
Alma Mater Studiorum · Università di Bologna

Computer Science and Engineering
Ciclo XXXIV

Settore Concorsuale: 01/B1
Settore Scientifico Disciplinare: INF/01

Big Code Applications and Approaches

Presentata da:
Francesca Del Bonifro

Supervisore:
Maurizio Gabbrielli

Coordinatore Dottorato:
Davide Sangiorgi

Esame finale anno 2022

To my family,
Maurice and Q

Abstract

The availability of a huge amount of source code from code archives and
open-source projects opens up the possibility to merge machine learning,
programming languages, and software engineering research fields. This area
is often referred to as Big Code where programming languages are treated
instead of natural languages while different features and patterns of code can
be exploited to perform many useful tasks and build supportive tools.

Among all the possible applications which can be developed within the area
of Big Code, the work presented in this research thesis mainly focuses on two
particular tasks: the Programming Language Identification (PLI) and the
Software Defect Prediction (SDP) for source codes. Programming language
identification is commonly needed in program comprehension and it is usually
performed directly by developers. However, when it comes at big scales, such
as in widely used archives (GitHub, Software Heritage), automation of this task
is desirable. To accomplish this aim, the problem is analyzed from different
points of view (text and image-based learning approaches) and different models
are created paying particular attention to their scalability.

Software defect prediction is a fundamental step in software development
for improving quality and assuring the reliability of software products. In the
past, defects were searched by manual inspection or using automatic static
and dynamic analyzers. Now, the automation of this task can be tackled using
learning approaches that can speed up and improve related procedures. Here,
two models have been built and analyzed to detect some of the commonest
bugs and errors at different code granularity levels (file and method levels).

Exploited data and models’ architectures are analyzed and described in
detail. Quantitative and qualitative results are reported for both PLI and
SDP tasks while differences and similarities concerning other related works
are discussed.

5

Acknowledgements

I would like to thank my research supervisor Prof. Maurizio Gabbrielli who al-
ways supported and guided me during my Ph.D. experience and the production
of this thesis.

In addition, I’d like to thank the two reviewers of this thesis Prof. Fernando
Mart́ınez-Plumed and Prof. Jacopo Mauro who dedicated their time providing
me with very helpful improvement hints.

I express my deep gratitude to the Software Heritage and INRIA organiza-
tions, especially Prof. Stefano Zacchiroli, that hosted me as a research visitor
and helped in the development of some parts of this work.

Finally, I’d like to thank DISI and ENEA to provide me with the computation
infrastructure that the work presented in this thesis required.

7

Contents

1. Introduction 19

2. Related Works 29
2.1. Big Code applications . 29

2.1.1. Models evaluation . 36

2.2. Programming Language Identification 38

2.2.1. File-type Identification 41

2.2.2. Image-based Programming Language Identification . . . 42

2.3. Software Defect Prediction . 43

2.3.1. Learning Approaches . 45

2.3.2. Defect Prediction aspects 50

3. Programming Language Identification 65
3.1. File Extension Identification . 68

3.1.1. Preprocessing . 69

3.1.2. The model . 73

3.1.3. Results . 77

3.1.4. Threats to Validity . 81

3.1.5. Discussion and future work 82

3.2. Image-based Programming Language Identification 85

3.2.1. Data preparation . 85

3.2.2. The model . 86

3.2.3. Scrambling . 89

3.2.4. Results . 90

3.2.5. Classification Results . 91

3.2.6. Threats to Validity . 93

3.2.7. Discussion and future works 94

3.3. Conclusions about the Programming Language Identification task 98

4. Software Defect Prediction 101
4.1. Dataset . 103

4.2. Representations and Models . 108

4.2.1. Code2Vec . 109

9

Contents

4.2.2. Infercode . 117
4.3. Conclusions about the Software Defect Prediction task 123

5. Conclusions 127

A. Results for File Extension Identification 131

B. Results for Image-based Programming Language Identification 135

C. Issues managed by Infer 141

10

List of Figures

3.1. Extensions distribution within the dataset corpus. 72
3.2. File type classification model. 73
3.3. Word cloud for token frequency distribution. 75
3.4. Source lines of code extraction from source code bundles and

their rendering. 87
3.5. AlexNet architecture, the simplest pre-trained CNN among

those we specialized for visual code recognition 87
3.6. Java code snippet in original form v. several scrambled variants 90
3.7. Class Activation Map (CAM) heat-maps for selected code snip-

pets in various languages, for the ResNet-based classifier. . . . 96

4.1. Data distribution. 106
4.2. Functions distribution. 108
4.3. Portions of Astminer output files generated for the server.c

source file. 111

11

List of Tables

2.1. Papers about the PLI task summarization. In the Dataset
column, GH and SO stand for custom extractions from GitHub
and StackOverflow, respectively while RC stands for Rosetta
Code. 39

2.2. Papers about the SDP task treated with deep learning approaches. 55

3.1. Average performance of the encoder architecture without and
with trigrams. 78

3.2. Extension confusion groups . 80

3.3. Average performance of the bigram model before and after the
re-training phase on the 2019 testset 81

3.4. Average training times per epoch (minutes and seconds), number
of epochs and total training times (hours, minutes and seconds)
for AlexNet (A), MobileNet (M) and ResNet (R) -based models
for the 2 considered steps of training. 89

3.5. Average performance of the models for image-based PLI 91

3.6. PLI performances with and without scrambling. From left to
right: no scrambling (Orig), scrambling of alphabetic characters
(A), digits (N), symbols (S), combinations of them (AN, AS,
NS, ANS) and substitution of all non-blank characters with x (X). 92

4.1. Issues’ popularity within the dataset 104

4.2. Files distribution among classes. 105

4.3. Functions distribution among classes. 107

4.4. Results for code2vec based models with 30-dimensional code
vectors. 114

4.5. Results for code2vec based models with 50-dimensional code
vectors. 115

4.6. Results for each class of the two best models. 115

4.7. Confusion matrix at best epoch for model [M1] 117

4.8. Confusion matrix at best epoch for model [M2] 118

4.9. Confusion matrix for binary [M1] 118

4.10. Confusion matrix for binary [M2] 119

13

List of Tables

4.11. Results for Neural Networks. 121
4.12. Results for Encoder-like models. 121
4.13. Results for Random Forests. 122
4.14. Results for Support Vector Classifier. 123
4.15. Results for each class of the selected SVC model. 123
4.16. Results for each class of the selected Neural Network model. . 124
4.17. Results for each class of the selected Encoder model. 124
4.18. Results for each class of the selected Random Forest model. . 125

A.1. Performance of the encoder architecture without and with tri-
grams. 134

C.1. Issues detectable using Infer . 143

14

Acronyms

ACG Aggregated Call Graph

AI Artificial Intelligence

ANN Artificial Neural Network

ASCII American Standard Code for Information Interchange

AST Abstract Syntax Tree

AUC Area Under Curve

BERT Bidirectional Encoder Representations from Transformers

bi-LSTM bidirectional Long Short Term Memory

BLEU Bilingual Evaluation Understudy

BOW Bag Of Words

CAM Class Activation Map

CBOW Continuous Bag Of Words

CC Clean Code

CFG Control-Flow Graph

CNN Convolutional Neural Network

CWE Common Weakness Enumeration

DBN Deep Belief Network

DFD Data Flow Diagram

DL Deep Learning

15

Acronyms

DNN Deep Neural Network

DP Defect Prediction

DS Dead Store

F F-measure

FCL Fully Connected Layers

FN False Negative

FP False Positive

FPR False Positive Rate

FTI File-Type Identification

GAN Generative Adversarial Network

GAT Graph Attention Network

GCN Graph Convolution Network

GH GitHub

GIN Graph Isomorphism Network

GNN Graph Neural Network

groum Graph-based Object Usage Model

GRU Gated Recurrent Unit

HAN Hierarchical Attention Network

IDE Integrated Development Environment

JIT Just-In-Time

KNN K-Nearest Neighbors

LIME Local Interpretable Model-Agnostic Explanations

LOC Line Of Code

16

Acronyms

LR Learning Rate

LSTM Long Short Term Memory

ML Machine Learning

MNB Multinomial Naive Bayes

ND Null Dereference

NLP Natural Language Processing

NTM Neural Translation Model

OBOE Off-By-One Error

OCR Optical Character Recognition

OOV Out Of Vocabulary

P Precision

PHOG Probabilistic Higher-Order Grammar

PLD Programming Language Detection

PLI Programming Language Identification

PN Pointer Network

PRNG Pseudo-Random Number Generator

R Recall

RC Rosetta Code

ReLU Rectified Linear Unit

RF Random Forest

RMSE Root Mean Square Error

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

17

Acronyms

SDP Software Defect Prediction

SGC Simplified Graph Convolution

SH Software Heritage

SHA Secure Hash Algorithm

SHAP SHapely Addictive exPlanation

SLOC Source Line Of Code

SMOTE Synthetic Minority Oversampling Technique

SO StackOverflow

SVM Support Vector Machine

TBCNN Tree-Based Convolutional Neural Network

TN True Negative

TP True Positive

TPR True Positive Rate

UV Uninitialized Value

VCS Version Control System

18

Chapter 1.

Introduction

Artificial Intelligence (AI) [156] is a huge and growing field that refers to
many heterogeneous techniques and tools that are developed to support and
ease human activities in a variety of fields such as industry, education, health,
entertainment, and so on.

The AI field includes many approaches which could be very different from
each other. The two main sub-fields of AI can be identified in symbolic and
subsymbolic (or connectionist) classes of methods.

Symbolic AI is based on logic and rigorous formalism and attempts to repro-
duce human reasoning focusing on knowledge representation, logic, and search.
This is the case of knowledge based agents and expert systems [156] which
embody knowledge in rules and facts and exploit them for various purposes.
Interpretability, reasoning, and inference are the most important features of
such systems, but they lack the capability of dealing with information encoded
into noisy data, managing uncertainty and learning. On the other hand, the
field of subsymbolic AI contains various data-driven techniques that exploit
statistical properties and methods to analyze and learn from collected data
about a certain phenomenon. These approaches extract knowledge directly
from data even without any prior knowledge but often they lack interpretability
of the extracted knowledge and their general behavior.

Sometimes, when one refers to data-driven learning approaches applied to
relatively large datasets the term Big Data [140] is used, which emphasizes
the sizable volume of the managed data.

One of the various areas in which data-driven techniques can be applied
is represented by the so-called Big Code field. Similar to Big Data, Big
Code proposes to apply learning and mining techniques to a big amount of a
particular kind of data which is represented by source code.

The opportunity to work with this kind of data has been opened thanks
to the huge availability of Open Source projects and the existence of many
public source code archives and repository hosting platforms, e.g. GitHub
[68], Software Heritage [79, 50], etc.., which are growing and affirming their

19

Chapter 1. Introduction

importance among developers’ communities and institutions. The presence
of these archives has made it possible to use the code that is hosted by them
as code data examples permitting the building of huge datasets that can be
mined and analyzed similarly to what is done for other kinds of data. In
this way, it is possible to apply techniques and concepts developed within the
Big Data field to source code data in order to learn from existing software
and use the extracted knowledge for different purposes, i.e., research analysis,
study, or building various kind of supporting tools which can be exploited
in software production processes to ease and speed up the development and
maintainability of new projects [8]. For example, common applications of Big
Code are bug detection, code clone identification, code summarization and
captioning, and also code generation and completion tools [8, 171, 6, 86]. A
more precise description of the applications of Big Code will be discussed in
Chapter 2.

Most works performed within the Big Code field exploit methods and
concepts developed in the Natural Language Processing (NLP) area. In fact,
from a certain perspective source code can be viewed as a textual production
written in a particular language, i.e., a programming language. The use
of NLP techniques is suggested and supported by the so-called Naturalness
Hypothesis [8] which states that software corpora is a particular form of human
communication and the properties which are statistically found within it are
similar to the ones found in natural language corpora. This idea has been
extensively applied and many satisfying results have been achieved in this way.
Beyond that, programming languages that are used to produce code have the
peculiarity of being composed of rigid rules and syntax which compose the
grammar of these languages, this causes the structure of the code to be less
flexible than texts produced using natural language. In this way, also other
kinds of features can be exploited when this kind of data is analyzed in order to
optimize the information content. For example, beyond textual representation,
source code can also be represented in the form of an Abstract Syntax Tree
(AST) which is built by means of the rules which define the grammar of
the used programming language. This enables the use of grammar-driven
approaches which are different from the NLP techniques tailored to manage
plain texts.

Many other representations of code exist and can be used in this field, the
choice can be done based on the aimed task, the model requirements, and so
on, in fact, different code representations deserve to be analyzed in order to
find the most suitable one for a given task or to appropriately integrate them
in a unique model.

The work presented in this thesis has been inspired and made possible thanks

20

to the collaboration with Software Heritage1 [50] which is the biggest available
Open Source code archive and aims to collect any software artifact produced
in the human history. This archive guarantees a rich availability of code data
and permits to deal with different code styles and languages both because the
stored code has been created in very different environments and because of
the natural evolution of languages, techniques, and habits during the years as
the archive stores software produced during the last 70 years. This permits
a wider range of possible analysis than in other platforms whose content is
mostly about recently emerging trends and projects.

In the following, we focus on two main tasks among the many possibilities
that can be found within the Big Code field, i.e., Programming Language
Identification (PLI) and Software Defect Prediction (SDP).

The importance of the first task, the Programming Language Detection, is
due to the central role played by programming languages in software artifacts
and there could be peculiar situations in which the used language is not known
and it is desirable to identify it. In software engineering research, “programming
language” is a common variable to correlate against—researchers have measured
language productivity [119, 118, 152], trends [146, 181], usability [123], and
code quality [97, 149, 15], to name just a few. Developers would know by heart
the language their code is written in, and would also easily identify the main
programming language used in a given codebase. However, when it comes to
large codebases, which often mix and match multiple programming languages;
or when it comes to very large-scale analyses [53, 116], encompassing entire
collaborative development forges if not the full body of publicly available
source code [2], manual detection is not an option. In these cases, researchers
tend to rely on either off-the-shelf language detection tools (e.g., GitHub’s
Linguist2 [68, 69]), or on metadata exposed by the code hosting platforms [92],
which were in turn extracted using some of the just cited available tools.

In this work, different approaches have been attempted in this direction in
order to study the problem from different points of view.

The first attempt is described in Section 3.1 and in [47], it focuses on the
prediction of files extensions for textual files commonly found in software
version control systems repositories based solely on file contents. Here, the
word “solely” is interpreted in a strict sense, depriving us of the use of
any a priori heuristic or information on the content of the analyzed files.
The detection model does not know keywords in the grammar of any given
programming language, nor shebang (#!/usr/bin/perl) or editor mode lines

1https://www.softwareheritage.org/
2https://github.com/github/linguist

21

https://www.softwareheritage.org/
https://github.com/github/linguist

Chapter 1. Introduction

(%% mode: latex) which are usually written in code files, i.e., this attempt
focuses on the intrinsic recognizability of code file types, and programming
languages. This information is not used by our model as it could dramatically
bias the model and bring confusion when it is not available (which could
often happen in large-scale code archives) as the trained model could learn
to mostly focus on this piece of information rather than the whole content
(see the Linguist case [64]). Also, we chose to focus on the file content as
intuitively the programming language used in a code file both influences and
emerges from the content structure and organization.

File extensions are highly predictive of programming languages and, more
generally, file types. Most of the available language detection tools tend to
heavily rely on them to determine file types [64]. While very effective in
the general case, doing so is problematic when file extensions are either not
available (e.g., code snippets posted on the Web or embedded in the document,
executable scripts, etc.) or wrongly assigned (either on purpose or by mistake)
because the identification tool highly relies on the information brought by the
extension and their performance usually drops [64].

As it is becoming increasingly more possible [50, 164] to analyze historically
relevant software source code dating back several decades, heuristics built
today are prone to failures when applied to “old” code, and heuristics spanning
several generations of file formats will be fragile and hard to maintain in the
long run.

After the implementation of some data preparation techniques, a simple
neural model is proposed to make predictions about the file extensions. The
proposed model is based on tokens and 2-grams frequencies which are encoded
into vector representations and have an encoder-like structure as the number
of neural units contained in the layers progressively shrinks. This approach
also focuses on the number of recognized languages which makes predictions
harder as it increases, and we want to build a model characterized by scala-
bility as the usage of such a tool should be applied to very large codebases
which potentially contain programs written in a high number of programming
languages. Arguably, recognizing a handful of programming languages or
file types could be approached with simple heuristics without incurring the
maintenance overhead of (re-)training machine learning models. However,
hundreds of programming languages exist in the wild and sometimes they
exhibit only subtle syntactic differences from each other. Also, they evolve
over time, slowly but regularly [159]. It is at such a scale of diversity that PLI
approaches based on machine learning would be most useful

The second approach that has been attempted is described in Section 3.2
and in [54]. This time the prediction is done directly at the programming

22

language level instead of file extensions and the ground truth information
about languages is assumed to be the one predicted by the Linguist tool [69].

This method uses a completely different representation of the input data
with respect to the previously introduced work, i.e., programming language
identification is treated from an artificial vision point of view. Image-based
Programming Language Identification is the other of the two major classes of
ML approaches that have been used [95].

Image-based PLI models are currently capable of recognizing a limited
amount of different programming languages, with a maximum “diversity” of
10 languages found in the literature [95, 82] while, as we already pointed out
we also want to focus on the number of programming languages among the
predictions that can be done.

This approach studies if it is possible to visually recognize that many
programming languages (in the order of hundreds) from source code snippets
images without any a priori knowledge about the languages.

Another contribution of this work is represented by the assessment of what
actually allows image-based ML models to visually recognize programming
languages, especially at this scale of language diversity as, to our knowledge,
this aspect has never been investigated in the literature. Such knowledge would
allow the future to specialize in recognition networks and improve performances.
This aspect is analyzed by randomly scrambling different character classes
(alphabetic characters, decimal digits, symbols) and comparing PLI efficacy.
We show that symbols are the characters that contribute the most to visual
recognition of code snippets (halving precision when scrambled), followed by
far by alphabetic characters, with decimal digits and indentation having a
negligible impact on the visual detection of programming languages.

The proposed model relies on Convolutional Neural Networks (CNNs) which
have been pre-trained on generic images and subsequently adapted to PLI
using the transfer learning technique. We validate the approach on the same
real-world dataset that has been used in the first presented approach and
consider 149 different programming languages. The prediction capabilities
are evaluated using three different classifiers, each based on a CNN which
are pre-trained for image recognition: a Residual Network (ResNet) [78],
MobileNetv2 [83], and AlexNet [101].

The second main point of interest in this thesis is the Software Defect
Prediction (SDP) task. Software defects are responsible for many kinds of
programs’ unwanted behavior and decrease the software products’ quality and
reliability. To mitigate the impact of potential bugs, a fundamental phase
in software production is represented by code testing, and review. However,
these activities are highly time-consuming and very expensive. This naturally

23

Chapter 1. Introduction

brought to the development of automatic supporting tools such as static and
dynamic analyzers which helps in the detection of bugs and errors within code.
Static and dynamic analyzers are often slow, and their predictions are not
always accurate, for these reasons as in other fields, the availability of many
machine learning models which exploit statistical properties of data to learn
and approximate tasks can be adapted to this particular problem. In fact,
many works have been done in this direction bringing promising results.

The first attempts of learning-based defect prediction models relied on tra-
ditional machine learning exploiting traditional code metrics usually evaluated
when defect proneness has to be assessed. For example, some common metrics
used in code analysis are complexity metrics such as McCabe [120] and Halstead
[75] features. However, these kinds of approaches do not capture syntactic,
semantic, and context information that can be extracted from source code with
other more advanced methods. This is the case of deep learning models, which
are able to process data and automatically extract relevant information from
them (feature learning) without the explicit usage of field-related knowledge.
Many of these models have been analyzed with respect to the defect prediction
task and brought interesting and promising results.

During literature study about this task a particular aspect emerges: almost
every work for defect prediction is represented as a binary classification in
which a given piece of code is evaluated and predicted to be defective or
clean, i.e., no other kind of information about the defect found in the code
are mentioned. For example, static code analyzers usually provide the user
with a detailed list of potential bugs, containing the kind and location of the
predicted bugs. For this reason, the work reported here is developed in the
direction of predicting defects and, if they are detected, the kind of bugs that
they represent.

The approach presented in this thesis models this problem as a multi-class
classification problem in which the classes are a limited number of bug types.
The dataset analyzed here is presented in [65] and is composed of C and C++
open-source projects which are processed and labeled by a static analyzer.
Of course, using this dataset limits the capabilities that can be reached by
our model as it can at most imitate the static analyzer behavior. However,
we aim to build a more efficient tool while keeping reasonable bug detection
capabilities.

Two code representations are studied in this work: code2vec [10] and In-
fercode [25]. Both approaches are based on the exploitation of the Abstract
Syntax Tree (AST) structure that can be used to represent codes when the
language is known.

Code2vec [10] describe a valuable technique to generate code vector represen-

24

tations that are originally used in the method naming task, i.e., to predict the
names of methods from the contents of their bodies. As described in [10], this
representation exploits paths extracted from code ASTs which are sequences
of nodes encountered while traversing the tree structure in the up and down
directions going from one starting token to another token. A collection (bag)
of these paths is collected and processed by Attention mechanisms to build
the code vectors. The representation obtained in this way can also be used in
different tasks and, as code2vec showed state-of-the-art capabilities also in tasks
different from the method naming one we want to assess if it can be suitable
for the defect identification within code files. As code2vec is designed for Java
projects another tool is used to generate the code2vec input constituting a
suitable tool-chain. The tool is known as Astminer [100] and has been built
to extend the code2vec applicability to many other languages, including C and
C++.

The other representation strategy is given by Infercode described in [25].
This approach defines a code representation based on ASTs which is task
agnostic, in fact, the tool just provides the user with the code vectors and does
not require the final task knowledge to work properly. The code representation
is computed by training the model in predicting sub-AST which are used as
labels in the learning phase. This task agnostic feature is interesting, and it is
worth investigating if it is suitable for the defect identification task. A problem
that has been found with the usage of this tool is represented by its limited
scaling capability. In fact, its application at file-level granularity resulted to be
mostly infeasible. To overcome this limit we change here the granularity level
at which the predictions are performed and the previously used dataset needs
to be modified in such a way that we end up with a collection of functions
labeled with the eventual bugs found in each of them.

Research Objectives

The main purpose behind the Big Code research is to exploit the huge source
code data availability enabled by the massive usage of open repository archives
to build statistical and learning-based models that can serve as support in
several large-scale tasks. In fact, many code management aspects become
intractable by means of manual human action when it comes to huge amount of
projects, repositories, and so on. In this view, automatic tools can perform the
desired tasks completely replacing the human work or just support, enhance
and facilitate it.

The aims of the works presented in this thesis share this purpose and focus
on the particular tasks of automatic programming language identification

25

Chapter 1. Introduction

and software defect prediction. Our works go in the direction of increasing
models’ scalability and classes coverage without neglecting the aspect of models’
simplicity in view of actual future deployment in real-world situations also
looking at models’ maintainability in the long run.

Thesis Structure The content of this thesis is structured as follows: Chapter 2
contains the description of some works developed within the Big Code field
mainly focusing on the two tasks that we analyzed in more details, i.e.,
PLI (Section 2.2) and SDP (Section 2.3), also reviewing some useful code
representation models.

Chapter 3 describes our two approaches to the PLI task starting with
Section 3.1 which illustrates in detail the related problem of predicting file
extensions for textual files exploiting only their content, the data processing,
the model choices, and design that we propose to approach this task. The
recognized classes are 133 and results for each of them are provided in this
Section.Section 3.2 investigates the PLI problem from the image representation
point of view describing the data treatment and image generation processes
together with the implementation, training, and evaluation details of the
prediction model. Here the recognition task focuses on 149 different classes
and the results for each of them are reported. Moreover, this Section also
reports the analysis of the most relevant visual features and character symbols
with respect to our model.

Chapter 4 focuses on the SDP topic and describes the approaches attempted
by us. Particularly, Section 4.1 contains a detailed description of the dataset
and data pre-processing together with the bug classes distribution analysis and
selection for our prediction model, i.e., Null Pointer Dereference, Dead

Store and Uninitialized Value. Section 4.2.1 contains the presentation of
the approach based on the customized version of the code2vec code represen-
tation adapted to the file-level bug identification task. Results for each of
the three selected bugs are discussed in this Section showing an encouraging
scenario for future research in this direction. Section 4.2.2 describes the models
based on the Infercode code representation for the function-level bugs identifi-
cation illustrating design, training and evaluation strategies. Similar to the
previously introduced sections, we report here the obtained results for each bug
class. This approach showed poor results, however, most of the problems in the
evaluation step arise because of the extreme imbalance between defective and
clean code classes’ popularity, i.e., the number of examples for the considered
classes.

General conclusions and discussion are treated in Chapter 5 where the main

26

problems and gains encountered performing the illustrated works are depicted
together with some ideas for future works.

Some parts of this thesis are extracted from the published papers [47, 54].

27

Chapter 2.

Related Works

The purpose of this Chapter is to present some of the existing techniques
and the state-of-the-art for the Big Code area and the main approaches
(representations, embeddings, model architectures, etc...) used in literature
and developed during the years to build and improve supporting tools, especially
in the software engineering context for developers while producing code.

The following of this Chapter is organized into three main parts: in Sec-
tion 2.1 we present several tasks, approaches, and applications that emerged
within the Big Code area from a general point of view to give an idea of
the possibilities offered by this field; Section 2.2 focuses on the presentation
of the literature about the Programming Language Identification task while
Section 2.3 focuses on the literature of the Software Defect Prediction problem.

2.1. Big Code applications

As extensively explained in [8], code can be viewed as a form of linguistic
communication and many tasks can be performed on code data treating them
similarly to natural language texts and simply applying well-known Natural
Language Processing (NLP) techniques to them. Besides, this is not the only
possible representation for source code, in fact, there are other features that
codes have and that they do not share with natural language, for instance,
a given piece of code can be represented by its Abstract Syntax Tree (AST)
which comes directly from the formal nature of the grammar rules that define
the programming language used to write it.

One of the first and most common applications developed within the Big
Code community is represented by the code completion task, where a model
is created in order to be able to suggest possible code tokens during the
code is being written. Many Integrated Development Environments (IDEs)
already perform a similar function, but they often have several limitations, for
example dynamically typed languages are less supported than statically typed
ones, token suggestions are based on a high number of handwritten rules and

29

Chapter 2. Related Works

predictions are often context-independent which is an additional limitation on
the achievable accuracy of the proposed suggestions.

Integrating classical IDEs’ suggestion systems with intelligent supports has
been widely studied and different representations of code have been proposed.
For example, the first works exploited simple n-grams models, while more recent
works started using more complex learning algorithms, grammar-based models,
or some combination of these approaches, in order to improve the overall
model performance. Tung Thanh et al. [179] propose a code representation
dependent on semantics, in which each token in the code is described by
its own ID coupled with additional information about both the token itself
(context) and the global code functionality (topic). Bielik et al. [17] present
the code completion task for the JavaScript language case. The work describes
a new approach, the use of a Probabilistic Higher-Order Grammar (PHOG)
language model using a data-driven learning approach, in fact, the final model
is able to automatically learn the grammar production rules of the language
which are designed as context-dependent by means of context parameters
and rules weights which represent the probability (score) of a certain rule,
model parameters are learned during the training phase as usual. For the
same dataset, comparable results are obtained in [109] where, given the AST
representation of the code, a sequence of grammar terminal/non-terminal (T,
N) pairs is obtained. Each pair (T, N) has its own embedding resulting in a
meaningful vector representation for that pair. The sequence of the embedding
vectors is processed by an LSTM architecture which is usually exploited to
treat sequences of variable length. An LSTM model is also exploited in [171] for
code completion in the case of the Python language, with particular care about
decreasing learning computational expenses by splitting the training tasks
into parallel sub-tasks. Instead, Li et al. [106] performs the code completion
task for both JavaScript and Python codes, it has been built using both a
classical attention algorithm and a less common architecture which is known
as Pointer Networks introduced in [185]. This is basically a modified version
of the Attention technique which is particularly suitable when dealing with
problems in which the vocabulary of the output sequence cannot be fixed a
priori but it depends on the input sequence itself. Li et al. [106] use an AST
code representation which is then passed to the Attention and Pointer Network
architectures. The Pointer Network (PN) is also able to compute longer term-
context dependencies than in the case of classic Attention architectures. This
happens because the internal memory vectors used by Attention mechanisms
are highly related to the context definition, i.e., they have fixed length, while
PN is more flexible. A sparse PN model on AST Python code representation
is also used in [16] where a comparison with n-grams, classical Attention, and

30

2.1. Big Code applications

neural language model is developed showing how Attention and PN are the best
approaches for this task, especially for what concerns the identifiers prediction.
In fact, identifiers are usually the tokens that are often excluded from the a
priori defined vocabularies. All these works made for the code completion
task are designed for Java, JavaScript, and Python projects which are three
of the most popular languages, for this reason, there is a high availability of
projects for these languages which permits extensively training and testing of
these models.

Another application commonly developed in Big Code is naming or code
summarization. The aim of the models here is to link code texts to related
natural language descriptions, captions, or names. Naming models are de-
signed to suggest suitable names for functions or code snippets based on their
semantics. This is helpful while developing software in order to make the
produced code easily readable and maintainable. Allamanis et al. [6] develop
a model that assigns embeddings, i.e., vectors, in a high dimensional space to
methods and classes names defined in a given piece of code. The embedding
should be built in order to capture the semantic meaning, e.g., names that
refer to a semantically similar concept are closer than others that represent
different concepts given a distance in the vector space. This work is presented a
log-bilinear neural language model which exploits local and non-local contexts
for the name suggestion. In the bilinear context models, every token has its
own two representations in high-dimensional space: one refers to the token as a
target and the other refers to the token as a context component. Embeddings
are learned from training data and the target suggestion is computed using
the cosine products between the target’s representations and the computed
context representations (if the target is present in multiple contexts the context
representation is an average of all of them). The more the cosine product
approximates the value of 1, the more the considered target is appropriate for
that token. Allamanis et al. [6] also present a variant of the bilinear model
based on the use of subtokens which make it possible to handle neologisms1.
This is one of the first works which exploits long-distance relations for the
method/class naming task.

Liu et al. [110] describe another approach for the naming problem. In
this work, for each method, two kinds of embeddings are computed: one
for the tokenized method’s name and another for the method body. The
first embedding is based on the Paragraph Vector algorithm [102] while the
bodies embeddings are developed by using the Word2Vec algorithm [125] on
the method body and passing the vectorized output to a CNN architecture

1Neologisms are also important in mining software in a long-term perspective.

31

Chapter 2. Related Works

which is used to create the embedding vector2. Given a piece of code, it
is possible to compute the embeddings and, studying the neighborhoods of
the two embeddings, inconsistency in naming can be eventually detected and
better suggestions can be provided.

Allamanis et al. [7] and Iyer et al. [86] use CNN and LSTM on top of
Attention architectures respectively to suggest an appropriate summary to
a given input code snippet. The model in [7] has been considered the state-
of-the-art for this task for years and it is used to compare other methods’
effectiveness for this task.

An interesting approach is the one developed in [10] which is based on the
so-called Path Attention network. This kind of network exploits the AST
structure of the code and analyzes the various possible paths in them. A
given AST path has also an associated path context which is exploited in
the present model. The architecture presented in this work is a particularly
effective choice to combine multiple context vector representations into a single
embedding vector. This final vector is obtained by means of an attention
algorithm and will represent the piece of code that produced the AST in
the following. In fact, the embedded representation of the code is used to
predict the suitable name for the input code snippet. Words and names are
represented by embedded tags and the probability distribution for the whole
name suggestion are obtained by means of the normalized dot product of the
code vector and these tags vectors.

Xu et al. [197] develop a model which focuses on the code structure looking
at the code as a tokens sequence and not using the AST structure. It uses
a hierarchical attention mechanism [201] to encode the variable-length token
sequence inputs into a fixed-length representation exploiting the hierarchical
structure of code snippets in which sets of tokens constitute blocks and sets of
blocks form methods. The encoded sequence is processed by a GRU architecture
[35] which permits to predict the sequence of tokens that should constitute the
predicted method name. The training of the two parts is performed jointly.
The model correctness is checked by comparing results to the [7] model which
is outperformed. Also, the model in [204] resulted in performing better than
[7] in the most complex situations. Here, a novel kind of approach is presented.
The methods embeddings are computed based on a simplified version of the
Call Graphs which is preferred for this situation because of the enhanced
efficiency in the case of graphs with many nodes, the Aggregated Call Graph
(ACG). This structure represents the flow for methods calls (callees) in the
body of a given method (caller). The callee-caller relationships will determine

2Both Paragraph Vector and Word2Vec algorithms are widely used in NLP applications.

32

2.1. Big Code applications

the methods’ embeddings. After the training phase on a train code corpus,
the model is used to suggest the name for a method whose body is provided
as an input by the developer at query time.

The linkage of the semantic meaning of code to its natural language de-
scription is not only applied in naming models but also in the more general
code summarization task. In this field, reinforcement learning has also been
attempted and it seems to gain good results in code descriptions generation.
For example, Wan et al. [188] encode a given code snippet in two ways, one
based on token sequence and the other via AST structures using separate
LSTMs. An additional attention layer is used to merge the two encoding
results and pass the representation result to a deep reinforcement learning
architecture. This approach brings quite good results and it is one of the few
attempts to treat code using a reinforcement learning framework. This joint
analysis of code as a tokens sequence and a graph structure for summarization
task is also exploited in [62] in which a sequence-based embedding is used
together with a graph neural network (GNN) architecture in order to capture
code information from both the analyzed structures. Also, LeClair et al. [103]
use two separate attention architectures which treat code as text and AST
respectively, the resulting representations are used to find the most suitable
description for the provided code content.

Another application of Big Code is in improving translations of a code
written in a programming language to another one or from a certain version of
a language/library to a different one permitting automatic migration. Usually,
these migration support tools were designed by handwritten rules which map
expressions of a language to the correspondent ones in the other language.
Statistics and learning algorithms applied in big code permit to build new
tools decreasing the need for human efforts in writing matching rules. For
instance, Nguyen et al. [130] develop a model based on statistical alignment3

[115] for APIs usage sequences in two languages (Java and C#) in order to
mutually map them. This is done without the need for human intervention in
the mapping procedure but it leverages a statistical algorithm for sequence-
to-sequence alignment (phrase-based model [99, 98]) to provide the results.
The sequences that are treated here are extracted from a certain graph which
reflects actions and control points flow within code, the graph structure is
called groum (graph-based object usage model) and its building strategy is
defined in [131].

S. et al. [157] present a study of the application of various phrase-based

3Statistical alignment is a task which is usually exploited in genomics but which is possible
to adapt to different situations for aligning pairs of related sequences.

33

Chapter 2. Related Works

models which have been successfully exploited in natural language translations
to the case of code translations (from C# to Java as well) in order to monitor
their value in this field. The analysis starts using a base data-driven model
which then is modified by integrating some rules which permit the incorporation
of explicit grammar constraints to improve the model performance. The authors
start building a phrase table, i.e., a table in which pairs of phrases (c1, c2), one
written in the input language and the other in the target language, are stored
together with the correspondent probability p1,2 that the phrase c2 in Java is
the actual translation of the phrase c1 in C#. The phrase table is used together
with a language model of the target language, i.e., a model which assigns
high probability to sequences of words that are considered correct sequences
in that language and low probability to wrong sentences. The translation is
found using the information contained both in the language model and the
phrase table as features and weighting them in a sum. Once the model is
trained and its parameter is learned, given a phrase in the input language c1,
the target sequence c2 which maximize the weighted sum results to be the
correct translation of c1. To produce the sequence c2 there is an algorithm
that gradually generates pieces of the sequence until all tokens from c1 are
translated. To improve this process, language formal rules are added to the
model. This guides the sequence generation and reduces the search space in
which the algorithm searches for the prefixes. In the end, they also included
in the model some custom rules about pairing syntax trees from the source to
the target language and mapping the non-terminals of these trees. During the
evaluation, the best model results are the ones that incorporate both grammar
and custom rules. Also, some important remark emerges, for example, the
fact that switching from the natural language to the programming language
area some scores measures, e.g., BLEU score, do not represent a meaningful
performance measure anymore even if it is widely used in the NLP field. In
fact, they also take into account parse and compile rate4 as quality indicators.

Machine Translation Models (NTM) are also exploited for other purposes,
for example, they can be used to learn code changes in software development
projects. For example, this particular kind of application has been performed
in [178] and [29] where classic NLP neural machine translation models are
used to capture code templates and changes. In the first work, a NTM is
trained using pairs of methods that changed after a pull request as training
examples. In this way, the model learns to translate a method from the version
which is antecedent to a pull request to the updated version which should be
obtained after it. A RNN encoder-decoder architecture is used and the next

4The percentage of sequences which parse and compile in the target language respectively.

34

2.1. Big Code applications

token suggestion for the decoding step is done by using the beamer search
method already used in [182]. In this work, the author highlights how it is
possible for a NTM to learn code changes even when the pull requests provided
in the dataset are highly heterogeneous. This suggests the possibility to use
such a model even in very different projects.

Chakraborty et al. [29] also use the tree structure of the code in order
to predict the code changes. More precisely, the code prediction in the
form of tokens sequence depends on the probability distribution for the tree
structures and another distribution which guides the token generation. The
first distribution represents the tree translation model, a tree is built applying
a sequence of grammar rules of the given language, the sequences of the rules
used to build the tree are passed to an LSTM encoder-decoder architecture
in order to learn which tree structure (corresponding to new code version)
is likely to be produced starting from another one (corresponding to the old
version). The other probability distribution represents the token generation
model which supports the generation of the new code as a tokens sequence
starting from the old sequence and the new tree structure predicted from the
previously described tree translation model. This model is built by using an
LSTM architecture similar to the one used in the previous tree translation
model. The evaluation given in the paper seems to suggest that tree-based
models can have higher performances than sequence-to-sequence models.

Beyond these applications, Big Code has also been useful in the development
of tools for bug and vulnerability detection in code. Some examples can be
found in [155] where there is an exploration of the capabilities of Machine
Learning algorithms for the vulnerability detection task. The authors used a
fixed-length embedding for tokens in codes and then they used both CNN and
RNN architectures on the embedded representation of codes to automatically
extract meaningful feature vectors. These vectors are then passed to a dense
layer and used for the actual classification. All the model versions tested in the
paper showed the effectiveness of applying these methods which are usually
exploited in NLP for the vulnerability detection task on codes. A different
architecture is developed in [77], in which a model based on a 1-dimensional
CNN using a Wasserstein GAN loss is used to detect and correct vulnerabilities
in C and C++ codes. The model presented in the paper can also be applied
in cases in which there are no labels for the training phase which represents
the main advantage of the model.

Code clone and plagiarism detection is another popular application that
took advantage of the power offered by Big Code. Büch and Andrzejak
[27] present one of the most recent works for this application, here the AST
code representation is used and its nodes are mapped into suited vector

35

Chapter 2. Related Works

representations (embeddings) which are provided to a particular LSTM model
developed to process tree structures instead of tokens sequences. The training
procedure is performed by processing pairs of ASTs exploiting a Siamese
Network [22], i.e., two identical networks with shared weights, in order to
compute the similarity of the two code components of each pair trying to
maximize the cosine similarity when the two components are similar to each
other and minimize it when this is not the case.

One of the most challenging issues in this field is the Out Of Vocabulary
management. This is a well-known problem defined in the NLP area which
is even more severe here. In fact, a code can contain almost any character
sequence as any of them can be used as identifiers (except for reserved language
keywords). For this reason, some works are also going in the direction of finding
smart ways to manage this situation for example by presenting methods to
define good vocabularies [13], models on unbounded vocabularies [41] and so
on.

Beyond the actual applications, a quite general trend in Big Code is about
not only treating code like a particular kind of textual communication which
enables the use of common NLP techniques on source codes but exploiting
the AST and/or graph representation of code as well as the grammar rules
which define a certain programming language. In fact, using the statistical
approaches together with precise language rules can bring disambiguation in
many cases and an improvement in the models’ performance and efficiency.

As the two tasks on which we focus in this research thesis are Programming
Language Identification and Software Defect Prediction the following of this
chapter focuses on the description of the state-of-the-art of these two particular
applications describing other works found in the literature which focus on
these topics. Before the presentation of these works we briefly illustrate here
some of the most useful metrics which will be used to evaluate the models that
we are going to describe.

2.1.1. Models evaluation

Unbalance among classes is a very common situation in both PLI and SDP
tasks. Even if it is often done in literature, we decided to not focus on the
accuracy measure to evaluate the goodness of our models as accuracy values
could be misleading in the case of highly unbalanced datasets. In fact, being
the probability estimation of correct classification outcomes of the model, it
gives little importance to the minority class which often contains the most
interesting cases. The more the data are imbalanced, the less the accuracy
should be taken into account to measure the performance of the predictive

36

2.1. Big Code applications

models. From its mathematical definition Eq. 2.1 (where Cij are the elements
of the confusion matrix and Nc is the number of considered classes) one can
see that high values of this metric can also be achieved by a model that only
classifies instances as belonging to the majority class.

Acc =

∑Nc−1
i=0 Cii∑
i,j Cij

(2.1)

In such a case, the model could seem to perform well but in practice it does
not work at all as everything is predicted as belonging to the same class.

Instead of accuracy, precision (P) in Eq. 2.2 and recall (R) in Eq. 2.3 values
can be used to evaluate the model.

Pi =
Cii∑Nc−1

j=0 Cji

=
TPi

TPi + FPi
(2.2)

Ri =
Cii∑Nc−1

j=0 Cij

=
TPi

TPi + FNi
(2.3)

These values are separately defined for each class and a model which classifies
every instance as belonging to the majority class would bring valid precision and
non-zero recall values only for the majority class showing the poor performance
of such a model. The Precision of the i-th class measures the probability that
an example classified by the prediction model as belonging to the i-th class is
actually an instance of the i-th class, so a high value for this metric (a value
close to 1) means a few amounts of false positives with respect to the i-th class
(FPi). Recall of the i-th class measures the probability that examples of the
i-th class are actually predicted as belonging to it, an high value of this metric
(a value close to 1) means a little number of false negatives with respect to
the class i (FNi).

Another important measure which summarizes the precision and recall values
as it is defined as their harmonic mean is the F1-score or F-measure (F) in
Eq. 2.4 which gives an idea of a trade-off between the precision and recall
values.

Fi =
2RiPi

Ri + Pi
(2.4)

Especially in the defect prediction literature, the models are usually com-
pared using the F-measure (F) and the Area Under Curve of the Receiver
Operating Characteristic (AUC-ROC) curve. The ROC curve is obtained by
plotting the True Positive Rate (TPR), i.e., Recall, against the False Positive
Rate (FPR) Eq. 2.5 at various classification thresholds.

FPR =
FP

FP + TN
(2.5)

37

Chapter 2. Related Works

The Area Under Curve of the ROC curve, i.e., the integral of the ROC curve
from 0.0 to 1.0, gives a measure of the probability that an actual positive
example has and higher probability than an actual negative example of being
classified as positive according to the model under evaluation.

As many of these metrics refer to every single class it can be useful to
compute the average values to have an idea of the whole model’s performance.
For multi-class unbalanced problems, there are different ways to compute
averages, here we use two of the mainly used averages, i.e., micro and macro-
average. The former is useful in order to take into account the number of
instances per class: classes with a higher number of examples will have a
heavier influence on the average value than the less popular ones. In fact,
micro-average for precision is defined as in Eq. 2.6 where TPi are the true
positives (correct predictions for the i-th class) and FPi are the false positives
(instances predicted as belonging to the i-th class but that belong to another
one). Macro-average is defined without taking into account the number of
instances per class, i.e., every class will equally influence the average. For
example, in the case of precision macro-average is defined as in Eq. 2.7 where
Pi is the precision value for the i-th class as in Eq. 2.2. Analog definitions hold
for the other performance measures.

Pm =

∑
i TPi∑

i (TPi + FPi)
(2.6)

PM =

∑
i Pi

Nc
(2.7)

2.2. Programming Language Identification

Traditionally, PLI has been implemented in effective tools [191, 44, 69] by
relying on heuristics such as file name extensions, shebang lines in executable
scripts (e.g., #!/bin/bash), editor mode lines (e.g., -*- mode: python -*-),
and a priori knowledge about programming language grammars (e.g., their
keywords or comment delimiters). More recently PLI methods based on super-
vised machine learning (ML) have emerged, replacing the need of maintaining
complicated heuristics as languages evolve with neural network training.

Several approaches have been explored for programming language detection,
the most relevant of them have been also reported in Table 2.1.

5Well-known Open Source projects
6http://domex.nps.edu/corp/files/govdocs1/

38

http://domex.nps. edu/corp/files/govdocs1/

2.2. Programming Language Identification

Paper Year Dataset Task Classes Method Evaluation

van Dam and
Zaytsev [183]

2016 GH text-based
PLI

20 various NLP
models

F1=0.97

Klein et al.
[96]

2011 GH text-based
PLI

25 handcrafted fea-
tures

acc=0.5

Ugurel et al.
[180]

2002 Projects5 text-based
PLI

10 SVM acc=0.89

Reyes et al.
[150]

2016 RC, GH,
custom

text-based
PLI

391, 338,
10

LSTM acc=0.80,
0.29, 1.00

Gilda [67] 2017 GH text-based
PLI

60 word-level CNN acc=0.97

Alreshedy
et al. [12]

2018 SO text-based
PLI

21 BoW + MNB acc=0.75

Alrashedy
et al. [11]

2020 SO text-based
PLI

21 BoW +XGBoost acc=0.89
F1=0.89

Fitzgerald
et al. [63]

2012 benchmark6 FTI 24 Byte-level 1/2-
grams +SVM

acc=0.47

Gopal et al.
[70]

2011 benchmark6 FTI 316 Byte-level N-
grams + KNN

F1m=0.90,
F1M=0.60

Kiyak et al.
[95]

2020 GH text vs.
img -based
PLI

8 CNN acc=0.99

Hong et al.
[82]

2019 SO + GH img-based
PLI

10 pretrained
ResNet

acc=0.90

Ott et al.
[138]

2018 video
frames

img-based
code detec-
tion

Java vs
non code

CNN acc=0.86

Ott et al.
[139]

2018 video
frames

img-based
PLI

Java,
Python,non
code

CNN acc=0.98

Table 2.1.: Papers about the PLI task summarization. In the Dataset column,
GH and SO stand for custom extractions from GitHub and Stack-
Overflow, respectively while RC stands for Rosetta Code.

As very relevant to our work and often used in the labeling step by many
other related works we start presenting Linguist. Linguist [69] is an open-source
language detection tool developed and used by GitHub to predict the language
used in the files hosted by the system. The model works by implementing
several strategies which account for Vim or Emacs modeline, commonly used
filename, shell shebang, file extension, XML header, man page section, several
heuristics, and Näıve Bayesian classification. Contrarily to our content-based

39

Chapter 2. Related Works

PLI model it uses much extra information about files. Its own accuracy is
reported by GitHub [64] as being around 85%. The accuracy of studies that
have used Linguist as ground truth should then be diminished accordingly.
Additionally, Linguist relies on file extensions as a feature and its accuracy
drops significantly when they are missing [64], as in the case in our problem
statement. van Dam and Zaytsev [183] tested various programming language
classifiers on source files extracted from GitHub for 19 language classes and
labeled them using Linguist as a source of truth. They obtained a value of
0.97 for F1-score, precision, and recall. Klein et al. [96] performed language
recognition among 25 language classes using source code from GitHub and
files are labeled using both file extensions and Linguist. Only files for which
file extension and Linguist-detected language match have been included in
their trainset. Then, a feature vector is extracted from source code using
features, such as parentheses used, comments, keywords, etc., and used for
training. The obtained accuracy is 50%. Ugurel et al. [180] propose various
mechanisms for the classification of source code, programming language, and
topics, based on support vector machines (SVM). On the language front,
they were able to discriminate among 10 different programming languages
with 89% accuracy. Their data were retrieved from various source code
archives available at the time (it was 2002, pre-GitHub). With respect to
the aforementioned studies, the approach presented in this paper is simpler,
performs better in terms of accuracy, and handles significantly more (5–10x)
file type classes. Reyes et al. [150] used a long short-term memory (LSTM)
algorithm to train and test a programming language classifier on 3 different
datasets, one from Rosetta Code [129] (391 classes), GitHub archive (338),
and a custom dataset (10). The obtained accuracies were, respectively, 80%,
29%, and 100%. They also compared their results to Linguist, finding Linguist
scored worse except for the second dataset in which it reached 66% accuracy.
The comparison between [150] and the approach presented in the present
paper is interesting. The custom dataset confirms what was already apparent
from previous comparisons: one can do much better in terms of accuracy by
reducing the number of language classes (and as few as 10 classes is not enough
for our stated purpose). The other two datasets exhibit larger diversity than
ours (≈ 300 classes v.≈ 100), but perform very differently. We score better
than the (more controlled) Rosetta Code dataset and much better than the
GitHub dataset. Our approach is simpler in terms of architecture than theirs
and we expect it to perform better in terms of training and recognition time
(as LSTM tends to be slow to train)—but we have not benchmarked the two
approaches in comparable settings, so this remains a qualitative assessment
at this stage. Gilda [67] used file extensions as ground truth for source code

40

2.2. Programming Language Identification

extracted from GitHub and a word-level convolutional neural network (CNN)
is exploited as a classifier. The model reached 97% accuracy and is able to
classify 60 different languages.

Alreshedy et al. [12] tackled the language identification problem focusing
on code snippets enhancing the effectiveness of the implemented models for
a relatively low number of lines of code. The dataset used here is extracted
from Stack Overflow posts where code snippets are retrieved and labeled
using the provided tags. The number of analyzed languages is 21 and the
snippets are represented as feature vectors computed on a Bag-of-Word (BoW)
model, while the implemented classifier is a Multinomial Naive Bayes (MNB)
algorithm which permits the achievement of 75% accuracy. Also, the authors
built an improved model based on Random Forest and XG-Boost including
textual information from Stack Overflow questions besides the code snippet
contents improving the accuracy score as explained in [11].

2.2.1. File-type Identification

In approaching the PLI task, the labeling strategies are almost never completely
correct in identifying the language as the labeling tools are not 100% accurate,
and heuristics, for their nature, represent approximations. In a first attempt,
we decided to focus on the related but far from equivalent task of File-Types
Identification (FTI) predicting file extensions using as labels the extensions
found in the file names of repositories’ instances which most probably represent
source code or at least textual files.

Other works on file-type identification have been done on the more general
problem of classifying file types that might also be binary formats. In the
field of digital forensic Fitzgerald et al. [63] performed classification for 24 file
classes using byte-level 1-grams and bigrams to build feature vectors fed to a
SVM algorithm, reaching 47% accuracy on average. Gopal et al. [70] used and
compared similar approaches for the same task, but for 316 classes including
213 binary formats and 103 textual ones. They reached 90% micro-average and
60% macro-average F1-score. This relatively big gap between the two average
measures hints at significant differences in the classes (e.g., frequencies in the
test set). Binary file type detection is a significantly different problem than
ours. There one can rely on file signatures (also known as “magic numbers”),
as popular Unix libraries like libmagic and the accompanying file utility do.
Such approaches are viable and could be very effective for binary files, but
they are less maintainable in the long run (as the database of heuristics should
be maintained lest it becomes stale) and less effective on textual file formats,
where magic numbers are either missing or easily altered.

41

Chapter 2. Related Works

2.2.2. Image-based Programming Language Identification

One of the models presented in this work focuses on representing code as images
and performing classification with respect to languages on these images.

Image-based PLI models are currently capable of recognizing a limited
amount of different programming languages, with a maximum “diversity”
of 10 languages found in the literature [95, 82]. Arguably, recognizing a
handful of programming languages could be approached with simple heuristics
without incurring the maintenance overhead of (re-)training machine learning
models. Hundreds of programming languages exist in the wild, sometimes
exhibiting only subtle syntactic differences and they evolve over time, slowly
but regularly [159]. It is at such a scale of diversity that PLI approaches
based on machine learning would be most useful, but it remains to be seen
if it is possible to visually recognize many programming languages with high
accuracy.

Kiyak et al. [95] compared several image and text-based approaches to
Programming Language Identification (PLI). At a glance, Table 1 in their work
reports that the maximum diversity supported by image-based PLI among
surveyed works was 8 languages, reached by the same authors in [95] with
an accuracy of 93.5% on a dataset of 40 K files. We achieve comparable
performances (92% precision and recall) with much higher language diversity
(149 languages) and on a larger dataset (300 K snippets). Both approaches
use Convolutional Neural Networks (CNNs), the main difference being our
usage of transfer learning to adapt pre-trained image CNNs. Considering
the obtained performances, the saving in training effort enabled by transfer
learning appears to validate our choice.

Image-based PLI has been attempted by others too. Ott et al. [138] have
shown how to use CNNs to identify video frames that contain Java code within
video programming tutorials (versus frames not showing code at all) and to
distinguish frames containing Java from frames containing Python [139]. In
the present work, we consider a much larger set of languages. They use real
images from screencasts and labeling performed manually by students, whereas
we use synthetic images and rely on Linguist [69] as the source of truth.

Hong et al. [82] (not considered in [95]) performed image-based PLI over 10
languages with 90% accuracy, using snippets from StackOverflow and GitHub,
rendering them to bitmaps like we do, but using GuessLang [168] as the source
of truth. They use ResNet as a pre-trained CNN, which we also considered
in this work. In comparison, we achieve a slightly better accuracy at much
higher language diversity, and we provide a more complete overview of the
possible approaches by comparing the results of several CNNs.

42

2.3. Software Defect Prediction

Other visual artifacts have also been analyzed for uses cases other than PLI.
CodeTube [144] uses Optical Character Recognition (OCR) techniques to index
the parts of video programming tutorials that contain code fragments and
allows to query them as text. Yadid and Yahav [198] used similar techniques
to extract code from video tutorials, joining together snippets that spawn
multiple frames with OCR error correction. Zhao et al. [207] used CNNs to
automatically identify common development workflow actions in programming
screencasts. The images in our dataset are not from screencasts but given
the high quality of screencast frames, we expect the proposed classifiers to be
applicable in that context as well.

2.3. Software Defect Prediction

Software defects can be related to different aspects of a software artifact.
Defects can occur as code errors, inefficiency concerns, unwanted behaviors, or
because the software does not match the aimed expectations. Software defects
are often introduced at the design and implementation level, because of non-
optimal choices or coding errors, and so on. Also, for compiled languages, they
can be introduced as compiler-induced anomalies or defects in the assembly-
produced code. In this work, we focus on defects related to source code issues
that are not related to the production expectation, i.e., we mostly look at code
errors, bugs, and vulnerabilities.

Detecting such defects represents a crucial task in the software production
pipeline and, besides manual checking and reviewing usually made by humans,
various automatic techniques exist to spot different categories of defects.

Traditional automatic methods for defect detection in software are mainly
based on code analysis which can be static or dynamic and is briefly described
below.

Static code analyzers Program static analysis (white-box testing) permits
the detection of certain kinds of defects before executing the program, i.e.,
at compile time. This kind of analysis finds errors and/or code flaws that
could become an error in the future, some of them are similar to compiler
warnings. The static analysis includes simple syntactic checking together with
more complex reasoning by implementing rules about code semantics which
are not usually considered by compilers.

The actual analyzer’s behavior depends on its implementation and features,
in fact, depending on the actually used tool also formatting suggestions can
be highlighted to respect some standards, software metrics can be computed

43

Chapter 2. Related Works

while performing the analysis, etc.

This kind of analysis is based on the implementation of some code rules and
is based on logical reasoning to check if the analyzed code respects the prefixed
rules. To do so, such tools usually exploit formal methods, i.e., rigorously
applying mathematical reasoning.

A common problem for static analyzers is the high number of false positives,
which means that sometimes the analyzer could raise an alarm for a detected
defect that is not an actual defect for several reasons. An example of static
analysis is given by symbolic execution in which the algorithm is not executed
on actual input data but on a symbolic version of them on which the algorithm
perform logic operations. The output computation can bring different results
because of the presence of conditional statements and the result is an execution
tree whose leaves correspond to different execution paths (and outputs). There
can be a situation in which some of these paths are never crossed in practice
because of the sets of inputs that would cause these paths to be empty.
Generally, establishing if a given path is walkable or not is an undecidable
problem, i.e., finding all the possible run-time errors in a program is an
undecidable task. These constraints to make approximations on the code
analysis could bring the previously mentioned false positives.

Static analysis is usually used to spot defects at the early stages of the
project implementation to drastically decrease the required effort and costs
due to the review processes. The kinds of issues that a static analyzer can
find could be the detection of dead code, anti-patterns, bugs, code guidelines
violations, type inconsistency, injection, buffer overflows, etc.

Dynamic code analyzers Dynamic program analysis (black-box testing) is
a kind of code testing based on the actual code execution and the program
should be ready to be executed to be eligible for dynamic analysis. It can be
based on known vulnerabilities and potentially malicious or unexpected inputs
which are used to feed the algorithm that is going under testing and record the
consequent behavior. There are no actual rules about how to implement such
analysis, attention should be focused on the inputs used to test the algorithm
to guarantee enough testing coverage which is an indication of the percentage
of the code which is executed during tests.

This analysis can spot vulnerabilities that are hard or impossible to be found
employing static analysis. For example, dynamic analysis is more suitable to
test memory management issues.

As dynamic program analysis operates on program execution it does not
study source code but focuses on compiled and executable programs. For

44

2.3. Software Defect Prediction

this reason, this approach is more linked to binary representation than to the
actual source code content.

2.3.1. Learning Approaches

Traditional automatic tools are way faster than humans in code checking
and testing, this is one of the main reasons behind their success. However,
depending on the project size, they may not always be exploited because
of efficiency considerations which could make the application of these kinds
of code analyzers unfeasible. Moreover, code projects and repositories are
growing fast nowadays and the risk of making the traditional tools inapplicable
is growing as well.

We already emphasized the fact that these kinds of methods (especially
static models) often bring a high rate of false alarms, which means that if the
analyzer tool detects a certain defect it could also not be an issue but only
detected as such due to analysis approximations required by the undecidable
nature of these problems. These two issues affect the efficiency, scalability,
and accuracy of defect detectors, for these reasons, researchers are investing
resources to explore new ways to perform the same (or similar) tasks while
mitigating the limitations proper of the traditional tools.

All the new learning models developed within the software defect prediction
area aim to decrease the time and costs that are usually spent in the quality
assurance, testing, and fixing stages, and they are mainly oriented to the
statistical approach. In fact, like in many other fields, even in software defect
prediction the need of improving or adapting to new scenarios traditional tools
finds the answer in data-driven learning approaches that can be exploited
thanks to the availability of many open software projects stored in repositories
on several archives.

In the following, we are going to introduce these new trends in research from
different points of view such as data, data representations, detection models,
and performance evaluation strategies.

Datasets

Source codes used in open source projects are often stored in repositories
systems and can be accessed and reused accordingly to licenses specifications.
These are often used to build code datasets that can serve different purposes
and, in this precise case, in the defect prediction task. Depending on the model
that is chosen to tackle the problem raw code data are appropriately cleaned
and prepared to be used as inputs for the chosen statistical learning algorithm.

45

Chapter 2. Related Works

Contrarily to the easy accessibility of data, the information needed to label
them is not always straightforward to obtain. Data labels are fundamental for
the implementation of supervised learning algorithms and the performances
of the produced models. In the defect prediction case, labels could concern
the presence, nature, location, and/or other characteristics of software defects
within the considered code depending on how the dataset is built and the
purposes that it should satisfy. In the datasets found in the literature, labels
are mostly characterized by binary nature as the analyzed code is labeled as
buggy or non-buggy, without other details about the defects. However, few
existing datasets also show the number of bugs within the considered code,
the location, and the kind of the bugs.

The main problem for labels availability is the cost of the labeling task to
create an accurate dataset data should be also manually reviewed by human
experts to be reasonably confident about their truthfulness. Only a few datasets
have been manually reviewed by experts as this is a highly time-consuming
task but it also contributes to create more valuable models as data has been
checked for defect presence. In other cases, the dataset is labeled exploiting
external information as commit messages or bugs reports.

There are also some works that use datasets whose labels are represented by
traditional tools’ outputs, in these cases the models trained on such datasets
attempt to imitate the behavior of the traditional tools used in the labeling
phase. This can be useful if we aim to create a model that is faster and/or
lighter than the traditional ones or just for research reasons as they cannot
improve the prediction from the accuracy point of view. An example of this
kind of dataset can be found in [66] where bugs information is represented
by the output files created by the Infer static analyzer [55] which shows the
type and location of the bugs. This dataset is used in our work about defect
prediction as it will be presented in the dedicated Chapter 4. However, as we
already noticed in the previous sections this labeling choice can be a source of
many false positives that would impact the models trained using this dataset.

An important issue shared among almost every dataset analyzed in this
literature study step is represented by the high unbalance of the classes. It
is way more common to find non-defective pieces of code than defective ones
in actually used projects and, for this reason, when bug prediction datasets
are created exploiting them the buggy class is much less populated than the
non-buggy class.

Another feature that characterizes the analyzed works and the exploited
datasets are the prediction levels at which the defect detection is performed,
e.g., code granularity. Part of the literature is referred to detect the presence of
defects within the entire file, in these cases, the prediction is done at file-level.

46

2.3. Software Defect Prediction

Instead, other works are focused at class-level, function-level, or, only in a few
recent works, at line-level.

Open manually labeled datasets for software defect prediction are very rare,
an example can be found in [210, 37] where the dataset used by the authors
has been retrieved from some important C libraries by collecting vulnerability-
related commits (based on some relevant keywords) and extracting buggy
or non-buggy functions, then manually reviewed and labeled (a task which
required around 600 man-hours). This dataset is named Devign and it is part
of the CodeXGLUE dataset described in [113]. Also, in [173, 145] the used
dataset has been manually reviewed from the labeling point of view.

Sometimes, labels are generated with some other strategies. Wang et al.
[190] obtained labels from bug reports and commit history for various Java
projects. Similarly, [4] codes changed by bug fixing commits in a version
control system are labeled as defective. Li et al. [104] labeled a file as buggy if
it contains at least one post-release bug and non-buggy otherwise.

There are several benchmark datasets for the defect prediction task that
have been exploited in many works in the defect prediction research area.
Some works used datasets that are not or only partially publicly released,
and, for other researchers, it is difficult to compare performance on reasonably
similar data samples. For this reason, some datasets have been shared to
permit fair comparisons between models, for example, the Unified Bug Dataset
[59] has been built for this purpose. To do so, the authors unified multiple
preexisting datasets which share some important features such as the use of
the Java programming language, the availability of bug information referred
to at file or class-level, and the availability of unambiguous code elements
names. The data features are numerical as they are represented by software
metrics computed on code, but the actual code can be retrieved thanks to the
mentioned availability of the code elements’ names. The code features included
in the Unified Bug Dataset are both extracted from the original datasets and
extended with new ones.

The Unified Bug Dataset unify 5 datasets: PROMISE [161], Eclipse Bug
Dataset [212], Bug Prediction Dataset [43], Bugcatchers Bug Dataset [74] and
GitHub Bug Dataset [176]. In all these datasets the labels about the bugs are
represented by the number of defects that have been found in the considered
code elements.

The PROMISE dataset [161, 20] is one of the most important and used
datasets in the defect prediction research community. It is a collection of
different important projects written in Java (such as the NASA dataset) aimed
to promote advances in software engineering research. These projects are kept
separated in the structure of the PROMISE repository as they can be not

47

Chapter 2. Related Works

homogeneous in their features and detection levels. Code inputs are represented
by various kinds of software metrics computed by McCabe [120] and Halstead
[75] features7 extractors on the actual projects’ source code. This repository is
not composed of code-like data but of the software measures’ values which are
numerical input data. The actual code can be retrieved using the information
provided about the considered projects and code elements’ names.

The other datasets included in the Unified Bug Dataset are similar in
structure and data retrieval strategy even if the code features which represent
the codes could be different.

There exist many other datasets for the defect prediction task. The dataset
presented in [126] is designed for the defect localization task and it contains
programs in Java, C++, and Python programming languages. It has been
created to support the research in the area of bug localization among different
languages as the already existing dataset for this task only focuses on the Java
language.

Another useful and widely used tool is the bug database Defects4J presented
in [90] which collects bugs information and can be used to create datasets.
Just et al. [90] describe an approach to isolate 357 real-world bugs in Java
projects and use it to create a bug database that can easily be extended with
new bugs. Bugs isolation means that by detecting versions that involve bug
fixing changes, only fixing related changes are considered in the retrieving
step. Also, bugs are presented with reproducible tests which demonstrate bugs
and patches. As bugs contained in this database refer to real-world projects,
Defects4J is suitable for working with large-scale software. Defects4J also
inspired the construction of a similar dataset, BugsInPy, which is about bugs
in codes written in the Python programming language [192].

Saha et al. [158] criticize Defect4J dataset of being too restrictive in the
Java bugs variety and try to improve the dataset from this point of view by
creating the Bugs.jar large-scale Java bugs dataset built thanks to the high
level of building automation. This work aims to create a bug dataset that
maximizes bug diversity representing real-world situations. It also focuses
on bug reproducibility by presenting valid test cases and sharing the others
Defects4J features. In this dataset, each instance contains both the buggy and
fixed code versions together with a bug description and a set of test cases that
can be used to demonstrate the bug presence and the effectiveness of the patch
implementation. The projects exploited in this dataset have been extracted
from the Apache ecosystem on GitHub based on their tagging to increase the
aimed diversity.

7These are software complexity measures.

48

2.3. Software Defect Prediction

An interesting dataset is the Draper VDISC Dataset, it has been built in
[153] and has been made available by the authors. This dataset has been
created because the existing datasets result to be limited in size and variety
concerning the authors’ aims. They focus on function-level vulnerability
detection considering C and C++ codes from the SATE IV Juliet Test Suite,
Debian Linux distribution, and public Git repositories on GitHub. Instances
from the SATE IV Juliet Test Suite are already labeled while the ones from
the other projects are not and three static analyzers are used to label functions
as vulnerable or not.

Fei et al. [57] construct the GHPR dataset by extracting defective codes
from GitHub repositories querying for defect-related pull requests instead of
commits. Class-level detection is the main purpose of this dataset and it is
characterized by the fact of being balanced, a very rare feature in bug datasets.
The dataset is balanced because of the data extraction methodology, in fact,
the authors found defect-related pull requests and they used the code element
before fixing as a defective example and the correspondent version after fixing
as a non-defective example. In this way, they obtain the same number of
examples for the two examined classes.

Many other datasets can be found with their strengths and weaknesses. The
work presented in [61] is an attempt to create a new dataset, called BugHunter
dataset, which can benefit from the different positive aspects of previously
existing datasets and a novel strategy in the dataset building phase. The bugs
are isolated, only the defective and fixed code portions are used and the entire
version history is considered. Bugs are associated at different levels, in fact,
there are some instances for file-level detection and others for class-level and
method-level detection. Each instance of the dataset is represented by the
actual Java code element and several software metrics and bug information.
The construction of the dataset has been designed to be automated to create
a large and easily expandable dataset.

A dataset that covers projects written in several languages rather than
focuses on one language only is the Software Assurance Reference Dataset
(SARD) [19]. The code data come from both synthetic and real-world programs
and the covered languages are C, C++, Java, PHP, and C#. Around 150
kinds of defects are represented within this dataset, and they are precisely
located in the program’s body. This is a very different feature with respect to
all the other described datasets which only have the number of defects or a
binary buggy/non-buggy class feature.

49

Chapter 2. Related Works

2.3.2. Defect Prediction aspects

The models found in the literature about defect prediction can focus on slightly
different applications and have different features. The first distinction that can
be highlighted is between within-project and cross-projects defect prediction.
In Within-project defect prediction, there is the attempt of building a predictive
model which is trained and tested on data that belongs to the same project.
In this case, the model is trained on the code of a project and then tested and
exploited on the same projects to make predictions in parts that have not been
used in the training phase such as all the code that will be written in the future
within that project. To use these techniques, each software project should have
its predictive model and to effectively train it, there should be enough code
data from that project, which is not always a condition that can be satisfied.
Cross-project defect prediction, on the other hand, can solve the problem of
insufficient amount of data from the same project by creating models that can
be trained on data from some projects and tested and exploited on completely
different projects. The cross-projects defect prediction approach seems to
be more challenging than the Within-project defect prediction one, probably
because of the presence of more differences between data used for train and
test as the projects would share fewer characteristics such as project structures,
programming styles, identifier names, function names, etc.

Another important feature that is used to distinguish among the models
presented in the literature is the level or granularity at which the considered
model operates. In fact, in some works the defect detection task is performed
within a whole file so the predictive models operate at file-level, other works
focus on detecting defect presence in code methods and the corresponding
models are detectors at method-level or function-level. Similarly, models can be
found to operate at class-level and line-level. On the other hand, change-level
approaches are a bit different as they do not act at the level of code elements
but refer to the changes which are performed by programmers on the considered
code. Usually, data for these models are retrieved as commits changes from
open Version Control Systems (VCS) available over the internet, i.e., GitHub
[68]. Commits are usually represented as couples of added and removed lines
of code and are also used to build also line-level models. Change-level defect
prediction is also known as Just in time defect prediction, an approach that
tries to detect the possibility of the introduction of a defect when the code is
produced or modified.

50

2.3. Software Defect Prediction

Machine Learning models and Software metrics

The first works which tried to improve traditional methods for software defect
predictions by exploiting the huge code data availability focused on traditional
Machine Learning (ML) techniques which use handcrafted features designed
by code experts and computed on source codes. Mainly, features used in
these works are metrics used in software quality and complexity estimations.
It is a common understanding among the software security community that
complexity negatively impacts software projects from a security point of view
as increasing the complexity level of software the probability of having vulner-
abilities increases too. Cyclomatic complexity is evaluated on the program’s
control-flow graph (CFG), a particular representation of program execution,
by computing how many linearly independent paths can be found in it, i.e.,
none of these paths can be rebuilt by combining other of these paths. Many
complexity measures have been proposed, some of them can refer to the size
of the considered code, number and/or frequency of operators, the number
of loops and conditional statements, pointers usage, and so on. Very com-
mon features in metrics-based defect prediction models are the McCabe [120]
and Halstead [75] complexity measures together with CK metrics designed in
[33, 34] within the scope of the Object-Oriented paradigm to inform about
the complexity and quality of software. As pointed out in [205, 135, 134],
also Michura’s standard deviation metrics, Bansiya and Davis’ metrics, and
Etzkorn’s average complexity measures are useful to create defect prediction
models.

Radjenović et al. [147] show how to process metrics are effective in post-
release defect prediction models found in the literature. Process metrics involve
code delta, code churn, the net increase in Lines Of Code (LOC) for each
module, the number of developers, the number of past faults, the number of
changes, the age of a module, and so on.

Dependency metrics are also considered in some works like [127, 128] and
are a measure of the relationship between different code elements, such as data
and call dependencies.

These kinds of features are computed on code and used to build the code
representation that will be passed as input to some Machine Learning algo-
rithms which learn to discriminate defective codes from non-defective ones by
looking at these features and their appropriate combinations.

The works presented in [186, 108, 56] are systematic literature reviews
that analyze several papers published in software engineering journals and
conferences about software defect prediction and filtered by setting some
desirable features and covering different time slots such as 2000-2013, 2014-

51

Chapter 2. Related Works

2017 and 2016-2019, respectively.
Wahono [186] shows how most of the used datasets are private and the

models built on them are hard to be compared with other research works.
The most used traditional machine learning methods are Logistic Regression,
Naive Bayes, KNN, Neural Network, Decision Tree, SVM, and Random Forest
but, even if many works focused on comparative analysis among different
classifiers, they only show results for a given set of data. From here, it follows
that there are no models which perform generally better than others for all
datasets and comprehensive analysis of different models remains a tricky task.
Despite this, some strategies are suggested to improve models’ performance
such as parameters optimization, using ensemble and boosting algorithms, and
implementing some feature selection methods to reduce data dimensionality.

Li et al. [108] also focus on feature selection implementation together with
other useful data manipulation strategies found in data prediction works.
They also show other important aspects of common problems found in defect
prediction data such as the need of handling the widespread problems of class
imbalance and the presence of noise. A common and promising strategy to
handle class imbalance in defect prediction seems to be the SMOTE technique
[30] which aims to synthesize new instances for the minority class. Other
interesting cases look at working with heterogeneous data which can help
improve models when the lack of historical data is an issue. Some new
techniques which emerged in machine learning fields are cited such as dictionary
learning [89, 187], transfer learning [31, 194], kernel ensemble learning [200]
and deep learning. The presence of many works which are hard to be replicated
is highlighted, together with the problem of the difficulty in a fair evaluation
of different models and generalization to unavailable closed software projects.

Faseeha et al. [56] describe several recent attempts to improve existing works
on defect prediction. Many of these works focus on improving data quality
by using various data preprocessing techniques such as feature extraction and
selection, standardization and normalization of numerical features, and data
sampling for class imbalance. Another kind of attempt in improving predictions
is given by the usage of meta-learning frameworks. Meta learners are used
to select the best learning model among a set of selected ones performing on
some datasets. This kind of technique is used in [45, 52, 51] implementing it
in different ways.

Ponnala and Reddy [143] present one of the most recent surveys about defect
prediction describing the current state-of-the-art in this field. In this work,
the literature about traditional machine learning models mainly focuses on
hyperparameters optimization [1], features reduction via Principal Component
Analysis (PCA) [73] or utilizing hybrid wrapper-filter heuristics [84], the use

52

2.3. Software Defect Prediction

of hybrid features (static and dynamic) [32] and hybrid models [175].

An attempt to design defect detection as an anomaly detection task is
described in [4]. As the defect prediction datasets are usually highly unbalanced
and being the minority class the one which refers to defective codes, these
defects can be treated as anomalies in non-defective codes. The dataset
used in this work is the NASA function-level dataset which belongs to the
PROMISE Repository on which they extracted 21 features among the Halstead
and McCabe ones and performed deduplication of repeated instances. The
approach used here exploits autoencoders and trains them on a reconstruction
task for the examples labeled as correct ones by minimizing the reconstruction
error calculated as the Root Mean Square Error (RMSE). After this phase,
the reconstruction error for defective and non-defective instances are used in
statistical tests to determine the distributions of errors in the two cases which
are then used to decide the defectiveness of examples. The model reached a
0, 2 ≤ F1 ≤ 0, 6 depending on the dataset (as the NASA dataset is composed
of different datasets too) but 4 out of 5 cases perform better than other tested
methods, i.e., Gaussian Naive Bayes, Logistic Regression, k-Nearest-Neighbors,
Decision Tree, and SVM.

As one of the main problems for learning-based defect prediction approaches
is the lack of labeled data some works based on semi-supervised and unsu-
pervised models have been analyzed. Li et al. [107] collected and reviewed
several primary studies which implement unsupervised algorithms that bring
results comparable to the ones obtained using supervised algorithms. Catal
[28] compared several semi-supervised algorithms to find the best choice that
would be useful when not enough labeled data are available.

Within these surveys, the most evident trend in defect prediction seems to
be the implementation of deep and representation learning algorithms. As we
will see in the following section, representation learning seems to better extract
features from source code as it is also capable of detecting semantic aspects
aside from syntactic and static features. The extraction and exploitation of
useful semantic features will help in improving the performance of the defect
prediction task.

Deep Learning models and Feature Learning

Methods presented in the previous section are mainly based on hand-crafted
features which are used to build feature vectors to represent the codes and
traditional machine learning algorithms that process these vectors to distinguish
between potential defective and defect-free software. These models are not able
to capture syntax and semantic aspects of programs that are more relevant in

53

Chapter 2. Related Works

the defect prediction task than the traditionally used code complexity metrics.

More recently, due to the advances in the Deep Learning (DL) field, new
powerful models are developed and one of their main characteristics is the
capability to automatically learn the features that will be used to classify the
piece of code directly from the code itself instead of selecting and computing
metrics on it, permitting to enrich the feature pool that is available. This
feature is known as Representation Learning and working with models based
on it within the defect prediction task brings consistent improvements to the
previously described works based on handcrafted features.

Deep learning algorithms are based on Artificial Neural Networks (ANN)
with more than one layer of neurons. The presence of multiple layers is the
characteristic that permits to automatically learn, and extract features relevant
to the task without the need to manually define them. Moreover, the features
extracted by deep models are inherently different from the traditional ones as
they are capable to capture and encode semantic and context aspects. The
usage of these techniques in the defect prediction field permits improving
detection performances and to produce the most advanced models in this field;
some of them are discussed here and reported in Table 2.2.

There are some works that use the predictive power of deep learning models
to detect software defects by analyzing bytecode or assembly programs rep-
resentation [23, 142] as defects do not depend only on source code but, for
example, they could be introduced during the compilation phase. However,
most of the works found in the literature focus on predicting defects starting
from information found within the source code, and we will focus on this trend
in the following.

Different representations can be obtained from the source code content.
Source code can be viewed as plain text and treated with techniques similar to
the ones developed within the Natural Language Processing (NLP) field, the
source code text can be analyzed at character level or tokenized accordingly
to some tokenization rules. Also, from the source code texts, it is possible to
extract the Abstract Syntax Tree (AST) code representations by using the
parsing rules of the programming language grammar. Control Flow Graph
(CFG) is another common code representation that can be built from source

8Note that the evaluation values provide just an indication about the models’ goodness as
as evaluation strategies, particular applications and settings could differ among different
works and also within the same paper.

9https://zenodo.org/record/3733794
10https://www.codechef.com/problems/
11https://sites.google.com/view/devign
12https://github.com/serg-ml4se-2019/group5-deep-bugs

54

https://zenodo.org/record/3733794
https://www.codechef.com/problems/
https://sites.google.com/view/devign
https://github.com/serg-ml4se-2019/group5-deep-bugs

2.3. Software Defect Prediction

Paper Year Dataset Task Granularity Method Evaluation8

Bryksin et al.
[23]

2020 GH9 anomalies de-
tection

function-
level

metrics,
AST/bytecode
N-grams

qualitative

Phan and
Le Nguyen
[142]

2017 benchmark10 binary se-
mantic DP

- assembly instruc-
tions + CNN

F1=0.73,
acc=0.73

Wang et al.
[189]

2016 PROMISE Java binary
DP

file-level AST node sequence
+ DBN

F1=0.64

Russell et al.
[154]

2018 SATE IV
Juliet Test
Suite

C/C++ bi-
nary DP

function-
level

token sequences +
CNN/RNN

F1=0.84

Li et al. [105] 2017 Tera-
PROMISE

Java binary
DP

file-level AST node sequence
+ CNN + hand-
crafted +logistic re-
gression

F1=0.61

Dam et al.
[42]

2019 PROMISE C/C++ bi-
nary DP

file-level AST + Tree-LSTM
+ logistic regres-
sion/RF

F1=0.90

Zhou et al.
[209]

2019 custom
humanly
labeled11

C binary DP function-
level

AST, data/control
flow graphs + Gated
Graph Recurrent
layer

F1 =0.85

Ferenc et al.
[60]

2020 Unified Bug
Dataset

Java binary
DP

class-level metrics + DNN F1=0.55

Xu et al. [195] 2020 GHPR
dataset:
bug/clean
pairs

binary DP file-level AST + GNN F1=0.75

Hoang et al.
[80]

2019 QT +
OPEN-
STACK

binary JIT-
DP

code change-
level

commit msg,
added/deleted
SLOCs + CNN

AUC=0.10,
0.14

Shi et al. [163] 2021 PROMISE binary DP file-level AST nodes sequence
+ CBOW + CNN

F1=0.63

Hoang et al.
[81]

2020 QT +
OPEN-
STACK

code change
representa-
tion + binary
JIT-DP

code change-
level

added/deleted
SLOCs + GRU
+HAN + DeepJIT
[80]

AUC=0.82,
0.81

Shi et al. [162] 2020 PROMISE binary DP file/function-
level

AST path pairs + bi-
LSTM

F1=0.74

Briem et al.
[21]

2019 GH12 Java binary
OBOE pre-
diction

function-
level

code2vec + sigmoid F1=0.76

Humphreys
and Dam [85]

2019 PROMISE Explainable
Java binary
DP

file-level tokens sequence
+Self-Attention
Transformer En-
coder

F1=0.67

Table 2.2.: Papers about the SDP task treated with deep learning approaches.

55

Chapter 2. Related Works

code and represents the entire program execution flow and variables states,
a Data Flow Diagram (DFD) is useful to study the flow of data for a given
program. Other program representations exist and focus on different aspects
of the program they represent. Depending on the aspect they focus on and
the task that we aim to perform they can be chosen to be used as inputs for
deep learning models. All these representations should be translated into a
numerical vector form to be processed by the learning algorithms.

According to [5], within the literature about deep learning applied to defect
prediction the most used techniques are Deep Belief Networks (DBN), Con-
volutional Neural Networks (CNN), and Long Short Term Memory (LSTM),
and Transformer architecture.

One of the most relevant works about deep learning in defect prediction
is presented in [189] and most of the other papers that will be discussed in
the following refer to it to compare the described models. Wang et al. [189]
present an important step in the defect prediction literature as it is the first
work that uses automatic feature learning for this task, allowing learning about
semantic and syntax aspects of code. In this work, Java codes are parsed into
their ASTs and among all the nodes only those about method invocations,
class instantiations, declarations, and control-flows are kept into account to
represent the codes. These nodes are extracted and used to form a sequence
which is then encoded in the form of integer vectors that represent the code
snippet. These vectors are used as inputs for a Deep Belief Network (DBN)
[14] after being normalized. The DBN architecture is capable to learn features
during training and classify code w.r.t. its defectiveness. The described model
performance improves the results for defect prediction of previous works which
only leverage traditional manually defined features in both within-project and
cross-project cases.

Russell et al. [154] perform vulnerability detection on C/C++ source codes as
a binary classification task at function-level granularity. The model developed
here exploits data from various sources, in fact, data belongs to the SATE
IV Juliet Test Suite dataset [132] which contains synthetic code vulnerability
examples but, to cover natural code situations, the dataset has been enriched
with data from Debian [46] and GitHub [68] projects labeled utilizing static
analyzer tools. The dataset obtained from the authors is highly unbalanced and
a weighted loss is used during the training phase to mitigate the problems which
could arise from this unbalance. During tokenization authors used a customized
lexer to unify tokens according to their types, e.g each identifier for an integer
variable is represented as a INT TOKEN which is a type-specific placeholder, so
they reduce the problems due to the Out Of Vocabulary (OOV) tokens and
to create a vocabulary of only 156 tokens. Tokens are then represented as

56

2.3. Software Defect Prediction

13-dimensional embedding vectors whose components are randomly initialized
and then learned during training, while the code is represented as a sequence
of these vectors. Tokens’ sequence is fed into both CNN and RNN models
which are used to automatically extract relevant features which are then used
in a binary classifier. Features extraction and classification are trained and
performed separately. The best classifier results are shown by the Random
Forest model reaching F1 = 0.840 and ROC-AUC= 0.954, but also a Fully
Connected Layers Neural Network has been tested.

Li et al. [105] describe a within-project defect prediction model DP-CNN for
Java code files on projects extracted from the tera-PROMISE Repository and
the data preparation strategy is similar to the one described in the previous
work [189]. As the authors focus on within-project DP, the trainset is composed
of older versions of a project while tests are performed on newer versions of
the same project. Each entity of the dataset is labeled as buggy if it contains
post-release bugs and non-buggy otherwise. The trainset portion is modified by
duplicating instances of the minority class until the balance w.r.t the majority
class is reached. As in [14], tokens are extracted from ASTs selecting the three
kinds of AST nodes cited before: method invocations, class instantiations,
declarations, and control-flows. Sequences of tokens are obtained, and they
need to be transformed into a numerical vector. Each token has an integer ID
that represents it within sequences which are then passed to an embedding
layer, which learns tokens embeddings during training and then processed
by a CNN which can automatically extract features and capture structural
information from the sequence. In this model, learned features are then used
together with traditional hand-engineered features (code metrics or process
metrics) as input of a logistic regression classifier. During model performance
evaluation the model performs better than the state-of-the-art DBN model
[189] on some datasets. Comparisons have been done also against a model
version that does not include the previously mentioned hand-crafted features
whose usage seems to slightly improve performance in almost every tested
project. The average F1 score of this model among all the tested datasets is
F1 = 0.608.

An LSTM version that has been adapted to work on tree-structured data is
used in [42] where the AST structure of code is provided as input of the model
used to predict software defects in both within-project and cross-projects defect
prediction cases. Tree-LSTMs [172] have the property of being able to capture
both syntactic and structural information while automatically learning nodes
representations that reflects semantic aspects. Each AST node is represented
by a numerical vector obtained from an embedding matrix which is randomly
initialized and then it learns the nodes embeddings during training. The

57

Chapter 2. Related Works

tree-LSTM model takes a tree node as input and it recursively processes its
children nodes producing for each node a hidden state vector and a context
vector. To perform defect prediction, the embedding of the root node of a given
file AST is used as input for the model, and the hidden state vector obtained
from the tree-LSTM is passed to the final binary classifier (Logistic Regression
and Random Forest). The model is developed on the PROMISE Repository
and real projects provided by the Samsung company, on the Samsung dataset
the performance is above F1=0.9 but on the PROMISE Repository the F1

measure is less than the one found in [189].
Zhou et al. [209] treat defect prediction for C functions as a binary classifi-

cation, but this time the dataset is manually labeled and accurately humanly
reviewed (requiring 600 hours of human work, here is one example of the high
cost of the labeling phase). The test set is sampled until the real-world distri-
bution of vulnerabilities is reached (around 10% is vulnerable). Functions are
represented in different ways, i.e., AST, data and control flow, and multi-edged
graph, and they are used in a composite unique representation. Graph nodes
are represented as vectors and initialized using word2vec [124] and passed to
a graph embedding layer, a gated graph Recurrent layer, and a convolution
module. This model reaches F1 = 0.85 and seems to be suitable to catch new
kinds of vulnerabilities.

Ferenc et al. [60] treat a binary classification defect prediction for Java
at class-level built on the Unified Bug Dataset [59]. 18% of the dataset is
composed of vulnerable classes and a parametric sampling is used to balance
the trainset used in the 10-fold cross-validation. Despite this work uses a
Deep Learning architecture, the input is represented by source code static
metrics passed to a neural network of 5 layers used to classify the vulnerability
proneness. In this work, all the numerical features are standardized and
normalized. The best model reaches F1 = 0.550 and AUC-ROC= 0.84.

Xu et al. [195] develop an attempt to detect defect patterns at file-level
focusing on an important aspect of software defects, in fact, the authors
highlight the fact that in some cases pieces of code could be considered
defective or not depending on the environment in which they are placed. For
this reason, defects do not only depend on semantics and/or syntax but also on
dependencies, location, and requirements. In this work, the GHPR dataset is
used and it is built and described in [57], in particular, the authors obtained the
dataset from GitHub [68] repositories and extracted classes of Java codes based
on Pull Requests selected employing regular expression rules considering the
classes both before and after the defect is fixed. In this way, there is the same
number of defective and non-defective examples remaining with a balanced
dataset. The code representation used in [195] are subtrees obtained by pruning

58

2.3. Software Defect Prediction

ASTs trying to retain information about defects through community detection
algorithms. In addition, names found within codes are split into subtokens
according to camel case syntax, and semantic and context information is
captured by means of word2vec [124] and Bag of Words (BoW) techniques.
The classification is performed by means of various algorithms such as Graph
Convolution Network (GCN) [94] and its simplified version (SGC) [193], Graph
Isomorphism Network (GIN) [196], Graph Attention Network (GAT) [184] and
GraphSAGE [76] with 50-cross validation and an hyperparameters selection
strategy reaching values for F1 above 0, 75 for all the implemented algorithms.

Defect prediction at change-level is also known as just-in-time defect pre-
diction. Hoang et al. [80] use representation learning to build an end-to-end
deep learning model for just-in-time (JIT) defect prediction DeepJIT. Commit
messages, removed and added lines are parsed and represented as sequences
of vectors (the vectors are the words’ representations). The encoded commit
messages and code changes are then used as inputs for a CNN which can
extract relevant features for the FCL network which is used to do the final
binary classification. To face data imbalance the authors use a weighted loss
during training exploiting as datasets the QT [40] and OPENSTACK [136]
projects as they were prepared in [122]. The model has been compared with
[199] and [122] showing relevant improvements.

An unsupervised Java code representation is described and applied to defect
prediction in [163]. The PROMISE Repository is used to build the dataset
and random duplication is implemented to balance the trainset. The authors
start from AST code representation and extract trees which are isomorphic to
them, retaining only information which is relevant to a given perspective to
reduce ASTs complexity. Four different relations are defined among tree nodes
to establish the relatedness of the nodes. Following each relation definition, it
is possible to build tokens sequences for the specific relation and, after splitting
tokens into subtokens to promote vocabulary and model flexibility, these
sequences of subtokens are used to predict a node presence employing close
nodes (context) using methods similar to CBOW or SkipGram in word2vec
[124] and consequently learning node embeddings. These embeddings are then
passed to a CNN architecture which extracts features at a higher abstraction
level and uses them to classify codes as defective or non-defective.

In our work on defect prediction, we want to treat the problem as a multi-
class task to be able to identify the kind of the defect (among three selected
kinds of bugs) instead of just predicting the presence or absence of defect
within a code fragment. To our knowledge, the work in [190] is the most
similar to our aim. They focus on predicting the presence of null pointer
dereference, array index out of bound, and class casting bugs. However, their

59

Chapter 2. Related Works

approach is to focus on a prediction model structure definition in general and
then separately train it on different datasets. Each dataset has binary labels
but referred to different kinds of bugs respectively, in this way the problem
is still treated as a binary classification task and only the joined usage of the
trained models permits multiple bugs identification. This approach has the
advantage of being easily extensible to other kinds of bugs but can suffer from
scalability issues in terms of the number of predicted bugs types. Another
similarity to our approach stays in the data labeling which is based on the
outcomes of a static analyzer which the authors try to imitate. The code is
represented as a control flow graph which is then fed into a Graph-Neural
Network (GNN) and the model results to be effective in bug prediction for
each of the analyzed bugs kinds.

Code Representations Even if not strictly related to defect prediction here
we describe some of the available models which can serve to extract vector
code representations that can be used for several downstream tasks.

An important model for language representation is the Bidirectional Encoder
Representations from Transformers, also known as BERT, and it is described
in [49]. Even if it was not originally developed within the field of Big Code it
has been adapted to this field and exploited to generate code representations as
it happens in CuBERT [91] where the advantage of using a pre-trained model
fine-tuned on the desired tasks is highlighted. Similarly, CodeBERT in [58] is
a pre-trained general-purpose model based on BERT model which is adapted
to manage tasks that involve textual data written in both programming and
natural languages.

Hoang et al. [81] describe a programming language agnostic technique to
learn a vector representation for code changes CC2Vec from unlabeled data that
can be used for various purposes and supervised learning tasks, for example in
Just-In-Time (JIT) defect prediction, allowing semi-supervised learning which
is suitable when few labeled data are available. Code changes are extracted
from files, removed and added lines are tokenized and used to build a token
vocabulary and two 3-dimensional matrices which are the representations of
added and removed code. These two representations are used as inputs to a
Hierarchical Attention Network (HAN) which encodes the matrix by means
of a bidirectional Gated Recurrent Unit (GRU) and then processes it via
an attention mechanism at word-level, the result of these processes is then
subject to the same mechanisms at line level and hunk level. This combined
hierarchical mechanism is capable of extracting the embedding vectors from
the matrices that are used as inputs, i.e., the representations of the removed

60

2.3. Software Defect Prediction

and added code, which are then used to represent the whole code change.
The model is trained to learn a probability distribution over words which are
referred to as log messages related to the code change. The authors apply
this representation strategy to the Just-In-Time defect prediction task on QT
and OPENSTACK datasets and using the state-of-the-art model, DeepJIT
[80] as a classifier and verify that this approach improves the previous results
reaching AUC-ROC = 82.2 and AUC-ROC = 80.9 on the two datasets.

In [10, 133] the authors developed code2vec a model to generate semantic
labeling for code, such as suggesting methods names based on the methods
bodies. The most interesting part of this work is the strategy that has
been implemented to generate the code representation which is based on the
extraction and elaboration of paths within the AST of the analyzed code and,
as the authors claim, the obtained representation is suitable for being used in
other tasks employing the transfer learning technique. Once the code is parsed
and the corresponding AST is obtained it is possible to obtain a sequence
of internal tree nodes (pathif) which connects two terminal nodes (tokeni

and tokenf). Some of these paths are extracted for each analysed piece of
code and are represented as a so-called context (tokeni, pathif , tokenf) whose
three components are represented as vectors and concatenated to form the
context vector representation. The obtained representations for each piece of
code are processed by an attention-like model which selects relevant paths
and generates a vector that represents the whole piece of code and can be
used to perform the actual prediction. This representation results to be the
state-of-the-art in method naming and the approach is suitable to be adapted
in many other situations. Inspired by the work in [10], a code representation
named PathPair2Vec based on AST path pairs is described and adopted in the
defect prediction task at both file and method-level in [162]. Data used in this
work come from the PROMISE Repository and the portion of the dataset used
in the training step has been subjected to a random replication of the instances
belonging to the minority class until the balance between classes is reached.
The path pair (a pair of short paths) is defined as a sequence of internal nodes
of the program’s AST which connects two terminal nodes. Among all the path
pairs that can be found in an AST, the authors defined the concepts of span
and length which help to select the most relevant paths to include in the pairs.
Terminal nodes are usually identifiers and subtoken splitting is used to capture
names semantics and reduce the OOV effects, the subtokens information is
encoded in a vector representation together with type information which is
then processed by a bidirectional-LSTM (bi-LSTM) model. Internal nodes are
represented by embedding vectors and the two paths which compose a pair
are processed separately through a bi-LSTM architecture. An attention model

61

Chapter 2. Related Works

is used to create the final vector representation of the path pairs starting from
the previously obtained four embedding representations, this vector is then
passed to a softmax layer to perform the actual classification. Experimental
results show that in both within-project and cross-projects defect prediction
the models built on method-level ASTs are stronger than the ones built on
file-level ASTs, this means that logical meaning in code is mostly a local
property, and it is concentrated within a method while it seems to be weak
between different methods. This model reached F1 = 0.74 which represents a
considerable improvement with respect to the DP-CNN model [105] they are
comparing to and it also perform better than code2vec [10] and code2seq [9]
models which share the ATS path-pair based code representation.

Another work which exploits the code representation obtained by using the
code2vec model [10] for defect prediction is described in [21]. As in [10] the
authors only tested the representation for the method naming task, in [21]
the same representation strategy is used to build a model which can detect
Off-By-One kind of errors (OBOE). These errors are logic errors that occur
when wrong comparators are used in some statement, for example, using <
instead of ≤ or vice versa when iterating over an array bringing to fewer or
more iterations than the needed ones. In this work, the authors also compared
the results to the outcomes of several static analyzers and pointed out that
these kinds of errors are not usually detected by these tools. The dataset has
been built starting from the one used in [9] and modified to the proposed aim.
Methods containing comparators are kept for learning and testing of the model,
some of these have been corrupted in a controlled way to generate off-by-one
errors examples (e.g., by switching from < to ≤) while the original versions
are interpreted as correct instances. Depending on the type of statement (if,
for, while, etc..) in which the comparators are the authors defined different
context classes and study the detection capability in various situations. The
code2vec trained model provided by the authors is exploited by extracting the
embedding layers and replacing the last layer with a binary classifier layer, i.e.,
a sigmoid layer, implementing the transfer learning strategy. The model is then
used both by freezing the embedding weights while learning only the modified
layers and by using the trained layer as initialization to exploit the fine-tuning
technique. The latter results to be the best approach and depending on the
context and the comparator type the obtained F1 values are very different
ranging from 0.52 to 0.88.

InferCode is another AST-based code representation and is described in [25].
This approach works on unlabeled source code data and the final aim is to build
a task-agnostic vector representation for the input code. Differently from other
code representations such as code2vec which can both be trained on a final task

62

2.3. Software Defect Prediction

or exploited as a pre-trained model and fine-tuned on other downstream tasks,
InferCode generates code vectors without any knowledge about the final task,
for this reason, the vector representations can be computed before any kind of
task consideration as a separate phase. After that these vectors could be used
for any other purpose such as method naming, defect prediction, etc., which
can benefit from the information stored within the AST code representation
structure. Self-supervision is exploited by using sub-trees extracted from
ASTs as labels to train the model without the need for labeling effort which
as we already pointed out is one of the limitations in working within Big
Code projects. The extracted sub-trees are accumulated within a vocabulary
and used as targets for a modified version of the Tree-Based-CNN (TBCNN)
model which takes the entire ASTs as inputs. The original architecture of the
TBCNN is modified by replacing max-pooling with an attention mechanism
permitting node embeddings combination and using textual information to
initialize node embeddings. After the training phase, the TBCNN encoder
can be used in a pre-trained form to generate the code vectors to serve other
tasks. Another advantage of this technique is that it applies to different code
granularity levels, and it is not constrained only to some kinds of code units.
The InferCode model comes as a pre-trained model trained on Java codes and
results to perform well in many tasks even considering different languages as
it is built on ASTs based on a combined vocabulary of node types for multiple
languages [38]. In [25] the model is evaluated on various downstream tasks
and compared to other pre-existing models resulting to be an effective method
for code representation.

Explainable models

Finally, in the last few years, few works emerges as attempts to introduce in
this research field the feature of explainability otherwise the prediction models
would only signal the presence of the defects without any other information to
support the understanding and fixing of the bugs. A well-known drawback of
many (deep) learning models is that they are mostly used as black boxes, which
means that they do predictions after the training phase but the interpretability
of the reasons behind their outcomes is usually hard to be investigated.

Several works have been attempted to deal with this issue, some of them
are presented in [72, 24] together with their strengths and flaws.

Not all these works focus on explainable deep learning models which are the
hardest ones to be investigated from the interpretability and explainability
point of view. So, as in many other fields, this still represents an open challenge
to be addressed. The reasons behind this research direction can be found both

63

Chapter 2. Related Works

in the study of the models’ dynamics and to find the actual source of the
defects within the code to speed up the error localization and code fixing tasks
even more and prevent similar defects occurrence in the future.

Tantithamthavorn et al. [174] focus on predicting defects representing code
with vectors computed on bag of tokens, traditional software metrics, and
features and using them with Random Forests. After the predictive model
creation, they implement different techniques to explain the predictions of
the DP models. They use the LIME [151] model-agnostic technique which
starting from a file-level prediction model helps to identify which tokens and
lines are the problematic ones within the whole files. Also, another approach
is attempted in the predictions explanation, i.e., a rule-based model-agnostic
technique LoRMikA [148] which is able to generate a rule-based explanation
for the predictions.

Jiarpakdee et al. [88] perform a survey on the preferred visual explanation
techniques used in defect prediction from the practitioner’s point of view, in
this study the preference of the LIME model over other attempts emerges.

The relevance of the LIME approach is also supported in [87] in terms of
effectiveness in predictive power and explanation support. Here the LIME
technique is also compared to another model-agnostic approach used for ease
interpretability which is known as BreakDown [71, 170] and an improved
LIME version (LIME-HPO) which implements hyper parameters optimization
is proposed by the authors. However, [87] reports how modifying learning
settings for the models under analysis both LIME -based and BreakDown
model-agnostic explanation techniques bring unstable and inconsistent results,
suggesting that these models could not be reliable in practice.

Santos et al. [160] pointed out the importance of explainability in DP too.
The authors use traditional software metrics to numerically encode the pieces of
code and trained an XG-Boost model. To explain the reasons behind the model
predictions they also computed the SHAP (SHapley Addictive exPlanation)
values [114] for each feature with respect to the used model to highlight which
feature has the highest impact according to the chosen classifier.

Humphreys and Dam [85] report an attempt to build an explainable model
for DP based on Deep Learning. A state-of-the-art Self Attention Trans-
former Encoder is implemented to process the tokens sequences inputs and the
capability to locate semantic information to regions within these sequences
should help in model explainability. However, results about how to inspect and
evaluate the explanation capability of the proposed model are not presented.

64

Chapter 3.

Programming Language Identification

In any software project, the programming language(s) used to create it represent
an important variable that depends on several factors such as quality, trends,
usability, maintainability, etc. Programming Language Identification (PLI) is
a task that can be easily performed by developers or people who are curing the
software project but there exist many situations in which this is not possible.
In fact, as many languages do exist and they also evolve and change in time
(new language versions releases, usage habits, and trends), even when the code
base scale is not prohibitively large to be manually analyzed by humans there
can be situations which would require too much effort to be solved. Another
situation in which it is not possible to manually perform PLI is when it comes
to look at a huge amount of source code as for the case of software hosting
service platforms and code archives such as GitHub [68], Software Heritage
(SH) [79, 2], StackOverflow [169], etc. which host a huge size of code content
(1B+ contributions for GitHub, 169M+ projects for Software Heritage and
21M+ questions on StackOverflow) and are also going to grow more. Of course,
at this scale, it is impossible to manually perform PLI where this could also
represent a crucial task. To name just a few of the possible applications it can
support archive organization, code search, indexing and classification, program
comprehension, programming trend analysis, and so on.

As the codebases scale can represent an obstacle for this and other similar
tasks, it also can be viewed as the means to achieve the desired solution. These
archives can be viewed as rich sources of source code data that can be treated
to serve as datasets to train some learning algorithms. In this way, the chosen
automatic model should learn to imitate the desired behavior to automatically
perform a task, in this case, should learn how to identify a programming
language starting from the source code content. The granularity level at which
the task can be performed can vary based on the specific situations as it can
be done at the project, file, or just a few lines of code levels.

As introduced in Chapters 1 and 2, there is a specific research field known
as Big Code in which automatic PLI seems to fit, and this is the idea that has

65

Chapter 3. Programming Language Identification

been followed in this work.

Depending on the use case, two major classes of ML approaches to PLI
have been used [95]: text-based and image-based programming language
identification. In text-based approaches source code is viewed as a characters’
sequence, such as files stored in version control system (VCS) repositories.
Image-based approaches can classify raster images showing code, such as
screenshots of development environments or individual frames extracted from
video programming tutorials. The problem here is about the possibility
to identify the programming language used in code images, among many
languages1, without any a priori knowledge about the languages. In fact, in
literature, only a few languages are considered in similar works. Also, it is
not yet established in the literature what allows image-based ML models to
visually recognize programming languages, especially at this scale of language
diversity. Such knowledge would allow the future to specialize in recognition
networks and improve performances.

Both text-based and image-based strategies are exploited here.

In order to follow these leads, the first step consists in building the dataset
that will be exploited to train the model. For the text-based model, we focused
on entire files containing source code texts while for the image-based approach
the focus is on snippets composed of 32 lines of code each. To build these
datasets we used snapshots of GitHub dated (D1) and (D2) which have been
retrieved and made available by the Software Heritage project.

The datasets D1
2 and D2

3 contain files from all commits of GitHub projects.
The number of stars has been used as a filter to avoid the processing of many
unreliable data as the stars are used to evaluate projects’ quality and relevance,
in this way the number of junk files found within the dataset should be limited.
D1 contains projects ranked with 1000 or more stars while D2 contains only
the 1000 top GitHub repositories as the filter based on the number of stars
would include too many repositories at the D2 extraction date.

Each file within the dataset is identified by a SHA1 cryptographic checksum
which differs from the filename provided by GitHub and can be used to uniquely
map files. In fact, the same file could be found on GitHub several times and
consequently, it can be extracted multiple times. For this reason, it can happen
that the very same file is associated with different names, and to overcome the

1An amount comparable to the language diversity supported by practical state-of-the-art
PLI tools (machine learning-based or otherwise), in the order of hundreds.

2https://annex.softwareheritage.org/public/dataset/content-samples/2017-01-

27-github-1000+stars/
3https://annex.softwareheritage.org/public/dataset/content-samples/2019-10-

08-github-top1k/

66

https://annex.softwareheritage.org/public/dataset/content-samples/2017-01-27-github-1000+stars/
https://annex.softwareheritage.org/public/dataset/content-samples/2017-01-27-github-1000+stars/
https://annex.softwareheritage.org/public/dataset/content-samples/2019-10-08-github-top1k/
https://annex.softwareheritage.org/public/dataset/content-samples/2019-10-08-github-top1k/

difficulty in files identification the file deduplication has been performed on the
files extracted from GitHub and the SHA1 identifier is used as data ID. After
data deduplication, data compression is applied to the extracted snapshots in
order to easily store the datasets and make them downloadable tar archives.
D1 is a 141 GB archive containing ≈ 15M unique files while D2’s size is 252
GB with ≈ 25M unique files.

SHA1 values are also used to compare the two datasets D1 and D2 to check
if there are some overlapping portions. This analysis shows that the datasets
result to be two disjoint sets and, as we will see, D2 can be fairly used to test
model performance after a few years.

Together with the files, the dataset contains a txt file which represents
the map between the original file names retrieved from GitHub and the
corresponding SHA1 currently associated with the file after the deduplication,
so a SHA1 ID can be associated with different file names.

At this point, two main issues need to be solved. First, the datasets are not
composed of source code files only, but they also include any kind of file that
can be found in a repository, for example, images, pdfs, binary files, simple
texts, and so on. As the main aim of this work is to create a model which
is able to recognize the programming language in which a source code file
is written in non-code files that need to be discarded. So, the first problem
arises because there is not a direct and precise way to perform this first crucial
cleaning step. Secondly, we are going to use supervised learning models to
classify source code into programming language classes. The problem is that
our files are not associated with any ground truth about languages without
which the supervised approach would be impossible. As we have seen in
Section 2.2 many works in literature approach this problem by using existing
tools that can predict the language with a certain accuracy, for example, one
of the most popular tools is Linguist which is the official language detection
tool used by GitHub. We follow this lead to label data used in the image-based
approach.

However, adopting this method we are limited in imitating the Linguist
predictions and even if the model would reach the perfect match between labels
and predictions it would replicate the Linguist behavior and, for this reason,
it will inherit the Linguist accuracy, precision, recall, etc. [64]. Except for
this exploitation of already existing tools, there is only the manual annotation
solution which would be impossible for our amount of data. For the text-based
approach, we choose another option to label the files. The only available
information about our files that could be somehow informative with respect
to the programming language is the file extension with which the files have
been stored on the GitHub platform. In fact, in the case of a source code file,

67

Chapter 3. Programming Language Identification

the extension used when such a file is stored depends on the programming
language used to write the code contained in it. For example, a Python
source code file should be saved with a filename ending with py or similar
file extensions. The file extensions can be found in the file containing the
mapping between file names and SHA1 checksums. In fact, a file extension is
defined as a substring that can be extracted from the filename starting after
the last occurrence of the dot punctuation symbol (.) until the end of the
filename if the filename contains the dot symbol, otherwise we say that the file
extension is not available for that filename. Of course, there is no certainty
of the correctness of the file extension association as the authors could have
committed errors in the file storage processes. Despite that, we assume that
these wrong associations occur with a statistically irrelevant frequency within
the dataset, and they should not affect the training and evaluation of the
model too much. From now on the extracted file extensions are considered
the ground truth about the files belonging to our datasets and, for this reason,
the task that we are going to perform in the text-based approach is slightly
different from the aim that we planned to achieve at the beginning which was
to predict the programming language of a source code file.

In the following of this Chapter, we are going to illustrate the two models
used to approach the PLI task. We are going to illustrate the textual-based
model for file type identification in the next Section while the image-based
PLI is described after this.

3.1. File Extension Identification

Using file extensions as labels the classification that we are going to perform
will be different from the programming language identification as the classes
are defined by these extensions which are not mapped to languages. An issue
that can arise analyzing this task is intrinsic in the definition of the classes
and it refers to the ambiguity related to the file extensions. First, there is
not only one extension for every file type, for example C++ source code files
can use cc, cpp, c++ and other extensions. For this reason, some extension
classes could be seen as if they were equivalent from the programming language
identification point of view and for their content. The fact that several classes
could contain the same kind of files can create confusion for the model that
has to learn to classify files in different classes while they actually belong to
the same file type. Secondly, a single file extension can be shared between
more than a single kind of file as in the case of txt files which usually contain
general textual content. So, even if one can try to disambiguate these classes’

68

3.1. File Extension Identification

definitions by means of domain knowledge, i.e., joining extensions that refer
to the same kind of files in a unique class, this process is not simple as it
may seem, in fact, some of these extensions can be shared with other kinds of
files. Moreover, one has to consider the complexity of this task, for example,
if there are a lot of different extensions and/or some of them correspond to
unpopular file types the required effort to recognize and effectively cluster
all the involved extensions could be unfeasible for a human expert and the
task itself can represent a source of errors. From all these considerations has
been decided to accept the intrinsic ambiguity concerning the file extensions
and file types definition proceeding to work with the extensions as they have
been extracted from the file names without any modification to avoid the
introduction of further confusion and possible errors.

3.1.1. Preprocessing

After the extensions extraction, i.e., the labeling step, there is the need to
perform some analysis on the extensions that have been found.

Labels frequency At this stage, the number of different extensions on the D1

is ≈ 546K, despite this high number if we study the distribution of the files
among all these classes it is immediately clear that a huge portion of them only
contains a few examples while only a few hundred have a relevant number of
instances. Generally, some problems arise in supervised learning when dealing
with classes with too few examples because they are not enough to teach them
generalizations about those classes, so we need to deal with underrepresented
classes. Most of these classes seem to be typos or very uncommon sequences
of characters that do not match any particular kind of file. This fact, together
with the very low frequency with which these classes are found within the
dataset, suggests simply ignoring the problematic classes and proceeding with
the analysis of the remaining ones. In order to do so, a frequency threshold of
10−4 has been chosen and all the classes which show a lower frequency and the
files belonging to them are excluded from the new dataset version. After this
filtering step we end up with 220 extensions while the number of files is still
≈ 15M , so the frequency-based filtering step drastically dropped the number
of classes but did not impact the number of examples too much.

Non-textual files The other problem is about the potential presence of any
kind of file and some of them could not be of our interest if we consider the aim
from which we started, i.e., PLI. To find these files and clean as much as possible
the dataset from them a manual analysis of the 220 remaining extensions has

69

Chapter 3. Programming Language Identification

been attempted but it resulted in tricky in many cases due to their ambiguity.
Moreover, some extensions were very hard to be identified with respect to
the actual content of the files they referred to, even after extensive research.
As many sources of confusion were aroused in this treatment of the dataset,
we decided to automate this preprocessing step to avoid unnecessary human
intervention that can bias the model and which does not represent a viable
direction to build scalable models. So, instead of relying on expert knowledge or
specific research about each extension, we implemented an automatic method
based on a heuristic. In this way, we limit our influence on the files choices
to the heuristic design only. As source code files have text-like content, at
least we should restrict the dataset on these kinds of data, and discriminate
between these and others we assumed that the content of files of our interest
should have a percentage of non-printable characters which are not higher
than a certain threshold, i.e., our assumption is that source code files and
more generally textual files should not be dense in non-printable characters
and we set the non-printable frequency threshold at 20%. This step permits
us to split the files of the dataset into two groups based on their non-printable
characters percentage and to perform a distribution analysis of these two groups
among the extensions classes that we were considering. Some of the extensions
classes are indeed mostly populated by files with a percentage of non-printable
characters higher than our threshold and we considered these classes as not
relevant to our task. Discarding the classes with high non-printable characters
rate the number of remaining extensions for the D1 dataset drops to 133, while
the number of files results to be ≈ 13M .

Most of the retained extensions are commonly used as extensions for pro-
gramming or markup languages, in fact the extensions associated with the
highest frequencies are py, rb, html, po, php, h, java, js, c. Despite this, the
dataset also contains extensions that do not refer to programming languages,
for examples some of them are typically associated with textual files of other
nature like in the case of txt files but we continue to consider these cases too
as we made the decision to automatize the extensions selection phase in the
previous steps.

Multi-label files As we mentioned before, there is the possibility that a
unique file (identified by a precise SHA1) can be associated with multiple
filenames, and, consequently, there is also the possibility that a single file can
be linked to more than one extension, i.e., with multiple labels. Every SHA1
checksum has been associated with the corresponding extensions extracted
from every file name the given checksum is linked to.

70

3.1. File Extension Identification

For each file, a given extension can occur multiple times, for this reason,
every extension associated with that file has been coupled with a frequency that
indicates how often the extension has been found in the filenames associated
with that file. For example, if the SHA file SHA1 appears three times in the
mapping between SHAs and filenames and it is associated with filename1.cpp,
filename2.c and filename3.cpp, the file has a label of the form (13c, 2

3cpp).
However, within the whole dataset, only a small percentage of files has been
found coupled with multiple extensions (less than 0.4%), in the following we
simplified the task by ignoring these multi-label occurrences and treating the
problem as a multi-class single-label classification case with 133 classes of
extensions. Besides the low number of multi-labeled files, this simplification
is justified by the fact that we conducted some tests even considering the
multi-label task but this resulted in low performance of the model with respect
to the model for the single-label task.

Adaptation of the D2 dataset In this work, we use the D2 dataset to test
the model prediction capability after a few years to check which measure of the
model still represents a valid solution to the PLI task. The results obtained
from the previous cleaning procedure have been applied to the D2 dataset
without repeating the whole cleaning procedure in order to inherit all the
outcomes from the dataset of a past date. Particularly, we retained only the
files belonging to the 133 previously selected extensions. However, some of
these extensions do not have any example in the second dataset and only 121
of the 133 extensions are represented there.

Handling unbalance Even though we ignored rare and uncommon extensions,
the frequency range remains wide, with some classes containing many examples
while others just a few, as shown in 3.1. The most frequent extension results
to be c and it has a frequency of 10−1 while the least frequent one is tcl and
has a frequency of 10−4.

This frequency imbalance represents a serious issue with respect to the
training phase for most of the supervised learning approaches, since models
which learn from unbalanced datasets have the tendency to overfit and do not
generalize well [18]. After splitting the dataset with an 80/20 train/test ratio
the train set part needs to be treated in order to create a balanced set.

Several techniques can be used for dataset balancing, and they are usually
divided into two major classes: over-sampling and under-sampling [117]. In
the first case, new instances for the minority classes are generated until they
reach a numerosity similar to that of the majority class(es). The new instances

71

Chapter 3. Programming Language Identification

Figure 3.1.: Extensions distribution within the dataset corpus.

are either copies of the existing examples (e.g., in random over-sampling) or
synthesized by using statistical properties computed on the minority classes
(e.g., in the SMOTE technique [30]) and there are several techniques to do so.

Since in our case the classes are highly unbalanced, we could be forced to use
the same examples (or the same information extracted from a few examples)
too many times, increasing the risk of overfitting. We did not consider the
option of synthesizing artificial samples to avoid introducing biases, given that
understanding how intrinsically recognizable are real textual files found in
Version Control Systems (VCSs) is part of our goal. Rather, we have applied
a random under-sampling technique consisting of (sub)sampling the various
classes randomly to obtain the same number of elements for each class. Of
course, with this approach we are limited by the number of instances of the
less populated class and, as a result, we ended up with a train set containing
≈13M total examples.

Conversely, the portion of the dataset used to evaluate the model preserves
the original dataset classes distribution in order to fairly represent a real
situation and to evaluate the results as in an actual PLI model exploitation.

72

3.1. File Extension Identification

Figure 3.2.: File type classification model.

3.1.2. The model

In this section, we describe the architecture of the model that has been
proposed to predict file types automatically which has been developed in
several steps. First, the content of the files is divided into tokens (using
a language-agnostic tokenization strategy) which are then used to define a
reference vocabulary V based on the frequencies of the tokens in corpora.
The file content is then represented in a “tokenized” form, i.e., a sequence of
tokens according to the defined vocabulary V. If the tokens sequence file form
contains some tokens which do not belong to the V vocabulary, these tokens
are represented as a placeholder for unknown tokens that we indicate here as
UNK. Then, as common practice in many NLP applications, we also construct
a vocabulary V2 containing 2-grams which are sub-sequences of 2 consecutive
tokens extracted from the “tokenized” files. At this stage, we can extract the
actual feature vectors from the files by considering the frequencies of both
tokens and of 2-grams in the “tokenized” files4. Finally, the classifier which
makes predictions on the basis of the feature vectors is defined, by using a
simple neural network whose structure is depicted in Figure 3.2; these steps
are detailed in the following of this section.

Data representation

Since our files are available as sequences of bytes, to treat them as texts we first
need to decode them using a suitable character encoding. We used the ASCII
encoding while all non-ASCII characters are mapped to a unique special value.
After this conversion, we can consider files as simple text files, i.e., sequences
of ASCII characters, on top of which we can define the notion of tokens.

Different from what is usually done in Natural Language Processing (NLP),
case sensitivity is relevant in our setting, hence is important to preserve
character case-ness. Also, while in NLP punctuation symbols are usually
discarded, they are crucial in source code and we need to consider them. 5

4Not all possible tokens and 2-grams are considered but only those appearing in the
vocabularies V and V2, respectively.

5With the exception of which is considered an alphanumeric character, as it is often part

73

Chapter 3. Programming Language Identification

Tokenization and vocabulary definition For the tokenization step we exploit
the following definition:

Definition 3.1.1. Given a sequence of characters S, a token (or equivalently
a word) in S is defined as follows:

• Any character representing a punctuation symbol is a token

• Any sub-sequence of S which is delimited by (characters representing)
punctuation symbols and/or white spaces, and which does not contain
punctuation symbols and/or white spaces is a token.

For example, according to this definition the string ‘a=b’ is interpreted as a
sequence of the three tokens ‘a’, ‘= ’ and ‘b’.

For model manageability, we cannot consider all the possible tokens that
occur in any file. A common technique used to address this issue is looking at
the frequencies of the tokens that occur within the train set and assembling a
vocabulary consisting of all the tokens whose frequency is higher than a given
threshold. In our case, several thresholds have been tested but in the end, the
10−2 one has been selected.

To mitigate overfitting risk due to the usage of the same dataset in vocabulary
definition and model training we have defined the vocabulary V using only a
portion of the train set (still a balanced set), which was then excluded from
the set used to train the network [165].

Many files in code bases include at their beginning and/or end explicit infor-
mation about the file content, in the form of shebang lines (e.g., #!/usr/bin/perl)
or editor mode lines ((%% mode: latex)). This information can be really help-
ful for the classification task, but it can also compromise the performance of
the model since this information could gain too much relevance with respect to
other features, inducing poor results on files that lack it. For this reason, when
collecting tokens to build the vocabulary and during training, we excluded
a few lines from both the beginning and end of the files to ensure that no
explicit information about the language is used by the model.

The resulting tokens vocabulary V contains 465 tokens, which are repre-
sented with their own identity while the special token UNK represents any
unknown, Out-Of-Vocabulary (OOV) token. Figure 3.3 contains a word cloud
representation of the tokens (where word size is proportional to the frequency of
the token in the dataset) of the V vocabulary except for punctuation symbols.

of identifiers in source code.

74

3.1. File Extension Identification

Figure 3.3.: Word cloud for token frequency distribution.

n-grams Information about the relative position of tokens in a text can be
richer than information about isolated tokens. There exist various algorithms
and techniques that can capture different kinds (e.g., short or long) of the
relation among tokens. Some of them like CNN and LSTM [203, 202], can
capture meaningful relations, automatically but they are also computational
quite expensive. Simpler approaches are based on n-grams, i.e., sub-sequences
of n tokens extracted from a sequence of tokens defined according to a given
vocabulary V.

Taking into account n-grams, instead of individual tokens, it is possible
to identify co-occurrences of tokens, extracting more information about the
actual text structure. By increasing the length of the n-grams (the value of
n) it becomes possible to capture longer and more complex relations among
tokens, at the cost of increased computational costs and increased overfitting
risk—since longer n-grams tend to become tightly bound to the text they are
derived from. For this work, we have used bigrams, i.e., n = 2, which turned
out to be a good choice from the model performance point of view. We have
also experimented with models with trigrams which have worse performance.

To define the bigram vocabulary, we relied on the same approach used for
building the token vocabulary V. We define V2 as the set of all bigrams whose
frequency is higher than 10−3) in each class, by considering the same dataset
subset used to define V.

Bigrams that do not belong to V2 are mapped to the placeholder for unknown
bigrams UNK2.

75

Chapter 3. Programming Language Identification

Vectorization For each input file, F one can now build the feature vector
vF , which will be the representation of F in our model. To build this vector
we first decode F from a byte sequence to a characters sequence using the
ASCII encoding and then tokenize it according to the vocabulary V. We then
compute, for each token in V, the frequency with which it is found in the
F tokenized form. Then we do the same for bigrams: for each bigram in
V2, its frequency among F ’s bigrams is determined. Finally, we enumerate
the elements of the set D = V ∪ V2 ∪ {UNK} ∪ {UNK2} whose cardinality is
|D| = 5063 and determining a fixed order for them.

The feature vector vF is built by assigning the computed frequency for of
i-th element of the ordered version of D to the i-th component of the vector
itself. vF will represent the file F in the following.

This process is applied to each file in the dataset; the resulting vectors
will be used as inputs for the classification algorithm. The same has been
performed taking into account trigrams too but the best results have been
achieved using just tokens and bigrams.

Classifier

The model implementation has been done using the Keras framework [36] for
Python.

As a classifier we use a Deep Fully Connected Layers (FCL) Neural Network
which has 5063 input units, 133 output units (which correspond to the possible
extensions that we are considering), and 3 hidden layers with 1000, 800, and
700 units, respectively, defining an encoder-like structure for the network. We
set a dropout rate of 0.5 for each layer. The model structure is shown in
Figure 3.2.

The problem is represented as a multi-class, single label classification, hence
we use in the output layer the softmax activation function

σ (x⃗)j =
exj∑132
k=0 e

xk
(3.1)

which normalizes the values obtained from the previous layer with respect to
the number of the available classes. The output values computed in this way
represent the probabilities that a given file belongs to each class.

As we have multiple classes, we use the categorical cross entropy loss function.
For each instance passed to the model, i.e., the i-th one, the loss function takes
the form

L (yi, ŷi) = −
132∑
k=0

yi;kln (ŷi;k) (3.2)

76

3.1. File Extension Identification

where yi represents the actual ground truth label (in the form of a one-hot
encoded vector) and ŷi represents the predicted probability output vector.

During the training phase we use the Adam optimizer [93] with learning
rate lr = 0.0001, which converge to the results shown in 3.1.3 after 8 epochs
of training. During the training of the model, parameters are progressively
modified in order to improve the similarity of the predicted ŷi vectors to the
correspondent yi ground truth vectors.

3.1.3. Results

The architecture underlying the proposed model is quite simple in comparison to
other machine learning approaches used to treat text. Contrarily to automatic
feature learning algorithms, such as those used in Convolutional, Recursive, or
Attention Neural Networks, computations in our model are faster, both for
training and prediction with the drawback of the needing for manual design
for features.

The learning task can be completed in a relatively short time: it took around
10 hours of training for 8 epochs to train the parameters of the model and to
reach ≈ 85% of accuracy 2.1 on the validation and test sets.

Acc =

∑Nc−1
i=0 Cii∑
i,j Cij

Predictions are made by transforming the input feature vectors by means of
simple operations such as vector multiplications, sums, and activation functions
applications based on the parameters learned during the training phase.

Testing on D1 dataset The test set consists of ≈ 2M elements that we
extracted from the original dataset. It is subjected to the same pre-processing
steps described at the beginning of this Section except for the balancing step
as this could bring unfair evaluations and the resulting test set would not
represent the real-world statistical distribution of classes.

Various performance measures are used here and they are all based on the
confusion matrix computed on the test set whose generic element Cij contains
the number of files of class (extension) i which are classified as j.

As we mentioned, in addition to bigrams also trigrams have been tested
in this study and the results for each class can be found in Table A.1 in
Appendix A where the values for the precision Pi (Eq. 2.2), recall Ri (Eq. 2.3)
and F1-score (Eq. 2.4) for each of the considered classes are reported (Nc = 133
is the total number of considered classes) referred to the test set extracted

77

Chapter 3. Programming Language Identification

from the D1 dataset.

Pi =
Cii∑Nc−1

j=0 Cji

=
TPi

TPi + FPi

Ri =
Cii∑Nc−1

j=0 Cij

=
TPi

TPi + FNi

Fi =
2RiPi

Ri + Pi

bigrams trigrams ∆
P R F P R F P R F

micro avg. 0.85 0.85 0.85 0.81 0.81 0.81 0.04 0.04 0.04
macro avg. 0.64 0.91 0.71 0.59 0.89 0.66 0.05 0.02 0.05

Table 3.1.: Average performance of the encoder architecture without and with
trigrams.

In Table 3.1 we only report micro and macro-average values for the selected
scores.

The accuracy value obtained on all the classes by the model is 0.85 in the
bigram case and 0.81 if also trigrams are considered and the results for the
latter model are almost always worst than the ones obtained from the bigram
one. Moreover, including trigrams requires handling a higher-dimensional
input (as we need to add the trigram vocabulary V3 to the D set) and a
heavier model which could be less efficient than the version which considers
only bigrams so we do not consider the trigrams in the rest of the study.

From the results, it appears that the main problem faced by the model is
the presence of very similar classes that could actually be treated as the same
class, for example, both .yaml and .yml are used for files written in YAML,
which can introduce errors in the predictions. Also, there are classes whose
text contents can be very general and therefore could not be easily recognized,
such as files with the .txt extension. This suggests that including explicit
knowledge about the files’ nature could improve the performance, however, it
was our design choice not to include such information.

Classes confusion We tried to keep track of the classes which are most likely
confused in an automatic way without introducing any prior knowledge about
classes. To do so we keep track of classification errors on the validation set in
two different ways.

78

3.1. File Extension Identification

Definition 3.1.2. In the following we will use the following assumptions and
notations:

• C is the set of classes

• V set denotes our validation set

• for x ∈ V set, GroundT (x) = i iff i is the ground truth label of x

• for x ∈ V set, Predict(x) = i iff i is the label assigned by the classifier
to x

• for x ∈ V set, px(i) is the predicted probability value that the input x
belongs to each possible class i ∈ C

For x ∈ V set, the predicted class is the one which correspond the highest
predicted probability value, that is, Predict(x) = m iff px(m) ≥ px(j) for each
j ̸= m, j ∈ C.

First, we measure how many of the examples of a given class are classified
in the wrong way. This is done by introducing, for each pair of classes i and
j, a quantity Tij indicating how many times a file whose label (i.e., ground
truth) is i is classified as belonging to the class j.

More precisely we define:

Tij =

∑
x∈V set 1 | GroundT (x) = i ∧ Predict(x) = j∑

x∈V set 1 | GroundT (x) = i
(3.3)

A second way to keep track of possible classes confusion consists in con-
sidering also the second, third, fourth, and fifth-best choices for classifying
an input according to the predicted probabilities px(i) with respect to the
classes to see whether some of them significantly co-occur with the predicted
class. More precisely, given x ∈ V set, assume that Predict(x) = m and that
px(m) ≥ px(h) ≥ px(k) ≥ px(l) ≥ px(r) ≥ px(i), for h, k, l, r ∈ C and for any
other i ∈ C. In this case we say that m,h, k, l, r are the top five classifications
for x, written Top(x) = {m,h, k, l, r}, for short. Then we normalise these five
values by defining:

pnx(j) =
prx(j)

px(m) + px(h) + px(k) + px(l) + px(r)
(3.4)

for j ∈ {m,h, k, l, r}.
For each pair of classes i, j ∈ C, we define:

S′
ij =

∑
x∈V set

pnx(j) | Predict(x) = i ∧ j ∈ Top(x) (3.5)

79

Chapter 3. Programming Language Identification

and we normalize this value by considering the total number of times in which
the i-th class has been predicted, as follows:

Sij =
S′
ij∑

x∈V set 1 | Predict(x) = i
(3.6)

Given the quantities Tij and Sij we set two thresholds for their values, τT ,
and τS , respectively. For a pair of classes i and j, if Tij > τT ∨ Sij > τS , the
classes i and j are considered “related” in the predictions and we say that they
belong to the same “confusion group”. By setting the thresholds τT = 0.05
and τS = 0.02 we obtain the confusion groups shown in Table 3.2. Note how
some groups contain labels that commonly refer to the same or similar file
types, justifying the origin of the ambiguity. The labels which do not appear in
the table are those that do not pass the thresholds, meaning that the classifier
does not incur relevant ambiguity for them according to our defined measures.

Table 3.2.: Extension confusion groups

Group ID Extensions

0 .bash , .sh , .ps1 , .after , .jet , .kt , .template
1 .markdown , .md
2 .cmake , .cmd , .yaml , .yml , .rst , .txt , .baseline , .bat
3 .dts , .dtsi
4 .ctp , .php
5 .ml , .mli
6 .csproj , .ilproj
7 .jl , .j
8 .rb , .cr , .exs
9 .h , .ino , .hpp
10 .m4 , .ac
11 .cpp , .cc
12 .clj , .cljs
13 .swift , .sil , .gyb
14 .tsx , .jsx , .js , .ts , .htm , .html
15 .cjsx , .coffee
16 .css , .scss
17 .after , .kt

Considerations about the D2 dataset As previously mentioned, we also
considered a more recent dataset D2 which after pre-processing contains 121

80

3.1. File Extension Identification

of the classes considered in our model.

The D2 dataset has been split into two halves maintaining the classes’
frequencies distributions. One of these two subsets is used to test the model
and the other one has been joined to the previously used trainset and balanced.
The second portion is then used to re-train the model for 3 epochs which are
then tested again on the first D2 portion.

The average results obtained on the new test set before and after the updating
step are shown in Table 3.3. Analyzing these results, it does not seem that

Before After ∆
P R F P R F P R F

micro avg. 0.88 0.88 0.88 0.91 0.91 0.91 0.03 0.03 0.03
macro avg. 0.69 0.89 0.77 0.71 0.92 0.80 0.02 0.03 0.03

Table 3.3.: Average performance of the bigram model before and after the
re-training phase on the 2019 testset

after two years the performance drops, however, the updating step brings some
improvements suggesting that monitoring this aspect is important and careful
periodical updates of the model (both in the vocabulary definition and in
the training) can be needed to maintain good performance, trying to avoid
the so-called, catastrophic forgetting phenomenon [121]. This phenomenon
often shows up when one re-trains a network on new data which are different
from those used in the first training session. The model tends to forget what
it learned during the first session, thus producing relevant worsening in the
performance. Probably, as in our case, the difference between old and new
data is not that relevant, we obtained good results by simply mixing the new
train set extracted from D2 with the one extracted from D1. By using this
updating approach, the updated model reached an accuracy score of 91% on
the (mixed) test set (obtained joining the test sets from D1 and D2), 91% on
the test set extracted from D2 and 92% on the test set extracted from D1.

3.1.4. Threats to Validity

External validity. Even if the proposed classifier has been designed and tested
on a fairly large set of files, the used dataset falls short of the entire corpus of
source code distributed via publicly accessible version control systems. Datasets
that approximate that corpus [2, 50, 116] do exist and could potentially be
more challenging to tackle because: (1) they will include more extension/classes
that did not occur within this paper’s datasets, (2) they can include noisier

81

Chapter 3. Programming Language Identification

data as repository popularity is likely a proxy of project quality in terms of
coding practices, and (3) they can include files from more varied chronological
epochs—also programming languages always evolve and new ones emerge
increasing the variety of classes to be considered. Nevertheless, our design
choices were oriented to address this kind of problem, as we discussed before,
and we aim to use the proposed approach on these larger datasets in future
work.

Internal validity. Various (non-domain specific) heuristics have been applied.
First, filtering of non-textual files has been performed based on the percentage
of non-printable characters within a random sample of the datasets; different
samples or thresholds might affect stated results. On the same front, the choice
of using the ASCII encoding can bring the lack of some encoding information.
An alternative approach would have been guessing the used encoding (using
libraries such as chardet); it is not clear which biases either approach would
introduce if any.

The vocabularies V and V2 are based on tokens and bigrams frequency distri-
butions defined separately on different classes. This can introduce model biases
and could be mitigated by using separate datasets to define the vocabularies
and to train the neural network. Hyperparameters tuning has been performed
as an iterative process, certainly not exhaustive. In spite of the achieved
good results, it is possible that different choices for hyperparameters and/or
neural network topology would score even better. At the end of the previous
section we mentioned some possible threats due to extensions classification,
in particular, some of the extension classes that we treated as different might
actually refer to the same abstract file type, which can cause confusion for
the model and makes the training task harder as a class shares its instances
with other classes. It is difficult to mitigate this last threat without relying on
domain-specific knowledge.

3.1.5. Discussion and future work

In this work we considered the problem of predicting textual file types for
files commonly found in version control systems (VCS), relying solely on file
content without any a priori domain knowledge or predetermined heuristic.
The problem is relatively novel (as most existing language/file type detectors
rely heavily on extensions as input features) and relevant in contexts where
extensions are missing or cannot be trusted, and shed light on the intrinsic
recognizability of textual files used in software development repositories.

We propose a simple model to solve the problem based on a universal word
tokenizer, word-level n-grams of length 1 to 2, feature vectors based on n-gram

82

3.1. File Extension Identification

frequency, and a Fully Connected Layer neural network as a classifier. We
applied the model to a large dataset extracted from GitHub spanning 133
well-represented file type classes. Despite its simplicity, the model performed
very well, nearing 85% average accuracy, and outperforming previous work in
either accuracy, number of supported classes, or both. We expect that model
simplicity will make it more maintainable in the future and less computationally
expensive to train and run than alternatives based on learning algorithms such
as CNN, LSTM, or Attention.

Our biggest achievements are due to the effectiveness of the model in presence
of many classes with a relatively simple model. Hopefully, this remains true
also if we increase this number but more inspection about this needs to be done.
Also, we used the actual label that we find for the files without any additive
manipulation, i.e., employing outcomes of other predictors or transformation.

In addition, we performed a test on the validity of the results after a few
years and evaluated an updating strategy for the model to inspect its long-term
quality.

Many more kinds of extensions have been found in our dataset, however,
only 133 of them have been selected in our study because of their nature
(we tried to exclude non-textual file types) or their popularity (we excluded
infrequent classes). A possible model modification could focus on including
these neglected classes as belonging to an extra class, i.e., identified as other,
to which all the excluded file types belong. However, such a class would be
highly heterogeneous as it could be populated by both binary and textual file
types of very different nature. This extra class would be useful to classify all
the files which do not fit the other classes according to what the model learned
and could be helpful in a real-world application in which we do not know if
the actual class belongs to our selected extensions set. This aspect can be
implemented and investigated in future works.

Concerning future work, a straightforward next step is scaling up experimen-
tation of the proposed model, moving from the high-starred GitHub dataset
we used for this work to larger and more diverse datasets such as Software
Heritage [2]. In that context, we will have significantly more starting classes
and hopefully enough samples in each of them for enlarging the set of labels
actually used in training. As we observed, extensions alone are ambiguous in
many cases and this poses challenges in training and evaluation. To mitigate
this issue, it is worth exploring the possibility of inserting narrow domain
knowledge about file extensions that often go together. It is not clear whether
doing so, partly backtracking the “no domain knowledge” assumption of this
work, would be worth the effort in terms of increased accuracy; hence, it is
worth exploring. An alternative approach for improving the current handling

83

Chapter 3. Programming Language Identification

of model confusion is adding a second tier of classifiers, one for each class of
ambiguous extensions, a popular technique in NLP. There are various methods
to combine the predictions from the first and second-level classifiers which
should be explored. We have briefly explored the topic of accuracy degradation
in the lack of retraining at a 2-year distance. A more general characterization
would be interesting to have and is feasible to obtain by exploiting historical
software archives and/or VCS timestamp information. Such a characterization
will allow devising data-driven approaches for when and how to retrain file
type and language detection tools in a world in which programming languages
constantly evolve.

84

3.2. Image-based Programming Language Identification

3.2. Image-based Programming Language Identification

In this Section, another approach to Programming Language Identification is
described. The dataset used here is the D2 dataset introduced in the previous
section, but the pre-processing phase is defined in a different way as the final
data representation that we aim to use here is completely different from the
other one. Image representation for source code is used and an appropriate
model needs to be selected to treat such kind of data. Convolutional Neural
Networks (CNNs) [137] represent the state-of-the-art and the most used neural
network architectures for image recognition. CNNs are commonly used for
image-based PLI and our approach relies on them as well, with two notable
differences from related works in the literature: a large number of classes to
be recognized and the use of transfer learning.

Transfer learning [211] is a well-known machine learning approach that,
rather than training models from scratch for a specific classification task, starts
from a model that has been pre-trained on a related domain and then adapts it
to the target domain. The key advantage of transfer learning is that it allows
obtaining good classification performances while using a reduced training set
and therefore reduced training costs. Whereas we did have enough data in our
dataset to start from scratch, training cost remains an important concern in
PLI because, due to the rapid evolution of source code artifacts in the target
domain, one has to add to the initial training cost that of periodic retraining.
This domain-specific aspect of the problem led us to the decision to use transfer
learning.

Another key point of this approach stays in the data labeling strategy
which differs from the previously used one and that counts on external tool
prediction outcomes. The different labeling approach permits to end up with
programming language labels instead of using the ambiguous file extension.

3.2.1. Data preparation

Labeling

After filtering out rare file extensions we run Linguist [69] (a popular choice for
source of truth of PLI works in the literature) on all source code files having
one of the remaining extensions and excluding all the files for which Linguist
was unable to predict the language. The extensions are important as Linguist
uses them as a feature to predict the language and without this information,
its reliability drastically drops. At the end of this step, 212 languages remained
in the dataset, together with the associated source code files. In this way, the

85

Chapter 3. Programming Language Identification

classification labels are now the programming languages detected by Linguist
and are no longer the file extensions.

Bundles and snippets extraction

At this stage, the amount of both files and Source Lines Of Code (SLOCs) in
the dataset was highly unbalanced across languages. For example, popular
programming languages such as Python or JavaScript occur in thousands of
source code file examples, whereas other languages only had 100 examples or
less. As we already pointed out, unbalanced datasets are a well-known issue
for supervised machine learning we wanted to mitigate this issue, while at
the same time avoiding both high file repetition rate (oversampling) and the
exclusion of too many languages (downsampling). Avoiding downsampling
is particularly relevant here since our goal is to assess the feasibility of high-
accuracy image-based PLI with many languages.

We exploited the fact that we want to focus on code snippets images rather
than entire source code files like in the previous work. As a first step, we
created one source code bundle for each programming language concatenating
together up to 1000 files randomly selected among all the files written in
that language. Then we used a sliding window of 32 SLOCs (see Fig. 3.4)
which randomly moves along the vertical axis of each bundle, extracting 2000
code snippets for each language. We took care of ensuring that the snippets
belonging to the test set do not have overlapping SLOCs with the train set.

Bundles that did not contain enough SLOCs to allow the extraction of
non-overlapping snippets for the test set have been excluded, thus obtaining a
total of 149 recognizable languages and 149 ∗ 2000 = 298000 labeled snippets.

Images rendering

Each snippet has been rendered to a raster PNG image of size 399× 399 pixels
by using white on black text typeset in the Roboto Mono monospace font6 with
a font size of 11 points. Note that all obtained images are squared and have
the same size, so trimming of long lines could happen as shown in Fig. 3.4.

3.2.2. The model

We compared the performances of three classifiers based on three different
CNN architectures pre-trained for images recognition: ResNet34 [78], Mo-
bileNetv2 [83] and AlexNet [101].

6https://fonts.google.com/specimen/Roboto+Mono

86

https://fonts.google.com/specimen/Roboto+Mono

3.2. Image-based Programming Language Identification

Figure 3.4.: Source lines of code extraction from source code bundles and their
rendering.

Figure 3.5.: AlexNet architecture, the simplest pre-trained CNN among those
we specialized for visual code recognition

87

Chapter 3. Programming Language Identification

The first two have about 30 layers each, while the latter has 8 layers. We
show in Fig. 3.5 the architecture of AlexNet, as it is the simplest to fully depict;
the other two architectures are similar but significantly deeper. The three
CNNs we used were all pre-trained on ImageNet [48], a generic image dataset
composed of more than 14 million images classified into 20000 classes. This
allowed us to benefit from the features and invariants learned on ImageNet in
order to perform image-based PLI.

As a preliminary step in the model training, we replaced the classification
layer (or head) of each CNN—initially composed of 1000 output neurons, as
required by the ImageNet classification task—with a head composed of 149
output neurons, corresponding to the cardinality of our set of programming
languages to recognize.

We applied a (usual) 80/20% split to our dataset twice to obtain the train,
validation, and test sets. First, we kept aside 20% of the obtained code bundles
for testing and then further split the rest to obtain the train and validation
sets. This resulted in an overall partition of all code bundles into three sets:
64% for training, 16% for validation, and 20% for testing.

We then applied a two-step training procedure to all three CNN architectures.
As a first step, the weights of the CNN (the body) have been frozen so that
training could only affect the substituted head. This way the features previously
learned by the convolutional layers during ImageNet training are exploited to
make predictions about the new classification task.

After a few epochs of training, we moved to the second training step,
where all the weights are unfrozen, thus allowing training updates all over
the architecture. A slightly lower learning rate is used in the second training
step with respect to the first so that the network can adapt to the task of
image-based PLI without completely forgetting what the network has learned
about images in general.

Table 3.4 shows the total training times for the three architectures, as well as
a breakdown per training step, the number of training epochs, and the average
per-epoch training time in each case. Training has been performed on a Linux
machine equipped with an Intel Xeon 8 core 2.1 GHz CPU, Nvidia Titan XP
GPU, and 96 GiB of RAM. The slowest architecture is MobileNet, which took
around 7 hours to complete both training steps; the fastest architecture is
AlexNet, requiring less than 2 hours of total training time.

Improvements in the training process, including finding a good balance
between underfitting and overfitting phenomena, can be obtained by setting
suitable values for several network hyperparameters. We mainly focused on
tuning the learning rate (LR) while the other hyperparameters, such as epochs
and batch size, have been kept at fixed values. For LR tuning we used the

88

3.2. Image-based Programming Language Identification

Training time/Epoch Epochs Total training time
A M R A M R A M R

step 1 6m33s 22m20s 20m04s 8 8 8 52m23s 2h58m39s 2h40m29s
step 2 6m49s 30m32s 26m46s 8 7 7 54m29s 3h44m41s 3h07m20s

total 13m22s 52m52s 46m50s - - - 1h46m52s 6h43m20s 5h47m49s

Table 3.4.: Average training times per epoch (minutes and seconds), number
of epochs and total training times (hours, minutes and seconds) for
AlexNet (A), MobileNet (M) and ResNet (R) -based models for
the 2 considered steps of training.

One Cycle Policy [166], where the LR cyclically varies within a certain range
allowing improvements both in classification accuracy and training time. The
LR range’s upper bound has been determined during a pre-training phase
according to a method recently proposed by Smith [167], which represents
an efficient alternative to the common random search technique. We run one
epoch of training starting with a small LR and gradually increasing it at each
training iteration while recording the validation loss values. At the beginning
the loss decreases, then reaches its minimum, and then starts to increase: such
a minimum indicates the LR value that we have retained. The lower bound of
the LR range was set to be 1

25 of the upper bound.

3.2.3. Scrambling

When using CNNs for image-based PLI, learned features are automatically
extracted by the network during training. In order to better understand
what are the domain features (indentation, particular character classes, text
placement, etc.) that allow the networks to visually recognize programming
languages we selectively added noise to the code snippet images of the test
set. This allowed us to determine which characters impact the most language
identification capabilities.

We defined three classes of characters that are commonly used to define
lexemes in the syntax of programming languages: alphabetic characters (de-
noted by A), numeric decimal digits (N), and symbols (S) for the remaining
non-blank characters (mostly punctuation characters, mathematical symbols,
and parentheses). Scrambling consists in replacing each character of a class
being scrambled by another character, randomly selected within the same class
while preserving string lengths. Fig. 3.6 shows some examples of scrambling
results.

We first applied the scrambling to one character class at a time, without

89

Chapter 3. Programming Language Identification

(a) original snippet (b) scrambling alphabetic
characters (A)

(c) scrambling decimal digits
(N)

(d) scrambling symbols (S)

(e) replacing all non blank
characters with lowercase

"x" (X)

Figure 3.6.: Java code snippet in original form v. several scrambled variants

changing characters belonging to other classes, obtaining 3 scrambled test sets
denoted A, N, and S. We then scrambled pairs of character classes together,
obtaining 3 additional scrambled test sets denoted AN, AS, and NS; then we
scrambled all the three character classes together, obtaining the scrambled
test set denoted ANS. Finally, we considered the extreme case in which
every character except blanks has been replaced by a (lowercase) x character,
preserving only the overall code “layout”, as dictated by code indentation,
obtaining the scrambled test set denoted by (uppercase) X.

3.2.4. Results

For each architecture, the training phase has been performed on the original
non-scrambled dataset and then repeated for each classifier and for each
scrambled version of the dataset. In order to be able to compare results among
the different architectures, we used a fixed PRNG (Pseudo-Random Number
Generator) seed to make sure that images were processed in the same order
during both training and evaluation.

90

3.2. Image-based Programming Language Identification

3.2.5. Classification Results

On the non-scrambled dataset, after 8 epochs of the first training phase—in
which only the weights of the classifier’s head were able to be updated—the
ResNet- and MobileNet-based classifiers reached ≈ 90% accuracy on the vali-
dation set, while the AlexNet-based model reached only ≈ 60%. Performances
improved for all models after the fine-tuning phase—when all weights could
be updated, although at a lower learning rate. After 7 epochs of fine-tuning
ResNet accuracy reached ≈ 92% (+2%), MobileNet ≈ 93% (+3%), and
AlexNet ≈ 84% (a significant +24%, but still the worst performing classifier
overall).

The considered performance measures are the same considered in the previous
work, i.e., precision P , recall R and F1, the results obtained for each class are
shown in Table B in Appendix B while in Table 3.5 we only report average
results.

ResNet34 MobileNetv2 AlexNet

P R F P R F P R F

0.92 0.92 0.92 0.92 0.92 0.92 0.83 0.83 0.83

Table 3.5.: Average performance of the models for image-based PLI

Two aspects are worth noticing: first, performances range from acceptable
to very good for all classifiers, with precision in the 83–93% range (depending
on the base CNN) and recall in the 83–92% range. Second, the ResNet- and
MobileNet-based classifiers significantly outperform the AlexNet-based one,
probably due to the higher number of layers that allow the first two networks
to better generalize to the PLI dataset within a limited number of training
epochs. Performances of the ResNet and MobileNet classifiers are almost as
good (−1.5%) as the state-of-the-art in image-based PLI, in spite of a ×15-time
increase in language diversity and reduced training costs.

We notice from Table B that most languages perform very well, close to the
overview given by the aggregate performance metrics. Most of the languages
that perform poorly still perform well above 80% precision with the best
performing classifiers. The languages that perform the worst tend to have
common syntactic characteristics either among them or with other languages
included in the dataset. This is the case when a language is a subset of
another one, as it is for example for Objective-C and Objective-C++; and yet
the two languages are recognizable with 76–82% precision by the MobileNet-
based classifier. Other low-precision cases are related to languages that can
embed other languages, such as HTML, JavaScript, JSX, Less, and XSLT. All

91

Chapter 3. Programming Language Identification

Table 3.6.: PLI performances with and without scrambling. From left to right:
no scrambling (Orig), scrambling of alphabetic characters (A),
digits (N), symbols (S), combinations of them (AN, AS, NS, ANS)
and substitution of all non-blank characters with x (X).

ResNet34
Orig A N S AN AS NS ANS X

Precision 0.92 0.87 0.92 0.47 0.87 0.34 0.48 0.35 0.01
Recall 0.92 0.85 0.92 0.33 0.85 0.20 0.33 0.19 0.17
F1 0.92 0.86 0.92 0.39 0.86 0.25 0.39 0.25 0.01

MobileNetv2
Orig A N S AN AS NS ANS X

Precision 0.92 0.89 0.93 0.42 0.89 0.31 0.44 0.29 0.04
Recall 0.92 0.88 0.92 0.25 0.88 0.16 0.25 0.16 0.05
F1 0.92 0.88 0.93 0.31 0.89 0.21 0.32 0.21 0.04

AlexNet
Orig A N S AN AS NS ANS X

Precision 0.83 0.75 0.83 0.57 0.75 0.44 0.58 0.44 0.09
Recall 0.83 0.72 0.83 0.49 0.72 0.31 0.50 0.31 0.05
F1 0.83 0.73 0.83 0.53 0.73 0.37 0.53 0.36 0.06

classifiers exhibit weaknesses in visually recognizing these languages.

Scrambling results

The three classifiers trained on the original trainset have been then tested on
the scrambled versions too.

Performance results are presented in Table 3.6 for each architecture on the
various dataset versions. The results provide some insights on what makes a
code snippet visually recognizable, as we discuss below.

We can see that randomly scrambling decimal digits alone (dataset “N”)
induces no degradation in PLI performances for the three classifiers. Scrambling
alphabetic characters alone (dataset “A”) has a mild performance impact,
degrading precision and recall by 3–11%, depending on the CNN, with AlexNet
being the most affected one. Scrambling symbol characters alone (punctuation,
operators, parentheses, etc.; dataset “S”) on the other hand is enough to
have a dramatic effect on the performances of every considered architecture,

92

3.2. Image-based Programming Language Identification

inducing an impressive drop in both precision and recall in the 2–4× range.
This degradation is likely due to the syntactic (and hence visual) importance
that punctuation characters play in programming languages and their highly
different usage of them across different languages.

Scrambling several character classes at once (datasets: “AN”, “AS”, “NS”,
and “ANS”) appears to simply combine the effects of scrambling individual
character classes. AN still performs relatively well (because symbols are not
scrambled), all the datasets which also involve symbol scrambling perform
badly, and scrambling all three character classes at once exhibits the worst
performances.

Performances for the “X” dataset, where all non-blank characters have been
replaced by x, are below 10% for both precision and recall in most cases,
reaching as low as 1% for the precision of the ResNet-based classifier. It
appears that the code “layout” alone, as captured by indentation, is nowhere
near enough to make programming languages visually recognizable.

3.2.6. Threats to Validity

We rely on Linguist [69] as the source of truth for what is the “real” language
of a code snippet. Whereas this is a common choice in the PLI literature
due to the efficacy, efficiency, and broad language support of Linguist, it still
means that our precision and recall results should be diminished by Linguist’s
performances, which is reported by GitHub as having 85% accuracy [64]. As
we are comparing with other works in the literature that also used Linguist as
the source of truth, this fact does not impact the improvement in language
diversity that we introduce with this paper.

We used code snippets of fixed size (32 SLOCs), this could generate snippets
that come from a code written in a given language X that seems written
in some similar language, for example, snippets including only lines about
syntactical constructs allowed in a similar language. These situations can
generate confusion for the model from both training and evaluation points of
view but they are very difficult to be detected.

We used synthetic images rendered from textual code snippets instead of
real-world images. Both approaches can be found in the PLI literature and we
compare well with previous works that also used rendered images. Moreover,
works that use “real” images rely for the most part on video frames extracted
from programming tutorials. Those tutorials are generally produced as screen-
casts, in which programming editors and IDEs are recorded directly from the
desktop environment (rather than, say, from a physical camera pointed at the
screen), resulting in very high-quality video frame images. Therefore we do

93

Chapter 3. Programming Language Identification

not expect our performances to be significantly impacted by the switch from
synthetic images to screen-casts video frames. Visual recognition of actual
real-world images—e.g., pictures of billboards showing code or movie frames
of screens showing code—would be a different matter, but it is a challenge we
share with most works in the image-based PLI literature.

We relied on Software Heritage as the data source (instead of ad hoc crawling)
and used a dataset corresponding to code retrieved from the most popular
GitHub repositories. We further cleaned up all unrecognizable and unpopular
languages according to the data pipeline discussed before. There is certainly a
bias in this process, tilting in favor of “good” snippets rather than considering a
wide spectrum of good and bad ones. We believe that our choice in this respect
leads to comparable results to other approaches (e.g., retrieving snippets
from StackOverflow or extracting video frames), as those solutions are also
characterized by a significant selection bias for quality (the barrier for posting
a snippet on StackOverflow or publishing a video tutorial being much higher
than that of pushing code to GitHub).

In terms of dataset size, and according to a recent literature review [95], our
experiments have been conducted over 12–15× more snippets than the largest
empirical studies in image-based PLI. Rather, our dataset size is in line with
the largest datasets used for text-based PLI. It is worth noting that we have
arguably amplified the number of snippets that form our experimental dataset,
in the sense that we have extracted several snippets from each source code file.
At the same time, we have been careful in not extracting overlapping snippets
for the training set, mitigating (if not fully neutralizing) this threat.

3.2.7. Discussion and future works

Based on the obtained results we can say that it is possible to automatically
recognize up to 149 different programming languages in brief code snippet
images, with high accuracy. This is a significant step forward in the state-of-
the-art of image-based PLI, which was limited to recognize up to 10 languages.
This result paves the way to use image-based PLI in real-world settings, where
much more than a handful of programming languages need to be handled.
It is worth noting that we stopped at 149 languages only to avoid dataset
imbalance, not due to intrinsic limitations in the proposed approach. Using
larger code bases [3, 116] as training datasets it should be possible to achieve
even higher language diversity without significant reductions in identification
accuracy.

As highlighted by the results obtained from the experiments about scrambling
we have gathered evidence that symbols—punctuation, arithmetic operators,

94

3.2. Image-based Programming Language Identification

parentheses, etc.—are the characters that impact the ability to visually rec-
ognize programming languages the most, making precision halve and recall
diminish by 2

3 when scrambled and with the best-performing classifier. Alpha-
betic characters have a minor impact (a few percentage points drop), whereas
decimal digits have no measurable impact. The difference among classes makes
intuitive sense, but the impact of symbol scrambling remains remarkable,
especially considering how symbols tend to be reused for similar needs across
different languages (e.g., many languages share the use of arithmetic operators
or, to a lesser extent, of ";"). A more fine-grained analysis of which individual
symbols impact recognition the most is needed for future work.

We intuitively expected the “layout” of the code alone, as captured by
indentation, to perform better than what we have observed with the “all
x” scrambled dataset, which performed terribly with all classifiers in our
experiments. In particular, we expected indentation to be a tell for at least the
languages where indentation is syntactically meaningful, such as Python. That
factor is probably contrasted by the fact that proper indentation is a coding
best practice for all languages, and certainly so in a dataset assembled from
popular open source projects. This could make good indentation a common
trait of all languages and snippets, from which nothing can be learned by a
trained classifier.

To get a qualitative feeling of where the classifiers gather the most relevant
information for image-based PLI, we show in Fig. 3.7 the class activation
map (CAM) [208] heat-maps for selected snippets. We have generated CAMs
from the ResNet-based classifier, using PyTorch hooks just after the last
convolutional layer. Colors in CAMs highlight which image parts contributed
the most to the final classifier decision, helping with the understandability of
machine learning models7.

A few observations about these CAMs are in order. First, CAMs highlight
the fact that the beginning of code lines is very relevant for classifier decisions.
This relates to the importance of symbol characters—which are often found
at the beginning of each line, like parentheses, and are also highlighted by
CAMs elsewhere in code snippets—but it appears to go deeper than that. For
instance, it seems that for several languages the CNN has learned to recognize
full language keywords, such as def for the Python programming language and
other keywords for Dockerfiles and Visual Basic. Second, CAMs confirm that
indentation is not useful for PLI: spaces at the beginning of code lines remain

7These maps can be seen as heat-maps, with black/blue colors indicating low temperatures
and the scale going up to yellow for high temperature in the usual way. High temperature
in our case means a high contribution to the final classifier decision.

95

Chapter 3. Programming Language Identification

(a) Go (b) JavaScript

(c) Kotlin (d) Objective-C++

(e) Python (f) Rust

Figure 3.7.: Class Activation Map (CAM) heat-maps for selected code snippets
in various languages, for the ResNet-based classifier.

96

3.2. Image-based Programming Language Identification

almost invariably in the dark. These are just some preliminary considerations
based on CAMs, whose exhaustive analysis in the context of image-based PLI
was out of scope for this paper but constitutes a promising lead for future
work.

In terms of machine learning architectures, we have shown that transfer
learning starting from pre-trained image CNNs is a viable option for image-
based PLI, an approach that had received little attention in the literature for
this domain thus far. With respect to starting from scratch, our approach offers
the benefits of cheaper (re)training, reducing maintenance costs. Considering
the very marginal reduction in precision in comparison to previous work
(≤ 1.5% with respect to [95]), which is probably in large part imputable to
the much higher language diversity in our experiments, the pros/cons balance
seems to tilt towards pre-trained CNNs and transfer learning.

In this respect, it seems worth exploring side-tuning [206], a recent technique
for transfer learning which consists in adapting a pre-trained network by
training a lightweight “side” network that is then fused with the (unchanged)
pre-trained network via summation. Side-tuning works very well in several
scenarios [206] and it has recently been shown [213] to be applicable to multi-
modal document classification, where diverse data sources such as text and
images are considered, improving document classification accuracy with respect
to the state of the art. Such a multi-modal approach could be naturally applied
to PLI, by interpreting code snippets as both images and text. The empirical
validation of the applicability of side-tuning to PLI is left as future work.

97

Chapter 3. Programming Language Identification

3.3. Conclusions about the Programming Language
Identification task

Programming Language Identification is a fundamental task during software
development and its maintenance. When the software project under analysis
has a reasonable size PLI can be easily manually performed by developers.
However, there exist many situations in which the scale of the software content
makes the manual approach infeasible. Examples of this situation can be
found when dealing with hosting repository systems (e.g. GitHub), developers’
forums (e.g. StackOverflow), or large-scale software archives (e.g. Software
Heritage). These codebases are becoming more and more popular among
the developers’ community and the size of stored software is growing. When
dealing with these cases the manual strategy for PLI is no longer a reasonable
choice and task automation is required.

The work presented in this chapter described different approaches to deal
with the automatic PLI task developed by exploiting learning algorithms. The
huge amount of freely available code data is not accompanied by the same
support for labels, i.e., the ground truth about the programming language.
This constitutes an important impediment to the implementation of supervised
learning models whose functioning and effectiveness strictly depend on labels’
availability and quality. However, some foresight and assumption can serve to
partially solve the labels’ problem.

The text-based approach is used as labels the files extensions found at
the end of the filenames as they are usually related to the language used
to create the source code file. This strategy does not rely on external tools
or other kinds of knowledge so does not introduce any dependency to the
model but it has the drawbacks of having intrinsically ambiguous labels and
no clear unique relation between extensions and languages. The model makes
predictions at the file level, it showed good performance despite its simple
architecture which makes it easy to maintain in the long term. However, some
weaknesses can be due to the chosen features that have been manually defined
and depend on the vocabularies definitions which can represent a limit in the
information extraction. Also, this model has to deal with Out-Of-Vocabulary
(OOV) tokens and bigrams occurrences which sometimes can represent a
non-negligible problem.

The image-based approach used an external tool to label the code instances,
so they are labeled directly with the language but considering that the labels’
quality directly depends on the performance of the employed tool. The model
makes predictions for snippets of 32 lines of code which are transformed into

98

3.3. Conclusions about the Programming Language Identification task

an image representation and processed by a usual image recognition neural
architecture. This model reaches very good results even if it deals with few
lines of code only, however it has a more complex architecture that the text-
based model which in some cases could represent an impediment. Features
are not manually defined but are automatically extracted by the model and
relevant information seems to be carried by punctuation symbols as shown in
the analysis of the scrambled files. Moreover, the model does not suffer from
the OOV problem.

Both models reached reasonably good results proving their effectiveness,
also they can deal with a relatively high number of classes suggesting their
scalability for this aspect. Depending on the final application features, i.e.,
the environment in which the model should actually be employed, one model
can be preferable with respect to the other one.

99

Chapter 4.

Software Defect Prediction

Code analysis, testing, and review are very important in assuring the quality
and reliability of the final software product and they should be performed
accurately even if they are usually highly time expensive tasks in software
artifacts production.

As we already pointed out in Chapter 2, these tasks have been tradition-
ally performed by static and dynamic code analyzers or directly by humans.
Recently, many works have been developed to treat bugs and vulnerabilities
detection as machine learning problems. In particular, Deep Learning models
result to be the best-performing ones and bring relevant improvements to the
field of defect prediction as they can exploit syntactic, context, and semantic
information at the same time especially because of the possibility to perform
automatic feature learning. In our work, we want to follow this direction as it
seems to bring promising results.

First of all, while analyzing the related literature we noticed that almost
every work developed within this field treats the defect prediction problem
as a binary classification task in which the two classes simply represent the
presence or absence of defects within the analyzed code fragment. All the
kinds of defects are treated in the same way and are grouped together in a
unique class to which defective codes belong. Conversely, in our work, we want
to be able to retrieve some additive information about defects by also assigning
an identity to them. To do so the problem is treated here as a multi-class
problem in which the classes are represented by the kind of bugs and the class
of non-defective code.

The dataset used in this work has been presented in [65]1 consisting of
GitHub C/C++ projects and the outcomes of a static analyzer applied to the
code. From the analyzer output, it is possible to extract the exact locations
and names of the detected bugs. To begin our analysis, we decided to focus
on the three most common bugs found within the dataset which are the Dead

Store (DS), Null Pointer Dereference (ND), and Uninitialized Value

1https://zenodo.org/record/3472048

101

https://zenodo.org/record/3472048

Chapter 4. Software Defect Prediction

(UV) bugs. The following brief descriptions of these bugs are provided together
with the associated reference in the Common Weakness Enumeration (CWE)
list which is an important categorization reference for vulnerabilities and
weaknesses [39].

DEAD STORE (CWE-5632) refers to the dead store bug which is an issue that
happens when a value assigned to a variable is never used in the rest of the
code. This issue is not strictly an error but it causes a waste of resources in
time and memory terms.

NULL DEREFERENCE (CWE-4763) refers to the null pointer dereference which
occurs when the program causes dereference of a pointer which is expected
to have a valid value but it turns to be NULL. This kind of issue can actually
cause crashes and undefined behavior of the program.

UNINITIALIZED VALUE (CWE-4574) is caused when a program tries to read
or access a value before it has been initialized. This can cause crashes and
unwanted program behavior.

As a static analyzer is used to label the data, we can at most imitate the
static analyzer performances but, to our knowledge, this is the only freely
available dataset that contains information about bugs identities and, due to
the temporary lack of another method of labeling (e.g., labeled by humans),
the static analyzer output is considered reasonably acceptable. Such work
can serve to study how close to the static analyzer outcomes we can go by
performing bugs detection by implementing statistical methods which learn
from data. Moreover, the designed models can be used as heuristic methods
to spot bugs instead of performing a complete static analysis when the source
code size would require a big amount of time to perform the complete static
analysis.

Based on the results obtained performing this study we can deduce which are
the most promising models, among the attempted ones, that can be exploited
in defect prediction. In the future, we aim to apply the models selected in this
work to an improved dataset in order to surpass the constraint given by the
labeling strategy, i.e., using the static analyzer output. We aim to build this
dataset using multiple labeling techniques and select the data for which the
labeling techniques share their results. The labeling tools should be several
static and dynamic analyzers used on the same input data whose final results
are compared. A label is considered reliable only when all the employed tools
agree on the outcome.

2https://cwe.mitre.org/data/definitions/563.html
3https://cwe.mitre.org/data/definitions/476.html
4https://cwe.mitre.org/data/definitions/457.html

102

https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/457.html

4.1. Dataset

4.1. Dataset

As pointed out in [65], the static analyzer used to build the dataset is Infer
[55], an open source tool developed by Facebook5. This tool is able to process
other programming languages too, i.e., Java and Objective-C, for now, we
only focus on the content of the original dataset but the work could be easily
extended to these other languages without too much effort.

Infer can handle 92 different potential bugs and 15 of them do not concern
C and C++ programs. A complete list of the issues detectable by means of the
Infer static analyzer together with their availability for C and C++ programs
is shown in Table C.1 in Appendix C.

Despite the rich variety of bugs types we only concentrate on three of them
as they are the only ones that are relevantly represented within the dataset. In
fact, the null pointer dereference has 9482 examples the dead store has 10722
examples, while uninitialized value is present 8050 times, other kinds of bugs
are too underrepresented with respect to these others and for the moment we
focus on these three only.

Initially, the dataset contains 3169 projects cloned from GitHub and its size
is around 33 GB. The dataset is presented in a raw form, in which the whole
project is coupled with the whole static analyzer output and log files, for this rea-
son, it requires a lot of effort to parse it in a suitable form, i.e., the code fragment
coupled with the related bug(s) found in it. The data directory contains one
directory for each project downloaded from GitHub. These project directories
are named with the GraphQL-ID from GitHub’s GraphQL API. In each of these
GraphQL-ID labeled directories, there is a license.txt, a url.txt, a source

directory, and a derivatives directory. The license.txt contains the license
for the original project, the url.txt contains a link to the original project on
GitHub, the source directory contains the original code, and the derivatives
directory contains the output of Infer. The derivatives/infer-out directory
contains the files .infer runstate.json, bugs.txt, costs-report.json,
logs, proc stats.json, report.json, results.db and the subdirectories
events and specs.

The files bugs.txt and report.json contain the most relevant results about
bug detection and we exploit them to extract the bug’s information.

For each project, the associated bugs.txt file is analyzed and the reported
bugs are extracted and associated with the file and code line in which they
are detected by the static analyzer.

As a first step, we decided to focus on the analysis at file-level granularity.

5https://github.com/facebook/infer

103

https://github.com/facebook/infer

Chapter 4. Software Defect Prediction

To do so we started creating a file files-list.txt which lists every .c and
.cpp file found within the projects stored together with the precise file location
and name in order to easily retrieve the files from the dataset.

For each project, we parsed the bugs.txt file extracting from it the name
and position (code line within the file) of each detected bug together with the
name and location of the file in which that bug is detected. This permits to
have for each of the files in files-list.txt a list of all bugs (if present) and
bugs positions that have been detected in it by the static analyzer.

From this analysis emerges the bugs popularity among projects which is
represented in Table 4.1 (note that each file could contain the same bug multiple
times at different positions, the situation depicted in Table 4.1 counts these
multiple occurrences). We choose to restrict on the ND, DS, and UV bugs,
however also MEMORY LEAK and RESOURCE LEAK have thousands of examples
but we decided to not focus on them because after the preprocessing and
vectorization phases their number dropped dramatically (because of several
issues, for example in code parsing, etc.) bringing to an even more pronounced
imbalance in data.

Issue Occurrences

NULL DEREFERENCE 9482
DEAD STORE 10722
UNINITIALIZED VALUE 8050
RESOURCE LEAK 1329
MEMORY LEAK 4543
USE AFTER FREE 100
POINTER TO INTEGRAL IMPLICIT CAST 15
LOCK CONSISTENCY VIOLATION 32
USE AFTER LIFETIME 90
STATIC INITIALIZATION ORDER FIASCO 644
DEALLOCATE STATIC MEMORY 8
DEALLOCATION MISMATCH 16
DEALLOCATE STACK VARIABLE 7
PREMATURE NIL TERMINATION ARGUMENT 1

Table 4.1.: Issues’ popularity within the dataset

File-level dataset Focusing on the three commonest bugs that we previously
introduced, i.e., Dead Store (DS), Null Pointer Dereference (ND) and
Uninitialized Value (UV), the file-list.txt can be enriched with bugs

104

4.1. Dataset

information. In particular, for each file of the list, we can assign a list of 3
binary values which represent the presence (1) or absence (0) of the selected
bugs. If none of the 3 values is set to 1 then the file is considered clean.

Due to the possibility of having multiple bugs within the same file, this
problem would be originally a multi-class multi-label classification task but
the analyzed dataset only contains a few examples in which different bugs
occur within the same file, i.e., multi-labeled files.

To treat multiple labels we tried to represent them using the Label Powerset
strategy [177], in which each combination of bugs (co-)occurrences is considered
as a class, for this reason, we end up with 2n = 8 classes, where n = 3 is the
number of considered bugs.

After the preprocessing and data preparation step which is described in the
next Section the files that successfully complete the preparation phase and
that can be used in our model are 63439 and the dataset situation after the
cleaning and preparation steps is shown in Table 4.2 and can also be visualized
using the Label Powerset strategy to have an immediate representation of how
many and which classes co-occurrences can be found within the dataset under
analysis.

DS ND UV lab. pow.set n of examples

0 0 0 0 57885
0 0 1 1 743
0 1 0 2 2222
1 0 0 3 1292
0 1 1 4 153
1 0 1 5 200
1 1 0 6 296
1 1 1 7 40

Table 4.2.: Files distribution among classes.

In the present case, the situation is represented in Figure 4.1 in which the
second histogram 4.1b represents the same situation as the first one 4.1a but
it does not report the clean code cases, this is done to better visualize the
defective classes distributions as compared to the clean code class it can be
difficult to visualize them.

In the performed experiments we considered only the classes 0, 1, 2, and
3 where there is only one bug or no bugs while the other cases are discarded
reducing the total number of files to 62139. This is assumed as the bugs’
co-occurrences rarely happen, however, we aim to include them in future work

105

Chapter 4. Software Defect Prediction

(a) Data distribution after
preprocessing.

(b) Defective classes distribution
after preprocessing.

Figure 4.1.: Data distribution.

and analysis of this problem.
At this point, the dataset can be split into train and validation sets and

this is done by selecting 80% of the available instances for the first one and
the remaining examples for the second one. The splitting procedure has been
performed in a stratified way in order to reproduce the same class distribution
in the two obtained sets of data.

As Table 4.2 shows, the dataset is highly unbalanced and this is true for the
just created train set too. In particular, the class correspondent to clean files
resulted to have more examples than the other ones. This always happens in
works like this as we pointed out in Section 2 and some strategy to face this
problem should be implemented. In this work, random oversampling technique
is used, in this way the balanced train set is composed of 185210 examples.
On the other hand, the validation set is kept unbalanced to fairly reproduce
the class distribution of the original dataset with 11578 examples for class 0,
149 for class 1, 444 for class 2, and 258 for class 3.

Function-level dataset As we will see in the next Sections, one of the
representations on which we based one of our models did not work well at
file-level. This problem is due to the nature of the model used to extract code
vectors which working recursively on AST structures has memory management
limitations when it comes to large-scale ASTs, i.e., ASTs with a high number
of nodes. At file-level it is more common to find such highly sized structures
and to avoid the memory management problem we decided to work at a finer
granularity level for this representation, i.e., at function-level.

Starting from the original dataset we implemented a function extractor using
the python package version of Clang which is a C/C++ parser[111, 112]. In
particular, each project found within the dataset is processed by the function

106

4.1. Dataset

extractor which searches for all the function declarations and creates a file
containing information about them. In fact, for each function declaration,
we store the function’s name, the path and name of the file in which the
declaration has been found, and the numbers of the starting and ending
lines of the declaration in order to easily obtain the actual function location.
Separately, the whole function definitions are stored in txt files in order to
easily retrieve their contents in successive phases.

Previously we stored bugs information, i.e., bug’s type, file location, and
bug’s line position within the file. Retrieving this information we can compare
the bugs’ positions with the locations of the extracted functions. More precisely,
if a bug has been detected at a certain line of a certain file and this line is
located between the starting and ending lines of a function declaration, this
function is labeled as affected by that defect. Again, multiple labeling is
possible but this time no multiple-labels cases have been detected, so the single
class labeling choice does not represent an approximation here.

The function declaration contents are then passed to the representation
model which, when successfully applied, generates a vector for each function.
The dataset after the application of the representation model is composed of
471033 instances representing the functions whose distribution among classes
is shown in Table 4.3 and Figure 4.2 in which, as in the file-level case, the
second histogram 4.2b represents the same situation of the first one 4.2a but
it does not report the clean code cases for better visualization.

DS ND UV lab. pow.set n of examples

0 0 0 0 460813
0 0 1 1 3273
0 1 0 2 5040
1 0 0 3 1907

Table 4.3.: Functions distribution among classes.

As expected also in this case we end up with a highly unbalanced dataset.
After splitting the total dataset with an 80/20 ratio into train and validation
sets in a stratified way, we apply random oversampling to the portion dedicated
to the training procedure. In this way, the train set results to have 1474600
examples, while the validation set contains 92163 clean functions, 655 functions
belonging to class 1, 1008 functions with label 2, and 381 for class 3.

107

Chapter 4. Software Defect Prediction

(a) Functions distribution after
preprocessing.

(b) Defective classes distribution
after preprocessing.

Figure 4.2.: Functions distribution.

4.2. Representations and Models

Source code can be represented with several methodologies each of which
emphasizes different code aspects. Depending on the specific situation some
code features can be more relevant than others and the representation which
highlights the important characteristics the most should be preferred among
the other possibilities.

An Abstract Syntax Tree (AST) is a tree representation of code that is
obtained from the source code, as a written sequence of characters, after it
has been processed by a certain language parser which builds the tree data
structure according to the language grammar rules while checking the code’s
syntax correctness.

First of all, the code stream is subject to lexical analysis which transforms
it into a sequence of tokens, usually tokenizing according to language-specific
rules. The tokenized code is then passed to the actual parser which establishes
if the sequence is composed by legal expressions and organizes them in a tree
structure. AST’s internal nodes represent language operations while leaf nodes
are identifiers, values, constants, etc. (the operands of the operations).

Many aspects which emerge at compile-time are handled by the parser and
encoded into the AST structure, in fact, it usually serves as input for code
analyzers, especially static analyzers.

As in this work, the aim is to learn and replicate a static analyzer behavior
we focused on the AST code representation, in this way the starting point of
our prediction models would be the same as the one of the static analyzer that
we aim to learn.

Learning algorithms take as inputs data encoded into numerical vectors and
we need a strategy to represent AST structures. Two different code vectorizer

108

4.2. Representations and Models

models based on ASTs are applied in the following and adapted in slightly
different situations for defect prediction and identification. The next Sections
focus on describing the vectorizer models and the steps needed to practically
apply them to our situation.

4.2.1. Code2Vec

Among various strategies to represent codes and extract information from
their AST structures code2vec results to be the state-of-the-art in several tasks.
Here we try to adapt the vectorization strategy proposed in [10] to our purpose
to investigate its capability to detect and identify the selected kind of bugs in
C and C++ code fragments modeling the task as a multi-class problem.

Code2vec is an AST-path based representation which means that the code
representation is built on a collection of paths that are extracted from the
AST.

An AST path p is a path between nodes in the tree structure which starts
from one terminal token ts (a leaf-node) and ends in another terminal token
te. The path is composed by internal nodes which are common ancestors of
the start and end tokens together with the directions in which the nodes are
traversed as the nodes can be reached following the two directions up and
down on the tree structure. AST paths are characterized by their length which
is the number of nodes that connect the two considered leaves.

Another important feature of paths is the path width which is the maximum
difference between the child indexes for child nodes of the same intermediate
node.

Finally, given the path p which connects the starting and ending tokens ts
and te, a path-context is defined as the triple (ts, p, te), where p is encoded as
a sequence of internal nodes (with directions).

Given a piece of code, many path-contexts can be extracted. Due to efficiency
considerations a maximum number of considered path-context needs to be set
as a model hyperparameter, together with maximum length and width for the
paths.

The extracted path-context are then fed into the actual model, using embed-
dings for both tokens and paths combining them employing a Fully Connected
Layer to build the context vectors. An attention architecture is used on the
computed context vectors to generate the final code vector representation
which is used by the final classifier to make predictions about a certain task.

As code2vec has been initially designed to treat Java code, some adaptation
steps are required to use this model to process C and C++ files. Particularly,
our files which contain C/C++ code need to be parsed to switch from a source

109

Chapter 4. Software Defect Prediction

code textual representation to the AST representation according to the C/C++
grammar rules. Once these AST representations are created the same strategy
used in [10] to extract paths and to build the code vector representations with
them can be applied.

A tool which can be exploited to do this kind of work is already available on
GitHub and it is known as Pathminer or Astminer6 and it is described in [100].
This software has been developed by the JetBrains research department and
it aims to extend the applicability of the code2vec strategy to other languages
than Java by using different parsers to generate ASTs. Astminer includes
C and C++ support by means of the integrated Fuzzy parser7 and we can
use this tool jointly to the code2vec model building a 2-parts tool-chain. In
particular, the Astminer tool provides the list of path contexts extracted for
each code fragment whose granularity can be set at folder, file or function
levels. For each input passed to Astminer the produced output is a folder
structured as follows.

/

c

data

path contexts.c2s

node types.csv

paths.csv

tokens.csv

cpp

data

path contexts.c2s

node types.csv

paths.csv

tokens.csv

node types.csv, paths.csv and tokens.csv contains a mapping between
integer identifiers (IDs) and nodes (with directions up/down), paths and tokens
found within the provided input, respectively. In tokens.csv retrieved tokens
are eventually treated by splitting the original camelCase notations into subto-
kens separated by the pipe symbol (vertical line). In the path contexts.c2s

file each line starts with the name of the folders, files or functions (accordingly
to the chosen level of code granularity) followed by a sequence of space-
separated path contexts. Each of these contexts are represented as triples

6https://github.com/JetBrains-Research/astminer
7https://github.com/ShiftLeftSecurity/fuzzyc2cpg

https://github.com/ShiftLeftSecurity/codepropertygraph/

110

https://github.com/JetBrains-Research/astminer
https://github.com/ShiftLeftSecurity/fuzzyc2cpg
https://github.com/ShiftLeftSecurity/codepropertygraph/

4.2. Representations and Models

(a) node types.csv (b) paths.csv (c) tokens.csv

(d) path contexts.c2s

Figure 4.3.: Portions of Astminer output files generated for the server.c

source file.

of IDs separated by commas which represent the start token, path, and end
token respectively, i.e., IDts , IDp, IDte , according to the mapping defined in
the other three files. An example of the Astminer output is given in Figure 4.3
where we show a portion of each generated file for the case of a C source code
file named server.c which has been found in one of the analysed projects.

As code2vec has been originally built to generate an automatic naming
model, once the granularity is selected the names of folders, files or functions
are meant to be used as labels in the output of Astminer, so we need to modify
this feature to label our examples with the error classes labels.

The input of Astminer can be the whole project repository but when it is
used in this way only the file name is used to identify the file and not the
complete path to it, this brings to ambiguity and non-unique references to
files as there could be different files with the same name but characterized by
different paths within a repository. These files can have completely different
contents and error reports but would be named in the same way in the Astminer
output and would be impossible to distinguish the two files.

These characteristics could cause unnecessary data loss, so the Astminer tool
is used separately on each file of our file-level dataset described in Section 4.1.

At the beginning, the dataset contained 86358 files but this number decreases
after the preprocessing and representation extraction steps. The Astminer is
not always able to process the files or, for some files, the representation is not
computed as filters on AST size in terms of number of nodes and tokens are
used. This filtering strategy has been required as some files could generate
huge AST structures which could be hard to handle and could generate an

111

Chapter 4. Software Defect Prediction

unmanageable number of paths. In our case we set to 5000 the maximum
number of nodes in the tree and to 300 the maximum number of treated tokens
within a file, while the maximum length of the considered paths is set to 10
while the maximum path width is set to 2.

Another modification that has to be done before feeding the code2vec model
with the extracted path contexts is due to the usage of the Astminer tool
separately on single files. This kind of usage causes the encoding of nodes,
tokens and paths to not be unique, i.e., the same node ID can refer to different
nodes when we refer to different files. This is an unwanted behavior as data
used in this way would not be useful to build a meaningful representation
of code and we need an uniform encoding for our data. To do so, all tokens
and nodes found within the dataset are collected. Nodes are only available
in a limited number, i.e., there are only 191 different kind of nodes, and an
integer identifier is assigned to these nodes and substituted to the one assigned
by the Astminer tool. Conversely, tokens are defined by programmers and
are potentially infinite, so we need to define a vocabulary of tokens that we
want to consider as known, i.e., based on the number of occurrences within
the dataset, while any other encountered token is represented as an unknown
token UNKT . Only tokens which have been counted to be in more than 200
files are kept to build the tokens vocabulary and they result to be 2851. These
selected tokens are used to generate the unique token IDs that are substituted
to the ones assigned by Astminer.

Similarly, identifiers are assigned to paths and, after assigning the right ID
to the nodes found within the paths, a vocabulary for paths is defined based
on the paths’ occurrences within the dataset. Paths found in more than 400
files are selected to build the vocabulary and they result to be 47842. Any
other path is encoded as a unique unknown path UNKP . After substituting
all these IDs to the extracted path contexts for our files, they are ready to be
used as inputs for the code2vec model.

The code2vec has been adapted to our use case and, instead of predicting
tokens which would constitute the predicted name for the code fragment, it
needs to be able to predict which of the four bugs classes is the appropriate
one for the given input. To this end, once the code vectors are computed by
the Attention architecture of the model, these are passed to a simple neural
classifier which is suitable for this particular classification problem whose
output layer is composed by four classes. Our model uses a categorical cross
entropy loss 3.2 and exploits the Adam optimizer [93] with learning rate 0.0001
for training.

The whole model is trained in an end-to-end fashion and the network weights
are randomly initialized, here we do not use the pre-trained parameters as

112

4.2. Representations and Models

the input is numerically encoded using Astminer and our token and path
ID unification which do not correspond to the original code2vec path-context
encoding.

Different configurations for the model are evaluated by modifying some
of the hyperparameters, they are described and evaluated in the following
Section.

Results

In this Section we discuss the results obtained from the implementation of the
described model based on code2vec representation.

As we already pointed out this is a 4-classes classification problem and the
classes are: Clean Code (CC, 0), Uninitialized Value (UV, 1), Null Dereference
(ND, 2) and Dead Store (DS, 3).

The input of the code2vec model is a set of a fixed number of accepted
path-contexts which in the following has been set at the value of 200. The
maximum number of training epochs is set to 20 and the batch size to 64. After
each training epoch the model performance is evaluated on the unbalanced
validation set.

In the code2vec neural architecture we set at different values the embeddings
sizes, one is for the tokens embedding and the other one is for the paths
embedding. The embeddings of the start and the end tokens is the same, as
the embedding layer is shared between the two tokens.

In this experiment we set the same size (column Emb. in Table 4.4 and
Table 4.5) for both tokens and paths embedding layers and the tested sizes are
70 and 150. Also, we evaluated different configurations for the final classifier
which has been set as a simple neural network with different layer sizes and
depth. The tested values for the layer size are 10 and 30 while for the number
of layers we tested for 1 and 3.

Table 4.4 reports the values for categorical accuracy (Acc, Eq. 2.1) and
weighted average values for AUC-ROC, precision (P, Eq.2.2), recall (R, Eq. 2.3)
and F-measure (F, Eq.2.4) on the validation set at the best epoch for each
configuration. In this evaluation we suppose that it is preferred to have clean
code examples classified as defective ones, i.e., False Negatives for class 0
(FN0), than having defects which are wrongly classified, i.e., False Negatives
for class i (FNi) for i = 1, 2, 3. For this reason the best epoch is chosen with
respect to the macro average value (Eq.2.7) of recall as higher values for Ri

mean lower number for FNi with respect to TPi (True Positives for class i).
For defective classes (i = 1, 2, 3) optimizing recall values means optimizing with
respect to false negatives, i.e., aiming to keep low the number of unrecognized

113

Chapter 4. Software Defect Prediction

defects in these classes, which can be examples of i-th defect classified either
as non-defective or as examples of the j-th defect (i ̸= j). Other kinds of
averages, i.e., micro (Eq.2.6) and weighted (Eq.4.1, where ni is the number of
examples belonging to the i-th class in validation set and N =

∑3
i=0 ni is the

total number of examples of the validation set), would give to the Clean Code
(CC) class a higher weight (due to the higher number of examples belonging
to this class in the validation set) causing epoch choice mainly focused on
keeping low false negatives of this class, i.e., clean code predicted as defective,
which should not be the main driver of our choice.

Rw =

∑3
i=0 niRi

N
(4.1)

After the best epoch selection process, weighted average values are shown in
the results as they are more representative of the unbalance which characterize
the validation set. Table 4.4 refers to experiments in which the code vectors
dimension is set to 30.

Emb. Depth Layer S. Acc AUC R P F

70 1 10 0.786 0.921 0.786 0.939 0.844
70 3 10 0.744 0.908 0.744 0.939 0.815
70 1 30 0.779 0.908 0.779 0.941 0.84
70 3 30 0.742 0.891 0.742 0.941 0.816

150 1 10 0.801 0.919 0.8 0.937 0.852
150 3 10 0.719 0.899 0.719 0.939 0.798
150 1 30 0.783 0.916 0.783 0.941 0.842
150 3 30 0.744 0.89 0.743 0.942 0.817

Table 4.4.: Results for code2vec based models with 30-dimensional code vectors.

The same configurations have been tested with code vectors of an higher
size, i.e., setting code vector dimension to 50. The results are reported in
Table 4.5.

Increasing the depth and the layer size of the final classifier slightly worsen
the model performance in all cases except for the precision values. It is not
clear how increasing the embedding size and code vector dimension affects
the results as it sometimes makes the metric values worse while in some other
cases it improves them.

However, the best results seem to be concentrated in the model which
uses 30-dimensional code vectors and the preferable configurations could be
identified in the models with depth 1 and layer size 10 with both 70 ([M1])

114

4.2. Representations and Models

Emb. Depth Layer S. Acc AUC R P F

70 1 10 0.787 0.915 0.787 0.938 0.844
70 3 10 0.738 0.907 0.737 0.94 0.811
70 1 30 0.772 0.912 0.772 0.941 0.835
70 3 30 0.736 0.889 0.736 0.943 0.813

150 1 10 0.79 0.921 0.79 0.939 0.846
150 3 10 0.723 0.897 0.723 0.939 0.801
150 1 30 0.784 0.919 0.784 0.943 0.844
150 3 30 0.755 0.888 0.755 0.942 0.824

Table 4.5.: Results for code2vec based models with 50-dimensional code vectors.

and 150 ([M2]) embedding sizes. These two models have similar results for
almost all the shown metric values. In Table 4.6 are shown the precision, recall
and F-measure for each of the considered classes for these two models.

Class Emb. P R F

CC 70 0.992 0.795 0.882
UV 70 0.135 0.698 0.227
ND 70 0.306 0.712 0.428
DS 70 0.112 0.589 0.188

CC 150 0.990 0.811 0.891
UV 150 0.138 0.651 0.228
ND 150 0.295 0.707 0.416
DS 150 0.129 0.589 0.211

Table 4.6.: Results for each class of the two best models.

Looking at these results we can see that Precision values are very low for
each of defective classes (i = 1, 2, 3), while better results can be found for the
recall values. Given the definition of the i-th class Precision Pi = TPi

TPi+FPi

we can see that it is an indicator of the False Positives for the i-th class. In
our cases P0 has a high value which means the FP0 is low compared to the
number of instances predicted as belonging to the 0 class, i.e., relatively few
defective instances are classified as non-defective. On the other hand, for
i ̸= 0 Pi has very low values which means that for these classes FPi has a
high value (considering the total number of predictions for the i-th class). For
these defective classes we can distinguish between two main cases between
False Positives as they can be due to either Clean Code or code with defect j
(j ̸= i and J ̸= 0) predicted as having the i-th defect. Having low values of Pi

115

Chapter 4. Software Defect Prediction

(i = 1, 2, 3) means that often our models could predict errors where they are
not present or predict the wrong kind of error when it is present.

Similar considerations can be done analysing the Recall as its definition is
Ri = TPi

TPi+FNi
so it represents an indicator of False Negatives for the i-th class.

For class 0 FN0 represent clean code examples which are predicted as having
some kind of defect, while for i = 1, 2, 3 FNi could be due to code with the
i-th defect classified as either clean code or code with the j-th defect (j ̸= i
and j ̸= 0). In our case there are lower gaps between the recall values of the
four classes than the ones found for precision.

To better visualize the kind of mistakes done by the models and improve
the results interpretation we show the confusion matrices obtained at the
selected epochs for the two best models [M1] in Table 4.7 and [M2] in Table 4.8.
Summing along the i-th column all the elements except for the i-th one (which
represents TPi) we obtain the value of FPi, while summing along the i-th
row all the elements except for the i-th one (still representing TPi) we obtain
the value of FNi. The i-th element of the last row contains the total number
of examples predicted as belonging to the i-th class, i.e., TPi + FPi, which
represents the denominator of Pi. Comparing these values with the respective
value of TPi we can understand why Pi values are so low for i = 1, 2, 3, most of
these FPi are due to Clean Code classified as having the i-th defect, so the low
Pi values are also due to the high degree of unbalance between the class 0 and
the others, i.e., 78:1, 26:1, 45:1 for class 1, 2 and 3, respectively. Conversely,
the i-th element of last column contains the total number of examples which
belong to the i-th class, i.e., TPi + FNi, which represents the denominator of
Ri. Again, comparing these values with the respective TPi we can see that
the gaps between them are smaller than in the precision cases and this justify
the better results obtained for the recall metric.

The defective class which is better recognized by these models is class 2
which represents Null Pointer Dereference errors. Class 3, i.e., Dead Store
bug, results to be the most problematic error in terms of models performance
for the recall value too. This different behavior in error catching could be
due to the errors nature and their capability of being captured within path
contexts. Also, it has to be noticed that the model input is constrained to only
200 randomly selected path contexts and it can happen that relevant paths
have been discarded at the beginning.

We can compare these results with [190] which also treat individual kinds
of bugs. Particularly, Null Pointer Exception is treated there as well and we
can see that for this class they have P=0.351 and R=0.507 while we obtained
P=0.306, R=0.712 in [M1] and P=0.295, R=0.707 in [M2] so, while P is slightly
worse in our cases R results to have consistent improvements in both [M1] and

116

4.2. Representations and Models

Predicted
CC UV ND DS Tot.True

T
ru

e

C
C 9200 579 664 1135 11578

U
V 5 104 16 24 149

N
D 29 54 316 45 444

D
S 40 31 35 152 258

T
o
t.
P
re

d
.

9274 768 1031 1356

Table 4.7.: Confusion matrix at best epoch for model [M1]

[M2]. However, fair comparison is not possible as the dataset used in [190] is
different from ours and also their models work at different granularity levels.

If we group together the defects in a unique class (without retrain the model
as a binary classifier) the confusion matrix for [M1] becomes as depicted in
Table 4.9 obtaining P=0.246, R=0.91, F=0.388 and Acc=0.803, while for [M2]
in Table 4.9 we have P=0.256, R=0.888, F=0.397 and Acc=0.816.

Other works we presented in Section 2.3 have higher F values, however
to better compare this approach against these models we should retrain our
models as binary classifiers.

4.2.2. Infercode

Infercode in another useful model for code vectorization which has been recently
developed and described in [25].

The model’s purpose is to generate representative code vectors using un-
supervised learning, i.e. without using labels, whose availability is usually
limited. This makes code vectorization an independent step and it can be
performed separately from the actual classification concerning the final task,
i.e. Software Defect Prediction. In this way, the overall model is not trained as
an end2end architecture but the two steps, i.e. vectorization and classification,
are performed separately and chained together.

The Infercode model generates AST structures from the input codes and,
for each of them, several subtrees are extracted and, employing a selection

117

Chapter 4. Software Defect Prediction

Predicted
CC UV ND DS Tot.True

T
ru

e

C
C 9385 533 702 958 11578

U
V 9 97 13 30 149

N
D 44 45 314 41 444

D
S 42 27 37 152 258

T
o
t.
P
re

d
.

9480 702 1066 1181

Table 4.8.: Confusion matrix at best epoch for model [M2]

TN FP

9200 2378

74 777

FN TP

Table 4.9.: Confusion matrix for binary [M1]

technique some subtrees are chosen to form a vocabulary of trees that are used
in the unsupervised training phase.

The main neural architecture is a Tree-Based CNN which is a neural network
based on the convolution approach adapted to process tree-like data structures.
The model is trained by optimizing it with respect to the task of predicting
for a given AST the probabilities of having each of the vocabulary’s sub-trees
among its sub-trees. In this way, the model uses AST sub-trees as labels, i.e. a
piece of information that is already part of the starting data structure without
the need for manual labeling or external dependencies. Any parsable source
code has its own AST representation and can be used as input for the model.
These features permit the generation of code vector representations for any
kind of task as the sub-trees labels are not restricted to certain topics but
naturally arise from general AST code representation.

The model is pre-trained on unlabeled data and then directly exploitable to
create code vectors for our downstream task.

As we already discussed the Infercode model has serious scalability limits

118

4.2. Representations and Models

TN FP

9385 2193

96 756

FN TP

Table 4.10.: Confusion matrix for binary [M2]

and it has not been successful on most of the files of the dataset. This happens
because of the size of the ASTs that could be generated at file-level granularity.
For this reason, we suppose that ASTs produced to represent functions have
smaller sizes so to test Infercode model we focused on the function-level.

The function-level dataset described in Section 4.1 is processed by the
Infercode encoder which is provided within the homonym Python package
(PyPI8) using all the default parameters. For each function, we obtain a
100-dimensional numeric vector representation that will be the actual input
of the final classifier. In vectorizing the functions of our dataset with the
provided encoder 1635 input functions still represent a memory problem and
have been discarded, however at this granularity level we are able to end up
with a dataset composed of 471033 100-dimensional vectors which represent
the same number of functions whose distribution among classes has been shown
and described in Table 4.3 and Figure 4.2 in Section 4.1.

Model

In the following the tested classifiers are described, many of them have been
evaluated in different configurations to find the best performing one using a
simple grid search for hyper-parameters tuning.

Not only neural models are used as classifiers, but in fact, also traditional
Machine Learning algorithms are implemented to check their effectiveness.
However, as the input vector is generated using Infercode which is a deep
learning model which performs representation learning on source code, the
work still lies among the deep learning approaches for defect prediction.

Fully Connected Layers We implemented different configurations for Fully
Connected Layers (FCL) Neural Networks using the Keras framework [36],
in particular, different combinations of layer sizes and network depths are
evaluated. The tested sizes are 8, 16, and 32 units per layer and the tested
depths are 1, 2, and 3. The dropout strategy is implemented at each hidden

8https://pypi.org/

119

https://pypi.org/

Chapter 4. Software Defect Prediction

layer with a rate of 0.2.
The activation function for each layer except for the output one is the

hyperbolic tangent activation function (tanh) as almost any test with the
ReLU activation brought to a divergent behavior.

Encoder-like model An encoder-like model progressively shrinks the dimen-
sionality layer by layer, i.e. decreasing the representation space dimension,
without remaining linked to the first layer dimension. So, starting from a
100-dimensional input vector different sizes for shrinkage are evaluated.

The tested shapes of the encoder (in terms of neural units per layer) are [80,
50, 30] (1), [64, 32, 16] (2), [32, 16, 8] (3) and [64, 32, 16, 8] (4)9. Like in the
previous FCL case, dropout is used at each hidden layer with a rate of 0.2 and
the implementation has been performed by means of the Keras [36] Python
library.

Random Forests We also implemented Machine Learning algorithms different
from neural networks. Random Forest is a class of ensemble algorithms
based on Decision Trees in which multiple estimators are trained and the
classification is obtained by the collective decisions of these multiple classifiers.
The hyperparameters which characterize models belonging to this class of
algorithms can have different natures, in this study we attempted various
configurations for the number of estimators (N) parameter and the minimum
number of examples (m) needed to split an internal node. The values for N are
50, 100, 150, and 200 while the ones for m are 2, 4, and 8. The implementation
of the Random Forest models has been performed by using the Scikit-learn
Python library [141, 26].

SVM Between the possible traditional Machine Learning algorithms, we also
selected the Support Vector Machine class of models implemented using the
Scikit-learn Python library [141, 26]. SVM can be built with different kernels
and some of them are tested here, in particular we tested the radial basis
function (rbf), sigmoid (s) and linear (l) kernels. The other parameter with
respect we study the model performance is the regularization parameter C
with values 0.001, 0.01, 0.1, 1, and 3.

9Numbers in parentheses represent model indexes which will be used to identify the encoder
configuration in the following discussions.

120

4.2. Representations and Models

Results

In this section, we are going to show the results obtained for the previously
described models. Each neural model has been trained on 20 epochs and the
evaluation of the goodness of the model is performed by looking at the epoch
which shows the best macro average value for recall as in the code2vec based
model evaluation.

In Table 4.11, 4.12, 4.13 and 4.14 are reported the results for the various
configurations of the neural network classifier, Encoder-like models, Random
Forests and Support Vector Classifier, respectively.

Depth Layer S. Acc AUC R P F

1 8 0.891 0.748 0.891 0.962 0.924
2 8 0.949 0.501 0.949 0.957 0.953
3 8 0.975 0.608 0.975 0.957 0.966

1 16 0.894 0.753 0.894 0.962 0.926
2 16 0.889 0.751 0.889 0.962 0.923
3 16 0.896 0.76 0.896 0.963 0.927

1 32 0.883 0.768 0.883 0.963 0.919
2 32 0.864 0.77 0.864 0.964 0.909
3 32 0.853 0.772 0.853 0.964 0.903

Table 4.11.: Results for Neural Networks.

Model idx Acc AUC R P F

1 0.842 0.782 0.842 0.965 0.897
2 0.838 0.78 0.838 0.965 0.895
3 0.974 0.591 0.974 0.957 0.965
4 0.871 0.769 0.871 0.964 0.914

Table 4.12.: Results for Encoder-like models.

There is not a clear trend between hyperparameters setting and model
performance, however, the best values for the shown metrics seem to be
concentrated within the Support Vector classifiers. Even if many SVM-based
models share similar results one of the best ones seems to be the one that uses
the sigmoid kernel with the C parameter set to 1. However, computing the
performance metrics values for each class we can see very poor results having
Ri=0.0 and Pi=0.0 for every i = 1, 2, 3. By inspecting the confusion matrix
we discover that this model classifies instances only as belonging to class 0, i.e.

121

Chapter 4. Software Defect Prediction

N m Acc AUC R P F

50 2 0.919 0.878 0.919 0.971 0.942
50 4 0.917 0.877 0.917 0.971 0.941
50 8 0.92 0.874 0.92 0.97 0.942

100 2 0.925 0.885 0.925 0.971 0.945
100 4 0.925 0.884 0.925 0.971 0.945
100 8 0.927 0.882 0.927 0.971 0.946

150 2 0.927 0.888 0.927 0.971 0.947
150 4 0.927 0.886 0.927 0.971 0.946
150 8 0.929 0.885 0.929 0.971 0.947

200 2 0.928 0.889 0.928 0.972 0.947
200 4 0.928 0.888 0.928 0.971 0.947
200 8 0.931 0.886 0.931 0.971 0.948

Table 4.13.: Results for Random Forests.

the model is completely useless. If we use the selection strategy that has been
used in epoch selection in the code2vec model, i.e., based on the macro-average
recall value, the selected model results to be the one with rbf kernel and C=3.
For this model, the values reported in Table 4.14 are slightly worse than the
ones for the model just analyzed but results obtained class by class make more
sense now and are reported in Table 4.15.

Again, considering results class by class, the configuration of the neural
network which shows the best results can be identified in the one with depth
2 and layer size of 32, and the metrics values for this model are shown in
Table 4.16.

Among the encoders, we select the model with index 2, i.e. with structure
[64-32-16] whose class by class performance is reported in Table 4.17.

For Random Forests different configurations have similar results, however,
one of the best ones is obtained when the N parameter is set to 200 and m is
set to 2 whose results are detailed in Table 4.18.

Precision values are high only for the class 0 while for the defective classes
they are very low, even lower than in the code2vec-based model. Values for
recall are more acceptable but even in this case, the results for the code2vec
model are the best ones.

122

4.3. Conclusions about the Software Defect Prediction task

C kernel Acc AUC R P F

0.001 rbf 0.978 0.311 0.978 0.957 0.968
0.01 rbf 0.978 0.662 0.978 0.957 0.968
0.1 rbf 0.896 0.737 0.896 0.961 0.927
1 rbf 0.861 0.786 0.861 0.965 0.908
3 rbf 0.849 0.807 0.849 0.966 0.901

0.001 sigmoid 0.978 0.325 0.978 0.957 0.968
0.01 sigmoid 0.978 0.645 0.978 0.958 0.968
0.1 sigmoid 0.948 0.692 0.948 0.958 0.953
1 sigmoid 0.978 0.694 0.978 0.957 0.968
3 sigmoid 0.978 0.581 0.978 0.957 0.968

0.001 linear 0.9 0.743 0.9 0.961 0.929
0.01 linear 0.889 0.779 0.889 0.963 0.923
0.1 linear 0.881 0.807 0.881 0.964 0.919
1 linear 0.89 0.823 0.89 0.965 0.924
3 linear 0.895 0.826 0.895 0.965 0.927

Table 4.14.: Results for Support Vector Classifier.

Class P R F

CC 0.986 0.86 0.919
UV 0.042 0.244 0.071
ND 0.056 0.468 0.101
DS 0.028 0.121 0.045

Table 4.15.: Results for each class of the selected SVC model.

4.3. Conclusions about the Software Defect Prediction
task

In this Chapter, we approached the problem of detecting three kinds of defects
within code fragments by means of learning models. Several attempts to
discriminate between clean and defective code have been found in the literature
while few works which consider errors identities have been detected.

In this work, we focused on Uninitialized Value, Null Pointer Dereference

and Dead Store defects and we tried to detect and identify them within code
fragments at two different granularity levels, i.e., file and function levels.

The dataset we used to train the proposed learning methods has been built
using the output of a static analyzer and for this reason, the capability of

123

Chapter 4. Software Defect Prediction

Class P R F

CC 0.985 0.867 0.922
UV 0.039 0.229 0.066
ND 0.043 0.379 0.078
DS 0.013 0.013 0.013

Table 4.16.: Results for each class of the selected Neural Network model.

Class P R F

CC 0.986 0.85 0.913
UV 0.041 0.241 0.069
ND 0.042 0.423 0.077
DS 0.018 0.037 0.024

Table 4.17.: Results for each class of the selected Encoder model.

our models is limited by the features of the employed analyzer, i.e., we are
studying if it is possible to imitate the analyzer behavior exploiting statistical
code properties and learning strategies.

Two different approaches for code vectorization have been used in the
evaluated architectures, one is based on the code2vec [10] model and the other
one is based on Infercode [25]. Both these vectorization strategies are based
on AST code representation. Particularly, the first one is developed to analyze
a bag of AST path contexts while the second one just uses ASTs to feed
Tree-Based CNN to extract vectors directly from these structures.

The vectors obtained from the different models are then used for the actual
code classification with respect to the defective classes. This is performed
considering different learning techniques, i.e., using a neural network classifier
or traditional machine learning algorithms such as Random Forests and Support
Vector Machines.

The code2vec based model is trained in an end2end fashion and it focuses
on file-level defect identification, it reaches very good average results while
when inspecting the performance class by class these can vary a lot depending
on the kind of software defect we are considering. Particularly, it is very good
with respect to the clean code class identification which also represents the
majority class, Null Pointer Dereference error result to be the one which
is better recognized by this model which is then followed by Uninitialized

Value and Dead Store.
The models showed acceptable values for recall but not a good evaluation

with respect to the precision metric, however when inspecting the confusion

124

4.3. Conclusions about the Software Defect Prediction task

Class P R F

CC 0.99 0.938 0.963
UV 0.184 0.456 0.262
ND 0.121 0.549 0.199
DS 0.22 0.394 0.282

Table 4.18.: Results for each class of the selected Random Forest model.

matrices the main reason for this behavior can be found in the relatively
high number of clean code examples classified as defective with respect to the
number of actual defective code which can be due to the high unbalance which
characterize our validation set.

Even if precision values are not satisfying in this work we decided that the
recall metric is the most important one as it measures false negatives which
for classes i = 1, 2, 3 are actual defective codes that are wrongly classified as
non-defective or as having a different defect.

The Infercode based model focuses on function-level defect identification
and it is not an end2end model as the Infercode vectorization is treated as a
separate step with respect to the actual code classification. Several classifiers
have been inspected in this second approach and even in these cases, the
average results are very good. However, when it comes to the class by class
analysis the model shows difficulties in the error identity discrimination and
the overall good performance seems to be only due to the recognition of the
clean code. Even in this case recall values are better than the precision ones,
however, the code2vec-based model results to be the best one.

The difference in the models’ capabilities could be due to the different
features extraction from codes. In fact, the usage of the direct AST structure
for a task-agnostic vectorization seems to not be effective in the characterization
of the considered errors while bags of AST path contexts are used in a task-
specific way (due to the end2end model training) seem a better strategy for
our aims.

A fair comparison to other works is difficult to perform as almost any work
in literature manages defect prediction as a binary classification task. However,
a recent work presented in [190] treats defects in an individual way and we
can compare the results with respect to the Null Pointer Dereference defect
which is the only one that is also managed by us. In this view, we considerably
improved recall performance while slightly worse precision values are found
in our study, even if an exact comparison is not possible due to the different
datasets used for evaluation.

125

Chapter 4. Software Defect Prediction

This pioneering analysis of the defect identification task brought promising
results and showed that it is possible to approach this problem using statistical
learning strategies and it suggests that improvements are possible together
with the opportunity to treat and include other kinds of errors in the proposed
settings. As pointed out, we aim to extend this study to an improved dataset
built using several analyzers (both static and dynamic) to generate labels for
code defects. In this view, our study suggests that working with an end2end
task-specific model, like for the case of the code2vec-based one, is a preferable
strategy.

Many other vectorization and classification strategies can be studied within
this topic also considering the different errors nature as some of them can be
easily captured in a certain way while others could need a different treatment.

126

Chapter 5.

Conclusions

The work presented in this thesis belongs to a vast research area known as Big
Code which proposes to apply several learning techniques initially developed
within the more generic field of Big Data to code data that can be found in
repositories and software projects archives. Among the numerous possibilities,
two main tasks have been chosen, analyzed, and discussed with respect to
several aspects, i.e., Programming Language Identification (PLI) and Software
Defect Prediction (SDP).

Two different learning-based approaches have been presented and discussed
to deal with the Programming Language Identification problem. The main
differences between these approaches stay in the input code representation and
the labeling strategies.

The first work represents input code as text and its functioning is based
on features extracted from text content, in particular, it exploits feature
vectors built from tokens and 2-grams frequencies within texts obtained with a
language-agnostic tokenization strategy and defining vocabularies which make
the model suffering of the well-known Out-Of-Vocabulary (OOV) problem.
These vectors are used as inputs for a neural encoder-like architecture which
serves as a classifier with respect to the defined classes. In this approach,
external dependencies are avoided and labeling is performed by using the file
extensions which are available in the starting dataset and are informative
about the programming language. The model reaches ≈ 85% average accuracy,
answering positively the research question about the possibility to recognize the
extension of textual files commonly found in software version control systems
repositories, based solely on file contents. In addition, the model’s simplicity
suggests it can be easily maintained in the future.

The second work represents code as images and uses pre-trained architectures
which are usually employed in image recognition tasks fine-tuned to perform
the PLI task. Representing code as images also permits to reduce the severity
of OOV-related issues, being no vocabulary definition here. The labels for
the dataset are generated using the tool Linguist, this permits the direct

127

Chapter 5. Conclusions

classification with respect to the programming languages at the expense of
adding dependency from the external tool. MobileNet resulted to be the
best model reaching ≈ 93% accuracy improving the state-of-the-art even
with respect to the number of considered languages. This permits to answer
positively to the research question about the model’s capability to identify
the programming language used in code snippet images without any a priori
knowledge. Treating input code as images we also investigated which classes
of characters contribute the most to the language identification by performing
scrambling of characters and discovering that punctuation symbols are the
most relevant characters in PLI.

Both models brought satisfying results, especially because we focused on
the model’s capability of handling a relatively high number of languages. The
main difficulty in developing these works has been due to the lack of reliable
labels for data. This fact deeply affects the goodness of the models as well as
the evaluation itself which depends on labels too. The lack of labels for the
PLI task is a serious issue and no dataset which solves this problem has been
found, also it could be a very expensive task to reliably label such a dataset.
From here we can see how the lack of a curated benchmark dataset limits
models analysis, evaluation, and fair comparison. Building such a dataset
could be a viable path for future works on this topic.

The second task we focused on is the Software Defect Prediction performed
using statistical code properties and learning algorithms. Three different
errors have been selected and our aim is to approximate the static analyzer
behavior in catching and recognizing these errors, instead of the most common
approaches in literature which treat defective code as a unique class. Two
approaches for code vectorization have been explored and both of them are
based on the AST representation of code.

The Infercode model generates vectors by means of a pre-trained tree-
based CNN in a task-agnostic way. We used this vectorization approach
for function-level defect prediction and used the obtained vectors in various
learning architectures.

The code2vec model works in an end2end way and learns features from bags
of path-contexts extracted from code AST. We used this model for file-level
defect prediction and resulted in being the best model. For this task the overall
performance is promising as it reaches ≈ 80% accuracy but when inspecting
them class by class some metrics values (especially precision) considerably
drop mostly because of clean code (the majority class) classified as defective.
The best recognized error is the Null Pointer Dereference improving recall
values for this class with respect to another work treating this error. The

128

different behavior with respect to different errors suggests that they could
need different treatment as their nature can vary among them.

Given these results, we aim to build a new dataset that would not be labeled
by the static analyzer but which exploits several techniques together as well
as commit messages contents and so on, in order to make bug labeling more
reliable and overcome the limitations given by the static analyzer labeling
strategy.

Both the analyzed tasks showed that it is possible, to a certain extent, to use
machine learning techniques using statistical properties of code to approximate
the stated goals and possibly build some supporting tools that could be used
as heuristics. However, in both cases, a huge limitation in building, training,
and evaluating such models comes from the lack of precisely labeled datasets
as labels are usually provided as the outputs of other external tools making the
models limited in imitating these tools’ behavior which almost never represent
the truth but which are used as such. Manual labeling and joint usage of
several external tools could be the way to address this issue even if it can result
in a very expensive but highly valuable task. In the future, we aim to overcome
such difficulties and apply the preliminary results obtained during this analysis
together with other possible approaches to more curated datasets.

129

Appendix A.

Results for File Extension Identification

In the following Table are presented the values for each class of the selected
metrics for the File Extension Identification model presented in Section 3.1.

Ext
bigrams trigrams ∆

P R F P R F P R F

.js 0.93 0.69 0.79 0.93 0.61 0.74 0.0 0.08 0.05

.c 0.96 0.94 0.95 0.96 0.94 0.95 0.0 0.0 0.0

.html 0.98 0.87 0.92 0.98 0.87 0.92 0.0 0.0 0.0

.java 0.99 0.97 0.98 0.98 0.97 0.97 0.01 0.0 0.01

.h 0.93 0.71 0.81 0.9 0.66 0.76 0.03 0.05 0.05

.py 0.99 0.93 0.96 0.99 0.86 0.92 0.0 0.07 0.04

.go 0.99 0.96 0.97 0.99 0.96 0.97 0.0 0.0 0.0

.md 0.97 0.72 0.83 0.96 0.7 0.81 0.01 0.02 0.02

.rb 0.98 0.85 0.91 0.98 0.69 0.81 0.0 0.16 0.1

.json 0.95 0.95 0.95 0.95 0.93 0.94 0.0 0.02 0.01

.cpp 0.74 0.59 0.66 0.65 0.19 0.29 0.09 0.4 0.37

.ts 0.65 0.82 0.73 0.62 0.78 0.69 0.03 0.04 0.04

.php 0.96 0.89 0.92 0.95 0.88 0.91 0.01 0.01 0.01

.cs 0.98 0.96 0.97 0.91 0.95 0.93 0.07 0.01 0.04

.rs 0.97 0.97 0.97 0.98 0.95 0.96 -0.01 0.02 0.01

.cc 0.58 0.77 0.66 0.42 0.87 0.57 0.16 -0.1 0.09

.xml 0.96 0.93 0.94 0.94 0.94 0.94 0.02 -0.01 0.0

.glif 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0

.txt 0.82 0.52 0.64 0.84 0.42 0.56 -0.02 0.1 0.08

.kt 0.96 0.72 0.82 0.94 0.71 0.81 0.02 0.01 0.01

.scala 0.96 0.95 0.95 0.94 0.93 0.93 0.02 0.02 0.02

.swift 0.92 0.85 0.88 0.89 0.8 0.84 0.03 0.05 0.04

.yml 0.77 0.81 0.79 0.79 0.68 0.73 -0.02 0.13 0.06

.css 0.88 0.9 0.89 0.88 0.93 0.9 0.0 -0.03 -0.01

.rst 0.59 0.89 0.71 0.52 0.9 0.66 0.07 -0.01 0.05

131

Appendix A. Results for File Extension Identification

Ext
bigrams trigrams ∆

P R F P R F P R F

.sh 0.84 0.83 0.83 0.86 0.7 0.77 -0.02 0.13 0.06

.csproj 0.96 0.9 0.93 0.99 0.53 0.69 -0.03 0.37 0.24

.coffee 0.82 0.92 0.87 0.76 0.89 0.82 0.06 0.03 0.05

.scss 0.85 0.93 0.89 0.89 0.9 0.89 -0.04 0.03 0.0

.phpt 0.68 0.94 0.79 0.73 0.89 0.8 -0.05 0.05 -0.01

.jsx 0.26 0.79 0.39 0.23 0.79 0.36 0.03 0.0 0.03

.hpp 0.2 0.83 0.32 0.16 0.83 0.27 0.04 0.0 0.05

.xht 0.79 0.97 0.87 0.79 0.94 0.86 0.0 0.03 0.01

.tsx 0.34 0.81 0.48 0.25 0.68 0.37 0.09 0.13 0.11

.jl 0.9 0.79 0.84 0.75 0.84 0.79 0.15 -0.05 0.05

.htm 0.41 0.93 0.57 0.42 0.92 0.58 -0.01 0.01 -0.01

.dart 0.74 0.98 0.84 0.65 0.97 0.78 0.09 0.01 0.06

.ml 0.98 0.95 0.96 0.94 0.94 0.94 0.04 0.01 0.02

.m 0.72 0.95 0.82 0.73 0.94 0.82 -0.01 0.01 0.0

.haml 0.92 0.98 0.95 0.91 0.96 0.93 0.01 0.02 0.02

.yaml 0.46 0.65 0.54 0.37 0.7 0.48 0.09 -0.05 0.06

.vb 0.95 0.99 0.97 0.95 0.99 0.97 0.0 0.0 0.0

.asciidoc 0.64 0.95 0.76 0.48 0.92 0.63 0.16 0.03 0.13

.gradle 0.75 0.95 0.84 0.48 0.93 0.63 0.27 0.02 0.21

.cr 0.34 0.92 0.5 0.14 0.93 0.24 0.2 -0.01 0.26

.lua 0.7 0.95 0.81 0.7 0.93 0.8 0.0 0.02 0.01

.ex 0.83 0.96 0.89 0.69 0.95 0.8 0.14 0.01 0.09

.ilproj 0.79 0.95 0.86 0.39 1.0 0.56 0.4 -0.05 0.3

.dtsi 0.64 0.88 0.74 0.7 0.78 0.74 -0.06 0.1 0.0

.props 0.79 0.97 0.87 0.73 0.96 0.83 0.06 0.01 0.04

.vcxproj 0.97 0.99 0.98 0.95 0.99 0.97 0.02 0.0 0.01

.clj 0.96 0.99 0.97 0.93 0.99 0.96 0.03 0.0 0.01

.markdown 0.13 0.73 0.22 0.13 0.7 0.22 0.0 0.03 0.0

.symbols 0.88 0.99 0.93 0.91 0.99 0.95 -0.03 0.0 -0.02

.hs 0.78 0.99 0.87 0.63 0.99 0.77 0.15 0.0 0.1

.dts 0.75 0.69 0.72 0.69 0.82 0.75 0.06 -0.13 -0.03

.el 0.95 0.99 0.97 0.97 0.99 0.98 -0.02 0.0 -0.01

.proto 0.53 0.99 0.69 0.47 0.98 0.64 0.06 0.01 0.05

.toml 0.6 0.98 0.74 0.7 0.97 0.81 -0.1 0.01 -0.07

.pbxproj 0.98 1.0 0.99 0.94 1.0 0.97 0.04 0.0 0.02

.exs 0.56 0.95 0.7 0.44 0.94 0.6 0.12 0.01 0.1

.mk 0.79 0.91 0.85 0.7 0.92 0.8 0.09 -0.01 0.05

.sil 0.71 0.97 0.82 0.57 0.98 0.72 0.14 -0.01 0.1

132

Ext
bigrams trigrams ∆

P R F P R F P R F

.after 0.19 0.74 0.3 0.18 0.78 0.29 0.01 -0.04 0.01

.erb 0.19 0.77 0.3 0.14 0.73 0.23 0.05 0.04 0.07

.jade 0.27 0.9 0.42 0.26 0.89 0.4 0.01 0.01 0.02

.gyb 0.33 0.97 0.49 0.26 0.94 0.41 0.07 0.03 0.08

.log 0.57 0.91 0.7 0.62 0.91 0.74 -0.05 0.0 -0.04

.ipynb 0.43 0.98 0.6 0.27 0.99 0.42 0.16 -0.01 0.18

.cmake 0.29 0.95 0.44 0.27 0.94 0.42 0.02 0.01 0.02

.ps1 0.78 0.96 0.86 0.79 0.95 0.86 -0.01 0.01 0.0

.pyx 0.43 0.95 0.59 0.14 0.96 0.24 0.29 -0.01 0.35

.tmpl 0.24 0.67 0.35 0.23 0.65 0.34 0.01 0.02 0.01

.m4 0.74 0.95 0.83 0.5 0.9 0.64 0.24 0.05 0.19

.check 0.24 0.81 0.37 0.2 0.78 0.32 0.04 0.03 0.05

.il 0.77 1.0 0.87 0.8 1.0 0.89 -0.03 0.0 -0.02

.am 0.54 0.96 0.69 0.71 0.93 0.81 -0.17 0.03 -0.12

.adoc 0.58 0.95 0.72 0.39 0.95 0.55 0.19 0.0 0.17

.mli 0.68 1.0 0.81 0.61 0.99 0.75 0.07 0.01 0.06

.sln 0.99 1.0 0.99 0.98 1.0 0.99 0.01 0.0 0.0

.sass 0.69 0.96 0.8 0.67 0.96 0.79 0.02 0.0 0.01

.gyp 0.32 1.0 0.48 0.34 0.98 0.5 -0.02 0.02 -0.02

.bat 0.42 0.72 0.53 0.36 0.72 0.48 0.06 0.0 0.05

.erl 0.6 1.0 0.75 0.31 1.0 0.47 0.29 0.0 0.28

.gemspec 0.78 1.0 0.88 0.84 1.0 0.91 -0.06 0.0 -0.03

.fish 0.58 0.95 0.72 0.65 0.94 0.77 -0.07 0.01 -0.05

.i 0.09 0.89 0.16 0.11 0.81 0.19 -0.02 0.08 -0.03

.texi 0.93 1.0 0.96 0.88 1.0 0.94 0.05 0.0 0.02

.template 0.09 0.48 0.15 0.03 0.37 0.06 0.06 0.11 0.09

.pl 0.62 0.95 0.75 0.41 0.95 0.57 0.21 0.0 0.18

.ac 0.68 0.99 0.81 0.6 0.99 0.75 0.08 0.0 0.06

.groovy 0.23 0.91 0.37 0.15 0.86 0.26 0.08 0.05 0.11

.mak 0.86 0.96 0.91 0.67 0.95 0.79 0.19 0.01 0.12

.vbproj 0.54 0.98 0.7 0.36 1.0 0.53 0.18 -0.02 0.17

.pkgproj 0.85 0.98 0.91 0.56 0.99 0.72 0.29 -0.01 0.19

.sql 0.16 0.93 0.27 0.14 0.92 0.24 0.02 0.01 0.03

.j 0.22 0.98 0.36 0.27 0.94 0.42 -0.05 0.04 -0.06

.tpl 0.12 0.77 0.21 0.1 0.74 0.18 0.02 0.03 0.03

.rake 0.1 0.95 0.18 0.09 0.92 0.16 0.01 0.03 0.02

.textile 0.2 0.99 0.33 0.15 0.97 0.26 0.05 0.02 0.07

.webidl 0.59 0.99 0.74 0.3 0.98 0.46 0.29 0.01 0.28

133

Appendix A. Results for File Extension Identification

Ext
bigrams trigrams ∆

P R F P R F P R F

.bash 0.22 0.77 0.34 0.13 0.75 0.22 0.09 0.02 0.12

.cjsx 0.35 0.97 0.51 0.32 0.93 0.48 0.03 0.04 0.03

.pb 0.39 1.0 0.56 0.54 0.99 0.7 -0.15 0.01 -0.14

.builds 0.93 1.0 0.96 0.96 0.99 0.97 -0.03 0.01 -0.01

.vcproj 0.92 1.0 0.96 0.94 0.99 0.96 -0.02 0.01 0.0

.xcscheme 1.0 1.0 1.0 0.98 1.0 0.99 0.02 0.0 0.01

.ngdoc 0.1 0.96 0.18 0.07 0.97 0.13 0.03 -0.01 0.05

.perl 0.66 0.98 0.79 0.64 0.98 0.77 0.02 0.0 0.02

.eslintrc 0.13 0.98 0.23 0.16 0.98 0.28 -0.03 0.0 -0.05

.sbt 0.61 0.97 0.75 0.41 0.98 0.58 0.2 -0.01 0.17

.handlebars 0.1 0.97 0.18 0.12 0.98 0.21 -0.02 -0.01 -0.03

.iml 0.62 1.0 0.77 0.75 1.0 0.86 -0.13 0.0 -0.09

.rml 0.79 1.0 0.88 0.87 0.99 0.93 -0.08 0.01 -0.05

.cmd 0.28 0.81 0.42 0.28 0.85 0.42 0.0 -0.04 0.0

.zsh 0.2 0.94 0.33 0.17 0.91 0.29 0.03 0.03 0.04

.tcl 0.65 0.98 0.78 0.52 0.97 0.68 0.13 0.01 0.1

.xib 0.55 1.0 0.71 0.63 1.0 0.77 -0.08 0.0 -0.06

.jet 0.05 0.91 0.09 0.05 0.81 0.09 0.0 0.1 0.0

.dsp 0.94 1.0 0.97 0.93 1.0 0.96 0.01 0.0 0.01

.w32 0.31 0.99 0.47 0.14 0.99 0.25 0.17 0.0 0.22

micro avg. 0.85 0.85 0.85 0.81 0.81 0.81 0.04 0.04 0.04
macro avg. 0.64 0.91 0.71 0.59 0.89 0.66 0.05 0.02 0.05

Table A.1.: Performance of the encoder architecture without and with trigrams.

134

Appendix B.

Results for Image-based Programming
Language Identification

In the following Table are presented the values for each class of the selected
metrics for the Image-based Programming Language Identification model
presented in Section 3.2.

ResNet34 MobileNetv2 AlexNet

Language P R F1 P R F1 P R F1

ANTLR 0.95 0.99 0.97 0.97 0.99 0.98 0.94 0.97 0.96
ActionScript 0.78 0.91 0.84 0.76 0.93 0.83 0.65 0.72 0.68
AGC 0.99 1.00 1.00 0.99 1.00 0.99 0.97 0.99 0.98
AsciiDoc 0.98 0.94 0.96 0.98 0.95 0.97 0.78 0.86 0.81
Assembly 0.94 0.87 0.90 0.97 0.88 0.92 0.86 0.83 0.84
Batchfile 0.98 0.99 0.98 1.00 0.99 0.99 0.91 0.94 0.93
C 0.84 0.92 0.88 0.83 0.94 0.88 0.73 0.75 0.74
C# 0.83 0.91 0.87 0.88 0.91 0.89 0.74 0.83 0.78
C++ 0.64 0.66 0.65 0.69 0.70 0.70 0.47 0.39 0.43
CMake 0.97 0.98 0.98 0.97 0.99 0.98 0.81 0.89 0.84
CSON 1.00 0.99 1.00 1.00 0.99 1.00 0.96 0.99 0.98
CSS 0.81 0.87 0.84 0.78 0.91 0.84 0.68 0.72 0.70
CSV 0.97 0.58 0.73 0.98 0.57 0.72 0.93 0.40 0.56
Cabal Config 1.00 0.99 0.99 0.99 1.00 0.99 0.98 0.99 0.99
Cap’n Proto 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.99 0.98
Clojure 0.98 0.96 0.97 0.96 0.97 0.97 0.84 0.90 0.87
CoffeeScript 0.97 0.88 0.92 0.96 0.89 0.92 0.83 0.85 0.84
Crystal 0.83 0.89 0.86 0.84 0.86 0.85 0.73 0.76 0.74
Cuda 0.78 0.88 0.83 0.72 0.91 0.80 0.56 0.81 0.67
Cython 0.84 0.86 0.85 0.83 0.90 0.87 0.66 0.76 0.70
DIGITAL CL 1.00 0.99 1.00 1.00 0.99 1.00 0.96 0.99 0.98
Dart 0.94 0.95 0.94 0.93 0.96 0.95 0.80 0.84 0.82

135

Appendix B. Results for Image-based Programming Language Identification

ResNet34 MobileNetv2 AlexNet

Language P R F1 P R F1 P R F1

Diff 0.97 0.97 0.97 0.99 0.96 0.97 0.93 0.93 0.93
Dockerfile 0.99 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99
eC 0.96 0.97 0.97 0.97 0.98 0.98 0.88 0.95 0.91
EJS 0.96 0.88 0.92 0.96 0.92 0.94 0.83 0.81 0.82
EML 0.92 0.97 0.94 0.92 0.96 0.94 0.89 0.85 0.87
Elixir 0.98 0.95 0.96 0.93 0.92 0.93 0.92 0.84 0.88
Emacs Lisp 0.98 0.96 0.97 0.98 0.98 0.98 0.82 0.83 0.82
Erlang 0.98 0.98 0.98 0.98 0.99 0.98 0.94 0.95 0.94
fish 0.98 0.99 0.99 0.99 0.99 0.99 0.93 0.91 0.92
FreeMarker 0.90 0.95 0.93 0.91 0.95 0.93 0.86 0.92 0.89
GAP 0.96 0.89 0.93 0.95 0.91 0.93 0.86 0.77 0.81
GDB 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99
GLSL 0.96 0.94 0.95 0.96 0.92 0.94 0.84 0.81 0.83
GN 0.99 1.00 0.99 1.00 1.00 1.00 0.91 0.99 0.95
Gettext C. 0.98 1.00 0.99 0.98 1.00 0.99 0.99 0.99 0.99
Gherkin 0.98 0.99 0.99 1.00 0.99 1.00 1.00 0.95 0.97
Go 0.92 0.81 0.86 0.93 0.80 0.86 0.70 0.70 0.70
Gradle 0.91 0.93 0.92 0.94 0.93 0.93 0.70 0.74 0.72
GraphQL 0.99 0.98 0.98 0.99 1.00 0.99 0.96 0.90 0.93
Graphviz 0.99 0.96 0.97 1.00 0.97 0.98 0.97 0.92 0.94
Groovy 0.89 0.91 0.90 0.86 0.92 0.89 0.71 0.79 0.75
HAProxy 1.00 0.99 1.00 0.99 1.00 1.00 0.98 0.99 0.98
HTML 0.79 0.54 0.64 0.81 0.60 0.69 0.69 0.53 0.60
HTML+Django 0.89 0.95 0.92 0.75 0.95 0.84 0.83 0.92 0.87
HTML+ERB 0.85 0.89 0.87 0.90 0.90 0.90 0.74 0.80 0.77
HTML+Razor 0.94 0.94 0.94 0.97 0.93 0.95 0.83 0.86 0.85
Hack 0.93 0.95 0.94 0.96 0.96 0.96 0.90 0.92 0.91
Haml 1.00 0.99 1.00 1.00 0.99 1.00 0.97 0.97 0.97
Handlebars 0.97 0.93 0.95 0.96 0.94 0.95 0.91 0.85 0.88
Haskell 0.95 0.70 0.81 0.96 0.72 0.82 0.81 0.64 0.71
INI 0.92 0.99 0.95 0.93 0.99 0.96 0.84 0.92 0.88
Ignore List 1.00 0.99 1.00 0.99 1.00 1.00 0.96 0.99 0.97
Inno Setup 1.00 0.97 0.99 0.99 0.97 0.98 0.98 0.96 0.97
JSON 0.98 0.94 0.96 0.97 0.95 0.96 0.79 0.40 0.53
JSON5 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 0.99
JSX 0.72 0.56 0.63 0.76 0.68 0.72 0.52 0.49 0.51

136

ResNet34 MobileNetv2 AlexNet

Language P R F1 P R F1 P R F1

Java 0.81 0.81 0.81 0.84 0.81 0.83 0.69 0.59 0.64
Java Prop. 0.97 0.99 0.98 0.99 0.98 0.98 0.83 0.93 0.88
Java SP 0.96 0.93 0.95 0.98 0.93 0.96 0.92 0.84 0.88
JavaScript 0.59 0.62 0.60 0.59 0.58 0.59 0.41 0.36 0.38
Jison 0.97 0.99 0.98 0.98 0.99 0.99 0.94 0.99 0.97
Julia 0.91 0.85 0.88 0.88 0.84 0.86 0.76 0.78 0.77
Jupyter Not. 0.97 0.99 0.98 0.97 0.99 0.98 0.90 0.94 0.92
Kotlin 0.91 0.95 0.93 0.92 0.97 0.94 0.69 0.84 0.76
LLVM 1.00 0.84 0.92 0.99 0.88 0.93 0.98 0.68 0.80
Less 0.67 0.68 0.67 0.76 0.67 0.71 0.52 0.46 0.49
Lex 0.95 0.91 0.93 0.98 0.92 0.95 0.88 0.87 0.88
Linux KM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lua 0.83 0.94 0.88 0.96 0.94 0.95 0.73 0.82 0.77
M4Sugar 0.98 0.94 0.96 1.00 0.93 0.96 0.91 0.83 0.87
MLIR 0.98 0.99 0.98 0.98 0.99 0.99 0.96 0.98 0.97
Makefile 0.88 0.97 0.92 0.88 0.97 0.92 0.77 0.93 0.84
Mako 0.99 0.97 0.98 0.99 0.96 0.97 0.96 0.90 0.93
Markdown 0.85 0.93 0.89 0.91 0.90 0.90 0.72 0.58 0.64
Micr. DSP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MMS 0.99 0.99 0.99 0.99 1.00 1.00 0.97 0.99 0.98
Assembly 0.69 0.71 0.70 0.72 0.72 0.72 0.44 0.53 0.48
NASL 0.93 0.81 0.87 0.91 0.81 0.85 0.89 0.78 0.83
NSIS 0.99 1.00 0.99 0.96 1.00 0.98 0.92 0.96 0.94
OCaml 0.95 0.91 0.93 0.98 0.94 0.96 0.88 0.75 0.81
Object.-C 0.71 0.81 0.75 0.76 0.81 0.78 0.60 0.66 0.63
Object.-C++ 0.73 0.62 0.67 0.82 0.71 0.76 0.60 0.49 0.54
Objective-J 0.88 0.93 0.90 0.86 0.93 0.90 0.80 0.88 0.84
OpenCL 0.91 0.96 0.93 0.92 0.97 0.94 0.76 0.90 0.83
OpenType FF 1.00 0.96 0.98 0.99 0.93 0.96 0.97 0.82 0.89
Org 1.00 0.99 1.00 0.99 0.99 0.99 0.93 0.94 0.94
PHP 0.90 0.89 0.89 0.93 0.89 0.91 0.80 0.78 0.79
PLpgSQL 0.90 0.96 0.93 0.90 0.96 0.93 0.86 0.86 0.86
Perl 0.96 0.96 0.96 0.98 0.95 0.96 0.89 0.80 0.84
Pod 0.97 0.98 0.98 0.97 0.98 0.97 0.75 0.88 0.81
PowerShell 0.96 0.97 0.97 0.99 0.96 0.98 0.87 0.95 0.91
Proguard 0.99 0.97 0.98 0.99 0.98 0.99 0.99 0.80 0.88

137

Appendix B. Results for Image-based Programming Language Identification

ResNet34 MobileNetv2 AlexNet

Language P R F1 P R F1 P R F1

Prot. Buffer 0.99 0.98 0.99 0.97 0.97 0.97 0.89 0.93 0.91
Pug 0.96 0.94 0.95 0.98 0.96 0.97 0.85 0.77 0.81
Python 0.80 0.78 0.79 0.82 0.74 0.78 0.60 0.54 0.56
QML 0.96 0.98 0.97 0.97 0.98 0.97 0.78 0.90 0.83
QMake 0.98 0.98 0.98 0.99 0.99 0.99 0.96 0.96 0.96
R 0.98 0.99 0.99 0.98 0.99 0.99 0.95 0.97 0.96
RDoc 0.98 0.97 0.97 0.97 0.97 0.97 0.76 0.82 0.79
RMarkdown 0.99 0.98 0.99 0.97 1.00 0.98 0.93 0.97 0.95
RPM Spec 0.99 0.99 0.99 0.98 1.00 0.99 0.97 0.94 0.96
Ragel 0.94 0.94 0.94 0.92 0.96 0.94 0.81 0.83 0.82
Rascal 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99
ReST 0.94 0.92 0.93 0.93 0.94 0.94 0.76 0.83 0.79
RTF 0.97 0.98 0.98 0.98 0.99 0.99 0.93 0.94 0.94
Roff 0.90 0.66 0.76 0.89 0.65 0.75 0.85 0.64 0.73
Roff Manp. 0.73 0.90 0.81 0.73 0.92 0.81 0.71 0.86 0.78
Ruby 0.81 0.81 0.81 0.77 0.83 0.80 0.66 0.72 0.69
Rust 0.88 0.91 0.89 0.92 0.93 0.92 0.66 0.83 0.74
SCSS 0.75 0.78 0.77 0.77 0.82 0.79 0.60 0.70 0.64
SQL 0.88 0.69 0.77 0.69 0.67 0.68 0.75 0.53 0.62
SVG 0.73 0.80 0.77 0.82 0.85 0.83 0.87 0.66 0.75
SWIG 0.84 0.91 0.87 0.84 0.89 0.86 0.69 0.71 0.70
SaltStack 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
Sass 0.97 0.94 0.96 0.98 0.96 0.97 0.93 0.91 0.92
Scala 0.96 0.93 0.94 0.95 0.94 0.94 0.77 0.88 0.82
Scheme 0.94 0.99 0.97 0.97 0.99 0.98 0.90 0.97 0.94
Shell 0.88 0.91 0.89 0.89 0.93 0.91 0.62 0.64 0.63
Slash 0.99 1.00 0.99 0.99 1.00 1.00 0.90 0.99 0.94
Smarty 0.95 1.00 0.97 0.96 1.00 0.98 0.90 1.00 0.95
Starlark 0.96 0.94 0.95 0.95 0.95 0.95 0.91 0.86 0.88
Stylus 0.90 0.94 0.92 0.94 0.94 0.94 0.86 0.89 0.88
Svelte 0.88 0.98 0.93 0.89 0.98 0.93 0.78 0.92 0.84
Swift 0.89 0.90 0.89 0.90 0.84 0.87 0.57 0.48 0.52
TOML 0.98 0.97 0.98 0.98 0.98 0.98 0.93 0.95 0.94
TSQL 0.76 0.88 0.82 0.72 0.84 0.78 0.69 0.77 0.73
TSX 0.64 0.73 0.68 0.65 0.63 0.64 0.57 0.43 0.49
Tcl 0.92 0.99 0.96 0.90 0.99 0.95 0.81 0.94 0.87

138

ResNet34 MobileNetv2 AlexNet

Language P R F1 P R F1 P R F1

TeX 0.99 0.96 0.97 0.98 0.95 0.97 0.93 0.88 0.91
Texinfo 0.99 0.99 0.99 1.00 1.00 1.00 0.94 0.92 0.93
Text 0.66 0.90 0.76 0.64 0.88 0.74 0.82 0.71 0.76
Textile 0.97 0.95 0.96 0.98 0.95 0.97 0.94 0.89 0.92
Twig 0.95 0.96 0.96 0.94 0.95 0.95 0.86 0.88 0.87
TypeScript 0.78 0.78 0.78 0.77 0.79 0.78 0.45 0.35 0.40
UnixAssembly 0.81 0.89 0.84 0.81 0.89 0.85 0.60 0.79 0.68
Vim Snippet 0.98 0.91 0.94 0.99 0.94 0.97 0.96 0.85 0.90
Vim script 0.96 0.99 0.98 0.92 0.99 0.96 0.87 0.91 0.89
VB .NET 0.99 0.94 0.96 0.96 0.96 0.96 0.95 0.90 0.93
Vue 0.91 0.84 0.87 0.94 0.86 0.90 0.76 0.74 0.75
Wavefront 1.00 0.91 0.95 1.00 0.89 0.94 0.90 0.67 0.77
WebIDL 0.99 1.00 1.00 0.98 1.00 0.99 0.94 0.99 0.97
Windows RE 0.99 1.00 1.00 0.99 1.00 1.00 0.98 0.99 0.99
XML 0.79 0.97 0.87 0.89 0.85 0.87 0.63 0.81 0.71
XML Pr. List 1.00 1.00 1.00 0.99 1.00 1.00 0.99 0.99 0.99
XSLT 0.95 0.57 0.71 0.98 0.73 0.84 0.79 0.54 0.64
YAML 0.94 0.99 0.96 0.96 0.99 0.97 0.88 0.92 0.90
Yacc 0.96 0.97 0.97 0.95 0.94 0.95 0.85 0.85 0.85

Micro avg. 0.92 0.92 0.92 0.92 0.92 0.92 0.83 0.83 0.83
Macro avg. 0.92 0.92 0.92 0.93 0.92 0.92 0.83 0.83 0.83

139

Appendix C.

Issues managed by Infer

Complete list of issues detectable by means of the Infer static analyzer.

Issue

arbitrary code execution under lock C/C++
assign pointer warning C/C++
autoreleasepool size complexity increase C/C++
autoreleasepool size complexity increase ui thread C/C++
autoreleasepool size unreachable at exit C/C++
bad pointer comparison C/C++
buffer overrun C/C++
captured strong self C/C++
checkers allocates memory C/C++
checkers annotation reachability error C/C++
checkers calls expensive method C/C++
checkers expensive overrides unannotated C/C++
checkers fragment retains view C/C++
checkers immutable cast C/C++
checkers printf args C/C++
component initializer with side effects C/C++
component with multiple factory methods C/C++
constant address dereference C/C++
cxx reference captured in objc block C/C++
deadlock C/C++
dead store C/C++
direct atomic property access C/C++
discouraged weak property custom setter C/C++
empty vector access C/C++
eradicate condition redundant C/C++
eradicate field not initialized C/C++
eradicate field not nullable C/C++

141

Appendix C. Issues managed by Infer

eradicate inconsistent subclass parameter annotation C/C++
eradicate inconsistent subclass return annotation C/C++
eradicate meta class needs improvement C/C++
eradicate parameter not nullable C/C++
eradicate return not nullable C/C++
eradicate return over annotated C/C++
execution time complexity increase C/C++
execution time complexity increase ui thread C/C++
execution time unreachable at exit C/C++
expensive autoreleasepool size C/C++
expensive execution time C/C++
expensive loop invariant call C/C++
global variable initialized with function or method call C/C++
guardedby violation C/C++
impure function C/C++
inefficient keyset iterator C/C++
infinite autoreleasepool size C/C++
infinite execution time C/C++
integer overflow C/C++
interface not thread safe C/C++
invariant call C/C++
ivar not null checked C/C++
lockless violation C/C++
lock consistency violation C/C++
memory leak C/C++
mixed self weakself C/C++
modifies immutable C/C++
multiple weakself C/C++
mutable local variable in component file C/C++
nullptr dereference C/C++
optional empty access C/C++
parameter not null checked C/C++
pointer to const objc class C/C++
premature nil termination argument C/C++
pure function C/C++
resource leak C/C++
retain cycle C/C++
stack variable address escape C/C++
starvation C/C++
static initialization order fiasco C/C++

142

strict mode violation C/C++
strong delegate warning C/C++
strong self not checked C/C++
thread safety violation C/C++
uninitialized value C/C++
use after delete C/C++
use after free C/C++
use after lifetime C/C++
vector invalidation C/C++
weak self in no escape block C/C++
assign pointer warning solo objc other
autoreleasepool size complexity increase sol objc other
autoreleasepool size complexity increase ui thread solo objc other
bad pointer comparison solo objc other
checkers immutable cast other
expensive autoreleasepool size solo objc other
infinite autoreleasepool size solo objc other
ivar not null checked solo objc other
mixed self weakself solo objc other
multiple weakself solo objc other
parameter not null checked solo objc other
pointer to const objc class solo objc other
starvation other
strict mode violation other
thread safety violation other

Table C.1.: Issues detectable using Infer

143

Bibliography

[1] Zakrani abdelali, Hain Mustapha, and Namir Abdelwahed. Investigating
the use of random forest in software effort estimation. Procedia Computer
Science, 148:343–352, 2019. ISSN 1877-0509. doi: https://doi.org/
10.1016/j.procs.2019.01.042. URL https://www.sciencedirect.com/

science/article/pii/S1877050919300420. The Second International
Conference on Intelligent Computing in Data Sciences, ICDS2018.

[2] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli.
Building the universal archive of source code. Communications of the
ACM, 61(10):29–31, October 2018. ISSN 0001-0782. doi: 10.1145/
3183558.

[3] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli.
Building the universal archive of source code. Communications of the
ACM, 61(10):29–31, September 2018. ISSN 0001-0782. doi: 10.1145/
3183558. URL http://doi.acm.org/10.1145/3183558.

[4] Petar Afric, Lucija Sikic, Adrian Satja Kurdija, Goran Delac, and Marin
Silic. Repd: Source code defect prediction as anomaly detection. In 2019
IEEE 19th International Conference on Software Quality, Reliability and
Security Companion (QRS-C), pages 227–234, 2019. doi: 10.1109/QRS-
C.2019.00052.

[5] Elena Akimova, Alexander Bersenev, Artem Deikov, Konstantin
Kobylkin, Anton Konygin, Ilya Mezentsev, and Vladimir Misilov. A
survey on software defect prediction using deep learning. Mathematics,
9:1180, 05 2021. doi: 10.3390/math9111180.

[6] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton.
Suggesting accurate method and class names. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pages 38–49, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-
3675-8. doi: 10.1145/2786805.2786849. URL http://doi.acm.org/10.

1145/2786805.2786849.

145

https://www.sciencedirect.com/science/article/pii/S1877050919300420
https://www.sciencedirect.com/science/article/pii/S1877050919300420
http://doi.acm.org/10.1145/3183558
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849

Bibliography

[7] Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. A convolutional
attention network for extreme summarization of source code. In Proceed-
ings of the 33nd International Conference on Machine Learning, 2016,
New York City, NY, USA, June 19-24, 2016, pages 2091–2100, 2016.
URL http://proceedings.mlr.press/v48/allamanis16.html.

[8] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles
Sutton. A survey of machine learning for big code and naturalness. ACM
Computing Surveys (CSUR), 51(4):81, 2018.

[9] Uri Alon, Omer Levy, and Eran Yahav. code2seq: Generating sequences
from structured representations of code. CoRR, abs/1808.01400, 2018.
URL http://arxiv.org/abs/1808.01400.

[10] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec:
Learning distributed representations of code. Proc. ACM Program.
Lang., 3(POPL), January 2019. doi: 10.1145/3290353. URL https:

//doi.org/10.1145/3290353.

[11] Kamel Alrashedy, Dhanush Dharmaretnam, Daniel M. German,
Venkatesh Srinivasan, and T. Aaron Gulliver. Scc++: Predicting
the programming language of questions and snippets of stack over-
flow. Journal of Systems and Software, 162:110505, 2020. ISSN 0164-
1212. doi: https://doi.org/10.1016/j.jss.2019.110505. URL https://www.

sciencedirect.com/science/article/pii/S0164121219302791.

[12] Kamel Alreshedy, Dhanush Dharmaretnam, Daniel M. German,
Venkatesh Srinivasan, and T. Aaron Gulliver. Scc: Automatic clas-
sification of code snippets. In 2018 IEEE 18th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pages
203–208, 2018. doi: 10.1109/SCAM.2018.00031.

[13] Hlib Babii, Andrea Janes, and Romain Robbes. Modeling vocabulary
for big code machine learning. CoRR, abs/1904.01873, 2019. URL
http://arxiv.org/abs/1904.01873.

[14] Y. Bengio. Learning deep architectures for ai. Foundations, 2:1–55, 01
2009. doi: 10.1561/2200000006.

[15] Emery D Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan
Vitek. On the impact of programming languages on code quality: a
reproduction study. ACM Transactions on Programming Languages and
Systems (TOPLAS), 41(4):1–24, 2019.

146

http://proceedings.mlr.press/v48/allamanis16.html
http://arxiv.org/abs/1808.01400
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://www.sciencedirect.com/science/article/pii/S0164121219302791
https://www.sciencedirect.com/science/article/pii/S0164121219302791
http://arxiv.org/abs/1904.01873

Bibliography

[16] Avishkar Bhoopchand, Tim Rocktaschel, Earl Barr, and Sebastian Riedel.
Learning python code suggestion with a sparse pointer network. Arxiv,
2016.

[17] Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: probabilistic
model for code. In International Conference on Machine Learning, pages
2933–2942, 2016.

[18] Christopher M. Bishop. Pattern recognition and machine learning,
5th Edition. Information science and statistics. Springer, 2007. ISBN
9780387310732. URL http://www.worldcat.org/oclc/71008143.

[19] Paul Black. A software assurance reference dataset: Thousands of
programs with known bugs. Journal of Research of the National Institute
of Standards and Technology, 123, 04 2018. doi: 10.6028/jres.123.005.

[20] Gary Boetticher, Tim Menzies, and Thomas Ostrand. {PROMISE}
repository of empirical software engineering data, 01 2007.

[21] Jón Arnar Briem, Jordi Smit, Hendrig Sellik, and Pavel Rapoport.
Using distributed representation of code for bug detection. CoRR,
abs/1911.12863, 2019. URL http://arxiv.org/abs/1911.12863.

[22] Jane Bromley, James Bentz, Leon Bottou, Isabelle Guyon, Yann Lecun,
Cliff Moore, Eduard Sackinger, and Rookpak Shah. Signature verification
using a ”siamese” time delay neural network. International Journal
of Pattern Recognition and Artificial Intelligence, 7:25, 08 1993. doi:
10.1142/S0218001493000339.

[23] Timofey Bryksin, Victor Petukhov, Ilya Alexin, Stanislav Prikhodko,
Alexey Shpilman, Vladimir Kovalenko, and Nikita Povarov. Using large-
scale anomaly detection on code to improve kotlin compiler. CoRR,
abs/2004.01618, 2020. URL https://arxiv.org/abs/2004.01618.

[24] Vanessa Buhrmester, David Münch, and Michael Arens. Analysis of
explainers of black box deep neural networks for computer vision: A
survey, 2019.

[25] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. Infercode: Self-supervised
learning of code representations by predicting subtrees, 2020.

[26] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, An-
dreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexan-
dre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud

147

http://www.worldcat.org/oclc/71008143
http://arxiv.org/abs/1911.12863
https://arxiv.org/abs/2004.01618

Bibliography

Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning
software: experiences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, pages
108–122, 2013.

[27] L. Büch and A. Andrzejak. Learning-based recursive aggregation of
abstract syntax trees for code clone detection. In 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 95–104, Feb 2019. doi: 10.1109/SANER.2019.8668039.

[28] Cagatay Catal. A comparison of semi-supervised classification approaches
for software defect prediction. Journal of Intelligent Systems, 23, 01
2014. doi: 10.1515/jisys-2013-0030.

[29] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi
Ray. Codit: Code editing with tree-based neural models. IEEE Trans-
actions on Software Engineering, page 1–1, 2020. ISSN 2326-3881.
doi: 10.1109/tse.2020.3020502. URL http://dx.doi.org/10.1109/

TSE.2020.3020502.

[30] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: Synthetic minority over-sampling technique. J.
Artif. Int. Res., 16(1):321–357, jun 2002. ISSN 1076-9757.

[31] Lin Chen, Bin Fang, Zhaowei Shang, and Yuanyan Tang. Negative
samples reduction in cross-company software defects prediction. Inf.
Softw. Technol., 62:67–77, 2015.

[32] Jitender Chhabra and Varun Gupta. A survey of dynamic software
metrics. Journal of Computer Science and Technology, 25:1016–1029, 09
2010. doi: 10.1007/s11390-010-9384-3.

[33] Shyam R. Chidamber and Chris F. Kemerer. Towards a metrics suite for
object oriented design. In Conference Proceedings on Object-Oriented
Programming Systems, Languages, and Applications, OOPSLA ’91,
page 197–211, New York, NY, USA, 1991. Association for Comput-
ing Machinery. ISBN 0201554178. doi: 10.1145/117954.117970. URL
https://doi-org.ezproxy.unibo.it/10.1145/117954.117970.

[34] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):476–493,
1994. doi: 10.1109/32.295895.

148

http://dx.doi.org/10.1109/TSE.2020.3020502
http://dx.doi.org/10.1109/TSE.2020.3020502
https://doi-org.ezproxy.unibo.it/10.1145/117954.117970

Bibliography

[35] Kyunghyun Cho, Bart van Merrienboer, Caglar Gucehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. In Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing, 2014, October 25-29, 2014, Doha,
Qatar,A meeting of SIGDAT, a Special Interest Group of the ACL, pages
1724–1734, 2014.

[36] François Chollet. Keras. https://github.com/fchollet/keras, 2015.

[37] David Coimbra, Sofia Reis, Rui Abreu, Corina S. Pasareanu, and Hakan
Erdogmus. On using distributed representations of source code for the
detection of C security vulnerabilities. CoRR, abs/2106.01367, 2021.
URL https://arxiv.org/abs/2106.01367.

[38] Michael L. Collard, Michael John Decker, and Jonathan I. Maletic.
srcml: An infrastructure for the exploration, analysis, and manipulation
of source code: A tool demonstration. In 2013 IEEE International
Conference on Software Maintenance, pages 516–519, 2013. doi: 10.1109/
ICSM.2013.85.

[39] CWE Community. CWE. https://cwe.mitre.org/.

[40] Qt Company. Qt. https://www.qt.io/.

[41] Milan Cvitkovic, Badal Singh, and Anima Anandkumar. Deep learning
on code with an unbounded vocabulary. EasyChair Preprint no. 466,
EasyChair, 2018. doi: 10.29007/bc6w.

[42] Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John
Grundy, Aditya Ghose, Taeksu Kim, and Chul-Joo Kim. Lessons learned
from using a deep tree-based model for software defect prediction in
practice. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), pages 46–57, 2019. doi: 10.1109/MSR.
2019.00017.

[43] Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive
comparison of bug prediction approaches. In 2010 7th IEEE Working
Conference on Mining Software Repositories (MSR 2010), pages 31–41,
2010. doi: 10.1109/MSR.2010.5463279.

[44] Al Danial. cloc. https://github.com/AlDanial/cloc, 2006. Retrieved
2021-01-13.

149

https://github.com/fchollet/keras
https://arxiv.org/abs/2106.01367
https://cwe.mitre.org/
https://www.qt.io/
https://github.com/AlDanial/cloc

Bibliography

[45] Silvia N. das Dôres, Luciano Alves, Duncan D. Ruiz, and Rodrigo C.
Barros. A meta-learning framework for algorithm recommendation
in software fault prediction. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, SAC ’16, page 1486–1491, New
York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450337397. doi: 10.1145/2851613.2851788. URL https://doi.org/

10.1145/2851613.2851788.

[46] Debian. Debian. https://www.debian.org/.

[47] Francesca Del Bonifro, Maurizio Gabbrielli, and Stefano Zacchiroli.
Content-based textual file type detection at scale. In ICMLC 2021:
The 13th International Conference on Machine Learning and Computing.
ACM, 2021.

[48] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 248–255,
2009. doi: 10.1109/CVPR.2009.5206848.

[49] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language under-
standing, 2019.

[50] Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Why and
how to preserve software source code. In iPRES 2017: 14th International
Conference on Digital Preservation, 2017.

[51] Dario Di Nucci and Andrea De Lucia. The role of meta-learners in the
adaptive selection of classifiers. In 2018 IEEE Workshop on Machine
Learning Techniques for Software Quality Evaluation (MaLTeSQuE),
pages 7–12, 2018. doi: 10.1109/MALTESQUE.2018.8368452.

[52] Dario Di Nucci, Fabio Palomba, Rocco Oliveto, and Andrea De Lucia.
Dynamic selection of classifiers in bug prediction: An adaptive method.
IEEE Transactions on Emerging Topics in Computational Intelligence, 1
(3):202–212, 2017. doi: 10.1109/TETCI.2017.2699224.

[53] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen.
Boa: A language and infrastructure for analyzing ultra-large-scale soft-
ware repositories. In Proceedings of the 2013 International Conference
on Software Engineering, pages 422–431. IEEE Press, 2013.

150

https://doi.org/10.1145/2851613.2851788
https://doi.org/10.1145/2851613.2851788
https://www.debian.org/

Bibliography

[54] Del Bonifro F, Gabbrielli M, Lategano A, and Zacchiroli S. Image-based
many-language programming language identification. PeerJ Computer
Science, 2021.

[55] Facebook. Infer, a tool to detect bugs in java and c/c++/objective-c
code before it ships. https://fbinfer.com.

[56] Matloob Faseeha, Aftab Shabib, Ahmad Munir, Adnan Khan Muham-
mad, Fatima Areej, Iqbal Muhammad, Mohsen Alruwaili Wesam, and
Sabri Elmitwally Nouh. Software defect prediction using supervised
machine learning techniques: A systematic literature review. Intelligent
Automation & Soft Computing, 29(2):403–421, 2021. ISSN 2326-005X.
doi: 10.32604/iasc.2021.017562. URL http://www.techscience.com/

iasc/v29n2/42941.

[57] Wang Fei, Ai Jun, and Xu Jiaxi. Software defect prediction based on
graph representation learning. IEEE Transactions on Software Engi-
neering, 2020.

[58] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming
Zhou. Codebert: A pre-trained model for programming and natural
languages, 2020.

[59] Rudolf Ferenc, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor
Gyimóthy. A public unified bug dataset for java. In Proceedings of the
14th International Conference on Predictive Models and Data Analytics
in Software Engineering, PROMISE’18, page 12–21, New York, NY, USA,
2018. Association for Computing Machinery. ISBN 9781450365932. doi:
10.1145/3273934.3273936. URL https://doi.org/10.1145/3273934.

3273936.

[60] Rudolf Ferenc, Dénes Bán, Tamás Grósz, and Tibor Gyimóthy. Deep
learning in static, metric-based bug prediction. Array, 6:100021,
2020. ISSN 2590-0056. doi: https://doi.org/10.1016/j.array.2020.
100021. URL https://www.sciencedirect.com/science/article/

pii/S2590005620300060.

[61] Rudolf Ferenc, Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Tibor
Gyimóthy. An automatically created novel bug dataset and its validation
in bug prediction. CoRR, abs/2006.10158, 2020. URL https://arxiv.

org/abs/2006.10158.

151

https://fbinfer.com
http://www.techscience.com/iasc/v29n2/42941
http://www.techscience.com/iasc/v29n2/42941
https://doi.org/10.1145/3273934.3273936
https://doi.org/10.1145/3273934.3273936
https://www.sciencedirect.com/science/article/pii/S2590005620300060
https://www.sciencedirect.com/science/article/pii/S2590005620300060
https://arxiv.org/abs/2006.10158
https://arxiv.org/abs/2006.10158

Bibliography

[62] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. Struc-
tured neural summarization. CoRR, abs/1811.01824, 2018. URL
http://arxiv.org/abs/1811.01824.

[63] Simran Fitzgerald, George Mathews, Colin Morris, and Oles Zhulyn.
Using nlp techniques for file fragment classification. Digital Investigation,
9:S44–S49, 08 2012. doi: 10.1016/j.diin.2012.05.008.

[64] Kavita Ganesan and Romano Foti. C# or java? typescript or
javascript? machine learning based classification of programming lan-
guages. GitHub, Inc. blog post: https://github.blog/2019-07-02-

c-or-java-typescript-or-javascript-machine-learning-based-

classification-of-programming-languages/, 2019. Retrieved
2020-01-06.

[65] Ben Gelman, Banjo Obayomi, Jessica Moore, and David Slater. Source
code analysis dataset. Data in Brief, 27:104712, 2019. ISSN 2352-3409.
doi: https://doi.org/10.1016/j.dib.2019.104712. URL https://www.

sciencedirect.com/science/article/pii/S2352340919310674.

[66] Ben Gelman, Banjo Obayomi, Jessica Moore, and David Slater. Source
code analysis dataset. Data in Brief, 27:104712, 10 2019. doi: 10.1016/j.
dib.2019.104712.

[67] Shlok Gilda. Source code classification using neural networks. In 2017
14th International Joint Conference on Computer Science and Software
Engineering (JCSSE), pages 1–6. IEEE, 2017.

[68] GitHub. Github. https://github.com/.

[69] GitHub, Inc. Linguist: Language savant. https://github.com/github/
linguist, 2011. Retrieved 2020-01-06.

[70] Siddharth Gopal, Yiming Yang, Konstantin Salomatin, and Jaime G.
Carbonell. Statistical learning for file-type identification. 2011 10th
International Conference on Machine Learning and Applications and
Workshops, 1:68–73, 2011.

[71] Alicja Gosiewska and Przemyslaw Biecek. ibreakdown: Uncertainty of
model explanations for non-additive predictive models, 03 2019.

[72] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini,
Dino Pedreschi, and Fosca Giannotti. A survey of methods for explaining
black box models, 2018.

152

http://arxiv.org/abs/1811.01824
https://github.blog/2019-07-02-c-or-java-typescript-or-javascript-machine-learning-based-classification-of-programming-languages/
https://github.blog/2019-07-02-c-or-java-typescript-or-javascript-machine-learning-based-classification-of-programming-languages/
https://github.blog/2019-07-02-c-or-java-typescript-or-javascript-machine-learning-based-classification-of-programming-languages/
https://www.sciencedirect.com/science/article/pii/S2352340919310674
https://www.sciencedirect.com/science/article/pii/S2352340919310674
https://github.com/
https://github.com/github/linguist
https://github.com/github/linguist

Bibliography

[73] Novi Trisman Hadi and Siti Rochimah. Enhancing software defect
prediction using principle component analysis and self-organizing map.
In 2018 Electrical Power, Electronics, Communications, Controls and
Informatics Seminar (EECCIS), pages 320–325, 2018. doi: 10.1109/
EECCIS.2018.8692889.

[74] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. Some code smells have
a significant but small effect on faults. ACM Trans. Softw. Eng. Methodol.,
23(4), September 2014. ISSN 1049-331X. doi: 10.1145/2629648. URL
https://doi-org.ezproxy.unibo.it/10.1145/2629648.

[75] Maurice H. Halstead. Elements of Software Science (Operating and
Programming Systems Series). Elsevier Science Inc., USA, 1977. ISBN
0444002057.

[76] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive repre-
sentation learning on large graphs. CoRR, abs/1706.02216, 2017. URL
http://arxiv.org/abs/1706.02216.

[77] Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher P. Reale, Re-
becca L. Russell, Louis Y. Kim, and Sang Peter Chin. Learning to repair
software vulnerabilities with generative adversarial networks. CoRR,
abs/1805.07475, 2018. URL http://arxiv.org/abs/1805.07475.

[78] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 770–778. IEEE Computer Society, 2016. doi: 10.1109/
CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

[79] Software Heritage. Software heritage. https://www.softwareheritage.
org/.

[80] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoy-
asu Ubayashi. Deepjit: An end-to-end deep learning framework for
just-in-time defect prediction. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pages 34–45, 2019.
doi: 10.1109/MSR.2019.00016.

[81] Thong Hoang, Hong Jin Kang, Julia Lawall, and David Lo. Cc2vec:
Distributed representations of code changes. CoRR, abs/2003.05620,
2020. URL https://arxiv.org/abs/2003.05620.

153

https://doi-org.ezproxy.unibo.it/10.1145/2629648
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1805.07475
https://doi.org/10.1109/CVPR.2016.90
https://www.softwareheritage.org/
https://www.softwareheritage.org/
https://arxiv.org/abs/2003.05620

Bibliography

[82] Juntong Hong, Osamu Mizuno, and Masanari Kondo. An empirical study
of source code detection using image classification. In 10th International
Workshop on Empirical Software Engineering in Practice, IWESEP
2019, Tokyo, Japan, December 13-14, 2019, pages 1–6. IEEE, 2019. doi:
10.1109/IWESEP49350.2019.00009. URL https://doi.org/10.1109/

IWESEP49350.2019.00009.

[83] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017. URL http://arxiv.org/

abs/1704.04861.

[84] Shamsul Huda, Sultan Alyahya, Md Mohsin Ali, Shafiq Ahmad, Jemal
Abawajy, Hmood Al-Dossari, and John Yearwood. A framework for
software defect prediction and metric selection. IEEE Access, 6:2844–
2858, 2018. doi: 10.1109/ACCESS.2017.2785445.

[85] Jack Humphreys and Hoa Khanh Dam. An explainable deep model
for defect prediction. In 2019 IEEE/ACM 7th International Workshop
on Realizing Artificial Intelligence Synergies in Software Engineering
(RAISE), pages 49–55, 2019. doi: 10.1109/RAISE.2019.00016.

[86] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer.
Summarizing source code using a neural attention model. In Proceed-
ings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, 2016.

[87] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, Hoa Khanh Dam, and
John Grundy. An empirical study of model-agnostic techniques for defect
prediction models. IEEE Transactions on Software Engineering, pages
1–1, 2020. doi: 10.1109/TSE.2020.2982385.

[88] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and John Grundy. Prac-
titioners’ perceptions of the goals and visual explanations of defect
prediction models, 2021.

[89] Xiao-Yuan Jing, Shi Ying, Zhi-Wu Zhang, Shan-Shan Wu, and Jin Liu.
Dictionary learning based software defect prediction. In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014,
page 414–423, New York, NY, USA, 2014. Association for Computing

154

https://doi.org/10.1109/IWESEP49350.2019.00009
https://doi.org/10.1109/IWESEP49350.2019.00009
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861

Bibliography

Machinery. ISBN 9781450327565. doi: 10.1145/2568225.2568320. URL
https://doi.org/10.1145/2568225.2568320.

[90] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database
of existing faults to enable controlled testing studies for java programs.
In Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, page 437–440, New York, NY, USA, 2014.
Association for Computing Machinery. ISBN 9781450326452. doi: 10.
1145/2610384.2628055. URL https://doi-org.ezproxy.unibo.it/10.

1145/2610384.2628055.

[91] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi.
Learning and evaluating contextual embedding of source code, 2020.

[92] Jeremy Katz. Libraries.io open source repository and dependency
metadata, December 2018. URL https://doi.org/10.5281/zenodo.

2536573.

[93] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. Technical Report 1412.6980, arXiv, 2014.

[94] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. CoRR, abs/1609.02907, 2016. URL
http://arxiv.org/abs/1609.02907.

[95] Elife Ozturk Kiyak, Ayse Betul Cengiz, Kökten Ulas Birant, and Derya
Birant. Comparison of image-based and text-based source code clas-
sification using deep learning. SN Comput. Sci., 1(5):266, 2020. doi:
10.1007/s42979-020-00281-1. URL https://doi.org/10.1007/s42979-

020-00281-1.

[96] David Klein, Kyle Murray, and Simon Weber. Algorithmic programming
language identification. Technical Report 1106.4064, arXiv, 2011. URL
https://arxiv.org/abs/1106.4064.

[97] Pavneet Singh Kochhar, Dinusha Wijedasa, and David Lo. A large scale
study of multiple programming languages and code quality. In 2016
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), volume 1, pages 563–573. IEEE, 2016.

[98] Philipp Koehn. Statistical Machine Translation. Cambridge Univer-
sity Press, New York, NY, USA, 1st edition, 2010. ISBN 0521874157,
9780521874151.

155

https://doi.org/10.1145/2568225.2568320
https://doi-org.ezproxy.unibo.it/10.1145/2610384.2628055
https://doi-org.ezproxy.unibo.it/10.1145/2610384.2628055
https://doi.org/10.5281/zenodo.2536573
https://doi.org/10.5281/zenodo.2536573
http://arxiv.org/abs/1609.02907
https://doi.org/10.1007/s42979-020-00281-1
https://doi.org/10.1007/s42979-020-00281-1
https://arxiv.org/abs/1106.4064

Bibliography

[99] Philipp Koehn, Franz J. Och, and Daniel Marcu. Statistical phrase-
based translation. In Proceedings of the 2003 Human Language Tech-
nology Conference of the North American Chapter of the Association
for Computational Linguistics, pages 127–133, 2003. URL https:

//www.aclweb.org/anthology/N03-1017.

[100] Vladimir Kovalenko, Egor Bogomolov, Timofey Bryksin, and Alberto
Bacchelli. Pathminer: a library for mining of path-based representations
of code. In Proceedings of the 16th International Conference on Mining
Software Repositories, pages 13–17. IEEE Press, 2019.

[101] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. Commun. ACM,
60(6):84–90, 2017. doi: 10.1145/3065386. URL http://doi.acm.org/

10.1145/3065386.

[102] Quoc Le and Tomas Mikolov. Distributed representations of sentences
and documents. In Proceedings of the 31st International Conference on
International Conference on Machine Learning - Volume 32, ICML’14,
pages II–1188–II–1196. JMLR.org, 2014. URL http://dl.acm.org/

citation.cfm?id=3044805.3045025.

[103] Alexander LeClair, Siyuan Jiang, and Collin McMillan. A neural
model for generating natural language summaries of program subrou-
tines. CoRR, abs/1902.01954, 2019. URL http://arxiv.org/abs/1902.

01954.

[104] Jian Li, Pinjia He, Jieming Zhu, and Michael R. Lyu. Software defect
prediction via convolutional neural network. In 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS), pages
318–328, 2017. doi: 10.1109/QRS.2017.42.

[105] Jian Li, Pinjia He, Jieming Zhu, and Michael R. Lyu. Software defect
prediction via convolutional neural network. In 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS), pages
318–328, 2017. doi: 10.1109/QRS.2017.42.

[106] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. Code comple-
tion with neural attention and pointer networks. In IJCAI’18: 27th
International Joint Conference on Artificial Intelligence, 2018.

156

https://www.aclweb.org/anthology/N03-1017
https://www.aclweb.org/anthology/N03-1017
http://doi.acm.org/10.1145/3065386
http://doi.acm.org/10.1145/3065386
http://dl.acm.org/citation.cfm?id=3044805.3045025
http://dl.acm.org/citation.cfm?id=3044805.3045025
http://arxiv.org/abs/1902.01954
http://arxiv.org/abs/1902.01954

Bibliography

[107] Ning Li, Martin Shepperd, and Yuchen Guo. A systematic review of
unsupervised learning techniques for software defect prediction. Infor-
mation and Software Technology, 122:106287, 2020. ISSN 0950-5849.
doi: https://doi.org/10.1016/j.infsof.2020.106287. URL https://www.

sciencedirect.com/science/article/pii/S0950584920300379.

[108] Zhiqiang Li, Xiao-Yuan Jing, and Xiaoke Zhu. Progress on approaches to
software defect prediction. IET Software, 12, 02 2018. doi: 10.1049/iet-
sen.2017.0148.

[109] Chang Liu, Xin Wang, Richard Shin, Joseph E. Gonzalez, and Dawn
Song. Neural code completion, 2017.

[110] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Taeyoung Kim, Kisub
Kim, Anil Koyuncu, Suntae Kim, and Yves Le Traon. Learning to spot
and refactor inconsistent method names. In Proceedings of the 41st
International Conference on Software Engineering, ICSE ’19, pages 1–12,
Piscataway, NJ, USA, 2019. IEEE Press. doi: 10.1109/ICSE.2019.00019.
URL https://doi.org/10.1109/ICSE.2019.00019.

[111] LLVM. Clang. https://clang.llvm.org/, .

[112] LLVM. Python bindings for clang. https://github.com/llvm-mirror/
clang/tree/master/bindings/python, .

[113] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy,
Ambrosio Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu
Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie Liu. Codexglue: A machine learning benchmark
dataset for code understanding and generation. CoRR, abs/2102.04664,
2021. URL https://arxiv.org/abs/2102.04664.

[114] Scott Lundberg and Su-In Lee. A unified approach to interpreting model
predictions, 2017.

[115] Gerton Lunter, Alexei J. Drummond, István Miklós, and Jotun Hein.
Statistical Alignment: Recent Progress, New Applications, and Chal-
lenges, pages 375–405. Springer New York, New York, NY, 2005.
ISBN 978-0-387-27733-2. doi: 10.1007/0-387-27733-1 14. URL https:

//doi.org/10.1007/0-387-27733-1_14.

157

https://www.sciencedirect.com/science/article/pii/S0950584920300379
https://www.sciencedirect.com/science/article/pii/S0950584920300379
https://doi.org/10.1109/ICSE.2019.00019
https://clang.llvm.org/
https://github.com/llvm-mirror/clang/tree/master/bindings/python
https://github.com/llvm-mirror/clang/tree/master/bindings/python
https://arxiv.org/abs/2102.04664
https://doi.org/10.1007/0-387-27733-1_14
https://doi.org/10.1007/0-387-27733-1_14

Bibliography

[116] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris
Mockus. World of code: an infrastructure for mining the universe of open
source vcs data. In Proceedings of the 16th International Conference on
Mining Software Repositories, pages 143–154. IEEE Press, 2019.

[117] Oded Maimon and Lior Rokach, editors. Data Mining and Knowledge
Discovery Handbook, 2nd ed. Springer, 2010. ISBN 978-0-387-09822-7.
URL http://www.springerlink.com/content/978-0-387-09822-7.

[118] Katrina D Maxwell and Pekka Forselius. Benchmarking software devel-
opment productivity. IEEE Software, 17(1):80–88, 2000.

[119] Katrina D Maxwell, Luk Van Wassenhove, and Soumitra Dutta. Software
development productivity of european space, military, and industrial
applications. IEEE Transactions on Software Engineering, 22(10):706–
718, 1996.

[120] T.J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, SE-2(4):308–320, 1976. doi: 10.1109/TSE.1976.233837.

[121] Michael McCloskey and Neal J. Cohen. Catastrophic interference in
connectionist networks: The sequential learning problem. Psychology of
Learning and Motivation - Advances in Research and Theory, 24(C):109–
165, January 1989. ISSN 0079-7421. doi: 10.1016/S0079-7421(08)60536-
8.

[122] Shane McIntosh and Yasutaka Kamei. Are fix-inducing changes a moving
target? a longitudinal case study of just-in-time defect prediction. IEEE
Transactions on Software Engineering, 44(5):412–428, 2018. doi: 10.
1109/TSE.2017.2693980.

[123] Linda McIver. The effect of programming language on error rates of
novice programmers. In Proceedings of the 12th Annual Workshop of
the Psychology of Programming Interest Group, PPIG 2000, Cosenza,
Italy, April 10-13, 2000, page 15, 2000.

[124] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space, 2013.

[125] Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space, 2013. URL http:

//arxiv.org/abs/1301.3781.

158

http://www.springerlink.com/content/978-0-387-09822-7
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

Bibliography

[126] Sandeep Muvva, A. Eashaan Rao, and Sridhar Chimalakonda. Bugl -
A cross-language dataset for bug localization. CoRR, abs/2004.08846,
2020. URL https://arxiv.org/abs/2004.08846.

[127] N. Nagappan and T. Ball. Use of relative code churn measures to predict
system defect density. In Proceedings. 27th International Conference
on Software Engineering, 2005. ICSE 2005., pages 284–292, 2005. doi:
10.1109/ICSE.2005.1553571.

[128] Nachiappan Nagappan and Thomas Ball. Using software dependencies
and churn metrics to predict field failures: An empirical case study. In
First International Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), pages 364–373, 2007. doi: 10.1109/ESEM.
2007.13.

[129] Sebastian Nanz and Carlo A Furia. A comparative study of programming
languages in rosetta code. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1, pages 778–788. IEEE,
2015.

[130] A.T. Nguyen, Nguyen H.A., Nguyen T.T., and Nguyen T.N. Statistical
learning approach for mining api usage mappings for code migration.
In ASE ’14: 29th International Conference on Automated Software
Engineering, 2014.

[131] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-
Kofahi, and Tien N. Nguyen. Graph-based mining of multiple object
usage patterns. In Proceedings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ESEC/FSE ’09, pages
383–392, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-001-2.
doi: 10.1145/1595696.1595767. URL http://doi.acm.org/10.1145/

1595696.1595767.

[132] NIST. Juliet test suite. https://samate.nist.gov/SRD/testsuite.

php.

[133] Technion Israel Institute of Technology. code2vec. https://github.

com/tech-srl/code2vec.

[134] Hector Olague, Letha Etzkorn, Sherri Messimer, and Harry Delugach.
An empirical validation of object-oriented class complexity metrics and
their ability to predict error-prone classes in highly iterative, or agile,

159

https://arxiv.org/abs/2004.08846
http://doi.acm.org/10.1145/1595696.1595767
http://doi.acm.org/10.1145/1595696.1595767
https://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SRD/testsuite.php
https://github.com/tech-srl/code2vec
https://github.com/tech-srl/code2vec

Bibliography

software: A case study. Journal of Software Maintenance, 20:171–197,
05 2008. doi: 10.1002/smr.366.

[135] Hector M. Olague, Letha H. Etzkorn, Sampson Gholston, and Stephen
Quattlebaum. Empirical validation of three software metrics suites to
predict fault-proneness of object-oriented classes developed using highly
iterative or agile software development processes. IEEE Transactions on
Software Engineering, 33(6):402–419, 2007. doi: 10.1109/TSE.2007.1015.

[136] OpenStack. Openstack. https://www.openstack.org/.

[137] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural
networks. CoRR, abs/1511.08458, 2015. URL http://arxiv.org/abs/

1511.08458.

[138] Jordan Ott, Abigail Atchison, Paul Harnack, Adrienne Bergh, and
Erik Linstead. A deep learning approach to identifying source code
in images and video. In Andy Zaidman, Yasutaka Kamei, and Emily
Hill, editors, Proceedings of the 15th International Conference on Mining
Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29,
2018, pages 376–386. ACM, 2018. doi: 10.1145/3196398.3196402. URL
https://doi.org/10.1145/3196398.3196402.

[139] Jordan Ott, Abigail Atchison, Paul Harnack, Natalie Best, Haley An-
derson, Cristiano Firmani, and Erik Linstead. Learning lexical fea-
tures of programming languages from imagery using convolutional
neural networks. In Foutse Khomh, Chanchal K. Roy, and Janet
Siegmund, editors, Proceedings of the 26th Conference on Program
Comprehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018,
pages 336–339. ACM, 2018. doi: 10.1145/3196321.3196359. URL
https://doi.org/10.1145/3196321.3196359.

[140] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and
Samir Belfkih. Big data technologies: A survey. Journal of King
Saud University - Computer and Information Sciences, 30(4):431–448,
2018. ISSN 1319-1578. doi: https://doi.org/10.1016/j.jksuci.2017.06.
001. URL https://www.sciencedirect.com/science/article/pii/

S1319157817300034.

[141] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

160

https://www.openstack.org/
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
https://doi.org/10.1145/3196398.3196402
https://doi.org/10.1145/3196321.3196359
https://www.sciencedirect.com/science/article/pii/S1319157817300034
https://www.sciencedirect.com/science/article/pii/S1319157817300034

Bibliography

esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[142] Anh Viet Phan and Minh Le Nguyen. Convolutional neural networks on
assembly code for predicting software defects. In 2017 21st Asia Pacific
Symposium on Intelligent and Evolutionary Systems (IES), pages 37–42,
2017. doi: 10.1109/IESYS.2017.8233558.

[143] Ramesh Ponnala and Dr Reddy. Software defect prediction using machine
learning algorithms: Current state of the art. Solid State Technology, 64:
6541–6556, 05 2021.

[144] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta,
Rocco Oliveto, Mir Anamul Hasan, Barbara Russo, Sonia Haiduc, and
Michele Lanza. Too long; didn’t watch!: extracting relevant fragments
from software development video tutorials. In Laura K. Dillon, Willem
Visser, and Laurie A. Williams, editors, Proceedings of the 38th In-
ternational Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016, pages 261–272. ACM, 2016. doi: 10.1145/
2884781.2884824. URL https://doi.org/10.1145/2884781.2884824.

[145] Chanathip Pornprasit and Chakkrit Tantithamthavorn. Jitline: A sim-
pler, better, faster, finer-grained just-in-time defect prediction, 2021.

[146] Latifa Ben Arfa Rabai, Yan Zhi Bai, and Ali Mili. A quantitative model
for software engineering trends. Information Sciences, 181(22):4993–5009,
2011.

[147] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič.
Software fault prediction metrics: A systematic literature review. Infor-
mation and Software Technology, 55(8):1397–1418, 2013. ISSN 0950-5849.
doi: https://doi.org/10.1016/j.infsof.2013.02.009. URL https://www.

sciencedirect.com/science/article/pii/S0950584913000426.

[148] Dilini Rajapaksha, Christoph Bergmeir, and Wray Buntine. Lormika:
Local rule-based model interpretability with k-optimal associations. In-
formation Sciences, 540:221–241, 2020. ISSN 0020-0255. doi: https://
doi.org/10.1016/j.ins.2020.05.126. URL https://www.sciencedirect.

com/science/article/pii/S0020025520305521.

[149] Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, and Vladimir
Filkov. A large-scale study of programming languages and code quality
in github. Communications of the ACM, 60(10):91–100, 2017.

161

https://doi.org/10.1145/2884781.2884824
https://www.sciencedirect.com/science/article/pii/S0950584913000426
https://www.sciencedirect.com/science/article/pii/S0950584913000426
https://www.sciencedirect.com/science/article/pii/S0020025520305521
https://www.sciencedirect.com/science/article/pii/S0020025520305521

Bibliography

[150] Julio Reyes, Diego Ramı̀rez, and Julio Paciello. Automatic classification
of source code archives by programming language: A deep learning
approach. In 2016 International Conference on Computational Science
and Computational Intelligence (CSCI), pages 514–519, 2016. doi: 10.
1109/CSCI.2016.0103.

[151] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-agnostic
interpretability of machine learning, 2016.

[152] Daniel Rodŕıguez, MA Sicilia, E Garćıa, and Rachel Harrison. Empirical
findings on team size and productivity in software development. Journal
of Systems and Software, 85(3):562–570, 2012.

[153] Rebecca L. Russell, Louis Y. Kim, Lei H. Hamilton, Tomo Lazovich,
Jacob A. Harer, Onur Ozdemir, Paul M. Ellingwood, and Marc W.
McConley. Automated vulnerability detection in source code using
deep representation learning. CoRR, abs/1807.04320, 2018. URL http:

//arxiv.org/abs/1807.04320.

[154] Rebecca L. Russell, Louis Y. Kim, Lei H. Hamilton, Tomo Lazovich,
Jacob A. Harer, Onur Ozdemir, Paul M. Ellingwood, and Marc W.
McConley. Automated vulnerability detection in source code using
deep representation learning. CoRR, abs/1807.04320, 2018. URL http:

//arxiv.org/abs/1807.04320.

[155] Rebecca L. Russell, Louis Y. Kim, Lei H. Hamilton, Tomo Lazovich,
Jacob A. Harer, Onur Ozdemir, Paul M. Ellingwood, and Marc W.
McConley. Automated vulnerability detection in source code using
deep representation learning. CoRR, abs/1807.04320, 2018. URL http:

//arxiv.org/abs/1807.04320.

[156] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 3 edition, 2010.

[157] Karaivanov S., Raychev V., and Onward M. Vechev. Phrase-based
statistical translation of programming languages. In Onward! 2014:
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, 2014.

[158] Ripon Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul
Prasad. Bugs.jar: A large-scale, diverse dataset of real-world java bugs.
In 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), pages 10–13, 2018.

162

http://arxiv.org/abs/1807.04320
http://arxiv.org/abs/1807.04320
http://arxiv.org/abs/1807.04320
http://arxiv.org/abs/1807.04320
http://arxiv.org/abs/1807.04320
http://arxiv.org/abs/1807.04320

Bibliography

[159] Jean E Sammet. Programming languages: history and future. Commu-
nications of the ACM, 15(7):601–610, 1972.

[160] Geanderson Santos, Eduardo Figueiredo, Adriano Veloso, Markos Vig-
giato, and Nivio Ziviani. Predicting software defects with explainable
machine learning. In 19th Brazilian Symposium on Software Quality,
SBQS’20, New York, NY, USA, 2020. Association for Computing Ma-
chinery. ISBN 9781450389235. doi: 10.1145/3439961.3439979. URL
https://doi.org/10.1145/3439961.3439979.

[161] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of
Software Engineering Databases. School of Information Technology
and Engineering, University of Ottawa, Canada, 2005. URL http:

//promise.site.uottawa.ca/SERepository.

[162] Ke Shi, Yang Lu, Jingfei Chang, and Zhen Wei. Pathpair2vec: An
ast path pair-based code representation method for defect prediction.
Journal of Computer Languages, 59:100979, 2020. ISSN 2590-1184.
doi: https://doi.org/10.1016/j.cola.2020.100979. URL https://www.

sciencedirect.com/science/article/pii/S2590118420300393.

[163] Ke Shi, Yang Lu, Guangliang Liu, Zhenchun Wei, and Jingfei
Chang. Mpt-embedding: An unsupervised representation learning
of code for software defect prediction. Journal of Software: Evolu-
tion and Process, 33(4):e2330, 2021. doi: https://doi.org/10.1002/smr.
2330. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/

smr.2330. e2330 smr.2330.

[164] Leonard J. Shustek. What should we collect to preserve the history of
software? IEEE Annals of the History of Computing, 28(4):110–112,
2006. doi: 10.1109/MAHC.2006.78. URL https://doi.org/10.1109/

MAHC.2006.78.

[165] Surendra K Singhi and Huan Liu. Feature subset selection bias for
classification learning. In Proceedings of the 23rd international conference
on Machine learning, pages 849–856. ACM, 2006.

[166] Leslie N. Smith. Cyclical learning rates for training neural networks.
2017 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 464–472, 2017.

163

https://doi.org/10.1145/3439961.3439979
http://promise.site.uottawa.ca/SERepository
http://promise.site.uottawa.ca/SERepository
https://www.sciencedirect.com/science/article/pii/S2590118420300393
https://www.sciencedirect.com/science/article/pii/S2590118420300393
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2330
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2330
https://doi.org/10.1109/MAHC.2006.78
https://doi.org/10.1109/MAHC.2006.78

Bibliography

[167] Leslie N. Smith. A disciplined approach to neural network hyper-
parameters: Part 1 – learning rate, batch size, momentum, and weight
decay, 2018.

[168] Y. Somda. GuessLang. https://guesslang.readthedocs.io/, 2017.
Retrieved 2021-01-14.

[169] StackOverflow. StackOverflow. https://stackoverflow.com/.

[170] Mateusz Staniak and Przemys law Biecek. Explanations of model
predictions with live and breakdown packages. The R Journal, 10
(2):395, 2019. ISSN 2073-4859. doi: 10.32614/rj-2018-072. URL
http://dx.doi.org/10.32614/RJ-2018-072.

[171] Alexey Svyatkovskiy, Shengyu Fu, Ying Zhao, and Neel Sundaresan.
Pythia: Ai-assisted code completion system. In KDD ’19: 25th Interna-
tional Conference on Knowledge Discovery & Data Mining, 2019.

[172] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved
semantic representations from tree-structured long short-term memory
networks. CoRR, abs/1503.00075, 2015. URL http://arxiv.org/abs/

1503.00075.

[173] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and
Kenichi Matsumoto. Automated parameter optimization of classification
techniques for defect prediction models. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), pages 321–
332, 2016. doi: 10.1145/2884781.2884857.

[174] Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, and John Grundy. Ex-
plainable ai for software engineering, 2020.

[175] Myo Wai Thant and Nyein Thwet Thwet Aung. Software defect pre-
diction using hybrid approach. In 2019 International Conference on
Advanced Information Technologies (ICAIT), pages 262–267, 2019. doi:
10.1109/AITC.2019.8921374.

[176] Z. Tóth, Péter Gyimesi, and R. Ferenc. A public bug database of github
projects and its application in bug prediction. In ICCSA, 2016.

[177] Grigorios Tsoumakas, Ioannis Katakis, and I. Vlahavas. Mining Multi-
label Data, pages 667–685. Springer, Boston, MA, 07 2010. doi: 10.1007/
978-0-387-09823-4 34.

164

https://guesslang.readthedocs.io/
https://stackoverflow.com/
http://dx.doi.org/10.32614/RJ-2018-072
http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1503.00075

Bibliography

[178] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota,
and Denys Poshyvanyk. On learning meaningful code changes via neural
machine translation. In Proceedings of the 41st International Conference
on Software Engineering, ICSE ’19, pages 25–36, Piscataway, NJ, USA,
2019. IEEE Press. doi: 10.1109/ICSE.2019.00021. URL https://doi.

org/10.1109/ICSE.2019.00021.

[179] Nguyen Tung Thanh, Nguyen Anh Tuan, Nguyen Hoan Anh, and Nguyen
Tien N. A statistical semantic language model for source code. In
ESEC/FSE ’13: 9th Joint Meeting on Foundations of Software Engi-
neering, 2013.

[180] Secil Ugurel, Robert Krovetz, and C Lee Giles. What’s the code?:
automatic classification of source code archives. In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 632–638. ACM, 2002.

[181] Raoul-Gabriel Urma, Dominic A. Orchard, and Alan Mycroft, editors.
Proceedings of the 1st Workshop on Programming Language Evolution,
PLE@ECOOP 2014, Uppsala, Sweden, July 28, 2014, 2014. ACM.

[182] Raychev V., Vechev M., and Yahav E. Code completion with statisti-
cal language models. In PLDI ’14: 35th Conference on Programming
Language Design and Implementation, 2014.

[183] Juriaan Kennedy van Dam and Vadim Zaytsev. Software language
identification with natural language classifiers. In 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering
(SANER), volume 1, pages 624–628. IEEE, 2016.

[184] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks, 2018.

[185] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks.
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages
2692–2700. Curran Associates, Inc., 2015. URL http://papers.nips.

cc/paper/5866-pointer-networks.pdf.

[186] Romi Wahono. A systematic literature review of software defect predic-
tion: Research trends, datasets, methods and frameworks. Journal of
Software Engineering, 1, 05 2015.

165

https://doi.org/10.1109/ICSE.2019.00021
https://doi.org/10.1109/ICSE.2019.00021
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf

Bibliography

[187] Hongyan Wan, Guoqing Wu, Ming Cheng, Qing Huang, Rui Wang, and
Mengting Yuan. Software defect prediction using dictionary learning. In
SEKE, 2017.

[188] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian
Wu, and Philip S. Yu. Improving automatic source code summarization
via deep reinforcement learning. CoRR, abs/1811.07234, 2018. URL
http://arxiv.org/abs/1811.07234.

[189] Song Wang, Taiyue Liu, and Lin Tan. Automatically learning semantic
features for defect prediction. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, page 297–308, New
York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450339001. doi: 10.1145/2884781.2884804. URL https://doi.org/

10.1145/2884781.2884804.

[190] Yu Wang, Fengjuan Gao, Linzhang Wang, and Ke Wang. Learning
a static bug finder from data. CoRR, abs/1907.05579, 2019. URL
http://arxiv.org/abs/1907.05579.

[191] David A. Wheeler. SLOCCount. https://dwheeler.com/sloccount/,
2001. Retrieved 2021-01-13.

[192] Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack
Phan, Qijin Tay, Constance Tan, Fiona Wee, Jodie Ethelda Tan, Yuheng
Yieh, Brian Goh, Ferdian Thung, Hong Jin Kang, Thong Hoang, David
Lo, and Eng Lieh Ouh. Bugsinpy: A database of existing bugs in
python programs to enable controlled testing and debugging studies.
In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, page 1556–1560, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450370431. doi:
10.1145/3368089.3417943. URL https://doi.org/10.1145/3368089.

3417943.

[193] Felix Wu, Tianyi Zhang, Amauri H. Souza Jr., Christopher Fifty, Tao
Yu, and Kilian Q. Weinberger. Simplifying graph convolutional net-
works. CoRR, abs/1902.07153, 2019. URL http://arxiv.org/abs/

1902.07153.

[194] Xin Xia, David Lo, Sinno Jialin Pan, Nachiappan Nagappan, and Xinyu
Wang. Hydra: Massively compositional model for cross-project defect

166

http://arxiv.org/abs/1811.07234
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2884781.2884804
http://arxiv.org/abs/1907.05579
https://dwheeler.com/sloccount/
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
http://arxiv.org/abs/1902.07153
http://arxiv.org/abs/1902.07153

Bibliography

prediction. IEEE Transactions on Software Engineering, 42(10):977–998,
2016. doi: 10.1109/TSE.2016.2543218.

[195] Jiaxi Xu, Fei Wang, and Jun Ai. Defect prediction with semantics and
context features of codes based on graph representation learning. IEEE
Transactions on Reliability, 70(2):613–625, 2021. doi: 10.1109/TR.2020.
3040191.

[196] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? CoRR, abs/1810.00826, 2018. URL
http://arxiv.org/abs/1810.00826.

[197] Sihan Xu, Sen Zhang, Weijing Wang, Xinya Cao, Chenkai Guo, and Jing
Xu. Method name suggestion with hierarchical attention networks. In
Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation, PEPM 2019, pages 10–21, New York, NY,
USA, 2019. ACM. ISBN 978-1-4503-6226-9. doi: 10.1145/3294032.
3294079. URL http://doi.acm.org/10.1145/3294032.3294079.

[198] Shir Yadid and Eran Yahav. Extracting code from programming tu-
torial videos. In Eelco Visser, Emerson R. Murphy-Hill, and Crista
Lopes, editors, 2016 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, On-
ward! 2016, Amsterdam, The Netherlands, November 2-4, 2016, pages
98–111. ACM, 2016. doi: 10.1145/2986012.2986021. URL https:

//doi.org/10.1145/2986012.2986021.

[199] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep
learning for just-in-time defect prediction. In 2015 IEEE International
Conference on Software Quality, Reliability and Security, pages 17–26,
2015. doi: 10.1109/QRS.2015.14.

[200] Xinli Yang, David Lo, Xin Xia, and Jianling Sun. Tlel: A two-layer
ensemble learning approach for just-in-time defect prediction. Infor-
mation and Software Technology, 87:206–220, 2017. ISSN 0950-5849.
doi: https://doi.org/10.1016/j.infsof.2017.03.007. URL https://www.

sciencedirect.com/science/article/pii/S0950584917302501.

[201] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and
Eduard Hovy. Hierarchical attention networks for document classification.
In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2016.

167

http://arxiv.org/abs/1810.00826
http://doi.acm.org/10.1145/3294032.3294079
https://doi.org/10.1145/2986012.2986021
https://doi.org/10.1145/2986012.2986021
https://www.sciencedirect.com/science/article/pii/S0950584917302501
https://www.sciencedirect.com/science/article/pii/S0950584917302501

Bibliography

[202] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and
Eduard Hovy. Hierarchical attention networks for document classifi-
cation. In Proceedings of the 2016 conference of the North American
chapter of the association for computational linguistics: human language
technologies, pages 1480–1489, 2016.

[203] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Com-
parative study of cnn and rnn for natural language processing. ArXiv,
abs/1702.01923, 2017.

[204] Hiroshi Yonai, Yasuhiro Hayase, and Hiroyuki Kitagawa. Mercem:
Method name recommendation based on call graph embedding. CoRR,
abs/1907.05690, 2019. URL http://arxiv.org/abs/1907.05690.

[205] Liguo Yu and Alok Mishra. Experience in predicting fault-prone software
modules using complexity metrics. Quality Technology & Quantitative
Management, 9(4):421–434, 2012. doi: 10.1080/16843703.2012.11673302.
URL https://doi.org/10.1080/16843703.2012.11673302.

[206] Jeffrey O. Zhang, Alexander Sax, Amir Roshan Zamir, Leonidas J.
Guibas, and Jitendra Malik. Side-tuning: A baseline for network adap-
tation via additive side networks. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision -
ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part III, volume 12348 of Lecture Notes in Computer
Science, pages 698–714. Springer, 2020. doi: 10.1007/978-3-030-58580-
8\ 41. URL https://doi.org/10.1007/978-3-030-58580-8_41.

[207] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xin Xia, and Guoqiang Li.
Actionnet: vision-based workflow action recognition from programming
screencasts. In Joanne M. Atlee, Tevfik Bultan, and Jon Whittle, editors,
Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 350–361.
IEEE / ACM, 2019. doi: 10.1109/ICSE.2019.00049. URL https://doi.

org/10.1109/ICSE.2019.00049.

[208] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio
Torralba. Learning deep features for discriminative localization. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2921–2929, 2016.

[209] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu.
Devign: Effective vulnerability identification by learning comprehensive

168

http://arxiv.org/abs/1907.05690
https://doi.org/10.1080/16843703.2012.11673302
https://doi.org/10.1007/978-3-030-58580-8_41
https://doi.org/10.1109/ICSE.2019.00049
https://doi.org/10.1109/ICSE.2019.00049

Bibliography

program semantics via graph neural networks. CoRR, abs/1909.03496,
2019. URL http://arxiv.org/abs/1909.03496.

[210] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu.
Devign: Effective vulnerability identification by learning comprehensive
program semantics via graph neural networks, 2019.

[211] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu,
Hengshu Zhu, Hui Xiong, and Qing He. A comprehensive survey on
transfer learning. Proc. IEEE, 109(1):43–76, 2021. doi: 10.1109/JPROC.
2020.3004555. URL https://doi.org/10.1109/JPROC.2020.3004555.

[212] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting
defects for eclipse. In Third International Workshop on Predictor Models
in Software Engineering (PROMISE’07: ICSE Workshops 2007), pages
9–9, 2007. doi: 10.1109/PROMISE.2007.10.

[213] S.P Zingaro, G. Lisanti, and M. Gabbrielli. Multimodal side-tuning
for document classification. In Proceedings of the 25th International
Conference on Pattern Recognition (ICPR), pages 5206–5213. IEEE,
2021.

169

http://arxiv.org/abs/1909.03496
https://doi.org/10.1109/JPROC.2020.3004555

	Introduction
	Related Works
	Big Code applications
	Models evaluation

	Programming Language Identification
	File-type Identification
	Image-based Programming Language Identification

	Software Defect Prediction
	Learning Approaches
	Defect Prediction aspects

	Programming Language Identification
	File Extension Identification
	Preprocessing
	The model
	Results
	Threats to Validity
	Discussion and future work

	Image-based Programming Language Identification
	Data preparation
	The model
	Scrambling
	Results
	Classification Results
	Threats to Validity
	Discussion and future works

	Conclusions about the Programming Language Identification task

	Software Defect Prediction
	Dataset
	Representations and Models
	Code2Vec
	Infercode

	Conclusions about the Software Defect Prediction task

	Conclusions
	Results for File Extension Identification
	Results for Image-based Programming Language Identification
	Issues managed by Infer

