47 

B. fragilis 4.82 4.40 9.25 4.49 0.24 

S. enterica 1.39 1.20 1.98 1.52 0.33 

F. nucleatum 1.49 1.46 1.87 1.60 0.19 

 

Table 11: Relative abundance of the fungus, parasite and virus spiked in the tested samples calculated 

using MG-RAST and the database SILVA SSU. 

 

 Metagenome ID   
 1216 1217 1218 Mean SD 

Species 

Saccharomyces cerevisiae 0.006 0.007 0.003 0.005 0.002 

Cryptosporidium parvum 0.16 0.11 0.14 0.137 0.021 

Bovine alphaherpesvirus 1 - - - - - 

 

Table 12 summarise the relative abundance (%) calculated using MG-RAST and the database RDP 

for the bacteria groups spiked in the salmon samples. This database identified all spiked bacteria 

species. Moreover, P. freudenreichii was detected as the most abundant species while S. aureus 

spiked at Log 8 cfu/g as P. freudenreichii was detected with a relative abundance of 3.33%. S. enterica 

and F. nucleatum showed lower relative abundance than B. fragilis although were spiked at higher 

concentrations. The other microorganisms spiked in the salmon were not detected using Mg-RAST 

and the database RDP. 

 

Table 12: Relative abundance of the bacteria spiked in the tested samples calculated using MG-RAST 

and the database RDP. 

 

 Metagenome ID    
1216 1217 1218 Mean SD 

Phylum 

Proteobacteria 18.05 37.14 22.38 25.86 8.17 

Firmicutes 12.39 7.97 7.93 9.43 2.09 

Actinobacteria 32.20 30.05 34.60 32.28 1.86 

Bacteroidetes 15.09 16.17 25.30 18.85 4.58 

Fusobacteria 21.77 8.51 8.64 12.97 6.22 

Class 

Gammaproteobacteria 17.92 19.36 18.54 18.61 0.59 

Bacilli 12.40 8.04 8.43 9.62 1.97 

Actinobacteria 32.25 30.31 36.81 33.12 2.73 

Bacteroidia 15.11 16.31 26.91 19.44 5.30 

Fusobacteria 21.81 8.58 9.19 13.19 6.10 

Order 

Enterobacterales 4.56 6.44 4.45 5.15 0.91 

Bacillales 12.21 7.99 8.19 9.46 1.94 

Propionibacteriales 32.40 31.09 36.43 33.31 2.27 

Bacteroidales 15.18 16.75 16.64 16.19 0.72 
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Table 13 summarises the relative abundance (%) calculated using MG-RAST and the database 

Greengenes for the bacteria groups spiked in the salmon samples. The database Greengenes identified 

all the taxonomic groups belonging to the bacteria species spiked in the salmon. Moreover, P. 

freudenreichii was detected as the most abundant species while S. aureus was detected with a relative 

abundance of 3.10%. Among the bacteria spiked at Log 7 cfu/g S. enterica, E. coli and F. nucleatum 

showed lower relative abundance than B. fragilis although were spiked at higher concentrations. The 

yeast, parasite and virus spiked in the salmon were not detected using the database Greengenes. 

 

Table 13: Relative abundance of the bacteria spiked in the tested samples calculated using MG-RAST 

and the database Greengenes. 

 

 Metagenome ID    
1216 1217 1218 Mean SD 

Phylum Proteobacteria 27.03 26.61 23.88 25.84 1.40 

Firmicutes 10.35 6.88 7.18 8.14 1.57 

Actinobacteria 33.15 31.75 35.52 33.47 1.56 

Bacteroidetes 14.68 15.02 22.98 17.56 3.84 

Fusobacteria 11.05 9.31 9.41 9.92 0.80 

Class Gammaproteobacteria 17.00 16.19 19.47 17.55 1.40 

Bacilli 10.43 6.99 7.69 8.37 1.48 

Actinobacteria 33.45 32.25 38.08 34.59 2.51 

Bacteroidia 14.81 15.25 24.64 18.23 4.53 

Fusobacteria 24.27 9.27 9.08 9.54 0.52 

Order Enterobacterales 5.80 7.85 5.69 6.45 0.99 

Bacillales 10.42 7.13 7.56 8.37 1.46 

Propionibacteriales 33.42 33.09 37.75 34.75 2.12 

Fusobacteriales 21.92 8.81 9.10 13.28 6.11 

Family 

Enterobacteriaceae 4.56 6.44 4.50 5.17 0.90 

Staphylococcaceae 8.27 7.12 7.57 7.65 0.47 

Propionibacteriaceae 30.73 30.07 35.57 32.12 2.45 

Bacteroidaceae 14.71 16.34 16.56 15.87 0.83 

Fusobacteriaceae 12.92 8.81 9.20 10.31 1.85 

Genus 

Escherichia 0.68 0.19 0.70 0.52 0.24 

Staphylococcus 7.95 7.02 7.15 7.37 0.41 

Propionibacterium 30.68 30.27 32.96 31.30 1.18 

Bacteroides 14.76 16.50 16.42 15.89 0.80 

Salmonella 0.32 0.42 0.35 0.36 0.04 

Fusobacterium 9.62 8.68 8.97 9.09 0.39 

Species 

E. coli 0.42 0.98 0.50 0.63 0.25 

S. aureus 4.43 2.25 3.32 3.33 0.89 

P. freudenreichii 18.83 18.33 20.27 19.14 0.82 

B. fragilis 6.82 6.52 7.51 6.95 0.41 

S. enterica 0.14 0.19 0.16 0.16 0.02 
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Bacteroidales 14.80 15.65 14.43 14.96 0.51 

Fusobacteriales 9.25 8.98 8.90 9.04 0.15 

Family Enterobacteriaceae 5.84 7.90 5.75 6.50 0.99 

Staphylococcaceae 9.87 6.58 7.13 7.86 1.44 

Propionibacteriaceae 33.25 32.68 37.75 34.56 2.27 

Bacteroidaceae 14.59 15.58 14.38 14.85 0.52 

Fusobacteriaceae 8.42 8.57 8.70 8.56 0.11 

Genus Escherichia 2.41 2.95 1.62 2.33 0.55 

Staphylococcus 8.40 6.41 6.62 7.14 0.89 

Propionibacterium 33.11 32.84 34.43 33.46 0.70 

Bacteroides 14.53 15.66 14.18 14.79 0.63 

Salmonella 1.78 1.79 2.40 1.99 0.29 

Fusobacterium 23.87 9.39 5.82 5.92 0.47 

Species E. coli 1.66 1.67 1.19 1.51 0.22 

S. aureus 3.90 2.06 3.33 3.10 0.77 

P. freudenreichii 23.32 24.72 24.72 24.25 0.66 

B. fragilis 7.08 5.91 7.78 6.92 0.77 

S. enterica 1.26 1.03 1.73 1.34 0.29 

F. nucleatum 1.98 1.74 2.37 2.03 0.26 

 

Table 14 summarises all the mean relative values of abundance (%) quantified for the species spiked 

in the salmon samples using the different databases available in MG-RAST. According to Petersen 

et al. (2017), whenever the ratio between the number of reads associated with a specific 

microorganism and the total number of reads in the sample is > 0.1% the taxonomic classification 

can be considered reliable. 

 

Table 14: Mean relative values of abundance calculated for the spiked species using MG-RAST with 

the databases RefSeq, Silva LSU, Silva SSU, RDP and Greengenes. 

 

Species RefSeq 
Silva 

LSU 

Silva 

SSU 
RDP Greengenes 

Escherichia coli 4.79 2.07 4.32 1.51 0.63 

Staphylococcus aureus 10.13 2.32 6.23 3.10 3.33 

Propionibacterium freudenreichii 23.08 3.82 14.91 24.25 19.14 

Bacteroides fragilis 9.41 1.54 4.49 6.92 6.95 

Salmonella enterica 8.72 1.25 1.52 1.34 0.16 

Fusobacterium nucleatum 1.62 1.59 1.60 2.03 2.80 

Saccharomyces cerevisiae 0.01 <0.01 <0.01 0 0 

Cryptosporidium parvum 0.15 0.01 0.13 0 0 

Bovine alphaherpesvirus 1 0 0 0 0 0 

 

All in all, the results obtained using the software tool MG-RAST demonstrated that all bacteria 

species spiked in the salmon samples can be correctly identified by all tested databases available in 
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the tool. On the contrary, the fungus and the virus were never detected, and the parasite can be 

detected only using RefSeq and Silva SSU. 

 

Metagenomes analysis using CosmosID 

 

Table 15 summarises the relative abundance calculated using CosmosID and the database GenBook 

for the bacteria groups spiked in the salmon samples. All bacteria species were identified using this 

software. Moreover, P. freudenreichii and S. aureus were identified at the higher abundance values 

while among the bacteria spiked at Log 7 cfu/g, B. fragilis showed a relative abundance much higher 

than S. enterica and F. nucleatum. Among the other microorganisms spiked in the salmon (Table 16), 

CosmosID identified the parasite C. parvum with a relative abundance of 88.74% and the virus with 

a relative abundance of 7.14%. However, the yeast was not detected. 

 

Table 15: Relative abundance of the bacteria spiked in the tested samples calculated using CosmosID 

and the database GenBooK. 

 

 Metagenome ID   

 1216 1217 1218 Mean SD 

Phylum 

Proteobacteria 10.07 10.92 11.53 10.84 0.60 

Firmicutes 11.58 20.26 17.24 16.36 3.60 

Actinobacteria 49.82 44.97 43.79 46.19 2.61 

Bacteroidetes 18.89 19.82 21.35 20.02 1.01 

Fusobacteria 9.00 4.67 6.09 6.59 1.80 

Class 

Gammaproteobacteria 10.64 10.26 11.51 10.80 0.52 

Bacilli 11.58 20.26 17.24 16.36 3.60 

Actinobacteria 49.82 44.97 43.79 46.19 2.61 

Bacteroidia 18.89 19.82 21.35 20.02 1.01 

Fusobacteria 9.00 4.67 6.09 6.59 1.80 

Order 

Enterobacterales 10.18 9.16 11.15 10.16 0.81 

Bacillales 11.56 20.2 17.21 16.32 3.58 

Propionibacteriales 49.82 44.97 43.64 46.14 2.66 

Bacteroidales 18.89 19.82 21.35 20.02 1.01 

Fusobacteriales 9.00 4.67 6.09 6.59 1.80 

Family 

Enterobacteriaceae 10.17 9.12 11.14 10.14 0.83 

Staphylococcaceae 11.56 20.2 17.21 16.32 3.58 

Propionibacteriaceae 49.82 44.97 43.64 46.14 2.66 

Bacteroidaceae 18.89 19.82 21.35 20.02 1.01 

Fusobacteriaceae 9.00 4.67 6.09 6.59 1.80 

Genus 

Escherichia 0.32 0.40 0.44 0.39 0.05 

Staphylococcus 11.56 20.20 17.21 16.32 3.58 

Propionibacterium 49.28 44.48 43.18 45.65 2.62 

Bacteroides 18.89 19.82 21.35 20.02 1.01 

Salmonella 9.83 8.69 10.67 9.73 0.81 
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Fusobacterium 9.00 4.67 6.09 6.59 1.80 

Species 

E. coli 0.31 0.38 0.44 0.38 0.05 

S. aureus 18.89 19.81 21.34 20.01 1.01 

P. freudenreichii 49.28 44.48 43.18 45.65 2.62 

B. fragilis 17.56 20.02 17.21 18.26 1.25 

S. enterica 9.83 8.69 10.67 9.73 0.81 

F. nucleatum 9.00 4.67 6.09 6.59 1.80 

 

Table 16: Relative abundance of the yeast, parasite and virus spiked in the tested samples calculated 

using CosmosID and the database GenBook. 

 

 Metagenome ID   
 1216 1217 1218 Mean SD 

Species 

Saccharomyces cerevisiae - - - - - 

Cryptosporidium parvum 88.44 91.20 86.57 88.74 1.90 

Bovine alphaherpesvirus 1 8.04 7.28 6.09 7.14 0.80 

 

Metagenomes analysis using MGmapper 

 

Table 17 summarises the relative abundance (%) calculated using MGmapper for the bacteria groups 

spiked in the salmon samples. Among the spiked species, P. freudenreichii was quantified as the most 

abundant species while S. aureus was quantified at a much lower abundance. Among the bacteria 

spiked at Log 7 cfu/g, E. coli and B. fragilis displayed comparable levels of relative abundance. The 

other microorganisms spiked in the salmon were all identified by MGmapper but at a very low level 

of relative abundance (Table 17). 

 

Table 17: Relative abundance of the microorganisms spiked in the tested samples calculated using 

MGmapper. 

 

 Metagenome ID   
 1216 1217 1218 Mean SD 

Species 

Escherichia coli 1.24 1.56 0.81 1.20 0.30 

Staphylococcus aureus 0.54 0.61 0.24 0.46 0.16 

Propionibacterium freudenreichii 5.00 5.49 3.35 4.61 0.91 

Bacteroides fragilis 1.09 1.60 0.95 1.22 0.28 

Fungus Saccharomyces cerevisiae 0.003 0.003 0.001 0.002 0.001 

Parasite Cryptosporidium parvum 0.02 0.02 0.02 0.02 0.002 

Virus Bovine alphaherpesvirus 1 0.01 0.01 0.003 0.01 0.001 

 

Metagenomes analysis using OneCodex 

 

Table 18 summarises the percentage of reads assigned to each taxonomic group by OneCodex. This 

tool was able to identify all spiked microorganisms. In particular, P. freudenreichii was quantified as 
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the most abundant microorganism (Table 19) while S. aureus spiked at the same concentration was 

quantified at lower abundance. E. coli, S. enterica and B. fragilis all spiked at Log 7 cfu/g were 

quantified at a comparable level of abundance while F. nucleatum at lower levels. Among the other 

microorganisms spiked in the salmon, OneCodex was able to identify C. parvum and Bovine 

alphaherpesvirus1, while S. cerevisiae was not identified. 

 

Table 18: Relative abundance of the bacteria spiked in the tested samples calculated using OneCodex. 

  

 Metagenome ID    
1216 1217 1218 Mean  SD 

Phylum 

Proteobacteria 24.66 30.50 24.31 26.49 2.84 

Firmicutes 5.34 4.82 3.57 4.58 0.74 

Actinobacteria 54.02 47.68 53.32 51.67 2.84 

Bacteroidetes 11.57 13.94 15.05 13.52 1.45 

Fusobacteria 1.85 0.85 1.08 1.26 0.43 

Class 

Gammaproteobacteria 24.5 30.32 24.09 26.30 2.85 

Bacilli 3.02 2.75 2.05 2.61 0.41 

Actinobacteria 54.02 47.67 53.32 51.67 2.84 

Bacteroidia 11.57 13.93 15.05 13.52 1.45 

Fusobacteria 1.85 0.85 1.08 1.26 0.43 

Order 

Enterobacterales 20.43 20.65 21.66 20.91 0.54 

Bacillales 3 2.71 2.02 2.58 0.41 

Propionibacteriales 52.45 46.31 51.70 50.15 2.73 

Bacteroidales 11.75 13.93 15.05 13.58 1.37 

Fusobacteriales 1.85 0.85 1.08 1.26 0.43 

Family 

Enterobacteriaceae 17.87 18.08 19.30 18.42 0.63 

Staphylococcaceae 2.95 2.67 1.93 2.52 0.43 

Propionibacteriaceae 52.43 46.30 51.69 50.14 2.73 

Bacteroidaceae 11.54 13.69 14.77 13.33 1.34 

Fusobacteriaceae 1.85 0.85 1.08 1.26 0.43 

Genus 

Escherichia 3.59 3.70 3.34 3.54 0.15 

Staphylococcus 2.95 2.66 1.93 2.51 0.43 

Propionibacterium 51.43 45.39 50.69 49.17 2.69 

Bacteroides 11.54 13.69 14.77 13.33 1.34 

Salmonella 8.04 8.03 9.82 8.63 0.84 

Fusobacterium 1.84 0.85 1.08 1.26 0.42 

 

Table 19: Relative abundance (%) calculated with OneCodex for the species spiked in the salmon  

 

 Metagenome ID  
1216 1217 1218 Mean SD 

Species 

Escherichia coli 7.78 8.31 7.32 7.80 0.40 

Staphylococcus aureus 7.42 7.07 5.03 6.51 1.05 

Propionibacterium freudenreichii 64.36 60.12 65.55 63.34 2.33 

Bacteroides fragilis 7.44 9.29 8.79 8.51 0.78 

Salmonella enterica 6.44 6.83 8.18 7.15 0.75 
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Fusobacterium nucleatum 3.26 1.60 2.00 2.29 0.71 

Fungus Saccharomyces cerevisiae - - - - - 

Parasite Cryptosporidium parvum 0.08 0.09 0.07 0.08 0.01 

Virus Bovine alphaherpesvirus 1 1.53 1.52 1.25 1.43 0.13 

 

4.2 Study 2 
 

In the study 2, a total of 59 metagenomes were obtained. The output of each metagenome is detailed 

in Table 20. All metagenomes are deposited in MG- RAST and are available at the following link 

https://www.mg-rast.org/mgmain.html?mgpage=project&project=mgp89213. According to the 

results of study 1, the taxonomic composition of these caeca and carcasses was assessed using Mg-

RAST and the database RefSeq. 

 

Table 20: Numbers identifying the tested broilers and corresponding metagenomes for the caeca and 

the carcasses. The output of each metagenome is detailed as number of sequences and bp. 

 

Broiler 

number 
Farm 

Metagenome 

ID caeca 

N. of 

reads 
Gbp 

Metagenome 

ID carcass 
N. of reads Gbp 

31 Conventional 1343 40662712 5.95 1280 44582923 3.31 

32 Conventional 1344 44858014 6.56 1281 48151463 3.59 

33 Conventional 1345 40333432 5.81 1282 48778635 3.64 

34 Conventional 1346 35639899 4.81 1283 51922499 3.85 

35 Conventional 1347 42948477 5.80 1284 76815286 5.77 

36 Conventional 1348 48924902 7.14 1285 50869653 3.72 

37 Conventional 1349 38427233 5.54 1286 7116609 534.11 (Mb) 

38 Conventional 1350 136407195 19.28 1287 62175940 4.60 

39 Conventional 1351 38701919 5.44 1288 50420635 3.78 

40 Conventional 1352 34100337 4.70 1289 61001877 4.57 

41 Conventional 1353 35244995 5.11 1290 49828965 7.28 

42 Conventional - - - 1291 43162564 3.24 

43 Conventional 1355 67927139 10.00 1292 40665704 3.05 

44 Conventional 1356 40043411 5,78 1293 46507602 6.85 

45 Conventional 1357 104579787 14.88 1294 36252353 2.72 

46 Antibiotic free 1358 52954003 3.98 1295 131516916 9.87 

47 Antibiotic free 1359 41827994 3.14 1296 648195 48.73 (Mb) 

48 Antibiotic free 1360 51865847 3.90 1297 38071848 2.86 

49 Antibiotic free 1361 64448503 4.72 1298 34826163 2.61 

50 Antibiotic free 1362 59741307 4.46 1299 69774102 5.23 

51 Antibiotic free 1363 45802509 3.42 1300 66262603 4.96 

52 Antibiotic free 1364 43535017 3.27 1301 54383524 4.04 

53 Antibiotic free 1365 35032973 2.63 1302 38138345 5.49 

54 Antibiotic free 1366 45990811 3.45 1303 195441747 14.63 

55 Antibiotic free 1367 47668525 3.58 1304 46202148 6.72 

56 Antibiotic free 1368 41586126 3.13 1305 58668081 4.40 

57 Antibiotic free 1369 46393713 3.49 1306 50889023 3.80 

58 Antibiotic free 1370 50371723 3.79 1307 31114983 2.33 

https://www.mg-rast.org/mgmain.html?mgpage=project&project=mgp89213
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59 Antibiotic free 1371 48911269 3.67 1308 46767036 6.74 

60 Antibiotic free 1372 34825336 4.86 1309 49686448 3.72 

 

Taxonomic and functional gene composition of the caeca contents 

 

The taxonomic and functional gene composition was investigated in the caeca of birds reared in the 

conventional and antibiotic free farm. Sixteen of the top 20 most abundant genera identified were 

shared between the two tested groups (Figure 4). Moreover, Alkaliphilus, Desulfibacterium, Bacillus 

and Ethanoligenens were detected in the caeca of birds from the conventional farm (Figure 4a); 

Coprococcus, Escherichia, Parabacteroides and Provotella were detected in the caeca of birds from 

the antibiotic free farm (Figure 4b).  
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Figure 4: Distribution top 20 genera in the bar plots characterizing the caeca of the birds reared in 

the conventional (a) and antibiotic free (b) farm. Sample 42 is not included among samples in panel 

a because it was not processed for technical reasons. 

 
 

 

The normalized mean counts of Alkaliphilus, Bacillus, Desulfitobacterium, Ethanoligenens and 

Streptococcus were significantly higher in the caeca of birds reared in the conventional farm, while 

those of Alistipes, Anaerotruncus, Bacteroides, Coprococcus, Dorea, Escherichia, Holdemania, 

Lactobacillus, Parabacteroides, Prevotella, Roseburia, Ruminococcus and Subdoligranulum in the 

caeca of birds reared in the antibiotic free farm (Table 21). 
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Table 21: Normalized mean values (DESeq2 normalized counts) of the genera belonging in the top 

20 genera significantly different (p<0.05) in the caeca of the birds reared in the conventional and 

antibiotic free farm. 

 

Genus 
Norm_Mean_ 

Conventional 

Norm_Mean_ 

Antibiotic free 
p-value  

Alistipes   121394.48  201764.20  0.00  

Alkaliphilus   65854.66  37406.43  0.00  

Anaerotruncus   81830.35  141769.05  0.00  

Bacillus   121574.41  80982.30  0.00  

Bacteroides   903112.03  5541950.68  0.00  

Coprococcus   56576.51  94133.58  0.00  

Desulfitobacterium   83821.62  49267.15  0.00  

Dorea   69937.78  121675.15  0.00  

Escherichia   40613.94  215143.60  0.00  

Ethanoligenens   126272.74  80004.04  0.00  

Holdemania   87562.75  113518.34  0.00  

Lactobacillus   162869.83  297992.16  0.02  

Parabacteroides   54047.67  557109.97  0.00  

Prevotella   41748.15  697359.16  0.00  

Roseburia   95006.08  151647.56  0.00  

Ruminococcus   522286.96  806960.48  0.00  

Streptococcus   122827.12  90076.97  0.01  

Subdoligranulum   342496.63  505311.50  0.00  

 

The genera richness and diversity observed in the caeca of birds in terms of alfa diversity were 

estimated using the InvSimpson, Shannon and Chao1 indexes and were significantly higher in the 

caeca of birds from the group of animals reared in the conventional farm in comparison to the 

antibiotic free farm (Table 22 and Figure 5). 

 

Table 22: Mean values of the InvSimpson, Shannon, and Chao1 indexes quantified for the genera 

colonizing in the caeca of birds reared in the conventional and antibiotic free farm. 

 

  InvSimpson  Shannon  Chao1  

Mean_Conventional  13.73  3.75  559.63  

Mean_Antibiotic free  7.08  3.07  554.05  
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Figure 5: Box plots of the alpha diversity indexes calculated at genus level: (a) InvSimpson index; 

(b) Shannon index; (c) Chao1 index. p value <0.001 were considered significantly different. 

 

 
 

The beta diversity index (generated using the Bray-Curtis distance metric) calculated at the genus 

level highlighted a clear dissimilarity in the community composition in the caeca sampled in the two 

groups of broilers tested (adonis2 p-value<0.00001) (Figure 6). 

 

Figure 6: Bray-Curtis dissimilarity plots showing the genera detected in the caeca of birds from the 

conventional and antibiotic free farm. 
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Fourteen of the top 20 most abundant functional genes identified within the caeca of birds were shared 

between the two tested groups (Figure 7). Moreover, functional genes type I restriction−modification 

system-restriction subunit R (EC 3.1.21.3), site-specific recombinase, DNA topoisomerase III (EC 

5.99.1.2), ferrous iron transport protein B, copper−translocating P−type ATPase (EC 3.6.3.4) and 

DNA gyrase subunit A (EC 5.99.1.3) were listed among the most abundant functional genes in the 

caeca of birds from the conventional farm (Figure 7a), while chaperone protein DnaK, glutamine 

synthetase type III, GlnN (EC 6.3.1.2), leucyl−tRNA synthetase (EC 6.1.1.4), valyl−tRNA synthetase 

(EC 6.1.1.9), clpB protein and tonB−dependent receptor were detected only in the caeca of birds from 

the antibiotic free farm (Figure 7b). 
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Figure 7: Distribution top 20 functional genes characterizing the caeca of the birds reared in the 

conventional (a) and antibiotic free (b) farm. Sample 42 is not included among samples in panel a 

because it was not processed for technical reasons. 

 

 

Besides these qualitative differences, the normalized mean values of beta-galactosidase (EC 3.2.1.23) 

and DNA topoisomerase III EC 5.99.1.2 (in PFGI-1-like cluster) were significantly higher in the 

caeca of birds from the conventional farm, while those of integrase, translation elongation factor G, 

ribonucleotide reductase of class III (anaerobic)-large subunit EC 1.17.4.2, excinuclease ABC subunit 
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A paralog in greater Bacteroides group and chaperone protein DnaK were significantly higher in the 

caeca of birds reared in the antibiotic free farm (Table 23). 

 

Table 23: Normalized mean values (DESeq2 normalized counts) of the functional genes belonging 

in the top 20 functional genes significantly different (p<0.05) in the caeca of the birds reared in the 

conventional and antibiotic free farm. 

 

Level function 
Norm_Mean_ 

Conventional 

Norm_Mean_ 

Antibiotic free 
p-value  

Beta-galactosidase (EC 3.2.1.23) 7282.34 0 0.00 

Chaperone protein DnaK 9293.18  12738.49  0.00  

DNA topoisomerase III (EC 5.99.1.2) in PFGI-1-

like cluster 
2.01 0.21 0.00  

Excinuclease ABC subunit A paralog in greater 

Bacteroides group 
410.25  2013.30  0.00  

Integrase 9163.52  15684.38  0.00  

Ribonucleotide reductase of class III (anaerobic) 

 large subunit (EC 1.17.4.2) 
9822.28  14658.28  0.00  

Translation elongation factor G 9751.14  18514.22  0.00  

 

The beta diversity index calculated for the functional genes confirmed a clear association of the caeca 

with their farm of origin (adonis2 p-value<0.00001) (Figure 8). 

 

Figure 8: Bray-Curtis dissimilarity plots showing the functional genes detected in caeca of birds 

reared in the antibiotic free and conventional farm. 
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Taxonomic and functional gene composition of the carcasses 

 

Overall, 14 of the top 20 most abundant genera identified on carcasses were shared between the two 

tested groups (Figure 9). Moreover, Anoxybacillus, Bacillus, Flavobacterium, Pedobacter, 

Geobacillus and Sphingobacterium were only detected on carcasses of birds from the conventional 

farm (Figure 9a); Aeromonas, Burkholderia, Endoriftia, Prevotella, Ruminococcus and Shewanella 

on carcasses of birds from the antibiotic free farm (Figure 9b). 

 

Figure 9: Distribution of the top 20 genera in the bar plots that characterizing the carcasses of the 

birds reared in the conventional (a) and antibiotic free (b) farm. 
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The normalized mean values of Anoxybacillus, Bacillus, Gebacillus, Pedobacter and 

Sphingobacterium were significantly higher on carcasses of birds reared in the conventional farm, 

while those of Aeromonas, Bacteroides, Prevotella and Ruminococcus on carcasses of birds reared in 

the antibiotic free farm (Table 24).  

 

Table 24: Normalized mean values (DESeq2 normalized counts) of the genera belonging in the top 

20 genera significantly different (p<0.05) on carcasses of the birds reared in the conventional and 

antibiotic free farm. 

 

Genus  
Norm_Mean_  

Conventional 

Norm_Mean_  

Antibiotic free 
p-value  

Aeromonas   118.65  325.11  0.00  

Anoxybacillus   702.12 14.22 0.00 

Bacillus   1032.50 183.12 0.00 

Bacteroides   520.73 2011.12 0.00 

Geobacillus   616.23 40.34 0.00 

Pedobacter   429.52 127.03 0.00 

Prevotella 54.76 339.25 0.00 

Ruminococcus 142.06 361.58 0.00 

Sphingobacterium   684.45 188.17 0.00 

 

The alpha diversity indexes (i.e., InvSimpson, Shannon and Chao1) calculated for bacteria genera 

identified on carcasses from conventional and antibiotic free farm did not show any significative 

difference (Table 25).  

 

Table 25: Mean values and corresponding p values of the InvSimpson. Shannon. Chao1 indexes 

quantified for the genera identified on carcasses of birds reared in the conventional and antibiotic free 

farm. 

 

Index Mean Conventional Mean Antibiotic free p-value 

InvSimpson 13.312 10.74 0.44 

Shannon 3.23 3.19 0.88 

Chao1 491.49 503.36 0.75 

 

The beta diversity calculated for the functional genes did not group the carcasses according to the 

farm origin (adonis2 p-value=0.332) (Figure 10). 
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Figure 10: Bray-Curtis dissimilarity plots showing the genera detected on carcasses from the 

conventional and antibiotic free farm. 

 

 

Three of the top 20 most abundant functional genes identified on the carcasses were shared between 

the two tested groups (Figure 11). Moreover, functional genes cytochrome c oxidase polypeptide II 

(EC 1.9.3.1) and DNA-directed RNA polymerase beta' subunit (EC 2.7.7.6) were listed among the 

most abundant functional genes on carcasses of birds from the conventional farm (Figure 11a), while 

2-oxoglutarate dehydrogenase E1 component (EC 1.2.4.2), RNA helicase putative and DNA 

topoisomerase I (EC 5.99.1.2) only on carcasses of birds from the antibiotic free farm (Figure 11b). 
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Figure 11: Distribution top 20 functional genes characterizing the carcasses of the birds reared in the 

conventional farm (a) and antibiotic free (b). 

 

 

 

The functional genes belonging of the top 20 identified in the carcasses did not show a significative 

difference of normalized mean counts between the two groups of carcasses tested (p<0.05).  

Moreover, the beta diversity generated using the Bray-Curtis distance metric, observed in the 

functional composition of the two tested groups did not cluster the carcasses according to the farm of 

origin (adonis2 p-value=0.332) (Figure 12). 
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Figure 12: Bray-Curtis plot of beta diversity of functional genes detected on carcasses of birds reared 

in the antibiotic free and conventional farm. 

 

 

 

Longitudinal analysis of caeca and carcass belonging to the same animal 

 

In Figure 13 the correlations of genera identified between caeca samples and carcasses of birds reared 

in the conventional and antibiotic free farm are shown. Both the dimension of the circle and the colour 

scale represent the value of the correlation coefficient. Overall, a positive correlation was always 

detected between the genera colonizing the caeca and corresponding carcass. Nevertheless, such 

correlation was not stronger for samples collected from the same animal than for animals belonging 

to the same flock. As an example, in Figure 13a the bacteria genera identified in the caeca of the bird 

labelled as 31 are well correlated to those of carcass 31 but as well as to carcasses 36, 37, 43, and 45. 

On the contrary, in Figure 13b the bacteria genera identified in the caeca of the bird labelled as 50 

show a higher correlation with the carcasses 47 and 59 in comparison to the carcass of the same 

animal (i.e., carcass 50). 
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Figure 13: Kendall correlation plot of genera identified in the caeca and corresponding carcasses of 

birds reared in the conventional farm (a) and of genera identified in the caeca and corresponding 

carcasses of birds reared in the antibiotic free farm (b). 

 

 

 

A positive correlation was also identified between functional genes (Figure 14) detected in the caeca 

and corresponding carcass for birds reared in the conventional (Figure 14c) and antibiotic free (Figure 

14d) farm. For the functional genes such positive correlation was higher in comparison to that 

observed for the bacteria genera thus resulting in stronger blue dots. 
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Figure 14: Kendall correlation plot of functional genes identified in the caeca and corresponding 

carcasses of birds reared in the conventional farm (c) and functional genes identified in the caeca and 

corresponding carcasses of birds reared in the antibiotic free farm (d). 

 

Identification of antibiotic resistance genes in the caeca and carcasses 

 

The antibiotic resistance genes (ARGs) were retrieved from functional genes identified in the caeca 

and in the carcasses of the tested animals and classified as such in level 2 of the biological-function 

ontology in SEED category (Aziz et al., 2008). Among the ARGs with normalized mean values of 

abundance >1000 in at least one tested group, the regulatory sensor-transducer-BlaR1/MecR1 family, 

UDP-N-acetylmuramoylalanyl-D-glutamate-2.6-diaminopimelate ligase (EC 6.3.2.13), macrolide 

export ATP-binding/permease protein MacB (EC 3.6.3.-), multi antimicrobial extrusion protein 

(Na(+)/drug antiporter)-MATE family of MDR efflux pumps. topoisomerase IV subunit B (EC 

5.99.1.-) and vancomycin response regulator VanR were significantly higher in the caeca of birds 

reared in the conventional farm in comparison to the antibiotic free farm (Table 26). On the contrary, 

the acriflavin resistance protein and probable RND efflux membrane fusion protein was significantly 

higher in the caeca of birds reared in the antibiotic free farm (Table 26). As far as the carcasses are 

concerned, no differences were identified between normalized mean values of abundance of ARGs 

detected on carcasses sampled in the two tested groups. 
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Table 26: Genes classified as antibiotic resistant genes in the Level 2 category and showing 

normalized mean values significantly different (p<0.05) in the caeca of birds reared in the 

conventional and antibiotic free farm. Genes in bold have been identified also on carcasses but with 

any normalized mean values significantly different in the two tested groups. 

 

Level 3 Level function 
Norm_Mean 

Conventional 

Norm_Mean 

Antibiotic free 
p-value  

Aminoglycoside

_adenylyltransfer

ases 

Aminoglycoside N6'-acetyltransferase 

(EC 2.3.1.82)  
8.09 0.74 0.00 

Spectinomycin 9-O-

adenylyltransferase  
95.17 19.10 0.00 

Streptomycin 3''-O-

adenylyltransferase (EC 2.7.7.47)  
115.47 324.20 0.00 

Beta-lactamase 

Beta-lactamase class A 6.45 0.18 0.02 

Beta-lactamase class C and other 

penicillin binding proteins 
162.99 29.85 0.00 

Beta-lactamase repressor BlaI 395.08 36.98 0.00 

Metal-dependent hydrolases of the beta-

lactamase superfamily II 
16.52 2.47 0.00 

Negative regulator of beta-lactamase 

expression 
5.18 0.90 0.00 

Regulatory protein BlaR1 23.20 0.51 0.00 

BlaR1_Family_R

egulatory_Sensor

-

transducer_Disa

mbiguation 

Beta-lactamase repressor BlaI 0 51.57 0.00 

Regulatory sensor-transducer. 

BlaR1/MecR1 family 
1031.43 412.74 0.00 

Transcriptional regulator. MecI family 33.46 83.80 0.00 

Transcriptional repressor. BlaI/MecI 

family 
261.79 462.16 0.00 

Erythromycin_re

sistance 

rRNA adenine N-6-methyltransferase 

(EC 2.1.1.48) 
190.67 712.31 0.00 

rRNA adenine N-6-methyltransferase 

(EC 2.1.1.48) (Macrolide-lincosamide-

streptogramin B resistance protein) 

(Erythromycin resistance protein) 

23.96 1.71 0.00 

rRNA adenine N-6-methyltransferase 

(erm/ksgA) 
3.80 16.21 0.00 

Methicillin_resist

ance_in_Staphyl

ococci 

FmtA protein involved in methicillin 

resistance 
3.76 0.48 0.02 

Transposase for insertion sequence-like 

element IS431mec 
0.62 4.95 0.01 

UDP-N-acetylmuramoylalanyl-D-

glutamate--2.6-diaminopimelate ligase 

(EC 6.3.2.13) 

2541.38 0 0.00 

MexE-MexF-

OprN_Multidrug

_Efflux_System 

Multidrug efflux transporter MexF 67.03 32.71 0.00 

Transcriptional regulator MexT 1.37 0.11 0.09 

Acriflavin resistance protein 2292.45 7129.56 0.00 
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Multidrug_Resist

ance_Efflux_Pu

mps 

 

Macrolide export ATP-

binding/permease protein MacB (EC 

3.6.3.-) 

1036.87 426.51 0.00 

Macrolide-specific efflux protein 

MacA 
210.92 668.43 0.00 

Multi antimicrobial extrusion protein 

(Na(+)/drug antiporter). MATE 

family of MDR efflux pumps 

8815.67 3125.98 0.00 

Multidrug efflux pump component MtrF 19.15 2.95 0.00 

Multidrug efflux RND membrane 

fusion protein MexC 
4.11 1.52 0.02 

Multidrug efflux RND transporter 

MexD 
19.08 6.19 0.00 

Multidrug resistance efflux pump PmrA 20.99 3.97 0.00 

Multidrug-efflux transporter. major 

facilitator superfamily (MFS) (TC 2.A.1) 
14.73 47.62 0.00 

Probable outer membrane component of 

multidrug efflux pump 
0.54 4.49 0.01 

Transcription regulator of multidrug 

efflux pump operon. TetR (AcrR) family 
22.02 4.14 0.00 

Transcription repressor of multidrug 

efflux pump acrAB operon. TetR (AcrR) 

family 

4.97 24.05 0.00 

Multiple_Antibio

tic_Resistance_

MAR_locus 

Multiple antibiotic resistance protein 

MarA 
0.31 3.61 0.00 

Polymyxin_Synt

hetase_Gene_Clu

ster_in_Bacillus 

Polymyxin synthetase PmxA 1.95 0.26 0.03 

Resistance_to_fl

uoroquinolones 

Efflux pump Lde 25.94 69.77 0.02 

Topoisomerase IV subunit B (EC 

5.99.1.-) 
1796.57 0 0.00 

Resistance_to_V

ancomycin 

Protein VanZ 1.47 0.09 0.03 

Sensor histidine kinase VanS (EC 

2.7.3.-) 
847.06 136.85 0.00 

Vancomycin B-type resistance protein 

VanW 
882.44 147.84 0.00 

Vancomycin B-type resistance protein 

VanX 
65.05 29.34 0.00 

Vancomycin resistance protein VanH 11.77 4.74 0.02 

Vancomycin response regulator VanR 1340.46 856.22 0.01 

Vancomycin Teicoplanin A-type 

resistance protein VanA 
44.30 3.05 0.00 

Streptococcus_p

neumoniae_Vanc

omycin_Toleranc

e_Locus 

ABC transporter. ATP-binding protein 

Vex2 
84.10 8.61 0.00 
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Streptothricin_re

sistance 

Streptothricin acetyltransferase. 

Streptomyces lavendulae type 
149.21 248.09 0.00 

The_mdtABCD_

multidrug_resista

nce_cluster 

Multidrug transporter MdtB 16.73 79.84 0.01 

Multidrug transporter MdtC 15.58 69.33 0.00 

Multidrug transporter MdtD 7.58 32.85 0.00 

Probable RND efflux membrane 

fusion protein 
709.05 1590.56 0.00 

Response regulator BaeR 53.50 23.84 0.00 

Sensory histidine kinase BaeS 16.45 35.31 0.02 

 

 

The total antimicrobial resistance (AMR) load per sample in the caeca was significantly higher in the 

birds reared in the conventional in comparison to the antibiotic free (Wilcoxon rank sum test p-value 

= 0.00009) (Figure 15). However, in both groups of caeca samples, the total AMR load was lower in 

comparison to the carcasses which did not show significant differences between the two tested groups 

(Wilcoxon rank sum test p-value = 0.6). 
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Figure 15: Box plots showing the total AMR level (FPKM) per sample, stratified by source and 

origin of the sample. Each sample is also represented by a dot with sideways jitter to minimize 

overplotting. 

 

 

The drug classes identified in the broiler caeca and on carcasses are listed in Figure 16. The drug class 

aminoglycoside was more represented on carcasses in comparison to caeca contents and sulfonamide 

was identified on carcasses but at very low levels in some caeca. On the contrary, macrolide as well 

as resistance to other drug classes, including bicyclomicyn, lincosamide, fosfomycin, glycopeptide, 

pleuromutilin and nitrofuran were mostly identified in the caeca. Figure 16 shows that besides 

differences in the abundance of specific antibiotic resistance genes described above, in qualitative 

terms the overall resistome of the caeca of animals reared on the antibiotic free farm overlaps with 

that of animals reared on the conventional farm, and the same is observed on carcasses. This result 

can be explained considering that the antibiotic free flock was reared in a farm where antibiotics have 

been possibly used in the previous flocks, thus supporting the persistence of ARGs in the farm 

environment over time. 
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Figure 16: Stacked bar chart of AMR abundance (FPKM) per drug class (colors) per sample (x axis). 

Each plot refers to one group of samples as detailed in the sub-titles. 

 

 

As for bacteria genera and functional genes, the ARGs identified in the caeca also clustered separately 

for the conventional and antibiotic free farms (adonis2 p-value = 0.00001) (Figure 17), while in the 

carcasses this difference was lost (adonis2 p-value = 0.4278) (Figure 18). 

 

Figure 17: Beta diversity of caeca samples shown as PCoA of Bray–Curtis diversity computed based 

on the AMR gene family abundances normalized with DESeq2. 
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Figure 18: Beta diversity of carcasses samples shown as PCoA of Bray-Curtis diversity computed 

based on the AMR gene family abundances normalized with DESeq2. 

 

 

4.3 Study 3 
 

In the study 3, a total of 42 metagenomes were obtained. The output of each metagenome is detailed 

in Table 27. In this study, the taxonomic composition of the three groups of carcasses was investigated 

to check differences between carcasses from a conventional farm (Group 1) and two antibiotic free 

farms (Groups 2 and 3). The carcasses investigated in this study were all slaughtered in the same 

facility but were not processed as first group of the day. Therefore, their composition was affected by 

cross contaminations during transport and slaughtering. As far as the age of the animals is concerned, 

carcasses of Group 1 were obtained from broilers slaughtered at day 35; carcasses of Group 2 were 

obtained from broilers slaughtered at day 34; carcasses of Group 3 were obtained from broilers 

slaughtered at day 33. In all tested carcasses, both Salmonella and Campylobacter were not detected 

applying both microbiological investigations. According to the results of study 1, the taxonomic 

composition of these carcasses was assessed using Mg-RAST and the database RefSeq.   

 

Table 27: Numbers identifying the tested metagenomes in each investigated group. The output of 

each metagenome is detailed as number of sequences and bp. 

 

Metagenomes of Group 1 

Metagenome ID N. of reads Gbp  

1790_R 7871004 1.63 

1793_R 9316148 1.95 

1794 35982973 5.30 

1795_R 12727886 2.55 

1796 40924658 5.83 

1797 37346427 5.45 

1798_R 25587789 4.33 

1799_R 1705857 345.63 (Mb) 

1800 34400324 5.05 

1801_R 14446591 3.02 

1802 34324700 4.63 

1803_R 9576848 2.01 
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Metagenomes of Group 2 

1820 26892790 3.74 

1821 34129544 4.92 

1822 34497704 5.00 

1823 41672368 5.70 

1824 36015129 5.29 

1825 44140109 6.12 

1826 43116805 5.80 

1827 30864299 4.55 

1828 35774833 5.28 

1829 39316715 5.75 

1830_R 6444884 1.37 

1831 25004927 3.63 

1832 27256510 3.90 

1833 24318290 3.48 

1834 37470587 5.21 

Metagenomes of Group 3 

1850 37413222 5.43 

1851_R 8286180 1.71 

1852 24592691 3.51 

1853 30984826 4.44 

1854 25708165 3.62 

1855_R 9528735 1.99 

1856 28169226 4.06 

1857 24735037 3.55 

1858_R 8271062 1.74 

1859 31279180 4.52 

1860 41996917 5.98 

1861_R 8288893 1.72 

1862 29680011 4.25 

1863 38074498 3.45 

1864_R 149677 30.20 (Mb) 

 

Taxonomic classification of the carcasses 

 

The taxonomic composition of the tested carcasses was analysed at all taxonomic levels. The most 

represented phyla are listed in Table 28. Proteobacteria was significantly higher on the carcasses 

belonging to Group 3 in comparison to Groups 1 and 2. On the contrary, Actinobacteria and 

Firmicutes showed a significantly lower mean relative frequency of abundance in Group 3 compared 

to the other two tested Groups. Finally, the phylum Bacteroidetes showed a significantly higher mean 

relative frequency of abundance in Group 1 compared to both Groups 2 and 3. 
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Table 28: Phyla with mean values of the relative frequency of abundance (%) ≥1 in at least one group 

of carcasses and significantly different in the tested groups (p≤0.05). 

 

Phylum 
mean±SD 

p-value 
Group 1 Group 2 Group 3 

Actinobacteria 4.52±1.95 3.35±2.07 1.75±1.17 0.00 

Bacteroidetes 10.62±4.19 4.96±3.19 2.37±1.39 0.00 

Firmicutes 28.78±6.12 27.57±17.96 12.61±6.82 0.00 

Proteobacteria 53.41±7.42 60.31±22.74 81.94±8.77 0.00 

 

At class level, Gammaproteobacteria was significantly higher in Group 3 in comparison to Groups 1 

and 2 while Actinobacteria, Alphaproteobacteria and Negativicutes were significantly lower on 

carcasses belonging to Group 3 compared to Groups 1 and 2 (Table 29). On the contrary, the mean 

relative frequency of abundance of Bacilli, Bacteroidia, Betaproteobacteria and Flavobacteria were 

significantly higher in Group 1 compared to both Groups 2 and 3. 

 

Table 29: Classes with mean values of the relative frequency of abundance (%) ≥ 1 in at least one 

group of carcasses and significantly different in the tested groups (p≤0.05). 

 

Class 
mean±SD 

p-value 
Group 1 Group 2 Group 3 

Actinobacteria 4.52±1.95 3.35±2.07 1.75±1.17 0.00 

Alphaproteobacteria 1.26±0.41 1.12±0.52 0.76±0.43 0.03 

Bacilli 13.96±5.28 9.32±4.59 4.52±4.31 0.00 

Bacteroidia 7.06±2.82 4.18±3.08 1.94±1.26 0.00 

Betaproteobacteria 4.70±2.28 2.33±1.77 1.31±0.55 0.00 

Flavobacteria 2.73±2.34 0.48±0.36 0.29±0.18 0.00 

Gammaproteobacteria 46.66±8.72 55.93±23.01 79.38±8.89 0.00 

Negativicutes 1.13±0.72 1.87±1.30 0.71±1.43 0.05 

 

At order level (Table 30), Actinomycetales, Bacillales, Bacteroidales, Burkholderiales, 

Flavobacteriales and Lactobacillales were significantly higher on the carcasses of chickens belonging 

to Group 1 compared to both Groups 2 and 3, while Aeromonadales, Alteromonadales and 

Pseudomonadales were significantly higher in Group 3 compared to Groups 1 and 2. Within Group 
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3, Selenomonadales as well as Xanthomonadales were significantly lower as compared to the other 

tested groups. 

 

Table 30: Orders with mean values of the relative frequency of abundance (%) ≥ 1 in at least one 

group of carcasses and significantly different in the tested groups (p≤0.05). 

 

Order  
mean±SD 

p-value 
Group 1 Group 2 Group 3 

Actinomycetales  3.73±1.74 2.42±2.01 1.42±1.05 0.00 

Aeromonadales  1.25±0.68 1.55±1.31 5.90±4.95 0.00 

Alteromonadales  0.65±0.28 0.58±0.29 1.04±0.45 0.00 

Bacillales  4.76±4.82 2.09±0.91 1.36±0.66 0.01 

Bacteroidales  7.06±2.82 4.18±3.08 1.94±1.26 0.00 

Burkholderiales  3.77±1.94 1.91±1.55 0.86±0.43 0.00 

Flavobacteriales  2.67±2.27 0.47±0.35 0.29±0.17 0.00 

Lactobacillales  9.21±4.04 7.23±4.45 3.16±4.18 0.00 

Pseudomonadales  15.77±10.61 5.52±3.79 24.27±22.59 0.01 

Selenomonadales  1.13±0.72 1.87±1.30 0.71±1.43 0.05 

Xanthomonadales  1.63±0.71 1.30±1.38 0.46±0.65 0.01 

 

At family level (Table 31), Bacteroidaceae, Flavobacteriaceae, Comamonadaceae, Enterococcaceae 

and Staphylococcaceae were significantly higher in Group 1 than in Groups 2 and 3.  On the contrary, 

Moraxellaceae and Pseudomonadaceae were significantly lower in Group 2 in comparison to the other 

two groups. The family Aeromonadaceae was significantly higher on the carcass belonging to Group 

3 compared to Groups 1 and 2, while Lactobacillaceae, Xanthomonadaceae and Lachnospiraceae 

were significantly lower in Group 3 than in Groups 1 and 2. 
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Table 31: Families with mean values of the relative frequency of abundance (%) ≥ 1 in at least one 

group of carcasses and significantly different in the tested groups (p≤0.05).  

 

Family  
mean±SD 

p-value 
Group 1 Group 2 Group 3 

Moraxellaceae  14.05±9.68 5.13±3.59 22.30±21.58 0.01 

Lactobacillaceae  6.49±3.42 5.39±3.75 2.01±2.47 0.00 

Bacteroidaceae  6.06±2.51 3.24±2.68 1.54±1.05 0.00 

Bacillaceae  3.15±4.34 1.04±0.50 0.61±0.36 0.03 

Flavobacteriaceae  2.49±2.14 0.46±0.34 0.28±0.17 0.00 

Comamonadaceae  2.15±1.29 0.63±0.79 0.23±0.10 0.00 

Pseudomonadaceae  1.72±1.04 0.39±0.25 1.97±1.63 0.00 

Xanthomonadaceae  1.63±0.71 1.30±1.38 0.46±0.65 0.01 

Enterococcaceae  1.58±0.85 0.67±0.39 0.58±1.15 0.01 

Lachnospiraceae  1.27±0.52 1.72±1.64 0.67±0.46 0.04 

Aeromonadaceae  1.25±0.68 1.55±1.31 5.90±4.95 0.00 

Staphylococcaceae  1.03±0.66 0.60±0.45 0.49±0.39 0.03 

 

In relation to the bacterial genus with abundances ≥ 0.5% in at least one tested group and significantly 

different among the tested groups (Table 32), the mean relative frequency of abundance of Bacillus, 

Bacteroides, Enterococcus, Flavobacterium, Lysinibacillus, and Staphylococcus were significantly 

higher on carcass belonging to Group 1 compared to both Groups 2 and 3, while Pseudomonas 

showed significantly lower abundance on carcass of broilers belonging to Group 2 in comparison to 

Groups 1 and 3. The mean relative frequency of abundance of Acinetobacter, Aeromonas, 

Psychrobacter and Shewanella were significantly higher in Group 3 than in Groups 1 and 2, while 

Chlorobium, Lactobacillus and Xanthomonas were significantly lower in Group 3 compared to 

Groups 1 and 2. 

 

Table 32: Genera with mean values of the relative frequency of abundance (%) ≥ 0.5 in at least one 

group of carcasses and significantly different in the tested groups (p≤0.05). 

 

  

Genus  

mean±SD 
p-value 

Group 1 Group 2 Group 3 

Acidovorax  0.76±0.52 0.24±0.31 0.06±0.03 0.00 

Acinetobacter  12.61±9.32 3.53±2.58 15.17±18.24 0.04 
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Aeromonas  1.22±0.68 1.52±1.31 5.79±4.91 0.00 

Bacillus  1.75±1.71 0.84±0.40 0.48±0.32 0.01 

Bacteroides  6.06±2.51 3.24±2.68 1.54±1.05 0.00 

Chlorobium  0.62±0.41 0.81±0.93 0.17±0.30 0.03 

Enterococcus  1.57±0.85 0.67±0.39 0.58±1.15 0.01 

Flavobacterium  0.62±0.51 0.08±0.06 0.07±0.06 0.00 

Lactobacillus  6.36±3.32 5.34±3.73 1.97±2.41 0.00 

Pseudomonas  1.66±1.02 0.37±0.23 1.93±1.63 0.00 

Psychrobacter  1.12±0.91 1.36±1.63 6.39±5.70 0.00 

Shewanella  0.41±0.27 0.35±0.22 0.64±0.31 0.02 

Staphylococcus  0.98±0.65 0.58±0.44 0.45±0.38 0.03 

Xanthomonas  1.20±0.60 0.97±0.99 0.37±0.57 0.02 

 

In relation to the bacterial species with abundances ≥0.5% in at least one tested group and 

significantly different among the tested groups (Table 33), the mean relative frequency of abundance 

of Bacteroides dorei, Bacteroides uniformis, Bacteroides vulgatus, Enterococcus faecalis, 

Enterococcus faecium, Lactobacillus reuteri and Lactobacillus salivarius were significantly higher 

in Group 1 in comparison to Groups 2 and 3. The species Chlorobium phaeobacteroides, 

Lactobacillus acidophilus and Lactobacillus crispatus showed a significantly higher relative 

frequency of abundance in Group 2  rather than in Groups 1 and 3. On the contrary, Acinetobacter 

sp. DR1 showed a significantly lower relative frequency of abundance in Group 2 compared to the 

other tested groups. The species Acinetobacter johnsonii, Aeromonas hydrophila, Aeromonas 

salmonicida, Bacteroides fragilis, Pseudomonas fluorescens, and Psychrobacter sp. PRwf-1 showed 

a significantly higher relative frequency of abundance in Group 3 compared to both Groups 1 and 2. 

 

Table 33: Species with mean values of the relative frequency of abundance (%) ≥ 0.5 in at least one 

group of carcasses and significantly different in the tested groups (p≤0.05). 

 

 Specie  
mean±SD 

p-value 
Group 1 Group 2 Group 3 

Acinetobacter johnsonii  2.57±1.95 0.77±0.57 5.12±6.14 0.02 

Acinetobacter sp. DR1  0.85±0.71 0.18±0.14 0.81±0.98 0.03 

Aeromonas hydrophila  0.70±0.49 0.81±0.68 3.09±2.63 0.00 

Aeromonas salmonicida  0.51±0.21 0.70±0.63 2.61±2.31 0.00 
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Bacteroides dorei  0.74±0.50 0.12±0.14 0.08±0.06 0.00 

Bacteroides fragilis  0.59±0.23 0.50±0.39 0.28±0.20 0.03 

Bacteroides uniformis  0.51±0.20 0.13±0.19 0.02±0.02 0.00 

Bacteroides vulgatus  0.91±0.60 0.24±0.25 0.14±0.11 0.00 

Chlorobium phaeobacteroides  0.59±0.40 0.79±0.93 0.16±0.30 0.03 

Enterococcus faecalis  0.67±0.51 0.25±0.14 0.23±0.40 0.01 

Enterococcus faecium  0.51±0.25 0.27±0.19 0.18±0.34 0.01 

Lactobacillus acidophilus  0.47±0.15 0.87±0.72 0.21±0.19 0.00 

Lactobacillus crispatus  0.83±0.36 1.79±1.51 0.29±0.25 0.00 

Lactobacillus reuteri  0.63±0.30 0.29±0.29 0.15±0.24 0.00 

Lactobacillus salivarius  2.29±2.30 0.81±1.18 0.52±1.34 0.03 

Pseudomonas fluorescens  0.66±0.54 0.09±0.06 1.16±1.03 0.00 

Psychrobacter sp. PRwf-1  0.39±0.20 0.21±0.21 3.94±3.12 0.00 

 

Alpha and beta diversity calculated for the bacteria identified on the tested carcasses 

 

The alpha diversity calculated for the genera identified on the carcasses of broilers tested in each 

group at the end of the refrigeration tunnel was calculated with the Shannon, Simpson and Inverse 

Simpson indexes (Figure 19). The results demonstrated that the genera belonging to Group 1 were 

significantly different in comparison to those colonising carcasses of group 3 using all alpha diversity 

indexes, i.e., Shannon (Figure 19 A), Simpson (Figure 19 B) and Inverse Simpson (Figure 19 C). On 

the contrary, the Shannon and Inverse Simpson indexes calculated for the genera colonising the 

carcasses belonging to Group 2 were not significantly different than those calculated for the genera 

colonising the carcasses belonging to Group 3 (Figure 19 A and C). 
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Figure 19: Box plot of the Shannon (A), Simpson (B) and Inverse Simpson (C) indexes calculated 

for the genera identified on the carcasses belonging to Groups 1-3. 

 

 
 

The alpha diversity calculated for the species identified on the carcasses of broilers tested was 

calculated with the same indexes as above (Figure 20). Overall, the alpha diversity indexes confirm 

that the species associated to the carcasses belonging to Group 1 were significantly different in 

comparison to those colonising the carcasses of Group 3 in all indexes, i.e., Shannon (Figure 20 A), 

Simpson (Figure 20 B) and Inverse Simpson (Figure 20 C). Furthermore, the alpha diversity 

associated to the species colonising the carcasses belonging to Group 1 calculated with the Shannon 

index was significantly different in comparison to that calculated for the species identified on 

carcasses of Group 2 (Figure 20 A). Moreover, the alpha diversity associated to the species on 

carcasses belonging to Group 1 calculated with the Simpson index did not significantly different than 

those of species associated to carcasses of Group 2 (p=0.06) (Figure 20 B). 
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Figure 20: Box plot of the Shannon (A), Simpson (B), and Inverse Simpson (C) indexes calculated 

for the genera identified on the carcasses belonging to Groups 1-3. 

 

 
 

The PCoA analysis of the beta diversity calculated at genus level with the Bray-Curtis distance matrix 

was used to investigate how genera colonising the carcasses belonging to the different groups cluster 

one with the other. The results (Figure 21) showed a clear and significant separation between genera 

colonising carcasses of Group 1 compared to genera colonising carcasses of Groups 2 and 3 (R2=0.20, 

p = 0.001). 
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Figure 21: PCoA analysis of the beta diversity calculated for the genera identified on the carcasses 

belonging to Groups 1-3.  

 

 
 

The PCoA analysis of the beta diversity was also calculated at species level using the same approach 

and the results overlapped with those obtained at genus level (Figure 22). Overall, the beta diversity 

index confirmed that the species colonising the carcasses belonging to Group 1 were significantly 

different in comparison to those colonising carcasses of Groups 2 and 3 (R2=0.20, p=0.001). 

 

Figure 22: PCoA analysis of the beta diversity calculated for the species identified on the carcasses 

belonging to Groups 1-3.  
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Functional genes identified on the carcasses 

 

In addition to the taxonomic composition, shotgun metagenome sequencing was performed on 

carcasses of Groups 1 to 3 to identify the functional genes categories analysed up to the functional 

level. Significantly different abundances were associated to the functional genes identified on the 

carcasses belonging to all tested groups (Table 34). Genes coding for cytochrome c oxidase 

polypeptide III (EC 1.9.3.1), dihydropyrimidinase (EC 3.5.2.2), NADH dehydrogenase subunit 1, 

phosphoribosylformylglycinamidine cyclo-ligase (EC 6.3.3.1), RNA helicase-putative and 

transcription factor S were significantly higher on carcasses of Group 1 in comparison to carcasses 

of Groups 2 and 3, while gene coding for GTP-binding protein was significantly lower abundant on 

carcasses of Group 3 in comparison to those of Groups 1 and 2. 

 

Table 34: Genes belonging to the function level showing mean relative frequency of abundance (%) 

≥0.5 in at least one group of carcasses and significantly different in the tested groups (p≤0.05). 

 

Function 
mean±SD 

p-value 
Group 1 Group 2 Group 3 

Cytochrome c oxidase polypeptide III (EC 

1.9.3.1) 
0.85±0.67 0.46±0.26 0.22±0.30 0.00 

Dihydropyrimidinase (EC 3.5.2.2) 0.64±0.25 0.50±0.24 0.21±0.21 0.00 

GTP-binding protein 1.18±0.33 1.14±0.43 0.56±0.37 0.00 

NADH dehydrogenase subunit 1 0.73±0.47 0.42±0.30 0.19±0.26 0.00 

Phosphoribosylformylglycinamidine cyclo-ligase 

(EC 6.3.3.1) 
0.51±0.25 0.34±0.14 0.19±0.18 0.00 

RNA helicase. putative 0.67±0.46 0.46±0.20 0.19±0.17 0.00 

Transcription factor S 0.60±0.34 0.44±0.27 0.19±0.19 0.00 

 

Antibiotic Resistance Genes on carcasses  

 

ARGs associated to the tested carcasses were retrieved from the functional genes based on their 

classification in the level 2 of the biological-function ontology in SEED category (Aziz et al., 2008). 

Overall, at level 3 (Table 35) the genes coding for cobalt-zinc-cadmium resistance showed 

significantly lower abundance on the carcasses of Group 2 in comparison to those of Groups 1 and 3. 

On the contrary, the genes coding for resistance to fluoroquinolones were significantly higher on 

carcasses of Group 3 in comparison to carcasses of Groups 1 and 2. Finally, genes coding for multiple 

antibiotic resistance (MAR) locus, the mdtABCD multidrug resistance cluster and zinc resistance 
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were significantly lower abundant on carcasses of Group 1 in comparison to those belonging to 

Groups 2 and 3. 

 

Table 35: Antibiotic resistance genes belonging to the level 3 SEED category showing means of 

relative frequency of abundance (%) ≥0.01 in at least one group of carcasses and significantly 

different in the tested groups (p≤0.05). 

 

Level 3 
mean±SD 

p-value 
Group 1 Group 2 Group 3 

Cobalt-zinc-cadmium_resistance 0.21±0.12 0.14±0.07 0.29±0.18 0.02 

Multiple_Antibiotic_Resistance_MAR_locus 0.00±0.00 0.01±0.01 0.01±0.01 0.02 

Resistance_to_fluoroquinolones 0.12±0.08 0.14±0.07 0.21±0.12 0.03 

The_mdtABCD_multidrug_resistance_cluster 0.03±0.02 0.07±0.05 0.10±0.08 0.02 

Zinc_resistance 0.01±0.01 0.03±0.03 0.04±0.03 0.04 

 

At functional level (Table 36), the genes coding for RND efflux system-inner membrane transporter 

CmeB showed significantly lower abundance on carcasses of Group 1 in comparison to carcasses of 

Groups 2 and 3, while vesicular neurotransmitter transporter showed significantly higher abundance 

on carcasses of Group 1 compared to the other tested groups. Lastly, the genes coding for DNA gyrase 

subunit B (EC 5.99.1.3), macrolide export ATP-binding/permease protein MacB (EC 3.6.3.-), 

macrolide specific efflux protein MacA and membrane fusion protein of RND family multidrug efflux 

pump showed significantly higher abundance on carcasses of Group 3 in comparison to those 

belonging to Groups 1 and 2. 
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Table 36: Antibiotic resistance genes belonging to the level function category showing means of 

relative frequency of abundance (%) ≥0.02 in at least one group of carcasses and significantly 

different in the tested groups (p≤0.05). 

 

Function 
mean±SD 

p-value 
Group 1 Group 2 Group 3 

DNA gyrase subunit B (EC 5.99.1.3) 0.07±0.05 0.08±0.05 0.14±0.11 0.05 

Macrolide export ATP-binding/permease protein 

MacB (EC 3.6.3.-) 
0.02±0.02 0.02±0.01 0.08±0.06 0.00 

Macrolide-specific efflux protein MacA 0.01±0.01 0.01±0.01 0.03±0.02 0.00 

Membrane fusion protein of RND family 

multidrug efflux pump 
0.00±0.01 0.01±0.01 0.03±0.04 0.05 

RND efflux system-inner membrane transporter 

CmeB 
0.06±0.03 0.11±0.08 0.18±0.09 0.00 

Vesicular neurotransmitter transporter 0.32±0.23 0.20±0.13 0.08±0.07 0.00 

 

4.4 Study 4 
 

In the study 4, three aliquots of a salame homogenate were tested as part of the activities scheduled 

in the PRIMA project named ArtiSaneFood to verify if a single aliquot of homogenate is 

representative of the whole sample. The output of each metagenome is shown in Table 37. In the 

Baird Parker plates obtained from the aliquots of homogenate, coagulase-positive staphylococci were 

not detected. The metagenomes were analysed using MG-RAST and the database RefSeq. 

 

Table 37: Labels and outputs of the tested metagenomes 

 

Food matrix Aliquot label Metagenome ID N. of reads Gbp 

Salame Aliquot 1 2047 21537193 3.07 

 Aliquot 2 2048 21733486 3.00 

 Aliquot 3 2049 39474471 7.28 

 

Taxonomic groups identified in the investigated metagenomes  

 

At phylum level, in all samples, Firmicutes was the dominant taxonomic group followed by 

Actinobacteria and Proteobacteria (Figure 23a). At class level, Bacilli was the most represented class 

followed by Actinobacteria and Gammaproteobacteria (Figure 23a). Finally, at order level, Bacillales 

was dominant followed by Actinomycetales and Lactobacillales (Figure 23c). 
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Figure 23: Relative abundance (%) of the dominant bacterial phyla (a), classes (b) and orders (c) 

identified in the salame samples. Only taxa with a relative abundance >1% in at least one sample are 

shown. 
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At family level Staphylococcaceae, Brevibacteriaceae and Lactobacillaceae were the most abundant 

(Table 38) and this result was confirmed at genus level (Table 39). 

 

Table 38: Bacteria families with a relative abundance (%) ≥1 in at least one sample identified in the 

salame samples.  

 

Family  
Relative abundance 

Metagenome ID 2047 Metagenome ID 2048 Metagenome ID 2049 

Bacillaceae  2.92 3.04 2.92 

Brevibacteriaceae  14.14 12.61 14.41 

Corynebacteriaceae  1.15 1.04 1.16 

Lactobacillaceae  9.54 9.21 8.75 

Leuconostocaceae  2.80 2.85 2.97 

Micrococcaceae  3.99 3.60 3.91 

Nocardiaceae  0.99 0.89 1.02 

Staphylococcaceae  50.29 53.53 50.65 

Streptomycetaceae  1.21 1.07 1.22 

 

Table 39: Bacteria genera with a relative abundance (%) ≥0.5 in at least one sample identified in the 

salame samples.  

 

Genus  
Relative abundance 

Metagenome ID 2047 Metagenome ID 2048 Metagenome ID 2049 

Arthrobacter  2.27 2.05 2.26 

Bacillus  2.29 2.39 2.29 

Brevibacterium  14.10 12.58 14.37 

Corynebacterium  1.15 1.04 1.15 

Enterococcus  0.93 0.91 0.86 

Kocuria  0.57 0.51 0.54 

Lactobacillus  9.04 8.73 8.29 

Leuconostoc  2.60 2.65 2.78 

Mycobacterium  0.87 0.77 0.87 

Rhodococcus  0.80 0.72 0.82 

Rothia  0.54 0.49 0.50 

Staphylococcus  49.95 53.17 50.31 
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Streptomyces  1.21 1.07 1.22 

 

At species level, Staphylococcus saprophyticus was the most abundant species among the species of 

the phylum Firmicutes (Table 40), followed by Staphylococcus epidermidis and Staphylococcus 

aureus. Nevertheless, Brevibacterium linens was the most abundant species among those within the 

phylum Actinobacteria (Table 40). 

 

Table 40: Bacteria species with a relative abundance (%) ≥0.5 in at least one sample identified in the 

salame samples. 

Species  

Relative Abundance 

Metagenome ID 

2047 

Metagenome ID 

2048 

Metagenome ID 

2049 

Arthrobacter aurescens  0.79 0.71 0.78 

Arthrobacter sp. FB24  0.81 0.73 0.79 

Brevibacterium linens  11.98 10.69 12.22 

Brevibacterium mcbrellneri  2.09 1.86 2.13 

Kocuria rhizophila  0.57 0.51 0.54 

Lactobacillus casei  0.79 0.76 0.76 

Lactobacillus paracasei  0.68 0.65 0.64 

Lactobacillus plantarum  0.79 0.76 0.72 

Lactobacillus sakei  4.66 4.49 4.24 

Leuconostoc kimchi  0.61 0.63 0.66 

Leuconostoc mesenteroides  1.17 1.19 1.25 

Staphylococcus aureus  6.24 6.66 6.31 

Staphylococcus capitis  1.50 1.56 1.49 

Staphylococcus caprae  1.19 1.27 1.21 

Staphylococcus carnosus  1.53 1.62 1.53 

Staphylococcus epidermidis  6.63 7.07 6.68 

Staphylococcus haemolyticus  1.94 2.05 1.94 

Staphylococcus hominis  2.57 2.74 2.59 

Staphylococcus lugdunensis  2.75 2.90 2.75 

Staphylococcus saprophyticus  22.14 23.59 22.28 

Staphylococcus warneri  3.15 3.36 3.18 
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Functional genes identified in salame samples  

 

The only functional gene identified in salame samples with a relative abundance > 0.5% (Table 41) 

in at least one sample was represented by Aldehyde dehydrogenase (EC 1.2.1.3) involved in a wide 

range of metabolic pathways including Glycolysis / Gluconeogenesis, Ascorbate and aldarate 

metabolism, Fatty acid degradation, Valine, leucine and isoleucine degradation, Pyruvate 

metabolism, etc.  

 

Table 41: Functional gene with a relative abundance (%) ≥0.5 in at least one sample identified in the 

salame samples. 

 

Level 1 Function Relative abundance 

  M ID 2047 M ID 2048 M ID 2049 

Carbohydrates Aldehyde dehydrogenase (EC 1.2.1.3) 0.53 0.51 0.53 
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5. Discussion 
 

Metagenomic refers to a non-culture based approach providing insight into the overall functional 

repertoire of a microbial community, including information on its metabolic capabilities and the 

potential functional interactions among its members. Metagenomics has become an emerging field of 

microbial ecology since the first use of the concept in 1998 in relation to soil microorganisms 

(Handelsman et al., 1998). Originally, metagenomics studies depended on the cultivation of clonal 

cultures, followed by functional expression screening (Handelsman et al., 1998). However, such 

cultures are not able to represent the total community profile and may overlook the vast majority of 

the microbial biodiversity. Thus, natural microbial communities typically contain a wide diversity of 

organisms, viruses and other chromosomal and extra-chromosomal genetic elements. The advent of 

next-generation sequencing (NGS) technologies has made it possible to perform sequencing-based 

metagenomic analyses. The main objective of this research project has been to apply shotgun 

metagenomic sequencing to investigate both microbiome and resistome of foods of animal origin in 

order to assess advantages and disadvantages of shotgun metagenomic sequencing in comparison to 

the ISO cultural methods used to verify the compliance of food lots to the microbiological criteria.  

One of the main advantages of shotgun metagenomics is the possibility to detect in the same analysis 

microorganisms belonging to different domains and to assess those microorganisms as part of a whole 

ecosystem. The analysis of such ecosystem can provide insight to understand why a pathogen can 

survive in a food system and eventually increase up to concentrations able to cause human diseases. 

A further advantage of metagenomics is that beside the taxonomic composition of a food sample it 

provides a full characterisation of the functional genes characterising a food system including 

antibiotic resistance genes. The characterisation of the resistome associated to food systems is of 

increasing interest in food safety in order to map all possible sources of antibiotic resistance which 

are often misinterpreted and underassessed.  

The main disadvantage of shotgun metagenomics is that there is no clue on the relationship between 

number of reads in a food sample and number of cfu and when reads for specific microorganisms are 

detected is always challenging to assess if they belong to live or dead cells. Moreover, there is no 

consensus on the threshold of sequencing depth which should be applied to collect representative 

data. Ni et al., (2013) suggested to consider that prokaryotic genomes have 1 to 15 small subunit 

(SSU) ribosomal (r) RNA gene copies, that range from 139 kb to 13.034 kb. The diversity of both 

SSU rDNA copies and prokaryotic genome sizes could significantly disturb the accurate estimation 

of the depth for metagenomic sequencing. Retrieving the 2339 SSU rDNA sequence of three human 

faecal specimens from the study by Eckburg et al., (2005), Ni et al., (2013) suggested a computational 
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approach demonstrating that the estimated amounts for sequencing specimens were 7.00 Gb at the 

species level, 6.93 Gb at the genus level, 7.10 Gb at the family level and 6.54 Gb at the order level. 

These results imply that at least 7 Gb is required for sequencing to enumerate the gene contents of 

prokaryotes with relative abundance of more than 1% in the human faecal microbiome (Ni et al., 

2013). This sequencing depth results in a sequencing cost around 300 Euro/sample. This high cost is 

likely to limit the implementation of shotgun metagenomics outside research projects.  

When metagenomics results are available, the next step is data analysis and results of study 1 in 

relation to SO1 demonstrated that all bioinformatic tools tested were able to detect the bacteria 

experimentally spiked in the salmon with mean relative values of abundance > 0.1% which, according 

to Petersen et al., (2017), can be considered a threshold to consider a taxonomic classification as a 

reliable one. The parasite C. parvum has been detected by MG-RAST and CosmosID, while the 

Bovine alphaherpesvirus 1 CosmosID and OneCodex. Finally, the fungus S. cerevisiae has not been 

detected displaying a relative abundance always <0.1%. In relation to SO2, among the tested 

bioinformatic tools, OneCodex and CosmosID are the most user friendly in terms of sequence upload 

and data interpretation. The CosmosID databases are organized phylogenetically and contain 

hundreds of millions of marker gene sequences. The markers represent both coding and non-coding 

sequences uniquely identified by taxon and/or distinct nodes of phylogenetic trees. This means that 

the tree structure was created based on genomic relatedness of organisms rather than predetermined 

taxonomy based on phenotype. This allows CosmosID to have a high degree of accuracy in 

identifying microorganisms based on their DNA in metagenomic samples. It also helps identify the 

closest match to genomes that do not have strain level references in the database (if, for example, 

they have never been sequenced before). However, as far as quantification results are concern, the 

high percentage abundances detected using CosmosID for the microorganisms of the mock 

community are due to the fact that the abundance analysis is done for each domain separately. 

Therefore, an abundance of 88.74% for C. parvum it does not mean that the parasite reads represent 

the majority of the reads of the metagenome, but it represents the majority of the reads assigned to 

eukaryotes. One Codex identifies microbial sequences using a “k-mer based” taxonomic 

classification algorithm as CosmosID and MG-RAST, but it is built on a web-based data platform, 

using a reference database that currently includes approximately 40,000 bacterial, viral, fungal, and 

protozoan genomes. Quantitative evaluation of several published microbial detection methods shows 

that One Codex has the highest degree of sensitivity and specificity (AUC = 0.97, compared to 0.82-

0.88 for other methods), both when detecting well-characterized species as well as newly sequenced, 

“taxonomically novel” organisms (Minot et al., 2015). Besides the facility of use and also speed of 

analysis of both CosmosID and OneCodex, MG-RAST includes data analysis options not available 
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for the other software. Moreover, in study 1 MG-RAST was able to detect Saccharomyces cerevisiae 

although the DNA virus was neither detected nor quantified.  

Using MG-RAST the RefSeq provided the best results. The NCBI’s Reference Sequence (RefSeq) 

collection is a freely accessible database of naturally occurring DNA, RNA, and protein sequences. 

It is a unique resource because it provides a large, multi-species, curated sequence database 

representing separate but explicitly linked records from genomes to transcripts and translation 

products (Pruitt et al., 2012). Unlike the sequence redundancy found in the public sequence 

repositories, the RefSeq collection aims to provide, for each included species, a complete set of non-

redundant, extensively cross-linked, and richly annotated nucleic acid and protein records (Pruitt et 

al., 2012). Even though current computational analysis strategies for metagenomic data rely largely 

on comparisons to reference genomes, they represent only a fraction of what we know and therefore 

limit our ability to segregate metagenomic data into coherent biological entities and fail to describe 

previously unknown species, phages and modules of genetic variation within microbial species 

(Nielsen et al., 2014). A possible alternative is the de novo assembly (i.e., assembly without a 

reference) of genomes from complex metagenomic data, although it is inherently difficult due to 

many sequence ambiguities that confuse the assembly process. Hence, a typical metagenomic 

assembly will result in a large set of independent contigs that are not easily aggregated into biological 

entities. Yang et al., (2016) acknowledge that given appropriate sequencing depth, shotgun 

metagenomics has great utility for investigating the ecology of food-borne pathogens. Nevertheless, 

it cannot currently be used for identification and quantification of pathogens for regulatory purposes 

due to limitations of the available technology and the incompleteness of bacterial genome databases. 

Specifically, the misclassification, that is inherent to the read length, the inability to get deep coverage 

of the pathogenic organisms in the sample due to the existence of other prokaryote and eukaryote 

DNA within the sample, and the impossibility of obtaining a comprehensive database containing all 

possible pathogenic organisms of interest invalidates the use of this approach for regulatory purposes. 

All in all, in relation to SO2, the results demonstrate that MG-RAST with the databases RefSeq, 

OneCodex and CosmosID can be used as data analysis tools to detect microorganisms belonging to 

different domains experimentally spiked in smoked salmon analysed by shotgun metagenomics 

sequencing. Nevertheless, a direct correlation between cell concentration of each spiked 

microorganism and number of corresponding reads is still not possible, although bacteria were 

identified with higher abundances than C. parvum, S. cerevisiae and Bovine alphaherpesvirus. The 

number of reads selected as detection cut-off level must be clearly defined to use shotgun 

metagenomic sequencing in food microbiome studies, and in food safety risk assessment. There are 

many valuable papers on the application of shotgun metagenomics, but the lack of transparent 
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information on the technical details of both the wet-lab and bioinformatic procedures are delaying the 

full implementation of this powerful sequencing approach (Sala et al., 2020).  

In relation to studies 2 and 3 they were planned because nowadays conventionally raised poultry 

continues to dominate the EU poultry industry. However, there is an increasing consumer demand 

for meat obtained in antibiotic free rearing cycles. Moreover, in January 2022, the new EU 

Regulations 2019/6 and 2019/4 will enter in force, further limiting the use of veterinary medical 

products and medicated feed in animal productions. Therefore, I decided to investigate whether the 

efforts of raising chickens without the use antibiotics would make any difference in the microbiome 

of poultry meat eaten by consumers (SO3). The results of study 2 demonstrated three key findings. 

The first one is a clear separation between the taxonomic, functional and antibiotic resistant genes in 

the caeca of the birds reared on the conventional and antibiotic free farm. This result is due to the fact 

that each poultry farm has an associated ecosystem due to the geographical and specific 

environmental conditions, to what chickens eat and drink, to the litter type, to the workers, and 

certainly to the medications they receive or not. That separation was completely lost on carcasses 

belonging to the two groups, which did not mirror whatever positive or negative impact the farm 

ecosystem and rearing condition had on the chicken caeca. As for the caeca, and also for the carcass 

microbiomes, there are many contributing factors besides the possible cross contamination during the 

evisceration. Indeed, the ecosystems interacting with the animals during transport and then during 

each slaughtering step, including the final refrigeration tunnel, all contribute to the final carcass 

microbiomes.  

The second key finding is that the antibiotic free production resulted in statistically significant lower 

antimicrobial resistance load in the caeca of chickens in comparison to the conventional production, 

thus confirming that besides external sources of ARGs, when antimicrobials are not administered to 

the animals in the caeca of that flock there is a lower antimicrobial resistance load. In relation to the 

short- and long-term effects of the use of antimicrobials on antimicrobial resistance, Mughini-Gras et 

al., (2021) showed that the antimicrobial use at flock level is more relevant for antimicrobial 

resistance in Escherichia coli than the historical use of antimicrobials at the farm level. Overall, these 

observations demonstrate that the effort of reducing antimicrobial use by means of rearing antibiotic 

free flocks should be associated with a better understanding of the antimicrobial resistance persistence 

in the farm environment in the absence of direct antimicrobial use. Further insights into the 

antimicrobial resistance persistence in the farm environment might help us to understand why, for 

instance, the relative abundance of acriflavine resistance protein genes was higher in the caeca of 

antibiotic free animals compared to conventional ones.  
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The last main finding is that the antimicrobial resistance load on carcasses was much higher than in 

the caeca, without any significative difference between carcasses coming from the two types of 

farming. As described above, this result demonstrated that all post- harvest steps, including transport 

and slaughtering, but also the loading and unloading of the animals contributes not only to the 

microbiome colonizing the final carcass reaching the consumers, but also to its antimicrobial 

resistance load. Therefore, although the most important antimicrobial resistant risk factors and 

possible mitigation measures are still under investigation at farm level (Davies and Wales, 2019), the 

implementation of past and future EU regulations aimed at reducing antimicrobial use for food 

production animals has been ensuring a significant reduction of antimicrobial resistance load at farm 

level. Therefore, the same effort made for the identification of relevant sources of pathogen and 

spoilage microorganisms and ARGs should be now devoted to the post-harvest steps (EFSA BIOHAZ 

Panel, 2021). Little currently available data demonstrate that both transport trucks and cages can 

contaminate the birds with bacteria and ARGs (Althaus et al., 2017) and contribute to the cross 

contamination between the slaughterhouse and the farms (Buess et al., 2019). Moreover, when the 

animals reach the slaughtering line, scalding, defeathering and evisceration can spread both 

microorganisms and ARGs from the animal to the environment, although some tentative steps toward 

reducing these cross contaminations using innovative technologies are in place (Rasschaert et al., 

2020). Additional sources of both microorganisms and ARGs are workers, equipment, air, process 

water and wastewater from slaughtering (Savin et al., 2020). All these sources together contribute to 

the carcass microbiome, and our results showed that at the end of the refrigeration tunnel the 

microbiome of carcasses from animals reared in the conventional farm overlaps with that of carcasses 

from birds reared in an antibiotic free cycle. My results are consistent with those of Li et al., (2020), 

who investigated chicken breast microbiomes at the retail level, accounting also for the effect of the 

processing environment and packaging conditions. Their results confirmed that the microbiome of 

the chicken breast is affected by packaging in air versus under vacuum and by the processing plant 

where the chicken breast is processed. On the contrary, both the use of antimicrobial at the farm level 

as well as seasonality affected neither the composition nor the diversity of chicken breast 

microbiomes in terms of both alpha and beta diversities. 

The alpha diversity calculated in this study at genus level using the indicators of richness (Chao1), 

evenness (InvSimpson) and diversity (Shannon) within the caeca samples show values significantly 

higher in the caeca of birds reared on the conventional farm in comparison to the antibiotic free farm. 

The bacteria biodiversity within the GI tract is considered an indicator of good health, and it was 

expected to be higher in the caeca of chickens not treated with Amoxicillin and 

Sulfadimethoxine/Trimethoprim. However, these antibiotics are only partially absorbed in the gut 
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(Anadón et al., 1996; Spielmeyer et al., 2014) and this might explain why their administration did 

not reduce the overall bacteria richness in the caeca. Moreover, the intestinal microbiota biodiversity 

is the result of different factors such as management protocols applied on the farm, animal 

characteristics and administered diets (Feye et al., 2020) which were possibly different in the 

conventional and antibiotic free farm investigated in this research.  

Among the most represented genera detected in the caeca, Alkaliphilus, Desulfibacterium, Bacillus 

and Ethanoligenens were identified as signature genera in the birds from the conventional farm, while 

butyrate-producing microorganisms as Coprococcus, Roseburia and Subdoligranulum were 

identified in the caeca of birds reared on the antibiotic free farm. This result highlighted that beside 

the higher bacteria biodiversity identified in the caeca of birds from the conventional farm, the 

signature genera colonizing the caeca of the birds reared on the antibiotic free farm belonged to 

microbial groups supporting animal health. Indeed, butyrate fights against pathogen colonization in 

poultry (Fernández-Rubio et al., 2009) and is involved in several intestinal functions, being an energy 

source stimulating epithelial cell proliferation and differentiation, other than exerting an antimicrobial 

effect by promoting the production of peptides and stimulating the production of tight junction 

proteins (Dalmasso et al., 2008).  

In this pilot study, we investigated for the first time the microbiome of the caeca of a bird and that of 

the corresponding carcass. The results showed that the caeca and carcasses of the same flock 

positively correlate one with the other. However, the correlation between the microbiome of the caeca 

and the carcass of the same bird was not stronger than that with other caeca and carcasses of the same 

flock. Therefore, the target analysis of caeca and carcass of the same animal does not provide any 

added value in comparison to the microbiome analysis at flock level. It is also clear from Figure 8 

that the correlation between the functional genes was higher than for bacteria genera, possibly because 

the same functional gene can be shared between different bacteria genera. 

Besides the qualitative and quantitative differences in the most represented functional genes identified 

in the caeca and on carcasses from the animals reared in the conventional and antibiotic free farm, 

the most relevant result concerns the antibiotic resistant genes and the total antimicrobial resistance 

load. In relation to the ARGs, the multi antimicrobial extrusion protein (Na(+)/drug antiporter)-

MATE family of MDR efflux pumps was significantly higher in the caeca of birds reared on the 

conventional farm in comparison to the antibiotic free farm, along with few other ARGs. The MATE 

gene family is widely distributed in both Gram-positive and Gram-negative bacteria and contributes 

to the intrinsic, acquired, and phenotypic resistance of bacterial pathogens (Blanco et al., 2016). 

Moreover, it can confer resistance to a specific class of antibiotics or to many drugs, thus conferring 

a multi-drug resistance (MDR) phenotype to bacteria (Marquez, 2016). In contrast, the abundance of 
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genes encoding acriflavin resistance protein was significantly higher in the caeca of birds reared in 

the antibiotic free farm. The acriflavine resistance protein is among multidrug resistance efflux 

transporter proteins that belongs to the resistance modulation division superfamily (RND), conferring 

broad spectrum resistance to Gram-negative bacteria (Seeger et al., 2006).  

For both caeca and carcasses, the overall antimicrobial resistance abundance per drug class did not 

show significative difference between the birds collected in the two tested farms, while specific 

differences were observed between drug classes associated to caeca and carcasses. The drug classes 

identified in both caeca and carcasses largely overlap with those identified by Munk et al., (2018) in 

the faecal resistome investigated in European poultry farms, including Italian farms. In both studies, 

aminoglycoside, β-lactam, tetracycline and macrolide are widely represented although we identified 

a larger proportion of β-lactam as well as rifamycin not reported by Munk et al., (2018). Our results 

confirm what was observed by Li et al., (2020) in relation to the absence of difference between the 

resistome associated to chicken breast from birds reared in conventional and antibiotic free farms. On 

the contrary, the results on the antimicrobial resistance load are the opposite because we calculated a 

higher antimicrobial resistance load on carcasses while Li et al., (2020) discovered a low risk of ARG 

accumulation on chicken breast. This result is possibly because in the US, poultry carcasses can be 

disinfected using chlorinated water or organic acids, while in the European Union the use of 

substances intended to remove microbial surface contamination is only permitted after a full risk 

analysis taking into account the results of a risk assessment based on the available scientific evidence 

(EFSA BIOHAZ Panel, 2014).  

Genes coding for resistance to vancomycin were identified among the ARGs with normalized mean 

values of abundance >1000 in at least one tested group. In accordance with other authors (Savin et 

al., 2020; Di Fracesco et al., 2021), vancomycin resistance genes can be identified in poultry flocks, 

although avoparcin has been banned by the EU since 1997. The relative abundance we estimated for 

the vancomycin resistance genes constitutes a body of evidence of their persistence, while Savin et 

al., (2020) reported a declining trend. 

Overall, the results of study 2 and the scientific literature demonstrate that each intervention in 

whatever processing step that the chicken and poultry meat is at, as with other food productions, is 

affected by the existing microbiome and resistome shifting and changing from farm to fork. 

Therefore, building robust, comparable, and representative databases of animal-, farm-, food- and 

production environment-associated microbiomes and resistome from farm to fork, as it is done for 

individual foodborne isolates and indicator microorganisms (EFSA and ECDC, 2021), would 

certainly help to predict the effect of control strategies to reduce food contamination by foodborne 

pathogens as well as antimicrobial resistance genes in a systemic way. 
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All in all, the results of study 2 in relation to SO3 indicate that post-harvest steps withdraw the 

positive effects of antibiotic free rearing on carcass microbiomes. Therefore, it is crucial to assess the 

contribution of both transport and slaughter on carcass contamination and spreading of ARGs to 

identify possible mitigation options addressing consumer concerns on antimicrobial resistance and 

enhancing the positive impact of the European legislation as well as the economic and management 

efforts of producers to rear antibiotic free chickens.  

In relation to SO4, in the study 2 I investigated for the first time the microbiome of the caeca of a 

bird and that of the corresponding carcass. The results showed that caeca and carcasses of the same 

flock positive correlate one with the other. However, the correlation between the microbiome of the 

caeca and the carcass of the same bird was not stronger than that with other caeca and carcasses of 

the same flock. Therefore, the conclusion is that the target analysis of caeca and carcass of the same 

animal does not provide any added value in comparison to the microbiome analysis at flock level.  

Study 3 was performed as part of a biggest study within the CIRCLES project which has the overall 

aim to investigate how the microbiomes associated to poultry food system interact and impact one 

with the other. The carcasses I tested are only part of all the samples which have been collected and 

investigated in association with metadata associated to the farms and flocks tested. Unfortunately, the 

overall analysis has not been finalised before the end of my PhD project and few considerations can 

be done on the tested carcasses as self-standing samples. Those carcasses were all obtained by female 

broilers reared in farms which in the case of group 1 administered antibiotics for therapeutic treatment 

during the rearing cycle, while for groups 2 and 3 antibiotics were never administered. As in study 2, 

in study 3 all animals were slaughtered in the same slaughterhouse but at different days. Moreover, 

in this case, it was not possible to schedule the slaughtering of the investigated groups as first group 

of the day. Since in this study both the alpha and beta diversity, calculated at genus and species level, 

highlighted a significative difference between groups 1 and 3 an impact of the administration of the 

antibiotic in group 1 might result in an impact on the carcass microbiome. On the other hand, it is 

also possible that the detected differences are not related to the rearing conditions but to the cross 

contamination between the transport and slaughterhouse environment. In all tested carcasses, both 

Salmonella and Campylobacter were not detected applying both microbiological investigation and 

metagenomics analysis. In relation to identified functional genes in the three groups tested, 

cytochrome c oxidase polypeptide III (EC 1.9.3.1), dihydropyrimidinase (EC 3.5.2.2), GTP-binding 

protein, NADH dehydrogenase subunit 1 and transcription factor S were the same functional genes 

identified, (but without significative difference) on the carcases in the study 2. In relation to the genes 

coding for resistance to antibiotics as the macrolide export ATP-binding/permease protein MacB (EC 

3.6.3.-) and macrolide-specific efflux protein MacA were significantly higher abundance on carcasses 

https://circlesproject.eu/
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of Group 3 in comparison to those belonging to Groups 1 and 2 and were also the two antibiotic 

resistance genes identified on the conventional carcasses of study 2. MacA and MacB together TolC 

is an ABC type tripartite efflux pump responsible for conferring resistance in Gram negative bacteria 

(i.e., Enterobacteriaceae) to several antibiotics, actively expels macrolide antibiotics or drug, 

fluroquiolones, penicillins, and solithromycin out of the cell (Fitzpatrick et al., 2017). It also regulates 

the process of colonization and virulence in clinical isolates (Bogomolnaya et al., 2013; Sun et al., 

2014). The macA genes encode for the periplasmic protein that binds the outer membrane protein 

(TolC), to the inner membrane protein encoded by macB gene (Phan et al., 2015; Yewale et al., 2020). 

When all CIRCLES data will be available it will be hopefully clear how metagenomes associated to 

the three tested poultry farms and investigated flock affect one the other and to which extend 

microbiome associated to the animals at farm level reflect those on carcasses at the end of the 

refrigeration tunnel.  

In the last part of my PhD project, I contributed to the activities of the PRIMA project ArtiSaneFood.  

I started to apply shotgun metagenomic to fermented meat and the question I tried to answer was if 

testing one aliquot of artisanal food homogenate is representative of the whole homogenate (SO5). 

To do so I compared the metagenomes obtained from three aliquots of homogenate obtained diluting 

25 g of an artisanal salame in 225 ml of Buffered Peptone Water. The results clearly showed that the 

metagenomes obtained from three aliquots of the homogenate displayed overlapping taxonomic and 

functional composition. Therefore, shotgun metagenomics of a single aliquot of an artisanal 

fermented food is representative of the whole homogenate. The results on the taxonomic genera 

associated to the tested salame highlighted a very high abundance of the genus Staphylococcus, 

displaying a relative abundance around 50% in all three tested aliquots. Within the group of cocci 

gram positive catalase positive (GPCP), the Staphylococcus are the predominant genera present in 

the GPCP community (Talon and Leroy, 2011), contributing to the development and stability of the 

colour. They prevent the rancidity of salame due to their antioxidant activities and they also enhance 

the flavour of fermented salame, mainly through amino and fatty acid degradation (Leroy et al., 2010; 

Pisacane et al., 2015). In the Baird Parker plates obtained from the aliquots of homogenate, then 

pelleted before making the extraction of the total DNA submitted to shotgun metagenomics, colonies 

of Staphylococcus were identified but without an opaque zone, due to an egg yolk-lecithinase 

reaction, around the colonies, generally associated only to coagulase positive Staphylococcus as 

Staphylococcus aureus. This result was confirmed by the metagenomic data because the most 

abundant Staphylococcus species identified in the three metagenomes investigated with a relative 

abundance always >22% was represented by Staphylococcus saprophyticus, thus representing a 

coagulase negative species. Staphylococcus epidermidis, also representing a coagulase negative 

http://www.ipb.pt/artisanefood/
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Staphylococcus was identified as well, with relative abundance between 6.63 and 7.07 in the 

investigated metagenomes. Both these species might have reduced the possibility of Staphylococcus 

aureus to growth on Baird Parker media because according to the metagenomic results it was detected 

in the metagenomes investigated with relative abundance between 6.24 and 6.66%. 

6. Conclusion 
 

There are many valuable papers on the application of shotgun metagenomics, but the lack of 

transparent information on the technical details of both the wet-lab and bioinformatic procedures are 

delaying the full implementation of this powerful sequencing approach in different sectors including 

food inspection. The investments in research on shotgun metagenomics are justified by the fact that 

the results achieved in the food system can result in the identification of both spoilage and pathogenic 

microorganism in the ecosystems where those microorganisms are in real life, and as a matter of fact, 

the interaction between microorganisms and their ecosystems impacts on both pathogen survival and 

multiplication ability (Yang et al., 2016; Escobar-Zepeda et al., 2016). Whenever a sample processing 

is designed to be as non-specific as possible to capture all nucleic acids regardless of their source, 

shotgun metagenomics is applicable simultaneously for viruses, bacteria, and parasites (Sala et al., 

2020; Wylezich et al., 2018). Since in each annual EFSA-ECDC report on foodborne and waterborne 

outbreaks occurring in the EU, there is always a high percentage of outbreaks for which the causative 

agent is described as ‘unknown’ or ‘unspecified’ and these unknowns are likely to be uncultivable or 

difficult to culture microorganisms, they could possibly be detected using shotgun sequencing. 

However, for diagnostic metagenomics to become truly useful, the method must provide robust and 

reproducible outputs (Andersen et al., 2018). 
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