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Abstract

The main purpose of this work is to develop a numerical platform for the tur-
bulence modeling and optimal control of liquid metal flows. Thanks to their
interesting thermal properties, liquid metals are widely studied as coolants
for heat transfer applications in the nuclear context. However, due to their
low Prandtl numbers, the standard turbulence models commonly used for
coolants as air or water are inadequate. Advanced turbulence models able to
capture the anisotropy in the flow and heat transfer are then necessary. In
this thesis, a new anisotropic four-parameter turbulence model is presented
and validated. The proposed model is based on explicit algebraic models
and solves four additional transport equations for dynamical and thermal
turbulent variables. For the validation of the model, several flow configu-
rations are considered for different Reynolds and Prandtl numbers, namely
fully developed flows in a plane channel and cylindrical pipe, and forced
and mixed convection in a backward-facing step geometry. Since buoyancy
effects cannot be neglected in liquid metals-cooled fast reactors, the second
aim of this work is to provide mathematical and numerical tools for the
simulation and optimization of liquid metals in mixed and natural convec-
tion. Optimal control problems for turbulent buoyant flows are studied and
analyzed with the Lagrange multipliers method. Numerical algorithms for
optimal control problems are integrated into the numerical platform and
several simulations are performed to show the robustness, consistency, and
feasibility of the method.





Introduction

Liquid metals, with their low Prandtl numbers, have gained increasing at-
tention in recent years. Compared with other coolant fluids, such as air
or water, liquid metals can withstand large heat fluxes, with moderate
temperature gradients, thanks to their large thermal conductivity values.
Furthermore, due to their high values of boiling temperature, some liquid
metals, like sodium, can flow in the liquid phase at high temperatures with-
out needing pressurized systems [1]. Thanks to these properties, liquid met-
als are currently considered in a broad range of industrial applications, in-
cluding the production of steel and semiconductors, in thermal solar plants
[2, 3] and in Generation IV liquid metal-cooled reactors [4, 5, 6]. Liquid
metal-cooled reactors are expected to play an important role in the future
of nuclear energy production due to their possibility to use natural resources
efficiently and to reduce the volume and lifetime of nuclear waste [7]. The
coolants considered for such reactors are sodium, lead, and lead alloys with
Pr numbers ranging from 0.001 to 0.02.

In the nuclear context, thermal-hydraulics is regarded as one of the key
issues in the project, design, and construction of liquid metal-cooled reac-
tors. To solve thermal-hydraulic issues, nuclear engineers and researchers
rely on analytical and empirical correlations, System Thermal-Hydraulics
(STH) and Computational Fluid Dynamics (CFD) codes. Detailed mea-
surements of local flow parameters in liquid metal-cooled reactors are chal-
lenging due to the opacity of the fluid, the anisotropy of the flows, and
the strong buoyancy influence [8]. Detailed experimental measuring capa-
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bilities are limited and numerical simulations of basic and complex flow
configurations are more important for low Prandtl number fluids than in
usual cases. In this respect, CFD is regarded as a valuable tool to analyze
the thermal-hydraulics behavior of nuclear systems when very sophisticated
models are required to accurately simulate turbulent liquid metals flow and
heat transfer.

To provide an understanding of flow mechanisms, the common tool em-
ployed is the Direct Numerical Simulation (DNS). The DNS method is based
on the complete three-dimensional and time-dependent conservation equa-
tions for mass, momentum, and energy. All the turbulence scales are re-
solved but this approach is affordable only for low and medium Reynolds
numbers. Another approach for obtaining useful data and flow parameters
is the Large Eddy Simulation (LES). With this technique, only the large
and slow scales of turbulence are resolved by the grid and in time. The
small scales have to be modeled by sub-grid scale models. This approach
is a compromise between the accuracy of DNS and the low-computational
cost of the Reynolds-Averaged Navier-Stokes (RANS) technique. RANS
approach is based on the time-averaging operation applied to conservation
equations. The operation introduces new turbulent unknowns, Reynolds
stresses and turbulent heat fluxes, leading to a closure problem for the sys-
tem of equations. This approach is the most commonly used in CFD codes
for the simulation of complex systems. The introduced models to close
RANS equations have to be carefully calibrated to predict accurately the
flow and heat transfer behavior.

In the RANS framework, several models have been developed in past
decades for the computation of the Reynolds stress tensor. First-order
models are based on the isotropic eddy viscosity, while second-order models
use transport equations for Reynolds stress tensor components. First and
second-order models are integrated and available in most of the commercial
codes. The first-order models are simple to implement but fail to predict
flow features in several cases, while the second-order ones allow predicting
the anisotropy in the flows but require a considerably increased numeri-
cal effort [9]. For the turbulent heat flux, only a few models have been
developed and validated. Most of the commercial codes apply the Simple
Gradient Diffusion Hypothesis (SGDH) based on the turbulent thermal dif-
fusivity and a constant turbulent Prandtl number. However, this concept is
inadequate in heat transfer problems involving low Prandtl number fluids
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like liquid metals [10]. More sophisticated heat transfer models are neces-
sary to correctly predict flow features and heat transfer phenomena in liquid
metal flows. One of the most promising heat transfer models for liquid met-
als is the isotropic four-parameter turbulence model which is based on the
SGDH hypothesis and solves two additional transport equations for thermal
turbulent quantities [11, 12, 13, 14].

The abovementioned isotropic four-equation turbulence model is imple-
mented in FEMuS, a finite element code integrated into the multiscale
and multiphysics numerical platform FemusPlatform [15]. The numerical
platform is based on the SALOME project and has been developed over
the last years at the Laboratory of Montecuccolino of the University of
Bologna. It is an environment where several numerical codes can be run
together, allowing the simulation of complex physical phenomena on diffe-
rent physical scales [16, 17]. In particular, the numerical platform includes
the multigrid finite element in-house code FEMuS for heat transfer, fluid
flow, turbulence, fluid-structure modeling and adjoint optimal control; the
open-source finite volume CFD software OpenFOAM; the multiscale neu-
tronic code DONJON-DRAGON; and a STH code for thermal-hydraulic
simulations.

In this framework, this Ph.D. thesis aims to propose and validate a
new turbulence model for flow and heat transfer simulations of liquid met-
als based on the isotropic four-parameter turbulence model implemented
in FEMuS. The new model for the closure of Reynolds stresses and turbu-
lent heat fluxes adopts explicit algebraic models, which belong to a class of
models between first and second-order models. Explicit algebraic models are
characterized by the easy implementation of first-order models but they can
capture the anisotropy in the flow and heat transfer as second-order models.
The explicit algebraic stress and heat transfer model requires the solution
of transport equations for four parameters, thus it is referred to as the
anisotropic four-parameter turbulence model [18, 19, 20]. The new model
is implemented into FEMuS and its validation is performed by referring to
DNS data and empirical correlations. The upgrade of the four-parameter
turbulence model aims to improve the multiphysics and multiscale simula-
tions involving liquid metals performed by using the numerical platform.

In the project, design, and optimization of liquid metal-cooled reactors,
the optimal control theory can be exploited. The optimal design of natural
and mixed convection systems is crucial in the thermal-hydraulics of lead-
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cooled fast reactors, where cooling is guaranteed by natural convection.
Optimization techniques can be used to find the optimal wall temperature
or heat flux to achieve specified objectives inside heat exchangers, nuclear
cores, primary and secondary circuit pipes. There are many objectives of
interest in this kind of application, i.e. flow matching, drag minimization,
enhancing or reducing turbulence, and hot spot reduction.

In liquid metal-cooled reactors, the buoyancy forces have a strong influ-
ence on the flow. In particular, the thermodynamic properties of lead allow a
high level of natural circulation cooling in the primary system of lead-cooled
reactors. In the design and optimization of core cooling in lead-cooled re-
actors, the strong natural circulation characteristics during both operation
and shutdown conditions cannot be neglected [21]. However, optimal con-
trol problems for natural or mixed convection in turbulent conditions have
not been considered so far. Optimal control problems for the Boussinesq
system in laminar condition have been studied focusing on the stationary
boundary and distributed control problems [22, 23, 24, 25, 26] to find the
optimal wall temperature, heat source or force in the case of electrically
conductive fluids as liquid metals. Since the role of turbulence has not been
considered yet in the optimal control for liquid metal flows in mixed and
natural convection, this Ph.D. thesis aims to treat mathematically and nu-
merically the optimal control of turbulent buoyant flows [27, 28]. The new
adjoint solvers for the optimal control of Boussinesq equations in laminar
and turbulent conditions are implemented into the numerical platform, in
particular into the finite element code FEMuS.

This thesis is divided into two main parts, dealing with the turbulence
modeling and the optimal control of liquid metal flows. The first part is
devoted to flow and heat transfer modeling for low Prandtl number flu-
ids. In Chapter 1 the main features of turbulent flows are presented and
particular attention is given to wall turbulence and its characteristics. The
Reynolds averaging operation is presented and applied to conservation equa-
tions. The problem of their closure is treated in Chapter 2. The standard
closure models are presented based on linear eddy viscosity and eddy ther-
mal diffusivity models, focusing on the treatment of wall flows. Then, the
explicit algebraic models for Reynolds stresses and turbulent heat fluxes are
derived and the anisotropic four-parameter turbulence model is presented.
In Chapter 3, a validation of the model is proposed through numerical
simulations performed by using FEMuS and considering several flow con-
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figurations in different conditions of Reynolds and Prandtl numbers. In the
second part, the study of optimal boundary control problems for buoyant
turbulent flows is presented. In Chapter 4 the main features of an optimal
control problem are described for the case of mixed or natural convection
in laminar flows. Numerical results are presented to show and compare the
effectiveness of the main control mechanisms, i.e. Dirichlet, Neumann and
distributed controls. In Chapter 5 the role of turbulence is taken into ac-
count. The optimal control problem is analyzed from a mathematical point
of view for the Dirichlet optimal control. Numerical results obtained by
using FEMuS are presented and discussed.





PART I

Liquid metals turbulence
modeling





CHAPTER 1

Turbulent flows

In this chapter, we consider the conservation equations of mass, momen-
tum, and energy that describe the state of an incompressible Newtonian
fluid. Buoyancy effects are considered in the framework of the Oberbeck-
Boussinesq approximation. When turbulence occurs, statistical tools for
the description of random variables characterizing turbulent flows may be
required, such as probability density function, mean, fluctuation, and stan-
dard deviation. When the random fields can be decomposed into mean and
fluctuating parts, the conservation equations can be time-averaged following
the Reynolds averaging procedure. With the averaging operation, a set of
equations for the mean fields can be obtained. However, in the attempt to
close the averaged system of equations, new unknown correlations appear
during the averaging process. The well-known problem of the new system
closure is treated in Chapter 2.

Turbulence can be generated by frictional forces acting over solid walls,
or by the flow of layers of fluids with different velocities. The turbulence
generated and continuously affected by fixed walls is designated as wall
turbulence, while turbulence generated by two adjacent layers of fluid in
absence of walls is called free turbulence. In this Ph.D. thesis, we are
particularly interested in wall turbulence and wall flows. The main features
of wall turbulence, like the one occurring in channel and pipe flows, are
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presented and described in the last section of this chapter.

1.1. Conservation equations for incompressible flows

In this section, the conservation equation of mass, momentum and en-
ergy for an incompressible Newtonian fluid are derived and discussed. The
Oberbeck-Boussinesq approximation is also considered and the correspond-
ing equations are reported. In the following, the Einstein summation nota-
tion is employed.

1.1.1. Conservation of mass

The conservation of mass equation, or continuity equation, states that
the time rate of change of mass in a fixed volume is equal to the net rate of
mass flow across the surface

∂ρ

∂t
+ ∂

∂xi

(ρui) = 0 , (1.1)

where ρ is the density of the medium and ui is the i-component of the
velocity vector u. By introducing the Eulerian derivative D/Dt = ∂/∂t +
u · ∇, the continuity equation can be expressed in the advective form as

Dρ

Dt
+ ρ

∂ui

∂xi

= 0 . (1.2)

When the fluid density changes are negligible, the medium is incompressible
and the Eulerian derivative of the density field vanishes. The continuity
equation becomes

∂ui

∂xi

= 0 , (1.3)

which is often referred to as the incompressibility condition.

1.1.2. Conservation of momentum

The conservation equation of momentum, or Navier-Stokes equation,
can be written as

∂(ρui)
∂t

+ ∂

∂xj

(ρuiuj) = ∂σij

∂xj

+ ρfi , (1.4)

where σij is the Cauchy stress tensor and fi is the i-component of the total
body force vector f . For incompressible flows, the momentum conservation
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equation is reduced to the advective form

ρ
Dui

Dt
= ∂σij

∂xj

+ ρfi . (1.5)

The principle of conservation of angular momentum states that in absence
of distributed couples the stress tensor is symmetric σij = σji. Thus, it can
be decomposed into isotropic and deviatoric parts

σij = −pδij + τij , (1.6)

where p is the hydrostatic pressure and τij is the viscous stress tensor. For
Newtonian fluids, the viscous stress tensor is related to the strain rate tensor
Sij by

τij = CijklSkl , (1.7)

where Cijkl is the fourth-order tensor of viscosities of the fluid and Sij is the
strain rate tensor or rate of deformation tensor

Sij = 1
2

(
∂ui

∂xj

+ ∂uj

∂xi

)
. (1.8)

For an isotropic viscous fluid, the fourth-order tensor Cijkl can be expressed
in terms of the Lamè constants η and µ

τij = η(tr S)δij + 2µSij , (1.9)

where (tr S) = Sii denotes the trace of the strain rate tensor S. The second
Lamè coefficient µ is referred to as dynamic viscosity of the fluid. For an
incompressible fluid (tr S) = 0, then Equation (1.9) and (1.6) become

τij = 2µSij , σij = −pδij + 2µSij . (1.10)

The Navier Stokes equation (1.5) can be then written as

ρ
Dui

Dt
= − ∂p

∂xi

+ ∂

∂xj

[
µ
(
∂ui

∂xj

+ ∂uj

∂xi

)]
+ ρfi . (1.11)

or
Dui

Dt
= −1

ρ

∂p

∂xi

+ ∂

∂xj

[
ν
(
∂ui

∂xj

+ ∂uj

∂xi

)]
+ fi . (1.12)

where ν = µ/ρ is the kinematic viscosity.
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1.1.3. Conservation of energy

The law of conservation of energy states that the time rate of change
of the local energy is equal to the sum of the rate of work done by applied
forces and the change of heat content per unit of time. The conservation of
energy can be expressed as

∂(ρe)
∂t

+ ∂ρeui

∂xi

= − ∂qi

∂xi

+ ∂σijuj

∂xi

+Q+ ρfiui , (1.13)

where e = υ + 1
2uiui is the total energy, υ is the internal energy, qi is the i-

component of the heat flux vector and Q is the internal heat generation. For
incompressible flows, an equation for the internal energy υ can be derived

∂(ρυ)
∂t

+ ∂ρυui

∂xi

= − ∂qi

∂xi

+Q+ Φ , (1.14)

where Φ = σij∂ui/∂xj is a dissipation function that can be expressed for a
Newtonian and isotropic fluid as

Φ = (−pδij + τik)∂ui

∂xj

. (1.15)

The internal energy equation can be simplified by expanding the derivatives
on the left-hand side of the equation. Using the continuity equation we
obtain the advective form of the energy equation

ρ
Dυ

Dt
= − ∂qi

∂xi

+Q+ Φ . (1.16)

We now introduce constitutive relations for the internal energy υ and the
heat flux qi to formulate the conservation equations in terms of the tem-
perature T . The internal energy can be related to two intensive thermody-
namic variables, such as temperature T and specific volume v = 1/ρ, thus
υ = υ(T, v). The change of internal energy is

dυ = ∂υ

∂T

∣∣∣∣
v
dT + ∂υ

∂v

∣∣∣∣
T
dv = cvdT +

(
T
∂p

∂T

∣∣∣∣
v

− p
)
dv , (1.17)

where cv is the specific heat at constant volume. When converted to a
material derivative and multiplying for the density ρ one can write

ρ
Dυ

Dt
= ρcv

DT

Dt
+
(
T
∂p

∂T

∣∣∣∣
v

− p
)
ρ
Dv

Dt
. (1.18)
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Since v = 1/ρ, the term ρDv/Dt can be rewritten as ∂ui/∂xi, and for an
incompressible flow the second term on the right-hand side of (1.18) is zero.
Moreover, cv ≈ cp ≈ c, where c is the specific heat and cp is the specific heat
at constant pressure, then ρDυ/Dt = ρcDT/Dt for incompressible flows.

The constitutive relation for the heat flux is the Fourier law for heat
conduction, which states that

qi = −λij
∂T

∂xj

, (1.19)

where λij denotes the conductivity tensor of order two. For an isotropic
medium λij = λδij, where λ denotes the isotropic thermal conductivity.
The conservation equation of energy can be then written as

ρc
DT

Dt
= ∂

∂xi

(
λ
∂T

∂xi

)
+Q+ Φ , (1.20)

or
DT

Dt
= ∂

∂xi

(
α
∂T

∂xi

)
+ Q

ρc
+ Φ
ρc
, (1.21)

where α = λ/(ρc) is the thermal diffusivity. The dissipation function is
important in some special cases involving very high shear rates, such as
bearings and hydraulic systems. In most other cases the dissipation function
can be neglected, and the energy equation further simplifies

DT

Dt
= ∂

∂xi

(
α
∂T

∂xi

)
+ Q

ρc
. (1.22)

1.1.4. Approximation of Oberbeck-Boussinesq

The Oberbeck-Boussinesq approximation is a widely used procedure to
solve non-isothermal flows without having to solve for the full compressible
formulation of the conservation equations (1.1), (1.4) and (1.13). This ap-
proximation assumes that variations in density ρ do not affect the flow field,
except that they give rise to buoyancy forces. Thus, we can consider ρ = ρ0
except for the gravity term. Under this approximation, the continuity equa-
tion reduces to the incompressibility condition (1.3). When one considers
ρf = ρg, where g is the gravitational acceleration, the Navier-Stokes equa-
tion can be written in the following form

ρ0
Dui

Dt
= − ∂p

∂xi

+ ∂

∂xj

[
µ
(
∂ui

∂xj

+ ∂uj

∂xi

)]
+ ρgi . (1.23)
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The fluid density ρ is replaced by a constant density ρ0 except in the body
force term representing the buoyancy force. The buoyancy term can be
rewritten as

ρgi = (ρ0 + ∆ρ)gi , (1.24)

where ∆ρ = ρ − ρ0. The buoyancy term ∆ρgi can be further rewritten as
∆ρgi = (ρ − ρ0)gi = −ρ0(T − T0)βgi where β is the coefficient of thermal
expansion. This yields

ρ0
Dui

Dt
= − ∂p

∂xi

+ ∂

∂xj

[
µ
(
∂ui

∂xj

+ ∂uj

∂xi

)]
+ ρ0gi − ρ0(T − T0)βgi , (1.25)

which is often written as

ρ0
Dui

Dt
= − ∂p′

∂xi

+ ∂

∂xj

[
µ
(
∂ui

∂xj

+ ∂uj

∂xi

)]
− ρ0(T − T0)βgi , (1.26)

where p′ = p− ρgh with h representing the elevation.
In the energy conservation equation, the density ρ and the heat capacity

c are assumed constant and the dissipation function is neglected. Under
the Oberbeck-Boussinesq assumption, the conservation equations are the
following

∂ui

∂xi

= 0 , (1.27)

Dui

Dt
= −1

ρ

∂p

∂xi

+ ∂

∂xj

[
ν
(
∂ui

∂xj

+ ∂uj

∂xi

)]
− giβT , (1.28)

DT

Dt
= ∂

∂xi

(
α
∂T

∂xi

)
+ Q

ρc
, (1.29)

where ρ and c are constant.

1.2. Statistical description of turbulent flows

In a turbulent flow, the velocity field u(x, t), the pressure field p(x, t)
and the temperature field T (x, t) are random variables. Consider a fluid
flow experiment that can be repeated many times under a specific set of
conditions and consider an event A. If the event A inevitably occurs, then
A is certain; if the event cannot occur, then it is impossible. If A may
occur, or it may but need not occur, the event is random. The fact that
u(x, t), p(x, t) and T (x, t) are random variables means that they do not
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have a unique value every time the experiment is repeated under the same
set of conditions [29].

The random nature of turbulence arises a consistency issue with the de-
terministic nature of the Navier-Stokes and energy equations. Even though
the conservation equations of mass, momentum and energy are determinis-
tic, the solutions are random because in any turbulent flow there are pertur-
bations in initial conditions, boundary conditions and material properties
and at the high Reynolds numbers of turbulent flows, the evolution of the
flow field is extremely sensitive to small changes in initial conditions, bound-
ary conditions, and material properties [29].

In this section, following the discussion proposed by Pope [29], we in-
troduce various statistical quantities to describe turbulent flows, such as
means, probability density functions, and two-point correlations. For all
these quantities, it is possible to derive evolution equations starting from the
Navier-Stokes and energy equations. In particular, we derive the equations
that govern the mean velocity ⟨u(x, t)⟩, pressure ⟨p(x, t)⟩ and temperature
⟨T (x, t)⟩ fields.

Random variables. Let u be a particular component of the velocity at a
specified position x and time t. The component u is a random variable. We
introduce an independent variable v defined as the sample-space variable
corresponding to u. Different events such as B = {u < vb} or C = {va <

u < vb} correspond to different regions of the sample space.
The probability of the event B is written as p = P (B) = P{u < vb}. For

an impossible event p = 0, while for a certain event p = 1. The probability
of any event can be determined from the cumulative distribution function
defined by F(v) = P{u < v}. According to this definition, we can write
P (B) = P{u < vb} = F(vb) and P (C) = P{va < u < vb} = P{u <

vb} − P{u < va} = F(vb) − F(va). The main properties of the cumulative
distribution function can be consulted in [29].

We can introduce the probability density function f(v), defined as the
derivative of the cumulative distribution function

f(v) = dF(v)
dv

. (1.30)

From the properties of the cumulative distribution function, it follows that
f(v) ≥ 0, since F(v) is a non-decreasing function. For other properties, the
reader can consult [29].
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The probability density function f(v) or the cumulative distribution
function F(v) fully characterize the random variable u. Two or more ran-
dom variables that have the same probability density function are said to be
identically distributed or statistically identical. Examples of the probability
distribution are the uniform distribution, the exponential distribution, the
normal or Gaussian distribution, and so on.

The mean of the random variable u is defined as

⟨u⟩ =
∫ ∞

−∞
vf(v)dv . (1.31)

More in general, if ϕ(u) is a function of u, the mean of ϕ(u) is

⟨ϕ(u)⟩ =
∫ ∞

−∞
ϕ(v)f(v)dv . (1.32)

The means ⟨u⟩ and ⟨ϕ(u)⟩ are not random variables and ⟨⟨u⟩⟩ = ⟨u⟩. The
operator ⟨·, ·⟩ is a linear operator, then if ϕ(u) and ξ(u) are functions of u,
a and b are constants, we have

⟨aϕ(u) + bξ(u)⟩ = a⟨ϕ(u)⟩ + b⟨ξ(u)⟩ . (1.33)

We now define the fluctuation in u as

u′ = u− ⟨u⟩ . (1.34)

The variance of u is defined as the mean-square fluctuation

⟨u′2⟩ =
∫ ∞

−∞
(v − ⟨u⟩)2f(v)dv , (1.35)

while the standard deviation or root-mean-square of u is the square-root of
the variance, i.e. urms = ⟨u′2⟩1/2.

Random joint variables. Since the velocity field u(x, t) is a vector, we
need to extend the definitions presented to two or more random variables.
We consider the components of velocity (u1, u2, u3) at a specified position
x and time t in a turbulent flow. The sample-space variables corresponding
to the random variables u = {u1, u2, u3} are denoted by v = {v1, v2, v3}.
Considering the two components u1 and u2, we can define the cumulative
distribution function of the joint random variables (u1, u2) as

F12(v1, v2) = P{u1 < v1, u2 < v2} , (1.36)
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while the joint probability density function is defined as

f12(v1, v2) = ∂2F12(v1, v2)
∂v1∂v2

. (1.37)

If ϕ(u1, u2) is a function of the random variables, its mean is defined by

⟨ϕ(u1, u2)⟩ =
∫∫ ∞

−∞
ϕ(v1, v2)f12(v1, v2)dv1dv2 . (1.38)

Let u′
1 = u1 − ⟨u1⟩, u′

2 = u2 − ⟨u2⟩ be the fluctuations, then the covariance
of u1 and u2 is

⟨u′
1u

′
2⟩ =

∫∫ ∞

−∞
(v1 − ⟨u1⟩)(v2 − ⟨u2⟩)f12(v1, v2)dv1dv2 , (1.39)

and the correlation coefficient is

ρ12 = ⟨u′
1u

′
2⟩

(⟨u′2
1 ⟩⟨u′2

2 ⟩)1/2 , (1.40)

and −1 ≤ ρ12 ≤ 1. We have a positive correlation coefficient when positive
excursions from the mean for one random variable are preferentially associ-
ated with positive excursions for the other random variable. It is negative
when positive excursions for one random variable are preferentially associ-
ated with negative excursions for the other. If ρ12 is zero then the random
variables u1 and u2 are uncorrelated. If ρ12 = 1, u1 and u2 are perfectly
correlated; if ρ12 = −1, u1 and u2 are perfectly negatively correlated.

Random processes. Let u(t) be a time-dependent velocity component
at a specified position x. Such a random variable is called random process.

At each time, the random variable u(t) is characterized by its one-time
cumulative density function, F(v, t) = P{u(t) < v}, or by its one-time
probability density function f(v, t) = ∂F(v, t)/∂v. However, these quan-
tities do not contain information about u(t) at two or more times, then
we introduce the N -time joint cumulative density function of the random
process u(t) defines as

FN(v1, t1; . . . ; vN , tN) = P{u(t1) < v1, . . . , u(tN) < vN} , (1.41)

where {t1, . . . , tN} are specified time points. To completely characterize
the random process, it is necessary to know the joint cumulative density
function for all instants of time, which is in general impossible. If the process
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is statistically stationary, we have considerable simplifications. A process
is statistically stationary if, for all positive intervals ∆t and all choices of
{t1, . . . , tN}, we have

f(v1, t1 + ∆t; . . . ; vN , tN + ∆t) = f(v1, t1 . . . ; vN , tN) . (1.42)

A turbulent flow, after an initial transient period, can reach a statistically
stationary state in which the statistics, for example the mean of the variance,
are independent of time, even though the flow variables vary with time. For
a statistically stationary process, the simplest multi-time statistic that we
introduce is the autocovariance

R(s) = ⟨u′(t)u′(t+ s)⟩ , (1.43)

or the autocorrelation function

ρ(s) = ⟨u′(t)u′(t+ s)⟩
⟨u′(t)2⟩

, (1.44)

which is the correlation coefficient between the process at times t and t+ s,
then we have −1 ≤ ρ(s) ≤ 1 and ρ(0) = 1.

Random fields. Now we are ready to treat the velocity field u(x, t) which
is a time-dependent random vector field. We need to extend the tools pre-
sented so far. We can have one-point or N -point statistics. The one-point
one-time joint cumulative distributed function is

F(v,x, t) = P{ui(x, t) < vi, i = 1, 2, 3} , (1.45)

and then the one-point one-time joint probability density function

f(v; x, t) = ∂3F(v,x, t)
∂v1∂v2∂v3

. (1.46)

At each point x and time t this function fully characterizes the random
velocity vector but it does not contain any information at two or more
times or positions. The mean velocity field is

⟨u(x, t)⟩ =
∫∫∫ ∞

−∞
vf(v; x, t)dv , (1.47)

and the one-point one-time covariance of the velocity is ⟨u′
i(x, t)u′

j(x, t)⟩.
These covariances, as we will see in the next section, are called Reynolds
stresses and are written ⟨u′

iu
′
j⟩.
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The N -point N -time joint probability density function can be defined
as an extension of (1.41). Considering a specific set of positions and times
{x(n), t(n)} with n = 1, . . . , N , we can define the joint probability density
function at these N space-time points as

fN(v(1),x(1), t(1); . . . ; v(N),x(N), t(N)) . (1.48)

The determination of this N -point probability density function for all space-
time points is impossible, thus a random velocity field cannot be fully char-
acterized. However, there are some simplifications if the field is statistically
stationary, homogeneous, or isotropic.

The random field u(x, t) is statistically stationary if all statistics are
invariant under a shift in time, which means that fN in (1.48) is unchanged
if (x(n), t(n)) is replaced by (x(n), t(n) + ∆t) for all N point, where ∆t is
the time shift. Similarly, the field u(x, t) is statistically homogeneous if all
statistics are invariant under a shift in position, then fN in (1.48) is un-
changed if (x(n), t(n)) is replaced by (x(n) + X(n), t(n)) for all N point, where
X(n) is the shift in position. We have homogeneous turbulence when the
fluctuating velocity u′(x, t) is statistically homogeneous. Moreover, turbu-
lent flows can be statistically two-dimensional or one dimensional when the
statistics are independent of one or two coordinates respectively, such as
in a channel flow. The random field u(x, t) is statistically isotropic if it is
statistically homogeneous and statistically invariant under rotations and re-
flections of coordinate system, which means that fN in (1.48) is unchanged if
u(x(n), t(n)) is replaced by u(x(n), t(n)) for all N point, where x and u denote
the position and random velocity field in any coordinate system obtained
by rotation and reflections of the coordinate axes.

The simplest statistic containing some information on the spatial struc-
ture of the random field is the two-point one-time autocovariance

Rij(r,x, t) = ⟨u′
i(x, t)u′

j(x + r, t)⟩ , (1.49)

which is often referred to as two-point correlation.

Reynolds averaging. We have given a definition for the mean of a ran-
dom field u(x, t) in (1.47) using the probability density function f(v; x, t).
The probability density function cannot be determined, then we present av-
eraging operations used to estimate ⟨u(x, t)⟩, introduced by Reynolds. The
three forms of Reynolds averaging most used in turbulent flow experiments
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and simulations are the time average, spatial average and the ensemble av-
erage. For statistically stationary flows the time average over a time interval
∆t is the most suitable and it is defined as

⟨u(x, t)⟩ = lim
T →∞

1
T

∫ t+T

t
u(x, t)dt . (1.50)

For homogeneous turbulence the spacial average is the most appropriate.
We average over all spatial coordinates by doing the following volume inte-
gral

⟨u(x, t)⟩ = lim
V →∞

1
V

∫∫∫
u(x, t)dV . (1.51)

For flows that can be repeated or replicated N times, the ensemble average
is defined by

⟨u(x, t)⟩ = lim
N→∞

1
N

N∑
n=1

u(n)(x, t) . (1.52)

For turbulence that is both stationary and homogeneous, we may assume
that these three averages are all equal.

1.3. The RANS equations

In the previous section, various statistical quantities have been intro-
duced to describe turbulent flows, i.e. mean, covariance, probability density
functions, two-point correlations, etc. It is possible to derive equations for
the evolution of all these quantities starting from the Navier-Stokes and
energy equations. The Reynolds decomposition involves the decomposition
of the dynamic and thermal fields into their mean and their fluctuation, i.e.

u(x, t) = ⟨u(x, t)⟩ + u′(x, t) , (1.53)
p(x, t) = ⟨p(x, t)⟩ + p′(x, t) , (1.54)
T (x, t) = ⟨T (x, t)⟩ + T ′(x, t) , (1.55)

where the mean operator ⟨·, ·⟩ is the time average defined in (1.50).

1.3.1. The Reynolds-Averaged Navier-Stokes equation

Applying the Reynolds decomposition and taking the mean of the con-
tinuity and Navier-Stokes equations (1.27)-(1.28), we obtain

∂⟨ui⟩
∂xi

= 0 , (1.56)
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D⟨ui⟩
Dt

= −1
ρ

∂⟨p⟩
∂xi

+ ∂

∂xj

[
ν
(
∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi

)
− ⟨u′

iu
′
j⟩
]
+

−giβ⟨T ⟩ .
(1.57)

The Reynolds-averaged conservation of mass (1.56) is identical to instan-
taneous continuity equation (1.27) with the mean velocity ⟨u⟩ replacing
the instantaneous velocity u. We can show that also the fluctuation u′

has zero divergence, subtracting (1.56) from (1.27). Aside from replace-
ment of instantaneous variables by mean values, the only difference between
the Reynolds-Averaged Navier-Stokes (1.57) and instantaneous momentum
equation (1.28) is the appearance of the velocity covariance ⟨u′

iu
′
j⟩, which is

called Reynolds stress tensor.
To understand why we refer to this term as stress, we rewrite the

Reynolds-Averaged Navier-Stokes equation (1.57) as

ρ
D⟨ui⟩
Dt

= ∂

∂xj

[
µ
(
∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi

)
− ⟨p⟩δij −ρ⟨u′

iu
′
j⟩
]

−ρgiβ⟨T ⟩ , (1.58)

and the term in square brackets represents the sum of three stresses: the
viscous stress, the isotropic stress ⟨p⟩δij from the mean pressure field and
the apparent stress arising from the fluctuating velocity field, ρ⟨u′

iu
′
j⟩. It is

as if the turbulent fluctuations have given rise to additional stresses. We
can express the rate of gain of momentum within a fixed control volume V
due to flow through the surface S as

Ṁi =
∮

S
ρui(−ujnj)dS , (1.59)

where the i-component of momentum per unit volume is ρui and the volume
flow rate per unit area into V through S is −ujnj. The mean of the i-
component of this equation is

⟨Ṁi⟩ =
∮

S
−ρ(⟨ui⟩⟨uj⟩ + ⟨u′

iu
′
j⟩)njdS , (1.60)

and applying the divergence theorem

⟨Ṁi⟩ =
∫

V
−ρ ∂

∂xj

(⟨ui⟩⟨uj⟩ + ⟨u′
iu

′
j⟩)dV . (1.61)

Thus, for the control volume V , the Reynolds stress that appears in the
Reynolds-Averaged Navier-Stokes equation (1.57) and acts like stresses, ac-
tually represents the mean momentum flux due to the fluctuating velocity
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on the boundary S, ρ⟨u′
iu

′
j⟩nj. Then ⟨u′

iu
′
j⟩ is not a real stress in the con-

ventional sense of the word but it represents the mean momentum fluxes
induced by the turbulence. However, as far as we consider the mean flow,
we can capture the effects of these fluxes by pretending that ⟨u′

iu
′
j⟩ is a

stress.
The Reynolds stress tensor is symmetric, ⟨u′

iu
′
j⟩ = ⟨u′

ju
′
i⟩, and thus has

six independent components. The diagonal components, ⟨u′2⟩, ⟨v′2⟩ and
⟨w′2⟩, are called normal stresses, while the off-diagonal components, ⟨u′v′⟩,
⟨u′w′⟩ and ⟨v′w′⟩, are named shear stresses. The turbulent kinetic energy
k(x, t) is defined to be half the trace of the Reynolds stress tensor

k = 1
2⟨u′

iu
′
i⟩ . (1.62)

We can distinguish isotropic and anisotropic stresses, in particular

⟨u′
iu

′
j⟩ = 2

3kδij + aij , (1.63)

where 2/3kδij is the isotropic stress and the deviatoric anisotropic part is
aij. Equation (1.63) is often reformulated using the normalized anisotropic
tensor bij, defined as bij = (⟨u′

iu
′
j⟩ − 2/3kδij)/(2k), into the following ex-

pression

⟨u′
iu

′
j⟩ = 2

3kδij + 2kbij . (1.64)

It is only the anisotropic tensor aij that is effective in transporting momen-
tum since we have

D⟨ui⟩
Dt

= −1
ρ

∂

∂xi

(
⟨p⟩ + 2

3ρk
)

+ ∂

∂xj

[
ν
(
∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi

)
− aij

]
+

− giβ⟨T ⟩ ,
(1.65)

and then the isotropic component 2/3k can be absorbed in a modified mean
pressure.

1.3.2. Reynolds-Averaged energy equation

The conservation equation for ⟨T ⟩ is obtained by applying the same
procedure used to obtain the Reynolds-Averaged Navier-Stokes equation.
Using the Reynolds decomposition reported in Equation (1.55), the time-
averaged energy equation (1.29) is

D⟨T ⟩
Dt

= ∂

∂xi

(
α
∂⟨T ⟩
∂xi

− ⟨u′
iT

′⟩
)

+ Q

ρc
. (1.66)
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where the velocity-temperature covariance ⟨u′
iT

′⟩ is a vector, which is called
turbulent heat flux or scalar flux. It represents the flux of the temperature
due to the fluctuating velocity field. In this equation, the turbulent heat
flux plays an analogous role to that of the Reynolds stresses in the mean
momentum equation.

1.3.3. The closure problem

Hereinafter we refer to (1.56), (1.57) and (1.66) as Reynolds-Averaged
Navier-Stokes and energy system, or more concisely RANS system. This
system is not closed, since the averaging operation has introduced as un-
knowns the six independent components of the Reynolds stresses and the
three components of the turbulent heat flux. If we take a non-statistical
approach, we have governing equations which are deterministic, but the
solutions are random fields. On the other hand, if we take a statistical
approach, then the quantities we are interested in are non-random and per-
fectly reproducible in any experiment, but we cannot find a closed set of
equations that describes them. In the attempt to close (1.57) and (1.66),
we derive the exact transport equations for velocity covariance ⟨u′

iu
′
j⟩ and

velocity-temperature covariance ⟨u′
iT

′⟩, by following [30].

The Reynolds-Stress transport equation

To predict the behavior of the mean flow through the Reynolds-Averaged
Navier-Stokes equation (1.57), we need to know the velocity covariance or
Reynolds stresses. Following [31], we derive the equation for ⟨u′

iu
′
j⟩ using

the Reynolds-Averaged Navier-Stokes equation (1.57) and the momentum
equation (1.28) for the instantaneous velocity u. Subtracting (1.57) from
(1.28), we obtain a transport equation for the fluctuating velocity field

∂u′
i

∂t
+ ⟨uj⟩

∂u′
i

∂xj

+ u′
j

∂⟨ui⟩
∂xj

+ u′
j

∂u′
i

∂xj

= −1
ρ

∂p′

∂xi

+

+ ∂

∂xj

[
ν
(
∂u′

i

∂xj

+
∂u′

j

∂xi

)
+ ⟨u′

iu
′
j⟩
]

− giβT
′ .

(1.67)

The transport equation for ⟨u′
iu

′
j⟩ can be obtained by multiplying the i-th

equation (1.67) by u′
j and the j-th equation by u′

i and time-averaging the
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sum of the two resulting equations

∂⟨u′
iu

′
j⟩

∂t
+ ⟨uk⟩

∂⟨u′
iu

′
j⟩

∂xk

+ ⟨u′
iu

′
k⟩∂⟨uj⟩

∂xk

+ ⟨u′
ju

′
k⟩∂⟨ui⟩
∂xk

+

+ ∂

∂xk

⟨u′
iu

′
ju

′
k⟩ = −1

ρ

(
⟨u′

i

∂p′

∂xj

⟩ + ⟨u′
j

∂p′

∂xi

⟩
)

+

+ ν
(

⟨u′
j

∂2u′
i

∂x2
k

⟩ + ⟨u′
i

∂2u′
j

∂x2
k

⟩
)

+ ⟨u′
j

∂u′
ku

′
i

∂xk

⟩ + ⟨u′
i

∂u′
ku

′
j

∂xk

⟩

− β(gj⟨u′
iT

′⟩ + gi⟨u′
jT

′⟩) .

(1.68)

The first term on the right-hand-side represents the pressure gradient inter-
action with the turbulent fluctuation. This term can be rewritten

− 1
ρ

(
⟨u′

i

∂p′

∂xj

⟩ + ⟨u′
j

∂p′

∂xi

⟩
)

= −1
ρ

(∂⟨u′
jp

′⟩
∂xi

− ⟨p′∂u
′
j

∂xi

⟩
)

+

− 1
ρ

(
∂⟨u′

ip
′⟩

∂xj

− ⟨p′ ∂u
′
i

∂xj

⟩
)

= 1
ρ

(
⟨p′∂u

′
j

∂xi

⟩ + ⟨p′ ∂u
′
i

∂xj

⟩
)

+

− 1
ρ

∂

∂xk

(
⟨p′δkiu

′
j⟩ + ⟨p′δkju

′
i⟩
)
.

(1.69)

Similarly, the second term on the right-hand-side represents the viscous
dissipation of the turbulent fluctuations and can be rewritten as follows

ν
(

⟨u′
j

∂2u′
i

∂x2
k

⟩ + ⟨u′
i

∂2u′
j

∂x2
k

⟩
)

= ν
(∂2⟨u′

iu
′
j⟩

∂x2
k

− 2⟨ ∂u
′
i

∂xk

∂u′
j

∂xk

⟩
)
. (1.70)

With these modifications, the Reynolds-stress equation can be written

D⟨u′
iu

′
j⟩

Dt
= −⟨u′

iu
′
k⟩∂⟨uj⟩

∂xk

− ⟨u′
ju

′
k⟩∂⟨ui⟩
∂xk

− 2ν⟨ ∂u
′
i

∂xk

∂u′
j

∂xk

⟩+

+ 1
ρ

(
⟨p′∂u

′
j

∂xi

⟩ + ⟨p′ ∂u
′
i

∂xj

⟩
)

+ ∂

∂xk

(
ν
∂⟨u′

iu
′
j⟩

∂xk

− ⟨u′
iu

′
ju

′
k⟩+

− ⟨p
′

ρ
(δkiu

′
j + δkju

′
i)⟩
)

− β(gj⟨u′
iT

′⟩ + gi⟨u′
jT

′⟩) ,

(1.71)

or, more concisely, we can formulate the Reynolds-stress equation in its
most recognizable form

D⟨u′
iu

′
j⟩

Dt
= Pij − εij + Πij + Dij + Gij , (1.72)
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where Pij is the production tensor, εij is the dissipation tensor, Πij is the
pressure-strain correlation, Dij is the diffusion term and Gij is the buoyant
source term

Pij = −⟨u′
iu

′
k⟩∂⟨uj⟩

∂xk

− ⟨u′
ju

′
k⟩∂⟨ui⟩
∂xk

, (1.73)

εij = 2ν⟨ ∂u
′
i

∂xk

∂u′
j

∂xk

⟩ , (1.74)

Πij = 1
ρ

(
⟨p′∂u

′
j

∂xi

⟩ + ⟨p′ ∂u
′
i

∂xj

⟩
)
, (1.75)

Dij = ∂

∂xk

(
ν
∂⟨u′

iu
′
j⟩

∂xk

− ⟨u′
iu

′
ju

′
k⟩ − ⟨p

′

ρ
(δkiu

′
j + δkju

′
i)⟩
)
, (1.76)

Gij = −β(gj⟨u′
iT

′⟩ + gi⟨u′
jT

′⟩) . (1.77)

The production tensor Pij represents the production of turbulent stresses by
the gradient of the mean velocity. This is the mechanism by which energy
is transferred from the mean flow to the fluctuating velocity components.
The pressure-strain correlation Πij represents the correlation of pressure and
velocity gradient. For an incompressible flow, the pressure fluctuations are
directly connected to the velocity fluctuations. Indeed, the fluctuation of
the pressure field must respond to changes in the flow instantaneously and
globally to enforce incompressibility. The diffusion term Dij represents the
diffusive transport of turbulent stresses away from sources of production,
such as channel walls. This diffusion is affected by spatial gradients in
turbulence intensity, viscous forces, and pressure fluctuations. Lastly, the
buoyant term Gij is a source depending on the interaction between the
gravity vector and turbulent heat flux components. While the production
term Pij is closed and does not require modeling, the other terms, like
pressure-strain correlation Πij and dissipation tensor εij, are unclosed and
require closure models.

The turbulent kinetic energy equation

We can derive a transport equation for the turbulent kinetic energy (1.62)
by taking the half-trace of the Reynolds stress equation (1.71) [31]

Dk

Dt
= −⟨u′

iu
′
k⟩∂⟨ui⟩
∂xk
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′
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⟩ + ∂
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(
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− 1
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iu
′
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′
k⟩+

− ⟨p′u′
k⟩

ρ

)
− βgi⟨u′

iT
′⟩ ,

(1.78)



28 Chapter 1. Turbulent flows

Notice that the pressure-strain correlation term has vanished upon con-
traction since the flow is assumed to be incompressible. We can write the
equation in a more compact form

Dk

Dt
= P − ε+ D + G , (1.79)

where

P = −⟨u′
iu

′
k⟩∂⟨ui⟩
∂xk

, (1.80)

ε = ν⟨ ∂u
′
i

∂xk

∂u′
i

∂xk

⟩ , (1.81)

D = ∂

∂xk

(
ν
∂k

∂xk

− 1
2⟨u′

iu
′
iu

′
k⟩ − ⟨p′u′

k⟩
ρ

)
, (1.82)

G = −βgi⟨u′
iT

′⟩ . (1.83)

The first term on the right-hand side of (1.79) is known as production
P and represents the rate at which kinetic energy is transferred from the
mean flow to the turbulence. The second term is called dissipation ε and
it is the rate at which turbulent kinetic energy is converted into thermal
internal energy. We have then the diffusive contribution D that consists
of three terms. The term involving ν∂k/∂xk is the molecular diffusion
and represents the diffusion of turbulent energy caused by the molecular
transport process. We refer to the triple velocity correlation term ⟨u′

iu
′
iu

′
k⟩

as turbulent transport and regard it as the rate at which turbulent energy
is transported through the fluid by turbulent fluctuations. We have then
the pressure diffusion, another form of turbulent transport resulting from
the correlation of pressure and velocity fluctuations ⟨p′u′

k⟩. Lastly, G is
the source term due to the buoyancy. Thus, the turbulent kinetic energy
evolves as a result of shear production, diffusion and viscous dissipation.
The unsteady term, convection and molecular diffusion are in closed form
while production, dissipation, turbulent transport and pressure diffusion
involve unknown correlations. Thus, the turbulent kinetic energy transport
equation is not closed.

The dissipation rate equation

To close the turbulent kinetic energy transport equation, we can try to
derive transport equations for the unknown correlations appearing in its
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expression. An attempt can be done to construct the transport equation
for the scalar dissipation rate ε. This is accomplished by differentiating
the transport equation for velocity fluctuation (1.67) with respect to xk,
multiplying by 2ν∂u′

i/∂xk and time-averaging. The equation obtained in
[32] is the following
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(1.84)

This equation is more complicated than the turbulent kinetic energy equa-
tion and involves several new double and triple correlations of fluctuating
velocity, velocity gradient and pressure. We can rewrite (1.84) in the com-
pact form

Dε

Dt
= Pε + Gε − εε + Dε , (1.85)

where
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The terms on the first line of the right-hand side of equation (1.84) are
the production of dissipation by shear Pε and buoyancy Gε, respectively.
The terms on the second line represent the dissipation of dissipation rate,
εε, and the terms on the third line are the diffusion term Dε, given by the
sum of the molecular diffusion of dissipation and the turbulent transport
of dissipation. Almost all correlations appearing on the right-hand side are
additional unknowns, then also this equation is not closed.
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The turbulent heat flux transport equation

To close the Reynolds-Averaged energy equation, we try to derive a trans-
port equation for the velocity-temperature correlation appearing on the
right-hand side of (1.66). To obtain the transport equation for the tur-
bulent heat flux, we follow the procedure indicated in [33]. We multiply
the i-th fluctuating velocity component by the equation for the instanta-
neous temperature (1.29) and add it to the i-th instantaneous Navier-Stokes
equation (1.28) multiplied by the fluctuating temperature T ′ and then by
time-averaging the result is
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(1.90)

we can formulate this equation in the more compact form

D⟨u′
iT

′⟩
Dt

= Piθ + Giθ − εiθ + Diθ + Πiθ , (1.91)

where Piθ is the rate of production of ⟨u′
iT

′⟩, Giθ is a production term due
to buoyancy, εiθ represents the rate of dissipation by molecular processes,
Dij represents the turbulent and molecular transport term and finally Πiθ

is the fluctuating pressure-temperature gradient correlation
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Giθ = −βgi⟨T ′2⟩ , (1.93)
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Πiθ = −⟨p
′

ρ

∂T ′

∂xi

⟩ . (1.96)

The production term Piθ expresses the rate of creation of ⟨u′
iT

′⟩ due to
the combined actions of mean velocity and mean temperature gradients.
The former tends to increase the velocity fluctuations, the latter the magni-
tude of the temperature fluctuations. The dissipative correlation εiθ is zero
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in isotropic turbulence and will be negligible also in non-isotropic turbu-
lence, provided that the turbulence Reynolds number is high. The pressure-
temperature gradient correlation Πiθ is the counterpart of the pressure-
strain correlation in the stress equations. With the direct dissipation negli-
gible, this provides the mechanism which limits the growth of the fluxes [34].
The equation (1.90) cannot be solved in the presented form, then modeling
is required.

The temperature variance transport equation

The transport equation for the temperature variance ⟨T ′2⟩ is obtained by
multiplying the equation for the instantaneous temperature (1.29) by T ′

and averaging [34]. The result may be written as
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(1.97)

We introduce kθ defined as the half-temperature variance 1
2⟨T ′2⟩ and we

formulate (1.97) as

Dkθ

Dt
= Pθ − εθ + Dθ , (1.98)

where Pθ is the production rate of temperature fluctuations by the tem-
perature gradient, εθ is the dissipation of fluctuations due to molecular
diffusion, and Dθ represents the diffusive transport produced by molecular
and turbulent velocity fluctuations
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, (1.99)
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2

)
. (1.101)

As expected, equation (1.97) contains correlations (⟨u′
jT

′2⟩) and dissipation
(εθ) terms which introduce new unknowns and make the equation undeter-
mined.
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The dissipation rate of temperature variance equation

The transport equation for the dissipation rate of fluctuations εθ is obtained
by taking the derivative of the equation of the instantaneous temperature
⟨T ⟩ + T ′ with respect to xj, multiplying by 2α∂T ′/∂xj and averaging [34]
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(1.102)

where ε′
θ = α(∂T ′/∂xk)(∂T ′/∂xk) and εθ = ⟨ε′

θ⟩. We can rewrite the equa-
tion in a more compact form
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The first four terms P1εθ
, P2εθ

, P3εθ
and Pεθ

in the right-hand side are pro-
duction terms for εθ. The direct mean-field generation terms (P1εθ

, P2εθ

and P3εθ
) are negligible at high Reynolds number, but they become im-

portant in the immediate neighborhood of a wall. Anyway, the production
term Pεθ

due to fine scale turbulence interactions is dominant. The term
εεθ

represents the dissipation contribution due to fine-scale turbulence in-
teractions. The remaining term Dεθ

represents the turbulent and molecular
diffusion contributions. All the correlations appearing in equation (1.102)
are unknown quantities.
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1.4. Wall turbulence

Most turbulent flows are bounded by one or more solid surfaces. The
presence of a boundary has a deep influence on turbulent flows. Wall-
bounded flows are usually divided into internal flows (pipe, channel, ducts)
and external flows (boundary layers). In this dissemination we will treat
only internal flows, in particular in this section we analyze the channel
and pipe flows, that are of practical importance and played a prominent
role in the historical development of the study of turbulent flows. The
classical problems of flow in a channel and a pipe are the idealized cases
of an infinitely long channel or pipe. This approximation is appropriate
if we are not too close to the inlet of the channel/pipe so that the flow
has become fully developed. In fully-developed flows, the mean velocity
vector is parallel to the wall and the near-wall behavior in each of these
cases is similar and responds to the so-called law of the wall. We follow the
discussion reported in [29].

1.4.1. Channel flow

xz

y u(y)

2δ

L
W

Figure 1.1: Schematic of a channel flow.

As sketched in Figure 1.1, we consider the flow through the rectangular
duct of height 2δ. The duct is long L/δ ≫ 1 and has a large aspect ratio
W/δ ≫ 1. The mean flow is mainly in the axial direction x with the mean
velocity varying principally in the wall-normal direction y. The bottom
and top walls are respectively at y = 0 and y = 2δ. The extent of the
channel in the spanwise direction is large compared with δ so that the flow
is statistically independent of z. The center-line is defined by y = δ and
z = 0.

The velocity u in the three coordinate directions is (u, v, w) with mean
(⟨u⟩, ⟨v⟩, ⟨w⟩) and fluctuations (u′, v′, w′). At the walls, mean and fluctuat-
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ing velocity are equal to zero, i.e. ⟨u⟩ = ⟨v⟩ = ⟨w⟩ = 0 and u′
i = v′

i = w′
i = 0.

At the entry of the channel, there is a flow-development region. We confine
our attention to the fully developed region where velocity statistics no longer
vary with the streamwise direction. Then, the fully developed channel flow
is statistically stationary and statistically one-dimensional, with velocity
statistics depending only on y. The Reynolds number used to characterize
the flow is Re = 2δUb/ν, where Ub is the bulk velocity evaluated with the
integral Ub = (

∫ δ
0 ⟨u⟩dy)/δ.

Since ⟨w⟩ = 0 and ⟨u⟩ are independent of x, the mean continuity equa-
tion (1.56) reduces to

d⟨v⟩
dy

= 0 . (1.110)

With the boundary condition ⟨v⟩ = 0 on the walls, (1.110) indicates that
⟨v⟩ vanishes for all y. The x and y components of (1.57) reduce to
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ν
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)

= 1
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, (1.111)

∂

∂y

(
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)
= 1
ρ

∂⟨p⟩
∂y

. (1.112)

Firstly, we rewrite (1.112) in the following form

∂

∂y

(
⟨v′v′⟩ + ⟨p⟩

ρ

)
= 0 , (1.113)

and we introduce the modified pressure pw = ⟨p⟩ + ρ⟨v′v′⟩, which is named
wall pressure since pw = ⟨p⟩y=0. From (1.113) we deduce that pw is a
function of x alone and since ⟨v′v′⟩ is independent of x we can rewrite
(1.111) as

∂

∂y

(
ν
∂⟨u⟩
∂y

− ⟨u′v′⟩
)

= 1
ρ

∂pw

∂x
. (1.114)

We introduce the total shear stress defined as the sum of the viscous τ =
ρνd⟨u⟩/dy and turbulent shear stress τR = −ρ⟨u′v′⟩

τeff (y) = ρν
d⟨u⟩
dy

− ρ⟨u′v′⟩ , (1.115)

and we rewrite (1.114) using the ordinary derivatives

dτeff

dy
= dpw

dx
. (1.116)
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The left-hand side and the right-hand side of (1.116) are independent of x
and y respectively then we can deduce that both dτeff/dy and dpw/dx are
constant. We can express the mean pressure gradient in terms of the wall
shear stress

τw = τeff |y=0 = τ |y=0 = ρν
d⟨u⟩
dy

∣∣∣∣
y=0

, (1.117)

which is due entirely to the viscous contribution since ρ⟨u′v′⟩ = 0 at the
walls. Integrating (1.116) along y from the wall y = 0, where τeff = τw, to
the mid-plane y = δ where τeff = 0, we obtain

−dpw

dx
= τw

δ
. (1.118)

The solution of Equation (1.116) can be then written as

τeff (y) = τw

(
1 − y

δ

)
, (1.119)

so the total shear stress is equal to its viscous contribution along the walls
and vanishes at the center-line of the channel. The flow in the fully de-
veloped region of a plane channel is then driven by the constant pressure
gradient, which is balanced by the shear stress gradient. For a given pressure
gradient dpw/dx and channel half-width δ, the shear stress profile is given
by (1.118) and (1.119) and it is independent of the fluid properties. We
now define appropriate viscous scales for the near-wall region. The friction
velocity is

uτ =
√
τw

ρ
(1.120)

and using this velocity scale we can define the friction Reynolds number
as Reτ = uτδ/ν, which characterizes the turbulent behavior of the flow.
The pressure gradient driving the flow can be expressed using the friction
quantities

−dpw

dx
= ρu2

τ

δ
= ρRe2

τν
2

δ3 . (1.121)

Let δν be the viscous length-scale defined as δν = ν/uτ , then the distance
from the wall measured in viscous length is denoted by

y+ = y

δν

= uτy

ν
. (1.122)
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Figure 1.2: Profiles of the fractional contributions of the viscous stress τ and
Reynolds stress τR to the total stress τeff with y+. DNS data from [35] for
Reτ = 180 and 590.

Different regions in the near-wall flow can be defined on the basis of y+

defined in (1.122). Figure 1.2 shows the contributions of the viscous stress
τ and Reynolds stress τR to the total stress τeff , defined in (1.115), plotted
against y+ for Reτ = 180 and 590. Close to the wall, for y+ < 50, we can
observe an important contribution of the molecular viscosity on the shear
stress. In this region, which is usually named viscous wall region, rapid
variations in both τ and τR occur. Although the sum of the two stresses is
constant, we move rapidly from a situation in which τeff is purely viscous
at y = 0, i.e. τeff ≈ τ , to a situation in which τeff ≈ τR at a short distance
from the wall. The sub-region where the Reynolds stress tensor is small
compared to the viscous stress is called viscous sub-layer, with y+ < 5. For
y+ > 50, the direct effect of viscosity is negligible, then τeff ≈ τR, and this
region is called outer region.

Now we consider the condition of thermally fully developed flow [31].
A uniform heat flux qw is imposed at the walls of the plane channel. Due
to the convective heat transfer between the fluid and the walls, the mean
temperature ⟨T ⟩ changes with x, then the condition of thermally fully de-
veloped flow is certainly different from the hydrodynamic case for which
∂⟨u⟩/∂x = 0. If there is heat transfer, ∂⟨T ⟩/∂x is not zero and the mean
temperature is a function of x and y. Let Tb be the bulk mean temperature
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defined as Tb(x) = (
∫ δ

0 ⟨T ⟩⟨u⟩dy)/(
∫ δ

0 ⟨u⟩dy) then the Newton’s law of cooling
states

qw = h(Tw − Tb) , (1.123)

where Tw is the wall temperature and h is the heat transfer coefficient.
We introduce the non-dimensional temperature (Tw−T )/(Tw−Tb) which

is independent of x in the thermally fully developed condition [36]. It means
that although the temperature profile changes with x, the relative shape of
the profile does not change

∂

∂x

[
Tw(x) − ⟨T ⟩(x, y)
Tw(x) − Tb(x)

]
= 0 . (1.124)

From (1.124) we find

∂⟨T ⟩
∂x

= dTw

dx

⟨T ⟩ − Tw

Tw − Tb

+ dTb

dx

Tb − ⟨T ⟩
Tw − Tb

. (1.125)

Since qw is constant, we have from (1.123) that dTw/dx = dTb/dx. Then
(1.125) gives

∂⟨T ⟩
∂x

= dTb

dx
. (1.126)

We can apply an energy balance to the plane channel to determine the
variation of the bulk temperature with x

dq = q̇wPdx = ṁcpdTb , (1.127)

where P is the surface perimeter and ṁ = ρUbA is the mass flow rate
entering into the channel section with area A. We can deduce from (1.127)

dTb

dx
= q̇wP

ρUbAcp

= 4q̇w

ρUbDhcp

. (1.128)

where Dh = 4A/P is the hydraulic diameter. With these specifications, we
can write the energy equation (1.66) for thermally fully developed flows in
the following form

∂

∂y

[
α
∂⟨T ⟩
∂y

− ⟨v′T ′⟩
]

= ⟨u⟩ 4q̇w

ρUbDhcp

, (1.129)

where Dh = 4δ.
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Figure 1.3: Profiles of the fractional contributions of the molecular q and tur-
bulent heat flux qR to the total heat flux qeff with y+. DNS data with Prandtl
number Pr = 0.01 and 1 and friction Reynolds number Reτ = 500 (a) and
Reτ = 2000 (b).

Let qeff be the total heat flux given by the sum of the molecular q =
α∂⟨T ⟩/∂y and turbulent qR = −⟨v′T ′⟩ terms. Figure 1.3 shows the contri-
butions of the molecular and turbulent heat flux to the total heat flux qeff

for medium and low Prandtl numbers, Pr = 1 and 0.01, considering medium
and high Reynolds friction numbers, Reτ = 500 and 2000. The DNS data
are taken from Alcántara-Ávila et al. [37]. For medium Pr numbers, i.e.
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Pr = 1, and for both Reynolds numbers, we can observe a near-wall region
where the thermal conductivity is dominant and the turbulent heat flux is
negligible. This region is the viscous thermal layer. Increasing the distance
from the wall, we observe rapid variations on both contributions, and, for
high y+, the molecular conductivity becomes negligible. This behavior is
analogous to the one we have described for the total shear stress τeff in
Figure 1.2. For this reason, the dynamic and thermal boundary layers are
often considered similar for medium Prandtl numbers.

For Pr = 0.01 we can observe a totally different behavior. In Figure
1.3a, the thermal conductivity is dominant everywhere and the turbulent
heat flux is almost negligible. In Figure 1.3b, with a high Reynolds number,
the turbulent heat flux increases and, at the center of the channel, the
viscous and turbulent contributions have the same importance. However,
there is no region where the viscous contribution vanishes. For low Prandtl
number fluids, the viscous thermal layer is thicker than for medium-high
Prandtl number fluids and no similarity exists between thermal and dynamic
boundary layers.

1.4.2. Pipe flow

x

r

φ

R

Figure 1.4: Schematic of a pipe flow.

We consider the fully developed turbulent flow in a long pipe of circular
cross-section, with internal diameter D = 2R. A representative schematic
of the pipe is reported in Figure 1.4. The velocity components ⟨u⟩, ⟨v⟩, ⟨w⟩
denote the flow in the x, r and ϕ directions. The analysis of fully-developed
flows along a pipe is quite similar to the one presented for the plane channel,
indeed the fully-developed pipe-flow is statistically stationary and statisti-
cally one-dimensional, with velocity statistics independent of x and ϕ. The
Reynolds number used to characterize the flow is Re = 2RUb/ν, where Ub

is the bulk velocity evaluated with the integral Ub = (
∫ R

0 2πr⟨u⟩dr)/πR2.
We denote the distance from the center of the pipe by r.
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Since ⟨w⟩ = 0 and ⟨u⟩ is independent of x, the continuity equation (1.56)
states

1
r

∂r⟨v⟩
∂r

= 0 , (1.130)

then the radial velocity component ⟨v⟩ does not vary across the pipe. Since
⟨v⟩ must vanish at the pipe walls, we conclude that ⟨v⟩ = 0 everywhere over
the fully-developed region. The x and r components of (1.57) reduce to

1
r

∂

∂r
r
(
ν
∂⟨u⟩
∂r

− ⟨u′v′⟩
)

= 1
ρ

∂⟨p⟩
∂x

, (1.131)

− 1
r

∂

∂r
r⟨v′v′⟩ − ⟨w′w′⟩

r
= 1
ρ

∂⟨p⟩
∂r

. (1.132)

We can rewrite (1.132) as

∂

∂r

(⟨p⟩
ρ

+ ⟨v′v′⟩
)

= −⟨v′v′⟩ + ⟨w′w′⟩
r

. (1.133)

Integrating Equation (1.133) from a generic position r to the wall r = R,
we obtain[⟨p⟩

ρ
+ ⟨v′v′⟩

]R

r
= pw

ρ
− ⟨p⟩

ρ
− ⟨v′v′⟩ = −

∫ R

r

⟨v′v′⟩ + ⟨w′w′⟩
r̄

dr̄ (1.134)

where pw = ⟨p⟩r=R is the wall pressure. From (1.134) we obtain that the
pressure in the radial direction changes across the duct due to the presence
of the turbulent stresses

⟨p⟩ = pw − ρ⟨v′v′⟩ + ρ
∫ R

r

⟨v′v′⟩ + ⟨w′w′⟩
r̄

dr̄ . (1.135)

Since the turbulent stresses depend only on the radial coordinates, differ-
entiating Equation (1.135) with respect to x we obtain

∂⟨p⟩
∂x

= dpw

dx
. (1.136)

We consider now (1.131) for the x-component of mean momentum equation.
Let τeff be the total shear stress defined as the sum of viscous and Reynolds
stresses. Since the pressure gradient is independent of r, integrating along
the radial direction from the center-line r = 0 to the wall r = R we obtain
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the relation between the pressure-gradient and the shear stress at the wall
τw = νdu/dr|r=R

dpw

dx
= 2τw

R
, (1.137)

or using the friction velocity and the friction Reynolds number

dpw

dx
= 2ρu2

τ

R
= 2ρRe2

τν
2

R3 . (1.138)

Now, integrating along the radial direction from the center-line r = 0 to the
generic r

τeff (r) = r

2
dpw

dx
= r

R
τw . (1.139)

If we define y as the distance from the wall R − r, we obtain

τeff (y) = τw

(
1 − y

R

)
, (1.140)

which is the same solution expressed in (1.119) for the fully-developed chan-
nel flow, then all the conclusions about mean flow obtained for channel flows
apply equally to pipe flows.

Now we consider the condition of thermally fully developed flow also
for the pipe. Let q̇w be a uniform heat flow set on the wall. The mean
temperature ⟨T (x, r)⟩ depends on both radial and axial coordinates. We
introduce the bulk temperature Tb(x) defined as

Tb(x) =
∫ R

0 ⟨T (x, r)⟩⟨u(r)⟩rdr∫ R
0 ⟨u(r)⟩rdr

. (1.141)

As for the plane channel, we define the condition of thermally fully devel-
oped flow as the condition in which the dimensionless temperature (Tw −
T )/(Tw − Tb) is independent of x. Following the same steps presented in
the previous section, we can write the mean temperature equation as

1
r

∂

∂r

[
r
(
α
∂⟨T ⟩
∂r

− ⟨v′T ′⟩
)]

= ⟨u⟩ 4q̇w

ρUbDhcp

, (1.142)

where Dh = 2R.
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1.4.3. Law of the wall for velocity

In this section, we aim to characterize the mean velocity profiles. Fully
developed channel or pipe flows are completely specified by ν, δ (or R for
the pipe) and uτ (or the pressure gradient dpw/dx). Following [29, 38], we
can form two independent non-dimensional groups from ν, δ, uτ and y and
the mean velocity profile can be written as

⟨u⟩ = uτF
(
y

δ
, Reτ

)
, (1.143)

where F is a universal non-dimensional function to be determined. We
express the mean velocity gradient in terms of non-dimensional parameters

d⟨u⟩
dy

= uτ

y
ϕ
(
y

δν

,
y

δ

)
, (1.144)

where ϕ is a universal non-dimensional function.
In the inner region, close to the wall where y/δ ≪ 1, the mean velocity

profile is determined by the viscous scales and it is independent of the
channel half-width δ. This implies that the function ϕ(y/δν , y/δ) tends
asymptotically to a function ϕ̃(y/δν) as y/δ → 0. Under this assumption,
Equation (1.144) becomes

d⟨u⟩
dy

= uτ

y
ϕ̃
(
y

δν

)
, for y

δ
≪ 1 , (1.145)

or in non-dimensional form

du+

dy+ = 1
y+ ϕ̃(y+) , (1.146)

where u+ = ⟨u⟩/uτ is the non-dimensional mean velocity. The integral of
(1.146) is known as law of the wall

u+ = f(y+) , (1.147)

which states that u+ depends only on y+ for y/δ ≪ 1. The function f is
universal for channel flows, pipes and boundary layers. The Taylor-series
expansion for f(y+) around y+ = 0 is

f(y+) = y+ + O(y+2) , (1.148)
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Figure 1.5: Profiles of the non-dimensional mean velocity u+ versus y+ showing
the law of the wall. DNS data for a plane channel with Reτ = 395 [39].

then for small values of y+ a linear relation holds

u+ = y+ for y
δ

≪ 1 and y+ ≪ 1 . (1.149)

Figure 1.5 shows the profile of u+ in the near wall-region obtained from
direct numerical simulations [39] for a turbulent flow in a plane channel with
Reτ = 395. The linear relation holds in the viscous sub-layer y+ < 5, also
known as linear region, whereas for greater values of y+ the discrepancies
from this trend are significant.

As we have mentioned before, for large values of y+ it can be supposed
that viscosity effects are negligible and then the dependence of ϕ̃(y/δν) on
ν, expressed in Equation (1.145), vanishes and ϕ̃ takes a constant value

ϕ̃
(
y

δν

)
= 1
κ
, for y

δ
≪ 1 and y+ ≫ 1 . (1.150)

Substituting in (1.146) the expression of ϕ̃ and integrating, we find

u+ = 1
κ

ln(y+) +B , for y
δ

≪ 1 and y+ ≫ 1 , (1.151)

that is the logarithmic law of the wall. By experiments, this is valid with
κ = 0.41 and B = 5.2 for y+ > 30 and y/δ < 0.1-0.2 approximately,
provided that the bulk Reynolds number is not too small. In Figure 1.5 we
can observe the comparison between the logarithmic law of the wall and the
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DNS data. There is a perfect agreement between the two lines for y+ > 30
and this region is called log-law region. The region between the viscous
sub-layer (y+ < 5) and the log-law region (y+ > 30) is named buffer layer.

We now analyze the outer region (y+ > 50), where the viscous stresses
are negligible and then we can assume that ϕ(y/δν , y/δ) is independent of ν
and y/δν . This implies that for large y/δν , the function ϕ(y/δν , y/δ) tends
asymptotically to ϕ̂(y/δ). Integrating (1.144) between the center-line y = δ

and a generic y we obtain the velocity defect law

u0 − ⟨u⟩
uτ

= f̂
(
y

δ

)
, for y+ > 50 (1.152)

where f̂ is a non-dimensional function and, unlike f in (1.147), is not uni-
versal. Then, Equation (1.152) states that the departure of ⟨u⟩ from the
center-line velocity u0 normalized by uτ depends only on y/δ.

1.4.4. Law of the wall for temperature

The law of the wall for temperature can be derived by analogous dimen-
sional analysis that we have reported for the law of the wall for velocity.

For y ≪ δ and y ≪ δT , where δT is the thickness of the thermal boundary
layer, the temperature measured with respect to the wall, Tw −⟨T ⟩, depends
only on the wall shear stress τw, on the wall heat flux qw, on the distance
from the wall y and on the fluid properties ν, ρ, cp and α. Following [38],
the dimensional analysis gives

Tw − ⟨T ⟩ = TτFT (y+, P r, Bq) , for y ≪ δ and y ≪ δT (1.153)

where FT is a universal non-dimensional function to be determined and Tτ =
qw/(ρcpuτ ) is the friction temperature. The non-dimensional parameter
y+ = uτy/ν is the distance from the wall in wall units, Pr = ν/α is the
Prandtl number and the last parameter Bq = qw/(uττw) represents the
ratio of wall heat flux to the internal source due to viscous dissipation. In
low-speed flows, this parameter can be ignored. By considering the mean
temperature gradient in terms of non-dimensional parameters, we can write

∂⟨T ⟩
∂y

= −Tτ

y
ϕT (y+, P r) . (1.154)

which is similar to (1.145). In the immediate vicinity of the wall, for y+ ≪ 1,
the molecular heat transfer dominates and a molecular transport sublayer
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adjacent to the wall exists [40]. The distribution of the dimensionless tem-
perature T+ = (Tw − ⟨T ⟩)/Tτ in the molecular heat conduction layer is
given by

T+ = Pry+ , for y
δ

≪ 1 and y+Pr ≪ 1 . (1.155)

The dimensionless thickness of the molecular transport sublayer depends
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Figure 1.6: Profiles of the non-dimensional mean temperature T + versus y+

showing the law of the wall T + = Pry+ in the molecular transport sublayer.
DNS data from [37] for Pr = 1, 0.1 and 0.01, Reτ = 500.

on the Pr number, as we can see in Figure 1.6. If Pr ≫ 1, the molecular
transport sublayer is immersed in the dynamic viscous sublayer, then y+

α <

y+
ν and y+

α ≈ 12/Pr1/3. For fluids with Pr ≈ 1 the velocity and temperature
fields are approximately similar, then the viscous and the molecular sublayer
have about the same depth and y+

α ≈ y+
ν ≈ 30. When Pr ≪ 1 the sublayer

of molecular heat conduction is thicker than the viscous sublayer, y+
α > y+

ν

and it spreads from the wall to the velocity logarithmic region and y+
α ≈

2/Pr [41].
If y+ and y+Pr are large, the effects of viscosity and thermal diffusivity

on heat transfer are small, then the function ϕT should tend to a constant,
1/κT , and we can write Equation (1.154) as

∂T+

∂y+ = 1
κTy+ , for y

δ
≪ 1 and y+Pr ≫ 1 , (1.156)
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Figure 1.7: Profiles of turbulent Prandtl number Prt with y+. DNS data from
Alcántara-Ávila et al. [37] with friction Reynolds number Reτ = 500 (a) and
Reτ = 2000 (b) for several Pr numbers.

which integrates to give

T+ = 1
κT

ln(y+) +BT , for y
δ

≪ 1 and y+Pr ≫ 1 (1.157)

where BT is a function of Pr and the coefficient κT is usually considered as
a constant with value κT ≈ 0.48 [38, 40]. Kader [40] proposed the following
correlation for Pr number from 0.006 to 40000

B(T ) = (3.85Pr1/3 − 1.3)2 + 2.12 ln(Pr). (1.158)
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The turbulent Prandtl number Prt is the ratio of the apparent viscosity to
the apparent thermal diffusivity, i.e.

Prt = ⟨u′v′⟩/(∂⟨u⟩/∂y)
⟨v′T ′⟩/(∂⟨T ⟩/∂y) . (1.159)

In the region of validity of both velocity (1.151) and temperature (1.156)
logarithmic laws, in which ⟨u′v′⟩ and ⟨v′T ′⟩ are almost constant, we have
Prt = κ/κT , then Pr = 0.85.

The turbulent Prandtl number is shown as a function of y+ in Figure 1.7
for Reτ = 500 and 2000. We can observe that Prt is approximately constant
and equal to 1 for medium and high molecular Prandtl number (Pr =
0.1, 1, 7). The turbulent Prandtl number becomes almost independent of
y+ and Pr as the wall is approached, except for low Prandtl numbers. The
turbulent Prandtl number has higher values for low Prandtl fluids along
the whole channel, not only in the wall proximity. Moreover, the turbulent
Prandtl number depends significantly on the Reynolds number [42, 37].
Increasing the Reynolds number Reτ , the turbulent Prandtl number moves
toward the value for the larger Pr. Then the high value of Prt for a low
Prandtl number fluid is caused by the effect of the low Reynolds number.
With the increase of the Reynolds number, the turbulent heat transport
contributes more dominantly compared to the conduction effect [42].





CHAPTER 2

Turbulence modeling

In Chapter 1 we have introduced the statistical tools commonly employed
for the study of turbulent flows. In contrast to laminar flows, determin-
istic equations such as continuity, momentum, and energy equations have
random solutions when the flow is turbulent. Applying the Reynolds av-
eraging operation, it is possible to derive the so-called Reynolds-Averaged
Navier-Stokes and energy equations for the mean velocity ⟨u⟩, pressure ⟨p⟩
and temperature ⟨T ⟩ fields. However, the obtained system of equations is
not closed because the averaging operation has introduced additional statis-
tic unknowns, the velocity covariance or Reynolds stresses ⟨u′

iu
′
j⟩, and the

velocity-temperature covariance or turbulent heat flux ⟨u′
iT

′⟩.
Several models have been developed in past decades for the computation

of the Reynolds stress tensor ⟨u′
iu

′
j⟩. The first-order models are based on the

Boussinesq assumption, which hypothesizes a linear relationship between
Reynolds stresses ⟨u′

iu
′
j⟩ and the mean strain-rate tensor Sij through an

isotropic eddy viscosity νt, which is usually determined using two-equation
turbulence models. The Reynolds-stress models are second-order models
and use transport equations for each component of the Reynolds stress
tensor. From an academic point of view, the second-order models would
be the best modeling for anisotropic momentum transfer, but the usage of
these techniques requires a considerably increased numerical effort [9].
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For the turbulent heat flux ⟨u′
iT

′⟩, only a restricted number of models
have been developed and validated. Most of them are first-order models
based on the Simple Gradient Diffusion Hypothesis (SGDH), which as-
sumes the similarity between the turbulent heat flux and the molecular
heat conduction introducing the turbulent thermal diffusivity αt and the
turbulent Prandtl number Prt, which is often set equal to a constant value
in the range 0.8–1. This concept can reproduce reasonable results in the
forced convection regime and for fluids with Pr ≈ 1, whereas it is inade-
quate for applications involving non-unity Prandtl number fluids like liquid
metals and/or non-negligible buoyancy effects [10]. For these applications,
the most promising models require the introduction of additional transport
equations. In [43, 44], an implicit Algebraic Heat Flux Model has been pro-
posed and implemented in STAR-CCM+. Its closure requires one additional
transport equation for the evaluation of the temperature variance ⟨T ′2⟩. In
[43], the thermal model has been coupled with a low-Reynolds linear k-ε
model, while in [44], the coupling with a second-order Reynolds-stress model
has shown better results. In [11, 12, 13, 14], an isotropic four-parameter
model (I4P) has been proposed and implemented in FEMuS. The model
introduces two additional thermal transport equations for the evaluation
of the squared temperature fluctuations kθ and its dissipation εθ. In the
original formulation of this model, the turbulent heat flux is evaluated with
an SGDH approach.

In this Ph.D. thesis, an anisotropic version of the above-mentioned four-
parameter model is proposed. For the closure of the momentum equation,
we suggest an Explicit Algebraic Stress Model, instead of the Boussinesq
assumption used in the isotropic model I4P, and for the modeling of the
turbulent heat flux, we propose an Explicit Algebraic Heat Flux Model,
instead of the SGDH hypothesis applied in I4P model. For the closure of
⟨u′

iu
′
j⟩ and ⟨u′

iT
′⟩, we can solve the four transport model equations of the

isotropic model (k-ε-kθ-εθ, k-ω-kθ-ωθ or K-Ω-Kθ-Ωθ).

The chapter is structured as follows: firstly, we introduce the Boussinesq
assumption and the linear eddy viscosity models, giving particular attention
to k-ε and k-ω models. We also report the near-wall treatment employed in
the isotropic four-parameter model. We then introduce the eddy thermal
diffusivity models based on the SGDH hypothesis, in particular, we describe
the kθ-εθ and kθ-ωθ models. The description of the near-wall treatment for
thermal variables used in the isotropic four-parameter model is reported.
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To propose the anisotropic version of the isotropic four-parameter model,
we describe the procedure of derivation of the explicit algebraic stress and
heat flux models. Finally, we present the anisotropic four-parameter model,
developed, implemented, and validated during this Ph.D. project.

2.1. Eddy viscosity models

The simplest turbulence models used in the RANS framework employ
the Boussinesq eddy viscosity approximation to compute the Reynolds stress
components as the product of an eddy viscosity νt and the mean strain rate
tensor Sij defined in (1.8). The eddy viscosity hypothesis is mathematically
analogous to the constitutive relation between stress and rate of strain for
a Newtonian fluid. According to the eddy viscosity hypothesis, there exists
the following relation

⟨u′
iu

′
j⟩ = 2

3kδij − 2νtSij , (2.1)

which means that the deviatoric part of Reynolds stress aij, introduced in
(1.63), is proportional to the mean rate of strain

aij = ⟨u′
iu

′
j⟩ − 2

3kδij = −2νtSij . (2.2)

The mean momentum equation (1.65) incorporating the eddy viscosity hy-
pothesis is

D⟨ui⟩
Dt

= −1
ρ

∂

∂xi

(
⟨p⟩ + 2

3ρk
)

+ ∂

∂xj

[
νeff

(
∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi

)]
+

− giβ⟨T ⟩ ,
(2.3)

where νeff = ν + νt is the effective viscosity. Equation (2.3) has the same
form as Navier-Stokes equation (1.28) with ⟨u⟩ and νeff in place of u and ν
and with the modified mean pressure ⟨p⟩+2/3ρk. Then, the convenience of
the eddy viscosity hypothesis is the possibility to maintain the same form
of differential equations for laminar and turbulent flows, allowing the use
of the same numerical scheme [30]. Moreover, since in general νt > ν, this
formulation of the problem can be rather robust numerically, especially if
compared to alternative forms of maintaining the Reynolds stress gradient
explicitly in (1.57) [45]. However, one of the most evident deficiencies of the
model is the isotropy of the eddy viscosity, which is a consequence of the



52 Chapter 2. Turbulence modeling

Boussinesq approximation which assumes a direct proportionality between
the turbulent stress and the mean strain rate. Due to this assumption,
the model fails to predict the anisotropy in simple configurations such as
fully developed plane channel flows. In fact, due to the symmetry of this
configuration ∂⟨u⟩/∂x = ∂⟨v⟩/∂y = ∂⟨v⟩/∂x = 0. The linear eddy viscosity
model yields

⟨u′u′⟩ = ⟨v′v′⟩ = ⟨w′w′⟩ = 2
3k , (2.4)

which is in contradiction with DNS data reported in Figure 2.1 for a tur-
bulent fully developed flow over a plane channel with Reτ = 590. In Figure
2.1 the dimensionless normal stresses, ⟨u′u′⟩+, ⟨v′v′⟩+ and ⟨w′w′⟩+, are re-
ported, where the squared friction velocity u2

τ is used to normalize the quan-
tities. The streamwise normal stress ⟨u′u′⟩+ presents a maximum value in
the near-wall region that is considerably higher than the peak values of
wall-normal normal stress ⟨v′v′⟩+ and spanwise normal stress ⟨w′w′⟩+ .
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Figure 2.1: The ⟨u′
iu

′
i⟩+ distribution from data of direct numerical simulation of

fully developed plane turbulent channel flow for Reτ = 590 [35].

Nonlinear eddy viscosity models extend in a general manner the repre-
sentation reported in (2.1), since they express the Reynolds stress in the
more general form

⟨u′
iu

′
j⟩ = 2

3kδij +
N∑

n=1
α(n)T

(n)
ij , (2.5)
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where T (n)
ij are the tensor bases and α(n) are the expansion coefficients which

need to be determined.
When using the eddy viscosity approximation, the problem of the closure

is considerably simplified since the only additional unknown in Equation
(2.3) is the eddy viscosity νt, instead of the six independent components of
the Reynolds stress tensor. The eddy viscosity can be written as the prod-
uct of a velocity scale υ and a length scale ℓ, then νt = υℓ [29]. There are
different levels of closure, depending on the number of differential equations
solved to determine the two scales. In algebraic or zero-equation models the
velocity and length scales are specified algebraically, while in one-equation
models the velocity scale is obtained by the transport equation for the tur-
bulent kinetic energy, and the length scale is specified algebraically. In two-
equation models, differential transport equations are used for both scales.
The turbulent velocity scale is based on the turbulent kinetic energy equa-
tion, while the length scale ℓ is estimated through the dissipation rate ε
or the dissipation rate per unit of turbulent kinetic energy ω. In the next
paragraphs, the modeled transport equations for k-ε and k-ω model are
presented and discussed.

2.1.1. The k-ε model

The k-ε model belongs to the class of two-equation models, in which two
additional transport equations are solved for the turbulent kinetic energy
k and the dissipation rate ε. These two quantities can be used to form a
length scale ℓ ∝ k3/2/ε and a velocity scale υ ∝ k1/2. From these scales, the
turbulent viscosity is specified as

νt = cµ
k2

ε
. (2.6)

The exact transport equation for turbulent kinetic energy has been derived
in Chapter 1 and the differential equation is reported in (1.78). In this
equation, the terms Dk/Dt, P , ε and G are in a closed form given the eddy
viscosity hypothesis and an appropriate closure model for the turbulent heat
flux appearing in the expression of G. With the eddy viscosity hypothesis,
the production term P is expressed as P = −⟨u′

iu
′
j⟩∂ui/∂xj = 2νtS

2, where
we have decomposed the velocity gradient tensor into the symmetric strain
rate tensor Sij and the antisymmetric rotation rate tensor Ωij = (∂ui/∂xj −
∂uj/∂xi)/2. Moreover, we have used SijSij = S2 and SijΩij = 0.

The remaining unknown is the diffusion term D, given by the sum of
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viscous, turbulent and pressure diffusion terms. The viscous diffusion term
is in a closed form, while the correlations need to be modeled. Referring
to the standard k-ε model due to Jones and Launder [46], we apply the
gradient-diffusion hypothesis for the turbulent diffusion terms

−1
2⟨u′

iu
′
iu

′
k⟩ − ⟨p′u′

k⟩
ρ

≈ νt

σk

∂k

∂xk

, (2.7)

where σk is a closure coefficient called effective Prandtl-Schmidt number for
diffusion that is taken as a constant in incompressible flows. The modeled
transport equation for turbulent kinetic energy can be then written in the
following form

Dk

Dt
= ∂

∂xk

[(
ν + νt

σk

)
∂k

∂xk

]
+ 2νtS

2 − ε+ G . (2.8)

The exact transport equation of the rate of dissipation of turbulent ki-
netic energy ε is reported in (1.84). The only terms in a closed-form are
Dε/Dt and the molecular diffusion. For the other terms, we introduce the
standard closure assumptions [32, 47]. The production term Pε is modeled
by

Pε = cε1
ε

k
⟨u′

iu
′
k⟩∂⟨ui⟩
∂xk

= cε1
ε

k
2νtS

2 , (2.9)

where cε1 is constant. The buoyancy source term is given by Gε = cbε/kG,
and the dissipation term is modeled by εε = cε2ε

2/k, while the diffusion
term is modeled by a gradient-diffusion hypothesis

Dε = ∂

∂xj

[(
ν + νt

σε

)
∂ε

∂xj

]
, (2.10)

having neglected the diffusion transport of ε by pressure fluctuations. With
these closure assumptions, the final form of the transport equation for the
dissipation rate can be written as

Dε

Dt
= ∂

∂xj

(
ν + νt

σε

)
∂ε

∂xj

+ cε1
ε

k
P − cε2

ε2

k
+ cb

ε

k
G . (2.11)

The standard values of all the model coefficients are [30]

cµ = 0.09 , cε1 = 1.45 , cε2 = 1.9 , cb = 1.2 , σk = 1.0 , σε = 1.3 . (2.12)

The coefficients reported in (2.12) are assumed constants, but it is only an
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Figure 2.2: The profile of νtε/k2 from DNS of channel flow at Reτ = 395 [35].

approximation that can be acceptable for simple flows, but it can be quite
inaccurate for complex flows. Figure 2.2 shows the quantity νtε/k

2, cor-
responding to the coefficient cµ from Equation (2.6), calculated from DNS
data of fully developed turbulent channel flow. This quantity is approxi-
mately constant with a value of around 0.09, except for the near-wall region
(y+ < 50). Changes in the standard k-ε model are required to apply to
the near-wall region, since the assumption of cµ constant in this region is
inadequate [29, 48].

2.1.2. The k-ω model

The k-ω model is a two-equation turbulence model. Its first formulation
was proposed by Kolmogorov in 1942 and the model has evolved over the
decades. Let ω be the specific dissipation rate of turbulent kinetic energy,
a turbulent quantity whose dimensions are inversely proportional to time,
defined as

ω = ε

cµk
. (2.13)

In a k-ω model, the eddy viscosity is computed as the ratio of turbulent
kinetic energy and its specific dissipation rate νt = k/ω. The transport
equation for turbulent kinetic energy proposed by Wilcox [49], can be ob-
tained from (2.8) replacing the dissipation term with the relation ε = β∗kω
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derived from the definition (2.13), where β∗ = cµ,

Dk

Dt
= ∂

∂xk

[(
ν + νt

σk

)
∂k

∂xk

]
+ P − β∗kω . (2.14)

The transport equation for the specific dissipation rate proposed by Wilcox
[49] can be formulated

Dω

Dt
= ∂

∂xk

[(
ν + νt

σω

)
∂ω

∂xk

]
+ γ

ω

k
P − βω2 + γ

ω

k
G , (2.15)

where

β = 3
40 , β

∗ = 0.09 , γ = 5
9 , σk = σω = 2 . (2.16)

The k-ω model here presented differs from the standard k-εmodel previously
reported [29]. To better understand the differences between the two models,
we can derive the ω equation implied by the k-ε model. From Equation
(2.11) taking σk = σε = σω for simplicity, the result is

Dω

Dt
= ∂

∂xk

[(
ν + νt

σω

)
∂ω

∂xk

]
+ 2
k

(
ν + νt

σω

)
∂k

∂xj

∂ω

∂xj

+

+(cε1 − 1)ω
k

P − (cε2 − 1)cµω
2 + (cb − 1)ω

k
G .

(2.17)

For homogeneous turbulence, the choice of γ = cε1 − 1 and β = cε2 − 1
makes the models (2.15) and (2.17) identical. However, for inhomogeneous
turbulence, the k-ε model written as a k-ω model presents an additional
term, which is the term in Equation (2.17) given by the scalar product of
turbulent kinetic energy gradient and its specific dissipation rate gradient.
This term is often called cross-diffusion.

2.1.3. Near-wall treatment

In a turbulent flow, the presence of a wall causes different effects. Firstly,
the turbulent Reynolds number Reτ tends to zero as the wall is approached.
Thus, we have a predominant effect of molecular viscosity on the flow struc-
tures in the proximity of the wall. Moreover, as the wall is approached, the
turbulence tends to a two-component limit because the velocity fluctua-
tions in the wall-normal direction damp [48]. The influence of low Reynolds
numbers and the wall proximity have to be taken into account to predict
the near-wall turbulence. The standard two-equation models necessitate
modifications to capture these effects. While the forms of the basic k-ε
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Table 2.1: Near-wall Taylor expansion for the components of the mean velocity
⟨ui⟩ and fluctuating velocity u′

i.

Mean Components Fluctuating components

⟨u⟩ = A1y + A2y
2 + A3y

3 + . . . u′ = a1y + a2y
2 + a3y

3 + . . .

⟨v⟩ = B1y+ B2y
2 +B3y

3 + . . . v′ = b1y+ b2y
2 + b3y

3 + . . .

⟨w⟩ = C1y + C2y
2 + C3y

3 + . . . w′ = c1y + c2y
2 + c3y

3 + . . .

models have not changed since the form proposed in the 1970s, the same
is not true for the near-wall treatment of basic two-equation turbulence
models. Jones and Launder were the first to extend the original k-ε model
to the low-Reynolds number form that allows calculations in the proximity
of walls [50]. As new detailed DNS data for the viscous near-wall region
are available, turbulence models are continually developed and improved to
become more and more accurate. For the various low-Reynolds k-ε models
proposed, the relation for determining the eddy viscosity νt can be written
as

νt = cµfµ
k2

ε
, (2.18)

where the damping function fµ has been introduced to reduce the eddy
viscosity near the wall and takes into account low-Reynolds numbers and
wall-proximity effects. Since the introduction of fµ aims to capture the
limiting behavior of the wall turbulence, we report in Table 2.1 the Taylor
expansion of each component of velocity in terms of the distance from the
wall y.

In the vicinity of the wall, the following relations hold

k = 1
2{⟨u′2⟩ + ⟨v′2⟩ + ⟨w′2⟩} ≈ 1

2(a2
1 + c2

1)y2 , (2.19)

ε = ν⟨
(
du′

dy

)2
+
(
dv′

dy

)2
+
(
dw′

dy

)2
⟩ ≈ ν(a2

1 + c2
1) , (2.20)

νt = ⟨u′v′⟩/d⟨u⟩
dy

≈ a1b2

A1
y3 . (2.21)

From Equation (2.18) and (2.21), the model function fµ has to satisfy fµ ∝
y−1 since k2/ε ∝ y4. The function fµ has to be modeled to account for the
near-wall behavior and low-Reynolds effects, then it might be formulated
as a function of the dimensionless wall distance y+ and turbulent Reynolds
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number Rt = k2/νε, defined using k1/2 as velocity scale and k3/2/ε as length
scale. Among the existing low-Reynolds number k-ε models, the model
developed by Abe et al. [51] is regarded as one of the most reliable. The
model can reproduce the near-wall limiting behavior and provides accurate
predictions in both attached and detached wall flows. Most of the low-
Reynolds k-ε models fail to predict separating and reattaching flows, since
the dimensionless wall distance y+ = uτy/ν vanishes around separating and
reattaching points where the friction velocity uτ is zero. From the near-wall
expansion, we find that the the friction velocity uτ , defined in Equation
(1.120), is expressed as

uτ =
√
τw

ρ
=

√√√√ν d⟨u⟩
dy

∣∣∣∣
y=0

=
√
νA1 , (2.22)

then the velocity scale is determined by the mean velocity component A1,
which vanishes in separating and reattaching points. In [51], Abe et al. pro-
posed to use the Kolmogorov velocity scale uε = (νε)1/4 ≈ ν1/2(a2

1 + c2
1)1/4

for the definition of the dimensionless wall distance Rd = yuε/ν. Since the
Kolmogorov velocity scale uε has a finite value near wall, we have Rd ∝ y

for y → 0. According to [52], the damping function fµ is modeled as

fµ =
{

1 + 35
R

3/4
t

exp
[

−
(
Rt

30

)3/4]}{
1 − exp

[
−
(
Rd

26

)2]}
. (2.23)

Away from the wall, where Rt and Rd become large, fµ ≈ 1 then νt = cµk
2/ε,

while as the wall is approached, fµ ≈ y−1 and νt is reduced. It is necessary
to observe that with the Boussinesq assumption of the isotropic model we
are not able to capture the near-wall behavior of the stresses ⟨v′v′⟩ ∝ y4,
⟨u′u′⟩ ∝ y2 and ⟨w′2⟩ ∝ y2. Indeed, applying (2.1), all the stresses are ∝ y2

at the wall, while the turbulent shear stress near-wall behavior is correctly
represented ⟨u′v′⟩ ∝ y3.

In low-Reynolds k-ε models, also the coefficient cε2 which appears in
the dissipation term of ε Equation (2.11) has to be modeled, since its value
is influenced by the near-wall region. In addition, the destruction of dissi-
pation rate cε2ε

2/k is singular at the wall since ε is finite and k vanishes.
Let fε be the damping function appearing in the low-Reynolds ε modeled
transport equation

Dε

Dt
= ∂

∂xj

[(
ν + νt

σε

)
∂ε

∂xj

]
+ cε1

ε

k
P − cε2fε

ε2

k
+ cb

ε

k
G . (2.24)
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From Equation (2.24), the following equation holds at y = 0

ν
∂2ε

∂y2 = cε2fε
ε2

k
. (2.25)

Since ε and its derivatives are not infinite at the wall, the left-hand side
is of order y0 then fε ∝ y2 is required to satisfy equation (2.25). In free
turbulence, the limiting behavior requires

fε = 1 − 0.3 exp
[

−
(
Rt

Au

)2]
, (2.26)

that is of order y0 near the wall due to the factor 0.3 in front of the ex-
ponential term. Thus, the following expression is proposed to respect both
near-wall and free turbulence limiting behavior

fε =
{

1 − 0.3 exp
[

−
(
Rt

6.5

)2]}{
1 − exp

[
−
(
Rd

3.7

)2]}
, (2.27)

where the second factor is of order y2 near the wall then fε ∝ y2 as required.
The low-Reynolds k-ε model uses the following set of model constants

cµ = 0.09 , σk = 1.4 , σε = 1.4 , cε1 = 1.5 , cε2 = 1.9 . (2.28)

Let us now consider the k-ω derived from the low-Reynolds k-ε model just
described. Using the definition reported in Equation (2.13) and substituting
in Equation (2.24) we obtain

Dω

Dt
= ∂

∂xk

[(
ν + νt

σω

)
∂ω

∂xk

]
+ 2
k

(
ν + νt

σω

)
∂k

∂xj

∂ω

∂xj

+

+(cε1 − 1)ω
k

P − (cε2fε − 1)cµω
2 + (cb − 1)ω

k
G ,

(2.29)

where cε1, cε2 and fε are defined in (2.27) and (2.28).
The isotropic four-parameter turbulence model adopts the expression of

νt, fµ and fε reported in (2.18), (2.23) and (2.27), respectively. The model
can be formulated in terms of k-ε, k-ω or using the logarithmic version of
the variables, as presented in [12].

2.2. Eddy thermal diffusivity models

The Reynolds-Averaged energy equation (1.66) contains as additional
unknowns the three components of the turbulent heat flux. This term can
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be closed at different levels. The most common turbulent heat flux modeling
method is based on the generalized gradient diffusion hypothesis (GGDH),
which assumes for the unknown turbulent heat flux terms the following
relation

⟨u′
iT

′⟩ = −αij
t

∂⟨T ⟩
∂xj

, (2.30)

where the introduced unknown αij
t is the tensor of the eddy thermal diffu-

sivities. In most models, the anisotropic eddy thermal diffusivity tensor αij
t

is replaced by an isotropic scalar eddy thermal diffusivity αt. This means
that each heat flux component ⟨u′

iT
′⟩ is governed by the same eddy ther-

mal conductivity. Moreover, each heat flux component is aligned with the
corresponding mean temperature gradient component

⟨u′
iT

′⟩ = −αt
∂⟨T ⟩
∂xi

. (2.31)

This simplification is usually referred to as the simple gradient diffusion
hypothesis (SGDH).

To the best of our knowledge, none of the large commercial codes has up
to now a well-validated model for the scalar eddy thermal diffusivity [53].
Almost all the commercial codes apply the Reynolds analogy, which assumes
similarity in the turbulent transport features of momentum and heat. Ac-
cording to the Reynolds analogy, the isotropic eddy thermal diffusivity αt

is assumed to be proportional to the eddy viscosity νt. The proportionality
factor is the inverse of the turbulent Prandtl number Prt

⟨u′
iT

′⟩ = − νt

Prt

∂⟨T ⟩
∂xi

, (2.32)

so the closure problem is shifted to the unknown proportionality factor Prt

and the averaged energy equation can be expressed as

D⟨T ⟩
Dt

= ∂

∂xi

[(
α + νt

Prt

)
∂⟨T ⟩
∂xi

]
. (2.33)

The turbulent Prandtl number has been already defined in Equation (1.159)
as the ratio of the apparent viscosity to the apparent thermal diffusivity

Prt = νt

αt

= ⟨u′v′⟩
⟨v′T ′⟩

∂⟨u⟩/∂y
∂⟨T ⟩/∂y

. (2.34)
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Usually, a spatially constant value of Prt = 0.9 is applied for all types
of flows, for all Prandtl numbers, and all Reynolds stress tensor models
[53]. From Figure 1.7a,b, we observe that Prt is approximately constant for
medium and high molecular Prandtl numbers, but for low Prandtl numbers,
it depends on many parameters, such as the Reynolds number and the
distance from the wall, then more sophisticated closure models are required
to overcome the Reynolds analogy deficiencies.

For low Prandtl number fluids, models which solve one, two, or more ad-
ditional transport equations are preferred. There exist then three-parameter
or three-equation turbulence models, where k and ε are used for closing the
dynamic turbulence and the temperature variance kθ = ⟨T ′2⟩/2 is solved
for the thermal turbulence, and four-parameter or four-equation turbulence
models, which solve also for the dissipation rate of the temperature fluctu-
ations εθ [9]. Using three or four-equation models, it is possible to express
the isotropic scalar eddy thermal diffusivity as

αt = Cλkτm , (2.35)

where τm is the mixed time scale. In three-equation turbulence models
τm is determined using only the temperature variance kθ, while in four-
equation turbulence models the mixed time scale is evaluated using also
the dissipation rate of temperature fluctuations εθ [44]. In the following,
we focus on four-parameter turbulence models which are employed in the
isotropic four-parameter turbulence model.

2.2.1. The kθ-εθ model

The exact transport equation for temperature variance kθ is reported in
Equation (1.97). The production Pθ, dissipation εθ and viscous diffusion
terms are in closed forms, whereas the turbulent diffusion term needs to be
modeled. In particular, in the framework of the isotropic four-parameter
model, and more in general of SGDH models, Pθ is expressed as

Pθ = −⟨u′
jT

′⟩∂⟨T ⟩
∂xj

= αt
∂⟨T ⟩
∂xj

∂⟨T ⟩
∂xj

, (2.36)

while, according to [11, 4, 12], the turbulent diffusion term is modeled ap-
plying a standard gradient diffusion model

Dθ = ∂

∂xj

(
α
∂kθ

∂xj

−
⟨u′

jT
′2⟩

2

)
= ∂

∂xj

(
α
∂kθ

∂xj

+ αt

σkθ

∂kθ

∂xj

)
, (2.37)
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where σkθ
is a model constant.

The exact transport equation for the dissipation of temperature variance
εθ has been derived in Chapter 1 and it is reported in Equation (1.102).
The direct mean-field generation terms in the εθ are negligible when the
turbulence Reynolds number is large, but they become important in the
immediate vicinity of the wall because of the sharp decrease of the turbulent
Reynolds number Rt = k2/νε values. In the isotropic four-parameter model
[11, 4, 12], the unknown source and dissipation terms in Equation (1.102)
are written as follows

P1εθ
+ P3εθ

+ Pεθ
− εεθ

= −2α⟨∂T
′

∂xk

∂u′
j

∂xk

⟩∂⟨T ⟩
∂xj

+

− 2α⟨∂T
′

∂xk

∂T ′

∂xj

⟩∂⟨uj⟩
∂xk

− 2α⟨∂T
′

∂xk

∂u′
j

∂xk

∂T ′

∂xj

⟩ − 2α2⟨
(

∂2T ′

∂xj∂xk

)2
⟩+

= cp1
εθ

kθ

Pθ + cp2
εθ

k
P − cd1

ε2
θ

kθ

− cd2
εεθ

k
,

(2.38)

where Pθ = −⟨u′
jT

′⟩∂⟨T ⟩/∂xj and P = −⟨u′
iu

′
j⟩∂⟨ui⟩/∂xj. The production

term P2εθ
is usually neglected. The coefficient cd2 is the following model

function

cd2 =
{

1.9
[
1 − 0.3 exp

(
− R2

t

42.25

)]
− 1

}[
1 − exp

(
− R2

d

25

)]
, (2.39)

while cp1 = 0.925, cp2 = 0.9, cd1 = 0.9 [11, 4, 12]. The turbulent diffusion
term is modeled applying the gradient diffusion model, then we have

Dεθ
= ∂

∂xj

(
α
∂εθ

∂xj

− ⟨ε′
θu

′
j⟩
)

= ∂

∂xj

(
α
∂εθ

∂xj

+ αt

σεθ

∂εθ

∂xj

)
, (2.40)

where σεθ
is a model constant. In the isotropic four-parameter turbulence

model, σkθ
and σεθ

are set equal to 1.4 [11, 4, 12]. The modeled equations
assume then the following form

∂kθ

∂t
+ ⟨uj⟩

∂kθ

∂xj

= ∂

∂xj

[(
α + αt

σkθ

)
∂kθ

∂xj

]
+ Pθ − εθ , (2.41)

and
∂εθ

∂t
+ ⟨uj⟩

∂εθ

∂xj

= ∂

∂xj

[(
α + αt

σεθ

)
∂εθ

∂xj

]
+ cp1

εθ

kθ

Pθ + cp2
εθ

k
P+

−cd1
ε2

θ

kθ

− cd2
εεθ

k
.

(2.42)
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2.2.2. The kθ-ωθ model

In the literature, many applications of k-ω models can be found for the
study of dynamical turbulence, but only few applications are present for
a kθ-ωθ model for thermal turbulence. The k-ω-kθ-ωθ turbulence model
has been proposed as a possible formulation of the isotropic four-parameter
model to overcome the poor numerical convergence that the k-ε-kθ-εθ may
show [12]. Let ωθ be the specific dissipation rate of temperature variance,
defined

ωθ = εθ

cµkθ

. (2.43)

The kθ-ωθ turbulence model has been derived in [12] starting from the kθ-
εθ model, specifically substituting the definition of (2.43) into (2.41) and
(2.42). The new system of equations is

∂kθ

∂t
+ ⟨uj⟩

∂kθ

∂xj

= ∂

∂xj

[(
α + αt

σkθ

)
∂kθ

∂xj

]
+ Pθ − cµkθωθ , (2.44)

∂ωθ

∂t
+ ⟨uj⟩

∂ωθ

∂xj

= ∂

∂xj

[(
α + αt

σωθ

)
∂ωθ

∂xj

]
+ 2
kθ

(
α + αt

σωθ

)
∂kθ

∂xj

∂ωθ

∂xj

+

+(cp1 − 1)ωθ

kθ

Pθ + cp2
ωθ

k
P − (cd1 − 1)ω2

θ − cd2cµωθω .
(2.45)

In the kθ-ωθ formulation of the isotropic four-parameter model [12], spe-
cial attention was paid to the model coefficients cp1 and cd1 since these
coefficients must be greater than one to avoid negative model coefficients
for the production and dissipation term of ωθ. The values of these coeffi-
cients were then modified from the original k-ε-kθ-εθ model, and they are
set cp1 = 1.025 and cd1 = 1.1 according to [12]. The model coefficients cp2,
cd2, σkθ

and σωθ
= σεθ

are the ones proposed for the k-ε-kθ-εθ model.

2.2.3. Near-wall treatment

To predict the heat transfer in wall flows, the characteristic time scale
τm of Equation (2.35) plays a key role. We present the modeling of τm as
reported in [11, 4, 54, 12, 14, 13]. The mixed time scale τm is a function of
the time-scale ratio of the thermal to mechanical turbulent time scales

R = τθ/τu = kθε

kεθ

, (2.46)
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Figure 2.3: time-scale ratio of the thermal to mechanical turbulent time scales
R for Reτ = 395 and Pr = 0.025, 0.71 [35].

where τu = k/ε and τθ = kθ/εθ are the dynamic and thermal time scales,
respectively. In three-equation turbulence models, the time-scale ratio R

is assumed as constant, whereas in four-equation turbulence models can be
computed by its definition (2.46).

The near-wall Taylor expansion for the mean temperature ⟨T ⟩ and fluc-
tuating temperature T ′ is the following

⟨T ⟩ = Aθ +Bθy + Cθy
2 + . . . T ′ = aθ + bθy + cθy

2 + . . . . (2.47)

In the case of a constant wall temperature boundary condition, namely
T = Tw, the condition must be fulfilled by both temperature and fluctuating
values, so that T ′ = 0 and aθ = 0 along the wall. When a uniform heat
flux is imposed at the wall, we have that Aθ = 0 and aθ can be null or not.
If we consider the fluctuations null, we have the following near-wall Taylor
expansion

⟨T ⟩ = Bθy + Cθy
2 + . . . T ′ = bθy + cθy

2 + . . . . (2.48)

Thus

kθ = 1
2⟨T ′2⟩ ≈ b2

θy
2 , εθ = α⟨∂T

′

∂xj

∂T ′

∂xj

⟩ ≈ αb2
θ . (2.49)

Thus, recalling (2.19) and (2.20), we can see that R tends exactly to Pr

when the wall is approached.
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The time-scale ratio R is shown in Figure 2.3 for Pr = 0.71 and Pr =
0.025. From Figure 2.3 we can see that the wall limiting value of R is
equal to the Prandtl number, as already shown from the near-wall Taylor
expansion. In the central region, for Pr = 0.71 the time-scale ratio R is
about 0.5 which is the value usually assumed in three-equation turbulence
models [44].

The characteristic time scale τm is usually defined as the harmonic av-
erage of the dynamical time scale τu = k/ε and the thermal time scale
τt = kθ/εθ

τm ∝ 1
1/τu + Cm/τt

= τu
R

Cm +R
. (2.50)

The shortest time scale among τu and τt is the most important for turbulent
heat flux [55]. In the bulk region, τm is independent of the time ratio R,
and the turbulent diffusion is assumed to be dominated only by velocity
fluctuations. In the bulk region, therefore, we assume τm ∝ τu/Prt,∞, where
Prt,∞ can be assumed constant and uniform or can be modeled, for example
by means of Kays model Prt = 0.85 + 0.7/Prνt [56]. A model function in
the τm expression has been introduced in [11, 4, 12, 13] to account for the
wall-proximity effects. For the near-wall region, the characteristic time scale
is τm ∝

√
2R/PrR

3
4
t . The characteristic thermal time scale is then modeled

as

τm = τuf1t

( 1
Prt

+ 2R
R + Cγ

f2t + 1.3
√

2R
PrR

3/4
t

f3t

)
, (2.51)

where Cγ = 0.25/Pr 1
4 . The model function f1t accounts for wall proximity

effects

f1t =
[
1 − exp

(
− Rd

14

)][
1 − exp

(
−

√
PrRd

14

)]
. (2.52)

The blending functions f2t and f3t have been defined in [11] as

f2t = exp
[

−
(
Rt

500

)2]
, f3t = exp

[
−
(
Rt

200

)2]
. (2.53)

The near-wall behavior of the characteristic time scale is τm ∝ y, thus the
isotropic eddy thermal diffusivity αt is proportional to y3 from (2.35). When
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a uniform heat flux is applied, from Table 2.1 and Equation (2.48), the near-
wall behavior of the wall-normal and streamwise turbulent heat fluxes are
given by

⟨v′T ′⟩ = b2bθy
3 + . . . , (2.54)

⟨u′T ′⟩ = a1bθy
2 + . . . . (2.55)

From Equation (2.31), the modeled wall-normal turbulent heat flux is pro-
portional to y3 in agreement with Equation (2.54). In contrast, the stream-
wise turbulent heat flux ⟨u′T ′⟩ near-wall behavior cannot be represented by
Equation (2.31) which gives ⟨u′T ′⟩ = 0 along the wall.

2.3. Explicit algebraic stress models

Explicit Algebraic Stress Models (EASM) are special nonlinear eddy vis-
cosity models, where the expansion coefficients in (2.5) are derived starting
from Reynolds-stress models. In this section, we report the derivation of
algebraic stress models following Pope [29, 57], Gatski et al. [58], Rodi [59]
and Abe et al. [52].

By introducing an approximation for the transport terms, a Reynolds-
stress model can be reduced to a set of algebraic equations for each com-
ponent. These equations form an algebraic stress model which implicitly
determines the Reynolds stresses as a function of k, ε, and the mean ve-
locity gradient. Because of the approximation involved, the algebraic stress
models are less general and accurate than Reynolds-stress models, however,
they are widely used because of their simplicity. A standard Reynolds-stress
model transport equation is

D⟨u′
iu

′
j⟩

Dt
− Dij = Pij − εij + Πij , (2.56)

where the buoyancy source term Gij is neglected to simplify the derivation.
The terms on the right-hand side are local, algebraic functions of ⟨u⟩, ⟨p⟩,
⟨u′

iu
′
j⟩ and ε and they do not involve derivatives of the Reynolds stress

tensor. In algebraic stress models, the transport terms on the left-hand
side, D⟨u′

iu
′
j⟩/Dt − Dij, are approximated by an algebraic expression, so

that the whole equation becomes algebraic. The simplest way to model the
terms is to neglect them, imposing the equilibrium hypothesis. However,
the complete neglect of the transport terms is inconsistent unless P = ε,
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since the half trace of Equation (2.56) is

Dk

Dt
− D = P − ε , (2.57)

where k = 1
2⟨u′

iu
′
i⟩, D = 1

2Dii, P = 1
2Pii and ε = 1

2εij. Rodi introduced the
more general weak-equilibrium assumption [59]. The Reynolds stresses can
be decomposed as

⟨u′
iu

′
j⟩ = k

⟨u′
iu

′
j⟩

k
= k

(
2bij + 2

3δij

)
, (2.58)

where bij is the normalized anisotropy tensor. Then, the spatial and tem-
poral variations in ⟨u′

iu
′
j⟩ can be considered to be due to variations in k

and bij. In the weak-equilibrium assumption, the variations in ⟨u′
iu

′
j⟩/k,

or in bij, are neglected but the variations in ⟨u′
iu

′
j⟩ due to those in k are

considered. This leads to the approximation

D⟨u′
iu

′
j⟩

Dt
=

⟨u′
iu

′
j⟩

k

Dk

Dt
+ k

D

Dt

⟨u′
iu

′
j⟩

k
≈

⟨u′
iu

′
j⟩

k

Dk

Dt
. (2.59)

The same approximation applied to the entire transport term brings to

D⟨u′
iu

′
j⟩

Dt
− Dij ≈

⟨u′
iu

′
j⟩

k

(
Dk

Dt
− D

)
=

⟨u′
iu

′
j⟩

k
(P − ε) , (2.60)

where we have used (2.57). The weak equilibrium assumption (2.60) leads
to the general form of the algebraic stress model

⟨u′
iu

′
j⟩

k
(P − ε) = Pij + Πij − εij . (2.61)

In physical terms, this is an equilibrium for which convective and transport
effects can be neglected. Even though it constitutes an idealization, this
equilibrium hypothesis is achievable in physical cases such as the homo-
geneous shear flow and the logarithmic region of an equilibrium turbulent
boundary layer [58]. The mean velocity gradient is usually decomposed into
symmetric and antisymmetric parts, ∂⟨ui⟩/∂xj = Sij + Ωij, where Sij is the
strain-rate tensor and Ωij is the vorticity tensor

Sij = 1
2

(
∂⟨ui⟩
∂xj

+ ∂⟨uj⟩
∂xi

)
, Ωij = 1

2

(
∂⟨ui⟩
∂xj

− ∂⟨uj⟩
∂xi

)
. (2.62)
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The production Pij term of (2.61) can be formulated as

Pij = −⟨u′
iu

′
k⟩∂⟨uj⟩

∂xk

− ⟨u′
ju

′
k⟩∂⟨ui⟩
∂xk

=

= −2kbikSjk − 2kbjkSik − 2kbikΩjk − 2kbjkΩik − 4
3kSij .

(2.63)

The left-hand side of equation (2.61) can be written as

⟨u′
iu

′
j⟩

k
(P − ε) = 2bij(P − ε) + 2

3δijP − 2
3δijε , (2.64)

where the term 2
3δijP can be formulated taking the half trace of Pij ex-

pressed in Equation (2.63)

2
3δijP = 2

3δijPll = −4
3kδijblmSlm . (2.65)

The dissipation rate tensor εij can be split into isotropic and deviatoric
parts εij = 2

3δijε+ εD,ij. Then, we obtain

(P − ε)bij = −2
3kSij − k

(
bikSjk + bjkSik − 2

3blmSlmδij

)
+

− k(bikΩjk + bjkΩik) + 1
2Πij − 1

2εD,ij .

(2.66)

Let Φij be the difference of pressure-strain correlation and the deviatoric
part of the dissipation rate tensor Φij = Πij − εD,ij. In all the commonly
used second-order closure models, Φij is modeled in the general form [60]

Φij = εAij(b) + kMijkl(b)∂⟨uk⟩
∂xl

. (2.67)

The substitution of (2.67) into (2.66) yields a closed system of algebraic
equations for the determination of the Reynolds stress anisotropy tensor
and this constitutes the general form of algebraic stress models. These
models are implicit, since the Reynolds stress tensor appears on both sides
of the equation. If models for Φij are linear in the anisotropy tensor b,
then it is possible to obtain an explicit expression for bij in terms of the
mean velocity gradients. The procedure is based on techniques from lin-
ear algebra. Pope [57] obtained an explicit relation for bij starting from
(2.66) for two-dimensional flows, and Gatski [58] extended the procedure
for three-dimensional flows. Explicit models bring considerable savings in
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computational cost, avoiding the need for matrix inversions, which is the
main drawback of implicit algebraic stress models. Gatski et. al [58] pro-
posed as most general linear in the anisotropy tensor bij form of (2.67) the
following expression

Φij = −C1εbij + C2kSij + C3k
(
bikSjk + bjkSik − 2

3bmnSmnδij

)
+

+ C4k(bikΩjk + bjkΩik) ,
(2.68)

where the closure coefficients can be functions of the invariants of bij. The
direct substitution of (2.68) into (2.66) leads to

bij = 1
2τ
[(
C2 − 4

3

)
Sij + (C4 − 2)(bikΩjk + bjkΩik)+

+ (C3 − 2)
(
bikSjk + bjkSik − 2

3blmSlmδij

)]
,

(2.69)

where the turbulence time scale τ is defined as

τ = k

ε

(1
2C1 + P

ε
− 1

)−1
. (2.70)

By introducing the dimensionless variables

b∗
ij = C3 − 2

C2 − 4
3
bij , S∗

ij = 1
2τ(2 −C3)Sij , Ω∗

ij = 1
2τ(2 −C4)Ωij , (2.71)

equation (2.69) reduces to the simpler form

b∗
ij = −S∗

ij −
(
b∗

ikS
∗
jk + b∗

jkS
∗
ik − 2

3b
∗
lmS

∗
lmδij

)
+ b∗

ikΩ∗
kj + b∗

jkΩ∗
ki , (2.72)

which can be written in matrix form as

b∗ = −S∗ −
(

b∗S∗ + S∗b∗ + 2
3{b∗S∗}I

)
+ b∗Ω∗ + Ω∗b∗ , (2.73)

where {·} denotes the trace operator, i.e. {b∗S∗} = tr(b∗S∗), and I is the
unit tensor. According to Gatski et al. [58], the solution of (2.73) can be
written as

b∗ =
∑

λ

G(λ)T(λ) , (2.74)

where T(λ) is the integrity basis for functions of a symmetric and antisym-
metric tensors and G(λ) are scalar functions of the irreducible invariants of
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S∗ and Ω∗ [58]. Equation (2.74) means that Reynolds stresses are known
functions of a finite number of known tensors T(λ) and the same number
of unknown scalars G(λ), which are functions of a finite number of known
invariants. Since b∗ is symmetric and has zero-trace, the tensors T(λ) are lin-
early independent symmetric tensors with zero-trace. For two-dimensional
flows, there are only three linearly independent tensors that are symmetric
and have zero trace [57]

T(1) = S∗ , T(2) = S∗Ω∗ − Ω∗S∗ , T(3) = S∗2 − 1
3{S∗2}I , (2.75)

and there are only two non-zero independent invariants, i.e. {S∗2} and
{Ω∗2}. Then, we have

G(λ) = G(λ)({S∗2}, {Ω∗2}) , (2.76)

with λ = 1, 2, 3. For the general three-dimensional case there are ten linearly
independent tensors

T(1) = S∗ , T(6) = Ω∗2S∗ − S∗Ω∗2 − 2
3I{S∗Ω∗2} ,

T(2) = S∗Ω∗ − Ω∗S∗ , T(7) = Ω∗S∗Ω∗2 − Ω∗2S∗Ω∗ ,

T(3) = S∗2 − 1
3{S∗2}I , T(8) = S∗Ω∗S∗2 − S∗2Ω∗S∗ ,

T(4) = Ω∗2 − 1
3{Ω∗2}I , T(9) = Ω∗2S∗2 + S∗2Ω∗2 − 2

3I{S∗2Ω∗2} ,

T(5) = Ω∗S∗2 − S∗2Ω∗ , T(10) = Ω∗S∗2Ω∗2 − Ω∗2S∗2Ω∗ ,

(2.77)

and five invariants [61]

{S∗2} , {Ω∗2} , {S∗3} , {Ω∗2S∗} , {Ω∗2S∗2} , (2.78)

then the scalar functions are

G(λ) = G(λ)({S∗2}, {Ω∗2}, {S∗3}, {Ω∗2S∗}, {Ω∗2S∗2}) , (2.79)

with λ = 1, 2, . . . , 10. The direct substitution of (2.74) into Equation (2.73)
yields

∑
λ

G(λ)T(λ) = −
∑

λ

δ1λT(λ) −
∑

λ

G(λ)
(

T(λ)S∗ + S∗T(λ)+

+ 2
3{T(λ)S∗}I − T(λ)Ω∗ − Ω∗T(λ)

)
,

(2.80)
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where we have used S∗ = T1. Since T is an integrity basis, we can expand
any polynomial in S∗ and Ω∗ in the integrity basis, also the terms on the
right-hand side of Equation (2.80). According to Gatski et al. [58], it is
possible to define scalar functions H and J as follows

T(λ)S∗ + S∗T(λ) − 2
3{T(λ)S∗} =

∑
γ

HλγT(γ) , (2.81)

T(λ)Ω∗ + Ω∗T(λ) =
∑

γ

JλγT(γ) , (2.82)

and substituting into (2.80) gives∑
λ

G(λ)T(λ) = −
∑

λ

δ1λT(λ) −
∑

λ

G(λ)
(∑

γ

(HλγT(γ) + JλγT(γ))
)
. (2.83)

Since the tensors T are independent, their coefficients on either side of
(2.83) may be equated

G(λ) = −δ1λ −
∑

γ

G(λ)Hλγ +
∑

γ

G(λ)Jλγ . (2.84)

The 10×10 matrices Hλγ and Jλγ are reported in the Appendix of [58]. The
system (2.84) is a 10 × 10 linear system of equations for the determination
of G(λ) which can be written in the matrix form

AG = B , (2.85)
where the component of A, G and B are given by Aλγ = −δλγ −Hλγ +Jλγ,
Gλ = G(λ), Bλ = δ1λ. The solution to (2.85) is given by G(λ) = A−1

λγBλ,
then in order to obtain the expression of G(λ) it is necessary to analytically
invert the matrix A. From the inversion of A, Gatski et al. [58] obtained

G(1) = −1
2(6 − 3{S∗2} − 21{Ω∗2} − 2{S∗3} + 30{S∗Ω∗2})/D ,

G(2) = −(3 + 3{S∗2} − 6{Ω∗2} + 2{S∗3} + 6{S∗Ω∗2})/D ,

G(3) = (6 − 3{S∗2} − 12{Ω∗2} − 2{S∗3} − 6{S∗Ω∗2})/D ,

G(4) = −3(3{S∗2} + 2{S∗3} + 6{S∗Ω∗2})/D ,

G(5) = G(6) = −G(7) = −G(8) = −9/D ,

G(9) = 19/D , G(10) = 0 ,

(2.86)

where the denominator D is given by

D = 3 − 7
2{S∗2} + {S∗2}2 − 15

2 {Ω∗2} − 8{S∗2}{Ω∗2} + 3{Ω∗2}2

− {S∗3} + 2
3{Ω∗2}{S∗3} + 21{S∗Ω∗2} + 24{S∗2Ω∗2}

+ 2{S∗2}{S∗Ω∗2} − 6{Ω∗2}{S∗Ω∗2} .

(2.87)
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To obtain the three-dimensional form of b∗ it is necessary to expand the ex-
pression reported in Equation (2.74) using the integrity basis of (2.77) and
the coefficients of (2.86). We do not report the three-dimensional form of
b∗ because of the complexity of its expression. The three-dimensional form
reduces to Pope’s form in the two-dimensional limit, where the invariants
{S∗3} and {S∗Ω∗2} are zero and {S∗2Ω∗2} becomes equal to 1

2{S∗2}{Ω∗2}
[57]. Using this reduction and the integrity basis (2.75), the resulting ex-
pression for G(λ) in the two-dimensional limit becomes

G(1) = − 3
3 − 2{S∗2} − 6{Ω∗2}

, G(2) = − 3
3 − 2{S∗2} − 6{Ω∗2}

,

G(3) = 6
3 − 2{S∗2} − 6{Ω∗2}

.
(2.88)

Expanding Equation (2.74) in the two-dimensional case, the following for-
mal expression for the anisotropy tensor b∗ can be obtained [57]

b∗ = 3(−S∗ − S∗Ω∗ + Ω∗S∗ + 2S∗2 − 2{S∗2}I/3)
3 − 2{S∗2} − 6{Ω∗2}

. (2.89)

The Reynolds-stress expression given by Equation (2.89) is expected to ap-
ply to many types of turbulent flows not deviating from the equilibrium
state. However, this model cannot express the correct turbulent phenom-
ena in the near-wall region where both molecular and turbulent diffusion
becomes large and the flow greatly deviates from the local equilibrium state.
In other words, the characteristic time scale given by Equation (2.70) is not
appropriate to represent the near-wall behavior of turbulence. Moreover,
mathematical inaccuracies may occur with the increase of {S∗2} because
the denominator of the coefficients G(λ) can be zero or negative. This may
happen in complex non-equilibrium turbulent flows with large strain rates.
Also, this is an issue for the calculation of turbulent flows that achieve equi-
librium but it is necessary to compute through a transient state which is
far from the equilibrium. Thus, there is the need to regularize the explicit
algebraic stress model. We rewrite the coefficient on the right-hand side of
Equation (2.89)

3
3 − 2{S∗2} − 6{Ω∗2}

= 3
3 − 2S∗2 + 6Ω∗2 , (2.90)

where

S∗2 = S∗
ijS

∗
ij = {S∗2} , Ω∗2 = Ω∗

ijΩ∗
ij = −{Ω∗2} . (2.91)
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It is clear from (2.90) that for sufficiently large strain rates singularities
can occur and, on the other hand, the rotational strains do not cause any
problem. We rewrite the right-hand side of equation (2.90) as

3
3 − 2S∗2 + 6Ω∗2 = 1

1 + 22
3 (Ω∗2

4 ) + 2
3(Ω∗2

4 − S∗2)
. (2.92)

The parameter (Ω∗2/4 − S∗2) is one of the most important measures in
turbulence because it indicates how the flow field deviates from the condition
of pure shear flow. In a pure shear flow, only S12, S21 = S12, Ω12 = S12 and
Ω21 = −S12 exist so that (Ω∗2/4−S∗2) = 0. When the flow greatly deviates
from pure shear flow, the normal strain rate may be much larger than the
shear strain rate, resulting in S∗2 ≫ Ω∗2/4 and this can lead to improper or
singular behavior. On that basis, Abe et al. [52] modified (2.92) introducing
the model function fB to guarantee non-negative turbulent intensities under
the condition S∗2 ≫ Ω∗2/4

1
1 + 22

3 (Ω∗2

4 ) + 2
3(Ω∗2

4 − S∗2)fB

. (2.93)

The effect of fB disappears in pure shear flows, such as fully developed
channel flow and homogeneous shear flow, then Abe et. al [52] adopted the
following formulation which satisfies this requirement

fB = 1 + Cη

(Ω∗2

4 − S∗2
)
, (2.94)

where Cη is a model constant.
With the modification proposed in (2.93), the mathematical inaccuracies

occurring when S∗2 ≫ 0 are prevented. However, the model is still unable to
represent the near-wall turbulence. Abe et al, [52] proposed modifications
on the turbulence time scale τ and on coefficients of (2.71) to account for
the near-wall and low-Reynolds number effects leading to an appropriate
expression in both homogeneous and wall turbulent shear flows. The final
expression of the normalized anisotropy tensor is

b∗
ij =

−S∗
ij − (S∗

ikΩ∗
kj − Ω∗

ikS
∗
kj) + 2(S∗

ikS
∗
kj − S∗

mnS
∗
mnδij/3)

1 + 22
3 (Ω∗2

4 ) + 2
3(Ω∗2

4 − S∗2)fB

, (2.95)

where the dimensionless forms are

b∗
ij = CDbij , S∗

ij = CDτSij , Ω∗
ij = 2CDτΩij , (2.96)
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with CD a model constant. The near-wall and low-Reynolds number effects
can be modeled through the definition of the characteristic time scale of
turbulence τ according to [52, 62, 63].

2.4. Explicit algebraic heat flux model

Beyond the turbulent heat flux models based on the Generalized and
Simple Gradient Diffusion Hypothesis, there is a class of models that helps
to get rid of the gradient assumption. This class is named Algebraic Heat
Flux Models (AHFM), and through this approach it is possible to model
the turbulent heat flux in convection flows in which temperature gradients
become approximately zero. The exact transport equation for turbulent
heat flux is given by Equation (1.90), and neglecting the buoyancy source
term it can be expressed in the more compact form

D⟨u′
iT

′⟩
Dt

− Diθ = Piθ − εiθ + Πiθ . (2.97)

Following the procedure presented by Abe et al. [62], we define the nor-
malized heat flux a∗

j as a∗
j = ⟨u′

jT
′⟩/

√
kkθ. Then, the spatial and temporal

variations in ⟨u′
jT

′⟩ can be considered to be due to variations in k, kθ and
a∗

j . According to the weak-equilibrium assumption already used for the
derivation of the Algebraic Stress Model, the variations in a∗

j are neglected
but the variations in ⟨u′

jT
′⟩ due to those in k and kθ are considered [34].

This leads to the approximation

D⟨u′
jT

′⟩
Dt

=
D(a∗

j

√
kkθ)

Dt
= a∗

j

√
kθ
D

√
k

Dt
+ a∗

j

√
k
D

√
kθ

Dt
+

+
√
kkθ

Da∗
j

Dt
≈ a∗

j

√
kθ

2
√
k

Dk

Dt
+ a∗

j

√
k

2
√
kθ

Dkθ

Dt
.

(2.98)

The same approximation applied to the entire transport term brings to

D⟨u′
iT

′⟩
Dt

− Diθ ≈ a∗
j

√
kθ

2
√
k

(P − ε) + a∗
j

√
k

2
√
kθ

(Pθ − εθ) =

a∗
j

√
kkθ

2

[ 1
τu

(P
ε

− 1
)

+ 1
τθ

(Pθ

εθ

− 1
)]
.

(2.99)

The use of the weak equilibrium assumption (2.99) leads to the general form
of the algebraic turbulent heat flux model

a∗
j

√
kkθ

2

[ 1
τu

(P
ε

− 1
)

+ 1
τθ

(Pθ

εθ

− 1
)]

= Pjθ + Πjθ − εjθ , (2.100)
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where Pjθ = −⟨u′
kT

′⟩∂⟨uj⟩/∂xk − ⟨u′
ku

′
j⟩∂⟨T ⟩/∂xk is the production term

of the turbulent heat flux and it is in a closed form, while for the pressure
temperature gradient correlation Πjθ and the dissipation rate εjθ closure
models are required. The most general linear expression for the term Πjθ −
εjθ was proposed by Launder [34]

Πjθ − εjθ = −ct1
⟨u′

jT
′⟩

τu

+ ct2⟨u′
kT

′⟩∂⟨uj⟩
∂xk

+ ct3⟨u′
kT

′⟩∂⟨uk⟩
∂xj

, (2.101)

where ct1, ct2 and ct3 are model constants. Recalling the decomposition
of Reynolds stresses into isotropic and anisotropic parts reported in Equa-
tion (2.58), ⟨u′

iu
′
j⟩ = 2/3kδij + 2kbij, the right-hand side of (2.100) can be

reformulated as

Pjθ + Πjθ − εjθ = −a∗
k

√
kkθ(Sjk + Ωjk)+

−
(2

3kδjk + 2kbjk

)
∂⟨T ⟩
∂xk

− ct1a
∗
j

√
kkθ

τu

+

+ ct2a
∗
k

√
kkθ(Sjk + Ωjk) + ct3a

∗
k

√
kkθ(Skj + Ωjk) .

(2.102)

The term in a∗
j can be moved into the left-hand side of Equation (2.100),

then after some manipulations Abe et al. [62] obtained

ct1

τu

[
1 + 1

2ct1

(P
ε

− 1
)

+ 1
2ct1R

(Pθ

εθ

− 1
)]
a∗

j =

= −2
3(3bjk + δjk)

√
k√
kθ

∂⟨T ⟩
∂xk

+ [(ct2 − 1)(Sjk + Ωjk)+

+ ct3(Sjk − Ωjk)]a∗
k .

(2.103)

Introducing cT 1 = 1/ct1, cT 2 = (1 − ct2)/ct1, cT 3 = ct3/ct1 and

τm = τu

{
1 + 1

2ct1

(P
ε

− 1
)

+ 1
2ct1R

(Pθ

εθ

− 1
)}−1

, (2.104)

equation (2.103) can be rewritten as

a∗
j = −2

3cT 1(3bjk + δjk)τm

√
k√
kθ

∂⟨T ⟩
∂xk

− [(cT 2 − cT 3)τmSjk+

+ (cT 2 + cT 3)τmΩjk]a∗
k .

(2.105)

The expression obtained in Equation (2.105) represents the implicit form
of the Algebraic Stress Models since the normalized turbulent heat flux
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appears on both sides of the equation. The following normalized variables
are introduced

b∗
jk = 3bjk , S∗

jk = (cT 2 − cT 3)τmSjk , Ω∗
jk = (cT 2 + cT 3)τmΩjk ,

∂⟨T ⟩
∂xk

∗

= 2
3cT 1τm

√
k√
kθ

∂⟨T ⟩
∂xk

,
(2.106)

thus (2.105) reduces to the simplified form

a∗
j = −(b∗

jk + δ∗
jk)∂⟨T ⟩

∂xk

∗

− (S∗
jk + Ω∗

jk)a∗
k . (2.107)

In the two-dimensional space, the explicit expression for the normalized
turbulent heat flux can be obtained [62]

a∗
j =

2[−(δjk + b∗
jk) + (δlk + b∗

lk)(S∗
jl + Ω∗

jl)]
2 + Ω∗2 − S∗2

∂⟨T ⟩
∂xk

∗

, (2.108)

where Ω∗2 and S∗2 are defined in Equation (2.91). Explicit Algebraic Heat
Flux Models (EAHFM) are based on Equation (2.108).

The expression that we have obtained following [62] is expected to ap-
ply to various types of turbulent heat transfer fields not deviating from the
equilibrium state. This model, however, may not express the correct turbu-
lent heat transfer phenomena in the near-wall region where the viscous and
turbulent diffusion becomes dominant and the heat transfer greatly deviates
from the local equilibrium state. Thus, the characteristic time scale given
by Equation (2.104) is not appropriate to represent the near-wall turbulent
heat transfer.

2.5. The anisotropic four-parameter model

In this section, we finally present the anisotropic four-parameter tur-
bulence model (A4P) developed and implemented in the multigrid finite
element code FEMuS of the numerical platform FemusPlatform [15] for the
flow and heat transfer modeling in low Prandtl number fluids. Throughout
this chapter, we have presented linear eddy viscosity and SGDH models
that are the most used and implemented in commercial codes. In partic-
ular, we have described the several forms of the isotropic four-parameter
model [12, 13] already implemented in FEMuS. The abovementioned mod-
els present drawbacks and deficiencies for the modeling of complex and
anisotropic flows, such as wall-bounded flows [9].
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To capture the anisotropy in the fluids, we need to leave the assump-
tion of isotropic eddy viscosity. Reynolds-stress models would be the best
choice, but they would involve a not negligible computational effort [9]. Al-
gebraic stress models are a calibrated compromise between the accuracy of
Reynolds-stress models and the simplicity of eddy viscosity models. Thus,
in the anisotropic version of the four-parameter model, we adopt an alge-
braic model for the Reynolds stress closure.

For heat transfer modeling, few models have been developed so far. Most
commercial codes are based on Reynolds Analogy and the assumption of a
constant turbulent Prandtl number [9]. This assumption is acceptable for
fluids with Pr number around the unity, but it is inconsistent for fluids with
a Prandtl number that deviates considerably from unity [53]. Moreover,
the usual assumption of alignment between the mean temperature gradient
and the turbulent heat flux components leads to total underpredictions in
convection cases in which gradients are approximately zero [9]. Starting
from the isotropic four-parameter model, we adopt an explicit algebraic
model for the turbulent heat flux closure.

One of the aims of this Ph.D. thesis is deriving, presenting, and validat-
ing the new anisotropic turbulence model which employs explicit algebraic
models for Reynolds stresses and turbulent heat fluxes and uses four param-
eters for determining the characteristic dynamic and thermal time scales.
In the previous section, the basis of the anisotropic four-parameter model
has been introduced, and in the next paragraphs, a complete description
of the model is proposed. Moreover, in Chapter 3, a validation of the new
turbulence model is presented.

2.5.1. Dynamic turbulence modeling

The governing equations for the velocity field are written as

∂ui

∂xi

= 0 , (2.109)

Dui

Dt
= −1

ρ

∂p

∂xi

+ ∂

∂xj

[
ν
(
∂ui

∂xj

+ ∂uj

∂xi

)
− ⟨u′

iu
′
j⟩
]
. (2.110)

For the closure of the Reynolds-Averaged Navier-Stokes equation, we use
the Explicit Algebraic Stress Model derived in the previous sections under
the hypothesis of local equilibrium. Following Hattori et al. [63], we can
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write the dimensional form of the explicit algebraic stress model as follows

⟨u′
iu

′
j⟩ = 2

3kδij − 2νt

fR

Sij+

− 4CDkfτ

fR

(
SikΩkj − ΩikSkj − SikSkj + 1

3S
2δij

)
,

(2.111)

where CD = 0.8, fR is given by

fR = 1 + 22
3 (CDτR0)2Ω2 + 2

3(CDτR0)2(Ω2 − S2)fB , (2.112)

and the quantity τR0 is the characteristic time scale of turbulence defined
as τR0 = νt/k, where νt has been defined in (2.18), as cµfµk

2/ε. The values
assigned to the constant cµ is the standard value 0.09 and the damping
function fµ is the one reported in Equation (2.23), according to [52].

The function fτ has been introduced by Hattori et al. [63] and repro-
duces the wall-limiting behavior and anisotropy of the Reynolds normal
stress components near the wall. It is defined as

fτ = τ 2
R0 + τ 2

RW
, (2.113)

where τRW
is the wall reflection time scale, defined in [63] as

τRW
=
√

fR

6CDfSΩ

(
1 − 3Cv1fv2

8

)
f 2

v1 , (2.114)

where fv2 = 1 − exp(−
√
Rt/100) [63], fv1 = exp(−R2

tm/2025) [64], and
Cv1 = 0.4 [65, 63, 64]. In the model function fv1, the modified Reynolds
number Rtm appears and it has been defined in [63] as follows

Rtm = 130RdR
1
4
t

130R
1
4
t +Rd

. (2.115)

The modeling of the function fSΩ is a crucial aspect. In [63] the following
expression is suggested for fSΩ

fSΩ = Ω2

2 + S2

3 −
[(√

S2

2 −
√

Ω2

2

)
fw(1)

]2
, (2.116)

with fw(1) = exp(−R2
tm).

Once the model for ⟨u′
iu

′
j⟩ and νt is chosen, it is necessary to compute

the variables appearing in the model functions, in particular the turbulent
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kinetic energy k and the characteristic time scale τu. We use the logarithmic
turbulence model K-Ω proposed in [13, 16], which improves the stability
of a standard k-ω model since the state variables are maintained always
positive during the solution process [66]. This is important because the
eddy viscosity may assume negative values compromising the stability of
the numerical solution algorithm. The specific dissipation rate of turbulent
kinetic energy ω and the logarithmic form of k and ω are defined as

ω = ε

cµk
, Ω = ln(ω) , K = ln(k) . (2.117)

The system of equations for the K-Ω model is the following
DK

Dt
= ∂

∂xi

[(
ν + νt

σk

)
∂K

∂xi

]
+
(
ν + νt

σk

)
∂K

∂xi

∂K

∂xi

+

+ P
eK

+ G
eK

− cµe
Ω ,

(2.118)

DΩ
Dt

= ∂

∂xi

[(
ν + νt

σω

)
∂Ω
∂xi

]
+
(
ν + νt

σω

)
∂Ω
∂xi

∂Ω
∂xi

+

+ P
eK

(cε1 − 1) + 2
(
ν + νt

σω

)
∂K

∂xi

∂Ω
∂xi

+

+(cb − 1) G
eK

− cµ(cε2fε − 1)eΩ .

(2.119)

where P = −⟨u′
iu

′
j⟩∂ui/∂xjis the production rate of turbulent kinetic energy

and G = −βgi⟨u′
iT

′⟩ is the source term for buoyant flows. We recall from
[12, 13, 14, 16] the model constant values σk = σω = 1.4, cε1 = 1.9, cε2 = 1.5,
cb = 1.2, cµ = 0.9, while the model function fε is given in (2.27).

2.5.2. Thermal turbulence modeling

The governing equation for the mean temperature field can be written
as

DT

Dt
= ∂

∂xi

(
α
∂T

∂xi

− ⟨u′
iT

′⟩
)

+ Q

ρc
. (2.120)

For the closure of the Reynolds-Averaged energy equation, we use the Ex-
plicit Algebraic Heat Flux model derived in the previous sections. Recalling
the definitions in (2.106), the Equation (2.108) can be written in the dimen-
sional form

⟨u′
jT

′⟩ = cT 1τm

fRT

{
− δjl+

τm[(cT 2 + cT 3)Ωjl + (cT 2 − cT 3)Sjl]
}

⟨u′
lu

′
k⟩∂⟨T ⟩
∂xk

,

(2.121)



80 Chapter 2. Turbulence modeling

where cT 1 = 0.18, cT 2 = 0.18, and cT 3 = 0.02 [62] are model constants and
the coefficient fRT is given by the following expression proposed in [62]

fRT = 1 + 1
2τ

2
m[(cT 2 + cT 3)2Ω2 − (cT 2 − cT 3)2S2] . (2.122)

In contrast to conventional models, the turbulent heat fluxes and the mean
temperature gradient components in (2.121) are not necessary aligned be-
cause of the effects of the mean shear rate and anisotropy in the flow field.
This expression is closely related to the existing models. When considering
only the first term of (2.121), the Generalized Gradient Diffusion Hypothesis
(GGDH) model is obtained

⟨u′
jT

′⟩ = −cT 1τm

fRT

⟨u′
ju

′
k⟩∂⟨T ⟩
∂xk

. (2.123)

Comparing (2.123) with (2.30), the eddy thermal diffusivities are given by

αij
t = cT 1τm

fRT

⟨u′
ju

′
k⟩ . (2.124)

To predict the heat transfer in both free and wall turbulent flows, we use
the characteristic time scale of the isotropic four-parameter model reported
in (2.51) which appropriately represents heat transfer phenomena for low
Prandtl number fluids. In order to evaluate kθ and εθ appearing in the
model functions, we use the logarithmic Kθ-Ωθ turbulence model proposed
in [16, 13], where Kθ and Ωθ represent the logarithmic values of mean tem-
perature fluctuations kθ and its dissipation rate ωθ, defined as ωθ = εθ/cµkθ.
According to [13], the transport equations for the logarithmic quantities can
be written as

DKθ

Dt
= ∂

∂xi

[(
α + αt

σkθ

)
∂Kθ

∂xi

]
+
(
α + αt

σkθ

)
∂Kθ

∂xi

∂Kθ

∂xi

+

+ Pθ

eKθ
− cµe

Ωθ ,

(2.125)

DΩθ

Dt
= ∂

∂xi

[(
α + αt

σωθ

)
∂Ωθ

∂xi

]
+
(
α + αt

σωθ

)
∂Ωθ

∂xi

∂Ωθ

∂xi

+

2
(
α + αt

σωθ

)
∂Kθ

∂xi

∂Ωθ

∂xi

+ Pθ

eKθ
(cp1 − 1)+

−(cd1 − 1)cµe
Ωθ − cd2cµe

Ω + cp2
P
eK

,

(2.126)
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where Pθ = −⟨u′
jT

′⟩∂T/∂xj, P = −⟨u′
iu

′
j⟩∂ui/∂xj and cd2 is the following

model function

cd2 =
{

1.9
[
1 − 0.3 exp

(
− R2

t

42.25

)]
− 1

}[
1 − exp

(
− R2

d

25

)]
, (2.127)

while cp1 = 1.025, cp2 = 0.9, cd1 = 1.1, and σkθ
= σωθ

= 1.4 [12, 16, 14, 13].
The eddy thermal diffusivity appearing in the diffusive terms of (2.125) and
(2.126) is simplified as the scalar quantity αt = cλkτm of Equation (2.35),
with cλ = 0.1.

2.5.3. Boundary conditions

In this subsection, we describe the boundary conditions that can be im-
posed on the state variables of the turbulence model. When a near-wall
approach with no wall functions is used, the boundary conditions can be
computed by a near-wall Taylor series expansion for the turbulence vari-
ables. For the description of the boundary conditions we refer to the case
of the plane channel of Figure 1.1, where y is the wall distance, x is the
streamwise coordinate, and z is the spanwise one. Moreover, v, u, and w

are respectively the wall-normal, streamwise, and spanwise velocity com-
ponents. In Table 2.1 we have reported the expansion for the mean and
fluctuating velocity. Following the definitions, we obtain the following dy-
namical turbulence variable expansions

kw ≈ 1
2(a2

1 + c2
1)y2 = 1

2ξy
2 , Kw ≈ ln

(1
2ξy

2
)
, (2.128)

εw ≈ ν(a2
1 + c2

1) = νξ , (2.129)

ωw ≈ 2ν
cµy2 , Ωw ≈ ln

( 2ν
cµy2

)
, (2.130)

where the lower-script w means the near-wall behavior. Since the value of
ξ depends on the components of fluctuating velocity and it is not known
a priori, we transform the Dirichlet conditions (2.128) into Neumann con-
ditions. By taking the derivative of k in the wall-normal direction y, we
obtain ∂k/∂y|w = ξy = 2kw/y, and considering the same derivative for the
logarithmic variable ∂K/∂y|w = 2/y, then for both variables it is possible to
impose Neumann boundary conditions. The dissipation of turbulent kinetic
energy ε has a constant near-wall value which can be determined from kw, in
particular ε = 2kw/y

2, thus an exact Dirichlet boundary condition cannot
be imposed on ε, but the value of ξ is iteratively calculated from the value
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of k on the wall and this can lead to convergence issues [12]. This aspect
does not affect ω and Ω since their values on the walls depend only on the
kinematic viscosity of the fluid ν, on the wall distance y and on the model
constant cµ. For these variables, we can then impose the exact Dirichlet
conditions (2.130).

The issue of boundary conditions on fluctuating thermal variables is still
an open question [11, 55, 67, 42]. For the energy equation, we can impose
a constant wall temperature or a uniform wall heat flux. In the case of a
constant wall temperature boundary condition, the fluctuations T ′ vanish
along the wall. If a constant heat flux is applied, then temperature fluc-
tuations can be considered null or not. If we assume that the temperature
fluctuations are null (MX boundary conditions) we have the near-wall ex-
pansion reported in Equation (2.48), then from definitions we obtain the
following expressions

kθ ≈ 1
2b

2
θy

2 , Kθ ≈ ln
(1

2b
2
θy

2
)
, (2.131)

εθ ≈ αb2
θ , (2.132)

ωθ ≈ 2α
cµy2 , Ωθ ≈ ln

( 2α
cµy2

)
. (2.133)

As in the dynamical turbulence case, the expressions of kθ, εθ and Kθ de-
pend on bθ which is not known a priori. We can then reformulate (2.131)
considering the derivative of kθ and Kθ in the wall normal direction y as

∂kθ

∂y

∣∣∣∣
w

= b2
θy = 2kθw

y
,

∂Kθ

∂y

∣∣∣∣
w

= 2
y
, (2.134)

and impose Neumann boundary conditions. The quantity εθw is affected by
the same issue of εw since we cannot impose an exact Dirichlet condition
on this variable but only apply a Dirichlet boundary condition with a value
αb2

θ that changes iteration by iteration. For ωθ and Ωθ we can impose the
exact Dirichlet conditions (2.133).



CHAPTER 3

Validation of the anisotropic
four-parameter model

In this section, we aim to validate the anisotropic four-parameter turbu-
lence model that is illustrated in Chapter 2. The anisotropic four-parameter
model is validated by simulating different benchmark configurations. First,
we consider heat transfer in fully developed turbulent flows. We perform
several numerical simulations of low Prandtl number fluids over a plane
channel configuration at different friction Reynolds numbers Reτ . The re-
sults obtained with the anisotropic four-parameter model are compared with
the available reference DNS data [42, 68, 37]. Secondly, the flow in a cylin-
drical pipe in fully developed conditions is considered. For this configu-
ration, few DNS data are available for low Prandtl number fluids, then
our simulation results are compared with the available DNS data and with
empirical correlations for integral quantities, such as the Nusselt number.
Lastly, a more complex configuration as a backward-facing step geometry
is considered and the numerical results are compared with DNS data in
forced and mixed convection regimes [69]. Also in this case the choice of
Reynolds, Prandtl, and Richardson numbers for computations depends on
the available DNS data in the literature. Preliminary results of the proposed
validation are presented in [18, 20, 19].
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The simulations have been performed using the in-house finite element
multigrid code FEMuS developed at the Laboratory of Montecuccolino of
the University of Bologna [15]. The code is based on a C++ main pro-
gram that handles several external open-source libraries, such as MPI and
PETSc libraries. In the turbulence framework, FEMuS contains solvers for
Reynolds-Averaged Navier-Stokes and energy equations, and several formu-
lations of the isotropic four-parameter turbulence model (k-ε-kθ-εθ, k-ω-kθ-
ωθ, K-Ω-Kθ-Ωθ).

During this Ph.D. project, new solvers for Reynolds stresses and tur-
bulent heat flux based on Explicit Algebraic Models have been developed
and integrated into the finite element code FEMuS. The new solvers resolve
the algebraic equations reported in (2.111) and (2.121) discretized with a
finite element approach. The obtained fields act as explicit source terms
in the Reynolds-Averaged Navier-Stokes and energy equations, as reported
in (2.110) and (2.120), and they are used to compute explicitly the source
and dissipation terms in the four-parameter equations. In FEMuS, both
isotropic and anisotropic four-parameter turbulence models are now avail-
able.

3.1. Fully-developed turbulent flows

3.1.1. Plane channel flow

The plane channel flow configuration has been investigated by different
authors in the framework of turbulence modeling [70, 71]. Several DNS
databases have been created for this geometry, where the channel flow is
characterized by flow parameters such as Reτ , Pr and Gr. For the vali-
dation of the anisotropic four-parameter turbulence model, we refer to the
dimensionless parameters of the available DNS data. We consider two dif-
ferent Pr numbers, 0.025 and 0.01, corresponding to liquid lead and sodium.
In literature, for Pr = 0.025, the available DNS data refer to the friction
Reynolds numbers Reτ = 180, 395, 640, 1020 [42], while for Pr = 0.01 we
consider the friction Reynolds numbers Ret = 180, 395, 590 [68] and 1000
[37].

The main features of plane channel flows are presented in Chapter 1
and a representative schematic of the geometry is reported in Figure 1.1.
The conservation equations governing the flow state are (1.111), (1.112)
and (1.129). The pressure gradient driving the fully developed flow can be
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computed using (1.121), given the fluid properties, geometry, and target
friction Reynolds number Reτ .

Due to the symmetry of the problem, the computational domain can be
simplified as reported in Figure 3.1, where a section of height Ly of the half-
channel can be observed. In the figure, Lx = 0.03025m corresponds to the
half-channel width, previously indicated with δ. A uniform heat flux q equal
to 3.6 × 105 W/m2 is imposed at the walls. In Figure 3.1 the inlet section
is indicated as Γi, the outlet Γo, the heated wall Γw and the symmetry axis
of the channel Γsym. Periodic boundary conditions are imposed in the inlet
and outlet sections. We indicate with y the streamwise direction and x

the wall-normal direction. In Table 3.1 the fluid properties are reported,
with the first value of the thermal conductivity λ referring to the case of
Pr = 0.025, and the second one for the case of Pr = 0.01. For the thermal
simulations, we introduce the variable θ = T − Tw0 − Ly∆Tb, where ∆Tb is
the bulk temperature increment over a streamwise length equal to Ly, Tw0
is a constant value on Γw and Ly is the axial length of the computational
domain. Due to the symmetry of the problem, the computation domain is
half-channel geometry. A mesh refinement near the wall Γw is performed
to have the first mesh point in the viscous layer, x+ < 1, where the non-
dimensional distance from the wall x+ is defined as (Lx − x)uτ/ν.

Lx

Ly

Γo

Γi

ΓwΓsym

y

x

Figure 3.1: Plane channel: schematic of the computational domain.

The variables are normalized using wall units, i.e. the friction velocity
uτ , friction temperature Tτ and kinematic viscosity ν. The friction veloc-
ity is used to normalize the velocity v+ = v/uτ and the components of
the Reynolds stress tensor ⟨u′

iu
′
j⟩+ = ⟨u′

iu
′
j⟩/u2

τ . The friction temperature
Tτ = q/uτρCp is used to normalize the temperature θ+ = θ/Tτ and the
components of the turbulent heat flux ⟨u′

iθ
′⟩+ = ⟨u′

iθ
′⟩/uτTτ .

The results obtained using the anisotropic four-parameter model (4AP)
are shown in comparison with the available DNS data and the results ob-
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Table 3.1: Plane channel flow: physical properties employed for the numerical
simulations.

Property Symbol Value Units

Viscosity µ 0.001844 Pa s

Density ρ 10340 kg/m3

Thermal conductivity λ 10.72 − 26.88 W/(mK)
Specific heat c 145.75 J/(kgK)
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Figure 3.2: Plane channel flow: non-dimensional velocity v+ profiles for Reτ =
180 (a), 395 (b), 640 (c) and 1020 (d).
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Table 3.2: Plane channel flow: values of the pressure gradient expressed in Pa/m

for DNS and for 4AP simulations. Relative errors of 4AP simulations with respect
to reference DNS.

Reτ (dP/dy)DNS (dP/dy)4AP ϵr

180 0.00003723 0.00003710 0.353%
395 0.0001793 0.0001790 0.150%
640 0.0004706 0.0004698 0.167%
1020 0.001195 0.001193 0.225%
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Figure 3.3: Plane channel flow: non-dimensional turbulent shear stress ⟨u′v′⟩+

for Reτ = 180 (a), 395 (b) 640 (c) and 1020 (d).
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Figure 3.4: Plane channel flow: non-dimensional turbulent wall-normal normal
stress ⟨u′u′⟩+ for Reτ = 180 (a), 395 (b) 640 (c) and 1020 (d).

tained using the isotropic version of the model (I4P). In particular, we refer
to the results published in [12] for Pr = 0.025 and in [13] for Pr = 0.01.
In those works, the Reynolds friction numbers considered are 180, 395, 640,
and 950, thus the comparison for the case Reτ = 1020 is not shown.

In Figure 3.2 the non-dimensional streamwise velocity v+ is plotted
against the non-dimensional distance from the wall x+, for different Reτ

numbers, i.e. 180, 395, 640 and 1020, corresponding to the Reynolds num-
bers Re ≈ 5700, 14100, 24400 and 41400 respectively. The linear and loga-
rithmic profiles of the law of the wall have been reported with dotted lines.
The comparison with DNS data shows a good matching in the linear and log-
arithmic regions for the different cases of Reτ . Both the anisotropic (A4P)
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Figure 3.5: Plane channel flow: non-dimensional turbulent streamwise normal
stress ⟨v′v′⟩+ for Reτ = 180 (a), 395 (b) 640 (c) and 1020 (d).

and the isotropic (I4P) models show good agreement with the reference data
and there are no appreciable discrepancies between the two models.

In Table 3.2, we report the pressure gradient values (dP/dy)4AP obtained
with the 4AP model for all the considered Reτ numbers. We also report
the reference DNS values (dP/dy)DNS computed with (1.121). The relative
error ϵr = [(dP/dy)4AP − (dP/dy)DNS]/(dP/dy)DNS is shown. The relative
error is below 0.4% for all cases, then the model is very accurate in predicting
the correct pressure losses.

The dimensionless shear turbulent stress tensor ⟨u′v′⟩+ is plotted against
the non-dimensional distance from the wall x+ in logarithmic scale for the
different Reτ numbers. The logarithmic scale allows focusing on the near-
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Figure 3.6: Plane channel flow: non-dimensional turbulent kinetic energy k+ for
Reτ = 180 (a), 395 (b) 640 (c) and 1020 (d).

wall behavior of the turbulent shear stress. We can observe that the simu-
lation results with the anisotropic model (4AP) overlap perfectly with the
reference data, both in the near-wall and bulk regions. Even though the re-
sults obtained with the isotropic model (I4P) show some discrepancies with
DNS data in the linear region, both the anisotropic and isotropic models
can accurately estimate the turbulent shear stress.

The other Reynolds stress components are characterized by more marked
differences between simulation results and DNS data. The wall-normal nor-
mal stresses ⟨u′u′⟩+ are shown in Figure 3.4 for the considered Reτ numbers.
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Figure 3.7: Plane channel flow: non-dimensional mean temperature profile θ+

with Pr = 0.025 for different Reτ = 180 (a), 395 (b) and 640 (c).

The profiles are plotted against the dimensionless wall distance on logarith-
mic scale. For the isotropic four-parameter model (I4P), the wall-normal
normal turbulent stress is computed considering the Boussinesq assumption,
then ⟨u′u′⟩ = 2/3k since ∂u/∂x = 0. The near-wall behavior of the wall-
normal normal stress is well-estimated by the anisotropic four-parameter
model (4AP). However, we can observe an overall overestimation of the
peak of ⟨u′u′⟩+ in the bulk region. Thanks to the explicit algebraic stress
model, we can estimate ⟨u′u′⟩+ with greater accuracy than we do with the
isotropic model, above all in the near-wall region.
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Figure 3.8: Plane channel flow: non-dimensional mean temperature profile θ+

with Pr = 0.01 for different Reτ = 180 (a), 395 (b), 590 (c) and 1000 (d).

In Figure 3.5, the non-dimensional turbulent streamwise normal stress
⟨v′v′⟩+ is shown plotted against the wall distance in logarithmic scale.
For the isotropic four-parameter model (I4P), the streamwise normal tur-
bulent stress is computed considering the Boussinesq assumption, then
⟨v′v′⟩ = 2/3k since ∂v/∂y = 0. We can observe an overall satisfactory agree-
ment between the anisotropic model and DNS for every Reτ , even though
the profiles obtained with numerical simulation overestimate the maximum
of the stress and underestimate the bulk behavior. The near-wall behav-
ior of the wall-normal normal stress is well-estimated by the anisotropic
four-parameter model (4AP). Comparing the results with I4P profiles, we
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can affirm that the adoption of the anisotropic model allows improving the
estimation of the streamwise wall-normal component as well.

The turbulent normal stresses ⟨u′u′⟩ and ⟨v′v′⟩ do not affect the velocity
field in this flow configuration. Due to the hypothesis of fully developed
flow, only the turbulent shear stress appears in (1.111) and (1.112). For
this reason, the prediction of the velocity field with the isotropic model
is in good agreement with DNS data. However, for the anisotropic four-
parameter model, the accurate estimation of the normal stresses is crucial
since they affect the computation of the turbulent heat flux components.

Lastly, the dimensionless turbulent kinetic energy k+ is reported in Fig-
ure 3.6 plotted against the non-dimensional wall distance x+. The near-
wall peaks are slightly overestimated for all Reynolds numbers, using the
anisotropic model (4AP). For low Reynolds numbers, the turbulent kinetic
energy is also overestimated in the central region of the channel. When
increasing the Reynolds number, the turbulent kinetic energy perfectly
matches the DNS reference data in the region far from the wall. With
the isotropic model (I4P), the near-wall peaks are slightly underestimated
for all Reynolds numbers, but the bulk behavior is well-predicted even for
low Reynolds numbers.

The numerical results of thermal fields for Pr = 0.025 and Pr = 0.01
are now reported and discussed. The non-dimensional temperature profiles
are shown in Figure 3.7 and 3.8 for Pr = 0.025 and Pr = 0.01 respectively.
The linear profile of the law of the wall for the temperature, θ+ = y+Pr

is reported with dotted lines. The results obtained using the anisotropic
four-parameter model (4AP) are compared with DNS data. Moreover, the
results obtained with the isotropic model [12, 13] are also shown. The pro-
files are plotted against the dimensionless wall distance with a logarithmic
scale. The temperature field is in good agreement with the reference DNS
data for all the Pr and Reτ numbers considered. There are no appreciable
discrepancies between the results obtained with the anisotropic and isotropic
models. For low Reynolds numbers and Pr = 0.025, we can observe a slight
underestimation of the temperature profile in the bulk region obtained with
the isotropic model.

In Figure 3.9 the dimensionless wall-normal turbulent heat flux ⟨u′θ′⟩+

profiles are reported for different Reτ and Pr numbers. For shortness, only
two cases of different Reτ are shown for each Pr number. In Figures 3.9a
and 3.9b the plots show the results for Pr = 0.025, while in Figures 3.9c and
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Figure 3.9: Plane channel flow: non-dimensional wall-normal total heat flux q+
eff

and non-dimensional wall-normal turbulent heat flux ⟨u′θ′⟩+ for Reτ = 395 , P r =
0.025 (a), Reτ = 640 , P r = 0.025 (b), Reτ = 590 , P r = 0.01 (c) and Reτ =
1000 , P r = 0.01 (d).

3.9d for Pr = 0.01. We also report the effective wall-normal heat flux q+
eff,x

which is defined as the sum of the molecular heat flux and the turbulent
heat flux in the wall-normal direction, i.e.

q+
eff,x =

(
α
∂θ

∂x

)+
− ⟨u′θ′⟩+ . (3.1)

We can notice some discrepancies for the ⟨u′θ′⟩+ component from DNS
data in the near-wall region. However, in this region the thermal conduc-
tivity contribution is dominant with negligible turbulent heat flux, then
the total heat flux q+

eff,x is almost equal to the molecular heat flux. Thus,
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Figure 3.10: Plane channel flow: non-dimensional wall-normal total heat flux
q+

eff and non-dimensional wall-normal turbulent heat flux ⟨u′θ′⟩+ for Pr = 0.025
and Reτ = 395 (a) and Reτ = 640 (b).

the bad prediction of ⟨u′θ′⟩+ in this region does not affect the total heat
flux and, consequently, the mean temperature field. In addition, we can
observe that for the high Reynolds numbers, Figure 3.9b and d, the pre-
diction of the wall-normal heat flux is in perfect agreement with DNS data
in the far-wall region. The profiles of the wall-normal turbulent heat flux
obtained with the isotropic model are shown in Figure 3.10 for the com-
parison with the anisotropic results, considering Reτ = 395 and 640 with
Pr = 0.025. The isotropic model estimates accurately the near-wall behav-
ior. Indeed, the mixed time scale τm is calibrated for the isotropic version of
the model. To better estimate the near-wall behavior with the anisotropic
model, it would be necessary to adapt the near-wall expression of τm. For
high Reynolds numbers, the bulk behavior seems better estimated by the
anisotropic model.

In Figure 3.11 the non-dimensional streamwise turbulent heat flux ⟨v′θ′⟩+

is shown for Pr = 0.025 and Pr = 0.01. The streamwise component of
the turbulent heat flux is underestimated for all the cases with respect to
the DNS reference data. We can then conclude that the anisotropic four-
parameter turbulence model is not able to properly predict this component
in the plane channel configuration. However, this bad prediction does not
affect the mean temperature estimation. Indeed, due to the symmetry of the
plane channel configuration, the mean temperature field is only affected by
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Figure 3.11: Plane channel flow: non-dimensional streamwise turbulent heat
flux ⟨v′θ′⟩+ for Pr = 0.025 and Reτ = 395 (a), Pr = 0.01 and Reτ = 590 (b),
Pr = 0.025 and Reτ = 640 (c) and Pr = 0.01 and Reτ = 1000 (d).

the wall-normal component of molecular and turbulent heat flux. Moreover,
we underline that with the isotropic model (I4P), the streamwise turbulent
heat flux component is identically zero in this configuration since it is com-
puted as ⟨v′θ′⟩+ = −αt∂θ/∂y and ∂θ/∂y = 0.

3.1.2. Pipe flow

In this subsection, we report the results of numerical simulations per-
formed considering a turbulent fully developed flow along a cylindrical pipe.
The main features of pipe flows are presented in Chapter 1 and a representa-
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Figure 3.12: Pipe flow: non-dimensional velocity v+ profiles for Reτ = 180 (a),
360 (b), 550 (c) and 1000 (d).

tive schematic of the geometry is reported in Figure 1.4. The conservation
equations governing the flow state are (1.131), (1.132) and (1.142). The
pressure gradient driving the fully developed pipe flow has been derived
in Equation (1.138) and given as a function of 2ρRe2

τν
2/R3. Thus, with

Reynolds friction numbers being equal, the pressure gradient in the pipe is
double the pressure gradient in the channel. The computational domain is
the same reported in Figure 3.1 for the plane channel configuration where
x is the radial direction and y is the axial one. The half-channel width
Lx corresponds to the pipe radius R, namely D = 2Lx = 0.0605 m. A



98 Chapter 3. Validation of the anisotropic four-parameter model

0 200 400 600 800 1000

x+

0

1

2

3

4

5

k
+

A4P, 180

A4P, 360

A4P, 550

A4P, 1000

DNS, 180

DNS, 360

DNS, 550

DNS, 1000

10−1 100 101 102 103

x+

0.0

0.2

0.4

0.6

0.8

〈u
′ v
′ 〉+

A4P, 180

A4P, 360

A4P, 550

A4P, 1000

DNS, 180

DNS, 360

DNS, 550

DNS, 1000

(a) (b)

100 101 102 103

x+

10−6

10−5

10−4

10−3

10−2

10−1

100

101

〈u
′ u
′ 〉+

A4P, 180

A4P, 360

A4P, 550

A4P, 1000

DNS, 180

DNS, 360

DNS, 550

DNS, 1000

100 101 102 103

x+

10−2

10−1

100

101

〈v
′ v
′ 〉+

A4P, 180

A4P, 360

A4P, 550

A4P, 1000

DNS, 180

DNS, 360

DNS, 550

DNS, 1000

(c) (d)

Figure 3.13: Pipe flow: non-dimensional turbulent kinetic energy k+(a), turbulent
shear stress ⟨u′v′⟩+ (b), wall-normal normal stress ⟨u′u′⟩+ (c) and streamwise
normal stress ⟨v′v′⟩+ (d) for different Reτ = 180, 360, 550, 1000.

uniform heat flux q = 3.6 × 105 W/m2 acts on the pipe walls. Tests have
been performed considering Reτ = 180, 360, 550 and 1000 since DNS ref-
erence data are available for dynamic fields [72]. However, there are very
few DNS data of thermal fields of low Prandtl number fluids. The only
available study is for Pr = 0.026 and Reτ = 180 [72]. For this reason, the
validation of the anisotropic four-parameter model in the pipe configuration
involves the comparison of dynamical fields between numerical results and
DNS data. For the thermal validation, we can compare our results only
with the DNS data for Reτ = 180. For the highest Reynolds numbers, we
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Figure 3.14: Pipe flow: non-dimensional mean temperature θ+ (a) and wall-
normal heat flux ⟨u′θ′⟩+ (b) for Reτ = 180.

propose a validation through empirical correlations.
The profiles of dimensionless velocity v+ = v/uτ are reported in Figure

3.12 for the different Reynolds friction numbers, Reτ = 180 (a), 360 (b), 550
(c) and 1000 (d). The corresponding bulk Reynolds numbers Re = 2RUb/ν

are 5410, 11800, 19100 and 38000, where Ub is the bulk velocity. For all
the considered Reynolds numbers, the numerical results and reference data
perfectly overlap.

In Figure 3.13a is reported the non-dimensional turbulent kinetic energy
k+ = k/u2

τ . By the comparison between numerical results and DNS data,
an overall overestimation of the near-wall peak can be observed. For high
Reynolds numbers, the bulk behavior of turbulent kinetic energy is in good
agreement with reference data. The dimensionless turbulent shear stress
⟨u′v′⟩+ = ⟨u′v′⟩/u2

τ is reported in Figure 3.13b. This Reynolds stress com-
ponent is in agreement with DNS data in analogy to the plane channel con-
figuration. The dimensionless wall-normal normal stress ⟨u′u′⟩+ = ⟨u′u′⟩/u2

τ

and streamwise normal stress ⟨v′v′⟩+ = ⟨v′v′⟩/u2
τ are respectively shown in

Figure 3.13c and d. The same trends we have observed for the plane channel
are recognizable. The peaks in the Reynolds normal stresses are overesti-
mated. In the bulk region, our prediction of the streamwise normal stress
is in good agreement with DNS data, while the wall-normal normal stress
is overrated along the whole pipe cross-section.

The thermal fields are shown in Figure 3.14. The dimensionless temper-
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Table 3.3: Pipe flow: flow and heat transfer parameters of the simulations.

Case Reτ Re Pe Nu

a 180 5410 141 6.5
b 360 11800 296 7.7
c 550 19100 480 8.2
d 1000 38000 950 10.5

ature θ+ = θ/Tτ is reported in Figure 3.14a for Reτ = 180 since DNS data
are not available for higher values of the Reynolds friction number. From
the comparison with DNS data for Reτ = 180, we can observe that the tem-
perature is correctly predicted. In 3.14b the non-dimensional wall-normal
turbulent heat flux ⟨u′θ′⟩+ = ⟨u′θ′⟩/(uτTτ ) is reported for Reτ = 180. By
comparing the simulation result with the DNS profile, we can see that the
maximum value is underestimated but the bulk flow behavior is in agree-
ment with the reference.
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Figure 3.15: Pipe flow: profiles of Nusselt number as a function of Peclet number
according to empirical correlations. Simulations results reported in red.

Since DNS data for low Prandtl numbers are insufficient to validate
the thermal simulation, we use integral quantities. For low Prandtl number
fluids, several empirical correlations exist based on experiments that predict
the Nusselt number as a function of the Peclet number. The Nusselt number
is the ratio of convective to conductive heat transfer Nu = hD/λ, while the
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Peclet number is the ratio of advective transport rate and diffusive transport
rate Pe = RePr, where h is the convective heat transfer coefficient of the
flow introduced in Newton’s law of cooling (1.123) then h = qw/(Tw − Tb).
The bulk temperature Tb for a cylinder is given by Equation (1.141). One
of the first empirical correlations was proposed by Lyon in [73]

Nu = 7 + 0.025
(
Pe

Prt

)0.8
, (3.2)

where Prt = 1.8. Other empirical correlations proposed are the following

Nu = 4.5 + 0.018Pe0.8 , 104 ⩽ Re ⩽ 5 × 106 , (3.3)
Nu = 4.82 + 0.0185Pe0.827 , 104 ⩽ Re ⩽ 5 × 106 , (3.4)
Nu = 6.3 + 0.0167Pe0.85Pr0.08 , 104 ⩽ Re ⩽ 5 × 106 , (3.5)
Nu = 3.6 + 0.018Pe0.8 , 88 ⩽ Pe ⩽ 4000 , (3.6)
Nu = 4.5 + 0.014Pe0.8 , 104 ⩽ Re ⩽ 5 × 106 , (3.7)

which are introduced respectively by Kirillov and Ushakov [74], Skupinski
[75], Sleicher [76], Stromquist [77] and Ibragimov [78]. In Figure 3.15 the
above-mentioned correlations are plotted. The Nusselt and Peclet numbers
corresponding to each simulation are evaluated and reported in Table 3.3.
The results obtained for the four simulations are plotted in Figure 3.15 and
marked by red circles. The points are in the range of Nusselt numbers
identified by empirical correlations.

3.2. Backward-facing step flow
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Figure 3.16: Backward-facing step geometry.

In this subsection, we report the results obtained for the simulation of a
turbulent flow of liquid sodium over a vertical backward-facing step. This
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Table 3.4: Backward-facing step: geometrical parameters of the simulated do-
main.

Lin/h Lh/h W Er Re Pr Ri

2 20 0 1.5 4805 0.0088 0 - 0.338

Table 3.5: Backward-facing step: physical properties employed for the numerical
simulations.

Property Symbol Value Units

Viscosity µ 0.00054335 Pa s

Density ρ 914.6 kg/m3

Thermal conductivity λ 84.119 W/(mK)
Specific heat c 1362.3 J/(kgK)

Coefficient of expansion β 2.5684 × 10−4 K−1

type of flow has been extensively studied in the literature. In [79, 69, 80, 81]
DNS simulations with different Reynolds numbers have been performed, in
forced and/or mixed convection regimes. In [82] a comparison between
the solutions of a RANS system of equations closed with various turbu-
lence models is proposed for the forced convection case, showing that four-
equation turbulence models, coupled with nonlinear expressions for the
Reynolds stress tensor, allow improving the predictions of the turbulent
heat flux. In [43] an anisotropic three-equation turbulence model has been
proposed and applied to this configuration in forced and mixed convec-
tion regimes showing promising potential for the prediction of the turbulent
heat flux. In [14] RANS simulations have been performed with an isotropic
four-parameter turbulence model in forced and mixed convection regimes
considering a linear expression for the Reynolds stress tensor and the turbu-
lent heat flux. Results are promising in both regimes but the adoption of the
anisotropic formulation that we are proposing could improve the prediction
of the turbulent heat flux components.

The computational domain reproduces the reference DNS domain [69]
and a representative schematic is reported in Figure 3.16. The inlet section
length is Lin, the step height is h, the domain width is W and the down-
stream channel height is E. The expansion ratio is Er = E/(E − h). The
geometrical parameters of the simulated domain are reported in Table 3.4.
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Table 3.6: Number of bi-quadratic cells and nodes for the four grids of the mesh
sensitivity study. Predicted reattachment yr/h point location and relative devi-
ation with respect to the finest mesh.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

Cells 11853 16298 24760 30689
Nodes 45289 62705 95885 119211
yr/h 6.77 6.65 6.68 6.69
ϵyr 1.19% −0.60% −0.15% -

We have considered two different values of Richardson number Ri =
gβ∆Th/U2

b , Ri = 0 corresponding to forced convection and Ri = 0.338
corresponding to mixed convection regime. In terms of boundary con-
ditions, a fully developed inflow condition has been set for the velocity
field and turbulent variables corresponding to Reτ = huτ/ν ≈ 300 and
Reb = 2hUb/ν = 9610. The Reynolds number is calculated with respect to
the inlet channel width 2h and the bulk inlet velocity Ub. For the tempe-
rature, a uniform value is set, i.e. Tref = 423.15K. The same temperature
is used as the reference value for the evaluation of liquid sodium properties
reported in Table 3.5, using the correlations reported for liquid sodium in
[83]. At this temperature, the Prandtl number is 0.0088. At the outlet
section, an outflow boundary condition is imposed on the velocity field and
for all the other variables homogeneous Neumann conditions are set. All
the remaining boundaries have been treated as adiabatic no-slip walls, ex-
cept for the wall behind the step where a uniform heat flux q̇ is imposed.
Numerical simulations have been performed for the forced and mixed con-
vection calculations using the anisotropic four-parameter turbulence model
and the results are compared with DNS data and with the isotropic model.

3.2.1. Mesh sensitivity study

A mesh sensitivity study has been performed for the forced convection
case considering four different grids reported in Figure 3.17. Mesh cells are
clustered near the corner step and reattachment zone. Mesh refinement is
performed near wall boundaries to obtain a non-dimensional wall distance
x+ < 1 on the first mesh point near wall boundaries. The number of bi-
quadratic cells and nodes are reported in Table 3.6 for all the considered
grids.
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Figure 3.17: View of the four grids considered in the mesh sensitivity study.
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Figure 3.18: Skin friction coefficient Cf along the heated wall.

A typical feature of the backward-facing step flow in the forced convec-
tion regime is the presence of detachment and reattachment points behind
the step. The streamwise location of the reattachment point yr is usually
used as a parameter to evaluate the sensitivity of the numerical results to
the mesh resolution [43]. The detachment and reattachment points are the
locations where the skin friction coefficient Cf = 2τw/ρU

2
b changes its signs

along the heated wall. The profiles of the skin friction coefficients and the
detachment and reattachment points locations are shown in Figure 3.18.
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The calculated yr values are reported in Table 3.6 for the four different
grids. We also report the relative deviation of the calculated yr with respect
to the most refined mesh, i.e. Mesh 4. From Table 3.6, it can be seen that
the relative deviation of yr for Mesh 3 is below to 0.5%. Therefore, Mesh 3
has been employed for all the calculations.

3.2.2. Forced convection

Dynamic fields
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Figure 3.19: Contours of the non-dimensional streamwise velocity v+ = v/Ub (a)
and wall-normal velocity u+ = u/Ub (b) with streamlines of the velocity field.

The dimensionless dynamic fields are reported and compared with DNS
data for the case Ri = 0 corresponding to the forced convection regime. The
contours of the non-dimensional streamwise v+ = v/Ub and wall-normal
velocity component u+ = u/Ub are respectively reported in Figure 3.19a
and b. The streamlines of the velocity field are also shown. The typical
flow features for a backward-facing step configuration are observed, i.e. the
flow separation taking place behind the step, the reattachment of the flow,
the formation of two main vortexes behind the step: a bigger one rotating in
the clockwise direction and a smaller one rotating in the opposite direction.
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Figure 3.20: Profile of dynamical fields for Ri = 0: mean streamwise velocity v+

(a), mean wall-normal velocity u+ (b) and shear stress ⟨u′v′⟩+ (c). : 4AP; :
I4P ◦ : DNS data.
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Figure 3.21: Profile of dynamical fields for Ri = 0: wall-normal normal stress
⟨u′u′⟩+ (a), streamwise normal stress ⟨v′v′⟩+ (b) and turbulent kinetic energy k+

(c). : 4AP; : I4P ◦ : DNS data.

Non-dimensional profiles of velocity are reported in solid lines for several
streamwise coordinate y/h values for the anisotropic model (4AP). The
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Figure 3.22: Skin friction coefficient Cf along the heated wall. : 4AP; : I4P
◦ : DNS data.

streamwise positions included in these plots correspond to the locations
where DNS data are available [69]. Numerical results obtained with the
isotropic model (I4P) are also shown [14]. The streamwise v+ and wall-
normal velocity component u+ are reported respectively in Figure 3.20a
and Figure 3.20b. The velocity field prediction with the anisotropic four-
parameter model is in good agreement with DNS results, while the isotropic
model shows a slight deviation of the wall-normal velocity u+ from DNS data
at the non-dimensional height y/h = 3. The typical features of the flow
over a backward-facing step, i.e. the separation and reattachment behind
the step, can be observed from the plot taken at y/h = 3 where v+ assumes
negative values close to the heated wall.

In Figure 3.20c the non-dimensional turbulent shear stress ⟨u′v′⟩+ =
⟨u′v′⟩/U2

b is reported in comparison with DNS data. The turbulent shear
stress is mainly present in the layer behind the step at x/h ≈ 0. For the
isotropic four-parameter model results, we have computed the shear stress
as ⟨u′v′⟩ = νt(∂u/∂y+∂v/∂x). The evaluations obtained with both isotropic
and anisotropic models are in good agreement with DNS data.

The wall-normal normal stress ⟨u′u′⟩+ = ⟨u′u′⟩/U2
b and the streamwise

normal stress ⟨v′v′⟩+ = ⟨v′v′⟩/U2
b are reported respectively in Figure 3.21a

and 3.21b. In Figure 3.21c the turbulent kinetic energy k+ = k/U2
b is shown.

These turbulent fields present a general good agreement with DNS data
even though there are some discrepancies in the region behind the step. For
the isotropic four-parameter model simulations, we have computed ⟨u′u′⟩ =
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2/3k + 2νt∂u/∂x and ⟨v′v′⟩ = 2/3k + 2νt∂v/∂y, according to Boussinesq
approximation.

In Figure 3.22 the skin friction coefficient Cf along the heated wall is
reported. The skin friction profile is subjected to a double change of sign,
denoting the presence of two reattachment points. The skin friction coeffi-
cient assumes negative values in the recirculation zone, which is composed
of a large clockwise rotating vortex. Directly behind the step, the princi-
pal recirculating vortex causes a secondary vortex rotating in the opposite
direction. The position of the first reattachment point is approximately
y/h ≈ 1.36 for the anisotropic four-parameter model and y/h ≈ 1.91 for
DNS data. The second reattachment point is located approximately at
y/h ≈ 6.68. The DNS data give this point at y/h ≈ 7.01, while Kasagi [84]
gives this point at y/h ≈ 6.51 through measurements.

Thermal fields
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Figure 3.23: Contours of the non-dimensional temperature T + = (T − Tref )/∆T

for Ri = 0.

We now propose a comparison for thermal fields between the results
obtained with the anisotropic four-parameter model and DNS data for the
forced convection case. In Figure 3.23 contours of the non-dimensional
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Figure 3.24: Profile of thermal fields for Ri = 0: mean temperature T + (a) and
temperature fluctuations k+

θ (b). : 4AP; : I4P ◦ : DNS data.
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Figure 3.25: Profile of thermal fields for Ri = 0: mean wall-normal turbulent
heat flux ⟨u′T ′⟩+ (a) and mean streamwise turbulent heat flux ⟨v′T ′⟩+(b). :
4AP; : I4P ◦ : DNS data.

temperature T+ = (T − Tref )/∆T are reported for the simulation with the
anisotropic four-parameter model. The hot fluid is located in the corner
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Figure 3.26: Nusselt number Nu along the heated wall for Ri = 0. : 4AP; :
I4P ◦ : DNS data.

between the step and the heated wall. A strong temperature increase is
observed moving from the insulated wall towards the heated wall. The
highest wall temperature is located in the recirculation zone and reaches a
maximum closely behind the step due to the reduced heat transfer due to
the backward flow.

Non-dimensional profiles of the mean temperature T+ = T/∆T are re-
ported in Figure 3.24a for different values of streamwise coordinate y/h. The
temperature difference ∆T is defined using the applied heat flux q̇ setting
∆T = q̇h/λ, where λ is the liquid sodium thermal conductivity calculated
for T = Tref . The discrepancies with DNS results are limited to the plot
taken at y/h = 0 where the temperature is slightly overestimated. With
the isotropic model, the major discrepancies with DNS values are found on
the plots taken at y/h = 0 and y/h = 3 where an over and underprediction
of T+ is respectively obtained. Non-dimensional mean squared temperature
fluctuations k+

θ = 2kθ/∆T 2 are shown in Figure 3.24b for anisotropic and
isotropic models. We observe good agreement with DNS results.

The turbulent heat flux along wall-normal ⟨u′T ′⟩+ = ⟨u′T ′⟩/(Ub∆T ) and
streamwise ⟨v′T ′⟩+ = ⟨v′T ′⟩/(Ub∆T ) directions are reported respectively in
Figure 3.25a and Figure 3.25b. The anisotropic model allows improving the
prediction of the streamwise component which is completely underestimated
with the isotropic model. The isotropic model assumes a unique scalar
thermal diffusivity αt for both turbulent heat flux components, i.e. ⟨u′T ′⟩ =
αt∂T/∂x and ⟨v′T ′⟩ = αt∂T/∂y. However, the mean temperature gradient
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along the streamwise direction is small and for this reason the streamwise
component is totally underestimated. With the proposed anisotropic model,
the wall-normal component shows a better agreement with DNS data and
the streamwise component results are only slightly underestimated.

The Nusselt number profile along the heated wall is shown in Figure
3.26. The Nusselt number is computed as Nu = q̇h/(T −Tref )λ. When the
Nusselt value is around 1 then the heat transfer is mostly diffusive due to the
low Prandtl number of the liquid metal. Inside the recirculation zone, we
have Nu < 1 then the heat transfer is prevented by the recirculating flow.
As one can see in Figure 3.26, in the recirculation zone the Nusselt number is
slightly overestimated with the isotropic model, while the anisotropic model
is in good agreement with DNS data in all the regions.

3.2.3. Mixed convection

Dynamic fields
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Figure 3.27: Contours of the non-dimensional streamwise velocity v+ = v/Ub (a)
and wall-normal velocity u+ = u/Ub (b) with streamlines of the velocity field for
Ri = 0.338.

In this section, the numerical results for flow fields are compared with
DNS data and isotropic results for Ri = 0.338 corresponding to the mixed



112 Chapter 3. Validation of the anisotropic four-parameter model

2 1 0 −1

x/h

−2

0

3

6

9

12

15

y
/
h

v+

0.00

2.00

2 1 0 −1

x/h

−2

0

3

6

9

12

15

y
/
h

u+

0.00

0.20

2 1 0 −1

x/h

−2

0

3

6

9

12

15

y
/
h

〈u′v′〉+

0.00

0.02

(a) (b) (c)

Figure 3.28: Profile of dynamical fields: mean streamwise velocity v+ (a) mean
wall-normal velocity u+ (b) and shear stress ⟨u′v′+⟩ (c) for Ri = 0.338. : 4AP;

: I4P ◦ : DNS data.
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Figure 3.29: Profile of dynamical fields: wall-normal normal stress ⟨u′u′⟩+ (a),
streamwise normal stress ⟨v′v′⟩+ (b) and turbulent kinetic energy k+ (c) for
Ri = 0.338. : 4AP; : I4P ◦ : DNS data.

convection case. In Figure 3.27 the contours of the non-dimensional stream-
wise v+ = v/Ub and wall-normal u+ = u/Ub velocity components are shown.



3.2. Backward-facing step flow 113

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

y/h

0

5

10

15

20

25

30

C
f
×

10
00

Figure 3.30: Skin friction coefficient Cf along the heated wall for Ri = 0.338.
: 4AP; : I4P ◦ : DNS data.

Also the streamlines of the velocity field are reported. In the proximity of
the heated wall, x/h = −1, the fluid is warmer and is accelerated by buoy-
ancy forces. Due to the continuity, the fluid from the rest of the domain is
accelerated towards the heated wall and the streamwise velocity decreases
strongly towards the insulated wall beyond y/h = 6. Buoyancy forces ac-
celerate the hot fluid near the heated wall in streamwise direction and act
against the rotation of the large clockwise rotating vortex found in the case
of forced convection. Thus, the eddy rotating in the counterclockwise di-
rection grows while the clockwise rotating vortex is reduced in size and
completely detached from the wall.

Non-dimensional profiles of velocity are reported for several stream-
wise coordinate y/h values, for mixed convection regime. The streamwise
v+ = v/Ub and wall-normal velocity component u+ = u/Ub are reported
respectively in Figure 3.28a and Fig 3.28b. A jet flow develops near the
heated wall due to the acceleration of the fluid caused by buoyancy. As a
consequence, away from the heated wall, the streamwise velocity is signifi-
cantly reduced. In Figure 3.28c the non-dimensional shear stress component
⟨u′v′⟩+ = ⟨u′v′⟩/U2

b is reported in comparison with DNS data for mixed con-
vection regime. The prediction of the shear stress is in good agreement with
reference data but some discrepancies are observed near the heated wall in
the locations y/h > 9.

The wall-normal normal stress ⟨u′u′⟩+ = ⟨u′u′⟩/U2
b and the streamwise

normal stress ⟨v′v′⟩+ = ⟨v′v′⟩/U2
b are reported respectively in Figure 3.29a
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and 3.21b for Ri = 0.338. In Figure 3.29c the turbulent kinetic energy
k+ = k/U2

b is shown. Buoyancy accelerates the warm fluid near the heated
wall and generates strong wall shear stress. Shear stress, in turn, leads to
the production of normal stresses. This effect can be seen by the peak of the
streamwise normal stress ⟨v′v′⟩+ and turbulent kinetic energy at y/h > 12
for −1 < x/h < 0. Some discrepancies in the prediction of the wall-normal
normal stress can be observed in the near-wall region at the insulated wall.

In Figure 3.30 the skin friction coefficient Cf along the heated wall is
reported for Ri = 0.338. The skin friction is positive along the heated
channel since the clockwise rotating vortex is substantially reduced in size
and completely detaches from the wall. The skin friction coefficient in the
wall jet region increases almost linearly with the streamwise coordinate y/h.
The skin coefficient with the anisotropic four-parameter model is slightly
underestimated.

Thermal fields
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Figure 3.31: Contour of the non-dimensional temperature T + = (T − Tref )/∆T

for Ri = 0.338.

In Figure 3.31 contours of the non-dimensional temperature T+ = (T −
Tref )/∆T are reported for the mixed convection case. Due to the influence



3.2. Backward-facing step flow 115

2 1 0 −1

x/h

−2

0

3

6

9

12

15

y
/
h

T+

0.00

1.00

2 1 0 −1

x/h

−2

0

3

6

9

12

15

y
/
h

k+
θ

0.00

0.01

(a) (b)

Figure 3.32: Profile of thermal fields for Ri = 0.338: mean temperature T + (a)
and temperature fluctuations k+

θ (b). : 4AP; : I4P ◦ : DNS data.
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Figure 3.33: Profile of thermal fields for Ri = 0.338: mean wall-normal turbulent
heat flux ⟨u′T ′⟩+ (a) and mean streamwise turbulent heat flux ⟨v′T ′⟩+(b). :
4AP; : I4P ◦ : DNS data.

of buoyancy, heat transfer changes substantially. The wall temperature is
substantially reduced in the mixed case compared to the forced case as a
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Figure 3.34: Nusselt number Nu along the heated wall for Ri = 0.338. : 4AP;
: I4P ◦ : DNS data.

result of enhanced heat transfer at the wall. Moreover, the mean tempera-
ture field is altered according to the modified flow field in the recirculation
zone.

Non-dimensional profiles of temperature are reported in Figure 3.32a
for different values of streamwise coordinate y/h. An overall good agree-
ment with DNS data is obtained. A slight deviation from DNS results
is observed on the plot at y/h = 3. There are no evident discrepancies
between isotropic and anisotropic results. The non-dimensional tempera-
ture variance is reported in Figure 3.32b. Both isotropic and anisotropic
models fail to predict the temperature fluctuations at y/h = 0, whereas
in the other streamwise locations, the simulation results are in agreement
with DNS data. The turbulent heat flux components along wall-normal and
streamwise directions are reported respectively in Figure 3.33a and Figure
3.33b. The wall-normal turbulent heat flux is strongly underestimated near
the heated wall for y/h < 9, for both anisotropic and isotropic simulations,
while in the proximity of the outlet section y/h > 12 it is in good agreement
with DNS data. The streamwise component is underestimated in the prox-
imity of the heated wall for both models, but in the case of the isotropic
model this field is almost null.

The Nusselt number profile along the heated wall is shown in Figure 3.34.
If compared with the forced convection case, the Nusselt number presents
larger values for all locations at the heated wall and a qualitatively similar
shape as for the forced convection case. In the profile we can observe a
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local minimum Nu ≈ 1.4, corresponding to the vortex behind the step, and
a local maximum Nu ≈ 2.2, corresponding to the start of the wall jet. The
heat transfer is strongly increased by the presence of buoyancy forces. The
Nusselt prediction is in good agreement with DNS data, in particular the
position of the minimum is accurately estimated with both isotropic and
anisotropic models.





PART II

Optimal control





CHAPTER 4

Optimal control of Boussinesq
equations

The optimization of complex systems in engineering is a crucial aspect that
encourages and promotes research in the optimal control field. For flow
control or optimization, we mean the attempt to control the mechanical
and/or the thermodynamic state of a fluid to achieve desired purposes.
Thus, optimization problems have three main ingredients. First, there is
the objective, which is the reason why we want to control the flow. There
are many objectives of interest in engineering applications, i.e. flow match-
ing, drag minimization, enhancing or reducing turbulence. Mathematically,
such an objective is expressed as a cost or objective functional. Next, there
are controls or design parameters. We can have boundary controls, such as
injection or suction of fluid [85] and heating or cooling temperature controls
[86, 87, 88]; distributed control such as heat sources or magnetic fields [26];
lastly, shape controls such as geometric domains [89]. Finally, there exist
constraints that determine what type of flow one is interested in, for exam-
ple, viscous or inviscid flow, compressible or incompressible flow, stationary
or time-dependent flow. Mathematically, the constraints are expressed in
terms of a specific set of partial differential equations for the state variables.
We can also have constraints motivated by practical necessities. The opti-
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mization problem is then to find state and control variables that minimize
the objective functional, subject to the requirement that the constraints are
satisfied [25].

Liquid metals are widely studied as coolant fluids in Generation IV nu-
clear reactors or concentrating solar power plants. In the design of engineer-
ing devices such as heat exchangers, nuclear cores, and primary or secondary
circuit pipes, optimization techniques can be used to find the optimal wall
temperature or wall-normal heat flux to achieve specified objectives, as a
target mean temperature, a velocity profile or a certain turbulence enhance-
ment/reduction. In particular, we focus on applications in which buoyancy
forces have a strong influence on the flow, such as in lead-cooled fast reactors
(LFR). The thermodynamic properties of lead allow a high level of natu-
ral circulation cooling in the primary system of an LFR. For core cooling,
LFR designs are generally characterized by the existence of strong natural
circulation characteristics, during both operation and shutdown conditions
[21]. In this framework, we focus on the optimal control of buoyant flows.
Firstly, we study optimal control problems for thermally convected flows
considering the Boussinesq system of equations, i.e. the coupled Navier-
Stokes and temperature equations. This example is useful to introduce the
adjoint method for optimal control. Then, to consider a more realistic model
of the flow in a heat exchanger or nuclear core, we will consider the role of
turbulence and the mathematical complexity that turbulence introduces in
Chapter 5.

The structure of the Chapter is the following. First, we introduce some
functional spaces, their norms, and some bilinear and trilinear forms that
are used to express the weak formulation of the partial differential equa-
tions. Then, we formulate the optimization problem considering three dif-
ferent control mechanisms, which are Dirichlet boundary control, Neumann
boundary control, and distributed control. For each case, we aim to study
the optimal control problem from a mathematical point of view. To do
so, we present the weak form of the boundary value problem and prove
the existence of a solution. Then, we state the optimization problem and
we claim the existence of an optimal solution. We use the method of La-
grange multipliers and we show that suitable Lagrange multipliers exist.
Finally, we obtain the optimality system and we propose a numerical algo-
rithm for the solution of such a system. After the mathematical analysis, we
show some numerical results obtained considering the three different control
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mechanisms and varying the objectives.

4.1. Notation

We introduce some functional spaces and their norms. We use standard
notation Hs(O) for Sobolev space of order s with respect to the set O,
which can be the flow domain Ω ⊂ Rn, with n = 2, 3, or its boundary Γ or
a part of it. Of course, H0(O) = L2(O). Corresponding Sobolev spaces of
vector-valued functions will be denoted by Hs(O). Of special interest is the
space

H1(Ω) =
{
vi ∈ L2(Ω)

∣∣∣∣ ∂vi

∂xj

∈ L2(Ω) for i, j = 1, . . . , n
}

and the subspace

H1
Γj

(Ω) =
{
v ∈ H1(Ω)|v = 0 on Γj

}
,

where Γj is a subset of Γ. Also, we write H1
0(Ω) = H1

Γ(Ω). Let H1∗
Γs

(Ω)
denote the dual space of H1

Γs
(Ω). Note that H1∗

Γs
(Ω) is a subspace of H−1(Ω),

where the latter is the dual space of H1
0(Ω). We define the space of square

integrable functions having zero mean over Ω as

L2
0(Ω) =

{
q ∈ L2(Ω)

∣∣∣∣ ∫Ω
qdx = 0

}
.

We also define the solenoidal spaces

V = {v ∈ H1(Ω) | ∇ · v = 0} , V0 = {v ∈ H1
0(Ω) | ∇ · v = 0} .

It is well known that V and V0 are separable Hilbert spaces [90]. A Hilbert
space is separable if and only if it admits a countable orthonormal basis.
Norms of functions belonging to Hm(O) are denoted by ∥ · ∥m,O. We define,
for (fg) ∈ L1(O) and (u · v) ∈ L1(O)

(f, g)O =
∫

O
fgdx , (u,v)O =

∫
O

u · vdx .

Whenever possible, we will neglect the domain label. Thus, the inner prod-
uct in L2(Ω) and L2(Ω) are both denoted by (·, ·). This notation will also
be employed to denote pairings between Sobolev spaces and their duals.

We will use the bilinear forms

a(u,v) =
∫

Ω
∇u : ∇vdx ∀u,v ∈ H1(Ω) , (4.1)
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a(T, θ) =
∫

Ω
∇T · ∇θdx ∀T, θ ∈ H1(Ω) , (4.2)

b(u, q) = −
∫

Ω
q∇ · udx ∀q ∈ L2

0(Ω),∀u ∈ H1(Ω) , (4.3)

and the trilinear forms

c(w,u,v) =
∫

Ω
w · ∇u · vdx ∀w,u,v ∈ H1(Ω) , (4.4)

c(w, T, θ) =
∫

Ω
w · ∇Tθdx ∀w ∈ H1(Ω),∀T, θ ∈ H1(Ω) . (4.5)

These forms are continuous in the sense that there exist constants ca, cb and
cc such that

|a(u,v)| ≤ ca∥u∥1∥v∥1 ∀u,v ∈ H1(Ω) , (4.6)
|a(T, θ)| ≤ ca∥T∥1∥θ∥1 ∀T, θ ∈ H1(Ω) , (4.7)
|b(u, q)| ≤ cb∥v∥1∥q∥0 ∀q ∈ L2

0(Ω),∀v ∈ H1(Ω), (4.8)
|c(w,u,v)| ≤ cc∥w∥1∥u∥1∥v∥1 ∀w,u,v ∈ H1(Ω) , (4.9)
|c(w, T, θ)| ≤ cc∥w∥1∥T∥1∥θ∥1 ∀w ∈ H1(Ω),∀T, θ ∈ H1(Ω) . (4.10)

Moreover, we have

c(u,v,v) = 0 ∀u ∈ V,∀v ∈ H1(Ω) , (4.11)
c(u, T, T ) = 0 ∀u ∈ V,∀T ∈ H1(Ω) . (4.12)

Furthermore, we have the coercivity properties

a(v,v) ≥ Ca∥v∥2
1 ∀v ∈ H1(Ω) , (4.13)

a(T, T ) ≥ Ca∥T∥2
1 ∀T ∈ H1(Ω) , (4.14)

and

sup
v ̸=0∈H1

0(Ω)

b(v, q)
∥v∥1

≥ Cb∥q∥0 ∀q ∈ L2
0(Ω) , (4.15)

for some constants Ca and Cb > 0.

4.2. Optimal control of Boussinesq equations

In this chapter, we aim to study optimal control problems for station-
ary incompressible flows in mixed or natural convection regime. In this
application, the dependence on the temperature field cannot be neglected
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in the Navier-Stokes equation. Thus, temperature and velocity fields are
mutual dependent through buoyancy forces and advection. These flows are
governed by the Boussinesq equations derived in Chapter 1

∇ · u = 0 in Ω , (4.16)
u · ∇u + ∇p− ν∆u = f − βgT in Ω , (4.17)
u · ∇T − α∆T = Q in Ω . (4.18)

where Ω is a regular bounded open set in Rd, d = 2 or 3 with boundary
Γ. We have dropped the Einstein notation and we have indicated with ∆
the Laplace operator ∇ · ∇ = ∇2 = ∆. In (4.16)-(4.18), u, p and T denote
the velocity, pressure and temperature fields, while f is a body force, Q is
a heat source and g is the gravitational acceleration. The coefficients α, ν
and β are the fluid thermal diffusivity, kinematic viscosity and coefficient of
expansion respectively. The system (4.16)-(4.18) is closed with appropriate
boundary conditions on ∂Ω. For the velocity field we set a Dirichlet bound-
ary condition, while for the temperature we consider a mixed boundary
condition

u = w on ∂Ω ,

T = gt on Γd ,

α∇T · n = gt,n on Γn ,

(4.19)

where Γd and Γn indicate boundaries where Dirichlet and Neumann bound-
ary conditions are respectively applied, with Γd ∪ Γn = Γ = ∂Ω.

We formulate our control problem as a constrained minimization of the
following objective functional

T (u, T ) = αu

2

∫
Ωd

|u − ud|2dx + αT

2

∫
Ωd

|T − Td|2dx , (4.20)

with the Boussinesq equations (4.16)-(4.18) as constraints. In (4.20) the
functions ud and Td are given desired velocity and temperature distributions.
The terms in the functional (4.20) measure the L2(Ω) distance between the
velocity u and the target field ud, and/or between the temperature T and
the target field Td. The non-negative penalty parameters αu and αT can
be used to change the relative importance of the terms appearing in the
definition of the functional. If αu = 0 we have as objective a temperature
matching case, if αT = 0 we consider a velocity matching case. The control
can be a volumetric heat source, a boundary temperature, or a heat flux. In
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all these cases, the control has to be limited to avoid unbounded solutions.
To do so, we can add a constraint limiting the value of the admissible control,
or we can penalize the objective functional T adding a regularization term.
With this second approach, we do not need to impose any a priori constraints
on the size of the control. Let c be the control belonging to a Hilbert space
Hs(O), we can then define a cost functional

J (u, T, c) = αu

2

∫
Ωd

|u − ud|2dx + αT

2

∫
Ωd

|T − Td|2dx+

+λ||c||Hs(O) ,
(4.21)

where the last term contains the Hs(O)-norm of the control c penalized
with a parameter λ. The value of the parameter λ is used to change the
relative importance of objective-terms and cost-terms. The real goal of the
optimization is to minimize the first terms appearing in (4.21).

4.2.1. Dirichlet boundary control

In a Dirichlet boundary control problem, we aim to control the fluid
state acting on the temperature on a portion of the boundary Γc ⊆ Γd. The
boundary condition reported in (4.19) can be written in this case as

u = w on ∂Ω ,

T = gt on Γi ,

T = gt + Tc on Γc ,

α∇T · n = gt,n on Γn ,

(4.22)

where Γi = Γd ∖ Γc. In (4.22) gt, gt,n and w are given functions, while Tc is
the control. Thus Γi and Γc denote the portions of Γd where temperature
control is and is not applied, respectively. The cost functional is given as
follows

J (u, T, Tc) = αu

2

∫
Ωd

|u − ud|2dx + αT

2

∫
Ωd

|T − Td|2dx+

+λ2

∫
Γc

(|Tc|2 + |∇sTc|2)dx ,
(4.23)

where ∇s denotes the surface gradient operator, i.e. ∇sf := ∇f−n(n·∇f).
The cost contribution measures the H1(Γc)-norm of the control Tc.
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Weak formulation

The weak form of the boundary value problem (4.16)-(4.18) and (4.22) is
given as follows: find (u, p, T ) ∈ H1(Ω) × L2

0(Ω) ×H1(Ω) such that

b(u, q) = 0 ∀q ∈ L2
0(Ω) ,

νa(u,v) + c(u,u,v) + b(v, p) = (f ,v)+
− β(gT,v) ∀v ∈ H1

0(Ω) ,
αa(T, φ) + c(u, T, φ) = (Q,φ) + (gt,n, φ)Γn ∀φ ∈ H1

Γd
(Ω) ,

(T, sT )Γd
= (gt, sT )Γd

+ (Tc, sT )Γc ∀sT ∈ H−1/2(Γd) .

(4.24)

One may compute the normal heat flux on Γd as

qn = −α∇T · n|Γd
. (4.25)

The existence of the solution of the system (4.24) has been proved in [87].
Here we report the cited theorem.

Theorem 4.1. For every gt ∈ H1(Γi), Tc ∈ H1(Γc), gt,n ∈ L2(Γn), Q ∈
L2(Ω), f ∈ L2(Ω), w ∈ H1(Γ), the Boussinesq equations (4.24) have a
solution (u, p, T ) ∈ H1(Ω) × H1(Ω) × L2

0(Ω). Moreover if (u, p, T ) is a
solution of (4.24), then (u, p, T ) ∈ V∩H2(Ω)×L2

0(Ω)∩H1(Ω)×Hs(Ω)(1 ≤
s ≤ 3

2) and there is a continuos function Ps for each s such that

∥u∥2 + ∥p∥1 + ∥T∥s ≤ Ps(∥f∥0 + ∥Q∥0 + ∥gt,n∥0,Γn + ∥gt∥1,Γi
+

+ ∥Tc∥1,Γc + ∥w∥1,Γ) .
(4.26)

Proof. The proof of this result can be found in [87].

The optimization problem and existence of optimal solution

We state the optimal control problem. We look for a (u, p, T, Tc) ∈ H1(Ω)×
L2

0(Ω) ×H1(Ω) ×H1
0 (Γc) such that the cost functional (4.23) is minimized

subject to the constraints (4.24). The admissible set of states and controls
is

Uad = {(u, p, T, Tc) ∈ H1(Ω) × L2
0(Ω) ×H1(Ω) ×H1

0 (Γc) :
J (u, T, Tc) < ∞ and (4.24) is satified.}

(4.27)
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Then (û, p̂, T̂ , T̂c) ∈ Uad is called an optimal solution if there exists ε > 0
such that

J (û, p̂, T̂ , T̂c, ) ≤ J (u, p, T, Tc) ∀(u, p, T, Tc) ∈ Uad satisfying
∥u − û∥1 + ∥p− p̂∥0 + ∥T − T̂∥1 + ∥Tc − T̂c∥1,Γc < ε .

(4.28)

We now show that an optimal solution exists.

Theorem 4.2. Let Uad be not empty. There exists at least one optimal
solution (û, p̂, T̂ , T̂c) ∈ Uad.

Proof. The existence of an optimal solution can be proved based on standard
techniques. Let {u(n), p(n), T (n), T (n)

c } be a sequence in Uad such that

lim
n→∞

J (u(n), p(n), T (n), T (n)
c ) = inf

(v,q,S,z)∈Uad

J (v, q, S, z) . (4.29)

By the definition of Uad we have

b(u(n), q) = 0 ∀q ∈ L2
0(Ω) ,

νa(u(n),v) + c(u(n),u(n),v) + b(v, p(n)) =
= (f ,v) − β(gT (n),v) ∀v ∈ H1

0(Ω) ,
αa(T (n), φ) + c(u(n), T (n), φ) = (Q,φ)+

+ (gt,n, φ)Γn ∀φ ∈ H1
Γd

(Ω) ,
(T (n), sT )Γd

= (gt, sT )Γd
+ (T (n)

c , sT )Γc ∀sT ∈ H−1/2(Γd) .

(4.30)

By (4.23) and (4.27) we can see that {∥T (n)
c ∥1,Γc} is uniformly bounded.

Also by (4.26) we have that {∥u(n)∥1}, {∥p(n)∥0} and {∥T (n)∥1} are uni-
formly bounded. We may then extract subsequences {u(n), p(n), T (n), T (n)

c }
converging to (û, p̂, T̂ , T̂c)

T (n)
c ⇀ T̂c in H1

0 (Γc) ,
u(n) ⇀ û in H1(Ω) , and ∇u(n) ⇀ ∇û in L2(Ω) ,
T (n) ⇀ T̂ in H1(Ω) , and ∇T (n) ⇀ ∇T̂ in L2(Ω) ,
p(n) ⇀ p̂ in L2

0(Ω) ,
u(n) → û in L2(Ω) ,

T (n)|Γ → T̂ |Γ in L2(Γ) ,
u(n)|Γ → û|Γ in L2(Γ) .
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The symbols of full and half arrows denote strong and weak convergence [87].
The last two convergence results above follow from the compact embeddings
H1(Ω) ⊂ L2(Ω) and H1/2(Γc) ⊂ L2(Γc). We may pass to the limit in (4.30)
to determine that (û, p̂, T̂ , T̂c) satisfies (4.24). Indeed, the only troublesome
term passing to the limit is the nonlinearity c(·, ·, ·). However, note that

c(u(n),u(n),v) =
∫

Γ
(u(n) · n)u(n) · vds−

∫
Ω

u(n) · ∇v · u(n)dx , (4.31)

∀v ∈ C∞(Ω̄), where Ω̄ indicates the closure of Ω. Since u(n) → û in L2(Ω)
and u(n)|Γ → û|Γ in L2(Γ), we have that

lim
n→∞

c(u(n),u(n),v) =
∫

Γ
(û ·n)û ·vds−

∫
Ω

û ·∇v · ûdx = c(û, û,v) , (4.32)

∀v ∈ C∞(Ω̄). Since C∞(Ω̄) is dense in H1(Ω) we also have that

lim
n→∞

c(u(n),u(n),v) = c(û, û,v) , ∀v ∈ H1(Ω) . (4.33)

Thus, (û, p̂, T̂ , T̂c) satisfies (4.24).

The existence of Lagrange multipliers

We wish to use the method of Lagrange multipliers to turn the constrained
optimization problem (4.27) into an unconstrained one. We first show that
the suitable Lagrange multipliers exist. Now we consider all the constraint
equations and the functional in two mappings in order to study their differ-
ential properties. It is convenient to define the following functional spaces

B1 = H1(Ω) × L2
0(Ω) ×H1(Ω) ×H1

0 (Γc) ×H− 1
2 (Γd) , (4.34)

B2 = H−1(Ω) × L2
0(Ω) ×H1∗

Γi
(Ω) ×H

1
2 (Γd) , (4.35)

B3 = H1
0(Ω) × L2

0(Ω) ×H1(Ω) ×H1
0 (Γc) ×H− 1

2 (Γd) . (4.36)

Let M : B1 → B2 denote the generalized constraint equations, i.e. M(z) =
l for z = (u, p, T, Tc, qn) ∈ B1 and (l1, l2, l3, l4) ∈ B2 if and only if

νa(u,v) + c(u,u,v) + b(v, p) − (f ,v)+
+ β(gT,v) = (l1,v) ∀v ∈ H1

0(Ω) ,
b(u, q) = (l2, q) ∀q ∈ L2

0(Ω) ,
αa(T, φ) + c(u, T, φ) − (Q,φ) − (gt,n, φ)Γn+

− (qn, φ)Γc = (l3, φ) ∀φ ∈ H1
Γi

(Ω) ,
(T, sT )Γd

− (gt, sT )Γd
− (Tc, sT )Γc =

= (l4, sT )Γd
∀sT ∈ H−1/2(Γd) .

(4.37)
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Thus, the constraint (4.24) can be expressed as M(u, p, T, Tc, qn) = 0. Let
(û, p̂, T̂ , T̂c) ∈ H1(Ω)×L2

0(Ω)×H1(Ω)×H1
0 (Γc) denote an optimal solution in

the sense of (4.28). Then, consider the nonlinear operator N : B1 → R×B2
defined by

N(u, p, T, Tc, qn) =
(

J (u, T, Tc) − J (û, T̂ , T̂c)
M(u, p, T, Tc, qn)

)
. (4.38)

Given z = (u, p, T, Tc, qn) ∈ B1 the operator M ′(z) : B3 → B2 may be
defined as M ′(z) · z̃ = l̃ for z̃ = (ũ, p̃, T̃ , T̃c, q̃n) ∈ B3 and l̃ = (̃l1, l̃2, l̃3, l̃4) ∈
B2 if and only if

νa(ũ,v) + c(ũ,u,v) + c(u, ũ,v) + b(v, p̃)+
+ β(gT̃ ,v) = (̃l1,v) ∀v ∈ H1

0(Ω) ,
b(ũ, q) = (l̃2, q) ∀q ∈ L2

0(Ω) ,
αa(T̃ , φ) + c(ũ, T, φ) + c(u, T̃ , φ)+

− (q̃n, φ)Γc = (l̃3, φ) ∀φ ∈ H1
Γi

(Ω) ,
(T̃ , sT )Γd

− (T̃c, sT )Γc = (l̃4, sT )Γd
∀sT ∈ H−1/2(Γd) .

(4.39)

The operator N ′(z) : B3 → R × B2 may be defined as N ′(z) · z̃ = (ã, l̃) for
ã ∈ R if and only if

αu(u − ud, ũ)Ωd
+ αT (T − Td, T̃ )Ωd

+
+ λ(Tc, T̃c)Γc + λ(∇sTc,∇sT̃c)Γc = ã

νa(ũ,v) + c(ũ,u,v) + c(u, ũ,v) + b(v, p̃)+
+ β(gT̃ ,v) = (̃l1,v) ∀v ∈ H1

0(Ω) ,
b(ũ, q) = (l̃2, q) ∀q ∈ L2

0(Ω) ,
αa(T̃ , φ) + c(ũ, T, φ) + c(u, T̃ , φ)+

− (q̃n, φ)Γc = (l̃3, φ) ∀φ ∈ H1
Γi

(Ω) ,
(T̃ , sT )Γd

− (T̃c, sT )Γc = (l̃4, sT )Γd
∀sT ∈ H−1/2(Γd) .

The differential operator M ′ is rather complex. Many equations in this
operator are non-coercive elliptic equations with advection term driven by
the velocity field u ∈ H1(Ω). The existence result for this class of equations
can be obtained not in the Lax-Milgram setting, but by using a Leray-
Schauder Topological Degree argument. In order to deal with these equa-
tions, we introduce the following theorem.
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Theorem 4.3. Let Ω ⊂ Rn be a bounded open subset with boundary Γ. Let
Γd ⊂ Γ be a set with positive measure and Γn ⊆ Γ ∖ Γd. Consider

−∇ · (AT ∇y) + (u · ∇)y + by = f in Ω
y = y1 on Γd

AT ∇y · n = yn on Γn ,

(4.40)

with b ∈ Ln∗/2(Ω), b ≥ 0 a.e. on Ω, u ∈ Ln∗(Ω), and f ∈ H1∗
ΓD

(Ω) where
n∗ = n when n ≥ 3, n∗ ∈]2,∞[ when n = 2. If A is a function which
satisfies these two properties:

1. ∃αA > 0 such that A(x)ξ · ξ ≥ αA|ξ|2 for a.e. x ∈ Ω and for all
ξ ∈ Rn;

2. ∃ ΛA > 0 such that |A(x)| ≤ ΛA for a.e. x ∈ Ω;

then, there exists a unique solution y ∈ H1(Ω) of (4.40).

Proof. The proof of this result is based on a Leray-Schauder Topological
Degree argument and can be found in [91].

Lemma 4.1. Let z0 ∈ B1. Then we have that

1. the operator M ′(z0) has closed range in B2,

2. the operator N ′(z0) has closed range but is not onto in R × B2,

Proof. In order to proof 1. we can split the range operator M ′(z0) in a
product of range spaces for all its components and apply well known re-
sults. The range operator M ′(z0) can be split into the Navier Stokes and
temperature equations. First, let us consider the Navier Stokes derivative
operator

νa(ũ,v) + c(ũ,u,v) + c(u, ũ,v)+
+ b(v, p̃) = (̃l∗

1,v) ∀v ∈ H1
0(Ω) ,

(̃l∗
1,v) = −β(gT̃ ,v) + (̃l1,v) ∀v ∈ H1

0(Ω) ,
b(ũ, q) = (l̃2, q) ∀q ∈ L2

0(Ω) ,

(4.41)

The question of the closeness of the range (̃l∗
1, l̃2) in H−1(Ω) × L2

0(Ω) of
(4.41) is discussed in many papers, see for examples [92]. Since z0 is an
optimal solution, T̃ and q̃n solve the equations

αa(T̃ , φ) + c(u, T̃ , φ) − (q̃n, φ)Γc = (l̃∗3, φ) ∀φ ∈ H1
Γi

(Ω) ,
(T̃ , sT )Γd

= (l̃∗4, sT )Γd
∀sT ∈ H−1/2(Γd) ,

(4.42)
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with
(l̃∗3, φ) = (l̃3, φ) − c(ũ, T, φ) ∀φ ∈ H1

Γi
(Ω) ,

(l̃∗4, sT )Γd
= (T̃c, sT )Γc + (l̃4, sT )Γd

∀sT ∈ H−1/2(Γd) .
(4.43)

For (l̃3, l̃4) ∈ H1∗
Γi

(Ω) × H1/2(Γd) we have (l̃∗3, l̃∗4) ∈ H1∗
Γi

(Ω) × H1/2(Γd). By
using the result in Theorem 4.3 for each (l̃∗3, l̃∗4) we have a solution and
therefore the range of the mapping M ′(z0) for the energy equation is onto.
Starting from 1., the proof of 2. can be found easily by using the standard
techniques in [92, 93].
Theorem 4.4. Let ẑ = (û, p̂, T̂ , T̂c, q̂n) ∈ H1(Ω)×L2

0(Ω)×H1(Ω)×H1
0 (Γc)×

H−1/2(Γc) denote an optimal solution in the sense of (4.28). Then there
exists a nonzero Lagrange multiplier (Λ, ûa, p̂a, T̂a, q̂a) ∈ R × B∗

2 satisfying
the Euler equations

ΛJ ′(û, T̂ , T̂c) · z̃ + ⟨(ûa, p̂a, T̂a, q̂a),M ′(ẑ) · z̃⟩ = 0 , ∀z̃ ∈ B3 (4.44)

where ⟨·, ·⟩ denotes the duality pairing between B2 and B∗
2.

Proof. From Lemma 4.1, we have that the range of N ′(ẑ) is a closed, proper
subspace of R × B2. Then, from the Hahn-Banach theorem, there exists a
nonzero element of R × B∗

2 that nullifies the range of N ′(ẑ). Then, there
exists (Λ, ûa, p̂a, T̂a, q̂a) ∈ R × B∗

2 such that

⟨(ã, l̃1, l̃2, l̃3, l̃4), (Λ, ûa, p̂a, T̂a, q̂a)⟩ = 0
∀(ã, l̃1, l̃2, l̃3, l̃4) belonging to the range of N ′(ẑ) .

(4.45)

Note that Λ ̸= 0 since otherwise we would have that ⟨(̃l1, l̃2, l̃3, l̃4), (ûa, p̂a,

T̂a, q̂a)⟩ = 0 for all l̃ ∈ B2. This would imply (ûa, p̂a, T̂a, q̂a) = 0 contra-
dicting the fact that (Λ, ûa, p̂a, T̂a, q̂a) ̸= 0. Clearly, using the definition of
N ′(ẑ), (4.44) and (4.45) are equivalent.

The optimality system

Dropping the (̂·) notation for optimal solution, we derive now the optimality
system using (4.44). The Euler equations (4.44) are equivalent to

αuΛ(u − ud, ũ)Ωd
+ αT Λ(T − Td, T̃ )Ωd

+ Λλ(Tc, T̃c)Γc+
+ Λλ(∇sTc,∇sT̃c)Γc + b(ũ, pa) + νa(ũ,ua)+
+ c(ũ,u,ua) + b(ua, p̃) + c(u, ũ,ua) + β(gT̃ ,ua)+
+ αa(T̃ , Ta) + c(ũ, T, Ta) + c(u, T̃ , Ta) − (q̃n, Ta)Γc+
+ (T̃ , qa)Γd

− (T̃c, qa)Γc = 0 .

(4.46)
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By extracting the terms involved in the same variation and setting Λ = −1
we obtain the following equations

b(ua, p̃) = 0 , ∀p̃ ∈ L2
0(Ω)

νa(ũ,ua) + c(u, ũ,ua) + c(ũ,u,ua)+
+ b(ũ, pa) = αu(u − ud, ũ)Ωd

+
− c(ũ;T, Ta) , ∀ũ ∈ H1

0(Ω)
αa(T̃ , Ta) + c(u, T̃ , Ta) + (T̃ , qa)Γc =

= −(βgT̃ ,ua) + αT (T − Td, T̃ )Ωd
, ∀T̃ ∈ H1

Γi
(Ω)

(Ta, q̃n)Γc = 0 , ∀q̃n ∈ H−1/2(Γc)

(4.47)

and the control equation

λ1(Tc, T̃c)Γc + λ1(∇sTc,∇sT̃c)Γc + (qa, T̃c)Γc = 0 , (4.48)

∀T̃c ∈ H1
0 (Γc) with qa = −α∇Ta · n|Γc on Γc. The necessary conditions for

an optimum are that equations (4.24) and (4.47) are satisfied. This system
of equations is called optimality system. Integrations by parts may be used
to show that the system constitutes a weak formulation of the boundary
value problem for state equations

∇ · u = 0 in Ω ,

u · ∇u + ∇p− ν∆u = f − βgT in Ω ,

u · ∇T − α∆T = Q in Ω ,

u = w on Γ ,
α∇T · n|Γn = gt,n on Γn ,

T = gt on Γi ,

T = gt + Tc on Γc ,

(4.49)

and adjoint equations

∇ · ua = 0 in Ω ,

ua · (∇u)T − u · ∇ua + ∇pa − ν∆ua =
= −T∇Ta + αu(u − ud) in Ω ,

− α∆Ta − u · ∇Ta = −βg · ua + αT (T − Td) in Ω ,

ua = 0 on Γ ,
∇Ta · n|Γn = 0 on Γn ,

Ta = 0 on Γd ,

(4.50)
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and control equation

− ∆sTc + Tc − α∇Ta · n|Γc

λ
= 0 on Γc ,

Tc = 0 on ∂Γc ,
(4.51)

where ∆s denotes the surface Laplacian. The optimality system in the
strong form consists of the Boussinesq system (4.49), the adjoint of Boussi-
nesq equations (4.50) and the control equations (4.51).

Numerical algorithm

The optimality system consists of three groups of equations: the state equa-
tions (4.24), the adjoint state equations (4.47) and the optimality conditions
for Tc (4.48). Due to the non-linearity and large dimension of this system,
a one-shot solver cannot be implemented. We may construct an iterative
method to iterate among the three groups of equations so that at each iter-
ation we are dealing with a smaller size system of equations. We consider a
gradient method for the solution of the optimality problem and the gradient
of the functional is determined with the help of the solution of the adjoint
system.

Let us consider the gradient method for the following minimization prob-
lem: find Tc ∈ H1

0 (Γc) such that F(Tc) := J (u(Tc), T (Tc), Tc) is minimized.
Given T (0)

c , we can define the sequence

T (n+1)
c = T (n)

c − ρ(n)dF(T (n)
c )

dT
(n)
c

, (4.52)

recursively, where ρ(n) is a variable step size. Let T̂c be a solution of the
minimization problem, thus the following necessary condition holds

dF(T̂c)
dT̂c

= dJ (u(T̂c), T (T̂c), T̂c)
dT̂c

= 0 , (4.53)

then at the optimum state the equality T (n+1)
c = T (n)

c holds. For each fixed
Tc, the Gâteaux derivative (dF(Tc)/dTc) · T̃c for every direction T̃c ∈ H1(Γc)
may be computed

dF(Tc)
dTc

· T̃c = λ(∇sTc,∇sT̃c)Γc + λ(Tc, T̃c)Γc + αu(u − ud, ũ)Ωd

+ αT (T − Td, T̃ )Ωd
,

(4.54)
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where ũ and T̃ are the solution of M ′(z) · z̃ = 0, that is

b(ũ, q) = 0 ∀q ∈ L2
0(Ω) ,

νa(ũ,v) + c(ũ,u,v) + c(u, ũ,v) + b(v, p̃) =
= −β(gT̃ ,v) ∀v ∈ H1

0(Ω) ,
αa(T̃ , φ) + c(ũ, T, φ) + c(u, T̃ , φ) = (q̃n, φ)Γc ∀φ ∈ H1

Γi
(Ω) ,

(T̃ , sT )Γc − (T̃c, sT )Γc = 0 ∀sT ∈ H−1/2(Γc) .

(4.55)

Let (u, p, T, qn) ∈ H1(Ω) × L2
0(Ω) × H1(Ω) × H−1/2(Γc) be the solution

of the state problem (4.24) and let (ua, pa, Ta, qa) ∈ H1
0(Ω) × L2

0(Ω) ×
H1

Γi
(Ω) × H−1/2(Γc) be the solution of the adjoint problem (4.47). Set-

ting (v, q, φ, sT ) ∈ H1
0(Ω) × L2

0(Ω) × H1
Γi

(Ω) × H−1/2(Γc) equal to (ua, pa,
Ta, qa) ∈ H1

0(Ω) × L2
0(Ω) ×H1

Γi
(Ω) ×H−1/2(Γc) in (4.55) we have that

b(ũ, pa) = 0 ∀pa ∈ L2
0(Ω) ,

νa(ũ,ua) + c(ũ,u,ua) + c(u, ũ,ua)+
+ b(ua, p̃) = −β(gT̃ ,ua) ∀ua ∈ H1

0(Ω) ,
αa(T̃ , Ta) + c(ũ, T, Ta) + c(u, T̃ , Ta)+

− (q̃n, Ta)Γc = 0 ∀Ta ∈ H1
Γi

(Ω) ,
(T̃ , qa)Γc − (T̃c, qa)Γc = 0 ∀qa ∈ H−1/2(Γc) .

(4.56)

Comparing (4.56) and (4.47), we find that

αu(u − ud, ũ)Ωd
+ αT (T − Td, T̃ )Ωd

= (T̃c, qa)Γc . (4.57)

Thus, the Gâteaux derivative may be computed as

dF(Tc)
dTc

· T̃c = λ(∇sTc,∇sT̃c)Γc + λ(Tc, T̃c)Γc + (T̃c, qa)Γc , (4.58)

or

dF(Tc)
dTc

= −λ∆sTc + λTc + qa . (4.59)

The optimization algorithm is reported in the following.

a) Initialization:
1. choose tolerance τ and T (0)

c ; set n = 0 and ρ(0) = 1;
2. solve for (u(0), p(0), T (0)) from (4.24) with Tc = T (0)

c ;
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3. evaluate J (0) = J (u(0), T (0), T (0)
c ) using (4.23);

b) main loop:

1. set n = n+ 1;

2. solve for (u(n)
a , p(n)

a , T (n)
a ) from (4.47);

3. solve for T (n)
c from

T (n)
c = T (n−1)

c − ρ(n)
(

− ∆sT
(n−1)
c + T (n−1)

c +

+α
λ

∇T (n)
a · n|Γc

)
,

(4.60)

or

−∆sT
(n)
c + T (n)

c = −∆sT
(n−1)
c + T (n−1)

c +

−ρ(n)
(

− ∆sT
(n−1)
c + T (n−1)

c +

+α
λ

∇T (n)
a · n|Γc

)
.

(4.61)

4. solve for (u(n), p(n), T (n)) from (4.24) with Tc = T (n)
c ;

5. evaluate J (n) = J (u(n), T (n), T (n)
c ) using (4.23);

i) if J (n) > J (n−1), set ρ(n) = 0.5ρ(n) and go to step b) 3.;
ii) if J (n) < J (n−1), set ρ(n+1) = 1 and go to step b) 1.;
iii) if |J (n) − J (n−1)|/|J (n)| < τ stop.

In the algorithm we propose two forms, (4.60) and (4.61), for the control
update. With (4.61), we enforce the belonging of Tc to H1

0 (Γc) and we give
more regularity to the control.

4.2.2. Neumann boundary control

In a Neumann boundary control problem, we aim to control the state by
acting on the heat flux on a portion of the boundary Γc ⊆ Γn. The general
boundary conditions reported in (4.19), can be written in this case as

u = w on ∂Ω ,

T = gt on Γd ,

α∇T · n = gt,n on Γi ,

α∇T · n = h on Γc ,

(4.62)
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where Γi = Γn ∖ Γc. In (4.22) gt, gt,n and w are given functions, while h is
the control. Thus Γi and Γc denote the portions of Γn where the control is
applied or not, respectively.

The cost functional is given as follows

J (u, T, h) = αu

2

∫
Ωd

|u − ud|2dx + αT

2

∫
Ωd

|T − Td|2dx+

+λ2

∫
Γc

|h|2dx .
(4.63)

The cost contribution measures the L2(Γc)-norm of the control h.

Weak formulation

The weak form of the boundary value problem (4.16)-(4.18) and (4.62) is
given as follows: find (u, p, T ) ∈ H1(Ω) × L2

0(Ω) ×H1(Ω) such that

b(u, q) = 0 ∀q ∈ L2
0(Ω) ,

νa(u,v) + c(u,u,v) + b(v, p) = (f ,v)+
− β(gT,v) ∀v ∈ H1

0(Ω) ,
αa(T, φ) + c(u, T, φ) = (Q,φ) + (gt,n, φ)Γi

+
+ (h, φ)Γc ∀φ ∈ H1

Γd
(Ω) .

(4.64)

The existence of the solution of the system (4.64) can be easily derived from
Theorem 4.1 and has been proved in [23].

The optimization problem and existence of optimal solution

We state the optimal control problem. We look for a (u, p, T, h) ∈ H1(Ω) ×
L2

0(Ω) × H1(Ω) × L2(Γc) such that the cost functional (4.63) is minimized
subject to the constraints (4.64). The admissible set of states and controls
is

Uad = {(u, p, T, h) ∈ H1(Ω) × L2
0(Ω) ×H1(Ω) × L2(Γc) :

J (u, T, h) < ∞ and (4.64) is satified.}
(4.65)

Then (û, p̂, T̂ , ĥ) ∈ Uad is called an optimal solution if there exists ε > 0
such that

J (û, p̂, T̂ , ĥ) ≤ J (u, p, T, h) ∀(u, p, T, h) ∈ Uad satisfying
∥u − û∥1 + ∥p− p̂∥0 + ∥T − T̂∥1 + ∥h− ĥ∥0,Γc < ε .

(4.66)

We now show that an optimal solution exists.
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Theorem 4.5. Let Uad be not empty. There exists at least one optimal
solution (û, p̂, T̂ , ĥ) ∈ Uad.

Proof. Let {u(n), p(n), T (n), h(n)} be a sequence in Uad such that

lim
n→∞

J (u(n), p(n), T (n), h(n)) = inf
(v,q,S,z)∈Uad

J (v, q, S, z) . (4.67)

By the definition of Uad we have

b(u(n), q) = 0 ∀q ∈ L2
0(Ω) ,

νa(u(n),v) + c(u(n),u(n),v) + b(v, p(n)) =
= (f ,v) − β(gT (n),v) ∀v ∈ H1

0(Ω) ,
αa(T (n), φ) + c(u(n), T (n), φ) = (Q,φ)+

+ (gt,n, φ)Γi
+ (h(n), φ)Γc ∀φ ∈ H1

Γd
(Ω) ,

(4.68)

By (4.63) and (4.65) we easily see that {∥h(n)∥0,Γc} is uniformly bounded.
Also, by (4.26) we have that {∥u(n)∥1}, {∥p(n)∥0} and {∥T (n)∥1} are uni-
formly bounded. We may then extract subsequences {u(n), p(n), T (n), h(n)}
converging to (û, p̂, T̂ , ĥ)

h(n) ⇀ ĥ in L2(Γc) ,
u(n) ⇀ û in H1(Ω) , and ∇u(n) ⇀ ∇û in L2(Ω) ,
T (n) ⇀ T̂ in H1(Ω) , and ∇T (n) ⇀ ∇T̂ in L2(Ω) ,
p(n) ⇀ p̂ in L2

0(Ω) ,
u(n) → û in L2(Ω) ,

T (n)|Γ → T̂ |Γ in L2(Γ) ,
u(n)|Γ → û|Γ in L2(Γ) .

We may pass to the limit in (4.68) to determine that (û, p̂, T̂ , ĥ) satisfies
(4.64).

The existence of Lagrange multipliers

Also for the Neumann control, we consider all the constraint equations and
the functional in two mappings in order to study their differential properties.
The following functional spaces are now defined

B1 = H1(Ω) × L2
0(Ω) ×H1(Ω) × L2(Γc) , (4.69)
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B2 = H−1(Ω) × L2
0(Ω) ×H1∗

Γd
(Ω) , (4.70)

B3 = H1
0(Ω) × L2

0(Ω) ×H1
Γd

(Ω) × L2(Γc) . (4.71)

Let M : B1 → B2 denote the generalized constraint equations, i.e. M(z) = l
for z = (u, p, T, h) ∈ B1 and l = (l1, l2, l3) ∈ B2 if and only if

νa(u,v) + c(u,u,v) + b(v, p) − (f ,v)+
+ β(gT,v) = (l1,v) ∀v ∈ H1

0(Ω) ,
b(u, q) = (l2, q) ∀q ∈ L2

0(Ω) ,
αa(T, φ) + c(u, T, φ) − (Q,φ) − (gt,n, φ)Γi

+
− (h, φ)Γc = (l3, φ) ∀φ ∈ H1

Γd
(Ω) .

(4.72)

Thus, the constraints (4.64) can be expressed as M(u, p, T, h) = 0. Let
(û, p̂, T̂ , ĥ) ∈ H1(Ω)×L2

0(Ω)×H1(Ω)×L2(Γc) denote an optimal solution in
the sense of (4.66). Then, consider the nonlinear operator N : B1 → R×B2
defined by

N(u, p, T, h) =
(

J (u, T, h) − J (û, T̂ , ĥ)
M(u, p, T, h)

)
. (4.73)

Given z = (u, p, T, h) ∈ B1 the operator M ′(z) : B3 → B2 may be defined
as M ′(z) · z̃ = l̃ for z̃ = (ũ, p̃, T̃ , h̃) ∈ B3 and l̃ = (̃l1, l̃2, l̃3) ∈ B2 if and only
if

νa(ũ,v) + c(ũ,u,v) + c(u, ũ,v) + b(v, p̃)+
+ β(gT̃ ,v) = (̃l1,v) ∀v ∈ H1

0(Ω) ,
b(ũ, q) = (l̃2, q) ∀q ∈ L2

0(Ω) ,
αa(T̃ , φ) + c(ũ, T, φ) + c(u, T̃ , φ) − (h̃, φ)Γc =

= (l̃3, φ) ∀φ ∈ H1
Γd

(Ω) .

(4.74)

The operator N ′(z) : B3 → R × B2 may be defined as N ′(z) · z̃ = (ã, l̃) for
ã ∈ R if and only if

αu(u − ud, ũ)Ωd
+ αT (T − Td, T̃ )Ωd

+
+ λ1(h, h̃)Γc = ã

νa(ũ,v) + c(ũ,u,v) + c(u, ũ,v) + b(v, p̃)+
+ β(gT̃ ,v) = (̃l1,v) ∀v ∈ H1

0(Ω) ,
b(ũ, q) = (l̃2, q) ∀q ∈ L2

0(Ω) ,
αa(T̃ , φ) + c(ũ, T, φ) + c(u, T̃ , φ) − (h̃, φ)Γc =

= (l̃3, φ) ∀φ ∈ H1
Γd

(Ω) .

(4.75)
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Lemma 4.2. Let z0 ∈ B1. Then we have that

1. the operator M ′(z0) has closed range in B2,

2. the operator N ′(z0) has closed range but is not onto in R × B2,

Proof. The proof follows standard techniques, see the Proof of Lemma 4.1.

Theorem 4.6. Let ẑ = (û, p̂, T̂ , ĥ) ∈ H1(Ω) × L2
0(Ω) × H1(Ω) × L2(Γc)

denote an optimal solution in the sense of (4.66). Then there exists a
nonzero Lagrange multiplier (Λ, ûa, p̂a, T̂a) ∈ R × B∗

2 satisfying the Euler
equations

ΛJ ′(û, T̂ , ĥ) · z̃ + ⟨(ûa, p̂a, T̂a),M ′(ẑ) · z̃⟩ = 0 , ∀z̃ ∈ B3 (4.76)

where ⟨·, ·⟩ denotes the duality pairing between B2 and B∗
2.

Proof. From Lemma 4.2, we have that the range of N ′(ẑ) is a closed, proper
subspace of R × B2. Then, from the Hahn-Banach theorem, there exists a
nonzero element of R × B∗

2 that nullifies the range of N ′(ẑ). Then, there
exists (Λ, ûa, p̂a, T̂a) ∈ R × B∗

2 such that

⟨(ã, l̃1, l̃2, l̃3), (Λ, ûa, p̂a, T̂a)⟩ = 0
∀(ã, l̃1, l̃2, l̃3) belonging to the range of N ′(ẑ) .

(4.77)

Note that Λ ̸= 0 since otherwise we would have that ⟨(̃l1, l̃2, l̃3), (ûa, p̂a,

T̂a)⟩ = 0 for all l̃ ∈ B2. This would imply (ûa, p̂a, T̂a) = 0 contradicting the
fact that (Λ, ûa, p̂a, T̂a) ̸= 0. Clearly, using the definition of N ′(ẑ), (4.76)
and (4.77) are equivalent.

The optimality system

Dropping the (̂·) notation for optimal solution, we derive now the optimality
system using (4.76). The Euler equations (4.76) are equivalent to

αuΛ(u − ud, ũ)Ωd
+ αT Λ(T − Td, T̃ )Ωd

+ Λλ1(h, h̃)Γc+
+ b(ũ, pa) + νa(ũ,ua) + c(ũ,u,ua) + b(ua, p̃)+
+ c(u, ũ,ua) + β(gT̃ ,ua) + αa(T̃ , Ta) + c(ũ, T, Ta)+
+ c(u, T̃ , Ta) − (h̃, Ta)Γc = 0 .

(4.78)
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By extracting the terms involved in the same variation and setting Λ = −1
we obtain the following equations

b(ua, p̃) = 0 , ∀p̃ ∈ L2
0(Ω)

νa(ũ,ua) + c(u, ũ,ua) + c(ũ,u,ua) + b(ũ, pa) =
= αu(u − ud, ũ)Ωd

− c(ũ;T, Ta) , ∀ũ ∈ H1
0(Ω)

αa(T̃ , Ta) + c(u, T̃ , Ta) = −(βgT̃ ,ua)+
+ αT (T − Td, T̃ )Ωd

, ∀T̃ ∈ H1
Γd

(Ω)

(4.79)

and the control equation

λ(h, h̃)Γc + (h̃, Ta)Γc = 0 , (4.80)

for all h̃ ∈ L2(Γc). The necessary conditions for an optimum are that
equations (4.64) and (4.79) are satisfied. This system of equations is called
optimality system. Integrations by parts may be used to show that the
system constitutes a weak formulation of the boundary value problem

∇ · u = 0 in Ω ,

u · ∇u + ∇p− ν∆u = f − βgT in Ω ,

u · ∇T − α∆T = Q in Ω ,

u = w on Γ ,
α∇T · n|Γi

= gt,n on Γi ,

α∇T · n|Γc = h on Γc ,

T = gt on Γd ,

(4.81)

and adjoint equations

∇ · ua = 0 in Ω ,

ua · (∇u)T − u · ∇ua + ∇pa − ν∆ua =
= −T∇Ta + αu(u − ud) in Ω ,

− α∆Ta − u · ∇Ta = −βg · ua + αT (T − Td) in Ω ,

ua = 0 on Γ ,
∇Ta · n|Γn = 0 on Γn ,

Ta = 0 on Γd ,

(4.82)

and control equation

h = −Ta

λ
on Γc . (4.83)
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The optimality system in the strong form consists of the Boussinesq system
(4.81), the adjoint of Boussinesq equations (4.82) and the control equations
(4.83).

Numerical algorithm

Let us consider the gradient method for the following minimization problem:
find h ∈ L2(Γc) such that F(h) := J (u(h), T (h), h) is minimized. Given
h(0), we can define the sequence

h(n+1) = h(n) − ρ(n)dF(h(n))
dh(n) , (4.84)

recursively, where ρ(n) is a variable step size. For each fixed Tc, the Gâteaux
derivative (dF(h)/dh) · h̃ for every direction h̃ ∈ L2(Γc) may be computed

dF(h)
dh

· h̃ = λ(h, h̃)Γc + αu(u − ud, ũ)Ωd
+ αT (T − Td, T̃ )Ωd

, (4.85)

where ũ and T̃ are the solution of M ′(z) · z̃ = 0, that is

b(ũ, q) = 0 ∀q ∈ L2
0(Ω) ,

νa(ũ,v) + c(ũ,u,v) + c(u, ũ,v) + b(v, p̃) =
= −β(gT̃ ,v) ∀v ∈ H1

0(Ω) ,
αa(T̃ , φ) + c(ũ, T, φ) + c(u, T̃ , φ) = (h̃, φ)Γc ∀φ ∈ H1

Γd
(Ω) .

(4.86)

Let (u, p, T ) ∈ H1(Ω) ×L2
0(Ω) ×H1(Ω) be the solution of the state problem

(4.64) and let (ua, pa, Ta) ∈ H1
0(Ω) × L2

0(Ω) × H1
Γd

(Ω) be the solution of
the adjoint problem (4.79). Setting (v, q, φ) ∈ H1

0(Ω) × L2
0(Ω) × H1

Γd
(Ω)

equal to (ua, pa, Ta) ∈ H1
0(Ω)×L2

0(Ω)×H1
Γd

(Ω) in (4.55) and comparing the
resulting equation with (4.79), we find that

αu(u − ud, ũ)Ωd
+ αT (T − Td, T̃ )Ωd

= (h̃, Ta)Γc . (4.87)

Thus, the Gâteaux derivative may be computed as

dF(h)
dh

= h+ Ta

λ
. (4.88)

The optimization algorithm is then given as follows

a) Initialization:
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1. choose tolerance τ and h(0); set n = 0 and ρ(0) = 1;
2. solve for (u(0), p(0), T (0)) from (4.64) with h = h(0);
3. evaluate J (0) = J (u(0), T (0), h(0)) using (4.63);

b) main loop:
1. set n = n+ 1;
2. solve for (u(n)

a , p(n)
a , T (n)

a ) from (4.79);
3. solve for h(n) from

h(n) = h(n−1) − ρ(n)
(
h(n−1) + T (n)

a

λ

)
; (4.89)

4. solve for (u(n), p(n), T (n)) from (4.64) with h = h(n);
5. evaluate J (n) = J (u(n), T (n), h(n)) using (4.63);

i) if J (n) > J (n−1), set ρ(n) = 0.5ρ(n) and go to step b) 3.;
ii) if J (n) < J (n−1), set ρ(n+1) = 1 and go to step b) 1.;
iii) if |J (n) − J (n−1)|/|J (n)| < τ stop.

4.2.3. Distributed control

The aim of a distributed control problem is to control the flow state using
a heat source acting on the domain Ω as control mechanism. In (4.18) the
heat source Q is the control of the optimal control problem. The boundary
conditions are the ones reported in (4.19) where w, gt and gt,n are given
functions. The cost functional is formulated as follows

J (u, T,Q) = αu

2

∫
Ωd

|u − ud|2dx + αT

2

∫
Ωd

|T − Td|2dx+

+λ2

∫
Ω

|Q|2dx ,
(4.90)

where the cost contribution measures the L2(Ω)-norm of the control Q.

Weak formulation

The weak form of the boundary value problem (4.16)-(4.19) is given as
follows: find (u, p, T ) ∈ H1(Ω) × L2

0(Ω) ×H1(Ω) such that

b(u, q) = 0 ∀q ∈ L2
0(Ω) ,

νa(u,v) + c(u,u,v) + b(v, p) = (f ,v) − β(gT,v) ∀v ∈ H1
0(Ω) ,

αa(T, φ) + c(u, T, φ) = (Q,φ) + (gt,n, φ)Γn ∀φ ∈ H1
Γd

(Ω) ,
(4.91)

The existence of the solution of the system (4.91) has been proved in [23].
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The optimization problem and existence of optimal solution

We enunciate the optimal control problem. We look for a (u, p, T , Q)
∈ H1(Ω) × L2

0(Ω) × H1(Ω) × L2(Ω) such that the cost functional (4.90) is
minimized subject to the constraints (4.91). The admissible set of states
and controls is

Uad = {(u, p, T,Q) ∈ H1(Ω) × L2
0(Ω) ×H1(Ω) × L2(Ω) :

J (u, T,Q) < ∞ and (4.91) is satified.}
(4.92)

Then (û, p̂, T̂ , Q̂) ∈ Uad is called an optimal solution if there exists ε > 0
such that

J (û, p̂, T̂ , Q̂) ≤ J (u, p, T,Q) ∀(u, p, T,Q) ∈ Uad satisfying
∥u − û∥1 + ∥p− p̂∥0 + ∥T − T̂∥1 + ∥Q− Q̂∥0 < ε .

(4.93)

Theorem 4.7. Let Uad be not empty. There exists at least one optimal
solution (û, p̂, T̂ , Q̂) ∈ Uad.

Proof. Let {u(n), p(n), T (n), Q(n)} be a sequence in Uad such that

lim
n→∞

J (u(n), p(n), T (n), Q(n)) = inf
(v,q,S,z)∈Uad

J (v, q, S, z) . (4.94)

By the definition of Uad in (4.92) we have

b(u(n), q) = 0 ∀q ∈ L2
0(Ω) ,

νa(u(n),v) + c(u(n),u(n),v) + b(v, p(n)) =
= (f ,v) − β(gT (n),v) ∀v ∈ H1

0(Ω) ,
αa(T (n), φ) + c(u(n), T (n), φ) = (Q(n), φ)+

+ (gt,n, φ)Γn ∀φ ∈ H1
Γd

(Ω) .

(4.95)

By (4.90) and (4.92) we easily see that {∥Q(n)∥0} is uniformly bounded.
Also by (4.26) we have that {∥u(n)∥1}, {∥p(n)∥0} and {∥T (n)∥1} are uni-
formly bounded. We may then extract subsequences {u(n), p(n), T (n), Q(n)}
converging to (û, p̂, T̂ , Q̂)

Q(n) ⇀ Q̂ in L2(Ω) ,
u(n) ⇀ û in H1(Ω) , and ∇u(n) ⇀ ∇û in L2(Ω) ,
T (n) ⇀ T̂ in H1(Ω) , and ∇T (n) ⇀ ∇T̂ in L2(Ω) ,
p(n) ⇀ p̂ in L2

0(Ω) ,
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u(n) → û in L2(Ω) ,
T (n)|Γ → T̂ |Γ in L2(Γ) ,
u(n)|Γ → û|Γ in L2(Γ) .

We may pass to the limit in (4.95) to determine that (û, p̂, T̂ , Q̂) satisfies
(4.91).

The existence of Lagrange multipliers

We define the following functional spaces

B1 = H1(Ω) × L2
0(Ω) ×H1(Ω) × L2(Ω) , (4.96)

B2 = H−1(Ω) × L2
0(Ω) ×H1∗

Γd
(Ω) , (4.97)

B3 = H1
0(Ω) × L2

0(Ω) ×H1
Γd

(Ω) × L2(Ω) . (4.98)

Let M : B1 → B2 denote the generalized constraint equations, i.e. M(z) = l
for z = (u, p, T,Q) ∈ B1 and l = (l1, l2, l3) ∈ B2 if and only if

νa(u,v) + c(u,u,v) + b(v, p) − (f ,v)+
+ β(gT,v) = (l1,v) ∀v ∈ H1

0(Ω) ,
b(u, q) = (l2, q) ∀q ∈ L2

0(Ω) ,
αa(T, φ) + c(u, T, φ) − (Q,φ) − (gt,n, φ)Γn =

= (l3, φ) ∀φ ∈ H1
Γd

(Ω) ,

(4.99)

Thus, the constraints (4.91) can be expressed as M(u, p, T,Q) = 0. Let
(û, p̂, T̂ , Q̂) ∈ H1(Ω)×L2

0(Ω)×H1(Ω)×L2(Ω) denote an optimal solution in
the sense of (4.93). Then, consider the nonlinear operator N : B1 → R×B2
defined by

N(u, p, T,Q) =
(

J (u, T,Q) − J (û, T̂ , Q̂)
M(u, p, T,Q)

)
. (4.100)

Given z = (u, p, T,Q) ∈ B1 the operator M ′(z) : B3 → B2 may be defined
as M ′(z) · z̃ = l̃ for z̃ = (ũ, p̃, T̃ , Q̃) ∈ B3 and l̃ = (̃l1, l̃2, l̃3) ∈ B2 if and only
if

νa(ũ,v) + c(ũ,u,v) + c(u, ũ,v) + b(v, p̃)+
+ β(gT̃ ,v) = (̃l1,v) ∀v ∈ H1

0(Ω) ,
b(ũ, q) = (l̃2, q) ∀q ∈ L2

0(Ω) ,
αa(T̃ , φ) + c(ũ, T, φ) + c(u, T̃ , φ) − (Q̃, φ) =

= (l̃3, φ) ∀φ ∈ H1
Γd

(Ω) ,

(4.101)
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The operator N ′(z) : B3 → R × B2 may be defined as N ′(z) · z̃ = (ã, l̃) for
ã ∈ R if and only if

αu(u − ud, ũ)Ωd
+ αT (T − Td, T̃ )Ωd

+
+ λ(Q, Q̃) = ã

νa(ũ,v) + c(ũ,u,v) + c(u, ũ,v) + b(v, p̃)+
+ β(gT̃ ,v) = (̃l1,v) ∀v ∈ H1

0(Ω) ,
b(ũ, q) = (l̃2, q) ∀q ∈ L2

0(Ω) ,
αa(T̃ , φ) + c(ũ, T, φ) + c(u, T̃ , φ) − (Q̃, φ) =

= (l̃3, φ) ∀φ ∈ H1
Γd

(Ω) ,

(4.102)

Lemma 4.3. Let z0 ∈ B1. Then we have that

1. the operator M ′(z0) has closed range in B2,

2. the operator N ′(z0) has closed range but is not onto in R × B2,

Proof. The proof follows standard techniques, see the Proof of Lemma 4.1.

Theorem 4.8. Let ẑ = (û, p̂, T̂ , Q̂) ∈ H1(Ω) × L2
0(Ω) × H1(Ω) × L2(Ω)

denote an optimal solution in the sense of (4.93). Then there exists a
nonzero Lagrange multiplier (Λ, ûa, p̂a, T̂a) ∈ R × B∗

2 satisfying the Euler
equations

ΛJ ′(û, T̂ , Q̂) · z̃ + ⟨(ûa, p̂a, T̂a),M ′(ẑ) · z̃⟩ = 0 , ∀z̃ ∈ B3 (4.103)

where ⟨·, ·⟩ denotes the duality pairing between B2 and B∗
2.

Proof. From Lemma 4.3, we have that the range of N ′(ẑ) is a closed, proper
subspace of R × B2. Then, from the Hahn-Banach theorem, there exists a
nonzero element of R × B∗

2 that nullifies the range of N ′(ẑ). Then, there
exists (Λ, ûa, p̂a, T̂a) ∈ R × B∗

2 such that

⟨(ã, l̃1, l̃2, l̃3), (Λ, ûa, p̂a, T̂a)⟩ = 0
∀(ã, l̃1, l̃2, l̃3) belonging to the range of N ′(ẑ) .

(4.104)

Note that Λ ̸= 0 since otherwise we would have that ⟨(̃l1, l̃2, l̃3), (ûa, p̂a,

T̂a)⟩ = 0 for all l̃ ∈ B2. This would imply (ûa, p̂a, T̂a) = 0 contradicting the
fact that (Λ, ûa, p̂a, T̂a) ̸= 0. Clearly, using the definition of N ′(ẑ), (4.103)
and (4.104) are equivalent.
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The optimality system

Dropping the (̂·) notation for optimal solution, we derive now the optimality
system using the Euler equation (4.103)

αuΛ(u − ud, ũ)Ωd
+ αT Λ(T − Td, T̃ )Ωd

+ Λλ(Q, Q̃)+
+ b(ũ, pa) + νa(ũ,ua) + c(ũ,u,ua) + b(ua, p̃)+
+ c(u, ũ,ua) + β(gT̃ ,ua) + αa(T̃ , Ta) + c(ũ, T, Ta)+
+ c(u, T̃ , Ta) − (Q̃, Ta) = 0 .

(4.105)

By extracting the terms involved in the same variation and setting Λ = −1
we obtain the following equations

b(ua, p̃) = 0 , ∀p̃ ∈ L2
0(Ω)

νa(ũ,ua) + c(u, ũ,ua) + c(ũ,u,ua) + b(ũ, pa) =
= αu(u − ud, ũ)Ωd

− c(ũ;T, Ta) , ∀ũ ∈ H1
0(Ω)

αa(T̃ , Ta) + c(u, T̃ , Ta) = −(βgT̃ ,ua)+
+ αT (T − Td, T̃ )Ωd

, ∀T̃ ∈ H1
Γd

(Ω)

(4.106)

and the control equation

λ(Q, Q̃) + (Q̃, Ta) = 0 , ∀Q̃ ∈ L2(Ω) . (4.107)

The necessary conditions for an optimum are that equations (4.91) and
(4.106) are satisfied. This system of equations is the optimality system
and we can use integrations to show that the system constitutes a weak
formulation of the boundary value problem for state equations

∇ · u = 0 in Ω ,

u · ∇u + ∇p− ν∆u = f − βgT in Ω ,

u · ∇T − α∆T = Q in Ω ,

u = w on Γ ,
α∇T · n|Γn = gt,n on Γn ,

T = gt on Γd ,

(4.108)
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and adjoint equations

∇ · ua = 0 in Ω ,

ua · (∇u)T − u · ∇ua + ∇pa − ν∆ua =
= −T∇Ta + αu(u − ud) in Ω ,

− α∆Ta − u · ∇Ta = −βg · ua + αT (T − Td) in Ω ,

ua = 0 on Γ ,
∇Ta · n|Γn = 0 on Γn ,

Ta = 0 on Γd ,

(4.109)

and control equation

Q = −Ta

λ
in Ω . (4.110)

The optimality system in the strong form consists of the Boussinesq system
(4.108), the adjoint of Boussinesq equations (4.109) and the control equation
(4.110).

Numerical algorithm

Let us consider the gradient method for the following minimization problem:
find Q ∈ L2(Ω) such that F(Q) := J (u(Q), T (Q), Q) is minimized. Given
Q(0), we can define the sequence

Q(n+1) = Q(n) − ρ(n)dF(Q(n))
dQ(n) , (4.111)

recursively, where ρ(n) is a variable step size. Let Q̂c be a solution of the
minimization problem, thus at the optimum dF(Q̂)/dQ̂ = 0 and Q(n+1) =
Q(n). The Gâteaux derivative (dF(Q)/dQ)·Q̃ for every direction Q̃ ∈ L2(Ω)
may be computed

dF(Q)
dQ

· Q̃ = λ(Q, Q̃) + αu(u − ud, ũ)Ωd
+ αT (T − Td, T̃ )Ωd

, (4.112)

where ũ and T̃ are the solution of M ′(z) · z̃ = 0. Using similar techniques
presented in the previous sections, it is possible to find that

αu(u − ud, ũ)Ωd
+ αT (T − Td, T̃ )Ωd

= (Q̃, Ta) . (4.113)
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Thus, the Gâteaux derivative may be computed as

dF(Q)
dQ

= Q+ Ta

λ
. (4.114)

The optimization algorithm is then given as follows

a) Initialization:
1. choose tolerance τ and Q(0); set n = 0 and ρ(0) = 1;
2. solve for (u(0), p(0), T (0)) from (4.91) with Q = Q(0);
3. evaluate J (0) = J (u(0), T (0), Q(0)) using (4.90);

b) main loop:
1. set n = n+ 1;
2. solve for (u(n)

a , p(n)
a , T (n)

a ) from (4.106);
3. solve for Q(n) from

Q(n) = Q(n−1) − ρ(n)
(
Q(n−1) + T (n)

a

λ

)
; (4.115)

4. solve for (u(n), p(n), T (n)) from (4.64) with Q = Q(n);
5. evaluate J (n) = J (u(n), T (n), Q(n)) using (4.63);

i) if J (n) > J (n−1), set ρ(n) = 0.5ρ(n) and go to step b) 3.;
ii) if J (n) < J (n−1), set ρ(n+1) = 1 and go to step b) 1.;
iii) if |J (n) − J (n−1)|/|J (n)| < τ stop.

4.3. Numerical results

In this section, we report some numerical results obtained by using the
mathematical models shown in the previous sections. We have derived the
optimality systems for Dirichlet, Neumann, and distributed optimal control
problems. The main difference between the three control problems is in the
nature of the control equations. For Neumann and distributed control, the
control equation is an algebraic equation that states that the control is pro-
portional to the adjoint temperature, see Equation (4.83) and (4.110). In
contrast, when we have a Dirichlet boundary control, the control equation
is a partial differential equation with the normal adjoint temperature gradi-
ent as source term, as reported in (4.51). Thus, the adjoint temperature Ta
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Table 4.1: Boussinesq control: physical properties employed for the numerical
simulations.

Property Symbol Value Units

Viscosity µ 0.00181 Pa s

Density ρ 10340 kg/m3

Thermal conductivity λ 10.72 W/(mK)
Specific heat c 145.75 J/(kgK)

Coefficient of expansion β 2.5684 × 10−4 K−1

plays a key role in all three control mechanisms, as well as the regularization
parameter λ which appears in the denominator of the source terms. The
adjoint temperature Ta is dependent on the objectives of velocity and tem-
perature fields. If the objective is on the temperature field, the dependence
is direct through the term αT (T − Td) appearing in the right-hand side of
the adjoint temperature equation (4.47), (4.79) and (4.106). If the objective
is on the velocity field, the control mechanism is indirect, since the term
αu(u − ud) acts as a source in the adjoint velocity equation. In its turn,
the adjoint velocity appears in the source term of the adjoint temperature
βg · ua.

The solvers for the adjoint variables have been implemented in the fi-
nite element code FEMuS. Also, the algorithms presented in the previous
sections have been included into the finite element library. Several numer-
ical simulations have been performed varying the control mechanism (wall
temperature, wall-normal heat flux, volumetric heat source), the objectives
and the weight of the regularization coefficients.

4.3.1. Dirichlet boundary control

We show numerical results for the Dirichlet boundary control. The
geometry considered is a square cavity with L = 0.01m. The domain
Ω = [0, L] × [0, L] ∈ R2 is reported in Figure 4.1. The boundary condi-
tions are reported in (4.22), where Γd = Γ1 ∪ Γ3, Γi = Γ3, Γc = Γ1 and
Γn = Γ2 ∪ Γ4. We set f = 0 and Q = 0 in (4.24), and gu = 0, gt,n = 0,
gt = 493K on Γ3 and gt = 503K on Γ1 in (4.22). For the reference case, we
set T (0)

c = 0 then on Γc = Γ1 we have T (0) = gt. We have considered liquid
lead with the properties reported in Table 4.1. We discretize the numerical
problem in a finite element framework, and we consider a 20 × 20 uniform
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Γ1

Γ2

Γ3

Γ4

g

Figure 4.1: Computational domain for the optimal control of Boussinesq equa-
tions.
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Figure 4.2: Uncontrolled solution: contours of temperature field T (0) (a); contours
and streamlines of velocity field u(0) (b).

quadrangular mesh formed by biquadratic elements. The temperature and
velocity contours on the computational domain are reported in Figure 4.2a
and b respectively. Lead flows in the cavity and forms a clockwise vortex
due to buoyancy forces caused by the heated cavity wall. The bulk velocity
is Ub = 0.008765m/s. The corresponding Reynolds number is 500. The
Richardson number, which represents the importance of natural convection
relative to forced convection, is computed as Ri = gL∆Tβ/U2

b and is equal
to 3.28. The Grashof number, which measures the ratio of the buoyancy
to the viscous force acting on a fluid, is given by Gr = RiRe2 = 8.2 × 105.
Lastly, the Rayleigh number Ra = GrPr is equal to 2 × 104. In Figure
4.2 we can observe the typical features of temperature and velocity profiles
for Ra ≈ 104. The shape of the isotherms shows which is the dominant
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heat transfer mechanism between conduction and convection. For low Ra

values, almost vertical isotherms appear, because heat is transferred by con-
duction between the hot wall and cold one. As the isotherms depart from
the vertical position, the heat transfer mechanism changes from conduction
to convection. Concerning the velocity field, for low values of Ra a central
vortex appears as the dominant characteristic of the flow. As Ra increases,
the vortex tends to become elliptic at Ra ≈ 104, while it breaks up into two
vortices only at Ra = 105 [94].

Temperature matching case. Firstly, we aim to test the optimization
algorithm with a temperature matching case. Let (4.23) be the objective
functional with αu = 0, αT = 1 and Ωd = [0.45L; 0.55L] × [0.75L; 0.85L].
The region Ωd is indicated in Figure 4.3a. We set Td = 450K then in Ωd

we aim obtaining cooler fluid than in the uncontrolled case. We consider
four different values of the regularization parameter λ, i.e. 10−5, 10−6, 10−7

and 10−8. The reference objective functional is J (0) = 0.001250. For the
numerical simulations, we use the algorithm for Dirichlet boundary prob-
lems presented in the previous sections, and we choose for the update of the
control the Equation (4.61).

Ωd
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Figure 4.3: Temperature matching case with Dirichlet boundary control: optimal
solution for λ = 10−7. Contours of the temperature (a) and velocity magnitude
with velocity streamlines (b).

The contours of the optimal solution in terms of temperature and veloc-
ity fields are reported respectively in Figure 4.3a and b for λ = 10−7. The
region Ωd where the objective is set is highlighted with a black square in
Figure 4.3a. From the contours, we can see that the optimal temperature
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field assumes values close to the target temperature Td = 450K. To achieve
the objective, the temperature on the left wall decreases with respect to
the reference case. For this reason, the motion changes, and we obtain a
counterclockwise vortex, as depicted by the streamlines in Figure 4.3b.

Table 4.2: Temperature matching case with Dirichlet boundary control: objective
functional, percentage reduction and number of iterations of the optimization
algorithm for different λ values.

λ 10−5 10−6 10−7 10−8 Reference

J (n) × 106 3.110 2.179 2.091 1.979 1250
% Reduction −99.75 −99.82 −99.83 −99.84 0
Iterations n 6 5 6 10 0

In Table 4.2 we report the objective functional values J (n) corresponding
to the optimal state for each numerical simulations. We also report the
value of the reference objective functional J (0) and the percentage reduction
for each case evaluated as (J (n) − J (0))/J (0). In addition, the number of
iterations n of the optimization algorithm is included in Table 4.2. With the
lowest value of λ, we have the lowest functional value, J (10) = 1.979×10−6,
and the greatest percentage reduction.
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Figure 4.4: Temperature matching case with Dirichlet boundary control: tem-
perature profiles on the controlled boundary Γc (a) and on the region Ωd along
the line y/L = 0.8 (b). Numerical results for λ = 10−5, 10−6, 10−7 and 10−8.

Temperature profiles along the boundary Γc are reported in Figure 4.4a
for the different values of the regularization parameter λ. As λ decreases,
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the minimum of the profiles moves towards y/L = 1. In Figure 4.4b the
temperature is plotted along a line at y/L = 0.8 for 0.45 < y/L < 0.55
in the region Ωd. We can see that for the lowest values of λ, the optimal
solutions tend to the target profile Td. The case λ = 10−5 is the farthest
from the objective, as we can also deduce from the functional values reported
in Table 4.2.

Velocity matching case. The second test for the Dirichlet optimal con-
trol is a velocity matching case. The objective functional is the one re-
ported in Equation (4.23) setting αu = 1, αT = 0 and Ωd = [0.15L; 0.25L]×
[0.45L; 0.55L]. The region Ωd is represented in Figure 4.5c. We aim to
control the y-component of the velocity then we set vd = 0.05m/s. In the
reference case, the mean value of v on Ωd is equal to 0.0159m/s then we
aim to accelerate the fluid near the controlled boundary Γc. We consider
different values of the regularization parameter λ, i.e. 10−10, 10−11, 10−12,
10−13, and 10−14. The considered values are lower than those used for the
temperature matching test. We also tested higher values of the regulariza-
tion parameter, but the control was ineffective in those cases. Indeed, it is
easier to achieve an objective on the temperature field than on the velocity
field, since the control parameter Tc (or h, or Q) depends directly on the
adjoint temperature but indirectly on the adjoint velocity. The reference
objective functional is J (0) = 7.011 × 10−10.

In Figure 4.5 the optimal solution obtained with λ = 10−13 is reported.
In Figure 4.5a the contours of the optimal temperature field are shown. On
Γc, the left wall of the domain, the temperature shows a sharp variation.
In the lower part of Γc we have a maximum for the temperature, while in
the higher part of Γc there is the minimum value of T . The hot portion
of the wall causes the fluid to be accelerated to the desired velocity at the
region Ωd. The resulting velocity field is shown in 4.5b, where contours of
the velocity magnitude and streamlines are reported. The contours of the
y-component of the velocity are represented in Figure 4.5c, where the region
Ωd is highlighted. At the hot wall, the fluid is accelerated and reaches the
desired velocity values in Ωd.

In Table 4.3 we report the objective functional values J (n), the number
of iterations n of the optimization algorithm and the percentage reduction
with respect to the reference J (0). For the highest values of λ, the control
is poor and the functional is quite similar to the reference value. However,
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Figure 4.5: Velocity matching case with Dirichlet boundary control: optimal
solution for λ = 10−13. Contours of the temperature field (a), contours and
streamlines of the velocity field (b), contours of the y-component of velocity field
(c).

Table 4.3: Velocity matching case with Dirichlet boundary control: objective
functional, percentage reduction and number of iterations of the optimization
algorithm for different λ values.

λ 10−10 10−11 10−12 10−13 10−14 Reference

J (n) × 1012 586.3 413.6 137.4 9.767 8.796 701.1
% Reduction −16.4 −41.01 −80.40 −98.61 −98.74 0
Iterations n 5 5 4 6 5 0

we can observe a strong functional reduction for the cases with λ ≤ 10−13.
The optimal solution shown in Figure 4.5 corresponds to a case with a
strong functional reduction, but it is characterized by strong temperature
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variations on Γc.
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Figure 4.6: Velocity matching case with Dirichlet boundary control: temperature
profiles on the controlled boundary Γc (a) and velocity v on the region Ωd along
the line x/L = 0.2 (b). Numerical results for λ = 10−10, 10−11, 10−12, 10−13 and
10−14.

Temperature profiles along the boundary Γc are reported in Figure 4.6a
for the different values of regularization parameter λ. For λ = 10−10, the
profile has only a stationary point at y/L ≈ 0.5. For lower values of λ, there
is a change of concavity in the temperature profiles and an inflection point
at y/L ≈ 0.5. As λ decreases, the maximum is located at 0.2 < y/L < 0.4
and its value increases, while the minimum is located at 0.6 < y/L < 0.8
and its value decreases. As expected, with low values of regularization
parameters, the H−1(Γc)-norm of the control weighs less in the objective
functional and more irregular functions are accepted as optimal solution.
In Figure 4.6b, the y-component of the velocity is plotted along a line at
x/L = 0.2 for 0.45 < y/L < 0.55 in the region Ωd. The profile of velocity is
reported for all values of λ and also the target velocity profile vd is shown.
For the lowest values of λ (10−13, 10−14), the optimal solutions tend to the
target profile vd, while the highest values of λ (10−10, 10−11, 10−12) brings
to the farthest solutions from the objective, as we have deduced from the
functional values in Table 4.3. However, when λ is small (10−13, 10−14), the
maximum values of temperature increase (from 503K up to 650) and the
minimum values decrease (from 503K down to 400K). This deep variation
is due to the fact that the target vd is quite far from the reference case and
the temperature on Γc has to change considerably to reach the objective.
However, in the context of nuclear reactor design, the temperature is limited
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from below to avoid solidification and from above to avoid material failure.
Thus, in order to include these limits, it would be possible to consider as
additional constraints the maximum and minimum acceptable temperature
values. These kinds of constraints are called inequality constraints. For
each additional constraint, we would obtain ad additional adjoint equation.
In Chapter 5 the treatment of inequality constraints is described and may
be applied to reduce the variation range of temperature.

A second case for the velocity matching test is now considered. The
objective is set on the x-component of velocity field and we aim to achieve a
counterclockwise flow. Let us consider Ωd = [0.45L; 0.55L] × [0.75L; 0.85L].
This region is highlighted in Figure 4.7c. In the reference case, the mean
value of u on Ωd is 0.0129m/s, then we set as target profile a uniform
value ud = −0.02m/s. The simulations have been performed considering
different values of λ, namely 10−10, 10−11 and 10−12. The reference objective
functional is J (0) = 5.425 × 10−10.

In Figure 4.7 the optimal temperature and velocity fields obtained with
λ = 10−11 are reported. In Figure 4.7a the contours of the optimal temper-
ature field are shown. The resulting velocity field is shown in 4.7b, where
contours of the velocity magnitude and streamlines are reported. We can
easily observe that a counterclockwise flow is driven by the buoyancy forces.
The contours of the x-component of the velocity are represented in Figure
4.7c, where the region Ωd is highlighted. We also report the optimal solu-
tion obtained with λ = 10−12 in Figure 4.8. In this case, the solution is
quite unexpected. Figure 4.8a shows contours of the optimal temperature
field. At the bottom of the left wall (Γc = Γ1), the temperature is higher
than the temperature on the right wall (Γi = Γ3), while at the top of Γc

the temperature is lower than the temperature on Γ3. This profile induces
buoyancy forces which cause two vortexes, a smaller clockwise vortex behind
the bottom-left corner and a bigger counterclockwise vortex in the center
of the cavity, as shown in Figure 4.8b. The contours of the x-component of
velocity are reported in Figure 4.8c, where the region Ωd is put in evidence.
There, the x-component of velocity is quite uniform and close to the target
value ud.

In Table 4.4 we report the objective functional values J (n), the percent-
age reduction and the number of iterations n of the optimization algorithm.
For the highest value of λ (10−10), the control is poor and the functional
value is quite similar to the reference value. For the other values of λ,
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Figure 4.7: Velocity matching case with Dirichlet boundary control: optimal
solution for λ = 10−11. Contours of the temperature field (a), contours and
streamlines of the velocity field (b), contours of the x-component of the velocity
field.

Table 4.4: Velocity matching case with Dirichlet boundary control: objective
functional, percentage reduction and number of iterations of the optimization
algorithm for different λ values.

λ 10−10 10−11 10−12 Reference

J (n) × 1013 246.6 36.04 1.677 5423
% Reduction −54.53 −93.35 −99.69 0
Iterations n 4 10 9 0

the control is more effective. As observed in the previous test cases, with
the lowest value of λ, we have the lowest functional value and the greatest
percentage reduction.
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Figure 4.8: Velocity matching case with Dirichlet boundary control: optimal
solution for λ = 10−12. Contours of the temperature field (a), contours and
streamlines of the velocity field (b), contours of the x-component of the velocity
field.

In Figure 4.9a, the temperature profiles along the boundary Γc are shown
for the different values of the regularization parameter λ (10−10, 10−11,
10−12). For λ = 10−10 and λ = 10−11, the profiles present a minimum point
at 0.4 < y/L < 0.7. The temperature on Γc is lower than the temperature on
the opposite wall Γi, namely T = 493K, to get a counterclockwise flow. For
λ = 10−12, the optimal solution is unexpected, as previously noted. There is
a variation of concavity in the profile and an inflection point at y/L ≈ 0.5.
For y/L < 0.5, the temperature on Γc is higher than the temperature on Γ3,
while at the top of the controlled wall, for y/L > 0.5, the temperature on
Γc is lower than the temperature on Γ3. In Figure 4.9b, the x-component
of the velocity is plotted along a line at y/L = 0.8 for 0.45 < x/L < 0.55
in the region Ωd. The profiles of velocity are reported for all values of λ
and also the target velocity profile ud is shown. We can observe that in all
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Figure 4.9: Velocity matching case with Dirichlet boundary control: temperature
profile on the controlled boundary Γc (a) and velocity u on the region Ωd along
the line y/L = 0.8 (b). Numerical results for λ = 10−10, 10−11 and 10−12.

cases the flow changes from clockwise to counterclockwise with a negative
x-component of velocity in the top of the cavity. Also in this test, the lowest
value of λ brings to the velocity profile nearest to the target profile.

4.3.2. Neumann boundary control

For the Neumann control problem, we consider the geometry reported in
Figure 4.1. The boundary conditions are reported in (4.62), where Γd = Γ3,
Γn = Γ1 ∪ Γ2 ∪ Γ4, Γi = Γ2 ∪ Γ4, Γc = Γ1. We set gt,n = 0, gt = 493K and
gu = 0 in (4.62) and f = 0, Q = 0 in (4.64). The wall-normal heat flux h

acting on Γc is the control of the problem. To compute the reference case,
we set h(0) = 0. Thus, the uncontrolled problem consists of three thermally-
insulated walls, i.e., the left (Γ1), bottom (Γ2), and top (Γ4) walls, and a wall
with a fixed temperature, which is the right wall (Γ3). The reference case
is a trivial problem, characterized by a uniform and constant temperature,
no buoyancy forces, and still fluid.

We have performed several tests varying the objective. We report the nu-
merical results obtained considering the same objective on the x-component
of velocity studied also with the Dirichlet control. We recall the main sim-
ulation parameters. Let Ωd = [0.45L; 0.55L] × [0.75L; 0.85L] be the region
where we aim to achieve the objective, and let ud = −0.02m/s be the tar-
get velocity profile. In the reference case, the fluid is still, then u = 0 in
Ωd. The simulations have been performed considering different values of
λ, namely 10−4, 10−5, 10−6 and 10−7. The reference objective functional is
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J (0) = 2.061 × 10−10.
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Figure 4.10: Velocity matching case with Neumann boundary control: optimal
solution for λ = 10−6. Contours of the temperature field (a), streamlines and
contours of the velocity field (b) and contours of x-component of velocity (c).

λ 10−4 10−5 10−6 10−7 Reference

J (n) × 1012 30.58 30.14 8.454 1.536 206.1
% Reduction −85.16 −85.8 −95.90 −99.25 0
Iterations n 4 14 9 7 0

Table 4.5: Velocity matching case with Neumann boundary control: objective
functional, percentage of reduction and number of iterations of the optimization
algorithm for the reference case and different λ values.

In Table 4.5 the objective functional values J (n) and the number of
iterations n of the optimization algorithm are reported for all the values of
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λ. The percentage reductions are also reported. In all tests we have large
functional reductions. However, for the lowest values of λ the control is
more effective.

The optimal solution obtained with λ = 10−6 is reported in Figure 4.10.
The contours of the temperature field T over the domain can be observed
in Figure 4.10a. The heat flux imposed on the left wall is outgoing and the
wall is cooler than in the reference case, with a minimum value around 473
K. In Figure 4.10b, the streamlines of the velocity field and the contours of
the velocity magnitude are reported. The formation of a counterclockwise
vortex is shown in this picture. The contours of the x-component of the
velocity field, indicated with u, are reported in Figure 4.10 and the region
Ωd is highlighted.
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Figure 4.11: Velocity matching case with Neumann boundary control: tempera-
ture profile T (n) (a) and wall-normal heat flux h(n) (b) on the controlled boundary
Γc. Numerical results for λ = 10−4, 10−5, 10−6 and 10−7.

In Figure 4.11a, the temperature profiles along the boundary Γc are
shown for the different values of the regularization parameter λ (10−4, 10−5,
10−6, 10−7). Comparing these profiles with the temperature profiles of Fi-
gure 4.9a obtained for a Dirichlet control, we observe very different trends.
With a Dirichlet control, the temperature on Γc belongs to the Hilbert space
H1(Γc) and the control Tc nullifies at the extremities of the boundary, i.e.,
Tc = 0K on ∂Γc. For this reason, with a Dirichlet control, T = gt = 503K at
y/L = 0 and y/L = 1. With Neumann controls, we do not have constraints
on the temperature value on ∂Γc and we obtain different shapes of the
profiles. In Figure 4.11b, the control parameter h expressed in kW/m2 is
reported along Γc. With the highest values of λ (10−4, 10−5), the control is
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quite uniform and regular, but it is less effective on the functional reduction.
With the lowest values of λ (10−6, 10−7), the profiles of the control h are
sharp and present changes of sign.

4.3.3. Distributed control

For the distributed control problem, we consider the geometry reported
in Figure 4.1. The boundary conditions are reported in (4.19), where Γd =
Γ1∪Γ3, Γn = Γ2∪Γ4. We set f = 0, gu = 0 in (4.91), while in (4.19) we have
gt,n = 0, gt = 493K on Γ3, gt = 503K on Γ1. The volumetric heat source Q
is the control acting on the domain Ω. For the reference case, we consider
Q(0) = 0. Thus, the reference case is the one considered for the Dirichlet
boundary control. The buoyancy forces put in motion the liquid lead and
a clockwise vortex is formed. The contours and streamlines of temperature
and velocity are reported in Figure 4.2.

We have performed several tests, varying objectives and values of the
regularization parameter λ. We show the results for a velocity matching
case. Let us consider Ωd = [0.15L; 0.25L] × [0.45L; 0.55L]. We aim to
control the y-component of the velocity then we set vd = 0.05m/s, as in the
first velocity matching case presented for the Dirichlet boundary control.
In the reference case, the mean value of v on Ωd is equal to 0.0159m/s
then we aim to accelerate the fluid near the controlled boundary Γc. We
consider several values of the regularization coefficient, namely 10−10, 10−11

and 10−12.

Table 4.6: Velocity matching case with distributed control: objective functional
J (n), percentage reduction and number of iterations n of the optimization algo-
rithm for different values of λ.

λ 10−10 10−11 10−12 Reference

J (n) × 1013 2.792 2.229 2.159 2061
% Reduction −99.96 −99.97 −99.97 0
Iterations n 3 13 35 0

In Table 4.6 the objective functional values J (n), the percentage re-
ductions and the number of iterations n of the optimization algorithm are
reported for all values of λ. Thus, in all the tests, the functional is strongly
reduced by a factor of 103. This is an expected result since the optimal
control Q can act on the whole domain and its influence is strong on the
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distribution of the temperature field and buoyancy forces. In contrast, with
boundary control problems, the control can act only on a portion of the
boundary and its impact is less effective on the solution.
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Figure 4.12: Velocity matching case with distributed control: contours of the
control Q(n) (a), temperature field T (n) (b), streamlines and contours of velocity
field (c), contours of the y-component of velocity (d) for λ = 10−11.

In Figure 4.12 the contours of the optimal solution for λ = 10−11 are
shown. The optimal control Q(n) expressed in MW/m3 is reported in Figure
4.12a. The heat source is not uniform over the domain, being positive in
the proximity of the hottest wall (T = 503K on Γ1) and negative near the
coolest wall (T = 493K on Γ3). This heat source distribution influences
the temperature solution reported in Figure 4.12b. The isotherms are more
stretched than in the reference case, and the fluid is locally hotter than 503K
and cooler than 493K due to the volumetric heat source. The streamlines
and contours of the velocity field are reported in Figure 4.12c. Figure 4.12d
shows the region Ωd and the contours of the y-component of velocity. The
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solution is almost uniform of Ωd and close to the target value vd = 0.02m/s.
Comparing 4.12d and 4.5c, we can observe that the distributed control
is the most effective in achieving the objective. The greater effectiveness
of distributed control can be also seen by comparing Table 4.6 and the
first three columns of Table 4.3. With the same coefficient λ (10−10, 10−11

and 10−12), the distributed control involves much greater reductions in the
functional J (n) than the Dirichlet control. Moreover, by observing Figure
4.12b and Figure 4.5a, with a distributed control the optimal temperature
solution is more uniform and regular than with a Dirichlet optimal control,
which can lead to temperature variations that may not be acceptable in a
practical context, as a nuclear reactor.





CHAPTER 5

Optimal control of turbulent
buoyant flows

In Chapter 4 optimal control problems for incompressible Newtonian buoy-
ant flows have been presented and discussed. Dirichlet, Neumann, and
distributed optimal control problems have been analyzed, and the optimal-
ity system has been derived for each case. However, in most engineering
applications flows and heat transfer phenomena are in turbulent conditions,
thus we need to include the turbulence in the set of constraint equations. In
particular, we consider a RANS approach. For simplicity, we adopt a linear
eddy viscosity model for the closure of Reynolds stresses. For the eddy vis-
cosity, we choose the Wilcox k-ω model reported in (2.14) and (2.15). For
the closure of the turbulent heat flux, we consider the SGDH model with
the Reynolds analogy of (2.33).

Even though the adopted turbulence model presents some deficiencies,
see Chapter 2, the aim of formulating and analyzing an optimal control
problem for turbulent flows including buoyancy effects in a RANS frame-
work poses significant challenges and, to the best of our knowledge, has not
yet been published in the literature. Several works in literature are focused
on the optimal control of the heat transfer in forced convection flows, where
the coupling between the Navier-Stokes and energy equations is only a one-
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way coupling and the turbulence is not considered [86, 88]. In the case of
natural or mixed convection flows in laminar conditions, the mathematical
analysis of the optimal control for the Oberbeck-Boussinesq system has been
considered in several works focusing on stationary distributed and boundary
controls [23, 95, 22, 96]. The mathematical analysis and numerical simu-
lations of the optimal control for turbulent flows have been investigated
in past works [97, 98, 85], but the temperature dependence has not been
included.

Thus, this Ph.D. thesis aims to provide a mathematical analysis of the
optimal control for Reynolds-Averaged Navier-Stokes and energy equations
closed with the Wilcox k-ω model and the Reynolds analogy. We consider
the Dirichlet boundary control problem, but the discussion can be easily
extended to Neumann and distributed controls, referring to theorems and
results reported in Chapter 4.

We consider the Reynolds-Averaged Navier-Stokes and energy system.
The state is defined by the mean velocity u, pressure p and temperature
field T , closed with the k-ω turbulence model introduced in Equations (2.14)
and (2.15) [99]. The eddy viscosity νt is given by k over ω. To close the
energy equation, we consider the Reynolds analogy with Prt assumed to
be constant. We drop the notation ⟨·⟩ for mean variables. We consider an
open bounded domain Ω with boundary Γ = ∂Ω and the following governing
state equations

∇ · u = 0 , (5.1)
(u · ∇)u + ∇p− ∇ · [(ν + νt)S(u)] = f − bg(T − T0) , (5.2)

(u · ∇)T = ∇ ·
[(
α + νt

Prt

)
∇T

]
+Q , (5.3)

(u · ∇)k − ∇ [(ν + σkνt) · ∇k] = Sk + Sk,b − β∗ k ω , (5.4)
(u · ∇)ω − ∇ [(ν + σωνt) · ∇ω] = Sω + Sk,b − βω2 . (5.5)

In (5.2), we have introduced the symmetric tensor S(u) = ∇u + ∇uT .
With b we indicate the coefficient of thermal expansion. The k-ω dynamical
production terms Sk and Sω for turbulence equations are defined by

Sk = νtS(u) : ∇u = 1
2νtS2(u) , (5.6)

Sω = γ
ω

k
νtS(u) : ∇u = 1

2γS2(u) , (5.7)
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where S2(u) = S(u) : S(u) is the squared norm of the strain rate ten-
sor. The production terms due to buoyancy in k-ω equations are modeled
according to [100, 101]. The source terms depending on the interaction
between gravity and the turbulent heat flux components are modeled as

Sk,b = b
νt

Prt

g · ∇T , (5.8)

Sω,b = b
γ

Prt

g · ∇T . (5.9)

The coefficients σk, σω, γ, β and β∗ are model constants reported in Equa-
tion (2.16) [99].

We use a near wall approach for the solution of the turbulence problem,
so the RANS equations are integrated through the viscous layer where near-
wall boundary conditions are imposed. By using Taylor expansion of for
turbulent variables, with respect to the distance from the wall δ, we obtain

ut = τw

ν
δ , k = a1δ

2 , ω = 2ν
β∗δ2 , (5.10)

where with ut we indicate the tangential component of the velocity, τw rep-
resents the wall shear stress and a1 is a constant. The boundary conditions
of the problem can be then formulated as

u = gu on Γ ,
k = gk on Γ ,
ω = gω on Γ ,
T = gt on Γi ,

T = gt + Tc on Γc ,

α∇T · n = gt,n on Γn ,

(5.11)

where Γ ∖ Γn = Γd and Γd ∖ Γc = Γi. In (5.11) we have considered for all
dynamic variables Dirichlet boundary conditions, while for the temperature
a mixed boundary condition where gt and gt,n are given functions and Tc is
the control. The functions gu, gk and gω are given. Their expressions for
wall boundaries are reported in (5.10).

The system of equations (5.2)-(5.5) defines the state variable (u, p, T , k,
ω) when this is completed with suitable boundary conditions (5.11). How-
ever, the above system may not have a solution in many physical situations
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when k and ω become too large or too small. The k and ω equations have
the typical pattern of the diffusion-reaction equations and therefore, intro-
ducing some assumptions, their solutions can be constrained inside a precise
interval limited by the roots of the equation defined only by the right-hand
side nonlinear terms. In an infinite medium or when advection and diffu-
sion terms are negligible the equations (5.4)-(5.5) reduce to the nonlinear
right-hand side terms

Sk + Sk,b − β∗kω = 0 , (5.12)
Sω + Sω,b − βω2 = 0 , (5.13)

that imply

k =
√
νt
Sk + Sk,b

β∗ , ω =
√
Sω + Sω,b

β
. (5.14)

While Sk ≥ 0 and Sω ≥ 0, the sign of Sk,b and Sω,b is not defined a priori,
so we must impose Sk +Sk,b ≥ 0 and Sω +Sω,b ≥ 0. To consider these lower
bounds, we can define

S ′
k = max [Sk + Sk,b, 0] , (5.15)
S ′

ω = max [Sω + Sω, 0] . (5.16)

Moreover, to keep the Navier-Stokes solutions in standard functional classes
and have turbulent fields bounded in well-defined intervals, we must regu-
larize the modeling of the turbulence sources. This is achieved by limiting
the total turbulence production terms Pk = S ′

k and Pω = S ′
ω under the max-

imum value of the respective dissipation terms. Therefore, given arbitrary
limiting values k1 and ω1 we define

Pk = min [S ′
k, β

∗k1ω] , (5.17)
Pω = min

[
S ′

ω, βω
2
1

]
. (5.18)

In the rest of the chapter, we label k1 and ω1 with kmax and ωmax since
they will be proved to be the limits for k and ω fields. The two relations
(5.17) and (5.18) assure that, in the case of unbounded gradient velocity,
the dissipation term can cope with the turbulence sources and keep k and
ω limited. Thus, the state equations for k and ω that we will consider in
the next sections are the following

(u · ∇)k − ∇ [(ν + σkνt) · ∇k] = Pk − β∗ k ω , (5.19)
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(u · ∇)ω − ∇ [(ν + σωνt) · ∇ω] = Pω − βω2 . (5.20)

The definition of νt can lead to singularities when ω ≈ 0. For this reason
we bound the value of νt as

νt = min
[
k

ω
, νmax

]
. (5.21)

Note that the introduced constants kmax, ωmax and νmax can be chosen as
large as needed in order to assure the regularity of the problem together with
the accuracy of the physical solution. By doing so, the solution of Navier-
Stokes equations remains unchanged while only the turbulence source terms
are modeled to avoid singularities.

We aim to minimize the cost functional
J (u, k, Tc) = αu

2

∫
Ωd

|u − ud|2dx + αk

2

∫
Ωd

|k − kd|2dx+

+ λ1

2

∫
Γc

|Tc|2dx + λ2

2

∫
Γc

|∇sTc|2dx ,
(5.22)

under the constraints (5.2)-(5.3), (5.11) and (5.19)-(5.20) in order to have
a desired velocity ud or a desired turbulent kinetic energy kd located over a
certain domain Ωd ⊆ Ω. A more general expression for the cost contribution
has been considered in (5.22) where two regularization parameters λ1 and
λ2 have been introduced. The parameter λ2 is non-negative while λ1 is
positive. The cost contribution measures the H1(Γc)-norm of the control
Tc. When λ2 = 0, the cost contribution reduces to the measure of L2(Γc)-
norm, while if λ1 = λ2 we obtain the same cost term considered in functional
(4.23). The choice of them is a key point for the numerical solution of the
problem because high values of λ1 and λ2 can result in a poor control, while
low values can lead to convergence issues due to the enlargement of the
functional space of the control variable Tc. The constants αu, αk are non-
negative. In particular, when αu = 0 or αk = 0 the objective functional can
be used to control only the turbulent kinetic energy or the velocity field,
respectively.

5.1. Variational formulation of the state problem

For spaces, norms and scalar products we use the same notations intro-
duced in Chapter 4. We introduce the following continuous bilinear and
trilinear forms useful to derive the weak form of the introduced system

a(ν; u,v) = 1
2

∫
Ω
νS(u) : S(v)dx , (5.23)



172 Chapter 5. Optimal control of turbulent buoyant flows

b(u, ψ) = −
∫

Ω
ψ∇ · u dx , (5.24)

a(k;T, φ) = k
∫

Ω
∇T · ∇φdx . (5.25)

for all u ∈ H1(Ω) ,v ∈ H1(Ω) , ψ ∈ L2
0(Ω) , T ∈ H1(Ω) and φ ∈ H1(Ω).

Also we introduce the following continuous trilinear forms

c(w; u,v) = 1
2

[∫
Ω
(w · ∇)u · v dx −

∫
Ω
(w · ∇)v · u dx

]
, (5.26)

c(u, T, φ) =
∫

Ω
(u · ∇T )φdx , (5.27)

for all w ∈ V(Ω), u ∈ H1(Ω) ,v ∈ H1(Ω) , T ∈ H1(Ω) and φ ∈ H1(Ω).
It is clear that c(w; v,v) = 0 for all w ∈ V(Ω) and c(u, ϕ, ϕ) = 0 for all
φ ∈ H1(Ω). A detailed discussion on these trilinear forms can be found in
[102].

We consider the following formulation of the direct problem for the
Navier Stokes and energy system (5.2)-(5.3).

a(ν + νt; u,v) + c(u; u,v) + b(v, p) =
= (f ,v) − (b(T − T0)g,v) ∀v ∈ H1

0(Ω)
b(u, q) = 0 ∀q ∈ L2

0(Ω)

a
(
α + νt

Prt

;T, φ
)

+ c(u;T, φ) =

= (Q,φ) + (φ, gt,n)Γn ∀φ ∈ H1
Γd

(Ω)
(T, sT )Γd

= (gt, sT )Γd
+ (Tc, sT )Γc ∀sT ∈ H−1/2(Γd) .

(5.28)

We also consider the following formulation of the direct problem for turbu-
lence equations (5.19)-(5.20).

c(u; k, ψ) + a(ν + νtσk; k, ψ) = (Pk, ψ)+
− (β∗ kω, ψ) ∀ψ ∈ H1

0 (Ω)
c(u;ω, ϕ) + a(ν + νtσω;ω, ϕ) = (Pω, ϕ)+

− (β ω2, ϕ) ∀ϕ ∈ H1
0 (Ω)

(5.29)

Note that Γd and Γn are the portion of the boundary where Dirichlet and
Neumann boundary conditions on the temperature field are imposed, re-
spectively. Moreover, one may compute the normal heat flux on Γd as

qn = −
(
α + νt

Prt

)
∇T · n|Γd

∈ H−1/2(Γd) .
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The existence of the solution of system (5.28) can be reduced to Theorem
4.1 since system (5.28) and (4.24) are the same except for the diffusion
coefficients. Thus, it is sufficient to add as hypothesis the non-negativity of
the eddy viscosity νt. Here we report the theorem.

Theorem 5.1. For every νt ≥ 0 ∈ L∞(Ω), gt ∈ H1(Γd), Tc ∈ H1(Γc), gt,n ∈
L2(Γn), Q ∈ L2(Ω), f ∈ L2(Ω), gu ∈ H1(Γ), the Boussinesq equations (4.24)
have a solution (u, p, T ) ∈ H1(Ω)×H1(Ω)×L2

0(Ω). Moreover if (u, p, T ) is a
solution of (4.24), then (u, p, T ) ∈ V∩H2(Ω)×L2

0(Ω)∩H1(Ω)×Hs(Ω)(1 ≤
s ≤ 3

2) and there is a continuos function Ps for each s such that

∥u∥2 + ∥p∥1 + ∥T∥s ≤ Ps(∥f∥0 + ∥Q∥0 + ∥gt,n∥0,Γn + ∥gt∥1,Γd
+

+ ∥Tc∥1,Γc + ∥gu∥1,Γ) .
(5.30)

Proof. The proof of this result can be found in [87].

We now introduce the existence of the solution for the k-ω turbulence
system.

Theorem 5.2. Let Ω be an open, bounded set with Lipschitz-continuous
boundary Γ. Let u ∈ V(Ω), gk and gω in H1(Ω) ∪L∞(Ω) and νt, Pk, Pω as
defined in (5.21), (5.17) and (5.18), respectively. Then

1. there exists at least one solution (k, ω) ∈ H1(Ω) ×H1(Ω) of (5.29);
2. let ωmax and kmax be positive real constants and

ksup = sup{sup
Γ

{gk}, kmax} , (5.31)

ωinf = inf{inf
Γ

{gω}, inf
Ω

{
√
Pω/β}} , (5.32)

ωsup = sup{sup
Γ

{gω}, ωmax} , (5.33)

then

0 ≤ k ≤ ksup , (5.34)
0 ≤ ωinf ≤ ω ≤ ωsup . (5.35)

Proof. The proof of this Theorem can be found in [97, 103].

By using previous theorems we can prove the existence of the solution
of the associated boundary value problem.
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Theorem 5.3. There exists a solution (u, p, T, k, ω) of the associated bound-
ary value problem in (5.28)-(5.29).

Proof. To prove the existence of the solution, we rely on the Schauder’s
fixed point theorem and we follow standard techniques (e.g. see [104]). To
simplify the notation, we consider now the presented physical system with
gu = 0 and gt = gt,n = gk = gω = Tc = 0. For a given set (u1, p1, T1, k1,
ω1) ∈ H1

0(Ω) × H1
Γd

(Ω) × L2
0(Ω) × H1

0 (Ω) × H1
0 (Ω), (u, p, T ) and (k, ω) are

the state of the following system

b(u, q) = 0 ∀ q ∈ L2
0(Ω)

a(ν + νt1; u,v) + c(u1; u,v) + b(v, p1) = (f ,v)+
− (b(T1 − T0)g,v) ∀v ∈ H1

0(Ω)

a
(
α + νt1

Prt

;T, φ
)

+ c(u1;T, φ) = (Q,φ) ∀φ ∈ H1
Γd

(Ω)

c(u1; k, ψ) + a(ν + νt1σk; k, ψ) = (Pk1, ψ)+
− (β∗ kω1, ψ) ∀ψ ∈ H1

0 (Ω)
c(u1;ω, ϕ) + a(ν + νt1σω;ω, ϕ) = (Pω1, ϕ)+

− (β ωω1, ϕ) ∀ϕ ∈ H1
0 (Ω)

(5.36)

where νt1 = νt(k1, ω1), Pk1 = Pk(u1, T1, k1, ω1), Pω1 = Pω(u1, T1). Under the
imposed hypotheses, we can now prove the existence of the solution of the
split system (5.36). In fact, from Theorem 5.1 we have that ∥u∥2 + ∥p∥1 +
∥T∥s is uniformly bounded, with 1 ≤ s ≤ 3/2. Moreover, from Theorem
5.2 we have that ∥k∥1 and ∥ω∥1 are uniformly bounded by the constants Ck

and Cω as a function of the given values kmax and ωmax.
Let D = H1

0(Ω) × L2
0(Ω) × H1

Γd
(Ω) × H1

0 (Ω) × H1
0 (Ω) and A = H1

0(Ω)
×L2

0(Ω) ×H1
Γd

(Ω) ×H1
0 (Ω) ×H1

0 (Ω). We consider now the mapping T :
D → A such that

u = u(u1, p1, T1, k1, ω1) ,
p = p((u1, p1, T1, k1, ω1) ,
T = T (u1, p1, T1, k1, ω1) ,
k = k(u1, p1, T1, k1, ω1) ,
ω = ω(u1, p1, T1, k1, ω1) .

(5.37)

We endow the product space H1
0(Ω)×L2

0(Ω)×H1
Γd

(Ω)×H1
0 (Ω)×H1

0 (Ω) with
the norm ∥(u1, p1, T1, k1, ω1)∥ = ∥u1∥2+∥p1∥1+∥T1∥s+∥k1∥1+∥ω1∥1. It can



5.2. The optimal control problem 175

be proved that T is a continuous mapping with respect to the introduced
norm. Let R denote the constant R = Cu,p,T + Ck + Cω, where Cu,T =
Ps(∥f∥0 + ∥Q∥0 + ∥gt,n∥0,Γn + ∥gt∥1,Γd

+ ∥Tc∥1,Γc + ∥gu∥1,Γ) for each s. For
all (u1, p1, T1, k1, ω1) ∈ D we have ∥(u, p, T, k, ω)∥ = ∥u∥2 + ∥p∥1 + ∥T∥s +
∥k∥1 + ∥ω∥1 < Cu,T + Ck + Cω = R. Therefore

T (BR) ⊂ BR , (5.38)

where BR is the ball of radius R. The condition (5.38) derives from Theorem
5.1 and 5.2, and represents a mandatory hypothesis for the Schauder’s fixed
point theorem. In fact, the theorem states that for a separated topological
vector space D, a convex subset BR ⊂ D, a continuous mapping of BR into
itself T , such that T (BR) is contained in a compact subset of BR, equipped
with the topology inherited from D, then T has a fixed point, namely,
there exists x ∈ BR such that T (x) = x. In conclusion, we can now apply
the fixed point theorem to the system (5.36), and therefore there exists a
solution of the system.

5.2. The optimal control problem

In this section, we present the model for the optimal control of the
presented state system, and prove the existence of an optimal solution. We
first recall that, according to the Theorem 5.2, the set of all admissible
functions k and ω is determined by

Tad =
{

(k, ω) ∈ H1(Ω) ×H1(Ω) | 0 ≤ ωinf ≤ ω ≤ ωsup

and 0 ≤ k ≤ ksup

}
,

(5.39)

where ωinf , ωsup and ksup have been introduced above.
In this work, we aim to control the temperature T = gt +Tc on a portion

of the boundary Γc ⊆ Γd ⊂ Γ to have a desired velocity ud or a desired
turbulence kinetic energy kd on a certain domain Ωd ⊆ Ω. The optimal
control problem can be summarized as follows

Given gk, gω ∈ H
1
2 (Γ), gt ∈ H

1
2 (Γd) and gu ∈ H 1

2 (Γ), find a
state-control set (u, p, T , Tc, k, ω, Pk, Pω, νt) ∈ H1(Ω)×L2

0(Ω)×
H1(Ω)×H1

0 (Γc)×Tad ×L2(Ω)×L2(Ω)×L2(Ω) which minimizes
the cost functional (5.22) under the constraints (5.28)-(5.29).
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We also recall that Pk, Pω and νt are defined in (5.17), (5.18) and (5.21),
respectively. We can now define the admissible set of states and controls as

Sad =
{

(u, p, T, Tc, k, ω, Pk, Pω, νt) ∈ H1(Ω) × L2
0(Ω) ×H1(Ω)×

×H1
0 (Γc) × Tad × L2(Ω) × L2(Ω) × L2(Ω)

such that J (u, T, Tc, k) < ∞
}
.

(5.40)

Since the main statement of the optimal control problem is the minimization
of the functional (5.22), the problem can be reformulated as follows. We say
that (û, p̂, T̂ , T̂c, k̂, ω̂, P̂k, P̂ω, ν̂t) ∈ Sad is an optimal solution if there exists
M > 0 such that

J (û, T̂ , T̂c, k̂) < J (u, T, Tc, k), ∀ (u, p, T, Tc, k, ω, Pk, Pω, νt) ∈ Sad

satisfying ∥u − û∥1 + ∥p− p̂∥0 + ∥T − T̂∥1 + ∥k − k̂∥1+
+ ∥ω − ω̂∥1 + ∥Pk − P̂k∥0 + ∥Pω − P̂ω∥0+
+ ∥Tc − T̂c∥1,Γc < M .

(5.41)

We now turn to the question of the existence of optimal solutions for the
problem (5.41).

Theorem 5.4. Let Sad be not empty. There exists at least one optimal
solution (û, p̂, T̂ , T̂c, k̂, ω̂, P̂k, P̂ω, ν̂t) ∈ Sad.

Proof. The proof of the existence of an optimal solution is obtained with
standard techniques, and the interested reader can consult [93, 105]. Since
the set of the values of J is bounded from below, there exists a minimizing
sequence (um, pm, Tm, Tcm, km, ωm, Pkm, Pωm, νtm) ∈ H1(Ω) × L2

0(Ω) ×
H1(Ω)×H1

0 (Γc)×Tad ×L2(Ω)×L2(Ω)×L2(Ω). As defined in (5.17), (5.18)
and (5.21), the sequences Pkm, Pωm and νtm are uniformly bounded. Since
Pkm and Pωm are bounded, then also km and ωm are uniformly bounded in
Tad. From Theorem 5.1, we can also state that um and Tm are uniformly
bounded in H1(Ω) and H1(Ω), respectively. Following standard techniques,
we can now extract subsequences (un, pn, Tn, Tcn, kn, ωn, Pkn, Pωn, νtn)
converging to (û, p̂, T̂ , T̂c, k̂, ω̂, P̂k, P̂ω, ν̂t). To prove that the limit of the
sub-sequence satisfies the problem we pass to the limit the equation problem.
Following [104, 93], we can state that the solution of all the linear and the
nonlinear operators converges to the solution of the equation problem.



5.3. The Lagrange multiplier method 177

5.3. The Lagrange multiplier method

5.3.1. Preliminaries

In this section, we show that the Lagrange multiplier technique is well-
posed and can be used to obtain the first-order necessary condition. In
particular, we introduce the Lagrangian map and we show that it is strictly
differentiable.

We recall the inequality constraints introduced in (5.15)-(5.21) and de-
fine auxiliary variables which allows us to transform them into equality
constraints [106]. Let us consider the source S ′

k = max [Sk + Sk,b, 0] defined
by (5.15). It is easy to show that finding S ′

k from (5.15) is equivalent to
solve the following system of equation

S ′
k(S ′

k − (Sk + Sk,b)) = 0 , (5.42)
r2

k1 − S ′
k − (S ′

k − (Sk + Sk,b)) = 0 . (5.43)

From (5.15) we have S ′
k = Sk + Skb or S ′

k = 0 that satisfies (5.42). When
Sk + Skb ≥ 0 we have S ′

k = Sk + Skb = r2
k1 ≥ 0 for some real number r2

k1.
Otherwise, when Sk + Skb ≤ 0 we have S ′

k = 0 and (Sk + Skb) = −r2
k1 ≤ 0

for some real number r2
k1 that satisfies (5.43). The value r2

k1 = 0 is attained
when S ′

k = (Sk + Sk,b) = 0. Vice-versa from (5.42) we have S ′
k = 0 and/or

S ′
k = Sk +Sk,b. From (5.43), S ′

k is zero when Sk +Sk,b ≤ 0 and S ′
k = Sk +Sk,b

when S ′
k ≥ 0. With the same arguments the source Pk, defined in (5.17),

satisfies

(S ′
k − Pk)(β∗kmaxω − Pk) = 0 , (5.44)

r2
k2 − (S ′

k − Pk) − (β∗kmaxω − Pk) = 0 , (5.45)

for some rk2 ∈ L2(Ω). By using similar arguments, finding Pk in (5.17) it is
equivalent to solve (5.44) and find a real r2

k2 in (5.45).
Similarly, let us consider the definition of S ′

ω = max [Sω + Sω,b, 0] in
(5.18). When Sω + Sωb ≥ 0 we have S ′

ω = Sω + Sωb and S ′
ω − (Sω + Sωb) =

r2
ω1 ≥ 0 for some real number r2

ω1. Otherwise, when Sω + Sωb ≤ 0 we have
S ′

ω = 0 and −(Sω + Sωb) = r2
ω1 ≥ 0 for some real number r2

ω1. In this case,
we have that S ′

ω satisfies

S ′
ω(S ′

ω − (Sω + Sω,b)) = 0 , (5.46)
r2

ω1 − S ′
ω − (S ′

ω − (Sω + Sω,b)) = 0 , (5.47)
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for some rω1 ∈ L2(Ω). Vice-versa, when (5.46) is satisfied and there exists
a r2

ω1 we have S ′
ω = Sω + Sωb with S ′

ω ≥ 0 or S ′
ω = 0 with Sω + Sω,b ≤ 0

which implies (5.18). With the same arguments the source Pω, defined in
(5.18), satisfies

(S ′
ω − Pω)(βω2

max − Pω) = 0 , (5.48)
r2

ω2 − (S ′
ω − Pω) − (βω2

max − Pω) = 0 , (5.49)

for some rω2 ∈ L2(Ω). Finding Pω from (5.15) is equivalent to solve (5.48)-
(5.49).

Finally, the inequality (5.21) can be replaced by

(k − νtω)(νmax − νt) = 0 , (5.50)
r2

ν − (k − νtω) − ω(νmax − νt) = 0 , (5.51)

for some rν ∈ L2(Ω).
Now we consider all the constraint equations and the functional in two

mappings in order to study their differential properties. It is convenient
to define the functional spaces B1, B2 and B3. Let Γi be the portion of
boundary Γd where there is no control, Γi = Γd ∖Γc, then we introduce the
following functional spaces

B1 = B1e × Bc ,B2 = B2e × Bc ,B3 = B3e × Bc , (5.52)

where

B1e = H1(Ω) × L2
0(Ω) ×H1(Ω) ×H1

0 (Γc) ×H− 1
2 (Γd) × Tad ,

B2e = H−1(Ω) × L2
0(Ω) ×H1∗(Ω) ×H

1
2 (Γd) × (H−1(Ω))2 ,

B3e = H1
0(Ω) × L2

0(Ω) ×H1
Γi

(Ω) × ×H1
0 (Γc) ×H− 1

2 (Γd)×
× (H1

0 (Ω))2 ,

Bc = (L2(Ω))4 × (L2(Ω))4 × (L2(Ω))2 .

(5.53)

We equip B1,B2,B3 with the usual graph norms for the product spaces
involved.

Given z0 = (u, p, T, Tc, qn, k, ω, S
′
k, rk1, Pk, rk2, S

′
ω, rω1, Pω, rω2, νt, rν) ∈

B1, we can now define the nonlinear mapping M : B1 → B2 at z0 by
M(z0) · z0 = b with b = (l1, l2, l3, l4, l5, l6, lk, lω, lν) if and only if the follow-



5.3. The Lagrange multiplier method 179

ing equations hold

a(ν + νt; u,v) + c(u; u,v) + b(v, p) − (f ,v)
+ (b(T − T0)g,v) = (l1,v) ∀v ∈ H1

0(Ω) ,
b(u, q) = (l2, q) ∀ q ∈ L2

0(Ω) ,

a
(
α + νt

Prt

;T, φ
)

+ c(u;T, φ) − (qn, φ)Γd

− (gt,n, φ)Γn = (l3, φ) ∀φ ∈ H1(Ω) ,
(T, sT )Γd

− (Tc, sT )Γc − (gt, sT )Γd
=

= (l4, sT )Γd
∀sT ∈ H−1/2(Γd) ,

c(u; k, ψ) + a(ν + νtσk; k, ψ) − (Pk, ψ)+
+ (β∗kω, ψ) = (l5, ψ) ∀ψ ∈ H1

0 (Ω) ,
c(u;ω, ϕ) + a(ν + νtσω;ω, ϕ) − (Pω, ϕ)+

+ (βω2, ϕ) = (l6, ϕ) ∀ϕ ∈ H1
0 (Ω) ,

(5.54)

and

S ′
k

(
S ′

k − 1
2νtS2(u) − bνt

Prt

g · ∇T
)

= lk0 ,

r2
k1 − S ′

k −
(
S ′

k − 1
2νtS2(u) − bνt

Prt

g · ∇T
)

= lk1 ,

(S ′
k − Pk)(β∗kmaxω − Pk) = lk2 ,

r2
k2 − (S ′

k − Pk) − (β∗kmaxω − Pk) = lk3 ,

S ′
ω

(
S ′

ω − 1
2γS2(u) − γb

Prt

g · ∇T
)

= lω0 ,

r2
ω1 − S ′

ω −
(
S ′

ω − 1
2γS2(u) − γb

Prt

g · ∇T
)

= lω1 ,

(S ′
ω − Pω)(βω2

max − Pω) = lω2 ,

r2
ω2 − (S ′

ω − Pω) − (βω2
max − Pω) = lω3

(k − νtω)(νmax − νt) = lν0 ,

r2
ν − (k − νtω) − ω(νmax − νt) = lν1 ,

(5.55)

where all the equations of (5.55) hold in Ω. From the definition of b, we
can state that the set of constraint equations in our optimal control problem
can be expressed as M(z0) · z0 = 0.

Let ẑ = (û, p̂, T̂ , T̂c, q̂n, k̂, ω̂, Ŝ
′
k, r̂k1, P̂k, r̂k2, Ŝ

′
ω, r̂ω1, P̂ω, r̂ω2, ν̂t, r̂ν) ∈ B1,

we define the nonlinear mapping Q : B1 → R × B2. For a ∈ R we set
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Q(z0) · ẑ = (a,b) if and only if

Q(z0) · ẑ =
(

J (u, T, k, Tc) − J (û, T̂ , k̂, T̂c)
M(z0) · ẑ

)
=
(
a

b

)
. (5.56)

5.3.2. Mapping differentiability

We now introduce the notion of map differentiability, and we show that
the mappings M and Q introduced above are strictly differentiable. For the
definition of the differentiability, see [107].

Lemma 5.1. Let z0 ∈ B1, z̃0 = (ũ, p̃, T̃ , T̃c, q̃n, k̃, ω̃, S̃
′
k, r̃k1, P̃k, r̃k2, S̃

′
ω,

r̃ω1, P̃ω, r̃ω2, ν̃t, r̃ν) ∈ B3 and b = (̄l1, l̄2, l̄3, l̄4, l̄5, l̄6, l̄k, l̄ω, l̄ν) ∈ B2. Let
consider, as derivative map, the bounded linear operator M ′ : B3 → B2,
where M ′(z0) · z̃0 = b , defined as

a(ν̃t; u,v) + a(ν + νt; ũ,v) + c(ũ; u,v) + c(u; ũ,v)+
+ b(v, p̃) + (bgT̃ ,v) = (̄l1,v) ,

b(ũ, q) = (l̄2, q) ,

a
(
ν̃t

Prt

;T, φ
)

+ a
(
α + νt

Prt

; T̃ , φ
)

+ c(ũ;T, φ)+

+ c(u; T̃ , φ) − (q̃n, φ)Γd
= (l̄3, φ) ,

(T̃ , sT )Γd
− (T̃c, sT )Γc = (l̄4, sT )Γd

,

c(ũ; k, ψ) + c(u; k̃, ψ) + a(ν̃tσk; k, ψ) + a(ν + νtσk; k̃, ψ)+
− (P̃k, ψ) + (β∗k̃ω, ψ) + (β∗kω̃, ψ) = (l̄5, ψ) ,

c(ũ;ω, ϕ) + c(u; ω̃, ϕ) + a(ν̃tσω;ω, ϕ) + a(ν + νtσω; ω̃, ϕ)+
− (P̃ω, ϕ) + 2(βωω̃, ϕ) = (l̄6, ϕ) ,

(5.57)

for all v ∈ H1
0(Ω), q ∈ L2

0(Ω), φ ∈ H1(Ω), sT ∈ H−1/2(Γd), ∀ψ ∈ H1
0 (Ω),

ϕ ∈ H1
0 (Ω) and

S̃ ′
k

(
S ′

k − (Sk + Sk,b)
)

+ S ′
k

(
S̃ ′

k − 1
2 ν̃tS2(u) − νtS(u) : S(ũ)+

− bν̃t

Prt

g · ∇T − bνt

Prt

g · ∇T̃
)

= l̄k0 ,

2rk1r̃k1 − 2S̃ ′
k − 1

2 ν̃tS2(u) − νtS(u) : S(ũ) + bν̃t

Prt

g · ∇T+

+ bνt

Prt

g · ∇T̃ = l̄k1 ,
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(S̃ ′
k − P̃k)(β∗kmaxω − Pk) + (S ′

k − Pk)(β∗kmaxω̃ − P̃k) = l̄k2 ,

2rk2 r̃k2 − S̃ ′
k − β∗kmaxω̃ + 2P̃k = l̄k3 , (5.58)

S̃ ′
ω

(
S ′

ω − (Sω + Sω,b)
)

+ S ′
ω

(
S̃ ′

ω − γS(u) : S(ũ)+

− γb

Prt

g · ∇T̃
)

= l̄ω0 ,

2rω1 r̃ω1 − 2S̃ ′
ω + γS(u) : S(ũ) + γb

Prt

g · ∇T̃ = l̄ω1 ,

(S̃ ′
ω − P̃ω)(βω2

max − Pω) − P̃ω(S ′
ω − Pω) = l̄ω2 ,

2rω2 r̃ω2 − S̃ ′
ω + 2P̃ω = l̄ω3 ,

(k̃ − ν̃tω − νtω̃)(νmax − νt) − (k − νtω)ν̃t = l̄ν0 ,

2rν r̃ν − k̃ + 2ν̃tω + 2νtω̃ − ω̃νmax = l̄ν1 .

Consider the nonlinear operator Q′ : B3 → R × B2, where Q′(z0) · z̃0 =
(ā,b) for ā ∈ R. If we set

J ′(u, T, k, Tc) · z̃0 = αu

∫
Ωd

(u − ud) · ũdx + αk

∫
Ωd

(k − kd)k̃dx+

+ λ1

∫
Γc

TcT̃cdx + λ2

∫
Γc

∇sTc · ∇sT̃cdx ,
(5.59)

then the strict derivative of Q at a point z0 is given by Q′ if and only if J ′(u, T, k, Tc) · z̃0

M ′(z0) · z̃0

 =

 ā

b

 . (5.60)

Proof. The linearity and the boundedness of the operatorsM ′ andQ′ follows
from the continuity of the forms a(·; ·, ·), b(·, ·) and c(·; ·, ·) for both scalar
and vector functions. The proof that M ′ is the strict derivative of the
mapping M also follows from the continuity of the trilinear form c(·; ·, ·)
and bilinear form a(·; ·, ·). The procedure is standard, and similar proofs
have been reported in [93, 89]. Indeed, it can be proved that for a given
z0 = (u, p, T, Tc, qn, k, ω, S

′
k, rk1, Pk, rk2, S

′
ω, rω1, Pω, rω2, νt, rt) ∈ B1, then

for any ε > 0, and considering z1, z2 ∈ B1 such that, for an appropriate
δ = δ(ε), we have ∥z0 − z1∥B1 < δ and ∥z0 − z2∥B1 < δ, we obtain

∥M(z1) −M(z2) −M ′(z0) · (z1 − z2)∥B2 ≤ ε∥z1 − z2∥B1 .

This proves that the mapping M is strictly differentiable on all B1 and
its strict derivative is given by M ′. Using again standard techniques, it is
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easy to show that the mapping Q is strictly differentiable and that its strict
derivative is given by Q′ [93, 89].

We now recall the fact that the introduced variables rk1, rω1, rk2, rω2,
and rν are equal to zero when the turbulence sources in k and ω satisfy
both limits at the same time in all the relations (5.15)-(5.21). This may be
a problem for the optimization if this is verified over domain with positive
measure. However, this is not a problem if this happens over points or
boundary regions with zero measure. For this reason we introduce the
following subsets

ΩPk
=
{

x ∈ Ω : S ′
k = Sk + Sk,b = 0 or Pk = β∗kmax ω = S ′

k

}
,

ΩPω =
{

x ∈ Ω : S ′
ω = Sω + Sω,b = 0 or Pω = βω2

max = S ′
ω

}
,

Ων =
{

x ∈ Ω : νt = νmax = k/ω
}
.

These sets are used to assure the validity of the Lagrange multiplier tech-
nique around the region where the minimum point should be searched.

The differential operator M ′ is rather complex. Many equations in this
operator are non-coercive elliptic equations with advection term driven by
the velocity field u ∈ H1(Ω). The existence result for this class of equations
can be obtained not in the Lax-Milgram setting, but by using a Leray-
Schauder Topological Degree argument. In order to deal with these equa-
tions, we use Theorem 4.3 introduced in the Chapter 4.

Lemma 5.2. Let z0 ∈ B1. Then, if the region ΩPk
∪ ΩPω ∪ ΩSν has zero

measure, we have that

1. the operator M ′(z0) has closed range in B2,

2. the operator Q′(z0) has closed range in R × B2,

3. the operator Q′(z0) is not onto in R × B2.

Proof. In order to prove 1. we can split the range operator M ′(z0) in a
product of range spaces for all its components and apply well known results.
The operator range of M ′ can be split into four parts: the Navier-Stokes, the
temperature, the k-ω model and the turbulence source constraint derivative
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equations. First, let us consider the Navier-Stokes derivative operator

a(ν + νt; ũ,v) + c(ũ; u,v) + c(u; ũ,v)+
+ b(v, p̃) = (̄l∗

1,v) ∀v ∈ H1
0(Ω) ,

(̄l∗
1,w) = (̄l1,w) − (bgT̃ ,w) − a(ν̃t; u,w) ∀w ∈ H1

0(Ω) ,
b(ũ, q) = (l̄2, q) ∀ q ∈ L2

0(Ω) ,

(5.61)

with νt ∈ L∞(Ω) and ν + νt > 0. The question of the closeness of the range
(l∗

1, l2) in H−1(Ω) × L2
0(Ω) of (5.61) is discussed in many papers, see for

examples [92, 97, 86].
Since z0 is an optimal solution, T̃ and q̃n solve the equations

a
(
α + νt

Prt

; T̃ , φ
)

+ c(u; T̃ , φ) − (q̃n, φ)Γd
=

= (l̄∗3, φ) ∀φ ∈ H1(Ω) ,
(T̃ , sT )Γd

= (l̄∗4, sT )Γd
∀sT ∈ H−1/2(Γd) ,

(5.62)

with

(l̄∗3, φ) = (l̄3, φ) − a
(
ν̃t

Prt

;T, φ
)

− c(ũ;T, φ) ∀φ ∈ H1(Ω) ,

(l̄∗4, sT )Γd
= (T̃c, sT )Γc + (l̄4, sT )Γd

∀sT ∈ H−1/2(Γd) ,
(5.63)

For (l3, l4) ∈ H1∗(Ω) × H1/2(Γ) we have (l∗3, l
∗
4) ∈ H1∗(Ω) × H1/2(Γ). By

using the result in Theorem 4.3 for each (l∗3, l
∗
4) ∈ H1∗(Ω)×H1/2(Γ) we have

a solution and therefore the range of the mapping M ′(z0) for the energy
equation is onto.

Now we consider the k-ω system in M ′. Since z0 is an optimal solution,
the system reduces to

a(ν + νtσk; k̃, ϕ) + c(u; k̃, ϕ) + (β∗ωk̃, ϕ) =
= (l∗5, ϕ) ∀ϕ ∈ H1

0 (Ω) ,
(l∗5, ϕ) = (l5, ϕ) − a(ν̃tσk; k, ϕ) − c(ũ; k, ϕ)+

− (β∗ω̃k, ϕ) + (P̃k, ϕ) ∀ϕ ∈ H1
0 (Ω) ,

a(ν + νtσω; ω̃, ψ) + c(u; ω̃, ψ) + (2βωω̃, ψ) =
= (l∗6, ψ) ∀ψ ∈ H1

0 (Ω) ,
(l∗6, ψ) = (l6, ψ) − a(ν̃tσω;ω, ψ) − c(ũ;ω, ψ)+

+ (P̃ω, ψ) ∀ψ ∈ H1
0 (Ω) ,

(5.64)
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with homogeneous Dirichlet boundary conditions. It is possible to show that
the equation for ω̃ in (5.64) has a solution for all l∗6 and also that the equation
for k̃ can be solved for all l∗4. In fact, since ν + νt is a positive function in
L∞(Ω) and thanks to the Sobolev compact embeddings H1(Ω) ↪→ Lq(Ω)
which holds for 1 ≤ q < ∞ when n = 2 and for 1 ≤ q ≤ 6 when n = 3,
we have that u ∈ H1(Ω) verifies the hypothesis in Theorem 4.3 both with
n = 2 and with n = 3.

Finally, we focus on the system (5.58) under the assumption that z0 is an
optimal solution. From this we have that S2(u) is bounded and νt ∈ L∞(Ω).
If we assume that the region Ων ∪ ΩPk

∪ ΩPω has a measure zero then
rν , rk1, rk2, rω1, rω2 cannot be zero a.e. on the domain Ω. Therefore the
equations can be solved a.e. in Ω for all lν = (lν0, lν1) ∈ L2(Ω) × L2(Ω),
lk = (lk0, lk1, lk2) ∈ L2(Ω) ×L2(Ω) ×L2(Ω) and lω = (lω0, lω1, lω2) ∈ L2(Ω) ×
L2(Ω) × L2(Ω) as a function of ν̃t, r̃ν1, k̃, r̃k1, r̃k2 and ω̃, r̃ω1 and r̃ω2,
respectively.

Starting from 1., the proof of 2. and 3. can be found easily by using the
standard techniques in [92, 93, 97].

Theorem 5.5. Let ẑ ∈ B1 denote an optimal solution. Then there exists
a nonzero Lagrange multiplier (Λ, ẑa) = (Λ, ûa, p̂a, T̂a, q̂a, k̂a, ω̂a, Ŝ ′

ka, r̂k1a,

P̂ka, r̂k2a, Ŝ ′
ωa, P̂ωa, r̂ω1a, r̂ω2a, ν̂a, r̂νa) ∈ R×B∗

2 satisfying the Euler equations

ΛJ ′(û, k̂, T̂ , T̂c) · z̃0 + ⟨ẑa,M
′(ẑ) · z̃0⟩ = 0 ∀z̃0 ∈ B3 (5.65)

where ⟨·, ·⟩ denotes the duality pairing between B2 and B∗
2.

Proof. From Lemma 5.2, we have that the range of Q′(ẑ) is a closed, proper
subspace of R × B2. Then, from the Hahn-Banach theorem, there exists a
nonzero element of R×B∗

2 that nullifies the range of Q′(ẑ). Therefore, there
exists (Λ, ûa, p̂a, T̂a, q̂a, k̂a, ω̂a, Ŝ ′

ka, r̂k1a, P̂ka, r̂k2a, Ŝ ′
ωa, r̂ω1a, P̂ωa, r̂ω2a, ν̂a,

r̂νa) ∈ R × B∗
2 such that

⟨(ā, b̄), (Λ, ẑa)⟩ = 0 , (5.66)

for all (ā, b̄) = (ā, l̄1, l̄2, l̄3, l̄4, l̄5, l̄6, l̄ν , l̄k, l̄ω) belonging to the range of Q′(ẑ),
where ⟨·, ·⟩ denotes the duality pairing between R × B2 and R × B∗

2. Note
that Λ ̸= 0 since otherwise we would have that ⟨b̄, ẑa⟩ = 0 for all b̄ ∈ B2.
This would imply ẑa = 0 contradicting the fact that (Λ, ẑa) ̸= 0. Clearly,
using the definition of Q′(ẑ), (5.65) and (5.66) are equivalent.
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5.3.3. The optimality system

Dropping the (̂·) notation for optimal solution, we derive now the opti-
mality system using (5.65). We introduce the following equations

Λλ1(Tc, T̃c)Γc + Λλ2(∇sTc,∇sT̃c)Γc = (qa, T̃c)Γc , (5.67)

for all T̃c ∈ H1
0 (Γc)

b(ua, p̃) = 0 ,
a(ν + νt; ũ,ua) + c(u; ũ,ua) + c(ũ; u,ua) + b(ũ, pa) =

= −αuΛ((u − ud), ũ)Ωd
− c(ũ;T, Ta) − c(ũ; k, ka)+

− c(ũ;ω, ωa) + a(νt(rk1a − S ′
kaS

′
k)+

+ γ(rω1a − S ′
ωaS

′
ω); u, ũ) ,

(5.68)

for all (ũ, p̃) ∈ H1
0(Ω) × L2

0(Ω)

a(α + νt

Prt

; T̃ , Ta) + c(u; T̃ , Ta) + (T̃ , qa)Γd
= −(bgT̃ ,ua)+

+
(
b

Prt

g · ∇T̃ , νt(rk1a − S ′
kaS

′
k) + γ(rω1a − S ′

ωaS
′
ω)
)

(Ta, q̃n)Γd
= 0 ,

(5.69)

for all (T̃ , q̃n) ∈ H1
Γi

(Ω) ×H− 1
2 (Γd)

a(ν + νtσk; k̃, ka) + c(u; k̃, ka) + (β∗k̃ω, ka) =
= −αkΛ((k − kd), k̃)Ωd

− (k̃, νa(νmax − νt) − rνa) ,
a(ν + νtσω; ω̃, ωa) + c(u; ω̃, ωa) + (2βωω̃, ωa) =

= −(β∗kω̃, ka) − (Pka(S ′
k − Pk) − rk2a, β

∗kmaxω̃)+
+ (νtνa(νmax − νt) − rνa(2νt − νmax), ω̃) ,

(5.70)

for all (k̃, ω̃) ∈ H1
0 (Ω) ×H1

0 (Ω). We also introduce the algebraic system

νaω
(
νmax + k

ω
− 2νt

)
= S(u) : S(ua)

2 + ∇T · ∇Ta

Prt

+

+ σk∇k · ∇ka + σω∇ω · ∇ωa + 2rνaω+

− (S ′
kaS

′
k − rk1a)

(1
2S2(u) + b

Prt

g · ∇T
)
,

S ′
ka

(
2S ′

k − 1
2νtS2(u) − bνt

Prt

g · ∇T
)

= 2rk1a + rk2a+
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− Pka(β∗kmaxω − Pk) , (5.71)

S ′
ωa

(
2S ′

ω − 1
2γS2(u) − γb

Prt

g · ∇T
)

= 2rω1a + rω2a+

− Pωa(βω2
max − Pω) ,

Pka(β∗kmaxω + S ′
k − 2Pk) = 2rk2a − ka ,

Pωa(βω2
max + S ′

ω − 2Pω) = 2rω2a − ωa .

Lastly, we have

rk1ark1 = rk2ark2 = rω1arω1 = rω2arω2 = rνarν = 0 . (5.72)

In (5.67) qa is given by the normal adjoint temperature gradient as follows

qa = −
(
α + νt

Prt

)
∇Ta · n on Γd . (5.73)

Theorem 5.6. Let z ∈ B1 denote a solution of the optimal control problem.
Then, if the region ΩPk

∪ ΩPω ∪ Ων has zero measure, the control variable
Tc ∈ H1

0 (Γc) is the solution of (5.67).
Also, (ua, pa) ∈ H1

0(Ω) × L2
0(Ω) is solution of (5.68). In addition,

(Ta, qa) ∈ H1(Ω) × H− 1
2 (Γd) is the solution of (5.69) under the condition

(5.73). Also, (ka, ωa) ∈ H1
0 (Ω) ×H1

0 (Ω) is solution of (5.70).
Moreover, (νa, S

′
ka, S

′
ωa, Pka, Pωa) ∈ (L2(Ω))5 are solutions of the al-

gebraic equations (5.71), and (rk1a, rk2a, rω1a, rω2a, rνa) ∈ (L2(Ω))5 satisfy
(5.72).

Proof. The Euler equations (5.65) are equivalent to

Λ(αu((u − ud), ũ)Ωd
+ αk((k − kd), k̃)Ωd

+ λ1(Tc, T̃c)Γc+
+ λ2(∇sTc,∇sT̃c)Γc) + a(ν̃t; u,ua) + a(ν + νt; ũ,ua)+
+ c(ũ; u,ua) + c(u; ũ,ua) + b(ua, p̃) + (bgT̃ ,ua)+

+ b(ũ, pa) + c(ũ;T, Ta) + c(u; T̃ , Ta) + a
(
ν̃t

Prt

;T, Ta

)
+

+ a
(
α + νt

Prt

; T̃ , Ta

)
− (q̃n, Ta)Γd

+ (T̃ , qa)Γd
− (T̃c, qa)Γc

+ c(ũ; k, ka) + c(u; k̃, ka) + a(ν̃tσk; k, ka) − (P̃k, ka)+
+ a(ν + νtσk; k̃, ka) + (β∗k̃ω, ka) + (β∗kω̃, ka)+
+ c(ũ;ω, ωa) + c(u; ω̃, ωa) + a(ν̃tσω;ω, ωa) − (P̃ω, ωa)+
+ a(ν + νtσω; ω̃, ωa) + 2(βωω̃, ωa)+
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+
(
S ′

ka, S̃
′
k

(
S ′

k − 1
2νtS2(u) − bνt

Prt

g · ∇T
)

+

+ S ′
k

(
S̃ ′

k − 1
2 ν̃tS2(u) − νtS(u) : S(ũ) − bν̃t

Prt

g · ∇T+

− bνt

Prt

g · ∇T̃
))

+
(
rk1a, 2rk1r̃k1 − 2S̃ ′

k + 1
2 ν̃tS2(u)+

+ νtS(u) : S(ũ) + bν̃t

Prt

g · ∇T + bνt

Prt

g · ∇T̃
)

+

+ (Pka, (S̃ ′
k − P̃k)(β∗kmaxω − Pk) + (S ′

k − Pk)(β∗kmaxω̃+
− P̃k)) + (rk2a, 2rk2r̃k2 − S̃ ′

k − β∗kmaxω̃ + 2P̃k)+

+
(
S ′

ωa, S̃
′
ω

(
S ′

ω − 1
2γS2(u) − γb

Prt

g · ∇T
)

+

+ S ′
ω

(
S̃ ′

ω − γS(u) : S(ũ) − γb

Prt

g · ∇T̃
))

+

+
(
rω1a, 2rω1r̃ω1 − 2S̃ ′

ω + γS(u) : S(ũ) + γb

Prt

g · ∇T̃
)

+

+ (Pωa, (S̃ ′
ω − P̃ω)(βω2

max − Pω) − P̃ω(S ′
ω − Pω))+

+ (rω2a, 2rω2r̃ω2 − S̃ ′
ω + 2P̃ω)+

+ (νa, (k̃ − ν̃tω − νtω̃)(νmax − νt) − (k − νtω)ν̃t)+
+ (rνa, 2rν r̃ν − k̃ + 2ν̃tω + 2νtω̃ − ω̃νmax) = 0 ,

for all z ∈ B1. In order to satisfy the integral on the boundary, we set homo-
geneous Dirichlet boundary conditions for the adjoint variables (ua, ka, ωa).
By extracting the terms involved in the same variation, we obtain (5.67)-
(5.72).

If the region ΩPk
∪ΩPω ∪ΩSν has zero measure, then rk1, rk2, rω1, rω2 and

rν are almost everywhere different from zero. From (5.72) we note that if
rk1 ̸= 0, then rk1a = 0. This is true also for rk2a, rω1a, rω2a and rνa. By
setting Λ = −1, the final adjoint system reduces to

λ1(Tc, T̃c)Γc + λ2(∇sTc,∇sT̃c)Γc + (qa, T̃c)Γc = 0 , (5.74)

for all T̃c ∈ H1
0 (Γc),

b(ua, p̃) = 0 ,
a(ν + νt; ũ,ua) + c(u; ũ,ua) + c(ũ; u,ua) + b(ũ, pa) =

= αu((u − ud), ũ)Ωd
− c(ũ;T, Ta) − c(ũ; k, ka)+

− c(ũ;ω, ωa) − a(νtS
′
kaS

′
k + γS ′

ωaS
′
ω; u, ũ) ,

(5.75)
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for all (ũ, p̃) ∈ H1
0(Ω) × L2

0(Ω),

a
(
α + νt

Prt

; T̃ , Ta

)
+ c(u; T̃ , Ta) + (T̃ , qa)Γc = −(bgT̃ ,ua)+

−
(
b

Prt

g · ∇T̃ , νtS
′
kaS

′
k + γS ′

ωaS
′
ω

)
,

(5.76)

for all T̃ ∈ H1
Γi

(Ω),

a(ν + νtσk; k̃, ka) + c(u; k̃, ka) + (β∗k̃ω, ka) =
= αk((k − kd), k̃)Ωd

− (k̃, νa(νmax − νt)) ,
a(ν + νtσω; ω̃, ωa) + c(u; ω̃, ωa) + (2βωω̃, ωa) = −(β∗kω̃, ka)+

− (Pka(S ′
k − Pk), β∗kmaxω̃) + (νtνa(νmax − νt), ω̃) ,

(5.77)

for all (k̃, ω̃) ∈ H1
0 (Ω)×H1

0 (Ω). Lastly, in the case in which ΩPk
∪ΩPω ∪ΩSν

has zero measure, we have the following algebraic equations

νar
2
ν = S(u) : S(ua)

2 + ∇T · ∇Ta

Prt

+ σk∇k · ∇ka+

+ σω∇ω · ∇ωa − S ′
kaS

′
k

(1
2S2(u) + b

Prt

g · ∇T
)
,

S ′
kar

2
k1 = −Pka(β∗kmaxω − Pk) ,

S ′
ωar

2
ω1 = −Pωa(βω2

max − Pω) ,
Pkar

2
k2 = −ka ,

Pωar
2
ω2 = −ωa .

(5.78)

Furthermore, in the case in which no bounds are reached, we have

νt = k

ω
, Pk = S ′

k = Sk + Skb , Pω = S ′
ω + Sωb , (5.79)

then the adjoint system (5.75)-(5.78) simplifies and in particular

S ′
kaS

′
k = ka , S ′

ωaS
′
ω = ωa . (5.80)

Thus, the equations for adjoint velocity and pressure reduce to

b(ua, p̃) = 0 ,
a(ν + νt; ũ,ua) + c(u; ũ,ua) + c(ũ; u,ua) + b(ũ, pa) =

= αu((u − ud), ũ)Ωd
− c(ũ;T, Ta) − c(ũ; k, ka)+

− c(ũ;ω, ωa) − a(νtka + γωa; u, ũ) ,

(5.81)
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for all (ũ, p̃) ∈ H1
0(Ω) × L2

0(Ω), while the adjoint temperature equation is
the following

a
(
α + νt

Prt

; T̃ , Ta

)
+ c(u; T̃ , Ta) + (T̃ , qa)Γc = −(bgT̃ ,ua)+

−
(
b

Prt

g · ∇T̃ , νtka + γωa

)
,

(5.82)

for all T̃ ∈ H1
Γi

(Ω). The adjoint equations for ka and ωa simplify

a(ν + νtσk; k̃, ka) + c(u; k̃, ka) + (β∗k̃ω, ka) =
= αk((k − kd), k̃)Ωd

− (k̃, νa(νmax − νt)) ,
a(ν + νtσω; ω̃, ωa) + c(u; ω̃, ωa) + (2βωω̃, ωa) = −(β∗kω̃, ka)+

+ (νtνa(νmax − νt), ω̃) ,

(5.83)

for all (k̃, ω̃) ∈ H1
0 (Ω) ×H1

0 (Ω). Furthermore, if no bounds are reached, we
have r2

ν = ω(νt − νmax), thus the adjoint viscosity equation reduces to

νaω(νmax − νt) = −S(u) : S(ua)
2 − ∇T · ∇Ta

Prt

− σk∇k · ∇ka+

− σω∇ω · ∇ωa + ka

(1
2S2(u) + b

Prt

g · ∇T
)
.

(5.84)

Integrations by parts may be used to show that the system (5.75)-(5.76)
constitutes a weak formulation of the boundary value problem for adjoint
equations

∇ · ua = 0 in Ω ,

ua · (∇u)T − u · ∇ua + ∇pa − ∇ · [(ν + νt)S(ua)] =
= αu(u − ud) − T∇Ta − k∇ka − ω∇ωa+

+ 1
2∇ · [(νtka + γωa)S(u)] in Ω ,

∇ ·
[(
α + νt

Prt

)
∇Ta

]
− u · ∇Ta = −bg · ua+

+ b

Prt

g · ∇(νtka + γωa) in Ω ,

∇ · [(ν + σkνt)∇ka] − u · ∇ka + β∗ωka = (5.85)
= αk(k − kd) − νa(νmax − νt) in Ω ,

∇ · [(ν + σωνt)∇ωa] − u · ∇ωa + 2βωωa =
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= −β∗kka + νtνa(νmax − νt) in Ω ,

ua = 0 on Γ
∇Ta · n|Γn = 0 on Γn ,

Ta = 0 on Γd ,

ka = 0 on Γ ,
ωa = 0 on Γ ,

and control equation

− ∆sTc + Tc − α∇Ta · n|Γc

λ
= 0 on Γc ,

Tc = 0 on ∂Γc ,
(5.86)

5.3.4. Numerical algorithm

The optimality system consists of three groups of equations: the state
equations (5.28)-(5.29), the adjoint state equations (5.81)-(5.84) and the op-
timality conditions for Tc (5.74). Since the coupled solution of the system is
extremely expensive, we uncouple the state, adjoint, and control equations.
We may construct an iterative method to iterate among the three groups
of equations so that at each iteration we are dealing with a smaller size
system of equations. We consider a gradient method for the solution of the
optimality problem and the gradient of the functional is determined with
the help of the solution of the adjoint system. Let us consider the gradient
method for the following minimization problem: find Tc ∈ H1

0 (Γc) such that
F(Tc) := J (u(Tc), k(Tc), Tc) is minimized, with J reported in Equation
(5.22). Given T (0)

c , we can define the sequence

T (n+1)
c = T (n)

c − ρ(n)dF(T (n)
c )

dT
(n)
c

, (5.87)

recursively, where ρ(n) is a variable step size. Let T̂c be a solution of the
minimization problem, thus the following necessary condition holds

dF(T̂c)
dT̂c

= dJ (u(T̂c), k(T̂c), T̂c)
dT̂c

= 0 , (5.88)

then at the optimum state the equality T (n+1)
c = T (n)

c holds. For each fixed
Tc, the Gâteaux derivative (dF(Tc)/dTc) · T̃c for every direction T̃c ∈ H1(Γc)
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may be computed

dF(Tc)
dTc

· T̃c = λ1(Tc, T̃c)Γc + λ2(∇sTc,∇sT̃c)Γc + αu(u − ud, ũ)Ωd
+

+ αk(k − kd, k̃)Ωd
,

(5.89)

where ũ and k̃ are the solution of M ′(z)· z̃ = 0, obtained by setting b̄ = 0 in
Equations (5.57) and (5.58). Following the procedure described in Chapter
4 for the Dirichlet optimal control, we find that

αu(u − ud, ũ)Ωd
+ αk(k − kd, k̃)Ωd

= (T̃c, qa)Γc . (5.90)

Thus, the Gâteaux derivative may be computed as

dF(Tc)
dTc

· T̃c = λ2(∇sTc,∇sT̃c)Γc + λ1(Tc, T̃c)Γc + (T̃c, qa)Γc , (5.91)

or
dF(Tc)
dTc

= −λ2∆sTc + λ1Tc + qa . (5.92)

The optimization algorithm is reported in the following.

a) Initialization:
1. choose tolerance τ and T (0)

c ; set n = 0 and ρ = 1;
2. solve for (u(0), p(0), T (0), k(0), ω(0)) from equations (5.28)-(5.29)

with Tc = T (0)
c ;

3. evaluate J (0) = J (u(0), k(0), T (0)
c ) using (5.22);

b) main loop:
1. set n = n+ 1;
2. solve for (u(n)

a , p(n)
a , T (n)

a , k(n)
a , ω(n)

a ) from (5.81)-(5.83);
3. solve for T (n)

c from

−∆sT
(n)
c + T (n)

c = −∆sT
(n−1)
c + T (n−1)

c +

−ρ(n)
(

− λ2

λ1
∆sT

(n−1)
c + T (n−1)

c +

+ α

λ1
∇T (n)

a · n|Γc

)
.

(5.93)

4. solve for (u(n), p(n), T (n), k(n), ω(n)) with Tc = T (n)
c ;
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5. evaluate J (n) = J (u(n), k(n), T (n)
c ) using (4.23);

i) if J (n) > J (n−1), set ρ(n) = 0.5ρ(n) and go to step b) 3.;
ii) if J (n) < J (n−1), set ρ(n+1) = 1 and go to step b) 1.;
iii) if |J (n) − J (n−1)|/|J (n)| < τ stop.

The chosen form for the update of the control (5.93) allows enforcing the
belonging of Tc to H1

0 (Γc) and giving more regularity to the control.

5.4. Numerical results

In this section, we report the results obtained by solving the optimality
system (5.28)-(5.29), (5.74) and (5.81)-(5.84). Finite element solvers for
the adjoint temperature Ta, adjoint turbulent kinetic energy ka, adjoint
specific dissipation rate ωa, and adjoint viscosity νa have been implemented
and integrated into the finite element code FEMuS. The constraints on the
eddy viscosity (5.21) and on the source terms for turbulent kinetic energy
and its specific dissipation rate (5.15)-(5.18) have been included. Also, the
gradient algorithm has been implemented in the finite element code.

Γc

Γn

Γi

Γn

g

(a) (b)

Figure 5.1: Computational domain (a) and computational grid with biquadratic
elements (b) for the optimal control of turbulent buoyant flows.

We study a two-dimensional cavity where the flow is driven by buoyancy
forces. Let us consider the domain Ω = [0, L]×[0, L] ∈ R2 reported in Figure
5.1. In our computations, we consider L = 0.1m. We set in (5.28)-(5.29)
f = 0, Q = 0, gu = 0 and gt,n = 0, while gk = a1δ

2 and gω = 2ν/β∗δ2 where
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δ is the distance from the wall. Moreover, the function gt on Γd is given as

gt =
493 K on Γi ,

503 K on Γc .
(5.94)

For the reference case, we set T (0)
c = 0. Thus, the horizontal walls of the

cavity Γn are assumed to be perfectly adiabatic, while the vertical walls are
kept isothermal, with the left wall Γc at high temperature (503K) and the
right wall Γi at low temperature (493K). The interior of the cavity is filled
with liquid lead and all properties are calculated at a reference temperature
493K and are reported in Table 4.1.

We discretize the numerical problem in a finite element framework, and
we consider the computational grid reported in Figure 5.1b consisting of
3960 biquadratic elements where the cells are clustered near the walls to have
the first mesh point in the viscous layer and y+ < 1. The computational grid
is reported in Figure 5.1b. It is possible to compute the friction velocity
uτ and the corresponding friction Reynolds number. The values of the
friction quantities change along the walls, but the maximum values are
uτ = 0.00338m/s and Reτ = 1895.

In Figure 5.2 we report the contours of the temperature and velocity
fields for the reference case. Due to the heat transfer through the vertical
walls, density changes result in a recirculating flow. From the evaluation
of the bulk velocity (Ub = 0.00414m/s), we can evaluate the Reynolds and
Rayleigh numbers, Re = 2321 and Ra = 1.9 × 107. Since the flow becomes
turbulent at Ra > 106 [94, 108], the considered reference case is in turbulent
conditions. We can observe the typical feature of velocity and temperature
profiles for 106 < Ra < 108 in Figure 5.2. The isotherms at the center of
the cavity are horizontal and become vertical only at the boundary layers.
The velocity magnitude at the center of the cavity is very small compared
with those at the boundaries where the fluid is moving fast, forming narrow
vortices and improving the stratification of the flow at the central part of
the cavity.

Since the presented optimal control problem allows controlling the veloc-
ity ud and the turbulence kinetic energy kd on Ωd, we consider two different
control cases. In particular, we report a velocity matching case, and a
turbulent kinetic energy enhancement case.
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Figure 5.2: Uncontrolled solution: contours of temperature field (a); contours
and streamlines of velocity field (b); contours of turbulent kinetic energy field.

Velocity matching case. We first consider a velocity matching case,
imposing αu = 1 and αk = 0 in the objective functional reported in Equation
(5.22). We set Ωd = [0.45L; 0.55L] × [0.85L; 0.95L]. We aim to control
the x-component of the velocity u = (u, v) by setting ud = −0.01m/s.
In the reference case, the average x-component of the velocity on Ωd is
ub = 0.0047m/s. Thus, our goal is transforming the clockwise vortex into a
counterclockwise flow. The reference functional J (0) measures 1.562×10−8.
We consider different values of regularization coefficients. Firstly, we set
λ1 = λ2 = λ to have the exact H1(Γc)-norm as cost contribution in (5.22).
Then, we consider different values for the two regularization parameters to
show the influence of λ2 on the control.

Let us consider λ1 = λ2 = λ. Numerical simulations are performed for
different values of λ, namely 10−6, 10−7 and 10−8. In Table 5.1 we report
the objective functional values J (n) and the number of iterations n of the
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Table 5.1: Velocity matching case: objective functional, percentage reduction
and number of iterations of the optimization algorithm for different λ = λ1 = λ2
values.

λ 10−6 10−7 10−8 Reference

J (n) × 109 14.15 3.128 1.882 15.62
% Reduction −9.41 −80.0 −87.9 0
Iterations n 9 4 2 0
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0.00972

0.01304

0.01635
u (m/s)

(c)

Figure 5.3: Velocity matching case: optimal solution for λ = 10−7. Contours of
the temperature field (a), streamlines and contours of the velocity field (b) and
contours of x-component of velocity (c).

optimization algorithm. Also, the percentage reduction of the functional
J (n) with respect to the reference value is reported. For the highest value
of λ (10−6), the control is poor and the functional is quite similar to the
reference value. With the lowest value of λ, we have the lowest functional
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Figure 5.4: Velocity matching case: temperature profiles on the controlled bound-
ary Γc (a) and x-component of velocity profiles on the region Ωd along the line
y/L = 0.9 (b). Numerical results for λ = 10−6, 10−7 and 10−8.

value and the greatest percentage reduction.
In Figure 5.3a contours of the controlled temperature field are shown

for λ = 10−7. To obtain a reverse flow, the average temperature along Γc

must be lower than the temperature along the opposite wall, Γd. At the
boundaries of the wall, we have Tc = 0 on ∂Γc and T = gt, as stated by
Equation (5.86). Contours and streamlines of velocity field are shown in
Figure 5.3b. We can observe the formation of a counterclockwise vortex
and the increase of the velocity magnitude, as asked with the objective. In
Figure 5.3c, contours of the x-component of the velocity are reported and
the region Ωd is highlighted.

The temperature profiles along the controlled boundary Γc are reported
for the different values of λ = λ1 = λ2 in Figure 5.4a. As observed from
the functional values in Table 5.1, the control in the case λ = 10−6 has
no effect and we obtain a temperature profile almost uniform and equal to
the reference. As λ decreases, the temperature profile presents a stationary
point for 0.4 < y/L < 0.6. The minimum value decreases as λ decreases.
In Figure 5.4b, the x-component of the velocity is plotted along a line at
y/L = 0.9 for 0.45 < x/L < 0.55 in the region Ωd. The profiles of velocity
are reported for all values of λ and also the target velocity profile ud is
shown. We can observe that in cases with λ ≤ 10−7 the flow changes from
clockwise to counterclockwise with a negative x-component of velocity in
the top of the cavity. With λ = 10−6, the control is too poor and ineffective
since we still have a clockwise vortex.
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During the control process, depending on the values of λ, the optimal
temperature fields show considerable changes with respect to the reference
case. In Table 5.2 we report the bulk velocity Ub and the average tempera-
ture differences between the left and right wall boundaries ∆Tavg. Rayleigh
and Reynolds numbers are also reported for the considered values of λ. As
λ decreases, Re and Ra increase and the flow becomes more turbulent. The
condition y+ < 1 is still observed for all the simulations.

Table 5.2: Velocity matching case: comparison of bulk velocity, average temper-
ature difference, bulk Reynolds number and Rayleigh number for different values
of λ.

λ Ub(mm/s) ∆Tavg (K) Reb Ra

Reference 4.14 10 2321 1.9 × 107

10−6 3.87 2 2170 3.9 × 106

10−7 5.40 22 3028 4.3 × 107

10−8 7.25 77 4065 1.5 × 108

Table 5.3: Velocity matching case: objective functional, percentage reduction
and number of iterations of the optimization algorithm for different λ2 values
and λ1 = 10−7.

λ2 10−6 10−7 10−8 10−9 Reference

J (n) × 109 8.491 3.128 0.9115 0.1765 15.62
% Reduction −45.6 −80.0 −94.2 −98.9 0
Iterations n 4 4 21 36 0

We consider now separate choices for λ1 and λ2. Let λ1 be equal to
10−7, for λ2 we consider different values, namely 10−6, 10−7, 10−8 and 10−9.
The case with λ2 = 10−7 is a standard case with λ1 = λ2 = λ previously
described with optimal solution reported in Figure 5.3.

In Table 5.3 the values of objective functional and the percentage re-
ductions are reported for the different choices of λ2. Also, the number of
iterations of the numerical algorithm is included. Holding constant λ1, we
can analyze the impact of the coefficient λ2 which penalizes the norm of
the surface gradient of the control Tc in the cost contribution. If λ2 → 0,
the control belongs to L2(Γc) instead of H1(Γc). We can observe that for
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Figure 5.5: Velocity matching case: optimal solution for λ1 = 10−7 and λ2 =
10−9. Contours of the temperature field (a), streamlines and contours of the
velocity field (b) and contours of x-component of velocity (c).
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Figure 5.6: Velocity matching case: temperature profiles on the controlled bound-
ary Γc (a) and x-component of velocity profiles on the region Ωd along the line
y/L = 0.9 (b). Numerical results for λ2 = 10−6, 10−7, 10−8, 10−9 and λ1 = 10−7.
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λ2 > λ1 the control is less effective and the functional reduction is poor.
For λ2 < λ1 we observe large functional decreases.

Contours of the optimal temperature field are shown in Figure 5.5a for
λ1 = 10−7 and λ2 = 10−9. Streamlines and contours of the optimal velocity
field are reported in Figure 5.5b. Comparing Figure 5.5 and 5.3, we can ob-
serve that with a lower regularization parameter λ2, the solution is sharper
and more irregular. The velocity field on Ωd is nearer to the target profile
ud. This aspect can be observed also by Figure 5.6b where the velocity u is
plotted on Ωd at y/L = 0.9 and 0.45 < x/L < 0.55 for different values of λ2.
The lowest value of λ2 (10−9) brings the optimal solution with the largest
functional reduction. With the highest value of λ2 (10−6), in contrast, we
have poor control and a counterclockwise flow with low velocity magnitude.
Lastly, in Figure 5.6a the temperature profiles on Γd are reported for all
values of λ2. As noticed by the previous comparisons, with low values of λ2
the control is more effective and the temperature on the boundary presents
stationary and inflection points.

Turbulence kinetic energy enhancement case. In the second test
we aim to enhance the turbulence inside the cavity. This goal can be
achieved considering in the objective functional (5.22) αu = 0 and αk = 1.
The turbulent kinetic energy contours for the reference case are reported
in Figure 5.2c. As target profile of turbulent kinetic energy we may set
kd = 0.0001m2/s2 since in the reference case the turbulent kinetic energy is
everywhere smaller than this value, in particular k(0)

max ≈ 7.5 × 10−5 m2/s2.
Let Ωd = [0.10L; 0.20L]× [0.45L, 0.55L] be the region where we aim to min-
imize the functional (5.22). In the reference case, the functional value is
J (0) = 1.818 × 10−13.

The choice of values for the regularization parameters is crucial. A
turbulence enhancement problem is more complex than a velocity or tem-
perature matching problem. As we have observed in Chapter 4, a control
problem with an objective on the temperature field is the easiest to solve,
since the distance from the objective Td appears as a source term in the
adjoint temperature equation and the control depends on the normal gra-
dient of Ta. Thus, the link between objective and control is almost direct.
With a velocity control problem, this link is indirect. Indeed, the distance
from the objective ud appears as a source term in the adjoint Navier-Stokes
equation. The adjoint velocity ua, in its turn, appears as a source term in
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the adjoint temperature equation. Thus, the objective acts on ua, which
influences Ta, which gives the control Tc. With a turbulence optimization
problem, the link is even more indirect. Analyzing the optimality system in
strong form (5.85), the distance from the objective kd appears in the equa-
tion for the adjoint turbulent kinetic energy ka. The gradient of this adjoint
variable appears as a source term in the adjoint temperature equation, but
this contribution is negligible. Thus, ka influences only the adjoint velocity
ua, which affects the adjoint temperature Ta. For this reason, we need very
low regularization parameters to make the control effective.

Table 5.4: Turbulence enhancement case: objective functional, percentage re-
duction and number of iterations of the optimization algorithm for different
λ = λ1 = λ2 values.

λ 10−11 10−12 10−13 Reference

J (n) × 1014 16.35 4.079 2.561 18.18
% Reduction −10.1 −77.6 −85.9 0
Iterations n 6 3 2 0

Table 5.5: Turbulence enhancement case: comparison of bulk velocity, average
temperature difference, bulk Reynolds number and Rayleigh number for different
values of λ.

λ Ub(mm/s) ∆Tavg (K) Reb Ra

Reference 4.14 10 2321 1.9 × 107

10−11 4.36 11 2445 2.1 × 107

10−12 5.24 19 2938 3.7 × 107

10−13 6.19 33 3471 6.5 × 107

We report the numerical results for λ = λ1 = λ2 with regularization
parameter values equal to 10−11, 10−12 and 10−13. In Table 5.4 the functional
values at the end of the optimization process J (n) are reported for each
regularization parameter. Also, the number of iterations of the optimization
algorithm is included. We can observe that the case with λ = 10−11 is
ineffective since J (n) ≈ J (0). For lower values of λ, we have satisfactory
functional reductions. The case with the lowest value of λ is the one with
the strongest functional reduction.
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Figure 5.7: Turbulence enhancement case: optimal solution for λ1 = λ2 = λ =
10−12. Contours of optimal temperature field T (n) (a), contours and streamlines
of optimal velocity field u(n) (b), contours of turbulent kinetic energy k(n).

In Figure 5.7c the optimal distribution of turbulent kinetic energy is
reported for λ = λ1 = λ2 = 10−12. The maximum values of turbulent kinetic
energy are located in the proximity of Ωd and in the left top corner near the
controlled boundary. This peak is due to the strong temperature gradients
in that region that can be observed in Figure 5.7c. Here, the temperature
profile on the domain is reported. The temperature on Γc has increased and
the buoyancy forces are more effective than in the uncontrolled case. The
fluid accelerates and the turbulence increases. However, on Ωd the turbulent
kinetic energy mean value is higher than the target kd.

The temperature profiles on Γd are reported in Figure 5.8a for each
value of λ. When λ = 10−11, the control is very poor and the temperature
profile is approximately the same as the reference case. With λ = 10−12

and 10−13, the temperature on Γc is higher than in the reference case. The
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Figure 5.8: Turbulence enhancement case: temperature profiles on the controlled
boundary Γc (a) and turbulent kinetic energy profiles on the region Ωd along the
line x/L = 0.155 (b). Numerical results for λ = 10−11, 10−12 and 10−13.

temperature difference between the two vertical walls increases, buoyancy
effects are strong and the turbulence in the cavity is enhanced. In Figure
5.8b the turbulent kinetic energy profile on Ωd is plotted at x/L = 0.15 for
0.45 < y/L < 0.55. With the lowest values of λ, we obtain a good match of
the optimal solution with the target profile kd reported with a solid line in
the graph.

In Table 5.5 we report the bulk velocity Ub and the average temperature
differences between the left and right wall boundaries ∆Tavg. Rayleigh and
Reynolds numbers are also reported. For all the considered values of λ, the
flow becomes more turbulent. The condition y+ < 1 on first mesh points is
still observed for all the simulations.



Conclusion

This Ph.D. thesis deals with the development of a numerical platform for
the modeling and the optimal control of liquid metal flows. Liquid metals
with their interesting thermal properties are widely studied for heat transfer
applications. In the nuclear context, they are investigated for liquid metals-
cooled reactors. Due to the low Prandtl number, however, the standard
turbulence models employed for common coolants, like water or air, are not
appropriate, and more sophisticated models able to capture the flow and
heat transfer anisotropy are necessary.

In this framework, one of the aims of this work was to present and vali-
date a new anisotropic four-parameter turbulence model that derives from
the isotropic four-parameter turbulence model widely studied and already
implemented in the multigrid finite element code FEMuS. An Explicit Al-
gebraic Stress Model (EASM) and an Explicit Algebraic Heat Flux Model
(EAHMF) were proposed for the closure of the Reynolds stresses and turbu-
lent heat flux instead of the first-order closure relations used in the isotropic
version of the model. Special attention was given to the modeling of the
dynamical and thermal time scales to overcome the local equilibrium hy-
pothesis typical of algebraic models and to predict the near-wall and bulk
behavior of turbulent quantities. The closure of the model and estimation
of the time scales were performed with four transport equations for the log-
arithmic variables K-Ω-Kθ-Ωθ and suitable near-wall boundary conditions
were presented. For the validation of the new anisotropic four-parameter
turbulence model, three different geometrical configurations were consid-
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ered, i.e., plane channel, cylindrical pipe, and backward-facing step. For
the first two geometries, the condition of fully developed flows was simu-
lated in forced convection considering different Re and low Pr numbers. For
the backward-facing step, both forced and mixed convection regimes with
Ri = 0.338 were considered to include the effects of buoyancy forces in the
validation study. The simulation results were compared with the available
DNS data whenever possible and with the numerical results obtained by
using the isotropic version of the model. For the cylindrical pipe, few DNS
data are present in the literature for low Prandtl number fluids, then a vali-
dation based on integral quantities and empirical correlations was proposed.
For all configurations, the prediction of the velocity and temperature fields
is in good agreement with DNS reference data. For the forced convection
over the backward-facing step configuration, we could observe a general im-
provement in the prediction of dynamical and thermal fields, above all in
the estimation of the turbulent heat flux components. It can be concluded
that the anisotropic four-parameter turbulence model represents a promis-
ing approach toward the accurate prediction of both turbulent momentum
and heat flux for low Prandtl number fluids. Further simulations, including
complex geometries, different Ri numbers, and natural convection cases, are
necessary to extend the validation of the presented model.

Since buoyancy effects cannot be neglected in liquid metals-cooled re-
actors, in the design and study of these devices we need tools to simulate
and optimize liquid metal flows and heat transfer in mixed and natural con-
vection. Thus, the second aim of this work was to provide tools for the
optimal control of turbulent buoyant flows. Firstly, a mathematical analy-
sis for Dirichlet, Neumann, and distributed optimal control problems was
proposed for the Boussinesq equations. Then, in the governing equations
describing the state of the fluid we included the turbulence within a RANS
framework. We proposed the mathematical analysis of a Dirichlet boundary
optimal control problem for the Reynolds Averaged Navier-Stokes and en-
ergy system closed with a k-ω model and Reynolds analogy. In particular,
by starting from the existence of the solution of the Navier-Stokes system
coupled with the energy equation, and the existence of the solution of the
k-ω turbulence model, the existence of the coupled associated boundary
value problem was proved. We then introduced a boundary optimal control
problem to obtain the desired velocity and/or desired turbulence kinetic
energy on a domain, by controlling the temperature on a boundary. The
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optimality system was obtained through the Lagrange multiplier method.
In particular, we proved that the Lagrange multiplier technique is well-
posed and can be used to obtain the first-order necessary condition. Lastly,
a numerical algorithm based on the gradient method was introduced for
the numerical implementation of the proposed optimality system in a finite
element framework. Then, some numerical results were shown, considering
both velocity matching and turbulent kinetic energy enhancement cases. In
particular, the dependence on the regularization parameters was analyzed
to show consistency with the expectations, the robustness of the algorithm,
and the feasibility of the method.
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from Alcántara-Ávila et al. [37] with friction Reynolds num-
ber Reτ = 500 (a) and Reτ = 2000 (b) for several Pr numbers. 46

2.1 The ⟨u′
iu

′
i⟩+ distribution from data of direct numerical sim-

ulation of fully developed plane turbulent channel flow for
Reτ = 590 [35]. . . . . . . . . . . . . . . . . . . . . . . . . . 52



208 List of figures

2.2 The profile of νtε/k
2 from DNS of channel flow at Reτ = 395

[35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3 time-scale ratio of the thermal to mechanical turbulent time

scales R for Reτ = 395 and Pr = 0.025, 0.71 [35]. . . . . . . 64

3.1 Plane channel: schematic of the computational domain. . . . 85
3.2 Plane channel flow: non-dimensional velocity v+ profiles for

Reτ = 180 (a), 395 (b), 640 (c) and 1020 (d). . . . . . . . . 86
3.3 Plane channel flow: non-dimensional turbulent shear stress

⟨u′v′⟩+ for Reτ = 180 (a), 395 (b) 640 (c) and 1020 (d). . . 87
3.4 Plane channel flow: non-dimensional turbulent wall-normal

normal stress ⟨u′u′⟩+ for Reτ = 180 (a), 395 (b) 640 (c) and
1020 (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Plane channel flow: non-dimensional turbulent streamwise
normal stress ⟨v′v′⟩+ for Reτ = 180 (a), 395 (b) 640 (c) and
1020 (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Plane channel flow: non-dimensional turbulent kinetic energy
k+ for Reτ = 180 (a), 395 (b) 640 (c) and 1020 (d). . . . . . 90

3.7 Plane channel flow: non-dimensional mean temperature pro-
file θ+ with Pr = 0.025 for different Reτ = 180 (a), 395 (b)
and 640 (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8 Plane channel flow: non-dimensional mean temperature pro-
file θ+ with Pr = 0.01 for different Reτ = 180 (a), 395 (b),
590 (c) and 1000 (d). . . . . . . . . . . . . . . . . . . . . . . 92

3.9 Plane channel flow: non-dimensional wall-normal total heat
flux q+

eff and non-dimensional wall-normal turbulent heat flux
⟨u′θ′⟩+ for Reτ = 395 , P r = 0.025 (a), Reτ = 640 , P r =
0.025 (b), Reτ = 590 , P r = 0.01 (c) and Reτ = 1000 , P r =
0.01 (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.10 Plane channel flow: non-dimensional wall-normal total heat
flux q+

eff and non-dimensional wall-normal turbulent heat flux
⟨u′θ′⟩+ for Pr = 0.025 and Reτ = 395 (a) and Reτ = 640 (b). 95

3.11 Plane channel flow: non-dimensional streamwise turbulent
heat flux ⟨v′θ′⟩+ for Pr = 0.025 and Reτ = 395 (a), Pr =
0.01 and Reτ = 590 (b), Pr = 0.025 and Reτ = 640 (c) and
Pr = 0.01 and Reτ = 1000 (d). . . . . . . . . . . . . . . . . 96

3.12 Pipe flow: non-dimensional velocity v+ profiles for Reτ = 180
(a), 360 (b), 550 (c) and 1000 (d). . . . . . . . . . . . . . . . 97



List of figures 209

3.13 Pipe flow: non-dimensional turbulent kinetic energy k+(a),
turbulent shear stress ⟨u′v′⟩+ (b), wall-normal normal stress
⟨u′u′⟩+ (c) and streamwise normal stress ⟨v′v′⟩+ (d) for dif-
ferent Reτ = 180, 360, 550, 1000. . . . . . . . . . . . . . . . 98

3.14 Pipe flow: non-dimensional mean temperature θ+ (a) and
wall-normal heat flux ⟨u′θ′⟩+ (b) for Reτ = 180. . . . . . . . 99

3.15 Pipe flow: profiles of Nusselt number as a function of Peclet
number according to empirical correlations. Simulations re-
sults reported in red. . . . . . . . . . . . . . . . . . . . . . . 100

3.16 Backward-facing step geometry. . . . . . . . . . . . . . . . . 101
3.17 View of the four grids considered in the mesh sensitivity

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.18 Skin friction coefficient Cf along the heated wall. . . . . . . 104
3.19 Contours of the non-dimensional streamwise velocity v+ =

v/Ub (a) and wall-normal velocity u+ = u/Ub (b) with stream-
lines of the velocity field. . . . . . . . . . . . . . . . . . . . 105

3.20 Profile of dynamical fields for Ri = 0: mean streamwise ve-
locity v+ (a), mean wall-normal velocity u+ (b) and shear
stress ⟨u′v′⟩+ (c). : 4AP; : I4P ◦ : DNS data. . . . . . . 106

3.21 Profile of dynamical fields for Ri = 0: wall-normal normal
stress ⟨u′u′⟩+ (a), streamwise normal stress ⟨v′v′⟩+ (b) and
turbulent kinetic energy k+ (c). : 4AP; : I4P ◦ : DNS
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.22 Skin friction coefficient Cf along the heated wall. : 4AP;
: I4P ◦ : DNS data. . . . . . . . . . . . . . . . . . . . . . 107

3.23 Contours of the non-dimensional temperature T+ = (T −
Tref )/∆T for Ri = 0. . . . . . . . . . . . . . . . . . . . . . 108

3.24 Profile of thermal fields for Ri = 0: mean temperature T+

(a) and temperature fluctuations k+
θ (b). : 4AP; : I4P ◦

: DNS data. . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.25 Profile of thermal fields for Ri = 0: mean wall-normal tur-

bulent heat flux ⟨u′T ′⟩+ (a) and mean streamwise turbulent
heat flux ⟨v′T ′⟩+(b). : 4AP; : I4P ◦ : DNS data. . . . . 109

3.26 Nusselt number Nu along the heated wall for Ri = 0. :
4AP; : I4P ◦ : DNS data. . . . . . . . . . . . . . . . . . . 110



210 List of figures

3.27 Contours of the non-dimensional streamwise velocity v+ =
v/Ub (a) and wall-normal velocity u+ = u/Ub (b) with stream-
lines of the velocity field for Ri = 0.338. . . . . . . . . . . . 111

3.28 Profile of dynamical fields: mean streamwise velocity v+ (a)
mean wall-normal velocity u+ (b) and shear stress ⟨u′v′+⟩ (c)
for Ri = 0.338. : 4AP; : I4P ◦ : DNS data. . . . . . . . 112

3.29 Profile of dynamical fields: wall-normal normal stress ⟨u′u′⟩+

(a), streamwise normal stress ⟨v′v′⟩+ (b) and turbulent ki-
netic energy k+ (c) for Ri = 0.338. : 4AP; : I4P ◦ : DNS
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.30 Skin friction coefficient Cf along the heated wall for Ri =
0.338. : 4AP; : I4P ◦ : DNS data. . . . . . . . . . . . . 113

3.31 Contour of the non-dimensional temperature T+ = (T −
Tref )/∆T for Ri = 0.338. . . . . . . . . . . . . . . . . . . . 114

3.32 Profile of thermal fields for Ri = 0.338: mean temperature
T+ (a) and temperature fluctuations k+

θ (b). : 4AP; :
I4P ◦ : DNS data. . . . . . . . . . . . . . . . . . . . . . . . 115

3.33 Profile of thermal fields for Ri = 0.338: mean wall-normal
turbulent heat flux ⟨u′T ′⟩+ (a) and mean streamwise turbu-
lent heat flux ⟨v′T ′⟩+(b). : 4AP; : I4P ◦ : DNS data. . . 115

3.34 Nusselt number Nu along the heated wall for Ri = 0.338. :
4AP; : I4P ◦ : DNS data. . . . . . . . . . . . . . . . . . . 116

4.1 Computational domain for the optimal control of Boussinesq
equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.2 Uncontrolled solution: contours of temperature field T (0) (a);
contours and streamlines of velocity field u(0) (b). . . . . . . 151

4.3 Temperature matching case with Dirichlet boundary control:
optimal solution for λ = 10−7. Contours of the temperature
(a) and velocity magnitude with velocity streamlines (b). . 152

4.4 Temperature matching case with Dirichlet boundary control:
temperature profiles on the controlled boundary Γc (a) and
on the region Ωd along the line y/L = 0.8 (b). Numerical
results for λ = 10−5, 10−6, 10−7 and 10−8. . . . . . . . . . . 153

4.5 Velocity matching case with Dirichlet boundary control: op-
timal solution for λ = 10−13. Contours of the temperature
field (a), contours and streamlines of the velocity field (b),
contours of the y-component of velocity field (c). . . . . . . 155



List of figures 211

4.6 Velocity matching case with Dirichlet boundary control: tem-
perature profiles on the controlled boundary Γc (a) and veloc-
ity v on the region Ωd along the line x/L = 0.2 (b). Numerical
results for λ = 10−10, 10−11, 10−12, 10−13 and 10−14. . . . . . 156

4.7 Velocity matching case with Dirichlet boundary control: op-
timal solution for λ = 10−11. Contours of the temperature
field (a), contours and streamlines of the velocity field (b),
contours of the x-component of the velocity field. . . . . . . 158

4.8 Velocity matching case with Dirichlet boundary control: op-
timal solution for λ = 10−12. Contours of the temperature
field (a), contours and streamlines of the velocity field (b),
contours of the x-component of the velocity field. . . . . . . 159

4.9 Velocity matching case with Dirichlet boundary control: tem-
perature profile on the controlled boundary Γc (a) and veloc-
ity u on the region Ωd along the line y/L = 0.8 (b). Numerical
results for λ = 10−10, 10−11 and 10−12. . . . . . . . . . . . . 160

4.10 Velocity matching case with Neumann boundary control: op-
timal solution for λ = 10−6. Contours of the temperature
field (a), streamlines and contours of the velocity field (b)
and contours of x-component of velocity (c). . . . . . . . . 161

4.11 Velocity matching case with Neumann boundary control: tem-
perature profile T (n) (a) and wall-normal heat flux h(n) (b)
on the controlled boundary Γc. Numerical results for λ =
10−4, 10−5, 10−6 and 10−7. . . . . . . . . . . . . . . . . . . . 162

4.12 Velocity matching case with distributed control: contours
of the control Q(n) (a), temperature field T (n) (b), stream-
lines and contours of velocity field (c), contours of the y-
component of velocity (d) for λ = 10−11. . . . . . . . . . . . 164

5.1 Computational domain (a) and computational grid with bi-
quadratic elements (b) for the optimal control of turbulent
buoyant flows. . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.2 Uncontrolled solution: contours of temperature field (a); con-
tours and streamlines of velocity field (b); contours of turbu-
lent kinetic energy field. . . . . . . . . . . . . . . . . . . . . 194



212 List of figures

5.3 Velocity matching case: optimal solution for λ = 10−7. Con-
tours of the temperature field (a), streamlines and contours of
the velocity field (b) and contours of x-component of velocity
(c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.4 Velocity matching case: temperature profiles on the con-
trolled boundary Γc (a) and x-component of velocity profiles
on the region Ωd along the line y/L = 0.9 (b). Numerical
results for λ = 10−6, 10−7 and 10−8. . . . . . . . . . . . . . 196

5.5 Velocity matching case: optimal solution for λ1 = 10−7 and
λ2 = 10−9. Contours of the temperature field (a), stream-
lines and contours of the velocity field (b) and contours of
x-component of velocity (c). . . . . . . . . . . . . . . . . . 198

5.6 Velocity matching case: temperature profiles on the con-
trolled boundary Γc (a) and x-component of velocity profiles
on the region Ωd along the line y/L = 0.9 (b). Numerical
results for λ2 = 10−6, 10−7, 10−8, 10−9 and λ1 = 10−7. . . . . 198

5.7 Turbulence enhancement case: optimal solution for λ1 =
λ2 = λ = 10−12. Contours of optimal temperature field T (n)

(a), contours and streamlines of optimal velocity field u(n)

(b), contours of turbulent kinetic energy k(n). . . . . . . . . 201
5.8 Turbulence enhancement case: temperature profiles on the

controlled boundary Γc (a) and turbulent kinetic energy pro-
files on the region Ωd along the line x/L = 0.155 (b). Nu-
merical results for λ = 10−11, 10−12 and 10−13. . . . . . . . . 202



List of tables

2.1 Near-wall Taylor expansion for the components of the mean
velocity ⟨ui⟩ and fluctuating velocity u′

i. . . . . . . . . . . . 57

3.1 Plane channel flow: physical properties employed for the nu-
merical simulations. . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Plane channel flow: values of the pressure gradient expressed
in Pa/m for DNS and for 4AP simulations. Relative errors
of 4AP simulations with respect to reference DNS. . . . . . . 87

3.3 Pipe flow: flow and heat transfer parameters of the simulations.100
3.4 Backward-facing step: geometrical parameters of the simu-

lated domain. . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.5 Backward-facing step: physical properties employed for the

numerical simulations. . . . . . . . . . . . . . . . . . . . . . 102
3.6 Number of bi-quadratic cells and nodes for the four grids

of the mesh sensitivity study. Predicted reattachment yr/h

point location and relative deviation with respect to the finest
mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1 Boussinesq control: physical properties employed for the nu-
merical simulations. . . . . . . . . . . . . . . . . . . . . . . . 150

4.2 Temperature matching case with Dirichlet boundary control:
objective functional, percentage reduction and number of it-
erations of the optimization algorithm for different λ values. 153



214 List of tables

4.3 Velocity matching case with Dirichlet boundary control: ob-
jective functional, percentage reduction and number of iter-
ations of the optimization algorithm for different λ values. . 155

4.4 Velocity matching case with Dirichlet boundary control: ob-
jective functional, percentage reduction and number of iter-
ations of the optimization algorithm for different λ values. . 158

4.5 Velocity matching case with Neumann boundary control: ob-
jective functional, percentage of reduction and number of it-
erations of the optimization algorithm for the reference case
and different λ values. . . . . . . . . . . . . . . . . . . . . . 161

4.6 Velocity matching case with distributed control: objective
functional J (n), percentage reduction and number of itera-
tions n of the optimization algorithm for different values of
λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.1 Velocity matching case: objective functional, percentage re-
duction and number of iterations of the optimization algo-
rithm for different λ = λ1 = λ2 values. . . . . . . . . . . . . 195

5.2 Velocity matching case: comparison of bulk velocity, average
temperature difference, bulk Reynolds number and Rayleigh
number for different values of λ. . . . . . . . . . . . . . . . . 197

5.3 Velocity matching case: objective functional, percentage re-
duction and number of iterations of the optimization algo-
rithm for different λ2 values and λ1 = 10−7. . . . . . . . . . 197

5.4 Turbulence enhancement case: objective functional, percent-
age reduction and number of iterations of the optimization
algorithm for different λ = λ1 = λ2 values. . . . . . . . . . . 200

5.5 Turbulence enhancement case: comparison of bulk velocity,
average temperature difference, bulk Reynolds number and
Rayleigh number for different values of λ. . . . . . . . . . . . 200



Bibliography

[1] A. Heinzel, W. Hering, J. Konys, L. Marocco, K. Litfin, G. Müller,
J. Pacio, C. Schroer, R. Stieglitz, L. Stoppel, et al., “Liquid metals as
efficient high-temperature heat-transport fluids,” Energy Technology,
vol. 5, no. 7, pp. 1026–1036, 2017. 3

[2] L. Marocco, G. Cammi, J. Flesch, and T. Wetzel, “Numerical analysis
of a solar tower receiver tube operated with liquid metals,” Interna-
tional Journal of Thermal Sciences, vol. 105, pp. 22–35, 2016. 3

[3] D. Frazer, E. Stergar, C. Cionea, and P. Hosemann, “Liquid metal as
a heat transport fluid for thermal solar power applications,” Energy
Procedia, vol. 49, pp. 627–636, 2014. 3

[4] S. Manservisi and F. Menghini, “Triangular rod bundle simulations
of a CFD κ-ε-κθ-εθ heat transfer turbulence model for heavy liquid
metals,” Nuclear Engineering and Design, vol. 273, pp. 251–270, 2014.
3, 61, 62, 63, 65

[5] X. Cheng and N. Tak, “Investigation on turbulent heat transfer to
lead–bismuth eutectic flows in circular tubes for nuclear applications,”
Nuclear Engineering and Design, vol. 236, no. 4, pp. 385–393, 2006. 3

[6] J. Pacio, K. Litfin, A. Batta, M. Viellieber, A. Class, H. Doolaard,
F. Roelofs, S. Manservisi, F. Menghini, and M. Böttcher, “Heat trans-
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