Development of a Computer-Based methodology for tolerance selection and optimization applied to the automotive sector

Petruccioli, Andrea (2022) Development of a Computer-Based methodology for tolerance selection and optimization applied to the automotive sector, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Automotive per una mobilità intelligente, 34 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (English) - Accesso riservato fino a 15 Maggio 2025 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (8MB) | Contatta l'autore

Abstract

The design optimization of industrial products has always been an essential activity to improve product quality while reducing time-to-market and production costs. Although cost management is very complex and comprises all phases of the product life cycle, the control of geometrical and dimensional variations, known as Dimensional Management (DM), allows compliance with product and process requirements. Hence, the tolerance-cost optimization becomes the main practice to provide an effective application of Design for Tolerancing (DfT) and Design to Cost (DtC) approaches by enabling a connection between product tolerances and associated manufacturing costs. However, despite the growing interest in this topic, a profitable application in the industry of these techniques is hampered by their complexity: the definition of a systematic framework is the key element to improving design optimization, enhancing the concurrent use of Computer-Aided tools and Model-Based Definition (MBD) practices. The present doctorate research aims to define and develop an integrated methodology for product/process design optimization, to better exploit the new capabilities of advanced simulations and tools. By implementing predictive models and multi-disciplinary optimization, a Computer-Aided Integrated framework for tolerance-cost optimization has been proposed to allow the integration of DfT and DtC approaches and their direct application for the design of automotive components. Several case studies have been considered, with the final application of the integrated framework on a high-performance V12 engine assembly, to achieve both functional targets and cost reduction. From a scientific point of view, the proposed methodology provides an improvement for the tolerance-cost optimization of industrial components. The integration of theoretical approaches and Computer-Aided tools allows to analyse the influence of tolerances on both product performance and manufacturing costs. The case studies proved the suitability of the methodology for its application in the industrial field, providing the identification of further areas for improvement and refinement.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Petruccioli, Andrea
Supervisore
Dottorato di ricerca
Ciclo
34
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Design Methods; Tolerance design; Computer-Aided Design; Model-Based Definition; Multi-Disciplinary Optimization; Cost estimation
URN:NBN
Data di discussione
30 Giugno 2022
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^