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Abstract 

Anthropogenic activities and climatic processes heavily influence surface water resources and 

they often produce severe impacts which in turn affect both humans and the environment. 

Nonetheless, it is now evident that the functioning of societies and the preservation of aquatic 

ecosystems is dangerously threatened by the progressive depletion of freshwater resources, as 

many regions of the world are currently facing the issue of water scarcity while the ecological 

integrity of several ecosystems has been already compromised. Therefore, there is an urgent 

need to understand the effective contribution and the spatial influence of anthropogenic and 

climatic dynamics on the variation of surface water availability. Earth observations gathered 

from remotely-sensed data allow to thoroughly explore this research issue. Here, this 

investigation is performed at the regional scale by focusing on the study area of the contiguous 

United States (CONUS), which embeds heterogeneous hydroclimatic and socio-economic 

conditions. Three anthropogenic (i.e., urban area, population, and irrigated land) and two 

climatic factors (i.e., precipitation and temperature) were selected as potential drivers of 

changes in surface water extent. The analysis of the possible overlap between the changes 

(increase or decrease) in these drivers and the variation of surface water extent that occurred 

from 1984 to 2020 was then examined at the river basin level. Overall, most of the river basins 

experienced a net gain of surface water extent (i.e., a transition from land to water) due to an 

increase in precipitation, especially in the eastern region of the CONUS, and a reduction of 

irrigated land, mainly located in the western area. However, the river basins of the arid 

southwestern region of the CONUS along with some river basins situated in the northeastern 

area encountered a net loss of their surface water extent (i.e., a transition from water to land), 

which resulted to be essentially induced by population growth with the additional contribution 

of the precipitation deficit that hit the southwestern region and a general expansion of irrigated 

land. To further inspect the role of population growth and urbanization on the spatial 

distribution of surface water loss, a detailed spatially-explicit analysis of the interaction between 

human settlements and surface water depletion was carried out. In particular, the decrease of 

frequency of occurrence of surface water loss was analyzed and modeled as a function of 

distance from urban areas across the CONUS. The exponential distance-decay model defined 

in this analysis successfully reproduced the observed spatial trend, confirming the presence of 

a higher frequency of surface water loss in the proximity of human settlements and providing 



 xx 

innovative insights on surface water loss patterns at different spatial scales (i.e., river basins, 

water resource regions, and the CONUS). These spatial patterns are found to be influenced 

by climatic conditions, with more widely distributed losses in arid regions with respect to 

temperate and continental climates. The results presented in this Thesis provide a new and 

deeper understanding of the contribution and the spatial influence of anthropogenic and 

climatic dynamics on the variation of surface water availability, which could be effectively 

integrated in the definition of sustainable strategies for urbanization, water management, and 

surface water restoration, considering both human and environmental water needs. 

Keywords: surface water resources, surface water depletion, anthropogenic drivers, climatic 

drivers, distance-decay model, human pressure. 
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Sommario 

Le attività antropiche e i processi climatici esercitano un’influenza notevole sulle risorse idriche 

superficiali, causando spesso gravi impatti che a loro volta colpiscono l’uomo e l’ambiente. Il 

funzionamento delle società e la preservazione degli ecosistemi di acqua dolce sono infatti 

fortemente minacciati dal progressivo esaurimento delle risorse idriche. Numerose aree a 

livello globale presentano una situazione di notevole criticità a causa della scarsità di risorsa 

idrica, con conseguenze catastrofiche che vanno a minare l’integrità di numerosi ecosistemi 

acquatici e terrestri. Per questi motivi, è necessario comprendere approfonditamente l’effettivo 

contributo di dinamiche antropiche e climatiche sulla variazione dell’estensione delle risorse 

idriche superficiali, analizzandone anche l’influenza a livello locale. Le immagini della superficie 

terrestre rilevate dai sensori satellitari permettono di approfondire questa problematica. Nella 

presente Tesi, tale indagine viene eseguita alla scala regionale focalizzando l’attenzione sull’area 

di studio degli Stati Uniti continentali (CONUS), la quale è caratterizzata da condizioni idro-

climatiche e socio-economiche estremamente eterogenee. In primo luogo, per valutare l’effetto 

di fattori antropici e climatici sulla variazione dell’estensione della risorsa idrica superficiale 

sono stati selezionati tre fattori antropici (estensione dell’area urbana e della superficie irrigata, 

distribuzione della popolazione) e due fattori climatici (precipitazione e temperatura) in qualità 

di potenziali cause di tale variazione. Lo studio della possibile sovrapposizione tra la variazione 

(intesa come incremento e decremento) di tali fattori e quella associata alla risorsa idrica 

superficiale, verificatesi tra il 1984 e il 2020, è stata quindi valutata a scala di bacino idrografico. 

Complessivamente, nella gran parte dei bacini del CONUS si è verificato un aumento netto 

dell’estensione della risorsa idrica superficiale (equivalente ad una transizione da suolo ad 

acqua), le cui cause potrebbero essere associate ad un incremento della precipitazione, 

specialmente nella regione orientale del CONUS, e ad una riduzione della superficie irrigata, 

principalmente localizzata nell’area occidentale. Una netta riduzione dell’estensione della 

risorsa idrica superficiale (equivalente ad una transizione da acqua a suolo) è stata invece 

osservata nei bacini idrografici appartenenti alla regione arida sudoccidentale nonché in alcuni 

bacini situati nell’area nordorientale del CONUS. Tale riduzione sembra ricondursi ad una 

significativa crescita demografica, a cui si aggiungono una diminuzione delle precipitazioni 

(prevalentemente nella regione sudoccidentale) e una generale espansione della superficie 

irrigata. In secondo luogo, per valutare in maniera più approfondita il ruolo della crescita 
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demografica e urbana sulla distribuzione spaziale (a livello locale) delle risorse idriche 

superficiali perse all’interno del CONUS, è stata effettuata un’analisi dettagliata dell’interazione 

nello spazio tra gli agglomerati urbani e l’esaurimento delle risorse idriche superficiali. Nello 

specifico, è stato analizzato la distribuzione nello spazio della frequenza di osservazione della 

perdita di risorsa idrica superficiale in funzione della distanza dalle aree urbane all’interno del 

CONUS. Successivamente è stato definito un modello esponenziale di distance-decay che ha 

riprodotto con successo l’andamento osservato nello spazio, confermando la presenza di una 

maggiore frequenza di perdita di risorsa idrica superficiale in prossimità degli agglomerati 

urbani. Tale modello è stato applicato a vari livelli di aggregazione spaziale (bacino idrografico, 

regione idrica e CONUS), fornendo una visione innovativa della distribuzione spaziale 

dell’esaurimento della risorsa idrica. È emerso, inoltre, come le caratteristiche climatiche 

prevalenti abbiano influenzato le distribuzioni spaziali osservate e riprodotte dal modello. In 

particolare, le regioni caratterizzate da climi aridi presentano delle perdite di risorsa idrica 

superficiale maggiormente distribuite rispetto a quelle caratterizzate da climi temperati e 

continentali. I risultati presentati in questa Tesi offrono una conoscenza più approfondita del 

contributo e dell’influenza a livello locale da parte delle dinamiche antropogeniche e climatiche 

sulla variazione della risorsa idrica superficiale disponibile. Tale conoscenza può essere 

integrata nella definizione di strategie sostenibili di gestione del processo di urbanizzazione, 

delle risorse idriche e del loro ripristino, che tengano conto delle esigenze sia della società che 

dell’ambiente. 

Parole chiave: risorse idriche superficiali, esaurimento delle risorse idriche superficiali, fattori 

antropici, fattori climatici, modello di distance-decay, pressione antropica. 
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1 Introduction 

Water is a major and unique resource for humans and the environment. Indeed, beyond being 

essential for life on Earth, water represents also an indispensable element to the economic 

wealth of societies and to numerous ecosystems (Poff et al., 1997; Vörösmarty et al., 2010; 

Cosgrove & Loucks, 2015; Granzotti et al., 2018). Among all the water resources, surface 

water, i.e., water bodies found on land surface, plays an essential role for freshwater supply 

and the preservation of freshwater ecosystems and functions (Poff et al., 1997; Jenkins et al., 

2010; Dieter et al., 2018; Granzotti et al., 2018). However, socioeconomic and technological 

development, water-management policies, and climate variability are responsible for the spread 

of multiple pressures on surface water resources (Delpla et al., 2009; Averyt et al., 2013; Yigzaw 

& Hossain, 2016; Duran-Encalada et al., 2017; Brown et al., 2019b; Erler et al., 2019). Human 

activities severely affect water bodies, as they often compromise water quantity and quality and 

threaten ecological integrity through the artificial modification of the morphology and the flow 

regime of water bodies as well as the introduction of pollutants, which put at risk water security 

and the biodiversity of aquatic ecosystems (Cosgrove & Loucks, 2015; Wanders & Wada, 2015; 

Grizzetti et al., 2017; Wada et al., 2017). Moreover, water demand is rapidly increasing 

worldwide due to the global demographic growth, improved living standards, changing 

consumption patterns, and the expansion of irrigated agriculture (Mekonnen & Hoekstra, 

2016). As a result, surface water resources are exploited at an accelerating rate to satisfy the 

subsequent larger demands for consumptive use, food production, and power generation 

(McDonald et al., 2011a, 2011c; Okello et al., 2015; Yigzaw & Hossain, 2016). Furthermore, 

surface water resources are highly exposed to climate change, as they are extremely dependent 

on precipitation and temperature (Kifle Arsiso et al., 2017). Future climate variability, along 

with the anthropogenic impacts due to urban and economic growth, is expected to further 

impact surface water resources from rivers, lakes, reservoirs, and wetlands, as the climatic 

changes are projected to amplify both their magnitude and severity over the next decades 

(Okello et al., 2015; Kummu et al., 2016). All these factors introduce uncertainties on future 

availability of surface water, increasing the risk of water scarcity and ecosystems degradation 

and posing a serious challenge for sustainable development (Haddeland et al., 2006; Ferguson 

& Maxwell, 2012; Khatri & Tyagi, 2015; Liyanage & Yamada, 2017; Botter & Durighetto, 
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2020). The analysis of how human actions and climate change affected surface water 

availability is key to understand and prevent future issues with water shortages and the 

associated social, political, and environmental implications (Cosgrove & Loucks, 2015). Thus, 

the identification of the dominant drivers of the change in surface water availability is crucial 

as the following questions need to be addressed: 

(Q1a) How has the spatial extent of surface water changed in the last 40 years? 

(Q1b) What are the main anthropogenic and climatic factors governing the 

remotely-sensed change of surface water extent and where do they determine a 

gain/loss of surface water (i.e., a transition from land to water/water to land)? 

Furthermore, it is well acknowledged that human activities in urban areas strongly rely on 

surface waters causing an excessive stress on local water sources, which are destined to 

gradually disappear (McDonald et al., 2014). Even though the impacts of urbanization on the 

environment have been long studied, the consequences of urban development on water 

resources, and especially the dynamics of spatial interaction between urban areas and surface 

water loss, are less known (Bigelow et al., 2017; Cooley et al., 2021). In particular, it is necessary 

to unravel the spatial influence of human settlements on surface water depletion to discover 

and examine the presence of hotspots of localized and concentrated pressure on surface 

waters, which may produce negative effects on human life and the environment (Padowski & 

Jawitz, 2012; Wada et al., 2016; Boretti & Rosa, 2019). The anthropogenic overexploitation 

induced by growing urban water demand raises concerns on future availability of surface 

waters and requires an answer to the following questions: 

(Q2a) Where does urbanization cause surface water loss? 

(Q2b) How does the frequency of surface water loss change as the distance 

from human settlements increases? 

Over the past decade the application of satellite-based information has extraordinarily 

expanded thanks to the exceptional advantages supplied by this technology, such as data with 

global spatial coverage and high temporal resolution (Sheffield et al., 2018; Seydi et al., 2020; 

Afaq & Manocha, 2021). Remote sensing imagery represents a robust source of data for the 

detection and monitoring of any process of environmental or anthropogenic change that takes 

place above the Earth’s surface, providing critical information for the control and prevention 
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of natural and human-induced calamities (Asokan & Anitha, 2019; Karthikeyan et al., 2020). 

For instance, images captured by satellite sensors allow the measurement of key components 

of the hydrological cycle, such as precipitation, evaporation, water bodies levels, soil moisture, 

and snow, and the observation of processes related to human activities, such as urban areas 

development, land use and land cover change (Fang et al., 2018; Wang et al., 2018; Xiong et 

al., 2018; Liu et al., 2020). 

The study area of the contiguous United States (CONUS) offers a unique opportunity to 

investigate the impacts of human dynamics and climate change on surface water resources 

over a large and heterogeneous territory, which includes regions characterized by diverse 

hydroclimatic conditions, and with spatially-varying topography, surface water availability, and 

degree of urbanization. Finally, performing such an investigation on the CONUS gives the 

additional benefit of a large volume of freely accessible data, including remotely-sensed data 

(Di Baldassarre et al., 2021). 

1.1 Objectives and methodology 

The first Research Objective (RO1) of this Thesis aims at addressing questions (Q1a) and 

(Q1b) by evaluating the influence of anthropogenic and climatic factors on the variation of 

surface water extent at the river basin and climatic region level across the CONUS from 1984 

to 2020 (Pekel et al., 2016). The variation that occurred before and after the year 2000 in 

surface water extent and its anthropogenic and climatic drivers was evaluated to determine 

which factors played a key role in the gain and loss of surface water resources. Three 

anthropogenic and two climatic drivers were involved in this analysis: urban area, population, 

and irrigated land were the variables representing human dynamics (anthropogenic drivers), 

while precipitation and temperature were used to account for the effects due to climate 

variability (climatic drivers). Maps of the changes in surface water extent and its drivers that 

took place between 1984-1999 (first epoch) and 2000-2020 (second epoch) were generated 

from datasets derived from satellite images and ground-based observations. More specifically, 

locations of gains and losses of surface water were extracted to obtain the net variation of 

surface water extent (given by the difference between the total gain and total loss) at the scale 

of river basin and climatic region. Subsequently, the total built-up area, total population 

distribution, total irrigated land, as well as the mean annual precipitation, and mean monthly 
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temperature observed over the first and second epoch were defined to calculate the variation 

of the drivers between the two time-windows. The potential overlap between the net surface 

water gain and loss and the corresponding direction of change of their drivers was assessed 

across the river basins of the CONUS to establish which among the considered anthropogenic 

and climatic factors contributed the most to the variation of surface water availability. Finally, 

the influence of climate was verified as well, by looking at the climatic regions of the CONUS 

and their subtypes, as defined by the Köppen-Geiger classification system (Beck et al., 2018). 

In particular, trends of change in surface water extent and its anthropogenic and climatic 

factors were estimated across the main climatic regions and subregions of the CONUS to 

verify if the relations between them is influenced by the climatic conditions of a specific area. 

A scientific paper presenting the analysis and the results related to this first Research Objective 

is currently in preparation (Palazzoli et al., in prep.). 

The second Research Objective (RO2) of this Thesis attempts to provide an answer to 

questions (Q2a) and (Q2b). Here, the relation between urbanization and surface water 

depletion was explored by evaluating the spatial distribution of surface water losses that 

occurred between 1984 and 2018 as a function of distance from urban areas across the 

CONUS. Maps of surface water loss locations and built-up areas were created from datasets 

derived from remotely-sensed data. This analysis consists in an innovative application of the 

distance-decay concept to evaluate and analytically reproduce the influence of urban areas on 

the spatial distribution of surface water loss across the CONUS. Moreover, as for RO1, the 

influence of climate was analyzed to possibly identify distinct signatures of the spatial 

distribution of surface water losses from human settlements within the main climatic regions 

of the study area (Palazzoli et al., 2022). 

An accurate understanding of (i) the contributing factors to a change in surface water extent 

and (ii) the dynamics of the spatial interaction between urban areas and surface water loss 

distribution is fundamental to define ecologically sustainable solutions that ensure water 

conservation and ecosystem protection, with an emphasis on those strategies that allow to 

meet urban water demand and at the same time prevent the depletion of surface water 

resources (McDonald et al., 2011c; Lyons, 2014; Grizzetti et al., 2017; Boretti & Rosa, 2019; 

Paiva et al., 2020). 
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1.2 Outline of the Thesis 

The present Thesis report comprises six chapters, which are structured in the following way. 

Chapter 1 (i.e., the current one) is a general introduction to the study framework, specifying the 

objectives and methodology of the research, and the executive summary. 

Chapter 2 reviews the scientific literature related to the subject matter of this dissertation. First, 

it explains the importance of surface water resources for humans and the environment. 

Afterwards, it provides information about the impacts of human activities and climate change 

on surface waters. Finally, remote sensing technique and its application of the detection of 

surface water, human dynamics, and climate is illustrated in the fourth section. 

Chapter 3 describes the study area and the collection and processing of data. In particular, the 

currently available datasets derived from satellite and ground-based observations and adopted 

for data extraction in order to create the maps employed in RO1 and RO2 are presented. 

Chapter 4 treats in detail the study of the influence of anthropogenic and climatic factors on the variation 

of surface water extent at the river basin level across the contiguous United States (CONUS) from 

1984 to 2020 (i.e., RO1). Starting from the main motivations, the Chapter then describes the 

employed data and the designed and adopted methodology, and finally discusses the achieved 

results. 

Chapter 5 deals with the analysis of the spatial distribution of surface water losses as a function of 

distance from urban areas (i.e., RO2). This Chapter presents a structure similar to the previous 

one. 

Chapter 6 concludes the dissertation by summarizing the overall findings and the critical issues 

of the study. It also provides starting points and suggestions for further research. 
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2 Literature review 

2.1 Surface water 

Surface water resources represent any water body that is above the ground, including streams, 

rivers, lakes, ponds, reservoirs, wetlands, glaciers, and ice-caps (Dooge, 2009; Huang et al., 

2018), which are vital sources for the maintenance of ecosystems and for socio-economic 

development (FAO, 2017). Freshwater represents 2.5% of the total amount of water on Earth 

and is mostly stored in glaciers and groundwater, meaning that humans have access to a very 

limited amount of it, as shown in Figure 2.1 (Oki & Kanae, 2006; Regan, 2012). Water is 

naturally recycled within the water cycle: evaporation converts water from liquid to gas, which 

then recondenses into a liquid, while also water becomes carbohydrates when assimilated by 

vegetation through photosynthesis, it ultimately reverts to the liquid state via decomposition 

(Oki & Kanae, 2006). This cycle makes freshwater a renewable resource with a rate of renewal 

that depends on climate, limiting the quantity of freshwater available to human society. For 

instance, water in rivers is renewed on average every 16 days, while the largest lakes have a 

renewal period ranging from hundreds to thousands of years. When surface waters are 

withdrawn and used with a rate that is higher than their renewal rate, they become non-

renewable, eventually causing water scarcity, which is a condition that occurs when water 

supply is insufficient to meet water demand. Therefore, it is necessary to define more efficient 

water management solutions that control the impacts of a steadily growing water demand 

(Shiklomanov, 1993; Oki & Kanae, 2006; Hoogeveen et al., 2015; Wada et al., 2016). 

From local to global scale, surface waters sustain and preserve the biodiversity of aquatic and 

terrestrial ecosystems, supply water to societies as well as guarantee economic growth by 

providing water to agriculture and industry (Huang et al., 2018; Wang et al., 2018, 2020; Xiong 

et al., 2018; Cooley et al., 2021). However, global freshwater availability is changing and 

population growth, human activities, and climate change stress the need to contain water 

consumption under sustainable levels, in order to avoid water scarcity, and the resulting 

ecosystems degradation and impacts on technological progress and environmental security 

(Kummu et al., 2016; Rodell et al., 2018; FAO, 2020). Currently, the annual water withdrawals 
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are equal to 3800 km3/year, while the annual discharge of water that flows from land to the 

sea through the rivers is 45,500 km3/year, with the latter giving an estimate of water availability 

(Oki & Kanae, 2006). Human-induced and natural factors reshape surface water bodies, by 

shrinking and expanding their extent, or moving their location with time (Huang et al., 2018). 

As a result, nowadays two-thirds of aquatic habitats are facing many challenges and they are 

threatened by future variability of precipitation patterns and river discharge. Furthermore, 

about 5 billion people live in areas that are already experiencing water shortages and that are 

exposed to a higher risk of water scarcity because of future scenarios of population growth 

and climate change (Rodell et al., 2018). Therefore, the impacts on both the environment and 

human communities make critical the detection of the location, extent, and volume of surface 

waters and the monitoring of their dynamics (Huang et al., 2018; Wang et al., 2018). 

 
Figure 2.1 Bar chart showing the distribution of Earth’s water (numbers are rounded). The left-side bar chart shows all water 

(saline and freshwater) on, in, and above the Earth. The central bar shows the distribution of all freshwater. The right-side 

bar shows the portion of freshwater found in surface water, snow, ice, and relatively-shallow ground water. Source: Igor 

Shiklomanov's chapter "World fresh water resources" in Peter H. Gleick (editor) 1993, Water in Crisis: A Guide to the World's 

Fresh Water Resources (Shiklomanov, 1993). 
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2.2 Human pressure on surface water 

Through history humans have learnt how to control and exploit water resources exerting a 

critical and constantly increasing pressure on hydrology (Vörösmarty et al., 2004; Bierkens, 

2015; Ceola et al., 2015; Wada et al., 2017). Specifically, the terrestrial water cycle has been 

rapidly disrupted through direct actions, such as water diversions and withdrawals, and through 

indirect effects due to, e.g., land cover change and human-induced climate change (Rost et al., 

2008). The global demand for water is strongly affected by growing population, urbanization, 

economic development, and food security policies. Water demand is currently growing at a 

rate of 1% per year (UNESCO, 2020), while two-thirds of the world population is experiencing 

water scarcity from 1 to 12 months per year as shown in Figure 2.2 (Mekonnen & Hoekstra, 

2016). By 2050 the manufacturing, thermal electricity generation, and domestic use are 

expected to produce a 55% increase of water demand (WWAP, 2015). Under this scenario, 

rivers and lakes are highly exposed to the risk of overexploitation and depletion, since they 

represent, together with groundwater, the main water source for anthropogenic uses 

(Shiklomanov, 1993; Ceola et al., 2019).  

 
Figure 2.2 Number of months per year during which water scarcity exceeds 1.0 (data over the time period 1996-2005). Figure 

taken from Mekonnen & Hoekstra (2016). 

Since water is mainly withdrawn for agricultural, industrial, and domestic purposes (Regan, 

2012; Flörke et al., 2013), the present analysis examines the anthropogenic effects caused by 

irrigation, urbanization, and population dynamics. 
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2.2.1 Population growth and urbanization 

Demographic expansion and the process of urbanization are among the main anthropogenic 

factors that modify water flow regimes and rivers morphology, placing a massive stress on 

river systems (Paterson et al., 2015; Grizzetti et al., 2017; Ceola et al., 2019). In addition, 

industrial and domestic sectors are globally responsible for the 19% and 11% of the total 

anthropogenic use of freshwater, respectively (Flörke et al., 2013). 

The past century witnessed a global increase of population living in cities, which starting from 

2007 exceeded the number of people residing in rural areas, as shown in Figure 2.3 (United 

Nations, 2019). Specifically, in 1900 about 16% of the global population, corresponding to 0.3 

billion people, was living in urban areas, whereas in 2010 urban population became more than 

half of the world’s population with 3.5 billion people (Kummu et al., 2011). Currently, 55% of 

the global population is urban and this fraction is set to progressively increase reaching almost 

70% by 2050 (Paterson et al., 2015; United Nations, 2019). In particular, by 2030 people living 

in urban areas are expected to constitute 83% and 53% of the total population in developed 

and developing countries, respectively (McGrane, 2016). This rapid growth of urban 

population is associated to the expansion of existing cities and the development of new urban 

areas. This is accompanied by an increase in global urban water demand, which in turn alters 

hydrologic balances of basins providing and receiving freshwater supplies (McDonald et al., 

2014; Padowski & Gorelick, 2014). In 2050 water demand in urban areas is projected to reach 

an increase of 50-80%, amplifying the competition for freshwater among cities and between 

urban areas and the agricultural sector (Garrick et al., 2019). 

Human settlements usually develop along rivers as they supply water for different uses, such 

as drinking water, irrigation, transportation, and power purposes (O’Driscoll et al., 2010; 

Kummu et al., 2011; Everard & Moggridge, 2012; Ceola et al., 2015; Fang & Jawitz, 2019). The 

development of new urban areas determines considerable changes of local water resources, 

such as the increase of impervious surface area, channels alteration, interruption of rivers and 

floodplains, high water demand, and the introduction of new pollutants that deteriorate water 

quality. Consequently, streams and rivers gradually disappear causing a widespread degradation 

of freshwater ecosystems (Everard & Moggridge, 2012; Ceola et al., 2015; Kaushal et al., 2017). 

In particular, the expansion of the total impervious surfaces influences surface water 

availability through an increase of the surface runoff and a drop of infiltration, producing 
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earlier peaks in river discharge with respect to rainfall events. These effects determine a higher 

risk of floods, as well as droughts due to reduced groundwater recharge (Everard & Moggridge, 

2012; Bhaskar et al., 2020). Moreover, urbanization affects the distribution of surface water 

through direct water abstraction from springs and rivers (Flörke et al., 2018), groundwater 

exploitation turning into increased infiltration (Wada et al., 2012), land drainage supporting 

agricultural development (Smedema et al., 2000), and increased evaporation induced by the 

urban heat island effect (Zhou et al., 2015). 

 
Figure 2.3 Trends of urban and rural population of the world from 1950 to 2050. Data source: United Nations, Department 

of Economic and Social Affairs, Population Division (United Nations, 2019). 

Urban water demand is spatially concentrated within a small and highly-dense area with 

thousands or millions of people. Even though infrastructures allow cities to reach sources of 

surface water and groundwater that are far away from the urban area, urban water demand 

usually relies on local freshwater sources that are found near the city center (McDonald et al., 

2014). As a result, a reduction in the extent of surface water bodies close to cities reflects an 

anthropogenic overstress on water resources which might lead to a condition of water scarcity 

in the future (McDonald et al., 2014). 

2.2.2 Irrigation 

The practice of irrigation consists in the full or partial artificial application of water (including 

both surface water and groundwater) to counteract the precipitation deficit during the crop 

growing season (Ozdogan et al., 2010). Irrigated agriculture allows to guarantee food security 
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even under the most demanding conditions induced by the economic and demographic growth 

and climate change (Bekele et al., 2019; Zohaib & Choi, 2020). Indeed, although irrigation 

covers only 20% of the total cultivated land, it sustains 40% of the global food production as 

it produces at least twice the crops per unit of land coming from rainfed agriculture (World 

Bank, 2021). Besides increasing soil productivity, the benefits coming from the adoption of 

irrigated agriculture are longer growing seasons and the possibility to select crop types. 

Most of the global water withdrawals is destined to the food production system and in 

particular to irrigation (Dang et al., 2015). However, after land area, water represents the 

second most limiting factor for food production and its supply largely influences crop yield 

(Nair et al., 2013). As a result, the agricultural sector is at the same time a cause and a victim 

of water scarcity, as it is responsible for 70% of global freshwater withdrawals from rivers, 

lakes, and aquifers, and for more than 90% of consumptive use (i.e., nonrecoverable water) 

due to the evapotranspiration of crops, while it is also extremely sensitive to water shortages 

(FAO, 2012; Hoogeveen et al., 2015; Wada et al., 2016). The impacts of irrigation withdrawals 

on surface water availability and quality have been observed also in humid regions (Nie et al., 

2021). In particular, Figure 2.4 depicts that the water stress per major river basin at the global 

scale, which is expressed as a percentage of incremental evaporation due to irrigation over the 

outflows generated from groundwater (effluent discharge) and surface water (runoff) 

resources, is higher in correspondence of some of the world’s top cereal producing areas 

(Hoogeveen et al., 2015). Increasing food demand due to economic and world population 

growth requires an agricultural expansion, inducing extensive water abstractions, especially in 

arid and semi-arid regions, which are likely to experience water scarcity (Anderson et al., 2012; 

Starr & Levison, 2014; FAO, 2020). 

Crop water requirements vary among crops and geographical regions, depending on soil 

moisture levels, influenced among all by rainfall patterns, temperature, soil type, and vegetation 

(Pimentel et al., 1997). For ideal growing conditions, soil moisture in the root zone should be 

at least 50%, which requires artificial irrigation. Therefore, irrigated agriculture is considerably 

sensitive to climatic conditions and future climate variability is expected to remarkably impact 

irrigation as it will affect hydrological regimes and water availability (FAO, 2012). Furthermore, 

the consumption of surface water resulting from irrigation practices has consequences on 

regional climate, ecosystems, and human health (Anderson et al., 2012). Hence, human 
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pressure along with droughts and the reduction of water supplies caused by climate change are 

enhancing competition for water resources and they will lead to an extensive water use for 

irrigation, as the irrigated food production will increase by more than 50% by 2050 (Mancosu 

et al., 2015; FAO, 2017; Nie et al., 2021). In particular, water shortages and scarcity will be 

amplified in some regions (arid regions) while they will start to appear in some other areas that 

currently have a sufficient amount of water resources (Pimentel et al., 1997; FAO, 2012). 

 
Figure 2.4 Water stress of the major river basins expressed as a percentage of incremental evaporation due to irrigation over 

the outflows generated from groundwater and surface water resources. Figure adapted from Hoogeveen et al. (2015). 

2.3 Effects of climate change on surface water 

Warming climate is one of the drivers of water stress, as it causes spatiotemporal variations of 

precipitation, temperature, and evapotranspiration (ET), which in turn affect river runoff and 

groundwater recharge, posing a threat to water security (Kundzewicz, 2008; Duan et al., 2019). 

In particular, climate change increases the frequency of hydrologic extreme events, such as 

flood and drought, producing a decrease of water supplies and a growth of water demand 

(Zhuang et al., 2018; Brown et al., 2019a). Moreover, the changes in climatic variables influence 

and interact with each other. Indeed, the difference between precipitation and ET determines 

the amount of local water that is accessible at the watershed level. However, as temperature 



 
Chapter 2 

 

 14 

rises ET becomes more intense, drying surfaces, reducing soil moisture and surface waters 

(Duan et al., 2019). 

Future climatic changes are predicted to considerably affect the global hydrologic regimes, by 

modifying the amount, distribution pattern, and timing of water availability, with the most 

sudden water cycle changes occurring under high emission scenarios (McDonald et al., 2011c; 

Zhuang et al., 2018; Petpongpan et al., 2020; IPCC et al., 2021). Overall, projections of future 

precipitation anticipate a reducing trend in semi-arid regions, rising trend in temperate regions, 

more frequent extreme events, and a higher variability in rainfall distribution, whereas 

greenhouse gas emissions are expected to raise temperature globally, and the greatest variations 

are projected in the poles rather than at the equator (McDonald et al., 2011c; FAO, 2012). In 

order to prevent severe water shortages, beside mitigation strategies restraining human-

induced climate change in the future, there is the need to employ proper adaptation solutions 

that are able to take advantage from the hydrologic changes that already took place and that 

are expected to intensify in the future. These adaptation solutions include both the 

improvement of water supply and the reduction of water demand (Brown et al., 2019a). 

2.3.1 Precipitation change 

Precipitation is the main source of water body on land (Kundzewicz, 2008). As a result, surface 

water as well as the whole hydrologic cycle are extremely sensitive to precipitation variability 

and extreme events, such as floods and droughts, which are a consequence of warming climate 

(Kifle Arsiso et al., 2017; Pendergrass et al., 2017; Brunner et al., 2021; McKinnon & Deser, 

2021). On one hand, heavy rainfall produces extreme runoff or flooding. On the other hand, 

scarce rainfall determines a decrease of water level in water bodies (both surface water and 

groundwater), a decline in soil moisture, and droughts (Kundzewicz, 2008). Specifically, 

drought is a slow process that progressively reduces the amount of water stored in soil, 

decreasing springs, reservoirs, and aquifers, and it can last for years or even centuries. Figure 

2.5 shows that the global annual precipitation anomaly generally increased during the last 

decade, although it did not present a defined pattern from 1901 and 2020. 



 
Literature review 

 

 15 

 
Figure 2.5 Global annual precipitation anomaly compared to the average precipitation from 1901 to 2020 based on rainfall 

and snowfall measurements collected at weather stations worldwide. Data source: National Oceanic & Atmospheric 

Administration (NOAA) via the US EPA (EPA, 2016). 

Droughts are particularly dangerous to humans and natural organisms, in such a way that 

history is full of drought episodes that modified and devastated entire civilizations and 

ecosystems (Wanders & Wada, 2015; Van Loon et al., 2016; CRED, 2020). The more the 

economy is sensitive to water availability variation, the greater the impacts of droughts will be, 

with contained damages where there is an efficient regional and global trade and when 

infrastructure networks and institutions allow to easily store, move, and reallocate water. In 

natural ecosystems droughts promote the establishment of invasive species or shifts in species 

composition (Lund et al., 2018). Hence, changes in precipitation patterns influence the 

availability of surface water, causing impacts on both humans and ecosystems (Duran-

Encalada et al., 2017; Konapala et al., 2020). In addition, the occurrence of extreme events 

impacts also the solutions that humans developed to deal with such episodes, for instance 

droughts involving large areas hinder water management strategies that rely on water transfer 

from adjacent regions (Brunner et al., 2021). 

2.3.2 Temperature change 

All the components of the water cycle depend on temperature. Indeed, warming climate affects 

processes such as precipitation, ET, soil moisture, and river flow. By controlling the 
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evapotranspirative demand, i.e., the evaporation from soils, plants, and trees, and the 

transpiration process related to the use and release of water from plants, temperature alters 

water availability (Georgakakos et al., 2014). Rising temperatures determine an increase in the 

potential ET rates and in the amount of water held in the atmosphere, and this condition of 

higher atmospheric moisture and temperature will produce more intense precipitation 

(Kundzewicz, 2008; Balling & Goodrich, 2011). Figure 2.6 shows that temperature has been 

increasing worldwide since 1976. 

 
Figure 2.6 Global annual temperature anomaly compared to the average temperature from 1901 to 2020 based on the 

combination of a set of land-based weather stations and sea surface temperature measurements worldwide. Data source: 

National Oceanic & Atmospheric Administration (NOAA) via the US EPA (EPA, 2016). 

Additional effects due to warming temperature are the glaciers retreat and the reduction of 

snow cover (Kundzewicz, 2008), as well as the increase in the severity and extent of drought 

events (Brunner et al., 2021). Moreover, wild fires represent another countereffect of high 

temperatures, along with earlier springs warming, and dampened surface water (MacDonald, 

2010). Finally, long periods characterized by temperature that are above or below normal 

values, i.e., heat and cold waves, have impacts on both the environment and human activities 

(Vose et al., 2017), and in the future hot extremes will become more frequent, while there will 

be a drop in the frequency of cold extremes (Kundzewicz, 2008). 
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2.4 Remote sensing data 

Satellite remote sensing is a powerful tool that has emerged during the second half of the 20th 

century. The operation of remote sensing is based on the mechanisms of reflection, 

absorption, and transmission of electromagnetic radiation. The satellite sensor is the 

instrument that measures and records the radiance, which is the reflected radiation in the 

direction toward the sensor. Passive sensors use the light emitted by the Sun (passive remote 

sensing), while active sensors use the light emitted by the satellite itself (active remote sensing), 

as shown in Figure 2.7. 

 
Figure 2.7 Difference between passive and active sensors aboard a satellite. Passive sensors exploit the natural energy of the 

Sun. Active sensors provide their own energy. Figure taken from https://earthdata.nasa.gov/learn/backgrounders/remote-

sensing. 

Every feature on Earth reflects, absorbs, transmits, and emits electromagnetic energy and is 

characterized by a unique spectral signature, which defines the percentage of total radiation 

that is reflected by a target (i.e., the reflectance) as a function of wavelength (for some 

examples, see Figure 2.8). Therefore, the various wavelengths of the electromagnetic spectrum 

associated to the reflected radiation allow to identify features and materials and extract 

information on terrestrial processes, such as hydrological cycle and vegetation dynamics, that 

are occurring when the satellite passes over a specific location of the Earth’s surface 

(Karthikeyan et al., 2020). 

Remote sensing provides global-scale and freely available Earth Observation (EO) at very high 

spatial and temporal resolution. For this reason it has been recognized to be the most relevant 

source of data for the detection and analysis of natural or man-induced changes, which consists 

in the identification and measurement of significant differences in objects and conditions 
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captured over the same region of interest at different times from the comparison of two or 

more images (Asokan & Anitha, 2019). The operation of change detection has important 

implications for resources management and it is particularly useful for the inspection of 

inaccessible areas (Seydi et al., 2020; Afaq & Manocha, 2021). Therefore, remote sensing plays 

a key role in monitoring the process of environmental change. Satellite imagery allows to 

record changes in land use, spatial allocation of human settlements and activities, and climatic 

variables, which are all major factors in altering water dynamics (Fang et al., 2018; Sheffield et 

al., 2018; Ceola et al., 2019; Liu et al., 2020). Specifically, once they have been acquired, satellite 

images are corrected in order to remove unwanted artifacts and noise due to atmospheric 

interferences (image preprocessing). Afterwards, an algorithm is applied to identify changes 

and create a map. Several change detection techniques have been defined based on the type of 

application (Asokan & Anitha, 2019). In what follows a review of the main methods that are 

generally adopted for the monitoring of surface water resources, human activities, and climatic 

conditions is presented. 

 
Figure 2.8 Spectral signature showing the reflectance of water, soil, and vegetation at different wavelengths. Figure taken 

from https://seos-project.eu/classification/classification-c01-p05.html. 

2.4.1 Remote sensing of surface water 

Satellite data have been widely employed to detect and track surface water extent and its 

persistence and recurrence, as well as to identify flooded regions and wetlands (Acharya et al., 

2016; Huang et al., 2018). The estimation of the spatiotemporal variation of surface water 

bodies is fundamental to many environmental applications, such as flood prediction, the 
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evaluation of irrigation in agricultural land, and hydropower energy (Acharya et al., 2016; 

Donchyts et al., 2016). Furthermore, optical satellite imagery supplies relevant information for 

those areas that are not easily accessible or have a large extent (Mueller et al., 2016). Although 

several approaches are available for the identification of water bodies from satellite images, the 

most common is the calculation of spectral indices obtained from the combination of multiple 

bands whose positive values indicate the presence of water, e.g., the Normalized Difference 

Water Index (NDWI) and the Modified NDWI (MNDWI). The definition of these indices 

exploits the capability of water to absorb radiation at near-infrared wavelengths and beyond, 

which determines very low or no reflection from water in the spectral bands corresponding to 

these wavelengths (Mueller et al., 2016). Moreover, techniques using information regarding 

satellite view angle and solar zenith/azimuth are necessary to reduce the errors of commission 

(i.e., wrong detection of water) due to the noise in the signal produced by the presence of 

clouds, snow, and ice (Donchyts et al., 2016). Even if spectral indices are largely used in water 

detection for their simplicity, the definition of a threshold value can be laborious and 

impractical as the spectral signature of water varies as a function of sediments, algae, depth, 

and the reflectance signal from the bottom (Tulbure et al., 2016). The most accurate approach 

to extract water from remotely-sensed data is the supervised or unsupervised classification of 

multispectral data as they detect statistical pattern, instead of empirical thresholds. When a 

supervised classification is carried out, a set of representative training samples is employed to 

train a classifier in the discrimination between spectral signatures of different land cover 

classes. Therefore, the supervised classification is used when the analyst has a good knowledge 

of the area. However, this approach presents some issues due to the selection of a proper set 

of training sites. The unsupervised classification allows to overcome this limitation as it does 

not require training samples (Chen et al., 2018). Other methods are based on digitizing through 

visual interpretation, which is highly accurate, but time consuming, and the density slicing on 

a single band through the application of a threshold applied over a band (Acharya et al., 2016). 

The Landsat Thematic Mapper (TM) sensor provides images at 30 m resolution and a 16 days 

temporal resolution, representing a valuable and the most commonly used product for an 

accurate and precise detection of surface water bodies and the monitoring of their evolution 

(Tulbure et al., 2016; Schaffer-Smith et al., 2017). In particular, Landsat images are extensively 

used in the detection of surface water and, thanks to the launch of Landsat 8 from 2013, the 
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improved Operational Land Imager (OLI) sensor and Thermal Infrared Sensor (TIRS) provide 

a clearer and more accurate EO (OLI images), with a higher spatial resolution than the 

previous versions of Landsat. One of the major improvements came from the introduction of 

two additional bands, the deep blue band (band 1) and the cirrus band (band 9). The deep blue 

band has a higher sensitivity to chlorophyll and the suspended materials found in coastal waters 

and it is also able to retrieve atmospheric aerosol properties. The cirrus band supports the 

detection of cirrus cloud. In addition, the higher values of signal-to-noise ratio (SNR) provided 

by the two sensors allow to better detect variations in the quality of water, which is an 

information that otherwise tends to be lost in the noise of the signal (Acharya et al., 2016). 

Landsat satellite images have been widely used to extract surface water maps (Acharya et al., 

2016; Donchyts et al., 2016; Schaffer-Smith et al., 2017; Xiong et al., 2018) and measure its 

inter- and intra-annual variability (Mueller et al., 2016; Tulbure et al., 2016; Wang et al., 2018). 

The analysis of over 3 million Landsat satellite images observed from 1984 to 2020 generated 

the Global Surface Water dataset, a set of maps showing the location, size, and change of 

surface water bodies at 30 m resolution (Pekel et al., 2016). This dataset is considered to be 

the best evaluation of surface water dynamics and it documents the loss of almost 90,000 km2 

of permanent surface water on the planet, caused, among all, by drought, climate change, and 

anthropogenic activities (Pekel et al., 2016; Yamazaki & Trigg, 2016). 

2.4.2 Remote sensing of human dynamics 

Mapping land cover change as influenced by human dynamics is another core application of 

remote sensing. Recently, satellite images at very fine spatial resolution have replaced the use 

of products at coarser (medium-low) resolutions in the description of land cover. Although 

high and very high resolution (HR and VHR) imagery produce more exhaustive maps, they 

also introduced some limitations due to the complexity of textures and structural patterns 

found at this level of detail which are usually solved with the application of the supervised and 

unsupervised classification techniques (Chen et al., 2018). 

Geography defines the term human settlements as any agglomeration of buildings where 

people live and work. Thus, the presence of buildings represents the core element that 

characterizes and helps for the identification of human settlements (Florczyk et al., 2020). The 

extent of human settlements derived from satellite images is employed to identify urban areas, 
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assess their morphology and correlation with socio-economic parameters. Moreover, maps 

depicting urban change at high spatial resolution are helpful for the analysis of human-induced 

processes, such as greenhouse gas emissions, urban heat island effect, land use change, urban 

sustainability, and to determine situations of danger associated to landslides, earthquakes, 

floods, and other natural hazards (Liu et al., 2020). Urban area maps are used to infer 

information regarding spatial distribution of population and to calibrate land-use change 

models (Marconcini et al., 2020). Currently there are several remotely-sensed products 

depicting the presence of human settlements (Chen et al., 2018; Florczyk et al., 2020; Liu et 

al., 2020; Bernhofen et al., 2021). For instance, Landsat images coupled with other data, such 

as population data, MODIS imagery or alternative satellite imagery like the Chinese GF1 and 

GF2 satellites, have been used to determine the spatial distribution of urban areas and predict 

its expansion (Bounoua et al., 2018; Xiong et al., 2018; He et al., 2019), to study the conversion 

from cultivated land into built-up land, and to derive land use/land cover maps (Cai et al., 

2019; Yuan et al., 2019). Besides these applications, Landsat images have been further 

employed to produce the Global Human Settlement Layer (Corbane et al., 2019), the most 

acknowledged open and free tool capable of capturing the spatial distribution and evolution 

over time of built-up areas at 30 m resolution (Corbane et al., 2019). This dataset shows that 

between 1975 and 2015 urban areas expanded by 40%, in terms of both population and built-

up surface (Melchiorri et al., 2018). The combination of Sentinel-1 and Landsat-8 

multitemporal satellite images was used to generate the World Settlement Footprint 

(WSF2015), a map of global human settlements of 2015 at 10 m resolution. Finally, another 

recent layer with a high spatial resolution is the Global Urban Footprint (GUF) showing global 

settlements of 2012 with a 12 m spatial resolution (Marconcini et al., 2020). 

Several studies have demonstrated the potential of remote sensing in the detection of irrigated 

areas as well, using multispectral and multi-temporal satellite images (Ozdogan et al., 2010; 

Pageot et al., 2020). Remotely sensed data of irrigated areas represent an alternative resource 

to the numerous existing maps that have been derived mainly from country-level irrigation 

statistics and census, such as the Global Map of Irrigated Areas and the MIRCA2000 product 

provided by FAO (Food and Agriculture Organization of the United Nations) (Ambika et al., 

2016; Bazzi et al., 2019). Although the unquestioned capabilities of satellite imagery, until a 

few years ago the application of this powerful tool to determine irrigated lands, and thus land 
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use, involved a limited number of studies compared to the classical land cover analysis. This is 

due to the fact that land cover is less difficult to determine than land use, as it does not require 

the knowledge of land management or the location and timing of irrigation practices. Another 

limitation of mapping irrigated agriculture with remote sensing data is the identification of 

small irrigated areas that in total may cover a significant area extent and may thus produce a 

remarkable amount of water consumption. Moreover, in humid areas the spectral signature of 

irrigated land and those of non-irrigated land may be the same, and additional information on 

crop planting, maturity, and harvest are needed (Ozdogan et al., 2010). However, in-situ 

observations are not able to monitor high spatial and temporal variability and this issue has 

favored a more frequent application of satellite images in this field (Karthikeyan et al., 2020). 

Many studies have been carried out on the use of remote sensing data for the definition of 

maps of irrigated land (Bastiaanssen et al., 2000; Ambika et al., 2016; Bazzi et al., 2019; 

Coleman et al., 2020; Graf et al., 2020; Dari et al., 2021). Some applications have proved that 

the joint use of different types of data can improve the accuracy of the classification of irrigated 

land. For instance, Demarez et al. (2019) combined the radar Sentinel-1 images, the optical 

imagery of Landsat8, and the digital elevation model of the Shuttle Radar Topography Mission 

(SRTM) to identify irrigated crops and found that this combination produces much more 

robust products compared to those obtained from the use of optical images alone. Also Pageot 

et al. (2020) discovered that the combination of optical and radar data from Sentinel-1 and 

Sentinel-2 together with meteorological time series yields superior results in the discrimination 

between irrigated and rainfed areas. 

2.4.3 Remote sensing of climate variability 

Satellite imagery offers the possibility to observe some of the components of the water cycle 

and measure hydrological fluxes and their spatio-temporal variability. In particular, satellite 

observations improve the quantification and prediction of precipitation, which is a crucial 

climatic variable of the water cycle (Hong et al., 2018; Levizzani & Cattani, 2019). Currently, 

rain gauges, satellite retrieval, and reanalysis are the main approaches employed to estimate 

precipitation with global coverage. Although each of these techniques has its own set of merits, 

satellite-based remote sensing technology presents the great potential to cover broader spatial 

extent and monitor large scale events (Chen et al., 2020; Xu et al., 2020). Another advantage 

of satellite sensors is that they provide accurate, continuous, and uniform observations, while 



 
Literature review 

 

 23 

avoiding the high cost of ground observation networks (Hong et al., 2018). Levizzani & Cattani 

(2019) extensively reviewed the current status of remote sensing of precipitation 

demonstrating that it has the potential to improve our knowledge of the processes involved in 

the water cycle and the monitoring of climate change, supporting the existing systems of in-

situ observation. Some examples of satellite precipitation products are the Tropical Rainfall 

Measuring Mission (TRMM), which provides midlatitude precipitation at 0.25° spatial 

resolution since 1998, the Multi-satellite Precipitation Analysis (TMPA) and the Global 

Precipitation Measurement (GPM) products that produce global near-real time precipitation 

estimates every 30 minutes at 0.1° spatial resolution since 2014, and the Integrated Multi-

satellitE Retrievals of GPM (IMERG) (Wang & Xie, 2018). In addition, the merging of satellite 

sensors and ground precipitation observations along with machine learning and geostatistics 

techniques helps the prediction of precipitation patterns (Varouchakis et al., 2021). 

Remote sensing observations help the estimation of land and air temperature as well. Land 

surface temperature (LST) is a major driver of global climate changes and Earth’s energy 

budget, as its variation may determine an increase or decrease of atmospheric temperature. 

Over the past decade a lot of progress has been achieved in the retrieval of LST from satellite 

sensors and currently several products of LST at regional and global scale have been derived 

from MODIS and Landsat images, which supply estimations at higher spatial resolution 

(Ermida et al., 2020; Firoozi et al., 2020; Prakash & Norouzi, 2020; Zhang et al., 2021). Air 

temperature is a fundamental climatic parameter as well, governing and influencing many 

hydrological processes. Weather stations have been traditionally used to measure air 

temperature, but they produce sparse and insufficient data, requiring a spatial interpolation 

method to derive spatially continuous data over large areas. Thanks to the strong correlation 

between LST and air temperature, it is possible to estimate air temperature from satellite-

derived LST (Li & Zha, 2019; Collados-Lara et al., 2020; Shen et al., 2020). In addition, LST 

data obtained from satellite sensors are often used to quantify and map the urban heat island 

(UHI) effect in urban environments (Faroughi et al., 2020; Venter et al., 2020). 

Despite the discussed improvements that the application of satellite images has brought to the 

measurement of climatic variables, in this Thesis precipitation and temperature data were 

derived from datasets developed with in-situ observations for spatial and temporal coverage 

reasons (i.e., data across the CONUS from 1984 to 2020).
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3 Study area and data 

3.1 The contiguous United States 

The contiguous United States (i.e., the area including the lower 48 states in North America, 

also known as the CONUS) is selected as the study area for this analysis because it 

encompasses an extensive and heterogeneous territory, characterized by broad topographic 

variations, wide-ranging surface water area extents, diverse urbanization levels, and it is 

exposed to different hydroclimatic conditions, including both wet and dry regions. The 

Köppen-Geiger climate classification system defines the main climatic zones across the globe, 

based on threshold values and the seasonality of monthly air temperature and precipitation. 

The most recent version of this climate classification system is available at 1 km spatial 

resolution (Beck et al., 2018), where five main climatic regions and 30 sub-types are identified, 

out of which 22 are found within the area of the CONUS (Figure A1). Most of the CONUS 

lies on the continental (40.47%), arid (33.67%), and temperate (25.41%) climatic regions, while 

a small fraction is characterized by a tropical (0.27%) and polar (0.18%) climate (Figure 3.1). 

 
Figure 3.1 Main climatic regions of the Köppen-Geiger climate classification system found within the CONUS. 

Beyond the characteristics described so far, another reason that motivates the choice of the 

CONUS for this analysis is the availability of a profuse amount of data in this region, which 
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allows to conduct an in-depth study of the influence of anthropogenic and climatic drivers on 

surface water resources (Di Baldassarre et al., 2021). 

Following the delineation of the hydrologic units provided by the USGS (Seaber et al., 1987), 

the CONUS includes 18 water resource regions (WRRs) containing 204 river basins (i.e., 4-

digit hydrologic units, HUC-4s, also known as subregions), as shown in Figure 3.2. The 18 

water resource regions represent geographic areas corresponding to either the drainage area of 

a major river (e.g., the Missouri region) or the combined drainage areas of a series of rivers 

(e.g., the Texas-Gulf region, which contains some rivers draining into the Gulf of Mexico). 

Whereas, the 204 river basins (subregions) are defined as areas drained by a river system, a 

reach of a river and its tributaries in that reach, a closed basin(s), or a group of streams forming 

a coastal drainage area (Seaber et al., 1987). 

 
Figure 3.2 Area of the contiguous United States with its 18 water resource regions (WRRs) and 204 river basins. 

3.1.1 Surface water in the contiguous United States: supply and demand 

Surface water availability remarkably varies across the US, with significant differences between 

western and eastern regions. Indeed, fresh surface water is largely available in the East, 

especially in correspondence of the major rivers (such as the Mississippi, Ohio, Missouri, 

Delaware, Susquehanna, and Tennessee Rivers), while the West is characterized by few river 

systems (e.g., Colorado River, Rio Grande, Sacramento-San Joaquin, Columbia Rivers) that 

drain about 66% of the entire region and encompass vast areas with limited surface water 

availability because of the arid climate and the massive use of water for irrigation, as shown in 

Figure 3.3 (Dettinger et al., 2015; Tidwell et al., 2017). An overall decline in surface water 
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supply has been observed and is expected to continue in the future, especially in the 

southwestern US where the availability of surface water is a function of both policies and 

physical processes. This will put under water shortages some sectors that are highly reliant on 

freshwater, contrasting the positive effects resulting from improved water use efficiency 

(Averyt et al., 2013). 

 
Figure 3.3 Main river systems of the United States. Major rivers of the West are highlighted in red, while major river systems 

of the East are highlighted in blue. 

In the United States surface water represents the main source of water withdrawals, accounting 

for more than 70% of total freshwater supply. In 2015, surface water withdrawals were 

approximately equal to 237,000 Mgal/day (out of which 84% came from freshwater sources) 

and they contributed 61% of the total public-supply withdrawals, 99% of the total 

thermoelectric-power withdrawals, 82% of the total self-supplied industrial withdrawals, and 

52% of the total irrigation withdrawals. Moreover, surface water withdrawals exceeded those 

of groundwater for all anthropogenic uses, with the exception of domestic, livestock (i.e., 

watering, feedlots, dairy operations, and other on-farm needs), and mining sectors. The largest 

withdrawals of surface water were observed in Texas, Idaho, Florida, California, and New 

York, where they constituted around 25% of the total national withdrawals (Figure 3.4). 



 
Chapter 3 

 

 28 

 
Figure 3.4 Map of surface water withdrawals in the United States in 2015, indicating top 5 states (and their percentage of 

total withdrawals) that were responsible for the largest withdrawals. 1 gallon corresponds to approximately 4.55 liters. Figure 

adapted from Dieter et al. (2018). 

Surface water represents the primary source of water employed in irrigation systems in the US, 

especially in the western states, although its use in this sector decreased from 66% of 1985, to 

57% in 2010, and lastly to 52% of 2015 thanks to more efficient irrigation systems. Between 

1985 and 2010, most of the irrigation water was supplied by surface-water sources, ranging 

from 66% in 1985 to 57% in 2010. During the period 2010-2015 a decrease in surface water 

withdrawals has been observed, especially in California, Texas, Ohio, Illinois, Pennsylvania, 

and North Carolina, which determined more than two-thirds of the total surface-water 

withdrawal drop (Dieter et al., 2018). Figure 3.5 shows the count of years during which each 

pixel of the map (250 m spatial resolution) has been observed to be irrigated over the years 

2002, 2007, 2012, and 2017, highlighting five areas characterized by various levels of irrigation 

frequency. Specifically, most of the major irrigation-dominated areas across the CONUS are 

found to be located in the central valley of California, the Snake River Basin in Idaho, the 

Columbia Basin of the interior Northwest, the Ogallala Aquifer in the central Plains, and the 

Mississippi Flood Plains, while more sparsely scattered irrigation is located along the east and 

southeast coasts (Pervez & Brown, 2010). 
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Figure 3.5 Frequency of irrigation in the United States in 2002, 2007, 2012, and 2017 obtained from the Irrigated Agriculture 

Dataset for the United States product (MIrAD-US). Circles show zoom in of areas that have been irrigated more frequently. 

Figure adapted from https://www.usgs.gov/media/images/mirad-irrigation-frequency-years-2002-2007-2012-and-2017. 

Even though over the past decades there has been a growth of US urban population (Figure 

3.6), per capita water usage by the agricultural and municipals sectors declined, such that total 

water use (i.e., water withdrawals and consumption) remained stable around the level of 1985 

(Averyt et al., 2013; Dettinger et al., 2015). In particular, fresh and saline surface water 

withdrawals dropped by 14% between 2010 and 2015 (Dieter et al., 2018). However, water 

demands may evolve in the future depending on economic, social, and technological scenarios 

as well as legal and policy factors and climate change. In the United States urban areas have 

been generally developed adjacent to major rivers and, with more than 80% of population 

currently living in US cities (Figure 3.6), urbanization places an enormous pressure on surface 

water resources (Sun & Caldwell, 2015; Fang & Jawitz, 2019). 

Pekel et al. (2016) observed that even if surface water area across the US increased on average 

by 0.5% since 1984, growing water demands and drought conditions determined a 33% loss 

of the extent of surface water resources in the western region (i.e., in Arizona, California, 

Idaho, Nevada, Oregon, Utah). Furthermore, southern US is among the most urbanized area 
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of the country because of its high population growth rate, and this process is responsible for 

hydrological changes in the watersheds of this area (O’Driscoll et al., 2010). Future socio-

economic and climate scenarios will likely exacerbate this situation (Yigzaw & Hossain, 2016; 

Baldocchi et al., 2019; Brown et al., 2019a; Li et al., 2020), as population increase is expected 

to cause a significant gap between water demand and supply in the future (Daher et al., 2019), 

while increasing temperatures will likely impact the hydrological cycle and water balance 

(Brown et al., 2019a). 

 
Figure 3.6 Urban population growth in the United States from 1960 to 2020 as a percentage of total population. Data source: 

World Bank Data (https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=US). 

3.1.2 Climate change in the contiguous United States 

During the 20th century the United States became wetter and warmer, with varying patterns 

and a few exceptions depending on the region (CCSP, 2008; EPA, 2016; Brown et al., 2019b). 

As shown in Figure 3.7, the eastern and southern US have encountered an increase in 

precipitation, whereas the southwest faced a rainfall drop (CCSP, 2008; EPA, 2016; Easterling 

et al., 2017). More specifically, over the last decades the average annual precipitation increased 

in the Midwest, Great Plains, and the Northeast, and decreased in parts of the Southeast and 

Southwest (Balling & Goodrich, 2011; Georgakakos et al., 2014; Sun & Lall, 2015; Hoerling et 

al., 2016; Bartels et al., 2020). Starting from 2001 the arid areas of the Southwest (i.e., 

California, Nevada, Utah, Arizona, and New Mexico) experienced invasive droughts that were 

produced by the combination of reduced precipitation (whose effects were amplified by high 

temperatures), increased ET, and decreased runoff (MacDonald, 2010). An example of these 
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events is the drought that occurred in California from 2012 to 2016, which is recalled to be 

one of the most severe, longest, and warmest in the history of this area (Lund et al., 2018). 

Furthermore, an increase in the intensity and frequency of heavy precipitation has been 

observed throughout most of the country as well, especially in the northeastern US (Easterling 

et al., 2017). 

 
Figure 3.7 Percentage variation of total annual precipitation in 2020 with respect to the values observed in 1901 for the 

CONUS and 1925 for Alaska. Figure adapted from https://www.epa.gov/climate-indicators/climate-change-indicators-us-

and-global-precipitation. 

The average air temperature has increased in the whole CONUS since 1901 (Figure 3.8), with 

some areas of the United States becoming significantly warmer, such as the North, the West, 

and Alaska, while in some other regions, like the Southeast, there has been a smaller variation 

(CCSP, 2008; EPA, 2016; Vose et al., 2017). However, not all of these regional trends are 

statistically significant (EPA, 2016). Warming temperatures have shifted the timing of the peak 

in rivers flow, as demonstrated by earlier peaks in the western US. This effect is the product 

of the reduction of spring-snow pack, earlier snowmelt, and a higher fraction of precipitation 

in the form of rain, instead of snow (Georgakakos et al., 2014). Heat waves have become more 
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intense in the US, except for the region of the Great Plains and the Midwest, while the 

occurrence of cold waves has decreased (Vose et al., 2017). 

 
Figure 3.8 Rate of change in annual average air temperature with respect to the values observed in 1901 for the CONUS and 

1925 for Alaska. Figure adapted from https://www.epa.gov/climate-indicators/climate-change-indicators-us-and-global-

temperature. 

Concerning runoff, an increase was observed in the Mississippi River Basin and Northeastern 

CONUS, while a decrease was typical of the Colorado River Basin. Moreover, regions with a 

higher availability of water ran into a decrease in ET more than regions with a limited amount 

of water. Overall, the western US is considered to be one of the regions in the world that is 

affected the most by climate change (Dettinger et al., 2015). 

Future climatic scenarios suggest that the spatially variable trends observed so far are likely to 

persist (CCSP, 2008; Easterling et al., 2017). Moreover, also in the coming decades the change 

of climatic variables is predicted to vary across the country. Even though in large areas of the 

CONUS (particularly in the Northern region, but also the Eastern region) precipitation is 

projected to increase, some other areas (i.e., West and Southwest) will become drier as they 
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will receive less rainfall (Easterling et al., 2017). On the other hand, the rise in temperature, 

affecting the whole CONUS, will determine an increase of evaporative demand, which in some 

areas of the country (e.g., in regions of the Colorado River Basin) will nullify the positive effect 

due to increasing precipitation, leading to an overall reduction of streamflow (Vose et al., 

2017). Finally, in the coming decades some regions of the US will continue to experience 

extreme hydrologic events, such as prolonged and unprecedented heat waves and periods of 

drought, as well as heavy rainfall (CCSP, 2008; Vose et al., 2017; Brown et al., 2019a). 

3.2 Input datasets 

The study presented in this Thesis was conducted with the use of maps extracted from datasets 

derived from satellite imagery and in-situ observations. The following subsections describe the 

products that were selected for the extraction and processing of data used in RO1 and RO2. 

3.2.1 Global Surface Water dataset 

The Global Surface Water dataset detects the location and seasonality of water bodies of rivers, 

lakes, and wetlands at the global scale (Pekel et al., 2016). It was obtained from the collection 

of over three million Landsat satellite images observed during 37 years (i.e., from 1984 to 2020) 

at a 30 m spatial resolution. Therefore, it provides an unprecedented global-scale and high-

resolution evaluation of surface water dynamics caused by both natural processes, such as 

flooding, sedimentation, and channel migration, and human influence, such as dam 

construction and water abstraction (Yamazaki & Trigg, 2016). This consistent global analysis 

of the Earth’s water system includes multiple layers mapping different features of the spatial 

and temporal distribution of surface waters and obtained through the application of techniques 

of big data exploration and information extraction. Moreover, temporal profiles showing the 

historical evolution of surface water at a specific location (water history) are supplied as well 

as metadata storing information about the number of total observations and valid observations 

that can be used to estimate the level of reliability of each product. 

The work conducted by Pekel et al. (2016) first computed the frequency with which water 

appeared to be present in each 30 by 30 m pixel of the images from the Landsat archive and 

they represented such information in the Surface Water Occurrence (SWO) product. The 

Occurrence Change Intensity layer depicts the location where SWO increased, decreased, or 
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remained constant between two time windows, 1984-1999 and 2000-2020. The percentage 

values associated to each pixel of this product reveal both the direction and the intensity of 

the change in occurrence, and thus they represent any gain, loss, and constancy in persistence 

that occurred during the observational period. In particular, the intensity of change in SWO 

was calculated for pairs of the same months containing valid observations in both epochs 

(homologous pairs of months). Afterwards, the difference between the SWO of the two 

epochs was evaluated for each pair and finally the map of Occurrence Change Intensity was 

generated from the average of these differences among all months (locations without pairs of 

homologous months were not mapped). This layer was employed for the quantification of the 

change in surface water extent in the analysis of RO1 (see Section 4.1 of Chapter 4). The 

Recurrence product documents the frequency with which water reappeared from year to year 

over the time series, while the Seasonality layer illustrates the intra-annual behavior of surface 

water observed during a single year (2020) to discriminate permanent from seasonal water and 

quantify the duration of water persistency. The Transitions layer describes the change in 

seasonality between the last and first year of the time series and classifies pixels in three main 

classes: permanent water, seasonal water, and no water. The temporal profile associated to 

each pixel and the maps of SWO and recurrence allowed the definition of classes of water 

transitions. The last year of observation is always 2020, as in this year there is a high number 

of valid observations that allow to assess the presence or absence of water. The first year of 

observation, instead, is the first year of the time series during which a sufficient number of 

valid observations is found. Overall, eight classes of transition were defined: unchanging 

permanent water surfaces, new permanent water surfaces (conversion of land into permanent 

water), lost permanent water surfaces (conversion of permanent water into land), unchanging 

seasonal water surfaces, new seasonal water surfaces (conversion of land into seasonal water), 

lost seasonal water surfaces (conversion of a seasonal water into land), conversion of 

permanent water into seasonal water, and the conversion of seasonal water into permanent 

water. The Transitions layer was used to identify locations that experienced a loss of surface 

water in the analysis of RO2, while the SWO map was employed to support the analysis of the 

stability of the pixels classified with the transition classes selected to define the Surface Water 

Loss map (see Section 5.1 of Chapter 5 for more details). Finally, the Maximum Water Extent 

product outlines all the pixels where water was ever detected over the observational period. 

Also this layer aided the analysis of RO2. 
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3.2.2 Global Human Settlement dataset 

The Global Human Settlement Layer (GHSL) project comprises various maps providing a 

multitemporal description of the human presence observed in the past at global scale and 

different spatial resolution (Corbane et al., 2019). This dataset was developed for the detection 

of the temporal evolution of the extent and spatial distribution of built-up areas and to derive 

information about population distribution using EO data between 1975 and 2014 from the 

Landsat collections (Melchiorri et al., 2019). 

A machine learning technique was adopted to process Landsat data and classify each pixel of 

the images to extract maps of built-up areas observed in 1975, 1990, 2000, and 2014 with a 30 

m spatial resolution. These four maps were then assembled into a single product that shows 

the multitemporal evolution of the extent of human settlements, the so-called GHS-BUILT 

layer. Four classes of built-up areas are depicted in GHS-BUILT layer: built-up developed 

from 2000 to 2014, built-up developed from 1990 to 2000, built-up developed from 1975 to 

1990, and built-up developed before 1975. The combination of GHS-BUILT layer and census 

data allowed the definition of another product, the GHS-POP layer, which describes the 

presence and distribution of resident population (as number of inhabitants per cell) in four 

years (1975, 1990, 2000, and 2015) at a 250 m spatial resolution. The GHS-BUILT layer was 

used in the analysis of both ROs to determine the total extent of urban areas in different 

epochs, while the GHS-POP layer was employed in RO1 for the quantification of total 

population in the first and second epochs considered in the analysis (see Section 4.1 of Chapter 

4 and Section 5.1 of Chapter 5 for more details). Finally, the GHSL project includes also maps 

showing the degree of urbanization in the four epochs, the GHS-SMOD package. The layers 

of this package combine the information contained in the GHS-BUILT and GHS-POP maps 

to distinguish different typologies of settlement at 1 km spatial resolution. In particular, three 

classes of settlement typology were identified, i.e., urban centre, urban cluster, and rural area, 

given by a specific combination of data of population size and densities of population and 

built-up area. 

3.2.3 Irrigated Agriculture Dataset for the United States 

The Irrigated Agriculture Dataset for the United States (MIrAD-US) provides irrigation data 

for four epochs (2002, 2007, 2012, and 2017) across the contiguous United States (CONUS) 
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at a 250 m spatial resolution (Pervez & Brown, 2010), as shown in Figure 3.5 of Subsection 

3.1.1 of this Chapter. This is a MODIS product as it is derived from images of the Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensor, and it was employed to evaluate the 

extent of irrigated land in the two epochs considered in RO1 of this Thesis (see Section 4.1 of 

Chapter 4). 

The irrigated agriculture extent depicted in the MIrAD-US was determined with a robust 

geospatial modeling approach that integrates three input data: statistics of irrigation at the 

county level for 2002 provided by the Census of Agriculture, the annual peak of the MODIS 

Normalized Difference Vegetation Index (NDVI) which gives an estimate of the maximum 

vegetation growth, and the land cover mask for agricultural lands derived from National Land 

Cover Dataset 2001 (NLCD). The NDVI is a widely used vegetation index that quantifies the 

photosynthetically active radiation (PAR) absorbed by plants, thus representing an indicator 

of biomes greenness and of vegetation health (Zhou et al., 2009; Huang et al., 2021). As such, 

this index is a key parameter of the geospatial modeling approach used for the assessment of 

the MIrAD-US product. Indeed, in order to guarantee the reliability of the modeling approach, 

it was hypothesized that within the same county the peak value of the NDVI is higher in 

irrigated than in non-irrigated crops. Moreover, the application of the model also relied on the 

assumption that the NDVI associated to the peak of the growing season varies for each crop 

and across the area of the US, and on the hypothesis that under drought conditions due to 

non-optimal precipitation the difference between the NDVI of an irrigated and non-irrigated 

crops increases. A possible caveat of the applied geostatistical modeling comes from the 

assumption that the NDVI would show significantly different values between irrigated and 

non-irrigated crops. This holds in the western and semiarid regions of the US, characterized 

by a dry climate, while the NDVI difference is less pronounced in humid regions, which receive 

more precipitation. As a result, the MIrAD-US product produced an accurate categorization 

of most of the irrigated lands concentrated in the West, but irrigated land in the humid eastern 

region may not be as accurately well detected. However, the overall mapping of irrigated land 

across humid areas is still superior to the existing products of irrigated agriculture in the 

CONUS (Pervez & Brown, 2010). 
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3.2.4 Daymet dataset 

The Daymet data product supplies long-term, continuous, gridded estimates of daily weather 

and climatology variables that are derived from an ensemble of statistical modeling algorithms 

and computer software developed to interpolate and extrapolate daily ground-based 

meteorological observations over continental North America, Hawaii, and Puerto Rico. Data 

time series cover the period from 1980 to the most recent full calendar year (for Puerto Rico 

data are available from 1950). The surface weather parameters included in this dataset are daily 

minimum and maximum temperature, precipitation, vapor pressure, shortwave radiation, 

snow water equivalent, and daylength, and they are all sampled at a 1 km spatial resolution 

(Thornton et al., 2020a). Originally, Daymet data were generated to provide measurements of 

near-surface meteorological conditions in remote areas lacking of instrumentation, but now 

their scope of applicability has greatly expanded. 

To deal with the large spatial extent and high data volume, the algorithm divides the study area 

in square tiles with side length of 2 degree, which are then processed individually. Interpolation 

and extrapolation techniques of input data collected at multiple instrumented sites involve the 

use of weights that encode the relationships between the location where weather variables need 

to be estimated and the sites of observation. The primary outputs of the Daymet algorithm are 

temperature and precipitation values which are obtained with two separate workflows. The 

secondary variables of daily total shortwave radiation, daily average water vapor pressure, and 

accumulated snowpack are empirically derived from the primary variables, while the duration 

of the daylight period (daylength) is computed as a function of location and time of the year. 

The most recent version of Daymet data products is Version 4, in which several improvements 

regarding algorithm methods, sensor timing, and bias were introduced with respect to previous 

versions. Specifically, among the main improvements achieved in Version 4 there is the 

reduction in the timing bias of input reporting weather station measurements, refinements to 

the three-dimensional regression model techniques in the core algorithm, and a novel approach 

to handling high elevation temperature measurement biases. Data of total annual precipitation 

and maximum and minimum monthly temperature were acquired from Daymet Version 4 to 

extract maps of variations in climatic drivers for RO1 of this Thesis (see Section 4.1 of Chapter 

4). This is the only dataset processed in this Thesis that is not derived from remote sensing 

data.
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4 Research Objective 1: Anthropogenic and 

climatic drivers of surface water extent change 

Water is an essential element for both human society and ecosystems, as it serves as a 

fundamental source on which several anthropogenic activities are dependent, while also 

representing the habitat of many aquatic ecosystems (Aznar-Sánchez et al., 2019). However, 

many regions of the World are already facing water scarcity, since the availability of water 

resources in these areas has become insufficient to meet the actual demand for water (Liu et 

al., 2017). This is mainly the result of the global increase of human pressure on surface water, 

especially on streams and river systems (Wada et al., 2013; Flávio et al., 2017; Ceola et al., 

2019). Among the numerous anthropogenic activities causing large impacts on surface water 

resources, the most incisive are growing population and urbanization, as well as economic 

development, irrigation, and water-management policies (Flörke et al., 2013; Starr & Levison, 

2014; Wada et al., 2016). In addition, the resulting degradation of riverine ecosystems and 

water shortages are further aggravated by climate change. Surface waters are extremely 

sensitive to any alteration of the climatic conditions, especially to changes in precipitation 

patterns and temperature and the occurrence of droughts and floods (Kundzewicz, 2008; 

Balling & Goodrich, 2011; Brunner et al., 2021). On the whole, these variations are expected 

to reduce renewable surface water resources, particularly in dry regions, increasing the 

competition for water in many different sectors (e.g., agriculture, industry, ecosystems) and the 

impacts on regional water, energy, and food security (IPCC, 2014). Therefore, both human 

activities and climate change can seriously stress surface water resources, endangering the 

ecological integrity of many freshwater ecosystems and emphasizing the risk of water scarcity 

(Kummu et al., 2016). Consequently, it is important to understand which anthropogenic and 

climatic factors are producing changes of surface water availability. This is the reason why RO1 

evaluates the influence of the variations of three anthropogenic (urban area, population, and 

irrigated land) and two climatic (precipitation and temperature) drivers on surface water extent 

change to assess which factors are responsible for the surface water gains and losses that 

occurred between the time-windows 1984-1999 and 2000-2020 across the CONUS. The aim 

of this study is to answer to the following questions, already introduced in Chapter 1: (Q1a) 
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how has the spatial extent of surface water changed in the last 40 years? (Q1b) What are the 

main anthropogenic and climatic factors governing the remotely-sensed change of surface 

water extent and where do they determine a gain/loss of surface water? 

4.1 Surface water, human dynamics, and climatic data 

The evaluation of the influence of changes in anthropogenic and climatic drivers on the 

variation of surface water that occurred between two epochs (the first one from 1984 to 1999 

and the second one from 2000 to 2020) requires information regarding the extent of surface 

water, urban areas, and irrigated land, the distribution of population, total annual precipitation, 

and monthly temperature. These data were extracted for each epoch over the entire area of 

the CONUS and related maps were created. 

The variation of surface water extent that occurred between the two epochs was defined using 

the Surface Water Occurrence Change Intensity layer from the Global Surface Water dataset 

(Pekel et al., 2016). As stated in the Subsection 3.2.1 of Chapter 3, this product shows where 

surface water occurrence increased, decreased or remained invariant between 1984-1999 and 

2000-2020, describing both the direction of change (i.e., increase, decrease or no change in 

water occurrence) and its intensity in terms of percentage at a 30 m spatial resolution. For 

instance, -100% indicates a complete loss of occurrence (i.e., surface water, observed in a given 

pixel during the first epoch, is no longer observed in the second epoch), conversely 100% 

indicates a complete gain of occurrence (i.e., surface water in a given pixel is observed during 

the second epoch only), while 0 indicates no change of occurrence. In order to identify 

locations that experienced a significant net change of surface water extent between the first 

and second epoch, given by the difference between the total number of pixels of surface water 

gain and the total number of pixels of surface water loss within each river basin of the CONUS, 

a representative threshold value was selected based on a sensitivity analysis. Given a specific 

threshold of change in the frequency of water observation ℇthr, all the pixels of the Water 

Occurrence Change Intensity layer having a value between -100% and -ℇthr identify locations 

that encountered a surface water loss between the first and second epoch, while those having 

a value between ℇthr and 100% indicate locations of surface water gain. A 75% threshold was 

selected as a representative value. Figure 4.1b shows an example of the associated distribution 

of surface water gain and loss over the region around the Great Salt Lake, Utah. The sensitivity 
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analysis on ℇthr was performed by considering additional four threshold values equal to 25%, 

50%, 70%, and 80%. With the 25% and 50% thresholds, all the river basins of the CONUS 

are found to experience a net surface water gain, meaning that the total number of pixels of 

surface water gain is always greater than the total number of pixels of surface water loss within 

each river basin. Even though these two threshold values identify a huge number of pixels 

experiencing either a loss or a gain in surface water, they are not representative of a remarkable 

changing condition. The thresholds of 70% and 80% produced results comparable to those 

obtained from the 75% threshold (i.e., two and one additional river basins with a net surface 

water gain, respectively). Therefore, the 75% value was selected as the fiducial threshold as it 

supplies a reliable balance between gain and loss of surface water, while the choice of a slightly 

larger or smaller threshold would not substantially affect the results of the analysis. 

The extent of urban area and the distribution of population were derived from the GHS-

BUILT and the GHS-POP layers (see also Subsection 3.2.2 of Chapter 3), respectively, which 

are both part of the GHSL dataset (Corbane et al., 2019). The GHS-BUILT layer provides a 

multi-temporal classification of built-up presence, showing the location of urban areas 

developed in four epochs (before 1975, between 1975 and 1990, between 1990 and 2000, and 

between 2000 and 2014) and it has a spatial resolution of 30 m. For this analysis, the extent of 

built-up area developed until 2000 and the fraction developed between 2000 and 2014 were 

extracted to define the Urban Area maps describing the level of urbanization associated to the 

first epoch and the additional development occurred between 2000 and 2014, respectively 

(Figure 4.1c). Specifically, the urbanization reached in 2000 was obtained by selecting all the 

pixels of the GHS-BUILT layer that are representative of the built-up area observed until 1975, 

between 1975 and 1990, and between 1990 and 2000, while urban area expansion that took 

place from 2000 to 2014 was derived from the extraction of the pixels that are classified as 

built-up areas observed between 2000 and 2014 (Figure 4.1c). The GHS-POP layer describes 

the distribution of population observed in four epochs (1975, 1990, 2000, and 2015) as the 

number of people per cell with a spatial resolution of 250 m. For this analysis, the number of 

inhabitants observed until 2000 and the number of inhabitants observed until 2015 were 

extracted to define the Population maps describing the distribution of population in the first 

and second epoch, respectively. As an example, Figure 4.1d shows the distribution of 

population found in 2015 around the area of the city of Los Angeles. 



 
Chapter 4 

 

 42 

The extent of irrigated land was obtained from the Irrigated Agriculture Dataset for the United 

States (MODIS MIrAD-US, see also Subsection 3.2.3 of Chapter 3), which provides irrigation 

data for four epochs (2002, 2007, 2012, and 2017) at 250 m spatial resolution (Pervez & Brown, 

2010). The areas of irrigated agriculture observed in 2002 and 2017 were here selected to define 

the Irrigated Land maps of the first and second epoch, respectively (Figure 4.1e). 

 
Figure 4.1 Maps of the change in surface water extent and its anthropogenic drivers over some representative regions of the 

CONUS. a. Map of the CONUS indicating the location of the zoom-in areas shown in panels b, c, d, and e. b. Zoom-in of 

the Surface Water Loss and Surfacer Water Gain maps over the region around the Great Salt Lake, Utah. c. Zoom-in of the 

maps of the fraction of urban area developed between 2000-2014 and the total urban area built until 2000 over the region 

around New York City, New York. d. Zoom-in of the Population map in 2015 over the region around the city of Los Angeles, 

California. e. Zoom-in of the maps of the irrigated land in 2017 and 2002 over the region between the city of Little Rock and 

the City of Memphis in Arkansas. 

Finally, the total annual precipitation (in mm/yr) and the monthly maximum and minimum 

temperature (in ºC) were both derived from the Daymet Version 4 dataset (see Subsection 

3.2.4 of Chapter 3) and they both have a spatial resolution of 1 km (Thornton et al., 2020a, 

2020b). In particular, the total annual precipitation was averaged over the two epochs to obtain 

the Mean Annual Precipitation maps of the first and second epoch. Regarding temperature, 

the monthly maximum and minimum temperature are calculated by Daymet as the average of 

the maximum and minimum daily temperatures (Thornton et al., 2020b). Starting from these 

values, the mean monthly temperature of each month of the two epochs was estimated as the 

average of the maximum and minimum temperatures of each month (Li et al., 2016), which 
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was then averaged over the two epochs separately for each month to get the Mean Monthly 

Temperature maps of the first and second epoch. For more details on the calculation of both 

precipitation and temperature change see Section 4.2 of this Chapter. 

4.2 Assessment of the change in surface water extent, anthropogenic 

and climatic contributors 

The goal of RO1 of this Thesis is to examine the relation between changes in anthropogenic 

and climatic factors and the variation of surface water extent that occurred between two time 

windows, 1984-1999 (first epoch, ep1) and 2000-2020 (second epoch, ep2). 

The extent of surface water (SW) represents the dependent variable, while the independent 

variables are the anthropogenic and climatic drivers, which are here considered to be the main 

factors responsible for changes in surface water extent. In particular, urban areas (URB), the 

distribution of population (POP), and irrigated land (IRR) represent the anthropogenic drivers, 

whereas precipitation (PCP) and temperature (TMP) represent the climatic drivers (Figure 

4.2a). 

 
Figure 4.2 Schematic representation of the methodology adopted for the analysis of the influence of anthropogenic and 

climatic drivers on the variation of surface water extent. a. Definition of the variables involved in the analysis and the estimate 

of their variations between the first and second epoch. b. Variations in the anthropogenic and climatic drivers contributing 

to the net change in surface water extent (gain and loss) assumed in this analysis. 
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The variations of surface water extent, anthropogenic drivers, and climatic drivers that took 

place between the first and the second epoch were extracted from the maps defined in Section 

4.1 of this Chapter. Specifically, the difference between the total gain and the total loss of 

surface water extent was computed to evaluate the net variation of surface water between the 

two epochs. A net surface water gain is detected when surface water gain is greater than surface 

water loss, while a net surface water loss is found when surface water gain is smaller than 

surface water loss. Similarly, the variations of each anthropogenic driver were estimated as the 

difference between the total amount of the driver found in the first and the second epoch. In 

particular, the difference between the Urban Area maps, Population maps, and Irrigated Land 

maps associated to the second and first epoch produced the respective change maps. The 

changes of the dependent variable and the anthropogenic drivers were then aggregated at the 

river basin level and within the climatic regions of the CONUS. 

For the variations of the climatic drivers a slightly different approach was adopted. Indeed, the 

variation of precipitation was evaluated as the difference between the average total annual 

precipitation observed during the first and the second epoch, while the variation of 

temperature was estimated as the average of the mean monthly temperature anomaly found 

between the two epochs. As described in Section 4.1 of this Chapter, the total annual 

precipitation averaged over the 16 years between 1984-1999 and over the 21 years between 

2000-2020 produced the Mean Annual Precipitation maps of the first and second epoch. The 

equation used to calculate the mean annual precipitation associated to the two epochs is the 

following: 

𝑃𝐶𝑃!""#!$,!&'(𝑒𝑝𝑜𝑐ℎ) =
∑ 𝑃𝐶𝑃!""#!$

()(),*
()+(),,

𝑛()
0             (4.1) 

where yr is from 1984 (yr,i) to 1999 (yr,f) for the first epoch, and from 2000 (yr,i) to 2020 (yr,f) 

for the second epoch, while nyr is equal to 16 for the first epoch and 21 for the second epoch. 

The Precipitation Change map (Figure 4.3a) showing the variation of precipitation is given by 

the difference of the mean total annual precipitation between the two epochs (i.e., between 

the Mean Annual Precipitation maps), as follows: 

∆𝑃𝐶𝑃 = 𝑃𝐶𝑃!""#!$,!&'(𝑒𝑝2) − 𝑃𝐶𝑃!""#!$,!&'(𝑒𝑝1)           (4.2) 
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As already mentioned in Section 4.1 of this Chapter, the mean monthly temperature of each 

month of the two epochs was derived as the average of extreme temperatures, i.e., the daily 

maximum and minimum temperatures averaged over each month (Li et al., 2016). Afterwards, 

the average of the mean monthly temperatures over the 16 years of the first epoch (1984-1999) 

and over the 21 years of the second epoch (2000-2020) was computed to get the Mean Monthly 

Temperature maps of each month during the first and the second epoch, respectively, (e.g., 

maps of the mean monthly temperature of January of the first and second epoch, maps of the 

mean monthly temperature of February of the first and second epoch, and so on) using the 

following equation: 

𝑇𝑀𝑃-."/0$(,!&'- (𝑒𝑝𝑜𝑐ℎ) =
∑ 𝑇𝑀𝑃-1!",	-

()(),*
()+(),,

𝑛()
0      (m = 1,	2,	…,	12)         (4.3) 

After that, the temperature anomaly for each month was calculated as the difference between 

the mean monthly temperatures of corresponding months in the first and the second epoch 

(e.g., temperature anomaly of January, temperature anomaly of February, and so on), and the 

monthly anomalies between the two epochs were averaged over the twelve months of the year 

to define the Temperature Change map (Figure 4.3b). This calculation was performed using 

the following equation: 

∆𝑇𝑀𝑃 = ∑ (𝑇𝑀𝑃-."/0$(,!&'- (𝑒𝑝2) − 𝑇𝑀𝑃-."/0$(,!&'- (𝑒𝑝1))34
-+3 12⁄           (4.4) 

Contrary to the anthropogenic drivers, the variations of the climatic drivers were averaged 

over the area of the river basins and the climatic regions of the CONUS. 

 
Figure 4.3 Maps of the change in the climatic drivers over the CONUS. a. Precipitation Change map showing the change in 

the average total annual precipitation between 1984-1999 and 2000-2020. b. Temperature Change map showing the average 

monthly anomalies between 1984-1999 and 2000-2020. 
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In each river basin of the CONUS the direction of change of every anthropogenic and climatic 

driver was then compared to the direction of change of surface water extent to determine 

which drivers resulted to be responsible for the gain or loss of surface water. In order to 

contribute to a net surface water gain, it was assumed that all anthropogenic drivers must 

decrease, while precipitation and temperature have to increase and decrease, respectively. 

Whereas, in order to cause a net surface water loss, it was assumed that all anthropogenic 

drivers must increase, while precipitation and temperature have to decrease and increase, 

respectively (Figure 4.2b). The same variations of all the drivers and of surface water extent 

were also evaluated at the climatic region level to support the interpretation of the results. 

4.3 Results 

4.3.1 Change in surface water extent 

The difference between the total gain and the total loss in surface water extent that took place 

between the first and the second epoch within the river basins of the CONUS provides an 

estimate of the variation of surface water resources, here also referred to as the net surface 

water change (Figure 4.4). 

 
Figure 4.4 Spatial distribution of the net surface water change that occurred between the first (1984-1999) and the second 

(2000-2020) epoch across the river basins of the CONUS. River basins with a net surface water loss (total surface water loss 

greater than total surface water gain) are characterized by negative values (red shades), whereas positive values (blue shades) 

correspond to river basins with a net surface water gain (total surface water gain greater than total surface water loss). 

The majority of the study area of the CONUS (i.e., 169 river basins, covering 78.64% of the 

CONUS area) experienced a net gain of surface water, meaning that the total surface water 
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gain was greater than the total surface water loss. A net loss of surface water, indicating that 

the total surface water gain is smaller than the total surface water loss, is found in the remaining 

35 river basins that encompass 21.36% of the study area. As expected, river basins located in 

the dry region of the southwestern US witnessed a reduction of their surface water resources. 

Another area of the country where surface water resulted to decrease corresponds to some 

river basins in northeastern US. 

The evaluation of surface water extent change as a function of the main climatic regions of the 

CONUS (Figure 4.5) reveals that negative variations are mainly located in the arid zone, while 

the rest of the climatic regions experienced an overall increase in their surface water extent. 

 
Figure 4.5 Histogram of the total amount of surface water gain (in blue), surface water loss (in red), and net surface water 

change (in green) across the main climatic regions of the CONUS. The net surface water change is given by the difference 

between the total gain and the total loss of surface water extent, so that a negative value indicates a net surface water loss, 

while a positive value indicates a net surface water gain. Percentage values reported above each bin of net surface water change 

represent the relative variation of surface water extent in the second epoch (2000-2020) with respect to the total extent 

observed in the first epoch (1984-1999). 

A more detailed representation of the distribution of surface water gain, loss, and net variation 

of surface water in each subtype of the main climatic classes found in the CONUS is depicted 

in Figure 4.6. These histograms show that the subtypes “arid, desert, cold” and “arid, steppe, 

cold” of the arid climatic region are the ones having a net loss of surface water, with a reduction 

of surface water extent in the second epoch with respect to the that observed during the first 

epoch of -16.41% and -1.37%, respectively. These two subtypes of the arid climatic region are 

both characterized by a dry climate with a mean annual air temperature less than 18°C (cold), 

whereas the difference between them consists in the fact that the steppe (semi-desert) climate 
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is slightly wetter than the desert climate, which explains why the greatest reduction in surface 

water extent was found in the “arid, desert, cold” climatic subtype (Beck et al., 2018). 

 
Figure 4.6 Histograms of the total amount of surface water gain (in blue), surface water loss (in red), and net surface water 

change (in green) across the subtypes of the main climatic regions of the CONUS. The net surface water change is given by 

the difference between the total gain and the total loss of surface water extent, so that a negative value indicates a net surface 

water loss, while a positive value indicates a net surface water gain. Percentage values reported above each bin of net surface 

water change represent the relative variation of surface water extent in the second epoch (2000-2020) with respect to the total 

extent observed in the first epoch (1984-1999). 

4.3.2 Change in the anthropogenic and climatic drivers 

The temporal variation of the anthropogenic drivers was obtained as the difference in time 

(i.e., second epoch minus first epoch) of total population and total extent of urban areas and 

irrigated land within each river basin of the CONUS. Figure 4.7 shows the spatial distribution 

of the values of change in urban area, population, and irrigated land across the river basins of 

the CONUS. Urban area expanded in all the river basins, as its extent increased from the first 

to the second epoch (Figure 4.7a). For this reason, urban area was not considered in the 

identification of the anthropogenic factors responsible for the variations in the extent of 

surface water. Therefore, from now on this analysis will include only two anthropogenic 

drivers (i.e., population and irrigated land). As previously mentioned, the most urbanized areas 

are found in the eastern US and along the West Coast. The total population increased in most 
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of the river basins (167 river basins, covering 81.55% of the CONUS area), and those with a 

decrease in population (37 river basins) are mainly located in the northeastern and the central 

area of the country (Figure 4.7b). Finally, the extent of irrigated land increased in 136 river 

basins (67.47% of the CONUS area), while in the remaining 68 river basins irrigated agriculture 

decreased, especially in the western region of the CONUS (Figure 4.7c). 

 
Figure 4.7 Spatial distribution of the variations of the anthropogenic drivers that occurred between the two epochs considered 

in this study across the river basins of the CONUS. a. Change in urban area extent, defined as the difference in total built-up 

area extent within each river basin between the second and the first epoch. This variation is always positive since urban areas 

experienced only an expansion. b. Change in population, defined as the difference in total population within each river basin 

between the second and the first epoch. c. Change in irrigated land extent, defined as the difference in total irrigated land 

extent within each river basin between the second and the first epoch. 
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The variation of the climatic drivers was evaluated as the difference between the average values 

of the mean annual precipitation and the mean monthly temperature observed in the second 

and the first epoch averaged over the area of each river basin of the CONUS. Figure 4.8 shows 

the spatial distribution of the values of changes in precipitation and temperature across the 

river basins of the CONUS. The mean annual precipitation increased in 132 river basins 

(54.64% of the CONUS area), which for the large part are located in Eastern US, while the 

remaining 72 river basins with a negative variation of precipitation are found in Western US 

(Figure 4.8a). The mean monthly temperature anomaly has positive variations in most of the 

river basins of the CONUS (199 river basins, covering 96.68% of the CONUS area), with the 

exception of 5 river basins which experienced a small decrease in temperature, ranging from 0 

to -0.32°C (Figure 4.8b). For this reason, temperature was not considered in the identification 

of the climatic factors responsible for the variations in the extent of surface water. Therefore, 

from now on this analysis will include only one climatic driver (i.e., precipitation). 

 
Figure 4.8 Spatial distribution of the variations of the climatic drivers that occurred between the two epochs considered in 

this study across the river basins of the CONUS. a. Change in precipitation, defined as the difference in mean annual 

precipitation averaged over each river basin between the second and the first epoch. b. Change in temperature, defined as the 

difference in mean monthly temperature anomaly averaged over each river basin between the second and the first epoch. 

Only five river basins experienced a decrease of the mean monthly temperature anomaly. 
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The variation of the anthropogenic and climatic drivers was also estimated across the main 

climatic regions of the CONUS (Figure 4.9). On the whole, population increased in all the 

climatic regions of the study area, while the extent of irrigated land experienced a general 

decrease within the continental and arid regions. Finally, on average mean annual precipitation 

decreased over the arid and polar regions and increased in the rest of the climatic zones. 

 
Figure 4.9 Histograms of the variation of the anthropogenic and climatic drivers across the main climatic regions of the 

CONUS. Percentages values reported above each bin of the population in 2015, irrigation in 2017, and precipitation change 

represent the relative variation of the driver in the second epoch (2000-2020) with respect to the first epoch (1984-1999). a. 

Total population in the first (POP 2000) and second epoch (POP 2015) found within each climatic region. b. Total extent of 

irrigated land in the first (IRR 2002) and second epoch (IRR 2017) found within each climatic region. c. Variation of the mean 

annual precipitation between the first (1984-1999) and second (2000-2020) epoch averaged over the area of each climatic 

region. 

Similarly to surface water extent change, also the variation of the anthropogenic and climatic 

drivers was evaluated across the subtypes of the main climatic regions of the CONUS (Figure 

4.10, Figure 4.11, and Figure 4.12).  

a b

c
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Figure 4.10 Histograms of the variation of the total population across the subtypes of the main climatic regions of the 

CONUS. Total population in the first epoch (POP 2000) is colored in light purple, while total population in the second epoch 

(POP 2015) is in dark purple. Percentages values reported above each bin of the population in 2015 represent the relative 

variation of total population in the second epoch with respect to the first epoch. 

 
Figure 4.11 Histograms of the variation of the total irrigated land across the subtypes of the main climatic regions of the 

CONUS. Total irrigated land in the first epoch (IRR 2002) is colored in light green, while total irrigated land in the second 

epoch (IRR 2017) is in dark green. Percentages values reported above each bin of the irrigated land in 2017 represent the 

relative variation of total irrigated land in the second epoch with respect to the first epoch. 
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Figure 4.12 Histograms of the variation of the mean annual precipitation across the subtypes of the main climatic regions of 

the CONUS. Percentages values reported above each bin represent the relative variation of mean annual precipitation in the 

second epoch (2000-2020) with respect to the first epoch (1984-1999). 

Population increased in all the subtypes of each climatic region, with the highest rates of 

growth found within the “temperate, no dry season, hot summer”, the “arid, steppe, cold”, 

and the “tropical, monsoon” subtype (Figure 4.10). The extent of irrigated land decreased in 

all the subtypes of the tropical and arid climates, with the greatest reduction in the “tropical, 

savannah” and the “arid, steppe, cold” subtypes, whereas in the continental and temperate 

regions there has been a general increase and the highest expansions of irrigated agriculture 

has been observed within the “cold, no dry season, hot summer” and the “temperate, no dry 

season, hot summer” subtypes (Figure 4.11). Precipitation increased in all the subtypes of the 

continental and tropical regions, with the “cold, no dry season, hot summer”, the “cold, no 

dry season, warm summer”, the “tropical, monsoon”, and the “tropical, savannah” subtypes 

having the largest positive variation. In the subtypes of the temperate, arid, and polar regions 

an overall reduction of mean annual precipitation has been observed, especially in the 

“temperate, no dry season, cold summer” and the “arid, desert, hot” subtypes (Figure 4.12). 

From the combination of the variation (increase or decrease) of the two anthropogenic 

(population and irrigated land) and the climatic driver (precipitation) here considered, the river 

basins of the CONUS were organized in eight groups, as summarized in Table 4.1. 
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Table 4.1 Number of river basins of the CONUS satisfying a specific combination of direction of change (increase or 

decrease) in the anthropogenic (population, POP, and irrigated land, IRR) and climatic (precipitation, PCP) drivers. A tick 

mark indicates that the condition expressed in the first row of the table is satisfied, while a cross mark indicates that the same 

condition is not satisfied (i.e., the opposite direction of variation in the driver is occurring). 

# basins POP(ep2) > POP(ep1) IRR(ep2) > IRR(ep1) PCP(ep2) < PCP(ep1) 

32 ✔ ✔ ✔ 

78 ✔ ✔ ✘ 
33 ✔ ✘ ✔ 

24 ✔ ✘ ✘ 

3 ✘ ✔ ✔ 

23 ✘ ✔ ✘ 

4 ✘ ✘ ✔ 

7 ✘ ✘ ✘ 

Across the examined 204 river basins of the COUNS, 32 (21.15% of the CONUS area) show 

an increase in population and irrigated land and a decrease in precipitation, which may suggest 

a loss of surface water extent, whereas 8 out of 204 present a decrease in population and 

irrigated land and an increase in precipitation, which could trigger a net gain in surface water. 

Six additional combinations are found, where either the anthropogenic drivers (one or both) 

or the climatic driver seem to concur to a net loss or gain of surface water extent. 

4.3.3 Contributors of changes in surface water extent 

The aforementioned combinations of anthropogenic and climatic drivers were compared 

against the net change in surface water extent. More specifically, population and irrigated land 

are considered to contribute to a net gain of surface water extent when they are decreasing, 

while precipitation is supposed to be an effective driver of surface water gain when it increases 

from the first to the second epoch. Conversely, when considering basins with a net loss of 

surface water extent, increasing population and irrigated land and decreasing precipitation 

should be responsible of surface water loss. 

The importance of the anthropogenic and climatic contributors to changes in surface water 

extent was assessed by evaluating the overlap between river basins experiencing a reduction 

(or expansion) in surface water extent and river basins with an increase (or decrease) in 
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anthropogenic drivers and a decrease (or increase) in the climatic driver. Therefore, the results 

obtained so far were then summarized in two maps describing in which river basins the drivers 

resulted to be responsible of a net surface water gain (Figure 4.13) and a net surface water loss 

(Figure 4.14), respectively. 

 
Figure 4.13 Spatial overlap of potential contributors to a net surface water gain. A gain of surface water extent is supposed 

to be triggered by decreasing population (orange circle) and irrigation (yellow circle), and increasing precipitation (blue circle). 

The histogram on the right shows the frequency of occurrence of each contributor to net surface water gain. The numbers 

over the bin of each contributor indicate the count of river basins affected by a net surface water gain and that specific 

contributor. 

The most widespread driver of surface water gain is precipitation, followed by population and 

irrigation (see histogram in Figure 4.13). In particular, out of the 169 river basins with a net 

surface water gain, precipitation is found to increase in 118 river basins (covering 50.22% of 

the CONUS area), resulting to be the key driver of the expansion of surface water extent, 

especially in the eastern region of the US (Figure 4.13). Between the two anthropogenic drivers, 

irrigation is the most prominent one (53 river basins covering 26.36% of the CONUS area) 

and the reduction of irrigated land is mostly occurring in river basins located over the western 

region of the US (about 40% of the 53 river basins with an increasing irrigated land) and 

partially (almost 23% of the 53 river basins with an increasing irrigated land) along the East 

Coast (Zhang & Long, 2021). The selected anthropogenic and climatic drivers turned out to 

simultaneously contribute to the net gain of surface water extent observed in 6 river basins 

(covering 3.36% of the CONUS area), while in 24 river basins none of the drivers were 

contributors of the increase of surface water extent (covering 10.50% of the CONUS area). 
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Figure 4.14 Spatial overlap of potential contributors to a net surface water loss. A loss of surface water extent is supposed to 

be triggered by increasing population (purple circle) and irrigation (green circle), and decreasing precipitation (pink circle). 

The histogram on the right shows the frequency of occurrence of each contributor to net surface water loss. The numbers 

over the bin of each contributor indicate the count of river basins affected by a net surface water loss and that specific 

contributor. 

The most diffused driver of surface water loss is population, followed by precipitation and 

irrigation (see histogram in Figure 4.14). Specifically, out of the 35 river basins with a net loss 

of surface water, population increased in 26 river basins (covering 17.81% of the CONUS 

area), resulting to be the dominant driver of surface water loss either in the western and the 

eastern region of the US. A similar level of diffusion is also found for the increase in irrigated 

land and the decrease of precipitation, which contributed to the surface water loss of 20 

(covering 15.19% of the CONUS area) and 21 (covering 16.94% of the CONUS area) river 

basins, respectively. In more detail, precipitation contributed to surface water loss in almost all 

the river basins (except one) of the southwestern region of the US, which are mainly 

characterized by an arid climate. Irrigation is another contributor to the decrease of surface 

water extent in some of the river basins of the southwestern area, although it mainly influenced 

the reduction of surface water found in all the 10 river basins located in the northeastern region 

of the US (Figure 4.14). The selected anthropogenic and climatic drivers resulted to 

simultaneously contribute to the net loss of surface water extent observed in 8 river basins 

(covering 10.65 % of the CONUS area), while in only 1 river basin none of the drivers were 

contributors to the reduction of surface water extent (covering 0.12 % of the CONUS area). 

Similar results were obtained when the change in surface water extent was compared to the 

variations of the drivers within the main climatic regions of the CONUS and their subtypes 
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(Table 4.2). Specifically, in the tropical region and all its subtypes as well as in the “arid, steppe, 

hot” class the net gain of surface water resulted to be influenced by the combination of a 

reduction in irrigated land and an increase of precipitation. Precipitation increase is the only 

driver of the net gain of surface water found in the continental region and in some of its 

subtypes, in the temperate region, and the “temperate, no dry season, hot summer” class. The 

net surface water gain found in the “cold, dry & warm summer”, the “temperate, dry & hot 

summer”, and the “temperate, dry & warm summer” subtypes resulted to be generated by a 

reduction of irrigated land only. Finally, in the polar region, three subtypes of the temperate 

region, and two subtypes of the continental regions none of the drivers were observed to be 

contributing to the net surface water gain. Population growth and precipitation decrease 

resulted to contribute to the net surface water loss observed within the arid region, its subtypes, 

and in the “cold, dry & hot summer” class, confirming the findings obtained at the river basin 

level. 

Overall, a heterogeneous contribution to surface water change (both gain and loss) was found 

to be induced by the considered anthropogenic and climatic drivers across the river basins of 

the CONUS. From the first to the second epoch most of the river basins has witnessed a net 

increase in the extent of surface water, indicating that the total loss has been compensated by 

the total gain, and this outcome can be mainly associated to an increase of precipitation and in 

some measure to a decrease of irrigated agriculture. However, in the river basins of the arid 

regions of southwestern US and in some river basins of the northeastern US the total gain did 

not counterbalance the total loss of surface water extent, producing a net loss of surface water, 

which was mostly caused by anthropogenic factors. In particular, population growth was the 

contributor governing the reduction of surface water extent. This result highlights the 

importance to shed light on the mechanisms of interaction between losses of surface water 

resources and human pressure, especially in view of future scenarios of urban population 

growth. For these reasons, RO2 illustrated in the next Chapter will focus only on losses of 

surface water, disregarding the overall net change of surface water extent obtained when 

considering also the contribution of possible surface water gains. Moreover, it will only 

examine the anthropogenic influence due to the presence of human settlements. 
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Table 4.2 Values of changes in surface water extent (SW), anthropogenic factors (population, POP, and irrigated land, IRR), 

and the climatic factor (precipitation, PCP) across the main climatic regions of the CONUS and their subtypes. 

Climatic 
region/subtypes 

Area of 
CONUS [%] 

ΔSW 
[km2] 

ΔPOP 
[# people] 

ΔIRR 
[km2] 

ΔPCP 
[mm/yr] 

Continental 40.47 8787.16 
(2.40%) 

6364175.37 
(4.86%) 

12196.13 
(27.39%) 

40.07 
(4.28%) 

Cold, dry & hot 
summer 0.05 -0.51 

(-0.58%) 
88876.31 
(33.80%) 

-10.75 
(-5.35%) 

-15.61 
(-2.85%) 

Cold, dry & warm 
summer 2.69 153.07 

(2.81%) 
211046.55 
(20.28%) 

-201.06 
(-14.67%) 

-16.22 
(-1.60%) 

Cold, dry & cold 
summer 0.77 33.07 

(6.07%) 
228.04 

(5.28%) 
0.00 

(0.00%) 
-43.04 

(-2.03%) 

Cold, dry winter,  
hot summer 0.53 226.08 

(12.69%) 
10777.28 
(5.12%) 

154.81 
(31.76%) 

19.38 
(3.78%) 

Cold, dry winter,  
warm summer 0.58 403.60 

(12.93%) 
2580.18 
(2.81%) 

49.06 
(25.27%) 

38.21 
(8.32%) 

Cold, no dry season,  
hot summer 18.63 5991.05 

(7.39%) 
5451233.31 

(4.78%) 
11374.88 
(30.70%) 

52.63 
(5.42%) 

Cold, no dry season,  
warm summer 14.25 1872.93 

(0.80%) 
581856.41 

(3.84%) 
775.00 

(15.99%) 
52.71 

(5.62%) 

Cold, no dry season,  
cold summer 2.97 107.88 

(0.27%) 
17577.30 
(16.80%) 

54.19 
(14.97%) 

-21.47 
(-2.98%) 

Arid 33.67 -2772.98 
(-4.84%) 

9167980.15 
(26.62%) 

-4330.06 
(-4.52%) 

-6.22 
(-1.79%) 

Arid, desert, hot 2.30 -218.65 
(-6.17%) 

3074569.79 
(45.68%) 

-517.13 
(-9.31%) 

-17.23 
(-8.43%) 

Arid, desert, cold 5.65 -2083.05 
(-16.41%) 

956153.25 
(28.34%) 

-455.81 
(-3.61%) 

-9.69 
(-3.75%) 

Arid, steppe, hot 1.73 59.13 
(2.68%) 

1603766.01 
(20.61%) 

-141.88 
(-5.41%) 

24.10 
(4.21%) 

Arid, steppe, cold 23.98 -530.41 
(-1.37%) 

3533491.09 
(21.34%) 

-3215.25 
(-4.29%) 

-6.53 
(-1.12%) 

Temperate 25.41 13961.84 
(13.96%) 

22036019.91 
(18.63%) 

7061.00 
(13.73%) 

28.48 
(2.03%) 

Temperate, dry &  
hot summer 1.42 1180.51 

(21.26%) 
1846841.36 

(12.83%) 
-1231.31 

(-11.85%) 
-22.65 

(-4.59%) 

Temperate, dry &  
warm summer 2.51 259.66 

(7.90%) 
2097761.31 

(12.70%) 
-73.06 

(-1.91%) 
-44.35 

(-3.47%) 
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Temperate, dry &  
cold summer 0.00 0.01 

(8.21%) 
0.19 

(18.65%) 
0.00 

(0.00%) 
-127.66 

(-5.30%) 

Temperate, no dry 
season, hot summer 21.19 12504.09 

(13.77%) 
18050062.70 

(20.73%) 
8363.19 

(22.55%) 
41.69 

(3.17%) 

Temperate, no dry 
season, warm summer 0.28 17.50 

(4.94%) 
41354.17 
(14.74%) 

2.19 
(1.78%) 

-51.15 
(-0.96%) 

Temperate, no dry 
season, cold summer 0.00 0.07 

(75.96%) 
0.17 

(11.92%) 
0.00 

(0.00%) 
-411.92 

(-11.49%) 

Tropical 0.27 1543.27 
(23.05%) 

1043244.20 
(20.29%) 

-381.44 
(-18.61%) 

95.91 
(6.70%) 

Tropical, rainforest 0.01 17.05 
(18.48%) 

159655.35 
(22.05%) 

-6.56 
(-86.07%) 

30.61 
(1.93%) 

Tropical, monsoon 0.08 590.18 
(45.02%) 

552493.50 
(15.34%) 

-96.75 
(-32.61%) 

100.81 
(6.67%) 

Tropical, savannah 0.18 936.04 
(17.69%) 

331095.35 
(40.48%) 

-278.13 
(-15.94%) 

97.55 
(6.99%) 

Polar (polar, tundra) 0.18 20.90 
(13.92%) 

33.20 
(3.50%) 

0.00 
(0.00%) 

-47.48 
(-3.94%) 

Note. A net surface water gain is highlighted in light blue, while a net loss of surface water is indicated in light red. 
Where drivers result to contribute to the net surface water gain/loss they are highlighted using the color 
convention adopted in Figure 4.13 and Figure 4.14. Percentages under variations values of surface water extent 
and its drivers indicate the relative change that occurred in the second epoch with respect to the first epoch. 
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5 Research Objective 2: Spatial distribution of 

surface water loss from urban areas 

Urban areas host a significant fraction of population density and socio-economic activities 

relying on water supplies. It is well acknowledged that human societies have historically 

established along water bodies. In a recent study, Fang & Jawitz (2019) examined the evolution 

of human settlements location with respect to rivers that occurred in the CONUS between 

1970 and 2010. They showed that cities of the US have been generally developed adjacent to 

major rivers and in arid regions the attractiveness of surface water resources is higher than in 

humid regions. Moreover, they noticed that urban areas are found to become less populated 

as the distance from rivers increases. Overall, by 2050 about 70% of the global population is 

expected to reside in cities and the resulting process of urban sprawl will likely affect both the 

quantity and quality of water resources surrounding urban areas worldwide (Padowski & 

Jawitz, 2012; McDonald et al., 2014; Boretti & Rosa, 2019; United Nations, 2019). 

Surface water losses are known to expand in space as the nearest water sources get exhausted 

due to the development of new and existing urban areas (Padowski & Jawitz, 2012; Richter et 

al., 2013; Daniell et al., 2015; Hoekstra et al., 2018). Initially, local water from adjacent 

agricultural and rural regions is the main freshwater source for cities. However, while urban 

population grows and urban area expands, these local sources become insufficient to meet 

urban water needs, requiring the importation of freshwater from other river basins. As a result, 

the growth of urban water demand produces a progressive exploitation of freshwater sources, 

leading to a substantial reduction in water frequency observations close to urban areas, 

indicative of surface water loss, which in turn causes environmental, social, and economic 

impacts whose effects are going to affect increasingly larger areas (Richter et al., 2013; 

McDonald et al., 2014; Padowski & Gorelick, 2014). In particular, local surface water could be 

lost as a consequence of several human-induced processes, such as increasing water 

abstraction, groundwater exploitation, land drainage, and increased evaporation, with serious 

consequences for the integrity of freshwater ecosystems (Poff et al., 1997; Fitzhugh & Richter, 

2004; Ceola et al., 2013; Sun & Caldwell, 2015; Pekel et al., 2016; Liyanage & Yamada, 2017; 
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Rodell et al., 2018). Indeed, surface water loss and river fragmentation due to a water-land 

transition have significant repercussions on riverine biodiversity and essential ecosystem 

services (McDonald et al., 2011c; Pekel et al., 2016; Grill et al., 2019; Botter & Durighetto, 

2020). Such degradation of ecosystems and freshwater species has been extensively reported 

in the CONUS and it is expected to occur in other areas across the globe where the use of 

land and water is changing and population is growing (Fitzhugh & Richter, 2004). Therefore, 

it is crucial to gain a better understanding of the dynamics of interaction between urbanization 

and surface water, and in particular how the presence of human settlements influences the 

progressive loss of surface water resources, to find a balance between urban planning and 

water management policies that ensure water conservation and ecosystem protection 

(Vörösmarty et al., 2010; McDonald et al., 2011a; McGrane, 2016; Wada et al., 2016; Hoekstra 

et al., 2018; Paiva et al., 2020). All these pieces of evidence found in the literature are also 

confirmed by the results of the analysis illustrated in Chapter 4, which highlighted that the 

main factors responsible for a net surface water loss are the anthropogenic drivers, especially 

the increase of population. 

The spatial interaction between two separate locations is primarily dependent on the 

geographical distance between them, and the intensity of such an interaction decreases as the 

locations are further away. This behavior is defined as the distance-decay effect and it is 

expressed in the First Law of Geography, which states that “everything is related to everything 

else, but near things are more related than distant things” (Tobler, 1970). Distance-decay is a 

fundamental concept in spatial sciences, and it has been widely applied to human and urban 

geography, spatial planning and analysis, as it allows to describe the occurrence or frequency 

of a pattern (Taylor, 1971; Fotheringham, 1981). For instance, in human geography distance-

decay has been often used with a focus on transportation planning (Halás et al., 2014; Goel, 

2018), ecological habitat variability and distribution (Goldmann et al., 2016), ecosystem 

services (Fernández, 2019), health risk assessment (Requia et al., 2016), and industry 

localization (Figueiredo et al., 2015). 

Several studies on the proximity of human settlements to water have been carried out (Ceola 

et al., 2014; Fang et al., 2018; Mård et al., 2018; Fang & Jawitz, 2019; Liu et al., 2020). However, 

the spatial interaction between cities and surface water loss and its modeling through the 

distance-decay concept still remain to be explored. Moreover, this aspect has not been 
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investigated with EO data, despite the availability of many consistent global products that 

accurately describe surface water dynamics and urban growth. 

These are the reasons that motivate the analysis of the spatial interaction between built-up 

areas and surface water depletion. Specifically, this investigation aims at assessing the driving 

role of urban areas in the spatial distribution of surface water loss across the CONUS. It was 

assumed that irrigation and climatic factors, in particular precipitation change, did not 

contribute to surface water loss (i.e., water-land transition), which was also demonstrated by 

the outcomes of the previous analysis (i.e., RO1). Indeed, on average the total annual 

precipitation and the number of precipitation days have slightly increased in most of the 

CONUS, leading to a 0.5% increase of the total surface water area since 1984 (EPA, 2016; 

Pekel et al., 2016; Easterling et al., 2017; Bartels et al., 2020). Moreover, urban areas are 

considered to be a proxy of population as they are detected with a higher accuracy by remote 

sensing images. Actually, information on population distribution is derived from the 

combination of maps of urban areas developed from EO images and census data (see also 

Subsection 3.2.2 of Chapter 3 for more details). Finally, given that human settlements data of 

the GHSL dataset (Corbane et al., 2019) illustrate the evolution of urban areas until 2014 (as 

described in Subsection 3.2.2 of Chapter 3), the time period 1984-2018 was selected for the 

extraction of surface water loss data adopted in this analysis, instead of the 1984-2020 time 

window inspected in RO1, to optimize the overlap between data temporal coverage. The aim 

of this analysis is to provide an answer to the following questions, already introduced in 

Chapter 1: (Q2a) where does urbanization cause surface water loss? (Q2b) How does the 

frequency of surface water loss change as the distance from human settlements increases? 

5.1 Surface water loss and urban area data 

Also for the investigation of the spatial influence of urban areas on losses of surface water, 

datasets obtained from remote sensing data were processed to define two binary maps: the 

Surface Water Loss map and the Urbanization map (Palazzoli et al., 2021). The Surface Water 

Loss map identifies the geographical location of pixels that experienced a reduction in the 

frequency of water observations, leading to a conversion from water to land at the end of the 

period 1984-2018 (blue pixels in Figure 5.1). This map was derived from the Surface Water 

Transitions layer of the Global Surface Water dataset, which describes the changes in the 
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seasonality of any surface water body open to the sky and larger than 30 m by 30 m as open 

water, including fresh and saltwater (Pekel et al., 2016). As already mentioned in Subsection 

3.2.1 of Chapter 3, the Surface Water Transitions layer describes the evolution of surface water 

state that took place between the first and last year of observations time series, by showing any 

conversion among three states: permanent surface water, seasonal surface water, and land (i.e., 

areas without any water). The class of transition assigned to each water pixel is defined based 

on the variation of its frequency of observation. In this analysis the pixels classified as lost 

permanent, lost seasonal, ephemeral permanent, and ephemeral seasonal surface water were 

selected to identify locations that experienced a surface water loss (i.e., a water-land transition) 

during the time window from 1984 to 2018 and they were extracted to produce the Surface 

Water Loss map. Lost permanent (or seasonal) surface water indicates a conversion of 

permanent (or seasonal) water into land. Ephemeral permanent (or seasonal) surface water 

identifies locations where surface water resources are permanent (or seasonal) for some of the 

intervening years, but no water is detected in the first and last year of the observational period 

(Pekel et al., 2016). Although the nature of the factor that caused the presence or loss of surface 

water (either permanent, seasonal, or ephemeral) is not considered in this study, a check for 

the stability of each surface water state that we classified as lost was carried out by looking at 

the frequency of surface water occurrence between 1984 and 2018 provided by the Surface 

Water Occurrence layer (SWO) of the Global Surface Water dataset (Pekel et al., 2016), which 

has been already introduced in Subsection 3.2.1 of Chapter 3. In particular, the occurrence 

values associated to the pixels of the selected classes of surface water transition included in the 

Surface Water Loss map (i.e., lost permanent, lost seasonal, ephemeral permanent, and 

ephemeral seasonal) were extracted. Out of the 85,001,873 pixels of surface water loss 

considered in the study area of the CONUS, 12.90% are classified as lost permanent, 29.47% 

are lost seasonal, 1.92% are ephemeral permanent, and 55.71% are ephemeral seasonal. As 

expected, the distribution of the values of water occurrence associated to each class of surface 

water loss averaged over the river basins of the CONUS shows a decreasing trend from lost 

permanent, to ephemeral permanent, lost seasonal, and ephemeral seasonal, with median 

values equal to 50%, 30%, 18%, and 10%, respectively (Figure A3, Figure A4, and Figure A5). 

This outcome proves a significant presence of water in correspondence of the surface water 

loss pixels during the observation period, which eventually resulted to be lost in 2018. 

Moreover, the size-distribution of lost water areas was investigated through the identification 
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of clusters of surface water loss. The number of surface water loss clusters results to grow 

moving from West to East (Figure A6a), while the spatial extent of the largest clusters of 

surface water loss increases in the opposite direction (Figure A6b). Finally, although the 

presence of human-managed surface water reservoirs and well fields was not explicitly 

considered in this analysis, surface water losses associated to such features are implicitly 

included in our Surface Water Loss map, as specified in the dataset used to derive this map 

(Pekel et al., 2016). In fact, dams reduce the variability of the downstream river flow (Granzotti 

et al., 2018), while well fields induce an increase of the groundwater recharge (Xu & Beekman, 

2019), and both these effects imply a reduction in surface water extent. 

 
Figure 5.1 Surface water loss locations and urban areas across the river basins and water resource regions of the CONUS. 

Locations that experienced surface water loss are colored in blue. The extent of urban areas is shown in orange. The 

boundaries of the 204 river basins are depicted in white, while the 18 water resource regions are highlighted with a bold grey 

line. The dark blue dashed box represents a zoom-in over the area around the city of Saint Louis and the Mississippi River. 

The Urbanization map describes the most recent extent of urban areas reached at the end of 

2014 (orange pixels in Figure 5.1). As for the Urban Area maps defined in Section 4.1 of 

Chapter 4, also the Urbanization map was derived from the GHS-BUILT layer of the GHSL 

dataset (Corbane et al., 2019), by extracting all the pixels of built-up areas developed during all 

the four epochs (until 1975, from 1975 to 1990, from 1990 to 2000, and from 2000 to 2014), 

i.e., urban areas developed up to 2014. The maximum extent of the urban agglomerations 

derived from the Urbanization map and found within each river basin of the CONUS indicates 

the presence of larger urban clusters along the West coast and in the Eastern US (Figure A7). 



 
Chapter 5 

 

 66 

5.2 Assessment of the spatial influence of urban areas on surface water 

loss 

In this Thesis, the influence of urban areas on the spatial distribution of surface water loss 

across the CONUS was evaluated and modeled through the application of the distance-decay 

concept to data acquired from satellite sensors (Palazzoli et al., 2022). Surface water loss was 

defined as a reduction in water frequency observations, regardless of the cause (i.e., 

anthropogenic or climatic) and loss magnitude, that generates the conversion from water to 

land. Therefore, the observed frequency of occurrence of surface water loss with respect to 

distance from urban areas was examined in bins of 3 km across the CONUS (Figure 5.2a). 

Afterwards, the observed trend of the spatial distribution of surface water losses as a function 

of distance from urban areas was reproduced with a distance decay model (Figure 5.2b). 

 
Figure 5.2 Schematic representation of the spatial interaction between surface water loss locations and urban areas 

hypothesized in this analysis. a. Geographical distribution of surface water loss and urban areas across 3 km wide distance 

classes. b. Comparison between observed and modeled frequency of occurrence of surface water loss, showing a decreasing 

pattern as the distance from urban areas increases. 

5.2.1 Observed frequency of surface water loss occurrence 

The geographical distance of surface water loss pixels from urban areas was estimated using 

the Euclidean distance, which measures the length of a straight line connecting pairs of 

locations. As a conservative approach, it was assumed that urban areas can reach all nearby 

a b3 km
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surface water resources leading to a conversion from water to land, i.e., surface water loss. The 

assumption that all urban areas access the closest surface waters is a solid working hypothesis, 

as it reflects the strategy of cities to reduce the distance from which they import water 

resources (McDonald et al., 2011b). Although other physical factors (such as terrain elevation, 

road networks, and water supply systems) might have been considered in the definition of the 

distance metric, the Euclidean distance was adopted since it provides an objective and global 

reference while also being a relevant design driver for technological networks. Moreover, it 

represents the most common measure of geographical distance used in distance-decay 

applications (Halás et al., 2014; Goldmann et al., 2016; Artell et al., 2019). The Euclidean 

distance allows to define a simple model that reproduces the observed spatial interaction 

between surface water loss and urbanization, avoiding too many independent variables that 

would otherwise enter the distance-decay function, increasing its level of complexity and 

related model uncertainty. Finally, in the CONUS there are multiple urban areas located at 

different distances from each other and mutually interacting. Such an interaction is implicitly 

included in this analysis through the Euclidean distance, which is here considered to be a proxy 

of the radius of influence of cities. 

The Euclidean distance of surface water loss from the boundaries of urban areas (Figure 5.2a) 

was computed across each spatial aggregation x here considered (i.e., river basin, x = b, water 

resource region, x = WRR, and the CONUS, x = CONUS). Afterwards, the values of distance 

were divided in bins having a constant width and counts of surface water loss pixels within 

each distance bin dij were aggregated to calculate the frequency of occurrence of surface water 

loss fx(dij) (histogram in Figure 5.2b) as follows: 

𝑓5:𝑑,6< =
78$!(:"#)
78$!,%&%

                 (5.1) 

where swlx(dij) is the count of surface water loss locations in the considered spatial aggregation 

x between distances i and j (with i and j ranging from 0 to dx,max, i.e., the maximum distance 

reached in x), while swlx,TOT is the total count of surface water loss locations observed inside 

the considered spatial aggregation x. 

The 3 km wide distance bin was selected based on the results of a sensitivity analysis that 

compared the frequency of occurrence of surface water loss obtained with aggregations at 1, 
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3, and 5 km wide distance bins. The width of 3 km resulted to be the optimal compromise 

between noise reduction and level of detail (Figure A8). This aggregation was applied until 99 

km of distance from urban areas (i.e., 0-3 km, 3-6 km, …, 96-99 km distance bin). 

In addition, the observed average distance of surface water loss locations from urban areas, 

⟨dx⟩, was estimated across each spatial aggregation x as follows: 

〈𝑑5〉 =
∑ :'
()*!
'+,
78$!,%&%

                 (5.2) 

where dk is the distance associated to a generic surface water loss location. 

5.2.2 Distance-decay model of surface water loss occurrence 

By assuming that the influence of urbanization on surface water loss locations declines as the 

distance of these locations from urban areas increases, a probabilistic model capable of 

reproducing this distance-decay behavior was defined (solid line in Figure 5.2b). The function 

describing the measure and shape of the decreasing spatial interaction is called distance-decay 

model or gravity model, and many forms of such models have been developed so far. Usually, 

gravity models do not have a linear shape and they are generated through a distance 

transformation of the original data, which generally leads to the adoption of a power or 

exponential law, as well as Pareto and log-normal functions (Taylor, 1971; Halás et al., 2014; 

Chen, 2015). Finally, sometimes it might result necessary to adopt more sophisticated 

functions, presenting a bell shape (i.e., an inflection point) and described by two parameters, 

such as the Weibull and squared Cauchy functions (Halás et al., 2014). Here, the distance-decay 

behavior was modeled with a truncated exponential probability distribution, which describes 

a decreasing trend of the frequency of occurrence of surface water loss pixels, so that the 

maximum probability of finding surface water loss occurs at a distance close to the urban 

agglomeration and exponentially declines with increasing distance. The selection of the 

exponential probability distribution is motivated by the fact that the exponential decay is 

among the most employed distance-decay functions, with several applications in different 

fields (Zhang, 2011; Martínez & Viegas, 2013; Figueiredo et al., 2015; Chen & Huang, 2018). 

Moreover, the truncated version of the function was adopted because, by definition, the 
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distance reaches a finite maximum value dx,max in each spatial aggregation x, and it allows to 

consider the presence of multiple urban areas and their radius of influence. 

The probability of occurrence of surface water loss locations as a function of the distance from 

urban areas, px(dij), across each spatial aggregation x reads as follows: 

𝑝5:𝑑,6< = 𝛼5𝑒=>!:"#                                  (5.3) 

where ax [-] is the frequency of occurrence of surface water loss locations in the initial 3 km 

wide distance bin (0-3 km), and bx (> 0 [km-1]) represents the decay rate of the model, 

describing the rate of decline in spatial interaction. The higher bx, the steeper is the decrease 

in px(dij) with increasing distance from urban areas. 

The parameters ax and bx in Equation 5.3 were estimated through a non-linear regression of 

the probability of occurrence px(dij) versus the observed frequency of surface water loss 

locations fx(dij), by assuming that at least values in three distance bins are available in order to 

get a robust fit (dx,max > 6 km). The goodness of fit was assessed through the evaluation of the 

Pearson’s correlation coefficient r. In addition, the standard error associated to the model fit 

derived for each spatial aggregation x was calculated to evaluate the distance of observed values 

from the regression line of the model. This value provides an estimate of the prediction interval 

with 5% significance level, evaluating prediction uncertainty. 

Finally, the theoretical average distance of surface water loss locations from urban areas (i.e., 

the expected value of the truncated exponential distribution), ⟨d ̂x⟩, was analytically derived 

from Equation 5.3 across each spatial aggregation x as follows: 

〈𝑑@5〉 =
3=1-.!/!,01!?3@>!:!,01!A

>!?3=1-.!/!,01!A
	              (5.4) 

To check for the reliability of Equation 5.3 in reproducing the observed distance-decay pattern 

of surface water loss locations, the observed and the theoretical average distances, ⟨dx⟩ from 

Equation 5.2 and ⟨d ̂x⟩ from Equation 5.4, were compared for each spatial aggregation x. 
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5.2.3 Overall surface water extent versus surface water loss: comparison of distance 

decay patterns 

The definition of the distance-decay model here presented is based on the reasonable 

assumption that all urban areas can access the closest surface water resources. Given this 

hypothesis, the decay of surface water loss was compared to the decay of the overall extent of 

surface water with distance from urban areas at the river basin level to further test if more 

surface water loss is occurring close to urban areas, rather than far from them. The overall 

extent of surface water was extracted from the Water Extent layer of the Global Surface Water 

dataset (Pekel et al., 2016), which has been already introduced in Subsection 3.2.1 of Chapter 

3. To avoid biases due to large water bodies, the Euclidean distance from urban areas was 

calculated only at the boundaries of surface water bodies, which are also the resources that are 

the most likely to be exhausted because of human withdrawals. Similarly to the approach 

followed for the surface water loss decay, a non-linear regression was performed and the 

distance-decay model parameters were evaluated, based on the overall extent of surface water. 

A decay rate of surface water loss bb larger (smaller) than the decay rate of the overall extent 

of surface water bb
sw signals an area where more surface water loss is occurring close to (far 

from) urban areas. 

5.2.4 Influence of climate 

To investigate the influence of climate on the spatial interaction between urban areas and 

surface water losses, the spatial distribution of surface water loss locations and the associated 

variability of the model parameters at the river basin level, ab and bb, were investigated over 

the main Köppen-Geiger climatic zones (Beck et al., 2018), i.e., tropical, arid, temperate, 

continental, and polar (see Figure 3.1). The variability of parameters ab and bb in the climatic 

zones was evaluated as a weighted average given by the number of locations of surface water 

loss associated to each climatic zone found in every river basin of the CONUS. In particular, 

for a given climatic zone and river basin, the weight was defined as the ratio between the 

number of surface water loss locations within the portion of basin in that climatic zone (i.e., 

locations sharing the same values of ab and bb) and the total number of surface water loss 

locations found in the same climatic region. 
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Finally, also the distribution of the decay rate of the overall extent of surface water, bb
sw, was 

evaluated across the Köppen-Geiger climatic regions to perform a comparison with the values 

previously found for the distance-decay of surface water loss, bb. 

5.3 Results 

5.3.1 Observed spatial interaction between surface water loss and urban areas 

It was found that the observed frequency of occurrence of surface water loss locations steadily 

decreases as the distance from urban areas increases across the whole study area, at the river 

basin, water resource region, and CONUS level. This result applies to any geographical 

position, climatic zone, and physiographic property. Figure 5.3 clearly shows this outcome for 

the CONUS (diamonds in Figure 5.3b) and for four water resource regions and related river 

basins (circles in Figure 5.3c-j). Similar results were also found for the remaining river basins 

and water resource regions, thus confirming that surface water losses are consistently located 

in the proximity of urban areas (see Figure 5.4 for the remaining 14 water resource regions). 

5.3.2 Spatial interaction between surface water loss and urban areas: distance-decay 

model application 

The probability of occurrence of surface water loss locations was then computed as a function 

of distance from urban areas. The application of the distance-decay model defined in Equation 

5.3, based on the selected 3 km wide distance bin, shows that all 18 water resource regions and 

191 river basins (covering 96% of the CONUS area) are successfully fitted by the distance-

decay model (Figure 5.3a and Figure 5.4), with r values ranging from 0.974 to 0.999 and from 

0.676 to 0.999, for the water resource regions and the river basins, respectively. In the 

remaining 13 river basins, Equation 5.3 could not be applied at the selected 3 km wide distance 

bin because of data paucity (i.e., dx,max ≤ 6 km, meaning that data are available in less than three 

distance bins). However, for these river basins, Figure 5.3a shows r values (r ≥ 0.952) obtained 

with 1 km wide distance bins (see river basins with a dark grey line pattern). Data and model 

comparison for the four aforementioned water resource regions and related river basins are 

shown in Figure 5.3c-j. A statistically significant fit (r = 0.997) is also found when the distance-

decay model is applied to the CONUS (Figure 5.3b), proving the reliability of the mathematical 

interpretation of the influence of urbanization on the spatial distribution of surface water loss 
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at different levels of spatial aggregation described in Subsection 5.2.2 of Chapter 5. Table 5.1 

provides the main physical and climatic properties and model parameters for the CONUS and 

the selected water resource regions and river basins shown in Figure 5.3. The entire list of the 

main physical and climatic properties and model parameters for the 18 water resource regions 

and the 204 river basins can be found in Table B1. 

 
Figure 5.3 Performance of the distance-decay model reproducing the observed frequency of occurrence of surface water loss 

from urban areas, based on a 3 km wide distance bin. a. Spatial distribution of model performance, where river basins are 

colored according to their Pearson’s correlation coefficient. River basins where the model fit is obtained with a distance bin 

of 1 km are indicated with a dark grey line pattern. Water resource regions (3, 10, 12, 18) and river basins (309, 1021, 1210, 

1810) shown in panels c-j are highlighted with a thicker border. b. Frequency of occurrence of surface water loss locations 

and model fit obtained for the CONUS. Confidence intervals represent the standard error associated to the model fit. c-f. 

Frequency of occurrence of surface water loss locations and model fit obtained for the selected water resource regions. g-j. 

Frequency of occurrence of surface water loss locations and model fit obtained for the selected river basins. 
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Figure 5.4 Performance of the distance-decay model reproducing the observed frequency of occurrence of surface water loss 

from urban areas in the 14 water resource regions of the CONUS (panels a-n) that are not shown in Figure 5.3, based on a 3 

km wide distance bin. 
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Table 5.1 Main physical and climatic properties and model fit results, based on a 3 km wide distance bin, for the CONUS 

and four representative water resource regions and related river basins, shown in Figure 5.3. 

Water 
resource 
region/river 
basin name 
(ID) 

Area 
[km2] 

Average 
elevation 
± std dev 

[m] 

Climatic 
regions and 

coverage 
percentage 

𝛼x  
[-] 

𝛽x  
[km-1] r ⟨dx⟩ 

[km] 
⟨d̂x⟩ 

[km] 

CONUS 7,744,303  -  

Continental 
(40.47%), Arid 

(33.67%), 
Temperate 
(25.41%), 
Tropical 

(0.27%), Polar 
(0.18%) 

0.570 0.348 0.997 5.304 2.870 

South 
Atlantic-Gulf 
Region (3) 

695951 110 ± 118 

Tropical 
(59.48%), 

Temperate 
(40.52%) 

0.512 0.295 0.994 5.407 3.391 

Southern 
Florida (309) 42136 12 ± 9 

Tropical 
(59.48%), 

Temperate 
(40.52%) 

0.255 0.093 0.996 8.992 10.140 

Missouri 
Region (10) 1323835 996 ± 620 

Continental 
(99.94%), 

Temperate 
(0.06%) 

0.646 0.376 1.000 3.653 2.658 

Loup (1021) 39214 825 ± 188 
Continental 

(95.29%), Arid 
(4.71%) 

0.408 0.182 0.995 5.946 5.380 

Texas-Gulf 
Region (12) 464006 370 ± 348 

Arid (85.42%), 
Temperate 

(14.58%) 
0.692 0.407 1.000 2.703 2.457 

Central Texas 
Coastal (1210) 44227 160 ± 170 

Temperate 
(99.94%), Arid 

(0.06%) 
0.613 0.318 1.000 3.189 3.099 

California 
Region (18) 416156 888 ± 724 

Temperate 
(77.67%), Arid 

(21.74%), 
Continental 

(0.59%) 

0.558 0.312 0.993 4.245 3.202 
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Southern 
Mojave-Salton 
Sea (1810) 

41361 548 ± 470 

Arid (93.38%), 
Temperate 

(6.4%), 
Continental 

(0.22%) 

0.756 0.475 1.000 2.244 2.103 

Note. ax and bx are the distance-decay model parameters; r is the Pearson’s correlation coefficient; ⟨dx⟩ and ⟨d̂x⟩ 
are the observed and theoretical average distance, respectively. The first row reporting the values for the CONUS 
does not contain any ID nor the elevation with its standard deviation, which is not a significant information for 
such a large area. 

The reliability of the distance-decay model was tested by comparing the observed and 

theoretical average distances of surface water loss locations from urban areas (⟨dx⟩ and!⟨d ̂x⟩ 
from Equation 5.2 and Equation 5.4) in each level of spatial aggregation here considered, 

namely river basins, water resource regions, and CONUS. In what follows, results refer only 

to the CONUS, the 18 water resource regions, and the 191 river basins whose data were fitted 

by Equation 5.3 using a 3 km wide distance bin. Figure 5.5a shows that pairs of observed and 

theoretical average distances at the river basin level	are well correlated, as the slope of the linear 

regression is equal to 1.00 (R2 = 0.84, p-value << 0.05). A comparable and statistically significant 

correlation is also found for the 18 water resource regions (slope = 1.06, R2 = 0.87, p-value << 

0.05). The black diamond depicting the average distances for the CONUS falls marginally 

under the regression lines found for river basins and water resource regions, meaning that the 

distance-decay model underestimates the observed distance at which on average surface water 

loss occurs at the continental scale (see also values reported in Table 5.1). Results from the 

linear correlation demonstrate the consistency of the model in reproducing the observed 

spatial pattern, as the truncated exponential probability distribution is able to predict the 

distance from urban areas at which on average surface water loss may occur. Figure 5.5b 

depicts the comparison between the frequency distribution of the observed and theoretical 

average distance of surface water loss occurrence and it highlights that in the majority of the 

river basins surface water loss takes place in the proximity of urban areas, based on both the 

observed data and the model estimates. Specifically, it is noted that more than half of the river 

basins (109 out of 191) has an observed average distance smaller than 3 km (first bin of the 

histogram in Figure 5.5b). 
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Figure 5.5 Comparison between the observed and theoretical average distance of surface water loss locations from urban 

areas (⟨dx⟩ and!⟨d̂x⟩) based on a 3 km wide distance bin and their frequency distribution. a. Correlation between observed and 

theoretical average distances of surface water loss locations. Results from the three levels of spatial aggregation (river basins, 

water resource regions, and the CONUS) are shown. Circles (whose color identifies the prevalent climatic region) show pairs 

of observed and theoretical distances obtained for the 191 river basins, blue squares are used to represent the 18 water resource 

regions (WRRs), while the black diamond identifies the same distances calculated for the CONUS. The linear regression 

between observed and theoretical distances at the river basin level is depicted by the yellow dashed line (⟨d̂b⟩ = -0.13 + 1.00 

⟨db⟩) and its coefficient of determination R2 is 0.84. The light yellow area represents the 95% confidence interval of the linear 

regression. The linear regression between observed and theoretical distances at the water resource region level (not shown) is 

the following: ⟨d̂WRR⟩ = -0.73 + 1.06 ⟨dWRR⟩. b. Frequency distribution of observed and theoretical average distances of surface 

water loss locations at the river basin level. 

To gain a deeper insight into the distance-decay behavior detected in the study area of the 

CONUS, the spatial variability and the frequency distribution of the model parameters ax and 

bx were further analyzed (Figure 5.6). Higher values of ax and bx imply a more concentrated 

loss of surface waters in the proximity of urban areas and a quicker decrease in surface water 

loss frequency as the distance from urban areas increases, respectively. As before, results refer 

only to the 18 water resource regions and 191 river basins for which Equation 5.3 fitted the 

data using a 3 km wide distance bin (i.e., river basins with a line pattern in Figure 5.3a are 

excluded). Values of ab, as derived from river basins, range from 0.095 to 0.990, with the 

highest values found in river basins located in the eastern part of the CONUS and partially 

along the West Coast (Figure 5.6a), where the largest surface water withdrawals occurred 

(Dieter et al., 2018). Mean and median values of ab are 0.651 and 0.724, respectively (Figure 
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5.6b), and 72% of the river basins presents more than half of surface water loss within 3 km 

from urban areas. In the 18 water resource regions aWRR ranges from 0.151 to 0.908, with a 

mean value of 0.610 and a median equal to 0.666 (Figure 5.7a). For the CONUS, aCONUS equals 

0.570 (Table 5.1), thus confirming the concentration of surface water loss in the immediate 

proximity of urban areas. 

 

Figure 5.6 Spatial variability and frequency distribution of ab and bb parameters of the distance-decay model based on a 3 

km wide distance bin and applied at the river basin level. a. Spatial variability of ab. River basins that are not fitted by the 

model using a 3 km wide distance bin are indicated in light grey. b. Frequency distribution of ab. The dashed line and the dot-

dash line represent the mean and the median values, respectively, as derived from river basins, while the solid line depicts 

aCONUS. c. The same as panel a, but for the decay rate bb. d. The same as panel b, but for the decay rate bb. 

Regarding the decay rate bx, values at the river basin level bb range from 0.028 to 1.546 km-1, 

with the highest values mainly found across the eastern part of the CONUS (Figure 5.6c), 

where most of urban areas are located (US Census, 2021). Mean and median values are 0.479 

km-1 and 0.422 km-1, respectively, with the majority of river basins (92%) showing a value 

smaller than 1 km-1 (Figure 5.6d). In the remaining 8% of the river basins, where bb  > 1 km-1, 

a rapid decrease of surface water loss in space is found, indicating that the interaction between 

ba

c d
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human settlements and surface water resources takes place over a shorter distance and, thus, 

only surface water resources close to cities are affected by urban areas. 

In the 18 water resource regions bWRR ranges from 0.050 to 0.790, with a mean value of 0.407 

and a median equal to 0.376 (Figure 5.7b). For the CONUS, bCONUS is equal to 0.348 km-1 

(Table 5.1). Results based on 1 and 5 km wide distance bins are shown in Figure B1 and Figure 

B2 for river basins, and in Figure B3 and Figure B4 for water resource regions. 

 

Figure 5.7 Spatial variability of aWRR and bWRR parameters of the distance-decay model based on a 3 km wide distance bin 

and applied at the water resource region level. a. Spatial variability of aWRR. b. Spatial variability of bWRR. 

In addition, it was verified if the variability of ab and bb model parameters reflects 

heterogeneities of urban attributes, such as total urban population, urban population change, 

and urban area change. To this aim, data of urban population and urban area were extracted 

from the GHS-POP and GHS-BUILT layers provided by the GHSL dataset (Corbane et al., 

2019), and described in Subsection 3.2.2 of Chapter 3. Since population and built-up area data 

from GHSL dataset are available only for 1975, 1990, 2000, and 2015 (2014 for built-up area), 

it was assumed that urban population detected in 1990 and 2015 and urban area found in 1990 
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and 2014 are a reasonable representation of the urban population and the level of urbanization 

during the first and last year of the period 1984-2018. The difference between urban 

population (or urban area) values in 2015 (or 2014) and 1990 was used to quantify urban 

population (or urban area) change. 

 
Figure 5.8 Spatial distribution of urban attributes within river basins of the CONUS. a. Total urban population in 2015. b. 

Urban population change between 1990 and 2015. River basins that experienced a decrease in the number of inhabitants are 

highlighted in light grey and the reduction of their urban population change ranges from -225842 and -253. c. Urban area 

change between 1990 and 2014. 

The general spatial distribution of urban population in 2015, urban population change, and 

urban area change at the river basin scale (Figure 5.8) is in agreement with the spatial trend 



 
Chapter 5 

 

 80 

observed for the model parameters ab and bb at the river basin level (Figure 5.6a and Figure 

5.6c), with higher urban population in 2015, urban population change, and urban area change 

along the East and West Coast. Indeed, when urban population in 2015, the urban population 

change and urban area change values are represented against ab and bb parameters (Figure 5.9), 

a mild correlation is found between these variables, with the highest coefficient of 

determination R2 associated to the total urban population of 2015 and urban area change. 

 

Figure 5.9 Correlation between urban attributes and ax and bx parameters of the distance-decay model for the three levels 

of spatial aggregation (river basins, water resource regions, and the CONUS). Circles show pairs of urban attributes and ax 

and bx parameters obtained for the 191 river basins, squares are used to represent the 18 water resource regions, while the 

black diamond identifies the same values calculated for the CONUS. a. Correlation between total urban population in 2015 

and ax. The linear regression between total urban population and ab parameter at the river basin level is depicted by the grey 

dashed line (ab = -0.40 + 0.08 pop2015,b) and its coefficient of determination R2 is 0.38. b. Correlation between urban population 

change and ax. The linear regression between urban population change and ab parameter at the river basin level is depicted 

by the grey dashed line (ab = -0.10 + 0.07 Dpopb) and its coefficient of determination R2 is 0.25. c. Correlation between urban 

area change and ax. The linear regression between urban area change and ab parameter at the river basin level is depicted by 

the grey dashed line (ab = -0.53 + 0.10 Durbb) and its coefficient of determination R2 is 0.42. d. The same as panel a, but for 

the decay rate bx. The equation of the linear regression is: bb = -4.64 + 0.28 pop2015,b with R2 = 0.37. e. The same as panel b, 

but for the decay rate bx. The equation of the linear regression is: bb = -3.62 + 0.23 Dpopb with R2 = 0.24. f. The same as panel 

c, but for the decay rate bx. The equation of the linear regression is: bb = -4.97 + 0.33 Durbb with R2 = 0.39. 
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Finally, the maximum extent of urban agglomerations in each river basin of the CONUS was 

analyzed to inspect whether river basins having larger urban clusters experienced a more 

pronounced loss in surface water close to their urban areas. An evident influence of the 

maximum extent of urban clusters did not emerge from such analysis (Figure 5.10). However, 

as the variability (i.e., the interquartile range) and the 75th percentile of the extent of urban 

agglomerations increase, the decay rate bb increases as well (Figure 5.11), highlighting the 

presence of a steeper decay in surface water loss moving away from urban areas in river basins 

having larger urban agglomerations. 

 

Figure 5.10 Correlation between the extent of the largest urban clusters and ab and bb parameters for the 191 river basins of 

the CONUS where the distance-decay model was applied using a 3 km wide distance bin. Points are colored based on the 

total extent of surface water loss observed in each river basin. a. Correlation between the extent of the largest urban clusters 

and ab (coefficient of determination R2 = 0.30). b. Correlation between the extent of the largest urban clusters and bb 

(coefficient of determination R2 = 0.26). 

 

Figure 5.11 Correlation between the interquartile range of the extent of urban clusters and bb parameter for the 191 river 

basins of the CONUS where the distance-decay model was applied using a 3 km wide distance bin (coefficient of 

determination R2 = 0.14). Points are colored based on the third quartile value of the urban agglomeration areas in each river 

basin. 

ba
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5.3.3 Overall surface water extent versus surface water loss: comparison of distance 

decay patterns 

The overall implication inferred from the analysis of the observed frequency of surface water 

loss occurrence and from the application of the distance-decay model was verified by 

comparing the distance-decay of surface water loss and distance-decay associated to the overall 

extent of surface water with respect to distance from urban areas to check whether surface 

water loss is occurring close to human settlements rather than far away from them. The spatial 

distribution of the overall extent of surface water first proves that also the occurrence of 

surface water bodies is more frequent close to urban areas and exponentially declines with 

increasing distance, confirming what has been generally recognized about the proximity of 

human settlements to water sources. More importantly, in all the aforementioned 191 river 

basins where the distance-decay model was applied using a 3 km wide distance bin, the spatial 

decline of the frequency of surface water loss is steeper than the decline observed for the 

overall extent of surface water. In particular, Figure 5.12 depicts the spatial distribution of the 

difference between the two parameters. This difference is always positive, revealing that the 

decay rate of surface water loss (bb) is consistently larger than the decay rate of the overall 

extent of surface water (bb
sw). 

 
Figure 5.12 Spatial distribution of the difference between the decay rate associated to the distance-decay of surface water loss 

(bb) and the overall extent of surface water (bbsw) across 191 river basins of the CONUS where the distance-decay model was 

applied using a 3 km wide distance bin. River basins that are not fitted by the model using a 3 km wide distance bin are 

indicated in light grey. 
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Figure 5.13 instead shows the variability of the two parameters and also in this case the decay 

rate of surface water loss (bb) presents higher values than the decay rate of the overall extent 

of surface water (bb
sw). These results clearly demonstrate that more surface water loss is 

occurring close to urban areas rather than far from them in all the rivers basins of the CONUS. 

The same outcome is also confirmed when the comparison between the decay rates is 

performed at the climatic region level (see Subsection 5.3.4 of this Chapter and Figure 5.15). 

 

Figure 5.13 Variability of the decay rate at the river basin level associated to the distance-decay of surface water loss (bb) and 

the overall extent of surface water (bbsw). 

5.3.4 Influence of climate 

To investigate the role played by climate, the spatial distribution of surface water loss locations 

and the associated variability of the model parameters ab and bb were evaluated over the main 

Köppen-Geiger climatic zones, i.e., tropical, arid, temperate, continental, and polar (Beck et 

al., 2018). More than one third of the surface water loss locations (37.13%) are located in the 

temperate region, with the remaining falling in the arid (29.37%), continental (27.5%), and 

tropical (5.99%) regions. Less than 0.01% of surface water loss occurs within the polar zone, 

which from now on is not considered for further analysis. Afterwards, the variability of model 

parameters ab and bb  was analyzed in the climatic zones where locations of surface water loss 

are found, and their weighted average associated to each climatic zone was estimated (Figure 

5.14), as described in Subsection 5.2.4 of this Chapter. 
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Figure 5.14 Variability of ab and bb parameters of the distance-decay model applied at the river basin level across the main 

climatic regions of the CONUS. The boxplot edges indicate the first and third quartiles, with the thick horizontal line 

representing the median value. Colored circles illustrate the weighted average of the parameters associated to each climatic 

region. The percentage of surface water loss locations falling in each climatic region is also indicated. 

The highest values of ab and bb parameters are found in the temperate and continental climatic 

regions. In the continental region, the weighted average of ab is equal to 0.736 (1st, 2nd, 3rd 

quartiles equal to 0.692, 0.728, and 0.891, respectively), while the weighted average of bb is 

equal to 0.527 (1st, 2nd, 3rd quartiles equal to 0.393, 0.410, and 0.732, respectively). The 

temperate region shows slightly smaller values, with the weighted average of ab equal to 0.699 

(1st, 2nd, 3rd quartiles equal to 0.633, 0.730, and 0.810, respectively), and the weighted average 

of bb equal to 0.439 (1st, 2nd, 3rd quartiles equal to 0.362, 0.409, and 0.545, respectively). Across 

these two climatic zones, characterized by abundant water resources, surface water loss is 

concentrated close to urban areas (i.e., the majority of surface water loss is located within a 3 

km distance) and its frequency of occurrence is rapidly decreasing in space. Therefore, 

localized and concentrated impacts of urban areas on surface water loss are typical of 

temperate and continental climatic regions, as also shown in Figure 5.5a, where the theoretical 

and observed average distances of surface water loss occurrence present generally smaller 

values for river basins characterized by a temperate and continental climate compared to those 

with an arid and tropical climate. 
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The arid region presents significantly smaller values of ab and bb parameters. In particular, the 

weighted average of ab is equal to 0.325 (1st, 2nd, 3rd quartiles equal to 0.138, 0.208, and 0.459, 

respectively), while the weighted average of bb is equal to 0.168 (1st, 2nd, 3rd quartiles equal to 

0.044, 0.068, and 0.226, respectively). Across the arid region, characterized by a limited 

availability of surface water resources, surface water loss is more uniformly distributed across 

all distance classes, with only a 16% of surface water loss within a 3 km distance from urban 

areas on average. Indeed, the frequency of occurrence of surface water loss in space shows a 

decreasing trend, although dampened when compared to temperate and continental regions. 

Therefore, arid climates are characterized by more distributed impacts of urban areas on 

surface water loss, which typically affect larger areas around cities (see also Figure 5.5a). The 

tropical region shows the lowest average values of ab (0.255) and bb (0.093 km-1). However, 

surface water loss locations associated to this climatic region belong to one river basin only, 

thus limiting its representativeness. 

Finally, from the evaluation of the distribution of the overall surface water extent across the 

main climatic regions of the CONUS emerged that the fraction of total surface water extent 

locations that lies on the continental, temperate, arid, tropical, and polar climatic regions is 

67.30%, 20.36%, 10.95%, 1.36%, and 0.03%, respectively. Moreover, the decay rate of the 

overall extent of surface water (bb
sw) was assessed across the Köppen-Geiger climatic regions 

to carry out a comparison with the distribution found for the decay rate of surface water loss 

(bb). The values of the decay rate of the overall surface water extent are always smaller than 

those of the surface water loss across each climatic zone (Figure 5.15). This result further 

confirms that more surface water loss is occurring close to urban areas, rather than far away 

from them, within the river basins of the CONUS. 
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Figure 5.15 Variability of the decay rate at the river basin level associated to the distance-decay of surface water loss (bb) and 

to the overall extent of surface water (bbsw) across the main climatic regions of the CONUS. 
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6 Conclusions 

Water is a finite resource highly vulnerable to human behavior and climate. The increasing 

water demand induced by population growth and socio-economic development will 

progressively reduce freshwater and enhance the global competition for it (Padowski & 

Gorelick, 2014; Boretti & Rosa, 2019; Erler et al., 2019). In addition, water stress is amplified 

by climate change impacts, mostly by variations of precipitation and temperature and extreme 

events like droughts and heatwaves (Wanders et al., 2015). The depletion of surface water 

affects not only human activities, but also many ecosystems whose preservation heavily relies 

on these resources (Sun & Caldwell, 2015; Liyanage & Yamada, 2017; Aznar-Sánchez et al., 

2019). Hence, new sustainable strategies are needed to increase water use efficiency, diminish 

water demand, and guarantee water conservation (Cosgrove & Loucks, 2015; Mekonnen & 

Hoekstra, 2016). 

The United States are among the countries of the World that have already witnessed the effects 

of population growth and climate change on water supply (Wada & Bierkens, 2014). Although 

over the past years water use in the US has adapted to water supplies avoiding the occurrence 

of water shortages, in the future water availability is expected to be substantially reduced by 

demographic expansion, decreasing precipitation, and rising temperature, while water demand 

will continue to increase, posing new serious challenges for water management and sustainable 

development (Brown et al., 2019a). Within this context, surface waters in the US are extremely 

endangered, since they represent the national main source of freshwater withdrawals (Dieter 

et al., 2018). 

Moreover, given that the main drivers of the global increase of water demand are projected to 

be urbanization and economic development, it is necessary to further analyze the influence of 

urbanization on surface water depletion (Wada et al., 2017). Indeed, urban areas are 

responsible for the emergence of local hotspots of surface water loss that cannot be explained 

by climate change alone, and this suggests the need to examine the spatial interaction between 

human settlements and surface water losses (Fitzhugh & Richter, 2004; Hoekstra et al., 2018). 
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Learning from data observations and defining analytical models that successfully reproduce 

the observed patterns is key to sustainable water policy strategies. In this context, RO1 of this 

Thesis explored the interlink between the variation in surface water extent and the change in 

anthropogenic and climatic variables that occurred in the contiguous United States (CONUS) 

in the period 1984-2020. Since population growth was found to be the dominant driver, 

especially across arid climates, RO2 aimed at explaining the dynamics of interaction between 

surface water depletion and human settlements by evaluating the spatial distribution of surface 

water losses that took place between 1984 and 2018. 

6.1 Achievements 

In order to identify the most influencing factors of the change in surface water extent, gains 

and losses of surface water that occurred in the period 2000-2020 (second epoch) with respect 

to the amount of surface water found in the period 1984-1999 (first epoch) were measured 

across the river basins of the CONUS and their difference was then computed to obtain the 

net variation of surface water extent. A net gain is found when the total gain exceeds the total 

loss of surface water, whereas a net loss is found when the total gain is less than the total loss 

of surface water. Afterwards, this variation was compared to changes that took place between 

the same epochs in three anthropogenic (urban area, population, and irrigated land) and two 

climatic (precipitation and temperature) factors, that are here considered to be potential drivers 

of surface water gain and loss. The surface water loss and anthropogenic drivers were estimated 

using remotely sensed data, while the climatic drivers were derived from observation-based 

estimates. All data variations were aggregated at the river basin level. Since urban areas 

expanded across the whole CONUS and temperature turned out to be increasing in almost all 

the river basins of the CONUS (199 river basins, covering 96.68% of the CONUS area), these 

factors were not considered in the subsequent analysis for the definition of the predominant 

anthropogenic and climatic contributors to the increase and decrease of surface water extent. 

The remaining three drivers were assumed to potentially contribute to an increase (decrease) 

in surface water extent if a decreasing (increasing) pattern was observed for population and 

irrigated land, and an increasing (decreasing) trend characterized precipitation. Then, the 

overlap of contributors across river basins of the CONUS was assessed. 
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A general increase in surface water extent was found in the majority of the river basins of the 

CONUS, with some exceptions in the southwestern and northeastern regions, which are 

characterized by a net surface water loss. The net gain of surface water resulted to be mainly 

produced by an increase in precipitation over the eastern area of the US and a decrease in 

irrigated land along the West Coast. Conversely, the net loss of surface water mostly 

corresponds to an increase of population, with the additional contribution of precipitation 

decrease in the river basins of the southwestern region and an expansion of irrigated land in 

the river basins of the northeastern region. The same correspondence was also confirmed at 

the level of the climatic zones of the CONUS, as in all the climatic regions/subtypes 

experiencing a net loss of surface water, i.e., the arid region and the majority of its subtypes as 

well as in the “cold, dry & hot summer” subtype of the continental region, population turned 

out to be the dominant driver along with precipitation decrease. 

The findings of this first analysis proved that population growth is the major driver of surface 

water loss, hence an additional investigation of the influence of built-up areas on surface water 

depletion was carried out. It is generally known that urban areas access surface water sources 

located in the surrounding of cities to meet their water demand. As local surface waters are 

exhausted, cities need to withdraw water from sources located farther away. The consequent 

progressive depletion of local surface waters in the proximity of human settlements highlights 

the importance of getting a more comprehensive understanding of the spatial interaction 

between urban areas and locations that experienced a loss of surface water. This is the reason 

why RO2 examines and models the spatial distribution of surface water losses that occurred 

between 1984 and 2018 within the CONUS as a function of distance from urban areas. Also 

in this case, data of built-up area and surface water loss were extracted from datasets obtained 

from EO sensors. The frequency of occurrence of surface water loss represented as a function 

of distance from urban areas revealed that surface water loss is more frequent close to human 

settlements and exponentially declines as the distance from urban areas increases at the river 

basin, water resource region, and CONUS levels. Therefore, a distance-decay model was 

developed with a truncated exponential probability distribution, defining a theoretical 

characterization and a statistically significant modeling of the observed declining trend. The 

adopted distance-decay model demonstrates that urban areas produce an exponentially 

increasing stress on surface water resources in the proximity of cities. The presence of a steeper 
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distance-decay trend of surface water loss compared to the distance-decay obtained for the 

overall extent of surface water confirms once again that more surface water loss in the CONUS 

occurred adjacent to urban areas. The reliability of the distance-decay model was established 

through the comparison between the observed distance from urban areas at which on average 

surface water losses occurred and the corresponding theoretical distance derived from the 

exponential function of the model. The statistically significant correlation between observed 

and theoretical values of the average distance of occurrence of surface water loss demonstrates 

the consistency of the model in reproducing the spatial distribution of locations of surface 

water loss. Moreover, it was also noticed that surface water losses decline faster in river basins 

with larger urban agglomerations, highlighting that the influence of human settlements 

increases with the extent of urban clusters. Finally, distinct patterns in the distance-decay of 

surface water loss were found across the main climatic zones of the CONUS. In particular, 

localized and concentrated impacts of urban areas on surface water loss resulted to be typical 

of the temperate and continental climatic regions, whereas areas with arid climates were found 

to be characterized by more widespread impacts distributed over larger distances from cities. 

The model here developed and applied over the study area of the CONUS looks promising as 

it represents a valuable analytical tool that describes the observed spatial distribution of surface 

water loss locations with respect to urban areas and supplies useful indications about the 

interaction that can potentially be found in other study areas with similar social and climatic 

conditions. 

In conclusion, the overall methodology adopted to achieve both ROs of this Thesis provides 

baseline information for the definition of sustainable management practices that guarantee a 

balance between urban population growth, urban water demand, and water needs for the 

environment. 

6.2 Constraints 

Despite these major achievements, the following limitations need to be acknowledged. In the 

study related to RO1, water availability is intended as the extent of surface water that is 

physically available, neglecting its volume and other equally critical aspects, such as water 

quality and water delivery, which can impact both humans and the environment. Moreover, 

groundwater resources are not included in this analysis, although they represent another 
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important source for human activities and natural ecosystems. Notwithstanding the level of 

accuracy of data related to population and urbanization processes, the information about 

irrigation practices is not as much exhaustive and more specific data about irrigated agriculture 

would be useful to understand where and when this driver produces high water stress. Finally, 

the results from RO2 might be limited by the assumption of the ideal condition that only the 

geographic distance, estimated in terms of Euclidean distance, controls the spatial interaction 

between urban areas and surface water resources, disregarding the influence of other factors 

of interaction, such as infrastructures, industries, power generation plants, and pipeline 

networks. 

6.3 Recommendations 

The extension of the proposed research objectives to new study areas and at the global scale 

would allow to explore how the availability of surface water resources is affected by the 

simultaneous influence of anthropogenic and climatic factors in other regions of the world 

having socio-economic, hydrologic, morphologic, and climatic conditions that are different 

from those found within the CONUS. The outcomes obtained from the analysis of the drivers 

of surface water change suggest that in the future it might be beneficial to focus this 

investigation on local areas where surface water resources are more vulnerable to human 

dynamics and climate variability. For instance, particular attention should be paid to the 

southwestern US, which is exceedingly sensitive to changes in temperature and thus vulnerable 

to drought, since even a small decrease in water availability in this already arid region can stress 

natural systems and further threaten water supplies (Dieter et al., 2018). Other example of US 

regions that require additional analysis are the California Central Valley and the Mississippi 

Floodplain where a decrease in the use of water for irrigation practices has been observed in 

the period 2000-2020, and the zone of the High Plain Aquifer where instead water use in 

irrigation has first increased and then decreased over the same period (Zhang & Long, 2021). 

From a methodological viewpoint, it would be useful to conduct further investigations for the 

attribution of surface water availability changes to anthropogenic and climatic drivers through 

a cross-validation procedure, such as machine-learning algorithms. The definition of predictive 

models would allow the simulation of future availability of surface water resources under 

specific scenarios of socio-economic conditions and climate change. 
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Moreover, given that the distance-decay model yielded an excellent description of the spatial 

interaction between human settlements and surface water depletion in the CONUS, it would 

be interesting to apply this approach to other study areas to verify its reliability. To increase 

the level of detail of the distance-decay model and to recognize the specific role played by 

features and practices that impact surface water availability, such as dams and groundwater 

withdrawals, future work might also inspect the relation between surface water loss locations 

and the geographical position of reservoirs and well fields. This additional information may be 

useful to support the identification of the optimal location for water withdrawals, but a careful 

assessment will be needed to reach a balance between model complexity and uncertainty. 

Finally, future investigations should consider the effects due to the transfer of industrial 

activities from urban areas to peri-urban and suburban areas that occurred during the last 

decades which is expected to further increase urban population with respect to population of 

rural areas. 

  



 

 93 



 

 94 



 

 95 

References 

Acharya, T., Lee, D., Yang, I. & Lee, J. (2016) “Identification of Water Bodies in a Landsat 8 
OLI Image Using a J48 Decision Tree,” Sensors, 16(7), p. 1075. doi:10.3390/s16071075. 

Afaq, Y. & Manocha, A. (2021) “Analysis on change detection techniques for remote sensing 
applications: A review,” Ecological Informatics, 63, p. 101310. doi:10.1016/j.ecoinf.2021.101310. 

Ambika, A.K., Wardlow, B. & Mishra, V. (2016) “Remotely sensed high resolution irrigated 
area mapping in India for 2000 to 2015,” Scientific Data, 3(1), p. 160118. 
doi:10.1038/sdata.2016.118. 

Anderson, R.G., Lo, M.-H. & Famiglietti, J.S. (2012) “Assessing surface water consumption 
using remotely-sensed groundwater, evapotranspiration, and precipitation,” Geophysical Research 
Letters, 39(16), p. n/a-n/a. doi:10.1029/2012GL052400. 

Artell, J., Ahtiainen, H. & Pouta, E. (2019) “Distance decay and regional statistics in 
international benefit transfer,” Ecological Economics, 164, p. 106383. 
doi:10.1016/j.ecolecon.2019.106383. 

Asokan, A. & Anitha, J. (2019) “Change detection techniques for remote sensing applications: 
a survey,” Earth Science Informatics, 12(2), pp. 143–160. doi:10.1007/s12145-019-00380-5. 

Averyt, K., Meldrum, J., Caldwell, P., Sun, G., McNulty, S., Huber-Lee, A. & Madden, N. 
(2013) “Sectoral contributions to surface water stress in the coterminous United States,” 
Environmental Research Letters, 8(3), p. 035046. doi:10.1088/1748-9326/8/3/035046. 

Aznar-Sánchez, J.A., Velasco-Muñoz, J.F., Belmonte-Ureña, L.J. & Manzano-Agugliaro, F. 
(2019) “The worldwide research trends on water ecosystem services,” Ecological Indicators, 99, 
pp. 310–323. doi:10.1016/j.ecolind.2018.12.045. 

Baldocchi, D., Dralle, D., Jiang, C. & Ryu, Y. (2019) “How Much Water Is Evaporated Across 
California? A Multiyear Assessment Using a Biophysical Model Forced With Satellite Remote 
Sensing Data,” Water Resources Research, 55(4), pp. 2722–2741. 
doi:https://doi.org/10.1029/2018WR023884. 

Balling, R.C. & Goodrich, G.B. (2011) “Spatial analysis of variations in precipitation intensity 
in the USA,” Theoretical and Applied Climatology, 104(3–4), pp. 415–421. doi:10.1007/s00704-
010-0353-0. 

Bartels, R.J., Black, A.W. & Keim, B.D. (2020) “Trends in precipitation days in the United 
States,” International Journal of Climatology, 40(2), pp. 1038–1048. doi:10.1002/joc.6254. 

Bastiaanssen, W.G.., Molden, D.J. & Makin, I.W. (2000) “Remote sensing for irrigated 
agriculture: examples from research and possible applications,” Agricultural Water Management, 
46(2), pp. 137–155. doi:10.1016/S0378-3774(00)00080-9. 

Bazzi, H., Baghdadi, N., Ienco, D., El Hajj, M., Zribi, M., Belhouchette, H., Escorihuela, M.J. 



 
References 

 

 96 

& Demarez, V. (2019) “Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, 
Spain,” Remote Sensing, 11(15), p. 1836. doi:10.3390/rs11151836. 

Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A. & Wood, E.F. 
(2018) “Present and future Köppen-Geiger climate classification maps at 1-km resolution,” 
Scientific Data, 5(1), p. 180214. doi:10.1038/sdata.2018.214. 

Bekele, A.A., Pingale, S.M., Hatiye, S.D. & Tilahun, A.K. (2019) “Impact of climate change on 
surface water availability and crop water demand for the sub-watershed of Abbay Basin, 
Ethiopia,” Sustainable Water Resources Management, 5(4), pp. 1859–1875. doi:10.1007/s40899-
019-00339-w. 

Bernhofen, M. V., Trigg, M.A., Sleigh, P.A., Sampson, C.C. & Smith, A.M. (2021) “Global 
flood exposure from different sized rivers,” Natural Hazards and Earth System Sciences, 21(9), pp. 
2829–2847. doi:10.5194/nhess-21-2829-2021. 

Bhaskar, A.S., Hopkins, K.G., Smith, B.K., Stephens, T.A. & Miller, A.J. (2020) “Hydrologic 
Signals and Surprises in U.S. Streamflow Records During Urbanization,” Water Resources 
Research, 56(9). doi:10.1029/2019WR027039. 

Bierkens, M.F.P. (2015) “Global hydrology 2015: State, trends, and directions,” Water Resources 
Research, 51(7), pp. 4923–4947. doi:10.1002/2015WR017173. 

Bigelow, D.P., Plantinga, A.J., Lewis, D.J. & Langpap, C. (2017) “How Does Urbanization 
Affect Water Withdrawals? Insights from an Econometric-Based Landscape Simulation,” Land 
Economics , 93(3), pp. 413–436. doi:10.3368/le.93.3.413. 

Boretti, A. & Rosa, L. (2019) “Reassessing the projections of the World Water Development 
Report,” npj Clean Water, 2(1), p. 15. doi:10.1038/s41545-019-0039-9. 

Botter, G. & Durighetto, N. (2020) “The Stream Length Duration Curve: A Tool for 
Characterizing the Time Variability of the Flowing Stream Length,” Water Resources Research, 
56(8), p. e2020WR027282. doi:https://doi.org/10.1029/2020WR027282. 

Bounoua, L., Nigro, J., Zhang, P., Thome, K. & Lachir, A. (2018) “Mapping urbanization in 
the United States from 2001 to 2011,” Applied Geography, 90, pp. 123–133. 
doi:10.1016/j.apgeog.2017.12.002. 

Brown, T.C., Mahat, V. & Ramirez, J.A. (2019a) “Adaptation to Future Water Shortages in the 
United States Caused by Population Growth and Climate Change,” Earth’s Future, 7(3), pp. 
219–234. doi:10.1029/2018EF001091. 

Brown, V.M., Keim, B.D. & Black, A.W. (2019b) “Climatology and Trends in Hourly 
Precipitation for the Southeast United States,” Journal of Hydrometeorology, 20(8), pp. 1737–1755. 
doi:10.1175/JHM-D-19-0004.1. 

Brunner, M.I., Swain, D.L., Gilleland, E. & Wood, A.W. (2021) “Increasing importance of 
temperature as a contributor to the spatial extent of streamflow drought,” Environmental 
Research Letters, 16(2), p. 024038. doi:10.1088/1748-9326/abd2f0. 



 
References 

 

 97 

Cai, G., Ren, H., Yang, L., Zhang, N., Du, M. & Wu, C. (2019) “Detailed Urban Land Use 
Land Cover Classification at the Metropolitan Scale Using a Three-Layer Classification 
Scheme,” Sensors, 19(14), p. 3120. doi:10.3390/s19143120. 

CCSP (2008) The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and 
Biodiversity. Washington, DC., USA. Available at: 
https://www.fs.fed.us/rm/pubs_other/rmrs_2008_backlund_p003.pdf. 

Ceola, S., Hödl, I., Adlboller, M., Singer, G., Bertuzzo, E., Mari, L., Botter, G., Waringer, J., 
Battin, T.J. & Rinaldo, A. (2013) “Hydrologic Variability Affects Invertebrate Grazing on 
Phototrophic Biofilms in Stream Microcosms,” PLoS ONE. Edited by M.R. Liles, 8(4), p. 
e60629. doi:10.1371/journal.pone.0060629. 

Ceola, S., Laio, F. & Montanari, A. (2014) “Satellite nighttime lights reveal increasing human 
exposure to floods worldwide,” Geophysical Research Letters, 41(20), pp. 7184–7190. 
doi:https://doi.org/10.1002/2014GL061859. 

Ceola, S., Laio, F. & Montanari, A. (2015) “Human-impacted waters: New perspectives from 
global high-resolution monitoring,” Water Resources Research, 51(9), pp. 7064–7079. 
doi:10.1002/2015WR017482. 

Ceola, S., Laio, F. & Montanari, A. (2019) “Global-scale human pressure evolution imprints 
on sustainability of river systems,” Hydrology and Earth System Sciences, 23(9), pp. 3933–3944. 
doi:10.5194/hess-23-3933-2019. 

Chen, M., Nabih, S., Brauer, N.S., Gao, S., Gourley, J.J., Hong, Z., Kolar, R.L. & Hong, Y. 
(2020) “Can Remote Sensing Technologies Capture the Extreme Precipitation Event and Its 
Cascading Hydrological Response? A Case Study of Hurricane Harvey Using EF5 Modeling 
Framework,” Remote Sensing, 12(3), p. 445. doi:10.3390/rs12030445. 

Chen, Y. (2015) “The distance-decay function of geographical gravity model: Power law or 
exponential law?,” Chaos, Solitons & Fractals, 77, pp. 174–189. 
doi:https://doi.org/10.1016/j.chaos.2015.05.022. 

Chen, Y. & Huang, L. (2018) “A scaling approach to evaluating the distance exponent of the 
urban gravity model,” Chaos, Solitons & Fractals, 109, pp. 303–313. 
doi:https://doi.org/10.1016/j.chaos.2018.02.037. 

Chen, Y., Lv, Z., Huang, B. & Jia, Y. (2018) “Delineation of Built-Up Areas from Very High-
Resolution Satellite Imagery Using Multi-Scale Textures and Spatial Dependence,” Remote 
Sensing, 10(10), p. 1596. doi:10.3390/rs10101596. 

Coleman, R.W., Stavros, N., Hulley, G. & Parazoo, N. (2020) “Comparison of Thermal 
Infrared-Derived Maps of Irrigated and Non-Irrigated Vegetation in Urban and Non-Urban 
Areas of Southern California,” Remote Sensing, 12(24), p. 4102. doi:10.3390/rs12244102. 

Collados-Lara, A.-J., Fassnacht, S.R., Pardo-Igúzquiza, E. & Pulido-Velazquez, D. (2020) 
“Assessment of High Resolution Air Temperature Fields at Rocky Mountain National Park by 



 
References 

 

 98 

Combining Scarce Point Measurements with Elevation and Remote Sensing Data,” Remote 
Sensing, 13(1), p. 113. doi:10.3390/rs13010113. 

Cooley, S.W., Ryan, J.C. & Smith, L.C. (2021) “Human alteration of global surface water 
storage variability,” Nature, 591(7848), pp. 78–81. doi:10.1038/s41586-021-03262-3. 

Corbane, C., Pesaresi, M., Kemper, T., Politis, P., Florczyk, A.J., Syrris, V., Melchiorri, M., 
Sabo, F. & Soille, P. (2019) “Automated global delineation of human settlements from 40 years 
of Landsat satellite data archives,” Big Earth Data, 3(2), pp. 140–169. 
doi:10.1080/20964471.2019.1625528. 

Cosgrove, W.J. & Loucks, D.P. (2015) “Water management: Current and future challenges and 
research directions,” Water Resources Research, 51(6), pp. 4823–4839. 
doi:10.1002/2014WR016869. 

CRED (2020) Natural Disasters 2019. Brussels. Available at: 
https://emdat.be/%0Dsites/default/files/adsr_2019.pdf. 

Daher, B., Lee, S.-H., Kaushik, V., Blake, J., Askariyeh, M.H., Shafiezadeh, H., Zamaripa, S. & 
Mohtar, R.H. (2019) “Towards bridging the water gap in Texas: A water-energy-food nexus 
approach,” Science of The Total Environment, 647, pp. 449–463. 
doi:https://doi.org/10.1016/j.scitotenv.2018.07.398. 

Dang, Q., Lin, X. & Konar, M. (2015) “Agricultural virtual water flows within the United 
States,” Water Resources Research, 51(2), pp. 973–986. doi:10.1002/2014WR015919. 

Daniell, K.A., Rinaudo, J.-D., Chan, N.W.W., Nauges, C. & Grafton, Q. (2015) 
“Understanding and Managing Urban Water in Transition,” in, pp. 1–30. doi:10.1007/978-94-
017-9801-3_1. 

Dari, J., Quintana-Seguí, P., Escorihuela, M.J., Stefan, V., Brocca, L. & Morbidelli, R. (2021) 
“Detecting and mapping irrigated areas in a Mediterranean environment by using remote 
sensing soil moisture and a land surface model,” Journal of Hydrology, 596, p. 126129. 
doi:10.1016/j.jhydrol.2021.126129. 

Delpla, I., Jung, A.-V., Baures, E., Clement, M. & Thomas, O. (2009) “Impacts of climate 
change on surface water quality in relation to drinking water production,” Environment 
International, 35(8), pp. 1225–1233. doi:https://doi.org/10.1016/j.envint.2009.07.001. 

Demarez, V., Helen, F., Marais-Sicre, C. & Baup, F. (2019) “In-Season Mapping of Irrigated 
Crops Using Landsat 8 and Sentinel-1 Time Series,” Remote Sensing, 11(2), p. 118. 
doi:10.3390/rs11020118. 

Dettinger, M., Udall, B. & Georgakakos, A. (2015) “Western water and climate change,” 
Ecological Applications, 25(8), pp. 2069–2093. doi:10.1890/15-0938.1. 

Di Baldassarre, G., Mazzoleni, M. & Rusca, M. (2021) “The legacy of large dams in the United 
States,” Ambio, 50(10), pp. 1798–1808. doi:10.1007/s13280-021-01533-x. 



 
References 

 

 99 

Dieter, C.A., Maupin, M.A., Caldwell, R.R., Harris, M.A., Ivahnenko, T.I., Lovelace, J.K., 
Barber, N.L. & Linsey, K.S. (2018) Estimated use of water in the United States in 2015, Circular. 
Reston, VA. doi:10.3133/cir1441. 

Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E. & van de Giesen, N. (2016) “A 
30 m Resolution Surface Water Mask Including Estimation of Positional and Thematic 
Differences Using Landsat 8, SRTM and OpenStreetMap: A Case Study in the Murray-Darling 
Basin, Australia,” Remote Sensing, 8(5), p. 386. doi:10.3390/rs8050386. 

Dooge, J.C.I. (2009) Fresh Surface Water, Encyclopedia of Life Support Systems. Available at: 
https://www.epa.gov/report-environment/fresh-surface-water (Accessed: November 9, 
2021). 

Duan, K., Caldwell, P. V, Sun, G., McNulty, S.G., Zhang, Y., Shuster, E., Liu, B. & Bolstad, 
P. V (2019) “Understanding the role of regional water connectivity in mitigating climate change 
impacts on surface water supply stress in the United States,” Journal of Hydrology, 570, pp. 80–
95. doi:https://doi.org/10.1016/j.jhydrol.2019.01.011. 

Duran-Encalada, J.A., Paucar-Caceres, A., Bandala, E.R. & Wright, G.H. (2017) “The impact 
of global climate change on water quantity and quality: A system dynamics approach to the 
US–Mexican transborder region,” European Journal of Operational Research, 256(2), pp. 567–581. 
doi:https://doi.org/10.1016/j.ejor.2016.06.016. 

Easterling, D.R., Arnold, J.R., Knutson, T., Kunkel, K.E., LeGrande, A.N., Leung, L.R., Vose, 
R.S., Waliser, D.E. & Wehner, M.F. (2017) Ch. 7: Precipitation Change in the United States. Climate 
Science Special Report: Fourth National Climate Assessment, Volume I. Washington, DC. 
doi:10.7930/J0H993CC. 

EPA (2016) Climate change indicators in the United States. Fourth edition. Available at: 
www.epa.gov/climate-indicators. 

Erler, A.R., Frey, S.K., Khader, O., D’Orgeville, M., Park, Y., Hwang, H., Lapen, D.R., Richard 
Peltier, W. & Sudicky, E.A. (2019) “Simulating Climate Change Impacts on Surface Water 
Resources Within a Lake-Affected Region Using Regional Climate Projections,” Water 
Resources Research, 55(1), pp. 130–155. doi:10.1029/2018WR024381. 

Ermida, S.L., Soares, P., Mantas, V., Göttsche, F.-M. & Trigo, I.F. (2020) “Google Earth 
Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat 
Series,” Remote Sensing, 12(9), p. 1471. doi:10.3390/rs12091471. 

Everard, M. & Moggridge, H.L. (2012) “Rediscovering the value of urban rivers,” Urban 
Ecosystems, 15(2), pp. 293–314. doi:10.1007/s11252-011-0174-7. 

Fang, Y., Ceola, S., Paik, K., McGrath, G., Rao, P.S.C., Montanari, A. & Jawitz, J.W. (2018) 
“Globally Universal Fractal Pattern of Human Settlements in River Networks,” Earth’s Future, 
6(8), pp. 1134–1145. doi:https://doi.org/10.1029/2017EF000746. 

Fang, Y. & Jawitz, J.W. (2019) “The evolution of human population distance to water in the 



 
References 

 

 100 

USA from 1790 to 2010,” Nature Communications, 10(1), p. 430. doi:10.1038/s41467-019-08366-
z. 

FAO (2012) Coping with water scarcity An action framework for agriculture and food security. Rome. 

FAO (2017) Water for Sustainable Food and Agriculture - A report produced for the G20 Presidency of 
Germany. Rome. Available at: https://www.fao.org/3/i7959e/i7959e.pdf. 

FAO (2020) The State of Food and Agriculture 2020. FAO. doi:10.4060/cb1447en. 

Faroughi, M., Karimimoshaver, M., Aram, F., Solgi, E., Mosavi, A., Nabipour, N. & Chau, K.-
W. (2020) “Computational modeling of land surface temperature using remote sensing data to 
investigate the spatial arrangement of buildings and energy consumption relationship,” 
Engineering Applications of Computational Fluid Mechanics, 14(1), pp. 254–270. 
doi:10.1080/19942060.2019.1707711. 

Ferguson, I.M. & Maxwell, R.M. (2012) “Human impacts on terrestrial hydrology: climate 
change versus pumping and irrigation,” Environmental Research Letters, 7(4), p. 044022. 
doi:10.1088/1748-9326/7/4/044022. 

Fernández, I.C. (2019) “A multiple-class distance-decaying approach for mapping temperature 
reduction ecosystem services provided by urban vegetation in Santiago de Chile,” Ecological 
Economics, 161, pp. 193–201. doi:https://doi.org/10.1016/j.ecolecon.2019.03.029. 

Figueiredo, O., Guimarães, P. & Woodward, D. (2015) “Industry localization, distance decay, 
and knowledge spillovers: Following the patent paper trail,” Journal of Urban Economics, 89, pp. 
21–31. doi:https://doi.org/10.1016/j.jue.2015.06.003. 

Firoozi, F., Mahmoudi, P., Jahanshahi, S.M.A., Tavousi, T., Liu, Y. & Liang, Z. (2020) 
“Modeling changes trend of time series of land surface temperature (LST) using satellite 
remote sensing productions (case study: Sistan plain in east of Iran),” Arabian Journal of 
Geosciences, 13(10), p. 367. doi:10.1007/s12517-020-05314-w. 

Fitzhugh, T.W. & Richter, B.D. (2004) “Quenching Urban Thirst: Growing Cities and Their 
Impacts on Freshwater Ecosystems,” BioScience, 54(8), pp. 741–754. doi:10.1641/0006-
3568(2004)054[0741:QUTGCA]2.0.CO;2. 

Flávio, H.M., Ferreira, P., Formigo, N. & Svendsen, J.C. (2017) “Reconciling agriculture and 
stream restoration in Europe: A review relating to the EU Water Framework Directive,” Science 
of The Total Environment, 596–597, pp. 378–395. doi:10.1016/j.scitotenv.2017.04.057. 

Florczyk, A.J., Melchiorri, M., Zeidler, J., Corbane, C., Schiavina, M., Freire, S., Sabo, F., 
Politis, P., Esch, T. & Pesaresi, M. (2020) “The Generalised Settlement Area: mapping the 
Earth surface in the vicinity of built-up areas,” International Journal of Digital Earth, 13(1), pp. 
45–60. doi:10.1080/17538947.2018.1550121. 

Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F. & Alcamo, J. (2013) “Domestic and 
industrial water uses of the past 60 years as a mirror of socio-economic development: A global 
simulation study,” Global Environmental Change, 23(1), pp. 144–156. 



 
References 

 

 101 

doi:10.1016/j.gloenvcha.2012.10.018. 

Flörke, M., Schneider, C. & McDonald, R.I. (2018) “Water competition between cities and 
agriculture driven by climate change and urban growth,” Nature Sustainability, 1(1), pp. 51–58. 
doi:10.1038/s41893-017-0006-8. 

Fotheringham, A.S. (1981) “Spatial Structure and Distance-Decay Parameters,” Annals of the 
Association of American Geographers, 71(3), pp. 425–436. doi:https://doi.org/10.1111/j.1467-
8306.1981.tb01367.x. 

Garrick, D., De Stefano, L., Yu, W., Jorgensen, I., O’Donnell, E., Turley, L., Aguilar-Barajas, 
I., Dai, X., de Souza Leão, R., Punjabi, B., Schreiner, B., Svensson, J. & Wight, C. (2019) “Rural 
water for thirsty cities: a systematic review of water reallocation from rural to urban regions,” 
Environmental Research Letters, 14(4), p. 043003. doi:10.1088/1748-9326/ab0db7. 

Georgakakos, A., Fleming, P., Dettinger, M., Peters-Lidard, C., Richmond, T. (T. C.., 
Reckhow, K., White, K. & Yates, D. (2014) Ch. 3: Water Resources. Climate Change Impacts in the 
United States: The Third National Climate Assessment. Washington, DC. doi:10.7930/J0G44N6T. 

Goel, R. (2018) “Distance-decay functions of travel to work trips in India,” Data in Brief, 21, 
pp. 50–58. doi:https://doi.org/10.1016/j.dib.2018.09.096. 

Goldmann, K., Schröter, K., Pena, R., Schöning, I., Schrumpf, M., Buscot, F., Polle, A. & 
Wubet, T. (2016) “Divergent habitat filtering of root and soil fungal communities in temperate 
beech forests,” Scientific Reports, 6(1), p. 31439. doi:10.1038/srep31439. 

Graf, L., Bach, H. & Tiede, D. (2020) “Semantic Segmentation of Sentinel-2 Imagery for 
Mapping Irrigation Center Pivots,” Remote Sensing, 12(23), p. 3937. doi:10.3390/rs12233937. 

Granzotti, R.V., Miranda, L.E., Agostinho, A.A. & Gomes, L.C. (2018) “Downstream impacts 
of dams: shifts in benthic invertivorous fish assemblages,” Aquatic Sciences, 80(3), p. 28. 
doi:10.1007/s00027-018-0579-y. 

Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., 
Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, 
Z., Lip, B., McClain, M.E., Meng, J., Mulligan, M., Nilsson, C., Olden, J.D., Opperman, J.J., 
Petry, P., Reidy Liermann, C., Sáenz, L., Salinas-Rodríguez, S., Schelle, P., Schmitt, R.J.P., 
Snider, J., Tan, F., Tockner, K., Valdujo, P.H., van Soesbergen, A. & Zarfl, C. (2019) “Mapping 
the world’s free-flowing rivers,” Nature, 569(7755), pp. 215–221. doi:10.1038/s41586-019-
1111-9. 

Grizzetti, B., Pistocchi, A., Liquete, C., Udias, A., Bouraoui, F. & van de Bund, W. (2017) 
“Human pressures and ecological status of European rivers,” Scientific Reports, 7(1), p. 205. 
doi:10.1038/s41598-017-00324-3. 

Haddeland, I., Skaugen, T. & Lettenmaier, D.P. (2006) “Anthropogenic impacts on continental 
surface water fluxes,” Geophysical Research Letters, 33(8). 
doi:https://doi.org/10.1029/2006GL026047. 



 
References 

 

 102 

Halás, M., Klapka, P. & Kladivo, P. (2014) “Distance-decay functions for daily travel-to-work 
flows,” Journal of Transport Geography, 35, pp. 107–119. 
doi:https://doi.org/10.1016/j.jtrangeo.2014.02.001. 

He, C., Liu, Z., Gou, S., Zhang, Q., Zhang, J. & Xu, L. (2019) “Detecting global urban 
expansion over the last three decades using a fully convolutional network,” Environmental 
Research Letters, 14(3), p. 034008. doi:10.1088/1748-9326/aaf936. 

Hoekstra, A.Y., Buurman, J. & van Ginkel, K.C.H. (2018) “Urban water security: A review,” 
Environmental Research Letters, 13(5), p. 053002. doi:10.1088/1748-9326/aaba52. 

Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X.-W., Wolter, K. & Cheng, L. (2016) 
“Characterizing Recent Trends in U.S. Heavy Precipitation,” Journal of Climate, 29(7), pp. 2313–
2332. doi:10.1175/JCLI-D-15-0441.1. 

Hong, Y., Tang, G., Ma, Y., Huang, Q., Han, Z., Zeng, Z., Yang, Y., Wang, C. & Guo, X. 
(2018) “Remote Sensing Precipitation: Sensors, Retrievals, Validations, and Applications,” in, 
pp. 1–23. doi:10.1007/978-3-662-47871-4_4-1. 

Hoogeveen, J., Faurès, J.-M., Peiser, L., Burke, J. & van de Giesen, N. (2015) “GlobWat – a 
global water balance model to assess water use in irrigated agriculture,” Hydrology and Earth 
System Sciences, 19(9), pp. 3829–3844. doi:10.5194/hess-19-3829-2015. 

Huang, C., Chen, Y., Zhang, S. & Wu, J. (2018) “Detecting, Extracting, and Monitoring 
Surface Water From Space Using Optical Sensors: A Review,” Reviews of Geophysics, 56(2), pp. 
333–360. doi:https://doi.org/10.1029/2018RG000598. 

Huang, S., Tang, L., Hupy, J.P., Wang, Y. & Shao, G. (2021) “A commentary review on the 
use of normalized difference vegetation index (NDVI) in the era of popular remote sensing,” 
Journal of Forestry Research, 32(1), pp. 1–6. doi:10.1007/s11676-020-01155-1. 

IPCC (2014) “Freshwater resources,” in Climate Change 2014: Impacts, Adaptation, and 
Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth 
Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge 
University Press., pp. 229–270. doi:doi:10.1017/CBO9781107415379.008. 

IPCC, Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., 
Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., 
Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R. & B., Z. (2021) Climate Change 2021: The 
Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the 
Intergovernmental Panel on Climate Change, Cambridge University Press. Available at: 
https://www.ipcc.ch/report/ar6/wg1/. 

Jenkins, W.A., Murray, B.C., Kramer, R.A. & Faulkner, S.P. (2010) “Valuing ecosystem 
services from wetlands restoration in the Mississippi Alluvial Valley,” Ecological Economics, 69(5), 
pp. 1051–1061. doi:https://doi.org/10.1016/j.ecolecon.2009.11.022. 

Karthikeyan, L., Chawla, I. & Mishra, A.K. (2020) “A review of remote sensing applications 



 
References 

 

 103 

in agriculture for food security: Crop growth and yield, irrigation, and crop losses,” Journal of 
Hydrology, 586, p. 124905. doi:10.1016/j.jhydrol.2020.124905. 

Kaushal, S., Gold, A. & Mayer, P. (2017) “Land Use, Climate, and Water Resources—Global 
Stages of Interaction,” Water, 9(10), p. 815. doi:10.3390/w9100815. 

Khatri, N. & Tyagi, S. (2015) “Influences of natural and anthropogenic factors on surface and 
groundwater quality in rural and urban areas,” Frontiers in Life Science, 8(1), pp. 23–39. 
doi:10.1080/21553769.2014.933716. 

Kifle Arsiso, B., Mengistu Tsidu, G., Stoffberg, G.H. & Tadesse, T. (2017) “Climate change 
and population growth impacts on surface water supply and demand of Addis Ababa, 
Ethiopia,” Climate Risk Management, 18, pp. 21–33. doi:10.1016/j.crm.2017.08.004. 

Konapala, G., Mishra, A.K., Wada, Y. & Mann, M.E. (2020) “Climate change will affect global 
water availability through compounding changes in seasonal precipitation and evaporation,” 
Nature Communications, 11(1), p. 3044. doi:10.1038/s41467-020-16757-w. 

Kummu, M., de Moel, H., Ward, P.J. & Varis, O. (2011) “How Close Do We Live to Water? 
A Global Analysis of Population Distance to Freshwater Bodies,” PLoS ONE. Edited by M. 
Perc, 6(6), p. e20578. doi:10.1371/journal.pone.0020578. 

Kummu, M., Guillaume, J.H.A., de Moel, H., Eisner, S., Flörke, M., Porkka, M., Siebert, S., 
Veldkamp, T.I.E. & Ward, P.J. (2016) “The world’s road to water scarcity: shortage and stress 
in the 20th century and pathways towards sustainability,” Scientific Reports, 6(1), p. 38495. 
doi:10.1038/srep38495. 

Kundzewicz, Z.W. (2008) “Climate change impacts on the hydrological cycle,” Ecohydrology & 
Hydrobiology, 8(2), pp. 195–203. doi:https://doi.org/10.2478/v10104-009-0015-y. 

Levizzani, V. & Cattani, E. (2019) “Satellite Remote Sensing of Precipitation and the 
Terrestrial Water Cycle in a Changing Climate,” Remote Sensing, 11(19), p. 2301. 
doi:10.3390/rs11192301. 

Li, C., Sun, G., Caldwell, P. V, Cohen, E., Fang, Y., Zhang, Y., Oudin, L., Sanchez, G.M. & 
Meentemeyer, R.K. (2020) “Impacts of Urbanization on Watershed Water Balances Across 
the Conterminous United States,” Water Resources Research, 56(7), p. e2019WR026574. 
doi:https://doi.org/10.1029/2019WR026574. 

Li, L. & Zha, Y. (2019) “Estimating monthly average temperature by remote sensing in China,” 
Advances in Space Research, 63(8), pp. 2345–2357. doi:10.1016/j.asr.2018.12.039. 

Li, Z., Wang, K., Zhou, C. & Wang, L. (2016) “Modelling the true monthly mean temperature 
from continuous measurements over global land,” International Journal of Climatology, 36(4), pp. 
2103–2110. doi:10.1002/joc.4445. 

Liu, J., Yang, H., Gosling, S.N., Kummu, M., Flörke, M., Pfister, S., Hanasaki, N., Wada, Y., 
Zhang, X., Zheng, C., Alcamo, J. & Oki, T. (2017) “Water scarcity assessments in the past, 
present, and future,” Earth’s Future, 5(6), pp. 545–559. doi:10.1002/2016EF000518. 



 
References 

 

 104 

Liu, X., Huang, Y., Xu, X., Li, X.X., Li, X.X., Ciais, P., Lin, P., Gong, K., Ziegler, A.D., Chen, 
A., Gong, P., Chen, J., Hu, G., Chen, Y., Wang, S., Wu, Q., Huang, K., Estes, L. & Zeng, Z. 
(2020) “High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015,” 
Nature Sustainability, 3(7), pp. 564–570. doi:10.1038/s41893-020-0521-x. 

Liyanage, C.P. & Yamada, K. (2017) “Impact of Population Growth on the Water Quality of 
Natural Water Bodies,” Sustainability . doi:10.3390/su9081405. 

Lund, J., Medellin-Azuara, J., Durand, J. & Stone, K. (2018) “Lessons from California’s 2012–
2016 Drought,” Journal of Water Resources Planning and Management, 144(10), p. 04018067. 
doi:10.1061/(ASCE)WR.1943-5452.0000984. 

Lyons, W.B. (2014) “Water and urbanization,” Environmental Research Letters, 9(11), p. 111002. 
doi:10.1088/1748-9326/9/11/111002. 

MacDonald, G.M. (2010) “Water, climate change, and sustainability in the southwest,” 
Proceedings of the National Academy of Sciences, 107(50), pp. 21256–21262. 
doi:10.1073/pnas.0909651107. 

Mancosu, N., Snyder, R.L., Kyriakakis, G. & Spano, D. (2015) “Water Scarcity and Future 
Challenges for Food Production,” Water . doi:10.3390/w7030975. 

Marconcini, M., Metz-Marconcini, A., Üreyen, S., Palacios-Lopez, D., Hanke, W., Bachofer, 
F., Zeidler, J., Esch, T., Gorelick, N., Kakarla, A., Paganini, M. & Strano, E. (2020) “Outlining 
where humans live, the World Settlement Footprint 2015,” Scientific Data, 7(1), p. 242. 
doi:10.1038/s41597-020-00580-5. 

Mård, J., Di Baldassarre, G. & Mazzoleni, M. (2018) “Nighttime light data reveal how flood 
protection shapes human proximity to rivers,” Science Advances, 4(8). 
doi:10.1126/sciadv.aar5779. 

Martínez, L.M. & Viegas, J.M. (2013) “A new approach to modelling distance-decay functions 
for accessibility assessment in transport studies,” Journal of Transport Geography, 26, pp. 87–96. 
doi:https://doi.org/10.1016/j.jtrangeo.2012.08.018. 

McDonald, R.I., Douglas, I., Revenga, C., Hale, R., Grimm, N., Grönwall, J. & Fekete, B. 
(2011a) “Global Urban Growth and the Geography of Water Availability, Quality, and 
Delivery,” AMBIO, 40(5), pp. 437–446. doi:10.1007/s13280-011-0152-6. 

McDonald, R.I., Douglas, I., Grimm, N., Hale, R., Revenga, C., Gronwall, J. & Fekete, B. 
(2011b) “Implications of fast urban growth for freshwater provision,” Ambio, 40, pp. 437–447. 

McDonald, R.I., Green, P., Balk, D., Fekete, B.M., Revenga, C., Todd, M. & Montgomery, M. 
(2011c) “Urban growth, climate change, and freshwater availability,” Proceedings of the National 
Academy of Sciences, 108(15), pp. 6312–6317. doi:10.1073/pnas.1011615108. 

McDonald, R.I., Weber, K., Padowski, J., Flörke, M., Schneider, C., Green, P.A., Gleeson, T., 
Eckman, S., Lehner, B., Balk, D., Boucher, T., Grill, G. & Montgomery, M. (2014) “Water on 
an urban planet: Urbanization and the reach of urban water infrastructure,” Global 



 
References 

 

 105 

Environmental Change, 27, pp. 96–105. doi:https://doi.org/10.1016/j.gloenvcha.2014.04.022. 

McGrane, S.J. (2016) “Impacts of urbanisation on hydrological and water quality dynamics, 
and urban water management: a review,” Hydrological Sciences Journal, 61(13), pp. 2295–2311. 
doi:10.1080/02626667.2015.1128084. 

McKinnon, K.A. & Deser, C. (2021) “The Inherent Uncertainty of Precipitation Variability, 
Trends, and Extremes due to Internal Variability, with Implications for Western U.S. Water 
Resources,” Journal of Climate, 34(24), pp. 9605–9622. doi:10.1175/JCLI-D-21-0251.1. 

Mekonnen, M.M. & Hoekstra, A.Y. (2016) “Four billion people facing severe water scarcity,” 
Science Advances, 2(2). doi:10.1126/sciadv.1500323. 

Melchiorri, M., Florczyk, A., Freire, S., Schiavina, M., Pesaresi, M. & Kemper, T. (2018) 
“Unveiling 25 Years of Planetary Urbanization with Remote Sensing: Perspectives from the 
Global Human Settlement Layer,” Remote Sensing, 10(5), p. 768. doi:10.3390/rs10050768. 

Melchiorri, M., Pesaresi, M., Florczyk, A., Corbane, C. & Kemper, T. (2019) “Principles and 
Applications of the Global Human Settlement Layer as Baseline for the Land Use Efficiency 
Indicator—SDG 11.3.1,” ISPRS International Journal of Geo-Information, 8(2), p. 96. 
doi:10.3390/ijgi8020096. 

Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., 
McIntyre, A., Tan, P., Curnow, S. & Ip, A. (2016) “Water observations from space: Mapping 
surface water from 25 years of Landsat imagery across Australia,” Remote Sensing of Environment, 
174, pp. 341–352. doi:10.1016/j.rse.2015.11.003. 

Nair, S., Johnson, J. & Wang, C. (2013) “Efficiency of Irrigation Water Use: A Review from 
the Perspectives of Multiple Disciplines,” Agronomy Journal, 105(2), pp. 351–363. 
doi:10.2134/agronj2012.0421. 

Nie, W., Zaitchik, B.F., Rodell, M., Kumar, S. V., Arsenault, K.R. & Badr, H.S. (2021) 
“Irrigation Water Demand Sensitivity to Climate Variability Across the Contiguous United 
States,” Water Resources Research, 57(3). doi:10.1029/2020WR027738. 

O’Driscoll, M., Clinton, S., Jefferson, A., Manda, A. & McMillan, S. (2010) “Urbanization 
Effects on Watershed Hydrology and In-Stream Processes in the Southern United States,” 
Water . doi:10.3390/w2030605. 

Okello, C., Tomasello, B., Greggio, N., Wambiji, N. & Antonellini, M. (2015) “Impact of 
Population Growth and Climate Change on the Freshwater Resources of Lamu Island, 
Kenya,” Water, 7(12), pp. 1264–1290. doi:10.3390/w7031264. 

Oki, T. & Kanae, S. (2006) “Global Hydrological Cycles and World Water Resources,” Science, 
313(5790), pp. 1068–1072. doi:10.1126/science.1128845. 

Ozdogan, M., Yang, Y., Allez, G. & Cervantes, C. (2010) “Remote Sensing of Irrigated 
Agriculture: Opportunities and Challenges,” Remote Sensing, 2(9), pp. 2274–2304. 
doi:10.3390/rs2092274. 



 
References 

 

 106 

Padowski, J.C. & Jawitz, J.W. (2012) “Water availability and vulnerability of 225 large cities in 
the United States,” Water Resources Research, 48(12). 
doi:https://doi.org/10.1029/2012WR012335. 

Padowski, J.C. & Gorelick, S.M. (2014) “Global analysis of urban surface water supply 
vulnerability,” Environmental Research Letters, 9(10), p. 104004. doi:10.1088/1748-
9326/9/10/104004. 

Pageot, Y., Baup, F., Inglada, J., Baghdadi, N. & Demarez, V. (2020) “Detection of Irrigated 
and Rainfed Crops in Temperate Areas Using Sentinel-1 and Sentinel-2 Time Series,” Remote 
Sensing, 12(18), p. 3044. doi:10.3390/rs12183044. 

Paiva, A.C. da E., Nascimento, N., Rodriguez, D.A., Tomasella, J., Carriello, F. & Rezende, 
F.S. (2020) “Urban expansion and its impact on water security: The case of the Paraíba do Sul 
River Basin, São Paulo, Brazil,” Science of The Total Environment, 720, p. 137509. 
doi:https://doi.org/10.1016/j.scitotenv.2020.137509. 

Palazzoli, I., Montanari, A. & Ceola, S. (2021) “Surface Water Loss map and Urbanization 
map.” Zenodo. doi:10.5281/zenodo.4472831. 

Palazzoli, I., Montanari, A. & Ceola, S. (2022) “Influence of urban areas on surface water loss 
in the contiguous United States,” AGU Advances, (3), p. e2021AV000519, in press. 

Paterson, W., Rushforth, R., Ruddell, B., Konar, M., Ahams, I., Gironás, J., Mijic, A. & Mejia, 
A. (2015) “Water Footprint of Cities: A Review and Suggestions for Future Research,” 
Sustainability, 7(7), pp. 8461–8490. doi:10.3390/su7078461. 

Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A.S. (2016) “High-resolution mapping of 
global surface water and its long-term changes,” Nature, 540(7633), pp. 418–422. 
doi:10.1038/nature20584. 

Pendergrass, A.G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B.M. (2017) “Precipitation 
variability increases in a warmer climate,” Scientific Reports, 7(1), p. 17966. doi:10.1038/s41598-
017-17966-y. 

Pervez, M.S. & Brown, J.F. (2010) “Mapping Irrigated Lands at 250-m Scale by Merging 
MODIS Data and National Agricultural Statistics,” Remote Sensing, 2(10), pp. 2388–2412. 
doi:10.3390/rs2102388. 

Petpongpan, C., Ekkawatpanit, C. & Kositgittiwong, D. (2020) “Climate Change Impact on 
Surface Water and Groundwater Recharge in Northern Thailand,” Water . 
doi:10.3390/w12041029. 

Pimentel, D., Houser, J., Preiss, E., White, O., Fang, H., Mesnick, L., Barsky, T., Tariche, S., 
Schreck, J. & Alpert, S. (1997) “Water Resources: Agriculture, the Environment, and Society,” 
BioScience, 47(2), pp. 97–106. doi:10.2307/1313020. 

Poff, N.L., Allan, J.D., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D., Sparks, R.E. & 
Stromberg, J.C. (1997) “The Natural Flow Regime,” BioScience, 47(11), pp. 769–784. 



 
References 

 

 107 

doi:10.2307/1313099. 

Prakash, S. & Norouzi, H. (2020) “Land surface temperature variability across India: a remote 
sensing satellite perspective,” Theoretical and Applied Climatology, 139(1–2), pp. 773–784. 
doi:10.1007/s00704-019-03010-8. 

Regan, P. (2012) “Call to stewardship,” in. Available at: 
https://www.researchgate.net/publication/286384014_CALL_TO_STEWARDSHIP. 

Requia, W.J., Roig, H.L., Adams, M.D., Zanobetti, A. & Koutrakis, P. (2016) “Mapping 
distance-decay of cardiorespiratory disease risk related to neighborhood environments,” 
Environmental Research, 151, pp. 203–215. doi:https://doi.org/10.1016/j.envres.2016.07.038. 

Richter, B.D., Abell, D., Bacha, E., Brauman, K., Calos, S., Cohn, A., Disla, C., O’Brien, S.F., 
Hodges, D., Kaiser, S., Loughran, M., Mestre, C., Reardon, M. & Siegfried, E. (2013) “Tapped 
out: how can cities secure their water future?,” Water Policy, 15(3), pp. 335–363. 
doi:10.2166/wp.2013.105. 

Rodell, M., Famiglietti, J.S., Wiese, D.N., Reager, J.T., Beaudoing, H.K., Landerer, F.W. & Lo, 
M.-H. (2018) “Emerging trends in global freshwater availability,” Nature, 557(7707), pp. 651–
659. doi:10.1038/s41586-018-0123-1. 

Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J. & Schaphoff, S. (2008) “Agricultural 
green and blue water consumption and its influence on the global water system,” Water 
Resources Research, 44(9). doi:10.1029/2007WR006331. 

Schaffer-Smith, D., Swenson, J.J., Barbaree, B. & Reiter, M.E. (2017) “Three decades of 
Landsat-derived spring surface water dynamics in an agricultural wetland mosaic; Implications 
for migratory shorebirds,” Remote Sensing of Environment, 193, pp. 180–192. 
doi:10.1016/j.rse.2017.02.016. 

Seaber, P.R., Kapinos, F.P. & Knapp, G.L. (1987) Hydrologic unit maps, Water Supply Paper. 
doi:10.3133/wsp2294. 

Seydi, S.T., Hasanlou, M. & Amani, M. (2020) “A New End-to-End Multi-Dimensional CNN 
Framework for Land Cover/Land Use Change Detection in Multi-Source Remote Sensing 
Datasets,” Remote Sensing, 12(12), p. 2010. doi:10.3390/rs12122010. 

Sheffield, J., Wood, E.F., Pan, M., Beck, H., Coccia, G., Serrat-Capdevila, A. & Verbist, K. 
(2018) “Satellite Remote Sensing for Water Resources Management: Potential for Supporting 
Sustainable Development in Data-Poor Regions,” Water Resources Research, 54(12), pp. 9724–
9758. doi:10.1029/2017WR022437. 

Shen, H., Jiang, Y., Li, T., Cheng, Q., Zeng, C. & Zhang, L. (2020) “Deep learning-based air 
temperature mapping by fusing remote sensing, station, simulation and socioeconomic data,” 
Remote Sensing of Environment, 240, p. 111692. doi:10.1016/j.rse.2020.111692. 

Shiklomanov, I. (1993) World fresh water resources, Water in crisis a guide to the world’s fresh water 



 
References 

 

 108 

resources. Edited by Peter H. Gleick. Oxford University Press. Available at: 
https://www.quarks.de/wp-
content/uploads/Water_in_Crisis_Chapter_2_Oxford_Univers.pdf. 

Smedema, L.K., Abdel-Dayem, S. & Ochs, W.J. (2000) “Drainage and Agricultural 
Development,” Irrigation and Drainage Systems, 14(3), pp. 223–235. 
doi:10.1023/A:1026570823692. 

Starr, G. & Levison, J. (2014) “Identification of Crop Groundwater and Surface Water 
Consumption Using Blue and Green Virtual Water Contents at a Subwatershed Scale,” 
Environmental Processes, 1(4), pp. 497–515. doi:10.1007/s40710-014-0040-8. 

Sun, G. & Caldwell, P. (2015) “Impacts of Urbanization on Stream Water Quantity and Quality 
in the United States,” Water Resources IMPACT, 17(1), pp. 17–20. Available at: 
https://www.jstor.org/stable/wateresoimpa.17.1.0017. 

Sun, X. & Lall, U. (2015) “Spatially coherent trends of annual maximum daily precipitation in 
the United States,” Geophysical Research Letters, 42(22), pp. 9781–9789. 
doi:https://doi.org/10.1002/2015GL066483. 

Taylor, P.J. (1971) “Distance Transformation and Distance Decay Functions,” Geographical 
Analysis, 3(3), pp. 221–238. doi:https://doi.org/10.1111/j.1538-4632.1971.tb00364.x. 

Thornton, M.M., Shrestha, R., Wei, Y., Thornton, P.E., Kao, S. & Wilson, B.E. (2020a) 
“Daymet: Annual Climate Summaries on a 1-km Grid for North America, Version 4.” ORNL 
Distributed Active Archive Center. doi:10.3334/ORNLDAAC/1852. 

Thornton, M.M., Shrestha, R., Wei, Y., Thornton, P.E., Kao, S. & Wilson, B.E. (2020b) 
“Daymet: Monthly Climate Summaries on a 1-km Grid for North America, Version 4.” ORNL 
Distributed Active Archive Center. doi:10.3334/ORNLDAAC/1855. 

Tidwell, V., Moreland, B., Shaneyfelt, C. & Kobos, P. (2017) “Mapping water availability, cost 
and projected consumptive use in the Eastern United States with comparisons to the West,” 
Environmental Research Letters, 13. doi:10.1088/1748-9326/aa9907. 

Tobler, W.R. (1970) “A Computer Movie Simulating Urban Growth in the Detroit Region,” 
Economic Geography, 46, pp. 234–240. doi:10.2307/143141. 

Tulbure, M.G., Broich, M., Stehman, S. V. & Kommareddy, A. (2016) “Surface water extent 
dynamics from three decades of seasonally continuous Landsat time series at subcontinental 
scale in a semi-arid region,” Remote Sensing of Environment, 178, pp. 142–157. 
doi:10.1016/j.rse.2016.02.034. 

UNESCO, U.-W. (2020) United Nations World Water Development Report 2020: Water and Climate 
Change. Paris. 

United Nations (2019) World Urbanization Prospects: The 2018 Revision. New York: UN. 
doi:10.18356/b9e995fe-en. 



 
References 

 

 109 

US Census (2021) Urbanized Areas and Urban Clusters: 2010. Available at: 
https://www.census.gov/library/visualizations/2010/geo/ua2010_uas_and_ucs_map.html. 

Van Loon, A.F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., Gleeson, 
T., Van Dijk, A.I.J.M., Tallaksen, L.M., Hannaford, J., Uijlenhoet, R., Teuling, A.J., Hannah, 
D.M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T. & Van Lanen, H.A.J. (2016) 
“Drought in a human-modified world: reframing drought definitions, understanding, and 
analysis approaches,” Hydrology and Earth System Sciences, 20(9), pp. 3631–3650. 
doi:10.5194/hess-20-3631-2016. 

Varouchakis, E.A., Kamińska-Chuchmała, A., Kowalik, G., Spanoudaki, K. & Graña, M. 
(2021) “Combining Geostatistics and Remote Sensing Data to Improve Spatiotemporal 
Analysis of Precipitation,” Sensors, 21(9), p. 3132. doi:10.3390/s21093132. 

Venter, Z.S., Brousse, O., Esau, I. & Meier, F. (2020) “Hyperlocal mapping of urban air 
temperature using remote sensing and crowdsourced weather data,” Remote Sensing of 
Environment, 242, p. 111791. doi:10.1016/j.rse.2020.111791. 

Vörösmarty, C., Lettenmaier, D., Leveque, C., Meybeck, M., Pahl-Wostl, C., Alcamo, J., 
Cosgrove, W., Grassl, H., Hoff, H., Kabat, P., Lansigan, F., Lawford, R. & Naiman, R. (2004) 
“Humans transforming the global water system,” Eos, Transactions American Geophysical Union, 
85(48), pp. 509–514. doi:10.1029/2004EO480001. 

Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., 
Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R. & Davies, P.M. (2010) “Global threats 
to human water security and river biodiversity,” Nature, 467(7315), pp. 555–561. 
doi:10.1038/nature09440. 

Vose, R.S., Easterling, D.R., Kunkel, K.E., LeGrande, A.N. & Wehner, M.F. (2017) Ch. 6: 
Temperature Changes in the United States. Climate Science Special Report: Fourth National Climate 
Assessment, Volume I. Washington, DC. doi:10.7930/J0N29V45. 

Wada, Y., van Beek, L.P.H. & Bierkens, M.F.P. (2012) “Nonsustainable groundwater 
sustaining irrigation: A global assessment,” Water Resources Research, 48(6). 
doi:https://doi.org/10.1029/2011WR010562. 

Wada, Y., van Beek, L.P.H., Wanders, N. & Bierkens, M.F.P. (2013) “Human water 
consumption intensifies hydrological drought worldwide,” Environmental Research Letters, 8(3), 
p. 034036. doi:10.1088/1748-9326/8/3/034036. 

Wada, Y. & Bierkens, M.F.P. (2014) “Sustainability of global water use: past reconstruction 
and future projections,” Environmental Research Letters, 9(10), p. 104003. doi:10.1088/1748-
9326/9/10/104003. 

Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., van 
Vliet, M.T.H., Yillia, P., Ringler, C., Burek, P. & Wiberg, D. (2016) “Modeling global water use 
for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches,” 
Geoscientific Model Development, 9(1), pp. 175–222. doi:10.5194/gmd-9-175-2016. 



 
References 

 

 110 

Wada, Y., Bierkens, M.F.P., de Roo, A., Dirmeyer, P.A., Famiglietti, J.S., Hanasaki, N., Konar, 
M., Liu, J., Müller Schmied, H., Oki, T., Pokhrel, Y., Sivapalan, M., Troy, T.J., van Dijk, 
A.I.J.M., van Emmerik, T., Van Huijgevoort, M.H.J., Van Lanen, H.A.J., Vörösmarty, C.J., 
Wanders, N. & Wheater, H. (2017) “Human–water interface in hydrological modelling: current 
status and future directions,” Hydrology and Earth System Sciences, 21(8), pp. 4169–4193. 
doi:10.5194/hess-21-4169-2017. 

Wanders, N., Wada, Y. & Van Lanen, H.A.J. (2015) “Global hydrological droughts in the 21st 
century under a changing hydrological regime,” Earth System Dynamics, 6(1), pp. 1–15. 
doi:10.5194/esd-6-1-2015. 

Wanders, N. & Wada, Y. (2015) “Human and climate impacts on the 21st century hydrological 
drought,” Journal of Hydrology, 526, pp. 208–220. doi:10.1016/j.jhydrol.2014.10.047. 

Wang, C., Jia, M., Chen, N. & Wang, W. (2018) “Long-Term Surface Water Dynamics Analysis 
Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle 
Yangtze River Basin,” Remote Sensing . doi:10.3390/rs10101635. 

Wang, X. & Xie, H. (2018) “A Review on Applications of Remote Sensing and Geographic 
Information Systems (GIS) in Water Resources and Flood Risk Management,” Water, 10(5), 
p. 608. doi:10.3390/w10050608. 

Wang, X., Xiao, X., Zou, Z., Dong, J., Qin, Y., Doughty, R.B., Menarguez, M.A., Chen, B., 
Wang, J., Ye, H., Ma, J., Zhong, Q., Zhao, B. & Li, B. (2020) “Gainers and losers of surface 
and terrestrial water resources in China during 1989–2016,” Nature Communications, 11(1), p. 
3471. doi:10.1038/s41467-020-17103-w. 

World Bank (2021) Water in Agriculture : Towards Sustainable Agriculture, Washington, D.C. : World 
Bank Group. Washington, D.C. Available at: 
http://documents1.worldbank.org/curated/en/875921614166983369/pdf/Water-in-
Agriculture-Towards-Sustainable-
Agriculture.pdf%0Ahttp://documents.worldbank.org/curated/en/875921614166983369/W
ater-in-Agriculture-Towards-Sustainable-Agriculture. 

WWAP (2015) The United Nations World Water Development Report 2015: Water for a Sustainable 
World. Paris. 

Xiong, L., Deng, R., Li, J., Liu, X., Qin, Y., Liang, Y. & Liu, Y. (2018) “Subpixel Surface Water 
Extraction (SSWE) Using Landsat 8 OLI Data,” Water, 10(5). doi:10.3390/w10050653. 

Xu, L., Chen, N., Moradkhani, H., Zhang, X. & Hu, C. (2020) “Improving Global Monthly 
and Daily Precipitation Estimation by Fusing Gauge Observations, Remote Sensing, and 
Reanalysis Data Sets,” Water Resources Research, 56(3). doi:10.1029/2019WR026444. 

Xu, Y. & Beekman, H.E. (2019) “Review: Groundwater recharge estimation in arid and semi-
arid southern Africa,” Hydrogeology Journal, 27(3), pp. 929–943. doi:10.1007/s10040-018-1898-
8. 



 
References 

 

 111 

Yamazaki, D. & Trigg, M.A. (2016) “The dynamics of Earth’s surface water,” Nature, 
540(7633), pp. 348–349. doi:10.1038/nature21100. 

Yigzaw, W. & Hossain, F. (2016) “Water sustainability of large cities in the United States from 
the perspectives of population increase, anthropogenic activities, and climate change,” Earth’s 
Future, 4(12), pp. 603–617. doi:https://doi.org/10.1002/2016EF000393. 

Yuan, Y., Lin, L., Chen, J., Sahli, H., Chen, Y., Wang, C. & Wu, B. (2019) “A New Framework 
for Modelling and Monitoring the Conversion of Cultivated Land to Built-up Land Based on 
a Hierarchical Hidden Semi-Markov Model Using Satellite Image Time Series,” Remote Sensing, 
11(2), p. 210. doi:10.3390/rs11020210. 

Zhang, C. & Long, D. (2021) “Estimating Spatially Explicit Irrigation Water Use Based on 
Remotely Sensed Evapotranspiration and Modeled Root Zone Soil Moisture,” Water Resources 
Research, 57(12). doi:10.1029/2021WR031382. 

Zhang, T. (2011) “Distance-decay patterns of nutrient loading at watershed scale: Regression 
modeling with a special spatial aggregation strategy,” Journal of Hydrology, 402(3), pp. 239–249. 
doi:https://doi.org/10.1016/j.jhydrol.2011.03.017. 

Zhang, X., Zhou, J., Liang, S. & Wang, D. (2021) “A practical reanalysis data and thermal 
infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather 
land surface temperature,” Remote Sensing of Environment, 260, p. 112437. 
doi:10.1016/j.rse.2021.112437. 

Zhou, D., Zhao, S., Zhang, L., Sun, G. & Liu, Y. (2015) “The footprint of urban heat island 
effect in China,” Scientific Reports, 5(1), p. 11160. doi:10.1038/srep11160. 

Zhou, X., Guan∗∗, H., Xie, H. & Wilson, J.L. (2009) “Analysis and optimization of NDVI 
definitions and areal fraction models in remote sensing of vegetation,” International Journal of 
Remote Sensing, 30(3), pp. 721–751. doi:10.1080/01431160802392620. 

Zhuang, X.W., Li, Y.P., Nie, S., Fan, Y.R. & Huang, G.H. (2018) “Analyzing climate change 
impacts on water resources under uncertainty using an integrated simulation-optimization 
approach,” Journal of Hydrology, 556, pp. 523–538. 
doi:https://doi.org/10.1016/j.jhydrol.2017.11.016. 

Zohaib, M. & Choi, M. (2020) “Satellite-based global-scale irrigation water use and its 
contemporary trends,” Science of The Total Environment, 714, p. 136719. 
doi:10.1016/j.scitotenv.2020.136719. 

 



 

 112 



 

 113 

Appendix A 

This appendix contains all figures related to the study area, data, and methods presented in 

Chapter 3, 4, and 5. 

 
Figure A1 Sub-types (22 classes) of climatic regions defined by the Köppen-Geiger climate classification system found within 

the CONUS. 

 
Figure A2 Total extent of surface water gain, loss, and net variation (gain – loss) across the CONUS as a function of the 

adopted threshold of change in the frequency of water observation. 



 
Appendix A 

 

 114 

 
Figure A3 Variability of the water occurrence averaged over the river basins of the CONUS for each class of water transition 

included in the Surface Water Loss map. 

 
Figure A4 Spatial distribution of the average water occurrence for each class of water transition included in the Surface Water 

Loss map across the river basins of the CONUS. 

Lost permanent Lost seasonal

Ephemeral permanent Ephemeral seasonal
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Figure A5 Spatial distribution of the representativeness of each class of water transition included in the Surface Water Loss 

map across the river basins of the CONUS. 

 
Figure A6 Spatial distribution of surface water loss clusters across the river basins of the CONUS. a Total number of surface 

water loss clusters. b Spatial extent of the largest surface water loss clusters. 
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Figure A7 Spatial distribution of the extent of the largest urban clusters across river basins of the CONUS. 

 
Figure A8 Comparison between the frequency of occurrence of surface water loss across distance classes based on 1, 3, and 

5 km wide distance bins. a. Comparison between the frequency of occurrence of surface water loss based on 1 and 3 km wide 

distance bins in the Upper Colorado-Dolores Basin (ID 1403), belonging to the Upper Colorado Region (water resource 

region ID 14). The increase of the distance bin width from 1 to 3 km allows to remove data noise. The axes relative to the 

yellow triangles are the top and right axes. b. Comparison between the frequency of occurrence of surface water loss based 

on 3 and 5 km distance bins in the Boeuf-Tensas Basin (ID 805) belonging to the Lower Mississippi Region (water resource 

region ID 8). The increase of the distance bin width from 3 to 5 km halves the number of data points. The x axis relative to 

the red triangles is the top axis. 

ba



 

 117 

Appendix B 

This appendix contains all figures and the table supporting the discussion of the results 

presented in Chapter 5. 

 

Figure B1 Spatial variability of ab and bb. parameters of the distance-decay model based on a 1 km wide distance bin and 

applied at the river basin level. a. Spatial variability of ab. b. Spatial variability of bb. 
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Figure B2 Spatial variability of ab and bb parameters of the distance-decay model based on a 5 km wide distance bin and 

applied at the river basin level. River basins that are not fitted by the model using a 5 km wide distance bin are indicated in 

light grey. a. Spatial variability of ab. b. Spatial variability of bb. 
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Figure B3 Spatial variability of aWRR and bWRR parameters of the distance-decay model based on a 1 km wide distance bin 

and applied at the water resource region level. a. Spatial variability of aWRR. b. Spatial variability of bWRR. 
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Figure B4 Spatial variability of aWRR and bWRR parameters of the distance-decay model based on a 5 km wide distance bin 

and applied at the water resource region level. a. Spatial variability of aWRR. b. Spatial variability of bWRR. 
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Table B1 Main physical and climatic properties and model fit results, based on a 3 km wide distance bin, for the 18 water 

regions and 204 river basins across the CONUS. ax and bx are the distance-decay model parameters; r is the Pearson’s 

correlation coefficient; ⟨dx⟩ and ⟨d̂x⟩ are the observed and theoretical average distance, respectively. Water resource regions 

name and ID are indicated in bold, while rows corresponding to the 13 basins whose data were fitted with a distance bin of 

1 km are highlighted in light grey. 

Water 
resource 
region/river 
basin name 
and ID 

Area 
[km2] 

Average 
elevation 
± std dev 

[m] 

Climatic 
regions and 

coverage 
percentage 

𝛼x 

[-] 
𝛽x 

[km-1] r ⟨dx⟩ 
[km] 

⟨d̂x⟩ 
[km] 

New 
England 
Region (1) 

156847 249 ± 190 Continental 
(100%) 0.792 0.768 0.999 3.042 1.302 

St. John (101) 18879 298 ± 94 Continental 
(100%) 0.184 0.066 0.862 13.337 13.136 

Penobscot 
(102) 22307 228 ± 152 Continental 

(100%) 0.232 0.097 0.877 11.955 9.503 

Kennebec 
(103) 15260 302 ± 202 Continental 

(100%) 0.572 0.380 0.989 4.644 2.632 

Androscoggin 
(104) 9071 400 ± 241 Continental 

(100%) 0.690 0.439 0.999 3.073 2.278 

Maine Coastal 
(105) 13835 77 ± 52 Continental 

(100%) 0.585 0.327 0.998 3.983 3.054 

Saco (106) 10835 175 ± 185 Continental 
(100%) 0.965 1.122 1.000 0.784 0.891 

Merrimack 
(107) 12898 241 ± 185 Continental 

(100%) 0.947 1.021 1.000 0.871 0.979 

Connecticut 
(108) 28943 358 ± 195 Continental 

(100%) 0.895 0.774 1.000 1.121 1.291 
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Massachusetts
-Rhode Island 
Coastal. (109) 

11159 54 ± 51 

Continental 
(97.25%), 

Temperate 
(2.75%) 

0.968 1.431 1.000 0.617 0.699 

Connecticut 
Coastal (110) 12130 189 ± 129 Continental 

(100%) 0.985 1.404 1.000 0.517 0.712 

St. Francois 
(111) 1531 420 ± 117 Continental 

(100%) 0.697 0.386 0.996 2.413 2.137 

Mid Atlantic 
Region (2) 273049 284 ± 227 

Temperate 
(82.73%), 

Continental 
(17.27%) 

0.890 0.754 1.000 1.273 1.326 

Richelieu 
(201) 19929 315 ± 220 Continental 

(100%) 0.877 0.715 1.000 1.437 1.397 

Upper 
Hudson (202) 34040 337 ± 211 Continental 

(100%) 0.851 0.800 0.999 1.661 1.251 

Lower 
Hudson-Long 
Island (203) 

11293 75 ± 88 Continental 
(100%) 0.982 1.337 1.000 0.355 0.747 

Delaware 
(204) 38260 217 ± 212 

Continental 
(79.82%), 

Temperate 
(20.18%) 

0.886 0.700 1.000 1.223 1.427 

Susquehanna 
(205) 71081 398 ± 155 Continental 

(100%) 0.937 0.968 1.000 0.940 1.033 

Upper 
Chesapeake 
(206) 

18228 43 ± 61 

Temperate 
(81.71%), 

Continental 
(18.29%) 

0.834 0.586 1.000 1.591 1.680 

Potomac 
(207) 37124 328 ± 254 

Continental 
(76.97%), 

Temperate 
(23.03%) 

0.939 0.931 1.000 0.858 1.074 
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Lower 
Chesapeake 
(208) 

43094 211 ± 248 

Temperate 
(82.73%), 

Continental 
(17.27%) 

0.881 0.756 1.000 1.521 1.324 

South 
Atlantic-Gulf 
Region (3) 

695951 110 ± 118 

Tropical 
(59.48%), 

Temperate 
(40.52%) 

0.512 0.295 0.994 5.407 3.391 

Chowan-
Roanoke 
(301) 

45324 141 ± 153 

Temperate 
(98.56%), 

Continental 
(1.44%) 

0.843 0.607 1.000 1.614 1.644 

Neuse-
Pamlico (302) 28656 48 ± 48 Temperate 

(100%) 0.759 0.534 0.999 2.162 1.870 

Cape Fear 
(303) 25012 85 ± 77 Temperate 

(100%) 0.955 1.032 1.000 0.851 0.969 

Pee Dee (304) 47969 131 ± 144 

Temperate 
(99.66%), 

Continental 
(0.34%) 

0.809 0.535 1.000 1.604 1.810 

Edisto-Santee 
(305) 59320 167 ± 166 

Temperate 
(99.55%), 

Continental 
(0.45%) 

0.730 0.416 1.000 2.033 2.351 

Ogeechee-
Savannah 
(306) 

43163 146 ± 156 

Temperate 
(99.98%), 

Continental 
(0.02%) 

0.733 0.436 1.000 2.103 2.247 

Altamaha-St. 
Marys (307) 52445 108 ± 79 Temperate 

(100%) 0.811 0.545 1.000 1.716 1.833 

St. Johns 
(308) 28940 21 ± 14 Temperate 

(100%) 0.816 0.547 1.000 1.579 1.794 

Southern 
Florida (309) 42136 12 ± 9 

Tropical 
(59.48%), 

Temperate 
(40.52%) 

0.255 0.093 0.996 8.992 10.140 
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Peace-Tampa 
Bay (310) 23205 26 ± 14 

Temperate 
(98.86%), 
Tropical 
(1.14%) 

0.865 0.668 1.000 1.515 1.493 

Suwannee 
(311) 34900 48 ± 29 Temperate 

(100%) 0.810 0.587 1.000 2.050 1.704 

Ochlockonee 
(312) 9264 55 ± 31 Temperate 

(100%) 0.743 0.457 0.999 2.251 2.175 

Apalachicola 
(313) 52371 155 ± 119 Temperate 

(100%) 0.809 0.540 1.000 1.741 1.850 

Choctawhatc
hee-Escambia 
(314) 

37226 74 ± 41 Temperate 
(100%) 0.861 0.642 1.000 1.508 1.555 

Alabama 
(315) 58808 203 ± 128 Temperate 

(100%) 0.826 0.605 1.000 1.623 1.650 

Mobile-
Tombigbee 
(316) 

55646 111 ± 67 Temperate 
(100%) 0.730 0.416 0.999 2.177 2.329 

Pascagoula 
(317) 29210 80 ± 41 Temperate 

(100%) 0.801 0.551 0.999 2.028 1.816 

Pearl (318) 22357 111 ± 39 Temperate 
(100%) 0.828 0.573 1.000 1.732 1.709 

Great Lakes 
Region (4) 461782 248 ± 109 Continental 

(100%) 0.750 0.559 0.998 2.501 1.789 

Western Lake 
Superior (401) 23904 400 ± 98 Continental 

(100%) 0.507 0.259 0.995 4.567 3.865 

Southern 
Lake 
Superior-Lake 
Superior (402) 

72536 208 ± 101 Continental 
(100%) 0.330 0.121 0.978 6.256 8.269 
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Northwestern 
Lake 
Michigan 
(403) 

48209 311 ± 99 Continental 
(100%) 0.756 0.559 0.999 2.553 1.789 

Southwestern 
Lake 
Michigan 
(404) 

5165 238 ± 44 Continental 
(100%) 0.928 2.646 1.000 0.259 0.377 

Southeastern 
Lake 
Michigan 
(405) 

33400 259 ± 34 Continental 
(100%) 0.768 1.446 1.000 0.667 0.689 

Northeastern 
Lake 
Michigan-
Lake 
Michigan 
(406) 

87484 209 ± 61 Continental 
(100%) 0.629 0.393 0.997 3.699 2.542 

Northwestern 
Lake Huron 
(407) 

18010 270 ± 70 Continental 
(100%) 0.648 0.340 1.000 2.730 2.879 

Southwestern 
Lake Huron-
Lake Huron 
(408) 

47215 205 ± 43 Continental 
(100%) 0.875 0.717 1.000 1.425 1.394 

St. Clair-
Detroit (409) 9715 240 ± 43 Continental 

(100%) 0.937 2.851 1.000 0.290 0.351 

Western Lake 
Erie (410) 30787 242 ± 38 Continental 

(100%) 0.848 1.859 1.000 0.449 0.532 

Southern 
Lake Erie 
(411) 

7752 289 ± 54 Continental 
(100%) 0.819 1.704 1.000 0.492 0.574 

Eastern Lake 
Erie-Lake 
Erie (412) 

20942 227 ± 103 Continental 
(100%) 0.952 1.001 1.000 0.871 0.999 
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Southwestern 
Lake Ontario 
(413) 

9293 336 ± 190 Continental 
(100%) 0.928 0.857 1.000 1.079 1.142 

Southeastern 
Lake Ontario 
(414) 

17732 248 ± 131 Continental 
(100%) 0.891 0.830 1.000 1.418 1.204 

Northeastern 
Lake Ontario-
Lake Ontario-
St. Lawrence 
(415) 

29639 262 ± 210 Continental 
(100%) 0.648 0.374 0.999 3.111 2.676 

Ohio Region 
(5) 422087 327 ± 182 

Temperate 
(98.78%), 

Continental 
(1.22%) 

0.897 0.746 1.000 1.462 1.341 

Allegheny 
(501) 30242 490 ± 104 Continental 

(100%) 0.918 0.903 1.000 1.270 1.106 

Monongahela 
(502) 19063 561 ± 235 Continental 

(100%) 0.878 0.725 1.000 1.220 1.379 

Upper Ohio 
(503) 34707 317 ± 61 Continental 

(100%) 0.985 1.413 1.000 0.606 0.708 

Muskingum 
(504) 20982 318 ± 43 Continental 

(100%) 0.692 1.264 0.999 0.906 0.788 

Kanawha 
(505) 31574 680 ± 256 

Continental 
(91.33%), 

Temperate 
(8.67%) 

0.792 0.519 1.000 1.811 1.923 

Scioto (506) 16873 284 ± 43 Continental 
(100%) 0.783 1.461 1.000 0.603 0.685 

Big Sandy-
Guyandotte 
(507) 

15540 439 ± 171 

Temperate 
(69.15%), 

Continental 
(30.85%) 

0.831 0.573 1.000 1.481 1.705 
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Great Miami 
(508) 13982 299 ± 42 Continental 

(100%) 0.922 2.517 1.000 0.316 0.397 

Middle Ohio 
(509) 23066 260 ± 47 

Continental 
(95.5%), 

Temperate 
(4.5%) 

0.984 1.368 1.000 0.560 0.731 

Kentucky-
Licking (510) 27669 307 ± 85 

Continental 
(51.02%), 

Temperate 
(48.98%) 

0.869 0.691 1.000 1.441 1.440 

Green (511) 23882 202 ± 56 Temperate 
(100%) 0.923 0.830 1.000 1.526 1.175 

Wabash (512) 85382 213 ± 51 

Continental 
(99.75%), 

Temperate 
(0.25%) 

0.896 0.732 1.000 1.555 1.356 

Cumberland 
(513) 46325 308 ± 146 

Temperate 
(98.78%), 

Continental 
(1.22%) 

0.887 0.719 1.000 1.411 1.389 

Lower Ohio 
(514) 32800 177 ± 54 

Temperate 
(59.82%), 

Continental 
(40.18%) 

0.861 0.649 1.000 1.660 1.467 

Tennessee 
Region (6) 105961 437 ± 293 Temperate 

(100%) 0.908 0.790 1.000 1.368 1.265 

Upper 
Tennessee 
(601) 

44776 649 ± 302 

Temperate 
(82.05%), 

Continental 
(17.95%) 

0.881 0.754 1.000 1.279 1.325 

Middle 
Tennessee-
Hiwassee 
(602) 

13447 451 ± 216 

Temperate 
(99.72%), 

Continental 
(0.28%) 

0.909 0.815 1.000 1.182 1.227 

Middle 
Tennessee-
Elk (603) 

26831 262 ± 91 Temperate 
(100%) 0.966 1.118 1.000 1.079 0.895 
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Lower 
Tennessee 
(604) 

20907 193 ± 59 Temperate 
(100%) 0.887 0.699 1.000 1.579 1.422 

Upper 
Mississippi 
Region (7) 

494707 295 ± 90 

Continental 
(85.95%), 

Temperate 
(14.05%) 

0.823 0.575 1.000 1.782 1.738 

Mississippi 
Headwaters 
(701) 

51994 378 ± 52 Continental 
(100%) 0.766 0.505 1.000 2.089 1.977 

Minnesota 
(702) 43892 351 ± 64 Continental 

(100%) 0.944 0.945 1.000 1.246 1.046 

St. Croix 
(703) 19932 333 ± 45 Continental 

(100%) 0.729 0.450 1.000 2.346 2.210 

Upper 
Mississippi-
Black-Root 
(704) 

27763 324 ± 54 Continental 
(100%) 0.950 1.017 1.000 1.303 0.983 

Chippewa 
(705) 24800 386 ± 74 Continental 

(100%) 0.530 0.235 0.996 3.622 4.026 

Upper 
Mississippi-
Maquoketa-
Plum (706) 

22358 302 ± 54 Continental 
(100%) 0.849 0.593 1.000 1.781 1.654 

Wisconsin 
(707) 30885 372 ± 86 Continental 

(100%) 0.754 0.470 1.000 2.163 2.116 

Upper 
Mississippi-
Iowa-Skunk-
Wapsipinicon 
(708) 

59459 279 ± 61 Continental 
(100%) 0.507 0.607 0.952 1.147 1.307 

Rock (709) 28414 262 ± 37 Continental 
(100%) 0.679 1.100 1.000 0.857 0.871 

Des Moines 
(710) 37394 340 ± 67 Continental 

(100%) 0.990 1.546 1.000 1.004 0.646 
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Upper 
Mississippi-
Salt (711) 

26020 215 ± 38 Continental 
(100%) 0.869 0.645 1.000 1.623 1.476 

Upper Illinois 
(712) 28407 218 ± 28 Continental 

(100%) 0.870 2.003 1.000 0.404 0.499 

Lower Illinois 
(713) 46392 198 ± 28 Continental 

(100%) 0.453 0.546 0.990 1.424 1.541 

Upper 
Mississippi-
Kaskaskia-
Meramec 
(714) 

46997 185 ± 69 

Continental 
(85.95%), 

Temperate 
(14.05%) 

0.692 0.362 0.997 2.373 2.706 

Lower 
Mississippi 
Region (8) 

259286 71 ± 60 Temperate 
(100%) 0.630 0.342 1.000 3.521 2.927 

Lower 
Mississippi-
Hatchie (801) 

25840 124 ± 28 Temperate 
(100%) 0.740 0.400 0.992 2.211 2.094 

Lower 
Mississippi-St. 
Francis (802) 

43346 89 ± 56 

Temperate 
(93%), 

Continental 
(7%) 

0.743 0.422 0.998 2.268 2.219 

Lower 
Mississippi-
Yazoo (803) 

36573 73 ± 39 Temperate 
(100%) 0.692 0.362 0.997 2.514 2.500 

Lower Red-
Ouachita 
(804) 

53291 93 ± 80 Temperate 
(100%) 0.558 0.241 0.981 3.196 3.596 

Boeuf-Tensas 
(805) 13568 31 ± 9 Temperate 

(100%) 0.728 0.391 0.993 2.304 2.283 

Lower 
Mississippi-
Big Black 
(806) 

18289 89 ± 35 Temperate 
(100%) 0.414 0.143 0.863 4.283 4.491 
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Lower 
Mississippi-
Lake 
Maurepas 
(807) 

15123 46 ± 41 Temperate 
(100%) 0.825 0.566 1.000 1.661 1.756 

Louisiana 
Coastal (808) 34286 20 ± 23 Temperate 

(100%) 0.633 0.388 0.995 3.468 2.580 

Lower 
Mississippi 
(809) 

18968 5 ± 11 Temperate 
(100%) 0.331 0.144 0.998 8.505 6.934 

Souris-Red-
Rainy 
Region (9) 

153909 401 ± 94 Continental 
(100%) 0.686 0.375 0.998 2.849 2.663 

Souris (901) 22915 529 ± 78 
Continental 

(96.89%), 
Arid (3.11%) 

0.562 0.239 0.971 3.212 3.207 

Red (902) 10175 371 ± 80 Continental 
(100%) 0.724 0.410 0.998 2.550 2.442 

Rainy (903) 29247 403 ± 57 Continental 
(100%) 0.367 0.174 0.973 7.512 5.709 

Missouri 
Region (10) 1323835 996 ± 620 

Continental 
(99.94%), 

Temperate 
(0.06%) 

0.646 0.376 1.000 3.653 2.658 

Saskatchewan 
(1001) 1791 1788 ± 

344 

Continental 
(96.12%), 

Polar 
(3.88%) 

0.348 0.133 0.956 6.422 6.757 

Missouri 
Headwaters 
(1002) 

36368 2066 ± 
388 

Continental 
(57.77%), 

Arid 
(41.81%), 

Polar 
(0.42%) 

0.493 0.451 0.990 10.723 2.215 
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Missouri-
Marias (1003) 51449 1346 ± 

357 

Arid 
(68.56%), 

Continental 
(31.41%), 

Polar 
(0.03%) 

0.409 0.156 0.971 4.694 6.375 

Missouri-
Musselshell 
(1004) 

60690 1081 ± 
321 

Arid 
(85.16%), 

Continental 
(14.84%) 

0.121 0.037 0.838 18.399 18.785 

Milk (1005) 38908 874 ± 179 

Arid 
(94.27%), 

Continental 
(5.73%), 

Polar (0%) 

0.264 0.096 0.991 8.635 9.960 

Missouri-
Poplar (1006) 27953 729 ± 86 

Arid 
(99.6%), 

Continental 
(0.4%) 

0.395 0.154 0.969 5.197 6.104 

Upper 
Yellowstone 
(1007) 

37430 1810 ± 
662 

Continental 
(50.97%), 

Arid 
(45.97%), 

Polar 
(3.05%) 

0.436 0.226 0.991 8.199 4.418 

Big Horn 
(1008) 59367 1849 ± 

622 

Arid 
(73.47%), 

Continental 
(22.93%), 

Polar 
(3.61%) 

0.511 0.306 0.996 6.326 3.270 

Powder-
Tongue 
(1009) 

48798 1326 ± 
435 

Arid 
(91.33%), 

Continental 
(8.19%), 

Polar 
(0.48%) 

0.222 0.077 0.988 10.280 11.310 

Lower 
Yellowstone 
(1010) 

35887 858 ± 138 

Arid 
(99.14%), 

Continental 
(0.86%) 

0.527 0.326 0.988 5.794 3.063 
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Missouri-
Little 
Missouri 
(1011) 

44421 790 ± 180 

Arid 
(68.94%), 

Continental 
(31.06%) 

0.584 0.285 0.996 3.496 3.498 

Cheyenne 
(1012) 62698 1186 ± 

328 

Arid 
(82.13%), 

Continental 
(17.87%) 

0.272 0.092 0.952 7.410 8.584 

Missouri-
Oahe (1013) 95966 673 ± 120 

Continental 
(52%), Arid 

(48%) 
0.459 0.190 0.970 4.498 5.175 

Missouri-
White (1014) 52347 714 ± 211 

Continental 
(50.5%), 

Arid (49.5%) 
0.493 0.208 0.991 3.978 4.670 

Niobrara 
(1015) 36532 959 ± 293 

Continental 
(62.06%), 

Arid 
(37.94%) 

0.290 0.102 0.939 7.013 8.662 

James (1016) 55079 462 ± 64 Continental 
(100%) 0.728 0.399 0.997 2.347 2.413 

Missouri-Big 
Sioux (1017) 37817 478 ± 62 Continental 

(100%) 0.875 0.671 1.000 1.711 1.441 

North Platte 
(1018) 80311 1850 ± 

521 

Arid (82%), 
Continental 

(17.89%), 
Polar 

(0.11%) 

0.341 0.148 0.992 7.792 6.702 

South Platte 
(1019) 62514 1808 ± 

607 

Arid 
(75.56%), 

Continental 
(22.55%), 

Polar 
(1.89%) 

0.847 0.701 0.999 1.483 1.427 

Platte (1020) 21402 612 ± 194 Continental 
(100%) 0.973 1.202 1.000 1.045 0.832 
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Loup (1021) 39214 825 ± 188 
Continental 

(95.29%), 
Arid (4.71%) 

0.408 0.182 0.995 5.946 5.380 

Elkhorn 
(1022) 18075 537 ± 104 Continental 

(100%) 0.568 0.271 0.992 3.322 3.433 

Missouri-
Little Sioux 
(1023) 

24050 394 ± 44 Continental 
(100%) 0.505 0.612 0.952 1.172 1.430 

Missouri-
Nishnabotna 
(1024) 

34967 341 ± 46 Continental 
(100%) 0.908 0.769 1.000 1.537 1.264 

Republican 
(1025) 64737 966 ± 302 

Continental 
(52.56%), 

Arid 
(47.44%) 

0.763 0.463 1.000 2.203 2.158 

Smoky Hill 
(1026) 51874 695 ± 250 

Continental 
(76.17%), 

Arid 
(23.83%) 

0.615 0.291 0.995 2.868 3.346 

Kansas (1027) 39405 427 ± 90 Continental 
(100%) 0.906 0.760 1.000 1.423 1.267 

Chariton-
Grand (1028) 28466 284 ± 43 Continental 

(100%) 0.831 0.554 0.999 1.831 1.681 

Gasconade-
Osage (1029) 48535 301 ± 56 

Continental 
(99.94%), 

Temperate 
(0.06%) 

0.844 0.581 0.999 1.766 1.623 

Lower 
Missouri 
(1030) 

26785 239 ± 38 Continental 
(100%) 0.922 0.830 1.000 1.492 1.166 

Arkansas-
White-Red 
Region (11) 

642156 709 ± 621 Temperate 
(100%) 0.689 0.390 1.000 2.759 2.561 
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Upper White 
(1101) 57886 286 ± 128 

Temperate 
(80.24%), 

Continental 
(19.76%) 

0.730 0.407 0.998 2.273 2.443 

Upper 
Arkansas 
(1102) 

64547 1818 ± 
605 

Arid 
(84.33%), 

Continental 
(13.62%), 

Polar 
(2.05%) 

0.453 0.191 0.993 4.637 5.145 

Middel 
Arkansas 
(1103) 

52823 681 ± 224 

Continental 
(70.95%), 

Arid 
(26.86%), 

Temperate 
(2.2%) 

0.810 0.567 1.000 1.903 1.760 

Upper 
Cimarron 
(1104) 

31236 1086 ± 
350 

Arid 
(86.99%), 

Continental 
(7.41%), 

Temperate 
(5.6%) 

0.483 0.210 0.990 4.402 4.739 

Lower 
Cimarron 
(1105) 

18432 404 ± 102 

Temperate 
(99.71%), 

Continental 
(0.27%), 

Arid (0.01%) 

0.803 0.556 1.000 2.040 1.789 

Arkansas-
Keystone 
(1106) 

25590 404 ± 102 

Temperate 
(77.72%), 

Continental 
(22.28%) 

0.682 0.363 0.999 2.567 2.739 

Neosho-
Verdigris 
(1107) 

53699 309 ± 72 

Temperate 
(56.75%), 

Continental 
(43.25%) 

0.834 0.571 1.000 1.695 1.719 

Upper 
Canadian 
(1108) 

32400 1808 ± 
467 

Arid 
(82.97%), 

Continental 
(17.01%), 

Polar 
(0.02%) 

0.259 0.092 0.976 8.510 9.526 
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Lower 
Canadian 
(1109) 

44093 861 ± 453 

Arid 
(59.56%), 

Temperate 
(40.42%), 

Continental 
(0.02%) 

0.592 0.317 0.999 3.952 3.152 

North 
Canadian 
(1110) 

46228 787 ± 387 

Arid 
(61.17%), 

Temperate 
(38.81%), 

Continental 
(0.02%) 

0.667 0.347 0.998 2.653 2.878 

Lower 
Arkansas 
(1111) 

41122 236 ± 117 Temperate 
(100%) 0.875 0.668 1.000 1.559 1.496 

Red 
Headwaters 
(1112) 

38352 860 ± 287 

Arid 
(67.96%), 

Temperate 
(32.04%) 

0.451 0.183 0.984 4.369 5.405 

Red-Washita 
(1113) 64202 436 ± 174 

Temperate 
(78.47%), 

Arid 
(21.53%) 

0.656 0.332 0.997 2.674 3.009 

Red-Sulphur 
(1114) 71545 147 ± 87 Temperate 

(100%) 0.801 0.507 0.999 1.928 1.968 

Texas-Gulf 
Region (12) 464006 370 ± 348 

Arid 
(85.42%), 

Temperate 
(14.58%) 

0.692 0.407 1.000 2.703 2.457 

Sabine (1201) 25541 100 ± 44 Temperate 
(100%) 0.819 0.598 1.000 1.885 1.666 

Neches 
(1202) 25890 95 ± 44 Temperate 

(100%) 0.807 0.523 1.000 1.826 1.861 

Trinity (1203) 46428 168 ± 86 Temperate 
(100%) 0.851 0.622 1.000 1.459 1.588 
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Galveston 
Bay-San 
Jacinto (1204) 

18776 38 ± 36 Temperate 
(100%) 0.706 0.409 1.000 2.296 2.384 

Brazos 
Headwaters 
(1205) 

37361 997 ± 242 

Arid 
(99.91%), 

Temperate 
(0.09%) 

0.588 0.271 0.992 3.102 3.557 

Middle 
Brazos (1206) 40544 402 ± 139 

Temperate 
(75.16%), 

Arid 
(24.84%) 

0.816 0.553 1.000 1.766 1.804 

Lower Brazos 
(1207) 40177 209 ± 136 Temperate 

(100%) 0.875 0.664 1.000 1.594 1.490 

Upper 
Colorado 
(1208) 

41540 939 ± 195 

Arid 
(99.78%), 

Temperate 
(0.22%) 

0.617 0.293 0.992 2.847 3.324 

Lower 
Colorado-San 
Bernard 
Coastal (1209) 

73086 498 ± 232 

Temperate 
(56.19%), 

Arid 
(43.81%) 

0.716 0.420 1.000 2.402 2.381 

Central Texas 
Coastal (1210) 44227 160 ± 170 

Temperate 
(99.94%), 

Arid (0.06%) 
0.613 0.318 1.000 3.189 3.099 

Nueces-
Southwestern 
Texas Coastal 
(1211) 

70435 171 ± 161 

Arid 
(85.42%), 

Temperate 
(14.58%) 

0.552 0.301 0.997 4.329 3.322 

Rio Grande 
Region (13) 344287 1506 ± 

675 Arid (100%) 0.460 0.206 1.000 4.917 4.859 

Rio Grande 
Headwaters 
(1301) 

19788 2779 ± 
446 

Arid 
(52.34%), 

Continental 
(43.52%), 

Polar 
(4.14%) 

0.338 0.121 0.888 5.751 7.493 
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Rio Grande-
Elephant 
Butte (1302) 

69986 2098 ± 
413 

Arid 
(85.89%), 

Continental 
(14.08%), 

Polar 
(0.03%) 

0.424 0.173 0.994 4.734 5.646 

Rio Grande-
Mimbres 
(1303) 

29599 1497 ± 
279 

Arid 
(98.92%), 

Continental 
(1.08%), 

Temperate 
(0%) 

0.699 0.516 0.998 3.603 1.939 

Rio Grande-
Amistad 
(1304) 

47939 997 ± 331 Arid (100%) 0.491 0.246 0.994 5.982 4.061 

Rio Grande 
Closed Basins 
(1305) 

45466 1568 ± 
337 

Arid 
(98.08%), 

Temperate 
(1.2%), 

Continental 
(0.72%) 

0.231 0.071 0.676 7.771 10.728 

Upper Pecos 
(1306) 61139 1525 ± 

414 

Arid 
(93.89%), 

Continental 
(3.68%), 

Temperate 
(2.43%) 

0.330 0.136 0.992 7.751 7.112 

Lower Pecos 
(1307) 53606 966 ± 257 Arid (100%) 0.518 0.232 0.992 4.145 4.312 

Rio Grande-
Falcon (1308) 13370 234 ± 108 Arid (100%) 0.707 0.381 0.997 2.452 2.612 

Lower Rio 
Grande 
(1309) 

3396 99 ± 46 Arid (100%) 0.947 1.205 1.000 1.299 0.830 

Upper 
Colorado 
Region (14) 

294126 2154 ± 
510 

Arid 
(84.16%), 

Continental 
(15.12%), 

Polar 
(0.72%) 

0.283 0.137 0.977 11.682 7.308 
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Colorado 
Headwaters 
(1401) 

25559 2594 ± 
584 

Continental 
(61.77%), 

Arid 
(32.31%), 

Polar 
(5.92%) 

0.789 0.680 0.998 2.350 1.471 

Gunnison 
(1402) 20789 2666 ± 

574 

Continental 
(53.45%), 

Arid 
(41.01%), 

Polar 
(5.55%) 

0.600 0.372 0.986 3.875 2.689 

Upper 
Colorado-
Dolores 
(1403) 

21678 2086 ± 
520 

Arid 
(73.09%), 

Continental 
(26.49%), 

Polar 
(0.41%) 

0.256 0.100 0.928 9.747 9.258 

Great Divide-
Upper Green 
(1404) 

54015 2226 ± 
306 

Arid 
(85.47%), 

Continental 
(13.69%), 

Polar 
(0.84%) 

0.183 0.065 0.945 13.279 13.883 

White-Yampa 
(1405) 34142 2179 ± 

359 

Arid 
(63.39%), 

Continental 
(36.56%), 

Polar 
(0.05%) 

0.383 0.183 0.971 7.129 5.452 

Lower Green 
(1406) 37598 2052 ± 

520 

Arid 
(79.9%), 

Continental 
(19.54%), 

Polar 
(0.55%) 

0.556 0.296 0.997 4.617 3.378 

Upper 
Colorado-
Dirty Devil 
(1407) 

35377 1827 ± 
443 

Arid 
(95.3%), 

Continental 
(4.7%) 

0.191 0.071 0.981 13.744 13.269 
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San Juan 
(1408) 64968 1993 ± 

436 

Arid 
(84.16%), 

Continental 
(15.12%), 

Polar 
(0.72%) 

0.249 0.152 0.852 15.781 6.564 

Lower 
Colorado 
Region (15) 

361999 1317 ± 
650 

Arid 
(99.73%), 

Temperate 
(0.27%) 

0.377 0.151 0.997 5.860 6.630 

Lower 
Colorado-
Lake Mead 
(1501) 

78557 1473 ± 
509 

Arid 
(95.86%), 

Continental 
(4.13%), 

Temperate 
(0.01%) 

0.309 0.111 0.951 6.962 8.947 

Little 
Colorado 
(1502) 

69438 1920 ± 
276 

Arid 
(93.12%), 

Continental 
(6.8%), 

Temperate 
(0.08%) 

0.307 0.116 0.981 7.322 8.187 

Lower 
Colorado 
(1503) 

44514 679 ± 479 

Arid 
(99.91%), 

Temperate 
(0.09%) 

0.676 0.455 0.994 3.155 2.199 

Upper Gila 
(1504) 39511 1648 ± 

472 

Arid 
(92.44%), 

Continental 
(6.35%), 

Temperate 
(1.21%) 

0.237 0.079 0.812 8.472 11.647 

Middle Gila 
(1505) 43930 1007 ± 

425 

Arid 
(99.15%), 

Temperate 
(0.85%) 

0.820 0.591 1.000 1.720 1.691 

Salt (1506) 34863 1577 ± 
531 

Arid 
(67.79%), 

Temperate 
(19.49%), 

Continental 
(12.73%) 

0.651 0.384 0.999 3.207 2.607 
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Lower Gila 
(1507) 39186 523 ± 385 

Arid 
(98.66%), 

Temperate 
(1.34%) 

0.399 0.153 0.977 4.911 6.483 

Sonora (1508) 12001 952 ± 441 

Arid 
(99.73%), 

Temperate 
(0.27%) 

0.329 0.164 0.828 9.586 6.016 

Great Basin 
Region (16) 367241 1763 ± 

405 

Arid 
(89.08%), 

Continental 
(10.92%) 

0.151 0.050 0.974 14.776 18.706 

Bear (1601) 19420 1982 ± 
395 

Arid 
(58.05%), 

Continental 
(41.91%), 

Polar 
(0.04%) 

0.317 0.111 0.920 5.923 8.401 

Great Salt 
Lake (1602) 74470 1671 ± 

398 

Arid 
(84.33%), 

Continental 
(15.67%) 

0.138 0.044 0.958 15.722 18.626 

Escalante 
Desert-Sevier 
Lake (1603) 

42507 1920 ± 
441 

Arid 
(89.08%), 

Continental 
(10.92%) 

0.114 0.034 0.750 18.706 20.433 

Black Rock 
Desert-
Humboldt 
(1604) 

74250 1671 ± 
314 

Arid 
(98.05%), 

Continental 
(1.95%) 

0.158 0.051 0.808 13.870 18.263 

Central 
Lahontan 
(1605) 

32889 1684 ± 
451 

Arid 
(77.38%), 

Continental 
(21.21%), 

Temperate 
(1.4%), Polar 

(0.01%) 

0.208 0.068 0.862 9.820 12.252 
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Central 
Nevada 
Desert Basins 
(1606) 

12370 1808 ± 
397 

Arid 
(98.84%), 

Continental 
(1.14%), 

Polar 
(0.02%) 

0.095 0.028 0.727 20.666 26.019 

Pacific 
Northwest 
Region (17) 

709825 1199 ± 
642 

Arid 
(60.1%), 

Continental 
(39.7%), 

Polar (0.2%) 

0.243 0.093 0.986 10.963 10.686 

Kootenai-
Pend Oreille-
Spokane 
(1701) 

94069 1365 ± 
457 

Continental 
(87.39%), 

Arid 
(12.49%), 

Polar 
(0.12%) 

0.684 0.463 0.999 3.855 2.160 

Upper 
Columbia 
(1702) 

57657 845 ± 475 

Arid 
(59.74%), 

Continental 
(39.49%), 

Polar 
(0.74%), 

Temperate 
(0.03%) 

0.646 0.349 1.000 2.913 2.864 

Yakima 
(1703) 15940 827 ± 452 

Continental 
(56.71%), 

Arid 
(42.82%), 

Temperate 
(0.45%), 

Polar 
(0.02%) 

0.936 1.303 1.000 1.346 0.768 

Upper Snake 
(1704) 93091 1840 ± 

461 

Arid 
(60.1%), 

Continental 
(39.7%), 

Polar (0.2%) 

0.499 0.253 0.996 5.094 3.953 
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Middle Snake 
(1705) 95762 1421 ± 

415 

Arid 
(72.02%), 

Continental 
(27.97%), 

Polar (0%) 

0.141 0.049 0.863 17.636 18.384 

Lower Snake 
(1706) 90799 1478 ± 

656 

Continental 
(76.42%), 

Arid 
(23.31%), 

Temperate 
(0.15%), 

Polar 
(0.12%) 

0.434 0.332 0.992 13.312 3.013 

Middle 
Columbia 
(1707) 

77335 986 ± 468 

Arid (53%), 
Continental 

(41.1%), 
Temperate 

(5.74%), 
Polar 

(0.16%) 

0.407 0.232 0.982 7.982 4.307 

Lower 
Columbia 
(1708) 

15027 599 ± 464 

Temperate 
(73.62%), 

Continental 
(25.94%), 

Polar 
(0.44%) 

0.840 0.775 0.998 1.776 1.290 

Willamette 
(1709) 30329 544 ± 484 

Temperate 
(88.62%), 

Continental 
(11.28%), 

Polar (0.1%) 

0.812 0.666 0.999 1.877 1.501 

Oregon-
Washington 
Coastal (1710) 

59281 503 ± 427 

Temperate 
(94.94%), 

Continental 
(4.94%), 

Polar 
(0.12%) 

0.586 0.437 0.994 5.358 2.291 

Puget Sound 
(1711) 35473 632 ± 586 

Temperate 
(60.32%), 

Continental 
(38.53%), 

Polar 

0.780 0.797 0.997 2.798 1.255 
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(1.09%), 
Arid (0.06%) 

Oregon 
Closed Basins 
(1712) 

45062 1530 ± 
222 

Arid 
(89.87%), 

Continental 
(10.13%) 

0.173 0.057 0.826 12.977 16.719 

California 
Region (18) 416156 888 ± 724 

Temperate 
(77.67%), 

Arid 
(21.74%), 

Continental 
(0.59%) 

0.558 0.312 0.993 4.245 3.202 

Klamath-
Northern 
California 
Coastal (1801) 

64767 1037 ± 
542 

Temperate 
(64.36%), 

Continental 
(24.71%), 

Arid 
(10.91%), 

Polar 
(0.03%) 

0.273 0.102 0.980 8.623 9.391 

Sacramento 
(1802) 71960 946 ± 698 

Temperate 
(67.86%), 

Continental 
(24.71%), 

Arid 
(7.39%), 

Polar 
(0.04%) 

0.578 0.342 0.987 3.980 2.924 

Tulare-Buena 
Vista Lakes 
(1803) 

42579 846 ± 981 

Arid 
(56.08%), 

Temperate 
(29.74%), 

Continental 
(12.92%), 

Polar 
(1.27%) 

0.870 0.693 1.000 1.533 1.442 

San Joaquin 
(1804) 41009 825 ± 973 

Temperate 
(59.6%), 

Arid 
(23.92%), 

Continental 
(15.53%), 

0.880 0.776 1.000 1.709 1.288 
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Polar 
(0.95%) 

San Francisco 
Bay (1805) 10482 216 ± 239 Temperate 

(100%) 0.945 0.956 1.000 0.845 1.046 

Central 
California 
Coastal (1806) 

29872 492 ± 350 
Temperate 
(92.82%), 

Arid (7.18%) 
0.632 0.445 0.983 3.748 2.248 

Southern 
California 
Coastal (1807) 

28748 626 ± 540 

Temperate 
(77.67%), 

Arid 
(21.74%), 

Continental 
(0.59%) 

0.907 0.795 1.000 1.053 1.257 

North 
Lahontan 
(1808) 

11769 1627 ± 
261 

Arid 
(49.03%), 

Continental 
(48.89%), 

Temperate 
(2.08%) 

0.270 0.089 0.775 7.001 9.454 

Northern 
Mojave-Mono 
Lake (1809) 

73611 1163 ± 
658 

Arid 
(88.39%), 

Continental 
(6.34%), 

Temperate 
(4.73%), 

Polar 
(0.54%) 

0.248 0.088 0.934 8.866 10.820 

Southern 
Mojave-
Salton Sea 
(1810) 

41361 548 ± 470 

Arid 
(93.38%), 

Temperate 
(6.4%), 

Continental 
(0.22%) 

0.756 0.475 1.000 2.244 2.103 

 

 

 




