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DOTTORATO DI RICERCA IN

DATA SCIENCE AND COMPUTATION

Ciclo 33

Settore Concorsuale: 02/A1 - FISICA SPERIMENTALE DELLE INTERAZIONI FONDAMENTALI

Settore Scientifico Disciplinare: FIS/01 - FISICA SPERIMENTALE

DATA-STREAM DRIVEN FUZZY-GRANULAR APPROACHES FOR SYSTEM

MAINTENANCE

Presentata da:

Let́ıcia Decker de Sousa

Coordinatore Dottorato:

Andrea Cavalli

Supervisore:

Daniele Bonacorsi

Co-Supervisori:

Claudio Grandi

Daniel Furtado Leite

Esame finale anno 2022



I dedicate this Ph.D. Thesis to Antonio Guglielmi.



4



Acknowledgements

I would like to thank everyone who participated to my doctoral journey, directly or indirectly. To

my professors and friends that helped me to get in, or made my days easier. To those who helped me

to be someone able of making this commitment even with the fear of not being able to keep it until

the end. To all the people who didn’t let me give up. To the countless friends and colleagues I gained

and lost during these years. To all the relatives who contributed on my upbringing. To my antagonists

who encouraged me so much to move forward and overcome every adversity, my sincere thanks.

To my Ph.D. supervisors, Prof. Daniele Bonacorsi and Dr. Claudio Grandi, for all support and

opportunities during these four years of hard work, being always available to support me through

the crooked paths of the Italian immigration bureaucracy. To my co-supervisor, Prof. Daniel Leite,

for the countless late nights writing articles together, running experiments, and making last-minute

adjusting to A.I. model solutions. For having introduced me to Granular computing, changing the

direction of my thesis and my life. For all attention, patience and for every insistence on improving

my performance, believing in me and my potential, I am very grateful to all of you.

To my mother, Karin Decker de Sousa, and my father, Ronaldo Carvalho de Sousa, for all love and

attention in my whole life. Specially, to my little brother, Alexander Decker de Sousa, to be present,

being always amorous during our long talks about computer science, life and loves. Thank you for

encouraging me to study and be a better person and professional.

To Antonio Guglielmi for all support and love, being close and away according with my needs,

having patience and sensibility to recognise them. Thanks to be the best and loving companion possible

in each moment, being always the most comforting part of my days. To Frenci and Jack Guglielmi,

the sweetest people ever. To Marina Gherardi and Giuseppe Guglielmi that always treated me as a

daughter, making me feel welcome. To you, my deepest recognition.

To Aline Ferreira, Milena Passini, and Lorena Pozzo for being the most faithful, patient, and

supportive friends ever. To Pedro Silva Jr., for having ardently and insistently encouraged me to get a

doctorate. To Chicca Maria for her unconditional love and daily companionship even in the countless

isolation by COVID-19. And last but not least, to the INFN staff and colleagues, specially to Fabio

Viola and Barbara Martelli for helping specially in the beginning of this work, and to Panagiota

Dimopoulou (Iota) for helping in everything I needed in a superhuman efficiency way, thank you.



6



Abstract

Intelligent systems are currently inherent to the society, supporting a synergistic human-machine

collaboration. Beyond economical, social, and climate factors, energy consumption is strongly af-

fected by the performance of computing systems. The quality of software functioning may invalidate

any improvement or optimisation attempt. In addition, data-driven machine learning algorithms are

the basis for human-centered applications in the information age. Interpretability became one of the

most important features of computational systems. Software maintenance is a critical discipline to

support automatic and life-long operation of systems. A computing center maintenance system is a

software that manages a set of software that composes a complex mosaic. As most software registers

its inner events by means of logs, the analysis of logs is an approach to keep system operation. Logs

are characterised as Big data assembled in large-flow streams. Logs are unstructured, heterogeneous,

imprecise, and uncertain. This thesis addresses fuzzy and neuro-granular concepts and methods to

provide accurate and understandable maintenance solutions. Anomaly detection and log parsing are

approached by fuzzy and neuro-granular methods, which deal with the uncertainty inherent to stream-

ing data. Anomaly detection identifies ideal time periods for detailed software analyses. Log parsing

provides deeper semantics interpretation of the anomalous occurrences. The solutions given in this

thesis evolve over time and are of general-purpose, being highly applicable, scalable, and maintainable.

Granular classification models, namely, Fuzzy set-Based evolving Model (FBeM), evolving Granular

Neural Network (eGNN), and evolving Gaussian Fuzzy Classifier (eGFC), are compared considering

the anomaly detection problem. The evolving Log Parsing (eLP) method is proposed in this thesis to

approach the automatic parsing applied to system logs. All the methods perform recursive mechanisms

to create, update, merge, and delete information granules according with the data behavior. For the

first time in the evolving intelligent systems literature, the proposed method, eLP, is able to process

streams of words and sentences. Essentially, regarding anomaly detection accuracy, FBeM achieved

(85:64 � 3:69)%; eGNN reached (96:17 � 0:78)%; eGFC obtained (92:48 � 1:21)%; and eLP reached

(96:05 � 1:04)%. Besides being competitive, eLP particularly generates a log grammar, and presents

a higher level of model interpretability.
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Chapter 1

Introduction

These days, computing systems are embedded in the society, supporting the synergistic collabora-

tion between the human and the machine. This tendency began in the middle of the last century with

the development of the basis of the modern computer. Thenceforth, the digital revolution became a

race of the best applications using series of paradigms, languages, methodologies, etc., to develop a

favourable environment to turn the computing technology ubiquitous.

There are a set of important impacts of the digitisation process from robotics, social applications,

passing through spacial race to climate change issues, among others. Beyond the economic factor, the

energy consumption and the heat generation are strongly a�ected by the performance of computing

systems. Although hardware e�ciency is essential for computing performance, the software quality

may invalidate any optimization attempt. In the ages of information, data-driven machine learning

algorithms are the basis of the human-centered applications, in which the output interpretability

become one of the most important hot topics.

In particular, the software development and maintenance are critical disciplines in the computer

science. Both disciplines are interdependent and the basis of the automatising growth, supporting

the evolution of the computing systems. In the 70's, Lehman [1] de�nes a set of laws related to

how the software tends to evolve over time. The laws were mainly reviewed and extended until the

begging of the 21st century [2], creating the basis of the Software Engineering discipline,Software

Evolution. According to Lehman, the development of programming methodology, high-level languages

and associated concepts can not be neglected, being considered by far the most important step for

successful computer usage by many experts, followed by the additional methodologies and tools to

support the program maintenance.

To Lehman, software maintenance is generally used to describe all changes made after the �rst

software release. A software application deteriorates since the operational environment changes over

time, being corrected by repair or replacement. These changes are related to programming language

or tools improvement because the program execution may be wrong, inappropriate or outdated.

The basis for the maintenance of a computing system is the program maintenance. According to

the SPE-classi�cation [1], there are 3 classes of programs:

13
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ˆ S-type: (Speci�ed) programs that are derivable from a static and well-de�ned speci�cation, in

which it is possible formally being proved as correct or not.

ˆ P-type: (Problem solving) programs that attempt to settle problems that can be formally de-

�ned, but can not directly be solved using computers, in which the theoretical problem must be

approached using heuristics or approximations.

ˆ E-type: (Evolutionary) programs that are the implementation of human processes or real-world

problems.

The system maintenance applied to data centers1 is based on a data-driven composition of the

users and services behaviors on a network environment. Based in both human activity and real-world

problem, the system maintenance is an E-type application.

According to the Software Evolution Theory (SET) [1, 2], programs are modi�ed and adapted

according to the changing environment. Based on empirical research, SET summarises the results

initially in �ve laws extended posteriorly in more other three laws supported by invariant properties

related to classes of software projects.

This research area is very controversial specially because the software development and mainte-

nance are human-centered �elds. Nevertheless, some statements can be made with certainty: (i) the

software code is constantly in progress until to be more convenient economically to be replaced instead

to update it (Law of Continuing Change), and (ii) even the change is an invariant property of the big

software project, the way that the change occurs is not dependent just on the type of project but also

of the team responsible of the software maintenance and development.

Since the technical team and the system itself are in constant evolution, a program maintenance

needs an evolving model. Precisely, the data center maintenance is a composition of software-based

maintenance systems and their synergy. Obviously, the data center maintenance is a harder problem

to solve than a single program maintenance, but it can be modularized in program-based modules or-

chestrated by an omniscient manager to approach the decision-making role of the whole infrastructure.

With the increasing of the system of interest (Law of Continuing Growth), the software tends to

be intrinsically more complex (Law of Increasing Complexity), and tends to be less satisfactory to the

user (Law of Declining Quality). During the software story, composed by all produced releases, the

code tends to increase its entropy specially in big and mismanaged projects. The high entropy blocks

the implementation of new functionalities and the maintenance of the system.

Essentially, a data center maintenance systems are a software to manage a set of software. In addi-

tion, open and closed-source software cohabit in the same ecosystem, complicating and squishing even

more the stabilising process of the system. Increasing the quantity of services, program installation and

setup, libraries, programming environment, tools, etc; in which each software probably has a di�erent

owner with di�erent code quality following a di�erent development methodology; the complexity of

the bug/anomaly conjunction has a propensity to increase until the data center inoperability.

In this sense, the data center is an evolving scenario that tends naturally to crash if nothing is done.

In general, online machine learning approaches are used as auxiliary tools to uphold the sustenance

1The argument of this thesis.
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of the log-based computing systems. Using logs to promote the system preservation is an inexpensive

and smart choice as most software registers the inner events in logs.

The ease of obtaining logs is counterbalanced by the di�culty of handling them. Logs are char-

acterised as Big Data assembled in large-ow streams of messy information. Being unstructured,

heterogeneous, imprecise, and uncertain, to extract useful information from logs is not a simple task.

As a data stream, logs expires over time, declining their relevance during the data treatment chain.

In this sense, maintenance systems are essentially a real-time issue, requiring online data processing

to dispose of computing resources continuously.

As logs are a deeply redundant data type, to identify which details are important is crucial to

maintenance systems. To help in this task, the Granular Computing paradigm proposes to control

the abstraction level of a problem through the granularization degree of the system information. The

smaller the information granule, the larger the zoom of the system view, and vice-versa. This mech-

anism permits that the observer changes convenently the problem perspective. Information granules

are clusters of similar data which together form an transitory painting as a system representation.

Furthermore, system maintenance is an ultimately decision-making problem, as such it concerns

with the explainability potential of the taken decisions. The Explainable Arti�cial Intelligence (XAI)

appeals to get transparent and intelligible the results of the machine learning approaches, understand-

ing the impacts of the taken decisions as well as acknowledging the process mechanisms of the systems.

Solutions must provide transparent decisions, i.e., term-by-term interpretations in comprehensive for-

mat in a known language, furnishing besides the correct inference, phenomenon explanations as event

causes, and the reasons of the made choices. For such, models must be based on fair objective functions,

using impartial data through systematic processes.

Being comprehensive must take in account the limited human capacity to process data and under-

stand processes. Remembering that a decision is a good decision just in a given instant (probably), it

is important to consider not just the accuracy of the solution but also if the achieved answer is still

relevant. Beyond this hamper, uncertainty is an intrinsic feature of the data. Imprecise and uncertain,

log processing is the basis of decision-making systems. A good compromise between these obstacles is

to combine fuzzy and granular concepts into the same approach, coupling the best of logs can provide

with the demand of system maintenance to generate interpretable analysis of the running software.

The log-based system maintenance is a hard multidisciplinary computing problem, leading with

hot topics as automatising, e�ciency, uncertain data, semantic, ontology, reliability, data mining, op-

timisation, machine learning, fuzzy logic, natural language processing (NLP), predictive maintenance,

forecasting, diagnostics, monitoring, among others. The research area is a huge mosaic of problems,

being arduous to be completely covered in all of its diversity in a single approach. The main objective is

to keep the system working within a pre-established Quality of Service standard through the adoption

of smart tools.

General-purpose solutions are preferable to ad-hoc algorithms in order to facilitate the infrastruc-

ture managing. However, to develop general-purpose algorithms is needed a greater problem domain

than the used to generate ad-hoc solutions, being more recommended for cluster of systems commonly

found in data centers. Besides the solutions' elegance and sophistication, this strategy increases the
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applicability and maintainability of complex systems, reecting in cost savings.

This chapter is organized as follows. Section 1.1 describes the thesis' objectives. Section 1.2 details

the thesis' contributions, and Section 1.3 shows how the thesis is organised by chapters.

1.1 Objectives

This research project aims to provide a data-stream driven solutions for system maintenance

through human-centered approaches, focusing in the interpretability of the models and outputs. Many

questions were addressed during the course of this thesis, and being surpassed to reach the main

objective. To achieve that, it was necessary to answer the following topics:

ˆ how to process a huge amount of logs in a real-time applications,

ˆ how to e�ectively provide a better tooling support for maintenance' sta�,

ˆ how to transform a textual, unstructured, and unsupervised logs in numerical, structured, and

well-behaved data,

ˆ how to convert automatically unsupervised in supervised data in order to be used by predictive

approaches,

ˆ how to analyse the log content automatically,

ˆ how to link di�erent types of maintenance problems in a data processing pipeline,

ˆ how to minimise the need of log processing in the composition of solutions,

ˆ how to model a system state, and how to identify a state changing, and

ˆ how to compress the logs database, minimising the storage usage.

Other details are addressed in the chapter descriptions through the thesis.

1.2 Contributions

The thesis contributions are clustered in (i) methodological, (ii) modelling, and (iii) computational.

The main answered question is how to approach the system maintenance problem considering an

automatic process that covers all types of systems. In (i), the methodology de�nes how to transform

generic log datasets in an appropriate format to be directly processed by maintenance problems. Since

the format must be applied in thousands of di�erent software, the data pre-processing must to be cheap

and generic, considering data transformation, feature extraction, and data classi�cation. Therefore, the

methodology provides a conversion of a textual, unstructured, and unsupervised logs in a supervised

numerical vectors, maintaining the system behaviour's characteristics. The methodology generates

a numerical vector stream that follows a Gaussian Distribution. This feature is taken advantage by

the self-learning method to generate supervised datasets. Even the predictive maintenance is not
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approached in this thesis, the generated dataset is appropriated to be directly applied to solve this

problem.

In (ii), the computing center maintenance is divided in the classical computing problems: self-

learning classi�cation, anomaly detection, log parsing, and anomaly prediction, being organized in a

data processing pipeline with intermediary outputs. Two possible computing design approaches are

proposed to correlate the computing problems: the health care, and the speech translation metaphors.

In addition, four di�erent models are proposed to address the system state considering the outputs of

the fuzzy-granular anomaly detection approaches. In this sense, a complete system state machine can

be structured using one of the proposed state models. Using event-oriented textual logs, the system

modelling embraces the whole process, from log pre-processing to system state through a general-

purpose methodology.

In (iii), the anomaly detection and log parsing problems are implemented using the fuzzy-granular

paradigm. Regarding to the anomaly detection problem, it is implemented the feature extraction and

self-learning method to proceed the experiments using the three classical fuzzy-granular algorithms:

Fuzzy-Set-Based evolving Model (FBeM), evolving Granular Neural Network (eGNN), and evolving

Gaussian Fuzzy Classi�er (eFGC). Considering the log parsing problem, it is implemented the �rst

fuzzy-granular algorithm - evolving Log Parsing (eLP) - to deal with textual input to provide parsing

of a log language through a formal grammar generation. All the implementations are evaluate exper-

imentally, in which the AD solutions are confronted related to accuracy, time execution, and number

of rules.

1.3 Organisation

This thesis is organized into nine chapters:

ˆ This chapter states the overview of the system maintenance problem, highlighting the di�culties

related to the software development and evolution. The thesis' objectives, contributions, and

organisation are outlined.

ˆ Chapter 2 introduces the thesis' motivation and study case, as well as the literature review

of system maintenance, providing metaphors to approach the problem statement, detailing the

used framework.

ˆ Chapter 3 summarises the aspects related to Granular Computing applied in this thesis, as the

mathematical foundations related to interval arithmetic, fuzzy sets, aggregation functions, and

granulation concepts.

ˆ Chapter 4 provides a general-purpose modelling to the data-stream driven anomaly detection

problem applied to computing center maintenance through a self-learning algorithm to categorise

the log data using three di�erent fuzzy-granular classi�ers.

ˆ Chapter 5 implements a general-purpose fuzzy-granular algorithm to the data-stream driven

parsing problem applied to logs, providing the syntactic analysis through a formal grammar
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generation, proposing a data compression scheme.

ˆ Chapter 6 describes the methodology used in both problem, including how to build the used

database from raw system logs, and the formalisation of the indexes used to evaluate the solu-

tions.

ˆ Chapter 7 describes the experiments and shows the results of the experiments executed to

validate the aforesaid implementations, considering the indexes described in the previous chapter.

ˆ Chapter 8 proposes four state models based on granular anomalies, with di�erent levels of

dimensional complexity. These models provide a screenshot of the system functioning, being

pictorial (or data) representation of system states.

ˆ Chapter 9 concludes this research, summarising the thesis content, and outlines the future

research possibilities.



Chapter 2

Data Center and Maintenance Systems

Separating High-Energy Physics (HEP) developments and experiments from computational ap-

proaches to data analysis is currently an infeasible task. For instance, the Large Hadron Collider

(LHC) at CERN in Geneva (Switzerland) produces several petabytes of data yearly from particle colli-

sion experiments and simulations. Exabytes of data are required to be processed, including metadata,

and data from a posteriori analysis. Therefore, a huge amount of computing resources is needed for

data storage, and to support a computing throughput of around 105 jobs per day followed by an

increasing demand for e�cient data sharing among computing centers through high-speed networks.

The Worldwide LHC Computing Grid (WLCG) has been created to support HEP experiments

at CERN. The grid infrastructure is an essential asset to support the LHC discoveries. Nonetheless,

grid resource requests tend to boom in the near future due to a scheduled LHC upgrade that aims to

increase the experiment's luminosity by a factor of 10 over its current value, increasing the amount

of data to process. In HEP scattering, luminosity (L ) is the ratio of events (� N ) detected through a

cross-section (� ) over a period of time (� t), i.e.,

L =
� N
� t

: (2.1)

With the increasing of the luminosity, it is expected at least a proportional increasing of the rate of

particle collisions, enlarging substantially the volume of data and experiments, and consequently, the

amount of log data produced by the grid. A complex technological challenge is envisioned, namely, to

keep the grid infrastructure working along the Run-3 and Run-4 stages of the High-Luminosity LHC

project (HL-LHC) [3, 4].

The HEP Software Foundation (HSF) released a road-map document describing the actions needed

to prepare the grid to support the HL-LHC upgrade [5]. As a result, the Operational Intelligence group

(OpInt) was created as a task force to improve the WLCG quality of service (QoS). Through data

analytics and log data mining, its main research line concerns the development and maturation of

19
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machine learning (ML) tools based on event-oriented maintenance systems. Many ad-hoc solutions

have been promoted by the OpInt group, from log parsing to diagnostic systems, as real-time anomaly

detection approaches developed to assist the computing center of the Italian Institute of Nuclear Physics

(INFN-CNAF) [6]. The usage of ML algorithms tends to reduce system downtime and optimise the

usage of resources.

The present thesis was funded by INFN-Bologna as an initiative to improve the WLCG QoS

through the log data processing using alternative modelling of ML approaches. This chapter is or-

ganised as follows. Section 2.1 describes the thesis' motivation and background scenario. Section 2.2

shows the state of the art of the di�erent types of system maintenance. Section 2.3 introduces two pos-

sible metaphor models to approach the system maintenance problem: (i) health care, and (ii) speech

translation. Section 2.4 explains how to apply the health care model to system maintenance problem.

Section 2.5 summarises the chapter.

2.1 Grid Infrastructure

WLCG is a worldwide grid infrastructure involving more than 170 computing centers over 42

countries organized in tiers according to their importance in the grid, being linked by the high-speedy

Italian (GARR) and European (G �EANT) research networks with more than 200 Gbps. The main data

center of WLCG is the Tier 0 at CERN. During Run 2, the data produced by the LHC experiments

exceeded 6 gigabytes per second, being necessary to process these data, through Monte Carlo simu-

lations, to generate the physics analysis. In total, the LHC experiments rely on more than 400 PB

of disk storage, 700 PB of tape storage, almost 1 million CPU cores, and both dedicated and shared

network infrastructures.

Providing a common middle-ware for HEP experiments, the infrastructure allows data and resource

sharing, providing applications that run on cloud facilities. Such infrastructure is distributed across

hundreds of computing centers worldwide under di�erent administrative domains. WLCG has o�-

the-shelf resources with commodity hardware (a typical university computing cluster), and a growing

number of non-standard resources, such as HPCs1, opportunistic/volunteer resources, as well as

commercial and scienti�c clouds.

To keep the WLCG infrastructure operational, various methodologies, techniques, and methods

could be implemented at the data centers. Massive fault tolerant strategies can be applied to the

grid in order to minimise the failure perception to the �nal user. In the other hand, some of these

technologies could be used to prevent, predict and prescript the anomaly occurrences at the distributed

system using ML maintenance approaches.

The main Italian WLCG Data Centre is located at Bologna (Italy) at the INFN-CNAF [7], supply-

ing resources and services through remote access. INFN-CNAF has approximately 40,000 CPU cores,

40 PB of disk storage, and 90 PB of tape storage. Its services generate a huge amount of logs that can

be used in monitoring, diagnostic and prognostic purposes. The amount of produced log data varies in

time, but as illustrative criteria, during the months of May/June 2019, about 420 GB were produced.

1High Performance Computers
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The future expectations are the continuous increasing of the data ow because of the beginning of the

new phase of the HL-LHC project [8].

All of this information could be used to optimise the CNAF QoS, modernising the system main-

tenance, providing a better usage of the resources, preventing faults and unscheduled downtime.

Nonetheless, until 2017 at this data center, all the fault-correction service was done manually by

technical sta� without a signi�cant computing help. Because of the practical appeal, there are some

ongoing projects that aim to characterise the complexity of the diagnostic data and to establish con-

nections among them.

Because of that, the system maintenance problem applied to computing centres is a CERN hot

topic. Many e�orts are being done at WLCG Tier-1 Bologna in order to create predictive maintenance

tools using the log data. A �rst work based on the Elastic Stack Suite catalogues the log records

and anomalies using an embedded unsupervised ML tool [9]. Another initiative uses supervised ML

approaches to predict anomalies of system behavior in an ad-hoc solution [10]. Another work, also

focused on a content-processing strategy, provides a clustering method used to characterize log records

using Levenshtein distance [11]. In particular, it was created a prototype to identify anomalous system

behaviour, using a binary classi�cation, considering the log data generation rate and an One-class

SVM approach [12, 13].

Autonomous system maintenance is a promising approach for this scenario that demands real-time

responses to keep an uninterruptible availability. Currently, there is no automatic log analysis at

INFN-CNAF, considering a prospective scenario of data-production increasing. In these conditions, it

is mandatory the development of smart tools to support the data center operability.

2.2 State of the Art

Emerging technologies contribute to the massive growing of data throughput on networks [14],

boosting the usage of monitoring systems based on Big Data analysis in order to explain hidden

patterns of the running processes [15, 16]. In general, the intention is to identify fault [17, 18] or threat

[19, 20] occurrences through batch or real-time anomaly detection. Data centers are rich environments

of linked technologies organized in a complex mosaic, in which the maintenance problems must to

be approached in a holistic way. In this scenario, it is important to concentrate endeavours on log

data analysis, in order to keep the availability, accessibility, and reliability levels in line with the QoS

agreements [15, 18, 21].

Overall, one of the main data sources to construct the system status is the log analysis [22]. Logs

are generated by multiple services running through the data center. The composition of multiple logs

in order to identify an event is a high-dimensional anomaly detection problem. Due to exponential

searching space, data snooping-bias, and irrelevant features, it is a challenging topic. However, it

is important to note that (i) logging is still challenging not only in academy but also in industry,

(ii) machine learning is an encouraging strategy that can provide a contextual analysis of code execution

to recommendation systems; tool usability is an open-problem in practice, and (iii) to storage log data

e�ciently is still a problem [23].
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Figure 2.1 shows the temporal relationship of di�erent types of maintenance approaches that can be

classi�ed according to the used intervention strategy when an unexpected event occurs [24]. Reactive

or Corrective maintenance is an answer to failure occurrences in order to recover the system stableness,

working as a palliative or curative solution generated through a diagnostic methodology. In the other

hand, preventive maintenance are procedures executed regularly to decrease the probability of a system

failure, as predetermined Maintenance, or condition-based maintenance, in which the intervention is

done as soon as an anomaly is detected. Finally, predictive maintenance involves failure forecasting

methods using dataset of system metrics.

Figure 2.1: Maintenance System (MS) classi�cation according with the MS intervention strategy
related to the moment of the failure occurrence.

According with the previous classi�cation, the system maintenance problem can be split in three

main steps: (i) monitoring, (ii) diagnosis, and (iii) prediction [6]. Monitoring (i) log data can ap-

proach the apperception of the current system state, through symptoms and status changing (ii),

avoiding, or forecasting (iii) system failures. This thesis concentrates on the monitoring (i) and diag-

nosis phases (ii), being classi�ed as reactive maintenance solutions. The present research provides the

necessary condition to the direct application of supervised prediction (iii) solutions to maintenance

systems.

2.2.1 Reactive Maintenance

Reactive maintenance is based on a response to an event occurrence in a software detected by a

monitoring system. After an anomaly to be individualised, a diagnostic task is triggered to identify its

causes. Anomalous occurrences in large-scale systems can impact thousands or even millions of users,

being crucial to be identi�ed by real-time applications to keep the infrastructure operability.

As logs are omnipresent in computing systems, it is an important source of functioning details

of running systems. Monitoring system based on anomaly detection can optimise the diagnostic pro-

cess, selecting the most promising piece of logs to be processed. Monitoring systems can be both

task-dedicated focusing to �nd a speci�c type of anomaly, and general-purpose, looking for generic
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functioning outliers. In both cases, anomaly detection problem2 can be used as monitoring strategy

as well as part of the diagnostic phase.

Monitoring System

Monitoring systems provide a constant surveillance of running software on a infrastructure, in-

cluding services and applications. Modern software development and execution monitor the system

behaviour in production [23]. Considering cloud computing and large-scale distributed systems, the

modelling of a monitoring systems must to have scaling potential to be automatised [25]. Another

important consideration is the exponential searching-space problem. To overcome the issue, a research

combines an unsupervised Deep Belief Networks approach with an anomaly detection technique based

on One-Class SVM [26].

Anomaly detection can be explored by classical ML approaches. In particular, unsupervised tech-

niques can be applied, including methods as K-mean, and Expectation-Maximisation Clustering; pass-

ing through supervised ones as Classi�cation-Tree, Fuzzy Logic, Neural Networks, and Support Vector

Machine (SVM); statistical methods as Bayes Networks; and �nally, hybrid possibilities as Cascading

Supervised techniques, and combining of unsupervised and supervised approaches [19].

One important variation of this problem is the real-time anomaly detection (RTAD). An approach

treats the problem considering streaming data with an online sequence-memory algorithm called Hi-

erarchical Temporal Memory [27]. In another research, a log-based network monitoring system is

designed to oversee the network security, gathering and counting device log to detect intruders using

the tra�c on the infrastructure [28]. Another project reviews RTAD also applied to network security,

concluding that it is an open problem since the current approaches are not e�cient enough [20].

Monitoring large-scale applications is a complex task since the nature of execution data is syntac-

tic and unstructured. An approach formalises logs using formal semantics to combine their meaning.

In order to automate monitoring and management tasks in the mentioned solution, a social-network

analysis treats missing and incomplete data, being tested in a large-scale industrial use-case applica-

tions [29].

Another large-scale proposal, MoniLog, is a real-time distributed approach that detects sequential

anomalies using a multi-source log stream. For this approach, it is necessary that an expert labels

and evaluates anomalies according with their criticality [25]. Considering an information-security case

study with 10,000 users with a high event rate, a research implements a Big Data ecosystem, in which

the most important activity is the data cleaning phase using a comparative technique based on Fellegi-

Sunter theory3. This task removes useless information and decrease the storage needs, concluding that

some data could be safely ignored [30].

2More related works about anomaly detection in Chapter 4.
3The Fellegi and Sunter method is a probabilistic approach to solve record linkage problem based on decision

model.
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Diagnostic Systems

Diagnostic systems infer the possible causes of an event occurrence, being a critical component as

information source to decision-making recommendation systems that work as prescriptive maintenance.

Diagnosis is essentially a semantic problem, not only di�cult to model but also expensive to process.

In general, diagnostic systems are ad-hoc implementation of engineering applications. In these cases,

the possible states are limited, known, and lightly dependent of user behaviour. On the other hand,

diagnosis is a harder problem in computing centers, since the scenario can evolve potentially hundreds

or millions of users in an in�nite and evolving set of possible states.

A work shows how multi-process domain data can be extracted, and semantically transformed into

appropriate formats to support the discovery, monitoring and enhancement of real-time applications.

The solution individualises patterns and behaviors of the computing systems through further semantic

analysis of the learning models produced by means of the Semantic Learning Process Mining formali-

sation, generating an event ontology basis. The algorithm is technically described as Semantic-Fuzzy

Miner [31].

Diagnosing electronic systems are uncertain and ambiguous if based on symptoms description.

In this sense, a traditional expert systems are not e�ective in providing reliable analysis. A work

proposes a fuzzy logic-based neural network (FLBN) as an implementation to a diagnostic system

based on symptoms of electronic systems using a real call-log database. FLBN is able to perform fuzzy

logic rules learned from samples considering simple systems with a performance similar of a human

expert [32].

In a research, industrial case studies illustrate the use of techniques to data pre-processing as

wavelets and principal component analysis, multivariate statistical analysis, and unsupervised ma-

chine learning approaches. Also it is used inductive learning for conceptual clustering, and knowledge

discovery for automatic analysis and interpretation of operational processes in order to improve the

performance quality of applications [33]. In other research, a log-based tool is proposed to approach

the minimisation of the impact of network convergence events, introducing the Route Convergence

Visualiser used to diagnose the event and quantify the amount of impacted users during a network

incident [34].

Regarding to fault diagnosis systems on aircraft, the state-of-the-art combines an expert-based

model that associates faults and symptoms through a Naive Bayes reasoner. For complex systems

with high-coupled components, this kind of modelling are often incomplete and inaccurate. In order

to maintain the original model structure, a paper combines information from adverse log events with

real ight data. The solution is extended from a Naive Bayes learning to a Tree Augmented Naive

Bayesian algorithm to capture the component dependencies to the diagnostic system. After that, the

learning algorithm is trained using real ight data. The limitation of this approach, as well as the

majority of diagnostic system, is the dependence of a previous system study by a human expert in an

ad-hoc project [35].

Usually, log-based diagnosis to computing systems are based on log parsing approaches as basis
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for further analyses 4. Computing systems need a much more complex log analysis because of the

large number of high-coupled computing components and their interaction with a big number of users.

Di�erently of well-de�ned engineering applications, computing systems deal with a large amount of

software from di�erent origins and purposes, converting the fault diagnosis in a hard syntactic and

semantic problem.

2.2.2 Predictive Maintenance

Predictive maintenance can be applied in a huge variety of computing and engineering applications,

forecasting events and cutting operational costs. It is essentially based on the recognition of the system

state using machine learning methods to diagnosis and to predict trends in the system behaviour,

involving decision-making tasks to autonomously preserve the system stability.

In monitoring systems, predictive maintenance is the forward step from anomaly detection. Once

its discovery is clear, the next matter is to forecast its occurrence. A related paper applies predictive

maintenance in a cloud manufacturing case, providing a set of machine tools from an exhaustive

combination of ML algorithms, including Principal and Independent Components Analyses, and 2

types of features selections [36].

Still in a cloud manufacturing issue, a research analyses the quality of a real-time predictive

management cloud-based system, distributed by a cloud-storage provider, using the time-to-failure

metric applied on hard disk drives (HDD) [37]. In another work, also in a HDD monitoring in a cloud

scenario, it is presented a real-time predictive maintenance system based on Apache Spark to identify

a forthcoming HDD failures in data centers [22]. Still in the prevent equipment downtime, a work

approaches a multiple-instance learning method by mining equipment logs [38].

Considering data-driven modelling, the degradation of the model performance problem is mod-

elled as a data-imbalanced distribution. The skew data distribution problem can generate irregular

patterns and trends, harming their recognition. A paper proposes a hybrid machine learning approach

that blends natural language processing techniques and ensemble learning to predict extremely rare

aircraft component failures. The solution is tested using a real log-based maintenance system dataset

considering imbalanced data [39]. Another paper deals with the problem of forecast rare faults in the

aircraft real-word datasets. A solution approaches the predicting of extremely rare faults combining

two deep learning techniques: (i) Auto-encoder, and (ii) Bidirectional Gated Recurrent Unit network.

In (i), the component is trained to detect rare failures, and its result is used to feed the module in (ii),

predicting the next fault occurrence [40].

Predictive maintenance can be used to forecast equipment failures, scheduling appropriately the

needed corrective maintenance, avoiding unexpected equipment downtime. A paper proposes a data-

driven approach for estimating the likelihood of machine breakdown in a future time interval in man-

ufacturing systems. The implementation uses real-world datasets including machine log messages,

event logs, and operational information, applying data-mining, feature-extraction, and machine learn-

ing methods to indicates machine failures up to 168 hours in advance [41]. Another work approaches

4See for related works of log parsing in Chapter 5



26 CHAPTER 2. DATA CENTER AND MAINTENANCE SYSTEMS

the predictive maintenance applied to equipment failure problem through a data-driven method based

on multiple-instance learning. The application also uses real datasets of event logs related with medical

equipment [42].

2.3 System Maintenance Metaphors

The system maintenance problem can be mapped in well-de�ned and widely explored research

areas since it is possible to connect them metaphorically. This strategy is broadly used in computer

science approaches, i.e., natural computing and bio-inspired algorithms are motivated on the nature

observations, for example. These insights generate successful models that are used as basis of well-

established research areas, as neural and deep networks, evolutionary and genetic algorithms, bioinfor-

matics, among others. Gossip algorithms are used on virus spread in epidemiology. Swarm intelligence

algorithms can look for the best solution in the search space of optimisation problems. Collective

intelligence is used to approach decision-making systems. All these applications have in common the

fact that they are based on the solution of unrelated problems. The power of the metaphor is to create

an interpretable link among new and old issues towards the AI explainability.

In this section, two perspectives are proposed as system maintenance inspirations: (i) health care,

and (ii) language translation. In (i), a system is seen as a patient in which it is important to keep

the quality of life, monitoring his health and diagnosing diseases. On the other hand, in (ii), the pair

system/system maintenance is modelled a conversation between a patient and a therapist that speak

di�erent languages. In both cases, the professional that tries to help the patient can not communicate

directly to him for some reason. In the �rst case, the patient is unable to express what he is feeling,

maybe because he is a baby or a dog, for example. Because of this, the patient's behavior is monitored

in order to infer his quality of life. In second case, the patient can not speak the same language of the

therapist, being necessary to translate the communication before to interpret the signs. In both, there

is a semantic gap to ful�l in order to improve the quality of life of the patient or, in our case, to keep

the QoS of the system.

2.3.1 Health Care

Aiming to keep the QoS, system maintenance is a health care approach. In this metaphor, a system

is a person, and its functioning expresses the quality of his life. Patient care protocols [43] can be used

as inspiration to this system maintenance analogy, as:

ˆ Anamnesis: is the process to remember the past, in order to collect and store the patient's

medical history. Particularly, the catamnesis is the medical history of a patient from the onset

of a disease. Both registrations help in the diagnosis phase.

ˆ Prophylaxis: is the set of techniques used to prevent or protect against diseases or control their

possible spread.

ˆ Diagnosis: is the analytical process to identify the disease or condition by scienti�c evaluation.

The diagnostic processevaluates the factors that inuence the patient's status, using the previous
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information collected by the anamnesisphase, and medical exams. Each disease/condition has

associated adiagnostic sensitivity and speci�city , i.e., the probabilities of the ill person be

diagnosed with a given disease, and a healthy person be not, respectively.

ˆ Prognosis: is the prediction of the probable outcome of a disease based on the patient's health

condition and on the usual development of the illness. It evolves issues as duration, evolution,

and conclusion of the patient's health condition, using the prognostic indicators as monitoring

metrics.

Figure. 2.2 shows the connection of medical areas, exploring the isolated results collaboratively to

promote the patient health. There are two concomitant processes: (i) predetermined prophylaxis, and

(ii) health monitoring. In (i), it is explored issues as health and sexual education, healthy eating and

regular physical exercises promotion, vaccination, body and mouth hygiene, among others. The health

monitoring is detailed in (ii) through anamnesis, medical tests and propaedeutics5. If any exam results

are anomalous or important events happen, the health professional begin the diagnosis and prognosis

steps, using all available information provides by the medical records or eventual extra exams. When

the health professional is able to diagnose the patient, he can decide the suitable treatment according

with his beliefs.

In general, prognosis is strongly connected to the diagnosis, being an obligatory step before to

choose the best possibility among the feasible treatments. The information is stored and updated

whenever something happens in themedical records, being available in whole process. The moni-

toring step is based on information-collection activities, asanamnesis, catamnesis, medical exams,

propaedeutics, and appointments. The evaluation moments, in which a data interpretation is needed,

are represented by diamonds in the owchart. The dashed rectangles, themonitoring and the med-

ical decision-making, assemble arguments in broad concepts. The diagonal arrows at predetermined

prophylaxis and health monitoring indicate the concomitant continuous-ow activities, and the other

arrows indicate the next task of the activity. The solid-line rectangles show a set of techniques sum-

marised in medical topics.

2.3.2 Speech Translation

Log data are the registration of inner system processes. As thoughts in the mind, logs are impre-

cise, indirect and codi�ed. In this sense, the hole of the system maintenance is to interpret the events,

extrapolating towards the causes, providing a comprehensive message that summarises what is hap-

pening. In this metaphor, the under-observed system is a patient undergoing therapeutic treatment

with a therapist, the system maintenance, that can not speak his mother tongue.

The communication between patient and therapist is given by sign exegesis. The core of this

approach can be subdivided in (i) the quality of the translation between the patient-therapist languages,

and (ii) the mapping between how well the patient can express himself and how clever is the therapist

to interpret signs and infer traumas. In (i), the patient expresses himself through a set of signs learned

5propaedeutics is a set of techniques used to generate an orientation basis to the diagnosis phase.
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Figure 2.2: The owchart represents the medical attendance with the main steps of the process.

through his life experience. Since the patient expresses his thoughts in a indirect speech style6, the

communication has not just one possible interpretation. The language is developed as a tool used

to tell stories. The language complexity is related to the necessity to communicate the occurrence

of events and the sophistication level of a language is related to necessity to tell elaborate stories.

In a data center is not di�erent: the services and systems must communicate the event occurrences,

narrating the code execution story.

To achieve the root of trauma, it is necessary to proceed a second translation. In this turn, it is

necessary to adjust the abstraction level between patient's thought and the therapist's comprehension

ability. In the end, the conversation can be full of misunderstanding, as in every communication

process. In (ii), the mapping between observable and cause events, based on inverse engineering, is the

crux of the system maintenance. Each observable event is a patient behavior, i.e., an interpretation of

the translation of the patient speech. Each patient behavior can be generated by one or more causes,

i.e., traumas. In its turn, each trauma generates just one patient behavior, i.e., an observable event.

Because of that, the observable event can be mapped to one or more causes, being not an unidirectional

mapping of the patient's behavior and the trauma, because the observable behavior can be the result

of a sum of behaviors.

Figure 2.3 shows a model of reasoning based on gossip, mapping event occurrences in linguistic

expression. An event is de�ned as a set of logs. The dotted circles represent the capacity of the events

or words change maintaining their meanings. The dashed-dotted rectangle are the occurrence and

6Since the therapist can not speak the patient's mother language.
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language spaces. Event occurrences furnish a narrative to explain the system status. To comprehend

this story is a matter of abstraction level changing, summarising extensive time intervals in words or

phrases. Since the majority of languages are time-based, events can be distributed on the timeline in

past-present-future variations as well as the system maintenance diversity.

The mapping between the occurrence and language spaces is the interpretation of happened events,

increasing the abstraction level of the perceived information. The mapping de�nes the language, and

the event occurrence specify the sophistication level of the language needed to communicate in a

culture. Data centers provide the culture in which the events are inserted, and consequently, give the

required degree of expression.

Figure 2.3: The mapping between the occurrence and language spaces is the interpretation of
happened events, increasing the abstraction level of the perceived information.

2.4 Proposed Framework

In this work, the heath system metaphor is used to combine the maintenance approaches, being

summarized in Fig. 2.4. The owchart is divided in 3 concomitant processes: (i) prevention, (ii) iden-

ti�cation, and (iii) intervention. In (i), the processes aim to avoid damages preventively during a

predetermined time intervals as hardware replace and non-free and/or non-open source software up-

date/upgrade. In (ii), it is presented the great part of the maintenance system, including the monitor-

ing, the predictive maintenance, and the diagnostic system. Nowadays, the majority of the researches

are concentrated in this module of the owchart. The monitoring phase analyses the features extracted
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Figure 2.4: Maintenance framework based on an approach of Health Maintenance.

from the computing system, and uses this information to predict trends or anomalous event (Predictive

Maintenance), and to diagnose the event occurrences (Diagnostic System). This phase produces the

basis of the decision-making system in (iii), applying the appropriate prescriptive maintenance ap-

proach, correcting (Corrective Maintenance) or preventing (Condition-based Preventive Maintenance)

damages.

A complete autonomous decision-making systems is an utopia currently. The state-of-the-art

is far away from a maintenance system able to manager itself without any human interference to

complex applications. A full-autonomous maintenance system is a hard problem leading with data
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transformations in di�erent abstraction levels, uncertainties and inaccuracies in numerous processing

steps. This work is mainly focused on approaching monitoring and reactive maintenance, the anomaly

detection approaches in Chapter 4, and diagnostic system with the log parsing method in Chapter 5

(see Fig. 2.4).

The proposed modelling can be applied in a widely range of applications that can be mapped to

the prevention-identi�cation-intervention framework. The framework is a composition of monitoring

and decision-making systems. Obviously, the �rst alternative application is health care systems with

the framework directly applied. However uncorrelated problems can be approached by the framework

as social context-based application, identifying event occurrences, and their impact on the society, for

example, or in the industry, being applied in the production chain. Independently if the input data

is textual, numerical, or pictorial, the framework identi�es the needed steps to generate autonomous

systems.

2.5 Summary

The chapter provides the background scenario of this thesis and its motivation, introducing a

landscape of its topic - the system maintenance. It explains the state-of-the-art of the main types of

variations of maintenance systems. It is formulated two di�erent metaphors to approach the problem

at a deeper level, organising the sub-problems in a framework.
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Chapter 3

Evolving Fuzzy Granular Computing

This chapter introduces de�nitions and concepts of granular computing, including fundamentals

of interval analysis and fuzzy sets from the granular computing perspective. Granular computing is

mainly aligned with the fuzzy systems theory. Related concepts such as fuzzy sets, interval analysis,

granular information, information granulation, aggregation function, evolving intelligence, and granular

modelling are described and discussed. The main sources of information for this chapter are [44, 45, 46].

3.1 Granular Computing as Paradigm

Granular computing is an information processing paradigm that represents information through

a set of entities, thus revealing multi-levels of data detailing to �nd useful abstractions to approach

complex real-world problems. The meaning of the entity depends on the application. The entity

de�nes a brick that forms the wall of a rule-based model. Its representation is not unique; its choice

is essential to the quality of the solution and should conform to particular probability or possibility

data distributions. The properties of a set of granules directly a�ect the accuracy of a model, viz., a

classi�cation or prediction model.

Evolving fuzzy granular solutions are online modelling approaches based on the human reasoning

considering uncertain data to explain the trends that govern complex system. Dynamic and apparently

chaotic environments provide information ows in which granular modelling can bring to light the

mechanisms that modulate the system behaviour. Intrinsic details must be left behind in the name of

a greater understanding of the whole problem.

Granular computing deals with big practical concerns as how to handle data and information

from heterogeneous sources, how to obtain accurate and interpretable human-centered models from

uncertain data, and how to interpret the results and the model. In particular, uncertainty is an

information attribute since the human ability to deal with the reality is insu�cient to capture all

details. A granular computing method manages and learns from uncertain data streams. The resulting

granular model should describe the essential aspects of the process or phenomenon that generates the

data. A granular method aims to balance accuracy and model understandability by accepting a

33
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level of uncertainty regarding the elements that de�ne the problem, such as the data and the model

representation and parameters.

Currently, data-stream-driven modelling is usually a Big data problem. Many issues frequently

arise on extracting information from large data sets through online methods. The veracity and validity

of a wide variability of unstructured data is highly questionable. Related to the veracity and validity

of the data, it is considered not just the data accuracy, i.e., how precise is the collected data, but also

how valid and relevant the data are to a given application. Another important consideration is how

long a data has to be considered as relevant to the current status of the system, i.e., how much volatile

is the dataset. All these elements are extremely problem-driven, depending not only on the method

used to collect the data and its respective data quality but even the approached problem class.

Aggregation functions are applied to the data to change the abstraction level of the dataset. The

data aggregation works as magni�er, bringing the point of view closer and further away to answer

distinct types of questions through the data. Di�erent levels of data abstraction can intuit di�erent

insights about the system, thereat to choose the appropriate abstraction level is important to identify

a good enough standpoint to the problem.

In a data-driven application, a higher output precision is often related to a higher meaningless

result. In this sense, meaningful and precision are output features that can not be optimised in the

same problem during the same time. It is the problem of the machine learning accuracy: obtaining a

higher output accuracy is often associated to use black-box machine learning methods. You are able

to predict (or classify) accurately the data, but not to explain the reasoning used to get there. In

the other words, a precise answer is usually given by a higher-order non-linear model, and it is highly

likely that you are not able to understand which terms are determinant to achieve that output. This

is a big issue specially in applications coupled with human-centred decision-making systems.

The data granulation comes from the natural need to abstract and summarise the system infor-

mation to guide the human comprehension and decision making processes. Following this strategy,

fuzzy linguistic models can approach a data-driven problem that must to be linguistically understood.

Extracting meaningful knowledge from non-ending data stream, the modelling dictates the way the

humans deal with complexity, obscurity, and oblivion.

Commonly in real-world problems, data streams are non-stationary, non-linear, and heterogeneous,

being subject to trend changing. In this scenario, a natural technique is to waive unnecessary details to

assist the interpretability, transparency, applicability, and scalability of information systems. Specially,

the behavior of non-ending and non-stationary data streams can be analysed by the evolving Granular

Computing.

3.2 Fundamentals

Granular Computing is based on the conception of information granules generated by the granu-

lation process, compounding granular worlds. The paradigm basis is found on mathematical concepts

as fuzzy sets, intervals, and aggregation functions, being the main topics to the comprehension of this

thesis.
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3.2.1 Interval Analysis

Intervals are a branch of mathematics used as a problem-solving tool. The con�dence interval

and standard deviation are typical intervals used in scienti�c applications. In the granular computing

context, intervals are granule instances that might appear in both formats, number or set; helping to

interpret system analyses. The high interpretability of the granular models is an essential quality of

applications that approach human-centered problems.

Intervals can be used as an expression of measure imprecision of a featurej , in which its real value

is in the closed bounded set, [l ; L ], in which l and L are the endpoints with l < L , and l; L 2 R.

Suppose a system states represented by a data stream formed by a tuple of features,s =

(x1; : : : ; x j ; : : : ; xn ). Such system representation is in a n-dimensional Cartesian product space, in

which its dimension j is taken by the hyper-rectangle projection of the featurej , generating the j -

axis. The s tuple is associated to an interval vector I = f I 1; : : : ; I j ; : : : ; I n g, in which all I j are

fuzzy intervals. Each x j 2 R belongs to the respectiveI j interval with � j degree of membership with

� j > � min .

Operations

Consider a point x as a degenerated intervalI . Interval vectors are n-dimensional hyper-rectangles

I = f I 1; : : : ; I j ; : : : ; I n g, in which each interval dimension, I j , is a special case of interval vectorI with

j = 1. Systems, de�ned by a feature set, can be modelled as a tuple composed by a n-dimensional

interval vector, I , in which every I j = [ l j ; L j ], and

[l j ; L j ] = f x : l j � x � L j g: (3.1)

Operations from Set Theory, as intersection,\ , and union, [ , can be applied at intervals. Considers

the intervals I 1 = [ l1; L 1], and I 2 = [ l2; L 2]. If L 1 < l 2 or l1 > L 2, then I 1 \ I 2 = ; , otherwise the

result of I 1 \ I 2 is the interval given by

I 1 \ I 2 = [ max(l1; l2); min (L 1; L 2)]: (3.2)

Now, considering I 1 and I 2 as interval vectors, their intersection is empty just if all intersection

operations, taking the respective intervals two by two, are empty. Likewise, union of nonempty and

non-disconnected intervals is

I 1 [ I 2 = [ min (l1; l2); max(L 1; L 2)]: (3.3)
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The convex hull of two interval vectors, ch(I 1; I 2), is the smallest interval vector

ch(I 1; I 2) = ( ch(I 1
1 ; I 2

1 ); : : : ; ch(I 1
j ; I 2

j ); : : : ; ch(I 1
n ; I 2

n )) ; (3.4)

containing all elements of both and among them, considering also disconnected intervals, in which each

chj , associated with the featurej , is given by

chj (I 1
j ; I 2

j ) = [ min (l1
j ; l2

j ); max(L 1
j ; L 2

j )]: (3.5)

This operation is used to connect independent sets, or disconnected intervals. The width of an interval

vector I , wdt(I ), is de�ned as

wdt(I ) = max(wdt(I 1); : : : ; wdt(I j ); : : : ; wdt(I n )) ; (3.6)

in which

wdtj (I j ) = jl j � L j j: (3.7)

In addiction, the midpoint of an interval vector I j of I is de�ned as

mpj (I j ) =
l j + L j

2
; (3.8)

composingmp(I ) = ( mp(I 1); : : : ; mp(I j ); : : : ; mp(I n )). The operations ch(I 1; I 2), wdt(I ), and mp(I )

are explicitly applied in the fuzzy granular classi�ers and predictors in this thesis.

Interval vectors, I 1 and I 2, can be manipulated by the operation? taken their elements two by

two, I 1
j ? I 2

j , in which ? = f + ; �g , with

I 3 = I 1 ? I 2 = f x1 ? x2 : x1 2 I 1; x2 2 I 2g; (3.9)
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being I 3 the resulting interval vector. The product operation of the two independent interval vectors1,

I 1 and I 2, is de�ned as

I 3 = I 1 � I 2 = f x1 � x2 : x1 2 I 1; x2 2 I 2g: (3.10)

The reciprocal operation is de�ned as

1
I

=

(
1
x

: x 2 I

)

; (3.11)

if 0 =2 I . So,

1
I

=

"
1

L
;

1
l

#

: (3.12)

The division of two independent interval vectors, I 3 = I 1

I 2 , is de�ned as

I 1

I 2 = I 1 �
1
I 2 =

(
x1

x2 : x1 2 I 1; x2 2 I 2

)

: (3.13)

I 3 = [ l3; L 3] is given by

[l3; L 3] = [ min (l1 � l2; l1 � L 2; L 1 � l2; L 1 � L 2); max(l1 � l2; l1 � L 2; L 1 � l2; L 1 � L 2)]; (3.14)

with � = f + ; � ; � ; =g.

Another important operation, that can be applied in the granular approaches, is the distance

between theI 1 and I 2 interval vectors. The distance d(I 1
j ; I 2

j ) between each correspondent elementI 1
j

and I 2
j is

d(I 1
j ; I 2

j ) = max(jl1
j � l2

j j; jL 1
j � L 2

j j): (3.15)

In many applications, it is important to have a single number associated to the distance between

intervals. Because of this, it is possible to consider distance measurements based in norms as the

Euclidean or p-norm, for example. In this work, it is used a Maximum norm,

D(I 1; I 2) = max(d(I 1
1 ; I 2

1 ); : : : ; d(I 1
j ; I 2

j ); : : : ; d(I 1
n ; I 2

n )) ; (3.16)

1Two sets A and B are said independent if their intersection A \ B = ; . Extending the concept to interval
analysis, two intervals I 1 and I 2 are independent if I 1 \ I 2 = 0, and two interval vectors are independent if for
all I 1

j \ I 2
j = 0. In other words, I 1 and I 2 are independent if they are disconnected.
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to summarized the d(I 1
j ; I 2

j ) distances. All operations, exceptwdt(I ) and D(I 1; I 2), can be expanded

from intervals to interval vectors as in Eq. (3.4).

Interval Functions

A interval function f (I ) is an extension off (x), in which x 2 I given by

f (I ) = f f (x) : x 2 I g; (3.17)

extendable to interval vector by

f (I 1; : : : ; I j ; : : : ; I n ) = f f (x1; : : : ; x j ; : : : ; xn ) : x j 2 I j g: (3.18)

The f , de�ned in the D domain, can be segmented in \pieces" monotonically increasing or decreasing,

given by a sequence ofI j intervals. Since usuallyf (I j ) is not de�ned by a box or even by closed format,

f (I j ) can be approximated by an inclusion function F (I j ) de�ned by a box enclosing the range of a

continuous f , in which f (I j ) � F (I j ).

The optimal F � (I j ) is when F (I j ) is the interval hull of f (I j ), i.e., the smallest box that contains

f (I j ). F � (I j ) is used to limited the search space in whichf is de�ned considering the interval vector

I j . To de�ne a F � for all D, it is needed a set ofF �
j de�ned in I j that delimits the search space off

into a sequence of hyper-rectangles inD.

3.2.2 Fuzzy Sets

In general, complex systems are de�ned by a non-linear relationship among a high number of

variables. All these variables are associated to a given level of imprecision and uncertainty. Imprecision

is related to the physical limitation of measurement of a variable value or the limitation of its numerical

representation. On the other hand, uncertainty is an attribute of information since information is

statistical in nature [47]. To provide more formalism to the variable treatment as error analysis, the

Fuzzy Set Theory provide the needed mathematical formalism to the uncertainty model.

Related to the numerical precision in computing systems, the numerical handling is limited by the

binary representation. In this sense, each number is an approximation of the real value, in which,

sometimes, matches exactly it. Considering numerical intervals as an in�nite set of real numbers, its

approximation is an overlapping representation of the possible numbers in the range.

Introduced by Zadeh [48], fuzzy set is an approximation set taken as the extension of the classical

concept of sets, in which its elements have a degree of membership. Using the interval terminology,

fuzzy arithmetic is based on the extension of the arithmetic applied to fuzzy sets considering restric-

tively fuzzy sets as intervals. The type-12 fuzzy set combined with fuzzy intervals analysis help to deal

with the uncertainty modelling.

Consider I = [ l ; L ] and the function f (x) de�ned in R

2The type-1 fuzzy set, di�erently of the type-2 fuzzy set, has an invariable membership function.
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f (x) =

8
<

:

1 : x 2 I ;

0 : x =2 I:
(3.19)

The f (x) function can degenerate to a singleton functions(x) if l = L . Since intervals enclose a set of

real numbers, its degenerated representation, i.e. [b; b], contains a unique value with height 1, that is,

a singleton. In this scenario, interval analysis can be considered as a subset of the fuzzy set theory.

The main di�erence between intervals and fuzzy sets are the possibility of elements of fuzzy sets

have a partial membership, providing a smooth border of membership from the complete belongingness

to a full exclusion, as

f (x) =

8
>>>>>><

>>>>>>:

� A : x 2 [l; � ]

1 : x 2 [�; �]

�A : x 2 [� ; L ]

0 : otherwise

: (3.20)

This modelling merges the concepts of membership functions and intervals, permitting in�nite solu-

tions, considering the� A and �A choices. Among the possibilities, the trapezoidal family-like member-

ship functions are a popular choice in fuzzy applications.

Fuzzy sets catch the essential information, generating granules to describe and identify phe-

nomenons using basic concepts as linguistic variables, fuzzy rules, and fuzzy rules basis. The partial

membership structure permits absorbing new information to an existent domain and discovery new

domains through the data.

Fuzzy set A are de�ned by their A : X ! [0; 1] membership functions. In this thesis, it is

considered a trapezoidal (l; �; � ; L ) and Gaussian (�; � ) functions, Neural networks, and fuzzy intervals

as strategies to identify the partial membership of new samples.

In the context of this thesis, it is important to introduce some concepts. A normal fuzzy set has

at least one elementx of the universeX with a membership function equal to 1, i.e.,

supx 2 X A(x) = 1 : (3.21)

Other two important functions are support supp(A), and core core(A) of a membership function, and

� -cut of a fuzzy set A, A � , in which,

ˆ supp(A) is the set of elements ofX with nonzero membership degrees inA,

ˆ core(A) is the set of elements ofX with membership degrees equal to 1, and

ˆ A � is the set of the elements ofX , in which the membership degreeA(x) is greater than the

value � , i.e., A � = f x 2 X jA(x) > � g.
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When � = 0 (Support, until � � 0 but � 6= 0), and � = 1 (core) are boundary cases of� -level sets.

Another important concept for the application is the convex applied to fuzzy set. Considerx1; x2 6= 0,

in which x1; x2 2 X :

A(�x 1 + (1 � � )x2) � min (A(x1); A(x2)) ; (3.22)

in which � = [0 ; 1]. Concepts introduced to intervals, asmp(A), wdt(A), ch(A1; A2), A1 [ A2, and

A1 \ A2, are extended to a membership functionA, i.e., trapezoidal function (FBeM), and applied

to neural networks (eGNN). In eGFC, the Gaussian membership function is not explicitly used, but

mp(A) and wdt(A) can be extended as� and � , respectively3. Additionally, considering the fuzzy sets

A1 and A2, A1 is a subset ofA2, i.e., A1(x) � A2(x), if and only if, each element x 2 A1 is also an

element ofA2.

Fuzzy Interval

Fuzzy intervals and fuzzy numbers are classi�ed as fuzzy granular data de�ned as potentially

inaccurate, hardly well-de�ned and quanti�ed, in which it is often needed a pre-processing step that

introduce more uncertainty in the model.

Consider an upper semi-continuous membership functionA : X ! [0; 1], in which x 2 X with

A(x) > � , i.e.; the � -cuts of A are closed intervals. Let its universeX be the set of real numbers and

A satis�es the normality condition, 9x 2 X in which A(x) = 1. The fuzzy set A is a fuzzy interval I

if it is de�ned by

ˆ a monotone increasing membership function� A ,

ˆ at least an element with a membership value equal to 1,

ˆ a monotone decreasing membership function�A , and

ˆ zero otherwise;

as described in the function 3.20.I satisfy the normality and convexity conditions as well asA. If there

is just a single x 2 X with A(x) = 1, I degenerates to a fuzzy number4, represented by a triangular

or Gaussian membership functions, for example. Considering the de�nition, a trapezoidal family-like

functions �t also with fuzzy interval.

3.2.3 Aggregation Functions

Consider aggregation operators de�ned asC : [0; 1]n ! [0; 1], n > 1 in which input values, given

by an unit hyper-cube [0; 1]n , are combined into an output value in [0; 1]. The aggregation operators

satisfy two conditions:

ˆ monotonicity in all arguments, in which given x1 = ( x1
1; :::; x1

n ) and x2 = ( x2
1; :::; x2

n ), if x1
j � x2

j

8j then C(x1) � C (x2);

3For more details, see Chapter 4
4Fuzzy numbers are the extension of R considering multiple sources of uncertainty.
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ˆ boundary restrictions: C(0; 0; :::; 0) = 0 and C(1; 1; :::; 1) = 1.

The used aggregation operatorsC are T-norm, S-norm, Averaging and compensatoryT-S aggregation

operations.

T-Norm

T-norms (T) satis�es the boundary conditions T(�; �; :::; 0) = 0 and T(�; 1; :::; 1) = � , � 2 [0; 1],

and their neutral element is e = 1. T-norms are commutative, associative, and monotone operators on

the unit hypercube, and can be presented as the minimumT-norm operator,

Tmin (x) = min
j =1 ;:::;n

x j : (3.23)

It is the strongest T-norm because9x 2 [0; 1]n , in which T(x) � Tmin (x), being idempotent, symmetric,

and Lipschitz-continuous5.

S-Norm

S-norm operators (S) have the boundary conditions S(�; �; :::; 1) = 1 and S(�; 0; :::; 0) = � on

the unit hypercube, being as well commutative, associative, and monotone. Their neutral element is

e = 0.

As T-norms, S-norms can be presented through many de�nitions. The maximumS-norm operator,

Smax (x) = max
j =1 ;:::;n

x j ; (3.24)

shows theS-norms stronger than T-norms, in which Smax (x) is the weakestS-norm, since9x 2 [0; 1]n

in which S(x) � Smax (x) � Tmin (x) � T(x).

Averaging

If 8x 2 [0; 1]n , the aggregation operatorC is bounded by Tmin (x) � C(x) � Smax (x), then it is

averaging operator. Its main restriction is that the output cannot be lower or higher than any input

value, being idempotent, strictly increasing, symmetric, homogeneous, and Lipschitz continuous. The

C operator can be de�ned as the arithmetic mean,

M (x) =
1
n

nX

j =1

x j : (3.25)

Compensatory T-S

CompensatoryT-S operators are a combination ofT-norms andS-norms in order to balance their

e�ects. T-S aggregation is uniform, not depending on parts of the underlying domain. It is composed

5 It is a strong form of uniform continuity for functions, limiting how fast the it can change.
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by the application of a weighted quasi-arithmetic mean to aT-norm and a S-norm outputs. The T-S

operator, L (x), can be de�ned as

L(x) = (1 � v)T(x1; : : : ; xn ) + vS(x1; : : : ; xn ); (3.26)

with v 2 [0; 1]. T-S operators satis�es S(x) � L (x) � T(x); 8x 2 [0; 1]n .

3.3 Granulation

The process of built information granules are called as information granulation. It can be applied

in three domain, i.e., time, space, and feature. The space is the search space, and it is deeply correlated

to the problem nature. In the system maintenance problem, the search space of interest is the state

space, in which each state is time-correlated, being de�ned by a feature set extract from the system.

3.3.1 Domains

The human reasoning naturally works considering information granules. In the time domain, the

humanity organized the time in di�erent granular systems according with the environmental references

as the granules day and year based on the sun rotation and translation respectively.

Nonetheless, as these two granules are not enough to organized all the human activities, other

size of granules became necessaries, and with that, the derived multiples and parcels were emerging

to make life easier. Weeks, seasons, decades, months, hours, minutes, seconds have been emerging to

keep up with problem solving needs. Less precises de�nition also are used in everyday life as the time

to �nished some task, or to arrive some order or in some place, to take a meeting, and so on.

All these terminologies are evolved with the concept of time granulation. For us, the idea of the

time imprecision is intuitive. Maybe it is not possible to precise the exact moment of a natural human

birth, for example, but we know that it will be happen usually in some moment between the thirty-

seventh and forty second week of the pregnancy, being most likely around the fortieth week. We are

pretty sure that the human birth will happen in this time interval, although outliers may occur as a

twenty-�ve-weeks baby.

Obviously, the idea of granulation can not be confused with modularization. In the problem

description, it is possible to identify type of modules that compose the system. For example, in the

case of predictive maintenance in computing centers, the respective log-based system is the computing

center compounded by diverse modules as machines, peripherals, services, software, among others;

all of them maintainable. Each module is a set of elements that relates to each other and to other

modules that de�ne the computing center. Each element has a set of features that represent its health

status. In turn, each feature is granulated according with a linguistic meaning, for example, in our

anomaly detection application, one of four levels of anomaly, from normal condition, passing through

lighting anomalous, anomalous, and highly anomalous. A combination of the status of these features

provides the state of the element that they describe. In turn, a combination of the states of the

elements provides the module state, and for similarity, the state of the module set de�nes the state of
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the computing center. Since the system is previously modulated, each module provides a granulated

piece that represents a local model of the state of computing center.

Modularization can provide the space granulation in a general sense. In the system maintenance,

solutions look for the system status through its state space, that can be granulated in software,

computing systems, or hardware elements. The state space is de�ned by features that are associated

to one of the possible linguistic values, i.e., the feature granulation. Di�erent combinations of elements

status provide di�erent abstraction levels of the system health.

3.3.2 Information Granules

The result of information granulation is named information granules, being a data summariza-

tion that clusters points according with a criterion as indistinguishability, similarity, functionality, or

proximity [44].

The information granule is de�ned by the membership function and the learning algorithm. The

membership functions already implemented to granular fuzzy algorithms are numerical interval (Interval-

based evolving modelling, or IBeM), trapezoidal function (Interval-based evolving modelling, or FBeM),

neural network (evolving Granular Neural Network, or eGNN), and Gaussian distribution (Evolving

Gaussian Fuzzy Classi�er, or eGFC). Usually by the membership function and the learning algo-

rithm. The membership functions already implemented to granular fuzzy algorithms are numerical

interval(Interval-based evolving modelling, or IBeM), trapezoidal function (Fuzzy Set-Based Evolving

Modelling, or FBeM), neural network (evolving Granular Neural Network, or eGNN), and Gaussian

function (Evolving Gaussian Fuzzy Classi�er, or eGFC). Usually, learning methods includes addition,

deletion, update, and merger of information granules considering the granularity� , the reference rate

� , and quantity of remembered roundshr .

3.3.3 Evolving Granular Systems

The notion of evolving scenarios is based on online analysis, concept drift and shift in non-stationary

systems. Evolving approaches are fed by data streams, processing each sample only once, absorbing

their characteristics through a fuzzy rule set. Data streams de�ne the system, providing the rules that

govern its behaviour, modelled by probability distributions.

The most common type of distribution that govern real-world system is the non-stationary one,

de�ned by parameters that change over time. Concept drift is given by this change in the distribution

from which a model is learned and adapted to incorporate the new information [49].

The model decodes the system behaviour in order to generate a classi�ed granular scenario or to

predict trends. The classi�ed scenario provides an screenshot image that enlighten the system status.

To maintain the reliability of the model, evolving granular systems use a local model pool, i.e., the

just-created rules may to be reinforced before being absorbed by the rule set as local model. During

this pause, the local model matures its parameters to provide a more statistically relevant information

granule to the model. The pool strategy is important approach to avoid the outlier incorporation,

preserving the model continuity and integrity.
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The new information granule is ready to be encompassed by the rule set when it is matured

enough, i.e., if the granule absorbs at least a minimum pre-established number of samples being

called stable [44]. Concept shift is the incorporation of new granules, being deeply related to concept

drift. Concept shift changes class borders and function parameters in the classi�cation and regression

problems respectively. Concept shift permits a distribution learned by data-driven model to be applied

to data drawn from another, i.e, a model learned in one region might be extrapolate to another region

of the feature space [49].

3.4 Summary

In this chapter, it is presented the mathematical fundamentals of this thesis, i.e., interval analysis,

fuzzy set, and the arithmetic used in the fuzzy-granular classi�ers and predictors. It is described the

most popular aggregation functions used to summarized the data stream into information granules.

The mathematical basis, Granular Computing and system maintenance are linked to provide the

needed concepts to structure the fuzzy-granular methods, not just related to a single application but

also related to an overview solution of the proposed problem.



Chapter 4

Evolving Neural and Granular Systems

Maintenance systems are usually based on o�ine statistical analysis of log records in constant

time intervals. Recently, online computational-intelligence-based structures, namely evolving fuzzy and

neuro-fuzzy frameworks [50, 51, 52, 53, 54], combined with incremental machine-learning algorithms

have been considered for on-demand anomaly detection, autonomous data classi�cation, and predictive

maintenance of an array of systems [55, 56, 57, 58].

The background of the present study, the Tier-1 Bologna data center1, produces a huge amount

of service-oriented unstructured log data2. In this context, logging activity 3 means the rate of lines

written in a log �le. The logging activity depicts the overall computing center behaviour in terms of

service utilisation. The rate may be used to monitor and detect service behavior anomalies, assisting

in, besides their diagnosis, predictive and preventive maintenance. Certainly, the quality of logs is

important to generate relevant information about the system, but it is out of the scope of this work.

Being log data processing a highly time and resource-consuming application, an important issue

concerns to identify the most promising pieces of log �les using an online machine learning strategy.

In this way, log fragments can be processed by priority, maximising the likelihood of �nding useful

information to the system maintenance.

Many attributes should be extracted using log timestamps, i.e., the moment of log record writing.

These attributes establish a sequence of encoded information that summarises the system use in a

time interval. In this work, the encoded information are the mean, maximum di�erence between two

consecutive means, variance, and minimum and maximum number of lines writing per time window in

a given log �le. It is considered the hypothesis that the system activity is directly proportional to the

logging activity. Moreover, it is proposed a control-chart-based approach to self-label the online data

instances autonomously.

This chapter addresses the dynamic log-based anomaly detection problem in data center context as

an unbalanced multi-class classi�cation problem in which the classes refer to the severity of anomalies

1See Chapter 1 to know more about the data center focus of this work.
2See Section 6.1 to more details about log �les.
3See Chapter 6 to see the logging activity de�nition.

45
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and the usual system behaviour. A Fuzzy-Set-Based evolving Model (FBeM) [59], an evolving Granular

Neural Network (eGNN) [60], and an evolving Gaussian Fuzzy Classi�er(eGFC) [61, 62] are developed

from a stream of data dynamically extracted from time windows. FBeM, eGNN, and eGFC are

supported by incremental learning algorithms able to keep their parameters and structure updated

to reect the current environment. As time windows are classi�ed according to the severity of their

anomalies, system maintenance can focus on that speci�c log information { a small percentage of the

whole. FBeM, eGNN and eGFC are compared in classi�cation accuracy, model compactness, and

processing time. The eGNN implementation, the best achieve performance among eFGCs, is deeply

evaluated, varying the neuron types.

The remainder of this chapter is organised as follows. Section 4.1 shows the related works of

anomaly detection. Section 4.2 describes the evolving fuzzy and neuro-fuzzy approaches to anomaly

classi�cation. Section 4.3 presents aggregation functions used to model the neuron on the neural

network of eGNN. The chapter' summary is outlined in Section 4.4.

4.1 Log-based Anomaly Detection

Considering events as rare occurrences, their recognition is a high-dimensional anomaly detection

problem based on imbalanced classes used to diagnose the system state. Because of the exponential

cost of to traverse the search space to identify the system state, data snooping-bias, and feature

extraction are challenging related topics. In order to map the search space, log data can be processed to

extract evidences about the status changing, minimising the rising cost with extra hardware to monitor

systems [16]. For traditional standalone systems, specialised personnel could manually analyses logs

to �nd anomalies based on their domain expertise, however this approach tends to be catastrophic for

distributed infrastructures or even for more complex systems.

Anomaly detection problem can be approached using the classical supervised and non-supervised

methods [63]. Usually, computing centers have available a large amount of log data from hundreds

of running sub-systems on the infrastructure. Since log data are typically a big data problem, they

often are heterogeneous, unstructured, and textual, varying signi�cantly their format and semantics

from system to system. For this reason, to create a general-purpose solution using logs is extremely

challenging to the system maintenance research. Because of their features, these data are in general

neither classi�ed nor pre-processed. In these cases, the �rst step is to apply an unsupervised method to

generate comparison parameters to describe the scenario, converting logs in a well-behaved supervised

data.

Regarding to supervised methods, the anomaly detection problem can be addressed using a lo-

gistic regression approach implemented to estimate the probability of the anomaly occurrence [64].

A similar work proposes a decision-tree to predict the state for each instance based on a state dia-

gram [65]. In addition, a regression-based approach correlates log events and resource uses, identifying

how anomalous behaviours impact on the resource consumption [66].

Another work approaches anomaly detection of log events considering unknown data delays with

a Long Short Term Memory (LSTM) recurrent neural network [67]. Still using a LSTM methods, the
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anomaly detection framework, DeepLog, detects outliers in generic log �les, using keywords and log

metric values to �lter the log inputs, detecting nonlinear and high-dimensional dependencies among

events with a high probability [68]. A bidirectional LSTM network improves the e�ciency of the

model using an evolving training set that considers the change of source code and the processing of

the messages not available during the training phase [69]. Furthermore, a LSTM-based Generative

Adversarial Network framework mitigates the impact of class imbalance regarding to anomalous and

regular events, improving the detection performance [70].

A Support Vector Machine (SVM) implementation recognises anomalous scenarios, classifying

instances in a high-dimension space [71]. In other work [72], the authors compare rule-based SVM

with a Nearest Neighbours ad-hoc classi�ers. As expected, the authors show that the custom-made

predictor outperforms the general-purpose solution by a wide margin. Nonetheless, the proposed

solution requires a large and labelled training set, decreasing its applicability in the real-world scenarios.

Generally, besides being unstructured, the available data are unlabelled and class imbalanced [73]. For

these reasons, unsupervised methods are more suitable to provide a general-purpose solution to the

log-based anomaly detection problem.

Related with unsupervised methods, an One-class Support Vector Machine (One-class SVM) clas-

si�er distinguishes anomalous time-windows, using logging activity and volatility extraction from log

data [12, 13]. Another work approaches the anomaly detection problem using an unsupervised Deep

Belief Networks combined to One-class SVM [74].

Clustering methods can classify log events based on distance calculus among the samples, without

knowing any data property [75]. The K-Nearest Neighbours strategy can provide an e�ective outlier

detection, using feature analysis to overcome the problems caused by di�erent sample sizes in the

training data [73]. Upgrading the previous results, MinHash Multi-vantage-point Tree improves the

selection of the k-group of similar logs [76].

Unsupervised methods can also be used as self-learning methods, performing the classi�cation of

data samples that could be afterwards used as training set of supervised algorithms. For example, a k-

Mean clustering implementation can separate anomalies from normal events, using input data labeled

by a Gradient Tree-Boosting method [77].

Besides, Isolation Forest (IF) can be used to approach anomaly detection applications, isolating

unlabelled anomalous samples [78]. Extending this concept, a novel log-based IF anomaly detection

method identi�es normal log scenarios, using auto-encoder networks for feature extraction [79].

The evolving Fuzzy Granular Computing (eFGC) approaches that e�ciently address the log-based

anomaly detection problem, overcoming common data restrictions as lack of structure and labels of

imbalanced classes data-set [80]. The supervised eFGC implementations have been applied to 4-class

anomaly detection problem associated to a self-learning solution. In this approach, it is used a control

chart strategy, converting the unsupervised log data to supervised weak-labeled data [81, 82].

Control chart 4 is a widely known monitoring chart often used on engineering industry. This strategy

is the basis of FBeM [83], eGNN [84], and eGFC [85]5 classi�ers applied to log-based anomaly detection

4See Chapter 6 about Control Chart and the self-learning methodology.
5These works are presented in this chapter.
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problem in data centers. The state of the art using this paradigm is the eGNN classi�er. All eFGC

implementations are evolving, online, and fuzzy-set-based methods, di�erentiating themselves in how

the fuzzy-rule set are created.

4.2 Evolving Granular Classifiers

A diversity of evolving classi�ers have been developed based on typicality and eccentricity con-

cepts [86], local strategies to smooth parameter changes [87], self-organization of fuzzy models [88],

ensembles of models [89], sca�olding fuzzy type-2 models [90], double-boundary granulation [91],

semi-supervision concepts [92], interval analysis [45], and uncertain data and multi-criteria optimiza-

tion [51, 93].

In this chapter, it is compared FBeM, eGFC, and eGNN classi�ers in an non-stationary scenario

for 4-classes anomaly detection problem. In particular, the classi�ers (i) evolve over time; (ii) are based

on fuzzy rules, codi�ed in a neural network or not; and (iii) granulate the data domain incrementally,

adapting their knowledge basis to new scenarios. In other words, their parameters and structure are

learned on the y, according to the data stream. Prototype rules initiation is not needed, tending

to increase their accuracy over time until the convergence by means of recursive machine learning

mechanisms [60].

Data instances are classi�ed using a set of fuzzy rules extracted from previous data. Each fuzzy

rule is associated to a granule, and each class is represented by at least one granule, and consequently,

at least a rule. Data granulation, granularity, and granular models come from the Granular Com-

puting (GrC) theory. GrC takes advantage of the premise that precision is expensive and usually

unnecessary to model complex systems [60]. GrC theory aims to express information in a higher level

of abstraction. Granular learning, in this chapter, means to map data stream in granular models.

Fuzzy granules can be added, updated, removed and combined along the learning steps. Therefore,

FBeM, eGFC, and eGNN capture new information from a data stream, self-adapting the model to the

current scenario.

In the classi�ers, each granulei is modelled by the i -th fuzzy rule Ri and, in its turn, by mem-

bership functions A i
j on the j -th attribute domain, being shape-evolving within a maximum extension

region, E i
j . A datum x j , the j -th feature of the current element of the data stream, may have partial

membership onA i
j . The fuzzy rules associate granules to class labels as consequent, being de�ned as

Ri (x) : if( x1 is A i
1) and : : : and (xn is A i

n ) then (�y is Ĉ i ): (4.1)

Time-varying rules Ri compose the modelR = f R1; : : : ; Ri ; : : : ; Rcg with c = 1 ; 2; : : : , holding within

the limits of the granules. An input instance is denoted byx = ( x1; : : : ; x j ; : : : ; xn )6; and Ĉ is the esti-

mated class given by the Control Chart methodology7. C i is the class label of thei -th rule Ri , in which

6n = 5.
7The estimated class is in f 0; 1; 2; 3g.
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the rules Ri 8i form the rule basis. The number of rules,c, is variable, depending on the data stream.

A time-indexed pair (x ; Ĉ)[h ] is an entry of the data stream. The main di�erence among the methods

is the strategy to deal with granules and rules, creating di�erent decision boundaries. The methods

di�er by the de�nition of A i
j membership function, being a trapezoidal functionA i

j = ( l i
j ; � i

j ; � i
j ; L i

j ), a

normalised Gaussian functionA i
j = G(� i

j ; (� i
j )2), and a neural network model associated with a given

aggregation function as neuron to FBeM, eGFC, and eGNN, respectively. The new datax activates a

set of granules according to the similarity between the new information and the granule. The ruleRi �

of most activate granule absorbs the new information, keeping the model updated.

The used data is extensively described in the Chapter 6. In short, logs are processed to extract

5-features vector that summarises the system behavior over time, generating a data vector stream.

As the classi�ed log data are associated with an anomaly class and each class is described through at

least a fuzzy rule, it is possible to identify the diversity of log events with the same anomaly level, and

ideally, each granule can describe a speci�c event.

4.2.1 FBeM: Fuzzy Set-Based Evolving Modeling

FBeM is an online classi�er based on fuzzy rules supported by an incremental learning algorithm.

The method provides nonlinear class boundaries summarised in adaptive models [60]. The generated

model is a time-varying amount of elements (granules) of granularity� , created by the intense data

streams processing.

The trapezoidal membership function A i
j = ( l i

j ; � i
j ; � i

j ; L i
j ) compose the FBeM fuzzy rule as de-

scribed in (4.1). The most active rule of (x ; y)[h ] is given by

� � = S(� 1; : : : ; � i ; : : : ; � c) (4.2)

with

� i = T(A i
1; : : : ; A i

j ; : : : ; A i
n ); (4.3)

in which S and T are the min and max operators, respectively. The width of A i
j is

wdt(A i
j ) = L i

j � l i
j ; then wdt(A i

j ) � � j ; (4.4)

in which � j is the j -th model granularity. Changing the initial � , it is produced di�erent classi�ers. In

addition, � evolves iteratively over time through
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� [h ] =

8
<

:

(1 + r
h r

)� [h � hr ]; r > �

(1 � � � r
h r

)� [h � hr ]; r 6 �
(4.5)

in which � is the growth rate; r = c[h ] � c[h � h r ], and c[h ] is the amount of granules at theh-th time

step; h > h r . The model is able to remember the lasthr learning algorithm rounds. The fuzzy setA i
j

can be expanded within the regionE i
j de�ned by

E i
j = [ mp(A i

j ) �
� j

2
; mp(A i

j ) +
� j

2
]; (4.6)

in which

mp(A i
j ) =

� i
j + � i

j

2
(4.7)

is the midpoint of A i
j . If at least one feature,x j , of x does not belong to any granule includingE i

j 8i ,

then a new rule is created. The new membership functions are

Ac+1
j = ( lc+1

j ; � c+1
j ; � c+1

j ; L c+1
j ) = ( x j ; x j ; x j ; x j ): (4.8)

Otherwise, if a new x in an E i , then the i -th rule is updated following one of the options:

if x [h ] 2 [mp(A i
j ) � � j

2 ; l i
j ]) then l i

j (new) = x [h ]

if x [h ] 2 [l i
j ; � i

j ] then � i
j (new) = x [h ]

if x [h ] 2 [� i
j ; mp(A i

j )] then � i
j (new) = x [h ]

if x [h ] 2 [mp(A i
j ); � i

j ] then � i
j (new) = x [h ]

if x [h ] 2 [� i
j ; L i

j ] then � i
j (new) = x [h ]

if x [h ] 2 [L i
j ; mp(A i

j ) + � j

2 ] then L i
j (new) = x [h ]

(4.9)

For a complete description about the updating, removing, conict resolution, and merging proce-

dures, see [59]. The FBeM algorithm is shown below, adapted by the introduction of the weak label

to instances by means of a control chart methodology, as described in Subsec. 6.2.2.
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FBeM Learning: Fuzzy Set-Based Evolving Modeling

1: set � [0] , hr , � ;

2: for h = 1 : : :

3: read x [h ];

4: use control chart to label x [h ] with C [h ];

5: provide estimated classĈ [h ];

6: compute estimation error � [h ] = C [h ] � Ĉ [h ];

7: if x [h ] =2 E i 8i OR C [h ] is new then

8: create new granule  c+1 , with class C [h ];

9: else

10: update the most active granule  i � whose class isC [h ];

11: end if

12: delete x [h ];

13: if h = �h r , � = 1 ; : : : then

14: merge similar granules if needed;

15: update granularity � ;

16: delete inactive granules if needed;

17: end if

18: end for

4.2.2 eGFC: Evolving Gaussian Fuzzy Classifier

The eGFC algorithm is a semi-supervised evolving classi�er derived from an online GrC frame-

work [59, 62]. Even if eGFC deals with partially labeled data, a fully-labeled data-set is employed

to the classi�er in this work, using the proposal self-learning method to give a weak tag to the data.

The eGFC method is based on Gaussian membership functions to de�ne the rules of fuzzy granules,

labelling new samples through the data space.

Granules are spread in the data space to model the knowledge, being detailed in local information

whenever necessary. Its global response is derived from the aggregation of local models. An iterative

algorithm builds a rule base, updating local models according to trend changing. The method supports

unlimited amounts of data, maintaining the scalability [50, 94].

Local models are generated if the newest datum is su�ciently di�erent from the granular basis, not

being possible to be absorbed by the current knowledge. In order to adjust the knowledge model to the

news, the learning algorithm can expand, reduce, delete, and merge information granules, reviewing

the rules according to inter-granular relations. The eGFC approach creates nonlinear, non-stationary,

and fuzzy discrimination boundaries among classes [50, 59].

Formally, an input-output pair ( x ; y) is related by the function y = f (x). It is necessary to �nd

an approximation function f̂ that estimates the value of y given x. In a classi�cation problem, y is

a class label, in whichy 2 f C1; : : : ; Cm g, and f̂ de�nes the class boundaries. In the never-ending

data streams problems, the algorithm deals with the classi�cation of (x ; y)[h ] time-indexed data pairs.
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Particularly, the present work attends to a never-ending non-stationarity application, being required

evolving classi�ers to identify time-varying relations f̂ [h ] in the data stream.

Gaussian Functions and Rule Structure

The eGFC membership functions,A i
j 8j and i = 1 ; :::; c, are Gaussian membership functions built

from the data stream. It is interesting to note that this approach does not need to guess how many

data partitions exist, being a great advantage of the method applicability [50].

Normalised Gaussian membership functionsA i
j = G(� i

j ; (� i
j )2), have height 1, with the modal

value � i
j and dispersion � i

j
8 [95]. The Gaussian function is appropriate because it is its ability of

learning and changing, since the modal values and dispersions can accurately be modelled by a data

stream. Considering that the data are priorly unknown, a Gaussian function gives in�nite support

through its domain. Moreover, Gaussian functions provides smooth surface to fuzzy granules, i =

A i
1 � ::: � A i

j � ::: � A i
n , in the n-dimensional Cartesian space. These surface can be obtained by the

cylindrical extension of uni-dimensional Gaussian, through the application of the minimum T-norm

aggregation [94, 95].

Adding Rules

Initially, rules may not exist, being created and evolved as data are available. If none of the existing

rules f R1; :::; Rcg are su�ciently activated by a sample, x [h ], a new granule  c+1 and its respective

rule Rc+1 are created. The learning algorithm absorbs the new information ofx [h ]. The granularity

� [h ] 2 [0; 1] is an adaptive threshold that de�nes if a new rule is required. If

T
�

A i
1(x [h ]

1 ); :::; A i
n (x [h ]

n )
�

� � [h ]; 8i; i = 1 ; :::; c; (4.10)

then the eGFC structure must to be expanded, in whichT is any triangular norm. Particularly, this

work uses the minimum (G•odel) T-norm, but there are other possibilities. The model is structurally

stable and unable to capture concept shifts if� [h ] is equal to 0. In the other hand, eGFC creates a rule

for each new sample if� [h ] is equal to 1, being impractical to classi�cation problems. Wherefore, it is

important to balance structural and parametric adaptability for intermediate values of � [h ], to achieve

the appropriate stability-plasticity trade-o� [96].

The � [h ] value regulates the granules size and their growing. The initial settings determine the

converged model, impacting on its accuracy and compactness, generating di�erent granular represen-

tations of the same problem.

Initially, a new granule  c+1 is given by the membership functions,Ac+1
j , j = 1 ; :::; n, in which

� c+1
j = x [h ]

j ; (4.11)

8 In Gaussian distribution, the mean, median and modal values coincide. The dispersion metric is the
standard deviation.
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and

� c+1
j = 1=2�: (4.12)

Eq. (4.12) is called by Stiegler approach to standard Gaussian functions, ormaximum approach [94].

The strategy is to start with bigger granules that tend to converge gradually with the dispersion

constriction whenever new samples activate the same granule, appealing for a compact model structure.

The classCc+1 of the rule Rc+1 is generally unde�ned, i.e., the (c+1)-th rule continues unlabelled

until it is con�rmed. When the label y[h ] of x [h ] is available, then

Cc+1 = y[h ]; (4.13)

else the �rst labeled sample that activates theRc+1 rule according to (4.10), is used to de�ne its class,

Cc+1 . If a labeled sample activates a rule di�erently tagged, then a new rule must be created to

represent this information as a partially overlapped granule. Partially overlapped Gaussian granules

tagged with di�erent labels tend to have their dispersions slashed progressively by the parameter

adaptation procedure.The modal values of the Gaussian granules may also drift to improve the decision

boundary.

The algorithm design gives priority to granules with balanced dimensions. The eGFC method

has a trade-o� between the principle of the balanced information granularity [80], and the Gaussian

functions exibility, improving the granules structure through adaptation mechanisms.

Parameter Adaptation

To keep the representativeness of the granule structure, the eGFC model continuously reduces

or expands the Gaussian functionsA i �

j , 8j , of the most active granule,  i �
. In addition, its center

must move toward regions of relatively dense population whenever necessary, and the associated rule

is tagged as soon as the data are available. Adaptation develops more speci�c local models in the sense

of Yager [97], promoting the coverage of the newest data.

If a rule Ri is su�ciently activated by an unlabeled sample (or with the same label of the rule),

x [h ], it is candidate to be updated, absorbing the new data according to

min
�

A i
1(x [h ]

1 ); :::; A i
n (x [h ]

n )
�

> � [h ]: (4.14)

Geometrically, x [h ] belongs to a region highly inuenced by the granule i . Even if more than two

rules reach the � [h ] level, just the most active rule Ri �
is chosen to be adapt for the pair (x ; y)[h ],

considering that y[h ] must match to the same class of the chosen ruleRi �
. Otherwise, if the classes

don't match, the second most active rule of the active rule set is chosen for adaptation, and so on. If

there is no rule candidate to absorb (x; y)[h ], then a new one is created.
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The learning algorithm updates the modal values and dispersions of the corresponding membership

functions A i �

j , j = 1 ; :::; n to include x [h ] in Ri �
through

� i �

j (new) =
($ i �

� 1)� i �

j (old) + x [h ]
j

$ i � ; (4.15)

and

� i �

j (new) =
�

($ i �
� 1)

$ i �

�
� i �

j (old)
� 2

+
1

$ i �

�
x [h ]

j � � i �

j (old)
� 2

� 1=2

; (4.16)

in which $ i �
is the number of times the i � � th rule was chosen to be adapted. Notice that the

equations (4.14)-(4.16) are recursive, not requiring data storage.

As � i �
de�nes a convex region of inuence around� i �

, de�ning the amount of granules in a given

region, i.e., a very large or small� i �
values may induce, respectively, a unique or too many information

granules per class. The approach keeps� i �

j between 1=4� and 1=2� (Stiegler limit).

Adapting � -Level

The activation threshold, � [h ] 2 [0; 1], is time-varying [59, 52]. The threshold assumes values

according to the overall average dispersion

� [h ]
avg =

1
cn

cX

i =1

nX

j =1

� i [h ]
j ; (4.17)

in which c and n are the number of rules and attributes, therefore

� (new) =
� [h ]

avg

� [h � 1]
avg

� (old): (4.18)

Rules' activation levels for an input x [h ] are confronted to � [h ] to select between parametric or

structural adaptation of the model. Commonly, eGFC initiates the learning process from an empty

rule base, building progressively the knowledge about the data properties. Practice suggests� [0] = 0 :1

as the initial setting value. Gradually the classi�er structure and parameters achieve a level of maturity

and stability, converging the threshold to a proper value after some time steps. Non-stationarity and

new classes govern� [h ] to values that better represent the demand of the current environment. A

time-varying � [h ] prevents guesses about how often the data stream changes.

Merging Similar Granules

Two granules may be combined to form a unique granule that inherits the essential information

of the merged granules, if they are alike enough and have the same class label. The distance measure
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d( i 1 ;  i 2 ) between Gaussian objects analyses the inter-granular relations, being

d( i 1 ;  i 2 ) =
1
n

� nX

j =1

j� i 1
j � � i 2

j j + � i 1
j + � i 2

j � 2
q

� i 1
j � i 2

j

�

the distance between the granules i 1 and  i 2 . This measure deal with Gaussian objects and the

speci�city of information, in which, in turn, inversely related to the Gaussian's dispersion [98]. The

further di�erent the dispersion values � i 1
j and � i 2

j , the greater the distance between the underlying

Gaussian objects.

The eGFC method may fuse the pair of granules with the smallest value ofd(:) for all pairs of

granules, in which both granules must be either unlabeled or tagged with the same class label. The

merging decision is based on a threshold value, �, or specialised expertise related to how to blend

granules to increase the compactness of the model. We suggest � = 0:1 as default for data within the

unit hyper-cube, i.e., the candidate granules should be similar enough, carrying the same information

indeed.

The new granule, i , results from  i 1 and  i 2 combination, it is de�ned by Gaussian functions with

modal values

� i
j =

� i 1
j

� i 2
j

� i 1
j +

� i 2
j

� i 1
j

� i 2
j

� i 1
j

� i 2
j

+
� i 2

j

� i 1
j

; j = 1 ; :::; n; (4.19)

and dispersion

� i
j = � i 1

j + � i 2
j ; j = 1 ; :::; n: (4.20)

The uncertainty frontier of the original granules is take in account to optimise the location and size of

the fused granule. The model redundancy is bounded by the granules merging, limiting the increasing

of the quantity of rules [59, 98].

Deleting Rules

If a rule is discrepant with the current environment, it is delete from the model, i.e., if a rule is

not activated in the last hr iterations, then it must be removed from the knowledge basis. In a special

case in which a class is rare,hr may be set to in�nity to keep the inactive rules. Removing rules

periodically helps to keep the knowledge basis updated and the model compact.

For a complete description about the updating, removing, and merging procedures, see [62]. The

eGFC algorithm is shown below, adapted by the introduction of the weak label to instances by means

of a control chart methodology, as described in Chapter 6.
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eGFC: Online Semi-Supervised Learning

1: Initial number of rules, c = 0;

2: Initial meta-parameters, � [0] = � = 0 :1, hr = 200;

3: Read input data samplex [h ]; h = 1;

4: Create granule  c+1 (Eqs. (4.17)-(4.12)), unknown classCc+1 ;

5: FOR h = 2, ... DO

6: Read x [h ];

7: Calculate rules' activation degree (Eq. (4.10));

8: Determine the most active rule Ri �
;

9: Provide estimated classC i �
;

10: // Model adaptation

11: IF T(A i
1(x [h ]

1 ); :::; A i
n (x [h ]

n )) � � [h ] 8i; i = 1 ; :::; c

12: IF actual label y[h ] is available

13: Create labeled granule c+1 (Eqs. (4.17)-(4.13));

14: ELSE

15: Create unlabeled granule c+1 (Eqs. (4.17)-(4.18));

16: END

17: ELSE

18: IF actual label y[h ] is available

19: Update the most active granule  i �
whose class

20: C i �
is equal to y[h ] (Eqs. (4.14)-(4.16));

21: Tag unlabeled active granules;

22: ELSE

23: Update the most active  i �
(Eqs. (4.14)-(4.16));

24: END

25: END

26: Update the � -level (Eqs. (4.17)-(4.18));

27: Delete inactive rules based onhr ;

28: Merge granules based on � (Eqs. (4.19)-(4.20));

29: END

4.2.3 eGNN: Evolving Granular Classification Neural Network

The eGNN method is a neuro-fuzzy granular network built incrementally from an online data

stream [60]. Its processing units are fuzzy neurons and granules that codify an evolving set of fuzzy

rules derived from the data stream, according to a fuzzy inference system. The network architecture

is constructed by a progressive process. The consequent part of an eGNN rule is a class label in this

work.
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Neural Network

Consider that the data stream (x; y)[h ], h = 1 ; :::, is measured from an unknown function f .

Inputs x j and output y are numerical data and a class. Figure 4.1 shows a four-layer eGNN model.

The input layer receives x [h ]. The granular layer is a set of granulesGi
j , i = 1 ; : : : ; c, strati�ed from

input data, forming a fuzzy partition of the j -th input domain. A granule Gi = Gi
1 � � � � � Gi

n is a

fuzzy relation, i.e., a multidimensional fuzzy set in X 1 � � � � � X n . Thus, Gi has membership function

Gi (x) = min f Gi
1(x1); : : : ; Gi

n (xn )g in X 1 � � � � � X n .

Figure 4.1: eGNN: Evolving neuro-fuzzy network architecture for classi�cation

Similarity degrees ex i = ( ex i
1; : : : ; ex i

n ) is the result of matching betweenx = ( x1; : : : ; xn ) and trape-

zoidal fuzzy setsGi = ( Gi
1; : : : ; Gi

n ), with Gi
j = ( gi

j
; gi

j
; gi

j ; g
i
j ). In general, data and granules can be

trapezoidal objects. A similarity measure to quantify the match between a numerical instance (the

case of this paper) and the current knowledge is [60]:

ex i
j = 1 �

jgi
j
� x j j + jgi

j
� x j j + jgi

j � x j j + jg
i
j � x j j

4(max(g
i
j ; x j ) � min(gi

j
; x j ))

: (4.21)
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The aggregation layer is composed by neuronsA i . A fuzzy neuron A i combines weighted similarity

degrees (ex i
1wi

1; : : : , ex i
n wi

n ) into a single valueoi , which refers to the level of activation ofRi . The output

layer processes (o1; : : : ; oc) using a neuronA f that performs the maximum S-norm. The classC i � of

the most active rule Ri � is the output.

Under assumption on speci�c weights and neurons, fuzzy rules extracted from eGNN are of the

type

Ri (x) : if ( x1 is Gi
1) and : : : and (xn is Gi

n ) then ( ŷ is Ĉ i ):

Neuron Model

Fuzzy neurons are neuron models based on aggregation operators. Aggregation operatorsA :

[0; 1]n ! [0; 1], n > 1, combine input values in the unit hyper-cube [0; 1]n into a single value in [0; 1].

They must satisfy the following: monotonicity in all arguments and boundary conditions [60]. This

study uses the minimum and maximum operators only [95, 99]. Figure 4.2 shows an example of fuzzy

neuron in which synaptic processing is given by the T-norm product, and the aggregation operatorA i

is used to combine individual inputs. The output oi is A i (ex i
1wi

1; : : : ; ex i
n wi

n ).

Figure 4.2: Fuzzy neuron model

Granular Region

As Gi
j is a trapezoidal membership function, its support, core, midpoint, and width are

supp(Gi
j ) = [ gi

j
; g

i
j ]; core(Gi

j ) = [ gi
j
; gi

j ] (4.22)

mp(Gi
j ) =

gi
j

+ gi
j

2
; wdt( Gi

j ) = g
i
j � gi

j
: (4.23)
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It is possible to expand the width of fuzzy setsGi
j within the area E i

j delimited by � , i.e., wdt(Gi
j ) �

� . E i
j is given by [mp(Gi

j ) � �
2 ; mp(Gi

j ) + �
2 ]. Clearly, wdt( Gi

j ) � wdt( E i
j ).

� Update

The value of � a�ects the information granularity, and consequently the model accuracy. � 2 [0; 1]

is used to control the size of expansion regions.

eGNN starts with an empty rule base, and � [0] = 0 :5 is used as default. Letr be the number of

rules created inhr steps, and� be a reference rate. If the number of rules grows faster than the rate

� , then � is increased, otherwise� is reduced, as in Eq. (4.5). Appropriate values for� are found

autonomously. If � = 1, then eGNN is structurally stable, but unable to capture abrupt changes.

Conversely, if � = 0, then eGNN over�ts the data causing excessive model complexity. Adaptability is

reached from intermediate values.

Reducing � requires reduction of big granules according to

if mp( Gi
j ) � � (new)

2 > g i
j

then gi
j
(new) = mp( Gi

j ) � � (new)
2

if mp( Gi
j )+ � (new)

2 < g
i
j then g

i
j (new) = mp( Gi

j )+ � (new)
2

Cores [gi
j
; gi

j ] are handled in a similar way.

Developing Granules

If the support of at least one entry of x is not enclosed by expansion regions (E i
1; : : : ; E i

n ), eGNN

generates a new granule,Gc+1 . This new granule is constituted by fuzzy sets whose parameters are

Gc+1
j = ( gc+1

j
; gc+1

j
; gc+1

j ; g
c+1
j ) = ( x j ; x j ; x j ; x j ): (4.24)

Updating granules consists in expanding or contracting the support and the core of fuzzy setsGi
j .

In particular, Gi is chosen fromarg max(o1; : : : ; oc).

Adaptation proceeds depending on wherex j in placed in relation to Gi
j .

if x j 2 [mp(Gi
j ) � �

2 ; gi
j
] then gi

j
(new) = x j

if x j 2 [mp(Gi
j ) � �

2 ; mp(Gi
j )] then gi

j
(new) = x j

if x j 2 [mp(Gi
j ); mp(Gi

j ) + �
2 ] then gi

j
(new) = mp( Gi

j )

if x j 2 [mp(Gi
j ) � �

2 ; mp(Gi
j )] then gi

j (new) = mp( Gi
j )

if x j 2 [mp(Gi
j ); mp(Gi

j ) + �
2 ] then gi

j (new) = x j

if x j 2 [g
i
j ; mp(Gi

j ) + �
2 ] then g

i
j (new) = x j

Operations on core parameters,gi
j

and gi
j , require additional adaptation of the midpoint
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mp(Gi
j )(new) =

gi
j
(new) + gi

j (new)

2
: (4.25)

Therefore, support contractions may be needed:

if mp( Gi
j )(new) � �

2 > g i
j

then gi
j
(new) = mp( Gi

j )(new) � �
2

if mp( Gi
j )(new)+ �

2 < g
i
j then g

i
j (new) = mp( Gi

j )(new)+ �
2 :

Updating Neural Network Weights

wi
j 2 [0; 1] is proportional to the importance of the j -th attribute of Gi

j to the neural network

output. When a new granule Gc+1 is generated, weights are set aswc+1
j = 1, 8j .

The updated wi
j , associated to the most active granuleGi , i = arg max(o1; : : : ; oc), are

wi
j (new) = wi

j (old) � � i ex i
j j� j: (4.26)

in which ex i
j is the similarity to Gi

j ; � i depends on the number of right (Right i ) and wrong (Wrong i )

classi�cations

� i =
Wrong i

Right i + Wrong i and � [h ] = C [h ] � Ĉ [h ]

in which � [h ] is the current estimation error, and C [h ] is a weak label provided by the control chart

approach described in the methodology section.
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Learning Algorithm

The learning algorithm to evolve eGNN classi�ers is given below.

eGNN Learning: Evolving Granular Neural Network

1: select a type of neuron for the aggregation layer

2: set parameters � [0] , hr , � ;

3: read instance x [h ], h = 1;

4: use control chart to label x [h ] with C [h ];

5: create granule Gc+1 , neuronsAc+1 , A f , and connections;

6: for h = 2 ; : : : do

7: read and feed-forward x [h ] through the network;

8: compute rule activation levels (o1; : : : ; oc);

9: aggregate activation using A f to get estimate Ĉ [h ];

10: // the class C [h ] becomes available;

11: compute output error � [h ] = C [h ] � Ĉ [h ];

12: if x [h ] is not E i 8i or � [h ] 6= 0 then

13: create granule Gc+1 , neuron Ac+1 , connections;

14: associate Gc+1 to C [h ];

15: else

16: update Gi � , i � = arg max(o1; : : : ; oc);

17: adapt weights wi �
j 8j ;

18: end if

19: if h = �h r , � = 1 ; : : : then

20: adapt model granularity � ;

21: end if

22: end for

4.3 eGNN: Aggregation Operators as Neurons

Aggregation neurons are arti�cial neuron models based on aggregation operators. eGNN may use

di�erent types of aggregation neurons to perform information fusion. There are no guideline to choose

a particular operator to construct an aggregation neuron. The choice depends on the application en-

vironment and domain knowledge; it usually conforms to simplicity, and understandability of granular

rules. An operator A : [0; 1]n ! [0; 1], n > 1 maps input data in the unit hypercube [0; 1]n into

an output datum in [0 ; 1]. The operator satis�es two properties: (i ) monotonicity in all arguments,

i.e., given x1 = ( x1
1; :::; x1

n ) and x2 = ( x2
1; :::; x2

n ), if x1
j � x2

j 8j then A(x1) � A(x2); ( ii ) boundary

conditions: A(0; 0; :::; 0) = 0 and A(1; 1; :::; 1) = 1. We have particularly analyzed some families of

operators within the eGNN framework, as summarized below.
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4.3.1 T-norms

T-norms (T) are commutative, associative and monotone operators on the unit hypercube whose

boundary conditions are T(�; �; :::; 0) = 0 and T(�; 1; :::; 1) = � , � 2 [0; 1]. The neutral element of

T-norms is e = 1. An example is the minimum operator

Tmin (x) = min
j =1 ;:::;n

x j ; (4.27)

which is the strongest T-norm because

T(x) � Tmin (x) for any x 2 [0; 1]n : (4.28)

The minimum is also idempotent, symmetric and Lipschitz-continuous. Other examples of T-norms

are the product,

Tprod (x) =
nY

j =1

x j ; (4.29)

and the Lukasiewicz T-norm,

TL (x) = max

0

@0;
nX

j =1

x j � (n � 1)

1

A : (4.30)

4.3.2 S-norms

S-norms (S) are operators on the unit hypercube which are commutative, associative and mono-

tone. S(�; �; :::; 1) = 1 and S(�; 0; :::; 0) = � are the boundary conditions of S-norms; ande = 0 is

their neutral element.

S-norms are stronger than T-norms. The maximum operator,

Smax (x) = max
j =1 ;:::;n

x j ; (4.31)

is the weakest S-norm, i.e.,

S(x) � Smax (x) � T(x); for any x 2 [0; 1]n : (4.32)

Other examples of S-norms are the probabilistic sum,
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Sprob (x) = 1 �
nY

j =1

(1 � x j ); (4.33)

and the Lukasiewicz S-norm,

SL (x) = min

0

@1;
nX

j =1

x j

1

A : (4.34)

4.3.3 Averaging Operators

An aggregation operator A is averaging if for everyx 2 [0; 1]n it is bounded by

Tmin (x) � A(x) � Smax (x): (4.35)

The basic rule is that the output value cannot be lower or higher than any input value. An example

of averaging operator is the arithmetic mean,

M (x) =
1
n

nX

j =1

x j : (4.36)

Averaging operators are idempotent, strictly increasing, symmetric, homogeneous, and Lipschitz con-

tinuous.

4.3.4 Ordered Weighted Averaging

Ordered Weighted Averaging (OWA) is a specialisation of averaging aggregation functions asso-

ciated with a weighting vector w. This class includes the max, min, median, and arithmetic average

operators as special cases distinguished by the choice of a di�erentw. OWA is a mapping of dimension

n, Fw : Rn ! R in which w with wi > 0,
P

wi = 1,

OWAw (x) =
nX

i =1

wi x i < w; x �! >; (4.37)

in which the notation x �! denotes the vectorx sorted in non-increasing order (x (1) > x (2) > � � � >

x (n ) ).

An appealing property of OWA operator, called orness, it is introduced as a measure to give a

numerical quanti�cation of the degree of disjunctive behaviour of an operator, being also saw as the

mode of decision making related to the aggregation process[100, 101]. A min and max aggregators are



64 CHAPTER 4. EVOLVING NEURAL AND GRANULAR SYSTEMS

considered as a pure \or" and \and" respectively, and the ornessy (OWA) provides a measure of the

location between these operators to anOWA function:

ornessy
(w ) =

1
n � 1

nX

i =1

(n � i )wi : (4.38)

in which the superscript y denotes Yager's de�nition. Related to the w calculus, some OWA cases are

ˆ Arithmetic mean (am): wi = 1
n and ornessy (am) = 1

2 .

ˆ Min: if w = (1 ; 0; : : : ; 0) then OWAw = max(x) and ornessy (min ) = 0.

ˆ Max: if w = (0 ; 0; : : : ; 1) then OWAw = min (x) and ornessy (max) = 1.

ˆ Hurwicz aggregation (ha): if w = ( �; 0; : : : ; 1 � � ) then OWAw (ha) = �max (x + (1 � � )min (x)

ˆ OWAw1 with wi = 1
n

nP

j = i

1
j and ornessy (OWAw1) = 3

4

ˆ OWAw2 with wi = 2(n +1 � i )
n (n � 1) and ornessy (OWAw2) = 2

3

ˆ Neat OWA: wi =
x p

( i )
nP

i =1
x p

( i )

with p 2] � inf ; inf[.

4.3.5 Compensatory T-S Operators

Compensatory T-S operators balance the opposite e�ects of T- and S-norms. T-S aggregation

is uniform in the sense that it does not depend on parts of the underlying domain. T-S operators

averages two values { obtained from a T-norm and a S-norm { by means of weighted quasi-arithmetic

mean. The linear convex operator

L (x) = (1 � v)T(x1; :::; xn ) + vS(x1; :::; xn ); (4.39)

in which v 2 [0; 1], is an example of T-S operator of the family of weighted quasi-arithmetic means.

T-S operators need not to be dual in terms ofT and S. It follows that:

S(x) � L (x) � T(x); for any x 2 [0; 1]n : (4.40)

4.3.6 Aggregation Neuron Model

Let ex = ( ex1; :::; exn ) be a vector of membership degrees of a samplex = ( x1; :::; xn ) in the fuzzy

setsGj of G = ( G1; :::; Gn ). Let w = ( w1; :::; wn ) be a weighting vector such that

wj 2 [0; 1]; j = 1 ; :::; n: (4.41)
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Aggregation neurons use product T-norm to perform synaptic processing and an operatorA to

fuse the individual results of synaptic processing in the neuron body. The output of the neuron is

o = A(ex1w1; :::; exn wn ): (4.42)

An aggregation neuron performs a diversity of nonlinear input-output maps depending on the choice

of weights w, and triangular norms T and S. The structure of a neuron is shown in Fig. 4.2.

4.4 Summary

We present the evolving fuzzy and neuro-fuzzy granular classi�ers, FBeM, eGFC, and eGNN, in

a real-time anomaly detection problem considering online log data streams from a computing center.

Logging activity rate is a standard behavioural metric obtained from online log data, used as input

to the methods. All the adaptive mechanisms, i.e., creating new granules, merging similar granules,

deleting the inactive granules, are deeply described, highlighting the granularity and model evolving,

as well as the aggregation neuron models to eGNN.
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Chapter 5

eLP: evolving Log Parsing

Logs are one of the most valued sources of information for large-scale service maintenance [102]. Log

processing for model development is a branch ofNatural Language Processing(NLP) with intersection

to Data Mining [103]. Log �les are, in general, time-indexed unstructured textual data. They can be

seen as written expressions, with poor syntax. In fact, log �les are created by using an austere and

restricted idiom. Most learning and monitoring approaches handles logs as strings. The approaches

perform string matching based on strings distance measures [104].

Many studies link the importance of addressing anomaly detection together with log parsing. The

data-parsing task tends to increase the ability of a model to recognise anomalous behaviors through

data structuring. Optimal log parsing is de�ned theoretically in [105]. This work considers log parsing

as an abstraction function that generates information in a structured way, thus summarising multiple

log data.

A comparative study, [106], evaluates 13 automated log parsing methods based on benchmark

datasets. The evaluation considers accuracy, robustness, and e�ciency. The methods are grouped

by the technique used to parse the logs, i.e., frequent pattern mining, data clustering, and heuristics

based on token identi�cation and partitioning strategies. Other techniques include the longest common

sub-sequence method, and multi-objective optimization by means of an evolutionary algorithm. The

parsing accuracy of the 13 methods varies from 48% to 86%. Drain, the best of the methods evaluated,

is an online log parser based on a �xed depth parse tree; a model encodes rules for log parsing [107].

Natural Language Processing (NLP) methods stand out as log parsing methods using o�-the-shelf

NLP algorithms [103]. The well-known Word2vec methods can identify words in low dimensional

vectors e�ciently. Ad-hoc Word2vec algorithms improve log parsers by extracting events [108]. Log

Parsers based on Vectorization (LPV) convert logs into vectors. LPV clusters the logs using similarity

or distance measures, and extracts templates from the resulting clusters [104].

The feature-based method in [109] extracts system events from unstructured free-text logs based

on an analytic solution that groups logs by similarity considering a dataset preprocessed by regular

expressions. The LogParse method [102] is proposed as an adaptive framework based on word clas-

si�cation. It learns template features using an open-source toolkit. The Paddy method [110] uses a

67
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dynamic dictionary structure with a scheme of inverted index to e�ciently search template candidates

using the Jaccard similarity. Pre�x-Graph [111] is an online approach based on a probabilistic graph

structure derived from a pre�xed tree. The method merges branches with highly similar probability

distributions. The resulting model represents templates as the combination of cut-edges in root-to-leaf

paths of the graph. The Clustering based on Length and First token (CLF) method [69] extracts tem-

plates in three steps: by (i) clustering unstructured logs using heuristic rules; (ii) clustering according

to speci�c separation rules; and (iii) identifying the associated events.

This chapter introduces a granular-computing method for log parsing. The method, called eLP,

extracts a formal grammar from textual data streams, and stores local grammars into information

granules. Granules are described by word vectors and an interval rule base, which is evolved on the y

in a textual scenario. In particular, while the vast majority of evolving intelligent methods are focused

on numerical point-wise data processing, interval data streams are considered by the granular methods

in [112] [113], and fuzzy data streams are evaluated in [60] [114] [62]. Nevertheless, for the �rst time in

the evolving intelligence literature, the eLP method is able to process streams of words and sentences.

The rest of this chapter is structured as follows. Section 5.1 de�nes logs as a formal language,

explaining the eLP parsing modelling framework, and exemplifying it. Section 5.2 addresses the basics

of the eLP model. Section 5.3 provides the updating mechanisms. Section 5.4 presents the eLP learning

algorithm from textual data streams.

5.1 Preliminary Concepts

Computing center is a set of software working collaboratively to achieve a common purpose through

resources sharing among users/customers/software. This ecosystem is propitious to generate resource

conicts and data inconsistencies inwardly or among systems. As a community of computing elements,

it is interesting that each member has the possibility to tell about the occurrence of events. Nowadays,

this communication is unidirectional and ine�cient, but anyway, expressed by a language { the system

logs.

5.1.1 Logs as a language

A natural or programming language is formed by syntactic rules. A language is generated by a

grammar G de�ned as a set of sentences [115]. Precisely, mental operations are the basis of all possible

grammars [116]. Logs can be understood as expressions of a rudimentary language, and, as such, a

languageL can be de�ned by a set of syntactic rules.

The language L of software provides indirect and ine�ective machine-to-human communication

since the product of its expression { the logs or log �les { are excessive, redundant, and hard to be

understood by humans.

Let logs be generated byL (G). G = < � ; � ; S; R > is a formal grammar. The elements ofG mean:

ˆ � is alphabet of terminal terms;
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ˆ � is alphabet of non-terminal terms, such that � \ � = ; ;

ˆ S is the initial symbol; and

ˆ R is a �nite set of production rules that maps � in � : � �! � ; being R � � � � � � with � = � [ �;

� is non-empty, i.e., � 6= " ; and � 62� � [115].

Di�erent from terminal terms �, the non-terminal terms � can apply a production rule, � �! � .

A formal grammar is a concept from linguistics, applied in compilers to recognise linguistic ex-

pressions of programming languages. Syntactic analysis verify if code production follows the syntactic

rules of a programming language. A production rule� �! � replaces the antecedent� by a product � ,

recognising part of � composed by terminals. The non-terminal terms in the consequent part of a rule

are replaced by other production rules, until only non-terminal terms remain. Consider the following

grammar G:

S �! A00

A00
�! a0A00

j w1A10
j : : : j wk Ak 0

j : : : j wn j "

A10
�! a0A10

j w2A20
j : : : j wk Ak 0

j : : : j wn j "

A20
�! a0A20

j w3A30
j : : : j wk Ak 0

j : : : j wn j "

...

A (n � 1) 0
�! a0A (n � 1) 0

j wn j ":

(5.1)

Grammar G assists on the recognition of a type of log, that is,G identi�es the typical words in

consecutivex [h ], h = 1 ; :::. In G, " is the empty set; and � = f S; A10
; A20

; : : : ; A (n � 1) 0
g is the alphabet

of non-terminal terms. Any local template of a granular model (as de�ned in Section II-B) realises the

same grammarG(5.1), but the terminal terms of di�erent templates associated to di�erent information

granules  i , i = 1 ; :::; c, are distinctive, i.e., � = w i . Granules, granular model, and templates will be

de�ned in the next sections.

Fundamentally, Equation (5.1) says that the recognition of a message in a log stream { in which

the message is expressed by ann-word input vector x [h ] = [ x [h ]
1 ; :::; x [h ]

n ], with h = 1 ; ::: being the time

index { is based onG. First, S is trigged so that S �! A00
. Next, a rule of the set ofn production rules,

A00
�! a0A00

j w1A10
j : : : j wk Ak 0

j : : : j wn , is trigged, e.g., if the �rst word to be read in x [h ] is equal

to the word w1 of the grammar G, i.e., x [h ]
1 = w1, then the word is recognised by the ruleA00

�! w1A10
,

and rule A10
is trigged. At the A00

level (second row of (5.1)), anywk of w i can be found in x [h ].

For example, if x [h ]
1 = w2, then x [h ]

1 is recognised by the ruleA00
�! w2A20

. However, if x [h ]
j , j > 1, is

equal to w1, then x [h ]
j can not be recognised as a word template, sincew1 must to be recognised before

w2. In other words, word ordering matters for template recognition. The same procedure is performed

until either the last word of the m-word template or the last word of the n-word instance x [h ].

The words that characterise a template may match, fully or partially, a textual data instance. The

boundary cases happen when a template does not match any word of an instance, or when all of its
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words are found in x [h ]. Production rules Ak 0
�! a0Ak 0

, k = 0 ; 1; : : : ; n � 1, process the attributes

x [h ]
j , j = 1 ; :::; n, inde�nitely, no matter the amount of attributes n. The grammar G, (5.1), operates

continuously until a particular template (an information granule) is found. Such granule may be

constructed and represented within a granular model if: (i) the m production rules of its associated

template are processed for a singlex [h ]; and (ii) the granule is more active than other granules of the

granular model.

Notice that the grammar Gi of the granule  i is capable of recognising instances that include non-

expected words between thewk 's, i.e., some additional words may appear as attributes ofx [h ]. This

is a result of the continuous search for attributes that conform to the template of a granule. Not all

production rules are trigged during the recognition process. Additionally, the property of accepting

incomplete (partial) match is of utmost importance in log stream processing since some attributes of

log messagesx [h ] are very dynamic in terms of the value itself, and amount (variable size,n).

A languageL de�ned by G = fG1; : : : ; Gcg considersc varieties of linguistic expressions. A granule

of a granular model  = f  1; : : : ;  cg has its own grammar. The interval granular learning method

introduced in the following sections, called eLP, evolving Log Parsing, is highly convenient to log

parsing because, di�erent from the vast majority of NLP methods based on formal grammars, the

eLP method deals with time-varying amounts of atypical words arising in any position of streaming

sentences. Moreover, granules and templates are evolved from scratch as word patterns are found in a

textual data stream.

5.1.2 The eLP granular framework

Let  = f  1; : : : ;  i ; : : : ;  cg be the collection of granules of a granular model developed from an

online data stream. We de�ne a granule i as associated to a template. Thei -th template describes

the i -th granule. A template contains two components basically: (i) a set ofm words, i.e.,

w i = [ wi
1; : : : ; wi

k ; : : : ; wi
m ]; (5.2)

being wi
k the k-th word of the i -th granule; and (ii) a set of numeric intervals,

I i = [[ l i
1; L i

1]; : : : ; [l i
k ; L i

k ]; : : : ; [l i
m ; L i

m ]]: (5.3)

The interval endpoints, l i
k and L i

k , 8k, are positive integers in the setf 1; 2; :::; ng; and l i
k � L i

k . Section

IV describes a procedure to translate wordswi
k into corresponding intervals I i

k . Essentially, l i
k and L i

k

are indices in which thek-th word of the i -th template are found in a streaming word vector x [h ],

x [h ] = [ x [h ]
1 ; : : : ; x [h ]

j ; : : : ; x [h ]
n ]; (5.4)

h = 1 ; 2; : : : is time index.
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The amount of words and intervals, m, may be di�erent for di�erent templates i , i = 1 ; :::; c.

We usem locally (with no additional index) for any granule of the granular model to avoid abuse of

notation. From a geometric perspective,m is the number of dimensions of a particular granule. The

same reasoning holds ton, the length of x [h ], which may be di�erent in di�erent time steps h.

In this work, an x [h ] is a log message. This means that some random attributes of the input word

vector x [h ] are typical in many consecutive instances. Such repetitive words describe a message type,

and are usually written by programmers in \print-�le function" style. Their call points in an algorithm

are chosen conveniently by the programmers. On the other hand, some attributes of the input vector

x [h ] are in fact related to the current state of the services in a computer network.

From a linguistic perspective, the recognition that an x [h ] has full or partial membership in a

granule  i is based on word comparison and on their relative order in a sentence.

5.1.3 Log parsing

Log parsing is the �rst procedure in textual data processing. Log parsing aims to separate the

typical words in consecutive messagesx [h ], x [h+1] , ..., from the attributes that describe the current

system state. While the typical part of a streaming instancex [h ] suggests global patterns (events) in a

large computer network, the variable state part of the instance contains details of a particular pattern.

While the textual data stream x [h ]; h = 1 ; :::, gives a track of system events, an evolving granular

model  that deals with words and word frequency can be used to infer the system state and predict the

evolution of its global operating dynamics. The meaning and amount of state attributes that describe

a running system change with the associated message type, that is, change for di�erent typical words.

Example

Given the sentence: `My house is lovely and full of joy'. Then-word input vector ( n = 8) at the

time step h is:

x [h ] = [`My', `house', `is', `lovely', `and', `full', `of', `joy'].

Let  be a model with two m-word granules (m = 4):

w1 = [`My', `house', `is', `and'],

and

w2 = [`My', `heart', `is', `and'].

Thus, w1 matches x [h ] (4 out of 4), and w2 partially matches x [h ] (3 out of 4). Concerning the

viewpoint of w2, �ve of the eight attributes of x [h ] are atypical (state attributes of w2). They are:

x [h ]
2 = `house', x [h ]

4 = `lovely', x [h ]
6 = `full', x [h ]

7 = `of', and x [h ]
8 = `joy'.

In a further time step, granules  1 and  2 are evaluated by a learning algorithm as being similar

to each other. Then, they are merged into 3 to form

w3 = [`My', `is', `and'].
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The words `house' and `heart' were removed from the typical set of words to formw3. The resulting

 3 contains a more generic template than the templates of the merged granules.

Consider the translation of the entries ofw3 into intervals I 3. Thus,

 3 = [`My' �! [1, 1], `is'�! [2, 5], `and'�! [7, 9]].

Notice that, while the word `is' may appear from the second to the �fth position of a streaming

instance, i.e., [l3
2; L 3

2] = [2 ; 5]; the word `My' appears as the �rst word of a sentence, i.e., [l3
1; L 3

1] = [1 ; 1]

(a degenerated interval), and so on.

Suppose the same sentencex [h ] arises in a further time step, h + � , x [h+ � ], after the existence of

 3. Then,

x [h+ � ] = [`My', `house', `is', `lovely', `and', `full', `of', `joy'].

Therefore, the word setf `house', `lovely', `full', `of', `joy'g is atypical to w3.

De�ne

zi
k = arg j (w i

k � x [h ]
j ) (x

[h ]); k = 1 ; :::; m; (5.5)

zi
k is an integer in the set f 0; 1; : : : ; ng, in which n = 8 is the length of x [h ]. Precisely stated, zi

k is

equal to the argument j that indicates match between a word wi
k of w i and a word x [h ]

j of x [h ]. If

there is no correspondence between awi
k and all words of x [h ], then zi

k = #. We shall formally and

generically de�ne zi
k later, in Section III-B.

Back to the example, from x [h+ � ] we get

z3 = [`My' �! 1, #, `is' �! 3, #, `and' �! 5, #, #, #].

The number of matches between 3 and x [h+ � ] depends onI 3. The words `My' and `is' are found in

j = 1 and j = 3. Since 12 [1; 1], and 32 [1; 5], we have matches. However, the word `and' is inj = 5

and, therefore, out of the bounds [7; 9]. There are 2 matches betweenx [h+ � ] and  3.

Assume a fourth m-word granule (m = 3),

 4 = [`My' �! [1, 3], `is'�! [2, 4], `and'�! [3, 6]].

In this case,  4 and x [h+ � ] matches 3 times, since 12 [1; 3]; 3 2 [2; 4]; and 52 [3; 6]. Although x [h+ � ]

�nds correspondence with both  3 and  4,  4 is chosen to accommodatex [h+ � ] since it provides a

larger amount of matches.

5.2 eLP: evolving Log Parsing

This section outlines eLP, an unsupervised evolving classi�er to handle the online log parsing prob-

lem. Log parsing is a computationally expensive task as it deals with big textual data processing. eLP

is a general-purpose classi�er, and a member of the evolving granular classi�er (eGC) family [50][62].

It is inspired on the method called Interval-Based Evolving Modeling (IBeM) [112]. While the latter is
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useful for interval vectors only, the proposed method is the �rst in the evolving systems literature that

is suitable for textual data processing. eLP focuses on extracting templates and features from log data

by means of interval-based granules centered on words as basic processing units. Additionally, eLP

assists on the identi�cation of context-oriented event occurrences and therefore is useful to support

decision making.

5.2.1 Preliminaries

Let a log stream, ~L , given by time-indexed word instancesx [h ], h = 1 ; :::, be written in a �le

continuously. x [h ] is a usual log message containing typical repetitive attributes and some variable

system-state attributes. The length n of distinct x [h ] may be di�erent in di�erent time steps h.

A word wi
k of the i -th granule of the current collection of granulesf  1; :::;  cg of a granular model

 , as well as a wordx [h ]
j of x [h ], is formed by one or more (`+') characters,

word = char+ ; (5.6)

in which

char = f a, ..., z, A, ..., Z, 0, ..., 9, `specialChar'g; (5.7)

being `specialChar' a UNICODE character.

The length m of di�erent w i , i = 1 ; :::; c; and the length n of x [h ], h = 1 ; :::, may change at each

time step. A message type (a template) describes a granule and determines a classC i in a classi�cation

problem. Granules are created whenever a messagex [h ] is signi�cantly di�erent from the words within

the template of the existing granules. eLP learning expands, reduces, merges, and deletes intervals

derived from the words in a granule. The wordwi
k of an existing granule  i is deleted if it becomes

unusual in the data stream.

5.2.2 Model structure

An eLP classi�er is evolved on the y. Interval-based rules, Ri , i = 1 ; :::; c, are created and updated

according to the stream of words. A rule is given by

Ri : If (( l i
1 � z1 � L i

1) and : : : (l i
k � zk � L i

k ) and : : : (l i
m � zm � L i

m )) then ( yi is C i ) (5.8)

in which

zi
k = arg j (w i

k � x [h ]
j ) (x

[h ]); k = 1 ; :::; m: (5.9)
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We repeated Eq. (5.5) as Eq. (5.9) for reading convenience.zi
k 2 f 0; 1; : : : ; ng; n is the length of x [h ].

In words, zi
k is the argument j that indicates match between wi

k of w i and x [h ]
j of x [h ]. If there is no

correspondence between a speci�cwi
k and all words of x [h ], then zi

k = 0. Each word wi
k of w i receives

at least one corresponding valuezi
k , which is inferred from the indices of the words of the input vector

x [h ]. The process of searching for awi
k in x [h ] is carried out m times in a single time steph.

The interval [ l i
k ; L i

k ] is formed by a beginning point l i
k , which is the argument j of x [h ] that reports

the �rst possible position for the word wi
k in the messagex [h ]. Similarly, L i

k is the argument j of x [h ]

that reports the last possible position for wi
k in x [h ]. Each word wi

k is assigned to a numeric interval

[l i
k ; L i

k ] so that l i
k ; L i

k 2 f 1; 2; : : : ; ng, and l i
k � L i

k . A special case is when the wordwi
k can only be

found in a unique (j -th) position of x [h ]. In this case, l i
k = L i

k = j .

Consider that all words wi
k , k = 1 ; :::; m, of  i were found in x [h ]. Then,  i is a candidate to

accommodatex [h ]. Consider also a binary number,si
k , so that si

k = 1 if zi
k 2 [l i

k ; L i
k ]; and si

k = 0 if

zi
k =2 [l i

k ; L i
k ]. Moreover, let

zi =
1
m

mX

k=1

si
k ; (5.10)

zi 2 [0; 1]. The most active rule for x [h ] is Ri � , in which

i � = arg i (maxf z1; :::; zcg): (5.11)

Only the most active rule Ri � is useful to provide an estimated classC i � , and for a further adaptation

step.

5.3 Online Learning from Word Streams

An eLP rule-based model is updated if: (i) a new granule c+1 is created; (ii) an existing granule

 i is activated by an input instance; (iii) similar granules are merged; (iv) words wi
k match input

instances and becomes a feature; and (v) inactive granules are deleted.

5.3.1 Creating granules

In case none of the existing granules is su�ciently activated by an instancex [h ], a new granule

 c+1 is generated. The condition to be veri�ed for granule creation is

(maxf z1; :::; zcg) � �: (5.12)

in which � 2 [1; n] is a threshold. The template of the new granule is formed by a vector of words,

w c+1 = [ x [h ]
1 ; x [h ]

2 ; : : : ; x [h ]
n ]; (5.13)
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and a vector of intervals,

I [c+1] = [[ z[c+1]
1 ; z[c+1]

1 ]; :::; [z[c+1]
n ; z[c+1]

n ]]; (5.14)

with n = m initially. Thus, wc+1
k = x [h ]

k , and [l [c+1]
k ; L [c+1]

k ] = [ z[c+1]
k ; z[c+1]

k ], 8k, as in (5.9). The

components ofI [c+1] are initially pointwise (degenerated intervals).

5.3.2 Updating granules

In case the most active eLP granule, i � , for an x [h ] satis�es Eq. (5.12). Thus, �ve updating

possibilities take place. Figure 5.1 exempli�es thek-th entry of the interval vector of the template of

 i � , namely, I i �
k = [ l i �

k ; L i �
k ]. The expansion regionE i of an interval vector I i , based on the granularity

� , has components

E i
k = [ L i

k � �; l i
k + � ]; k = 1 ; :::; m: (5.15)

Consequently, Figure 5.1 shows �ve regions: inside the interval [l i
k ; L i

k ] (region 3); and inside (regions

2 and 4) and outside (regions 1 and 5) the expansion regionE i
k de�ned in f 1; 2; : : : ; ng .

Figure 5.1: Example of interval I i
k = [ l i

k ; L i
k ], and expansion regionE i

k

If a word of the granule  i , say wi
k , is found on the current streaming instancex [h ], e.g., the j -th

word x [h ]
j matcheswi

k , then the index j (the position of the word x [h ]
j in the sentencex [h ]) is comprised

in one of the �ve regions shown in Figure 5.1. We called such indexzi
k in (5.9). For j , or equivalently

zi
k , outside E i

k (regions 1 and 5), a new granule c+1 is created (see Section 5.3.1). Forzi
k inside E i

k

(regions 2 and 4), an endpoint ofI i
k is updated (expanded) to includezi

k , i.e.,

[l i
k ; L i

k ] = [ zi
k ; L i

k ]; (5.16)

or

[l i
k ; L i

k ] = [ l i
k ; zi

k ]: (5.17)
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If zi
k � [l i

k ; L i
k ] (region 3), no updated is needed.

5.3.3 Merging granules

Two granules, say  r and  s, with r; s 2 f 1; 2; : : : ; cg are merged if S( r ;  s) � � . S(:) is a

similarity measure,

S( s;  r ) =
zr + zs

2
; (5.18)

in which zr and zs are calculated using Eq. (5.10).zr gives the number of common words betweenw r

and w s divided by w r . zs is obtained analogously.S(:) 2 [0; 1]. The higher the value ofS(:), the more

similar the pair of granules.

After merging,  r and  s are deleted. A new granule c+1 is generated. The latter is formed by

the common words of r and  s,

w c+1 = f wr
k j wr

k = ws
k ; 8k 2 w r g; (5.19)

and

I c+1
k = [ min (l r

k ; ls
k ); max(L r

k ; L s
k )]; k = 1 ; :::; m: (5.20)

5.3.4 Deleting Attributes and Granules

An inactive granule, say  i , does not win competitions (5.11) in a number of time steps, sayhr .

After hr steps, the granule is deleted from the granular model. Whilehr is a hyperparameter helpful

to decide for deleting inactive granules i { and therefore to reduce the amount of rulesc of a granular

model { attributes k of word w i and interval I i vectors can also be deleted along the learning process

for a more compact antecedent part of rules.

To verify if wi
k is either a typical word of  i or not we use the hit rate, vi

k . Initially, a vi
k is set to

zero in the hit-rate vector v i . Wheneverwi
k is found in somex [h ], then one is added to the hit counter

vi
k . If vi

k { which is given by vi
k divided by the the total number of matches wi

k had in the past {

exceeds a threshold valuer, then the componentswi
k and I i

k are respectively deleted fromw i and I i .

Deleting attributes from templates helps to improve the matching procedure.

5.4 Learning algorithm

The eLP Learning algorithm summarises granular learning processing. The algorithm's parameter

are initialised in Line 1. From the lines 2 to 34, thex [h ] message is read and absorbed by the knowledge

basis. The �rst information granule is created in line 5. If it is not the �rst read message, the most

active granule  � is identi�ed in line 7. If this granule is enough activated, it is veri�ed which case

is the most appropriate according with Fig. 5.1 in lines 10-198k words of the template m i . If  � is

not enough activated, a new granule c+1 using x [h ] is created in line 21. From the lines 24-28, it is
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decided if it is necessary to create a new granule using the calculated intervals or adjust the most active

granule to accommodate the new sample. The knowledge basis is updated through merging similar

granules, updating them i 8i and the granularity � , and deleting the inactive granules if needed in the

lines 29-33.

Online Learning: evolving Log Parsing

1: Set initial granularity � [0] ; and deleting threshold hr , r; Initialise active = [], c = 0;

2: For h = 1 ; : : :

3: Read x [h ];

4: If h = 1 then

5: Create granule  1: w1, I 1; c + +;

6: Else // h = 2 ; : : :

7: Identify i � , Eq. (5.11);

8: If z� > � then // Eq. (5.10)

9: For k = 1 ; : : : ; n do

10: If zi
k < L i

k � � then [l i
k ; L i

k ] = [ zi
k ; zi

k ] %case 1

11: Else if zi
k 2 [L i

k � �; l i
k ] then

12: [l i
k ; L i

k ] = [ zi
k ; L i

k ] %case 2

13: Else if zi
k 2 [l i

k ; L i
k ] then

14: No update needed %case 3

15: Else if zi
k 2 [L i

k ; l i
k + � ] then

16: [l i
k ; L i

k ] = [ l i
k ; zi

k ] %case 4

17: Else [l i
k ; L i

k ] = [ zi
k ; zi

k ] %case 5

18: End if

19: End for

20: Else

21: Create granule  c+1 : w c+1 , I c+1 ; c + +;

22: End if

23: End if

24: If case1 or case5, for any k then

25: Create granule  c+1 : w c+1 , I c+1 ; c + +;

26: Else if case2 or case4, for any k then

27: Update granule  � to accommodatex [h ];

28: End if

29: If h = �h r , � = 1 ; : : : then

30: Merge similar  r and  s 8r; s 2 f 1; : : : ; cg;

31: Update w i 8i if needed; Update granularity � ;

32: Delete inactive granules based onhr ;Delete local inactive attributes based onr;

33: end if

34: end for



78 CHAPTER 5. ELP: EVOLVING LOG PARSING

5.5 Summary

System logs are elementary expressions of language that are used by computational systems to

communicate with human experts unidirectionally. The logs tell stories based on event occurrences.

Any software expresses itself through a unique log language. The language can be explored by a general

purpose syntax generator. This chapter introduces the evolving Log Parsing (eLP) method to extract

interval granular rules from streams of words encountered in log �les. eLP has identi�ed templates

(patterns in textual data) in an unsupervised one-shot incremental way.

Grammars evolve over time. The classes and classi�cation model granularity are updated if it is

needed. eLP is the �rst granular algorithm for log parsing based on words. In the context of system

maintenance, eLP makes the syntactic analysis of the information as the �rst step to identify the

semantic context of the communication.

Logs as a language concerns a viewpoint that allows extrapolation of the spontaneous communi-

cation between systems. The language provides meaning to syntactic analyses. As a grammar is not

enough for communication, event occurrences enrich the vocabulary, thus providing the possibility of

story-telling communication between systems in the future. Online pattern classi�cation is achieved

with an e�ciency/accuracy of (96.05 � 1.04)%. Additionally, we present an incremental interpretabil-

ity index to evaluate the interval granular classi�er on the y.



Chapter 6

Methodology

This chapter describes the methodology used to evaluate the approached problems: (i) anomaly

detection on the computing center functioning, and (ii) the parsing of the log language. Initially, the

data used as input to Maintenance Systems is described in Sec. 6.1. Sec. 6.2 and 6.3 describe the

dataset used to the AD and LP problems. Sec. 6.4 details the indexes and metrics used to evaluate

the proposed methods. The chapter summary is shown in Sec. 6.5.

6.1 Log File

Logs consist of a sequence of lines formed by the timestamp and the log message content. Times-

tamps record the instant in which the log message was written. Each log �le has a set of possible

messages. The log production depends on the events occurred during a time window, reaching up to

millions of lines per day for a single log �le of a single service.

Usually, computing centers have a large amount of logs available from hundreds of running sub-

systems on their infrastructure. Since logs are often heterogeneous, unstructured, and textual, they

signi�cantly vary in format and semantics from system to system. For this reason, developing a general-

purpose solution using logs is an extremely challenging and important task. The proposed solutions

are designed to support any kind of logs.

6.1.1 StoRM Service Logs

Storage Resource Manager (SRM) is a service that provides the storage system used by INFN-

CNAF. SRM aims to provide high performance to parallel �le systems, such as the GPFS (the IBM

General Parallel File System) and POSIX (Portable Operating System Interface), through a graphic

interface to INFN-CNAF infrastructure users. SRM has modular architecture constitute by StoRM

Front-end (FE), StoRM Back-end (BE), and databases (DB) [10]. The FE module manages user

authentication, and store and load requests. The BE module is the main StoRM component regarding

functionality. It executes all synchronous and asynchronous SRM operations, which allows interaction

79




	Introduction
	Objectives
	Contributions
	Organisation

	Data Center and Maintenance Systems
	Grid Infrastructure
	State of the Art
	Reactive Maintenance
	Predictive Maintenance

	System Maintenance Metaphors
	Health Care
	Speech Translation

	Proposed Framework
	Summary

	Evolving Fuzzy Granular Computing
	Granular Computing as Paradigm
	Fundamentals
	Interval Analysis
	Fuzzy Sets
	Aggregation Functions

	Granulation
	Domains
	Information Granules
	Evolving Granular Systems

	Summary

	Evolving Neural and Granular Systems
	Log-based Anomaly Detection
	Evolving Granular Classifiers
	FBeM: Fuzzy Set-Based Evolving Modeling
	eGFC: Evolving Gaussian Fuzzy Classifier
	eGNN: Evolving Granular Classification Neural Network

	eGNN: Aggregation Operators as Neurons
	T-norms
	S-norms
	Averaging Operators
	Ordered Weighted Averaging
	Compensatory T-S Operators
	Aggregation Neuron Model

	Summary

	eLP: evolving Log Parsing
	Preliminary Concepts
	Logs as a language
	The eLP granular framework
	Log parsing

	eLP: evolving Log Parsing
	Preliminaries
	Model structure

	Online Learning from Word Streams
	Creating granules
	Updating granules
	Merging granules
	Deleting Attributes and Granules

	Learning algorithm
	Summary

	Methodology
	Log File
	StoRM Service Logs

	Anomaly Detection Problem
	About the AD Dataset
	Log Self-learning Methodology

	Log Parsing Problem
	Evaluation Indexes
	Interpretability
	Accuracy
	Compactness
	Execution Time

	Summary

	Experimental Results
	Anomaly Detection
	Performance Comparison
	eGNN Aggregation Layer

	Log Parsing
	Summary

	Non-stationary System Maintenance
	Health System Model
	Proposed Models
	Naive State Models
	Granular State Models

	Summary

	Conclusion
	Summary
	Future Research

	How to read the Multi-Class Confusion Matrix
	Tutorial of the Log-based evolving Maintenance Service
	How to choose the log file
	About Implementation Decisions
	How can we approach big data problems?
	Why are fuzzy-set solutions a good idea to log-based predictive maintenance systems?
	Why is it a good idea to use granular computing in a data-driven problem?
	Why is it important to identify intervals of anomaly behavior of a service?
	Why is it a good idea to do service-oriented maintenance system?

	Software Description
	Anomaly detection
	Log Parsing
	Event Tracking
	Code Availability and Setting up


	Non-granular Log-based approaches
	Intelligent Diagnostic Maintenance Framework
	Log Preprocessing
	Volatility
	Anomaly Detection Clustering
	Anomaly Selection
	Algorithm

	Methodology
	About the Dataset

	Experimental Design
	Data Analysis
	Results
	Conclusion

	Bibliography

