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Abstract

The advent of omic data production has opened many new perspectives in the quest for
modelling complexity in biophysical systems. With the capability of characterizing a
complex organism through the patterns of its molecular states, observed at different levels
through various omics, a new paradigm of investigation is arising. In this thesis, we inves-
tigate the links between perturbations of the human organism, described as the ensemble
of crosstalk of its molecular states, and health. Machine learning plays a key role within
this picture, both in omic data analysis and model building. We propose and discuss dif-
ferent frameworks developed by the author using machine learning for data reduction,
integration, projection on latent features, pattern analysis, classification and clustering of
omic data, with a focus on 1H NMR metabolomic spectral data. The aim is to link dif-
ferent levels of omic observations of molecular states, from nanoscale to macroscale, to
study perturbations such as diseases and diet interpreted as changes in molecular patterns.
The first part of this work focuses on the fingerprinting of diseases, linking cellular and
systemic metabolomics with genomic to asses and predict the downstream of perturba-
tions all the way down to the enzymatic network. The second part is a set of frameworks
and models, developed with 1H NMR metabolomic at its core, to study the exposure of
the human organism to diet and food intake in its full complexity, from epidemiological
data analysis to molecular characterization of food structure.
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1Chapter

From Nanoscale to Macroscale and Back:
the Complexity of Compartmentalization

1.1 Introduction : A Complex Picture

The quest for modelling, simulating and solving complexity in biophysical and biochem-
ical systems has been going on for many years. Boosted by increasing computational
power, data generation and analysis together with machine learning and simulation tech-
niques have become the foundations of many modelling routines for such systems. As
a matter of fact, linking phenomena happening at various length scales and time scales,
becomes a difficult task when solely relying upon predictions obtained from analytical
models (i.e. canonical differential equations systems). For instance, let’s try to think of
all the length scales of structures and time scales of phenomena involved in the description
of something apparently ordinary, such as food. The final structure, mechanical and sen-
sory properties of real life food, which can be described in terms of soft matter, arise from
a complex series of interactions at molecular levels, physicochemical transformations at
the mesoscale and structural properties at the macroscale (1). As such, small changes
at the nanoscale (e.g.folding and unfolding of proteins at various interfaces) can lead to
drastic changes in macroscale appearance and the stability. The multiscale nature of the
phenomena involved in food science is well pictured in figure 1.1. Each time and length
scale is bound to require its dedicated description paradigm and simulation framework,
with few overlaps between scales. While a pure simulation based approach to predict
food properties is theoretically possible, the computational complexity of linking the var-
ious level of simulation frameworks for the complete multiscale model poses a practical
problem.

Furthermore, interactions with human physiological functions must be added to this
already complex canvas, if we want to consider also the final purpose of food: human nu-
trition. If modelling transformation, processing and molecular interactions that constitute
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Figure 1.1: Schematics of molecular interactions in food science phenomena across different

time and length scales, with appropriate particle based simulation methods. QSAR: quality struc-

ture–activity relationships . Adapted from da Silva et al. 2020, AnnuRev

the macrostructure of food and its properties leads to solving a multiscale problem, the
same yields for the various stages at which food is digested and metabolized by the human
organism. Digestion is a process unfolding in many steps, starting with oral breakdown
of ingested substances as the igniter for a cascade of interconnected kinetic processes in
the Gastro Intestinal Tract (GIT). Modelling this first key step already poses a non-trivial
challenge and many in-silico simulations techniques and models are being proposed (2).
Food fragment structure and size influences enzymatic hydrolysis and gastric emptying
(3), which are key regulators of the overall nutrient absorption kinetics. The rest of the
steps are a cluster of feedback interconnected kinetics processes of molecular (amino
acids, protein, lipids etc.) transport and absorption, that ultimately sink in the circulatory
and excretory systems. These processes, happening at different timescales and length
scales, cannot be modeled using classic pharmacokinetic and simple mass action laws, as
they are not taking into account the structure activated feedback affecting digestion.

Another layer of complexity is added by the physiological variability of individuals.
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Metabolic functions are affected by a series of factors such as life habits, health condi-
tions, age and genetic background. Several studies, collected by Walther et al. (4), point
out that these factors are responsible for inducing variability in individual functionality of
processes and phenomena in the GIT. During many stages of the digestion, protein assim-
ilation, intestinal peptidome composition, protease activity, fat processing, carbohydrate
processing and absorption, glucose transport, vitamin absorption, mineral absorption can
be altered in different individuals. Furthermore, differences in functionality and activa-
tion of digestive processes, starting at the molecular level, leads to variability in systemic
components of the human organism, such as gut microbiota composition. Given the many
aspects involved in studies of human metabolism and its interaction with bio-molecules
and compounds, which require the linking of a large number of heterogeneous descriptive
paradigms and modelling tools, one can argue if the goal of a holistic physiological out-
comes predictor based on molecules and metabolic functions interactions can be reached.

1.2 Omics Sciences and Complexity: We Are Our Molecular State

In physical terms, it is clear that the the human organism, as many other biochemical sys-
tems, is a nested complex system. From molecules and enzymes, to cells, to organs and
tissues, each observational level that we can think of when modelling the human organism
is itself a complex systems or its elementary constituents behave like one. A system is
considered complex when its modelling is intrinsically difficult, due to the interactions
between its component. These kind of systems, are (not easily) defined by the properties
that arise from these interactions and how the system ultimately forms relationship with
its environment (5). While no exact definition of complexity is generally accepted yet, one
of the features that surely defines complex systems is the presence of emergent behaviors.
A system is said to exhibit emergence when it is characterized by properties or phenom-
ena that are impossible to predict from studying its isolated components. Emergence is
very common in biochemical systems: one of the earliest (and most groundbreaking) ex-
ample of this notion in the field of physicochemical sciences is the Hartree-Fock method
for the computation of molecular structures (6), which introduces the idea that is impos-
sible to exactly determine the properties arising from certain molecular structure from
the quantum states of its isolated atomic constituents. The same holds true for molecules
constituting cells, which are themselves complex systems, cells constituting tissues and
organs, organs constituting anatomic systems which in turn constitutes individuals that
exhibit social behaviors. Each one of such levels has to be treated as a complex sys-
tem, that can be characterized by emergence, openness (energy dissipation and distance
from energetic equilibrium), critical transitions (abrupt transition between system states),
memory (as opposed to Markovian systems, for which each state depends exclusively on
the state reached during a previous event), non-linearity and feedback loops (the effect
of a component behavior is fed back at a certain time point, modifying said elementary



4
Chapter 1. From Nanoscale to Macroscale and Back: the Complexity of

Compartmentalization

behavior). The study of the human organism as a nested complex system is being greatly
impacted by the advent of the so-calledOmic Sciences era. Since the success of the initia-
tive of mapping and sequencing human genome, a great deal of technologies have been
developed to obtain huge amount of molecular data from cells, tissues an bio-fluids. Ex-
amples include proteomics, the global analyses of proteins, transcriptomics, the analysis
of RNA, genomics, the analyisis of genes, metabolomics, the analysis of metabolite pat-
terns, and epigenomics, the analysis of DNA methylation and modified histone proteins
in chromomosomes (7). This high-throughput ways of obtaining molecular information
can be applied to characterize different elements of a biological system, as a snapshot
of the underlying complex biological interactions at various level of resolution (Fig.1.2).
With such quantities of information and levels of resolution, a new paradigm of obtain-
ing a comprehensive understanding of complex biological systems is on the way. The
reference state A of a generic biological system can be represented as the whole set of
omics measurements of their components (molecules) at different resolution levels and
their correlations and relationship. Let’s now suppose that the same system goes from the
state A to a state B, associated to a physiological outcome (example: a patient goes from
its healthy state A to a pathological state B). The altered state B is defined by the changes
of patterns of omics measurements and by the perturbations of how measurements of var-
ious omics might be related. In other word, if a way of integrating various omic data
exists, we are theoretically able to use each single measurement as a parameter to define
the state of our system, through different levels of resolution and elementary component
definitions (Fig.1.3). This aspect is crucial in biological complexity understanding: it is
a way of connecting emergent properties to elements of the system at finer resolutions.
This in turn means being able to understand the etiology and causality of phenomena in
a biological system, from its finest scale to the macro, and explain complex behaviors
that cannot be predicted by isolating the system elements, like pathological states in the
human organism.

The possibilities emerging thanks to omic high-throughput techniques in the descrip-
tion of biochemical complex systems and in complexity science in general are astounding.
However, when trying to describe a system as an ensemble of heterogeneous patterns and
pattern variations of the molecular state, many practical aspect must be considered. The
high-throughput nature of omic techniques implies the creation of datasets with very large
number of parameters (features). This in turn generates the need for non-trivial statistical
and heuristic modelling, based upon machine learning and deep learning for data integra-
tion, parameter and model selection. Each omic technique has its own array of suitable
tools for processing, dependent on the physical nature of the measurements and the math-
ematical background of the subsequent data generation. In the next chapters, a closer
look to metabolomics and results obtained with originally developed metabolomic-based
frameworks is proposed, to assess the real capabilities of studying altered states of the
human organism with different levels of molecular descriptors patterns.
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Figure 1.2: An example of interacting and correlated information from various omics sciences

of possible target genes underlying COVID-19 spike protein, represented as a graph. Magenta

nodes: genes; light green nodes : single-nucleotide polymorphisms; dark green nodes : related

diseases and comorbidities; cian nodes : phenotypes; orange nodes : metabolic pathways. Orig-
inal rendering from the author, with force atlas computation from the CHIMeRA project. Nico
Curti & Carlo Mengucci, CHIMeRA : Complex Human Interactions in MEdical Records and At-
lases, Conference on Complex Systems, 2019, Trento, Italy
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Figure 1.3: Interpreting the description of a biochemical complex system (the human organism)

with omic data. The crosstalk between different levels of molecular descriptors patterns, linked to

different omic techniques allows the description of the system in terms of its states, defined by the

correlations with a physiological outcome.
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1.3 Tools of the Trade : Metabolomics and Machine Learning

Metabolomics has been defined as "the quantitative measurement of the multiparametric

metabolic response of living systems to pathophysiological stimuli or genetic modifica-

tion" (8). This definition already gives an idea of what kind of snapshots the metabolomic
analysis of cells or biofluids can offer: a molecular-level ensemble of all up-stream ge-
nomic, transcriptomic and proteomic feedbacks of an organism to a given perturbation
(9). As a matter of fact, metabolites are the end product of cellular pathways and are a
direct result of protein and enzymatic activities. This in turn means that metabolites serve
as good proxies of phenotypic exposures or perturbations such as diseases. A change in
the expression level of a gene or protein does not necessarily correlate with a variation in
the activity level of a protein, but an alteration in metabolite concentrations only occurs
through such a change (10). For this reason, information from metabolites is generally
more adjacent to perturbations such as diseases than information from genomics or pro-
teomics, making metabolites ideal biomarkers of exposures to many factors such as drugs,
diet, environmental chemical exposures etc. Thus, the overall purpose of metabolomics is
to identify a subset of molecular features that can define the (possibly perturbed) state of a
system, against a gargantuan and complex background of metabolites and their chemical
surroundings that constitutes the system itself (i.e. samples from a tissues, cells, bioflu-
ids...). The attainment of such purpose is obviously hindered by a series of problems.
Among the others, stands the lack of a complete catalogue of the human metabolome and
the metabolome of several organisms (11). This means encountering unknown signals
when analyzing spectra, making the interpretation of metabolic changes often incomplete.
Furthermore, metabolomic data analysis is complicated by the fact that all biological sys-
tems are easily perturbed by any number of experimental or environmental factors, such
as age, diet, pH, sex. These background perturbations are often cause of variability in
samples, which can hide and confound the effect of the exposure (disease, intake etc.)
to be modelled. For a complete overview on the topic, see (12). Overall, metabolomic
analyses require robust methodologies to discover latent trends in complex datasets with
variance coming from many confounding sources.

1.3.1 NMR Spectroscopy in a nutshell

Nuclear Magnetic Resonance (NMR) spectroscopy is a quantitative and non-destructive
experimental technique broadly employed in chemistry, providing information on the
molecular structure of compounds and on the chemical sorroundings of complexes. While
many nuclei can be detected with this technique (13C, 13P, ...), the studies presented in
this work are based on the detection of 1H nuclei, due to their abundance in organic com-
pounds and biological samples. An NMR spectrum is essentially a plot of the radio fre-
quency applied against absorption, in which each signal is referred to as resonance. The
frequency of a signal is determined from its chemical shift δ, defined in absolute terms as
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Figure 1.4: Proton NMR spectrum of a mixture of (A) γ−amino butyric acid and (B) n-butyric

acid showing relative integral values of intra-molecular resonances that depend upon the number

of nuclei per resonance and their relative concentration. Adapted from Santosh Kumar & Raja,
2012, Elsevier

the relative position of a frequency of resonance with reference to a standard compound,
expressed in ppm (part per millions). ωS = frequency of signal , ωR = frequency of
reference, ωspec = spectrometer frequency.

δ =
ωS − ωR

ωspec

× 106 (1.1)

The detection of 1H nuclei contained in compounds provides information about the
quantitative relationship between intra-molecular and inter-molecular resonances, through
chemical and coupling constants (13), Figure 1.4. Translating to complex mixtures (e.g.,
cell extracts, tissue extracts, body fluids, natural-product isolates and drug formulations),
1H spectroscopy is capable of grasping quantitative information of their components
without separating them from the chemical environment of the sample. As such, the
full spectra of a biological sample provide absolute and relative quantification of several
metabolites, molecules in which 1H nuclei are abundant (Figure 1.5). Specifically, signals
acquired in such a way provide a representation of the distribution of proton nuclei within
the molecules and the different concentration levels of the corresponding metabolites in
the complex mixture (14). This type of spectroscopy allows the characterization of liquid
and semi-solid biological specimens through a molecular fingerprint.

One dimensional 1H spectra have gained popularity in metabolomic studies thanks
to the fact that NMR is a highly automatable, highly reliable and fast technique. This
allowed NMR-based metabolomic studies to rely on collections of large number of spec-
tra, making this technique particularly suitable for complex data analysis mostly based
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Figure 1.5: Expansion of one-dimensional single pulse 1H NMR spectrum (0.50–4.80 ppm) of

aqueous extract of bacterial cells. It represents a number of metabolites detected using a single

pulse NMR experiment. The intensities of resonances depend on their respective concentrations

in the extract. Adapted from Santosh Kumar & Raja, 2012, Elsevier

on machine learning. Though not as sensitive as mass spectroscopy, which is capable of
identifying metabolites in the order of the thousands with concentrations of > 10 to 100
nM, NMR-based acquisitions can retrieve information on tens to hundreds of metabolites
at a time; a sufficient number for fingerprinting approaches. Metabolites can be auto-
matically or semi-automatically matched using spectral databases such as HMDB (15) or
proprietary catalogues such as Chenomx (Chenomx Inc.), which is the spectral reference
source of choice for all the studies presented. Overall, NMR-based metabolomics has
become a preferred tool in large-scale studies thanks to reproducibility and high speed
analytical capabilities over large number of samples.

1.3.2 NMR-based metabolomics data analysis

1H NMR spectra contain the convolution of molecular ensembles of a great number of
metabolites. The goal of metabolic fingerprinting experiments is to determine the relative
differences between the metabolomes of two or more systems to infer a biological rela-
tionship. Thus, NMR-based metabolomics datasets can be seen as collections of spectral
information, in which each spectral feature is interpreted as a variable of the underlying
statistical model. In other words, metabolomic datasets are high-dimensional datasets
with many sources of variance, nominally the perturbations that can occurr in the sys-
tem (diseases, drug intake, but also experimental factors, sample storage, pH etc.). For
this reason, the most popular approaches for fingerprinting are based on the projection
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of spectral features into lower-dimensional latent features space, as a way to summarize
and interpret results more easily. Moreover, these methods are necessary to solve known
statistical problems of datasets with a large number of variables with respect to the num-
ber of samples. The amount of raw spectral features is usually extremely excessive with
respect to the samples, leading to huge amount of collinearity in the dataset and singu-
larity of the data matrix XN×K , where N = number of samples, K = spectral features in
each sample. This section is intended to provide an overview on methods of dimension-
ality reduction, classification and features interpretation of metabolomics data, that the
author implemented for the various frameworks of the studies presented in this thesis.
For an exahustive perspective on the topic of data analysis for metabolomic, including
preprocessing aspects such as normalization, binning, scaling, baseline correction and
signal-to-noise ratio optimization, see (12).

Dimensionality reduction with single value decomposition of the covariance matrix

The most popular methods for dimensionality are arguably those based on the single value
decomposition of the covariance (correlation for centered data) matrix, which is basically
a diagonalization due to the properties of symmetry and positive-definitiveness of such
matrix. The goal of this methods is to find a matrix AK×P representing an optimal linear
transformation of the original data matrix XN×K , with N = samples, K = variables, into a
new matrix of P < K-dimensional scores T = XA, preserving different kinds and portions
of variance in the dataset, as a function of the problem solved by the selected method.
Method selection is obviously bound to the purpose of the study and to experimental
design: Principal Component Analysis (PCA) is ufeful when trying to explore sources
of variances without assumptions, Factor Analysis is suitable when strong hypothesis
about variance sources in the dataset are available (i.e. in a follow up study with spectra
acquired over time, to extract time dependent latent components), Partial Least Square
Discriminant Analysis (PLSDA) is useful to extract latent variables specifically tied to
a class separation. A general overview of how dimensionality reduction is achieved by
these methods is shown in Figure 1.6.

Principal Component Analysis

Principal Component Analysis is widely used in fingerprinting and chemometric studies,
to attain unbiased and unsupervised dimensionality reduction. PCA reaches the linear
transformation that preserves the maximal variance of the original dataset in a lower di-
mensional space. This is obtained through an eigendecomposition of the sample covari-
ance matrix (if non-singular). In the PCA problem the matrix A yielding the dimension-
ality reduction

TN×P = AK×PXN×K ; P < K (1.2)
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Figure 1.6: Canonical example of the data (X) and response (Y) matrices (for supervised de-

compostion studies) and decompositions thereof used by projection-based multivariate analysis

algorithms. In metabolic fingerprinting applications, the data matrix will contain spectral infor-

mation on its rows, such that every column will represent a single spectral frequency or bin. For

supervised projections, each row of data is paired with a corresponding row in the response matrix

that holds either continuously varying outputs or binary (n-ary) class memberships. The data is

then decomposed into a small number of score vectors (t) and loading vectors (p), with a corre-

sponding weight vector (w) used to transform rows of X to scores space. Responses are similarly

decomposed into scores (u) and loadings (c), where t is an effective estimator of u. Adapted from
(12), 2013, Bentham Science
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that projects data into the directions of maximum variance is a matrix formed by the
first P eigenvectors of the sample covariance matrix S N×N , decomposed by the following:

S =
1

N − 1
XT HX = QΛQ−1 (1.3)

where HN×N is the centering matrix to center each feature about their sample mean,
Q is the matrix of the eigenvector of S and Λ is the diagonal matrix of the corresponding
eigenvalues. It is a well known fact that the eigenvalues in Λ computed from the unscaled
quadratic form XT HX equals the variance of the new transformed data in T . Thus, the
amount of variance in X preserved by the i-th principal component, as a ratio of the total
original variance, is given by:

R2
i =

Λii
∑N

j=1 S j j

(1.4)

PCA is useful when looking for an unbiased and unsupervised reduction of the data.
Furthermore, sources of variances can be investigated by relating latent components to
physiological outcomes or classification tasks, to model the effect of perturbations in the
metabolome.

Factor Analysis

Factor analysis is used to describe variance among observed and presumably correlated
variables (in the case of metabolomics, the spectral features) in terms of a potentially
lower number of gaussian latent variables called factors. The observed variables are mod-
elled as linear combinations of latent factors and an error term. Factors are assumed to be
independent from the error term and uncorrelated. The coefficients of the linear combina-
tions, called loadings, are proportional to the extent of how a variable is related to a given
factor (16). In matrix notation, we look for a loading matrix LK×P such that:

X − M = LF + ǫ; with conditions :
E(F) = 0

Cov(F) = I
(1.5)

where M is the matrix of observed variables sample mean, FN×P is the factor ma-
trix with P < K, ǫN×K is the error matrix (independent from factors by assumptions), I

is the identity matrix and E(F) is the matrix of expected values for F. The condition
Cov(F) = E ensures that factors are uncorrelated, without loss of generality. By solv-
ing such a problem, latent components obtained with factor analysis maximize the shared
portion of variance underlying independent factors. While factor analysis formulation
and solution sounds somewhat similar to PCA and can sometimes yield similar results,
there is a deep conceptual difference between the two. Since any rotation of a FA so-
lution is itself a solution, interpreting factors without an external hypothesis is difficult.



1.3. Tools of the Trade : Metabolomics and Machine Learning 13

This means that FA is useful to test hypotheses about variance in datasets introduced by
structured unobserved factors: as an example if we know in advance from experimental
design that metabolomes in our study can be perturbed by two different independent fac-
tors, we can be confident that a dimensionality reduction based on factor analysis will
yield a representation of which spectral features are most related to said factors.

Partial Least Square Discriminant Analysis

While PCA offers an unbiased dimensionality reduction, it may underperform in the de-
tection of group and cluster structures in samples when within-group variation is too large
with respect to inter-group variation. In these kind of situations, it maybe helpful to build
latent components that are not exclusively based on the variance contained in the data ma-
trix. PLSDA offers a framework for supervised projection on latent components, based on
the univariate weight that each variable contained in X has on the prediction of a certain
outcome contained in an outcome matrix Y . Given a matrix of outcome Y (that contain
in example the labels of classes of our samples), with the constraint that each partial least
square latent component is orthogonal with respect to the others, the matrix A in 1.2 that
is the solution of the dimensionality reduction problem, is given by the matrix made by
the first P eigenvectors of the quadratic form:

S = S xyS yx =
1

(N − 1)2
XT HYYT HX (1.6)

where H is the centering matrix and S is the matrix of covariances between X and
Y . Thus, by solving this problem, PLSDA seeks components that have high variance
and have high correlation with the response, in contrast to principal components regres-
sion/analysis which keys only on high variance (17). A complete derivation of partial
least squares solutions from regressions by successive orthogonalizations, to ensure or-
thogonality of the linear combinations computed thorugh PLS is given by Hastie et al.
(18). The difference in solutions obtained with PCA and PLSDA is visualized in Figure
1.7. While PLSDA is useful to extract latent components for classification tasks, it must
be noted that the method is extremely prone to overfitting under certain conditions (high
variables-to-samples-ratio).
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Figure 1.7: Different direction obtained for projection with PCA (magenta) and PLSDA (orange).

PCA projects the 2-dimensional feature space into the direction of maximum variance. PLSDA

projects the 2-dimensional feature space into a direction of high variance AND and high correla-

tion with the outcome (in this example, the separation of blue dots from red ones). Adapted from
Ruiz, 2020, BioMed Central
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1.3.3 Classifiers

This section provides an overview of classification and clustering algorithms that are ex-
ploited in pipelines and frameworks by the authors. The role of classification algorithms
in the studies presented in this thesis are:

• Evaluation of the robustness of fingerprinting features in classification problems

• Selection of minimal sets of latent features extracted from spectra to optimize clas-
sification problems and interpret correlation with outcomes

• Integration and clustering of features from various omic sources

Support Vector Machines

A support vector machine can be seen as a generalization of linear decision boundaries for
classification. It is a method to assess optimal separating hyperplanes for non-completely
separable classes problems (18), while preserving an interpretation akin to linear decision
boundaries. This is achieved by representing nonlinear boundaries as a linear boundary
projected in a larger-dimensional, transformed version of the feature space. A repre-
sentation of how a support vector classifier operates to solve non-separable problems is
reported in fig.(1.8)

Figure 1.8: Support vector classifiers. The left panel shows the separable case. The decision

boundary is the solid line, while broken lines bound the shaded maximal margin of width 2M = 2
||β||

.

The right panel shows the nonseparable (overlap) case. The points labeled ξ∗
j

are on the wrong

side of their margin by an amount ξ∗
j
= Mξ j; points on the correct side have ξ∗

j
= 0. The margin

is maximized subject to a total budget
∑

ξi ≤ C. Hence
∑

ξ∗
j

is the total distance of points on the

wrong side of their margin. Adapted from Hastie et al. 2001, Springer

Support vector machines are capable of great generalization in classification perfor-
mances, even with complex datasets. Furthermore, many available implementations (such
as sklearn for the Python environment) support feature importance scores, making SVM
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suitable to asses which sets of latent component can achieve optimal classification per-
formance. This feature is particularly useful when trying to connect latent variables to
possible sources of variances in the dataset.

Classification with boosted ensembles of classifiers

Metabolomic and in general multi-omic datasets are prone to contain a very large number
of features (variables). Especially for multi-omic scenarios, it is often difficult to make
assumption about features and the relationships between different types of features (spec-
troscopic, transcriptomic, relative abundances of microbial species, peptides sequence
lengths...). It is also often difficult to predict how the integration of features may translate
to dimensionality reduction and separability in lower-dimensional spaces. The boost-
ing approach proves useful in these situations, by building a meta-estimator based on
an ensemble of simple classifiers that are trained on the same dataset, but are iteratively
adjusting the weights of misclassified samples so that successive instance of classifica-
tion focus on more difficult cases. Specifically, the AdaBoost algorithm is an iterative
procedure that tries to approximate the ideal and unbiased Bayes classifier by combin-
ing many weak classifiers. Starting with the unweighted training sample, the AdaBoost
builds a classifier, for example a decision tree, that produces class labels. If a training
data point is misclassified, the weight of that training data point is increased (boosted).
A second classifier is built using the new weights, which are no longer equal. Again,
misclassified training data have their weights boosted and the procedure is repeated. A
score is assigned to each classifier, and the final classifier is defined as the linear combi-
nation of the classifiers from each stage (19), Figure 1.9. To put the idea in simply terms,
boosting is an iterative method for complex classification problems that relies on the con-
tributions of many simple classifiers instead of a single, complex classifier with a large
number of hyper-parameters. This approach has many advantages when using simple but
highly general classifiers such as decision trees (20). Decision trees operate by seeking
the group of features that better separate the elements of a dataset in various nodes, until
the highest number of elements of the same class end up in the same node (supervised
technique). Thanks to their easy interpretation, ensembles of decision trees can serve for
simultaneously grouping heterogeneous features and trying to achieve good classification
performances. Furthermore, an easy interpretation of how features interact together with
respect to a classification outcome, if the outcome is tied to a perturbation of the system
such as a disease, is useful to draw etiologic conclusion form the study.
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Figure 1.9: The AdaBoost algorithm, as originally formulated by (21). At each step, the exponen-

tial loss function is minimized to achieve an approximation of an ideal Bayes classifier through an

ensemble of weaker classifiers. adapted from Hastie et al., 2009, International Press of Boston
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Hierarchical Clustering

Clustering is useful to group samples and features alike, to assess the similarities between
samples and the patterns of interacting features that contribute to characterize them. Hi-
erchical bi-clustermaps might be used as a fast and informative visualization. As in (22),
hierarchical clustering performances are metric and linkage functions dependent. The
Nearest point linkage is one of the most common. Suppose there are | u | original ob-
servations (u[0], ..., u[|u| − 1]) in cluster u and |v| original objects (v[0], . . . , v[|v| − 1]) in
cluster v. Let v be any remaining cluster in the forest that is not u.

The Nearest Point Algorithm assigns:

d(u, v) = min(dist(u[i], v[ j])) (1.7)

for all points i in cluster u and j in cluster v.

Other possible linkage alghorithm are:

• Farthest Point Algorithm or Voor Hees Algorithm, assigns:

d(u, v) = max(dist(u[i], v[ j])) (1.8)

for all points i in cluster u and j in cluster v.

• UPGMA algorithm, assigns:

d(u, v) =
∑

i j

d(u[i], v[ j])
(|u| ∗ |v|)

(1.9)

for all points i, j where |u|, |v| are the cardinalities of clusters u, v respectively.

• Ward algorithm, assigns:

d(u, v) =

√

|v| + |s|

T
d(v, s)2 +

|v| + |t|

T
d(v, t)2 −

|v|

T
d(s, t)2 (1.10)

where u is the newly joined cluster consisting of clusters s and t, v is an unused
cluster in the forest, T = |v| + |s| + |t| , and | ∗ | is the cardinality of its argument.

Further weighted methods are described in (22).
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Fingerprinting Perturbations and Dynamics
of Metabolic States

2.1 Fingerprinting Perturbations : From Cells and Systems to Enzymatic Networks

This section is based on the published work by Simonetti, Mengucci et al. (23), 2021,

Springer Nature.

The framework and results presented are an example of how to treat, integrate and
model data from various omics sciences and compartments of the same omic (in this
case, metabolomics) to obtain a fingerprint of a pathological perturbation (acute myeloid
leukemia, AML) that defines the system at different levels of resolution. In this work,
the cellular and the systemic level of the metabolome are linked with data from different
biofluids and intracellular measures. Spectral metabolomic features are then integrated
with genomic data, to fingerprint upstream and downstream perturbations and describe the
system thorugh the crosstalk of different molecular descriptors. The resulting observed
integrated signatures are then fed to a flux variability models (FVA) (24) of the full blood
cell metabolic network described at enzymatic level, to evaluate the impact of systemic
perturbations linked to AML and predict possible therapeutic targets.

2.1.1 An introduction to fingerprinting in Acute Myeloid Leukemia

Current personalized therapeutic approaches in acute myeloid leukemia (AML) are gen-
erally restricted to those patients with identifiable and target genomic lesions (25; 26; 27).
However, these approaches do not target interactions between cancer-related features and
homeostatic mechanisms that define the leukemic phenotype. The metabolome is the re-
sult of genome- and proteome-wide interactions and is shaped by microenvironmental
factors. The biofluid metabolome has been extensively investigated to identify predictive
signatures in cardiovascular disorders (28), diverticular disease (29) and diabetes (30),
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and specific metabolic profiles have been associated with cancer risk (31). In oncology,
metabolomics is a valuable approach for diagnosis, prognostication, and disease moni-
toring (32). A paradigmatic example in AML is the accumulation of serum, urine, and
intracellular 2-hydroxyglutarate (2-HG) in IDH1/2-mutated (mut) cases (33; 34). 2-HG is
an oncometabolite (35; 36), predicts clinical outcome (37), and is a noninvasive biomarker
of disease activity (34).

Aberrant enzymatic activity drives cancer metabolic reprogramming and cooperates
with mutations of tumor suppressors and oncogenes in pathogenesis. For example, AML
cells reduce both host insulin sensitivity and secretion to increase glucose availability for
malignant cells (38). The glycolytic pathway sustains leukemia maintenance and pro-
gression. AML cells have a higher mitochondrial (mt) mass and oxygen consumption
rate than normal hematopoietic cells (39). Moreover, leukemia stem cells (LSCs) are ad-
dicted to oxidative phosphorylation (OXPHOS) for energy production (40). OXPHOS
is sustained by elevated amino acid metabolism in LSC from de novo AML (41), with
cysteine playing a crucial role (42), and is controlled by glutamine levels (43). Targeted
inhibition of these pathways, among others, induces cell death and/or differentiation of
AML cells (39; 41; 42; 43; 44; 45). However, the specific response of AML molecular
subtypes to agents targeting metabolism has been rarely investigated (46; 47; 48; 49).
The reported integrated genomic-metabolic study in AML identified, based on intracel-
lular and the biofluid metabolic profile, a specific NPM1-mut AML subgroup charac-
terized by mutations of genes involved in DNA damage response and/or chromatid cohe-
sion (NPM1/cohesin-mut) and high levels of serum choline+trimethylamine-N-oxide, and
leucine. In silico modeling of the intracellular metabolome based on transcriptomic data
highlighted perturbations in the purine and NAD metabolic pathways as NPM1/cohesin-
mut-specific alterations.

2.1.2 Study design and methods summary

This section is a short summary, focusing on study design and methods applied to metabolomics,
to guide the reader through the results of the study. A complete and detailed report of all

experimental materials and methods is provided in Appendix A. The full supplemen-
tary material is available at https://www.nature.com/articles/s41375-021-01318-x#Sec17.

Cohort and Study design

Participants were included if they were free from infective, autoimmune, celiac, or metabolic
diseases such as diabetes and dyslipidaemia. Kidney and liver integrity were also checked.
Subjects with acute or chronic renal or hepatic disease, renal or hepatic impairment,
cardiovascular disease or a history of neoplasia were excluded from the control cohort.
Serum samples from of 119 AML and 145 healthy subjects and urine samples of 103
AML and 139 controls were collected in the fasting state (in the morning). All partici-
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pants were Caucasian except for 5 (3.4%) healthy controls and six (5%) AML patients. To
reduce potential bias and variation unrelated to AML pathogenesis and to ensure that the
observed metabolic differences were not due to external confounders, we collected, when
possible, two independent serum and urine samples from each patient (more than 50%
of cases). Moreover, information on age, gender (the cohorts were balanced for gender),
race, health status, diet, drug intake, physical exercise was collected along with specimens
and used to filter nuclear magnetic resonance (NMR) spectra during the quality control
procedures.

NMR spectroscopy and metabolomics

Serum and urine samples were analyzed by NMR spectroscopy (acquisition details in Ap-
pendix A). A stochastic GridSearch was implemented to select the best combination of
parameters for dimensionality reduction and classifier performances. Unsupervised and
supervised dimensionality reduction were performed using principal component analysis
(PCA) and partial least squares discriminant analysis (PLSDA)-sparse(s)PLSDA, respec-
tively. For subset extraction, weights were obtained after signal smoothing via signal-
to-noise ratio threshold (which was essential due to unavoidable use of data scalers for
dimensionality reduction). The latent components of spectra containing maximum infor-
mation related to molecular features were identified by a genomic-guided semisupervised
approach. This means that the combination of urine and sera latent components used
for clustering is extracted with classifiers-derived scores, from classifiers trained with the
purpose of discriminating TP53-mut/aneuploid, NPM1-mut and chromatin/spliceosome-
mut samples. Signals in the spectra corresponding to loadings and weights emerging from
different tasks were checked for alignment. To minimize the possibility of confounding
effects, every step of each classification and clustering task was crossvalidated through
suitable k-folds, stratified for gender and age when possible depending on class sizes and
sample sizes for the tasks. Three different machine learning algorithms/classifiers were
used for each task to perform cross-validated predictive modelling using latent compo-
nents as inputs: Linear Kernel SVM, Random Forest Classifier, Ada Boosting Tree Clas-
sifier, with AdaBoost being the best performer across most of the tasks. Pipelines and
algorithm scripts were implemented using Python 3.6 and SciKit.Learn module for ma-
chine learning routines. Feature-related scores from SVM classifier were used to extract
the best subsets of latent components for plotting. The assumption is that the combination
of the top 3 features contributing to SVM classification yields the best possible 3D space
where group linear separability emerges. A similar approach is used when selecting the
best latent components to be investigated for a given task.

2.1.3 Results
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The combined analysis of serum and urine profiles improves AML metabolic char-

acterization

Given that the metabolite composition of biofluids reflects the real-time activity of all
biochemical processes in the body and that leukemic cells alter systemic physiology (38),
we compared the profile of blood and urine metabolites of AML patients (serum: 88 at
diagnosis and 31 at relapse, urine: 80 at diagnosis and 23 at relapse) and healthy controls
(CTRL, serum: 145, urine: 139). The metabolomic profile provided efficient discrimina-
tion between patient and CTRL both at serum and urine level, with an accuracy of 83%
(Figure 2.2A) and 85% (Figure 2.2B), respectively. Since patient and CTRL cohorts were
not age-matched (median age: AML, 67-years (18–90), CTRL, 57-years (23–75)), we
verified that age had no significant effects on classification. Notably, the integration of
serum and urine data yielded an average accuracy of 90% in the separation of AML and
CTRL (Figure 2.2C), by using a reduced number of features compared with the analysis
of each biofluid per se. In serum, PC2–3 space gave the best 2D combination for AML-
CTRL separation, with 13 metabolites showing signficantly different levels (p < 0.05,
Figure 2.2D and Table 2.1). These metabolites were not significantly correlated with age
or gender. Amino acid and tricarboxylic acid cycle (TCA) cycle byproducts, that had
increased concentration in AML except for glutamine and threonine, mainly represented
variance in PC3, while lactate and fatty acid metabolism compounds accounted for vari-
ance in PC2 (Figure 2.2D). When looking at sample distribution along serum PC3, that
provided a good discrimination between AML and CTRL, we observed that all AML sub-
groups were significantly different from normal cases, independently of bone marrow or
peripheral blast percentage (Figure 2.2E, F). Moreover, a low bone marrow blast percent-
age (20–49%, Figure 2.2E) and a high peripheral blood blast percentage (≥ 75%, Figure
2.2F) resulted in a reduced and increased distance from CTRL, respectively.

Moreover, we detected increased concentration of 3-aminobutyrate and phenylalanine
in the urine of AML patients compared with CTRL (Figure 2.2G, Table 2.1). Citrate,
creatinine, and hippurate, which are among the most abundant urine components, showed
low levels in AML, suggesting reduced excretion. Similarly, decreased glycine was in-
dicative of reduced catabolism. Notably, two groups of patients were distinguished by
serum metabolites in PC4 (p < 0.001), and one of them included 70% of the mutated
tumor suppressor gene TP53 (TP53-mut/deleted) AML (Figure 2.2H). When comparing
TP53-mut/del and wild-type (wt) AML, we found lower levels of threonine and glucose
in TP53-mut/del cases (Figure 2.2T), that suggested an increased cellular uptake, likely
aimed at satisfying macromolecule biosynthesis and bioenergetic requirements (50), with
reduced lactate excretion (51). Overall, integration of serum and urine metabolomics
improved the prediction accuracy with respect to single biofluid classification.
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Figure 2.1: Upregulation and downregulation in metabolites responsible for AML and CTRL

discrimination. Springer Nature, 2021
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Figure 2.2: Serum and urine metabolomic profile of AML. Springer Nature, 2021
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Figure 2.2: A 3D representation of principal component PC1, PC2, and PC3 projection of serum

NMR data of AML and healthy controls (CTRL), which accounted for 53% of the total explained

variance. B 3D representation of PC1, PC2, and PC4 projections of urine NMR data of AML

and healthy controls. C Hierachical clustering of AML and controls using integrated serum (n=3)

and urine (n=4) PCs, selected as the best combination of predictive features by comparing an

AdaBoost Classifier and a SVM Classifier. The integration yielded an enhanced coherence in

adjacency between AML and controls compared with single biofluid analysis. Each component

contains linear combinations of signature metabolites shown in biplots for both sera and urine

samples. Colors indicate the score on each PC. D BiPlot on PCA reduced space of serum NMR

data. Metabolites showing significant alterations (p< 0.05) were plotted along their maximum

variance direction in the PCA score space. Only completely template-matched signals were re-

ported. E Estimated probability density functions (PDFs) of serum PC3 scores of AML cases

according to bone marrow blast percentage (20-49%: p = 1.66e−4; 50-74%: p = 6.47e−10;

≥ 75%: p = 1.67e−15) and F peripheral blood blast percentage (< 30%: p = 8.85e−8; 30-69%:

p = 5.98e−10; ≥ 70%: p = 8.33e−15). The similarity between each AML blast count class and

CTRL was computed using the score distribution of serum PC3, which is the latent variable best

separating AML and CTRL in the metabolic latent space (DKS: absolute value of the maximal dif-

ference between the cumulative function of two distributions, representing the maximal distance

between them, according to Kolmogorov–Smirnov statistics). G BiPlot on PCA reduced space

of urine NMR data. Metabolites were plotted as in (D). H Serum PC4 scores in AML patients

(median value: group 1, -1.94 and group 2, 6.35). I BiPlot on PLSDA reduced space (from a

5-PLSDA-component AdaBoost classification) for TP53-wt and TP53-mut/del AML. Metabolites

were plotted along their maximum variance direction in the PLSDA score space (LV latent vari-

ables).
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CD34+ and CD33+ AML cells have disrupted lipid, amino acid, nucleotide, and

bioenergetic metabolism

To obtain a complete metabolic fingerprint of AML, we performed intracellular metabolic
profiling of leukemic cells (35 CD34+ and 15 CD33+ isolated bone marrow (BM) blasts)
and compared them with 21 normal cord blood (CB) CD34+ and 21 normal CD33+
peripheral blood (PB) samples from healthy subjects. CD34+ AML and CD33+ AML
segregated from their normal counterparts (Figure 2.3A, B), with a predictive accuracy
of 85.7% and 94.4%, respectively, but not from each other. Among the 300 detected
metabolites, 66 and 35 were down and upregulated, respectively, in CD34+ AML cells,
while 102 and 19 showed reduced and increased levels, respectively, in CD33+ AML
compared with their control group. No significant differences in metabolite levels were
detected between CD34+ and CD33+ AML.

The top scored 30 biochemicals that distinguished CD34+ AML from CD34+ CB
cells were primarily involved in bioenergetics, amino acid, and lipid metabolism (Fig-
ure 2.3C). Overall, 41 pathways were dysregulated in CD34+ AML, with TCA cycle,
D-Arginine and D-ornithine and linoleic acid metabolism showing the strongest impact
(Figure 2.3D). When comparing CD33+ AML and CD33+ PB, the top discriminating
30 biochemicals included lipids, nucleotides, and amino acid metabolism (Figure 2.3E),
with alanine, aspartate and glutamate, cysteine and methionine, purine and sphingolipid
metabolic pathways showing the strongest impact (Figure 2.3F). Lipid, amino acid, nu-
cleotide, and bioenergetic metabolism were confirmed as the most widely altered path-
ways when comparing the whole AML and CTRL cohorts, which were separated with a
predictive accuracy of 89.1%.

Integrated intracellular and biofluid metabolomics highlighted alterations in the

metabolism of polyamine, purine, keton bodies and polyunsaturated fatty acids and

in the TCA cycle in AML

After obtaining a distinct metabolomic profile for leukemic compared to normal CD34+
or CD33+ cells, we next focused on the significantly dysregulated metabolic pathways.
We observed decreased arginine, methionine, and proline in leukemic cells, that sug-
gested elevated polyamine biosynthesis (S-adenosylmethionine, 5-methylthioadenosine,
and N1-acetylspermidine in CD33+ and CD34+ cells, respectively, Figure 2.4A), which
in turn supports cell proliferation. Accordingly, the low levels of purine nucleotides (Fig-
ure 2.4B) may indicate enhanced production of adenosine 5’-triphosphate and guano-
sine 5’-triphosphate that are crucial for providing cellular energy and intracellular signal-
ing, respectively (52). Tumor growth was also supported by elevated N-acetylaspartate
levels in leukemic cells (Figure 2.5A) (53). Of note, in the CD33+ cohort, NPM1-
mut AML scored as outliers for their high levels of the N-acetylaspartate derivative N-
acetyl-aspartyl-glutamate (90.9% and 25.0% of NPM1-mut AML among outliers and
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non-outliers, respectively, p = 0.03). Moreover, increased 3-hydroxybutyrate in the
serum of patients and of 3-hydroxybutyrylcarnitine in leukemic cells reflected height-
ened ketogenesis in AML (Figure 2.5A). Polyunsaturated fatty acids (Figure 2.5B) and
glucose (Figure 2.5A) were elevated in the serum of patients but reduced in CD33+ and/or
CD34+ leukemic cells compared with normal ones, suggesting the need for a constant en-
ergy reservoir that is rapidly consumed by cells. The reduced levels of intracellular TCA

Figure 2.3: intracellular metabolomics of AML Springer Nature, 2021
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Figure 2.3: PCA of the metabolic profile of A CD34+ and B CD33+ AML cells compared to their

healthy control populations (CD34+ CB and CD33+ PB cells). C Biochemical importance plot

of the top 30 metabolites contributing to group separation between CD34+ AML and CD34+ CB

stem-progenitor cells. Red and blue arrows indicate increased or decreased metabolite levels in

AML cells compared with CTRL cells (| fold change | ≥ 2, q ≤ 0.05), respectively. D Altered

metabolic pathways in CD34+ AML cells. The most significant pathways with the strongest im-

pact on CD34+ AML cells are shown. E Biochemical importance plot of the top 30 metabolites

contributing to group separation between CD33+ AML blasts and CD33+ PB cells from CTRL

(red and blue arrows as in (C)). F Altered metabolic pathways in CD33+ AML cells. The most

significant pathways with the strongest impact on CD33+ AML cells are shown.

intermediates and of serum glutamine were also indicative of increased bioenergetics re-
quirement, especially in the CD34 compartment (Figure 2.5A). This requirement was
further supported by decreased levels of amino acid sources of pyruvate (e.g. threonine,
glycine, serine, alanine), with a significant increase of serum lactate, an end-product of
glycolysis and glutaminolysis (Figure 2.5A). In parallel, intracellular lactate levels were
lower in both CD34+ and CD33+ AML than normal cells, thus suggesting a high excre-
tion capacity .
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Figure 2.4: Schematic representation of polyamine, cysteine, and purine metabolic pathways

integrating intracellular and biofluid metabolomic data. Springer Nature, 2021
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Figure 2.4: A Polyamine and cysteine metabolic pathway and urea cycle. B Purine metabolism.

Red and blue arrows/text indicate increased or decreased metabolite levels in AML cells compared

with their CTRL, respectively (| fold change |≥ 2, q ≤ 0.05) and in the urine of patients compared

with CTRL (p < 0.05). Gray metabolite boxes indicate the ones that were not detected by MS anal-

ysis. The schemes report the most relevant metabolites in the pathway according to metabolomic

data (ADP adenosine 5’-diphosphate, ADS adenosine, AMP adenosine 5’-monophosphate, ATP

adenosine 5’-triphosphate, dcSAM decarboxylated S-adenosylmethionine, GDP guanosine 5’-

diphosphate, GMP guanosine 5’-monophosphate, GTP guanosine 5’-triphosphate, GSH reduced

glutathione, IMP inosine 5’-monophosphate, MET methionine, MTA 5-methylthioadenosine, SAH

S-adenosylhomocysteine, SAM S-adenosylmethionine, XMP xanthosine 5’-monophosphate).
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Figure 2.5: A TCA cycle and related amino acid pathways. B Linoleic acid metabolism. Red and

blue arrows/text indicate increased or decreased metabolite levels in AML cells versus their CTRL,

respectively (| fold change | ≥ 2, q ≤ 0.05) and in the serum or urine of patients compared with

CTRL (p < 0.05). Gray metabolite boxes indicate the ones that were not detected by MS analysis.

The schemes report the most relevant metabolites in the pathway according to metabolomic data

(HETE hydroxyeicosatetraenoic acid, NAA N-acetylaspartate, poly-UFA polyunsaturated fatty

acids, TCA trycarboxylic acid cycle). Springer Nature, 2021
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Metabolic clusters define AML subgroups with different genomic features

We classified AML cases according to their intracellular metabolic profile. Unsupervised
hierarchical clustering clearly defined 3 clusters (Figure 2.6A). The top 15 metabolites
that better distinguished the 3 clusters included amino acids and their derivatives (e.g. ty-
rosine, phenylalanine, tryptophan, threonine, lysine), intermediates of purine and pyrim-
idine metabolism (e.g. hypoxanthine, adenosine 5’-monophosphate, uridine) and lipids
(e.g. palmitoyl sphingomyelin, cholesterol), that showed high, intermediate and low lev-
els in cluster 1, 2 and 3, respectively (Figure 2.6B). In order to integrate genomics and
metabolomics, we assigned each sample to a molecular class (27). Cluster-1 was enriched
for NPM1-mut AML (50.0%), cluster-2 for cases with altered chromatin/spliceosome
genes (37.5%), and cluster-3 for TP53-mut/aneuploid AML (34.4%, p = 0.023, Figure
2.6C). We then investigated differences at serum and urine level across genetic categories
(chromatin/spliceosome-mut, NPM1-mut, TP53-mut/aneuploid AML, n=71) and identi-
fied 4 NMR clusters (Figure 2.6D). Genomic categories associated with specific biofluid
metabolic cluster (clusters 2, 3, and 4, p = 0.040, Figure 2.6E), in accordance with the
intracellular metabolic profiles. High levels of serum tyrosine, threonine, and citrate cor-
related with the cluster enriched for chromatin/spliceosome-mut. Viceversa, low levels of
these metabolites were detected in the cluster enriched for NPM1-mut (Figure 2.6F). The
cluster associated with TP53-mut/aneuploid AML displayed intermediate threonine and
tyrosine levels and high citrate in the serum compared to the other two clusters. Notably,
tyrosine and threonine showed high intracellular levels in the NPM1-mut enriched cluster
compared with the other clusters (mean decrease accuracy = 0.010 and 0.005, respec-
tively, Figure 2.6B), suggesting an increased intracellular need and/or uptake leading to
serum depletion.
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Figure 2.6: Intracellular and biofluid metabolomics show association with AML molecular

classification. Springer Nature, 2021
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Figure 2.6: A Unsupervised hierarchical clustering of AML according to intracellular

metabolomic profiles (MS, each row denotes a metabolite, each column a sample). B Top

15 metabolites contributing to separation of the three MS metabolic clusters (1, 2, 3). The

metabolites belong to the following superpathways: amino acids and their derivatives (tyro-

sine, N-acetylalanine, phenilalanine, tryptophan, threonine, lysine), intermediates of purine and

pyrimidine metabolism (hypoxanthine, adenosyne-5’-monophosphate, uridine) and lipids (sphin-

golipid, phosphatidylinositol, phosphatidylethanolamine, phosphatidylcholine, cholesterol, phos-

phatidylserine. Colored squares on the right indicate metabolite levels in each cluster. C

Molecular classification of MS metabolic clusters (27). Due to the low number of t(8;21)

and inv(16)/t(16;16) cases, they were grouped in the core-binding factor (CBF) category and

a t(6;9) patient with complex karyotype was included in the TP53/aneuploidy category (NPM1

NPM1-mut, chr/spl chromatin/spliceosome-mut, TP53/A TP53-mut/aneuploidy, inv(3) inv(3)/t(3;3),

KMT2A KMT2A-rearranged). D Hierarchical clustering of AML patients belonging to the NPM1-

mut, chromatin/spliceosome-mut or TP53/aneuploidy molecular classes according to biofluid

metabolomic profile (NMR). These components were selected as the combination of urine and

serum spectral features that best described the above mentioned genomic stratification. Of the ten

features selected via stochastic gridsearch, seven came from serum spectra, indicating serum as

the principal vector of information for this particular stratification. Colors indicate the score on

each PC. E Molecular classification of NMR metabolic clusters. F Top scoring serum metabolites

separating NMR clusters 2, 3, and 4. Signature metabolites were extracted from sera samples by

selecting the highest scoring signals in terms of presence amongst the sera PC responsible for

the best separation of molecular subgroups and the average of absolute values of their loadings.

Statistical significance was obtained with SciPy.Stats Kruskal–Wallis H-test using stepdown Sidak

correction. Notch width corresponds to the confidence interval of the median.
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NMR-driven metabolic classification identifies two subgroups of NPM1-mut patients

Our data so far described a significant association between genomic and metabolic pro-
files. However, even within the same genomic category, different subgroups can be
identified according to combinatorial mutation patterns and consequently they may show
metabolic differences. This hypothesis was confirmed in patients carrying NPM1 muta-
tions, in whom the metabolic profiles defined two distinct subgroups. NPM1-mut patients
with higher serum levels of choline+trimethylamine N-oxide, leucine and leucine+lysine
(p < 0.05, Figure 2.7A) were enriched for co-occurring mutations in cohesin complex
and DNA damage genes (SMC1A, SMC3, RAD21, STAG2, ATM, ATR, BRCA2, named
NPM1/cohesin-mut), compared with NPM1-mut patients from the other metabolic group
(60.0% versus 9.1% of cases, respectively, p = 0.024). To gain insights into molecular
mechanisms associated with the metabolic differences between NPM1/cohesion-mut and
NPM1-mut AML, we analyzed paired exome and transcriptome data from the TCGA and
BEAT AML datasets for the same genetic subgroups. Twenty-three percent of NPM1-mut
AML (32/137) also carried at least one alteration in recurrently mutated genes (25) be-
longing to the cohesin complex or DNA damage pathways. Compared with NPM1-mut
AML, NPM1/cohesin-mut cases were characterized by a lower white blood cell count
(39.7 vs. 64.1 cells/mm3, p = 0.006) and a significantly higher mutation load (average
mutation number: 15 vs. 9, p < 0.001), with lower frequency of IDH1–2/TET2 mu-
tations (21.9% vs. 46.7% of NPM1-mut, p = 0.014, Fig. 6B). FLT3 alterations were
evenly distributed between the two groups (Figure 2.7B) and no differences were ob-
served in clinical outcome. At transcriptional level, signatures of cellular response to cy-
tokines and JAK-STAT cascade were significantly downregulated in NPM1/cohesin-mut
AML (Figure 2.7C). Accordingly, NPM1/cohesin-mut AML showed reduced expression
of genes involved in the regulation of immune and inflammatory response, along with
others related to cell differentiation and metabolism (Figure 2.7D). We then compared
the ex vivo response of NPM1/cohesin-mut and NPM1-mut AML to a panel of targeted
agents (n=122, BEAT AML (25)). NPM1/cohesin-mut AML showed decreased sensitiv-
ity to the Aurora kinase A inhibitor MLN8054 and the FLT3/JAK inhibitor Midostaurin
but responded better to SYK, MET, and EGFR inhibitors (Entospletinib, JNJ-38877605,
Crizotinib, Foretinib, Lapatinib, Pelitinib, Figure 2.7E). These data suggest that the co-
occurrence of different mutations with altered NPM1 may confer a distinct metabolic,
transcriptomic, and drug sensitivity profile to the leukemic cells.
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Figure 2.7: Metabolic, genomic, transcriptomic and drug response differences between

NPM1/cohesin-mut and NPM1-mut AML. Springer Nature, 2021
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Figure 2.7: ASerum metabolites separating NPM1/cohesin-mut and NPM1-mut AML (TMAO

trimethylamine-N-oxide). B Oncoprint of mutations in AML-related genes (frequency > 3% in

the overall population) in NPM1/cohesin-mut and NPM1-mut AML. WES data were obtained from

the TCGA (n=13 NPM1/cohesin-mut, n=33 NPM1-mut) and BEAT AML (n=19 NPM1/cohesin-

mut, n=72 NPM1-mut, including 7 relapse cases) cohorts. Rows denote genes or groups of

genes (cohesin/DD cohesion/DNA damage-related genes). Columns represent frequency of mu-

tations and single patients (ITD internal tandem duplication). C Signatures of cytokine receptors

and JAK-STAT cascade from GSEA showing significance in both datasets (TCGA, left to right:

cytokine–cytokine receptor binding, regulation of JAK-STAT cascade, n=9 NPM1/cohesin-mut,

n=25 NPM1-mut; BEAT AML, left to right: cytokine receptor activity, JAK/STAT cascade, n=14

NPM1/cohesin-mut, n=47 NPM1-mut, including 3 relapse cases). D Genes involved in immune re-

sponse, cell differentiation, tumor growth regulation, cytoskeleton, metabolism and other cellular

processes, showing a significantly different expression between NPM1/cohesin-mut and NPM1-

mut AML in both cohorts. E Area under the curve (AUC) for the drugs showing a significantly

different response between NPM1/cohesin-mut and NPM1-mut AML was plotted for the two co-

horts (NPM1/cohesin-mut, n=6–13; NPM1-mut, n=31–45) (25): MLN8054 (Aurora kinase A in-

hibitor), Entospletinib (SYK inhibitor), Midostaurin (FLT3, JAK inhibitor), JNJ-38877605 (MET

inhibitor), Crizotinib (ALK, MET, ROS1, NTRK inhibitor), Foretinib (MET, KDR, TIE inhibitor),

Lapatinib (ErbB-2, EGFR inhibitor), Pelitinib (EGFR inhibitor). Boxes represent the mean (hori-

zontal line) and extend from the 25th to 75th percentiles; whiskers extend from the minimum to the

maximum value and each value is plotted (*p ≤ 0.05, **p ≤ 0.01).



38 Chapter 2. Fingerprinting Perturbations and Dynamics of Metabolic States

Figure 2.8: Modeling the metabolic network of NPM1/cohesin-mut AML. NPM1/cohesin-mut spe-

cific metabolic reaction perturbation network. (red: minimum flux, green: maximum flux, light

blue: no information among NPM1/cohesin-mut-specific alterations). Sizes of nodes are pro-

portional to links originating from that node and pointing towards others (outdegree). Springer
Nature, 2021

Predicting metabolic specificities of NPM1/cohesin-mut AML

Seven downregulated genes in NPM1/cohesin-mut compared with NPM1-mut AML en-
coded for enzymes involved in nucleotide (ADCY9, DPYSL2), lipid (LPL) and carbo-
hydrate (CHST13) metabolism, energy production (CYP1B1) and transporter/exchanger.
We thus modeled the consequences of gene expression alterations of NPM1/cohesin-mut
AML on the intracellular metabolome by reconstructing genome scale metabolic net-
work models. Based on the analysis of diverse cellular models and our MS data, we
selected a hematopoietic model derived from Recon2. The selected reconstruction was
validated by modeling the effect of IDH mutations. We first predicted the changes in
metabolic fluxes induced by the altered expression of enzymes between NPM1-mut and
NPM1-wt AML. Interestingly, among the perturbed metabolites, experimental evidence
confirmed increased N-acetylaspartate and glutamine, reduced spermidine levels (among
others) in NPM1-mut compared with NPM1-wt AML. We then simulated the intracel-
lular metabolome of NPM1/cohesin-mut AML by adding the 7 downregulated genes to
the model. Eleven metabolites and 42 reactions were predicted to be specifically per-
turbed in the NPM1/cohesin-mut model. A metabolic network reconstruction of the al-
tered reactions showed a major cluster centered on nicotinate, nicotinamide, and inosine
exchange/modification, with connections to glycolysis and metabolism of leukotriene in-
flammatory molecules (Figure 2.8), that were also confirmed by pathway enrichment
analysis of genes catalyzing the network reactions. Notably, NPM1/cohesin-mut AML
showed lower intracellular levels of inosine-5’-monophosphate and glucose when com-
pared with NPM1-wt and/or NPM1-mut AML. Overall, our multistep approach defined
the metabolic specificities of NPM1/cohesin-mut AML.
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2.1.4 Study conclusions

Few studies have previously analyzed the metabolic profile of AML patient serum (54; 55;
56; 57; 58) or of a limited number of primary cells (41; 59; 60). Here, we have performed
integrated genomics and metabolomics analysis in AML, which showed genetic-related
differences in the metabolic profiles and defined multiple subgroups with distinct con-
stellations of mutations and metabolic features. First, integrated serum and urine analysis
accurately discriminated between AML and normal patients, suggesting a robust approach
for evaluating disease metabolic subgroups and a valid, low-cost approach for noninvasive
population analyses.

Second, we integrated biofluid and intracellular metabolomics. We used NMR and
MS as complementary techniques for biofluids and primary cell profiling, respectively.
The rationale of this approach is twofold: it allowed us to benefit from the reproducibil-
ity of NMR, which offers unbiased information and could enable a rapid translation to
the clinical practice, and from the high sensitivity of MS in metabolite detection from
low cell numbers. Our comprehensive view showed alterations in the TCA cycle and in
the metabolism of purine nucleotides, amino acid, fatty acids, keton bodies, polyamine,
glutamine and other amino acids. Notably, many of the identified pathways can be ther-
apeutically exploited (e.g. glutaminolysis, arginine uptake, aspartate production, fatty
acid oxidation, polyamine metabolism, ketogenesis) and the inhibition of some of them
achieved promising results in AML (41; 61) or in cancer (62; 63) models.

When integrated with genetic features, the metabolic profiles showed association with
NPM1-mut, chromatin/spliceosome-mut and TP53-mut/aneuploid AML classes. Our
data also classified NPM1-mut AML carrying mutations in cohesin or DNA damage-
related genes as a distinct metabolic subgroup. This group does not associate with IDH1–2-
TET2 mutations, which are also frequently observed in NPM1-mut cases (25; 26; 64)
but it was characterized by higher mutation burden, lower white blood cell count and
dowregulation of immune-related genes (65). Accordingly, in silico modeling of the
NPM1/cohesin-mut-specific metabolic perturbations predicted changes in the balance of
leukotrienes. Moreover, flux and network analysis based on the identified transcriptomic
changes pointed at alterations in the purine and NAD superpathways as NPM1/cohesin-
mut-specific ones. Inosine-5’-monosphate, an intermediate in the purine metabolism,
showed low levels in NPM1/cohesin-mut compared with NPM1-mut AML cells. With
regard to therapeutics, NPM1/cohesin-mut AML were more sensitive than NPM1-mut
AML to EGFR inhibition, which may lead to the release of the differentiation brake (66)
and to drugs targeting the tyrosine kinase receptor MET, likely due to a mild autocrine
pathway activation in these cases, who express low levels of the ligand (67).

Overall, our results provide a map of the crosstalk between metabolic pathways and
between genomics and metabolomics in AML, reflecting functional interactions and de-
pendencies that could be therapeutically exploited and provide the rationale for a switch
to a genomic- and phenotypic-driven personalized medicine
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2.2 Modelling Dynamics of Metabolic States

It has been shown in the last section that metabolomics of biofluids and cells, when joined
with other omic data in a framework to characterize the crosstalk between the different
snapshots of the molecular states of a system, can find accurate fingerprints of perturba-
tions that can in turn help important etiologic conclusions about the system itself. An
interesting question that arises from the results achieved by fingerprinting approaches (in
the study previously shown but also from the recently flourishing literature on the topic),
is how to study the response of a system after a perturbation and which information can
be obtained from the molecular states it crosses when trying to get back to equilibrium.
For instance, can we obtain the molecular, metabolic fingerprint of a pathology from a
group of individual and evaluate how these individuals respond to a therapy, that can be
seen as an additional perturbation that forces the system to move from its pathological
state? Answering such a question can ultimately lead to useful applications in phenotyp-
ing the response over time of different (classes of) individuals to drugs, therapies, diets,
habits and environmental factors. This in turn can translate to more individually-tailored
therapeutic indications, that can increase the odds of favorable outcomes especially after
exposition to oncologic pathologies. In the following section, we report the preliminary
result of a biofluid NMR metabolomic based framework that is being developed to adress
the study of the evolution of fingerprints in the metabolomic data space over time.

2.2.1 Metabolomic evaluation of theraupetic response in breast cancer

The data analyzed in this early-stage study come from an ongoing clinical trial designed in
cooperation with the Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori".
The study is designed to monitor the ongoing metabolomic conditions of serum and urines
from a cohort of women that underwent breast cancer surgery.

Samples processing and analysis

Urine and serum aliquots were stored at −80◦C until their use for the NMR analysis. 630
µL of urine sample were centrifuged to remove debris, then 540 µL of supernatant were
placed in a clean Eppendorf containing 60 µL of D2o-based phosphate buffer contain-
ing also trimethylsilyl propionate (TSP) as Internal Std and sodium azide (NaN3) as an
antibacterial agent. A total of 590 µL of the mixture was transferred into 5 × 178 mm
(7") 5 mm, outer diameter NMR tubes (for Bruker Match holder). 1H NMR spectra were
recorded at 298 K with an AVANCE spectrometer (Bruker BioSpin, Karlsruhe, Germany)
operating at a proton frequency of 600.13 MHz, equipped with an autosampler with 60
holders. The HOD residual signal was suppressed by applying the NOESYGPPR1D se-
quence (a standard pulse sequence included in the Bruker library) incorporating the first
increment of the NOESY pulse sequence and a spoil gradient. Each spectrum was ac-
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quired using 32 K data points over a 7211.54 Hz spectral width (12 ppm) and summing
up 128 transients. A 90◦ pulse of 12.5 µs was set up. A delay of 5 s between transients,
extending the acquisition time of 2.27 s, was chosen to provide a recycle time 5 times
longer than the longitudinal relaxation time of the protons under investigation, expected
to be not longer than 1.4 s. The data were Fourier transformed and phase and base-
line corrections were automatically applied using TopSpin version 3.0 (Bruker BioSpin,
Karlsruhe, Germany). Signals were assigned by comparing their chemical shift and mul-
tiplicity with Chenomx software data bank (version 8.1, Edmonton, Canada). Analysis of
Spectra. Spectra were exported in ASCII file format and then imported into R software
(version 3.3.2). Chemical shift referencing was performed by imposing the TSP signal to
0.00 ppm. The spectral regions including only noise (e.g., the spectrum edges below 0.5
and above 10 ppm), as well as the data points which are strongly affected by the resid-
ual water (between 4.95 and 4.7 ppm) and the urea signals (5.45-6.1 ppm) were removed
prior to data analysis. Normalization was carried out using the PQN algorithm. Spectra
were bucketed in a total of 413 spectral features.

Cohort and dataset

The first batch of samples for which the framework has been tested refers to 60 patients
and 20 healthy controls. To monitor the evolution of metabolomic fingerprints in patients,
samples of serum and urine has been drawn at different time points, 3 pre and 6 post
surgery:

• Pre-intervention samples: 14 days prior the surgery (T14P), 7 days prior the
surgery (T7P), 1 day prior the surgery (T1P)

• Early post-intervention samples: 14 days after the surgery (T14D), 28 days after
the surgery (T28D)

• Late post-intervention samples: 6 months after the surgery (T6D), 12 months
after the surgery (T12D), 18 months after the surgery (T18D), 24 months after the
surgery (T24D).

To avoid misinterpretation of results and enhance robustness, each classification task
has been k-fold crossvalidated with stratifications to mantain proportion between sample
classes and patient age ranges as much as possible. Spectra from the late-post intervention
samples were not considered in the present model, to avoid possible confounding effect
introduced by long-term pharmacological treatments (i.e. chemotherapy). After prepro-
cessing, filtering and outlier checks, metabolic profiles and therapy response trajectories
were computed for a total of 45 patiens using serum samples and a total of 39 patients
using urine samples.
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Therapy response trajectory extraction

The rationale behind the experimental design is to somehow define a therapy response
trajectory in the metabolomic space, defined by the molecular signature of breast cancer,
for each patient. To achieve this, we developed a framework that can be summarized in
the following steps :

1. Define the molecular signature of breast cancer with the best possible projection on
latent structures that separates healthy control spectra from pre-intervention spectra.

2. Project post-intervention spectra into this space, using the transformation coefficient
of the previously trained model.

3. Compute, for each patient, the centroid of its pre-intervention spectra and post-
intervention spectra in the metabolomic space. This will characterize each indi-
vidual in the metabolic space, as a function of its variations from the molecular
signature of its pathological state.

4. Compute the centroid of healthy control spectra to find the point in the metabolomic
space that is assumed to define an ideal response to therapy. Compute the vector that
joins the centroid of pre-intervention spectra with the centroid of healthy controls
for each patients. This is the ideal therapy response vector.

5. Compute the vector that joins the centroid of pre-intervention spectra with the cen-
troid of post-intervention spectra for each patient. The norm of this vector defines
the intesity of the therapy response.

6. Perform cosine similarity analysis (68) between the vector computed in step 4 and
the vector computed in step 5. This will yield a measure of how much the response
direction of each patient is similar to its ideal response direction.

7. Cluster patients based on the features computed in step 5 and 6. The common char-
acteristics of patients belonging to the same cluster, defined by therapy response
features, can be studied to phenotype different populations of patients.

2.2.2 Early-stage results and discussion

Serum and urine lower dimensional metabolic spaces

Using an AdaBoost framework based on decision trees, many concurrent projection on
latent structure models were trained. The resulting best model is a projection in a 5-
dimensional PLS space, whose latent component reached an average validation fold ac-
curacy of ∼ 0.8 in separating T1P spectra and healthy controls spectra (Figures 2.9, 2.10).
Although limited by the sample size at the stage of the study, that did not allow for a ro-
bust identification of a great number of metabolites, interesting information emerges from
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Figure 2.9: Weights of the first PLS latent variable of the best classification model, highlighting

importance zones of serum spectra for breat cancer fingerprinting.

the metabolomic signature of breast cancer (Figure 2.10). Serum metabolic space yields
information about a possible perturbation of lactate metabolism, as well on the entire
fatty acid metabolism, from beta-oxidation to ketogenesis (through the presence of ace-
toacetate). Urine highlights a perturbation of TCA cycle and glycolysis through an higher
presence of citrate in controls urine with respect to T1P urine. Perturbation of lactate and
energetic metabolism are often found as common background of cancer cells, that rely on
anomalous pathways for energy production (especially glycolysis) with respect to healthy
ones. Interestingly, the presence of sarcosine in the metabolic space of urine points to
a possible perturbation of choline-glicine metabolism. Furthermore, sarcosine is being
investigated as a possible marker of breast cancer subtypes (69).

Therapy response analysis in the metabolic space

Due to urine spectra being generally more sensitive to drug intake, time of collection dur-
ing the day and variability in general and given the sample size at this stage of the study,
we focused on modeling therapy response based on serum spectra. Following the steps
described in 2.2.1, we obtained a summary of therapy response analysis (Figure 2.11)
projected in the 3-D extension of the serum space computed in 2.10. Different patients
obviously exhibit difference therapy response, both in terms of direction of the response
(where surgery and treatment has caused a patient’s metabolomic state to move) and its
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Figure 2.10: 2-D projection of T1P spectra and healthy controls spectra on the first two latent

components of the best dimensionality reduction model. The metabolic serum space contains

information about lactate and fatty acid metabolism (LDL/VLDL = low density, very low density

lipids). The urine serum space contains information about TCA cycle and creatinine metabolism,

as well as info on choline metabolism through the presence of sarcosine.

intensity (how much surgery and treatment has caused a patient’s metabolomic state to
move). To assess a clearer trend in therapy responses, we focused on the characteriza-
tion of patients with their distribution analysis and clustering based on therapy response
features. Just by looking at the distributions of therapy response norms in serum 2.12, a
modelling of its probability density function (PDF) with two different kernel density esti-
mation (KDE) methods, a distinct bimodal trend appears. This suggests the presence of at
least two distinct type of patients, as far as the intensity of therapy response is concerned.
Encouraged by these results we performed a hierarchical clustering of patients using the
two surgical therapy response features 2.13. The individuation of the two clusters con-
firms the bimodal nature of the distribution of therapy response norms, highlighting the
existence of at least two macro classes of patients that exhibit differences (both in intensity
and direction) in therapy responses. The investigation of the etiology of this stratification
is the next objective of this ongoing study: the aim is to find correlation of this stratifica-
tion with cytokines response, clinical variables and other omic data regarding molecular
state that are currently being collected from the cohort.
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Figure 2.11: Visualization of different responses to the therapy of each patient. Arrow colouring

is based on the categorization of direction of responses based on cosine similarity (CoSim) values.

CoSim values spans from (−1, 1), with CoSim=1 denoting a parallel direction with concordant

sense with respect to the ideal response vector (translucent blue lines); CoSim = -1 denoting

a parallel direction with opposite sense with respect to the ideal response vector; CoSim = 0

denoting an orthogonal direction with respect to the ideal response vector.
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Figure 2.12: Probability density function (PDF) estimation of the therapy response vectors norms

distribution. Two different KDE methods highlight bimodality, suggesting a stratification in pa-

tients with respect to therapy response.

Figure 2.13: Hierarchical clustering of patients based on therapy response norm and cosine

similarity from serum metabolomes. Two distinct clusters appear, suggesting a stratification of

patient that must be investigated.
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2.3 Chapter Conclusions

In this chapter we outlined possible ways to study biochemical complex system using
patterns of omic data. In particular, approaches based on fingerprinting the molecular
state of a system, at various level of resolution, and their response to a perturbation such
as a disease, are offering important results and opening many possibilities for modelling.
Modelling the crosstalk of molecular patterns descriptors of the compartment of a system
at different resolutions, often leads to important etiologic conclusions about aspects of
extremely complex systems, such as the human organism. The studies reported and the
frameworks implemented and discussed, highlight two important aspects in modelling the
exposure of the human organism to pathologic perturbations: the possibility of linking of
systemic and cellular level metabolomics to the simulation of the enzymatic level through
genomics, and a possible way to study individual variability in responding to perturbations
over time. In the next chapters, these premises will be exploited to study the exposure of
the human organism to another key perturbation, that requires a similar holistic paradigm
of description : diet.





3Chapter

Macroscopic Exposures: Epidemiological
Data Analysis and Physiological Outcomes

3.1 Studying health, lifestyle and diet: a major challenge

The fate of an inherently holistic approach, that is required to shed light upon the interac-
tion between bio-molecules and the human organism, rooted at many levels in heuristic
methodologies, is obviously tied at its most macroscopic level to the quality of epidemio-
logical data. The drive to develop cheap and portable systems for health and lifestyle data
collection, together with a growing interest in the parametrization of nutritional habits is
linked to the goal of more personalized medical interventions and suggestions. To this
end, a great deal of data types and their relationships are being explored in several fields
of life sciences. Classical health indicators, environmental exposures, nutritional and cul-
tural factors are all studied to stratify and classify free living populations, in an effort
to phenotyping individuals and predict all sorts of clinical and physiological outcomes.
However, besides for a small cluster of known factors with an almost deterministic detri-
mental effect on health (smoking, drinking, certain chemical exposures...) shedding light
upon health risk factors and their health-affecting mechanisms is a challenging matter.
The presence of a plethora of confounding factors, including genetic (both genotypic an
phenotypic) and epigenetic variability of individuals, hinders the results of even the largest
epidemic studies in free living populations; correlation, causality and etiology of health
risk factors are often difficult to determine. This holds particularly true when trying to
determine the effects of specific diet patterns or nutritional interventions on health con-
ditions, giving rise to a sort of paradoxical outcome. On one hand, it is established that
diet has a major influence on health: optimal eating is associated with increased life ex-
pectancy, reduction in lifetime risk of chronic diseases, enhanced gene expression, while
bad eating habits are associated with leading causes of chronic diseases (70). On the other
hand, there have been no long-term studies comparing diet patterns using rigorous statis-
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tical methods for bias and confounding factors suppression. However, even without a
comparison of strictly defined diet patterns, literature strongly supports a background set
of healthful eating habits: minimally processed foods, predominantly plants, is associated
with health promotion and disease prevention and is coherent with key elements of seem-
ingly distinct dietary approaches (71). Moreover, the health impact of dietary patterns has
a strong dependence with the metabolic state of individuals. Clinical conditions, genetic
traits, sex, age, physical activity are all key determinants of metabolic features such as
daily energy expenditure (72). To complete an already confused picture, there is a well
documented source of concern about the accuracy of canonical methods of dietary as-
sessment, such as food frequency questionnaires (FFQ) and 24 hour recall questionnaires
(24Hr) (73; 74).

Thus, due to difficulties in stratifying individuals and taking confounding factors into
account, ever-shifting paradigms in diets and dietary patterns definition, an uncertainty
about how efficiently dietary assessment (FFQ, 24Hr) can support etiologic studies, the
links between health and nutrition are still largely unexplored. The work proposed in the
next sections is focused on taking some of the challenging aspects of epidemiological
data analysis in nutritional studies on: a rigorous statistical learning model to study diets
and eating habits as patterns of macronutrient intakes and their correlation to clinical
outcomes, based on state of art reference for nutritional data handling and standardization,
in a cohort of subjects at risk of metabolic syndrome (MetS).

3.2 Correlations between inadequate Energy/Macronutrient intake and clinical al-

terations: the importance of stratification and model selection

This section is entirely based on the published work by Danesi, Mengucci et al. (75).

3.2.1 Introduction to MetS

Metabolic syndrome (MetS) is a pathologic condition including a cluster of components
such as hypertension, dyslipidaemia, insulin resistance, hyperinsulinemia, glucose intol-
erance, and obesity, in particular central obesity (76). MetS represents an epidemic clin-
ical condition in countries where obesity and Western, unhealthy dietary patterns prevail,
and its development is associated with both non-modifiable and modifiable risk factors as
low physical activity and a poor-quality diet (77). Currently, lifestyle-based interventions
aimed at normalising body weight (BW) and controlling lipid levels, glucose sensitivity,
and blood pressure are the most effective preventive approaches to MetS. Although avail-
able evidence suggests certain nutrients, foods, and dietary patterns have beneficial effects
on MetS, there is no definitive agreement on which nutritional strategy is the most effec-
tive (78; 79). The association between different eating patterns and the MetS components
has been evaluated in several studies (80; 81); in general, adherence to the Mediterranean
or Nordic diets is associated with a lower prevalence of MetS or reduction in its com-
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ponents (82), while a Western dietary pattern is positively correlated with greater odds
of MetS (83). Conversely, the association between the individual macronutrient intake
and the components of the MetS has been analysed in a few studies (84; 85) and con-
troversy still exists about the optimal amount and source of dietary macronutrients and
their relative proportions to counteract MetS risk. Over the past decades, an impressive
body of quantitative knowledge regarding how dietary changes impact various aspects of
BW and metabolism has been accumulated. Integrating this knowledge to make quanti-
tative predictions is a formidable task given the multiple nonlinear interactions between
various organ systems. Such an integrative approach is required to better connect en-
ergy and nutrient intake to normal physiology as well as to derangements that underlie
conditions such as obesity, diabetes, and MetS. To our knowledge, there are no available
reports demonstrating the predictive role of the energy/macronutrient intake gaps (molec-
ular level), as assessed by the difference with the dietary reference values, on the clinical
parameters (macroscopic level) related to MetS. In the present retrospective study, we
correlated energy and macronutrient intake to the clinical features of MetS, with the fi-
nal aim to provide an additional indication about the most important dietary contributors
to clinical abnormalities related to an increased risk of MetS. To grasp the role of each
nutritional variable in the general frame of MetS pathological conditions, a model selec-
tion for various regression models between nutritional variables and clinical outcomes
was performed. The analysis was inherently multivariate and allowed for the unveiling of
how inadequate energy/macronutrient intake can predict clinical alterations leading to the
MetS onset in a group of subjects at risk of the disease.

3.2.2 Experimental Design and Statistical Methods

Cohort and dietary assessment

The subjects involved in the study were men and women (age 18–80 years) at risk for
MetS enrolled in the randomised, double-blind, placebo-controlled, parallel intervention
trial performed in the framework of the EU project PATHWAY-27. Eligible volunteers had
two to four of the MetS diagnostic criteria (86), with at least one of them being elevated
fasting triglycerides (TG) or low high-density lipoprotein cholesterol (HDL-C). Exclusion
criteria are reported in Table S1 (https://www.mdpi.com/article/10.3390/nu13041377/s1).
Volunteers were recruited in four European centres: Human Nutrition Research Centre of
Auvergne (Clermont-Ferrand, France), Max Rubner-Institut (Karlsruhe, Germany), Uni-
versity of Leeds (Leeds, UK), and St. Orsola-Malpighi Hospital (Bologna, Italy). At
recruitment, blood pressure and anthropometric measurements (height, weight, and waist
circumference, WC) were taken by trained staff as described in Bub et al. (2019) (87).
Blood was collected and analysed, as previously reported (88). The present study ad-
dressed the intake of energy and macronutrients at baseline as possible dietary predictors
of the onset of MetS. At recruitment, participants were asked to complete a validated
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semiquantitative food frequency questionnaire (FFQ) that was developed in the European
Prospective Investigation into Cancer and Nutrition (EPIC) study (89), and a 24-h dietary
recall (24hR), which is designed to assess energy and nutrient intake. The FFQ (covering
a 12-month period) and the 24hR were administered by trained personnel. Both FFQ and
24hR were completed by 281 participants (125 females and 156 males). Of the 281 di-
etary assessments, 66 with missing clinical information were excluded from the analysis
and 215 subjects (94 females, aged 23–77 years, and 121 males, aged 24–78 years) having
a complete dataset of both dietary assessment and clinical parameters were considered.
After misreporting evaluation, 157 subjects were included in the analysis.

Energy intake and misreporting

Energy and nutrient intakes from all foods and beverages were calculated using national
and international databases and literature information. Dietary information by 24hR was
used to corroborate energy and food intakes provided by the FFQ. Daily energy intake
was derived for each subject. Daily intake of total available carbohydrates, sugars, total
fat, saturated fat, and unsaturated fat was expressed as percentage of daily energy intake
(% EI). Intake of protein, dietary fibre, and alcohol was reported as g per day. Based
on the protocol developed by the European Food Safety Authority (EFSA) (90), energy
misreporting was assessed as the ratio of reported energy intake (EI) to estimated basal
metabolic rate (EI:BMR) according to the Goldberg method (91) modified by Black (92).
The FFQs were used to estimate reported EI and BMR was calculated using the validated
sex- and age-specific Oxford equations suitable for use in populations with a range of
weight statuses (93). A moderately-active physical activity level (PAL) of 1.6 was as-
sumed for all participants (94). Misreporters of dietary intake were identified by EI:BMR
ratios < 0.901 (underreporters) or > 2.841 (overreporters). Fifty-eight participants were
classified as misreporters (17 females and 41 males), and further statistical analysis was
performed on a total of 157 subjects (77 females, aged 23–77 years, and 80 males, aged
25–76 years).

Data tricks: comparison with diet reference values

In each subject, adequacy of intake was assessed by comparing energy and nutrient in-
takes with age-/sex-specific EFSA dietary reference values (DRVs) (95) or nutrient re-
quirements and dietary guidelines of WHO/FAO (96; 97) if the former were not available.
Specifically, the following daily intakes were considered adequate:

• Energy ranging between EFSA DRVs for energy calculated according to age us-
ing PAL values of 1.4 and 1.8, which approximately reflect low active (sedentary)
and active lifestyles (6.8–10.1 MJ/day and 8.3–12.6 MJ/day ranges for females and
males, respectively);
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• Total carbohydrates ranging from 45 to 60% energy (% EI);

• Sugars (monosaccharides and disaccharides) < 10 % EI based on the WHO/FAO
dietary recommendations;

• Dietary fibre intake ≥ 25 g/day;

• Protein between the average requirement (AR) and the population reference intake
(PRI) of EFSA DRVs;

• Total fat ranging from 20 to 35% EI;

• Saturated fatty acid (SFAs) < 10%EI according to FAO;

• Total unsaturated fatty acids (UFAs), i.e., monounsaturated fatty acids (MUFAs)
plus polyunsaturated fatty acids (PUFAs) ranging from 15 to 20% EI, as calculated
by difference according to FAO;

• PUFAs ranging from 6 to 11% EI according to FAO.

In addition, a moderate alcohol consumption (up to one serving per day for women
and up to two servings per day for men) (98) was considered acceptable. Differences

between current intake and corresponding recommended intake (mean value of rec-

ommended range for energy, total carbohydrates, protein, total fat, and total UFAs

and PUFAs; limit of adequate intake for sugars, dietary fibre, SFAs, and alcohol)

were calculated. The resulting delta values were then used as features of the predic-

tive model.

Statistical learning: model selection and fine tuning

Data were stratified by gender. All clinical parameters were classified as normal (1) or
abnormal (2) according to their overlap with the recognised normal ranges (Table S2,
https://www.mdpi.com/article/10.3390/nu13041377/s1). The distribution of clinical pa-
rameters was evaluated using the D’Agostino–Pearson test. Student’s t-test for normally
distributed data and Mann–Whitney U test for non-normally distributed data were used
to compare the general characteristics of the study population grouped by gender. All
statistical analyses were conducted using the Python programming language, using cus-
tom scripts and the sklearn package (99). A predictive model for each clinical param-
eter was computed using all dietary variables via a ridge regression framework (100).
To simultaneously reach the best prediction performances while learning which sets of
dietary macronutrient intakes (variables) were the most important for each predicted clin-
ical outcome (target), a multivariate model was applied. To this end, a model selec-
tion was performed in order to find the best regression model, using a stochastic grid-
search of the parameters of each regression for optimization. Since no univariate effect
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of a single nutritional variable on the clinical targets emerged, we assumed that multi-
variate techniques were the most promising methods as they are capable of simultane-
ously reaching the best prediction performances while learning which sets of variables
are the most important for each prediction task. Indeed, penalised maximum likelihood
methods (LASSO regression, ridge regression) outperformed other classes of regression
models as previously shown in other nutritional studies (101; 102). In particular, the
ridge regression yielded the best fit on the data and was selected as the model to be
fine tuned. The complete framework used for learning in this study can be found at
https://github.com/CarloMengucci/Model-selection-and-learning-for-nutritional-data.
The ridge regression belongs to the wider class of penalised linear regressions. These
types of models allow computing a regression while shrinking the coefficients of uninfor-
mative variables. The linear ridge regression minimises the function:

n
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p
∑

j=1

b jxi j)2 + α

p
∑

j=1

β2
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p
∑
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β2
j (3.1)

RSS = residual sum of squares, with i = index of summation for observations, n =
number of observations (1 to 77 for women, 1 to 80 for men), j = index of summation for
variables, p = number of variables. The penalty coefficient α can be tuned to optimise the
bias-variance trade-off of the model, leading to a maximisation of the predictive perfor-
mance as a function of the smallest set of the descriptive variables necessary to achieve
said performance. The penalty term introduced by the ridge regression is useful to deal
with multicollinearity and prevent overfitting; for the present case, it translated to the
shrinkage of coefficients of dietary variables strongly correlated among themselves and
weakly correlated to a given clinical marker. The absolute value of the regression coeffi-
cients β is related to the univariate effect of a given dietary variable x j on a given clinical
marker y, while the sign of coefficients is not directly interpreted as it would have been
in a normal ordinary least squares (OLS) solution. Before regression, data were standard
scaled. All the ridge models computed were cross-validated to optimise the parameter
α through 5-fold cross-validation. Train and test subsets were extracted to maintain the
proportion between recruiting centres to minimise the possible confusion factor tied to
dietary habits of the country of origin. To represent the statistical dependence between
the rankings of dietary variables and clinical outcomes, correlation heatmaps were also
computed using the Spearman rank correlation coefficient (103), which measures how
well the relationship between two variables or targets can be described using a monotonic
function. The Spearman rank correlation coefficient allows for nonlinear relationships
to be detected, providing a good description of the relationships between features and
targets.
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3.2.3 Results

Table 3.1 summarises the characteristics of volunteers included in the study. As expected,
a significant heterogeneity was evidenced between men and women, possibly due to dif-
ferent hormonal profiles and body fat distribution (104; 105). Ridge-type penalisation
was obtained retaining all predictors and minimising collinearity amongst variables; it
performed better than LASSO probably due to the complexity of interactions of all the
dietary variables in defining the overall clinical picture in the subjects at risk of MetS. In-
deed, ridge regression performs better when many predictors have coefficients of roughly
equal size (106). The Pearson correlation coefficients of determination (R2) for the clin-
ical outcomes according to the ridge regression are reported in Table 3.2. To visualize
the overall complexity of the relationships between clinical parameters and nutritional
variables, we computed the heatmap of correlations between them (Figure 3.3). The
topology of the heatmaps for male and female study participants was slightly different,
highlighting the gender-related differences in clinical and nutritional characteristics asso-
ciated with MetS. Within these premises, the linear ridge regression has been chosen as
the best trade-off between predictive performances and interpretation of results.

Based on the results of the predictive model (Table 3.2), we focused on clinical fea-
tures that were better estimated by the adequacy/inadequacy of dietary intakes (R2 > 0.4,
as a generally accepted standard (107)), highlighting the variables characterising the pre-
diction. To this aim, ridge regression performance and the magnitude of regression coeffi-
cients were plotted per individual clinical outcome (figures S1 and S2 in supplementals, at
https://www.mdpi.com/article/10.3390/nu13041377/s1); an example for males BMI pre-
diction (with protein color gradient) and ridge coefficients is reported in Figures 3.4,3.5.
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Figure 3.1: General characteristics of the study population grouped by gender (medians and

interquartile ranges, IQR). MDPI, 2021
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Figure 3.2: Pearson correlation coefficients of determination R2 for the clinical outcomes accord-

ing to the ridge regression. R2 > 0.4 are in bold. The significance of these correlation coefficients

is p ≤ 0.01. This indicates that the ridge regression is a good model for predicting the respective

clinical outcomes. MDPI, 2021
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Figure 3.3: Spearman’s correlation heat map of adequacy of energy/macronutrient intake (∆,

delta value calculated as difference between current intake and corresponding recommended in-

take of each variable) and clinical parameters at enrolment (Table 3.1) in (a) females and (b)

males. Green circle marks an example of a different pattern in correlation between variables and

targets in males and females. , MDPI, 2021
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Figure 3.4: Example of scatterplot of ridge regression performance per clinical outcome (BMI,

males). The plot is coloured with a continuous gradient related to the position of each subject

(dot) in the distribution of each dietary variable (protein intake in this example). The gradient is

computed on normalised values of the intake of each variable so that an extremely scarce intake

gets the value –1 (indigo) and an extremely excessive intake gets the value 1 (dark red). Values

within the recommended range are normalised accordingly, with the spectre of yellow denoting a

correct intake (∆ ∼ 0). This example shows that in males a protein-poor diet contributes to the

development of obesity in subject at risk of MetS. This result is reflected in the ridge coefficient

plot for this regression, where protein intake has a high-magnitude coefficient associated. MDPI,
2021
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Figure 3.5: Magnitude of regression coefficients (BMI prediction). High magnitude is related to a

significant univariate effect on the prediction of the given target., MDPI, 2021
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According to the model results, inadequate dietary intakes better predicted BMI in
males (R = 0.78) than in females (R = 0.43). In both genders, exceeding energy in-
take was the key predictor of a high BMI, especially for obese subjects, confirming that
BW changes are associated with an imbalance between energy intake and expenditure
(97). Based on our predictive model, overweight and obesity were also predicted by el-
evated intake of total fat (> 35%EI) in males and of SFAs (> 10%EI) in both genders.
This is in accordance with outcomes from epidemiologic studies and clinical trials, which
suggest that total fat (108) and SFA intake (109) are strongly linked to BW. Excessive
intake of SFAs was also a characterising predictor variable of high WC, which was well
estimated by inadequate dietary intakes in males (R = 0.79). In males, low consump-
tion of protein was a good indicator of both elevated BMI and WC. Our results suggest
that consumption of high-energy, low-protein, and high-fat diets, particularly when in-
cluding excessive SFAs, strongly relates to the development of obesity in men and to a
lesser extent in women. This gender-related difference confirms results from long-term
prospective studies evidencing a significant positive connection between weight gain and
dietary fat in a cohort including males and female (110), while energy content from fat was
weakly correlated with weight gain in The Nurses’ Health Study, including only women
(111). Interestingly, neither total carbohydrate nor sugar intake were predictors of over-
weight/obesity. Epidemiological evidence and results from diet intervention trials suggest
that protein and carbohydrate intakes are inversely related to BMI, while excessive intake
of sugars contributes to obesity (112). Although the plausibility of the mechanisms pro-
vides support for a role of sugar consumption in the epidemics of overweight/obesity,
definitive studies are missing (113). In our group of subjects at risk of MetS, the pre-
dictivity of sugar intake on BMI was low and supported the conclusion that there is no
clear or convincing evidence that any dietary or added sugars have a unique or detrimental
impact relative to any other source of calories on the development of obesity (114).

Results from the model indicated that blood TG were better predicted by the dietary
variables in women (R = 0.46) than in men (R = 0.22). In the female subjects, correct
(6–11% EI) or slightly low PUFA intake and correct fibre intake (25 g/day) had a good
predictive value of normal TG level, confirming the importance of dietary fibre in the
maintenance of normal blood TG (115). Although the total PUFA intake must be con-
sidered first when examining dietary habits affecting lipemia (116), it is documented that
high n-3 PUFA intake favourably impacts on blood TG (117), while excessive consump-
tion of n-6 PUFAs may lead to negative effects (118). In this study, based on dietary
questionnaires, it was not possible to accurately discriminate between n-6 and n-3 PUFA
intake and it could explain why high PUFA intake did not predict normal TG level. In
females, inadequate dietary intakes, mainly high consumption of available carbohydrates
and fats, predicted high LDL-C, and adequate total PUFA intake was a predictive variable
of normal LDL-C (R = 0.42). In women, low HDL-C was well predicted by inadequate
intakes (R = 0.44), mainly excessive energy, SFA, and available carbohydrates. Although
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the magnitude scale of the ridge coefficient was generally low for HDL-C prediction, de-
noting a prediction characterised by the combined effect of nutrients rather than a single
dietary variable, overall, our data confirmed evidence in the literature about the negative
effect of excessive carbohydrate intake on dyslipidaemia (119; 120). Total cholesterol
was not well predicted by any dietary intake both in females (R = 0.35) and males (R =
0.25).

Clinical features related to glucose metabolism and insulin sensitivity were better pre-
dicted in men than in women. In males, fasting glucose was well predicted (R = 0.44),
and elevated total fat and SFA intakes were slightly associated with moderate fasting hy-
perglycaemia. These results are consistent with evidence demonstrating that excessive
consumption of total fat (121) and SFAs (122; 123) favour the onset of insulin resistance.
Although no univariate effect of any specific dietary variable was evidenced, fasting in-
sulin and glycated haemoglobin (HbA1c) were moderately predicted by the combined
effect of all dietary nutrients in the male group (R = 0.49 and R = 0.52, respectively).
DBP was not well predicted by the examined dietary variables either in women (R =
0.27) or men (R = 0.40). Conversely, inadequate dietary intakes well predicted high SBP
in males (R = 0.52), and excessive total fat intake concomitant to low PUFA intake was a
good predictor of moderate hypertension (140–159 mmHg). Again, our results confirmed
evidence from observational and epidemiological studies (124; 125; 126). Although sev-
eral studies found an association between alcohol drinking and the prevalence of MetS
and most of its components, in our study, alcohol consumption was not predictive of any
clinical outcome. We speculate that this was related to the very low percentage of en-
rolled volunteers exceeding the acceptable consumption of alcoholic beverages (6.5% of
females and 16.5% of males), which did not allow any stratification based on alcohol
intake.

3.2.4 Study Conclusions

In summary, in this retrospective analysis, we focused on the predictive effect of en-
ergy/macronutrient intake on the clinical features related to the risk of MetS. We did not
focus on food intake and/or dietary pattern, of which their contribution to the risk of MetS
has already been addressed by several studies (see (127) for a comprehensive review).
Although this approach has limitations since components other than energy and macronu-
trients are provided by food/diet, our results suggest that predictivity of inadequate intake
of energy/macronutrients is independent of dietary patterns. Indeed, we evaluated four
different cohorts with different dietary habits tied to the geographical origins of the vol-
unteers, and train and test batches of the cross-validation were stratified with respect to
the nationality of each subject to avoid biases derived from different eating habits. Over-
all, energy/macronutrient intake had a strong predictivity. We speculate that this relies on
the intimate relationship between MetS and obesity, which is in turn strongly dependent
on the unbalance of energy/macronutrients in the diet. Of note, not all clinical outcomes
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were predicted with the same accuracy, and the predictivity was overall higher in men than
in women. Furthermore, inadequate intake of specific nutrients was associated to abnor-
mality of specific clinical parameters. Most of the observed intake/clinical outcome asso-
ciations were consistent with previous evidence. This does not mean that our results are
trivial and simply confirmatory, but rather it confirms that the proposed model is suitable
for shedding light on the complexity of nutritional variables that, although responsible for
impacting on clinical outcomes and, therefore, for influencing the pathological condition,
have an effect that is not evident with univariate analysis and must be considered in the
framework of the reciprocal influence of the other variables. The impact of physical ac-
tivity and smoking was not considered in our model, and this is a limitation since they
are both included among lifestyle factors predictive for MetS (128). Of note, none of
the enrolled volunteers was a heavy smoker (≥ 5 cigarettes per day); this minimising the
confounding effect and making a stratification based on these lifestyle characteristics im-
possible. As well, based on exclusion criteria, none of enrolled subjects had a high level
of physical activity (≥ 5 h of physical activity per week). Specific information on physical
activity was collected using the international physical activity questionnaire (IPAQ) only
for volunteers who accepted to participate in the sub-study of the trial, so we could not
use those data in the regression model. Anyway, collected IPAQ confirmed that physical
activity was low-moderate.

In this retrospective study, the energy and macronutrient intake of 157 (80 males and
77 females) adult volunteers at risk of MetS from four different countries was evaluated
using a validated standardised protocol to measure dietary intakes. The use of the ridge re-
gression, which optimises prediction performances while retaining information about the
role of all the nutritional variables, allowed us to assess if a clinical outcome is strongly
dependent on a single nutritional variable, or if its prediction is characterised by more
complex interactions between the variables. The approach appeared robust, and although
our results cannot be applied to the general population, they allowed for the linking of
energy/macronutrient intake to the clinical features of MetS, thus providing additional in-
dications about the most important dietary contributors to the risk of the disease. Methods
in prediction modelling have been recently growing and are becoming more relevant in
the nutrition field (129). In the near future, they could be useful to healthcare profes-
sionals and policymakers to effectively counteract the risk of MetS and other diet-related
diseases.

3.3 Chapter Conclusions

Evaluating exposure to diet, even at its most macroscopic level is no trivial matter. The
heterogeneity of free living populations, from genetics to cultural and geographical habits,
poses a challenge in finding links between diet and health. In addition, there is an objec-
tive technical difficulties in gathering nutrition epidemiological data and organize large
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scale studies. There is also an everchanging consensus in the definition of diet itself, that
in turn affects the formulation of an effective modelling paradigm. We proposed a pre-
dictive model based on rigorous standardization and handling of nutritional data, based
on state of art references. The model focused on the stratification of the sample popula-
tion to avoid confounding factors, and treating food intake as patterns of macronutrients.
This allowed to bypass possible biases tied to diet description and quantification, while
focusing on the crosstalk of macronutrients in predicting some clinical outcomes. This
resulted in a non-trivial characterization of the links of metabolic syndrome and effects of
diet in a multivariate fashion. However, given the complexity of food and its interaction
with human physiological functions, the sole description of edipemiological aspects of
diet exposure is not enough when treating the problem of health and nutrition links from a
complex systems perspective. In the next chapters, we try to take a deeper look into food
intake description and the simulation of how it interacts with the human organism.



4Chapter

A Closer Look: Modelling the Impact of
Chemical Composition

4.1 Unravelling the Complexity of Food: a Framework for Foodomics

This section is entirely based on the published work by Mengucci et al. (130).

Holistic methods at the basis of the foodomics approach are allowing the in-depth
understanding, at molecular and supramolecular level, of the complexity of food matrix.
The latter, in turn, affects the nutrient bioaccessibility, one of the crucial factors impacting
on the final effect of diets. However, many levels of complexity are emerging, relating
to food-human interactions, while bolus descends along the whole gastrointestinal tract.
Such complexity makes in-vitro and in-silico models still unable to fully describe inter-
twined kinetics between food matrix and human compartments. A possible framework
to unravel complexity is outlined, starting from bioaccessibility modelling all the way
down to inter-compartmental kinetics. The aim is to enhance algorithms and models for
the prediction of the impact of a food category on a class of individuals. The proposed
framework can consider many levels of complexity, provided that time-resolved exper-
iments, suitable for integration with food matrix description, are correctly designed for
this purpose.

Glossary

• Bioaccessibilty: fraction of a given food compound released from the food matrix
in the gastrointestinal tract. Bioaccessibility kinetics comprises description of both
release and transition to absorbable form.

• Bioavailability: fraction of a given food compound effectively reaching systemic
circulation.
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• Data-driven approach: machine learning or deep learning architectures applied to
high-throughput data with the aim of extracting patterns of features for classifica-
tion (fingerprinting, molecular profiling, untargeted studies, etc.)

• High resolution food description: description of the heterogeneity of the food
matrix, in terms of compounds and their interactions, organizing spatially and by
speciation, along different length scales.

• In-vitro model: proxy experiment performed with microorganisms, cells, or bio-
logical molecules, outside their normal biological context, aimed at reproducing
different stages of physiological processes as close as possible to in-vivo scenarios.

• In-silico model: mathematical model capable of describing kinetics, using observ-
ables and parameters derived from in-vivo, in-vitro models and data-driven ap-
proaches.

• Multi-compartmental model: kinetic model capable of considering the propaga-
tion of the effects of bioaccessibility along different stages of the digestive process,
that is, transformation of the food in different sections of the gastrointestinal tract,
absorption, transport and excretion.

• Metabotype: the metabolic phenotype of an individual.

• Observable: physical and chemical quantity that can be measured.

4.1.1 Introduction to Foodomics

One of the main challenges in clinical nutrition is the translation of findings emerging
from basic nutrition into meaningful, tailored and clinically relevant dietary advises to
prevent or counteract metabolic disorders (131). Several factors must be taken into con-
sideration when designing efficient nutritional solutions: although those relating to indi-
viduals are generally considered to be the most important, other variables, equally im-
portant, emerge. Among them, the food structure and the interaction between food and
the human gastrointestinal tract (GIT) are fundamental. Therefore, a ‘precision nutrition’
approach should consider not only individual variability (i.e. genetics, type of micro-
biome, metabolome, dietary habits, lifestyle) (132) but also food structure and compo-
sition, along with dynamics of digestion and absorption. At present, the evaluation of
nutrient intake is mainly based on chemical composition of consumed food and does not
consider bioaccessibility, that is, the amount of the food components that is released from
the food matrix, and bioavailability, that is, the amount of bioaccessible components that
is absorbed and delivered to tissues through the blood stream. Since the food matrix
and processing have a significant impact on bioaccessibility, which in turn impacts on
bioavailability, a holistic approach to food characterization is needed. The foodomics
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approach offers not only a high-resolution food description, dealing with the various lev-
els of complexity converging into food science (133), but also the in-depth description
of the food metabolome. The food metabolome is the part of the human metabolome
directly derived from the digestion, absorption and biotransformation of foods and their
constituents (134). Thus, the food metabolome strictly depends on bioaccessibility and
bioavailability kinetics. Nuclear Magnetic Resonance (NMR) spectroscopy and Mass
Spectrometry (MS), hyphenated or not to chromatographic separation methods, are op-
timal techniques to comprehensively characterize the food metabolome, which can be
considered one of the dimensions of the foodomics space (135). The different levels of
information in the food metabolome can be explored by i) targeted metabolite analysis,
ii) metabolite profiling, iii) spectral fingerprinting, iv) untargeted metabolite analysis and
v) metabolomics, with increasing discrimination capability. To fully understand the food
metabolome, the behaviour of food and food components along the gastrointestinal tract
(GIT) must be considered (fig.4.1). In-vitro and in-silico models have been developed
to simulate digestion and absorption, allowing to build up predictive models (136; 137).
Predictive models need validation using blood, urine and faeces obtained from carefully
designed intervention trials, including data quality control protocols. Samples from well-
designed intervention trials can also be used to select specific biomarkers of intake. These
biomarkers reflect the interactions between the food and the human body and can be used
to build up in-silico models to predict bioaccessibility and bioavailability, thus allowing
the classification of foods, diets and human subjects. To this purpose, the kinetic constants
that regulate mass transfers between the different body compartments (including GIT) are
crucial. Therefore, to develop accurate in-silico kinetic models, the time-dependent con-
centrations of biomarkers in different body compartments must be assessed.
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Figure 4.1: Framework for kinetics of bioavailability investigation. The three main stages of mod-

elling foodomics data are highlighted: 1a) numerical descriptors for the food matrix are required

to be included as input for the machine learning framework: 1b) modelling will find the right

parameters for matching the food intake to the experimental time-resolved concentrations of food

biomarkers; 1c) the set of output parameters, extracted upon modelling of food-biomarkers kinet-

ics in blood and urine, are condensed signatures of metabolic phenotypes, linked to nutritional

response to specific food products.
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Within the framework of the FoodBAll project (138), many databases have been de-
veloped (FooDB, Exposome Explorer) merging data obtained from samples coming from
intervention studies. One of the main concerns emerged in the project is the transient
concentration of food-related molecules, which makes their classification as biomarkers
extremely difficult. Indeed, a food-related molecule may not be recognized as biomarker
of intake depending on its absorption kinetics. In fact, its concentration at the time of
sampling may not be different from baseline because it has not reached the peak yet
(subjects with slow absorption kinetics) or it has already passed the peak (subjects with
fast kinetics). The use of proper modelling can overcome this limitation, and it can also
consider the ‘food matrix effect’. Although recent works highlight the importance of de-
veloping personalized wellness tools relying on data integration and biomarker mapping
approaches (139; 140), a consensus solution is far from being accepted since the derived
in-silico models are not yet validated and are still at an embryonic stage. In the follow-
ing sections, we discuss the possible integration of in-vitro experiments (data sources)
with machine learning approaches aiming at extracting molecular features (data-driven
approaches) to give rise to in-silico modelling able to predict kinetics of biomarkers in
different compartments. We outline a framework for merging different levels of com-
plexity by discussing methodologies and challenges for food-human interactions while
stressing the importance of: i) choosing proper in-vitro descriptors for the food matrix; ii)
identifying in-vivo biomarkers of food intake within pattern clustering and fingerprinting
techniques; iii) integrating food matrix descriptors with biomarkers kinetics.

4.1.2 Challenges and Novel Strategies

The work by Westerman et al. (140) outlined a promising direction for nutritional rec-
ommendations based on custom biomarker correlation mapping. In that work, a set of
common blood biomarkers of health was organized in a network of correlations, whose
variations were studied over time. This approach allowed finding new patterns or net-
works of predictive biomarkers to better understand transitions between health and dis-
ease states. Such patterns resulted in valuable information about the average baseline
functional complexity and a subject-dependent variability. New correlations between
biomarkers emerged, such as those between Low Density Lipoproteins (LDL) and iron
stores, possibly explaining perturbations in lipid metabolism in conditions of iron over-
load. However, causality between changes in biomarkers after dietary intervention and
health improvement could not be established, except for a small subset of subjects with
biomarkers ‘out-of-clinically accepted range’ at baseline. Beside the presence of con-
founding factors and the difficulty to treat baseline variability, one limit of the above de-
scribed approach could be the attempt of connecting the intervention diet and the biomark-
ers without fully considering the complexity of the food and of the food-human interac-
tions.
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Challenges in food matrix description

A high-resolution description of the food is the first step needed to unravel the complexity
of the food-human interaction (fig.4.1a). Foods are highly heterogeneous materials, and
food components interactions are organized physically and chemically in the space along
different length scales, thus generating a structural complexity in the food matrix. The
effect of food structure on food disintegration and micronutrient release has been exem-
plary described in a recent work by Hiolle et al. (141). The description of food structure
usually relies on data gained by several imaging techniques, including Light Microscopy
(LM), Scanning Electron Microscopy (SEM) (142), and Magnetic Resonance Imaging
(MRI) (143). Further details about the interactions between the food matrix and water,
which is the diffusing medium for most nutrients, are also provided by nuclear magnetic
relaxometry (144). Image analysis and relaxometry allow to evaluate physicochemical
and rheological features of the food, assessing their impact on bioaccessibility.

A different approach is given by modelling based on machine learning and data-driven
techniques, which provides a fingerprint of the food matrix by merging its chemical and
physical properties. Chemical fingerprints can be obtained through various techniques
ranging from spectroscopy to gas chromatography. Accordingly, chemical descriptors
can be concentrations and variations of concentration in time-resolved observations, pro-
portional to spectral features, with the advantage of not needing to formally identify each
single descriptor. If the quantification is robust, a correlation pattern of descriptors, even if
unidentified, can be exploited along with other outputs for hypothesis-free fingerprinting.
Furthermore, the physical structure of a matrix can be described by merging quantitative
measures of structural properties of the sample and multimodal imaging derived features.
Techniques such as multidimensional hyperspectral imaging analysis have proven to be
effective for matrix characterization and oxidative damage detection (145) and to be suit-
able for descriptors extraction for fingerprinting. Magnetic Resonance Imaging can also
give quantitative information about properties of the food matrix, such as tortuosity and
porosity (146), enhancing the array of possible multimodal descriptors for machine learn-
ing and data-driven approaches.

Breaking down the challenges and the modelling aspects of food matrix effects on
chemical reactivity, many levels of complexity are emerging (147): i) effects on thermal
stability of bioactive compounds and micronutrients; ii) thermodynamics and kinetics of
reactions; iii) reactants concentration when catalytic phenomena are present; iv) diffu-
sivity and partitioning of reactants among different phases of a matrix and v) enzymatic
interactions. As a matter of fact, a chemical reaction occurring in food will yield a rate
different from the rate obtained in ideal conditions (i.e. a very diluted solution) and vary-
ing from food matrix to food matrix. Such an effect can also account for a displacement
of reaction equilibrium. Food matrix can thus change thermodynamic and kinetic prop-
erties of the reaction by acting on: i) concentrations of reactants and products, ii) activity
coefficients, iii) diffusivity of reactants and products, as well as on iv) the temperature
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perceived by the reactants in each compartment of the system.

An exhaustive framework for the integration of fingerprinting and kinetics studies has
been brought forth by Grauwet e al. (148). Although focusing on the topic of evalu-
ating the effects of extrinsic factors, such as processing on food quality changes, this
work offered a comprehensive view on the techniques and approaches to be exploited
for food characterization and extensive data generation (GC and HPLC MS, NMR based
approaches). Moreover, the importance of linking fingerprinting with kinetics, through
multi-response observation was highlighted. Multi-response observation for food means
studying transformations in food. They do not occur isolated but, rather, within a network
of reactions which are consequent to a variety of combinations of processing conditions.
From a mathematical point of view, this is done by translating the reactions network into a
system of coupled differential equations, using all the information extracted during stud-
ies aiming at characterizing the food matrix. The result is an insight into the rate constants
of specific reactions steps, and their dependence on secondary variables (i.e. temperature,
pressure, time, etc., in food processing), which refers to the study of a multi-phase re-
action system shaping the food matrix. The paper by Grauwet et al. (148) also outlined
some basic concepts behind multivariate data analysis (MVDA) techniques, which are
crucial for information extraction in frameworks of the proposed type. On the basis of
the concept of multi-response kinetics, different compartments (i.e. the food, the GIT,
the human metabolism) cannot be considered isolate systems. Therefore, data obtained in
each compartment should be merged and integrated as part of a network of interactions.
Modelling kinetics should consider complexity by building in-silico models including
information from food matrix to the human body, including the GIT.

Challenges in the description of the impact of the food matrix on digestion

The food matrix affects food components bioaccessibility/bioavailability influencing the
entity and the kinetic of the release process in the GIT. Together with the individual in-
trinsic variability (e.g. genetic polymorphisms) and the effect of the overall diet, the food
matrix effect can lead to different digestion or absorption capacity of specific components,
thus modulating the ultimate effect on physiology and health (4). Research has focused
on the development of standardized food models (SFM) for in-vitro experimental set-ups
and investigations on three major levels for bioavailability modelling: bioaccessibility,
absorption and transformation of nutrients within the GIT (fig.4.1b). Mimicking the com-
position of representative diets allowed studying bioaccessibility of bioactive compounds.
This aspect is affected by the heterogeneity of mixtures with different physical phases and
nanostructures, in which nutrients tend to organize during digestion processes along the
entire digestive apparatus. In a recent work by Zhang et al. (149), an SFM representing
a typical US diet was proposed to investigate the effects of food matrices on bioaccessi-
bility of nutraceutical and pesticides. Microstructures were characterized in each phase
of the simulated in-vitro digestion using confocal fluorescence microscopy, also consid-
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ering electrical properties. The work showed significant impact of the food matrix on
bioaccessibility of bioactive compounds, and provided insights on the role of lipid diges-
tion and its interaction with hydrophobic nutraceutical. Besides, it provided examples of
possible important observables (i.e. physico-chemical properties) derived from in-vitro
set-ups. As examples, variations in electrical properties, particle size and microstructure
distribution were acquired in each single stage of the digestion, to model different levels
of complexity, as they impact on the interactions of enzymes with fat droplets. Indeed,
the inclusion of these variables allowed to describe and explain the different ions release
from food fragments and fat droplets in the different environments of the GIT. Similar
descriptors coming from in-vitro studies could play a crucial role in integrating the food
matrix effect into reliable in-silico models considering the matrix-dependent complexity
of digestion kinetics. Of note, modelling structural interaction terms in kinetic equations
systems, by inserting in example a quadratic damping term representing diffusion under
certain conditions or a sigmoidal term representing percolation dynamics, could enhance
in-silico simulations capabilities. When in-silico models must predict intertwined kinet-
ics occurring in different compartments of the GIT, a set of observables such as those
discussed above can be used to estimate and model interactions.

Challenges in integrating food matrix description and metabolomics

Observation derived from in-vitro experiments play a key role in the construction of ap-
propriate kinetic descriptors of the food matrix effect on bioavailability. Since properties
of the matrix influence the first phase of the food/human interaction, that is, bioaccessibil-
ity, they influence all the subsequent phases. Therefore, a multi-compartmental modelling
is needed (fig.4.2) to account for complexity in an appropriate manner. To build multi-
compartmental models, patterns of blood and urine biomarkers can be adopted as proxies
of the food/human interactions evolving during digestion and link them to the description
of the food matrix.

Metabolomic of blood and urine is a key tool in the identification of dietary biomarkers
that can be also used to classify and quantify food intake (138). Many metabolomic
studies are focused on expanding and validating Biomarkers of Food Intake (BFI). Garcia-
Pérez et al.(150) suggested an analytical pipeline based on correlation maps of 1H-NMR
identified metabolites for evaluation of dietary intake. That work evidenced tartaric acid
as a dose responsive biomarker of grape intake, while proline betaine was indicated as
a marker of citrus intake in the study by Gibbons et al. (151). Clusters of biomarkers
of milk, cheese and soy-based drink were identified by Münger et al. with untargeted
multiplatform analysis (152), and 3-methylhistidine was confirmed as specific for white-
meat intake (153).
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Figure 4.2: Compartments kinetics at different bioaccessibility parameters. A simple model to

visualize the effect of parametrizing bioaccessibility tied to food matrix. The simulations are

run at identical starting concentration values and parameters of other compartments, except for

bioaccessibility, whose parametrization is given by λ. Differences in bioaccessibility propagates

affecting the kinetics of a given observable in other compartments.
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However, the ratio between validated and putative bio-markers of food intake is still
very low. A guideline for evaluating the quality of candidate biomarkers was proposed
by Dragsted et al. (154). The adopted parameters included assessment of plausibility,
dose response, time response, robustness, reliability, stability, analytical performance, and
inter-laboratory reproducibility. The most powerful perk of metabolomics is its ability to
discover untargeted patterns of metabolites for subject classification. Single diet biomark-
ers might offer incomplete information and do not suffice when phenotyping free-living
populations or trying to understand relationships between food consumption and disease
risk (fig.4.1c). Garcia-Perez et al. (155) suggested the possibility to overcome biases re-
lated to self-reported dietary intake by a discrimination based on the fingerprinting of the
whole urinary spectral profiles. Specific spectral archetypes were obtained from individ-
uals kept in controlled feeding conditions and used for classification of dietary intake in
free-living individuals. It was shown that the differentiation among dietary interventions
was only allowed by whole patterns of urinary biomarkers embedded in the metabolic
profile, while single specific biomarkers were not able to correctly classify the diet. Con-
sidering whole patterns in place of single biomarkers can also mitigate the risk of misinter-
preting metabolites concentration. As an example, urinary concentrations of TMAO can
be associated with healthy, fish-rich diets; however, gut bacteria can synthesize TMAO
from choline and hence high urinary and plasma concentrations can also originate from
high red meat consumption, which is commonly tied to adverse health outcomes. Obser-
vation of the whole metabolome can disentangle such ambiguities. The whole spectra of
identified and unidentified signals, and the modification of their correlations, can allocate
individuals in different metabotypes, thus enhancing baseline modelling and providing
elements for intervention-related kinetics evaluation. One of the biggest challenges in
this kind of approach is that compartmental-model computing needs a large amount of
time-points data for robust parameter estimation. Many studies have thus focused on
breaking down and simulating single compartment kinetics, focusing on absorption, di-
gestion, transport or excretion. A recent work from Bjornson et al. (156) highlighted
the importance of evaluating interactions between absorption and transport phases. Us-
ing plasma samples, a novel non steady-state model was proposed, integrating metabolic
characteristics of both apoB100 and apoB48 and the kinetics of triglycerides in response
to a fat-rich meal. The model was proven to be physiologically relevant, providing in-
formation about apoB48 release in the basal and post-absorptive state, as well as about
the contribution of intestine to Very Low-Density Lipoprotein (VLDL) pool size and ki-
netics. In a similar fashion, patterns of variation of spectral signals tied to metabolites
may be used to intertwine multi-compartmental kinetics, highlighting different profiles of
response for different dietary interventions, while retaining inter-individual information
and variability.

Usually, kinetic parameters can be drawn from at most two compartments (trans-
port/absorption and excretion, if both serum and urine metabolomics are available) of
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the N possible macro-compartments of a model given by a chain of differential equations
describing kinetics, such as the Bateman equations system. Fitting parameters for such
equations becomes thus a challenge, especially when trying to model single-subject ki-
netics in the parameter space, unless time sampling is sufficiently high. Such a constraint
should drive the experimental design of nutritional trials when kinetic information must
be used for in-silico models. The high-resolution food description is also essential to con-
ceive an informative quantification of bioaccessibility in the kinetic model. In fig.4.2 the
effect of including bioaccessibility in a simple multi-compartmental model is shown as a
scalar parameter λ, to emphasize its effect propagating to every compartment. This quan-
tification can be improved by finding functions of different parameters, extracted with the
different techniques used to described food matrices in each experiment, and including
them in the kinetic model.

4.1.3 Remarks

• Holistic approaches such as foodomics are allowing the in-depth understanding of
food matrix characteristics at molecular and supermolecular level. This is radically
changing the nutritional approach that is now starting to consider the food complex-
ity as an important variable in the final effect of the diet.

• Responses to food intake are not only specific for each individual but largely depend
on the food matrix, including its modification due to processing. It is now clear that
food cannot be considered a homogeneous mixture and it is time to give the right
emphasis to the organization of the matrix.

• The heterogeneous phases of the food matrix compartmentalize the biological sys-
tems and modulate the interactions among substrates and enzymes. This spatial
restriction to the free diffusion of molecules may change during storage and/or
processing of the food, which could be described as a dynamic system, and it is
dramatically modified during digestion.

• The destiny of a food component, from raw material to human compartments, is
very complex. After digestion, accessible components are absorbed in a temporal
and spatial distribution, some of them being meanwhile actively metabolized by the
microflora. Active metabolization of absorbed components can occur already in the
enterocyte before distribution to organs through the bloodstream. To predict it, in-
vitro models simulating the physiological processes are adopted to the purpose of
simplifying the interpretation of the results. However, these systems must undergo
complex validation before being considered reliable predictors of in-vivo phenom-
ena. This validation is enhanced by an in-silico step, that is, the construction of
mathematical models and algorithms, which simplify the description of the differ-
ent phases that food undergoes. These models are based on multi-factorial kinetic
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functions, whose parameters can be used to classify different categories of foods
and of the corresponding individual responses.

• To tackle the goal of these models, that is the possibility to predict the impact of a
food category on a class of individuals, and to overcome mathematical constrains
on parameter estimation, huge amounts of data from time-resolved studies are nec-
essary.

• The framework described considers many levels of complexity and highlights the
importance of optimizing time-resolved experiments. This is a crucial step to im-
plement robust algorithms and models based on machine learning and data-driven
approaches, currently at the embryonic stage in this specific field of applications.

A time-resolved picture for the evaluation of the impact of the intake of a food with a
given composition, on certain categories of individuals, is a key element to start grasping
the whole set of possible intake related physiological outcomes. There are at least two
important aspects, besides the evaluation of instantaneous exposures to certain compo-
sitions, that are linked to the molecular impact of intake: the study of how a long-term
exposure to certain bio-active compounds modulates the molecular state of individuals;
the study of the mechanism of how physiological functions linked to digestion are ac-
tivated to assimilate compounds, by observing short-term kinetics after intake. In the
next sections, we present and discuss two studies that focus on modelling kinetics aspects
considering composition, by operating within the Foodomic framework.

4.2 Multi-Omic Model of the Impact of a Bio-Active Compound

The study of the impact of nutritional strategies based on the introduction of a specific
bio-active compound, is considered interesting under many aspects. The endpoint of es-
tablishing causality between the intake of certain compounds and health promoting ef-
fects is the formulation of nutraceutical (157) and nutritional strategies, that can boost
response to diseases, prevent inflammations, boost immunological triggers and promote
healthy statuses in general. This endpoint is not easily reached: free living populations are
exposed to large numbers of perturbartions that can modulate the molecular state, making
it difficult to find direct and robust links with induced health promoting effects (if any
exists) derived from the introduction of the bio-active compound of interest. As such, an
approach that is gaining popularity is to study the downstream-upstream loop changes in
molecular statuses through modulation effects in gut microbiota (158). The microbiota is
an excellent proxy of inflammatory status and probiotic effects, by essentially reflecting
the changes in the patterns of abundances of microbic species that can produce/consume
health promoting or health degrading metabolites.

In the this section, based on the published work by Biagi, Mengucci et al. (159),

2020, MDPI, we propose a framework to investigate the modulation in microbiota and
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metabolome induced by a nutritional strategy based on different doses of vitamin B2 in
broilers. Apart from the possible applications in production efficiency of broiler meat,
this study allowed us to develop a framework to study the crosstalk between microbiome
and metabolome. The use of broilers for such an in-vivo trial also has clear experimental
advantages: a large sample size in a relatively short time span, the possibility to study
molecular state modulation at different growth stage of a complex organism and consider
the effect of aging in the model, the availability of different tissues (caecum, ileum) from
the GIT.

4.2.1 The role of microbiome sciences in animal production

Microbiome science holds great promise for the future of health maintenance and per-
formance improvement in animal production, because gut microbes are responsible for
the degradation of complex substrates and energy extraction, as well as for the promo-
tion of the animal’s immune system functionality (160; 161). Indeed, gut microbiome
acquisition and maturation are pivotal processes for the development of intestinal epithe-
lium physiology, in terms of immunity, intestinal barrier integrity and nutrient digestion
(162; 163; 164), possibly playing a crucial role in strategies aimed at preventing pathogen
colonization and boosting weight gain (165). Therefore, a key issue in animal produc-
tion, including chicken nutrition, is to understand the relationship among the effects of
diet composition and the changes in microbiota and host metabolism (166). Chickens’
microbiota is characterized by strong spatial variability along the gastrointestinal tract:
specialized communities inhabit different sections of the animal gut, performing specific
digestive functions. The most studied of these communities are those residing in the
ileum, where nutrient absorption takes place, and the caeca, in which fermentation and
digestion of complex polysaccharides occur (167). The caeca, typical of the avian intesti-
nal tract, are a couple of appendages protruding from the junction of the small and large
intestines, in which the feed retention time is the highest, and carbohydrate fermentation,
urea recycling and water retention take place (160; 165). Indeed, 10% of the energy re-
covered from the food is estimated to be produced by fermentative processes occurring in
the caeca. In that intestine section, the concentrations of short chain fatty acids (SCFA)
and other organic acids (i.e., lactate) are higher than in other tracts (167). Such microbial
products are crucial for host immunological fitness and nutritional homeostasis. Indeed,
they provide energy to the epithelial cells, and can be carried to the liver and used as en-
ergy substrates for muscle tissue (161). Some of these compounds can be the subject of
microbial cross-feeding, e.g., the lactate produced by Bifidobacterium and Lactobacillus
members can be utilized by other anaerobic bacteria to produce butyrate (168), highlight-
ing the complexity of the microbe–microbe and host–microbe relationships, all involved
in defining the final homeostasis and health of the chicken meta-organism.

The microorganisms inhabiting the litter are of both environmental and fecal origin.
Litter is continuously pecked and ingested by the animals, thus playing a relevant role in
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determining the composition of gastrointestinal communities. In addition, litter can act
as a reservoir of both animal pathogens and zoonotic agents (160). Studies in this field
pointed out the importance of analyzing changes in the different broilers’ microbiomes
over time and how these are affected by intervention strategies to improve animals’ per-
formance. An important focus of such studies must be the effect of interventions on the
abundance and persistence of key core microbiota players (169; 170; 171). Probiotics and
prebiotics are the most accredited strategies to attempt to modify microbiome functional-
ity and composition (172), but other dietary components and nutritional supplements can
also modulate gastrointestinal functionality, the gut microbiome, the innate immune sys-
tem, the intestinal barrier integrity and the intestinal enzyme activity. In this framework,
vitamin B2 (riboflavin) can modulate multiple pathways important for the maintenance of
the gastrointestinal functionality. There is evidence that vitamin B2 has prebiotic effects
(173), affecting the microbiome’s ability to regulate the innate immune system (mucosal
associated invariant T cells, MAIT cells). This compound reduces intestinal inflamma-
tion and apoptosis and regulates gut protease activity (impacting animals’ food behavior
and growth). Moreover, vitamin B2 has been found to be most effective in synergy with
antibiotics against methicillin-resistant Staphylococcus aureus (174). Therefore, vitamin
B2 can be part of novel solutions that modulate several aspects of gastrointestinal func-
tionality, creating the opportunity to identify additive/synergistic effects with other feed
additives.

Here, we report the results of an experimental trial on Ross 308 broilers fed different
amounts of vitamin B2. Caeca and ileum microbial communities were longitudinally
analyzed along the 42-day broiler productive cycle, together with litter samples, in order
to investigate the effects of 50 and 100 mg/kg vitamin B2 dietary supplementation on the
microbiota composition and diversity, as well as on the core microbiota components that
can persist over time and be shared across the different ecosystems. In addition, in order to
explore the supplementation effects on microbial-host co-metabolism, a nuclear magnetic
resonance (NMR)-based metabolomics approach was used for analysis of caecal contents.

4.2.2 Study design and methods summary

To guide the reader through result, we report a short summary of the study design, metabolomics
and machine learning for spectral and kinetics analysis. A complete description of ac-

quisition techniques, metabolomics, sequencing and bioinformatics for microbiota

analysis is reported in Appendix A

Study design and dataset

Three groups of 120 Ross 308 female chickens each (total number of birds: 360) were
housed at the Poultry Research Facility of the University of Bologna in Ozzano dell’Emilia
(Italy) in three separate rooms, labelled as A, B and C. The rooms were next to one another
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and were under identical environmental conditions. Birds reared in each room received
a different diet/were fed with a different diet (Room A-control diet; Room B-control diet
+ 50 mg/kg vitamin B2; Room C-control diet + 100 mg/kg vitamin B2). To obtain diets
with a medium (Room B) and a high (Room C) level of vitamin B2, the control diet,
containing the standard dosage (i.e., 5 mg/kg) of vitamin B2, fitting the recommendations
for the whole grow-out phase of broilers fed diets containing wheat (Ross 308 Nutrition
Specifications, 2014), was supplemented with vitamin B2 (RovimixR 80SD; DSM Nutri-
tional Products) up to 50 mg/kg for group B and 100 mg/kg for group C. The dosages in
groups B and C (10× and 20× the control, respectively) were set to ensure that a quantity
of vitamin B2, largely above the recommended dosage, was able to reach the lower gut.

Each experimental group was sampled three times: at day 15 (T1), day 28 (T2) and
day 42 (T3). During each sampling, a total of 40 birds/room (a total of 120 birds) were
randomly selected and euthanized following ethical guidelines to minimize stress and
pain. Nine litter samples of 10 g each (3 samples/room; 1 sample/pen) were also collected.
The entire gastrointestinal tract was obtained from each bird. Caeca and ileum contents
were collected in 2 mL sterile tubes, flash frozen in liquid nitrogen and stored at -80 °C
for further investigations. Caeca contents from the 120 birds were collected in duplicate
to conduct microbiome and NMR metabolome analyses separately.

Spectral processing and machine learning

After Fourier transform and baseline correction, spectra were calibrated with reference to
the chemical shift of 0.00 ppm assigned to the internal standard TSP; spectral peripheral
regions, together with the water signal, were removed. After this, spectra were normal-
ized employing the probabilistic quotient algorithm (PQN) (175) on two different regions
separately (regional scaling) since this worked best for this type of sample. After normal-
ization and prior to any possible statistical analysis, spectra were binned into intervals of
100 data-points of 0.0183 ppm each. As a result, the new spectral profile consisted of 410
binned data, which were saved as a matrix in a text file.

All statistical analyses and machine learning routines were carried out in Python 3.6,
using implementations from the ScikitLearn package and custom scripts. Ten-fold cross-
validation was carried out for each prediction task in order to avoid overfitting. Pre-
diction results reported are the average of the folds. Spectra were reduced with Scik-
itLearn PLSRegression using the NIPALS algorithm (176), modified to suit a discrete
classification problem. To select the most important features for each latent variable cre-
ated, the partial least square (PLS) weights spectra were smoothed with a combination
of Savitzky–Golay (SAVGOL) filters (177) and asymmetric least square smoothing and
baseline correction (178). Peaks in weights spectra were furthermore filtered using a
signal-to-noise ratio (SNR) threshold, to minimize the probability of selecting uninfor-
mative zones of the original NMR spectra. Sample group separation was evaluated using
the SciKitLearn implementation of C-support vector classifier (SVC). The parameters for



80 Chapter 4. A Closer Look: Modelling the Impact of Chemical Composition

the classifier were estimated using a stochastic grid search, with a linear kernel and a
regularization parameter of 0.01 yielding the best performances.

Kinetics fitting

The term kinetics is hereby used to emphasize the emerging time-dependent variation of
the concentrations of the metabolites, of which the estimate was obtained by fitting av-
erage concentrations at each one of the three time points. The signals, proportional to
the concentration, of metabolites of interest were fitted to highlight possible differences
in the variations between treatment groups. For the purpose of the study, the amounts of
metabolites are calculated using normalized signal arbitrary units (A.U.), proportional to
their molar concentration. Signal distributions were square root transformed, in order to
enhance normality and reduce fit bias. At each time point, for each group, metabolite sig-
nal was estimated as the average of the signals, while using standard error as the error bar
for the plots. Time points where fitted using generalized linear models (GLM) from the
statsmodels (https://www.statsmodels.org/stable/glm.html) module of Python 3.6, with a
regression of the form:

Yi = α + β log(Xi) + ǫi (4.1)

This allowed us to account for the non-linear relationship between variables, while
preserving the linearity of the model and the solution. A fit confidence interval (CI) of
95%, represented by light-colored boundaries in each plot, was reported to assess sta-
tistical significance. The CI was computed using bootstrap resampling, to provide an
estimate of the variability of the mean tied to the population for each time point, by using
the distribution of the means of a sufficiently large number of resamples of the data. This
estimation gives an interval where there is a 95% confidence that the true mean of the pop-
ulation lies for each time point. In other words, non-overlapping CI in the plot amongst
different treatment groups correspond to statistically different means with p < 0.05.

4.2.3 Results

The aim of this trial was to assess the effects of vitamin B2 supplementation on the ileum,
caeca and litter microbiota of broilers, as well as on the metabolic profile of the caecal
contents.

Microbial communities

741 samples were analyzed, including 357 caeca samples, 357 ileum samples and 27 litter
samples. For both caeca and ileum, 120 samples from the first time point (14 days, T1),
119 from the second time point (28 days, T2) and 118 from the third time point (42 days,
T3) were available. A total of 4,986,865 high-quality sequences were obtained, ranging
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between 1099 and 15,182, with an average value of 6490 ± 2715 sequences per sample.
Sequencing reads were deposited in SRA-NCBI (project number PRJNA644889). Reads
were clustered into 20,950 amplicon sequence variants (ASVs). As previously reported
(169; 171), beta diversity analysis based on both weighted and unweighted Unifrac dis-
tances showed a clear separation between ileum and caeca microbial communities, with
litter samples clustering in between the two intestinal compartments. In accordance with
the available literature (160; 171; 179), caecal microbiota were consistently dominated by
Ruminococcaceae and Lachnospiraceae, whereas in ileal samples Lactobacillaceae was
the largely dominant family. On the contrary, litter samples showed phylogenetic pro-
files without a clear dominance, with a high abundance and diversity of families belong-
ing to the Proteobacteria and Actinobacteria phyla. Accordingly, litter samples showed
higher biodiversity, both measured by Faith’s PD metric (3.17 ± 0.89) and ASV richness
(68.96 ± 29.64), with respect to both caecal (Faith’s PD index, 2.37 ± 0.55; ASV rich-
ness, 61.32 ± 14.96) and ileal samples (Faith’s PD index, 1.23 ± 0.57; ASV richness,
19.18 ± 9.99). Concerning the Shannon diversity index, litter and caeca samples showed
comparable values (4.58± 0.73 and 4.70± 0.47, respectively), both of which were higher
than values calculated for ileal samples (2.82± 0.62). Beta diversity analysis on available
caecal samples (Figure 4.3a,c) showed that samples taken from group B (supplemented
with 50 mg/kg vitamin B2) followed a different longitudinal trajectory in terms of micro-
biota structure with respect to groups A and C. This trend is particularly evident when
weighted Unifrac distances are used to plot the whole sample set (Figure 4.3a), whereas
the PCoA obtained using unweighted UniFrac distances shows more overlap among the
different groups (Figure 4.3c). This indicates that differences in the microbiota of broil-
ers in group B resided in abundant bacterial species, instead of subdominant ones. On the
contrary, the beta diversity analysis of ileal samples did not show a clear separation across
groups A, B and C (Figure 4.3b,d).

Caeca, Ileum and Litter Microbiota Composition

The compositional analysis at a family level highlighted that supplementation of vitamin
B2 (50 mg/kg) (group B) promoted the progressive increase of the Bacteroidaceae family
in the caeca, whereas in groups A and C the Bacteroidetes phylum was mostly composed
by bacteria belonging to the Rikenellaceae family. This observation was statistically con-
firmed both at family and genus levels (Figure 4.4). Indeed, the family Bacteroidaceae
and the genus Bacteroides showed significantly higher abundances in group B at all avail-
able time points. On the contrary, the family Rikenellaceae and, in particular, its genus
Alistipes showed higher abundances in groups A and C at T3. Differently, the average
family level profiles obtained for the caeca of broilers in group C (supplemented with the
highest amount of vitamin B2, 100 mg/kg) showed a progressive increase (from T1 to
T3) in the abundance of Bifidobacteriaceae, which was not detected in groups A and B.
The significance of this difference was confirmed also at genus levels (genus Bifidobac-
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Figure 4.3: Principal coordinates analyses (PCoA) based on weighted (a,b) and unweighted (c,d)

UniFrac distances of caecal (a,c) and ileal (b,d) microbiota profiles in broilers in groups A (shades

of blue), B (shades of red) and C (shades of green). Samples are depicted as dots for caeca and

triangles for ileum, filled in different shades of color, from light (earlier samples, day 15, T1) to

dark (later samples, day 42, T3), according to the color legend (provided at the bottom). First

and second coordination axes are reported in each plot. Percentages of variation in the datasets

explained by each axis are reported. MDPI, 2020

terium, Figure 4.4) at T2 and T3. The genus level analysis of caeca profiles also showed
that vitamin B2 supplementation, in both groups B and C, accelerated the increase in Ru-
minococcaceae relative abundance, which was significantly higher in group B and C with
respect to the control group A at T1 , reflecting an analogous increase in the Ruminococ-
caceae genus Faecalibacterium (Figure 4.4). At the following time points (T2 and T3)
the relative abundance of Ruminococcaceae and/or Faecalibacterium in the three groups
was not significantly different. Ileal microbiota composition was less affected by vitamin
B2 supplementation. Compositional analysis only showed that, at T3, both vitamin B2-
supplemented diets (groups B and C) significantly inhibited an increase in the abundance
of the Peptostreptococcaceae family, which was evident in the control diet (group A) (4.5
4).
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Figure 4.4: Relative abundance distributions of bacterial genera in the caecal microbiota of

broilers. Box and whiskers distributions of relative abundances (%) in all samples at the three time

points (from left to right) are depicted for those genera showing significant differences between the

three groups (A, blue; B, red; C, green) in at least one time point. Bejamini–Hocherg-corrected

p values obtained from Kruskal–Wallis test are reported when statistical significance was reached

(p < 0.05). MDPI, 2020
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Figure 4.5: Relative abundance distributions of Peptostreptococcaceae family in the ileum mi-

crobiota of broilers. Box and whiskers distributions of relative abundances (%) in all samples, at

the three time points (from left to right) are depicted (blue, group A; red, group B; green, group

C). Benjamini–Hocherg corrected p values obtained from Kruskal–Wallis test are reported when

statistical significance was reached (p < 0.05). MDPI, 2020

Ecological Perspective of Broiler Caeca, Ileum and Litter Microbiota

A subsequent re-analysis of the sequences using a different OTU (operational taxonomic
unit) picking strategy (UCLUST algorithm with 97% similarity threshold) was performed
to facilitate the interpretation of the ecological behavior of the most prevalent and per-
sistent bacterial groups across the three analyzed ecosystems, as well as to evaluate the
impact of vitamin B2 supplementation at an ecological level. Indeed, the 97%-similarity
threshold allowed us to obtain groups of sequences, possibly ascribable to small group
of species, that could play specific ecological roles within and across the caeca, ileum,
and litter microbial ecosystems. Among the obtained 97%-similarity OTUs, we filtered
those detected with a relative abundance > 0.1% in > 90% of samples in at least one
time point, thus defining ecosystem-specific "core microbiota". For these "core 97%-
similarity OTUs" the prevalence, i.e., the percentage of samples in which each OTU was
detected at a relative abundance > 0.1%, was calculated for all available samples and
plotted using a color code in the heatmap in Figure 4.6. The observation of the preva-
lence of each OTU across the different samples allowed for the clustering of the core
OTUs into nine groups. Group G1 comprised those core bacteria of the caeca that were
persistent along the longitudinal sampling, including OTUs assigned to the well-known
health-promoting Faecalibacterium; vitamin B2 supplementation did not affect the preva-
lence of these OTUs in the caeca, but seemed to have an impact on their prevalence in
the ileum. Group G2 included OTUs assigned to Lactobacillus species that were per-
sistently part of the ileum core microbiota, confirming the available literature (171), but
are also frequently retrieved from the litter and caeca. Group G3 comprised Clostridium,
Enterococcus and Lactobacillus OTUs that were part of the core ileal microbiota only
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in one or two time points, and only occasionally retrieved from the caeca; Enterococcus
prevalence in the ileum seemed to be affected by vitamin B2 supplementation. Group
G4 included only one 97%-similarity group of sequences, belonging to the Peptostrepto-
coccaceae family and assigned to the genus Ramboutsia, that was part of the core ileal
and caeca microbiota at T3 in the control group, but less prevalent in groups B and C
(62% in both); this taxon could be responsible for the significant decrease in the ileal
relative abundance of the Peptostreptococcaceae family associated with vitamin B2 sup-
plementation (4.5). Group G5 included Firmicutes members that were part of the caecal
core microbiota in at least one time point, occasionally contaminating ileum and litter
samples, and that seemed to maintain such ecological behavior independently of vita-
min B2 supplementation; several of these OTUs were assigned to genera known for their
butyrate-production capability, such as Subdoligranulum, Butyricicoccus, Agathobacu-
lum, Kineothrix, and Anaerostipes (168; 180; 181), or their acetate-production capability,
like Blautia and Faecalimonas (182). On the contrary, group G6 included non-Firmicutes
OTUs of the caeca microbiota, of which the prevalence was deeply affected by vitamin
B2 supplementation. An OTU assigned to the species Bacteroides fragilis was part of
the caeca’s core microbiota only at T2 and T3 in broilers supplemented with 50 mg/kg
vitamin B2 (group B), reflecting the group B-specific significant increase in abundance of
Bacteroides (Figure 4.4). Concerning the genus Alistipes, of the Rikenellaceae family, an
OTU putatively assigned by the BLAST algorithm to the species Alistipes finegoldii was
probably responsible for the significant difference in the relative abundance of Alistipes
across groups at the last time point (Figure 4.4), with this genus being part of the caeca
core microbiota only in the control group at T3, and being absent in group B. Further-
more, confirming relative abundance data (Figure 4.4), a Bifidobacterium-assigned OTU
was found in part of the caecal core microbiota only in group C broilers, at T2 and T3.
The G7 group included only one OTU belonging to the Enterobacteriaceae family (possi-
bly assigned to the Escherichia/Shigella group) that consistently colonized the litter, but
also the caeca and ileum. The last two groups of OTUs, G8 and G9, included bacteria
prevalently colonizing the litter. OTUs included in group G8 are occasionally found in
ileum samples, which they could possibly reach through litter ingestion by the broilers. It
is possible to notice that in broilers receiving the highest amount of vitamin B2 (group C)
the persistence and prevalence of G9 OTUs was lower, possibly explaining the slight sep-
aration observed during the beta diversity analysis using unweighted Unifrac distances.
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Figure 4.6: Prevalence of core operational taxonomic units (OTUs) at 97% similarity, in broilers’

caeca and ileum and litter from groups A, B and C, at the three time points (T1, T2, and T3).

Operational taxonomic units (OTUs) at 97% similarity were obtained by using the qiime1 pipeline.

OTUs detected with a relative abundance > 0.1% in > 90% of samples in at least 1 time point are

shown, together with the identification of the highest score alignment against the NCBI 16S rRNA

database obtained by using BLAST nucleotide algorithm. Identification is at the level of species

only when > 99% similarity was reached, whereas more than one possible genera are reported

when equal scores were obtained. Shades of sea-green, purple, and gold are used to indicate

the degree of prevalence of the OTUs in all available sets of samples, according to the provided

color legend (bottom). OTUs were grouped according to their ecological behavior across the three

analyzed ecosystems (caeca, ileum and litter), obtaining groups G1 to G9, as depicted in the right

column. MPDI, 2020
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Caeca Metabolome Analysis

A total of 357 spectra were used to train a PLS-DA for spectral dimensionality reduction.
This served as a projection of the whole NMR spectrum to a lower dimensional metabolic
space, with the aim of enhancing visualization and finding possible clusters. Preliminary
unsupervised analyses showed that animal growth (time) was the most influential factor
in metabolic changes, thus being the biggest cause of sample separation in multivariate
analysis. PLS-DA was then carried out for all samples at each time point, with the task
of discriminating between treatments (Figure 4.7). The best separation between groups,
evaluated using SVC accuracy of prediction, was obtained at T2 (Figure 4.7b). At this
time point, animals seemed to show the highest metabolic response to treatment. This
points out the time window in which treatment effects are the most detectable from a
metabolic perspective. PLS-DA was then carried out for all samples at each time point,
with the task of discriminating between treatments (Figure 4.7). The best separation be-
tween groups, evaluated using SVC accuracy of prediction, was obtained at T2 (Figure
4.7b). At this time point, animals seemed to show the highest metabolic response to treat-
ment. This points out the time window in which treatment effects are the most detectable
from a metabolic perspective.

Kinetics of relevant metabolites

Kinetics studies were carried out on two categories of metabolites of interest: short chain
fatty acids and energy metabolism-related metabolites. Nominally, acetate, propionate,
lactate, succinate and butyrate were selected for the first category (Figure 4.8), and as-
partate, glutamate, nicotinate, formate and pyruvate were selected for the second (Figure
4.9). Treatment B had a significant dampening effect on acetate starting from day 28,
whereas group A and C trends remained similar (Figure 4.8a). The butyrate trend was an
overall increase over time, with a statistically significant increase for treatment group C
starting from day 28 (Figure 4.8b). Lactate had an overall decreasing trend, with group
C decreasing significantly faster (Figure 4.8c). Pyruvate showed an overall increasing
trend over time, with a statistically significant late dampening effect given by treatment C
(Figure 4.9e). Aspartate, formate, nicotinate, glutamate, propionate and succinate showed
no statistically meaningful differences in trends for the treatment groups (Figure 4.8d,e;
Figure 4.9a–d). Aspartate showed overall high variability, along with nicotinate. For-
mate and propionate increased over time with a similar trend for all the treatment groups,
whereas succinate decreased over time with a similar trend for all the treatment groups.
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Figure 4.7: Partial least square score plots at time points T1 (a), T2 (b), and T3 (c). The support

vector machine classifier accuracy score is reported at each time point in order to highlight at

which time the effects of the treatment are more detectable in the metabolic space (T2). Red

arrows mark the directions of maximum expression in the metabolic space for each metabolite

of interest. Points scattered along a particular direction are expected to be characterized by an

abundance of the related metabolite. Ac: acetate, Pyr: pyruvate, Asp: aspartate, Lact: lactate,

Nic: nicotinate, For: formate, Glut: glutamate, But: butyrate, Suc: succinate, Prop: propionate.

MDPI, 2020
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Figure 4.8: Kinetics for caecal concentration of acetate (a), butyrate (b), lactate (c), propionate

(d) and succinate (e). Average values for treatment groups A, B and C are reported in blue, red

and green, respectively. Translucent bands represent each fit’s 95% confidence interval. Zones

of the fits with non-overlapping bands correspond to statistically meaningful differences in trends

between groups. Significant differences in trend are seen for acetate, butyrate and lactate. Metabo-

lites are reported using normalized signal arbitrary units (A.U.), proportional to concentration.

MDPI, 2020
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Figure 4.9: Kinetics for caecal concentration of energy metabolism related metabolites: aspartate

(a), formate (b), glutamate (c), nicotinate (d) and pyruvate (e). Average values for treatment

groups A, B and C are reported in blue, red and green, respectively. Translucent bands represent

each fit’s 95% confidence interval. Zones of the fits with non-overlapping bands correspond to

statistically meaningful differences in trends between groups. Only pyruvate started to show a

different late trend for group C with respect to the other treatments. Metabolites are reported

using normalized signal arbitrary units (A.U.), proportional to concentration. MDPI, 2020
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4.2.4 Discussion and conclusions

The intestinal microbiota of homoeothermic animals constitutes a complex ecosystem
composed of a large variety of microorganisms. It plays an important role in maintaining
the host’s normal gut functions and health, and its imbalance, or dysbiosis, can produce
negative effects on gut physiology (183). Since the ban of antibiotics as growth pro-
moters in the European Union, alternative strategies to improve broilers’ immunological
and metabolic fitness are of great interest. Those strategies involve manipulation of the
host–microbiota relationship, through administration of dietary components as well as
pro/prebiotics (184; 185). Although not providing a direct substrate for microbial fer-
mentation, riboflavin was reported to influence the gastrointestinal redox state, ultimately
modulating the composition of the intestinal microbiota towards an advantageous config-
uration (186). In the present study, the effects of supplementation of different dosages of
vitamin B2 were studied at a model scale. Vitamin B2 supplementation did not affect the
ecosystem specificity of the microbial communities, since sample type (caeca, ileum, and
litter) remained the main driver of bacterial composition, as previously noted (169; 171).
However, the treatment was able to exert a specific effect on both caeca and ileum mi-
crobiota components, affecting different bacterial groups and influencing the caecal con-
centration of different metabolites, depending on the vitamin dosage. Confirming previ-
ous reports on the effect of vitamin supplementation on broiler caecal microbiota (187),
both vitamin B2 dosages (i.e., 50 and 100 mg/kg) induced an increase of the well-known
health-promoting bacteria belonging to the genus Faecalibacterium (169) during the first
two weeks of the broiler’s productive cycle (T1). Moreover, both vitamin B2 dosages also
reduced the progressive increase in Rikenellaceae that was observed, through T1 to T2 to
T3, in the control group. Indeed, our data showed that OTUs assigned to the species Alis-
tipes finegoldii appeared at T3 in the caecal core microbiota of more than 90% of broilers
in the control group, whereas this did not happen in broilers in group B and C. This bac-
terial species had previously been associated with a low food conversion rate (FCR) in
broilers (188), whereas Faecalibacterium was reported to be positively correlated with
FCR, as well as other productivity parameter (171; 188; 189). The highest concentration
of vitamin B2 (group C) induced an increase in the abundance of a well-known health-
promoting group of lactic acid producers whose genetic makeup lacks enzymes needed
for the biosynthesis of this vitamin (Bifidobacterium) (190). Interestingly, metabolomics
analysis highlighted a progressive decrease of lactate in group C, in favor of butyrate ac-
cumulation. This could be explained by the fact that lactate is not usually accumulated
in the gut environment, but is consumed as a result of metabolic cross-feeding between
lactate-producing and lactate-utilizing bacteria, some of which can use it as a precursor
for butyrate synthesis (168). Indeed, the highest dosage of vitamin B2 (group C) seemed
to be the one promoting a microbial co-metabolism, leading to a final increased con-
centration of butyrate, although no significant increase in the abundance of well-known
butyrate producers was detected at later time points. On the contrary, the intermediate
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concentration of the vitamin (group B, 50 mg/kg) significantly increased the Bacteroides
abundance in the caeca along the whole productive cycle, with the appearance of an OTU
assigned to Bacteroides fragilis in the core caecal microbiota. As previously reported
(191), the Bacteroides increase was to the detriment of the family Rikenellaceae (Alis-
tipes), also member of the phylum Bacteroidetes. According to a review of the literature,
Bacteroidaceae and Rikenellaceae abundances in broilers’ guts is strongly influenced by
dietary supplements and ingredients (191; 192; 193; 194; 195; 196), and the species B.
fragilis was already indicated as responding to changes in dietary regimen in broilers
(197). Most importantly, an increase in the caecal abundance of Bacteroides, and/or the
species B. fragilis, had already been associated with body weight gain and improved per-
formance (171; 198). The observed changes in microbiota taxonomy in group B were
not mirrored at the metabolomics level. Indeed, propionate, which is a common terminal
fermentation product of Bacteroidetes, did not increase in the caeca content. This appar-
ent inconsistency may be explained by a subsequent conversion of propionate at higher
rates than its increased production from Bacteroidetes, resulting in a null effect on the
steady-state concentration of such metabolites.

Looking at proxy metabolites of the energetic metabolism, the only one showing a sta-
tistically significant difference with respect to the treatment groups was pyruvate, starting
from the late stage of the fitted model for group C. Pyruvate’s increasing trend in caeca
samples was lower in group C with respect to the other two groups. This may be due
to the fact that the energy production progressively decreases with age in all organisms,
mainly due to the decline in the function of mitochondria (199). In chickens, such dis-
rupted homeostasis may lead to an increased excretion of involved metabolites and their
consequent increasing appearance in the excretory apparatus. Conversely, high doses of
vitamin B2 might positively affect the age-related impairment of energy metabolism by
slowing it down. Another possible explanation could be related to an increased transfor-
mation of pyruvate into butyrate, via Acetyl-CoA intermediate production, operated by
members of the Ruminococcaceae family (200). Concerning the ileal microbiota, both
diets administered to broilers in groups B and C had a marginal impact on microbial
composition. However, it was possible to appreciate that vitamin supplementation coun-
teracted the physiological increase in Peptostreptococcaceae, in particular the increase of
an OTU putatively assigned to the genus Ramboutsia, a slow-growing taxon known to be
detected in the later developmental stage of the ileal microbiota assembly (201; 202). The
ecological significance of this taxon still has to be explored.

In conclusion, the supplementation of 50 and 100 mg/kg of vitamin B2 was effective
in modulating the composition of caeca microbiota, with a marginal impact also on ileal
community structure. In particular, the supplementation of vitamin B2 at 50 mg/kg sig-
nificantly increased the Bacteroides abundance since day 14 up to the end of the rearing
cycle. Moreover, the highest dosage of vitamin B2 (100 mg/kg) significantly increased
the abundance of Bifidobacterium starting from day 28 up to 42 days. This microbiota
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modulation resulted in the boosted production of butyrate, which plays an important role
in protection against pathogens in poultry (203). Furthermore, butyrate is involved in sev-
eral intestinal functions, being an energy source stimulating epithelial cell proliferation
and differentiation, other than exerting an antimicrobial effect by promoting the produc-
tion of peptides and stimulating the production of tight junction proteins (204). Therefore,
the proposed nutritional integration could positively affect the host’s fitness in reacting to
pathogenic infections through a butyrate-mediated improvement of epithelial integrity in
the caeca and positive stimulation of the immune system.

4.3 Multi-Compartmental Model of Complex Compounds

When modelling complex compounds such as real life food, biomolecules release and
their interaction with the human organism have to be modeled at two main levels linked
to their composition: the release of the molecules from the matrix and how they interact
with the ensemble of functions of the organism that become active from the moment the
molecules become bioavailable. The intertwined nature of the relationships intercurring
between these two levels, ultimately affects biomarkers of intake detection from a kinetic
point of view. In this section, we present and discuss a multi-compartmental simulation
reconstructed from urine metabolomes, to evaluate the impact of real life food intake in
different individuals. The results hereby reported are part of a paper in preparation, using
data from the FOODBALL project (http://foodball.org). These early stage results were
presented by the author at the 6th edtion of the International Conference in FoodOmics,

Cesena, Italy, 2020, in an award-winning oral presentation.

4.3.1 Interindividual Variability in Bioavailability

Figure 4.10 summarizes the complexity involved in studies relying upon biomarkers de-
tectability, which simultaneously depends on many elements that are in turn linked by
relationships of sequentiality and causality. The interaction between food and the human
organism begins with bioaccessibility, describing how nutrients can be accessed from
their matrix. Food structure and its digestion are the first factors affecting detectabil-
ity of biomarkers, introducing the timescale of the overall kinetic description. When
biomolecules are released and become accessible, competing functions of the organism
start the processes that ultimately lead to bioavailable substances. Regarding nutrition,
bioavailability can be defined as the fraction of ingested dose that is absorbed, and con-
sequently used or stored . The bioavailability of nutrients is thus heavily related to in-
dividuals, being a function of their phisyological and nutritional status. Co-ingestion,
mucosal mass and individual cellular metabolism needs are all factors tied to the status
of the absorbing subject (205). Lastly, mechanisms of molecular excretion and related
kinetics constitute the tiles completing the complex mosaic of the urine metabolome. In
a hypothetical experiment where the only observable related to metabolite concentration
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Figure 4.10: Overview of the downstream of elements influencing biomarkers detectability in

urine spectra. Dark arrows denote a relationship of sequentiality.

is the urine metabolome, a way to take multi-compartmental kinetic and interindividual
complexity into account is to be found.

The GutSelf review (206) provided an extensive overview of intervariability factors of
digestion of dietary compounds in the GIT (gastro intestinal tract). According to Walther
et al., the analysis of interrelated factors tied to GIT functionality (oral processing, intesti-
nal digestion and absorption) is strictly tied to the specificity of each class of nutrients
(protein, fat, carbohydrates, vitamins, and minerals). These can be classied as intrinsic
(e.g., genetic polymorphisms) or extrinsic (e.g., diet), molecular (e.g., pepsin activity),
or morphological (e.g., BMI) and of genetic (e.g., amylase polymorphism) origin. The
elements of GIT functionality that are affected by individual variability, as published evi-
dence suggests, are: chewing, nutrient sensing, saliva composition, nutrient digestibility,
composition of the intestinal peptidome, enzymatic activity, genetic polymorphisms and
the gut microbiota. These levels of complexity, contributing to the overall variability char-
acterizing the biovailability of nutrients interacting with the human organism, require a
large amount of data output and models capable of mirroring the multifactorial analysis
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necessary for a personalized food-human interaction characterization.

4.3.2 The Bateman equations

From a modeling perspective, a simple yet effective way of representing interdependent
kinetics, describing events linked in a sequential way starting from given initial condi-
tions, is the integration of a chain of differential equations. A system of differential
equations with such characteristics, commonly used in pharmacokinetics studies, is the
Bateman equations system (207):

dN1(t)
dt

= −λ1N1(t)

dN2(t)
dt

= −λ2N2(t) + λ1N1(t)

...

dNi(t)
dt
= −λiNi(t) + λi−1Ni−1(t)

(4.2)

Where each Ni(t) represents an absorption-release process in a given compartment.
Theoretically, with an observable related to metabolite concentrations such as NMR spec-
tra acquired at different time points, kinetics parameters for all compartments can be es-
timated. For each compartment, the scalar λi represents the rate at which biomolecules
are transfered to the next compartment, while λi−1 is the rate at which biomolecules are
pumped in from the previous. Furthermore, one can interpret N1, the initial concentration
of the first exponential decay of the system, as the point of the bioavailability curve at
which absorption processes start, expecting different results for N1(t0) for different ma-
trices of administered foods and different individuals. The core idea of the framework
presented in this study, is to extract a time dependent latent component of NMR spectra
of urine from different individuals, using spectra acquired at different time points for dif-
ferent administered food. This latent component, containing information about metabo-
lite concentrations at different times, will serve as the observable to be numerically in-
tegrated to solve a Bateman system. By solving a 3-compartment Bateman system, one
can theoretically reconstruct blood/transport kinetics and biovailability effect from urine
observation. The distribution of the parameters estimated while solving such a system,
could provide useful insights in characterizing how different foods are digested and how
different individuals digest the same type of food.

4.3.3 Dataset and modelling

The FOODBALL study (trial samples courtesy of Pieter Giesbertz, Yu-Mi Lee, Beante

Brandl, Thomas Skurk, ZIEL-Institute for Food and Health, Technical University of Mu-
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Figure 4.11: Experimental designs of acute dietary interventions

nich) provides observations for three different types of dietary acute interventions over a
48 hours timespan (fig.4.11)

• 766 NMR Spectra (urine)

• 31 individuals for 3 different interventions, randomized crossover

• 8 time points (0,1,2,4,6,12,24,48 hrs) of acute dietary intervention monitoring

• Chicken Breast Intervention (CH): Volunteers randomly received on three differ-
ent occasions as breakfast either 100g or 200g chicken breast (both with rice) or
rice alone as control food. Control food consists of 125g rice, 30g margarine, and
1,5g salt.

• Fibers Intervention (TST): Volunteers randomly received on three different occa-
sions as breakfast either 5g inulin or 2,5g beta-glucan (solved in water, both with
toast) or toast alone as control food. Control food consists of 75g toast without
crust.

• Egg intervention (EGG): Vegan or vegetarian volunteers who have eaten vegan
food for 2 weeks received for breakfast either 2 boiled eggs or rice as control food.
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NMR Sample Preparation and Analysis

All urine samples have been first collected and stored at −80◦C and then prepared for the
NMR analysis according to Linda H. Munger et al. 630 µL of urine sample were first
centrifugued to remove debris and then 540 µL of supernatant were placed in a clean mi-
crofuge tube containing 60 µL of D2O-based phosphate buffer (1.5MKH2PO4 in 100%
D2O, pH7.4), also containing 2mM sodium azide (NaN3) as an antibacterial agent and
10mM TSP (= 3 − (trimethyl − silyl)propionicacid − d4, Aldrich 269913) as an internal
standard. A total of 590 µL of the mixture was transferred into 5mm NMR tubes. All
the 1H NMR spectra were recorded at 298K and acquired using a Bruker 600MHz spec-
trometer (Bruker BioSpin, Karlsruhe, Germany) operating at 600.13MHz proton Larmor
frequency and equipped with an autosampler with 60 holders. For each urine sample,
a one-dimensional (1D) NMR spectrum was acquired with water peak suppression ap-
plying the NOESYGPPR1D sequence (a standard pulse sequence included in the Bruker
library). Each spectrum was acquired using 32K data points over a 7211.54Hz spectral
width (12ppm) and summing up 128 transients. A 90 degrees pulse of 12.5 µs was set
up. A delay of 5s between transients, extending the acquisition time of 2.27s, was cho-
sen to provide a recycle time 5 times longer than the longitudinal relaxation time of the
protons under investigation, expected to be not longer than 1.4s. The data were Fourier
transformed and phase corrected, baseline corrections were automatically applied using
TopSpin version 3.0 (Bruker BioSpin, Karlsruhe, Germany).

Spectral Analysis

Free induction decays (FID) were multiplied by an exponential function equivalent to
a 1.0Hz line-broadening factor before applying Fourier transform. Transformed spectra
were automatically corrected for phase and baseline distortions and calibrated using Top-
Spin 3.0 (Bruker BioSpin, Karlsruhe, Germany). Spectra were aligned calibrating the TSP
peak at 0.00ppm and the spectral regions including only noise (e.g., the spectrum edges
below 0.5 and above 10ppm), as well as the data points which are strongly affected by
the residual water (between 4.95 and 4.7ppm) and the urea signals (5.45− 6.1ppm), were
removed before data analysis. Each 1D reduced spectrum in the range between 0.5 and
9.00 ppm was segmented into 0.02ppm chemical shift bins (100 spectral points). Prior to
pattern recognition, the bucketed dataset underwent a normalization using a probabilistic
quotient normalization (PQN) as a scaling method. All resonance of interest were as-
signed on the 1D NMR by comparing their chemical shift and multiplicity with Chenomx
software data bank (version 8.1, Edmonton, Canada) and with literature when available.

Data Analysis Pipeline and Numerical Integration Methods

All data analysis, machine learning, pipeline implementation and numerical integration
has been carried out using Python 3.8, mixing functions from standard packages and cus-
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Figure 4.12: Pipeline structure. Each colored box represents a different phase of the analysis

tom scripts. Data handling and database construction was performed using the Pandas

library. Spectral projection on latent structure was performed using Principal Compo-
nent Analyisi, Factor Analysis and Partial Least Squares Discriminant Analyisis functions
from the SciKitLearn package. Prior to Factor Analysis decomposition of the spectra and
after their normalization, samples underwent a noise filtering PCA. To minimize variabil-
ity tied to individual metabolic phenotypes, which constitutes an important confounding
factor (208), the coordinates in a 20-dimensional PLSDA scores space, trained to dis-
criminate between different spectra of the same individual, has been computed. These
centroids have been used to perform an individual baseline correction in the PCA scores
space. The emerging time dependent latent component was numerically integrated, to
compute average kinetics for each intervention group, using custom scripts based on
Scipy ODEint function and the scipy.optimize module. The 95% confidence interval of
the fit has been estimated using a resampling bootstrap technique, using realization drawn
from a multivariate gaussian distribution of the parameters based on the estimation of the
parameter covariance matrix using functions from the scipy.stats module. Figure 4.12
provides a complete overview of the pipeline.
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4.3.4 Early-stage results and discussion

The endpoint of the pipeline in 4.12 can be summarized in the following way :

• Theoretical Benchmarks: We can predict kinetic parameters for all compartments
starting from the one we can observe. Furthermore, if we have a group of indi-
viduals eating the same food, we can characterize the variability of their digestive
functions by confronting kinetics parameters

• Requirements: An observable related to metabolite concentration : spectra ac-
quired at consecutive time points. A frequent time sampling (∼ (Nobs − 1)/2) re-
quired for the estimation of the parameters in all compartments.

Extraction of observables with 2-Factor Factor Analysis

From the experimental design and after individual variability correction, the hypothesis
on spectral data is that they contain two main sources of variance: the different interven-
tions and the different time-points at which the spectra are collected after the intervention.
We thus look for a suitable latent space capable of describing these sources of variance,
to assess which metabolites can be considered proxies of food intake and which changes
in metabolites concentrations can be used to describe kinetics. This situation, with an
available strong a-priori hypothesis about possible factors of variance in spectral data, is
particularly suitable for a factor analysis framework, as discussed in 1. The use of factor
analysis allows for an unbiased, unsupervised dimensionality reduction, with a powerful
advantage in interpretation if the projection is successful. A 2-factor factor analysis of
the full dataset, plotted for each sampled time point for visualization purposes, yielded
the results in Figure 4.13. The resulting latent components fully reflect the hypothesis on
the dataset: FA1 is the latent component describing intervention separation, while FA0 is
the latent component describing sampling at different time points. Thus, the analysis of
loadings of FA1 should result in a description of metabolites separating the different in-
terventions. Accordingly, a preliminary analysis of FA1 loadings (in progress) indicated
creatinine concentration as the strongest factor separating the meat-rich intervention from
the other two. FA0 scores show a high variability as a function of time sampling: this
makes FA0 the component containing the linear combination of spectral features that re-
tain kinetic information. FA0 scores can be used as the observable to numerically integrate
the Bateman equations, characterize average kinetics for each intervention and estimate
kinetic parameters to characterize individual with their distributions. The analysis of FA0
loadings (in progress) should result in a description of proxy metabolites whose changes
in concentration summarize kinetic aspects.
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Figure 4.13: Score plot of 2-factors Factor Analysis decomposition of the spectra, after individ-

ual baseline correction. FA0 (x-axis) emerges naturally as the time-dependent latent component.

FA1 (y-axis) emerges as the component containing separation between meat-rich/meat-less inter-

ventions. The two components return an orthogonal representation of these two main factors of

variance in the dataset, in agreement with the a-priori hypothesis.

Trade-off solution: Simplified Bateman Integration

With the current experimental design and available sampled time points, the theoretical
complete solution of a Bateman differential equation system could not be achieved. With
8 available observed time points, approximately ∼ 3 parameters could be integrated nu-
merically so that their covariance matrix is not singular. This in turn means that the the
stability of a 3 parameters-only model could be estimated to evaluate the robustness and
efficiency of the approach and characterize individual kinetics. From an interpretative
point of view, this translates to the fact that the sampling is not sufficient to predict inter-
twined parameters of blood/transport and interaction with food structure (bioaccessibility-
bioavailability). However, a trade-off solution should be enough to evaluate the kinetic
effect of different food composition for different individuals. To simplify the model and
reach numerical stability, we "compress" the information of individual variability of di-
gestive functions and bioavailability of different foods into a single exponential decay.
The Bateman system to solve becomes:

dN1(t)
dt

= −c1λ2N1(t)

dN2(t)
dt

= −λ2N2(t) + c1λ2N1(t)
(4.3)

With this form of the Bateman equation, the parameters to be estimated by model are:
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• N1(t0): the initial concentration of bio-molecules before excretion starts, containing
the downstream information of bioavailability and blood transport/molecular uptake

• λ2: the exponential decay constant of the observed compartment (kinetic of exrec-
tion observed by urine spectra)

• c1 : the constant to estimate λ1 = c1λ2, which the exponential decay constant of the
top compartment kinetic, expressed as function of λ2 (estimated within the observed
compartment kinetic) to enhance numerical integration stability.

In such a way, we reduced parameters estimation to a suitable number. Note: to enhance
numerical precision of the optimizer and numerical integrator, the initial guesses of pa-
rameter array is transformed to (eN1(t0), eλ2 , ec1). This is a known computational trick to
ensure the correct sign for each parameter values (so that numerical integration doesn’t
break) and to enhance float numbers representation precision. We then fit individual ki-
netics with the average optimal parameters estimation as a starting point for the numerical
optimizer. Average fitted kinetics are reported in Figures 4.14, 4.15

Figure 4.14: Result of numerical integration and average kinetics fitting of the 3 acute interven-

tions. Light grey shade area marks the 95% confidence interval of the model. Dark grey shade

area marks the 75% confidence interval of the model. EGG model has the highest variability

due to a lower sample size compared to the other two interventions. ODE = ordinary differential

equations.
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Figure 4.15: Superimposed plot of average kinetics. The light-colored shades in each plot mark

the 75% confidence interval. Differences for kinetics related to different interventions are evident

in non-overlapping zones of the fit.

Individual characterization through parameters distributions

The parameters computed to fit average kinetics, are assumed to be the best guess for
the stating parameter in the computation of individual kinetics for each intervention (as
described in Figure 4.12). Within the current assumptions for the model, the characteri-
zation of how the intake of different foods impacts different individuals can be thought as
follow:

• The morphology (number and sharpness of maxima) of the distribution of the pa-
rameter c1 can highlight group of individuals with different digestive phenotypes,
or enterotypes, in terms of how the bio-molecules are assimilated and transported
after they become bioavailable.

• The morphology (number and sharpness of maxima) of the distribution of the pa-
rameter λ2 can highlight group of individuals with different digestive phenotypes,
or enterotypes, in terms of how bio-molecules and their byproducts are excreted
through urine

• The comparison of c1 and λ2 distributions can highlight if the approach is able to
discriminate how different foods are assimilated and excreted.
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The results are reported in Figures 4.16, 4.17, 4.18. Of note, the fitting of individual ki-
netics for the EGG intervention resulted in distributions with a very high second central
moment (variance in more general terms). This is due to the low number of people that
completed the EGG intervention, compared to the other two interventions (160 spectra
in total over 8 time points, versus 290 spectra in total over 8 time points for the other
two). The effect of this low sample size is also reflected by the high standard error of the
average fit in Figure 4.14; for this reason, parameters distributions results for the EGG
intervention are not reported and discussed. The parameters computed by the models, as
reflected by their distribution, offer insightful information about how different food are as-
similated by different people. The moments of the distribution of parameters of different
foods are significantly different, as confirmed by the Kruskal-Wallis test results reported
in Figures 4.16, 4.17. This means that the trade off-solution of the model is still able to
the discriminate the impact on physiological functions of the GIT of complex real-life
foods with different composition, at both compartments of the model. Furthermore, the
different maxima emerging in distributions mark the presence of groups of individuals
with different enterotypes. Figure 4.18 offers a perspective of the crosstalk between the
two compartments of the model, in terms of different phenotypes of digestive functions
studied at two intertwined level from a single observed compartment (urine metabolome).
Specifically, the CH intervention resulted in a joint distribution with a local maximum in
extreme values of the parameters, highlighting a greater heterogeneity in the response to
meat-based products. This is maybe due to the overall high number of elements (such as
processing, fermentation, tenderness..) contained in meat-based products that can impact
proteolysis, which is in turn tied to interindividual intestinal peptidome composition, pro-
tease activity and genetic polymorphisms (206). The TST intervention joint distribution
has a sharp maximum around a very different range of parameters values with respect to
the CH intervention, with a nearer local maximum. This denotes a characteristic timescale
for the kinetics of this intervention, mainly focused on carbohydrates and fibers, which
also finds an overall homogeneous response from individuals with the respect to the CH
intervention. The underlying cause of the emerging stratifications, that can shed light
upon different enterotypes, is still under investigation using clinical data (such as age,
BMI, sex, clinical parameters, lifestyle) from patients that underwent the trial. An eti-
ologic interpretation of parameters values, giving rise to the different timescales of the
phenomena in the compartments of the systems is also in progress. Furthermore, loadings
analysis of FA0 and FA1 are being performed, to find patterns of metabolites describing
different aspects of kinetics and food intake impact.



104 Chapter 4. A Closer Look: Modelling the Impact of Chemical Composition

Figure 4.16: Distribution of c1 parameters computed for individual kinetics. The continuous line

is a kernel density estimation of the probability density function. The presence of distinct maxima

in the same distribution, reflects the presence of group of individuals with different enterotypes

reacting to the same food intake, in terms of bioavailability, uptake and transport. The separation

between the two distribution remarks the ability of the model to characterize kinetics of different

food intake from urine (Kruskal test p-value = 2.92 × 10−5).

Figure 4.17: Distribution of λ2 parameters computed for individual kinetics. The continuous line

is a kernel density estimation of the probability density function. The presence of distinct maxima

in the same distribution, reflects the presence of group of individuals with different enterotypes

reacting to the same food intake, in terms of excretion and byproducts permanence in urine. The

separation between the two distribution remarks the ability of the model to characterize kinetics

of different food intake from urine (Kruskal test p-value = 4.42 × 10−3).
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Figure 4.18: Joint KDE plot of c1 and λ2 parameters computed for individual kinetics. Darker

spots in the plot correspond to high density zones of the multivariate distribution (maxima). The

presence of different maxima reflects the presence of individuals with different enterotypes, con-

sidering the two compartments of the model simultaneously.

4.4 Chapter Conclusions

In this chapter, we introduced a framework that emphasize the importance of time re-
solved experiments and models to evaluate the impact of food intake and diet within a
holistic paradigm. The foodomic approach points toward the directions needed for an
evaluation based on molecular level descriptions, which can deepen the understanding
of the impact of complex food compounds by considering composition. The kinetic
description of molecular states is required to study the impact of different foods and
biomolecules, as their effect on the organism stretches over different time scales. This
specific aspect is what make an evaluation of exposure to diet based only on epidemio-
logical data incomplete. We proposed and discussed two different frameworks to show
how the organism can be studied, to assess the effect of compounds of different composi-
tions at different timescales. The first is a prolonged exposure to a bio-active compound,
that can be studied by the crosstalk of metabolomic and microbiomic changes during the
entire lifespan of an organism. The second is a characterization of individual response
to short-term acute exposures to different diets, through the reconstruction of metabolic
kinetics from urine metabolome. Food composition is tied to the bioavailaibility of their
contents, which in turn affects how physiological functions of digestion are activated in
different individuals. Within the right frameworks, it is possible to take this complex as-
pect of food-organism interaction into account and produce predictive models to stratify
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populations. However, bioavailability is ultimately tied to bioaccessibility, which cannot
be modeled by considering only composition. Bioaccessibility, or the fraction of a given
food compound relased from the food matrix, is obviously linked to the nature of the food
matrix itself. To reach the modelling of food as a complex ensemble of molecules, en-
cased in heterogeneous phases, that interacts with the human organism perturbing molec-
ular states, a way to describe different food matrices is needed. In the next chapter, we
provide an overview on how artificial intelligence can be exploited to define food matrices
by modelling their structures.



5Chapter

Beyond Composition: the Role of Struc-
ture in Physiological Interactions

This chapter is based on the work by Mengucci, Capozzi et al., 2021, which is, at the
moment of the writing of this thesis, under review for the European Federation of Food
Science and Technology (EFFoST) special issue of Trends in Food Science and Technol-

ogy, Elsevier (accepted and published during the revision of this thesis).

5.1 Food Structure, Function and Artificial Intelligence

Although the description of food has traditionally been based on analytical chemical com-
position, many of the important properties of food are determined by structural elements.
This limitation in the descriptive capacity of a food is also reflected in many mathemati-
cal models that currently aim to predict the sensory, functional, and nutritional properties,
including for example digestibility. For this reason, the contribution of the structure of a
food is often overlooked including when studying the effect of diet on health. In fact, the
nutritionist tends to consult compositional databases when the correctness of a diet must
be evaluated, having no indication on how to use any structural data even when available.
Nevertheless, before collecting structural information, it would be necessary to establish
how to use them to build predictive models for nutritional functions that depend on it.
Understanding how the ingredients and each unit operation of food processes make up
the structure of the foods and how this structure changes during its life or on eating will
play a main role in the development and management of the food science and industry.
For this reason, a tailored collection of scientific work described in the literature has been
examined to pave the way for a future approach using matrix structural data to predict
food functions, also exploiting artificial intelligence (AI).
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Figure 5.1: Food matrix is defined by structures at different length scales consisting of elements

spanning nanometres to millimetres and above. Many of the important properties of foods are

determined by structural elements at micro-scale. Molecules such as carbohydrates, proteins, and

lipids, indeed form supramolecular clusters that behave as pseudo-molecules of higher molecular

weight. Linking organised structural elements to food properties through imaging may be feasible

by means of artificial intelligence applications.

5.1.1 What is the structure of a food?

Most foods are complex, heterogeneous materials composed of structural elements or
domains (co-) existing as solids, liquids and/or gases, where length scales span nanome-
tres to millimetres (209). Many of the important properties of foods are determined by
structural elements of micro-scale and above, such as bubbles, drops, strings and parti-
cles (210). Food products consist largely of carbohydrates, proteins, and lipids, forming
clusters that behave as pseudo-molecules of higher molecular weight than the individual
constituent molecules (210). These interactions are primarily hydrogen-bonding inter-
actions between the hydroxyl groups or Van der Waals interactions between nonpolar
molecules, but also ionic or covalent bonds, such as disulphide or isopeptide, may be very
important. The supramolecular organization of foods gives rise to their structure. Com-
plex food structures are formed, not because of the abundance of elemental components,
but because of the multiple interactions that proteins, lipids and polysaccharides undergo
at different conditions in an aqueous medium. In natural and processed foods, the struc-
ture (or matrix) of a food is defined as the organization of its constituent molecules at
multiple spatial length scales (209). At one extreme, a food product is macroscopic, and
at the other extreme, it is composed of molecules and atoms characterized by molecular
length scales (210). The matrix of a food is in fact scale-sensitive, i.e., interactions may
take place at several scales in the same food as shown in Figure 5.1
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For example, the matrix in a bakery product responsible for the textural properties
of the porous crumb are the protein-starch walls surrounding the air cells (211), and the
relevant scale is on the order of a few hundred microns (212). Starch granules undergoing
gelatinization may be regarded as inclusions in the continuous gluten matrix at a scale of
approximately 10 µm (213). At the nanoscale, gelatinized starch granules are the matrix
onto which a-amylases exert their action during digestion to release glucose molecules
(214). By and large, foods are systems of dispersed phases, such as mesoscale particu-
late structures (colloids) derived from natural food products constructed by self-assembly
(e.g., granules, micelles, globules, and fibres) or are created artificially via food process-
ing (215). Next to these mesoscale structures, food contains smaller molecular species,
like salts, sugars, polyols and phospholipids, which moderate the properties of the con-
tinuous or dispersed phases, or their interfaces. The structure of a given food depends,
however, enormously on the product, its constituents and which of the many length scales
are dominant in establishing the product properties (210). For an emulsion-based food
such as mayonnaise, it is the droplet size of around 1µm which is the relevant length scale,
whereas for dairy products it is typically the size of a casein micelle (∼50-100 nm) (216)
and the size of the individual casein subunits (∼2 nm) that matter. The relevant length
scale of food powders is typically between 10 and 500 µm, and the structure of starch is
described at length scales between the macromolecular (∼1 nm) and the size of the starch
granules (∼1 mm). Even length scales substantially smaller than 1 nm matter in foods, as
diffusion and the interaction of water with the food matrix occur at these distances. Food
structure is important at all dimensional scales for texture, sensory properties, shelf life
and stability and can alter the kinetics and extent of food digestion (209; 217). It plays
a vital role in how food interacts with the gastrointestinal tract (GIT) (e.g., bodily fluids
and receptors) and the resulting release and uptake of nutrients (209) and post-prandial
outcomes (218). In addition, the breakdown of the food matrix is a major controlling
factor for the perception of texture and flavour in the mouth (219).

5.1.2 How to measure food structure

Several techniques can be applied to measure the structure of food materials either di-
rectly (optical and confocal microscopy, tomography, scanning and electron microscopy)
or indirectly from measurements of the mechanical response or spectroscopy (5.1). Some
challenging techniques such as Differential Scanning Calorimetry (DSC) (220), Thermo-
gravimetric analysis (TGA) (221), Nuclear Magnetic Resonance (NMR) spectroscopy and
relaxometry (222), Near-Infrared Reflectance spectroscopy (NIR) (223), Attenuated Total
Reflectance (ATR) spectroscopy (224) and FT-Raman spectroscopy provide quantitative
parameters that are related to the interactions among molecules, thus making measur-
able physical-chemical properties that depend on the supramolecular structure of the food
matter. However, imaging techniques are essentially dedicated to the investigation of the
real 3D structure (225). Static Bragg-type diffraction of neutrons and X-rays has been
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applied to either fluid or viscous food systems to reveal the structure in the 10–100 nm
length scale range (210). Insight into lipid polymorphism, liquid crystallinity, protein
folding, etc. can typically be gained by using these techniques. Because most common
food properties are, however, directly related to the µm length scale, light scattering tech-
niques are primarily exploited. The application of the dynamic light scattering (DLS)
experiment to foods yields information on the diffusion coefficient of the scattering ob-
jects (209). Tomographic techniques such as magnetic resonance imaging (MRI) and
X-ray tomography are extremely powerful since they allow a full 3D reconstruction of
the sample structure but tend to be limited in resolution and/or slow in acquisition times.
Optical or Light Microscopy (LM) suffers from a similar limitation in resolution, in this
case due to the wavelength of visible light, even though structures of the order of 1 µm
can still be imaged using confocal microscopy. A further limitation of optical techniques
is that the food sample should be sufficiently transparent. Conversely, a major advantage
of optical microscopy is that dynamic processes on time scales larger than about 10 ms
can easily be followed (210). In the imaging of samples using transmission electron mi-
croscopy (TEM), special staining, embedding and cutting techniques are indispensable,
whereas the use of scanning electron microscopy (SEM) is much more straightforward
(226). An interesting development is the progress in so called environmental scanning
electron microscopy (ESEM), which allows the analysis of samples at a desired relative
humidity and thus avoids artifacts due to the dehydration of foodstuffs (210). Different
methods for image acquisition (light microscopy, transmission electron microscopy and
scanning electron microscopy) are generally coupled to digital analysis to quantitatively
define, with structural parameters, food at different structural levels. This provides a mea-
surement of different aggregation descriptors. The gel network can be characterized by
structural parameters such as pore size, strand dimensions and how these are distributed
in the volume. In the case of particulate gels, the diameter size of the pore is large, up to
hundreds of microns, compared to the size of the particle, around microns (227). At low
magnifications LM is used to estimate the size of the large pores. At higher magnifica-
tions TEM estimates the size of the particles forming the strands of networks. The pore
size is more easily measured by digital image analysis than by evaluating the difference in
aggregation of particles in the network. In SEM the fracture plane is visualized, and the
fracture will follow the weakest structure, i.e., large pores. Thus, SEM micrographs tend
to show larger pores. and smaller pores could be embedded in clusters or conglomerates.
Stereology is a tool for measuring complex biopolymer gels, where no assumptions of the
shape can be made. A stereological approach was used to classify the mode of aggrega-
tion by a group of experienced microscopists evaluating SEM-micrographs, to quantify
pore size, particle size and amount of threads within the pores in volume weighted mean
volumes (227). Five structural descriptors were quantified, namely porosity (number of
pores), clusters (many particles attached to each other like bunches of grapes), conglom-
erates (as if the particles were joined together in non-linear, irregular, inhomogeneous
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Scale Length Methods
Physical State/

Structural Elements
Information

>1 cm
-Texture Analyser
-Sensory Panel

Liquid, Gel, Solid,
Porous Solid

-properties of network
at large deformation
-size and shape of
macrostructural
elements
-sensorial attributes

1 mm- 1 cm
-Texture Analyzer
-Microscopy

-Liquid-aqueous matrix
-Liquid emulsion-matrix
-Gels
-Porous matrix
-Viscoelastic Matrix

-microstructure

1-500 µm
-Confocal Microscopy
-Light Microscopy
-Rheology

micelles, droplets, air cells,
crystals, fibres, granules

-size and shape of
structures
-properties of network
at small
deformation
-ingredient interaction

10-500 nm
-Light Scattering
-Electron Microscopy

micelles, droplets, air cells,
crystals, fibres, granules

-aggregtion, density
arrangement
-size of structures

<10 nm

-Raman
-Chromatography
-Thermal Analysis
-SDS Page
-NIR

carbohydrates, proteins,
lipids, water etc...

-molecular structure
-proportion of
elementary parts
-unfolding vs. native
-denaturation/transition
temperature

Table 5.1: Principal methods for structural analyses at characteristic length scales in foods,

appearance of food matrix and structural elements

order), strings of beads (as if the particles were attached to each other in a linear order
forming strings of beads) and hairiness (as if small threads were attached to the surface of
the particles and their outline is indistinct). The three-dimensional gel network is respon-
sible for bulk properties such as diffusion and rheological properties, sensory quality and
liquid holding capacity (227).
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5.1.3 Properties affected by food structure: sensory, stability, digestibility and bioac-

cessibility

The dimensions/size and shape/form of the particles, strands and pores create the dif-
ferent textural properties of the food products and expert panellists can detect differences
between very small particles < 1µm3 in volume (228). In fact, texture is a multi-parameter
attribute, that derives from the molecular, microscopic or macroscopic structure of a food
and is detected by several senses, the most important ones being the senses of touch and
pressure (229). Food structure, food texture, nutrients digestibility and consumer product
preferences and choices are intrinsically linked 5.1. Texture influences people’s accep-
tance of food and may be more important than the flavour in some products (230). The
sensory perception during food consumption depends not only on the concentrations of
odour- and taste-active compounds but also on the texture of food matrix (231). Multi-
variate techniques are used to create models to describe groups of the sensory descriptors
by some of the microstructural parameters (232). Correlations between the microstruc-
ture and sensory descriptors have been found: grainy appearance, gritty texture, creamy
texture and tendency to fall apart have a logarithmic dependence on the particle size,
and size of small and large pores (228). The soft and springy textures are influenced by
combinations of microstructural parameters, where the formation of strands into strings
of beads or in clusters and conglomerates seems to play an important role. Conversely,
the sticky texture is negatively correlated to the proportion of threads within the pores
(228). Stability can be fully grasped only if food molecular dynamics and structure are
taken into consideration, i.e., an appropriate understanding of the behaviour of food prod-
ucts requires knowledge of its composition, structure and molecular dynamics, through
the three-dimensional arrangement of the various structural elements and their interac-
tions (232). In addition to water, other structural elements can be identified in foods at a
supramolecular structure level, such as oil droplets, gas cells, fat crystals, strands, gran-
ules, micelles and interfaces. These structural elements, composed of proteins, carbohy-
drates and lipids (in various combinations and proportions), can exist in different states
(glassy/rubbery/crystalline/liquid and solubilised) even at uniform temperatures and water
activity. This structural heterogeneity will necessarily affect the molecular dynamics in
the system and consequently the macroscopic food quality attributes and their behaviour
along storage. Physically separating the reactants in microstructural locations can control
the biochemical activity by avoiding the reactants to be in contact. It is a matter of fact
that the gastrointestinal fate of lipids depends on their level, type, and structural organi-
zation in foods (232). Matrices could be formed by controlled gelation of single or mixed
biopolymer systems around lipid droplets, by dehydration of oil-in-water emulsions con-
taining biopolymers or other wall materials, or by thermal treatment or extrusion of starch
matrices containing lipid droplets. Several studies have recently investigated the impact
of the food matrix on the digestibility of lipids using either in vitro or in vivo digestion
models (233). When oil droplets are dispersed in a solid-like food matrix (e.g., cheese
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or strained-type yogurt), the structure of the surrounding food matrix becomes the dom-
inant factor controlling digestion. For instance, the size of lipid droplets dispersed of
oil-in-water emulsions and nano emulsions can affect, during digestion, oil-soluble vi-
tamins (vitamins A, D, E and K) bioavailability in fortified foods (234); increasing oil
droplet size reduces the bioaccessibility by inhibiting lipid digestion and reducing mi-
celle solubilisation(235). The knowledge advances provided by these studies are setting
the foundation for modulating fat digestion through food structure design, as exhaustively
reviewed by (209). In this sense, food structure design can be a tool to develop foods
that enable to control the body district as well as the extent and rate of release of food
lipids along the digestion process. During digestion, the 3D network structure within a
food matrix can obstruct the diffusion of enzymes towards the surface of dispersed oil
droplets. That is the reason why bile salts are produced by the intestinal tract and released
during food digestion to create an emulsion where the digestive enzymes can act onto
the food lipids. Compared to interfacial films, the solid like-food matrix is potentially
capable of providing enhanced protection against lipolysis (209). Evidence is increasing
that a structured food with a high protein content may show slower lipid digestion (236).
An investigation on near forty food types, based on the harmonized INFOGEST diges-
tion method (136), found that those with medium and low lipid content showed a limited
lipolysis extent when the content of protein or starch was high (237). In protein-rich
foods such as cheese, the disintegration of the protein network occurs mainly in gastric
and intestinal steps, thus facilitating the subsequent release of fat aggregates from the de-
graded matrix (238). These results underline the importance of microstructure and the
digestive environment on the release of cheese components. The in vitro digestion rate
of lipids and starch was also reduced due to the intact vegetal cell walls (239). The in-
tact cell wall structure and protein matrices are impervious to amylase and can prevent
or slow down enzyme diffusion to substrate. In general, the intactness of cell walls is
related to particle size, which is dependent on mastication habits and processing condi-
tions, for example, milling and heating (240). The hydrolysis of intracellular starch and
protein in the essentially intact cells was 2–3%, whereas this increased to 40–45%, when
the cells were mechanically broken and digested, suggesting a barrier effect of intact cell
walls to digestive enzyme access to starch and proteins substrate (241). In support to this
hypothesis, it has been shown that solubilisation of pectin cell wall, induced by thermal
treatment of bean, exerted higher degrees of cell wall permeability so that starch hydrol-
ysis increased proportionally to the cell damage (242). The morphology and the particle
size of starch granules from different plants is also considered an important factor affect-
ing their digestion, as smaller granules have greater enzymatic susceptibility regardless of
botanical origin, due to their larger specific surface area (243). Moreover starch granules
vary in the level of porosity and can have openings (pores) on the surface of the granule
(244). During processing, starch granules swell and lose their crystallinity and molec-
ular organization in a process commonly known as gelatinization. In vitro studies have
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demonstrated that the rate of enzyme breakdown of gelatinized starch is much higher than
that of native starch; native wheat starches are degraded by only 10–15%, but after partial
gelatinization the rate of enzymatic degradation increased three-fold (245). Therefore,
gelatinization may strongly influence the rate at which starch is digested and elicits the
glycaemic response. Starch–protein interaction in white flours might account for a de-
crease in in vivo glycaemic response as well as for a reduction in in vitro digestibility,
so that the removal of gluten from wheat flour induces a high GI value in 11 kinds of
gluten-free bread. In addition to acting as an enzyme barrier, proteins also affect the prop-
erties of starch (gelatinization, retrogradation, etc.) which is then less digestible (246). If
proteins are present in a structured matrix or a clot-like structure is formed in the gastric
environment, gastric juice needs to penetrate this structured matrix to digest the protein.
A 2–10 reduction factor for the diffusion coefficient of pepsin has been measured in a
structured matrix as compared to water. The diffusion of pepsin is one of the limiting
factors in the digestion rate of a structured food matrix (247). Different egg-white gel
structures, with a similar protein composition, induced different proteolysis kinetics and
provoked the release of different specific peptides (248). Proteins can form supramolecu-
lar assemblies also because of thermal treatment. The formation of aggregates may hide
peptide bonds from proteases compared to denatured but isolated molecules. The effect
of cooking on the digestibility of meat proteins is a good example of such complex rela-
tionships. Meat digestibility of regular-cooked beef was higher (95% digested) than that
of ‘well-done’ cooked beef (90% digested). Meat analogues are a class of food products
that imitate the sensory attributes of meat products but are produced from protein from
more sustainable sources, e.g., plant protein isolates, that are subjected to extrusion or
shear-cell technology. In these products, the presence of other food ingredients or com-
ponents, such as lipids and polyphenols, may affect protein digestibility. These effects are
still poorly understood for the lack of knowledge of the matrices and by the absence of
predictive models. Therefore, in the design of novel foods the effects of components on
protein digestibility should be carefully considered in the optimization of the processing
parameters (247). The process-induced modifications, in primis the Maillard reaction,
could also play a role in modulating the food digestibility and the bioavailability of pro-
tein amino acids, by altering the chemical structural of protein networks and in turn the
food microstructure: this is the case of bread, dairy and meat products. Not secondar-
ily, these modifications can also affect the food allergenicity, through the interactions of
protein-bound advanced glycation end-products (AGE) with immune cells receptors, as
evidenced for egg, dairy and peanut allergens (249; 250; 251).

5.1.4 Structure and functional food design

The main objective of the food industry is to produce products with specific properties and
characteristics which have a positive consumer impact. In recent years, the food indus-
try, aware of resource scarcity, is looking for nutritional alternatives, including functional
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foods, that promote optimal health and help reduce the risk of disease and “tailored”.
Tailoring is a process whereby the provision of information, advice and support is indi-
vidualized to the user (252). Mimic foods to be substituted, include also new functional
ingredients in formulation. The attempt to design new foods starting from more sustain-
able or more nutrient-rich ingredients, with optimal characteristics for target population
groups with specific needs, has always clashed with the need to make these new foods at
least as palatable, if not preferable, to traditional ones. The limit is often in the obtainment
of a desirable structure. In fact, unlike some homogeneous foods, such as drinks, extracts
or oils, most foods are heterogeneous multiphase mixtures, having nutritional and sensory
characteristics that strongly depend on the placement with which the different phases are
distributed in space, while forming the food matrix. For this reason, the food technologists
make use of structure-targeted toolboxes to mimic successful matrices or invent new ones
with even more performing characteristics. This is usually carried out empirically in lab
scale plants but, to avoid prolonged and expensive physical research trials, the structure
of the food could be preliminarily built in-silico also in the design phase. This effective
approach could be realized using conceptual toolboxes (simulating unit operations, order
of sequential steps, formulations) assisted by mathematical prediction models. The pur-
pose of designing the most suitable structures is then fulfilled, through combinations of
formulations and processes, to achieve the desired outcomes, like the optimized durabil-
ity, palatability, bioaccessibility and bioavailability of nutrients. This way, food design
considers not only composition, but also structure affecting chemical stability, texture and
dynamics of digestion and absorption of a food or its components. In this perspective,
tailored foods provide not only the necessary nutrients but also new functions, linked to
the matrix structure, targeted for specific populations groups such as the elderly, babies,
athletes, allergic peoples, vegans or for special diets such as low salt, sugars and fats, or
lactose- and gluten-free, and to increase the quantity of proteins, vitamins, dietary fibres,
and bioactive phytochemicals. Mimic foods to be substituted, include also new functional
ingredients in formulation. The attempt to design new foods starting from more sustain-
able or more nutrient-rich ingredients, with optimal characteristics for target population
groups with specific needs, has always clashed with the need to make these new foods at
least as palatable, if not preferable, to traditional ones. The limit is often in the obtainment
of a desirable structure. In fact, unlike some homogeneous foods, such as drinks, extracts
or oils, most foods are heterogeneous multiphase mixtures, having nutritional and sensory
characteristics that strongly depend on the placement with which the different phases are
distributed in space, while forming the food matrix. For this reason, the food technologists
make use of structure-targeted toolboxes to mimic successful matrices or invent new ones
with even more performing characteristics. This is usually carried out empirically in lab
scale plants but, to avoid prolonged and expensive physical research trials, the structure
of the food could be preliminarily built in-silico also in the design phase. This effective
approach could be realized using conceptual toolboxes (simulating unit operations, order
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of sequential steps, formulations) assisted by mathematical prediction models. The pur-
pose of designing the most suitable structures is then fulfilled, through combinations of
formulations and processes, to achieve the desired outcomes, like the optimized durabil-
ity, palatability, bioaccessibility and bioavailability of nutrients. This way, food design
considers not only composition, but also structure affecting chemical stability, texture and
dynamics of digestion and absorption of a food or its components. In this perspective,
tailored foods provide not only the necessary nutrients but also new functions, linked to
the matrix structure, targeted for specific populations groups such as the elderly, babies,
athletes, allergic peoples, vegans or for special diets such as low salt, sugars and fats,
or lactose- and gluten-free, and to increase the quantity of proteins, vitamins, dietary fi-
bres, and bioactive phytochemicals. Designer-made supramolecular food materials may
form the basis for personalized, health-promoting diets of the future (253). As already
described in the previous section 5.1, foods are made by colloids toolboxes provided by
nature, to which food technologists have added ‘artificial’ colloids, e.g., gas bubbles, oil
droplets, ice crystals, fat crystals, and protein aggregates, created by external forces (e.g.,
extrusion, compression, electric fields) or heating applied by food processing equipment
(215). With these ‘artificial’ colloids, foods adhere to the length scales dictated by our
tasting senses, which are sensitive enough to detect structures of millimetre down to mi-
crometre size (215). In this sense, a palatable food must be designed by finely modulating
these structures to enhance their nutritional function as well. The structure of all foods
can be imagined as the result of combinations of structural elements provided by nature or
imparted during processing and preparation. Food structure design is the dedicated con-
ception and fabrication of foods in such a way as to attain specific structures, functions
or properties (209). Knowledge on how foods and beverages interact with the digestive
system, where they transform into supramolecular structures, can in fact have a direct
impact on the rational design of such advanced materials for functional food delivery
applications. For example, delivering a complete diet with a content of hydrophobic, am-
phiphilic, and hydrophilic nutrients, which is personalized to the needs of the consumers,
could be beneficial for clinical and infant nutrition (236). Otherwise, as confirmed by
recent studies on the use in pasta formulation of alternative flour from different sources,
such as potato and pigeon pea flour (254) or flours from legumes such as chickpea (255)
or bean (256), pasta nutritional profile is usually improved, leading to an increase in pro-
tein, ash, fibre contents, and antioxidant compounds together with a decrease in the starch
content and of in vitro starch digestibility. What is missing in these approaches, solely
accounting for the nutritional profile, based on the composition of the ingredients, is the
input related to the target structural characteristics at different scale lengths. Although
structure has been shown to have an equally important impact on nutritional quality, a
novel food is designed with great care for its composition, stability and acceptability but,
often, its structural optimization for nutrient accessibility is omitted in the preliminary
conceptualisation phase and studied only ex post. Ultimately, the food structure design
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has the potential to be personalized to digestive conditions and dietary nutrient require-
ments of the consumer or patient. From a nutritional perspective, the ability to control
food digestion is extremely important to design food with desired characteristics: the key
to control such process is to modulate the accessibility of digestive enzymes to their sub-
strate. Recently, considerable interest has also arisen in the application of by-products of
food processing with specific properties in food structure design, such as agar or locust
bean gum substitutes.

5.1.5 Predictive models and structure design: how do we feed AI?

As described in the previous section, stability, palatability, bioaccessibility and bioavail-
ability of nutrients are the target properties of food optimization. These properties must
be expressed using numerical descriptors, such as concentrations of degradation biomark-
ers, food sensory scores, preferably assessed by instrumental devices (electronic nose or
tongue), post-prandial nutrients level in blood. Chemical and instrumental sensory anal-
yses provide objective parameters intrinsic to the food, that are independent from the
individual interaction with it. Conversely, parameters related to the digestive functions
are strongly linked to the subjects’ variability. For this reason, experiments simulating
different individual physiological and pathological conditions are necessary, even when
characterizing the target properties of a single food. Whereas in vivo experiments give a
global indication of food nutrients digestibility in its full biological context, and in vitro
experiments provide more insight into the different chemical and physical mechanisms,
the mathematical, or in silico modelling can connect these two domains (247). The hy-
drolysis kinetics of the main macronutrients (proteins, starch, and lipids) are modelled to
predict the concentration and their degree of hydrolysis in one or more compartments of
the digestive system, or to predict the transport of the food through the digestive system.
The most popular approaches assume the digestive tract as a series of bioreactors that can
be described by mass balances, written as a set of differential equations (257). In recent
years, models that also consider the food matrix together with the reaction and diffusion
phenomena have been developed. Modelling of the swelling of protein gels by using the
Flory-Rehner theory has been combined with the Gibbs-Donnan theory to include the
distribution of ions between the gastric juice and the protein matrix, to gain a better un-
derstanding of the phenomena that are essential in the digestion of the food matrix (258).
Up to now, the role of modelling has been that of linking and explaining in vivo and in
vitro experiments. However, a further step is required to use modelling for food proper-
ties prediction as a function of food structure. Suitable numerical descriptors of structure
are required as inputs for AI systems, to predict properties that can define food in a func-
tional way. In the next section, available emerging approaches and those foreseen for the
next future are described, emphasizing how structure descriptors have been employed to
predict sensory properties and stability toward chemical transformations.
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Describing the structure with Imaging

The most straightforward way one can think of to parametrize food structure is through
descriptors extracted from imaging. Given the number of existing imaging techniques
(microscopy, spectral and hyperspectral imaging, nuclear magnetic resonance imaging,
ultrasound, microwave, etc.), many different aspects of food structure can be character-
ized and digitalized. Furthermore, each imaging technique has its own array of analytics
and descriptors, capable of grasping and describing physical quantities tied to the phys-
ical nature of the specific imaging technique. All these heterogeneous descriptors, to-
gether with general texture analysis and computer vision descriptors, that can be obtained
from images under certain conditions, constitutes interesting inputs for artificial intelli-
gence (machine and deep learning) frameworks. As a matter of fact, the role of artificial
intelligence in describing food structure from images, is that of finding complex relation-
ships between heterogeneous features describing different aspects of the structure and the
different structure-dependent properties of a food. Furthermore, researcher in the field
of deep learning, will rightfully argue that in the next future, a general characterization
of structure directly from images without a-priori features and descriptors knowledge or
assumptions could be possible. From an operative point of view, this means feeding a
neural network, as complex as needed, each pixel (or voxel in 3D) of an image as an
input and let the network learn how to build the best features to describe the problem (in
this case, predict food properties from structure description). To reach this goal, huge
quantities of suitable training data are however required to avoid some known problems
of deep learning architectures, such as overparameterization and overfitting. While some
imaging techniques are inherently suitable for the high-throughput standardized data pro-
duction (such as magnetic resonance imaging) required by deep learning architectures to
achieve good prediction and generalization, other imaging techniques (such as electronic
microscopy) suffer from a series of issues that make them less suitable for automation
and high-throughput data production. Overall, we are quite far from the data produc-
tion required to have a huge amount of labelled training data, especially regarding certain
imaging techniques. In the next section, a high-throughput imaging technique (MRI) and
a high-resolution imaging technique (electronic microscopy) are compared in terms of
descriptors and suitability for automation. This is done to outline possible directions to
facilitate an efficient use of artificial intelligence at this stage of structure description.

On the suitability of data production and imaging parameters for AI: a comparison

To grasp the meaning of what has been said in the previous section about data produc-
tion and generality of descriptors, it may be useful to focus on a comparison between
electronic microscopy (high-resolution, non-high-throughput) and magnetic resonance
imaging (low resolution, high-throughput). Table 5.2 sums up the main categories of de-
scriptors that can be extracted from images coming from these two different techniques,
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followed by a synopsis highlighting the upsides and downsides of each technique as far
as automation and generalization are concerned. While MRI has many upsides when it
comes to data production, generalization, automation of analysis and feature extraction
for classification, a trade off exists in terms of spatial resolution. On the other hand, ad-
vocating the importance of high-resolution aspects in terms of food structure description
implies the necessity of high-resolution imaging techniques. Electronic microscopy can
fill in the role provided it becomes suitable for high-throughput data production and data-
driven modelling. At present, microscopic image production is not optimized for auto-
matic extraction of general features and descriptions, which are at the core of frameworks
using integrated data and automated workflows based on machine learning. The first issue
comes from image acquisitions inherently suffering from parameter dependency. Light-
ing conditions and magnification which are obviously related to experimental purposes,
tend to shift microscopic imaging production toward less generalized datasets. Moreover,
most canonical morphological and structural descriptors that are quantified from this type
of imaging, while being directly related to physical and easily interpreted quantities, re-
quire specific assumptions (i.e., presence/absence of pores, spheres, shapes, fibers etc.).
Characterizing portions of images with ad-hoc assumptions is ill-suited for automation
and generalized parameter extraction. On the other hand, the power in terms of spa-
tial resolution of electronic microscopy cannot be overlooked when trying to characterize
food structure. The solution may lie in shifting microscopy data production toward a more
pipeline-oriented way. The creation of a consensus for data harmonization of microscopic
images in the field, could lead to parameter and feature extraction based upon low level
and more general operators, analogous to the ones used for MR images. This shift of
paradigm in data production and descriptor extraction, may contribute to boost modelling
by facilitating the linking of the many levels of complexity characterizing real life foods,
using general parameters. A shift in data production is also needed to pave the way for
efficient deep learning approaches.

Structure images and sensory quality

Some scientific research, considered as an original reference works for these aspects, have
laid the foundations for the way a set of fundamental or derived parameters X, defining
the food structure, can be linked to a functional property Y through a mathematical func-
tion (259). For instance, the microstructural parameters may be presented as the estimated
model parameters A and B necessary to solve a correlating equation, e.g., Y = A+B ln(X),
where Y is a sensory vector descriptor, X the model matrix for microstructural parameter.
The exemplary work by Langton et al. (259), carried out on whey protein gels, defined
nine quantified microstructural parameters constituting the X vector feeding the model:
four parameters were the output of the digital image analysis (i.e., pore size at x20 mag-
nitude; pore size at x40 magnitude; particle size; amount of threads), and five parameters
were mode of aggregation as perceived by the test panel and already explained at the
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Sem MRI

Descriptors

-Partcile size and
morphology
-Pore size and
morphology
-Size distribution and
morphlogy
-Shape orientation
and diameters
distributions

-First order gray level statistics
-Roughness of textures
-Degree of linearity
-Co-occurence matrix statistics
-Structural or
morphological features
of ROIs
-Transform features

Pros & Cons

-Not immediately
suitable for high
throughput production
-No data armonization
standard
-Wide application fields
-Canonical desctiptors
immediately linked
to physical quantities
-Requires specific
assumptions for image
analysis
-Very high resolution

-Inherently suitable for
high-throughput data production
-Data harmonizations standards
are widely supported in many
biomedical fields
-Descriptors come from low-level,
general texture analysis and
morphological studies alike
-Low resolution
-Does not requires specific
assumptions for image analysis

Table 5.2: Main descriptors and (dis)advantages for electronic microscopy and magnetic reso-

nance imaging

end of section 3 (Porosity; Clusters; Conglomerates; String of beads; Hairiness). Prin-
cipal component analysis (PCA) of the textural sensory data identifies two groups: (i)
grainy appearance, gritty, creamy and falling apart; and (ii) soft, springy, surface moisture
and sticky. To find trends in groups of variables (microstructural and sensory variables),
PCA on the whole data set was performed. The PCA had the purpose of creating, for
each orthogonal component, linear combinations of variables characterized by a high de-
gree of co-variance, thus evidencing their interdependence, by collecting them in different
groups. One group of variables, defined by the large and small star volume of pores, the
star volume of particles, porosity, clusters, gritty, falling apart and creamy (and acid) was
found to take part in the systematic variation. Two groups of microstructural parameters
and sensory descriptors were found: one group depending on the dimensions of the over-
all network and the other depending on the shape of the strands and filling of the pores.
This kind of data analysis made model building a realizable approach.
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Structure Images, water dynamics and chemical transformations

Food systems behaviour is strongly dependent on water. Besides water content in a food
material, it is important to understand the water state and dynamics for a proper com-
prehension of properties and stability of food structure. Understanding changes in loca-
tion and mobility of water represents a significant step in food stability knowledge, since
water “availability” within the matrix profoundly influences the chemical, physical and
microbiological quality of foods. Water mobility/dynamics can be described as a mani-
festation how “freely” water molecules can participate in reactions or how easily water
molecules diffuse to participate in reactions occurring in different sites (260). Nuclear
magnetic resonance is a powerful technique to investigate water dynamics and physical
structures of foods, through analysis of nuclear magnetisation relaxation times, because it
provides information on molecular dynamics of different components in dense complex
systems. The application of this technique may be very useful in predicting food systems
physicochemical changes, namely texture, viscosity or water migration (260). Finding
correlations amongst parameters based on time domain (TD)-NMR T2 decays, describ-
ing water dynamics, and texture-derived features based on SEM images is a challenging
issue, when the aim is the quantitative characterization and parametrization of porous food
matrices and the transformation that food undergoes due to processing (such as cooking).
A comprehensive pipeline for parameter extraction, describing the porous food at differ-
ent cooking time, must be set accurately. TD-NMR raw data are preferable to classical
exponential fitting parameters, for building a general model accounting for the water sta-
tus, as different phenomena participate in the modulation of the relaxation times of the
water population in the compartmentalized porous matrix. For this reason, when matrix
effects are investigated with TD-NMR, a probabilistic PCA with Radial Base Function
(RBF) kernel may constitute the solution to find a latent space explaining differences in
data tied to different matrices (pasta type) and cooking times. The RBF kernel can take the
non-linearity of decays into account, projecting data into a suitable latent space, as shown
in section 5.2. The next section outlines the necessity to take another level of complexity
into account when trying to predict bioavailability and bioaccessibility: the physiological
interaction with the human organism.

5.1.6 Stucture and in-silico simulators

Gathering an almost infinite set of model foods covering each possible category is a dif-
ficult goal to achieve. For this reason, with an available exemplary set of model foods,
the next step could be the creation of in-silico models, derived from the mathematical
combination of basic models, to simulate each existing real food. As previously stressed,
in silico simulations of food as complex particle based soft matter, are strictly bound
to the various length scales in the structure and occurring phenomena. As such, differ-
ent properties must be simultaneously investigated at different scales, from mesoscale to
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nanoscale. While mesoscale properties (i.e. for emulsions and fat droplets) can be in-
vestigated using coarse-grained particle-based simulations (261), at finer length scales
quantum-mechanical effects might occur. While hybrid multiscale models, capable of
joining coarse and fine level descriptions, are already available (262), making predic-
tive multiscale simulation approaches seemingly viable, the true complexity of food as
a system is still unaddressed. A complete review of available simulation tools, with a
breakdown of all the levels of complexity that must be addressed while trying to predict
food properties and functionalities from its structure and molecular-level interactions, is
provided by Barroso da Silva, et al. (1). Amongst other issues, a predictive model relying
solely upon multiscale simulation, can suffer from high computational complexity. Simu-
lating systems consisting of extremely high number of particles, for which free-energy
properties and kinetic properties must be computed for several time-steps, can easily
lead to unrealistic computational time, even for specialized high-end hardware. However,
machine and deep learning can prove useful in decoupling multiscale descriptions from
approaches based exclusively on simulation. Quantitative structure-activity relationship
(QSAR) based approaches are, in example, very useful in predicting bio-chemical prop-
erties of compounds, including biological activity (263). These approaches are based on
linking sets of molecular descriptors to a given response variable; essentially the goal
is to find a solution to a supervised learning problem by coming up with an optimal set
of user-defined molecular descriptors and a suitable model to link them to the outcomes
(response variable). A recent development of such a framework involves the use of deep
learning architectures, using recurrent and convolutional neural networks (264). The use
of such neural networks allows for a generalization of the learning problem, by elimi-
nating the necessity of an a priori definition of the molecular descriptors, at the cost of
a very high pool of training data. Approaches of these types, when the interpretability
of the network-extracted descriptors is ensured, can minimize the bias introduced by the
users when choosing the descriptors and the difficulty of interpreting descriptors that are
not directly related to chemical structures. Results from framework of these types, can
furthermore be linked with outcomes from physiological experiments (i.e., experiments
involving digestibility or involving health effects of certain compounds). In this way, the
molecular scale and the macroscale of physiological effects are encased in a multiscale
data-driven description. In a similar and more general fashion, many levels and scale of
complexity can be linked through machine and deep learning, by finding ways of extract-
ing general descriptors to be related to a response variable. Given the sheer complexity
of food, data-driven description of the various levels of complexity of food structure and
food-human interactions seems to be a promising way of predicting properties and health
effects. In the next section, an example of how to extract joint general descriptors from dif-
ferent scales of complexity (water-matrix interaction and morphology) of a real-life food,
that can be ultimately related to outcomes from physiological experiments, is presented.
The example, set up by the authors, shows how to use SEM images in a more general
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way, by extracting texture analysis descriptors, when the acquisition experimental design
is suitable. An example of how to correlate such structure descriptors to properties such
as water mobility, using raw data and machine learning, is also proposed.

5.2 Case Study: Modelling with Texture Analysis and Raw Data

In this section, we explore the capabilities of a framework based on general image-derived
descriptors of pasta structure and their correlation with descriptors of properties affected
by structure. Pasta is a good case study for its interesting structural characteristics; it has
a compact and dense microstructure, which: i) limits water absorption and thus starch
swelling and gelatinization, during cooking; ii) entraps the starch granules reducing the
accessibility of α-amylase and (iii) releases α-amylase inhibitors during cooking that can
immobilize the enzyme into the gluten network. Microstructural changes of starch and
proteins during cooking depend on water availability, and the kinetics of solvation of each
biopolymer have a major role on the final texture of cooked pasta (265). Thus, pasta is
a promising real-life food case study to link structural descriptions with water mobility
properties, how they are affected by chemical transformation (cooking) and eventually
how structural changes and water availability can impact digestibility.

5.2.1 Cooking and water-matrix interaction

To date, the structure of cooked pasta has been analysed at various microscopic and meso-
scopic levels by means of different methods, such as MRI. In fact it can be used to evaluate
water distribution and mobility in dry pasta, and in pasta at various cooking time (266).
Even these studies revealed that water penetration, distribution, and mobility during cook-
ing were highly dependent on the degree of protein reticulation, which in turns is greatly
affected by process conditions and food formulation (267) MRI represents a non-invasive
method that spatially resolves the amount and dynamics of water and macromolecules-
protons. For this reason, (266) used MRI to make a real time assessment of the effect of
starch-gluten ratio on water distribution in dry spaghetti during cooking. Therefore, in-
vestigating such properties can help to understand how pasta components (water, gluten,
starch, fibre, etc.) interact with each other defining its structure, quality, acceptability, and
stability. In this respect, Gallo, et al. (268) investigated the impact of pasta composition
(semolina and durum whole-wheat semolina) on water mobility in spaghetti before and
after cooking by low-resolution 1H NMR experiments. In detail T1 and T2 proton relax-
ation times as indicators of the molecular water mobility, have been determined (269).
The uncooked spaghetti had T1 and T2 values much lower than the cooked ones sug-
gesting a very low water mobility in the dry pasta. With increasing cooking time, it was
observed a significant increase of both T1 and T2 relaxation times, either for semolina or
whole wheat spaghetti, suggesting that molecular water mobility within the pasta struc-
ture increases as protein coagulation and starch gelatinization proceed. According to
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Bosmans et al. (270), this behaviour could be explained in term of three phenomena: i)
water uptake in pasta structure; ii) starch gelatinization with the subsequent destruction
of the original structure; iii) gluten polymerization accompanied by water expulsion from
the gluten network. By comparing the behaviour of the two samples, one observes that
the presence of fibre led to a reduction in water mobility, since they can keep a substantial
excess of water during the cooking process (271). The intermediate zone was character-
ized by swollen starch granules embedded in a coagulated but dense protein network; the
presence of fibre resulted in an irregular structure in which there were a small number
of still intact and therefore non-gelatinized starch granules. As reported by Manthey and
Schorno (272), in whole-wheat pasta bran particles cause a dilution of the gluten proteins,
interfering with proper gluten development. This results in a highly porous structure in
which starch granules are more accessible to water molecules. Starch granules in the
surface region were fully gelatinized and thus completely disintegrated in amylose and
amylopectin. In the intermediate zone, starch granules were highly hydrated increasing
in size Concerning the analysis of surface roughness, laser microscopy stressed an irreg-
ular surface structure for dry pasta (due to the presence of intact starch granules) which
became more homogeneous after 1 min of cooking, due to the starch gelatinization.

5.2.2 Toward the automatization of water-matrix interactions and structure char-

acterization

Joining measurement of NMR T1 and T2 proton relaxation time with SEM images, seems
a promising way of intertwining water mobility related phenomena with morphologi-
cal variations, thus including structure into food characterization. Parameters extracted
with these techniques, can furthermore be modelled using machine and deep learning
architectures. However, both methodologies require a fair amount of expertise in ac-
quisition and processing of the data, making standardization and automation of mod-
elling pipelines challenging. Extracting parameters and quantities from SEM images,
is especially challenging as it requires the use of dedicated software (e.g., when mea-
suring particle size) to extract the distributions of nanostructures and microstructures in
an image. Accurate particle size distributions can be difficult to obtain, as they require
images with highly detectable particles and morphologies to build a suitable statistic.
Furthermore, the observable size of particles and structures depends drastically on the
viewing angle, while measures such as porosity and surface roughness are affected by
lighting and zooming. A complete list of issues and standardization of measures for
SEM image analysis is provided by the ISO (International Organization for Standard-
ization) (https://www.iso.org/obp/ui/fr/iso:std:iso:19749:ed-1:v1:en). On the other hand,
NMR relaxometry, while being a high-throughput technique with relatively low acquisi-
tion times and high reproducibility, requires expertise in sample preparation and acquisi-
tion sequence engineering. Furthermore, studying T1 and T2 distributions with inversion
software such as the UPEN algorithm (273) requires a deep understanding of the physical
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Figure 5.2: SEM image processing example of diferent cooking times (top: 1 min, bottom: 10

mins) for the same zone of the same pasta type.

and mathematical nature of the inversion problem, making this kind of analyses extremely
variable and elaboration parameters dependent.

5.2.3 Is learning from raw data and general descriptors promising?

A possible way to bypass some of these issues and make automatization and learning
easier, moving toward a more general framework, is to analyse raw TD-NMR decays
and study SEM images by extracting general texture analysis features and learning la-
tent components in the data, instead of specific measurements and physical quantities. In
this qualitative example, a way to correlate water mobility phenomena and morphology
related features using machine learning is proposed. SEM images of different zones of
semola spaghetti, acquired at different cooking time points, are processed and segmented
using various filtering techniques and morphological operators. A set of minimum im-
age acquisition parameter can be chosen (i.e., zoom, lighting, well defined morphological
regions of the pasta to acquire), to minimize variability in the final dataset related to pos-
sible acquisition biases. SEM images have been processed and segmented using various
filtering techniques and morphological operators. A gaussian filter has been applied to
smooth contrast related to lighting and zooming, thresholding has been perfmormed us-
ing Bernsen local thresholding, in order to emphasize the formation of pores and nuclei
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Figure 5.3: The process behind the decomposition of T2 decays raw data into a lower dimensional

space. Each time point of each decay is interpreted as variable and fed to a probabilistic PCA

with an RBF kernel. Data are transformed according to coefficients which are dependent on the

kernel parameters, optimized through machine learning. An example of resulting latent space is

showed in the following Figure 5.4a, where each T2 decay, measured for each different cooking

time, is represented as a point in a two-dimensional space.

during cooking. An erosion morphological operator with a 4 × 4 structuring element has
been applied in order to remove artifacts and spurious pixel zones (Figure 5.2).

The 13 Haralick descriptors (274) are computed from the images of the complete
cooking profile of the pasta. These general descriptors, widely used in texture analysis
and computer vision, are moments computed from the segmented image cooccurrence
matrix. These moments are intended to describe the characteristics of the patterns of the
textures of the image, in term of the probability of occurrence of grey levels. As such,
they serve as general morphological descriptors, whose relationships with descriptors ex-
tracted from TD-NMR can be estimated. These descriptors can be studied as a function of
time-dependent latent components extracted from TD-NMR raw decays, with a process
summarized in Figure 5.3, to find links with water mobility related phenomena. Typical
raw decays of pasta at different cooking time points, are shown as projection into a latent
variable space using a probabilistic KPCA (Kernel Principal Component Analysis). Us-
ing an RBF kernel in a self-optimizing learning pipeline, each decay curve is projected
into a lower dimensional space with the aim of detecting differences tied to phenom-
ena occurring during cooking (Figure 5.4a). Some of the Haralick descriptors appear to
have strong linear and non- linear correlations with the time dependent latent variables
extracted from TD-NMR raw decays (Figure5.4b). Moreover, correlations seem to be
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Figure 5.4: A. Resulting lower dimensional latent space, computed according to Figure 2. In

this space, each T2 decay measured at different cooking times (indicated by the colour gradient)

is represented as a point. The points are the projection in the 2-d latent features space, learned

by the kernel, of each T2 decay. In this space, differences tied to effects of cooking on water

mobility are the most detectable. B. Scatter plot of PC0 vs HF6 (Sum Average, computed from SEM

images of the central zones). A qualitative interpretation of the relationship between these two

variables can be given as follows: in the functionality phase, water mobility is mainly related with

starch gelatinization phenomena, resulting in little morphological changes. After an activation

phase, where the rupture of structures in the food matrix begin to arise, the morphological changes

detected in images start a strictly monotonous trend related to cooking time (morphology phase).

different from zone to zone, highlighting the expected behaviour of TD-NMR to discrim-
inate information about different characteristics of water populations at different cooking
times in different pasta zones.

Some texture analysis descriptors, such as texture Sum Average (HF6, y axis of Figure
5.4b) which is tied to “homogeneity” of the texture, describing the central zone images,
show an exclusively monotonous relationship with cooking time and PC scores (both PC0
and PC1) after a certain cooking time (Morphologic Phase, Figure 5.4b). Looking at the
KPC space, this phenomenon corresponds to a steep variation in PC1 score and a low
variation in PC0 scores. On the contrary, below this time (light blue to dark blue points,
up to 5 mins, Figure 5.4a), steep variations along PC0 and slow variations of PC1 scores
are encountered, until PC1 score variation minimum is reached (around 5-7 mins, dark
points, Figure 5.4a). After this, variation on PC1 scores starts to rise again (Activation,
Figure 5.4b) while PC0 scores variation starts to reach its minimum. Above this threshold
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of cooking time, both PC1 and many HF descriptors, such as HF6 in Figure 5.4b, start a
trend with a strict monotonous dependence with time. This time range may represent the
threshold for which changes in the texture of the matrix start to be exclusively dependent
on cooking time, maybe due to the irreversible rupture of structures in the food matrix
and the consequent variation of the timescale of water exchanges. Looking at Figure 5.4,
one can argue that the description of the morphological changes emerging from these pre-
liminary results, is in agreement with findings from Manthey and Schorno (272). If in the
early moments of cooking starch gelatinization prevails, the resulting SEM images tend
to show more homogeneous surfaces, with little differences from a morphological point
of view. However, with raising cooking time the observed increase in the inhomogene-
ity of pasta surface and the changes in water mobility become a monotonous function
of cooking time, as the partial detachment of solid materials such as starch and starch-
attached proteins probably becomes the prevalent phenomena. Haralick descriptors for
SEM images, together with self-learned latent components extracted from TD-NMR raw
decays, are capable of picking up this sort of threshold behaviour and successfully merg-
ing description of the morphology and water-matrix interaction. Learning latent features
and parameters from raw NMR data and images processed to a bare minimum, study-
ing and understanding the correlation amongst the extracted descriptors can help build-
ing digital twins of food with an included structural characterization of the matrix. In
the example, water mobility and morphology are investigated with a general data-driven
framework, using machine learning and canonical texture analysis to find suitable fea-
tures and descriptors. The main advantages of this approach are the generality and the
lack of assumptions needed for the description of structural elements from images. Using
raw data (such as T2 decays in the example) and letting AI methods learn the best way
to represent them is optimal when dealing with many heterogeneous datasets, in terms
of automation and feature discovery. Moreover, bypassing the necessity of assumptions
when describing structure from images, becomes an advantage when parametrizing real-
life foods in which matrix structures can be extremely heterogenous along the different
length scales. Consequently, different types of images and raw data from experiments
regarding digestibility, stability and bioaccessibility can be explored to shed light on their
relationship with structural properties, even with complex real-life food.

5.3 Chapter Conclusions

Understanding how formulations of ingredients and unitary operations of food processes
make up the structure of food and how this structure changes during its shelf - life or eating
will play an important role in the development and management of food science and in-
dustry. Much of the information that defines the structure of a food is currently neglected
when entering the domain of nutrition, as the structural dimension is too complicated to
be quantitatively measured and related to sensorial properties, stability, digestibility and
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bioaccessibility of nutrients. Not even the momentum given by the considerable progress
achieved in the design of functional foods has so far been sufficient to assign the correct
importance to the structural nature of food. Certainly, the complexity of the information
is such as to hinder the creation of predictive-based models based on analysis of a lim-
ited amount of available data. For this reason, it is certainly conceivable a considerable
impulse determined using artificial intelligence capable of handling certain quantities of
heterogeneous data. It would be useful to be able to predict the sensory quality and sta-
bility of food designed to become carriers of healthy nutrients through images that shoot
their supramolecular structure. It would be also desirable for these same foods designed
in silico, to predict the duration as a function of the dynamic state of the water capable
of modulating the chemical transformations underlying physiological or anomalous phe-
nomena, also to include the aspect of sustainability in the conception phase. A model
food such as pasta, widely consumed all over the world, object of studies for possible
functionalization as a vehicle for bioactive substances useful for health, can serve as a
case study to build a pipeline of an automated approach. The endpoint of such a pipeline
is a direct extraction of information on rheological and sensory properties starting from
images of the structure and from raw data of the dynamic state of the water. The main ad-
vantages of such a framework are : i) an efficient automatization of parameter extraction
useful for building suitable inputs for AI architectures, which require high-throughput
data for proper training ii) a more efficient and general way of extracting parameters es-
pecially from imaging; using general parameters for image analysis instead of measured
technique-dependent parameters or measured quantities that requires ad-hoc assumptions
on structures (i.e. presence/absence of pores, fibres etc.), can prove more useful given
the high heterogeneity of structural elements at different length scales iii) a more efficient
way of linking different levels of complexity of structure description and properties to
be predicted, through the use of general parameters and features learned directly from
data with machine learning; this step is crucial to avoid oversimplification generated by
canonical interpretative models. However, extending this framework to all the aspects of
food modelling for properties prediction, poses quite a few challenges. The first one is a
required shift of paradigm of imaging data production. Certain techniques (such as SEM)
suffer from a lack of a consensus of acquisition standards, hindering data harmoniza-
tion which is essential for high-throughput input production. Another major challenge
is the complexity of modelling and parametrizing properties such as bioaccessibility and
bioavailability. These properties not only require a comprehensive parametrization of the
structure to be predicted but are also linked to the interaction with digestive functions.
The interaction with the human organism, especially with GIT functions, adds a whole
new level of complexity that must be addressed. The compartments of the GIT and their
functions are interlinked and impacted by food structure, while also being subjected to
interindividual variability. Hybrid approaches linking structure at molecular level and
physiological outcomes, based on deep learning architectures, are however gaining pop-
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ularity (5.1.6) due to their computational performances. The ultimate goal of AI oriented
frameworks is to be able to make more limited use of expensive and time-consuming ex-
periments on physically prepared foods, by using digital twins of foods designed in the
laboratory. This, in turn, could lead to a more efficient data production for studies of
physiological outcomes of functional foods.
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Conclusions

The advent of the omic sciences era has opened the way for a whole new paradigm to
study, model and solve complex biochemical and systems. Omic high-throughput data
production grants the access to unprecedented levels of information about the human
organism, through snapshots of molecular states at various resolutions and perspectives.
Within the right frameworks, the human organism can be described as the ensemble of the
crosstalk of its molecular states, observed and characterized through various omic tech-
niques. Moreover, the interactions of the organism with the environment (pathological
states, diet, exposition to various factors), can be studied as the downstream of changes in
molecular patterns, induced as a perturbation of the molecular ground state of an individ-
ual. Within this picture, the role of machine learning is that of linking different levels of
molecular descriptors, so that complexity-related characteristics of the human organism,
such as emergent properties, non-linearity, self-organization, feedback and transition of
its functions, can be modeled intertwining nanoscale (enzymes) and macroscale (organs,
systems, individuals, social behavior) and everything in between. In this thesis, the leit-
motiv of defining the perturbations of a biochemical complex system, such as the human
organism, through patterns of its molecular states defined at different levels of resolution,
is proposed through the discussion of several frameworks and models developed by the
author, with 1H NMR metabolomic spectral data at their core. In the first part of this work,
we proposed a way to integrate systemic and intracellular metabolomics with genomic to
create an enzyme-network level simulation of perturbations of a pathological state (acute
myeloid leukemia) through machine learning. This allowed for important etiologic con-
clusions about the disease, a reliable method for molecular fingerprinting of the patholog-
ical condition and the individuation of possible therapeutic targets. A framework to study
the dynamics of perturbed molecular states in the metabolic space is also proposed, using
breast cancer clinical trials, to emphasize the importance of information added by study-
ing molecular fingerprints not only as a single snapshot frozen in time, but also by their
changes over a time span. This frameworks and models lay the foundation to explore the
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topic of the second part of this thesis: the links between health and nutrition, which can be
considered the most common long-term perturbation to which an individual is exposed.
From epidemiological data to molecular characterization of food structure, we discuss all
the possible elements that can influence the molecular state of the human organism when
exposed to diet, in order to link different levels of complexity and take a step forward
toward a truly holistic model. First, we propose a framework to treat epidemiological
data on nutrition as a pattern of macronutrients, showing the advantages of considering
population stratifications and the multivariate effects of different macronutrients through
a self-optimizing penalized regression model. Then, we add the missing levels of com-
plexity to determine the effect of food intake: chemical composition and structure. To
study the impact of dietary intervention based on complexes with different composition,
we proposed an integrated microbiomic-metabolomic framework to study the effect of a
single bioactive compound in modulating the cross talk between microbiota and energetic
metabolism. Then, we developed and discussed a model to characterize individual aspects
of digestion kinetics of different real life foods, in a free living population. We showed
how, within the right experimental design, kinetic phenomena of different compartments
of the gastrointestinal tract can be reconstructed from a single observed biofluid. The
result is a model based on the Bateman equations system to simulate individual kinet-
ics, using parameters extracted from unsupervised decomposition of spectral data, that
contain the convolution of all information about the metabolic state. Eventually, we dis-
cussed the importance of also considering food structure and how it can be described in
a general way using machine learning applied to imaging and raw data. A case study on
the topic, using relaxometry raw data and SEM images is proposed to emphasize the effi-
ciency of a general structure description, that is also suitable for data integration. Overall,
the endpoint of this work is to discuss and enhance the possibilities offered by heurisitc
modelling, in the era of omic data production, in finding links between health and pertur-
bations of the molecular state, by considering the human organism in all its complexity.
Frameworks, models and pipelines developed by the author, are provided as tools to em-
bed the entire omic data wokflow into the description of biochemical systems. To do this,
the tools developed are proposed as an ensemble of: i) ad-hoc data preprocessing (de-
pending on acquisition technique) or raw data reduction, ii) feature integration, selection
and engineering for multi-omic crosstalk, iii) automated model selection for robust data
analysis, predictive models and classification, iv) ad-hoc numerical methods for mod-
elling and systems integration. The general breakdown of an omic workflow into these
points, is a key aspect to move toward a true holistic description of the complexity under-
lying links between health and nutrition. The sheer amount of data alone, while opening
the way for powerful machine learning techniques to be used and considered reliable, is
often not enough for true etiologic conclusions. Thus, the methods developed in this work
are intended to emphasize important aspects of complexity disentanglement in an omic
workflow used for biochemical description: i) knowledge of experimental techniques for



133

data processing and unbiased integration of different omic data, ii) raw data reduction for
the extraction of general parameters when exploring novel associations between different
experimental techniques, iii) interpretability of features and parameters used to reduce
the dimensionality of a given problem, iv) interpretability of machine learning algorithms
used for classification and prediction, v) efficiency and generality of numerical methods
used to model kinetics. Throughout the research presented in this thesis, it is shown that
an approach within the aforementioned premises, not only provides great flexibility in its
applications due to the generality of many of its aspects, but is also capable of helping
etiologic findings by linking different description levels and paradigms of a biochemical
system.
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Experimental Designs and Methods Addi-
tional Info

A.1 Simonetti, Mengucci et al., 2021, Springer Nature, Materials and Methods

NMR spectra acquisition and processing

A 500 µL aliquot of serum sample was placed in a clean microfuge tube containing
130 µL of D2O-based phosphate buffer pH 7.4, 70 mM sodium azide (NaN3), 20 mM
4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS-d6) as chemical shift reference standard
and 20 mM 2-chloro pyrimidine-5-carboxylic acid (2CLPYR5CA) as reference standard.
The mixture was homogenized by vortexing and 590 µL were transferred into 5x 178
mm (7") 5 mm outer diameter NMR tubes (for Bruker Match holder). 1H-NMR spectra
were recorded from serum and urine samples at 298 K with an AVANCE spectrome-
ter (Bruker BioSpin, Fällanden, Switzerland) operating at a proton frequency of 600.13
MHz, equipped with an autosampler with 60 holders. 1H-NMR spectra were acquired
by applying a standard spin echo Carr-Purcell-Meiboom-Gill (CPMG; cpmgpr1d.comp;
Bruker BioSpin, Fällanden, Switzerland) pulse sequence with 256 scans (NS), 32768
data points (TD), a spectral width (SW) of 11.9705 ppm, an acquisition time (AQ) of
2.28 s, and a saturation time of 0.3 milliseconds (D20). A relaxation delay (D1) of 4 s
was needed to reduce the signals arising from macromolecules. The data were Fourier
transformed and phase and baseline corrections were automatically applied (TopSpin 3.0,
Bruker BioSpin). Signals were assigned by comparing their chemical shift and multiplic-
ity with Chenomx software data bank 8.1. 324 serum and 378 urine spectra passed quality
control procedures (145 and 139 from controls, 179 and 139 from AML, respectively).
Uniform bucketing was applied, resulting in 421 spectral features for each subject. Me-
dian Control Specter was used as reference for probabilistic quotient normalization (PQN)
and processing. During the quality control procedures, duplicate spectra (urine or serum
samples from two different collection days) were compared, by taking into account diet,
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drugs, physical exercise data. Spectra showing unmatched peaks resulting from potential
confounding factors (e.g. drugs) were excluded from downstream analysis. Signals and
correspoding metabolites were matched using Chenomx NMR suite 8.1.

Sample Mass spectrometry (MS)-based metabolomics and data analysis

MS-based meabolomics was performed using an ultra-performance liquid chromatog-
raphy (Waters ACQUITY, Waters, Milford, MA, USA) and a Q-Exactive high resolu-
tion/accurate mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) inter-
faced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer
operated at 35.000 mass resolution (Metabolon, Morrisville, NC, USA). Raw data were
extracted, peak-identified and QC processed. Compounds were identified by comparison
with library entries of purified standards or recurrent unknown entities. Peaks were quan-
tified using area-under-the-curve. Metabolite levels were normalized to DNA content.

WES-Whole Exome Sequencing

WES was performed on 100 AML cases, 17 belonging to a published dataset (275)
and 83 new cases. Libraries were prepared from matched tumor and germline DNA
(saliva or complete remission samples, Nextera Rapid Capture Expanded and TruSeq
Rapid Exome kits, Illumina, San Diego, CA, USA) according to manufacturer’s protocol,
and 75/125-bp paired-end sequences were generated (Illumina NextSeq550/HiSeq2500,
Illumina). Sequencing data are available in the European Genome-Phenome Archive
(EGAS00001005422).

Constraint-based metabolic network analysis

We translated gene expression alterations into constraints reducing the feasible space of
a metabolic network model (adapted from Shlomi et al. (276)). The impact of a set of
these constraints on the feasible space of the metabolic network was evaluated by calcu-
lating the minimum and maximum reaction rates (flux variability analysis, FVA), and the
instantaneous capability of the network to produce/consume a certain metabolite. Details
are reported in the Supplementary Methods. Codes used in constraint-based metabolic
network analysis are available in https://github.com/cladelpino/GenePerturbations.

Constraint-based models

We selected a hematopoietic model derived from Recon2 via the integration of proteomic
data for bone marrow hematopoietic cells from the Human Protein Atlas. A genetic per-
turbation was characterized by a gene and a direction of perturbation (up/down). All
reactions involving any downregulated genes in their regulatory rules were set to zero
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flux, while for those involving upregulated genes, the minimum flux was set to a non-
zero value, which we will informally call "cut depth". This type of specification can lead
to situations where no mass balanced flux distribution can satisfy them. In this imple-
mentation, when a new perturbation set is specified, its maximal perturbation sets (which
have a non-zero maximum cut depth value) are found, along with the minimal sets of
perturbations, which are incompatible. The effect, if any, on the metabolic network is
then calculated by maximizing or minimizing the reaction rates (flux variability analysis,
FVA) for the reactions. For the metabolites, the corresponding mass balance is relaxed
and the corresponding row of the stoichiometric matrix is used as the objective vector.
This is analogous to adding a sink or source reaction and maximizing their flux.

Statistics

Associations in contingency tables were performed by the Monte Carlo (B=1000,000)
simulated Fisher’s exact test. Continuous variables were compared with Mann–Whitney,
Kolmogorov–Smirnov, Kruskal–Wallis test, or Welch’s t-test. All tests were performed
using either python v3.6.5(packages scipy v1.3.2, statsmodels v0.10.1) or Rv3.6.3. When
appropriate, p values were adjusted for multiple comparisons using the Bonferroni or
Benjamini–Hochberg method. To investigate the distribution of sera profile according to
blast percentage, samples were divided in three classes (bone marrow: 20–49%, 50–74%,
≥ 75% blasts, peripheral blood: < 30%, 30–69%, ≥ 70% blasts, according to tertiles).
In the drug response analysis, the average area-under-the curve values of the two cohorts
were compared. NMR peaks, signal integrals (related to metabolite concentration) and in-
tracellular metabolite levels among three groups were compared by Kruskal–Wallis test.
For intracellular metabolite levels Welch t-test was also used as post-hoc test. Random
Forest analysis was used to estimate the accuracy of individual classification in each group
based on metabolomic data. Metabolic pathway analysis was performed using Metaboan-
alyst (http://www.metaboanalyst.ca) with KEGG annotation. A threshold of five standard
deviations from the mean of the control population was used for the identification of out-
liers.

Metabolic network reconstruction

The Reaction-Reaction network was generated using the Metabolite-Reactions (1581x2274)
stoichiometric matrix mapped in the bone marrow-Recon model. Two reactions are linked
if a metabolite produced in one is consumed in the other, resulting in a directed network
(source:production, target:consumption). Moreover, if a perturbed metabolite is produced
in a reaction and consumed in the other, those reactions are marked as perturbed. In this
way, a subgraph of altered reaction can easily be extracted and analyzed. Network build-
ing and analyses were performed using Python 3.6 NetworkX package, while visualiza-
tion and graphic processing were obtained using the Cytoscape 3.7.2 framework. Genes
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involved in the identified reactions were retrieved from Recon3D and their intercon-
nection was evaluated by protein-protein interaction analysis on STRING (https://string-
db.org).

A.2 Biagi, Mengucci et al. 2020, MDPI, Materials and Methods

DNA Extraction from Caeca, Ileum and Litter Samples

A DNeasy PowerSoil kit (Qiagen, Hilden, Germany) was used for DNA extraction from
caeca contents following the manufacturer instructions. The protocol used for caeca con-
tent was applied to ileal contents with the following modifications to increase DNA yield:
(i.) whenever possible, 300 mg of ileal content were used for the DNA extraction, instead
of the suggested 200–250 mg; (ii.) elution of the DNA from the Qiagen column was car-
ried out in two steps, using 50 µL each time and incubating the columns for 15 min at 4 °C
before each centrifugation. As for litter samples, since the starting material was drier than
the intestinal content, the buffer present in the bead tube was not enough to hydrate the
250 mg of litter; thus, 100 µL of sterile physiological solution was added to the samples.
The protocol was then carried on as for the caeca samples.

16S rRNA Gene PCR Amplification and Sequencing

All DNA samples (extracted from caecal, ileal and litter samples) were treated using the
same amplification and sequencing protocols. The V3–V4 hypervariable region of the
16S rRNA gene was PCR-amplified using 341F and 785R primers with Illumina over-
hang adapter sequences. Amplicon purification was performed by using AMPure XP
Beads magnetic beads (Beckman Coulter, Brea, CA, USA). For the indexed library prepa-
ration, the Nextera XT DNA Library Prep Kit (Illumina, San Diego, CA, USA) was used.
A further magnetic bead purification step was performed, and libraries were quantified
using the Qubit 3.0 fluorimeter (Invitrogen), then pooled at 4 nM. The library pool was
denatured with NaOH 0.2 N and diluted to 6 pM. Sequencing was performed on Illumina
MiSeq platform using a 2 × 250 bp paired-end protocol, according to the manufacturer’s
instructions (Illumina). Three Illumina sequencing runs were necessary in order to se-
quence all samples with the appropriate sequencing depth. Care was taken in mixing
caeca and ileum samples, as well as samples from the different groups (A, B and C)
across the different sequencing runs.

Bioinformatics and Statistics in Microbiota Analysis

Raw sequences were processed using a pipeline combining PANDAseq and QIIME 2
(https://qiime2.org). High-quality reads were filtered and binned into amplicon sequence
variants (ASVs) through an open-reference strategy performed with dada2. The com-
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mand "qiime dada2 denoise-single" with QIIME 2 version 2019.10 was used with de-
fault parameters, with the exception of length filtering (that is already performed by the
PANDAseq pipeline). The method used for chimera seq was “pooled”. Taxonomy was
assigned using the vsearch classifier and the SILVA database for reference . Alpha diver-
sity was measured using Faith’s phylogenetic distance (PD) index, number of observed
ASVs and the Shannon diversity index. Statistics was performed using R Studio software
version 1.0.136 running on R software 3.1.3 (https://www.r-project.org/), implemented
with the libraries vegan, made4 and PMCMR. Beta diversity was estimated by computing
weighted and unweighted UniFrac distances and was visualized by principal coordinates
analyses (PCoAs). Bacterial phylogenetic groups showing a minimum relative abundance
of 0.5% in at least the 1% of the samples (for each type of sample) were kept for further
analysis and graphical visualization. Compositional differences among groups of samples
were tested using the Kruskal–Wallis test. P values were corrected for multiple compar-
isons using the Benjamini–Hochberg method. In addition, bioinformatics analyses were
repeated using the QIIME1 pipeline and operational taxonomic unit (OTU) clustering
was performed using a 97% similarity threshold and the UCLUST algorithm. This re-
analysis allowed for the definition of group of sequences (97%-similarity OTUs) at an
intermediate level between genera and species, for which the ecological behavior across
the three considered ecosystems (caeca, ileum and litter) was explored as follows. Core
97%-similarity OTUs were identified as those detected with a relative abundance > 0.1%
in > 90% of samples in at least 1 time point, as previously reported (171). Prevalence
of the same 97%-similarity OTUs was calculated for all type of samples, at the 3 time
points in the 3 groups of broilers (A, B and C), as the percentage of samples in which
a given OTU was detected at a relative abundance > 0.1%. The highest score align-
ment against NCBI 16S rRNA database was obtained by using the BLAST algorithm
(https://blast.ncbi.nlm.nih.gov/); identification was limited at the genus level for the ma-
jority of the core OTUs, whereas identification at the level of species was considered only
when > 99% identity was reached.

Sample Preparation for NMR Analysis and spectra acquisition

Samples were prepared for NMR analysis by vortex mixing for 5 min stool with 1 mL of
deionized water, followed by centrifugation for 10 min at 14,000 rpm at 4 °C. Approx-
imately 540 mL of supernatant was added to 100 µL of a D2O 1.5 M phosphate buffer
solution containing 0.1% TSP (3-(trimethylsilyl) propionic acid-d4) and 2 mM NaN3, set
at pH 7.40. Before analysis, samples were centrifuged for 10 min again and then 590 µL
were transferred into an NMR tube. Proton NMR (1H-NMR) spectra were recorded at
298 K with an AVANCE III spectrometer (Bruker, Milan, Italy) operating at a frequency
of 600.13 MHz. The hydrogen deuterium oxide (HOD) residual signal was suppressed
by presaturation, whereas broad signals from slowly tumbling molecules were removed
by including a Carr–Purcell–Meiboom–Gill filter with a free induction decay sequence.
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The filter was made by a train of 400 echoes separated by 800 µs, for a total time of 328
ms. Each spectrum was acquired by summing up 256 transients using 32 K data-points
over a 7211.54-Hz spectrum (for an acquisition time of 2.27 s). The recycle delay was
set to 8 s, keeping into consideration the longitudinal relaxation time of the protons under
investigation. Each spectrum was processed with Top Spin 3.0 (Bruker) by using an auto-
matic command apk0.noe, which performs in one shot the baseline and phase correction,
and by applying a line-broadening factor of 1 Hz. The peaks were assigned by comparing
their chemical shift and multiplicity with the literature and by using Chenomx NMR suit
8.1 software.
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