
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

INGEGNERIA ELETTRONICA, DELLE TELECOMUNICAZIONI

E TECNOLOGIE DELL’INFORMAZIONE

Ciclo XXXIV

Settore Concorsuale di afferenza: 09/E3 Elettronica

Settore Scientifico disciplinare: ING-INF/01

HIGH PERFORMANCE AND

ENERGY-EFFICIENT INSTRUCTION

CACHE DESIGN AND OPTIMISATION

FOR ULTRA-LOW-POWER MULTI-CORE

CLUSTERS

Presentata da:

Jie Chen

Relatore:

Chiar.mo Prof.

Davide Rossi

Esame finale anno 2021

Thanks to the sup-

port of my company

GreenWaves Technolo-

gies and the help of my

professors and my wife.

High performance and Energy-efficient
Instruction Cache Design and

Optimization for Ultra-low-power
Multi-core clusters

Jie Chen

Department of Electrical, Electronic and Information Engineering

University of Bologna

A thesis submitted for the degree of

Doctor of Philosophy in

Electronics, Telecommunications and Information Technologies Engineering

2021

Abstract

High Energy efficiency and high performance are the key regiments for Internet of

Things (IoT) end-nodes. Exploiting cluster of multiple programmable processors

has recently emerged as a suitable solution to address this challenge. However, one

of the main bottlenecks for multi-core architectures is the instruction cache. While

private caches fall into data replication and wasting area, fully shared caches lack

scalability and form a bottleneck for the operating frequency. Hence we propose a

hybrid solution where a larger shared cache (L1.5) is shared by multiple cores con-

nected through a low-latency interconnect to small private caches (L1). However, it

is still limited by large capacity miss with a small L1. Thus, we propose a sequen-

tial prefetch from L1 to L1.5 to improve the performance with little area overhead.

Moreover, we optimized the core instruction fetch stage with non-blocking transfer

by adopting a 4 × 32-bit ring buffer FIFO and adding a pipeline for the conditional

branch to cut the critical path for better timing. We present a detailed comparison of

different instruction cache architectures’ performance and energy efficiency recently

proposed for Parallel Ultra-Low-Power clusters. On average, when executing a set

of real-life IoT applications, our two-level cache improves the performance by up to

20% and loses 7% energy efficiency with respect to the private cache. Compared to

a shared cache system, it improves performance by up to 17% and keeps the same

energy efficiency. In the end, up to 20% timing (maximum frequency) improvement

and software control enable the two-level instruction cache with prefetch adapt to

various battery-powered usage cases to balance high performance and energy effi-

ciency.

Contents

1 Introduction 1

1.1 Background . 4

1.1.1 Multi-core architectures . 4

1.1.2 Low-power multi-core architecture 6

1.1.3 Instruction fetch subsystem 11

2 Related work 16

2.1 Ultra-low-power instruction memory 16

2.2 Improving Instruction Fetch Efficiency 23

2.3 Instruction Cache Prefetching . 24

2.4 State-of-the-arts ICache in ULP cluster 31

2.4.1 Private Instruction Cache . 31

2.4.2 Shared Instruction Cache . 33

2.4.3 Multi-ported Instruction Cache 35

2.5 Thesis Outline . 37

3 Evaluation of state-of-the-art Instruction Caches in PULP 39

3.1 Software and Program paradigm . 39

3.1.1 Program methodology . 40

3.1.2 Synthetic tests . 42

3.1.3 Benchmarks . 42

3.2 Performance Results . 44

3.2.1 The performance of synthetic tests 44

3.2.2 The performance for real-life applications 47

3.3 Results of physical implementation 49

i

3.3.1 Area and Timing results . 49

3.3.2 Power results . 50

3.4 Conclusion . 55

4 Two-level instruction cache 56

4.1 Overview . 56

4.2 Architecture . 57

4.3 Evaluation . 59

4.3.1 Performance Results . 60

4.3.2 Physical Implementation Results 61

4.4 Conclusion . 65

5 Prefething in L1 iCache 67

5.1 Overview . 67

5.2 Architecture . 68

5.2.1 Out-of-order interconnect . 71

5.3 Evaluation . 72

5.3.1 Performance Results . 72

5.3.2 Physical Implementation Results 73

5.4 Conclusion . 77

6 Core instruction fetch timing optimization 79

6.1 Overview . 79

6.2 Architecture . 81

6.3 Evaluation . 84

6.3.1 Performance Results . 84

6.3.2 Physical Implementation Results 86

6.3.3 Discussion . 91

6.4 Conclusion . 92

7 Conclusions 93

Publications 95

ii

Bibliography 96

iii

Chapter 1

Introduction

In recent years, with the growing Internet of Things (IoT) markets for smart homes,

smart cities remote control and monitoring nodes raising rapidly, the requirement

for near-sensor processing devices with high performance and low power is more

vigorous, especially when powerful embedded systems and machine learning are

involved in this field. The traditional applications, such as thermostats, water meter

monitoring, have less necessity for high performance and are often based on the ultra-

low-power Micro Controller Unit (MCU) powered by the battery. While for other

camera or audio based applications, such as home security, office people counting,

voice control, etc, the complex signal processing algorithms require high performance

and much larger power. As a result, these devices are always connected to the source,

bringing more expense for installation and implementation from the commercial

point of view. Thus, to save the power and the implementation fee in commercial

practice, designing the high-performance and ultra-low-power IoT signal processing

devices with a long battery lifetime becomes our goal.

In general, most of the IoT devices could be divided into three categories, i) the

ultra-low-power MCU, receiving and transmitting the data from sensors to the sever

with little computing capacity, mainly for controlling and monitoring some specific

environments, running with Real-Time Operating System (RTOS); ii) the powerful

general embedded multi-core SoC used in real-time camera surveillance powered by

the source; iii) Digital Signal Processing (DSP) devices with accelerators, aiming at

specific usage cases to save power, such as headphones and earbuds with Audio Noise

1

Control (ANC). Between the two latter categories, we consider that there could be

a usage case that needs high performance and could be powered by the battery.

That is a non-real-time usage case with fast response, for example, a smart locker

with face recognition powered by the battery. Since the face image detection occurs

several times a day, the devices are in sleep most of the time. Thus we concentrate

our design on these low-frequency, high-performance usage cases.

To chase this market, the MCUs are apparently not suitable with poor perfor-

mance. The powerful Linux based embedded multi-core SoCs with various acceler-

ators are capable of fast computation. However, it is difficult for them to control

the working power envelope below 10mW and the price including implementation

fee. Besides, the specific usage cases limit DSPs’ markets. One possible solution to

extend the battery lifetime with relatively high performance is using an optimized

(simplified) general multi-core platform with specified accelerators to maximize the

performance both from instruction-level and thread-level parallelism. Thus, the

first version of Parallel Ultra Low Power platform (PULP) is proposed based on

Near-Threshold Computing (NTC) [46], which means that it is better to have N ×

simple cores running at a lower voltage than one core running at nominal voltage.

The PULPv1 achieves 60 GOPS/W at 0.5 V in ST Microelectronics UTBB FDSOI

28nm technologies [92].

During the continued optimization of PULPv1, there is one power issue of the

instruction Cache (iCache) in multi-core cluster when running OpenMP [78] based

applications. The iCache is based on Static Random-Access Memory (SRAM) and

consumes more than 50% of the cluster’s power. Thus, it is necessary to reduce

the iCache’s power. Since the cache memory is only a few KB (4KB), in PULPv2,

we propose to replace the SRAM with latched-based Standard Cell Memory (SCM)

with controlled Placement and Route (P & R) [107]. Thanks to the 2 - 4× less

read and write energy compared to the SRAM, the iCache’s power occupation in

cluster reduces to about 25% and the energy efficiency reaches to 135 GOPS/W

[95]. However, even though the private iCache is simple and fast with only one cycle

access latency, its relatively small cache capacity and the data duplication degrades

the performance and energy efficiency. To increase the cache capacity seen by each

core, shared iCaches are proposed to decrease the miss rate [67], the single-port

2

(SP) iCahce and multi-port (MP) iCache. The former uses low latency (one cycle)

interconnect to ensure each core can access all the memory banks. Nevertheless,

congestion exists when several cores access the same cache bank, leading to extra

power consumption. Besides, the logarithmic interconnect increases the critical path

and limits the operating frequency. The latter iCache based on multi-port memories

is proposed to tackle the congestion issue. However, the multi-port memories gen-

erate large extra area and power. Moreover, it still has limited operating frequency

because of large ports congestion in P & R. As a result, the MP iCache is only

suitable for small cache capacity with a few KB. In the end, the shared iCaches

have worse scalability than the private cache when the number of cores increases.

As mentioned above, continuous performance and power optimization are the

key factors in the multi-core PULP cluster to adapt to the battery-powered, low-

frequency, high-performance IoT market. The approach proposed in this thesis

to match all these requirements is to leverage hierarchy iCache design. Hierarchy

iCache uses different levels to solve different above issues. In practice, the upper-

level cache L1 is implemented as private, and the lower-level caches are implemented

as shared [56]. This design provides high access rates for the high-level caches and

low miss rate for the lower-level caches. This ideal was proposed to reduce the speed

mismatch between the core and the main memory. In this research, we try to follow

this typical design method and adapt it to our ultra-low-power, high-performance

design requirement. Besides, hardware prefetching in the L1 cache is explored to

improve the performance continuously. Finally, a practical Static Timing Analysis

(STA) is performed to help improve the timing in iCache by removing the critical

path to balance the high performance and low power in multi-core PULP clusters

with good scalability.

In this scenario, it is necessary to launch a detailed comparison for each iCache

design in terms of area, performance, power to address the work in this thesis. In

order to analyze these characteristics, a based-line Register-Transfer Level (RTL) of

PULP cluster with private cache is required to enable the exploration over various

real-life IoT applications. Besides, the physical implementation is done for each

cluster featuring different iCaches. A specific target of this thesis is to evaluate the

iCache architecture’s overall influence on the performance and energy for the multi-

3

core cluster, analyzing the trade-offs between performance, energy and increasing

the scalability in the multi-core ultra-low-power platform.

1.1 Background

1.1.1 Multi-core architectures

Scaling performance by increasing clock frequency and instruction throughput of

single-core have been proven to be not viable anymore due to the power wall and

instruction-level parallelism (ILP) wall [40]. Besides, many applications are better

suited to thread-level parallelism (TLP) methods, and multiple independent cores

are commonly employed to increase a system’s overall TLP. A combination of in-

creased available space (due to refined manufacturing processes) and the demand

for increased TLP led to the development of multi-core architectures. As a result,

the trend changes from pushing a single complex processor to integrating several

computing elements into a single integrated circuit die happened decades ago for

general-purpose computing, high-performance and also the embedded world (Fig.

1.1).

Figure 1.1: Performance comparison between a single core and multi-core processor [36].

Thanks to the Moore’s Law, with a hundred billion transistors now available,

even multi-core features with complex cores arise. Intel’s Xeon Broadwell, consist-

ing of 3.2 - 7.2 billion transistors, provides up to 22 cores (up from 8 in Xeon Sandy

Bridge). Each core has a very aggressively complex 8-issue design (up from 6-issue

in Sandy Bridge). AMD EPYC server solution employs a CPU with 4.8 billion

4

transistors to provide 24 cores with two-way SMP support. Given the multi-core

performance-per-area efficiency of small cores and the maximum outright single-

threaded performance of large cores, ARM combines the two different cores to cre-

ate asymmetric architecture. A strategy called ”big.LITTLE”, using several large

cores paired with a few smaller simpler low-power cores, aims to decrease power

consumption and prolong battery life instead of maximum multi-core performance

for the phone or tablet.

Figure 1.2: Top1 vs. operations, and size parameters. Top-1 one-crop accuracy versus

the number of operations required for a single forward pass. The size of the blobs is

proportional to the number of network parameters; a legend is reported in the bottom

right corner, spanning from 5× 106 to 155× 106 parameters. Both these figures share the

same y-axis, and the grey dots highlight the center of the blobs [14].

With the exploration of high-level (coarse-grained) parallelism, multi-core archi-

tecture can bring outstanding performance with the same power or get the same

performance with less power, or a combination of both. Furthermore, by extend-

ing accelerator for specific applications, such as encryption and decryption engine,

Graphic Processing Unit (GPU), and video coding engine, a heterogeneous platform

can be designed to help unlock the energy efficiency potential, which is kept inacces-

sible by the burden of the Von Neumann fetch-decode-execute loop. However, the

exploration of standard homogeneous multi-core baseline architecture to improve

5

the performance and energy efficiency never stops. With the trends of exploiting

machine learning algorithms for dedicated applications, more and more optimized

efficient models are proposed. Some of the top-rated optimized models are shown

in Fig. 1.2, from the result of the accuracy versus the number of operations, the

most exciting part resides in top-left, which requires less performance (≤ 10 G-Ops)

while keeping the high accuracy (≥ 75%). Besides, (Deep Neural Network) DNN

relies on massive parallel multiply-and-accumulate (MAC) operations. It is suit-

able for multi-core low-end inference platforms both from performance and power

consumption.

1.1.2 Low-power multi-core architecture

Multi-core with a simple core seems to be the best choice for low-power embedded

end-nodes devices with relatively high performance, and for the parallelism maxi-

mization for intensive data analysis and for neural network inference applications.

In the following subsections, two notable related works are described to highlight

the low-power and high-performance characteristics of such architecture.

1.1.2.1 STMicroelectronics Platform 2012

Figure 1.3: A simpified overview of P2012/STHORM cluster architecture.

6

Platform 2012 (P2012) is a general-purpose many-core accelerator for embedded

design by STMicroelectronics composed of tightly-coupled homogeneous clusters

[9]. With the design position of easy scalability, friendly implementation in a deep

sub-micron process, it is easily programmable and is the basic platform for hetero-

geneous implementation. Each cluster features up to 16 processors and one control

processor with independent instruction streams sharing a multi-banked Level one

(L1) data memory, a multi-channel Direct Memory Access (DMA) engine, and spe-

cialized hardware for synchronization and scheduling. With the help of standard

OpenCL and OpenMP parallel programming to provide the highest level of control

on application-to-resource mapping and the addition of dedicated hardware (Intel-

lectual Property) IPs, P2012 achieves extreme small area and energy efficiency by

supporting domain-specific acceleration in the cluster level.

In P2012, each cluster, named ENCore, contains up to 16 STxP70-v4 cores shar-

ing an L1 Tightly-Coupled Data Memory (TCDM) of 256 KB, 32 banks. Each core

owns a 16 KB instruction cache, and there is no data cache. The asynchronous

logarithmic interconnection (LIC) between the cores and the TCDM was designed

to allow single-cycle access to the memory banks in case there is no contention [87].

Each cluster is equipped with a Hardware Synchronizer (HWS), which provides

low-level services such as semaphores, barriers, as well as event propagation support

with internal peripherals, such as Timer. The cluster also has a similarly designed

peripheral interconnection used for communication between cores and peripherals

(e.g., DMAs), memory outside of the cluster, and a Cluster Controller (CC) con-

taining STxP70 core. As shown at the top, the cluster template can be enhanced

with application-specific HardWare Processing Elements (HWPEs) interconnected

to the ENCore with LIC to accelerate key functionalities in hardware to form a

heterogeneous platform [20]. Compared with the original homogeneous P2012, it

achieves up to 123 times speedup on the accelerated code region and saves 2/3 of

the energy.

7

1.1.2.2 Parallel Ultra-Low-Power platform

1.1.2.2.1 Near-threshold Computing To explore the high energy-efficient

computing platform, Near-threshold Computing (NTC) is proposed. Power con-

sumption is a quadratic function of voltage and is proportional to CV 2f . As the

voltage drops, we get significant power savings at the expense of performance. How-

ever, total power is a combination of static or leakage power and dynamic power.

NTC’s idea is that we need to find the minimum energy point while scaling down

system voltage.

Figure 1.4: Measured power, performance and energy characteristics across wide voltage

range for an IA-32 processor fabricated in 32nm [46]

In Fig. 1.4, as the voltage is dropped towards the transistor threshold voltage

(Vt), the switching power decreases, but at the same time, the leakage current

increases. This means that the optimal combination of leakage and switching power

has to be found. Reducing the voltage below a certain power threshold increases

the leakage faster than switching power decreases, and the performance will also

be degraded. The optimum operating point is usually slightly above Vt and is

called the near-threshold operating point or minimum energy point. However, NTC

brings the promise of an order of magnitude improvement in energy efficiency. The

frequency degradation due to aggressive voltage scaling may not be acceptable for

high-performance applications for single-core [46]. Thus, to recover the performance

degradation, parallel multi-core execution is proposed. Based on NTC, a multi-core

platform combines extreme energy efficiency and high performance with parallel

computing.

8

1.1.2.2.2 PULP architecture The Parallel Ultra-Low-Power Processing (PULP)

platform is a general-purpose multi-core platform that achieves leading-edge energy

efficiency and features widely tunable performance. PULP aims to satisfy the com-

putational demands of IoT applications requiring flexible processing of data streams

generated by multiple sensors, such as accelerators, low-resolution cameras, micro-

phone arrays, vital signs monitors and so on. As opposed to single-core MCUs,

a parallel ultra-low-power programmable architecture allows meeting the computa-

tional requirements of these applications without exceeding the power envelope of

a few mW typical of miniaturized, battery-powered systems. Moreover, OpenMP,

OpenCL, and OpenVX are supported on PULP, enabling agile application porting,

development, performance tuning, and debugging (Fig. 1.5).

Figure 1.5: PULP block diagram [95]

Both the SoC and cluster domain feature with salable voltage and frequency. In

the ultra-low-power parallel cluster, a tightly-coupled 1 cycle shared multi-bank L1

data memory is connected with each core through a low latency interconnect. The L1

data memory can be sized from 16KB SRAM to 32KB SRAM + 16KB latch-based

Standard Cell Memories (SCM) heterogeneous memory architecture. Concerning

SRAM memories, SCMs can achieve a lower density (by a factor of ∼3x), with the

9

key benefit of providing much smaller energy per access (∼4x) [107]. There are

N (2 - 16) configurable, simple one-issue cores in the cluster. The cores have a

private instruction cache in PULPv1 and PULPv2 or shared instruction cache in

PULPv3 connected to the cluster’s Advanced eXtensible Interface (AXI) to access

Level two (L2) memory in the SoC domain. One cycle hardware synchronization

among all the cores to automatically manage idle cores’ shutdown and support

OpenMP and OpenCL pattern is implemented. Besides, an event unit to trigger idle

cores is also employed to help power management. To exchange TCDM data with

external L2 memory and peripherals, a lightweight, ultra-low-latency, multi-channel

DMA is responsible for providing fast and flexible communication [91]. The DMA

uses minimal request buffering and features a direct connection to the TCDM to

eliminate the need for internal buffering, which is very expensive in terms of power.

Finally, the RISC ISA-based (Reduced Instruction Set Computer - Instruction Set

Architecture) core varies from OpenRISC (OR10N) to RISC-V (RI5CY) because of

RISC-V compress instruction and easily extendable features (Fig. 1.6).

Figure 1.6: RISC-V Offers Simple, Modular ISA [55]

The cluster domain is responsible for parallel acceleration to improve perfor-

mance, while the SoC domain is responsible for I/O and system control. A fabric

controller (FC) takes control of all SoC by adjusting the (Power Management Unit)

PMU and (Frequency Lock Loop) FLL, configuring the peripheral IPs, and coop-

erating with cluster to be responsible for data movement from peripheral to L2

memory with the help of micro DMA (uDMA). The always-on safe domain helps

10

aggressively manage idle power with different power modes (deep sleep, sleep, idle

and full active mode etc.). In the end, with the help of body-biasing to reduce

leakage power, PULPv3 achieves 385 G-Ops/W [94].

1.1.3 Instruction fetch subsystem

1.1.3.1 Instruction fetch stage in RI5CY

The processing elements in the cluster are based on RI5CY, a small and efficient 32-

bit, in-order RISC-V core with a 4-stage pipeline that implements the RV32IM[F]C

instruction set architecture (Fig. 1.7). The core supports a custom extension to

achieve higher code density, performance, and energy efficiency [33] [24]. It started

its life as a fork of the OR10N CPU core based on the OpenRISC ISA. By inheriting

custom ISA extensions including Hardware Loop (HWLP), bit manipulation, Single

Instruction, Multiple Data (SIMD)-like instructions of vector operations, dot pro-

duction for DSP, its performance speeds up to 9.5 times compared to the standard

RV32IMC to 3.19 Coremark/MHz. Compared with OpenRISC ISA, RISC-V’s fetch

instruction implementation is more complicated. Firstly, since there is no delay slot

in RISC-V ISA, the jump loses one cycle, and the next instruction is already being

fetched and probably ready in the Instruction Fetch stage (IF). Secondly, there is

no set-flag instruction and no branch prediction. As a result, the branch can only

be taken after the execution stage (as shown in the red line) to re-target the Pro-

gram Counter (PC). This combination path from the Execution stage (EX) to the

instruction fetch interface outside the core will be on a critical path.

Thirdly, the instruction memory is word-aligned and does not accept misaligned

accesses. With the combination of compressed instructions and normal instructions,

the cross-word normal instruction needs to be assembled from two words (such as

instr.2 and instr.3 in Fig. 1.8), except that if the lower half word is compressed such

that there is no need to fetch next ready word. In this way, the core prefetcher needs

to buffer at least two words. Therefore with the 32-bit fetch interface, four words

are buffered in First In, First Out (FIFO) buffer to meet the consecutive pipeline

requirement or four words (one cache line) for optimal performance and deal with

11

Figure 1.7: RI5CY block diagram

cache misses.

Figure 1.8: Misalignment of compressed instructions

1.1.3.2 Instruction fetch interface to iCache

As shown in Fig. 1.9, there are two channels between the IF and iCache - request

and response channel. The core sends the fetch request with a target address. If the

cache’s TAG hits, it responds to the core with valid data in one cycle; if the iCache

has a TAG miss, it waits AXI refill for at least 15 cycles before responding to the

core.

Since the fetch request depends on the inner combination circuit generated by

fetching valid and fetch data to issue the request as soon as possible. As a result,

there are two types of long delay paths. One is from the fetch request (fetch req)

to cache TAG lookup and the fetch gnt generated by hardware loopback using

handshaking protocol. The other is from fetch valid or fetch data to fetch req. As

a result, the critical path degrades the systems maximum frequency and scalability.

12

Figure 1.9: Instruction fetch interface. I$ stands for iCache.

1.1.3.3 Instruction cache structure

The L1 iCache connected to the core is used for instruction refill to hide the memory

access latency. Its inner structure consists of the memories for instruction’s TAG

and DATA storage and the cache controller logic to manage the requests and the

refills. It can be configurable in its total size, associativity, line size and replacement

policy (including FIFO, Least recently used (LRU) or Random). The iCache has

two main architectures:

• Private iCache: each core has its private iCache and a separate cache line refill

path connected with AXI to the main memory, leading to high contention on

external L2 memory. It is used in PULPv1 and PULPv2.

• Shared iCache: there is no difference between the private architecture in the

data side except for the reduced contention L2 memory (only one line refill path

exists). The shared iCache inner structure compromises a configurable number

of banks, a centralized logic to manage requests and fairness mechanism to

ensure the cores access to all cache banks. Thus, there are two ways: one is to

use crossbar with round-robin scheduling that guarantees fair access to each

banks with single port. The other is to use multiple port memories to eliminate

the access congestion. Finally, in case of concurrent instruction missed from

two or more banks, a simple bus handles line refills in round-robin towards the

L2 bus. This structure is used in PULPv3 and Mr Wolf [85].

13

Figure 1.10: PULPv1 cluster power breakdown [92]

1.1.3.4 Instruction cache issue

In the PULPv1 with a private iCache based on SRAM, the iCache takes about

52% of the total cluster power shown in Fig. 1.10. Then, with the limitation of

small cache capacity below 8KB, PULPv2 replaces the iCache’s SRAM with SCM,

reducing the power occupation of iCache to 25% [95]. Even though private cache is

small and fast with only one cycle access latency, its relatively small cache capacity

degrades the performance in terms of high capacity miss compared with the shared

cache. However, the single-port shared cache (SP) suffers from high congestion when

accessing the shared banks, especially with parallel programming such as OpenMP.

Furthermore, the most critical issue is the scalability of the shared banks. When

the core number increases to 8 or 16, the logarithmic interconnect leads to heavy

congestion and timing issues. Moreover, due to the four pipelines RI5CY core’s

unconditional branch, the critical path from the core’s EX to iCache worsens the

situation.

To solve the single-port shared cache contention issue, on the one hand, we can

increase the cache line size to reduce the core fetch frequency. The proposed cache

line size can vary from 8 bytes to 32 bytes. On the other hand, a multi-port shared

cache (MP) can be used, which keeps each core’s read control logic private with

n-port shared memory banks. Each private cache controller can access the memory

banks simultaneously without contention, and a master controller is responsible for

refilling from L2 memory and writing to the shared memory banks. The MP ensures

14

Cache type Private Shared Shared Target

Single-Port Multi-port

Cache capacity Small Large Large Large

Performance Low High High High

Congestion No Yes No No

Area Small Small Large Small

Timing Good Bad Bad Good

Table 1.1: The pros and cons of different instruction cache architectures

one cycle hit access latency and shows the best performance while being suitable

only for small cache sizes. However, the multi-port memories generate significant

area overhead and lead to timing and power issues in P & R. Finally, how to solve

this one cycle access from core fetch interface to instruction cache with large cache

capacity, high performance, less congestion, small area, and good timing to meet the

high-performance and low-power design requirement is the goal in our work (Table

1.1).

15

Chapter 2

Related work

Since the instruction access pattern has strong spatial and temporal locality, the

instruction cache is very sensitive to increased access latency. Besides, the iCache’s

structure is more simple than the data cache with its read-only nature. However,

iCache can still consume up to 50% of the overall system energy with the high-

performance requirement. Thus, their optimization is a strict requirement for pro-

grammable ULP architectures [92]. Nevertheless, high performance means high

power and energy, and various hardware architectural techniques for balancing the

two factors are proposed [74] [73].

2.1 Ultra-low-power instruction memory

A standard methodology to reduce the energy consumption of the instruction mem-

ory in ULP systems is to adopt advanced memory technologies. Powell et al. [81]

propose a circuit design named ’gated Vdd’, which adds an extra transistor in the

supply voltage path or ground path of the SRAM cell to form a 7T SRAM. It

can reduce leakage power by gating the unused sections of a dynamically resizable

iCache. In a Dynamically ResIzable instruction-cache (DRI iCache) [113], the key

point is to turn off or to gate unused sections in iCache to estimate and adapt to

the required iCache size dynamically (Fig. 2.1. The DRI iCache monitors itself

in fixed-length sense interval with adaptive parameters, measured in a number of

dynamic instructions (e.g., one million instructions). A miss counter counts the

number of cache misses in each sense interval. At the end of each sense interval,

16

the cache upsizes/downsizes, depending on whether the miss counter is lower/higher

than a preset miss-bound value. A preset size-bound value is set to avoid thrashing.

Thus, the 7T SRAM is shown in Fig. 2.2 by adding an extra transistor in the supply

voltage path or ground path of the conventional SRAM cell to gate the power sup-

ply when the SRAM is unused. The results indicated that a wide NMOS dual-Vt

gated-Vdd with a charge pump reduces leakage most with minimal impact on cell

speed and area.

Figure 2.1: A direct-mapped DRI iCache’s anatomy (same for set-associative caches)

[92]

Figure 2.2: SRAM with an NMOS gated-Vdd [92]

Furthermore, the ultra-low-voltage operation of memory cells has become a topic

of much interest due to its applications in very low energy computing and commu-

nications. As conventional 6T SRAM failed to archive subthreshold operation due

17

to the effects of Vt variation [13], researchers have considered different configura-

tion SRAMs for subthreshold operations having single-ended 8T [16] [110] or 10T

bit-cells to improve stability. Ickes and al. [44] present a 10 pJ/cycle 32-bit micro-

processor SoC with two 4KB custom 8T SRAMs (Fig. 2.3) and a small 1 KB (8 x

128B) instruction cache based on standard cell latches.

Figure 2.3: Zoom of 8T SRAM Architecture [44].

Chang et al. [17] propose a differential 10T bit-cell that effectively separates

read and write operations to achieve high cell stability (Fig. 2.4a). In read mode,

WL is enabled, and VGND is forced to 0V while remaining disabled. The disabled

make data nodes (’Q’ and ’QB’) decoupled from bitline during the read access. Due

to this isolation, the read Static Noise Margin (SNM) of the 10T cell is almost the

same as the hold SNM of a conventional 6T cell, the read stability is remarkably

improved in this 10T cell (Fig. 2.4b). During write mode, both WL and are enabled

to transfer the write data to cell node from bitlines.

By boosting VWL and VWWL by 100 mV (at 300 mV) and sharing a common

VGND node with several SRAM cells, the 10T SRAM has good write ability and

small area overhead. Besides, the leakage power of the proposed 10T bit-cell is close

to that of the 6T. Based on the 10T SRAM optimized for sub-threshold operation,

Myers et al. [75] introduce a Cortex M0+ based system with two 4KB 10T SRAM

to achieve ultra-low power.

Moreover, Magnetic Random Access Memory (MRAM) is a promising emerging

memory technology because of its advantages, such as non-volatility, high density,

and scalability. In particular, Spin Orbit Torque (SOT) MRAM is gaining interest

as it comes along with all the benefits of its predecessor Spin Transfer Torque (STT)

18

(a) 10T SRAM cell). (b) Static Noise Margin (SNM) comparison

of conventional 6T and our 10T cells.

Figure 2.4: Notion of 10T SRAM [17].

MRAM. Especially the split of read and write paths in SOT-MRAM promises faster

access times and lower energy consumption than STT-MRAM. Oboril et al. [77]

show that a hybrid combination of SRAM for the L1-data cache, SOT-MRAM for

the L1 instruction cache and L2 cache can reduce the energy consumption by 60%

while the performance increases by 1% compared to an SRAM-only configuration,

targeting a 65 nm technology node.

In Spin Orbit Torque memories, the Magnetic Tunnel Junction (MTJ) cell stores

the data as a resistance state value. An MTJ device consists of two independent

ferromagnetic layers separated by a very thin (a few nm) barrier oxide layer such

as magnesium oxide (MgO) (Fig. 2.5). One of the two ferromagnetic layers has a

fixed magnetization with a fixed magnetic field. Hence, this layer is known as the

fixed or reference layer. In contrast, in the second magnetic layer, called the free

layer, the magnetization can be freely rotated based on the current direction flowing

through the MTJ device. When the direction of the magnetic field of the free layer

is parallel (P) to the fixed layer, the MTJ cell has a low resistance value. Instead,

when the magnetization of the free layer is opposite or anti-parallel (AP) to the

fixed layer, the MTJ cell has a high resistance value. These high and low resistance

values represent logic’ 1’ and’ 0’ values.

19

Figure 2.5: MTJ resistance according to the magnetization of the free layer [77].

This MTJ cell is the core part of a bit-cell in SOT-based memories as well as

in STT-MRAM, as shown in Fig. 2.6. However, to eliminate the shortcomings of

STT-MRAM, the SOT-MRAM bit-cell has an additional terminal to separate the

(unidirectional) read and the (bidirectional) write paths which are perpendicular

to each other. The terminals comprise a read line, a write line, a source line and

a word line. The word line is used to access the required bit-cell during memory

access via the NMOS-based access transistor. The comparison of the features among

SRAM, STT-MRAM and SOT-MRAM are shown in Table 2.1. We can see that

SOT-MRAM is suitable for cache memory with a smaller area, read latency and

energy, especially for read-only instruction cache.

Figure 2.6: Bit-cell for STT-MRAM and SOT-MRAM [77].

20

6T-SRAM In plane STT-SRAM SOT-MRAM

Data storage Latch Magnetization Magnetization

Non-Volatility no yes yes

Area [mm2] 2.78 1.63 1.80

Read Latency [ns] 2.17 1.2 1.13

Write Latency [ns] 2.07 11.22 1.36

Read access Energy [pJ] 587 260 247

Write access Energy [pJ] 355 2337 334

Leakage power [mW] 932 387 354

Process CMOS CMOS + STT-MJT COMS + SOT-MJT

Scalability - + +

Endurance ++ + +

Radiation immune - + +

Bit failure Rate - ?

Table 2.1: Comparison of various memory technologies for a 512 KB memory [77].

Then, Garello et al. [32] demonstrate for the first time full-scale integration of

top-pinned perpendicular MTJ on 300 mm wafer using CMOS-compatible processes

for spin-orbit torque (SOT)-MRAM architectures with 62 nm devices. Kuan and

Adegbija [61] show that an energy-efficient, highly adaptable last-level STT-RAM

cache (HALLS) can reduce the average energy consumption by 60% in a quad-core

system while introducing marginal latency overhead. In order to solve the backward

of long write latency and high write energy of STT-MRAM to fit Last-Level Cache

(LLC), HALLS allows the LLC’s configurations to be dynamically adapted to exe-

cuting applications cache configuration and retention time requirements. Thus, the

STT-MRAM can be a viable option for mitigating the overheads of implementing

the STT-RAM in LLC.

However, the subthreshold SRAM has a limited voltage range and large read en-

ergy, STT-MRAM has a slow write speed and high write power, and SOT-MRAM

has a large area for high-density memory. Another solution for the small low-level

cache is to use latch-based Standard Memory Cells (SCM) because of their design

flexibility, ease of implementation, and robust operation at low supply voltages. Te-

21

(a) 10T SRAM cell). (b) Static Noise Margin (SNM) comparison

of conventional 6T and our 10T cells.

Figure 2.7: Notion of SCM [106].

man et al. [106] present a controlled Placement for the synthesis and place and

route (P & R) to optimize the distinct and regular structure of an SCM array.

Through careful floor planning, the specific structure of these entirely digital blocks

can be manipulated in order to optimize their placement and minimize routing con-

gestion and wire length. The proposed architecture for controlled SCMs includes

dual-level write clock-gating, latch-based storage, and a NAND/NOR tree for read

mux realization. These components are instantiated in RTL and placed during the

floorplanning stage of the P & R flow. High-optimized SCM Macro are inserted,

leading to a structured, non-congested layout with close to 100% placement uti-

lization and reduced wire length. Based on that, PULPv2 [95] replaces SRAMs

with SCMs in the instruction cache and increases the SoC energy efficiency by 38%.

SCMs present extremely interesting features for small memory size, low-voltage, and

energy-efficient designs, since (i) they can operate with very low voltage, even lower

than 10T SRAMs optimized for low voltage [17], and (ii) their energy per access is

significantly smaller than SRAMs (2 - 4×) (Fig. 2.7a). Nevertheless, although the

controlled placement of standard cells memory array reduces area overhead [107],

there is still 2× the area of the same size SRAMs-based memory (Fig. 2.7b). It

is thus clear that since there is a strong motivation to use energy-efficient but low-

density memories for instruction cache, there is a strong push to maximize the

22

effective capacity of the caches through sharing schemes.

2.2 Improving Instruction Fetch Efficiency

Given a specific cache capacity, the miss rate of instruction fetch is a critical factor in-

fluencing performance and energy efficiency. Modern processors usually use two-way

and four-way set-associative caches to reduce conflict misses. Besides, instruction

prefetching is implemented inside or outside the core [100], including branch predic-

tion [115] are effective methods to boost cache performance by reducing compulsory

and capacity miss. Support of compressed instructions is also effective in decreasing

capacity misses.

In this direction, we propose a hierarchical instruction cache with a 4-way set-

associative design, which also benefits from the RISC-V’ C’ extension for compressed

instructions. Sharing instruction memory is not new and has been mainly exploited

in high-end computing platforms such as General Purpose Graphic Processing Units

(GP-GPU). In GP-GPUs, all the compute units in each multiprocessor execute their

threads in lock-step according to the order of instructions issued by the instruction

dispatcher, which is shared among all of them [112].

Figure 2.8: GPU with Thread Processing Cluster (TPCs) and Memory Banks [112].

Besides, all shared-memory multiprocessing architectures supporting OpenMP

can benefit from energy reduction by reducing the instruction fetch miss rate with

a larger cache capacity. Loi et al. [67] present two multi-banked shared instruction

caches to solve the private cache’s small capacity issue in PULP. The private cache

achieves higher speed due to the simple design, but its performance is limited by

the small cache capacity for each core, leading to a high miss rate. Moreover, the

parallel program’s redundant copies in the system may waste the bandwidth to the

23

main memory, leading to more power consumption. By combing all the cache banks

to share with all cores, the shared cache is proposed to solve the small cache capacity

issue, which offers a low miss rate at the cost of minimum hardware area. However,

the congestion of accessing the same cache banks may degrade the performance, and

hardware complexity generates lower speed. Furthermore, multiple port memory

is used inside the cache bank for TAG and DATA to solve the congestion issue.

Nevertheless, with increased large hardware area and additional miss penalty, the

performance of multi-port shared cache may drop compared with the single-port

shared cache. As a result, it is suitable only for cache with a small memory size - a

few KB.

2.3 Instruction Cache Prefetching

Without introducing a large area/energy penalty and boosting the performance, the

importance of latency hiding techniques such as prefetching grows further. Prefetch-

ing means prefetching the next N-line to hide the latency of the core. Prefetch on

miss and tagged prefetch are proposed by Smith [100]. On a miss, prefetch on miss

always fetches the next line as well. It can cut the number of misses for a purely

sequential reference stream in half. Tagged prefetch can do even better. In this

technique, each block has a tag bit associated with it. When a block is prefetched,

its tag bit is set to zero. Each time a block is used, its tag bit is set to one. When a

block undergoes a zero to one transition, its successor block is prefetched. If fetching

is fast enough, this can reduce the number of misses in a purely sequential reference

stream to zero. However, it is unsuitable for non-sequential execution paths caused

by jumps, conditional branches, and system calls. Despite these shortcomings, it is

still an effective strategy to reduce cache misses by 20-50%.

24

Figure 2.9: Sequential stream buffer design [52].

Unfortunately, the large latencies in the base system can make this impossible.

Thus, Jouppi [52] presents a prefetching scheme using stream buffers in Fig. 2.9

to prefetch cache lines starting at a cache miss address. This technique is more

effective than previously investigated prefetch techniques using the next lower level

in the memory hierarchy when pipelined. On a cache miss, sequential cache blocks

are prefetched into a separate FIFO stream buffer until it is filled to avoid L1 cache

pollution. Next time, when the L1 cache sees a miss, the first entry of the stream

buffer is checked, and, on a hit, a block is brought into the L1 cache. Jouppi

also explored using multiple streaming buffers in parallel that can prefetch multiple

intertwined reference streams.

Fetch-directed instruction prefetching (FDP) [88] separates branch predictor and

instruction cache, so the branch predictor can run ahead of the instruction cache

fetch (Fig. 2.10). The branch predictor produces fetch blocks into a Fetch Target

Queue (FTQ), then by using Cache Probe Filtering (CPF) to remove useless prefetch

blocks in the FTQ, it sends only useful prefetch addresses to a Prefetch Instruction

Queue(PIQ) and the branch predicted fetch blocks could be accurately prefetched

and thereby saving bus bandwidth to the L2 cache. This FDP relies on accurate

branch predictors and a sufficiently large Branch Target Buffer (BTB) to cover the

control flow.

25

Figure 2.10: Fetch Directed Prefetching Architecture [88].

Proactive instruction prefetching (PIF) [26]-[27] is based on the fact that the

stream of instruction cache misses is repetitive, and it eliminates the future instruc-

tion cache misses directly by tracing these temporally correlated streams. Based on

that, RAS-directed instruction prefetching (RDIP) [60] correlates instruction cache

misses with the program context captured from the Return Address Stack (RAS).

It stores these misses in a Miss Table that is looked up using the signatures formed

from the contents of the RAS (Fig. 2.11)). They simply XOR the bit-string repre-

senting the RAS state to 32-bit signatures. It brings 2% performance improvement

compared to PIF with nearly 3X reduction in storage and 1.9X reduction in energy

overhead. However, the main shortcoming of the temporal prefetchers is their high

storage budget requirements, larger than 60 KB.

Figure 2.11: RAS-directed instruction prefetching architecture [60].

In the IPC-1 [41], numerous hardware instruction prefetchers were published. D-

26

JOLT [104] is a refinement of RDIP. It improves by implementing a new signature

generation mechanism that generates the prefetches from a FIFO structure that

stores the most recent function return addresses instead of the stack structure used

by RDIP. They investigate the characteristics of the RDIP from the following three

aspects: Siggen, Histlen and Distance (Fig. 2.12). By increasing the history length

of the number of addresses used to generate a signature, D-JOLT can improve the

prefetch accuracy while leading to less capacity efficiency. Besides, with a larger

time distance of the signature associated with the generated miss address, D-JOLT

can improve the prefetch coverage and be in time while losing some accuracy. With

these observations, they propose a novel Siggen using a FIFO, which can use the

correlations of the last function calls, and a hybrid combination of three prefetchers

that consume three miss tables. Finally, D-JOLT consumes a large capacity to

achieve high performance. With an 8KB entry miss table, it gives total storage of

125KB [90].

Figure 2.12: Three main characteristics of the RDIP analyzed by D-JOLT. Each block

represents a dynamic instruction sequence with a call/return instruction at the end. The

Siggen is the algorithm to generate a signature. The histen is the number of addresses

used to generate a signature. The Distance indicates how much time has elapsed since the

signature associated with the miss address was generated. This figure shows the prefetch

block address from the call instruction of C is H, using h(A, B, C) [104].

FNL-MMA combines a Footprint Next Line (FNL) prefetcher and a temporal

correlation prefetcher (Multiple Miss Ahead (MMA)) on the I-Shadow cache, which

27

is a small tag-only cache. FNL is an enhanced next line prefetcher with extra trace

recording tables that estimate if a cache line is worth prefetching. MMA selects

the look-ahead distance to avoid the late prefetches in the Next Predicted Miss

prefetcher (NPM) for non-continuous prefetch blocks. With an 8K entry miss table,

it takes total storage of 97KB [90].

EPI [89] introduced the concept of entangling the cache line to be prefetched

(destination) with a source cache line such that the destination would be prefetched

when the source cache line is encountered. For an cost-effective EPI [89], only the

head (first cache cache) of a basic continuous block for src and dst is paired. Fig.

2.13 shows the basic implementation of the EIP in the right-top part, a Basic block

computes the head (first cache line) and size of a dynamic basic block by simply

comparing the current address with the head address plus size. Once a new basic

block is detected, it is stored in the Entangled table (left part of Fig. 2.13).

Figure 2.13: Overview of the Entangling I-prefetcher with hardware extensions shown

in gray. The Basic block registers head and size keep track of the current basic block.

History is a small circular queue and each entry records basic block information: head,

size and timestamp of the first L1I access. Entangled is a cache-like structure and each

entry consists in a src-entangled cache line, its basic block size, and a compressed array of

dst-entangled cache lines (for the advanced optimization techniques, a confidence counter

is associated to each destination). The L1I, PQ and MSHR are extended with information

on timing (the timestamp when the request was issued) and on the src-entangled (position

of the source in the Entangled table and an access bit indicating if the access stems from

a demand access or a prefetch) [90].

28

To build entangled pairs for timely prefetching, first, it stores the recent history

of the basic block heads together with the timestamp of their first access to L1

iCache to a small circular queue called History buffer. Second, it calculates the

latency of demand L1 iCache miss with the help of start and end timestamps. The

start timestamp is held in the miss status holding register(MSHR) with two extra

fields: one access bit for demand misses and a pointer to History buffer. The access

bit is to distinguish a demand miss or prefetch miss to track the latency of the

prefetches to compute the actual latency on a late prefetch. The prefetches issued

in PQ also have timestamps, and their access bit is set to 0. PQ also exchanges

with MSHR when the prefetches miss in iCache. When a late prefetch happens,

the corresponding access bit is set to 1. The end timestamp can be obtained with

the time of the cache fill. When the access bit in MSHR is set to 1, and the

history pointer is valid, it means a src-entangled cache line is found, and then the

Entangled-table is updated. If the access bit is 1 and the history pointer is not valid,

no src-entangled is searched for. In the end, once there is a hit in the Entangled-

table, the current and dst-etangled basic blocks are prefetched. Other optimizations,

such as adding confidence, merging spatio-temporal basic blocks and compressing

destinations to improve the performance-area trade-off, are added. Typical EIP [89]

models highly associative structures (e.g., a +1000-entry history buffer and a 34-

way Entangled table which gives +8K entries). Its total storage requirements are

127.9KB. However, the size of the cost-effective EPI can reduce to 40KB.

Besides these large metadata prefetch strategies, other types of prefetchers inter-

act with hardware structures, such as the branch predictor (e.g. BTB directed), to

gain insights into the program’s execution ahead of time. As a result, they require

intrusive changes in the processor design. One of such prefetcher is SN4L [4]. It

is based on FDP and comprises three predictors: selective next-four-line (SN4L),

discontinuity (Dis), and BTB prefetching. SN4L improves next-four-line prefetcher

using a usefulness filter. Only previously useful cache lines among the next four will

be prefetched. Dis records the 4-bit offset of the branch instruction from the last

two demanded instructions upon iCache misses. On iCache accesses, Dis looks up

DisTable and generates prefetches if the missing line is found. Otherwise, the BTB

will be consulted. Finally, BTB prefetching is employed to reduce BTB misses. BTB

29

prefetching can be activated when an iCache fill is processed. The predecoder iden-

tifies the PC-relative branches and installs those detected branches unconditionally

into the BTB array. Because of the nature of the prefetching scheme, the register-

relative indirect branches cannot be prefetched by this mechanism. SN4L prefetcher

only requires 2.06KB of storage [90]. MANA [5] is a refinement of SN4L-Dis-BTB

that uses an 8-bit vector for consecutive prefetchers (previously proposed by PIF

[26]]). It offers a good performance-area trade-off, and it is representative of state-of-

the-art BTB directed instruction prefetchers. Here is the summary of performance

and storage for all kinds of state-of-art iCache prefetch [90]. We can see that FDP

based SN4L+Dis+BTB and MANA have a large benefit of good performance-area

trade-off without large meta-data.

Figure 2.14: IPC vs mempry requirements [90].

In the end, from the view of industry perspective, Yasuo et al. [45] propose an

effective FDP-base frontend design with only 195 bytes of hardware overhead. The

authors point out that academic research always uses a less-than-optimal frontend

baseline with a small BTB. At the same time, the industrial or commercial solutions

always keep accurate branch predictors and large BTB with FDP. To overcome

its previous issues, it has two enhancements, taken-only branch target history and

post-fetch correction. It outperforms the 1st Instruction Prefetching Championship

(IPC-1) winners with a 128KB storage budget.

Nevertheless, for a ULP multi-core cluster with limited instruction cache ca-

30

pacity, these prefetchers all have the same issue of significant metadata overhead

because of extensive address tracking and analysis, which brings much extra area

and power. Thus, it is necessary to balance the performance with the cache power.

Besides, keeping a large or small BTB for each fetch access for each core in the

ULP cluster also brings large dynamic power. In this work, we employ a simple

sequential next-line prefetch (4 instructions) to hide the L1 to L1.5 latency without

jeopardizing energy efficiency. We expose this feature to allow software-controlled

enable/disable of the prefetcher to adapt to application characteristics and trade-off

performance and energy efficiency.

2.4 State-of-the-arts ICache in ULP cluster

2.4.1 Private Instruction Cache

The baseline cluster features private instruction caches (Fig. 1.5). Each private

cache bank comprises 3 elements, a TAG, a DATA array implemented using SCMs

and a cache controller using a request-grant handshake protocol with a pseudo-

random (PRAND) replacement policy. To refill from L2, each cache bank sends the

request to the AXI bus independently with AXI interconnect nodes. Fig. 2.15a

shows the details of the private cache bank. We can see that the core controller

receives the fetch request from the RI5CY core with a cache line size of n× 64 bits.

Here we choose a 128-bit cache line to reduce the core fetch frequency since it is

enough for a 32-bit RI5CY core. At the same time, the cache controller will read

TAG and DATA to check if the fetch address is inside. If a cache hits, then the data

is read back to the core with one cycle. If the cache miss, the controller goes to

refill state and waits for AXI bus refill for about 15 cycles. Once controller get the

data, it sends to the core (Fig. 2.15b, 2.15d). As a result, when executing parallel

applications, each core fetches the same instructions while there is a miss, then all

the cores will suffer from a miss and ask for AXI refill with the same instruction for

about 15 cycles. This is a waste of AXI bandwidth with redundant refills.

The private cache has one cycle latency when hit and its critical path in the

cache controller is from core’s fetch req to cache bank’s tag memory LOOKUP

31

shown in arrow 1 in Fig. 2.15d). As we mentioned in section 1.1.3.1, it starts from

the core’s EX stage to determine branches. This path delay is about 1700 ps with

the synthesis in GF22FDX technology, which limits the maximum frequency of the

core fetch subsystem.

(a) Cache bank

(b) Cache controller finite-state machine

(FSM)

(c) Notion of critical path.

(d) Instruction fetch timing diagram.

Figure 2.15: Private cache bank subsystem

In conclusion, the private caches are fast (i.e., small critical path) and simple (i.e.,

32

low-power). Data replication and high miss penalty for large footprint applications

are major drawbacks for private instruction cache, which decrease their performance

and energy efficiency.

2.4.2 Shared Instruction Cache

Shared instruction cache is shown in Fig. 2.16a. It uses the same cache banks as the

private cache Fig. 2.15a, and it sends instruction refill to L2 memory only once when

the cores access the same shared banks (AXI bus refill only once). Data replication

is avoided since cache banks are shared among the cores, but two or more cores

may compete to access the same cache bank. In such a condition, a round-robin

arbitration policy ensures that only one core can access the cache bank and keeps

the others stalled. As a result, each core has the same probability of accessing the

cache bank. To better spread access among multiple banks, a read-only interconnect

with n input and m output is employed to ensure fair access to the cache banks.

2.4.2.1 Logarithmic interconnect

The logarithmic interconnect is a parametric, fully combinational Mesh-of-Trees

(MoT) interconnection network to support high-performance, single-cycle commu-

nication between processors and memories in L1-coupled processor clusters [87]. As

shown in Fig. 2.16c, a combinational path is created based on a network of routing

primitives (circles blocks) and arbitration primitives (square blocks). The former

is used to create independent routing paths (routing trees) from the cores to the

arbitration tree and vice-versa. The latter is used to arbitrate concurrent requests

(arbitration tree) and route them to the memory banks and vice-versa. The inter-

connect ensures access to large shared memory for cluster cores. However, it creates

more logic delay in the critical path from core’s fetch req to memory’s tag lookup

(shown in red arrow Fig. 2.16c). Therefore, the delay needs to be evaluated in detail.

Post-placement & routing results show that the delay of n processors and m memory

banks with 32-bit data size (n×m), the delay is expressed by a certain Fan-out of

4 (FO4), which is a measure of time independent of CMOS technologies, the gate

delay of a component with a fan-out of 4 [39]. Our target shared instruction cache,

33

with an 8 × 8 configuration, has 32FO4 (19FO4 from cores to memory and 13Fo4

from memory back to cores), which means that the combinational logic delay for

the critical path from core’s fetch req to memory’s tag lookup will increase 19FO4.

This increased delay will push the pressure of the core’s fetch timing and reduce the

maximum frequency, as shown in Fig. 2.16b. Finally, the maximum performance

will decrease with the shared instruction cache.

(a) Shared cache

(b) Additional critical path intro-

duced by LIC

(c) Mesh of trees 4x4: empty circles represent routing switches and empty squares repre-

sent arbitration switches.

Figure 2.16: Single-ported Share Cache subsystem

When one of the core’s fetch requests goes to the cache controller of each shared

memory bank, if a miss happens, the cache controller asserts the respective refill

34

request and continues accepting incoming fetches from other cores while waiting

for the refill response from L2. The shared cache controller can also track more

than one pending refill by additional FIFO to track pending misses and restore the

correct order from the response coming from the AXI BUS. If incoming fetches ask

the same missed address after the L2 refill, they will be served by the TAG and

DATA memories instead of refilling in L2. The merge of the same miss refill largely

reduces the redundant L2 refill frequency, which is the purpose of shared caches.

The shared cache can reduce n times the L2 refill frequency where n is the number

of cores, especially in parallel applications.

Consequently, the shared instruction cache benefits from large cache capacity

to avoid data replication while minimizing the access cycle (single-cycle-latency)

and area overhead. The single-ported shared instruction cache features a read-only

low-latency crossbar that uses a round-robin arbitration policy for each core’s fetch

request. Since one cache bank can serve one refill request each time, it causes

congestion when several cores access the same cache bank for parallel applications.

Moreover, a long path is present between the instruction fetch stage of the core to

the cache banks through the interconnect, which limits the maximum frequency.

2.4.3 Multi-ported Instruction Cache

A new shared instruction cache is proposed to share only TAG and DATA memories

while keeping a private cache controller for each core to solve the congestion issue of

a single-ported shared cache. This can be realized by using multi-ported SCMs. Fig.

2.17a shows the detailed view of this cache. We can separate the multi-ported shared

cache into two parts or two levels. Level 1 is composed of a private cache controller

and multi-ported banks. Level 2 has a central cache controller cooperating with a

merge refill unit. These two levels are still connected with the same logarithmic

interconnect with n × 1 (n private controllers and one central controller). Finally,

a request and response buffer is employed to cut the critical path between levels to

reduce the timing pressure of level 1 to level 2.

In the first level, now there can be m memory banks, and each of them is com-

posed of TAG and DATA and a private cache controller. Besides, it has a single

35

write port (written by the central cache controller after a miss) and n read ports,

one for each private cache controller (n cores) and used for normal cache access (hit

or miss). Each cache controller has a direct and private path (no contention) to read

TAG and DATA memories with multi-ported memory banks. Therefore, this cache

is similar to the private cache while using different ways to deal with cache misses.

(a) Shared cache

(b) content addressable memory

(c) Additional critical path introduced

by multi-port memory

Figure 2.17: Multi-ported Share Cache subsystem

In the second level, different from the private cache, instead of directly sending

n refill request to AXI BUS when each cache controller has a miss with the same

address, the multi-port cache handles the refills by a dedicated central cache con-

troller, which is in charge of merging the refills with the same address, sending refill

to L2 as well as updating the TAG and DATA memories. The refill merge is realized

36

by a CAM (content addressable memory) like a small cache, all refills to L2 with

the same address can be merged into 1 refill by referring CAM. As shown in Fig.

2.17b, the refill address is written into CAM and generates a unique AXI ID (entry

ID), and the address will be used as a key. If the same address hits in the CAM, no

refill request is generated, and only the CORE ID field is updated, meaning that the

cores linked to the hit refill address in the CORE ID field will be notified after the

L2 response. If there is a refill address miss, the first empty CAM entry is allocated,

and a corresponding refill request is sent to L2.

The multi-ported shared cache may have the best performance with free access

to memory banks without contention and minimum L2 refill traffic. However, with

the request and response buffer between levels, its miss penalty is two more cycles

than the single-ported share cache. This can result in performance decline compared

with single-port shared cache in extreme cases: all instructions are missed. Besides,

the multi-port memory banks introduce a large area and create wire congestion in

place & route of back-end. This also augments the memory read latency, as shown

in Fig. 2.17c.

In conclusion, multi-ported shared cache benefits from large cache capacity and

avoiding. Nevertheless, even if the heavy congestion for cores’ access is avoided,

n-ported TAG and DATA memories still have a series of area overhead issues. As a

result, it is suitable only for cache sizes up to a few KB.

2.5 Thesis Outline

In this section, we describe the organization of the remainder of the present thesis

work.

In chapter 3, we compare different architectures for iCache targeting tightly cou-

pled clusters in detail. The analysis involves private iCaches per core, a shared

iCache with single-port memories, as well as a shared iCache with multi-port mem-

ories. With synthetic micro-benchmarks and real program workloads, we can figure

out an effective iCache architecture configuration to support high performance in a

multi-core cluster by varying cache capacity, cache associate, and cache line block

size. We summarise the three architectures’ characteristics and drawbacks to provide

37

clear evidence for the next exploration.

In chapter 4, we propose a two-level iCache to balance a multi-core cluster’s

performance and energy efficiency, which combines the private iCache for each core

as L1 with 1 cycle latency and single-port shared iCache as L1.5 with 2 cycle access

latency. It benefits from simple L1 and large cache capacity of shared cache while

with a relatively large area. On average, when executing a set of real-life IoT

applications, our multi-level cache improves performance and energy efficiency by

10% concerning the private iCache system and improves the energy efficiency by

15% and 7% with a performance loss of only 2% concerning the shared iCache.

Besides, the relaxed timing makes two-level iCache an attractive choice for aggressive

implementation, with more slack for convergence in physical design.

In chapter 5, we exploit adopting sequential prefetch between caches to load as

soon as possible the instruction will be used in the future since two-level iCache

with limited small L1 cache capacity has the performance drawback compared with

shared cache, up to 25% performance drop in some large library based applications.

With low power consumption requirements, efficient prefetch should be considered

to reduce L1 capacity miss without introducing much power. Thus a dual-port read

TAG memory is used for refill and prefetch lookup access in the L1. The result

shows that it constantly improves the performance by 7% compared with the no

prefetch one. Compared with private cache, it improves the performance by 15%

with an energy efficiency loss up to 7%. Compared with shared cache, it almost

keeps the same performance and improves energy efficiency by 7%.

In chapter 6, we focus on the timing optimization of the core instruction fetch

stage in section 1.1.3.2. It is necessary to analyze and optimize the critical paths

in the request and response channels. By removing the critical paths through the

implementation of 4×32 -bit ring buffer FIFO and one cycle delay of the conditional

branch, we achieved a much higher maximum frequency to improve its scalability

against shared caches. Finally, we have 20% maximum frequency improvement and

up to 17% performance improvement compared to private and shared caches on

average.

Finally, we summarize in chapter 7 the main research contributions of the present

thesis work and future research direction.

38

Chapter 3

Evaluation of state-of-the-art Instruc-

tion Caches in PULP

In this chapter, we adapt the three state-of-the-art instruction caches to our target

PULP cluster. To give a comprehensive summary of the characteristic of each cache,

we run the RTL simulation of the target cluster with the three caches. By varying

the configurable parameters in terms of cache size and cache set-associate, we give

the best configuration for each iCache for further exploration.

To efficiently analyze and assess the pros and cons of all architecture, we devel-

oped a programming environment for efficient data-parallel acceleration based on

the OpenMP programming model. This software environment allows us to accu-

rately control the instruction size to create synthetic tests to stress a specific corner

case and assess the best and worst operating conditions for the three iCaches. After

finding the best corner for each cache, we further validate the caches with real-life

applications, including signal processing and CNN kernel-based parallel program

with OpenMP.

3.1 Software and Program paradigm

To fairly measure the performance and energy efficiency, we fix the PULP cluster

with 8 cores and change only the instruction cache (shown in Table 3.1). By varying

the cache set-associate and cache size, we can find the best operating configuration

for our target ULP cluster. In Table 3.1, the private instruction cache features N

39

Mnemonic Type Hit L2 Description Set-associate

Cycles Penalty

PR Private 1 15 N Bytes I$ bank x 8 cores W-way

SP Shared ≥1 17 8 x N Bytes I$ banks, 1-port W-way

MP Shared 1 19 2 x M Bytes I$ banks, 8-port W-way

Table 3.1: Instruction cache architecture configurations

Bytes cache bank for 8 cores, where N can be 512 or 1024, and the same N is used

for the single-port shared cache. Therefore, there are two combinations of the total

memory of 4KB and 8KB. While for multi-ports shared cache, we choose 2 banks

with M Bytes (M can be 2048 or 4096 to have a total of 4KB or 8KB memory)

because it has no memory access congestion. Besides, all caches’ set-associate W

varies among 1-way, 2-way, 4-way. In conclusion, we have six combinations for each

cache to make a detailed comparison and find the best combination for the target

ULP cluster. Finally, since the PULP has no data cache to avoid redundant data

copies with explicit data copy, we use the following multi-core program methodology

to activate its computing capacity fully.

3.1.1 Program methodology

Fig. 3.1 shows the basic program sequence with explicit data transfer in PULP.

First, the cluster’s cores execute the instruction load from L2, and the master core

(can be any one of the cores) initiates a DMA transfer to load task data from L2

to cluster’s TCDM and go to sleep. Second, if the data size is large and does not

fit the L2 size, an external L3 memory device is used to load data to L2 with the

help of SoC I/O. Next, the DMA is responsible for transferring the data from L2

to TCDM. Once it’s finished, it sends a finished event to the event unit, and the

event unit wakes up the cores in step 4. Then, the cores start processing the data

in parallel with the help of OpenMP in step 5. In the end, once all the cores finish

data processing, the master core asks the DMA to copy the data back to the L2, and

I/O copies it back to the L3 in steps 6 and 7 (Fig. 3.1a). The data transfer is in the

40

pipeline (Fig. 3.1b) with the help of several DMAs while the cores are processing

the data to hide the latency of huge memory transfers (shown in step 2, 3) and to

maximize the performance.

(a) Notion of program sequence

(b) Data transfer pipeline to hide huge data transfer latency, at least save (m-n) time for the second

data processing

Figure 3.1: Program sequence with PULP cluster for parallel acceleration

Thanks to the ultra-low-latency lightweight DMA, it supports multiple outstand-

ing transactions required to hide the huge latency of external memory accesses with-

out a large internal memory for the temporary storage of incoming or outgoing data

[91]. Based on the pipelined DMA transfer program mythology, an automatic tool

to deploy DNNs on low-cost PULP MCUs with typically less than 1MB of on-chip

SRAM memory - DORY is proposed [burrello2020dory]. DORY abstracts tiling

as a Constraint Programming (CP) problem: it maximizes L1 memory utilization

under the topological constraints imposed by each Deep Neural Network (DNN)

layer. Then, it generates ANSI C code to orchestrate off- and on-chip transfers

and computation phases. The generated C code helps users to complete the work

described in Fig.3.1. Finally, we combine the generated C code with our programs

to improve programming efficiency and hide the complex explicit data transfers for

DNN applications.

41

3.1.2 Synthetic tests

The synthetic tests are simply doing parallel vector multiply for 8092 data. We use

Loop unrolling algorithm 1 to control the instruction size of the synthetic tests accu-

rately. The BUFFER SIZE is always fixed to 8192 while STEP changes among

32, 64, 128, 256, 512 and 1024 which represent instruction size for 0.375KB, 0.75KB,

1.5KB, 3KB, 6KB and 12KB respectively. Finally, we run the RTL simulation of

the 6 tests, and all the tests have the same number of operations for cluster cores.

Algorithm 1 Loop Unrolling

Require: BUFFER SIZE = 8192

Require: TOTAL CORE = N

Require: STEP = M

start← core id×BUFFER SIZE / TOTAL CORE

end← start + BUFFER SIZE / TOTAL CORE

for i = start; i < end; i+ = STEP do

c[i]← a[i]× b[i]

c[i]← a[i + 1]× b[i + 1]

...

c[i + STEP − 1]← a[i + STEP − 1]× b[i + STEP − 1]

end for

3.1.3 Benchmarks

Furthermore, we used a series of benchmarks based on full-fledged optimized OpenMP

implementation [69] applications and four CNN applications which make use of the

Auto-Tiler library, a CNN library that manages large data transfer between SoC

domain and Cluster domain automatically for the embedded system [37] to analyze

in-depth the behaviour of each architecture. Each application features a different

behaviour in terms of access patterns to the instruction memory subsystem and

diversified memory footprints and execution time.

The detailed characteristics of each application are shown in table 3.2, including

each code section size in KB and each number of 32-bit instructions in execution.

Since cache performance is influenced strongly by code locality and code size, we

42

APP Size [KB] Class Description

BFS 59.2 Short-Jump Breadth-First Search

CT 28.2 Long-Jump Color Tracking

FAST 28.6 Long-Jump Machine-generated corner detection algorithm

SLIC 26.1 Long-Jump Simple Linear Iterative Clustering

HOG 33.3 Library Histogram of Oriented Gradients

SRAD 31.6 Library Speckle Reducing Anisotropic Diffusion

FFT 41.2 Library Fast Fourier transform

CIFAR10 37.5 CNN Object Recognition

MNIST 37.9 CNN Handwritten digits Recognition

KWS 30.1 CNN Key word spotting

CNNDronet 71.3 CNN Detector for Real-Time UAV Applications

Table 3.2: Benchmark details

classify the applications into 3 groups. The Short-Jump class includes BFS and

CNN kernel-based applications, which are loop-based applications with most loop

bodies smaller than four cache lines. The Long-Jump class groups all the loop-based

applications with loop bodies greater than four cache lines or based on extensive

control flow instructions, including CT, FAST, and SLIC. In the end, the Library

class contains HOG, SRAD, and FFT, which use libraries to manage non-native

data types, such as float, and fixed-point arithmetic, generating significant stress in

cache [34].

All the above applications are reasonably complex and long-lived (millions of

instructions in most cases), so it takes too much time to explore with RTL simulation.

For this reason, we analyze the performance based on measures coming from RTL-

equivalent FPGA implementations, mapped on Xilinx Zynq ZCU102 FPGA using

Vivado 2019.2. The FPGA emulation allows executing at up to 50 MHz, enabling

near-to-real-life execution time. The performance analysis is based on statistics

collected by hardware counters implemented inside the instruction cache. Then we

calculate the miss rate of each application and use the miss rate to power LUT to

estimate the absolute power and energy efficiency for each cache architecture.

43

3.2 Performance Results

3.2.1 The performance of synthetic tests

We simulate the above 6 synthetic tests with the same number of operations on

different cache architectures with configurable cache set-associates and cache sizes.

At the same time, we also simulate the tests with different cores (1, 2, 4, 8 cores) to

address our target parallel multi-core architecture.

The performance of each configuration of simple private cache is shown in Fig.

3.2a. All the data is normalized to private cache running with the baseline configu-

ration - 0.375KB instruction size, one-way, and single core. We use PR-4K-1W-1C-

0.375KB to express it for easy understanding, and it is the same for shared caches.

So it is expected that PR-4K-4W-8C-0.375KB achieves a 10 times speed-up com-

pared with the baseline. The left is the private cache with 0.5KB cache capacity,

which means 4KB in total (PR-4KB). The private cache with 1KB cache capacity

is on the right, which means 8KB in total (PR-8KB). i), We can see that the perfor-

mance decreases according to the instruction size’s increase. There is a performance

drop when instruction size crosses the boundary of cache capacity. For PR-4KB,

when the instruction size of 0.75KB is large than the 0.5KB cache capacity, there is

about 40% performance drop for the same n-way set-associative. The performance

drop enlarges until 50% with the augmentation of instruction size. With the sig-

nificant cache capacity miss, PR-4K-1W-1C-12KB only has half the performance of

PR-4K-1W-1C-0.375KB.

Secondly, We summarize the performance improvement brought by multiple cores

in a parallel architecture. We can see about 2x, 3.8x, and 7x performance improve-

ment when running with 2, 4, and 8 cores on average, respectively, compared with

the performance running with a single core for PR-4K-1W-0.375KB. It is a signif-

icant improvement of thread-level parallelism by simply increasing the number of

small cores. However, the performance improvement is not linear. There are two

main reasons. First, when the program allocates the resource for each core and

synchronizes among the cores, it introduces extra code and leads to a performance

drop. Second, the private caches have L2 refill miss congestion when the instruc-

44

(a) Private cache

(b) Single-port shared cache

(c) Multi-port shared cache

Figure 3.2: Comparison of three types of instruction cache architectures’ performance.

1) The core number varies from 1 to 8. ii) The cache is among 1-way, 2-way, 4-way

set-associate. iii) The instruction size varies from 0.375KB to 12KB. All the results are

normalized to the performance of the 1-core, 1-way private cache with 0.375KB instruc-

tions.

tion size exceeds the cache capacity, especially for PR-4K-12KB. We can see that

the performance improves only 1.9x, 3.5x, and 3.5x when running with 2, 4, and 8

45

cores, respectively.

Thirdly, we compare the relationship between performance and set-associate.

For PR-4KB-0.375KB, we can see that 2-way or 4-way set associate private cache

achieves the best performance, improving about 30% on average compared with the

1-way set associate private cache. This is because when cache capacity is relatively

small, there is more conflict miss. However, when compared 4-way with 2-way set-

associate private cache, there is slight performance improvement, less than 0.5%

for PR-4KB. PR-8KB is the same except for PR-8KB-0.75KB, where 4-way set-

associate cache improves about 15% compared with 1-way and 2-way set-associate

cache.

The performance for each configuration of shared caches is shown in Fig. 3.2b

and Fig. 3.2b. All the data is normalized to PR-4K-1W-1C-0.375KB. Firstly, the

shared caches have 8x the private cache capacity. For SP-4KB and MP-4KB, we can

see about 1.8x, 2.5x, and 2.53x performance improvement on average when running

with 0.75KB, 1.5KB, and 3KB instruction size, respectively, compared with PR-

4KB. It is the same performance improvement for 1.5KB, 3KB, and 6KB with SP-

8K and MP-8K, which means that shared caches are suitable for larger applications.

However, we can still see the same performance drop after 3KB instruction size for

SP-4KB and MP-4KB and after 6KB instruction size for SP-8K and MP-8K, which

drops about 50% on average because of the large cache capacity miss.

Secondly, With parallel acceleration, the performance of shared caches still im-

proves 1.9x, 3.5x, and 7.5x running with 2, 4, and 8 core on average, respectively,

when the instruction size is less than the cache capacity. Thirdly, when the in-

struction size exceeds the shared caches’ capacity with large cache capacity miss -

SP-4KB and MP-4KB running with 6KB and 12KB instruction size, we can see that

MP-4KB results in a performance drop of about 11.8% compared with SP-4KB on

average. It is the same for SP-8KB and MP-8KB running with a 12KB instruction

size. The reason is that the two-level structure multi-port cache has two more cycles

of L2 miss penalty than the single port shared cache ((19-17)/17 ≈ 11.8% according

to Table 3.1).

In conclusion, for performance comparison, the shared cache with large cache

capacity can adapt to tests with wide instruction size with less cache capacity miss.

46

The set-associate cache can solve the cache conflict miss. However, it has limited

performance improvement. Therefore, 2-way or 4-way cache is suitable for our target

cluster platform.

3.2.2 The performance for real-life applications

We simulate the above complex applications with different behaviour in terms of

access patterns to the instruction memory. The result can give us a comprehensive

and direct view of each cache architecture and help to fix the best choice in our

target cluster system. We still vary the cache set associate and cache size. However,

with the conclusion of the synthetic tests, we take only 2-way or 4-way set-associate

and run with all 8 cores to fully take advantage of parallel acceleration with 4KB or

8KB cache size.

Fig. 3.3a and 3.3b show the performance results for all caches with 4KB and

8KB cache capacity normalized to the private cache with 2-way cache set-associate

(PR-4K-2W) for each application. Firstly, we note that the set-associate influences

little on the cache performance, the caches with 4-way set-associate improve the per-

formance by about 1% on average compared to the caches with 2-way set-associate.

Secondly, caches with larger cache capacity always achieve better performance

since they reduce the miss rate as shown in Fig.3.3c). Especially for private cache,

the miss rate of HOG, FFT and SRAD decrease about 50% when using PR-8KB,

thus the performance of PR-8K increases about 50% for the two applications com-

pared to PR-4K. However, for shared caches, the performance improvement is trivial

(about 1%) since all application’s miss rate is closely to 0.

Thirdly, the larger the miss rate of the applications for private cache, the large

the performance improvement of shared caches. For applications with a low miss rate

(less than 1%), including BFS, CT, SLIC and KWS, the performance improvement

of shared caches is about 5% on average. For applications such as FAST (5.4%),

MNIST (3.8%), CIFAR10 (2.92%), DRONET (9.3%), the performance improvement

of shared caches are about 12% on average. For the high miss rate applications such

as HOG (22.9%), FFT (54.7%) and SRAD (54.5%), the performance improvement

of shared caches can be 2.5x - 3x on average because of the less L2 refill penalty.

47

(a) Performance with 4KB cache capacity

(b) Performance with 8KB cache capacity

(c) Miss rate of cache with 4-way set-associate

Figure 3.3: Comparison of three types of instruction cache architectures’ performance.

1) The core number is fixed to 8. ii) The cache is among 2-way, 4-way set-associate. iii)

For each application, its results are normalized to the performance of PR-4K-2W.

In conclusion, larger cache capacity and 4-way set-associate can increase the

system performance. However, shared caches have limited performance improvement

since their miss rate is close to 0. Therefore, a 4KB cache size cache is suitable for

our target cluster platform. Besides, a 4-way set-associate is employed to ensure

48

stable performance even if caches with smaller associativity consume less power and

energy.

3.3 Results of physical implementation

This section presents a comprehensive physical exploration of the area, timing, and

power for all the configurations shown in Table 3.3 to characterize the power and

energy efficiency of alternative instruction cache architectures. All caches have 4KB

cache capacity and 4-Way set-associate to ensure the stable performance with the

small area shown in section 3.2.2.

Mnemonic Type Refill Cycles Description Set-associate

PR Private 15 512B I$ bank × 8 cores 4-Way

SP Shared 17 8x 512B I$ banks, single-port 4-Way

MP Shared 19 2x 2048B I$ banks, 8-port 4-Way

Table 3.3: Instruction Cache Architectures Explored in this work.

3.3.1 Area and Timing results

Figure 3.4: The 8-core cluster area breakdown for the different cache architectures and

configurations. Instruction cache area contribution is placed on top.

One of the main points for designing a shared cache is to provide a large capacity

with a small area overhead. Fig. 3.4 illustrates the silicon area costs for all cache

49

architecture configurations. Thanks to the private cache’s simpler structure, it is

smaller than other caches. SP has little area increase compared to PR and MP has

the largest area that is more than twice the cache area of PR because of the multiple

reading ports. As a result, MP has poor scalability when the number of the cores

increases.

Type Cluster Maximum frequency [MHz] Speed up compare with PR [%]

8-core 16-core 8-core 16-core

PR 378 363 0 0

SP 350 320 -7 -12

MP 357 306 -5 -16

Table 3.4: Timing result

Table 3.4 shows the results of the static timing analysis for all the cache archi-

tectures, implemented in clusters of 8 cores or 16 cores to emphasize the timing

issue of the shared caches. Not surprisingly, the clusters featuring shared caches

(SP, MP) have worse maximum frequency due to the long critical path between the

core and the interconnect and the high congestion of the multiple reading ports,

respectively. For a system with 8 cores, the caches with simple L1 private cache

achieve the best timing, keeping about 6% timing improvement compared to shared

caches. When we increase the system core number to 16, we observe that MP and

SP result in about 12% and 16% maximum frequency drop respectively compared

to PR. For the MP, 16-port memory banks cause serious wire congestion, leading

to worse timing results. It is the same issue for SP, with more channels and more

levels logarithmic interconnection, the critical paths get worse with interactions of

request and response channels.

3.3.2 Power results

Obtaining the power of the whole cluster system with different instruction cache for

real-life applications running for millions of clock cycles on a post place and route

database is not feasible, both due to the long simulation time and size of the VCD

50

traces required to annotate the switching activity of the design. What’s more, real-

life applications often have complex and unpredictable behaviours, making it difficult

to understand the functional and power behaviour of the cache. To model the

presented caches and provide more insight into their power and energy consumption

behaviour, we propose a methodology based on a synthetic benchmark where we

artificially modulate the instruction locality.

Moreover, since the applications executed by the cores have an IPC close to 1, the

only stalls of the cores are those caused by cache misses, decreasing the whole cluster

system’s activity and reducing its power consumption. On the other hand, the power

consumption of the L2 memory augments with the miss rate due to the increasing

number of refills. In order to take into account this significant contribution, we

characterized the energy consumption of every refill from L2 and the overall L2

leakage power and added it to the system power. We used this methodology to

characterize the behaviour of the seven architectures, summarized in equation 3.1.

We obtain the parameters L2 leakage power and L2 per read energy from the L2

SRAM’s datasheet. The parameters cycles and L2 miss refill number can be read

from the hardware counters implemented inside the instruction cache with the cycle-

accurate simulation. We only need to find the cluster power with a specific system

frequency to have the total energy.

Total energy

= (cluster power + L2 leakage power) · time + L2 read energy

= (cluster power + L2 leakage power) · cycles/frequency

+ L2 miss refill number · L2 per read energy

(3.1)

3.3.2.1 The power and energy efficiency of synthetic tests

The power of all synthetic tests measured on different architecture configurations is

shown in Fig. 3.5a. The PR configuration is the one consuming the least power in

all configurations, thanks to the simple and straightforward implementation for loop

body below 0.5 KB. For larger loop bodies, the power of the PR configuration drops

due to the high miss rate. As we can see, the cluster power, including I$ power,

51

decreases while the L2 dynamic power increases largely since the cores stall and

are waiting for L2 refills. In general, SP features the smallest power consumption

thanks to its relatively small area and large cache capacity.

Fig. 3.5b demonstrates the energy efficiency for each cache normalized to PR-

0.375KB. On average, the MP and the SP have about 24% and 33% energy efficiency

improvement respectively compared to the PR. Besides, they can attain twice the

energy efficiency of PR for loop body between 0.5 KB and 4 KB. However, for loop

body below 0.5 KB, the PR still has at least 4% better energy efficiency than the

shared caches, and it is suitable for most of the applications with small for loop

bodies.

(a) Power

(b) Normalized Energy efficiency

Figure 3.5: Power, energy efficiency of the synthetic tests normalized to PR with

0.375 KB cache size, 200MHz.

52

3.3.2.2 Power model - Look-Up Table

Since the Fig. 3.5 shows a significant dependency between the power consumption of

the cluster and the miss rate of applications caused by the cores’ stalls. Hence, in or-

der to model the power consumption of the different cache architectures, we created

a high-level model according to the relationship between the power consumption of

the cluster and the miss rate to calculate the cluster power rapidly. Fig. 3.6 shows

the relationship between miss rate and cluster power. We separate the schema into

private and the shared caches.

(a) Private cache.

(b) Shared caches

Figure 3.6: PowerAverage ∝ (1/MissRate) inverse linear regression, 200MHz.

In Fig.3.6b, we separate the function into two parts - miss rate is below and larger

than 1%. When the miss rate is lower than 1%, the cluster power almost remains

stable since the IPC is close to 1, and the cluster system is fully active. Nevertheless,

when the miss rate is larger than 1%, it shows the inverse linear regression. Besides,

the maximum miss rate of shared caches is below 100%/8 = 12.5%, thanks to the

53

Figure 3.7: Error rate between power estimation and model evaluation, the power results

are normalized to PR, 200 MHz.

parallel computing architecture. In the end, when each cache reaches the maximum

miss rate, its power remains stable, containing the static leakage power and stable

cache L2 read power.

To validate the power model, we analyze the error rate between LUT and ex-

haustive power estimation on three of the smallest real-life applications considered

in this work. We selected several relatively small applications and estimated the

error rate between power estimation using PrimeTime and LUT evaluation model,

with a maximum error smaller than 6% (Fig. 3.7). Since we only care about the

relationship of each cache, all power results are normalized to PR. Finally, we use

this accurate power estimation to make a detailed comparison. This model poses the

basis to evaluate larger real-life applications that cannot be executed in a reasonable

time on post-layout netlists.

3.3.2.3 The power of real-life applications

The energy efficiency for each cache normalized to PR is demonstrated in Fig. 3.8.

On the left, for the low miss rate applications, the MP always has the worst energy

efficiency than PR and SP due to its large area. Then, since the miss rate is low,

the PR benefits from its simple architecture and attains the best energy efficiency in

BFS, CIFAR10, KWS, CT and SLIC. However, on average, the SP achieves the best

energy efficiency since it has a larger cache capacity with little extra area compared

54

Figure 3.8: Energy efficiency of the applications normalized to PR, 200MHz. The low

miss rate applications in the left and the high miss rate applications in the right.

to PR. It is the same for the high miss rate applications on the right for the SP.

Now, the shared caches‘ energy efficiency is about 2.4× as large as PR’s because of

8× capacity.

3.4 Conclusion

In this chapter, we explored three different instruction cache architectures for energy-

efficient and cost-effective tightly coupled clusters of processors for end-node IoT

devices, including one traditional private cache and two shared caches (one featur-

ing a crossbar between the processors and the memory banks, and one exploiting

memory banks with multiple ports). All the designs are based on latch-based mem-

ories instead of SRAMs to purchase low power and high energy efficiency. We

conducted an exploration running a series of synthetic tests with loop-unrolling,

several signal processing and CNN based applications featuring diverse instruction

memory access patterns on the same cluster, configured with different instruction

cache architectures. The results reveal that the shared caches can execute in a more

energy-efficient way for a much wider class of applications with much less silicon

area compared to private caches. When executing the high miss rate applications,

they can bring up to 3× performance and 2.5× energy efficiency improvement com-

pared to private cache. However, due to the logarithmic interconnect for single-port

shared cache and multi-port memory banks for multi-port shared cache, they all

suffer from critical timing issues, leading to scalability when the number of cores

increases.

55

Chapter 4

Two-level instruction cache

4.1 Overview

Many modern processors utilize multiple levels of cache, with small, fast primary

caches backed up by larger, slower caches. The usage of second-level cache or multi-

level cache compromises cache capacity (hit rate) and cache access latency. In

chapter 3, we have proven that the larger cache capacity, the better the hit rate

in multi-core clusters. Nevertheless, with the same technology, the larger the cache

capacity, the larger the memory access time leading to more processor pipeline

stages [6]. Therefore, the first level cache is often on the critical path of simple

single-issue microprocessors featuring a flat pipeline [79]. Moreover, DSP-oriented

processors designed for high energy efficiency typically feature a prefetch buffer to

support compressed instructions and reduce the pressure on the memory hierarchy

(low power) and even more complex instruction fetch stages to avoid stalls (high

efficiency). However, this extends the critical path towards the instruction cache

[34]. Finally, this path is further extended in shared caches due to the need for an

additional crossbar or multiple ports [66] towards the cache banks. These considera-

tions, joint with the well-known routing bottlenecks for deep sub-micron technology

nodes, potentially pose significant limitations on future software-programmable par-

allel processor clusters’ performance, energy efficiency, and scalability.

The main contributions of this work are: firstly, we propose a two-level instruc-

tion cache architecture that combines the small, fast private cache (L1) with one

56

cycle access latency with large single-port shared cache (L1.5) with two-cycle ac-

cess latency through the logarithmic interconnect in tightly coupled CMP cluster;

secondly, we analyze the two-level cache and compare it with the above three main

cache architecture from the aspect of performance and energy efficiency with the

synthetic tests and real-life IoT applications.

The rest of the chapter is organized as follows: The details of our two-level

cache are described in section 4.2, and the comparison results with private cache

and shared caches with synthetic tests and application are shown in section 4.3, and

section 4.4 concludes the chapter.

4.2 Architecture

In this section, we present a two-level instruction cache shown in Fig. 4.1a which

combines small private instruction caches (Level 1) with a tightly coupled (1 clock

cycles latency) shared instruction cache (Level 1.5). The two caches are connected

through a single clock latency interconnect described in section 2.4.2.1. L1.5 shared

cache provides a large capacity to reduce the miss rate of L1 private cache. Small

L1 cache avoids long critical paths from the core to the interconnect and back to the

core described in section 2.4.2 and benefits from the low-latency access time from

the core to the L1 cache and from the L1 cache to the L1.5 cache.

The fetch request is issued by the core’s Instruction Fetch unit (IF), which first

checks its L1 private cache. If there is a miss, a refill request is sent from the L1 cache

to the L1.5 shared cache, crossing the low-latency interconnect instead of fetching in

the L2. As described in section 2.4.2.1, the read-only logarithmic interconnect can

increase the memory access latency. Thus the proposed hierarchical cache features

a configurable request buffer and a response buffer (that’s to say. they can be

enabled with a System Verilog parameter) to reduce the interconnect latency. Since

in the presented cluster implementation, the response buffer is sufficient to reduce

the critical path, the request buffer has been disabled. On the other hand, this

buffer is a powerful knob to improve the scalability of the system towards high-end

clusters optimized for frequency or featuring a larger number of cores (for example,

16), taking advantage of the hierarchical structure of the cache.

57

(a) Two-level instruction cache. Level 1 is private

cache and Level 2 is shared cache with only 2 cycles

latency (including 1 cycle response buffer) when hit.

(b) L1 critical path, the same

with private cache.

(c) Two-level instruction cache timing. The miss penalty for core is at least 3

cycles when miss in L1 and hit in L1.5.

Figure 4.1: Two-level instruction Cache subsystem

In the proposed implementation, the access time of the L1 cache is one cycle,

of the L1.5 cache is two cycles (including one cycle for response buffer) when the

cache hit separately (Fig. 4.1c). In the case of L.5 congestion, it can take more

than two cycles. However, the congestion on the memory banks is largely reduced

58

Mnemonic Type Hit L1.5 L2 Description Set-associate

Cycles Penalty Penalty

PR Private 1 - 15 512 Bytes I$ bank x 8 cores 4-way

SP Shared ≥1 - 17 8 x 512 Bytes I$ banks, 1-port 4-way

MP Shared 1 - 19 2 x 2048 Bytes I$ banks, 8-port 4-way

HIER Private 1 ≥3 19 512 Bytes L1 I$ bank x 8 cores 4-way

Shared ≥1 - 17 2 x 2048 Bytes L1.5 I$ banks, 1-port 4-way

Table 4.1: Instruction cache architecture configurations, including two-level cache.

by adopting a banking factor of 2 and the L1 filter cache.

Table 4.1 shows the hit cycles and miss penalty for each cache including the

two-level cache (shown as HIER). Compared to private cache’s 15 cycles of L2

miss penalty, two-level cache reduces it to about three cycles when hits in L1.5,

which significantly ameliorates the performance. However, compared to SP, a two-

level cache introduces another cache level, bringing additional area and power. It

also leads to inefficient fetch with two more cycles when the instruction size is

between L1 and L1.5 with a relatively low L1 hit rate according to the equation of

average fetch cycles = L1 hit rate + (1 − L1 hit rate) ∗ 3. It is even worse when

compared with multi-port cache since MP has no refill congestion. However, the

two-level cache’s L2 penalty is the same with MP and leads to the worse performance

with a very large instruction size compared to SP.

In order to analyse the performance and power of all the caches, we run the

same synthetic tests and real-life applications described in section 3.1.2 and 3.1.3 to

summarize in detail the characteristic of the two-level instruction cache.

4.3 Evaluation

Before comparing all the caches, we need to configure the two-level cache for each

level. From the results of chapter 3, we choose the cache associativity between 2-

way or 4-way, and cache capacity is fixed to 4KB. As shown in Table 4.1, we utilize

a 4-way set-associate for both L1 and L1.5 cache to reduce miss rate and ensure

performance. We use the same GF22FDX technology to implement the design and

59

the same power model method to compare our proposal with previous work in detail.

4.3.1 Performance Results

4.3.1.1 The performance of synthetic tests

Figure 4.2: Throughput of the applications normalized to PR with 0.375 KB instruction

size, 200MHz.

We summarize in Fig. 4.2 the throughput of all synthetic tests measured on the

different architectural configurations normalized to PR-0.375 KB. There are four

points that we can see. First, the performance drops significantly when over the

limit of total cache capacities. We can see that for the PR, the performance drops

dramatically starting from 0.75KB, which is the same for the shared and two-level

cache. Second, two-level and shared cache architectures always show better or equal

performance when compared to the related private configurations. We should notice

that shared caches always have larger L1 cache capacities (8x) than private cache.

Third, shared cache architectures always achieve better performance compared with

two-level cache because the HIER has a smaller L1 cache capacity, and there are

about two more refill cycles when there is a miss in L1 while hit in L1.5. So when

the instruction size is between the L1 and L1.5 cache capacity, it loses about 16%

throughput while the L1 miss rate is higher than 50%. In the end, when instruc-

tion size is much larger than cache capacity, such as 12KB, the PR attains better

60

performance than MP and HIER since it has a smaller L2 penalty.

4.3.1.2 The performance of real-life applications

Figure 4.3: Throughput of the applications normalized to PR, 200MHz. the low miss

rate applications in the left and the high miss rate applications in the right.

The throughput of each application for all caches normalized to the PR is shown in

Fig. 4.3. On average, the flat shared cache configurations perform better than the

two-level and the private caches, joining the benefits of a larger cache capacity with

respect to the private, and a smaller L2 penalty with respect to the two-level cache

(table 4.1) which causes a drop in performance of only 2%. However, the two-level

cache reduces the PR’s performance drop and can compete with shared cache for

the low miss rate applications. For the high miss rate applications, which are rarely

in the IoT applications, the HIER has twice the performance of PR. Nevertheless,

it still loses about 20% performance when compared with shared caches.

4.3.2 Physical Implementation Results

61

4.3.2.1 Area and Timing results

Figure 4.4: The 8-core cluster area breakdown for the different cache architectures and

configurations. Instruction cache area contribution is placed on top.

Fig. 4.4 illustrates the silicon area costs for all cache architecture configurations.

There is no surprise that the HIER has a larger cache area than that of the PR and

SP since the HIER has both L1 and L1.5. However, its area is still smaller than

MP which demonstrates that the MP is only suitable for small cache capacity.

Type Cluster Maximum frequency [MHz] Speed up compare with PR [%]

8-core 16-core 8-core 16-core

PR 378 363 0 0

SP 350 320 -7 -12

MP 357 306 -5 -16

HIER 372 354 -1 -2

Table 4.2: Timing result

Table 4.2 shows the most important design target of the HIER. As expected, by

benefiting from the small L1’s simple and fast architecture, the HIER has almost the

same maximum frequency as the PR. Thus, the HIER keeps the balance between

scalability and performance.

62

4.3.2.2 The power and energy efficiency of synthetic tests

(a) Power

(b) Normalized Energy efficiency

Figure 4.5: Power, energy efficiency of the synthetic tests normalized to PR with

0.375 KB cache size, 200MHz.

Fig. 4.5a shows the power of all synthetic tests measured on the different archi-

tectural configurations. As we can see, MP still has the largest power while PR has

the least power because of the design area. Then, the HIER has the smallest power

since it benefits from L1’s local fetch and L1.5’s large capacity. From the view of

L2 dynamic power, the HIER is more like a shared cache with much less L2 refills.

63

Figure 4.6: PowerAverage ∝ (1/MissRate) inverse linear regression, 200MHz, updated

with the HIER.

Fig. 4.5b shows the normalized energy efficiency of all synthetic tests measured

on the different architectural configurations. There are two points that need to

be noticed. First, on average, HIER improves about 20% the energy efficiency

compared to PR. Second, the PR and HIER attain better energy efficiency than

shared cache when the instruction size is less than the L1 cache capacity.

By exploiting the same power model method, Fig. 4.6 updated the LUT with

the power of HIER running with synthetic tests. We can see that the HIER acts like

a shared cache. Besides, it has less power than the shared caches when the tests’

miss rate is low.

4.3.2.3 The power and energy efficiency of real-life applica-

tions

The energy efficiency of each cache normalized to PR is shown in Fig. 4.7. On

the left, the low miss rate applications, the HIER has at least 7% energy efficiency

improvement compared to other caches thanks to its large L1.5 capacity and sim-

ple L1 structure. Joining the architectural efficiency and power considerations, we

can conclude that for most applications, featuring a miss rate lower than 5%. Very

common in the near-sensor processing domain, the energy efficiency of the proposed

64

two-level cache surpasses both the private and the shared caches. We should note

that a significant energy saving for the shared cache configurations (both flat and

hierarchical) comes from the merged refill requests to the energy expansive L2 mem-

ory. Compared to the PR, the HIER provides significantly more robustness with

respect to applications with a large footprint and long branches. This can be clearly

noted in SRAD, where the shared caches deliver more than 2x better energy effi-

ciency than the private cache. For high miss rate applications, the HIER provides

smaller performance (20%) than the flat shared caches due to a large number of L1.5

refills, leading to a 20% energy efficiency drop. However, it still has about twice the

energy efficiency of the PR.

Figure 4.7: Energy efficiency of the applications normalized to PR, 200MHz. The low

miss rate applications in the left and the high miss rate applications in the right.

4.4 Conclusion

In this chapter, we proposed a hierarchical instruction cache architecture for energy-

efficient and cost-effective tightly coupled clusters of processors. Exploiting a small

level-zero private cache tightly coupled to a single-clock latency L1.5 shared cache,

the proposed architecture joins the benefits of private caches (low-power consump-

tion) with large capacity typical of shared caches (execution efficiency). We bench-

mark the proposed architecture on a wide range of real-life IoT workloads, showing

that for the low miss rate applications, the proposed architecture improves the en-

ergy efficiency by 10% with respect to private caches, and from 7% to 15% with

respect to flat shared caches. In applications with a high miss rate, which is rare

65

in IoT applications, the new cache organization still performs better than private

caches with the same total cache capacity, thanks to larger shared L1.5. It has an

acceptable performance loss with respect to the flat shared caches. In conclusion, the

proposed cache provides strong advantages in implementation effort with respect to

the flat shared caches, improving the scalability of multi-core systems both in terms

of the number of cores per cluster and maximum operating frequency. Finally, more

effect will be paid to solve the issue of high miss rate applications, such as adding

prefetching features between L1 and L1.5.

66

Chapter 5

Prefething in L1 iCache

5.1 Overview

Prefetching is a well-known approach to mitigate the impact of cache misses in

order to reduce the latency of memory operations in modern computer systems.

The prefetching can be implemented in each level of the caches or inside the cores,

such as modern Intel processors [111] which have four prefetchers per core, namely

two L1 data cache prefetchers and two L2 prefetchers. In the chapter 2, we con-

clude that the correlation-based prefetching can largely improve the performance

and solve the non-sequential issue. However, these prefetchers consume large meta-

data storage (more than 20KB) due to the vigorous instruction execution trace. The

FDP-based prefetcher depends on the accurate branch prediction with the help of

BTB with relatively small size around 7KB for industry products [45]. However,

since our multi-core cluster features simple RISC-V core to do parallel acceleration

with OpenMP, implementing each core with BTB may improve the non-sequential

execution performance while bring large extra access power.

The main contribution of this work: Firstly, we employ a simple sequential

next-line (4 instructions) prefetching with cache probe filtering (CPF) to hide the

L1 to L1.5 latency without jeopardizing energy efficiency. We expose this feature

to allow software-controlled enable/disable of the prefetcher to adapt to application

characteristics and trade-off performance and energy efficiency. Secondly, we analyze

the two-level cache and compare with the previous main cache architectures from

67

the aspect of performance and energy efficiency with the synthetic tests and real-life

IoT applications. The rest of the chapter is organized as follows: The details of our

prefetching scheme in two-level cache architecture is described in section 5.2. The

comparison results with synthetic tests and application are show in section 5.3, and

section 5.4 concludes the chapter.

5.2 Architecture

With the target of energy efficiency design in mind, we carefully choose the prefetch

strategy to avoid leading to worse performance and more power. Since the prefetch

only improves performance and brings additional power inevitably, according to the

equation Energy = Power × Time = Power × (Cycles/Frequency), with a fixed

frequency. The performance (1/Cycles) improvement brought by prefetch should be

higher than the extra power generated by the additional area and activities.

Figure 5.1: Two-level cache with L1 prefetch, the critical path shown in the red arrow.

68

Figure 5.2: Details in the L1 cache. i) The fetch and prefetch control unit access to TAG

with dual-port memories and DATA. ii) The fetch control unit has the priority to write

memories.

A simple prefetch scheme is used to meet our ULP requirement, as shown in

Fig. 5.1. We utilize L1 next-line (4 instructions) prefetch to largely hide the latency

from core to L1 to reduce L1 capacity miss (Fig. 5.1). We choose always prefetch

since the prefetch-on-miss is insufficient to hide the latency for small L1. Besides, we

use dual-port TAG memories, implemented with latches for parallel cache LOOKUP

between prefetch and refill operations. Fig. 5.2 shows the dual-read-port TAG for

prefetch LOOKUP. Thanks to the efficient prefetch, the bandwidth (BW) from L1

to L1.5 increases little only when branches happen. Nevertheless, there is a speed

mismatch between core fetch and prefetch because of the different refill latency of

each memory level. As a result, we analyze two cases shown in Fig. 5.3:

69

Figure 5.3: Timing diagrams of L1 to L1.5 prefetch. The upper diagram is the core fetch

to L1 with one cycle latency when hit (first fetch) and three cycles latency when miss and

hit in the L1.5 (second fetch). The below diagram shows the L1 refill and prefetch to the

L1.5 with two cycles latency when hit. Once there is a core fetch, prefetch starts in the

next cycle. L1 refill and prefetch share the interconnect’s bandwidth.

• Prefetch is faster than core fetch, shown in the first fetch valid. In this case,

prefetch waits for the next valid core fetch to trigger again. If the next core

fetch hits, we say prefetch succeeds. If not, we know that there is a branch.

The prefetch control unit waits for the branch’s valid fetch and restarts from

the new address shown in the second fetch req. The branch address is 0xC0

instead of 0xB0, and prefetch restarts from next address - 0xD0.

• Prefetch is slower than core fetch. Even though the prefetch is valid, core fetch

still has a miss since prefetch is in doing. However, suppose the fetch knows a

valid prefetch is in doing. In that case, the fetch can Wait for the Unfinished

Prefetch (WUP) or use the prefetch data directly to save at least one cycle (red

arrow) for TAG LOOKUP indicated by the signal is prefetch in Fig. 5.3. The

third core fetch indicates a miss from the TAG LOOKUP while finding a valid

prefetch, then the refill to L1.5 is cancelled, and the cache responds directly.

In conclusion, with these strategies, we can improve performance constantly.

Furthermore, we store only valid prefetch cache lines in the cache to avoid

70

cache pollution. So before storing prefetch data to cache, we compare the re-

cent buffered prefetch address with the current buffered fetch address, then if there

is a branch, which means ((Current fetch address 6= Prefetch address) or

((Current address + 16) 6= Prefetch address)), as shown by the signal is branch

in Fig. 5.2, we drop the wrong prefetch cache line. Corresponding with the previous

two cases, i) Prefetch is faster than fetch, and we always store prefetch data. In this

case, we may store the wrong prefetch data when a branch happens. ii) Prefetch is

slower than fetch, and we are always sure that we store the useful data to cache. In

real practice, we found that the prefetch is rarely slower than core fetch with the

relatively large 128-bit cache line. In the end, there is no conflict to write the cache

between refill and prefetch control unit with two MUXs giving priority to the refill.

5.2.1 Out-of-order interconnect

In Fig. 5.2, the refill and prefetch control unit issue a fetch to the next level through

an arbiter to share the BW, and this useful prefetch increase BW a little only when

branch happens. Instead of increasing 2× ports for the interconnect, which will

bring more congestion and delay, we support out-of-order transfer for the refill and

prefetch sharing one port. This BW sharing is shown in Fig. 5.3. For the second fetch

in address 0xC0, there is a miss in the L1 cache, and the refill issues a request. After

that, the prefetch in address 0xD0 starts directly without waiting for the finish of the

refill. However, it is difficult to distinguish the valid responses for refill and prefetch

from the shared banks since they can come in any order. Thus, we add one bit ID

for each transfer in the most significant bit (MSB) of address and valid response

data in the arbiter. For example, if the transfer address MSB is asserted, we need to

wait for the valid response data with the MSB and vice versa. If the two responses

come in the same cycle, we omit the prefetch data without disturbing the normal

refill. In real practice, when there is no miss in the L1 cache (always sequential

fetch without branch), the BW is almost 100% occupied by the total 2×8 requests

from the refill and prefetch. With the presented prefetch scheme, we improve the

performance without influencing normal fetch with minimal area overhead, including

prefetch control unit, additional read port for TAG, and out-of-order interconnect

71

Mnemonic Type Hit L1.5 L2 Description Set-associate

Cycles Penalty Penalty

PR Private 1 - 15 512 Bytes I$ bank x 8 cores 4-way

SP Shared ≥1 - 17 8 x 512 Bytes I$ banks, 1-port 4-way

MP Shared 1 - 19 2 x 2048 Bytes I$ banks, 8-port 4-way

HIER Private 1 ≥3 19 512 Bytes L1 I$ bank x 8 cores 4-way

Shared ≥1 - 17 2 x 2048 Bytes L1.5 I$ banks, 1-port 4-way

HIER PRE Private 1 ≥3 19 512B I$ bank x 8 cores with prefetch 4-way

Shared ≥1 - 17 2x 2048B I$ banks, single-port with Response buffer 4-way

Table 5.1: Instruction cache architecture configurations, including two-level cache.

to improve the performance and keep the energy efficiency.

In order to analyse the performance and power of all the caches, we run the

same synthetic tests and real-life applications described in section 3.1.2 and 3.1.3 to

summarize in detail the characteristic of the two-level instruction cache.

5.3 Evaluation

As shown in Table 5.1, we still use 4-way set-associate and same size for both L1

and L1.5 cache to reduce miss rate to ensure the performance for the two-level cache

with prefetch (HIER PRE). We use the same GF22FDX technology to implement

the design and the same power model method to characterize the prefetch feature

with previous work in detail.

5.3.1 Performance Results

5.3.1.1 Synthetic tests’ performance

Fig. 5.4 summarizes the throughput of all synthetic tests measured on the different

architectural configurations normalized to PR-0.375 KB. First, we can see that the

performance drops of the HIER are significantly recovered by the prefetch feature.

On average, the HIER PRE has the same performance with shared caches. This

means the prefetch fetches the next cache line in L1.5 in advance and in time. How-

ever, since the synthetic tests adapt to sequential prefetch, thus the HIER PRE

72

improves about 9% performance compared to the HIER. For real-life IoT applica-

tions with rich L2 instruction access patterns, the performance improvement of the

prefetch feature may degrade.

Figure 5.4: Throughput of the applications normalized to PR with 0.375 KB instruction

size, 200MHz.

5.3.1.2 Real-life applications’ performance

Fig. 5.5a shows each cache level’s miss rate for each applications among all caches.

It is clear that the L1 prefetch feature reduces the miss rate up by 50% compared

with the two-level cache without prefetch. Thus, the HIER PRE can always improve

the performance. Fig. 5.5 shows the throughput of each application for all caches

normalized to the PR. For the low miss rate application in the left, on average,

the HIER PRE has the best performance thanks to the prefetch feature. For the

high miss rate applications, which are rarely in the IoT applications, the HIER PRE

improves the performance by 7% compared to the HIER. However, it still loses about

16% performance compared with shared caches due to the two-level structure with

the limited L1 cache capacity. Besides, the sequential prefetch can not recover the

performance when the frequent branches happen.

5.3.2 Physical Implementation Results

73

(a) Miss rate

(b) Throughput of the applications normalized to PR, 200MHz. the low miss rate applications in

the left and the high miss rate applications in the right

Figure 5.5: Miss rate and throughput of the applications.

5.3.2.1 Area and Timing results

Fig. 5.6 illustrates the silicon area costs for all cache. We can see that the HIER PRE

has little area increase, about 2%, thanks to the small and efficient prefetch strate-

gies. Since no critical path is introduced, the HIER PRE keeps the same max

frequency with the HIER. Thus, it keeps the balance between scalability and per-

formance (Table 5.2).

74

Figure 5.6: The 8-core cluster area breakdown for the different cache architectures and

configurations. Instruction cache area contribution is placed on top.

Type Cluster Maximum frequency [MHz] Speed up compare with PR [%]

8-core 16-core 8-core 16-core

PR 378 363 0 0

SP 350 320 -7 -12

MP 357 306 -5 -16

HIER 372 354 -1 -2

HIER PRE 372 354 -1 -2

Table 5.2: Timing result

5.3.2.2 Synthetic tests’ power and energy efficiency

Fig. 5.7a shows the power of all synthetic tests measured on the different architec-

tural configurations. As expected, the power of HIER PRE increases a little about

3% compared with the HIER due to the extra area of the prefetch controller and

the dual-read-port TAG memories.

As we talked about in section 5.2, if the improvement of the performance is

larger than the increase of power for the prefetch feature, then we can treat it as

a good prefetch scheme. In Fig. 5.7b, on average the HIER PRE has a 6% energy

efficiency improvement brought by the prefetch feature. Thus, we can say that

our proposal is a good prefetch scheme that always improves performance while

achieving higher energy efficiency. However, for the tests of 0.375 KB instruction

size, the improvement of the prefetch is not apparent since the miss rate is close to

0. Besides, it still has 3% less energy efficiency on average compared with the SP

due to its two-level structure.

75

By exploiting the same power model method, Fig. 5.8 updated the LUT with the

power of HIER PRE running with synthetic tests. We can see that the HIER PRE

has higher power than the HIER while they have the same power when the miss

rate is close to 0.

(a) Power

(b) Normalized Energy efficiency

Figure 5.7: Power, energy efficiency of the synthetic tests normalized to PR with

0.375 KB cache size, 200MHz.

5.3.2.3 Real-life applications’ power and energy efficiency

Fig. 5.9 shows the energy efficiency for each cache normalized to PR. In the left,

for the low miss rate applications, the HIER PRE keeps the energy efficiency with

the HIER since the instruction fetch always hit. In this situation, the performance

improvement is less than the extra power increase for prefetch. The software can

choose to disable the prefetch feature to avoid extra power. However, the energy

efficiency of the HIER PRE still surpasses both the private and the shared caches.

76

Figure 5.8: PowerAverage ∝ (1/MissRate) inverse linear regression, 200MHz, updated

with the HIER PRE.

For the high miss rate applications, the energy efficiency improvement of the prefetch

is 4% on average compared to the HIER. The improvement decreases compared

with synthetic tests is due to the rich access patterns and frequent branches of the

applications. As a result, flat shared caches always keeps the best energy efficiency

with a specific frequency.

Figure 5.9: Energy efficiency of the applications normalized to PR, 200MHz. The low

miss rate applications in the left and the high miss rate applications in the right.

5.4 Conclusion

This work proposed a sequential prefetch in L1 based on a two-level instruction cache

to reduce the performance drop compared with a shared cache and keep energy

efficiency. An effective prefetch scheme is adopted with the limited extra area,

including an extra prefetch controller sharing the bandwidth to L1.5 with the fetch

controller through an out-of-order interconnect. We explored various instruction

77

cache architectures in an energy-efficient and cost-effective tightly coupled cluster

with several signal processing and CNN applications that feature diverse instruction

memory access patterns. Results show that the prefetch feature constantly improves

the performance up to 7% while keeping 4% more energy efficiency in the two-level

cache. Finally, the two-level instruction cache with software-enabled prefetch adapts

to real-life IoT applications to achieve the highest performance and balanced energy

efficiency.

78

Chapter 6

Core instruction fetch timing opti-

mization

6.1 Overview

As mentioned in section 1.1.3.2 and shown in Fig. 2.15c, 2.16b and 2.17c, the caches

with the legacy 128-bit instruction fetch stage (IF) have limited frequency due to

some long combinational paths through the instruction fetch stage. To analyze the

critical path in detail, we need to use the Static timing analysis (STA) method,

a simulation method of computing the expected timing of a synchronous digital

circuit without requiring a simulation of the full circuit. Fig. 6.1 shows the setup

time violation from one register in the execute stage of the core to the one register

in the instruction cache. Both of the two registers are clocked by the same clock

CLK. In Fig. 6.1, we have the equation of (tclk + t1) ≥ (t2 + t3 + t4 + t5). The

positive timing slack (ts) is the requirement that we must meet with certain design

corners. We usually analyze the worst case for setup time to ensure the system’s

maximum frequency.

The first STA normally happens after the synthesis. The designers analyze the

critical paths shown by the report with a given target frequency. For example, Fig.

6.2 reports one critical path with a given frequency (500MHz) in a cluster with

the private cache. This critical path starts from the ID stage in the core, going

to the private cache with the fetch req, then the cache responds to the core with

79

(a) Notion of critical path (register-to-register setup violation).

(b) Timing diagram.

Figure 6.1: Notion and timing diagram of the critical path between the cores and the

instruction cache. The tclk is the clock period; the t1 is the clock skew and jitter, can

be negative; the t2 is the clock to data transition time; the t3 and t4 are the time for

combinational logics; the t5 is the data setup time (minimum stable time) before next

clock rising edge; the ts the timing slack.

fetch gnt. Finally, the timing slack is negative about 408ps timing violation with

500ps clock uncertainty. The timing analysis is the most important task in the

front-end and back-end circuit design. To close the timing issue, designers need

to check through the timing reports and to fix the issues one by one. Since cache

memory is always in the critical timing path, one solution is to pipeline the primary

cache to reduce the memory access time. However, this will largely decrease the

fetch efficiency, especially for the cache hit, which may take (1 + pipeline) times the

cycles in a ULP cluster. Thus, it is necessary to distinguish the critical path and

find appropriate methods to cut the critical path between the cores and the caches

to speed up the system frequency.

The rest of the chapter is organized as follows: in section 6.2, we propose the

80

methods for each type of critical path in practice. Next, the comparison results

with synthetic tests and applications are shown in section 6.3. Finally, section 6.4

concludes the chapter.

Figure 6.2: One critical path report generated by Synopsis Design Compiler after syn-

thesis with target frequency 500 Mhz.

6.2 Architecture

As mentioned in section 1.1.3.2 and shown in Fig. 2.15c, 2.16b and 2.17c, the

caches with the legacy 128-bit instruction fetch stage have limited frequency due to

some long combinational paths through the instruction fetch stage (IF). There are

two types of paths shown in Fig. 5.1: The path from fetch valid or fetch data to

fetch req and back with fetch gnt to the core. It exists because the IF prefetch

depends on the previous fetched (unaligned or non-unaligned, compressed or non-

81

compressed) instruction to fetch the next instruction as soon as possible. Besides,

the fetch req is acknowledged by fetch gnt back to the core. These port-to-port

paths cause another critical path for the L1 cache, from the fetch valid of the L1

cache’s TAG or DATA arrays to fetch req, then back to it when TAG LOOKUP.

This path worsens when logarithmic interconnect is used, such as in SP cache. 2)

The path from the instruction execution stage (EX) to the IF’s fetch req until the

cache has conditional branches. As shown in Fig. 6.3, we can see that instruction

0xA0 is an unconditional jump taken directly from the ID stage to instruction 0xC0.

It is not on the critical path. Then, instruction 0xC0 is a conditional branch taken

directly from EX stage to instruction 0xD0, instruction 0xA2, 0xC2 and 0xC4 are

dropped. This critical path from EX to fetch req improves fetching efficiency and

saves one cycle. However, it limits the frequency.

Figure 6.3: Instruction fetch and branch in RI5CY core with 4-stage pipeline.Instruction

0xA0 is a unconditional jump to 0xC0, and 0xC0 is conditional branch to 0xD0. The

fetch req depends on the fetch valid and fetch data because of the core prefetch with

RISC-V compressed instruction set.

To cut the first type of critical path, we integrate a 4 × 32-bit ring FIFO buffer to

simplify the cores’ instruction fetch (Fig. 6.4a). The small ring FIFO buffer has the

following features: 1) the read pointer points to the current useful instruction and

the write pointer points to the next available writing space; 2) the FIFO is full when

the number of useful instruction is equal or greater than the FIFO depth minus one;

3) the core can send non-blocking to fetch requests when the FIFO is not full; 4) the

82

ring FIFO helps act as a primary cache when the short branches hit in the ring FIFO.

To cut the second type of critical path from EX for the conditional branch, we must

insert a pipeline or implement a branch predictor in the IF/ID stage. However, the

branch predictors with branch addresses registering for diverse branches take huge

extra area and power. Besides, branch predictors’ index searching is also in the

critical path to the fetch req. In the end, we choose to delay the conditional branch

one cycle to increase the frequency.

Fig. 6.4 shows the two-level cache after IF optimization, and we can see that a

small 4 × 32-bit ring FIFO buffer is used to issue the fetch req without dependence

on other signals. Besides, a 128-bit L0 buffer is still used to avoid heavy request

traffic to the L1 cache control unit. As a result, it brings more power than the

legacy 128-bit IF with the extra ring FIFO buffer. In the end, the final remaining

path (red arrow) starts from the L1 caches’ DATA array to cores’ inner instruction

decompression logic, which is small.

(a) A 4 × 32 ring FIFO buffer. (b) Throughput, 200MHz

Figure 6.4: Two-level cache with L1 prefetch after IF optimization with 4 × 32-bit ring

FIFO buffer and additional conditional branch pipeline, the remain critical path shown in

the red arrow.

In order to analyse the performance and power of all the caches, we run the

same synthetic tests and real-life applications described in section 3.1.2 and 3.1.3

to summarize in detail the characteristic of the two-level instruction cache with the

83

optimized IF.

Mnemonic Type Hit L1.5 L2 Description Set-associate

Cycles Penalty Penalty

PR Private 1 - 15 512 Bytes I$ bank x 8 cores 4-way

SP Shared ≥1 - 17 8 x 512 Bytes I$ banks, 1-port 4-way

MP Shared 1 - 19 2 x 2048 Bytes I$ banks, 8-port 4-way

HIER Private 1 ≥3 19 512 Bytes L1 I$ bank x 8 cores 4-way

Shared ≥1 - 17 2 x 2048B I$ banks, single-port with Response buffer 4-way

HIER PRE Private 1 ≥3 19 512B I$ bank x 8 cores with prefetch 4-way

Shared ≥1 - 17 2x 2048B I$ banks, single-port with Response buffer 4-way

HIER OPT Private 1 ≥3 19 512B I$ bank x 8 cores 4-way

Shared ≥1 - 17 2x 2048B I$ banks, single-port with Response buffer 4-way

HIER PRE OPT Private 1 ≥3 19 512B I$ bank x 8 cores with prefetch 4-way

Shared ≥1 - 17 2x 2048B I$ banks, single-port with Response buffer 4-way

Table 6.1: Instruction cache architecture configurations, including two-level cache.

6.3 Evaluation

As shown in Table 6.1, we use a 4-way set-associate for both L1 and L1.5 cache to

reduce miss rate and ensure performance. We use the same GF22FDX technology to

implement the design and the same power model method to compare our proposal

with previous work in detail.

6.3.1 Performance Results

6.3.1.1 Synthetic tests’ performance

Fig. 6.5a shows the normalized throughput of the synthetic tests running on the dif-

ferent architecture configurations, assuming that all the configurations are running

at the same operating frequency, providing an insight into their functional perfor-

mance. When the loop body is smaller than the size of L1 of the HIER caches

(0.5 KB), the throughput of all the configurations is the same since they always hit

in L1. When increasing the size of the loop body to 0.75 KB, the performance of

the PR cache drops significantly (∼55%) since each cache miss is refilled from L2

featuring 15 cycles of latency. On the other hand, the HIER configurations feature

84

only a slight drop in performance (∼15%) thanks to the low latency of the refills

from the 4 KB L1.5, which is almost completely recovered activating the prefetcher.

When the loop body is larger than 4 KB (size of shared configuration and L1.5 of the

HIER configuration), the performance of these configurations also starts dropping

due to capacity misses. Besides, We can see that the HIER OPT has slightly better

performance on average than the HIER is because the 4 × 32 ring FIFO buffer

features the next instruction sequential prefetching when FIFO is not full.

Fig. 6.5b shows the normalized throughput when each configuration runs at the

maximum operating frequency. It is possible to note that HIER PRE OPT improves

the performance by ∼16% for all the synthetic tests with respect to the shared caches

thanks to the similar functional performance and much higher maximum operating

frequency. In particular, most of the gain is thanks to the optimized instruction

fetch stage of the RI5CY core described in section 6.2.

6.3.1.2 Real-life applications’ performance

Fig. 6.6a shows the functional performance of the proposed cache architectures (i.e.,

when running at the same operating frequency) normalized to PR. In general, since

shared caches and two-level cache can remove capacity miss with relatively larger

cache size, they always have better performance than PR. Besides, HIER has two

more cycles refill when L1 miss and L1.5 hit than SP, so it loses 2% performance

compared with shared caches. When we compare the performance of low L1 miss

rate applications, HIER PRE can achieve the same performance with shared caches

and always improve performance compared with HIER. HIER PRE OPT functional

performance is on average smaller by 5% with respect to HIER and shared caches,

due to the stall caused by the pipeline stage added to unconditional branches to

improve the operating frequency of the design. For always hit applications such as

BFS, CT, and SLIC, the functional performance drop is smaller, 3.5% on average

compared to PR. Finally, for high L1 miss rate applications, even though HIER PRE

and HIER PRE OPT reduce the L1 capacity miss and improve the performance by

7% on average compared with HIER and HIER OPT, their functional performance

is about 17% smaller compared to shared caches mainly due to the high L1 miss

85

(a) Throughput, 200MHz

(b) Maximum throughput

Figure 6.5: Throughput of the applications normalized to PR with 0.375 KB instruction

size.

rate and additional latency required to refill from L2.

Fig. 6.6b shows the performance results of the different cache architectures when

operating at the maximum operating frequency, highlighting the better scalability of

the hierarchical solutions, especially the one with optimized instruction fetch unit.

Results are normalized to the performance of PR. The HIER PRE OPT improves

the performance by 17% compared with private cache and shared cache for low L1

miss rate applications. For high L1 miss rate applications (which are again not

common in the IoT domain), HIER PRE OPT delivers 2.4x better performance

than private caches and only about 5% smaller performance than the shared caches.

6.3.2 Physical Implementation Results

86

(a) Throughput, 200MHz

(b) Maximum throughput

Figure 6.6: Throughput of the applications normalized to PR, 200MHz. the low miss

rate applications in the left and the high miss rate applications in the right.

6.3.2.1 Area and Timing results

Fig. 6.7 illustrates the silicon area costs for all cache. We can see that the HIER PRE OPT

has almost no extra area increase because only a 4 × 32-bit ring FIFO is introduced

in each of the cluster core.

Figure 6.7: The 8-core cluster area breakdown for the different cache architectures and

configurations. Instruction cache area contribution is placed on top.

87

Table 6.2 shows the results of the static timing analysis for all the cache ar-

chitectures, implemented in clusters of 8 cores or 16 cores to highlight the better

scalability of the proposed cache. For a system with 8 cores, the caches with simple

L1 private cache have the best timing, keeping about 6% timing improvement com-

pared to shared caches. After optimization of the IF, the HIER OPT can have 14%

maximum frequency improvement compared to the flat private cache. When we in-

crease the system core number to 16, we observe that MP and SP have about 19%

and 15% maximum frequency drop respectively compared to HIER OPT. For the

MP, 16-port memory banks cause serious wire congestion, leading to worse timing

results. It is the same issue for SP, with more channels and more levels logarithmic

interconnection, the critical paths become worse with interactions of request and

response channels. Thus the two-level cache with n optimized core fetch interface

has better timing and scalability by eliminating the long paths in the request and

response channels.

Type Cluster Maximum frequency [MHz] Speed up compare with PR [%]

8-core 16-core 8-core 16-core

PR 378 363 0 0

SP 350 320 -7 -12

MP 357 306 -5 -16

HIER 372 354 -1 -2

HIER OPT 429 399 +14 +10

HIER PRE OPT 429 399 +14 +10

Table 6.2: Timing result

6.3.2.2 Synthetic tests’ power and energy efficiency

Fig. 6.8a shows the power of all synthetic tests measured on different architecture

configurations. The HIER OPT and the HIER PRE OPT have one more ring buffer

FIFO described in section 6.2 than the HIER, so they bring 2% and 3% more power

than the HIER on average, respectively.

Fig. 6.8b shows the energy efficiency of all synthetic tests measured on the dif-

ferent architecture configurations. In general, the SP is the cache providing the

88

best trade-off between performance and power, delivering better energy efficiency

on these synthetic benchmarks. Besides, two-level caches are penalized due to the

higher power consumption caused by their two-level nature. The versions without

prefetcher are further penalized by the worse functional performance, which is re-

covered by enabling the prefetcher to bring 10% to 20% better performance with

only ∼3% increase of power.

By exploiting the same power model method, Fig. 6.9 updated the LUT with the

power of the HIER OPT and the HIER PRE OPT running with synthetic tests.

We can see that the two-level caches with the optimized IF have more power than

the previous two-level caches with an extra 4 × 32-bit ring FIFO buffer. We use it

to do power evaluation for the proposed caches.

6.3.2.3 Real-life applications’ power and energy efficiency

Fig. 6.10 shows the results of energy efficiency, which are normalized to PR. As

well as before, for low L1 miss rate applications, the improvement of efficiency of

HIER over PR is limited since the L1 cache suffers less capacity miss. Moreover,

the additional power brought by the prefetcher in HIER PRE is more or less equiv-

alent to the improvement of performance, which keeps the same energy efficiency

compared with HIER. The same applies when we compare HIER PRE OPT with

HIER OPT. HIER OPT and HIER PRE OPT consume more power than HIER

because of the additional 4x32-bit ring FIFO buffer to cut the critical path. Since

most of the real-life IoT applications have a low L1 miss rate, HIER’s small L1

cache takes advantage of lower power and relatively high energy efficiency without

losing much performance compared with shared caches. As a result, HIER and

HIER PRE feature, on average, 7% better energy efficiency than all other caches.

Besides, the decision of using the prefetch feature in a two-level cache should be con-

sidered by software for low L1 miss applications. For high L1 miss rate applications,

HIER PRE has the same energy efficiency as HIER, which means the additional

power gain is equal to the performance gain. Finally, HIER PRE brings a 7% im-

provement in performance while keeping the same energy efficiency compared with

HIER. Nevertheless, shared caches remove capacity miss with large L1, so they have

89

(a) Power

(b) Normalized Energy efficiency

Figure 6.8: Power, energy efficiency of the synthetic tests normalized to PR with

0.375 KB cache size, 200MHz.

Figure 6.9: PowerAverage ∝ (1/MissRate) inverse linear regression, 200MHz, updated

with the HIER OPT and the HIER PRE OPT.

90

about 20% gain in energy efficiency compared with two-level caches. However, since

HIER OPT isolates the critical path from the cores to instruction caches, it brings

better scalability for multi-core systems regarding the number of cores per cluster

and maximum operating frequency.

Figure 6.10: Energy efficiency of the applications normalized to PR, 200MHz. The low

miss rate applications in the left and the high miss rate applications in the right.

6.3.3 Discussion

Type Area Maximum Frequency Low L1 miss rate High L1 miss rate

8-core 16-core MxP P 1/E MxP P 1/E

PR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MP 1.25 0.95 0.84 1.02 1.10 0.98 2.47 1.10 2.38

SP 1.06 0.93 0.88 0.99 1.04 1.03 2.43 1.06 2.48

HIER 1.17 0.99 0.98 1.06 1.00 1.07 2.03 1.01 1.99

HIER PRE 1.17 0.99 0.98 1.06 1.01 1.07 2.16 1.04 2.11

HIER OPT 1.18 1.14 1.10 1.16 1.01 1.00 2.22 1.05 1.87

HIER PRE OPT 1.18 1.14 1.10 1.17 1.02 1.00 2.37 1.07 1.95

Table 6.3: Summary of Maximum frequency and Maximum Performance (MxP), Power

(P), Area and Energy Efficiency (1/E) of the proposed caches.

To put the experimental results in perspective, we collect them in Table 6.3. We

separate the results into two groups, low and high L1 miss rate applications. For

high L1 miss rate applications, not common in the IoT domain, both shared and

91

two-level caches feature 2× better performance than private cache thanks to the

large cache capacity. Single-port shared cache features the best energy efficiency,

and multi-port shared cache has the maximum performance. Still, the two-level

cache performance and energy efficiency are not so far from that of shared caches,

and the prefetcher can mitigate the performance drop reducing it to 5% at the cost

of some more power.

For the low L1 miss rate applications, we note that the two-level cache with

optimized instruction fetch subsystem delivers significant maximum performance,

up to 17% larger with respect to private and shared caches. The baseline two-

level cache has the best energy efficiency, 7% and 4% better than private cache and

single-port shared cache, respectively. It is interesting to note the trade-off between

the optimized fetch unit and the legacy one, the one performing better efficiency

thanks to the larger 128-bit interface requiring less control overhead for refills, and

the other one significantly relaxing the critical path through the core by means of a

simpler straight forward implementation leading to higher operating frequency for

the cluster, particularly when scaling up the number of computing cores. Finally,

when we review the target architecture in Table 1.1, our proposed two-level cache

with optimized timing realizes the goal of large cache capacity, high performance,

no congestion, small area, and good timing.

6.4 Conclusion

This work proposed a timing optimization of the core instruction fetch stage in a

two-level instruction cache to maximize performance and scalability. We explored

various instruction cache architectures in an energy-efficient and cost-effective tightly

coupled cluster with several signal processing and CNN applications that feature

diverse instruction memory access patterns. Results show that the proposed two-

level cache improves the maximum performance up to 17% compared with private

and shared caches. Finally, the timing improvement enables the two-level cache to

adapt to real-life IoT applications to achieve the highest performance and balanced

energy efficiency.

92

Chapter 7

Conclusions

This thesis presents a hierarchy instruction cache based on Stand Cell Memory with

prefetching in L1 cache, combining both L1 private iCache with L1.5 shared iCache

with an ultra-low latency out-of-order logarithmic interconnect to increase the scal-

ability while balancing the performance and energy in a general-purpose ultra-low-

power multi-core cluster. This architecture meets the requirement of real-life appli-

cations, including signal-processing and convolutional neural network applications

to enable the multi-core cluster to adapt to high performance and low power usage

cases. First, three iCache based on SCM are optimized and adapted to the PULP

platform and explored in detail to select the best iCache configuration in terms of

cache size and associativity to achieve high performance and low power. To solve

the private iCahce’s small capacity issue, two shared caches with N times cache

capacity are proposed to increase the performance and energy efficiency. At the

same time, shared caches suffer from timing issues with limited operating frequency

and low scalability when the number of cores increases. Next, the two-level iCache

is present to combine both of the benefits of private and shared iCache to balance

the performance and energy efficiency. Physical implementations are done for each

of the clusters featuring different iCache for concrete comparison; area results are

obtained with the P & R netlists. Clusters’ power characteristics are extracted with

the help of standalone synthetic tests and are applied to real-life applications. Based

on that, energy efficiency is calculated with the cycle-accurate simulation results.

The result shows that the two-level iCache improves the energy efficiency by 7%

and 4% respectively compared to private and shared iCache for the low L1 miss

93

rate applications. However, the L1 cache’s small capacity for some library-based

applications with frequent branches and long jumps can influence the performance

achieved by such two-level architecture. Thus, we add sequential next cache line

prefetching to improve the performance with little area overhead. Results show that

the prefetch feature constantly improves the performance up to 7% while keeping the

same energy efficiency in the two-level cache. After timing optimization of the core

instruction fetch stage, the two-level cache improves the maximum performance up

to 17% compared with private and shared iCaches. Finally, the two-level instruction

cache with software-enabled prefetch and up to 20% timing improvement adapts to

real-life IoT applications to achieve the highest performance and balanced energy

efficiency.

94

Publications

2020

C. Jie, I. Loi, L. Benini and D. Rossi, ”Energy-Efficient Two-level Instruction

Cache Design for an Ultra-Low-Power Multi-core Cluster,” 2020 Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2020, pp.

1734-1739, doi: 10.23919/DATE48585.2020.9116212.

2021

D. Rossi et al., ”4.4 A 1.3TOPS/W @ 32GOPS Fully Integrated 10-Core SoC for

IoT End-Nodes with 1.7µW Cognitive Wake-Up From MRAM-Based

State-Retentive Sleep Mode,” 2021 IEEE International Solid-State Circuits

Conference (ISSCC), 2021, pp. 60-62, doi: 10.1109/ISSCC42613.2021.9365939.

95

Bibliography

[1] Agarwal A., Li H., Roy K., 2002, in Proceedings 2002 Design Automation Con-

ference (IEEE Cat. No.02CH37324). DRG-cache: a data retention gated-ground

cache for low power. pp 473–478, doi:10.1109/DAC.2002.1012671

[2] Albonesi D., 1999, in MICRO-32. Proceedings of the 32nd Annual ACM/IEEE

International Symposium on Microarchitecture. Selective cache ways: on-demand

cache resource allocation. pp 248–259, doi:10.1109/MICRO.1999.809463

[3] Andreas Meinerzhagen P., Sherazi S. M. Y., Burg A., Rodrigues J., 2011, Bench-

marking of Standard-Cell Based Memories in the Sub-VrmT Domain in 65-nm

CMOS Technology, Emerging and Selected Topics in Circuits and Systems, IEEE

Journal on, 1, 173

[4] Ansari A., Lotfi-Kamran P., Sarbazi-Azad H., 2020, in 2020 ACM/IEEE 47th

Annual International Symposium on Computer Architecture (ISCA). Divide and

Conquer Frontend Bottleneck. pp 65–78, doi:10.1109/ISCA45697.2020.00017

[5] Ansari A., Golshan F., Lotfi-Kamran P., Sarbazi-Azad H., 2021, MANA:

Microarchitecting an Instruction Prefetcher, doi:10.48550/ARXIV.2102.01764,

https://arxiv.org/abs/2102.01764

[6] Baer J.-L., Wang W.-H., 1988, On the Inclusion Properties for Multi-Level Cache

Hierarchies, SIGARCH Comput. Archit. News, 16, 73–80

[7] Banerjee U., Juvekar C., Wright A., Arvind Chandrakasan A. P., 2018, in

2018 IEEE International Solid - State Circuits Conference - (ISSCC). An energy-

efficient reconfigurable DTLS cryptographic engine for End-to-End security in iot

applications. pp 42–44, doi:10.1109/ISSCC.2018.8310174

96

http://dx.doi.org/10.1109/DAC.2002.1012671
http://dx.doi.org/10.1109/MICRO.1999.809463
http://dx.doi.org/10.1109/JETCAS.2011.2162159
http://dx.doi.org/10.1109/JETCAS.2011.2162159
http://dx.doi.org/10.1109/ISCA45697.2020.00017
http://dx.doi.org/10.48550/ARXIV.2102.01764
https://arxiv.org/abs/2102.01764
http://dx.doi.org/10.1145/633625.52409
http://dx.doi.org/10.1109/ISSCC.2018.8310174

[8] Benini L., Macii A., Macii E., Poncino M., 2000, Increasing Energy Efficiency of

Embedded Systems by Application-Specific Memory Hierarchy Generation, IEEE

Des. Test, 17, 74–85

[9] Benini L., Flamand E., Fuin D., Melpignano D., 2012a, in 2012 Design, Au-

tomation Test in Europe Conference Exhibition (DATE). P2012: Building an

ecosystem for a scalable, modular and high-efficiency embedded computing accel-

erator. pp 983–987, doi:10.1109/DATE.2012.6176639

[10] Benini L., Flamand E., Fuin D., Melpignano D., 2012b, in 2012 Design, Au-

tomation Test in Europe Conference Exhibition (DATE). P2012: Building an

ecosystem for a scalable, modular and high-efficiency embedded computing accel-

erator. pp 983–987, doi:10.1109/DATE.2012.6176639

[11] Berg S. G., 2002. Cache Prefetching

[12] Burrello A., Garofalo A., Bruschi N., Tagliavini G., Rossi D., Conti F., 2021,

DORY: Automatic End-to-End Deployment of Real-World DNNs on Low-Cost

IoT MCUs, IEEE Transactions on Computers, pp 1–1

[13] Calhoun B., Chandrakasan A., 2006, in 2006 IEEE International Solid State

Circuits Conference - Digest of Technical Papers. A 256kb Sub-threshold SRAM

in 65nm CMOS. pp 2592–2601, doi:10.1109/ISSCC.2006.1696325

[14] Canziani A., Paszke A., Culurciello E., 2016, An Analysis of Deep Neural Net-

work Models for Practical Applications, CoRR, abs/1605.07678

[15] Canziani A., Paszke A., Culurciello E., 2017, An Analysis of Deep Neural Net-

work Models for Practical Applications (arXiv:1605.07678)

[16] Chang L., et al., 2005, in Digest of Technical Papers. 2005 Symposium on VLSI

Technology, 2005.. Stable SRAM cell design for the 32 nm node and beyond. pp

128–129, doi:10.1109/.2005.1469239

[17] Chang I. J., Kim J.-J., Park S. P., Roy K., 2008, in 2008 IEEE International

Solid-State Circuits Conference - Digest of Technical Papers. A 32kb 10T Sub-

97

http://dx.doi.org/10.1109/54.844336
http://dx.doi.org/10.1109/54.844336
http://dx.doi.org/10.1109/DATE.2012.6176639
http://dx.doi.org/10.1109/DATE.2012.6176639
http://dx.doi.org/10.1109/TC.2021.3066883
http://dx.doi.org/10.1109/ISSCC.2006.1696325
http://arxiv.org/abs/1605.07678
http://dx.doi.org/10.1109/.2005.1469239

threshold SRAM Array with Bit-Interleaving and Differential Read Scheme in

90nm CMOS. pp 388–622, doi:10.1109/ISSCC.2008.4523220

[18] Chung S. W., Skadron K., 2008, On-Demand Solution to Minimize I-Cache

Leakage Energy with Maintaining Performance, IEEE Transactions on Comput-

ers, 57, 7

[19] Conti F., Marongiu A., Benini L., 2013, in Proceedings of the Ninth

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and

System Synthesis. Synthesis-friendly Techniques for Tightly-coupled Integration of

Hardware Accelerators into Shared-memory Multi-core Clusters, CODES+ISSS

’13. IEEE Press, Piscataway, NJ, USA, pp 5:1–5:10, http://dl.acm.org/

citation.cfm?id=2555692.2555697

[20] Conti F., Marongiu A., Pilkington C., Benini L., 2016, He-P2012: Performance

and Energy Exploration of Architecturally Heterogeneous Many-Cores, J. Signal

Process. Syst., 85, 325–340

[21] Conti F., et al., 2017, An IoT Endpoint System-on-Chip for Secure and Energy-

Efficient Near-Sensor Analytics, IEEE Transactions on Circuits and Systems I:

Regular Papers, 64, 2481

[22] Conti F., Schiavone P. D., Benini L., 2018, XNOR Neural Engine: A Hardware

Accelerator IP for 21.6-fJ/op Binary Neural Network Inference, IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems

[23] Dang X., Wang X., Tong D., Xie Z., Li L., Wang K., 2013, in 2013

18th Asia and South Pacific Design Automation Conference (ASP-DAC). An

adaptive filtering mechanism for energy efficient data prefetching. pp 332–337,

doi:10.1109/ASPDAC.2013.6509617

[24] Davide Schiavone P., Conti F., Rossi D., Gautschi M., Pullini A., Flamand

E., Benini L., 2017, in 2017 27th International Symposium on Power and Tim-

ing Modeling, Optimization and Simulation (PATMOS). Slow and steady wins

the race? A comparison of ultra-low-power RISC-V cores for Internet-of-Things

applications. pp 1–8, doi:10.1109/PATMOS.2017.8106976

98

http://dx.doi.org/10.1109/ISSCC.2008.4523220
http://dx.doi.org/10.1109/TC.2007.70770
http://dx.doi.org/10.1109/TC.2007.70770
http://dl.acm.org/citation.cfm?id=2555692.2555697
http://dl.acm.org/citation.cfm?id=2555692.2555697
http://dx.doi.org/10.1007/s11265-015-1056-7
http://dx.doi.org/10.1007/s11265-015-1056-7
http://dx.doi.org/10.1109/TCSI.2017.2698019
http://dx.doi.org/10.1109/TCSI.2017.2698019
http://dx.doi.org/10.1109/TCAD.2018.2857019
http://dx.doi.org/10.1109/TCAD.2018.2857019
http://dx.doi.org/10.1109/ASPDAC.2013.6509617
http://dx.doi.org/10.1109/PATMOS.2017.8106976

[25] Edmondson J. H., et al., 1995, Internal Organization of the Alpha 21164, a

300-MHz 64-Bit Quad-Issue CMOS RISC Microprocessor, Digital Tech. J., 7,

119–135

[26] Ferdman M., Wenisch T. F., Ailamaki A., Falsafi B., Moshovos A., 2008, in

2008 41st IEEE/ACM International Symposium on Microarchitecture. Temporal

instruction fetch streaming. pp 1–10, doi:10.1109/MICRO.2008.4771774

[27] Ferdman M., Kaynak C., Falsafi B., 2011, in 2011 44th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO). Proactive instruction

fetch. pp 152–162

[28] Flamand E., Rossi D., Conti F., Loi I., Pullini A., Rotenberg F., Benini L.,

2018a, in 2018 IEEE 29th International Conference on Application-specific Sys-

tems, Architectures and Processors (ASAP). GAP-8: A RISC-V SoC for AI at

the Edge of the IoT. pp 1–4

[29] Flamand E., Rossi D., Conti F., Loi I., Pullini A., Rotenberg F., Benini L.,

2018b, in 2018 IEEE 29th International Conference on Application-specific Sys-

tems, Architectures and Processors (ASAP). GAP-8: A RISC-V SoC for AI at

the Edge of the IoT. pp 1–4, doi:10.1109/ASAP.2018.8445101

[30] Flautner K., Kim N. S., Martin S., Blaauw D., Mudge T., 2002, in Pro-

ceedings 29th Annual International Symposium on Computer Architecture.

Drowsy caches: simple techniques for reducing leakage power. pp 148–157,

doi:10.1109/ISCA.2002.1003572

[31] Fu J. W. C., Patel J. H., Janssens B. L., 1992, in Proceedings of the 25th An-

nual International Symposium on Microarchitecture. Stride Directed Prefetching

in Scalar Processors, MICRO 25. IEEE Computer Society Press, Washington,

DC, USA, p. 102–110

[32] Garello K., et al., 2018, in 2018 IEEE Symposium on VLSI Circuits. SOT-

MRAM 300MM Integration for Low Power and Ultrafast Embedded Memories.

pp 81–82, doi:10.1109/VLSIC.2018.8502269

99

http://dx.doi.org/10.1109/MICRO.2008.4771774
http://dx.doi.org/10.1109/ASAP.2018.8445101
http://dx.doi.org/10.1109/ISCA.2002.1003572
http://dx.doi.org/10.1109/VLSIC.2018.8502269

[33] Gautschi M., Traber A., Pullini A., Benini L., Scandale M., Di Federico A.,

Beretta M., Agosta G., 2015, in 2015 IFIP/IEEE International Conference on

Very Large Scale Integration (VLSI-SoC). Tailoring instruction-set extensions

for an ultra-low power tightly-coupled cluster of OpenRISC cores. pp 25–30,

doi:10.1109/VLSI-SoC.2015.7314386

[34] Gautschi M., et al., 2017, Near-Threshold RISC-V Core With DSP Extensions

for Scalable IoT Endpoint Devices, IEEE Transactions on Very Large Scale Inte-

gration (VLSI) Systems, 25, 2700

[35] Ge Z., Mitra T., Wong W.-F., 2009, in 2009 46th ACM/IEEE Design Automa-

tion Conference. A DVS-based pipelined reconfigurable instruction memory. pp

897–902

[36] Geer D., 2005, Chip makers turn to multicore processors, Computer, 38, 11

[37] GreenWaves Technologies 2018, GAP8 Auto-tiler Manual, https://

greenwaves-technologies.com

[38] Hajimiri H., Rahmani K., Mishra P., 2012, Compression-aware dynamic cache

reconfiguration for embedded systems, Sustain. Comput. Informatics Syst., 2, 71

[39] Harris D. M., Ho R., Wei G.-Y., Horowitz M., 1998. The Fanout-of-4 Inverter

Delay Metric

[40] Hennessy J. L., Patterson D. A., 2002, Computer Architecture: A Quantitative

Approach, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

[41] IPC-1 2020, The 1st instruction prefetching championship, https://research.

ece.ncsu.edu/ipc/

[42] ITRS 2011, International Technology Roadmap for Semiconductors., http://

www.itrs.net/Links/2011ITRS/2011Chapters/2011ExecSum.pdf

[43] Iacobovici S., Spracklen L., Kadambi S., Chou Y., Abraham S. G., 2004,

in Proceedings of the 18th Annual International Conference on Supercom-

puting. Effective Stream-Based and Execution-Based Data Prefetching, ICS

100

http://dx.doi.org/10.1109/VLSI-SoC.2015.7314386
http://dx.doi.org/10.1109/TVLSI.2017.2654506
http://dx.doi.org/10.1109/TVLSI.2017.2654506
http://dx.doi.org/10.1109/MC.2005.160
https://greenwaves-technologies.com
https://greenwaves-technologies.com
https://research.ece.ncsu.edu/ipc/
https://research.ece.ncsu.edu/ipc/
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011ExecSum.pdf
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011ExecSum.pdf

’04. Association for Computing Machinery, New York, NY, USA, p. 1–11,

doi:10.1145/1006209.1006211, https://doi.org/10.1145/1006209.1006211

[44] Ickes N., Sinangil Y., Pappalardo F., Guidetti E., Chandrakasan

A. P., 2011, in 2011 Proceedings of the ESSCIRC (ESSCIRC). A 10

pJ/cycle ultra-low-voltage 32-bit microprocessor system-on-chip. pp 159–162,

doi:10.1109/ESSCIRC.2011.6044889

[45] Ishii Y., Lee J., Nathella K., Sunwoo D., 2021, in 2021 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS). Re-

establishing Fetch-Directed Instruction Prefetching: An Industry Perspective. pp

172–182, doi:10.1109/ISPASS51385.2021.00034

[46] Jain S., et al., 2012, in 2012 IEEE International Solid-State Circuits Conference.

A 280mV-to-1.2V wide-operating-range IA-32 processor in 32nm CMOS. pp 66–

68, doi:10.1109/ISSCC.2012.6176932

[47] Jie C., Loi I., Benini L., Rossi D., 2020, in 2020 Design, Automation Test

in Europe Conference Exhibition (DATE). Energy-Efficient Two-level Instruc-

tion Cache Design for an Ultra-Low-Power Multi-core Cluster. pp 1734–1739,

doi:10.23919/DATE48585.2020.9116212

[48] Jimenez D., Lin C., 2001, in Proceedings HPCA Seventh International Sym-

posium on High-Performance Computer Architecture. Dynamic branch prediction

with perceptrons. pp 197–206, doi:10.1109/HPCA.2001.903263

[49] Jiménez V., Gioiosa R., Cazorla F. J., Buyuktosunoglu A., Bose P., O’Connell

F. P., 2012, in 2012 21st International Conference on Parallel Architectures

and Compilation Techniques (PACT). Making data prefetch smarter: Adaptive

prefetching on POWER7. pp 137–146

[50] Joel Hruska 2021, How L1 and L2 CPU Caches Work, and Why They’re an

Essential Part of Modern Chips

[51] Joseph D., Grunwald D., 1997, Prefetching Using Markov Predictors,

SIGARCH Comput. Archit. News, 25, 252–263

101

http://dx.doi.org/10.1145/1006209.1006211
https://doi.org/10.1145/1006209.1006211
http://dx.doi.org/10.1109/ESSCIRC.2011.6044889
http://dx.doi.org/10.1109/ISPASS51385.2021.00034
http://dx.doi.org/10.1109/ISSCC.2012.6176932
http://dx.doi.org/10.23919/DATE48585.2020.9116212
http://dx.doi.org/10.1109/HPCA.2001.903263
http://dx.doi.org/10.1145/384286.264207

[52] Jouppi N. P., 1990, in Proceedings of the 17th Annual International Sympo-

sium on Computer Architecture. Improving Direct-Mapped Cache Performance

by the Addition of a Small Fully-Associative Cache and Prefetch Buffers, ISCA

’90. Association for Computing Machinery, New York, NY, USA, p. 364–373,

doi:10.1145/325164.325162, https://doi.org/10.1145/325164.325162

[53] Kadayif I., Zorlubas A., Koyuncu S., Kabal O., Akcicek D., Sahin Y., Kandemir

M. T., 2008, Capturing and optimizing the interactions between prefetching and

cache line turnoff, Microprocess. Microsystems, 32, 394

[54] Kandiraju G., Sivasubramaniam A., 2002, in Proceedings 29th An-

nual International Symposium on Computer Architecture. Going the dis-

tance for TLB prefetching: an application-driven study. pp 195–206,

doi:10.1109/ISCA.2002.1003578

[55] Kanter D., 2016, in RISC-V organization announcement. RISC-V OF-

FERS SIMPLE, MODULAR ISA. https://riscv.org/announcements/2016/

04/risc-v-offers-simple-modular-isa/

[56] Keckler S. W., Olukotun K., Hofstee H. P., 2009, Multicore Processors and

Systems, 1st edn. Springer Publishing Company, Incorporated

[57] Kim N. S., Flautner K., Blaauw D., Mudge T., 2004, in Proceedings of the

2004 International Symposium on Low Power Electronics and Design. Single-

v¡sub¿DD¡/sub¿ and Single-v¡sub¿T¡/sub¿ Super-Drowsy Techniques for Low-

Leakage High-Performance Instruction Caches, ISLPED ’04. Association for Com-

puting Machinery, New York, NY, USA, p. 54–57, doi:10.1145/1013235.1013254,

https://doi.org/10.1145/1013235.1013254

[58] Kim T., Zhao D., Veidenbaum A. V., 2014, in Proceedings of the 11th ACM

Conference on Computing Frontiers. Multiple Stream Tracker: A New Hardware

Stride Prefetcher, CF ’14. Association for Computing Machinery, New York,

NY, USA, doi:10.1145/2597917.2597941, https://doi.org/10.1145/2597917.

2597941

102

http://dx.doi.org/10.1145/325164.325162
https://doi.org/10.1145/325164.325162
http://dx.doi.org/10.1109/ISCA.2002.1003578
https://riscv.org/announcements/2016/04/risc-v-offers-simple-modular-isa/
https://riscv.org/announcements/2016/04/risc-v-offers-simple-modular-isa/
http://dx.doi.org/10.1145/1013235.1013254
https://doi.org/10.1145/1013235.1013254
http://dx.doi.org/10.1145/2597917.2597941
https://doi.org/10.1145/2597917.2597941
https://doi.org/10.1145/2597917.2597941

[59] Kin J., Gupta M., Mangione-Smith W., 1997, in Proceedings of 30th Annual In-

ternational Symposium on Microarchitecture. The filter cache: an energy efficient

memory structure. pp 184–193, doi:10.1109/MICRO.1997.645809

[60] Kolli A., Saidi A., Wenisch T. F., 2013, in 2013 46th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO). RDIP: Return-address-

stack Directed Instruction Prefetching. pp 260–271

[61] Kuan K., Adegbija T., 2019, HALLS: An Energy-Efficient Highly Adaptable

Last Level STT-RAM Cache for Multicore Systems, IEEE Transactions on Com-

puters, 68, 1623

[62] Kumar M. A., Francis G. A., 2017, in 2017 4th International Conference on

Electronics and Communication Systems (ICECS). Survey on various advanced

technique for cache optimization methods for risc based system architecture. pp

195–200, doi:10.1109/ECS.2017.8067868

[63] Kwak J. W., Jeon Y. T., 2010, Compressed tag architecture for low-power em-

bedded cache systems, Journal of Systems Architecture, 56, 419

[64] Lai A.-C., Fide C., Falsafi B., 2001, Dead-block prediction & dead-block correlat-

ing prefetchers, Proceedings 28th Annual International Symposium on Computer

Architecture, pp 144–154

[65] Li L., Kadayif I., Tsai Y.-F., Vijaykrishnan N., Kandemir M., Irwin M., Siva-

subramaniam A., 2002, in Proceedings.International Conference on Parallel Ar-

chitectures and Compilation Techniques. Leakage energy management in cache

hierarchies. pp 131–140, doi:10.1109/PACT.2002.1106012

[66] Loi I., Rossi D., Haugou G., Gautschi M., Benini L., 2015, in Proceedings

of the 12th ACM International Conference on Computing Frontiers. Explor-

ing Multi-banked shared-L1 Program Cache on Ultra-low Power, Tightly Cou-

pled Processor Clusters, CF ’15. ACM, New York, NY, USA, pp 64:1–64:8,

doi:10.1145/2742854.2747288, http://doi.acm.org/10.1145/2742854.2747288

103

http://dx.doi.org/10.1109/MICRO.1997.645809
http://dx.doi.org/10.1109/TC.2019.2918153
http://dx.doi.org/10.1109/TC.2019.2918153
http://dx.doi.org/10.1109/ECS.2017.8067868
http://dx.doi.org/10.1016/j.sysarc.2010.04.010
http://dx.doi.org/10.1109/PACT.2002.1106012
http://dx.doi.org/10.1145/2742854.2747288
http://doi.acm.org/10.1145/2742854.2747288

[67] Loi I., Capotondi A., Rossi D., Marongiu A., Benini L., 2018, The Quest

for Energy-Efficient I$ Design in Ultra-Low-Power Clustered Many-Cores, IEEE

Transactions on Multi-Scale Computing Systems, 4, 99

[68] Loquercio A., Maqueda A. I., del Blanco C. R., Scaramuzza D., 2018, DroNet:

Learning to Fly by Driving, IEEE Robotics and Automation Letters, 3, 1088

[69] Marongiu A., Capotondi A., Tagliavini G., Benini L., 2015, Simplifying Many-

Core-Based Heterogeneous SoC Programming With Offload Directives, IEEE

Transactions on Industrial Informatics, 11, 957

[70] Meinerzhagen P., Sherazi S. M. Y., Burg A., Rodrigues J. N., 2011, Bench-

marking of Standard-Cell Based Memories in the Sub-VTDomain in 65-nm CMOS

Technology, IEEE Journal on Emerging and Selected Topics in Circuits and Sys-

tems, 1, 173

[71] Michaud P., 2016, in 2016 IEEE International Symposium on High Performance

Computer Architecture (HPCA). Best-offset hardware prefetching. pp 469–480,

doi:10.1109/HPCA.2016.7446087

[72] Mittal S., 2013, A survey of techniques for improving energy efficiency in em-

bedded computing systems, International Journal of Computer Aided Engineering

and Technology, 6

[73] Mittal S., 2014, A survey of architectural techniques for improving cache power

efficiency, Sustainable Computing: Informatics and Systems, 4, 33

[74] Mittal S., 2016, A Survey of Recent Prefetching Techniques for Processor

Caches, ACM Comput. Surv., 49

[75] Myers J., Savanth A., Gaddh R., Howard D., Prabhat P., Flynn D., 2016,

A Subthreshold ARM Cortex-M0+ Subsystem in 65 nm CMOS for WSN Appli-

cations with 14 Power Domains, 10T SRAM, and Integrated Voltage Regulator,

IEEE Journal of Solid-State Circuits, 51, 31

104

http://dx.doi.org/10.1109/TMSCS.2017.2769046
http://dx.doi.org/10.1109/TMSCS.2017.2769046
http://dx.doi.org/10.1109/LRA.2018.2795643
http://dx.doi.org/10.1109/TII.2015.2449994
http://dx.doi.org/10.1109/TII.2015.2449994
http://dx.doi.org/10.1109/JETCAS.2011.2162159
http://dx.doi.org/10.1109/JETCAS.2011.2162159
http://dx.doi.org/10.1109/HPCA.2016.7446087
http://dx.doi.org/10.1504/IJCAET.2014.065419
http://dx.doi.org/10.1504/IJCAET.2014.065419
http://dx.doi.org/https://doi.org/10.1016/j.suscom.2013.11.001
http://dx.doi.org/10.1145/2907071
http://dx.doi.org/10.1109/JSSC.2015.2477046

[76] Nesbit K., Smith J., 2004, in 10th International Symposium on High Per-

formance Computer Architecture (HPCA’04). Data Cache Prefetching Using a

Global History Buffer. pp 96–96, doi:10.1109/HPCA.2004.10030

[77] Oboril F., Bishnoi R., Ebrahimi M., Tahoori M. B., 2015, Evaluation of Hybrid

Memory Technologies Using SOT-MRAM for On-Chip Cache Hierarchy, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34,

367

[78] OpenMP Architecture Review Board 2008, OpenMP Application Program In-

terface Version 3.0, http://www.openmp.org/mp-documents/spec30.pdf

[79] Patterson D. A., Hennessy J. L., 2014, in Computer Organization & Design The

Hardware/Software Interface : Fifth Edition. Large and Fast: Exploiting Memory

Hierarchy

[80] Petit S., Sahuquillo J., Such J. M., Kaeli D., 2005. Exploiting Temporal Locality

in Drowsy Cache Policies, CF ’05. Association for Computing Machinery, New

York, NY, USA, p. 371–377, doi:10.1145/1062261.1062321, https://doi.org/

10.1145/1062261.1062321

[81] Powell M., Yang S.-H., Falsafi B., Roy K., Vijaykumar T., 2000, in ISLPED’00:

Proceedings of the 2000 International Symposium on Low Power Electronics and

Design (Cat. No.00TH8514). Gated-V/sub dd/: a circuit technique to reduce leak-

age in deep-submicron cache memories. pp 90–95, doi:10.1109/LPE.2000.155259

[82] Przybylski S., Horowitz M., Hennessy J., 1989a, in Proceedings of the

16th Annual International Symposium on Computer Architecture. Charac-

teristics of Performance-Optimal Multi-Level Cache Hierarchies, ISCA ’89.

Association for Computing Machinery, New York, NY, USA, p. 114–121,

doi:10.1145/74925.74939, https://doi.org/10.1145/74925.74939

[83] Przybylski S., Horowitz M., Hennessy J., 1989b, Characteristics of

Performance-Optimal Multi-Level Cache Hierarchies, SIGARCH Comput. Archit.

News, 17, 114–121

105

http://dx.doi.org/10.1109/HPCA.2004.10030
http://dx.doi.org/10.1109/TCAD.2015.2391254
http://dx.doi.org/10.1109/TCAD.2015.2391254
http://www.openmp.org/mp-documents/spec30.pdf
http://dx.doi.org/10.1145/1062261.1062321
https://doi.org/10.1145/1062261.1062321
https://doi.org/10.1145/1062261.1062321
http://dx.doi.org/10.1109/LPE.2000.155259
http://dx.doi.org/10.1145/74925.74939
https://doi.org/10.1145/74925.74939
http://dx.doi.org/10.1145/74926.74939
http://dx.doi.org/10.1145/74926.74939

[84] Pugsley S. H., et al., 2014, in 2014 IEEE 20th International Sym-

posium on High Performance Computer Architecture (HPCA). Sandbox

Prefetching: Safe run-time evaluation of aggressive prefetchers. pp 626–637,

doi:10.1109/HPCA.2014.6835971

[85] Pullini A., Rossi D., Loi I., Tagliavini G., Benini L., 2019, Mr.Wolf: An Energy-

Precision Scalable Parallel Ultra Low Power SoC for IoT Edge Processing, IEEE

Journal of Solid-State Circuits, 54, 1970

[86] Qureshi M. K., Patt Y. N., 2006, in 2006 39th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO’06). Utility-Based Cache Partitioning:

A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared

Caches. pp 423–432, doi:10.1109/MICRO.2006.49

[87] Rahimi A., Loi I., Kakoee M. R., Benini L., 2011, in 2011 Design, Automa-

tion Test in Europe. A fully-synthesizable single-cycle interconnection network

for Shared-L1 processor clusters. pp 1–6, doi:10.1109/DATE.2011.5763085

[88] Reinman G., Calder B., Austin T., 1999, in MICRO-32. Proceedings of the

32nd Annual ACM/IEEE International Symposium on Microarchitecture. Fetch

directed instruction prefetching. pp 16–27, doi:10.1109/MICRO.1999.809439

[89] Ros A., Jimborean A., 2020, The Entangling Instruction Prefetcher, IEEE Com-

puter Architecture Letters, 19, 84

[90] Ros A., Jimborean A., 2021, in 2021 ACM/IEEE 48th Annual Interna-

tional Symposium on Computer Architecture (ISCA). A Cost-Effective Entangling

Prefetcher for Instructions. pp 99–111, doi:10.1109/ISCA52012.2021.00017

[91] Rossi D., Loi I., Haugou G., Benini L., 2014, in Proceedings of the 11th ACM

Conference on Computing Frontiers. Ultra-Low-Latency Lightweight DMA for

Tightly Coupled Multi-Core Clusters, CF ’14. Association for Computing Ma-

chinery, New York, NY, USA, doi:10.1145/2597917.2597922, https://doi.org/

10.1145/2597917.2597922

106

http://dx.doi.org/10.1109/HPCA.2014.6835971
http://dx.doi.org/10.1109/JSSC.2019.2912307
http://dx.doi.org/10.1109/JSSC.2019.2912307
http://dx.doi.org/10.1109/MICRO.2006.49
http://dx.doi.org/10.1109/DATE.2011.5763085
http://dx.doi.org/10.1109/MICRO.1999.809439
http://dx.doi.org/10.1109/LCA.2020.3002947
http://dx.doi.org/10.1109/LCA.2020.3002947
http://dx.doi.org/10.1109/ISCA52012.2021.00017
http://dx.doi.org/10.1145/2597917.2597922
https://doi.org/10.1145/2597917.2597922
https://doi.org/10.1145/2597917.2597922

[92] Rossi D., et al., 2015a, in 2015 IEEE Hot Chips 27 Symposium (HCS). PULP:

A parallel ultra low power platform for next generation IoT applications. pp 1–39,

doi:10.1109/HOTCHIPS.2015.7477325

[93] Rossi D., Pullini A., Loi I., Gautschi M., K. Gürkaynak F., Bartolini A., Fla-

tresse P., Benini L., 2015b, A 60 GOPS/W, -1.8V to 0.9V body bias ULP cluster

in 28nm UTBB FD-SOI technology, Solid-State Electronics, 117

[94] Rossi D., Loi I., Pullini A., Müller C., Burg A., Conti F., Benini L., Flatresse

P., 2017a, A Self-Aware Architecture for PVT Compensation and Power Nap in

Near Threshold Processors, IEEE Design Test, 34, 46

[95] Rossi D., et al., 2017b, Energy-Efficient Near-Threshold Parallel Computing:

The PULPv2 Cluster, IEEE Micro, 37, 20

[96] Rossi D., et al., 2021, in 2021 IEEE International Solid- State Circuits Con-

ference (ISSCC). 4.4 A 1.3TOPS/W @ 32GOPS Fully Integrated 10-Core SoC

for IoT End-Nodes with 1.7µW Cognitive Wake-Up From MRAM-Based State-

Retentive Sleep Mode. pp 60–62, doi:10.1109/ISSCC42613.2021.9365939

[97] Sair S., Sherwood T., Calder B., 2002, in Proceedings Eighth International Sym-

posium on High Performance Computer Architecture. Quantifying load stream

behavior. pp 197–208, doi:10.1109/HPCA.2002.995710

[98] Sherwood T., Sair S., Calder B., 2000, in Proceedings 33rd Annual IEEE/ACM

International Symposium on Microarchitecture. MICRO-33 2000. Predictor-

directed stream buffers. pp 42–53, doi:10.1109/MICRO.2000.898057

[99] Shi W., Cao J., Zhang Q., Li Y., Xu L., 2016, Edge Computing: Vision and

Challenges, IEEE Internet of Things Journal, 3, 637

[100] Smith A. J., 1982, Cache Memories, ACM Comput. Surv., 14, 473–530

[101] Smith J., Hsu W.-C., 1992, in Supercomputing ’92:Proceedings of the 1992

ACM/IEEE Conference on Supercomputing. Prefetching in supercomputer in-

struction caches. pp 588–597, doi:10.1109/SUPERC.1992.236645

107

http://dx.doi.org/10.1109/HOTCHIPS.2015.7477325
http://dx.doi.org/10.1016/j.sse.2015.11.015
http://dx.doi.org/10.1109/MDAT.2017.2750907
http://dx.doi.org/10.1109/MM.2017.3711645
http://dx.doi.org/10.1109/ISSCC42613.2021.9365939
http://dx.doi.org/10.1109/HPCA.2002.995710
http://dx.doi.org/10.1109/MICRO.2000.898057
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1145/356887.356892
http://dx.doi.org/10.1109/SUPERC.1992.236645

[102] Srivastava N. K., Navalakha A. D., 2018, Pointer-Chase Prefetcher for Linked

Data Structures (arXiv:1801.08088)

[103] Steinke S., Grunwald N., Wehmeyer L., Banakar R., Balakrishnan M., Mar-

wedel P., 2002, in Proceedings of the 15th International Symposium on System

Synthesis. Reducing Energy Consumption by Dynamic Copying of Instructions

onto Onchip Memory, ISSS ’02. Association for Computing Machinery, New York,

NY, USA, p. 213–218, doi:10.1145/581199.581247, https://doi.org/10.1145/

581199.581247

[104] T. Nakamura, T. Koizumi, Y. Degawa, H. Irie, S. Sakai, and R. Shioya. 2020,

D-JOLT: Distant jolt prefetcher again, The 1st Instruction Prefetching Champi-

onship (IPC-1)

[105] Tanaka K., Matsuda A., 2006, in TENCON 2006 - 2006 IEEE Region 10 Con-

ference. Static Energy Reduction in Cache Memories Using Data Compression.

pp 1–4, doi:10.1109/TENCON.2006.343807

[106] Teman A., Rossi D., Meinerzhagen P., Benini L., Burg A., 2015, in The 20th

Asia and South Pacific Design Automation Conference. Controlled placement of

standard cell memory arrays for high density and low power in 28nm FD-SOI. pp

81–86, doi:10.1109/ASPDAC.2015.7058985

[107] Teman A., Rossi D., Meinerzhagen P., Benini L., Burg A., 2016, Power, Area,

and Performance Optimization of Standard Cell Memory Arrays Through Con-

trolled Placement, ACM Trans. Des. Autom. Electron. Syst., 21, 59:1

[108] Tsai Y.-Y., Chen C.-H., 2011, Energy-Efficient Trace Reuse Cache for Em-

bedded Processors, IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 19, 1681

[109] Vanderwiel S. P., Lilja D. J., 2000, Data Prefetch Mechanisms, ACM Comput.

Surv., 32, 174–199

[110] Verma N., Chandrakasan A. P., 2007, in 2007 IEEE International

Solid-State Circuits Conference. Digest of Technical Papers. A 65nm

108

http://arxiv.org/abs/1801.08088
http://dx.doi.org/10.1145/581199.581247
https://doi.org/10.1145/581199.581247
https://doi.org/10.1145/581199.581247
http://dx.doi.org/10.1109/TENCON.2006.343807
http://dx.doi.org/10.1109/ASPDAC.2015.7058985
http://dx.doi.org/10.1145/2890498
http://dx.doi.org/10.1109/TVLSI.2010.2055908
http://dx.doi.org/10.1109/TVLSI.2010.2055908
http://dx.doi.org/10.1145/358923.358939
http://dx.doi.org/10.1145/358923.358939

8T Sub-Vt SRAM Employing Sense-Amplifier Redundancy. pp 328–606,

doi:10.1109/ISSCC.2007.373427

[111] Viswanathan V., , Disclosure of H/W prefetcher control on some In-

tel processors, https://software.intel.com/en-us/articles/disclosure-%

20of-hw-prefetcher-control-on-some-intel-processors

[112] Wong H., Papadopoulou M.-M., Sadooghi-Alvandi M., Moshovos A., 2010, in

2010 IEEE International Symposium on Performance Analysis of Systems Soft-

ware (ISPASS). Demystifying GPU microarchitecture through microbenchmarking.

pp 235–246, doi:10.1109/ISPASS.2010.5452013

[113] Yang S., Powell M., Falsafi B., Roy K., Vijaykumar T., 2001, in

Proceedings HPCA Seventh International Symposium on High-Performance

Computer Architecture. An integrated circuit/architecture approach to re-

ducing leakage in deep-submicron high-performance I-caches. pp 147–157,

doi:10.1109/HPCA.2001.903259

[114] Yang S.-H., Powell M., Falsafi B., Vijaykumar T., 2002, in Proceedings Eighth

International Symposium on High Performance Computer Architecture. Exploit-

ing choice in resizable cache design to optimize deep-submicron processor energy-

delay. pp 151–161, doi:10.1109/HPCA.2002.995706

[115] Yeh T.-Y., Patt Y. N., 1991, in Proceedings of the 24th Annual International

Symposium on Microarchitecture. Two-Level Adaptive Training Branch Predic-

tion, MICRO 24. Association for Computing Machinery, New York, NY, USA, p.

51–61, doi:10.1145/123465.123475, https://doi.org/10.1145/123465.123475

[116] Zhang C., Vahid F., Najjar W., 2003, in 30th Annual International Sympo-

sium on Computer Architecture, 2003. Proceedings.. A highly configurable cache

architecture for embedded systems. pp 136–146, doi:10.1109/ISCA.2003.1206995

[117] Zhang C., Vahid F., Najjar W., 2005, A Highly Configurable Cache for Low

Energy Embedded Systems, ACM Trans. Embedded Comput. Syst., 4, 363

109

http://dx.doi.org/10.1109/ISSCC.2007.373427
https://software.intel.com/en-us/articles/disclosure-%20of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-%20of-hw-prefetcher-control-on-some-intel-processors
http://dx.doi.org/10.1109/ISPASS.2010.5452013
http://dx.doi.org/10.1109/HPCA.2001.903259
http://dx.doi.org/10.1109/HPCA.2002.995706
http://dx.doi.org/10.1145/123465.123475
https://doi.org/10.1145/123465.123475
http://dx.doi.org/10.1109/ISCA.2003.1206995
http://dx.doi.org/10.1145/1067915.1067921

	Introduction
	Background
	Multi-core architectures
	Low-power multi-core architecture
	Instruction fetch subsystem

	Related work
	Ultra-low-power instruction memory
	Improving Instruction Fetch Efficiency
	Instruction Cache Prefetching
	State-of-the-arts ICache in ULP cluster
	Private Instruction Cache
	Shared Instruction Cache
	Multi-ported Instruction Cache

	Thesis Outline

	Evaluation of state-of-the-art Instruction Caches in PULP
	Software and Program paradigm
	Program methodology
	Synthetic tests
	Benchmarks

	Performance Results
	The performance of synthetic tests
	The performance for real-life applications

	Results of physical implementation
	Area and Timing results
	Power results

	Conclusion

	Two-level instruction cache
	Overview
	Architecture
	Evaluation
	Performance Results
	Physical Implementation Results

	Conclusion

	Prefething in L1 iCache
	Overview
	Architecture
	Out-of-order interconnect

	Evaluation
	Performance Results
	Physical Implementation Results

	Conclusion

	Core instruction fetch timing optimization
	Overview
	Architecture
	Evaluation
	Performance Results
	Physical Implementation Results
	Discussion

	Conclusion

	Conclusions
	Publications
	Bibliography

