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ABSTRACT 
 

This project aims at deepening the understanding of the molecular basis of the phenotypic 

heterogeneity of prion diseases. Prion diseases represent the first and clearest example of “protein 

misfolding diseases”, that are all the neurodegenerative diseases caused by the accumulation of 

misfolded proteins in the central nervous system. In the field of protein misfolding diseases, the 

term “strain” describes the heterogeneity observed among the same disease in the clinical and 

pathologic progression, biochemical features of the aggregated protein, conformational memory 

and pattern of lesions. In this work, the two most common strains of Creutzfeldt-Jakob Disease 

(CJD), named MM1 and VV2 were analyzed. This thesis investigates the strain paradigm with the 

production of new multi omic data, and, on such data, appropriate computational analysis 

combining bioinformatics, data science and statistical approaches was performed. In this work, 

genomic and transcriptomic profiling allowed an improved characterization of the molecular 

features of the two most common strains of CJD, identifying multiple possible genetic contributors 

to the disease and finding several shared impaired pathways between the VV2 strain and Parkinson 

Disease. On the epigenomic level, the tridimensional folding of the chromatin in peripheral 

immune cells of CJD patients at onset and healthy controls was investigated with Hi-C. While 

being the first application of this very advanced technology in prion diseases and one of the first 

in general in neurobiology, this work found a significant and diffuse loss of genomic interactions 

in immune cells of CJD patients at disease onset, particularly in the PRNP locus, suggesting a 

possible impairment of chromatin conformation in the disease. The results of this project represent 

a novelty in the state of the art in this field, both from a biomedical and technological point of 

view.    
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INTRODUCTION 

 

CHAPTER 1: SEQUENCING TECHNOLOGIES 

Since the discovery of the molecular structure of DNA in 1953 by Watson and Crick1, determining 

the order of nucleic acids in polynucleotide molecules and its functional meaning ultimately 

represented one of the major goals of biological research to decrypt the properties of life on Earth. 

Only twenty-four years later, in 1977, the first method for DNA sequencing was published by 

Fredrick Sanger and colleagues, who developed the “chain-termination" or dideoxy technique2. 

This method used chemical analogues of the deoxyribonucleotides (dNTPs), the 

Dideoxynucleotides (ddNTPs), which have the important feature of lacking the 3′ hydroxyl group 

that is necessary for extension of DNA chains, thus avoiding the creation of a bond with the 5′ 

phosphate of the next dNTP. Using radio-labelled ddNTPs in an appropriate ratio (from 10:1 to 

300:1, depending on the desired read length) together with standard dNTPs in a DNA extension 

reaction, DNA strands of each possible length are generated, as ddNTPs get randomly incorporated 

in the extending strand, preventing further extension. Performing four parallel reactions containing 

each individual ddNTP base, and running the results on four lanes of a polyacrylamide gel, 

autoradiography used to be used to infer at each site which chain terminator was incorporated and 

thus what the nucleotide sequence in the original template was2. Improvement of this 

groundbreaking invention represented the first generation of DNA sequencing technologies, which 

managed to produce reads nearly of one kilobase (kb) in length3. The following development of 

other molecular biology techniques such as polymerase chain reaction (PCR)4 in 1983 and 

recombinant DNA technologies5 provided the means for generating the high quantities of DNA 
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required by first generation technologies and triggering the genomic revolution, ultimately leading 

to completing the first draft of the human genome in 20016. 

Figure 1: Main milestones of the technological improvement in DNA sequencing. Picture taken from 

Pereira et Al., 20207. 

 

The technological development of sequencing methods moved at a tremendous rate, passing from 

sequencing only short oligonucleotides to DNA molecules of millions of bases, from struggling to 

acquire the coding sequence of a single gene to technologies able to provide rapid and affordable 

whole genome sequencing (Figure 1). A pivotal turning point was achieved in 2005, with the birth 

of Next Generation Sequencing (NGS) technologies3,7 (sometimes referred to as second generation 

sequencing), that by means of different reactions depending on the specific technology, allow 

massive and parallel sequencing even of whole genomes. In the last decade, sequencing 

technologies expanded also to methods for RNA sequencing8,9 -giving birth to the transcriptomic 

field- and to methods for unveiling the structural features and environment-mediated modifications 

of chromatin and DNA10,11 - representing the epigenomic field-, as well as all the single-cell omics 

technologies starting from 2009 12. In this chapter, the most important features of NGS 
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technologies in the genomic, transcriptomic and epigenomic fields will be presented, focusing on 

the three methods used in this thesis: DNA-targeted sequencing, RNA-sequencing, Hi-C. 

• GENOMICS: DNA LIBRARIES AND ILLUMINA SEQUENCING 

Next Generation Sequencing refers to modern high throughput sequencing technologies that can 

be applied to DNA or RNA. Given the complexity of the topic, today this term refers to 

technologies that can use different sequencing reactions, classified in two main categories as 

sequencing by ligation (SBL) and sequencing by synthesis (SBS). SBS approaches are the most 

common and, despite of their differences, share the feature of depending on DNA-polymerase 

reactions. In this thesis will be presented in detail only Illumina sequencing, since this is the 

technology used in this work. Illumina sequencing by synthesis technology is inspired by 

improvements of Sanger sequencing, in which radio labelled di-deoxynucleotides chain 

terminators are replaced by reversible terminators combined with fluorophores. The workflow 

starts with library preparation that can vary significantly in different protocols, here we consider a 

standard workflow for a targeted sequencing library preparation with hybridization capture-based 

enrichment, summarized in figure 2. Genomic DNA is always fragmented either mechanically, 

enzymatically or with transposons in fragments of appropriate length depending on the 

experimental design, typically around 400bp. Next, blunt ends at both extremities are repaired: 

usually 5’ ends are phosphorylated and 3’ ends are repaired with Adenine residues. Subsequently, 

with a PCR reaction, adapters are ligated to the extremities. Adapters are crucial short 

oligonucleotides that contain a platform specific binding sequence that mediate the binding to the 

flow cell on which the sequencing reaction will take place and a unique index sequence that allows 

for the identification of each sample. Depending on the experimental design, it is possible to enrich 

for a selection of regions that are of interest (like for the exome, that account for ~2% of the 
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genome or for a more restricted selection of genes) or maintain the whole genome. In exome or 

targeted sequencing, regions of interest are hybridized with biotinylated probes complementary to 

the target, and subsequently probes are captured using a biotin-streptavidin pull down. Enriched 

libraries are finally amplified with PCR and quantified. Before being loaded on the sequencer, 

libraries need to be denatured and drastically diluted to a final concentration around 0.2-0.8 picoM 

that can vary slightly depending on the sequencer and the specific library. 

 

 

Figure 2: Overview of a workflow for library preparation of DNA samples with enrichment for Illumina 

platforms, summarizing the main steps of fragmentation, end repair, adapter ligation and enrichment. The 

picture is taken from the reference manual “Illumina DNA prep with enrichment” which is the protocol 

used in this thesis for acquiring genomic data (see materials and methods), nevertheless the basic principles 

are shared among other protocol of the same type of libraries preparation.  

 

Once the sequencer is loaded, all further reactions are automatized: libraries are pumped on the 

flow cell, a glass device divided in lanes on which are harbored adapter oligonucleotides 

complementary to those attached to each DNA fragment. Each single stranded DNA fragment 

hybridize to the flow-cell adapters on one extremity and subsequently to the second too, forming 

a “bridge” structure. Next follows the bridge amplification step, in which a complementary strand 

is synthetized based on the nucleotide sequence of the sample. The double stranded fragments are 
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then denatured, leading to single strand fragments anchored to the flow cell only by one adapter. 

This process of bridge amplification is repeated several times, generating thousands of copies of 

each initial fragment and millions of clusters anchored to each lane of the flow cell. After cluster 

generation, sequencing by synthesis takes place. Proprietary nucleotides, modified in the 3′ 

hydroxyl group to carry a reversible chain terminator and a fluorophore corresponding to each of 

the four nucleotides, are incorporated in the growing complementary strand by DNA polymerase 

and detected by a camera. The nucleotides, acting as reversible chain terminators, block the 

synthesis of the strand until after the detection of the fluorescent label is acquired, and then a next 

round of synthesis starts. The fluorophore wavelength together with its intensity determines the 

base call. All clusters are sequenced simultaneously in parallel reactions and each genomic region 

is sequenced in several different fragments, quantified by the “coverage” metric. The reactions are 

repeated for 150 rounds (75 rounds in case of short reads protocols, like RNAseq) for read 1. 

Indexes are then sequenced and, in paired-end sequencing, a further single bridge amplification is 

performed. The template fragment is washed away, and another read of the nucleotide sequence 

from the other extremity of the fragment is acquired, generating read 2. The acquired signals for 

each lane of the flow cell are converted into base call format files (bcl file) that represent the output 

of sequencing and the first raw input for bioinformatic analysis (figure 3).  

 

Figure 3: Overview of sequencing reaction on Illumina platforms. Denatured library is first bound by 

means of adapters to the flow cell, where it is amplified through bridge amplification creating millions of 
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clusters. Single strands fragments are then sequenced with a sequencing by synthesis mechanism, in which 

modified reversible chain terminator nucleotides are added once per round after detecting the characteristic 

signal for each base incorporated. The acquired images are converted into a bcl file that represent the raw 

output of sequencing and the first input for bioinformatic analysis.   

 

Despite library preparation vary depending on the experimental design and on the nucleic acid 

used as input, the sequencing workflow for Illumina platforms follows the presented steps 

independently of the library, therefore this applies to all the omics reported in this work, namely 

DNA target sequencing, RNAseq and Hi-C. 

 

• TRANSCRIPTOMIC: RNA SEQUENCING LIBRARIES 

The information encoded in DNA is expressed through transcription into coding and non-coding 

RNA molecules, the transcriptome. The transcriptome of the same individual changes in different 

tissues and during different stages of life since different cells express different mRNAs and 

regulatory RNAs. Transcriptomic technologies are the techniques used to acquire a snapshot of 

the RNAs expressed at a given time in a tissue/cell type, and to study how the expression profile 

changes in different conditions. Such technologies have been and still are an extremely powerful 

tool to understand gene functions, cell differentiation and development or pathways affected in a 

given condition. The two most relevant technologies in this field are microarray and RNAseq, the 

first nowadays quite obsolete but extremely important in the first stages of this field during the 

decade 2000-201013. RNA sequencing is a very versatile high throughput sequencing technique 

introduced in 200814–17, that allows in a single experiment to investigate not only gene expression, 

but also alternative splicing18, allele specific expression19, variation in linear nucleotide 

sequence20,21, novel transcript expression22 and gene fusion events23. The appropriate library 

preparation protocol for RNA sequencing needs to be carefully chosen depending on the study, 
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since important bias can be introduced at the library preparation step. There are four main 

categories of possible library preparations that answer different question (Figure 4): 

▪ total RNAseq: all structural, regulatory, coding and non-coding RNA are sequenced. 

▪ RNAseq with ribosomal RNA reduction: only rRNAs useful for phylogenic reconstruction 

are kept together with regulatory and coding RNAs. 

▪ cDNA capture: only coding RNAs are enriched using probes targeting exon sequences. It is 

possible though to detect some non-coding RNAs similar enough to the probe to be captured. 

▪ polyA selection: only mature mRNAs are isolated through poly-T probes that bind the 3’ poly-

A tail of mRNAs. 

Figure 4: Overview of different approaches for RNAseq library preparation. Picture taken from the course 

material of the workshop “Informatics for RNA-seq analysis” provided by the Canadian Bioinformatics 

Workshops (https://bioinformatics.ca/workshops/2016-informatics-rna-seq-analysis) 

 

In this work, a cDNA enrichment protocol based on hybridization with probes targeting exon was 

used. This approach is particularly suited for RNAs extracted from degraded samples (such as 

postmortem tissues) that show a significant level of degradation at the moment of total RNA 

extraction24,25. In this case thus, it was not adequate to use a poly-T enrichment for the isolation of 

https://bioinformatics.ca/workshops/2016-informatics-rna-seq-analysis
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mRNA, since it would lead to a strong overrepresentation of the 3’ extremities due to the 

experimental procedure, while representation of 5’ sequences would be extremely poor. During 

library preparation, total RNA is fragmented and retrotranscribed into cDNA with random primers. 

Next, adapters are ligated to the fragment’s extremities and subsequently the enrichment of coding 

regions is performed with biotinylated exons probes, similarly to target sequencing, described in 

the previous paragraph. After an amplification step with PCR, in Illumina platforms libraries are 

sequenced similarly to DNA libraries, with the only difference of having a paired end sequencing 

of 75bp per reads instead of 150bp. The sequencing depth, expressed in millions of reads per 

sample, is a very important feature to consider at the experimental design step. Depending on the 

amount of reads per sample, it will be possible to acquire information with variable degree of 

confidence about non-common transcripts, which will be adequately represented with sequencing 

depths around 25 million reads/sample. Given the numerous information that can be extracted from 

this type of data, the bioinformatic analysis is particularly challenging and heterogeneous. This 

very important part of transcriptomics is treated extensively in “Chapter 2: bioinformatics and 

omics data analysis”. 

• EPIGENOMICS: STRUCTURAL GENOMICS AND HI-C 

The eukaryotic genome is both very dynamic and highly condensed in the nucleus: in humans, 

nearly 6 billion nucleotides (that correspond of 2 meters in length in its linear form) are organized 

in 46 chromosomes packed within a nucleus of 6µm of diameter on average.26 This high level of 

compactness must anyway satisfy functional requirements to allow gene expression and 

transcription regulation. How chromatin is structurally and functionally organized in the nucleus 

is therefore extremely important, since it determines changes in gene expression that happen 

without altering the linear DNA sequence, that is indeed what Epigenetics deals with10,27. Gene 
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expression in mammals strongly depends on epigenetic regulation, in terms of modification of the 

accessibility of genomic regions trough DNA methylation, histone modifications and three-

dimensional chromatin organization, and of post-transcriptional regulation mechanisms such as 

noncoding RNA–mediated regulation and RNA editing. These modifications respond to 

environmental stimuli and regulate major processes such as cell development and differentiation, 

cell cycle regulation, and ultimately the responses in health and disease28–31.  

Already in the first half of the 20th century the initial observation of a genome divided in 

euchromatin and heterochromatin and the hypothesis of chromosome territories in the nucleus was 

proposed using light microscopy and chromatin dyes 30,32,33, and it was validated in 1980s after the 

development of more advanced imaging techniques, most remarkably by fluorescence in situ 

hybridization (FISH)34. In 1974 Kornberg published the first observation of the chromatin 

structure35: in the nucleus, DNA is first packed into nucleosomes, composed of 147 bp of DNA 

coiled around a histone octamer containing two copies of four different histone proteins, H2A, 

H2B, H3, and H436. At this level of organization several modifications may happen: histone 

proteins can harbor a plethora of modifications that mediate transcriptional regulation trough 

methylation, acetylation, phosphorylation, ubiquitination and sumoylation, allowing the epigenetic 

regulation of most biological processes including DNA repair, transcription, and chromatin 

remodeling. Non-histone modifications are also possible, like shift of nucleosome position which 

changes the DNA region accessible to the transcription apparatus, or methylation of DNA itself in 

C5 of Cytosine residues, that is associated to reduced gene expression as a consequence of the 

recruiting of transcriptional repression proteins and of reduced accessibility to transcription factor 

of promoter regions37–39. Both histones and DNA modifications are extremely important and 

thoroughly studied epigenetic regulators of cell differentiation, cell cycle and response to 
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environmental stress and disease, nevertheless they will not be further discussed here since the 

experimental work of this thesis deals with the three-dimensional organization of chromatin 

assessed with Hi-C experiments.  

The structural organization of the genome can be studied at different levels of resolution, 

depending on the chromosome conformation technique and for Hi-C depending also on the 

sequencing depth. At the highest scale, the nucleus is functionally compartmentalized40,41, with 

regions enriched for euchromatin and gene-rich regions localized at the center of the nucleus 

(compartment A), whereas heterochromatin- rich regions are found near the nuclear margins 

(compartment B)11,42–45. Lamina-associated domains (LADs) refer to genomic regions in contact 

with the nuclear lamina, these domains show typical features of heterochromatin, such as low gene 

density, reduced gene expression, and enrichment for histone marks associated to reduce 

transcription rates. Compartment A contains predominantly gene-rich regions, is enriched in 

H3K36me3, marked of open chromatin, and for DNase I hypersensitive sites46. In contrast, 

compartment B represents typically heterochromatic regions and overlaps with the lamina-

associated domains (LADs)47. Chromosome compartments can be further separated into 

Topologically associating domains (TADs)48. TADs represent the basic unit of the chromatin 

three-dimensional organization11,44,49,50, they are delimited by convergent binding sites for 

CCCTC-binding factor (CTCF) and Cohesin and show high degree of internal self-interactions. 

Differently from other structural features like chromosome compartments, TADs are relatively 

stable in different cell types and seem to not be affected by tissue-specific gene expression or 

histone modifications. TADs are furtherly organized in chromatin nanodomains (CNDs) and 

chromatin loops that represent loci of stable intra-  interactions within TADs 51–53 (Figure 5). 
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Figure 5: Levels of 3D organization of Eukaryotic genomes inside the nucleus. At the lowest resolution 

(panel ‘a’), chromosome territories are visible: chromosome occupy a well-defined territory where intra-

chromosomal interaction are more frequent than inter-chromosomal interactions. Zooming inside a single 

chromosome territory (panel ‘b’), compartments A and B can be identified based on the radial positioning, 

chromatin compactness and the transcriptional activity. Inside a single compartment (panel ‘c’), 

Topologically Associating Domains (TADs) are delimited by convergent binding sites for CCCTC-binding 

factor (CTCF) and Cohesin, representing the basic unit of the chromatin 3D organization and showing a 

high degree of internal self-interactions. Zooming inside a single TAD (panel ‘d’), at the highest level of 

resolution achievable with Hi-C, we find single chromatin loops, that represent loci of stable intra-

interactions. Panel ‘e’ shows DNA structure in the 30-2nm range, where DNA is wrapped around an 

octamer of histones, and both DNA and histones can harbor modifications able to modify transcriptional 

activity of that locus. Picture taken from Wang et Al., 2021, Nature Reviews. 

 

Despite all these level of organization have been observed in different cell lines and species, the 

mechanisms that regulate chromatin folding are just beginning to be understood54–56.  Currently, 

Loop Extrusion is the accepted model for chromatin folding at the Mb scale: in interphase, CTCF 

and Cohesin complexes reach their binding sites and begin to extrude a loop symmetrically until 

convergently oriented CTCF motifs are recognized. Here the protein complex stops the extrusion, 
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resulting in a DNA loop with cohesin and convergently oriented CTCF present at its base, 

physically demarcating TADs borders (Figure 6).  

 

Figure 6: Illustration of two possible models of TAD formation according to the loop extrusion model. 

CTCF protein could slide together with cohesin until convergent CTCF motifs are identified and the loop 

is stabilized, or be bound to the CTCF binding motif and assemble to stabilize the loop when two motifs 

with correct orientation meet. Illustration taken from Sanborn et al. (PNAS; 2015)57  

 

Inside TADs, enhancer-promoter interactions are facilitated and stabilized: disruption of TADs 

border leads to the loss of such crucial regulatory elements and is associated to impairment of cell 

fate commitment and to several human diseases, both with inherited 58,59 and acquired origin60–62. 

The study of 3D genomics is a very promising field, which provides also new insight for the 

functional interpretation for the enormous amount of intronic variants associated to complex 

diseases with Genome-Wide Association Studies (GWAS). Many of such variants in fact are in 

noncoding regions or near cis-regulatory elements, and for most of them the target gene is 
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unknown. Frequently, it is assumed that SNPs associated to a disease located in introns of a gene 

related to affected pathways must act on that gene or in the closest plausible, but there are many 

examples of how misleading this assumption could be 63–66. In fact enhancers frequently regulate 

gene expression of distal genomic loci, both backwards and forwards in the linear sequence63,66, 

interacting through chromatin loops. Improving the understanding of the three-dimensional 

folding of the genome will help to discover the complex regulation networks of gene expression 

in physiological conditions and how they are altered in disease.  

From a technological point of view, a turning point in chromatin biology was the development in 

2002 of chromosome conformation capture (3C) technique that represented the first genomic 

method for the investigation of chromosome conformation in-nuclei67, then implemented in 3C-

derived methods such as 4C, 5C and Hi-C42,68–71. All these techniques provide information on the 

three-dimensional conformation of genomes by relying on the ligation of distal genomic fragments 

that have been crosslinked together due to their spatial proximity in the nucleus. 3C-derived 

methods differ in the way the interactions are detected and quantified. Hi-C is so far the most 

powerful conformation capture technique since it is an high-throughput method that allows to 

detect genome wide interactions between genomic loci (all-to-all)42,50,72,73 whereas the original 3C 

method only allows to detect if a specific region of interest interacts with another (one to one)67, 

typically to identify specific enhancer-promoter interactions. The results of Hi-C experiments are 

the pairwise frequencies of interactions of distinct genomic elements in the same sequencing read, 

which reflect their average spatial distances in the nuclei of the analyzed cell population, thus 

providing information on the 3D conformation of the genome11,67,74. The standard Hi-C workflow 

is summarized in figure 7 and starts with a formaldehyde crosslinking of the chromatin on a high 

number of cells. Formaldehyde permeates cell membranes and forms covalent bonds between 
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DNA, proteins and other reactive molecules in close proximity42, stabilizing the three-dimensional 

organization of DNA in the nucleus. DNA is then digested with restriction enzymes and 

biotinylated nucleotides are incorporated into the restriction fragment ends. Next, restriction 

fragments are ligated, so that two fragments which are crosslinked together because close one to 

another in the 3D space are joined by the ligase enzyme, even though they may be kilobases away 

in the genome. 

 

Figure 7: Standard Hi-C workflow from cells to library preparation and sequencing. Adapted from the 

reference manual of the commercial product “Mammalian cell lines kit-ARIMA technologies”. 

 

The biotinylated ligation products are then pulled down with streptavidin beads and with this input, 

DNA libraries are generated for whole genome sequencing, with a workflow similar to the one 

described in the Genomics paragraph. Sequencing data, after the appropriate bioinformatic 

analysis, will provide the relationship between interaction frequency and spatial distance in all 

chromosomes, thus allowing for the computational modelling of the 3D organization of chromatin. 

Computational aspects of the analysis of this type of data are presented in “Chapter 2: 

bioinformatics and analysis omic data”. 
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CHAPTER 2: BIOINFORMATICS AND -OMICS DATA ANALYSIS 

• PRIMARY DATA ANALYSIS AND BIOINFORMATIC PIPELINES 

Due to the increasing affordability, popularity and optimization of sequencing experiments in the 

last decade, the amount of sequencing data produced exploded75: the bottleneck is not the 

production of sequencing data anymore, but rather the analysis and interpretation of such complex 

and high-dimensional data. Bioinformatic analysis involve several steps of computationally 

intensive data transformations, each requiring specific a tool. A lot of effort has been put in 

developing reliable software to perform such data transformations and to make computation 

analysis of NGS data reproducible. Package and environment management system such as 

CONDA allow the installation and management of software developed in different languages for 

different operating systems. Through an organization into channels where packages are collected 

and maintained, it allows an efficient distribution of tools for different fields of data science. 

Bioconda76 is arguably the most common CONDA channel for bioinformatic tools. Primary 

analysis for Illumina raw data consists in demultiplexing bcl data into FASTQ files. This process 

matches the index sequences of each sequenced fragment to group all calls belonging to a sample 

into a text file in which the nucleotide sequence is accompanied by a PHRED score defining the 

quality of the nucleotide call. Quality checks follow this conversion, and after, adapter reads and 

base calls with low quality are trimmed from the sequence that will undergo the proper analysis. 

Workflow management systems such as Snakemake77 address the need to concatenate the 

heterogenous steps required by bioinformatic pipelines while providing an efficient usage of 

computational power through process parallelization78. Snakemake pipelines are contained in 

‘Snakefile’ files which are written in a domain specific language that uses a syntax very similar to 

Python, in which each step is expressed as a rule having a specific input, output, environment and 
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by the proper command which can be coded in Shell, Python, R, or other languages according to 

the user needs. Concatenating the output of a rule to the input of the following, it allows to create 

automatized workflows. With the use of wildcards identifying samples names, it allows for the 

parallel analysis of multiple samples at once77. In this work, a customized pipeline for each omics 

data type was written to perform appropriate secondary analysis. 

• TARGETED SEQUENCING DATA ANALYSIS 

Secondary analysis of genomic data is the most mature and standardized workflow within the 

considered data types of this thesis, already used in diagnostics as well as in research. It generally 

comprehends three main steps: mapping on the reference genome, post-alignment processing and 

variant calling. A standard workflow of secondary analysis of DNA data is reported in figure 8.  

Figure 8: Standard workflow of secondary analysis of next generation sequencing genomic data, consisting 

in demultiplexing, trimming, mapping, post-alignment processing and variant calling. Picture taken from 

Roy et al., 201879.  
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After demultiplexing, sample’s sequence is expressed in two FASTQ files containing nucleotide 

sequence and quality score derived from millions of short reads. Mapping algorithms aim at 

identifying a location in the reference genome that matches the experimental read, tolerating some 

mismatches and extra spaces to allow for variants detection. The most recent and accurate mapping 

algorithms are based on the Burrows-Wheeler Transform (BWT)80, that is particularly appropriate 

for the compression and alignment of lowly divergent strings. One of the most used tools for 

mapping NGS sequences to the reference genome is indeed the Burrows-Wheeler Alignment81, 

used with mem algorithm that provides high speed and accuracy of mapping. The output of 

mapping algorithms is sam files (sequence alignment map), which store all the information about 

the mapping procedure that generated them in the metadata section, together with information 

about the mapped genomic region and the accuracy of the mapping. The binary counterpart of sam 

files is bam files, that represent the type of data that will undergo the further post alignment 

processing and variant calling. Post alignment processing consists in sorting, marking duplicates 

(optical duplicates and PCR artifacts) and indexing the bam file. At this point, coverage, that is the 

number of reads that "cover" a specific genomic region and the average number of reads for the 

whole target, can be computed on the marked bam file. Next follows the variant calling step, aimed 

at the identification of single nucleotide variants and small insertions and deletions. Several tools 

with different assumptions and features are available, the most appropriate caller should be chosen 

depending on how the data were produced and on the experimental design. In this work, germline 

variants were called with Strelka220, a variant caller optimized for analysis of germline SNV and 

indel in small cohorts. Its outputs are Variant Call Format (VCF) files, which store in the metadata 

section information about tools, time of the analysis, support files (such as reference genome 

version, targeted regions if provided, assembly, etc.) used in the analysis together with the list of 
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variants detected, expressed through the eight columns: chromosome, position, rs identifier of the 

variant (if exist), reference nucleotide, alternative nucleotide, quality, filters, and other info. 

Secondary analysis of genomic data ends with variant annotation, aimed at acquiring functional 

information about the type of nucleotide substitution and it predicted effect.  

At this point, a classical approach is to consider only variants that affect the primary structure of 

the coded protein, like missense or truncating variants, especially if predicted as likely pathogenic. 

In recent years, data science methods applied to genomic data proved to be a resourceful approach 

for acquiring a  more complete understanding of polygenic contributions in complex diseases82 

and in the context of precision medicine83, resulting in an increase of the use of machine learning 

methods (ML) in the genomic field84,85. The term machine learning refers to several algorithms 

able to perform and evaluate pattern recognition, classification and prediction tasks based on 

models derived from existing data. The key feature of these methods is the absence of coded 

instructions given by the developer to describe the steps towards which input data are transformed 

in output results. Thus, the algorithm computes a model trained on the input data to address a 

specific task. There are two main types of ML methods: supervised and unsupervised learning. In 

supervised learning, objects are classified using a set of attributes, labels or features given by the 

operator. Examples of such methods are classifiers like decision trees, random forests, support 

vector machines and neural networks. The result of the classification process is a set of rules that 

assigns objects to classes based on the provided labels. These rules can display new insights on 

the relevant features used to correctly identify the studied classes. On the other hand, in 

unsupervised learning no predefined labels are provided for the objects under study. Here, the goal 

is to explore the data and discover similarities between objects that will cluster together based 

solely on the input data. Clustering and dimension reduction techniques such as principal 
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component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) and Uniform 

Manifold Approximation and Projection (UMAP) are suitable unsupervised ML methods for 

visualizing high dimensional data such as genomic data86,87. As the biomedical sector becomes 

more data-intensive, these approaches are bound to play a pivotal role both in research activity and 

in precision medicine, as the amount of data generated even by target sequencing panels for each 

patient is already hardly handled by human operators.  

• TRANSCRIPTOMICS: RNA SEQUENCING ANALYSIS 

Even though RNA sequencing is a widely used, mature technology, on the computational side 

bioinformatic methods are still rapidly evolving and there are no absolute gold standards. Different 

approaches in terms of mapping strategy, normalization and statistical modelling for differential 

gene expression exist, the most appropriate should be chosen depending on the experimental 

design and questions. Here will be introduced only the final workflow setup that was chosen in 

this work. RNA sequencing data analysis starts with demultiplexing, quality check of FASTQ files 

and trimming, similarly to DNA sequencing data analysis. Mapping RNA sequencing can be done 

using as reference either genome or the annotated transcriptome. Depending on the reference of 

choice, the number of multi-mapped reads will change, and the quality parameters cut-offs should 

change accordingly. After mapping, post alignment processing is performed similarly to DNA 

pipelines. During mapping, reads are quantified, and raw read counts will represent the input for 

differential gene expression (DGE) analysis. Raw reads quantifications must be normalized for 

technical factors that influence the number of detected reads per genomic region (such as 

sequencing depth in different samples, gene length, RNA and cell type composition) to compare 

different samples. DeSeq288 is one of the most used tools to perform DGE analysis, its 

normalization implies the following steps. At first, a pseudo-reference sample derived from row-
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wise geometric means of all biological replicates is created. Then, for each gene in a sample and 

for every sample, the ratios to the pseudo-reference are calculated. For each sample, the median 

value of all ratios is taken as the scaling factor. Raw counts are then divided by the sample’s scaling 

factor to normalize raw counts. On normalized data, sample level quality checks must be 

performed to evaluate overall similarity between samples, to identify possible outliers and 

experimental biases. Principal Component Analysis (PCA) and hierarchical clustering are 

unsupervised methods commonly used to explore how well replicates cluster together and to 

identify which other parameters (in addition to the object of the comparative analysis) represent a 

major source of variation in the dataset, that therefore should be used as covariates in the model. 

The identification of differentially expressed genes (DEGs) implies determining which genes have 

a significantly different mean expression between groups of interest, given the intra-group 

variation of biological replicates of the same group. This intra-group variation needs to account 

for the fact that variance (Var) increases linearly with the mean (µ) expression and proportionally 

to a coefficient of variation f.  

𝑉𝑎𝑟 = 𝑓 𝜇 

 

Therefore, DeSeq2 introduces a new measure of variation to avoid DEGs to be overestimated in 

lowly expressed genes. Gene-wise dispersion is defined as follows and is computed on normalized 

read counts and used as a measure of variation in the data. 

𝛼 =
𝑉𝑎𝑟 −  𝜇

𝜇2
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Dispersion increases together with variance and decreases with high mean expression values 

(figure 9). In highly or moderately expressed genes, the square root of dispersion equal the 

coefficient of variation, √𝛼 = f. Therefore, the value of dispersion represents the expected variation 

around the mean across biological replicates. Dispersion values represent the variance for a given 

mean in gene expression, since the dispersion estimate for genes with the same µ will differ solely 

based on their variance.  

Figure 9: Dispersion plot computed with DeSeq2. Different genes have different of biological variability, 

but, among the whole transcriptome, there will be a distribution of reasonable estimates of dispersion. The 

red line represents the estimate for the expected dispersion given an expression rate. Black dots the mean 

expression level of each gene and blue dots are the maximum likelihood estimation of the dispersion after 

the shrinking towards the curve. 

 

Once gene-wise dispersion estimates are computed, a curve is fitted to the data to express the 

expected relationship between dispersion and gene expression. To reduce the false positives in 

DGE analysis, dispersion values are shrunken towards the curve, with the exception of extremely 

high values that are not shrunken since those genes could not follow the modelling assumption for 

biological or technical reasons. DeSeq2 models normalized counts on a negative binomial 
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distribution to compute gene’s model coefficients for log2foldchanges (LFC) for each group of 

using the following equation: 

𝐾𝑖𝑗 ~ 𝑁𝐵(𝑠𝑖𝑗𝑞𝑖𝑗 , 𝛼𝑖) 

𝐾𝑖𝑗 = Raw counts for gene i, sample j 

𝑠𝑖𝑗𝑞𝑖𝑗= Normalized counts scaled by a normalization factor 

𝛼𝑖= Dispersion for gene i 

 

The model should be customized adding the most relevant covariates identified in the sample level 

QC step, while comparing the classes of interest. Normalized count data are fit to this equation 

and coefficients (estimates for the LFC) along with their standard error are estimated for each class 

involved in the comparison. LFC of transcripts with either low counts or high dispersion are likely 

to be inaccurate, therefore, DeSeq2 performs a shrinkage of the estimated value towards zero, 

using the distribution of LFC estimates for all genes as a priori knowledge to shrink the LFC 

estimates of genes with little information toward more likely LFC estimates. Accurate LFC values 

are crucial since the null hypothesis under which differentially expressed genes are identified is 

that LCF = 0, that means that no gene expression changes are present between conditions. 

Hypothesis testing is usually performed either with Wald test or Likelihood Ratio Test.  

The result of DGE analysis is a list of all transcripts associated to a log2foldchange and adjusted 

p value. On this output, functional enrichment analysis can be performed to gain more biological 

insight about the affected pathways. There are several different but complementary ways to 

perform functional enrichment analysis. Functional analysis based only on a list of differentially 

expressed genes is referred to as Over Representation (OR) analysis: in this case only genes below 

a chosen p value cutoff are use used for querying databases containing information about 
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biological functions, involvement in pathways and physical interactions like Gene Ontology89 or 

KEGG90 to determine if input genes belonging to a functional category are overrepresented with 

Hypergeometric test. Another way to explore the biological interplay of protein coding transcripts 

is with Protein-Protein interaction networks (PPIn), that provide information about the physical 

interactions between proteins coded by differentially expressed genes and the relative biological 

pathways associated to their physical interactions. A different approach to perform functional 

analysis is with Functional class scoring (FCS) tools, such as GSEA (Gene Set Enrichment 

Analysis)91. The hypothesis of FCS methods is that small but coordinated changes in functionally 

related genes can have biological consequences. Thus, rather than setting an arbitrary p value cut-

off to identify “significant genes”, the log2foldchange of all genes are considered. The gene-level 

statistics from the dataset are aggregated querying the database of choice to generate pathway-

level statistic, providing a p value expressing the probability that by chance the observed 

enrichment of a given pathway happened. Arguably the main result of GSEA is the enrichment 

score (ES), which quantifies the degree to which a gene set associated to a given pathway is 

overrepresented at the top (overexpressed genes) or bottom (under expressed genes) of the 

experimental ranked list of genes. GSEA calculates the ES by walking down the experimental 

ordered list of genes and increasing ES score every time there is a match with gene set of the 

pathway and decreasing it in case of mismatches. The higher the ES, the higher the pathway is 

affected in the tested phenotype. These three computational methods can be used both singularly 

and together, to identify altered pathways from different perspectives. 

 



30 

 

• EPIGENOMICS: HI-C DATA ANALYSIS 

Hi-C analysis provides the pairwise frequencies of interactions of distinct genomic loci which 

reflect their spatial proximity in the nuclei of the analyzed cells. To get to these structural features, 

Hi-C experimental data must be filtered, normalized, and quantified by several steps of 

bioinformatic analysis. Among the considered technologies, Hi-C is the most recent and 

consequently the computational analysis of this type of data is still rapidly evolving but several 

tools are already available92. In this work, TADbit41 was used to perform the analysis of Hi-C 

interaction datasets covering all the steps from aligning the sequenced reads (paired-end reads) up 

to interaction matrices. Similarly to the previous data types, the primary analysis starts with 

demultiplexing of the raw sequencing data to FASTQ files. The main steps of this pipeline are 

summarized in figure 10 and comprehend quality control of the reads, mapping to the reference 

genome, filtering of artifactual reads, normalization of experimental biases, generation of binned 

interaction maps, statistical analysis of the differences and consistencies between experiments, 

identification and comparison of the structural features in the interaction maps. 

Figure 10: Schematic representation of a Hi-C data analysis workflow, consisting in demultiplexing, 

quality controls of input reads, mapping, filtering, normalization and computation of the interaction 

matrix. 
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In addition to the standard quality checks on the FASTQ files, here is assessed also the quality of 

the various steps of the Hi-C experiment, such as the number of undigested and unligated 

restriction sites, the overall percentage of digested sites, the percentage of digested but non-ligated 

extremities (dangling-ends) and the percentage of read-ends with a ligation site. Similarly to 

previous pipelines, the mapping step aims at uniquely aligning the input reads to the reference 

genome, allowing for chimeric reads resulting from the ligation of distal genomic regions. After 

mapping, if needed, biological replicates can be merged into a single file representing the group 

of biological interest. Next, reads that have been uniquely mapped on both ends together with their 

genomic coordinates and their position relative to the closest RE site are kept. Reads are then 

filtered, keeping only structurally informative reads, that are fragments in which both read-ends 

are close to a Restriction Enzyme (RE) site on different fragments and in facing orientation (valid 

pairs), and represent typically around 36-70% of uniquely mapped reads. Other mapped pairs will 

be classified in the following categories, represented also in figure 11: 

Valid pairs:  Read-ends are mapped to different RE fragments in facing orientation, and the 

ligation event is larger than the longest ligation fragment, defined as the upper limit of the library 

size distribution. 

Dangling-end: both read-ends are mapped to the same RE fragment in opposite orientation 

(~15%). 

Extra dangling-end: Read-ends are mapped to different RE fragments in facing orientation but 

are close enough from the RE site to be considered part of adjacent RE fragments that were not 

cut by digestion (~20%).  

PCR artifacts or duplicated: Start positions, mapped length, and strands of both read-ends is the 

same, therefore only one copy is kept (~5%). 
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Random breaks: The start position of one read-end is too far from the RE cut site. These breaks 

are likely produced by non-specific enzyme activity or by random breakage of the chromatin 

(~1%).  

Errors: both read-ends are mapped to the same RE fragment in the same orientation (<1%).  

Valid pairs will be used to assess the number of interactions between two loci. Due to the polymeric 

structure of the chromatin, the number of interactions and genomic distance between two 

interacting sequences is inversely proportional. Interaction matrices are generated by dividing the 

genome in equally long loci (bins) and assigning each end of the read to its binned genomic 

location. This process is called binning and will define the resolution of the Hi-C matrix.  

 
Figure 11: Summary of the different products of a Hi-C experiment (top left) and the categories of mapped 

reads (right). 
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Interaction matrices derived from Hi-C experiments contain different types of biases that can be 

removed with normalization. In TADbit, Vanilla normalization is the default setting. It is based on 

Iterative Correction and Eigenvector decomposition (ICE), that assumes equal experimental 

visibility of each bin. Vanilla normalization performs a single iteration in which each cell is divided 

by the product of the sum of counts in its row times the sum of counts in its column. This process 

equalizes the sum of counts per bin in the matrix, creating a matrix in which all bins have the same 

sums. On the normalized matrix, structural features such as A/B Compartments and Topologically 

Associating Domains (TADs) can be called. At this point, comparative analysis between different 

conditions is performed to possibly unveil structural differences in three-dimensional chromatin 

organization. Next, quantitative comparison and feature extraction from can be performed to 

identify and quantify differences and similarities between conditions.  
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CHAPTER 3: PRION DISEASES 

• PRIONS AND PROTEINOPATIES  

Prion diseases, also known as Transmissible Spongiform Encephalopathies (TSE), are rare, 

invariably lethal and rapidly progressive neurodegenerative disorders that affect humans and other 

species of mammals93. Examples of human prion diseases are Creutzfeldt-Jakob disease (CJD), 

fatal familial insomnia (FFI) and Gerstmann-Straussler-Scheinker disease (GSS), whereas a few 

examples of TSE in other mammals are scrapie in sheep and goats -where this kind of diseases 

were originally first described- and bovine spongiform encephalopathy (BSE) in cows, which 

became sadly famous worldwide due to the late ‘90s outbreak in the United Kingdom (commonly 

known as mad cow disease), that caused more than three hundred human deaths of variant CJD 

due to dietary intake of infected meat and the preventive slaughter of 4.4 million bovines to contain 

the epidemic94–96. Human prion diseases have an annual incidence of on average 1.5 person/million 

people97 and have a complex origin: similarly to other neurodegenerative diseases, the majority of 

patients show a sporadic form of the diseases while in 10-15% of cases the condition has a genetic 

origin98,99. Differently to any other neurodegenerative disease, TSEs can also be acquired with 

medical procedures involving infected tissue or through food. Despite of their etiology, the 

hallmark of this heterogeneous group of diseases is the accumulation in the central nervous system 

of the misfolded form of the cellular prion protein, the “scrapie” prion protein (PrPSc), creating 

aggregates that lead to spongiform change, gliosis, and neuronal loss. The term “prion” was coined 

by Prusiner in 1982 to define the properties of the proteinaceous infectious particle found in 

scrapie, a TSE affecting sheep93. PrPSc acts as an unconventional infectious agent that replicates 

in absence of nucleic acids and is able to induce the same pathologic conformational change in 

other physiological prion protein (PrPc)93, which are present in the central nervous system and 
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particularly abundant the neuronal cell membrane. Even though no changes in the primary 

structure of the prion protein occur, PrPSc proteins gain new biochemical characteristic compared 

to the physiological form: they are insoluble in water and non-denaturing detergents and are 

partially resistant to protease degradation99–101. They are also characterized by an increased 

percentage of β sheets that contribute to the tendency of the misfolded protein to form aggregates 

in fibrillar structures93,102. Despite decades of studies on this topic, it is still not fully understood 

what causes to the first conformational change of PrPc in PrPSc in sporadic cases103–106, but once 

the misfolded  conformation is present at a minimum infectious dose, it propagates its altered 

structure. This will lead to the generation of aggregates and fibrils, neuronal death, spongiosis and 

astrocytosis, responsible for the associated clinical signs such as dementia, motor deterioration and 

eventually death. Prion diseases are associated with a long and silent incubation period that lasts 

several years followed by an aggressive clinical phase that typically leads to death in few months. 

From a molecular point of view, the clinically silent phase is characterized by an exponential 

growth of the PrPSc through seeded protein polymerization. During this phase PrPc monomers are 

recruited and structurally converted in PrPSc, establishing a positive feedback that will generate 

new seeds and ultimately will cause aggregation in fibrils107 (Figure 12). This phase is followed 

by a plateau phase whose length is inversely proportional to PrPc expression level and continues 

until symptoms onset108.  
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Figure 12: Schematic representation of the prion paradigm of seeded protein aggregation. The diagram shows the 

predicted series of events starting from a misfolded monomer to the self-aggregation of protein into fibrillar molecules 

and the final formation of characteristic lesions. Picture taken from Walker & Jucker, 2015107. 

 

PrP misfolding and accumulation causes microscopic histopathologic lesions including PrPSc 

aggregate deposition (associated to amyloid plaques in nearly 10% of cases), spongiform change, 

synaptic and neuronal loss, astrocytic gliosis and microglial activation109. Prion diseases represent 

the clearest example of “protein misfolding diseases”, a classification that indicates all the 

neurodegenerative diseases that are caused by the accumulation of misfolded proteins in the central 

nervous system82,110–113, such as Alzheimer’s Disease, Parkinson’s Disease, Amyotrophic Lateral 

Sclerosis and Frontotemporal dementias. Even though these diseases vary greatly in their 

pathological and clinical features, from a molecular point of view they all share the same 

phenomenon: the seeded aggregation of the disease-specific protein, known as the prion 

paradigm107. The mechanisms of neurotoxicity resulting from misfolding and protein aggregation 

in prion disease as well as in others neurodegenerative diseases is still an open question, since in 

none of the protein misfolding diseases the mechanism of toxicity is completely clear. While there 

are evidence indicating that protein aggregates are the cause of the neurodegeneration, many 
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studies link toxicity to intermediate structures, such as for example the oligomeric state prior to 

the fiber formation that may act as mediator of the toxic signal through the interaction of other 

cellular components106,108. In recent years, also another feature initially typical of prion disease has 

been described in more common neurodegenerative disease: the phenotypic heterogeneity typical 

of prion strains114.  

• PRION STRAINS 

Protein misfolding could result in different structural conformations, that are associated to different 

clinical profiles of the same disease or even different diseases106,115–117. The different 

conformations of PrPSc and their associated phenotypes are referred to as strains, term borrowed 

from virology in a time in which prion diseases were thought to be caused by slow viruses118. 

Different strains are characterized by different incubation times, profile of histological damage, 

PrPSc deposition pattern and clinical signs that remain stable after several passage of inoculation 

in different syngeneic hosts119–121. Strains arise from different conformations of the misfolded 

protein which are a consequence of many factors, such as the genetic background of the host, post-

translational modifications, physical and chemical features of the cellular microenvironment. Who 

are the other players in this process and what is their role is currently largely unknown. Sporadic 

Creutzfeldt-Jakob disease (sCJD) is the most common and best studied human prion disease. As 

will be described in detail below, sCJD is characterized by a wide phenotypic spectrum regarding 

first symptoms, rate of progression, and appearance of other clinical signs. At onset and during 

early stages of the disease, symptoms are variable and often nonspecific: impairment of higher 

cognitive functions is the most frequent neurologic symptom, but visual symptoms are also quite 

frequent due to the major involvement of the occipital lobe in the most common subtype109,121. 

Early stages of the disease are often characterized by psychiatric features, where patients may 
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show hallucinations, psychosis and disorientation. During the progression of the disease cognitive 

deficits increase and further neurologic signs appear, typically including dementia, apraxia and 

mutism, visual signs, and movement impairment due to cerebellar, pyramidal and extrapyramidal 

signs. Ultimately, patients lose contact with the environment and are usually bedridden, mute and 

akinetic. 

Current sCJD classification recognizes six main clinical and pathological phenotypes that largely 

correlate at the molecular level with the genotype at PRNP codon 129 (Met/Met, Met/Val, or 

Val/Val) and the protein type (type 1 or type 2), defined by the length of the main PrPSc fragment 

after proteinase K digestion121. The phenotypic variant or “subtype” results from the combination 

of codon 129 genotype and protein, with two exceptions: The MM(V)1 subtype includes MM1 

and MV1 cases since they are phenotypically indistinguishable, while in the MM2 group two 

subtypes show distinctive histopathological features, either affecting mainly the cerebral cortex 

(MM2-Cortical or MM2C) or the thalamus (MM2-Thalamic or MM2T)109,121. Among the six sCJD 

subtypes, MM1 and VV2 are the most common and only these strains have been considered in this 

work. Phenotype MM1 is the most common of all, accounting for ~65% of sCJD cases. It is 

associated with a rapidly progressive disease that leads to death on average in four months and has 

an average age of onset of 70 years. At onset, most patients suffer from cognitive decline and in 

one third of the cases of ataxia. It is also associated with language ability impairment, visive 

deficits and myoclonus or other involuntary movements. Spongiform lesions are mainly localized 

in the cortex (more prominently in the occipital lobe), striatum, thalamus and  limitedly in the 

molecular layer of the cerebellum while hippocampus is not affected120,122. The VV2 phenotype 

accounts for 15-20% of sCJD cases and is associated with a slightly longer disease (six months on 

average) that appears earlier (64.5 years on average). It is associated to stronger movement 
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impairment, since at onset it shows prominent ataxia, that is followed by cognitive decline and 

dementia, and sometimes also myoclonus. Spongiform degeneration affects cerebellum, limbic 

structures, striatum, thalamus, hypothalamus and brainstem while neocortex is relatively 

spared122,123 (Figure 13).  

 

 

 

Figure 13: Lesion profiles and histopathological hallmarks of sCJD subtypes. Brain regions have been 

highlighted in yellow to indicate “minimal to mild” (score ≤1), in orange for “mild to moderate” (score >1–

2) and red for “moderate to severe” (score >2) neuropathological damage. Adapted from Baiardi et Al. 

2019122. 

 

 

• MOLECULAR BIOLOGY OF THE PRION PROTEIN 

The prion protein is encoded by the PRNP gene, located in chromosome 20 in the human genome. 

The human PRNP gene is 16Kb long and made up of two exons, the second containing the whole 

open reading frame, thus excluding the possibility for alternative splicing. The native 253 amino 

acid long PRNP protein undergoes post-translational modifications resulting in a mature form of 

208 amino acids, lacking a 22 amino acid signal peptide in the N-terminal region and with 

modifications in the C-terminal regions represented by the cleavage of other 23 residues and 

attachment of a glycosil-phosphatidyl-inosytol (GPI) moiety, necessary for its anchoring to the 
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plasma membrane. The prion protein is made up of three domains: at the N-term, ~100 amino 

acids constitute an intrinsically disordered domain, also referred to as flexible tail, a central 

hydrophobic domain and a globular C-terminal domain. The globular domain contains two 

asparagine residues, N181 and N197, that can be N-glycosylated, determining three possible 

isoforms (mono/di glycosylated or unglycosylated), and two cysteines which form a disulfide 

bond, which play an important role in the correct protein folding. The secondary structure of the 

globular domain of PrPc contains three α-helices and two short β-sheets regions, whereas the 

misfolded PrPSc shows a secondary and tertiary structure made of mainly of β-sheets (Figure 14).  

 

 

Figure 14: schematic representation of the secondary structure of PrPc, emphasizing the N-terminal flexible 

tail and the C-terminal globular domain. β-sheets and α-helices are represented by rectangles in red and 

green, respectively, while the hydrophobic domain is highlighted in purple. N-glycosylation sites and 

cysteine disulfide bridge formation are indicated. Figure taken from Hirsch et al, 2017 124. 

 

PRNP is physiologically expressed in several tissues and is particularly abundant in the central 

nervous system in neurons, glia and in the endothelial cells of the blood-brain barrier. The 

functional role of the physiological form of the prion protein is still quite elusive: from an 

evolutionary perspective, both the PRNP gene family and the structural features of the resulting 

PRP protein are conserved in vertebrates and particularly in mammals, suggesting a functional 

importance125. Knockout mice lacking the PRNP gene are resistant to prion diseases but, except 

for this remarkable trait, they do not show any relevant impairment in development or 

behaviour126. Despite being dispensable for life and for proper development, PRNP is involved in 
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a multitude of functions: in the CNS, it is involved in the maintenance of long-term memory127, 

circadian rhythm regulation128, synaptic activity and maintenance of white matter124. It is also 

probable an implication in anti-apoptotic mechanisms and a protective role towards oxidative 

stress, among other putative interplay in diverse cellular functions124. Recent Genome Wide 

Association Studies (GWAS) performed on large cohort of sCJD patients confirmed a significant 

association with codon 129 as the strongest risk factor and identified two other loci associated to 

an increased risk of sCJD, in Syntaxin-6 (STX6, rs3747957) and in Galactosylceramide 

sulfotransferase (GAL3ST1, rs2267161)129, underlying intracellular trafficking and sphingolipid 

metabolism as probable triggering mechanisms and corroborating the likely shared underlying 

molecular dysregulation with other prion-like disorders. The most important known genetic risk 

factor and phenotypic modifier is the polymorphism at the codon 129 of the PRNP gene, that can 

result either in Methionine or Valine. Homozygotes are overrepresented in the population affected 

by prion diseases, while heterozygosity has a protective role. Epidemiologic studies performed on 

Caucasians showed that in the heathy population MV genotype was found in 50% of the 

population, MM in 39% and VV in 11%130 whereas in the affected cases MM genotype represents 

the 69%, VV 18% and MV for 13%. This trend is coherent with the protein-only hypothesis of the 

spreading of PrPSc, that would be facilitated when both alleles code for a protein with the same 

primary sequence. However, it is still an open question how this polymorphism modulates the 

phenotypic outcome of the disease, that is shown in its clearest form in the cases of the pathogenic 

mutation D178N, that combined with 129V in cis results in Creutzfeldt-Jakob disease whereas 

results in Fatal Insomnia when in cis with 129M.  

In terms of gene expression, microarray and RNA sequencing technologies have been applied to 

try to determine the most affected biological processes and molecular pathways at various stages 
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of the disease. Most of the currently available knowledge comes from murine models: according 

to current literature131–133 in the early stage of the disease the most prominent changes in gene 

expression are associate to immune response through the complement system and leukocyte 

infiltration, associated to microglia and astrocyte activation. During the intermediate stages of 

PrPSc accumulation, the transcriptional profile seems to change towards pathways involving 

membrane regulation and vesicle traffic, with the activation of sphingolipid, glycosaminoglycans, 

cholesterol metabolisms. In the final stage of disease, a transcriptional down regulation of genes 

associated with synaptic transmission and axonal growth occurs, followed by activation of cellular 

processes associated with apoptosis. Only few studies about gene expression changes carried out 

on human samples exist25,134–136. Despite being able to provide information only about the final 

stage of the disease, these studies allow to get insights also on sporadic forms of the disease, 

differently from animal model that describe the acquired forms. These works as well highlight a 

prominent impairment of gene expression profiles seem to parallel processes observed in animal 

models, providing anyway further insights towards peculiarity of the human disease and also 

allowing parallelisms with other human proteinopaties and aging. Since in all these conditions 

clinical symptoms appear only when neuronal death has already occurred and given the increasing 

number of people expected to suffer from this kind of pathologies, studies focused on the 

improvement of our understanding of the molecular pathways associated to phenotypic outcomes 

of protein misfolding diseases are very much needed. The previously described technologies and 

computational approaches represent an incredibly resourceful opportunity to address this challenge 

with modern approaches. 
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AIM OF THE PROJECT 
 

This project was carried out in collaboration with the Neuropathology group at the Istituto delle 

Scienze Neurologiche of Bologna and the Applied Physics group of University of Bologna, and 

with the external collaboration of the Structural Genomics group of the Centre de Regulació 

Genòmica-Centre Nacional d'Anàlisi Genòmica (CRG-CNAG) of Barcelona. The aim of this 

project is to improve the current understanding of the molecular biology underlying phenotypic 

heterogeneity in prion diseases and the strain phenomenon with a multi-omics approach. 

Specifically: 

1. Produce, analyze, and compare genomic targeted sequencing data of a carefully selected 

cohort of forty-eight samples belonging to the two strains MM1 and VV2, to identify 

possible genetic modifiers and recurrent genetic patterns in the two classes. 

2. Produce, analyze, and compare transcriptomic data of brain tissue in a subset of the 

previous cohort to characterize differentially expressed genes and altered pathways in the 

two classes at the end of the neurodegenerative process. 

3. Produce, analyze, and compare three-dimensional chromatin organization data in patients 

at disease onset and in heathy controls of the same age to explore possible epigenomic 

causes or response to the disease in peripheral immune cells.  
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MATERIALS AND METHODS 
 

GENOMICS: DNA TARGET SEQUENCING 

• SAMPLES 

Forty-eight patients diagnosed with definite sporadic CJD, accordingly to the updated clinical 

diagnostic criteria for sporadic Creutzfeldt-Jakob disease137, afferent to the IRCCS Institute of 

Neurological Sciences of Bologna, either as outpatients, inpatients or sent for genetic analysis, 

were selected. Among the several samples available, selected samples belonging to patients with 

genotype Met-Met or Val-Val at the codon 129 of the PRNP gene, without any co-pathology, with 

a detailed clinical description of the disease course, with age of onset of the disease as similar as 

possible to the average (~60 years) and with as much other clinical and pathologic information as 

possible.  

• WET LAB 

All experimental steps were performed in the neuropathology laboratory of the IRCCS Institute of 

Neurological Sciences of Bologna.  

o DNA EXTRACTION 

Genomic DNA from peripheral blood or brain tissue was isolated using the Maxwell 16 extractor 

(Promega, Madison, WI, USA). Extracted genomic DNA was quantified using the Quantus 

Fluorometer (Promega) with QuantiFluor double-stranded DNA system. 

o DNA TARGET SEQUENCING 

DNA libraries were prepared with DNA Prep with Enrichment kit (Illumina, CA, USA) 

performing enrichment with Illumina Neurodegeneration panel which covers over 8.7 Mb in 118 
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genes, including introns, exons, untranslated regions and promoters to support surveys of both 

coding and regulatory regions. Library prep was performed following instruction provided by the 

vendor (Illumina DNA Prep with Enrichment Reference Guide (1000000048041)). As suggested 

by the vendor, a quantity between 50-1000 ng of genomic DNA was used as input material. 

Tagmentation of genomic DNA was performed with Enrichment Bead-Linked Transposomes 

(eBLT) with a five-minute incubation at 55°C. Tagmentation performed with eBLT allows the 

simultaneous fragmentation of genomic DNA and the attachment of adapter sequences to 

fragments. DNA fragments anchored to the beads were washed with the appropriate buffer to get 

rid of residues of the previous reaction before Polymerase Chain Reaction (PCR) amplification. 

During PCR amplification, tagmented DNA still bound to eBLT beads is amplified and i7 and i5 

index sequences are added at the extremities of each fragment. In this case, “IDT for Illumina 

Nextera DNA UD Indexes (96 Indexes) Set A” were used as indexes. Cleaved DNA anchored to 

eBTL beads will work as a template while the amplification products will end up in solution. Given 

the not limiting amount of input DNA and to avoid PCR duplicates in the sequencing reads, only 

9 cycles were performed using the following PCR program. 

Initial denaturation 
72°C 

98°C 

3 minutes 

3 minutes 
  

Denaturation 
98°C 20 seconds 

9 cycles Annealing 
60°C 30 seconds 

Extension 
72°C 1 minute 

Final extension 
72°C 3 minutes 
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PCR products are then separated from eBLT beads, and the supernatant will undergo a clean-up 

step with AMPure XP Beads (Beckman Coulter) in which only the amplified DNA with the desired 

length (300-400 bp) will be selected for the further steps.  

PCR products were then quantified with Quantus Fluorometer (Promega) with QuantiFluor 

double-stranded DNA system and fragments length was checked with trough electrophoresis with 

1.3% agarose gel. Indexed samples were then pooled together in four pools with twelve samples 

each. Library normalization by mass was performed using whenever possible 450ng of each library 

in the pool (three pools, 36 libraries), in one pool the normalization was performed using 230 ng 

per library due to lower PCR yield. Pooled libraries underwent enrichment using biotinylated 

oligos (TruSeq Neurodegeneration - Enrichment Oligos only), that capture and enrich for the 

genomic regions covered by this 8.7 Mb gene panel. For each pool, hybridization was performed 

with 30 µl of pre-enriched libraries, 10 µl of probe panel and 60 µl of a mix of Illumina buffer 

provided with the library preparation kit using the following touchdown program: 

Initial denaturation 
95°C 5 minutes 

  

Denaturation 
94°C  

16 cycles,  

Decreasing 2°C per 

cycle 

Touchdown 

hybridation 
62°C 1 minute 

Hybridation 
62°C 90 minutes/overnight 

  

 

Probes are then captured using streptavidin beads to use the affinity of biotin-streptavidin bond. 

Enriched beads-ligated libraries are then extensively washed with buffer specific for this Illumina 

library kit to avoid carryover of the enrichment step. Afterwards, enriched libraries are eluted from 

the beads and are then further amplified with PCR using the following program. 
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Initial denaturation 
98°C 3 minutes 

  

Denaturation 
98°C 10 seconds 

14 cycles Annealing 
60°C 30 seconds 

Extension 
72°C 30 seconds 

Final extension 
72°C 5 minutes 

  

 

Amplified libraries went through a final clean up with AMPure XP beads to remove any PCR-

reagent carryover. Final libraries were then quantified with Quantus Fluorometer (Promega) using 

QuantiFluor double-stranded DNA system and fragments length was checked with trough 

electrophoresis with 1.3% agarose gel. Paired end sequencing was performed directly in the lab 

with a NextSeq 500 (Illumina) sequencer following the instruction provided by the manual 

“NextSeq System Denature and Dilute Libraries Guide”. Pooled libraries were normalized at first 

at 4nM in a unique 5 µl final pool. Denaturation was performed with 5 µl NaOH 0.2N for 5 minutes 

and then stopped with 5 µl Tris HCl pH7 200µM. Pooled libraries were afterwards diluted to 

concentration of 20pM with the Illumina HT1 buffer. Finally, libraries were furtherly diluted and 

then uploaded with the final concentration of 1.2 pM on an Illumina cartridge and flow cell High 

Output (300 Cycles) on which a 150bp paired-end sequencing was performed. 

• DRY LAB: 

Computational analysis was performed on Linux servers of the Applied Physics group of 

University of Bologna. 
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o PIPELINE DEVELOPMENT 

To perform bioinformatic analysis of DNA sequencing data, a specific pipeline was developed. 

All steps were performed using packages installed through the open-source package and 

environment management system miniconda, using the Snakemake workflow management system 

to organize the several steps required in this pipeline. As first step, the entire sequencing run folder 

containing the raw sequencing reads in Base Call (.bcl) format was demultiplexed to FASTQ, that 

underwent a quality control step in which low quality bases and sequencing adapters were 

removed. Subsequently, FASTQ files were mapped to the reference genome (GRCh37) with BWA 

aligner81 using mem algorithm. Aligned files were sorted and marked for PCR duplicates. 

Sequencing coverage was computed with GATK DepthOfCoverage138. Variant calling of Single 

Nucleotide Polymorphisms (SNPs) and small indels was performed using Strelka220, setting the 

analysis for germline variant discovery. Detected variants were subsequently filtered according to 

quality parameters and constrains provided by the genomic regions covered by the target 

sequencing panel. All tools used in the pipeline are summarized in table 1. 

TOOL NAME AIM 

Fastqc Quality check 

Trimmomatic Trimming 

BWA mem mapping to reference genome 

Picard SortSam Sorting 

Picard MarkDuplicates Marking PCR duplicates 

Picard BuildBamIndex Building index 

GATK DepthOfCoverage Compute sequencing coverage 

Strelka2 Variant detection 

GATK Select Variants Filtering low quality and off target calls 

Table 1: summary of the bioinformatic tools used in the custom pipeline built for the secondary analysis 

of DNA target sequencing data. 
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o VARIANT ANNOTATION AND EFFECT PREDICTION  

VCF files were then annotated with BaseSpace Variant Interpreter (Illumina). To exclude technical 

errors in handling several samples at once, in each sample variant discovery was validated on 

already genotyped loci, such as codon 129 in the PRNP gene and/or APOE genotype. Missense 

variants effect prediction was estimated with SIFT139 and Polyphen2140. 

o STATISTICAL ANALYSIS 

The genetic information contained in Variant Call Format (VCF) files was transformed into binary 

data through an in-house python script (https://github.com/UniboDIFABiophysics/binaryVCF), 

generating a matrix in which each row represents a variant reported in the provided VCF files at 

least once (which is encoded as chromosome number-position-reference allele- alternate allele) 

and each column is named after an ID assigned to each sample. In each cell of the matrix is reported 

the number of alternative alleles for each locus, thus 0 indicates that the variant is not present in 

the VCF file of the patient whereas 1 indicates its presence in heterozygosity and 2 the presence 

of the variant in homozygosity. This matrix was used as input for machine learning methods and 

statistical analysis. Allele frequencies of each variant described at least in one patient of our cohort 

were calculated and then compared with those reported in the GnomAD database141 for the non-

Finnish European population using Fisher’s exact test and Benjamini-Hochberg multiple test 

correction. The same statistical test was used to compare allele frequencies between samples from 

MM1 and VV2 strains. 

 

 

https://github.com/UniboDIFABiophysics/binaryVCF
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o FUNCTIONAL ANALYSIS 

Functional analysis was performed with over-representation analysis (ORA), using g:Profiler142 

on two different gene sets: one derived from genes harboring variants predicted as “Pathogenic” 

or “Likely Pathogenic” by both SIFT and Polyphen2, and the second derived by genes harboring 

at least one variant with allele frequency significantly (padj <0.05) higher/lower compared to the 

European population.  

 

o MACHINE LEARNING APPROACHES 

The overall genomic information of the dataset carried in the ternary matrix was used as input for 

supervised and unsupervised analysis, using SciKit-Learn143, Seaborn 144, Plotly express 145, 

pandas, Numpy146 and  SciPy147 packages on Jupyter notebooks. Both supervised and unsupervised 

methods were used to extract as much valuable information as possible from the transformed data. 

To visualize such high dimensional data, different dimensionality reduction techniques were 

tested, such as Principal component analysis (PCA), t-distributed stochastic neighbour embedding 

(t-SNE) using Jaccard similarity as metric and Uniform Manifold Approximation and Projection 

(UMAP). As clustering methods, SciKit Learn dendrograms and K-Means were used. As 

supervised methods, decision trees on binary data labelled accordingly to the different strains of 

each patient were used. The classifier was trained on a random selection of 2/3 of the dataset and 

adequate branching depth was set to avoid overfitting. The classification rules were tested on a 

validation set represented by the remaining 1/3 of the dataset. 
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TRANSCRIPTOMICS: RNA SEQUENCING 

• SAMPLES 

Twenty brain samples of sCJD patients with strain MM1 or VV2 were selected. Sporadic cases of 

sCJD were classified as MM1 or VV2 according to histopathological criteria and PrPSc typing. All 

cases used were selected from previously used cases in the genomic analysis experiment with 

tissue suitable for analysis (body kept refrigerated (2-4°C) before autopsy and with a post-mortem 

< 36 h to minimize RNA degradation) with mild to moderate lesions in the frontal cortex on 

histopathological examination. The frontal cortex was chosen as the area of interest because it is 

pathologically involved in all CJD subtypes and usually available for sampling. 

• WET LAB: 

All experimental steps were performed in the neuropathology laboratories of the IRCCS Institute 

of Neurological Sciences of Bologna.  

o RNA EXTRACTION AND QUALITY ASSESMENT 

Total RNA was extracted from 50mg of frozen frontal cortex with RNeasy Lipid Tissue Mini Kit 

(Qiagen) following the protocol provided by the vendor. Given the infectivity of tissues affected 

by prion diseases, RNA extraction was performed in a laboratory with biosafety level 3. Total 

RNAs were then quantified with NanoDrop 2000 (Thermo Scientific). One µg of total RNA was 

subsequently treated with DNase I, RNase-free (Thermo Scientific), following the protocol 

provided by the vendor. Quality assessment of total RNA’s quality was performed trough capillary 

electrophoresis with Fragment Analyzer system (Agilent Technologies) with RNA Kit (15nt) 

(Agilent Technologies), following the protocol provided. This methodology establishes the 

degradation level of RNA molecules based on their length. For the protocol we selected for 



54 

 

RNAseq library preparation, the most important parameter was DV200, which express the 

percentage of RNA molecules longer than 200nt, that must be at least above 30% and optimally 

above 70%. 

o RNA SEQ  

RNA libraries were prepared with Truseq RNA Exome (Illumina) performing enrichment with 

Illumina Exome Panel – Enrichment Oligos Only. To avoid errors derived by pipetting very small 

volumes, 1µl of total RNA was used as input for each sample. Thus, the quantity of total RNA 

used ranged between 79-110 ng per sample. According to the DV200 value of each sample and to 

the separation profiles on the electropherogram, an optional round of fragmentation was performed 

thru incubation at 98°C for a time ranging between 0 and 8 minutes as reported in table 2. 

ID DV200 (%) Minutes 

#2 90.6 8 

#33 76.8 5 

#32 77.5 0 

#13 95.1 8 

#15 90.9 0 

#12 88.6 5 

#36 86.7 0 

#40 73 0 

#14 69.8 0 

#43 90.9 5 

#18 89.4 5 

#17 79 0 

#44 85 0 

#45 87.9 5 

#46 83.8 0 

#22 86.4 0 
 

Table 2: Quality metrics, expressed in the percentage of RNA fragments longer than 200nt and the 

incubation times for RNA fragmentation of each sample. 
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 After fragmentation, RNA fragments primed with random hexamers were retrotranscribed with 

SuperScript VILO reverse transcriptase (Thermo Fisher) into first strand cDNA. The provided 

buffer contains Actinomycin D to prevent spurious DNA-dependent synthesis, while allowing 

RNA-dependent synthesis and improving strand specificity, was added with SuperScript VILO at 

a ratio of 1:10. To each sample, 8μl of the prepared first strand synthesis buffer was added, and 

the following incubations were performed: 

 

Temperature Time of incubation 

25 °C 10 minutes 

42 °C 15 minutes 

70 °C 15 minutes 

 

Subsequently, the second strand of cDNA was produced. In this step, the RNA template is 

displaced, and a replacement strand is synthetized incorporating uridine in place of 

Deoxythymidine triphosphate (dTTP) to generate double strand cDNA. The incorporation of 

uridine prevents the second strand synthesis during amplification. 20μl of Illumina second strand 

master mix and 5μl of resuspension buffer were added to each sample and after, a 1-hour 

incubation at 16°C was performed to complete the second strand synthesis. The obtained ds 

cDNAs were then purified with AMPure XP, washed with 80% ethanol, and eluted with 

resuspension buffer. cDNAs underwent a 3’ adenylation step, in which a single 'A' nucleotide was 

added to the 3ʹ ends of the blunt fragments to prevent them from ligating to each other forming 

chimeric artifacts during the following adapter ligation step. To each sample, 12.5μl of Illumina 

A-tailing mix was added and the following incubation steps were performed: 
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Temperature Time of incubation 

37 °C 30 minutes 

70 °C 5 minutes 

4 °C/ on ice 1 minute 

 

“Illumina TruSeq RNA Single Indexes (12 indexes, 24 samples) Set A” were used in the adapter 

ligation. To each sample, 2.5μl of RSB, 2.5μl RNA adapters and 2.5μl Ligation enzyme mix was 

added, and then a 10-minute incubation at 30°C performed. Samples were then chilled on ice and 

the ligation reaction was stopped with 5μl Stop Ligation Buffer. Indexed cDNAs were then 

purified with AMPure XP and washed with 80% ethanol in two consecutive rounds and eluted in 

20μl of resuspension buffer. 

DNA fragments carrying adapters at both extremities were then amplified trough PCR using the 

provided PCR master mix and the following protocol: 

 

Initial denaturation 
98°C 30 seconds 

  

Denaturation 
98°C 10 seconds 

14 cycles Annealing 
60°C 30 seconds 

Extension 
72°C 30 seconds 

Final extension 
72°C 5 minutes 

  

 

Amplified libraries were cleaned up with AMPure XP and washed with freshly prepared 80% 

ethanol to remove any PCR-reagent carryover. Libraries were quantified with Quantus 

Fluorometer (Promega) using QuantiFluor double-stranded DNA system and fragments length was 

checked trough electrophoresis with 1.3% agarose gel.  
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Based on the quantification, for each library a volume corresponding to 200ng of dsDNA was 

pooled into 4-plex libraries pools. Pooled libraries underwent a first hybridization with biotinylated 

oligos recognizing coding exons (Illumina Coding Exons Oligos) to enrich only for regions 

corresponding to the initial mRNA. 45μl of pooled libraries were mixed with 50μl of Illumina 

Capture Target Buffer and 5μl of Coding Exons Oligos, hybridization was performed with the 

following touchdown program: 

 

Initial denaturation 
95°C 10 minutes 

  

Denaturation 
94°C  

18 cycles,  

Decreasing 2°C per 

cycle 

Touchdown 

hybridation 
62°C 1 minute 

Hybridation 
58°C 90 minutes 

  

 

Enriched libraries were then mixed with streptavidin magnetic beads (SMB) to capture hybridized 

probes. Two heated washes performed with Illumina washing buffers remove nonspecific binding 

from the beads, afterwards the enriched libraries were eluted from the beads and prepared for a 

second round of hybridization, with the same conditions used in the first one, to ensure high 

specificity of the captured regions. After another round of streptavidin capture and heated washes, 

libraries were purified with AMPure XP beads and amplified trough PCR with the following 

program. 
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Initial denaturation 
98°C 30 seconds 

  

Denaturation 
98°C 10 seconds 

10 cycles Annealing 
60°C 30 seconds 

Extension 
72°C 30 seconds 

Final extension 
72°C 5 minutes 

  

 

Amplified libraries went through a final clean up with AMPure XP beads to remove any PCR-

reagent carryover. Final libraries were then quantified with Quantus Fluorometer (Promega) using 

QuantiFluor double-stranded DNA system and fragments length was checked with electrophoresis 

in 1.3% agarose gel. Paired end sequencing was performed with a NextSeq 500 (Illumina) 

sequencer following the instruction provided by the manual “NextSeq System Denature and Dilute 

Libraries Guide”. Pooled libraries were normalized at first at 4nM in a unique 5 µl final pool. 

Denaturation was performed with 5 µl NaOH 0.2N for 5 minutes and then stopped with 5 µl Tris 

HCl pH7 200µM. Pooled libraries were afterwards diluted to concentration of 20pM with the 

Illumina HT1 buffer. Finally, libraries were furtherly diluted and then uploaded at a final 

concentration of 1.4 pM on an Illumina Cartridge and Flowcell High Output (150 Cycles) on which 

a 75bp paired-end sequencing was performed. 

o DdPCR 

Differential Gene Expression results obtained by RNAseq were validated using droplet digital 

polymerase chain reaction (ddPCR). Five genes with the most extreme Log2FoldChange were 

selected for validation among those differentially expressed: Antileukoproteinase (SLPI), 

Interleukin-1 receptor antagonist protein (IL1RN), Cytochrome P450 3A5 (CYP3A5), Macrophage 

mannose receptor 1 (MRC1) and Olfactory receptor 2M2 (OR2M2). Reverse transcription ware 
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carried out on 1μg of DNAse I-treated total RNA with SuperScript VILO cDNA Synthesis Kit 

(Thermo Fisher Scientific). Reactions for ddPCR assay were performed using the QX200 Droplet 

Generator, the QX200 Droplet Reader, the C1000 Touch Thermal Cycler, and the PX1 PCR Plate 

Sealer (Bio-Rad, Hercules, CA, USA) following the manufacturer’s instructions. Reactions were 

carried out in triplicate using the ddPCR Supermix for Probes (no dUTP). The cDNA copies/unit 

were quantified using the QuantaSoft Software (Bio-Rad). The following three reference genes 

were chosen as housekeeping reference for brain tissue based on available literature research148,149: 

XPNPEP1 (X-prolyl aminopeptidase P1), considered a gold standard reference gene for RNA 

expression studies in post-mortem human brain tissue, UBE2D2 (ubiquitin-conjugating enzyme 

E2D 2), and CYC1 (cytochrome c1). 

• DRY LAB: 

Computational analysis was performed on Linux servers of the Applied Physics group of 

University of Bologna. 

o PIPELINE DEVELOPMENT 

To perform secondary analysis of RNA sequencing data, a specific pipeline was developed. As in 

the previous pipeline, all bioinformatics steps were performed using packages installed through 

miniconda and Snakemake workflow management system was used to organize the several steps 

required in this pipeline. Table 3 presents the main tools used in the pipeline. 

TOOL NAME AIM 

Fastqc Quality check 

Trimmomatic Trimming 

STAR mapping to reference genome and quantification 

Picard SortSam Sorting 
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Picard MarkDuplicates Marking PCR duplicates 

Samtools index Building index 

 

Table 3: summary of the bioinformatic tools used in the custom pipeline built for the secondary analysis 

of DNA target sequencing data. 

 

After demultiplexing, FASTQ files underwent a quality control step in which low quality bases 

and sequencing adapters are removed. Subsequently, FASTQ files were aligned to the reference 

genome (GRCh37) with STAR aligner150 with default setting and read counts quantification. 

Aligned bam files are sorted and marked for PCR duplicates.  

 

o DIFFERENTIAL GENE EXPRESSION ANALYSIS WITH DESEQ2 

Differential gene expression (DGE) was computed on read counts files output of STAR, using 

DeSeq288 on Jupyter notebooks151. Prior to DGE analysis, normalization of read counts between 

samples was performed creating scaling factors (see introduction). On normalized counts, quality 

checks were performed to explore sample-level and gene-level features. Principal component 

Analysis (PCA) and hierarchical clustering were used as sample-level quality checks to assess 

which samples showed the greatest similarity and to identify major sources of variation in the data, 

and among the available metadata of the analyzed samples. Gene-level QC was performed with 

default settings. This step is required to omit genes with zero counts in all samples, with an extreme 

count outlier or with a low mean normalized counts. This gene-level QC step is important to 

remove gene that would otherwise reduce the specificity in correctly identifying differentially 

expressed genes. Based on the previous steps, the design formula of DeSeq2 was written using 

“biological sex”, “experimental batch”, “disease duration” and “post-mortem conservation” values 

as parameters of internal sources of variation while testing for differences between the MM1 and 
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VV2 strains. Differential gene expression was then tested with Wald test on gene model 

coefficients (LFC), using as null hypothesis that no differential expression is present between 

groups. Shrinkage parameters of log2FoldChange were estimated with “apeglm”152 method on the 

comparison between VV2 and MM1, that in this work represent the baseline. Significance cut-off 

of p < 0.05 was used and multiple test correction was performed with Benjamini-Hochberg. 

Results of DGE analysis were the annotated using the R package “Annotables” on human genome 

GRCh37. 

o FUNCTIONAL ENRICHMENT 

To gain more functional insights from the list of differentially expressed genes in the VV2 strain 

compared to MM1, functional analysis was performed with over-representation analysis (ORA) 

and Functional Class Scoring (FCS) approaches (see introduction, chapter 2). Functional analysis 

with both approaches was performed using the Bioconductor packages “ClusterProfiler”153, 

“DOSE”154 and “Pathview”155 on Gene Ontology 89categories. Representation of enriched over 

and under expressed pathways was performed using EnrichmentMap and Annotables on 

Cytoscape. To further explore the biological interplay of differentially expressed genes, we 

performed protein-protein interaction analysis (PPI) mapping under and over expressed genes on 

STRING interactome, considering only physical interactions. Results were functionally 

interpreted with over representation analysis using KEGG database to discover pathways 

significantly enriched based on the physical interactome.  
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EPIGENOMICS: HI-C 

• SAMPLES 

To analyze 3D organization of the genome, it is compulsory to use samples with intact structural 

organization of the nucleus and the nucleic acids in it. To preserve and stabilize the 3D structural 

features of the samples, Hi-C protocol require an in-nuclei chromatin crosslinking prior to snap 

freezing. The crosslinking is performed with formaldehyde, which permeates cell membranes and 

leads the formation of covalent bonds between DNA, proteins and other reactive molecules in 

close proximity. This procedure is not usually performed on standard routine since standard NGS 

protocols study the nucleic acids linear sequence that is perfectly preserved simply storing samples 

at -20°C for DNA and -80°C for RNA. Formalin-fixed paraffin-embedded samples could not have 

been and option for Hi-C experiments because, despite a work from Troll et al156 showed that in 

principle this kind of samples have some applications for structural studies, brains of patients 

affected by prion diseases, after formalin fixation, require an additional treatment to strongly 

reduce prion infectivity with formic acid, which solubilize proteins through protonation, 

destabilize hydrogen bonds and interacts with hydrophobic residues. Therefore, it was not possible 

to use already collected CJD samples for this analysis, thus buffy coat samples of new sCJD 

patients had to be used for this Hi-C experiment. From the beginning of February to the end of 

April 2021, each blood sample of patients with rapidly progressive cognitive decline or suspected 

Creutzfeldt-Jakob Disease afferent to the Cognitive Disorders and Dementia Center of the UOC 

Clinica Neurologica, Bologna, either as outpatients, inpatients, or sent for genetic analysis, was 

treated with the following protocol. Among them, two samples with confirmed diagnosis of CJD 

via positive result at RT-QuIC analysis [not covered in this work] were compared with two samples 
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of healthy volunteering controls chosen to obtain the same average age of 57 years both in cases 

and controls. 

• WET LAB 

o CHROMATIN CROSSLINKING 

Whole blood samples were centrifuged at 4000 rpm for 15 minutes to separate plasma, buffy coat 

and red blood cells. Only white blood cells were collected and washed with red blood lysis buffer 

(NH4Cl 149.9 mM, NaHCO3 10 mM, EDTA 1.1 mM) to remove any residue of erythrocytes. 

Afterwards, buffy coats were washed with abundant Phosphate-Buffered Saline (PBS) buffer pH 

7.4 (Thermo Fisher). Crosslinking of the cells was performed with a solution 1% final of 

Formaldehyde 37% (Sigma Aldrich) and PBS (45 ml PBS, 1.25 ml Formaldehyde 37%), cells 

were incubated for 10 minutes in rotation at room temperature. Formaldehyde quenching was 

performed adding 3.1ml of Glycine 2M (0.125 M final) and leaving in incubation at room 

temperature for 5 minutes and afterwards on ice for 15 minutes. Crosslinked cells were then 

centrifuged at 1200 rpm at 4°C for 10 minutes, the supernatant was discarded, and the cell pellet 

was resuspended in 2ml of PBS. Two further rounds of PBS wash with centrifugation at 1500 rpm, 

4°C for 5 minutes were performed to remove any residue of formaldehyde and glycine. 

Crosslinked cells were then stored at -80°C. 

Samples were then shipped in dry ice and the whole Hi-C protocol was performed in the 

laboratories of the Centre of Genomic Regulation (CRG) while sequencing and computational 

analysis were performed at the National Centre of Genomic Analysis (CNAG), both located in 

Barcelona, in collaboration with the structural genomics group, led by prof. Marc Marti-Renom.  
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o HI-C 

The Hi-C protocol was performed with the ARIMA Hi-C kit for mammalian cell lines (Arima 

Technologies), following the protocol provided by the vendor. As extensively illustrated in the 

introduction section, this part of the protocol captures the sequence and the structure of the genome 

using the covalent bonds that are formed during the crosslinking step. The expected input of nuclei 

per aliquot was estimated on extra samples, since 3D chromatin structure is disrupted by thaw-

freeze cycles. This step is necessary to determine how many crosslinked cells comprise 750ng-

5μg of DNA required by this protocol. Crosslinked cells were resuspended in 500μL of freshly 

prepared ice-cold lysis buffer supplemented with protease inhibitors (10 mM Tris-HCl pH8.0; 10 

mM NaCl; 0.2% NP40; 1X Protease inhibitors (Complete Protease inhibitor, EDTA Free (100X 

in nuclease-free water, Roche) and incubate on ice for 30 minutes. Aliquots of 70μl, 100μl and 

150μl of lysis buffer and cells were collected and centrifuged for 5 minutes at 3,000 rpm at 4ºC. 

The pellet was then washed with 300μL of cold 1X NEBuffer2 (New England Biolabs) and 

resuspended in 190μL of 1X NEBuffer2 and 10μL of 10% SDS (final concentration 0.5% 

(vol/vol)). A 10-minute incubation at 65ºC was performed and afterwards the aliquot was put on 

ice. 400μL of 1X NEBuffer2 and 120μl of 10% Triton X-100 were added to quench the SDS. 

Afterwards, 20μl of proteinase K 20mg/ml was added to reverse crosslinking and tubes were left 

incubating at 65°C overnight. DNA was then purified with AMPure XP beads and quantified with 

Qubit dsDNA HS Assay Kit (Thermo Scientific). In this case, to satisfy the required input of nearly 

2.5μg of DNA (accepted range 750ng-5μg) in no more than 20μl of volume, the amount of cells 

contained in 100μl of the ice-cold lysis buffer and crosslinked cells solution were necessary. The 

four selected samples were thus resuspended in 500μl of freshly prepared ice-cold lysis buffer 

supplemented with protease inhibitors and incubated on ice for 30 minutes. 100μl were taken and 
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centrifuged for 5 minutes at 3,000 rpm at 4ºC. The supernatant was discarded and 20μL of ARIMA 

Lysis Buffer was added, samples were incubated at 4°C for 15 min. To each sample 24μL of 

ARIMA Conditioning Solution was added and a 10-minute incubation at 62°C was performed. 

Then, 20μl of Stop Solution was added and another incubation at 37°C for 15 minutes was 

performed. At this point, the ARIMA restriction enzymes mix was added to each sample together 

with the appropriate buffers and the following incubations were performed. 

Temperature Time of incubation 

37 °C 60 minutes 

65 °C 20 minutes 

25°C 10 minutes 

 

 After the RE digestion, 5’-overhangs are filled in and marked with biotin using biotinylated 

nucleotides, adding to each tube the appropriate ARIMA buffer and enzyme and with a 45-minutes 

incubation at room temperature for 45 min. Extremities of crosslinked DNA fragments are then 

ligated with the provided ligase enzyme and with a 15-minutes incubation at room temperature. 

Crosslinking is then reversed with the provided ARIMA enzyme and samples were incubated as 

follows. 

 

 

 

DNA was then purified with AMPure XP beads and quantified with Qubit dsDNA HS Assay Kit 

(Thermo Scientific). Intermediate quality checks were performed to quantify the fraction of 

Temperature Time of incubation 

55 °C 30 minutes 

68 °C 90 minutes 

25°C 10 minutes 
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proximally-ligated DNA that has been labelled with biotin, that is the fraction of DNA that will be 

used in the next generation sequencing library preparation following the Hi-C protocol. 

o HI-C LIBRARY PREPARATION  

For each sample, 1µg in 100µl of Hi-C product was fragmented trough sonication (Bioruptor Pico 

sonicator) to obtain DNA fragments of 300-400 bp. In this case, 5 cycles of 20 seconds ON and 

60 seconds OFF resulted to be the best condition for obtaining fragments of the desired length, 

which was assessed through electrophoresis. Library preparation was performed using NEBNext 

DNA Library Prep Master Mix Set for Illumina (New England BioLabs) following instructions 

provided by the vendor. Hi-C biotinylated fragments were isolated from the rest the fragments 

with a biotin-streptavidin pull down using 20μl of Dynabeads Streptavidin T1 beads (Invitrogen) 

and incubation for 30 minutes in rotation at room temperature. Two rounds of washing with biotin 

binding buffer followed the pulldown. Afterwards, samples were resuspended in 100 µL of end 

repair mix (NEBNext End repair module E6050L, 10 µL of 10X NEBNext End Repair buffer, 5 

µL of NEBNext End Repair Enzyme Mix, 85 µL H2O) and incubated for 30 minutes at room 

temperature. Beads were then separated by the supernatant on a magnetic stand and washed with 

biotin binding buffer. The A-tailing step was performed resuspending the beads with 100 µL dATP 

attachment mix (NEBNext A-tailing module E6053L, 10 µL of 10X NEBNext dA-tailing buffer, 

5 µL of 5 U/µL NEBNext dA-tailing enzyme mix, 85 µL of H2O) and incubating at 37°C for 30 

minutes. Beads were again washed with biotin binding buffer and index adapters were added to 

the extremities of each fragment. Beads were resuspended in 50µL of Adapters ligation mix (10 

µL of 5x NEB Quick ligation reaction buffer, 2.5 µL of NEBNext Multiplex Oligos for Illumina 

(96 Unique Dual Index Primer Pairs), 2 µL of NEB T4 DNA ligase, 35.5 µL H2O) and incubated 

at room temperature for 15 minutes. To each library, 3 µl of NEBNext USER (from 96 Unique 
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Dual Index Primer Pairs) were added and samples were incubated for 15 minutes at 37ºC. Two 

rounds of washing with biotin binding buffer followed the index ligation, streptavidin beads were 

then resuspended in 20 µl of sterile H2O. At this point, libraries were amplified trough PCR using 

25 µl NEBNext High-Fidelity 2X PCR Master Mix (M0541S), indexes from NEBNext Multiplex 

Oligos for Illumina (96 Unique Dual Index Primer Pairs) with the following program: 

Initial denaturation 
98°C 30 seconds 

  

Denaturation 
98°C 10 seconds 

8 cycles Annealing 
65°C 30 seconds 

Extension 
72°C 30 seconds 

Final extension 
72°C 5 minutes 

  

 

In this on-beads amplification, the DNA template will stay attached to the DynaBeads while the 

amplified library will be in the supernatant. Amplified libraries were then separated from the beads 

on a magnetic stand and supernatant went through a final clean up with AMPure XP beads to 

remove any PCR-reagent carryover. Libraries were eluted from AMPure beads in 30µl of Tris 

Buffer EB (Qiagen) and quantified with a fluorometric method (Qubit, Thermo Fisher) while 

libraries length was checked trough electrophoresis with 1.3% agarose gel. All libraries satisfied 

all the quantity and quality check required prior to sequencing. Sequencing was performed by the 

sequencing facility of the National Centre of Genomic Analysis (CNAG) with Illumina 

NovaSeq6000 sequencer, performing paired end sequencing 2x150bp reads, with a minimum 

sequencing depth of 400 M PE reads/sample. 
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• DRY LAB 

Computational analysis of Hi-C data was performed in the National Centre of Genomic Analysis 

(CNAG) of Barcelona. This analysis was performed with TADbit tools41,157 for secondary analysis 

and matrices generation, while CHESS158 was used for the comparative anlysis. Similarly to 

previous sequencing data, demultiplexing of raw data represents the first step. All following steps 

-unless stated- were performed with TADbit tools, setting appropriate options as shown in the 

available documentation. FASTQ files underwent a quality control step before being mapped to 

the reference genome (GRch38). TADbit uses GEM mapper159 using and iterative mapping 

strategy and using the previous knowledge of the cutting sequences of the restriction enzymes used 

in the Hi-C library preparation. Next, mapped read are filtered to correct for experimental biases 

and errors, and to omit sites with many zero counts. A normalization step was then performed with 

default setting using Vanilla normalization72. This normalization is a variation of the ICE160 

method, in which a single iteration is performed dividing each element by the sum of counts in its 

row times the sum of counts in its column. At this point, read pairs are binned at a specified 

resolution, such as 50kb or 100kb for TADs and compartments detection, respectively. Biological 

replicates were also merged into cases and controls, respectively. On the merged data, normalized 

interaction matrices were generated for each biological replicate at 50kb and 100kb resolution for 

each chromosome, and at higher resolution (25, 20, 10 kb) for specific loci of interest. On this 

data, a quantitative comparative analysis was performed with CHESS158 using default settings and 

tuning noise/signal score when necessary, according to visual inspection of the Hi-C maps 

produced. This tool relies on the concept of the structural similarity index (SSIM) (frequently used 

in image analysis) to Hi-C matrices, assigning a structural similarity score and an associated P 

value to pairs of genomic regions.  
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RESULTS 
 

Forty-eight samples from patients affected by CJD MM1 and VV2, without any co-pathology, 

with a detailed clinical description of the disease course, with age of onset of the disease as similar 

as possible to the average (~60 years) and with as much clinical and pathologic information as 

possible were selected. Demographic and clinical information on the dataset is summarized in table 

4. Males and females are equally distributed in the cohort and in the two subgroups, the average 

age of onset in the MM1 group was 65.8 years (σ = 7.6 years) and in the VV2 was 65.7 (σ = 8.5 

years). Disease duration in the MM1 group was 3.1 (σ = 1.8 months) and in the VV2 6.8 months 

(σ = 2.4 months). 

Sample Strain Disease Duration Age of Onset Co-pathology Sex 

#1 VV2 13 64 A-beta 0, tau 0 F 

#2 VV2 6 57 A-beta 2, tau + F 

#3 VV2 7 78 A-beta 0, tau 1 M 

#4 VV2 6 49 A-beta 0, tau 0 F 

#5 VV2 5 75 A-beta 3, tau 0 M 

#6 VV2 5 58 A-beta 0, tau 0 F 

#7 VV2 6 79 A-beta 3, tau 1 F 

#8 VV2 6 63 A-beta 0, tau 0 M 

#9 VV2 5 60 A-beta 1, tau 1 M 

#10 VV2 8 61 A-beta 2, tau 0, CAA F 

#11 VV2 10 71 A-beta 3, tau + F 

#12 VV2 4 78 A-beta 0, tau II F 

#13 VV2 5 49 A-beta 0, tau 0 F 

#14 VV2 7,5 66 A-beta 0, tau 0 M 

#15 VV2 6 74 A-beta 1, tau 1 M 

#16 VV2 7 71 A-beta 0, tau + F 

#17 VV2 9 64 NA F 

#18 VV2 6 70 AGD, A-Beta neg M 

#19 VV2 9 65 A-beta 0, tau 1 F 
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#20 VV2 5,2 72 A-beta 3, tau + M 

#21 VV2 2,6 64 A-beta 0, tau ARTAG nel 13 M 

#22 VV2 14 68 Neg M 

#23 VV2 5 61 NA F 

#24 VV2 7 59 A-beta 0, tau 0 F 

#25 MM1 2 59 A-beta 0, tau 0 F 

#26 MM1 10 70 A-beta 0, tau 0 F 

#27 MM1 9 62 A-beta 0, tau + F 

#28 MM1 3 72 A-beta 0, tau 0 M 

#29 MM1 2 59 A-beta 0, tau + M 

#30 MM1 5,5 64 A-beta 3, tau + F 

#31 MM1 1,5 69 A-beta 0, tau + M 

#32 MM1 2,5 76 A-beta 1, tau + M 

#33 MM1 4,5 68 A-beta 1, tau + F 

#34 MM1 3 62 A-beta 0, tau 1 M 

#35 MM1 1 67 A-beta 0, tau + M 

#36 MM1 2 66 A-beta 2, tau 1 M 

#37 MM1 2,5 65 A-beta 0, tau 0 M 

#38 MM1 1,5 68 A-beta 1, tau 1 M 

#39 MM1 3,5 43 Neg M 

#40 MM1 1,5 65 A-beta neg, tau 1 F 

#41 MM1 1,5 67 A-beta 1, tau + M 

#42 MM1 1 61 A-beta 2, tau + M 

#43 MM1 2 74 A-beta 1, tau + M 

#44 MM1 2,5 63 A-beta neg, tau + F 

#45 MM1 1,5 67 A-Beta 1a, tau+ M 

#46 MM1 3 57 Neg. M 

#47 MM1 3,1 74 A-beta 0, tau 0 M 

#48 MM1 5,1 80 A-beta 1a, tau 1 M 

 

Table 4: Clinical information on the dataset used in the genomic layer. For each sample, are reported strain 

type, disease duration expressed in months, age of onset of the disease (years), markers of co-pathology 

and biological sex.  
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GENOMICS: DNA TARGET SEQUENCING 

Secondary analysis of target sequencing data provided information about single nucleotide 

polymorphisms (SNPs) and small indel variants stored in VCF files for the 48 samples analyzed. 

On these data, variant annotation, statistical analysis, and data science approaches were performed. 

The average mean coverage at a sample level in this dataset is 109.25X (σ = 46). After applying 

filters described in the materials and methods section, 57’005 different variants were identified in 

the 118 analyzed genes. In the MM1 group 42’169 different variants were identified, while in the 

VV2 47’594. Variants distribution on the 118 genes analyzed was compared between the two 

strains, showing no significant difference between conditions. On average, each sample carried 

14’369 variants (σ =823). In this case as well no significant difference in terms of average number 

of variants was present in MM1 and VV2 patients, even though MM1 strain samples showed a 

higher homogeneity in this regard compared to VV2 samples (MM1: 14366 σ = 528, VV2: 14373 

σ = 1051). 

o VARIANT ANNOTATION 

Variants were annotated with Base Space Illumina Variant Interpreter. Variants of interest were 

selected based on their consequence and predicted effect. In this dataset, 35 different missense 

variants were predicted as “probably/likely pathogenic” or “deleterious” by both Polyphen2 and 

SIFT predictors. These variants, reported in table 5, involve 26 genes. Seven variants were found 

more than once in the dataset, for a total of 62 findings of likely deleterious variants (complete list 

in appendix/supplementary), equally distributed between the two strains (31 in MM1 and 31 in 

VV2). No difference was found in terms of number of samples carrying at least one putative 

damaging mutation between the two strains, since 17 MM1 and 16 VV2 cases carried at least one 

of such variants.  
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VID Gene HGVSC HGVSP SIFT 

Prediction 

PolyPhen2 Prediction 

1:17312787:A ATP13A2 c.3472C>T p.(Arg1158Cys) deleterious possibly damaging 

1:207680070:T CR1 c.313C>T p.(Arg105Cys) deleterious probably damaging 

1:207739203:T CR1 c.2537C>T p.(Ser846Phe) deleterious possibly damaging 

1:20976976:A PINK1 c.1538G>A p.(Gly513Asp) deleterious probably damaging 

11:108117787:T ATM c.998C>T p.(Ser333Phe) deleterious probably damaging 

11:2189817:C TH c.484T>G p.(Phe162Val) deleterious possibly damaging 

11:88027209:C CTSC c.1357A>G p.(Ile453Val) deleterious possibly damaging 

14:92905737:C SLC24A4 c.377T>C p.(Leu126Pro) deleterious probably damaging 

14:93119136:A RIN3 c.1742G>A p.(Arg581Gln) deleterious probably damaging 

14:93142861:C RIN3 c.2377T>C p.(Tyr793His) deleterious possibly damaging 

15:62269347:C VPS13C c.2342T>G p.(Leu781Trp) deleterious probably damaging 

15:89865073:C POLG c.2492A>G p.(Tyr831Cys) deleterious possibly damaging 

17:42427095:A GRN c.325G>A p.(Gly109Arg) deleterious probably damaging 

19:1046239:G ABCA7 c.1456C>G p.(Pro486Ala) deleterious probably damaging 

19:1047336:A ABCA7 c.2026G>A p.(Ala676Thr) deleterious probably damaging 

19:1058635:T ABCA7 c.5168C>T p.(Ser1723Leu) deleterious probably damaging 

19:15273335:T NOTCH3 c.5854G>A p.(Val1952Met) deleterious probably damaging 

19:15289863:A NOTCH3 c.3691C>T p.(Arg1231Cys) deleterious possibly damaging 

19:15290917:A NOTCH3 c.3293C>T p.(Thr1098Ile) deleterious possibly damaging 

19:45375208:T NECTIN2 c.577C>T p.(Arg193Trp) deleterious probably damaging 

2:202587783:T ALS2 c.3685T>A p.(Trp1229Arg) deleterious possibly damaging 

2:74759825:A HTRA2 c.1195G>A p.(Gly399Ser) deleterious probably damaging 

20:3888719:A PANK2 c.775G>A p.(Gly259Arg) deleterious probably damaging 

22:38539240:A PLA2G6 c.481C>T p.(Arg161Cys) deleterious probably damaging 

4:170398474:C NEK1 c.2235T>G p.(Asn745Lys) deleterious probably damaging 

5:126158560:T LMNB1 c.1474G>T p.(Ala492Ser) deleterious possibly damaging 

6:161781201:A PRKN c.1204C>T p.(Arg402Cys) deleterious probably damaging 

7:100016781:C ZCWPW1 c.314A>G p.(Glu105Gly) deleterious probably damaging 

7:143088584:T EPHA1 c.2897G>A p.(Arg966His) deleterious probably damaging 

7:143092269:A EPHA1 c.2090C>T p.(Pro697Leu) deleterious possibly damaging 

7:37923923:C NME8 c.1013T>C p.(Ile338Thr) deleterious probably damaging 

7:37924854:A NME8 c.1247G>A p.(Ser416Asn) deleterious probably damaging 

7:37936557:A NME8 c.1630G>A p.(Ala544Thr) deleterious probably damaging 

9:132580901:G TOR1A c.646G>C p.(Asp216His) deleterious possibly damaging 

9:135202325:C SETX c.4660T>G p.(Cys1554Gly) deleterious probably damaging 

 

Table 5: list of 35 probably damaging missense variants identified in this sporadic cohort 

To acquire more biological insights about this gene list, functional enrichment performed with 

over representation methods on this gene list showed an enrichment in pathways involved in stress 
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response, like regulation of mitochondrial autophagy and mitochondrial depolarization, response 

to oxidative stress, selective autophagy and lysosomal transport, together with fewer pathways 

involved in dopaminergic synaptic transmission.  

Of the 26 genes involved in these possibly damaging variants, seven are affected in both MM1 and 

VV2 patients (CR1, EPHA1, NME8, NOTCH3, POLG, RIN3, TOR1A), while nine genes were 

affected only in MM1 samples (ABCA7, ALS2, ATP13A2, CTSC, PANK2, SETX, SLC24A4, TH, 

VPS13C) and other ten only in VV2 samples (ATM, GRN, HTRA2, LMNB1, NECTIN2, NEK1, 

PINK1, PLA2G6, PRKN, ZCWPW1) (complete name of protein coded by each gene in appendix). 

Therefore, even though in terms of number of likely pathogenic variants no difference is visible 

between strains, specific genes seem to be affected exclusively in one strain and not in the other. 

As will be discussed in the following chapter, the ten genes affected only in the VV2 cohort include 

important genes involved in energetic metabolism and mitophagy that are also strongly associated 

to Parkinson Disease.  

o STATISTICAL ANALYSIS 

Allele frequencies were compared between the two considered strains and between the whole sCJD 

dataset and the European population (GnomAD database) with Fisher exact test and Benjamini-

Hochberg multiple test correction. Comparing MM1 and VV2 strains, four variants showed a 

significantly different allele frequency between the two classes (Table 6). Notably, one of these 

variants (rs1799990) is the codon 129, which was used as a criterion to distinguish the two strains, 

and the remaining three intronic SNV are as well in the PRNP intronic region and are in linkage 

disequilibrium with codon 129. Therefore, these three variants carry the same information, that 

was expected given the experimental design.  
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ID variant Allele freq. 

MM1 

Allele freq. 

VV2 

p-value p-adj Annotation Rs Id 

chr20-4671225-T-G 0,5 1 1,2E-07 0,002 c.-11+3843T>G rs6052769 

chr20-4667829-T-C 0,5 1 2,2E-06 0,027 c.-11+447T>C rs35519959 

chr20-4672816-A-G 0,5 1 4,2E-08 0,001 c.-11+5434A>G rs6052771 

chr20-4680251-A-G * 0,5 1 2,5E-09 0 c.385A>G rs1799990 

Table 6: Single nucleotide variants that showed a significantly different allele frequency in the two 

considered strains.  

 

The same comparative analysis was performed considering the whole dataset of sCJD patients 

versus the allele frequencies referring to the European population reported in the GnomAD 

database. In this comparison, 238 variants distributed in 37 different genes showed a significantly 

different allele frequency between sCJD and reference European population (p-adj < 0.05). 

Functional analysis with over representation methods on these 37 genes showed an enrichment of 

chaperone binding functions. In terms of altered biological processes, cellular component 

maintenance and specifically synapse organization maintenance showed the lowest p-adj values, 

followed by regulation of cell migration and motility and regulation of protein stability. These 

results are reported in Table 7.  

Term name Term ID padj 

chaperone binding GO:0051087 1.945×10-2 

cellular component maintenance GO:0043954 3.276×10-4 

regulation of synapse organization GO:0050807 5.839×10-3 

positive regulation of cell migration GO:0030335 1.975×10-2 

positive regulation of cell motility GO:2000147 2.668×10-2 

regulation of calcium ion transmembrane transport GO:1903169 3.065×10-2 

regulation of protein stability GO:0031647 4.403×10-2 

 

Table 7:  Single nucleotide variants that showed a significantly different allele frequency in the two 

considered strains. 

https://biit.cs.ut.ee/gprofiler/convert?organism=hsapiens&query=GO:0051087
https://biit.cs.ut.ee/gprofiler/convert?organism=hsapiens&query=GO:0043954
https://biit.cs.ut.ee/gprofiler/convert?organism=hsapiens&query=GO:0050807
https://biit.cs.ut.ee/gprofiler/convert?organism=hsapiens&query=GO:0030335
https://biit.cs.ut.ee/gprofiler/convert?organism=hsapiens&query=GO:2000147
https://biit.cs.ut.ee/gprofiler/convert?organism=hsapiens&query=GO:1903169
https://biit.cs.ut.ee/gprofiler/convert?organism=hsapiens&query=GO:0031647
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Three of the overrepresented variants in the sCJD cohort were also predicted as probably 

pathogenic by SIFT and PolyPhen2 variant predictors: GRN p.Gly109Arg (p.adj = 0.02, sample 

#17, VV2), NME8 p.Ser416Asn (p.adj = 0.03, sample #40, MM1) and RIN3 Arg581Gln (p.adj = 

0.03, sample #8, VV2). For none of these three variants is available a clinical significance value 

on ClinVar. Each one of these variants was found in only one sample in the analyzed cohort, thus 

a validation in a larger cohort would be necessary to confirm this preliminary finding. 

 

o DATA SCIENCE: UNSUPERVISED MACHINE LEARING  

In this context, the aim of the unsupervised analysis is to highlight possible recurrent genetic 

patterns that characterize the two strains that not necessarily involve coding variants. The binary 

transformation of the complete genetic information contained in VCF files led to the generation of 

a matrix with shape 57005×48 in which each row represents a variant found at least in one sample 

and each column stands for each sample. In the matrix, 0 indicates that the variant is not present 

in the VCF file of the patient whereas 1 indicates its presence in heterozygosity and 2 the presence 

of the variant in homozygosity. This matrix was used as input for machine learning methods. It is 

expected that most variants will account for the normal genetic differences that exist between 

different individuals and for shared genetic traits of Caucasians, thus it is assumed that a large 

number of variants will not cause significant functional variation. For these reasons, both linear 

and non-linear dimension reduction algorithms (such as PCA and t-SNE or UMAP, respectively) 

were tested on the matrix containing the whole genetic information, to explore possible patients or 

SNPs that cluster together. The first exploratory analysis was performed trough dimension 

reduction with Principal Component Analysis (PCA) (figure 15). In the plot each dot represents a 

sample. The first eighteen principal components explain 50% of the overall variance of the dataset 
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(supplementary, table S3). PC1’s main contributor is a variant in the genomic region of to the gene 

E3 ubiquitin-protein ligase parkin (PARK2/PARKN, chr6-163069504-G-A), the main contributor 

to the second principal component is a SNV in genomic region of the gene Phosphatidylinositol-

binding clathrin assembly protein (PICALM, chr11-85710180-G-A).  

 

Figure 15: 3D plot of PCA of the 47005x48 matrix. In the plot, each point represents a sample. The three 

axes x, y, z represents the first three principal components, that contribute to the 4.29%, 3.73 and 3.51% of 

the explained variance, respectively. Red arrows represent the top contributing variants of the first three 

PC, harboured in intronic regions of the genes PRKN, PICALM and ANO3, respectively. 

 

On the PCA plot (figure 12), no clear clusters were evident by eye. To check if the sample 

distribution based on the overall patient’s genetic background matched biological features, labels 

matching sex, geographical origin of the patient and strain were combined with the bidimensional 

PCA plot, showing no specific clusterization based on the most likely confounder and the 

biological feature object of this study. On this matrix, two different unsupervised clustering 
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methods were applied: hierarchical clustering with dendrograms and k-means (n=2). Hierarchical 

clustering did not identify two clusters, since it divided one sample from the rest of the dataset, 

therefore highlighting a possible outlier. K-means on the contrary, identified two numerically 

similar classes, separating samples along the first principal component (Figure 16), that as 

previously said had PRKN as main contributor.   

Figure 16: Plot of the K-Means clustering on the PCA plot. K-Means recognizes two clusters mainly 

distributed along the first principal component of the PCA plot. 

 

Unfortunately, the two clusters did not match the strain type nor any of the available biological or 

clinical feature available for this dataset. Comments on these results are reported in the discussion 

chapter.  

o DATA SCIENCE: SUPERVISED MACHINE LEARING  

Supervised classifiers were used for automatic recognition of genetic patterns among the 57005 

variants identified in this dataset. Decision trees have been previously used in clinical genomics 

and precision medicine applications to interpret the role of genetic variants in complex 
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diseases161,162. In the 57005×48 matrix, to each sample a label corresponding to the strain (class: 

“MM1” or “VV2”) was added.  The classification was achieved perfectly, with 100% of accuracy 

(ratio of correctly predicted observation to the total observations) on the test set, basing the 

classification on the codon 129 (chr20-4680251-A/G). To test for other recurrent genetic patterns 

that could characterize the two phenotypic groups, we removed from the input data given to the 

classifier the row of the matrix indicating codon 129. As expected, accuracy decreased both in 

training set and in test set, but interestingly the classifier managed to distinguish the two diseases 

with a good accuracy (training = 1, test 0.81, table 8).   

 
Precision Recall  F1 Support 

MM1 0.73 1 0.84 8 

VV2 1 0.62 0.77 8 

 

Table 8: Classification metrics of decision trees algorithm. Precision is the ratio of correctly predicted 

observation to the total predicted positive observations (True Positive / True Positive + False Positive), 

Recall is the ratio of correctly predicted positive observations to all observations in actual class (True 

Positive / True Positive + False Negative), F1 Score is the harmonic mean of Precision and Recall (F1 Score 

= 2*(Recall * Precision) / (Recall + Precision)). Support indicates class numerosity. 

 

The classification is based on two intronic variants, in PRNP and FERMT2 genes (figure 17). 

According to common databases and genomic search engines such as VarSome44, OMIM45, 

ClinVar46 or HGMD47, the intronic variant in FERMT2 was never previously reported as 

functional intronic variant. The intronic variant in PRNP is also referred to with the ID rs6037932, 

this variant was used in a phylogenetic study about founder effect in another prion disease (FFI) 

in 2008163.  This SNP is in the intronic region between exon 1 and 2, 5kb away from codon 129. 

This SNP is not in complete linkage disequilibrium with the allele 129V, even though in this cohort 

as well as in the previously cited work it is more frequently associate to it. On the other hand, the 
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FERMT2 variant Chr14-53391236-T-G in this cohort is always associate to the allele 129V. These 

results will be discussed in the following chapter.  

 

 

Figure 17: Decision tree graphical representation. The classification was performed using two variants as 

parameters. First, a sample did not carry the SNV A/T in position 4675155 of the PRNP gene, it was 

assigned to the MM1 class. Afterwards, if a sample carried that variant and also the SNV T/G in position 

53391236 in the FERMT2, it was assigned to the class VV2. 

 

TRANSCRIPTOMICS: RNA SEQUENCING 

Total RNAs were extracted from frontal cortex of frozen postmortem brain tissue. RNA 

degradation was evaluated with Fragment Analyzer to acquire in each sample the percentage of 

RNA molecules longer than 200 nucleotides (DV200). To be able to perform RNA sequencing with 

the chosen library preparation protocol, this parameter needs to be higher than 70% to consider the 

input material of high quality, 50-70% as medium quality 30-50% for low quality and under 30% 

results cannot be considered as reliable. All samples had a DV200 value higher than 70%, with an 

average DV200 in this dataset of 84.5% ( = 7.2), as showed in table 9. 

 



81 

 

Sample ID Strain DV200  Sample ID Strain DV200 

 #32 MM1 76.8  #2 VV2 90.6 

#33 MM1 77.5  #13 VV2 95.1 

#36 MM1 86.7  #15 VV2 90.9 

#40 MM1 73  #12 VV2 88.6 

#43 MM1 90.9  #14 VV2 69.8 

#44 MM1 85  #18 VV2 89.4 

#45 MM1 87.9  #17 VV2 79 

#46 MM1 83.8  #22 VV2 86.4 

 

Table 9: Total RNA quality from extraction. 

All intermediate quality checks in library preparation were satisfied and quality sequencing metrics 

were in the range recommended by Illumina (Recommended values: Cluster density =170-220 

K/mm2, Cluster passing filter: > 80%). During secondary analysis, uniquely mapped reads were 

quantified, with an average value of 81.39% ± 2.6 (70-90% range of optimal experimental data, 

~63000 different transcripts). Sequencing depth was also quantified in each sample, on average 

35.27M (Million reads) ± 13.5M (25M optimal according to Illumina guidelines to acquire a 

complete picture of also lowly expressed transcripts). In the whole dataset, more than 63’000 

transcripts were annotated and quantified. 

o DIFFERENTIAL GENE EXPRESSION ANALYSIS 

Comparative analysis of transcriptomic profiles between the two strains was performed with 

DeSeq2. Based on the sample-level quality checks, the strongest covariates in the dataset were 

biological sex, experimental batch, post-mortem conservation time of the tissue before deep 

freezing, and disease duration. From DGE analysis, 1798 differentially expressed transcripts were 

identified in the comparison between VV2 and MM1, where MM1 are used as baseline in the 

contrast. Among them, 1196 transcripts are significantly over expressed in VV2 compared to 

MM1, while 602 are significantly under expressed in VV2 compared to MM1 (that is over 
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expressed in MM1 compared to VV2, Figure 18). Differential expression of the six transcripts 

with the most extreme LFC values were validated with ddPCR. (in appendix, top 20 DGE per 

strain)   

Figure 18: Volcano plot of the 63568 transcripts used in the DGE analysis. In grey are shown transcripts 

that do not vary between conditions, in green are highlighted the transcripts that show a relevant differential 

expression in terms of LFC (|ΔLFC| ≥ 1), in blue transcripts that show a statistically significant variation 

(Padj<0.05 after Wald test and BH correction) but low ΔLFC, while in red transcripts that exceed both 

thresholds.  

 

Based on the significant differentially expressed genes, a heatmap with hierarchical clustering of 

the expression profiles is produced (Figure 19). In the heatmap, Z-scores are computed subtracting 

the mean expression value and dividing by the standard deviation. The Z-scores are computed after 

the clustering, therefore they affect only the graphical aesthetics, while the clustering is performed 

on normalized counts. Hierarchical clustering shows a good, even though not perfect, identification 

of the two strains based on the results of the differential gene expression analysis, with a smaller 
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cluster made of five VV2 samples and one MM1 sample, and a larger cluster made of ten samples, 

seven of which are MM1 and three are VV2.  

 

Figure 19: Heatmap of the 1798 differentially expressed genes in VV2 strain compared to MM1. 

Hierarchical clustering identified two clusters, one enriched in MM1 samples (identified by a light blue 

label) and the other with VV2 more represented (pink label). 
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o FUNCTIONAL ENRICHMENT 

To gain functional insights about the consequences of differentially expressed genes, functional 

enrichment was performed with three different computational methods: over representation 

analysis, gene set enrichment analysis and protein-protein interaction networks. These methods, 

as explained in the introduction and in the materials and methods chapters, are based on different 

assumption and tests, nevertheless they provided shared or coherent results, expanding and 

reinforcing one another.  

1. OVER REPRESENTATION ANALYSIS 

This method uses only a subset of genes to find significantly enriched pathways and functional 

modules between a list of “significant” inputs. For this purpose, significantly over expressed genes 

in MM1 (p.adj <0.05, LFC < 0) and over expressed genes in VV2 (p.adj <0.05, LFC > 0) were 

considered separately. Twenty-one pathways showed a significant enrichment based on the MM1 

overexpressed genes list, in table 10 and figure 20 are reported the top 10 results (p.adj <0.05). 

ID Description GeneRatio BgRatio pvalue p.adjust qvalue 

GO:0043087 regulation of GTPase activity 29/469 457/19179 3.11E+08 0.004 0.003477 

GO:0043547 positive regulation of GTPase activity 26/469 385/19179 3.31E+08 0.004 0.003477 

GO:0016054 organic acid catabolic process 22/469 294/19179 3.71E+08 0.004 0.003477 

GO:0046395 carboxylic acid catabolic process 22/469 294/19179 3.71E+08 0.004 0.003477 

GO:0046322 negative regulation of fatty acid oxidation 5/469 12/19179 5.88E+08 0.005 0.004414 

GO:0008360 regulation of cell shape 15/469 160/19179 9.37E+08 0.006 0.005773 

GO:0051056 

regulation of small GTPase mediated 

signal transduction 23/469 338/19179 1.08E+09 0.006 0.005773 

GO:0007265 Ras protein signal transduction 24/469 366/19179 1.29E+09 0.007 0.006045 

GO:0040001 

establishment of mitotic spindle 

localization 7/469 35/19179 1.86E+09 0.007 0.006771 

GO:0030198 extracellular matrix organization 26/469 425/19179 1.91E+09 0.007 0.006771 

Table 10: Top biological processes over expressed in the MM1 strain compared to VV2 samples.  
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The most affected pathways were regulatory pathways mediated by guanosine triphosphatases 

(GTPases), regulation of catabolic processes and maintenance of proper cell morphology and 

matrix organization. In the context of the comparative analysis object of this work, this means a 

significant enrichment in MM1 samples compared to VV2 mediated by the 543 genes with 

negative LFC identified from DGE analysis. 

Figure 20: Dotplot of top 10 enriched pathways in MM1 strain result of the 602 over expressed genes in 

this group.  

 

Considering now the VV2 group, based on the list of 1153 significantly overexpressed genes, 634 

biological processes showed an enrichment, the top ten results are reported in table 11: 
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ID Description GeneRatio BgRatio pvalue p.adjust qvalue 

GO:0050804 

modulation of chemical synaptic 

transmission 91/1059 473/19179 3.43E-12 1.03E-08 8.44E-09 

GO:0099177 regulation of trans-synaptic signaling 91/1059 474/19179 4.03E-12 1.03E-08 8.44E-09 

GO:0099003 vesicle-mediated transport in synapse 55/1059 219/19179 6.96E-08 1.19E-04 9.74E-05 

GO:0050808 synapse organization 79/1059 445/19179 1.37E-06 1.75E-03 1.43E-04 

GO:0099504 synaptic vesicle cycle 49/1059 198/19179 2.43E-05 2.49E-02 2.04E-02 

GO:0042391 regulation of membrane potential 77/1059 454/19179 6.93E-06 5.92E-02 4.85E-02 

GO:1904062 

regulation of cation transmembrane 

transport 62/1059 343/19179 8.63E-03 6.32E+00 5.17E-01 

GO:0016079 synaptic vesicle exocytosis 35/1059 121/19179 1.79E-02 1.15E+01 9.41E+00 

GO:0034765 regulation of ion transmembrane transport 76/1059 490/19179 2.11E-02 1.20E+01 9.83E-01 

GO:0098693 regulation of synaptic vesicle cycle 33/1059 112/19179 7.15E-02 3.66E+01 3.00E+01 

 

Table 11: Top biological processes over expressed in the VV2 strain. 

 

To highlight the functional modules starting from hundreds of interconnected and overlapping 

pathways, Cytoscape was used to summarize non redundant functional modules and visualize 

interconnections between pathways. Results are reported in figure 21 and table 12. 
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Figure 21: Region of the network representing enriched pathways grouped by non-redundant functional 

modules in the VV2 group. Most of the biological processes can be grouped into the functional module of 

synaptic regulation and vesicle trafficking. Notably, in the upper part of the network a cluster representing 

pathways involved in dopamine secretion is represented. 

 

Cluster Nodes  Cluster Nodes 

vesicle fusion synaptic 28  regulation dendrite morphogenesis 4 

activity transmembrane transporter 15  response metal substance 4 

assembly synapse pre-synapse 12  central nervous neuron 3 

muscle contraction cardiac 11  chemical postsynaptic excitatory 3 

neurotransmitter receptor 

postsynaptic 
11 

 
regulation depolarization potential 3 

dopamine secretion amine 9  amino acid starvation 2 

membrane mitochondrial 

permeability 
9 

 
peptide hormone insulin 2 

Microtubule-mediated axonal 

transport 
8 

 
periphery localization plasma 2 

anion chloride transmembrane 7  RAC signal transduction 2 

cellular response stimulus 7  regulation macro autophagy  2 

regulation pH reduction 7  negative regulation cell 1 

developmental growth extension 6  negative regulation microtubule 1 

regulated secretory exocytosis 6 
 

neurofilament cytoskeleton 

organization 
1 

visual learning memory 6  neuron apoptotic process 1 
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adult walking behaviour 5  neuron recognition 1 

cytosol sarcoplasmic reticulum 5  post Golgi vesicle 1 

docking organelle tethering 5  protein folding 1 

positive protein intracellular 5  protein homo-oligomerization 1 

sodium ion transmembrane 5  regulation dephosphorylation 1 

clathrin coat endocytosis 4  regulation proteasomal protein 1 

dendritic spine organization 4  response temperature stimulus 1 

establishment vesicle localization 4  spontaneous synaptic transmission 1 

long term plasticity 4  synaptic transmission GABAergic 1 

potassium ion transmembrane 4  synaptic transmission glutamatergic 1 

 

Table 12: Functional modules that represent hubs of the whole network, combined with the number of 

nodes for each hub.  

 

Pathway affecting synaptic regulation show the strongest impact both in term of statistical 

significance (Table 11) and in term of number of interconnected pathways that end up under 

synaptic-related the functional modules (Table 12 and Figure 21). In addition to the high number 

of nodes of synaptic-related modules, it is worth noticing that these clusters show the highest rate 

of interconnections with other hubs, underling their pivotal functional role. This means that even 

if the baseline of this comparative analysis is represented by another group of CJD samples (MM1), 

in the VV2 group these pathways are significantly enhanced.  

 

2. GENE SET ENRICHMENT ANALYSIS (GSEA) 

Gene set enrichment analysis assumes that also weaker but coordinated changes in sets of 

functionally related genes can have significant effects, therefore in this type of functional analysis 

all transcripts are considered. Despite being based on different assumption compared to the 

previous approach, results reported in table 13 show several similarities in terms of altered 

pathways in the considered comparison.  
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Table 13: Top biological processes enriched in the VV2 strain according to Gene Set Enrichment Analysis. 

  

 

Figure 22: GSEA plot of the top four results of the analysis. In the upper park of the plot, the solid lines 

show the enrichments scores (ES), and peaks tells how over or under expressed each pathway is respect to 

the ranked list. The second part of the graph, (middle, with vertical bars) shows where genes related to each 

pathway are in the ordered ranking of input genes. The third part of the graph (bottom with grey curve) 

shows metric distribution in the input ranking list. 

ID Description EnrichmentScore pvalue p.adjust qvalues 

GO:0010975 

regulation of neuron 

projection development 0.5549697 0,0001 0,0067 0,0056 

GO:0015672 

monovalent inorganic cation 

transport 0.5643432 0,0001 0,0067 0,0056 

GO:0007409 axonogenesis 0.5099560 0,0001 0,0067 0,0056 

GO:0072507 

divalent inorganic cation 

homeostasis 0.4489722 0,0001 0,0067 0,0056 

GO:0034765 

regulation of ion 

transmembrane transport 0.6005878 0,0001 0,0067 0,0056 

GO:0050769 

positive regulation of 

neurogenesis 0.4842083 0,0001 0,0067 0,0056 

GO:0050804 

modulation of chemical 

synaptic transmission 0.6784846 0,0001 0,0067 0,0056 

GO:0099177 

regulation of trans-synaptic 

signalling 0.6782517 0,0001 0,0067 0,0056 

GO:0072511 

divalent inorganic cation 

transport 0.4676002 0,0001 0,0067 0,0056 

GO:0070838 divalent metal ion transport 0.4744645 0,0001 0,0067 0,0056 
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These results reinforce the previous findings of an increased regulation of synaptic functionality 

in the VV2 group compared to the MM1, both in structural terms affecting neuronal projection 

and axonogenesis, and in functional terms affecting synapse activity with altered regulation of 

mono and divalent cations transport. In addition, this analysis also provides information about the 

pathways affected by under expressed genes (that are, the overexpressed in the MM1 strain 

compared to the VV2), as shown in GSEA plot of figure 22 where a smaller but clear negative 

peak in enrichment score is visible also at the bottom of the ranked list in all top four results, 

indicating concordant changes in gene expression both in terms of overexpression of activating 

genes and under expression of negative regulator in those pathways.  

 

3. PROTEIN-PROTEIN INTERACTION NETWORK 

This last type of functional analysis approach provides information on physical interactions of 

proteins encoded by differentially expressed genes. Even though it is well known that alterations 

in mRNA quantity do not necessarily correlate with equal alteration of protein abundancy due to 

post transcriptional regulation, this analysis nevertheless provides important functional insights 

about the biological interplay of different proteins. In this analysis, only direct biophysical 

interactions were considered (i.e., molecular docking) mapped on STRING interactome and, based 

on these interactions, functional enrichment was performed on KEGG database. In table 14 are 

reported the top ten significant results from overexpressed genes in the VV2 strain, whereas in 

figure 23 enriched pathways are group in non-redundant functional modules. 
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Background Genes Genes Description Fdr Value P-Value 

74,00 13,00 Synaptic vesicle cycle 4.0E-7 8.8E-10 

355,00 21,00 Alzheimer disease 1.1E-4 4.96E-7 

53,00 8,00 

Endocrine and other factor-regulated calcium 

reabsorption 3.4E-4 4.49E-6 

48,00 8,00 Vibrio cholerae infection 3.4E-4 2.32E-6 

67,00 9,00 Epithelial cell signalling in Helicobacter pylori infection 3.4E-4 2.7E-6 

208,00 14,00 cAMP signalling pathway 6.9E-4 1.06E-5 

128,00 11,00 Dopaminergic synapse 6.9E-4 1.15E-5 

46,00 7,00 Type II diabetes mellitus 8.6E-4 1.71E-5 

102,00 9,00 C-type lectin receptor signalling pathway 0.0025 5.96E-5 

135,00 10,00 Spinocerebellar ataxia 0.0034 9.25E-5 

 

Table 14: functional enrichment of PPI using overexpressed genes from DGE analysis 

Also with this approach, a different synapse regulation results to be the most evident pathway in 

this comparison between strain VV2 and MM1. Additionally, this analysis better underlines the 

different alteration of protein localization and of assembly of cellular components, as suggested 

by the high number of pathways that can be led back to these functional modules (figure 23). The 

decreased interconnection between functional modules of the network in figure 20 compared to 

the one reported for OR analysis is due to technical reasons, since the PPIn was restricted to the 

direct biophysical interactions coded by differentially expressed genes, avoiding the extension to 

neighbour interacting proteins as well.  

PPIn provided few insights on the affected pathways by overexpressed genes in the MM1 group, 

summarised in table 15. Functional analysis of molecular pathways enriched through physical 

interaction between overexpressed protein coding genes in the MM1 group highlighted an 

impairment of the regulation of nucleotide binding mechanisms, which is coherent with the 

previously described result of a positive regulation of GTPase activity.  
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Cluster Nodes 

regulation nucleotide binding 11 

egf domain extracellular 3 

pleckstrin homology domain 1 

sh3 domain 1 

syndromic deafness 1 

 

Table 15: summary of the most enriched functional modules through physical interaction between protein 

coded by overexpressed genes in the MM1 group. 

 

 

Figure 23: Region of the network representing enriched pathways grouped by non-redundant functional 

modules from PPI analysis using overexpressed genes in VV2 from DGE analysis. 

 

The results of the various parts of functional analysis will be thoroughly discussed in the discussion 

chapter. 
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EPIGENOMICS: HI-C 

Four samples, two CJD cases and two healthy controls, were selected to undergo the Hi-C library 

preparation as described in the materials and methods section. Intermediate quality checks were 

passed for all samples, during the Hi-C protocol as well as in the library preparation for whole 

genome sequencing. Post alignment processing provided the metrics reported in table 16, that show 

the number of acquired reads, uniquely mapped and valid pairs for each biological replicate. After 

mapping, biological replicates of CJD and healthy controls were merged, leading to a controls 

group with 556’182127 valid interactions and a cases group with 609’179878 valid interactions. 

 

Table16: Summary of post alignment Hi-C metrics for each biological replicate.  

 

Interaction matrices were produced at 100kb and 50kb resolution for each chromosome to visually 

inspect major structural features at a chromosome level in cases and controls. Literature research 

was performed to make a list of candidate genes known to play a role in the peripheral immune 

system in the early stages of CJD and other types of dementia, together with control genes in which 

no changes are expected (Table 17). The genomic locus corresponding to 1Mb ahead and after the 

open reading frame of each of these genes was analyzed at 10Kb resolution, to acquire a more 

detailed insights into possible structural differences. In these matrices, shown in figure 24, TADs 

are clearly visible as green-yellow triangles along the diagonal. These inter-TAD contact results 

Experiment Reads Uniquely Mapped % Mapped Valid int. 

% Valid 

interactions 

Control1 R1 480’457’513 366’629’918 80% 217’266’479 45% 

Control1 R2 480’457’513 360’300’498 80%   
Control2 R1 446’163’413 382’716’166 86% 338’915’648 76% 

Control2 R2 446’163’413 383’706’325 86%   
Case 1 R1 466’747’975 406’630’305 87% 331’791’787 71% 

Case 1 R2 466’747’975 408’308’072 88%   
Case 2 R1 436’058’606 379’638’968 87% 277’388’091 64% 

Case 2 R2 436’058’606 377’034’075 87%   
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in coordinated regulation of gene expression, usually associated to positive regulation of gene 

expression.  

Gene Name Gene locus TAD search (± 1 Mb) 

IL1B Interleukin 1 Beta 2:113587328-113594480 2:112587328-114594480 

IL1R1  interleukin 1 receptor type 1 2:102681004-102796334 2:101681004-103796334 

IL10 Interleukin-10 1:206940947-206945839 1:205940947-207945839 

CCL2  C-C motif chemokine ligand 2 17:32582304-32584222 17:31582304-33584222 

IL18 Interleukin-18 11:112013974-112034840 11:111013974-113034840 

IL4 Interleukin-4 5:132009678-132018368 5:131009678-133018368 

PRNP prion protein  20:4666882-4682236 20:3666882-5682236 

ACT Actin 1 14:69340860-69446157 14:68340860-70446157 

 

Table17: selection of genes involved in early immune response in peripheral blood in patients with CJD or 

other types of dementias, together with PRNP and ACT, as negative control. 

https://gnomad.broadinstitute.org/region/2-113587328-113594480?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/region/2-102681004-102796334?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/region/1-206940947-206945839?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/region/17-32582304-32584222?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/region/11-112013974-112034840?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/region/5-132009678-132018368?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/region/20-4666882-4682236?dataset=gnomad_r2_1
https://gnomad.broadinstitute.org/region/14-69340860-69446157?dataset=gnomad_r2_1
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Figure 24: Hi-C matrices of the genomic locus 1Mg ahead and after PRNP. In the upper panel is reported 

the interaction matrix of the merged data of CJD patients, in the lower the interaction matrix of the merged 

data controls. The matrices are symmetrical along the diagonal, and interaction rates between genomic 

regions are marked by green-yellow areas, according to the legend on the right of the Hi-C map.  
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CHESS provided the genomic coordinates of the regions with significant changes in terms of 

number of physical interactions, together with the signal/noise ratio. In figure 25 are reported some 

examples of plots, in which a similarity score is reported on the y axis along the observed genomic 

regions. 

 

Figure 25: Plots of the similarity score along four of the selected genes. In the picture, ‘a’ represents IL10, 

‘b’ CCL2, ‘c’ PRNP and ‘d’ IL1R1. Colored dots represent the signal/noise ratio value, according to the 

scale reported for each plot. 

 

Among the considered genomic regions, PRNP locus shows the lowest similarity score and the 

highest signal/noise ratio. This suggests a possible significant difference in the interaction rates in 

cases and controls. In particular, a decreased rate of interaction seems to affect the CJD population 

compared to the control population, as shown in figure 26 and in the quantitative results of the 

feature extraction performed with CHESS. A further normalization for coverage on this specific 

region was added, with no changes in the result. Even though with lower intensity compared to the 

described 2Mb window around PRNP, a general increase in interaction rates and a higher 

signal/noise ratio was present in every genomic region in controls. This could be due to technical 

reasons and to the low number of analyzed samples and will be considered in the interpretation of 

these results.  
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Figure 26: zoom into a sub-region of the 2Mb window around PRNP. A decreased rate of interactions is 

visible in the cases matrix, compared to the controls one, clarified by the third panel, showing the 

cases/control ratio of log2 Hi-C interactions.  

 

Relevantly, the 1Mb ahead of PRNP is rich in regulatory regions in particular CTCF motifs, 

enhancers and promoters (figure 27). This previous knowledge together with the presented results 

open to the concrete possibility to an impairment of structural chromatin organization in patients 

with prion diseases.  

 

Figure 27: Snapshot of the genomic region covering PRNP and its upstream region, taken from Ensembl 

genome viewer. In the upper panel are visible the genomic coordinates together with the names and location 

of coding genes and regulatory transcripts.  PRNP is visible on the up-right, together with its homologous 

genes PRND (Prion Like Protein Doppel, protein coding) and PRNT (Prion Locus LncRNA). In the lower 

panel, is visible that the upstream of these loci particularly rich in CTCF (light blue bars), enhancers (yellow 

bars) and promoter (red bars) regions. 
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DISCUSSION 
 

In this project, a clinically and pathologically well characterized cohort of 24 samples of MM1 

CJD and 24 of VV2 CJD was compared at a genomic and transcriptomic level to improve the 

understanding of the different molecular features between the two strains.  The low numerosity of 

the dataset is compensated by the high characterization of the samples, aimed at reducing as much 

as possible intra-group variation. All samples showed pure MM1/VV2 phenotype with 

no/minimum co-pathology. This is reflected by the average disease duration of the two groups (3.1 

months MM1 and 6.8 months VV2) that is perfectly in line with the average of 4 and 6.3 months 

respectively reported in literature109,120. Similarly, the average age of onset of our cohort fits the 

reported average in the VV2 group with 65.7 years in the cohort and 64.5 years as expected mean 

value, while in this MM1 group the observed average age of onset is slightly lower than expected 

(65.8 compared to the 70.1 years reported in literature)109.  

GENOMICS: DNA TARGET SEQUENCING 

o VARIANT ANNOTATION 

DNA sequencing results provided two main types of information, that will be discussed separately: 

a list of predicted damaging mutations and the overall genetic pattern of single nucleotide variants 

in each sample. In terms of the number of missense and likely pathogenic variants (table 5), MM1 

and VV2 samples do not show significant differences, neither in terms of the distribution of the 62 

predicted damaging mutations (31 per strain) nor in terms of number of samples carrying this type 

of variants (17 MM1 and 16 VV2). Nevertheless, of the 26 genes interested by this type of variants, 

seven are mutated both in MM1 and VV2 samples (CR1, NME8, RIN3), while nine genes were 

affected only in MM1 samples (ABCA7, ALS2, ATP13A2, CTSC, PANK2, SETX, SLC24A4, TH, 
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VPS13C) and other ten only in VV2 samples (ATM, GRN, HTRA2, LMNB1, NECTIN2, NEK1, 

PINK1, PLA2G6, PRKN, ZCWPW1). Relevantly, HTRA2, PINK1 and PRKN -affected only in the 

VV2 group-, are involved in Parkinson Disease (PD), where mutations in PINK1 and PRKN are 

associated to early onset Parkinson Disease. The serine/threonine-protein kinase PINK1 is 

localized both in the cytosol and in outer and inner mitochondrial membranes, where exerts a 

protective role against mitochondrial dysfunction by activating mitochondrial quality controls 

mechanisms that mediate mitophagy and lysosomal function through phosphorylation of other 

mitochondrial proteins such as the E3 ubiquitin-protein ligase PRKN. In addition, PINK1 has been 

suggested to be also involved in the mitochondrial unfolded protein response (UPRmt) through its 

interactions with HTRA2164. Mitochondrial dysfunction has been associated to several 

neurodegenerative disorders, but very few studies are available in sCJD: recently Flønes et 

colleagues165 showed a positive correlation between the level of  impairment of the five respiratory 

complexes in neurons of both MM1 and VV2 strains with the severity of other neuropathological 

changes such as gliosis, vacuolation and PrPsc accumulation. The missense variants HTRA2 

p.(Gly399Ser) and PINK1 p.(Gly513Asp) were found only once in this dataset, while PRKN 

p.(Arg402Cys) was found in two different VV2 samples. PINK1 p.(Gly513Asp) is not present in 

GnomAD and no clinical interpretation in available on ClinVar. HTRA2 p.(Gly399Ser) in ClinVar 

is reported as likely benign or as a possible risk factor, since this variant has been found both in in 

healthy controls and in PD, essential tremor and cervical dystonia patients166. PRKN 

p.(Arg402Cys) is present in the GnomAD database, and is reported on ClinVar as a variant of 

uncertain significance since its pathogenicity has never been proven but it has been described in 

several works both in PD patients and healthy controls167. Despite the described variants are 

present only in four samples and this data lacks any statistical relevance, it is worth noticing that 
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the putative pathogenic variants related to Parkinson Disease are found only in the VV2 strain, 

where movement impairment are more relevant than in MM1. This suggests that these variants 

might act as genetic modifier in the sporadic form of the disease, suggesting a possible overlapping 

mechanism regarding mitochondrial quality control dysfunction in Parkinson Disease and in VV2 

sCJD. On the contrary, the genes with probably pathogenic variants in the MM1 group are involved 

in a more heterogeneous group of molecular processes and neurodegenerative diseases. In addition 

to genes involved in PD (VPS13C and ATP13A2), in this list appear also the ATP binding cassette 

subfamily A member 7 (ABCA7)168, that is a known risk factor for Alzheimer Disease (AD) for its 

role in amyloid clearance and in decreasing the Aβ production through interference with APP 

processing and ALS2, which codes for the GTPase activator Alsin, associated to amyotrophic 

lateral sclerosis.  

o STATISTICAL ANALYSIS 

 Statistical analysis of allele frequencies found 238 variants with a significantly (p.adj <0.05) 

altered allele frequency compared to the healthy European population, distributed in 37 genes. A 

genome wide association study (GWAS) on 5208 sCJD has been recently published169 , identifying 

STX6 rs3747957 and GAL3ST1 rs2267161 as high risk loci, in addition to PRNP codon 129. 

Unfortunately, both STX6 and GAL3ST1 genes are not covered by the gene panel used in this study, 

therefore no data are available about these loci in the cohort analyzed. Nevertheless, coherently 

with the hypothesis of a polygenic contribution to the disease, functional enrichment analysis of 

the thirty-seven genes showing significantly over or under-represented alleles in the sCJD cohort 

highlights as most significantly affected, pathways already known to be altered in the disease, such 

as chaperon-mediated regulation of protein stability, alteration in synapse organization, Ca2+ 

transport and maintenance of cellular components. These results suggest a possible contribution 
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of other genes in addition to SNV in the coding region of the prion protein gene, that creates a 

complex genetic background in which the reinforcing role of multiple variants increases the risk 

of developing the disease and possibly influence the prevailing strain. The statistical comparison 

between MM1 and VV2 samples did not find any significant over or under-represented allele in 

the comparison between the two groups. Although this may be due to a lack of relevantly different 

allele frequencies in one of the two groups, the low numerosity of this dataset could not allow to 

unveil such differences. Three of the overrepresented variants in the sCJD, GRN, NME8 and RIN3 

genes, were also predicted as probably pathogenic by SIFT and PolyPhen2 variant predictors. Each 

of these three variants was found only once in this cohort; thus, this result should be confirmed in 

a larger population. This preliminary finding suggests a possible polygenic contribution to the 

development of the disease in sporadic cases. In addition, it is worth noticing that the variants in 

GRN and RIN1 were found in VV2 cases, while a variant in NME8 was found in MM1 CJD. 

Progranulin (GRN) and Ras and Rab interactor 3 (RIN3) play pivotal roles in the regulation of 

lysosomal function and in the activation of guanine nucleotide exchange (GEFs), respectively. 

Interestingly, both these biological processes turned out in the top ten significantly under expressed 

pathways in the gene expression analysis in the VV2 cohort (see following paragraph, 

transciptomics). The thioredoxin domain-containing protein 3 (NME8) still has an elusive function, 

but several studies have shown a significant association of SNPs in this gene with Alzheimer 

disease170–172. Therefore, these preliminary results are coherent with the affected pathways 

highlighted by the previous parts of this study and reinforce the hypothesis of a polygenic 

contribution of multiple mildly predisposing variants to the onset of sporadic CJD. 
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o DATA SCIENCE: SUPERVISED AND UNSUPERVISED MACHINE LEARING  

Differently from previous analysis that focused only on exonic variants or on variants reported in 

reference databases, data science methods were applied on the complete genetic information 

acquired with NGS experiments. This approach, aimed at identifying possible recurrent genetic 

patterns that not necessarily involve only coding variants, consist in a recently proposed 

workflow162 that involves supervised and unsupervised machine learning methods increasingly 

used in the analysis of biological data173–175. Here, unsupervised methods show quite a 

homogeneous genetic background between the analysed samples: the principal component 

analysis shows that most of the forty-eight samples tend to group around the centre of the PCA 

plot, and a high number of principal components (eighteen) are needed to explain 50% of the 

variance in the dataset. Both findings suggest an overall similar genetic background in the analysed 

cohort. Nevertheless, a stratification along the first two principal components is clearly visible 

specially in the 2D plot (figure 13). Here two clusters of samples identified by K-Means, mainly 

distributed along PC1, are represented with different colours. In this work, this clusterization could 

not be attributed to any specific feature since all the available biological, clinical and demographic 

labels did not match it. The main contributors of the two principal components are variants in 

PRKN and in PICALM genes, that therefore represent the strongest sources of variation in this 

dataset. PRKN already appeared in this work in the discussion of predicted-pathogenic variants as 

a gene exclusively mutated in the VV2 group. Here, interestingly, this gene represents the strongest 

contributor to the explained variance of the overall genetic background. The E3 ubiquitin-protein 

ligase PRKN (coded by PRKN, also known as PARK2) catalyses the ubiquitination of substrate 

proteins, playing a pivotal role in protein turnover, clearance of misfolded proteins and stress 

response. This protein has been described to participate in the removal or detoxification of 
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misfolded or damaged protein by mediating their 'Lys-63'-linked-polyubiquitination, leading to 

their recruitment into aggresomes, followed by degradation176. Parkin is also involved in mono-

ubiquitination of the apoptosis regulator Bcl-2 (BCL2), thus acting as a positive regulator of 

autophagy177. These are all molecular processes strongly impaired in various neurodegenerative 

disorders, and mutations in PRKN are associated to autosomal recessive inheritance of PD178. The 

Phosphatidylinositol-Binding Clathrin Assembly Protein coded by the gene PICALM is an adapter 

protein involved in clathrin-mediated endocytosis, that is pivotal for several biological processes 

such as the internalization of cell receptors, for synaptic transmission and removal of apoptotic 

cells. PICALM is mainly located in the cytosol, Golgi apparatus and cellular membrane, where it 

mediates the endocytosis of small R-SNARES (Soluble NSF Attachment Protein REceptors). It 

also modulates the turnover of autophagy substrates: through GWAS and functional studies, 

PICALM has been associated to AD for its role in the autophagy of substrates such as Tau or 

amyloid precursor protein179. The impairment of all the described biological functions have been 

described by previous literature in CJD25 and in general in several neurodegenerative diseases. 

These results are in line with those previously presented for the statistical comparison of allele 

frequencies in the two strains: in this dataset, the genomic data acquired with the Illumina 

Neurodegeneration panel do not allow to highlight well defined differences in the genomic 

background between MM1 and VV2 sCJD samples, but allow to identify possible contributing 

genes to the disease that are coherent with previous knowledge about the most affected pathways 

in CJD.  

The same data were used also as input for supervised machine learning algorithms. Supervised 

classifiers correctly identified the two strains using the overall genetic profile of 57005 SNVs 

identified with target sequencing. The classification was carried out with 100% accuracy based 
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only on the codon 129, which shows that these tools are able to detect a single functional variant 

among several thousands and thus could be useful also in the clinical practice for advanced 

diagnostics or precision medicine purposes. This result anyway does not provide any new 

knowledge about the genetic contributors to the phenotypic heterogeneity of the two strains, given 

that the classification into strain uses the codon 129 as a criterion. To gain new insights on other 

genetic contributors, the codon 129 was removed from input data and the classification task 

repeated. The classification this time was carried out with 81% accuracy on the test set, based on 

two other intronic variants, one in the intronic region between exon 1 and 2 nearly 5kb upstream 

codon 129 and one in an intronic region of FERMT2. The intronic variant in PRNP used in the 

classification (rs6037932), was never reported as a functional non-coding variant, nevertheless it 

was used in a phylogenetic study about founder effect in Fatal Familiar Insomnia163 in the 

European population. This SNP is not in complete linkage disequilibrium with the allele 129V, 

even though in this cohort as well as in the previously cited work it is more frequently associated 

to Valine. Both works comprehended small cohorts exclusively made by people affected by prion 

diseases and this variant is not present in neither in ClinVar nor in GnomAD, therefore it is difficult 

to draw conclusions about a possible functional role of this intronic variant or just phylogenetic 

association given the close proximity to the open reading frame of the gene. The intronic variant 

FERMT2 chr14-53391236-T-G was never previously reported as functional intronic variant and is 

not reported in ClinVar or GnomAD. It is located in the non-coding region downstream the last 

exon of the FERMT2 gene. In this cohort, it is always associated to the allele 129V. FERMT2 has 

been associated to AD by GWAS170, its corresponding protein is expressed in the brain where it is 

involved in axonal growth, synaptic connectivity, and long-term potentiation and  directly 

interacting with the Amyloid Precursor Protein to modulate its metabolism. 
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TRANSCRIPTOMICS: RNA SEQUENCING 

On a subset of the previously described cohort of MM1 and VV2 sCJD, a comparative analysis of 

transcriptomic profiles was carried out on post-mortem frontal cortex samples with RNA 

sequencing (cDNA capture). Since the analysis was performed on the terminal stage of the disease, 

transcriptomic data provide an overall picture of how the cells responded to stresses at the time of 

death. In neurodegenerative diseases this means that the observed pathogenic or adaptive gene 

expression changes refer only to the cells that survived the neurodegeneration and not those that 

were mostly affected by the disease. For this reason, frontal cortex was chosen as an appropriate 

region to carry out this analysis since it is partially spared in both strains. The current literature 

provides some insights into changes in gene expression in CJD, but several considerations must 

be taken into account. Most of the available studies have been carried out on murine models, that 

have the advantage to allow the acquisition of gene expression responses at multiple stages of the 

disease on big dataset but have the limit of studying only the acquired form of the disease. In 

addition, despite still being an important and necessary resource for biomedical studies, animal 

models do not always reproduce faithfully all the features of human diseases, especially when the 

central nervous system and cognition are involved. On the other hand, studies carried out on human 

samples also describe the sporadic forms of the disease but only at the terminal stage.  

From a technological point of view, the most recent next generation sequencing technologies for 

transcriptomics have been applied only on animal models131,132,180, while studies performed on 

human samples used previous methodologies, such as reverse transcribed real-time PCR or 

microarray25,136,181. This work represents the first application of full exome RNA sequencing on 

human samples of sporadic CJD, and also the first transcriptomic analysis comparing two subtypes 

of the disease, and not cases versus controls.  
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Quality metrics during sequencing and bioinformatic analysis showed a reliable outcome of the 

experimental part and a depth of sequencing adequate to have a complete picture of the coding 

transcriptome, covering also lowly abundant transcripts. Differential gene expression analysis 

compared transcript abundancies in the two strains providing a list of overexpressed genes in each 

condition. The results of this analysis showed a high number of differentially expressed genes, 

confirming previous findings about a strong impairment of gene expression, especially in the late 

stages of the disease. In particular, in the VV2 group a higher number of over expressed genes was 

found compared to the MM1 group (1196 vs 602). The hierarchical clustering and the heatmap 

associating the whole transcriptomic profile to sample classes identified two clusters, one clearly 

enriched of MM1 cases and one of VV2 cases. This finding suggest that the transcriptomic profile 

contains specific trends and signatures that are associated more frequently to each one of the two 

considered strains, and shared traits that lead to minor overlap in the clusterization. This overlap 

does not represent an unexpected result, given that the comparison involves two subtypes of the 

same disease, that are characterized by peculiar traits and a common driving mechanism towards 

neurodegeneration. Notably, previous transcriptomic technologies did not manage to detect a good 

clusterization of CJD subtypes in other cohorts25,136.  

Results of DGE analysis represented the starting point for functional analysis, that was performed 

with different methods. Despite their different assumptions and technical procedures, all three 

types of functional analysis provided coherent and complementary outcomes, that helped defining 

a detailed picture of the pathways most affected in the two subtypes. In this work, we observed in 

the VV2 strain an upregulation of genes involved in synaptic regulation affecting both pre and post 

synaptic terminals. Similarly, VV2 showed an overexpression of genes involved in vesicle 

transport and turnover compared to MM1. Both these biological processes have been described as 
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strongly impaired in any subtype of CJD, especially in the mid and late stages of the 

disease25,132,136. Studies comparing CJD cases with non-affected controls, already observed that 

the intermediate phases of the disease are characterized by strong impairment of transcriptional 

response directed to pathways involving vesicular trafficking, with the activation of cholesterol 

synthesis and efflux, glycosaminoglycan metabolism, and sphingolipid synthesis and 

degradation132 that affect both exocytosis and endocytosis as well as intra cellular vesicle 

trafficking. In later stages of disease the impairment increases as genes associated to synaptic 

transmission and axon guidance are down regulated and ultimately cellular processes associated 

with cell death are activated132,136,182. The observed overexpression in VV2 compared to MM1 was 

concordant between all functional enrichment methods, suggesting that in the VV2 strain the 

downregulation of these processes may take place with less intensity. Previous works already 

demonstrated that in CJD genes regulating these pathways are under expressed compared to 

controls25,183. Notably, tissue used for testing RNA expression were selected to have a similar level 

of cellular damage, therefore even if these results are acquired by bulk RNA sequencing, cell 

abundancy and survival should not be a confounder element. In the VV2 group an enrichment of 

pathways involving dopamine secretion, regulation of calcium release, GABA signaling, and 

mitochondrial permeability was observed. Both glutamatergic and GABAergic synapses have 

been described to be impaired in CJD25,136 while dopamine secretion, transport and response have 

been less studied in CJD. This finding is coherent with the results of the genomic layer of this 

thesis, where an enrichment of SNPs and probably pathogenic missense variants in genes 

associated to Parkinson Disease were observed only in VV2. In VV2 CJD movement deficits are 

more relevant than in other subtypes, largely because of the prominent degeneration in the 

cerebellum. These results suggest that motor symptoms could be also tracked back to impairment 
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of dopaminergic synapses and GABA signaling, possibly with shared mechanisms with Parkinson 

Disease. Interestingly, no significant differences in terms of immune response and 

neuroinflammation were found in this comparison. Neuroinflammation and activation of immune 

response are upregulated since the early stages of the disease184, therefore the lack of significant 

differences could be explained by the fact that in the terminal part of the disease these processes 

are already fully activated and widespread in both subtypes.  

In the MM1 group, the most affected pathways involved regulatory pathways mediated by 

guanosine triphosphatases (GTPases), regulation of catabolic processes and maintenance of proper 

cell morphology and matrix organization. Additionally, Ras transduction pathways showed and 

overexpression in MM1 compared to VV2, indicating a major impairment of key signal 

transduction pathway, consequently influencing a multitude of downstream pathways. Small 

guanosine triphosphatases (GTPases) of the Ras superfamily are important regulators of key 

cellular processes like cell cycle regulation, proliferation, intracellular trafficking, and apoptosis. 

GTPases act as intracellular molecular switches and are inactive when bound to guanosine 

diphosphate (GDP), and active when the GTPase is bound to guanosine triphosphate (GTP). Their 

involvement in neurodegenerative diseases is linked to many processes, most relevantly to the 

impairment of catabolic processes, vesicular trafficking and to regulation of apoptosis185. Here, 

results of the functional analysis confirm their dysregulation also in sCJD, similarly to other 

neurodegenerative diseases. Likewise to what observed in the genomic profiling study, also at the 

transcriptomic level the MM1 group shows a gene expression profile with several traits shared 

with different neurodegenerative, without a clear distinctive trait or similarities with a specific 

disease. On the contrary, in the VV2 strain transcriptomic analysis confirms the involvement of 

pathways dysregulated in Parkinson's disease, adding strength to the findings of genomic profiling. 
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EPIGENOMICS: HI-C 

A comparative analysis of the three-dimensional chromatin organization with Hi-C was performed 

between white blood cells of CJD patients at the time of diagnosis and healthy controls of the same 

age. How chromatin organization changes with cellular senescence and how this influences healthy 

aging and neurodegenerative diseases is only beginning to be explored. This work represents the 

first application of Hi-C or any chromosome conformation capture technique to prion diseases, 

therefore the presented results should be considered as exploratory. There are nevertheless some 

very recent works that explored alterations in chromatin organization in other types of 

neurodegenerative diseases and age-related conditions46: in a Huntington Disease mouse model, it 

has been recently shown with 4C-seq that the CAG expansion responsible for the disease affects 

the correct insulation of the TAD upstream HTT59. In fact, it has been proposed as a general 

mechanism that Short Tandem Repeats (STRs) associated diseases (such as fragile X syndrome, 

Huntington’s disease, Amyotrophic Lateral Sclerosis and Friedreich’s ataxia) could cause the 

pathogenic condition through the topological disruption of higher-order chromatin folding74. 

Another example is Cornelia de Lange Syndrome (CdLS), a multisystemic disease with relevant 

neurological damage that is caused by the impairment of the Cohesin complex, which cooperate 

with CTCF proteins to establish and maintain the correct 3D chromatin structure. In a recent work58 

has been shown in post-mortem cerebral cortex of CdLS patients a prominent downregulation of 

hundreds of genes enriched for fundamental neuronal functions, including synaptic transmission 

and signaling processes. A concordant transcriptomic profile was obtained in an in vitro model of 

cortical neuron depleted for the cohesin complex, and interestingly gene expression alterations 

were often greatly recovered after restoration of cohesin function in the in vitro model, indicating 

that at least some of these changes may be reversible. Aging itself seems to be associated with a 
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progressive loss of local interactions and weakening of TADs boundaries, associated to the 

establishment of Senescent-Associated Heterochromatin Foci (SAHFs)46,186.  

In this work, post-alignment metrics showed a number of valid pairs that allowed reliable analysis 

of chromatin interactions, also at high resolution (20-10Kb). Low resolution matrices at 700Kb on 

the whole genome identified chromosome compartments and, as expected, did not highlight any 

inter-chromosomal rearrangement. Low resolution matrices of single chromosomes at 100Kb did 

not highlight any intra-chromosomal rearrangement in neither CJD cases and controls, 

nevertheless, as confirmed also by the binning at 50Kb, a general higher rate of interactions was 

observed in controls. Being Hi-C a genome wide technique, the comparative analysis focused 

mainly on a selection of genes, known from previous literature to be involved in early response in 

immune cells to either CJD or other neurodegenerative diseases30,187–190. Also at this resolution, in 

the CJD samples was observed a significant decrease of interaction rates, that became even more 

evident in the genomic locus containing PRNP. This work shows that a general loss of genomic 

interactions is visible at disease onset in immune cells, and that this general trend seems to be 

exacerbated in the disease-causing gene. Relevantly, the genomic region upstream of PRNP 

harbors several regulation sites, like CTCF motifs, enhancers and promoter sites. These results 

should be considered preliminary since these observations were carried out in a small dataset, so 

we cannot completely exclude that some biases might still be present also after data normalization. 

Previous literature demonstrated that no changes in cell-type composition in white blood cells are 

present of CJD patients compared to healthy controls191, thus the differences observed in this work 

are not due to different subpopulation abundancies. Even though carrying out this experiment in 

peripheral immune cells is not optimal since the disease affects mainly the brain, an approximation 

was necessary in order to compare CJD patients at disease onset and healthy controls, given the 



112 

 

obvious unavailability of the best tissue type. Immune cells represent a good approximation, since 

PRNP is physiologically expressed, it is a noninvasive tissue to collect, and the immune cells have 

been described to play a critical role especially in the initial stages of prion diseases188. These 

results suggest that a possible structural impairment leading to a loss of interactions and weakening 

of TADs boundaries takes place in the early stages of the disease: in this context there are not 

enough data to make definitive claims, but these findings are in line with what has been observed 

in normal aging and also with the observations of an accelerated aging in Huntington Disease 

based on the integration of epigenomic and transcriptomic data59. In addition, it is worth noticing 

that in the transcriptomic analysis performed in this thesis several genes coding for the cohesin 

complex (such as RAD51AP2, RAD51C, RAD23A and STAG3) were significantly differentially 

expressed between the two analyzed strains, meaning that this complex is in some way involved 

in this disease. Similarly the previously cited work about CdLS58, also here synaptic transmission 

and signaling were the most affected biological processes: it would be interesting to investigate 

more in detail the role of Cohesin in CJD given the recovery they observed in the in vitro model 

upon restoration of the cohesin complex. This work represents thus a starting point for further 

studies, that could provide additional insights in terms of the role played by specific protein 

complexes or through the acquisition of other -omic data, like transcriptomic profiles or other 

epigenomic modifications, such as histone modifications, DNA methylation or chromatin 

accessibility. 
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CONCLUDING REMARKS 
 

In this work, we addressed the problem of phenotypic heterogeneity in prion diseases by 

producing, analyzing and comparing multiple omic layers, with the aim of characterizing the 

molecular differences and similarities between the two most common strains of sporadic 

Creutzfeldt-Jakob Disease. In addition, to further characterize the genetic background of the 

disease, a comparative analysis of the tridimensional chromatin organization between CJD patients 

and healthy controls was carried out, thus investigating also the epigenomic layer. The results of 

this project represent a novelty in the state of the art in this field, both from a biomedical and 

technological point of view.  

At the genomic level, the presented results suggest that sCJD could have polygenic contributions 

able to influence the prevalent strain. Both restricted analysis of missense and probably damaging 

variants as well as data science approaches on overall genetic profiles were consistent in 

identifying a contribution of genes associated to Parkinson Disease particularly in VV2 patients, 

while MM1 samples showed contributions of genes associated to a more heterogeneous variety of 

neurodegenerative diseases.  

The transcriptomic analysis presented in this work represents the first application of RNA 

sequencing on human sCJD samples and the first comparative analysis between sCJD strains using 

next generation sequencing technologies. On a subset of the genomic dataset, we identified nearly 

1800 differentially expressed genes between the two strains. The subsequent functional analysis 

confirmed and expanded the finding of an impairment of some pivotal biological processes 

associated to Parkinson disease, such as dopamine secretion, regulation of calcium release, GABA 

signaling, and mitochondrial permeability in VV2 sCJD. The transcriptomic profile of MM1, 
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coherently with the genomic findings, portrayed a gene expression profile where several biological 

processes shared by different neurodegenerative diseases were involved, without a clear distinctive 

trait. 

This multi omics analysis provides robust evidence for the distinctive features of the two most 

common strains of sCJD. In both strains, multiple possible genetic contributors have been 

identified, suggesting at a polygenic predisposing background to the disease. In addition, given the 

pronounced motor impairment in the VV2 strain, these findings strongly suggest that motor 

symptoms could also be tracked to impairment of dopaminergic synapses and GABA signaling, 

possibly through mechanisms shared with Parkinson Disease. 

On the epigenomic layer, the tridimensional folding of the genome in peripheral immune cells of 

CJD patients at onset and healthy controls was investigated with Hi-C. This work represents the 

first application of this cutting-edge technology in prion diseases, and one of the first in general in 

the broader field of neuroscience. The results show that no major chromosome reorganization, 

such as translocation or duplications, takes place during the disease. Nevertheless, a significant 

and diffuse loss of genomic interactions was detected at disease onset in immune cells, and this 

general trend seems to be exacerbated in PRNP locus. 

All these results update and increase the current knowledge on the molecular features of 

phenotypic heterogeneity and genomic background of prion diseases, representing a promising 

starting point for future research projects. 
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APPENDIX 
 

GENE NAME PROTEIN NAME 

ABCA7 Phospholipid-transporting ATPase ABCA7 

ALS2 Alsin 

ATM Serine-protein kinase ATM 

ATP13A2 Polyamine-transporting ATPase 13A2 

CR1 Complement receptor type 1 

CTSC Dipeptidyl peptidase 1 

EPHA1 Ephrin type-A receptor 1 

FERMT2 Fermitin family homolog 2 

GRN Progranulin 

HTRA2  Serine protease HTRA2, mitochondrial 

LMNB1 Lamin-B1 

NECTIN2 Nectin-2 

NEK1  Serine/threonine-protein kinase Nek1 

NME8  Thioredoxin domain-containing protein 3 

NOTCH3 Neurogenic locus notch homolog protein 3 

PANK2  Pantothenate kinase 2, mitochondrial 

PINK1 Serine/threonine-protein kinase PINK1, mitochondrial 

PLA2G6 85/88 kDa calcium-Independent phospholipase A2 

POLG DNA polymerase subunit gamma-1 

PRKN  E3 ubiquitin-protein ligase parkin 

RAD23A  UV excision repair protein RAD23 homolog A 

RAD51AP2  RAD51-associated protein 2 

RAD51C DNA repair protein RAD51 homolog 3 

RIN1 Ras and Rab interactor 1 

RIN3  Ras and Rab interactor 3 

SETX  Probable helicase senataxin 

SLC24A4  Sodium/potassium/calcium exchanger 4 

STAG3 Cohesin subunit SA-3 

TH  Tyrosine Hydroxylase 

TOR1A Torsin-1A 

VPS13C Vacuolar protein sorting-associated protein 13C 

ZCWPW1 Zinc finger CW-type PWWP domain protein 1 

 

Table S1: Names of genes and corresponding extended protein names appearing in the text. 
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Gene HGVSC HGVSP Sift Prediction PolyPhen Prediction strain Sample 

ABCA7 c.2026G>A p.(Ala676Thr) deleterious probably damaging MM1 #30 

ABCA7 c.5168C>T p.(Ser1723Leu) deleterious probably damaging MM1 #30 

ABCA7 c.1456C>G p.(Pro486Ala) deleterious probably damaging MM1 #43 

ALS2 c.3685T>A p.(Trp1229Arg) deleterious possibly damaging MM1 #46 

ATM c.998C>T p.(Ser333Phe) deleterious probably damaging VV2 #10 

ATP13A2 c.3472C>T p.(Arg1158Cys) deleterious possibly damaging MM1 #31 

CR1 c.313C>T p.(Arg105Cys) deleterious probably damaging VV2 #1 

CR1 c.2537C>T p.(Ser846Phe) deleterious possibly damaging MM1 #33 

CTSC c.1357A>G p.(Ile453Val) deleterious possibly damaging MM1 #27 

CTSC c.1357A>G p.(Ile453Val) deleterious possibly damaging MM1 #42 

CTSC c.1357A>G p.(Ile453Val) deleterious possibly damaging MM1 #46 

EPHA1 c.2090C>T p.(Pro697Leu) deleterious possibly damaging MM1 #29 

EPHA1 c.2090C>T p.(Pro697Leu) deleterious possibly damaging VV2 #14 

EPHA1 c.2090C>T p.(Pro697Leu) deleterious possibly damaging MM1 #15 

EPHA1 c.2897G>A p.(Arg966His) deleterious probably damaging MM1 #47 

EPHA1 c.2090C>T p.(Pro697Leu) deleterious possibly damaging MM1 #47 

EPHA1 c.2090C>T p.(Pro697Leu) deleterious possibly damaging VV2 #22 

EPHA1 c.2090C>T p.(Pro697Leu) deleterious possibly damaging VV2 #24 

GRN c.325G>A p.(Gly109Arg) deleterious probably damaging VV2 #21 

HTRA2 c.1195G>A p.(Gly399Ser) deleterious probably damaging VV2 #23 

LMNB1 c.1474G>T p.(Ala492Ser) deleterious possibly damaging VV2 #4 

NECTIN2 c.577C>T p.(Arg193Trp) deleterious probably damaging VV2 #9 

NEK1 c.2235T>G p.(Asn745Lys) deleterious probably damaging VV2 #9 

NME8 c.1013T>C p.(Ile338Thr) deleterious probably damaging MM1 #25 

NME8 c.1013T>C p.(Ile338Thr) deleterious probably damaging VV2 #5 

NME8 c.1013T>C p.(Ile338Thr) deleterious probably damaging VV2 #6 

NME8 c.1013T>C p.(Ile338Thr) deleterious probably damaging VV2 #8 

NME8 c.1013T>C p.(Ile338Thr) deleterious probably damaging MM1 #15 

NME8 c.1247G>A p.(Ser416Asn) deleterious probably damaging MM1 #40 

NME8 c.1013T>C p.(Ile338Thr) deleterious probably damaging MM1 #42 

NME8 c.1630G>A p.(Ala544Thr) deleterious probably damaging VV2 #17 

NME8 c.1013T>C p.(Ile338Thr) deleterious probably damaging VV2 #18 

NOTCH3 c.3293C>T p.(Thr1098Ile) deleterious possibly damaging VV2 #3 

NOTCH3 c.5854G>A p.(Val1952Met) deleterious probably damaging VV2 #10 

NOTCH3 c.5854G>A p.(Val1952Met) deleterious probably damaging MM1 #38 

NOTCH3 c.5854G>A p.(Val1952Met) deleterious probably damaging MM1 #39 

NOTCH3 c.1487C>T p.(Pro496Leu) deleterious possibly damaging MM1 #15 

NOTCH3 c.3691C>T p.(Arg1231Cys) deleterious possibly damaging VV2 #17 

NOTCH3 c.1487C>T p.(Pro496Leu) deleterious possibly damaging VV2 #23 

PANK2 c.775G>A p.(Gly259Arg) deleterious probably damaging MM1 #48 

PINK1 c.1538G>A p.(Gly513Asp) deleterious probably damaging VV2 #5 

PLA2G6 c.481C>T p.(Arg161Cys) deleterious probably damaging VV2 #6 
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POLG c.2492A>G p.(Tyr831Cys) deleterious possibly damaging MM1 #29 

POLG c.2492A>G p.(Tyr831Cys) deleterious possibly damaging VV2 #17 

PRKN c.1204C>T p.(Arg402Cys) deleterious probably damaging VV2 #9 

PRKN c.1204C>T p.(Arg402Cys) deleterious probably damaging VV2 #10 

RIN3 c.1742G>A p.(Arg581Gln) deleterious probably damaging VV2 #8 

RIN3 c.2377T>C p.(Tyr793His) deleterious possibly damaging MM1 #43 

SETX c.4660T>G p.(Cys1554Gly) deleterious probably damaging MM1 #15 

SLC24A4 c.377T>C p.(Leu126Pro) deleterious probably damaging MM1 #47 

TH c.484T>G p.(Phe162Val) deleterious possibly damaging MM1 #46 

TOR1A c.646G>C p.(Asp216His) deleterious possibly damaging VV2 #1 

TOR1A c.646G>C p.(Asp216His) deleterious possibly damaging MM1 #25 

TOR1A c.646G>C p.(Asp216His) deleterious possibly damaging VV2 #6 

TOR1A c.646G>C p.(Asp216His) deleterious possibly damaging VV2 #9 

TOR1A c.646G>C p.(Asp216His) deleterious possibly damaging MM1 #15 

TOR1A c.646G>C p.(Asp216His) deleterious possibly damaging MM1 #41 

TOR1A c.646G>C p.(Asp216His) deleterious possibly damaging VV2 #17 

TOR1A c.646G>C p.(Asp216His) deleterious possibly damaging MM1 #48 

TOR1A c.646G>C p.(Asp216His) deleterious possibly damaging VV2 #24 

VPS13C c.2342T>G p.(Leu781Trp) deleterious probably damaging MM1 #41 

ZCWPW1 c.314A>G p.(Glu105Gly) deleterious probably damaging VV2 #9 

 

Table S2: complete list of missense variants identified with target sequencing predicted as 

deleterious.  
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baseMean log2FoldChange pvalue padj transcript_id gene_name 

9,2522 -3,0190196 0,00036 0,013699 ENSG00000124107.5 SLPI 

15,0865 -2,831184 0,00183 0,028777 ENSG00000136689.14 IL1RN 

34,3051 -2,5516605 0,00025 0,011418 ENSG00000106258.9 CYP3A5 

331,9027 -2,3293563 0,00015 0,008828 ENSG00000273429.1 AC253572.2 

62,6188 -2,2242763 0 0,001217 ENSG00000157653.7 C9orf43 

15,2572 -2,199948 0,00094 0,020892 ENSG00000188162.6 OTOG 

6,9398 -2,1861505 0,00092 0,020712 ENSG00000188060.6 RAB42 

16,4217 -2,170038 0,00244 0,033023 ENSG00000135476.7 ESPL1 

54,5661 -2,1537979 0,00054 0,01619 ENSG00000085265.6 FCN1 

48,1299 -2,1339709 0,00025 0,011578 ENSG00000185860.9 C1orf110 

 

Table S3: Ten overexpressed genes in the MM1 cohort, compared to VV2. Results are in 

decreasing order based on intensity of differential gene expression (log2FoldChange) and not in 

terms of statistical significance (padj). 

 

 

baseMean log2FoldChange pvalue padj transcript_id gene_name 

48,116 5,3974197 1E-05 0,002565 ENSG00000186081.7 KRT5 

33,3155 4,6097328 0 0,000655 ENSG00000198601.2 OR2M2 

24,8391 4,0013478 4E-04 0,014472 ENSG00000120586.4 MRC1 

10,8484 3,9841836 0,002 0,027512 ENSG00000113889.7 KNG1 

15,1611 3,7129433 0 0,001225 ENSG00000163898.5 LIPH 

17,0479 3,4083771 6E-05 0,00568 ENSG00000161905.8 ALOX15 

162,7731 3,0622715 2E-05 0,003182 ENSG00000091664.7 SLC17A6 

21,2658 3,0419085 1E-05 0,002067 ENSG00000253457.1 SMIM18 

6,277 3,0096604 2E-04 0,010293 ENSG00000184544.7 DHRS7C 

39,7363 2,9737858 5E-05 0,005394 ENSG00000091482.5 SMPX 

 

Table S4: Ten overexpressed genes in the MM1 cohort, compared to VV2. Results are in 

decreasing order based on intensity of differential gene expression (log2FoldChange) and not in 

terms of statistical significance (padj). 
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