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Abstract

Embedding intelligence in extreme edge devices allows distilling raw data acquired

from sensors into actionable information, directly on IoT end-nodes. This computing

paradigm, in which end-nodes no longer depend entirely on the Cloud, offers undeniable

benefits, driving a large research area (TinyML) to deploy leading Machine Learning

(ML) and Deep Learning (DL) algorithms on micro-controller class of devices. To fit

the limited memory storage of these tiny platforms, full-precision Deep Neural Networks

(DNNs) are compressed by representing their data down to byte and sub-byte formats,

in the integer domain. The reduced footprint and limited accuracy drop, compared to

full-precision models, make Quantized Neural Networks (QNNs) the natural target for

TinyML. However, the current generation of micro-controller systems can barely cope

with the computing complexity required by QNNs, motivating industry and academia

to find new solutions to enrich these platforms with advanced computing capabilities.

This thesis tackles this challenge from many perspectives, presenting solutions both

at software and hardware levels, exploiting parallelism, heterogeneity and software pro-

grammability to guarantee the highest flexibility and high energy-performance propor-

tionality. The first contribution, PULP-NN, is an optimized software computing library

for QNN inference on parallel ultra-low-power (PULP) clusters of RISC-V processors,

showing more than one order of magnitude improvements, in performance and energy

efficiency, compared to current State-of-the-Art (SoA) STM32 micro-controller systems

(MCUs) based on ARM Cortex-M cores and running the CMSIS-NN library. However,

when dealing with heavily quantized kernels, PULP-NN shows performance degrada-

tion due to the lack of low-bitwidth (sub-byte) computing capabilities at the hard-

ware level. XpulpNN, the second contribution, aims to fill this gap by enriching the

RISC-V Instruction Set Architecture (ISA) of the PULP cluster cores and their related

micro-architecture with a set of domain-specific instructions. This silicon-tested solution

achieves energy efficiency comparable with dedicated DNN accelerators and surpasses

the efficiency of SoA ARM Cortex-M based MCUs, such as the low-end STM32M4

and the high-end STM32H7 devices, by up to three orders of magnitude. Intending

to overcome the well known Von Neumann bottleneck while guaranteeing the highest

flexibility, the final contribution integrates an Analog In-Memory Computing (AIMC)

accelerator into the PULP cluster, creating a fully programmable heterogeneous fabric

that demonstrates end-to-end inference capabilities of SoA MobileNetV2 models, show-

ing two orders of magnitude performance improvements over current SoA analog/digital

solutions.
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Chapter 1

Introduction

The last years have been characterized by a significant growth of the Internet of

Things (IoT) interconnected devices [1], which pervade several application domains such

as surveillance [2], agriculture [3], health monitoring [4, 5], structural health monitoring

[6], robotics [7], automotive [8], industrial applications [9] and others [10]. This scenario

requires the IoT end-nodes to acquire data from low-power sensors and send it wirelessly

to the Cloud or other edge infrastructures, after applying signal processing algorithms.

Machine Learning (ML) algorithms, including state-of-the-art Deep Learning (DL),

not only empower the IoT nodes with smart capabilities widening the IoT applications

with DL-enhanced tasks, but they provide “information distillation” solutions to extrap-

olate actionable information from the raw data acquired by sensors. Their capability of

“squeezing” raw data in a much more semantically dense format (e.g., extracting classes,

high-level features, symbols) allows the wireless transmission of a limited amount of con-

densed information. This feature alleviates the traffic on the IoT network and reduces

security and reliability issues, nowadays exacerbated by the significant increase of raw

data flowing through the network [11].

The clear benefits of embedding the intelligence on IoT end-nodes have attracted

the attention of a wide research area, referred to as Tiny Machine Learning (TinyML),

intending to deploy DL functionality at the extreme-edge of the IoT. This effort has

to run against the high computational and memory requirements of leading DL meth-

ods (e.g. Deep Neural Network (DNN), Convolutional Neural Network (CNN) models)

that clash with the usual scarcity of computing and memory resources of deeply embed-

ded systems, powered by batteries or energy harvesters. State-of-the-art DNN models

feature floating-point high-precision arithmetic and typically run on General Purpose-

Graphic Processing Unit (GP-GPU) and Field Programmable Gate Array (FPGA) de-

vices in data centers. Unfortunately, these computing platforms are not usable in the

1
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IoT environment, since they are characterized by a power envelope which is orders of

magnitude higher than what is sustainable on extreme-edge devices.

However, one of the key characteristics of DNNs is their resiliency to strong arith-

metic quantization in the integer domain. To reduce the size of the modern DNN

topologies and make them fit the limited memory storage and computing capabilities

of embedded low-powered devices like micro-controllers, recent progress in DL training

methodologies has introduced novel quantization methods [12] that represent the net-

work weights and activations with 8-bits (or even smaller) data types, usually adopting

fixed-point formats, incurring a limited or negligible loss in accuracy [13–15]. Authors

in [16], for example, show that the weights and the activations of a MobilenetV1 can

be efficiently quantized to 8- or 4-bits with a loss on Top1 accuracy of only 0.8% and

3.2%, respectively, compared to the fully fixed-point precision. At the same time, this

approach reduces the memory footprint by 4× (8-bits) and by 7× (4-bits).

The limited footprint and the good accuracy achieved make Quantized Neural Net-

work (QNN) the natural target for TinyML. Moreover, the significantly higher comput-

ing efficiency that low-bitwidth integer arithmetic offers compared to the more costly

floating point formats strongly motivates industry and academia to enable integer com-

puting capabilities for Artificial Intelligence (AI) on top of micro-controller class of

devices, addressing the challenge from both hardware and software perspectives.

The efficacy of low bit-width arithmetic architectures for the QNN workload has

been widely demonstrated in the domain of dedicated accelerators, which are starting

to gain attraction also for ultra-low power devices [17, 18]. However, these heavily

specialized solutions, alone, are often not affordable in the extremely cost-conscious and

fragmented IoT market, due to their high cost and their low flexibility. Solutions to offer

higher flexibility are to couple Micro-Controller Units (MCU) with Application Specific

Integrated Circuit (ASIC) [19–21], but the acceptance and penetration among TinyML

application developers is still quite low.

MCUs are the standard IoT computing platforms, thanks to their flexible software

programmability, low-cost and low-power characteristics. To enable QNN execution on

MCU, optimized software libraries are presented in literature, often tailored on a target

specific hardware to achieve reasonable performance and efficiency [22, 23]. However,

none of the available solutions target the recent architectural template of parallel ultra-

low-power platforms [24] that promise high energy-performance proportionality. On the

hardware side, to empower MCUs with low-bitwdith integer computing, one must act

on their Instruction Set Architecture (ISA). However, modern MCUs lack support at

the ISA level for low bit-width integer Single-Instruction Multiple-Data (SIMD) arith-

metic instructions. Modern MCUs adopting commercial ISAs only support 16-bits (e.g.,
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ARMv7E-M) or 8-bits (e.g., RV32IMCXpulpV2 [25], ARMv8.1-M [26]) data. Hence,

sub-byte quantization remains an effective technique to compress the footprint of DNN

models on top of these devices [13], but it incurs in performance and energy overhead

during the computation, as demonstrated in [23]: low precision data has to be unpacked

to the lowest precision operand supported by the underlying hardware and then packed

into SIMD registers before feeding the multiply-accumulate (MAC) units.

Recently, the emerging Analog In-Memory Computing (AIMC) paradigm promises

outstanding efficiency on low-bitwidth Matrix-Vector Multiplication (MVM) operations,

which are at the core of QNN routines. The IMC accelerators perform the MVM oper-

ations within the memory boundaries in the analog domain, overcoming the well-known

memory bottleneck affecting traditional digital computing systems (the so called Von

Neumann bottleneck) and achieving hundreds TOPS/W of energy efficiency. However,

these platforms are not flexible to sustain the heterogeneity of the IoT workload. Hence,

to operate at the extreme edge of the IoT they must be enclosed in heterogeneous

programmable architectures, which raise new challenges at the system level still not

investigated in depth by the research community.

1.1 Contributions

This thesis tackles the previously introduced challenges and state-of-the-art limita-

tions from many perspectives, including both hardware and software designs and opti-

mizations, targeting micro-controller class of devices. The most important contributions,

and related publications, of this thesis are summarized in the following:
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• The design of a open-sourced software library1, namely PULP-NN, aiming at pro-

viding a set of optimized kernels to execute the inference of QNN on top of PULP

based architectures, exploiting data-flow and data-layout structures tailored for

MCU devices, as well as the computing characteristics and the parallelism of the

underlying hardware to achieve high energy-performance proportionality. The

contribution, discussed in Chapter 3, demonstrates significant improvements over

the current state-of-the-art solutions [27–29]; on an end-to-end QNN inference task

the proposed library, running on a commercial embodiment of the PULP platform,

achieves one order of magnitude better energy efficiency with respect to state-of-

the-art CMSIS-NN library [22], running on ARM Cortex-M based micro-controller

systems such as the low-end (STM32L4 [30]) and high-end (STM32H7 [31]) de-

vices;

• The design of a light-weight domain-specific set of RISC-V ISA instructions, namely

XpulpNN, for multi-precision low-bitwidth integer computation, supported through

the SIMD paradigm. The instructions are integrated into an existing RISC-V

pipeline, designing the micro-architecture necessary to extend the datapath of the

core to support the new ISA. The extended core is then integrated into a par-

allel cluster of 8 processors. The contribution, discussed in Chapter 4, aims at

demonstrating the efficacy of the approach described here to empower MCU sys-

tems with AI computing capabilities without jeopardizing the power consumption

of the core on general-purpose tasks. The experiments conduced show that this

solution achieves efficiency levels comparable with dedicated DNN inference ac-

celerators and up to three orders of magnitude better than state-of-the-art ARM

Cortex-M based microcontroller systems such as the low-end STM32L4 [30] MCU

and the high-end STM32H7 [31] MCU, on QNN tasks [32, 33]. The last part of

Chapter 4 presents also a silicon prototype that includes contributions at the core

level derived from the XpulpNN extensions, plus an additional hardware contribu-

tion at the system level: to save a significant energy factor when executing regular

kernels like Matrix Multiplications, the cluster can be re-configured via software to

operate either in classic Multiple-Instructions Multiple-Data (MIMD) mode or in

SIMD mode (namely Vector Lockstep Execution Mode (VLEM)) [34].

• The design of a highly-heterogeneous computing architecture, including RISC-V

general-purpose cores, a state-of-the-art in-memory computing accelerator and a

specialized digital accelerator. This contribution, presented in Chapter 5, aims

at demonstrating the efficacy of a highly-heterogeneous design approach to build

new computing paradigm to tackle real-case challenges demonstrates end-to-end

1https://github.com/pulp-platform/pulp-nn.git



Introduction 5

inference capabilities on state-of-the-art neural network models, such as the Mo-

bileNetV2, within a power envelope typical of IoT devices. The solution proposed,

on the inference task of a MobileNetV2, is one order of magnitude better in terms

of execution latency than existing programmable architectures and two orders

of magnitude better than state-of-the-art heterogeneous solutions integrating in-

memory computing analog cores [35].

The rest of the thesis is structured as follows. In addition to Chapters 3, 4 and 5

that describe in details the main contributions of the dissertation, Chapter 2 provides

information on background concepts necessary to better understand the key sections of

the discussion. For clarity, the dependencies of each chapter on the concepts exposed

in the background section and the chapters influence are depicted in Fig. 1.1. In the

end, Chapter 6 ends the thesis with a summary of the contributions and draws the final

conclusions.

1.2 List of Publications

The main contributions presented in this dissertation have been published in the

following journal and conference papers:

• Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini.

Pulp-nn: A computing library for quantized neural network inference at the edge

on risc-v based parallel ultra low power clusters. In 2019 26th IEEE International

Conference on Electronics, Circuits and Systems (ICECS), pages 33–36. IEEE,

2019

• Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini.

PULP-NN: accelerating quantized neural networks on parallel ultra-low-power

RISC-V processors. Philosophical Transactions of the Royal Society A, 378(2164):

20190155, 2020

• Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Davide Rossi, and Luca

Benini. Xpulpnn: accelerating quantized neural networks on risc-v processors

through isa extensions. In 2020 Design, Automation & Test in Europe Confer-

ence & Exhibition (DATE), pages 186–191. IEEE, 2020

• Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Luca Benini, and Davide

Rossi. XpulpNN: Enabling Energy Efficient and Flexible Inference of Quantized

Neural Networks on RISC-V based IoT End Nodes. IEEE Transactions on Emerg-

ing Topics in Computing, 2021
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• Angelo Garofalo, Gianmarco Ottavi, Alfio di Mauro, Francesco Conti, Giuseppe

Tagliavini, Luca Benini, and Davide Rossi. A 1.15 TOPS/W, 16-Cores Parallel

Ultra-Low Power Cluster with 2b-to-32b Fully Flexible Bit-Precision and Vector

Lockstep Execution Mode. In ESSCIRC 2021-IEEE 47th European Solid State

Circuits Conference (ESSCIRC), pages 267–270. IEEE, 2021

• Angelo Garofalo, Gianmarco Ottavi, Francesco Conti, Geethan Karunaratne, Irem

Boybat, Luca Benini, and Davide Rossi. A Heterogeneous In-Memory Computing

Cluster For Flexible End-to-End Inference of Real-World Deep Neural Networks.

arXiv, 2022

The following publications with contributions by the author provide additional evi-

dence and insights on the topics discussed in the thesis and are covered only in part by

this dissertation:

• Alessio Burrello, Francesco Conti, Angelo Garofalo, Davide Rossi, and Luca Benini.

Work-in-progress: Dory: lightweight memory hierarchy management for deep nn

inference on iot endnodes. In 2019 International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ ISSS), pages 1–2. IEEE, 2019

• Gianmarco Ottavi, Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Luca

Benini, and Davide Rossi. A mixed-precision RISC-V processor for extreme-edge

DNN inference. In 2020 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), pages 512–517. IEEE, 2020

• Nazareno Bruschi, Angelo Garofalo, Francesco Conti, Giuseppe Tagliavini, and

Davide Rossi. Enabling mixed-precision quantized neural networks in extreme-edge

devices. In Proceedings of the 17th ACM International Conference on Computing

Frontiers, pages 217–220, 2020

• Alessio Burrello, Angelo Garofalo, Nazareno Bruschi, Giuseppe Tagliavini, Davide

Rossi, and Francesco Conti. Dory: Automatic end-to-end deployment of real-world

dnns on low-cost iot mcus. IEEE Transactions on Computers, 2021

Further publications with contributions by the authors not explicitly covered by this

thesis are:

• Annachiara Ruospo, Riccardo Cantoro, Ernesto Sanchez, Pasquale Davide Schi-

avone, Angelo Garofalo, and Luca Benini. On-line Testing for Autonomous Sys-

tems driven by RISC-V Processor Design Verification. In 2019 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems

(DFT), pages 1–6. IEEE, 2019
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• Fabio Montagna, Stefan Mach, Simone Benatti, Angelo Garofalo, Gianmarco Ot-

tavi, Luca Benini, Davide Rossi, and Giuseppe Tagliavini. A Low-Power Trans-

precision Floating-Point Cluster for Efficient Near-Sensor Data Analytics. IEEE

Transactions on Parallel and Distributed Systems, 33(5):1038–1053, 2021

• Fabio Montagna, Giuseppe Tagliavini, Davide Rossi, Angelo Garofalo, and Luca

Benini. Streamlining the OpenMP Programming Model on Ultra-Low-Power Multi-

core MCUs. In International Conference on Architecture of Computing Systems,

pages 167–182. Springer, 2021



Chapter 2

Background

This chapter illustrates the background concepts necessary to introduce the contri-

butions of this dissertation. Section 2.1 describes the Quantized Neural Networks, the

dataflow schedule and the data layout adopted in Chapter 3 which presents the accel-

eration of QNNs through software optimizations, targeting ultra-low-power IoT edge

devices.

All the contributions of the dissertation are built around the open-source PULP

platform, introduced in Section 2.2. In Chapter 4 a set of domain-specific RISC-V ISA

extensions is presented, whose micro-architecture extends the RI5CY core, described

in Section 2.3. Section 2.4 describes the basic operations of the IMC array adopted in

Chapter 5 to build an analog/digital heterogeneous computing cluster.

2.1 Quantized Neural Networks, Dataflow Schedule and

Data Layout

QNNs are the result of post-training quantization or quantization-aware training [42]

procedures. After the quantization, each tensor t of the QNN (e.g., weights w, input

activations x, or outputs y) can assume only a finite set of values which are defined in a

specific real-valued range [αt, βt). These discretized real values can be mapped, through

bijective functions, into pure integer numbers called integer images of the real-valued

discretized tensors. More in detail the N -bit integer image (referred to also as INT-

N) t̂ of the tensor t is connected to its real-valued quantized counterpart through the

following function:

t = αt + εt · t̂ , (2.1)

8
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where εt = (βt−αt)/(2
N −1). We call εt the quantum because it is the smallest amount

that we can represent in the quantized tensor. Without loss of generality, we further

constraint αx = αy = 0 for the input activations and the output features of each QNN

layer.

After mapping all the tensors in the integer domain, the application of the QNN

operators (Linear Operator, Batch-Normalization, and the Quantization/Activation)

can operate directly on the integer images:

LIN : φ =
∑
n

wm,nxn ⇐⇒ φ̂ =
∑
n

ŵm,n · x̂n (2.2)

BN : φ′ = κ · φ+ λ ⇐⇒ φ̂′ = κ̂ · φ̂+ λ̂ . (2.3)

In the LIN operator, the accumulator of the dot product operation will be repre-

sented, in general, with higher precision (e.g., 32 bits) with respect to the two inputs,

since the quantum used to represent the accumulator φ̂ will be smaller than that of the

two operands (εφ = εwεx). The same consideration also holds for the output of the

Batch-Normalization operator. The final Quantization/Activation operator provides a

non-linear activation semantic, which is essential for QNN to work, and collapses the

accumulator into a smaller desired bitwidth:

QNT/ACT : ŷ = m · φ̂′ ≫ d ; m =

⌊
εφ′ · 2d

εy

⌋
. (2.4)

d is an integer chosen during the quantization process in such a way that εφ/εy can be

represented with sufficient accuracy inside m. The BN and QNT/ACT operators can

also be implemented through a stair-case function by folding the BN and QNT/ACT

parameters into a set of thresholds. The staircase-function compares φ with a set of 2N

thresholds to compress the result into N bits, with a computational complexity of O(N).

To implement the quantization with a thresholding-based method, we would need

to store 2N thresholds per output channel, which leads to a large memory footprint

for real-world convolution kernels. Since the computational complexity is comparable

between the two methods for real-world layers, we will always assume in the rest of the

thesis that the Quantization and Normalization steps are implemented with the BN and

QNT/ACT operators, as explained in this section.

In this dissertation, we explore the case of INT-8, INT-4, INT-2 and INT-1 data

types as they are the most natural ones to fit in a 32-bit register of the targeted MCUs.
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The INT-1 format, where activation and weight values are expressed by binary values, is

a special case because the convolution can be reduced to a logical XNOR and a bit-count

operation:

φ̂ = popcount(ŵ xnor x̂) (2.5)

where popcount(·) is the bitcount operator. Also in this scenario, a thresholding proce-

dure is applied for compression.

On the model accuracy side, it has been demonstrated that, through specific re-

training techniques, the accuracy drop-off of quantized fixed-point networks can be sig-

nificantly reduced [13, 15, 16]. Choi et al. [42], for example, have proved that a 4-bit

quantization leads to an accuracy level close to single-precision floating point represen-

tation. The accuracy drop is limited to 3% when running ResNet50 on Imagenet with

2-bit weights and 4-bit activations and to 6.5% when downscaling the weights and ac-

tivations to 2 bits. Furthermore, the authors of [43] investigated the trade-off between

energy efficiency and accuracy of QNN, highlighting the practical effectiveness of the

sub-byte fixed-point networks. At the cost of specific retraining procedures, the accu-

racy drop of is kept very close to the single-precision floating point counterpart while

the energy efficiency gain, at the iso-accuracy, is orders of magnitude higher. Moreover,

for the investigated networks, trained on CIFAR-10 and MNIST datasets, the energy

consumption achieved with 1- to 4-bit fixed-point networks, at iso-accuracy, outperforms

the 8-bit counterpart by up to 10×.

A convolution layer, standing as the basic building block for a CNN or a QNN model,

produces an output feature map based on a set of weight filters and the output from

the previous layer. An activation value of any output feature map is computed as the

dot product between a weights filter bank and a region of the input feature map, i.e.

the C features values of every point under the area kw x kh of the filter. To efficiently

implement this operation on an MCU-like device, the convolution is decomposed into

two phases [22]: an im2col step to load the input features of the current convolution

into a contiguous memory array and a dot product. Besides the memory requirements

of the activation maps and the model parameters, the im2col demands an extra memory

footprint of C x kw x kh values, on which the dot product operates. Fig 2.1(a) shows

graphically this operation. Given this, the computation of one value of the output

feature map, indicated as O(m,x, y) becomes:

O(m,x, y) = dot
(
W (m), im2col(x, y)

)
, (2.6)

where W (m) is the m-th bank of weight filter, im2col is the unrolled input buffer of

length C x kw x kh. The inner loop of the convolution dot product is realized through

a matrix multiplication kernel, as depicted in Figure 2.1(b). In general, s output features
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Figure 2.1: (a) Dataflow of the spatial convolution kernel (b) Convolution inner loop
computation as a matrix multiplication.

of r activation outputs (s=2 and r=2 in the example in figure) can be computed at this

low-level stage. As a specific case, CMSIS-NN implements a matrix multiplication kernel

working on two spatially adjacent pixels of two consecutive channels inside the inner loop

of the convolution kernel; we identify this configuration as 2×2, as explained in detail

in Section 3.3.3.

Moreover, authors of [22] demonstrated the most convenient data layout to be

Height-Width-Channel (HWC), as it introduces minor overhead when building the im2col

buffer with respect to the Channel-Height-Width (CHW) layout. According to such a

layout, the data along the channels is stored with a stride of 1, data along the width is

stored with a stride equal to the number of channels C.

2.2 PULP Platform

PULP is an open-source computing platform leveraging near-threshold computing

to achieve high energy efficiency, leveraging parallelism to improve the performance

degradation at low-voltage [24]. The PULP cluster used as a reference in this dissertation

is depicted in Figure 2.2. The computing cluster is composed of eight RI5CY cores [25],

each featuring a 4-stage in-order single-issue pipeline and implementing the RISC-V
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Figure 2.2: Overview of the PULP platform architecture.

RV32IMCXpulpV2 Instruction Set Architecture (ISA), meant to accelerate arithmetic

intensive kernels and introduced more in depth in Section 2.3.

The cores of the baseline cluster communicate through a shared and word interleaved

memory called Tightly Coupled Data Memory (TCDM), referred to as L1 memory.

The size of the memory is parametrizable and can be divided on a number of banks

which is also a design-time parameter. The cores access the memory through a low

latency logarithmic interconnect (LIC), that serves the memory accesses in one cycle.

The cluster workload can be also offloaded to accelerators, integrated into the cluster

through a standardized interface [44], as shown in Fig. 5.1.

The cluster communicates with a micro-controller system, namely PULPissimo, that

handles input/output peripherals, through an AXI interface. Moreover, it is served

with a DMA controller dedicated to the data transfers between the TCDM and the

second level of memory, hosted by the micro-controller system, which also contains the

program instructions for the cluster cores. Each core fetches the instructions from a

hierarchical instruction cache organized on two levels (the first private to each core, the

second shared) to optimize the hit rate. The cluster is also supported by a Hardware

Synchronization Unit that manages synchronization and thread dispatching, enabling

low-overhead and fine-grained parallelism, thus high energy efficiency: each core or

accelerator waiting for a barrier, or more in general for a custom event, is brought into

a fully clock gated state.

2.3 RI5CY Core

RI5CY is a 32-bit 4 stages pipeline in-order single issue processor [25], part of the

PULP project 1. Currently, it is maintained to industry standard by the non-profit

global organization OpenHW, under the name of CV32E40P 2.

1https://github.com/pulp-platform
2https://github.com/openhwgroup/cv32e40p
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Figure 2.3: Diagram of the RI5CY pipeline.

The core implements the standard RISC-V ISA [45] with the I, M and C instructions.

Optionally it supports the standard floating point instructions F. Besides the standard

instructions, RI5CY supports the non-standard extensions called XpulpV2 [25], that

introduce several features to improve the efficiency of DNN inference kernels and, more

in general, linear algebra and digital signal processing computation in the integer domain.

Among the other useful operations, it is worth citing the support for hardware loops,

post-modified access loads and stores, bit-manipulation instructions and support for

SIMD operations down to 8-bit integer vector operands. Fig. 2.3 shows the diagram of

the RI5CY pipeline.

2.4 PCM-based In-Memory Accelerator

In Chapter 5 the heterogeneous cluster is built around the IMC array presented

in [46], which is based on a Phase-Change Memory (PCM) cross-bar. In this architec-

ture, the memory devices are resistors with programmable conductance placed at the

crosspoints of a 2D array with one terminal connected to horizontal wires called word-

lines and the other terminal connected to vertical wires called bit-lines, enabling the

execution of several computational primitives concurrently.

To perform the product of a matrix A by a vector x, the PCM devices are pro-

grammed with conductance values proportional to the values Aij of A, with a precision

of 4-bit (signed), as depicted in Fig. 2.4. Then the word-lines are driven with voltage

pulses, whose duration are proportional to xj , using a set of digital-to-analog converters

(DACs) with 8 bits of precision (signed). By Ohm’s law, each PCM device contributes a

current proportional to Aij ·xj on the i-th bit-line, resulting in a total integrated current
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Figure 2.4: (a) Standard matrix vector multiplication where vector a is multiplied with
matrix X to output vector b (b) Illustration of matrix vector multiplication operation
on differential PCM crossbar array. It is reported also the integration of the IMC array
within the HWPE, discussed in detail in Chapter 5.

proportional to the dot product yi =
∑

j Aij · xj . At the end of each bit-line, there is

an analog-to-digital converter (ADC) used to sample the bit-line current and convert it

into an 8-bit digital value (signed).

For DNN inference, the A matrix can be used to store the weights of the linear

part of a Fully Connected, Convolutional, or Depthwise Convolutional layer. Note that

typically 2 PCM devices are used to denote a signed weight [47]. In conventional digital

architectures, the dot product of 4-bit weights and 8-bit input activations requires a high-

precision intermediate representation (often, 32 bits) that is subject to scaling, clipping,

and quantization to produce a vector of 8-bit output activations [38]. In the IMC cross-

bar, instead, the intermediate representation is an analog current, while scaling, clipping,

and quantization are performed directly by the bit-line ADCs by setting appropriate

current limits.



Chapter 3

PULP-NN: QNN Acceleration on

RISC-V IoT Processors

3.1 Introduction

3.1.1 Motivation

While efficient libraries for commercial MCUs have been proposed for edge QNN

inference [22, 23], not many software solutions have been presented yet that efficiently

exploit a parallel MCU architecture and offers supports for low bit-width computing

kernels. This chapter fills this void by building the back-end library upon the recent

architectural template of parallel ultra-low-power RISC-V based platforms such as GAP8

[20], which improve energy efficiency and performance in IoT edge devices coupling

parallelism with low voltage operation [48].

3.1.2 Contribution

The main contributions are the following:

• The design of PULP-NN 1, an open-source optimized library based on the CMSIS-

NN [22, 23] dataflow which includes a full set of kernels and utilities to support

the inference of Quantized Neural Networks (8,4,2 and 1-bit) on a DSP-optimized

RISC-V based processor. By fully exploiting the DSP extensions available within

the ISA, it can achieve a speedup of 9× with respect to a plainRV32IMC ISA;

1https://github.com/pulp-platform/pulp-nn

15
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• The library optimizations for a Parallel Ultra-Low-Power (PULP) cluster of RISC-

V processors, which leads to near-linear speedup with respect to single core exe-

cution, increasing the throughput of each kernel by up to 7.5× on eight cores;

• The optimization of the convolution kernel, the most computing intensive task of

CNN workloads, by improving data reuse, with a further 20% performance gain

with respect to the original kernel of CMSIS-NN [22], with a ∼1.9× improvement

with respect to the GAP-8 NN native library and an overall efficiency of 49% in

terms of MAC utilization, which implies just 1.01 LD/ST per MAC, and brings

us to just a factor of 2 from the theoretical peak MAC utilization achievable using

only register operands;

• The solution presented in this chapter is compared with State-of-the-Art architec-

tures and software, by running a CIFAR-10 quantized model on the GAP8 8-core

cluster, outperforming by 19.5× a high-end MCU (based on ARM CORTEX-M7)

running the same network using the CMSIS-NN library. The inference with the

proposed library also achieves 14.1× better energy efficiency with respect to a

highly energy efficient MCU (based on ARM CORTEX-M4).

3.2 Related Work

The success of DL has paved the way to many different DL deployments on embedded

computing platforms of all kinds. This section recaps the state-of-the-art and gives

insights on its applicability to CNN inference at the extreme-edge, on IoT end-nodes.

3.2.1 Dedicated Accelerators for edge AI

3.2.1.1 Digital Accelerators

Dedicated accelerators are top-in-class for what concerns performance and energy

efficiency on the QNN workloads. Having a highly specialized data-path, they can

achieve performance in the order of 1 - 10 Gops/s with efficiency in the range of 10

- 100 Tops/s/W. A valuable example is Orlando [49], which reaches few TOPS/W of

efficiency and Origami [50] that is capable of achieving a throughput of 274 Gop/s, with

an efficiency of 803 Gop/s/W.

Dropping the arithmetic precision of CNN operands has demonstrated to be a useful

technique to reduce the memory footprint and the energy cost for computation [43,

51–54]. UNPU [55] is an example of an accelerator supporting fully-variable weight
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bit-precision and capable of achieving a peak energy efficiency of 50.6 TOPS/W at a

throughput of 184 GOPS. Moons et al. [56] presented ENVISION, an energy-scalable

multi-precision DNN accelerator delivering 76 Gops/s with an efficiency of up to 10

Tops/s/W. YodaNN [57] targets binary-weight networks and reaches energy efficiency

up to 61 Top/s/W. Other accelerators exploit extreme quantization for the deployment

of binary neural networks on silicon using in- or near-memory computing techniques

(e.g., Brein [58], Conv-RAM [59]) with energy efficiencies in the range 20-55 Top/s/W.

The high performance and energy efficiency achieved by these accelerators are coun-

terbalanced by their poor flexibility, which makes the end-to-end deployment of real-

sized DNNs harder. Moreover, even if modern dedicated architectures have a data-path

somehow re-configurable (for example, allowing the execution of convolutions with dif-

ferent kernel sizes, 3x3, 5x5 or they provide the possibility to handle inception layers

and/or residual connections), they can not be configured to support different kind of

applications. In the IoT domain, instead, this flexibility is crucial. The DNN inference

is usually only one part of a bigger application, where we additionally may want to han-

dle peripherals, process the data through linear algebra, domain-to-domain transforms

(even recurring to floating-point numbers), and manage the wireless transmission of the

high-level compressed results. The poor flexibility and the high-cost per device make

the ASIC solutions unattractive for their use as sensor-nodes at the extreme edge of the

IoT.

3.2.1.2 Analog In-Memory Accelerators

A recent trend that leverages low-bitwidth computation is analog in-memory com-

puting (AIMC) [60]. It overcomes the Von-Neumann bottleneck by executing the Matrix-

Vector multiplication directly in-memory, reducing data movement and exploiting the

high-parallelism of dense 2D memory arrays. Given that AIMC can only compute

Matrix-Vector operations, several heterogeneous architectures have been proposed that

adds digital electronics that perform the rest of the network (e.g., non-linear functions,

residual layers, max-pooling, etc.). The attractiveness of these systems comes from the

peak throughput and efficiency of DNN inferences. Examples are the works of Khaddam-

Aljameh et al. [46] claiming 10.5 TOPS/W; Zhou et al. [61] with a peak efficiency of 112

TOPS/W; Jia et al. [62] peak efficiency of 30 TOPS/W.

Even though peak performance and efficiency of AIMC macros are outstanding, sev-

eral fundamental challenges are still open to achieve the claimed levels in end-to-end ap-

plications: i) variability of analog computing can significantly impact the accuracy of the

network; ii) need for specialized training; iii) poor flexibility, AIMC is well matched only
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for a limited set of operations, mainly matrix-vector multiplication. Given these prob-

lems, most of these systems today have been demonstrated on small networks trained

on simple data sets such as CIFAR-10 or MNIST [63].

Specialized architectures including both digital and analog accelerators can deliver

remarkable performance and energy efficiency but lack flexibility. On the other hand,

flexibility is a fundamental aspect when trying to accelerate DNN: neural networks are

in continuous evolution, and the performance boosted thanks to an accelerator is only

reachable for DNNs that can fit the target shape and size for which they have been

designed.

3.2.2 FPGA based solutions

The recent development of heterogeneous FPGAs such as the Xilinx Zynq family

has enabled a higher level of flexibility to build CNN acceleration systems. Embedding

general-purpose processors on the FPGA boards allows managing the program flow,

handling the I/O sub-system, memory accesses, and communication, hence making easier

to program the device and interact with external devices and sensors. FPGAs usually

come with DSP-capable hardware, but they have a power envelope in the Watt order.

Thus the reduction of numerical precision for CNN models plays a key role in achieving

good performance and energy efficiency. In the literature, we can find several FPGA-

based solutions that exploit 16-bit fixed-point operands, such as in [64–67], but an

ever-increasing number of works explore byte or sub-byte arithmetic. Qiu e al. [68]

proposed a CNN accelerator supporting 8- and 4-bit data on a Xilinx Zynq board, while

[69, 70] rely on ternary and binary networks. While most FPGA solutions feature a

power envelope that can not meet the IoT end-nodes requirements, a new family of

FPGAs announced by Lattice, namely Sense-AI [71], provide comprehensive hardware

and software solutions for always-on artificial intelligence (AI) within a power budget

between 1 mW and 1 W. However these ultra-low power FPGAs are currently too

expensive for many applications where MCUs are traditionally chosen because of their

low cost. In addition, they can be reconfigured using a Hardware Description Language

(HDL), increasing the productivity with respect to the above-mentioned ASIC solutions;

still, their adoption remains an obstacle for the average IoT programmer, who demands

for the highest flexibility of micro-controller systems.

3.2.3 Software Programmable Solutions

Commercially available software-programmable general-purpose processors provide

the highest flexibility for the deployment of the QNN at the extreme-edge. While DNNs
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Table 3.1: The table shows the trade-offs among the CNN computing platforms de-
scribed in the related work section.

Summary of CNN Embedded Inference Computing Platform

Performance Energy Efficiency Power Budget Flexibility

ASICs 1-10 TOPS 10-100 TOPS/W 1 mW- 1 W Low
[49, 50, 55, 57]

FPGAs 10-200 GOPS 1-10 GOPS/W 1-10 W Medium
[64–68]

MCUs 100-300 MOPS 1-3 GOPS/W 1 mW- 1 W High
[30, 31]

PULP SoCs 1-2 MOPS 30-50 GOPS/W 1-100 mW High
[20, 24, 76]

are traditionally executed on programmable high-performance GP-GPU [72, 73] also

with reduced precision support [74], these platforms are typically not designed to operate

in the tight power envelope of IoT end-nodes, and their cost is off-spec too. Some

architectures exploit the computing power of multi-core processors, such as Raspberry

Pi 3+ [75], powered by a Quad-core ARM CORTEX-A53. Although these platforms are

relatively inexpensive and flexible, their power consumption is too high as well.

To fit the power budget of IoT edge devices, many low power microcontrollers in-

clude ARM CORTEX-M cores. Among these solutions, STMicroelectronics produces

low-power (STM32L4 family based on ARM CORTEX M-4 cores) and high-performance

(STM32H7 family featuring ARM CORTEX M-7 cores) microcontrollers supporting DL

processing at the edge [30, 31]. To improve the computing capabilities of such tiny and

cheap computing platforms, ARM recently announced the development of the ARMv8.1-

M [77] architecture, featuring Helium, an ISA extension tailored for DSP-oriented work-

loads, such as an inference task. However, such an extension is not supported yet by

any device.

Other solutions move toward heterogeneous architectures, coupling microcontrollers

with dedicated CNN accelerators, to deal with the extremely regular CNN workload.

ARM proposed Trilium [19], a heterogeneous compute platform which provides flexible

support for ML workloads. Conti et al. [44] proposed a convolution engine to be

integrated in a microcontroller to speed up the convolutional kernels while Kendryte

[21] is a dual-core RISC-V SoC outfitted with a CNN accelerator for AI applications.

Flamand et al. proposed GAP8 [20], a multi-GOPS fully programmable RISC-V IoT-

edge computing engine, featuring a cluster of 8 cores with dedicated DSP extensions and

a CNN-specialized accelerator. These accelerators can give the MCU a 5 to 10× energy

efficiency boost, but they are proprietary, closed, platform specific and currently not

fully supported by the software design flows. Hence, their acceptance and penetration

among application developers is still quite low. Table 3.1 summarizes the trade-offs
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among the CNN computing platforms described so far. Next section will describe the

State-of-the-Art of software solutions for MCU platforms, the main focus of this chapter.

3.2.4 Optimized Software Libraries

On the MCU side, the limited computational and memory capabilities make aggres-

sive software and algorithmic optimizations necessary to deploy DNN inference models

on them. An efficient solution to reduce DNN memory footprint is to use fixed-point

arithmetic and quantization of both weights and activations into 8-bit or smaller data

types, at the cost of a minor drop in accuracy [13, 16, 78]. Relying on fixed-point

quantized networks, ARM proposed the CMSIS-NN library [22], which maximizes the

performance of the QNN kernels on CORTEX-M series cores, supporting 16-bit and

8-bit fixed-point data. On the same trail, targeting a parallel MCU architecture such

as GAP-8, Greenwaves Technologies released open-source a set of QNN kernels (16- and

8-bit data precisions) as part of a proprietary tiling solution [20]. The tiling procedure,

exploiting the DMA controller available on GAP-8, hides the latency of fetching/storing

activations and weights along the memory hierarchy introducing only a small overhead

(a few %), thus enabling the processing of large networks whose layers may not fit the

MCU on-board memory. This chapter focuses on the computational aspects of reduced

precision quantized CNN inference. In this context, despite the demonstrated effective-

ness of sub-byte aggressive quantization [43], only Rusci et al. [23] explored the inference

speed as well as memory requirements of using low-precision (4-, 2- or 1-bit) convolution

kernels on a Cortex-M7 microcontroller. The solution presented in this chapter aims at

bridging this gap, leveraging the results of [43] and focusing on the computational side

to enable efficient QNN inference at the edge on fully programmable devices. The solu-

tion presented outperforms the CMSIS-NN based solutions by one order of magnitude

in terms of performance and energy efficiency.

3.3 PULP-NN

This section introduces the PULP-NN library and describes the optimization of

the kernels with the presented RV32IMCXpulp extended ISA on a parallel cluster of

eight processors and the optimization of the main computational kernel of the library:

the matrix multiplication. We focus on the computational part since we are interested

in exploring software solutions capable of achieving high computing performance and

energy efficiency, on top of parallel edge architectures like PULP.
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Figure 3.1: Concept scheme of the convolution kernel of the PULP-NN library.

3.3.1 Design and optimization on RISC-V

We present implementation details of the most significant QNN kernels on the target

RV32IMCXpulp ISA. The experiments are conducted assuming that all the data resides

in L1 memory of the PULP cluster.

INT-8 symmetric Kernels

This section focuses on the implementation details of the INT-8 convolution kernel,

as it also provides a basis for the implementation of the INT-4 and INT-2 kernels. Start-

ing from the implementation presented in Section 2.1, the INT-8 convolution consists

of three phases, as depicted in Fig. 3.1: the im2col phase, the MatMul phase and the

QntPack one.

The im2col step takes the 3-D input activations in the HWC format and, for a given

output position, arranges its full receptive field along the filter and the input channel

dimensions into a 1-D vector, the im2col buffer. In this way, the full convolutional layer

is converted into a MatMul operation between this vector and flattened weights.

The structure of the MatMul kernel is 2×2, as discussed in Section 2.1. The follow-

ing paragraphs give insights on how to optimize the kernel fully exploiting the target

RV32IMCXpulp ISA. Since the matrix multiplication operation has to be looped over

the size of each filter bank (C x kw x kh), the hardware loops provided by the target ISA

are used to accelerate the for statement. In the inner loop, the load and store with post-

increment is exploited since the access pattern to the im2col buffer and filter elements

is extremely regular by construction. In the same way, the 8-bit SIMD instructions are

used to work over more SIMD vector elements in parallel, to increase the throughput of

the computation. Figure 3.2 graphically schematizes the execution of the inner loop of

the MatMul kernel and reports the corresponding assembly code.
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=

pBuffer pBuffer2

For i=0 to size/4

V4s A1 = *((v4s*) pWeight);

V4s A2 = *((v4s*) pWeight2);
V4s B1 = *((v4s*) pBuffer);
V4s B2 = *((v4s*) pBuffer2);
S1 = sdotp4(A1,B1);
S2 = sdotp4 (A1, B2);
S3 = sdotp4(A2, B1);
S4 = sdotp4(A2, B2);

end

Pseudocode

lp.setup // hardware loop

p.lw w1, 4(a0!)              // load with post-increment

p.lw w2, 4(a1!)
p.lw x1, 4(a2!)
p.lw x2, 4(a3!)
pv.sdotsp.b s1, w1, x1   // 4x8bit vectorial sdotp
pv.sdotsp.b s2, w1, x2
pv.sdotsp.b s3, w2, x1
pv.sdotsp.b s4, w2, x2

end

Disassembled pseudocode

Figure 3.2: 2×2 sized matrix multiplication kernel for INT-8 data operands.

After filling two im2col buffers that are needed to compute two spatially adjacent

output pixels during the im2col phase, the MatMul inner loop takes place as follows.

At every iteration of the loop, four consecutive elements are loaded into the register file

from each of the two im2col buffers (pointers pBuffer1 and pBuffer2 in the figure), and

from two weight banks (pointers pWeight and pWeight2 ), after casting INT-8 pointers to

v4s. The total number of load operations required is four. In this way we have sufficient

elements to set four sdotp4 built-in functions over four different accumulators. Hence,

in a single run of the inner loop of the matrix multiplication kernel, we can compute

four sdotp4 instructions, which correspond to 16 MAC operations, at the cost of four

load instructions.

Since the fully connected kernel is a simple MVM, the previous methodology nat-

urally scales to it. Here there is no need to build the im2col buffer since the spatial

dimension of the filters is the same size as the spatial dimension of the input feature

map.

To reduce load instructions and exploit a data reuse mechanism, the fully connected

kernel implements 2x1 matrix multiplication kernel within the inner loop (see Section

3.3.3 and Figure 3.7). By loading two different subsets of weights, two consecutive

output pixels along the channel dimension can be computed in parallel. By using the

SIMD ISA extensions as before, only three loads are required to set two sdotp4 vector

operations per loop cycle, which translates in 8 MACs.

The results of the MatMul kernel are 32-bit long, since the accumulator features a

precision higher than operands, as described in Section 2.1. A final step of normalization
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Src = *((v4s*) pSrc);     //pointer casting
B1 = bextract( Src[0..3]);  //bit extraction
B2 = bextract( Src[4..7]);
B3 = bextract( Src[8..11]);
B4 = bextract( Src[12..15]);
Res = pack4( B1, B2, B3, B4);  // packing into a v4s var.

Pseudocode

p.lw Src, 0(a0);    // vectorial load
p.bextract w1e, Src, 4, 0;  //bextract built-in 
p.bextract w2e, Src, 4, 4;
p.bextract w3e, Src, 4, 8;
p.bextract w4e, Src, 4, 12;
p.packhi.b Res, w3e, w4e;   //pack built-in (two assembly insns)
p.packlo.b Res, w1e, w2e;

Disassembled Pseudocode
07 …

W8 W7 W6 W5 W4 W3 W2 W1

bextract
Sig. 
ext.

W1
Sig.
ext.

W2
Sig.
ext.

W3
Sig.
ext.

W4

Sig. 
ext.

W1
Sig.
ext.

W2
Sig.
ext.

W3
Sig.
ext.

W4

0

pack4

Src

Res

3

07

…

…

Figure 3.3: INT-4 to INT-8 unpacking function.

and quantization, namely QntPack, is thus needed to bring back the intermediate result

in low bit-width form (INT-8 in the example considered). For INT-8 output features

inexpensive operations such as shifting and clipping operations can be used, using ISA-

level instructions. In the sub-byte cases, the QntPack includes also additional packing

functions that will be discussed in the dedicated section.

Ancillary operations also take benefit of the DSP extensions. ReLU, which consists

of a simple max looped over the input feature map, exploits hardware loops, load store

with post-increment and the SIMD max4 built-in instruction. The same is also used

to optimize the max-pooling kernel, which is implemented in two steps: first along the

width dimension, working destructively in situ on the input buffer; then along the height

dimension.

Sub-byte and Mixed-Precision Support

The smallest data type well supported by the ISA with the SIMD extensions is

INT-8. To exploit efficiently such vector operations, it is necessary to provide addi-

tional support functions to convert sub-byte data, i.e. INT-2 and INT-4, into INT-8.

Having sub-byte operands compactly stored in memory, in the case of INT-4 data two

consecutive elements are placed in a single byte. The casting operation, realized through

the pulp nn int4 to int8 function, takes place either when building the im2col buffer as

well as in the innermost loop of the matrix multiplication kernel to ”unpack” weight

elements. To reduce the overhead due to the unpacking operations, combined use of the

bextract and pack4 built-in functions allows to extract four INT-4 elements (weights or

pixels) with few instructions, as shown in Figure 3.3. After loading eight INT-4 data

with a single load, four elements are extracted by means of the bitextract built-in and

packed into one single SIMD v4s variable, which feeds the matrix multiplication kernel.



PULP-NN: QNN Acceleration on RISC-V IoT Processors 24

16-bit 
precision
activation

> th[7]
< th[7]

>th[11]

>th[3]

th[13]

th[9]

th[5]

th[1]

th[14]

th[10]

th[8]

th[6]

th[4]

th[2]

th[0]

7
6
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6
-7
-8

xxx0b

xxx1b

xx00b
xx01b

xx10b
xx11b

x010b
x011b

x000b
x001b

x110b

x111b

x100b
x101b

0110b
0111b

0100b
0101b

0010b
0011b

0000b
0001b

1110b
1111b

1100b
1101b

1010b
1011b

1000b
1001b

th[12]

<th[11]

<th[3]

Xb, Xb, Xb→ Partial compressed activations (bit Radix)

Xb , Xd→ Final compressed activation (bit Radix, Decimal Radix)

th[x]→ x-th threshold

4-bit 
quantized
activation

Figure 3.4: Binary tree implementation of the staircase compression function for 4-bit
operands and iterative construction of the result.

On the same trail of INT-8 kernels, also in this case a finalQntPack step is required to

restore the 16-bit long intermediateMatMul results into the low bit-width representation

range (INT-4 in the use case considered). The difference with respect to the INT-8 case

is that for sub-byte kernels the QntPack step is more complex and consists of an optimal

balanced binary tree function, named pulp nn int4 quant that at each node compares the

16-bit intermediate accumulator with one of the corresponding 24 − 1 threshold values,

as shown in Fig. 3.4 for the INT-4 case 2. To save memory footprint, two consecutive

output INT-4 data are stored in a single-byte variable using additional packing functions

after the thresholding-based quantization. This is implemented efficiently, exploiting

the bitinsert built-in function that acts as a natural counterpart of the bitextract, which

compresses the data and packs them into INT-8 variables. A graphical explanation of

the compression mechanism is provided in Figure 3.5. A similar process is implemented

for INT-2 convolutions, by featuring dedicated packing and unpacking functions.

In the context of a mixed-precision convolution kernel, the precision of the ifmaps

determines the specific im2col function to be used, the precision of the weights deter-

mines the specific MatMul kernel, while the ofmap determines the specific QntPack

kernel.

2The thresholding approach can be replace, with the same computational cost but lower memory
footprint needed to store the threshold values in the memory, by a quantization step consisting of a
MAC operation, one shift and one clip instruction per each accumulator to be quantized back into the
desired precision
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Matrix Multiplication
(INT-8)

2x2 16-bit
accumulators

Thresholding
procedure

pulp_nn_int4_quant()

Packing INT-4 results
bitinsert()

* **

Pseudocode

q1 = pulp_nn_int4_quant( s1, thresholds);  // restoring 4bit range precision *
q2 = pulp_nn_int4_quant( s2, thresholds);  
q3 = pulp_nn_int4_quant( s3, thresholds);
q4 = pulp_nn_int4_quant( s4, thresholds);

Out = bitinsert( q1, offset=0, size = 4);  // packing two INT-4 pixels in one INT-8 variable **
Out = bitinsert( q3, offset=4, size = 4);  
Out2 = bitinsert( q2, offset=0, size = 4);
Out2  =bitinsert( q4, offset=4, size = 4);

Figure 3.5: The compression procedure for INT-4 data types.
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Binary Convolution Kernel

For the INT-1 data representation no casting/unpacking is needed because of the

natural support provided by the ISA for binary operations. We exploit the bitwise

instructions to implement the convolution kernel, which is based on bitwise XNOR

operations between binary weights and binary inputs. The accumulator is filled by

counting the number of ones occurring after the XNOR. To this purpose we use popcnt

built-in. The 16-bit accumulator is compared with a single threshold and results either

in a zero or one, stored back into memory by means of the bitinsert built-in function.

3.3.2 Multi-Core Execution

As discussed above the convolution kernel execution consists of two phases: the

im2col function and the matrix multiplication kernel. The proposed data-parallel multi-

core optimization is motivated by the HWC format used to store pixels and weights and
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V4s A1 = *((v4s*) pWeight);

V4s B1 = *((v4s*) pBuffer);
V4s B2 = *((v4s*) pBuffer2);

S1 = sdotp4(A1,B1);  
S2 = sdotp4(A1,B2);  

V4s A1 = *((v4s*) pWeight);
V4s A2 = *((v4s*) pWeight2);

V4s B1 = *((v4s*) pBuffer);
V4s B2 = *((v4s*) pBuffer2);

S1 = sdotp4(A1,B1);  
S2 = sdotp4(A1,B2);  
S3 = sdotp4(A2,B1);   
S4 = sdotp4(A2,B2);

V4s A1 = *((v4s*) pWeight);
V4s A2 = *((v4s*) pWeight2);
V4s A3 = *((v4s*) pWeight3);
V4s A4 = *((v4s*) pWeight4);

V4s B1 = *((v4s*) pBuffer);
V4s B2 = *((v4s*) pBuffer2);

S1 = sdotp4(A1,B1);  
S2 = sdotp4(A1,B2);  
S3 = sdotp4(A2,B1);   
S4 = sdotp4(A2,B2);
S5 = sdotp4(A3,B1);
S6 = sdotp4(A3,B2);
S7 = sdotp4(A4,B1);
S8 = sdotp4(A4,B2);
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Figure 3.7: Inner loop of the matrix multiplication considering different sizes of the
kernel.

by the two phases of the dataflow. Because of the HWC format, it is convenient to split

the workload along the spatial dimension of the output feature map, in a way that each

core computes the full set of M output features for a given output spatial coordinate,

as shown in Figure 3.6. To implement this strategy, each core requires a private im2col

buffer. More specifically, if we consider the 2×2 kernel, each core must allocate and

load two im2col buffers before running the matrix multiplication kernel. Therefore, the

parallelization boost comes at the cost of a small amount of additional memory footprint

for the extra im2col buffers, which in the worst case (eight cores configuration) is about

9% of the total when considering 16×16×32 sized input feature map, 16×16×64 sized

output feature map and 64×3×3×32 sized 3D convolution filter. The weights instead

are shared among the cores.

Since the fully connected layer generates a set of neurons as output (i.e., the output

feature map does not extend along any spatial dimension), the only dimension along

which we can split the workload is the channel. We assign a balanced number of neurons

to be computed to each core. The parallelization of the ReLu and the Max Pooling kernel

is straight-forward: the chunk to be assigned to each core is a balanced group of pixels

along the entire input feature map.

3.3.3 Matrix-Multiplication Structure Optimization

To further increase the throughput of a memory intensive kernel such as matrix

multiplication, it is important to reduce the cost of loading the operands into the registers

as much as possible, by maximizing the data reuse at the register file level.

The direct implementation of the Equation (2.6) would be inefficient since, from a

computation perspective, two loads are required (one to fetch an im2col element and

one to fetch a weight parameter) to feed the MAC instruction. In this scenario, one load
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stall will be necessarily paid, degrading the IPC metric and reducing the throughput.

To avoid the stall, multiple output data can be computed within the inner loop of the

dot product routine, i.e., the inner loop of the matrix multiplication kernel.

When applying equation (2.6) to compute the output data at the spatial coordinate

(x+ 1, y), the formula becomes:

O(m,x+ 1, y) = dot
(
W (m), im2col(x+ 1, y)

)
. (3.1)

We can notice that the same subset of weights is used in the computation of the output

data at coordinates (x, y) and (x + 1, y) . What changes is only the im2col buffer.

When operating on these two point simultaneously, the inner loop consists of two dot

product operations, which are performed over two different accumulators. By reusing

the register that stores the elements of W (m) along the spatial dimension we can set

two sdotp4 operations at the cost of one additional load (three in total), needed to

fetch the elements of the second im2col buffer. So doing, we build the 1x2 sized kernel

and increment the MAC to load ratio. If extending this strategy also to the feature

dimension, the inner loop of the convolution can operate on a 2×2 sized kernel, i.e.

computing four accumulations related to two features of two separate output pixels

(x, y) and (x + 1, y). Such a kernel size is the one used by ARM CMSIS-NN. In this

case, an additional subset of weights, W (m+1) is needed and, at the cost of four loads,

we can perform four sdotp4 operations in the inner loop. By means of this upgrading,

the MAC to Load ratio grows up to 4.

Let us consider the 4x2 sized kernel, which means we want to compute two adjacent

spatial pixels along four consecutive channels of the output feature map. Following what

we said before, we need to build two im2col buffers, and we need four different subsets of

weights. The elements loaded in the register file are reused similarly as presented before

to maximize the MAC to Load ratio. Figure 3.7 explains the concept of register file data

reuse. As a counterpart, we can explore the 2x4 sized kernel. In this case, the reasoning

is reversed. The MAC to load ratio we can achieve in both cases is 5.33, as we compute

32 MACs at the cost of 6 load operations, in a single run of the inner loop.Thus we

expect a better throughput with respect to the 2×2 sized area. It is interesting to notice

that in the 2x4 case, the memory footprint is slightly higher than the 4x2 sized kernel

because of the two additional im2col buffers. For the same performance, the former is

thus to be preferred between the two.

It is important to notice that the upscaling of the kernel size is limited by the

resources available in the register file to store operands and accumulators, thus limiting

the data reuse design space at this level. We explore such a space to find the best
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register file data reuse condition which maximizes the throughput. The experimental

results and further considerations are provided in Section 3.4.3.

3.4 Results and Discussion

The solutions presented in this chapter are evaluated on the off-the-shelf GAP8 [20]

microcontroller, which is an embodiment of the target PULP architecture discussed in

Section 2.2. In this section, the experimental results and the related discussion are

reported.

3.4.1 Comparison with RV32IMC ISA

To evaluate the proposed library, which exploits the DSP extensions available on the

RI5CY processor [25], we first compare the optimized single core execution of the convo-

lution kernels with respect to a corresponding RV32IMC ISA implementation, sweeping

all the INT-Q datatypes supported. This evaluation is performed by benchmarking a

convolution kernel operating on a 16x16x32 input tensor (HWC data-layout) with a filter

size of 64x3x3x32 (CxkwxkhxM). We consider the convolution kernel as its workload

is dominant when inferring an entire QNN (about 96 % on the CIFAR-10). As a second

term of comparison, we run the kernels on off-the-shelf STM32H743 [31] and STM32L476

[30] commercial microcontrollers based on ARM CORTEX-M7 and CORTEX-M4 cores

respectively, using the CMSIS-NN [22] library. To run the sub-byte quantized version of

the convolution layer on such MCUs, we refer to [23]; the extension to the CMSIS-NN

library is open access3. The results of the comparison are presented in terms of speedup

with respect to the RV32IMC implementation and reported in Figure 3.8.

We achieve the best speedup on the INT-8 convolution kernel, mainly thanks to the

8-bit SIMD sdotp instructions. The ARM ISA features support for 16-bit instructions

only, dividing by a factor of 2 the MAC throughput with respect to the RI5CY processor.

Moreover additional rotate instructions are required on ARM architectures to pack 16-

bit vector data to feed the MAC units [23]. Finally, hardware loops provide another

factor of improvement with respect to ARM. Thanks to these extensions we outperform

by 2.54× and 4.51× the STM32H7 and L4 MCUs respectively, despite the CORTEX-M7

processor available in the STM32H7 featuring a dual-issue pipeline.

When considering sub-byte data types, we notice a degradation of the speedup with

respect to RV32IMC which passes from 8.8× (INT-8) to 3.69× and 4.22× for INT-4 and

3https://github.com/EEESlab/CMSIS NN-INTQ
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ISA.

INT-2 data respectively. Such degradation is due to the additional instructions to unpack

and cast INT-2/4 operands to INT-8 ones. Although these operations are implemented

with bextract and pack4 instructions, they do not achieve the same speedup as the

INT-8 convolution kernel, limiting the overall speedup for sub-byte kernels, still leading

to a speedup of 1.42× and 2.1× with respect to STM32H7 and STM32L4 for INT-4

kernel, respectively, and a speedup of 1.52× and 2.17× with respect to H7 and L4 for

INT-2 kernel, respectively. The ARM CORTEX-M7/M4 processors do not have ISA

support for efficient bit manipulation instructions nor for popcount instruction which

is helpful for the INT-1 case. However most of the computational load of this kernel is

implemented with xnor instructions available in all considered ISAs. Hence, the proposed

implementation, runs 1.41× and 2.22× faster than the extended CMSIS-NN solution on

STM32H7 and STM32L4 respectively.

3.4.2 Multi-Core Execution Results

This section focuses on the analysis of the multicore optimization of the kernels.

Figure 3.9 shows a comparison of the convolution kernels running on the 8-core cluster

of GAP-8 with respect to the equivalent CMSIS-NN implementation on STM32H7 and

STM32L4. It is possible to notice that, due to the additional operations required to

execute sub-byte kernels, their overall cycles/MAC are 0.186 for INT-4 and 0.181 for

INT-2, both 2.4× higher than the INT-8 case. However, we can notice how the software-

efficient exploitation of the parallel processors cluster provides almost linear speedups

(7.16× to 7.7×) with respect to the single core configuration, leading to a dramatic

improvement of performance with respect to the equivalent execution on sequential
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Configuration Nr. I$ stall TCDM cont. Load stall Total exec. Speedup
insns cycles cycles cycles cycles

Convolution
1 CORE 2546k 1.3k (0.05%) 0 18k (0.7%) 2586k 1×
2 CORES 1286k 4.5k (0.35%) 1.4k (0.11%) 11k (0.85%) 1299k 1.99×
4 CORES 636k 5.7k (0.86%) 3.8k (0.56%) 5.5k (0.83%) 660k 3.92×
8 CORES 318k 21.5k (5.96%) 6.6k (1.83%) 2.7k (0.75%) 361k 7.16×

Fully connected
1 CORE 20.7k 0.03k (0.09%) 0 0 33k 1×
2 CORES 10.4k 1.1k (6.25%) 1k (5.69%) 0 17.6k 1.89×
4 CORES 5.2k 0.1k (1.19%) 0.2k (2.38%) 0 8.4k 3.92×
8 CORES 2.6k 0.1k (2.27%) 0.3k (6.81%) 0 4.4k 7.52×

Table 3.2: The table shows the multicore execution profiling of the kernels. The mea-
surements for multicore configurations are reported as an average of the measurements
taken on each core. The percentage value highlights the impact of each measured con-
tribution on the total execution cycles.
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Figure 3.9: Comparison in terms of cycles/MAC between the PULP-NN conv kernels
on one/eight core(s) of GAP-8 cluster and CMSIS-NN conv kernels on STM32L4 and
STM32H7.

RV32IMC (where the overall speedup passes from 8.8× of the single-core execution to

up 63× when considering 8-cores) and on single-core ARM architectures (10× to 32×).

This huge performance gain enables the exploitation of the benefits of heavily quantized

neural networks in terms of memory footprint, still performing one order of magnitude

better than state-of-the-art ARM-based implementations.

To provide more insight on the multi-core optimizations, an exhaustive study of the

performance achieved on the parallel cluster of GAP-8 is presented. First, the measure-

ments of the amount of executed instructions per each core providing an indication of

the Amdhal’s limit of the kernels are reported, i.e. the amount of cycles lost due to
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non-parallelizable code. As a second point, the number of cycles in which the cores are

not waiting on a barrier (active cycle) are presented and, in the end, the architectural

sources of overhead: number of cycles lost due to contention on the shared TCDM,

cycles lost due to instruction cache stalls and cycle lost due to load stalls (read after

write). The results for the convolution and fully-connected kernels are summarized in

Table 3.2.

Considering the convolution kernel, a Speedup of 7.16× with eight cores is achieved.

By analyzing the table one can notice that the Amdahl’s limit of the kernels is around

8× (thus, ideal), but a small number of cycles due to architectural overheads is lost: the

67% of this overhead is due to I$ non-idealities, 8% is due to load stalls and 20% is due

to TCDM contention, which is reasonable as there are eight cores that access the same

shared L1 memory. The number of I$ stalls increases with the number of cores due to

the increasing contentions in the shared cache banks [79] (the banking factor of 8 can

not completely remove the conflicts), on top of the I$ misses due to the large inner loop

of the kernel. The parallel execution of the fully connected layer presents a speedup

higher than the convolution kernel mainly thanks to the reduction of I$ stalls due to the

smaller size of the kernel. The speedup is never lower than 7× also when considering

the max-pooling and ReLU kernels running on eight cores.

3.4.3 Kernel Exploration

The exploration of the matrix multiplication kernel size design space is carried out

for the INT-8 operands, considering sizes ranging from 1×2 to 4×4. The results are
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summarized in Figure 3.10. A peak throughput of 15.5 MACs/cycle is reached when we

consider a convolution kernel with a 4×2 sized matrix multiplication kernel running over

eight cores of the cluster, achieving a result of just 1.01 LD/ST per MAC. This result

translates in an overall efficiency of 49% in terms of MAC utilization, only a factor of 2

from the theoretical peak achievable (32 MACs/cycle) on a cluster of eight programmable

cores with SIMD MAC units, i.e. considering the MAC units constantly fed. Nearly

the same throughput is achieved with the 2×4 sized kernel, as the almost overlapping

points in the graph suggests. Then, the optimal sized kernel has been chosen taking into

account also the extra memory footprint needed to build the im2col buffers in the two

configurations, which results to be lower for the 4×2 solution (see section 4.3.3.3 for more

details). As regards the 1×2, 2×1 cases, they appear to be inefficient, as the amount

of data reuse is meager and we pay the overhead due to the higher number of loads.

For these configurations, the MAC to load ratio is slightly higher than 1. The 4×4 case

instead would demonstrate to be the best, since the first indication of ideal data reuse is

equal to 8 (MAC/load). However, to set a 4×4 sized matrix multiplication kernel inner

loop we should have at least 24 registers available (16 for the accumulators and 8 for

the operands), while the target RISC-V, like most MCU-dedicated micro-architectures,

has a register file with 32 general purpose registers. With only eight usable registers,

the compiler has to spill variables to the stack to make room for the accumulators and

operands, leading to significant performance degradation. This reasoning is summarized

in Fig. 3.11.
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3.4.4 Comparison with GAP8 Native Library

The library presented in this chapter is also compared with the optimized multi-core

kernels that are openly distributed by GreenWaves Technologies as part of a proprietary

tiling solution4 and tailored for the GAP8 processor, called GWT-NN in this dissertation.

This section compares the performance of PULP-NN on INT-8 data with that provided

by GWT-NN, focusing on a 3×3 kernel in terms of filter size as a representative example

constituting the bulk of most SoA DNNs.

Differently from PULP-NN, GWT-NN operates spatially on Channel Height Width

(CHW)-formatted data with explicit convolution filters working in a sliding window

fashion, and accumulation over an appropriately sized INT-32 buffer. In the innermost

loop, the GWT 3x3 kernel uses the register file to implement a sliding window and uses

three sdotp4 instructions to implement a total of 9 multiply-accumulate operations. [25]

and [7] report further details with respect to this convolution kernel.

Figure 3.12 shows a comparison between the two libraries when running on a single

core of the GAP-8 cluster, in terms of performance in MAC/cycle. For PULP-NN, the

performance is swept by changing the number of input and output channels between 2

and 64 (only results from configurations fitting the L1 are shown). We chose the biggest

input spatial size (24x24) for which configurations with 64 input or output channels fit

L1. Conversely, for GWT-NN, performance is substantially independent of the number

of in/out channels, but only on the spatial size of the input image; therefore, their

4https://github.com/greenwaves-technologies/autotiler.
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Figure 3.13: This figure shows the execution cycles, the performance (at the maximum
frequency) and energy efficiency (at the lowest consumption configuration) to infer the
entire QNN on GAP8, STM32L4 and STM32H7 microcontrollers.

input/output channels are fixed at 4 and their input size is swept between 4, 16, and 64

pixels height/width.

As visible from Figure 3.12, PULP-NN outperforms GWT-NN for all small images,

and in most cases of spatially bigger images by a significant margin. This is due to a

combination of two effects: the 3x3 sliding window requires three loads and three sdotp4

per output pixel, yielding a lower sdotp4 per load ratio (1) with respect to the 4×2

PULP-NN kernel (1.4); moreover, only three MAC are used per each sdotp4, yielding a

further loss of 25% in terms of efficiency. Consequently, the GWT-NN kernel is mostly

competitive when the spatial size of the feature maps is much higher than the number

of channels, e.g., in the first layer of a CNN. While, when the number of input/output

channels is high, which typically represents the majority of the workload for state-of-the-

art deep networks topologies [80], PULP-NN can achieve as much as a +89% speedup

with respect to GWT-NN.

3.4.5 Comparison with the State-of-the-Art

To assess the library performance on an inference task, we run a full QNN, trained

on CIFAR-10 dataset, on GAP-8, using PULP-NN back-end library. For comparison

purposes, we run the same network also on State-of-the-Art edge of IoT ARM Cortex-

M based microcontrollers (STM32H7 and STM32L4), using CMSIS-NN. STM32H7 and

STM32L4 were chosen as representative of popular high-end and low-end MCU systems,

with a clear trade-off between performance and energy efficiency. The comparison with

these two popular computing platforms allows to analyze where our results lay in terms

of trade-off between computing performance and energy efficiency. The implemented

network topology is composed by three convolution layers and one fully-connected layer,
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consisting of 26.7 k parameters and 6.56 MMACs in total5. The weights and the acti-

vations are quantized to INT-8 format. Such a topology is already used on IoT edge

devices (MCUs) and also used by ARM to validate Neural Networks on low-power mi-

crocontrollers such as STM32L4 or STM32H7.

On GAP-8, the RGB image is initially stored in the L2 memory and brought in

the L1 memory before the start of the inference task, through a DMA transfer. The

activation values are then kept in the L1 memory to save on memory transfer overhead.

Before the execution of each convolution or linear kernel the weights, initially residing

on L2 memory, are brought in L1 through DMA as well. Also the im2col buffers are

kept in L1 memory. On the STM32L4 microcontroller, the entire network is stored in

the first level of memory, which consists of 128 kB SRAM. On STM32H7 the network

is stored in SRAM as well and we enable also the harware data cache which is provided

by the MCU architecture.

In the single core configuration, we are able to infer the entire network in 28.6 ms,

when GAP-8 runs at 170 MHz. We achieve almost linear speedup when considering two

and four cores, 1.99× and 3.79× respectively. With eight cores the speedup is slightly

less than 7×. Figure 3.13 shows the comparison of PULP-NN implementation of the

network on GAP-8 with respect to the CMSIS-NN implementation on STM32H743

and STM32L467 in terms of execution cycles, performance (i.e. also considering the

maximum operating frequency of the devices), and energy efficiency.

Our PULP-NN CIFAR-10 achieves a peak performance of 1.07 GMAC/s at the

frequency of 170 MHz and the supply voltage of 1.2 V on GAP-8, inferring 241 frame

per second (fps) with an energy per inference of 0.27 mJ/frame. The performance is

7.45× better than the STM32H7 and 36.8× better than the STM32L4. The energy

efficiency achieved at this operating point is 16.1 GMAC/s/W, 16.6× higher than the

STM32H7 and 9.48× higher than STM32L4. At the same time, at the best energy point,

at the supply voltage of 1V, PULP-NN achieves a performance of 577 MMAC/s on GAP-

8, with energy efficiency of 24 GMAC/s/W, inferring 127 fps with 0.19 mJ/frame, and

outperforming STM32H7 by 4.06× and STM32L4 by 32.05× in terms of performance

and by 39.5× and 14.1× the same devices respectively, in terms of energy efficiency.

5The layer parameters can be found at: https://github.com/ARM-software/ML-
examples/tree/master/cmsisnn-cifar10
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3.4.6 End-to-End inference of Neural Networks on PULP

The contributions presented in this chapter flow into an open-source library, namely

PULP-NN 6. The library optimizes the heavy computation of inference tasks assuming

the activations and the weights are already stored in the closest level of the memory

hierarchy of the system, but it does not consider the orthogonal problem of optimizing

the data movements across the different memories. This aspect of the inference is essen-

tial to consider real-world sized neural network models which might not fit the usually

small (few KiloBytes) L1 scratchpad memory of the MCUs. Therefore, PULP-NN is

integrated as back-end library into a vertical deployment flow which includes a tool for

efficient and automatic memory management during the execution of the inference tasks,

namely Dory [38], and a tool for quantizing and deploying a high-level Neural Network

model (e.g. from PyTorch) into a integer-represented quantized network ONNX graph,

namely NEMO [82]. The vertical end-to-end framework is shown in Figure 3.14.

DORY (Deployment Oriented to memoRY) is an automatic tool to deploy DNNs on

low cost MCU architecture like PULP, which replace caches with scratchpad memories

(typically with less than 1MB of on-chip SRAM memory) to reduce area overheads and

increase energy efficiency. DORY manages multi-level memory tiling aiming at the de-

ployment of realistically sized DNNs on memory-starved MCUs. Relying on Constraint

6https://github.com/pulp-platform/pulp-nn;
https://github.com/pulp-platform/pulp-nn-mixed
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Programming (CP) optimization, the tool matches on- and off-chip memory hierarchy

constraints with DNN geometri- cal requirements, such as the relationships between

input, weight, and output tensor dimensions. Through a set of defined heuristics, the

performance of the CP solution can be optimized specifying the target hardware plat-

form and the back-end library, the PULP platform with three-levels of memory and the

PULP-NN library, in the case-study considered. The third block that composes DORY

is a code generator that uses tiling solutions to produce ANSI C code for the target

platform, with all data L3-L2-L1 orchestration implemented as a fully pipelined, triple-

buffered DMA transfers and integrated calls to the computational back-end (PULP-NN).

More details on the structure of DORY can be found in [38].

DORY with the PULP-NN back-end have been tested on the deployment of full-

networks that are already used as bench-marks for many edge-oriented works [80]. All

the networks were run on GWT GAP-8, verifying all intermediate results as well as

the final result of end-to-end runs against a PyTorch-based bit-accurate golden model

for QNNs [82], to confirm the correct functionality of the DORY framework and the

PULP-NN backend.

Table 3.3 showcases a full comparison in terms of energy efficiency (GMAC/s/W),

throughput (GMAC/s), latency, and energy per frame. Different variations of the

MobileNet-v1 have been compared, with the same topology but a different number

of channels or input dimensions. For state-of-the-art, the biggest networks that fit the

on-chip/off-chip memory of the STM32H7 [31] and GAP8 [20], respectively (compatible

with the ones deployed with DORY), are shown. As can be noticed from the Table,

DORY on MobileNet-v1 achieves up to 13.19× higher throughput in MAC/cycles than

the execution on an STM32H7 (on 0.5-M.V1-192), using the best framework (X-CUBE-

AI [83]) currently available. On different operating points, a 7.1× speed-up (1.78 vs.

0.25 GMAC/s) is achieved and 12.6× better energy efficiency, given the different frequen-

cies and power consumption of the two platforms. Compared with GWT-proprietary

and partially closed-source AutoTiler run on the same GAP-8 platform, the results pre-

sented show that DORY performs on average 20.5% better. The advantage lies in 1)

the more efficient backend (PULP-NN) and 2) the heuristics, which guarantee that the

tiling solution is optimized for the PULP-NN execution model.

Fig. 3.15 depicts the power profile of the end-to-end execution of a MobileNet-v1 (1.0

width multiplier, 128× 128 resolution) on GAP-8, with both the cluster and the fabric

controller running at 100MHz. The power consumption of the cluster domain (including

8 RI5CY cores, the L1 and the Cluster DMA) and of the I/O domain (including 1 RI5CY

core, the L2, and the I/O DMA) is shown separately in two separate subplots. In the

cluster domain, power is dominated by the cores when the computation is in the active
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Figure 3.15: In the left part, the 1.0-MobileNet-128 power profile when running on
GAP-8 @ fcluster = fio = 100MHz and VDD = 1V. On the right, number of MAC
operations, average power, and time for each layer of the network. Power was sampled
at 64 KHz and then filtered with a moving average of 300 µs.

phase. Small valleys within a layer are given by (short) waits for the end of a memory

transfer where the cores are all idle, or by Cluster DMA calls where a single core is

active. In the I/O domain, we can notice the I/O DMA consumption spikes: at the

beginning of each layer, the weights of the following one are transferred from L3 to L2.

3.4.7 Discussion

The solutions proposed in this chapter demonstrate that coupling optimized soft-

ware libraries with a parallel ultra-low power computing platform it is possible to achieve

energy proportionality where, as opposed to commercial ARM-based solutions, the per-

formance must not be traded with the energy efficiency, paving the way to fully software

programmable CNN inference at the extreme edge of the IoT. However, sub-byte and

mixed-precision kernels still suffer from drop-off in performance when compared to the

INT-8 ones, despite their execution on GAP-8 performs more than one order of mag-

nitude better with respect to MCU-based SoA solutions. The overhead, as highlighted

in Section 3.4.1, is due to the hardware support of the target architecture only for 8-bit

SIMD instructions, which makes necessary to introduce additional packing and unpack-

ing functions. The sub-byte and mixed-precision precision QNNs though, provide several

advantages when deployed at the edge, since their memory footprint decreases linearly

with the bit-width used to represent weights and activations [13], making them more

suitable to fit the limited memory capacity of MCU-like devices. Moreover, it has the po-

tential to increase the energy efficiency, crucial for battery-powered devices [43]. Recent

research demonstrated that, by exploiting specific retraining techniques, the accuracy

drop can be kept under control, leading to a cumulative loss which is acceptable for many

IoT applications [16]. Hence the research community is focusing more and more on the

study and implementation of strongly quantized NNs. It is therefore important going
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further in the work presented in this chapter to exploit fully the potential of heavily

quantized networks on fully programmable edge devices. From the hardware perspec-

tive, providing the target ISA with sub-byte hardware SIMD operations will be a step

forward to eliminate the software overhead and to double, at least, the performance and

the energy efficiency with respect to the current optimal 8-bit solution. This topic will

be exhaustively discussed in Chapter 4.
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Table 3.3: End-to-end execution of image recognition MobileNet-v1 and MobileNet-v2
on GAP8 and STM32H7 MCUs.
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Chapter 4

XpulpNN : QNN Acceleration

Through RISC-V ISA Extensions

4.1 Introduction

Resource-demanding QNN workload imposes the new generation of IoT platforms to

improve their processing characteristics to meet the latency and energy requirements of

AI-enhanced IoT applications, within the power budget typical of the micro-controller

class of devices (i.e. few milliWatts). As demonstrated in Chapter 3, lack of hard-

ware supports for sub-byte SIMD operations in the ISA of IoT processors leads to

non-negligible performance and computing efficiency degradation, whenever the infer-

ence of a sub-byte or mixed-precision QNN is executed. This chapter gives insights

on how to solve this issue working at the architectural and micro-architectural level of

micro-controller class of devices.

4.1.1 Motivation

Multi-precision low bit-width arithmetic is considered a well-established solution to

deploy memory and power-hungry AI models at the extreme edge of IoT. It has been

widely demonstrated that the precision of heavily quantized AI models is not significantly

impacted in many IoT applications [13, 15]. Moreover, integer low bit-width arithmetic

is advantageous at the edge of IoT for two reasons: it lowers the memory costs of the

application, and it can reduce the latency and the energy of the computation if the

underlying hardware supports low bit-width operations in an efficient way.

This scenario has motivated the design of specific arithmetic units to fulfill the AI

requirements and improve the efficiency of the modern QNN workload at the edge.

41
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This trend impacts all the main categories of edge-AI computing platforms introduced

already in Section 4.2, i.e. dedicated accelerators, FPGA solutions and embedded Mi-

crocontroller (MCU) systems, but with different grades.

Although multi-precision arithmetic units are widely explored in ASIC solutions

[49, 55, 56, 68, 70], sub-byte integer arithmetic does not find enough room in the new

generation of architectural solutions for MCU-based systems, which are the only can-

didates to be employed as IoT end-nodes due to their low-cost, low-power and flexible

software programmability characteristics.

Coupling programmable cores with specialized accelerators that explicitly deal with

sub-byte arithmetic, whithin the MCU architecture, is a solution to enhance the per-

formance of IoT devices, since computational-heavy tasks can be off-loaded to the spe-

cialized hardware [20, 26, 84, 85]. Nevertheless, this solution presents the same pitfall

described for the ASICs accelerator in Section 3.2: the accelerators work well in the

shape and size of networks for which they were designed, but continuous evolution of

the network topology poses a severe challenge in the full utilization of the functional

units presented in the accelerators.

A most effective approach, that would guarantee the highest flexibility and adapt-

ability to a wide range of DNN models and workloads, consists of extending the ISA of

IoT processors with domain-specific instructions to deal with custom workloads without

impacting their general-purpose characteristic. However, modern MCUs lack support at

the Instruction Set Architecture (ISA) level for low bit-width integer Single-Instruction-

Multiple-Data (SIMD) arithmetic instructions. Modern MCUs adopting commercial

ISAs only support 16-bits (e.g., ARMv7E-M) or 8-bits (e.g., RV32IMCXpulpV2 [25],

ARMv8.1-M [26]) data. Hence, sub-byte quantization remains an effective technique

to compress the footprint of DNN models on top of these devices [13], but it incurs in

performance and energy overhead during the computation, as demonstrated in Chap-

ter 3: low precision data has to be unpacked to the lowest precision operand supported

by the underlying hardware and then packed into SIMD registers before feeding the

multiply-accumulate (MAC) units.

This chapter tackles this problem by presenting the design of an energy-efficient

multi-precision arithmetic unit, targeting the computing requirements of low bit-width

QNNs, with the support for sub-byte SIMD operations (8-, 4-, 2-bits). To provide

the highest flexibility, the unit is integrated into a cluster of MCU-class RISC-V cores,

provided with a new set of ISA domain-specific instructions, namely XpulpNN. The

presented contributions aim at bridging this ISA and hardware gap to improve the
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computing efficiency of heavily-QNN workloads at the extreme-edge of the IoT on fully-

programmable MCU devices, nearing the level of specialization and energy efficiency of

custom accelerators without forgoing flexibility.

4.1.2 Contributions

The main contributions are the following:

• The design of a multiple-precision Dot-Product (Dotp) Unit featuring single-cycle

latency operations on SIMD vectors of 16- down to 2-bit precision elements. We

present micro-architectural optimizations and power-aware techniques to achieve

high energy proportionality and efficiency.

• The integration of the unit into an open-source RISC-V processor [25], further

extending the core with novel fused mac&load instructions, aiming at increasing

the utilization of the SIMD Dot-Product unit in the core towards the theoretical

bound of 1 (0.92 in the best case scenario).

• To exploit the low bit-width integer SIMD computation enabled by the designed

hardware, the ISA of the core is extended with domain-specific instructions, namely

XpulpNN. Moreover, the XpulpNN extensions are mapped on top of the extended

core, and the GCC toolchain is enhanced with machine descriptions of the new

instructions to have a full hardware-software interface;

• The integration of the extended core in an eight cores Parallel Ultra-Low-Power

(PULP) computing cluster, showing almost linear performance improvements of

QNN kernels with respect to the single-core execution;

• The implementation of the PULP cluster integrating the proposed core in Glob-

alFoundries 22nm Fully Depleted Sylicon on Insulator (FD-SOI) technology to

evaluate the area, power, and performance overhead of the core and the whole

system with respect to the baseline RI5CY core and the PULP cluster integrating

it, respectively;

• The PULP system with the proposed extension is compared with state-of-the-art

architectures and software. When running QNN convolution layers, the solution

presented in this chapter demonstrates at least two orders of magnitude better

performance and energy efficiency with respect to commercially available solutions

such as STM32H7 and STM32L4 microcontrollers leveraging ARMv7E-M ISA, and

up to 10× better performance and energy efficiency compared to a baseline PULP

system implemented in the same technology, paying an area overhead of only 17.5%

and 4.1% with respect to the baseline core and cluster respectively.
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4.2 Related Work

This section recaps the main state-of-the-art advancements in the computing arith-

metic for AI as well as their use in each of the computing platform categories mentioned

above, and it gives insight on their applicability for the DL deployment at the extreme-

edge of the IoT.

4.2.1 Low-Bitwidth Arithmetic in Edge AI Computing Platforms

The efficacy of low bit-width arithmetic architectures for QNNs workload has been

widely demonstrated in the domain of dedicated accelerators. For example, in [55] the

authors propose a bit-serial based MAC unit that operates on 1- to 16-bit multi-precision

operand, while the second is always a single bit operand. The system is designed for

the best efficiency, achieving a peak of 50.6 TOPS/W at a throughput of 184 GOPS.

Another valuable example is [56], a DNN accelerator that embeds an energy-scalable

multi-precision integer arithmetic unit and delivers 76 Gops/s with an efficiency of up

to 10 Tops/s/W. Authors in [56] present a parallel Multiply-and-Add architecture based

on the Booth-Wallace multipliers that can be reconfigured to perform 4b-to-16b × 16b

operations. In the floating-point (FP) format domain, the authors present a MAC unit

supporting reduced-precision FP16 and FP8 formats and also fixed-point arithmetic,

achieving up to 75 TOPS/W efficiency.

Reduced FP formats have been widely explored also in the arithmetic units of GPUs,

such as in the A100 Tensor Core by Nvidia [86]. The re-configurable architecture of

the A100 can process FP64 formats (targeting High-Performance computing) down to

the more efficient FP8, including the support for Brain Float 16b (BF16) and mixed-

precision formats, specifically targeting Neural Networks. The A100 platform also sup-

ports integer arithmetic computation for inference tasks, with operands precision down

to 4-bit (INT4).

While multi-precision arithmetic units are widely explored in ASIC solutions, few ex-

amples are presented in the domain of fully programmable edge devices, especially in the

integer domain. GAP-8 [20], to deal with QNN workload, integrates into its architecture

a dedicated CNN accelerator, which consists of a re-configurable arithmetic unit capable

of supporting 8-bit × 8-bit or 16-bit × 4-bit operations. A different approach is shown

in [84], where the authors present a re-configurable Parallel Balanced-Bit-Serial (PBBS)

vector processing tile. It is suitable to improve the efficiency of sub-byte SIMD arith-

metic operations of heavily leakage-dominated ultra-low-power design. However, the
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code serialization degrades heavily the performance in near- and super-threshold op-

erating points. ARM adopts the same approach coupling the Cortex M-55 [26] with

the optional Ethos-55 [85], an accelerator designed to boost machine learning tasks;

depending on the configuration, the system can execute 32 to 256 MAC/Cycles.

To enhance the performance of MCU systems, a recent effort by both academia and

industry tries to extend them by either enriching their Instruction Set Architectures

(ISAs) with custom instructions tailored for specific application domains or coupling

the MCUs with ASIC accelerators.

ARMv7e provides SIMD instructions for 16-bit data, and the current generation of

Cortex-M cores integrates this instruction set. Commercial embodiments of this ISA

show a power envelope of few milliWatts, fitting the power budget of the IoT end-nodes.

For example, STMicroelectronics proposed low-end (STM32L4 1 family of microcon-

trollers, based on the Cortex-M4 cores) and high-end (STM32H7 2 family embedding

the Cortex-M7 cores) micro-controllers supporting DL processing at the edge. On the

RISC-V side, the XpulpV2 ISA extensions [25] are meant for efficient digital signal pro-

cessing, exploiting the SIMD paradigm down to 8-bit vector data. On top of this ISA,

near-threshold multi-core heterogeneous platforms have been built to push the perfor-

mance and the efficiency of QNN workloads. The commercially available GAP-8 [20]

embeds a cluster of 8 RISC-V cores and a CNN-specialized accelerator that can give the

MCU a 5 to 10× energy efficiency boost.

Even if the sub-byte integer arithmetic is already adopted in training and quantiza-

tion flows and ASIC/FPGA-based systems, the ISA of modern MCUs still lack support

for low-bitwidth integer arithmetic with lightweight SIMD instructions. The new gener-

ation of the ARM ISA for Cortex-M core [26], tailored for the QNN workload, features

hardware loops, conditional execution instructions, and 8-bit SIMD instructions like the

ones presented in [25]. However, it will not support lower-precision SIMD arithmetic.

The solutions presented in this chapter overcome the limitations described above,

outperforming the state-of-the-art hardware and software solutions by at least two orders

of magnitude in terms of performance and efficiency and nearing the computing efficiency

of ASIC solutions for edge AI.

1https://www.st.com/resource/en/datasheet/stm32l476je.pdf
2https://www.st.com/resource/en/datasheet/stm32h743bi.pdf
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Figure 4.1: Block diagram of the RI5CY Dot-Product Unit. To support the XpulpNN
SIMD dotp-based operations, the 8×4 and the 16×2 SIMD MAC Units have been
added. The figure includes the clock gating blocks needed to reduce the operand switch-
ing activity.

4.3 XpulpNN

This section presents the design of a high-efficient Dot-Product Unit supporting

SIMD operations on vectors of 16b down to 2b elements. We integrate the unit into the

RI5CY pipeline [25], and we extend its RISC-V ISA with a new set of extensions, namely

XpulpNN, needed to effectively exploit the arithmetic unit. Then, we introduce the

concept of the Mac&Load computation, presenting two different variants and comparing

their benefits and their drawbacks. In the end, we integrate the RI5CY core extended

with the new instructions into a parallel ultra-low-power cluster of eight processors, and

we describe the software stack needed to execute the QNN convolution kernels on top

of the XpulpNN ISA.

4.3.1 Multi-Precision Dot-Product Unit

The proposed Multi-Precision Dot-Product unit, depicted in Figure 4.1, computes

the dot product operation between two SIMD registers and accumulates the partial

results over a 32-bit scalar register through an adder tree, in one clock cycle of latency.

The SIMD vectors are symmetric and can contain two 16-bit, four 8-bit, eight 4-bit,

or sixteen 2-bit elements. We support the dotp operations interpreting the operands

as signed or unsigned. Hence, we provide the inputs of the SIMD multipliers with an

extra bit that sign- or zero-extends the actual single N−bit element of the SIMD vector.

Therefore, each element is an (N + 1)−bit signed word (Figure 4.1).
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extend the core micro-architecture to support the XpulpNN ISA.

A common problem with an N -bit multiplier is that its output requires doubling the

precision of the inputs (2N -bits) to cover the entire dynamic range of a multiplication

operation. In some architectures, an intermediate register is used to store part of the

multiplication result. In our case, being the elements of the SIMD vector 16- down to

2-bits, the dotp operations are implemented in hardware with a number of multipliers

equal to the number of elements of the SIMD vector, followed by an adder tree that sums

up the partial products, without any extra register to store the intermediate results. The

stand-alone multiplier is designed to minimize the area-delay product, and it exploits a

carry-save format without performing the carry propagation between different elements

of the SIMD vector before the sum up phase performed by the adder tree. The sum-

of-dot-product (sdotp) operation, which is the SIMD equivalent of a MAC operation, is

supported by adding to the multipliers an additional 32-bit scalar operand at the input

of each adder tree.

We integrate the Dotp unit into the pipeline of the RI5CY core, as depicted in Figure

4.2. The strategies examined during the design of the Dotp unit always consider such

integration, optimizing the execution of dotp operations not only at the arithmetic level

but also at the higher core-system level.

Our decision to replicate the hardware resources over different bitwidth dot product

operations in the Dotp unit aims at minimizing the impact of the additional hardware

on the critical path of the RI5CY core, which involves the path from the processor to

the data memory and vice versa. The dotp operations are near to be timing critical since

more logic is required with respect to a single-cycle multiplication operation due to the

presence of the adder trees, needed to sum up all the partial products. Hence, sharing
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the multiplication resources among all the different bitwidth ”regions”, or even only

sharing the adder tree to sum up over all the partial multiplication contributions, would

be detrimental from the timing viewpoint: the additional combinatorial logic to select,

split and distribute the operands and to enable the selected bit-width SIMD operation

would have a negative impact on the overall speed.

The main drawback of our choice is in terms of area since we replicate hardware

resources. As a direct consequence, the power consumption of the core system suffers a

slight increase as well. To mitigate this effect on power consumption, we add a set of

registers on the inputs of each bit-width region, and we perform clock gating to avoid

switching for operands not involved in the current SIMD operation.

Despite a non-negligible impact on the total area of the EX-stage of the RI5CY

core (18.4% of overhead with respect to the baseline EX-stage), the extended unit does

not increase the critical path of the system, and it does not require pipeline stages

in between the multiplication and the accumulation phases. Pipeline registers would

result in execution stalls when computing back-to-back operations, introducing a huge

overhead to the QNN workload, where most of the computation consists of sum-of-

dot-product operations. Moreover, the dynamic power consumption of the core is kept

almost unchanged thanks to our power-aware design, as shown in Section 4.4.1.

4.3.2 SIMD Instructions and Microarchitecture

To exploit the low bit-width integer SIMD computation enabled by the designed

hardware, we extend the ISA of the target core with domain-specific instructions, namely

XpulpNN. The proposed instructions, listed in Table 4.1, extend the RV32IMCXpulpV2

ISA [25] with SIMD operations for 4-bit and 2-bit operands, namely nibble (indicated

with n) and crumb (indicated as c) respectively, to improve the efficiency of low bit-

width QNN kernels.

XpulpV2 supports three addressing variations: the first one uses two registers as

source operands (pv.instr.{b,h}), the second variation uses one register and one imme-

diate as source operands (pv.instr.sci.{b,h}), while the last one uses one register and

replicates the scalar value in a register as the second operand for the SIMD operation

(pv.instr.sc.{b,h}). Because of the limited room left in the encoding space of the baseline

ISA, we propose the new XpulpNN crumb and nibble operations only in two addressing

variants, and we do not implement the instruction format which uses an immediate value

as the second operand (i.e., pv.instr.sci.{b,h}). Based on our experience, we argue that

this choice is not a concern for the execution of QNN kernels: an immediate value can

be stored in advance into a register without additional overhead.
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Table 4.1: Overview of XpulpNN instructions for nibble (4-bit) and crumb (2-bit)
vector operands. i in the table refers to the index in the vector operand (i ∈ [0; 7] for
nibble and i ∈ [0; 15] for crumb).

ALU SIMD Op. Description for nibble
pv.add[.sc].{n, c} rD[i] = rs1[i] + rs2[i]
pv.sub[.sc].{n, c} rD[i] = rs1[i] - rs2[i]
pv.avg(u)[.sc].{n, c} rD[i] = (rs1[i] + rs2[i])>>1

Vector Comparison Op.
pv.max(u)[.sc].{n, c} rD[i] = rs1[i] > rs2[i] ? rs1[i] : rs2[i]
pv.min(u)[.sc].{n, c} rD[i] = rs1[i] < rs2[i] ? rs1[i] : rs2[i]

Vector Shift Op.
pv.srl[.sc].{n, c} rD[i] = rs1[i] >> rs2[i] Shift is logical
pv.sra[.sc].{n, c} rD[i] = rs1[i] >> rs2[i] Shift is arithmetic
pv.sll[.sc].{n, c} rD[i] = rs1[i] << rs2[i]

Vector abs Op.
pv.abs.{n, c} rD[i] = rs1[i] < 0 ? -rs1[i] : rs1[i]

Dot Product Op.
pv.dotup[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7]
pv.dotusp[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7]
pv.dotsp[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7]
pv.sdotup[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7] + rD
pv.sdotusp[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7] + rD
pv.sdotsp[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7] + rD

The core of the XpulpNN ISA extension consists of the SIMD dot product instruc-

tions on packed vectors of 4-, 2-bit elements. The packed input registers can be inter-

preted as both signed or unsigned, or the first signed and the second unsigned. The

accumulator, as well as the third scalar input in the sum-of-dot-product, can be either

signed or unsigned. In addition to the dot product we support other SIMD instructions

like maximum, minimum, and average for nibble and crumb packed operands, useful to

speed-up the pooling layers and the activation layers based on the Rectified Linear Unit

(ReLu) function. A group of arithmetic and logic operations (addition, subtraction,

shift) completes the set of the XpulpNN SIMD instructions.

4.3.3 Fused Mac-Load operation

In this section, we propose our hardware solution to further increase the speed-up

of the QNN workload on RISC-V based pipelines. To perform a MAC operation or a

SIMD dot product instruction on a RISC-based in-order single-issue processor, we first

need to bring the two operands involved in the computation into the RF at the cost

of two load operations. This means that only one-third of the executed instructions

are relevant to the computation itself (i.e., the MAC instruction). We can formalize
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the concept defining the MAC operation efficiency (OPEF) metric that, in the case

highlighted before, is equal to 0.33.

Since most of the QNN workload consists of MAC operations, we want that the

OPEF is as high as possible to achieve high performance and efficiency, knowing that

it cannot be higher than one on a single-issue processor (by construction). Data reuse

at the RF level is an effective strategy to increase the OPEF of the MAC computation,

as reported in [28] and already discussed in Section 3.3.3. The innermost loop of the

MatMul kernel of PULP-NN (Fig. 3.11) reuses two activations in the RF over 4 filters.

This layout reduces the cost of the sdotp operations down to only six loads, bringing the

OPEF to 0.57, with an improvement of 1.72 × compared to the baseline.

Our solution to improve the MAC efficiency even more without giving up the flex-

ibility of a general-purpose RISC-V processor consists of the architectural and micro-

architectural design of Mac&Load instructions, aiming at an OPEF close to 1. We

explore two different designs of the Mac&Load operations for integration in XpulpNN

and discuss their respective benefits and the drawbacks, aiming at the best trade-off

between performance and implementation costs in terms of area, timing, and power

consumption. To introduce the intuition at the basis of the Mac&Load paradigm, we

discuss the assembly code of the MatMul kernel reported in Figure 3.11.(b). To hide the

overhead of load operations, we propose to fuse the inner loop SIMD MAC (pv.sdotp)

with the load within a single Mac&Load instruction. This is possible since the incre-

ment value (one word) is the same for all iterations, so it can be hardwired into the

micro-architecture without being encoded into the instruction itself.

4.3.3.1 Compute&Update Instruction

In the first design of the Mac&Load instruction, which we called Compute&Update

(“C&U”), one of the operands of the Dotp Unit (e.g., one of the weights) is updated

with a new memory element from the Load-Store Unit (LSU) of the core as soon as the

SIMD MAC operation consumes it. The LSU accesses the memory location indicated

by the “rs1” operand, as depicted in Figures 4.3.(a) and 4.3.(b). Afterward, the address

consumed by the LSU is updated by one word in the ALU and stored back into the RF,

similarly to the post-increment load of the XpulpV2 ISA [25]. Data hazards, if any, are

handled by stalling the pipeline exploiting the same signals of normal load instructions.

The RI5CY general-purpose RF (GP-RF) has two write ports, but the C&U in-

struction requires three accesses to store the output of the dotp operation, the updated

address, and the new memory element. To avoid an additional cycle of latency, we would

need to extend the GP-RF with one additional write port, which would be too expensive
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Compute&Update Instruction: Encoding.

(a)

pv.cusdot{up,usp,sp}.{h,b,n,c}.{NN-RF[i]} rD,rs1,rs2 

31 0

sig/unsig NN-RF[i] DT OPCODE

{up,usp,sp}

rDrs1rs2

{h,b,n,c}

NN-RF addressing
0 ≤ i ≤ 3 

2nd MAC 
operand (RF)

Addr for next 
mem access

Accumulator
(RF)

NN-RF
weights

wport

DOTP
UNIT

ALU‘4
’

‘+’
LSU

rs1

GP-RF rs2

rD

out

(b)

Decoder ID/EX
EX/WB

pv.cusdotusp.h.0  zero,aw1,r0
pv.cusdotusp.h.1  zero,aw2,r0
pv.cusdotusp.h.2  zero,aw1b,r0
pv.cusdotusp.h.3  zero,aw2b,r0
lp.setup l1, l2,end
p.lw x1, 4(ax1!)
p.lw x2, 4(ax2!)
pv.cusdotusp.b.0  s1, aw1, x1
pv.cusdotusp.b.1  s2, aw2, x1
pv.cusdotusp.b.0  s3, aw3, x1
pv.cusdotusp.b.1  s4, aw4, x1
pv.cusdotusp.b.2  s5, aw1b,x2
pv.cusdotusp.b.3  s6, aw2b,x2
pv.cusdotusp.b.2  s7, aw3b,x2
pv.cusdotusp.b.3  s8, aw4b,x2end:

8-b innermost loop MatMul with C&U

GP-RF Occupation: 22 regs

• 2 regs for loop setup;
• 10 regs for addresses;
• 8 regs for accumulators;
• 2 regs for activations;

INIT
NN-RF

Computation of 8 SIMD 
MAC with 2 explicit 

loads

(c)

Figure 4.3: In (a), the prototype of the Compute&Update (C&U) instruction is
reported: the MSBs encode the interpretation of the operands, “NN-RF[i]” selects the
current NN-RF register, “rs1” is the address for the next memory access, “rs2” is the
second operand for the MAC unit, while DT encodes the data type of the operands
(symmetric) and “rD” is the accumulator. In (b), we see the datapath to enable the
C&U instruction. We add the NN-RF with one write port (connected to the LSU that
fetches the new data accordingly to the “rs1” address) and one read port (multiplexed
with the operand coming from the GP-RF) to feed the DOTP Unit. The ALU accepts
the “rs1” operand to increment it by one word (“ +4”) and store it back to GP-
RF. (c) depicts the innermost loop of the MatMul kernel. Before the loop, we need
extra instructions to initialize the dedicated NN-RF registers that do not affect the
performance. Inside the loop we occupy 22 regs of the GP-RF and reduce the load
costs for the MAC down to 2 operations, bringing the OPEF to 0.8.

in terms of power and area. Our lightweight solution is therefore to provide the EX-

stage of the core with a very small register file dedicated to this computation paradigm,

namely the Neural Network Register File (NN-RF, as visible in Figure 4.3.(b)). The

NN-RF is provided with one read port to feed the MAC unit with one operand and one

write port to receive a new data word coming from the memory through the LSU. The

NN-RF is sized in a way that all the loads related to the update of the weights in the
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innermost loop of the MatMul kernel are masked. From our exploration, the optimal

number of registers is 4.

As visible from Figure 4.3.(a), the addressing of the NN-RF registers (“NN-RF[i]”

field) is hard-encoded into the instruction to compress as much as possible all the neces-

sary information to execute the C&U in the 32-bits of the encoding space. This causes

the addition of four different C&U instructions, each one controlling one register of the

NN-RF. We added support for a C&U version of all the sdotp based instructions, in-

terpreting the operands as signed/unsigned-signed/unsigned (sp,usp,up) and supporting

16-bit down to 2-bit SIMD operands (h,b,n,c).

To enable the MAC computation with one operand coming from the NN-RF, the

Dot-Product unit is further modified by multiplexing its first operand coming from

the GP-RF with the read port of the NN-RF (see Figure 4.3.(b)). Anytime the C&U

instruction is issued in the EX-stage, the Dotp-Unit fetches its first operand (the weight

element in the case of the PULP-NN MatMul) from the NN-RF. This micro-architecture

enables the execution of the C&U instruction in one clock cycle of latency when the

pipeline is fully operative and no stalls occur on the LSU-memory interface.

By replacing the pv.sdotusp instructions with the C&U equivalents in the innermost

loop of the MatMul kernel, we are able to reduce the costs of explicit loads down to 2

with 8 SIMD MAC operations, as reported in Figure 4.3.(c) where we take as an example

an 8-bit kernel. More in depth, we need some instructions of initialization to fill the

NN-RF registers with the first operands involved in the MAC computations inside the

loop. These few extra instructions do not affect the performance since they lay outside

the critical loop. This implementation of the MatMul increases the OPEF to 0.8, further

gaining a 1.40× of improvement with respect to the original PULP-NN solution.

Despite the efficiency improvement achieved, we noticed some limitations related to

the C&U operation. The main drawback is that we need to update the NN-RF register

consumed with the MAC operation at each instruction execution. This is not a concern

from a functional point of view since we are always able to mask all non-necessary loads

into the fused instruction. However, the load operations are performed by the Load

unit of the core, causing energy-expensive accesses to the memory and interconnect.

In the context of tightly coupled shared-memory clusters, these additional loads create

unnecessary contention, which degrades the overall performance.

Moreover, due to this “context-based” dependency, in theMatMul we need to use two

different registers of the GP-RF to address the same weight location in the memory. If

we refer to Figure 4.3.(c), the “aw1” address will be incremented by the pv.cusdotusp.b.0

instruction by one word to fetch the next weight from the memory. The consumed and
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nn_sdotp Instruction: Encoding.

(a)

(b)

31 0

sig/unsig Immediate DT OPCODErDrs1

{up,usp,sp} {h,b,n,c}

Addr for next 
mem access

Accumulator
(RF)Imm

4 0

4  :update/do not update weights NN-RF
3  :update/do not update act. NN-RF
2.1:address of the weight NN-RF 0≤i≤3 
0  :address of the act. NN-RF 0≤i≤1 

Decoder

weights

wport

DOTP
UNIT

ALU‘4’

‘+’ LSU

rs1

GP-RF rD out

ID/EX
EX/WB

‘insn[24:20]’ control

act.s

NN-RF

24 20

pv.nnsdot{up,usp,sp}.{h,b,n,c} rD, rs1, Immediate 

pv.nnsdotusp.h zero, aw1,16
pv.nnsdotusp.h zero, aw2,18
pv.nnsdotusp.h zero, aw3,20
pv.nnsdotusp.h zero, aw4,22
pv.nnsdotusp.h zero, ax1,8
lp.setup l1, l2, end
pv.nnsdotup.h zero,ax2,9
pv.nnsdotusp.b s1, aw2, 0
pv.nnsdotusp.b s2, aw4, 2
pv.nnsdotusp.b s3, aw3, 4
pv.nnsdotusp.b s4, ax1, 14
pv.nnsdotusp.b s5, aw2, 17
pv.nnsdotusp.b s6, aw4, 19
pv.nnsdotusp.b s7, aw3, 21
pv.nnsdotusp.b s8, aw1, 23end:

8-b innermost loop MatMul with nnsdotp

GP-RF Occupation : 15 regs

• 2 regs for loop setup;
• 5 regs for addresses;
• 8 regs for accumulators;

INIT
NN-RF

Computation of 8 SIMD 
MAC with 1 explicit load

(c)

Figure 4.4: (a) reports the encoding of the nn sdotp instruction and describes the
Immediate field. (b) depicts the micro-architecture design to support the instruction
in the RI5CY pipeline. (c) shows the MatMul innermost loop implemented with the
nn sdotp instruction, highlighting the utilization of the GP-RF.

discarded weight is also needed in the computation with the “x2” activation element.

To fetch the correct weight again, we must occupy another register, namely “aw1b”.

The weakness is that we are not exploiting data locality on the weight elements

anymore, and we are occupying redundant registers into the GP-RF. The number of

occupied registers remains unchanged with respect to the MatMul of the PULP-NN

library. Hence, also in this case, it is not possible to exploit the “4 × 4” MatMul data

layout and its superior data reuse characteristics.
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4.3.3.2 NN Sum-of-Dot-Product Instruction

The alternative version of the Mac&Load instruction we propose, namely “nn sum-

of-dot-product (nnsdotp)”, overcomes the flexibility issues of the C&U presented above

but requires more hardware resources to be integrated with the micro-architecture of

the core. More in detail, we provide a solution that allows the operands stored into the

NN-RF to be kept there as long as needed before being updated with the load operation

of the fused nnsdotp instruction. This reduces the memory traffic, allows a higher grade

of flexibility for data reuse (we are not limited by the compiler scheduler on the time

we can keep an operand into the GP-RF), and solves the problem of using two different

registers to encode the same address. The drawback of the nnsdotp is that the encoding

of the new instruction is more complex. The functionality described above is encoded

in a 5-bit Immediate field. This reduces the number of bits available to address another

register of the GP-RF to feed the MAC unit with the second operand. Due to the regular

structure of the MatMul though, this is not a concern at all. Rather, we can extend the

NN-RF with two additional registers to host the two activation elements involved in the

innermost loop computation of the MatMul. At the cost of a larger NN-RF compared to

the solution adopted with the C&U instruction, this solution guarantees more flexibility

and performance.

As visible in Figure 4.4.(a), the 5-bit immediate addresses the NN-RF operands

to be used in the current MAC operation: Bit 0 selects the activation register, bit

1&2 select the weight register, and bits 3&4 are set when we want to update either

the addressed activation register or the weight register, respectively. Since we cannot

update both weight and activation registers concurrently having a single LSU, these bits

of the Immediate are mutually exclusive. To support this mechanism in hardware (see

Figure 4.4.(b)), we provide the NN-RF with an additional read port that is multiplexed

with the operand coming from the GP-RF to feed the Dotp Unit, as described above.

Only when the nnsdotp instruction is issued, the Dotp Unit will receive both input

operands from the NN-RF. The immediate bits act as control signals for the NN-RF.

The hardware cost of the nnsdotp instruction consists of the additional NN-RF with

one write, two read ports, and some logic to distribute the operands to the Dotp-Unit.

The arithmetic blocks are already present in the micro-architecture. Hence, the impact

of both the Mac&Load instructions proposed is negligible in terms of the maximum

frequency of the RI5CY core. From a power consumption point of view, the nnsdotp

implementation has a non-negligible impact due to the additional NN-RF with two read

ports and one write port. To avoid unnecessary switching activity when the nnsdotp is

not executed, we perform operand isolation on the critical operands (e.g., at the input

of the multiplexers of the Dotp Unit) and apply clock gating in the NN-RF block.
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4x4 MatMul layout, implemented using the nn_sdotp instruction.

pv.nnsdotusp.b s5,  aw1, 1

pv.nnsdotusp.b s6,  aw2, 3

pv.nnsdotusp.b s7,  aw3, 5

pv.nnsdotusp.b s8,  ax4, 15

pv.nnsdotusp.b s9,  aw1, 0

pv.nnsdotusp.b s10, aw2, 2

pv.nnsdotusp.b s11, aw3, 4

pv.nnsdotusp.b s12, ax1, 14

pv.nnsdotusp.b s13, aw1, 17

pv.nnsdotusp.b s14, aw2, 19

pv.nnsdotusp.b s15, aw3, 21

pv.nnsdotusp.b s16, aw4, 23(end):

pv.nnsdotusp.h zero, aw1,16

pv.nnsdotusp.h zero, aw2,18

pv.nnsdotusp.h zero, aw3,20

pv.nnsdotusp.h zero, aw4,22

pv.nnsdotusp.h zero, ax1,8

lp.setup l1, l2, end

pv.nnsdotup.h zero,ax2,9

pv.nnsdotusp.b s1, aw1, 0

pv.nnsdotusp.b s2, aw2, 2

pv.nnsdotusp.b s3, aw3, 4

pv.nnsdotusp.b s4, ax3, 14

INIT 
THE 
NN-RF

Figure 4.5: Detail of the “4×4” MatMul layout using the nn sdotp. Storing the SIMD
sdotp operands into the NN-RF reduces the pressure on the GP-RF. More room is left
to host more accumulators. The assembly code shows how the innermost loop of the
MatMul fit the register resources of the RI5CY core, thanks to the nn sdotp instruction.

The implementation of the MatMul kernel using the nnsdotp instructions is reported

in Figure 4.4.(c). Before entering the innermost loop of the MatMul we need to initialize

all the NN-RF registers. In this case, contrarily to the previous kernel with the C&U

instruction, we pay only one explicit load instruction to perform the same number of

dotp instructions, increasing the OPEF up to 0.88, with an improvement of 1.1× with

respect to the C&U case.

A major benefit of the kernel highlighted in Figure 4.4.(c) is that the occupancy of

the GP-RF registers is reduced by 15 registers. This results by moving all the operands

in the dedicated NN-RF, keeping the GP-RF free to host addresses for intermediate

values and accumulators.

This condition leaves space for the implementation of the “4×4“ MatMul structure.

We need to fetch two additional elements from im2col memory buffers, whose addresses

are stored into the GP-RF while the elements itself into the NN-RF. Reusing the weights

also over the new activations, we can compute two additional pixels over four adjacent

output channels (8 additional accumulators). Doing the math the occupancy of the

GP-RF is of 32 registers (including the control registers for the HW loop), fitting the

availability of the RI5CY GP-RF. This intuition is demonstrated by the implementation

of the “4 × 4” kernel highlighted in Figure 4.5. Following exactly the same strategy as

in the other cases with the initialization of the NN-RF, we pay a single load instruction

to execute 16 sdotp operations, pushing the OPEF to 0.94, very close to the structural

limit of 1.
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Figure 4.6: Inverse of the Efficiency (lower is better) of the Matrix Multiplication
kernel. The bar chart shows the cycles needed to the core to perform one SIMD
MAC operation (4x8-bit. 8x4-bit, 16x2-bit respectively). The classical SIMD sdotp
(XpulpNN) and the two versions of the MAC&Load instructions (macload, nn custom)
are considered. The nn custom also allows to enlarge the Matrix Multiplication layout
(nn custom 4x4k).

To assess the benefits of the mac&load instructions at the micro-architecture level,

we run simulations of the extended core executing multiple variants of the MatMul ker-

nel: first using only the SIMD operations (pv.sdotp), and then using the C&U instruction

and the nn sdotp operation. For the latter case, also the optimized kernel layout is con-

sidered. Figure 4.6 reports the number of cycles required to perform a SIMD MAC

operation (i.e., one dotp 8-bit operation counts as one MAC). As visible, the C&U im-

proves the efficiency by 1.39 × with respect to the SIMD case. Thanks to the enhanced

nn sdotp instruction, after initializing the NN-RF registers, the innermost loop of the

MatMul runs 1.10 × faster than in the C&U case and 1.53× faster than the SIMD case.

Finally, optimizing also the MatMul layout, we gain an additional 1.07 × improvement

with respect to the “4×2” layout and the nn sdotp, with only 1.08 cyc/MAC, 1.65×
higher than the SIMD case.

4.3.4 Integration of the Core into the PULP Cluster

After evaluating the improvement of the XpulpNN ISA on a single-core execution of

the MatMul kernel, we integrate the extended RI5CY core into a PULP cluster of eight

processors. Since the QNN workload is highly parallelizable, we expect a near-linear

scaling of the performance when moving from single- to multi-core contexts [28]. We

report in Figure 4.7 the results of the execution of the 8-bit MatMul kernel in terms of

cycle needed by each core to execute a SIMD MAC operation, considering the execution

of the kernel first with the C&U and then with the nn sdotp instruction. The analysis
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Figure 4.7: Inverse of the MAC Operation Efficiency (lower is better) of the PULP
cluster on 8-bit Matrix Multiplication (MatMul) kernels.

carried out shows some drawbacks of the C&U instruction that limits the efficiency of

the computation in a multi-core context. As visible from Figure 4.7, when executing

the MatMul kernel with C&U on eight cores, its efficiency decreases with respect to the

single-core execution. As described in Section 4.3.3.1, the C&U generates non-negligible

traffic on the core-memory interface. This traffic results in many TCDM contentions in

a multi-core context, causing each core to wait for the data from memory for more than

one cycle. Splitting the L1 memory over more banks, we are able to partially limit this

effect. More in detail, if we consider a banking factor of four (“BF4”) (i.e., we double

the baseline banking factor of two), the efficiency of the computation on eight cores

increases by 5%, almost reaching the ones of the single core. However, this choice has

a non-negligible impact on the power consumption of the system. Instead, the nn sdotp

does not suffer from this limitation, thanks to its capability to keep in the NN-RF one

operand as long as we need, reducing the traffic on the core-memory interface when not

needed. In a baseline configuration of the cluster (i.e., banking factor 2), the nn sdotp

reaches almost the same efficiency as in the “BF4” configuration.

4.3.4.1 Compiler and Parallel Programming Support

All the instructions of the XpulpNN ISA extensions can be inferred in the C code

through the explicit invocation of built-in functions. In contrast with assembly inlining,

this approach enables the lowering of built-ins into the high-level intermediate represen-

tation (IR) used by the compiler backend, allowing target-specific optimization passes to

maximize the reuse of operands and efficiently schedule the instruction flow. This mech-

anism is essential to model the accesses to NN-RF consequent to Compute&Update

semantic. Programmers do not have the visibility of the variables stored in NN-RF
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Figure 4.8: Placed and routed design of the PULP cluster with eight extended RISCY
cores, supporting the XpulpNN ISA.

registers since their updates are hidden side effects from the C code perspective. The

backend IR associated with the built-ins maintains track of these relations, and opti-

mization passes take them into account.

This approach, of course, restricts the flexibility for the average embedded system

programmer. However, our purpose is to expose the PULP-NN library functions as APIs.

Practically, programmers never have to dig into a list of optimized low-level primitives,

but they can select a library function (e.g., a convolution kernel). An example of this

integration is in [38], where the backend library is integrated into a vertical QNNs

deployment flow.

4.4 Results and Discussion

In this section, we evaluate XpulpNN both from a physical viewpoint, measuring and

discussing the costs of the micro-architectural implementation in terms of area, power,

and timing overheads with respect to the baseline RI5CY core and from a performance

and energy efficiency perspective, comparing the execution of QNN workloads on top

of the presented architectures with the State-of-the-Art Hardware and Software solu-

tions. To this purpose, we integrate both the RI5CY and the extended RI5CY cores

into a Parallel Ultra-Low-Power (PULP) cluster of eight processors and perform a full

implementation of the system in the GlobalFoundries 22nm FD-SOI technology.

We synthesize the two clusters with Synopsys Design Compiler-2018.3, and we per-

form a full place & route flow using Cadence Innovus 17.11, in the worst-case corner (SS,

0.59V, −40◦/ 125◦). The floorplan of the cluster is reported in Figure 4.8. The total area
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of the cluster and of the core and the timing results are obtained from layout measure-

ments. To perform power overhead evaluations, we run timing-annotated post-layout

simulations in the typical corner and in different operating points, targeting common

QNN workloads as well as general-purpose applications. Thus, all the results presented

in the following include the overheads (i.e., timing, area, power) caused by the clock tree

implementation, accurate parasitic models extraction, cell sizing for setup fixing and de-

lay buffers for hold fixing (neglecting these would cause significant underestimations in

the clock tree dynamic power).

To compare our solution with the State-of-the-Art in terms of performance and

energy efficiency, we benchmark a set of convolution layers. In the context of this

chapter, we focus on the implementation of the PULP cluster since we target a parallel

execution of the QNN workload. We assume then that the cluster is connected to a

simulated micro-controller system that has the only duty of activating the cluster and

hosts an L2 level of memory containing the application code. Since our goal is to improve

the computing efficiency of the core kernels of a QNN inference task, we choose the layers

such that their parameters fit the L1 memory of our systems to avoid additional overhead

due to the memory transfers. However, the selected convolution layers are representative

of the common tiles used in such types of devices to deploy QNN inference [38]. The

benchmarked layers operate on a 16 × 16 × 32 input tensor with a filter size of 64 ×
3×3×32 and on a 32×32×32 input tensor with a filter size of 64×3×3×32 respectively.

As described in Section 3.3.1, after the MatMul kernel, the intermediate results are

compressed back into the desired precision through batch-normalization and activation

functions.

4.4.1 Physical Implementation Results

Table 4.2 shows a comparison between the RI5CY core and the extended RI5CY,

implementing the XpulpNN ISA (with the mac&loadv2), in terms of area and power

consumption, estimated on post-layout simulations of different applications. The total

area of the extended RI5CY is 0.041mm2, with an overhead of 17.5% with respect to our

baseline. Such increment is mostly due to the addition of the multipliers in the Dotp-

Unit of the baseline core and of the extra-registers to build the NN-RF. The cluster

area instead is of 1 mm2 with the new core, 4% higher than the baseline. In Table 4.2,

we take into account also the cluster implementation with a banking factor of four to

highlight the cost of this exploration in terms of area overhead. The cost of doubling

the banking factor results in an additional area overhead of 4.2%. As introduced in

Section 4.3.2, the duplication of the hardware resources into the Dotp-Unit allows us
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Table 4.2: Area and Power Consumption Results. We consider typical and worst case
corners for each operating point (HV= 0.8 V, LV=0.65 V). List of corners used for im-
plementation: HV TYP: TT, 25°C, 0.80 V; HV SS: SS, 125°C/-40°C, 0.72 V; LV TYP:
TT, 25°C, 0.65 V; LV SS: SS, 125°C/-40°C, 0.59 V. We also use fast corners for hold
fixing. In all corners we use all permutations of parasitics (CMIN/CMAX/RCMIN/R-
CMAX). Corners used for power analysis: HV OP: TT, 25°C, 0.80 V, 660 MHz.
LV OP: TT, 25°C, 0.65 V, 450 MHz.

Maximum Frequency [MHz]
of the cluster with Ext. RI5CY cores

HV LV HV SS LV SS

PULP Cluster 660 450 400 200

RI5CY Ext. RI5CY
(baseline) (with nn sdotp)

Area [um2] (Overhead vs. baseline [%])

Tot. Cluster 970856 1011254 (4.1%)

Tot. Cluster 995210 1053446 (5.9%)
(32 tcdm banks)

Total Core 35131 41296 (17.5%)

EX-Stage 13385 17744 (32.6%)

Power Consumption of the CORE [mW]
on an 8-b MatMul (Overhead vs. baseline [%])

HV LV HV LV

Leak. Power 2.13 0.96 2.22 0.99
Dyn. Power 2.94 1.30 3.01 1.32
Tot. Power 3.05 1.35 3.12 (2.1%) 1.39 (2.5%)

Power Consumption of the CORE [mW]
on a GP-application (Overhead vs. baseline [%])

HV LV HV LV

Leak. Power 0.108 0.055 0.122 0.065

Dyn. Power 1.73 0.76 1.76 (1.7%) 0.78 (2.6%)

Tot. Power 1.84 0.82 1.88 (2.17%) 0.85 (3.7%)

Total Power Consumption of the PULP cluster [mW]
(Overhead vs baseline [%])

HV LV HV LV

MatMul 8-bit 41.8 19.3 41.6 19.3 (0.02%)

(with nn sdotp) – – 43.7 (5.11%) 21.5 (11.5%)

MatMul 4-bit – – 35 16.1

(with nn sdotp) – – 41.2 19

MatMul 2-bit – – 42.9 19.1

(with nn sdotp) – – 48.9 24.1

GP Application 27.6 12.9 28.3 (2.4% ) 13.3 (3.1%)

not to affect the critical path of the system. The maximum frequency achievable by

both considered cores (RI5CY and the extended RI5CY) is the same.

Despite a non-negligible area overhead, the power consumption of the core is not

affected significantly, as well as the power of the whole cluster system. To provide an
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Figure 4.9: Performance of the 8 core PULP clusters over different bit-width precision
Convolution kernels, implemented with the instructions presented in this chapter. The
lighted bars (higher-performance) refers to the MatMul kernel only, while the darker
ones include also the quantization procedure (hence, the whole convolution). The clus-
ter runs in the best performance operating point, at 660 MHz, 0.8 V in the typical
corner.

accurate power estimation of the cores and characterize the whole system-level power

consumption, we conduce post-layout power simulations in two different voltage corners:

the high-voltage corner (TT, 660 MHz, 0.80V) and the low-voltage one (TT, 450 MHz,

0.65V). We test 8-bit Dot-product based operations, the new nibble and crumb instruc-

tions, as well as the mac&load in its final version (nn sdotp). Each kernel considered

in the comparison is compiled with an extended GCC 7.1 toolchain that supports both

XpulpV2 and XpulpNN extensions. The Value Change Dump (VCD) traces are gen-

erated with Mentor Modelsim 10.7b and analyzed by Synopsys Prime Time 2019.12 to

extract the power numbers. As visible in Table 4.2, thanks to the clock gating techniques

and to the operands isolation and despite the bigger core area, the extended RI5CY core

runs an 8-bit Matrix Multiplication kernel (both the cores are using the 8-bit SIMD

arithmetic instructions of the XpulpV2 ISA) in almost the same power envelope of the

baseline core, with a power overhead of only 3% in both considered corners. The same

reasoning applies if we consider a General Purpose application, consisting of a mixture

of the plain RISC-V ISA (RV32IMC) instructions such as load/stores, arithmetic, and

control operations. This achievement is also visible at the system level, comparing the

PULP cluster power consumption, demonstrating the light-weighted nature of the ISA

extensions proposed in this chapter, and furthermore showing that we do not jeopardize

the energy efficiency of the core on general-purpose benchmarks.
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Figure 4.10: Energy efficiency of the convolutions on the 8 core PULP clusters.
The graph compares the solutions described in this chapter. The lighted bars (higher-
performance) refers to the MatMul kernel only, while the darker ones include also the
quantization procedure (hence, the whole convolution). The cluster runs in the best
efficiency operating point, at 450 MHz, 0.65 V, in the typical corner.

4.4.2 Benchmarking

To evaluate the performance and the energy efficiency gain achieved with the pro-

posed XpulpNN extensions, we benchmark the convolution layers discussed above in

different bit-width symmetric configurations (8-, 4-, and 2-bits). The kernels run on the

extended RI5CY core, using different instructions of the XpulpNN ISA: classical SIMD

operations, compute&update, nn sdotp and the nn sdotp optimizing the layout of the

MatMul. This analysis aims at measuring the impact of the extensions on the whole

convolution kernel of the PULP-NN library. The performance achieved, as well as the

energy efficiency, are measured at the high-voltage corner (TT, 0.8 V, 25*C) and the

low-voltage corner (TT, 0.65 V, 25°C) respectively of the post-layout simulations and

reported in Figure 4.9 and 4.10 respectively. The peak performance and efficiency of the

convolution layers are reached by implementing the MatMul kernel with the nn sdotp

instruction and an optimized 4×4 layout. In the 8-bit case, the improvement with re-

spect to the classical SIMD implementation of the MatMul is 1.55× and 1.41× in terms

of performance and efficiency, respectively. The little degradation of these two metrics

compared to the ideal case where we consider only the execution of the MatMul kernel

(bars in transparency in the Figure) is due to the quantization and compression of the

intermediate MatMul results.

The impact of the quantization is much higher on the 4- and 2-bit convolution layers,

especially when we refer to the optimized MatMul kernels. The reason for this behavior

is that the computational cost for quantization does not depend on the bit-width of

the compressed output feature map, meaning that it consists of the same operations no
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Figure 4.11: The Figure shows the comparison of the solution presented in this
chapter with the State-of-the-Art (high-end STM32H7 and low-end STM32L4 MCUs)
and with the baseline RI5CY cluter, in terms of performance. The PULP clusters run
in two operating points: high-voltage (0.8 V, 400 MHz) and low-voltage (0.65 V, 200
MHz). 8-, 4- and 2-bit simmetric convolution kernels are benchmarked to carry out the
comparison.

matter what is the precision of the final results. Considering the same layer parameters,

the lower the precision of the MatMul, the less the iterations of the innermost loop (since

in one dotp based operation we are actually performing 4, 8 or 16 effective MACs).

Hence, the effective improvements in the MatMul kernel using the nn sdotp instruction

are mitigated by the batch-normalization and activation step on 4- and 2-bit convolution

layers. As visible from the Figure 4.9, the performance improvement with respect to

the classical SIMD implementation of the MatMul passes from 1.66× (1.56×) on the

4-bit (2-bit) MatMul itself to 1.45× (1.32×) on the whole 4-bit (2-bit) convolution layer.

Obviously, these results directly translate into a corresponding degradation of energy

efficiency. However, thanks to the optimized 4×4 MatMul kernel and the nn sdotp

instruction, we boost the convolution efficiency by up to 1.41× with respect to the

SIMD implementation.

Despite the small degradation of performance and efficiency due to the quantiza-

tion phases of sub-byte output activations, these cumulative improvements on the QNN

kernels demonstrate the effective strategy of extending the ISA with domain-specific

lightweight instructions to obtain high performance and energy efficiency on highly quan-

tized QNN kernels, without affecting the system on other domain applications efficiency.

4.4.3 Comparison with the State-of-the-Art

To put our achievement in perspective, we compare our results with state-of-the-art

existing hardware and software solutions in terms of performance and energy efficiency.
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Figure 4.12: Energy efficiency comparison of the solution presented in this chapter
with State-of-the-Art and the baseline RI5CY clusters. 8-, 4- and 2-bit simmetric
convolution kernels are benchmarked to carry out the comparison.

To carry out the comparison, we run the convolution layers on the RI5CY cluster using

the PULP-NN library [28] and on two off-the-shelf STM32H7 and STM32L4 commer-

cial microcontrollers previously introduced in Section 4.2, using the extended CMSIS-NN

library [23]. The performance and energy efficiency results are summarized in the Fig-

ure 4.11 and 4.12 respectively. For the implemented PULP cluster (with RI5CY and the

extended RI5CY cores), we report two operating points: one at high-voltage, 0.8 V, 400

MHz and one at low-voltage, 0.65 V, 200 MHz, with the purpose to give insights on how

much performance we trade-off with the energy efficiency at the highest voltage and vice

versa. It is important to note that, since the STM32 MCUs are commercial products

signed-off in the SS corners, the power analysis of our solution is carried out in the SS

operating points (i.e., considering 400 MHz (200MHz) as the frequency for the best per-

formance (efficiency) points) for a fair comparison. As visible from Figure 4.9, with the

same operating condition, we improve the performance of the 4-bit (2-bit) convolution

layers by 6× (8.7×) with respect to the RI5CY cluster. Thanks to the nn sdotp we are

also able to increase by 1.6× the performance on 8-bit convolutions. Almost the same

grade of improvement is reached on the energy efficiency of such kernels, demonstrating

that both clusters run almost in the same power envelope despite the enhanced ISA and

the additional hardware. Also, the convolution kernels on the XpulpNN PULP cluster

at the high(low)-voltage operating point run from 298× to 812× (149× to 406×) faster

than the same kernels executing on the low-end STM32L4 using the CMSIS-NN library.

In terms of energy efficiency, we outperform this microcontroller system by up to 356×
in the best case (2-bit convolution, low-voltage operating point). Our performance gain

with respect to the high-end Cortex-M7 based STM32H7 microcontroller is more limited

than the previous case since the STM32H7 runs at 480 MHz and features a dual-issue

core. In this case, we outperform its performance by up to 119×. Being a high-end
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microcontroller system, the STM32H7 suffers in terms of energy efficiency, where we do

better by up to three orders of magnitude, as visible in Figure 4.12.

The presented results, coming out from the state-of-the-art comparison, are the

consequence of the following insights: contrarily to ARM Cortex-M cores, the proposed

solution has hardware support for 8-, 4- and 2-bit SIMD dotp-based operations and

for the mac&load instruction. The STM32 based systems consist of a single-core chip,

while our target architecture is a computing cluster of eight processors to improve the

efficiency of the computation. The remaining performance/efficiency is gained due to

the more scaled technology used to implement the PULP cluster compared to the one

of the STM32L4 (90nm) and of the STM32H7 (40nm). In the end, the carried-out

analysis shows for the first time that we can achieve ASIC-like energy efficiency on QNN

workloads on fully programmable tiny MCU systems of the extreme-edge of the IoT.

This outcome is obtainable by coupling the power-aware micro-architecture design and

its integration in a multi-core computing cluster architecture with leading-edge near-

threshold FD-SOI technology.

4.5 Silicon Prototype: Dustin

This section presents the silicon demonstration of the concepts and solutions pre-

sented in this chapter. Dustin is a test chip taped-out with the TSMC 65nm technology

based on the PULP architecture introduced in Section 2.2. It consists of a tiny micro-

controller system (called Soc) accelerated by a software configurable MIMD/ SIMD

cluster of 16 cores. Dustin aims to demonstrate to be a fully-programmable edge of IoT

device capable of enabling efficient parallel execution of computing-intensive kernels,

such as convolutions, of modern heavily-QNNs.

Both cluster’s and Soc’s cores feature RISC-V processors which extend the RI5CY

core (introduced in Section 2.3) with mixed-precision SIMD operations in a Dynamic

Bit-Scalable Execution context, following the same trail of XpulpNN. The novelty of

this chip consists also of a software-configurable MIMD/SIMD cluster. When the SIMD

mode is active, called Vector Lockstep Execution Mode (VLEM), only one core dispatches

instructions, allowing to save energy on extremely regular kernels from an instruction

viewpoint (like convolutions and, more in general, matrix multiplications).

4.5.1 Architecture

Fig. 4.13 shows the architecture of DUSTIN. It is built around a tightly-coupled

cluster of 16 32-bit RISC-V cores sharing a 128 kB, 32-banks Tightly-Coupled Data
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Figure 4.13: Overview of the Dustin SoC Architecture.

Memory (TCDM) through a single-cycle latency logarithmic interconnect (LIC) lever-

aging a request/grant protocol. The LIC implements a word-level interleaving scheme

to reduce banking conflict probability (typically 5% even for highly memory-intensive

applications). The cores share a 2-level latch-based instruction cache: the first level

(512 B) is private, the second level (L1.5) is a 4 kB 8-banks shared cache connected to

the L1s with an interconnect similar to the LIC. The L1.5 refills from a larger 80 kB

L2 memory hosting resident code. A dedicated hardware block (Event Unit) assists the

cores to accelerate parallel computation patterns, such as thread dispatching and barri-

ers. Finally, the SoC includes a controlling RISC-V core, a set of standard peripherals,

and 3 FLLs for frequency control.

4.5.1.1 Dynamic Bit-Scalable Execution Processor

The proposed processor extends RI5CY, a 32-bit 4-pipeline stages core featuring

DSP extensions such as 16-bit and 8-bit SIMD dot product fully supported by a GCC

7.1.1 toolchain [25]. The key efficiency-boosting enhancement is a new mixed-precision

SIMD dot product execution unit, shown in Fig. 4.14. It includes 4 multiplexed sub-

units implementing 16b down to 2b dot products (DOTP). To enable any SIMD mixed-

precision computation, a slicer-and-router unit selects the correct bits in the source

registers and forwards them to the DOTP unit featuring the higher precision between

the two operands after optional bit manipulation. A dedicated circuit gates the clock of



XPULP-NN: QNN Acceleration Through RISC-V ISA Extensions 67

Accumulator Result

x5 (A0) x9 (B0)

Loop_start: p.lw x5, 4(x10)! ( load A0)
p.lw x6, 4(x10)! ( load A0+4)
p.lw x7, 4(x10)! ( load A0+8)
p.lw x8, 4(x10)! ( load A0+12)
p.lw x9, 4(x11)! ( load B0)
pv.sdotsp x15, x5, x9
pv.sdotsp x15, x6, x9
pv.sdotsp x15, x7, x9

Loop_end: pv.sdotsp x15, x8, x9

x6 (A0+4) x9 (B0)

Accumulator Result

x8 (A0+12) x9 (B0)

Accumulator Result

x5 (A0+16) x9 (B0+4 )

Accumulator Result

x7 (A0+8) x9 (B0)

Accumulator Result

a
b
c
d

e

a b c

d e

Sub-Vec Selector
CSR Format Register

DOTP-16 DOTP-8 DOTP-4 DOTP-2

OUTPUT MUX

Operand_b

Operand_a

O
p

e
ra

n
d

_c

SLICER & ROUTER
a b dc

i)

ii)

iii)

0

5

10

15

20

O
P/
C
Y
C
L
E

PERFORMANCE

32-bit 16-bit 8-bit 4-bit 2-bit

2.1x
2x

1.9x

4x

Figure 4.14: i) Mixed-Precision Dot Product 8x2; ii) Dot product functional Units;
iii) Performance spanning through bit-widths.

SHARED I$

B
0

B
1

B
2

B
3

B
4

B
5

B
6

B
7

TCDM

TCDM INTERCONNECT +
+ [LKS UNIT & BROADCAST] ENABLED

31
B

I$-0

IF

ID

EX

WB CORE-0

I$-1

IF

ID

EX

WB CORE-1

I$-14

IF

ID

EX

WB CORE-14

I$-15

IF

ID

EX

WB CORE-15

VLEM

Lo
ck

st
e

p
 e

n
ab

e

clock

B
0

B
1

B
2

B
4

B
5

B
6

B
7

TCDM

TCDM INTERCONNECT

31
B

SHARED I$

I$-0

IF

ID

EX

WB CORE-0

I$-1

IF

ID

EX

WB CORE-1

I$-14

IF

ID

EX

WB CORE-14

I$-15

IF

ID

EX

WB CORE-15

B
3

MIMD

==16

01

broadcast

gnt_i[0]
gnt_i[1]
gnt_i[2]

gnt_i[15]

gnt_o[15:0]
rdata_o[0]

rdata_o[1]

rdata_o[2]

rdata_o[15]

rd
at

a_
i[0

]

rd
at

a_
i[1

]

rd
at

a_
i[2

]

rd
at

a_i
[15

]

re
q_

i[0
]

re
q_

i[1
]

re
q_

i[2
]

re
q_

i[1
5]

re
q_

o[0
]

re
q_

o[1
]

re
q_

o[2
]

re
q_

o[1
5]

valid_o[15:0]

Viewer does not support full SVG 1.1

-

0.5

1.0

1.5

2.0

VLEM VLEM + BRD VLEM + BRD +
MIS. DATA

1.02

1.73
1.50

#C
yc

le
s 

(N
o

rm
al

iz
e

d
 t

o
 M

IM
D

)

Figure 4.15: Overview of the cluster architecture to operate in VLE mode and com-
parison with the classic MIMD mode. The chart (bottom right) shows the optimizations
to reduce the VLE execution overhead: First we introduce the broadcasting feature (+
BRD), then we operate the misalignment of the data (+ MIS. DATA).

the input registers of the unused SIMD units. With no timing overhead and an increase

in area smaller than 10% with respect to RI5CY, the proposed power-aware design allows

the extended core to run in the same power envelope as the original one, safeguarding

its general-purpose computing efficiency. To encode the new mixed-precision SIMD

instructions, we define a virtual instruction: the opcode (e.g., dotp) is decoded in the

ID stage, the precision of its operands (e.g., 4x8) is specified by a control and status

register (CSR), written by the processor before issuing a portion of code containing

virtual SIMD instructions. This approach is essential to address the saturation problem

of the RISC-V encoding space, as it avoids to explicitly encode all the 500 combinations

of mixed-precision operands.
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Technology Chip Area Total SRAM VDD range Freq. Range Power Env.

CMOS 65nm 10mm2 208 kB 0.8 – 1.2V 60–205 MHz 156 mW

Int. Perf. (8b) Int. Eff. (8b) Int. Perf. (4b) Int. Eff. (4b) Int. Perf. (2b) Int. Eff.   (2b)

15 GOPS 303 GOPS/W 30 GOPS 562 GOPS/W 58 GOPS 1.15 TOPS/W

Figure 4.16: Chip micrograph and specifications.

4.5.1.2 Vector Lockstep Execution Mode

The second key efficiency enhancement is at the cluster level: we support a new

Vector Lockstep Execution Mode (VLEM), where all cores execute the same instructions

cycle-by-cycle. In VLEM, only the master core’s L1 cache and IF stage are active,

forwarding instructions to the ID stages of all cores (Fig. 4.15). The related activity

reduction by clock gating saves up to 38% total power. To enter in VLEM, all cores have

to i) synchronize on a barrier, ii) write to a memory-mapped register. Banking conflicts

on TCDM are solved by delaying the grant signal assertion for the time required to

serve all requests. To avoid systematic conflicts (e.g., when all cores access the same

address in memory – a common pattern in linear algebra kernels), the VLEM unit is

enhanced with a broadcast control, activated when all cores access the same memory

location. Together with proper data organization, broadcast can entirely eliminate the

overheads introduced by banking conflicts, as shown in Fig. 4.15, and can reduce the

number of memory accesses up to 66%. After the execution of a kernel in lockstep, the

cores exit VLEM by writing into a memory-mapped register. The increase in area of

the slave cores (gating and isolation) is negligible (<3%) compared to the baseline as

well as the design cost of the entire lockstep unit, which impacts for less than 1% on the

total cluster area.



XPULP-NN: QNN Acceleration Through RISC-V ISA Extensions 69

Figure 4.17: Voltage Sweep vs. Max Freq. vs. Energy/Cycle.
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Figure 4.18: The chart compares the execution of mixed-precision convolution kernels
running on the baseline 16 cores cluster with the RI5CY core (software mixed-precision
kernels) and on Dustin’s cluster in VLEM mode (featuring the Mixed-precision ISA
extensions).

4.5.2 Measurements

Figure 4.16 shows a die photograph of DUSTIN, together with its main features.

The SoC is implemented in 65 nm CMOS technology with a die size of 10 mm2. Figure

4.17 reports the maximum operating frequency and the energy per cycle of the cluster

over the 0.8V to 1.2V voltage range. The measurements are carried out on the silicon

prototype, running a typical high-utilization deep neural network workload, the matrix-

multiplication (matmul), with 8-bit precision operands. Linearly increasing with the

voltage, we can reach the highest operating frequency of 205 MHz at 1.2V.

Figure 4.18 shows the performance of heavily quantized and mixed-precision convo-

lutional kernels on the proposed cluster. On kernels where the activations are the only

sub-byte precision operands, the performance benefits of the mixed-precision hardware
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Table 4.3: Comparison with SoA solutions.

SleepRunner SamurAI Mr. Wolf VEGA
Dustin

(this work)

Technology
CMOS 28nm

FDSOI
CMOS 28nm

FDSOI
CMOS 40nm

LP
CMOS 22nm

FDSOI
CMOS
65nm

Die Area 0.68 mm2 4.5 mm2 10 mm2 12 mm2 10 mm2

Applications IoT GP IoT GP + DNN IoT GP + DNN IoT GP + NSA+DNN IoT GP + DNN + QNNs

CPU/ISA
CM0DS
Thumb-2 subset

1x RI5CY
RVC32IMFXpulp

9 x RI5CY
RVC32IMFXpulp

10 x RI5CY
RVC32IMFXpulp+SF

16 x MPIC CORES (RISC-V)

Int Precision
(bits)

32 8, 16, 32 8, 16, 32 8, 16, 32
2, 4, 8, 16, 32

(plus Mixed-Precision)

Supply Voltage 0.4 - 0.8 V 0.45 - 0.9 V 0.8 - 1.1 V 0.5 – 0.8 V 0.8 - 1.2 V

Max Frequency 80 MHz 350 MHz 450 MHz 450 MHz 205 MHz

Power Envelope 320 µW 96 mW 153 mW 49.4 mW 156 mW

Best Integer
Performance

31 MOPS (32b) 1.5 GOPS (8b) 2 12.1 GOPS (8b) 15.6 GOPS (8b)
15 GOPS (8b)
30 GOPS (4b)
58 GOPS (2b)

Best Integer
Efficiency

97 MOPS/mW
@ 18.6 MOPS (32b)

230 GOPS/W
@110 MOPS (8b) 2

190 GOPS/W
@ 3.8 GOPS (8b)

614 GOPS/W
@ 7.6 GOPS

303 GOPS/W
@4.4 GOPS (8b)
570 GOPS/W

@8.8 GOPS (4b)
1152 GOPS/W
@17.3 GOPS(2b)

extension are marginal due to the unpacking of data executed in a less arithmetic inten-

sive portion of the kernel. In all other configurations, the mixed-precision instruction

set extensions provide a significant advantage ranging from 2× to 7.7× improvements

with respect to a baseline cluster.

To highlight the energy savings of the VLEM mode on regular computing kernels, we

measure energy consumption with the cluster running the matrix-multiplication in two

modes: the classic MIMD mode and the VLEM mode, enabled via software. Fig. 4.19

shows the related efficiency. The execution of linear kernels in VLEM mode achieves

1.5× better energy efficiency and no performance overhead with respect to the default

MIMD execution.

Table 4.3 shows a comparison with the SoA. Compared to similar fully programmable

IoT end-nodes [24, 87–89], the proposed SoC delivers similar performance and energy
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efficiency on 8-bit format, despite the less scaled technology node used for implemen-

tation. This is achieved thanks to the larger parallelism of the cluster and the VLEM

mode saving up to 38% of overall power consumption. The proposed silicon prototype

is the only one featuring support for fully flexible bit-scalable precision from 2b to 32b,

improving performance and efficiency by 3.7x and 1.9x over the state-of-the-art (SoA)

for heavily quantized and mixed-precision workloads, delivering a peak performance of

58 GOPS and a peak efficiency of 1.15 TOPS/W.



Chapter 5

Heterogeneous In-Memory

Computing RISC-V Cluster

5.1 Introduction

The contribution presented in Chapter 4 brings the utilization of the core hardware

resources up to 94%, close to the structural limit of the target in-order single-instruction-

issue pipeline. The performance bottleneck, in that case, moves towards the interfaces

between the core and the main memory. However, such scenario is common of traditional

Von Neumann computing architectures and the cost of the data communication between

the separated processing and memory units limits the performance and the efficiency

achievable on such systems; this phenomenon is referred to as Von Neumann bottleneck.

The emerging Analog in-memory computing (IMC) paradigm promises to overcome

this limitation by processing the data within the memory boundaries and shows one

to several orders of magnitude improvements in terms of energy efficiency compared to

MCU and digital ASIC solutions on MVM operations, core of AI workload [60, 63, 90].

The promised computing efficiency is especially appealing for modern TinyML tasks

running on battery powered IoT devices.

Nevertheless, IMC accelerators are outstanding platforms to deploy MVM based

operations but they can not sustain the heterogeneity of the IoT workload [60]. Hence,

to target practical IoT applications IMC arrays must be enclosed in programmable

heterogeneous systems, introducing new system-level challenges. This chapter aims at

analyzing the system level challenges of integrating the IMC paradigm into heteroge-

neous systems and at giving insights to maximally exploit the opportunities of the AIMC

technology, targeting extreme edge of IoT class of devices.

72
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5.1.1 Motivation

AIMC performs data processing in situ within memory arrays. Matrix-vector mul-

tiplication (MVM) operands can be mapped on the cross-bars of a Non-Volatile (NV)

memory array and the dot product operation is performed entirely in the analog domain,

making IMC devices promising candidates to accelerate DNN workloads and overcome

the well-known memory bottleneck affecting traditional AI digital accelerators [60].

Several demonstrations of AIMC-based architectures have appeared in the field of

DNN inference acceleration, showing outstanding peak energy efficiency in the order of

hundreds of TOPS/W [60, 63]. Industry interest in this technology is growing [91, 92].

From a research perspective, several prototypes claimed tens to hundreds of TOP-

S/W by exploiting many different approaches, with a quite diverse set of choices in

terms of numerical precision and underlying memory technologies (both charge-based

and resistance-based memory technologies can serve as elements for such computational

units) [60, 63].

However, several fundamental challenges are still open to achieve the claimed levels

of efficiency at full-application scale: the intrinsic variability of analog computing both

in the charge-based and resistive domain [63]; difficulties in dealing with low-precision

computations that are often the only ones supported by AIMC-based architectures [63];

the necessity of specialized training [93]. Most prominently, a key issue is the limited

flexibility of IMC arrays, which are extremely efficient on MVM or similar vector oper-

ations, but they are not flexible enough to sustain other types of workloads. To tackle

this limitation, a prominent solution is to couple either general-purpose processors [94]

or specialized digital accelerators [61] with analog in-memory computing cores. This

allows extending the functionality of In-Memory Accelerators (IMA), creating heteroge-

neous analog/digital computing fabrics, connected to the system bus [94]. However, this

integration poses severe concerns at the system level, mainly on two aspects: bandwidth

and flexibility.

First, IMC acceleration moves the challenge towards ensuring efficient data move-

ment within the system. In the case of volatile technologies, such as SRAM-based IMC,

the weights of the DNN must be stored in non-volatile memory (external or internal to

the system). This requires additional energy and time to move the data that must be

stored into the cells of the IMA, anytime the cross-bar is programmed [60]. When con-

sidering non-volatile technologies, such as Flash, ReRAM or PCM-based IMC arrays,

weights are directly stored into the cross-bar, with no need for marshaling operations.

However, previous concerns continue to affect the activations that must be moved at

the boundaries of the IMC array, to perform MVMs. Taking this into account, efficient
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integration of IMC into heterogeneous systems requires an optimized interface design

between the highly parallel IMC inputs/outputs, the programmable cores, and the rest

of the system: low bandwidth and high communication latency between the processor

and the IMA might create a major bottleneck [94].

Second, as a consequence of Amdahl’s effect, accelerating MVM operators with

an IMA moves the performance bottleneck on all the other computation needed to

accomplish a certain task, which must be performed on the digital part of the system.

Complex real-world neural networks mix MVMs with other workloads such as residuals,

activation functions, or depth-wise convolutions; coupling the IMA with a single core, as

has recently been proposed [94], will likely hit Amdahl’s effect caused by the single-core

bottleneck, hindering the whole computation performance. This chapter addresses the

system-level challenges of analog IMC by exploiting extreme heterogeneity.

5.1.2 Contributions

The main contributions are the following:

• The design of a heterogeneous tightly-coupled shared-memory cluster that inte-

grates 8 fully programmable RISC-V processors, an analog in-memory computing

accelerator (IMA), and a dedicated digital block to accelerate depth-wise con-

volutions; A post place&route silicon-ready implementation targeting Global-

Foundries 22nm FD-SOI technology;

• The optimization of the interfaces between the analog IMA and the rest of the

system to match the computing and IO requirements of the IMA, achieving per-

formance as high as 958 GOPS on MVMs, more than 90% of its peak theoretical

throughput, surpassing by one order of magnitude other approaches where the

IMA is connected through a low-bandwidth, high-latency system bus [94];

• A deep analysis of the system benchmarking on a Bottleneck layer, representa-

tive of modern DNNs exploiting heavily heterogeneous layers such as point-wise,

depth-wise convolutions and residuals, in terms of performance and energy effi-

ciency. The analog/digital synergistic approach demonstrates full mitigation of

Amdahl’s effect, showing 2.6× better performance and 2.8× better energy effi-

ciency compared to executing the layers on previous work that integrates only 8

programmable cores and the IMC analog array [95];

• The scalability of the previous architecture to a IMC multi-array system to analyze

the challenges and the hardware resources necessary to enable end-to-end infer-

ence of a MobileNetV2. The architectural paradigm proposed executes inference
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in 10ms with an energy of 482µJ , improving upon fully digital state-of-the-art

solutions (SoA) [89] by 10× in latency, reducing the energy consumption by 2.5×.

Compared to SoA analog/digital architectures [94], the presented solution shows

two orders of magnitude improvements in terms of execution latency.

5.2 Related Work

Charge-based memory technologies (e.g. SRAM [59], Dynamic Random Access

Memory (DRAM), Flash) and non-volatile (NV) resistive memory technologies [96] (e.g.

Resistive Random Access Memory (ReRAM) [97] Phase-Change Memory (PCM) [63]

and MRAM [98]) both serve as computing substrates for analog in-memory comput-

ing. In this section, we review the State-of-the-Art (SoA) advancements in in-memory

computing technology, circuits, and systems.

5.2.1 IMC Arithmetic

Low-bit-width integer computation is widely adopted in edge Artificial Intelligence

(AI) applications, because of its higher efficiency and lower hardware cost than floating-

point. In the IMC domain, the advantages are even more evident. Low bit-width data

representation results in less area and power costs to design analog to digital (ADCs)

and digital to analog (DACs) converters, which are predominant in IMC arrays [60, 63].

The adoption of heavily quantized integer arithmetic (8-bit or less), especially for DNNs,

is fully justified by the fact that Quantized Neural Networks (QNNs) show a negligible

drop-in Top-1 accuracy compared to the full floating-point precision model, on many

AI-enhanced edge applications [15]. Also, noise-robust networks are an active research

field for IMC deployment [99].

5.2.2 SRAM technology

The Static Random Access Memory (SRAM) technology is the most mature one,

optimized for decades to be used as volatile memory storage for digital computing archi-

tectures. SRAMs are used to perform MVM operations both in the digital and analog

domains. In the digital domain, the computation is performed coupling SRAM cells

with additional near-memory logic, such as elementary gates, full adders, or adder trees,

building up a digital accelerator [100]. In the analog domain, SRAMs can map MVMs by

exploiting capacitive charge redistribution mechanisms along the bit-lines of the mem-

ory array [63]. Compared to the analog approach, SRAM-based digital IMC provides
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higher robustness to noise and process, voltage, and temperature (PVT) variations, but

significantly less advantages in terms of energy efficiency [101].

Most SoA academic SRAM-based IMC arrays operate in the analog domain [102].

One of the first prototypes appeared in 2018 [59], targeting binary-weight Neural Net-

works and demonstrating top-1 accuracy comparable with software accuracy on the

MNIST dataset (∼98%). SRAM-based IMC has been demonstrated for binary/ternary

DNNs achieving 403 TOPS/W and software accuracy on ternary networks trained on

the CIFAR-10 dataset [103], as well as for reconfigurable bit-precision MVM operations

showing80 TOPS/W [104]. Other SRAM-based IMC architectures have been proposed,

achieving similar accuracy and efficiency [105]. The major challenge at the circuits level,

which is actively being investigated in the literature, remains the computation noise that

limits the signal-to-noise ration, mainly due to the sensitivity to PVT variations [63],

and non-linearities [60].

5.2.3 Resistive Memory technology

A new generation of IMC accelerators targets emerging resistive memory technology,

driven by the much higher density scaling factor that these technologies offer compared

to the SRAM [106]. Moreover, resistive memories such as ReRAM, Magnetoresistive

Random Access Memory (MRAM), and PCM, show other important advantages: non-

volatility, low power envelope, and multi-level storage [97]. IMC based on NV memories

suffers from similar precision issues as SRAM-based IMCs, compounded by additional

challenges coming from memristive devices, such as write variability and conductance

variations (temporal and temperature-induced) [107].

From a system-level perspective, resistive memories serve not only as IMC prim-

itives, but also as non-volatile storage blocks for DNN weights. This avoids moving

weights across the system memory hierarchy, which is instead necessary for SRAM-

based IMC. Contrarily to SRAM, re-programming the memristive cross-bars with new

data during the network model execution is not affordable, due to the high latency and

power consumption associated with re-writes of non-volatile memory cells, as well as

their limited endurance (for ReRAM and PCM). This forces rethinking architectures as

memory-centric, with additional digital logic around to perform ancillary operations, as

is the focus of this work.

Considering ReRAM-based IMC, Chen et al. [97] demonstrate significant computing

parallelism, performing 8k MAC operations simultaneously. Other works show ReRAM-

based IMC arrays as dense as 2Mb [108] or 4Mb [109], with peak energy efficiencies in the

range of 120-200 TOPS/W within a power envelope of few milliwatts, suitable for tiny
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edge AI devices. Moreover, the IMC array in [108], integrated within a PCB hosting also

an FPGA, runs a ResNet-20 trained on the CIFAR-10 dataset with 90% top-1 accuracy.

For the MRAM technology, Doevenspeck et al. [98] present a Spin-orbit Torque

MRAM (SOT-MRAM)-based IMC macro and demonstrate for the first time that re-

sistive MRAM devices can be used for DNN applications. They claim software-like

accuracy on a network targeted to the MNIST dataset.

PCM-based IMC arrays have been applied in mixed-precision in-memory iterative

computing, combining a computational memory unit to perform the bulk of a compu-

tational task, with a von Neumann machine, which implements a backward method to

iteratively improve the accuracy of the solution. This approach has been demonstrated

to solve linear equations [110] and in DNN inference and even training tasks [107], show-

ing limited error in the computation and much higher efficiency compared to traditional

approaches [63].

Khaddam-Aljameh et al. [46] recently presented a state-of-the-art 256×256 PCM-

based IMC core targeting DNN inference, fabricated in 14nm, showing energy efficiency

of 10.5 TOPS/W and performance density of 1.59 TOPS/mm2 on inference tasks of

multi-layer perceptrons and ResNet-9 models trained on MNIST and CIFAR-10 datasets,

with comparable accuracies as software baseline. In this work, we adopt the PCM-based

IMC presented in [46].

5.2.4 Architectures and Systems

As discussed, there are several challenges related to technology that affect both

charge-based and resistive IMC circuits currently under scrutiny from researchers. How-

ever, provided that these issues can be solved, another essential challenge is the integra-

tion of in-memory computational primitives into heterogeneous systems. In this work,

we focus in particular on this aspect.

IMC cores primarily target matrix-vector multiplications (MVMs) or other similar

vector operations, showing incredible throughput and efficiency. Although MVM oper-

ations are predominant in modern DNNs, they still represent only a subset of the DNN

computation [60], which also includes residual connections, pooling layers, non-linear ac-

tivation functions, softmax, etc.. Increasing the throughput of MVMs with IMC moves

the performance bottleneck to all the other layers, which can not be easily mapped on

IMC arrays. From a broader application perspective, an edge-computing system might

incur workloads characteristically different than MVMs, such as data management and

control tasks that are performed together with neural tasks [111]. It is necessary, for a
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complete architecture, to address this computation in a programmable way. This rea-

soning strongly motivates the integration of the IMC with other specialized accelerators

and software programmable cores in heterogeneous architectures [60].

To the best of our knowledge, not many works specifically focused on the integration

of IMC arrays in heterogeneous analog/digital systems have been presented in literature

so far. Dazzi et al. [112] propose more advanced IMC multi-core approaches with very

carefully staged core-to-core dataflow, but the focus is mostly on convolutions and there

are no provisions for heterogeneous computing nor for computations that do not map

efficiently on the AIMC arrays. Houshmand et al. [113] explore co-optimization strate-

gies of IMC array size, memory hierarchy and data-flows to avoid efficiency degradation

when the IMC core is integrated into a processing infrastructure including also mem-

ory buffers and small control units, but they do not investigate complex scenarios like

heterogeneous systems.

Zhou et al. [61] propose a PCM-based IMC array modeled in 14nm technology, com-

plemented with additional digital logic that performs activation and pooling operations.

A small SRAM memory acts then as a layer-to-layer intermediate buffer, followed by a

hardware block that handles im2col transformations. The proposed solution shows a

peak 112 TOPS/W on MVMs and has been demonstrated on the execution of a custom

DNN model, with 95.6% of accuracy, at a performance of 7.7 inf/s with 8.22 µJ/inf .

However, this type of architecture is not flexible enough to support heterogeneous work-

loads, since it does not feature programmable cores.

Jia et al. [62] propose a 4×4 array of cores consisting of charge-based IMC cross-

bars extended with a programmable near-memory-computing (NMC) digital accelerator

that performs single-instruction-multiple-data (SIMD) computing, shifting, pooling, and

activation functions. On 8-bit MVMs, the prototype in 16nm shows 3 TOPS of peak

performance with 30 TOPS/W of efficiency. Coupled with off-chip FPGA and MCU

that handle communication with a host PC and control flows, the prototype has been

demonstrated on a ResNet-50 model with 4-bit weights and activations, achieving a peak

performance of 3.4 TOPS.

The silicon prototype presented in [94] integrates a charge-domain compute-in-

memory unit supporting 1to8-bit×1to8-bit matrix-vector multiplications, into a tiny

RISC-V CPU enriched with a direct memory access controller (DMA) and a set of pe-

ripherals. It shows a peak efficiency of 400 TOPS/W on the end-to-end inference of a

binarized ten-layers network trained on CIFAR-10. However, also in this case the ar-

chitecture can not afford complex heterogeneous computation: the core delivers only a



Heterogeneous In-Memory Computing RISC-V Based Cluster 79

Figure 5.1: Overview of the PULP cluster architecture, integrating the IMA and the
digital depth-wise accelerator. Each accelerator is enclosed into a Hardware Processing
Engine (HWPE) subsystem, depicted on the right.

few million operations per second and it can only be used for control tasks such as pro-

gramming DMA transfers, not being capable of performing compute-intensive functions

with sufficient performance level.

The limits of the above-mentioned systems are mainly two: the integration of the

IMA is loosely-coupled, with the IMA connected with other cores through a low band-

width, high latency system bus; the presented heterogeneous systems are demonstrated

either on neural networks model of few layers (trained on datasets such as CIFAR-10

or MNIST) or on custom NN models built ad-hoc to fit the requirements of the ar-

chitecture. Neither approach is representative of modern DNN models widely used in

classification and detection tasks at the edge of the IoT.

To overcome these limitations, this chapter presents an IMA coupled with a novel

design of a digital accelerator to improve the efficiency of depth-wise kernels, integrated

into the heterogeneous system, which is fully implement with the GlobalFoundries

22nm FD-SOI technology. Furthermore, the architecture is scaled up to explore the

resources necessary to enable the end-to-end inference of a full MobileNetV2 network,

a much more realistic benchmark for the class of networks that an ultra-low-power IoT

end-node could target.

5.3 Heterogeneous Cluster

This section presents the analog IMA, the depth-wise digital accelerator, and their

integration into the PULP cluster through a standardized interface called Hardware

Processing Engine.
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5.3.1 Hardware Processing Engines

To improve the performance and the energy efficiency of the accelerators in data

movement operations, and to ease their integration into the cluster, each of the two

accelerators presented here is incorporated as a Hardware Processing Engine (HWPE)

using a standardized interface1. HWPEs expose a control and a data interface towards

the rest of the cluster. The control interface allows the cluster’s cores to access the

registers of the targeted accelerator for configuration. The data interface is connected

to the TCDM memory through multiple master ports on the logarithmic interconnect,

similarly to what happens with the cores of the cluster. The width of this bus is a

design-time parameter and can be chosen depending on the required bandwidth of the

accelerator.

Fig.5.1 shows the heterogeneous cluster with two distinct HWPE interfaces encap-

sulating the IMA (namely IMA subsystem) and the depth-wise accelerator (namely DW

subsystem). To avoid a large increase in the area of the logarithmic interconnect and in

the latency of its arbitration scheme, the data interface of the IMA subsystem and the

DW subsystem are statically multiplexed towards the TCDM, sharing the same physical

ports on the interconnect. The two accelerators are used in a time-interleaved fashion,

allowing one accelerator to full access the TCDM at a time. This choice does not cause

any performance degradation, since in our DNN computing model the depth-wise accel-

erator and the IMA can not be active concurrently. However, they can be programmed

independently and in parallel by the cores of the clusters. Each accelerator has its

own programming bus and the configuration registers are mapped in different regions

of the cluster memory map. To ease the programming phase of the accelerators, a set

of Hardware-Abstraction-Layer (HAL) functions are exposed to the programmer and

can be inferred directly into the C code through their explicit invocations. To reduce

the power consumption of the cluster on jobs deployed to HWPEs, the latter expose

an end-of-computation signal towards the cluster. After programming the HWPE and

triggering its execution, the cluster cores can enter a low-power clock-gated sleep mode.

Once the HWPE notifies an end of computation signal, the core can be woken up by

the cluster Event Unit.

From the inside, HWPEs consist of three main blocks: the Controller, the Engine,

and the Streamer. The Controller contains a memory-mapped latch-based register file

used to store the configuration of the execution of the accelerator, and the main Finite-

State-Machine (FSM) of the HWPE system, that coordinates the other blocks. The

Controller can be targeted by the cores of the cluster in a memory-mapped fashion

via the control interface introduced above. The semantic and the number of registers

1https://hwpe-doc.readthedocs.io/en/latest/
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Figure 5.2: IMA enclosed into the HWPE interface. The data itf width is designed
to match the IO requirements of the IMA.

as well as the FSM are customized to accommodate the requirements of the enclosed

accelerator. The Engine contains the data path of the accelerator and the specific FSM

that coordinates the execution flow. It is, therefore, highly dependent on the specific

accelerator design.

The Streamer contains the blocks necessary to move inputs and results in and out of

the accelerator through its master port of the data interface and transform the memory

accesses into coherent streams to feed the accelerator Engine. The streams are orga-

nized in two separated modules, namely source for incoming streams and sink for the

outgoing ones. Both source and sink include address generators capable to generate

three-dimensional access patterns in TCDM with configurable strides. They also in-

clude a re-aligner module to form word-aligned streams from non-word-aligned memory

accesses, without constraining the memory system outside the HWPE to support mis-

aligned accesses. The memory accesses generated by the two streams are dynamically

multiplexed towards the data interface. Such a choice avoids the duplication of the data

interface ports while not causing any performance overhead; eventual contentions are

efficiently solved by an arbiter featuring a round-robin arbitration policy. Intermediate

FIFOs in both directions are used to decouple the streams from memory contentions

stalls and reduce the pressure on timing closure of the tightly-coupled system.

5.3.2 In-Memory Computing Accelerator Subsystem

Fig. 5.2 shows the integration of the IMC cross-bar within the HWPE. The width

of the IMA data interface is sized to sustain the bandwidth requirements of the analog
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Figure 5.3: (a) Mapping of standard convolutions on the PCM crossbar. (b) Timeline
of the sequential and pipelined execution models.

core, as shown in Sec. 5.4.2. The Engine contains both the digital and analog parts

of the IMA data path. The digital part is composed of buffers for ADCs and DACs

and of control circuitry; the analog core encloses the PCM devices (including PCM

programming circuitry), and the ADCs and DACs themselves.

The IMA works on input data stored in L1 with the HWC format, i.e., with consec-

utive data elements encoding pixels that are adjacent in the channel dimension. Fig. 5.3

shows how a CNN layer is mapped on the IMA array. For a standard convolution, the

streamers can directly perform a virtual im2col transformation [28], enabling to remap

the computation to matrix-vector products of the form discussed in Sec. 2.4. As a con-

sequence, the PCM array computes Cout channels of one output feature map pixel from

a complete input volume of Cin ×K ×K pixels in a single operation (that we call job),

where Cin, Cout indicate the number of input and output channels, and K is the filter

size.

The configuration sequence of the IMA starts when a core acquires a lock over the

accelerator by reading a special acquire register through the control interface. After

that, the core can interact with the IMA by programming the PCM devices with the

weights of one or multiple layers; reading the conductance value of a PCM device;

configuring a job setting the address of input and output data in TCDM and the ADC

configuration. When the configuration ends, the execution can be started by writing

to a special trigger register. To minimize the IMA configuration and synchronization

overhead, multiple jobs can be pipelined by setting the register file with the correct

strides. In this way, a whole layer can be executed with only one configuration phase.
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We propose two execution models for back-to-back job operations of the IMA: a

simpler one, sequential, and a more optimized pipelined execution model. The relative

timelines are shown in Fig. 5.3. The sequential model splits the execution of the single

job into three phases operated sequentially. stream-in: fetch data from the TCDM

that is then streamed to the engine’s internal DACs buffers; computation: analog

computation on the crossbar and writing of the ADCs buffers; stream-out: stream

data from buffers back to the TCDM. In Sec. 5.4.2, we study how this model quickly

becomes a bottleneck for the IMA’s peak performance.

In the pipelined execution model, the three aforementioned phases of different jobs

can overlap each other at the cost of additional hardware resources: we add two pipeline

registers before and after the DACs and ADCs buffers and we extend the Engine FSM

with additional states to control the overlapping phases: during the computing phase of

the i− th job (if not the last one to compute), the engine FSM sets the streamer to start

a new memory transaction to fetch the inputs for the successive (i+ 1)− th job. When

such stream-in phase has finished, if there are the results of the previous job (i− 1)− th

to stream-out, the engine FSM can configure the stream, as shown in Fig. 5.3. If we

consider only the digital logic of the accelerator around the IMA, the pipelined approach

increases the area by about 40%, due to the doubled number of input/output registers

needed to enable the pipeline. However, this overhead reduces to 5% if we consider the

total area of the accelerator (digital logic and analog IMC cross-bar), compared to the

sequential approach.

5.3.3 Specialized Digital Accelerator

Depth-wise (DW) convolutions have been introduced in SoA DNNs such as Mo-

bileNetV2 to shrink the model size of the neural networks ( by 7 to 10×) and their

computational cost, with negligible accuracy drop [114]. Due to their lower connectivity

compared to standard convolutions (each output channel depends only on a single cor-

responding input channel), DW layers are generally inefficient to map on IMC arrays, as

we show in Sec. 5.4.2 on the Bottleneck use-case. Moreover, a pure software execution

of such kernels easily becomes a performance bottleneck for computation [95]. To speed

up the execution of the depth-wise layers, we therefore designed a specialized digital

accelerator and integrated it into the heterogeneous cluster.

The accelerator we propose in this work is capable of processing depth-wise kernels

on 8-bit signed input tensors and weights, accumulating the results in intermediate 32-

bit registers and performing non-linear activation functions such as ReLU plus a set of

ancillary functions (i.e. shifting and clipping) to bring back the final result into the 8-bit
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(a)

(b)

Figure 5.4: (a) Architecture overview of the Depth-wise digital accelerator, enclosed
in the HWPE. (b) Execution flow of the depth-wise operation.

precision. Fig. 5.4 shows the general architecture of the proposed accelerator, enclosed

in the dedicated HWPE interface.

The depth-wise accelerator employs a weight-stationary data flow and targets 3x3

depth-wise layers – the ones most commonly encountered in DNNs. The weights from 16

different filters, assumed to be 8-bit signed elements, are loaded from the TCDMmemory

at the beginning of the computation, sign-extended, and stored into a weight buffer that

features 3x3x16 registers. The weights reside in the buffer until they have been used

over the full input image. Input tensors are scanned by the accelerator using a vertically

sliding window on the spatial dimensions, considering in each iteration 16 channels

data stored in HWC layout (i.e., the same layout used by the IMA). The vertically

sliding window is implemented utilizing a window buffer of 4x3x16 8-bit registers: 3

rows to host the current window, plus 1 row of inputs being loaded concurrently with

the current window computation. Other than the two buffers, the data path of the

accelerator consists of a network of Multiply-and-Accumulate (MAC), and ancillary

blocks to compute ReLu, shifting and clipping operations, as shown in Fig. 5.4. The

MAC unit consists of 36 multipliers and a reduction tree that operate on a 3×3×4 block

of the window buffer, passed through the ReLu and shifting&clipping blocks, and stored

in an output buffer.

Fig. 5.5a shows the details of the depth-wise accelerator datapath operation in the

form of Python-like pseudocode. For a given block of 16 channels, the operation starts

by preloading weights. At the start of each output column, the window buffer is loaded
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for K in range(0, NbChannels, step=16):
for i_wgt in range(0, 3): # preload weight buffer

for j_wgt in range(0, 3):
load(weight_buf <- w[i_wgt, j_wgt, K:K+16])

for j in range(0, OutputWidth):
for i_pre in range(0, 3): # preload window buffer

for j_pre in range(0, 3):
load(window_buf[i_pre, j_pre] <- x[i_pre, j+j_pre, K:K+16])

for i in range(0, OutputHeight):             # vertically sliding window
for t in range(0, 4):                      # LD-MAC-ST pipeline

# load 3 pixels along 16 channels for next window
if t<3:

load(window_buf[3, t] <- x[i+3, j+t, K:K+16])
# perform MAC on groups of 4 channels at a time
T = t*4
out_buf[T:T+4] = act(sum(weight_buf*window_buf[0:3, 0:3, T:T+4]))
# store 1 pixel along 16 channels from out buffer & slide window
if t==3:
store(y[i, j, K:K+16] <- out_buf)
window_buf[0:3] = window_buf[1:4]
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Figure 5.5: (a) Pseudo-Python code describing the operation of the depth-wise accel-
erator datapath. (b) Detail of the LD - MAC - ST pipeline.

with the content of the first 3x3 window; then, the operation of the datapath is organized

in three pipelined stages, active over an inner loop of 4 cycles as shown in Fig. 5.5a and

Fig. 5.5b. In the first three cycles of the inner loop, the LD stage is active: one input

pixel across 16 channels is loaded to fill the fourth row of the window buffer. The MAC

stage is active in all cycles of the inner loop, working on 4 channels at a time. Finally, the

ST stage is active only in the fourth cycle: during this stage, the content of the output

buffer produced in the previous three cycles and the current one is streamed out of the

datapath, and the window buffer slides one pixel down. In this way, during the main

body of the computation, the accelerator fully exploits the available memory bandwidth

of 16 Bytes per cycle and the HWC layout of data, which is advantageous because it is

the same layout used by the IMA. Overall, the execution of a depth-wise layer on the

dedicated accelerator improves by 26× over a pure software implementation, achieving

an average performance of 29.7 MAC/cycle.

5.4 Results and Discussion

This section evaluates the proposed heterogeneous cluster. From a physical view-

point, we analyze area, power and timing costs of the system. From a performance and
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(a) (b)

Figure 5.6: (a) Placed and Routed design of the heterogeneous cluster. (b) Area
breakdown of the system.

energy efficiency viewpoint, we report the results of benchmarking hetereogeneous DNN

layers, such as the Bottleneck.

5.4.1 Physical Implementation

To characterize the system in terms of area, power, and performance, we implement

the cluster using the GlobalFoundries 22nm FD-SOI technology node. We synthesize

the heterogeneous cluster with Synopsys Design Compiler-2019.12 and we perform a full

place&route flow using Cadence Innovus 20.12, targeting the worst-case corner (SS,

0.72V, -40°/125°). The floorplan of the system is reported in Fig. 5.6. The analog IMC

accelerator models, validated on silicon and modeled through silicon characterization of

14 nm prototypes, are fed into technology libraries (.lef, .db, and .lib) integrated into

the front-end and back-end flows of the system. The area, the timing, and the power

consumption of the IMC accelerator are extrapolated from the on-chip measurements

reported in [46], properly scaled to the 22nm technology node. The power scaling is

done according to the classical scaling theory under constant frequency, scaling power

by a · b2, where a denotes the dimensional scaling and b is the voltage scaling factor.

The area scaling follows the dimensional scaling. We assume that the IMA latency will

remain constant. The total area of the heterogeneous cluster is 2.5 mm2, partitioned

among the several hardware blocks as shown in Fig. 5.6(b). As expected, the IMA sub-

system and the 512 kB of TCDM memory occupy the major part of the total area (∼1/3

IMA, ∼1/3 TCDM, 1/3 the rest of the cluster), while the depth-wise accelerator has a

negligible impact (2.1 %). The maximum operating frequency achievable by the final

design is 500 MHz.

To perform power measurements we run parasitics-annotated gate-level netlist simu-

lations of the digital part of the system in the typical corner (TT, 25C) at the operating

voltage of 0.8V, executing DNN layers introduced above. The VCD simulation traces
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Figure 5.7: Roofline model of the IMA heterogeneous system. The compute roof of
the IMA is a diagonal line, which depends quadratically on the operation intensity, not
on the cluster frequency. The intersection of a bandwidth line with the compute roof
defines a region where the performance points can lay for that configuration. In (a) and
(b) cluster is running at 500MHz and 250MHz, respectively, with sequential execution
of IMA. In (c) it runs at 250 MHz with a pipelined execution model for the IMA.

are analyzed with the Synopsys PrimeTime tool and the extracted power is integrated

with the power extrapolated for the IMC accelerator [46].

Hence, the results presented in this section and in the following ones include the

overheads (i.e. timing, area, power) caused by the clock tree implementation, accurate

parasitic models extraction, cell sizing for setup fixing, and delay buffers for hold fixing.

We emphasize that neglecting these factors would cause significant underestimations in

the clock tree dynamic power.

5.4.2 In-Memory Computing Accelerator Performance

First, we analyze the peak performance achievable by the IMA. An important point

to stress is that, in contrast with digital accelerators, the maximum performance of the

IMC array is only related to its MVM operation latency and its size (256×256 in the

context of this work). The peak throughput is 1.008 TOPS, given by the maximum

number of operations (256 × 256 × 2 OPs) that can be executed in its latency of

130ns [46]. In practice though, the real throughput achievable is typically scaled by the

utilization factor of the array: only if we map a 256 output-channel / 256 input-channel

point-wise layer we can achieve the maximum utilization rate and, thus, throughput.

Another factor that limits the real performance of the IMA sub-system is the memory

bandwidth that the heterogeneous cluster can sustain to feed the IMA with new input

data and to store the IMA results into the TCDM memory. If the computation is too

fast compared to the stream-in and stream-out time, we lose performance because we

are limited by the bandwidth of the system.

The PULP cluster can potentially offer high memory bandwidth towards the L1

memory thanks to the tightly-coupled interconnect scheme, at the cost of an increased
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interconnect area (which scales linearly with the bit-width of the system bus), power,

and timing. To find the width of the system bus able to sustain the IO requirements

of the IMA at the lowest area overhead, we benchmark synthetic point-wise layers with

different utilization rates of the IMC array (from 5% to 100%), varying the width of the

IMA sub-system bus from 32-bit up to 512-bit.

In Fig. 5.7 we report the outcomes of our exploration as a roof-line plot [115]. The

computing latency of the IMA does not depend on the cluster frequency, leading to two

considerations: first, the compute roof of the IMA is a diagonal line proportional to the

operation intensity (in other words, to the utilization factor of the IMA cross-bar) and

not a line parallel to the x-axis, as is typically the case for digital systems; second, since

the IMA computing latency is fixed, its memory bandwidth requirement change as we

reduce or increase the cluster clock frequency. We investigate two operating frequencies,

the maximum achievable one by the system when operating at high-voltage (500 MHz

at 0.8V) and the maximum one achievable at low-voltage (250 MHz at 0.65V), and we

compare the sequential and the pipelined execution models of the IMA.

In Fig. 5.7(a) the cluster is running at 500 MHz and we adopt the sequential execu-

tion model for the IMA. We observe that only with a 32-bit wide bus we are memory

bound and a 64-bit wide data interface of the IMA subsystem is sufficient to fulfill the

computing and IO requirements of the IMA. However, analyzing the performance at

any of the system bus configurations above 32-bit we notice a gap between the compute

roof and the real throughput, suggesting that we are under-utilizing the bandwidth of

the system. The reason is that in the sequential model, as discussed in Section 5.3.2,

8% to 40% (depending on the size of the layer considered) of the total execution cycles

are spent in stream-in and stream-out phases. In the rest of the execution, when the

IMA is in the computing phase, the system bus is not solicited.

Analyzing the scenario where the cluster runs at 250 MHz we observe that higher

bus-width (i.e. 128-bit) is necessary to preserve the peak performance of the IMA, as

depicted in Fig.5.7(b). However, also in this case the sequential execution model is

quite far from reaching the computing roof of the IMA. Despite the unavoidable area

overhead compared to the sequential execution model (which, however, is limited to 5%

if we consider the whole IMA sub-system, including the analog macro), Fig.5.7(c) shows

that the pipelined solution guarantees full utilization of the bandwidth. At the system

level, the optimal configuration is with a 128-bit wide system bus: using a narrower

system bus, throughput is memory-bound, while using a wider one, performance does

not improve, as computation is in a compute-bound region. In the optimal system

configuration, the IMA can achieve a peak of 958 GOPS at 250 MHz, only 10% less
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Figure 5.8: Components of MobilenetV2 Bottleneck block with stride = 1 and map-
ping structure in the PCM crossbar for depthwise layers. All the gray rectangles are
padding required for computing more than 1 channel per job.

than the theoretical peak performance at the compute roof, due to the programming

overhead necessary to configure the accelerator and start the execution.

5.4.3 Case Study: The Bottleneck layer

To highlight the advantages, the trade-off, and the challenges of IMC on realistic

use cases for edge computing and to assess the benefits of the presented heterogeneous

system, we benchmark the Bottleneck layer of a MobileNetV2 DNN. We analyze three

different computation mappings that are possible on the analog/digital system, com-

pared to the baseline, which executes all the layers of the Bottleneck on the software

cores using optimized software libraries [28]. The parameters of the selected Bottleneck

layer are reported in Fig. 5.8: this configuration is chosen so that all the weights and

activations fit the on-cluster TCDM (512 kB), without requiring any activation data

tiling [38], the in-depth study of which is beyond the scope of the contributions of this

chapter.

The first possible execution mapping is to offload all the layers of the Bottleneck to

the IMA accelerator, except for the residual connection, which is always offloaded to the

cluster’s cores. To map the weights of the layers on the IMC cross-bar, we adopt the

im2col approach [28]. Mapping point-wise layers is straightforward: each 1 × 1 × Cin

filter is mapped across the height of the cross-bar (one column), more filters are mapped

across the columns. If the layer parameters did not fit the size of the array, we would

have to split the weights over multiple IMAs. We postpone the analysis of more complex

scenarios, such as these, to Section 5.4.4 and we focus on the baseline case of a fully

fitting layer here.
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Contrarily to the point-wise layer, the depth-wise one is very inefficient to map on

the IMA cross-bar. In depth-wise convolutions, each output channel depends only on

the corresponding input channel: to make them suitable for mapping on the cross-bar

array, a K×K kernel with C in/out channels must be expanded into a dense form, with

all the weights out of a diagonal set to zero (padding), as shown in Fig. 5.8. Assuming

a hypothetical IMC array large enough to fit all the weights and padding of the layer,

out of K2 × C2 crossbar locations programmed with weights or zeros, only K2 × C of

them would concur to the kernel computation.

To reduce the useless occupancy of crossbar cells (i.e. programmed with zeros),

a different approach is to split the computation of Cout pixels, that normally would

be computed in a single operation (what we call job), over multiple jobs, each of which

computes Cjob < Cout pixels. As a trade-off, this leads to a smaller amount of operations

per job, reducing the overall performance. The advantage of this method is that the

total number of crossbar elements required to map the depth-wise kernel is Nxbar =

K2 × C × Cjob, reducing the number of the overall programmed cells (with zeros and

weights) by a factor of Cout/Cjob compared to the previous approach, at the cost of

additional Njobs = Cout/Cjob jobs per output pixel to complete the execution of the

kernel (note that in the previous case 1 job per Cout pixels is possible only on ideal

infinite sized cross-bar).

Mapping all the layers of the targeted Bottleneck following the first approach is

not feasible on the 256×256 cross-bar array we use: we would require 23× more cross-

bar locations than the real number of weights, running out of IMC resources. Hence,

we analyze the costs of separating the depth-wise in multiple jobs, considering two

parameters: Cjob = 8 and Cjob = 16, which translates to an increase of 25% and 54%

in the number of devices, respectively. Empirically, we consider these configurations as

a reasonable trade-off between performance and occupancy of the cross-bar. The two

configurations are referred to as ima cjob8 and ima cjob16, respectively.

The second mapping we analyze executes the point-wise layers on the IMA and the

depth-wise kernels on the 8 RISC-V cores of the cluster. The software kernels for the

depth-wise are derived from an optimized parallel software library tailored on PULP-

based clusters [28]. Since such kernels require the input data to be in Channel-Height-

Width (CHW) layout and since the output from the point-wise layer (from the IMA) is

in Height-Width-Channel (HWC) layout, additional execution cycles are needed for on-

the-fly data marshaling operations. The output is generated in the HWC format instead

and can be forwarded to the IMA with no additional overhead. This configuration is

referred to as hybrid and requires the storage of depth-wise weights in the TCDM,

instead of in the IMA crossbar. This is a reasonable trade-off since the depth-wise



Heterogeneous In-Memory Computing RISC-V Based Cluster 91
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Figure 5.9: (a) Performance (in GOPS), (b) Energy Efficiency (in TOPS/W), and
(c) Area Utilization Efficiency (in GOPS/mm2) of the Bottleneck layer running on the
cluster at 500 MHz with 128-bit wide system-bus. The area efficiency is related to
the effective area of the PCM arrays utilized to implement the Bottleneck (including
padding necessary to map the depth-wise on the IMA).

weights usually account for no more than 10% of the total of a depth-wise based neural

network [114] (∼ 4% in the considered Bottleneck layer).

The third mapping solution, indicated as ima+dw, runs the point-wise layers on the

IMA, the depth-wise layers on the dedicated digital accelerator, and the residual layer

on the cores. The digital accelerator accepts input data and weights in HWC format and

produces outputs in HWC format, requiring no additional data marshaling operations

during the Bottleneck layer execution.

Benchmarking results are provided in Fig. 5.9 for all the solutions discussed above,

in terms of performance, energy efficiency, and area utilization efficiency. The width

of the system bus is 128-bit and we adopt the pipelined execution model for the IMA;

as demonstrated in Sec. 5.4.2, this configuration maximizes performance. The cluster

operates at 500 MHz at 0.8V, in typical operating conditions (TT, 0.8V, 25C).

We can notice that despite a significant area utilization of the IMC array, the perfor-

mance of ima cjob16 and ima cjob8 are only 2.27× and 1.23× higher than a pure software

execution of the Bottleneck. Efficiency is even worse: 1.23× lower energy efficiency and

the same area efficiency of ima cjob8, and comparable energy and area efficiency of ima

cjob16 compared to the cores demonstrate that IMC arrays are not efficient to host

sparse layers like the depth-wise. The hybrid solution instead achieves 4.6× better

performance and 3.4× better energy efficiency than the cores configuration. Despite

software-based execution of depth-wise layers, this solution overcomes the cjob16 configu-

ration by 2× in terms of performance, by 2.3× in terms of energy efficiency, and by 2.1×
in terms of area efficiency. The peak performance is achieved in the ima+dw configura-

tion, improving by 2.6× and 11.5× over the hybrid and cores solutions, respectively.

By offloading point-wise layers to the IMA and depth-wise layers to the dedicated digital

accelerator, we fully exploit the potential of the two hardware blocks, while the cores
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Figure 5.10: Normalized Performance, compared to full software implementation
(cores), of point-wise (left) and Bottleneck (right) layers. For the right-side analysis,
the impact of each layer on the execution of the whole Bottleneck is shown, considering
the different computing mapping solutions enabled by the heterogeneous cluster.

handle their configuration, the workload dispatching, and ancillary aggregation opera-

tions, such as the residual connection. This synergistic approach, enabled by the fact

that cores, IMA, and depth-wise accelerator all share the same memory at L1, stands out

also as the most efficient one, overcoming 2.7× and 9.2× the hybrid and cores config-

urations, in terms of energy efficiency, and by 2.5× and 10.2× the same configurations

in terms of area efficiency.

Fig. 5.10 shows the execution breakdown of the Bottleneck layer. In a pure software

execution scenario, the point-wise layers dominate the computation (cores). The IMA

shows significant acceleration in such dense MVM-based operations (left-sided Fig. 5.10),

moving the performance bottleneck on other layers like the depth-wise. However, the

IMA itself is not capable of mitigating this Amdahl’s effect, since the execution of the

depth-wise on the IMA is not efficient and dominates the total execution cycles (ima

cjob8 and ima cjob16). Execution of depth-wise convolutions on the cores (hybrid)

improves execution time, but this block remains by far the slowest one. On the other

hand, offloading the depth-wise layer to the digital accelerator (ima+dw) eliminates the

performance bottleneck as the execution time of the depth-wise layer is comparable to

the other components of the Bottleneck, such as point-wise layers and residuals.

5.4.4 End-to-End Inference of the MobileNetV2

In this section, we study the scalability of the heterogeneous system (in terms of chal-

lenges and hardware resources) to enable end-to-end inference of the MobileNetV2 [114].

To build the model of the scaled-up architecture, we start from the physical measure-

ments carried out in the previous sections, introducing the following considerations: the

PCM-based IMC cross-bar we use in this chapter does not support cell re-programming,
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Algorithm 1 Full-Network Tile&Pack algorithm

1: function Tile&Pack(n,h,w, S, nima) ▷ n,h,w are name, height, width of all layers, S is the size
of each IMA (default 256), nima is the number of available IMAs

2: Tiles← [ ]
3: for all n, (h,w) ∈ n, (h,w) do ▷ Create tiles
4: ntile,w ← ⌊w/S⌋ ; wrem ← w mod S
5: ntile,h ← ⌊h/S⌋ ; hrem ← h mod S
6: for i ∈ [0, ntile,h − 1] do
7: for j ∈ [0, ntile,w − 1] do
8: Tiles[n+ “ tile i j”]← (S, S)
9: end for
10: end for
11: for j ∈ [0, ntile,w − 1] do
12: Tiles[n+ “ tilentile,h j”]← (hrem, S)
13: end for
14: for i ∈ [0, ntile,h − 1] do
15: Tiles[n+ “ tile i ntile,w”]← (S,wrem)
16: end for
17: Tiles[n+ “ tilentile,h ntile,w”]← (hrem, wrem)
18: end for
19: for all n, (h,w) ∈ Tiles do ▷ Remove 0-sized tiles
20: if h = 0 or w = 0 then remove(Tiles[n])
21: end if
22: end for;
23: Bins← BinBestFit(Tiles)
24: IMA Mapping←MaxRectsBSSF(Bins)
25: return IMA Mapping
26: end function

during the execution of the Neural Network model, due to the high latency of the oper-

ation. An iterative flow is necessary to program each cell of the PCM cross-bar: first,

pulses are sent to the cell, then the conductance is read-out and compared with the

expected value. The outcome discrepancy is used to modulate the successive pulses to

repeat the procedure until convergence. The programming of the IMA is done in a diag-

onal [46] or row-wise [116] fashion, therefore takes considerably larger time (20× to 30×
higher) than merely performing a parallel MVM. As a direct consequence, to map layers

bigger than the cross-bar size we need to split the weights and the layer’s execution on

multiple IMAs, at the cost of additional area. However, having multiple IMAs allows

reducing the occupancy of the generic memory of the system to store the weights, being

them hosted by the cross-bar itself.

For this analysis, we integrate the IMC cross-bars into a single heterogeneous cluster

of the same type presented in the previous sections. Specifically, multiple cross-bars

are integrated into the same IMA sub-system, fully sharing the same data and control

interface. They can be activated one at a time through a static multiplexing scheme.

One multiplexer collects the data interfaces of the IMAs and redirects them into a 128-

bit wide bus connected to the logarithmic interconnect of the cluster. However, they

can all be programmed before the start of the computation, since we assume to replicate
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Figure 5.11: Overview of the scaled-up heterogeneous architecture. Only one IMC
cross-bar can be active at a time.

the configuration registers (mapped in different portions of the cluster memory map).

Fig. 5.11 shows an overview of the architecture.

We adopt a sequential execution model for the layer-to-layer inference of the network,

with the additional condition that all the input activations reside in the L1 memory of

the cluster. In our analysis, we do not directly consider the overhead in terms of time

and energy to access activation data from on-chip memory hierarchies. Double buffering

and activation data tiling have been shown to be effective at hiding the time overhead[38]

and minimizing the energy one [89] in such cases, and we expect this effect to hold also

in the case we analyze here. In the case of the considered MobileNetV2 we map only

the point-wise layers on the IMA cross-bars, while the depth-wise ones are executed

on the digital accelerator. As reported in Sec. 5.4.3, this solution leads to the highest

performance and efficiency of the system.

Only the first layers of the MobileNetV2 fit a single 256×256 cross-bar, while the

others (starting from the Bottleneck 3 ) require to be split over multiple IMA tiles.

Therefore, we develop a Tile&Pack strategy, outlined in Alg. 1, to tile all layers and

pack their contributions in the smallest number of IMAs. Tiling splits a layer over

multiple IMAs only when it does not fit the size of the cross-bar; we do not allow tiling

to fill unfilled IMA locations, aiming at the highest utilization area of the cross-bar on

a per-tile basis. Packing is based on the Maximal Rectangles Best Short Side Fit bin

fitting algorithm2.

Fig. 5.12 shows the result of the application of the Tile&Pack algorithm to the

weights of MobileNetV2. From this analysis, we conclude that to map all the Bottleneck

2We employ the open-source rectpack Python library, available at https://github.com/secnot/

rectpack [117], to implement the BinBestFit and MaxRectsBSSF functions.

https://github.com/secnot/rectpack
https://github.com/secnot/rectpack
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Figure 5.12: Mapping of the end-to-end MobileNetV2 on the 34 required IMAs, using
the Tile&Pack strategy outlined in Alg. 1. The algorithm minimizes the number of
IMAs necessary to map the NN model.

layers of the MobileNetV2 we need 34 IMA cross-bars. As can be seen in Fig. 5.12, the

Tile&Pack algorithm achieves 100% of utilization of the cross-bar cells on most IMA

cross-bars, with only the final one showing a utilization below 84%.

The system with 34 IMAs would require a minimum area of ∼30 mm2, since the

area of the single IMA is 0.83 mm2. Despite this might represent a drawback, it is

worth noticing that weights need anyway to be stored into a non-volatile memory inside

or outside the system, such as a Flash. In principle, the non-volatility of PCM-based

IMAs allows eliminating this Flash memory from the system.

Each layer or layer tile considered in this study is benchmarked in terms of execu-

tion latency and energy individually, on the heterogeneous system analyzed in Sec. 5.4.3

(which incorporates only one IMA). We argue that, for this study which aims to be a

guideline for further digital/analog systems explorations, this is a good approximation,

since the benchmarked results include input/output fetch/storage from/to the L1 mem-

ory of the system and the instructions of the cores to configure and start the execution of

the accelerators (this reasoning holds for point-wise, depth-wise and residual connection

layers).

The results are shown in Fig. 5.13, whereas in Fig. 5.14 we report the energy and the

latency breakdown (among the several hardware blocks involved in the computation)

of the conv-2d and Bottleneck layers. We notice higher execution latency and lower

efficiency for point-wise layers with fewer parameters that operate on larger inputs –
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INPUT 
(H/WxC) #PARAMSMMAC Latency [ms]Energy [mJ] GMAC/s/W

CONV - 2D 2D_0 224 x 3 864 10.84 1.63 0.042 255.6
000 - PW 112 x 32 1024 12.85 1.63 0.051 251.6
DW 112 x 32 288 3.61 0.24 0.006 626.3
001 - DW 112 x 32 512 6.42 1.63 0.044 147.4
100 - PW 112 x 16 1536 19.27 1.63 0.076 254.7
DW 112x96 864 2.71 0.18 0.004 626.3
101 - PW 56x96 2304 7.23 0.41 0.017 437.1
110 - PW 56x24 3456 10.84 0.41 0.025 431.3
DW 56x144 1296 4.06 0.27 0.006 626.3
111 - PW 56x144 3456 10.84 0.41 0.020 540.4
ADD 56x24 # 0.08 0.18 0.006 12.1
200 - PW 56 x 24 3456 10.84 0.41 0.025 431.3

DW 56x144 1296 1.02 0.07 0.002 626.3
201 - PW 28x144 4608 3.61 0.10 0.005 684.7
210 - PW 28x32 6144 4.82 0.10 0.008 612.8

DW 28x192 1728 1.35 0.09 0.002 626.3
211 - PW 28x192 6144 4.82 0.10 0.006 780.6

ADD 28x32 # 0.03 0.06 0.002 12.1
220 - PW 28x32 6144 4.82 0.10 0.008 612.8

DW 28x192 1728 1.35 0.09 0.002 626.3
221 - PW 28x192 6144 4.82 0.10 0.006 780.6

ADD 28x32 # 0.03 0.06 0.002 12.1
300 - PW 28x32 6144 4.82 0.10 0.008 612.8

DW 28x192 1728 0.34 0.02 0.001 626.3
301 - PW 14x192 12288 2.41 0.03 0.002 1325.5
310 - PW 14x64 24576 4.82 0.05 0.004 1117.6

DW 14x384 3456 0.68 0.05 0.001 626.3
311 - PW 14x384 24576 4.82 0.05 0.004 1325.5

ADD 14x64 # 0.01 0.03 0.001 12.1
320 - PW 14x64 24576 4.82 0.05 0.004 1117.6

DW 14x384 3456 0.68 0.05 0.001 626.3
321 - PW 14x384 24576 4.82 0.05 0.004 1325.5

ADD 14x64 # 0.01 0.03 0.001 12.1
330 - PW 14x64 24576 4.82 0.05 0.004 1117.6

DW 14x384 3456 0.68 0.05 0.001 626.3
331 - PW 14x384 24576 4.82 0.05 0.004 1325.5

ADD 14x64 # 0.01 0.03 0.001 12.1
400 - PW 14x64 24576 4.82 0.05 0.004 1117.6

DW 14x384 3456 0.68 0.05 0.001 626.3
401 - PW 14x384 36864 7.23 0.05 0.004 1727.3
410 - PW 14x96 55296 10.84 0.08 0.007 1540.6

DW 14x576 5184 1.02 0.07 0.002 626.3
411 - PW 14x576 55296 10.84 0.08 0.006 1727.3

ADD 14x96 # 0.02 0.05 0.002 12.1
420 - PW 14x96 55296 10.84 0.08 0.007 1540.6

DW 14x576 5184 1.02 0.07 0.002 626.3
421 - PW 14x576 55296 10.84 0.08 0.006 1727.3

ADD 14x96 # 0.02 0.05 0.002 12.1
500 - PW 14x96 55296 10.84 0.08 0.007 1540.6

DW 14x576 5184 0.25 0.02 0.000 626.3
501 - PW 7x576 92160 4.52 0.02 0.002 2280.4
510 - PW 7x160 153600 7.53 0.03 0.003 2409.0

DW 7x960 8640 0.42 0.03 0.001 626.3
511 - PW 7x960 153600 7.53 0.03 0.003 2583.6

ADD 7x160 # 0.01 0.02 0.001 12.1
520 - PW 7x160 153600 7.53 0.03 0.003 2409.0

DW 7x960 8640 0.42 0.03 0.001 626.3
521 - PW 7x960 153600 7.53 0.03 0.003 2583.6

ADD 7x160 # 0.01 0.02 0.001 12.1
600 - PW 7x160 153600 7.53 0.03 0.003 2409.0

DW 7x960 8640 0.42 0.03 0.001 626.3
601 - PW 7x960 307200 15.05 0.05 0.006 2583.6

CONV - 2D 2D_1 7x320 409600 20.07 0.06 0.008 2464.6
TOTAL 2190784 281.65 10.06 0.48 583.9

5 - BOTTLENECK

6 - BOTTLENECK

LAYER

0 - BOTTLENECK

1 - BOTTLENECK

2 -  BOTTLENECK

3 - BOTTLENECK

4 - BOTTLENECK

Figure 5.13: End-to-end execution of the MobileNetV2 on the scaled-up heteroge-
neous cluster. The figure shows the parameters of each layer, the execution latency
(ms), the execution energy (mJ) and the energy efficiency (GMAC/s/W).

typically, the ones from layers appearing early on in the network. In these cases, the

major part of the energy is spent in digital logic, as these layers require more input

and output streams to move the activations to be processed. The most efficient layers

are the last two, where the IMA is utilized best, showing a peak of efficiency higher

than 5 TOPS/W. Overall, the proposed architecture executes the end-to-end inference

in 10.1ms of latency, consuming 482 µJ .
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Figure 5.14: Latency and energy breakdown of Bottleneck layers of the MobileNetV2
executed on the scaled-up heterogeneous system.

5.4.5 Comparison with the State-of-the-Art

Tab. 5.1 reports the comparison of our scaled-up system with fully digital and mixed-

signal state-of-the-art solutions. The solution we propose is superior compared to the

others, as it provides full hardware support for a wide range of workloads both in analog

and digital domains, enabling de facto efficient end-to-end execution of complex neural

network models such as the MobileNetV2. Compared to Vega [89], which is an ar-

chitecture based on the same RISC-V cluster without integrating analog IMC cores nor

dedicated accelerators for the depth-wise, we show 10× and 2.5× improvements in terms

of inference latency and energy, respectively, when considering the end-to-end inference

of the MobileNetV2.

We compare favorably also with [94], which consists of a tiny RISC-V core and a

charge-based IMC array integrated into the system through a loosely-coupled scheme.

In theory, the presence of a programmable core potentially enables the execution of a

reasonably sized network such as MobileNetV2. However, the only processing model

possible on this architecture is to offload the point-wise layers to the IMC array and

the depth-wise and residual layers to the tiny RISC-V processor, which is not capable

of performing compute-intensive functions with a reasonable performance level. This

would create a major performance bottleneck for the heterogeneous workload. For these

reasons, our solution shows at least two orders of magnitude improvement on the end-to-

end execution of the DNN. Despite the higher area of our system that might represent

a drawback, it is worth noticing that the charge-based IMA integrated into [94] requires

extending the architecture with a Flash memory to store the weights of the DNN (with
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Table 5.1: Comparison with the State-of-the-Art.

Rossi et al.
[89]

Zhou et al.
[61]

Jia et al.
[94]

Jia et al.
[62]

This Work

Tech. node 22nm 14nm 65nm 16nm 22nm

Area
[mm2]

12 3.2 13.5 25 ∼30

Cores
(ISA)

9xRV32
IMCFXpulp

None
1xRV32

IM
None

8xRV32
IMCXpulp

Analog
IMC

None
1024x512

PCM-based
2304x256

charge-based
1152x256

charge-based
34 256x256
PCM-based

Digital
acc.

HWCE
(standard
conv.)

ReLu,
activation
processing,
im2col

Activations,
scalings,
pooling

Activations,
scalings,
pooling

Depth-wise

Peak
Perf.
[TOPS]

0.032
(ML 8b)

2, 26.1
(8/4b-4b)

2.19
(1b-1b)

3
(8b-8b)

0.958
(8b-4b)

Peak
Efficiency
[TOPS/W]

0.61
(8b-8b)

13.5, 112
(8/4b-4b)

400
(1b-1b)

30
(8b-8b)

6.39
(8b-4b)

MobileNetV2 inference

Inference
Latency

10 inf/s n/a 0.23 inf/s n/a 99 inf/s

Inference
Energy

1.19 mJ n/a n/a n/a 0.482 mJ

1 Scaled from 1b-1b MVMs performance as explained in [94].
2 Point-wise latency estimated from the peak performance on 8-bit×4-bit MVMs.
Latency of 8-bit×8-bit depth-wise conv. estimated from our benchmarking results
on the cluster’s cores, scaled considering that: due to improved ISA, our core is
∼10× faster on a per-core basis [25]; additional ∼7× improvement factor due to the
cluster parallelism [28].

non-negligible area costs). In our architecture, weights can be stored directly on the

non-volatile IMAs, without having to consider an external Flash.

The system presented in [61] consists of a PCM-based IMC array extended with

digital logic that performs only activation and pooling operations, while a small SRAM

memory acts as a layer-to-layer intermediate buffer. The higher peak performance and

efficiency on MVMs they show compared to us is due to the bigger array size they used

(1024×512 compared to 256×256), being the in-memory macro based on the same pro-

totype [46], while a loss as little as 10% of the peak is attributable to the integration

of the IMA into a complex system like the one we propose, as we show in Sec. 5.4.3.

However, the architecture in [61] is too limited to execute the end-to-end inference of the

MobileNetV2 for two main reasons: first, a single IMC array can not host all the layers



Heterogeneous In-Memory Computing RISC-V Based Cluster 99

1

10

100

1000

P
ER

FO
R

M
A

N
C

E 
[G

O
P

S]
LO

G
SC

A
LE

IMA +
DIG. ACC.

IMA + 
MCU

SW + 
IMA

SW + IMA+
DIG. ACC

n/a

423x

2.7x

[7], [39] [6] [8]

Figure 5.15: Performance of the MobileNetV2, on four IMC-based computing models.
On the ima+asic it is not possible to deploy the network model, due to architectural
limitations.

weights of the MobileNet; second, there are no programmable cores to handle resid-

ual connections and control operations. Despite a more complex data-path compared

to [61], including a cluster of 4×4 computing in memory units and a network-on-chip for

communication which delivers outstanding performance and efficiency on MVMs, also

the architecture shown in [62] is not viable to map heterogeneous workloads such as the

MobileNetV2, due to the absence of a programmable processor.

Finally, to better highlight the contribution of this chapter, we abstract the specific

System-on-Chip implementations described in Tab. 5.1 to four categories representative

of the state-of-the-art, as shown in Fig. 5.15. We can highlight four different processing

models: i) analog cores extended with fixed-function digital logic [61, 62] (ima+ dig.

acc.), ii) analog cores controlled by simple MCU-subsystems [94] (ima+ mcu), iii)

IMAs integrated into tightly-coupled clusters of programmable processors [95] (sw+

ima), and iv) the paradigm proposed in this chapter, where we exploit heterogeneity

both in terms of analog and digital computing and in terms of programmable cores and

lightweight tightly coupled digital acceleration (sw+ima+ dig. acc.).

Fig. 5.15 shows the results of the exploration, highlighting that for the MobileNetV2

workload, the computational model proposed in this chapter delivers significantly better

performance compared to all the models exploiting programmable processor to sustain

flexibility bottlenecks of IMC arrays. On the other hand, architectures only mixing

specialized digital hardware with AIMC can only deal with DNN models for which

they are designed, not being able to adapt to different models for which they were not

intended before fabrication.

We argue that this concept, only demonstrated for MobileNetV2 DNN in Fig. 5.15

can be easily extended to more complex computer vision pipelines in the embedded
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domain, where AI workloads are often coupled to more traditional linear algebra algo-

rithms such as Principal Component Analysis (PCA), Fast Fourier Transform, Filtering

Functions or Inverse Kinematics [118]. We believe that the approach proposed in this

chapter is a viable way to tackle the performance and flexibility requirements of rapidly

evolving modern computer vision pipelines.



Chapter 6

Conclusion

Empowering edge of the IoT devices with AI computing capabilities allows to dis-

till the raw data acquired from the sensors in a much more dense format, extracting

high-level information directly on the end-nodes. This new computing scenario provides

several advantages, such as widening the IoT applications spectrum with AI-enhanced

tasks, reducing the power for data transmission over wireless channels and eliminating

security issues which are exacerbated by the enormously increasing factor of the in-

terconnected IoT devices. This dissertation proposed, analyzed and compared different

solutions to boost the computing capabilities of micro-controller class of devices, working

at different levels of the hardware-software stack of the IoT environment.

The first contribution of this thesis was at the software level. Chapter 3 presented

an optimized back-end library for QNN inference on top of tiny IoT devices, targeting

the PULP platform. The library exploits the XpulpV2 ISA and the cluster’s paral-

lelism of the underlying hardware and supports low-bitwidth integer computation with

INT-8, INT-4, INT-2, and INT-1 data types. The software optimizations presented,

tailored on the target hardware consisting of a computing cluster of 8 custom extended

RISC-V processors, showed 63x performance improvements on convolution kernels over

the same kernels implemented on a single processor featuring the RV32IMC ISA. The

execution of a end-to-end INT-8 QNN on a commercial embodiment of the target plat-

form, namely GAP8, outperformed by 19.49× the inference performance (in terms of

cycles) of the network on an STM32H7 microcontroller, using the CMSIS-NN library.

Furthermore, the energy efficiency achieved on a commercial embodiment of the PULP

platform, namely GAP8, resulted to be 24 GMAC/s/W , 14.1× higher with respect

to the highest efficient STM solution, the STM32L4 board; at the same time GAP8

achieved 1.066 GMAC/s, which is 7.45× higher than the performance of STM32H7

board, the high-end micro-controller system proposed by STM.

101
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These results demonstrated a hardware-software solution that allows to achieve an

energy proportionality on tiny micro-controllers where it is not needed to trade per-

formance with energy efficiency, as opposed to commercial MCU solutions, enabling

efficient and software programmable QNN inference on IoT class of devices. The pro-

posed library has been also integrated as back-end library in a vertical software stack

that comprises automatic data tiling (namely Dory [38]) and quantization-aware training

(namely Nemo [119]) tools to fully handle the deployment and the end-to-end inference

of real-sized neural network models such as the MobileNetV1 [80] on top of fully pro-

grammable IoT systems.

Despite the advancements with respect to state-of-the-art hardware-software solu-

tions, Chapter 3 also highlighted the limits of an approach purely at the software level.

The maximum performance and energy efficiency achievable are bounded by the hard-

ware characteristics of the underlying platform. As detailed in Chapter 3, sub-byte and

mixed-precision QNN kernels still suffer from drop-off in performance when compared

to the symmetric 8-bit ones: the lack of support in the ISA of the target platform for

sub-byte SIMD operations requires extra data manipulation operations that degrades

the overall performance and efficiency.

In this scenario, the low-bitwidth integer arithmetic can only serve to compress the

memory footprint of the DNN models, but not as a technique to improve the computing

efficiency of the AI-enhanced applications running on IoT devices. Chapter 4 tackled

this problem at the architectural and micro-architectural levels, by proposing a 2-bit

to 16-bit multi-precision Dotp Unit, integrated into the RI5CY core (see Section 2.3

and Chapter 4), and optimized at the core level to guarantee high energy efficiency

in dotp-based computation. Subsequently, to exploit the designed hardware, the core

ISA has been extended with a set of low bit-width SIMD arithmetic instructions and

related micro-architecture modifications to the datapath of the pipeline. Furthermore,

the new core has been integrated in a multi-core computing cluster, showing a near-linear

speedup of the performance compared to the single-core execution.

The implementation of the cluster with leading-edge GlobalFoundries 22nm

FD-SOI technology showed that: thanks to the design of a multi-precision low bit-

width Dotp unit and the power-aware optimizations performed at the core level, the

extended core does not jeopardize the efficiency of RI5CY on general-purpose applica-

tions; given the same technology, the energy efficiency on byte and sub-byte kernels has

been improved by up to one order of magnitude with respect to RI5CY. In perspective,

the work presented in Chapter 4 showed at least two orders of magnitude improvements

in performance and energy efficiency compared to existing state-of-the-art hardware and

software solutions based on ARM Cortex-M cores. These achievements paves the way
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to software programmable QNN inference at the extreme edge of the IoT, promising

ASIC-like efficiency with way higher flexibility.

The contribution presented above brings the utilization of the core hardware re-

sources up to 94%, close to the structural limit for the target processor. The perfor-

mance bottleneck, in that case, moves towards the data communication at the interfaces

between the core and the main memory. However, such scenario is common of traditional

Von Neumann computing architectures, referred to as Von Neumann bottleneck. The

emerging Analog in-memory computing (IMC) paradigm promises to overcome this lim-

itation by processing the data within the memory boundaries and shows one to several

orders of magnitude improvements in terms of energy efficiency, on MVM operations,

compared to MCU and digital ASIC solutions, which is especially appealing for modern

TinyML tasks running on battery powered IoT devices.

Nevertheless, IMC accelerators are outstanding platforms to deploy MVM based

operations but they can not sustain the heterogeneity of the IoT workload. Hence,

to target practical IoT applications IMC arrays must be enclosed in programmable

heterogeneous systems, introducing new system-level challenges.

Chapter 5 aimed at exploring these challenges and at proposing a solution to em-

power IoT end-nodes with in-memory computing capabilities, by presenting a full imple-

mentation of a heterogeneous tightly-coupled clustered architecture integrating 8 RISC-

V processors, a non-volatile PCM-based IMC accelerator, and a depth-wise digital ac-

celerator, targeting the GlobalFoundries 22nm FD-SOI technology. The presented

solution was benchmarked on a highly heterogeneous workload such as the Bottleneck

layer, overcoming software execution of the layer by 11.5× and 9.5× in terms of perfor-

mance and energy efficiency.

Furthermore, Chapter 5 presented a hardware design space exploration to investigate

the system-level challenges and to show up the hardware resources necessary to enable

end-to-end inference of real-world DNNs such as theMobileNetV2. The scaled-up system

showed end-to-end inference execution 10× faster within 2.5× lower energy than fully

digital solutions and more than two orders of magnitude faster than existing state-of-

the-art analog/digital heterogeneous solutions. Such advancements demonstrated the

effectiveness of the proposed heterogeneous computational model to sustain flexibility

bottlenecks of IMC arrays. The concept presented here for the MobileNetV2 can be

easily extended to more complex computer vision pipelines in the embedded domain,

where AI workloads are often coupled to more traditional linear algebra algorithms. It

is to believe that the proposed approach is a viable solution to tackle the performance

and flexibility requirements of rapidly evolving modern computer vision pipelines.



Appendix A

Abbreviations

AI Artificial Intelligence

AIMC Analog In-Memory Computing

ASIC Application Specific Integrated Circuit

CHW Channel Height Width

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

DRAM Dynamic Random Access Memory

FD-SOI Fully Depleted Sylicon on Insulator

FPGA Field Programmable Gate Array

GP-GPU General Purpose- Graphic Processing Unit

HAL Hardware-Abstraction-Layer

HWC Height Width Channel

HWPE Hardware Processing Engine

IMA In-Memory Accelerator

IMC In-Memory Computing

IoT Internet of Things

ISA Instruction Set Architecture

104



Abbreviations 105

MIMD Multiple-Instructions Multiple-Data

MCU Micro-Controller Units

ML Machine Learning

MRAM Magnetoresistive Random Access Memory

MVM Matrix-Vector Multiplication

NN Neural Network

NV Non-Volatile

PBBS Parallel Balanced-Bit-Serial

PCM Phase-Change Memory

PULP Parallel Ultra-Low Power

QNN Quantized Neural Network

ReRAM Resistive Random Access Memory

SIMD Single-Instruction Multiple-Data

SRAM Static Random Access Memory

SOT-MRAM Spin-orbit Torque MRAM

TinyML Tiny Machine Learning
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Edith Beignè, et al. Energy-efficient near-threshold parallel computing: The

pulpv2 cluster. Ieee Micro, 37(5):20–31, 2017.

[49] Giuseppe Desoli, Nitin Chawla, Thomas Boesch, Surinder-pal Singh, Elio Guidetti,

Fabio De Ambroggi, Tommaso Majo, Paolo Zambotti, Manuj Ayodhyawasi,

Harvinder Singh, et al. 14.1 a 2.9 tops/w deep convolutional neural network

soc in fd-soi 28nm for intelligent embedded systems. In 2017 IEEE International

Solid-State Circuits Conference (ISSCC), pages 238–239. IEEE, 2017.

[50] Lukas Cavigelli and Luca Benini. Origami: A 803-gop/s/w convolutional network

accelerator. IEEE Transactions on Circuits and Systems for Video Technology, 27

(11):2461–2475, 2017.

[51] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.

Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth

gradients. arXiv preprint arXiv:1606.06160, 2016.

[52] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:

Training deep neural networks with binary weights during propagations. In Ad-

vances in neural information processing systems, pages 3123–3131, 2015.

[53] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Binarized neural networks: Training deep neural networks with weights

and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[54] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-

net: Imagenet classification using binary convolutional neural networks. In Euro-

pean Conference on Computer Vision, pages 525–542. Springer, 2016.

[55] Jinmook Lee, Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sangyeob Kim,

and Hoi-Jun Yoo. Unpu: A 50.6 tops/w unified deep neural network accelerator



Bibliography 112

with 1b-to-16b fully-variable weight bit-precision. In 2018 IEEE International

Solid-State Circuits Conference-(ISSCC), pages 218–220. IEEE, 2018.

[56] Bert Moons, Roel Uytterhoeven, Wim Dehaene, and Marian Verhelst. 14.5 en-

vision: A 0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-frequency-

scalable convolutional neural network processor in 28nm fdsoi. In 2017 IEEE In-

ternational Solid-State Circuits Conference (ISSCC), pages 246–247. IEEE, 2017.

[57] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. YodaNN: An archi-

tecture for ultralow power binary-weight CNN acceleration. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 37(1):48–60, 2018.

[58] Kota Ando, Kodai Ueyoshi, Kentaro Orimo, Haruyoshi Yonekawa, Shimpei Sato,

Hiroki Nakahara, Shinya Takamaeda-Yamazaki, Masayuki Ikebe, Tetsuya Asai,

Tadahiro Kuroda, et al. BRein memory: A single-chip binary/ternary reconfig-

urable in-memory deep neural network accelerator achieving 1.4 TOPS at 0.6 W.

IEEE Journal of Solid-State Circuits, 53(4):983–994, 2018.

[59] Avishek Biswas and Anantha P Chandrakasan. CONV-SRAM: An energy-efficient

SRAM with in-memory dot-product computation for low-power convolutional neu-

ral networks. IEEE Journal of Solid-State Circuits, 54(1):217–230, 2018.

[60] Naveen Verma, Hongyang Jia, Hossein Valavi, Yinqi Tang, Murat Ozatay, Lung-

Yen Chen, Bonan Zhang, and Peter Deaville. In-memory computing: Advances

and prospects. IEEE Solid-State Circuits Magazine, 11(3):43–55, 2019.

[61] Chuteng Zhou, Fernando Garcia Redondo, Julian Büchel, Irem Boybat, Xavier Ti-
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Davide Rossi, Frank Kağan Gürkaynak, Michael Muehlberghuber, Michael

Gautschi, Igor Loi, Germain Haugou, et al. An IoT endpoint system-on-chip for

secure and energy-efficient near-sensor analytics. IEEE Transactions on Circuits

and Systems I: Regular Papers, 64(9):2481–2494, 2017.

[77] ARM. 2019. Armv8.1-M architecture. https://pages.arm.

com/introduction-armv8.1m.html?_ga=2.237285124.508798244.

1553788782-2017191492.1542023072, 2019.

[78] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quantization

of deep convolutional networks. In International Conference on Machine Learning,

pages 2849–2858, 2016.

[79] Igor Loi, Alessandro Capotondi, Davide Rossi, Andrea Marongiu, and Luca Benini.

The quest for energy-efficient I $ design in ultra-low-power clustered many-cores.

IEEE Transactions on Multi-Scale Computing Systems, 4(2):99–112, 2018.

[80] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

[81] Alessandro Capotondi, Manuele Rusci, Marco Fariselli, and Luca Benini. Cmix-

nn: Mixed low-precision cnn library for memory-constrained edge devices. IEEE

Transactions on Circuits and Systems II: Express Briefs, 67(5):871–875, 2020.

[82] Francesco Conti. Technical Report: NEMO DNN Quantization for Deployment

Model, 2020.

[83] STMicroelectronics. 2018. X-CUBE-AI (data brief). Artificial intelligence (AI)

software expansion for STM32Cube. https://www.st.com/resource/en/data_

brief/x-cube-ai.pdf, 2018.

[84] Bing-Chen Wu and I-Chyn Wey. Parallel Balanced-Bit-Serial Design Technique

for Ultra-Low-Voltage Circuits With Energy Saving and Area Efficiency Enhance-

ment. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(1):141–

153, 2017.

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/rpi_DATA_CM3plus_1p0.pdf
https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/rpi_DATA_CM3plus_1p0.pdf
https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/rpi_DATA_CM3plus_1p0.pdf
https://pages.arm.com/introduction-armv8.1m.html?_ga=2.237285124.508798244.1553788782-2017191492.1542023072
https://pages.arm.com/introduction-armv8.1m.html?_ga=2.237285124.508798244.1553788782-2017191492.1542023072
https://pages.arm.com/introduction-armv8.1m.html?_ga=2.237285124.508798244.1553788782-2017191492.1542023072
https://www.st.com/resource/en/data_brief/x-cube-ai.pdf
https://www.st.com/resource/en/data_brief/x-cube-ai.pdf


Bibliography 115

[85] Arm. MICRONPU ETHOS-U55. Available online:

https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55, 2020.

[86] Nvidia. NVIDIA A100 Tensor Core GPU Architecture. Available online:

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-

ampere-architecture-whitepaper.pdf, 2020.

[87] D. Bol, M. Schramme, L. Moreau, P. Xu, R. Dekimpe, R. Saeidi, T. Haine,

C. Frenkel, and D. Flandre. SleepRunner: A 28-nm FDSOI ULP Cortex-M0

MCU With ULL SRAM and UFBR PVT Compensation for 2.6-3.6-µW/DMIPS

40-80-MHz Active Mode and 131-nW/kB Fully Retentive Deep-Sleep Mode. IEEE

Journal of Solid-State Circuits, pages 1–1, 2021. doi: 10.1109/JSSC.2021.3056219.

[88] I. Miro-Panades, B. Tain, J. F. Christmann, D. Coriat, R. Lemaire, C. Jany,

B. Martineau, F. Chaix, A. Quelen, E. Pluchart, J. P. Noel, R. Boumchedda,

A. Makosiej, M. Montoya, S. Bacles-Min, D. Briand, J. M. Philippe, A. Valen-

tian, F. Heitzmann, E. Beigne, and F. Clermidy. SamurAI: A 1.7MOPS-36GOPS

Adaptive Versatile IoT Node with 15,000× Peak-to-Idle Power Reduction, 207ns

Wake-Up Time and 1.3TOPS/W ML Efficiency. In 2020 IEEE Symposium on

VLSI Circuits, pages 1–2, 2020. doi: 10.1109/VLSICircuits18222.2020.9163000.

[89] Davide Rossi, Francesco Conti, Manuel Eggimann, Alfio Di Mauro, Giuseppe

Tagliavini, Stefan Mach, Marco Guermandi, Antonio Pullini, Igor Loi, Jie Chen,

et al. Vega: A Ten-Core SoC for IoT Endnodes With DNN Acceleration and Cog-

nitive Wake-Up From MRAM-Based State-Retentive Sleep Mode. IEEE Journal

of Solid-State Circuits, 2021.

[90] Shimeng Yu, Xiaoyu Sun, Xiaochen Peng, and Shanshi Huang. Compute-in-

memory with emerging nonvolatile-memories: Challenges and prospects. In 2020

IEEE Custom Integrated Circuits Conference (CICC), pages 1–4. IEEE, 2020.

[91] Artificial intelligence for a safer, greener and more trusted world. https://www.

axelera.ai/, 2021. Accessed: 2021-12-14.

[92] Dave Fick and Mike Henry. Analog Computation in Flash Memory for Datacenter-

scale AI Inference in a Small Chip. In Hot Chips, 2018.

[93] SR Nandakumar, Manuel Le Gallo, Christophe Piveteau, Vinay Joshi, Giovanni

Mariani, Irem Boybat, Geethan Karunaratne, Riduan Khaddam-Aljameh, Urs

Egger, Anastasios Petropoulos, et al. Mixed-precision deep learning based on

computational memory. Frontiers in neuroscience, 14:406, 2020.

https://www.axelera.ai/
https://www.axelera.ai/


Bibliography 116

[94] Hongyang Jia, Hossein Valavi, Yinqi Tang, Jintao Zhang, and Naveen Verma.

A programmable heterogeneous microprocessor based on bit-scalable in-memory

computing. IEEE Journal of Solid-State Circuits, 55(9):2609–2621, 2020.

[95] Gianmarco Ottavi, Geethan Karunaratne, Francesco Conti, Irem Boybat, Luca

Benini, and Davide Rossi. End-to-end 100-TOPS/W Inference With Analog In-

Memory Computing: Are We There Yet? In 2021 IEEE 3rd International Con-

ference on Artificial Intelligence Circuits and Systems (AICAS), pages 1–4. IEEE,

2021.

[96] Daniele Ielmini and H-S Philip Wong. In-memory computing with resistive switch-

ing devices. Nature Electronics, 1(6):333–343, 2018.

[97] Wei-Hao Chen, Kai-Xiang Li, Wei-Yu Lin, Kuo-Hsiang Hsu, Pin-Yi Li, Cheng-

Han Yang, Cheng-Xin Xue, En-Yu Yang, Yen-Kai Chen, Yun-Sheng Chang, Tzu-

Hsiang Hsu, Ya-Chin King, Chorng-Jung Lin, Ren-Shuo Liu, Chih-Cheng Hsieh,

Kea-Tiong Tang, and Meng-Fan Chang. A 65nm 1Mb nonvolatile computing-in-

memory ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN

AI edge processors. In 2018 IEEE International Solid - State Circuits Conference

- (ISSCC), pages 494–496, 2018. doi: 10.1109/ISSCC.2018.8310400.

[98] J Doevenspeck, Kevin Garello, B Verhoef, R Degraeve, S Van Beek, D Crotti,

F Yasin, S Couet, G Jayakumar, IA Papistas, et al. SOT-MRAM based analog

in-memory computing for DNN inference. In 2020 IEEE Symposium on VLSI

Technology, pages 1–2. IEEE, 2020.

[99] Vinay Joshi, Manuel Le Gallo, Simon Haefeli, Irem Boybat, Sasidharan Rajalek-

shmi Nandakumar, Christophe Piveteau, Martino Dazzi, Bipin Rajendran, Abu

Sebastian, and Evangelos Eleftheriou. Accurate deep neural network inference

using computational phase-change memory. Nature communications, 11(1):1–13,

2020.

[100] Yu-Der Chih, Po-Hao Lee, Hidehiro Fujiwara, Yi-Chun Shih, Chia-Fu Lee, Rawan

Naous, Yu-Lin Chen, Chieh-Pu Lo, Cheng-Han Lu, Haruki Mori, et al. An 89top-

s/w and 16.3 tops/mm 2 all-digital sram-based full-precision compute-in memory

macro in 22nm for machine-learning edge applications. In 2021 IEEE Interna-

tional Solid-State Circuits Conference (ISSCC), volume 64, pages 252–254. IEEE,

2021.

[101] Hyunjoon Kim, Qian Chen, Taegeun Yoo, Tony Tae-Hyoung Kim, and Bongjin

Kim. A 1-16b precision reconfigurable digital in-memory computing macro featur-

ing column-mac architecture and bit-serial computation. In ESSCIRC 2019-IEEE



Bibliography 117

45th European Solid State Circuits Conference (ESSCIRC), pages 345–348. IEEE,

2019.

[102] Sparsh Mittal, Gaurav Verma, Brajesh Kaushik, and Farooq A Khanday. A survey

of SRAM-based in-memory computing techniques and applications. Journal of

Systems Architecture, 119:102276, 2021.

[103] Shihui Yin, Zhewei Jiang, Jae-Sun Seo, and Mingoo Seok. XNOR-SRAM: In-

memory computing SRAM macro for binary/ternary deep neural networks. IEEE

Journal of Solid-State Circuits, 55(6):1733–1743, 2020.

[104] Jinshan Yue, Xiaoyu Feng, Yifan He, Yuxuan Huang, Yipeng Wang, Zhe Yuan,

Mingtao Zhan, Jiaxin Liu, Jian-Wei Su, Yen-Lin Chung, et al. A 2.75-to-75.9 TOP-

S/W computing-in-memory NN processor supporting set-associate block-wise zero

skipping and ping-pong CIM with simultaneous computation and weight updating.

In 2021 IEEE International Solid-State Circuits Conference (ISSCC), volume 64,

pages 238–240. IEEE, 2021.

[105] Jinseok Lee, Hossein Valavi, Yinqi Tang, and Naveen Verma. Fully Row/Column-

Parallel In-memory Computing SRAM Macro employing Capacitor-based Mixed-

signal Computation with 5-b Inputs. In 2021 Symposium on VLSI Circuits, pages

1–2. IEEE, 2021.

[106] Kaushik Roy, Indranil Chakraborty, Mustafa Ali, Aayush Ankit, and Amogh

Agrawal. In-memory computing in emerging memory technologies for machine

learning: an overview. In 2020 57th ACM/IEEE Design Automation Conference

(DAC), pages 1–6. IEEE, 2020.

[107] Abu Sebastian, Irem Boybat, Martino Dazzi, Iason Giannopoulos, V Jonnala-

gadda, Vinay Joshi, Geethan Karunaratne, Benedikt Kersting, Riduan Khaddam-

Aljameh, SR Nandakumar, et al. Computational memory-based inference and

training of deep neural networks. In 2019 Symposium on VLSI Technology, pages

T168–T169. IEEE, 2019.

[108] Cheng-Xin Xue, Tsung-Yuan Huang, Je-Syu Liu, Ting-Wei Chang, Hui-Yao Kao,

Jing-Hong Wang, Ta-Wei Liu, Shih-Ying Wei, Sheng-Po Huang, Wei-Chen Wei,

et al. 15.4 a 22nm 2mb reram compute-in-memory macro with 121-28tops/w for

multibit mac computing for tiny ai edge devices. In 2020 IEEE International

Solid-State Circuits Conference-(ISSCC), pages 244–246. IEEE, 2020.

[109] Cheng-Xin Xue, Je-Min Hung, Hui-Yao Kao, Yen-Hsiang Huang, Sheng-Po Huang,

Fu-Chun Chang, Peng Chen, Ta-Wei Liu, Chuan-Jia Jhang, Chin-I Su, et al. A

22nm 4mb 8b-precision reram computing-in-memory macro with 11.91 to 195.7



Bibliography 118

tops/w for tiny ai edge devices. In 2021 IEEE International Solid-State Circuits

Conference (ISSCC), volume 64, pages 245–247. IEEE, 2021.

[110] Manuel Le Gallo, Abu Sebastian, Roland Mathis, Matteo Manica, Heiner Giefers,

Tomas Tuma, Costas Bekas, Alessandro Curioni, and Evangelos Eleftheriou.

Mixed-precision in-memory computing. Nature Electronics, 1(4):246–253, 2018.

[111] Daniele Palossi, Nicky Zimmerman, Alessio Burrello, Francesco Conti, Hanna

Müller, Luca Maria Gambardella, Luca Benini, Alessandro Giusti, and Jérôme
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