Dissecting the role of IGF2BP3 in the stress-adaptive response and in intercellular communication in Ewing Sarcoma.

Caldoni, Giulia (2022) Dissecting the role of IGF2BP3 in the stress-adaptive response and in intercellular communication in Ewing Sarcoma., [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Oncologia, ematologia e patologia, 34 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (English) - Accesso riservato fino a 25 Marzo 2025 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Creative Commons Attribution Non-commercial No Derivatives 4.0 (CC BY-NC-ND 4.0) .
Download (4MB) | Contatta l'autore

Abstract

Tumor microenvironment has emerged as key factor influencing tumor progression and metastatization. In this context, small vesicles produced by cancer cells can influence the fate of their surroundings via the horizontal transfer of specific molecular cargos. Ewing Sarcoma, the second most common bone tumor in young patients, presents early metastasis associated to worse prognosis. The RNA binding protein Insulin-like Growth Factor 2 mRNA Binding Protein 3 (IGF2BP3) exerts a pro-oncogenic role associated with metastasis formation and worse prognosis in Ewing Sarcoma. Our aim was to investigate the still unexplored role of IGF2BP3 in the stress-adaptive response to tumor microenvironment and in the interactions between Ewing Sarcoma cells. Hypoxia is a major feature of Ewing Sarcoma microenvironment and we demonstrated that IGF2BP3 can direct the CXCR4-mediated migratory response to CXCL12 in Ewing Sarcoma cells subjected to oxygen deprivation. We also discovered that the interaction between IGF2BP3 and CXCR4 is regulated through CD164 and which colocalize at plasma membrane level, upon CXCL12 exposure. Interestingly, high IGF2BP3 levels in Ewing Sarcoma metastatic lesions positively correlated with the expression of both CD164 and CXCR4, indicating the IGF2BP3/CD164/CXCR4 oncogenic axis as a critical modulator of Ewing Sarcoma metastatic progression. We demonstrated for the first time that IGF2BP3 is loaded into Ewing Sarcoma derived exosomes, accordingly to its cellular levels. We discovered that IGF2BP3+ exosomes carry high levels of IGF2BP3-client mRNAs involved in cellular migration, CD164 and IGF1R, and, by transferring this cargo, sustain the migratory abilities of receiving cells, induce a sharp up-regulation of CD164, CXCR4 and IGF1R and enhance the activation of AKT/mTOR and ERK down-stream signalling pathways. We demostrated that the pro-tumorigenic role of IGF2BP3 is not only exerted at cellular level, but that intercellular communication is crucial in the context of Ewing Sarcoma microenvironment.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Caldoni, Giulia
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
34
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Ewing Sarcoma, Microenvironment, Exosomes, IGF2BP3
URN:NBN
Data di discussione
21 Giugno 2022
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^