
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

MONITORAGGIO E GESTIONE DELLE STRUTTURE E
DELL'AMBIENTE - SEHM2

Ciclo 34

Settore Concorsuale: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE
INFORMAZIONI

PERCEIVING THE 3D WORLD FROM SINGLE IMAGES

Presentata da: Filippo Aleotti

Supervisore

Stefano Mattoccia

Esame finale anno 2022

Coordinatore Dottorato

Alessandro Marzani

Co-supervisore

Luigi Di Stefano

iii

Abstract

Depth represents a crucial piece of information in many practical applications, such
as obstacle avoidance and environment mapping. This information can be provided
either by active sensors, such as LiDARs, or by passive devices like cameras. A pop-
ular passive device is the binocular rig, which allows triangulating the depth of the
scene through two synchronized and aligned cameras. However, many devices that
are already available in several infrastructures are monocular passive sensors, such
as most of the surveillance cameras. The intrinsic ambiguity of the problem makes
monocular depth estimation a challenging task. Nevertheless, the recent progress of
deep learning strategies is paving the way towards a new class of algorithms able to
handle this complexity.

This work addresses many relevant topics related to the monocular depth esti-
mation problem. It presents networks capable of predicting accurate depth values
even on embedded devices and without the need of expensive ground-truth labels
at training time. Moreover, it introduces strategies to estimate the uncertainty of
these models, and it shows that monocular networks can easily generate training
labels for different tasks at scale. Finally, it evaluates off-the-shelf monocular depth
predictors for the relevant use case of social distance monitoring, and shows how
this technology allows to overcome already existing strategies limitations.

v

Contents

Abstract ii

1 Introduction 1

2 Related works 5
2.1 Stereo depth estimation . 5

2.1.1 Traditional approaches . 5
2.1.2 Machine learning and deep learning based approaches 7

2.2 Optical flow estimation . 9
2.2.1 Traditional approaches . 9
2.2.2 Deep learning based methods . 10

2.3 Confidence estimation . 13
2.4 Semantic segmentation . 13
2.5 Single image monocular depth estimation 14

2.5.1 Learning with depth supervision 14
2.5.2 Learning from raw images . 15
2.5.3 Video at test time and adaptation 16

2.6 Monitoring applications and deep learning 17

3 Datasets, metrics and baseline models 19
3.1 Datasets . 19
3.2 Metrics . 25

3.2.1 Monocular depth metrics . 25
3.2.2 Stereo matching metrics . 26
3.2.3 Optical flow metrics . 27
3.2.4 Confidence metrics. 28
3.2.5 Classification and segmentation metrics 28

3.3 Baseline models . 29

4 Boosting monocular depth networks with stereo supervision 31
4.1 Monocular Residual Matching . 31

4.1.1 Multi-scale feature extractor . 32
4.1.2 Initial disparity estimation . 32
4.1.3 Disparity refinement . 33
4.1.4 Training loss . 33

4.2 Proxy labels distillation . 34
4.3 Experimental results . 35

4.3.1 Ablation study . 35
4.3.2 Comparison with self-supervised frameworks 36
4.3.3 Comparison with Depth Hints 37
4.3.4 Performance on single view stereo estimation 38

4.4 Conclusions . 39

vi

5 Monocular depth estimation on low-power devices 41
5.1 PyD-Net architectures . 41

5.1.1 Pyramidal features extractor . 42
5.1.2 Depth decoders . 43
5.1.3 Self-supervision and proxies . 44
5.1.4 PyD-Net variants . 45

5.2 Experimental results . 46
5.2.1 Competitors . 46
5.2.2 Ablation study . 47
5.2.3 Evaluation on KITTI dataset . 47

5.3 Generalization on Make3D dataset . 48
5.3.1 Accuracy-efficiency trade-off . 48
5.3.2 Runtime analysis on different architectures 52
5.3.3 Memory footprint . 54

5.4 Conclusions . 54

6 Comprehensive scene understanding from videos 57
6.1 Overall learning framework . 58
6.2 Geometry and semantics . 58

6.2.1 Self-supervised depth and pose estimation. 58
6.2.2 Distilling semantic knowledge. 59
6.2.3 Optical flow and motion segmentation 59
6.2.4 Motion segmentation . 61

6.3 Experimental results . 62
6.3.1 Monocular depth estimation . 62
6.3.2 Semantic segmentation . 63
6.3.3 Optical flow . 64
6.3.4 Motion segmentation . 65
6.3.5 Runtime analysis . 65
6.3.6 Additional qualitative examples 66

6.4 Conclusions . 66

7 Monocular depth estimation in the wild 69
7.1 Framework overview . 70

7.1.1 Off-line training . 70
7.1.2 On-device deployment and inference 71

7.2 Lightweight networks for single image depth estimation 71
7.3 Wild dataset . 72
7.4 Experimental results . 72

7.4.1 Evaluation on KITTI . 73
7.4.2 Evaluation in the wild . 74
7.4.3 Performance analysis on mobile devices 76

7.5 Applications of single image depth estimation 78
7.6 Conclusion . 81

8 Distilling optical flow labels using monocular depth 83
8.1 Depthstillation pipeline . 84
8.2 Experimental results . 87

8.2.1 Training datasets . 87
8.2.2 Testing datasets . 88
8.2.3 Implementation details . 88

vii

8.2.4 Ablation study . 89
8.2.5 Comparison with synthetic datasets 91
8.2.6 Comparison with self-supervision from videos 93
8.2.7 Limitations. 94

8.3 Traditional vs learned inpainting . 94
8.3.1 Qualitative examples . 95

8.4 Conclusions . 96

9 Stereo depth estimation aided by monocular supervision 97
9.1 Method . 97

9.1.1 Monocular Completion Network (MCN) 98
9.1.2 Proxy distillation for deep stereo 100

9.2 Experiments . 100
9.2.1 Implementation details . 101
9.2.2 Evaluation of proxy label generators 101
9.2.3 Ablation study . 103
9.2.4 Comparison with state-of-the-art 105
9.2.5 Generalization . 106

9.3 Conclusions . 106

10 Monocular depth uncertainty 109
10.1 Depth-from-mono and uncertainty . 109

10.1.1 Uncertainty by image flipping 110
10.1.2 Empirical estimation . 111
10.1.3 Predictive estimation . 112
10.1.4 Bayesian estimation . 113

10.2 Experimental results . 114
10.2.1 Evaluation protocol, dataset and metrics 114
10.2.2 Monocular (M) supervision . 115
10.2.3 Stereo (S) supervision . 116
10.2.4 Monocular+Stereo (MS) supervision 118
10.2.5 Sparsification curves . 119
10.2.6 Qualitative results . 119

10.3 Conclusion . 119

11 Improving off-the shelf disparity maps with deep learning 123
11.1 Proposed Architecture . 124

11.1.1 Continuous Disparity Refinement Network 124
11.2 Experiments . 126

11.2.1 Datasets . 126
11.2.2 Ablation study . 127
11.2.3 Balanced setup . 128

Comparison to existing refinement methods 129
Zero-shot generalization . 130

11.2.4 Unbalanced setup . 130
Handling unbalanced stereo images 131
Evaluation on Middlebury v3. 133

11.2.5 Additional benefits of the proposed framework 133
11.3 Conclusions . 135

viii

12 Monocular depth estimation for social distance monitoring 137
12.1 Social distance monitoring . 139
12.2 Proposed method . 139

12.2.1 Offline system initialization . 140
12.2.2 People segmentation . 142
12.2.3 Monocular depth perception and scaling 142
12.2.4 Computing inter-personal distance 143

12.3 Experimental results . 144
12.3.1 Evaluation of control points accuracy 145
12.3.2 Dataset . 147
12.3.3 Inter-Personal distance evaluation 147
12.3.4 Detecting violations . 149
12.3.5 Runtime analysis . 151

12.4 Limitations . 152
12.5 Conclusions . 153

13 Closing remarks 155
13.1 Limitations . 156
13.2 Future directions . 157

A Additional details for Chapter 4 159
A.1 Training protocol . 159

B Additional details for Chapter 5 161
B.1 Training protocol . 161

C Additional details for Chapter 6 163
C.1 Architectures of the networks . 163
C.2 Losses . 163
C.3 Training protocol . 165

D Additional details for Chapter 11 167
D.1 Implementation details . 167
D.2 Qualitative results . 168
D.3 Calibration and rectification of an unbalanced stereo rig 173

ix

List of Figures

1.1 Stereo setup . 2
1.2 Ponzo illusion . 4

3.1 Optical flow color wheel . 19
3.2 Qualitative example from SceneFlow . 20
3.3 Qualitative example from KITTI 2012 20
3.4 Qualitative example from KITTI 2015 21
3.5 Qualitative example from DrivingStereo 21
3.6 Qualitative example from Cityscapes . 22
3.7 Qualitative example from Middlebury 22
3.8 Qualitative example from ETH3D . 23
3.9 Qualitative example from TUM . 23
3.10 Qualitative example from NYU v2 . 23
3.11 Qualitative example from Make3D . 24
3.12 Qualitative example from UnrealStereo4k 24
3.13 Qualitative example from Sintel . 24
3.14 Qualitative example from FlyingChairs 25

4.1 Illustration of MonoResMatch architecture 31
4.2 Examples of proxy labels computed by SGM. 33
4.3 Online evaluation of MonoResMatch . 39

5.1 Single image depth estimation on low-powered hardware 42
5.2 PyD-Net architectures . 43
5.3 Qualitative results on the Eigen split . 47
5.4 Qualitative results Make3D . 49
5.5 Accuracy-speed trade-off . 49
5.6 Runtime analysis on NVIDIA Titan Xp GPU 50
5.7 Runtime analysis on NVIDIA Jetson TX2 51
5.8 Runtime analysis on NVIDIA Jetson Nano 51
5.9 Memory footprint . 53

6.1 Outputs of ΩNet framework . 57
6.2 ΩNet framework . 58
6.3 Overview of the semantic-aware and self-distilled optical flow esti-

mation approach . 61
6.4 Qualitative examples on motion segmentation and optical flow 67
6.5 Qualitative comparison between teacher and student flow networks. . 67
6.6 Qualitative examples for depth and semantic on Cityscapes 67
6.7 Motion segmentation results . 68

7.1 Predictions in the wild . 69
7.2 Qualitative results on KITTI . 74
7.3 Qualitative result from an online picture 77

x

7.4 Failure cases . 78
7.5 Bokeh effect . 79
7.6 AR Pipeline . 79
7.7 Qualitative comparison with other occlusion-aware AR methods . . . 80
7.8 AR with occlusion handling . 80

8.1 Depthstillation pipeline . 84
8.2 Hole filling strategies . 85
8.3 Independent motions modelling . 87
8.4 Qualitative results of depthstillationon KITTI 2015 90
8.5 Impact of different inpainting strategies 95
8.6 Qualitative examples of dCOCO . 96

9.1 Framework overview . 98
9.2 Disparity map filtering . 98
9.3 Occlusion handling and scale recovery 99
9.4 Proxy distillation . 100
9.5 Impact of proxies . 104
9.6 KITTI 2015 online benchmark qualitatives 106
9.7 Examples of generalization . 107

10.1 Overview of uncertainty estimation implementations 110
10.2 Uncertainty by image flipping . 111
10.3 Self-Teaching scheme . 114
10.4 Sparsification Error curves . 121
10.5 Qualitative results on KITTI . 122

11.1 Example of Arbitrary Resolution Stereo 124
11.2 Neural Disparity Refinement, architecture overview 125
11.3 Qualitative results on Middlebury v3 - balanced setup 131
11.4 Qualitative results on UnrealStereo4K – unbalanced setting 132
11.5 Point cloud comparison . 134
11.6 Upsampling comparison . 135

12.1 Monitoring social distancing from images 138
12.2 Illustration of the proposed pipeline . 140
12.3 System initialization . 141
12.4 Example of control points sourcing using ARCore 142
12.5 Monocular failure . 144
12.6 Evaluation of depth data inferred with the ARCore raw depth APIs . . 145
12.7 Examples from the collected dataset . 146
12.8 Qualitative results . 150

D.1 Qualitative comparison with GANet . 168
D.2 Qualitative results on the SceneFlow test set 169
D.3 Qualitative results on the KITTI 2015 training set 170
D.4 Qualitative results on the Middlebury v3 training Set 171
D.5 Qualitative results on the ETH3D training set 172
D.6 Unbalanced rectified L and R images . 173
D.7 Example of unbalanced stereo pair . 175
D.8 Qualitative results on a real unbalanced stereo setup 176

xi

List of Tables

4.1 Ablation studies on Eigen split . 36
4.2 Quantitative evaluation on Eigen split 37
4.3 Comparison between methods supervised by few annotated samples . 37
4.4 Comparison with Depth Hints . 38
4.5 Quantitative results on the test set of the KITTI 2015 Stereo Benchmark 38

5.1 Ablation study on KITTI using the Eigen split 47
5.2 Evaluation on KITTI using the Eigen split. 48
5.3 Generalization on the Make3D dataset 49

6.1 Depth evaluation on the Eigen split of KITTI 63
6.2 Ablation study of depth network on the Eigen split 63
6.3 Depth errors by varying the range . 64
6.4 Semantic segmentation on Cityscapes and KITTI 2015 64
6.5 Optical flow evaluation on KITTI 2015 65
6.6 Motion segmentation evaluation on the KITTI 2015 dataset. 66
6.7 Runtime analysis on different devices 66

7.1 Quantitative results on Eigen split . 74
7.2 Generalization on different datasets . 76
7.3 Performance on smartphones . 76

8.1 Method ablation . 89
8.2 Impact of images and virtual motions 90
8.3 Impact of depth estimator . 90
8.4 Comparison with synthetic datasets – generalization 91
8.5 Comparison with synthetic datasets – fine-tuning 92
8.6 Impact of depthstillation on different architectures 93
8.7 Comparison between self-supervision and depthstillation – general-

ization . 93
8.8 Comparison between self-supervision and depthstillation – special-

ization . 94

9.1 Evaluation of proxy generators . 102
9.2 Model-guided comparison . 103
9.3 Ablation study . 103
9.4 Cross-validation analysis . 104
9.5 Comparison with state-of-the-art . 105
9.6 KITTI 2015 online benchmark . 105
9.7 Generalization test on Middlebury v3 and ETH3D 106

10.1 Quantitative results for monocular (M) supervision: depth evaluation 116
10.2 Quantitative results for monocular (M) supervision: uncertainty eval-

uation . 116

xii

10.3 Quantitative results for stereo (S) supervision: depth evaluation. 117
10.4 Quantitative results for stereo (S) supervision: uncertainty evaluation. 117
10.5 Quantitative results for monocular+stereo (MS) supervision: depth

evaluation . 118
10.6 Quantitative results for monocular+stereo (MS) supervision: uncer-

tainty evaluation . 119

11.1 Comparison between losses . 128
11.2 End-to-end networks as stereo blackbox 129
11.3 Evaluation on KITTI 2015 Benchmark 129
11.4 Comparison with refinement frameworks 130
11.5 Generalization performance . 131
11.6 Experimental study of unbalanced setups 132
11.7 Generalization to Middlebury v3 - unbalanced setup 133

12.1 Evaluation of Inter-Personal distances 148
12.2 Evaluation about risk detection . 149
12.3 Runtime evaluation . 152

1

Chapter 1

Introduction

We live in a world full of data. Modern technologies allow for generating and ac-
quiring a vast amount of information rapidly. According to [107], in 2018 more than
3.7 billion humans had internet access, and used it for sending 16 million text mes-
sages, 156 million emails, posting about 47 thousand photos on Instagram or watch-
ing 4 million YouTube videos every single minute. These impressive numbers are
destined to increase even more: for example, it is expected [106] that the number
of photos captured in 2022 will be 1.5 trillion, against the 1.12 trillion in 2020. The
availability of data, devices and sensors to acquire them and global infrastructures
for sharing ignited the spread of solutions able to process them efficiently.

Nowadays, computer algorithms are a valid, and probably the only, way to han-
dle the mass of information we produce every day. When we deal with images, com-
puter vision helps us to mimic or even to extend human behaviour: a picture might
provide hundreds of cues about the sensed scene, which can be used with success to
address real problems. Environmental monitoring, traffic flow analysis and object
tracking are just a few examples of practical applications in which computer vision
can be employed in a non-intrusive way. For instance, suppose we have to realise a
social-monitoring application, to detect and report when social distance among peo-
ple is not preserved. Personal devices equipped with Bluetooth [148] or radar [128]
sensors can be adopted for the task, but they require active collaboration from the
users and a well-defined protocol. On the other hand, a conventional surveillance
camera can provide images of the environment in real-time, allowing to realise the
monitoring application without the direct involvement of the users. Another ex-
ample is the inspection of structures in dangerous situations, such as underwater
or precarious buildings: a robot or a drone can solve the task while preserving the
safety of human operators.

Classical computer vision approaches adopted hand-crafted heuristics and strate-
gies to face the complexity of the problems, but in the last few years learning-based
solutions are leading to astonishing results. These new algorithms can learn the ex-
pected behaviour directly from the data, leveraging or not ground-truth labels for
training purposes. We refer to supervised settings those that leverage labels at train-
ing time, while to unsupervised training strategies that do not require ground-truth.
In between, self-supervised settings are those for which, at training time, we do not
have labels yet exploiting additional information that will not be available at test
time. An example of a self-supervised setting is employing stereo pairs to train
monocular depth models, as we will see in the following. While supervised strate-
gies achieve a better accuracy, sourcing labels is not trivial in general, and requires
a large effort. For this reason, self and unsupervised approaches are particularly
appealing.

One of the main limitation of pictures is that they do not preserve direct infor-
mation about the 3D geometry of the sensed scene: in fact, when a real world scene

2 Chapter 1. Introduction

is projected on the image plane, the information about the depth is lost. Nonetheless
depth is crucial to solve a plethora of applications, such as augmented and mixed
reality, obstacle avoidance, 3D inspection and many more. Many active sensors have
been deployed in the past years, in which the device generally perturbs the nearby
environment. For instance, LiDAR devices emit laser beams, Time-of-Flight (ToF)
sensors retrieve the depth from the time required by the emitted signal to come back
while the Microsoft Kinect projects structured light patterns on the scene. Despite
their accuracy, active sensors are generally costly, suffer in scenes flooded with sun-
light and might interfere with other devices deployed in the scene. To tackle these is-
sues, a long-standing yet paramount problem in computer vision is binocular stereo
depth estimation, aimed at retrieving the depth of the scene given two synchronized
and rectified pairs of images. Specifically, every pixel in the left image has at most
a a single corresponding pixel in the right image 1. Moreover, the peculiar setup
forces corresponding pixels to lie on the same horizontal line. The horizontal offset
between matching pixels is called disparity, while the distance between the optical
centers of the two cameras is the baseline b. Figure 1.1 illustrates the stereo setup.
Disparity and depth share an inverse relationship: the larger the disparity, the closer
to the camera the object. Since cameras are supposed to be rectified and calibrated,
i.e. we know their intrinsic parameters and in particular the focal length f , we can
obtain depth Z from disparity D by triangulation:

Z =
b f
D

(1.1)

FIGURE 1.1: Stereo setup. The 3D point P, with coordinates (X,Y,Z), is projected on
the left Il and right Ir image planes. The distance between the two optical centers is
the baseline b, while f is the focal length of the camera. The horizontal coordinates in
the two planes are xl and xr respectively. The depth Z is inversely proportional to the
disparity D, where D = xl − xr.

1This condition does not hold for slanted surfaces, as evinced in [213]

Chapter 1. Introduction 3

In practice, stereo algorithms are in charge of computing the disparity for each
pixel in the image, used to obtain the depth. Once the depth Z is known, the corre-
sponding 3D point P = (X, Y, Z) can be obtained by means of back-projection:

X = Z
f (u− cx)

Y = Z
f (v− cy)

where (u, v) are coordinates of the projection of P on the image plane of the left
camera and (cx, cy) are the camera intrinsic parameters representing the coordinates
of the piercing point. The set of 3D points we obtain starting from each pixel in the
image is called point cloud. Moreover, it is worth noticing that we are supposing that
the focal length is the same both horizontally and vertically. When this condition
does not occur we have to take into account the two different focals fx and fy when
computing X and Y respectively.

The stereo problem can be generalized to the case of several views of the same
scene acquired by arbitrary camera positions. We refer to this configuration as multi-
view stereo [73], and it works under the assumption of a moving camera, both stereo
or monocular, in a stationary world. Moreover, some applications are tolerant against
some missing values in depth maps but largely suffer in case of errors. For instance,
in the case of obstacle detection, errors in depth measures might have dramatic con-
sequences, especially for closer objects. For this reason, confidence measures have
been proposed to detect reliable estimates. Similarly, if we are interested in locating
bad regions, we deal with uncertainty estimation. It is worth noticing that confi-
dence and uncertainty are two sides of a coin, and the choice depends on the appli-
cation. Confidence is generally applied as a post-processing step in classical formu-
lations, meaning that we have to estimate disparity maps first. As we pointed out
before, performing stereo means solving the problem of matching, which is a wide
and fundamental problem in computer vision. Another popular matching problem
is optical flow: given two images, the goal is to find the apparent motion of brightness
patterns in the image. This problem recalls stereo matching, with the main differ-
ence that in optical flow any pixel can move in a 2D grid and not just horizontally.
Under certain circumstances, the motion of pixels in the image can be traced back to
the motion of objects in the world. We call this condition motion field but, even if the
two are not always the same, they are often referred to collectively as optical flow
[18]. In practice, optical flow has various applications in video interpolation and
restoration [325], medical [330, 255], surveillance and monitoring [21, 292, 57] and
many other fields. Optical flow can also be used to source valid correspondences for
depth triangulation [358] from two subsequent images.

However, the information in images goes beyond geometry. When looking at an
image humans recognize objects, thus can assign to each pixel a semantic meaning.
Image segmentation, and in particular semantic segmentation, is a relevant field in
computer vision and it has countless applications in medical image processing [171],
precision agriculture [199] and many other fields.

Optical flow and stereo methods require at least two images. A natural question,
at this point, would be: can we infer the depth from a single image? Nowadays, even the
cheapest device has at least one camera that can acquire pictures. Thus, a monocular
solution would open up depth-based applications at scale, exceeding some of the
main limitations of conventional stereo (e.g. cameras for surveillance are generally
monocular and fixed, so neither binocular nor multi-view stereo can be used). Un-
fortunately, retrieving the geometry from still images is extremely challenging since

4 Chapter 1. Introduction

C

FIGURE 1.2: Ponzo illusion. Despite the two rectangles are equal, they appear different
due to the lines that intersect at the point C.

it is ill-posed, meaning that, at least in theory, there exist an infinite number of possi-
ble solutions. To provide an intuition about the problem, in Figure 1.2 we depict the
Ponzo illusion. Due to the different number of intersecting lines, our brain is fooled
and the two identical rectangles look to be different in size.

Nonetheless, not all the infinite solutions are feasible in practice, and monocu-
lar cues can disambiguate false priors about scene geometry. Images contain light,
shadows, occlusions and relative size cues that are valuable hints to tackle the issue,
and it is not a coincidence that human beings can navigate the scene and avoid ob-
stacles even with a closed eye. While coding these cues with human-based heuristics
is quite challenging, learning them directly from data largely mitigate the complex-
ity of the problem. Contextually, in the last few years Deep Learning is unlocking a
new generation of depth-based applications, with particular interest for self-driving
cars [113, 83], robotics [133, 202] and augmented reality [154, 88], in which a depth
predictor learns to infer depth maps from single images.

This work focuses on monocular depth estimation, ranging from the design of
models suited for addressing the problem to its relationship with other computer vi-
sion tasks. Specifically, in Chapters 4 and 5 we present novel networks for accurate
and efficient monocular depth estimation respectively. Then, in Chapter 6 we lever-
age also semantic segmentation and optical flow to obtain a single model for holistic
scene understanding, while in Chapter 7 we introduce a fast and low-effort pipeline
to distill pseudo labels at scale, allowing to train effectively lightweight monocular
models. With similar purposes, in Chapter 8 we show how off-the-shelf monocu-
lar estimators are beneficial to source optical flow labels at scale, while in Chapter
9 a peculiar monocular model is used to guide the training of a stereo model when
binocular stereo pairs are available also at training time. We then tackle the prob-
lem of monocular confidence estimation: Chapter 10 illustrates different techniques
aimed at estimating uncertainty of monocular predictors. Instead, in Chapter 11 we
deal with stereo estimation again: in particular, the Chapter presents a neural dis-
parity refinement model able to refine, using monocular reasoning, input disparity
maps sourced by classical or even deep stereo models. Finally, the last Chapter 12
describes a practical application in which social distancing violations are assessed
by means of monocular depth.

5

Chapter 2

Related works

After having introduced fundamental concepts, required to understand this research
project, this Chapter provides an extensive overview about related works in the
fields of depth estimation, with particular focus on stereo and monocular depth esti-
mation, and optical flow. Moreover, we also review briefly relevant literature about
confidence measures and semantic segmentation, and how these technologies have
been adopted for monitoring applications.

2.1 Stereo depth estimation

2.1.1 Traditional approaches

Among passive strategies for depth estimation, binocular stereo is probably the most
adopted, since it requires only two rectified images and it does not suffer from well-
known problems of active sensors — as missing returns due to mechanical rotations,
or multi-pathing. Although working only with stereo pairs induces some challenges
(e.g. low texture regions and repetitive structures), nowadays this technology is
mature enough, and it is quite easy to find binocular cameras even on commercial
devices, such as smartphones. Scharstein and Szeliski [264] report the fundamental
steps shared by many traditional stereo matching pipelines, that are:

1. matching cost computation

2. cost aggregation

3. disparity optimization/computation

4. disparity refinement

It is worth noticing that not all the steps are mandatory: local stereo matching algo-
rithms, for instance, generally perform steps 1, 2, 4 while global ones 1, 3, 4. Accord-
ing to [264], local and global computation represents the most important classifica-
tion for stereo algorithms: in local strategies, cost computation and aggregation are
the core of the computation, and disparity computation is naively achieved through
winner-take-all strategy; on the other hand, global approaches invest most of their
computational budget in cost optimization, since they aim at finding a disparity
function that minimizes the global energy. In between, semi-global methods share
similar ideas with global strategies, but perform their computation on a subset of
the points. In the following, we briefly summarise these categories.

Local methods Given the reference image Ir and the target image It, in cost com-
putation step we compute, for each pixel (x, y) in Ir, the correspondence cost with all
— or a subset of — the pixels (x + d, y) of It. In the past, different cost computation
functions have been proposed — Sum of Squared Differences (SSD) and Normalized

6 Chapter 2. Related works

Cross Correlation (NCC) [36, 264], just to name a few — because some functions are
more robust than others in particular conditions. Similarly, transformations, such as
AD-Census [351], have been proposed with the aim of improving the effectiveness
of the computed cost. [298] reports a valuable evaluation of different cost functions.

After cost computation, the 3D Disparity Space Image (DSI) is ready, and encodes
pixel similarities. At this point, we could select, for each pixel, the one with the low-
est cost in the DSI, obtaining the final disparity map. Unfortunately, by doing this,
the resulting map would be noisy since many pixels could have similar costs (e.g.
due to repetitive patterns), and pixel-wise costs could not be representative enough
(e.g. in occluded areas). To overcome this limitation, cost aggregation strategies are
widely adopted, allowing to augment the cost of each pixel with those of other pixels
in the DSI. This set of pixels, called support window, can be fixed or adaptive: in the
former case, squared patches around the pixel is the default choice, while in the lat-
ter many different strategies have been proposed [215, 312], and evaluated in [299].
Finally, the winner-take-all strategy is in charge of selecting the final disparity map:
for each pixel, we have to look for the minimum cost in its DSI’s slice. However,
the computed disparity results to be discrete since the DSI does not have a continu-
ous formulation. Discrete maps suffer a step-wise effect, which could be an issue for
some applications. To alleviate the problem, final refinement strategies are in charge
of sup-pixel interpolation, e.g. by means of second degree functions or anisotropic
diffusion [225]. If needed, this stage may also run post-processing algorithms aimed
at noise-reduction [54] and hole filling [27].

Global methods Texture-less and occluded regions are hard to match, and local
information may not be representative to solve ambiguities. Differently from local
methods, global strategies do not perform (in general) cost aggregation but cast the
matching problem into an energy minimization one. Specifically, these methods first
create a graph from the image, connecting closer pixels, then they assign a label —
the disparity — to each node in the graph, so that each disparity does not change
excessively in the neighbourhood and it is consistent with the pixel intensities of the
connected nodes.

Specifically:
E(D) = Edata(D) + λEsmooth(D) (2.1)

where the first term represents the sum of the matching costs of all the pixels in the
image, while the second term adds a penalty for pixels with a different disparity
than neighbours.

This problem, which is NP-Hard in complexity, has been tackled exploiting ap-
proximate solutions based on Dynamic Programming [23, 28], Graph Cuts [32, 31]
and Belief Propagation [142], however they are not able to scale well with image
size.

Semi-global methods The complexity of global methods prevents their real-time
execution. To overcome this limitation, semi-global strategies have been proposed,
in which Dynamic Programming or Scanline Optimization are enforced on a subset
of the pixels. A popular example is Semi-Global Matching [101], in which the cost of
each pixel is aggregated along S scanlines (generally 8 or 16). Specifically, the energy

2.1. Stereo depth estimation 7

function along the scanline s ∈ S is:

Es(p, d) = C(p, d)−min
i

Es(p′, i) + min



Es(p′, d),

Es(p′, d− 1) + P1,

Es(p′, d + 1) + P1,

min
i

Es(p′, i) + P2

(2.2)

where C(p, d) is the matching cost, while P1 and P2 two penalty terms (P1 < P2).
Then, the costs for each disparity value is computed as:

E(p, d) = ∑
s

Es(p, d) (2.3)

Once the aggregated cost E(p, d) is available, the final disparity value d̂ for each pixel
is given by:

d̂ = argmin
d

E(p, d) (2.4)

Since each scanline is independent, SGM can efficiently exploit multi-threading,
and GPU [100] and FPGA [19] implementations have been proposed.

2.1.2 Machine learning and deep learning based approaches

Classical approaches proved to be effective in tackling the stereo problem, but at the
cost of highly engineered pipelines, often based on heuristics and hyper-parameters
that must be tuned for each setting. For this reason, the promise made by recent
machine learning and in particular deep learning strategies, who claim that is pos-
sible to learn to solve the problem directly from data, is particularly attractive, and
has been largely investigated in the field. Seminal works exploited learning-based
strategies to improve individual steps of the stereo pipeline [264], such as by infer-
ring a cost function, and this paved the way towards end-to-end paradigm, which
represents, nowadays, the state-of-the-art approach to the stereo problem in terms
of accuracy. We are going to briefly introduce some notable methods, and further
details can be found in specialized surveys as [235, 150].

Learning in the stereo pipeline. MC-CNN by Zbontar and LeCun [353] repre-
sents the most groundbreaking machine learning approach for stereo depth estima-
tion. A Siamese network is in charge of extracting features from two input patches,
then a feature similarity score can be computed with conventional feature metrics
(MC-CNN-fst) or learned (MC-CNN-acrt). When costs are available, cost aggrega-
tion is performed following [101]. Park and Lee [219] learn a cost function by means
of a CNN and propose a per-pixel pooling strategy which helps to add more con-
text. Luo et al. [179] cast the problem as a multi-class classification, in which the
network is able to process the full set of disparity candidates for each pixel, thus
computing the features for all the right patches in a single forward pass. An inner-
product layer computes the score for each disparity hypothesis, then a softmax op-
erator turns scores into probabilities. The efficient computation of [179] requires less
than a second, which is a notable improvement if compared to the 20 seconds of
MC-CNN-acrt [353]. Similarly, optimization step has been improved with learning
strategies: Scönberger et al. [266] propose to leverage a random forest classifier to
select the best scanline for each pixel, Poggi and Mattoccia [232] reduce the streak-
ing artifacts in SGM maps by means of a scanline confidence score while in [271]

8 Chapter 2. Related works

the authors exploit a CNN to predict P1 and P2 penalties of SGM. Finally, refinement
strategies have been proposed to improve the quality of off-the-shelf stereo maps.
Güney and Geiger [87] alleviate textureless and reflective areas using object-category
specific disparity proposals, while in [78] the authors show that their Detect, Replace,
Refine (DRR) framework is effective to detect errors in input maps (e.g. those from
[179]). Once the errors have been detected, the framework replaces them with new
labels and finally refines the map with residual corrections; Batsos and Mordohai
[22] claim that recurrent architectures are more suited for disparity refinement task,
and propose a residual architecture that is able to further improve its own predic-
tions, starting from initial maps sourced by MC-CNN [353].

End-to-end architectures. Previous methods leverage machine or deep learning
to improve one or more steps in the conventional stereo pipeline, but Convolutional
Neural Networks (CNN) proved to be effective in learning the task in end-to-end
fashion. Dispnet [191] paved the way towards this new paradigm. In their paper,
Mayer et al. show that a CNN, with UNet [252] design, has enough capacity to
address the stereo matching problem if trained on a large set of data. To this aim,
they release the synthetic dataset SceneFlow, described in Chapter 3.1, and use it
to train their model in a supervised fashion. A novel correlation layer is pivotal to
obtain state-of-the-art results: taking inspiration from [61], the authors propose to
aggregate the features along the horizontal scanline, providing to the network more
context for each pixel. Dispnet ignited the rapid diffusion of end-to-end stereo mod-
els with astonishing results. Another milestone in the field was GC-Net, by Kendall
et al. [136], who proposed a novel network able to preserve the geometry of the
problem. Differently from Dispnet, in which features are collapsed while comput-
ing the cost volume, GC-Net creates a 4D cost volume, with shape H ×W × D× F,
where H and W are respectively image height and width, D the number of disparity
hypothesis and F the size of the features extracted for each pixel from the original
image. That is, the cost volume is built by shifting and concatenating right features
with left ones for each pixel. Then, the cost volume is processed by further convo-
lutions to regularize it; at the end of the computation, the cost volume has a shape
of H ×W × D, and a final differentiable soft-argmin operator is in charge of select-
ing the best disparity candidate for each pixel. GC-Net proves to be more accurate
than Dispnet, but it pays in higher computational costs, since the 4D DSI requires 3D
convolutions instead of 2D ones, which are much more expensive. This difference
creates a further taxonomy in the field: methods that follow the design of Dispnet,
with 3D cost volumes processed by 2D convolutions, are called 2D networks, while
we refer to strategies that leverage a 4D cost volume as 3D networks.

Recent 2D models focus on improving the quality of the predictions with refine-
ment strategies [165, 217], semantic segmentation [339] or by incorporating edge
cues [279, 278]. On the other hand, 3D architectures have been improved with pe-
culiar layers, such as the Spatial Pyramidal Pooling proposed in PSMNet [43] or the
locally guided and the semi-global aggregation layers of GANet[354], coarse-to-fine
approaches [137, 317] or pruning strategies [62] for reducing the inference time or
allowing high-resolution [337] processing. Particularly worthy of attention is the
work from Guo et al. [90]: to alleviate computational burdensome of 3D convo-
lutions without worsening the accuracy as in 2D convolutions, they propose the
group-wise convolutional layer. Given the input features with shape H ×W × N,
the layer first splits the features into N groups along the channel dimension, then
computes N correlation scores and stack them again to form a volume with shape
D× H ×W × N, which is finally processed by means of 3D convolutions. Their ar-
chitecture, called GWC-Net, is based on PSMNet, nonetheless it proves to be more

2.2. Optical flow estimation 9

accurate yet faster on popular benchmarks [191, 196, 76].
Previous works focus their efforts on architecture search, and follow a conven-

tional train scheme for which an intial pre-training on large synthetic datasets [191,
303], where perfect ground-truth is available, is followed by a fine-tuning on the
target dataset. This latter training, which is performed usually on real data, is re-
quired to overcome the domain gap issue, a well-know problem that afflicts deep
stereo models. In particular, synthetic data are far from being realistic, even when
realistic noise is taken into account. For this reason, networks trained on synthetic
data only struggle when run on real data. Zhang et al. [355] tackle the problem with
a novel normalization layer, which allows to reduce the impact of image-level do-
main shifts. Differently, Watson et al. [320] present a smart pipeline to train stereo
models on large collections of real single images: given a single image and an off-
the-shelf monocular network trained to be robust in the wild [245], they synthesize
the right image of a virtual stereo pair, and use the monocular depth as ground-truth
supervision to train a stereo model.

Last but not least, particularly attractive is the chance to train stereo models from
raw pairs, thus without the need of training labels. In fact, the stereo setup intro-
duces additional constraints (e.g. images are synchronized in time, epipolar lines
are horizontal) that make easier to learn how to match pixels. Since no ground-truth
label is available, many self-supervised methods exploit the photometric error as
training signal [362, 316]. Specifically, the predicted disparity can be used to warp
the target image to obtain a reconstructed reference image, and the photometric dis-
crepancy between the real and the reconstructed references represents the training
objective (that is, the better the disparity the more realistic the reconstructed image).
Complementary to the photometric error, other strategies exploit left-right check
[363], co-teaching [316] or traditional stereo methods [300] as additional guidance at
training time, paving the way for real-time adaptation [301]. Finally, self-supervision
proved to be effective also in case of multi-task models [318, 151, 126], in which
stereo problem is tackled in conjunction with optical flow or semantic segmentation.

2.2 Optical flow estimation

2.2.1 Traditional approaches

The seminal work by Horn and Schunck [105] introduces the problem and proposes
a variational framework to tackle it. Specifically, the optical flow constraint equation
can be derived under the assumption of brightness consistency, but it cannot be
solved uniquely since it contains more variables than linearly independent equa-
tions. To address the problem, known as aperture, Horn and Schunck add a smooth-
ness term as further constraint, obtaining the final energy function E to minimize:

E =
∫∫

[(Ixu + Iyv + It)
2 + λ(u2

x + u2
y + v2

x + v2
y)]dxdy (2.5)

where λ is a weight factor while u, v are the horizontal and vertical components of
the optical flow vector. Instead, the subscripts x, y, t indicate derivatives along x,y
and time respectively in the image domain I or for flow components u and v.

Another milestone in the field is the work from Lucas and Kanade [177], in which
the authors assume that the motion is constant for all the pixels belonging to a small
patch. This assumption allows to build an over-determined system of equations
for each pixel, that can be approximated by means of least-squares. The proposed

10 Chapter 2. Related works

method works well in texture regions, where the spatial derivatives of close pixels
provide meaningful information to solve the system, while it suffers if the patch
contains a sharp edge or lacks of texture, because the spatial derivatives are close
to zero in one or both the dimensions respectively. Both the methods ignited a
prosperous literature [71, 20], and many of the original limitations have been ad-
dressed. For instance, violation of the brightness constraint has been tackled assum-
ing as constant the gradient [35] or even higher order derivatives [218], changing the
color space [198] or by applying robust transformations [93, 313], whereas pyrami-
dal approaches [13, 195, 285] help manage large motions. However, coarse-to-fine
approach could get stuck in local minimums when small objects move fast [285,
250]. [34, 336] address the problem by means of descriptor matching, in which a pre-
liminary set of matches is further improved in a variational framework. EpicFlow
[250] proposes to interpolate at the full image resolution the initial set of candi-
dates while preserving edges, through an edge-aware term. CPM [111] improves
EpicFlow introducing a coarse-to-fine matching based on random search: in each
level of the pyramid, random search improves the current set of seeds looking for
the best matching in a bounded range, then the seeds serve as initial flow guesses
in the next level. After the last level of the pyramid, initial matches are finally op-
timized with EpicFlow. Conversely, RicFlow [110] overcomes the vulnerability of
EpicFlow to outliers in initial matching: the scene is segmented into SLIC superpix-
els [4], and the flow of each region is computed using a RANSAC-like [70] algorithm,
supposing that the flow of each superpixel meets a piecewise affine model; then a
fast propagation mechanism between superpixels iteratively improves the models
starting from superpixel initialization. Final result is obtained after a variational
refinement stage, in which the global energy is minimized as in [250].

2.2.2 Deep learning based methods

Even though classical approaches generated a flourishing literature in the past, they
generally require global optimizations that are hard and time consuming to solve.
To tackle this issue, additional constraints (e.g. the model of the motion), heuristics
and complex pipelines have been introduced. Recently, the rise of machine and deep
learning solutions helped to address the problem, paving the way towards end-to-
end models able to learn directly from data. [254] [286] [293]

Flownet [61] represents the first, notable attempt towards end-to-end models for
optical flow. Inspired by the recent progress in image classification, depth estimation
and semantic segmentation fields, the authors propose a CNN able to predict optical
flow labels starting from two images. Their model, called FlownetS, contains only
convolutional layers and are optimized by means of gradient descent. Moreover,
they also propose a more accurate model named FlownetC, which exploits a cor-
relation layer to perform matching in the feature space: given two feature maps f1
and f2 extracted from the images, the correlation layer computes the scalar product
between two patches centered in x1 in x2 respectively in f1 and f2

c(x1, x2) = ∑
o∈[−k,k]×[−k,k]

⟨f1(x1 + o), f2(x2 + o)⟩ (2.6)

The correlation scores are then stacked with other features extracted from the first
image and then used in the decoding stage. Specifically, a decoder based on upcon-
volutions in charge of predicting the final optical flow map at the original resolution.
To train their model, the authors also generate the synthetic dataset Flying Chairs
using real texture from Flickr and 3D assets of chairs. This dataset is presented in

2.2. Optical flow estimation 11

Chapter 3.1. FlowNet obtained impressive results both in terms of accuracy and
execution time (since convolutions can easily exploit GPU for computation), but it
suffers in case of small displacements. To this aim, Ilg et al. [120] first studied how to
schedule multiple datasets at training time, then they proposed FlowNet2, a novel
architecture made of multiple FlowNetC and FlowNetS. Two main branches are in
charge of computing large and small displacements respectively. On the one hand,
computing large motions requires more capacity, thus more FlowNet networks are
connected in series. In each stage the second image is warped according to the previ-
ously predicted optical flow, providing to the network an additional feedback about
the goodness of the flow. On the other hand, small motion requires a more fine-grain
analysis. Therefore the authors adopted a peculiar network trained on a synthetic
dataset specifically designed for small displacements. The two branches are fused
together in the last stage, producing flow maps with sharp motion boundaries and
able to preserve fine details.

The well-known pyramidal approach has been used also in combination with
deep-learning solutions to address large motion displacements while reducing the
size of the models. Ranjan and Black [246] propose SpyNet, a coarse-to-fine network
96% smaller than FlowNet, in which each level of the pyramid learns a residual flow
from the upsampled flow from the previous level and the two images (I1, I2), with
I2 warped using the optical flow as in classical formulations [285]. PWCNet by Sun
et al. [287] further improves the basic concepts below SpyNet: besides coarse-to-
fine design and warping, PWCNet introduces the cost volume as fundamental data
structure to store matching costs. Differently from SpyNet, PWCNet warps features
f2 according to the past flow, and use them with f1 to build the cost volume of the
current pyramid level using a feature correlation layer. Moreover, while in FlowNet
the cost volume is computed once so it has to employ a large search window, the
pyramidal design of PWCNet allows to employ small windows in each level, thus
reducing the complexity of the model. The cost volume is finally processed, together
with I1 and the upsampled flow from the previous level, to predict the optical flow of
the current level. When the last level of the pyramid has predicted its flow, a final re-
finement network tries to ameliorate it, resembling post-processing stage adopted in
traditional methods. PWCNet is 17 times smaller and 2 times faster than FlowNet2,
but provides more accurate maps on conventional benchmarks [196, 37]. Similar
strategies have been employed also in LiteFlowNet [117, 116, 115], paving the way
towards fast methods for optical flow.

Recent state-of-the-art strategies exploit iterative schemes instead of the coarse-
to-fine approach. Hur and Roth [118] replace the multi-scale decoder of PWCNet
and FlowNet with a single decoder that is used at each level to estimate a resid-
ual correction for the flow. RAFT [294], on the contrary, mimics the steps of an
iterative optimization algorithm: GRU units are in charge of refining an initial op-
tical flow map for a large number of iterations. In general, the initial map is set to
zero, but this is not mandatory: for instance, when processing video sequences, the
warm-start provides a stronger initialization since the optical flow computed for the
previous pair of frames is forward projected to the current one and used as initial
map. Moreover, RAFT does not compute correlation scores as in FlowNet, but it
takes the dot product between all pairs in f1 and f2, generating a 4D cost volume
with shape H ×W × H ×W. The cost volume is aggregated by means of pooling
layers, generating a multi-scale structure that contains information for both small
and large displacements. A look-up operation allows to extract information from
each cost volume given the current flow estimate, then these correlation scores are

12 Chapter 2. Related works

stacked together and used by the iterative layer to predict a better a residual correc-
tion for the flow map.

RAFT provides state-of-the-art results, especially when it is trained in a super-
vised fashion. Nevertheless obtaining ground-truth labels for optical flow is ex-
tremely expensive, since no sensor is able to provide these labels directly from im-
ages. Depth sensors can be used to project the 3D scene into the image plane (ob-
taining the motion field), however expensive post-processing interventions are still
required to obtain ground-truth values. For instance, the pipeline adopted in the
KITTI 2015 dataset [196] to obtain sparse optical flow annotations for the 200 image
pairs requires CAD models for the dynamic objects (e.g. cars) and also some manu-
ally annotated correspondences between the CAD model and the object in the image.
It is easy to notice that these constraints are impractical for datasets with thousands
or millions of images. To tackle this issue, in the last few years the research commu-
nity puts much efforts into solutions that do not need expensive labels at training
time. UnFlow by Meister et al. [194] was a first step towards this direction: their
model, inspired by FlowNet and FlowNet2, is trained using an unsupervised loss
which takes into account a brightness, a smoothness and consistency check terms
computed using both the forward and the backward flows (i.e. the flow from I2 to
I1). Specifically, the brightness term imposes that two corresponding pixels, if not
occluded, should be similar in the image. To compensate for illumination changes,
the census transform is applied on the images. The second term imposes a second
order smoothness on the flow, while the third requires that, for non-occluded pixels,
the forward and the backward flows should be consistent for corresponding points.
Instead of masking out occluded pixels, Liu et al. [169] propose a teacher-student
approach aimed at providing a valid supervision on such difficult regions: first the
teacher model is trained without ground-truth supervision on non-occluded pixels,
then a student network is trained employing as additional labels the outcomes of the
teacher model. Specifically, the teacher first infers the optical flow from I1 to I2, then
the two images are cropped and given as input to the student. Doing so, some pixels
result to be occluded in the cropped patch, but could be visible in the original image.
When this happens, the predictions from the teacher are a reliable source of supervi-
sion to train the student model to be robust against occlusions. SelFlow [170] further
explores teacher-student paradigm: given a dataset without labels, a teacher model
is trained in non-occluded regions exploiting a photometric loss, then the images of
the dataset are perturbed by noise, which is used to hallucinate occlusions, and given
as input to the student model. Similarly to [169], the student relies teacher’s predic-
tions in virtually occluded regions, making it more robust. Moreover, the authors
also propose a model, based on PWCNet, that takes three consecutive images as in-
put. The additional image could provide beneficial information about pixels that
might be occluded in the future frame but not in the past, allowing the multi-frame
model to build a cost volume based on forward and backward flows in each stage of
the pyramid. The multi-frame approach for optical flow proved to be beneficial both
for unsupervised [125] and supervised [249] strategies. Recently, Jonschkowski et al.
[130] analyze key components for unsupervised optical flow. Among them, the cen-
sus loss proves to be a valid objective for this task, forward-backward consistency
helps to address occluded regions and second-order smoothness term provides a
good regularization. These findings have been coupled with other strategies (e.g.
self-teaching scheme for self-supervision and cost volume normalization) achieving
impressive results. Stone et al. [283] introduce a multi-frame self-supervision to
train RAFT without the need of ground-truth labels.

2.3. Confidence estimation 13

2.3 Confidence estimation

As evinced before, many applications require depth labels in their pipeline to solve
higher level tasks, such as obstacle avoidance. Nonetheless, a valuable question
that may arise is can we trust on these predictions? In fact, especially for critical ap-
plications, errors in the system might be fatal. For this reason, confidence estima-
tion algorithms have gained popularity in the field, providing valuable methods
to detect and remove points in depth maps that are likely to be outliers. Follow-
ing the taxonomy proposed in [231], stereo confidence measures can be classified
as hand-crafted or learned. In general, hand-crafted measures take into account the
cost volume [190, 265], a part of it [138, 238] or even the disparity map [232, 92]
as main source of information. In addition, consistency checks, as the Left-Right
Consistency [63], other constraints, as the Uniqueness [59], or considerations about
image properties [220, 221] might help to detect errors and challenging regions. On
the other hand, learned strategies leverage classifiers to infer a confidence score for
each pixel. Initial attempts employed Random Forests [33] fed with the outcomes of
hand-crafted measures [92, 236], but recent solutions involve CNNs to process the
disparity [304, 233] or the cost volume [193, 86]. Hu and Mordohai [109] evaluate 17
confidence measures using popular benchmarks as Middlebury [263], while Poggi
et al. [238] further improve the evaluation by considering more than 52 algorithms.
Similar studies have been conducted even for optical flow [145, 185].

2.4 Semantic segmentation

As evinced so far, depth information is crucial to solve geometrical problems, e.g.
augmented reality or obstacle avoidance. Nonetheless, in many applications we
also need semantic cues about the scene: for instance, we might be interested in rec-
ognizing pixels in the image that belong to the road, trees and people because we
want to apply different heuristics depending on the class. In this case (and many
others), we have to deal with the semantic segmentation task, since we need to un-
derstand the content of the image at pixel level. Specifically, given a set of classes
(e.g. car, tree and road), we have to assign the best class to each pixel in the image.
Seminal strategies adopted machine learning approaches, such as Random Forest
[270] or Conditional Random Fields (CRF) [228], but the real turning point for this
task was the introduction of deep architectures. Fully-convolutional networks [174]
are the most embraced paradigm, in which a backbone first extracts features at dif-
ferent resolutions, then a decoder with deconvolutions predicts the semantic label
for each pixel at the original resolution. Badrinarayanan et al. [17] adopt a multi-
level decoder, while Zhao et al. [357] propose a pyramid pooling module to add
global context. In this field, DeepLab family gave a large contribution. In the initial
proposal [50], atrous convolutions help to increase the field-of-view efficiently, and a
final CRF post-processes the predictions of the network. Then, atrous spatial pyra-
midal pooling [49, 47] and a new model found by neural architecture search [167]
largely improve the accuracy, dismissing the need for CRF post-processing. More
details about other notable works in the field can be found in the survey by Minaee
et al. [200]. These methods require large datasets with accurate labels for training
purposes, and a great effort has been made by the community in the past years. For
instance, Microsoft COCO [166] contains 2.5 million labeled instances for a total of
328,000 images, while OpenImages [147] provides, in its v6 version, about 9 million
images with rich annotations. However, none of these datasets can infuse the global

14 Chapter 2. Related works

knowledge a model might need at scale. To tackle this problem, domain adaptation
strategies have been proposed, allowing to reduce the shift between training and
testing domains. When labels for the target domain are not required, adaptation is
called unsupervised [297], and represents an intriguing research direction. Besides
semantic segmentation, in some application we have to identify unique instances
in the images. For example, two pixels might have the same semantic meaning (e.g.
person) yet belong to two different instances (two different persons). In this case, we
need an instance segmentation algorithm [97, 227, 164]. Furthermore, the two tasks
of instance and semantic segmentation can be combined, providing to each pixel the
semantic and the instance classes. In this case, the segmentation is called panoptic
[141], and different methods have been proposed [140, 53, 333], paying attention also
to efficient computation [323, 104].

2.5 Single image monocular depth estimation

While stereo and multi-view problems have been largely addressed in the past years,
monocular depth estimation, i.e. estimating the depth of the scene given a single
image of it, is a recent challenge. In fact, at least in theory, an infinite number of 3D
scenes might generate the captured image. To deal with the complexity of the prob-
lem, preliminary attempts exploited Markov Random Fields [261], Boosted Decision
Trees [102] or KNN queries on a labeled database [134], but it was the introduction
of CNN that ignited the research on the topic. Since CNNs require large amount
of training data, with or without labels. In the following, we briefly revisit notable
proposals in both supervised and self-supervised setups.

2.5.1 Learning with depth supervision

In their seminal work, Eigen et al. [65] use a CNN to predict in end-to-end fash-
ion the monocular depth. Specifically, a global coarse-scale network is in charge of
regressing a coarse depth map for the scene, while a subsequent fine-scale network
takes the coarse map as input and improves it locally. The two networks are trained
in supervised manner with a scale invariant loss aimed at reducing the issue given
by the global scale. Indeed, the authors noticed that a non-negligible portion of the
total error depends on how well the mean depth is predicted. Conversely, the scale-
invariant loss allows to measure the relationship among corresponding pixels up
to a scale factor, since it removes the global scale in depth maps. Following works
largely improved the accuracy: Fu et al. [72] recast the conventional regression task
as an ordinal regression one by means of a spacing-increasing discretization, Yin et
al. [345] enforce geometric constraints including a loss on virtual normals while Bhat
et al. [24] generalize the ordinal regression introducing bins that change depending
on the scene. Fast computation has been addressed by Wofk et al. [326]: their model
called FastDepth employs a lightweight encoder-decoder structure, and a final prun-
ing further reduces the computational complexity. The previous methods employ
ground-truth depth annotations at training time, but as in the stereo case these la-
bels are expensive to collect at scale. For this reason, many works tried to overcome
this limitation, proposing less expensive yet effective ways to obtain pseudo-labels
(i.e. labels that are not the output of a depth sensor). Li and Snavely [163] process
internet photo collections obtaining a raw depth supervision by means of structure-
from-motion [267] and multi-view-stereo [268] algorithms. Since these depth maps
might contain artefacts due to moving objects, or errors near depth discontinuities, a

2.5. Single image monocular depth estimation 15

further refinement strategy is applied. This strategy takes into account the semantic
segmentation of the image, used to categorize pixels into foreground (e.g. people, stat-
ues) and background (e.g. buildings, road) classes, and exploits additional constraints
to ensure more consistent depth labels. Even if moving objects represent a serious
issue for multi-view approaches, since they break the moving camera in a static world
assumption, it is highly likely that real sequences collected in the wild contain them.
The problem is still open, but it has been addressed successfully in constrained se-
tups. For instance, Li and Snavely [161] leverage online videos of frozen people to
train a monocular model able to generalize on conventional videos with moving
people. Specifically, at training time the authors processed with COLMAP [268]
sequences of people while doing the mannequin challenge, i.e. people are motion-
less while the camera moves in the environment. This is a favourable condition for
COLMAP, which provides reliable pseudo ground-truth depth labels for both people
and background objects. At test time, the model trained on pseudo labels receives
real videos with moving people as input. Since the network processes the video one
frame after the other, people appear as static in each frame, so the model can general-
ize well. Ranftl et al. [245] face the problem of training with different sources: in fact,
heterogeneous datasets are crucial to obtain robust models, but at the same time the
supervision they provide might be quite different. The authors mixed 3D movies,
online stereo videos and large structure-from-motion collections, obtaining a large
dataset depicting various conditions. A novel robust loss and a training schedule
have been proposed to handle this huge diversity, allowing to train a large convolu-
tional model with impressive generalization capability. In a following work, Ranftl
et al. [244] include more training data and replaced the convolutional backbone with
a vision transformer [60]. Their Dense Prediction Transformer (DPT) achieves out-
standing results in monocular depth estimation and semantic segmentation tasks.
Xian et al. [331] employ a pair-wise ranking loss to train on large-scale datasets, en-
forcing random, edge and instance guided sampling strategies. Monocular models
can provide us the depth given a single image, but to obtain the 3D point cloud we
also need camera parameters, which are likely to be unknown when using images
sampled from the web. Yin et al. [346] address the problem and propose a model
able to learn from large-scale datasets but also to infer a guess about the focal length
of the camera, obtaining at the end a more realistic point cloud.

2.5.2 Learning from raw images

It is easy to imagine that collecting and preparing a large amount of data for train-
ing purposes are time-consuming tasks. On the contrary, exploiting raw images al-
lows for notably decreasing these payloads, at the cost of weaker supervision. Self-
supervised strategies use as main signal at training time the photometric supervision
given by one or more images not available for test: with the predicted depth, a new
image is built leveraging image warping process, then the result is compared with a
real image captured by the camera. The discrepancy between the two images indi-
rectly measures the quality of the depth, since a reliable depth map could synthesize
a realistic image. Of course, this supervision is weaker than using depth sensors,
since even a wrong depth prediction could generate a low-error pixel intensity in
ambiguous regions (e.g. textureless areas). The image used for warping can be the
right sample in a stereo pair or another frame in a monocular video. Notice that we
need this additional source of information because a single image contains cues that
are extremely difficult to exploit without supervision (e.g. defocus or occlusions),

16 Chapter 2. Related works

so unsupervised schemes are uncommon. Thankfully, the additional information
required by self-supervised methods is cheap and easy to obtain most of the times.

We now describe notable strategies for both the families, even if proposals that
combine both the strategies exist.

Stereo pairs. Garg [75] et al. advance a framework for self-supervised train-
ing of monocular models leveraging stereo pairs at training time. Specifically, the
depth for the left image is turned into a disparity, using known camera parameters,
and used to warp the right image. Doing so, we obtain a reconstructed left image
valid for loss computation. Godard et al. [79] improve the image formation model
in several ways, proposing the MonoDepth framework. First, the authors employ a
bilinear sampler [122] in warping stage, replacing the Taylor expansion introduced
by [75] and thus obtaining a loss that is easier to optimize. Moreover, instead of
the L2 loss adopted in [75], in MonoDepth the loss takes into account also the struc-
tural similarity index measure (SSIM) [319] and a left-right consistency regularization,
improving the quality of predictions. Finally, a post-processing step leads to more
pleasant maps with lower errors. MonoDepth represents a milestone in the field,
and it has been used as baseline for further improvements. Among them, semantic
reasoning [352], virtual trinocular assumption [237], classical stereo guidance [321]
generative adversarial approach [8, 327] or real-time performance [230].

Monocular videos. Training models with stereo pairs requires a stereo device,
which is less expensive than manual labeling but still represents an additional con-
straint. To avoid this, Zhou et al. [365] leverage monocular videos at training time,
thus adopting the same device both for training and testing. The depth model is
trained together with a pose network, in charge of predicting the camera extrinsic
parameters between two consecutive frames. However, dynamic objects break the
non-rigid scene motion assumption, and for this reason the authors also employed a
motion explanation mask to remove problematic regions at training time. Godard et
al. [80] boost the paradigm proposing MonoDepth2, a novel framework able to use
monocular videos and eventually also stereo pairs for training purposes. A better
loss, which takes into account the minimum error term among multiple sourcing im-
ages, some architectural improvements and a non-learned mask allow MonoDepth2
to achieve impressive results. Consecutive works aim at incorporating optical flow
[347, 52, 178], semantic segmentation [85, 41], geometric constraints [187, 257] or un-
certainty estimation [340] to obtain even better results. Many efforts have been spent
in improving the capacity of the networks. Johnston and Carneiro [129] add the at-
tention mechanism in the MonoDepth2 framework, Guizilini et al. [84] introduce 3D
packing and unpacking blocks aimed at preserving and recovering spatial informa-
tion while Ramamonjisoa et al. [242] enforce model efficiency by means of wavelet
decomposition. Further improvements are focused in excising the knowledge about
camera parameters [82, 309] or pose [358], dealing with indoor environments [349,
157] or dynamic objects [159].

2.5.3 Video at test time and adaptation

In many applications we are allowed to collect video sequences at test time. Despite
this, previous methods process the video as a collection of single frames, so they
are not able to fully exploit internal connections among video frames. On the other
hand, a model that takes multiple frames at test time can exploit the larger context
to predict more reliable maps than single-image strategies. Watson et al. [322] pro-
pose a monocular model that successfully exploits video sequences also at test time.
Their framework, called ManyDepth, takes more frames as input and creates a cost

2.6. Monitoring applications and deep learning 17

volume, using a learned pose for warping. Moreover, the authors also leverage a
monocular model at training time as teacher model to tackle dynamic objects. Fi-
nally, also classical methods for simultaneous localization and mapping (SLAM) can
be adopted to obtain expert models: Tiwari et al. [296] propose a self-improving
loop in which a monocular depth model [80] and a SLAM technique [205] collabo-
rate together to mitigate the their limitations.

In general, the weights of the model are frozen at test time, i.e. the model obtained
at the end of the training is deployed as a set of constant parameters, but the avail-
ability of sequences allows to use self-supervised strategies suited for monocular
video learning also at test time. This test time refinement was originally proposed
in [40], and further investigated in several other works. Chen et al. [52] propose
two different online optimization strategies: in parameter fine-tuning the model is
optimized computing a test-time loss, while in output fine-tuning we directly min-
imize the output without recomputing the network. McCraith et al. [192] evalu-
ate which modules receive more benefits from adaptation, studying the impact of
different choices (e.g. learning rate, optimization steps) both in instance-wise and
sequential adaptation. In the former case, the weights are modified individually
for each image, while in the latter the model is updated throughout the whole se-
quence. To prevent catastrophic forgetting, replay-buffer strategy [149] and online
statistics adapters [356] have been applied. Optical flow and more complex adapta-
tion strategies for online optimization can be adopted, as proved by [160]. Finally,
another important direction of research consists in obtaining an expert model for a
given video sequence. These methods release fast-adaptation and frame-order con-
straints, enforcing long training on the given video sampling frames with arbitrary
order. The goal is to obtain a model that perfectly explains the current video, gen-
erating consistent depths among all the frames. For this purpose, Luo et al. [180]
propose Consistent Video Depth (CVD) framework, in which the depth of corre-
sponding points is forced to be consistent. An off-the-shelf optical flow network is
in charge of predicting pixel matching between frames, but since a video might con-
tain several frames, computing optical flow for every pair of frame is not feasible.
For this reason, the authors adopt a hierarchical frame sampling strategy, largely
decreasing this cost. Kopf et al. [146] subsequently face one of the main limita-
tions of CVD, that is the motion of dynamic objects. Their robust version of CVD
joint estimates depth deformation and camera poses from the input video, while a
geometry-aware depth filter recovers fine-details.

2.6 Monitoring applications and deep learning

Among the countless fields that have benefited from the recent improvement and
spread of digital technologies, monitoring represents a crucial topic. Structural health
monitoring, for instance, aims to detect in advance critical damages to buildings and
infrastructures. It enables to assess their level of safety and integrity [114], and to op-
erate early avoiding potential disasters. Similarly, environmental monitoring gath-
ers all the information that reveals the actual state of a particular ecosystem. Water
quality [1] and wastewater [95], air pollution [132] and soil erosion [30] are just few
examples of environmental monitoring applications. Of course, practical cases for
monitoring are innumerable and can involve dynamic situations occurred in a long
time period, as for wild animals monitoring in their environment [306].

18 Chapter 2. Related works

Modern monitoring applications exploit heterogeneous sensors connected through
the internet to obtain a large amount of data, often collected with real-time con-
straints. For this reason, monitoring tasks can be seen as concrete applications of
the Internet of Things (IoT) concept, and are becoming pervasive [3, 282, 2, 152, 188].
Among the sensors, cameras are widely adopted because they are cheap, can be
easily deployed in many environments [292] and are supported even by low-power
devices [173]. When the area to cover becomes extremely large, as for forest vari-
able estimation [289], aerial images are frequently employed [214, 315]. The high-
resolution of aerial images, however, may be critical for memory-hungry strategies,
and efficient methods have been proposed [99]. Similarly, researchers and engineers
applied methods based on computer vision also for other challenging situations,
such as underwater [260] or in snow-covered environments [68].

The recent spread of deep learning strategies has successfully involved also mon-
itoring [366, 203, 350], and vision-based systems [344] are achieving astonishing
results for crack detection [259, 210], defect localization [224] and risk assessment
[359]. Moreover, also depth [67, 123], optical flow [328, 91, 292] and semantic seg-
mentation [44, 172] tasks have been employed successfully for improving monitor-
ing applications. A notable example is social-distance monitoring, a crucial task due
to the COVID-19 pandemic. As we will discuss in more detail in Chapter 12, se-
mantic segmentation and depth are two vital pieces of information for addressing
some intrinsic limitations of the problem. For instance, Aghaei et al.[5] require that
the principal plane in the scene, such as the floor, is visible and detectable, but this
condition is hard to fulfil in practice. Similarly, also wearable devices like Bluetooth
bracelets [148, 144] or smartphones [128] are difficult to apply at scale, because they
require an active involvement of the users. On the contrary, a passive monitoring
application based on already deployed surveillance cameras represents a low-cost
yet broadly usable alternative to address the problem.

19

Chapter 3

Datasets, metrics and baseline
models

Before diving into the core of this work, first we describe the datasets and the metrics
used in the field. Then, we recap some of the most important models for monocular
depth estimation.

3.1 Datasets

We now introduce some of the mostly adopted datasets in the field. Disparity maps
are colored using the jet colormap, so the larger the disparity value the warmer the
color. Optical flow, instead, is encoded with the color wheel defined in [61] and
depicted in Figure 3.1, in which the hue and its saturation are ruled by the angle and
the magnitude of the flow vector respectively.

FIGURE 3.1: Optical flow color wheel. Each pixel is encoded with a particular color
depending on its optical flow value. Specifically, the hue and the saturation depend
respectively on the angle and the magnitude of the flow vector.

SceneFlow. The SceneFlow dataset [191] is a popular synthetic dataset contain-
ing around 35k stereo pairs with dense ground-truth maps for disparity, optical flow
and disparity change tasks. The resolution is 960× 540. It is composed of three dif-
ferent splits, called Driving, FlyingThings3D and Monkaa respectively. Figure 3.2
presents a qualitative example from FlyingThings3D for both disparity and optical
flow tasks.

20 Chapter 3. Datasets, metrics and baseline models

FIGURE 3.2: Qualitative example from SceneFlow. From left to right, the reference
image and the ground-truth map for two samples from the FlyingThings3D split. First
row depicts the left image of the stereo pair and the ground-truth disparity map, while
second row illustrates the reference image and the optical flow map.

KITTI. The KITTI dataset is a large collection of stereo pairs suited for autonomous
driving applications. In particular, it frames driving scenarios, and it has been col-
lected by a moving car with a LiDAR device mounted on top. Due to the configura-
tion of the system some images are slightly different in size, but the most common
is 1242× 375. The dataset divides into KITTI 2012 [77] and KITTI 2015 [196] ver-
sions. Figures 3.3 and 3.4 depict respectively samples from KITTI 2012 and KITTI
2015 respectively.

FIGURE 3.3: Qualitative example from KITTI 2012. From left to right, the reference
image and the ground-truth map. First row depicts the left image and the disparity
map, while second row presents the first image and the optical flow map.

KITTI 2012 contains 194 and 195 samples respectively for training and testing,
while KITTI 2015 has 200 pairs with accurate ground-truth labels for training and
200 for testing. In particular, the KITTI 2015 split provides labels for many tasks,
such as optical flow, disparity estimation, semantic segmentation, visual odometry
and more, and offers an online benchmark (for which ground-truth labels are not
available) to test new methods and compare them with previous strategies in the
literature. Aside from labeled pairs, the dataset offers a large unlabeled split [76]
made of 151 scenes with raw LiDAR measurements (i.e. the outcome of the sensor
without any particular filter to remove outliers or to make the maps denser) and

3.1. Datasets 21

FIGURE 3.4: Qualitative example from KITTI 2015.From left to right, the reference
image and the ground-truth map. First row depicts the left image and the disparity
map, second row presents the optical flow map while third row illustrates the semantic
segmentation map.

RGB stereo pairs. This split is suitable for training unsupervised strategies, due to
the large number of samples. Another widely adopted way to split the KITTI dataset
has been proposed in the seminal work of Eigen et al. [65]. This split, called Eigen
split, uses 29 scenes of the dataset to sample 697 images for testing purposes, while
the remaining 32 scenes, counting about 23,488 frames, are used for training and
validation. The Eigen split is particularly adopted by the monocular depth estima-
tion community, since it provides 22,600 images used to train monocular models in
self-supervised fashion.

DrivingStereo. The DrivingStereo dataset [338] comprises 180,000 stereo pairs
at 1762× 800 depicting driving scenarios under different weather conditions. Sim-
ilarly to KITTI, the car used to collect the data is equipped with a LiDAR sensor,
allowing to obtain accurate depth measurements but, to obtain dense yet accurate
ground-truth depth maps, the authors relied on a neural network to aggregate multi-
ple LiDAR point clouds into a single map. Moreover, the dataset does not offer labels
for other tasks, making it appropriate for training unsupervised and self-supervised
methods. A qualitative example is shown in Figure 3.5.

FIGURE 3.5: Qualitative example from DrivingStereo. From left to right, the left image
of the stereo pair and the ground-truth disparity map.

Cityscapes. The Cityscapes dataset [55] depicts 50 German cities under differ-
ent weather conditions, counting 25,000 stereo pairs framing driving scenes with an
image resolution of 2048× 1024. The dataset is used mostly for the semantic segmen-
tation task, since it provides coarse semantic labels for 20,000 images and accurate
semantic labels for the remaining split. Differently from KITTI or DrivingStereo, the

22 Chapter 3. Datasets, metrics and baseline models

acquisition system was not equipped with a LiDAR sensor, and the depth labels pro-
vided by the authors are the outcomes of a passive stereo method [101]. For this rea-
son, this dataset is suited for training, aside from semantic segmentation networks,
self-supervised depth or optical flow methods. Figure 3.6 illustrates the disparity
map and the corresponding semantic labels for a sample of the dataset.

FIGURE 3.6: Qualitative example from Cityscapes. From left to right, the reference
image of the stereo pair the disparity map and the ground-truth semantic segmentation
map provided by the authors.

Middlebury v3. The Middlebury Stereo Dataset v3 [263] is a widely adopted
high-resolution indoor real-world stereo dataset. It provides accurate ground-truth
disparity maps at different resolutions: full-res (F), half-res (H) and quarter-res (Q),
with full-res maps are roughly 5 Mpx (i.e. image size is ∼ 2900× 2000). The limited
training set, made of 15 images, makes the dataset suitable for generalization pur-
poses, i.e. it allows checking if a pre-trained model can handle images taken from
different domains. We depict a sample of the dataset in Figure 3.7.

FIGURE 3.7: Qualitative example from Middlebury. From left to right, the left image
of the stereo pair and the ground-truth disparity map.

ETH3D. The ETH3D dataset [269] depicts both indoor and outdoor environ-
ments and is made of 27 grayscale stereo pairs with ground-truth disparity maps.
As for Middlebury v3 dataset, the size of this collection makes it appropriate for
generalization purposes rather than for training. Images are at low resolution and
can have different size, such as 713× 438 or 940× 491. Figure 3.8 shows a sample
from the dataset.

TUM. The TUM RGBD (3D Object Reconstruction category) dataset [284] con-
tains indoor sequences captured using a camera and a Microsoft Kinect device. Im-
age resolution is 640 × 480. This dataset is a popular benchmark for SLAM algo-
rithms, but it can be also used to evaluate generalization capabilities of monocular
depth models. For instance, Li et al. [161] leverage 1815 images of this dataset for
evaluation purposes. Figure 3.9 depicts a sample of the dataset.

NYU v2. The NYUv2 dataset [206] is an indoor dataset with depth measures
acquired by a Microsoft Kinect device. It provides more than 400k raw depth frames
and 1449 densely labelled frames at 640× 480. The official test split containing 654

3.1. Datasets 23

FIGURE 3.8: Qualitative example from ETH3D. From left to right, the left image of the
stereo pair and the ground-truth depth map, colored as inverse depth.

FIGURE 3.9: Qualitative example from TUM. From left to right, the reference image
and the ground-truth depth map, visualized as inverse depth.

images, used for generalization purposes. Figure 3.10 presents a sample from the
dataset.

FIGURE 3.10: Qualitative example from NYU v2. From left to right, the reference image
and the ground-truth depth map, colored as inverse depth.

Make3D. The Make3D dataset [262] contains single images and their ground-
truth depth maps acquired using a laser scanner device. The dataset contains train-
ing and testing splits with 400 and 134 samples respectively, and it is mostly used
for attesting generalization capability of monocular models. Images, which depict
urban and natural areas, have a resolution of 2272× 1704 pixels while depth maps
have a notably smaller resolution (55× 305). Figure 3.11 illustrates a qualitative ex-
ample of the dataset taken from the original paper [262].

UnrealStereo4K. The UnrealStereo4K is a realistic synthetic high-res (3840×2160)

24 Chapter 3. Datasets, metrics and baseline models

FIGURE 3.11: Qualitative example from Make3D. From left to right, the reference im-
age and its corresponding ground-truth depth map (colored in the log scale, where
close, mid and far distances are encoded in yellow, red and blue respectively).

stereo dataset with available ground-truth disparities. The dataset contains 7720, 80
and 200 in-domain pairs respectively for training, validation and test. Furthermore,
to evaluate the generalization ability, the authors also provide an out-of-domain test
set by rendering 200 stereo pairs from an unseen scene. A sample from the dataset
is depicted in Figure 3.12.

FIGURE 3.12: Qualitative example from UnrealStereo4k. From left to right, the refer-
ence image and the ground-truth disparity map.

Sintel. The MPI Sintel [37] is a synthetic dataset that depicts naturalistic video
sequences with optical flow, motion boundaries, unmatched regions and disparity
ground-truth labels. Image resolution is 1024× 436. The training split counts about
1040 images with different lightning conditions. Clean and Final are the most adopted
splits. In Figure 3.13 we illustrate an example of Sintel for optical flow.

FIGURE 3.13: Qualitative example from Sintel. From left to right, the reference image
and the ground-truth optical flow map.

FlyingChairs. FlyingChairs is a popular synthetic dataset used to train opti-
cal flow models. It contains 22,232 images of chairs moving according to 2D dis-
placement vectors over random backgrounds sampled from Flickr. Image size is

3.2. Metrics 25

512× 384. We report an example of FlyingChairs in Figure 3.14.

FIGURE 3.14: Qualitative example from FlyingChairs. From left to right, the reference
image and the ground-truth optical flow map.

3.2 Metrics

Once a model has been trained, we are interested in computing its accuracy and
errors in a quantitative way. Therefore, it is common to evaluate models exploiting
ground-truth measurements as target values. Depending on the task, we might have
different scores. In the following, we report the principal metrics used in monocular
depth estimation, stereo, optical flow, confidence estimation and image classification
and segmentation. Some metrics are the lower the better ↓ , while others the higher

the better ↑ .

3.2.1 Monocular depth metrics

Popular metrics adopted in the monocular setting have been proposed in [65]. These
metrics are computed in the depth space.

Abs Rel. ↓ It measures the difference of predictions with respect their corre-
sponding ground-truth values (marked with *), normalized by ground-truth. The
metric is averaged on valid points N, i.e. the set of points for which the ground-
truth y∗ is available.

Abs Rel =
1
|N| ∑

y∈N

|y− y∗|
y∗

(3.1)

Sq Rel. ↓ Similar to the Abs Rel, it computes the squared error instead the
absolute one, thus assigning more importance to large errors.

Sq Rel =
1
|N| ∑

y∈N

(y− y∗)2

y∗
(3.2)

RMSE. ↓ The Root Mean Squared Error (RMSE) measures how much the pre-
dictions fit the expected results. To obtain it, we have to take the mean of the squares
of the residuals, and then to apply the square root.

RMSE =

√
1
|N| ∑

y∈N
(y− y∗)2 (3.3)

26 Chapter 3. Datasets, metrics and baseline models

log RMSE. ↓ It is similar to the RMSE, but it computes the discrepancy when
depths are in the log space.

log RMSE =

√
1
|N| ∑

y∈N
(ln y− ln y∗)2 (3.4)

Threshold. ↑ It measures the relative frequency of predicted depths for which a
peculiar ratio δ is lower than a threshold ϵ. Popular choices for ϵ are 1.25, 1.252 and
1.253.

δ < ϵ =
1
|N| ∑

y∈N
max(

y
y∗

,
y∗

y
) < ϵ (3.5)

Notice that, when testing multiple predictions, such as when our testing set is
made of many images or we aim to test a video sequence and not over a single
frame, the final score for each metric is computed taking the average of single eval-
uations. Moreover, since the metrics are computed in the depth space, if a model
predicts inverse depths or disparities, first we have to move and align the predic-
tions to the depth space, and then we can compute the metrics. Many methods that
predict inverse depth require ground-truth values even during the alignment phase,
to compute the scale in the depth space [80, 365] or a scale and shift alignment in
the inverse depth domain [245], while methods that leverage stereo pairs at training
time [79, 302] generally need only few parameters of the setting (e.g., the baseline
and the focal length of the camera to turn the disparity into a depth).

3.2.2 Stereo matching metrics

Popular metrics to evaluate the quality of predicted disparity maps are EPE, D1
and BAD. These metrics are computed on the set N, i.e. the set of pixels for which
ground-truth and predictions are both valid. Moreover, it is quite common to com-
pute these metrics separately on different regions of the image. For instance, on
KITTI [196] error metrics are measured both in Noc or All, respectively only in non-
occluded areas and in all the pixels for which a valid ground-truth is available.

EPE. ↓ The End-Point-Error (EPE) measures the average discrepancy, in pixel
units, between each predicted disparity value y and the correspondent ground-truth
value y∗.

EPE =
1
|N| ∑

y∈N
|y− y∗| (3.6)

D1. ↓ The D1 error, introduced in [196], measures the percentage of pixels for
which the predicted disparity has a discrepancy with respect to the ground-truth
higher than two thresholds, t1 and t2. Specifically, a pixel is considered invalid if its
absolute disparity error is lower or equal than t1 and if the ratio between this error
and the ground-truth is larger or equal than t2.

D1 = 100
|N| ∑y∈N f (y, y∗)

f (y, y∗) =

1 if |y− y∗| ≥ t1 and |y−y∗|
y∗ ≥ t2,

0 otherwise
.

(3.7)

3.2. Metrics 27

where t1 and t2 are in general set to 3 and 0.05 respectively. In general, the metric
takes into account all the valid pixels (D1-all), however KITTI [196] benchmark pro-
vides the score also for foreground objects (D1-fg) and for the background (D1-bg).

BAD. ↓ The BAD metric measures the percentage of pixels have an EPE error
larger than a threshold ϵ. Generally, BAD is reported as BADϵ (e.g. BAD2).

BADϵ = 100
|N| ∑y∈N b(y, y∗, ϵ)

b(y, y∗, ϵ) =

1 if |y− y∗| ≥ ϵ,

0 otherwise
.

(3.8)

SEE. ↓ The Soft Edge Error (SEE) has been proposed in [46] to evaluate the dis-
parity error for pixels around edge boundaries. In fact, edges are hard to predict for
stereo networks and at the same time they count a little subset of the pixels in the
image. Since popular metrics as EPE take into account all the valid pixels, meth-
ods that predict bad edges show similar performance to strategies that are instead
reliable near edges, if they are accurate elsewhere.

SEEk(y, y∗) = 1
|E| ∑y∈E sek(y, y∗),

sek(y, y∗) = min|y− y∗j | j ∈ Nk(y),
(3.9)

where E = Edge(y∗) is the set of points in the edge boundaries and Nk(y) denotes
the local k× k neighbourhood of point y. Notice that when k = 1 we obtain the EPE
measured on the edge.

3.2.3 Optical flow metrics

EPE. ↓ Similarly to stereo, EPE is measured also for optical flow. Given the ground-
truth flow vector p∗ and the predicted one p for each valid pixel, the EPE is com-
puted as:

EPE =
1
|N| ∑

p∈N
∥p− p∗∥2 (3.10)

with |N| the number of valid pixels. Notice that flow vectors contain two terms (i.e.
a horizontal and a vertical component), while disparity in stereo is a scalar.

Fl. ↓ This metric, introduced in [196], is the corresponding of D1 for optical
flow. It computes the percentage of pixels with absolute error larger or equal than t1
and with the ratio between the absolute error and the ground-truth value larger or
equal than t2, with t1 and t2 two thresholds.

Fl = 100
|N| ∑p∈N f (p, p∗),

f (p, p∗) =

1 if k(p, p∗) ≥ t1 and k(p,p∗)
m(p∗) ≥ t2,

0 otherwise
,

k(p, p∗) = ∥p− p∗∥2 ,

m(p∗) =
√

p∗x2 + p∗y2

(3.11)

where p∗x and p∗y are the horizontal and vertical components of the ground-truth flow
p∗. These two components are used to compute the magnitude m of the flow vector.
In general we have t1 = 3 and t2 = 0.05.

28 Chapter 3. Datasets, metrics and baseline models

>3. ↓ This metric is similar to Fl, in fact it computes the percentage of pixels
with absolute error larger or equal than 3 pixels.

> 3 = 100
|N| ∑p∈N f (p, p∗),

f (p, p∗) =

1 if k(p, p∗) ≥ 3

0 otherwise
,

k(p, p∗) = ∥p− p∗∥2 ,

(3.12)

3.2.4 Confidence metrics.

AUSE. ↓ Also adopted in [119], the Area Under the Sparsification Error (AUSE)
measures the uncertainty of the model. Given an error metric ϵ, first we rank all the
points in order of descending uncertainty. Then, we progressively sample a certain
percentage of points, and we compute ϵ on the remaining values. If the uncertainty
measure is effective, the curve should shrink, since errors are removed at each iter-
ation. The ideal case (i.e. having an oracle), instead, consists in the curve obtained
by sorting the points in order of descending magnitude of ϵ. The AUSE measures
the distance between the real and the ideal estimator, and it is computed as the area
under the curve given by the difference between the estimated and optimal sparsifi-
cations.

AURG. ↑ The Area Under the Random Gain (AURG) is computed in a similar
manner to AUSE, but instead of the ideal curve we have to adopt the curve generated
by a random estimator. This latter curve is obtained by randomly removing points at
each iteration. This measure estimates the gain of the uncertainty method compared
to do not estimate uncertainty at all.

3.2.5 Classification and segmentation metrics

IoU. ↑ The Intersection over Union is a popular metric to evaluate image segmen-
tation models. It is computed as:

IoU =
TP

TP + FN + FP
(3.13)

where TP, FN and FP are respectively the true positive, the false negative and
the false positive predictions of the model.

Precision. ↑ The Precision computes the ratio of correctly classified observa-
tions to the number of predicted positive cases.

P =
TP

TP + FP
(3.14)

Recall. ↑ The metric computes the ratio of correctly classified observations to
the actual number of positive cases.

R =
TP

TP + FN
(3.15)

F1 score. ↑ The F1 score measures how good and complete are the predictions
of the model. It is defined as the harmonic mean between the precision P and the
recall R.

3.3. Baseline models 29

F1 =
2 · P · R
P + R

(3.16)

mIoU class. ↑ The mean Intersection over Union over classes computes the
IoU of each class and averages the result. This metric is widely adopted in semantic
segmentation and it is computed as:

mIoU class =
1

ncl
∑

i

nii

ti + ∑j nji − nii
(3.17)

where nij indicates the number of pixels of class i predicted to belong to class j, ncl
is the number of classes and ti is the total number of ground-truth pixels of class i.
Notice that nii = TPi, ti = TPi + FNi and ∑j nji = TPi + FPi, where TPi, FNi and FPi
are TP, FN and FP computed for the i-th class.

mIoU cat. ↑ This metric is similar to mIoU class, but it takes into account cate-
gories instead of single classes. In particular, related classes are clustered together,
such as car, truck, bus and bicycle are clustered into the same vehicle category.

Pixel Acc. ↑ The Pixel Accuracy is the relative frequency of pixels with correctly
predicted labels. It is computed as:

Pixel Acc. = ∑i nii

∑i ti
(3.18)

Mean Acc. ↑ This metric computes the mean of the accuracy of each class.

Mean Acc. =
1

ncl
∑

i

nii

ti
(3.19)

f.w. IoU. ↑ The Frequency Weighted Intersection over Union extends mIOU to
tackle class imbalance. It computes the weighted mean of the classes instead of the
arithmetic average.

f.w. IoU =
1

∑k tk
∑

i

tinii

ti + ∑j nji − nii
(3.20)

3.3 Baseline models

We now discuss monocular depth models that are frequently used as baselines in
this work.

MonoDepth. Proposed in [79], MonoDepth is a monocular depth model trained
in a self-supervised fashion using stereo pairs. An initial encoder, which can have a
ResNet50 [98] or a VGG-like [276] structure, extracts features while a decoder is in
charge of predicting two disparity maps aligned with the left and right views of a
virtual stereo pair: the left disparity agrees with the real input image, while the other
map fits an unseen right image, not available in practice with a monocular setup.
This allows applying additional consistency terms at training time, as the left-right
consistency check. The VGG-like network contains 31 million trainable parameters,
while the ResNet variant has 48 million parameters.

MonoDepth2. This network, presented in [80], introduces some novelties re-
spect to MonoDepth. First, the proposed training scheme does not leverage only
stereo pairs, as in MonoDepth, but also monocular videos. These two modalities

30 Chapter 3. Datasets, metrics and baseline models

can be also combined, obtaining a training procedure that leverages stereo pairs
with monocular video frames simultaneously. Second, an effective auto-mask strat-
egy is in charge of removing pixels that break the assumption of a moving camera in
a stationary scene. Third, the authors introduce some loss innovations, such as the
per-pixel minimum reprojection, that make the training procedure more effective.

In terms of architecture, the network has an encoder-decoder structure as in
MonoDepth. The encoder, that can be a ResNet18 or a ResNet50 [98], shrinks the
input and then a decoder module predicts a depth map at the original resolution. At
each level in the decoder, 3× 3 convolutions with skip connections are performed,
followed by a 3 × 3 convolution layer in charge of depth estimation. The result-
ing network can predict depth at different scales, The model with the ResNet18 as
encoder contains about 14.8 million trainable parameters, while the other 34.6 mil-
lion parameters. Both the encoders can be trained from scratch, but they can also
start from the already available ImageNet pre-training [58] to improve the speed of
convergence.

MiDaS. Proposed by Ranftl et al. [245], MiDaS is a convolutional neural network
trained to predict inverse depth maps for a large set of different data, such as 3D
movies or stereo videos. The authors provide two models, characterized by different
encoders and thus by different complexity: the large model, counting about 105
million parameters, and the small one, with 21 million parameters, referred to as
MiDaS and MiDaS small. While the latter runs at a high framerate even on mobile
devices (MiDaS small v2.1 runs at 30 FPS on an Apple iPhone 11), the former is more
accurate.

DPT. The Dense Prediction Transformer (DPT) [244] represents the state-of-the-
art solution for monocular depth estimation in the wild. It is based on a Visual Trans-
former (ViT [60]) backbone that takes a set of flattened embeddings (tokens) from
non-overlapping patches of the image and processes them through a set of trans-
former layers. Then, a convolutional decoder reassembles the tokens into an image-
like feature representation at different resolutions that are progressively fused. Fi-
nally, a dedicated head predicts the task-specific output at the original input reso-
lution. Eventually, the tokens can be source using a CNN backbone: in this case,
the model is called ViT-Hybrid, and exploits a ResNet50 [98]. DPT and DPT-Hybrid
count nearly 344 and 123 million of trainable parameters respectively.

FastDepth. Proposed by Wofk et al. [326], this network can infer depth predic-
tions at 178 fps with an NVIDIA Jetson TX2 GPU. This notable speed is the result of
design choices, hardware-specific optimizations and pruning [342] strategies. The
encoder is a MobileNet [108], thus suited for execution on embedded devices. The
decoder consists of 6 layers, each one with a depth-wise separable convolution, with
skip connections starting from the encoder.

31

Chapter 4

Boosting monocular depth
networks with stereo supervision

This chapter presents monocular Residual Matching (shorten, MonoResMatch), a
novel end-to-end architecture trained to estimate accurate (inverse) depth maps from
single images. On the one hand, the accuracy is achieved by the peculiar design of
the network, which mimics a stereo setup. Specifically, the reference input image is
mapped in the features space, and from this representation the model estimates a
first disparity outcome. We then synthesize features aligned with a virtual right im-
age by warping the original features with the estimated disparity. A final refinement
module performs stereo matching between the real and synthesized representations.
On the other hand, to boost the performance we also leverage traditional knowledge
from classical stereo methods to obtain proxy labels at training time. We will show
that, despite the presence of outliers in proxy maps (in fact, these labels are far from
being perfect ground-truth labels), optimizing the model according to this paradigm
results in a superior accuracy compared to self-supervision with image reconstruc-
tion. Since the training pipeline requires disparity labels and not only images, the
proposed method is not self-supervised as [79, 80]. However, these labels are eas-
ily computed from the same raw images used by these methods using off-the-shelf
strategies, therefore we refer to this setup as weakly supervised. The content of
this chapter is based on Learning monocular depth estimation infusing traditional stereo
knowledge [302].

4.1 Monocular Residual Matching

Cost
Volume

warp

Initial Disparity Estimation

Disparity Refinement

Multi-scale Feature Extractor

𝑑7

𝑑0
. . .

𝑟2

𝑟0. . .

𝑑2..0

𝐹𝐿
0

𝑒𝐿

. . .

warp

 𝐹𝑅
0

𝑑0

𝐹𝐿
2

𝐹𝐿
0

FIGURE 4.1: Illustration of MonoResMatch architecture. Given one input image, the
multi-scale feature extractor (in red) generates high-level representations in the first
stage. The initial disparity estimator (in blue) yields multi-scale disparity maps aligned
with the left and right frames of a virtual stereo pair. The disparity refinement module
(in orange) is in charge of refining the initial left disparity relying on features computed
in the first stage, disparities generated in the second stage, matching costs between high-
dimensional features F0

L extracted from input and synthetic F̃0
R from a virtual right view-

point, together with absolute error eL between F0
L and back-warped F̃0

R.

32 Chapter 4. Boosting monocular depth networks with stereo supervision

In this section, we describe in detail the proposed MonoResMatch architecture
designed to infer an accurate and dense depth map in a weakly-supervised manner
from a single image. Figure 4.1 recaps the three key components of our network at
test time. First, a multi-scale feature extractor takes as input a single raw image and
computes deep learnable representations at different scales from quarter resolution
F2

L to full-resolution F0
L in order to toughen the network to ambiguities in photo-

metric appearance. Second, deep high-dimensional features at input image resolu-
tion are processed to estimate, through an hourglass structure with skip-connections,
multi-scale inverse depth (i.e., disparity) maps aligned with the input and a virtual
right view learned during training. By doing so, our network learns to emulate a
binocular setup, thus allowing further processing in the stereo domain [181]. Third,
a disparity refinement stage estimates residual corrections to the initial disparity. In
particular, we use deep features from the first stage and back-warped features of the
virtual right image to construct a cost volume that stores the stereo matching costs
using a correlation layer [191].

Our entire architecture is trained from scratch in an end-to-end manner, while
SVS [181] by training its two main components, Deep3D [332] and DispNetC [191],
on image synthesis and disparity estimation tasks separately (with the latter requir-
ing additional, supervised depth labels from synthetic imagery [191]).

Extensive experimental results prove that MonoResMatch enables much more
accurate estimations compared to SVS and other state-of-the-art approaches.

4.1.1 Multi-scale feature extractor

Inspired by [165], given one input image I we generate deep representations using
layers of convolutional filters. In particular, the first 2-stride layer convolves I with
64 learnable filters of size 7× 7 followed by a second 2-stride convolutional layer
composed of 128 filters with kernel size 4 × 4. Two deconvolutional blocks, with
stride 2 and 4, are deployed to upsample features from lower-spatial resolution to
full input resolution producing 32 features maps each. A 1× 1 convolutional layer
with stride 1 further processes upsampled representations.

4.1.2 Initial disparity estimation

Given the features extracted by the first module, this component is in charge of es-
timating an initial disparity map. In particular, an encoder-decoder architecture in-
spired by DispNet processes deep features at quarter resolution from the multi-scale
feature extractor (i.e., conv2) and outputs disparity maps at different scales, specif-
ically from 1

128 to full-resolution. Each down-sampling module, composed of two
convolutional blocks with stride 2 and 1 each, produces a growing number of ex-
tracted features, respectively 64, 128, 256, 512, 1024, and each convolutional layer
uses 3 × 3 kernels followed by ReLU non-linearities. Differently from DispNet,
which computes matching costs in the early part of this stage using features from
the left and right images of a stereo pair, our architecture lacks such necessary infor-
mation required to compute a cost volume since it processes a single input image.
Thus, no 1-D correlation layer can be imposed to encode geometrical constraints in
this stage of our network. Then, upsampling modules are deployed to enrich feature
representations through skip-connections and to extract two disparity maps, aligned
respectively with the input frame and a virtual viewpoint on its right as in [79]. This
process is carried out at each scale using 1-stride convolutional layers with kernel
size 3× 3.

4.1. Monocular Residual Matching 33

(a) (b) (c)

FIGURE 4.2: Examples of proxy labels computed by SGM. Given the source image
(a), the network exploits the SGM supervision filtered with left-right consistency check
(b) in order to train MonoResMatch to estimate the final disparity map (c). No post-
processing from [79] is performed on (c) in this example.

4.1.3 Disparity refinement

Given an initial estimate of the disparity at each scale obtained in the second part
of the network, often characterized by errors at depth discontinuities and occluded
regions, this stage predicts corresponding multi-scale residual signals [98] by a few
stacked nonlinear layers that are then used to compute the final left-view aligned
disparity map. This strategy allows us to simplify the end-to-end learning process of
the entire network. Moreover, motivated by [181], we believe that geometrical con-
straints can play a central role in boosting the final depth accuracy. For this reason,
we embed matching costs in feature space computed employing a horizontal corre-
lation layer, typically deployed in deep stereo algorithms. To this end, we rely on
the right-view disparity map computed previously to generate right-view features
F̃0

R from the left ones F0
L using a differentiable bilinear sampler [122]. The network

is also fed with error eL, i.e. the absolute difference between left and virtual right
features at input resolution, with the latter back-warped at the same coordinates of
the former, as in [165].

We point out once more that, differently from [181], our architecture produces
both a synthetic right view, i.e. its features representation, and computes the final
disparity map following stereo rationale. This makes MonoResMatch a single end-
to-end architecture, effectively performing stereo out of a single input view rather
than the combination of two models (i.e., Deep3D [332] and DispNetC [191] for the
two tasks outlined) trained independently as in [181]. Moreover, exhaustive experi-
ments will highlight the superior accuracy achieved by our weakly-supervised end-
to-end approach.

4.1.4 Training loss

In order to train our multi-stage architecture, we define the total loss as a sum of two
main contributions, a Linit term from the initial disparity estimation module and a
Lre f term from the disparity refinement stage. Following [80], we embrace the idea
to up-sample the predicted low-resolution disparity maps to the full input resolution
and then compute the corresponding signals. This simple strategy is designed to
force the inverse depth estimation to reproduce the same objective at each scale,
thus leading to much better outcomes. In particular, we obtain the final training loss
as:

Ltotal =
ni

∑
s=1
Linit +

nr

∑
s=1
Lre f (4.1)

34 Chapter 4. Boosting monocular depth networks with stereo supervision

where s indicates the output resolution, ni and nr the numbers of considered
scales during loss computation, while Linit and Lre f are formalised as:

Linit =αap(Ll
ap + Lr

ap) + αds(Ll
ds + Lr

ds)

+ αps(Ll
ps + Lr

ps)
(4.2)

Lre f = αapLl
ap + αdsLl

ds + αpsLl
ps (4.3)

where Lap is an image reconstruction loss, Lds is a smoothness term and Lps is
a proxy-supervised loss. Each term contains both the left and right components for
the initial disparity estimator, and the left components only for the refinement stage.

Image reconstruction loss. A linear combination of L1 loss and structural sim-
ilarity measure (SSIM) [319] encodes the quality of the reconstructed image Ĩ with
respect to the original image I for each pixel i, j:

Lap =
1
N ∑

i,j
α

1− SSIM(Iij, Ĩij)

2
+ (1− α)|Iij − Ĩij| (4.4)

Following [79], we set α = 0.85 and use a SSIM with 3× 3 block filter.
Disparity smoothness loss. This cost encourages the predicted disparity to be

locally smooth, and it has been employed also in other works [80, 79]. Disparity
gradients are weighted by an edge-aware term from image domain:

Lds =
1
N ∑

i,j
|∂xDij|e−|∂x Iij| + |∂yDij|e−|∂y Iij| (4.5)

,
where Dij is the disparity for the pixel at coordinates i, j.
Proxy-supervised loss. When ground-truth labels are not available, we can use

off-the-shelf methods to distill pseudo labels for training purposes [143, 321]. Specif-
ically, given the proxy disparity maps obtained by a conventional stereo algorithm,
detailed in Section 4.2, we coach the network using reverse Huber (berHu) loss [216]:

Lps =
1
N ∑

i,j
berHu(Dij, Dst

ij , cij) (4.6)

berHu(Dij, Dst
ij , cij) =

|Dij − Dst
ij | if |Dij − Dst

ij | ≤ cij
|Dij−Dst

ij |2−c2
ij

2cij
otherwise

(4.7)

where Dij and Dst
ij are, respectively, the predicted disparity and the proxy anno-

tation for pixel at the coordinates i, j of the image, while c is adaptively set for each
pixel as cij = 0.2 max |Dij − Dst

ij |.

4.2 Proxy labels distillation

To generate accurate proxy labels, we use the popular SGM algorithm [101], a fast yet
effective solution to infer depth from a rectified stereo pair without training. In our
implementation, initial matching costs are computed for each pixel p and disparity
hypothesis d applying a 9× 7 census transform and computing Hamming distance
on pixel strings. Then, scanline optimization along eight different paths refines the

4.3. Experimental results 35

initial cost volume following the equation 2.2, and the final winner-takes-all strategy,
applied to each pixel, produces the final disparity map D.

Although SGM generates quite accurate disparity labels, outliers may affect the
training of a depth model negatively, as noticed by Tonioni et al.[300]. They applied
a learned confidence measure [233] to filter out erroneous labels when computing
the loss. Differently, we run a non-learning based left-right consistency check to de-
tect outliers. Purposely, by extracting both disparity maps DL and DR with SGM,
respectively for the left and right images, we apply the following criteria to invali-
date (i.e., set to -1) pixels having different disparities across the two maps:

D(p) =

D(p) if |DL(p)− DR(p− DL(p))| ≤ ε

−1 otherwise
(4.8)

The left-right consistency check is a simple strategy that removes many wrong
disparity assignments, mostly near depth discontinuities, without needing any train-
ing that would be required by [300]. Therefore, our proxy labels generation process
does not rely at all on ground-truth depth labels. Figure 4.2 shows an example of
distilled labels (b), where black pixels correspond to outliers filtered out by left-right
consistency. Although some of them persist, we can notice how they do not affect the
final prediction by the trained network and how our proposal can recover accurate
disparity values in occluded regions on the left side of the image (c).

4.3 Experimental results

In this section we present exhaustive evaluations of MonoResMatch on various train-
ing/testing configurations, showing that our proposal consistently outperforms self-
supervised state-of-the-art approaches. As standard in this field, we assess the per-
formance of monocular depth estimation techniques following the protocol by Eigen
et al.[65], i.e. extracting data from the KITTI [196] dataset and using sparse LiDAR
measurements as ground-truth for evaluation. Additionally, we also perform an ex-
haustive ablation study proving that proxy supervision from SGM algorithm and
effective architectural choices enable our strategy to improve predicted depth map
accuracy by a large margin.

For training purposes we used Cityscapes followed by KITTI. We refer to these
two training sets as Cityscapes (CS) and Eigen KITTI split (K) from now on. More
details about the training procedure are given in Appendix A.

4.3.1 Ablation study

In this section we examine the impact of i) proxy-supervision from SGM and ii)
the different components of MonoResMatch. The outcomes of these experiments,
conducted on the Eigen split, are collected in Table 4.1.

Proxy-supervised loss analysis. We train MonoDepth framework by Godard et
al.[79] from scratch adding our proxy-loss, then we compare the obtained model
with the original one, as well as with the more effective strategy used by 3Net [237].
It is worth noticing that the models have a similar complexity in terms of number
of trainable parameters: Godard et al.[79](ResNet50), Poggi et al.[237](ResNet50)
and the proposed MonoResMatch have 48.0, 48.0 and 42.5 million of parameters
respectively. Furthermore, all the models perform the post-processing technique
defined in [79], which helps to boost the performance.

36 Chapter 4. Boosting monocular depth networks with stereo supervision

Method Supervision Train set Abs Rel Sq Rel RMSE log RMSE δ <1.25 δ < 1.252 δ < 1.253

Image SGM

Godard et al.[79] ResNet50 ✓ K 0.128 1.038 5.355 0.223 0.833 0.939 0.972
Poggi et al.[237] ResNet50 ✓ K 0.126 0.961 5.205 0.220 0.835 0.941 0.974
MonoResMatch ✓ K 0.116 0.986 5.098 0.214 0.847 0.939 0.972
MonoResMatch ✓ ✓ K 0.111 0.867 4.714 0.199 0.864 0.954 0.979

Godard et al.[79] ResNet50 ✓ CS,K 0.114 0.898 4.935 0.206 0.861 0.949 0.976
Poggi et al.[237] ResNet50 ✓ CS,K 0.111 0.849 4.822 0.202 0.865 0.952 0.978
Godard et al.[79] ResNet50 ✓ ✓ CS,K 0.110 0.822 4.675 0.199 0.862 0.953 0.980
MonoResMatch (no-refinement) ✓ ✓ CS,K 0.107 0.781 4.588 0.195 0.869 0.957 0.980
MonoResMatch (no-corr) ✓ ✓ CS,K 0.104 0.766 4.553 0.192 0.875 0.958 0.980
MonoResMatch (no-pp) ✓ ✓ CS,K 0.098 0.711 4.433 0.189 0.888 0.960 0.980
MonoResMatch ✓ ✓ CS,K 0.096 0.673 4.351 0.184 0.890 0.961 0.981

TABLE 4.1: Ablation studies on Eigen split [65]. Maximum depth value is set to 80m.
All networks perform the post-processing as in [79] unless otherwise specified (no-pp
entry). All the methods employ stereo pairs at training time.

We can observe that proxy-loss enables a more accurate MonoDepth model (row
3) compared to [79], moreover it also outperforms virtual trinocular supervision pro-
posed in [237], attaining better metrics with respect of both, but δ < 1.25 for 3Net.
Specifically, by recalling Figure 4.2, the proxy distillation couples well with a crop-
ping strategy, solving well-known issues for stereo supervision such as disparity
ramps on the left border.

Component analysis. Still referring to Table 4.1, we evaluate different configu-
rations of our framework by ablating the key modules peculiar to our architecture.
First, we train MonoResMatch on K without proxy supervision (row 3) to high-
light that our architecture already outperforms [79] (row 1). Training on CS+K with
proxy labels, we can notice how without any refinement module (no-refinement), our
framework already outperforms the proxy-supervised ResNet50 model of Godard et
al.[79]. Adding the disparity refinement component without encoding any matching
relationship (no-corr) enables small improvements, becoming much larger on most
metrics when a correlation layer is introduced (no-pp) to process real and synthe-
sized features as to resemble stereo matching. Finally, post-processing as in [79]
(row 11) still ameliorates all scores, although the larger contribution is given by the
correlation-based refinement module, as perceived by comparing no-refinement and
no-pp entries. Finally, by comparing rows 4 and 11 we can also perceive the impact
given by CS pretraining on our full model.

4.3.2 Comparison with self-supervised frameworks

Having studied in detail the contribution of both MonoResMatch architecture and
proxy supervision, we compare our framework with state-of-the-art self-supervised
approaches for monocular depth estimation. Table 4.2 collects results obtained eval-
uating different models on the aforementioned Eigen split [65]. In this evaluation,
we consider only competitors trained without any supervision from ground-truth la-
bels (e.g., synthetic datasets [191]) involved in any phase of the training process [181,
89]. We refer to methods using monocular supervision (Seq), binocular (Stereo) or
both (Seq+Stereo). Most methods are trained on CS and K, except Yang et al.[341] that
leverages on different sub-splits of K. From the table, we can notice that MonoRes-
Match outperforms all of them significantly.

To compete with methods exploiting supervision from dense synthetic ground-
truth [191], we run additional experiments using very few annotated samples from
KITTI as in [181, 89], for a more fair comparison. Table 4.3 collects the outcome of

4.3. Experimental results 37

Method PP Sup Train set Abs Rel Sq Rel RMSE log RMSE δ <1.25 δ < 1.252 δ < 1.253

Zou et al.[367] Seq CS,K 0.146 1.182 5.215 0.213 0.818 0.943 0.978
Mahjourian et al.[187] Seq CS,K 0.159 1.231 5.912 0.243 0.784 0.923 0.970
Yin et al.[347] GeoNet ResNet50 Seq CS,K 0.153 1.328 5.737 0.232 0.802 0.934 0.972
Wang et al.[314] Seq CS,K 0.148 1.187 5.496 0.226 0.812 0.938 0.975
Poggi et al.[230] PyD-Net (200) Stereo CS,K 0.146 1.291 5.907 0.245 0.801 0.926 0.967
Godard et al.[79] ResNet50 ✓ Stereo CS,K 0.114 0.898 4.935 0.206 0.861 0.949 0.976
Poggi et al.[237] 3Net ResNet50 ✓ Stereo CS,K 0.111 0.849 4.822 0.202 0.865 0.952 0.978
Pilzer et al.[226] (Teacher) Stereo CS,K 0.098 0.831 4.656 0.202 0.882 0.948 0.973
Yang et al.[341] ✓ Seq+Stereo Ko, Kr, Ko 0.097 0.734 4.442 0.187 0.888 0.958 0.980
MonoResMatch ✓ Stereo CS,K 0.096 0.673 4.351 0.184 0.890 0.961 0.981

TABLE 4.2: Quantitative evaluation on Eigen split et al.[65]. Maximum depth value
is set to 80m. PP entries use the post-processing of [79]. Ko, Kr, Ko are splits from K,
defined in [341]. Best results are shown in bold.

these experiments according to different degrees of supervision, in particular using
accurate ground-truth labels from the KITTI 2015 training split (200-acrt) or different
amounts of samples from K with LiDAR measurements, respectively 100, 200, 500
and 700 as proposed in [181, 89], running only 5k iterations for each configuration.
We point out that MonoResMatch, on direct comparisons to methods trained with
the same amount of labeled images, consistently achieves better scores, with rare
exceptions. Moreover, we highlight in red for each metric the best score among all
the considered configurations, figuring out that MonoResMatch trained with 200-
acrt plus 500 samples from K attains the best accuracy on all metrics. This fact points
out the high effectiveness of the proposed architecture, able to outperform state-of-
the-art techniques [181, 89] trained with much more supervised data (i.e., more than
30k stereo pairs from [191] and pre-trained weights from ImageNet). Leveraging
on the traditional SGM algorithm instead of a deep stereo network as in [89] for
proxy-supervision ensures a faster and easier to handle training procedure.

Method Supervision Abs Rel Sq Rel RMSE log RMSE δ <1.25 δ < 1.252 δ < 1.253

200-acrt 100 200 500 700

Luo et al.[181] ✓ 0.101 0.673 4.425 0.176 - - -
MonoResMatch ✓ 0.089 0.575 4.186 0.181 0.897 0.964 0.982

Luo et al.[181] ✓ ✓ 0.100 0.670 4.437 0.192 0.882 0.958 0.979
MonoResMatch ✓ ✓ 0.096 0.573 3.950 0.168 0.897 0.968 0.987

Luo et al.[181] ✓ ✓ 0.094 0.635 4.275 0.179 0.889 0.964 0.984
MonoResMatch ✓ ✓ 0.093 0.567 3.914 0.165 0.901 0.969 0.987

Luo et al.[181] ✓ ✓ 0.094 0.626 4.252 0.177 0.891 0.965 0.984
MonoResMatch ✓ ✓ 0.095 0.567 3.942 0.166 0.899 0.969 0.987

Guo et al.[89] ✓ 0.096 0.641 4.095 0.168 0.892 0.967 0.986
MonoResMatch ✓ 0.098 0.597 3.973 0.169 0.895 0.968 0.987

TABLE 4.3: Comparison between methods supervised by few annotated samples. Ex-
perimental results on the Eigen split [65], with maximum depth value set to 80m. The
label 200-acrt means using the 200 pairs of KITTI 2015 with ground-truth labels, while
100, 200, 500, 700 indicate how many LiDAR-annotated pairs have been included for
training. Best results in direct comparisons are shown in bold, best overall scores are
in red, consistently attained by MonoResMatch

4.3.3 Comparison with Depth Hints

We now compare the proposed MonoResMatch with Depth Hints, a contemporary
work proposed by Watson et al.[321]. Similarly to MonoResMatch, Depth Hints

38 Chapter 4. Boosting monocular depth networks with stereo supervision

exploits stereo pairs at training time to generate proxy labels with SGM [101]. How-
ever, it differs from MonoResMatch for the following reasons. First, the formulation
of Depth Hints allows to use even monocular sequences in addition to stereo pairs
at training time, as in [80]; second, the proxy depth labels are not applied to every
pixel, but selectively ameliorate only the points for which the reprojection loss can be
improved. Table 4.4 reports the comparison between the two methods on the Eigen
split [65] when only stereo pairs are employed for training. For each model, we re-
port the million of trainable parameters (MP), the image resolution used at training
time (W×H) and the dataset used for the pre-training dataset (PT), when required.
Moreover, all the configurations perform the post-processing of [79]. We can notice
that, despite the differences in terms of image resolution, model complexity and pre-
training datasets, the two methods show similar performance when using their best
configurations.

Method MP PT W×H Abs Rel Sq Rel RMSE log RMSE δ <1.25 δ < 1.252 δ < 1.253

Depth Hints (ResNet50) 34.6 1024× 320 0.112 0.857 4.807 0.203 0.861 0.952 0.978
Depth Hints 14.8 I 1024× 320 0.099 0.723 4.445 0.187 0.886 0.962 0.981
Depth Hints (ResNet50) 34.6 I 1024× 320 0.096 0.710 4.393 0.185 0.890 0.962 0.981
MonoResMatch 42.5 640× 192 0.111 0.867 4.714 0.199 0.864 0.954 0.979
MonoResMatch 42.5 CS 640× 192 0.096 0.673 4.351 0.184 0.890 0.961 0.981

TABLE 4.4: Comparison with Depth Hints. We compare MonoResMatch with the com-
petitor work Depth Hints [321] on the Eigen split [65]. All the methods exploit the same
post-processing strategy, but they can be eventually pre-trained (PT) on ImageNet [58]
(I) or Cityscapes [55] (CS). Column MP reports the number of trainable parameters (in
millions), while W×H the training resolution.

4.3.4 Performance on single view stereo estimation

Finally, we further compare MonoResMatch directly with Single View Stereo (SVS)
by Luo et al.[181], being both driven by the same rationale. We fine-tuned MonoRes-
Match on the KITTI 2015 training set as in Table 4.3 and submitted to the online
stereo benchmark [196] as in [181]. Table 4.5 compares MonoResMatch with SVS
and other techniques evaluated in [181], respectively MonoDepth [79] and OpenCV
Block-Matching (OCV-BM). D1 scores, defined in Chapter 3.2, represent the percent-
ages of pixels having a disparity error larger than 3 or 5% of the ground-truth value
on different portions of the image, respectively background (bg), foreground (fg) or
its entirety (all). We can observe from the table a margin larger than 3% on D1-bg
and near to 1% for D1-fg, resumed in a total reduction of 2.72%. This outcome sup-
ports once more the superiority of MonoResMatch, although SVS is trained on many,
synthetic images with ground-truth [191]. Finally, Figure 4.3 depicts qualitative ex-
amples retrieved from the KITTI online benchmark.

Method PP D1-bg D1-fg D1-all

MonoDepth [79] ✓ 27.00 28.24 27.21

OCV-BM 24.29 30.13 25.27

SVS [181] 25.18 20.77 24.44

MonoResMatch ✓ 22.10 19.81 21.72

TABLE 4.5: Quantitative results on the test set of the KITTI 2015 Stereo Benchmark
[196]. Percentage of pixels having error larger than 3 or 5% of the ground-truth. Best
results are shown in bold.

4.4. Conclusions 39

RGB Prediction Error

FIGURE 4.3: Online evaluation of MonoResMatch. From left to right the input image,
the predicted depth and the errors with respect to ground-truth. The last line reports
the color code used to display the seriousness of the shortcomings (same of [196])

4.4 Conclusions

In this chapter we have seen in details MonoResMatch, a novel framework for ac-
curate monocular depth estimation. It combines i) specific design choices to tackle
depth-from-mono in analogy to stereo matching, thanks to a correlation-based re-
finement module and ii) a more robust training leveraging the proxy ground-truth
labels generated through a traditional (i.e. non-learning based) algorithm such as
SGM. Although the proposed strategy is not self-supervised as [80, 79] due to need
of proxy labels, these labels are easily extracted from the same data adopted by these
methods. For this reason, proxy-label distillation can be thought of as a peculiar data
pre-processing for the raw stereo dataset.

In contrast to state-of-the-art models [181, 89, 341], our architecture is elegantly
trained in an end-to-end manner. Through exhaustive experiments, we prove that
plugging proxy-supervision at training time leads to more accurate networks. This
claim is also supported by parallel works, such as [321].

41

Chapter 5

Monocular depth estimation on
low-power devices

In the previous chapter, we have discussed MonoResMatch, a monocular model that
can infer accurate depth maps. Unfortunately, the other side of the coin is that we
pay the accuracy in terms of model’s size and efficiency: the model counts about
42.5 million parameters and performs a large number of operations, preventing
the real-time execution even when using high-performance workstations equipped
with powerful GPUs. A similar reasoning applies to MonoDepth [79], which counts
about 31 million parameters in its VGG-like variant and 48 millions in the larger
ResNet50 version, and many other models. Furthermore, in real applications we
would like to deploy our models on portable devices, such as a Raspberry Pi3, be-
cause they consume less energy, they are cheaper and require much less space than
high-performance GPUs. In [230], Poggi et al. show that monocular depth infer-
ence on embedded devices is possible: the proposed model, called PyD-Net, can
work in real-time on standard CPUs and at ∼2 FPS on low-power devices such as
a Raspberry Pi 3 with an accuracy comparable to much more complex architectures
[79]. This chapter extends that work under two aspects: i) to further shrink the gap
in accuracy with more complex models, we followed recent methods [80] as well
as the weakly-supervised training strategy with proxy labels described in Chapter
4 and ii) we re-designed the architecture of the network. The proposed network
PyD-Net2 has ∼35% the complexity of the original PyD-Net and runs in real-time
on a broad range of embedded devices, allowing for sharp depth estimates at an
unrivaled speed.

The contents of this chapter are based on the article Real-time Self-Supervised
Monocular Depth Estimation Without GPU [234].

5.1 PyD-Net architectures

This section describes the main modules composing our compact architectures de-
rived from our preliminary work [230]. The basic blocks are the pyramidal feature
extractors, in place of the traditional encoder, and multiple depth decoders process-
ing outputs at different scales. Starting from these basic blocks, the two architectures
depicted in Figures 5.2 are built, respectively referred to as PyD-Net [230] and PyD-
Net2. From now on, depth maps estimated at the half, quarter and eighth scale
respectively are referred as at H, Q and E scales.

Stereo self-supervision is used to train our networks, because of the advantages
with respect to monocular sequences. Specifically, monocular sequences suffer in-
herently in presence of independently moving objects and the camera pose is fre-
quently unknown, while the stereo rig acquires the two view points simultaneously

42 Chapter 5. Monocular depth estimation on low-power devices

0.55 FPS 0.63 FPS 0.70 FPS

1.73 FPS 4.30 FPS 7.95 FPS

1.92 FPS 5.13 FPS 9.72 FPS

FIGURE 5.1: Single image depth estimation on low-powered hardware. From top
to bottom, results by MonoDepth [79] and our compact architectures PyD-Net[230] and
PyD-Net2. From left to right, results at different output scales (half, quarter and eighth).
For each model and scale, frame rates achieved on the ARM Cortex A57 embedded CPU
of the NVIDIA Jetson Nano are repoted.

and the relative camera pose is given after the calibration.
For PyD-Net [230], the model is trained as in its original version according to the

methodology proposed in [79]. Differently, for PyD-Net2 modern proxy-supervision
techniques are used, relying on a mixture of image synthesis losses [79] and proxy
depth labels obtained using a traditional stereo algorithm such as SGM [101].

5.1.1 Pyramidal features extractor

In the proposed architectures, a small encoder is deployed to extract multi-scale fea-
tures from the input image. According to the desired number of scales, a different
number of consecutive convolutional blocks compose the whole features extractor.
Each block is composed of two convolutional layers, respectively with stride 2 and 1.
The very first block of the sequence produces the first level of the pyramid, namely
L1, at half resolution, followed by more blocks until reaching the desired lowest
scale. Every convolutional layers uses 3× 3 kernels to keep memory and runtime
requirements low, and each block extracts a small number of features. Considering a
pyramid with 6 levels, from L1 to L6 as for PyD-Net [230] from half to 1

64 resolution,
every block extracts respectively 16, 32, 64, 96, 128 and 192 features. These numbers

5.1. PyD-Net architectures 43

L1

L2

L3

L4

L5

L6

H

Q

E

PyD-Net

PyD-Net2

FIGURE 5.2: PyD-Net architectures. The original PyD-Net model proposed in [230]
(orange) counts about 1.9M parameters, the novel PyD-Net2 design (green) only 700K.
Blue and orange blocks are 3× 3 convolutions with stride 1 and 2, respectively. Green
blocks are upsampling layers.

are much smaller compared to the amounts extracted for instance by VGG [276], that
are 32, 64, 128, 256, 512, 512. Each layer is followed by leaky ReLUs with α = 0.2.

5.1.2 Depth decoders

Once multi-scale features have been extracted by the pyramidal encoder, a decoder
is in charge of depth estimation at each scale. In order to keep the network as com-
pact as possible, each decoder consists of four 3× 3 convolutional layers, extracting
96, 64, 32 and 8 feature maps. A leaky ReLU follows each layer except for the last
one as in the pyramidal encoder. From the output of each decoder, two inverse depth
maps (i.e., disparity maps) are extracted, respectively from the point of view of left
and right images belonging to stereo pairs used at training time as in [79], by apply-
ing different activations depending on which self-supervised losses are optimized
during training. This strategy will be discussed later in detail.

Moreover, features extracted by the last layer are upsampled by employing 2× 2
transposed convolutions applying a stride of 2, in order to increase the spatial scale
by the same factor. Then, such upsampled features are concatenated with those
at the same scale extracted by the pyramidal encoder and forward to the decoder
in charge of depth estimation. This design choice allows for a coarse-to-fine strat-
egy, enabling to estimate depth maps with varying degree of accuracy according to

44 Chapter 5. Monocular depth estimation on low-power devices

the pyramid level, up to half of the original input resolution as in [230], where full
resolution estimation was not implemented to reduce runtime and memory require-
ments (with minor impact on accuracy). Thus, as proposed in [230], one can trade
accuracy for speed by early stopping computation at lower scales. The effect of such
a strategy will be studied in detail, showing good practices to soften the price to pay
regarding accuracy and at the same time achieve advantages concerning runtime
and memory footprint.

5.1.3 Self-supervision and proxies

For training, binocular stereo pairs are leveraged in place of ground-truth labels for
supervision. Specifically, for PyD-Net the same strategy proposed in [79] is followed,
using image synthesis, smoothness constraints and left-right consistency between
the two depth maps inferred by the network as supervisory signals. On the other
hand, PyD-Net2 is trained by means of a combination of image synthesis signals,
smoothness constraints and proxy ground-truth labels inferred by deploying SGM.
The following loss function, deployed for depth maps computed at each scale, en-
compasses both approaches:

Ls =αap(Ll
ap + Lr

ap) + αds(Ll
ds + Lr

ds)+

αlr(Ll
lr + Lr

lr) + αpx(Ll
px + Lr

px)
(5.1)

resulting in a weighted sum of image reprojection Lap, smoothness Lds, left-right
consistency Llr and proxy supervision Lpx losses, weighted by respective α weights.
The overall loss formulation is similar to the one used to train MonoResMatch in
Chapter 4.2: in fact, all the terms are the same with the only exception for the con-
sistency term αlr. Each of these terms will be explained in detail next, assuming
as the reference the left image (tag l). Nonetheless, according to (5.1) the same loss
functions can be computed assuming as reference the right image (tag r), where each
estimator infers two disparity maps as in MonoDepth [79].

Image reprojection loss. The image appearance loss proposed in [79] is used. We
already presented this term in Chapter 4.4: for any pixel at coordinates i,j, it mea-
sures the reconstruction error between the original image I l and the reconstructed
image Ĩ l , obtained by warping the right image Ir according to estimated disparity.
The loss uses a weighted combination between SSIM [319] and L1 terms. As we did
in Chapter 4, we set this α weight to be 0.85.

Smoothness loss. This term, presented in Chapter 4.5, discourages depth dis-
continuities according to L1 penalty, unless a gradient δI occurs on the image.

Left-right consistency loss. It enforces coherence between predicted left Dl and
right Dr disparity maps for the pixel at coordinates i, j. This term has been employed
also in [79].

Ll
lr =

1
N ∑

i,j
|Dl

ij − Dr
ij+Dl

ij
| (5.2)

Proxy supervision loss. The proxy supervision loss, introduced in Chapter 4.6,
measures the discrepancy between the predicted disparity value and the proxy label
for each pixel. As in Chapter 4, we adopt the reverse Huber [216] for this purpose,
and we exploit SGM [101] as stereo proxy generator, following the strategy described
in Chapter 4.2. Also in this case, we apply 9× 7 windows for census transform and
we set the left-right difference threshold ε of equation 4.8 to 3. Pixels breaking the

5.1. PyD-Net architectures 45

left-right consistency are set to -1 and thus discarded from loss computation. We
adopt the SGM implementation from [280] to produce labels.

5.1.4 PyD-Net variants

Built upon the design strategies mentioned above, two main architectures and train-
ing methodologies are outlined.

PyD-Net. The original PyD-Net architecture [230], framed in orange in Figure
5.2, and recalled in this paragraph. It deploys pyramid levels L1 to L6 and six es-
timators to produce depth maps at scales from half to 1

64 . Input image resolution
is set to 512× 256. The overall training loss involves image appearance, disparity
smoothness and left-right consistency check, setting weights in (5.1) respectively to
αap = 1, αds =

0.1
r (with r being the downsampling factor at each scale), αlr = 1 and

αpx = 0. Losses are computed at each scale of the depth estimator. To do so, left
and right images are downsampled to the six different scales and used to compute
supervision signals. Note that, according to such strategy, each disparity needs to
be multiplied by a scale factor when upsampled to full resolution, i.e. disparities at
half resolution need to be multiplied by a scale factor of 2. The final layer of each
estimator has a Sigmoid activation unit multiplied by a factor 0.3 as in [79]. To obtain
disparities, the outputs are multiplied by the image width. PyD-Net counts 1.9 M
parameters, about 6% compared to MonoDepth [79].

PyD-Net2. The model framed in green in Figure 5.2 proposed to improve ac-
curacy, execution time and memory footprint. The main modification consists of a
more compact architecture, deploying only a portion of the original pyramidal fea-
tures extractor, respectively from L1 to L4. We argue that lowest PyD-Net levels
learn too much coarse feature representations negligibly contributing to the higher
resolution depth map estimation. Moreover, by removing such levels in PyD-Net2
we not only obtain a faster lightweight model but also improve the estimated depth
accuracy compared to our previous model. Therefore, the resulting PyD-Net2 net-
work counts only 700 K parameters, about 65% and 97.5% smaller compared to PyD-
Net [230] and MonoDepth [79] respectively.

Concerning the overall training loss, weights for PyD-Net2 are set to αap = 1,
αds = 0.1, αlr = 0 and αpx = 1, thus adding proxy self-supervision. The left-
right consistency check is turned off, because already encoded in the post-processing
phase deployed by SGM to obtain proxy labels. Consequently, Sigmoid activations
are replaced with ReLU.

Finally, additional strategies allowed to further improve accuracy:

• During the inference phase an input size of 640× 192 is adopted, enabling to
keep the original aspect ratio of KITTI images. This choice is particularly im-
portant to improve results on thin structures. Moreover, the network is trained
on random crops rather than on re-sized full images in order to solve the dis-
parity ramp issue that usually appears on the left side of the image due to
the stereo occlusions. This strategy is effective because, by randomly cropping
SGM disparity maps during training, the network exploits proxy supervision
in regions where the re-projection losses would fail. More specifically, given
the raw stereo images and disparity maps computed by SGM at the original
1280× 384 KITTI resolution, random crops of 384× 896 size are first extracted
and then fed to the network after resizing to half the resolution 448× 192, en-
abling the architecture to operate with lower spatial dimensions.

46 Chapter 5. Monocular depth estimation on low-power devices

• The loss function is computed only for H, Q and E depth maps, avoiding op-
timization on the output at L4 scale. Moreover, all losses are computed by
upsampling disparity maps rather than downsampling images and proxy la-
bels, following [80]. This method allows us to improve lower scale estimates
and dramatically reduce the loss in accuracy when early stopping our network.
By doing so, outputs are upsampled to the original full image resolution, i.e.
896× 384 crop size, and not to the 448× 192 input size. This keeps all the infor-
mation from the proxy labels and thus boosts accuracy, at the cost of a slower
training procedure due to the much more considerable amount of signals com-
puted that however does not affect the runtime during inference.

Aside from these two main models, additional configurations will be studied during
the experiments. Respectively, a variant of the original PyD-Net trained with PyD-
Net2 strategies, namely PyD-Net++, and a variant of PyD-Net2 processing 320× 96
to pursue efficiency, namely PyD-Net2-RT.

5.2 Experimental results

In this section, an exhaustive evaluation concerning the different variants of the
proposed pyramidal approach is reported, highlighting how the combination of
architectural and training paradigm modifications allows to obtain significant im-
provements in depth estimation from a single input image compared to our original
proposal [230] and other state-of-the-art solutions. Furthermore, a detailed analysis
concerning runtime and memory footprint of the designed networks using hard-
ware devices with different computing power resources is conducted, showing how
it is possible to achieve real-time inference even on very low-power systems, whilst
at the same time maintaining good accuracy in depth prediction. We refer to Ap-
pendix B for additional details about training procedures.

5.2.1 Competitors

First, the self/proxy-supervised networks selected for our experiments are intro-
duced, divided into three categories.

High-complexity models. Huge networks processing large resolution images
belong to this category, focusing on achieving state-of-the-art accuracy without car-
ing about runtime and memory requirements. Among them, DepthHints [321] in its
ResNet50 HR version and MonoResMatch are selected.

Medium-complexity models. Methods belonging to this category process im-
ages at lower resolution (typically, 512× 256 or 640× 192), thus requiring less mem-
ory and being faster. MonoDepth VGG [79], 3Net [237] and MonoDepth2 [80] are
chosen as representative of this category1.

Low-complexity models. These networks have very few amount of parameters
(less than 2M), run fast and require a low amount of memory independently of the
resolution. Our PyD-Net variants belong to this category, together with FastDepth
[326] for which an exhaustive evaluation in terms of memory and runtime is re-
ported, since proposed and tested for supervised depth estimation only.

1although high-complexity variants of MonoDepth (using ResNet50) and MonoDepth2 (running
on 1024 × 320) exist, they perform worse than DepthHints and MonoResMatch, thus their lower-
complexity variants are studied

5.2. Experimental results 47

However, some models (e.g. Depth Hints and MonoDepth2) have been devel-
oped using PyTorch [222] while others (e.g. 3Net and MonoResMatch) are in Ten-
sorFlow [189], and this may cause a discrepancy when measuring the runtime. For
this reason, runtime performance have been evaluated after porting all the models
to TensorFlow.

5.2.2 Ablation study

First, the impact of both the training protocol and architectural choices converting
PyD-Net to PyD-Net2 is measured. Notice that, even if we follow some innovations
from MonoDepth2 [80], such as the loss computation at full-res, we now compare
against MonoDepth [79], which was the principal competitor of the original PyD-
Net.

Method Image Res. SGM Abs Rel Sq Rel RMSE log RMSE δ < 1.25 δ < 1.252 δ < 1.253

MonoDepth [79] 512×256 0.124 1.076 5.311 0.219 0.847 0.942 0.973
MonoDepth++ 512×256 ✓ 0.123 1.137 5.093 0.218 0.854 0.946 0.974

PyD-Net[230] 512×256 0.146 1.291 5.907 0.245 0.801 0.926 0.967
PyD-Net[230] 640×192 0.141 1.270 5.741 0.238 0.815 0.930 0.968
PyD-Net++ 640×192 ✓ 0.135 1.155 5.532 0.227 0.824 0.935 0.972
PyD-Net2 640×192 ✓ 0.127 1.059 5.259 0.218 0.834 0.942 0.974

TABLE 5.1: Ablation study on KITTI [196] using the Eigen split [65]. All models have
been trained on Cityscapes [55] and then fine-tuned on the Eigen training split of KITTI
[65].

Table 5.1 shows the outcome of this study on the Eigen’s split of KITTI. First, the
MonoDepth architecture is trained with our protocol, dubbing the resulting model
as MonoDepth++, to compare with the original model [79]. The same resolution,
512×256, is kept because of constraints by the VGG encoder, requiring images mul-
tiple of 128. According to the results, the updated training protocol using proxy
labels and crops is beneficial for MonoDepth too. Then, various PyD-Net models
are trained to assess how each modification impacts the final accuracy. By changing
the input resolution, the results already improve. By adding proxy supervision by
means of SGM further improves the accuracy, as well as replacing the original PyD-
Net architecture with the more compact PyD-Net2 model. It is worth pointing out
how the gap between PyD-Net and MonoDepth shrinks when moving to PyD-Net2
and MonoDepth++. In particular, the difference in terms of δ < 1.25 is halved.

5.2.3 Evaluation on KITTI dataset

Input image MonoResMatch MonoDepth [79] PyD-Net[230] PyD-Net2

FIGURE 5.3: Qualitative results on the Eigen split [65]. From left to right we show
input image and depth estimations by, respectively, MonoResMatch, MonoDepth [79],
PyD-Net[230], and PyD-Net2.

48 Chapter 5. Monocular depth estimation on low-power devices

Method Image Res. Training SGM Pars. Abs Rel Sq Rel RMSE log RMSE δ < 1.25 δ < 1.252 δ < 1.253 FPS

DepthHints [321] 1024×320 I+K ✓ 35M 0.097 0.733 4.445 0.186 0.889 0.962 0.981 36.23
MonoResMatch 1280×384 CS+K ✓ 43M 0.098 0.711 4.433 0.189 0.888 0.960 0.980 12.53

MonoDepth [79] 512×256 CS+K 31M 0.124 1.076 5.311 0.219 0.847 0.942 0.973 77.20
3Net [237] 512×256 CS+K 48M 0.117 0.905 4.982 0.210 0.856 0.948 0.976 56.23
MonoDepth2 [80] 640×192 I+K 15M 0.109 0.873 4.960 0.209 0.864 0.948 0.975 133.51

PyD-Net[230] 512×256 CS+K 1.9M 0.146 1.291 5.907 0.245 0.801 0.926 0.967 203.96
PyD-Net2 640×192 CS+K ✓ 0.7M 0.127 1.059 5.259 0.218 0.834 0.942 0.974 280.74
PyD-Net2-RT 320×96 CS+K ✓ 0.7M 0.145 1.260 5.773 0.236 0.797 0.925 0.970 370.92

TABLE 5.2: Evaluation on KITTI [196] using the Eigen split [65]. For training, K refers
to KITTI dataset, CS to Cityscapes [55] and I to ImageNet pretraining [58]. We report
networks in descending order of complexity from top to bottom, underlining best met-
rics in each group and showing in bold absolute winners. Frames per second measures
on NVIDIA Titan Xp GPU.

In Table 5.2 our networks is compared with the competitors on the Eigen’s split
of the KITTI raw dataset.

As anticipated, PyD-Net2 significantly improves depth prediction accuracy com-
pared to our original proposal [230], minimizing the gap with MonoDepth [79] and
obtaining substantially equivalent results despite the number of parameters are dras-
tically reduced by about 44 times. Despite this major achievement, it is worth ob-
serving that 3Net [237] achieves higher accuracy at the cost of a larger pool of param-
eters (48 M). Compared to PyD-Net2, it is increased by a factor of 68.5. MonoDepth2
further improves with respect to MonoDepth and 3Net with half the amount of pa-
rameters, thanks to the ImageNet pre-training [58] and several better practises dur-
ing training. Yet, PyD-Net variants count about 8 and 21 times fewer parameters.
This also translates into a performance gain in terms of runtime, as shown in the last
column of Table 5.2. Indeed, PyD-Net variants are dramatically faster.

Although competitive with medium-complexity models, the gap with respect to
state-of-the-art architectures such as DepthHints and MonoResMatch is higher. This
gap shrinks when studying generalization, as reported next. Figure 5.3 presents
some qualitative examples on Eigen split.

5.3 Generalization on Make3D dataset

In Table 5.3 the generalization performance on the Make3D dataset [262] is studied,
following the evaluation proposed in [80], on a center crop of 2× 1 ratio and without
applying median scaling (not required when training on stereo pairs). In terms of
generalization, the gap between high-complexity networks and our compact models
shrinks. In particular, PyD-Net2 also results more effective than MonoResMatch on
all metrics, highlighting that the margin between state-of-the-art huge models and
our compact networks almost vanishes when moving to unseen environments.

Figure 5.4 shows some qualitative examples.

5.3.1 Accuracy-efficiency trade-off

In this section, an exhaustive study concerning the accuracy vs speed trade-off al-
lowed by the early-stop strategy introduced in our previous work [230] is reported.
In particular, given a network, depth maps are estimated at the full input resolution
(F), as well as at half (H), quarter (Q) and eighth (E) scale. By early-stopping at any
of the previous, intermediate scales, the layers following such output (usually, up-
sampling and convolutional layers) are cut-off from inference. The lower the scale,
the higher the number of operations avoided, usually at the cost of some accuracy

5.3. Generalization on Make3D dataset 49

Method Training SGM Abs Rel Sq Rel RMSE log RMSE

DepthHints [321] I+K ✓ 0.350 3.385 8.242 0.200
MonoResMatch [80] CS+K ✓ 0.375 4.072 8.859 0.213

MonoDepth [79] CS+K 0.478 8.162 10.250 0.220
3Net [237] CS+K 0.407 5.060 8.558 0.203
MonoDepth2 [80] I+K 0.375 3.694 8.218 0.204

PyD-Net [230] CS+K 0.510 9.106 10.538 0.225
PyD-Net2 CS+K ✓ 0.375 3.930 8.551 0.210
PyD-Net2-RT CS+K ✓ 0.527 6.884 12.062 0.343

TABLE 5.3: Generalization on the Make3D dataset [262]. No median rescaling [365] is
performed.

FIGURE 5.4: Qualitative results Make3D [262]. From left to right we show input image
and depth estimations respectively by MonoResMatch, MonoDepth [79] and PyD-Net2.

loss. Since reducing the input resolution generally allows to reduce the number of
computations (as shown by PyD-Net2-RT in Table 5.2), the accuracy and speed of
all the models trained and tested on images at half the original resolution is also
reported. These variants are dubbed with “-RT" suffix, in analogy to PyD-Net2-RT.

0 100 200 300 400 500

FPS

0.65

0.70

0.75

0.80

0.85

0.90

δ
<

1.
25

MonoResMatch

MonoResMatch-RT

DepthHints

DepthHints-RT

MonoDepth

MonoDepth-RT

3Net

3Net-RT

MonoDepth2

MonoDepth2-small

MonoDepth2-RT

PyD-Net

PyD-Net++

PyD-Net2

PyD-Net2-RT

FIGURE 5.5: Accuracy-speed trade-off. We plot δ < 1.25 computed by early-stopping
each network at the available, intermediate scales (e.g. for MonoResMatch, from left to
right, the plots correspond to Ref, F, H, Q and E). Runtime measured on NVIDIA Titan
Xp.

50 Chapter 5. Monocular depth estimation on low-power devices

Figure 5.5 plots the FPS (measured on NVIDIA Titan Xp) and δ < 1.25 met-
rics achieved by different networks when early-stopping. For most networks, F,
H, Q and E results are reported, for PyD-Net variants only H, Q and E because
of their design. Finally, for MonoResMatch the results obtained by the full archi-
tecture involving the refinement subnetwork are reported as well (Ref.) together
with F, H, Q and E obtained by cutting-off such module. It is worth noticing how
DepthHints and MonoResMatch have negligible drops in accuracy, while not gain-
ing much in terms of speed. The same behavior occurs with their RT variants, al-
though MonoResMatch-RT suffers a higher accuracy drop, yet breaking the 100 FPS
barrier at the two lowest scales. MonoDepth and 3Net have major drops in accu-
racy while MonoDepth2 results much more robust to stops at lower scales. These
three do not gain much in terms of speed, although MonoDepth2 nearly reaches
200 FPS on the Titan Xp. MonoDepth2-small variant is also reported, trained on
416×128 images and shown in the original paper [80], to highlight that it breaks the
200 FPS barrier at the lowest scale with minor accuracy loss. MonoDepth-RT and
3Net-RT do not gain much speed but suffer a dramatic loss in terms of depth met-
rics, while MonoDepth2-RT has a much more moderate drop and results faster than
MonoDepth2-small.

Finally, PyD-Net variants benefit much more in terms of efficiency gain. While
the original PyD-Net suffers a noticeable loss in accuracy (although lower than the
drops seen on MonoDepth), PyD-Net++ and PyD-Net2 show better robustness, with
the latter achieving impressive gains in terms of speed (reaching almost 500 FPS).
Such robustness, achieved by MonoDepth2, DepthHints and MonoResMatch as well,
is ascribed to the fact that losses are computed on intermediate results upsampled
to full resolution. Finally, PyD-Net2-RT further increases the efficiency, achieving
nearly 400 FPS at the highest scale yet keeping about 0.80 δ < 1.25.

Titan Xp i7-6700k
Model Image Res. E Q H F Ref. E Q H F Ref.
MonoResMatch 1280x384 78,71 71,25 61,33 28,19 12,53 2,23 1,80 1,42 0,76 0,29
MonoResMatch-RT 640x192 125,52 106,51 87,66 75,51 40,70 8,66 6,88 5,28 2,96 1,13
DepthHints 1024x320 43,99 42,35 38,92 36,23 1,41 1,35 1,23 0,88
DepthHints-RT 640x192 58,00 56,13 54,10 49,25 4,15 3,77 3,06 2,43
MonoDepth 512x256 97,27 106,79 94,35 77,20 4,32 3,86 3,22 2,74
MonoDepth-RT 256x128 129,17 139,66 124,32 85,37 17,48 17,04 13,28 11,00
3Net 512x256 89,59 66,01 63,49 56,23 3,83 3,19 2,36 1,70
3Net-RT 256x128 94,77 86,93 82,85 76,34 14,58 12,44 10,01 7,46
MonoDepth2 640x192 177,97 170,94 149,52 133,51 8,38 6,14 4,83 4,37
MonoDepth2-RT 320x96 230,26 206,53 191,42 193,57 24,19 21,57 18,56 16,32
FastDepth 512x256 126,31 5,21
FastDepth-RT 256x128 211,86 14,03
FastDepth 640x192 137,61 5,81
FastDepth-RT 320x96 214,36 15,51
PyD-Net 512x256 287,19 258,67 203,96 60,21 27,19 9,66
PyD-Net++ 640x192 303,77 268,24 204,29 62,84 35,21 10,33
PyD-Net2 640x192 499,75 410,17 280,74 68,52 35,70 10,80
PyD-Net2-RT 320x96 558,97 426,44 370,92 230,20 122,74 53,29

FIGURE 5.6: Runtime analysis on NVIDIA Titan Xp GPU (left) and i7 CPU (right).
For each device, we report input resolution and FPS when varying the output scale.

PyD-Net models, particularly PyD-Net2, are more flexible in terms of accuracy-
speed trade-off, either when training RT variants or when applying early-stopping.
Moreover, the latter strategy results in the most flexible choice for any architecture
– since it can be seamlessly applied to a pre-trained model, whereas RT variants i)

5.3. Generalization on Make3D dataset 51

require to train a model from scratch and ii) suffer significant accuracy drops. For in-
stance, MonoResMatch operating at E is faster and more accurate than MonoResMatch-
RT processing Ref. output, while MonoDepth and 3Net at Q outperform MonoDepth-
RT and 3Net-RT at F. Although most networks easily break the 100 FPS barrier on
NVIDIA Titan Xp thanks to early-stop or lower input resolution, the next section
will show that only PyD-Net variants achieve real-time performance on embedded
devices through this strategies.

TX2 (Max-N) TX2 (Max-Q) TX2 (Max-P-All) TX2 Cortex A57 (Max-P-ARM)
Model Image Res. E Q H F Ref. E Q H F Ref. E Q H F Ref. E Q H F Ref.
MonoResMatch 1280x384 2,58 2,48 2,33 1,34 0,82 1,97 1,84 1,68 1,01 0,57 2,42 2,24 2,11 1,32 0,71 0,35 0,30 0,25 0,16 0,07
MonoResMatch-RT 640x192 4,32 4,18 4,15 3,21 2,32 3,13 3,08 2,96 2,33 1,58 3,95 3,64 3,62 2,89 2,02 1,27 1,10 0,94 0,60 0,28
DepthHints 1024x320 2,13 2,02 1,94 1,76 1,55 1,47 1,42 1,28 1,98 1,91 1,81 1,64 0,26 0,24 0,21 0,19
DepthHints-RT 640x192 3,58 3,53 3,35 3,06 2,59 2,49 2,38 2,27 3,24 3,12 3,03 2,88 0,65 0,60 0,53 0,48
MonoDepth 512x256 4,88 4,97 4,53 4,17 3,63 3,52 3,25 2,99 4,57 4,41 4,23 3,88 0,88 0,79 0,70 0,61
MonoDepth-RT 256x128 8,32 8,67 8,08 8,03 6,41 6,11 5,99 5,83 7,78 7,72 7,57 7,24 2,75 2,50 2,25 2,03
3Net 512x256 3,69 3,62 3,37 2,97 2,66 2,54 2,36 2,09 3,42 3,18 3,03 2,57 0,73 0,62 0,51 0,42
3Net-RT 256x128 5,87 5,43 5,42 5,17 4,27 3,98 3,85 3,86 5,19 5,10 4,87 4,70 2,35 2,03 1,73 1,48
MonoDepth2 640x192 17,24 15,97 13,12 11,93 12,79 11,34 9,58 8,68 15,58 13,57 11,95 10,59 1,87 1,56 1,32 1,18
MonoDepth2-RT 320x96 25,12 24,68 23,98 21,15 17,21 16,51 16,36 16,08 19,77 19,23 18,73 18,18 5,77 5,22 4,40 3,98
FastDepth 512x256 11,45 8,52 10,44 2,27
FastDepth-RT 256x128 25,29 21,01 23,98 6,90
FastDepth 640x192 11,99 8,99 10,94 2,46
FastDepth-RT 320x96 26,72 20,80 24,49 7,71
PyD-Net 512x256 34,57 26,25 17,53 23,00 16,60 13,18 26,36 20,58 15,66 10,00 5,58 2,20
PyD-Net++ 640x192 34,88 28,47 19,35 23,63 18,20 13,47 26,89 20,81 16,62 10,11 5,82 2,38
PyD-Net2 640x192 46,73 34,31 25,68 38,92 27,63 16,62 43,19 30,27 21,09 11,83 6,29 2,43
PyD-Net2-RT 320x96 59,00 43,54 30,56 38,98 27,92 24,48 43,19 30,28 25,59 36,53 19,44 8,54

Nano (Max-N) Nano (5W)
Model Image Res. E Q H F Ref. E Q H F Ref.
MonoResMatch 1280x384 1,17 1,13 0,98 - - 0,96 0,91 0,77 - -
MonoResMatch-RT 640x192 2,10 1,99 1,97 0,19 0,12 1,89 1,81 1,73 0.14 0.10
DepthHints 1024x320 0,95 0,91 0,85 0,76 0,75 0,72 0,65 0,59
DepthHints-RT 640x192 1,66 1,63 1,55 1,45 1,35 1,28 1,24 1,17
MonoDepth 512x256 2,06 1,99 1,92 1,75 1,66 1,59 1,50 1,35
MonoDepth-RT 256x128 3,37 3,36 3,29 3,16 3,07 2,94 2,89 2,72
3Net 512x256 1,57 1,50 1,38 1,20 1,29 1,21 1,12 0,97
3Net-RT 256x128 2,36 2,27 2,24 2,08 2,16 2,03 1,94 1,82
MonoDepth2 640x192 3,24 3,20 3,06 2,46 2,83 2,95 2,84 2,37
MonoDepth2-RT 320x96 8,86 7,04 5,64 5,34 5,59 5,58 5,02 4,93
FastDepth 512x256 3,22 2,84
FastDepth-RT 256x128 4,42 3,69
FastDepth 640x192 3,35 2,92
FastDepth-RT 320x96 4,68 4,13
PyD-Net 256x128 17,37 16,50 5,80 9,85 7,02 5,49
PyD-Net++ 640x192 17,52 16,66 5,59 10,00 7,74 5,59
PyD-Net2 640x192 33,94 24,80 6,16 21,40 11,17 8,14
PyD-Net2-RT 320x96 38,38 28,82 12,27 24,07 12,17 10,93

Nano Cortex A57 (Max-N) Nano Cortex A57 (5W)
Model Image Res. E Q H F Ref. E Q H F Ref.
MonoResMatch 1280x384 0,27 0,23 0,19 - - 0,10 0,08 0,07 - -
MonoResMatch-RT 640x192 1,00 0,86 0,73 0,46 0,22 0,36 0,31 0,26 0,08 0,03
DepthHints 1024x320 0,20 0,19 0,16 0,15 0,07 0,07 0,06 0,05
DepthHints-RT 640x192 0,51 0,47 0,42 0,38 0,18 0,17 0,15 0,14
MonoDepth 512x256 0,70 0,63 0,55 0,48 0,26 0,23 0,20 0,17
MonoDepth-RT 256x128 2,34 2,11 1,89 1,68 0,93 0,83 0,73 0,64
3Net 512x256 0,58 0,49 0,40 0,33 0,21 0,17 0,14 0,12
3Net-RT 256x128 1,99 1,71 1,43 1,21 0,77 0,65 0,54 0,45
MonoDepth2 640x192 1,43 1,28 1,05 0,93 0,51 0,45 0,37 0,33
MonoDepth2-RT 320x96 4,73 4,14 3,41 3,02 1,82 1,63 1,38 1,20
FastDepth 512x256 1,90 0,76
FastDepth-RT 256x128 6,04 2,83
FastDepth 640x192 2,07 0,81
FastDepth-RT 320x96 6,50 2,64
PyD-Net 256x128 7,95 4,30 1,73 3,25 1,70 0,61
PyD-Net++ 640x192 8,48 4,58 1,85 3,30 1,80 0,67
PyD-Net2 640x192 9,57 5,13 1,92 3,76 1,91 0,69
PyD-Net2-RT 320x96 29,23 16,00 6,85 13,77 6,63 2,56

1,97 1,84 1,68 1,01 0,57
3,13 3,08 2,96 2,33 1,58
1,55 1,47 1,42 1,28
2,59 2,49 2,38 2,27
3,63 3,52 3,25 2,99
6,41 6,11 5,99 5,83
2,66 2,54 2,36 2,09
4,27 3,98 3,85 3,86

12,79 11,34 9,58 8,68
17,21 16,51 16,36 16,08

8,52
21,01

8,99
20,8

23 16,6 13,18
23,63 18,2 13,47

FIGURE 5.7: Runtime analysis on NVIDIA Jetson TX2. We report input resolution and
FPS when varying the output scale.

TX2 (Max-N) TX2 (Max-Q) TX2 (Max-P-All) TX2 Cortex A57 (Max-P-ARM)
Model Image Res. E Q H F Ref. E Q H F Ref. E Q H F Ref. E Q H F Ref.
MonoResMatch 1280x384 2,58 2,48 2,33 1,34 0,82 1,97 1,84 1,68 1,01 0,57 2,42 2,24 2,11 1,32 0,71 0,35 0,30 0,25 0,16 0,07
MonoResMatch-RT 640x192 4,32 4,18 4,15 3,21 2,32 3,13 3,08 2,96 2,33 1,58 3,95 3,64 3,62 2,89 2,02 1,27 1,10 0,94 0,60 0,28
DepthHints 1024x320 2,13 2,02 1,94 1,76 1,55 1,47 1,42 1,28 1,98 1,91 1,81 1,64 0,26 0,24 0,21 0,19
DepthHints-RT 640x192 3,58 3,53 3,35 3,06 2,59 2,49 2,38 2,27 3,24 3,12 3,03 2,88 0,65 0,60 0,53 0,48
MonoDepth 512x256 4,88 4,97 4,53 4,17 3,63 3,52 3,25 2,99 4,57 4,41 4,23 3,88 0,88 0,79 0,70 0,61
MonoDepth-RT 256x128 8,32 8,67 8,08 8,03 6,41 6,11 5,99 5,83 7,78 7,72 7,57 7,24 2,75 2,50 2,25 2,03
3Net 512x256 3,69 3,62 3,37 2,97 2,66 2,54 2,36 2,09 3,42 3,18 3,03 2,57 0,73 0,62 0,51 0,42
3Net-RT 256x128 5,87 5,43 5,42 5,17 4,27 3,98 3,85 3,86 5,19 5,10 4,87 4,70 2,35 2,03 1,73 1,48
MonoDepth2 640x192 17,24 15,97 13,12 11,93 12,79 11,34 9,58 8,68 15,58 13,57 11,95 10,59 1,87 1,56 1,32 1,18
MonoDepth2-RT 320x96 25,12 24,68 23,98 21,15 17,21 16,51 16,36 16,08 19,77 19,23 18,73 18,18 5,77 5,22 4,40 3,98
FastDepth 512x256 11,45 8,52 10,44 2,27
FastDepth-RT 256x128 25,29 21,01 23,98 6,90
FastDepth 640x192 11,99 8,99 10,94 2,46
FastDepth-RT 320x96 26,72 20,80 24,49 7,71
PyD-Net 512x256 34,57 26,25 17,53 23,00 16,60 13,18 26,36 20,58 15,66 10,00 5,58 2,20
PyD-Net++ 640x192 34,88 28,47 19,35 23,63 18,20 13,47 26,89 20,81 16,62 10,11 5,82 2,38
PyD-Net2 640x192 46,73 34,31 25,68 38,92 27,63 16,62 43,19 30,27 21,09 11,83 6,29 2,43
PyD-Net2-RT 320x96 59,00 43,54 30,56 38,98 27,92 24,48 43,19 30,28 25,59 36,53 19,44 8,54

Nano (Max-N) Nano (5W)
Model Image Res. E Q H F Ref. E Q H F Ref.
MonoResMatch 1280x384 1,17 1,13 0,98 - - 0,96 0,91 0,77 - -
MonoResMatch-RT 640x192 2,10 1,99 1,97 0,19 0,12 1,89 1,81 1,73 0.14 0.10
DepthHints 1024x320 0,95 0,91 0,85 0,76 0,75 0,72 0,65 0,59
DepthHints-RT 640x192 1,66 1,63 1,55 1,45 1,35 1,28 1,24 1,17
MonoDepth 512x256 2,06 1,99 1,92 1,75 1,66 1,59 1,50 1,35
MonoDepth-RT 256x128 3,37 3,36 3,29 3,16 3,07 2,94 2,89 2,72
3Net 512x256 1,57 1,50 1,38 1,20 1,29 1,21 1,12 0,97
3Net-RT 256x128 2,36 2,27 2,24 2,08 2,16 2,03 1,94 1,82
MonoDepth2 640x192 3,24 3,20 3,06 2,46 2,83 2,95 2,84 2,37
MonoDepth2-RT 320x96 8,86 7,04 5,64 5,34 5,59 5,58 5,02 4,93
FastDepth 512x256 3,22 2,84
FastDepth-RT 256x128 4,42 3,69
FastDepth 640x192 3,35 2,92
FastDepth-RT 320x96 4,68 4,13
PyD-Net 256x128 17,37 16,50 5,80 9,85 7,02 5,49
PyD-Net++ 640x192 17,52 16,66 5,59 10,00 7,74 5,59
PyD-Net2 640x192 33,94 24,80 6,16 21,40 11,17 8,14
PyD-Net2-RT 320x96 38,38 28,82 12,27 24,07 12,17 10,93

Nano Cortex A57 (Max-N) Nano Cortex A57 (5W)
Model Image Res. E Q H F Ref. E Q H F Ref.
MonoResMatch 1280x384 0,27 0,23 0,19 - - 0,10 0,08 0,07 - -
MonoResMatch-RT 640x192 1,00 0,86 0,73 0,46 0,22 0,36 0,31 0,26 0,08 0,03
DepthHints 1024x320 0,20 0,19 0,16 0,15 0,07 0,07 0,06 0,05
DepthHints-RT 640x192 0,51 0,47 0,42 0,38 0,18 0,17 0,15 0,14
MonoDepth 512x256 0,70 0,63 0,55 0,48 0,26 0,23 0,20 0,17
MonoDepth-RT 256x128 2,34 2,11 1,89 1,68 0,93 0,83 0,73 0,64
3Net 512x256 0,58 0,49 0,40 0,33 0,21 0,17 0,14 0,12
3Net-RT 256x128 1,99 1,71 1,43 1,21 0,77 0,65 0,54 0,45
MonoDepth2 640x192 1,43 1,28 1,05 0,93 0,51 0,45 0,37 0,33
MonoDepth2-RT 320x96 4,73 4,14 3,41 3,02 1,82 1,63 1,38 1,20
FastDepth 512x256 1,90 0,76
FastDepth-RT 256x128 6,04 2,83
FastDepth 640x192 2,07 0,81
FastDepth-RT 320x96 6,50 2,64
PyD-Net 256x128 7,95 4,30 1,73 3,25 1,70 0,61
PyD-Net++ 640x192 8,48 4,58 1,85 3,30 1,80 0,67
PyD-Net2 640x192 9,57 5,13 1,92 3,76 1,91 0,69
PyD-Net2-RT 320x96 29,23 16,00 6,85 13,77 6,63 2,56

1,97 1,84 1,68 1,01 0,57
3,13 3,08 2,96 2,33 1,58
1,55 1,47 1,42 1,28
2,59 2,49 2,38 2,27
3,63 3,52 3,25 2,99
6,41 6,11 5,99 5,83
2,66 2,54 2,36 2,09
4,27 3,98 3,85 3,86

12,79 11,34 9,58 8,68
17,21 16,51 16,36 16,08

8,52
21,01

8,99
20,8

23 16,6 13,18
23,63 18,2 13,47

FIGURE 5.8: Runtime analysis on NVIDIA Jetson Nano. We report input resolution
and FPS when varying the output scale.

52 Chapter 5. Monocular depth estimation on low-power devices

5.3.2 Runtime analysis on different architectures

Although most solutions in literature do not examine runtime requirements on de-
vices different from high-end GPUs, many scenarios (e.g., those targeting the con-
sumer and automotive market) rely on much less powerful devices often with severe
constraints regarding power consumption and memory. Therefore, in this section,
the time required to obtain a depth map on a large pool of heterogeneous devices
characterized by different computing power and consumption is extensively stud-
ied. The following devices are deployed in our analysis: a high-end GPU (NVIDIA
Titan Xp, ∼ 250W consumption), an average CPU system (Intel i7-6700k @4.2 Ghz,
∼ 90W consumption) an NVIDIA Jetson TX2 board, equipped with a GP10B GPU
and 2 CPUs (a dual-core Denver 2 CPU and a quad-core ARM Cortex A57 2035Mhz,
this latter used in our experiments), and an NVIDIA Jetson Nano, equipped with a
128-core NVIDIA Maxwell GPU and an ARM Cortex A57 CPU 1476Mhz. The out-
come of the two benchmarks are shown, respectively, in Figure 5.6 (Titan Xp and i7),
Figure 5.7 (Jetson TX2) and 5.8, reporting frames per second (FPS) achieved at each
scale by the competitors in Table 5.2, with the addition of FastDepth [326] (without
pruning and optimizations for a fair comparison) with both 512× 256 and 640× 192
inputs, and all PyD-Net configurations included in the ablation experiments. For-
ward time is measured excluding any overhead due to I/O, using Tensorflow pro-
filing tools.

NVIDIA Titan Xp. Although state-of-the-art solutions run at reasonble speed
[321, 302] and in some cases are extremely fast [80] on this high-end GPU, the gap
with PyD-Net seen in Figure 5.6 (left) remains non-negligible. Observing the perfor-
mance of all networks at the same, given scale H, Q or E, PyD-Net achieves about
1.5× speed-up compared to the fastest competitor MonoDepth2 [80] and up to 7×
compared to the slowest DepthHints [321]. FastDepth runs faster than MonoDepth
and MonoDepth2 when running at the same resolution, although the latter can ex-
ploit early-stop to achieve faster inference. PyD-Net++ yields slight improvements
on this device compared to PyD-Net due to the different input scales. At the same
time, PyD-Net2 runs 1.4× faster at H and 1.7× at E than PyD-Net, proving that the
changes in architecture lead to benefits not only regarding accuracy but also for run-
time. Finally, PyD-Net2-RT reaches the highest speed, running at about 370 FPS at H
and more than 550 at E. Deploying half resolution images for the competitors yields
slight performance improvement, although all RT models running at F result faster
than their original H counterparts. However, this is not enough to compete with the
speed achieved by our PyD-Net variants, which confirm to be the fastest architec-
tures. Moreover, as highlighted by the results shown previously in Figure 5.5, the RT
strategy introduces significant accuracy drops compared to early-stopping, which is
also more flexible (not requiring to retrain networks).

i7-6700k. On this device, the need for compact architectures like ours is more ev-
ident, as visible from Figure 5.6 (right). Indeed, all state-of-the-art networks rarely
reach 5 FPS at F. Only FastDepth [326] surpasses this barrier. Of course, RT variants
are faster yet reaching up to about 15 FPS. As on GPU, RT variants of the competi-
tors result faster than applying early-stopping, although they require a new training
from scratch.

Conversely, PyD-Net and its variants can process nearly 10 FPS at H. Consistent
speedups are obtained moving from PyD-Net to PyD-Net++ and PyD-Net2. Finally,
PyD-Net2-RT runs extremely fast, about 50 FPS at H and 230 FPS at E scales. It is
worth highlighting how the PyD-Net2-RT speedup is dramatic in this case, about 5×
and 3× faster than PyD-Net2 at H and E, respectively. The following benchmarks

5.3. Generalization on Make3D dataset 53

will show how this behavior consistently occurs when using CPUs.
NVIDIA Jetson TX2. This board provides different configurations, enabling to

trade performance for energy consumption. Concerning GPU, 3 main configurations
exist: Max-N for maximum performance, Max-Q for minimum energy consumption,
Max-P Core-All to enable both CPUs and average GPU performance (consuming less
than 15 W). About CPU, Max-P-ARM configuration is considered, enabling max-
imum performance for ARM cores. Figure 5.7 reports a benchmark ran over the
board, showing performance on both GPU (left) and CPU (right). Interestingly, ac-
cording to Figures 5.6 and 5.7, in both Max-Q and Max-N modes Jetson TX2 grants
performance often comparable to the i7-6700k CPU with much lower energy con-
sumption (i.e., about 15 W vs. 90 W), in particular achieving faster inference for
complex models such as MonoResMatch, DepthHints and their RT variants, except
when stopping at E and Q, at which the i7 CPU shows larger speed-up whereas the
TX2 GPU saturates.

Mid-range architectures such as MonoDepth and 3Net barely surpass the 5 FPS
barrier on GPU while failing at reaching 1 FPS on CPU setups even at the lowest
scale, similar to MonoResMatch DepthHints (rightmost table in the figure). Their
RT variants are faster, despite never reaching 10 FPS, even on GPU. Faster models
such as FastDepth and MonoDepth2 consistently run at around 10 FPS at F scale (8
in power-saving mode Max-Q), with the latter nearly reaching 20 FPS at E in Max-N
mode and their RT variants processing up to 25 FPS. On the ARM processor, they
run at about 2 FPS, with RT variants reaching 6-7 FPS.

Focusing on our architectures, all of them easily break the 15 FPS barrier at
the highest scale on GPU, except for PyD-Net and PyD-Net++, reaching 13 FPS in
power-save mode Max-Q. PyD-Net2 runs at more than 20 FPS (16 in Max-N) and
about 40 FPS at E, with PyD-Net2-RT always reaching about 25 FPS at H and break-
ing the 35 FPS barrier at E (up to nearly 60 FPS in Max-N mode). With the CPU, all
PyD-Net variants still break the 2 FPS barrier at H, with PyD-Net2-RT reaching 8.5
FPS. By stopping at the E scale, all variants reach 10 FPS. As with the i7 processor,
PyD-Net2-RT achieves a massive speed-up at E, reaching 35 FPS and being about
5× faster than the most efficient competitor (FastDepth on 320× 96 images).

FIGURE 5.9: Memory footprint (MB). We report RAM usage for all models, testing on
i7 CPU. We zoom over compact networks (blue) and further over PyD-Net2(purple).
The dotted line means that memory usage is higher than the maximum value reported
on the y-axis.

NVIDIA Jetson Nano. To conclude our benchmark, studies on the NVIDIA Jet-
son Nano board are shown in Figure 5.8, collecting measurements on the Maxwell
GPU (top) and the Cortex A57 processor (bottom), both considering two power
modes, Max-N and 5W, respectively for maximum performance and minimum power
consumption. Starting with most complex models, MonoResMatch cannot run at
Ref. and F because of memory constraints. It and DepthHints barely reach 1FPS

54 Chapter 5. Monocular depth estimation on low-power devices

on the GPU, always requiring not less than 5 seconds per frame on CPU. Their RT
variants barely reach 2 and 1 FPS on GPU and CPU, respectively.

Moving to the remaining models, none of them reaches 5 FPS on GPU and 10 FPS
with RT variants, while barely reaching 2 FPS on the ARM processor, getting closer
to 5 with their RT variants (except for FastDepth-RT running at about 6 FPS). On the
contrary, all PyD-Net variants on GPU always break the 5 FPS barrier, with PyD-
Net2 and its RT variant processing more than 30 and 20 FPS at E in Max-N and 5W
modes. On the Cortex A57 CPU, all variants get close to the 2 FPS barrier on Max-
N mode, although not reaching 1 FPS yet in 5W mode. However, early-stopping
allows most PyD-Net variants to achieve 8-9 FPS and 3 FPS in the two modalities,
with PyD-Net2-RT again achieving a massive speed-up at E and processing almost
30 and 14 FPS in Max-N and 5W.

5.3.3 Memory footprint

Finally, the memory footprint concerning inference of a single depth map is mea-
sured. Figure 5.9 plots the memory consumption2 for each of the networks studied
so far and their RT variants. The amount of memory (in MB) required by the network
to infer the result is reported, cutting off any overhead due to input/output and
other tasks not concerned with depth estimation, taken into account in our previous
work [230]. MonoResMatch and DepthHints requires more than 500 MB for their
highest scales, but they behave differently at lower scales with the former falling
below 150 MB and the latter being still above 400. Thanks to the lower input res-
olution, RT variants require reduced memory. However, MonoResMatch-RT still
requires more than 500MB to run a full inference, dropping to about 50MB at the
lowest scale, while DepthHints-RT requires 300 to 150 MB.

MonoDepth drops below 250MB at F, yet requiring more than 100 at E, while
3Net requires much more memory because of the double decoder. MonoDepth2
and FastDepth have similar requirements at F, with MonoDepth2 being able to fall to
nearly 50MB thanks to early-stopping at E. RT variants drop memory requirements
below 100 MB at F, getting below 50 MB in most cases at Q and E. FastDepth, both
at 512×256 and 640×192 requires about 100 MB, and 25 MB when processing half
resolution images in input.

The original PyD-Net [230], even at H, requires less than the minimum memory
used by most of the models except MonoDepth2, dropping to 21 MB at E. By chang-
ing the input resolution and the network architecture additional savings on memory
are achieved, emphasizing that PyD-Net2 is not only more accurate and faster than
PyD-Net but also efficient regarding memory requirements. Finally, PyD-Net2-RT
has a very tiny memory footprint compared to the other models. Indeed, at H scale,
it requires about the same memory required by other PyD-Net variants at E, while
running at such scale requires less than 5 MB. Thus, thanks to its shallow memory
footprint, the high frame rate even on the Denver CPU, and the acceptable accuracy,
PyD-Net2-RT is a perfect candidate to quickly infer depth from monocular images
on embedded and consumer devices.

5.4 Conclusions

In this chapter we have introduced the efficient architectures of the PyD-Net family
for monocular depth estimation. As competitor methods [302, 321], it can be trained

2measured using Tensorboard tools.

5.4. Conclusions 55

in weakly-supervised manner on rectified stereo pairs to achieve a fairly good ac-
curacy. However, the peculiar design makes these networks suited for real-time
applications on standard CPUs and also enables its effective deployment on em-
bedded systems. Although the baseline model PyD-Net showed promising results
concerning accuracy and performance, the novel PyD-Net2 improves both aspects,
reducing at the same time the gap to huge state-of-the-art architectures. Moreover,
PyD-Net2-RT achieves reasonably accurate depth map further pushing ahead per-
formance especially when targeting low power devices, reaching more than 10 FPS
even on a low-power Denver CPU in its fastest configuration, paving the way to an
effective deployment of real-time deep learning based depth estimation to a broader
set of devices.

57

Chapter 6

Comprehensive scene
understanding from videos

In the previous chapters, we have dealt with monocular depth models. However, as
we already pointed out in Chapters 1 and 2, geometric information about the scene
is paramount in many applications, but may not be enough to completely solve all
the problems. For instance, in the context of self-driving cars, depth is crucial to
avoid obstacles, but it does not provide any cues about the type of the obstacle. At
the same time, avoiding a pedestrian is much more important than dodging a piece
of wood. Past works in the literature deployed a single model that can be specialized
on each task, or a mixture of models, i.e. a set of task-specialized yet independent
networks that are optimized together. The work of Eigen et al. [64] belongs to the
first category, because the same model has been used for depth, semantic and surface
normal estimation tasks. The authors adopted a supervised training strategy for all
the tasks, which is expensive for practical applications. In the second family, we find
the work of Ma et al. [182], in which large networks have been employed for each
task, at the cost of high computational costs.

Conversely, this chapter presents a single framework for comprehensive scene
understanding from monocular videos able to exploit the relationships between dif-
ferent tasks. The multi-stage network architecture, named ΩNet, can predict depth,
semantics, optical flow, per-pixel motion probabilities and motion masks given a
monocular video as input. This comes alongside with estimating the pose between
adjacent frames for an uncalibrated camera, whose intrinsic parameters are also esti-
mated. The training methodology leverages on self-supervision, knowledge distilla-
tion and multi-task learning. Moreover, ΩNet is lightweight, counting less than 8.5
million parameters, and fast, as it can run at nearly 60 FPS and 5 FPS on an NVIDIA
Titan Xp and a Jetson TX2, respectively. The material of this chapter has been pub-
lished as Distilled Semantics for Comprehensive Scene Understanding from Videos in [9].

(a) (b) (c)

(d) (e) (f)

FIGURE 6.1: Outputs of ΩNet framework. Given an input monocular video (a), our
network can provide the following outputs in real-time: depth (b), optical flow (c), se-
mantic labels (d), per-pixel motion probabilities (e), motion mask (f).

58 Chapter 6. Comprehensive scene understanding from videos

Camera Network

Depth Semantic Network

Optical Flow Network

Self-Distilled
Optical Flow Network

Proxy Semantic Network

K
Monocular Sequence

Single-view Image

𝑆𝐹𝑡⟶𝑠

𝐹𝑡⟶𝑠

𝐷𝑡

𝑀𝑑
𝑡

𝐹𝑡⟶𝑠
𝑟𝑖𝑔𝑖𝑑

𝑃𝑡

𝑆𝑝

𝑆𝑡

FIGURE 6.2: ΩNet framework. Overall framework for training ΩNet to predict depth,
camera pose, camera intrinsics, semantic labels and optical flow. In red architectures
composing ΩNet.

6.1 Overall learning framework

Our goal is to develop a real-time comprehensive scene understanding framework
capable of learning strictly related tasks from monocular videos. Purposely, we pro-
pose a multi-stage approach to learn first geometry and semantics, then elicit motion
information, as depicted in Figure 6.2.

6.2 Geometry and semantics

6.2.1 Self-supervised depth and pose estimation.

We propose to solve a self-supervised single-image depth and pose estimation prob-
lem by exploiting geometrical constraints in a sequence of N images, in which one
of the frames is used as the target view It and the other ones in turn as the source
image Is. Assuming a moving camera in a stationary scene, given a depth map Dt
aligned with It, the camera intrinsic parameters K and the relative pose Tt→s between
It and Is, it is possible to sample pixels from Is in order to synthesise a warped im-
age Ĩt aligned with It. The mapping between corresponding homogeneous pixels
coordinates pt ∈ It and ps ∈ Is is given by:

ps ∼ KTt→sDtK−1 pt (6.1)

6.2. Geometry and semantics 59

Following [365], we use the sub-differentiable bilinear sampler mechanism pro-
posed in [122] to obtain Ĩt. Thus, in order to learn depth, pose and camera intrinsics
we train two separate CNNs to minimize the photometric reconstruction error be-
tween Ĩt and It, defined as:

LD
ap = ∑

p
ψ(It(p), Ĩt(p)) (6.2)

where ψ is a photometric error function between the two images. However, as
pointed out in [80], such a formulation is prone to errors at occlusion/disocclusion
regions or in static camera scenarios. To soften these issues, we follow the same
principles as suggested in [80], where a minimum per-pixel reprojection loss is used
to compute the photometric error, an automask method allows for filtering-out spu-
rious gradients when the static camera assumption is violated, and an edge-aware
smoothness loss term is used as in [79]. Moreover, we use the depth normaliza-
tion strategy proposed in [314]. We compute the rigid flow between It and Is as the
difference between the projected and original pixel coordinates in the target image:

Frigid
t→s (pt) = ps − pt (6.3)

6.2.2 Distilling semantic knowledge.

The proposed distillation scheme is motivated by how time-consuming and cum-
bersome obtaining accurate pixel-wise semantic annotations is. Thus, we train our
framework to estimate semantic segmentation masks St by means of supervision
from cheap proxy labels Sp distilled by a semantic segmentation network called
Proxy Semantic Network, which has been pre-trained on few annotated samples
and is capable to generalize well to diverse datasets. Availability of proxy semantic
labels for the frames of a monocular video enables us to train a single network to
predict jointly depth and semantic labels. Accordingly, the joint loss is obtained by
adding a standard cross-entropy term Lsem to the previously defined self-supervised
image reconstruction loss LD

ap. Moreover, similarly to [352], we deploy a cross-task
loss term, LD

edge, aimed at favouring spatial coherence between depth edges and se-
mantic boundaries. However, unlike [352], we do not exploit stereo pairs at training
time.

6.2.3 Optical flow and motion segmentation

Self-supervised optical flow. As the 3D structure of a scene includes stationary
as well as non-stationary objects, to handle the latter we rely on a classical optical
flow formulation. Formally, given two images It and Is, the goal is to estimate the
2D motion vectors Ft→s(pt) that map each pixel in It into its corresponding one in
Is. To learn such a mapping without supervision, previous approaches [194, 170,
347] employ an image reconstruction loss LF

ap that minimizes the photometric dif-
ferences between It and the back-warped image Ĩt obtained by sampling pixels from
Is using the estimated 2D optical flow Ft→s(pt). This approach performs well for
non-occluded pixels but provides misleading information within occluded regions.

Pixel-wise motion probability. Non-stationary objects produce systematic er-
rors when optimizing LD

ap due to the assumption that the camera is the only moving
body in an otherwise stationary scene. However, such systematic errors can be ex-
ploited to identify non-stationary objects: at pixels belonging to such objects the

60 Chapter 6. Comprehensive scene understanding from videos

rigid flow Frigid
t→s and the optical flow Ft→s should exhibit different directions and/or

norms. Therefore, a pixel-wise probability of belonging to an object independently
moving between frames s and t, Pt, can be obtained by normalizing the differences
between the two vectors. Formally, denoting with θ(pt) the angle between the two
vectors at location pt, we define the per-pixel motion probabilities as:

Pt(pt) = max{1− cos θ(pt)

2
, 1− η(pt)} (6.4)

where cos θ(pt) can be computed as the normalized dot product between the vectors
and evaluates the similarity in direction between them, while η(pt) is defined as

η(pt) =
min{∥Ft→s(pt)∥2, ∥Frigid

t→s (pt)∥2}
max{∥Ft→s(pt)∥2, ∥Frigid

t→s (pt)∥2}
, (6.5)

i.e. a normalized score of the similarity between the two norms. By taking the max-
imum of the two normalized differences, we can detect moving objects even when
either the directions or the norms of the vectors are similar. A visualization of Pt(pt)
is depicted in Figure 6.3(d).

Semantic-aware self-distillation paradigm. Finally, we combine semantic infor-
mation, estimated optical flow, rigid flow and pixel-wise motion probabilities within
a final training stage to obtain a more robust self-distilled optical flow network.
In other words, we train a new instance of the model to infer a self-distilled flow
SFt→s given the estimates Ft→s from a first self-supervised network and the afore-
mentioned cues. As previously discussed and highlighted in Figure 6.3(c), standard
self-supervised optical flow is prone to errors in occluded regions due to the lack of
photometric information but can provide good estimates for the dynamic objects in
the scene. On the contrary, the estimated rigid flow can properly handle occluded
areas thanks to the minimum-reprojection mechanism [80]. Starting from these con-
siderations, our key idea is to split the scene into stationary and potentially dynam-
ics objects, and apply on them the proper supervision. Purposely, we can leverage
several observations:

1. Semantic priors. Given a semantic map St for image It, we can binarize pixels
into static Ms

t and potentially dynamic Md
t , with Ms

t ∩Md
t = ∅. For example,

we expect that points labeled as road are static in the 3D world, while pixels
belonging to the semantic class car may move. In Md

t , we assign 1 for each
potentially dynamic pixel, 0 otherwise, as shown in Figure 6.3(e).

2. Camera motion boundary mask. Instead of using a backward-forward strat-
egy [367] to detect boundaries occluded due to the ego-motion, we analytically
compute a binary boundary mask Mb

t from depth and ego-motion estimates as
proposed in [187]. We assign a 0 value for out-of-camera pixels, 1 otherwise as
shown in Figure 6.3(f).

3. Consistency mask. Because the inconsistencies between the rigid flow and
Ft→s are not only due to dynamic objects but also to occluded/inconsistent
areas, we can leverage Equation (6.4) to detect such critical regions. Indeed,
we define the consistency mask as:

Mc
t = Pt < ξ, ξ ∈ [0, 1] (6.6)

6.2. Geometry and semantics 61

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 6.3: Overview of the semantic-aware and self-distilled optical flow estima-
tion approach. We leverage semantic segmentation St (a) together with rigid flow Frigid

t→s
(b), teacher flow Ft→s (c) and motion probabilities Pt (d), the warmer the higher. From
a) we obtain semantic priors Md

t (e), combined with boundary mask Mb
t (f) and consis-

tency mask Mc
t (g) derived from (d) as in Equation 6.6, in order to obtain the final mask

M (h) as in Equation 6.7.

This mask assigns 1 where the condition is satisfied, 0 otherwise (i.e. inconsis-
tent regions) as in Figure 6.3(g).

Finally, we compute the final mask M, in Figure 6.3(h), as:

M = min{max{Md
t , Mc

t}, Mb
t } (6.7)

As a consequence, M will effectively distinguish regions in the image for which
we can not trust the supervision sourced by Ft→s, i.e. inconsistent or occluded areas.
On such regions, we can leverage our proposed self-distillation mechanism. Then,
we define the final total loss for the self-distilled optical flow network as:

L = ∑ αrϕ(SFt→s, Frigid
t→s) · (1−M) + αdϕ(SFt→s, Ft→s) ·M + ψ(It, ĨSF

t) ·M (6.8)

where ϕ is a distance function between two motion vectors, while αr and αd are
two hyper-parameters.

6.2.4 Motion segmentation

At test time, from pixel-wise probability Pt computed between SFt→s and Frigid
t→s , se-

mantic prior Md
t and a threshold τ, we compute a motion segmentation mask by:

Mmot
t = Md

t · (Pt > τ), τ ∈ [0, 1] (6.9)

62 Chapter 6. Comprehensive scene understanding from videos

Such mask allows us to detect moving objects in the scene independently of the
camera motion. A qualitative example is depicted in Figure 6.1(f).

6.3 Experimental results

Using standard benchmark datasets, we present here the experimental validation on
the main tasks tackled by ΩNet. As depicted in Figure 6.2, our frameworks contains
a single lightweight module DSNet for depth and semantic estimation, and another
network CamNet that predicts camera intrinsic and extrinsic parameters. Two iden-
tical models OFNet and SD-OFNet generate optical flow maps. OFNet is trained
using photometric supervision and predicts Ft→s, while the self-distilled network
SD-OFNet is trained according to the loss term defined in Equation 6.8 and predicts
SFt→s. It is worth noticing that, at test time, neither the Proxy Semantic Network
nor OFNet are used because their labels are used for training purposes only. We set
N = 3, i.e. we adopt 3-frames video sequences. Appendix C provides additional
details regarding these architectures and how to train them.

6.3.1 Monocular depth estimation

In this section, we compare our results to other state-of-the-art proposals and assess
the contribution of each component to the quality of our monocular depth predic-
tions.

Comparison with state-of-the-art. We compare with state-of-the-art self-supervised
networks trained on monocular videos using the Eigen split of KITTI [65] (K). Since
the predicted depth is defined up to a scale factor, we align the scale of our esti-
mates by multiplying them by a scalar that matches the median of the ground-truth,
as in [365]. Table 6.1 reports extensive comparison with respect to several monocu-
lar depth estimation methods. We outperform our main competitors such as [347,
367, 52, 15] that solve multi-task learning or other strategies that exploit additional
information during the training/testing phase [40, 335]. Moreover, our best config-
uration, i.e. pre-training on Cityscapes [55] (CS) and using 1024× 320 resolution,
achieves better results in 5 out of 7 metrics with respect to the single-task, state-
of-the-art proposal [80] (and is the second best and very close to it on the remain-
ing 2) which, however, leverages on a larger ImageNet pre-trained model based on
ResNet18. It is also interesting to note how our proposal without pretraining obtains
the best performance in 6 out of 7 measures on 640× 192 images (row 1 vs 15). These
results validate our intuition about how the use of semantic information can guide
geometric reasoning and make a compact network provide state-of-the-art perfor-
mance even with respect to larger and highly specialized depth-from-mono meth-
ods. Finally, we also report the results achieved by the methods illustrated in Chap-
ters 4 and 5: despite both MonoResMatch and PyD-Net2 exploit stereo pairs and not
monocular videos at training time, the model performs better than the lightweight
PyD-Net2 and shows a limited gap with the much larger model MonoResMatch.

Ablation study. Table 6.2 highlights how progressively adding the key innova-
tions proposed in [82, 80, 314] contributes to strengthen ΩNet, already comparable
to other methodologies even in its baseline configuration (first row). Interestingly,
a large improvement is achieved by deploying joint depth and semantic learning
(rows 5 vs 7), which forces the network to simultaneously reason about geometry
and content within the same shared features. By replacing DSNet within ΩNet

6.3. Experimental results 63

Method M A I CS Abs Rel Sq Rel RMSE log RMSE δ <1.25 δ < 1.252 δ < 1.253

Godard et al.[80] 0.132 1.044 5.142 0.210 0.845 0.948 0.977
Godard et al.[80] (1024× 320) ✓ 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Zhou et al.[364] ✓ 0.121 0.837 4.945 0.197 0.853 0.955 0.982
Mahjourian et al.[187] ✓ 0.159 1.231 5.912 0.243 0.784 0.923 0.970
Wang et al.[314] ✓ 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Bian et al.[25] ✓ 0.128 1.047 5.234 0.208 0.846 0.947 0.970
Yin et al.[347] ✓ ✓ 0.153 1.328 5.737 0.232 0.802 0.934 0.972
Zou et al.[367] ✓ ✓ 0.146 1.182 5.215 0.213 0.818 0.943 0.978
Chen et al.[52] ✓ ✓ 0.135 1.070 5.230 0.210 0.841 0.948 0.980
Luo et al.[178] ✓ 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Ranjan et al.[15] ✓ 0.139 1.032 5.199 0.213 0.827 0.943 0.977
Xu et al.[335] ✓ ✓ 0.138 1.016 5.352 0.217 0.823 0.943 0.976
Casser et al.[40] ✓ 0.141 1.026 5.290 0.215 0.816 0.945 0.979
Gordon et al.[82] ✓ ✓ 0.128 0.959 5.230 - - - -

MonoResMatch ✓ 0.111 0.867 4.714 0.199 0.864 0.954 0.979
MonoResMatch ✓ ✓ 0.096 0.673 4.351 0.184 0.890 0.961 0.981
PyD-Net2 ✓ ✓ 0.127 1.059 5.259 0.218 0.834 0.942 0.974
PyD-Net2-RT ✓ ✓ 0.145 1.260 5.773 0.236 0.797 0.925 0.970

ΩNet(640× 192) ✓ ✓ 0.126 0.835 4.937 0.199 0.844 0.953 0.982
ΩNet(1024× 320) ✓ ✓ 0.125 0.805 4.795 0.195 0.849 0.955 0.983
ΩNet(640× 192) ✓ ✓ ✓ 0.120 0.792 4.750 0.191 0.856 0.958 0.984
ΩNet(1024× 320) ✓ ✓ ✓ 0.118 0.748 4.608 0.186 0.865 0.961 0.985

TABLE 6.1: Depth evaluation on the Eigen split [65] of KITTI [196]. We indicate addi-
tional features of each method. M: multi-task learning, A: additional information (e.g.
object knowledge, semantic information), I: feature extractors pre-trained on ImageNet
[58], CS: network pre-trained on Cityscapes [55]

with a larger backbone [347] (rows 5 vs 6) we obtain worse performance, validat-
ing the design decisions behind our compact model. Finally, by pre-training on CS
we achieve the best accuracy, which increases alongside with the input resolution
(rows 8 to 10).

Resolution Learned Intr. [82] Norm. [314] Min. Repr. [80] Automask [80] Sem. [48] Pre-train Abs Rel Sq Rel RMSE log RMSE δ <1.25 δ < 1.252 δ < 1.253

640× 192 - - - - - - 0.139 1.056 5.288 0.215 0.826 0.942 0.976
640× 192 ✓ - - - - - 0.138 1.014 5.213 0.213 0.829 0.943 0.977
640× 192 ✓ ✓ - - - - 0.136 1.008 5.204 0.212 0.832 0.944 0.976
640× 192 ✓ ✓ ✓ - - - 0.132 0.960 5.104 0.206 0.840 0.949 0.979
640× 192 ✓ ✓ ✓ ✓ - - 0.130 0.909 5.022 0.207 0.842 0.948 0.979
640× 192 † ✓ ✓ ✓ ✓ - - 0.134 1.074 5.451 0.213 0.834 0.946 0.977
640× 192 ✓ ✓ ✓ ✓ ✓ - 0.126 0.835 4.937 0.199 0.844 0.953 0.980

416× 128 ✓ ✓ ✓ ✓ ✓ ✓ 0.126 0.862 4.963 0.199 0.846 0.952 0.981
640× 192 ✓ ✓ ✓ ✓ ✓ ✓ 0.120 0.792 4.750 0.191 0.856 0.958 0.984
1024× 320 ✓ ✓ ✓ ✓ ✓ ✓ 0.118 0.748 4.608 0.186 0.865 0.961 0.985

TABLE 6.2: Ablation study of depth network on the Eigen split [65] of KITTI. †: our
network is replaced by a ResNet50 backbone [347].

Depth Range Error Analysis. We dig into our depth evaluation to explain the
effectiveness of ΩNet with respect to much larger networks. Table 6.3 compares, at
different depth ranges, our model with more complex ones [80, 347]. This experi-
ment shows how ΩNet superior performance comes from better estimation of large
depths: ΩNet outperforms both competitors when we include distances larger than
8 m in the evaluation, while it turns out less effective in the close range.

6.3.2 Semantic segmentation

In Table 6.4, we report the performance of ΩNet on semantic segmentation for the
19 evaluation classes of CS according to the metrics defined in [55, 17]. We com-
pare ΩNet against state-of-the art networks for real-time semantic segmentation [45,
158] when training on CS and testing either on the validation set of CS (rows 1-3)

64 Chapter 6. Comprehensive scene understanding from videos

Method Cap (m) Abs Rel Sq Rel RMSE RMSE log

Godard et al.[80] 0-8 0.059 0.062 0.503 0.082
ΩNet† 0-8 0.060 0.063 0.502 0.082
ΩNet 0-8 0.062 0.065 0.517 0.085

Godard et al.[80] 0-50 0.125 0.788 3.946 0.198
ΩNet† 0-50 0.127 0.762 4.020 0.199
ΩNet 0-50 0.124 0.702 3.836 0.195

Godard et al.[80] 0-80 0.132 1.044 5.142 0.210
ΩNet† 0-80 0.134 1.074 5.451 0.213
ΩNet 0-80 0.126 0.835 4.937 0.199

TABLE 6.3: Depth errors by varying the range. †: our network is replaced by a
ResNet50 backbone [347].

Method Train Test mIoU class mIoU cat. Pixel Acc.

DABNet [158] CS(S) CS 69.62 87.56 94.62
FCHardNet [45] CS(S) CS 76.37 89.22 95.35
ΩNet CS(P) CS 54.80 82.92 92.50

DABNet [158] CS(S) K 35.40 61.49 80.50
FCHardNet [45] CS(S) K 44.74 68.20 72.07
ΩNet CS(P) K 43.80 74.31 88.31

ΩNet CS(P) + K(P) K 46.68 75.84 88.12

TABLE 6.4: Semantic segmentation on Cityscapes (CS) and KITTI (K). S: training on
ground-truth, P: training on proxy labels. Results are expressed as percentages.

or the 200 semantically annotated images of K (rows 4-6). Even though our net-
work is not as effective as the considered methods when training and testing on the
same dataset, it shows greater generalization capabilities to unseen domains: it sig-
nificantly outperforms other methods when testing on K for mIoUcategory and pixel
accuracy, and provides similar results to [45] for mIoUclass. We relate this ability to
our training protocol based on proxy labels (P) instead of ground-truths (S). More-
over, as we have already effectively distilled the knowledge from DPC [48] during
pre-training on CS, there is only a slight benefit in training on both CS and K (with
proxy labels only) and testing on K (row 7). Finally, although achieving 46.68 mIoU
on fine segmentation, we obtain 89.64 mIoU for the task of segmenting static from
potentially dynamic classes, an important result to obtain accurate motion masks.

6.3.3 Optical flow

In Table 6.5, we compare the performance of our optical flow network with com-
peting methods using the KITTI 2015 stereo/flow training set [196] as testing set,
which contains 200 ground-truth optical flow measurements for evaluation. We ex-
ploit all the raw K images for training, but we exclude the images used at testing
time as done in [367] , to be consistent with experimental results of previous self-
supervised optical flow strategies [347, 367, 52, 15]. From the table, we can observe
how our self-distillation strategy allows SD-OFNet to outperform by a large margin

6.3. Experimental results 65

train test

Method Dataset EPE Noc EPE All Fl Fl

Meisteret al.[194] - C SYN + K - 8.80 28.94 29.46
Meister et al.[194] - CSS SYN + K - 8.10 23.27 23.30
Zou et al.[367] SYN + K - 8.98 26.0 25.70
Ranjan et al.[15] SYN + K - 5.66 20.93 25.27

Wang et al.[318] ** K - 5.58 - 18.00

Yin et al.[347] K 8.05 10.81 - -
Chen et al.[52] † K 5.40 8.95 - -
Chen et al.[52] (online) † K 4.86 8.35 - -
Ranjan et al.[15] K - 6.21 26.41 -
Luo et al.[178] K - 5.84 - 21.56
Luo et al.[178] * K - 5.43 - 20.61
ΩNet(Ego-motion) K 11.72 13.50 51.22 -
OFNet K 3.48 11.61 25.78 -
SD-OFNet K 3.29 5.39 20.0 19.47

TABLE 6.5: Optical flow evaluation on the KITTI 2015 dataset. †: pre-trained on Ima-
geNet, SYN: pre-trained on SYNTHIA [253], *: trained on stereo pairs, **: using stereo
at testing time.

competitors trained on K only (rows 5-11), and it even performs better than models
pre-initialized by training on synthetic datasets [253]. Moreover, we submitted our
flow predictions to the online KITTI flow benchmark after retraining the network
including images from the whole official training set. In this configuration, we can
observe how our model achieves state-of-the-art Fl performances with respect to
other monocular multi-task architectures.

6.3.4 Motion segmentation

In Table 6.6 we report experimental results for the motion segmentation task on the
KITTI 2015 dataset, which provides 200 images manually annotated with motion
labels for the evaluation. We compare our methodology with respect to other state-
of-the-art strategies that performs multi-task learning and motion segmentation [15,
178, 318] using the metrics and evaluation protocol proposed in [178]. It can be no-
ticed how our segmentation strategy outperforms all the other existing methodolo-
gies by a large margin. This demonstrates the effectiveness of our proposal to jointly
combine semantic reasoning and motion probability to obtain much better results.
We also report, as upper bound, the accuracy enabled by injecting semantic proxies
[48] in place of ΩNet semantic predictions to highlight the low margin between the
two.

6.3.5 Runtime analysis

Finally, we measure the runtime of ΩNet on different hardware devices, i.e. a Titan
Xp GPU, an embedded NVIDIA Jetson TX2 board and an Intel i7-7700K@4.2 GHz
CPU. Timings averaged over 200 frames at 640× 192 resolution. Moreover, as each

66 Chapter 6. Comprehensive scene understanding from videos

Method Pixel Acc. Mean Acc. mIoU f.w. IoU

Yang et al.[343] * 0.89 0.75 0.52 0.87
Luo et al.[178] 0.88 0.63 0.50 0.86
Luo et al.[178] * 0.91 0.76 0.53 0.87
Wang et al.[318] (Full) ** 0.90 0.82 0.56 0.88
Ranjan et al.[15] 0.87 0.79 0.53 0.85
ΩNet 0.98 0.86 0.75 0.97

ΩNet(Proxy [48]) 0.98 0.87 0.77 0.97

TABLE 6.6: Motion segmentation evaluation on the KITTI 2015 dataset. * means
trained on stereo pairs, while ** means using stereo at testing time.

component of ΩNet may be used on its own, we report the runtime for each inde-
pendent task. As summarized in Table 6.7, our network runs in real-time on the
Titan Xp GPU and at about 2.5 FPS on a standard CPU. It also fits the low-power
NIVIDA Jetson TX2, achieving 4.5 FPS to compute all the outputs.

Device Watt D DS OF Cam Ω

Jetson TX2 15 12.5 10.3 6.5 49.2 4.5
i7-7700K 91 5.0 4.2 4.9 31.4 2.4
Titan XP 250 170.2 134.1 94.1 446.7 57.4

TABLE 6.7: Runtime analysis on different devices. We report the power consumption
in Watt and the FPS. D: Depth, S: Semantic, OF: Optical Flow, Cam: camera pose, Ω:
Overall architecture.

6.3.6 Additional qualitative examples

We report additional qualitative examples for motion segmentation, optical flow,
depth and segmentation. Figure 6.5 we better visualize the difference between the
teacher and student optical flow prediction for two samples from KITTI. We can
notice how the flow from the student is much more smooth and less noisy than the
teacher one. We also visualize in Figure 6.6 depth and semantic predictions of the
model on Cityscapes dataset, while in Figure 6.7 we show two examples of motion
segmentation masks.

6.4 Conclusions

This chapter presented ΩNet, a comprehensive scene understanding framework
able to estimate the depth and the semantic label for each pixel given a single image,
but also the optical flow between corresponding pixels when more images are given
at test time. Moreover, the combination of semantic segmentation, optical flow and
depth allows to detect accurately moving objects in the scene.

6.4. Conclusions 67

FIGURE 6.4: Qualitative examples on motion segmentation and optical flow. For each
group of samples, first row depicts from left to right the input images and the moving
objects detected in the scene by our method (highlighted in red). Second row illustrates
the optical flow and the rigid flow respectively.

FIGURE 6.5: Qualitative comparison between teacher and student flow networks.
From left to right, the input images, the teacher optical flow and the student predic-
tion.

FIGURE 6.6: Qualitative examples for depth and semantic on Cityscapes. First col-
umn shows the reference image, while second and third columns depict the depth and
semantic map predicted by ΩNet.

68 Chapter 6. Comprehensive scene understanding from videos

FIGURE 6.7: Motion segmentation results. From left to right, we show the monocular
sequence, the outcome of the proposed motion probability strategy (high probability
of motion is encoded in red), ground-truth motion masks and ours estimated motion
segmentation masks.

69

Chapter 7

Monocular depth estimation in the
wild

In Chapter 5 we introduced PyD-Net, a lightweight network for monocular depth
estimation trained without the need for ground-truth labels. If compared to fully-
supervised strategies, self-supervision (from videos or stereo pairs) is extremely con-
venient in terms of costs and requirements. Unfortunately, self-supervision does not
provide a strong guidance in challenging regions, for instance in texture-less areas
of difficult scenes. Moreover, both supervised and self-supervised learning based
methods may suffer the domain gap issue, in particular when we test our models on
environments different from the training one (e.g., training in indoor environments
and testing on outdoor scenarios). Figure 7.1 illustrates the issue for the supervised
model FastDepth [326] and the self-supervised MonoDepth2. The models have been
trained indoor and outdoor respectively, and provide good qualitative maps for in-
domain samples. However, when testing using out-domain images, i.e. outdoor for
FastDepth and indoor for MonoDepth2, it is easy to notice that predictions are far
from being perfect. As we already pointed out in Chapter 2, this is a well-known
problem in literature and it has been faced by several works. MiDaS [245] by Ran-
ftl et al. represents the state-of-the-art. The authors propose an effective yet time-
consuming pipeline used to train a large model. Even if the issue related to model
size can be easily addressed (the authors recently trained also a lightweight model),
how to speed up the label-generation pipeline is an open problem. Our question
is: can we distill the knowledge from these off-the-shelf models, trained in the wild,
and infuse it to any arbitrary model?

Reference FastDepth [326] MonoDepth2 [80] MiDaS [245]

FIGURE 7.1: Predictions in the wild. We provide qualitative results for indoor and out-
door internet images, using checkpoints publicly available. It can be noticed how the
networks trained on a single dataset, both in a supervised in indoor data (FastDepth)
and self-supervised on outdoor driving sequences (MonoDepth2), are not able to gener-
alize well on a different setup. On the contrary, the network trained on various datasets
(MiDaS) produces better results. Images from Pexels https://www.pexels.com/.

https://www.pexels.com/

70 Chapter 7. Monocular depth estimation in the wild

In this chapter, we describe how the teacher-student paradigm can help us in
training any monocular network on a large amount of unlabeled data. Material and
results presented in this chapter have been published in Real-time single image depth
perception in the wild with handheld devices [12].

7.1 Framework overview

In this section, we introduce our framework aimed at enabling single image depth
estimation in the wild with mobile devices, devoting specific attention to iOS and
Android systems. Before the actual deployment on the target handheld device, our
strategy requires an offline training procedure typically carried out on power uncon-
strained devices. We will discuss in the reminder the training methodology, lever-
aging knowledge distillation, deployed to achieve our goal in a limited amount of time
and the dataset adopted for this purpose. Another critical component of our frame-
work is a lightweight network enabling real-time processing on the target handheld
devices. Purposely, we will introduce and thoroughly assess the performance of
state-of-the-art networks fitting this constraint.

7.1.1 Off-line training

As for most learning-based monocular depth estimation models, our proposal is
trained off-line on standard workstations, equipped with one or more GPUs, or
through cloud processing services. In principle, depending on the training data
available, one can leverage different training strategies: supervised, weakly-supervised
or self-supervised training paradigms. Moreover, cheaper and better-scaling super-
vision can be conveniently obtained from another network, leveraging knowledge
distillation to avoid the need for expensive ground-truth labels, through a teacher-
student approach.

When a large enough dataset providing ground-truth labels inferred by an ac-
tive sensor is available, such as [310], supervised training is certainly valuable since
it enables, among other things, to disambiguate difficult regions (e.g. texture-less
regions such as walls). Unfortunately, large datasets with depth labels are not avail-
able or extremely costly and cumbersome to obtain. Therefore, when this condition
is not met, self-supervised paradigms enable to train with (potentially) countless ex-
amples, at the cost of a more challenging training setup and typically less accurate
results. Note that, depending on the dataset, a strong depth prior can be distilled
even if are not available depth labels provided by an active sensor. For instance,
[302, 321] exploit depth values from stereo algorithm, while Li et al. [161] rely on
a SfM pipeline. Finally, supervision can be distilled from other networks as well,
for the stereo [89] and monocular [229] setup. The latter is the strategy followed in
this proposal. Specifically, we use as teacher the MiDaS network proposed in [245].
Notice that also Watson et al. [320] use MiDaS as supervisor, but in their case the
student network is a stereo model and not a monocular one. This strategy allows us
to speed-up the training procedure of the considered lightweight networks signifi-
cantly, since doing this from scratch according to the methodology proposed in [245]
would take much much longer time since mostly bounded by the demanding proxy
labels generation. Moreover, it is worth noting that given a reliable teacher network,
pre-trained in a semi or self-supervised manner, such as [245], it is straightforward
to distil an appropriate training dataset since any collection of images is potentially

7.2. Lightweight networks for single image depth estimation 71

suited to this aim. We will describe next the training dataset used for our experi-
ments made of a bunch of single images belonging to well-known popular datasets.

7.1.2 On-device deployment and inference

Once outlined the training paradigm, the next issue concerns the choice of a net-
work capable of learning from the teacher how to infer meaningful depth maps and,
at the same time, able to run in real-time on the target handheld devices. Unfortu-
nately, only a few networks described next potentially fulfil these requirements, in
particular, considering the ability to run in real-time on embedded systems.

Identified and trained a suitable network, the mapping on a mobile device is
nowadays quite easy. In fact, there exist various tools that, starting from a deep
learning framework as PyTorch or TensorFlow, can export, optimize (e.g. perform
weight quantization) and execute models even leveraging mobile GPUs [155] on
principal operating systems (OS). In some cases, the target OS exposes utilities and
tools to improve the performances further. For instance, starting from iOS 13, neural
networks deployed on iPhone devices can use the GPU or even the Apple Neural
Engine (ANE) thanks to Metal and Metal Performance Shaders (MPS), thus largely
improving the runtime performance.

7.2 Lightweight networks for single image depth estimation

According to the previous discussion, only a subset of the state of the art single
image depth estimation networks fits our purposes. Specifically, we consider the
following publicly available lightweight architectures: PyD-Net [230], DSNet [9] and
FastDepth [326]. Moreover, we also include a representative example of a larger
network MonoDepth2, proposed in [80]. It is worth to notice that other and more
complex state-of-the-art networks, as [302], could be deployed in place within the
proposed framework. However, this might come at the cost of higher execution
time on the embedded device and, potentially, overhead for the developer in case
of custom layers not directly supported by the mobile executor (e.g., the correlation
layer used in [302]).

MonoDepth2. This architecture is the MonoDepth2 (ResNet18) model [80], de-
scribed in Chapter 3.3, in which we replaced nearest-neighbour feature interpola-
tion with bilinear to avoid checkerboard artifacts. The network counts overall 14.84
million parameters. It is worth to notice that in our evaluation we do not rely on
ImageNet [58] pre-training for the encoder for fairness to other architectures not
pre-trained at all.

PyD-Net. We outlined the architecture of this model in Chapter 5. However, in
this study we applied few changes with respect to the original network [230], e.g.
transposed convolutions have been replaced by upsampling and convolution blocks
to avoid checkerboard artifacts. Moreover, the network now has to predict a single
disparity map aligned with the input image, since we do not need a virtual stereo
setup. The overall network counts 1.97 million parameters.

FastDepth. We already introduce this network in Chapter 3.3. In this evaluation
we do not rely on hardware-specific optimization strategies for fairness with other
networks. The whole network counts 3.93 million parameters.

DSNet This architecture is part of ΩNet [9], the ensemble of networks introduced
in Chapter 6. In our evaluation we consider only the depth estimation network

72 Chapter 7. Monocular depth estimation in the wild

DSNet, which counts 1.91 millions of parameters, 0.2 millions fewer than the original
model because the dedicated semantic head has been removed.

7.3 Wild dataset

The Wild dataset (W), consists of a mixture of Microsoft COCO [166] and OpenIm-
ages [147] datasets. Both datasets contain a large number of internet photos, and
they do not provide depth labels. Moreover, since video sequences nor stereo pairs
are available, they are not suited for conventional self-supervised guidance meth-
ods (e.g. SfM or stereo algorithms). On the other hand, they cover a broad spec-
trum of various real-world situations, allowing to face both indoor and outdoor en-
vironments, deal with everyday objects and various depth ranges. We select almost
447,000 frames for training purposes. Then, we distilled the supervision required
by our networks with the robust monocular architecture proposed in [245] with the
weights publicly available. Such a network provides as output an inverse depth up
to a scale factor. We point out once again that our supervision protocol has been
carefully chosen mostly for practical reasons. It takes a few days to distil the WILD
dataset by running MiDaS (using the publicly available checkpoints) on a single ma-
chine. On the contrary, to obtain the same data used to train the network as in [245],
it would require an intensive effort and dedicated strategies for each type of data.
For example, the authors followed the COLMAP [267] pre-processing of [163] for
outdoor video sequences. For 3D movies, instead, the authors first removed videos
not captured by real stereo cameras, then they divided each video into chapters and
short clips; afterwards, each clip has been processed with optical flow and semantic
segmentation neural networks to obtain the final labels. Notably, the optical flow
network has been applied to both the images of each pair, in order to detect invalid
pixels with the left-right consistency check.

On the contrary, our strategy can scale better: since we trust the teacher, we
could, in principle, source knowledge from various and heterogeneous domains on
the fly. Of course, the major drawbacks of this approach are evident: we need an
already available and reliable teacher, and the accuracy of the student is bounded
to the one of the teacher. However, we point out that the training scheme proposed
in [245] is general, so it can also be applied in our case, and that we already expect
a margin with state-of-the-art networks due to the lightweight size of mobile archi-
tectures considered. For these reasons, we believe that our approach is beneficial
to source a fast prototype than can be improved later leveraging other techniques
if needed. This belief is supported by experimental results presented later in the
chapter.

7.4 Experimental results

In this section, we thoroughly assess the performance of the considered networks
with standard datasets deployed in this field. At first, since differently from other
methods FastDepth [326] was not initially evaluated on KITTI, we carry out a pre-
liminary evaluation of all networks on such dataset. Then, we train from scratch
the considered networks according to the framework outlined on the Wild dataset,
evaluating their generalization ability.

7.4. Experimental results 73

7.4.1 Evaluation on KITTI

At first, we investigate the accuracy of the considered networks on the KITTI dataset.
Since the models have been developed with different frameworks (PyD-Net and
DSNet in TensorFlow, the other two in PyTorch) and trained on different datasets
(FastDepth on NYU v2 [206], others on the Eigen [65] split KITTI [196]), we im-
plemented all the networks in PyTorch. This strategy allows us to adopt the same
self-supervised protocol proposed in [80] to train all the models. This choice is suited
for the KITTI dataset since it exploits stereo sequences enabling to achieve the best
accuracy. Given two images I and I†, with known intrinsic parameters (K and K†)
and relative pose of the cameras (R,T), the network predicts depth D allowing to
reconstruct the reference image I from I†:

Î = ω(I†, K†, R, T, K,D) (7.1)

where ω is a differentiable warping function.
Then, the difference between Î and I can be used to supervise the network, thus

improving D, without any ground-truth. The loss function used in [80] is composed
of a photometric error term pe and an edge-aware regularization term Ls. We al-
ready introduced pe in 4.4, while Ls is the equation 4.5 in which the predicted depth
for each pixel Dij is replaced by the mean normalized inverse depth D∗ij = Dij/D.
This strategy, initially proposed in [314], avoids the vanishing of the estimated depth
by dividing the predicted map with its mean valueD. We adopt the M configuration
of [80] to train all the models. Doing so, given the reference image It, at training time
we also need {It−1, It+1}, that are respectively the previous and the next frames in
the sequence, to leverage the supervision from monocular sequences as well. Pur-
posely, a camera pose network is trained to estimate relative camera poses between
the frames in the sequence as in [80]. Moreover, per-pixel minimum and automask
strategies are used to preserve sharp details: the former select best pe among multi-
ple views according to occlusions, while the latter helps to filter out pixels that do not
change between frames (e.g. scenes with a non-moving camera or dynamic objects
that are moving at the same speed of the camera), thus breaking the moving camera in
a stationary world assumption (more details are provided in the original paper [80]).
Finally, intermediate predictions, when available, are upsampled and optimized at
input resolution.

Considering that all the models have been trained with different configurations
on different datasets, we re-train all the architectures exploiting the training frame-
work of [80] for a fair comparison. Specifically, we run 20 epochs of training for each
model, decimating the learning rate after 15, on the Eigen train split of KITTI. We
use Adam optimizer [139], with an initial learning rate of 10−4, and minimize the
highest three available scales for all the network except FastDepth, which provides
full-resolution (i.e. 640 × 192) predictions only. Since the training framework ex-
pects a normalized inverse depth as the output of the network, we replace the last
activation of each architecture (if present) with a sigmoid.

Table 7.1 summarizes the experimental results of the models tested on the Eigen
split of KITTI. The top four rows report the results, if available, provided in the orig-
inal papers, while last three the accuracy of models re-trained within the framework
described so far. This test allows for evaluating the potential of each architecture in
fair conditions, regardless of the specific practices, advanced tricks or pre-training
deployed in the original works. Not surprisingly, larger MonoDepth2 model per-
forms better than the three lightweight models, showing non-negligible margins on
each evaluation metric when trained in fair conditions. Among these latter, although

74 Chapter 7. Monocular depth estimation in the wild

Reference image MonoDepth2

PyD-Net FastDepth

DSNet

FIGURE 7.2: Qualitative results on KITTI. All the models have been trained equally
using the framework of [80] on the Eigen split of KITTI.

their performance is comparable, PyD-Net results more effective with respect to
FastDepth and DSNet on most metrics, such as RMSE and δ < 1.25.

Figure 7.2 shows some qualitative results, enabling us to compare depth maps
estimated by the four networks considered in our evaluation on a single image from
the Eigen test split.

Network Abs Rel Sq Rel RMSE log RMSE δ <1.25 δ < 1.252 δ < 1.253

PyD-Net 0.153 1.363 6.030 0.252 0.789 0.918 0.963
FastDepth - - - - - - -
DSNet 0.130 0.909 5.022 0.207 0.842 0.948 0.979

MonoDepth2 † 0.132 1.044 5.142 0.210 0.845 0.948 0.977
PyD-Net† 0.154 1.307 5.556 0.229 0.812 0.932 0.970
FastDepth† 0.156 1.260 5.628 0.231 0.801 0.930 0.971
DSNet† 0.159 1.272 5.593 0.233 0.800 0.932 0.971

TABLE 7.1: Quantitative results on Eigen split. † indicates models trained according to
[80] training framework, otherwise we report results provided in each original paper.

7.4.2 Evaluation in the wild

In the previous section, we have assessed the performance of the considered lightweight
networks on a data distribution similar to the training one. Unfortunately, this cir-
cumstance is seldom found in most practical applications, and typically it is not
known in advance where a network will be deployed. Therefore, how to achieve
reliable depth maps in the wild? In Figure 7.1 we report some qualitative results
about original pre-trained networks on different scenarios. Notice that the first two
networks have strong constraints about input size (224× 224 for [326], 1024× 320
for [80]) that these networks internally apply, imposed by how these models have
been trained in their original context. Although this limitation, FastDepth (second

7.4. Experimental results 75

column) can predict a meaningful result in an indoor environment (first row), not in
outdoor (second row). It is not surprising since the network was trained on NYUv2,
which is an indoor dataset. MonoDepth2 [80] suffers from the same problem, high-
lighting that this issue is not concerned with the network size (smaller the first, larger
the second) or training approach (supervised the first, self-supervised the second),
but it is rather related to the training data. Conversely, MiDaS by Ranftl et al. [245],
is effective in both situations. Such robustness comes from a mixture of datasets,
collecting about 2M frames covering many different scenarios, used to train a large
(∼ 105M parameters) and very accurate monocular network.

We leverage this latter model to distil knowledge and train lightweight models
compatible with mobile devices. As mentioned before, this strategy allows us to use
MiDaS knowledge for faster training data generation compared to time-consuming
pipelines used to train it, such as COLMAP [267, 268]. Moreover, it allows us to
generate additional training samples and thus a much more scalable training set,
potentially from any (single) image. Therefore, in order to train our network using
the WILD dataset, we first generate proxy labels with MiDaS for each training image
of this dataset, clipping minimum and maximum between 1th and 99th percentile
although this latter operation is not strictly required. Then, obtained such proxy
labels, we train the networks using the following loss function:

L(Ds
x, Dgt) = αl

∥∥(Ds
x − Dgt)

∥∥+ αsLg(Ds
x, Dgt) (7.2)

where Lg is a gradient loss term minimizing the absolute difference between the
predicted depth derivatives (in both directions) and proxy depth derivatives, Ds

x the
predictions of the network at scale s (bilinearly upsampled to full resolution) for the
pixel x and Dgt is the proxy depth of x. The weight αs depends on the scale s and is
halved at each lower scale. On the contrary, αl is fixed and set to 1. Intuitively, the
L1 norm penalizes differences w.r.t proxies, while Lg helps to preserve sharp edges.
We train the models for 40 epochs, halving the learning rate after 20 and 30, with a
batch size of 12 images, with an input size of 640× 320. We set the initial value of αs
to 0.5 for all networks except for FastDepth, set to 0.01. To augment the images, we
applied random horizontal flip with 0.5 probability.

Table 7.2 collects quantitative results on three datasets, respectively TUM [284]
(3D object reconstruction category), KITTI Eigen split [65] and NYU [206]. On
each dataset, we first show the results achieved by large and complex networks Mi-
DaS [245] and the model by Li et al. [161] (using the single frame version), both
trained in the wild on a large variety of data. The table also reports results achieved
by the four networks considered in our work trained on the WILD dataset exploit-
ing knowledge distillation from MiDaS. We adopted the same protocol defined in
[245] to obtain depths at the same scale of ground-truth values from predictions.
First and foremost, we highlight how MiDaS performs in general better than [161],
emphasizing the reason to distil knowledge from it.

Considering lightweight compact models PyD-Net, DSNet and FastDepth we
can notice that the margin between them and MiDaS is often non-negligible. A sim-
ilar behaviour occurs for the significantly more complex network MonoDepth2 de-
spite in general more accurate than other more compact networks, except on KITTI
where it turns out less accurate when trained in the wild. However, considering the
massive gap in terms of computational efficiency between compact networks and
MiDaS analyzed later, that makes MiDaS not suited at all for real-time inference on
the target devices the outcome reported in Table 7.2 is not so surprising. Looking
more in details the outcome of lightweight networks, PyD-Net is the best model on

76 Chapter 7. Monocular depth estimation in the wild

Network Dataset Abs Rel Sq Rel RMSE log RMSE δ <1.25 δ < 1.252 δ < 1.253

Ranftl et al. [245] TUM 0.125 0.148 0.832 0.195 0.857 0.944 0.978
Li et al. [161] TUM 0.135 0.158 0.852 0.209 0.826 0.942 0.975
MonoDepth2 TUM 0.147 0.180 0.916 0.222 0.811 0.927 0.967
PyD-Net TUM 0.166 0.210 0.978 0.244 0.767 0.921 0.955
DSNet TUM 0.168 0.215 0.994 0.248 0.762 0.917 0.951
FastDepth TUM 0.160 0.209 0.982 0.241 0.780 0.918 0.955

Ranftl et al. [245] KITTI 0.157 1.144 5.672 0.225 0.780 0.942 0.980
Li et al. [161] KITTI 0.227 2.081 7.841 0.325 0.621 0.854 0.939
MonoDepth2 KITTI 0.164 1.194 6.000 0.239 0.752 0.928 0.974
PyD-Net KITTI 0.162 1.272 6.138 0.239 0.760 0.927 0.974
DSNet KITTI 0.164 1.203 5.977 0.239 0.754 0.929 0.975
FastDepth KITTI 0.168 1.227 6.017 0.241 0.741 0.927 0.975

Ranftl et al. [245] NYU 0.100 0.061 0.407 0.132 0.905 0.984 0.997
Li et al. [161] NYU 0.149 0.116 0.560 0.189 0.782 0.958 0.992
MonoDepth2 NYU 0.123 0.082 0.473 0.160 0.848 0.974 0.995
PyD-Net NYU 0.130 0.091 0.493 0.168 0.827 0.969 0.994
DSNet NYU 0.134 0.096 0.505 0.171 0.820 0.968 0.993
FastDepth NYU 0.129 0.090 0.492 0.167 0.833 0.971 0.994

TABLE 7.2: Generalization on different datasets. The three groups from top to bottom
report experimental results concerned, respectively, with (top) TUM dataset, (middle)
KITTI Eigen and (bottom) NYUv2.

Network MAC (G) FPS

MiDaS 172.4 0.20

MonoDepth2 16.01 9.94
DSNet 9.48 11.05

PyD-Net 9.25 58.86
FastDepth 3.61 50.31

TABLE 7.3: Performance on smartphones. We measure both the number of multi-
ply–accumulate operation (MAC) and the FPS of monocular networks on an iPhone XS,
using an input size of 640× 384, averaged on 50 inferences.

KITTI when trained in the wild and also achieves the second-best accuracy on NYU,
with minor drops on TUM. Finally, DSNet and FastDepth achieve average perfor-
mance in general, never resulting in the best on any dataset.

Figure 7.3 shows a qualitative example when processing an online picture using
MegaDepth [163], the model by Li et al. [161], MiDaS [245] and the networks trained
through knowledge distillation.

Finally, in Figure 7.4, we also report two examples in which the student network
inherits the failure of the teacher model MiDaS. Since both networks fail, the prob-
lem is not attributable to their different architecture. Observing these figures, we can
notice that such behavior is due to an induced optical illusion (first case) or ambigu-
ous objects, such as a mirror (second case).

7.4.3 Performance analysis on mobile devices

Once training the considered architectures on the WILD dataset, the stored weights
can be converted into mobile-friendly models using tools provided by deep learning
frameworks. Moreover, as previously specified, in our experiments, we perform

7.4. Experimental results 77

Reference MegaDepth

Mannequin MiDaS

PyD-Net DSNet

FastDepth MonoDepth2

FIGURE 7.3: Qualitative result from an online picture. From left to right, the reference
image from Pexels website, depths from MegaDepth [163], Mannequin [161], MiDaS
[245], PyD-Net, DSNet, FastDepth and MonoDepth2.

only model conversion avoiding weights quantization not to alter the accuracy of
the original network.

Table 7.3 collects stats about the considered networks. Specifically, we report the
number of multiply-accumulate operations (MAC) and the frame rate (FPS) measured
when deploying the converted models on an Apple iPhone XS. Measurements are
gathered processing 640× 384 images and averaging over 50 consecutive inferences.
To the best of our ability, all the models can run on iPhone NPU except for MiDaS,
which is not able in our tests to leverage such accelerator. On top, we report the per-
formance achieved by MiDaS, showing that it requires about 5 seconds on a smart-
phone to process a single depth map, performing about 170 billion operations. This
evidence highlights how, despite being much more accurate, as shown before, this
vast network is not suited at all for real-time processing on mobile devices. Moving
on more compact models, we can notice how MonoDepth2 reaches nearly 10 FPS

78 Chapter 7. Monocular depth estimation in the wild

Reference MiDaS PyD-Net

FIGURE 7.4: Failure cases. Examples of single image depth estimation failures. From
left to right: input image, depth predicted by the teacher MiDaS and by the student
PyD-Net.

performing one order of magnitude fewer operations. DSNet and PyD-Net both
perform about 9 billion operations, but the latter allows for much faster inference,
close to 60 FPS and about 6 times faster than previous models. Since the number
of operations is almost the same for DSNet and PyD-Net, we reconduct this per-
formance discrepancy to low-level optimization of some specific modules. Finally,
FastDepth performs 3 times fewer operations, yet runs slightly slower than PyD-Net
when deployed with the same degree of optimization of the other networks on the
iPhone XS.

Summarizing the performance analysis reported in this section and the previous
accuracy assessment concerning the deployment of single image depth estimation in
the wild, our experiments highlight PyD-Net as the best trade-off between accuracy
and speed when targeting handheld devices.

7.5 Applications of single image depth estimation

Assessed the performance of the networks, we present two well-known applica-
tions that can significantly take advantage of dense single image depth estimation.
For these experiments, we use the PyD-Net model trained on the WILD dataset, as
described in previous sections.

Bokeh effect. The first application consists of a bokeh filter, aimed at blurring an
image according to the distance from the camera. More precisely, in our implemen-
tation, given a threshold τ, all the pixels with a relative inverse depth smaller than
τ are blurred by a 25×25 Gaussian kernel. In Figure 7.5, we apply the bokeh effect
to single images sampled from the web, for which neither stereo pairs nor video
sequences are available.

Augmented reality with depth-aware occlusion handling. Modern augmented
reality (AR) frameworks for smartphones allow robust and consistent integration
of virtual objects on flat areas using camera tracking with respect to fixed a refer-
ence system located in an anchor point. This goal is achieved by matching sparse
feature points and taking advantage of the sensor suite (comprising accelerometers,
gyroscope, etc) available mobile devices. An additional outcome of this process is
a bunch of sparse depth measurements appropriately scaled. The leftmost image

7.5. Applications of single image depth estimation 79

Reference PyD-Net output Bokeh

FIGURE 7.5: Bokeh effect. Given the reference image, we smooth farther pixels in the
image using depth values provided by PyD-Net.

FIGURE 7.6: AR Pipeline. The leftmost figure depicts an object (green box) framed
by a device (yellow box) capable of providing sparse absolute depth points (in purple)
through the AR framework and a dense inverse depth map thanks to the monocular
network. To realize our improved AR application, we move first sparse depth measure-
ments into the inverse depth domain (second image from the left). Then, we obtain
the shift and scale factor that maps such sparse points and corresponding predictions
picked by the dense inverse map provided by the network by robustly regressing a lin-
ear model within a RANSAC framework, as illustrated in the chart. Finally, we scale the
dense inverse map accordingly before turning back into the depth domain (respectively,
the two rightmost maps) to render virtual objects consistently to the inferred geometry
of the scene.

of Figure 7.6 illustrates the standard output and reference system of a standard AR
framework.

However, these frameworks miserably fail when the scene contains occluding
objects protruding from the flat surfaces. Therefore, in AR scenarios, dense depth
estimation is paramount to handle properly physic interactions with the real world,
such as occlusions. Although some authors proposed to densify the sparse depth
measurements provided by AR frameworks, it is worth observing that dynamic ob-
jects or other factors in the sensed scene may lead to incorrect depth estimations
[103].

On the other hand, we argue that single image depth estimation may enable full
perception of the scene suited for many real-world use cases potentially avoiding at
all the issues outlined so far. The only remaining issue, concerned with the unknown
scale factor intrinsic in a monocular system, can be robustly addressed leveraging
the sparse absolute depth measurements provided by standard AR framework. Pur-
posely, we developed a mobile application capable of handling object occlusions by
combining sparse clues provided by standard AR frameworks, such as ARCore or
ARKit, to scale accordingly at each frame the dense depth prediction provided by a
lightweight monocular network. To achieve this goal, at first, we convert the sparse
absolute depth measurements inferred by the AR framework into inverse depths to
be compliant with the output domain of the monocular network, encoding an in-
verse depth up to a scale and a shift factors. Then, within a RANSAC framework,
we regress the parameters of a linear model enabling to scale the whole network’s

80 Chapter 7. Monocular depth estimation in the wild

FIGURE 7.7: Qualitative comparison with other occlusion-aware AR methods. From
left to right, the input image, the depth from [103] and PyD-Net predictions.

AR w/o O.H. AR with our O.H.

FIGURE 7.8: AR with occlusion handling (O.H.). On the left, vanilla AR enabled by an
Android device with ARCore. On the right, instead, our depth-aware AR enabled by
single image depth prediction with PyD-Net for occlusion handling.

output according to the sparse, yet scaled inverse depth predictions. RANSAC is
adopted to take into account possible outliers in predicted maps that can ruin dra-
matically the goodness of the model. Specifically, for multiple times (e.g. 100) we
sample a subset of the points to estimate the model, and we use the remaining ones
for verification; after the last iteration, we select the model that achieved the best
verification score. As the last step we turn inverse depths into depths, obtaining
absolute depth predictions enabling rendering of virtual objects consistent with the
geometry of the scene. The overall pipeline outlined is illustrated in figure 7.6.

Differently from other approaches, such as [103] and [180], our networks do not
require SLAM points to infer dense depth maps nor a fine-tuning of the network
on the input video data. In our case, a single image and at least two points in scale
suffice to obtain absolute dense depth perception. Consequently, we do not rely on
other techniques (e.g. optical flow or edge localization) in our whole pipeline for AR.
Nevertheless, it can be noticed in Figure 7.7 how our strategy coupled with PyD-Net
can produce competitive and detailed depth maps leveraging a single RGB image

7.6. Conclusion 81

only. Figure 7.8 shows some qualitative examples of an AR application, i.e. visual-
ization of a virtual duck in the observed scene. Once positioned on a surface, we can
notice how foreground elements do not correctly hide it without proper occlusion
handling. In contrast, our strategy allows for a more realistic experience, thanks to
the dense and robust depth map inferred by PyD-Net and sparse anchors provided
by a conventional AR framework.

7.6 Conclusion

In this chapter we have introduced a fast and easy-to-apply strategy to achieve ro-
bust monocular depth estimation on lightweight handheld devices characterized by
severe constraints concerning power consumption and computational resources. To
achieve this goal, we first distill from a set of single still images the knowledge from
a pre-trained state-of-the-art robust network unsuited for real-time execution yet ca-
pable to generalize very well on new environments. Then, we train and evaluate
lightweight monocular models, unlocking real-time performance even on mobile
devices. The evaluation highlights that effective real-time depth estimation in the
wild from a single image is possible on consumer devices by adopting the frame-
work outlined in this chapter. As further proof of this achievement, we have shown
its deployment in two relevant consumer applications.

83

Chapter 8

Distilling optical flow labels using
monocular depth

In Chapters 4,5 and 6 we have introduced novel frameworks aimed at infer monoc-
ular depth, while in chapter 7 we have seen how we can distill with a very limited
effort thousands of labels using off-the-shelf monocular models. The availability of
robust monocular depth models is nowadays the state of affairs, and they are paving
the way for new applications and purposes. Some examples are the bokeh and the
improved augmented reality presented in Chapter 7. Furthermore, Watson et al.
[320] show that these models are also pivotal components for training stereo models
on large unlabeled datasets with real texture. In their method, the monocular net-
work is not the final objective but it represents a support for a larger plan. Following
this rationale, can we adopt off-the-shelf robust monocular models for generating
labels in other fields, such as optical flow?

As introduced in Chapter 1, optical flow task consists in estimating the 2D mo-
tion of pixels between two frames. Traditional methods, as [105, 29], paved the way
to preliminary solutions for the problem, allowing to realize applications as frame
interpolation or motion tracking. Deep learning boosted the accuracy on conven-
tional benchmarks [77, 196, 37, 34], with supervised training strategies still repre-
senting the best way to obtain accurate models. Unfortunately, sourcing labels for
this task is even more challenging than for depth estimation, since no real sensor is
able to measure directly such values. Unsupervised training strategies relaxed this
constraint, allowing to train the model on unlabeled images, but they do not pro-
vide a strong supervision on difficult regions, such as texture-less areas or repetitive
patterns.

In this chapter we introduce a framework, called depthstillation, to generate accu-
rate ground-truth optical flow annotations quickly and in large amounts from any
readily available single real picture. Specifically, given an image we use an off-the-
shelf monocular depth estimation network to build a plausible point cloud for the
observed scene. Then, we virtually move the camera in the reconstructed environ-
ment with known motion vectors and rotation angles, allowing us to synthesize both
a novel view and the corresponding optical flow field connecting each pixel in the
input image to the one in the new frame. When trained with our data, state-of-
the-art optical flow networks achieve superior generalization to unseen real data
compared to the same models trained either on annotated synthetic datasets or un-
labeled videos, and better specialization if combined with synthetic images.

The content of this chapter has been published in Learning optical flow from still
images [7].

84 Chapter 8. Distilling optical flow labels using monocular depth

Flow colorsDepth colors

FIGURE 8.1: Overview of the proposed depthstillation pipeline. Given a single image
I0 and its estimated depth map D0, we place the camera in c0 and virtually move it (red
arrow) towards a new viewpoint c1. From the depth and virtual ego-motion, we obtain
optical flow labels F0→1 and a novel I1 through forward warping.

8.1 Depthstillation pipeline

In this section we illustrate our proposed framework to depthstill a training sample,
i.e. how we generate new virtual views I1 from single images I0, with correspond-
ing dense optical flow ground-truth maps F0→1. An overview of our pipeline is
shown in Figure 8.1.

Given I0, an off-the-shelf monocular depth network Φ estimates the correspond-
ing depth map D0

D0 = Φ(I0) (8.1)

Then, D0 is used to back-project pixels of I0 to their 3D points according to some
plausible inverse intrinsics matrix K−1. In case the network estimates inverse depth,
we bring it to the depth domain first. D0 usually shows blurred edges [320, 275],
causing flying pixels in the 3D space that can be easily sharpened via edge-preserving
filters [184].

We now assume the camera used to frame image I0 to be at 3D location c0 and
apply an arbitrary virtual motion, moving it towards a new position c1. To this aim,
we generate a plausible rotation R1 by sampling a random triplet of Euler angles
and a plausible translation t1 by sampling a random 3D vector. Then, we obtain the

8.1. Depthstillation pipeline 85

a) b) c) d) e)

FIGURE 8.2: Hole filling strategies. From left to right: a) forward-warped image
affected by stretching artefacts, b) holes mask H c) inpainted image, d) collision-
augmented holes mask H′ and e) improved inpainted image. Black pixels in H and
H′ are those to be inpainted. Reference picture from [166].

transformation matrix T0→1 = (R1|t1) corresponding to such roto-translation. Thus,
we can project our 3D points to the image space through K in order to obtain a new
image I1. This allows to obtain, for each pixel p0 in I0, the coordinates p1 of its
corresponding pixel in I1 acquired from viewpoint c1

p1 ∼ KT0→1D0(p0)K−1 p0 (8.2)

and flow F0→1 is obtained as the difference between p1 and p0.
As described in Chapter 6.3, F0→1 only models the virtual camera ego-motion,

i.e. no object has moved independently. Finally, we obtain the new image I1 through
forward warping.

Forward warping suffers from two well-known problems [320], that are collisions
(i.e. multiple pixels from I0 being warped to the same location in I1) and holes (i.e.
pixels in I1 over which no pixel from I0 is projected). To handle collisions, we keep
track of pixels p1 having multiple projections p0 in a binary collision maskM (i.e.
collisions are labeled as 1, other pixels as 0) and select, for each, the one having
minimum depth according to camera in position c1, i.e. the closest, to be displayed
in I1.

Hole filling. Artefacts introduced by holes are more subtle to be solved. More-
over, applying a 6DoF transformation to the camera plane vastly increases the chance
of occurrence of holes compared to the case of 1D camera translations applied to dis-
till stereo pairs [320]. In particular, in case of larger camera motion/rotations some
stretching artefacts occur on the foreground objects (and, occasionally, in the back-
ground as well) as shown in Figure 8.2 a). To remove these holes, we build a binary
hole mask H, as in Figure 8.2 b), where we label pixels in I1 for which no pixel in
I0 is reprojecting on to with 0. Then, a simple inpainting strategy [295] is usually
sufficient to fill them, as reported in Figure 8.2 c) on the girl’s face (green rectangle).

Unfortunately, this is not enough in the case of stretching artefacts occurring in
a foreground object overlapping a background one. Indeed, in this case, it is very
likely that the holes induced by the stretching of the foreground object are filled by
pixels in the background. These pixels are not detected by H, causing the bleeding
effect shown in the yellow rectangle of Figure 8.2 c), where the hair merges with
the background umbrella. Since most of these artefacts occur in non-colliding pixels
surrounded by colliding ones, i.e. in M they are labeled as 0 and surrounded by
pixels labeled as 1, we can detect them by dilatingM intoM′. Then, we define the
binary mask P assigning 1 to pixels having the same label in (M′,M) and 0 to the
remaining (i.e. those that become 1 inM′). We finally obtain H′ by multiplying H

86 Chapter 8. Distilling optical flow labels using monocular depth

and P . In other words, for every pixel x we obtain the following equations:

P(x) =

1 if M′(x) =M(x)

0 otherwise
H′(x) = H(x) · P(x) (8.3)

We can apply the inpainting algorithm to pixels labeled with 0 in H′, shown in
Figure 8.2 d), to obtain Figure 8.2 e), where the foreground-background bleeding
does not occur.

We point out how, in large dis-occluded area (i.e., in the proximity of depth
boundaries, as shown in Figure 8.2 on the left of the person), the inpainting method
produces blurred content, as shown in Figure 8.2 c) and e). Despite these artefacts,
our experiments will prove that hole filling improves the accuracy of trained net-
works significantly.

Independent motions. The pipeline sketched so far models the optical flow field
occurring between images acquired in a static environment, i.e. consequence of the
camera motion, not taking into account possible independently moving objects, very
likely to occur in real contexts [196]. In order to model more realistic simulations,
we introduce the possibility of applying different virtual motions to objects extracted
from the scene by leveraging an instance segmentation network Ω for extracting N
objects Πi, i ∈ [1,N]

Π = {Πi, i ∈ [1, N]} = Ω(I0) (8.4)

Then, to simulate a motion of the object in the scene, we randomly move the camera
from c0 towards a point cπi ̸= c1 and its corresponding transformation T0→πi to
be applied to object Πi. Then, we reproject pixels from I0 on the image planes of
the different cameras. Pixel coordinates in I1 will be selected according to their
belonging to segmented objects or the background as:

p1 ∼

KT0→1D0(p0)K−1 p0 if p0 /∈ Π

KT0→πiD0(p0)K−1 p0 if p0 ∈ Πi

(8.5)

We handle collisions as outlined before, keeping pixels whose depth results lower
after motion. Finally, we obtain optical flow F0→1 and image I1 as aforementioned.

To be robust to noisy/false detections, e.g. in case of tiny blobs accidentally la-
beled as objects, we rank the objects according to their size, i.e. number of pixels,
and keep in Π only the n <N largest objects. Figure 8.3 shows two qualitative com-
parisons between images and flow distilled by merely applying a virtual camera
motion, a) and b), and those obtained by segmenting the cat or the person in the
foreground and simulating an independent motion, c) and d). Although our formu-
lation simulates moving objects by moving virtual cameras instead, we can notice
how the final effect on I1 and F0→1 is equivalent for our purposes.

We point out that, by increasing the number of moving objects, collisions and
holes increase. In particular, a higher number of dis-occlusions might appear af-
ter applying independent motions, leading to blurry inpainted content, as shown
in Figure 8.3 c) on the top row, on the right of the cat. Besides, shape boundaries
may be inconsistent across depth and segmentation predictions, afflicting the truth-
fulness of the generated image and introducing artefacts (e.g., background pixels
moved as part of the foreground). We will see how, although helpful, this approach
yields minor improvements compared to the previous two steps performed in our

8.2. Experimental results 87

a) b) c) d)

FIGURE 8.3: Independent motions modeling. From left to right: a) image generated by
only modeling camera motion and b) corresponding optical flow field, c) image gener-
ated after segmenting the foreground, which is now subject to a different motion yield-
ing d) a more complex optical flow field.

framework, that result crucial for dephtstilling reliable training data. Moreover, seg-
menting object instances requires an additional network Ω trained in a supervised
manner conversely to single-image depth estimation networks, whereby an exten-
sive literature of self/weakly-supervised approaches exists [79, 80, 302, 321].

8.2 Experimental results

In this section, we describe the experimental setup used to validate our depthstilla-
tion pipeline.

8.2.1 Training datasets

At first, we describe the datasets used to train the networks considered in our exper-
iments.

FlyingChairs (Ch). We refer to Chapter 3.1 for the description of this dataset.
FlyingThings3D (Th). Already presented in Chapter 3.1, the FlyingThings3D

dataset [120] is a collection of 3D synthetic scenes belonging to the SceneFlow dataset
[191] and contains a training split made of 19, 635 images. Differently from Chairs,
objects move in the scene with more complex 3D motions. State-of-the-art networks
usually train in sequence over Chairs and Things (Ch→Th).

COCO dataset. The COCO dataset [166] is a collection of single still images (it
provides I0 only) and ground-truth with labels for tasks such as object detection or
panoptic segmentation, but lacks any depth or optical flow annotation. We sample
images from the train2017 split, which contains 118, 288 pictures, to generate virtual
images and optical flow maps. We dub dephtstilled COCO (dCOCO) the training set
obtained in such a manner.

DAVIS. The DAVIS dataset [223] provides high-resolution videos and it is widely
used for video object segmentation. Since it does not provide optical flow ground-
truth labels, we use all the 10, 581 images of the unsupervised 2019 challenge to

88 Chapter 8. Distilling optical flow labels using monocular depth

generate dDAVIS and compare with the state-of-the-art in self-supervised optical
flow [130].

8.2.2 Testing datasets

We describe here the testing imagery used to evaluate the networks trained on the
datasets mentioned above. We report the EPE, > 3 and the Fl metrics, defined in
Chapter 3.2, on All pixels. In every experiment, we will highlight the best results in
bold and underline the second-best among methods trained in fair conditions. We
evaluate models on Sintel (Clean and Final passes) [37], KITTI 2012 [77] and KITTI
2015 [196]. These datasets have already been introduced in Chapter 3.1.

8.2.3 Implementation details

We describe next our pipeline and the networks used for depth estimation and learn-
ing optical flow.

Depth estimation models. To obtain dense depth maps from single RGB images,
we select two models, respectively MiDaS [245] and MegaDepth [163], the former
because represents the state-of-the-art for depth estimation in-the-wild and the latter
because trained with weaker supervision than MiDaS1. Next, we will show how the
accuracy of networks trained on our data is affected by the depth estimator.

Depthstillation pipeline. To generate virtual images, we convert predicted depths
into [1, 100]. Given a single image of resolution W×H, we assume a virtual cam-
era having fixed K, with focals (fx, fy) = 0.58(W,H) and optical center (cx, cy) =
0.5(W,H). To generate T0→1, we build t1 by sampling three scalars tx, ty, tz in [−0.2, 0.2]
and R1 by sampling three Euler angles in [− π

18 , π
18]. To simulate moving objects, we

run pre-trained Mask-RCNN [97] to select n = 2 instance masks and generate ti
and Ri sampling respectively in [−0.1, 0.1] and [− π

36 , π
36] and add them to R1 and t1.

Depth maps are sharpened by means of 2 iterations of a 5×5 bilateral filter, while
we dilateM with a 3×3 kernel. We can generate multiple camera motions for any
given single image and thus a variety of pairs and ground-truth labels. We will see
how playing with the number of images and motions impacts optical flow network
accuracy.

Optical Flow networks. To evaluate how effective our distilled images are at
training optical flow models, we select two main architectures: RAFT [294] and
PWC-Net [287]. The first because it represents state-of-the-art architecture for su-
pervised optical flow, already enabling excellent generalization capability. The sec-
ond because it achieves the best results among self-supervised methods (e.g. UFlow
[130]). By deploying both architectures, we aim to prove that our method is general
and significantly improves generalization in supervised and self-supervised opti-
cal flow. When not otherwise specified, we train RAFT on depthstilled data for
100K steps with a learning rate of 4×10−4 and weight decay of 10−4, batch size of
6 and 496×368 image crops. This configuration is the largest one fitting into a sin-
gle NVIDIA Titan X GPU. Following [294], we adopted AdamW as optimizer [175]
and applied the same data augmentations and loss functions, while we set 12 as the
number of iterative updates. To train PWCNet, we used as optimizer Adam [139]

1The reader might argue that MiDaS has been trained on labels produced by pre-trained optical
flow networks, introducing biases into images generated with our pipeline. However, we point out
that optical flow networks are used only to handle negative disparities in stereo images and would not
be necessary if, given the minimum negative disparity dmin, the right image is shifted left by |dmin|,
thus making dmin = 0.

8.2. Experimental results 89

as in the original paper [287], with an initial learning rate of 1e−4 and halved after
400K, 600K and 800K steps. We trained our model for 1M steps with a batch size of
8, adopting the multi-scale loss used in [287] for the synthetic pre-training, with the
same augmentations and crop size used for RAFT.

8.2.4 Ablation study

In this section, we assess the impact of the different components of our pipeline.

Depth Hole Moving Sintel C. Sintel F. KITTI 12 KITTI 15
est. fill. obj. EPE > 3 EPE > 3 EPE Fl EPE Fl

(A) ✗ ✗ ✗ 5.50 18.22 6.08 20.83 3.31 18.95 10.51 35.52
(B) ✓ ✗ ✗ 2.52 7.17 3.72 11.04 2.02 7.53 4.84 16.26
(C) ✓ ✓ ✗ 2.63 7.00 3.90 11.31 1.82 6.62 3.81 12.42
(D) ✓ ✓ ✓ 2.35 6.11 3.62 10.10 1.83 6.53 3.65 11.98

TABLE 8.1: Method ablation. We train RAFT on dCOCO with different configurations
of depthstillation: (A) constant depth for each image, (B) adding depth estimated by
MiDaS [245], (C) adding hole-filling and (D) simulating object motions.

Depth, hole filling and moving objects. We start by ablating our pipeline to
measure the impact of i) estimating depth, ii) applying hole filling to generated im-
ages and iii) simulating objects moving independently. This study is carried out by
generating virtual views from 20K COCO images, applying a single virtual camera
motion for each, by training RAFT [294] on them and evaluating the final model on
Sintel, KITTI 2012 and KITTI 2015. Table 8.1 collects the outcome of this evaluation.
On row (A), we show the performance achieved by generating images without esti-
mating their depth, thus assuming a constant depth value for all pixels in any image.
By moving to row (B), for which we use MiDaS [245] to estimate depth during the
depthstillation process, we can notice considerable improvements in all metrics and
datasets, with Fl score often more than halved. Nonetheless, generated images are
affected by large holes and this does not allow for optimal performance. By enabling
hole filling (C), the trained RAFT further improves its accuracy on real datasets. Fi-
nally, in (D), we show results by simulating objects moving independently, that fur-
ther improves the results on Sintel. The benefit of this latter strategy is consistent
on most metrics, although minor on real datasets such as KITTI 2012 and 2015 com-
pared to the improvements obtained by (B) and (C), proving that the simple camera
motion combined with depth is enough to obtain a robust optical flow network ca-
pable of generalizing to real environments. Moreover, as already pointed out, (D)
also requires a trained instance segmentation network, which is hard to obtain for
any possible dataset and would consequently constrain our pipeline. Thus, since
our primary focus is on real environments, we choose (C) as the configuration for
the following experiments.

Depth estimation network. We measure the impact of the depth estimator on
our overall data generation pipeline. To this aim, we follow the same protocol of
the previous experiments, replacing MiDaS with MegaDepth [163] during the depth
estimation step. Table 8.3 shows the results of this experiment. We can notice how
images generated through MegaDepth (B) allow for training a RAFT model that
places in between the one trained on images generated without depth (A) and using
MiDaS (C), being much closer to the latter than to the former. This proves that depth

90 Chapter 8. Distilling optical flow labels using monocular depth

Training samples Sintel C. Sintel F. KITTI12 KITTI15
Images Motions Total EPE > 3 EPE > 3 EPE Fl EPE Fl

(A) 4K ×1 4K 2.73 6.96 3.97 11.09 1.86 6.81 3.93 12.56
(B) 4K ×5 20K 2.56 6.78 3.88 10.99 1.77 6.62 3.93 12.57

(C) 20K ×1 20K 2.63 7.00 3.90 11.31 1.82 6.62 3.81 12.42
(D) 20K ×5 100K 2.37 6.69 3.64 10.73 1.79 6.79 3.82 12.39

TABLE 8.2: Impact of images and virtual motions. We train several RAFT models by
changing the number of input images taken from COCO and the number of motions
depthstilled for each one.

is a crucial cue in our pipeline and the accuracy of the optical flow network, as we
might expect, increases with the quality of the estimated depth maps, although with
minor gains.

Depth Model Sintel C. Sintel F. KITTI12 KITTI15
EPE > 3 EPE > 3 EPE Fl EPE Fl

(A) No depth 5.50 18.22 6.08 20.83 3.31 18.95 10.51 35.52
(B) Megadepth [163] 2.91 7.51 3.99 11.55 1.81 7.11 4.10 13.70
(C) MiDaS [245] 2.63 7.00 3.90 11.31 1.82 6.62 3.81 12.42

TABLE 8.3: Impact of depth estimator. We train RAFT on dCOCO without depth esti-
mation (A), using depth maps provided by MegaDepth (B) or MiDaS (C).

EPE: 6.43 Fl: 40.22% EPE: 3.91 Fl: 17.45% EPE: 3.04 Fl: 8.81% EPE: 3.02 Fl: 10.23%

EPE: 7.21 Fl: 39.26% EPE: 0.95 Fl: 4.56% EPE: 1.32 Fl: 3.88% EPE: 1.28 Fl: 3.91%

a) b) c) d) e)

FIGURE 8.4: Qualitative results on the KITTI 2015 training set. On two rows: a) ref-
erence frame (top) and ground-truth flow (bottom), optical flow maps (top) by RAFT
trained on b) Ch, c) Ch→Th, d) dCOCO and e) Ch→Th→dCOCO and error maps (bot-
tom).

Amount of generated images. We can increase the amount of data we gener-
ate acting on two orthogonal dimensions: the number of images I0 and the number
of virtual motions we simulate for each. Table 8.2 collects the results achieved by
several RAFT models trained on a different number of images, obtained by vary-
ing the parameters mentioned above. By assuming 4K input images, we can notice
how applying 5 virtual motions to each (B) allows a consistent boost on Sintel and
KITTI 2012 compared to simulating a single motion each (A), while not improving
on KITTI 2015. Interestingly, 4K images already allow for strong generalization to

8.2. Experimental results 91

real domains, outperforming the results achieved using synthetic datasets shown
in detail in the next section. On the other hand, increasing the input images by
the same factor ×5, yet simulating a single motion (C) leads worse results on Sin-
tel while achieving some improvement on KITTI compared to (A) and (B). This fact
highlights that a more variegate image content in the training dataset may be ben-
eficial only for generalization to real environments. By depthstilling 5 motions, for
a total of 100K training samples (D), yields further improvements on Sintel, again
with minor impact on KITTI. To carry out a fair comparison with synthetic datasets,
counting about 20K images each, we will use 20K images and a single virtual motion
to depthstill our training data from now on.

8.2.5 Comparison with synthetic datasets

In this section, we evaluate the effectiveness of our depthstilled data versus syn-
thetic datasets [61, 191].

Generalization to real environments. We start by evaluating the robustness of
a network trained on our data when deployed on real datasets. Table 8.4 shows
the performance achieved by RAFT when trained on Chairs (A) and fine-tuned on
Things (B) with crop size and settings described in [294] to fit in a single GPU, com-
pared to a variant trained on dCOCO, a split of 20K image pairs depthstilled from
COCO (C). For completeness, we also report the performance of RAFT models pro-
vided by the authors (A†) and (B†), trained on 2× GPUs and thus not directly com-
parable with our setting. We can notice how training on dCOCO (C) allows for
much higher generalization on real datasets such as KITTI 2012 and 2015, at the cost
of worse performance on the Sintel synthetic dataset. This latter result is not sur-
prising because the images in Things are generated through computer graphics as
those in Sintel, while generating virtual images from a real dataset (COCO) leads to
superior generalization on real datasets (KITTI 2012 and 2015), also outperforming
(A†) and (B†) despite the single GPU.

Dataset Sintel C. Sintel F. KITTI 12 KITTI 15
EPE > 3 EPE > 3 EPE Fl EPE Fl

(A†) Ch 2.26 7.35 4.51 12.36 4.66 30.54 9.84 37.56
(B†) Ch→Th 1.46 4.40 2.79 8.10 2.15 9.30 5.00 17.44

(A) Ch 2.36 7.70 4.39 12.04 5.14 34.64 10.77 41.08
(B) Ch→Th 1.64 4.71 2.83 8.67 2.40 10.49 5.62 18.71
(C) dCOCO 2.63 7.00 3.90 11.31 1.82 6.62 3.81 12.42
(D) Ch→Th→dCOCO 1.88 5.31 3.23 9.26 1.78 7.00 3.42 13.08

TABLE 8.4: Comparison with synthetic datasets – generalization. Generalization
achieved by RAFT when trained on synthetic data (A) and (B), on our dCOCO dataset
(C) and a combination of both (D). † are obtained with publicly available weights by
[294] (2× GPUs).

We also train RAFT sequentially on Chairs, Things and dCOCO (D). This set-
ting improves the EPE achieved by (C) on KITTI 2012 and 2015 and turns out much
more effective on Sintel with both metrics. This fact suggests that a combination of

92 Chapter 8. Distilling optical flow labels using monocular depth

synthetic images with perfect ground-truth and virtual images with depthstilled la-
bels might be beneficial for generalization purposes. Figure 8.4 shows some qualita-
tive optical flow predictions and corresponding error maps obtained from the RAFT
variants considered in Table 8.4.

Fine-tuning on real data. We evaluate the effect of pre-training on synthetic
images or our generated frames when fine-tuning on a few real data with accurate
ground-truth. To this aim, we fine-tune RAFT variants on the first 160 images of
the KITTI 2015 training set and evaluate on the remaining 40 and KITTI 2012. We
train with a learning rate of 10−4 and weight decay of 10−5, batch size of 3 and
960×288 image crops, converging after 20K iterations. Table 8.5 collects the outcome
of this experiment. We can notice how variants (A) and (B) trained on synthetic data
are greatly improved by the fine-tuning, while (C) achieves slightly lower accuracy
after fine-tuning. Despite allowing for much higher generalization to real images,
the supervision allowed by our method is weaker than the one obtained through
real image pairs and perfect ground-truth. Thus, it is not surprising that networks
trained from scratch to the end on perfect ground-truth might yield better accuracy.
Nonetheless, combining synthetic data with our depthstilled images (D) allows for
the best performance, confirming the findings from our previous experiments that a
combination of the two worlds – synthetic data with perfect labels and realistic yet
imperfect images and labels – is beneficial.

Pre-training Fine-tuning KITTI12 KITTI15
EPE Fl EPE Fl

(A) Ch ✗ 5.14 34.64 15.56 47.29
Ch ✓ 1.42 4.86 2.40 8.49

(B) Ch→Th ✗ 2.40 10.49 9.04 25.53
Ch→Th ✓ 1.36 4.67 2.22 8.09

(C) dCOCO ✗ 1.82 6.62 5.09 16.72
dCOCO ✓ 1.37 4.70 2.76 9.15

(D) Ch→Th→dCOCO ✗ 1.78 7.00 4.82 18.03
Ch→Th→dCOCO ✓ 1.32 4.54 2.21 7.93

TABLE 8.5: Comparison with synthetic datasets – fine-tuning. Performance of RAFT
variants pre-trained on synthetic datasets (A) and (B), on dCOCO (C) or both (D) when
fine-tuned on a subset of 160 images from KITTI 2015, tested on KITTI 2012 and the
remaining 40 images from KITTI 2015.

Impact on different optical flow networks. To prove that the superior gener-
alization we achieve is enabled by our data rather than a specific architecture such
as RAFT, we also train PWCNet [287] on the 20K images generated from COCO.
Table 8.6 shows how PWCNet trained on dCOCO (C) dramatically outperforms the
original variants trained on Chairs (A) and fine-tuned on Things (B) when testing on
real data, at the cost of lower performance on Sintel synthetic images, substantially
confirming our findings from previous experiments with RAFT, reported in the table
for comparison (D). This fact proves that our data, generated from single yet realistic

8.2. Experimental results 93

still images, significantly improves generalization to real data independently from
the optical flow model trained.

Model Dataset Sintel C. Sintel F. KITTI12 KITTI15
EPE > 3 EPE > 3 EPE Fl EPE Fl

(A) PWCNet Ch 3.33 - 4.59 - 5.14 28.67 13.20 41.79
(B) PWCNet Ch→Th 2.55 - 3.93 - 4.14 21.38 10.35 33.67
(C) PWCNet dCOCO 4.14 11.54 5.57 15.58 3.16 13.30 8.49 26.06

(D) RAFT dCOCO 2.63 7.00 3.90 11.31 1.82 6.62 3.81 12.42

TABLE 8.6: Impact of depthstillation on different architectures. Evaluation on PWC-
Net and RAFT. Entries with "-" are not provided in the original paper.

8.2.6 Comparison with self-supervision from videos

Given the rich literature about self-supervised optical flow [194, 169, 170, 130], we
compare our strategy with state-of-the-art practises for self-supervised optical flow
[130]. In contrast to most works in this field that train and test in the same domain
[194, 169, 170, 130], we inquire about how well networks trained in a self-supervised
manner or leveraging our proposal transfer across different real datasets. To this
aim, we adopt DAVIS [223] for training and evaluate on KITTI 2012 and 2015 as in
the previous experiments. To train UFlow [130], we use the official code provided
by the authors. In particular, we trained the model on the entire DAVIS dataset for
1M steps, using a batch size of 1 as suggested in [130], 512×384 resized images and
letting unchanged other configuration parameters in order to replicate the authors’
settings. Being UFlow based on PWCNet, we train from scratch another instance of
PWCNet on dDAVIS for the same number of steps with a batch of 8 over depthstilled
images and labels. The learning rate scheduling is the same highlighted in section
8.2.3, while the crop is 512×384. This way, we evaluate how well a PWCNet trained
on depthstilled data transfers to other datasets compared to a model trained on real
videos framing the same image content of the depthstilled images. Table 8.7 collects
the outcome of this experiment. We can notice how the PWCNet model trained on
dDAVIS (B) transfers much better to the KITTI 2012 and 2015 datasets compared to
UFlow trained on the real DAVIS (A), thanks to the stronger supervision from the
distilled optical flow labels. For the sake of completeness, we also report the results
achieved by RAFT (C) trained on the same data, confirming to be superior.

Model Dataset KITTI12 KITTI15
EPE Fl EPE Fl

(A) UFlow DAVIS 3.49 14.54 9.52 25.52
(B) PWCNet dDAVIS 2.81 11.29 6.88 21.87

(C) RAFT dDAVIS 1.78 6.85 3.80 13.22

TABLE 8.7: Comparison between self-supervision and depthstillation – generaliza-
tion. Effectiveness of the two strategies when evaluated on unseen data (KITTI 2012
and 2015).

94 Chapter 8. Distilling optical flow labels using monocular depth

8.2.7 Limitations.

Our pipeline has some obvious limitations. Indeed, the training samples we gener-
ate are far from being utterly realistic because cannot model some behaviors, such
as the large 3D rotation of objects in the scene, frequently found in real videos.
Thus, despite the strong generalization we achieve compared to self-supervision,
real videos allow for much better specialization when training and testing in the
same domain. As shown in Table 8.8, UFlow trained on the 4K images of the KITTI
multiview dataset (A) performs much better than PWCNet trained on 960 × 288
crops from dKITTI (B), a set of about 4K images depthstilled from KITTI 2015 mul-
tiview testing set. On the other hand, RAFT trained on dKITTI with the same crop
size (C) gets closer to UFlow, thanks to the more effective architecture.

Model Dataset KITTI12 KITTI15
EPE Fl EPE Fl

(A) UFlow KITTI - - 3.08 10.00
(B) PWCNet dKITTI 2.64 9.43 7.92 22.17

(C) RAFT dKITTI 1.76 5.91 4.01 13.35

TABLE 8.8: Comparison between self-supervision and depthstillation – specializa-
tion. Effectiveness of the two strategies when training and testing on similar data (KITTI
2015). Entries with "-" are not provided in the original paper.

This lower specialization is also due to the completely random motions we depth-
still. In contrast, KITTI motions consist of a much smaller subset (i.e. mostly forward
translations or steerings) dominant in the real KITTI multiview split, yet rarely oc-
curring in dKITTI.

As take-home message, our depthstillation strategy effectively addresses the scarcity
of training data, e.g. when annotated images or not-annotated videos of the target
environment are not available, yielding superior generalization compared to exist-
ing practices. Moreover, it is complementary to domain-specific real training data
with labels, seldom ever available in practice.

8.3 Traditional vs learned inpainting

Figure 8.5 illustrates the effects of different inpainting strategies to fill holes in I1.
Most recent inpainting methods are based on deep learning [183] and, of course, they
require additional supervision that would add complexity to our pipeline, although
not introducing sensible improvements on the quality of I1.

We show the outcome of some of these strategies, sorted by increasing complex-
ity. From left to right, the results of 1) background texture filling [320], that consists
of filling invalid pixels with RGB values taken from another image after color align-
ment, 2) the traditional image inpainting [295] used in our pipeline, 3) the predic-
tions of a GAN model [183] pre-trained for image inpainting and 4) the prediction of
a Fourier Features Network [290], trained directly on the image itself and thus opti-
mized for each single I1. For the latter [290], we train a compact MLP to predict RGB
values given as input the 2D coordinates, remapped into Fourier Features, of valid
pixels in I1. Then, we use the trained model to infer the RGB for invalid pixels in
I1. Notice that, in our pipeline, this setting would require a standalone training over
each image in the dataset, dramatically increasing the complexity of our solution.

8.3. Traditional vs learned inpainting 95

Background filling [320] Traditional inpainting [295]

GAN [183] Fourier Features Network [290]

FIGURE 8.5: Impact of different inpainting strategies. We run different inpainting
methods to fill holes in I1.

These qualitative examples highlight that background filling, although useful
when generating stereo images [320], is not enough in the case of 2D motions. More-
over, large occluded regions result challenging to fill even for deep learning models
[183]. The Fourier Features Network [290] results in more visually pleasant images,
yet turns out to be prohibitive in terms of time required to depthstill thousand of
images. Hence, in our pipeline, we rely on [295] since it provides comparable results
with minimum complexity.

8.3.1 Qualitative examples

We show a detailed qualitative example from dCOCO in Figure 8.6. We first depict
images generated without taking into account depth, i.e. assuming a constant dis-
tance from the camera enabling only planar motions and rotations. We can notice
how this produces a meager variety of flow vectors on a single frame. Leveraging
depth, we can model more complex flow fields, leading to much more variegate
vectors occurring on the same scene. As shown in Table 8.1, optical flow networks
trained on these images are dramatically more accurate. Finally, instance segmenta-
tion allows for extracting objects from the scene and simulate independent motions.
This additional strategy results in even more variegate flow fields, although increas-
ing the accuracy of optical flow networks marginally compared to the previous case.

96 Chapter 8. Distilling optical flow labels using monocular depth

FIGURE 8.6: Qualitative examples of dCOCO. From left to right, I0, I1 and F0→1.
First row depicts the result obtained by using a constant depth map, while second and
third rows illustrate the final results when including also the monocular depth map and
independent motions respectively.

8.4 Conclusions

In this chapter, a novel framework called depthstillation has been presented. With
depthstillation we can generate, with a low-effort, a large amount of training data,
i.e. novel views coupled with ground-truth labels, for optical flow network. The
framework does not cost as a conventional supervised strategy, since human-intervention
or other kind of sensors are not required at all, but in constant to unsupervised meth-
ods it provides a better and dense supervision for all the pixels in the image.

97

Chapter 9

Stereo depth estimation aided by
monocular supervision

Chapter 4 shows that stereo labels, sourced by classical methods, are particularly
effective in boosting the performance of monocular model. This strategy has been
applied also in parallel works [321] with the same purpose. However, stereo and
monocular exploit a different reasoning: on the one hand, stereo relies on geome-
try and tries to solve a matching problem, while monocular, on the other hand, is
forced to look for other cues and priors, such as occlusions or shadows. Although
the monocular case is generally more difficult to solve, stereo suffers especially when
the matching fails, such as due to occlusions. Fortunately, these problems are non-
overlapping, and the results of [302, 321] support this claim at least for the monocu-
lar case. In fact, in these works stereo labels lead to stronger supervision at training
time than image reconstruction loss, allowing to escape from local minimums in
challenging regions. On the other hand, monocular solutions do not have to solve
the matching, thus do not suffer from the occlusion problem. Nonetheless, this ev-
idence has not been leveraged adequately in the past literature. In this chapter we
show how a peculiar monocular model is beneficial in boosting the performance of
stereo networks. Starting from a stereo dataset without depth labels, we first train
a monocular model leveraging classical stereo methods as additional supervision.
Then, we use this expert model to generate labels aimed at training a stereo model
on the same dataset. The monocular model takes as input not only the image but
also a few labels sourced by classical methods. We exploit the effect due to this ad-
ditional input to realize a filtering strategy aimed at removing the most unreliable
regions in monocular maps, obtaining better supervision for the stereo model. The
proposed training scheme is effective and leads to stereo models with good gener-
alization capabilities and robustness against occlusions. This chapter is based on
Reversing the cycle: self-supervised deep stereo through enhanced monocular distillation
[11].

9.1 Method

This section describes the strategy that allows us to distill highly accurate disparity
annotations for a stereo dataset made up of raw rectified images only and then use
them to supervise deep stereo networks. It is worth noting that, by abuse of no-
tation, we use depth and disparity interchangeably although our proxy extraction
method works entirely in the disparity domain. For our purposes, we rely on two
main stages, as depicted in Figure 9.1: 1) we train a monocular completion network
(MCN) from sparse disparity points sourced by traditional stereo methods and 2)

98 Chapter 9. Stereo depth estimation aided by monocular supervision

1 2

Stereo Network
MCN

Random Point
Selection

Traditional Stereo Methodology

D'

MCN

Consensus Mechanism

N multiple estimationsN inferences

supervision
supervision

I𝐿 I𝑅

D𝕆D''

DP

I𝑅

I𝐿

Di
𝕆Di''

 Ii

I𝐿

FIGURE 9.1: Framework overview. 1⃝ Sparse disparity points from a traditional stereo
method are given as input to a monocular completion network (MCN). Then, in 2⃝ we
leverage MCN to distill accurate proxies through the proposed consensus mechanism.
Such labels guide the training of a deep stereo network.

FIGURE 9.2: Disparity map filtering. From left to right, reference image from KITTI,
the noisy disparity map computed by [351] and the outcome of filtering [305].

we train deep stereo networks using highly reliable points from MCN, selected by a
novel consensus mechanism.

9.1.1 Monocular Completion Network (MCN)

Stereo algorithms struggle on occluded regions due to the difficulties to find corre-
spondences between images. On the contrary, monocular methods do not rely on
matching and thus, they are potentially not affected by this problem. In this stage,
our goal is to obtain a strong guidance even on occluded areas relying on a monoc-
ular depth network. However, monocular estimates intrinsically suffer the scale
factor ambiguity due to the lack of geometric constraints. Therefore, since stereo
pairs are always available in our setup, we also leverage on reliable sparse disparity
input points from traditional stereo algorithms in addition to the reference image.
Thanks to this combination, MCN is able to predict dense depth maps preserving
geometrical information.

Reliable disparity points extraction. At first, we rely on a traditional stereo
matcher S (e.g. [351]) to obtain an initial disparity map D from a given stereo pair
(IL, IR) as

D = S(IL, IR) (9.1)

However, since such raw disparity map contains several outliers, especially on ill-
posed regions such as occlusions or texture-less areas as it can be noticed in Figure
9.2, a filtering strategy F (e.g. [305]) is applied to discard spurious points

D′ = F (S(IL, IR)) (9.2)

By doing so, only a subset D′ of highly reliable points is preserved from D at the
cost of a sparser disparity map. However, most of them do not belong to occluded
regions thus not enabling supervision on such areas. This can be clearly perceived
observing the outcome of a filtering strategy in Figure 9.2.

9.1. Method 99

FIGURE 9.3: Occlusion handling and scale recovery. The first row depicts the reference
image from KITTI, the ground-truth and the disparity map by [351] filtered with [305].
In the middle, from left to right the output of monocular depth network [302] trained
without occlusion augmentation, the same network using the occlusion augmentation
and our MCN. Last row shows the corresponding error maps. Best viewed with colors.

Monocular disparity completion. Given D′, we deploy a monocular completion
network, namely MCN, in order to obtain a dense map DO. We self-supervise MCN
from stereo and, as in [80], to handle occlusions we horizontally flip (IL, IR) at train-
ing time with a certain probability without switching them. Consequently, occluded
regions (e.g. the left border of objects) are randomly swapped with not-occluded
areas (e.g. the right borders), preventing to always expect high error on left and low
error on right borders, thus forcing the network to handle both. This strategy turns
out ineffective in case of self-supervised stereo, since after horizontal flip the stereo
pair have to be switched in order to keep the same search direction along the epipo-
lar line, thus making occlusions occur in the same regions. Even if this technique
helps to alleviate errors in occluded regions, a pure monocular network struggles
compared to a stereo method at determining the correct depth. This is well-known
in the literature and shown in our experiments as well. Thus, we adopt a completion
approach leveraging sparse reliable points provided by a traditional stereo method
constraining the predictions to be properly scaled. Given the set of filtered points,
only a small subset D′′, with ||D′′|| ≪ ||D′||, is randomly selected and used as input,
while D′ itself is used for supervision purposes. The output of MCN is defined as

DO = MCN(IL, D′′
p≪1←−− (D′)) (9.3)

with x
p←− (y) a random uniform sampling function extracting x values out of y per-

pixel values with probability p. This sampling is crucial to both improve MCN accu-
racy, as shown in our experiments, as well as for the final distillation step discussed
in the remainder. Once trained, MCN is able to infer scaled dense disparity maps
DO, as can be perceived in Figure 9.3. Looking at the rightmost and central disparity
maps, we can notice how the augmentation protocol enables to alleviate occlusion
artifacts. Moreover, our overall completion strategy, compared to the output of the
monocular network without disparity seeds (leftmost and center disparity maps),
achieves much higher accuracy as well as correctly handles occlusions. Therefore,
we effectively combine stereo from non-occluded regions and monocular prediction
in occluded areas. Finally, we point out that we aim at specializing MCN on the
training set to generate labels on it since its purpose is limited to distillation.

100 Chapter 9. Stereo depth estimation aided by monocular supervision

FIGURE 9.4: Proxy distillation. The first row depicts, from left to right, the reference
image, the disparity map computed by a single inference of MCN and the one filtered
and regularized using our consensus mechanism. The second row shows the reference
image, the disparity map generated by SGM [101] filtered using the left-right consis-
tency check strategy and our disparity map. Images from KITTI.

9.1.2 Proxy distillation for deep stereo

Eventually, we leverage the trained MCN to distill offline proxy labels beneficial to
supervise stereo networks. However, such data might still contain some inconsis-
tent predictions, as can be perceived in the rightmost disparity map of Figure 9.3.
Therefore, our goal is to discard them, keeping trustworthy reliable depth estimates
to train deep stereo networks.

Consensus mechanism and distillation. To this aim, given an RGB image I
and the relative D′, we perform N inferences of MCN by feeding it with D′′i and
Ĩi, with i ∈ [1, N]. Respectively, D′′i is sampled from D′ according to the strategy
introduced in Sec. 3.1 and Ĩi is obtained through random augmentation (explained
later) applied to I . This way, we exploit consistencies and contradictions among
multiple DO

i to obtain reliable proxy labels DP, defined as

DP
σ2({DO

i }N
i=1)<γ←−−−−−−−− µ({DO

i }N
i=1) (9.4)

where x
σ2(y)<γ←−−−− µ(y) is a function that, given N values y for the same pixel, sam-

ples the mean value µ(y) only if the variance σ2(y) is smaller γ. As distillation is
performed offline, this step does not need to be differentiable.

Figure 9.4 shows that such a strategy allows us to largely regularize DP com-
pared to DO, preserving thin structures, e.g. the poles on the right side, yet achiev-
ing high density. It also infers significant portions of occluded regions compared to
proxies sourced from traditional methods (e.g. SGM).

Deep stereo training. Once highly accurate proxy labels DP are available on
the same training set, we exploit them to train deep stereo networks in a weakly-
supervised manner. In particular, a regression loss is used to minimize the difference
between stereo predictions and DP.

9.2 Experiments

In this section, we thoroughly evaluate our proposal, proving that sourcing labels
with a monocular completion approach is beneficial to train deep stereo networks.

9.2. Experiments 101

9.2.1 Implementation details

Traditional stereo methods. We consider two main non-learning based solutions,
characterized by different peculiarities, to generate accurate sparse disparity points
from a rectified stereo pair. In particular, we use the popular semi-global match-
ing algorithm SGM [101], exploiting the left-right consistency check (LRC) to re-
move wrong disparity assignments, and the WILD strategy proposed in [305] that
selects highly reliable values from the maps computed by the local algorithm Block-
Matching (BM) [351] exploiting traditional confidence measures. We refer to these
methods (i.e. stereo method followed by a filtering strategy) as SGM/L and BM/W,
respectively.

Monocular Completion Network. We adopt the weakly-supervised monocu-
lar architecture MonoResMatch [302], discussed in Chapter 4, and we train it with
the supervision of disparity proxy labels specifically suited for our purposes. We
modify the network to exploit accurate sparse annotations as input by concatenat-
ing them with the RGB image. We set the random sampling probability in Eq. 9.3
as p = 1

1000 . In our experiments, we train from scratch the MCN network following
the same training protocol defined in [302] except for the augmentation procedure
which includes the flipping strategy (with 0.25 probability) aimed at handling oc-
clusion artifacts [80]. Instead, we empirically found out that generating DO using a
larger set of points helps to achieve more accurate predictions at inference time. In
particular, we fix p = 1

20 and p = 1
200 for BM/W and SGM/L respectively. Finally,

for the consensus mechanism, we fix N = 50, the threshold γ = 3 and apply for each
Ii color augmentation and random horizontal flip (with 0.5 probability).

Stereo networks. We considered both 2D and 3D deep stereo architectures, en-
suring a comprehensive validation of our proposal. In particular, we designed a
baseline architecture, namely Stereodepth, by extending [80] to process stacked left
and right images, and iResNet [165] as examples of the former case, while PSMNet
[43] and GWCNet [90] as 3D architectures. At training time, the models predict dis-
parities DS at multiple scales in which each intermediate prediction is upsampled
at the input resolution. A weighted smooth L1 loss function (the lower the scale,
the lower the weight) minimizes the difference between DS and the disparity pro-
vided by the proxy DP considering only valid pixels, using Adam [139] as optimizer
(β1 = 0.9 and β2 = 0.999). We adopt the original PyTorch implementation of the net-
works if available. Moreover, all the models have been trained to fit a single Titan X
GPU.

9.2.2 Evaluation of proxy label generators

At first, we first evaluate the accuracy of proxies produced by our approach with
respect to traditional methods. We consider both D1 and EPE, computed on dis-
parities, as error metrics on both non-occluded (Noc) and all regions (All). These
metrics have been already introduced in Chapter 3.2. In addition, the density and
the overlap with the ground-truth are reported to take into account filtering strate-
gies. Table 9.1 reports a thorough evaluation of different methodologies and filtering
techniques. It can be noticed how BM and SGM have different performances due to
their complementarity (local vs semi-global), but containing several errors. Filtering
strategies help to remove outliers, at the cost of sparser maps. Notice that restoring
the full density through hole-filling [101] slightly improves the results of SGM/L, but
it is not meaningful for BM/W since filtered maps are too sparse. Unsurprisingly,
even if the depth maps produced by the vanilla MonoResMatch are fully-dense, they

102 Chapter 9. Stereo depth estimation aided by monocular supervision

Method Configuration Statistics Noc All
Source Filter A R C Density(%) Overlap(%) D1 EPE D1 EPE

MONO MonoResMatch - - - - 100.0 100.0 26.63 2.96 27.00 2.99

BM BM - - - - 100.0 100.0 34.48 16.14 35.46 16.41
SGM SGM - - - - 100.0 100.0 6.65 1.67 8.12 2.16

BM/L BM LRC - - - 57.89 62.09 16.09 6.42 16.22 6.46
SGM/L SGM LRC - - - 86.47 92.28 3.99 1.00 4.01 1.00
SGM/L(hole-filling) SGM LRC - - - 100.0 100.0 6.56 1.34 7.68 1.57
BM/W BM WILD - - - 12.33 10.43 1.33 0.81 1.35 0.81

MCN-SGM/L SGM LRC - - - 100.0 100.0 6.36 1.27 7.80 1.50
MCN-SGM/L-R SGM LRC - ✓ - 100.0 100.0 5.28 1.13 5.73 1.21
MCN-SGM/L-AC SGM LRC ✓ - ✓ 95.36 97.36 5.58 1.17 5.58 1.15
MCN-SGM/L-RC SGM LRC - ✓ ✓ 93.50 96.32 2.95 0.86 3.14 0.89
MCN-SGM/L-ARC SGM LRC ✓ ✓ ✓ 92.53 95.76 2.78 0.84 2.92 0.86

MCN-BM/W BM WILD - - - 100.0 100.0 11.86 1.93 12.50 2.03
MCN-BM/W-R BM WILD - ✓ - 100.0 100.0 6.79 1.40 7.11 1.45
MCN-BM/W-AC BM WILD ✓ - ✓ 91.45 94.76 8.36 1.53 8.64 1.57
MCN-BM/W-RC BM WILD - ✓ ✓ 91.12 95.28 3.79 0.95 4.03 1.0
MCN-BM/W-ARC BM WILD ✓ ✓ ✓ 86.82 93.56 3.16 0.90 3.27 0.92

TABLE 9.1: Evaluation of proxy generators. We tested proxies generated by different
strategies on the KITTI 2015 training set. A means RGB augmentation to input images,
R means random selection of input points while C indicates the consensus strategy.

are not accurate due to its inherent monocular nature. On the contrary, our monoc-
ular strategy MCN produces dense yet accurate maps thanks to the initial disparity
guesses, regardless the sourcing stereo algorithm. Moreover, by applying Augmen-
tation techniques (A) on the RGB image or selecting Random input points (R), allow
to increase variance and to exploit our Consensus mechanism (C) to filter out unre-
liable values, thus achieving even better results. In fact, the consensus mechanism
is able to discard wrong predictions preserving high density, reaching best perfor-
mances when A and R are both applied. It is worth noting that if R is not performed,
the network is fed with all the available guesses both at training and testing time,
with remarkably worse results compared to configuration using random sampling.

Disparity completion comparison. We validate our MCN combined with the
consensus mechanism comparing it to GuideNet [338], a supervised architecture de-
signed to generate high-quality disparity annotations exploiting multi-frame LiDAR
points and stereo pairs as input. Following [338], we measure the valid pixels, cor-
rect pixels, and accuracy (i.e. 100.0 - D1) on 142 images of the KITTI 2015 training set.
Table 9.2 clearly shows how MCN trained in a weakly-supervised manner achieves
comparable accuracy with respect to GuideNet-LiDAR by exploiting sparse dispar-
ity estimates from both [305] and [101] but with a significantly higher number of
points, even on foreground regions (Obj). Notice that LiDAR indicates that the net-
work is fed with LiDAR points filtered according to [308]. To further demonstrate
the generalization capability of MCN to produce highly accurate proxies relying on
points from heterogeneous sources, we feed MCN-BM/W-R with raw LiDAR mea-
surements. By doing so, our network notably outperforms GuideNet in this config-
uration, despite it leverages a single RGB image and has not been trained on LiDAR
points.

9.2. Experiments 103

Model All Obj
Valid Correct Accuracy (%) Valid Correct Accuracy (%)

MCN-BM/W-ARC 11,551,461 11,247,966 97.37 1,718,267 1,642,872 95.61
MCN-SGM/L-ARC 12,201,763 11,860,923 97.20 1,788,154 1,672,222 93.52
MCN-LiDAR 11,773,897 11,636,787 98.83 1,507,222 1,459,726 96.84

GuideNet-LiDAR [338] † 2,973,882 2,915,110 98.02 221,828 210,912 95.07

TABLE 9.2: Model-guided comparison. Comparison between our MCN model and
the supervised GuideNet stereo architecture [338] using 142 ground-truth images of the
KITTI 2015 training set. † indicates that the network requires LiDAR points at training
time. Accuracy is defined as 100-D1.

9.2.3 Ablation study

In this subsection, we support the statement that a completion approach provides
a better supervision compared to traditional stereo algorithms. We first run experi-
ments on KITTI and then use our best configuration on DrivingStereo as well, show-
ing that it is effective on multiple large stereo datasets.

KITTI. For the ablation study, reported in Table 9.3, we consider both 3D (PSM-
Net) and 2D (Stereodepth) networks featuring different computational complexity.
First, we train the baseline configuration of the networks, i.e. relying image recon-
struction loss functions (PHOTO) only as in [80]. Then, we leverage disparity values
sourced by traditional stereo algorithms in which outliers have been removed by
the filtering strategies adopted. Such labels provide a useful guidance for stereo net-
works and allow to obtain more accurate models than the baselines. Nonetheless,
proxies produced by MCN prove to be much more effective than traditional ones,
improving both D1 and EPE by a notable margin regardless the stereo algorithm
used to extract the input guesses. Moreover, it can be perceived that best results are
obtained when the complete consensus mechanism is enabled.

Backbone Supervision Noc All
D1 EPE D1 EPE

Stereodepth PHOTO 6.50 1.30 7.12 1.40
PSMNet PHOTO 6.62 1.30 7.67 1.50

Stereodepth SGM-L 5.22 1.13 5.43 1.15
Stereodepth SGM/L(hole-filling) 6.06 1.16 6.38 1.21
Stereodepth BM/W 5.19 1.16 5.37 1.18
PSMNet SGM/L 5.46 1.19 5.61 1.21
PSMNet SGM/L(hole-filling) 6.06 1.23 6.32 1.26
PSMNet BM/W 6.89 1.59 7.03 1.60

Stereodepth MCN-SGM/L-R 5.11 1.11 5.37 1.14
Stereodepth MCN-BM/W-R 4.75 1.05 4.96 1.07
Stereodepth MCN-SGM/L-ARC 4.56 1.08 4.77 1.11
Stereodepth MCN-BM/W-ARC 4.21 1.06 4.39 1.07
PSMNet MCN-SGM/L-R 4.39 1.05 4.60 1.07
PSMNet MCN-BM/W-R 4.30 1.06 4.49 1.08
PSMNet MCN-SGM/L-ARC 4.02 1.05 4.20 1.07
PSMNet MCN-BM/W-ARC 3.68 0.99 3.85 1.01

Stereodepth LiDAR/SGM [308] 3.95 1.07 4.10 1.09
PSMNet LiDAR/SGM [308] 3.93 1.05 4.07 1.07

TABLE 9.3: Ablation study. We trained Stereodepth and PSMNet [43] on KITTI using
supervision signals from different proxy generators and tested on KITTI 2015.

104 Chapter 9. Stereo depth estimation aided by monocular supervision

FIGURE 9.5: Impact of proxies. From top, input stereo pair and ground-truth disparity
map, predictions by Stereodepth trained with SGM/L (left), LiDAR (center) and our
MCN-BM/W-ARC (right), error maps. Best viewed with colors.

Finally, we rely also on filtered LiDAR measurements from [308] in order to show
differences with respect to supervision from active sensors. Noteworthy, models
trained using proxies distilled by ARC configuration of MCN prove to be compara-
ble or even better than using LiDAR with PSMNet and Stereodepth. This behaviour
can be explained due to a more representative and accurate supervision on occluded
areas than traditional stereo and filtered LiDAR, thus making the deep networks
more robust even there, as clearly shown in Figure 9.5.

DrivingStereo. We validate the proposed strategy also on DrivingStereo, prov-
ing that our distillation approach is able to largely improve the performances of
stereo networks also on different datasets. In particular, in Table 9.4 we compare
Stereodepth and PSMNet errors when trained using MCN-BM/W-ARC method (i.e.
the best configuration on KITTI) with LiDAR and BM/W. Again, our proposal out-
performs BM/W, and reduces the gap with high quality LiDAR supervision. More-
over, to verify generalization capabilities, we test on KITTI also correspondent mod-
els trained on DrivingStereo, without performing any fine-tuning (DS → K), and
vice versa (K→ DS). It can be noticed that the gap between KITTI models (see Table
9.3) and those trained on DrivingStereo gets smaller, proving that the networks are
able to perform matching correctly even in cross-validation scenario. We want to
point out that this is due to our proxies, as can be clearly perceived by looking at
rows 1-2 vs 3-4 in Table 9.4.

Source→ Target

Backbone Supervision DS→ DS K→ DS DS→ K
D1 EPE D1 EPE D1 EPE

Stereodepth BM/W 4.46 1.20 4.67 1.10 6.35 1.36
PSMNet BM/W 8.81 1.94 5.06 1.30 7.07 1.65

Stereodepth MCN-BM/W-ARC 2.47 0.94 2.97 0.96 5.64 1.22
PSMNet MCN-BM/W-ARC 1.87 0.86 2.32 0.88 5.16 1.17

Stereodepth LiDAR [338] 1.20 0.69 3.60 1.23 4.57 1.17
PSMNet LiDAR [338] 0.59 0.54 2.64 1.03 4.52 1.26

TABLE 9.4: Cross-validation analysis. We tested on the Target dataset models trained
on the Source one, leveraging different proxies. Notice that no fine-tuning on the target
dataset is performed in case of cross-validation.

9.2. Experiments 105

9.2.4 Comparison with state-of-the-art

We compare our models with state-of-the-art self-supervised stereo methods. Table
9.5 reports, in addition to D1 and EPE, also RMSE and RMSE log as depth error
measurements and δ < 1.25, δ < 1.252, δ < 1.253 accuracy metrics according to [318,
363]. Notice that some of these methods exploit additional information, such as
stereo videos [318] or adaptation strategies [361]. Proxies distilled by MCN-BM/W-
ARC can be successfully exploited using both 2D and 3D architectures, enabling
even the simplest 2D network Stereodepth to outperform all the competitors. Our
strategy is effective, allowing all the adopted backbones to improve depth estimation
by a notable margin on 6 metrics out of 7.

Method RMSE log RMSE D1 EPE δ <1.25 δ < 1.252 δ < 1.253

Godard et al.[79] (stereo) 5.742 0.202 10.80 - 0.928 0.966 0.980
Lai et al.[151] 4.186 0.157 8.62 1.46 0.950 0.979 0.990
Wang et al.[318] (stereo only) 4.187 0.135 7.07 - 0.955 0.981 0.990
Zhong et al.[362] 4.857 0.165 6.42 - 0.956 0.976 0.985
Wang et al.[318] (stereo videos) 3.404 0.121 5.94 - 0.965 0.984 0.992
Zhong et al.[361]* (3.176) (0.125) (5.14) - (0.967) - -
Ours (Stereodepth) 3.882 0.117 4.39 1.07 0.971 0.988 0.993
Ours (GWCNet) 3.614 0.111 3.93 1.04 0.974 0.989 0.993
Ours (iResNet) 3.464 0.108 3.88 1.02 0.975 0.988 0.993
Ours (PSMNet) 3.764 0.115 3.85 1.01 0.974 0.988 0.993

TABLE 9.5: Comparison with state-of-the-art. Results of different self/weakly-
supervised stereo networks on the KITTI 2015 training set with max depth set to 80m.
Ours indicates networks trained using MCN-BM/W-ARC labels. * indicates networks
trained on the same KITTI 2015 data, therefore not directly comparable with other meth-
ods.

Furthermore, we test our PSMNet trained using MCN-BM/W-ARC proxies on
the KITTI 2015 online benchmark, reporting the results in Table 9.6. Our model not
only outperforms [101] and self-supervised competitors, as can be also perceived in
Figure 9.6, but also supervised strategies [301, 191] on both non-occluded and all
areas.

Models Dataset E2E D1-bg D1-fg D1-All D1-Noc

Zbontar and LeCun (acrt) [353] K - 2.89 8.88 3.89 3.33
Tonioni et al. [301] SF+K ✓ 3.75 9.20 4.66 4.27
Mayer et al. [191] SF+K ✓ 4.32 4.41 4.34 4.05
Chang and Chen [43] (PSMNet) SF+K ✓ 1.86 4.62 2.32 2.14
Guo et al. [90] (GWCNet) SF+K ✓ 1.74 3.93 2.11 1.92
Zhang et al. [354] SF+K ✓ 1.48 3.46 1.81 1.63

Hirschmuller [101] - - 8.92 20.59 10.86 9.47
Zhou et al. [362] K ✓ - - 9.91 -
Li and Yuan [156] K ✓ 6.89 19.42 8.98 7.39
Tulyakov et al. [307] K - 3.78 10.93 4.97 4.11
Joung et al. [131] K - - - 4.47 -
Ours (PSMNet) K ✓ 3.13 8.70 4.06 3.86

TABLE 9.6: KITTI 2015 online benchmark. We submitted PSMNet, trained on MCN-
BM/W-ARC labels, on the KITTI 2015 online stereo benchmark. In blue self/weakly-
supervised methods, while in red fully-supervised strategies. We indicate with E2E
architectures trained in an end-to-end manner, while SF on the SceneFlow dataset [191]

106 Chapter 9. Stereo depth estimation aided by monocular supervision

FIGURE 9.6: KITTI 2015 online benchmark qualitatives. From left to right, the refer-
ence images, and the disparity maps computed by [101], [156] and our PSMNet trained
on MCN-BM/W-ARC labels.

9.2.5 Generalization

Finally, we show experiments supporting that supervision from our MCN-BM/W-
ARC labels achieves good generalization to different domains. To this aim, we run
our KITTI networks on Middlebury v3 and ETH3D, framing completely different
environments.

Method Training Middlebury v3 [263] ETH3D [269]
Dataset BAD2 EPE BAD2 EPE

Zhang et al.[354] SF+K 18.90 3.44 3.43 0.91
Chang and Chen [43] (PSMNet) SF+K 20.04 3.01 13.07 1.35
Guo et al.[90](GWCNet) SF+K 21.36 3.29 19.96 1.88

Wang et al.[318](stereo only) K 30.55 4.77 11.17 1.47
Wang et al.[318](stereo videos) K 31.63 5.23 19.59 1.97
Lai et al.[151](stereo videos) K 45.18 6.42 10.15 1.01
Ours (Stereodepth) K 27.43 3.72 6.94 1.31
Ours (iResNet) K 25.08 3.85 6.29 0.81
Ours(GWCNet) K 20.75 3.17 3.50 0.48
Ours (PSMNet) K 19.56 2.99 4.00 0.51

TABLE 9.7: Generalization test on Middlebury v3 and ETH3D. We evaluate networks
trained in self/weakly-supervised (blue) or supervised (red) fashion on KITTI (K) and
SceneFlow dataset (SF) [191]

Table 9.7 shows the outcome of this evaluation. We report, on top, the perfor-
mance of fully supervised methods trained on SceneFlow [191] and fine-tuned on
KITTI for comparison. On bottom, we report self/weakly-supervised frameworks
trained on the KITTI split from the previous experiments. All networks are trans-
ferred without fine-tuning. Compared to existing self-supervised strategies (rows
4-6), networks trained with our proxies achieve much better generalization on both
the datasets, performing comparable (or even better) with ground-truth supervised
networks. Figure 9.7 shows few examples from the two datasets, where the structure
of the scene is much better recovered when trained on our proxies.

9.3 Conclusions

This chapter proposed a novel framework to train stereo matching models when
ground-truth labels are not available. Starting from an unlabeled stereo dataset,
made of raw RGB pairs, we first obtain a peculiar monocular network aided by few

9.3. Conclusions 107

Reference GT Wang [318] Lai [151] Ours [43] Zhang [354]

FIGURE 9.7: Examples of generalization. First row shows disparity maps obtained
on a stereo pair from the Middlebury v3 dataset, while second from ETH3D. Zhang
et al. [354] has been trained in supervised fashion, while the remaining methods are
self/weakly-supervised.

stereo hints extracted by classical stereo methods. Then, we rely on this teacher
network to train a student stereo network, exploiting a new consensus mechanism
designed to filter out inconsistencies in monocular predictions. At the end of the
training, the stereo network is ready to be used in applications and proves, thanks
to the proposed strategy, to be quite robust even in hard-to-solve regions as near
occlusions.

109

Chapter 10

Monocular depth uncertainty

In the previous chapters we have presented and discussed methods for obtaining
depth values of the observed scene. Nonetheless, these observations in general do
not have the same reliability everywhere: for example, for optical flow strategies
fast motions of small objects are much harder to predict than small displacements of
large entities, while ambiguous regions, such as texture-less or occluded areas, may
lead to wrong depth and flow estimates. As pointed out in Chapter 2, confidence
methods have been investigated for a long time in the past, especially for stereo and
optical flow tasks. Conversely, the recent spread of monocular strategies has not
gone hand in hand with methods aimed at evaluating their uncertainty. We now
present a comprehensive evaluation of the uncertainty estimation in the monocu-
lar case, with particular interest in understanding how the self-supervised training
paradigm generally adopted in monocular frameworks impacts uncertainty. The
content of this chapter is based on the paper On the uncertainty of self-supervised
monocular depth estimation [229].

10.1 Depth-from-mono and uncertainty

In this section, we introduce how to tackle uncertainty modelling with self-supervised
depth estimation frameworks. Given a still image I any depth-from-mono frame-
work produces an output map D encoding the depth of the observed scene. When
full supervision is available, to train such a network we aim at minimizing a loss
signal L f s obtained through a generic function F of inputs estimated D and ground-
truth D∗ depth maps.

L f s = F (D, D∗) (10.1)

When traditional supervision is not available, it can be replaced by self-supervision
obtained through image reconstruction. In this case, the ground-truth map D∗ is
replaced by a second image I†. Then, by knowing camera intrinsics K, K† and the
relative camera pose (R|t) between the two images, a reconstructed image Ĩ is ob-
tained as a function π of intrinsics, camera pose, image I† and depth D, enabling to
compute a loss signal Lss as a generic F of inputs Ĩ and I .

Lss = F (Ĩ , I) = F (π(I†, K†, R|t, K, D), I) (10.2)

I and I† can be acquired either by means of a single moving camera or with a
stereo rig. In this latter case, (R|t) is known beforehand thanks to the stereo calibra-
tion parameters, while for images acquired by a single camera it is usually learned
jointly to depth, both up to a scale factor. A popular choice for F is the weighted

110 Chapter 10. Monocular depth uncertainty

a) b) c)

FIGURE 10.1: Overview of uncertainty estimation implementations. Respectively a)
empirical methods model uncertainty as the variance of predictions from a subset of all
the possible instances of the same network, b) predictive are trained to estimate depth
and uncertainty as mean and variance of a distribution and c) Bayesian methods are
approximated [207] by sampling multiple predictive models and summing single un-
certainties with the variance of the depth predictions.

sum between L1 and Structured Similarity Index Measure (SSIM) [319] reported in
equation 4.4.

In case of K frames used for supervision, coming for example by joint monocular
and stereo supervision, for each pixel q the minimum among computed losses allows
for robust reprojection [80]

Lss(q) = min
i∈[0..K]

F (Ĩi(q), I(q)) (10.3)

Traditional networks are deterministic, producing a single output typically cor-
responding to the mean value of the distribution of all possible outputs p(D∗|I ,D),
D being a dataset of images and corresponding depth maps. Estimating the vari-
ance of such distribution allows for modelling uncertainty on the network outputs,
as shown in [120, 135] and depicted in Figure 10.1, a) in empirical way, b) by learning
a predictive model or c) combining the two approaches.

First and foremost, we point out that the self-supervision provided to the net-
work is indirect with respect to its main task. This means that the network estimates
are not optimized with respect to the desired statistical distribution, i.e. depth D∗,
but they are an input parameter of a function (π) optimized over a different statisti-
cal model, i.e. image I . While this does not represent an issue for empirical methods,
predictive methods like negative log-likelihood minimization can be adapted to this
paradigm as done by Klodt and Vedaldi [143]. Nevertheless, we will show how this
solution is sub-optimal when the camera pose is unknown, i.e. when π is function
of two unknown parameters.

10.1.1 Uncertainty by image flipping

A simple strategy to estimate uncertainty is inspired by the post-processing (Post)
step proposed by Godard et al.[79]. Such a refinement consists of estimating two
depth maps D and

←−
D for image I and its horizontally flipped counterpart

←−I . The

refined depth map Dr is obtained by averaging D and
−→←−
D , i.e. back-flipped

←−
D . We

encode the uncertainty for Dr as the difference between the two

uPost = |D−
−→←−
D | (10.4)

that is, the variance over a small distribution of outputs (i.e., two), as typically done
for empirical methods outlined in the next section. Although this method requires
2× forwards at test time compared to the raw depth-from-mono model, as shown in
Figure 10.2, it can be applied seamlessly to any pre-trained framework without any
modification.

10.1. Depth-from-mono and uncertainty 111

ℐ

ℐ

$

$

FIGURE 10.2: Uncertainty by image flipping. The difference between the depth D,

inferred from image I , and the depth
−→←−
D , from the flipped image

←−I , provides a basic
form of uncertainty.

10.1.2 Empirical estimation

This class of methods aims at encoding uncertainty empirically, for instance, by mea-
suring the variance between a set of all the possible network configurations. It al-
lows to explain the model uncertainty, namely epistemic [135]. Strategies belong-
ing to this category [119] can be applied to self-supervised frameworks straightfor-
wardly.

Dropout Sampling (Drop). Early works estimated uncertainty in neural net-
works [186] by sampling multiple networks from the distribution of weights of a
single architecture. Monte Carlo Dropout [281] represents a popular method to sam-
ple N independent models without requiring multiple and independent trainings.
At training time, connections between layers are randomly dropped with a prob-
ability p to avoid overfitting. At test time, all connections are kept. By keeping
dropout enabled at test time, we can perform multiple forwards sampling a differ-
ent network every time. Empirical mean µ(D) and variance σ2(D) are computed, as
follows, performing multiple (N) inferences:

µ(D) =
1
N

N

∑
i=1

Di (10.5)

uDrop = σ2(D) =
1
N

N

∑
i=1

(Di − µ(D))2 (10.6)

At test time, using the same number of network parameters, N× forwards are re-
quired.

Bootstrapped Ensemble (Boot). A simple, yet effective alternative to weights
sampling is represented by training an ensemble of N neural networks [153] ran-
domly initializing N instances of the same architecture and training them with boot-
strapping, i.e. on random subsets of the entire training set. This strategy produces
N specialized models. Then, similarly to dropout sampling, we can obtain empirical
mean µ(D) and variance σ2(D) in order to approximate the mean and variance of
the distribution of depth values. It requires N× parameters to be stored, results of
N× independent trainings, and a single forward pass for each stored configuration
at test time.

Snapshot Ensemble (Snap). Although the previous method is compelling, ob-
taining ensembles of neural networks is expensive since it requires carrying out N
independent training. An alternative solution [112] consists of obtaining N snap-
shots out of a single training by leveraging on cyclic learning rate schedules to ob-
tain C pre-converged models. Assuming an initial learning rate λ0, we obtain λt at

112 Chapter 10. Monocular depth uncertainty

any training iteration t as a function of the total number of steps T and cycles C as
in [112]

λt =
λ0

2
·
(

cos

(
π · mod (t− 1, ⌈ T

C⌉)
⌈ T

C⌉

)
+ 1

)
(10.7)

Similarly to Boot and Drop, we obtain empirical mean µ(D) and variance σ2(D) by
choosing N out of the C models obtained from a single training procedure.

10.1.3 Predictive estimation

This category aims at encoding uncertainty by learning a predictive model. This
means that at test time these methods produce uncertainty estimates that are func-
tion of network parameters and the input image and thus reason about the current
observations, modelling aleatoric heteroscedastic uncertainty [135]. Since often learned
from real data distribution, for instance as a function of the distance between the pre-
dictions and the ground-truth or by maximizing log-likelihood, these approaches
need to be rethought to deal with self-supervised paradigms.

Learned Reprojection (Repr). To learn a function over the prediction error em-
ploying a classifier is a popular technique used for both stereo [238, 273] and optical
flow [185]. However, given the absence of ground-truth labels, we cannot apply this
approach to self-supervised frameworks seamlessly. Nevertheless, we can drive one
output of our network to mimic the behavior of the self-supervised loss function
used to train it, thus learning ambiguities affecting the paradigm itself (e.g., occlu-
sions, low texture and more). Indeed, the per-pixel loss signal is supposed to be
high when the estimated depth is wrong. Thus, uncertainty uRepr is trained adding
the following term to Lss:

LRepr = β · |uRepr −F (Ĩ , I)| (10.8)

Since multiple images I† may be used for supervision, i.e. when combining monoc-
ular and stereo [80], usually for each pixel q the minimum reprojection signal is
considered to train the network, thus uRepr is trained accordingly

LRepr(q) = β · |uRepr(q)− min
i∈[0..K]

F (Ĩi(q), I(q))| (10.9)

In our experiments, we set β to 0.1 and stop F gradients inside LRepr for numer-
ical stability. A similar technique appeared in [51], although not evaluated quantita-
tively.

Log-Likelihood Maximization (Log). Another popular strategy [212] consists of
training the network to infer mean and variance of the distribution p(D∗|I ,D) of
parameters Θ. The network is trained by log-likelihood maximization (i.e., negative
log-likelihood minimization)

log p(D∗|w) =
1
N ∑

q
log p(D∗(q)|Θ(I , w)) (10.10)

w being the network weights. As shown in [119], the predictive distribution can be
modelled as Laplacian or Gaussian respectively in case of L1 or L2 loss computation
with respect to D∗. In the former case, this means minimizing the following loss
function:

10.1. Depth-from-mono and uncertainty 113

LLog =
|µ(D)− D∗|

σ(D)
+ log σ(D) (10.11)

with µ(D) and σ(D) outputs of the network encoding mean and variance of the
distribution. The additional logarithmic term discourages infinite predictions for
any pixel. Regarding numerical stability [135], the network is trained to estimate
the log-variance in order to avoid zero values of the variance. As shown by Klodt
and Vedaldi [143], in absence of ground-truth D∗ one can model the uncertainty uLog
according to photometric matching

LLog =
mini∈[0..K] F (Ĩi(q), I(q))

uLog
+ log uLog (10.12)

Recall thatF is computed over π according to Equation 10.2. Although for stereo su-
pervision this formulation is equivalent to traditional supervision, i.e. π is function
of a single unknown parameter D, in case of monocular supervision this formula-
tion jointly explain uncertainty for depth and pose, both unknown variables in π.
We will show how this approach leads to sub-optimal modelling and how to over-
come this limitation with the next approach.

Self-Teaching (Self). In order to decouple depth and pose when modelling un-
certainty, we propose to source a direct form of supervision from the learned model
itself. By training a first network in a self-supervised manner, we obtain a network
instance T producing a noisy distribution DT . Then, we train a second instance of
the same model, namely S , to mimic the distribution sourced from T . Typically,
teacher-student frameworks [360] applied to monocular depth estimation [226] de-
ploy a complex architecture to supervise a more compact one. In contrast, in our
approach the teacher T and the student S share the same architecture and for this
reason we refer to it as Self-Teaching (Self). By assuming an L1 loss, we can model
for instance negative log-likelihood minimization as

LSelf =
|µ(DS)− DT |

σ(DS)
+ log σ(DS) (10.13)

We will show how with this strategy i) we obtain a network S more accurate
than T and ii) in case of monocular supervision, we can decouple depth from pose
and achieve a much more effective uncertainty estimation. Figure 10.3 summarizes
our proposal.

10.1.4 Bayesian estimation

Finally, in Bayesian deep learning [135], the model uncertainty can be explained by
marginalizing over all possible w rather than choosing a point estimate. According
to Neal [207], an approximate solution can be obtained by sampling N models and
by modelling mean and variance as

p(D∗|I ,D) ≈
N

∑
i=1

p(D∗|Θ(I , wi)) (10.14)

If mean and variance are modelled for each wi sampling, we can obtain overall mean
and variance as reported in [135, 119]

µ(D) =
1
N

N

∑
i=1

µi(Di) (10.15)

114 Chapter 10. Monocular depth uncertainty

t+1

t-1

t

!

ℒ

#
ℒ

ℒ

$!

$"ℐ

ℐ

FIGURE 10.3: Self-Teaching scheme. A network T is trained in self-supervised fashion,
e.g. on monocular sequences [t− 1, t, t + 1]. A new instance S of the same is trained on
DT output of T .

σ2(D) =
1
N

N

∑
i=1

(µi(Di)− µ(D))2 + σ2
i (Di) (10.16)

The implementation of this approximation is straightforward by combining empir-
ical and predictive methods [135, 119]. Purposely, in our experiments we will pick
the best empirical and predictive methods, e.g. combining Boot and Self (Boot+Self).

10.2 Experimental results

In this section, we exhaustively evaluate self-supervised strategies for joint depth
and uncertainty estimation.

10.2.1 Evaluation protocol, dataset and metrics

At first, we describe all details concerning training and evaluation.
Architecture and training schedule. We choose as baseline model Monodepth2

[80], thanks to the code made available and to its possibility to be trained seam-
lessly according to monocular, stereo, or both self-supervision paradigms. In our
experiments, we train any variant of this method following the protocol defined in
[80], on batches of 12 images resized to 192× 640 for 20 epochs starting from pre-
trained encoders on ImageNet [58]. Moreover, we always follow the augmentation
and training practices described in [80]. Finally, to evaluate Post we use the same
weights made publicly available by the authors. Regarding empirical methods, we
set N to 8 and the number of cycles C for Snap to 20. We randomly extract 25% of
the training set for each independent network in Boot. Dropout is applied after con-
volutions in the decoder only. About predictive models, a single output channel is
added in parallel to depth prediction channel.

Depth metrics. To assess depth accuracy, we report three out of seven standard
metrics defined in [65]. Specifically, we report the absolute relative error (Abs Rel),
root mean square error (RMSE), and the amount of inliers (δ < 1.25). They enable

10.2. Experimental results 115

a compact evaluation concerning both relative (Abs Rel and δ < 1.25) and absolute
(RMSE) errors. Moreover, we also report the number of training iterations (#Trn),
parameters (#Par), and forwards (#Fwd) required at testing time to estimate depth.
In the case of monocular supervision, we scale depth as in [365].

Uncertainty metrics. To evaluate how significant the modelled uncertainties are,
we compute the Area Under the Sparsification Error (AUSE, the lower the better)
and the Area Under the Random Gain (AURG, the higher the better). We described
these metrics in Chapter 3.2. The former quantifies how close the estimate is to the
oracle uncertainty, the latter how better (or worse, as we will see in some cases) it
is compared to no modelling at all. We assume Abs Rel, RMSE or δ ≥ 1.25 (since
δ < 1.25 defines an accuracy score) as ϵ.

10.2.2 Monocular (M) supervision

Depth. Table 10.1 reports depth accuracy for Monodepth2 variants implement-
ing the different uncertainty estimation strategies when trained with monocular su-
pervision. We can notice how, in general, empirical methods fail at improving depth
prediction on most metrics, with Drop having a large gap from the baseline. On
the other hand, Boot and Snap slightly reduce RMSE. This behaviour was consistent
among multiple executions of these tests. Predictive methods as well produce worse
depth estimates, except the proposed Self method, which improves all the metrics
compared to the baseline, even when post-processed. Regarding the Bayesian solu-
tions, both Boot and Snap performs worse when combined with Log, while they are
always improved by the proposed Self method.

Uncertainty. Table 10.2 resumes performance of modelled uncertainties at re-
ducing errors on the estimated depth maps. Surprisingly, empirical methods rarely
perform better than the Post solution. In particular, empirical methods alone fail at
performing better than a random chance, except for Drop that, on the other hand,
produces much worse depth maps. Predictive methods perform better, with Log
and Self yielding the best results. Among them, our method outperforms Log by
a notable margin. Combining empirical and predictive methods is beneficial, of-
ten improving over single choices. In particular, Boot+Self achieves the best overall
results.

Summary. In general Self, combined with empirical methods, performs better
for both depth accuracy and uncertainty modelling when dealing with M supervi-
sion, thanks to disentanglement between depth and pose. We believe that empirical
methods performance can be ascribed to depth scale, being unknown during train-
ing.

116 Chapter 10. Monocular depth uncertainty

Method #Trn #Par #Fwd Abs Rel RMSE δ <1.25

Monodepth2 [80] 1× 1× 1× 0.090 3.942 0.914
Monodepth2-Post [80] 1× 1× 2× 0.088 3.841 0.917

Monodepth2-Drop 1× 1× N× 0.101 4.146 0.892
Monodepth2-Boot N× N× 1× 0.092 3.821 0.911
Monodepth2-Snap 1× N× 1× 0.091 3.921 0.912

Monodepth2-Repr 1× 1× 1× 0.092 3.936 0.912
Monodepth2-Log 1× 1× 1× 0.091 4.052 0.910
Monodepth2-Self (1+1)× 1× 1× 0.087 3.826 0.920

Monodepth2-Boot+Log N× N× 1× 0.092 3.850 0.910
Monodepth2-Boot+Self (1+N)× N× 1× 0.088 3.799 0.918
Monodepth2-Snap+Log 1× 1× 1× 0.092 3.961 0.911
Monodepth2-Snap+Self (1+1)× 1× 1× 0.088 3.832 0.919

TABLE 10.1: Quantitative results for monocular (M) supervision: depth evaluation.
Evaluation on Eigen split [65] with improved ground-truth [308].

Abs Rel RMSE δ ≥ 1.25

Method AUSE AURG AUSE AURG AUSE AURG

Monodepth2-Post 0.044 0.012 2.864 0.412 0.056 0.022

Monodepth2-Drop 0.065 0.000 2.568 0.944 0.097 0.002
Monodepth2-Boot 0.058 0.001 3.982 -0.743 0.084 -0.001
Monodepth2-Snap 0.059 -0.001 3.979 -0.639 0.083 -0.002

Monodepth2-Repr 0.051 0.008 2.972 0.381 0.069 0.013
Monodepth2-Log 0.039 0.020 2.562 0.916 0.044 0.038
Monodepth2-Self 0.030 0.026 2.009 1.266 0.030 0.045

Monodepth2-Boot+Log 0.038 0.021 2.449 0.820 0.046 0.037
Monodepth2-Boot+Self 0.029 0.028 1.924 1.316 0.028 0.049
Monodepth2-Snap+Log 0.038 0.022 2.385 1.001 0.043 0.039
Monodepth2-Snap+Self 0.031 0.026 2.043 1.230 0.030 0.045

TABLE 10.2: Quantitative results for monocular (M) supervision: uncertainty evalua-
tion. Evaluation on Eigen split [65] with improved ground-truth [308].

10.2.3 Stereo (S) supervision

Depth. In Table 10.3 we show the results of the same approaches when trained
with stereo supervision. Again, Drop fails to improve depth accuracy, together with
Repr among predictive methods. Boot produces the best improvement, in particular
in terms of RMSE. Traditional Log improves this time over the baseline, according
to RMSE and δ < 1.25 metrics while, Self consistently improves the baseline on all
metrics, although it does not outperform Post, which requires two forward passes.

Uncertainty. Table 10.4 summarizes the effectiveness of modelled uncertainties.
This time, only Drop performs worse than Post achieving negative AURG, thus being
detrimental at sparsification, while other empirical methods achieve much better re-
sults. In these experiments, thanks to the known pose of the stereo setup, Log deals

10.2. Experimental results 117

only with depth uncertainty and thus performs extremely well. Self, although al-
lowing for more accurate depth as reported in Table 10.3, ranks second this time.
Considering Bayesian implementations, again, both Boot and Snap are always im-
proved. Conversely, compared to the M case, Log this time consistently outperforms
Self in any Bayesian formulation.

Method #Trn #Par #Fwd Abs Rel RMSE δ <1.25

Monodepth2 [80] 1× 1× 1× 0.085 3.942 0.912
Monodepth2-Post [80] 1× 1× 2× 0.084 3.777 0.915

Monodepth2-Drop 1× 1× N× 0.129 4.908 0.819
Monodepth2-Boot N× N× 1× 0.085 3.772 0.914
Monodepth2-Snap 1× N× 1× 0.085 3.849 0.912

Monodepth2-Repr 1× 1× 1× 0.085 3.873 0.913
Monodepth2-Log 1× 1× 1× 0.085 3.860 0.915
Monodepth2-Self (1+1)× 1× 1× 0.084 3.835 0.915

Monodepth2-Boot+Log N× N× 1× 0.085 3.777 0.913
Monodepth2-Boot+Self (1+N)× N× 1× 0.085 3.793 0.914
Monodepth2-Snap+Log 1× 1× 1× 0.083 3.833 0.914
Monodepth2-Snap+Self (1+1)× 1× 1× 0.086 3.859 0.912

TABLE 10.3: Quantitative results for stereo (S) supervision: depth evaluation. Evalu-
ation on Eigen split [65] with improved ground-truth [308].

Abs Rel RMSE δ ≥ 1.25

Method AUSE AURG AUSE AURG AUSE AURG

Monodepth2-Post 0.036 0.020 2.523 0.736 0.044 0.034

Monodepth2-Drop 0.103 -0.029 6.163 -2.169 0.231 -0.080
Monodepth2-Boot 0.028 0.029 2.291 0.964 0.031 0.048
Monodepth2-Snap 0.028 0.029 2.252 1.077 0.030 0.051

Monodepth2-Repr 0.040 0.017 2.275 1.074 0.050 0.030
Monodepth2-Log 0.022 0.036 0.938 2.402 0.018 0.061
Monodepth2-Self 0.022 0.035 1.679 1.642 0.022 0.056

Monodepth2-Boot+Log 0.020 0.038 0.807 2.455 0.018 0.063
Monodepth2-Boot+Self 0.023 0.035 1.646 1.628 0.021 0.058
Monodepth2-Snap+Log 0.021 0.037 0.891 2.426 0.018 0.061
Monodepth2-Snap+Self 0.023 0.035 1.710 1.623 0.023 0.058

TABLE 10.4: Quantitative results for stereo (S) supervision: uncertainty evaluation.
Evaluation on Eigen split [65] with improved ground-truth [308].

118 Chapter 10. Monocular depth uncertainty

10.2.4 Monocular+Stereo (MS) supervision

Depth. Table 10.5 reports the behavior of depth accuracy when monocular and
stereo supervisions are combined. In this case, only Self consistently outperforms
the baseline and is competitive with Post, which still requires two forward passes.
Among empirical methods, Boot is the most effective. Regarding Bayesian solutions,
those using Self are, in general, more accurate on most metrics, yet surprisingly
worse than Self alone.

Uncertainty. Table 10.6 shows the performance of the considered uncertainties.
The behavior of all variants is similar to the one observed with stereo supervision,
except for Log and Self. We can notice that Self outperforms Log, similarly to what
observed with M supervision. It confirms that pose estimation drives Log to worse
uncertainty estimation, while Self models are much better thanks to the training on
proxy labels produced by the Teacher network. Concerning Bayesian solutions, in
general, Boot and Snap are improved when combined with both Log and Self, with
Self combinations typically better than their Log counterparts and equivalent to stan-
dalone Self.

Summary. The evaluation with monocular and stereo supervision confirms that
when the pose is estimated alongside with depth, Self proves to be a better solution
compared to Log and, in general, other approaches to model uncertainty. Finally, em-
pirical methods alone behave as for experiments with stereo supervision, confirming
that the knowledge of the scale during training is crucial to the proper behavior of
Drop, Boot and Snap.

Method #Trn #Par #Fwd Abs Rel RMSE δ <1.25

Monodepth2 [80] 1× 1× 1× 0.084 3.739 0.918
Monodepth2-Post [80] 1× 1× 2× 0.082 3.666 0.919

Monodepth2-Drop 1× 1× N× 0.172 5.885 0.679
Monodepth2-Boot N× N× 1× 0.086 3.787 0.910
Monodepth2-Snap 1× N× 1× 0.085 3.806 0.914

Monodepth2-Repr 1× 1× 1× 0.084 3.828 0.913
Monodepth2-Log 1× 1× 1× 0.083 3.790 0.916
Monodepth2-Self (1+1)× 1× 1× 0.083 3.682 0.919

Monodepth2-Boot+Log N× N× 1× 0.086 3.771 0.911
Monodepth2-Boot+Self (1+N)× N× 1× 0.085 3.704 0.915
Monodepth2-Snap+Log 1× 1× 1× 0.084 3.828 0.914
Monodepth2-Snap+Self (1+1)× 1× 1× 0.085 3.715 0.916

TABLE 10.5: Quantitative results for monocular+stereo (MS) supervision: depth eval-
uation. Evaluation on Eigen split [65] with improved ground-truth [308].

10.3. Conclusion 119

Abs Rel RMSE δ ≥ 1.25

Method AUSE AURG AUSE AURG AUSE AURG

Monodepth2-Post 0.036 0.018 2.498 0.655 0.044 0.031

Monodepth2-Drop 0.103 -0.027 7.114 -2.580 0.303 -0.081
Monodepth2-Boot 0.028 0.030 2.269 0.985 0.034 0.049
Monodepth2-Snap 0.029 0.028 2.245 1.029 0.033 0.047

Monodepth2-Repr 0.046 0.010 2.662 0.635 0.062 0.018
Monodepth2-Log 0.028 0.029 1.714 1.562 0.028 0.050
Monodepth2-Self 0.022 0.033 1.654 1.515 0.023 0.052

Monodepth2-Boot+Log 0.030 0.028 1.962 1.282 0.032 0.051
Monodepth2-Boot+Self 0.023 0.033 1.688 1.494 0.023 0.056
Monodepth2-Snap+Log 0.030 0.027 2.032 1.272 0.032 0.048
Monodepth2-Snap+Self 0.023 0.034 1.684 1.510 0.023 0.055

TABLE 10.6: Quantitative results for monocular+stereo (MS) supervision: uncertainty
evaluation. Evaluation on Eigen split [65] with improved ground-truth [308].

10.2.5 Sparsification curves

In order to further outline our findings, we report in Figure 10.4 RMSE and Abs Rel
sparsification error curves, averaged over the test set, when training with M, S or
MS supervision. The plots show that methods leveraging on Self (blue) are the best
to model uncertainty when dealing with pose estimation, i.e. M and MS, while those
using Log (green) are better when training on S.

10.2.6 Qualitative results

We report in Figure 10.5 some qualitative examples of both depth and uncertainty
maps obtained by the evaluated methods using images from KITTI. Depth maps
are encoded with MAGMA color map, i.e. the warmer the color the closer the point,
while uncertainty is encoded with HOT color scheme, thus the more yellow the color
the more unreliable the value.

10.3 Conclusion

In this chapter, we have thoroughly investigated uncertainty modelling in self-supervised
monocular depth estimation. We have reviewed and evaluated existing techniques,
as well as introduced a novel Self-Teaching (Self) paradigm. We have considered up
to 11 strategies to estimate the uncertainty on predictions of a depth-from-mono net-
work trained in a self-supervised manner. Our experiments highlight how different
supervision strategies lead to different winners among the considered methods. In
particular, among empirical methods, only Dropout sampling performs well when
the scale is unknown during training (M), while it is the only one failing when scale
is known (S, MS). Empirical methods are affected by pose estimation, for which log-
likelihood maximization gives sub-optimal results when the pose is unknown (M,
MS). In these latter cases, potentially the most appealing for practical applications,

120 Chapter 10. Monocular depth uncertainty

the proposed Self technique results in the best strategy to model uncertainty. More-
over, uncertainty estimation also improves depth accuracy consistently, with any
training paradigm.

10.3. Conclusion 121

RMSE Abs Rel

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Post
Drop
Boot
Snap

Repr
Log
Self
Boot+Log

Boot+Self
Snap+Log
Snap+Self

Mono (M)
RMSE Abs Rel

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Post
Drop
Boot
Snap

Repr
Log
Self
Boot+Log

Boot+Self
Snap+Log
Snap+Self

Stereo (S)
RMSE Abs Rel

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Post
Drop
Boot
Snap

Repr
Log
Self
Boot+Log

Boot+Self
Snap+Log
Snap+Self

Mono + Stereo (MS)

FIGURE 10.4: Sparsification Error curves. We report sparsification curves for Mono,
Stereo and Mono+Stereo configurations. From left to right, sparsification curves for
RMSE and Abs Rel error metrics. Best viewed with colors.

122 Chapter 10. Monocular depth uncertainty

Mono (M)

Stereo (S)

Mono + Stereo (MS)

FIGURE 10.5: Qualitative results on KITTI. We show the depth and the relative uncer-
tainty maps for different configurations.

123

Chapter 11

Improving off-the shelf disparity
maps with deep learning

Chapter 9 illustrated a strategy aimed at training robust stereo models starting from
raw stereo pairs. The problem of generalization is important for any method, but
for strategy based on learning, it becomes crucial. In fact, models can learn priors
and behaviours driven by the training data, which can be biased and non represen-
tative for the data we might face at test time. When this problem occurs, we can
train the model again on a new dataset, or we can adopt robust training procedures
or components devoted to tackle the issue. For instance, Zhang et al. [355] pro-
pose a normalization layer that helps stereo models in being invariant. This module
represents an effective attempt towards robust out-domain deep models, but there
is still much work to do. Conversely, classical methods are in general less accu-
rate than deep learning strategies when tested in-domain, yet prove to more robust
out-domain. However, classical methods are usually filtered and contain holes in
predictions, while we might be interested in dense maps. Can we take obtain the
best from both the worlds? In other terms: can we achieve out-domain robustness
of classical methods, while exploiting the power of deep learning to achieve dense
yet accurate maps?

In this chapter we introduce a novel architecture for neural disparity refinement
aimed at improving disparity maps from black-box stereo methods. Specifically, to
address the generalization issue of learning-based stereo strategies, we propose to
deploy a traditional, domain-agnostic stereo algorithm in order to provide the in-
put disparity map to our neural refinement module. Thereby, we realize an hybrid
handcrafted-learned solution that neatly outperforms state-of-the-art deep networks
when processing previously unseen image content. Moreover, the refined disparity
maps predicted by our framework are sharp at depth discontinuities, which is an-
other popular issue shared by other methods. We achieve this result thanks to a
novel loss function that allows for expressing the output disparities as a combina-
tion of a categorical value and a continuous offset. As a result, point clouds from our
depth maps are less affected by flying pixels and more realistic. Finally, the peculiar
continuous formulation allows to estimate a refined map at any arbitrary output res-
olution. This is particularly important in the field of mobile devices: in fact, many
smartphones are equipped with multiple cameras with different resolutions, which
is different than the conventional stereo setup. Our framework, instead, elegantly
handles the problem, allowing to work with both balanced and unbalanced configura-
tions. Figure 11.1 depicts an example of unbalanced stereo, showing the benefits of
our framework.

This chapter is based on the paper Neural Disparity Refinement for Arbitrary Reso-
lution Stereo [10].

124 Chapter 11. Improving off-the shelf disparity maps with deep learning

Unbalanced Stereo Input Estimated Disparity Point Cloud

Il

Ir

FIGURE 11.1: Example of Arbitrary Resolution Stereo. Given an unbalanced stereo
pair made of a high-res image, Il , with shape 2724× 1848 and a low-res image, Ir, at
691× 462, both unseen and real, our method can estimate a high-res disparity map at
2742× 1848 with sharp edges (leading to a clean point cloud near depth discontinuities)
based on a single training on synthetic data only.

11.1 Proposed Architecture

In this section, we introduce our Neural Disparity Refinement architecture that,
given an input disparity map computed by any black-box stereo method, allows
for refining it at any desired output resolution, e.g. higher than the input one. To
this aim, we propose a simple yet effective neural architecture that accepts as inputs
the reference RGB image of a stereo pair alongside a corresponding noisy disparity
map, the latter possibly even at a lower resolution than the former. A standard con-
volutional neural network extracts and combines deep features computed from both
inputs. Then, the final features are feed into two Multi-Layer Perceptrons (MLPs)
that, thanks to a continuous formulation, allows for estimating a refined disparity
map at any chosen resolution. The whole network is trained end-to-end based on
a novel loss function that enables to predict sharp and precise disparities at object
boundaries. In the remainder of this section we explain in detail the key components
of our proposed architecture.

11.1.1 Continuous Disparity Refinement Network

Our network implements three different steps: i) feature extraction, ii) feature in-
terpolation and iii) disparity prediction with subpixel refinement, as illustrated in
Figure 11.2.

Feature Extraction. Given two rectified stereo images, Il and Ir, with shapes
wl × hl and wr × hr and the same aspect ratio (wl

hl
= wr

hr
), we aim at obtaining a

refined disparity map, D̃, at any arbitrary spatial resolution wo × ho. Depending on
factor κ = wl

wr
, we may have a balanced (κ = 1) or unbalanced (κ ̸= 1) stereo setup. In

the latter one, the rectification constraint shall be understood to hold up to a scale
factor, i.e. Il and Ir turn out to be rectified whenever resized to the same -arbitrary-
shape. Hereinafter, we will also refer to κ as to unbalance factor.

The disparity map to be refined, D, may come from any stereo approach, either
traditional or learned. In both the balanced and unbalanced setups we assume D to
have the same resolution as the reference stereo image Il . In particular, as depicted
in Figure 11.2, in case of unbalanced setup, we assume that a low-resolution dispar-
ity map D↓ is computed by the stereo blackbox by downsampling Il to the same
resolution as Ir and later upsampled to match the shape of Il . Then, two separate
convolutional encoders, ϕI and ϕD, extract features at different resolutions, collec-
tively denoted here as F I and FD, from Il and D, respectively. A decoding stage,

11.1. Proposed Architecture 125

Stereo

Blackbox

𝐼𝑟↓

𝐼𝑙

Features Continuous

Interpolation

𝑀𝐿𝑃𝐶 𝑀𝐿𝑃𝑂

Concat

𝜙𝐼

𝜙𝐷

෩𝐷

𝑤𝑜

ℎ𝑜

𝐷𝐷↓

Δ

Balanced/Unbalanced

Input

Arbitrary Resolution

Output

𝐼𝑙↓

ℎ𝑟𝑥 𝑤𝑟
ℎ
𝑟
𝑥
𝑤
𝑟

ℎ
𝑙𝑥
𝑤
𝑙

ℎ𝑟𝑥 𝑤𝑟
ℎ𝑙𝑥 𝑤𝑙

FIGURE 11.2: Neural Disparity Refinement, architecture overview. Given a rectified
stereo pair captured using either a balanced or unbalanced (red dotted lines) stereo set-
ting, our goal is to estimate a refined disparity map D̃ at any arbitrary spatial resolution
starting from noisy disparities D pre-computed by any existing stereo blackbox. We first
extract deep high-dimensional features from Il and D using two separate convolutional
branches, ϕI and ϕD, that are combined together by a decoder, ∆. Then, at each contin-
uous 2D location in the Il image domain, we interpolate features across the levels of ∆
in order to feed them into a disparity estimation module realized through two MLPs,
namely MLPC and MLPO, which predict an integer disparity value and a sub-pixel off-
set, respectively.

referred to as ∆ in Figure 11.2, is in charge of merging the features from the two
encoders while restoring the original Il resolution. At each level l of the decoder ∆,
the features from the corresponding encoder levels, F l

I and F l
D, are aggregated (by

mean of channel-wise sum) and used as skip-connections for the upsampled features
from the previous decoder level, denoted here as F l−1

∆ .
Feature interpolation. In order to infer the refined disparity map D̃ at any arbi-

trary resolution, similarly to [303], we formulate the disparity prediction problem as
the estimation of a function defined on a continuous 2D domain. In particular, rather
than directly predicting a disparity map from ∆, first we compute features across the
decoder levels, F l

∆, at any arbitrary continuous location of the 2D image domain Il
by bilinearly interpolating between the four nearest discrete locations. Then, the
interpolated features computed at each level are concatenated and forwarded to a
Multi-Layer Perceptron (MLP) that provides the disparity prediction, D̃, at the con-
sidered continuous 2D location. As the MLP predicts a disparity value based on
the corresponding point-wise features, the proposed formulation allows for choos-
ing any desired output resolution by simply sampling features at continuous spatial
locations of the 2D domain.

Disparity prediction with subpixel precision. Similar to standard regression
tasks, existing disparity refinement approaches adopt a L1 loss [78, 22, 69]. How-
ever, this choice can cause severe over-smoothing effects at depth discontinuities
[46, 303], which result in bleeding artifacts when pixels are converted into a 3D point
cloud. This problem, which may impact quite negatively on the downstream 3D ap-
plication, is typically caused by the multi-modal disparity distributions occurring
at object boundaries and the smooth function approximation yielded by standard
neural network. Very recently, the over-smoothing effect has been tackled in the
stereo literature by forcing the multi-modal distribution to be uni-modal [46] or by
predicting bimodal mixture densities [303] aimed at modelling both the foreground
and background disparities near edges. As an alternative, we leverage a simple yet
effective strategy that allows us to alleviate the over-smoothing effect as well as to
achieve accurate disparity estimations. In particular, as shown in Figure 11.2, for the
given continuous location in the 2D domain, we deploy i) a first MLP, denoted as
MLPC, to predict a categorical disparity distribution by casting disparity estimation
as a classification task and ii) a second MLP, namely MLPO, to regress a sub-pixel
offset which is added to the most likely integer disparity predicted by MLPC. As

126 Chapter 11. Improving off-the shelf disparity maps with deep learning

depicted in Figure 11.2, both the MLPs process the features computed at the given
spatial location, referred to in the following as F∆, these being further concatenated
with the predicted integer disparity in order to provide the whole input to the sec-
ond one. Thus, Equation 11.1 describes how the disparity D̃ is predicted by our
model at any given 2D location in the image:

D̃ = θ(MLPC(F∆)) + MLPO(F∆) (11.1)

where MLPC is trained to predict a disparity distribution by a cross-entropy loss,
while MLPO predicts an offset in the range [−1, 1] and is trained using an L1 loss.
The function θ represents the argmax over the distribution predicted by MLPC. Ac-
cordingly, the final activations of MLPC and MLPO are the Softmax and Tanh func-
tions, respectively. Denoting D∗ as the ground-truth disparity, the final loss function,
L, is computed as the sum of two terms:

L =−N (D∗i , σ) ∗ log
(

MLPC(F∆)
)

+
∣∣∣MLPO(F∆)− D∗s

∣∣∣ (11.2)

where D∗i and D∗s denote the integer disparity closest to D∗ and the difference be-
tween the integer disparity predicted by MLPC and D∗, respectively:

D∗i = ⌊D∗ + 0.5⌋ (11.3)

D∗s =
∣∣∣D∗ − θ

(
MLPC(F∆)

)∣∣∣ (11.4)

while N (D∗i , σ) is a Gaussian distribution centered at D∗i (σ =
√

2 in our experi-
ments).

11.2 Experiments

In this section, we first describe the datasets adopted to validate our proposal. Then,
we carry out extensive experiments to demonstrate the benefits brought in by the
proposed neural disparity refinement approach when addressing both balanced as
well as unbalanced stereo settings.

Appendix D provides further training details and additional qualitative exam-
ples, and it also describes the protocol required for the calibration and rectification
stages of real unbalanced stereo rigs.

11.2.1 Datasets

For our experiments, we rely on SceneFlow, KITTI, Middlebury v3, ETH3D and Un-
realStereo4K datasets. Since Chapter 3.1 provides a detailed description for all of
them, we now recap briefly only important details.

SceneFlow. The SceneFlow dataset [191] is a synthetic dataset containing around
35k low-resolution (960× 540) stereo pairs. In our experiments, we use 22340 stereo
pairs for training, 50 for validation and 387 for testing.

11.2. Experiments 127

KITTI. The KITTI dataset [196] is a low-res (∼ 0.4 Mpx) real-world stereo dataset.
We rely on KITTI 2012 [77] (194 training and 195 testing stereo pairs) and KITTI 2015
[196] (200 training and 200 testing pairs) versions.

Middlebury v3. The Middlebury v3 [263] contains high-resolution (∼ 5 Mpx)
real-world stereo pairs at full-res (F) or downsampled to half (H) and quarter reso-
lution (Q).

ETH3D. The ETH3D dataset [269] counts 27 grayscale low-res (∼ 0.4 Mpx) stereo
pairs.

UnrealStereo4K. The UnrealStereo4K is a synthetic high-resolution (3840×2160)
stereo dataset. Following [303], we use 7720 images for training, 80 for validation
and 200 for testing. Given its high resolution, we employ this dataset in the unbal-
anced setup as it allows to simulate different κ factors.

Evaluation metrics. For evaluation, we adopt some popular stereo metrics de-
scribed in Chapter 3.2. Specifically, we compute the EPE as well as the BAD met-
rics. Furthermore, we adopt the Soft-Edge-Error (SEE) metric to evaluate the cor-
rectness of the predicted disparities at object-boundaries, to assess the capability of
a method to produce sharp depth discontinuities. In our experiments, we set the
size of ground-truth patches k to 5× 5 when evaluating the SEE metric.

11.2.2 Ablation study

In this section, we examine the importance of the proposed loss function and demon-
strate the robustness of our network to diverse sources of input disparities.

Loss function. Table 11.1 reports the performance of our architecture trained
by different loss functions. Specifically, following the balanced setup protocol de-
scribed in D.1, we train our architecture using a naïve disparity regression L1 loss,
the mixture bimodal loss proposed in [303] to handle sharp disparity discontinuities
and our proposed loss function (Equation 11.2). Notice that, for both the L1 and the
bimodal mixture output representations, a single MLP is in charge of regressing ei-
ther the final disparity, for the former, or the five parameters of a univariate bimodal
mixture distribution for the latter. In our architecture, we achieve this by modifying
the last layer of MLPC and dismissing MLPO. Then, we evaluate the trained models
on the test set of the SceneFlow dataset using AD-Census [351], C-CNN [179] and
SGM [101] as stereo black-boxes providing the map to be refined, so as assess upon
the robustness of our method to diverse sources of input disparities. Firstly, we can
observe how all the trained models improve the input disparity D by a large mar-
gin regardless the adopted loss function, proving the effectiveness of our architec-
ture on the disparity refinement task with all the considered stereo black-boxes, and
even when considering a method never seen at training time, such as C-CNN [179].
Among the considered losses, the standard disparity regression produces worst re-
sults. Moreover, it is worth noticing that, although the bimodal mixture formulation
and the proposed loss achieve rather similar results in terms of SEE, our output rep-
resentation is consistently more accurate with respect to all the other error metrics,
which vouches for the overall superiority of our proposal.

End-to-end stereo blackbox. We also investigate the capability of our archi-
tecture to refine the disparity maps predicted by state-of-the-art deep stereo net-
works. In particular, in Table 11.2 we consider several deep architectures trained on
SceneFlow as stereo black-boxes and evaluate the refined disparities yielded by our
method on the 387 SceneFlow test images. Consistently to Table 11.1, our method
successfully ameliorates the initial disparity maps for all the considered stereo black-
boxes on both the BAD3 and the SEE metrics, thus proving that our architecture is

128 Chapter 11. Improving off-the shelf disparity maps with deep learning

Input Method BAD2 BAD3 BAD4 BAD5 EPE SEE

A
D

-C
en

su
s D 46.23 45.79 45.46 45.20 24.68 21.78

L1 13.94 9.81 7.57 6.16 1.86 3.14
Bimodal 9.37 6.54 5.11 4.25 1.66 1.47

Ours 8.49 6.10 4.86 4.10 1.53 1.48

C
-C

N
N

D 27.09 24.86 23.67 22.86 13.46 10.84
L1 10.54 7.69 6.14 5.14 1.68 2.86

Bimodal 7.93 5.66 4.56 3.90 1.64 1.38
Ours 7.11 5.25 4.28 3.68 1.42 1.36

SG
M

D 23.34 21.49 20.52 19.88 9.51 8.51
L1 8.86 6.39 5.13 4.32 1.37 5.63

Bimodal 6.08 4.49 3.64 3.11 1.25 1.17
Ours 5.80 4.33 3.56 3.07 1.19 1.26

TABLE 11.1: Comparison between losses on the SceneFlow test set. The task concerns
refining the initial disparity map provided by different blackboxes, i.e. both handcrafted
(AD-Census[351], SGM[101]) and learned (C-CNN[179]) stereo matchers. We report
the results obtained by our network when trained by a standard L1, a bimodal mixture
representation [303] and our proposed loss.

also be beneficial when deployed in conjunction with deep stereo models. Again, it
is worth highlighting that none of the networks considered in Table 11.2 was used as
stereo blackbox to train our architecture. Yet, it can be observed how the EPE score
slightly increase in case of the highly accurate disparity maps computed by top-
performing stereo networks, such as GANet and AANet. We regard this as a trade-
off associated with a loss aimed at better capturing depth edges, like ours (Equation
11.2), compared to a standard regression loss. In fact, stereo networks trained by
standard regression losses produce over-smoothed disparities at object-boundaries
that are not penalized by the EPE metric but lead to severe bleeding artifacts when
converted to 3D point clouds. Conversely, our approach takes sharp predictions at
edges which, when wrong, may cause larger errors and slightly higher EPEs. How-
ever, sharp depth discontinuities result in clear and more realistic 3D point clouds,
as discussed later.

11.2.3 Balanced setup

In this section, we conduct experiments considering the standard balanced stereo
setup. In particular, first we compare the proposed architecture to the main exist-
ing deep networks designed to pursue disparity refinement. Then, we assess the
capability to generalize to unseen data comparatively with respect to DDR [78], i.e.
the only refinement network that has been evaluated also on the Middlebury v3
dataset. Finally, we compare our proposal to several stereo methods and across dif-
ferent real-world scenarios. This highlights how, by deploying a traditional stereo
matcher [101] as blackbox, our architecture yields superior zero-shot generalization
even with respect to the recent end-to-end networks specifically designed to achieve
this capability.

11.2. Experiments 129

Input BAD3 SEE EPE

GANet [354] 3.55 1.83 0.95
GANet [354]+ Ours 3.44 1.43 0.96

AANet [334] 4.12 2.81 1.10
AANet [334] + Ours 3.81 1.62 1.14

HSMNet [337] 8.02 3.77 1.86
HSMNet [337] + Ours 6.13 1.86 1.53

PSMNet [43] 7.98 2.96 1.87
PSMNet [43] + Ours 6.94 1.85 1.71

TABLE 11.2: End-to-end networks as stereo blackbox. We validate our model using
disparity maps computed by several end-to-end stereo network. For all the networks,
we used the official weights released by the authors after training on SceneFlow.

Comparison to existing refinement methods

Comparison to refinement strategies. We compare our proposal to the state-of-
the-art published methods on the online KITTI 2015 leaderboard. In order to be
compliant with the competitors, similarly to [22, 78, 127], we started from the model
pre-trained on SceneFlow and then fine-tuned it by the 200 images of the KITTI 2015
training set based on the available sparse ground-truth disparities. The first part of
Table 11.3 reports the results of our submission alongside those of other competing
refinement methods: our architecture achieves state-of-the-art results in all metrics
(D1-all, D1-fg and D1-bg), clearly outperforming all the other refinement techniques.
In the second part of Table 11.3 we also report the results achieved on KITTI 2015 by
several end-to-end stereo networks: it is worth highlighting how our refinement
architecture yields in-domain performance comparable with respect to these latter.

Method D1-all D1-fg D1-bg

Disparity Refinement

Dil-Net [69] 3.92 7.44 3.22
DRR ×2 [78] † 3.16 6.04 2.58
LRCR [127] 3.03 5.42 2.55
RecResNet [22] 3.10 6.30 2.46
Ours † 2.35 3.93 2.03

End-to-End Stereo

AANet [334] 2.55 5.39 1.99
PSMNet [43] 2.32 4.62 1.86
HITNet [291] 1.98 3.20 1.74
DSMNet [355] 1.77 3.23 1.48

TABLE 11.3: Evaluation on KITTI 2015 Benchmark. Methods indicated with † consider
the disparity maps computed by C-CNN [179] as noisy input of the network. The other
refinement methods adopt different noisy disparity inputs as described in the papers.

Comparison with refinement frameworks. We compare our method to other

130 Chapter 11. Improving off-the shelf disparity maps with deep learning

refinement models [78, 22, 69]. Table 11.4 reports the results obtained on Middle-
bury v3 (a) and KITTI 2015 (b), (c). In the former case, we compare with DRR [78]
after training on the SceneFlow dataset. For the sake of evaluation, the two meth-
ods adopt the same noisy input disparities computed by a deep patch matching
approach [179] trained on KITTI. Notice that, differently from [78], at training time
our model is fed only with noisy inputs extracted by traditional stereo matchers, i.e.
SGM and AD-Census. Despite this, our method notably outperforms DRR by a large
margin in all metrics.

In (b) and (c) we collect results on KITTI 2015, for which we fine-tune our model
on the first 160 images of the training set and evaluate on the remaining 40, the same
setting followed by DRR [78], RecResNet [22] and Dil-Net [69]. Again, our model at
training time is fed only with inputs obtained through SGM and AD-Census, while
at testing time it refines disparity maps by C-CNN [179] (b) or OpenCV SGBM im-
plementation (c), outperforming DRR and RecResNet in the former case, Dil-Net in
the latter.

Middlebury v3

BAD2 EPE

Method Non-Occ All Non-Occ All

C-CNN [179] 18.24 26.71 6.06 8.71

DRR [78] 12.85 17.83 1.77 2.37
DRR ×2 [78] 11.53 16.41 1.79 2.32
Ours 10.84 15.02 1.38 1.84

(a)

KITTI 2015

BAD3 EPE

Method Non-Occ All Non-Occ All

C-CNN [179] 6.41 8.25 1.70 2.46

DRR ×2 [78] 2.58 3.08 0.78 0.84
RecResNet [22] - 3.46 - -
Ours 2.27 2.60 0.75 0.79

(b)

KITTI 2015

BAD3

Method All

SGBM [101] 5.15

Dil-Net (ref.) [69] 4.58
Dil-Net (fus.) [69] 3.07
Ours 2.93

(c)

TABLE 11.4: Comparison with refinement frameworks. In (a), all models are trained on
SceneFlow dataset and tested on the 15 images of the Middlebury v3 training dataset at
quarter resolution. In (b) and (c), models are fine-tuned on the first 160 images of KITTI
2015 training set and evaluated on the remaining 40.

Zero-shot generalization

Finally, we evaluate the generalization ability of our method using three different
real-world datasets (KITTI, Middlebury v3 and ETH3D). We compare our network
architecture to traditional stereo techniques as well as to recent state-of-the-art end-
to-end stereo networks. For fairness, all networks are trained in a supervised setting
on the SceneFlow synthetic dataset only. Table 11.5 shows how our architecture,
when fed with input disparity maps computed by a traditional stereo algorithm
such as SGM [101], consistently achieves the highest accuracy on all the considered
datasets. It is particularly remarkable how our framework outperforms even the
end-to-end stereo networks specifically designed for robust cross domain general-
ization [355, 38].

11.2.4 Unbalanced setup

In this section, we demonstrate how our architecture can be effectively deployed to
handle unbalanced stereo images. To this aim, we experiment with stereo images
acquired at different resolutions by adopting the synthetic high-resolution Unreal-
Stereo4K dataset, that allows us to simulate different unbalance factors, κ, as well
as to evaluate the accuracy of the estimated disparities using ground-truth informa-
tion. Similarly to the balanced setup, we also assess out-of-domain generalization
performance by testing on Middlebury v3 without any fine-tuning.

11.2. Experiments 131

BAD3 BAD2 BAD1

Target Domain KITTI Middlebury v3 ETH3D
2012 2015 Full Half Quarter

SGM [101] 14.7 14.0 27.6 23.2 17.7 13.4

PSMNet [43] 27.8 30.7 39.5 25.1 14.2 23.8
GANet [354] 10.1 11.7 32.2 20.3 11.2 14.1
HITNet [291] 6.4 6.5 - - - -
MS-GCNet [38] *5.5 6.2 - 18.5 - 8.8
DSMNet [355] 6.2 6.5 21.8 13.8 8.1 6.2

SGM [101] + Ours 6.0/*5.0 5.5 19.2 12.4 7.9 4.8

TABLE 11.5: Generalization performance. All methods are trained on SceneFlow and
tested on the KITTI, Middlebury v3, and ETH3D datasets. Errors are the percentage of
pixels with EPE greater than the specified threshold. We use the standard evaluation
thresholds: 3px for KITTI, 2px for Middlebury v3, 1px for ETH3D. In KITTI the results
labeled with * denote that occluded pixels have not been considered in the evaluation.

Il D D̃

FIGURE 11.3: Qualitative results on Middlebury v3 - balanced setup. From left to
right, the input image Il from Middlebury v3, the disparity map D produced by SGM
(top) and C-CNN (bottom) and our refined disparity D̃.

Handling unbalanced stereo images

Table 11.6 reports our experimental study dealing with the unbalanced stereo setting
on the UnrealStereo4K dataset. We assume two baseline approaches to deal with
this setting, namely i) downsampling Il to the same low-resolution as Ir, estimating
disparity and finally upsampling it by bilinear interpolation to the resolution of Il
or ii) upsampling the low-res Ir to the same resolution as Il and directly estimating
disparity at the resolution of Il . We run experiments starting from three stereo meth-
ods: SGM, PSMNet [43] and HSMNet [337]. According to the considered method,
one approach is preferred to the other. Indeed, for SGM and PSMNet we adopt i), as
both methods cannot process high-res images due to memory constraints, while for
HSMNet we adopt the latter, since its architecture is specifically designed to handle
high-res images. We train PSMNet and HSMNet on the official training split of the

132 Chapter 11. Improving off-the shelf disparity maps with deep learning

dataset, and evaluate them on the test set using κ = 4, 8 and 12. Again, we train a
single instance of our neural refinement network and test its accuracy when refining
the raw disparities provided by SGM, PSMNet and HSMNet.

κ = 4 κ = 8 κ = 12

Method BAD3 EPE BAD3 EPE BAD3 EPE

Traditional Stereo

SGM [101] 26.33 41.56 37.74 43.27 50.69 45.45
SGM [101] + Ours 12.21 5.65 15.92 7.37 22.06 8.04

End-to-End Stereo

PSMNet [43] 15.22 4.37 17.83 4.67 42.69 7.42
PSMNet [43] + Ours 12.45 3.86 14.17 4.06 35.98 6.22

HSMNet [337] 15.31 6.73 29.07 9.25 43.14 13.40
HSMNet [337] + Ours 12.12 5.61 20.36 6.90 31.67 9.43

TABLE 11.6: Experimental study of unbalanced setups. We rely on the UnrealStereo4K
dataset to evaluate different methods in unbalanced setups featuring different κ factors.

IL D(κ = 8) D(κ = 12)

ground-truth D̃(κ = 8) D̃(κ = 12)

FIGURE 11.4: Qualitative results on UnrealStereo4K – unbalanced setting. The top
row depicts the input image, Il , at 3840× 2160 and the disparity maps, D, computed by
SGM when the right image, Ir, is 480× 270 and 320× 180 (κ = 8 and 12). The bottom
row shows ground-truth and estimated disparity D̃ at 3840× 2160.

We can observe how applying our refinement strategy yields consistently a sig-
nificant accuracy improvement with all the considered methods. By taking a deeper
look we can also notice that applying our strategy to the three methods produces
almost equivalent BAD3 results in case of the lowest unbalance factor, i.e. κ = 4. In
this case, HSMNet yields the best BAD3 results. With a larger unbalance factor, as
in the case of κ = 12, the number of outliers increases significantly when refining
disparity maps produced by deep networks, while processing the outcome of SGM
leads to the best result, with only a 10% BAD3 increase with respect to the κ = 4
setting, whereas PSMNet and HSMNet yield about +20% BAD3. Concerning EPE,
refining the predictions by PSMNet consistently produces the lowest error.

Finally, we show in Figure 11.4 how our method can produce sharp and detailed
high-res D̃ disparity maps even in case of very unbalanced setups, such as κ = 12.

11.2. Experiments 133

BAD2 BAD3 SEE EPE

κ
=

2 D[101] 27.56 24.58 11.99 23.84
US 21.52 16.46 5.42 5.49
SF 21.91 18.01 5.63 8.13

κ
=

4 D[101] 29.38 24.32 9.70 16.80
US 25.61 18.85 6.45 6.20
SF 24.55 19.14 6.77 6.14

TABLE 11.7: Generalization to Middlebury v3 - unbalanced setup. We consider κ =
{2, 4} and evaluate our models trained on SceneFlow (SF) and UnrealStereo4K (US) at F.
Initial disparities, D, are computed by SGM at H and Q for κ = 2 and κ = 4, respectively.

Evaluation on Middlebury v3.

Eventually, we assess the performance of our method when tested on high-res im-
ages from Middlebury v3 by simulating an unbalanced configuration. Table 11.7 re-
ports the results provided by neural refinement architecture trained either on Scene-
Flow (SF) or UnrealStereo4K (US), with both models run without any fine-tuning
and evaluated using the available ground-truth at full resolution (F). The initial in-
put disparities, D, are computed by SGM and downsampling Il by a factor κ =
{2, 4} to match the resolution of Ir. We point out that the model trained on SF is
exactly the same as that used for the experiments in the balanced setting (Tabs. 11.3,
11.4 and 11.5). Thus, this model is able to consistently improve the accuracy of D
in the unbalanced setting as well, proving that the proposed approach allows for ef-
fectively addressing arbitrary resolution stereo with a single neural network trained
only once. Besides, training our neural network on US, which features higher-res
images compared to SF, yields an increase in accuracy for κ = 2, i.e. when the
resolution of Ir is closer to that of Il and SGM runs on higher-resolution images.
With κ = 4, conversely, training our network on either of the two datasets yields
equivalent results, with both models capable of ameliorating significantly the input
disparities computed by SGM.

11.2.5 Additional benefits of the proposed framework

We now provide some qualitative examples to better visualize other two benefits of
the proposed formulation: sharp edges and continuous formulation.

To better appreciate the sharpness of the disparity maps predicted by our strat-
egy, and to highlight the importance of this result in practice, in Figure 11.5 we
show 3D point clouds obtained from raw disparity maps estimated by various meth-
ods. Then, we visualize also the point clouds produced using refined disparities, i.e.
each disparity is given as input to our method before constructing the point cloud.
From top to bottom, we show the point clouds obtained when using HSMNet [337],
AANet [334] and GANet [354]. We can notice how the refinement removes most of
the flying pixels introduced by the original, over-smoothed predictions. This is an
important result for those applications that require accurate 3D reconstructions.

Instead, in Figure 11.6 we show a comparison between disparity maps yielded
by our continuous formulation with respect to what was obtained through nearest-
neighbour interpolation, highlighting once more the finer details produced by our
model when dramatically increasing the resolution up to 80Mpx.

134 Chapter 11. Improving off-the shelf disparity maps with deep learning

R
G

B
H

SM
N

et
[3

37
]

H
SM

N
et

[3
37

]+
O

ur
s

A
A

N
et

[3
34

]
A

A
N

et
[3

34
]+

O
ur

s
G

A
N

et
[3

54
]

G
A

N
et

[3
54

]+
O

ur
s

FIGURE 11.5: Point cloud Comparison on the SceneFlow dataset. We show the out-
comes of different state-of-the-art deep stereo networks and the point clouds obtained
using our refinement method on the initial disparity estimates. Note how our network
allows us to notably alleviate the bleeding effect at edge boundaries, thus resulting in
more accurate 3D reconstructions. Please zoom in for details.

11.3. Conclusions 135

N
ea

re
st

N
ei

gh
bo

r
C

on
ti

nu
ou

s
Fo

rm
ul

at
io

n
N

ea
re

st
N

ei
gh

bo
r

C
on

ti
nu

ou
s

Fo
rm

ul
at

io
n

FIGURE 11.6: Upsampling comparison. Here, we qualitatively show the effectiveness
of our continuous formulation compared to the traditional nearest-neighbor interpola-
tion. In particular, given two noisy disparity maps at low resolution (∼ 0.3 Mpx) as
input of our network, we refine and upsample them by adopting an upsampling factor
of 16 (∼ 80 Mpx). It can be observed how our formulation allows us to obtain more
precise disparities at object boundaries.

11.3 Conclusions

This chapter illustrated a novel, versatile neural architecture aimed at refining the
disparity maps generated by stereo methods. Given as inputs an image and a dis-
parity map, our network, trained once and solely on synthetic data, can refine it
more accurately than other deep refinement approaches. Notably, our proposal can
yield outstanding zero-shot generalization by refining disparity maps obtained by
a traditional stereo matching algorithm like SGM. In particular, we have shown su-
perior accuracy with respect to end-to-end approaches specifically conceived to ex-
cel in out-of-domain performance. Thanks to the proposed continuous formulation

136 Chapter 11. Improving off-the shelf disparity maps with deep learning

of the disparity refinement problem, our architecture can process effectively unbal-
anced stereo pairs as well as predict output disparity maps at arbitrary resolution
with sharp edges.

137

Chapter 12

Monocular depth estimation for
social distance monitoring

We now introduce a real use-case for monocular depth networks at scale, addressing
a significant problem for our current society: monitoring social distancing violations.
Indeed, the recent pandemic emergency raised many challenges regarding the coun-
termeasures aimed at containing the virus spread, and constraining the minimum
distance between people resulted in one of the most effective strategies. The under-
lining problem, consisting of monitoring people’s behavior, is not new in the litera-
ture [42] and is at the core of many business intelligence tasks for data analytics [241,
94, 272, 247, 243, 14]. Different technologies [208, 209] allow to implement mecha-
nisms to this end, often leveraging mobile or wearable devices [148, 144, 256, 128, 26]
to track users’ behavior. Computer vision [66, 6, 274, 5] represents a valid alternative
to determine the visual social distance [56] in a potentially less intrusive way. They
do not require explicit commitment by the people to carry mobile/wearable devices
and can be adopted using standard cameras deployed for video surveillance pur-
poses. Since extracting this kind of metric information from raw RGB images in
the absence of other devices is challenging, most approaches exploit known prop-
erties of the scene and context under examination. For instance, it is often common
to leverage homography-based localization [66, 5, 274] by estimating the ground
plane over which people walk or by considering the overlap between detected peo-
ple bounding boxes [6]. Although this allows to potentially monitor social distanc-
ing from single, uncalibrated images [5], it makes some strong assumptions on the
framed scenes. For instance, constraining the task to the necessity of estimating
the homography concerning the ground plane makes it impossible to monitor envi-
ronments where such a plane is not visible. Such a situation frequently occurs, for
instance, during many public events such as football games, theater shows or aca-
demic lectures, as shown in Figure 12.1 (b). Moreover, in order to compensate for
the absence of metric knowledge, existing approaches leverage heuristics based on
statistics such as average people height [5]. However, these strategies are not robust
in the presence of people whose height deviates significantly from the average or
when they are not orthogonally standing on the ground, e.g. a person sitting. Simi-
larly, using the overlap between bounding boxes [6] is incline to failures due to the
perspective.

138 Chapter 12. Monocular depth estimation for social distance monitoring

(a) (b)

FIGURE 12.1: Monitoring social distancing from images. Images concerning outdoor
(a) and indoor (b) environments. From top to bottom: reference RGB image, estimated
depth, segmented people, and estimated inter-personal distances, with the color (red,
orange, green) of the segment denoting the class of risk (dangerous , risky , safe), as
explained in Section 12.3.4. In contrast to most other methods, our framework reliably
estimates the inter-personal distance without constraints about the sensed environment
even when dealing with multiple and not visible ground planes (b).

12.1. Social distance monitoring 139

In this chapter we propose a pipeline suited for monitoring social distancing
through single image depth estimation, thus requiring only a camera available in
most settings. We only assume that, during system installation, an operator can
use for a few seconds a standard smartphone to infer a sparse set of scaled 3D
points – leveraging a scale-aware Simultaneous Localization And Mapping (SLAM)
approach [81, 16] – overlapping with the area sensed by the fixed camera. Once
remapped to the reference system of the fixed camera, such sparse points will be
used to scale the relative monocular depth to absolute measures facing the previ-
ously mentioned issues. The procedure outlined is fast and is required once the sys-
tem is initialized for the first time. Indeed, such a procedure shall be repeated only
whether a large portion of the 3D structure of the background changes. After the
calibration, our system leverages an off-the-shelf and pre-trained single image depth
estimator [245, 244, 230] to estimate relative depth maps that we rescale according to
the few known 3D points obtained during the setup stage. This strategy allows for
obtaining dense, metric depth measurements for the entire scene. Finally, people are
segmented through an instance segmentation network [96] and their inter-personal
distance is estimated according to their 3D position in space. The content of this
chapter is based on the article Monitoring social distancing with single image depth es-
timation [201].

12.1 Social distance monitoring

Measuring the inter-personal distance is a crucial task to monitor social distancing
and thus prevent the spread of the COVID-19 pandemic. Several approaches arose in
the last years [208, 209], exploiting different technologies. A popular choice consists
of using dedicated devices sharing information utilizing a network [148, 144, 256,
128, 26]. However, these solutions require an ad-hoc infrastructure and a known
communication protocol between the users and the backend. Unfortunately, this
constraint cannot be enforced in many circumstances, such as in crowded places
(e.g. stations), and require a direct collaboration of the monitored users (which have,
for instance, to install an app on their mobile phone or to wear a custom Bluetooth
device). Conversely, passive technologies – and specifically vision-based solutions –
enable to monitor the distance among sensed people without a direct and voluntary
collaboration from the users, potentially exploiting already available infrastructures
such as surveillance cameras. Since the system has to work in new environments, it
is common to many proposed strategies [74] a preliminary calibration phase, during
which some features of the environment are detected – e.g. the principal plane in the
scene, such as the floor [66, 5]. On the contrary, the proposed method aims at solving
the task through direct depth estimation, requiring an initial calibration phase only
to obtain control points in the static background scene – not constrained to belong to
the ground plane – necessary to retrieve the metric scale of the scene. Nevertheless,
our method has no additional constraints, such as, for instance, the need for a non-
occluded contact point between each person to track and the plane at test time.

12.2 Proposed method

This section describes our framework, providing a detailed description of each com-
ponent for social distance monitoring with a single static camera. Before its de-
ployment, it requires a quick offline calibration that we carry out with a standard
smartphone equipped with a single camera in our experiments. Once completed,

140 Chapter 12. Monocular depth estimation for social distance monitoring

FIGURE 12.2: Illustration of the proposed pipeline. In an offline calibration phase
(green box), we source control points in the environment employing off-the-shelf strate-
gies. Then, when a new frame is available at runtime (orange box), we rescale the depth
provided by a monocular network thanks to the available control points in the back-
ground and segment people using an instance segmentation network. Once each per-
son’s depth and mask in the scene are predicted, we can estimate the inter-personal
distance.

the framework provides a metric estimation of the distance between people using
only the fixed camera. The complete working pipeline is described in Figure 12.2.

12.2.1 Offline system initialization

In the initialization phase, executed only once during the first installation, a straight-
forward calibration procedure is needed to obtain a sparse 3D structure of the scene.
This task can be accomplished in a few seconds using any device capable of inferring
depth at a reasonably known scale, such as an active sensor, a stereo vision system or
other techniques like SLAM. To minimize as much as possible installation require-
ments, in our experiments, we accomplish this task relying on the SLAM capability
provided by the ARCore framework for augmented reality available for Android
devices. Nonetheless, using the ARKit framework for iOS would be equivalent.
These frameworks rely on an Inertial Measurement Unit (IMU) measurements and
at least a single image stream to infer a sparse map of the sensed environment at a
known scale. Moreover, it is worth noticing that the control points could be sourced
even with more accurate and expensive devices – such as LiDARs – or with different

12.2. Proposed method 141

strategies such as a full-featured SLAM system like ORB-SLAM3 [39] coupled with
IMU measurements. Finally, we point out that augmented reality frameworks can
seamlessly take advantage of additional setups like stereo or active sensors often
available in smartphones or tablets. Nonetheless, we stick to the most constrained
setup using a single camera for our experiments to reduce as much as possible the
installation requirements. Specifically, the Raw Depth API [121] provided by ARCore
enables us to obtain the sparse 3D structure of the target area within a range of [0-8]
meters, providing also a confidence estimation for such data.

FIGURE 12.3: System initialization. The point cloud inferred by the smartphone on
the left is remapped into the fixed camera reference system on the right by knowing
the relative camera pose R,T between the two devices. Although four coplanar yet not
collinear points at a known relative position would suffice to accomplish this task, for
better clarity, we use in this figure a chessboard.

As depicted in Figure 12.3, at system installation, the operator selects or places at
least four coplanar yet not collinear points in the sensed scene at a known relative po-
sition and records the scene moving a smartphone or a tablet in the target (although
not strictly required) empty area. Then, leveraging the position of such points in
both the mobile camera image and in the fixed camera, it is possible to infer the rel-
ative position between them by solving the Perspective-n-Point problem [176]. This
procedure can be either automated using a well-known pattern such as the chess-
board in Figure 12.4 or manual selecting at least four known points in the scene. It is
worth observing that this procedure can be carried out even by a not-specialized op-
erator with a consumer smartphone through a simple guided step-by-step wizard.
Once the camera pose R, T between the two cameras is known, we can move depth
measurements DSLAM into the fixed camera reference system obtaining Dcam as

Dcam ∼ (R|T)DSLAM (12.1)

The newly obtained depth values Dcam are projected from pSLAM coordinates in the
mobile device camera to pcam pixel coordinates in the fixed camera view

pcam ∼ K(R|T)DSLAMK−1 pSLAM (12.2)

142 Chapter 12. Monocular depth estimation for social distance monitoring

and used as control points to perform the depth rescaling at runtime. In any case, we
exploit the pixel-wise native confidence estimation of ARCore to filter out the unre-
liable depth values, selecting only the control points with the maximum confidence
score. Figure 12.4 shows an example of control point projection over the fixed cam-
era. Finally, it is worth noticing that control points must be sourced on fixed objects
that would be available (if not occluded) even at test time, such as points on walls,
furniture or trees. So, the sensed area should not contain people in the initialization
phase and keep the same 3D background structure at execution time.

RGB (2064× 1544) Depth (160× 90) Confidence (160× 90) Control Points (2064× 1544)

FIGURE 12.4: Example of control points sourcing using ARCore. We adopt the off-
the-shelf SLAM framework provided by ARCore on Android devices to source control
points. The estimated depth is filtered by exploiting the native pixel-wise confidence
score (higher the confidence, lighter the color) provided by the same framework. Notice
that the depth map generated by ARCore is way smaller than the fixed camera image,
as well as of the image acquired by the smartphone. Thus, at the end of the projection
onto the image of the fixed camera, only just a few sparse measures are available as
control points.

12.2.2 People segmentation

For each new image acquired by the fixed camera, we identify at first people sil-
houettes through an instance segmentation network. For this purpose, we rely on
YolactEdge [168], a fast and lightweight instance segmentation network. Specifi-
cally, starting from the pre-trained model made available by the authors, we special-
ize it for people through a fine-tuning for 24 epochs on a subset of the COCO 2017
dataset [166] with images mainly containing people. The silhouettes obtained by
the segmentation network are used for two purposes: i) detect people to compute
their inter-personal distances and ii) remove from the set of depth points inferred
in the initialization stage those occluded by people, in order to scale the output of
the monocular depth estimation network appropriately. Concerning the latter point,
the underlying assumption is that the 3D structure of the background, where the 3D
ground control points lay, does not change at runtime. To this aim, we remove peo-
ple after the segmentation step. It is worth observing that, in case of considerable
modifications to the underlying 3D background structure of the scene with respect
to the one acquired during the system setup, a new initialization would be neces-
sary. This requirement might occur in two extreme cases: either when most of the
3D structure of the background or the camera position has changed. In these cases,
a whole initialization phase requires just a few minutes.

12.2.3 Monocular depth perception and scaling

For the reasons previously stated, we decided to rely on pre-trained networks for
depth estimation without performing any fine-tuning in the target domain. Con-
sequently, we focus our attention on networks capable of generalizing well to het-
erogeneous environments thanks to supervised training on large collections of data.

12.2. Proposed method 143

Although it does not allow us to retrieve scaled maps from the raw output of the
monocular depth network, this strategy avoids cumbersome and time-consuming
data collection required to fine-tune the network in each target domain. Moreover, it
seamlessly allows replacing the depth estimation backbone with improved/newly
released ones. Specifically, in our experiments we rely on the official weights re-
leased by the authors for MiDaS, DPT and PyD-Net monocular depth estimation
networks, already presented in Chapters 3.3 and 5. For PyD-Net we adopt the vari-
ant trained to be robust in the wild described in Chapter 7.

As mentioned before, these networks provide only relative depth measurements
and thus a scaling process is mandatory to obtain metric distances. Purposely, we
rely on the sparse background depth points acquired in the initialization stage and
filtered as previously outlined. We exploit such points to scale the output of the
network at each frame as follows. Usually, monocular depth networks output the
relative inverse depth for each pixel of the image; thus is mandatory to bring the
sparse background control points into such domain. Given such background depth
points, obtained as detailed in section 12.2.1, and the corresponding relative inverse
depth points inferred by the monocular depth network, we pre-compute the inverse
depth of the former and then, assuming a linear data distribution [245], we find the
best fit between such correspondences through a linear regression to obtain the best
scale α and shift β. To perform the linear regression task, we use the least-squares
method as in [245]. Specifically, considering each relative inverse depth point xi
with a valid inverse metric correspondence yi available, we obtain two scalars α
and β as follows, where n is the total number of available depth points with a valid
correspondence:

[
α

β

]
=

[
n ∑n

i=1 xi

∑n
i=1 xi ∑n

i=1 x2
i

]−1 [
∑n

i=1 yi

∑n
i=1 xiyi

]
(12.3)

Then, we scale according to y = αx + β the whole relative inverse depth map
inferred initially by the network. Finally, we move back to the depth domain to
obtain meaningful metric distances.

It is worth noticing that theoretically, only a set of two correspondences would
suffice to obtain the α and β to scale the relative depth map. Nonetheless, using
more points improves robustness to outliers in at least one of the two sets. Since the
output of the monocular depth network is entirely dense, the number of points for
the regression task coincides with those acquired in the initialization stage, typically
a few thousand, surviving the previous phase.

12.2.4 Computing inter-personal distance

Given the dense scaled depth map and the silhouette of each person obtained through
an instance segmentation network such as [329], the final step aims at computing
people’s distance. Although, in theory, the minimum distance between two peo-
ple is the closest distance between two points belonging to each one, deploying this
strategy for social distancing would be computationally expensive and prone to er-
rors occurring primarily due to depth estimation inaccuracy. Consequently, we rely
on a more robust yet approximated strategy inferring the distance between the cen-
troid representing a point in space for each person in the sensed scene. Specifically,
given the set of pixel coordinates assigned to a specific person Ω (defined by the

144 Chapter 12. Monocular depth estimation for social distance monitoring

RGB Monocular Depth Final Result

FIGURE 12.5: Monocular failure. Example of monocular depth failure: the head of the
person is missed by the network. Nonetheless, the centroid is found on the body.

people segmentation mask obtained as described in Section 12.2.2), we compute the
(u, v) coordinates of the centroid C in the image as follows:

Cu = 1
|Ω| ∑p∈Ω up

Cv = 1
|Ω| ∑p∈Ω vp

(12.4)

Unfortunately, the computed C may not match with any of the points in Ω (e.g.
due to occlusions, like a person sitting behind a bench). In such cases, we use the
closest point contained in Ω to C as the centroid. The depth of C is sourced from the
scaled depth map, allowing us to back-project C in the 3D space. Finally, we obtain
the inter-personal distance as the Euclidean distance between each pair of centroids.

This strategy, even if simple, is reliable against potential errors in monocular
depth estimation. Specifically, as depicted in Figure 12.5, some portions of a person,
such as the head, are critical and challenging to predict correctly for many current
monocular networks. In contrast, the segmentation network identifies them reliably.
Thus, to increase robustness, our strategy segments the person in the 2D space and
determines the 3D position of its centroid.

12.3 Experimental results

In the following section, we aim at evaluating the proposed strategy in real environ-
ments. Since open-source data sets with accurate depth values for testing purposes
are not available, we collect our own set of images coupled with depth information
to assess the performance of the proposed approach in indoor and outdoor settings.
Specifically, we rely on an asset composed by a Livox Mid-70 LiDAR sensor and
an RGB camera (FLIR BFS-U3-32S4C-C) previously calibrated and registered using
a proper pattern to obtain their relative pose. It is worth noticing that this further
calibration is needed only to prepare our evaluation benchmark and not for system
deployment – which requires only the offline calibration presented in Section 12.2.1.
Moreover, the control points are acquired using a Google Pixel2 XL and a OnePlus
6 smartphone to stress that a standard commercial device suffices in setting up the
system. The point cloud obtained from the LiDAR is projected over the RGB frame
leading to about 6000 depth points. However, leveraging the non-repetitive scan-
ning technology of this specific LiDAR sensor, we can accumulate multiple point
clouds of the same static scene to obtain much denser depth maps. Assuming a static
scene for N consecutive LiDAR acquisitions, we can collect about 120000 points for
each RGB-D example. The number of frames N is fixed to 20, and the RGB image
linked to the depth data is the last one acquired by the camera. All the devices in-
volved are not synchronized, but this is not an issue due to the constraints imposed

12.3. Experimental results 145

ARCore ARCore ARCore
Cam depth Cam LiDAR depth→ Cam

Th = 0 Th = 0.2 Th = 0.4 Th = 0.6 Th = 0.8

FIGURE 12.6: Evaluation of depth data inferred with the ARCore raw depth APIs. The
first row depicts, from left to right: the image acquired with the smartphone, the depth
map inferred with ARCore, the image acquired by the static camera, the depth map
acquired by the LiDAR registered with the static camera, the ARCore points projected
onto the fixed camera point of view. In the first row, for visualization purposes, we
dilate the sparse ARCore and LiDAR depth maps to densify them and match the highest
cameras resolution. From the point of view of the static camera, the second row shows
the LiDAR points and the sparse points (green) obtained through ARCore for different
confidence thresholds, from 0.0 to 0.8. The graph at the bottom reports the MAE of
ARCore depth point wrt the LiDAR points for confidence threshold ranging from 0.0 to
1.0.

by the previously described accumulation process, which can deliver high-quality
depth maps used as a reference.

In the remainder, we first evaluate the accuracy of the depth points acquired
through the SLAM module available in ARCore. Then, we describe the sequences
acquired to assess the effectiveness of our strategy. Lastly, according to different
metrics, we evaluate the effectiveness of monitoring social distancing employing the
output of monocular depth networks scaled using background control points as out-
lined in our proposal. As mentioned before, we consider state-of-the-art monocular
depth estimation networks capable of generalizing to different and unpredictable
environments without requiring additional fine-tuning in the target scene. Con-
sequently, we include the following pre-trained models: MiDaS and MiDaS small
[245], DPT and DPT-Hybrid [244], and the robust PyD-Net [230] described in Chap-
ter 7.

12.3.1 Evaluation of control points accuracy

Since our proposal relies on the background control points to scale the depth maps
inferred by monocular networks, we start by evaluating the accuracy of the depth

146 Chapter 12. Monocular depth estimation for social distance monitoring

Outdoor Outdoor Outdoor Indoor Indoor Indoor

R
G

B
D

ep
th

FIGURE 12.7: Examples from the collected dataset. In the first row, we report three
outdoor and three indoor images framing still people. The corresponding LiDAR scans
obtained through a Livox Mid-70, accumulating depth points for 20 frames, are reported
in the second row.

obtained by the SLAM module available in ARCore. For this purpose, we scanned
the indoor environment depicted in Figure 12.6 with a OnePlus 6 smartphone to
compute the ARCore depth map (we report the image acquired and the correspond-
ing depth map in the two leftmost positions at the top of the figure). Moreover, we
also framed the same scene with the previously described RGB-D asset but accumu-
lating about 500 frames from the LiDAR sensor leading to a sparse depth map with
a 95% density to better match the control points. The static camera and the LiDAR
dense depth map are shown in the third and fourth positions of the first row of the
Figure 12.6. Then, we determined the pose of the smartphone wrt the fixed cam-
era frame and projected the ARCore depth points onto the latter. As shown in the
rightmost figure at the top, we can notice how the 3D structure of the scene inferred
by ARCore is only partially overlapping with the actual image content, pointing out
not slight inconsistencies in the depth map. Its amount and impact on the scaling
process will be analyzed more in detail next.

In the second row, we show the LiDAR depth map from the fixed camera point
of view and, filtering by different ARCore confidence threshold levels, the points
inferred by ARCore in green. We can notice that even not applying the confidence
filtering (th=0), the number of points inferrable with ARCore (bounded to 160×90)
is much lower than those of the LiDAR but accumulating multiple scans of a static
scene. However, without such accumulation, the number of points provided by the
Livox LiDAR in a single scan would be much lower (about 6000). Not unexpectedly,
we can notice that the higher the confidence, the lower the number of ARCore points
surviving. Nonetheless, more interestingly, even setting a high confidence threshold
(eg, th=0.8), the number of estimated confidence points is not negligible and quite
spread across the whole scene in this image. Finally, by looking at the graph at the
bottom of Figure 12.6 where we plot the MAE between the overlapping ARCore
and LiDAR depth points for different threshold levels, we can observe that the error
range from 30 to 23 cm in this same scene. Such a magnitude is comparable to
other measurements carried out on other scenes. Moreover, we can also notice that
the error decreases almost monotonically until the confidence threshold is around
0.6 and then oscillates by about 1 cm. In other evaluations, we noticed a similar
behavior but better accuracy by increasing the threshold further. From this analysis
and the fact that only a few yet reliable points are needed to perform the scaling
process, assuming that we cannot perform this evaluation in a practical application,
we conservatively set the highest threshold of 1.0 in the experiments reported in the
subsequent experiments.

12.3. Experimental results 147

12.3.2 Dataset

We collected two sequences, framing indoor and outdoor domains, for a total of 83
frames with accurate depth labels. Figure 12.7 depicts frames sampled from each
sequence.

In the following, we provide additional details for each collected sequence. We
refer to control points as those scene points with an associated depth value obtained
through the ARCore SLAM framework, which has a confidence score, estimated by
ARCore, equal to one.

Outdoor sequence The scene, counting 46 frames, depicts six people walking in
a driveway with a poorly textured yellow wall at the left and parked cars at the right.
The scene contains 838 control points, while the average distance of the people from
the camera is 5.15 m.

Indoor sequence This sequence, counting 37 frames, simulates the presence of
three to four people in a university classroom. We found about 679 control points
with SLAM in the scene, while the average distance from the camera is 4.85 m.

12.3.3 Inter-Personal distance evaluation

For each pair of people in each test frame, we first compute the inter-personal dis-
tance using the proposed strategy explained in Section 12.2.4. Then, we measure
the error between the latter and the one measured using the reference depth map
obtained by the LiDAR sensor, showing how much our approach deviates from the
metric measurements enabled by an accurate depth sensor. Table 12.1 illustrates the
results of this evaluation, grouping outdoor and indoor environments, respectively.
Specifically, to assess the quality of our approach, we report the results scaling the
depth maps using three different types of control points: (a) depth inferred by a
monocular SLAM system as outlined in our proposal, (b) the raw depth inferred by
the LiDAR and (c) the raw depth inferred by the LiDAR constrained to a depth range
similar to that of ARCore (not farther than about 10 meters).

Focusing on (a), we can notice how, in general, the deviation ranges from 0.27
cm (DPT-Hybrid), comparable with the accuracy of the ARCore control points, to
a much higher value of more than 1 meter (MiDaS small). It is often related to the
complexity of the depth network deployed, with more complex ones more accu-
rate. Although this is not always true, on average, MiDaS and DPT perform overall
better than others, with the lightweight PyD-Net model sometimes really close or
better in the outdoor environment. By comparing the performance in the two sce-
narios, we can notice how only MiDaS can yield an accuracy in the inter-personal
distance below half a meter considering any range between people. Limiting such
an evaluation only for people at a distance below 3 meters, excluding one case (PyD-
Net in Indoor), all the networks improve their performance by a significant margin
with MiDaS and DPT models more prominently than others. This latter evaluation
is particularly important for social distance monitoring since potential violations oc-
cur when people get closer. According to the evaluation reported in the table, MiDaS
is the most effective network yielding an uncertainty of 33 cm on average.

Concerning results (b) and (c) in the table, it is interesting to analyze the frame-
work behavior when providing more accurate control points. Indeed the ARCore
depth accuracy is far from being perfect as yet observed in Section 12.3.1. In config-
urations (b) and (c), although not consistently, most networks improve their perfor-
mance. Sometimes the improvement is notable and higher when the sparse back-
ground data are closer, such as for PyD-Net yielding results almost overlapping

148 Chapter 12. Monocular depth estimation for social distance monitoring

Any range <3 meters

Model Outdoor Indoor Outdoor Indoor

PyD-Net 0.44 0.76 0.33 0.82
MiDaS 0.58 0.42 0.39 0.27
MiDaS small 0.69 1.09 0.52 0.97
DPT-Hybrid 0.44 0.73 0.27 0.46
DPT 0.48 0.65 0.31 0.39

(a) ARCore points
Any range <3 meters

Model Outdoor Indoor Outdoor Indoor

PyD-Net 0.58 0.51 0.47 0.34
MiDaS 0.54 0.43 0.32 0.32
MiDaS small 0.77 0.62 0.67 0.49
DPT-Hybrid 0.29 0.39 0.24 0.23
DPT 0.33 0.44 0.24 0.30

(b) Livox points
Any range <3 meters

Model Outdoor Indoor Outdoor Indoor

PyD-Net 0.42 0.53 0.33 0.34
MiDaS 0.44 0.43 0.35 0.31
MiDaS small 0.60 0.61 0.53 0.48
DPT-Hybrid 0.34 0.40 0.25 0.23
DPT 0.37 0.44 0.31 0.30

(c) Livox points (< 10 meters)

TABLE 12.1: Evaluation of Inter-Personal distances. system scaled with (a) ARCore
points using confidence threshold 1, (b) unconstrained LiDAR measurements, and (c)
LiDAR measurements below 10 meters. The inter-personal distance predictions are
compared to the reference depth provided by the LiDAR, averaged over all pairs and
images. We report results in terms of MAE for the indoor and outdoor sequences, con-
sidering unconstrained inter-personal distances and below 3 meters.

with the DPT networks as reported in (C) for distances smaller than 3 m. With both
LiDAR data distributions, the best accuracy considering distance below 3 m gets

12.3. Experimental results 149

Outdoor
Safe Risky Dangerous

Method P R F P R F P R F

PyD-Net 0.94 0.83 0.88 0.69 0.79 0.74 0.45 0.70 0.55
MiDaS 0.91 0.87 0.89 0.73 0.70 0.71 0.47 0.75 0.58
MiDaS small 0.88 0.85 0.86 0.70 0.63 0.67 0.31 0.68 0.43
DPT-Hybrid 0.94 0.89 0.91 0.79 0.80 0.79 0.58 0.91 0.70
DPT 0.95 0.89 0.92 0.79 0.81 0.80 0.51 0.92 0.66

(a) Homography 0.90 0.97 0.93 0.89 0.77 0.83 0.65 0.58 0.61
(b) Aghaei et al. [5] 0.35 0.98 0.51 ✗ ✗ ✗ ✗ ✗ ✗

Indoor
Safe Risky Dangerous

Method P R F P R F P R F

PyD-Net 0.53 0.81 0.64 0.47 0.36 0.41 0.83 0.28 0.42
MiDaS 0.79 0.79 0.63 0.63 0.72 0.67 0.67 0.44 0.53
MiDaS small 0.59 0.89 0.71 0.68 0.46 0.55 0.88 0.47 0.61
DPT-Hybrid 1.00 0.43 0.60 0.55 0.61 0.58 0.46 1.00 0.63
DPT 1.00 0.45 0.62 0.60 0.84 0.70 0.67 0.84 0.74

(a) Homography ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

(b) Aghaei et al. [5] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

TABLE 12.2: Evaluation about risk detection. Evaluation of pair-wise inter-personal
distance estimation for predicting Safe , Risky and Dangerous situations with re-
spect to the reference depth provided by the LiDAR, averaged over all pairs and im-
ages. For each sequence, we highlight with bold the best result within our methods and
with underline and bold the best result overall. The tag ✗ means that the information
is not available, either because the method cannot be applied at all due to the scene’s
constraints or it does not provide the desired metric.

close to 20 cm, slightly better than deploying ARCore depth data. On the one hand,
this fact highlights that the uncertainty of depth measurements needed to scale the
network has a not marginal impact. On the other hand, most of the depth uncer-
tainty occurs due to the ill-posedness problem the monocular depth networks face,
although some are undoubtedly more effective than others.

12.3.4 Detecting violations

In the previous experiment, we validated our framework by computing the average
error, in meters, between the expected and predicted inter-personal distance among
people. However, another critical question is: how many times the system fails in pre-
dicting violations of the necessary inter-personal distance? This point is crucial because
even if the depth prediction is partially wrong, social distancing could be effectively
fulfilled. Moreover, the concept of risk depends on the context: distances lower than
one meter could be crucial for some critical applications, but a too strict constraint
in less critical ones. For this reason, we evaluate next the performance of the sys-
tem with three different classes of risk, Safe , Risky and Dangerous , representing
when the relative distance among two people is > 2 m, in the range [1, 2] m and < 1
m respectively. We evaluate the Precision (P), the Recall (R) and the F1 score (F), in

150 Chapter 12. Monocular depth estimation for social distance monitoring

FIGURE 12.8: Qualitative results. Examples from the collected scenes. The computed
inter-personal distance is superimposed with a color overlay to the images – green,
yellow and red, mean safe , risky and dangerous .

[0, 1] format, of all the depth models using these three classes of risk. Table 12.2 col-
lects the outcome of this evaluation, on both outdoor and indoor data. We compare
the various flavours of our approach to two ways to recover interpersonal distances
by means of homography computation (a) finding the position of each person as the
center of the side of the bounding box touching the floor (e.g. [66, 74]) or (b) apply-
ing the method by Aghaei et al. [5], automatically detecting inter-personal distances
lower than 2m.

Starting from outdoor samples, we notice how all models effectively distinguish
safe situations, reaching a precision often superior to 0.90 and a recall between

0.83 and 0.89. DPT models allow for the best results, reaching in the worst case a
0.91 F1 score. MiDaS and PyD-Net perform similarly, reaching an F1 score slightly
below 0.90. Excluding MiDaS small, the precision results are better than exploiting
the homography (a) and vastly outperforms [5] (b), while always resulting worse in
terms of recall. The F1 score achieved by our solution is almost equivalent, using
DPT models, with (a), and much better than (b) [5]. The latter yields many false

12.3. Experimental results 151

positives, often identifying violations of the social distancing constraint even when
not occurring.

Analyzing risky situations, the precision for all networks drops at about 0.79 for
DPT models and around 0.70 for the others. DPT models and MiDaS keep a similar
score regarding the recall metric, while PyD-Net performs better and MiDaS small
drops to 0.63. DPT variants achieve F1 around 0.80, still performing close to (a),
achieving higher precision. The framework (b) by Aghaei et al. [5] is implemented
to distinguish violations of the 2m distances, not allowing for finer processing and
thus not able to detect risky and dangerous situations.

Finally, all models’ precision scores are generally significantly lower concerning
dangerous situations, whereas recall metrics are higher, except PyD-Net than those

observed for risky situations. (a) results are better in terms of precision, worse con-
cerning the recall. The best F1 score overall is achieved by DPT variants.

Moving to the indoor scene, it is worth noticing how methods based on ho-
mography (a) and (b) cannot be computed here, as we can notice by looking at
Fig. 12.7 since in this specific environment the ground plane is not visible. Nev-
ertheless, our method can still reliably monitor social distancing since it does not
require the ground plane to run. We observe excellent precision scores for DPT
models when dealing with safe cases, while other models are significantly less ac-
curate. The opposite behaviour occurs for the recall. Surprisingly, the best F1 score
0.71 is achieved by MiDaS small, with MiDaS and PyD-Net following. Concerning
risky conditions, in most cases, the performance degrades significantly, especially

for lightweight models MiDaS small and PyD-Net. Finally, we can notice mixed re-
sults concerning dangerous situations with DPT models achieving the best results
for recall and F1 metric, but outperformed by MiDaS small in precision. Looking at
the recall, we can notice PyD-Net struggling, as for the risky case.

In summary, the evaluation with the three classes of risk highlights that the mod-
els are pretty effective in handling safe or risky situations between people, especially
in the former case. Nonetheless, they become more unreliable when facing danger-
ous situations with distances falling under one meter. DPT models achieve the best
performance in most cases while lightweight models, PyD-Net and MiDaS small,
further emphasize the outlined behavior. In general, our approach is competitive
compared to homography computation (a) and much better than (b) [5] overcoming
their main limitation – the need for the ground plane to be visible and detectable. We
report some qualitative results concerning the outcome of the proposed framework
in Figure 12.8.

12.3.5 Runtime analysis

Table 12.3 reports the performance of each component of the proposed overall frame-
work (as average time per frame) on CPU and GPU. Moreover, we also report the
same metric for the two competitors on the same hardware when feasible. The depth
estimation models vary from more than 4 (DPT) to more than 60 FPS (PyD-Net and
MiDaS small) on a quite outdated Nvidia GTX Titan X GPU. The YolactEdge in-
stance segmentation network accounts for 0.055s on the same hardware. Focusing
on the overall system, when using the same GPU, our approaches run at frame rate
ranging from 9.4 FPS, with PyD-Net and MiDaS small, to more than 3, with DPT,
comparable to competitors. With a pure CPU system, the runtime of the instance
segmentation network becomes more prominent, especially compared to the fastest
depth estimation networks. Nonetheless, the largest depth estimation models, such

152 Chapter 12. Monocular depth estimation for social distance monitoring

Method Component CPU GPU

PyD-Net 0.033s 0.016s
MiDaS small 0.067s 0.016s

ours/ DPT 2.125s 0.225s
YolactEdge 0.349s 0.055s

Remaining computations 0.050s 0.035s

Homography-based YolactEdge 0.349s 0.055s
Remaining computations 0.050s 0.035s

Aghaei et al. [5] Social-Distancing -1 0.110s

TABLE 12.3: Runtime evaluation. We measure the performace of each subsystem when
adopting different depth models coupled with two different instance segmentation net-
works at resolution 826x618. The CPU and GPU employed are an Intel Core i7-7700K
and an Nvidia GTX Titan X respectively.

as DPT, account for even higher execution time. Our framework runs at a frame rate
ranging from more than 2, with MiDaS small and PyD-Net – slightly slower than
the homography-based approach, to 0.4, with DPT. Finally, we conclude by report-
ing that with an NVidia Jetson Nano, our framework runs at about 0.5 FPS using the
fastest configurations, with power consumption below 10W, suggesting the practical
deployment of our approach even on low-power embedded systems is around the
corner.

12.4 Limitations

The proposed system proved to be effective in monitoring inter-personal distances
in non-critical applications. Although versatile and effective even when the ground
plane of the scene is not visible or there are multiple planes, like when sensing a
staircase, it has some limitations and might fail under certain conditions. In the
following, we summarize the most notable ones.

Monocular generalization. The monocular network itself represents a critical as-
pect. Even if we adopt networks with strong generalization capabilities, they might
fail when misleading images, such as those acquired by unusual perspectives. In this
case, the network could fail to predict the correct depth for the scene, and the scal-
ing alone would not recover its correct geometry. However, as discussed in Section
12.2.4, since we compute the centroids in the 2D space, partial failures in monocular
predictions are tolerable for inter-personal distance computation as long as the depth
of the centroid is correct. Even if the monocular network assigns a wrong depth to
the head of the person (Monocular Depth image in Figure 12.5), the centroid is found
on the body, where the depth is consistent.

The problem outlined is well-known in literature, and in future works, it could
be tackled employing learned refinement strategies [346] or performing in-domain
fine-tuning. The choice of using the centroid as defined in Section 12.2.4 may not be
the best when searching for the social distance, although most existing approaches
follow similar strategies [66, 5]. A stricter approach could be to use the nearest points

1We could not install the CPU version of OpenPose on our hardware. Nevertheless, the authors
claim that the default CPU version takes ∼0.2 images per second on Ubuntu (∼50x slower than GPU)
while the MKL version provides a roughly 2x speedup at ∼0.4 images per second.

12.5. Conclusions 153

between each pair of people. However, this method is computationally expensive
and less robust to noise in depth computation. Future work could concern find-
ing a proper way to retain robust measures even when deploying more complex
approaches for people relative localization.

Control points sourcing. Another issue concerns the control points needed to
scale the predicted maps. A subset of at least two points must be visible at infer-
ence time. Thus, an extremely crowded environment might potentially result in a
scene without visible control points. However, this seems very unlikely, and we
never faced such situations in our experiments. Additionally, control points could
be detected on objects that might move, e.g. cars in Figures 12.7 and 12.8. However,
these points could be easily discarded at test time if properly detected, for instance,
employing background subtraction techniques.

People detection. Lastly, another source of errors is the people segmentation
network. When the network fails in segmenting different people or, in the worst
case, it misses a person; our framework would predict wrong inter-personal dis-
tances. Nonetheless, we would like to point out that this problem is shared with
other vision-based social preserving applications and that it could be partially al-
leviated by exploiting temporal information from the video stream (e.g. using the
Kalman filter to forecast the next position of the centroid).

12.5 Conclusions

In this chapter, we proposed a framework aimed at social distance monitoring from
a single image. The system requires a single, static RGB camera, making it suit-
able for already deployed infrastructures such as surveillance cameras. In contrast
to most other approaches based on a single camera proposed in the literature, our
framework is robust even when the ground plane is not visible, or there are multiple
ones, such as in the presence of staircases. To retrieve the metric scale factor out of
the output of monocular depth networks, we propose a simple yet effective strategy
to source sparse depth points requiring only a consumer smartphone. Experimental
results highlight that our proposal is effective, particularly as a versatile and cheap
solution for non-critical applications.

155

Chapter 13

Closing remarks

In this work, we discussed depth estimation, with a particular focus on the monoc-
ular case: even if inferring the depth from a single image of the scene is challenging,
solutions would have countless applications in real use-cases. In Chapter 4 we pre-
sented a novel network, MonoResMatch, that resembles a stereo model: the initial
monocular depth is used to warp the reference features, obtaining a virtual stereo
pair; then, the two feature volumes are used to refine the disparity using a corre-
lation layer. Following previous literature, we train the model without the need of
ground-truth labels but leveraging stereo pairs. Nonetheless, instead of adopting
image reconstruction as the main loss for optimization, we exploit classical stereo
methods to distill proxy labels. These labels prove to be effective and can pro-
vide a stronger signal at training time than self-supervision. MonoResMatch tries
to achieve the best accuracy and does not take into account computational costs.
However, as we discussed, it is not always possible to deploy cumbersome and
power-hungry GPUs, especially in the case of mobile and portable devices. Chap-
ter 5 presented a family of lightweight models, called PyD-Net, able to run also on
compact and low-power devices: the peculiar design allows for stopping the execu-
tion at a lower resolution, preserving time and resources when needed. Then, we
pointed out that, sometimes, we are also interested in obtaining additional informa-
tion about the scene in addition to depth. In fact, depth is crucial but could not be
enough to implement applications that go beyond geometry. A popular example is
self-driving cars, in which the motion of objects between frames and semantic labels
are crucial information. In Chapter 6 we presented a single, lightweight network for
comprehensive scene understanding from monocular videos: the ΩNet model can
predict depth, optical flow and semantic labels exploiting the correlations among the
tasks. These cues about the scene can be mixed to compute, for instance, the mask of
moving objects in the scene. Afterwards, we dealt with the generalization problem
of monocular models. A requirement towards real use-cases at scale for monocular
applications is the reliability in the wild, but popular training strategies, both super-
vised and self-supervised, exploit small or well-contextualized datasets that prevent
it. Recent methods as [245] leverage millions of different data for training purposes,
but processing this large amount of images requires time and resources. In Chapter
7 we showed that a simple and fast teaching-student paradigm allows infusing the
knowledge of off-the-shelf models into both large and small models. These models
can be deployed and used in real applications. Furthermore, the availability of off-
the-shelf models with notable generalization capabilities paves the way towards dif-
ferent uses other than simply measuring distances. In Chapter 8 we illustrated how
to generate thousands of ground-truth optical flow maps starting from a dataset of
still images and an off-the-shelf monocular depth model. Sourcing optical flow la-
bels is expensive and requires a great effort, but the proposed pipeline breaks down
the costs and produces labels for images with real texture. Chapter 9 showed that

156 Chapter 13. Closing remarks

monocular models are beneficial also in improving the performance of deep stereo
models: given an unlabeled stereo dataset for training, we first obtain a peculiar
monocular model supervised by classical stereo methods, then we rely on this ex-
pert monocular model to guide the training of a binocular stereo network. This
strategy proves to be more effective than the conventional self-supervised approach,
leading to stereo models with good performance even in presence of occlusions.
We then focused on detecting unreliable values in monocular predictions, because
in many cases our systems are reliable against some missing values in predictions,
while errors in measurements may have dramatic effects. Chapter 10 studied dif-
ferent strategies for uncertainty estimation for self-supervised monocular models,
and we proposed a self-teaching paradigm beneficial for the task. In Chapter 11 we
addressed the problem of disparity refinement: the reference image and the out-
come of classical or deep stereo models are given as input to a neural refinement
module, able to predict refined disparity maps at arbitrary resolution. Although the
network does not perform a conventional monocular inference, the reasoning on a
single image combined with the strong prior given by the input disparity allows the
model to successfully detect and ameliorate errors, producing competitive refined
maps for out-domain samples. Moreover the peculiar feature interpolation scheme
enables to handle easily both balanced and unbalanced stereo configurations. Fi-
nally, Chapter 12 presented a real problem arduous yet crucial to address due to the
global pandemic: monitoring social distancing violations. We have seen how off-the-
shelf robust monocular models can be employed to detect when two or more people
are too close. Differently from other strategies proposed in the literature, monocular
depth requires only a single camera, meaning that we can leverage the already avail-
able infrastructure of surveillance cameras. Since these models predict depth up to
a scale, we also outline a fast and low-effort strategy to obtain the missing metric
information. Specifically, during a preliminary calibration phase, the technical oper-
ator leverages a consumer device to collect measures for the monitored scene; these
cues about the scene to monitor are then exploited after the deployment of the sys-
tem to retrieve the metric scale. Experimental results highlight that the proposed
approach is not ready to be adopted in critical applications, but it can be a cheap
and non-intrusive alternative in case of low-risk surveillance.

13.1 Limitations

Monocular depth is a promising technology and solutions based on deep learning
seem to be ready for a broader set of applications and uses even out of the research
community. Nonetheless, we have to be aware of its main limitations.

The first issue is about the scale of monocular predictions: the ambiguity of the
problem forces solutions to be up-to-scale. The main training strategies we discussed
in the past chapters suffer from this problem. For example, self-supervised methods
that use monocular videos for training predict up-to-scale depth maps by construc-
tion because the estimated camera pose can be at an arbitrary scale, and the depth
has to be consistent with it. Strategies that leverage stereo pairs for training and
learn to predict disparities, whether they are self or weakly supervised, suffer this
problem in generalization. These disparities do not encode the real matching be-
tween the two views of a stereo setup, because this setup is not available in practice.
Instead, they represent the matching in a virtual stereo setup, i.e. they predict a left-
aligned disparity map according to a plausible right. As long as the training setup is
close to the testing one (i.e. we are using the same camera in a similar environment),

13.2. Future directions 157

the inferred disparity map can be representative of the real data distribution. In-
stead, if we apply the method to different data captured by heterogeneous cameras,
the predicted disparity maps may not be meaningful. A similar behaviour occurs
for supervised strategies: the scale learned by the model using depth labels (e.g.
meter units) can be different (e.g. millimetres o hundreds of kilometres) at test time.
Although the scale may not be an issue in some applications (as in Chapter 8), we
require additional strategies and data to obtain in-scale depth measurements, like
the one illustrated in Chapter 12.

This problem is strictly related to another one: the data variety. As discussed
in Chapter 7, many methods exploit one or few domains for training, causing well-
known domain-shift issues. Recent works as [245] are pivotal for this purpose and
show that large datasets with depth (proxy) labels are crucial to tackling the com-
plexity of the problem at scale. However, the intrinsic limitations make the challenge
extremely hard to solve, if not impossible, even when increasing the knowledge
of the model. For the same motivations, the accuracy achieved by state-of-the-art
monocular models is not comparable to binocular stereo models or active sensors,
and probably it will never be. Nonetheless, for non-critical applications, they repre-
sent a valuable, cheap and effortless alternative, as shown in Chapter 12.

A final limitation regards the intrinsic limitation of single-image monocular depth
estimation strategies. Many monocular methods, such as [80, 79, 245], process single
images at test time, and this represents a limitation when video sequences are avail-
able since important context information, which is shared across the time dimen-
sion, is inevitably lost. Nowadays, having video sequences is a common require-
ment for many applications, so single-image monocular solutions do not represent
the best choice for these tasks. On the other hand, these strategies are effective when
processing unpaired images, e.g. internet sampled images as in Chapters 7 and 8.
Therefore, this last limitation can be easily addressed, as we are going to discuss in
the next section.

13.2 Future directions

Although in this work we have described novel architectures and training strategies
for monocular depth estimation, this technology is recent and thus the research must
not be stopped. In the following, we briefly summarize interesting future directions.

First, modern devices, even mobile ones, are increasingly powerful. This means
that the trade-off between accuracy and speed can be improved in the future without
the need to sacrifice excessively in terms of model complexity. For this reason, more
powerful operators, such as the Attention mechanism [311], or ad-hoc strategies for
high-res image processing can be employed even for mobile applications.

Powerful devices unlock also another paramount topic, i.e. monocular depth
adaptation using video sequences. In Chapter 2.5 we pointed out that adaptation
represents a valuable strategy to improve the accuracy of the model using directly
test time data. Of course, this is possible if our devices have enough computational
capabilities, but also if we have a strong learning signal. As discussed in this work,
self and weakly supervised strategies can be employed for this purpose, but the re-
search on this direction is far from being fully explored. Particularly attractive is the
combination of monocular models with structure-from-motion (SfM) and simulta-
neous localization and mapping (SLAM) techniques. The work of Tiwari et al. [296]
represents a preliminary step towards this direction, but their self-improving loop
does not run in real-time and has to be performed multiple times for best results. A

158 Chapter 13. Closing remarks

valuable future direction tackles this limitation and combines the well-known geo-
metric constraints of SLAM to guide a monocular models designed to learn quickly,
e.g. by means of meta-learning techniques as in [288]. In Chapter 12 we have seen
that nowadays mobiles already provide off-the-shelf SLAM pipelines and multiple
sensors (e.g. stereo cameras), so this integration can be done seamlessly with the
possibility to include sensor-fusion strategies.

Structure-from-motion (SfM) has been employed also in Neural Radiance Fields
[197] (NeRF), a recent strategy for novel view synthesis of complex scenes. Specif-
ically, NeRF encodes the 3D scene in a neural network and can be trained using
only multiple images (e.g. 80 images) of a static scene, where the camera poses are
given by SfM pipelines as COLMAP [267]. Despite the interest in improving NeRF
by reducing the number of training images [348, 211], tackling dynamic scenes [239,
162] or boosting the inference time [248, 204], the combination of NeRF with monoc-
ular and binocular stereo models has not been totally addressed yet by previous
works [324, 251]. The room for improvement is given by the possibility to combine
with success the different strategies: on the one hand, the monocular or the stereo
network provide a strong prior about each view of the scene, on the other NeRF
introduces the 3D consistency that is not exploited when using single views.

A final, attractive way consists in leveraging the astonishing progress made by
neural networks in different topics, such as the multi-modal architecture CLIP [240].
The ability of CLIP to link visual concepts with textual messages represents an in-
triguing path towards a novel generation of algorithms. The Dream Fields method
of Jain et al. [124], in which NeRF is optimized from both visual and text as su-
pervision, is an example of this new approach. Similar strategies can be beneficial
also for monocular methods to tackle scene ambiguities, or to encode similarities be-
tween images at different levels for a targeted model fine-tuning or adaptation. For
instance, we can imagine a system that learns with a singe, static camera exploiting
the cues that a complex multi-modal model provides about the scene (e.g. by doing
human-like web queries for the height of objects, already available CAD models,
etc). These are only few, exciting future directions for an ever-growing field with
unlimited applications.

159

Appendix A

Additional details for Chapter 4

A.1 Training protocol

We implemented our architecture using the TensorFlow framework, counting ap-
proximately 42.5 million of parameters, summing variables from the multi-scale fea-
ture extractor (0.51 million), the initial disparity stage (41.4 million) and the refine-
ment module (0.6 million). In the experiments, we pre-trained MonoResMatch on
Cityscapes (CS) running about 150k iteration using a batch size of 6 and random
crops of size 512× 256 on 1024× 512 resized images from the original resolution.
We used Adam optimizer [139] with β1 = 0.9, β2 = 0.999 and ϵ = 10−8. We set the
initial learning rate to 10−4, manually halved after 100k and 120k steps, then con-
tinuing until convergence. After the first pre-initialisation procedure, we perform
fine-tuning of the overall architecture on 22,600 KITTI raw images from the Eigen
KITTI split (K). Specifically, we run 300k steps using a batch size of 6 and extracting
random crops of size 640× 192 from resized images at 1280× 384 resolution. At this
stage, we employed a learning rate of 10−4, halved after 180k and 240k iterations. We
fixed the hyper-parameters of the different loss components to αap = 1, αds = 0.1 and
αps = 1, while ni = 4 and nr = 3. As in [79], data augmentation procedure has been
applied to both images from CS and K at training, in order to increase the robustness
of the network. At test time, we post-process disparity as in [79, 237, 341]. Neverthe-
less, we preliminary highlight that, differently from the strategies mentioned above,
effects such as disparity ramps on the left border are effectively solved by simply
picking random crops on proxy disparity maps generated by SGM, as clearly visible
in Figure 4.2 (c).

Proxy supervision is obtained through SGM implementation from [280], which
allows us to quickly generate disparity maps aligned with the left and right images
for both CS and K. We process such outputs using left-right consistency check in
order to reduce the numbers of outliers, as discussed in Section 4.2 using an ϵ of 1.
We assess the accuracy of our proxy generator on 200 high-quality disparity maps
from KITTI 2015 training dataset, measuring 96.1% of pixels having disparity er-
ror smaller than 3. Compared to Tonioni et al.[300], we register a negligible drop
in accuracy from 99.6% reported in their paper. However, we do not rely on any
learning-based confidence estimator as they do [233], so we maintain label distilla-
tion detached from the need for ground-truth as well. Since SGM runs over images
at full resolution while MonoResMatch inputs are resized to 1280× 384 before ex-
tracting crops, we enforce a scaling factor to SGM disparities given by 1280

W , where
W is the original image width. Consequently, the depth map estimated by MonoRes-
Match must be properly multiplied by W

1280 at test time. The architecture is trained
end-to-end on a single Titan XP GPU without any stage-wise procedure and infers
depth maps in 0.16s per frame at test time, processing images at KITTI resolution
(i.e., about 1280× 384 to be compatible with MonoResMatch downsampling factors).

161

Appendix B

Additional details for Chapter 5

B.1 Training protocol

Our networks are implemented using TensorFlow. As we are using a custom en-
coder, ImageNet [58] pre-training is not used, differently from most recent works
[80, 321], thus pre-training is conducted for 50 epochs on Cityscapes dataset [55] fol-
lowing [79], then the fine-tuning is carried out on the KITTI Eigen training split for
200 epochs as in [230]. Since losses computation occurs at downsampled scales along
the pyramid levels, training the original PyD-Net is quite fast. On the other hand,
PyD-Net2 doubles the training time since loss computation always occurs at the
highest resolution. In particular, to perform 50 epochs of training PyD-Net requires
10 hours while PyD-Net2 requires 20 hours. Training of all networks was carried out
on a NVIDIA Titan Xp single GPU. All models are optimized using Adam [139] with
β1 = 0.9, β2 = 0.999, and ϵ = 10−8. A learning rate of 10−4 is used for the first 60%
epochs, halved every 20% epochs until the end as in [230]. Standard data augmen-
tation is performed as in [79], by randomly flipping input images horizontally and
applying the following transformations: random gamma correction in [0.8,1.2], ad-
ditive brightness in [0.5,2.0], and color shifts in [0.8,1.2] for each channel separately.
No post-processing [79] is applied to halve test-time runtime and memory footprint.

163

Appendix C

Additional details for Chapter 6

C.1 Architectures of the networks

In this section we present the networks composing ΩNet (highlighted in red in Fig-
ure 6.2).

Depth and Semantic Network (DSNet). We build a single model, since shared
reasoning about the two tasks is beneficial to both [352, 52]. To achieve real-time
performance, DSNet is inspired to PyD-Net [230], already presented in Chapter 5,
with several key modifications due to the different goals. We extract a pyramid of
features down to 1

32 resolution, estimating a first depth map at the bottom. Then, it
is upsampled and concatenated with higher level features in order to build a refined
depth map. We repeat this procedure up to half resolution, where two estimators
predict the final depth map Dt and semantic labels St. These are bi-linearly up-
sampled to full resolution. Each conv layer is followed by batch normalization and
ReLU, but the prediction layers, using reflection padding. DSNet counts 1.93 million
parameters.

Camera Network (CamNet). This network estimates both camera intrinsics and
poses between a target It and some source views Is(1 ≤ s ≤ 3, s ̸= t). We extract a
pyramid of features down to 1

16 resolution for each image and concatenate them to
estimate the 3 Euler angles and the 3D translation for each Is. As in [82], we also es-
timate the camera intrinsics. Akin to DSNet, we use batch normalization and ReLU
after each layer but for prediction layers. CamNet requires 1.77 million parameters
for pose estimation and 1.02 thousand for the camera intrinsics.

Optical Flow Network (OFNet). To pursue real-time performance, we deploy a
3-frame PWC-Net [287] network as in [170], which counts 4.79 million parameters.
Thanks to our novel training protocol leveraging on semantics and self-distillation,
our OFNet can outperform other multi-task frameworks [15] built on the same opti-
cal flow architecture. We do not pre-train the network using synthetic data.

C.2 Losses

To train the DSNet module, we rely on a multi-task loss function based mainly on
two terms. In particular, a depth term is in charge of minimize the discrepancy be-
tween the target image It and an image Is, warped as Ĩs

t , from a monocular sequence
while a semantic term is used to learn semantic labels from proxy label distilled by
a pre-trained network.

Depth term. According to the self-supervised training paradigm proposed in
[79], we adopt a photometric loss function consisting in a weighted combination
between the Structural Dissimilarity Measure (DSSIM) and the standard L1 loss,
as in Chapter 4.4. In addition, a per-pixel minimum strategy [80] is used to solve

164 Appendix C. Additional details for Chapter 6

occlusion/disocclusion by simply picking the minimum error between each pair It
and Is instead of averaging them.

LD
ap = ∑

p
min

s
(αLDSSIM(p) + (1− α)|It(p)− Ĩs

t (p)|) (C.1)

where p denotes pixel coordinates, Ĩs
t a source image Is warped according to esti-

mated depth and camera pose. In our experiments, we set α = 0.85.
A smoothness term is also used to penalize large depth differences between ad-

jacent pixels when depth discontinuities do not co-occur with strong RGB gradients.
We presented this term in Chapter 4.5.

Finally, we mask-out pixels with a static appearance between consecutive frames,
which includes scenes with no relative motion. In doing so the network ignores
pixels which move at the same velocity as the camera and also frames in which the
camera does not move. According to [80], this is accomplished by removing those
pixels which have an unwarped photometric loss smaller than the corresponding
warped photometric loss.

Semantic term. The standard cross-entropy loss between the predicted and proxy
pixel-wise semantic labels is used as semantic term:

Lsem(p) = −
N

∑
i=1

Ŝi(p) log(Si
t(p)) (C.2)

where N is the number of semantic classes, Si
t is the score predicted by DSNet and Ŝi

the ground-truth proxy label for the class i of the pixel p in the target frame t. More-
over, as proposed in [352], we employ a cross-task loss to tighten the link between
the tasks of depth and semantic segmentation:

Lcdd(p) = sgn(|δxSt(p)|) · e−|
δx Dt(p)

Dt(p) | + sgn(|δySt(p)|) · e−|
δy Dt(p)

Dt(p) | (C.3)

where sgn is the sign operator, Dt is the predicted depth map by DSNet, St the
predicted semantic class for the pixel p and δx and δy are the horizontal and vertical
gradients.

Hence, the total loss used to train DSNet is a weighted combination of the above
losses:

L = λ1LD
ap + λ2Lsmooth + λ3Lsem + λ4Lcdd (C.4)

where λ1, λ2, λ3 and λ4 are hyper-parameters. In our experiments, we set λ1 = 1,
λ2 = 0.1, λ3 = 1 and λ4 = 0.1.

Optical Flow term. We train a the first instance of the optical flow network
(OFNet) using the same photometric loss as for DSNet:

LOF
ap = ∑

p
αLDSSIM + (1− α)|It − Ĩs

t | (C.5)

In this case, however, Ĩs
t is warped according to estimated flow. Akin to DSNet, we

set α = 0.85.
Self-Distilled Optical Flow term. The self-distilled optical flow network (SD-

OFNet), instead, is trained in a quite different manner. In fact, given the optical flow
Ft→s predicted by OFNet, the rigid flow Frigid

t→s and the mask M defined in Equation
6.7, we leverage the optical flow in the regions where Ft→s and Frigid

t→s are similar as
well as moving objects, while we rely on the rigid flow for the remaining areas (e.g.,

C.3. Training protocol 165

occlusions due to camera motion). We can distinguish the former regions from the
latter ones looking at M. Moreover, we also apply a photometric term ψ on the
predicted optical flow SFt→s. We use a L1 loss as ϕ. The final loss L to train SD-
OFNet is described by Equation 6.8.

During training, Ft→s, Frigid
t→s , M and the input images of SD-OFNet are randomly

cropped to 416× 128 before computing L: in doing so, the errors in occluded areas
of Ft→s due to camera motions, are less to appear and impact the training process. Fi-
nally, to ameliorate the photometric loss term, the image ĨSF

t is obtained by padding
SFt→s at first, which is predicted at 416× 128, to original resolution (e.g., 640× 192),
then using this flow to warp the full resolution Is at It coordinates and finally ex-
tracting from this image the same crop as used before. This simple strategy allows
to leverage a complete image, since otherwise the cropped image would suffer from
motion occlusions near boundaries. Moreover, we highlight that SD-OFNet is ini-
tialized to the OFNet weights, i.e. those found during the above described OFNet
training based on the standard photometric loss. When training SD-OFNet, only its
weights are updated, and OFNet is kept frozen.

C.3 Training protocol

Similarly to [347], we employ a two stage learning process to facilitate the network
optimisation process. At first, we train DSNet and CamNet simultaneously, then we
train OFNet by the self-distillation paradigm described in 6.2.3. For both stages, we
use a batch size of 4 and resize input images to 640× 192 for KITTI and to 768× 384
for Cityscapes pre-training, optimizing the output of the networks at the highest res-
olution only. Nonetheless, Chapter 6 contains also additional experimental results of
different input resolutions where specified. We use the Adam optimizer [139] with
β1 = 0.9, β2 = 0.999 and ϵ = 10−8. Finally, we set both τ and ξ, defined in Equations
6.9 and 6.6 respectively, to be 0.5.

Depth, Pose, Intrinsics and Semantic Segmentation. In order to train DSNet
and CamNet we employ sequences of 3 consecutive frames and semantic proxy la-
bels yielded by a state-of-the art architecture [48] trained on Cityscapes with ground-
truth labels. We trained DSNet and CamNet for 300K iterations, setting the initial
learning rate to 10−4, manually halved after 200K, 250K and 275K steps. We apply
data augmentation to images as in [79]. Training takes ∼ 20 hours on a Titan Xp
GPU.

Optical Flow. We train OFNet with the following procedure. We perform 200K
training steps with an initial learning rate of 10−4, halved every 50K until conver-
gence. Moreover, we apply strong data augmentation consisting in random hori-
zontal and vertical flip, crops, random time order switch and, peculiarly, time stop,
replacing all Is with It to learn a zero motion vector. This configuration requires
about 13 hours on a Titan Xp GPU with the standard 640 × 192 resolution. Once
obtained a competitive network in non-occluded regions we train a more robust op-
tical flow network, denoted as SD-OFNet, starting from pre-learned weights and the
same structure of OFNet by distilling knowledge from OFNet and rigid flow com-
puted by DSNet using the total mask M and 416× 128 random crops applied to Ft→s,
Frigid

t→s , M and RGB images. We train SD-OFNet for 15K steps only with a learning rate
of 2.5× 10−5 halved after 5K, 7.5K, 10K and 12.5K steps, setting αr to 0.025 and αd to
0.2. At test-time, we rely on SD-OFNet only.

167

Appendix D

Additional details for Chapter 11

D.1 Implementation details

Our framework is implemented in PyTorch and it is trained using a single NVIDIA
3090 GPU. All modules are initialized from scratch. We use Adam [139] with β1 =
0.9 and β2 = 0.999. We adopted the popular VGG13 [276] as feature extractor for
both the RGB input image Il as well as the correspondent noisy disparity map D.
Notice that the two feature extractors do not share weights. The MLPs in charge of
estimating the final disparity map, D̃, are implemented similarly to [258], though we
replace the ReLU activations of the hidden layers by Sine functions [277].

Balanced Setup. In the balanced stereo setting, Il and Ir are at the same spatial
resolution, thus the stereo blackbox computes an initial disparity map D at that same
image size. With reference to Figure 11.2, in such a scenario D↓ = D and Il = Il↓,
due to no downsampling/upsampling operations being needed. We trained our
refinement architecture, counting approximately 22.9 million of parameters, on the
SceneFlow dataset for 100 epochs setting the batch size to 8, using random crops of
384× 384 size as input to the network and sampling randomly and uniformly N =
30, 000 continuous 2D locations from each crop. We employed a learning rate of 10−4,
halved after 80 epochs. During training, we randomly alternate as stereo blackbox
two popular traditional stereo algorithms, namely SGM [101] and AD-Census [351].
Moreover, we also provided a input corrupted ground-truth disparities obtained by
adding different randomly-generated nuisances, such as Gaussian noise. By doing
so, we force the network to handle a variety of different noisy patterns. We set the
maximum disparity value to 256. A strong data augmentation procedure is applied
to the RGB image as well as to the input disparity map, both normalized in the
[0, 1] interval. In particular, the input disparities -and, accordingly, the ground-truth
maps - are scaled by a factor randomly drawn from [0.2, 3]. The training process
takes approximately 24 hours.

Unbalanced Setup. When κ ̸= 1 we tackle the unbalaced setting, where the two
images of a stereo pair are captured at different image resolutions. In particular,
without loss of generality, we assume κ > 1, that is Il having a resolution higher
than Ir. We experiment with stereo black-boxes realized by existing methods, both
traditional as well as based on deep networks. As such methods process two images
at the same size in order to produce a disparity map, we first downsample the ref-
erence image Il to match the lower resolution image Ir using bilinear interpolation,
then naïvely upsample the computed disparity map D↓ by nearest neighbor interpo-
lation so as to match the resolution of Il and obtain the actual map, D, fed as input
to our network. In our experiments, we use the UnrealStereo4K dataset for training
following the protocol already described for the balanced setup but for the number
of epochs and the crop size, set to 200 and 768× 768, respectively.

168 Appendix D. Additional details for Chapter 11

As our architecture is not specifically designed to process very high resolution
images, such as those provided by the UnrealStereo4K dataset (8 Mpx), in order
to train and validate our model we resize the reference image, Il , to 1920 × 1080
resolution. Thus, in the case of UnrealStereo4K, we receive a full-res Il image and a
low-res Ir (according to a certain unbalance factor κ) and then feed ϕI with a half-
res Il , thereby constraining also the resolution of D to be 1920× 1080. Nonetheless,
to assess the ability of our architecture to handle very high resolution stereo pairs,
at test time we evaluate the performance by comparing the predicted disparities
to the ground-truth available for the original full-res (8 Mpx) stereo pair. In fact,
seamlessly evaluating at whatever output resolution regardless of the size(s) of the
input images is a key trait of our architecture enabled by the proposed continuous
formulation. In the experiments, we will compare with PSMNet [43] and HSMNet
[337], trained respectively for 60 and 200 epochs with batches of 4 and 12 samples
and the same crop size used for our model.

D.2 Qualitative results

We now present additional qualitative results obtained using our neural refinement
network on different stereo datasets in the balanced setting. Figure D.1 shows a
qualitative comparison between our model and GANet [354] on PianoL stereo pair
from Middlebury v3, when both trained on the SceneFlow dataset. We can appreci-
ate our our refinement network produces fewer errors and achieves an lower bad2
overall score, thus better generalizing to real images.

RGB GANet (bad2: 9.86%) Ours (bad2: 5.27%)

(a) (b) (c) (d) (e)

FIGURE D.1: Qualitative comparison with GANet [354]. From left to right: reference
image (a), disparity and error maps by GANet (b,c) and our method (d,e).

Figure D.2 collects some examples from the SceneFlow testing split, showing
from left to right the reference image, the raw disparity map estimated by SGM
and the final output by our network. Figures D.3, D.4 and D.5 report additional
qualitative results on real datasets, respectively KITTI 2015, Middlebury 2014 and
ETH3D, highlighting once again the outstanding zero-shot generalization perfor-
mance achieved by our network, trained on synthetic datasets only.

D.2. Qualitative results 169

FIGURE D.2: Qualitative results on the SceneFlow test set. We report qualitative re-
sults of our neural disparity refinement network on the SceneFlow testing set. From left
to right, the RGB input image, the noisy input disparity map computed by SGM [101]
(rows 1-2), AD-Census [351] (rows 3-4), C-CNN [179] (rows 5-6) and the corresponding
refined disparity estimated by our network.

170 Appendix D. Additional details for Chapter 11

FIGURE D.3: Qualitative results on the KITTI 2015 training set. Here, we show qual-
itative results concerning the generalization capability of our network (pre-trained on
SceneFlow) on the KITTI 2015 training set. From left to right, the RGB input image, the
noisy input disparity map computed by SGM [101] and the refined disparity estimated
by our network.

D.2. Qualitative results 171

FIGURE D.4: Qualitative results on the Middlebury v3 training Set. Here, we show
qualitative results concerning the generalization capability of our network (pre-trained
on SceneFlow) on the Middlebury v3 training set. From left to right, the RGB input
image, the noisy input disparity map computed by SGM [101] and the refined disparity
estimated by our network.

172 Appendix D. Additional details for Chapter 11

FIGURE D.5: Qualitative results on the ETH3D training set. Here, we show qualitative
results concerning the generalization capability of our network (pre-trained on Scene-
Flow) on the ETH3D training set. From left to right, the RGB input image, the noisy
input disparity map computed by SGM [101] and the refined disparity estimated by
our network.

D.3. Calibration and rectification of an unbalanced stereo rig 173

D.3 Calibration and rectification of an unbalanced stereo rig

In Chapter 11 we have introduced the concept of unbalanced stereo, i.e. when the
images of the pair are captured by heterogeneous sensors. To mimic this setup, we
employed synthetic data and image transformations (e.g. resize).

Now, we describe in detail how to accurately calibrate an unbalanced stereo rig,
made of a high-resolution camera and one at lower-resolution collecting respectively
frames Il and Ir. Such a rig is characterized by an unbalance factor κ, defined as
the ratio between Il and Ir widths. The calibration process allows us to rectify the
frame pairs acquired by the rig. In such a setting, the rectification constraint shall
be understood to hold up to a scale factor, i.e. Il and Ir turn out to be rectified
whenever resized to the same - arbitrary - shape.

We first calibrate each camera separately using the pinhole camera model. The
well-known distortion-free projective transformation performed by a pinhole cam-
era model is given by:

p = ART Pw (D.1)

where Pw is a 3D point expressed w.r.t. the world reference frame (WRF), p is
a 2D pixel in the image plane, A is the intrinsic parameters matrix and R, T are
the rotation and translation from the world reference frame (WRF) to the camera
reference frame (CRF), respectively.

However, real lenses have radial and tangential distortions. We follow the lens
distortion model adopted in the OpenCV library, where such a distortion is mod-
elled through a vector of parameters Dist = k1, k2, k3, p1, p2, with k1, k2, k3 denoting
the radial distortion parameters and p1, p2 the tangential distortion parameters re-
spectively.

Given a known pattern (e.g., a chessboard), we can find in the images a set of
key-points (e.g., inner corners of the chessboard) for which we know the exact 3D
position in the WRF and, accordingly, build a set of 2D-3D correspondences which
allows for inferring camera parameters through calibration. We estimate the 2D co-
ordinates of the corners, namely pL, pR, in images acquired by L, R cameras, respec-
tively, by using a standard corner detection algorithm. By calibrating each camera
of the rig independently, we estimate their intrinsic matrices AL, AR and the lens
distortion parameters DistL, DistR of the L and R cameras, respectively. Given the
intrinsic and distortion parameters, we can undistort the images to perform a stereo
calibration of the stereo rig. We can thus estimate the rotationsRLR and translations
TLR, from the L to R CRFs.

FIGURE D.6: Unbalanced rectified L and R images. Upsampling only the low-
resolution R image to match the resolution of L yields a rectified stereo pair at the high-
est resolution.

174 Appendix D. Additional details for Chapter 11

Typically when estimating a stereo rectification transformation, we assume to
have both cameras at the same resolution and a similar Field of View (FOV). The
new projection matrix is typically found as the mean between the initial intrinsic
matrixes of the two cameras. However, as in our case, the R camera has dramat-
ically different characteristics compared to other cameras, directly performing the
traditional rectification process would yield poor results. Indeed, we would need to
perform harsh downsampling of the L image or a large upsampling of the R image
to get rectified images. In contrast, we would like our rectified images to preserve
their original resolution with the smallest amount of interpolation. Thus, we define
the concept of unbalanced rectification, which allows for obtaining rectified images by
performing only up-sampling or down-sampling operations, as illustrated in Figure
D.6. To achieve the best possible rectification with a small amount of interpolation,
we use the following procedure. First, we calculate the Horizontal Field Of Views
HFOVL and HFOVR using the focal length fL, fR (known from the intrinsic matri-
ces) of the L and R cameras, respectively. Then, we find the camera with the smaller
HFOV, which will define an upper bound of the common visible area between the
two cameras. We denote the camera with the smaller HFOV as j while the other one
as i. i = L, j = R if HFOVR < HFOVL

i = R, j = L if HFOVL < HFOVR

(D.2)

Then, we modify the intrinsic parameters of i to simulate a crop and scale of its
images so as to match the HFOV, Aspect Ratio (AR) and size of j, and eventually
calculate the rectification transformation with these parameters.

Hence, we calculate the new width and height of i, Ŵi and Ĥi, which we use
to crop the image with the larger HFOV to match the smaller HFOV one and to
preserve the aspect ratio as follows:

Ŵi = 2 tan
HFOVj

2
fi (D.3)

Ĥi =
Hj

Wj
Ŵi (D.4)

Then, we modify the intrinsic parameters of i to simulate the crop and resize to
match the resolution of j as follows:

Âi =


f i
x ·

Wj

Ŵi
0 (ui

0 − Wi−Ŵi
2) · Wj

Ŵi

0 f i
y ·

Hj

Ĥi
(vi

0 − Hi−Ĥi
2) · Hj

Ĥi

0 0 1


We estimate the rectification transformation as we would have two cameras of

height Hj and width Wj, finding the new intrinsic ALrect and ARrect , and the rotations
R̂Lrect, R̂Rrect, of L and R to map the initial image plane into the rectified image plane.
Finally, as we have estimated the intrinsic matrixes at the resolution of j , we rescale
Airect (i.e., focal and piercing point) with a vertical and horizontal scale factors equal
to Ĥi

Hj
and Ŵi

Wj
, respectively.

Figure D.7 shows an example of raw, unbalanced stereo pair on the left, with
Il and Ir acquired respectively by two cameras at very different resolutions. The

D.3. Calibration and rectification of an unbalanced stereo rig 175

calibration procedure described in the reminder allows to rectify them, as shown on
the right.

Raw Unbalanced Rectified

L: 4112×3008 R: 1936×1216 L: 4112×3008 R: 1223×895

FIGURE D.7: Example of unbalanced stereo pair. On left, raw images acquired by two
very different cameras, respectively at 412× 3008 and 1936× 1216 resolution. On right,
images rectified according to unbalanced calibration and rectification.

This allows us to design a custom unbalanced stereo rig, emulating the setup
commonly available on mobile smartphones, that we use to collect additional sam-
ples over which we can qualitatively appreciate the effectiveness of our Neural Dis-
parity Refinement framework. Figure D.8 shows four examples acquired in an in-
door environment, framing from left to right the high-resolution image used as ref-
erence, the initial disparity map computed by means of SGM and the outcome of
our network.

176 Appendix D. Additional details for Chapter 11

FIGURE D.8: Qualitative results on a real unbalanced stereo setup. We show qualita-
tive results obtained by our network (trained on the synthetic SceneFlow dataset only)
on real-world images captured using an unbalanced stereo setting featuring two cam-
eras at 4112× 3008 and 1223× 895 resolution. From left to right, we show the high-res
RGB image, the initial disparity map computed by SGM [101] and the estimated dispar-
ity at 4112× 3008 resolution.

177

Bibliography

[1] A.N.Prasad, Kabir Mamun, F. Islam, and H. Haqva. “Smart Water Quality Monitor-
ing System”. In: 2015.

[2] Ahmed Abdelgawad and Kumar Yelamarthi. “Structural health monitoring: Internet
of things application”. In: 2016 IEEE 59th International Midwest Symposium on Circuits
and Systems (MWSCAS). 2016.

[3] Donato Abruzzese, Andrea Micheletti, Alessandro Tiero, Manuel Cosentino, Dami-
ano Forconi, Gianmarco Grizzi, Gianluca Scarano, Sreymom Vuth, and Pierluigi
Abiuso. “IoT sensors for modern structural health monitoring. A new frontier”. In:
Procedia Structural Integrity 25 (2020), pp. 378–385.

[4] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua,
and Sabine Süsstrunk. “SLIC superpixels compared to state-of-the-art superpixel
methods”. In: Transactions on Pattern Analysis and Machine Intelligence 34.11 (2012),
pp. 2274–2282.

[5] Maya Aghaei, Matteo Bustreo, Yiming Wang, Gianluca Bailo, Pietro Morerio, and
Alessio Del Bue. “Single Image Human Proxemics Estimation for Visual Social Dis-
tancing”. In: Winter Conference on Applications of Computer Vision. 2021.

[6] Afiq Harith Ahamad, Norliza Zaini, and Mohd Fuad Abdul Latip. “Person Detec-
tion for Social Distancing and Safety Violation Alert based on Segmented ROI”. In:
International Conference on Control System, Computing and Engineering. IEEE. 2020.

[7] Filippo Aleotti, Matteo Poggi, and Stefano Mattoccia. “Learning optical flow from
still images”. In: Conference on Computer Vision and Pattern Recognition. IEEE, 2021.

[8] Filippo Aleotti, Fabio Tosi, Matteo Poggi, and Stefano Mattoccia. “Generative Adver-
sarial Networks for unsupervised monocular depth prediction”. In: European Confer-
ence on Computer Vision Workshops. Springer. 2018.

[9] Filippo Aleotti, Fabio Tosi, Pierluigi Zama Ramirez, Matteo Poggi, Samuele Salti,
Luigi Di Stefano, and Stefano Mattoccia. “Distilled Semantics for Comprehensive
Scene Understanding from Videos”. In: Conference on Computer Vision and Pattern
Recognition. IEEE, 2020.

[10] Filippo Aleotti, Fabio Tosi, Pierluigi Zama Ramirez, Matteo Poggi, Samuele Salti,
Luigi Di Stefano, and Stefano Mattoccia. “Neural Disparity Refinement for Arbitrary
Resolution Stereo”. In: International Conference on 3D Vision. 2021.

[11] Filippo Aleotti, Fabio Tosi, Li Zhang, Matteo Poggi, and Stefano Mattoccia. “Revers-
ing the cycle: self-supervised deep stereo through enhanced monocular distillation”.
In: European Conference on Computer Vision. Springer. 2020.

[12] Filippo Aleotti, Giulio Zaccaroni, Luca Bartolomei, Matteo Poggi, Fabio Tosi, and
Stefano Mattoccia. “Real-Time Single Image Depth Perception in the Wild with
Handheld Devices”. In: Sensors 21.1 (2021).

[13] Padmanabhan Anandan. “A computational framework and an algorithm for the
measurement of visual motion”. In: International Journal of Computer Vision 2.3 (1989),
pp. 283–310.

[14] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodik, Krishna Chintalapudi,
Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. “Real-time video
analytics: The killer app for edge computing”. In: computer 50.10 (2017), pp. 58–67.

178 Bibliography

[15] Ranjan Anurag, Varun Jampani, Kihwan Kim, Deqing Sun, Jonas Wulff, and Michael
J. Black. “Competitive collaboration: Joint unsupervised learning of depth, camera
motion, optical flow and motion segmentation”. In: Conference on Computer Vision
and Pattern Recognition. IEEE. 2019.

[16] Apple ARkit. URL: developer.apple.com/augmented-reality/.

[17] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation”. In: Transactions on
Pattern Analysis and Machine Intelligence 39.12 (2017), pp. 2481–2495.

[18] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and Richard
Szeliski. “A database and evaluation methodology for optical flow”. In: International
Journal of Computer Vision 92.1 (2011), pp. 1–31.

[19] Christian Banz, Sebastian Hesselbarth, Holger Flatt, Holger Blume, and Peter Pirsch.
“Real-time stereo vision system using semi-global matching disparity estimation:
Architecture and FPGA-implementation”. In: International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation. 2010, pp. 93–101.

[20] John Barron, David Fleet, and S. Beauchemin. “Performance Of Optical Flow Tech-
niques”. In: International Journal of Computer Vision 12 (Feb. 1994), pp. 43–77.

[21] Antoine Basset, Patrick Bouthemy, and Charles Kervrann. “Recovery of motion pat-
terns and dominant paths in videos of crowded scenes”. In: 2014.

[22] Konstantinos Batsos and Philipos Mordohai. “RecResNet: A Recurrent Residual
CNN Architecture for Disparity Map Enhancement”. In: International Conference on
3D Vision. 2018.

[23] Peter N Belhumeur. “A Bayesian approach to binocular steropsis”. In: International
Journal of Computer Vision 19.3 (1996), pp. 237–260.

[24] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. “Adabins: Depth estima-
tion using adaptive bins”. In: Conference on Computer Vision and Pattern Recognition.
IEEE, 2021.

[25] Jia-Wang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen, Ming-
Ming Cheng, and Ian Reid. “Unsupervised Scale-consistent Depth and Ego-motion
Learning from Monocular Video”. In: Conference on Neural Information Processing Sys-
tems. 2019.

[26] Sizhen Bian, Bo Zhou, Hymalai Bello, and Paul Lukowicz. “A wearable magnetic
field based proximity sensing system for monitoring COVID-19 social distancing”.
In: International Symposium on Wearable Computers. 2020, pp. 22–26.

[27] Stan Birchfield and Carlo Tomasi. “A pixel dissimilarity measure that is insensitive
to image sampling”. In: Transactions on Pattern Analysis and Machine Intelligence 20.4
(1998), pp. 401–406.

[28] Stan Birchfield and Carlo Tomasi. “Depth discontinuities by pixel-to-pixel stereo”.
In: International Journal of Computer Vision 35.3 (1999), pp. 269–293.

[29] Michael J Black and Padmanabhan Anandan. “A framework for the robust estima-
tion of optical flow”. In: International Conference on Computer Vision. IEEE. 1993.

[30] John Boardman and Robert Evans. “The measurement, estimation and monitoring of
soil erosion by runoff at the field scale: Challenges and possibilities with particular
reference to Britain”. In: Progress in Physical Geography: Earth and Environment (2020).

[31] Yuri Boykov and Vladimir Kolmogorov. “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision”. In: Transactions on
Pattern Analysis and Machine Intelligence 26.9 (2004), pp. 1124–1137.

[32] Yuri Boykov, Olga Veksler, and Ramin Zabih. “Fast approximate energy minimiza-
tion via graph cuts”. In: Transactions on Pattern Analysis and Machine Intelligence 23.11
(2001), pp. 1222–1239.

[33] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

developer.apple.com/augmented-reality/

Bibliography 179

[34] Thomas Brox, Christoph Bregler, and Jitendra Malik. “Large displacement optical
flow”. In: Conference on Computer Vision and Pattern Recognition. IEEE. 2009.

[35] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. “High accuracy
optical flow estimation based on a theory for warping”. In: European Conference on
Computer Vision. Springer. 2004.

[36] Antoni Buades and Gabriele Facciolo. “Reliable Multiscale and Multiwindow Stereo
Matching”. In: SIAM Journal on Imaging Sciences (2015).

[37] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. “A naturalistic open source movie
for optical flow evaluation”. In: European Conference on Computer Vision. Springer,
2012.

[38] Changjiang Cai, Matteo Poggi, Stefano Mattoccia, and Philippos Mordohai.
“Matching-space Stereo Networks for Cross-domain Generalization”. In: Interna-
tional Conference on 3D Vision. 2020.

[39] Carlos Campos, Richard Elvira, Juan J. Gomez, José M. M. Montiel, and Juan D.
Tardós. “ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial
and Multi-Map SLAM”. In: arXiv preprint arXiv:2007.11898 (2020).

[40] Vincent Casser, Soeren Pirk, Reza Mahjourian, and Anelia Angelova. “Depth Pre-
diction without the Sensors: Leveraging Structure for Unsupervised Learning from
Monocular Videos”. In: AAAI Conference on Artificial Intelligence. 2019.

[41] Vincent Casser, Soeren Pirk, Reza Mahjourian, and Anelia Angelova. “Unsupervised
monocular depth and ego-motion learning with structure and semantics”. In: Con-
ference on Computer Vision and Pattern Recognition Workshops. 2019.

[42] Alexandros André Chaaraoui, Pau Climent-Pérez, and Francisco Flórez-Revuelta.
“A review on vision techniques applied to human behaviour analysis for ambient-
assisted living”. In: Expert Systems with Applications 39.12 (2012), pp. 10873–10888.

[43] Jia-Ren Chang and Yong-Sheng Chen. “Pyramid Stereo Matching Network”. In: Con-
ference on Computer Vision and Pattern Recognition. IEEE, 2018.

[44] Sirinthra Chantharaj, Kissada Pornratthanapong, Pitchayut Chitsinpchayakun,
Teerapong Panboonyuen, Peerapon Vateekul, Siam Lawavirojwong, Panu
Srestasathiern, and Kulsawasd Jitkajornwanich. “Semantic Segmentation On
Medium-Resolution Satellite Images Using Deep Convolutional Networks With
Remote Sensing Derived Indices”. In: 2018 15th International Joint Conference on
Computer Science and Software Engineering (JCSSE). 2018.

[45] Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang Huang, and Youn-Long
Lin. “HarDNet: A Low Memory Traffic Network”. In: International Conference on
Computer Vision. IEEE, 2019.

[46] Chuangrong Chen, Xiaozhi Chen, and Hui Cheng. “On the Over-Smoothing Prob-
lem of CNN Based Disparity Estimation”. In: International Conference on Computer
Vision. IEEE, 2019.

[47] Liang Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan
L. Yuille. “Rethinking Atrous Convolution for Semantic Image Segmentation Liang-
Chieh”. In: Transactions on Pattern Analysis and Machine Intelligence 40 (4 2018). ISSN:
01628828.

[48] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret Zoph,
Florian Schroff, Hartwig Adam, and Jon Shlens. “Searching for efficient multi-scale
architectures for dense image prediction”. In: Conference on Neural Information Pro-
cessing Systems. 2018.

[49] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. “Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs”. In: Transactions on Pattern
Analysis and Machine Intelligence 40.4 (2017), pp. 834–848.

180 Bibliography

[50] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan
L Yuille. “Semantic image segmentation with deep convolutional nets and fully con-
nected crfs”. In: arXiv preprint arXiv:1412.7062 (2014).

[51] Long Chen, Wen Tang, and Nigel John. “Self-Supervised Monocular Image Depth
Learning and Confidence Estimation”. In: arXiv preprint arXiv:1803.05530 (2018).

[52] Yuhua Chen, Cordelia Schmid, and Cristian Sminchisescu. “Self-supervised Learn-
ing with Geometric Constraints in Monocular Video: Connecting Flow, Depth, and
Camera”. In: International Conference on Computer Vision. IEEE, 2019.

[53] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu, Thomas S Huang, Hartwig
Adam, and Liang-Chieh Chen. “Panoptic-deeplab: A simple, strong, and fast base-
line for bottom-up panoptic segmentation”. In: Conference on Computer Vision and
Pattern Recognition. IEEE, 2020.

[54] Steven D Cochran and Gerard Medioni. “3-D surface description from binocular
stereo”. In: Transactions on Pattern Analysis and Machine Intelligence 14.10 (1992),
pp. 981–994.

[55] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. “The
cityscapes dataset for semantic urban scene understanding”. In: Conference on
Computer Vision and Pattern Recognition. IEEE. 2016.

[56] Marco Cristani, Alessio Del Bue, Vittorio Murino, Francesco Setti, and Alessan-
dro Vinciarelli. “The visual social distancing problem”. In: IEEE Access 8 (2020),
pp. 126876–126886.

[57] Ross Cutler and Matthew Turk. “View-based interpretation of real-time optical flow
for gesture recognition”. In: International Conference on Automatic Face and Gesture
Recognition. IEEE. 1998, pp. 416–421.

[58] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A
large-scale hierarchical image database”. In: Conference on Computer Vision and Pattern
Recognition. IEEE. 2009.

[59] Luigi Di Stefano, Massimiliano Marchionni, and Stefano Mattoccia. “A fast area-
based stereo matching algorithm”. In: Image and Vision Computing 22.12 (2004),
pp. 983–1005.

[60] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. “An Image is Worth 16x16 Words: Transformers for Image Recog-
nition at Scale”. In: International Conference on Learning Representations. 2020.

[61] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,
Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox.
“Flownet: Learning optical flow with convolutional networks”. In: International
Conference on Computer Vision. IEEE. 2015.

[62] Shivam Duggal, Shenlong Wang, Wei-Chiu Ma, Rui Hu, and Raquel Urtasun. “Deep-
Pruner: Learning Efficient Stereo Matching via Differentiable PatchMatch”. In: Inter-
national Conference on Computer Vision. 2019.

[63] Geoffrey Egnal and Richard P Wildes. “Detecting binocular half-occlusions: Empiri-
cal comparisons of five approaches”. In: Transactions on Pattern Analysis and Machine
Intelligence 24.8 (2002), pp. 1127–1133.

[64] David Eigen and Rob Fergus. “Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture”. In: International Conference
on Computer Vision. 2015.

[65] David Eigen, Christian Puhrsch, and Rob Fergus. “Depth map prediction from a
single image using a multi-scale deep network”. In: Advances in neural information
processing systems. 2014.

Bibliography 181

[66] Matteo Fabbri, Fabio Lanzi, Riccardo Gasparini, Simone Calderara, Lorenzo Baraldi,
and Rita Cucchiara. “Inter-Homines: Distance-Based Risk Estimation for Human
Safety”. In: (2020).

[67] Rui Fan, Sicen Guo, Li Wang, and Mohammud Junaid Bocus. “Computer-Aided
Road Inspection: Systems and Algorithms”. In: arXiv preprint arXiv:2203.02355
(2022).

[68] Roman Fedorov, Alessandro Camerada, Piero Fraternali, and Marco Tagliasacchi.
“Estimating snow cover from publicly available images”. In: IEEE Transactions on
Multimedia (2016).

[69] Maxime Ferrera, Alexandre Boulch, and Julien Moras. “Fast Stereo Disparity Maps
Refinement By Fusion of Data-Based And Model-Based Estimations”. In: Interna-
tional Conference on 3D Vision. IEEE. 2019.

[70] Martin A Fischler and Robert C Bolles. “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography”. In:
Communications of the ACM 24.6 (1981), pp. 381–395.

[71] Denis Fortun, Patrick Bouthemy, and Charles Kervrann. “Optical flow modeling
and computation: A survey”. In: Computer Vision and Image Understanding 134 (2015),
pp. 1–21.

[72] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng
Tao. “Deep ordinal regression network for monocular depth estimation”. In: Confer-
ence on Computer Vision and Pattern Recognition. IEEE, 2018.

[73] Yasutaka Furukawa and Carlos Hernández. “Multi-View Stereo: A Tutorial”. In:
Foundations and Trends in Computer Graphics and Vision 9.1-2 (2015), pp. 1–148.

[74] Abdalla Gad, Gasm ElBary, Mohammad Alkhedher, and Mohammed Ghazal.
“Vision-based Approach for Automated Social Distance Violators Detection”. In:
2020 International Conference on Innovation and Intelligence for Informatics, Computing
and Technologies (3ICT). 2020, pp. 1–5.

[75] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. “Unsupervised cnn
for single view depth estimation: Geometry to the rescue”. In: European Conference on
Computer Vision. Springer. 2016.

[76] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. “Vision meets
robotics: The KITTI dataset”. In: The International Journal of Robotics Research 32.11
(2013), pp. 1231–1237.

[77] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous
driving? the kitti vision benchmark suite”. In: Conference on Computer Vision and Pat-
tern Recognition. IEEE. 2012.

[78] Spyros Gidaris and Nikos Komodakis. “Detect, replace, refine: Deep structured pre-
diction for pixel wise labeling”. In: Conference on Computer Vision and Pattern Recog-
nition. IEEE, 2017.

[79] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. “Unsupervised monoc-
ular depth estimation with left-right consistency”. In: Conference on Computer Vision
and Pattern Recognition. IEEE, 2017.

[80] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow. “Dig-
ging into self-supervised monocular depth estimation”. In: International Conference
on Computer Vision. IEEE, 2019.

[81] Google ARcore. URL: developers.google.com/ar/discover.

[82] Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia Angelova. “Depth from
Videos in the Wild: Unsupervised Monocular Depth Learning from Unknown Cam-
eras”. In: International Conference on Computer Vision. IEEE, 2019.

[83] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. “A survey
of deep learning techniques for autonomous driving”. In: Journal of Field Robotics
(2020).

developers.google.com/ar/discover

182 Bibliography

[84] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos, and Adrien Gaidon.
“3D Packing for Self-Supervised Monocular Depth Estimation”. In: Conference on
Computer Vision and Pattern Recognition. IEEE, 2020.

[85] Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus, and Adrien Gaidon. “Semantically-
Guided Representation Learning for Self-Supervised Monocular Depth”. In: Interna-
tional Conference on Learning Representations. 2020.

[86] Muhammad Shahzeb Khan Gul, Michel Bätz, and Joachim Keinert. “Pixel-Wise Con-
fidences for Stereo Disparities Using Recurrent Neural Networks.” In: British Ma-
chine Vision Conference. 2019, p. 23.

[87] Fatma Guney and Andreas Geiger. “Displets: Resolving Stereo Ambiguities Using
Object Knowledge”. In: Conference on Computer Vision and Pattern Recognition. 2015.

[88] Cengiz Güngör and Kenan Zengin. “A Survey On Augmented Reality Applications
Using Deep Learning”. In: GE - International Journal Of Engineering Research (2017).

[89] Xiaoyang Guo, Hongsheng Li, Shuai Yi, Jimmy Ren, and Xiaogang Wang. “Learning
monocular depth by distilling cross-domain stereo networks”. In: European Confer-
ence on Computer Vision. Springer. 2018.

[90] Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang, and Hongsheng Li. “Group-
wise Correlation Stereo Network”. In: Conference on Computer Vision and Pattern
Recognition. IEEE, 2019.

[91] Hela Hadhri, Flavien Vernier, Abdourrahmane M Atto, and Emmanuel Trouvé.
“Time-lapse optical flow regularization for geophysical complex phenomena
monitoring”. In: ISPRS Journal of photogrammetry and remote sensing 150 (2019),
pp. 135–156.

[92] Ralf Haeusler, Rahul Nair, and Daniel Kondermann. “Ensemble learning for confi-
dence measures in stereo vision”. In: Conference on Computer Vision and Pattern Recog-
nition. IEEE, 2013.

[93] David Hafner, Oliver Demetz, and Joachim Weickert. “Why is the census transform
good for robust optic flow computation?” In: International Conference on Scale Space
and Variational Methods in Computer Vision. Springer. 2013, pp. 210–221.

[94] Asaad Hakeem et al. “Video Analytics for Business Intelligence”. In: Video Analytics
for Business Intelligence. Ed. by Caifeng Shan, Fatih Porikli, Tao Xiang, and Shaogang
Gong. Vol. 409. Studies in Computational Intelligence. Springer, 2012, pp. 309–354.

[95] Muhammed Sakib Hasan, Shahjalal Khandaker, Md. Shahid Iqbal, and Md. Monirul
Kabir. “A Real-Time Smart Wastewater Monitoring System Using IoT: Perspective
of Bangladesh”. In: 2020 2nd International Conference on Sustainable Technologies for
Industry 4.0 (STI). 2020.

[96] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask R-CNN”. In:
International Conference on Computer Vision. IEEE, 2017.

[97] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask r-cnn”. In:
International Conference on Computer Vision. IEEE, 2017.

[98] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learn-
ing for image recognition”. In: Conference on Computer Vision and Pattern Recognition.
IEEE, 2016.

[99] Sheng He, Ruqin Zhou, Shenhong Li, San Jiang, and Wanshou Jiang. “Disparity Es-
timation of High-Resolution Remote Sensing Images with Dual-Scale Matching Net-
work”. In: Remote Sensing 13.24 (2021), p. 5050.

[100] Daniel Hernandez-Juarez, Alejandro Chacón, Antonio Espinosa, David Vázquez,
Juan Carlos Moure, and Antonio M. López. “Embedded Real-time Stereo Estimation
via Semi-Global Matching on the GPU”. In: International Conference on Computational
Science. 2016, pp. 143–153.

Bibliography 183

[101] Heiko Hirschmuller. “Stereo processing by semiglobal matching and mutual in-
formation”. In: Transactions on Pattern Analysis and Machine Intelligence 30.2 (2008),
pp. 328–341.

[102] Derek Hoiem, Alexei A Efros, and Martial Hebert. “Automatic photo pop-up”. In:
ACM SIGGRAPH Computer Graphics. 2005.

[103] Aleksander Holynski and Johannes Kopf. “Fast Depth Densification for Occlusion-
aware Augmented Reality”. In: ACM Transactions on Graphics (Proc. SIGGRAPH
Asia). Vol. 37. 6. ACM, 2018.

[104] Weixiang Hong, Qingpei Guo, Wei Zhang, Jingdong Chen, and Wei Chu. “LPSNet:
A Lightweight Solution for Fast Panoptic Segmentation”. In: Conference on Computer
Vision and Pattern Recognition. IEEE, 2021.

[105] Berthold KP Horn and Brian G Schunck. “Determining optical flow”. In: Techniques
and Applications of Image Understanding. Vol. 281. International Society for Optics and
Photonics. 1981, pp. 319–331.

[106] How Many Photos Will Be Taken in 2022? https://blog.mylio.com/how- many-
photos-taken-in-2022/.

[107] How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should
Read. https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-
data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-
read.

[108] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. “Mobilenets: Efficient
convolutional neural networks for mobile vision applications”. In: arXiv preprint
arXiv:1704.04861 (2017).

[109] Xiaoyan Hu and Philippos Mordohai. “A quantitative evaluation of confidence mea-
sures for stereo vision”. In: Transactions on Pattern Analysis and Machine Intelligence
34.11 (2012), pp. 2121–2133.

[110] Yinlin Hu, Yunsong Li, and Rui Song. “Robust Interpolation of Correspondences
for Large Displacement Optical Flow”. In: Conference on Computer Vision and Pattern
Recognition. IEEE, 2017.

[111] Yinlin Hu, Rui Song, and Yunsong Li. “Efficient Coarse-to-Fine PatchMatch for Large
Displacement Optical Flow”. In: Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 2016.

[112] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q
Weinberger. “Snapshot ensembles: Train 1, get m for free”. In: International Conference
on Learning Representations. 2017.

[113] Yu Huang and Yue Chen. “Survey of State-of-Art Autonomous Driving Technologies
with Deep Learning”. In: 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security Companion (QRS-C). 2020.

[114] LI Hui and OU Jinping. “Structural Health Monitoring: From Sensing Technology
Stepping to Health Diagnosis”. In: Procedia Engineering (2011).

[115] Tak-Wai Hui and Chen Change Loy. “LiteFlowNet3: Resolving Correspondence Am-
biguity for More Accurate Optical Flow Estimation”. In: European Conference on Com-
puter Vision. Springer. 2020.

[116] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. “A Lightweight Optical Flow
CNN - Revisiting Data Fidelity and Regularization”. In: Transactions on Pattern Anal-
ysis and Machine Intelligence. IEEE, 2020.

[117] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. “LiteFlowNet: A Lightweight
Convolutional Neural Network for Optical Flow Estimation”. In: Conference on Com-
puter Vision and Pattern Recognition. IEEE, 2018.

https://blog.mylio.com/how-many-photos-taken-in-2022/
https://blog.mylio.com/how-many-photos-taken-in-2022/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read

184 Bibliography

[118] Junhwa Hur and Stefan Roth. “Iterative Residual Refinement for Joint Optical Flow
and Occlusion Estimation”. In: Conference on Computer Vision and Pattern Recognition.
IEEE, 2019.

[119] Eddy Ilg, Ozgun Cicek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter,
and Thomas Brox. “Uncertainty estimates and multi-hypotheses networks for opti-
cal flow”. In: European Conference on Computer Vision. Springer. 2018.

[120] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and
Thomas Brox. “Flownet 2.0: Evolution of optical flow estimation with deep net-
works”. In: Conference on Computer Vision and Pattern Recognition. IEEE, 2017.

[121] Google Inc. Use Raw Depth in your Android app. 2008.

[122] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spatial transformer net-
works”. In: Conference on Neural Information Processing Systems. 2015.

[123] Mohammad R Jahanshahi, Farrokh Jazizadeh, Sami F Masri, and Burcin Becerik-
Gerber. “Unsupervised approach for autonomous pavement-defect detection and
quantification using an inexpensive depth sensor”. In: Journal of Computing in Civil
Engineering (2013).

[124] Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel, and Ben Poole. “Zero-
Shot Text-Guided Object Generation with Dream Fields”. In: (2022).

[125] Joel Janai, Fatma Guney, Anurag Ranjan, Michael Black, and Andreas Geiger. “Un-
supervised Learning of Multi-Frame Optical Flow with Occlusions”. In: European
Conference on Computer Vision. 2018.

[126] Huaizu Jiang, Deqing Sun, Varun Jampani, Zhaoyang Lv, Erik Learned-Miller, and
Jan Kautz. “Sense: A shared encoder network for scene-flow estimation”. In: Interna-
tional Conference on Computer Vision. IEEE, 2019.

[127] Zequn Jie, Pengfei Wang, Yonggen Ling, Bo Zhao, Yunchao Wei, Jiashi Feng, and Wei
Liu. “Left-Right Comparative Recurrent Model for Stereo Matching”. In: Conference
on Computer Vision and Pattern Recognition. IEEE, 2018.

[128] Joseph Johnson Jr, Shiblee Hasan, David Lee, Chris Hluchan, and Nazia Ahmed.
“Social-distancing monitoring using portable electronic devices”. In: Technical Dis-
closure Commons (2020).

[129] Adrian Johnston and Gustavo Carneiro. “Self-Supervised Monocular Trained Depth
Estimation Using Self-Attention and Discrete Disparity Volume”. In: Conference on
Computer Vision and Pattern Recognition. IEEE, 2020.

[130] Rico Jonschkowski, Austin Stone, Jon Barron, Ariel Gordon, Kurt Konolige, and
Anelia Angelova. “What Matters in Unsupervised Optical Flow”. In: European Con-
ference on Computer Vision (2020).

[131] Sunghun Joung, Seungryong Kim, Kihong Park, and Kwanghoon Sohn. “Unsuper-
vised stereo matching using confidential correspondence consistency”. In: Transac-
tions on Pattern Analysis and Machine Intelligence (2019).

[132] Sami Kaivonen and Edith C.-H. Ngai. “Real-time air pollution monitoring with sen-
sors on city bus”. In: Digital Communications and Networks (2020).

[133] Artúr István Károly, Péter Galambos, József Kuti, and Imre J. Rudas. “Deep Learning
in Robotics: Survey on Model Structures and Training Strategies”. In: IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems (2021).

[134] Kevin Karsch, Ce Liu, and Sing Bing Kang. “Depth extraction from video using non-
parametric sampling”. In: European Conference on Computer Vision. Springer. 2012.

[135] Alex Kendall and Yarin Gal. “What uncertainties do we need in bayesian deep learn-
ing for computer vision?” In: Conference on Neural Information Processing Systems. Cur-
ran Associates Inc., 2017.

Bibliography 185

[136] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy,
Abraham Bachrach, and Adam Bry. “End-To-End Learning of Geometry and Con-
text for Deep Stereo Regression”. In: International Conference on Computer Vision. IEEE,
2017.

[137] Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh Kowdle, Julien Valentin,
and Shahram Izadi. “Stereonet: Guided hierarchical refinement for real-time edge-
aware depth prediction”. In: European Conference on Computer Vision. Springer, 2018.

[138] Sanghun Kim, Dong-gon Yoo, and Young Hwan Kim. “Stereo confidence metrics
using the costs of surrounding pixels”. In: International Conference on Digital Signal
Processing. IEEE. 2014, pp. 98–103.

[139] D Kinga and J Ba Adam. “A method for stochastic optimization”. In: International
Conference on Learning Representations. 2015.

[140] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. “Panoptic feature
pyramid networks”. In: Conference on Computer Vision and Pattern Recognition. IEEE,
2019.

[141] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollár.
“Panoptic segmentation”. In: Conference on Computer Vision and Pattern Recognition.
IEEE, 2019.

[142] Andreas Klaus, Mario Sormann, and Konrad Karner. “Segment-based stereo match-
ing using belief propagation and a self-adapting dissimilarity measure”. In: Interna-
tional Conference on Pattern Recognition. Vol. 3. IEEE. 2006, pp. 15–18.

[143] Maria Klodt and Andrea Vedaldi. “Supervising the new with the old: learning SFM
from SFM”. In: European Conference on Computer Vision. Springer, 2018.

[144] Yutaro Kobayashi, Yoshiaki Taniguchi, Youji Ochi, and Nobukazu Iguchi. “A Sys-
tem for Monitoring Social Distancing Using Microcomputer Modules on University
Campuses”. In: International Conference on Consumer Electronics - Asia. 2020, pp. 1–4.

[145] Claudia Kondermann, Rudolf Mester, and Christoph Garbe. “A statistical con-
fidence measure for optical flows”. In: European Conference on Computer Vision.
Springer. 2008.

[146] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. “Robust Consistent Video Depth
Estimation”. In: Conference on Computer Vision and Pattern Recognition. IEEE, 2021.

[147] Ivan Krasin et al. “OpenImages: A public dataset for large-scale multi-label and
multi-class image classification.” In: (2017).

[148] Satyam Kumar, Vikas Gautam, Amit Kumar, and Puja Kumari. “Social Distancing
using Bluetooth Low Energy to Prevent the Spread of COVID-19”. In: 2021 11th In-
ternational Conference on Cloud Computing, Data Science Engineering (Confluence). 2021,
pp. 563–567.

[149] Yevhen Kuznietsov, Marc Proesmans, and Luc Van Gool. “CoMoDA: Continuous
Monocular Depth Adaptation Using Past Experiences”. In: Winter Conference on Ap-
plications of Computer Vision. 2021.

[150] Hamid Laga, Laurent Valentin Jospin, Farid Boussaid, and Mohammed Bennamoun.
“A survey on deep learning techniques for stereo-based depth estimation”. In: Trans-
actions on Pattern Analysis and Machine Intelligence (2020).

[151] Hsueh-Ying Lai, Yi-Hsuan Tsai, and Wei-Chen Chiu. “Bridging Stereo Matching and
Optical Flow via Spatiotemporal Correspondence”. In: Conference on Computer Vision
and Pattern Recognition. IEEE, 2019.

[152] Varsha Lakshmikantha, Anjitha Hiriyannagowda, Akshay Manjunath, Aruna Pat-
ted, Jagadeesh Basavaiah, and Audre Arlene Anthony. “IoT based smart water qual-
ity monitoring system”. In: Global Transitions Proceedings (2021). International Con-
ference on Computing System and its Applications (ICCSA- 2021).

186 Bibliography

[153] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and
scalable predictive uncertainty estimation using deep ensembles”. In: Conference on
Neural Information Processing Systems. 2017.

[154] Georgios Lampropoulos, Euclid Keramopoulos, and Konstantinos Diamantaras.
“Enhancing the functionality of augmented reality using deep learning, semantic
web and knowledge graphs: A review”. In: Visual Informatics (2020).

[155] Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva, Yury Pisarchyk, Mogan Shieh,
Fabio Riccardi, Raman Sarokin, Andrei Kulik, and Matthias Grundmann. “On-
device neural net inference with mobile gpus”. In: arXiv preprint arXiv:1907.01989
(2019).

[156] Ang Li and Zejian Yuan. “Occlusion Aware Stereo Matching via Cooperative Unsu-
pervised Learning”. In: Asian Conference on Computer Vision. Springer, 2018.

[157] Boying Li, Yuan Huang, Zeyu Liu, Danping Zou, and Wenxian Yu. “StructDepth:
Leveraging the structural regularities for self-supervised indoor depth estimation”.
In: International Conference on Computer Vision. IEEE, 2021.

[158] Gen Li and Joongkyu Kim. “DABNet: Depth-wise Asymmetric Bottleneck for Real-
time Semantic Segmentation”. In: British Machine Vision Conference. BMVA, 2019.

[159] Hanhan Li, Ariel Gordon, Hang Zhao, Vincent Casser, and Anelia Angelova.
“Unsupervised monocular depth learning in dynamic scenes”. In: arXiv preprint
arXiv:2010.16404 (2020).

[160] Shunkai Li, Xin Wu, Yingdian Cao, and Hongbin Zha. “Generalizing to the Open
World: Deep Visual Odometry with Online Adaptation”. In: Conference on Computer
Vision and Pattern Recognition. IEEE, 2021.

[161] Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker, Noah Snavely, Ce Liu, and
William T Freeman. “Learning the depths of moving people by watching frozen peo-
ple”. In: Conference on Computer Vision and Pattern Recognition. IEEE, 2019.

[162] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. “Neural scene flow
fields for space-time view synthesis of dynamic scenes”. In: Conference on Computer
Vision and Pattern Recognition. 2021.

[163] Zhengqi Li and Noah Snavely. “MegaDepth: Learning Single-View Depth Prediction
from Internet Photos”. In: Conference on Computer Vision and Pattern Recognition. IEEE,
2018.

[164] Justin Liang, Namdar Homayounfar, Wei-Chiu Ma, Yuwen Xiong, Rui Hu, and
Raquel Urtasun. “Polytransform: Deep polygon transformer for instance segmenta-
tion”. In: Conference on Computer Vision and Pattern Recognition. IEEE, 2020.

[165] Zhengfa Liang, Yiliu Feng, Yulan Guo, Hengzhu Liu, Wei Chen, Linbo Qiao, Li
Zhou, and Jianfeng Zhang. “Learning for Disparity Estimation Through Feature
Constancy”. In: Conference on Computer Vision and Pattern Recognition. IEEE, 2018.

[166] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. “Microsoft coco: Common objects in
context”. In: European Conference on Computer Vision. Springer. 2014.

[167] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L
Yuille, and Li Fei-Fei. “Auto-deeplab: Hierarchical neural architecture search for se-
mantic image segmentation”. In: Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 2019.

[168] Haotian Liu, Rafael A Rivera Soto, Fanyi Xiao, and Yong Jae Lee. “Yolactedge: Real-
time instance segmentation on the edge”. In: International Conference on Robotics and
Automation. IEEE. 2021.

[169] Pengpeng Liu, Irwin King, Michael R Lyu, and Jia Xu. “Ddflow: Learning optical
flow with unlabeled data distillation”. In: AAAI Conference on Artificial Intelligence.
Vol. 33. 2019.

Bibliography 187

[170] Pengpeng Liu, Michael Lyu, Irwin King, and Jia Xu. “Selflow: Self-supervised learn-
ing of optical flow”. In: Conference on Computer Vision and Pattern Recognition. IEEE.
2019.

[171] Xiangbin Liu, Liping Song, Shuai Liu, and Yudong Zhang. “A review of deep-
learning-based medical image segmentation methods”. In: Sustainability 13.3 (2021),
p. 1224.

[172] Ziwen Liu, Rosie Brigham, Emily Rosemary Long, Lyn Wilson, Adam Frost, Scott
Allan Orr, and Josep Grau-Bové. “Semantic segmentation and photogrammetry of
crowdsourced images to monitor historic facades”. In: Heritage Science (2022).

[173] Arsal-Hanif Livoroi, Andrea Conti, Luca Foianesi, Fabio Tosi, Filippo Aleotti, Matteo
Poggi, Flavia Tauro, Elena Toth, Salvatore Grimaldi, and Stefano Mattoccia. “On the
Deployment of Out-of-the-Box Embedded Devices for Self-Powered River Surface
Flow Velocity Monitoring at the Edge”. In: Applied Sciences 11.15 (2021).

[174] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks
for semantic segmentation”. In: Conference on Computer Vision and Pattern Recognition.
IEEE, 2015.

[175] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In:
arXiv preprint arXiv:1711.05101 (2017).

[176] Xiao Xin Lu. “A Review of Solutions for Perspective-n-Point Problem in Camera
Pose Estimation”. In: Journal of Physics: Conference Series 1087 (2018).

[177] Bruce D Lucas, Takeo Kanade, et al. “An iterative image registration technique with
an application to stereo vision”. In: Vancouver, British Columbia. 1981.

[178] Chenxu Luo, Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, Ram Nevatia, and
Alan Yuille. “Every pixel counts++: Joint learning of geometry and motion with 3D
holistic understanding”. In: Transactions on Pattern Analysis and Machine Intelligence
(2019).

[179] Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. “Efficient deep learning
for stereo matching”. In: Conference on Computer Vision and Pattern Recognition. IEEE,
2016.

[180] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes Kopf. “Con-
sistent Video Depth Estimation”. In: ACM Transactions on Graphics (Proceedings of
ACM SIGGRAPH). Vol. 39. 4. ACM, 2020.

[181] Yue Luo, Jimmy Ren, Mude Lin, Jiahao Pang, Wenxiu Sun, Hongsheng Li, and Liang
Lin. “Single view stereo matching”. In: Conference on Computer Vision and Pattern
Recognition. IEEE, 2018.

[182] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and Raquel Urtasun. “Deep
rigid instance scene flow”. In: Conference on Computer Vision and Pattern Recognition.
2019.

[183] Yuqing Ma, Xianglong Liu, Shihao Bai, Lei Wang, Dailan He, and Aishan Liu.
“Coarse-to-Fine Image Inpainting via Region-wise Convolutions and Non-Local
Correlation.” In: International Joint Conferences on Artificial Intelligence. 2019.

[184] Ziyang Ma, Kaiming He, Yichen Wei, Jian Sun, and Enhua Wu. “Constant time
weighted median filtering for stereo matching and beyond”. In: International Con-
ference on Computer Vision. IEEE, 2013.

[185] Oisin Mac Aodha, Ahmad Humayun, Marc Pollefeys, and Gabriel J Brostow. “Learn-
ing a confidence measure for optical flow”. In: Transactions on Pattern Analysis and
Machine Intelligence 35.5 (2012), pp. 1107–1120.

[186] David JC MacKay. “A practical Bayesian framework for backpropagation net-
works”. In: Neural computation 4.3 (1992), pp. 448–472.

[187] Reza Mahjourian, Martin Wicke, and Anelia Angelova. “Unsupervised Learning of
Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints”. In:
Conference on Computer Vision and Pattern Recognition. IEEE, 2018.

188 Bibliography

[188] S.M.S.D. Malleswari and T. Krishna Mohana. “Air pollution monitoring system us-
ing IoT devices: Review”. In: Materials Today: Proceedings (2022).

[189] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org. 2015. URL: https://www.tensorflow.org/.

[190] Larry Matthies. “Stereo vision for planetary rovers: Stochastic modeling to near real-
time implementation”. In: International Journal of Computer Vision 8.1 (1992), pp. 71–
91.

[191] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey
Dosovitskiy, and Thomas Brox. “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation”. In: Conference on Computer Vision
and Pattern Recognition. IEEE. 2016.

[192] Robert McCraith, Lukas Neumann, Andrew Zisserman, and Andrea Vedaldi.
“Monocular Depth Estimation with Self-supervised Instance Adaptation”. In: arXiv
preprint arXiv:2004.05821 (2020).

[193] Max Mehltretter and Christian Heipke. “Cnn-based cost volume analysis as confi-
dence measure for dense matching”. In: International Conference on Computer Vision
Workshops. IEEE, 2019.

[194] Simon Meister, Junhwa Hur, and Stefan Roth. “UnFlow: Unsupervised Learning of
Optical Flow with a Bidirectional Census Loss”. In: AAAI Conference on Artificial In-
telligence. 2018.

[195] Étienne Mémin and Pepito Perez. “A multigrid approach for hierarchical motion
estimation”. In: Feb. 1998, pp. 933–938.

[196] Moritz Menze and Andreas Geiger. “Object Scene Flow for Autonomous Vehicles”.
In: Conference on Computer Vision and Pattern Recognition. IEEE, 2015.

[197] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. “NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis”. In: European Conference on Computer Vision. 2020.

[198] Yana Mileva, Andrés Bruhn, and Joachim Weickert. “Illumination-robust variational
optical flow with photometric invariants”. In: Joint Pattern Recognition Symposium.
Springer. 2007, pp. 152–162.

[199] Andres Milioto, Philipp Lottes, and Cyrill Stachniss. “Real-time semantic segmenta-
tion of crop and weed for precision agriculture robots leveraging background knowl-
edge in CNNs”. In: International Conference on Robotics and Automation. IEEE. 2018.

[200] Shervin Minaee, Yuri Y Boykov, Fatih Porikli, Antonio J Plaza, Nasser Kehtarnavaz,
and Demetri Terzopoulos. “Image segmentation using deep learning: A survey”. In:
Transactions on Pattern Analysis and Machine Intelligence (2021).

[201] Alessio Mingozzi, Andrea Conti, Filippo Aleotti, Matteo Poggi, and Stefano Mattoc-
cia. “Monitoring social distancing with single image depth estimation”. In: (2021).
IEEE Transactions on Emerging Topics in Computational Intelligence.

[202] Eduardo F Morales, Rafael Murrieta-Cid, Israel Becerra, and Marco A Esquivel-
Basaldua. “A survey on deep learning and deep reinforcement learning in robotics
with a tutorial on deep reinforcement learning”. In: Intelligent Service Robotics (2021).

[203] Mohsen Mousavi and Amir H. Gandomi. “Deep learning for structural health mon-
itoring under environmental and operational variations”. In: Nondestructive Char-
acterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and
Transportation XV. 2021.

[204] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. “Instant Neu-
ral Graphics Primitives with a Multiresolution Hash Encoding”. In: (2022).

[205] Raúl Mur-Artal and Juan D. Tardós. “ORB-SLAM2: an Open-Source SLAM System
for Monocular, Stereo and RGB-D Cameras”. In: IEEE Transactions on Robotics (2017).

https://www.tensorflow.org/

Bibliography 189

[206] Pushmeet Kohli Nathan Silberman Derek Hoiem and Rob Fergus. “Indoor Segmen-
tation and Support Inference from RGBD Images”. In: European Conference on Com-
puter Vision. Springer. 2012.

[207] Radford M Neal. Bayesian learning for neural networks. Vol. 118. Springer Science &
Business Media, 2012.

[208] Cong T Nguyen, Yuris Mulya Saputra, Nguyen Van Huynh, Ngoc-Tan Nguyen, Tran
Viet Khoa, Bui Minh Tuan, Diep N Nguyen, Dinh Thai Hoang, Thang X Vu, Eryk
Dutkiewicz, et al. “A comprehensive survey of enabling and emerging technologies
for social distancing—Part I: Fundamentals and enabling technologies”. In: IEEE Ac-
cess 8 (2020), pp. 153479–153507.

[209] Cong T Nguyen, Yuris Mulya Saputra, Nguyen Van Huynh, Ngoc-Tan Nguyen, Tran
Viet Khoa, Bui Minh Tuan, Diep N Nguyen, Dinh Thai Hoang, Thang X Vu, Eryk
Dutkiewicz, et al. “A comprehensive survey of enabling and emerging technologies
for social distancing—Part II: Emerging technologies and open issues”. In: IEEE Ac-
cess 8 (2020), pp. 154209–154236.

[210] FuTao Ni, Jian Zhang, and ZhiQiang Chen. “Pixel-level crack delineation in im-
ages with convolutional feature fusion”. In: Structural Control and Health Monitoring
(2019), e2286.

[211] Michael Niemeyer, Jonathan T. Barron, Ben Mildenhall, Mehdi S. M. Sajjadi, An-
dreas Geiger, and Noha Radwan. “RegNeRF: Regularizing Neural Radiance Fields
for View Synthesis from Sparse Inputs”. In: Conference on Computer Vision and Pattern
Recognition. 2022.

[212] David A Nix and Andreas S Weigend. “Estimating the mean and variance of the
target probability distribution”. In: International Conference on Neural Networks. Vol. 1.
IEEE. 1994.

[213] A.S. Ogale and Y. Aloimonos. “Stereo correspondence with slanted surfaces: critical
implications of horizontal slant”. In: Conference on Computer Vision and Pattern Recog-
nition. IEEE, 2004.

[214] Mahdi Maktab Dar Oghaz, Manzoor Razaak, Hamideh Kerdegari, Vasileios Ar-
gyriou, and Paolo Remagnino. “Scene and environment monitoring using aerial
imagery and deep learning”. In: 2019 15th International Conference on Distributed
Computing in Sensor Systems (DCOSS). IEEE. 2019.

[215] Masatoshi Okutomi and Takeo Kanade. “A locally adaptive window for signal
matching”. In: International Journal of Computer Vision 7.2 (1992), pp. 143–162.

[216] Art B Owen. “A robust hybrid of lasso and ridge regression”. In: Contemporary Math-
ematics 443.7 (2007), pp. 59–72.

[217] Jiahao Pang, Wenxiu Sun, Jimmy SJ Ren, Chengxi Yang, and Qiong Yan. “Cascade
residual learning: A two-stage convolutional neural network for stereo matching”.
In: International Conference on Computer Vision Workshops. IEEE. 2017.

[218] Nils Papenberg, Andres Bruhn, Thomas Brox, Stephan Didas, and Joachim Weickert.
“Highly Accurate Optic Flow Computation with Theoretically Justified Warping”.
In: International Journal of Computer Vision 67 (Apr. 2006), pp. 141–158.

[219] Haesol Park and Kyoung Mu Lee. “Look wider to match image patches with convo-
lutional neural networks”. In: Signal Processing Letters 24.12 (2016), pp. 1788–1792.

[220] Min-Gyu Park and Kuk-Jin Yoon. “Learning and selecting confidence measures for
robust stereo matching”. In: Transactions on Pattern Analysis and Machine Intelligence
41.6 (2018), pp. 1397–1411.

[221] Min-Gyu Park and Kuk-Jin Yoon. “Leveraging stereo matching with learning-based
confidence measures”. In: Conference on Computer Vision and Pattern Recognition. IEEE,
2015.

190 Bibliography

[222] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran
Associates, Inc., 2019.

[223] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-
Hornung. “A Benchmark Dataset and Evaluation Methodology for Video Object
Segmentation”. In: Conference on Computer Vision and Pattern Recognition. IEEE. 2016.

[224] Husein Perez, Joseph HM Tah, and Amir Mosavi. “Deep learning for detecting build-
ing defects using convolutional neural networks”. In: Sensors (2019).

[225] Pietro Perona and Jitendra Malik. “Scale-space and edge detection using anisotropic
diffusion”. In: Transactions on Pattern Analysis and Machine Intelligence 12.7 (1990),
pp. 629–639.

[226] Andrea Pilzer, Stephane Lathuiliere, Nicu Sebe, and Elisa Ricci. “Refine and Dis-
till: Exploiting Cycle-Inconsistency and Knowledge Distillation for Unsupervised
Monocular Depth Estimation.” In: Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 2019.

[227] Pedro O Pinheiro, Ronan Collobert, and Piotr Dollár. “Learning to segment object
candidates”. In: arXiv preprint arXiv:1506.06204 (2015).

[228] Nils Plath, Marc Toussaint, and Shinichi Nakajima. “Multi-class image segmentation
using conditional random fields and global classification”. In: International Conference
on Machine Learning. 2009.

[229] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mattoccia. “On the uncertainty
of self-supervised monocular depth estimation”. In: Conference on Computer Vision
and Pattern Recognition. IEEE, 2020.

[230] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mattoccia. “Towards real-time
unsupervised monocular depth estimation on CPU”. In: International Conference on
Intelligent Robots and Systems. 2018.

[231] Matteo Poggi, Seungryong Kim, Fabio Tosi, Sunok Kim, Filippo Aleotti, Dongbo
Min, Kwanghoon Sohn, and Stefano Mattoccia. “On the confidence of stereo match-
ing in a deep-learning era: a quantitative evaluation”. In: Transactions on Pattern Anal-
ysis and Machine Intelligence (2021).

[232] Matteo Poggi and Stefano Mattoccia. “Learning a general-purpose confidence mea-
sure based on o (1) features and a smarter aggregation strategy for semi global
matching”. In: International Conference on 3D Vision. IEEE. 2016.

[233] Matteo Poggi and Stefano Mattoccia. “Learning from scratch a confidence measure”.
In: British Machine Vision Conference. BMVA, 2016.

[234] Matteo Poggi, Fabio Tosi, Filippo Aleotti, and Stefano Mattoccia. “Real-time Self-
Supervised Monocular Depth Estimation Without GPU”. In: (2021). IEEE Transac-
tions on Intelligent Transportation Systems.

[235] Matteo Poggi, Fabio Tosi, Konstantinos Batsos, Philippos Mordohai, and Stefano
Mattoccia. “On the Synergies between Machine Learning and Binocular Stereo for
Depth Estimation from Images: a Survey”. In: Transactions on Pattern Analysis and
Machine Intelligence (2021).

[236] Matteo Poggi, Fabio Tosi, and Stefano Mattoccia. “Learning a confidence measure in
the disparity domain from O (1) features”. In: Computer Vision and Image Understand-
ing 193 (2020), p. 102905.

[237] Matteo Poggi, Fabio Tosi, and Stefano Mattoccia. “Learning monocular depth esti-
mation with unsupervised trinocular assumptions”. In: International Conference on
3D Vision. 2018.

[238] Matteo Poggi, Fabio Tosi, and Stefano Mattoccia. “Quantitative evaluation of confi-
dence measures in a machine learning world”. In: International Conference on Com-
puter Vision. IEEE, 2017.

Bibliography 191

[239] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer.
“D-nerf: Neural radiance fields for dynamic scenes”. In: Conference on Computer Vi-
sion and Pattern Recognition. 2021.

[240] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. “Learn-
ing transferable visual models from natural language supervision”. In: International
Conference on Machine Learning. PMLR. 2021.

[241] Chakravartula Raghavachari, V. Aparna, S. Chithira, and Vidhya Balasubramanian.
“A Comparative Study of Vision Based Human Detection Techniques in People
Counting Applications”. In: Procedia Computer Science 58 (2015). International
Symposium on Computer Vision and the Internet, pp. 461–469. ISSN: 1877-0509.

[242] Michael Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit, and Dani-
yar Turmukhambetov. “Single Image Depth Prediction With Wavelet Decomposi-
tion”. In: Conference on Computer Vision and Pattern Recognition. IEEE, 2021.

[243] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. “Deepde-
cision: A mobile deep learning framework for edge video analytics”. In: IEEE INFO-
COM 2018-IEEE Conference on Computer Communications. IEEE. 2018, pp. 1421–1429.

[244] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. “Vision transformers for
dense prediction”. In: Conference on Computer Vision and Pattern Recognition. IEEE,
2021.

[245] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
“Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot
Cross-dataset Transfer”. In: Transactions on Pattern Analysis and Machine Intelligence
(2020).

[246] Anurag Ranjan and Michael J Black. “Optical flow estimation using a spatial pyra-
mid network”. In: Conference on Computer Vision and Pattern Recognition. IEEE, 2017.

[247] Carlo S Regazzoni, Andrea Cavallaro, Ying Wu, Janusz Konrad, and Arun Ham-
papur. “Video analytics for surveillance: Theory and practice [from the guest edi-
tors]”. In: IEEE Signal Processing Magazine 27.5 (2010), pp. 16–17.

[248] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. “Kilonerf: Speeding
up neural radiance fields with thousands of tiny mlps”. In: International Conference
on Computer Vision. 2021.

[249] Zhile Ren, Orazio Gallo, Deqing Sun, Ming-Hsuan Yang, Erik B Sudderth, and Jan
Kautz. “A fusion approach for multi-frame optical flow estimation”. In: Winter Con-
ference on Applications of Computer Vision. IEEE. 2019.

[250] Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid.
“EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow”.
In: Conference on Computer Vision and Pattern Recognition. IEEE, 2015.

[251] Barbara Roessle, Jonathan T. Barron, Ben Mildenhall, Pratul P. Srinivasan, and
Matthias Nießner. “Dense Depth Priors for Neural Radiance Fields from Sparse
Input Views”. In: Conference on Computer Vision and Pattern Recognition. 2022.

[252] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer. 2015.

[253] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M.
Lopez. “The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic
Segmentation of Urban Scenes”. In: Conference on Computer Vision and Pattern Recog-
nition. IEEE, 2016.

[254] Stefan Roth and Michael J Black. “On the spatial statistics of optical flow”. In: Inter-
national Journal of Computer Vision 74.1 (2007), pp. 33–50.

[255] Daniel Rueckert, Luke I Sonoda, Carmel Hayes, Derek LG Hill, Martin O Leach, and
David J Hawkes. “Nonrigid registration using free-form deformations: application
to breast MR images”. In: Transactions on Medical Imaging 18.8 (1999), pp. 712–721.

192 Bibliography

[256] Mohd Ezanee Rusli, Salman Yussof, Mohammad Ali, and Ahmed Abdullah Abobakr
Hassan. “Mysd: a smart social distancing monitoring system”. In: International Con-
ference on Information Technology and Multimedia. IEEE. 2020, pp. 399–403.

[257] Sadra Safadoust and Fatma Güney. “Self-Supervised Monocular Scene Decomposi-
tion and Depth Estimation”. In: International Conference on 3D Vision. IEEE. 2021.

[258] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo
Kanazawa, and Hao Li. “PIFu: Pixel-Aligned Implicit Function for High-Resolution
Clothed Human Digitization”. In: International Conference on Computer Vision. IEEE,
2019.

[259] Seyed Omid Sajedi and Xiao Liang. “A convolutional cost-sensitive crack local-
ization algorithm for automated and reliable RC bridge inspection”. In: Risk-Based
Bridge Engineering: Proceedings of the 10th New York City Bridge Conference. 2019.

[260] Marouane Salhaoui, J Carlos Molina-Molina, Antonio Guerrero-González, Mounir
Arioua, and Francisco J Ortiz. “Autonomous underwater monitoring system for de-
tecting life on the seabed by means of computer vision cloud services”. In: Remote
Sensing (2020).

[261] Ashutosh Saxena, Sung H Chung, Andrew Y Ng, et al. “Learning depth from single
monocular images”. In: Conference on Neural Information Processing Systems. 2005.

[262] Ashutosh Saxena, Min Sun, and Andrew Y Ng. “Make3d: Learning 3d scene struc-
ture from a single still image”. In: IEEE Transaction on Pattern Analysis and Machine
Intelligence 31.5 (2009), pp. 824–840.

[263] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg Krathwohl, Nera Nešić,
Xi Wang, and Porter Westling. “High-resolution stereo datasets with subpixel-
accurate ground truth”. In: German Conference on Pattern Recognition. Springer.
2014.

[264] Daniel Scharstein and Richard Szeliski. “A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms”. In: International Journal of Computer Vision
47.1-3 (2002), pp. 7–42.

[265] Daniel Scharstein and Richard Szeliski. “Stereo matching with nonlinear diffusion”.
In: International Journal of Computer Vision 28.2 (1998), pp. 155–174.

[266] Johannes L Schonberger, Sudipta N Sinha, and Marc Pollefeys. “Learning to fuse pro-
posals from multiple scanline optimizations in semi-global matching”. In: European
Conference on Computer Vision. Springer. 2018, pp. 739–755.

[267] Johannes Lutz Schönberger and Jan-Michael Frahm. “Structure-from-Motion Revis-
ited”. In: Conference on Computer Vision and Pattern Recognition. IEEE, 2016.

[268] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.
“Pixelwise View Selection for Unstructured Multi-View Stereo”. In: European Confer-
ence on Computer Vision. Springer. 2016.

[269] Thomas Schops, Johannes L Schonberger, Silvano Galliani, Torsten Sattler, Konrad
Schindler, Marc Pollefeys, and Andreas Geiger. “A multi-view stereo benchmark
with high-resolution images and multi-camera videos”. In: Conference on Computer
Vision and Pattern Recognition. IEEE, 2017.

[270] Florian Schroff, Antonio Criminisi, and Andrew Zisserman. “Object Class Segmen-
tation using Random Forests.” In: British Machine Vision Conference. 2008.

[271] Akihito Seki and Marc Pollefeys. “Sgm-nets: Semi-global matching with neural net-
works”. In: Conference on Computer Vision and Pattern Recognition. IEEE, 2017.

[272] Andrew W Senior, L Brown, Arun Hampapur, C-F Shu, Yun Zhai, Rogério Schmidt
Feris, Y-L Tian, Sergio Borger, and C Carlson. “Video analytics for retail”. In: Confer-
ence on Advanced Video and Signal Based Surveillance. IEEE. 2007, pp. 423–428.

[273] Amit Shaked and Lior Wolf. “Improved stereo matching with constant highway net-
works and reflective confidence learning”. In: Conference on Computer Vision and Pat-
tern Recognition. IEEE, 2017.

Bibliography 193

[274] Zhenfeng Shao, Gui Cheng, Jiayi Ma, Zhongyuan Wang, Jiaming Wang, and Deren
Li. “Real-time and Accurate UAV Pedestrian Detection for Social Distancing Moni-
toring in COVID-19 Pandemic”. In: Transactions on Multimedia (2021).

[275] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin Huang. “3D Photography
using Context-aware Layered Depth Inpainting”. In: Conference on Computer Vision
and Pattern Recognition. IEEE, 2020.

[276] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: (2014).

[277] Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and
Gordon Wetzstein. “Implicit Neural Representations with Periodic Activation Func-
tions”. In: (2020).

[278] Xiao Song, Xu Zhao, Liangji Fang, Hanwen Hu, and Yizhou Yu. “Edgestereo: An
effective multi-task learning network for stereo matching and edge detection”. In:
International Journal of Computer Vision 128.4 (2020), pp. 910–930.

[279] Xiao Song, Xu Zhao, Hanwen Hu, and Liangji Fang. “Edgestereo: A context inte-
grated residual pyramid network for stereo matching”. In: Asian Conference on Com-
puter Vision. Springer. 2018.

[280] Robert Spangenberg, Tobias Langner, Sven Adfeldt, and Raúl Rojas. “Large scale
semi-global matching on the cpu”. In: Intelligent Vehicles Symposium. IEEE. 2014,
pp. 195–201.

[281] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: a simple way to prevent neural networks from overfit-
ting”. In: The Journal of Machine Learning Research 15.1 (2014), pp. 1929–1958.

[282] Sriyanka and Siddarama R Patil. “Smart Environmental Monitoring through Inter-
net of Things (IoT) using RaspberryPi 3”. In: 2017 International Conference on Current
Trends in Computer, Electrical, Electronics and Communication (CTCEEC). 2017.

[283] Austin Stone, Daniel Maurer, Alper Ayvaci, Anelia Angelova, and Rico Jon-
schkowski. “SMURF: Self-Teaching Multi-Frame Unsupervised RAFT with Full-
Image Warping”. In: Conference on Computer Vision and Pattern Recognition. IEEE,
2021.

[284] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cre-
mers. “A benchmark for the evaluation of RGB-D SLAM systems”. In: International
Conference on Intelligent Robots and Systems. IEEE. 2012.

[285] Deqing Sun, Stefan Roth, and Michael J Black. “A quantitative analysis of current
practices in optical flow estimation and the principles behind them”. In: International
Journal of Computer Vision 106.2 (2014), pp. 115–137.

[286] Deqing Sun, Stefan Roth, J.P. Lewis, and Michael Black. “Learning Optical Flow”. In:
European Conference on Computer Vision. Vol. 1. Springer. 2008.

[287] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. “PWC-Net: CNNs for
Optical Flow Using Pyramid, Warping, and Cost Volume”. In: Conference on Computer
Vision and Pattern Recognition. IEEE, 2018.

[288] Qiyu Sun, Gary G Yen, Yang Tang, and Chaoqiang Zhao. “Learn to Adapt for Monoc-
ular Depth Estimation”. In: arXiv preprint arXiv:2203.14005 (2022).

[289] Joakim Svensk. Evaluation of aerial image stereo matching methods for forest variable esti-
mation. 2017.

[290] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng.
“Fourier Features Let Networks Learn High Frequency Functions in Low Dimen-
sional Domains”. In: 2020.

194 Bibliography

[291] Vladimir Tankovich, Christian Hane, Yinda Zhang, Adarsh Kowdle, Sean Fanello,
and Sofien Bouaziz. “HITNet: Hierarchical Iterative Tile Refinement Network for
Real-time Stereo Matching”. In: Conference on Computer Vision and Pattern Recognition.
IEEE, 2021.

[292] Flavia Tauro, Fabio Tosi, Stefano Mattoccia, Elena Toth, Rodolfo Piscopia, and Salva-
tore Grimaldi. In: Remote Sensing 10.12 (2018).

[293] Graham W Taylor, Rob Fergus, Yann LeCun, and Christoph Bregler. “Convolutional
learning of spatio-temporal features”. In: European Conference on Computer Vision.
Springer. 2010.

[294] Zachary Teed and Jia Deng. “RAFT: Recurrent All-Pairs Field Transforms for Optical
Flow”. In: European Conference on Computer Vision. Springer. 2020.

[295] Alexandru Telea. “An image inpainting technique based on the fast marching
method”. In: Journal of graphics tools 9.1 (2004), pp. 23–34.

[296] Lokender Tiwari, Pan Ji, Quoc-Huy Tran, Bingbing Zhuang, Saket Anand, and
Manmohan Chandraker. “Pseudo RGB-D for Self-Improving Monocular SLAM and
Depth Prediction”. In: European Conference on Computer Vision. 2020.

[297] Marco Toldo, Andrea Maracani, Umberto Michieli, and Pietro Zanuttigh. “Unsuper-
vised Domain Adaptation in Semantic Segmentation: a Review”. In: arXiv preprint
arXiv:2005.10876 (2020).

[298] Federico Tombari, Luigi Di Stefano, Stefano Mattoccia, and Angelo Galanti. “Perfor-
mance Evaluation of Robust Matching Measures.” In: vol. 1. Jan. 2008, pp. 473–478.

[299] Federico Tombari, Stefano Mattoccia, Luigi Di Stefano, and Elisa Addimanda. “Clas-
sification and evaluation of cost aggregation methods for stereo correspondence”. In:
2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008, pp. 1–8.

[300] Alessio Tonioni, Matteo Poggi, Stefano Mattoccia, and Luigi Di Stefano. “Unsuper-
vised Adaptation for Deep Stereo”. In: International Conference on Computer Vision.
IEEE, 2017.

[301] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mattoccia, and Luigi Di Stefano.
“Real-Time Self-Adaptive Deep Stereo”. In: Conference on Computer Vision and Pattern
Recognition. IEEE, 2019.

[302] Fabio Tosi, Filippo Aleotti, Matteo Poggi, and Stefano Mattoccia. “Learning monoc-
ular depth estimation infusing traditional stereo knowledge”. In: Conference on Com-
puter Vision and Pattern Recognition. IEEE, 2019.

[303] Fabio Tosi, Yiyi Liao, Carolin Schmitt, and Andreas Geiger. “SMD-Nets: Stereo Mix-
ture Density Networks”. In: Conference on Computer Vision and Pattern Recognition.
IEEE, 2021.

[304] Fabio Tosi, Matteo Poggi, Antonio Benincasa, and Stefano Mattoccia. “Beyond local
reasoning for stereo confidence estimation with deep learning”. In: European Confer-
ence on Computer Vision. Springer. 2018.

[305] Fabio Tosi, Matteo Poggi, Alessio Tonioni, Luigi Di Stefano, and Stefano Mattoccia.
“Learning confidence measures in the wild”. In: British Machine Vision Conference.
BMVA, 2017.

[306] Vlad Trifa, Lewis Girod, Travis Collier, Daniel Blumstein, Charles Taylor, Atr Cns,
Humanoid Robotics, Comp Science, and Ai Lab. “Automated wildlife monitoring
using self-configuring sensor networks deployed in natural habitats”. In: (2007).

[307] Stepan Tulyakov, Anton Ivanov, and Francois Fleuret. “Weakly supervised learn-
ing of deep metrics for stereo reconstruction”. In: Conference on Computer Vision and
Pattern Recognition. IEEE, 2017.

[308] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke, Thomas Brox, and An-
dreas Geiger. “Sparsity Invariant CNNs”. In: International Conference on 3D Vision.
IEEE, 2017.

Bibliography 195

[309] Igor Vasiljevic, Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Wolfram Burgard,
Greg Shakhnarovich, and Adrien Gaidon. “Neural Ray Surfaces for Self-Supervised
Learning of Depth and Ego-motion”. In: International Conference on 3D Vision. IEEE.
2020.

[310] Igor Vasiljevic et al. “DIODE: A Dense Indoor and Outdoor DEpth Dataset”. In: Com-
puting Research Repository abs/1908.00463 (2019).

[311] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Confer-
ence on Neural Information Processing Systems (2017).

[312] Olga Veksler. “Stereo matching by compact windows via minimum ratio cycle”. In:
International Conference on Computer Vision. IEEE. 2001.

[313] Christoph Vogel, Stefan Roth, and Konrad Schindler. “An evaluation of data costs
for optical flow”. In: German Conference on Pattern Recognition. Springer. 2013.

[314] Chaoyang Wang, Jose Miguel Buenaposada, Rui Zhu, and Simon Lucey. “Learning
depth from monocular videos using direct methods”. In: Conference on Computer Vi-
sion and Pattern Recognition. IEEE, 2018.

[315] Han-Yang Wang, Ya-Ching Chang, Yi-Yu Hsieh, Hua-Tsung Chen, and Jen-Hui
Chuang. “Deep learning-based human activity analysis for aerial images”. In: 2017
International Symposium on Intelligent Signal Processing and Communication Systems
(ISPACS). 2017.

[316] Hengli Wang, Rui Fan, and Ming Liu. “Co-Teaching: An Ark to Unsupervised Stereo
Matching”. In: 2021 IEEE International Conference on Image Processing (ICIP). IEEE.
2021, pp. 3328–3332.

[317] Yan Wang, Zihang Lai, Gao Huang, Brian H Wang, Laurens Van Der Maaten, Mark
Campbell, and Kilian Q Weinberger. “Anytime stereo image depth estimation on
mobile devices”. In: International Conference on Robotics and Automation. IEEE. 2019.

[318] Yang Wang, Peng Wang, Zhenheng Yang, Chenxu Luo, Yi Yang, and Wei Xu.
“UnOS: Unified Unsupervised Optical-Flow and Stereo-Depth Estimation by
Watching Videos”. In: Conference on Computer Vision and Pattern Recognition. IEEE,
2019.

[319] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. “Image quality
assessment: from error visibility to structural similarity”. In: Transactions on Image
Processing 13.4 (2004), pp. 600–612.

[320] Jamie Watson, Oisin Mac Aodha, Daniyar Turmukhambetov, Gabriel J. Brostow, and
Michael Firman. “Learning Stereo from Single Images”. In: European Conference on
Computer Vision. Springer. 2020.

[321] Jamie Watson, Michael Firman, Gabriel J Brostow, and Daniyar Turmukhambetov.
“Self-Supervised Monocular Depth Hints”. In: International Conference on Computer
Vision. IEEE, 2019.

[322] Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel Brostow, and Michael Fir-
man. “The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth”.
In: Conference on Computer Vision and Pattern Recognition. IEEE, 2021.

[323] Mark Weber, Jonathon Luiten, and Bastian Leibe. “Single-shot panoptic segmenta-
tion”. In: International Conference on Intelligent Robots and Systems. IEEE. 2020.

[324] Yi Wei, Shaohui Liu, Yongming Rao, Wang Zhao, Jiwen Lu, and Jie Zhou. “Nerfin-
gmvs: Guided optimization of neural radiance fields for indoor multi-view stereo”.
In: International Conference on Computer Vision. 2021.

[325] Manuel Werlberger, Thomas Pock, Markus Unger, and Horst Bischof. “Optical flow
guided TV-L 1 video interpolation and restoration”. In: International Workshop on En-
ergy Minimization Methods in Computer Vision and Pattern Recognition. Springer. 2011.

196 Bibliography

[326] Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze. “Fast-
Depth: Fast Monocular Depth Estimation on Embedded Systems”. In: International
Conference on Robotics and Automation. IEEE, 2019.

[327] Alex Wong and Stefano Soatto. “Bilateral cyclic constraint and adaptive regulariza-
tion for unsupervised monocular depth prediction”. In: Conference on Computer Vision
and Pattern Recognition. IEEE, 2019.

[328] Chih-Hsuan Wu, Jun-Wei Hsieh, Chia-Yu Wang, and Chih-Hsiang Ho. “Marine Pol-
lution Detection based on Deep Learning and Optical Flow”. In: 2020 International
Computer Symposium (ICS). IEEE. 2020.

[329] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.
Detectron2. 2019.

[330] Marie Xavier, Alain Lalande, Paul M Walker, François Brunotte, and Louis Legrand.
“An adapted optical flow algorithm for robust quantification of cardiac wall motion
from standard cine-MR examinations”. In: Transactions on Information Technology in
Biomedicine 16.5 (2012), pp. 859–868.

[331] Ke Xian, Jianming Zhang, Oliver Wang, Long Mai, Zhe Lin, and Zhiguo Cao.
“Structure-guided ranking loss for single image depth prediction”. In: Conference on
Computer Vision and Pattern Recognition. IEEE, 2020.

[332] Junyuan Xie, Ross Girshick, and Ali Farhadi. “Deep3d: Fully automatic 2d-to-3d
video conversion with deep convolutional neural networks”. In: European Conference
on Computer Vision. Springer. 2016.

[333] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin Yumer, and
Raquel Urtasun. “Upsnet: A unified panoptic segmentation network”. In: Conference
on Computer Vision and Pattern Recognition. IEEE, 2019.

[334] Haofei Xu and Juyong Zhang. “AANet: Adaptive Aggregation Network for Efficient
Stereo Matching”. In: Conference on Computer Vision and Pattern Recognition. IEEE,
2020.

[335] Haofei Xu, Jianmin Zheng, Jianfei Cai, and Juyong Zhang. “Region Deformer Net-
works for Unsupervised Depth Estimation from Unconstrained Monocular Videos”.
In: IJCAI. 2019.

[336] Li Xu, Jiaya Jia, and Yasuyuki Matsushita. “Motion detail preserving optical flow
estimation”. In: Transactions on Pattern Analysis and Machine Intelligence 34.9 (2011),
pp. 1744–1757.

[337] Gengshan Yang, Joshua Manela, Michael Happold, and Deva Ramanan. “Hierar-
chical deep stereo matching on high-resolution images”. In: Conference on Computer
Vision and Pattern Recognition. IEEE, 2019.

[338] Guorun Yang, Xiao Song, Chaoqin Huang, Zhidong Deng, Jianping Shi, and Bolei
Zhou. “DrivingStereo: A Large-Scale Dataset for Stereo Matching in Autonomous
Driving Scenarios”. In: Conference on Computer Vision and Pattern Recognition. IEEE,
2019.

[339] Guorun Yang, Hengshuang Zhao, Jianping Shi, Zhidong Deng, and Jiaya Jia. “Seg-
Stereo: Exploiting Semantic Information for Disparity Estimation”. In: European Con-
ference on Computer Vision. Springer, 2018.

[340] Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cremers. “D3vo: Deep depth,
deep pose and deep uncertainty for monocular visual odometry”. In: Conference on
Computer Vision and Pattern Recognition. IEEE, 2020.

[341] Nan Yang, Rui Wang, Jörg Stückler, and Daniel Cremers. “Deep virtual stereo odom-
etry: Leveraging deep depth prediction for monocular direct sparse odometry”. In:
European Conference on Computer Vision. Springer. 2018.

[342] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivi-
enne Sze, and Hartwig Adam. “Netadapt: Platform-aware neural network adapta-
tion for mobile applications”. In: European Conference on Computer Vision. Springer,
2018.

Bibliography 197

[343] Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, and Ram Nevatia. “Every Pixel
Counts: Unsupervised Geometry Learning with Holistic 3D Motion Understand-
ing”. In: European Conference on Computer Vision Workshops. Springer. 2018.

[344] XW Ye, T Jin, and CB Yun. “A review on deep learning-based structural health mon-
itoring of civil infrastructures”. In: Smart Structures and Systems (2019).

[345] Wei Yin, Yifan Liu, Chunhua Shen, and Youliang Yan. “Enforcing geometric con-
straints of virtual normal for depth prediction”. In: International Conference on Com-
puter Vision. IEEE, 2019.

[346] Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus, Long Mai, Simon Chen, and
Chunhua Shen. “Learning to recover 3d scene shape from a single image”. In: Con-
ference on Computer Vision and Pattern Recognition. IEEE, 2021.

[347] Zhichao Yin and Jianping Shi. “GeoNet: Unsupervised Learning of Dense Depth,
Optical Flow and Camera Pose”. In: Conference on Computer Vision and Pattern Recog-
nition. IEEE, 2018.

[348] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. “pixelNeRF: Neural
Radiance Fields from One or Few Images”. In: Conference on Computer Vision and
Pattern Recognition. 2021.

[349] Zehao Yu, Lei Jin, and Shenghua Gao. “Pˆ 2 2 Net: Patch-Match and Plane-
Regularization for Unsupervised Indoor Depth Estimation”. In: European Conference
on Computer Vision. Springer. 2020.

[350] Qiangqiang Yuan, Huanfeng Shen, Tongwen Li, Zhiwei Li, Shuwen Li, Yun Jiang,
Hongzhang Xu, Weiwei Tan, Qianqian Yang, Jiwen Wang, et al. “Deep learning in
environmental remote sensing: Achievements and challenges”. In: Remote Sensing of
Environment (2020).

[351] Ramin Zabih and John Woodfill. “Non-parametric Local Transforms for Computing
Visual Correspondence”. In: European Conference on Computer Vision. Springer, 1994,
pp. 151–158.

[352] Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano Mattoccia, and Luigi Di
Stefano. “Geometry meets semantic for semi-supervised monocular depth estima-
tion”. In: Asian Conference on Computer Vision. 2018.

[353] Jure Zbontar and Yann LeCun. “Stereo matching by training a convolutional neural
network to compare image patches”. In: Journal of Machine Learning Research 17.1-32
(2016), p. 2.

[354] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. “GA-Net: Guided
Aggregation Net for End-to-end Stereo Matching”. In: Conference on Computer Vision
and Pattern Recognition. IEEE, 2019.

[355] Feihu Zhang, Xiaojuan Qi, Ruigang Yang, Victor Prisacariu, Benjamin Wah, and
Philip Torr. “Domain-invariant Stereo Matching Networks”. In: European Conference
on Computer Vision. Springer, 2020.

[356] Zhenyu Zhang, Stéphane Lathuilière, Elisa Ricci, Nicu Sebe, Yan Yan, and Jian Yang.
“Online depth learning against forgetting in monocular videos”. In: Conference on
Computer Vision and Pattern Recognition. IEEE, 2020.

[357] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. “Pyra-
mid scene parsing network”. In: Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 2017.

[358] Wang Zhao, Shaohui Liu, Yezhi Shu, and Yong-Jin Liu. “Towards Better Generaliza-
tion: Joint Depth-Pose Learning without PoseNet”. In: Conference on Computer Vision
and Pattern Recognition. IEEE, 2020.

[359] Yu Zhao, Quan Chen, Wengang Cao, Jie Yang, Jian Xiong, and Guan Gui. “Deep
learning for risk detection and trajectory tracking at construction sites”. In: IEEE
Access (2019).

198 Bibliography

[360] Mengyu Zheng, Chuan Zhou, Jia Wu, and Li Guo. “Smooth Deep Network Embed-
ding”. In: International Joint Conference on Neural Networks. IEEE. 2019.

[361] Yiran Zhong, Hongdong Li, and Yuchao Dai. “Open-world stereo video matching
with deep rnn”. In: European Conference on Computer Vision. Springer, 2018.

[362] Yiran Zhong, Hongdong Li, and Yuchao Dai. “Self-supervised learning for stereo
matching with self-improving ability.” In: arXiv preprint arXiv:1709.00930 (2017).

[363] Chao Zhou, Hong Zhang, Xiaoyong Shen, and Jiaya Jia. “Unsupervised Learning of
Stereo Matching”. In: International Conference on Computer Vision. IEEE, 2017.

[364] Junsheng Zhou, Yuwang Wang, Naiyan Wang, and Wenjun Zeng. “Unsupervised
High-Resolution Depth Learning from Videos with Dual Networks”. In: International
Conference on Computer Vision. IEEE. IEEE, 2019.

[365] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. “Unsupervised
learning of depth and ego-motion from video”. In: Conference on Computer Vision and
Pattern Recognition. IEEE, 2017.

[366] Federica Zonzini, Denis Bogomolov, Tanush Dhamija, Nicola Testoni, Luca De
Marchi, and Alessandro Marzani. “Deep Learning Approaches for Robust Time of
Arrival Estimation in Acoustic Emission Monitoring”. In: Sensors 22 (2022).

[367] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. “DF-Net: Unsupervised Joint Learning
of Depth and Flow using Cross-Task Consistency”. In: European Conference on Com-
puter Vision. Springer. 2018.

	Abstract
	Introduction
	Related works
	Stereo depth estimation
	Traditional approaches
	Machine learning and deep learning based approaches

	Optical flow estimation
	Traditional approaches
	Deep learning based methods

	Confidence estimation
	Semantic segmentation
	Single image monocular depth estimation
	Learning with depth supervision
	Learning from raw images
	Video at test time and adaptation

	Monitoring applications and deep learning

	Datasets, metrics and baseline models
	Datasets
	Metrics
	Monocular depth metrics
	Stereo matching metrics
	Optical flow metrics
	Confidence metrics.
	Classification and segmentation metrics

	Baseline models

	Boosting monocular depth networks with stereo supervision
	Monocular Residual Matching
	Multi-scale feature extractor
	Initial disparity estimation
	Disparity refinement
	Training loss

	Proxy labels distillation
	Experimental results
	Ablation study
	Comparison with self-supervised frameworks
	Comparison with Depth Hints
	Performance on single view stereo estimation

	Conclusions

	Monocular depth estimation on low-power devices
	PyD-Net architectures
	Pyramidal features extractor
	Depth decoders
	Self-supervision and proxies
	PyD-Net variants

	Experimental results
	Competitors
	Ablation study
	Evaluation on KITTI dataset

	Generalization on Make3D dataset
	Accuracy-efficiency trade-off
	Runtime analysis on different architectures
	Memory footprint

	Conclusions

	Comprehensive scene understanding from videos
	Overall learning framework
	Geometry and semantics
	Self-supervised depth and pose estimation.
	Distilling semantic knowledge.
	Optical flow and motion segmentation
	Motion segmentation

	Experimental results
	Monocular depth estimation
	Semantic segmentation
	Optical flow
	Motion segmentation
	Runtime analysis
	Additional qualitative examples

	Conclusions

	Monocular depth estimation in the wild
	Framework overview
	Off-line training
	On-device deployment and inference

	Lightweight networks for single image depth estimation
	Wild dataset
	Experimental results
	Evaluation on KITTI
	Evaluation in the wild
	Performance analysis on mobile devices

	Applications of single image depth estimation
	Conclusion

	Distilling optical flow labels using monocular depth
	Depthstillation pipeline
	Experimental results
	Training datasets
	Testing datasets
	Implementation details
	Ablation study
	Comparison with synthetic datasets
	Comparison with self-supervision from videos
	Limitations.

	Traditional vs learned inpainting
	Qualitative examples

	Conclusions

	Stereo depth estimation aided by monocular supervision
	Method
	Monocular Completion Network (MCN)
	Proxy distillation for deep stereo

	Experiments
	Implementation details
	Evaluation of proxy label generators
	Ablation study
	Comparison with state-of-the-art
	Generalization

	Conclusions

	Monocular depth uncertainty
	Depth-from-mono and uncertainty
	Uncertainty by image flipping
	Empirical estimation
	Predictive estimation
	Bayesian estimation

	Experimental results
	Evaluation protocol, dataset and metrics
	Monocular (M) supervision
	Stereo (S) supervision
	Monocular+Stereo (MS) supervision
	Sparsification curves
	Qualitative results

	Conclusion

	Improving off-the shelf disparity maps with deep learning
	Proposed Architecture
	Continuous Disparity Refinement Network

	Experiments
	Datasets
	Ablation study
	Balanced setup
	Comparison to existing refinement methods
	Zero-shot generalization

	Unbalanced setup
	Handling unbalanced stereo images
	Evaluation on Middlebury v3.

	Additional benefits of the proposed framework

	Conclusions

	Monocular depth estimation for social distance monitoring
	Social distance monitoring
	Proposed method
	Offline system initialization
	People segmentation
	Monocular depth perception and scaling
	Computing inter-personal distance

	Experimental results
	Evaluation of control points accuracy
	Dataset
	Inter-Personal distance evaluation
	Detecting violations
	Runtime analysis

	Limitations
	Conclusions

	Closing remarks
	Limitations
	Future directions

	Additional details for Chapter 4
	Training protocol

	Additional details for Chapter 5
	Training protocol

	Additional details for Chapter 6
	Architectures of the networks
	Losses
	Training protocol

	Additional details for Chapter 11
	Implementation details
	Qualitative results
	Calibration and rectification of an unbalanced stereo rig

