
ALMA MATER STUDIORUM—UNIVERISITÀ DI BOLOGNA

Dottorato di Ricerca in Data Science and Computation

XXXIII Ciclo

On the role of Computational Logic in
Data Science: representing, learning,
reasoning, and explaining knowledge

Settore Concorsuale:
09/H1 – Sistemi di Elaborazione delle Informazioni

Settore Scientifico Disciplinare:
ING-INF/05 – Sistemi di Elaborazione delle Informazioni

Coordinatore Dottorato
Prof. Andrea Cavalli

Supervisore
Prof. Andrea Omicini

Candidato
Giovanni Ciatto

Esame Finale Anno 2022

ii

Abstract

In this thesis we discuss in what ways computational logic (CL) and data science
(DS) can jointly contribute to the management of knowledge within the scope of
modern and future artificial intelligence (AI), and how technically-sound software
technologies can be realised along the path. An agent-oriented mindset permeates
the whole discussion, by stressing pivotal role of autonomous agents in exploit-
ing both means to reach higher degrees of intelligence. Accordingly, the goals of
this thesis are manifold. First, we elicit the analogies and differences among CL
and DS, hence looking for possible synergies and complementarities along 4 major
knowledge-related dimensions, namely representation, acquisition (a.k.a. learn-
ing), inference (a.k.a. reasoning), and explanation. In this regard, we propose
a conceptual framework through which bridges these disciplines can be described
and designed. We then survey the current state of the art of AI technologies, w.r.t.
their capability to support bridging CL and DS in practice. After detecting lacks
and opportunities, we propose the notion of logic ecosystem as the new conceptual,
architectural, and technological solution supporting the incremental integration of
symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys-
tem can be reified into actual software technology and extended towards many
DS-related directions.

Keywords: Computational Logic · Data Science · XAI · Logic Ecosystem · 2P-Kt

iii

iv

Odi et amo. Quare id faciam fortasse requiris.
Nescio, sed fieri sentio et excrucior.

v

vi

Acknowledgements

This thesis and my whole PhD wouldn’t have been the same without the many
enlightening people I’ve met along the path. Hence, this section is my way of
expressing my gratitude and esteem for the many mentors, colleagues, and friends
I had the pleasure to work with in the last five years.

Firstly, I’d wish to thank my supervisor and mentor, prof. Andrea Omicini, for
the many years under his guide, and the many enlightening pieces of wisdom, and
suggestions about the research, the academic career, and everyday life—other than,
of course, the infinitely many ponsense nuns1. He showed to me how to become a
fierce and autonomous researcher, as well as the importance of conceiving science
as a community effort, and he gave me a lot of opportunities along the way. Of
all such things, I’m sincerely grateful. Should I start another PhD (so to speak),
I would choose his supervision once again.

Concerning mentorship, I honestly owe my gratitude to prof. Mirko Viroli as
well, for trusting me and letting me join the academic world back in 2017. Revenge
shall be sought, but up to then I’d wish to thank him for the many opportunities
he gave me along the years, and for the many discussions and lunches we have
shared. For similar reasons, and for being a continuous source of inspiration, I’d
wish to thank professors Alessandro Ricci, and Enrico Denti.

Concerning inspiration, as special mention is due to a few post-doc colleagues
who have had quite an impact in shaping what my idea of “a good researcher”
actually is. Accordingly, I’d with to thank dr. Danilo Pianini for being such an
example of dedication to scientific and technical knowledge, dr. Stefano Mariani
for helping me with my first steps in research and dr. Roberta Calegari for always
supporting me since then. Finally, I’d wish to thank dr. Davide Calvaresi, for
being such a great friend and co-author, as well as dr. Sara Montagna for all the
precious discussions we shared.

There are also a number of friends I’ve spent some wonderful time with in the
many laboratories I’ve worked in, along the years. These include, in casual order,
dr. Matteo Francia, dr. Lorenzo Monti, dr. Roberto Casadei, dr. Angelo Croatti,
Niccolò Marini. Them I’d wish to thank for all the wonderful time spent talking

1nonsense puns

vii

about life, politics, and the glory and misery of a PhD life—other than, from time
to time, research.

Furthermore, I’d wish to thank all the brilliant students I had the pleasure to
supervise for their theses or graduate projects, to whom I have taught at least
as much as I have learn from them. These include, but are not limited to, Al-
fredo Maffi, Lorenzo Rizzato, Luca Tremamunno, Jason Dellaluce, Federico Siboni,
Giuseppe Pisano, Federico Sabbatini, Andrea Agiollo, Giovanni Speciale, Matteo
Castigliò, Andrea Giordano, and Matteo Magnini.

Finally, after a number of theses dedicated to my parents and sister as the
family I’ve been risen by – which I still thank, of course –, I’d wish to dedicate this
thesis and my whole PhD to the family I’ve created along the path, i.e. my beloved
partner, Elena Lucarella, who shared with me all the joy and sorrow, as well all
the successes and failures I’ve encountered along the way. I’d wish to thank her
the most, for supporting me since the very beginning, for always pushing me to
go the extra mile, for being there every time I felt lost, and for being such a great
confidant and friend—other than lover. I wouldn’t have made it this far without
her, nor I’d wish.

Giovanni Ciatto, April 17, 2022

viii

Contents

Abstract iii

Acknowledgements vii

1 Introduction 1

I What 7

2 Historical Perspective on AI 9
2.1 Computational Logic . 12
2.2 Data Science . 15

3 Representing Data and Knowledge 19
3.1 Symbolic Knowledge Representation 20

3.1.1 First Order Logic (FOL) . 21
3.1.2 Representation Engineering 26
3.1.3 Relevant Subsets of FOL . 28

3.2 Sub-symbolic Data Representation 31
3.3 Comparison: Symbolic vs. Sub-Symbolic KR 34

4 Learning Knowledge from Data 37
4.1 Sub-Symbolic Supervised Machine Learning 38

4.1.1 Overview on learning algorithms 40
4.2 Symbolic Supervised Learning . 44

4.2.1 Overview on learning algorithms 48
4.3 Symbolic vs. Sub-Symbolic Learning 52

5 Reasoning over Knowledge 57
5.1 Symbolic Reasoning . 58

5.1.1 Symbolic Inference . 61
5.1.2 Logic Programming . 64

CONTENTS ix

CONTENTS

5.2 Sub-symbolic Reasoning . 68

5.2.1 Model Integration . 68

5.2.2 Symbolic Knowledge Embedding 72

5.2.3 Hybrid Systems: Final Remarks 74

6 Explaining AI via Symbolic Knowledge 75

6.1 eXplainable Artificial Intelligence 76

6.1.1 Related works . 78

6.2 Explanation vs. Interpretation . 80

6.2.1 A conceptual framework for XAI 81

6.2.2 Discussion . 84

6.2.3 Practical remarks . 85

6.2.4 Assessment of the Framework 86

6.3 Symbolic Knowledge Extraction . 89

6.3.1 State of the art . 89

6.3.2 A practical framework for MAS 95

II How 99

7 The Role of Logic Based Technologies 101

7.1 Logic-based AI: Application Areas 102

7.1.1 AI Foundations . 102

7.1.2 AI for Society . 106

7.1.3 AI for Business: Automation & Robotics 110

7.2 Discussion . 112

8 Technological State of the Art 115

8.1 Method . 116

8.2 Detailed Technological Analysis . 117

8.3 Main Outcomes . 122

9 The 2P-Kt Ecosystem for Logic-Based AI 125

9.1 The Need for an Ecosystem . 125

9.2 Overall Design . 127

9.2.1 Overview of Functionalities 129

9.3 Illustrative Examples . 131

9.4 Impact . 133

x CONTENTS

CONTENTS

10 Bridging LP and Stream Processing 137

10.1 Logic Solvers as Streams Prosumers 138

10.1.1 Logic solvers as stream producers 138

10.1.2 Logic solvers as stream consumers 140

10.1.3 Solvers vs. the World . 141

10.1.4 Example: TSP in Prolog . 142

10.2 Solvers as Streams Prosumers via State Machine 144

10.2.1 Formal Description . 147

10.3 Predicates as Streams in 2P-Kt . 157

10.3.1 2P-Kt Solvers and Primitives API 157

10.3.2 Travelling Salesman Problem in 2P-Kt 160

10.4 Recap and Research Perspectives 162

11 Bridging LP and Mainstream Programming Paradigms 165

11.1 Background . 167

11.1.1 LP integration with other languages 167

11.1.2 Kotlin Domain-Specific Languages (DSL) 169

11.2 A domain-specific language for LP 171

11.2.1 Design Rationale . 171

11.2.2 The Kotlin DSL for Prolog 171

11.2.3 Architecture, Design, Implementation 173

11.3 Case study: N-Queens . 178

11.4 Recap and Research Perspectives 179

12 Bridging LP and Machine Learning 181

12.1 Logic API for ML: Requirements, Analysis, and Modelling 183

12.1.1 Goals . 183

12.1.2 Domain Description . 184

12.1.3 Analysis and Modelling . 188

12.2 Realising the API: ML-Lib Design 191

12.2.1 Schemas . 194

12.2.2 Datasets . 196

12.2.3 Transformations . 199

12.2.4 Predictors . 202

12.3 Technology-related aspects . 207

12.3.1 2P-Kt as the underlying logic ecosystem 208

12.3.2 Selecting the underlying OO library 210

12.4 ML-Lib Examples . 216

12.5 Recap and Research Perspectives 224

CONTENTS xi

CONTENTS

13 Bridging LP and XAI 227
13.1 State of the Art . 229

13.1.1 Knowledge Extraction . 229
13.1.2 OOP Frameworks for ML 233

13.2 PSyKE . 237
13.2.1 General API . 238
13.2.2 Discretisation . 241
13.2.3 Output rules . 242

13.3 Case Study . 245
13.3.1 Classification: the Iris data set 245
13.3.2 Regression: the CCPP dataset 251
13.3.3 Discussion . 254

13.4 Recap and Research Perspectives 255

14 Enriching the Ecosystem with PLP 257
14.1 State-of-the-art technologies for PLP 258

14.1.1 Logic Ecosystems and 2P-Kt 260
14.2 Design of Probabilistic Solver Module 261

14.2.1 Design Rationale . 262
14.3 Multi-platform Support Demonstration 266
14.4 Recap and Research Perspectives 269

15 Enriching the Ecosystem: the Future 271
15.1 Concurrent Logic Programming . 271

15.1.1 Brief overview of the field 272
15.1.2 Why is it interesting . 273
15.1.3 Relation w.r.t. the ecosystem 274

15.2 Graph Neural Networks for Computational Logic 274
15.2.1 Brief overview of the field 275
15.2.2 Why is it interesting . 276
15.2.3 Relation w.r.t. the ecosystem 282

15.3 Symbolic Knowledge Injection . 282
15.3.1 Brief overview of the field 282
15.3.2 Why is it interesting . 284
15.3.3 Relation w.r.t. the ecosystem 284

15.4 Tuple-based Coordination . 285
15.4.1 Brief overview of the field 285
15.4.2 Why is it interesting . 286
15.4.3 Relation w.r.t. the ecosystem 286

15.5 Inductive Logic Programming . 288

xii CONTENTS

CONTENTS

Epilogue 293

16 Conclusions 293

Bibliography 345

CONTENTS xiii

CONTENTS

xiv CONTENTS

List of Figures

4.1 Taxonomy of ML . 38
4.2 An example decision tree estimating the probability of kyphosis

after spinal surgery . 42
4.3 General structure of neural units in neural networks 43
4.4 Admissible architectures for neural networks 45

5.1 An example of proof tree generated by the SLD resolution principle 66

6.1 Interpretability/performance trade-off 77
6.2 Explanation vs. Interpretation: a simple framework 81
6.3 Local explanation and interpretation of a model 82
6.4 Global explanation and interpretation of a model 84
6.5 A practical framework for XAI based on SKE 96

7.1 Logic-based technologies application areas w.r.t. main AI categories 103

9.1 2P-Kt project map . 128
9.2 2P-Kt public API . 129
9.3 Usage examples for 2P-Kt . 132

10.1 Interaction modes between logic solvers and users or KB 139
10.2 Dataflow and component view of primitives, i.e. solvers’ gates to-

wards the external world . 142
10.3 The primitive-enabled state machine governing Prolog solvers’ be-

haviour . 145

11.1 Architectural view of our Kotlin DSL for Prolog 173

12.1 Major phases of the generic ML workflow 185
12.2 Model and meta-model of a logic API for ML 189
12.3 Layered view of our ML-Lib . 192
12.4 Overview of our ML-Lib’s design 193
12.5 Localization of the ML-Lib into the 2P-Kt ecosystem 208

LIST OF FIGURES xv

LIST OF FIGURES

12.6 Reference terms and their localization within the 2P-Kt term hi-
erarchy . 210

12.7 Simplified representation of a multi-layer perceptron 218

13.1 Example of Trepan output tree (left) and corresponding rules (right)232
13.2 Overview on (a small portion of) the API of the Scikit-Learn library

supporting classification and regression tasks 233
13.3 Overview on the API of the Smile library supporting classification

and regression tasks . 234
13.4 PSyKE design . 237
13.5 PSyKE’s Extractor interface . 239
13.6 PSyKE discretisation and binarisation procedure 242
13.7 Sample distribution of the Iris and CCPP data sets 245
13.8 Comparison between Iris data set input space partitionings per-

formed by the algorithms implemented in PSyKE 249
13.9 Comparison between CCPP data set output predictions provided

by the algorithms implemented in PSyKE 253

14.1 Architectural overview of our PLP and ProbLog modules, and their
role within the 2P-Kt ecosystem 261

14.2 Architecture of our ProbLog solver, with a focus on the KB recom-
pilation step . 263

14.3 Example of Probabilistic Graph Modeling: ProbLog syntax and
corresponding graph . 266

14.4 2P-Kt PLP IDE and corresponding BDD built by the solver 267
14.5 Usage of 2P-Kt’s ProbLog module “as a library” on multiple pro-

gramming languages . 268

15.1 Graph Neural Networks are composed as a cascade of simpler blocks 275
15.2 General workflow for sub-symbolically processing symbolic knowl-

edge via GNN . 277
15.3 TuSoW architecture . 287

xvi LIST OF FIGURES

List of Listings

10.1 Interface of a general purpose Solver in 2P-Kt 157
10.2 Interface of a general-purpose Primitive in 2P-Kt 158
10.3 API of a primitive’s Request in 2P-Kt 158
10.4 General structure of a function acting as primitive in 2P-Kt 159
10.5 Implementation of a primitive aimed at lazily generating all natural

numbers in 2P-Kt . 159
10.6 Implementation of a primitive aimed at lazily generating all even

natural numbers in 2P-Kt . 160
10.7 2P-Kt primitive implementing the tsp/3 predicate 161
11.1 SWI-Prolog JPL interface example 169
11.2 Prolog theory describing Abraham’s family tree 171
11.3 Kotlin code generating the logic theory from listing 11.2 172
11.4 Logic theory aimed at computing solutions for the N-Queens problem178
11.5 Kotlin code aimed generating the theory depicted in listing 11.4 . . 179
12.1 Dataset loading from file . 217
12.2 Pre-processing pipeline . 217
12.3 Neural network structure declaration 217
12.4 Dataset loading from the local theory 219
12.5 Declarative description of a ML workflow 220
12.6 Ancillary predicates used in listing 12.5 221
12.7 Declaration of an hybrid predicate aimed at classifying Iris flowers . 223
12.8 A purely symbolic classifier for Iris flowers 224
15.1 Inducer interface, tailored onto the 2P-Kt API 288

LIST OF LISTINGS xvii

LIST OF LISTINGS

xviii LIST OF LISTINGS

Chapter 1

Introduction

In the last decade, we have witnessed an explosion in the exploitation of artificial
intelligence (AI) both in the academy and in the industry, and in virtually all
strategical sectors of human expertise. This is not the first time in history that AI
attains unprecedented levels of attention, expectations, and funding, yet it is the
first time that such momentum is driven by a pervasive adoption of data science
(DS) and, in particular, machine learning (ML).

Nowadays, the tree terms – AI, DS, and ML – are often used mistakenly inter-
changeably, especially by practitioners. Should we speculate on what the causes of
such phenomenon are, we would argue this is likely due to the strong hype charac-
terising modern data-driven solutions—both in theory and in practice. This leads
both researchers and practitioners to focus on the development of ML-oriented
frameworks or technologies which, in turn, create a sampling bias making people
think that ML exhausts DS, and DS saturates AI. As we further discuss in the
subsequent chapters, this is really far from the truth. There are many interesting
aspects of AI which lay outside the realm of DS. Notably, in this thesis we focus
on computational logics (CL) – a prominent aspect of AI populating the portion
which is not covered by DS – and its potential role in complementing DS.

As sub-fields of AI, both DS and CL share the common goal of mimicking
human intelligence. Of course, they do so in different ways. They focus on different
notions and aspects of intelligence, they pursue intelligence through different ways,
and for different purposes. Notably, most differences lay in the way CL and DS
treat knowledge, and, in particular, in the way knowledge is represented, acquired,
manipulated, and transferred.

CL, for instance, focuses on rational intelligence, and it aims at endowing ma-
chines with human-like, automated reasoning capabilities. Following this purpose,
it relies on symbolically represented knowledge, either acquired via logic induc-
tion or via manual handcrafting, manipulated via logic inference (e.g. deduction
or abduction), and transferred by simply presenting symbols into shared formats.

CHAPTER 1. INTRODUCTION 1

Dually, DS focuses on intuitive intelligence, and it aims at endowing humans with
statistical tools for mining significant and predictive information from data, in
a principled way. When applied to machines, DS provides them with powerful
pattern matching, recognition, or stimulus-response capabilities. For this reason,
it relies on sub-symbolically (e.g. numerically) represented knowledge, commonly
acquired from data via ML, manipulated via algebraic or differential operations,
and transferred in disparate, purpose-specific ways.

Of course, both CL and DS come with shortcomings. On the one side, CL
commonly requires (i) some symbolic knowledge to be eventually handcrafted by
humans, manually; and (ii) the task at hand to have a clear formulation, which
can be expressed via crisp symbols. The former issue, clearly hinders scalability,
making CL fall short on the knowledge provisioning side. Vice versa, DS is very
well suited on this side, as it naturally leverages on scalable algorithms which are
designed to mine information semi-automatically from data, possibly scaling up to
very large datasets. The latter issue, in turn, makes CL poorly suited to handle
fuzzy tasks which are hard to formalise or encode symbolically—think, for instance,
to the task of handwritten digits recognition. On the other side, to be effective, DS
commonly requires (i) very large amounts of data; and (ii) users to be willing and
capable of interpreting the numeric results it outputs. The former issue actually
constrains the exploitation of DS into use cases where data is already available or
a provisioning procedure is admissible. Vice versa, CL is data efficient as it can
bring valuable results even in presence of very small prior knowledge. In turn, the
interpretability issue is nowadays among the most relevant topics. Given the wide
exploitation of DS in so many areas of expertise, clarity and intelligibility of its
outcomes are becoming a critical aspects—mostly because of their sub-symbolic
nature. Conversely, CL is inherently symbolic in nature and therefore less subject
to such interpretability issues.

Accordingly, this thesis stems from the acknowledgement that CS and DS are
complementary – rather than competing – aspects of AI, and that knowledge plays
a pivotal role in both these fields. Along this line, we aim to elicit and enable the
many possible bridges among them, w.r.t. knowledge manipulation. In doing so,
we follow the ultimate purpose of increasing the degree of intelligence and auton-
omy of modern computational systems. Therefore, our focus is on computational
entities and on the ways they can combine and integrate CL and DS to either act
more intelligently or more autonomously—or both.

On the one side, we elicit analogies, dichotomies, and possible synergies among
CL and DS by analysing them along four orthogonal dimensions, corresponding to
as many knowledge-related activities, namely:

representation — i.e. the way knowledge is expressed and made interpretable
by either machines or human beings, or both; e.g. via symbols, formulæ,

2 CHAPTER 1. INTRODUCTION

or tensors of real numbers

acquisition (a.k.a. learning) — i.e. the way novel knowledge is learned from
prior information, mined from data, or attained from external sources; e.g.
via data mining, via induction, or via interaction

inference (a.k.a. reasoning) — i.e. the way decisions, suggestions, recommen-
dations, or predictions can be automatically computed out of prior knowl-
edge; e.g. via automated deduction/abduction, or via classification/regres-
sion

explanation — i.e. the way knowledge can be transferred to another entity –
be it computational or human –, in such a way that the recipient can take
advantage of it, similarly to how the provider would

On the other side, we acknowledge that both CL and DS have a prominent over-
lap with computer science (CS) and software engineering (SE). Regardless of how
they manipulate knowledge, both approaches subtend a mathematical modelling
of many computational aspects, which must then be reified into well-engineered
software technologies to let practitioners actually exploit them. Along this line,
we further analyse CL and DS from both a computational and technological per-
spective. While the computational perspective focuses on what data structures,
algorithms, and workflows they leverage upon to attain intelligence, the techno-
logical perspective focuses on how such aspects can be translated in practice, via
robust software architectures and effective implementations. Along this line, in
particular, we assess the current state of the art for technologies laying at the
intersection among DS and CL – or supporting the construction of bridges among
the two fields –, identifying holes and proposing lacks to overcome them. The
latter in particular is the contribution by which we enable the actual combination
of CL and DS in practice.

We carry out the whole discussion under an agent-oriented mindset. Within
the scope of this document, we call “agent” any autonomous entity having its
own locus of control—be it a human being or a running process programmed soft-
ware. We may refer to agents as “intelligent” in case the come equipped with
human-like knowledge-related capabilities, such as the aforementioned capabili-
ties of representing, learning, inferring, or explaining knowledge—or, possibly, a
multitude of them. Under such a mindset, human agents are intelligent by defini-
tion, whereas software agents may tend to intelligence by acquiring one or more
of these capabilities via either CS or DS—or, hopefully, a combination of them.
Hence, what we have so far called “machines” are indeed “software agents”, and
the overall role of the agent-oriented mindset is about focussing on who is charge
of manipulating knowledge and when.

CHAPTER 1. INTRODUCTION 3

Goals of the thesis. Summarising, the whole thesis discusses in what ways
CL and DS can jointly contribute to the management of knowledge within the
scope of modern and future intelligent systems, and how technically-sound software
technologies can be realised along the path. An agent-oriented mindset permeates
the whole discussion, by stressing pivotal role of autonomous agents in exploiting
both means to reach higher degrees of intelligence.

Along this line, the goals of this thesis can be concisely enumerated as follows:

1. understanding the analogies and differences among CL and DS, hence looking
for possible synergies and complementarities;

2. derive a conceptual framework through which bridges among CL and DS can
be described and designed, along the 4 main dimensions;

3. evaluate the current state of the art of AI technologies, w.r.t. their capability
to support the realisation of those bridges;

4. propose the notion of logic ecosystem as the new conceptual, architectural,
and technological solution supporting the incremental integration of sym-
bolic and sub-symbolic AI;

5. discuss how our notion of logic ecosystem can be (i) reified into actual soft-
ware technology and (ii) extended to support the joint exploitation of DS
and CL in practice.

Notably, goals 1 and 2 deal with the computational perspective, whereas goals 3–5
deal with the technological one.

Structure of the thesis. Accordingly, this thesis is organised in two parts,
namely “What” and “How”.

What. In part I, we focus on the computational perspective. This is where
we address goals 1 and 2.

Our discussion starts from chapter 2, where we provide a brief recap of the
history of AI, with a focus on the symbolic–connectionist dichotomy. There, we
introduce the two main branches of AI—namely, the symbolic and sub-symbolic
(initially referred to as “connectionist”) ones.

In the subsequent chapters, we recall classical definitions and survey the current
theoretical state of the art for both CL and DS. In doing so, we present and com-
pare their strengths and weaknesses, and the many possible bridges among them,
w.r.t. the 4 principal dimensions—namely, knowledge representation (chapter 3),
learning (chapter 4), inference (chapter 5), and explanation (chapter 6).

4 CHAPTER 1. INTRODUCTION

How. Conversely, in part II, we focus on the technological perspective. This
is where we address goals 3, 4, and 5.

Our discussion starts from chapter 7, where we discuss the role of logic-based
approaches and technologies in the modern AI playground. Then, to fully accom-
plish goal 3, we provide a state of the art for logic-based technologies in chapter 8.
There, we focus on logic-based technologies coming some actually usable reification
in software, and identify the current lacks w.r.t. recent theoretical advances.

In chapter 9, we introduce our notion of logic ecosystem, and we propose 2P-Kt
as its main reification in software, hence addressing goal 4. Then, in chapters 10–
15, we present a number of possible ways to extend the 2P-Kt ecosystem towards
DS. A detailed overview of these chapters is provided in section 9.4. Notably,
chapter 15 is entirely dedicated to future research directions.

Finally, chapter 16 concludes the thesis and summarises our contribution.

CHAPTER 1. INTRODUCTION 5

6 CHAPTER 1. INTRODUCTION

Part I

What

7

Chapter 2

Historical Perspective on AI

AI is a multi-faceted discipline leveraging on contributions coming from several ar-
eas of human knowledge, there including Mathematics, Computer Science, Statis-
tics, Psychology, Philosophy, and many others. A famous and comprehensive
survey on the many aspects of AI is proposed by Russell and Norving in [RN16].
In the second half the 20th century – when AI was firstly recognised as discipline by
itself – several approaches towards machine intelligence became subject of inten-
sive research efforts, leading to the vast corpus of literature and to the abundance
of techniques available today.

Notably, two main families of approaches has initially emerged in AI, namely,
the symbolic and connectionist ones [Smo87, Sun01]. While the former focuses on
representing the world through symbols – in turn representing concepts –, thus
emulating how the human mind reasons and infers, the latter aims at mimicking
human intuition by emulating how the human brain works at a very low level. De-
spite both families have both pros and cons, they have stepped through both glory
and misery—in terms of expectations, funding, research interest, and industry
adoption [Hen08, RN16].

For instance, despite the initial hype, artificial neural networks (NN) – the
warhorse of connectionism – encountered their first winter when Rosenblatt’s per-
ceptron [Ros57] was proven unable to learn the XOR function [MP88]. The period
following the publication of the well-known back-propagation algorithm [RHW86]
and the proof that multi-layered perceptrons could be used as universal functional
approximators [Cyb89], can be considered as the second spring of connectionist
approaches. However, at the time – likely, because of computational limits of the
hardware and the lack of data – the success of connectionist approaches can be
considered very moderate, especially when compared with the explosion of deep
NN and deep learning (DL) [GBC16] which was pervasive in both the academy
and the industry during the 2010s, and can thus be considered the third spring of
AI.

CHAPTER 2. HISTORICAL PERSPECTIVE ON AI 9

Even if it is currently not as popular as NN, the history of symbolic AI is
extremely important as well—mostly because of the prominent influence it has on
the many fields converging in AI. Despite their original ambition of reproducing
human reasoning in toto has been inevitably rejected by facts, symbolic approaches
gave birth to several research lines which are nowadays considered autonomous
fields, such as computational logic [Llo90], logic programming [Apt90], planning
[RN16, Chap. 10-11], multi-agent systems [FW99], etc.

A few decades later, many things has changed. ML, DL, Data Mining [Han06],
and Bayesian Inference have enormously widened the spectrum of tasks AI can
handle, other than the amount of use cases where AI can be applied. Nevertheless,
a dualism is still there, alive and healthy, dividing symbolic approaches from what
are now called sub-symbolic ones.

Nowadays, sub-symbolic techniques include NN, but they are not limited to
the connectionist techniques. The panorama of sub-symbolic techniques has been
widened by the development of several data-mining algorithms – along with their
efficient implementations –, such as SVM [SS04], K-Means, Expectation Maximi-
sation [DLR77], Viterbi [Vit06], etc., which mostly leverage on numerical compu-
tations while not being backed by a biological metaphor.

Summarising, at the gates of 2020s, AI consists of a number of powerful tech-
niques – often backed by sound theoretical or empirical backgrounds –, which are
widely employed to automate disparate tasks, both in the industry and in the
research. Such tasks, and, in particular, the techniques supporting them, can be
categorised within two mostly disjoint families—namely the symbolic and sub-
symbolic ones.

Weak vs. Strong AI

A fundamental question in AI concerns the ultimate goal of the discipline itself.
Some say AI should (tend to) produce machines which are actually able to think
intelligently – thus adapt to different situations, understand the context their are
situated into, learn from the interactions with the environment and with others –,
while say it would be sufficient to create machines simply acting as if they were
thinking intelligently. The former perspective is classically known as strong AI,
while the latter is known as weak AI. Searle’s Chinese Room argument [Sea80]
clearly explains the difference among the two by means of a practical example,
whereas the well known Turing test [Tur50] provides a practical means to decide
whether a machine’s AI is actually strong or not.

Even without discussing the many important and subtle philosophical issues
arising from such a dualistic view of AI, we note what follows. The original goal
of AI was reaching strong AI. This is likely why, initially, so much hype was put
in both symbolic and connectionist approaches. But this is also justifying the

10 CHAPTER 2. HISTORICAL PERSPECTIVE ON AI

strong disappointment which led AI towards its first winter. Most researchers
soon realised that weak AI was a far more affordable deal, and this is likely why
they stopped seeking generality and started focusing on how to improve each single
technique, tailoring them to the domains where they could bring more advantage.

A few years later, the global effect is that a plethora of techniques is available
to effectively and efficiently tackle as many tasks. But the glue keeping everything
together is still human intelligence [YWC+18]. Indeed, symbolic techniques still
require human beings to handcraft most complex rules or to manually build large
knowledge bases. Similarly, most ML-powered models still rely on data scientists to
lead their training process. Data scientists are still needed, for instance, to clean-
up and pre-process data, and to set up predictors hyper-parameters through their
experience, or to leverage on their intuition to interpret how a trained predictor is
functioning.

Summarising, the success of AI nowadays is also due to its reduced expectations
with respect to what can be delegated to machines. As a side effect, poor care
is dedicated in studying how AI could be used to automate the many processes
involving several, interrelated AI-powered tasks.

Symbolic vs. Sub-symbolic AI

In the recent years, the historical dichotomy between the “two souls” of AI has
been reconciled, in favour of a comprehensive vision where symbolic and sub-
symbolic approaches are seen as complementary – rather than in a competition –
so that they mutually soften their corners [HQR17, CCDO19, CCM+18]. While
symbolic approaches are well suited for relatively small-sized problems where com-
plex and exact tasks has to be performed, possibly relying on structured data –
like for instance planning a sequence of actions, finding a path in a graph taking
several constrains into an account, deducing information from a prior knowledge
base, or learning mathematical relations from vary small data sets –, sub-symbolic
approaches are best suited for those use cases where big (up to huge) amounts
of possibly unstructured data must be processed, where errors or lack of preci-
sion is tolerated to some extent, if unavoidable—like for instance classifying im-
ages or texts, profiling customers by looking at their shopping history, forecasting
the weather for a particular area, etc. Such issues, are not affecting symbolic
techniques—especially when symbols are wisely chosen in order to steer humans’
intuition. This is because symbols are far closer to what our conscious, rational
mind used to handle. For all such reasons, many researchers along the history
of AI have argued that a comprehensive approach unifying the two worlds would
bring great advantage.

More precisely, complementarity between symbolic and sub-symbolic AI natu-
rally emerges when comparing the two approaches under the following perspectives:

CHAPTER 2. HISTORICAL PERSPECTIVE ON AI 11

2.1. COMPUTATIONAL LOGIC

• sub-symbolic AI is opaque, meaning that human beings struggle in under-
standing the functioning and behaviour of sub-symbolically intelligent sys-
tems; instead, symbolic AI is more transparent, as it is both human- and
machine-interpretable at the same time

• sub-symbolic AI can improve itself automatically by consuming data, but
it is difficult to extend and re-use outside the contexts it was designed for;
conversely, symbolic AI is flexible and extensible, but requires humans to
manually provide symbolic knowledge

• sub-symbolic AI is adequate for fuzzy problems where some (minimal) degree
of error or uncertainty can be tolerated; whereas symbolic AI calls for precise
data and queries provided by human beings, yet provides exact, crisp results
as its outcome.

In the remainder of this chapter, we provide a brief overview of the two major
disciplines laying within the scope of symbolic or sub-symbolic AI, respectively.
These are computational logic – a prominent branch of symbolic AI leveraging
on logics to per form any knowledge-related task, ranging from representation to
inference –, and data science – a prominent branch of sub-symbolic AI leveraging
on statistics to manipulate data and mine knowledge out of them.

2.1 Computational Logic

This section contains contributions from the following works of ours: [CCO21a, KBB+21, CCDO20]

Computational logic (CL) [Llo90] is a fundamental research area for artificial
intelligence (AI), dealing with formal logic as a means for computing [Pau18].
Its penetration into symbolic AI is nearly pervasive nowadays, and increasingly
going deeper within sub-symbolic AI [CCO20, CCMO21a]: CL has enabled the
development of the former in the past, and it is now pushing the latter towards
interpretability and explainability. Be it exploited to manipulate symbols, or to
make sub-symbolic solutions human-intelligible, the common expectation behind
CL is to endow software systems with automated reasoning.

Generally speaking, automated reasoning involves three major aspects: (i) log-
ics, (ii) inference rules, and (iii) resolution strategies.

Logic formally defines how knowledge is represented and how novel knowledge
can be derived from prior one. Each logic comes with several inference rules,
dictating how to produce new knowledge under particular circumstances. When
coupled with some resolution strategy, inference rules become deterministic algo-
rithms that computers can execute to reason autonomously.

12 CHAPTER 2. HISTORICAL PERSPECTIVE ON AI

2.1. COMPUTATIONAL LOGIC

Many logics exist in CL – e.g. propositional, first-order (FOL), temporal, de-
ontic, etc. –, each one targeting a specific way of reasoning. For instance, temporal
logic enables reasoning about the chronological ordering of events, deontic logic
supports reasoning about permissions/prohibitions and their circumstances, while
FOL is general-purpose. Furthermore, different sorts of inference rules exist for
different logics. Some are deductive – drawing conclusions out of premises –, some
are inductive – looking for general rules out of several premises-conclusion ex-
amples –, while other are abductive—speculating on which premises caused some
conclusions. Finally, when a resolution strategy exists for some rule and logic, it
can be reified in software, and used to build intelligent systems capable of auto-
mated reasoning. Software of that sort are commonly referred to as a part of the
logic programming (LP) paradigm [MN96].

In LP, programs are typically theories (a.k.a. knowledge bases, KB), i.e. collec-
tions of sentences in logical form, expressing facts and rules about some domain,
typically in the form of clauses, i.e. expressions connecting a number of interre-
lated predicates via logic connectives (e.g. operators such as ∧, ∨, →, ↔, ¬, etc.).
There, predicates represent statements describing or relating one or more entities
about the domain at hand.

Depending on the particular logic of choice, predicates – and therefore clauses
– may, carry variables, i.e. placeholders for unknown entities, and possibly quanti-
fiers for those variables (∃ or ∀). Some logics may also endow clauses with further
information, such as for instance probabilities – describing the degree of likelihood
for a clause to hold true –, or modalities—describing the context in which a clause
may hold (e.g. when). In any case, logic information is represented in such a way
that both human and computational agents can interpret and manipulate it, in
principle.

One powerful trait of logics is that they enable the representation of complex,
intricate, or infinite domains intensively (i.e. implicitly) rather than explicitly—
e.g. via multiple recursive clauses. So, if a domain involves an infinite amount
of entities, these do not necessarily require an infinite amount of memory to be
represented. For instance, the set of natural integers can be represented in logic
using just two FOL clauses—of which, one is recursive.

Software agents devoted to automated reasoning via LP are commonly referred
to as logic solvers. They rely on pre-existing KB to derive inferences via some in-
ference procedure and resolution strategy. They may do so either reactively, – i.e.
in response to some external stimulus, e.g. some user’s query –, or pro-actively—
i.e. spontaneously, in order to reach some goal, e.g. computing the optimal path
before moving. Prolog-based solvers [CR93, Col86], for instance, exploit a deduc-
tive procedure rooted into the SLDNF resolution principle [Kow74, Cla77], and a
depth-first strategy. They commonly do so in response to users’ queries, provided

CHAPTER 2. HISTORICAL PERSPECTIVE ON AI 13

2.1. COMPUTATIONAL LOGIC

via a textual interface. Yet, a number of Prolog solvers exists supporting the same
inference procedure via different strategies (e.g. tabled resolution [CW96, SW12])
or as well as entirely different principles (e.g. Constraint Logic Programming).
Of course, other options exist targetting other logics as well, like, e.g., abductive
[FK97], inductive [Md94], probabilistic [dK15] inference. Each of them represents
a particular reification of a logic solver.

Limits of CL. Despite the many possibilities, however, there are a number of
issues which are not tied to any particular choice of logic, inference procedure,
or resolution strategy, but they are rather inherent to CL itself. Such issues in-
volve (i) decidability, (ii) tractability, (iii) knowledge acquisition, and (iv) symbols
grounding.

Decidability and tractability deal with the theoretical questions: “can a logic
solver provide an answer to any logic query it receives? can it do so in reasonable
time?”. Such aspects are deeply entangled with the particular logic the solver is
leveraging upon. Depending on which and how many features a logic includes, it
may be more or less expressive. The higher the expressiveness, the more the com-
plexity of the problems which may be represented via logic and processed via infer-
ence increases. This opens to the possibility, for the solver, to meet queries which
cannot be answered in useful time, or relying upon a limited amount of memory, or
at all. Roughly speaking, more expressive logic languages make it easier for human
beings to describe a particular domain – usually, requiring them to write less and
more concise clauses –, at the expense of a higher difficulty for software agents to
draw inferences autonomously—because of computational tractability. This is a
well-understood phenomenon in both CS and CL [LB87, BL04], often referred to
as the expressiveness–tractability trade-off. In practice, however, a good trade-off
is represented by FOL and its subsets (e.g. Horn logic [Mak87]), or modal variants
(e.g. linear temporal logic [Pnu77]). Despite consisting of Turing-equivalent for-
malisms – for which the existence of undecidable or intractable situations cannot
be excluded in the general case –, they come with sufficiently wide representa-
tional capabilities and effective inference procedures, making them exploitable in
practice—provided that human developers avoid writing undecidable/intractable
algorithms.

Knowledge acquisition deals with the question “where does the knowledge
solvers reason upon come from”, or alternatively: “who is in charge of constructing
knowledge bases”? Recalling that logic clauses may become arbitrarily complex
and represent possibly infinite domains in a very concise way, it is unsurprising
that the burden of knowledge production is mostly on humans. Unfortunately, this
implies the degree of automatism in knowledge production is pretty low, as well as
the scalability of the approach. Many attempts have been performed over the years

14 CHAPTER 2. HISTORICAL PERSPECTIVE ON AI

2.2. DATA SCIENCE

to distil human knowledge into symbolic form to formalise common-sense for soft-
ware agents. To date, there exist a number of common-sense knowledge bases and
ontologies, supporting practical textual-reasoning tasks on real-world documents
including analogy-making, and other context oriented inferences—see for instance
[LLSB04, TL18, LS04, LLS02, Sha00]. Yet, most of these solutions are either
semi-automatically constructed, or community driven – when not both –, there-
fore exhaustiveness, consistency, or coherence may be lacking. There have also
been a number of attempts to construct very large knowledge bases of common-
sense knowledge by hand, one of the largest being the CYC program by Douglas
Lenat at CyCorp [Len95]—which is, however, only usable behind payment.

Finally, symbols grounding deals with the problem of letting software agents
provide semantics for the symbols they manipulate. Put it simply, we may tell a
logic solver that Abraham is the father of Isaac – father(isaac, abraham) –, and
also that, for all possible X and Y , if X is the father of Y , then Y must be the child
of X – father(X, Y)→ child(Y,X) –, and the solver may also be able to infer that
Isaac is thus the child of Abraham, while still having no idea of how to recognise
Isaac, Abraham, nor the fatherhood relation, were it written in another form. In
other words, the bindings between the symbols processed by software agents and
the corresponding entities from the real world are hard to establish and maintain
for a bare logic solver—unless other mechanisms are in place. This issue will
hardly be solved within the symbolic world alone, as it is deeply entangled with
the problem of letting a software agent perceive the external world via sensors,
and recognising the objects therein contained. The latter problem is inherently
sub-symbolic as it requires acquiring, processing, and fusing raw data coming from
the sensors.

2.2 Data Science
This section contains contributions from the following works of ours: [CCDO19, CCO20, CSOC20]

Data science (DS) is a relatively young discipline laying at the intersection
among AI, Statistics, CS and SE. It essentially deals with the extraction of rel-
evant information out of data, and, in particular, with the data-driven creation
of predictive models of real world phenomena. Thanks to its focus on predictive
models, DS is applied to virtually all statistical sciences, ranging from physics to
law, stepping through biology, healthcare, or finance. In all such scenarios, the
reliance on real-world data is quintessential to tune such predictive models in such
a way to make them adhere to reality.

Data science can be described w.r.t. two major perspectives, here referred to as
the scientific and the engineering perspectives on DS. The scientific perspective
focuses on the central aspect of DS – namely, data – and on what algorithms,

CHAPTER 2. HISTORICAL PERSPECTIVE ON AI 15

2.2. DATA SCIENCE

workflows, and practices can be exploited to process data to serve specific analytic
purposes, in a sound way. The engineering perspective focuses on how to make such
processing efficient and effective, in spite of the large volumes, and the wide variety
of data required to this purpose. Within this scope, another relevant concern is
the velocity at which data is produced, and processed information is consumed.

The Scientific Perspective. As a science, DS studies the many means one can
exploit to (i) let a software agent learn new behaviours from examples, which would
otherwise be hard to encode for human developers (e.g. handwritten text recog-
nition), (ii) automatically recognise patterns of similar objects given a number of
examples (e.g. face detection), (iii) detect recurrent patterns in data, even in lack
of prior examples (e.g. customer profiling), (iv) predict the future evolution of a
phenomenon given its historical data (e.g. stock performance predictor), (v) sim-
ulate the dynamics of complex phenomena (e.g. weather forecasting), (vi) figure
out the mathematical relation biding two or more variables, from a number of
samples (e.g. studying estate market prices), (vii) fuse data coming from different
sources to infer unobservable measures (e.g. indoor localization), etc. other than,
of course the theories and practices to assess and increase the predictive perfor-
mance of all such models. In doing so, DS borrows countless algorithms, methods,
and techniques from disparate fields, including but not limited to machine learn-
ing (there including supervised, unsupervised, and reinforcement learning), data
mining, Bayesian inference, statistics, etc.

Despite the plethora of algorithms and methods which lay nowadays under the
DS umbrella, a concise overview of the discipline can be outlined in terms of tasks.
Several algorithms can be used in DS to perform a well-established pool of data-
analytics tasks having a clear knowledge-related goal. Most common tasks in DS
are for instance:

function fitting (a.k.a. classification or regression) — i.e. the supervised
learning task of inferring the input-output relation among a number of
samples, to be later able to estimate likely outputs for novel, unseen inputs;

clustering — i.e. the unsupervised learning task of finding similar groups of
instances in a dataset – according to a given notion of similarity or distance
–, to be later able to classify novel instances according to some group;

anomaly detection — i.e. the unsupervised learning task of tuning an algo-
rithm to discern “normal” situations from exceptional ones, provided that
some historical data is available, to later be able to detect the latter;

filtering (resp. smoothing or forecasting) — i.e. the Bayesian task of esti-
mating the unknown current (resp. past or future) state of a system given

16 CHAPTER 2. HISTORICAL PERSPECTIVE ON AI

2.2. DATA SCIENCE

a sample of observations capturing the evolution of a number of variables
which should depend on that state;

most likely explanation — like the above, but focussing on the most likely
sequence of states a system has traversed.

Most of these tasks may be implemented in several ways and by several algorithms.
For instance, function fitting alone may be realised using neural networks, (gen-
eralised) linear models, support vector machines, decision trees, and many others.
Notably, the same algorithm could be used to implement several tasks—e.g. neural
networks can be exploited to perform both classification and regression tasks, as
well as anomaly detection.

For all such tasks, two major phases are commonly identified in DS, namely
training (a.k.a. learning, or fitting) and usage (a.k.a. inference). The first phase
(training) commonly occurs behind the scenes, and it is led by data scientists – i.e.
human beings –, despite involving semi-automated workflows. The second phase
(usage) is commonly what AI consumers use and deal with. During training, the
most adequate algorithm is selected for the data and the task at hand, and it is
then trained on data, producing a predictive model which, hopefully, is predictive
enough to be later used on novel data. Users may then exploit the model by feeding
it with novel data, to draw predictions. Predictions, in turn, may be presented to
the users as recommendations, decisions, or outcomes.

Notably, regardless of their technical details, all the data-analytics tasks above
may leverage on a number of lower-level ancillary activities which are orthogonal
w.r.t. the choice of the particular implementing algorithm, as they involve routine
operations, assessment procedures, or best practices which are commonly executed
either before or after the data-analytics task itself. Examples of such kinds of
activities are, for instance:

feature engineering — i.e. a whole class of pre-processing techniques – such
normalising numeric data into predefined intervals, changing the way data
is encoded, or creating new data from the available one – which may be
used to improve or transform the available data, in order to improve the
performance of the data analytics task;

dimensionality reduction — i.e. a whole class of data manipulation tech-
niques aimed at selecting the most relevant attributes of data for a given
data-analytics task (before running the task)—such as principal component
analysis;

model assessment i.e. a whole class of statistical methods, algorithms, and
practices to assess the performance of the data-analytic task in a princi-
ple way—such as for instance supervised learning metrics (e.g. accuracy,

CHAPTER 2. HISTORICAL PERSPECTIVE ON AI 17

2.2. DATA SCIENCE

or mean-squared error) or procedures such as cross-validation or test set
separation;

model selection i.e. a number of strategies, approaches, and practices to let
data scientists select the best predictive model when multiple options fit
the data and the situation at hand—e.g. by leveraging on cross-validation,
possibly in combination with a grid search strategy to identify the most
adequate type of predictor.

The Engineering Perspective. As a field of engineering, DS deals with the
design and implementation of robust software and hardware architectures, which
support the scalable execution of the aforementioned data-analytic tasks over the
so-called big data. For this reason, the engineering perspective of DS is also known
as the field of big data processing.

The exploitation of parallel or distributed solutions to speed up the data pro-
cessing workflows is the most relevant object of study under the engineering per-
spective of DS. Along this line, there are two broad sorts of situations which is
worth mentioning, namely: on-line or off-line data processing. They correspond
to as many major approaches to big data processing, namely stream processing
and parallel/distributed computing.

On-line data processing deals with the need of processing data as soon as it is
produced, without any intermediate accumulation phase. The outcomes of on-line
data processing must be consumed in useful time—hence the need to process it
quickly, on the fly. Along this line, the notion of data stream – that is, a possibly
unlimited sequence of data to be lazily and reactively processed – is fundamental
as it supports the processing of large amounts of data without requiring them to
be simultaneously stored in memory—therefore enabling great scalability.

Off-line data processing deals with the need of analysing data statistically,
therefore requiring as much data as possible. A data accumulation phase is com-
monly the underlying implicit assumption for off-line data processing. Accordingly,
the focus here is on speeding up – through parallelisation – the data processing
workflows which would otherwise require too much computational time or power.
There, parallelisation may occur on either on multiple cores of the same machine,
or multiple distributed machines.

18 CHAPTER 2. HISTORICAL PERSPECTIVE ON AI

Chapter 3

Representing Data and
Knowledge

Representation deals with the expression of information to make it understandable
and manipulable by agents—be they computational or humans. From a philosoph-
ical perspective, there are two major premises to any well-funded discussion on
representation.

First, both computational and human agents operate (i.e. compute or think)
upon representations of relevant aspects of the reality—and representations are
everything an agent may ever hope to manipulate. Noumena – i.e. what things
actually are – are not accessible directly, but rather via perception. Perception
implies consuming some input data, which must in turn be represented, to en-
able further processing. So, agents always deal with phenomena – i.e. how things
appear –, hoping that the corresponding noumena are reflected with sufficient pre-
cision. (Of course, to reach a true understanding about a particular noumenon,
several related phenomena should be observed, but this particular aspect is ad-
dressed in the following chapters.)

Second, representations are manifold and of different sorts, and they may fo-
cus on particular aspects of the phenomenon being represented. In other words,
whenever an agent is dealing with some information, it is actually dealing with a
particular representation of some underlying concept, despite many others could
be available. Furthermore, representations are never good or bad per se, but rather
more or less adequate to the agent exploiting them and to the task it is perform-
ing. So, by whom information must be consumed, and to serve what purpose, is a
relevant concern in deciding which representations are more adequate.

Despite being rooted into deep and long-standing philosophical discussions,
such premises are here reported serving a practical purpose. Indeed, they syn-
thesise the underlying mindset tying this chapter and the following ones together:
the particular choice of a particular means to representation simultaneously en-

CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE 19

3.1. SYMBOLIC KNOWLEDGE REPRESENTATION

ables and constrains the kinds of possible processing information may be subject
to—and this in turns conditions any subsequent design choice.

Accordingly, within the scope of this chapter we discuss the representation of
particular sorts of information, namely either data or knowledge. We consider as
data any raw information attained by sampling some phenomenon or situation
from reality. Data by itself simply describes the phenomenon / situation, yet it
is hard to exploit and transfer directly, because of its granularity and volume.
Conversely, we consider as knowledge any coarse-grained piece of information de-
scribing entire classes of phenomena or situations, in a concise and reusable (i.e.
predictive) way. Differently from data, knowledge can be applied to unseen phe-
nomena or situations, or transferred to agents which have not experienced any
such phenomena / situations explicitly.

Be it devoted to data or knowledge, each representation comes with pros and
cons, simplifying the expression of some aspects of the information being repre-
sented, while complicating the expression of others. Indeed, a lot of effort in DS
is devoted to the engineering of the best representation for the data at hand, to
maximise the effectiveness of any subsequent data-processing task.

The means to represent data and knowledge are manifold and too many to
count. However, at the meta-level, we can categorise representations means as ei-
ther symbolic or sub-symbolic. While the two means are essentially interchangeable
– other than mutually convertible – when they represent data, they lead to pro-
foundly different ways of representing knowledge. Indeed, while symbolic knowl-
edge is both machine- and human-interpretable, sub-symbolic is mostly machine-
interpretable, and is therefore treated by human beings as a black box in the
general case.

Along this line, in the reminder of this chapter we focus on logic – as the most
prominent approach to symbolic representation –, and vectors, matrices, or tensors
of real numbers—as the most prominent approach to sub-symbolic representation.
We show analogies and differences among such approaches to representation, elic-
iting the pros and cons of both, and, in particular, their differences among the
interpretability perspective.

3.1 Symbolic Knowledge Representation

(Symbolic) Knowledge representation (KR) has always been regarded as a key
issue since the early days of AI, as no intelligence can exist without knowledge,
and no computation can occur in lack of representation.

Here we discuss the language of FOL as a means for representing symbolic
information. We choose FOL as it is quite general, and the other approaches can
be described by either constraining or loosening the definition of FOL.

20 CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE

3.1. SYMBOLIC KNOWLEDGE REPRESENTATION

⟨Formula⟩ := ⟨Clause⟩ | ⟨Quantifier⟩⟨Formula⟩
⟨Quantifier⟩ := ‘∀’⟨Variable⟩ | ‘∃’⟨Variable⟩
⟨Clause⟩ := ⟨Literal⟩ | ‘(’⟨Formula⟩⟨Connective⟩⟨Formula⟩‘)’

⟨Connective⟩ := ‘∧’ | ‘∨’ | ‘→’ | ‘↔’ | ‘=’
⟨Literal⟩ := ⟨Predicate⟩ | ‘¬’⟨Predicate⟩

⟨Predicate⟩ := ‘⊤’ | ‘⊥’ | ⟨Predication⟩ | ⟨Predication⟩‘(’⟨Arguments⟩‘)’
⟨Predication⟩ := p1 | p2 | p3 | . . .
⟨Arguments⟩ := ⟨Term⟩ | ⟨Term⟩‘,’⟨Arguments⟩

⟨Term⟩ := ⟨Variable⟩ | ⟨Structure⟩ | ⟨Constant⟩
⟨Variable⟩ := X1 | X2 | X3 | . . .
⟨Structure⟩ := ⟨Functor⟩‘(’⟨Arguments⟩‘)’
⟨Functor⟩ := f1 | f2 | f3 | . . .
⟨Constant⟩ := ⟨Functor⟩ | ⟨Number⟩ | ⟨Boolean⟩
⟨Number⟩ := R

Table 3.1: Context-free grammar for FOL. Sans-serif words among angular brackets
denote non-terminal symbols, whereas symbols among single apices denote terminal
symbols

3.1.1 First Order Logic (FOL)

First order logic (FOL) [Smu68] is a general-purpose logic which can be used to
represent knowledge symbolically, in a very flexible way. More precisely, it allows
both human and computational agents to express (i.e. write) the properties of –
and the relations among – a set of entities constituting the domain of the discourse,
via one or more formulæ—and, possibly, to reason over such formulæ by drawing
inferences.

In table 3.1 the syntax of FOL is formally defined via a context-free grammar.
Informally, the syntax for the general FOL formula is defined over the assumption
that there exist:

• a number of constant symbols, including: a number of functors, denoted by
monospaced symbols such as f1, f2, . . ., and all real numbers;

• a number of predicate symbols (a.k.a. predications), denoted by italic sym-
bols starting with a lower case letter, such as p1, p2, . . .;

• a number of variables, denoted by italic symbols starting with a capital letter,
such as X1, X2,

Under such assumption a FOL formula is any expression composed by a list of
quantified variables, followed by a number of literals, i.e. predicates which may or

CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE 21

3.1. SYMBOLIC KNOWLEDGE REPRESENTATION

may not be prefixed by the negation operator (¬)—in which case would be called
negated. Each predicate consists of a predicate symbol, possibly applied to one
or more terms. More precisely, each predicate may carry N ≥ 0 terms. When
this is the case, the predicate is said N -ary (meaning that its arity, or amount
of arguments, is N). Terms may be of three sorts, namely constants, structures1,
or variables. Constants represent the many entities from the domain of the dis-
course. In particular, each constant references a different entity. Structures are
combinations of one or more entities via one functor 2. Similarly to predicates,
structures may carry M ≥ 0 terms. When this is the case, the structure is said
M -ary as well. Being containers of terms, structures enable the creation of arbi-
trarily complex data structures combining several entities from the domain of the
discourse, and treating them as a whole. Finally, variables are placeholders for
unknown terms—i.e. for entities or groups of entities.

Predicates and terms are very flexible tools to represent knowledge. While
terms can be used to represent or reference either entities or groups of entities
from the domain of the discourse, predicates can be used to represent relations
among those entities, or the properties of each single entity. There, the domain of
the discourse D [Bla08] is the set of all relevant entities which should be represented
in FOL to amenable of formal treatment, in a particular scenario. Should we use
FOL to treat arithmetic, D would include the set of natural numbers—i.e. a
symbol for each natural number. Should we treat calculus, D would include the
set of real numbers. Should we treat kinship relationships, D would include a
symbol for each person taken into account.

Concerning predicates, let us denote by p/N the N -ary predicate whose pred-
icate symbol is p and whose arity is N . When N ≥ 2, the predicate represents
one or more items from the relation p ⊆ D × . . . × D. So, for instance, the ex-
pression p(t1, . . . , tN), where all ti are non-variable terms, denotes that the N -uple
(t1, . . . , tN) is part of the N -ary relation subtended by p—or that, in other words,
the relation N -ary relation p ties the entities t1, . . . , tN together. Similarly, the
expression ∀Xi p(t1, . . . , Xi, . . . , tN), where Xi is a variable, denotes a situation
where, for each entity Xi in D, the relation N -ary relation p ties the entities
t1, . . . , Xi, . . . , tN together. Dually, the expression ∃Xi p(t1, . . . , Xi, . . . , tN) de-
notes an item of the N -ary relation p whose ith item is unknown, or, in other
words, an item where the first argument is t1, the second argument is t2, . . . , and
the last argument is tN , while the ith argument is arbitrary. Conversely, when
N = 1, the predicate represents one or more items from the set p ⊆ D. So, for

1structures are also (and most commonly) known as “functions” into the CL literature. How-
ever, functions in CL denote data structures rather than associations among a domain and a
co-domain, as they are commonly intended. Thus, to avoid ambiguity, we choose to call then
“structures” instead.

2functors are also known as “function symbols” in the CL literature

22 CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE

3.1. SYMBOLIC KNOWLEDGE REPRESENTATION

instance, the expression p(t), where t is a non-variable term, denotes a situation
where t is an item of the set subtended by p—or that, in other words, the property
p holds for the entity t. Similarly, the expression ∀X p(X), denotes a situation
where all items in D are items of the set p as well—or that, in other words, the
property p holds for all entities in D. Dually, the expression ∃X p(X), denotes a
situation where some item in D is in p as well. Finally, when N = 0, the predicate
p represents a Boolean proposition which may or may not be true. Notably, the
predicate ⊤ is always true, by construction, whereas the predicate ⊥ is always
false.

Concerning non-variable terms, let us denote by f/M the M -ary term whose
functor is f and whose arity is M . When M ≥ 0, the term is a constant and it
represents some entity from D. When M ≥ 1, the term is a structure – i.e. a
named and ordered group of terms – and it represents a complex or composite
entity from D. The actual interpretation of a structure really depends on the
scenario at hand. So, for instance, in the arithmetic domain, it is possible to
represent natural numbers by mimicking the Peano axioms3 via a unary structure
– e.g. s, for successor – and a constant – e.g. z, for zero – as follows: z represents 0,
s(z) represents 1, s(s(z)) represents 2, etc. Under this representation, each natural
number (except z) is composed by its predecessor, and the successor functor s/1.

Structures as composite entities. Structures may be used in logic to represent
composite entities. Such composite entities may either be of fixed size or of variable
size.

A fixed-size composite entity made up of M sub-entities may be represented
in FOL via a M -ary structure. For instance, one may represent a person in terms
of first name, last name, and birthdate. In that case M = 3, and an adequate
functor is ‘person’:

person(adam, smith, date(1723, june, 5))

The underlying assumption here is that dates are represented as ternary structures
as well.

A variable-size composite entity, in turn, may be made up of an unknown
amount of sub-entities. Furthermore, two different composite entities of the same
sort may be of different sizes. Consider for instances two different journeys on a
map: one may involve 3 cities, and the other may involve 4 cities, yet both can be
represented by lists of cities to be visited in a row.

Lists – and, more generally, data structures – can be represented in FOL via
ad-hoc fixed-size structures, to be used recursively. In particular, a common con-

3https://www.britannica.com/science/Peano-axioms

CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE 23

https://www.britannica.com/science/Peano-axioms

3.1. SYMBOLIC KNOWLEDGE REPRESENTATION

vention is to represent singly linked lists of entities using:

• a binary structure, denoting element–successor couples, e.g. cons/2 or ./2,

• a constant, denoting the termination of the list, e.g. nil or [].

So, for instance, a journey from Rome to Milan, stepping through Florence and
Bologna may be represented as follows:

cons(rome, cons(florence, cons(bologna, cons(milan, nil)))) (3.1)

whereas a journey from Rome to Naples would be as simple as:

cons(rome, cons(naples, nil))

In both cases, cities are represented by constants, whereas lists of cities are attained
by combining cities into data structures—i.e. by recursively wrapping cities via
the cons/2 functor, and by exploiting the constant nil to conclude the list.

It is worth to be mentioned that, a more practical and common notation in-
volves the exploitation of ./2 and [] instead of cons/2 and nil, respectively, where
./2 is usually written as an infix symbol. With this notation, the path from
eq. (3.1), could be written as:

rome . florence . bologna . milan . []

or, equivalently:
[rome, florence, bologna, milan]

Knowledge Bases. From a knowledge representation perspective, knowledge
bases (KB) (a.k.a. theories) are sets of related FOL formulæ concerning the same
domain of the discourse. We denote theories as lists of dot-terminated formulæ.

For instance, a simple KB describing natural numbers may be defined as fol-
lows:

natural(z).
∀X natural(X)→ natural(s(X)).

(3.2)

There, the KB is composed by two formulæ, and it aims to define the set of natural
numbers by means of the unary predicate natural/1, the unary structure s/1, and
the constant z. More precisely, the first formula states that the constant z is
included into the set of natural numbers, by construction, whereas the second one
states that, whenever some object X is in the set of natural numbers, then object
s(X) is in the same set as well. By recursively applying that formula, one may
express any natural number in Peano notation.

24 CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE

3.1. SYMBOLIC KNOWLEDGE REPRESENTATION

Intensional vs. Extensional. The recursive definition of natural numbers from
eq. (3.2) is also interesting because it exemplifies the difference among extensional
and intensional definitions.

In logic, one may define concepts – i.e. describe data – either extensionally or
intensionally. Extensional definitions are direct representation of data. In the par-
ticular case of FOL, this implies defining a relation or set by explicitly mentioning
the entities it involves. The natural(z) formula from eq. (3.2) is a particular case
of extensional definition of the symbol z as a natural number. In other words,
it partially defines the natural set by specifying some of its items. Conversely,
intensional definitions are indirect representations of data. In the particular case
of FOL, this implies defining a relation or set by describing its elements via other
relations or sets. The ∀X natural(X)→ natural(s(X)) formula from eq. (3.2) is
a particular case of intensional definition of the any symbol of the form s(X) as
a natural number, provided that X is a natural number as well.

Notice that the focus here is not on recursion. Intentional definitions must not
necessarily be recursive. For instance, one may intensionally define the child/2
relation via the parent/2 relation as follows:

∀X ∀Y parent(X, Y)→ child(Y,X).

Yet, recursive intensional predicates are very expressive and powerful, as they
enable the description of infinite sets via a finite (and commonly small) amount of
formulæ.

Herbrand and its ground. Variables play a fundamental role in intensional
KR, as they allow referencing unknown entities and tie them together via either
predicates or structures. However, there exists situations – described later in this
thesis – where the presence of variables may be troublesome. Accordingly, here we
provide a number of definitions related to variable-free FOL formulæ and KB.

A term is considered ground if and only if (i) it is a constant, or (ii) it is a
structure ant it is only composed by constant or ground arguments. In other words,
a term if it contains no variable, not even recursively. A predicate is ground it any
term therein contained is ground as well. A formula is ground if it only contains
ground predicates, and a KB is ground if it only contains ground formulæ.

We call Herbrand universe the set of all possible ground terms, denoted by H.
In other words, H is the set of all possible representations of all entities in the
domain of the discourse. Given a set of constants and functor symbols, H can
be recursively defined as the set containing: (i) all possible constants, and (ii) all
structures attained by applying all possibleM -ary functors to each possibleM -uple
of items in H.

The Herbrand universe may easily become infinite. A single functor of arity

CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE 25

3.1. SYMBOLIC KNOWLEDGE REPRESENTATION

greater than 0 – say, f – plus a single constant – say, x – are sufficient to create
an infinite Herbrand universe, as the functor may be recursively applied to the
constant, infinitely many times—i.e. H = {x, f(x), f(f(x)), . . .}.

3.1.2 Representation Engineering

When handling knowledge in practice, the particular way knowledge is modelled is
quintessential for computational systems to be effective. Of course, any particular
modelling is better suited to support some sorts of algorithms while it may make
the exploitation of other algorithms cumbersome. In other words, the particular
shape of predicates and structures may be chosen in manifold ways, depending
on the nature of the data at hand, and on the computations that designers are
expecting for that data.

Here we briefly examinate the two extremes in a spectrum of possibilities, with
the purpose of discussing how each choice in KR may come with both pros and
cons—which must therefore be engineered.

We rely on two running examples, namely the “ties of kinship” example –
mimicking a simple scenario where the ties of kinship among a number of people
must be represented –, and the “Iris” example, where data about a number of Iris
flowers are collected. For both of them, we discuss possibilities in KR strategies.

Representing relational data. We here consider a simple scenario where the
ties of kinship among a number of people must be represented via FOL. We take
Abraham’s family tree from the Genesis as an example.

A natural way to represent a family tree is by using constants to represent
people, while extensively representing a minimal pool of relations, and intensively
representing any other relation—in both cases, via predicates. For instance, we
may choose to extensively represent parenthood relations among couples of people,
other than the gender of each person. Other kinds of relations could be represented
intensively. For example:

parent(abraham, isaac). male(abraham).
parent(sarah, isaac). female(sarah).
parent(isaac, jacob). male(isaac).

parent(rebekah, jacob). female(rebekah).
. . . male(jacob).

∀X ∀Y parent(X, Y) → child(Y,X).
∀X ∀Y parent(X, Y) ∧male(X) → father(X, Y).

∀X ∀Y parent(X, Y) ∧ female(X) → mother(X, Y).
∀X ∀Y ∃Z parent(X,Z) ∧ parent(Z, Y) → grandparent(X, Y).

(3.3)

26 CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE

3.1. SYMBOLIC KNOWLEDGE REPRESENTATION

This approach to KR is particularly adequate to describe situations involving
several entities and many relations or properties, but where, however, each pred-
icate only spans through a few entities, and most entities are not involved in all
relations or properties. In other words, this approach is well suited to represent
heterogeneous data.

Representing propositional data. We here consider a simple scenario where
the well-known Iris dataset4 is represented via FOL. Notably, the Iris dataset is
a collection of 150 individuals of the Iris flower. For each exemplary, 4 numeric
input features – petal and sepal width and length – are recorded, other than a class
label—i.e. which particular sort of Iris plant the exemplary has been classified as.
There are three particular sub-sorts of Iris in this data set – namely, Iris-Setosa,
-Virginica, and -Versicolor –, and the 150 examples are evenly distributed among
them—i.e. there are 50 instances for each class.

The Iris dataset essentially consists of a bi-dimensional 150×5 table, where each
row corresponds to an exemplary, each column corresponds to a relevant feature,
and each cell carries the value of a particular feature for a particular exemplary.
A natural way to represent N – e.g. 150 – records of equals size M – e.g. 5 – is by
leveraging on N predicates, all having the same arity M , and the same functor—
e.g. iris. There, each predicate extensionally represents an instance of the same
M -ary relation – e.g. iris –, and the jth argument of each predicate carries the
value of the jth feature for that instance—according to some predefined ordering
of features. Thus, the values corresponding to numeric features can be represented
in FOL by numeric constants, while the values corresponding to the class feature
could be represented by ad-hoc constants. So, a KB describing the Iris dataset in
FOL according to this may look as follows:

iris(5.1, 3.5, 1.4, 0.2, setosa).
...

iris(7.0, 3.2, 4.7, 1.4, versicolor).
...

iris(6.3, 3.3, 6.0, 2.5, virginica).

(3.4)

where the predefined ordering of features is: (i) sepal length, (ii) sepal width,
(iii) petal length, (iv) petal width, and (v) class.

This approach to KR is particularly adequate to describe situations where the
same amount and sorts of fields are available for each datum, thus making the
whole dataset suitably described by an N ×M table—and, therefore, therefore
extensively represented as an M -ary relation having with N instances. In other

4https://archive.ics.uci.edu/ml/datasets/iris

CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE 27

https://archive.ics.uci.edu/ml/datasets/iris

3.1. SYMBOLIC KNOWLEDGE REPRESENTATION

words, this approach is well suited to represent homogeneous data.

Comparison. Both approaches to KR come with both pros and cons, and they
are, at least in principle, interchangeable—meaning that, conversions may be per-
formed from data represented via any of the two approaches into the other. Here,
we simply highlight how the effectiveness of KR heavily depends on the particular
computation to be performed.

There are two kinds of activities one may use as benchmarks to assess the limits
of each approach to KR, namely: (i) enumerating all the individuals involved into
a KB and all the features describing them, and (ii) adding one new feature to the
KB, updating all involved individuals accordingly.

On the one side, in the propositional approach, the amount of individual is
equal to the amount on predicates, whereas the amount of features is equal to the
arity of all predicates. So enumeration of both individuals and features is straight-
forward. Conversely, in the relational approach, individuals should be enumerated
by stepping through all predicates, and removing duplicates; whereas the enu-
meration of all features may require a lot of computations—as the intensionally
represented features should be made explicit.

On the other side, adding a new feature to a KB represented via heterogeneous
approach is straightforward. It just requires the novel predicates to be added to the
KB. Conversely, in the propositional approach, the same operation would require
the whole KB to be rewritten—to let each predicate carry one more feature.

3.1.3 Relevant Subsets of FOL

Historically, most KR formalisms and technologies have been designed around
either sub-sets or applications of the first order logic (FOL). Consider for instance,
deductive databases [GR68], description logics [Baa03], ontologies [Cim06], Horn
logic [McN77], higher-order logic [VBD01], just to name a few.

Many kinds of logic-based knowledge representation systems have been pro-
posed over the years, mostly relying on FOL – either by restricting or extending
it –, e.g. on description logics and modal logics, which have been used to rep-
resent, for instance, terminological knowledge and time-dependent or subjective
knowledge.

Ontologies and Description Logics. Early KR formalisms, such as semantic
networks and frames [Sow91], mostly aimed at providing a structured representa-
tion of information. For this reason, description logics are characterised by sev-
eral restrictions w.r.t. to FOL Applications range from reasoning with database
schemas and queries [AFWZ02] to ontology languages such as OIL, DAML+OIL

28 CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE

3.1. SYMBOLIC KNOWLEDGE REPRESENTATION

and OWL [Hor05]—always keeping in mind that not only the key inference prob-
lems should be decidable, but also that the decision procedures should be imple-
mented efficiently.

Ontology-based approaches are popular because of their basic goal—a common
understanding of some domain that can be shared between people and application
systems. At the same time, it should be understood that the general concepts
and relations of a top-level ontology can rarely accommodate all of the systems
peculiarities [VEBB+08, Val05].

A number of systems based on description logics have been developed – e.g.
[CH94, MH03] – in diverse application domains, such as natural language process-
ing, configuration of technical systems, software information systems, optimising
queries to databases, planning.

Horn Logic. Horn logic is a notable subset of FOL, characterised by a good
trade-off among theoretical expressiveness, and practical tractability [Mak87].

Horn logic is designed around the notion of Horn clause [Hor51]. Horn clauses
are FOL formulæ having no quantifiers, and consisting of:

• a disjunction of predicates, where only at most one literal is non-negated:

¬b1 ∨ . . . ∨ ¬bn ∨ h

• or, equivalently (applying De Morgan rules), a disjunction among a predicate
and a negated conjunction of predicates:

¬(b1 ∧ . . . ∧ bn) ∨ h

• or, equivalently (applying the equivalence ¬X∨Y ≡ X → Y), an implication
having a single predicate as post-condition and a conjunction of predicates
as pre-condition:

b1 ∧ . . . ∧ bn → h

• often conveniently written as:

h← b1, . . . , bn (3.5)

where ← denotes logic implication from right to left, commas denote logic con-
junction, and all bi, as well as h, are predicates of arbitrary arity, possibly carrying
FOL terms of any sort—i.e. variables, constants, or structures. By looking at
eq. (3.5), it should be evident why h is often called head (of the clause), while
the conjunction (b1, . . . , bn) is often called body (of the clause). Quantification of

CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE 29

3.1. SYMBOLIC KNOWLEDGE REPRESENTATION

variables is omitted, as all variables possibly occurring in the head are assumed
to be universally quantified, whereas all other variables possibly occurring in the
body (and not in the head) are assumed to be existentially quantified.

So, essentially, Horn logic is a very restricted subset of FOL where:

• formulæ are reduced to clauses, as they can only contain predicates, con-
junctions, and a single implication operator, therefore

• operators such as ∨, ↔, or ¬ cannot be used,

• variables are implicitly quantified, and

• terms work as in FOL (there including the definition of “ground term” and
“Herbrand universe”).

Similarly to FOL, Horn logic KB consist of sets of Horn clauses.
Despite being very restrictive in theory, the lack of basic operators such as ∨,

=, or ¬ can be circumvented in practice, via meta-predicates—i.e. predicates ac-
cepting other predicates as arguments. Circumvention in these cases steps through
a smart trick: by letting the set of admissible functors include the set of possible
predicate symbols, one may enable the representation of predicates via terms. So,
a meta-predicate can be described as an ordinary predicate, accepting terms as
arguments, and considering its arguments as predicates. However, these aspects
are covered in chapter 5.

It is worth to be noted that Horn clauses can be read under both a logic and a
procedural perspective [vEK76]. Under a logic perspective, Horn clauses are bare
implications, which can be used to define relations or sets, as in FOL. Under a
procedural perspective, any Horn clause states that “to prove h, one should prove
all b1, . . . , bn first”. Along this line, when Horn clauses are exploited in practice,
they are commonly referred to as

facts when their body consist of just the ⊤ predicate:

h← ⊤ or simply h

stating that h is known to be true (as it requires nothing to be proven first),

goals (a.k.a.directives) when their head consist of just the ⊥ predicate (or,
equivalently, when the head is missing):

⊥ ← b1, . . . , bn or simply ← b1, . . . , bn

stating that predicates b1, . . . , bn should be all proven,

30 CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE

3.2. SUB-SYMBOLIC DATA REPRESENTATION

rules otherwise, i.e. when both the head and the body involve arbitrary pred-
icates.

It is worth to be mentioned that facts are particular case of rules. Indeed, both
facts and rules are also known as definite clauses.

3.2 Sub-symbolic Data Representation

Symbolic KR approaches, such as FOL and its subsets, represent both data and
knowledge uniformly—meaning that they provide a common language capable of
representing both. The same statement does not hold for sub-symbolic approaches,
which commonly represent data as (possibly multi-dimensional) arrays (e.g. vec-
tors, matrices, or tensors) of real numbers, and knowledge as functions over such
data.

Despite numbers are technically symbols as well, we cannot consider arrays
and their functions of as symbolic KR means. Indeed, according to [vG90], to be
considered as symbolic, KR approaches should: (i) involve a set of symbols, (ii)
which can be combined (e.g. concatenated) in possibly infinite ways, following
precise grammatical rules, and (iii) where both elementary symbols and any
admissible combination of them can be assigned with meaning—i.e. each symbol
can be mapped into some entity from the domain of the discourse. In this section
we discuss how sub-symbolic approaches are characterised by the frequent violation
of items (ii) and (iii).

Vectors, matrices, tensors. Multi-dimensional arrays are the basic brick of
sub-symbolic data representation. More formally, a D-order array consists of an
ordered container of real numbers, where D denotes the amount of indices required
to locate each single item into the array. The ith index of the array is assumed to
range through the interval 1, . . . , di, so that the whole dimension of the array – i.e.
the total amount of numbers therein contained – is d1× . . .× dD. In what follows,
we may abuse the notation by referring to 1-order arrays as vectors, 2-order array
as matrices, and higher-order arrays as tensors. Along this line, we may also denote
by Rn the set of n-dimensional vectors, by Rn×m the set of (n ×m)-dimensional
matrices, and by Rd1×...×dD the set of (d1 × . . .× dD)-dimensional tensors.

In any given sub-symbolic data-representation task leveraging upon arrays,
information may be carried by both:

• the actual numbers contained into the array, and

• their location into the array itself.

CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE 31

3.2. SUB-SYMBOLIC DATA REPRESENTATION

In practice, the actual dimensions (d1 × . . .× dD) of the array play a central role
as well. Indeed, as further discussed in chapter 4, sub-symbolic data processing
is commonly tailored on arrays of fixed sizes—meaning that the actual values
of d1, . . . , dD are chosen at design time and never changed after that. For this
reason, we define sub-symbolic data representation as the task of expressing data
in the form of rigid arrays of numbers. Notably, such a task is extensional by
construction, as information can only be explicitly represented.

Local vs. Distributed. An important distinction, when data is represented in
the form of numeric arrays, is about whether the representation is local or dis-
tributed [vG90]. In local representations, each single number into the array is
characterised by a well-delimited meaning—i.e. it is measuring or describing a
clearly identifiable concept from the domain of the discourse. Conversely, in dis-
tributed representations, each single item of the array is nearly meaningless, unless
it is considered along with its neighbourhood—i.e. any other item which is “close”
in the indexing space of the array, according to some given notion of closeness.
So, while in local representations the location of each number in the array is quite
negligible, in distributed representations it is of paramount importance.

Consider for instance the Iris dataset from section 3.1.2: it is a tabular dataset
where each datum can be considered as a 5-dimensional vector. There, each com-
ponent of the vector is informative per se: it may describe e.g. the petal/sepal
length/width. Conversely, consider a dataset of black/white images whose resolu-
tion is w×h. There, each image can be represented as a h×w matrix of numbers
in the range [0, 1], where each location represents a pixel and the corresponding
brightness. The single pixel carries very small information when considered alone,
whereas groups of contiguous pixel may describe details which are relevant for
image processing.

Feature Engineering. Of course, not all data is both rigid and numeric in
nature. So, to fit this paradigm, data scientists designed a plethora of conversion
methods to transform data from various forms (e.g. possibly non-rigid or non-
numeric, when not both) into rigid arrays of numbers. In particular, when raw
data is very flexible (i.e. variable in size) and very distributed, a common method
consists of computing the so-called embeddings, i.e. fixed-size arrays synthesising
the information contained into the raw data. All such methods lay under the
feature engineering umbrella.

The ideal situation, under a data representation perspective, is when data is
in tabular form, i.e. N instances and M features, and all features only involve
numeric values. There, each instance is naturally described by a M -dimensional
vector, while the whole dataset is described by an N ×M matrix. However, in

32 CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE

3.2. SUB-SYMBOLIC DATA REPRESENTATION

practice, only rarely raw data fits the rigid and numeric paradigm since the very
beginning. More commonly, raw data may diverge from the paradigm in several
ways—possibly, simultaneously. When this is the case, a number of transforma-
tions can be applied to the data to make it converge to the paradigm.

Non-numeric features. A dataset may involve non-numeric features, even
when of tabular form. When this is the case, each single non-numeric feature may
be transformed into numeric by applying a transformation to each value. The
most adequate transformation heavily depends on the domain of the feature itself:

boolean features may be trivially converted into numbers via the {false 7→
0, true 7→ 1} encoding;

ordinal features may be trivially converted into natural numbers reflecting
the same ordering;

categorical features may be converted into boolean features via the one-hot
encoding5;

structured features having a fixed structure (e.g. dates or timestamps) can
be decomposed into their components;

while other situations may fit the cases below.

Variable-size data. A dataset may involve data of variable size. Consider
for instance time series (e.g. samples of some phenomenon over time), or free text,
or graph-like information (e.g. friendships on social networks, citations in papers).
There, despite each single instance of the dataset can be trivially translated into an
array of numbers of some size, any two different instances from the same dataset
may have different sizes and internal structures.

For instance, time series can be easily modelled as T -dimensional vectors –
where T is the total amount of available samples –, and the tth component of
the vector represents the sample at time t; free text can be represented as W -
dimensional vectors – where W is the total amount of words/bigram/trigram/. . .
in the text –, and the wth component of the vector represents the frequency of the
wth word in the text (according to some ordering of words in the text); graphs can
be described by N×N adjacency matrices—where N is the total amount of nodes
into the graph. These data representation approaches are inherently distributed
and non-rigid. In fact, for any two different time series (possibly sampling the

5An n-dimensional vector x of categorical values x1, . . . , xn where each xi ∈ C = {c1, . . . , cm}
can always be one-hot encoded into a m×n matrix where the item in position i, j is 1 iff xi = cj ,
or 0 otherwise.

CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE 33

3.3. COMPARISON: SYMBOLIC VS. SUB-SYMBOLIC KR

similar phenomena), the amount of available samples may be different. Similarly,
two different text may involve different sets of words, resulting in vectors of dif-
ferent sizes. Finally, two different graphs (possibly describing similar situations),
may involve a different amount of nodes.

Depending on the nature of the data itself, and on the particular data-analytic
goal data representation is serving, datasets of such sorts can be translated into
rigid form by following one of the strategies below:

draw a number of statistics on each datum (e.g. mean, standard devia-
tion, min, max, etc.), attempting to aggregate the information therein con-
tained: if the same amount and sorts of statistics are drawn for each datum,
the dataset will then become tabular;

apply a domain-chancing transformation such as the Fourier transform
[CLW69] or the wavelet transform [Zha19];

sub-sample each variable-size datum using a fixed-size sampling step; e.g.
a sliding window for time series [FDH01], or neighbourhoods of fixed sizes
for graphs;

exploit ad-hoc embeddings targetting particular sorts of data, such as GNN
[WPC+21], Word2Vec [Chu17], etc.

3.3 Comparison: Symbolic vs. Sub-Symbolic KR

Symbolic and sub-symbolic approaches to KR can be compared along several di-
mensions, along which their duality seems clear.

Crispness vs. Fuzziness. At the syntactical level we describe symbolic KR as
“flexible” – mostly because it can represent knowledge intensionally, via variables,
and concisely, via recursive structures – and sub-symbol KR as “rigid”—because
of its prominent reliance on fixed-size arrays. However, it is well understood how,
in practice, symbolic KR leads to crisp representations, whereas sub-symbolic KR
leads to fuzzy representations. The distinction is well-established within the AI
literature. For instance, in the early 90s, Minsky described symbolic approaches
as neat, and sub-symbolic ones as scruffy [Min91].

Regardless of the particular terminological choices, the statement stems from
the exact nature of symbolic KR as opposed to the approximate nature of its
sub-symbolic counterpart. Indeed, while the interpretation of logic formulæ is
often discrete and finite-valued – and more commonly Boolean (i.e. two-valued)
–, arrays of real numbers may span through an infinity of values, and continuos

34 CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE

3.3. COMPARISON: SYMBOLIC VS. SUB-SYMBOLIC KR

notions of similarity or distance may be defined among them. So, for instance,
while symbolically represented objects can only be either equals or not, vectors,
matrices, or tensors may be more or less similar, according to a continuum of
possibilities.

Accordingly, logic-based representation are most adequate to represent exact
situations, where the world can be modelled according to precise rules. Conversely,
array-based representation are most adequate to represent approximate situations,
where similarity or slight differences among entities are interesting and should be
explicitly captured.

Extensional vs. Intensional. Another relevant distinction concerns the capa-
bility of representing knowledge intensionally. While symbolic approaches support
both intensional and extensional representations, sub-symbolic approaches only
support extensional representations. This implies that, when represented sub-
symbolically, all data should be represented explicitly.

The explicit representation of all the available information is at the same time
a blessing and a curse. In fact, while it costs far more space – thus complicating
both storage and processing –, it simplifies the design of sub-symbolic algorithms,
which can rely on the assumption that all relevant data is immediately available.

About Conversions. Conversions among the symbolic and sub-symbol realm
(or vice versa) are where discrepancies become more evident. In particular, while
the conversion in symbolic form of some sub-symbolic array of number is always
possible – as extensive tabular information can be suitably represented via logic
formulæ as well –, the conversion of logic knowledge into sub-symbolic form is cum-
bersome. Despite many conversion strategies (or embeddings) have been proposed
into the literature, they commonly require:

1. all the constants, functor symbols, and predicate symbols to be explicitly
encoded [CDM20, sec. 6.2],

2. variables to be missing, as they would imply some intensional representation
[SdG16],

3. N -ary structures to be encoded into tensors having at least N dimensions,
possibly recursively combined via the tensor product [Smo90].

Unfortunately, all such requirements come with quite strong limitations. In par-
ticular, item 1 implies that constants, functors, and predicate symbols must be of
finite quantity and all a-priori known—both conditions which rarely hold in prac-
tice. Item 2 implies logic formulæ should be grounded, if not already ground—
which would obliterate the advantages coming from intensional representations.

CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE 35

3.3. COMPARISON: SYMBOLIC VS. SUB-SYMBOLIC KR

Finally, item 3 implies that the maximum level of recursion should be a-priori de-
fined, as each tensor product increases the dimensionality of the tensors at hand—
which in turn cannot increase indefinitely, as it would violate the rigidity required
by sub-symbolic KR. All such issues arise because sub-symbolic KR is inherently
extensional, and it involves no simple way to express data intensionally – and
therefore concisely – as in logic.

36 CHAPTER 3. REPRESENTING DATA AND KNOWLEDGE

Chapter 4

Learning Knowledge from Data

A famous definition of machine learning from [Mit97] states:

A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its performance
at tasks in T , as measured by P , improves with experience E

This definition is very wide, as it does not specify (i) what are the possible tasks,
(ii) how performance measured is in practice, (iii) how / when experience should
be provided to tasks, (iv) how exactly the program is supposed learn, and (v) un-
der which form learnt information is represented. Accordingly, depending on the
particular ways these aspects are tackled, a categorisation of the approaches and
techniques for letting software agents learn may be drawn.

As depicted in fig. 4.1, three major approaches to ML exist. Each approach
is characterised by a well-defined pool of tasks, which may, in turn, be applied
in wide range of use case scenarios. The three major approaches to learning are:
supervised, unsupervised, and reinforcement. They essentially deal with the kind
of task T to be learned – commonly consisting in the estimation of an unknown
relation –, and how experience E is provided to the learning algorithm.

In supervised learning, the learning task consists of finding a way to approx-
imate an unknown relation, given a sampling of its items—which constitute the
experience. In unsupervised learning, the learning task consists of finding the best
relation for a sample of items – which constitute the experience –, following a given
optimality criterion intensionally describing the target relation. In reinforcement
learning, the learning task consists of letting an agent estimate optimal plans given
the reward it receives whenever it reaches particular goals—constituting the expe-
rience. There, a plan can be described as a relation among the possible states of
the world, the actions to be performed in those states, and the reward the agents
expects to receive from that action.

CHAPTER 4. LEARNING KNOWLEDGE FROM DATA 37

4.1. SUB-SYMBOLIC SUPERVISED MACHINE LEARNING

Figure 4.1: Taxonomy of ML. The second column enumerates the three major families
of ML approaches, the third one enumerates the main sorts of tasks affiliated with each
family, whereas the fourth one enumerates possible applications for each task

Such categorisation of learning approaches can be applied to both symbolic
and sub-symbolic techniques. Indeed, in this chapter, we provide an overview of
learning on a per-representation basis. In particular, in the following sections we
summarise the state of the art for what concerns both symbolic and sub-symbolic
forms of supervised learning.

4.1 Sub-Symbolic Supervised Machine Learning

Since several practical AI problems – such as image recognition, financial and
medical decision support systems – can be reduced to supervised ML – which
can be further grouped in terms of either classification or regression problems
[Twa10, Kot07] –, in the reminder of this section we focus on this set of ML
problems.

Within the scope of sub-symbolic supervised ML, a learning algorithm is com-
monly exploited to approximate the specific nature and shape of an unknown
prediction function (or predictor) π∗ : X → Y , mapping data from an input space
X into an output space Y . There, common choices for both X and Y are, for
instance, the set of vectors, matrices, or tensors of numbers of a given size—hence
the sub-symbolic nature of the approach.

An important assumption significantly affecting both the theory and the prac-
tice of sub-symbolic supervised learning is that vectors, matrices, or tensors in
X and Y are of fixed size—despite items in X may have different sizes than the

38 CHAPTER 4. LEARNING KNOWLEDGE FROM DATA

4.1. SUB-SYMBOLIC SUPERVISED MACHINE LEARNING

items in Y . Without lack of generality, in what follows we refer to items in X as
n-dimensional vectors denoted as x, whereas items in Y are m-dimensional vectors
denoted as y—despite matrices or tensors may be suitable choices as well.

To approximate function π∗, supervised learning assumes a learning algorithm
is in place. This algorithm computes the approximation by taking into account a
number N of examples of the form (xi,yi) such that xi ∈ X ⊂ X , yi ∈ Y ⊂ Y , and
|X| ≡ |Y | ≡ N . There, the set D = {(xi,yi) | xi ∈ X,yi ∈ Y } is called training
set, and it consists of (n+m)-dimensional vectors. The dataset can be considered
as the concatenation of two matrices, namely the N × n matrix of input data (X)
and the N × m matrix of expected output data (Y). There, each xi represents
an instance of the input data for which the expected output value yi ≡ π∗(xi) is
known or has already been estimated. Notably, such sorts of ML problems are said
to be “supervised” because the expected outputs Y are available. Furthermore, the
function approximation task is called “regression” if the components of Y consist
of continuous or numerable – i.e. infinite – values, or “classification” problems
they consist of categorical – i.e. finite – values.

Many learning algorithms exist, and they work in quite different ways. How-
ever, the general layout of sub-symbolic supervised learning is the same in all
cases. The learning algorithm assumes π∗ to be a function from a given set of
functions H called hypotheses space—i.e. π∗ ∈ H. In other words, the underlying
assumption is that the unknown prediction function π∗ exists, and it is of the form
characterising all functions in H. The algorithm performs an exploration of the
hypotheses space H looking for the hypothesis function π̂ ∈ H that better fits the
data in D—and that, therefore, better approximates π∗.

The goodness of the fitting among a hypothesis function π̂ and the data can
be assessed via either (i) an error function ε : Y × Y → R≥0 measuring the
discrepancy among the expected outputs in Y and the values attained by applying
π̂ to X, or dually, (ii) an adherence function ρ : Y × Y → R≤1, measuring the
similarities among the same values. For the sake of simplicity, we here consider
the best hypothesis π̂ the one item of H for which the total error is minimal – or
the total adherence is maximal –, w.r.t. the data in D. Therefore, in theory, any
sub-symbolic supervised learning process can be abstractly described via any of
the following formulæ:

π̂ = argmin
π∈H

{
N∑
i=1

ε(yi, π(xi))

}
or π̂ = argmax

π∈H

{
N∑
i=1

ρ(yi, π(xi))

}

Parameters and hyper-parameters. Exploration of the hypothesis space is
what is commonly referred to as “learning” or “training”. Learning algorithms
mostly differ for the strategy they follow to perform such exploration, other than

CHAPTER 4. LEARNING KNOWLEDGE FROM DATA 39

4.1. SUB-SYMBOLIC SUPERVISED MACHINE LEARNING

the particular hypotheses spaces they support.
A common strategy followed by most learning algorithms leverages on the

assumption that the hypothesis space is the set of all functions having the same
shape, regulated by a given amount p of parameters—namely HΘ where Θ ⊆ Rp

is space of parameters, enumerated by θ. Under such assumption, the formulation
of supervised learning can be rewritten as the optimisation task of finding the
optimal parameters θ∗ among the ones in Θ:

θ∗ = argmin
θ∈Θ

{
N∑
i=1

ε(yi, πθ(xi))

}
or θ∗ = argmax

θ∈Θ

{
N∑
i=1

ρ(yi, πθ(xi))

}

where πθ ∈ HΘ is the particular function using the parameters in θ.
If all functions inHΘ, as well as the error (resp. adherence) function ε (resp. ρ),

are differentiable w.r.t. θ, then the optimisation task can be tackled via gradient
descent (resp. climbing) in the general case—despite better options may exist
for particular shapes of the functions in HΘ. Such need to rely on differentiable
functions of vectors of real numbers is what forces many ML techniques into the
sub-symbolic realm.

Notably, a hypothesis space is commonly generated by a particular assignment
of a number q of hyper-parameters ω ∈ Rq. Each particular value of ω corresponds
to a particular parameters space Θ, and therefore to a particular hypothesis space
Hω

Θ. The hypothesis space may consist for instance of the set of all polynomials of a
variables whose degree is b. That would imply the corresponding parameters space
to comprehend all possible vectors having

(
b
a

)
components. So, if a = b = 1, then

Hω
Θ is the set of all possible straight lines on a plane, i.e. polynomials parametrised

by θ1 and θ2. For a = 1 and b = 2, Hω
Θ corresponds to the set of all possible

parabolas on a plane, i.e. polynomials parametrised by θ1 and θ2 and θ3. A
similar example may be built upon polynomials of 2 variables, and so on.

The difference among parameters and hyper-parameters is very important in
practice. In fact, while parameters are automatically computed by the learning
algorithm, hyper-parameters are not. They may be either guessed or estimated by
trial-and-error by data scientists—hence representing a bottleneck in the automa-
tisation of learning.

4.1.1 Overview on learning algorithms

Depending on the predictor family of choice, the nature of the admissible hypothe-
ses spaces and learning algorithms may vary dramatically, as well as the predictive
performance of the target predictor, and the whole efficiency of learning.

In the literature of machine learning, statistical learning, and data mining, a
plethora of learning algorithms have been proposed along the years. Because of the

40 CHAPTER 4. LEARNING KNOWLEDGE FROM DATA

4.1. SUB-SYMBOLIC SUPERVISED MACHINE LEARNING

“no free lunch” (NFL) theorem [WM97], however, no algorithm is guaranteed to
outperform the others in all possible scenarios. For this reason, the literature and
the practice of data science keeps leveraging on algorithms and methods whose
first proposal was published decades ago. Most notable algorithms include for
instance (deep) neural networks, decision trees, (generalised) linear models, nearest
neighbours, support vector machines (SVM), random forests, and many others.

These algorithms can be categorised in several ways, for instance depending on
(i) the supervised learning task they support (classification vs. regression), (ii) on
when they consume data (lazy vs. eager), (iii) or on the underlying strategy
adopted for learning (e.g. gradient descent, least squares optimisation), etc.

Some learning algorithms (e.g. neural networks) target regression problems,
whereas others (e.g. SVM) target classification problems. Similarly, some target
multi-dimensional outputs (y ∈ Rm), whereas others target mono-dimensional
outputs (m = 1). Regressors are considered as the most general case, as other
learning tasks can usually be defined in terms of mono-dimensional regression.
Binary classifiers, for instance, can be treated as mono-dimensional regressors
where admissible outputs lay in the interval [0, 1], while multi-class (resp. multi-
dimensional) classifiers (resp. regressors) can be treated as ensembles of multiple
binary classifiers (resp. regressors).

The eager–lazy dichotomy relates to operational aspects of learning, and, in
particular, to when training data is actually processed. This, in turn, affects the
computational time required in the training and inference phases—i.e. when the
predictor is exploited to draw predictions. In principle, the training phase of lazy
predictors (e.g. nearest neighbours) is trivial and no data needs to be processed as
training data is mostly processed in the inference phase. This makes the training
phase quicker, at the expense of a slower inference phase. To mitigate this issue,
in practice, indexing or grouping of training data may be exploited in the training
phase, with the purpose of speeding up the inference phase. Conversely, eager
predictors (e.g. linear models, neural networks, and virtually any other method
mentioned so far) come with a full-fledged learning phase, where the unknown
function binding input and outputs is approximated from training data. There,
the learning phase carries the higher computational effort, and the inference phase
is quick. In the reminder of this section, we focus on eager predictors as they
actually produce an internal representation of data during their learning phase,
which is the starting point of relevant discussion carried out in chapter 6.

Finally, the learning strategy is inherently bound to the predictor family of
choice. Neural networks, for instance, are trained via back-propagation [RHW86] –
a particular case of stochastic gradient descent (SDG, [Wik21c]), tailored on NN –,
generalised linear models via Gauss’ least squares method, decision trees via CART
[BFOS84], etc. Despite all such algorithms may appear interchangeable in principle

CHAPTER 4. LEARNING KNOWLEDGE FROM DATA 41

4.1. SUB-SYMBOLIC SUPERVISED MACHINE LEARNING

Figure 4.2: An example decision tree estimating the probability of kyphosis after spinal
surgery, given the age of the patient and the vertebra at which surgery was started
[Wik21b]. Notice that each decision tree subtends a partition of the input space, and
that the tree itself provides an intelligible representation of how predictions are attained

– because of the NFL theorem –, their malleability is very different in practice.
For instance, the least squares method involves inverting matrices of order N –
where N is the amount of available examples in the training set –, making the
computational complexity of learning more than quadratic in time. Furthermore,
in practice, convergence of the method is not guaranteed in the general case, while
it is for generalised linear models—hence why it is not adopted elsewhere. Thus,
learning by least squares optimisation may become impractical for big datasets or
for predictor families outside the scope of generalised linear models. Conversely,
the SGD method involves arbitrarily-sized subsets of the dataset (a.k.a. batches) to
be processed a limited (i.e. controllable) amount of times. Hence, the complexity
of SGD can be finely controlled and adapted to the computational resources at
hand—e.g. by making the learning process incremental, and by avoiding all data
to be loaded in memory. Furthermore, SGD can be applied to several sorts of
predictor families (there including neural networks and generalised linear models),
as it only requires the target function to be differentiable w.r.t. its parameters.
For all these reasons, despite the lack of optimality guarantees, SGD is considered
as very effective, scalable, and malleable in practice, hence why it is extensively
exploited in the modern data science applications.

In the reminder of this thesis, we focus on two particular families of predic-
tors – namely, decision trees and neural networks –, and their respective learning
methods—i.e. the CART [BFOS84] and back-propagation [RHW86] algorithms.
Notably, decision tree are relevant because of their user friendliness, whereas neural
networks are relevant because of their predictive performance and flexibility.

Decision Trees. Decision trees (DT) are particular sorts of predictors support-
ing both classification and regression tasks. In their learning phase, the input space
is recursively partitioned through a number of splits (a.k.a. decisions) based on

42 CHAPTER 4. LEARNING KNOWLEDGE FROM DATA

4.1. SUB-SYMBOLIC SUPERVISED MACHINE LEARNING

Figure 4.3: General structure of neural units in neural networks

the input data X, in such a way that the prediction in each partition is constant,
and the error w.r.t. the expected outputs Y is minimal, while keeping the total
amount of partitions low as well. The whole procedure then synthesises a number
of hierarchical decision rules to be followed whenever the prediction corresponding
to any x ∈ X must be computed. In the inference phase, decision rules are orderly
evaluated from the root to some leaf, in order to select the portion of the input
space X containing x. As each leaf corresponds to a single portion of the input
space, the whole procedure results in a single prediction for each x.

Differently from other families of predictors, the peculiarity of decision trees
lays in the particular outcome of the learning process – namely, the tree of decision
rules – which is naturally intelligible for humans and graphically representable in
2D charts. As further discussed in the reminder of this thesis, this property is
of paramount importance whenever the inner operation of an automatic predictor
must be interpreted by a human being.

Neural Networks. Neural networks (NN) are biologically-inspired computa-
tional models, made of several elementary units (neurons) interconnected into a
graph (commonly, directed and acyclic, a.k.a. DAG) via weighted synapses. Ac-
cordingly, the most relevant aspects of NN concern the inner functioning of neurons
and the particular architecture of their interconnection.

Neurons are very simple numeric computational units. They accept n scalar
inputs (x1, . . . , xn) = x ∈ Rn weighted by as many scalar weights (w1, . . . , wn) =
w ∈ Rn, and they process their linear combination x ·w via an activation function
[Wik21a] σ : R 7→ R, producing a scalar output y = σ(x·w), as depicted in fig. 4.3.
The output of a neuron may become the input of many others, possibly forming
networks of neurons having arbitrary topologies. These network may be fed with
any numeric information encoded as vectors of real numbers by simply letting a

CHAPTER 4. LEARNING KNOWLEDGE FROM DATA 43

4.2. SYMBOLIC SUPERVISED LEARNING

number of neurons produce constant outputs.
While virtually all topologies are admissible for NN, not all are convenient. A

number of convenient architectures – roughly, patterns of well-studied topologies
– have been proposed into the literature [VVL19] to serve disparate purposes—far
beyond the scope of supervised machine learning. Figure 4.4 overviews the current
state of the art of NN architectures.

NN can be trained on numeric data via stochastic gradient descent and ex-
ploited into both supervised and unsupervised learning tasks such as classifica-
tion, regression, and anomaly detection, depending on the particular architecture
of choice. More precisely, while the training automatically sets up the weights of
each neuron’s ingoing synapses, the overall topology of the network is not allowed
to vary. It is rather assumed to be manually engineered by data scientists.

Most common NN architectures are feed-forward, meaning that neurons are
organised in successive layers, in such a way that neurons from layer i can only
accept ingoing synapses from neurons of layers j < i. The first layer is considered
the input layer, which is used to feed the whole network, while the last one is the
output layer, where prediction are drawn. In architectures of these kinds, inference
lets information flow from the input to the output layers – assuming the weights
of synapses are fixed –, while training lets information flow from the output to the
input layers—provoking the variation of weights to minimise the prediction error
of the overall network.

The recent success of deep learning [GBC16] has proved the flexibility and
the predictive performance of deep neural networks (DNN). ‘Deep’ here refers
to the large amount of (possibly convolutional) layers. In other words, DNN
can learn how to apply cascades of convolutional operations to the input data.
Convolutions let the network spot relevant features into the input data, at possibly
different scales. Hence why DNN are good at solving complex pattern-recognition
tasks, such as in computer vision or speech recognition. Unfortunately, however,
unprecedented predictive performances of DNN come at the cost of their increased
internal complexity and greater data greediness.

4.2 Symbolic Supervised Learning

Within the realm of symbolic AI, supervised ML commonly refers to either in-
ductive logic programming (ILP) [Mug91] or statistical relational learning (SRL)
[DRK10], despite the overlap among the two disciplines is wide.

In both cases, learning consists of approximating an unknown intensional rep-
resentation H∗ for a number of positive examples E+, possibly leveraging on

• some prior knowledge base B, carrying the so-called background knowledge
about the domain at hand;

44 CHAPTER 4. LEARNING KNOWLEDGE FROM DATA

4.2. SYMBOLIC SUPERVISED LEARNING

Figure 4.4: Admissible architectures for neural networks [VVL19]

CHAPTER 4. LEARNING KNOWLEDGE FROM DATA 45

4.2. SYMBOLIC SUPERVISED LEARNING

• a number of negative examples E−;

• a language bias C, constraining the admissible shapes for the representation
to-be-learned.

In the general case, H∗, E+, E−, and B are knowledge bases, possibly involving
several definite clauses (i.e. either rules or facts), while the shape of C really
depends on the particular learning approach at hand. Of course, there may be
cases where E−, B or C are not required, and therefore considered as empty sets.

The main difference among ILP and SLR lays in the particular language used
for knowledge representation. While in ILP knowledge bases simply consist of
bare definite clauses, SRL leverages on a superset of Horn Logic called LPAD
(Logic Programs with Annotated Disjunctions) [VVB04], where definite clauses
are enriched with probability values.

According to the SLR nomenclature of [DRK10] – where a unifying model
generalising ILP and SLR is proposed –, there are two relevant problems which
lay under the symbolic supervised learning umbrella, namely:

parameters learning where H consists of a given LPAD theory, where the
shape of facts and rules is known, while their probabilities are not, and
learning aims at simply estimating those probabilities

structure learning where H is completely unknown, and the whole shape of
facts and rules therein contained must be computed, possibly along with
their corresponding probabilities

In both cases, learning can be defined as an optimisation problem aimed at
approximating H∗ by search for the best KB Ĥ into a hypothesis space HB,C ,
defined by applying all possible combinations of clauses in B, as dictated by C.
There, each KB H ∈ HB,C consists of a number of definite clauses defining the
n-ary relation h, possibly leveraging on the relations defined in B, and satisfying
the suggestions/constraints expressed by C. In other words, they consist of KB
intensionally defining h via rules of the form:

ψ :: h(X1, . . . , Xn)← f(X̄), f ′(X̄ ′), f ′′(X̄ ′′), . . .

where ψ denotes an optional probability value, while X̄, X̄ ′, X̄ ′′, . . . are tuples
involving one or more head variables (i.e., X1, . . . , Xn), and f, f ′, f ′′, . . . are either
predicates defined in B or combinations of those predicates, attained by following
the suggestions/constraints contained in C. Similarly, E+ (resp. E−) consists of
facts of the form h/n, extensionally defining known (resp. invalid) items of the
n-aray relation h, and possibly labelled with probabilities.

46 CHAPTER 4. LEARNING KNOWLEDGE FROM DATA

4.2. SYMBOLIC SUPERVISED LEARNING

Analogously to the sub-symbolic case, symbolic supervised learning leverages
upon some adherence function ρ, aimed at measuring the adherence of some hy-
pothesis KB H ∈ HB,C w.r.t. either E+ or E−. For instance, in SRL, ρ is
commonly modelled probabilistically:

ρ(H,E,B) =
∑
e∈E

P(e | H,B)

where P(· | ·) denotes the conditional probability operator. Conversely, in ILP, ρ
is modelled in terms of logic inference1:

ρ(H,E,B) =
∑
e∈E

ρ(H, e,B) and ρ(H, e,B) =

{
1 if H,B |= e

0 otherwise

Under such hypothesis, symbolic supervised learning can be defined as [DRK10]
the optimisation task aimed at finding the hypothesis which adheres to as much
positive examples as possible, while adhering to no negative example at all:

Ĥ = argmax
H∈HB,C s.t. ρ(H,E−,B)=0

{
ρ(H,E+, B)

}
(4.1)

Parameter and structure learning differ for the actual way the search is per-
formed, other than for the actual object of search. In parameter learning, algo-
rithms can assume the shape of (facts and rules in) Ĥ to be given (and fixed),
and therefore focus on the mere estimation of probabilities. Conversely, in struc-
ture learning, algorithms must also consider the many possible shapes Ĥ may
have. This includes all possible combinations of all relations possibly defined in B.
Assuming, for instance, that B intensionally defines r relations f1, . . . , fr, whose
arity is at least a, and that the target relation is h, whose arity is n. Under such
hypothesis, rules in H should be of the form:

h(X1, . . . , Xn)← . . .

where the body of the rule may contain as many predicates as in any possible
permutation of any possible subset of {f1, . . . , fr}. There, each possible a-ary
relation could be written as a predicate involving some disposition of a variables
from the set {X1, . . . , Xn}. In other words, the search space for structure learning
is huge and definitely impossible to explore in useful time, unless in trivial cases. To
complicate the matter, differently from the sub-symbolic case, the search space is

1This aspect is better discussed in chapter 5. Within the scope of this chapter, the notation
K |= ϕ, where K is a knowledge base and ϕ is a logic formula, can simply be read as “ϕ can be
inferred from K via some inference procedure”.

CHAPTER 4. LEARNING KNOWLEDGE FROM DATA 47

4.2. SYMBOLIC SUPERVISED LEARNING

not even continuous—meaning that gradient based approaches cannot be applied.
To mitigate such issues – and to reduce the search space –, the ILP community

leverages on smart choices of the linguistic bias C. The general purpose of the
linguistic bias is to constrain the particular way relations from B can be combined
in H. This can come in different shapes and flavours, depending on the particular
ILP method in place.

Consider for instance the case of an ILP problem aimed at learning the posi-
tive example grandparent(abraham, jacob), given the background knowledge con-
taining a number of facts expressing parenthood facts of the form parent(p, p′),
describing Abraham’s family tree—as in eq. (3.3). There, the meta-rule 4.2 may
suggest the correct identification of the target rule – namely, grandparent(X, Y)←
parent(X,Z), parent(Z, Y) – via the variable assignment {P 7→ grandparent,Q 7→
parent,R 7→ parent}.

It is worth to be noted how the language bias C plays, in symbolic supervised
learning, the same role played by hyper-parameters in sub-symbolic supervised
learning. In both cases, automated learning relies on some prior knowledge, which
must be handcrafted by data scientists. In fact, similarly to sub-symbolic ap-
proaches, some mechanism is needed to let humans control either the complexity
or learning or the dimension of the search space. In the particular case of symbolic
supervised learning, that mechanism is the language bias.

4.2.1 Overview on learning algorithms

Here we summarize the most relevant sorts of algorithms supporting symbolic
supervised learning. In particular, we focus on algorithms aimed at learning either
the structure or the parameters of logic programs. We discuss approaches targeting
structure learning first. Then, we introduce approaches for parameter learning—
which commonly require the structure to be given.

Structure Learning

Structure learning of logic programs is commonly attained via some ILP algorithm.
A nice and up-to-date survey of ILP is provided by [CD20]. Here, we just provide
an overview and some references.

Generally speaking, ILP algorithms aim to construct a good – i.e. sufficiently
general – theory H∗ entailing all positive examples in E+ and no negative one
from E−. Clauses from the theory under construction may leverage upon one or
more clauses from the background knowledge B. In other words, ILP algorithms
exploit automated inductive reasoning to produce novel symbolic knowledge –
possibly leveraging on previously available symbolic knowledge – out of positive
and negative symbolic examples.

48 CHAPTER 4. LEARNING KNOWLEDGE FROM DATA

4.2. SYMBOLIC SUPERVISED LEARNING

Notably, the notion of “sufficiently general theory” is quite subtle in this con-
text. Roughly speaking, a general theory should contain one or more non-ground
clauses, from which the positive examples could be attained via variables sub-
stitutions or via deduction. Despite the expected result of any ILP algorithm is
certainly a general theory from which all the positive examples can be inferred,
looking for the most – or least – possible general rule is likely a mistake. In other
words, as for sub-symbolic ML, generalising too much is as wrong as generalising
too little—i.e. drawing rules which are too specific. In fact, any inductive inference
process may lead to the construction of too general conclusions which do not hold
in the real world. To prevent this issue, ILP algorithms commonly include some
stopping criterion aimed at avoiding both excessive generalization and excessive
generalization.

From a very high-level perspective, ILP algorithms can be categorized w.r.t.
the strategy they follow in constructing the target theory. Top-down algorithms
start from a very general theory and they progressively specialise it, until reaching
the most general theory among the most specific ones. Conversely, bottom-up
algorithms follow the inverse path, starting from a very specific theory and then
progressively generalising it, until reaching the most general theory among the
most specific ones.

In practice, four major approaches have been proposed into the ILP literature
– namely, relative least-general generalization, inverse entailment, bottom-clause
propositionalisation, and meta-interpretative learning –, and most algorithms pro-
posed so far rely on some of them.

Relative least-general generalization (RLGG). RLGG [Plo71] is a basic
mechanism to be exploited in a bottom-up induction strategy. It assumes both
the background knowledge and the examples to be ground. Under this assumption,
it subtends a lattice where vertices represent clauses and arcs represent instances
of a subsumption relation. Such clauses attained by (i) combining the literals
from the positive examples among each other and with the literals of the clauses
in the background knowledge, and by (ii) replacing common constant terms with
variables, accordingly.

To perform induction, the resulting lattice should then be explored looking for
the best RLGG, i.e. the one covering the more positive examples, while not cover-
ing any negative example. Unfortunately, however, the lattice may be very large
or even infinite, thus further sub-strategies should be in place to (i) lazily generate
and explore the lattice, (ii) prevent it from exploding in size, and (iii) prune the
lattice as quickly and as much as possible.

Golem [MF92] is an algorithm and former software system exploiting RLGG in
practice. In a seek for tractability, Golem puts some constraints on the amount and

CHAPTER 4. LEARNING KNOWLEDGE FROM DATA 49

4.2. SYMBOLIC SUPERVISED LEARNING

the position of variables in the literal composition phase. It starts by constructing
a very large clause using positive examples, and, after a number of generaliza-
tion steps where constant terms are replaced by variables, the clause reaches its
final form as the outcome of the induction process. Behind the scenes, negative
examples are exploited to prune the resulting clause.

Inverse entailment (IE). IE [Mug95] is another basic mechanism supporting
the induction of logic clauses following a bottom-up strategy. Like RLGG, IE
subtends a generality lattice of clauses to be explored. However, differently than
RLGG, IE may generalize a clause via predicate invention—i.e. by generating
a bare new predicate, different than the ones in the examples and background
knowledge. Thanks to predicate invention, IE can lead to the induction of elegant
and concise theories composed by one or more interrelated clauses.

While the IE mechanism itself is straightforward, it simply moves the complex-
ity into predicate invention. Indeed, linguistic bias in the form of suggestions and
constraints for the predicate invention sub-procedure must be commonly provided
by the users.

Progol, for instance, is likely the first and most relevant ILP system leveraging
upon IE. It has been proposed by the same paper [Mug95]. Notably, it requires
the user to provide “mode declarations” via an ad-hoc syntax, to define and con-
strain predicate invention. This is required to construct the “bottom clause”, i.e.
most-specific clause that explains an example. Progol then relies upon an A∗-like
heuristic search – exploiting a compression score as the heuristic function – to
generalise the clause to make it cover as much examples as possible.

Bottom-clause propositionalisation (BCP). In the BCP approach [FZdG14],
bottom clauses attained by generalising the examples are propositionalised – i.e.
brought into attribute-value form – by using the set of all body literals that occur
in them and in the background knowledge’s clauses as possible attributes. This
reduces the logic knowledge into an extensional dataset of fixed size, which can be
used to fed sub-symbolic predictors.

C-IL2P [dGZ99] and CILP++ [FZdG14] are notable examples of systems per-
form ILP by relying on BCP and by constructing a neural network behind the
scenes. In these systems, neural networks are constructed to reflect the background
knowledge’s and the examples’ literals into its structure. The neural network is
then trained, and an induced clause is then reverse-engineered from the network’s
weights.

Meta-interpretative learning (MIL). MIL [MLPT14] is a modern approach
leveraging on the meta-programming capabilities of logic solvers (cf. chapter 5)—

50 CHAPTER 4. LEARNING KNOWLEDGE FROM DATA

4.2. SYMBOLIC SUPERVISED LEARNING

and in particular Prolog ones. Following the MIL approach, ILP is conceived as a
higher-order logic task where a logic program (the meta-interpreter) dynamically
constructs another logic program (the induced theory) via meta-programming.

There, the linguistic bias consists of a library of higher-order rules (a.k.a. meta-
rules), which define the admissible ways the predicates from the examples and the
background knowledge may be combined. In particular, a meta-rule is a rule
involving higher-order variables enumerating over predicate symbols, such as:

P(A, B)← Q(A, C), R(C, B) (4.2)

where uppercase, sans-serif letters P,Q,R denote higher-order variables, while
A,B,C are ordinary variables; and the whole formula allows an induction al-
gorithm to invent [MB88] some binary predicate P by combinations of two binary
predicates Q and R.

Metagol [MLT15] is the most prominent example of a system following the MIL
approach. It follows a bottom-strategy starting from the positive examples and
using meta-rules to guide the generalization process. After generalising all the ex-
amples, Metagol checks the consistency of the induced theory against the negative
examples. Alternative hypotheses may be explored by the meta-interpreter follow-
ing the underlying solver’s semantics—e.g. backtracking in the case of Prolog.

Parameter Learning

Parameter learning is commonly achieved via probabilistic logic programming
(PLP). The history of PLP starts with the seminal work of [NS92], and a nice
and up-to-date survey is provided by [Rig18].

In PLP, theories may contain facts or rules enriched with probabilities, which
may, in turn, be queried by the users to investigate not only which statements are
true or not, but also under which probability. To support this behaviour, proba-
bilistic solvers leverage ad-hoc resolution strategies explicitly taking probabilities
into account. PLP systems may also support the computation of probabilities in
presence of data. These features make them ideal to deal with uncertainty and the
complex phenomena of the physical world. It is thus unsurprising that Bayesian
and data-driven AI, other than cyber physical systems (CPS), are among the areas
which would benefit the most from the development of robust and interoperable
PLP technologies.

A variety of research contributions exploring the field of PLP exist in the logic
programming literature. Proposals often differ for their semantics or syntaxes, or
for the way they perform probabilistic reasoning [FdBR+15, KDDR+11, DRKT07,
RS11].

Roughly speaking, semantics are concerned with endowing probabilistic pro-

CHAPTER 4. LEARNING KNOWLEDGE FROM DATA 51

4.3. SYMBOLIC VS. SUB-SYMBOLIC LEARNING

grams with meaning. Sato’s distribution semantics (DS) [Sat95, SK97] is one of
the most prominent approaches for the combination of logic programming and
probability theory. There, a probabilistic logic program is interpreted as a concise
description of many possible worlds, and the probabilities of queries are solved by
summing up their probability in each possible world.

Languages adhering to the distribution semantics may in turn differ in how they
represent clauses, and their probabilities. A successful approach in this context
is LPAD (Logic Programs with Annotated Disjunctions) [VVB04], where clauses
admit disjunctions of atoms in their heads, and each atom is labelled with a prob-
ability value. In other words, LPAD is a special notation supporting the definition
of non-binary probabilistic distributions over clauses and facts. However, in prac-
tice, probabilistic logic programs may support a certain evidence [Hor16] to be
provided via unannotated fact/rules which are known to be true, even though
they may be defined over some probability distribution.

Finally, concerning probabilistic reasoning, PLP generally supports reasoning
tasks (cf. chapter 5), and each of them has been richly documented in the liter-
ature [dK15]. Broadly speaking, options range from exact to approximate—the
former being more precise and computationally demanding, while the latter being
more affordable at the price of lower precision. In any case, a common strategy
is to rely upon knowledge compilation [DM02] to make probabilistic reasoning
efficient—i.e., by transforming logic formulæ into simpler (more tractable) forms.
Binary decision diagrams (BDD) [Ake78, LMS14] and their variants/extensions
are commonly exploited to serve this purpose [BR13, VRVdBDR14].

4.3 Symbolic vs. Sub-Symbolic Learning

Symbolic and sub-symbolic approaches to supervised learning share similar for-
mulations, despite the corresponding methods and algorithms operate in quite
different ways. Both formulations deal with optimisation problems aimed at it-
eratively constructing an algorithm mimicking an unknown relation/function in
the best possible way, leveraging on a number of examples. However, because
of their nature and the inherent way they represent knowledge, both approaches
come with pros and cons. Here we focus, on their flexibility, maturity, data and
computational efficiency, degree of automation, and validation.

Flexibility and maturity. For what concerns flexibility, symbolic approaches
produce more flexible outcomes, whereas sub-symbolic approaches are charac-
terised by more flexible learning processes.

52 CHAPTER 4. LEARNING KNOWLEDGE FROM DATA

4.3. SYMBOLIC VS. SUB-SYMBOLIC LEARNING

Outcomes. Focussing on symbolic approaches, flexibility lays in the shape of
the expected outcomes, which is a direct effect of the particular choice of symbols
for KR. “Symbolic” here implies that knowledge is represented via logic clauses,
which in turn pave the way towards learning intensional relations—possibly taking
some prior (background) knowledge into account. Indeed, representing the target
of knowledge in the form of relations expressed by logic formulæ comes with two
major advantages—namely bi-directionality and re-usability.

First, relations are bi-directional, meaning that any argument of the relation
can be considered either an input or an output, depending on the situation at
hand. So, for instance, if an agent is capable of learning the clauses expressing the
grandparent/2 relation – cf. eq. (3.3) –, then it acquires a lot of relevant infor-
mation, namely: (i) an explicit, generic representation of how the relation can be
tested among any two entities X and Y , (ii) a way to compute all the grand-chil-
dren of any given grand-parent p – i.e. grandparent(p, Y) –, and (iii) a way to
compute all the grand-parents of any given grand-child c—i.e. grandparent(X, c).

Second, relations are re-usable (w.r.t. a learning process), meaning that learned
relations can be used as prior knowledge in any sub-sequent learning process, as
both the inputs and outputs of any symbolic learning process are represented
in the same form—namely, logic clauses. This in turn paves the way towards
the definition of learning cycles where a learning algorithm is executed several
times and the knowledge acquired after each round is included in the background
knowledge of successive rounds.

Conversely, sub-symbolic approaches aim to learn functions, rather than rela-
tions. The learned functions are generally mono-directional – in the sense that
they are not (easily) invertible – and extensional. Consider for instance the case of
a neural network aimed at classifying images of animals. It may easily discriminate
among dogs and cats (i.e. compute the classification, given an input), yet it may
hardly generate admissible images of neither dogs or cats (i.e. compute an input,
given a class)2.

Processes. Focussing on sub-symbolic approaches, flexibility lays in the va-
riety of methods to approximate the target function. Such variety is once again
the result of the particular choice of arrays of numbers for KR. In fact, this choice
enables the pervasive exploitation of mathematical operations as the basic bricks of
sub-symbolic processing. These include basic algebraic operators (sum, product,
etc.), as well as statistical (mean, variance, standard deviation, etc.), information-
theoretical (cross-entropy, mutual information, etc.), signal-processing (Fourier- or

2Generative Adversarial Neural Networks [GPM+14] may be used whenever bi-directionality
is needed, yet that essentially implies training two networks: one classifier and one generator of
data, where the former can only classify, and the latter can only generate data

CHAPTER 4. LEARNING KNOWLEDGE FROM DATA 53

4.3. SYMBOLIC VS. SUB-SYMBOLIC LEARNING

Laplace-transform, etc.), binary (bitwise-and, -or, etc.), or differential (differenti-
ation, integration, etc.) operators. All such operators, in turn, come with two
major advantages in terms of malleability and parallelisation.

Malleability refers to the capability of learning in spite of how the many ele-
mentary operators are combined. Within the scope of sub-symbolic approaches,
malleability is commonly guaranteed by the pervasive exploitation of differen-
tiable operators, which supports learning via numeric optimisation algorithms—
e.g. stochastic gradient descent (SGD) and its variants [Wik21c]. Conversely,
within the scope of symbolic approaches, the presence (resp. lack) of any given
operator may greatly affect the expressiveness of the underlying logic, therefore
making learning more (resp. less) complex from a computational perspective.

Parallelisation refers to the capability of speeding up learning algorithms by
executing as much sub-tasks as possible in parallel, provided that the adequate
hardware is in place. Within the scope of sub-symbolic approaches, most basic
mathematical operators – such as matrix- or tensor-products –, as well as whole
learning steps – such as batches in SGD –, can be executed in parallel to some
extent, possible via ad-hoc hardware facilities Conversely, within the scope of
symbolic learning, further research on concurrent / parallel solutions is still needed.

Consider, for instance, neural networks as opposed to ILP. They are charac-
terised by a great flexibility because of their reliance on differentiable operators
(mostly sums, multiplications and activation functions [Wik21a]), and malleable
way of combining them into arbitrarily complex structures. Therefore, regardless
of the complexity of the overall structure, a NN is composed by the recursive com-
position of differentiable operators—which makes the whole network trainable via
SGD. To further speed up NN training, a plethora of software frameworks have
been designed and implemented, with the purpose of exploiting ad-hoc hardware,
such as GPUs—cf. Tensorflow [AAB+15], Theano [ARAA+16], Caffe [JSD+14],
etc. Conversely, despite the many algorithms designed for ILP, the availability of
software frameworks reifying them is quite scarce, and the support for parallelisa-
tion is even scarcer. Should we speculate on the motivations behind this situation,
we would argue that symbolic and sub-symbolic approaches to learning have so
far reached different levels of maturity—especially, for what concerns technological
readiness.

Efficiency. Efficiency in learning can be measured against two major aspects,
namely time and space. Data (resp. computational) efficiency deals with space
(resp. time), and it is related to the amount of data (resp. time) required by
learning to be effective. Here, effectiveness refers to the adherence of the learned
relation/function w.r.t. the available examples.

Concerning data efficiency, sub-symbolic approaches are notably data-hungry

54 CHAPTER 4. LEARNING KNOWLEDGE FROM DATA

4.3. SYMBOLIC VS. SUB-SYMBOLIC LEARNING

[Ada21], as they require tons of examples to learn tasks for which a human would
require just a handful. Conversely, symbolic approaches are considered far more
data-efficient. In [EG18], the authors discuss this notable difference, arguing that a
motivation may lay in the strong language bias imposed by choice of logic formulæ
as the preferred means for KR.

Concerning computational efficiency, while in theory both symbolic and sub-
symbolic approaches must explore infinite search spaces, in practice, efficiency
can be improved by (i) sacrificing effectiveness, e.g. by leveraging on greedy algo-
rithms, strong biases, or aggressive stopping criteria, (ii) parallelising the learning
algorithm, as discussed above.

Automation and autonomy. A common trait shared by both symbolic and
sub-symbolic approaches to supervised learning is their reliance on semi-automatic
workflows. In other words, despite the name, both approaches require a “human
in the loop” – namely, the data scientist – to take care of those aspects which
learning algorithms cannot autonomously deal with. In the case of sub-symbolic
approaches, these aspects involve the choice of hyper-parameters. In the case of
symbolic approaches, these aspects involve the choice of the language bias and
background knowledge. In both cases, these aspects involve the choice of the most
adequate learning algorithm(s), other than the engineering of the representation
of available data, in maximise the effectiveness the learning algorithm(s).

Within the scope of sub-symbolic learning, the problem of hyper-parameters
tuning is currently addressed via a number of practices aimed at automating and
speeding up their selection. A summary of such practices can be found in [CM15].
The recent advances in the field of Automated ML [HZC21] are building on such
practices in order to further increase the degree of automation in sub-symbolic
ML. However, current efforts are focussing on supporting data-scientists in an
end-to-end fashion, rather than letting software agents learn autonomously.

To the best of our knowledge, automating the definition of background knowl-
edges and language biases in symbolic learning is not a major concern. Should
we speculate on the reasons behind this phenomenon, we would argue that both
background knowledges and language biases are the preferred way to let human
beings transfer their commonsense and wisdom to the learning algorithms. In this
sense, the creation of background knowledges and language biases is inherently
poorly automatable. However, background knowledges can be incrementally con-
structed by an agent (be it human or software) and then shared or transferred
to other agents. A similar argument may hold for language bias, since it may be
considers as meta-level background knowledge—i.e. knowledge about how further
knowledge may be constructed.

CHAPTER 4. LEARNING KNOWLEDGE FROM DATA 55

4.3. SYMBOLIC VS. SUB-SYMBOLIC LEARNING

56 CHAPTER 4. LEARNING KNOWLEDGE FROM DATA

Chapter 5

Reasoning over Knowledge

The Cambridge dictionary1 defines reasoning as “the process of thinking about
something in order to make a decision”. Conversely, the Oxford dictionary2 states
that reasoning is “the process of thinking about things in a logical way”. Notably,
while both definitions agree that reasoning essentially consists in the process of
thinking, none of them actually constrains the nature of the entity enacting this
process, despite thinking – and, in particular, reasoning – is the most characterising
capability of humans ’ mind. This welcomes the idea that software agents may be
capable of automated reasoning as well.

Indeed, within the scope of this thesis, we consider reasoning as the activity
performed by an agent (either human, or computational) whenever it draws new
knowledge out of prior knowledge. Of course, as for learning, the particular way
knowledge is drawn heavily depends on how it is represented.

When knowledge is symbolically represented, reasoning leverages on one or
more inference rules, i.e. logic formulæ dictating under which conditions conclu-
sions may be drawn out of premises. This reflects the Oxford definition, where the
logic nature of reasoning is stressed. Inference rules may be used, for instance, to
deduce a particular case from a general rule, to induce the general rule justifying
a number of observations, or to speculate on the possible causes for some phe-
nomena, given the particular rules governing the underlying noumena. Therefore,
within the symbolic realm, the terms “inference” and “reasoning” are used almost
interchangeably. Research in this field aims at letting computational agents draw
logic inferences automatically. For this reason, the focus of computer scientists is
on finding effective and efficient algorithms to let agents reason autonomously—i.e.
with minimal human intervention.

Conversely, when knowledge is sub-symbolically represented, “inference” and

1https://dictionary.cambridge.org/dictionary/english/reasoning
2https://www.oxfordlearnersdictionaries.com/definition/english/reasoning?q=re

asoning

CHAPTER 5. REASONING OVER KNOWLEDGE 57

https://dictionary.cambridge.org/dictionary/english/reasoning
https://www.oxfordlearnersdictionaries.com/definition/english/reasoning?q=reasoning
https://www.oxfordlearnersdictionaries.com/definition/english/reasoning?q=reasoning

5.1. SYMBOLIC REASONING

“reasoning” are reduced to the data-analytic activity of applying the models learned
from previous data to novel data, in order to mine useful information. Such activity
is far from trivial, as it may used to perform tasks which would be prohibitively
complex to express otherwise—e.g. image recognition. Accordingly, the Cam-
bridge definition is more adequate in this case: reasoning is not necessarily logic
in nature, but for sure it is aimed at driving decisions—e.g. deciding whether
handwritten characters is more likely a 1 or a 7, or whether an histological image
should or should not raise an alarm for cancer. Research in this field aims at let-
ting sub-symbolic algorithms attain better predictive performances. As such, data
scientists’ efforts are mostly devoted to the improvement of learning algorithms,
as inference is straightforward. However, recent research efforts are being devoted
to the exploitation of sub-symbolic algorithms as means for performing symbolic
computations—therefore mimicking logic reasoning.

In the reminder of this chapter we delve into the details of reasoning from both
a symbolic and sub-symbolic perspective. In particular, we present the classic
approaches and algorithms to automate logical reasoning and we introduce the
theory behind the mimicking of symbolic reasoning via sub-symbolic facilities.

5.1 Symbolic Reasoning
This section contains contributions from the following works of ours: [CCDO20]

Symbolic (i.e., logic-based) reasoning approaches root back to John McCarthy’s
work of 1958 [MS58], aimed at developing the idea of formalising the so-called
commonsense reasoning to build intelligent artefacts—i.e. computational or cyber-
physical agents endowed with human-like intelligence. There, commonsense intu-
itively refers to the basic understanding of the physical world, its cause-effect rules,
and the effects of one’s actions on it, etc. [McC89]. It is such an obvious capability
for human beings that most of it is not even explicitly taught in schools, yet it
is incredibly hard to formalise and represent for computational agents, which are
therefore inherently lacking such kind of basic knowledge.

Despite the formalisation of commonsense soon proved to be very challenging
– mostly because of the many non-trivial involved issues, such as the need of
formalising the situation the agent is immersed into, actions it may perform of
be subject to, and physical and legal laws governing its environment and context,
etc. –, many frameworks and tools have been developed over the years while
pursuing such goal. There are freely available commonsense knowledge bases and
natural language processing toolkits, supporting practical textual-reasoning tasks
on real-world documents including analogy-making, and other context oriented
inferences—see for instance [LLSB04, LS04, LLS02, Sha00]. There have been also
a number of attempts to construct very large knowledge bases of commonsense

58 CHAPTER 5. REASONING OVER KNOWLEDGE

5.1. SYMBOLIC REASONING

knowledge by hand, one of the largest being the CYC program by Douglas Lenat
at CyCorp [Len95].

The modern approach to automated reasoning starts with Robinson’s resolu-
tion principle [Rob65]: since then, several technologies have exploited deduction
on FOL knowledge bases to provide reasoning capabilities in diverse areas—logic
programming, deductive data bases, and constraint logic programming (CLP) pos-
sibly being the major ones. Other approaches and techniques, however, built upon
the induction and abduction principles.

As its name suggests, deduction operates top-down, deriving a true conclusion
from a universal true premise: logically speaking, this means that the conclusion’s
truth necessarily follows from the premise’s truth. Induction, instead, operates
bottom-up, basically making a guess – a generalization – from specific known facts:
so, the reasoning involves an element of probability, as the conclusion is not based
on universal premises. Abduction is somehow similar, but seeks for cause-effect
relationships—i.e., the goal is to find out under which hypotheses (or premises)
a certain goal is provable. Such technologies are exploited, in particular, for the
verification of compliance of specific properties [MTC+10].

Logic programming (LP) is likely the most widely-adopted paradigm based on
deduction. From Colmerauer and Kowalsky’s seminal work [Kow74, Col86], the
Prolog language has been since then one of the most exploited language in AI
applications [DRW96]. Other valuable approaches include fuzzy logic, answer-set
programming (ASP), constraint logic programming (CLP), non-monotonic reason-
ing, and belief-desire-intention (BDI).

Fuzzy logic [YL99] aims at dealing with lack of precision or uncertainty. In
this sense, it is perhaps closer in spirit to the human thinking than traditional
logic systems. Not surprisingly, fuzzy approaches are exploited as a key technol-
ogy in specific application areas, e.g., the selection of manufacturing technologies
[GG12], and industrial processes where the control via conventional methods suf-
fers from the lack of quantitative data about I/O relations. There, a fuzzy logic
controller effectively synthesises an automatic control strategy from a linguistic
control strategy based on an expert’s knowledge.

Answer set programming (ASP) and constraint logic programming (CLP) are
the two main logical paradigms for dealing with various classes of NP-complete
combinatorial problems. ASP solvers are aimed at computing the answer sets of
standard logic programs; these tools can be seen as theorem provers, or model
builders, enhanced with several built-in heuristics to guide the exploration of the
solution space.

Constraint logic programming (CLP) [JL87], perhaps the most natural exten-
sion of LP (or, its most relevant generalisation), has evolved over the years into
a powerful programming paradigm, widely used to model and solve hard real-

CHAPTER 5. REASONING OVER KNOWLEDGE 59

5.1. SYMBOLIC REASONING

life problems [Ros00] in diverse application domains—from circuit verification to
scheduling, resource allocation, timetabling, control systems, etc. CLP technolo-
gies can be seen as complementary to operation research (OR) techniques: while
OR is often the only way to find the optimal solution, CLP provides generality,
together with a high-level modelling environment, search control, compactness of
the problem representation, constraint propagation, and fast methods to achieve
a valuable solution [RVBW08].

Non-monotonic reasoning means to face the basic objection [Min75] that logic
could not represent knowledge and commonsense reasoning as humans because
the human reasoning is inherently non monotonic—that is, consequences are not
always preserved, in contrast to first-order logic. Since then, a family of approaches
have been developed to suit specific needs—among these, default reasoning [Rei80],
defeasible reasoning [Pol87], abstract argumentation theory [BDKT97]. Defeasible
reasoning, in particular, is widely adopted in AI & law applications, to represent
the complex intertwining of legal norms, often overlapping among each other,
possibly from different, non-coherent sources. Abstract argumentation theory,
in its turn, is concerned with the formalisation and implementation of methods
for rationally resolving disagreements, providing a general approach for modelling
conflicts between arguments, and a semantics to establish if an argument can be
acceptable or not.

Belief-desire-intention (BDI) logic is a kind of modal logic used for formalising,
validating, and designing cognitive agents—typically, in the multi-agent systems
(MAS) context. A cognitive agent is an entity consisting of (i) a belief base storing
the agent’s beliefs, i.e. what the agent knows about the world, itself, and other
agents; (ii) a set of desires (or goals), i.e. the proprieties of the world the agent
wants to eventually become true; (iii) a plan library, encapsulating the agent’s
procedural knowledge (in the form of plans) aimed at making some goals become
true; and (iv) a set of intentions, storing the states of the plans the agent is cur-
rently enacting as an attempt to satisfy some desires. All such data usually consist
of first-order formulas. Then, the dynamic behaviour of a BDI agent is driven by
either internal (updates to the belief-base or changes in the set of desires) or ex-
ternal (perceptions or messages coming from the outside) events, which may cause
new intentions to be created, or current intentions to be dropped. By suitably
capturing the revision of beliefs, and supporting the concurrent execution of goal-
oriented computations, BDI architectures overcome critical issues of “classical”
logic-based technologies – concurrency and mutability – in a sound way. Overall,
BDI architecture leads to a clear and intuitive design, where the underlying BDI
logic provides for the formal background. Among the frameworks rooted on a BDI
approach, let us mention the AgentSpeak(L) [Rao96] abstract language and its
major implementation, namely Jason, Structured Circuit Semantics [LD94], Act

60 CHAPTER 5. REASONING OVER KNOWLEDGE

5.1. SYMBOLIC REASONING

Plan Interlingua [Hub99], JACK [HRHL01], and dMARS—a platform for building
complex, distributed, time-critical systems in C++ [dKL98].

In the reminder of this section we focus on logic programming as the most
common means to endow computational agent with reasoning capabilities. Be-
fore doing so, however, we recall major definitions and notations concerning logic
inference as a means for manipulating knowledge.

5.1.1 Symbolic Inference

Within the realm of symbolic AI and, in particular, computational logic, inference
is the process of mechanically producing new knowledge by applying rules to some
knowledge base. Such rules are commonly expressed via a particular notation,
heavily leveraging on the notion of unification.

Substitutions and Unification. Unification [MM82] is among the most funda-
mental mechanism in CL: it enables the formalisation of inference, as well virtually
any other symbolic manipulation of logic formulæ.

Informally speaking, unification aims at computing a unifier among any two
FOL formulæ, i.e. a substitution (a.k.a. assignments of variables) making the
two formulæ syntactically equal, by properly assigning the variables therein con-
tained. So, in other words, unification computes substitutions out of logic formulæ,
checking whether they can be made equal, or failing otherwise.

We denote substitutions as sets of mappings of the form σ = {X 7→ ϕ,X ′ 7→
ϕ′, X ′′ 7→ ϕ′′, . . .}, where X,X ′, X ′′ are variables, and ϕ, ϕ′, ϕ′′ are FOL formulæ.
Furthermore, we enumerate substitutions by σ or ω. Finally, we let the binary
operator (·) denote the application of a substitution to either a formula or another
substitution. So, for instance ϕ · σ denotes the formula attained by applying all
variable assignments carried by σ to ϕ. Similarly, σ · ω denotes the substitution
attained by applying ω to the right-hand-side of all variable assignments in σ.

Consider for instance the case of the general clause ϕ and its particular case ψ

ϕ ≡ (g(X, Y)← f(X,Z), f(Z, Y))
ψ ≡ (g(a, b)← f(a, c), f(c, b))

The two clauses can be made syntactically equal via the substitution σ = {X 7→
a, Y 7→ b, Z 7→ c}, because ψ = ϕ · σ.

Accordingly, a unifier among any two non-ground FOL formulæ ϕ and ψ, is
defined as a substitution σ such that ϕ = ψ · σ. A trivial way to recursively

CHAPTER 5. REASONING OVER KNOWLEDGE 61

5.1. SYMBOLIC REASONING

compute a unifier among ϕ and ψ is as follows:

unify(ϕ, ψ) =

∅ if ϕ = ψ = x

{X 7→ Y } if ϕ = X ∧ ψ = Y⋃N
i unify(αi, α

′
i) if ϕ = f(α1, . . . , αN)

∧ ψ = f(α′
1, . . . , α

′
N)

unify(α1, α
′
1) ∪ unify(α2, α

′
2) if ϕ = α1 ⊙ α2 ∧ ψ = α′

1 ⊙ α′
2

□ otherwise

(5.1)
where □ denotes the lack of any unifier – capturing the situation where two formulæ
cannot be unified – and ∅ denotes the empty substitution – characterising the
situation where two formulæ are identical. There, f is either a predicate or functor
symbol (N -ary, in both cases), αi, α

′
i are arbitrary formulæ, and ⊙ denotes any

binary logical connective.

More precisely, unification aims at computing the most general unifier (MGU),
i.e. the unifier σ∗ such that, for each substitution σ making ϕ and ψ syntactically
equal (i.e., ϕ = ψ ·σ) there exists a substitution ω making it possible to write σ as a
particular case of σ∗ (i.e., σ = σ∗ ·ω). Despite computing the MGU among any two
formulæ is a non-trivial problem in general, an efficient algorithm is described in
[MM82]. A formal description of this algorithm lays outside this chapter. However,
in what follows we denote by mgu(ϕ, ψ) the function computing the MGU among
any two FOL formulæ.

Inference Rules. Inference rules are functions mapping premises (logic for-
mulæ) into conclusions (other logic formulæ). They can be denoted both as
ϕ1, . . . , ϕN ⊢ ψ1, . . . , ψM or as

ϕ1, . . . , ϕN

ψ1, . . . , ψM

[Rule name]

where ϕ1, . . . , ϕN are premises and ψ1, . . . , ψM are conclusions. Both expressions
can be read as “when all ϕ1, . . . , ϕN are known to hold, then all ψ1, . . . , ψM can be
inferred”.

The notation if often abused by only including among the premises those for-
mulæ which are strictly needed to draw conclusions. When this is the case, a
knowledge base K is then assumed, behind the scenes. Thus, rules of the form
ϕ ⊢ ψ are usually written as concise notation for ∃σ s.t. ϕ · σ ∈ K ⊢ ψ · σ.

A plethora of inference rules have been defined in the history of logic. Here
we focus on four major examples, corresponding to as many inference principles,

62 CHAPTER 5. REASONING OVER KNOWLEDGE

5.1. SYMBOLIC REASONING

namely:

α→ β, α

β
[Modus Ponens]

ϕ · σ1, . . . , ϕ · σn
ϕ

[Subsumption]

α→ β,¬β
¬α

[Modus Tollens]
α→ β, β

α
[Abduction]

Modus ponens (resp. tollens) is a deductive inference rule, stating that when-
ever one knows that α implies β and α is true (resp. β is false), then they can infer
β (resp. ¬α). As a deductive rule, it simply elicits particular consequences which
are implicit into the general premises, and therefore certain. It is for instance by
modus ponens that one can infer grandparent(abraham, jacob) from a knowledge
base containing the clauses grandparent(X, Y) ← parent(X,Z), parent(Z, Y),
parent(abraham, isaac), and parent(isaac, jacob).

Subsumption is an inductive inference rule, stating that if a number of par-
ticular expressions share the same form, than that form can be raised to general
knowledge. As an inductive rule, it attempts to derive novel hypotheses out of
prior experience, therefore producing uncertain conclusions that may be eventu-
ally contradicted by some later experience. It is for instance by subsumption that
one can hypothesise how a general rule for grandparenthood works (i.e. grand-
parent(X, Y) ← parent(X,Z), parent(Z, Y)) if they only know about a number
of parenthood and grandparenthood relations—namely parent(abraham, isaac),
parent(isaac, jacob), and grandparent(abraham, jacob).

Finally, abduction is an abductive inference rule, stating that if one knows how
a particular cause–effect phenomenon works, and they observe the effect, then
they can infer the cause. Similarly to induction, abduction produces uncertain –
yet likely – conclusions out of prior experience and some basic knowledge about
the world. It is for instance by abduction that one can hypothesise that it is
raining (rain) after observing that the floor is wet (wet floor) knowing that the
flow may be wet because of either the rain or a broken glass ({wet floor ←
rain, wet floor ← broken glass}).

Notice that only deductive rules lead to certainly correct conclusions, whereas
inductive and deductive rules do not. Accordingly, Bayesian inference may be
better suited to represent inductive or abductive inference – as it let us infer not
only hypotheses but their likelihood as well –, yet it requires trepassing the sub-
symbolic realm—as probabilities must be explicitly represented.

Inference Procedures. Inference rules alone are able to express reasoning, but
they are not enough to let computational draw inferences autonomously. When
dealing with inference, computational agents need an inference procedure, i.e. an
algorithm applying one or more inference rules to a knowledge base, in such a way

CHAPTER 5. REASONING OVER KNOWLEDGE 63

5.1. SYMBOLIC REASONING

that conclusions are eventually reached when the algorithm terminates.
In practice, inference procedures should support the efficient and effective com-

putation of correct conclusions. Within this scope, “efficiently” means “in useful
time”, whereas “effectively” refers to notable properties such soundness and com-
pleteness. There, a sound procedure ensures that all output conclusions are cor-
rect, whereas a complete procedure ensures that (at least) all correct conclusions
are drawn. Notably, these properties can – and usually are – satisfied by algo-
rithms supporting deductive inference procedures, whereas they are out of reach
for inductive or abductive algorithms (because of uncertainty).

Another common way of categorising inference procedures is w.r.t. the verse
they follow in applying inference rules. Two strategies may be followed by inference
procedures, namely either forward or backward -chaining.

In forward-chaining, inference rules are naturally applied from premises to con-
clusions, in top-down fashion. The starting point is commonly a knowledge base,
and, as a result, many possible conclusions are drawn—possibly even more than
needed.

Conversely, in backward-chaining, inference rules are reversely applied from
conclusion to premises in order to prove a particular goal. So, inference proceeds in
a bottom-up fashion, attempting to reach the knowledge base from the goal. Under
such setting, inference rules should be read in the opposite way. For instance,
modus ponens should be read as “to infer β, knowing that α → β, one should
prove α first”.

In the reminder of this section, we briefly overview the field of logic program-
ming, where logic and computational aspects are deeply intertwined to endow
computational agents with actual automated reasoning capabilities.

5.1.2 Logic Programming

Logic programming (LP) is computational paradigm where logic is used to rep-
resent both data and programs, and inference is used to perform computations.
From a human-centred perspective, LP is a means for programming computers to
perform symbolic AI related tasks. However, from an agent-oriented perspective,
LP is the means to endow software agents with automated reasoning capabilities.

There are a few peculiar milestones in the history of LP. These are (i) Robin-
son’s proposal of the selective linear (SL) resolution principle [Rob65] for FOL,
(ii) Kowalsky’s proposal of the selective linear definite (SLD) resolution principle
[vEK76] for Horn clauses, (iii) Colmerauer’s proposal of Prolog [CR93], (iv) Clark’s
proposal of negation as failure (NaF) [Cla77] as an extension to the SLD principle.

Robinson’s selective linear resolution principle. The SL resolution princi-
ple [Rob65] is a general procedure for proving a set of FOL formulæ in Skolemized

64 CHAPTER 5. REASONING OVER KNOWLEDGE

5.1. SYMBOLIC REASONING

form3 true, by refutation. More precisely, the SL procedure aims at proving a set
of clauses as contradictory, by attempting to derive the empty clause ⊥ (denoting
contradiction) out of it via a number of reduction steps. Thus, in practice, proving
a formula ϕ true is achieved by proving ¬ϕ as false—i.e. by refuting it. The basic
inference rule operating in this context states that, in a set of Skolemized formulæ
K including ϕ and ψ, those formulæ may be reduced ϕ′ and ψ′, under the following
condition:

x ∈ ϕ ¬y ∈ ψ σ = mgu(x, y)

ϕ′ = (ϕ− x) · σ ψ′ = (ψ − ¬y) · σ
[SL]

where x and y are literals possibly contained into ϕ and ψ, and operator (−)
denotes the eviction of a literal from a formula. In other words, if any two formulæ
in K respectively include two literals, x and y, which can be unified by σ and such
that only one is negated, then the two literals are evicted from the corresponding
formulæ, and the substitution σ is be applied to the reminder of those formulæ.
If the repeated application of this rule leads to a situation where a formula has no
more literals, the original set of formulæ K is proved to be false, as it contains an
unsatisfiable (i.e. contradictory) formula—namely, the one that has been emptied
by the SL procedure. Otherwise, if no further reduction is possible, K is proved
to satisfiable.

Backward-chaining can be performed via SL. This implies a goal γ can be
proved against a knowledge base K . When this is the case, proof by refutation
if applied to the set ¬γ ∪ K: at each step, some literal of ¬γ is reduced, along
with some other formula in K. Upon termination, if all literals of ¬γ have been
evicted, then ¬γ is considered unsatisfiable, therefore γ is provable, and the formula
γ ·σ1 ·σ2 · · · – attained by applying all the MGU computed at each reduction step
– represents a solution for γ, according to K.

The whole process subtends the so-called proof tree: at each step of the proce-
dure, several formualæ may be selected from K, therefore the algorithm may follow
as many different paths. In other words, the SL resolution is a non-deterministic
algorithm. Details and examples are provided for instance in [CB15].

Kowalsky’s selective linear definite resolution principle. The SLD res-
olution principle [vEK76] is a refinement of the SL principle, tailored on Horn
clauses. By restricting the scope of resolution to Horn logic, Kowalsky shows how
logic resolution can be described via a procedural interpretation, mimicking pro-
grams execution. The result is a non-deterministic algorithm describing how the
proof tree of any given query – expressed as a goal – against any given knowledge
base – expressed as a set of definite clauses – can be lazily constructed, while
attempting to refute the query.

3cf.https://mathworld.wolfram.com/SkolemizedForm.html

CHAPTER 5. REASONING OVER KNOWLEDGE 65

cf. https://mathworld.wolfram.com/SkolemizedForm.html

5.1. SYMBOLIC REASONING

Figure 5.1: An example of proof tree generated by the SLD resolution principle while
attempting to prove the goal son(S, jacob) against the depicted knowledge base.

The basic inference rule operating in this contexts states that any goal γ can
be rewritten as γ′, provided that some definite clause ϕ exists in the knowledge
base whose head unifies with some literal in γ. When this is the case, the matching
literal of γ is replaced by the body of ϕ—or simply removed in case ϕ is a fact.
More formally:

γ ≡ (← g1, . . . , gi, . . . , gn) ϕ ≡ (h← b1, . . . , bm) σ = mgu(gi, h)

γ′ ≡ (← g1, . . . , gi−1, b1, . . . , bm, gi+1, . . . , gn) · σ
[SLD]

The recursive application of this rule is what enables automated reasoning. Sim-
ilarly to the SL case, if γ can be emptied via a number of successive applications
of the inference rule, then it is considered proven by refutation.

The relation among SL and SLD becomes quite evident if one writes clauses in
disjunctive form. Under such perspective, γ is written as a disjunctive of negated
literals ¬g1 ∨ . . . ∨ ¬gn, as well as each rule ϕ ≡ (h ∨ ¬b1 ∨ . . . ∨ ¬bm). Therefore,
whenever applying the SL inference rule to any literal in γ, one can only choose
among the heads of each rule, as all literals in γ are negated and all heads of all
rules are positive.

Figure 5.1 exemplifies the proof tree generated by the recursive application of
SLD inference rule to the goal son(S, jacob). The resolution attempts to prove the
goal against a knowledge base describing Abraham’s family tree, represented in

66 CHAPTER 5. REASONING OVER KNOWLEDGE

5.1. SYMBOLIC REASONING

the same image. Each node in the tree represents a rewritten form of the original
goal, whereas each arc subtends the selection of a rule from the knowledge base
and a literal from the source node: the label of each edge describes their MGU.

Of course, at each step of the SLD resolution, several choices may be taken.
For instance, several literals may be selected, and each literal may unify with
potentially many rules in the knowledge base. The theoretical formulation of the
SLD principle addresses such choices via non-determinism. However, whenever
an actual computational agent needs to perform automated reasoning, it must
leverage upon some smart strategy to explore the proof tree sequentially, and in
useful time.

Colmerauer’s Prolog. Prolog [CR93] is the most successful expression of the
LP paradigm. It is at the same time a particular way of expressing logic resolution,
and a very powerful technology to perform automated reasoning in practice. Here
we focus on the theoretical aspects of Prolog, whereas technological aspects are
treated later in this thesis.

Prolog is essentially a particular way to make the exploration of the proof
tree subtended by the SLD resolution principle sequential. In other words, Prolog
makes the SLD resolution a sequential algorithm. More precisely, Prolog assumes
goals to be ordered disjunctions of literals (left to right), and knowledge bases to be
ordered sets of definite clauses (top to bottom). Under such assumption, it adopts
the following strategy while dealing with the non-determinism of SLD resolution:

• literals in the current goal are reduced from left to right,

• rules are selected from top to bottom.

This strategy subtends a depth-first exploration of the proof tree.
Another relevant modelling choice in Prolog concerns the syntax for predi-

cates and terms. In fact, Prolog represents predicates and structured terms in
the same way, collapsing their syntaxes and making the two notions interchange-
able. This simplifies the definition of meta-predicates – i.e. predicates accepting
other predicates as arguments –, as terms can be used to represent predicates.
Meta-predicates, in turn, make Prolog’s semantics very flexible, as disjunctions,
implications, negations, and many other features of FOL which are not supported
by Horn clauses can be re-introduced in Prolog in this way.

Clark’s Negation as Failure. NaF [Cla77] is the last relevant extension of
SLD we discuss in this section. It essentially aims at supporting negation in
Horn clauses. SLD resolution extended with NaF is often concisely referred to as
SLDNF.

CHAPTER 5. REASONING OVER KNOWLEDGE 67

5.2. SUB-SYMBOLIC REASONING

SLDNF supports negation by defining the meta-predicate not(g) which is proven
true if and only if the argument goal g is proven unsatisfiable. So, in procedural
terms, the goal not(g) can be read as “attempt to prove g, and, if no solution
exists, then not(g) is true, false otherwise”.

Notably, NaF subtends a closed world assumption, where everything that is
not know – nor deducible from what is known – is false.

5.2 Sub-symbolic Reasoning
This section contains contributions from the following works of ours: [CCO20]

Within the sub-symbolic realm, the term ‘inference’ is often abused. There,
‘inference’ refers to the application phase of any data-driven solution which has
been previously trained on data. Therefore, inference in simply a phase in the
life-cycle of a data-driven model, as opposed to training.

In the inference phase of any sub-symbolic system, novel information is actually
drawn, and that information strongly depends on what the systems has learned
from data (prior knowledge) during training. For instance, classifiers enable the
labelling of arbitrarily complex unknown data according to some predefined set
of labels. Similarly, regressors enable predictions on unknown data, out of prior
experience. So, in a broad sense, sub-symbolic systems support the inference of
novel, useful information. By definition, however, no symbolic manipulation of
data occurs in sub-symbolic systems, regardless of whether training or inference
are considered. Hence, it is cumbersome speaking of reasoning.

Nevertheless, a number of recent proposals are pushing relevant aspects of logic
inference into the sub-symbolic realm. As a result, methods for building hybrid
systems – i.e. systems mixing symbolic and sub-symbolic means to represent,
learn, or infer – are flourishing.

Generally speaking, hybridisation may occur in two ways, namely by model
integration or by symbolic knowledge embedding. In the former case, symbolic
information is used to structure or constrain the behaviour of a sub-symbolic
system—in most cases, a neural network, because of its malleability. In the lat-
ter case, symbolic information is embedded into a sub-symbolic representation to
enable its sub-symbolic processing.

5.2.1 Model Integration

In this category we review the main attempts to integrate symbolic models (such
as the logic ones) with sub-symbolic ones (such as statistical and numerical).
The main research lines here are those related to the neural-symbolic computing
[HHH07] – the study of logics and connectionism as well as statistical approaches

68 CHAPTER 5. REASONING OVER KNOWLEDGE

5.2. SUB-SYMBOLIC REASONING

working on the integration of computational learning and symbolic reasoning –
and relational learning [DR08a]—focused on learning expressive logic / relational
representations.

Approaches in this category integrate logic and symbolic knowledge with sub-
symbolic predictors such as (deep) neural networks. Integration exploits logic rules
expressed via FOL – or some subset of it – which are used to either constrain or
structure the behaviour of one or more predictors.

On the one hand, constraining is commonly performed by extending the loss
function used by most numeric learning algorithms – there including the back-
propagation algorithm used for neural networks – with an additive, regularisation
term constructed from the logic constraints. The numeric predictor is then trained
“as usual”, via optimisation—i.e. minimising some loss function. However, thanks
to a regularisation term attained by encoding the logic rules accordingly, the train-
ing process is more likely to select a set of parameters for the numeric predictor,
which are consistent with those logic rules. Generally speaking, the key advantage
of these approaches lies in the blended integration of different models, where the
logic one – where expressing crisp information is trivial – can be used to inject
prior knowledge or common-sense into the sub-symbolic one, even in lack of data.

On the other hand, structuring is commonly performed by building the sub-
symbolic predictors in such a way that their internal structure mirrors the provided
symbolic knowledge. For this reason, malleable models such as neural networks
are often preferred to serve this purpose. There, the internal topology of neurons,
as well as their activation functions, are structured in such a way to mimic some
relevant property of given logic rules—such as their interpretation. Computation
is then shifted into the sub-symbolic realm, since the so-constructed predictors
act ordinarily. Generally speaking, the key advantage of these approaches sub-
symbolic emulation of symbolic facilities, thus allowing efficiency of reasoning in
particular cases – at the price of constraining it scope of application –, and robust-
ness w.r.t. missing or contradictory data.

Logic as constraints. Paradigmatic works in this category are for instance:
DNN with Logic Rules [HML+16], Logic Tensor Networks (LTN) [SG16, SDG17],
Semantic Loss Function (SLF) [XZF+18], and Lyrics [MGDG19].

DNN with Logic Rules (no concise name is given) [HML+16], proposes a
method for constraining a (deep) neural network behaviour via FOL rules. The
proposed framework enables neural networks to be simultaneously trained on la-
belled data or logic rules, via an iterative distillation procedure aimed at transfer-
ring the symbolic knowledge encoded in the logic rules into the network param-
eters. To do so, the authors propose the exploitation of two networks: a teacher
and a student one. The teacher network is rule-regularised via an ad-hoc term

CHAPTER 5. REASONING OVER KNOWLEDGE 69

5.2. SUB-SYMBOLIC REASONING

added to the loss function, meaning that it is trained by keeping into account the
user-provided logic rules. In particular, logic constraints are encoded into the loss
function via soft logic [BBHG17]. Conversely, the student network is trained to
balance between emulating the teacher network output and predicting the expected
outcomes of the dataset.

LTN [SG16, SDG17] integrate learning based on tensor networks [SCMN13]
with reasoning based first-order many-valued logic [Ber08]. They enable a range of
knowledge-based tasks using rich knowledge representation in FOL to be combined
with efficient data-driven machine learning based on the manipulation of real-
valued vectors. Notably, integration is defined upon the Real Logic [SDG17]. FOL
formulæ are used to build a loss function that aims at training a network capable
of approximating the truth value (in the [0, 1] interval) of the formulæ given as
input. This is done by searching for the best possible representation for symbolic
constructs in a vector space (grounding of atoms, functions, predicates), so that
the satisfiability of the network is as close as possible to 1 on the test dataset. The
resulting network is able to learning from the rightly-labelled real examples, but
keeps the logic imprint given in the training phase.

SLF [XZF+18] is another attempt of bridging neural networks and symbolic
constraints via loss-function manipulation, similarly to LTN. In the intentions of
its authors, it aims to

• improve the predictive performance of neural networks – by allowing the
training process to take background knowledge into account –, and

• support semi-supervised learning.

To do so, SLF constrains the training process of a neural network via some propo-
sitional logic formulæ which are then encoded as part the loss function exploited
by the training algorithm. Such formulæ consist of boolean variables representing
input and output neurons of the networks to be constrained, possibly combined
via classical logic connectors.

Finally, Lyrics [MGDG19] is an extension of LTN, improving the way symbolic
knowledge is declaratively enforced while training the sub-symbolic part of an in-
telligent system. According to the authors, the major applications of Lyrics are
related to predictive model verification, semi-supervised learning with background
knowledge, collective classification [SNB+08], and text chunking. Similarly to
LTN, Lyrics can combine one or more neural networks into a single computational
graph. Each neural network is mapped onto a logic predicate, when necessary,
while (possibly global) constrains over the outcomes of the networks are mapped
into logic formulæ. The resulting computational graph is then optimised against
the available data via state-of-the-art gradient-descent technologies—e.g. Tensor-
Flow.

70 CHAPTER 5. REASONING OVER KNOWLEDGE

5.2. SUB-SYMBOLIC REASONING

Logic as structure. Paradigmatic works in this category are for instance: Knowledge-
Based Artificial Neural Networks (KBANN) [TSN90], CILP++ [FZdG14], Neu-
ral Theorem Prover (NTP) [RR17], Differentiable Inductive Logic Programming
(∂ILP) [EG18], DeepProbLog [MDK+18], and Lifted Relational Neural Networks
(LRNN) [SAZ+18].

KBANN [TSN90] is one of the earliest attempts of exploiting symbolic AI to
govern the structure and the behaviour of neural networks. It is capable of devis-
ing the structure of a neural network from a symbolic knowledge base containing
the user-defined, symbolic background knowledge. More precisely, KBANN as-
sumes a stratified, Prolog-like, logic theory is available, encoding the background
knowledge. Under this assumption, the KBANN algorithm aims at creating a
neural network semantically reflecting the symbolic knowledge from which it was
created. This step essentially sets the network structure and weights in order to
reflect the rules contained into the logic theory. The resulting neural network can
then be trained over data via back-propagation, in order to refine or generalise its
functioning over (possibly novel) data.

CILP++ [FZdG14] is a model aimed at performing inductive logic program-
ming (ILP) via bottom clause propositionalisation and neural networks. CILP++
leverages on (i) neural networks to make ILP faster, and on (ii) propositionali-
sation to make the construction of neural networks out of arbitrary logic theories
possible. More precisely, propositionalisation [Lac10] is a preliminary step, which
is necessary to convert the example clauses into real vectors and the background
knowledge into a multi-layered neural network to be fed with those vectors. Of
course, the structure of this network reflects the rules contained in the background
knowledge, and the input layer contains a neuron for each possible atom used in
the background knowledge.

NTP [RR17] are neural networks acting as logic reasoners (a.k.a. theorem
provers). They are built by taking inspiration from backward-chaining-based
reasoning algorithms, as in Prolog. In particular, the neural network is recur-
sively constructed to encapsulate the knowledge encoded in some logic theory,
and trained to correctly answer to all possible queries on such theory. Of course,
the structure of the resulting network reflects the structure of the clauses con-
tained into the source logic theory. However, differently from the other techniques
presented in this sub-category, both theories and queries supported by NTP can
contain logic variables, as NTP is able to calculate, at the neural network level –
i.e., in the sub-symbolic model –, the logic unification. In other words, NTP per-
form symbolic reasoning on top of sub-symbolic and distributed representations of
knowledge.

∂ILP [EG18] is another means for ILP leveraging on neural networks. It works
by mimicking logic deduction on definite clauses via a neural network, similarly

CHAPTER 5. REASONING OVER KNOWLEDGE 71

5.2. SUB-SYMBOLIC REASONING

to NTP. However, differently from NTP, ∂ILP perform deduction using forward
chaining, instead of backward chaining. Briefly speaking, the authors re-interpret
ILP as a binary-classification problem. As for other similar approaches discussed
in this category, a neural network is constructed in such a way that its structure
reflects a grounded version of the background knowledge. The resulting network
is then trained to minimise the cross-entropy with respect to positive and negative
examples.

DeepProbLog [MDK+18] is another attempt of blending neural networks with
logic programming, and in particular probabilistic logic programming (PLP). It is
an extension of ProbLog exploiting neural networks for (i) computing the probabil-
ities of facts, and (ii) letting neural classifiers be used as logic predicates—defined
as “neural predicates” by the authors. In particular, each DeepProbLog program
is translated into a tensorial computational graph – possibly including one or more
neural classifiers as sub-graphs – to be optimised via gradient descend. The struc-
ture of the computational graph reflects the structure of the rules contained into
the DeepProbLog program. The optimisation step is aimed at simultaneously set-
ting all the possible parameters regulating the behaviour of the computational
graph, including the probabilities of facts and the internal weights of neural pred-
icates. The resulting sub-symbolic system is then exploited to draw probabilistic
inferences. In other words, hybrid systems based on DeepProbLog fruitfully com-
bine probabilistic reasoning and sub-symbolic classification in a single, unified,
coherent framework.

Finally, LRNN [SAZ+18] aim at performing relational learning from data via
neural networks. Similarly to DeepProbLog, LRNN exploit sets of weighted first-
order formulæ as structural templates for building a neural network to be trained
over the available data. The resulting network is exploited to infer latent rules
buried in data and to estimate the weights of the existing clauses.

5.2.2 Symbolic Knowledge Embedding

In this category we review the main attempts to embed symbolic (and, in par-
ticular, logic) knowledge into arrays of numbers, to make them amenable of sub-
symbolic processing.

Most techniques developed so far are tailored on description logics, that are
particular sub-sets of FOL generally aimed at describing categories of entities and
their possible relations, along with instances of both. The key idea is to translate
components of an ontology (a.k.a. knowledge graph, or simply KG) into contin-
uous vector spaces, to allow neural networks to accept such a type of structured
information as input and take advantage of its background knowledge to perform
ordinary machine learning tasks.

Most of the currently-available techniques perform the embedding task only

72 CHAPTER 5. REASONING OVER KNOWLEDGE

5.2. SUB-SYMBOLIC REASONING

on the basis of observed facts. Given a KG, knowledge graph injection techniques
first represent entities and relations in a continuous vector space, and then measure
facts plausibility exploiting some scoring function. Entity and relation embeddings
can be obtained by maximising the total plausibility of observed facts.

During this whole procedure, the learned embeddings are only required to
be compatible within each individual fact, and hence might not be predictive
enough for downstream tasks [WWG15, WZL+15]. As a result, more and more
researchers have started to add other types of information, including logic rules
[WWG15, RSR15, GWW+16], in order to learn more predictive embeddings.

The noteworthy approaches that we deem significant for the purpose of this
survey – as they combine symbolic and sub-symbolic models – are:

• Rescal + Trescal (2015) [WWG15]

• Ins (2015) [WZL+15]

• Low-rank Logic Embeddings, LLE (2015) [RSR15]

• Kale (2016) [GWW+16]

• Oscar (2019) [GDF19]

In particular, [WWG15, WZL+15] exploit rules to refine embedding models aimed
at KG completion. KG completion is formulated as an integer linear programming
problem, where the objective function is generated from embedding models and
constraints are generated from rules. Facts inferred in this way are the most
preferred by the embedding models and comply with all the rules. By incorporating
rules, these approaches can greatly reduce the solution space and significantly
improve the inference accuracy of embedding models. Trescal [WWG15] is an
extension of Rescal, requiring the arguments of a relation to be entities of certain
specified types.

Along this line, other works – e.g., [RSR15, GWW+16] – propose approaches
that embed KG facts and logic rules simultaneously in a unified framework. In
particular, in Ins, formulæ are injected into the embeddings of relations and entity-
pairs, i.e., the embeddings are estimated such that predictions based on them
conform to given logic formulæ. Kale, on the other side, represents rules as
complex formulæ modelled by t-norm fuzzy logics. Embedding then amounts to
minimising a global loss over both atomic and complex formulae. Thus embeddings
are learnt as compatible with rules.

In [GDF19] the authors propose a method, Oscar, for injecting task-agnostic
knowledge from a KG into a neural network during the training. Oscar is a pre-
training regularisation technique capable of injecting world knowledge and onto-
logical relationships into a deep neural network: the expert knowledge is exploited
as a regulariser for the network.

CHAPTER 5. REASONING OVER KNOWLEDGE 73

5.2. SUB-SYMBOLIC REASONING

It is worth noting that in all these approaches rules are modelled separately
from embedding models, serving as post-processing steps: this is why we classify
these work as combination and not integration. Furthermore, all these works
share a common drawback, in that they have to instantiate universally-quantified
rules into ground rules before learning their models. This is called grounding
procedure, and can be time- and space-inefficient—especially when dealing with
big data scenarios or in case of rules complexity.

5.2.3 Hybrid Systems: Final Remarks

Hybrid systems are still in their infancy. Hybridisation usually comes at the cost of
a reduced expressiveness of the logic formalism adopted. Empirically, we observe
that full fledged FOL is too complex to handle for sub-symbolic systems, which are
therefore forced to take countermeasures into account. Once again, issues concern
KR. In particular, intensional logic representations as well as the flexibility of logic
– which is open to the addition of novel symbols –, are what makes hybridisation
difficult.

Countermeasures generally involve using a sub-sets of FOL – thus renouncing
to the full expressiveness of FOL –, and enforcing knowledge to be extensively
represented.

In the former case, constraints are imposed at the KR level. These may involve
(i) forbidding structured terms, (ii) limiting the shape of predicates or clauses,
(iii) focussing on simpler logics such as Horn logic, description logics, or predicate
logic, (iv) or a combination of these constraints. In all such cases, the scope of
the hybrid system is reduced, w.r.t. a full-fledged symbolic system. Consider for
instance the case of Horn logic with no structured terms. This would imply, for
instance, that lists could not be used in the symbolic part of the system—hence
greatly reducing the practical reach of hybrid systems.

In the latter case, grounding of the knowledge base is usually assumed as a pre-
liminary step before any sub-symbolic processing. In the general case, grounding a
non-ground knowledge base involves enumerating all the possible variable assign-
ments of for all variables of all formulæ therein contained. Variable assignments
may in turn be infinite, depending on how may items the underlying Herbrand uni-
verse contains. Of course, grounding is only possible in practice when the amount
of items in the Herbrand universe – and therefore the amount of admissible vari-
able assignments –, is finite. Notably, by admitting structured terms for KR, the
Herbrand universe will certainly be infinite (cf. section 3.1.1)—hence why lever-
aging on grounding usually subtends forbidding (at least) structured terms from
the KR formalism.

74 CHAPTER 5. REASONING OVER KNOWLEDGE

Chapter 6

Explaining AI via Symbolic
Knowledge

It is undeniable that AI and ML are nowadays becoming more and more inter-
twined with a growing number of aspects of people’s every day life [Hel19, Ell19].
In fact, more and more decisions are delegated by humans to software agents whose
intelligent behaviour is not the result of some skilled developer endowing them with
some clever code, but rather the consequence the agents’ capability of learning,
planning, or inferring what to do from data.

In spite of the large adoption, intelligent machines whose behaviour is the result
of automatic synthesis / learning procedures are difficult to trust for most people—
in particular when they are not expert in the field. This is especially true for agents
leveraging on machine or deep learning based techniques, often producing models
whose internal behaviour is opaque and hard to explain for their developers too.

There, agents often tend to accumulate their knowledge into black-box pre-
dictive models which are trained through ML or DL. As we further discuss in
this chapter, “black boxes” are models where knowledge is sub-symbolically repre-
sented – such as NN, support vector machines (SVM), or random forests –, and it
is therefore difficult, for humans, to understand what they actually know, or what
led them to a particular decision.

Such difficulty in understanding black-boxes content and functioning is what
prevents people from fully trusting – and thus accepting – them. In several con-
texts, such as the medical or financial ones, it is not sufficient for intelligent agents
to output bare decisions, since, for instance, ethical and legal issues may arise.
An explanation for each decision is therefore often desirable, preferable, or even
required. Furthermore, it may happen for instance that black-boxes silently learn
something wrong (e.g., Google image recognition software that classified black peo-
ple as gorillas [FH17, Cra16]), or something right, but in a biased way (like the
“background bias” problem, causing for instance husky images to be recognised

CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE 75

6.1. EXPLAINABLE ARTIFICIAL INTELLIGENCE

only because of their snowy background [RSG16]).
Accordingly, in the reminder of this chapter we discuss the meaning and the

role of explanations in modern AI, we review the recent literature on this topic, and
we present the possible means to construct symbolic explanations for sub-symbolic
predictors.

6.1 eXplainable Artificial Intelligence
This section contains contributions from the following works of ours: [CCSO20, CSOC20]

Most intelligent systems (IS) today leverage on numerical predictive models
which are trained from data through ML. The reason for such a wide adoption is
easy to understand. We live in an era where the availability of data is unprece-
dented, and ML algorithms make it possible to semi-automatically detect use-
ful statistical information hidden into such data. Information, in turn, supports
decision-making, monitoring, planning, and forecasting in virtually any human
activity where data is available.

However, ML is not the silver bullet. Despite the increased predictive power,
ML comes with some well-known drawbacks which make it perform poorly in some
use cases. One blatant example is algorithmic opacity—that is, essentially, the
difficulty of human mind in understanding how ML-based IS function or compute
their outputs. Such difficulty is a serious issue in all those contexts where human
beings are liable for their decision or must provide some sort of explanation for
it—even if the decision has been supported by some IS. For instance, think about a
doctor willing to motivate a serious, computer-aided diagnosis, or, a bank employee
in need of explaining to a customer why his/her profile is inadequate for a loan. In
all contexts, ML is at the same time an enabling – as it aids the decision process
by automating it – and a limiting factor—as opacity prevents human awareness of
how the decision process works.

Opacity is why ML predictors are also referred to as black boxes into the lit-
erature. The “black box” expression refers to models where knowledge is not
explicitly represented [Lip18]. The lack of some explicit, symbolic representation
of knowledge is what makes it hard for humans to understand the functioning of
black boxes, and why they led to suggest or undertake a given decision. Obviously,
troubles in understanding black-box content and functioning prevents people from
fully trusting – therefore accepting – them. To make the picture even more com-
plex, current regulations such as the GDPR [VvdB17] are starting to recognise the
citizens’ right to explanation [GF17]—which implicitly requires IS to eventually
become understandable. In fact, understanding IS is essential to guarantee algo-
rithmic fairness, to identify potential bias/problems in the training data, and to
ensure that IS perform as designed and expected.

76 CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE

6.1. EXPLAINABLE ARTIFICIAL INTELLIGENCE

In
te

rp
re

ta
b
ili

ty

Predictive Performance

Generalised linear models

Decision trees

K Nearest Neighbours

Random Forest

Support Vector Machines

XGboost

Neural Networks

Figure 6.1: Interpretability/performance trade-off for some common sorts of black-box
predictors

Unfortunately, the notion of understandability is neither standardised nor sys-
tematically assessed, yet. At the same time, there is no consensus on what exactly
providing an explanation should mean when decisions are supported by a black
box. However, several authors agree that not all black boxes are equally inter-
pretable—meaning that some black boxes are easier to understand than others for
our mind. For example, fig. 6.1 is a common way to illustrate the differences in
black-box interpretability.

Even though informal – as pointed on in [Rud19], given the lack of way to mea-
sure “interpretability” – fig. 6.1 effectively express why more research is need on
understandability. In fact, the image essentially states how the better performing
black boxes are also the less interpretable ones. This is a problem in practice since
only rarely predictive performances can be sacrificed in favour of a higher degree
of interpretability.

To tackle such issues, the eXplainable AI (XAI henceforth) research field has
recently emerged. Among the many authors and organisations involved in the
topic, DARPA has proposed a comprehensive research road map [Gun16] which
reviews the main approaches to make black boxes more understandable. There,
DARPA categorises the many currently available techniques aimed at building
meaningful interpretations or explanations for black-box models, it summarises
the open problems and challenges, and it provides a successful reference framework
for the researchers interested in the field. Unfortunately, in spite of the great effort
in defining terms, objects, and methods for the research line, a clear definition of
fundamental notions such as interpretation and explanation is still missing.

CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE 77

6.1. EXPLAINABLE ARTIFICIAL INTELLIGENCE

6.1.1 Related works

Notions such as explanation, interpretation, transparency, etc., are mentioned,
introduced, or informally defined in several works. However, a coherent framework
has not emerged yet.

In this subsection we recall some main contributions from the literature where
the concepts of explanation and interpretation – or any variant of theirs – are
discussed. Our goal here is to highlight the current lack of consensus on the
meaning of such terms, for which we propose a possible, unambiguous alternative
in the next sections.

Similarly to what we do here, Lipton [Lip18] starts his discussion by recognising
how most definition of ML interpretability are often inconsistent and underspec-
ified. In his clarification effort, Lipton essentially maps interpretability on the
notion of transparency, and explanation on the notion of post-hoc interpretation.
Then, he enumerates and describes the several possible variants of transparency,
that are (i) simulatability – i.e., the practical possibility, for a human being, to
“contemplate the entire model at once” and simulate its functioning on some data
– which characterises, for instance, generalised linear models; (ii) decomposability
– i.e., the possibility, for the model to be decomposed in elementary parts whose
functioning is intuitively understandable for humans and helpful in understanding
the whole model – which characterises, for instance, decision trees; and (iii) al-
gorithmic transparency – i.e., the possibility, for a human being, to intuitively
understand how a given learning algorithm, or the predictors it produces, oper-
ate – which characterises, for instance, k-nearest-neighbours techniques. Similarly,
post-hoc interpretability is defined as an approach where some information is ex-
tracted from a black box in order to ease its understanding. Such information have
not necessarily to expose the internal functioning of the black box. As stated in
the paper: “examples of post-hoc interpretations include the verbal explanations
produced by people or the saliency maps used to analyse deep neural networks”.

Conversely, Besold et al. [BU18] discuss the notion of explanation at a fun-
damental level. There, the authors provide a nice philosophical overview on such
topic, concluding that “explanation is an epistemological activity and explanations
are an epistemological accomplishment—they satisfy a sort of epistemic longing, a
desire to know something more than we currently know. Not only do they satisfy
this desire to know, they also provide the explanation-seeker a direction of action
that they did not previously have”. Then they discuss the topic of explanation in
AI from an historical perspective. In particular, when focussing on ML, they in-
troduce the following classification of IS systems: (i) opaque systems – i.e., black
boxes acting as oracles where the logic behind predictions is not observable or
understandable –, (ii) interpretable systems – i.e., white boxes whose function-
ing is understandable to humans, also thanks to expertise, resources, or tools –,

78 CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE

6.1. EXPLAINABLE ARTIFICIAL INTELLIGENCE

and (iii) comprehensible systems—i.e., “systems which emit symbols along with
their outputs, allowing the user to relate properties of the input to the output”.
According to this classification, while interpretable systems can be inspected to
be understood – thus letting observer draw their explanations by themselves –,
comprehensible systems must explicitly provide a symbolic explanation of their
functioning. The focus there is thus on who produces explanations, rather than
how.

In [DVK17], interpretability of ML systems is defined as “the ability to explain
or to present in understandable terms to a human”. Interpretations and explana-
tions are therefore collapsed in this work, as confirmed by the authors using the
two terms interchangeably. The reminder of that paper focuses (i) on identifying
under which circumstances interpretability is needed in ML, and (ii) how to assess
the quality of some explanation.

The survey by Guidotti et al. [GMR+19] is a nice entry point to explainable
ML. It consists of an exhaustive and recent survey overviewing the main notions,
goals, problems, and (sub-)categories in this field and it encompasses a taxonomy of
existing approaches for “opening the black box”—which may vary a lot depending
on the sort of data and the family of predictors at hand. There, the authors define
the verb to interpret as the act of “providing some meaning of explaining and
presenting in understandable terms some concepts”, borrowing such a definition
from the Merriam-Webster1 dictionary. Consequently, they define interpretability
as “the ability to explain or to provide the meaning in understandable terms to a
human”—a definition they again borrow from [DVK17]. So, in this case as well
the notions of interpretation and explanations are collapsed.

In [Rud19], Rudin does not explicitly provide a definition for explainability or
interpretability, and she refers about interpretable or explainable ML almost inter-
changeably. However, she states some interesting properties about interpretability,
which influenced our work. In particular, she acknowledges that “interpretability
is a domain-specific notion”. Furthermore, she links interpretability of information
with its complexity – and, in particular, its sparsity –, as the amount of cognitive
entities the human mind can at one is very limited (∼ 7± 2 according to [Mil56]).
As far as explainability is concerned, apparently, Rudin adopts a post-hoc per-
spective similar to the one in [Lip18], as she writes “an explanation is a separate
model that is supposed to replicate most of the behaviour of a black box”. In
the reminder of the paper, the author argues how the path towards interpretable
ML steps through a wider adoption of inherently interpretable predictors – such
as generalised linear models or decision trees – instead of the relying on post-hoc
explanations which do not reveal what is inside black boxes—thus preventing their
full understanding.

1https://www.merriam-webster.com/dictionary/interpret

CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE 79

https://www.merriam-webster.com/dictionary/interpret

6.2. EXPLANATION VS. INTERPRETATION

Finally, the recent article by Rosenfeld et al. [RR19] is similar in its intents to
our current work. There, the authors attempt to formally define what explanation
and interpretation respectively are in the case of ML-based classification. Accord-
ing to the authors, “interpretation” is a function mapping data, data schemes, and
predictors to some representation of the predictors internal logic, whereas “expla-
nation” is defined as “the human-centric objective for the user to understand”
a predictor using the aforementioned interpretation function. Other notions are
formally defined into the paper, such as for instance, (i) explicitness, (ii) fair-
ness, (iii) faithfulness, (iv) justification, and (v) transparency. Such concepts are
formally defined in terms of the aforementioned interpretation and explanation
functions. The reminder of the paper then re-interprets the field of XAI in terms
of all the notions mentioned so far.

6.2 Explanation vs. Interpretation

This section introduces the preliminary notions, intuitions, and notations we lever-
age upon in section 6.2.1 and subsequent sections, in order to formalise our abstract
framework for agent-based explanations. We start by providing an intuition for the
notion of interpretation, and, consequently, for the act of interpreting something.
Accordingly, we provide an intuition for the property of “being interpretable” as
well, stressing its comparative nature. Analogously to what we did with interpre-
tation, we then provide intuitions for terms such as explanation and its derivatives.

About interpretation. Taking inspiration from the field of Logics, we define
the act of “interpreting” some object X as the activity performed by an agent A
– either human or software – assigning a subjective meaning to X. Such meaning
is what we call interpretation. Roughly speaking, an object X is said to be inter-
pretable for an agent A if it is easy for A to draw an interpretation for X—where
“easy” means A requires a low computational (or cognitive) effort to understand
X. For instance, consider the case of road signs, which contain symbols instead of
scripts to be easily, quickly, and intuitively interpretable.

We model such intuition through a function IA(X) 7→ [0, 1] providing a degree
of interpretability – or simply interpretability, for short – for X, in the eyes of A.
The value IA(X) is not required to be directly observable or measurable in practice,
since agents’ mind may be inaccessible in most cases. This is far from being an
issue, since we are not actually interested in the absolute value of IA(X), for some
object X, but rather we are interested in being able to order different objects w.r.t.
their subjective interpretability. For instance, we write IA(X) > IA(Y), for two
objects X and Y , meaning that the former is more interpretable than the latter,
according to A.

80 CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE

6.2. EXPLANATION VS. INTERPRETATION

A

X'X

IA(X') > IA(X)

IA(X')IA(X)

X' = E(X)

Figure 6.2: Explanation vs. Interpretation: a simple framework

For example, consider the case of a neural network and a decision tree, both
trained on the same examples to solve the same problem with similar predictive
performances. Both objects may be represented as graphs. However, it is likely
for a human observer to see the decision tree as more interpretable—as their nodes
bring semantically meaningful, high-level information.

Summarising, we stress the subjective nature of interpretations, as agents as-
sign them to objects according to their State of Mind (SoM) [PW78] and back-
ground knowledge, and they need not be formally defined any further.

About explanation. We define “explaining” as the activity of producing a more
interpretable object X ′ out of a less interpretable one, namely X, performed by
agent A. More formally, we define explanation as a function E(X) 7→ X ′ mapping
objects into other objects, possibly, in such a way that IA(X ′) > IA(X), for some
agent A. The simple framework described so far is summarised in fig. 6.2.

Notice that human beings tend to collapse into the concept of “explanation”
the whole sequence of steps actually involving both explaining and interpreting,
according to our framework. This happens because, if the explained object X ′ is
as interpretable for the listening agent B as it is for the explaining agent A, then
both A and B are likely to be satisfied with X ′. Conversely, it may also happen the
explanation E adopted by A produces an object X ′, which is more interpretable
than X for A but not for B. Similarly to how two persons would handle such
an unpleasant situation, we envision that interaction and communication may be
adopted to break such impasses in multi-agent systems.

In the following sections, we develop such an idea, describing how our simple
framework could be extended to support ML-based intelligent systems.

6.2.1 A conceptual framework for XAI

In AI several tasks can be reduced to a functional model M : X → Y mapping
some input data X ⊆ X from an input domain X into some output data Y ⊆ Y
from an output domain Y .

CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE 81

6.2. EXPLANATION VS. INTERPRETATION

M(X) M'(Z)

R R'
A

IA(R') - IA(R) > ε

M' = E(M, Z)

∃ Z⊆X : Δf(M(Z), M'(Z)) < δ

R = r(M, X) R' = r'(M', Z)

IA(R')IA(R)

Figure 6.3: Local explanation and interpretation of a model

In the following, we denote asM the set of all analogous models M ′ : X → Y ,
which attempts to solve the same problem on the same input data—usually, in
(possibly slightly) different ways. For instance, according to this definition, a
decision tree and a neural network, both trained on the same data-set to solve the
same classification problem with similar accuracies, are analogous—even if they
belong to different families of predictors.

At a very high abstraction level, many tasks in AI may be devoted to compute,
for instance:

• the best M∗ ∈M, given X ⊆ X and Y ⊆ Y (e.g. supervised ML),

• the best M∗ and Y , given X (e.g. unsupervised ML),

• the best Y ∗, given X and M (e.g. informed/uninformed search),

• the best X∗, given Y and M (e.g. abduction, most likely explanation), etc

according to some goodness criterion which is specific for the task at hand.
In the reminder of this section, we discuss how explanation may be defined as

a function searching or building a – possibly more interpretable – model w.r.t. the
one to be explained. For this process to even make sense, of course, we require
the resulting model to be not only analogous to the original but also similar in the
way it behaves on the same data. We formalise such a concept through the notion
of fidelity.

Let M,M ′ ∈ M be two analogous models. We then say M has a locally good
fidelity w.r.t. M ′ and Z if and only if ∆f(M(Z),M ′(Z)) < δ for some arbitrarily
small threshold δ ≥ 0 and for some subset of the input data Z ⊂ X. There,
∆f : 2Y × 2Y → R≥0 is a function measuring the performance difference among
two analogous models.

Local interpretations. When an observer agent A is interpreting a model M
behaviour w.r.t. some input data Z ⊆ X, it is actually trying to assign a subjective

82 CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE

6.2. EXPLANATION VS. INTERPRETATION

interpretability value IA(R) to some representation R = r(M,Z) of choice, aimed
at highlighting the behaviour of M w.r.t. the data in Z. There, r :M× 2X → R
is representation means, i.e., a function mapping models into local representations
w.r.t. a particular subset of the input domain, whereas R is the set of model
representations. For instance, in the case M is a classifier, R may be a graphical
representation of (a portion of) the decision boundary/surface for a couple of input
features.

There may be more or less interpretable representations of a particular model
for the same observer A. Furthermore, representations may be either global or
local as well, depending on whether they represent the behaviour of the model for
the whole input space, or for just a portion of it. For example, consider the case
of a plot showing the decision boundary of a neural network classifier. This repre-
sentation is likely far more interpretable to the human observer than a graph rep-
resentation showing the network structure, as it synthesise the global behaviour of
the network concisely and intuitively. Similarly, saliency maps are an interpretable
way to locally represent the behaviour of a network w.r.t. some particular input
image. So, a way for easing interpretation for a given model behaviour w.r.t. a
particular sort of inputs is about looking for the right representation in the eyes
of the observer.

Local explanations. Conversely, when an observer A is explaining a model M
w.r.t. some input data Z ⊆ X, it is actually trying to produce a model M ′ =
E(M,Z) through some function E :M× 2X →M. In this case, we say M ′ is a
local explanation for M w.r.t. to Z. We also say that M ′ is produced through the
explanation strategy E.

Furthermore, we define an explanation M ′ as admissible if it has a valid fidelity
w.r.t. the original model M and the data in Z—where Z is the same subset of
the input data used by the explanation strategy. More precisely, we say M ′ is
δ-admissible in Z w.r.t. M if ∆f(M(Z),M ′(Z)) < δ.

Finally, we define an explanation M ′ as clear for A, in Z, and w.r.t. the orig-
inal model M , if there exists some representation R′ = r(M ′, Z) which is more
interpretable than the original model representation R. More precisely, we say M ′

is ε-clear for A, in Z, and w.r.t M if IA(R′) − IA(R) > ε for some arbitrarily big
threshold ε > 0.

Several explanations may actually be produced for the same model M . For
each explanation, there may be again more or less interpretable representations.
Of course, explanations are useful if they ease the seek for more interpretable
representations. Thus, providing an explanation for a given model behaviour w.r.t.
a particular class of inputs is about creating ad-hoc metaphors aimed at easing
the observer’s understanding.

CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE 83

6.2. EXPLANATION VS. INTERPRETATION

M M'

A

IA(R') - IA(R) > ε
R R'

M' = E(M)

Δf(M, M') < δ

IA(R)

R = r(M) R' = r'(M')

IA(R')

Figure 6.4: Global explanation and interpretation of a model

Global / local explanations. The theoretical framework described so far –
which is graphically synthesised in fig. 6.3 – is aimed at modelling local interpreta-
tions and explanations, that are, the two means an explanator agent may exploit
in order to make AI tasks’ outcomes more understandable in the eyes of some
explanee.

Conversely, when the goal is not to understand some model outcome, but
the model itself, from a global perspective – or, equivalently, when the goal is
to understand the model outcome w.r.t the whole set of input data X –, the
theoretical framework described so far is simplified as shown in fig. 6.4, where the
dependency on the input data is omitted from functions E, ∆f , and r. This is
possible because we consider the global case as a particular case of the local one,
where Z ≡ X.

Finally, we remark that the case where a model M is to be understood on a
single input-output pair, say x and y = M(x), is simply captured by the afore-
mentioned local model, through the constraint Z = {x} and M(Z) = {y}.

6.2.2 Discussion

Our framework is deliberately abstract in order to capture a number of features
we believe to be essential in XAI. First of all, our framework acknowledges – and
properly captures – the orthogonality of interpretability w.r.t. explainability. This
is quite new, indeed, considering that most authors tend to use the two concepts
as if they were equivalent or interchangeable.

Furthermore, our framework explicitly recognises the subjective nature of in-
terpretation, as well as the subtly objective nature of explanation. Indeed, inter-
pretation is a subjective activity directly related to agents’ perception and SoM,
whereas explanation is an epistemic, computational action which aims at produc-
ing a high-fidelity model. The last step is objective in the sense that it does not
depend on the agent’s perceptions and SoM, thus being reproducible in principle.
Of course, the effectiveness of an explanation is again a subjective aspect. Indeed,

84 CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE

6.2. EXPLANATION VS. INTERPRETATION

a clear explanation (for some agent) is a more interpretable variant of some given
model—thus, the subjective activity of interpretation is again implicitly involved.

The proposed framework also captures the importance of representations. This
is yet another degree of freedom that agents may exploit in their seek for a wider
understandability of a given model. While other frameworks consider interpretabil-
ity as an intrinsic property of AI models, we stress the fact that a given model
may be represented in several ways, and each representation may be interpreted
differently by different agents. As further discussed in the remainder of this chap-
ter, this is far from being an issue. This subjectivity is deliberate, and it is the
starting point of some interesting discussions.

Finally, our framework acknowledges the global/local duality of both explana-
tion and interpretation, thus enabling AI models to be understood either general
or with respect to a particular input/output pair.

6.2.3 Practical remarks

The ultimate goal of our framework is to provide a general, flexible, yet minimal
framework describing the many aspects concerning AI understandability in the
eyes of a single agent. We here illustrate several practical issues affecting our
framework in practice, and further constraining it.

According to our conceptual framework, a rational agent seeking to understand
some model M (or make it understandable) may either choose to elaborate on the
interpretation axis – thus looking for a (better) representation R of M – or it can
elaborate on the explainability axis—thus producing a novel, high fidelity model
M ′, coming with a representation R′ which is more interpretable than the original
one (i.e., R).

Notice that, in practice, the nature of the model constrains the set of admissi-
ble representations. This means that a rational agent is likely to exploit both the
explanation and interpretation axes in the general case—because novel represen-
tations may become available through an explanation. We argue and assume that
each family of AI models comes with just a few natural representations. Because
of this practical remark, we expect that, in real-world scenarios, an agent seek-
ing for understandability is likely to “work” on both the interpretation and the
explanation axes.

For instance, consider decision trees, which come with a natural representation
as a tree of subsequent choices leading to a decision. Conversely, neural networks
can either be represented as graphs or as algebraic combinations of tensors. In any
case, neural network models are commonly considered less interpretable than other
models. In such situation, a rational agent willing to make a neural network more
understandable may choose to combine decision trees extraction (explanation) –
possibly focusing on methods from the literature [ADT95, CCDO19] – to produce

CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE 85

6.2. EXPLANATION VS. INTERPRETATION

a decision tree whose tree-like structure (representation) could be presented to the
human observer to ease their interpretation. The decision-tree like representation is
not ordinarily available for neural networks, but it may become available provided
that an explanation step is performed.

Another interesting trait of our framework concerns the semantics of clear
explanations. The current definition requires explanation strategies to consume a
model M with a given representation R and to produce a high-fidelity model M ′

for which a representation R′ exists, which is more interpretable than R. Several
semantics may fit this definition. This is deliberate, since different semantics may
come with different computational requirements, properties, and guarantees. For
instance, one agent may be interested in finding the best explanation—that is, the
one for which each representation is more interpretable than the most interpretable
representation of the original model. Similarly, in some cases, it may be sufficient
– other than more feasible – to find an admissible explanation—that is, a high-
fidelity model for which some representation exists that is more interpretable than
some representation of the original model. However, the inspection of the possible
semantics and their properties falls outside the scope of this thesis and is going to
be considered as a future research direction.

6.2.4 Assessment of the Framework

The abstraction level of the presented framework has also been conceived in order
to capture most of the current state of the art. Along this line, this section aims at
validating the fitting of the existing contributions w.r.t. the framework presented
in section section 6.2.1: if our framework is expressive enough, it should allow most
(if not all) existing approaches to be uniformly framed, to be easily understood
and compared. To this end, we leverage on the work by Guidotti et al. [GMR+19],
where the authors perform a detailed and extensive survey on the state-of-the-art
methods for XAI, by categorising the surveyed methods according to an elegant
taxonomy. Thus, hereafter, we adopt their taxonomy as a reference for assessing
our framework.

The taxonomy proposed by Guidotti et al. essentially discriminates among two
main categories of XAI methods. These are the “transparent box design” and
the “black-box explanation” categories. While the former category is not further
decomposed, the latter comes with three more sub-categories, such as “model
explanation”, the “outcome explanation”, and the “model inspection”. Notice
that, despite the authors’ definition of “explanation” does not precisely match the
one proposed in this chapter, we maintained the original categorisation.

The remainder of this section navigates such a taxonomy accordingly, by de-
scribing how each (sub-)category – along with the methods therein located – fits
our abstract framework.

86 CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE

6.2. EXPLANATION VS. INTERPRETATION

Model explanation

The mapping of the methods classified as part of the “model explanation” sub-
category into our framework is seamless. Hence, it can be defined as follows:

Let M be a sub-symbolic classifier whose internal functioning representation
R is poorly interpretable in the eyes of some explanee A, and let E(·) be some
global explanation strategy. Then, the model explanation problem consists
of computing some global explanation M ′ = E(M) which is δ-admissible and
ε-clear w.r.t. to A, for some δ, ε > 0.

For instance, according to Guidotti et al., possible sub-symbolic classifiers are neu-
ral (possibly deep) networks, support vector machines, and random forests. Con-
versely, explanation strategies may consist of algorithms aimed at (i) extracting
decision trees/rules out of sub-symbolic predictors and the data they have been
trained upon, (ii) compute feature importance vectors, (iii) detecting saliency
masks, (iv) detecting partial dependency plots, etc.

In our framework, all the algorithms mentioned above can be described as
explanation strategies. Such mapping is plausible given their ability to compute
an admissible, and possibly more explicit models out of black boxes and the data
they have been trained upon. However, it is worth to highlight that the clarity gain
produced by such explanation strategies mostly relies on the implicit assumption
that their output models come with a natural representation which is intuitively
interpretable to the human mind.

Outcome explanation. Methods classified as part of the “outcome explana-
tion” sub-category can be very naturally described in our framework as well. In
fact, it can be defined as follows:

Let M be some sub-symbolic classifier whose internal functioning
representation R = r(M,Z) in some subset Z ⊂ X of the input domain
is poorly interpretable to some explanee A, and let E(·, ·) be some
local explanation strategy. Then, the outcome explanation problem
consists of computing some local explanation M ′ = E(M,Z) which is
δ-admissible and ε-clear w.r.t. to A, for some δ, ε > 0

Summarising, while input black boxes may still be classifiers of any sort, expla-
nation, and explanation strategies differ from the “model explanation” case. In
particular, explanation strategies in this sub-category may rely on techniques lever-
aging on attention models, decision trees/rules extraction, or well-established al-
gorithms such as LIME [RSG16], and its extensions—which are essentially aimed
at estimating the contribution of every input feature of the input domain to the
particular outcome of the black box to be explained.

CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE 87

6.2. EXPLANATION VS. INTERPRETATION

Notice that the explanation strategies in this category are only required to be
admissible and clear in the portion of the input space surrounding the input data
under study. Such a portion is implicitly assumed to be relatively small in most
cases. Furthermore, the explanation strategy is less constrained than in the global
case, as it is not required to produce explanations elsewhere.

Model inspection. Methods classified as part of the “model inspection” sub-
category can be naturally defined as follows:

Let M be a sub-symbolic classifier whose available global repre-
sentation R = r(M) is poorly interpretable to some explanee A, and
let r(·), r′(·) be two different representation means. Then, the model
inspection problem consists of computing some representation R′ =
r′(M) such that IA(R′) > IA(R)

Of course, solutions to the model inspection problem vary a lot depending on which
specific representation means r(·) is exploited by the explanator, other than the
nature of the data the black box is trained upon. Guidotti et al. also provide a
nice overview of the several sorts of representations means which may be useful to
tackle the model inspection problem, like, for instance, sensitivity analysis, partial
dependency plots, activation maximization images, tree visualisation, etc.

It is worth pointing out the capability of our framework to reveal the actual
nature of the inspection problem. Indeed, it clearly shows how this is the first
problem among the ones presented so far, which only relies on the interpretation
axis alone to provide understandability.

Transparent box design. Finally, methods classified as part of the “transpar-
ent box design” sub-category can be naturally defined as follows:

Let X ⊆ X be a dataset from some input domain X , let r(·) be
a representation means, and let A be the explanee agent. Then the
transparent box design problem consists of computing a classifier M for
which a global representation R = r(M,X) exists such that IA(R) >
1− δ, for some δ > 0

Although very simple, the transparent-box design is of paramount importance in
XAI systems as it is the basic brick of most general explanation strategies. Indeed,
it may be implicit in the functioning of some explanation strategy E to be adopted
in some other model or outcome explanation problem.

For instance, consider the case of a local explanation strategy E(M,X) 7→M ′.
In the general case, to compute M ′, it relies on some input data X and the internal
of the to-be-explained model M . However, there may be cases where the actual

88 CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE

6.3. SYMBOLIC KNOWLEDGE EXTRACTION

internal of M are not considered by the particular logic adopted by E. Instead, in
such cases, E may only rely on X and the outcomes of M , which are Y = M(X).
In this case, the explanation strategy E is said pedagogical—whereas in the general
case it is said decompositional (cf. [ADT95]).

In other words, as made evident by our framework, the pedagogical methods
exploited to deal with the model or outcome explanation problems must internally
solve the transparent box design problem, as they must build an interpretable
model out of some sampled data-set and nothing more.

6.3 Symbolic Knowledge Extraction
This section contains contributions from the following works of ours: [CCOC19, CCO20, CCDO19]

Many strategies can be exploited to pursue the purpose of explainability [GMR+19].
Some authors suggest for instance to only rely on interpretable algorithms [Rud19]
– such as generalised linear models, decision trees, etc. – to construct data-driven
solutions that are explainable by construction. However, this may hinder pre-
dictive performance in the general case, as it essentially cuts off most effective
algorithms—e.g., ANN. Another strategy consists of deriving post-hoc explana-
tions [KFQK21], aimed at reverse-engineering the inner operation of a BB so as
to make it explicit. In this way, data scientists can keep using prediction-effective
predictors such as NN, while still attaining high predictive performance. The focus
of this section is on the latter strategy.

Symbolic knowledge extraction (SKE) [dGBG01] is among the most promis-
ing means to derive post-hoc explanations for sub-symbolic predictors. Roughly
speaking, the main idea behind SKE is to enable the construction of a symbolic
surrogate model mimicking the behaviour of a given predictor. There, symbols
may consist of intelligible knowledge, such as flat lists or hierarchical trees of
rules. Such rules can then be exploited to either derive predictions or to better
understand the behaviour of the original predictor.

SKE has been applied, for instance, to credit-risk evaluation [BSMV03, BSDL+01,
SNS+06], healthcare – i.e., to make early breast cancer prognosis predictions
[FSM+07] and to help the diagnosis and discrimination among hepatobiliary dis-
orders [HSY00] or other diseases and dysfunctions [BP97, Bol00] –, credit card
screening [SBM11], intrusion detection systems [HSS03], and keyword extraction
[ALS12].

6.3.1 State of the art

Here we discuss the main approaches for extracting symbolic knowledge out of
sub-symbolic predictors.

CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE 89

6.3. SYMBOLIC KNOWLEDGE EXTRACTION

The main underlying assumption behind most works in this category is that,
once a sub-symbolic system has been trained over large amounts of data reaching
some good predictive performance, then it must have attained a distributed rep-
resentation of the knowledge contained in the data. Even though unintelligible to
human beings, the distributed representation is still somehow buried in the inter-
nals of that sub-symbolic systems. Assuming this is the case, then a knowledge
extraction technique is a means for making the distributed representation explicit
and intelligible.

It is worth to mention that the idea of extracting decision rules or trees from
sub-symbolic predictors is not new: it has been introduced several times, in many
forms, and with different names and methods, since the late 80s. In fact, generally
speaking, systems supporting symbolic knowledge extraction have a number of
appealing features. In particular, they support a full exploitation of sub-symbolic
techniques, which are the best choice when information must be mined from large
amounts of data, and are usually better suited in terms of precision, robustness,
and predictive performance. However, thanks to the knowledge extracted, those
systems retain desirable XAI-related properties which would otherwise be lost.

Knowledge extraction techniques can be described and discriminated according
to a number of orthogonal dimensions, including:

1. the structure of the symbolic knowledge they extract (e.g., decision rules,
decision trees, etc)

2. the type of constraints they exploit for decision-making (e.g., linear con-
straints, M-of-N rules, etc)

3. the sort of sub-symbolic predictor(s) they can deal with (e.g., neural net-
works, support vector machines, etc)

In the reminder of this section we partition the surveyed works according to di-
mensions 1, and 3, then for each approach we discuss the sort of the constraints
exploited. In particular, in the same way as other impactful surveys on the topic
[GMR+19, ADT95], we distinguish between techniques extracting rule lists and
techniques extracting decision trees. Then, we further distinguish between ped-
agogical and decompositional approaches. In doing so we borrow the terminol-
ogy from [ADT95], where pedagogical techniques are those capable of extracting
symbolic knowledge from any sort of sub-symbolic predictor – as they do not ex-
ploit any internal detail of the predictor under study to perform the extraction –,
whereas decompositional techniques are those only capable of extracting symbolic
knowledge from some particular sort of sub-symbolic predictor (e.g., neural net-
works, in most cases)—as they perform the extraction by looking at the internals
of the predictor at hand.

90 CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE

6.3. SYMBOLIC KNOWLEDGE EXTRACTION

Rules extraction

Here we focus on methods for extracting flat list of rules in the form

if condition1 then outcome1
else if condition2 then outcome2

...
else outcomen

out of sub-symbolic predictors, where each condition is can be a conjunction or
disjunction of (i) boolean predicates, (ii) linear constraints, or (iii) M-of-N rules
over the attributes of the data used to train the sub-symbolic predictor.

We categorise the surveyed techniques for rule extraction depending on whether
they are decompositional or pedagogical; then we provide some details for each
technique; finally, we analyse them from the XAI perspective in an aggregate
manner, given the huge similarity characterising the surveyed techniques from the
XAI perspective.

Pedagogical approaches. We identified three main pedagogical approaches for
rule extraction:

• the method from Saito et al. (1988) [SN88]

• RxREN (2012) [AK12]

• ALPA (2015) [dFM15]

In particular, [SN88] extracts M-of-N rules out of any black-box classifier, re-
gardless of whether it is a neural network or not. Apparently, however, this method
does not support regression, and it only supports categorical attributes as condi-
tions in the extracted rules. In spite of its limitations, this work has been proven
to be effective in expert systems for diagnosis support.

On the contrary, [AK12] and [dFM15] extract if-then-else rules out of ar-
bitrary classifiers. In particular, RxREN supports datasets with mixed mode
attributes (i.e., either categorical or numerical). The algorithm is based on a
reverse-engineering algorithm that essentially discards insignificant attributes and
discovers the variation range of input attribute for each possible outcome of the
classification. For this reason, the rules extracted by RxREN are composed by lin-
ear constraints. Conversely, the ALPA rule extraction technique is the first that is
applicable to any black-box model with no limitations on the nature of constraints.

It is worth remarking that pedagogical approaches are not based on the struc-
ture of the network, therefore they also work with other sub-symbolic models—
even though oldest papers tend to mention neural networks more than other sorts
of predictors.

CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE 91

6.3. SYMBOLIC KNOWLEDGE EXTRACTION

Finally, it is worth to be mentioned that pedagogical extraction algorithms can
essentially be described as oracle-based algorithms. In fact, in most cases the ex-
traction algorithm works by querying the black box (which is therefore considered
as an oracle), and by using the corresponding responses to build the rule list. This
behaviour is repeated until the set of rules given by the white-box model converges
to that of the black box. In other words, the extraction procedure terminates when
the rule set as whole reaches a high fidelity w.r.t. the original black box.

Decompositional approaches. We identify some main decompositional ap-
proaches for rule extraction:

• RuleNet (1992) [MMS92]

• MofN (1992) [TS92]

• the method from Giles et al. (1993) [GO93]

• KT (1994) [Fu94]

• VI-Analysis (1995) [Thr95]

• RX (1997) [Set97]

• the method from Núñez et al. (2008) [NAC08]

Generally speaking, most approaches here explicitly target a particular sort of
sub-symbolic predictor. In particular, all approaches except [NAC08] target neural
networks, whereas [NAC08] target support vector machines (SVM).

Some approaches [MMS92, TS92, GO93] exploit some strict assumptions that
limit the kind of neural networks they can manage, thus reducing their generality.
For instance, the RuleNet technique described in [MMS92] can only handle neural
networks aimed at computing endomorphisms on n-sized strings of characters,
and it aims at making explicit the condition-action rules exploited by such sorts
of networks. At the same time, the MofN technique [TS92] can only handle neural
networks attained via the KBANN algorithm described above. As suggested by
its name, this method extracts M-of-N-like rules. Finally, the method proposed
in [GO93] focuses on neural networks trained to act as recognisers for regular
languages, and it is capable of extracting rules in the form of finite state automata
for parsing these languages.

Other approaches – e.g., [Fu94, Thr95, Set97] – target general purpose neural
networks. Briefly speaking, they compile networks into sets of rules with equivalent
structure. There, each processing unit (neuron) is mapped into a separate rule – or
a small set of rules –, and the in-going connections are interpreted as preconditions

92 CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE

6.3. SYMBOLIC KNOWLEDGE EXTRACTION

to that rule. The particular shape of preconditions – e.g., linear constraints, M-
of-N constraints, etc. –, is then inferred by taking into account the weights of a
neuron in-going connections, and its activation function. For instance, the KT
algorithm [Fu94] is capable of learning if-then-else rules with linear constraints
out of general neural-network classifier. Similarly, the VI-Analysis [Thr95] and
RX [Set97] algorithms perform the same task via different procedures.

Finally, a different and noteworthy approach is described in [NAC08]. There,
the authors propose a method for extracting if-then-else rules with linear con-
straints out of SVM classifiers.

XAI Perspective. Generally speaking, rule extraction techniques provide
post-hoc explainability via model simplification. In fact, all the surveyed extrac-
tion procedures aims at creating a list of rule having a high-fidelity w.r.t. the
source black-box predictor. This rule list can then be considered a symbolic, in-
telligible explanation of the source predictor. Accordingly, we argue that all these
techniques may contribute to the pursuit of XAI goals as: trustworthiness, causal-
ity, transferability, informativeness, confidence, and possibly fairness. In fact, by
making the inner operation of a black-box predictor explicit and intelligible, these
techniques may increase the trustworthiness and confidence of intelligent systems.
Furthermore, by providing an overview of the all the possible context-decision sit-
uation an intelligent system may face, and by making it possible to inspect which
particular rule lead to a particular decision, rule extraction techniques may pro-
vide informativeness and causality. Moreover, the symbolic knowledge extracted
can be translated into several forms, possibly making it compliant with symbolic
intelligent systems. This of course provides for transferability. Finally, rule extrac-
tion techniques may help with fairness as well, by highlighting the biases possibly
learned by sub-symbolic predictors.

It is worth to mention, however, that rule extraction technique are not the sil-
ver bullet of XAI. Issues related to accuracy, fidelity, and consistency, may easily
arise in this kind of approaches, because the extracted rule list may not perfectly
reflect insights of the original one. We argue that this is essentially unavoidable:
the extracted rule lists are essentially approximated models, which are attained by
removing (i.e. loosing) information from the source black-box. Moreover, inter-
pretability of the extracted rule list may easily deteriorate as the amount of rules
(or the amount of predicates per rule) increases—a situation which may easily
arise as the complexity or the dimensionality of the black-box become non-trivial.
Finally, it is worth to be noted that virtually all rule extraction techniques only
focus on black-box predictors acting as classifiers. Not so much attention has been
devoted by the academic community to the extraction of rules out of sub-symbolic
regressors, as well as black boxes aimed at performing unsupervised learning tasks.

CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE 93

6.3. SYMBOLIC KNOWLEDGE EXTRACTION

As a side note concerning SVM-based rule extraction techniques, it is worth to
be mentioned that, although they have been known to produce classifiers that are
easily comprehensible, they often approximate secondary models of worse accuracy
[BB10]. Moreover, even though these models may be reasonably understandable
from an expert perspective, they still lack the simplicity and familiarity to an
individual user that often intelligent systems have to provide, as in the case of
recommendation.

Decision trees extraction

Here we focus on methods for extracting hierarchical decision tree out of sub-
symbolic predictors.

Generally speaking, extracted decision trees are ordinary decision trees whose
nodes are represented by rules consisting of a conjunction or disjunction of (i) boolean
predicates, (ii) linear constraints, or (iii) M-of-N rules over the attributes of the
data used to train the sub-symbolic predictor, similarly to the aforementioned de-
cision rules. In other words, the main difference with decision rules lays in the
hierarchical nature of decision choices.

Given the small amount of techniques for decision tree extraction surveyed in
this section, we do not split our discussion any further to distinguish between
pedagogical or decompositional approaches. Rather we provide this information
as part of the detailed description of each method, provided below. We provide a
joint discussion of decision tree extraction methods from the XAI perspective, at
the end of the paragraph.

Surveyed methods. We identify three main approaches for decision tree ex-
traction:

• Trepan (1996, pedagogical) [CS95]

• the method by Krishnan et al. (1999, pedagogical) [KSB99]

• the method by Schetinin et al. (2007, decompositional: random-forest-specific)
[SFP+07]

Trepan [CS95] is a pedagogical tree extraction algorithm that extracts deci-
sion trees from sub-symbolic models. Trepan grows a tree through recursive parti-
tioning, using a best-first expansion strategy, towards M-of-N-like, tree-structured
rules. The black box model – be it a neural network, a support vector machine,
or any other model that can be used for classification – is used as an oracle to an-
swer questions of class belongingness on artificially-generated data points. It also
exploits the active learning process to additionally generate data points according
to network constraints.

94 CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE

6.3. SYMBOLIC KNOWLEDGE EXTRACTION

Along the same line, [KSB99] proposes decision tree extraction from neural
networks. Unlike Trepan, however, the internal structure of the neural network
is taken into consideration in the process of decision tree construction. Further-
more, while Trepan leverages on a restricted form of active learning, the method
proposed by [KSB99] leverages on a genetic algorithm. Finally, it is worth men-
tioning that the latter algorithm supports the extraction of trees of a given size.
In other words, the size of extracted tree can be tuned.

Finally, [SFP+07] proposes an approach for the probabilistic interpretation
of Bayesian decision trees ensembles (a.k.a. random forests) as a single decision
tree. Classification confidence for each tree in the forest is calculated by exploiting
training data: the decision tree covering the maximum number of correct training
examples is selected, keeping the amount of classification errors in the remaining
examples minimal. Unlike the previous ones, this method of explanation does not
extend the input data set with random additional data and cannot be generalised
to other types of sub-symbolic black boxes.

XAI Perspective. From the point of view of XAI, decision tree extraction
methods are quite similar to rule extraction ones, thus similar concerns fit their
case. Accordingly, we argue that decision tree extraction techniques provide post-
hoc explainability via model simplification, and help in pursuing XAI goals such
as trustworthiness, causality, transferability, informativeness, confidence, and fair-
ness.

In spite of the many similarities with rule extraction techniques, a remarkable
peculiarity of decision trees extractors is worth to be mentioned: as hierarchi-
cal models, they are less prone to interpretability issues when the complexity or
dimensionality of the source predictor grows.

Other critical aspects remain however unresolved w.r.t. rule extraction tech-
niques. These include issues arising from the potential lack of fidelity, as well as
the concentration of practically all the decision tree extraction techniques on the
sole case of classification tasks—leaving others kinds of tasks in machine learning
essentially uncovered.

6.3.2 A practical framework for MAS
This subsection contains contributions from the following works of ours: [SCCO21]

In the reminder of this thesis, we commit to computational logics as the pre-
ferred means for explainability. In particular, we sketch a general framework for
XAI, reifying the abstract framework from section 6.2.1 via SKE.

The basic idea is that SKE can be used to draw explanations in the form logic
knowledge, which can then be further symbolically manipulated to ease the inter-
pretation of the users. Explanations, in this case, consist of surrogate predictors

CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE 95

6.3. SYMBOLIC KNOWLEDGE EXTRACTION

Figure 6.5: A practical framework for XAI based on SKE

trained to mimic the ones to be explained, as closely as possible. Such surrogates
consist of logic knowledge bases, intensively representing the internals of some sub-
symbolic ML predictor via interpretable formulæ. In fact, given a trained predictor
and a knowledge-extraction procedure applicable to it, the extracted rules/trees
act as explanations for that predictor – or as a basis to build some –, provided
that they retain high fidelity w.r.t. both the original predictor and the data used
to train it.

Framework design. In particular, as depicted in fig. 6.5, a pivotal role in the
design of our practical framework is played by the notion of extractor, defining
the general contract of any knowledge extraction procedure. More precisely, any
algorithm accepting a ML-trained predictor – either a classifier or a regressor –
as input, and producing logic rules as output can act as an extractor. Thus, the
many algorithms described in section 6.3.1 are well suited to act as extractors.

To perform their job, extractors may require additional information about the
data the input predictor has been trained upon. In the general case, such infor-
mation consists of the data set itself and its schema—i.e., a formal description
of the names and the data types of all features characterising the data set itself.
Data sets are required to let extraction procedures inspect BB behaviour – and
therefore build the corresponding output rules –, whereas schemas are required to
(i) let the extraction procedure take informed decisions on the basis of the feature
types, (ii) let the extracted knowledge be clearer by referring to the feature names.
For all these reasons, extractors expect a data set and its schema metadata to be

96 CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE

6.3. SYMBOLIC KNOWLEDGE EXTRACTION

provided in input as well.

We stress the logic nature of the extractors’ outputs. These may consist
of knowledge bases containing logic rules expressed via some logic formalism of
choice—e.g. FOL, Horn clauses, or ProbLog. These rules should intensively rep-
resent the general behaviour of the original predictor, in a symbolic way. Further-
more, the actual behaviour of the original predictor on a particular input should
be reproducible via inference. Thus, the whole knowledge base acts as a global
explanation for the original predictor, whereas the proof tree aimed at inferring a
particular output acts as a local explanation for that particular prediction.

Of course, logic rules may still be poorly interpretable to inexpert human
agents. The formalism may for instance be obscure for the human, the rules
may be too many, their arity may be too large, or their bodies may involve too
many literals. For all these reasons, the framework assumes one further processing
step, aimed at representing explanations in the most adequate way for the human
agent consuming them. While the possible representations are manifold, the key
point here is that the extraction of logic knowledge out of sub-symbolic predictors
is not the ultimate step of explanation but rather an intermediate one, enabling
the inspection of the inner operation of some black-box predictor.

Consider for instance the case of a sub-symbolic predictor P (say, a neural
network) trained on the well-known Iris data-set to classify iris flowers as one of
the setosa, versicolor, or virginica types, by only looking at a flower’s sepal
width (SW) and height (SH), and petal width (PW) and (PH). Suppose that
the following logic theory T is extracted by means of some extraction procedure:

iris(SL, SW,PL, PW, setosa) ← PW ≤ 0.65.
iris(SL, SW,PL, PW, versicolor) ← PW ∈]0.65, 1.64].
iris(SL, SW,PL, PW, virginica) ← PW > 1.64.

In the hypothesis that T has an high fidelity w.r.t. P , the as a whole theory
provides useful insights about how it works. For instance, it demonstrates how the
“petal length” feature plays a central role in the strategy followed by P to classify
iris flowers. Furthermore, given a particular query such as iris(4.9, 2.4, 3.3, 1, C),
and the proof tree corresponding to a resolution attempt of that query w.r.t T ,
each query-to-solution path is highly informative:

⊥ (a)

C 7→ setosa �����1 ≤ 0.65

⊤ (b)

C 7→ versicolor 1 ∈]0.65, 1.64]

⊥ (c)

C 7→ virginica (((((1 > 1.64

iris(4.9, 2.4, 3.3, 1, C)

There, path (a) explains why the iris flower above is not of type setosa – i.e.,
because its petal width (1) is greater than 0.65 –, path (b) explains why it is of

CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE 97

6.3. SYMBOLIC KNOWLEDGE EXTRACTION

type versicolor – i.e., because its petal width is in the 0.65÷ 1.64 range –, and
path (c) explains why the iris flower is not of type virginica—totally analogous
to the setosa case.

Finally, more user-friendly representations could be generated for both rules
and proof tree paths. The topic is further discussed in [CCDO19].

Why logic. The exploitation of computational logic as the basic means to draw
explanations is strategical under a number of perspectives. First, we argue that
symbolic representations (e.g., the language of FOL formulæ), may act as a lingua
franca for knowledge representation and exchange among heterogeneous intelligent
agents—there including humans. Second, we believe that the adoption of symbolic
AI to be an enabling choice for the full exploitation of MAS. Finally, this would
enable XAI technologies to benefit form the wide gamma of results, methods,
algorithms, and toolkits developed under the umbrella of symbolic AI.

In particular, the potential of logic-based models and their extensions is mainly
due to their declarativeness and explicit knowledge representation – enabling knowl-
edge sharing at an adequate level of abstraction – modularity, and separation of
concerns [OP11]—which are especially valuable in open (and possibly distributed)
systems composed by several intelligent agents. The interested readers may con-
sider reading [CCOC19, CCN+21] for a more detailed description of the expected
benefits provided by a logic based approach to XAI.

98 CHAPTER 6. EXPLAINING AI VIA SYMBOLIC KNOWLEDGE

Part II

How

99

Chapter 7

The Role of Logic Based
Technologies

This chapter contains contributions from the following works of ours: [CCDO20]

Artificial intelligence (AI) is getting ever growing attention from both the
academia and the industry, in terms of resources, economic impact, available tech-
nologies and widespread adoption in virtually any application area. In fact, more
and more industries are adopting and applying state-of-the-art AI techniques, to
actively pursue challenging business objectives.

Such a general interest, and technology adoption, has been favoured by two
main ingredients: (i) the development of advanced technologies even at the micro
scale, and (ii) the availability of large amounts of data in the environment around
us to learn from. These ingredients have boosted sub-symbolic AI techniques, such
as machine learning (ML), – there including deep learning and neural networks –
aimed at exploiting big data to make predictions and take autonomous decisions—
in contrast to the more long-established symbolic techniques, based on the formal
representation of knowledge and its elaboration via explicit reasoning rules.

The increasing role of intelligent systems in human society, however, raises
unprecedented issues about the need to explain the behaviour, or the result of,
intelligent systems—in the sense of being capable of motivating their decision and
make the underlying decision process understandable by human beings: this is
where sub-symbolic techniques, despite their efficiency, fall short. This is especially
relevant when AI is exploited in the context of human organisations meant at
providing public services—such as, e.g., health care / diagnostic systems or legal
advice. There is therefore an emerging need to reconcile and synthesise symbolic
and sub-symbolic techniques, exploiting the first to explain the latter—the scope
of eXplainable Artificial Intelligence (XAI) [Gun16].

So, just when AI’s general focus is on sub-symbolic techniques, symbolic ap-
proaches are re-emerging as the means to bring AI closer to the human under-

CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES 101

7.1. LOGIC-BASED AI: APPLICATION AREAS

standing, helping humans to overcome fears and ethical issues by providing ex-
plainability, observability, interpretability, responsibility, and trustability. In this
context logic-based approaches, despite their age, are finding a new youth, for a
number of reasons—first of all, because of their closer relation to the human cogni-
tive process. Moreover, their role in (not just computer) science is well understood
– think for instance of the formal study of programs and semantics in computa-
tional models, computational logic, inference as computation, logic programming,
and automatic theorem proving [Gal85, BM88]. Last but not least, logic-based
approaches have long been at the centre of many successful agent-based models
and technologies: indeed, agents reason through logic, and plan and coordinate
through logical processes [Lev84, ODN95, BBD+06]. Overall, from the XAI spark,
wider perspectives are raising also beyond the symbolic/sub-symbolic dichotomy,
yet all sharing a logic-based root.

Accordingly, in this chapter we focus on the role that logic technologies have
played over the years and are going to play in the forthcoming AI landscape—in
particular, for the engineering of intelligent systems. We leverage on that analysis
to identify the most promising research perspectives and the open issues charac-
terising the current state of the art.

7.1 Logic-based AI: Application Areas

The above techniques have been applied in a variety of fields: fig. 7.1 summarises
both the main application areas and their interconnections. For each application
area, in the following we (i) introduce what the area is about, (ii) outline the main
sub-categories (if any), (iii) discuss the role of logic in each sub-category as well
as (iv) its benefits and limits, and (v) present the main actual applications.

In order to make the comparison actually effective, table 7.1 and table 7.2 sum-
marise our findings from two different viewpoints. The first outlines the strengths
of the diverse techniques per application area, that is, where they provide the
strongest contribution; the second puts each technique in relation with the differ-
ent market segments, providing appropriate references to the literature where each
technique is used.

7.1.1 AI Foundations

Formalisation & Verification of Computational Systems

Formalisation and verification of computational systems refer to a collection of
techniques for the automatic analysis of reactive systems—in particular, safety-
critical systems, where subtle design errors can easily elude conventional simulation
and testing techniques.

102 CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES

7.1. LOGIC-BASED AI: APPLICATION AREAS

Figure 7.1: Logic-based technologies application areas with respect to main AI
categories—namely, AI Foundations, AI for Society, and AI for Business. Intention-
ally, the picture only illustrates the AI areas that are closely related to logic

FOL DL BDI TL FL PL DR CLP

Formalisation & Verification ✓ ✓
Cognitive Agents ✓ ✓ ✓ ✓ ✓ ✓
Health-care & Wellbeing ✓ ✓ ✓
Law & Governance ✓ ✓
Education ✓ ✓ ✓
Planning & Task Allocation ✓ ✓ ✓ ✓
Robotics & Control ✓ ✓ ✓ ✓

Table 7.1: Sorts of logic per application area. Acronym and abbreviation key: FOL:
First-Order Logic; DL: Description Logic; BDI: Belief Desire Intention (Logic); TL:
Temporal Logic; FL: Fuzzy Logic; PL: Probabilistic Logic; DR: Defeasible Reasoning;
CLP: Constraint Logic Programming.

CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES 103

7.1. LOGIC-BASED AI: APPLICATION AREAS

FOL DL BDI TL FL PL DR CLP

Aerospace [CCS+16, OSS15] [JM94]
Analytics [CM12] [LKR+16]
Bioinformatics [CM12] [YKZ03, Hor05] [TN06, DR+08b] [KNP02] [JM94]
BPM [CM12] [YKZ03]
Constructions [JM94]
Critical systems [PVB+13, Wu17]
CPS [YKZ03] [LKR+16, Win05] [Hol97] [AES17, MTCB17] [KNP02]
Cybersecurity [Goz12, LMVW11] [KNP02]
Databases [Hor05] [KYZ00, KZZ89]
Decision support [LL09, ADBGDP04] [GCS13]
Energy [Len95] [LKR+16] [Hol97] [SIS15] [KNP02] [JM94]
Finance [Len95] [Boj07, GL05] [JM94]
Government & Legal [Pra13]
Hardware [Len95] [CDGF+95, BZ98] [JM94]
Healthcare [LKR+16, CMR+19] [Hol97] [AvKLM01, YH12]
Information retrieval [Hor05] [GSS15, HCCL05]
Logistic [CM12] [Len95] [LKR+16, Win05] [Hol97] [JM94]
Manufacturing [LKR+16, Win05] [Hol97] [APG+11, LL05]
Mechanics [JM94]
Mobile applications [KYA+16, MMN18]
Railways [Wu17] [SA11, SKT04]
Telecommunications [CM12] [GRSC98, CFPP96] [KNP02] [JM94]
Transports [LKR+16] [SSS12, QNO06]
Web services [YKZ03, Hor05] [DMRT06, AKD+10] [TT08, CYLT05]

Table 7.2: Sorts of logic per market segment. Acronym and abbreviation key: FOL:
First-Order Logic; DL: Description Logic; BDI: Belief Desire Intention (Logic); TL:
Temporal Logic; PL: Probabilistic Logic; DR: Defeasible Reasoning; CLP: Constraint
Logic Programming.

The main logic-based technology exploited in this field is model checking [CGP01]—
nowadays a standard procedure for quality assurance both because of its cost-
effectiveness and of the ease of integration with more conventional design meth-
ods. The model checker input is a description of the system to be analysed and a
number of properties that are supposed to hold: logic is used both to formalise the
system description – states, transitions, model description, and specifications to be
verified – and to express the behavioural aspects, capturing the key properties of
information flow. Accordingly, such descriptions are often expressed in temporal
and probabilistic logic (and their extension/variations).

Model checking can provide a significant increase in the level of confidence of
a system, enabling system verification a-priori, a-posteriori, and – what is most
relevant nowadays – at runtime. On the other hand, any validation is, by defini-
tion, only as good as the system model itself: so, the validation result strongly
depends on the precision of the input model. In addition, model checking can turn
out to be unsuitable for data intensive applications, as it increases the number
communications.

Cognitive Agents & Intelligent Systems

Cognitive architectures are design methodologies, i.e., collections of knowledge
and strategies applied to the problem of creating situated intelligence. Here, the

104 CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES

7.1. LOGIC-BASED AI: APPLICATION AREAS

main technologies borrow from multi-agent systems (MAS), since the cognitive
architecture can be considered as the brain of an agent reasoning to solve problems,
achieving goals and taking decisions.

Generally speaking, cognitive agents in intelligent MAS straightforwardly ex-
ploit the logic-based models and technologies for the rational process, knowledge
representation, expressive communication, and effective coordination. Developing
an agent means to set up a deduction process: each agent is encoded as a logic
theory, and selecting an action means to perform a deduction that reduces the
problem to a solution, as in theorem proving. Logic can also be used to represent
the agent’s surrounding environment and the society of agents—that is, overall,
two of the three key aspects when it comes model the structure and dynamics of
non-trivial MAS [Omi01].

Technologies reflect the above context: many are related to agent programming
and reasoning, others to agent reliability and verification. Many others focus
on the societal aspect of cognitive architectures, by interpreting society as the
ensemble where the collective behaviour of the MAS are coordinated towards the
achievement of the global system goals. Along this line, coordination models glue
agents together by governing agent interaction, paving the way towards social
intelligence: after the seminal work of Shared Prolog [Cia94], notable examples
are TuCSoN [OZ99], ReSpecT [OD01], and AORTA [JDV14].

Within an agent society, agents can enter into argumentation processes to reach
agreements and dynamically adapt to changes: so, disputes and conflicts need to
be managed in order to achieve a common agreement and establish the winner ar-
gument. A number of technologies exist for solving reasoning tasks on the abstract
argumentation frameworks [Dun95]. Since problems of this kind are intractable,
efficient algorithms and solvers are needed. As discussed in [GLMW18], most
solvers are based on logic-based programming or logic frameworks including ASP
and SAT-solvers.

Specific technologies exist for dealing with the environment abstraction of cog-
nitive architectures, mostly in the coordination area. There, coordination/interac-
tion artefacts work as runtime abstractions which encapsulate and support coordi-
nation/interaction services, usable as building blocks for designing and governing
coordination, collaboration, competition services inside heterogeneous MASs. De-
scription spaces with fuzziness [NOV11] and semantic tuple centres [NVP10] can
be read as technologies for situated interaction & coordination, emphasising the
situated aspect of interaction, i.e., the environment-related aspect. In-between
lies LPaaS (Logic Programming as a Service), a framework aimed at supporting
the distribution of logic knowledge in the environment. There, artefacts work as
knowledge repositories (in the form of environment structure and properties) while
also embedding the reasoning process (enabled and constrained by the knowledge

CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES 105

7.1. LOGIC-BASED AI: APPLICATION AREAS

they embody).
When agents are immersed in a Knowledge-Intensive Environment (KIE), the

cognition process goes beyond that of the individual agent, and distributed cog-
nition processes may take place, promoting the idea of intelligent environment
[HHK00]. In such a way, the environment concept is extended beyond situated
action—which, by the way, motivates the inclusion of the semantic web within the
macro-area of environmental abstractions.

Moving from [Hen01], the “Agents in the semantic web” sub-category lists
JADL, AgentOWL, and EMERALD, which exploit semantic web technologies to
inter-operate.

Hybrid cognitive architectures have recently gained attention to combine sym-
bolic and sub-symbolic (emergent) approaches. Examples are ACT-R [AL03] –
based on the modelling of human behaviour –, CLARION [Sun05] and LIDA
[FMDS14].

In spite of the simplicity and elegance of the logical semantics in logic-based
architectures, some issues do exist. The transduction problem [BC04] has to do
with the difficulty of accurately translating the model into a symbolic representa-
tion, especially in a complex environment. One more difficulty comes from suitably
representing information in such a symbolic form that agents can reason about,
with and in a time-constrained environment. Finally, the transformation of per-
cepts may not be accurate enough to describe the environment itself, due to sensor
faults, reasoning errors, etc.

7.1.2 AI for Society

Healthcare & Well-being

In the healthcare domain, AI typically takes the form of complex algorithms and
software systems to emulate human cognition in the analysis of complicated med-
ical data, approximating conclusions without direct human input. The primary
aim here is to analyse relationships between prevention or treatment techniques
and patient outcomes. AI programs have been developed and applied to practices
such as diagnosis processes, treatment protocol development, drug development,
personalised medicine, and patient monitoring and care.

In this field, logic is exploited to represent knowledge in a human understand-
able way, and reason on it via properly-formalised rules—in particular, decision
support (symbolic) rules, obtained from domain experts and/or decision models
induced from data.

At the same time, symbolic logic scales does not scale easily: knowledge engi-
neers need to extract the logic by interviewing or observing human experts. On
the other hand, sub-symbolic techniques such as supervised deep learning scale

106 CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES

7.1. LOGIC-BASED AI: APPLICATION AREAS

more easily, but are subject to bias in the training data—and, of course, their
outcome cannot be explained.

Here again, the semantic web provides a technical framework for the formal
semantic modelling – i.e. interpretation, abstraction, axiomatisation, and anno-
tation – of healthcare knowledge in terms of classes, properties, relations and
axioms [BLHL01]. The semantic web framework for healthcare systems provide
notable features: (i) semantic modelling of the procedural and declarative health-
care knowledge as ontologies, hence a semantically rich and executable knowledge
representation formalism; (ii) annotation – typically via RDF (Resource Descrip-
tion Framework) – of healthcare knowledge artefacts guided by the ontological
model of the knowledge artefact, so as to characterise the main concepts and re-
lations within the artefact; (iii) representation of different patient data sources
in a semantically-enriched formalism, that helps to integrate heterogeneous data
sources by establishing semantic similarity between data elements; (iv) semantic
interoperability between multiple ontologies, using ontology alignment and medi-
ation methods to dynamically synthesise / shape multiple knowledge resources so
as to address all the facets of the specific healthcare problem; (v) specification of
the decision-making logic in terms of symbolic rules, which can be executed using
proof engines to infer suitable recommendations/actions; and (vi) provision of a
justification trace of the inferred recommendations, so as to let users understand
the rationale of the recommended interventions [Abi08].

Among the healthcare systems based on reasoning, CARA (Context Aware
Real-time Assistant) [YH12] aims at providing personalised healthcare services
for chronic patients in a timely manner, adapting the healthcare technology so
that it fits in both with the normal activities of the elderly and with the working
practices of the caregivers. Based on a fuzzy-logic context model and a related
context-aware reasoning middleware, CARA provides context-aware data fusion
and representation, as well as inference mechanisms that support remote patient
monitoring and caregiver notification.

Law & Governance

Due to its wide potential impact on society and economy, AI & law is one of
today’s most relevant research areas. It consists of an interdisciplinary effort com-
bining methods and results from several sources, from deontic logic, norms and
agent-based simulation to game theory and norms, normative agents, norms and
organisation, norms and trust, norms and argumentation.

Contributions in the field of AI & law are strongly connected with the afore-
mentioned agents architectures. Agreement technologies [Oss12], in particular, is a
new vision outlining next-generation, open, distributed systems where interaction
between computational agents could be based on the notion of agreement. This

CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES 107

7.1. LOGIC-BASED AI: APPLICATION AREAS

calls for

• a normative context defining the rules of the game, or the “space” of agree-
ments that the agents can possibly reach;

• an interaction mechanism to establish (first) and enact (then) agreements;
and

• a joint research effort from several fields – including, but not limited to, multi-
agent systems, semantic technologies, social sciences – aimed at fruitfully
combining results and contributions from all such areas—like, for instance,
semantic alignment, negotiation, argumentation, virtual organisations, learn-
ing, real time, and others.

Semantic web standards provide a good basis for representing the knowledge of lo-
cal agents, the functionalities and everything needed to achieve a goal in agreement
with other agents.

However, the formalisms behind these technologies fall short when dealing with
the distributed, open and heterogeneous nature of AT systems where agents may
have different views of the world and, therefore, mutually-inconsistent knowledge
bases. To cope with this issue, new logical formalisms – specifically aimed at han-
dling situations where pieces of knowledge are independently defined in different
contexts – have been defined, extending classical logics in order to deal with incom-
plete and defeasible knowledge. Logic is thus exploited to represent the knowledge
with a high degree of peculiarity (for instance defeasibility, but also the possibility
to discern among permission, obligation or beliefs in deontic logic), and to reason
over such knowledge.

Many interesting experiments have been performed in this application area.
Notable defeasible argumentation implementations, aimed at supporting reason-
ing and resolve inconsistencies, are Defeasible Logic Programs [GS04], ASPIC
[MP14], and ABA [DKT09]. Several other applications use ontologies and legal
search engines [SVJNM16], which exploit advanced search technology from AI,
data mining, data analytics, ontologies and natural language processing [KHC18].
The main issues that remain unsolved in this area is that a unique and general
framework for dealing with norms and argumentative issues is still missing: in
fact, most solutions are too narrow in scope, tailored to specific use cases, other
than being possibly weak from the software engineering perspective.

In short, logic-based approaches in the legal field [PS15]

• help formalise legal norms and concepts in a clear and understandable way,
thus enabling verification and the detection of unfair policies, or the violation
of essential rights;

108 CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES

7.1. LOGIC-BASED AI: APPLICATION AREAS

• support explanatory and arguable decisions in the regulatory context.

In general, however, current tools are unable to imitate advanced cognitive
processes such as human reasoning, understanding, meta-cognition or the contex-
tual perception of abstract concepts that are essential for legal thinking. Indeed, a
lawyer’s work is often very complex, implying the management and processing of
huge amounts of data, where to find correlations between facts and circumstances,
and formulate reasoned opinions and action guidelines taking into account all the
applicable rights and obligations. This is why the process of understanding and
formulating a decision is mostly creative—the result of a complex cognitive process.

Education

AI has been part of many e-learning platforms for a long time, with applications
ranging from personalised learning, recommendation of resources, automated grad-
ing, to prediction of attrition rates—to name just a few. The rapid expansion of
the educational technology industry is now further pushing and exploiting advanced
AI-enabled learning technologies.

Within this area, symbolic AI techniques have been used in adaptive educa-
tional systems, such as fuzzy logic, decision tree, etc. there, logic has been mainly
applied for knowledge management and recommendation. In some systems, for in-
stance, the focus is on examining and assessing the student characteristics in order
to generate students’ profiles, to be used for evaluating their overall level of knowl-
edge and, consequently, as a basis for prescribed software pedagogy. Symbolic AI
approaches are used to support the diagnostic process, so that the course content
can be adjusted to cater each student’s needs. Some of them, in addition, are
also used to learn from student’s behaviour so as to adjust the prescribed software
pedagogy.

Applications are related to semantic web technologies, contextualised to e-
learning so as to adapt instruction to the learner’s cognitive requirements in three
ways—background knowledge, knowledge objectives and the most suitable learning
style [GFHS04, SMFM05]. Over the years, fuzzy logic techniques and logic MAS
have also been experimented for e-learning purposes. In particular, in [AH13,
CV13], a fuzzy logic-based system learns the users’ preferred knowledge delivery
to generate a personalised learning environment; whereas in [GC06] agents detect,
recognise, eliminate, and repair the faults of the e-learning course, keeping the
system up & working, providing robustness. Another interesting application in
the domain of formal logic proofs, taken as the base of several further extensions,
is the Logic-ITA (Intelligent Teaching Assistant) web-based system [Yac05]: its
purpose is to soothe the issues caused by large classes or distance learning, acting
as an intermediary between teacher and students. On the one hand, it provides

CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES 109

7.1. LOGIC-BASED AI: APPLICATION AREAS

students with an environment to practice formal proofs, giving proper feedback;
on the other, it allows teachers to monitor the class’s progress and mistakes.

Although the impact on classrooms has been relatively minor so far, the poten-
tial of AI in education is high and likely to increase, as demonstrated by the many
European actions / projects currently in place [PSRV19, Tuo18]. The main chal-
lenges and issues concern the creation of a sustainable educational environment,
capable of developing equitable education even for the least developed countries—
to be dealt with at the suitable political level.

7.1.3 AI for Business: Automation & Robotics

Automation is probably the earliest and perhaps most impactful application area
for AI, as it represents the first step towards machine autonomy. Autonomy, in
turn, is highly desirable whenever there is a need of re-designing, re-building,
or re-programming machines while the deployment context evolves. Autonomous
machines differ from automatic ones in that designers no longer need to forecast
any possible situation, because the machine is programmed for learning or plan-
ning. This is particularly interesting in cyber-physical systems (CPS) [BG11] and
robotics, where machines have a physical body that makes them capable of affecting
(or being affected by) the physical world.

Needless to say, applications of automation and robotics in industry are mani-
fold, and so are the corresponding research lines. In the following we explore the
role and impact of logic-based paradigms and technologies in such areas.

Planning & Task Allocation

Planning and scheduling are one of the oldest fields in AI, also related to multi-
agents and cognitive architectures: research has mainly to do with the decision
making process that determines what, when, where, and how to reach a goal and
compute a task. There, logic is exploited to represent the knowledge domain, its
constraints, and the reasoning mechanism.

Logic-based scheduling methodologies include rule-based approaches and constraint-
guided search. Rule-based scheduling methods aim to emulate the decision-making
behaviour of human schedulers, captured in terms of suitable logic rules. Corre-
spondingly, rule-based systems are typically envisioned as a means to replicate the
actions of experienced humans with specific scheduling skills. Unsurprisingly, this
is one of the most successful application domains of CLP techniques: the scheduler
goal is to identify feasible solutions which balance different constraints or schedule
requirements.

Applications spread from manufacturing to traffic scheduling and management
(e.g., autonomous vehicles, aircraft, . . .), up to urban search and rescue activities

110 CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES

7.1. LOGIC-BASED AI: APPLICATION AREAS

(e.g., traffic assignment in natural disaster evacuations, . . .), and many others. A
typical example of a constraint-based scheduling application is ATLAS [AMPV06],
which schedules the production of herbicides at the Monsanto plant in Antwerp.
PLANE [Sim01] is another system used at Dassault Aviation to plan the produc-
tion of the military Mirage 2000 jet and the Falcon business jet: the objective is to
minimize changes in the production rate, which has a high set-up cost, while fin-
ishing the aircraft just in time for delivery. The COBRA system [Sim01] generates
work plans for train drivers of North Western Trains in the UK: each week, about
25000 activities need to be scheduled in nearly 3000 diagrams on a complex route
network. The DAYSY Esprit project [SCK00] and the SAS-Pilot program [BKC94]
consider the operational re-assignment of airline crews to flights. The STP (Short
Term Planning) application at Renault [Wal96] assigns product orders to factories
so as to minimise transportation costs. The MOSES application by COSYTEC
[Wal96] schedules the production of compound food for different animal species,
eliminating contamination risks while satisfying customer’s demand at the mini-
mal cost. FORWARD [Sim96] is a decision support system, based on CHIP, used
in three oil refineries in Europe to tackle all the scheduling problems occurring
in the process of crude oil arrival, processing, finished product blending and fi-
nal delivery. Finally, Xerox has adopted a constraint-based system for scheduling
various tasks in reprographic machines (like photocopiers, printers, fax machines,
etc.); the scheduler is supposed to determine the sequence of print making and
coordinate the time-sensitive activities of the several hardware modules that make
up the machine configuration [Bis01].

Overall, the CLP approach faces well some of the key issues such as develop-
ment time, nodes visited in the search tree, number of generated feasible solutions,
and efficiency. At the same time, the very nature of such systems mandates for
considerable development and tuning effort for each new application, as there is
no expert to emulate. More generally, the main two issues are i) the lack of a
structured way to carry the insight gained from one application to the next, and
ii) the complexity of generating the symbolic knowledge that fully describes the
application domain.

Robotics & Control

Cognitive architectures, planning, and task allocation techniques have been widely
applied to robotics and control system: indeed, robotics applications translate the
agent abstraction of cognitive architecture into a mechanical robot capable of doing
action and taking decision.

Logic in robotics is, much more than elsewhere, tailored to the specificity of the
application field, since control mechanisms need to control the robot sensors and
actuators, along with all their low-level control software (for instance, robot motion

CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES 111

7.2. DISCUSSION

mandatorily requires a set of feedback control primitives in order to keep motion
coherent). More generally, control systems are present in lifts, photocopiers, car
engines, assembly lines, power stations, etc.

Again, the logic-based approaches (and technologies) that are mostly adopted
in this context are CLP, fuzzy logic, and temporal logic: in fact, many works
dealing with robotic reasoning [FL08] exploit languages and technologies detailed
in section 5.1. CLP-based applications are typically at the smaller end, where
it is still possible to prove that some global properties can be guaranteed with a
given control. Thus, CLP is often exploited to build control software for electro-
mechanical systems with a finite number of inputs, outputs, and internal states:
each component is connected to a small part of the overall system, so its behaviour
can be captured quite simply. However, when the system is considered as a whole,
the number of global states can become very large: this calls for a smart technology
that is able to handle such combinatorial explosion [Lyt08].

On the other side, many control system have been developed exploiting a fuzzy
logic approach for dealing with real data which are sometimes imprecise, uncertain,
complex, and with a high degree of randomness. Due to its good tolerance of un-
certainty and imprecision, fuzzy logic has gained wide application in the area of ad-
vanced control of humanoid robots. For the same reason, fuzzy system are powerful
tools to face crucial problems in industrial engineering and technology, such as risk
management or product quality assurance, as well as in intelligent decision support
system for adaptive industrial engineering [CM20, RAS15, PKD+12, ZY04, CV98].
Also, the hybrid techniques based on the integration of neuro-fuzzy networks,
neuro-genetic algorithms, and fuzzy-genetic algorithms are of great importance in
the development of efficient algorithms [TH12].

Temporal logic approaches and technologies have been exploited, e.g., for con-
trolling robot motion or planning activities [FJKG10, FGKGP09], because of their
ability to reason over the time and its change, which makes it possible to build
control laws to be verified over the time elapse. This is specially relevant for
mobile robots, whose specifications are often temporal—even though time is not
necessarily captured explicitly. For example, a swarm might be required to reach
a certain position and shape eventually, or maintain a size smaller than a specified
value until a final desired value is achieved. Other examples are collision avoidance
among robots, obstacle avoidance, and cohesion, which are always required. In a
surveillance mission, a selected area needs be visited “infinitely often” [KB07].

7.2 Discussion

The new AI era calls for two fundamentals enabling factors: (i) the availability
of big computing power even in minimal spaces, and (ii) the availability of huge

112 CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES

7.2. DISCUSSION

amounts of context-related data. Such factors on the one side make it possible to
learn from experience, which is the playground of sub-symbolic algorithms; on the
other, make logic algorithms, historically used for expert systems and hence very
effective as for transparency and explainability, computable in reasonable time.

Big data have naturally led sub-symbolic approaches to prevail, because of
their effectiveness in elaborating and getting valuable results from context-related
data, learning trends and repeating patterns: yet, their inherent black-box nature
is a clear issue. This is precisely where the integration with symbolic approaches
can naturally provide added-value, complementing symbolic and sub-symbolic ap-
proaches with each other. In fact, the two main weaknesses of symbolic approaches
concern specifically (i) the extraction of context-related knowledge, and (ii) com-
putational complexity—the first being the natural territory of sub-symbolic ap-
proaches.

Computational complexity, in its turn, can be partially addressed thanks to
the exponential increase of computational power, by suitably exploiting paral-
lelism, as well as by re-defining and re-tuning symbolic approaches so as to fit
nowadays computing paradigms and architectures. However, it still remains an
issue in some application contexts, often leading to higher processing costs. An
example is propositional interval temporal logics (ITL) [GMS04], which provide a
natural framework for representing and reasoning about temporal properties, but
whose computational complexity constitutes a barrier for extensive use in practi-
cal applications. To cope with this issue, several approaches exploit constraints
or adopt a locality principle; in other cases, as in DLs, complexity is decreased
at the price of a limited expressiveness. For instance, in Bowman and Thomp-
son’s decision procedure for propositional ITL, decidability is achieved by means
of a simplifying hypothesis – the locality principle – that constrains the relation
between the truth value of a formula over an interval and its truth values over ini-
tial sub-intervals [HLW08]. Tableau-based decision procedures have been recently
developed [DMGM+13] for some interval temporal logics over specific classes of
temporal structures, without resorting to any simplifying assumption.

Parallelism and concurrent programming techniques are another valuable tool
to deal with complexity. The computing power of multi-level parallelism (MLP),
in particular, constitutes a promising technique to facilitate concurrent program-
ming while delivering performance comparable to that of fine-grained locking
implementations—see for instance [LR07] and [JS13].

To recap, due to their strong foundations and features, logic-based technologies
have the full potential to power symbolic approaches in such integration, opening
intriguing perspectives currently under exploration in many research contexts.

Overall, the synergy of symbolic and sub-symbolic approaches appears to be
a viable and promising option to face key issues in today’s intelligent systems—

CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES 113

7.2. DISCUSSION

namely, the need of explainable, responsible, ethical AI. In particular, the adoption
of symbolic approaches can help to achieve the key features of e-justice, fairness,
ethics and transparency.

The role of technology. It is worth to be highlighted how in this chapter we
mostly focus on the role of logic based technologies from an utilitarian perspective,
i.e. in terms of what functionalities they may offer and what applicative scenarios
they may serve. However, in practice, a key role in the rise (or fall) of a technology
lays in a number of technical aspects. These include (i) its ease of use, (ii) the
problem it solves, as well as (iii) the problems it indirectly helps solving, (iv) how
it interoperates with other well established technologies, and therefore (v) the
value it adds to (and receives from) them, other than (vi) its resilience w.r.t. the
fast-paced change which is inherent in software technologies—i.e. whether it is
actively maintained or not.

To further asses all such aspects, in the next chapter we analyse the state
of the art of logic-based technologies from a technical perspective. In doing so,
we analyse the maturity, technical reach, and maintenance-level of most relevant
logic-based technologies.

114 CHAPTER 7. THE ROLE OF LOGIC BASED TECHNOLOGIES

Chapter 8

Technological State of the Art

This chapter contains contributions from the following works of ours: [CCMO21a, CCMO21b]

Precisely when the success of artificial intelligence (AI) sub-symbolic techniques
makes them be identified with the whole AI by many non-computer-scientists and
non-technical media, symbolic approaches are getting more and more attention as
those that could make AI amenable to human understanding. Given the current
status of AI technologies – mostly focussed on sub-symbolic approaches successful
in well-delimited application scenarios –, a key issue for intelligent system engi-
neering is integration of the diverse AI techniques: in software engineering terms,
not just how to integrate diverse technologies, but also how to preserve concep-
tual integrity when highly-heterogeneous approaches – bringing about manifold
abstractions of various nature – are put to work together.

The most straightforward and generally-acknowledged way to address the above
issue is by using agents and multi-agent systems (MAS). Agents and MAS have
been at the core of the design of intelligent systems since their very beginning:
their long-term connection with logic-based technologies might open new ways to
engineer explainable intelligent systems.

This is why understanding the current status of logic-based technologies for
MAS is nowadays of paramount importance and why our work focus on logic-based
approaches in MAS: they are to be counted among the most promising techniques
for building understandable and explainable intelligent systems. Furthermore,
given the unavoidable push towards the exploitation of intelligent applications,
focussing on logic-based technologies is of strategical importance. Accordingly,
understanding and representing the current status of the available logic-based MAS
technologies is a key step – from both an historical and an avant-garde perspective
– to let MAS researchers and practitioners identify the actually usable methods
for the engineering of intelligent systems.

To this end, in [CCMO21a] we provide a Systematic Literature Review (SLR)
driven by the primary research question: “What is the role played by logic-based

CHAPTER 8. TECHNOLOGICAL STATE OF THE ART 115

8.1. METHOD

technologies in MAS nowadays?”. In particular, the SLR aims at understanding
which and how many logic-based technologies for MAS can be considered ready
enough to face the challenges of modern and future intelligent systems, other than
identifying what is missing and what research directions require further atten-
tion. Accordingly, the goal is to provide an exhaustive assessment of the available
logic-based technologies for MAS, by performing a carefully-designed SLR on the
subject.

8.1 Method

The SLR follows a well-founded, understandable, and reproducible method defin-
ing how to find, include/exclude, and analyse papers describing logic-based MAS
technologies. It relies on the standard SLR method: we carried out a manual
retrieval, filtering, analysis, and categorisation of huge number of papers, by re-
peating 8 queries on 6 search engines (Google Scholar, IEEE Xplore, ScienceDirect,
SpringerLink, DBLP, ACM Digital Library) and 5 specific conference/workshop
proceedings. To keep a tight focus on the reproducibility of the whole process,
the methodological approach, and the inclusion/exclusion and analysis criteria are
carefully designed and described in detail. In particular, we only included works
defining or exploiting some logic-based MAS technology. A specific definition of
logic-based MAS technology is provided as well, explicitly requiring the provable
availability of (i) a clearly identifiable logic-based MAS-related framework into the
literature, and (ii) some actual software reification of that framework.

Out of the retrieves papers, we selected 271 documents and there identified
47 technologies, classified them according to both a MAS and a logic perspec-
tive, and analysed from the technology viewpoint. Accordingly, the technologies
selected in our SLR are analysed and assessed from two different perspectives –
namely, the MAS and the logical perspective –, thus discussing the specific MAS-
and logic-related aspects defined, tackled, or exploited by each technology. Along
the MAS perspective, we categorise the selected technologies w.r.t. the main MAS
abstractions they relate to—agents, societies, environment. Along the logic per-
spective, we categorise the selected technologies w.r.t. the sort of logic they relate
to—thus choosing among first-order logic, description logic, BDI logic, etc. Such
categorisations reveal an uneven distribution of logic-based technologies along both
MAS abstractions and logics, and highlighting research opportunities on abstrac-
tions and logics which are currently in an urgent need of technologies—such as the
environment abstraction and the defeasible logic.

We also perform a technical assessment of each technology, according to number
of technological criteria including, but not limited to, (i) source-code organisation,
(ii) maintenance status, (iii) target platform(s), (iv) availability of executable as

116 CHAPTER 8. TECHNOLOGICAL STATE OF THE ART

8.2. DETAILED TECHNOLOGICAL ANALYSIS

well as documentation, (v) some technical assessment involving the run of executa-
bles and available examples. Arguably, the analysis enables a detailed discussion
on the current state of logic-based MAS technologies—in particular highlighting
their state of maintenance. More precisely, we consider technologies as unmain-
tained based on the last provable edit involving either the technology source code
or any of its software artefacts1.

8.2 Detailed Technological Analysis

In this subsection we deepen the analysis of the technologies selected in [CCMO21a],
in order to provide additional insights about research questions. Table 8.1 provides
an overview of our analysis.

There, we analyse the selected technologies according to a number of techni-
cal dimensions, corresponding to the columns of table 8.1. In particular: column
Fresh. assesses the freshness of each technology, by indicating – when possible
– the year of the visible update; column Code provides a qualitative assessment
of each technology code base, when available; column Doc. provides a qualitative
assessment of each technology documentation, when available; column License
indicates under which license each technology is provided, if any; column Tar-
get reports on the target runtime platform(s) each technology can be executed
upon; column Runs shows our success in executing each technology – or loading
it into its target runtime –, possibly after any necessary compilation step; column
Benchmark points out whether each technology is distributed with some bench-
marks or examples ; column Work points out whether each technology works, i.e.,
if the aforementioned benchmarks / examples can be executed successfully.

More precisely, the freshness of a technology is defined by the year of its most
recent release, or, source code modification. The code-base assessment consists of
a (possibly missing) integer number ranging from 1 to 5:

• “1” means the code base is available as a bare archive, even if it appears to
have no clear file organisation, and it is comes with no facility supporting
the compilation (or, in general, usage) of the code;

• “2” means the code base is available as a bare archive, and it adheres to a
well organised structure or it includes instructions on how to compile/use it

1Since our original assessment (September 2020), some technologies described as unmaintained
reworked their repositories, code and/or documentation—as in the case of DALI (https://gi
thub.com/AAAI-DISIM-UnivAQ/DALI) and MCAPL (https://autonomy-and-verification.
github.io/tools/mcapl)

CHAPTER 8. TECHNOLOGICAL STATE OF THE ART 117

https://github.com/AAAI-DISIM-UnivAQ/DALI
https://github.com/AAAI-DISIM-UnivAQ/DALI
https://autonomy-and-verification.github.io/tools/mcapl
https://autonomy-and-verification.github.io/tools/mcapl

8.2. DETAILED TECHNOLOGICAL ANALYSIS

Table 8.1: Overview on the selected technologies and their analysis. Dashes represent
missing values, whereas question marks represent unknown values.

Name Fresh. Code Doc. License Target Runs Benchmark Works

2APL 2012 - 3 none JVM 6,7,8 Yes *.mas Yes
2CL 2013 - 1 none JVM 7 Yes *.2cl Yes

3APL 2007 - 4 none JVM 6 No - -

Agent-0 1993 1 1 none
(Allegro)

Common Lisp
Yes none No

AFAPL2 2016 3 - LGPL v2 JVM ? none ?

AgentOWLa 2013 3 1 LGPL v2 JVM 8, 11+ Yes
Compiled

demo
No

AIL 2018 3 1 LGPL v3 JVM 8+ Yes *.ail Yes
ALIASb 2000 1 1 none JVM | Prolog No - -
AORTA 2015 4 - none JVM +7 Yes *.ail Yes

ASPARTIXc 2018 - 1 MIT Web Service Yes *.dl Yes

ASPIC 2019 4 3 LGPL v3 JVM 12+ Yes
Compiled

demo
Yes

Astrae 2018 3 5 GPL v3 JVM Yes
Provided
examples

Yes

ConGolog - - - ? ? ? ? ?
DALI 2018 3 1 Apache v2 SICStus Yes ? ?

DCaseLP / DyLog 2005 2 3 none JVM No - -
DeLPd 2018 4 3 LGPL v3 Web Service No - No

DRAGO 2006 2 2 none JVM 5+ Yes
Any OWL
ontology

Yes

EMERALDa 2010 - 3 none JVM 6+ Yes
Compiled

demo
Yes

eXAT 2012 4 3 GPL v3 Erlang No - No
Go! 2015 2 - GPL v2 ? ? ? ?

GOALe 2019 5 4 GPL v3 JVM 8 Yes
Template
projects

Yes

Golog 1998 1 - ah hoc SWI | ECLiPSe Yes - ?
IndiGolog - - - ? ? ? ? ?

JACK - - 5 proprietary JVM ? ? ?

Jadex 2020 5 5 GPL v3 JVM 8+ Yes
Compiled

demo
No

JADL/JIAC 2018 4 5 Apache v2 JVM 7+ Yes
Provided
examples

Yes

Jason 2020 5 5 LGPL v3 JVM 8+ Yes
Provided
examples

Yes

Jason-ER 2019 5 - LGPL v3 JVM 8+ Yes
Provided
examples

Yes

jDALMAS 2016 3 - none JVM No - -
LPaaS 2018 5 3 Apache v2 JVM 8+ Yes none ?

MCAPL 2018 3 1 LGPL v3 JVM 8+ No *.ail No

MCK - - 3 none Web Service Yes
Provided
examples

Yes

MCMAS 2017 4 3 none Native / Linux Yes
From

manual
Yes

Mozart 2019 5 5 ad-hoc Native Yes
Provided
examples

Yes

MetateM 2010 2 3 GPL v3 JVM 6+ Yes *.sys Yes
Onto2Jacamoe 2017 - 1 none JVM No - -

Raspberry - - 1 none Native / Linux Yes *.rasp Yes
RML 2019 5 3 Apache 2 JVM 8+ Yes *.rml Yes
Rodin 2020 4 ? none JVM 8 Yes none ?

SALMAf 2016 3 1 none Python No - -
SCIFF 2008 1 2 none SWI | SICStus Yes none ?
SHOP 2020 4 2 MPL Common Lisp Yes ? ?
Spindle 2017 2 4 GPL v3 JVM 7+ Yes *.dfl Yes

Teleo-R/QLog 2019 3 3 none QuProlog No - -
TuCSoN / Respect

(and variants)
2020 3 3 LGPL v3 JVM 8+ Yes

Compiled
demo

Yes

TuSoW 2020 5 - Apache 2 JVM 8+ Yes none ?
a depends on some ancient Jade version, which is not provided. b requires the Jinni Prolog interpreter for Java. c requires the

Clingo solver. d depends on ancient tuProlog version, which is not provided. e is a plug-in for (or customisation of) the Eclipse

IDE. f requires ECLiPSe Prolog and the PyCLP Python module.

118 CHAPTER 8. TECHNOLOGICAL STATE OF THE ART

8.2. DETAILED TECHNOLOGICAL ANALYSIS

• “3” means the code base is available through some version control system 2

(VSC, henceforth), but poor support is provided for compilation or usage;

• “4” means the code base is available through some VCS and it comes with
some build automation tool3 as well, supporting compilation or usage;

• “5” means the code base is available through some VCS, it comes with some
build automation tool, and it is also distributed through some official repos-
itory;

whereas a missing value denotes that no assessment can be drawn given the avail-
able information—e.g., because we were not able to access any code base.

Similarly, the documentation assessment consists of a (possibly missing) integer
number ranging from 1 to 5 as well. In this case, however:

• “1” means that the only available form of documentation is some textual
note briefly describing the technology or how manage the codebase;

• “2” means that some structured form of documentation exists describing the
technology or how manage the codebase;

• “3” means that a detailed manual or some API reference are available, but
not both;

• “4” means that both a detailed manual and some API reference are available;

• “5” means that a detailed manual, some API reference, and some usage
examples or tutorials are available;

whereas a missing value denotes the total lack of any form of documentation.
Whenever available, the license of each technology is referenced in table 8.1

as well, possibly leveraging on well-known license acronyms. For instance, as far
as open source licenses are concerned, “GPL” refers to the GNU General Pub-
lic License4, “LGPL” refers to the GNU Lesser General Public License5, “MIT”
refers to the MIT License6, “MPL” refers to the Mozilla Public License7, whereas
“Apache” refers to the Apache License8. The absence of licenses for a particular
technology is pointed out as well, as it may have an impact on its users9.

2e.g., SVN, Git, Mercurial, etc.
3e.g., Make, Apache Ant, Apache Maven, Gradle, Pip, Npm, etc.
4https://www.gnu.org/licenses/gpl-3.0.html, last accessed in April 2020.
5https://www.gnu.org/licenses/lgpl-3.0.html, last accessed in April 2020.
6https://opensource.org/licenses/mit-license.php, last accessed in April 2020.
7https://www.mozilla.org/en-US/MPL/2.0, last accessed in April 2020.
8https://www.apache.org/licenses/LICENSE-2.0, last accessed in April 2020.
9https://choosealicense.com/no-permission, last accessed in April 2020.

CHAPTER 8. TECHNOLOGICAL STATE OF THE ART 119

https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://opensource.org/licenses/mit-license.php
https://www.mozilla.org/en-US/MPL/2.0
https://www.apache.org/licenses/LICENSE-2.0
https://choosealicense.com/no-permission

8.2. DETAILED TECHNOLOGICAL ANALYSIS

The target runtime platform is another relevant aspect we analyse for each
technology. It provides an intuition of which sorts of machines and devices could
in principle be capable of running a given technology. As it clearly emerges from
table 8.1, the JVM platform is targeted by most technologies. This is why, in the
particular case of JVM-based technologies, we try to assess the specific version(s)
of the JVM they can run upon. Thus, the “JVM N+” notation indicates that
a given technology is tested on all JVM versions ranging from N (included) to
version 13 (included) – which is the most recent one at the time of writing –,
and only executes without errors starting from version N . Of course, the JVM is
not the only platform our selected technologies leverage upon. Some technologies
require a compilation step targeting some native platform. So, for instance, in case
only the OS operative system is supported, we write “Native / OS” to identify
the target platform. Other technologies target the Common Lisp, Python, or
Erlang runtimes, which come with several implementations supporting mainstream
operative systems, similarly to what JVM does. Furthermore, a few technologies
are available as web services. In those cases, we argue that the actual platform
of the service implementation is not essential—this is why we simply denote the
target platform as “Web Service”. Finally, there are some technologies which are
explicitly aimed at extending (or customising) the Eclipse IDE 10, and are not
meant to be used otherwise. In those cases, we indicate “JVM” as the target
platform, and tag the technology through an ad-hoc footnote.

In order to test whether a technology runs or not, we simply launch it on
its target platform—possibly, after performing all necessary compilation/confi-
guration steps. If neither compilation/configuration nor launching produces error
or crash, then we say the technology runs, otherwise it does not. Thus, a question
mark in table 8.1 in the Runs column may indicate either the total lack of any
information on how to launch the technology, or, the impossibility of producing /
accessing an executable to launch.

Finally, when we are able to run a given technology, we then test it to get
further detail, so as to understand if it actually works or not. To do so, we first
look for available benchmarks or examples into the running technologies code bases,
documentation, or home pages. In case some benchmarks / example are available,
we check if they can be run without producing error outputs or crashes. If they
can, then the technology works, otherwise it does not. Thus, a missing value in
table 8.1 in the Benchmark or Works columns indicates that no assessment is
needed because the technology does not run. Conversely, a question mark in the
same columns denotes the impossibility to perform any further assessment due to
lacking benchmarks, examples, or instructions on how to launch them.

By aggregating the data in table 8.1, we can draw several interesting con-

10https://www.eclipse.org/ide, last accessed in April 2020

120 CHAPTER 8. TECHNOLOGICAL STATE OF THE ART

https://www.eclipse.org/ide

8.2. DETAILED TECHNOLOGICAL ANALYSIS

Table 8.2: Statistics on selected technologies

Absolute Relative Meaning

N. selected tech 47 100%
Maintained since 2019 12 25.53% Fresh. ≥ 2019
Maintained since 2018 20 42.55% Fresh. ≥ 2018
Open source 26 55.32% License ̸∈ {none, ?}
Unlicensed 19 40.43% License = none
JVM-based 30 63.83% Target starts with JVM
Certainly runs 31 65.96% Runs = yes
Certainly works 21 44.68%a Works = yes
Codebase quality 16 34.04% Code ≥ 4
Documentation quality 9 19.15% Doc. ≥ 4

a corresponding to 67.74% of the technologies which certainly run.

clusions. Most relevant ones are summarised in table 8.2. The most evident
information is that only 12 out of 47 technologies have been actively maintained
since 2019—i.e., 25.53% of the total. The percentage is lower than 50%, even if
we enlarge the spectrum to technologies maintained since 2017. However, most
technologies (65.96%) can still be run successfully – regardless of when they were
last updated –, even though we are able to make them work in 67.74% of cases
only.

Another interesting trait is that – except for Jack – all technologies that are
explicitly licensed come with an open source license. These correspond to 55.32%
of the total. The amount of unlicensed technologies is quite high as well, as it
corresponds to the 40.43% of the total.

It is interesting to note how the JVM is by far the preferred platform for logic-
based MAS technologies. Indeed, 63.83% of the selected technologies target some
version of the JVM. Other recurring platforms are Lisp-, Prolog-, or native-based.

Finally, it is worth to be mentioned how – except for a few notable exceptions,
such as Jason – poor care is given to technologies code bases and documentary
resources. Indeed, considering the 1-5 ranges defined above, only 34.04% of the
technologies come with a code base whose quality is greater than 3, whereas only
19.15% are scored similarly as far as documentation is concerned.

CHAPTER 8. TECHNOLOGICAL STATE OF THE ART 121

8.3. MAIN OUTCOMES

8.3 Main Outcomes

The outcome of the SLR highlights that, as far as logic-based technologies for MAS
are concerned, there is still room for technological advancements—except for a few
relevant success stories. In fact, despite the enormous technological effort clearly
carried out by the MAS community in the last decades, several surveyed tech-
nologies cannot be considered as mature and ready for use in the new challenging
contexts required by AI. Several technologies are in fact unmaintained, outdated,
or just proof of concepts.

In our original work the discussion attempts to provide a comprehensive answer
to all the SLR research questions. In the following we summarise some general
remarks in relation to key features of modern intelligent systems, namely: (i) in-
herent distribution and decentralisation and deep entanglement with domains like
the Internet of (Intelligent) Things (Io(I)T) and Cyber-Physical Systems (CPS);
(ii) support to key properties such as robustness, efficiency, interoperability, porta-
bility, standardisation, situatedness, and real-time support; (iii) need to reconcile
and synthesise symbolic and sub-symbolic AI, exploiting the former to explain the
latter so as to overcome fears and ethical issues posed by AI by providing for
explainability, observability, interpretability, responsibility, and trustability—the
scope of XAI.

Applicability to distributed domains such as IoT and CPS

The existing agent-oriented logic-based solutions applicable to the IoT and CPS
are only available for a specific and limited set of devices and platforms. For
instance, Agent Factory Micro Edition (AFME) [MOCO06] enables the execution
of a deliberative agent on top of mobile phones with CLDC/MIDP profiles and
Sun-SPOT sensor by means of TCP/IP and Zigbee protocols.

However, some technologies, more than others, are explicitly designed to sup-
port IoT domains and CPS. For example, the LPaaS architecture [CDMO18] is
designed to promote distributed intelligence for the IoT world—offering logic pro-
gramming as a service, and explicitly addressing the requirements and issues of
cloud and edge architectures. Analogously, the situated coordination approach
promoted by the TuCSoN/ReSpecT model and technology can be explicitly ex-
ploited to handle situatedness in MAS as a coordination issue. Also, TuCSoN
[OZ99] provides the main abstractions for IoT environments: environmental re-
sources can be sources of perceptions (like sensors), targets of actions (like actua-
tors), or even both.

Finally, there are technologies that are not explicitly meant to address the IoT
and CPS domains, but still let us suppose they would be easily portable to those
domains—because of their standard compliance, interoperability, and portability

122 CHAPTER 8. TECHNOLOGICAL STATE OF THE ART

8.3. MAIN OUTCOMES

features. Among the many, Jason [BH06] supports interoperability with non-Jason
agents via Jade [BBCP] through Fipa-ACL communication [FIP02]. Similarly,
there are extensions to Jack [Win] that make it work in open systems. Finally,
the Teleo-Reactive [Nil01] approach has been often exploited to facilitate the de-
velopment of the IoT systems as a set of communicating Teleo-Reactive nodes.

Symbolic and sub-symbolic integration

With respect to the need to reconcile and integrate symbolic and sub-symbolic
techniques, none of the selected technologies has been experimented yet [CCO20],
due to their original design purpose out of this scope. However, we argue that
portable and interoperable technologies might be more suitable for the integration.
Anyway, the field is still unexplored and represents a frontier research domain.

Can existing technologies be labelled as ready? If not, what is missing?

The role of logic-based technologies in MAS nowadays exhibits a huge potential
for covering the vast majority of intelligent system abstractions. However, just a
few among the technologies surveyed can be actually labelled as ready-to-go, in
particular when considering the new challenges for symbolic technologies in AI.

Even though 10% of the selected technologies can be considered as mature
– in terms of cross-platform support, code quality, and ease of distribution in
heterogeneous environments –, most of the times they have not been tested in
pervasive and real-world scenarios, yet. This implies, at least, that further research
and technical activity are required to ensure that any technological barrier can be
overcome. Furthermore, integration with sub-symbolic techniques remains a nice-
to-have feature, but it is not actually a thing in any MAS technology, for the time
being. Nevertheless, the selected technologies are an excellent starting point for
(i) highlighting the advantages of logic-based technologies, and (ii) broadening the
scope of research towards the directions envisioned.

The Need for Interoperability

Our survey identifies two major lack in the logic-based technology playground,
namely maintenance and interoperability.

Maintenance (and its lack) is essentially an organizational aspect concerning
individual research groups around the globe. Career incentives within academia
discourage the maintenance of software on the long run. So, the current mainte-
nance status of logic-based technologies is unsurprising. In this perspective, we
consider as positive that a non-negligible percentage of logic-based technologies
has a decades-long life span.

CHAPTER 8. TECHNOLOGICAL STATE OF THE ART 123

8.3. MAIN OUTCOMES

The actual issue we detect through our survey concerns interoperability among
the logic-based technologies which survived so far. Arguably, this is the most rel-
evant aspect research communities should be concerned by. Existing logic-based
technologies often address specific uses cases, or rely upon monolithic runtimes,
often targeting single platforms or having inconvenient constraints and dependen-
cies. Poor care is devoted to favour their interoperability and joint exploitation,
probably because of the different programming platforms/runtimes they leverage
upon, or the use cases they have been designed for. In other words, logic-based
technologies are often constructed as technological silos – being so optimised for
performance and correctness while being poorly interoperable among each other –
targetting the LP or MAS communities alone.

On the other side, the data science playground is flourishing, also because of
the emergent selection few key platforms – e.g. Python or R – upon which many
inter-dependent and interoperable research project are built, adding value to each
other.

Hence, the need for efforts pushing the state of the art of logic-based technolo-
gies towards a higher degree of interoperability – both internally, and with DS
technologies – is compelling. Along this line, in the next chapter, we propose a
paradigm shift aimed at satisfying this need. In particular, we propose the de-
sign and implementation of a general-purpose logic-ecosystem, upon which other
logic-based (as well as ML-oriented) technologies can be constructed, embedded,
or made interoperable with. Then, in the remainder of this thesis, we discuss how
our ecosystem can be designed and extended to cover the need for interoperable
technologies at the intersection among symbolic and sub-symbolic AI.

124 CHAPTER 8. TECHNOLOGICAL STATE OF THE ART

Chapter 9

The 2P-Kt Ecosystem for
Logic-Based AI

This chapter contains contributions from the following works of ours: [CCO21a]

This chapter contains contributions from the following Master’s thesis: [Sib19], which we supervised

While their impact on the symbolic branch of AI is well established, many emer-
gent AI techniques leverage logic to make data-driven AI either more predictable
or more understandable. This is why the need for solid, interoperable, general-
purpose logic-based technologies is nowadays more compelling than ever. Most of
the logic-based technologies proposed so far are typically either built on top or
as extensions of the Prolog language. Even when this is not the case, monolithic
solutions are built around different inference procedures, unification mechanisms,
or knowledge representation techniques.

This chapter stems from the idea that logic-based technologies should be nei-
ther constructed as Prolog-centred monoliths nor tailored to a specific semantics or
language. Instead, in order to maximise their impact on AI, logic-based technolo-
gies should welcome the manifold contributions coming from the LP playground,
supporting the exploitation of as many mechanisms as possible, in an unopinion-
ated way. As a foundational step in that direction, we present 2P-Kt, a reboot
of the tuProlog project offering a general-purpose, extensible, and interoperable
ecosystem for logic programming and symbolic AI.

9.1 The Need for an Ecosystem

In spite of the wide availability of logics, inference rules, and resolution strategies
in the LP literature, only a relatively small amount of them have been reified
into actual logic-based technologies. Among these, the Prolog language [CR93] is
by far the most successful story [CCDO20]. It consists of a well-defined language

CHAPTER 9. THE 2P-KT ECOSYSTEM FOR LOGIC-BASED AI 125

9.1. THE NEED FOR AN ECOSYSTEM

[IS95, ISO00] coming with several implementations [BPr21, Pro21a, Pro21b, SP21,
Pro21c, Pro21e, Pro21d].

While standard implementations of Prolog target first-order logic (FOL) via
SLDNF inference rule [Rob65, Kow74, Cla77] and depth-first resolution strategy,
most implementers have extended Prolog to support other resolution strategies as
well. This is the case of Prolog implementations supporting for instance, constraint
logic programming (CLP) [JL87], constraint handling rules (CHR) [Frü98], tabled
resolution [SW12], etc.

Thanks to the versatility of FOL, it is a common practice in LP to either
develop logic-based technologies either on top of Prolog or from scratch. In the
former case, the resulting logic-based technologies tend to be poorly interoperable
– as strictly Prolog-dependent [CCS+20] –, while in the latter case they tend to
be very narrow in scope—as heavily tailored on a particular domain.

Building logic-based technologies on top of Prolog is often preferred as they
automatically inherit Prolog basic mechanisms, including e.g. the capability of
(i) representing data structures via logic terms, (ii) knowledge via Horn clauses,
(iii) logic unification, (iv) efficient in-memory indexing of logic information, (v) a
flexible inference rule, and (vi) meta-level programming. This is the smartest
strategy when novel logic-based technologies must be quickly bootstrapped, yet
it may easily result in poorly-interoperable, Prolog-tailored solutions. Conversely,
when Prolog capabilities are not adequate for the particular problem at hand,
logic-based technologies may be designed from scratch. This commonly involves
re-designing and re-implementing most LP features from scratch.

In [SY96], Sterling states that logic unification is by itself the major contribu-
tion of LP to software engineering—thus singling a specific feature out of Prolog
for its value and benefits. Along this path, we argue that many aspects of LP may
be useful in AI by themselves, and each contribution could be conveniently rei-
fied into some individually-usable software library. Accordingly, our work aims at
the creation of an open ecosystem for interoperable, general-purpose LP libraries,
virtually supporting multiple logics, inference rules, and resolution strategies, and
possibly factorising any shared aspect—e.g. terms and clauses representation, uni-
fication, in-memory storage, (de)serialisation, etc.

In the early 2000s, the idea of LP as a key technology-enabler of intelligent
application was already in place. The tuProlog project [DOR01] was proposed for
this purpose. It consists of a lightweight malleable, object-oriented, Java-based
implementation of Prolog [PBOR08] which can be used as a library for JVM
projects. Despite many versions have been proposed along the years – bringing new
features, or more platforms support [DOC13] –, and many research products have
been built upon it – such as TuCSoN [OZ99], ReSpecT [OD01], LPaaS [CCM+18],
or Tenderfone [CMOZ20], Arg2P [PCOS20], etc. –, it still consists of a monolithic

126 CHAPTER 9. THE 2P-KT ECOSYSTEM FOR LOGIC-BASED AI

9.2. OVERALL DESIGN

library targetting Prolog alone.

Accordingly, this chapter stems from the idea that Prolog is not the silver-
bullet for logic-based technologies, and the belief that LP should not be reduced to
Prolog alone. For this reason, we present 2P-Kt, a reboot of the tuProlog project
aimed at providing a common technological ground for LP. Acknowledging that
most mechanisms in LP have the potential to be of general value, not necessarily
tailored to any specific logic, inference rule, or resolution strategy, 2P-Kt consists
of a logic-based ecosystem for symbolic AI, designed and implemented by taking
openness, modularity, extensibility, and interoperability into account.

More precisely, the tuProlog project has been completely re-designed and re-
written, splitting LP functionalities into minimal, loosely-coupled, Prolog-agnostic,
individually-usable, multi-platform modules. The rationale behind this choice is to
enable the incremental addition of novel LP functionalities to the 2P-Kt ecosys-
tem – possibly targeting other inference rules and search strategies –, minimising
duplication of features and reusing pre-existing ones, while supporting as many
programming platforms as possible.

On the long run, 2P-Kt aims at becoming a comprehensive technological play-
ground supporting several sorts of logics – e.g. first-order, higher-order, temporal,
deontic, etc. – and mechanisms—e.g. deductive, inductive, abductive, probabilis-
tic reasoning, etc.

Finally, a non-negligible effort is devoted to keep 2P-Kt widely interoperable
at the technological level with as many platforms as possible—to maximise the pool
of potential adopters. This is why most 2P-Kt modules are Kotlin Multiplatform
projects – currently supporting the JVM, JS, and Android platforms – while others
are expected to be supported soon—e.g. MacOS, iOS, .NET, and Python.

9.2 Overall Design

2P-Kt is deeply rooted in CL, a programming paradigm based on computational
logic [Llo90, MN96]. Hence, from an architectural perspective, 2P-Kt is a frame-
work supporting the creation of logic-based software via several loosely-coupled
modules—each one tailored on a particular aspect of CL.

To further support reusability, each module factorises a small number of re-
lated functionalities, via a compact API composed by OOP types and methods.
As modules are the most basic deployable units in 2P-Kt, major LP function-
alities are partitioned into modules on a per-usage basis, to make them selec-
tively usable as dependencies in other projects. The 2P-Kt ecosystem itself is
attained by incrementally combining such modules, as depicted in fig. 9.1. Ac-
cordingly, to maximise interoperability, 2P-Kt modules are individually available

CHAPTER 9. THE 2P-KT ECOSYSTEM FOR LOGIC-BASED AI 127

9.2. OVERALL DESIGN

Figure 9.1: 2P-Kt project map: LP functionalities are partitioned into some loosely-
coupled and incrementally-dependent modules

as pre-compiled libraries both on Maven Central Repository (MCR)1 – for JVM-,
Android- or Kotlin-based contexts – and on the NPM Registry2 – for JS-based
contexts –, whereas a detailed description of their API is available on the Web as
part of 2P-Kt documentation.

If all 2P-Kt modules were merged together, the most relevant aspects of their
API could be summarised as in fig. 9.2. The diagram points out how all relevant
aspect of LP are reified into types: e.g.

• logic Terms (as well as any specific sort of term, e.g. Variables, or Structures,
etc.),

• logic Substitutions, unification, and MGU (computed by an Unificator),

• Clauses (there including Rules, Facts, and Directives),

• knowledge bases and logic theories (e.g. the Theory type),

• automatic reasoning, via the Solver interface, and

• logic Solutions—computed by Solvers in response to queries.

1https://search.maven.org/search?q=g:it.unibo.tuprolog
2https://www.npmjs.com/org/tuprolog

128 CHAPTER 9. THE 2P-KT ECOSYSTEM FOR LOGIC-BASED AI

https://search.maven.org/search?q=g:it.unibo.tuprolog
https://www.npmjs.com/org/tuprolog

9.2. OVERALL DESIGN

unification

Unificator

mgu(Term, Term): Substitution
unify(Term, Term): Term?
match(Term, Term): Boolean

terms

Term

apply(Substitution): Term
freshCopy(): Term

Constant

value: Any

Var

name: String

Struct

functor: String
args: Array<Term>

Numeric

Integer

value: Int

Real

value: Double

Atom

value: String

Truth

isTrue: Boolean

EmptyList

List

Cons

head: Term
tail: Term

clauses & theories

Clause

head: Struct?
body: Term

RuleDirective Fact

Theory

assertA(Clause)
assertZ(Clause)
retract(Clause)
retractAll(Clause)
get(Clause): Sequence<Clause>

1

*

resolution

Solver

solve(Struct,Long): Sequence<Solution>

MutableSolver

loadStaticKb(Theory)
loadDynamicKb(Theory)

Solution

query: Struct

Yes

substitution: Unifier

No Halt

exception: PrologError

substitutions

Substitution

get(Var): Term
contains(Var): Boolean

Unifier Fail

Figure 9.2: 2P-Kt public API: a type is provided for each relevant concept in LP

There, interfaces are used to expose relevant aspects, in order to keep the system
extensible. Developers may e.g. define custom implementations for Unificator

and Solver to provide novel inference mechanisms involving some variant of the
unification algorithm. Of course, a detailed diagram would include several more
types, as the 2P-Kt API also supports: (i) (de)serialisation of logic terms and
theories into/from standard data-representation formats such as JSON, or YAML;
(ii) parsing/formatting logic terms and theories from/into concrete logic syntaxes
such as Prolog’s one; (iii) letting developers extend solvers via libraries of custom
LP functionalities; (iv) letting users exploit logic solvers either by a command-line
(CLI) and graphical (GUI) user interface; etc.

9.2.1 Overview of Functionalities

Each major 2P-Kt functionality is reified into a particular module. Accordingly,
in this subsection we enumerate 2P-Kt functionalities on a per-module basis.
Following Gradle convention, we denote modules by :moduleName .

The most fundamental module is :core , which exposes types for representing
symbolic knowledge via terms and clauses, other than methods to support their
manipulation (e.g. construction, unfolding, scoping, formatting, etc.) for OOP or
FP programmers. It comes with several data structures aimed at covering most
common KR needs in LP. However, novel sorts of terms and clauses may optionally
be added by developers by extending/implementing any public interface in :core .
Furthermore, the pervasive adoption of an immutable design makes data structures
in :core well suited for concurrent and multi-threaded contexts.

Terms and clauses are often compared or manipulated in LP via unification.
Arguably [SY96], unification [BS01] is – by itself –, among the most useful contri-
butions of LP to AI. For this reason, we encapsulate it within an ad-hoc module,

CHAPTER 9. THE 2P-KT ECOSYSTEM FOR LOGIC-BASED AI 129

9.2. OVERALL DESIGN

:unify , coming with a general notion of Unificator – i.e. any algorithm aimed
at computing MGU out of terms or clauses –, and a default implementation based
on [MM82]. Developers may extend the default implementation by configuring
e.g. when terms should be considered equal or not, or they can provide a different
implementation for Unificator, in case they need a specific unification strategy,
or, they prefer to adopt a different unification algorithm.

Another common need in LP is the in-memory storage of clauses into ordered
– e.g. queues – or unordered – e.g. multisets – data structures, and their efficient
retrieval via pattern-matching (e.g. unification). The :theory module follows
this purpose, by providing notions such as ClauseQueue, ClauseMultiset—all
coming both in an immutable (access-efficient) and mutable (update-efficient) im-
plementation. These data structures differ from ordinary collections as they enable
a unification-based retrieval and indexing of clauses. Prolog’s notions of theory,
and static/dynamic KB are built on top these data structures, exploiting the most
adequate implementation in each case.

The practice of LP may also involve several ancillary operations over terms and
clauses, e.g.: (i) formatting – into some customisable form –, (ii) (de)serialisation
– into/from open data-representation formats such as JSON or YAML –, and
(iii) parsing—out of a particular concrete syntax, such as, e.g., Prolog syntax.
While formatting is considered a :core functionality, attained via the TermFormatter
type, (de)serialisation and parsing come with their own modules. Thus, module
:serialize-core (resp. -theory) supports the serialisation and deserialisation
of terms (resp. theories) into JSON or YAML, according to a human-readable
schema. This is aimed at supporting distributed applications needing to exchange
logic knowledge over the network. Similarly, parsing terms (resp. theories) in
Prolog syntax is currently supported through the :parser-core (resp. -theory)
module, which is based on the well-known ANTLR technology [Par13] for language
engineering.

A generic API for logic solvers is available as well within the :solve module.
Conceptually, the purpose of this module is as simple as exposing the Solver type,
which represents any entity capable of performing some sort of logic resolution to
provide one or more Solutions to a logic query. However, resolution involves
many practical aspects – such as errors management, extensibility via libraries,
I/O, etc. – which are orthogonal w.r.t. any particular resolution strategy. This is
why :solve is a quite articulated – despite not directly usable – module.

While developers may easily build their inference procedure of choice by pro-
viding an implementation for the Solver interface – possibly selectively reusing
features from :solve –, two implementations are currently available as part of
2P-Kt – namely :solve-classic and -streams –, both implementing Prolog’s
SLDNF resolution strategy. In particular, :solve-classic is based on the work

130 CHAPTER 9. THE 2P-KT ECOSYSTEM FOR LOGIC-BASED AI

9.3. ILLUSTRATIVE EXAMPLES

of Piancastelli et al. [PBOR08] and is currently stable, while :solve-streams is
an experimental attempt of implementing Prolog via LP following the idea pro-
posed in [Car84]. Notably, none of them relies on the Warren Abstract Machine
[War83]—the computational model Prolog is commonly built upon.

A generic API for developing Prolog-like predicates in Kotlin is available as
well. It heavily leverages FP and OOP to let developers extend their solvers with
libraries of complex functionalities – possibly involving backtracking or side-effects
– which are easier to implement in Kotlin than through LP. There, lazy streams
of data are treated as flows of solutions to be enumerated via backtracking. This
makes 2P-Kt very well-suited for handling possibly infinite streams of data via
LP – an essential feature in modern AI – as further discussed in chapter 10.

User experience (UX) is enabled by two more modules – namely, :repl and
:ide –, which provide a CLI and GUI, respectively. While they both target JVM-
specific UX, an experimental web-based GUI is available at [Pla21], targetting
JS-specific UX.

The many :dsl-* modules in fig. 9.1 are aimed at supporting the Kotlin-based
DSL for LP described in [CCS+20]. It consists of façade to 2P-Kt API aimed
at blending the OOP, FP, and LP programming paradigms via Kotlin’s flexible
syntax. Within the 2P-Kt project, this DSL is extensively exploited for unit
testing.

Finally, the :oop-lib module is experimental logic library aimed at supporting
the exploitation of OOP from within logic programs.

9.3 Illustrative Examples

The 2P-Kt GUI (fig. 9.3a) consists of a minimal IDE based on Java FX. It sup-
ports users willing to exploit LP interactively, possibly editing a theory repeatedly,
performing different queries, and inspecting the mutable internals of the under-
lying solver. Accordingly, the GUI lets users open several files at once, perform
queries one-by-one or all-at-once, or inspect the currently loaded libraries, oper-
ators, flags, etc. Syntax colouring completes the picture, easing users’ writing of
logic theories.

Conversely, the 2P-Kt CLI (fig. 9.3b) lets users issue their queries against logic
solvers via a textual console. It supports both an interactive and non-interactive
operation mode. In the former case, the application consists of a Read-Eval-Print-
Loop accepting logic queries from stdin and progressively prompting solutions to
stdout. In the latter case, queries and theories are provided as arguments upon
CLI launch and the program terminates after prompting all possible solutions.

The 2P-Kt Playground (fig. 9.3c) is currently a proof-of-concept web applica-
tion which only lets users write/load theories, issue logic queries, and visualise the

CHAPTER 9. THE 2P-KT ECOSYSTEM FOR LOGIC-BASED AI 131

9.3. ILLUSTRATIVE EXAMPLES

(a) The 2P-Kt GUI (b) The 2P-Kt CLI

(c) The 2P-Kt Playground [Pla21]
(d) Usage of the Kotlin DSL for Prolog
[CCS+20], within an IDE

Figure 9.3: Usage examples for 2P-Kt

132 CHAPTER 9. THE 2P-KT ECOSYSTEM FOR LOGIC-BASED AI

9.4. IMPACT

corresponding solutions in their browsers. The key point here is that a full-fledged
2P-Kt application can be executed in-browser in a server-less fashion. In fact,
our Playground only requires Internet connection upon page loading. After that,
it does not interact with the server any longer as the loaded JS scripts are more
than sufficient to make 2P-Kt usable from within users’ browsers. For this reason,
logic computations performed through our Playground need not any sandbox – as
no server is needing to be protected against DoS attacks –, nor logic solvers need
API limitation for security reasons.

Finally, 2P-Kt’s DSL for Prolog can be exploited within Kotlin projects as
shown in fig. 9.3d. Essentially, it provides a syntactical way to inject LP into Kotlin
scripts. To make this possible, users must import one or more :dsl-* module
as dependencies into their Kotlin projects, e.g. via Gradle or any other build
system. As discussed in [CCS+20], the adoption of this DSL makes the life of logic
programmers easier, as they can automatically inherit the many tools available for
Kotlin development—e.g. type checking, linters, code completion, debugging, etc.

9.4 Impact

We expect 2P-Kt technology to have an impact on many research areas.
Within the scope of LP, for instance, 2P-Kt provides a well-grounded techno-

logical basis for implementing (or building variants and extensions of) the many
solutions proposed into the literature—there including abductive inference pro-
cedures [FK97], rule induction methods [Md94], probabilistic reasoning [dK15],
labelled LP [CDDO18], etc.)

Furthermore, as recently shown in [CCMO21a], the multi-agent systems com-
munity have quite an appetite for interoperable and general-purpose logic-based
technologies. There, 2P-Kt may provide a technological substrate supporting
agent automated reasoning via manifold reasoning mechanisms.

Similarly, 2P-Kt represents a valuable technological choice within the field
of Coordination [MC94]. As demonstrated in [CDMSL+20], many tuple-based
coordination models and technologies rely on LP and logic-based technologies at
the fundamental level. There, 2P-Kt enables the implementation of interoperable
Linda tuple spaces – such as in TuSoW [CROM19] – or tuple centres—as we
plan to do in TuCSoN [OZ99].

Moreover, as discussed in [CCS+20], 2P-Kt impacts on programming paradigms
as well. In fact, while most successful programming paradigms (imperative pro-
gramming, OOP, FP) are being increasingly blended into modern programming
languages, LP remains somewhat isolated. In this context, 2P-Kt’s DSL for LP
paves the way towards the integration of LP with other programming paradigms.

Finally, we expect 2P-Kt will have a role to play in the field of explainable

CHAPTER 9. THE 2P-KT ECOSYSTEM FOR LOGIC-BASED AI 133

9.4. IMPACT

AI. There, the integration among symbolic and sub-symbolic AI is considered a
strategical research direction [CCO20] and 2P-Kt may offer a sound technological
basis to this purpose.

2P-Kt adoption. While tuProlog has been exploited both in the industry and
in the academia3, 2P-Kt has been used in the academia only—so far. However,
it has already worked – or, will work in the near future – as the technological
basis of many scientific contributions. Some, such as TuCSoN [OZ99], ReSpecT
[OD01], LPaaS [CCM+18], or Tenderfone [CMOZ20] leveraged on tuProlog for
their implementation, and are now being migrated on 2P-Kt. Others, such as
TuSoW [CROM19], Arg2P [PCOS20], or the Kotlin-based DSL for LP proposed
in [CCS+20] are already based on 2P-Kt.

Research directions stemming from 2P-Kt. Currently, 2P-Kt is already
enabling the exploration of many interesting research questions thanks to its mod-
ularity and interoperability. Any research line involving symbolic manipulation or
automated reasoning is then likely to benefit from 2P-Kt functionalities. Gen-
erally speaking, 2P-Kt paves the way towards: the coexistence and integration
of different LP aspects, the hybridisation of LP with other AI techniques, and
the exploitation of LP in building flexible intelligent systems. Along these lines,
our goals involve: (i) the creation of comprehensive solvers capable of exploit-
ing multiple inference procedures, knowledge-representation means, etc. at once
in answering users’ queries, (ii) the construction of hybrid systems where logic
programmers can transparently exploit machine learning (ML) and sub-symbolic
AI, and (iii) the injection of LP into cognitive agents architectures.

So, as far as goal (i) is concerned, we are currently exploring the design of prob-
abilistic, abductive, or concurrent resolution under a unique API. These function-
alities may constitute novel modules enriching the 2P-Kt ecosystem. This would
enable further research towards, e.g., mixed reasoning processes, where multiple
inference procedures can be dynamically interleaved while answering some user’s
query.

As far as goal (ii) is concerned, we are currently exploring the design of a
logic-based API for ML and, in particular, neural networks. The API allows logic-
programmers to define, train, assess, and use sub-symbolic predictors via LP. At
the technical level, the API are reified into yet another module enriching the 2P-
Kt ecosystem. This would enable further research towards, e.g., the integration
of symbolic and sub-symbolic AI, the automation of ML workflows, and the ex-
ploitation of fuzzy knowledge induced from data in LP.

3http://apice.unibo.it/xwiki/bin/view/Tuprolog/Users

134 CHAPTER 9. THE 2P-KT ECOSYSTEM FOR LOGIC-BASED AI

http://apice.unibo.it/xwiki/bin/view/Tuprolog/Users

9.4. IMPACT

Finally, as far as goal (iii) is concerned, we are currently exploring the inte-
gration of multiple logics within BDI architectures. The idea here is to enable
intelligent agents to perform the most adequate sort of reasoning or knowledge-
representation means for the situation at hand. This would enable further research
towards, e.g., the exploitation of different logics (e.g. first-order, temporal, spatial,
deontic, etc.) to support intelligent, context-specific behaviour for software agents.
There, 2P-Kt provides a common ground for the implementation of automated
reasoners supporting each logic.

Accordingly, in the reminder of this thesis, we explore a number of contributions
stemming from (and enabled by) 2P-Kt.

In particular, in chapter 10, we introduce a fundamental mechanism – namely,
primitives – which 2P-Kt solvers may exploit to lazily handle streams of data.
Despite its simplicity, the mechanism is very powerful, as it enables the interoper-
ability of LP with other runtimes, e.g. JVM libraries. This, in turn, enables most
of the subsequent contributions discussed in this thesis. Similarly, in chapter 11,
we discuss the integration of logic, object-oriented, and functional programming
at the paradigm and language level, as made possible by 2P-Kt.

In chapter 12, we propose the design of a logic API for ML, aimed at enabling
the manipulation of ML predictors in LP, and, therefore, the creation of hybrid
(symbolic + sub-symbolic) AI solution. We also discuss how such API can be
reified into yet another module expanding the 2P-Kt ecosystem.

In chapter 13, we propose the design and implementation of a “platform for
symbolic knowledge extraction” (PSyKE) reifying the vision and the architec-
ture discussed in section 6.3. The proposed technology enables the extraction of
logic rules out of sub-symbolic predictors. Such rules are of course represented as
clauses, as enabled by 2P-Kt.

Furthermore, in chapter 14 we discuss the extension of the 2P-Kt ecosystem
towards probabilistic logic programming. Despite the benefits of supporting prob-
abilistic reasoning, such extension confirms the advantages of the ecosystem-based
approach. In fact, we show how probabilistic reasoning support can be achieved
by reusing as much functionalities from the 2P-Kt ecosystem as possible.

Finally, in chapter 15 we discuss a number of future research directions, stem-
ming from or overlapping 2P-Kt. Despite some steps have already been performed
along these directions, they are not mature enough to be included as chapters in
this thesis. Hence, we report them as future works, providing insights about their
backgrounds and presenting what we have already done so far.

CHAPTER 9. THE 2P-KT ECOSYSTEM FOR LOGIC-BASED AI 135

9.4. IMPACT

136 CHAPTER 9. THE 2P-KT ECOSYSTEM FOR LOGIC-BASED AI

Chapter 10

Bridging LP and Stream
Processing

This chapter contains contributions from the following works of ours: [CCO21b]

Streams are a powerful abstraction in computer science as they enable the
processing of huge amounts of data, especially when keeping all data in memory
would be impractical or infeasible. In the era of the Internet of Things (IoT) and
data-driven artificial intelligence (AI), the ability of manipulating possibly unlim-
ited streams of data is a must-have for all programming paradigms and languages.
Indeed, a growing amount of application scenarios are characterised by the perva-
sive exploitation of smart devices generating/capturing huge amounts of data, as
well as of the software infrastructures aimed at processing them.

A stream is an ordered sequence of data that may or may not be limited in
length. Stream processing facilities are thus commonly constructed in such a way
that streams are lazily consumed, in order to minimise the amount of required
memory—which may be soon saturated otherwise. However, despite all sorts of
streams are lazily consumed, categories may be drawn depending on how they are
generated. Depending on how the are generated, streams are either cold (a.k.a.
pull) or hot (a.k.a. push). Each item of a cold stream is generated on the fly, as
soon as a consumer pulls it from the stream. In the case of hot streams, instead,
an external entity is supposed to be in charge of generating items and pushing
them to the stream, so that consumers can retrieve them in a FIFO way.

Cold streams are the simplest ones. A cold stream can be naturally at-
tained via functional programming and higher-order functions (e.g. map, filter,
reduce): this is why mainstream programming languages such as Java, C#,
Python, JavaScript, Scala, Kotlin, etc., are being extended to blend functional
features and constructs for dealing with streams. Conversely, hot streams are
more complex, as they require data to be buffered while waiting for consumption—
making them ideal for temporally decoupling data consumers and producers. In

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 137

10.1. LOGIC SOLVERS AS STREAMS PROSUMERS

particular, hot streams are key enablers of advanced stream processing techniques,
such as sliding windows, or complex event processing (CEP)—which are deeply
entangled with the time-related aspects of data production.

In this scenario, logic programming (LP), as well, has its role to play, both
in data-driven AI – in particular in relation to explainable systems [CCO20] – or
in the IoT [CCM+18]. For instance, LP and rule-based frameworks are generally
recognised as well-suited to support CEP [AFR+10, ARFS12], as they are expres-
sive enough to capture complex events from hot streams. Similarly, answer-set
programming (ASP) has been extensively exploited as a means for reasoning over
hot streams of data [EIST05, BEF17, BDTE18].

In this chapter, we focus on the Prolog [CR93] programming language—arguably,
the most popular LP language. Currently, Prolog can hardly be considered as a
suitable stream-processing technology [TWS19], as it provides minimal support
for consuming both cold and hot streams. However, we believe that this should
be reconsidered because Prolog already supports the lazy exploration of possibly
infinite search spaces via backtracking. Thus, the problem with Prolog is not to
discuss whether it supports stream processing or not, but rather how.

Existing solutions extend Prolog with syntactical, semantical, or library en-
hancements aimed at supporting cold streams explicitly. Conversely, in this chap-
ter, we discuss how Prolog can be reinterpreted as a stream processing tool, capable
of manipulating both cold and hot streams of data. In particular, our solution does
not affect the syntax (nor the operation) of the Prolog language. More precisely,
we show how Prolog predicates may be interpreted as primitives of streams to be
lazily consumed via backtracking. Along this line, we present an abstract design
for Prolog solvers based on finite-state machines, aimed at supporting our notion
of primitives. Finally, a practical demonstration based on the 2P-Kt technology
[2P-21] is discussed showing how primitives may let a Prolog solver consume events
from the external world in a transparent way.

10.1 Logic Solvers as Streams Prosumers

10.1.1 Logic solvers as stream producers

Logic solvers à la Prolog are typically queried interactively by LP users in different
modes, which are naturally captured by the message passing perspective adopted
in fig. 10.1. The most common mode of interaction among users and logic solvers is
summarised in fig. 10.1a: users submit queries (a.k.a. goals) to a logic solver – e.g.
a Prolog interpreter – via some ad-hoc operation—e.g., solve. Assuming that one
or more solutions exist, the solver computes and returns one of them—typically in
terms of a unifying substitution, assigning values to the query variables of interest

138 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.1. LOGIC SOLVERS AS STREAMS PROSUMERS

Figure 10.1: Interaction modes between logic solvers and users or KB

User Solver

solve(Goal)

compute first solution

solution(Unifier)

loop [do while last Substitution ≠ ⊥]

next()

compute next solution

solution(Substituion)

(a) In stateful interaction mode, solvers ex-
pose two functionalities: solve – to compute
the first solution to some query –, and next—
to compute subsequent solutions to the same
query

User Solver

solve(Goal)

create Solution
Stream

reference to stream

loop [do while last Substitution ≠ ⊥]

next()

pull()

compute next solution

solution(Substitution)

solution(Substitution)

(b) In stream-oriented interaction mode,
solvers expose one functionality: solve—
which simply returns a stream of solutions that
users may lazily consume

Solver KB

request of i-th Solution for Goal

Behind the scenes

get(SubGoal)

stream of Clauses

If new knowledge is acquired

assert(NewClause)

If prior knowledge must be retracted

retract(OldClause)

Once a solution is found

i-th Solution

(c) Interaction among a logic solver and its
KB. As possibly mutable containers of knowl-
edge KB expose three main functionalities:
get(C) returns a stream of clauses match-
ing C via unification, whereas assert(C)

(resp. retract(C)) adds (resp. removes)
some clause (unifying with) C

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 139

10.1. LOGIC SOLVERS AS STREAMS PROSUMERS

for the user. However, the user may be interested in solutions other than the first
one: so, the solver should expose one further operation – e.g., next – letting users
asking for further solutions to some previously-submitted query. Finally, when no
(more) solutions are available for a query, the solver can return one (last) answer
carrying the failed substitution (represented by ⊥ in fig. 10.1) instead of a unifier.

This mode of interaction is very effective since it enables the lazy enumeration
of a possibly infinite amount of solutions. However, it comes with a few drawbacks.
First, despite logic solvers are actually capable of generating streams of solutions,
the notion of stream is somewhat implicit in the solver machinery—therefore, not
explicitly exploitable. Second, solvers are stateful, in that they are responsible to
keep track of the status of the interaction with each querying user.

To overcome these issues we suggest a shift of perspective, as depicted in
fig. 10.1b. There, users and solvers interact in a stream-oriented mode, where
the stream of solutions is explicit and the interaction between solvers and users is
stateless. Thus, solvers expose just one operation – i.e., solve – accepting a user’s
query and returning a reference to the related cold stream of solutions. Users
just need solvers to create solution streams that users can then lazily consume
on demand. Of course, solutions can still be produced lazily behind the scenes:
whenever a user tries to consume a new solution, it can be computed on the fly.

Thus, even though interaction does not change from the operational viewpoint,
our approach overcomes the limits of traditional logic solvers: solution streams here
are explicitly represented, and can therefore be manipulated as such.

10.1.2 Logic solvers as stream consumers

By adopting a message passing perspective, logic solvers do not interact with users
only. Indeed, logic solvers typically act on a knowledge base (KB). In the general
case, KBs are containers of the specific knowledge required by solvers to compute
solutions to users’ queries. For instance, KB for Prolog solvers contain both rules
and facts as Horn clauses, and are either static or dynamic.

From an interaction perspective, however, a KB is just a component exploited
by solvers as part of their resolution process. More precisely, solvers may need
KB to retrieve some clauses, selected via unification, or, to retract or store some
knowledge possibly learned/acquired during the resolution.

In particular, clause retrieval highlights how the interaction between solver and
KB can be described in terms of streams as well. As depicted in fig. 10.1c, clause
retrieval from KB can be modelled as an operation – e.g., get – accepting a clause
template C and returning the stream of clauses unifying with C currently stored
into the KB. The solver can then consume the stream as needed, e.g. either lazily
or not, depending on the search strategy adopted.

140 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.1. LOGIC SOLVERS AS STREAMS PROSUMERS

Finally, storing a clause in the KB can be modelled as an assert accepting a
clause C and adding it to the KB, whereas clause retraction can be modelled as
a retract accepting a clause template C and removing a clause C ′ unifying with
C. Both operations could be exploited either by the solver or by some external
entity willing to affect the solver’s knowledge.

10.1.3 Solvers vs. the World

Yet, how can logic solvers deal with event streams coming from the external world?
Once KBs are recognised as individual entities, a trivial answer could be: via KB.
External events may indeed be reified into actual knowledge to be stored into some
solver’s KB. In this scenario, external event streams should be translated into a
sequence of assertions aimed at injecting events into the KB, as facts. The solver
could then lazily consume the events by getting or retracting the corresponding
facts from the KB.

There are, however, two major drawbacks in this approach. First, the reifi-
cation of events into KB requires space. Second, solvers do not necessarily have
to process or consume reified events—thus a lot of space is wasted. Accordingly,
a different approach is required to let solvers consume event streams from the
external world without reifying them unnecessarily.

In this work, we propose primitives as the basic means to let solvers interact
with the external world. A primitive is a special Prolog facility capable of affecting
and inspecting the external world via some I/O facility (fig. 10.2). It is invoked
by a solver and produces a stream of facts to be consumed by the same solver.
However, from the solvers’ perspective, primitives are ordinary built-in predicates
denoted by signatures—i.e., name/arity couples of the form p/n.

More precisely, whenever the solver needs to compute the assignment of vari-
ables Ti satisfying relation p(T1, . . . , Tn), it can trigger the primitive denoted by
p/n (if it exists), by sending the p/n primitive a request providing a snapshot
of the current resolution context and possibly an initial assignment of some Ti.
The primitive answers by providing a stream of responses – each one with some
possible complete assignment of Ti – that the solver can consume accordingly to
its resolution strategy—i.e., possibly later. To produce responses, primitives may
take into account several information sources – e.g., the resolution context, the
external world – as a part of the request. They may also attempt to affect the
external world via some I/O action—e.g., triggering a sensor.

Depending on the numbers of responses a primitive provides, it can either be
classified as either functional or relational. Functional primitives produce just one
response and their execution is therefore analogous to the execution of a func-
tion, as they consume an input and return a single result. Conversely, relational
primitives produce two or more responses.

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 141

10.1. LOGIC SOLVERS AS STREAMS PROSUMERS

Figure 10.2: Dataflow and component view of primitives, i.e. solvers’ gates towards
the external world

10.1.4 Example: TSP in Prolog

Let us consider for instance the case of a user exploiting a standard Prolog system
to solve arbitrary instances of the Traveling Salesman Problem (TSP).

Let us assume the system requires maps to be represented as facts in the form
path(+Src, +Dst, +Cst) – each one representing an undirected path between
two locations, and the estimated cost –, like e.g.:�

1 path(bucarest , giorgiu , 90).

2 path(bucarest , pitesti , 101).

3 path(pitesti , ’rimnicu vilcea ’, 97).

4 path(pitesti , craiova , 138).

5 path(’rimnicu vilcea ’, craiova , 146).

6 ...
� �
Under this assumption, Prolog exposes a predicate tsp(?Cities, ?Circuit, ?

Cost) aimed at computing the best Circuit for some set of Cities, and the
corresponding Cost—where, Cities is a set of cities, Circuit is a list of cities to be
visited in a row, and Cost is an integer. Following a purely-logical interpretation,
the predicate represents a ternary relation tsp ⊆ 2C × C∗ × N grouping subsets
of cities, lists of cities, and non-negative integers, where C is the set of all cities
mentioned in the KB as either the first or second argument of a path/3 fact, and
C∗ is the Kleene-closure of C. Thus, an assignment of the Cities, Circuit, and
Cost variables satisfies the predicate if

• Circuit ≡ [c0, . . . , cn−1, c0], and

• Cities ≡
⋃n−1

i=0 {ci}, and

142 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.1. LOGIC SOLVERS AS STREAMS PROSUMERS

• ∀i ∈ {1, . . . , n} path(ci−1, ci mod n, xi) ∈ KB, and

• Cost ≡
∑n

i=1 xi, and

• Cost is minimal.

Accordingly, because of Prolog backtracking, a query of the form:�
1 ?- tsp(Cities , Circuit , Cost).
� �

would enumerate all minimally-costly circuits of all possible subsets of cities in
C, and their costs—one for each solution. Users may partially instantiate some
variable in order to contextualise their queries: for instance, a query of the form:�

1 ?- tsp({pitesti , craiova , ’rimnicu vilcea ’}, [pitesti | Others], Cost).
� �
would enumerate all minimally-costly circuits starting in Pitesti, and involving the
cities Craiova, and Rimnicu Vilcea.

The predicate tsp/3 could be implemented declaratively in Prolog. In its
simplest formulation, the predicate may leverage Prolog’s depth-first strategy, and
its backtracking mechanism to lazily generate all the possible circuits and select the
less costly one: not likely the best possible strategy, yet a working one. However,
better strategies have been proposed in the literature for solving the TSP, with
efficient implementations built upon them—rarely based on pure Prolog. Here,
instead, primitives make it possible to exploit external libraries for solving the
TSP in Prolog as if they were implemented via LP.

For instance, we assume that a “ACME TSP” C library exists that solves
TSP efficiently, which can be wrapped within a relational primitive tsp/3 to be
exploited by a Prolog solver. The primitive tsp/3 should work as follows:

1. whenever the Prolog solver encounters a tsp(Cities, Circuit, Cost) sub-
goal, it triggers the primitive via a request containing a snapshot of the
current KB and the actual values of Cities, Circuit, and Cost;

2. the primitive reads (i) the map graph from the KB snapshot, and (ii) the
cities from the actual value of Cities;

3. the primitive generates the stream of all the possible subsets of C and selects
the ones unifying with the actual value of Cities, thus: if Cities is bound to
a particular sub-set of cities, then the stream has just one element, otherwise
it may have several ones;

4. for each sub-set of cities in the stream, the primitive triggers ACME TSP
and computes the corresponding TSP solution, if any;

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 143

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

5. every time it is triggered, ACME TSP computes zero or more solutions for
the TSP and returns them to the primitive;

6. for each TSP solution of each selected instantiation of Cities, the primitive
yields a response to the solver;

7. each response may either contain a unifier – assigning Cities to the selected
list of cities, Circuit to the minimally-costly circuit for those cities, and
Cost to the cost of that circuit – or a failed substitution—informing the
solver the tsp/3 predicate should fail;

8. the solver can consume the response stream lazily via backtracking.

In other words, primitives can be exploited as a means to wrap external data
producers and let the solver consume the data they produce via streams. In Prolog,
streams of this sort are lazily consumed via ordinary backtracking: the solver lazily
generates a new choice point for each element in the stream and handles them as
usual. Solvers of different sorts may consume the stream differently—e.g. buffering
(some slice of) it, or, handling each datum concurrently.

10.2 Solvers as Streams Prosumers via State Ma-

chine

In order to design a Prolog solver supporting our notion of primitive, we enhance
the Prolog state machine proposed in [PBOR08] with the capability of lazily con-
suming streams of data coming from either a primitive or the KB (fig. 10.3). In
particular, we change how the state machine manages the resolution of (sub-)goals,
by supporting the selection of a primitive as a means to provide one or more solu-
tions for (sub-)goals, other than the ordinary selection of rules from the KB.

The state machine in fig. 10.3 stems from the acknowledgement that a Prolog
solver may solve a (sub-)goal by either selecting a primitive or a number of logic
rules from the KB. In both cases, a stream of data must be lazily consumed by
the solver—either carrying primitive responses or clauses from the KB.

Whenever a stream of data needs to be processed, there are essentially two
major phases: the opening of the stream – where a channel between the stream
producer and its consumer is created –, and the consumption of the stream—where
items from the stream are sequentially processed. To support both phases, two
more locations are included – namely Primitive Selection and Primitive Execution –
respectively aimed at triggering a primitive and consuming the response stream it
provides. Furthermore, to support a stream-oriented interaction among the solver
and its KB, we model rule management as well through two locations, namely

144 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

Goal
Selection

End

Primitive
Selection

Back
tracking

Exception

Primitive
Execution

Rule
Selection

Halt

Rule
Execution

Primitive

Request

Response ...

Response Stream

KB

Goal

Rule...

W
o
rl

d

Execution-Context Stack Choice-Point Queue

All locations

state transition

data flow

Figure 10.3: The primitive-enabled state machine governing Prolog solvers’ behaviour.
Location Goal Selection is the initial one, whereas End and Halt are the final ones. Loca-
tion Primitive (resp. Rule) Selection is where primitives (resp. KB) are triggered (resp.
queried) and their data streams are opened. Conversely, location Primitive (resp. Rule)
Execution is where response (resp. clause) streams are lazily consumed

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 145

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

Primitive Selection and Primitive Execution, respectively aimed at querying the KB,
and consuming the rule stream it provides.

All the other aspects are handled in the same way as in [PBOR08]. Thus, state
machine execution is triggered whenever a user submits a query to the solver: when
this is the case, execution starts from the Goal Selection location. Then, it may
go through any location until it eventually reaches some final one (End or Halt),
where a new solution is yielded—which the user can eventually consume. Once a
solution is consumed, the user can either submit a new query or ask for the next
solution. In the former case, the automaton is reset to the Goal Selection location.
Conversely, the latter case is only possible if the last solution was provided by
the End location. In that case, the automaton backtracks and looks for the next
solution. This may involve stepping through Backtracking, then moving back into
the Primitive (resp. Rule) Execution, in order to consume one more element from
some previously-opened response (resp. clause) stream.

Overall, our state machine affects the operation of a Prolog solver as follows:

1. [Primitive Selection] whenever a new sub-goal is selected, the solver looks for
a primitive whose signature matches the sub-goal one;

2. [Primitive Execution] if some are found, the solver considers the first response
in the stream as a solution to the goal, and generates choice points for sub-
sequent responses;

3. [Rule Selection] otherwise, if no primitive is selected for the current sub-goal,
some rule is looked for instead, whose head unifies with the sub-goal;

4. [Rule Execution] if any such rule is found, resolution can proceed by address-
ing the rule’s body as the next goal to be proved;

5. [Backtracking] otherwise, if no rule is found, the sub-goal is considered failed
and resolution must backtrack.

Location Exception completes the picture by intercepting exceptions – possibly
thrown by primitives as part of some response of theirs –, via the standard catch

/3 predicate.
Ordinary Prolog built-in primitives naturally fit the picture as they are re-

interpreted as primitives by solvers. For instance, the is/2 predicate can be
considered a functional primitive accepting a variable and an expression and re-
turning a single response assigning the variable to the value attained by reducing
the expression – if possible –, or an exception—in case the expression cannot be
reduced. Conversely, the member/2 predicate can be considered as a relational
primitive, enumerating all the possible items in a list. Accordingly, the afore-
mentioned Primitive Selection location is where built-in primitives are selected for
execution in place of rules from the KB.

146 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

10.2.1 Formal Description

In the reminder of this section we formally define the behaviour of a primitive-
enabled state machine for Prolog. The discussion starts by introducing the basic
notations, functions, and data structures aimed at formally describing the se-
mantics of our state machine. Semantics is then provided via labelled transition
systems.

Syntax and Notational Conventions

Here we recap the fundamental syntactical definitions our discussion relies upon.
Most definitions here rely on the theoretical background provided in section 3.1.

Knowledge Bases. Let A be the set of all atomic logic formulæ, and let H be
the set of all well-formed Horn clauses in the form:

a← a1, . . . , an s.t. n > 0

(a.k.a. rules) where a, a1, . . . , an ∈ A are logic predicates of arbitrary arity. Let us
enumerate rules in H by h. Thus, we define knowledge bases as ordered containers
of rules of the form [h1, h2, . . .].

Let K denote the knowledge base, with K ∈ H∗, where H∗ is the set of all
possible KB.

Finally, let get : H∗ ×H → H∗ be a function defined as follows:

get(K,h) =

[h′ | get(K ′)] if K ≡ [h′ | K ′] ∧mgu(h, h′) ̸= ⊥
[get(K ′)] if K ≡ [h′ | K ′] ∧mgu(h, h′) = ⊥
[] if K ≡ []

aimed to select all rules in K unifying with the clause h.

Primitives. Let F be the set of all predicate symbols, enumerated by f , and let
N be the set of natural numbers. Thus,

• let F × N denote the set of all possible signatures and

• let (f, n) ∈ F × N denote the generic signature of a n-ary predicate whose
functor is f .

Let us define the function signature : A → F × N as:

signature(f(t1, . . . , tn)) = (f, n)

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 147

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

that computes the signature of any possible atomic predicate.
Let Θ be the set of all possible substitutions – including the failed substitution

⊥, the empty unifier ∅, and any unifier in the form {V1 7→ t1, V2 7→ t2, . . .} where
Vi are logic variables and ti are logic terms – and let us enumerate elements in Θ
by θ.

Let then X be the set of all possible exceptions – i.e., arbitrary terms describing
error situations –, enumerated by x.

Accordingly, R = X ∪Θ represents the set of all possible primitive responses,
enumerated by r.

Then, let P be the set of all possible primitives with the form:

p : H∗ ×A → R∗

In other words, we call “primitive” any function p ∈ P accepting a knowledge base
K ∈ H∗ and a goal a ∈ A as input and producing a stream of responses p(K, a) =
r̄ ∈ R∗ as output—where each response r ∈ r̄ may either be a substitution or an
exception.

Finally, we define a primitive store I as a relation of the form:

I ⊆ F × N× P

that is, any possible indexing of primitives by signatures. Given a particular
primitive store I, we enumerate its elements by (f, n, p).

Solver Automaton. We define an execution context E as a tuple of the form(
θ, ā, h̄, p̄

)
where:

• θ ∈ Θ is a substitution;

• ā ∈ A∗ is a stream of goals ;

• h̄ ∈ H∗ is a stream of rules ;

• r̄ ∈ R∗ is a stream of primitive responses.

Accordingly, letting E denote set of all possible execution contexts, we define an
execution-context stack E as a list of the form [E0, E1, . . .] ∈ E∗, where E0 can
either be called the “current execution context” or the “top of the execution-
context stack”.

Conversely, we define a choice point C as any item in E∗—i.e., a snapshot of
a whole execution-context stack. We then define a choice-point queue C as a list
of the form [C0, C1, . . .], and we denote by C∗ the set of all possible choice-point

148 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

queues. There, C0 can either be called the “next choice point” or the “head of the
choice-point queue”. Let append : C∗ × E∗ → C∗ be a function defined as:

append(C, C) =

{
[C] if C ≡ []

[C1, . . . , Cn, C] if C ≡ [C1, . . . , Cn]

serving the purpose of appending a new choice point at the end of a choice-point
queue.

Finally, let L denote the set containing all the locations depicted in fig. 10.3:

L = {Goal Selection,Primitive Selection,Primitive Execution,Rule Selection,

Rule Execution,Backtracking,Exception,End,Halt}

We enumerate items in L by L.

Semantics

The semantics of our Prolog state machine can be described in terms of states and
transitions between them. In this regard, a state is a tuple of the form ⟨L,E,C⟩
where

• L ∈ L is a location,

• E ∈ E∗ is an execution-context stack,

• C ∈ C∗ is a choice-point queue.

Accordingly, the state machine semantics is defined as a labelled transition
system ⟨S,Λ, s0,−→⟩ where:

• S is the set of all possible states,

• Λ = {τ} ∪ X ∪Θ is a set of labels,

• s0 ∈ S is the initial state,

• −→⊆ S × Λ × S is a transition relation dictating how state may evolve in
time.

There, transition labels in Λ denote relevant observable events, while the anony-
mous label τ denotes internal events. Observable events of interest can be, for
instance, the production of either a positive or negative solution – denoted by the
corresponding substitution in Θ – or the production of an exceptional solution—
denoted by the corresponding exception in X . In the following, for the sake of

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 149

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

notation simplicity, we write s
λ−−→ s′ instead of (s, λ, s′) to refer to transitions in

−→.

Assuming that a KB K and a primitive store I are provided, and that the
initial state s0 ∈ K is always a tuple of the form:

⟨Goal Selection, [(∅, [g0], [], [])], []⟩

for some initial goal g0 – meaning that (i) the initial location is always Goal Se-
lection, (ii) the current context initally only contains the empty unifier ∅ and
g0, and (iii) the choice-point queue is initially empty – we can intensionally de-
fine the admissible transitions in −→ via the following transition rules—each one
corresponding to an arrow in fig. 10.3.

Goal Selection. The purpose of the Goal Selection location is to decide what to
do next depending on which and how many (sub-)goals are in the current execution
context. There are three relevant situations handled in this location, by as many
transition rules. More precisely, if the current execution context does not contain
any goals, this implies either that a new solution should be yielded, or the top
execution context should be popped from the stack. Conversely, if the current
execution context does hold at least one goal, the automaton commits to that
goal—meaning that it tries to prove its truth via subsequent transitions.

Accordingly, the following transition rule handles the case where there is only
one last execution context on the stack with no more goals—thus, implying the
automaton should move into the End location and a new solution should be yielded:

E = (θ, [], [], [])

⟨Goal Selection, [E],C⟩ θ−→ ⟨End, [E],C⟩

The positive or negative solution depends on the θ substitution of the last execution
context E, which can be either a unifier or the failed substitution ⊥. In the former
case, θ synthesises all the variable assignments computed so far by the automaton.

Conversely, the following transition rule handles the case where the current ex-
ecution context has no more goals, but the stack contains more execution contexts.
When this is the case, the automaton simply pops the current execution context
from the stack and holds the Goal Selection location:

E0 = (θ0, [], [], []) E1 = (θ0, ḡ, [], []) E ′
1 = (θ1, ḡ, [], [])

⟨Goal Selection, [E0, E1 | E],C⟩ τ−−→ ⟨Goal Selection, [E ′
1 | E],C⟩

Before popping the current execution context E0, the automaton spreads its θ0
substitution to the parent execution context E1—as θ0 can contain more assign-

150 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

ments than θ1.

Finally, the following transition rule handles the case in which the current
execution context contains a non-empty stream of goals ḡ. When this is the case
the automaton applies the most recent substitution θ to all the goals in ḡ before
moving into Primitive Selection location and tries then to prove the truth of the
first sub-goal in ḡ:

E = (θ, ḡ, [], []) E ′ = (θ, ḡ′, [], []) ḡ′ = ḡ/θ

⟨Goal Selection, [E | E],C⟩ τ−−→ ⟨Primitive Selection, [E ′ | E],C⟩

where by ḡ/θ we mean the application of substitution θ to all goals in ḡ.

Primitive Selection. The purpose of the Primitive Selection location is to select
a primitive in the primitive store I in order to prove a (sub-)goal—provided a
primitive matching the goal’s signature exists in I. If this is the case, the primitive
is triggered and the first primitive response is handled. Thus, there are three
relevant situations handled in this location, by as many transition rules. A pivotal
role in discriminating among situations is played by the first goal g of the current
execution context. If primitive p is indexed in I via signature of g, then p is
triggered and a response stream is generated in return. Only the first item in
the stream, r, is consumed. This can be either an exception or a substitution.
Each case is handled by a different transition rule. Otherwise, if the signature of g
matches no primitive in I, no primitive is selected and, via subsequent transitions,
a rule for the same goal is searched.

In particular, the following transition rule handles the case where a primitive
p is found in I and the first response r is a substitution. When this is the case, a
new execution context is pushed on the stack – for handling the first response –,
and a new choice point is appended to queue—for handling any further response.
After that, the automaton moves to the Primitive Execution location.

E0 = (θ, ḡ, [], []) ḡ = [g | ḡ′] (f, n) = signature(g) (f, n, p) ∈ I [r | r̄] = p(K, g)
r ∈ Θ E1 = (θ, ḡ, [], [r | r̄′]) E2 = (θ, ḡ, [], r̄′) C′ = append(C, [E2, E0 | E])

⟨Primitive Selection, [E0 | E],C⟩ τ−−→ ⟨Primitive Execution, [E1, E0 | E],C′⟩

Conversely, the following transition rule handles the case in which the first
primitive response r is an exception. This implies that there could not be any
further response in the response stream and the exception needs to be handled. For
this reason, the automaton moves into the Exception location leaving the choice-

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 151

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

point queue unaffected:

E0 = (θ, [g | ḡ′], [], []) (f, n) = signature(g) (f, n, p) ∈ I
[x | r̄] = p(K, g) x ∈ X E1 = (θ, [g | ḡ′], [], [x | r̄])

⟨Primitive Selection, [E0 | E],C⟩ τ−−→ ⟨Exception, [E1, E0 | E],C⟩

In this case as well a new execution context is pushed on the stack – in order to
make the exception visible in Exception –, whereas no new choice point is created.

Finally, the following transition rules handle the case in which a primitive is
available in I for the goal g. When this is the case, the automaton simply moves
into the Exception location:

E = (θ, [g | ḡ′], [], []) (f, n) = signature(g) (f, n, p) ̸∈ I
⟨Primitive Selection, [E | E],C⟩ τ−−→ ⟨Rule Selection, [E | E],C⟩

Primitive Execution. The purpose of the Primitive Execution location is to
lazily handle the response streams produced by primitives. To this regard, there
are three relevant situations, handled by as many transition rules. In fact, while
consuming a stream of solution responses, the automaton may either encounter
an empty stream, or a stream whose first element is either an exception, or a
substitution. The latter case is the most interesting one, as the substitution must
be kept into account in the next computational steps. Conversely, in the other
cases, the response stream is interrupted, even if with different outcomes: while
the lack of responses simply provokes backtracking, exceptions need to be handled
accordingly.

In particular, the following transition rule handles the case where the first
response in the stream is a unifier θ′. When this is the case, θ′ is merged with
the current execution context substitution θ and execution proceeds in the Goal
Selection location.

E = (θ, [g | ḡ], [], [θ′, . . .]) θ′ ∈ Θ− {⊥} E ′ = (θ ∪ θ′, ḡ, [], [])
⟨Primitive Execution, [E | E],C⟩ τ−−→ ⟨Goal Selection, [E ′ | E],C⟩

It is worth to highlight how this transition rule simply consumes a single response
in the stream. Subsequent responses may be consumed after backtracking. Thus,
this is where the lazy semantics of primitives is realised.

Conversely, the following transition rule handles both the case where the first
response in the stream is a failure (i.e. ⊥), and the case of any empty response
stream. In all such cases, the automaton simply moves into the Backtracking

152 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

location.

E = (θ, ḡ, [], r̄) r̄ = [⊥, . . .] ∨ r̄ = [] E ′ = (θ, ḡ, [], [])

⟨Primitive Execution, [E | E],C⟩ τ−−→ ⟨Backtracking, [E ′ | E],C⟩

Finally, the following transition rule handles the case where the first response
in the stream is an exception. When this is the case, the automaton simply moves
into the Exception location.

E = (θ, ḡ, [], [x, . . .]) x ∈ X E ′ = (θ, ḡ, [], [x])

⟨Primitive Execution, [E | E],C⟩ τ−−→ ⟨Exception, [E ′ | E],C⟩

Rule Selection. The Rule Selection location is for clauses what the Primitive
Selection location is for primitives. It aims at querying the KB and selecting
the rules to be executed to prove a particular (sub-)goal true, provided that no
primitive has been selected to the purpose. Accordingly, three transition rules are
defined, each one handling a particular situation. The most common situation
here is that a number of rules r̄ are selected from K in order to solve some goal g.
However, there is a small set of goals for which a particular treatment is reserved.
These are: ! (the “cut”), true, fail, and false. The first two are always
considered successful, while the others are always considered failed.

More precisely, the following transition rule takes care of goals such as ! and
true. As they must always be evaluated successfully, this transition simply makes
the automaton move into the Goal Selection location, after consuming the current
goal g0. However, in the particular case of g0 ≡ !, the transition rule also provokes
the cut of all choice points, up to the one relative to goal g1 (included):

E0 = (θ0, [g0 | ḡ0], [], []) g0 ∈ {true, !} E1 = (θ1, [g1, . . .], . . .)
E ′

0 = (θ0, ḡ0, [], []) C′ = cut(C, g1)

⟨Rule Selection, [E0, E1 | E],C⟩ τ−−→ ⟨Goal Selection, [E ′
0, E1 | E],C′⟩

where cut : C∗ × A → C∗ is the function cutting off choice points, up to a given
goal.

Conversely, the following transition rule takes care of goals such as fail and
false. As they must always be evaluated successfully, this transition simply makes
the automaton move into the Backtracking location, after consuming the current
goal g. This transition rule also handles the case where K is queried for all rules
whose head unifies with the current goal g, but no one is found.

E = (θ, [g, . . .], [], []) g ∈ {false, fail} ∨ get(K, g) = []

⟨Rule Selection, [E | E],C⟩ τ−−→ ⟨Backtracking, [E | E],C⟩

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 153

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

Finally, the following transition rule handles the general case whereK is queried
for all rules h̄ whose head unifies with the current goal g. Assuming that h̄ contains
at least one rule h, the automaton must then move to location Rule Execution, after
pushing a new execution context on the stack – aimed at handling h –, and adding
a new choice point to the queue—aimed at handling any further rule in h̄:

E0 = (θ, ḡ, [], []) ḡ = [g | ḡ′] g ∈ A− {true, false, fail, !}
get(K, g) = h̄ refresh(h̄) = [h | h̄′]

E1 = (θ, ḡ, [h | h̄′], []) E2 = (θ, ḡ, h̄′, []) C′ = append(C, [E2, E0 | E])

⟨Rule Selection, [E0 | E],C⟩ τ−−→ ⟨Rule Execution, [E1, E0 | E],C′⟩

where refresh : H∗ → H∗ is a function refreshing all variables of all clauses in a
clause stream/list.

Rule Execution. The Rule Execution location is for clauses what the Primitive
Execution location is for primitives. Thus, the purpose of this location is to lazily
handle the rule streams produced by KB. Accordingly, two transition rules are
defined, each one handling a particular situation. In both situations, the current
execution context is assumed to carry a non-empty rule stream to be handled. One
situation concerns the case where the first rule in the stream has a head matching
the current context goal. In this case, the execution can go on and focus on the
body of that rule. The other situation concerns the opposite case, where execution
must proceed with backtracking.

Accordingly, the following transition rule handles the first situation. The cur-
rent execution context’s first goal is g and the first rule is h. Provided that the
head of h unifies with g, and letting θ′ be their unifier, the current execution con-
text is updated in such a way that the new substitution is θ ∪ θ′ and the new goal
stream contains all the atoms from the body of h, subject to the substitution θ′.
After that, the automaton moves to the Goal Selection location.

E = (θ, [g | ḡ], [h, . . .], []) h = (a← a1, . . . , an) θ′ = mgu(g, a) ̸= ⊥
E ′ = (θ ∪ θ′, [g1/θ′, . . . , gn/θ′], [], [])

⟨Rule Execution, [E | E],C⟩ τ−−→ ⟨Goal Selection, [E ′ | E],C⟩

Conversely, the following transition rule handles the case where the head of
h does not unify with g. In this case, the automaton simply moves into the
Backtracking location.

E = (θ, [g | ḡ], [h, . . .], []) h = (a← . . .) mgu(g, a) = ⊥ E ′ = (θ, [g | ḡ], [], [])

⟨Rule Execution, [E | E],C⟩ τ−−→ ⟨Backtracking, [E ′ | E],C⟩

154 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

Backtracking. The Backtracking location is the key point where the lazy con-
sumption of rules and responses streams is performed by Prolog solvers. More
precisely, this is where the choice points previously accumulated by the automaton
in the choice-points queue are handled. Following this purpose, the Backtracking
location may encounter three relevant situations, all depending on the content of
the queue. The first situation concerns the case of the queue is empty, meaning
that a new negative solution should be produced by the solver. The other situa-
tions concern the cases where the next choice point is carrying a non-empty rule
or primitive response stream, respectively. In these cases, the automaton should
move into either the Rule or Primitive Execution locations, in order to go on with
resolution and consume the next rule or response.

Accordingly, the following rule handles the case where the choice-point queue
is empty and the and the automaton should just move into the End final location,
yield a new negative solution ⊥.

⟨Backtracking,E, []⟩ ⊥−−→ ⟨End,E, []⟩

Conversely, the following rule handles the case where the next choice point
C in the queue is an execution context carrying a non-empty primitive response
stream r̄. When this is the case, the automaton simply adopts C as the next
execution context, popping it from the choice-point queue and moving into the
Primitive Execution location.

C = [(θ, ḡ, [], r̄), . . .] r̄ ̸= []

⟨Backtracking,E, [C | C]⟩ τ−−→ ⟨Primitve Execution, C,C⟩

Finally, the following rule handles the case where the next choice point C in
the queue is an execution context carrying a non-empty rule stream h̄. When this
is the case, the automaton simply adopts C as the next execution context, popping
it from the choice-point queue and moving into the Rule Execution location.

C = [(θ, ḡ, h̄, []), . . .] h̄ ̸= []

⟨Backtracking,E, [C | C]⟩ τ−−→ ⟨Rule Execution, C,C⟩

Exception Handling. The Exception location has the purpose of managing ex-
ceptions possibly raised by primitive responses in the Standard Prolog way—i.e.
by climbing the proof tree towards the root, looking for a catch/3 (sub-)goal whose
second argument unifies with the raised exception and setting its third argument
as the next sub-goal to be proved.

Following this purpose, the Exception location may encounter two notable situ-
ations. In both ones, the current execution is assumed to be carrying an exception

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 155

10.2. SOLVERS AS STREAMS PROSUMERS VIA STATE MACHINE

x ∈ X . The first situation concerns the case where the exception can be caught
since there exists on the stack an execution context of the form catch/3 which
may intercept the exception and let resolution continue. The second situation con-
cerns the opposite case where the exception cannot be caught – since no such an
execution context is contained into the stack – and resolution must be therefore
interrupted.

In particular, the following transition rule handles the first situation where an
execution context E ′ exists on the stack whose first goal is catch(g1, g2, g3). When
this is the case, we denote by θ′ the MGU among x and g2. Then, the automaton
pops from the stack all execution contexts up to E ′ (included), pushes a new
execution context carrying g3 as the first goal, and moves into the Goal Selection
location.

E = (θ, [g | ḡ], [], [x, . . .]) x ∈ X E ′ = (ϑ, [catch(g1, g2, g3), . . .], h̄, r̄)
θ′ = mgu(x, g2) ̸= ⊥ θ′′ = ϑ ∪ θ′ E ′′ = (θ′′, [g3/θ

′′], [], [])

⟨Exception, [E, . . . , E ′ | E],C⟩ τ−−→ ⟨Goal Selection, [E ′′ | E],C⟩

Conversely, the following transitions rule handles the opposite situation where
no execution context on the stack carries catch(g1, g2, g3) as the first goal—or, if
it does, g2 does not unify with x. When this is the case, the automaton simply
moves into the Halt location, yielding an exceptional solution to the users.

E = (θ, [g | ḡ], [], [x, . . .]) x ∈ X
E ̸= [E, . . . , (ϑ, [catch(g1, g2, g3), . . .], h̄, r̄), . . .]

⟨Exception, [E | E],C⟩ x−−→ ⟨Halt, [E | E],C⟩

Next Solutions. Both the End and Halt locations are final, meaning that the
automaton reaches them immediately after the production on a novel solution—
be it positive, negative, or exceptional. However, while the Halt location is a
sink certainly provoking the automaton termination, the End state may allow the
execution to be resumed. In particular, when the automaton is in location End,
the users may trigger the automaton again looking for further solutions—which
may be available if the choice-point queue is not empty.

Accordingly, the following transition rule handles the case where the automa-
ton execution is resumed: once in location End the automaton may move back
into location Backtracking, provided that the current choice-point queue C is non-
empty.

C ̸= []

⟨End,E,C⟩ τ−−→ ⟨Backtracking,E,C⟩
Thus, the automaton actually terminates in location End only when the choice-

156 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.3. PREDICATES AS STREAMS IN 2P-KT

Listing 10.1: Interface of a general purpose Solver in 2P-Kt�
1 interface Solver {

2 val staticKb: Theory

3 val dynamicKb: Theory

4 val libraries: Libraries

5 fun solve(goal: Struct): Sequence <Solution >

6 }
� �
point queue is empty.

10.3 Predicates as Streams in 2P-Kt

In order to demonstrate the feasibility of our approach, we propose a case study
based on 2P-Kt. 2P-Kt [CCO21a] is a Kotlin-based ecosystem for LP, including
general API for stream-oriented logic solvers of any sort. Regardless of the par-
ticular logic, inference rule, or search strategy of choice, a logic solver is modelled
in 2P-Kt as a prosumer of streams: it produces output streams of solutions and
consumes input streams generated by primitives. A Prolog solver implementation
is available as well, leveraging the state-machine-based design presented in sec-
tion 10.2. Furthermore, 2P-Kt involves an API for writing primitives in Kotlin,
by blending an imperative, object-oriented, and functional programming style .

In this section, we first illustrate briefly the portion of the 2P-Kt API involving
solvers and primitives, then we discuss an example primitive implementing the TSP
example from section 10.1.4.

10.3.1 2P-Kt Solvers and Primitives API

Here we focus on the resolution-related portion of the 2P-Kt API (cf. chapter 9
for further details). There, logic solvers are modelled as instances of the Solver

type defined as shown in listing 10.1: Essentially, a logic solver is any entity
exposing a method solve which accepts a logic Structure – i.e., a particular
case of logic Term in the 2P-Kt type system – as the input goal, and produces a
Sequence – i.e., a lazy stream in the Kotlin type system – of logic Solutions as
output. Furthermore, 2P-Kt requires each logic solver to be composed by at least
three more entities, namely: (i) a staticKb and (ii) a dynamicKb, both of type
Theory – that is, an ordered and indexed container of logic clauses, retrievable via
unification –, and (iii) a libraries container of type Libraries—which, within
the scope of this section, is essentially an implementation of the structure indexing
primitives.

Each Solution in 2P-Kt may be of any of three sorts, namely Yes, No, and

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 157

10.3. PREDICATES AS STREAMS IN 2P-KT

Listing 10.2: Interface of a general-purpose Primitive in 2P-Kt�
1 fun interface Primitive {

2 fun solve(request: Request <ExecutionContext >): Sequence <Response >

3 }
� �
Listing 10.3: API of a primitive’s Request in 2P-Kt�

1 class Request(

2 val context: ExecutionContext ,

3 val signature: Signature ,

4 val arguments: List <Term >

5) {

6 fun solve(subQuery: Struct): Sequence <Solution >

7 fun replySuccess (): Response

8 fun replyFail (): Response

9 fun replyWith(substition: Substitution): Response

10 fun replyException(exception: TuPrologRuntimeException): Response

11 }
� �
Halt, representing the positive, negative, and exceptional case, respectively. All so-
lutions carry the original query they are answering to, other than the Substitution
they are answering through. So for instance, objects of type Solution.Yes always
contain an object of type Substitution.Unifier, whereas other sorts of solutions
always contain an object of type Substitution.Fail. Similarly, objects of type
Solution.Halt carry the uncaught exception which interrupted the resolution
process.

Primitives are modelled in 2P-Kt as functional interfaces, as shown in list-
ing 10.2, i.e. as functions accepting a Request as input and returning a Sequence

of Responses as output. There, Request (cf. listing 10.3) is a container of all
the information needed at runtime to produce a sequence of Responses. These in-
clude: (i) a snapshot of ExecutionContext at invocation time – in turn including
a snapshot of the solver’s staticKb and dynamicKb –, (ii) the Signature of the
invoked primitive, and (iii) the List of Terms storing actual arguments provided
to the primitive upon invocation. Furthermore, each instance of Request exposes
a bunch of methods – namely, the many reply*() ones –, aimed at generating
a new Response for that particular Request. As Responses are mere containers
of Solutions, there are many variants of the reply*() methods, each one aimed
at generating a given sort of responses – e.g. responses carrying positive/nega-
tive/exceptional solutions – for the sub-goal that triggered the primitive. Finally,
each request supports the spawning of an inner resolution process via its solve

(...) method. This method creates a novel sub-solver through which primitive
implementers can resolve sub-queries as part of some primitive execution.

Thanks to this design, any Kotlin function of the form shown in listing 10.4

158 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.3. PREDICATES AS STREAMS IN 2P-KT

Listing 10.4: General structure of a function acting as primitive in 2P-Kt�
1 fun method(request: Request): Sequence <Response > = sequence {

2 request.arguments[i] // read the i-th actual argument

3 request.context.staticKb[h] // read clauses in KB whose head matches h

4 solve(goal) // perform sub -queries

5

6 val substitution = (arg0 mguWith value0) + (arg1 mguWith value1) + ...

7

8 yield(request.replyWith(substitution))

9 // or

10 yield(request.replyFail ())

11 // or

12 yield(request.reply *(...))

13 }
� �

Listing 10.5: Implementation of a primitive aimed at lazily generating all natural
numbers in 2P-Kt�

1 fun natural(request: Request): Sequence <Response > = sequence {

2 var n = 1

3 while (true) {

4 yield(Integer.of(n))

5 n++

6 }

7 }.map {

8 request.replyWith(request.arguments [0] mguWith it)

9 }
� �

can be considered a primitive in the eyes of a logic solver. This leverages a partic-
ular feature of Kotlin, namely the sequence { ... } blocks, which let developers
write stream primitives by blending the imperative and functional programming
styles. This is possible because of the yield(value) method which users may call
inside sequence { ... } blocks in place of return value to provide values to
the stream.

So, for instance, to implement the predicate natural/1 – which holds true for
all natural numbers –, one may write the primitive from listing 10.5. A Prolog
solver would then treat such a primitive as a backtrackable predicate. Thus, in
Prolog, one may use the goal natural(X) to enumerate all the natural numbers.
Similarly, to implement the predicate even/1 – which holds true for all even natural
numbers –, one may simply rewrite method natural as follows:

Summarising, 2P-Kt primitives API supports the creation of backtrackable
Prolog predicates out of lazy data streams.

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 159

10.3. PREDICATES AS STREAMS IN 2P-KT

Listing 10.6: Implementation of a primitive aimed at lazily generating all even natural
numbers in 2P-Kt�

1 fun even(request: Request): Sequence <Response > = sequence {

2 var n = 1

3 while (true) {

4 yield(Integer.of(n))

5 n++

6 }

7 }. filter {

8 it.value % 2 == 0

9 }.map {

10 request.replyWith(request.arguments [0] mguWith it)

11 }
� �
10.3.2 Travelling Salesman Problem in 2P-Kt

The real potential of primitives is revealed when they are exploited by solvers to
manage input data streams from the external world. There, the external world may
be any source of data, there including other solvers, possibly of different nature.
For example, primitives may be exploited to let a Prolog solver call a TSP solver
to efficiently compute solutions for TSP instances, as discussed in section 10.1.4.
Accordingly, here we demonstrate how a primitive of such a sort may be realised
through 2P-Kt.

In [Cia21] we provide a GitHub repository hosting the source code of a 2P-Kt
primitive leveraging Google OR-Tools [PF19] to efficiently solve TSP instances.
Google OR-Tools is a C++ library proving many constraint programming and
operative research tools – there including routing-related facilities –, and some
JVM bindings which let us exploit such tools in Kotlin.

Accordingly, our repository includes some scripts aimed at automating the com-
pilation and execution of a simple demo involving a command-line TSP-enabled
Prolog interpreter. Following the discussion from section 10.1.4, such a Prolog
interpreter exposes a tsp/3 predicate aimed at enumerating the minimally-costly
circuits for any given set of cities, provided that the interpreter’s KB contains
several path/3 facts describing the connections among those cities. As an or-
dinary Prolog interpreter, such facts may be either consulted from a .pl file or
dynamically asserted via assert/1.

The actual operational behaviour of predicate tsp/3 is governed by the Tsp

primitive whose source code (stub) is shown in listing 10.7 (cf. [Cia21] for full
source code). The Tsp primitive is a singleton object of type TernaryRelation –
i.e., a particular sort of Primitive, tailored on ternary predicates –, whose main
behaviour is encapsulated within the computeAll method.

The Tsp object is also endowed with a method – namely, tsp – which returns
a sequence of circuits and costs for any given list of cities provided as input. Such

160 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.3. PREDICATES AS STREAMS IN 2P-KT

Listing 10.7: 2P-Kt primitive implementing the tsp/3 predicate�
1 import it.unibo.tuprolog.core.List as LogicList

2
3 object Tsp : TernaryRelation <ExecutionContext >("tsp") {

4 init { com.google.ortools.Loader.loadNativeLibraries () }

5
6 private fun Request <ExecutionContext >.tsp(cities: List <Term >): Sequence <Pair <LogicList , Integer >> { ... }

7
8 // other utility methods

9
10 override fun Request <ExecutionContext >. computeAll(fst: Term , snd: Term , trd: Term): Sequence <Response > {

11 val allCities = solve(Struct.template("path", 3))

12 .filterIsInstance <Solution.Yes >()

13 .map { it.solvedQuery }

14 .flatMap { sequenceOf(it[0], it[1]) }

15 .toSet()

16
17 return allCities

18 .subsets ()

19 .flatMap { it.permutations () }

20 .map { it to (Set.of(it) mguWith fst) }

21 .filter { (cities , substitution) -> cities.isNotEmpty () && substitution is Unifier }

22 .flatMap { (cities , substitution) -> tsp(cities).map { it.addLeft(substitution) } }

23 .map { (substitution , circuit , cost) -> substitution + (snd mguWith circuit) + (trd mguWith cost) }

24 .filterIsInstance <Unifier >()

25 .map { replySuccess(it) }

26 }

27 }
� �
method assumes each input city to be represented by a logic term – in particular,
a constant –, and outputs circuits represented as logic lists of cities represented in
the same way. Behind the scenes, the tsp interacts both the Prolog interpreter’s
KB to read distances among cities, and a Google OR-Tool solver for computing
all possible solution to a particular TSP instance.

The computeAll handles the situation where the Prolog interpreter meets a
(sub-)goal of the form tsp(Cities, Circuit, Cost)—where all variables may be
partially or totally uninstantiated. The method operation can then be described
as a pipeline of lazy operations applied to the actual arguments of tsp/3, which
we refer as fst, snd, and trd within the method. Accordingly, the method firstly
performs a sub-query aimed at computing the set of all cities currently contained
into the KB (cf. variable allCities in listing 10.7). The sub-query is a Prolog goal
of the form path(_, _, _), whose solutions are all eagerly consumed and their
first and second arguments – which are assumed to be city names – are merged into
a set, to remove duplicates. Then, all possible permutations of all possible subsets
of allCities are lazily generated. However, only the subsets of cities that unify
with fst are actually selected (this may be just one set of cities if fst refers to
a fully instantiated set of cities) for the next steps of the computation. Then, for
all selected sets of cities, all possible solutions to the corresponding TSP instance
are computed. Finally, each possible circuit (resp. cost) computed for each TSP
instance is unified with snd (resp. trd). Failed unifications are of course dropped,
while the successful ones are converted into responses of the tsp/3 primitive.

It is worth to highlight that the whole pipeline is lazy. This implies that even

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 161

10.4. RECAP AND RESEARCH PERSPECTIVES

once the first TSP solution has been presented to the user, the other ones are still
to be computed.

10.4 Recap and Research Perspectives

In this chapter we address the issue of stream processing in logic programming.
In particular, we discuss how logic solvers can be naturally conceived as lazy

prosumers of data streams as they (i) lazily produce data streams thanks to their
interactive nature, (ii) lazily consume data streams as part of their resolution
process—e.g. when they access knowledge bases. Furthermore, we show how logic
solvers can support the processing of input data stream via the notion of predicates
as primitives, which we introduce in this chapter. Summarising, primitives are
reactive computational units which logic solvers may trigger so as to receive data
streams from the external world. This may be useful, for instance, to let a solver
delegate some part of its resolution process to some external entity—assuming that
it is optimised to the purpose.

To demonstrate the feasibility of our approach in the specific (and technically
most relevant) case of Prolog, we propose a primitive-enabled modelling of Prolog
solvers as state machines, formalising the lazy consumption of streams via back-
tracking. The proposed formalisation preserves the standard operation of Prolog
and requires no modification to the language, while enabling Prolog solvers to
process data streams.

Finally, we discuss the use case of 2P-Kt [CCO21a], a Kotlin-based technology
for LP including an implementation of Prolog solvers relying on our state-machine-
based formalisation. We then exploit 2P-Kt to show how primitives can be used
to bridge different sorts of solvers together via a few lines of Kotlin code.

In our perspective, this work represents one further step towards the prac-
tical exploitation of LP – and, in particular, Prolog – as a general means for
stream processing. Notably, our contribution presents some similarities with other
works [TWS19, Red16]. In particular, similarly to [TWS19], we focus on let-
ting Prolog manipulate streams of data; while, similarly to [Red16], we provide a
mechanism to let logic solvers delegate computations to external entities. How-
ever, differently from [TWS19], we require no variation to the syntax, functioning,
or libraries of Prolog; while, unlike [Red16], we focus on Prolog rather than ASP.

A number of issues remain uncovered in this work, and will be the subject of
our future research. Among the many, the most relevant issues concern time, side
effects, and concurrency. In particular we plan to explore the temporal dimension
in LP-based stream processing, by providing for instance some means to support
time-dependent or time-limited data streams. Similarly, we would like to explore
the intricacies related to the processing of data streams which may affect the in-

162 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

10.4. RECAP AND RESEARCH PERSPECTIVES

ternal state of a logic solver – e.g. by affecting the KB – in a predictable way.
Finally, as further discussed in section 15.1, we are interested developing a frame-
work for concurrent resolution, following the same state-machine-based approach
we exploit in this chapter.

CHAPTER 10. BRIDGING LP AND STREAM PROCESSING 163

10.4. RECAP AND RESEARCH PERSPECTIVES

164 CHAPTER 10. BRIDGING LP AND STREAM PROCESSING

Chapter 11

Bridging LP and Mainstream
Programming Paradigms

This chapter contains contributions from the following works of ours: [CCS+20]

Logic Programming (LP) [Apt01, Kow74] is a programming paradigm based on
formal logic, inspired to the idea of declaratively specifying a program semantics
via logic formulæ, so that automatic reasoners can then prove such formulæ by
leveraging on different control strategies. In the years, LP has contributed to
the development of a number of diverse research fields laying under the umbrella
of symbolic AI—such as automatic theorem proving, multi-agent systems, model
checking, research optimisation, natural language processing, etc.

Nowadays, LP is one of the major programming paradigms available for soft-
ware development, along with the imperative, functional, and object-oriented ones.
In particular, LP is today one of the best-suited choices for tackling problems in-
volving knowledge representation, logic inference, automated reasoning, search in
a discrete space, or meta-programming [CCDO20]. Moreover, today LP supports
the core of AI components in pervasive and distributed systems, providing intelli-
gence where and when it is needed [OC19].

This is why the integration of LP within the main programming languages is
nowadays more interesting than ever. However, to make it actually work, integra-
tion should be designed – from a linguistic standpoint – so as to reduce both the
development time and the learning curve of developers, as well as the psychological
and cultural resistances against the adoption of new paradigms—thus, basically,
moving LP up to a manageable level by the OOP developer.

Most mainstream programming languages – such as Java, Kotlin, Scala, Python,
JavaScript, C# – have recognised the added value of the integration of diverse pro-
gramming paradigms under a unique syntax, a coherent API, and a rich standard
library. In fact, they all already support both the object-oriented (OOP) and func-
tional (FP) programming paradigms. We believe that the same languages would

CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

165

largely benefit from extending their support to LP languages as well, making them
usable in the OOP context in the same way as FP features already are.

Interoperability among Prolog [CR93] (as the first and most prominent LP
language) with other languages from different paradigms is not new: the Prolog
community has actually been studying this theme for years [BC02], as shown by
the many forms of integration historically present in most Prolog systems, provid-
ing either (i) logic-to-OOP interoperability, making object orientation available
within Prolog scripts, or (ii) OOP-to-logic interoperability, making logic program-
ming exploitable within object-oriented code—or both, as in the case of tuProlog
Java Library [DOR05]. It is worth noting here that existing integrations make
quite strong assumptions. For instance, item (i) assumes the main application is
written in Prolog and the interoperation is given via a suitable interface allowing
the injection of (small) parts written in other languages, while item (ii) implicitly
assumes LP and Prolog to be somehow harmonised with the language(s) hosting
them, at the paradigm, syntactical, and technological levels. Both these assump-
tions can actually create a barrier against an effective adoption of LP in today
applications despite its huge potential.

Therefore, the approach adopted in this work is to devise instead a form of
LP-FP-OOP blended integration, such that the key features of LP paradigm can
be exposed and made available to mainstream language developers in a way that is
the most natural in that context. The key requirement, therefore, is the “making
LP easy to adopt for OOP programmers”, in order to break down the learning
curve for non-experts, and pursuit the typical developers’ mindset. Going beyond
the mere interoperability intended as simple technical habilitation, our approach
is meant to embrace the perspective of the OOP developer aiming at exploiting
the potential of LP.

To this end, we show how designing Prolog as a domain-specific language (DSL)
for an OOP language such as Kotlin can make LP close enough to the OOP devel-
opers’ mindset to overcome most cultural barriers, while at the same mimicking
the Prolog syntax and semantics close enough to make its use straightforward for
LP developers.

Generally speaking, the integration of Prolog with other paradigms aims at
bringing the effectiveness and declarativeness of LP into general-purpose OOP
framework. In particular, OOP designers and programmers can be expected to
benefit from LP features for (i) data-driven or data-intensive computations, such
as in the case of complex-event-processing frameworks; (ii) operation research or
symbolic AI algorithms, or more generally other algorithms involving a search
space to be explored; (iii) multi-agent systems, and the many areas in that field
leveraging on LP, such as knowledge representation, argumentation, normative
systems, etc.

166 CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

11.1. BACKGROUND

The proposed solution is based on the 2P-Kt technology [2P-21, CCO21a], a
re-engineering of the tuProlog project [tuP21, DOR01] as a Kotlin multi-platform
library supporting the JVM, JS, Android, and Native platforms. The case of a
Kotlin-based Prolog DSL is presented and discussed.

Accordingly, the chapter is organised as follows. Section 11.1 briefly introduces
LP, providing details about tuProlog, 2P-Kt, and Kotlin as well. It also sum-
marises the current state of the integration between LP and mainstream program-
ming languages. Section 11.2 discusses the rationale, design, and architecture of
our Prolog-Kotlin DSL along with some examples. Section 11.3, briefly illustrates
a case study where our DSL is used in combination with functional programming
to solve a simple AI task in an elegant way. Finally, in section 11.4, concludes the
chapter by providing some insights about the possible future research directions
stemming from our work.

11.1 Background

11.1.1 LP integration with other languages

In order to integrate LP with high-level languages, many Prolog implementations
expose a foreign language interface (FLI, table 11.1) towards some high-level target
language. In most cases, the target language is Java, and the FLI is bi-directional—
meaning that it supports both “calling Prolog from the target language” and vice
versa. In a few particular cases, however, the JavaScript and C# languages are
also supported. As we are mostly interested in discussing how and to what extent
Prolog exploitation is possible within the target languages, in the reminder of
this section we only focus on those FLI allowing to “call Prolog from the target
language”.

Each FLI mentioned in table 11.1 is characterised by a number of features
that heavily impact the way the users of the target languages may actually exploit
Prolog. These are, for instance, the nature of the FLI – which is tightly related to
the target platform of the underlying Prolog implementation – and its reference
programming paradigm.

By “nature” of the FLI, we mean the technological mechanism exploited by a
particular Prolog implementation to interact with the target language. There are
some cases – like tuProlog and τProlog – where this aspect is trivial, because the
target language is also the implementation language—so Prolog is considered there
as just another library for the target language. More commonly, however, Prolog
is implemented in C, and the Java Native Interface (JNI) is exploited to make it
callable from Java. This is for instance the case of SWI- and ECLiPSe-Prolog.
While this solution is very efficient, it hinders the portability of Prolog into par-

CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

167

11.1. BACKGROUND

Table 11.1: Prolog implementations and their foreign language interfaces (FLI)

Prolog
Implementation

Platform
FLI

towards
Nature
of FLI

Paradigm
of FLI

Source

BProlog [BPr21] C Java JNI imperative Official BProlog doc.
Ciao! [Pro21a] C Java TCP/IP imperative Official Ciao Prolog doc.

ECLiPSe [Pro21b] C Java JNI imperative Official ECLiPSe doc.
SICStus [SP21] C Java, C# TCP/IP object-oriented Jasper Library
SWI [Pro21c] C Java JNI object-oriented JPL API

τProlog [Pro21d] JS JavaScript Native object-oriented Project homepage

tuProlog [tuP21]
JS, JVM
Android

Kotlin, Java,
JavaScript

Native
object-oriented,

functional
Project homepage

XSB [Pro21e] C Java TCP/IP imperative Interprolog Java Bridge

ticular contexts such as Android, and its exploitation within mobile applications.

Another viable solution is to leverage on the TCP/IP protocol stack. This is
for instance the case of SICStus- and Ciao-Prolog. The general idea behind this
approach is that the Prolog implementation acts as a remote server offering logic-
programming services to the target language via TCP/IP, provided that a client
library exists on the Java side making the exploitation of TCP/IP transparent
to the users. While this solution is more portable – as virtually any sort of de-
vice supports TCP/IP –, it raises efficiency issues because of the overhead due to
network/inter-process communications. A more general solution of that sort is in-
stead offered by the LPaaS architecture [CDMO18], where the fundamental idea is
to have many Prolog engines distributed over the network, accessed as logic-based
web services. By the way, the implementation of LPaaS1 is based on tuProlog.

By “reference programming paradigm” of the FLI we mean the specific pro-
gramming style proposed by a Prolog implementation to the target language users
through its API. Some FLI are conceived to be used in a strictly imperative way:
this is e.g. the case of BProlog or Ciao! Prolog, where a Java API is available
for writing Prolog queries and issue them towards the underlying Prolog system
in an imperative way. Other Prolog implementations, such as SICStus- and SWI-
Prolog, offer a more object-oriented API which let developer not only represent
queries but also terms, and solutions (there including variable bindings) which can
be consumed through ordinary OOP mechanisms such as iterators.

In most cases, however, the code to be produced in the target language is far less
concise and compact than pure Prolog – unless strings and parsing are extensively
adopted –, especially when the size of the Prolog code to be represented grows. So,
for instance, the simple Prolog query ?- parent(adam, X) (aimed at computing
who Adam’s son is) in Java through SWI-Prolog’s JPL interface would be written
as in listing 11.1. While this a totally effective solution on the technical level,

1http://lpaas.apice.unibo.it

168 CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

http://www.picat-lang.org/bprolog/download/manual.pdf#chapter.18
http://cliplab.org/~clip/Software/Ciao/ciao-1.15.0.html/javall_doc.html
https://eclipseclp.org/doc/javadoc/JavaEclipseInterface/index.html
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Interfacing-_002eNET-and-Java.html
https://jpl7.org
http://tau-prolog.org
http://tuprolog.unibo.it
http://interprolog.com/java-bridge
http://lpaas.apice.unibo.it

11.1. BACKGROUND

Listing 11.1: SWI-Prolog JPL interface example�
1 Query query = new Query("parent",

2 new Term[] {

3 new Atom("adam"),

4 new Variable("X") });

5 Map <String ,Term > solution = query.oneSolution ();

6 System.out.println("The child of Adam is " + solution.get("X"));
� �
we argue that a more convenient integration among LP and the other paradigms
is possible. In particular, in this chapter we show how 2P-Kt allows for a finer
integration at the paradigm level through domain-specific languages.

11.1.2 Kotlin Domain-Specific Languages (DSL)

Domain-specific languages (DSL) are a common way to tackle recurrent problems
in a general way via software engineering. When a software artefact (e.g. library,
architecture, system) is available to tackle with some sort of problems, designers
may provide a DSL for that artefact to ease its usage for practitioners. There,
the exploitation of a DSL hides the complexity of the library behind the scenes,
while supporting the usage of the artefact for non-expert users too. This is, for
instance, the approach of the Gradle build system2—which is nowadays one of
the most successful build automation systems for the JVM, Android, and C/C++
platforms. It is also the approach followed by the JADE agent programming
framework, which is nowadays usable through the Jadescript DSL [BCMP20].

Building a DSL usually requires the definition of a concrete syntax, the de-
sign and implementation of a compiler or code generator, and the creation of an
ecosystem of tools—e.g., syntax highlighters, syntax checkers, debuggers. In par-
ticular, compilation or code generation are fundamental as they are what makes a
DSL machine-interpretable and -executable.

Some high-level languages, however, such as Kotlin, Groovy, or Scala, enable
a different approach. They come with a flexible syntax which natively supports
the definition of new DSL with no addition to the hosting language required. For
instance, Gradle consists of a JVM library of methods for building, testing, and
deploying sources codes, plus a Kotlin- or Groovy-based DSL allowing developers
to customise their particular workflows.

The advantages of this approach are manifold. First, no compiler or code gen-
erator has to be built, as the DSL is already part of the hosting language and it
is therefore machine-interpretable and -executable by construction. Second, the
DSL automatically inherits all the constructs, API, and libraries of the hosting

2https://gradle.org

CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

169

https://gradle.org

11.1. BACKGROUND

language—there including conditional or iterative constructs, string manipulation
API, etc., which are common and useful for many DSL, regardless of their par-
ticular domain. Third, the ecosystem of tools supporting the hosting language –
e.g. compilers, debuggers, formatters, code analysers, IDE, etc. – can be reused
for the DSL as well, easing its adoption and making it more valuable.

When Kotlin is the hosting language of choice, DSL leverage on a small set of
features making the Kotlin syntax very flexible, described below:

operator overloading3 — allowing ordinary arithmetic, comparison, access,
and function invocation operators to change their ordinary meaning on a
per-type basis;

block-like lambda expressions4 — including a number of syntactic sugar
options such as (i) the possibility to omit formal parameters in case of a sin-
gle-argument lambda expression, and (ii) the possibility to omit the round
parentheses in case of a function invocation having a lambda expression as
a last argument;

function types/literals with receiver4 — allowing functions and methods
to accept lambda expressions within which the this variable references a
different object than the outer scope;

extension methods5 — allowing pre-existing types to be extended with new
instance methods whose visibility is scope-sensible.

Of course, Kotlin-based DSL automatically inherit the full gamma of facilities ex-
posed by the Kotlin language and standard library—there including support for
imperative, and object-oriented programming, as well as a rich API supporting
functional programming through most common high-order operations. Further-
more, if properly engineered, these DSL may be executed on all the platforms
supported by Kotlin—which commonly include, at least, the JVM, JavaScript,
and Android. This is for instance the case of our DSL proposed in section 11.2.

While this chapter focuses on Kotlin-based DSL, similar results could be achieved
in other languages by means of equivalent mechanisms. For instance, in Scala, ex-
tension methods have to be emulated via implicit classes, and DSL, in particular,
can be built via the “Pimp My Library” pattern [OMO10].

3https://kotlinlang.org/docs/reference/operator-overloading.html
4https://kotlinlang.org/docs/reference/lambdas.html
5https://kotlinlang.org/docs/reference/extensions.html

170 CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/lambdas.html
https://kotlinlang.org/docs/reference/extensions.html

11.2. A DOMAIN-SPECIFIC LANGUAGE FOR LP

Listing 11.2: Prolog theory describing Abraham’s family tree�
1 ancestor(X, Y) :- parent(X, Y).

2 ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

3

4 parent(abraham , isaac).

5 parent(isaac , jacob).

6 parent(jacob , joseph).
� �
11.2 A domain-specific language for LP

11.2.1 Design Rationale

Regardless of the technological choices, the design of our DSL leverages on a small
set of principles (Pi) briefly discussed below. In fact, our aim is to (P1) provide a
DSL that is a strict extension of its hosting language, meaning that no feature of
the latter language is prevented by the usage of our DSL. Dually, we require (P2)
our DSL to be fully interoperable and finely integrated with the hosting language,
meaning that all the features of the latter language can be exploited from within
our DSL. However, we also require (P3) the DSL to be well encapsulated and
clearly identifiable within the hosting language, in order to prevent unintended
usage of the DSL itself. Finally, we require (P4) our DSL to be as close as possible
to Prolog, both at the syntactic and semantic level, to ease its exploitation for
logic programmers.

In order to accomplish to the aforementioned principles, we choose the Kotlin
language as the technological reference for prototyping our proposal. This is be-
cause it (i) comes with a flexible syntax supporting the definition of DSL, (ii) sup-
ports a considerable number of platforms (JVM, JavaScript, Android, Native)
and therefore enables a wide exploitation of LP – for instance, on smart devices
–, (iii) includes a number of libraries supporting LP-based applications, such as
2P-Kt.

11.2.2 The Kotlin DSL for Prolog

Before dwelling into the details of our proposal, we provide an overview of what a
Kotlin DSL for Prolog has to offer.

Let us consider the Prolog theory shown in listing 11.2 describing a portion
of Abraham’s family tree. It enables a number of queries, e.g. ancestor(abra-

ham, X), which can be read as “Does there exist some X which is a descendant of
Abraham?”. According to the Prolog semantics, this query may have a number
of solutions, enumerating all the possible descendants of Abraham that can be
deduced from the above theory—i.e., Isaac, Jacob, and Joseph.

CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

171

11.2. A DOMAIN-SPECIFIC LANGUAGE FOR LP

Listing 11.3: Kotlin code generating the logic theory from listing 11.2�
1 prolog {

2 staticKb(

3 rule {

4 "ancestor"("X", "Y") ‘if ‘ "parent"("X", "Y")

5 },

6 rule {

7 "ancestor"("X", "Y") ‘if ‘ ("parent"("X", "Z") and "ancestor"("Z", "Y"))

8 },

9 fact { "parent"("abraham", "isaac") },

10 fact { "parent"("isaac", "jacob") },

11 fact { "parent"("jacob", "joseph") }

12)

13

14 for (sol in solve("ancestor"("abraham", "X")))

15 if (sol is Solution.Yes)

16 println(sol.substitution["X"])

17 }
� �
The same result may be attained through the Kotlin program depicted in

listing 11.3, which leverages on our DSL for Prolog: The program creates a Prolog
solver and initialises it with standard built-in predicates. Then it loads a number
of facts and rules representing the aforementioned Prolog theory about Abraham’s
family tree. Finally, it exploits the solver to find all the descendants of Abraham,
by issuing the query ancestor(abraham, X).

It is worth noting how the simple code snippet exemplified above is adherent
w.r.t. our principles. In fact, the whole DSL is encapsulated (P3) within the

prolog { ⟨DSL block⟩ }

In there, LP facilities can be exploited in combination with the imperative and
functional constructs offered by the Kotlin language and its standard-library (P1

and P2)—such as the for-each-loop used to print solutions in the snippet above.
Furthermore, within prolog blocks, both theories and queries are expressed via
a Kotlin-compliant syntax mimicking Prolog (P4). The main idea behind such
syntax is that each expression in the form

"functor"(⟨e1⟩, ⟨e2⟩, . . .)

is interpreted as a compound term (a.k.a. structure) in the form functor(t1, t2, . . .),
provided that each Kotlin expression ei can be recursively evaluated as the term
ti—e.g. capital strings such as "X" are interpreted as variables, whereas non-capital
strings such as "atom" (as well as Kotlin numbers) are interpreted as Prolog con-
stants. In a similar way, expressions of the form6

6backticks make Kotlin parse words as identifiers instead of keywords

172 CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

11.2. A DOMAIN-SPECIFIC LANGUAGE FOR LP

JVM JS

Kotlin

2P-Kt

Prolog DSL

(a) Layered view show-
ing the modules of 2P-
Kt and our Kotlin
DSL for Prolog

Scope

_: Var

varOf(String): Var
atomOf(String): Atom
structOf(String, Iterable<Term>): Struct
emptyList(): EmptyList
listOf(Iterable<Term>): List
numOf(Double): Real
numOf(Int): Integer

Prolog

Any.toTerm(): Term
String.invoke(Any, vararg Any): Struct
Substitution.get(String): Term?

PrologWithUnification

Any.mguWith(Any): Substitution
Any.matches(Any): Boolean
Any.unifyWith(Any): Term?

PrologWithTheories

theoryOf(vararg Clause): Theory
rule(PrologWithTheories.() -> Any): Rule
fact(PrologWithTheories.() -> Any): Fact
and(Any, Any): Term
or(Any, Any): Term

PrologWithResolution

solve(Any): Sequence<Solution>
solverOf(...)

member(Any, Any): Term
is(Any, Any): Term
!: Atom
fail: Atom

extends

(b) Structural view showing the API of our Kotlin DSL for Prolog,
leveraging on the 2P-Kt API

Figure 11.1: Architectural view of our Kotlin DSL for Prolog

rule { "head"(⟨e1⟩, . . ., ⟨eN⟩) ‘if‘ (⟨eN+1⟩ and . . . and ⟨eM⟩) }

are interpreted as Prolog rules of the form

head(t1, . . . , tN) :- tN+1, . . . , tM

provided that M > N and each Kotlin expression ei can be recursively evaluated
as the term ti. A similar statement holds for fact expressions of the form fact {
. . . } .

To support our DSL for Prolog, a number of Kotlin classes and interfaces have
been designed on top of the 2P-Kt library, exploiting manifold extensions meth-
ods, overloaded operators, etc. to provide the syntax described so far. The details
of our solution – there including its architecture, design, and implementation – are
discussed in the reminder of this section.

11.2.3 Architecture, Design, Implementation

The Kotlin DSL for Prolog is essentially a compact means to instantiate and use
objects from the 2P-Kt library, through a Prolog-like syntax. More precisely, it
consists of a small software layer built on top of Kotlin and 2P-Kt, as represented
by fig. 11.1a. In particular, the DSL is enabled by the five factory interfaces
depicted in fig. 11.1b. We call factory interface a type definition whose methods
are aimed at instantiating objects of related types, as dictated by the Gang of
Four’ abstract factory pattern [GHJV95].

The five factory interfaces are: Scope, Prolog, PrologWithUnification, Pro-
logWithTheories, and PrologWithResolution. Each factory type extends the

CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

173

11.2. A DOMAIN-SPECIFIC LANGUAGE FOR LP

previous one with more LP-related functionalities. So, for instance, while in-
stances of Scope simply provide the basic bricks to create logic terms, instances
of Prolog leverage on these bricks to enable the exploitation of the Prolog-like
syntax exemplified above. PrologWithUnification extends Prolog with unifica-
tion-related facilities, and it is in turn extended by PrologWithTheories, which
lets developers create both clauses and theories via a Prolog-like syntax. Fi-
nally PrologWithResolution extends PrologWithTheories by adding resolution-
related facilities, plus some syntactic shortcuts for writing rules exploiting Prolog
standard predicates such as member/2, length/1, etc.

In the following we provide further details about how each factory contributes
to our DSL.

Scope. The simplest factory type is Scope. As suggested by its name, it is
aimed at building terms which must share one or more variables. For this reason,
it exposes a number of factory methods – roughly, one for each sub-type of Term –,
some of which are mentioned in fig. 11.1b. The main purpose of a scope, however,
is to enable the creation of objects reusing the same logic Variables more than once.
Thus, it includes a method – namely, varOf(String) – which always returns the
same variable if the same name is provided as input.

For example, to create the term member(X, [X | T]), one may write:�
1 val m = Scope.empty {

2 structOf("member", varOf("X"), consOf(varOf("X"), varOf("T")))

3 } // m references the term member(X, [X | T])
� �
There, the two calls to varOf("X") actually return the same object, if occurring
within the same scope—whereas they would return different variables if invoked on
different scopes. This mechanism is what enables developers to instantiate terms
and clauses without having to explicitly refresh variables among different clauses:
it is sufficient to create them within different scopes.

Prolog. The Prolog factory type extends Scope by adding the capability of
creating terms through a Prolog-like syntax. To do so, it exposes a number of
extension methods aimed at automatically converting Kotlin objects into Prolog
terms or using Kotlin objects in place of Prolog terms. The most relevant extension
methods are mentioned in fig. 11.1b. These methods are:

• fun Any.toTerm(): Term, which is an extension method aimed at making
any Kotlin object convertible into a Prolog term, through the syntax obj.

toTerm(). To convert an object into a term, it leverages on the following
type mapping: (i) a Kotlin number is either converted into a Prolog real or
integer number, depending on whether the input number is floating-point or
not, (ii) a Kotlin string is either converted into a Prolog variable or atom,

174 CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

11.2. A DOMAIN-SPECIFIC LANGUAGE FOR LP

depending on whether the input string starts with a capital letter or not,
(iii) a Kotlin boolean is always converted into a Prolog atom, (iv) a Kotlin
iterable (be it an array, a list, or any other collection) is always converted
into a Prolog list, provided that each item can be recursively converted into
a term, (v) a Kotlin object remains unaffected if it is already an instance of
Term, (vi) an error is raised if the input object cannot be converted into a
Term.

• operator fun String.invoke(vararg Any): Struct, which is an exten-
sion method aimed at overloading the function invocation operator for strings.
Its purpose is to enable the construction of compound terms through the syn-
tax "f"(arg1, . . ., argN), which mimics Prolog. Its semantics is straight-
forward: assuming that each argi can be converted into a term via the
Any.toTerm() extension method above, this method creates aN -ary Structure
whose functor is "f" and whose ith is argi.toTerm(). So, for instance, the
expression

"member"("X", arrayOf(1, true))

creates the Prolog term member(X, [1, true]).

• fun Substitution.get(String): Term?, which is an extension method aimed
at overloading the get method of the Substitution type in such a way that
is can also accept a string other than a Variable. This enables DSL users to
write expressions such as

substitution.get("X")

instead of having to create a variable explicitly via varOf("X"). While we
only discuss this method, the main idea here is that every method in the 2P-
Kt API accepting some basic Prolog type – such as Var, Atom, or Real – as
argument should be similarly overloaded to accept the corresponding Kotlin
type as well—e.g. String or Double. This is what enables a fine-grained
integration of our DSL with the Kotlin language and the 2P-Kt library.

It is worth highlighting that every Prolog object is also a particular sort of Scope.
So, converting the same string into a Variable twice or more times, within the same
Prolog object, always yields the exact same variable.

CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

175

11.2. A DOMAIN-SPECIFIC LANGUAGE FOR LP

Prolog with unification. The PrologWithUnification factory type extends
Prolog by adding the capability of (i) computing the most general unifier (MGU)
among two terms, (ii) checking whether two terms match or not according to
logic unification – i.e., checking if a MGU exists unifying the two terms –, and
(iii) computing the term attained by unifying two terms—assuming an MGU exists
for them. To do so, it exposes a number of extension methods aimed at providing
unification-related support to Kotlin objects, provided that they can be converted
into terms. The most relevant extension methods are mentioned in fig. 11.1b.

Prolog with theories. The PrologWithTheories factory type extends Pro-

logWithUnification by adding the capability of creating logic clauses (e.g. rules
and facts) and theories. To do so, it exposes a number of methods aimed support-
ing the conversion of Kotlin objects into Prolog clauses – through the syntactic
facilities presented so far –, and their combination into theories. The most relevant
methods, mentioned in fig. 11.1b, are the following:

• fun theoryOf(vararg Clause): Theory, an ordinary method aimed at cre-
ating a logic Theory out of a variable amount of clauses.

• infix fun Any.‘if‘(Any): Rule, which is an extension method aimed at
creating logic rules via a Prolog-like syntax in the form head ‘if‘ body.
Its semantics is straightforward: assuming that both head and body can be
converted into logic goals via the Any.toTerm() extension method above,
this method creates a binary Structure whose functor is ‘:-’ and whose
arguments are head.toTerm() and body.toTerm(). Similar methods exists
– namely, and, or, etc. – to create conjunctions or disjunctions of clauses.

• fun rule(PrologWithTheories.()-> Any): Rule, an ordinary method aimed
at creating a rule in a separate scope, thus avoiding the risk of accidentally
referencing the variables created elsewhere. It creates a fresh, empty, and
nested instance of PrologWithTheories and accepts a function with receiver
to be invoked on that nested instance. The function is expected to return
a Kotlin object which can be converted into a Prolog rule. Any variable
possibly created within the nested scope is guaranteed to be different than
any homonymous variable defined elsewhere.

• fun fact(PrologWithTheories.()-> Any): Fact, analogous to the previ-
ous method, except that it is aimed at creating Prolog facts. So, for instance,
one may write�

1 val r1 = fact {

2 "member"("X", consOf("X", ‘_‘))

3 }

4 val r2 = rule {

176 CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

11.2. A DOMAIN-SPECIFIC LANGUAGE FOR LP

5 "member"("X", consOf(‘_‘, "T")) ‘if‘ "member"("X", "T")

6 }
� �
while being sure that the X variable used in r1 is different than the one used
in r2.

Prolog with resolution. The PrologWithResolution factory type extends
PrologWithUnification by adding the capability of performing logic queries and
consuming their solutions attained through the standard Prolog semantics. To do
so, it exposes a number of methods aimed at supporting (i) the instantiation of
Prolog Solvers, (ii) the loading of Prolog theories, either as static or dynamic
knowledge bases (KB), and (iii) the invocation of Prolog queries on those KB.
The most relevant methods, mentioned in fig. 11.1b, are the following:

• fun solve(Any, Long): Sequence<Solution>, which is an ordinary method
aimed at executing Prolog queries without requiring a new solver to be ex-
plicitly created. It accept a Kotlin object as argument – which must be
convertible into a Prolog query –, and an optional timeout limiting the total
amount of time the solver may exploit to compute a solution. If the provided
arguments are well formed, this method returns a Sequence of Solutions
which lazily enumerates all the possible answers to the query provided as
input, using Prolog’s SLDNF proof procedure.

• fun staticKb(vararg Clause), which is an ordinary method aimed at load-
ing the static KB the solve method above will operate upon.

• fun dynamicKb(vararg Clause), which is analogous to the previous method,
except that it loads the dynamic KB the solve method above will operate
upon.

• fun member(Any, Any): Struct which is an ordinary method aimed at eas-
ily creating invocations of the member/2 built-in predicate. While we only
discuss this method, the main idea here is that every standard built-in predi-
cate in Prolog has a Kotlin counterpart in PrologWithResolution accepting
the proper amount or arguments and returning an invocation to that built-
in predicate. This is aimed easing the exploitation of the standard Prolog
predicates to developers leveraging our DSL. So, for instance, we also provide
facility methods for built-in such as is/2, +/2, -/2, !/0, fail/0, append/3,
etc.

Instances of PrologWithResolution are created and used via the

fun <R> prolog(PrologWithResolution.()-> R): R

CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

177

11.3. CASE STUDY: N-QUEENS

Listing 11.4: Logic theory aimed at computing solutions for the N-Queens problem�
1 no_attack ((X1, Y1), (X2, Y2)) :-

2 X1 =\= X2, % infix operator

3 Y1 =\= Y2,

4 (Y2 - Y1) =\= (X2 - X1),

5 (Y2 - Y1) =\= (X1 - X2). % arithmetic expression

6

7 no_attack_all(_, []).

8 no_attack_all(C , [H | Hs]) :-

9 no_attack(C, H),

10 no_attack_all(C, Hs).

11

12 solution(_, []).

13 solution(N, [(X, Y) | Cs]) :-

14 solution(N, Cs),

15 between(1, N, Y), % built -in predicate

16 no_attack_all ((X, Y), Cs).
� �
static method, which accepts a lambda expression letting the user exploit the
DSL on the fly, and returns the object created by this lambda expression. This
is for instance what enables developers to write the code snippet discussed in
section 11.2.2.

11.3 Case study: N-Queens

We present now a brief example demonstrating how, by integrating multiple pro-
gramming paradigms, developers may easily produce compact and effective solu-
tions. Suppose one is willing to implement the following Kotlin method

fun nQueens(n: Int): Sequence<List<Position>>

aimed at computing all the possible solutions to the N-Queens problem. More pre-
cisely, the method is expected to enumerate all the possible dispositions of n queens
on a n×n chessboard, such that no queen can be attacked by others. Each solution
can be represented by a list of queen positions, in the form [(1, Y1), . . . , (n, Yn)],
where each Yi represent the row occupied by the ith queen—i.e., the one in column
i.

Computing all solutions for the N-Queens problem may require a lot of code in
most programming paradigms. However, in LP, the solution is straightforward and
compact. One may, for instance, leverage the Prolog code depicted in listing 11.4.
which can satisfy queries in the form

?- solution(N, [(1, Y1), ..., (N, YN)])

(provided that some actual N is given) by instantiating each variable Yi.

178 CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

11.4. RECAP AND RESEARCH PERSPECTIVES

Listing 11.5: Kotlin code aimed generating the theory depicted in listing 11.4�
1 fun nQueens(n: Int) = prolog {

2 staticKb(

3 rule {

4 "no_attack"(("X1" and "Y1"), ("X2" and "Y2")) ‘if‘ (

5 ("X1" ‘=!=‘ "X2") and // infix operator

6 ("Y1" ‘=!=‘ "Y2") and

7 (("Y2" - "Y1") ‘=!=‘ ("X2" - "X1")) and

8 (("Y2" - "Y1") ‘=!=‘ ("X1" - "X2")) // arithmetic expr

9)

10 },

11 fact { "no_attack_all"(‘_‘, emptyList) },

12 rule {

13 "no_attack_all"("C", consOf("H", "Hs")) ‘if‘ (

14 "no_attack"("C", "H") and

15 "no_attack_all"("C", "Hs")

16)

17 },

18 fact { "solution"(‘_‘, emptyList) },

19 rule {

20 "solution"("N", consOf (("X" and "Y"), "Cs")) ‘if ‘ (

21 "solution"("N", "Cs") and

22 between(1, "N", "Y") and // built -in predicate

23 "no_attack_all"(("X" and "Y"), "Cs")

24)

25 }

26)

27 return solve("solution"(n, (1 .. n).map { it and "Y$it" }))

28 }
� �
Thanks to our Kotlin DSL for Prolog, one may exploit the elegance of LP

in implementing the aforementioned nQueens method. For instance, one may
implement it as shown in listing 11.5. This implementation produces a lazy stream
of solutions to the N-Queens problem, given a particular value of n. In doing so, it
takes advantages not only of logic- but also of functional-programming paradigm.
For instance, on the last line, it exploits the map high-order function to build a list
in the form [(1, Y1), . . . , (n, Yn)], to be provided as argument of solution/2.

A number of minutiæ may be noted as well by comparing the Prolog code with
its Kotlin counterpart. For instance, Prolog operators (such as =\=/2, -/2, etc.)
retain their infix notations in the Prolog DSL. This is possible because they are
part of the DSL, in the same way as Prolog built-in predicates (such as between

/3). This implies the Kotlin compiler can prevent standard operators and built-in
from being silently mistyped.

11.4 Recap and Research Perspectives

In this chapter we propose a novel way of integrating the logic, object-oriented,
functional, and imperative programming paradigms into a single language, namely

CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

179

11.4. RECAP AND RESEARCH PERSPECTIVES

Kotlin. More precisely, we describe how a domain-specific language (DSL) for
Prolog can be built on top of the Kotlin language by exploiting the 2P-Kt library.
The proposed solution extends the Kotlin language with LP facilities by only
relying on its own mechanisms – therefore no external tool is necessary apart from
Kotlin itself and 2P-Kt –, even if, however, analogous extensions can in principle
be constructed for other high-level languages as well—such as Scala.

Our DSL is currently implemented as part of the 2P-Kt project – namely,
within the dsl-* modules –, and it is hosted on both GitHub [2P-21] and Maven
Central. Other than being available to the public for general purpose usage – under
the terms of the Apache License 2.07 open-source license –, the DSL is currently
extensively exploited to implement the unit tests of 2P-Kt itself.

While in this chapter we discuss the design rationale and architecture of our
DSL by explicitly focusing on Kotlin as our target technology, in the future we
plan to generalise our approach, possibly tending to technology independence.
Furthermore, we plan to provide other implementations of our DSL, targeting
other high-level languages and platforms, in order to make logic programming
and its valuable features available in general-purpose programming languages and
frameworks.

As concerns possible research directions and applications, in the future, we plan
to exploit our DSL in several contexts. For instance, we argue our DSL may ease
the usage of the logic tuple spaces offered by the TuSoW technology [CROM19].
Similarly, we believe our DSL may be used as a basic brick in the creation of logic-
based technologies for MAS, as the MAS community is eager of general-purpose,
logic-based technologies targetting the JVM platform [CCMO21a]. Along this line,
we argue logic-based languages for MAS may benefit from the integration of our
DSL – or a similar one – to support the reasoning capabilities of agents. Finally, we
plan to exploit our DSL within the scope of XAI [CCO20], to ease the creation of
hybrid (i.e., logic + machine-learning) systems, and management on the symbolic
side.

7https://www.apache.org/licenses/LICENSE-2.0

180 CHAPTER 11. BRIDGING LP AND MAINSTREAM PROGRAMMING
PARADIGMS

https://www.apache.org/licenses/LICENSE-2.0

Chapter 12

Bridging LP and Machine
Learning

This chapter contains contributions from the following Master’s thesis: [Cas21], which we supervised

Symbolic and sub-symbolic AI are complementary under a number of perspec-
tives. The same is true for their major techniques, namely logic programming
(LP) and neural networks (NN). For this reason, many recent contributions from
the literature are discussing the possible frameworks for their integration and hy-
bridisation.

However, what is currently slowing down scientific progress in this context is not
the lack of ideas concerning how such integration and hybridisation may occur.
Rather, we believe the bottleneck is caused by the lack of suitable technologies
enabling and easing the experimentation of integrated or hybrid systems. Logic-
based technologies are in fact technological islands, for which poor care is given to
the construction of bridges with the rest of the AI land.

Accordingly, in this chapter, we address the issue of supporting machine learn-
ing (ML) – and, in particular, neural-networks-based training and inference – in
logic programming. In doing so, we follow the twofold purpose of

1. letting logic programmers exploit the benefits of sub-symbolic AI, and, in
particular, neural networks; and

2. enabling the experimentation of hybrid systems – involving both logic and
neural processing of data – in practice.

More precisely, we discuss the design and prototyping of a logic based API
for machine learning. Such API consists of a set of logic predicates enabling the
representation, training, testing, and exploitation of sub-symbolic predictors in
LP—possibly, out of data expressed in logic form. In other words, our API lets

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 181

logic programmers use neural networks in their programs – e.g. to train or exploit
classifiers or regressors –, without requiring them to abandon the logic realm. Of
course, to make this possible, our API supports the whole gamma of low level
tasks which are commonly involved in a ML workflow—including, but not limited
to, data preprocessing, cross-validation, etc.

Technically, we prototype our API via a logic library – namely, the ML-Lib –
targetting the 2P-Kt ecosystem, and the JVM platform. It consists of a number of
primitives bridging the logic realm with some underlying machine-learning library,
allowing Prolog to manipulate sub-symbolic facilities such as datasets, neurons,
layers, or activation functions, and vice versa. DeepLearning4J is the underlying
library we leverage upon in this chapter—selected after meticulous technological
analysis (here reported as well). However, our design is general enough to support
other libraries and, possibly, different platforms—e.g. Tensorflow over Python.

In perspective, we argue that our work represents the first step towards a wider
degree of interoperability among logic- and sub-symbolic AI. In fact, one the long
run, we aim to enable the design and construction of hybrid systems, fruitfully
and dynamically combining the major advantages of both approaches to artificial
intelligence by mixing inferential (via logic programming) and intuitive (via neural
networks) reasoning capabilities. Along this path, the proposed API is one key
enabling factor, as it supports the creation of logic-based inferential engines which
are capable of learning from data via state-of-the-art mechanisms. Dually, by
supporting the training of neural networks from logic data, our API can also be
considered as a tool for endowing sub-symbolic predictors with prior, high-level
knowledge.

Accordingly, the reminder of this chapter is organised as follows. In sec-
tion 12.1, we describe and analyse the supervised ML domain, with the purpose
of identifying which functionalities our logic API for ML should support, and how
exactly they are expected to work. Then, in section 12.2, we delve into the design
of the ML-Lib discussing and motivating conventions, syntactic choices, and ar-
chitectural decisions. In section 12.3, we then discuss a number of technology- and
platform-related aspects arising when prototyping the ML-Lib. There, we moti-
vate technological commitments such as 2P-Kt and DeepLearning4J. Section 12.4
is where we discuss a number of examples concerning the usage of the ML-Lib, and
its potential applications. Finally, section 12.5 concludes the chapter, providing
some insights about the future research directions stemming from this work.

182 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.1. LOGIC API FOR ML: REQUIREMENTS, ANALYSIS, AND
MODELLING

12.1 Logic API for ML: Requirements, Analysis,

and Modelling

12.1.1 Goals

Broadly speaking, a logic API for ML enables the combination or integration of
symbolic AI’s expressiveness and sub-symbolic AI’s flexibility, at a deeper and
unprecedented level. Here we describe a number of motivating features, which we
choose to pursue as goals.

Declarative machine learning. Declarative ML is a paradigm by which data
scientists’ code should only specify what a ML workflow should do, by leaving
the underlying platform in charge to understand how. This is partially supported
by the current practice of data science which relies on high-level languages (like
Python) and libraries of elementary components to be composed (e.g. Scikit-
Learn). However, the solutions proposed so far do not leverage upon inherently
declarative frameworks like LP, but rather on object oriented languages—which
eventually need imperative statements to be provided by data scientists. An API
for ML should then be designed to support the declarative expression of all possible
aspects of a ML workflow in the LP framework. This would be useful under both a
logic and ML perspective. In fact, it would pave the way towards the exploitation
of ML within the LP community, other than providing data scientists with a way
to describe their ML workflows in a formal and runnable way.

Symbolic data sources. Logic knowledge bases are a peculiar way of collecting
knowledge. Unlike datasets and DBMS, they represent information in symbolic
form, via – possibly intensional – logic formulæ. Hence, they can virtually rep-
resent any sort of datum – be it atomic, compound or structured – via a concise
(yet very expressive) language, while possibly saving space. Accordingly, when
combining LP with ML, knowledge bases should be exploitable as data sources as
well—other than ordinary CSV files or relational databases.

Hybrid reasoning. Automatic reasoning may greatly benefit from sub-symbolic
AI to overcome its inherent crispness. Fuzzy data could then be suitably and coher-
ently processed by a sub-symbolic predictor as part of a wider symbolic resolution
process. To make this possible, sub-symbolic predictors should be representable,
trainable, and queryable as any other logic predicate, without requiring the se-
mantics of logic resolution to be affected. Consequently, logic programs should be
endowed with ad-hoc predicates and syntactical categories, aimed at representing
and manipulating sub-symbolic predictors and data.

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 183

12.1. LOGIC API FOR ML: REQUIREMENTS, ANALYSIS, AND
MODELLING

Model selection via resolution. Logic resolution essentially consist of a search
procedure aimed at finding solutions in a proof tree. This could be applied to a
common step of any ML workflow—namely model selection. There, data scientists
must assess several predictor families, to select the one which is better suited for
the learning task at hand. Then, they must search for the best hyper-parameters
for the selected family of predictors. All such choices involve several sorts of predic-
tors, with possibly different hyper-parameters, to be trained and compared—either
in an orderly fashion or in parallel. LP naturally captures the non-deterministic
exploration of a space of possible choices. Hence it is well suited to both declara-
tively represent and implement model selection.

12.1.2 Domain Description

To support the aforementioned goals, our logic API must cover the full gamma of
tasks involved in any possible ML workflow.

Briefly speaking, a ML workflow is the process of producing a suitable predic-
tor for the available data and the learning task at hand, following the purpose of
later exploiting that predictor to draw analyses or to drive decisions. Hence, any
ML workflow is commonly described as composed by two major phases, namely
training – where predictors are fit on data – and inference—where predictors are
exploited. However, in practice, further phases are included, such as data provi-
sioning and preprocessing, as well as model selection and assessment.

In other words, before using a neural network in a real-world scenario, data
scientists must ensure it has been sufficiently trained and its predictive performance
is sufficiently high. In turn, training requires (i) an adequate amount of data
to be available, (ii) the structure of the network under training to be defined,
and (iii) any other hyper-parameter (e.g. learning rate, momentum, batch size,
epoch limit, etc.) to be fixed. Data must therefore be provisioned before training,
and, possibly, pre-processed to ease training it self—e.g. by normalising data
or by encoding non-numeric features into numeric form. The structure of the
network must be defined in terms of (roughly) input, hidden, and output layers,
as well as their activation functions. Finally, hyper parameters must be carefully
tuned according to the data scientist’s experience, and the time constraints and
computational resources at hand.

Thus, from a coarse-grained perspective, a machine learning workflow can be
conceived as composed by six major phases, overviewed in fig. 12.1 and described
into the following paragraphs. The background colour of each phase denotes the
expected design and implementation effort for supporting that phase in our logic
API for ML (low effort ↔ green, moderate effort ↔ yellow, considerable effort ↔
red).

184 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.1. LOGIC API FOR ML: REQUIREMENTS, ANALYSIS, AND
MODELLING

Validation

Performance

Data pre-processing

separation

Improved
Dataset

Dataset

Data provisioning

Network structure
Hidden & Output layers

Activation functions

Input layer

Predictor definition

Data
Source

Neural networkHyper-parameters

Exploitation

Raw datum Prediction
Pre-processing

New Instance

Training

Feature selection
Normalization

Encoding
Schema

Training set

Instances Targets
Test-set

Test set

Instances Targets
Measures

Figure 12.1: Major phases of the generic ML workflow

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 185

12.1. LOGIC API FOR ML: REQUIREMENTS, ANALYSIS, AND
MODELLING

Dataset loading. Provided that the data provisioning phase has resulted into
a dataset – roughly, a collection of homogenous data, often coming in the form of
a single file, a folder or a database –, the first step of any ML workflow consists
of loading that dataset in memory for later processing. To support such step,
ML frameworks come with ad-hoc functionalities aimed at loading the dataset by
reading a file from the local file system, by fetching it from the Web, or by querying
a DBMS. These usually come in the form of either classes or functions, coherently
w.r.t. the object-oriented nature of mainstream ML frameworks.

Our logic API for ML should expose ad-hoc predicates to serve the same pur-
poses. Furthermore, however, it should also support the loading of datasets out of
logic theories of facts and rules.

Data pre-processing. Raw datasets are often inadequate to favour predictors’
training. Hence, dataset pre-processing is commonly practised to increase the ef-
fectiveness of any subsequent training phase. Pre-processing, in practice, involves
a number of bulk operations to be applied to the whole dataset, following sev-
eral purposes, such as: (i) homogenize the variation ranges of the many features
sampled by the dataset, (ii) detect irrelevant features and remove them, (iii) con-
struct relevant features by combining the existing ones, (iv) encoding non-numeric
features into numeric form, and (v) horizontal (by row) or vertical (by column)
partitioning of the dataset. Purpose (v), in particular, is of paramount impor-
tance, as it supports the test set separation – that is, a fundamental step to be
performed at the very beginning of any correct ML workflow, to later enable vali-
dation and testing –, as well as splitting input-related columns from output-related
ones—which, in turn, is fundamental to support training.

Notably, our logic API for ML should support all such purposes, via a con-
cise (yet expressive) predicates letting the logic data-scientist decide which pre-
processing operations to perform, and when. In practice, this involves a number
of predicates supporting bulk manipulations to be applied to the whole dataset,
such as computing statistical moments (e.g. mean, variance, standard deviation,
etc.), or aggregated measures (e.g. min, max, etc.) on a column-wise basis, as well
as transforming (e.g. transforming a categorical feature in numeric form via the
one-hot encoding).

Predictor selection and definition. Many sorts of predictors could be used
in principle to perform supervised learning—e.g. neural networks, decision trees,
support vector machines, etc. Unless some technical or administrative constraint
exists, it is a common practice for data scientists to spend some time selecting the
most adequate sort of predictor for the data and the learning task at hand. This is
a common phase in virtually any ML workflow. Once a particular sort of predictor

186 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.1. LOGIC API FOR ML: REQUIREMENTS, ANALYSIS, AND
MODELLING

has been chosen, data scientists need a way to specify the shape the to-be-trained
predictor should have. Of course, such specification should take into account the
schema of the input data, as well as the schema of the expected outcomes to be
produced by the predictor. The are however other aspects to be tuned, generally
referred to as hyper-parameters.

Consider the case of neural networks as an example. Decision points in this
case concern the choice of (i) which and how many hidden layers (of neurons) to
adopt, (ii) how to interconnect them, and (iii) which activation functions to adopt
for the neurons therein contained.

Accordingly, our logic API for ML should support the specification of as many
sorts of predictors as possible, as well as their parametrisation. Once again, pred-
icates should be defined to serve this purpose. In particular, at least one ad-hoc
predicate should be defined for each sort of predictor to be supported, carrying as
many arguments as the possible hyper-parameters that could be specified for that
sort of predictors. In case hyper-parameters cannot conveniently represented as
raw logic types (numbers or strings), ad-hoc predicates should be provided as well
for constructing structured hyper-parameters values.

In the particular case of neural networks, ad-hoc predicates should be pro-
vided to construct layers, and activation functions, and to combine them to create
arbitrarily complex network architectures.

Training. Predictors’ training plays a pivotal role in ML workflows. This is the
phase where predictors are fit on the available data or, in other words, automated
learning actually occurs. Generally speaking, training can be modelled in LP
as single predicate, mapping untrained predictors into trained ones, possibly via
a number of learning parameters (e.g. learning rate or momentum for NN, or
maximum depth for DT), or stopping criteria (e.g. max epochs for NN, or max
depth for DT), other than, of course, the data to be used for training. Once again,
several ad-hoc predicates should be defined to support structured parameters or
stopping criteria in our logic API for ML. Furthermore, regardless of its shape, the
training predicate should accept some arguments aimed at specifying whether the
columns of the training set should be considered as inputs or outputs.

Exploitation. Exploitation is commonly the last phase of any ML workflow.
Here, trained predictors are used to draw predictions on new data—i.e. different
data w.r.t. the one used for training. In particular, given a raw datum having
the same schema of the input data used for training – there including any prior
pre-processing phase –, the trained predictor can be exploited to compute the
corresponding prediction—even if (and especially because) the raw datum has
never been observed before by that predictor. In most common cases, predictions

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 187

12.1. LOGIC API FOR ML: REQUIREMENTS, ANALYSIS, AND
MODELLING

attempt to solve classification or regression problems. In any case, yet another
general predicate should be added to our logic API for ML to support drawing
predictions out of a trained predictor and a set of raw data (or a single datum).
Ad-hoc predicates may be provided as well to explicitly model higher-level tasks,
such as classification and regression. Finally, it should be possible to store, retrieve,
and re-apply any pre-processing procedure possibly defined before training, to the
raw data for which predictions should be drawn—in order to make it acceptable
for the predictor as an input.

Validation. Validation is the penultimate step of any ML workflow: it succeeds
training and precedes exploitation. It is here discussed as last because it technically
relies on the capability of drawing predictions via trained predictors—which is
treated in the paragraph above.

Generally speaking, validation attempts to measure the predictive performance
of a trained predictor, with the purpose of assessing if and to what extent it
will generalise to new, unseen data. To do so, the predictor is tested against
the test set—that is, a collection of unseen data, for each expected predictions
exist. The discrepancy (or similarity) among the actual and expected predictions
is then measured via ad-hoc scoring functions (a.k.a. measures), resulting in a
performance assessment for the trained predictor. Many measures may be used to
assess classifiers (e.g. accuracy, F1-score, etc.) and as many to assess regressors
(e.g. MAE, MSE, R2, etc.). Hence, to support validation, our logic API for ML
should provide predicates to compute each possible measure.

12.1.3 Analysis and Modelling

Here we analyse the ML domain w.r.t. our goals, and we elicit the most relevant
entities and actions our logic API should support. In other words, we derive the
meta-model leading the design, implementation, and usage of our logic API for
ML.

There are five major sorts of entities by which any ML workflow can be de-
scribed. These are introduced below:

Value: a scalar, vectorial, matrix, or tensorial datum from a given domain
(e.g. an integer or real number, or a vectors of integer or real numbers, as
well as a string, a table, a time series, etc.).

Schema: a concise and formal description of a domain (i.e. a set of values).
For scalar values, schemas are essentially data types (e.g. integers, reals,
strings, etc.), while for non-scalar data they carry information about the
name, index, and type of each single scalar component.

188 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.1. LOGIC API FOR ML: REQUIREMENTS, ANALYSIS, AND
MODELLING

Training Set

Dataset
LoadingSchema

Declaration

Transformationi

Transformation
declaration

Pre-processed
Dataset

Transformation
application

Predictor
declaration Predictor

Predictor
fitting

Predictor
Scoring

Transformation
Application

Predictor
Querying

Predictor family

Performance
Score

Prediction

Activity
Entity

Legend

Dataset loading

Pre-processing

Predictor selection

Training

Validation

Exploitation

D

S

T

P

outputinput

Dataset

Schema

Transformation

Predictor

Value

D

P

Schema

S Dataset

D

Test Set

D

D

Scoring
Function

T

Instance Pre-processed
Instance

Trained
predictor

P

Source

Target
features

Target
features

declaration

Pipeline
Composition

Pre-proccesing
Pipeline

T

Dataset
splitting

Hyper-parameters

Figure 12.2: Model and meta-model of a logic API for ML

Dataset: a collection of values matching a particular schema—which is sup-
posed to be known.

Transformation: any operation aimed at transforming an entity dataset into
another other—commonly, a dataset into either another dataset (e.g. nor-
malization, standardization, etc.) or a value (e.g. max, min, average, etc.)
From an algebraic perspective, it is a function. From a computational per-
spective it is an algorithm.

Predictor: a stateful computational entity capable of (i) drawing predictions
(i.e. outputting values) out of (possibly unseen) input values, according to
its internal state (ii) updating its internal state according to a dataset (to
improve future predictions)

Our logic API for ML supports the representation, combination, and manipu-
lation of entities of these kinds. In particular, fig. 12.2 depicts the overall workflow,

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 189

12.1. LOGIC API FOR ML: REQUIREMENTS, ANALYSIS, AND
MODELLING

the specific activities therein contained, and the involved entities, from the user
perspective. Each phase of a ML workflow is characterised by a specific set of
activities the data scientist may be willing to perform. These should be therefore
declaratively representable in logic.

Accordingly, in the reminder of this section, we enumerate the most relevant
activities our logic API should support, and the entities they operate upon. No-
tably, activities are grouped w.r.t. the ML phases they operate in, according to
the ML workflow elicited in section 12.1.2.

For instance, the following activities make sense into the dataset loading phase
as their major purpose it to support the loading of a dataset into a solver’s memory,
and its preparation for sub-sequent processing:

Dataset loading — i.e. the operation of loading a dataset from either a value
– representing either a local or remote file –, or from a Prolog theory

Schema declaration — i.e. the operation of constructing a representation
for a given schema

Target features declaration — i.e. the operation of tagging a portion of
features of some schema as either inputs or outputs (a.k.a. targets)

Dataset splitting — i.e. the operation of horizontally partitioning a dataset
into two or more smaller datasets

Subsequently, data scientists will commonly enter the dataset pre-processing
phase. Here, they may be willing to define transformations or cascades of trans-
formations (pipelines, henceforth) to be eventually applied on datasets:

Transformation declaration — i.e. the operation of declaratively encoding
a transformation operation to be applied to all data in a dataset Such kinds
of transformations can be modelled as functions accepting a dataset as input
and producing a dataset as output

Pipeline composition — i.e. the operation of declaratively constructing a
composite transformation as a cascade of simpler transformations

Transfornmation application to a dataset — i.e. the operation of actually
constructing a new dataset from a prior dataset and a transformation

The next phase commonly involves the definition of one or more predictors via
a unique meta-activity, namely:

Predictor declaration — i.e. the operation of constructing a representation
for a particular predictor, which implies choosing the predictor family and
specifying actual values for its hyper parameters

190 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.2. REALISING THE API: ML-LIB DESIGN

Of course, as many families of predictors exist, and each one is characterised by its
own set of formal hyper-parameters, many variant if this operation may eventually
be defined in practice.

Eventually, declared predictors may enter the training phase, meaning that
their learning from data should be triggered. This can be achieved via yet another
activity, namely:

Predictor fitting w.r.t. a training set of data — i.e. the operation of fitting
a predictors’ internal parameter on some provided training data

Again, given the variety of predictors available, this operation may come with
several predictor specific variants accepting different learning parameters.

Once in their inference phase, trained predictors may eventually be exploited
to be draw predictions. Hence, this is yet another relevant activity, namely:

Predictor querying — i.e. the operation where (possibly unseen) values are
provided to some trained predictor as a query, and the resulting values are
interpreted as predictions

Finally, in the validation phase, trained predictors should be assessed by mea-
suring their performance w.r.t. some test data This is yet another meta-activity,
with several possible variants depending on the particular measure being exploited:

Predictor scoring — i.e. the operation of computing a scoring value out of
a trained predictor, a test dataset, and a scoring function

Figure 12.2 provides an overview of the overall workflow these activities are
involved into. In particular, it represents inter-dependencies among all such activ-
ities, other than stressing what sorts of entities they accept as input and produce
as output. In the next section, we discuss how these activities are reified into
actual actual predicates.

12.2 Realising the API: ML-Lib Design

Here we discuss the design of ML-Lib, i.e. a logic programming library reifying
the logic API for ML modelled in section 12.1.

The overall architecture is depicted in fig. 12.3. The ML-Lib assumes a goal-
oriented logic solver being in place, where ordinary logic programs can be executed.
Thanks to the ML-Lib, these logic programs may also exploit a number of pred-
icates aimed at training and using ML predictors—other than any other entity
involved in the process. Behind the scenes, the library also assumes an under-
lying object-oriented (OO) library providing high-level ML abstractions, such as

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 191

12.2. REALISING THE API: ML-LIB DESIGN

Figure 12.3: Layered view of our ML-Lib. An OO library is assumed behind the
scenes, providing high-level abstraction to optimize ML predictors, possibly via HW
acceleration

datasets, predictors, and so on. Examples of these libraries may be for instance
Keras or DeepLearning4J. The OO library may in turn be backed by an optimizer,
i.e. a low-level software taking care of making training and data management ef-
fective on the available hardware—and possibly exploiting hardware acceleration
(via GPU) to the purpose. In practice, software such as Theano, Caffe, or Tensor-
flow may serve this purpose. Actual technological choices may finally depend on
the particular runtime platforms being targeted. For instance, targeting the JVM
may imply DeepLearning4J must be exploited behind the scenes, while targetting
Python may pave the way towards the exploitation of both Keras and Tensorflow.
However, while technological choices are contingent and subject to change, the
overall architecture is meant to support the implementation of the ML-Lib as a
façade towards the underlying OO library, regardless of what it is.

At the functional level, the design of our ML-Lib is provided in terms the
entities from section 12.1, and the logic predicates available to create, manipulate,
or represent them. Figure 12.4 provides an overview of these predicates, grouped
by entities. Both in the figure and in the reminder of this section, we adopt the
following notation to denote the interfaces of logic predicates:

functor(⊙1 Name1: type 1, ..., ⊙N NameN: type N)

where N denotes the arity of predicate functor/N , whose ith argument – named
Namei – must be of type typei, and it must be considered as an input or output
parameter depending on the mode indicator1⊙i. So, for instance, we denote
input parameters by +, output parameters by -, and input-output parameters
by ?. Admissible arguments types include constant term types (integer, real,
atom), structured term types (compound, list), as well as references (ref), and

1cf.https://www.swi-prolog.org/pldoc/man?section=preddesc

192 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

cf. https://www.swi-prolog.org/pldoc/man?section=preddesc

12.2. REALISING THE API: ML-LIB DESIGN

D
a
ta

se
t

r
e
a
d
_
d
a
t
a
s
e
t
(
+
P
a
t
h
:

a
t
o
m
,

+
S
o
u
r
c
e
T
y
p
e
:

a
t
o
m
,

-
D
a
t
a
s
e
t
:

r
e
f
)

t
h
e
o
r
y
_
t
o
_
d
a
t
a
s
e
t
(
+
F
u
n
c
t
o
r
:

a
t
o
m
,

-
D
a
t
a
s
e
t
:

r
e
f
)

C
re

a
ti

o
n

f
o
l
d
(
+
D
a
t
a
s
e
t
:

r
e
f
,

+
K
:

i
n
t
,

-
T
r
a
i
n
:

r
e
f
,

-
T
e
s
t
:

r
e
f
)

w
r
i
t
e
_
d
a
t
a
s
e
t
(
+
D
a
t
a
s
e
t
:

r
e
f
,

-
P
a
t
h
:

a
t
o
m
)

t
h
e
o
r
y
_
f
r
o
m
_
d
a
t
a
s
e
t
(
+
S
c
h
e
m
a
:

r
e
f
,

+
D
a
t
a
s
e
t
:

r
e
f
)

r
o
w
(
+
D
a
t
a
s
e
t
:

r
e
f
,

?
I
n
d
e
x
:

i
n
t
e
g
e
r
,

-
R
e
c
o
r
d
:

c
o
m
p
o
u
n
d
)

c
o
l
u
m
n
(
+
D
a
t
a
s
e
t
:

r
e
f
,

?
K
e
y
:

i
n
t
e
g
e
r
|
a
t
o
m
,

-
V
a
l
u
e
s
:

l
i
s
t
)

c
e
l
l
(
+
D
a
t
a
s
e
t
:

r
e
f
,

?
I
n
d
e
x
:

i
n
t
e
g
e
r
,

?
K
e
y
:

i
n
t
e
g
e
r
|
a
t
o
m
,

-
V
a
l
u
e
s
:

l
i
s
t
)

r
a
n
d
o
m
_
s
p
l
i
t
(
+
D
a
t
a
s
e
t
:

r
e
f
,

+
R
a
t
i
o
:

r
e
a
l
,

-
T
r
a
i
n
:

r
e
f
,

-
T
e
s
t
:

r
e
f
)

M
a
n
ip

u
la

ti
o
n

〈
f
u
n
c
t
o
r
〉
(
〈
X
1
1
〉
,

.
.
.
,

〈
X
1
j
〉
,

.
.
.
,

〈
X
1
n
〉
)
.

.
.
.

〈
f
u
n
c
t
o
r
〉
(
〈
X
i
1
〉
,

.
.
.
,

〈
X
i
j
〉
,

.
.
.
,

〈
X
i
n
〉
)
.

.
.
.

〈
f
u
n
c
t
o
r
〉
(
〈
X
m
1
〉
,

.
.
.
,

〈
X
m
j
〉
,

.
.
.
,

〈
X
m
n
〉
)
.

R
e

p
re

se
n

ta
ti

o
n

S
o

u
rc

e
 T

y
p

e

s
o
u
r
c
e
_
t
y
p
e
(
〈
T
〉
)

〈
T
〉
∈

{
c
s
v
,

r
d
b
m
,

.
.
.
}

C
re

a
ti

o
n

S
ch

e
m

a

t
h
e
o
r
y
_
t
o
_
s
c
h
e
m
a
(
-
S
c
h
e
m
a
:

r
e
f
)C

re
a
ti

o
n

s
c
h
e
m
a
(
?
S
c
h
e
m
a
:

r
e
f
,

?
N
a
m
e
:

a
t
o
m
,

?
A
t
t
r
i
b
u
t
e
s
:

l
i
s
t
,

?
T
a
r
g
e
t
s
:

l
i
s
t
)

M
a
n
ip

u
la

ti
o
n

a
t
t
r
i
b
u
t
e
(
1
,

〈
N
1
〉
,

〈
T
1
〉
)
.

... a
t
t
r
i
b
u
t
e
(
i
,

〈
N
i
〉
,

〈
T
i
〉
)
.

... a
t
t
r
i
b
u
t
e
(
n
,

〈
N
n
〉
,

〈
T
n
〉
)
.

s
c
h
e
m
a
_
n
a
m
e
(
〈
f
u
n
c
t
o
r
〉
)
.

s
c
h
e
m
a
_
t
a
r
g
e
t
(
〈
N
j
〉
)
.

R
e

p
re

se
n

ta
ti

o
n

Tr
a
n
sf

o
rm

a
ti

o
n

s
c
h
e
m
a
_
t
r
a
n
s
f
o
r
m
a
t
i
o
n
(
?
S
c
h
e
m
a
:

r
e
f
,

?
T
r
a
n
s
f
o
r
m
a
t
i
o
n
:

r
e
f
)

〈
n
a
m
e
〉
(
+
T
i
n
:

r
e
f
,

〈
A
r
g
1
〉
,

.
.
.
,
〈
A
r
g
N
〉
,

-
T
o
u
t
:
:

r
e
f
)

C
re

a
ti

o
n

f
i
t
(
+
T
i
n
:

r
e
f
,

+
D
a
t
a
s
e
t
:

r
e
f
,

-
T
o
u
t
:

r
e
f
)

t
r
a
n
s
f
o
r
m
(
+
D
i
n
:

c
o
m
p
o
u
n
d
|
r
e
f
,

+
T
r
a
n
s
f
o
r
m
a
t
i
o
n
:

r
e
f
,

-
D
o
u
t
:

c
o
m
p
o
u
n
d
|
r
e
f
)

M
a
n
ip

u
la

ti
o
n

N
o
rm

a
liz

a
ti

o
n

n
o
r
m
a
l
i
z
e
(
+
T
i
n
:

r
e
f
,

+
A
t
t
r
i
b
u
t
e
s
:

r
e
f
,

-
T
o
u
t
:

r
e
f
)

O
n

e
 H

o
t

E
n

co
d

in
g

o
n
e
_
h
o
t
_
e
n
c
o
d
e
(
+
T
i
n
:

r
e
f
,

+
A
t
t
r
i
b
u
t
e
s
:

r
e
f
,

-
T
o
u
t
:

r
e
f
)

A
tt

ri
b
u
te

s
D

e
le

te

d
e
l
e
t
e
_
a
t
t
r
i
b
u
t
e
s
(
+
T
i
n
:

r
e
f
,

+
A
t
t
r
i
b
u
t
e
s
:

r
e
f
,

-
T
o
u
t
:

r
e
f
)

P
re

d
ic

to
r

〈
p
r
e
d
i
c
t
o
r
〉
(
〈
H
1
〉
,

〈
H
2
〉
,

.
.
.
,

-
P
r
e
d
i
c
t
o
r
:

r
e
f
)

C
re

a
ti

o
n

t
r
a
i
n
(
+
P
i
n
:

r
e
f
,

+
D
a
t
a
s
e
t
:

r
e
f
,

+
P
a
r
a
m
s
:

l
i
s
t
,

-
P
o
u
t
:

r
e
f
)

p
r
e
d
i
c
t
(
+
P
i
n
:

r
e
f
,

+
D
a
t
a
:

c
o
m
p
u
n
d
|
r
e
f
,

-
P
r
e
d
i
c
t
i
o
n
:

c
o
m
p
u
n
d
|
r
e
f
)

c
l
a
s
s
i
f
y
(
+
P
r
e
d
i
c
t
i
o
n
:

c
o
m
p
u
n
d
|
r
e
f
,

+
S
t
r
a
t
e
g
y
:

c
o
m
p
o
u
n
d
,

+
C
l
a
s
s
e
s
:

l
i
s
t
,

-
C
l
a
s
s
i
f
i
c
a
t
i
o
n
:

c
o
m
p
u
n
d
|
r
e
f
)

M
a
n
ip

u
la

ti
o
n

C
la

ss
ifi

ca
ti

o
n
 S

tr
a
te

g
y

c
l
a
s
s
i
f
i
c
a
t
i
o
n
(
〈
S
〉
)

〈
S
〉
∈

{
m
a
x
,

t
h
r
e
s
h
o
l
d
(
〈
T
〉
)
,

.
.
.
}

C
re

a
ti

o
n

N
e
u
ra

l N
e
tw

o
rk

n
e
t
w
o
r
k
(
+
L
a
y
e
r
:

r
e
f
,

-
N
e
t
w
o
r
k
:

r
e
f
)

C
re

a
ti

o
n

La
ye

r

i
n
p
u
t
_
l
a
y
e
r
(
+
S
i
z
e
:

i
n
t
,

-
L
a
y
e
r
:

r
e
f
)

C
re

a
ti

o
n

d
e
n
s
e
_
l
a
y
e
r
(
+
L
i
n
:

r
e
f
,

+
S
i
z
e
:

i
n
t
,

+
A
c
t
i
v
a
t
i
n
:

a
t
o
m
,

-
L
o
u
t
:

r
e
f
)

o
u
t
p
u
t
_
l
a
y
e
r
(
+
L
i
n
:

r
e
f
,

+
S
i
z
e
:

i
n
t
,

+
A
c
t
i
v
a
t
i
n
:

a
t
o
m
,

-
L
o
u
t
:

r
e
f
)

M
a
n
ip

u
la

ti
o
n

A
ct

iv
a
ti
o
n

a
c
t
i
v
a
t
i
o
n
(
〈
A
〉
)

〈
A
〉
∈

{
i
d
e
n
t
i
t
y
,

r
e
l
u
,

s
i
g
m
o
i
d
,

t
a
n
h
,

.
.
.
}

C
re

a
ti

o
n

L
o

ss

l
o
s
s
(
〈
L
〉
)

〈
L
〉
∈

{
m
s
e
,

m
a
e
,

c
r
o
s
s
_
e
n
t
r
o
p
y
,

.
.
.
}

C
re

a
ti

o
n

Pa
ra

m
e
te

r

〈
p
a
r
a
m
〉
(
〈
V
a
l
u
e
〉
)

C
re

a
ti

o
n

M
a
x
 E

p
o
ch

s

m
a
x
_
e
p
o
c
h
s
(
+
N
:

i
n
t
)

C
re

a
ti

o
n

B
a
tc

h
 S

iz
e

b
a
t
c
h
_
s
i
z
e
(
+
N
:

i
n
t
)

C
re

a
ti

o
n

1

0
-1

1
1

1

N

1

N

1

N

1
N

F
ig
u
re

1
2
.4
:
O
ve
rv
ie
w

of
ou

r
M
L
-L
ib
’s

d
es
ig
n
.
T
h
e
ch
ar
t
re
p
re
se
n
ts

th
e
m
an

y
en
ti
ti
es

lo
gi
c
p
ro
gr
am

m
er
s
m
ay

ex
p
lo
it
v
ia

o
u
r
M
L
-L
ib
,
an

d
th
e
m
a
n
y
p
re
d
ic
at
es

su
p
p
or
ti
n
g
th
ei
r
cr
ea
ti
on

,
m
an

ip
u
la
ti
on

,
or

re
p
re
se
n
ta
ti
on

.
P
re
d
ic
at
es

ar
e
d
ep

ic
te
d

w
it
h
ei
th
er

a
ye
ll
ow

d
ia
m
on

d
in

ca
se

th
ey

ar
e
n
on

-d
et
er
m
in
is
ti
c
(a
.k
.a
.
b
ac
k
tr
ac
ka
b
le
),
or

a
gr
ee
n
ci
rc
le

ot
h
er
w
is
e.

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 193

12.2. REALISING THE API: ML-LIB DESIGN

union types (T1|T2|. . .). References, in particular, are a special kind of constant
term, whose instances represent objects from the object-oriented realm. These are
necessary to make our ML-Lib able to operate with the non-logic entities exposed
by the underlying OO library supporting ML.

Accordingly, in the reminder of this section, we enumerate the predicates con-
stituting our ML-Lib, categorised w.r.t. the entities they act upon. In particular,
the ML-Lib exposes predicates covering 4 major sorts of entities – i.e. the ones
elicited in section 12.1.3, namely: Schema, Dataset, Transformation, and Predic-
tor –, plus a number of ancillary entities aimed at supporting their manipulation –
such as Classification Strategy, Source Type, and Parameter – or specialising their
behaviour—such as Neural Network, and Layer.

12.2.1 Schemas

Schemas are concise metadata describing datasets’ columns. They define their
indexes, names, and admissible types, and they are assumed to be declared by the
user.

The ML-Lib supports schemas represented as any of two forms: either as clauses
or as objects—to be represented in LP via reference terms. Ad-hoc predicates are
provided to support the conversion from one form to the other.

Schemas as clauses. In the general case, schema declarations are firstly pro-
vided by the user in clausal form. This requires the user to fill the logic theory
with clauses of the form:

attribute(1, N1, T1).
...

attribute(i, Ni, Ti).
...

attribute(n, Nn, Tn).
schema name(N).

schema targets([Nj, Nk, . . ., Nh]).

where N is the name of the schema, and n is the total amount of attributes
declared for that schema, while Ni is the name of the ith attribute, and Ti is its
type. Indexes j, k, h ∈ {1, . . . , n} aim at selecting attributes names declared as
targets—i.e. as outputs of the learning process. While attribute (Ni) and schema
(N) names are simple atoms, attribute types (Ti) are compound terms for which
the attribute type(Ti) holds true.

The attribute type/1 predicate is defined as follows:

194 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.2. REALISING THE API: ML-LIB DESIGN

attribute type(string).

attribute type(integer).

attribute type(real).

attribute type(boolean).

attribute type(categorical ([|])).

attribute type(ordinal ([|])).

Hence, admissible attribute types involve infinite domains such as the numeric
(either integer or real numbers), and strings ones, as well as finite domains such
as booleans, and categorical (i.e. unordered) or ordinal sets of constant values.

Schemas as objects. To be exploitable by the underlying OO library, schemas
must be represented as objects. Schemas represented in clausal form can be con-
verted into object form via the following predicate:

theory to schema(-Schema: ref)

which (i) inspects the current KB looking for a schema description in clausal form,
(ii) instantiates a new schema object in the underlying OO library, (iii) creates
a new reference term referencing the newly created schema, (iv) unifies that term
with the output parameter denoted by Schema.

References to schemas in object form may be then passed as arguments to
many other predicates from the ML-Lib in order to provide them the necessary
metadata to manipulate datasets.

Manipulating schemas. A part from schema declaration or creation, other
relevant operations over schemas involve the inspection (i.e. reading) of their
components—namely, names, attribute names, attribute types, and targets. This
can be achieved via the following predicate:

schema(?Schema: ref , ?Name: atom , ?Attributes: list , ?Targets:

list)

Given a schema reference, the predicate retrieves (i) the schema’s name, which is
unified with Name, (ii) the list schema attributes – where each attribute has the
form attribute(i, Ni, Ti) –, which is unified with Attributes, and (iii) the list
of schema targets – where each target is an atom acting as attribute name –, which
is unified with Targets. Notably, the predicate is bi-directional and its arguments
can act as either input or output parameters. In case an unbound Schema variable
is provided as output parameter, and assuming that the Name, Attributes, and
Targets parameters are fully instantiated, the schema/4 predicate acts as yet
another way to create a schema in object form—and the newly created schema is
bound to Schema.

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 195

12.2. REALISING THE API: ML-LIB DESIGN

12.2.2 Datasets

A dataset is a tabular representation of a bunch of homogenous data records. As
such, a dataset is characterised by a schema and a number of records matching
that schema.

Similarly to what it does for schemas, the ML-Lib supports datasets repre-
sented as either clauses or objects. Ad-hoc predicates are provided to support the
conversion from one form to the other, other than for loading datasets from some
data source, such as a file or a DBMS.

Datasets as objects. In the general case, datasets objects are firstly loaded
from a data source. These may be local or remote files – commonly in “comma
separated values” (CSV) format –, as well as DBMS of any sort—provided that
adequate connection support is provided by the underlying OO library, or any
other third-party module. The ML-Lib provides a unique entry point to load a
dataset from any data source, namely:

read dataset(+Location: atom , +SourceType: atom , -Dataset: ref)

This predicate aims at loading the dataset from a given Location—be it a path
on the local filesystem, a URL referencing some remote resource, or a connection
string for some DBMS. It also requires the caller to specify the SourceType the
dataset should be read from. Regardless of the particular location and source type,
the behaviour of the read dataset/3 predicate is such that: (i) raw data is re-
trieved from Location, and (ii) parsed according to the selected source SourceType;
finally (iii) a new dataset object is created along with a reference term for it,
(iv) which is then unified with Dataset.

Admissible values for the SourceType parameter are determined by the source type/1

predicate, defined as follows:

source type(csv).

meaning that currently the ML-Lib only supports data provisioning from CSV
files. However, further source types are going be supported in the future. That
will imply extending the source type/1 predicate definition with further cases.

Datasets as clauses. Logic programmers may also be willing to describe the
dataset via a logic theory. When this is the case, the theory should contain not
only the clauses describing the schema (i.e. the dataset’s columns), but also a
number of clauses describing the actual content of the dataset (i.e. its rows). In
particular, the ML-Lib expects data entries to be provided as clauses of the form:

196 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.2. REALISING THE API: ML-LIB DESIGN

N(X1,1, ..., X1,j, ..., X1,n).
...

N(Xi,1, ..., Xi,j, ..., Xi,n).
...

N(Xm,1, ..., Xm,j, ..., Xm,n).

where N is the schema name declared via schema name/1, and Xi,j is the value of
the jth attribute of the ith data entry. Of course, the actual type of Xi,j must be
coherent with the formal type Ti declared in the schema definition.

Datasets in clausal form must be converted into object form to be exploitable
by the underlying OO library. This can be achieved via the following predicate:

theory to dataset(+SchemaName: atom , -Dataset: ref)

which (i) inspects the current KB looking for one or clauses using SchemaName

as the head functor, (ii) instantiates a new dataset object in the underlying OO
library, (iii) populates it with as many rows as the aforementioned clauses, (iv) cre-
ates a new reference term referencing the newly created dataset, (v) unifies that
term with the output parameter denoted by Dataset. Of course, this predicate
also takes into account the schema-related metadata which are assumed to be
defined in clausal form as well.

Datasets manipulation. Datasets are amongst the basic bricks of predictors
training in ML, hence they must support several kinds of manipulations. Within
the scope of the ML-Lib, we support partitioning a dataset in several ways to sup-
port both cross validation and test set separation, other than accessing a dataset
by row, column, or cell. Conversions from and into clausal form complete the
picture.

Splitting. To support test set separation, the ML-Lib provides a predicate
to randomly split a dataset into a training and test set, given a ratio:

random split(+Dataset: ref , +Ratio: real , -Train: ref , -Test:

ref)

Given a reference to a Dataset in object form, and a Ratio – i.e. a real number
in the range]0, 1[–, the predicate (i) randomly samples the given percentage of
data entries from Dataset, (ii) collects them into a new dataset, whose reference
is bound to Test, and (iii) collects the remaining data entries into yet another
dataset, whose reference is bound to Train. So, for instance, a ratio of 0.1 would
randomly split the dataset into a training set containing 90% of the original data,
and a test set containing 10% of the original data.

To support cross validation, ML-Lib provides an ad-hoc predicate:

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 197

12.2. REALISING THE API: ML-LIB DESIGN

fold(+Dataset: ref , +K: integer , -Train: ref , -Validation: ref)

which splits the Dataset into 2 partitions, namely Train and Validation, the
former containing k−1

k
% data entries – to be used as the training set –, and the

latter containing the remaining 1
k
% data entries—to be used as the validation set.

Both Train and Validation are bound to reference terms, referencing datasets in
object form. Notably, the fold/2 is non-deterministic as it enumerates all possible
folds of a K-fold cross validation process. Hence, provided that K ≥ 2, the predicate
computes K partitioning of the original dataset.

Data access. The ML-Lib supports accessing the information encapsulated
into a dataset in object form via three predicates, namely:

row(+Dataset: ref , ?Index: integer , -Values: list).

column(+Dataset: ref , ?Attribute: integer |atom , -Values: list).

cell(+Dataset: ref , ?Index: integer , ?Attribute: integer |atom ,

-Values: list).

They all are non-deterministic, and they both support the retrieval of a particular
row / column / cell from the dataset as well as the enumeration of all possible
rows / columns / cells from that dataset.

In particular, predicate row/3 aims at retrieving rows. If the Index parameter
is a positive integer, then the predicate attempts to unify the Value parameter
with the list of values contained the Indexth row of the dataset. Otherwise, if
Index is uninstantiated, the predicate enumerates all rows in the dataset, and for
each row it unifies the Index and Values parameters accordingly.

The predicate column/3 is totally analogous to row/3, expect it aims at re-
trieving or enumerating columns. The only notable difference w.r.t. row/3 is
that columns can be referenced by either attribute names or indexes—thus both
positive integers and atoms can be bound to the Attribute parameter.

Finally, predicate cell/4 supports accessing or enumerating cells. In particu-
lar, it allows the user to access the Value in position (Index, Attribute), where
Index is a row index in and Attribute is an attribute name or index. If one or both
parameters are uninstantiated, the predicate enumerates all possible assignments.

Object to clausal form conversion. The logic programmer may also be
willing to convert a dataset in object form into a dataset in clausal form. This can
be attained via the following predicate:

theory from dataset(+Schema: ref , +Dataset: ref)

Given the references to both a dataset and its schema in object form, the predicate
populates the solver’s dynamic KB with the a number of clauses representing the
dataset and its schema in the clausal form described above.

198 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.2. REALISING THE API: ML-LIB DESIGN

12.2.3 Transformations

A transformation is a function altering a dataset and, possibly, its schema. It
may be parametric and hence tuned according to the content of the dataset or its
schema.

Consider for instance the case of the “Normalization” transformation. It applies
an affine transformation to each column of the dataset (independently) in such a
way that it has a predefined mean (e.g. 0) and standard deviation (e.g. 1). Hence,
it alters the content of a dataset leaving its schema unaffected. To work properly,
it requires two major computational steps, namely (i) computing (and storing) the
mean and standard deviation of each column of the original dataset, (ii) applying
the affine transformation to normalize the dataset columns (i.e. subtracting the
mean and dividing by the standard deviation each cell of each column).

In the general case, transformations are modelled as stateful entities supporting
at least 2 operations, namely fitting and transforming a dataset and its schema.
The latter operation is also known as “applying a transformation to a dataset”,
and it should not only support the retrieval of the transformed dataset, but the
transformed schema as well. Furthermore, transformations should be composable
into pipelines, i.e. cascades of simpler transformations to be fitted or applied in a
row.

To support all such aspects, the ML-Lib provides predicates aiming to

1. create a transformation given a schema,

2. combine elementary transformations into composite transformations,

3. fit transformations over data (regardless of whether they are elementary or
composite),

4. apply composite or elementary transformation to a dataset, thus attaining a
new dataset,

5. retrieve the new schema resulting from a transformation application.

Differently from schemas and datasets, for which the ML-Lib supports both clausal
and object representations, transformations are only representable in object form,
hence the following predicates assume transformations to be manipulated via ref-
erence terms.

Transformations to/from schemas. To support aims 1 and 5, the ML-Lib
provides the following bi-directional predicate:

schema transformation(?Schema: ref , ?Transformation: ref)

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 199

12.2. REALISING THE API: ML-LIB DESIGN

which changes its behaviour depending on which arguments are instantiated.
In particular, if Schema is bound to a schema object, then Transformation is

unified with an identity transformation – i.e. a transformation leaving the schema
and the dataset unaffected –, which can be used as the initial step of a composite
pipeline. This is how aim 1 is served.

Conversely, if Transformation is bound to an actual transformation object,
then Schema is unified with the new schema object attained by applying that
transformation to the schema it was originally constructed from. This is how aim
5 is served.

Creating and combining elementary transformations. To support aim 2,
the ML-Lib provides a number of predicates sharing a similar syntax. Each pred-
icate is in charge of creating a composite transformation by appending a specific
elementary transformation to some previously created one—like, for instance, the
identity transformation created via schema transformation/2.

In the general case, the combination and creation of transformations is attained
via predicates of the form:

⟨name⟩(+Pipelinein: ref , +A1, ..., +An, -Pipelineout: ref)

where ⟨name⟩ is the name of the transformation being appended to Pipelinein,
while A1, . . . , An are transformation-specific parameters, and Pipelineout is the
output parameter to which the newly created transformation is bound.

The ML-Lib currently supports 3 predicates of this sort, and further ones may
be defined following the same syntactical convention. These are normalize/3,
one hot encoding/3, and attributes delete/3, and their details are described
later in this paragraph. Here we focus on the overall design which is aimed at
supporting the declaration of pipelines of transformations, via conjunctions of
goals:

theory to schema(OriginalSchema),

schema transformation(OriginalSchema, T0),

transformation1(T0, arg1, T1),
...

transformationm(Tm−1, argm, Tm),

schema transformation(FinalSchema, Tm)

Following this convention, logic programmers may declaratively construct the
pipeline of transformations to be applied to OriginalSchema to produce FinalSchema,
in such a way that each variable Ti, for i ∈ {0, . . . ,m} is bound to an object sum-
marising all transformation steps from 0 to i.

200 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.2. REALISING THE API: ML-LIB DESIGN

Normalization. A dataset’s columns can be normalised in such a way that,
for each column, the mean is 0 and the standard deviation is 1. Such kind of
transformations may alter the dataset while leaving its schema unaffected. A
normalization transformation can be created via the following predicate:

normalize(+Pipelinein: ref , +Attributes: list |atom ,

-Pipelineout: ref)

There, parameter Attributes must be bound to either a list of attribute names or
indexes – denoting the columns to be normalized –, or the ‘all’ atom—denoting
a situation where all columns should be normalized.

One Hot Encoding. A dataset’s target attributes whose type are categor-
ical with k-admissible values can be replaced by k binary attributes, via one-hot
encoding (OHE) transformations. Such kind of transformations alter both the
dataset and its schema. A OHE transformation can be created via the following
predicate:

one hot encode(+Pipelinein: ref , +Attributes: list |atom ,

-Pipelineout: ref)

There, parameter Attributes must be bound to a list of attribute names or in-
dexes denoting the columns to be one-hot encoded.

Attributes Deletion. Columns may be dropped from a dataset and its
schema via attribute deletion transformations. Such kind of transformations alter
both the dataset and its schema. An attribute deletion transformation can be
created via the following predicate:

one hot encode(+Pipelinein: ref , +Attributes: list |atom ,

-Pipelineout: ref)

There, parameter Attributes must be bound to a list of attribute names or in-
dexes denoting the columns to be dropped.

Fitting transformations to data. To support aim 3, the ML-Lib provides the
following predicate:

fit(+Transformationin: ref , +Dataset: ref ,

-Transformationout: ref)

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 201

12.2. REALISING THE API: ML-LIB DESIGN

which works by tuning Transformationin over Dataset, producing a new trans-
formation, whose reference is unified with Transformationout.

The new transformation may be identical to the input one, in case the latter
does not require tuning—such as in the case of OHE. Conversely, in case it does
need tuning – as in the case of normalization –, the output transformation may
actually be different than the original one. Fitting a composite transformation of
course has the effect of fitting all its components, recursively.

Applying transformations to data. Finally, to support aim 4, the ML-Lib
provides the following bi-directional predicate:

transform(?Datain: ref |compound , +Transformation: ref ,

?Dataout: ref |compound)

which can either apply a transformation or its inverse depending on either entire
datasets or their rows, depending on how arguments are passed.

In particular, Datain and Dataout can be either dataset references, or compound
terms, denoting single rows. Of course, applying a (possibly inverse) transforma-
tion to a row (resp. entire dataset) shall produce a row (resp. entire dataset) in
return.

The predicate applies Transformation to Datain in case the latter parameter
is instantiated, unifying the transformed result with Dataout. Conversely, it ap-
plies the inverse of Transformation to Dataout in case the Datain parameter is
uninstantiated while the former is not. When this is the case, the transformed
result is unified with Datain.

12.2.4 Predictors

Predictors are stateful entities which can be trained over a dataset to later draw
predictions on new data matching the same schema. In the general case, all pre-
dictors may require a number of hyper parameters to be specified upon creation,
and a number or learning parameters to be provided upon training. Both kinds of
parameters aim at regulating the predictor behaviour, either in general or during
training, and their actual values must be decided by the user.

Given the large number of possible predictors from the data science literature,
the ML-Lib just fixes the syntactical convention to support predictors creation,
other than the API to support both training and drawing predictions. Notably,
as for transformations, the ML-Lib assumes predictors to be represented in object
form, and therefore manipulated via reference terms.

202 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.2. REALISING THE API: ML-LIB DESIGN

Creating predictors. The ML-Lib constrains predictor-creating predicates to
comply to the following syntactical convention:

⟨name⟩(+H1, ..., +Hn, -Predictor: ref)

where ⟨name⟩ is the name of the predictor type being instantiated, whileH1, . . . , Hn

are predictor-type-specific hyper-parameters, and Predictor is the output param-
eter to which the newly created predictor is bound.

The ML-Lib currently supports one predicate of this sort – namely, the neural network/2

predicate, described later in this section –, yet further ones may be defined follow-
ing the same syntactical convention.

Training. Regardless of their nature, predictors can be trained on data via the
following predicate:

train(+Predictorin: ref , +Dataset: ref , +Params: list ,

-Predictorout: ref)

The predicate accepts Predictorin as the predictor to be trained, the Dataset it
should be trained upon, and a list of predictor-specific Params. Behind the scenes,
the predicate exploits a predictor-specific learning algorithm to train Predictorin,
possibly following the suggestions/constraints carried by Params. Once the train-
ing has been completed, a reference to the trained predictor is bound to Predictorout,
and the execution of the predicate succeeds.

Learning Parameters. The Params argument of train/4 must be instan-
tiated with a list of learning parameters aimed at controlling and constraining the
execution of a learning algorithm. In the general case, each parameter is a term
of the form:

⟨name⟩(⟨value⟩)

where ⟨name⟩ is a functor describing the purpose of the parameter, while ⟨value⟩
is an arbitrary term acting as value for the parameter.

In the particular case of neural networks, the ML-Lib admits the following
learning parameters

• max epochs(N: integer) limiting the amount of epochs2 to be performed
while training a NN;

• batch size(N: integer) defining the amount of training samples to be
taken into account in each single step of the learning algorithm;

2i.e., the amount of times the learning algorithm works through the entire training dataset

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 203

12.2. REALISING THE API: ML-LIB DESIGN

• learning rate(R: real) defining the step size in a gradient descent learn-
ing process;

• loss(Function: atom) dictating which loss function should be optimised
during training (admissible values include: mse for mean squared error, mae
for mean absolute error, cross entropy, etc.)

Other sorts of learning parameters may be added to the ML-Lib, targeting both
NN or other sorts of predictors.

Drawing predictions. Regardless of their nature, trained predictors can be
exploited to draw predictions from data – e.g. from a whole dataset or a single
row –, via the following predicate:

predict(+Predictor: ref , +InputData: ref |compound , -Prediction:

ref |compound)

The predicate accepts a Predictor (which must have been previously trained
via train/4), and some InputData – which may either be reference to a dataset
object, or a compound term denoting a single row –, and uses the Predictor to
compute a prediction for each data entry in InputData. Predictions may consist
of either a single row or a whole dataset, depending on how many data entries
are contained in InputData. In both cases, the Prediction output parameter is
unified with the predicted row/dataset.

In case InputData is bound to a full dataset including one or more target
columns, those target columns are ignored while computing predictions. Con-
versely, when InputData is bound to a list of values, the ML-Lib considers them
all as input values.

Classification. As many predictors – there including NN – are technically
tailored on regression tasks (where predicted values are real numbers), it is a
common practice for data scientists to map classification tasks (where predicted
values are categorical) onto regression tasks, to make it possible to address them
via regressors. The mapping commonly works as follows. A classification task
requiring input data to be classified according to k ∈ N≥0 classes, can be conceived
as a regression aimed at predicting continuos vectors y ∈ Rk from the same input
data. Given a particular input datum x, and the corresponding prediction y, the
ith component of y – namely, yi – could then be interpreted as the confidence of
x being classified as an example of the ith class. Depending on the nature of the
classification task at hand, the confidence values in y could be jointly interpreted
following several strategies. In a situation where classes are mutually exclusive,
one may use function argmaxi(yi) to select the most likely class of x. Otherwise,

204 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.2. REALISING THE API: ML-LIB DESIGN

if classes can overlap, one choose a confidence threshold θ and classify x according
to all those classes i such that yi ≥ θ.

The ML-Lib supports classification out of regressors via the following predicate:

classify(+Prediction: ref |compound , +Strategy: compound ,

+Classes: list , -Classification: ref |compound)

which accepts a Prediction computed via predict/3 – be it a single row or
a whole dataset –, a classification Strategy, a list of Classes, and an output
parameter, Classification, which is bound to a container for as many categorical
predictions as in Prediction.

Notably, while the Classes parameter must consist of a list of (at least 2)
class names, admissible values for the Strategy parameter are determined by the
classification/1 predicate, defined as follows:

classification(argmax).

classification(threshold (Th)) :- numeric(Th).

meaning that currently the ML-Lib only supports classification via the argmax or
threshold-based strategies—despite further strategies may be added following the
same syntactical notation.

Assessing Predictions. Predictors can be assessed by comparing their ac-
tual predictions with a test dataset containing expected predictions, having no
overlap with the data used during training. Several scoring functions can be used
to serve this purpose, like, for instance mean squared/absolute error (MSE/MAE)
or R2 for regressors, as well as accuracy, recall, or F1-Score for classifiers.

The ML-Lib supports assessing a predictor via a number of predicates following
the same syntactical convention:

⟨name⟩(+Actual: ref |list , +Expected: ref |list , -Score: real)

where ⟨name⟩ is the name of the scoring function of choice, Actual is either a
dataset or a list containing the actual predictions produced by the predictor under
assessment, Actual is either a dataset or a list containing the test data, and Score

is the output parameter to be unified with the score value computed whenever the
predicate is executed.

Notable cases of scoring functions are, for instance: mse/3, mae/3, r2/3,
accuracy/3, recall/3, or f1 score/3, while further ones may be added following
the same syntactical convention.

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 205

12.2. REALISING THE API: ML-LIB DESIGN

Neural Networks

Neural networks are a particular sort of predictor. They consist of directed acyclic
graphs (a.k.a. DAG) where vertices are elementary computational units called
neurons, and edges (a.k.a. synapses) are weighted.

Topologically, neural networks are organised in layers, and data scientists de-
sign them by specifying (i) how many layers compose the network, (ii) how many
neurons compose each layer, (iii) which activation function is used by each layer
– and therefore by each neuron therein contained –, and (iv) how are layers – and
therefore their neurons – interconnected with their predecessors and successors in
the DAG. Hence, a NN’s hyper-parameters should provide information about such
aspects.

The ML-Lib provides the following predicate to construct NN-like predictors:

neural network(+Topology: ref , -Predictor: ref)

There, Topology is a reference to an object describing the overall architecture of
the network, and, in particular its layers.

Layers. Layered architectures are commonly composed by at least one input
layer – whose neurons simply mirror the input data –, and one output layer—
whose neurons’ output values jointly represent the NN prediction. In the between
an arbitrary amount of layers of different sorts may be defined—e.g. dense, con-
volutional, pooling, etc. In all such cases, declaring a layer implies specifying its
sort, size (in terms of neurons), and activation function.

The ML-Lib supports the declaration of layered architectures similarly to how
it supports pipelines of transformations. There are two major sorts of predicates
to serve this purpose:

input layer(+Size: integer , -Layer: ref).

⟨type⟩ layer(+Previous: ref , +Size: integer , +Activation: ref,

-Layer: ref).

The former predicate, input layer/2, aims at creating a Layer of a given
Size. The size should match the amount of input attributes in the training dataset.
This is the entry point of any cascade of predicates aimed at creating a layered
architecture.

Conversely, the latter predicate pattern, ⟨type⟩ layer/4 is matched by a num-
ber of actual predicates aimed at creating intermediate or output layers. There
⟨type⟩ denotes the type of the layer. Regardless of their type, these predicates
accept a reference to some Previous layer, whose output synapses are connected
to the layer under construction, in a way which depends by its type. They also

206 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.3. TECHNOLOGY-RELATED ASPECTS

accept the Size of the layer to be constructed, and the Activation function its
neurons should employ. Finally, they all accept an output parameter, Layer, to
which a reference to the newly created layer is bound, in case creation succeeds.

The dense layer/4 predicate is a notable case matching the aforementioned
pattern. It aims at declaring a layer whose neurons are densely connected with
its predecessor’s ones—in the sense that, each neuron of the predecessor has
an outgoing synapsis towards each neuron of the dense layer. Layers of such a
sort are commonly exploited as intermediate. Conversely, layers declared via the
output layer/4 predicate – again matching the aforementioned pattern – are
commonly final in any well formed NN architecture.

So, for instance, an ordinary multi-layered perceptron (MLP) composed by 1
input layer with 4 neurons, 1 hidden layer with 7 neurons, and 1 output layer
with 3 neurons, where all neurons exploit the sigmoid activation function, can be
declared as follows:

input layer(4, I),

dense layer(I, 7, sigmoid, H),

output layer(H, 3, sigmoid, O),

neural network(O, NN)

There variable I is bound to the input layer, variable H is bound to the hidden
layer, and O is bound to the output layer, whereas NN is bound to a MLP predictor
whose architecture comprehends I, H, and O.

Activation Functions. The behaviour of neurons should be finely tuned
via their activation function. Indeed, all layer-creating predicates of the form
⟨type⟩ layer/4 expect an activation function to be provided by the user. Admis-
sible activation functions are regulated by the activation/1 predicate, defined
below:

activation(identity). denoting f(x) = x
activation(sigmoid). denoting f(x) = 1/(1 + e−x)
activation(tanh). denoting f(x) = tanh(x)
activation(relu). denoting f(x) = max (0, x)

while others may be possibly added.

12.3 Technology-related aspects

The ML-Lib requires blending several programming paradigms and languages.
Indeed, it is intended to be used by logic programmers and via logic programs – e.g.
Prolog programs –, yet it explicitly requires some underlying OO library supporting

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 207

12.3. TECHNOLOGY-RELATED ASPECTS

core

unify

theory

solve

solve-classicsolve-streams

repl

serialize-core

serialize-theory

dsl-core

dsl-unify

dsl-theory

parser-core

parser-theory

parser-jvm parser-js

Legend

module

root

api only

implementation

utility

dsl-solve

ide

oop-lib

io-lib
solve-plp

solve-problog

utils

bdd

ide-plp

depends on

uses

Figure 12.5: Localization of the ML-Lib into the 2P-Kt ecosystem

ML facilities. Hence, from a technical perspective, it requires at least (i) a LP
technology supporting the definition of custom predicates, possibly triggering the
execution of OO code (ii) an OO technology supporting the declaration, training,
and exploitation of ML predictors.

In this section we discuss the choice of 2P-Kt as the underlying LP technology.
However, at the time of writing, this introduces a technological constraint on the
JVM platform. Hence, here we also report the technological selection process
aimed at selecting the best OO technology supporting ML on the JVM. Spoiler
alert: we select DeepLearning4J (DL4J) because of its superior maturity/usability
trade-off.

12.3.1 2P-Kt as the underlying logic ecosystem

2P-Kt [CCO21a] is a logic ecosystem rebooting the tuProlog [DOR01] project and
providing a number of loosely coupled logic facilities, including but not limited to
knowledge representation via terms and clauses, unification, and logic resolution.
In particular, 2P-Kt provides such facilities via a Kotlin-based object-oriented
API, which eases the construction of applications where LP and OOP are blended
together. As a Kotlin library, 2P-Kt can currently run on the JS, JVM e Android
platforms.

As shown in fig. 12.5, the ML-Lib is realised as yet another module extending
the 2P-Kt ecosystem. In particular, it builds upon (i) the knowledge represen-
tation facilities offered by the :core module, (ii) the logic unification facilities
offered by the :unify module, (iii) the clause in-memory indexing facilities of-
fered by the :theory module, (iv) the general-purpose API for logic resolution
offered by the :solve module, (v) the IO predicates offered by the :io-lib mod-
ule, (vi) the OOP↔LP interoperability facilities offered by the :oop-lib module,

208 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.3. TECHNOLOGY-RELATED ASPECTS

other than, of course (vii) DL4J.
With respect to LP solutions, 2P-Kt provides two particular facilities which

are key enabler for the ML-Lib. The first one is the notion of generator, introduced
in [CCO21b] and briefly summarised in section 12.3.1, while the second one is the
notion of reference term, described in section 12.3.1.

Generators for LP–OOP interoperability

Briefly speaking, generators are gateways mediating the invocation of OO code
from logic programs. Thanks to generators, ordinary logic predicates can be im-
plemented in OOP, in such a way that, whenever a goal p(X1, . . . , Xn) is met as
part of some resolution process, some corresponding OO function (i.e. the genera-
tor) is called. The function may then exploit any OO facility available in the local
runtime—there including any ML-related library. Eventually, the function must
lazily return a (possibly infinite) stream of data, as well as a single result. Each
returned datum is interpreted back in logic as a solution for the goal p/n which
triggered the generator in the first place. Each solution may then carry possible
assignments for the variables X1, . . . , Xn, which may then be taken into account
in the remainder of the resolution process.

So, essentially, generators allow for bi-directional communication among a logic
solver and the underlying OO runtime. Information may be propagates from
the logic realm to the OO one as ordinary predicate arguments, instantiated at
invocation time. Information may be back-propagated from the OO realm to the
logic one as variable assignments, instantiated at return time.

Generators are supported in 2P-Kt via the :solve module. Notably, they
are the basic mechanism supporting the manipulation of schemas, datasets, trans-
formations, and predictors in the ML-Lib.

Reference Terms and the :oop-lib

2P-Kt’s :core module provides knowledge representation facilities via terms and
clauses. This is achieved via a hierarchy of types – namely, the “term hierarchy”,
depicted in fig. 12.6 –, supporting the representation of structured or clausal in-
formation, within the logic realm.

However, these abstractions alone are not sufficient to support LP–OOP in-
teroperability, as they only support representation of knowledge in logic form.
In other words, ordinary logic-based knowledge representation can only represent
terms (i.e. alphanumeric or numeric constants, data structures, or variables) or
Horn clauses. Objects and types from the OOP realm cannot be represented.

To overcome these issues, 2P-Kt comes with a :oop-lib module extending
the term hierarchy as shown in fig. 12.6. Briefly speaking, the extension consists of

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 209

12.3. TECHNOLOGY-RELATED ASPECTS

Term

Constant Var Struct

Numeric

IntegerReal

Atom

Truth

Indicator

Empty

EmptyBlockEmptyList

Recursive

List

Cons

BlockTuple

Clause

RuleDirective

Fact

Ref

TypeRefObjectRef

NullRef

Figure 12.6: Reference terms and their localization within the 2P-Kt term hierarchy

a new sort of constant term, namely references—formally denoted by the Ref type
in the diagram. Reference terms can either reference objects (ObjectRef) or types
(Types)—as OOP languages may support both instance and shared (a.k.a. static)
methods. The null reference (NullRef) is a particular type of object reference
denoting the lack of reference.

Thanks to reference terms, objects can be represented in the logic realm, and
carried around as part of the resolution process. Combined with the generators
feature, this feature enables logic solvers to take objects into account during res-
olution. As constant terms, references can be bound to variables, unified, and
passed as arguments to predicates, in both verses. Whenever an object must be
created or manipulated, a logic solver may delegate the task to the OOP realm,
via some ad-hoc generator.

Notably, this mechanism as well is fundamental to support the manipulation
of schemas, datasets, transformations, and predictors in the ML-Lib.

12.3.2 Selecting the underlying OO library

Here we present a technological analysis aimed at selecting the most adequate
library to support our ML-Lib. The analysis is subject to a unique – yet very
strong – constraint, derived from the nature of 2P-Kt: JVM compatibility.

Notably, 2P-Kt offers unique features which can hardly be found in other LP
ecosystems. These include the possibility (i) to exploit LP facilities as a library
in OOP, (ii) to define custom sorts of terms, and (iii) to implement custom logic
predicates via OOP. Unfortunately, however, these possibilities come at a price.
Any piece of OOP code willing to interoperate with 2P-Kt must be compliant

210 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.3. TECHNOLOGY-RELATED ASPECTS

with some of the platforms 2P-Kt supports—which currently means the JVM,
JS, and Android. Of these the JS platform is considered poorly adequate for ML
– as it is a platform mostly suited for Web-related solution –, while Android is too
narrow—as targeting Android alone would imply the ML-Lib to only be usable
on smart devices. Ad-hoc native bindings towards C/C++ based solution for ML
could be considered, but they would involve high costs in terms of engineering and
maintenance—which would be prohibitive for and early research project.

Hence, in the reminder of this subsection we focus on JVM-based solutions for
ML, supporting all the sorts of entities described in the previous sections—namely,
Schemas, Datasets, Transformations, Predictors, and, in particular, Neural Net-
works.

DeepLearning4J (DL4J). DL4J [Tea] is a Java-based solution for neural net-
works and deep learning, inspired to Python-based projects such as Tensorflow
and Pytorch.

The project is currently developed and maintained by the Konduit team3, and
supported by the Eclipse Foundation4. The project comes with a wide gamma of
functionalities covering the many needs of the deep learning practitioner. These
include ND4J, i.e. an efficient library for tensors manipulation and scientific com-
putations; Datavec, i.e. a library for loading data from various sources into tensors;
Samediff, i.e. a Tensorflow/Pytorch-like differential engine for the execution and
optimization of complex computational graphs; and Arbiter, i.e. a tool for hyper-
parameters optimization.

In particular, the Samediff engine is explicitly designed to rely on ND4J, thus
guaranteeing good performance in spite of low memory requirements. Overall,
DL4J is interoperable with a number of relevant technologies from the ML play-
ground, including but not limited to Spark (for the execution of distributed learn-
ing pipelines), CUDA (for hardware accelerating tensor manipulations), Tensor-
flow (as it supports the ‘.h5’ data format), as well as the Open Neural Network
Exchange (ONNX) format. Furthermore, DL4J is shipped with a number of pre-
trained models (model zoo), and many code snippets exemplifying their usage.

The project is actively maintained and rapidly evolving. It currently includes
56 contributors and more than 12.3k stars on GitHub. Its codebase is well doc-
umented on the project homepage, and several tutorials are provided as well.
Finally, DL4J is an open source project made publicly available under the terms
of the Apache 2.0 License.

3https://konduit.ai
4https://www.eclipse.org

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 211

https://konduit.ai
https://www.eclipse.org

12.3. TECHNOLOGY-RELATED ASPECTS

Smile. Smile [Smi21] is a Java-based solution for machine learning, inspired the
Python-based project SciKit-learn. It started as a side-project of dr. Haifeng
Li., in 2014. Nowadays, it is amongst the widest (in terms of features) indepen-
dent frameworks for ML targeting the JVM platform. Notably, it does not simply
support neural networks training and exploitation, but the whole gamma of ML
predictors as well—including, but not limited to SVM, decision trees, linear mod-
els, random forests, etc. In particular, the Smile library includes pure-Java types
and methods for linear algebra and tensor manipulation, dataset manipulation and
visualization, and plenty of algorithms for both supervised and unsupervised ML,
there including statistical methods, classification and regression, and a number of
meta-heuristics.

Unfortunately, NN support is very limited in Smile, as it only supports multi-
layered percepts with dense layers, trained on the CPU—i.e. with no hardware
acceleration. Automatic differentiation support is lacking, as well as the possibility
to construct custom network architectures.

The project is actively maintained, mostly by dr. Li himself, and other 54
contributors, and it currently involves 5.4k stars on GitHub. Its codebase is well
documented on the project homepage, and several tutorials are provided as well.
Finally, Smile is an open source project made publicly available under the terms
of the Apache 2.0 License.

Neuroph. Neuroph [STCG+21] is a Java framework for neural networks devel-
oped by at University of Belgrade through a number of PhD and master students’
theses. The project aims at providing a lightweight platform for exploiting and
visualising neural networks, mostly in research and for teaching.

Similarly to other technologies presented so far, Neuroph supports the defi-
nition, training, assessment, and visualization of neural networks. However, the
amount of supported features is quite restricted, automatic differentiation is lack-
ing, and the support for creating custom NN architectures is limited. These lim-
itations are coherent with the design goal of creating a didactic environment for
neural networks newbies, yet they may result prohibitive for complex projects
needing to be competitive w.r.t. the state of the art.

The project is currently being maintained by Zoran Sevarac and other 21 con-
tributors, and it currently involves 51 stars on GitHub. Finally, Neuroph is an
open source project made publicly available under the terms of the Apache 2.0
License, since version 2.4, or the LGPL license before that version.

Tensorflow for Java (TF4J). Tensorflow [AAB+15] is a popular framework
for ML, and in particular deep learning developed by the Google Brain team. It
consists of a differential engine written in C++ and involving several bindings

212 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.3. TECHNOLOGY-RELATED ASPECTS

towards high-level languages, such as Python.

TF4J is the official binding of Tensorflow for the JVM. Unfortunately, however,
TF4J does not currently have the same maturity of the Python binding, nor it
covers the same gamma of features. Notably, TF4J does not support the support
the whole API described by the official Tensorflow documentation. In particular it
does not support all the features introduced in Tensorflow 2.0, such as the Keras
API—supporting the manipulation of NN in terms of layers.

The project involves more than 450 stars and 64 contributors on GitHub. It
consists of an open source project made publicly available under the terms of the
Apache 2.0 License.

Deep Java Library (DJL). DJL [Ama21] is a Java framework for deep learn-
ing application developed by Amazon. It supports the definition, training, and
exploitation of neural network, via one or more pluggable differential engines The
currently available differential engines are the Pytorch, MXNet, and Tensorflow
ones. For all such engines, a number of pre-trained neural architectures (model
zoos) are provided as well. Hence, DJL essentially consists of a common API for
training or loading, and running NN targetting state of the art differential engines.

Despite DJL is currently actively maintained, it is to be considered in embry-
onic stage. At the time of writing, it mostly focuses on image processing and
computer vision applications, while it does not include functionalities for handling
datasets and their schemas.

The project currently involves 48 contributors and 2.4k stars on GitHub. It
consists of an open source project made publicly available under the terms of the
Apache 2.0 License.

H2O. H2O [H2O16] is a ML, deep learning, and distributed computing platform
for the JVM, developed by H2O.ai. It consists of a JVM-based service running
on top of a cluster of machines, possibly involving Spark or Hadoop. Clients
may perform ML or data processing via a ReSTful API exposed by that service.
Implementations for that API are available for the R, Python, and JS languages.
Clients may request data processing or ML operations on data, to the service,
which then exploits the joint computational power of the cluster to perform those
operations, following the map-reduce approach [DG08]. Hence, H2O is a nice
solution for Big Data scenarios.

The project is actively maintained and it involves 154 contributors and 5.7k
stars on GitHub. It consists of an open source project made publicly available
under the terms of the Apache 2.0 License.

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 213

12.3. TECHNOLOGY-RELATED ASPECTS

Project Developer / Funder Maturity Development Status Documentation

DL4J Konduit/Eclipse Fundation Beta Actively Developed Excellent
Smile Haifeng Li Stable Developed Excellent

Neuroph Zorac Severac Stable Maintained Acceptable
TF4J Google Brain Team WIP Developed Excellent
DJL Amazon Web Services Alpha Actively Developed Good
H20 H20.ai Stable Developed Good

Weka Waikato University Stable Developed Excellent

Table 12.1: Recap of the analysed technologies and their features

Project
Neural

networks
Linear
Algebra

Dataset
pre-processing

Other sorts
of predictors

Differential
engine

DL4J Yes Yes Yes No Yes
Smile No Yes Yes Yes No

Neuroph Yes No No No No
TF4J Yes No No No Yes
DJL Yes Yes No No Yes
H20 Yes Yes Yes Yes Unknown

Weka Yes Yes Yes Yes via DL4J

Table 12.2: Recap of the analysed technologies and the functionalities they support

Weka. Weka [WFH11] is a platform for ML, and, in particular data mining,
developed in Java by the Waikato University. It includes a wide collection of
algorithms supporting not only supervised and unsupervised learning, but also
data pre-processing, exploration, and visualization. Weka can be exploited as a
Java library or as a graphical application for data mining. In the latter case, no
coding skills are required for using Weka.

Concerning NN, Weka provides basic support for multi-layer perceptrons only,
without relying on automatic optimization. Hence, the construction of arbitrarily-
structured NN is not supported directly, but rather via the WekaDeepLearning4J
extension5—which wraps DL4J behind the scenes.

Weka is a well-established and widely-adopted solution within the data mining
community. The official Web page includes and excellent documentation, including
tutorials and videos. It consists of an open source project made publicly available
under the terms of the GPL 3.0 License.

214 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.3. TECHNOLOGY-RELATED ASPECTS

Comparison, discussion, and selection

Here we motivate the choice of DL4J as the underlying OO library supporting our
first implementation of the ML-Lib.

The selection criterion leading our choice takes into account a number of aspects
summarised in tables 12.1 and 12.2. In particular, for each technology, we analyse
some features aimed at assessing its usability, stability, and durability (from a
software engineering perspective), other than which and how many functionalities
it offers.

Functionalities are, of course, of primary importance. For instance, we priori-
tize NN support via a differential engine, as that would enable great flexibility in
the construction, training, and exploitation of NN of different shapes. Function-
alities supporting the loading and manipulation of datasets and their schemas are
equally relevant. Conversely, supporting the full gamma of ML predictors is a nice
to have (but not strictly required) functionality.

Business oriented features are, however, of paramount importance as well. Even
in presence of all required functionalities, technologies involving a large develop-
ment team, a big funding organization, a large user base, or a high-paced develop-
ment/release history should be preferred—as they are less likely to be dismissed
or become unmaintained in the future.

Along this line, DL4J is the most adequate option. Indeed, the project provides
a sufficiently large functionality support, and it comes with a good documenta-
tion and encouraging expectations for what concerns its maintenance and future
development—as it is backed by the Eclipse Foundation, and it has a large user
base. Furthermore, it comes with a well engineered object-oriented API, whose
meta-model is close the one we adopted while designing the ML-Lib. Smile covers
a wide gamma of functionalities, but it is poorly suited for NN, and, in particu-
lar, it is an independent project with a small development team and a low-paced
release rate. Neuroph is mainly suited for educational application, and it provides
too simple API. Furthermore, while it is currently maintained, it is not actively
developed any more, and no major releases are expected in the future. TF4J is
still too embryonic and its API is too limited, at the moment, to serve the pur-
pose of the ML-Lib. DJL is a promising project – both from the technical and
business-oriented perspectives –, however it is currently better suited for use cases
where NN trained elsewhere needs to be executed on the JVM. Furthermore, it
provides less functionalities than DL4J, while serving similar purposes. H2O is
an interesting solution, but its client-server architecture may greatly complicate
the low level design and implementation of our ML-Lib, hence it is not considered
adequate for bootstrapping a prototype. Finally, Weka another perfect solution

5https://deeplearning.cms.waikato.ac.nz

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 215

https://deeplearning.cms.waikato.ac.nz

12.4. ML-LIB EXAMPLES

for backing our ML-Lib: it supports the full gamma of required functionalities, it
has a large contributors list, it is well established, and it has a large user base.
The main reason why we prefer DL4J over Weka is that the latter fully supports
NN only through the former. So, when prototyping our ML-Lib we choose to rely
on simplest possible setting – namely, vanilla DL4J –, instead of an integrated
solution involving Weka + WekaDeepLearning4J—which may however be pursued
in the future.

12.4 ML-Lib Examples

Here we exemplify the usage of the ML-Lib to serve the purposes described in
section 12.1.1.

From a LP perspective, our examples assume the existence of a logic solver/lan-
guage exploiting some implementation of the ML-Lib. For the sake of simplicity,
we assume a Prolog solver is employed. Hence, examples consists of Prolog scripts,
possibly involving standard Prolog predicates.

From a ML perspective, our examples assume a very simple scenario where a
neural-network classifier is trained on the well known Iris dataset6. The resulting
NN is then exploited to write a simple hybrid predicate aimed at classifying unseen
Iris instances.

Declarative ML. Declarativity is a key benefit of our symbolic approach to ML.
The ML-Lib supports declarative ML in several ways, as exemplified by listings
12.1, 12.2, 12.3, and 12.5.

In particular, listing 12.1 shows how the schema and data entries of the Iris
dataset can be treated in logic. Notably, the Iris data set contains 150 rows de-
scribing as many individuals of the Iris flower. For each exemplary, 4 continuous
input attributes – petal and sepal width and length – are recorded, other than
a categorical target attribute—denoting the actual Iris species. There are three
particular species of Iris in this data set – namely, Setosa, Virginica, and Ver-
sicolor –, and the 150 examples are evenly distributed among them—i.e., there
are 50 instances for each class. The Prolog script describes the Iris dataset’s
schema in clausal form, as discussed in section 12.2.1. It also declares two predi-
cates – namely, iris schema/1 and iris dataset/1 – aimed at letting the logic
programmer retrieve either the schema or its dataset in object form. More pre-
cisely, iris schema/1 attempts to read the schema from the local theory, while
iris dataset/1 attempts the load the dataset from a CSV file. Listing 12.4 (pre-
sented later in this section) reports a similar scenario where the dataset as well is

6https://archive.ics.uci.edu/ml/datasets/iris

216 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

https://archive.ics.uci.edu/ml/datasets/iris

12.4. ML-LIB EXAMPLES

Listing 12.1: Dataset loading from file�
1 % schema declaration

2 attribute (0, sepal_length, real).

3 attribute (1, sepal_width, real).

4 attribute (2, petal_length, real).

5 attribute (3, petal_width, real).

6 attribute (4, species, categorical ([setosa, versicolor, virginica])).

7 schema_target ([species]).

8 schema_name(iris).

9

10 % reading schema from theory

11 iris_schema(S) :- theory_to_schema(S).

12

13 % dataset loading

14 iris_dataset(D) :- read_dataset('/path/to/iris.csv', csv, D).
� �
Listing 12.2: Pre-processing pipeline�

1 % declaring & fitting the preprocessing pipeline

2 preprocessing_pipeline(Dataset, Schema, Pipeline) :-

3 schema_transformation(Schema, Step0),

4 Classes = [petal_width, petal_length, sepal_width, sepal_length],

5 normalize(Step0, Classes, Step1),

6 one_hot_encode(Step1, [species], Step2),

7 fit(Step2, Dataset, Pipeline).
� �
Listing 12.3: Neural network structure declaration�

1 % neural network declaration

2 multi_layer_perceptron(Nin, Nhidden, Nout, NN) :-

3 input_layer(Nin, IL),

4 hidden_layer(IL, Nhidden, H),

5 output_layer(H, Nout, softmax, O),

6 neural_network(O, NN).

7

8 hidden_layer(L, [], L).

9 hidden_layer(L, [N | M], H) :-

10 dense_layer(L, N, relu, L1),

11 hidden_layer(L1, M, H).
� �

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 217

12.4. ML-LIB EXAMPLES

Figure 12.7: Simplified representation of a multi-layer perceptron having 4 input neu-
rons, 2 hidden layers with 5 and 7 neurons respectively, and 3 output neurons

loaded from the local theory.
Listing 12.2 exemplifies the declaration of a pre-processing pipeline aimed at

normalising the input attributes of any Dataset having the same Schema of Iris,
other than one-hot encoding its output attributes. The resulting Pipeline is
then fitted against the provided Dataset, and bound to the corresponding output
argument.

In turn, Listing 12.3 presents a general purpose predicate aimed at defining
multi-layered perceptron predictors with an arbitrary amount of hidden layers.
This is made possible by the multi layer perceptron/4 predicate, which requires
the caller to provide the amount of neurons to be instantiated for (i) the input
layer (Nin), (ii) the output layer (Nout), and (iii) for each hidden layer (Nhidden).
Notably, Nhidden should consist of a list in integers, denoting the amount of
neurons for each hidden layer – from the outermost to the innermost –, while
the total amount of integers corresponds to the amount of hidden layers. The
resulting neural network predictor is then bound to the NN output argument. So,
for instance, a NN such as the one depicted in fig. 12.7 can be declared as follows:

multi layer perceptron(4, [5, 7], 3, NN)

Finally, listing 12.5 declares an end-to-end ML workflow aimed at selecting
and training the best NN architecture to tackle Iris classification. Further details
about that listing are discussed later in this section. For the moment, we simply
stress the declarative nature of the script which can be regarded as a formal – yet
human-readable – specification of a classifier training workflow.

Symbolic data sources. In an hybrid system integrating both symbolic reason-
ing and sub-symbolic learning, it may be useful to perform ML upon data expressed
in logic form. This requires logic theories to act as symbolic data sources.

218 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.4. ML-LIB EXAMPLES

Listing 12.4: Dataset loading from the local theory�
1 % schema declaration

2 attribute (0, sepal_length, real).

3 attribute (1, sepal_width, real).

4 attribute (2, petal_length, real).

5 attribute (3, petal_width, real).

6 attribute (4, species, categorical ([setosa, versicolor, virginica])).

7 schema_target ([species]).

8 schema_name(iris).

9

10 % dataset definition

11 iris(5.1, 3.2, 1.4, 0.2, setosa).

12 iris(4.9, 3, 1.7, 1.2, versicolor).

13 iris(5.9, 3.4, 1.1, 0.9, virginica).

14 /*

15 * ... other entries here...

16 */

17

18 % reading schema from theory

19 iris_schema(S) :- theory_to_schema(S).

20

21 % reading dataset from theory

22 iris_dataset(D) :-

23 iris_schema(S),

24 theory_to_dataset(S, D).
� �
Our ML-Lib makes it possible to support such scenario, as exemplified in list-

ing 12.4. The script is assumed to replace listing 12.4 in those situation where
the Iris dataset is logically described in clausal form. Here, the iris dataset/1

attempts to load the data from the local theory instead of a file.

Model selection via resolution. The automatic exploration of a search space
subtended by logic resolution could be exploited to perform model selection. In-
deed, model selection essentially consists of an exploration of the hyper and learn-
ing parameters space, looking for the best possible values—i.e. those hyper and
learning parameters assignments corresponding to well-performing predictors on
the available training set.

Accordingly, the ML-Lib supports expressing and performing model selection
in logic, as exemplified in listing 12.5. There hyper, learning, and workflow param-
eters are expressed as logic facts, and the params/2 predicate is defined to enu-
merate all possible combinations of theirs—e.g. via Prolog’s backtracking mech-
anism. The model selection/5 predicate is in charge of stepping through all
such parameters with the purpose of selecting, and training all corresponding NN
predictors which attain a sufficiently high predictive performance—denoted by the
target performance/1 fact. For each trained predictor, the predicate outputs
not only a reference to the Predictor itself, but also its Performance, and the
affine Transformation to be applied to each datum for which predictions should

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 219

12.4. ML-LIB EXAMPLES

Listing 12.5: Declarative description of a ML workflow aimed at selecting the best
hyper and learning parameters for a NN classifier. Ancillary predicates invoked in this
snippet are reported in listing 12.6�

1 /* Hyper paramenters */

2 hidden_layers ([10]). hidden_layers ([20, 10]). hidden_layers ([30, 20, 10]).

3

4 /* Learning paramenters */

5 max_epochs (30). max_epochs (50).

6 batch_size (32). batch_size (16).

7 learning_rate (0.01). learning_rate (0.1).

8 loss(cross_entropy).

9

10 /* Workflow paramenters */

11 target_performance (0.90).

12 test_percentage (0.2).

13

14 /* Generates all possible hyper and learning params combinations */

15 params(

16 [hidden_layers(H)],

17 [iterations(X), learning_rate(Y), batch_size(Z), loss(L)]

18) :- hidden_layers(H),

19 max_epochs(X),

20 learning_rate(Y),

21 batch_size(Z),

22 loss(L).

23

24 /* Generates and trains all possible Predictors for the given Dataset and Schema,

*/

25 /* whose Performance is at least target_performance . */

26 model_selection(Dataset, Schema, Predictor, Transformation, Performance) :-

27 test_percentage(R), target_performance(T),

28 random_split(Dataset, R, TraingSet, TestSet),

29 preprocessing_pipeline(TraingSet, Schema, Transformation),

30 transform(TraingSet, Transformation, ProcessedTrainingSet),

31 params(HyperParams, LearnParams),

32 train_cv(TraingSet, HyperParams, LearnParams, P),

33 P >= T,

34 multi_layer_perceptron (4, HyperParams, NN),

35 train(NN, TrainingSet, LearnParams, Predictor),

36 transform(TraingSet, Transformation, ProcessedTestSet),

37 test(NN, TestSet, Performance).

38

39 /* Example of training query: */

40 ?- iris_dataset(D), iris_schema(S), model_selection(D, S, P, _, A).
� �

220 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.4. ML-LIB EXAMPLES

Listing 12.6: Ancillary predicates used in listing 12.5. Each predicate denotes one
particular step of a model selection workflow�

1 /* Trains a NN multiple times, over Dataset, using the provided Params. */

2 /* Returns the AveragePerformance over a 10- fold CV. */

3 train_cv(Dataset, HyperParams, LearnParams, AveragePerformance) :-

4 findall(

5 Performance,

6 train_cv_fold(Dataset, 10, HyperParams, LearnParams, Performance),

7 AllPerformances

8),

9 mean(AllPerformances, AveragePerformance).

10

11 /* Trains a NN once, for the k-th round of CV. */

12 /* Returns the Performance over the k-th validation set. */

13 train_cv_fold(Dataset, K, HyperParams, LearnParams, Performance) :-

14 fold(Dataset, K, Train, Validation),

15 train_validate(Train, Validation, HyperParams, LearnParams, Performance).

16

17 /* Tranis a NN on the provided TrainingSet , using the provided Params, */

18 /* and computes its Performance over the provided ValidationSet . */

19 train_validate(TrainingSet, ValidationSet, HyperParams, LearnParams, Performance)

:-

20 multi_layer_perceptron (4, HyperParams, 3, NN),

21 train(NN, TrainingSet, LearnParams, TrainedNN),

22 test(NN, ValidationSet, Performance).

23

24 % Computes the Performance of the provided NN against the provided ValidationSet

25 test(NN, ValidationSet, Performance) :-

26 predict(NN, ValidationSet, ActualPredictions),

27 accuracy(ActualPredictions, ValidationSet, Performance).
� �

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 221

12.4. ML-LIB EXAMPLES

be drawn using that predictor.
More precisely, the predicate model selection/5 works by

1. splitting the provided Dataset into a TrainingSet and a TestSet, according
to a split ratio (R) declared by the test percentage/1 fact

2. declaring and fitting a pre-processing Transformation aimed at normalis-
ing the TrainingSet’s input attributes, and one-hot encoding its output
attributes

3. applying such Transformation to the TrainingSet, hence producing
a ProcessedTrainingSet

4. stepping through all possible hyper (HyperParams) and learning (LearnParams)
parameters combinations,

5. training each corresponding predictor, via 10-fold cross validation (CV), and
computing its average validation-test performance (P)

6. skipping each hyper and learning parameters combination such that the av-
erage performance P is lower than the target performance T

7. re-training a full-fledged MLP on the whole TrainingSet, for each parame-
ters combination such that P >= T

8. testing that MLP against the ProcessedTestSet – attained by applying the
aforementioned Transformation to the TestSet as well –, thus computing
the MLP actual Performance

In other words, the model selection/5 represents a declarative, and pretty gen-
eral, workflow for model selection—which may be adapted to other supervised
learning tasks with minimal changes. It relies on a number of ancillary predi-
cates declaring some particular steps of the workflow, and exemplifying many ML-
Lib functionalities. These are reported in listing 12.6. For instance, train cv/4

is in charge of performing 10-fold CV on a given Dataset, to assess a given
HyperParams–LearnParams combination, to then compute the AveragePerformance
of the 10 predictors constructed in this way. Each single fold of a K-fold CV
process is managed by the train cv fold/5 predicate, which in turn exploits
train validate/5 predicate to train and validate each single predictor. Finally,
the test/3 predicate can be exploited to either test or validate a predictor de-
pending on whether the test or validation set is provided as argument.

Under these hypotheses, a model selection workflow for the Iris dataset may
be triggered via a concise logic query such as:

222 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.4. ML-LIB EXAMPLES

Listing 12.7: Exploitation of the NN classifier trained in listing 12.5 to create an hybrid
predicate – namely iris/5 – aimed at classifying Iris flowers�

1 /* assumption : */

2 :- iris_dataset(D), iris_schema(S), model_selection(D, S, N, T, _), !, assert(

iris_nn(N, T)).

3

4 /* hybrid iris classifier */

5 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, Species) :-

6 X = [SepalLength, SepalWidth, PetalLength, PetalWidth],

7 iris_nn(Network, Transformation),

8 transform(X , Transformation, ActualX),

9 predict(Network, X, Y),

10 classify(Y, argmax, [setosa, versicolor, virginica], Species).
� �
?- iris dataset(D), iris schema(S), model selection(D, S, P, , A).

If all aspects of the model selection workflow are correctly declared, the query
should provide multiple successful solutions corresponding to all trained predictors
(P) and their test-set accuracies (A).

Hybrid reasoning. Finally, listing 12.7 shows the exploitation of a trained NN
predictor as a predicate aimed at classifying (possibly) unseen instances of the Iris
flower. The script serves a twofold purpose: it exemplifies the ML-Lib functionali-
ties aimed at drawing predictions out of trained ML predictors, and, in particular,
it provides an example of an hybrid reasoner—where symbolic and sub-symbolic
AI seamlessly interoperate.

The script assumes a fact of the form iris nn(N, T) is available into the
solver’s KB, storing a reference to a trained NN predictor (N) and to the affine
transformation (T) to be applied to each datum the predictor should be fed with.
Such assumption may be satisfied, in Prolog, by a query such as the following one:

?- iris dataset(D), iris schema(S), model selection(D, S, N, T,),

!, assert(iris nn(N, T)).

which selects and trains a single NN and stores it into the solver’s dynamic KB.
Under such assumption, logic programmers may write an iris/5 predicate

such as the one shown in listing 12.7. The predicate allows the caller to classify
Iris instances by triggering a previously trained NN, and by letting it draw predic-
tions on the data row attained by composing the predicate’s arguments—via the
predict/3 predicate. The prediction is then converted into a class constant – via
the classify/4 predicate –, which is in turn bound to the output parameter of
iris/5—namely Species.

It is worth to be highlighted that, from the caller perspective, the iris/5

described so far is undistinguishable from a purely symbolic predicate serving the

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 223

12.5. RECAP AND RESEARCH PERSPECTIVES

Listing 12.8: A purely symbolic classifier for Iris flowers, functionally equivalent to the
hybrid one from listing 12.7�

1 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, setosa) :-

2 PetalWidth =< 0.78.

3 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, versicolor) :-

4 PetalLength >= 2.86, PetalLength < 4.91.

5 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica).
� �
same purpose (i.e., Iris classification) and having the same name and arity—such
as the one described in listing 12.8.

12.5 Recap and Research Perspectives

In this chapter, we propose a logic API supporting the seamless integration of logic
solvers with sub-symbolic AI, and, in particular neural-network-based supervised
ML.

Stemming from a domain analysis aimed at identifying the major computa-
tional entities involved in a supervised ML workflow, we design our API in terms
of computational entities and the operations/functionalities they should support.
We then reify our API into a set of logic predicates composing the ML-Lib—i.e.,
an abstract logic library which any goal-oriented solver may support, there includ-
ing Prolog ones. Both the syntax and the semantics of each single predicate are
discussed, as part of the major contribution of this chapter. Architectural and
technological requirements are discussed as well.

Among the most relevant requirements, we stress the need of realising the
ML-Lib as a façade towards some lower-level OOP library for ML. Furthermore,
to support the prototyping of our ML-Lib on top of the 2P-Kt logic ecosystem
– which technologically unifies the LP and OOP realms –, we also require the
underlying OOP library for ML to be JVM-compliant. Hence, we elaborate on a
technological discussion aimed at selecting the most adequate JVM technology for
ML.

Finally, we provide a number of usage examples aimed at showing the potential
of the ML-Lib. In particular, we discuss examples where our logic API supports
declarative ML (possibly from symbolic data sources), model selection via reso-
lution, and hybrid reasoning. Indeed, the ML-Lib enables the user to formally
define ML workflows in a way which is both human- and machine-interpretable,
focussing on what should be done, rather than how.

Hybrid reasoning, in particular, is the most relevant contribution of ours. It
consists in the seamless integration of logic and sub-symbolic AI at the functional
level. In fact, thanks to our ML-Lib, trained sub-symbolic predictors may be used

224 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

12.5. RECAP AND RESEARCH PERSPECTIVES

in LP as ordinary predicates.

Research Perspectives. In the future, we expect contributions to stem from
our ML-Lib along two different research threads. The first thread concerns the
exploitation of the ML-Lib to create hybrid systems, where LP and ML are inte-
grated in manifold ways. This is made possible by our logic API for ML, which
reduces the abstraction gap among LP and ML, as well as the ML-Lib, which
lowers the technological barriers preventing the integration of symbolic and sub-
symbolic AI. The second thread concerns the extensions of the ML-Lib, which
should be eventually delivered to cover currently unsupported functionalities—as
well as other ML predictors than NN.

CHAPTER 12. BRIDGING LP AND MACHINE LEARNING 225

12.5. RECAP AND RESEARCH PERSPECTIVES

226 CHAPTER 12. BRIDGING LP AND MACHINE LEARNING

Chapter 13

Bridging LP and XAI

This chapter contains contributions from the following works of ours: [SCCO21]

Artificial neural networks (ANN), support vector machines (SVM), and other
data-driven predictors are nowadays among the most-used tools to face a wide
range of different tasks involving machines learning (ML) from data [RPM12]. In
all those cases, the learning activity consists of tuning the parameters of predefined
algorithms in order to maximise their predictive capability w.r.t. the data at hand.

The major drawback of state-of-the-art ML algorithms is that they are inher-
ently opaque, meaning that they do not provide any intelligible representation of
what they learn from data. This is why most of those algorithms are consid-
ered as black boxes (BB) which only represent knowledge in a sub-symbolic way.
Nevertheless, despite their sub-symbolic operation may prevent human users from
understanding how they work, BB – and, in particular, ANN – are being increas-
ingly applied to support forecasting and decision making in many different fields
– including, but not limited to, marketing, customer/user profiling, social net-
works, predictive maintenance, etc. – because of their unprecedented predictive
performance.

There exist, however, critical applications where black-box predictions or rec-
ommendations are unacceptable: for instance, healthcare, finance and law do-
mains, or any other area of knowledge where decision making may affect critical
aspects of human lives—e.g. health, wealth, freedom, etc. In all those cases, it
is of paramount importance to rely on explainable predictions, recommendations,
or suggestions, in order to let humans retain accountability and liability over the
decision or choices they make.

As further discussed in section 6.3, in this thesis we commit to symbolic knowl-
edge extraction (SKE) as the preferred means to derive post-hoc explanations for
sub-symbolic predictors. However, despite the wide adoption of SKE, a unified
and general-purpose software technology supporting it is currently lacking. In
other words, the burden of implementing SKE algorithms is currently on data

CHAPTER 13. BRIDGING LP AND XAI 227

scientists alone, who are likely to realise custom solutions on a per-need basis.
Other than producing inertia w.r.t. the adoption of SKE in modern data, such a
lack of viable technologies is somewhat anachronistic in the data-driven AI era,
where a plethora of libraries and frameworks are flourishing, targeting all ma-
jor programming paradigms and platforms, and making state-of-the-art machine
learning algorithms easily accessible to the general public—cf. SciKit-Learn1 for
Python, or Smile2 for the Java Virtual Machine (JVM).

Accordingly, in this chapter we present the design of PSyKE, a general-purpose
Platform for Symbolic Knowledge Extraction aimed at filling the gap between the
current state of the art of SKE and the available technology. More precisely,
PSyKE is conceived as an open library where different sorts of knowledge extrac-
tion algorithms can be implemented, exploited, or compared. PSyKE supports rule
extraction from both classifiers and regressors, and makes the extraction procedure
as transparent as possible w.r.t. the underlying BB, depending on the particular
extraction procedure at hand. Notably, it also supports the extraction of first-order
logic (FOL) clauses, with the twofold advantage of providing human- and machine-
interpretable rules as output. Rules can then be used as either an explanation for
the original BB, or as a starting point for further symbolic computations. PSyKE
is designed as a general framework that can be specialised on multiple runtimes
and programming environments. The technology currently comes along with two
main implementations to enable SKE in two key domains: (i) the JVM implemen-
tation for the symbolic AI domain, and (ii) the Python implementation for the
sub-symbolic AI domain. SKE is one of the elements that act as a bridge between
the two domains, as well as the production of logic programs [Llo90, MN96] as
output—in particular expressed as Prolog programs [CR93].

A number of experiments involving rule extraction on both classification and
regression tasks – performed on well-known public data sets – are discussed to
demonstrate the versatility of PSyKE. To this end, we run framework experiments
against various BB predictors and perform a comparison between different extrac-
tion procedures applied to the same task. The comparison takes into account the
fidelity of the extracted rules (w.r.t. the original BB) and predictive performance
w.r.t. the data.

Accordingly, the remainder of this chapter is organised as follows. Section 13.1
describes the state of the art for SKE as well as some background notion to fully un-
derstand the work. Section 13.2 presents the design of PSyKE, while in section 13.3
some use cases showing how PSyKE can be exploited are reported. Conclusions
are drawn in section 13.4.

1https://scikit-learn.org/stable [Last accessed April 17, 2022]
2https://github.com/haifengl/smile [Last accessed April 17, 2022]

228 CHAPTER 13. BRIDGING LP AND XAI

https://scikit-learn.org/stable
https://github.com/haifengl/smile

13.1. STATE OF THE ART

13.1 State of the Art

In this section we firstly overview the state of the art for symbolic knowledge
extraction (section 13.1.1). Then, we delve into the details of a selection of ex-
traction algorithms—namely, the ones PSyKE implementation currently supports
(section 13.1.1–section 13.1.1). The algorithm selection is performed by keeping
variety (rather than exhaustivity) in mind, so as to demonstrate the operation and
versatility of PSyKE. In particular, our aim is to exemplify the many application
scenarios that a data scientist may meet—e.g., extraction from either classifiers or
regressors, trained on either categorical or continuous data.

Finally, we briefly outline the currently-available software object-oriented frame-
works for ML (section 13.1.2). The overview is meant to make the chapter self-
contained, given that one of these frameworks provides PSyKE with pure ML
functionalities—in particular, the design of PSyKE assumes basic classification or
regression support to be available as a software library.

13.1.1 Knowledge Extraction

According to [CCSO20], a computational system is considered interpretable if hu-
man beings can easily understand its operation and outcomes. The majority of
modern ML predictors, however, sacrifice interpretability to enhance the predictive
performance, thus becoming increasingly complex. They do so by merely focus-
ing on learning highly-predictive – yet sub-symbolic – input-output relations from
data, while neglecting any attempt to make such relations symbolic, i.e., intelligible
for human. For this reason, ML algorithms are often called black boxes [Lip18].

To mitigate interpretability issues without sacrificing predictive performance,
a number of authors from the XAI community have proposed means to produce
ex-post explanations for sub-symbolic predictors—most notably, ANN and SVM.
Explanations, in this case, consist of surrogate predictors trained to mimic the
ones to be explained, as closely as possible.

In practice, among the manifold proposals, some authors describe methods to
extract if-then-else rules [CS94, HBV06, SCO21], whereas others propose methods
extracting decision trees [CS95]. While the shape of the extracted knowledge may
vary from an extraction procedure to another, all the proposed methods share the
trait of extracting symbolic (i.e. human-intelligible) knowledge out of sub-symbolic
ML predictors. Given a trained predictor and a knowledge-extraction procedure
applicable to it, the extracted rules/trees act as explanations for that predictor
– or as a basis to build some –, provided that they retain high fidelity w.r.t.
the underlying predictor [CCSO20]. The extracted knowledge may then enable
further manipulations, such as merging the know-how of two or more BB models
[CCOC19].

CHAPTER 13. BRIDGING LP AND XAI 229

13.1. STATE OF THE ART

According to [CCO20], knowledge extraction methods can be categorised along
three orthogonal dimensions, namely: (i) the sort of learning tasks they sup-
port, (ii) the shape of the symbolic knowledge they produce, (iii) their translu-
cency—i.e., the sort of BB algorithms they can extract symbols from.

About dimension (i), one can distinguish among algorithms targeting classifi-
cation tasks, regression tasks, or both. In other words, some extraction algorithms
can only deal with BB classifiers – e.g. Rule-extraction-as-learning [CS94] (REAL,
henceforth), Trepan [CS95] and others [BD08, MBVGV07] –, while others can
only deal with BB regressors – such as Iter [HBV06], GridEx [SCO21], Re-
fAnn [SLZ02], Ann-DT [SAG99] and RN2 [SN02] –, and only a few can handle
both—such as G-Rex [KJN08] and Cart [BFOS84]. Notably, virtually all extrac-
tion methods proposed so far are tailored on supervised machine learning. To the
best of our knowledge, no rule extraction procedure has been proposed targetting
unsupervised or reinforcement learning tasks.

As far as dimension (ii) is concerned, decision rules [Fre14, HDM+11, MP91]
and trees [Qui93, Qui87] are the most widespread human-understandable shapes
for extracted knowledge, thus most methods produce one of these two structures.
In both cases, decision rules or nodes are expressed in terms of the same in-
put/output data types the original BB has been trained upon. So, for instance,
an extraction procedure processing a BB classifier for N -dimensional numerical
data, over K classes, will likely output rules/trees involving one or more predi-
cates over N input variables x1, . . . , xn and K possible outcomes. In any case,
however, extraction algorithms are further categorised w.r.t. the particular sort of
predicates their output rules/trees may contain. Accordingly, conjunctions/dis-
junctions of inequality (e.g. xi ≷ c), or interval inclusion/exclusion expressions
(e.g. xi ∈ [l, u]) are commonly exploited for numerical data, while equality (e.g.
xi = c) or set-inclusion xi ∈ {c1, c2, . . .} expressions may be exploited for cate-
gorical data. Finally, M-of-N rules are yet another possible choice in the case of
boolean data.

The translucency dimension [ADT95] from item (iii) refers to the need/ca-
pability of the extraction procedure to “look into” the internal structure of the
underlying BB—i.e., to what extent it has to be taken into account during the ex-
traction procedure. There are two major ways for categorising knowledge extrac-
tors w.r.t. translucency. During the extraction process, decompositional extractors
may take into account the internal structure of the BB they operate upon, while
pedagogical ones do not. For this reason, pedagogical approaches are usually more
general – despite potentially less precise –, thus they can be applied to every BB
predictor regardless of its kind, structure, and complexity.

The quality of knowledge-extraction procedures is evaluated through different
indicators depending on the task to solve, for instance, fidelity and predictive

230 CHAPTER 13. BRIDGING LP AND XAI

13.1. STATE OF THE ART

Extraction Algorithm Task Translucency Required Features Knowledge Shape Exhaustive

REAL Classification Pedagogical Binary Rule list No
Trepan Classification Pedagogical Binary Decision tree Yes
Iter Regression Pedagogical Continuous Rule list No
GridEx Regression Pedagogical Continuous Rule list Yes
Cart Classification Pedagogical Continuous Decision tree Yes

and regression or binary

Table 13.1: Summary of the knowledge-extraction algorithms supported by PSyKE

performance measurements [TS93]. In particular, the former indicates how well
the extracted knowledge mimics the underlying black-box predictions, whereas
the latter measures the explanator predictive power w.r.t. the data. In all cases,
measurements should be taken via the same scoring function used for assessing the
BB performance—which in turn depends on the task it performs. In the particular
case of black-box classifiers, examples of performance measurements are accuracy,
precision, recall, and F1-score; for BB regressors, the mean absolute/squared error
(MAE/MSE) and the R2 scores could be exploited.

In the following, we provide a more detailed description of some extraction
procedures currently supported in the PSyKE framework, grouped by the task
they address—i.e. classification, regression, or both of them. All the algorithms
are pedagogical, thus they only rely on the BB inputs and outputs, and do not
inspect the inner structure of the underlying BB. This is why they can be applied
to any kind of arbitrarily-complex BB. In any case, structured data are required.
The same algorithms are summarised in table 13.1.

Extraction from Classifiers

Rule-extraction-as-learning. REAL [CS94] is a pedagogical algorithm to ex-
tract conjunctive rules from trained BB classifiers by using a learning process
driven by sampling and queries. Output rules can be either if-then or M-of-N rules.
An example of if-then output rule is the following: Output class is C if {X ,Y ,Z}
are Trueand {U ,V } are False, where U, V, X, Y, Z are one-hot encoded input
features. Such features are True if they are 1, False otherwise.

Output rules are disjunctive normal form expressions; each term is the con-
junction of a data set feature subset, adequately generalised by dropping each
non-discriminant antecedent. REAL cannot handle real-valued features, but only
binary ones.

Trepan. Trepan [CS95] is a pedagogical algorithm able to extract symbolic
and comprehensible model representations from trained classifier BB by inducing a
decision tree approximating the BB represented concept. It usually maintains high

CHAPTER 13. BRIDGING LP AND XAI 231

13.1. STATE OF THE ART

Output class is C1 if

{
(X is True) or

(X is False and Y is True)

Output class is C2 otherwise.

Figure 13.1: Example of Trepan output tree (left) and corresponding rules (right)

fidelity levels w.r.t. the underlying BB while being comprehensible and accurate.
It is general in its applicability and well scalable with complex models or problems.
However, as REAL, it cannot be applied to real-valued features.

In fig. 13.1 an example of output tree is reported. Internal nodes are represented
by squares, while leaves are circles. Variables reported inside the internal nodes
are the split criteria for the subtree creation. Ci are the class labels corresponding
to each leaf.

Extraction from Regressors

Iter. Iter [HBV06] is a pedagogical algorithm for building predictive rules from
trained BB regressors of any kind. Its main idea is to iteratively expand a number
of hypercubes until they cover the whole input space. Each of them is finally con-
verted into an if-then rule of the following format: Output constant is C if X1 ∈
[l1, u1] and ... and Xk ∈ [lk , uk], where li and ui are the lower-bound and the
upper-bound for variable Xi. There, the preconditions of the rule describe a k-
dimensional hypercube. Indeed, Iter supports continuous input features, differ-
ently from the other algorithms presented so far.

GridEx. GridEx [SCO21] is another pedagogical extraction algorithm for re-
gressors; it is an extension of Iter aimed at overcoming its major drawback:
non-exhaustivity. GridEx adopts a top-down approach to iteratively partition the
input feature space in a user-defined number of hypercubes or in an automatic
way accordingly to a user-defined strategy based on feature importance. As Iter,
GridEx produces if-then rules and only accepts data sets with real-valued input
features, but it is always exhaustive by design. Since the procedure associates
each hypercube to a rule, a merging phase is performed after every iteration as an
optimisation to reduce the number of rules.

General-Purpose Extractors

Cart. Cart [BFOS84] is an algorithm for building decision trees that can be
used to face both classification and regression tasks. Cart is not properly a

232 CHAPTER 13. BRIDGING LP AND XAI

13.1. STATE OF THE ART

sklearn.linear_model sklearn.svm sklearn.tree

pandas numpy

sklearn

sklearn.feature_selectionsklearn.model_selection

LogisticRegression LinearRegression SVC SVR DecisionTreeClassifier DecisionTreeRegressor

DataFrame

Series

ndarray

«functions»
metrics

accuracy_score(y_true, y_pred, *[, …])
f1_score(y_true, y_pred, *[, …])
recall_score(y_true, y_pred, *[, …])

SelectFpr SelectFdr

SequentialFeatureSelector RFEGroupKFold KFold

LeaveOneGroupOut LeaveOneOut

Predictor

fit(X, y)
predict(X)

Classifier Regressor

1

N

Figure 13.2: Overview on (a small portion of) the API of the Scikit-Learn library
supporting classification and regression tasks

knowledge-extraction procedure, but from its output tree it is straightforward to
obtain a rule tree, since each node of the Cart tree corresponds to a constraint
on a certain feature and thus each path from the root to a leaf is a single complete
classification or regression rule. The algorithm can be summarised via the following
instructions: (i) initialise the tree root node; (ii) find optimal splits and add new
internal nodes and leaves accordingly; (iii) stop the algorithm based on one or
more criteria—e.g., leaf number or tree depth. Pruning algorithms can be applied
to reduce the number of leaves.

13.1.2 Object-Oriented Programming Frameworks for ML

In order to make ML solutions easily available, a number of frameworks – espe-
cially exploiting object-oriented programming (OOP) – have been developed. Such
frameworks usually provide users with powerful abstractions for modelling BB as
well as for performing data set pre-processing, feature engineering and predictive
performance measurements. Among the most supported ML models, there are
ANN, SVM, and decision trees for both classification and regression tasks. The
most complete frameworks also provide utility packages to ease the data set read-
ing from (and writing into) files and to perform feature selection, beyond many
other tools for natural language processing, linear algebra, and data visualisation.

CHAPTER 13. BRIDGING LP AND XAI 233

13.1. STATE OF THE ART

smile.classification java.util.function smile.regression

Classifier
T

DecisionTree SVM
T

MLP KNN
T

ToDoubleFunction
T

Regression
T

RegressionTree MLP KernelMachine
T

smile.data

DataFrame

Tuple StructType

1

1

0

N

smile.validation

CrossValidationClassificationMetricRegressionMetric

Accuracy FScoreMSE R2

smile.feature

FeatureTransform

Normalizer Scaler Standardizer

Figure 13.3: Overview on the API of the Smile library supporting classification and
regression tasks

Examples of state-of-the-art OOP frameworks for ML are Scikit-Learn [PVG+11]
for Python and Smile [Smi21] for the JVM.

At the conceptual level, the design of such frameworks is similar, and similar
are the set of functionalities they provide. For this reason, the design of PSyKE
assumes an underlying ML framework to be available, from which major ML-
related facilities can be borrowed. In the general case, these facilities include:

F1 a base type for supervised predictors (i.e., either classifiers or regressors),
providing a common interface for their training and their exploitation for
inference;

F2 a base type for classifiers and a base type for regressors, as particular sub-
sorts of predictor, providing a way to discern among the two at runtime;

F3 ad-hoc sub-types for well-known predictors – such as ANN, SVM, decision
trees, etc. –, encapsulating the algorithmic strategies for their training and
their inference, and supporting the manipulation of individual predictors as
instances of those types;

F4 a type for representing data sets and their schemas, providing a common in-
terface for their manipulation (scaling/translating columns, adding/remov-
ing features or instances, renaming/moving/transforming features, etc.);

F5 the possibility to parametrise predictors’ training by letting developers spec-
ify hyper-parameters;

F6 the possibility to select one or more scoring functions to assess the perfor-
mance of trained (or in-training) predictors;

234 CHAPTER 13. BRIDGING LP AND XAI

13.1. STATE OF THE ART

F7 support for ML best practices, such as test set separation, cross-validation,
grid search, etc.;

F8 support for feature engineering (there including selection, encoding, missing
values imputation, etc.);

F9 the possibility to inspect the internals of any individual predictor (e.g. synapses
in neural networks, or decision splits for decision trees, etc.), which is nec-
essary to support the implementation of decompositional extraction algo-
rithms.

The abstract architecture of PSyKE can be reified on each programming platform
for which a library providing the facilities above exists. Notably, in this chapter,
we demonstrate the versatility of our design by describing two different imple-
mentations of PSyKE. One implementation is based on Scikit-Learn and targets
Python, whereas the other is based on Smile and targets the JVM.

Scikit-Learn

Scikit-Learn [PVG+11] is amongst the most well-known Python libraries for ma-
chine learning. It is characterised by a coherent design, an efficient implementation
and the wideness of its scope—which covers ML far beyond supervised techniques.

Figure 13.2 depicts a (partial) UML class diagram representing the major inter-
faces and classes composing Scikit-Learn’s supervised learning API. Module names
are explicitly indicated to help the user understand the organisation of the library.
Notably, Scikit-Learn heavily rely on Python’s duck typing convention. So, despite
no explicit type definition exists for predictors (neither for classifiers nor for regres-
sors) – meaning that facility item F2 is not supported –, all objects exposing the
methods fit(...) and predict(...) are considered as such—approximating
facility item F1 via convention. Nevertheless, each kind of ML predictor has a
dedicated class (facility item F3) and each class follows the aforementioned con-
vention. Parametrisation of learning (facility item F5) occurs at the instantiation
level, via construction parameters.

External packages, such as Pandas3 and Numpy4, provide data types for easily
managing data sets, features, and tuples (intended as data set columns and rows,
respectively). The three Python packages – Scikit-Learn, Pandas, and Numpy – are
independently maintained and deployed, despite being perfectly interoperable. In
particular, Numpy features efficient implementations for multi-dimensional arrays,
while Pandas provides for higher-level abstraction such DataFrames, for data sets,
or Series, for both schemas and instances (facility item F4). Scoring functions

3https://pandas.pydata.org [Last accessed April 17, 2022]
4https://numpy.org [Last accessed April 17, 2022]

CHAPTER 13. BRIDGING LP AND XAI 235

https://pandas.pydata.org
https://numpy.org

13.1. STATE OF THE ART

(facility F6) are reified as functions having analogous signatures (name apart),
hosted by the sklearn.metrics module. Conversely, cross-validation, grid search,
and other model-selection tools (facility item F7) are reified into ad-hoc classes as
well, hosted by the sklearn.model selection module. Finally, feature extraction
and selection (facility item F8) are supported via the smile.feature extrac-

tion and smile.feature selection modules, respectively, and the many classes
therein contained.

Inspectability (facility item F9) can be achieved via Python “consenting adults”
philosophy, which essentially allows expert programmers to freely access the in-
ternals of any Python object—there including Scikit-Learn predictors. Therefore,
decompositional extraction algorithms can be implemented on top of Scikit-Learn,
provided that the inner functioning of predictors includes enough documentation
to let programmers inspect them.

Smile

Smile (Statistical Machine Intelligence and Learning Engine) [Smi21] is defined
as “a fast and comprehensive machine learning engine” for Java, and any other
JVM-based language—e.g. Scala and Kotlin.

Figure 13.3 depicts a (partial) UML class diagram representing the major in-
terfaces and classes composing Smile supervised learning API. Package names are
explicitly indicated to avoid confusion between homonymous classes. Notably, each
kind of ML predictor has a dedicated class (facility F3) and each class implements
either the Classifier or the Regression interface (facility F2). Both inter-
faces descend from the ToDoubleFunction interface, which is, therefore, the most
adequate type to represent any supervised ML predictor (facility F1). Parametri-
sation of learning (facility F5) occurs at the instantiation level, via construction
parameters.

Other packages (not shown in figure) provide data types for easily managing
data sets, feature vectors, and tuples (intended as data set columns and rows,
respectively) other than all the aforementioned facilities. So, for instance, the
DataFrame, StructType, and Tuple types are the basic types for representing data
sets, schemas, and instances, respectively (facility F4). Scoring functions (facility
F6) are reified as classes as well, implementing either the ClassificationMetric

or the RegressionMetrics interface. A similar statement holds for cross-validation
(facility F7). Finally, feature engineering and selection (facility F8) are supported
via the smile.feature package and the many classes therein contained.

Inspectability (facility F9) is apparently laying outside the current design goals
of Smile: the current API of Smile does not provide any means to observe the
internals of trained predictors. Therefore, only pedagogical extraction algorithms
can be implemented on top of Smile.

236 CHAPTER 13. BRIDGING LP AND XAI

13.2. PSYKE

Figure 13.4: PSyKE design

13.2 PSyKE

PSyKE is a software library providing general-purpose support to the extraction of
logic rules out of BB predictors by letting users choose the most adequate extrac-
tion method for the task and data at hand. PSyKE exposes a unified API covering
virtually all extraction algorithms targeting supervised learning tasks. Currently,
the implementations of PSyKE involve several interoperable, interchangeable, and
comparable extraction procedures – namely, the ones mentioned in section 13.1.1
–, granting access to state-of-the-art knowledge-extraction algorithms to both re-
searchers and data scientists. PSyKE is conceived as an open-ended project, which
can be exploited to design and implement new extraction procedures behind a
unique API.

Essentially, PSyKE is designed around the notion of extractor, whose overall
design is depicted in fig. 13.4. Within the scope of PSyKE, an extractor is any
algorithm accepting a ML predictor – either a classifier or a regressor – as input,
and producing a theory of logic rules as output.

To perform their job, PSyKE extractors require additional information about
the data set the input predictor has been trained upon. In the general case, such
information consists of the data set itself and its schema—i.e., a formal description
of the names and the data types of all features characterising the data set itself.
More precisely, data sets are required to let extraction procedures inspect BB
behaviour – and therefore build the corresponding output rules –, whereas schemas
are required to let (i) the extraction procedure take informed decisions on the basis
of the feature types, (ii) the extracted knowledge be clearer by referring to the
feature names. For all these reasons, extractors expect a data set and its schema

CHAPTER 13. BRIDGING LP AND XAI 237

13.2. PSYKE

metadata to be provided in input as well.
Many extraction procedures can operate on discrete/binary data only. This is

commonly made necessary by the shape of the extracted rules—which consists of
simple predicative statements about some feature value. However, it is also very
common in data science to meet data sets involving continuous attributes as well.
Accordingly, extracting rules out of predictors trained on continuous data may be
troublesome in the general case. To circumvent this issue, PSyKE also provides
some facilities aimed at discretising (binarising) data sets including continuous
(categorical) data. When these are in place, extractors should be provided with
the discretised/binarised schema as well, to be able to produce the clearest rules
possible.

Accordingly, in the rest of this section we detail (i) the general design of the
PSyKE library and API, (ii) the discretisation facilities, (iii) the general shape of
the extracted logic theory.

13.2.1 General API

As depicted in fig. 13.5, a pivotal role in the design of PSyKE is played by the
Extractor interface, defining the general contract of any knowledge-extraction
procedure. Technically, each Extractor encapsulates a single ML Predictor and
a particular Discretization strategy for the data it operates upon. Under such
conditions, an extractor is capable of extracting a Theory of logic Rules out of a
DataFrame, containing the examples the Predictor has been trained upon.

A relevant aspect of PSyKE design – and a prerequisite for its understanding
–, is that it avoids re-inventing the AI wheel. Thus, PSyKE assumes that some
underlying libraries are available on the runtime adopted for implementation, from
which AI facilities can be inherited. These include: (i) a ML library, exposing
ad-hoc types aimed at representing data sets, data schemas, or predictors, and
(ii) a symbolic AI library, exposing ad-hoc types for representing and manipulating
logic theories, clauses, and rules. From these libraries, PSyKE borrows high-level
abstractions, required for its operation, which would be prohibitive to re-design or
re-implement from scratch. These include, for instance, the following types:

DataFrame — a container of tabular data, where rows commonly denote in-
stances, and columns denote their features, while bulk operations are avail-
able to manipulate the table as a whole, as well as any row/column of its;

Predictor<R> — a computational entity which can be trained (a.k.a. fitted)
against a DataFrame and used to draw predictions of type R;

Classifier<R> — a particular case of predictor where R represents a type
having a finite amount of admissible values;

238 CHAPTER 13. BRIDGING LP AND XAI

13.2. PSYKE

Underlying ML libraryUnderlying Symbolic AI library

Psyke

PredictorDataFrame

Classifier Regressor

RuleTheory

Extractor
P : Predictor

predictor: P
discretization: Discretization

extract(DataFrame): Theory

Discretization

features: Collection<DiscreteFeature>

DiscreteFeature

name: String
admissibleValues: Map<String, Value>

Value
Interval

lower: Double
upper: Double

Constant

value: Any

*

wraps

1

1

1

N

1

N

wraps

1

1

input ofoutput of

Figure 13.5: PSyKE’s Extractor interface

CHAPTER 13. BRIDGING LP AND XAI 239

13.2. PSYKE

Regressor<R> — a particular case of predictor where R represents a type hav-
ing a potentially infinite (possibly continuous) amount of admissible values;

Rule — a semantic, intelligible representation of the function mapping Predictor’s
inputs into the corresponding outputs, for a particular portion of the input
space;

Theory — an ordered collection of rules.

For example, PSyKE may borrow ML-related abstractions – such as DataFrame,
Predictor, or Classifier – from either Smile or Scikit-Learn, depending on the
particular runtime of choice (among JVM or Python), or any library serving the
same purpose and exposing analogous abstractions. Similarly, it may borrow high-
level symbolic-AI-related abstractions – such as Theory or Rule – from 2P-Kt
[CCO21a] which supports both the JVM5 and Python6 runtimes—and of course
any functionally-equivalent library could be used as well.

Upon such premises, PSyKE constructs a notion of Extractor—i.e., any method
capable of extracting logic Rules out of some trained Predictor. In our design,
PSyKE extractors are bound to the particular black-box Predictor they aim to
extract rules from, as well as a Discretization strategy for its input space. These
fields are provided upon instantiation, and never altered since then. Extractors
also expose: (i) a method for extracting an explainable Theory from the Predictor
– namely, extract – and (ii) a method to draw predictions by using the extracted
rules—namely, predict. Of course, prediction implies extraction—meaning that
each attempt to use the extracted rules to draw explainable predictions shall trig-
ger extraction first. Both extraction and prediction rely on a DataFrame which
must be provided by the user upon invocation. It should contain the data the
predictor has been trained upon – or some structurally analogous data –, in order
to let the extraction algorithm determine the structure of the extracted rules.

Notice that Predictors are parametric types. There, the meta-parameter R

represents the type of predictions the predictor may produce—unknown at design
time. The rules possibly extracted by such predictors – as well as the predictions
drawn from them – may vary significantly depending on the particular data and
predictors of choice. For instance, when rules must be extracted from mono-
dimensional regressors, R may be the type of floating point numbers, whereas
for multi-class classifiers, R may consist of the set of types (like integer, string,
etc.). Of course, the rules possibly extracted by such predictors greatly differ,
depending on the nature of R. However, the proposed API makes it possible to
switch between different extraction algorithms and predictors requiring no changes
in the architecture of PSyKE, but only minor adjustments in the user code.

5https://github.com/tuProlog/2p-kt
6https://github.com/tuProlog/2ppy

240 CHAPTER 13. BRIDGING LP AND XAI

https://github.com/tuProlog/2p-kt
https://github.com/tuProlog/2ppy

13.2. PSYKE

13.2.2 Discretisation

A large number of the knowledge-extraction procedures – in the same way as
many ML algorithms – require either a discrete or binary input space—i.e. all
input features must be either categorical or one-hot encoded, respectively. For
instance, REAL and Trepan require exclusively one-hot encoded data, whereas
Iter and GridEx require continuous data. Cart can accept both continuous and
one-hot encoded features, but not categorical ones. Unfortunately, most real-world
applications are described by real-valued variables and measurements, thus making
the application of such algorithms impractical. The general way to overcome this
limitation is to rely on some discretisation/binarisation method among the many
available in the literature—e.g., [DKS95, YWW10, Ker92, HS97, Bou04, KC04,
CNVC16].

Briefly speaking, discretisation is the process of transforming a datum from
some continuous space I ⊆ R into a discrete space {I1, . . . , In} such that ∀i, j =
1, . . . , n: Ii ⊂ I ∧ I ≡

⋃
i Ii ∧ i ̸= j ⇔ Ii ∩ Ij = ∅ ∧ i < j ⇔ ∀x ∈ Ii,∀y ∈

Ij : x < y. Similarly, binarisation (a.k.a. one-hot encoding) is the process of
transforming a datum from some discrete space X = {x1, . . . , xn} into a binary
space B = {b1, . . . , bn} where for each i = 1, . . . , n: bi is 1 if the datum is equal
to xi, 0 otherwise. Of course, these methods imply a considerable increase in the
dimensionality of a data set—e.g., one-hot encoding makes categorical attributes
with 4 distinct values be converted into 4 different boolean features. This is far
from being an issue: in some cases, it is possible to achieve even better classi-
fication performances by using discretised attributes rather than continuous, as
demonstrated in [EEM21].

PSyKE provides different procedures to manipulate input features: (i) a dis-
cretisation for continuous features, mapping real intervals into categorical fea-
tures, and (ii) a one-hot encoding for categorical features, mapping exact values
to boolean features. Notably, PSyKE traces the input feature transformations by
creating a data structure that associates the initial name of the attribute and the
newly created features with the corresponding constraints. An example of PSyKE
binarisation and corresponding output data structure is reported in fig. 13.6. This
example considers the petal length attribute of the Iris data set and adopts the
default supervised discretisation method available in our framework. The initial
continuous feature values are labelled in fig. 13.6 with a), and graphically repre-
sented in the b1) plot. PSyKE discretisation algorithm consists in calculating the
mean attribute value and the corresponding standard deviation for each data set
class. An interval is then initialised for each class, with lower and upper bounds
equal to the mean value—cf. plot b2). Each interval is iteratively expanded until
convergence—i.e., when the whole feature space is covered without overlapping
intervals. To achieve this, during every iteration all the intervals are symmetri-

CHAPTER 13. BRIDGING LP AND XAI 241

13.2. PSYKE

Figure 13.6: PSyKE discretisation and binarisation procedure

cally expanded of a value equal to the corresponding standard deviation – in each
direction, as in plot b3) –, in order to create intervals with adaptive size. An
expansion is inhibited when (i) the lower (upper) bound of an interval exceeds the
minimum (maximum) value of the feature space, or (ii) two adjacent intervals are
overlapping. In the first case, the feature minimum (maximum) value is taken as
the final interval lower (upper) bound. In the second case, the overlapping inter-
vals are only expanded up to the mean value between their respective boundaries.
When all intervals have been calculated – cf. plot b4) – the continuous attribute
values are converted accordingly into categorical values. The discretised output
values are labelled in the example with c). In this step PSyKE also produces a
data structure for keeping the discretisation details, to be able to produce more
compact rules during the extraction procedures. The last step – labelled with d)
– is the one-hot encoding of the discrete values into arrays of binary data—i.e.,
the unique format accepted by several extraction procedures, such as REAL and
Trepan.

13.2.3 Output rules

PSyKE extractors output knowledge in the form of logic theories – i.e., lists of
Horn clauses –, notably in Prolog syntax. We choose the Prolog syntax to make
them simultaneously interpretable by both humans and machines. More precisely,
PSyKE output theories are structured as lists of Prolog rules or facts. Rule heads
are (n+ 1)-ary predicates, where n is the number of input features in the data set.
These predicates carry n variables – i.e., one for each input feature – and either a
constant or a list – i.e., the output value(s) – as argument. Predicate names recall
the classification/regression under study. Rule bodies can be empty – if rules
are facts – or conjunctions of literals where each literal is a predicate expressing

242 CHAPTER 13. BRIDGING LP AND XAI

13.2. PSYKE

inequality, equality, or interval inclusion between attribute actual values and fixed
constants calculated through the extraction process.

Accordingly, a rule-extraction procedure targeting a mono-dimensional classi-
fication task on a data set having n input features and m relevant output values,
shall output theories of the following form:

⟨task⟩(X1, . . . , Xn, y1) :- p1,1(X̄), . . . , pn,1(X̄).
⟨task⟩(X1, . . . , Xn, y2) :- p1,2(X̄), . . . , pn,2(X̄).

...
⟨task⟩(X1, . . . , Xn, ym) :- p1,m(X̄), . . . , pn,m(X̄).

where (i) task is the (n+1)-ary relation representing the classification or regression
task at hand, (ii) each Xi is a logic variable named after the ith input attribute
of the currently available data set, (iii) X̄ is the n-nuple X1, . . . , Xn, and (iv) each
pi,j is either a n-ary predicate expressing some constraint about one, two or more
variables, or the true literal—which can be omitted.

Similarly, a rule-extraction procedure targeting a mono-dimensional regression
task shall output theories of the following form:

⟨task⟩(X1, . . . , Xn, Y) :- p1,1(X̄), . . . , pn,1(X̄), Y is f1(X̄).
⟨task⟩(X1, . . . , Xn, Y) :- p1,2(X̄), . . . , pn,2(X̄), Y is f2(X̄).

...
⟨task⟩(X1, . . . , Xn, Y) :- p1,m(X̄), . . . , pn,m(X̄), Y is fm(X̄).

where ⟨task⟩, Xi, X̄, and pi,j have the same meaning than the classification case,
whereas (i) fj is an n-ary function computing the output value for the regression
task in the particular portion of the input space handled by the jth rule, and
(ii) is/2 is the well-known Prolog predicate aimed at evaluating functions.

Without lack of generality, the aforementioned rule forms assume the case
under study to involve mono-dimensional classification/regression tasks. In fact,
multi-dimensional cases can be tackled by allowing lists of constants – e.g. [y(1), y(2), . . .]
– in the heads of classifications rules; or lists of variables – e.g. [Y(1), Y(2), . . .] –
in the head of regression rules, as well as multiple variable assignments in their
bodies—e.g. Y(1) is f

(1)
j (X̄), Y(2) is f

(2)
j (X̄), . . .

The rationale behind our proposed way of structuring rules is straightforward:
the jth rule selects a portion of the input space via a number of constraints
p1,m(X̄), . . . , pn,m(X̄) – which may be less than n in practice –, and then dic-
tates the most adequate prediction for that portion. In classification tasks, the
prediction is constant for the whole portion, whereas in regression tasks it is com-
puted via a function fj(X̄). This function may itself output a constant in simpler
cases, or a local approximation of the predictor’s behaviour in the corresponding

CHAPTER 13. BRIDGING LP AND XAI 243

13.2. PSYKE

portion of the input space—e.g. a linear approximator. Notice that, in classifi-
cation tasks, the total amount of rules (m) may still be greater than the total
amount of classes (k), as there may be more than one rule for the same class. In
the general case, m is bound to the number of portions of the input space detected
by the extraction algorithm of choice.

Currently, the supported sorts of predicates in rules bodies – i.e., the admissible
shapes for each pi,j – are as follows:

equality involving a single variable and a constant—e.g. X = c, where c is a
constant of any sort (possibly, a number) 7

inequalities involving a single variable and a constant—e.g. X ≷ c

interval inclusion involving a single variable and two constants—e.g. X in [l, u],
where l, u ∈ R and l < u

interval exclusion like the above, but negated—e.g. X not in [l, u]

M-of-N involvingN variables—e.g. at least(M, [X1, . . . , XN]), whereM,N ∈
N≥0

This holds for both classification and regression tasks.
Despite many other forms can be adopted for the output theories, we argue

the proposed one is a good trade-off between human and machine interpretability.
In fact, rules of this form are well-formed logic programs, which may be executed
by a logic reasoner—such as a Prolog interpreter. Furthermore, the proposed form
is open to many sorts of post-processing. For instance, recurrent conjunctions of
predicates in rules bodies may be factorised into their own general-purpose rules.
Similarly, redundant or cumbersome sub-expressions may be simplified.

However, the proposed form is far from perfection: we plan to explore alter-
native directions in the future. Noticeably, using Prolog syntax does not impose
exploiting also its semantics—i.e., different interpreters can be exploited over such
Prolog rules. For instance, on the one side, by exploiting a Prolog interpreter, rules
are interpreted as functional (one-way)—meaning that it is possible to compute a
prediction given an assignment of all input variables, but it is not possible to gen-
erate a correct assignment of those input variables given the expected prediction
alone. On the other side, a Constraint Logic Programming solver [GR10, JM94]
may interpret the same rules as constraints, and compute coherent assignments for
any subset of both input and output variables—providing rules with a relational
(two-ways, generative) semantics.

7The same result could be attained by allowing constants in rules heads

244 CHAPTER 13. BRIDGING LP AND XAI

13.3. CASE STUDY

(a) Iris

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(b) CCPP

Figure 13.7: Sample distribution of the Iris and CCPP data sets. Only the 2 most
relevant features are reported.

13.3 Case Study

In this section the effectiveness and versatility of PSyKE are tested by exploiting it
in different scenarios—i.e. the Iris data set8 as classification task and the Combined
Cycle Power Plant9 (CCPP) data set as a regression case study. Examples of
output rules extracted with PSyKE algorithms are reported, along with a brief
discussion on several possible future improvements for the rule final presentation
(see section 13.3.3). Figure 13.7 reports the sample distribution of the Iris and
CCPP data sets, with respect to their two most relevant respective features—i.e.,
petal width and length for the Iris data set (fig. 13.7a) and ambient temperature
and exhaust vacuum for the CCPP data set (fig. 13.7b).

13.3.1 Classification: the Iris data set

In this case study we exploit PSyKE to extract Prolog rules on a number of clas-
sifiers trained on the well-known Iris data set. Notably, the Iris data set contains
150 rows describing as many individuals of the Iris flower. For each exemplary,
4 continuous input features – petal and sepal width and length – are recorded,
other than a categorical class label—i.e., which particular sort of Iris plant the
exemplary has been classified as. There are three particular sub-sorts of Iris in
this data set – namely, Setosa, Virginica, and Versicolor –, and the 150 examples
are evenly distributed among them—i.e., there are 50 instances for each class.

8https://archive.ics.uci.edu/ml/datasets/iris [Last accessed April 17, 2022]
9https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant [Last

accessed April 17, 2022]

CHAPTER 13. BRIDGING LP AND XAI 245

https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant

13.3. CASE STUDY

The experimental setting is as follows. First, we train 3 different sorts of
classifiers on the Iris data set—namely, a k-nearest-neighbors (kNN), a multi-layer
perceptron (MLP), and a decision tree (DT). Then we let PSyKE extract logic
rules out of these classifiers using as many extraction procedures. In particular,
we rely on REAL, Trepan, and Cart. A portion (50%) of the original data set
– namely, the test set – is put aside before training to later enable the evaluation
of the extracted rule predictive performance.

Accordingly, within the scope of this experiment, we rely on accuracy as the
preferred metric for both predictive performance and fidelity—where the former
measures how good a classifier or the corresponding extracted rules are in classi-
fying Iris instances in absolute terms, while the latter measures the adherence of
the extractor output rules w.r.t. the original classifier.

The experiment

Let us assume the Iris data set can be loaded from a CSV file via a script using
one of the third-party libraries exploited by PSyKE—i.e., Scikit-Learn or Smile
for Python or JVM users, respectively. The Iris data set only contains continuous
features. Therefore, Cart is the only algorithm that can be directly applied to
it, whereas REAL and Trepan can only operate on binary data. Accordingly,
PSyKE provides a simple two-step procedure to binarise the data, involving both
discretisation and one-hot encoding: a data set can be discretised, one-hot encoded,
and split into training and test set via a couple of instructions, providing the
percentage of samples to be taken apart from the whole data set to attain the test
set. As the next step, we train 4 different classifiers on the training set—namely
a kNN, a MLP, and two DT—one with the original, continuous data set, and one
with its binarised version10. Finally, in the following paragraphs, we show how
rules can actually be extracted and what their ultimate shape actually is.

REAL

PSyKE’s REAL algorithm can be applied to any BB classifier accepting binary
input features—e.g., among the aforementioned models only the DT trained upon
the continuous data set is not suitable to apply this extraction technique. The
extracted theory is dependent on the training set; different training instances can
produce different rules, resulting in slight variations also in the output theory
complexity—intended as the number of clauses and terms. An example of REAL
applied to a MLP is reported in the following:�

1 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, setosa) :-

10Code of experiments is available at https://github.com/psykei/psyke-jvm and https:

//github.com/psykei/psyke-python

246 CHAPTER 13. BRIDGING LP AND XAI

https://github.com/psykei/psyke-jvm
https://github.com/psykei/psyke-python
https://github.com/psykei/psyke-python

13.3. CASE STUDY

2 PetalWidth =< 0.78.

3

4 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, versicolor) :-

5 PetalWidth > 0.78, PetalLength in [2.86, 4.91].

6

7 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica) :-

8 PetalWidth > 0.78, PetalLength not_in [2.86, 4.91].
� �
The theory produces an input space partitioning as reported in fig. 13.8f. It

is worthwhile to notice that – especially with more complex data sets – the par-
titioning could be non-exhaustive—i.e., the logic rules could be unable to classify
some samples.

Trepan

PSyKE provides a Trepan algorithm applicable under the same constraint de-
scribed above for REAL and also its output rules can vary with different training
sets. Differently from REAL, Trepan accepts as input 3 optional parameters
stating the minimum number of samples to consider for performing further splits
(minExamples, default: 0), the maximum depth of the produced tree (maxDepth,
default: 0, i.e. no constraints), and the criterion to adopt for the best split selection
(splitLogic). At the moment PSyKE can only adopt a default splitLogic to
assign a binary split to each Trepan node. The method is based on the selection
of the most discriminating feature at each split, i.e., the feature having higher
probability to produce a tree leaf containing all the samples belonging to a specific
class without containing samples of other classes. We plan to implement in the
future other methods for if-then splits as well as for M-of-N splits.

An example of output theory obtained by applying Trepan to a 5-NN is
reported in the following:�

1 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, setosa) :-

2 PetalLength =< 2.28.

3

4 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica) :-

5 PetalLength > 2.28, PetalWidth not_in [0.78, 1.68].

6

7 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, versicolor).
� �
This theory produces an input space partitioning as reported in fig. 13.8c. In this
case, the partitioning is always exhaustive.

Cart

Cart is the third algorithm included in PSyKE to tackle classification tasks. It is
directly applicable to DT classifiers and in this case it does not require any extra
parameter, since the extraction only relies on the tree structure of the decision
tree—that is, all the parameters have to be tuned during the DT creation and

CHAPTER 13. BRIDGING LP AND XAI 247

13.3. CASE STUDY

training. Otherwise, Cart can be applied to other kinds of classifiers, but this
implies the creation of an intermediate tree structure and thus to have greater
control on the output quality it is advisable to impose a maximum value for the
tree depth or the number of leaves.

PSyKE’s Cart algorithm can operate with both one-hot encoded and contin-
uous input features. In the same way as many other algorithms, Cart is able to
achieve comparable or even better results when relying on a good discretisation/one-
hot encoding technique. In the following an example of theory obtained with Cart
applied to the DT trained with the continuous Iris data set is reported:�

1 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, setosa) :-

2 PetalLength =< 2.75.

3

4 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, versicolor) :-

5 PetalLength > 2.75, PetalLength =< 4.85.

6

7 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica) :-

8 PetalLength > 2.75, PetalLength > 4.85.
� �
Figure 13.8n reports the corresponding input space partitioning. The output rules
are always exhaustive. The same data set, but previously one-hot encoded, leads
to the following theory and to the partitioning reported in fig. 13.8l:�

1 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, setosa) :-

2 PetalWidth =< 0.78.

3

4 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, versicolor) :-

5 PetalWidth > 0.78, PetalWidth in [0.78, 1.68], PetalLength <= 4.91.

6

7 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica) :-

8 PetalWidth > 0.78, PetalWidth in [0.78, 1.68], PetalLength > 4.91.

9

10 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica) :-

11 PetalWidth > 0.78, PetalWidth > 1.68.
� �
Results

In the following we report the results of REAL, Trepan, and Cart applied to
the Iris data set. All the results are resumed in fig. 13.8 and table 13.2. Column
“Predictor” represents the ML step of the process. Accordingly, figs. 13.8a, 13.8e,
13.8i and 13.8m represent the decision boundaries of a 5-NN predictor, a MLP and
2 decision trees, respectively. The first DT is trained with the binarised version
of the Iris data set; the other with the original continuous values. Finally, column
“Extractor” represents the output of PSyKE. In particular, different extraction
procedures – namely, REAL, Trepan, and Cart – are applied to the 4 BB
predictors. REAL and Trepan are not applied to the DT trained with the
continuous data set because these extraction procedures cannot handle real-valued
input features.

248 CHAPTER 13. BRIDGING LP AND XAI

13.3. CASE STUDY

Predictor REAL Trepan Cart

(a) 5-NN. (b) (c) (d)

(e) MPL. (f) (g) (h)

(i) DT (binarised fea-
tures).

(j) (k) (l)

(m) DT (continuous
features).

(n)

Figure 13.8: Comparison between Iris data set input space partitionings performed
by the algorithms implemented in PSyKE. Only the two most relevant features are
reported—i.e., petal width and length. Missing subplots are due to the impossibility to
apply REAL and Trepan to BB classifiers trained with continuous input features

CHAPTER 13. BRIDGING LP AND XAI 249

13.3. CASE STUDY

Table 13.2: Comparison between accuracy and fidelity measurements with different
combinations of extraction algorithms and underlying models applied to the Iris dataset

Predictor Extractor
Type Accuracy Algorithm Fidelity Accuracy

5-NN 0.94 REAL 0.98 0.95
Trepan 0.95 0.95
Cart 0.95 0.95

MLP 0.98 REAL 0.98 0.95
Trepan 0.98 0.92
Cart 0.98 0.92

DT (binarised features) 0.98 REAL 0.98 0.97
Trepan 0.98 0.92
Cart 1.00 0.98

DT (continuous features) 0.95 Cart 1.00 0.95

It is worth noticing that (i) Cart always produces a partitioning equivalent
to those of the underlying BB model when the model is a DT, because of its
design, and (ii) each extractor’s output partitioning may be different from other
extractors’ ones – for instance a procedure may only use the petal width attribute,
another procedure may only use the petal length attribute, while other procedures
may use both input features, combined in several ways –, but all solutions share a
similar predictive performance.

A numerical assessment of the aforementioned predictors and extractors is re-
ported in table 13.2. Values are averaged upon 25 executions, each one with
different random train/test splits, but same test set percentage and same param-
eters for predictors and extractors. The table reports the underlying predictor
accuracy as well as the fidelity and accuracy of the extraction procedure. We plan
to enhance comparisons between different extractors through fidelity assessments
carried out by measuring the decision boundary overlapping regions.

Table 13.2 shows how the Cart extractor always has a fidelity of 1.0 when
applied to a DT, since it only inspects the underlying decision tree nodes to build
its output rules without any information loss. This implies that PSyKE’s Cart
extractor is an equivalent (yet explainable) alternative to DT models, as it pro-
duces the same output predictions. As for the other extractors, both REAL and
Trepan are able to achieve good results in terms of fidelity and accuracy – always
above 0.9 in our experiments – in some cases even with a better performance w.r.t.
the original model.

250 CHAPTER 13. BRIDGING LP AND XAI

13.3. CASE STUDY

13.3.2 Regression: the Combined Cycle Power Plant dataset

In our second case study, PSyKE is exploited to extract Prolog rules out of differ-
ent BB regressors trained upon the CCPP data set. The data set contains 9568
instances, each one composed of 4 real-valued input attributes – i.e., ambient tem-
perature and pressure, relative humidity and exhaust vacuum – and one real-valued
output feature—i.e., the net hourly electrical energy output of the plant.

For this experiment, 3 different regressors are trained on the CCPP data set: a
linear regressor (LR), a MLP and a DT. Then, as for the classification case, PSyKE
is exploited to extract logic rules out of these BB models by using all the applicable
supported procedures—namely, Iter, GridEx and Cart, each one applied to all
the aforementioned ML predictors. The data set portion isolated as test set for this
experiment is equal to 20%. To assess the predictive performance of BB predictors
and extractors as well as the fidelity of extractors w.r.t. the underlying models
mean absolute error (MAE) and R2 score are adopted.

The experiment

The CCPP data set can be loaded from a CSV file. Since it only contains contin-
uous attributes, and since this sort of feature is the only one accepted by PSyKE
extractors for regression tasks, no discretisation or binarisation steps are required.
However, since the input features have very different ranges of values, a normal-
isation or standardisation pre-processing is suggested to have more robust BB
training phases. For this experiment, a standardisation has been applied to the
input features. The operation must be revertible, because extraction techniques
applied to BB models trained with standardised (or normalised) data will produce
rules containing standardised (or normalised) values. Thus, to obtain human-
understandable rules a further inverse transformation is required.

In the following paragraphs PSyKE extractors applicable to BB regressors are
described, together with examples of output rules.

Iter

PSyKE’s Iter algorithm can be applied to any BB regressor accepting real-valued
input features. Iter requires k+2 user defined parameters, where k is the number
of input dimensions of the data set. The parameters are the hypercube update size
for each dimension, the number of starting hypercubes and the similarity thresh-
old used by the extraction procedure to create new cubes instead of expanding the
old ones. Also in this case the extracted theory is dependent on the training set,
but it also depends on the position, number and dimension of the starting hyper-
cubes. Furthermore, it could be non-exhaustive—especially when the extraction

CHAPTER 13. BRIDGING LP AND XAI 251

13.3. CASE STUDY

procedure is applied to high-dimensional data sets. An example of input space
partitioning produced by Iter applied to a LR is reported in fig. 13.9b.

GridEx

PSyKE’s GridEx extractor is applicable under the same constraint described above
for Iter. GridEx requires n+3 user-defined parameters, where n is the maximum
amount of iterations to perform. The other parameters are a similarity threshold,
the minimum number of samples to be considered in non-empty hypercubes and
the number of slices to perform along each dimension of the hypercubes during
each iteration. When the algorithm is applied in adaptive splitting mode, users
need to specify the number of partitions to perform on the basis of the impor-
tance calculated by GridEx for each input dimension. An example of input space
partitioning produced by GridEx applied to a MLP is reported in fig. 13.9g. In
this case, the partitioning is always exhaustive. Blank hypercubes correspond to
negligible input space regions, so no rules are created to describe these regions.

Cart

Cart is the other PSyKE algorithm applicable for regression tasks. All the con-
siderations reported for the classification case in section 13.3.1 hold in this context
as well. An example of theory obtained with Cart applied to a DT regressor is
the following:�

1 ccpp(Temperature, ExhVacuum, Pressure, Humidity, Energy) :-

2 Temperature =< 8.74, Energy is 483.82.

3

4 ccpp(Temperature, ExhVacuum, Pressure, Humidity, Energy) :-

5 Temperature in [8.74, 11.69], Energy is 476.08.

6

7 ccpp(Temperature, ExhVacuum, Pressure, Humidity, Energy) :-

8 Temperature in [11.69, 14.45], Energy is 468.94.

9

10 ccpp(Temperature, ExhVacuum, Pressure, Humidity, Energy) :-

11 Temperature in [14.45, 17.82], Energy is 462.13.

12

13 ccpp(Temperature, ExhVacuum, Pressure, Humidity, Energy) :-

14 Temperature in [17.82, 22.77], ExhVacuum =< 47.33, Energy is 457.72.

15

16 ccpp(Temperature, ExhVacuum, Pressure, Humidity, Energy) :-

17 Temperature in [17.82, 22.77], ExhVacuum > 47.33, Energy is 449.16.

18

19 ccpp(Temperature, ExhVacuum, Pressure, Humidity, Energy) :-

20 Temperature > 22.77, ExhVacuum =< 66.21, Energy is 443.03.

21

22 ccpp(Temperature, ExhVacuum, Pressure, Humidity, Energy) :-

23 Temperature > 22.77, ExhVacuum > 66.21, Energy is 434.79.
� �
Figure 13.9l reports the corresponding input space partitioning. The output rules
are always exhaustive.

252 CHAPTER 13. BRIDGING LP AND XAI

13.3. CASE STUDY

Predictor Iter GridEx Cart

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(a) LR.

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(b)

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(c)

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(d)

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(e) MLP.

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(f)

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(g)

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(h)

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(i) DT.

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(j)

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(k)

430

440

450

460

470

480

490

Ne
t h

ou
rly

 E
E

ou
tp

ut
 (K

W
)

(l)

Figure 13.9: Comparison between CCPP data set output predictions provided by the
algorithms implemented in PSyKE. Only the two most relevant features are reported—
i.e., ambient temperature and exhaust vacuum

Results

The results of Iter, GridEx and Cart applied to the CCPP data set are sum-
marised in fig. 13.9 and table 13.3. Column names follow the same logic described
for the classification case study in section 13.3.1, so figs. 13.9a, 13.9e and 13.9i
represent the decision boundaries of a linear regressor, a MLP and a DT, respec-
tively, while the other figures represent the output of PSyKE extractors. Each
one of the extraction procedures suitable for regression tasks is applied to all the
aforementioned BB regressors.

Figure 13.9 shows that all the extractors are able to capture the behaviour of
the output values w.r.t. the input variables, however one may easily notice that
GridEx and Cart tend to produce fewer rules than Iter.

The predictive performance of predictors and extractors is assessed in ta-
ble 13.3. Values are averaged upon 25 executions, each one with different train/test
splits, but with the same parameters for both predictors and extractors. All the
tested predictors have comparable performance in terms of MAE and R2 score.
Conversely, it is possible to notice that Cart and GridEx always appear more
reliable than Iter in extracting knowledge out of the underlying predictors.

CHAPTER 13. BRIDGING LP AND XAI 253

13.3. CASE STUDY

Table 13.3: Comparison between predictive performance and fidelity measurements –
expressed as MAE and R2 score – with different combinations of extraction algorithms
and underlying models applied to the CCPP data set

Predictor Extractor
Type MAE R2 score Algorithm MAE (data) MAE (predictor) R2 (data) R2 (predictor)

LR 3.62 0.93 Iter 5.47 4.68 0.84 0.88
GridEx 4.40 2.90 0.89 0.95
Cart 4.32 2.93 0.90 0.95

MLP 3.73 0.92 Iter 5.03 3.91 0.89 0.92
GridEx 4.40 2.93 0.89 0.96
Cart 4.25 2.85 0.90 0.96

DT 3.89 0.91 Iter 4.56 3.06 0.88 0.93
GridEx 4.04 2.70 0.91 0.95
Cart 3.89 0.00 0.91 1.00

13.3.3 Discussion

We plan to improve the output theory presentation of PSyKE extractors in several
directions. First of all, the semantics of the top-down ordering of Prolog theories
could be considered. Rules can be simplified by removing predicates that are
always trivially true—i.e., if preceding rules contain dual predicates that are true.
For example, second and third rule of the theory reported in section 13.3.1 could
be simplified to output a more compact theory:�

1 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, setosa) :-

2 PetalWidth =< 0.78.

3

4 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, versicolor) :-

5 PetalLength in [2.86, 4.91].

6

7 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica).
� �
Both theories are equivalent since the first rule in the original theory implies that in
the following rules the PetalWidth attribute is always greater than 0.78, whereas
the second rule implies that the third rule will be evaluated only if the PetalLength
attribute has not a value included in the specified interval. This example shows a
reduction of 40% of the total number of rule body predicates (from 5 to 3).

Another direction could be to collapse two predicates regarding the same in-
put feature in the same rule body. For example, if a predicate imposes a value
greater than a constant for an attribute, and another predicate imposes a value
smaller than another constant for the same attribute, the two predicates could be
contracted in a unique one by exploiting the semantics of range inclusion. Sim-
ilarly, if a rule body contains two predicates where the condition represented by
one of them is more strict than the one represented by the other, it is possible to
remove the less strict predicate. An example can be a rule body with two or more
predicates all imposing an attribute greater (smaller) than a specified constant.
All the predicates except the one containing the greatest (smallest) constant can

254 CHAPTER 13. BRIDGING LP AND XAI

13.4. RECAP AND RESEARCH PERSPECTIVES

be removed without loss of information.
By applying all these rules to the theory regarding the binarised Iris data set

presented in section 13.3.1 it is possible to simplify all the rules except the first
one and thus to obtain the following theory:�

1 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, setosa) :-

2 PetalWidth =< 0.78.

3

4 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, versicolor) :-

5 PetalWidth =< 1.68, PetalLength =< 4.91.

6

7 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica) :-

8 PetalWidth =< 1.68, PetalLength > 4.91.

9

10 iris(SepalLength, SepalWidth, PetalLength, PetalWidth, virginica) :-

11 PetalWidth > 1.68.
� �
This theory can be further simplified by applying the first strategy described in
this section, i.e., by substituting the third and fourth rules with a unique rule
having as body true. The resulting theory will have only 3 rules with 4 predicates
in their bodies, whereas the starting one has 4 rules and 9 predicates.

13.4 Recap and Research Perspectives

In this chapter we present the design of PSyKE, a new general-purpose platform
supporting symbolic knowledge extraction from opaque ML predictors. PSyKE
offers many comparable and interchangeable extraction procedures providing as
output first-order logic clauses. It can be exploited in the majority of supervised
learning tasks—i.e., classification and regression tasks.

In the future we plan to enrich PSyKE with other state-of-the-art extraction
algorithms, comparison metrics between the implemented procedures, and other
utilities—i.e., discretisation strategies. We also plan to explore other formalisms
to present output rules – e.g. the ProbLog syntax to introduce the concept of
probabilistic rule –, as well as other representations and extraction procedures
which are better suited to manage data sets involving a wide number of features.

From a research perspective, we aim at further investigating the effectiveness
of PSyKE in running EU projects, like StairwAI11 and Expectation [CCN+21].

StairwAI is an H2020 project aimed at providing a service layer for the AI-
on-demand platform,12 with the purpose of aiding both individual and companies
to (i) find the most adequate AI asset for their needs – requiring mapping of use
cases to proper AI assets –, and (ii) experimenting selected AI assets on custom
data and on specific problems, using the platform itself—thus requiring tools for
predicting the hardware resources needed for running the corresponding software.

11https://cordis.europa.eu/project/id/101017142 [Last accessed April 17, 2022]
12https://cordis.europa.eu/project/id/825619 [Last accessed April 17, 2022]

CHAPTER 13. BRIDGING LP AND XAI 255

https://cordis.europa.eu/project/id/101017142
https://cordis.europa.eu/project/id/825619

13.4. RECAP AND RESEARCH PERSPECTIVES

Expectation is a CHIST-ERA IV project13 aimed at exploring the provi-
sioning of personalised explanations for ML techniques by combining SKE and
multi-agent-based negotiation and argumentation. There, symbolic knowledge is
expected to act as the lingua franca among many heterogeneous ML-based predic-
tors – possibly trained on different data sets, via different algorithms, at different
locations –, hosted by as many software agents. Personalisation and predictive
accuracy are therefore attained by combining the symbolic knowledge extracted
by several agents. The combination takes advantage of negotiation and argumen-
tation techniques, possibly involving the users themselves.

Both projects massively rely on sub-symbolic AI, and in both cases the need of
making sub-symbolic knowledge explainable is prominent. PSyKE could then be
applied to extract logic rules and reveal information about the path that leads to a
certain prediction—in the explanation perspective. Since PSyKE currently works
as a distiller of knowledge, further investigation will be devoted to the explanation
of a single outcome (prediction of a model). Moreover, it could be interesting to
compare results with those obtained by directly learning a symbolic model.

13https://www.chistera.eu/projects/expectation [Last accessed April 17, 2022]

256 CHAPTER 13. BRIDGING LP AND XAI

https://www.chistera.eu/projects/expectation

Chapter 14

Enriching the Ecosystem with
Probabilistic Logic Programming

This chapter contains contributions from the following works of ours: [DCC21]

This chapter contains contributions from the following Master’s thesis: [Del21], which we supervised

Artificial Intelligence (AI) is progressively conquering the software industry to
become one of the most pivotal fields, with a fast-paced evolution of challenges
and requirements that existing technologies often fail to match. Accordingly, the
increasing demand for transparent and pervasive intelligence is opening new hori-
zons for logic programming (LP) and symbolic AI approaches [CCMO21a, COS21,
OFM+21]. However, logic-based approaches alone are often not suitable to be in-
tegrated with present-day planning and learning workflows, which natively deal
with uncertainty and probabilistic decision-making [CCDO20, CCO20].

Probabilistic logic programming (PLP) [NS92, Rig18] is a research field that
investigates the combination of LP with the probability theory (cf. section 4.2.1).
State-of-the-art PLP solutions [DRKT07, Rig07] have reached a considerable level
of maturity and theoretical reach. Not only has exact probabilistic resolution
been reified into actual programming languages, but also approximate resolution,
and learning of probabilities from data. However, existing technologies currently
rely upon monolithic runtimes, often targeting single platforms or having inconve-
nient constraints and dependencies [KDDR+11, NZRS12]—limiting their interop-
erability and portability with mainstream programming platforms. This follows a
general tendency of logic-based technologies, which are often constructed as tech-
nological silos – being so optimised for performance and correctness while being
poorly interoperable among each other – targetting the LP community alone.

To overcome such tendency towards the creation of isolated monoliths, the no-
tion of logic ecosystem [CCO21a] has recently been proposed. There, the authors
argue that LP facilities – e.g. knowledge representation, unification, clauses in-
dexing, resolution, etc. – should be made independently available to the widest

CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP 257

14.1. STATE-OF-THE-ART TECHNOLOGIES FOR PLP

possible audience—there including mainstream developers and logic programmers,
and all major programming platforms. Most notably, LP facilities should not only
be exploitable as stand-alone applications (e.g. Prolog interpreters) but also (and
foremost) as libraries—thus enabling re-use at the mechanism level. In this per-
spective, logic ecosystems consist of extensible technological frameworks where sin-
gle LP facilities can be incrementally constructed on top of the previous ones, other
than used—either individually or composedly. Notably, the authors in [CCO21a]
prose 2P-Kt as the technological reification of a logic ecosystem. Unfortunately,
however, PLP is not among the LP facilities currently supported by 2P-Kt.

Accordingly, in this work we propose an extension of the 2P-Kt ecosystem
aimed at supporting PLP via an ad-hoc implementation of the ProbLog language.
The proposed implementation aims at overcoming the interoperability and porta-
bility issues of state-of-the-art PLP solutions. In fact, as part of the 2P-Kt
ecosystem, our ProbLog implementation can be compiled/run on several strategic
platforms, other than used as a library in multiple programming languages. Our
solution provides PLP support on top of standard Prolog solvers. Hence, as a side
contribution, we provide insights about how a ProbLog solver can be realised on
top of Prolog’s SLD(+NF) resolution principle.

It is worth highlighting how our current goal is to provide a usable and function-
ing PLP code base, initially supporting only the fundamental features, and aiming
to be flexible for future growth. Outperforming existing solutions is not amongst
our primary concerns. Conversely, we aim to open the horizons for wider adoption
of LP and PLP, by favouring portability and by making it easier to exploit from
outside the LP realm. In this regard, we describe a number of examples aimed
at demonstrating the usability and portability of our PLP solution on multiple
runtimes and programming platforms.

14.1 State-of-the-art technologies for PLP

As discussed in section 4.2.1, PLP commonly represents probabilistic theories as
LPAD (Logic Programs with Annotated Disjunctions) [VVB04], where clauses
admit disjunctions of atoms in their heads, and each atom is labelled with a prob-
ability value. Meaning is provided via Sato’s distribution semantics [Sat95, SK97].
Implementations may rely upon binary decision diagrams (BDD) [Ake78, LMS14]
(or their variants/extensions) to make probabilistic inference more efficient, fol-
lowing the knowledge compilation approach [BR13, VRVdBDR14].

A number of programming languages follow the LPAD approach over the dis-
tribution semantic, there including ProbLog and cplint. They both rely on (some
variant of) BDD to support probabilistic reasoning. Within the scope of this chap-
ter, we consider them as interesting solutions for PLP as they come with some

258 CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP

14.1. STATE-OF-THE-ART TECHNOLOGIES FOR PLP

actually usable technology. In the reminder of this section, we briefly analyse
ProbLog and cplint from a technological perspective.

ProbLog. ProbLog [DRKT07] is a probabilistic programming language provid-
ing PLP support on top of Prolog. We appreciate the simplicity of the language and
the high compatibility with traditional Prolog—hence why we target a ProbLog
extension for 2P-Kt. ProbLog, in particular, leverages upon a number of aspects
of Prolog’s operation to attain PLP support. First, it relies on knowledge compi-
lation of annotated facts into ordinary Prolog clauses. Then, it exploits Prolog’s
backtracking mechanism to enumerate the possible worlds in which a query is true.
These are called ‘explanations’ in PLP’s nomenclature, while they are ordinary
solutions in the eyes of a Prolog solver. Finally, ProbLog attempts to iteratively
build a BDD as part of the resolution process, in order to keep the problem of
computing the probability of a query tractable. The Prolog solvers’ dynamic KB
are used as ancillary data stores in the meanwhile. Once all the possible worlds
have been enumerated, the resulting BDD is fully navigated to efficiently compute
the probability of the query.

Currently, the ProbLog project consists of a Python codebase, depending on a
number of native libraries and tools—such as the YAP Prolog technology [CRD12].
Such technological choices limit the portability of ProbLog outside the scope of
the major desktop operative systems (e.g. Windows, Linux, or Mac OS). Notably,
this issue is mitigated by the existence of a publicly-available Web application
letting users experiment ProbLog from their browsers. In any case, to the best of
our understanding of the ProbLog’s documentation and source code, ProbLog is
mainly intended as a stand-alone command-line application and interpreter, and
its usage as a library is not explicitly supported.

cplint. The cplint system (CPLogic INTerpreter) [Rig07] applies knowledge
compilation to logic programs annotated à la CP-Logic [VDB09]. Notably, it com-
piles probabilistic clauses into Multivalued Decision Diagrams (MDDs) [TDD78],
an extension of BDDs. Thus, differently from ProbLog, the random variables corre-
sponding to logic clauses can be multi-valued. Furthermore, cplint’s probabilistic
programs support negated atoms.

cplint leverages upon a Prolog meta-interpreter to solve probabilistic queries.
Similarly to ProbLog, it keeps track of the solutions encountered during resolu-
tion, while simultaneously building a MDD aimed at leter being able to draw
probabilities.

Currently, the cplint project consists of a Prolog codebase targetting the
SWI-Prolog [WSTL12] platform. Such technological choices limit the portability
of cplint on platforms for which SWI-Prolog is not available, or platforms that are

CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP 259

14.1. STATE-OF-THE-ART TECHNOLOGIES FOR PLP

poorly interoperable with (SWI-)Prolog—e.g. Android, the JVM or iOS. Notably,
this issue is mitigated by the existence of a publicly-available Web application
letting users experiment cplint from their browsers. In any case, to the best of our
understanding of its documentation and source code, cplint is mainly intended
as a stand-alone command-line application and interpreter, or as a Prolog library.

14.1.1 Logic Ecosystems and 2P-Kt

The current practice of logic-based technologies (LBT) follows a tendency where
software contributions are constructed as extensions or on top of the Prolog lan-
guage, often on native (i.e. based on C or C++) technologies. Such a tendency
has pushed the LP community towards a situation where tools consist of poorly
interoperable technological silos, where: (i) logic facilities (e.g. unification; clauses
storage, indexing, or retrieval; resolution, etc.) are not adequately separated, and
can only be exploited by means of Prolog, (ii) usage of logic facilities must step
through a stand-alone application (commonly, either graphical or command-line),
as they are not available “as a library” to other programming platforms (iii) the
portability of LBT technologies is constrained on the platforms the underlying
Prolog system supports.

To overcome such issues the 2P-Kt technology has been recently proposed in
[CCO21a], along with the notion of logic ecosystem. There 2P-Kt is considered
as an ecosystem of loosely coupled modules, each one dedicated to a single logic
facility. Hence, overall, it consists of a collection of logic facilities, exposed to the
developers as multi-platform libraries—and, possibly, as stand-alone applications
as well. There, multi-platform support aims at letting mainstream programming
platforms benefit from the sole logic facilities they need, natively—and without
having to interact with a full fledged Prolog system.

Arguably, multi-platform support is fundamental to let researchers and prac-
titioners from the many branches of computer science and artificial intelligence
benefit from LBT. Along this line, we believe logic facilities – such as probabilistic
resolution – should be exploitable on mainstream programming platforms and lan-
guages – e.g. JVM, Python, JavaScript, etc. – to ease the exploitation of LP for
the niches by which those platforms and languages are used the most. On the long
run, for instance, we hope that bringing LP on Python will ease its hybridisation
with data science, while bringing it on JavaScript will ease its hybridisation with
the Web, and so on.

Accordingly, 2P-Kt currently explicitly targets the Kotlin, Android, JVM, and
JavaScript platforms, while other platforms – such as iOS and Python – are going
to be supported soon, thanks to the multi-platform programming facilities offered

260 CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP

14.2. DESIGN OF PROBABILISTIC SOLVER MODULE

core

unify

theory

solve

solve-classicsolve-streams

repl

serialize-core

serialize-theory

dsl-core

dsl-unify

dsl-theory

parser-core

parser-theory

parser-jvm parser-js

Legend

module

root

api only

implementation

utility

dsl-solve

ide

oop-lib

io-lib
solve-plp

solve-problog

utils

bdd

ide-plp

depends on

uses

Figure 14.1: Architectural overview of our PLP and ProbLog modules, and their role
within the 2P-Kt ecosystem

by Kotlin1. Of course, we acknowledge that different languages and platforms
may follow different conventions and paradigms. Hence, multi-platform must not
be realised via mere cross-compilation on several platforms, but rather ad-hoc
software layers should be provided to harmonise LP to the target platforms, at the
paradigm level (cf. [CCS+20]).

2P-Kt currently focuses on supporting knowledge representation and auto-
matic reasoning via logic programming. The modular, unopinionated architecture
of 2P-Kt is deliberately aimed at supporting and encouraging extensions towards
other sorts of symbolic AI systems than Prolog—including PLP, which is currently
missing. Accordingly in the following, we discuss how a module for ProbLog can
actually be designed and realised to enrich the 2P-Kt ecosystem.

14.2 Design of Probabilistic Solver Module

Here we discuss how the 2P-Kt ecosystem can be enriched to support PLP. In
particular, our goal is to add two major facilities to the ecosystem, namely: (i) a
general-purpose API for probabilistic resolution, and (ii) a purpose-specific API
for ProbLog-like resolution. Of course, while pursuing this purpose, the underlying
technical requirement is to re-use the pre-existing facilities offered by 2P-Kt as
much as possible. This includes terms, clauses, and theories representation, as well
as Prolog’s SLDNF resolution.

1https://kotlinlang.org/docs/mpp-supported-platforms.html

CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP 261

https://kotlinlang.org/docs/mpp-supported-platforms.html

14.2. DESIGN OF PROBABILISTIC SOLVER MODULE

Accordingly, as depicted in fig. 14.1, PLP support is injected into the ecosystem
via multiple self-contained and inter-dependent modules, each one representing a
contribution of our proposal. Arrows indicate direct dependencies from one module
to another. Of course, dependencies are transitive, meaning that each module
inherits (and can therefore exploit) all the facilities carried by the other modules
it depends upon, either directly or indirectly. Notably, PLP related modules are:
:bdd , :solve-plp , :solve-problog , and :ide-plp .

The :bdd module represents our proposal for the binary decision diagram
manipulation library. This module is purely self-contained, in the sense that it does
not rely upon any external facility to support BDD. Rather, it consists of a pure
Kotlin solution, which therefore puts no additional constraint on the platforms
targetted by 2P-Kt. It is worth noting that, with such a choice, we intend to
promote the usage of the library as a lean external dependency on other projects
as well.

The :solve-plp module is meant to bundle all the entities and traits that
are common to any potential implementation of solvers for the PLP paradigm.
In other words, it is where our goal (i) is realised. This is a purely abstract
module, that only provides API, interfaces and classes on which multiple PLP
solver implementations can rely upon. Notable, this module depends on 2P-
Kt’s :solve module, which provides common abstractions for logic solvers and
fixes their API, in order to keep them interoperable. In other words, we model
probabilistic logic solvers as a direct subset of logic solvers.

The :solve-problog module contains the actual implementation of the PLP
solver supporting the ProbLog language. In other words, this is where our goal (ii)
is realised. As ProbLog solvers will be particular cases of probabilistic solvers, the
:solve-problog module depends on the abstractions of :solve-plp and it is
compliant to them. The other fundamental (and indirect) dependency is the :bdd

module, which is used for manipulating binary decision diagrams during probabilis-
tic logic goal resolution. Additionally, it also depends on :solve-classic—as
ProbLog solvers will exploit ordinary Prolog resolution behind the scenes. Further
details about the inner design and functioning of this module are discussed in the
remainder of this section, and represent the main contribution of this chapter.

Finally, the :ide-plp module implements a stand-alone graphical application
based on JavaFX, aimed at letting 2P-Kt users practice with ProbLog via an
integrated environment.

14.2.1 Design Rationale

Figure 14.2a provides an overview of the overall design of our :solve-problog

module. Overall, the module aims at providing a notion of ProbLog solver as a
particular case of logic solvers. As any other sort of solver in 2P-Kt, ProbLog

262 CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP

14.2. DESIGN OF PROBABILISTIC SOLVER MODULE

Figure 14.2: Architecture of our ProbLog solver (left), with a focus on the KB recom-
pilation step (right)

Knowledge
Compilation

Engine

(a) Architecture and information flow of our
ProbLog solver

male(john).
0.80::male(mike).
0.65::female(anna).
0.60::parent(mike, john).
0.95::father(X, Y) :- male(X), parent(X, Y).

prob(E, male(john)) :- expl_build(E, 1.0).
prob(E, male(mike)) :- expl_build(E, 0.8).
prob(E, female(anna)) :- expl_build(E, 0.65).
prob(E, parent(mike, john)) :- expl_build(E, 0.6)
prob(E, father(X, Y)) :-
 expl_build(E0, 0.95),
 prob(E1, male(X)), prob(E2, parent(X,Y)),
 expl_and(E, [E0, E1, E2]).

(b) Example of KB recompilation

solvers accept users’ queries as inputs – consisting of (possibly partially instanti-
ated) logic atoms – and produce a multitude of solutions as outputs—consisting of
variable assignments and probabilities. Notably, solutions are computed against
a ProbLog knowledge base, which, in practice, consists of a Prolog theory with
annotated clauses.

To perform probabilistic resolution, each ProbLog solver relies on a Prolog
solver behind the scenes. The Prolog solver expects the probabilistic theory to
be compiled into an ordinary Prolog theory aimed at constructing a BDD as the
resolution process proceeds. In this phase, each probabilistic clause of the form
p::Head :- Body is transformed into and ordinary Prolog clause of the form
prob(Explanation, Head) :- Body2 , where Explanation represents the BDD
to be constructed out of the probability p and Body , whenever the probability of
some sub-goal Head must be computed. A number of ad-hoc meta-predicates can
be exploited in the clauses’ bodies to serve the purpose of incrementally build-
ing a BBD. Under such assumption, the underlying Prolog solver may answer to
probabilistic queries of the form prolog query(-Probability, +Goal). More
precisely, the prolog_query/2 predicate is in charge of (i) computing all possible

CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP 263

14.2. DESIGN OF PROBABILISTIC SOLVER MODULE

Prolog solutions for Goal and (ii) constructing their specific BDD, then (iii) merg-
ing them into a unique BDD aimed at computing the overall Probability of
Goal .

To sum up, a ProbLog solver is a bi-directional façade among the user and the
underlying Prolog solver. It takes care of translating probabilistic theories and
queries in Prolog form, and Prolog solutions back into probabilistic form. Given
this overview, the design of our PLP solver is built on top of three interconnected
components: (i) a knowledge compilation engine, (ii) a library of meta-predicates,
and (iii) a solver piloting engine. In the remainder of this section, we delve into
the details of these components.

Knowledge Compilation Engine

Each ProbLog solver of ours is backed by a Prolog solver aimed at computing an
explanation (i.e. a BDD) for each possible probabilistic query. However, the Prolog
solver can only deal with ordinary logic theories consisting of unannotated Horn
clauses. Accordingly, knowledge compilation engine is the architectural component
in charge of converting annotated probabilistic theories provided by the ProbLog
users into ordinary Prolog users. It does so by applying a number of rewriting
rules to the probabilistic theory:

[[f(X̄).]] −→ ‘prob(E, f(X̄)) :- expl build(E, 1.0).’
[[p::f(X̄).]] −→ ‘prob(E, f(X̄)) :- expl build(E, p).’

[[p::f(X̄) :- b1(X̄1), ..., bn(X̄n).]] −→ ‘prob(E, f(X̄)) :- expl build(E 0, p),
prob(E 1, b1(X̄1)), . . . , prob(E n, bn(X̄n)),
expl and(E, [E 0, E 1, ..., E n]).’

[[p1::f1(X̄1), ..., pm::fm(X̄m) :- b̄.]] −→ ‘[[p1::f1(X̄1) :- b̄.]]. . . . [[pm::fm(X̄m) :- b̄.]].’

There, the first rule handles the case of unannotated facts (a.k.a. evidence). They
are considered as certain facts—i.e. facts having 1.0 as probability. The second rule
handles the case of annotated facts having a probability p ∈ [0, 1] ⊂ R. Finally,
the third rule handles the case of annotated rules, whereas the last rule handles
the case of probabilistic clauses having annotated disjunctions in their heads. Be-
cause of space limitations, we here omit other rules aimed at handling conjunction,
negation, or implication in clauses’ bodies. In all such cases, f, f1, . . . , fm, b1, . . . , bn
denote logic predicates’ symbols of arbitrary arity, p, p1, . . . , pm are real numbers
in the [0, 1] range denoting probability values, X̄, X̄1, . . . , X̄n, X̄m denote tuples
of logic terms of arbitrary length, while b̄ denote a conjunction of logic atoms
involving zero, one, or more atoms.

Figure 14.2b exemplifies the knowledge compilation engine in action on a sim-
ple probabilistic theory. As the reader may notice, the resulting Prolog theory
consists of a number of rules of the form prob(-Explanation, +Goal), aimed at
computing the an Explanation for a particular Goal . The bodies of such rules

264 CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP

14.2. DESIGN OF PROBABILISTIC SOLVER MODULE

may exploit a number of built-in meta-predicates aimed at iteratively constructing
an explanation out of simpler explanations.

Library of Meta-Predicates

A fundamental prerequisite for the knowledge compilation engine to work is that
BDD can be suitably represented in logic, as explanations, at the end of the day,
consist of BDD instances.

To address such a need, in our :solve-plp module, we define a whole new
class of logic constants aimed at referencing particular instances of BDD. So BDD
instances – which are in-memory data structures in Kotlin’s object-oriented world
– are treated as constants in the logic realm. In this way, BDD instances can
be carried around, constructed, or composed as part of resolution, and possibly
bound to variables such as Explanation or E , E 1, . . . , E n mentioned above.

To make it possible to create and compose BDD from a logic program, we in-
troduced a library of Prolog-compliant meta-predicates, each one implementing a
specific task supporting ProbLog-like inference. Of course, as such meta-predicates
operate on data structures that lay outside the logic realm, they cannot be de-
fined in Prolog. Accordingly, through the generator mechanism of 2P-Kt (cf.
[CCO21b]), we are able to implement the behaviour of these meta-predicates with
object-oriented Kotlin code. At the functional level, however, the behaviour of
most relevant meta-predicates can be described as follows:

expl and(-E, [+E 1, ..., +E n]) — provided that variables E 1, . . . , E n are
bound to as many constants representing n ≥ 2 BDD, this meta-predicate
merges them all into a new BDD representing their conjunction, and binds
a constant to E referencing that BDD

expl or(-E, [+E 1, ..., +E n]) — like the above, but for disjunction

expl not(-E, +E ′) — like the above, but for negation

expl build(-E, +P) — provided that variable E is bound to a number rep-
resenting a valid probability value, this meta-predicate creates a bare new,
minimal BDD out of that probability value, and binds a constant to E

referencing that BDD

The prolog query(-Probability, +Goal) meta-predicate then closes the
loop, acting as the main entry point for probabilistic resolution in Prolog. The
first argument represents the numeric probability of the goal being queries, and
the second argument is the goal itself. The probability argument can either be an
input number or an output variable. If the goal argument is a non-ground term, its
variables are substituted for each solution found by the solver. Of course, despite

CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP 265

14.3. MULTI-PLATFORM SUPPORT DEMONSTRATION

�
1 0.6:: edge (1,2).

2 0.1:: edge (1,3).

3 0.4:: edge (2,5).

4 0.3:: edge (2,6).

5 0.3:: edge (3,4).

6 0.8:: edge (4,5).

7 0.2:: edge (5,6).

8
9 path(X,Y) :- edge(X, Y).

10 path(X,Y) :- edge(X, Z),Y \== Z,path(Z, Y).
� � 1

3
0.1

2

0.6

4
0.3

50.4

60.3

0.2

0.8

Figure 14.3: Example of Probabilistic Graph Modeling: ProbLog syntax (left) and
corresponding graph (right)

the prolog query/2 meta-predicate simulates a lazy enumeration of solutions via
backtracking, the whole set of solutions must be eagerly computed behind the
scenes, in order to compute probabilities. Hence, queries having an infinite proof
tree may lead to a situation where the solver gets stuck or saturates the available
memory even before the first solution is presented to the user.

Solver Piloting Engine

The last piece needed by our system to fully implement a PLP inference solver is
a component aimed at hiding the presence of an underlying Prolog solver. We call
this component the solver piloting engine.

This component is responsible for accepting LP and PLP queries from clients,
properly configuring the underlying LP solver, piloting it to infer the solutions,
extracting the probability values and presenting the results. As a matter of fact,
it represents the presentation layer of our system. Notably, solver configurations
are handled at this level, and the component is capable of passing both LP and
PLP queries to the inner solver on demand.

Also, the solver piloting engine recompiles queries and goals bidirectionally to
be compliant with the meta-predicates semantics of our solution. For instance, our
solution assumes that each query is represented via the prob query/2 predicate.
Considering the example in fig. 14.3, a query such as path(From, To) would be
transformed in prob query(P, path(From, To)). Once solutions are found, the
solver piloting engine extracts the two terms P and path(From, To), and presents
their values to the clients in the correct format.

14.3 Multi-platform Support Demonstration

Here we provide a demonstration of our ProbLog module for 2P-Kt. More pre-
cisely, we show how our solution supports: (i) a wide gamma of usage modalities
– ranging from issuing ProbLog queries via a GUI to usage “as a library” –, and

266 CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP

14.3. MULTI-PLATFORM SUPPORT DEMONSTRATION

(a)

(b)

0

1

0.2::edge(5, 6)

0.8::edge(4, 5)
0.3::edge(3, 4)0.1::edge(1, 3)

0.3::edge(2, 6)

0.3::edge(2, 6)

0.4::edge(2, 5)

0.3::edge(2, 6)

0.4::edge(2, 5)

0.1::edge(1, 3)

0.6::edge(1, 2)

Figure 14.4: 2P-Kt PLP IDE (14.4a) and corresponding BDD built by the solver
(14.4b)

(ii) a number of mainstream programming platforms and languages.

In particular, our demonstration works by solving a probabilistic query against
the trivial probabilistic logic program from fig. 14.3 – where a probabilistic graph
is modelled in ProbLog –, enumerating all possible solutions and interpreting them
as possible paths and their probabilities. We perform this action multiple times,
and in several ways, each time showing a different usage modality. Notably, we
exemplify the usage ProbLog as a JavaFX-based graphical application, other than
as a Kotlin, Java, Android, Python, and JavaScript library.

Figure 14.4 shows 2P-Kt’s IDE, tailored on our ProbLog module. The whole
demonstration can be reproduced by downloading the PLP IDE executable (2p-ide-
plp-X.Y.Z-redist.jar) from https://github.com/tuProlog/2p-kt/releases

/latest. The IDE accepts ProbLog theories as input, either from a file or as bare
textual input, and it is designed to resemble a simple text editor. One can issue a
query and submit it to the underlying ProbLog solver. Once computed, solutions
to that query are shown in a list view. Also, a tab view enables the inspection of
the internal state of the solver. Figure 14.4b depicts the BDD used by our ProbLog
solver behind the scenes while computing the probability of solution path(1, 6).
Notably, BDD representation is yet another function of our IDE, attained via an
automatically-generated DOT [GN00] specification.

Figure 14.5 shows how our ProbLog module can be used “as a library” on
multiple programming platforms and languages, namely Kotlin (for both the JVM
and Android platforms), Python, and JavaScript. The Java language is supported

CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP 267

https://github.com/tuProlog/2p-kt/releases/latest
https://github.com/tuProlog/2p-kt/releases/latest

14.3. MULTI-PLATFORM SUPPORT DEMONSTRATION

�
1 // Kotlin

2 val clausesParser = ClausesParser.withOperators(PROBLOG_OPERATORS)

3 val probabilisticTheory = clausesParser.parseTheory("⟨theory from fig. 14.3⟩")
4 val problogSolver = Solver.problog.solverWithDefaultBuiltins(staticKb = probabilisticTheory)

5 val goal = Struct.of("path", Var.of("From"), Var.of("To"))

6 for (solution in problogSolver.solve(goal , SolveOptions.allLazily ().probabilistic ()))

7 if (solution.isYes)

8 println("yes: ${solution.solvedQuery} with probability ${solution.probability}")
� ��
1 # Python

2 probabilisticTheory = parse_theory("⟨theory from fig. 14.3⟩", PROBLOG_OPERATORS)

3 problogSolver = problog_solver(static_kb=probabilisticTheory)

4 query = struct(’path’, var(’From’), var(’To’))

5 for solution in problogSolver.solve(query , solve_options(lazy=True , probabilistic=True)):

6 if solution.is_yes:

7 print(f"yes: {solution.solved_query} with probability {probability(solution)}")
� ��
1 // JavaScript

2 let clausesParser = ClausesParser.Companion.withOperatorSet(PROBLOG_OPERATORS)

3 let scope = Scope.Companion.empty()

4 let probabilisticTheory = clausesParser.parseTheory("⟨theory from fig. 14.3⟩")
5 let problogSolver = Solver.Companion.problog.solverWithDefaultBuiltinsAndStaticKB(probabilisticTheory)

6 let query = scope.structOf("path", [scope.varOf("From"), scope.varOf("To")])

7 let options = probabilistic(SolveOptions.Companion.allLazily ())

8 let si = problogSolver.solveWithOptions(query , options).iterator ()

9 while (si.hasNext ()) {

10 let solution = si.next();

11 if (solution.isYes)

12 console.log(’yes: ${solution.solvedQuery} with probability ${probability(solution)}’)
13 }
� �

Figure 14.5: Usage of 2P-Kt’s ProbLog module “as a library” on multiple program-
ming languages

268 CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP

14.4. RECAP AND RESEARCH PERSPECTIVES

as well, despite not being depicted in the figure. The similarity among the code
snippets is deliberate and aimed at stressing how the many 2P-Kt ports share a
common design and API, despite the slight syntactical differences characterising
the target language. The conceptual flow is analogous: (i) a ClausesParser is
instantiated out of the set of ProbLog predicates (i.e. Prolog’s standard predicates,
plus ::/2), (ii) it is then used to parse the ProbLog program from fig. 14.3, (iii) the
resulting Theory is used as static KB of a newly instantiated ProbLog Solver,
(iv) the query path(From,To) is programmatically constructed, and (v) issued
to the Solver, as a probabilistic query. Solutions are then (vi) enumerated, and,
finally, (vii) positive solutions are printed, along with their probabilities. For the
sake of reproducibility, the provided snippets can be executed on all the supported
platforms by cloning the Git repository https://github.com/tuProlog/2pkt-p

roblog-compatibility-demo, and by following the contained instruction. As the
reader may easily observe, the resulting solutions and probabilities are the same
depicted in fig. 14.4a.

14.4 Recap and Research Perspectives

This chapter describes the design and implementation of a ProbLog solver as a
module of a logic ecosystem. The extension pursues the twofold goal of (i) enrich-
ing the 2P-Kt logic ecosystem and technology towards PLP and, in particular,
ProbLog, and (ii) bridging PLP and main-stream programming platforms and
languages by letting developers benefit from a library providing probabilistic rea-
soning capabilities to their projects.

The proposed solution is still in its infancy, and it is still not suitable to be
compared with other proposals in the field—at least for what concerns performance
or feature richness. However, by working on top of the 2P-Kt ecosystem, our
solution inherits large platform support – as demonstrated in this chapter –, thus
overcoming the usability and portability constraints that affect other solutions in
this field. In fact, our technology can be deployed on all the platforms supported
by 2P-Kt—which currently include, but are not limited to, the JVM, Android,
Python, and JavaScript. In the long term, we believe such technological openness
will play a fundamental role in bringing the benefits of (P)LP to the general public
and letting AI practitioners exploit (P)LP with minimal effort. In this perspective,
our proposal represents a first step in this direction.

Ultimately, one of the top priorities of this research effort is to leave the door
open to future developments. Our design is purposely abstract, and we endorse
the future exploration of alternative implementation ideas. Among the others, we
envision future directions involving: approximate inference support, more efficient
knowledge compilation data structures, or the exploitation alternative resolution

CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP 269

https://github.com/tuProlog/2pkt-problog-compatibility-demo
https://github.com/tuProlog/2pkt-problog-compatibility-demo

14.4. RECAP AND RESEARCH PERSPECTIVES

strategies such as the tabled or concurrent ones—other than, of course, compara-
tive benchmarks aimed at assessing our solutions w.r.t. the state of the art.

270 CHAPTER 14. ENRICHING THE ECOSYSTEM WITH PLP

Chapter 15

Enriching the Ecosystem: the
Future

In this chapter we discuss a number of research directions stemming from, building
upon, or overlapping the contribution of this thesis. Some initial steps have been
already performed along all such directions, by either us or the students we have
(co-)supervised. Hence, for each research direction, we briefly provide (i) some
background or a brief overview of the literature of the field, (ii) a discussion about
why the field is interesting w.r.t. the scope and the goals of this thesis, (iii) some
insight about how that research direction fits the 2P-Kt ecosystem (or vice versa),
and (iv) a few reference about what we or our students have already done along
that direction.

Accordingly, in the reminder of this chapter we discuss the following research
lines, in no particular order: concurrent logic programming and its role in speeding
up logic or hybrid computations (section 15.1); graph neural networks and their
role in the sub-symbolic processing of symbolic knowledge (section 15.2); symbolic
knowledge injection, its role within XAI, and its duality w.r.t. symbolic knowledge
extraction (section 15.3); tuple-based coordination and its role in the interaction
of intelligent agents among the Internet (section 15.4); and finally inductive logic
programming and its role into the 2P-Kt ecosystem (section 15.5).

15.1 Concurrent Logic Programming

This section contains contributions from the following Master’s thesis: [Gio21], which we supervised

Here we present the fundamental notions of concurrent logic programming,
and their potential role in the speed up of logic resolution. This is a very relevant
topic within the LP community itself, and, as we further discuss in this section,

CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE 271

15.1. CONCURRENT LOGIC PROGRAMMING

it has the potential to impact hybrid systems as well—i.e. systems combining or
integrating LP and sub-symbolic AI.

15.1.1 Brief overview of the field

One of the most attractive features of LP is the clean separation of logic and
control [Kow79]. This is the basis for one of the most relevant properties of LP:
declarativeness—i.e. the programmer states what the program should do (the
logic), while the logic solver decides how to do it (the control). Hence, the efficiency
of resolution for any given logic program, can be improved without any change in
the program itself, simply by changing the solver. Concurrent LP is the field
where algorithms and techniques for concurrent/parallel resolution are studied.
Informally, it deals whit speeding up computations expressed in LP, by exploiting
multi-processor, multi-core, or distributed computing architectures.

Concurrency may be reified into LP in many different flavours. These, in turn,
are commonly grouped in two main categories: explicit and implicit—depending
on who is in charge of handling concurrency (among the programmer or the solver).

Explicit parallelism. This type of parallelism involves the extension of LP
languages with ad-hoc, explicit constructs enabling the control of parallelism. This
means that the programmer is in charge of controlling concurrency-related aspects
manually, through the code.

Explicit control of concurrency needs a highly-skilled programmer who can take
advantage of the available constructs to produce very efficient code. However, but
it can create difficulties in debugging and testing, and, above all, it may easily
break the declarativity of LP—depending on which constructs are provided to the
logic programmer, and how much the enable the programmer to decide “what
happens when”.

There are three sub-types of explicitly parallel logic languages:

• those that add explicit message passing primitives,

• those that add blackboard primitives used by multiple processes running con-
currently to communicate with each other (cf. section 15.4),

• those based on guards, committed choice, and data flow synchronization.

Implicit parallelism. This type of parallelism involves the capability of the LP
engine to perform concurrent operations autonomously, injecting parallelism into
logic programs without any programmer intervention. In contrast to the explicit
parallelism, there are no extensions to the logic language so that the programmer

272 CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE

15.1. CONCURRENT LOGIC PROGRAMMING

writes classic logic programs. Instead, concurrency is achieved automatically, by
relying on multiple processes/threads/tasks cooperating or competing to explore
the proof tree, hence computing solutions to logic queries. Accordingly, the aim
of explicit parallelism is to speed up existing and new logic programs without any
change to the code.

There are two major sorts of implicit parallelism, namely AND- and OR-
parallelism, overviewed below.

AND-parallelism lays in the selection of the next sub-goal to be solved. In
particular, it allows the resolution of multiple sub-goals to occur concurrently. This
sort of parallelism, as mentioned into [Zha94] and [ZTX93], subtends two relevant
situations: (i) independent sub-goals, where clauses’ literals are independent from
each other – as they do not share any variable – and can be concurrently solved,
and (ii) dependent sub-goals, where clauses’ literals are dependent from each other
– as they share some variables – and should be solved in some particular order. Of
course, the actual complexity of AND-parallelism lays in how dependent sub-goals
are handled.

Conversely, OR-parallelism lays in the selection of the clause to be used in the
computation of the resolvent. In particular, it allows the concurrent selection of
multiple clauses to solve a single (sub-)goal.

Mixing these AND- and OR-parallelism together is of course possible, but it
implies an increase of problems that need to be handled.

15.1.2 Why is it interesting

The technology supporting the sequential implementation of LP languages has
evolved considerably since its birth. In recent years, it has reached a notable state
of maturity and efficiency. Today, a wide variety of commercial LP systems and
excellent open-source implementations are available that are being used to develop
large real-life applications.

For years, LP has been considered well suited for execution on multi-processor
architectures. Indeed research in concurrent LP is vast and dates back to the
inception of LP itself. Various systems have been developed during the years to
support concurrent LP, each one with different features. Unfortunately, most of
them are not supported any more, while others are now suffering for the design
choices which only made sense for the machines they were designed for.

Since then, technology has evolved moving from machines with limited re-
sources to modern computers with multi-core processors, and lots of memory,
improving their performances drastically. Software facilities have evolved hand in
hand with the hardware in all areas, like the operating systems, the programming
languages, and the concurrency-related primitives they support. This evolution
raised the abstraction level of the software technologies available for the main-

CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE 273

15.2. GRAPH NEURAL NETWORKS FOR COMPUTATIONAL LOGIC

stream programmer. Hence, nowadays, there exist a plethora of new methods to
support concurrent LP, to be explored. Thus, it would be interesting to adapt
the vast knowledge on the field of concurrent logic programming to actual tech-
nologies, like the Kotlin programming language and its lightweight coroutines, to
develop concurrent logic solvers.

15.1.3 Relation w.r.t. the ecosystem

Accordingly, in [Gio21], the authors propose to extend the 2P-Kt ecosystem to-
wards concurrent LP, hence, tilling the soil for future works. In doing so, they
formalize and design OR-parallel solvers, as well as their implementation.

More precisely, the authors provide four major contributions. First, they pro-
pose a general, object-oriented API supporting the definition and construction
of concurrent solvers of any form. Then, they formally describe the design of
an OR-concurrent Prolog-like solver via labelled transition systems—following the
state-machine approach adopted in chapter 10. Third, they provide an implemen-
tation for solvers of such a sort, rooted into the 2P-Kt ecosystem. Last, but not
least, they make the concurrent solver compliant w.r.t. the notion of primitive in-
troduced in chapter 10—paving the way towards the creation of concurrent solvers
handling stream processing or LP–OOP interoperability scenarios.

The potential of 2P-Kt-powered concurrent LP lays in the possibility of com-
bining concurrency with ILP (cf. section 4.2), as well as the ML-Lib (cf. chap-
ter 12). In all such cases, concurrency may speed up learning without corrupting
the declarativeness of LP. In particular, concerning ILP, concurrency may speed
up the generation and evaluation of the many possible hypotheses the induction
algorithm should step through. Similarly, concerning the ML-Lib, concurrency
may enable the simultaneous training of multiple predictors – which, in turn,
would speed up any hyper parameters tuning procedure – as well as the simul-
taneous drawing of multiple predictions via as many predictors—which in turn
would speed up the inference phase of any hybrid system.

15.2 Graph Neural Networks for Computational

Logic
This section contains contributions from the following works of ours: [ACO21]

Here we discuss the possibility of exploiting graph neural networks (GNN) as
a bridge among symbolic and sub-symbolic AI. In particular, we argue that GNN
support the sub-symbolic processing of logic knowledge, in all those cases where
logic knowledge can be converted into a graph. GNN are a novel topic within

274 CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE

15.2. GRAPH NEURAL NETWORKS FOR COMPUTATIONAL LOGIC

GNN

Graph Convolutor Aggregator Predictor Prediction

Figure 15.1: Graph Neural Networks are composed as a cascade of simpler blocks

the ML community itself, and, as we further discuss in this section, they have the
potential to provide novel solutions for well known CL problems. This may bring
several benefits, in particular, in those cases – elicited below – where sub-symbolic
processing is expected to perform more efficiently than exact symbolic algorithms.

15.2.1 Brief overview of the field

Most ML approaches can handle data having a fixed structure and size—most
notably, vectors, matrices, or tensors of real numbers. This may be troublesome
in some contexts, given the ever-increasing popularity of applications involving
data which cannot be suitably represented by fixed-size, rigid structures. Among
the most relevant applications in this category, we can find a number of graph-
processing scenarios. To tackle this issue, research effort has focused on extend-
ing ML approaches to graph-structured data. Notably, graph neural networks
[WPC+21] are a novel approach to let ordinary NN-based processing be applied
to graphs.

GNN are mathematical models operating upon directed graphs, whose vertices
(resp., arcs) are labelled with (fixed-size) arrays of real numbers, each one carry-
ing further numeric information about the corresponding vertex (resp., arc). GNN
output depends on the learning task to be performed, which commonly ranging in
any of three wide classes of tasks: (i) the classification of similar graphs having dif-
ferent topology – i.e. graph classification – [SK20], (ii) the classification of vertices
of unknown graphs – i.e. nodes classification – [WL20], or (iii) the identification
of missing but statistically probable arcs—i.e. link prediction [FML+19].

Graphs handled by GNN usually carry information in the form of vertices and
arcs arrays. Consider for instance the graph representation of a chemical molecule:
it is necessary to represent the sort of atomic element associated with each vertex.
The same holds for the details of the chemical bonds among two any atoms of a
molecule—which must be associated with the graph’s arcs.

Figure 15.1 depicts the general architecture of a GNN. It consists of a cascade
of three functional blocks (each one composed by one or more layers of neurons)
serving specific purposes, namely:

1. the convolutor block, which is in charge of accepting the graphG as input and

CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE 275

15.2. GRAPH NEURAL NETWORKS FOR COMPUTATIONAL LOGIC

producing a new convoluted graph G′ as output, having the same topology
of G, where the vector associated with each vertex v has been replaced by
another vector describing the relevance of each vertex w.r.t. the whole graph
G.

2. the aggregator block, which is in charge of computing a fixed-sized, tensorial
representation of the graph G′ (i.e. an embedding of G)

3. the predictor block, which acts as an ordinary NN on top of the embedding
computed by the previous block, hence supporting regression or classification
tasks on the graph G.

Overall, the three blocks constitute a feed-forward NN which can be optimized via
gradient descent.

Notably, the convolutor and aggregator blocks aim at converting an arbitrarily-
sized graph into a fixed-side tensorial representation, upon with ordinary sub-
symbolic processing can be performed. The convolutor block, in particular, relies
on convolution operation, extensively exploited in DL to express relevance of local
data w.r.t. to global data. However, the application of convolution operation to
non-Euclidean data – like graphs – is not straightforward. An equivalent notion
of convolution over graphs has been proposed to compute the relevance of each
vertex w.r.t. to its neighbours.

15.2.2 Why is it interesting

In [ACO21], we discuss the problem of enabling the sub-symbolic processing of logic
knowledge-bases. In particular, we focus on the exploitation of NN as a means to
complement CL when it comes to process symbolic data expressed in logic form.
More precisely, we study the possible use of graphs as a bridge between CL and
neural networks. Notably, we consider graphs as the ideal bridge because of their
versatility in representing virtually any sort of data structures, there including
recursive ones—an aspect that is very common in logics as well as quite critical in
ML.

KB as Graphs. Symbolic knowledge bases can be encoded into graphs in several
ways and to serve disparate purposes. Generally speaking, KB can be encoded
into graphs by aggregating the graphs attained by encoding all clause therein
contained. In all such cases, encoding schemas can act at either the semantic or
at the syntactic level.

Encoding schemas operating at the syntactic level capture static relationships
inferable from the mere syntax of clauses and KB. Abstract syntax trees (AST) are
the simplest example of graphs which can be attained from KB. They consist of

276 CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE

15.2. GRAPH NEURAL NETWORKS FOR COMPUTATIONAL LOGIC

Logic Level

Knowledge
Filling

Knowledge
Inclusion

Query
Resolution
Speed-up

Program
Equivalence

Graph Level

Link
Prediction

Graph
Matching

Graph
Classification

Graph
Reduction or
Compression

EncodingTheory
 GNN Output Decoding Theory

Figure 15.2: General workflow for sub-symbolically processing symbolic knowledge via
GNN. Logic level and graph level can be mapped directly, in order for logical problems
to benefit from sub-symbolical techniques – e.g. GNN – available at the graph level.

direct acyclic graphs where vertices are of as many sorts as the possible syntactical
categories of which may occur in a KB – namely, theories, clauses, predicates, or
terms –, whereas arcs simply describe container-contained relations among vertices.
Dependency graphs are another kind of graph that may be attained from a KB.
They consist of directed graphs where each vertex represents a predicate, and
each arc represents a logic dependency among two predicates—meaning that the
predicate corresponding to the destination vertex must be proven true before the
predicate corresponding to the source vertex, in a resolution process.

Encoding schemas operating at the semantic level capture high level relation-
ships that can be inferred from the actual meaning of a logic theory. Entity-
Relationship (ER) graphs are the simplest kind of graph in this category. They
aim at expressing via graphs the same information a ground KB expresses via for-
mulæ. They consist of directed graphs where vertices may either represent entities
(i.e. terms) or relationships (i.e. predicates) and arcs represent the participation of
an entity into a relationship. Triplet graphs are another simple way of representing
ground theories where all terms are constants and all predicates are either unary
or binary. When this is the case, each constant is considered an entity, binary
predicates are considered as relations among two entities, and unary predicates
are considered as properties an entity may or may not have. Thus, a graph can be
attained by defining a vertex for each different constant in a KB, and arc for each
couple of constants involved in at least a binary predicate.

Handling logic tasks via GNN. Manipulation of logic knowledge enables the
resolution of complex queries via logical inference. There exist, however, relevant

CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE 277

15.2. GRAPH NEURAL NETWORKS FOR COMPUTATIONAL LOGIC

tasks which are hard to formalise or solve into the logic realm, because of either
their numerical nature or algorithmic infeasibility. Here, in particular, we iden-
tify four relevant operations on knowledge bases for which, we argue, it is worth
investigating sub-symbolic solutions.

The tasks considered – shown in the upper box of fig. 15.2 – are (i) knowledge
filling, (ii) knowledge inclusion, (iii) program equivalence, and (iv) resolution
speed-up.

Knowledge Filling. Entities and relations available in a logic theory may
sometime lack some instances. For example, this may happen because the human
operator handcrafting the theory was imprecise or when an agent’s knowledge is
incomplete. When this is the case, we consider the knowledge base as fragmented.

To deal with such fragmented theories, it may be useful to identify missing
relations between existing entities. This task may be tackled via statistical analysis
of the theory under examination, which may lead to the identification of latent
relations among entities.

A knowledge filling problem would be hard to handle symbolically, as logic
reasoners commonly struggle in processing knowledge they do not have. While
most solvers operate under a closed world assumption – letting them considers as
false everything they do not explicitly know to be true –, even the ones operating
under an open world assumption do not commonly include mechanisms to generate
new knowledge out of thin air. In all such cases, the coherence and completeness
of the knowledge base is usually considered as an a-priori requirement for logic
computations to work properly. Conversely, in the sub-symbolic realm, seman-
tic similarities among the entities and relations of a logic theory may be better
captured, which may help reconstructing missing facts.

Consider for instance the case of a simple theory representing kinship relation-
ships. The lack of a single relation – say that “John and Mary are siblings” –
may significantly hinder a solver’s ability to deduce kinships among entities of a
family—e.g. “the sons of John and Mary are cousins”. The solution for this task
is not straightforward, thus attracting our attention.

Knowledge Inclusion. Knowledge inclusion represents the task checking
whether a given theory (usually smaller) is complementary w.r.t. another given
theory (usually larger) or not. The same clauses could occur with slightly-different
shapes—e.g. using different predicates/functor names or different positions argu-
ments in the same predicates.

This task requires the ability to express equivalence or similarity among groups
of clauses, which is not straightforward [EFTW04, JWHY15]. Computing exact
solutions to this problem may soon become infeasible as the dimensions of the in-

278 CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE

15.2. GRAPH NEURAL NETWORKS FOR COMPUTATIONAL LOGIC

volved theories increases. Conversely, in the sub-symbolic realm, the same problem
may be modelled as a pattern-matching problem. This may pave the way towards
the computation of approximate solutions to the knowledge inclusion problem in
reasonable time.

As an example, consider multiple agents sharing partially-similar information.
In this case, it would be desirable to identify agents common knowledge and ease
their interaction. Suppose that agents information is expressed via two theories τ1
and τ2, both representing family trees. τ1 expresses 1st degree relatives only, while
τ2 includes also 2nd degree relatives. τ1 may consider more/less/different family
members w.r.t. τ2, and kinships may also be defined in different ways between the
two theories. However, τ1 is – logically speaking – a subset of τ2, and we need to
detect this property.

Program Equivalence. Program equivalence represents the task of comput-
ing a simpler and equivalent theory τ ′ starting from a theory τ . This may imply
removing redundancies and simplifying clauses. As for the knowledge inclusion
task, program equivalence requires a procedure to compare sets of clauses, other
than the capability of generating reduced equivalent variants of clauses. It is our
opinion that both these procedures may be better expressed into sub-symbolical
realm.

Considering again agents storing kinships information, it may be desirable to
compress a single agent information to produce a new theory for a simpler agent.
This new theory should ideally have fewer rules, while spanning the same family
tree of the original theory. Such a requirement is difficult to satisfy, and would
probably require notions of semantically-equivalent sets of kinships—e.g., the set
of relations containing only parent spans the same family tree of the set of relations
{mother, father}.

Query Resolution Speed-Up. Logic theories are commonly exploited by
logic solvers to draw inferences, via some resolution procedure. The execution
time of any query resolution vastly depends on the complexity of the algorithm(s)
expressed by the logic theory. To this regard, a number of efficiency tweaks may
affect the execution time in the average case. For instance, the solutions to most
frequent queries may be cached, or smart strategies may be employed to affect the
way the solver explores a solution space. However, caching costs space, whereas
any rigid resolution strategy may result efficient on some sorts of queries, while
still being slow on some others.

In all those cases, sub-symbolic sub-systems capable to learn from experience
can bring about huge benefits. There, a sub-symbolic helper may be trained
to predict the outcomes of most frequent queries, thus speeding up queries with

CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE 279

15.2. GRAPH NEURAL NETWORKS FOR COMPUTATIONAL LOGIC

constant space requirements. Furthermore, an online learning procedure may be
injected into the solver, making it adapt the resolution strategy to the query at
hand, on the basis of the experience accumulated via previous queries.

This task may be particularly relevant when considering real-time agents work-
ing with complex knowledge bases. Focusing again on kinships, when the number
of family members is huge and relations between family members are complex –
e.g., fourth grade cousins –, query resolution may suffer from delays hindering
agents ability to make real-time decision and perform real-time tasks. Therefore,
it may be interesting to use techniques that aim at speeding up the resolution of
queries over such huge theories. Sub-symbolical approaches may ease this task, by
compressing theory knowledge to simple and easy-to-handle embeddings.

Graphs as Bridges. Here we discuss the role of GNN in addressing the relevant
logic tasks from the paragraph above. In particular, we show how all such tasks
can be mapped onto known graph-related problems which can be addressed via
GNN. In other words, we comment the upper part of fig. 15.2.

Knowledge filling → Link prediction. The knowledge filling task usually
requires semantic knowledge to be taken into consideration. Therefore, to map
the knowledge filling task to an equivalent problem over graphs we should con-
sider preserving the semantic information of the theory. We can then assume to
map entities of a theory to vertices of a graph. Rules and relations can then be
represented as vectorised arcs existing between the graph vertices. Each position
of an arc vector represents a specific relation, preserving the original semantic of
the theory. In this scenario, the task of predicting possible missing relations or
rules is mapped to the problem of identifying which arcs are missing from the
graph.

Knowledge Inclusion → Graph matching. In the same way as for the
knowledge filling task, knowledge inclusion requires semantic knowledge of the
theory to be taken into account. Therefore, we require the mapping between
logic and graphs to preserve the theory semantic. Moreover, knowledge inclusion
requires a comparison between two or more theories: entities and relations from a
theory should be compared to their counterparts of the other theory and matched
upon need.

As done for knowledge filling, let us assume entities to be represented as ver-
tices, and rules or relations as vectorised arcs. The mapping produces as many
graphs as the theories available for the inclusion task. Therefore, from a graph
perspective, knowledge inclusion is mapped to a graph matching problem. In-
deed, the two or more graphs corresponding to their theory counterparts should

280 CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE

15.2. GRAPH NEURAL NETWORKS FOR COMPUTATIONAL LOGIC

be matched for some portion of them.

The matching between graphs is still an open research problem, as it is compu-
tationally very expensive, but is easier to tackle than rules and entities matching.
This holds in particular whenever entities do not match exactly, or, rules share
analogous semantics but are defined in different forms—e.g., parent and mother.

Program equivalence → Graph compression. Given a specific theory,
program equivalence aims at obtaining a simpler – smaller – theory that preserve
the same expressiveness. Depending on the considered approach the mapping
between logic and graph level may bear different requirements. In its simplest form
program equivalence requires to simply remove unnecessary relations and rules of
a theory to compress it. This approach does not require explicitly the semantic
level to be considered while processing the theory. More interestingly, program
equivalence may also require to map set of rules and relations to a single (or a
smaller set of) rules(s). This increased complexity introduces the need for semantic
to be taken into account and to be preserved in the mapping from logic to graphs.
If we consider the same mapping of previous examples, program equivalence can
be linked to the graph compression problem. Indeed, obtaining a smaller set of
equivalent rules and entities can be done removing or merging together arcs and
vertices of the graph theory counterpart.

Query resolution speed-up → Graph classification. Query resolution
speed-up aims at obtaining faster execution of given queries over a logic theory. It
may be helpful for query resolution to maintain the semantic information embed-
ded in the theory. Therefore, the mapping between logic and graphs may benefit
from the preservation of semantic information, and generally speaking vastly de-
pends on the requirements of the desired speed-up. Differently from previous
tasks, for query resolution speed-up we consider obtaining graphs for queries to be
solved—rather than a single graph for the whole theory. The graph representing a
query is matched with the query resolution, considered as the graph label. Follow-
ing this mapping, the query resolution speed-up is mapped to a graph classification
problem, where the label of a graph should be predicted. Any approach can then
be leveraged to classify graphs—i.e. obtain query solutions. This approach may
not be significant for simple queries applied to small knowledge basis. However, it
may result in great speed-up when complex knowledge bases and queries are con-
sidered. Indeed, GNN scalability over large graphs is mostly not an issue, resulting
in quick graph classification.

CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE 281

15.3. SYMBOLIC KNOWLEDGE INJECTION

15.2.3 Relation w.r.t. the ecosystem

Despite the 2P-Kt ecosystem is not explicitly mentioned in [ACO21], its poten-
tial role in this framework is straightforward. In fact, as clearly shown in fig. 15.2,
any GNN-powered workflow aimed at processing symbolic information shall ac-
cept logic theories as inputs, and, possibly, produce logic theories as output. In
both cases, the existence of a software library supporting the representation and
manipulation of clauses and theories is of paramount importance. Despite this
may seem a technical marginal aspect, it is indeed a key enabling factor for any
pre- and post-processing algorithm to be applied before or after the sub-symbolic
computation is triggered.

15.3 Symbolic Knowledge Injection

This section contains contributions from the following works of ours: [MCO22]

While symbolic knowledge extraction (cf. chapter 6, and chapter 13) is the
preferred way to provide explanations within the scope of this thesis, here we pro-
vide insights about a dual approach, namely symbolic knowledge injection (SKI).
SKI is not exactly a keyword from the literature, but rather an umbrella term we
use to denote a plethora of methods from the recent literature of knowledge graph
embedding, and neuro-symbolic computation. Intuitively, it deals with putting
symbolic knowledge into sub-symbolic predictors. In this section, we provide a
brief overview of what we mean by SKI and how it may be useful within the ML
playground to work around the lack of interpretability.

15.3.1 Brief overview of the field

We denote as “symbolic knowledge injection” the task of letting a sub-symbolic
predictor exploit formal, symbolic information to improve its predictive perfor-
mance (e.g. accuracy, f1-measure, learning time) over data. Unlike numeric data
upon which predictors are commonly trained, symbolic data is generally more
compact and expressive, as intensional representations of complex concepts may
be concisely written. In particular, symbolic information may encode bold rules
that must be satisfied by the concepts the predictor is willing to learn. Hence,
provided that some SKI procedure is available, data scientists may craft ad-hoc
collections of symbolic expressions aimed at aiding the training of a particular pre-
dictor, for a specific learning task. In other words, injection enables provisioning
prior knowledge – namely, the designer’s common sense – to ML predictors under
training.

282 CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE

15.3. SYMBOLIC KNOWLEDGE INJECTION

When it comes to neural networks, approaches for SKI are manifold, and the
literature on this topic is vast. Broadly speaking, there exist three major sorts
of approaches supporting the injection of symbolic knowledge into neural net-
works. In particular, SKI can be performed by (i) constraining, (ii) structuring,
or (iii) feeding the network via symbolic knowledge.

Approaches of the first sort perform injection during the network’s training,
using the symbolic knowledge as either a constraint or a guide for the optimization
process. The works by [DGS17, MGDG19] describe methods of this sort. Con-
versely, approaches of the second sort perform injection by altering the network’s
architecture to make it mirror the symbolic knowledge. Works by [Bal86, THA92]
describe methods of the latter sort. Finally, approaches of the third sort attempt
to embed symbolic knowledge into tensorial form to then be processed via ordi-
nary NN, as well as other ML predictors. The GNN-based manipulation of logic
theories discussed in section 15.2 falls under this category, as well as the many
methods for knowledge graph embedding—nicely surveyed in [WMWG17].

Accordingly, all such approaches may leverage upon one or more strategies
to manipulate symbolic knowledge. One strategy works by generating structured
data form the symbolic information to use it in conjunction with the training
set (see [vRMG+19, ZYH+18]) to train the predictor. Another strategy works
by encoding the symbolic knowledge via fuzzy logic, i.e. into functions of real
numbers. Such functions could then be exploited to interpret symbolic knowledge
numerically, e.g. as constraints for the optimization process subtended by training
(cf. [DRG17, DGS17, MGDG19]). One further strategy may be exploited where
convolution-like operations (such as GNN) are exploited to distil concise, fixed-
size representations of the symbolic information to later feed the sub-symbolic
predictor with.

Concerning the symbolic knowledge, virtually all techniques we are aware of
require information to be represented via (some subset of) first order logic (FOL)
formulæ. Actual methods may then vary, depending on (i) which particular sub-set
of FOL they rely upon, (ii) how are logic formulæ interpreted as constraints, and
(iii) whether formulæ require to be grounded or not, before SKI can occur. To the
best of our understanding, most of the methods proposed so far in th literature
require the knowledge base be ground, at some point in the SKI process. When this
is not the case, the KB should be grounded—which of course is only possible if the
Herbrand base of the KB is finite. This, in turns, subtends hidden methodological
constraints for the current state of the art of SKI, which commonly only supports
strict sub-sets of FOL—where, e.g. structure symbols are forbidden.

CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE 283

15.3. SYMBOLIC KNOWLEDGE INJECTION

15.3.2 Why is it interesting

As discussed in chapter 6, a major issue in supervised ML is the usage of opaque
predictors – such as NN – as black boxes. It is not trivial to understand what
NN actually learn from training data, and how they generalise from that data
to the whole domain. Currently, state of the art solutions address this issue by
supporting their inspection via a plethora of different mechanisms [GMR+19]. On
our side, the same issue is tackled via symbolic knowledge extraction, as discussed
in chapter 13.

However, a third way is possible. Thanks to SKI, sub-symbolic predictors can
be made safe by-construction, as they can be trained by taking the the designer’s
common sense – suitably represented in symbols – into account. In other words,
SKI lets us circumvent the opacity issue of ML predictors. Indeed, the injected
knowledge may encourage the NN to learn desired information, while preventing
it from violating the designer’s constraints—expressed by symbols.

More generally, SKI enables a higher degree of control over a sub-symbolic pre-
dictor and its behaviour, constraining it with human-like common-sense—suitably
encoded into symbolic form. In this way, data scientists may correct a misbehaving
predictor or train one despite lack of examples describing a particular phenomenon.
For example, symbolic knowledge may encode impossible or meaningless situations
to be avoided (e.g. “if X has two legs, then X cannot be a cat”), as well as obvious
(for the human) relations which may be hard (for the predictor) to learn from data
alone (e.g. “if X is Y ’s parent, then Y is X’s child”).

Furthermore, the greatest potential comes from the combined exploitation of
SKE and SKI. Indeed, they can be exploited cascade-like fashion where sub-
symbolic predictors are (i) inspected (via SKE), (ii) debugged, and (iii) fixed
(via SKI) by data scientists, as part of their ML workflows.

15.3.3 Relation w.r.t. the ecosystem

SKI is dual w.r.t. to SKE, as the former aims at injecting symbolic knowledge into
ML predictors, and the latter aims at extracting it.

In chapter 13, we propose the design and implementation of PSyKE, i.e. our
platform for SKE. There, the 2P-Kt ecosystem supports the construction of logic
rules, as part of the extraction process.

We envision a similar, yet dual platform for SKI, namely PSyKI, providing
a general-purpose notion of injector, with many possible implementations—each
one reifying a particular injection algorithm/method. There, the 2P-Kt ecosys-
tem would support the representation and (programmatic) manipulation of the
symbolic knowledge acting as input of the injection process.

284 CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE

15.4. TUPLE-BASED COORDINATION

15.4 Tuple-based Coordination
This section contains contributions from the following works of ours: [CROM19]

This section contains contributions from the following Bachelor’s thesis: [Riz18], which we supervised

Here we discuss the role of the 2P-Kt logic ecosystem to support tuple-based
coordination, i.e. a well-established research field studying models, mechanisms,
and technologies aimed at governing the interaction of intelligent agents in con-
current and distributed systems. There, the logic plays a fundamental role in the
representation and manipulation of data and events produced/consumed by agents
during interaction. In particular, we report the proposal of TuSoW, a tuple-based
technology leveraging on 2P-Kt to support coordination among distributed agents
interacting via most common network protocols.

15.4.1 Brief overview of the field

Coordination is the discipline of enabling and constraining interactions among
software components [Cia96] or, more generally, of managing the dependencies
among activities [MC94]. In a world were billions of computational machines have
access to the Internet, this translates to governing the interactions among devices
and services, so as to fully realise the system functionality, through appropriate
technologies backed by well-founded models.

Among the many coordination models, tuple-based ones are the most studied
[CMO+18], mainly due to their expressiveness, elegance, and flexibility. There,
interaction among computational entities of a system are mediated by a tuple space,
the data repository ruling associative access to information chunks called tuples.
Tuples may represent messages by interacting components, data they intend to
share, or a reification of the events of interest for them. In tuple spaces, interaction
is governed by defining how and when agents are allowed to insert, read, or consume
data.

Linda is the archetypal tuple-based coordination model [Gel85]. It lets inter-
acting agents share tuples in tuple spaces by means of three primitive operations:
out, to produce a tuple; rd, to read a tuple; and in, to consume a tuple. The set
of the basic Linda primitives could be interpreted as constituting a sort of API of
a tuple space, whose essential features enable agents to synchronise their activities
(hence coordinate): generative communication, associative access, and suspensive
semantics.

Generative communication makes tuples exist in tuple spaces independently of
their creators – that is, tuples sprout with an out and die with an in, regardless
of the life of the producer –, and supports reference (or, name), time, and space
uncoupling among interacting processes. Associative access makes tuples be ac-
cessed (i.e. either consumed or observed) through templates predicating over their

CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE 285

15.4. TUPLE-BASED COORDINATION

content – e.g., regular expressions can work as templates for tuples represented
as strings –, and supports dealing with partial information and incomplete knowl-
edge: getter primitives (rd, in) expect a template as their argument and return
a matching tuple. Finally, suspensive semantics makes getter primitives wait to
be served until a tuple matching given the provided template becomes available
– when the waiting primitive is eventually completed returning the matching tu-
ple –, and supports synchronisation (ordering) of actions, hence coordination of
activities.

15.4.2 Why is it interesting

As witnessed by the large amount of Linda-based technologies exploiting FOL
terms as tuples (cf. [CDMSL+20]), the history of tuple-based coordination is
deeply entangled with CL. There, FOL brought key benefits to the field of Coor-
dination, and vice versa.

Indeed, from a Coordination perspective, FOL enables (i) the exchange of ar-
bitrarily complex data, possibly intensionally represented, and (ii) powerful and
expressive associative access, based on logic unification. Furthermore and fore-
most, FOL enables the coordination of intelligent software agents via the direct
exchange of logic knowledge. This particular aspect is considered very relevant
within the MAS community.

Conversely, from a logic perspective, Linda’s tuple spaces provide a means
to support explicit parallelism among two or more logic solvers. There, logic
solvers act as independent agents running in parallel, and tuple spaces act as
shared blackboards upon which all such agents can read, write, or delete tuples
to coordinate their reasoning processes. This is in turn the basic brick enabling
many sorts of competitive or cooperative protocols.

15.4.3 Relation w.r.t. the ecosystem

Unfortunately, logic-based technologies in the field of Coordination are charac-
terised by an high degree of obsolescence, as we further discuss in [CDMSL+20].
In many cases, technologies are unmaintained, proof of concepts, or based on other
logic-based technologies subject to the same issues. The overall effect is that most
of them are inadequate to serve the needs of modern Web-, Cloud-, or Edge-based
applications, because of their poor interoperability. To mitigate this issue, in
[CROM19], we propose a layered reference model, architecture, and technology for
tuple-based coordination, namely TuSoW (Tuple Spaces over the Web).

TuSoW is modelled according to the Coordination as a Service (Coord-aaS)
architecture [VO06], where clients are the software entities requiring coordination
services to achieve their goals. Clients may communicate with services, hence

286 CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE

15.4. TUPLE-BASED COORDINATION

core

Tuple Template

TupleSpace Match
domstringslogic

TuSoW

HTTP gRPC

MQTT

implementimplementimplement

wrapwrapwrap

Client

Client_API

implements

uses

Figure 15.3: TuSoW architecture. Circles represent TuSoW remote API. Clients
API exploiting MQTT and gRPC remote API are not depicted.

interact through tuple spaces, by means of a set of remote API geared toward
different settings, including HTTP, WebSockets, gRPC, and MQTT. This is made
possible by TuSoW’s modular architecture, whose main components are shown
in fig. 15.3.

At the architectural level, TuSoW consists of a core module defining the base
types for tuples, templates, matchings, and tuple spaces, which is then specialised
by different implementation modules—one for each pair of tuple-template lan-
guages. All implementations support local coordination of multiple concurrent
processes, threads, or agents running on the same machine. Distribution is en-
abled by the remote API. Remote API reifies the Coord-aaS notion upon different
technologies, targeting different settings. Currently, TuSoW supports three main-
stream technologies widely used in CPS and WoT/IoT scenarios: HTTP, gRPC,
and MQTT.

Notably, TuSoW represents data (e.g. tuples) and queries (e.g. templates) is
modular as well, and independent of the remote API. The idea of making Linda
primitives orthogonal w.r.t. the specific tuple / template language adopted is not
new, as it has already been extensively discussed in [Omi99], for instance. Never-
theless, to the best of our knowledge, no existing implementation allows for this,
although in [MOC17] an intuition concerning the potential of supporting several
tuple / template languages is discussed.

In particular, TuSoW lets clients represent tuples with

• YAML, JSON, and XML formats — to target web-related contexts such as
SOA and RESTful web services;

• first order logic (FOL) terms – in particular Prolog concrete syntax – to
target intelligent agents and multi-agents systems;

CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE 287

15.5. INDUCTIVE LOGIC PROGRAMMING

Listing 15.1: Inducer interface, tailored onto the 2P-Kt API�
1 interface Inducer {

2 fun induce(

3 positiveExamples: Iterable <Clause >,

4 negativeExamples: Iterable <Clause >,

5 background: Theory

6): Theory

7 }
� �
• plain text documents as a fallback for contexts where structuring knowledge

is neither possible nor desirable.

In principle, any other data representation format / language may be supported,
thanks to TuSoW modular architecture. Each data representation format comes
with one or more preferred ways for retrieving or querying data stored with that
format, hence, to express templates and perform matching. For instance, JSON or
YAML data can be queried through JsonPath, in the same way as XML data are
queried through XPath. Plain text is often queried through Regular Expressions,
whereas FOL terms may be matched against other FOL terms through unification.
Of course, the exploitation of terms and unification in TuSoW is made possible
by 2P-Kt.

15.5 Inductive Logic Programming
This section contains contributions from the following Master’s thesis: [Spe21], which we supervised

The field of ILP is extensively presented in section 4.2, as well as its role within
the scope of this thesis. Here, we simply discuss the (potential) relation among
ILP and the 2P-Kt ecosystem. In doing so, we report the discussion proposed in
[Spe21], where the design of a 2P-Kt module for ILP is sketched.

There, the authors propose a general-purpose, object-oriented API for ILP,
namely, via the Inducer interface, represented in listing 15.1. Essentially, an
inducer is any object capable of performing logic induction on a number of positive
and negative examples (which are clauses, in the general case), and a background
theory. The result of any induction process, in the general case, is theory as
well—possibly containing one or more clauses.

Virtually all ILP algorithms may be wrapped behind this general interface.
In this sense, the main contribution of [Spe21] is to provide general support for
ILP, at the OO level. This, in turn, is very interesting as it represents a first step
towards the provisioning of a principled library supporting the engineering of ILP
solutions, where programming-in-the-large tools may be exploited, and ILP itself
is not bound to any particular LP language.

288 CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE

15.5. INDUCTIVE LOGIC PROGRAMMING

ILP algorithms may be added to the ecosystem by simply writing new im-
plementations for the Inducer interface. These implementations may then be
exploited in main-stream programming as well as in any logic solver built on top
of the 2P-Kt ecosystem.

CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE 289

15.5. INDUCTIVE LOGIC PROGRAMMING

290 CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE

Epilogue

CHAPTER 15. ENRICHING THE ECOSYSTEM: THE FUTURE 291

Chapter 16

Conclusions

In this chapter, conclusions are drawn and the achievement of the goals of this
thesis is discussed. Instead, future research directions are discussed in chapter 15.

As outlined in chapter 1, this thesis tackles the problem of bridging computa-
tional logic and data science, as a particular case of the more general problem of
combining symbolic and sub-symbolic AI. Along this line, our contribution is split
in two major parts.

The computational perspective. In part I, we analyse CL and DS w.r.t. four
major dimensions, under a computational perspective. Hence, stemming from an
historical perspective on the two branches of AI, we draw a detailed comparison
about how knowledge is represented, learnt, inferred, and explained both in sym-
bolic and sub-symbolic AI. Coherently with the goals 1 and 2 (cf. chapter 1), we
identify the key differences and complementarities among the two, other than the
most relevant issues arising when hybrid systems – i.e. systems jointly exploiting
CL and DS – are designed.

Key differences. Among the key differences, it is worth mentioning the way
knowledge is represented, and learnt.

Concerning representation (cf. chapter 3), the main difference lays in the ability
to represent information intensionally—i.e. implicitly, as opposed to the need of
extensionally describing each single datum. Indeed, this is, at the time of writing,
is a prerogative of CL, whereas DS most often requires knowledge to be provided
in the form of numeric arrays.

Consequently, as far as learning is concerned (cf. chapter 4), another key
difference lays in the way useful knowledge is acquired from novel evidence—i.e.
data. While DS commonly relies on numeric algorithms to fit the parameters of a
target function, CL relies upon symbolic algorithms which are capable of learning
full logic relations.

CHAPTER 16. CONCLUSIONS 293

Furthermore, one may empirically observe how numeric algorithms are inher-
ently data-eager, while symbolic ones can attain good learning performances even
in presence of very few examples. However, in practice, it is worth remarking how
the two learning approaches are heavily unbalanced when it comes to technological
support. Indeed, while technologies for numeric learning are flourishing, the same
is not true for symbolic learning.

Key complementarities. Among the key complementarities, it is worth
mentioning the way knowledge relates to both inference, and explanation.

Concerning inference (cf. chapter 5), we stress that CL and DS subtend differ-
ent – yet complementary – ways of interpreting inference. Indeed, CL subtends a
rational way of drawing conclusions out of premises – i.e. reasoning, in a nutshell
–, possibly following a deductive, abductive, or inductive strategy. Conversely,
DS subtends an intuitive way of recognising patterns in (possibly, unseen) data,
hence interpreting inference as a form of perception. Notably, the two ways are
complementary rather than competing. Hybrid systems may be designed where
fuzzy tasks are devoted to sub-symbolic processing, whereas higher-level, crisp,
decision-taking tasks are devoted to some symbolic component.

As far as explanation is concerned (cf. chapter 6), we acknowledge that the
interpretation of symbols is straightforward in CL, while it may easily become
cumbersome when knowledge is represented through arrays of numbers—as in DS.
Accordingly, explainability of ML predictors makes the complementarity among
symbolic and sub-symbolic AI even more evident. Along this line, we model
the explanation the act of extracting symbolic knowledge out of sub-symbolic
predictors—while of course guaranteeing the extracted knowledge actually reflects
what the predictors has learnt. Notably, this is a relevant contribution within the
field of XAI, which is currently striving to make ML predictors explainable.

The technological perspective. In part II, we analyse the state of the art of
CL under a technological perspective.

Coherently with goal 3, we assess the currently available logic-based technolo-
gies w.r.t. their capability to serve the needs of modern and future AI (cf. chapters
7 and 8)—possibly, in a synergy with DS. It turns out a considerable amount of
logic-based technologies is nowadays unmaintained, while many others are flourish-
ing within the MAS community (cf. chapter 8). However, we observe a tendency
towards the creations of what we call “technological silos”, i.e. poorly interop-
erable technologies serving specific purposes—despite very well. Interoperability
issues arise for a number of reasons, mostly related to design or technological
choices (e.g. the runtime platform), which made sense sense in the past but are
constraining nowadays.

294 CHAPTER 16. CONCLUSIONS

Accordingly, we address goal 4 by designing a notion of logic ecosystem, and
by reifying into the 2P-Kt technology, as discussed in chapter 9. There, a logic
ecosystem consists of a collection of loosely coupled software modules, each one
supporting a particular CL aspect, notion, or functionality in an unopinionated
way. In other words, it is designed in such a way to support CL – as well as its
interoperability with DS – without committing to any particular functionality of
use case. Ad-hoc modules are designed for knowledge representation and auto-
mated reasoning, as basic functionalities, while the addition of further modules
targetting, e.g., learning or explanation is enabled by building on top of the base
modules and their open API. Furthermore, to prevent 2P-Kt from becoming a
technological silos itself, we have designed as a multi-platform software ecosystem.

Consequently, in the subsequent chapters, we address goal 5 by designing – and
possibly implementing – a number of extensions for our logic ecosystem pushing
it towards DS. Notably, such extensions serve the purpose of demonstrating 2P-
Kt’s interoperability as well. In particular, we develop extensions bridging DS
and our logic ecosystem in several ways. For instance, we bridge the ecosystem
with data stream processing (chapter 10), mainstream programming paradigms
such as object-oriented and functional programming (chapter 11), machine learn-
ing (chapter 12), eXplanable AI (chapter 13), and probabilistic logic program-
ming (chapter 14). A number of further bridges are envisioned and discussed in
chapter 15, concerning for instance concurrent logic programming, graph neural
networks, symbolic knowledge injection, tuple-based coordination, and inductive
logic programming.

Hopefully, in the future, our logic ecosystem will be enriched enough to act
as the most adequate conceptual and technological basis for hybrid intelligent
systems.

CHAPTER 16. CONCLUSIONS 295

296 CHAPTER 16. CONCLUSIONS

Bibliography

[IS95] ISO/IEC JTC 1/SC 22 Technical Committee. ISO/IEC 13211-
1:1995: Information technology — Programming languages —
Prolog — Part 1: General core. International Standard ISO/IEC
13211-1, ISO/IEC, 1995.

[2P-21] 2P-Kt. Home page. https://github.com/tuProlog/2p-kt,
2021.

[AAB+15] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, An-
drew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[Abi08] Syed Sibte Raza Abidi. Healthcare knowledge management: The
art of the possible. In David Riaño, editor, Knowledge Manage-
ment for Health Care Procedures, pages 1–20. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2008.

[ACO21] Andrea Agiollo, Giovanni Ciatto, and Andrea Omicini. Graph
neural networks as the copula mundi between logic and machine
learning: A roadmap. In Roberta Calegari, Giovanni Ciatto, En-
rico Denti, Andrea Omicini, and Giovanni Sartor, editors, WOA
2021 – 22nd Workshop “From Objects to Agents”, volume 2963 of
CEUR Workshop Proceedings, pages 98–115, Bologna, Italy, Oc-
tober 2021. Sun SITE Central Europe, RWTH Aachen University.

BIBLIOGRAPHY 297

https://github.com/tuProlog/2p-kt

BIBLIOGRAPHY

22nd Workshop “From Objects to Agents” (WOA 2021), Bologna,
Italy, 1–3 September 2021. Proceedings.

[Ada21] Amina Adadi. A survey on data-efficient algorithms in big data
era. J. Big Data, 8(1):1–54, 2021.

[ADBGDP04] Veronique Adriaenssens, Bernard De Baets, Peter L. M. Goethals,
and Niels De Pauw. Fuzzy rule-based models for decision sup-
port in ecosystem management. Science of the Total Environment,
319(1–3):1–12, 2004.

[ADT95] Robert Andrews, Joachim Diederich, and Alan B. Tickle. Survey
and critique of techniques for extracting rules from trained artifi-
cial neural networks. Knowl. Based Syst., 8(6):373–389, 1995.

[AES17] Kazi Masudul Alam and Abdulmotaleb El Saddik. C2ps: A dig-
ital twin architecture reference model for the cloud-based cyber-
physical systems. IEEE Access, 5:2050–2062, 2017.

[AFR+10] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer,
Nenad Stojanovic, and Rudi Studer. A rule-based language for
complex event processing and reasoning. In Pascal Hitzler and
Thomas Lukasiewicz, editors, Web Reasoning and Rule Systems
- Fourth International Conference, RR 2010, Bressanone/Brixen,
Italy, September 22-24, 2010. Proceedings, volume 6333 of Lecture
Notes in Computer Science, pages 42–57. Springer, 2010.

[AFWZ02] Alessandro Artale, Enrico Franconi, Frank Wolter, and Michael
Zakharyaschev. A temporal description logic for reasoning over
conceptual schemas and queries. In European Workshop on Logics
in Artificial Intelligence (JELIA 2002), pages 98–110. Springer,
2002.

[AH13] Khalid Almohammadi and Hani Hagras. An adaptive fuzzy logic
based system for improved knowledge delivery within intelligent
E-Learning platforms. In 2013 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE 2013), pages 1–8. IEEE, 2013.

[AK12] M. Gethsiyal Augasta and T. Kathirvalavakumar. Reverse en-
gineering the neural networks for rule extraction in classification
problems. Neural Process. Lett., 35(2):131–150, 2012.

298 BIBLIOGRAPHY

BIBLIOGRAPHY

[AKD+10] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig,
Amit M. Paradkar, and Michael D. Ernst. Finding bugs in web ap-
plications using dynamic test generation and explicit-state model
checking. IEEE Trans. Software Eng., 36(4):474–494, 2010.

[Ake78] Sheldon B. Akers. Binary decision diagrams. IEEE Transactions
on computers, 27(6):509–516, 1978.

[AL03] John R. Anderson and Christian Lebiere. The newell test for a
theory of cognition. Behavioral and Brain Sciences, 26(5):587–
601, 2003.

[ALS12] Arnulfo Azcarraga, Michael David Liu, and Rudy Setiono. Key-
word extraction using backpropagation neural networks and rule
extraction. In The 2012 international joint conference on neural
networks (IJCNN), pages 1–7. IEEE, 2012.

[Ama21] Amazon.com, Inc. Djl - deep java library. https://djl.ai, 2021.

[AMPV06] Reza Akbarinia, Vidal Martins, Esther Pacitti, and Patrick Val-
duriez. Design and implementation of atlas p2p architecture.
Global data management, 8:98, 2006.

[APG+11] Arash Azadegan, Lejla Porobic, Sepehr Ghazinoory, Parvaneh
Samouei, and Amir Saman Kheirkhah. Fuzzy logic in manufac-
turing: A review of literature and a specialized application. Inter-
national Journal of Production Economics, 132(2):258–270, 2011.

[Apt90] Krzysztof R Apt. Logic programming. Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B),
1990:493–574, 1990.

[Apt01] Krzysztof R. Apt. The Logic Programming Paradigm and Prolog,
chapter 15, pages 475–508. Cambridge University Press, 2001.

[ARAA+16] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof
Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric
Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky,
Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bis-
son, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-
Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier
Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski,
Paul Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam
Côté, Aaron Courville, Yann N. Dauphin, Olivier Delalleau, Julien

BIBLIOGRAPHY 299

https://djl.ai

BIBLIOGRAPHY

Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh,
Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Du-
mitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier
Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe
Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina
Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov,
Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César
Laurent, Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas
Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah
Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro,
Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer,
Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher
Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel
Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Pe-
ter Sadowski, John Salvatier, François Savard, Jan Schlüter,
John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy
Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann,
S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay,
Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent,
Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J.
Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng
Zhang, and Ying Zhang. Theano: A Python framework for
fast computation of mathematical expressions. arXiv e-prints,
abs/1605.02688, May 2016.

[ARFS12] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Sto-
janovic. Real-time complex event recognition and reasoning–a logic
programming approach. Applied Artifical Intelligence, 26(1-2):6–
57, 2012.

[AvKLM01] Maysam F. Abbod, Diedrich G. von Keyserlingk, Derek A.
Linkens, and Mahdi Mahfouf. Survey of utilisation of fuzzy tech-
nology in medicine and healthcare. Fuzzy Sets and Systems,
120(2):331–349, 2001.

[Baa03] Franz Baader. Basic description logics. In The Description Logic
Handbook: Theory, Implementation, and Applications, pages 43–
95, USA, 2003. Cambridge University Press.

[Bal86] Dana H. Ballard. Parallel logical inference and energy minimiza-
tion. In Tom Kehler, editor, Proceedings of the 5th National Con-
ference on Artificial Intelligence. Philadelphia, PA, USA, August

300 BIBLIOGRAPHY

BIBLIOGRAPHY

11-15, 1986. Volume 1: Science, pages 203–209. Morgan Kauf-
mann, 1986.

[BB10] Nahla Barakat and Andrew P. Bradley. Rule extraction from sup-
port vector machines: A review. Neurocomputing, 74(1):178–190,
2010. Artificial Brains.

[BBCP] Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and
Agostino Poggi. JADE — a Java agent development framework.
chapter 5, pages 125–147.

[BBD+06] Rafael H. Bordini, Lars Braubach, Mehdi Dastani, A. El F.
Seghrouchni, Jorge J. Gomez-Sanz, Joao Leite, Gregory O’Hare,
Alexander Pokahr, and Alessandro Ricci. A survey of program-
ming languages and platforms for multi-agent systems. Informat-
ica, 30(1):33–44, January 2006. Special Issue “Hot Topics in Eu-
ropean Agent Research II”.

[BBHG17] Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise
Getoor. Hinge-loss markov random fields and probabilistic soft
logic. Journal of Machine Learning Research, 18:109:1–109:67,
2017.

[BC02] Roberto Bagnara and Manuel Carro. Foreign language interfaces
for Prolog: A terse survey. ALP Newsletter, 15(2), May 2002.

[BC04] Tijl D. Bie and Nello Cristianini. Convex methods for transduc-
tion. In S. Thrun, L. K. Saul, and B. Schölkopf, editors, Advances
in neural information processing systems, pages 73–80, 2004.

[BCMP20] Federico Bergenti, Giovanni Caire, Stefania Monica, and Agostino
Poggi. The first twenty years of agent-based software develop-
ment with JADE. Autonomous Agents and Multi Agent Systems,
34(2):36, 2020.

[BD08] Nahla Barakat and Joachim Diederich. Eclectic rule-extraction
from support vector machines. International Journal of Computer
and Information Engineering, 2(5):1672–1675, 2008.

[BDKT97] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and
Francesca Toni. An abstract, argumentation-theoretic approach
to default reasoning. Artificial intelligence, 93(1–2):63–101, 1997.

BIBLIOGRAPHY 301

BIBLIOGRAPHY

[BDTE18] Harald Beck, Minh Dao-Tran, and Thomas Eiter. Lars: A logic-
based framework for analytic reasoning over streams. Artificial
Intelligence, 261:16–70, 2018.

[BEF17] Harald Beck, Thomas Eiter, and Christian Folie. Ticker: A system
for incremental ASP-based stream reasoning. Theory and Practice
of Logic Programming, 17(5-6):744–763, 2017.

[Ber08] Merrie Bergmann. An introduction to many-valued and fuzzy logic:
semantics, algebras, and derivation systems. Cambridge University
Press, 2008.

[BFOS84] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and
Charles J. Stone. Classification and Regression Trees. Chapman
& Hall/CRC, 1984.

[BG11] Radhakisan Baheti and Helen Gill. Cyber-physical systems. The
impact of control technology, 12(1):161–166, 2011.

[BH06] Rafael H. Bordini and Jomi F. Hübner. BDI agent programming
in AgentSpeak using Jason. In Francesca Toni and Paolo Torroni,
editors, Computational Logic in Multi-Agent Systems, volume 3900
of Lecture Notes in Computer Science, pages 143–164. Springer
Berlin Heidelberg, 2006.

[Bis01] Stefano Bistarelli. Soft Constraint Solving and programming: a
general framework. PhD thesis, Computer Science Department,
University of Pisa, 2001.

[BKC94] G. Baues, P. Kay, and P. Charlier. Constraint based resource
allocation for airline crew management. Proc. ATTIS, 94, 1994.

[BL04] Ronald J. Brachman and Hector J. Levesque. The tradeoff be-
tween expressiveness and tractability. In Ronald J. Brachman and
Hector J. Levesque, editors, Knowledge Representation and Rea-
soning, The Morgan Kaufmann Series in Artificial Intelligence,
pages 327–348. Morgan Kaufmann, San Francisco, 2004.

[Bla08] S. Blackburn. The Oxford Dictionary of Philosophy. Oxford Pa-
perback Reference. OUP Oxford, 2008.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic
web. Scientific american, 284(5):34–43, 2001.

302 BIBLIOGRAPHY

BIBLIOGRAPHY

[BM88] Robert S. Boyer and J. Strother Moore. A computational logic.
Academic Press Professional, Inc., USA, 1988.

[Boj07] George Bojadziev. Fuzzy logic for business, finance, and manage-
ment, volume 23. World Scientific, 2007.

[Bol00] Guido Bologna. A study on rule extraction from neural networks
applied to medical databases. In The 4th European Conference
on Principles and Practice of Knowledge Discovery (PKDD2000),
Lyon, France, pages 1–11, 2000.

[Bou04] Marc Boullé. Khiops: A statistical discretization method of con-
tinuous attributes. Machine Learning, 55(1):53–69, 2004.

[BP97] Guido Bologna and Christian Pellegrini. Three medical examples
in neural network rule extraction. Physica Medica, 13:183–187,
1997.

[BPr21] BProlog. Home page. http://www.picat-lang.org/bprolog,
2021. Last access: April 17, 2022.

[BR13] Elena Bellodi and Fabrizio Riguzzi. Expectation maximization
over binary decision diagrams for probabilistic logic programs. In-
telligent Data Analysis, 17(2):343–363, 2013.

[BS01] Franz Baader and Wayne Snyder. Unification theory. In Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 8, pages 445–533. North Holland,
2001.

[BSDL+01] Bart Baesens, Rudy Setiono, V. De Lille, Stijn Viaene, and Jan
Vanthienen. Building credit-risk evaluation expert systems using
neural network rule extraction and decision tables. In Veda C.
Storey, Sumit Sarkar, and Janice I. DeGross, editors, Proceed-
ings of the International Conference on Information Systems, ICIS
2001, volume 20, pages 159–168. Association for Information Sys-
tems, 2001.

[BSMV03] Bart Baesens, Rudy Setiono, Christophe Mues, and Jan Van-
thienen. Using neural network rule extraction and decision ta-
bles for credit-risk evaluation. Management science, 49(3):312–
329, 2003.

BIBLIOGRAPHY 303

http://www.picat-lang.org/bprolog

BIBLIOGRAPHY

[BU18] Tarek R. Besold and Sara L. Uckelman. The what, the why, and
the how of artificial explanations in automated decision-making.
CoRR, abs/1808.07074:1–20, 2018.

[BZ98] Silverio Bolognani and Mauro Zigliotto. Hardware and software ef-
fective configurations for multi-input fuzzy logic controllers. IEEE
Transactions on Fuzzy Systems, 6(1):173–179, 1998.

[Car84] Mats Carlsson. On implementing prolog in functional program-
ming. New Generation Computing, 2(4):347–359, 1984.

[Cas21] Matteo Castigliò. Integrazione tra programmazione logica e reti
neurali: esperimenti in 2p-kt. Master’s thesis, Second Cycle
Degree in Computer Engineering, Alma Mater Studiorum—
Univerisità di Bologna, 2021.

[CB15] Olivier Curé and Guillaume Blin. Chapter eight – reasoning.
In RDF Database Systems, page 191–222. Morgan Kaufmann,
Boston, 2015.

[CCDO19] Roberta Calegari, Giovanni Ciatto, Jason Dellaluce, and Andrea
Omicini. Interpretable narrative explanation for ML predictors
with LP: A case study for XAI. In Federico Bergenti and Stefania
Monica, editors, WOA 2019 – 20th Workshop “From Objects to
Agents”, volume 2404 of CEUR Workshop Proceedings, pages 105–
112, Parma, Italy, 26–28 June 2019. Sun SITE Central Europe,
RWTH Aachen University.

[CCDO20] Roberta Calegari, Giovanni Ciatto, Enrico Denti, and Andrea
Omicini. Logic-based technologies for intelligent systems: State
of the art and perspectives. Information, 11(3):1–29, March 2020.
Special Issue “10th Anniversary of Information—Emerging Re-
search Challenges”.

[CCM+18] Roberta Calegari, Giovanni Ciatto, Stefano Mariani, Enrico Denti,
and Andrea Omicini. LPaaS as micro-intelligence: Enhancing IoT
with symbolic reasoning. Big Data and Cognitive Computing, 2(3),
2018.

[CCMO21a] Roberta Calegari, Giovanni Ciatto, Viviana Mascardi, and An-
drea Omicini. Logic-based technologies for multi-agent systems:
A systematic literature review. Autonomous Agents and Multi-
Agent Systems, 35(1):1:1–1:67, 2021. Collection “Current Trends

304 BIBLIOGRAPHY

BIBLIOGRAPHY

in Research on Software Agents and Agent-Based Software Devel-
opment”.

[CCMO21b] Roberta Calegari, Giovanni Ciatto, Viviana Mascardi, and Andrea
Omicini. Logic-based technologies for multi-agent systems: Sum-
mary of a systematic literature review. In 20th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS-
2021), pages 1721–1723, May 2021.

[CCN+21] Davide Calvaresi, Giovanni Ciatto, Amro Najjar, Reyhan
Aydoğan, Leon Van der Torre, Andrea Omicini, and Michael Schu-
macher. Expectation: Personalized explainable artificial in-
telligence for decentralized agents with heterogeneous knowledge.
In Davide Calvaresi, Amro Najjar, Michael Winikoff, and Kary
Främling, editors, Explainable and Transparent AI and Multi-
Agent Systems. Third International Workshop, EXTRAAMAS
2021, Virtual Event, May 3–7, 2021, Revised Selected Papers, vol-
ume 12688 of Lecture Notes in Computer Science, pages 331–343.
Springer Nature, Basel, Switzerland, 2021.

[CCO20] Roberta Calegari, Giovanni Ciatto, and Andrea Omicini. On the
integration of symbolic and sub-symbolic techniques for XAI: A
survey. Intelligenza Artificiale, 14(1):7–32, 2020.

[CCO21a] Giovanni Ciatto, Roberta Calegari, and Andrea Omicini. 2P-Kt:
A logic-based ecosystem for symbolic AI. SoftwareX, 16:100817:1–
7, December 2021.

[CCO21b] Giovanni Ciatto, Roberta Calegari, and Andrea Omicini. Lazy
stream manipulation in Prolog via backtracking: The case of
2p-kt. In Wolfgang Faber, Gerhard Friedrich, Martin Gebser,
and Michael Morak, editors, Logics in Artificial Intelligence, vol-
ume 12678 of Lecture Notes in Computer Science, pages 407–420.
Springer, 2021. 17th European Conference, JELIA 2021, Virtual
Event, May 17–20, 2021, Proceedings.

[CCOC19] Giovanni Ciatto, Roberta Calegari, Andrea Omicini, and Davide
Calvaresi. Towards XMAS: eXplainability through Multi-Agent
Systems. In Claudio Savaglio, Giancarlo Fortino, Giovanni Ciatto,
and Andrea Omicini, editors, AI&IoT 2019 – Artificial Intelli-
gence and Internet of Things 2019, volume 2502 of CEUR Work-
shop Proceedings, pages 40–53. Sun SITE Central Europe, RWTH
Aachen University, November 2019.

BIBLIOGRAPHY 305

BIBLIOGRAPHY

[CCS+16] Oscar Castillo, Leticia Cervantes, Jose Soria, Mauricio Sanchez,
and Juan R. Castro. A generalized type-2 fuzzy granular approach
with applications to aerospace. Information Sciences, 354:165–177,
2016.

[CCS+20] Giovanni Ciatto, Roberta Calegari, Enrico Siboni, Enrico Denti,
and Andrea Omicini. 2P-Kt: logic programming with objects &
functions in kotlin. In Roberta Calegari, Giovanni Ciatto, Enrico
Denti, Andrea Omicini, and Giovanni Sartor, editors, WOA 2020
– 21th Workshop “From Objects to Agents”, volume 2706 of CEUR
Workshop Proceedings, pages 219–236, Aachen, Germany, October
2020. Sun SITE Central Europe, RWTH Aachen University. 21st
Workshop “From Objects to Agents” (WOA 2020), Bologna, Italy,
14–16 September 2020. Proceedings.

[CCSO20] Giovanni Ciatto, Davide Calvaresi, Michael I. Schumacher, and
Andrea Omicini. An abstract framework for agent-based expla-
nations in AI. In 19th International Conference on Autonomous
Agents and MultiAgent Systems, pages 1816–1818, Auckland, New
Zeland, May 2020. International Foundation for Autonomous
Agents and Multiagent Systems. Extended Abstract.

[CD20] Andrew Cropper and Sebastijan Dumancic. Inductive logic pro-
gramming at 30: a new introduction. CoRR, abs/2008.07912,
2020.

[CDDO18] Roberta Calegari, Enrico Denti, Agostino Dovier, and Andrea
Omicini. Extending logic programming with labelled variables:
Model and semantics. Fundamenta Informaticae, 161(1-2):53–74,
July 2018. Special Issue CILC 2016.

[CDGF+95] Alessandra Costa, Alessandro De Gloria, Paolo Faraboschi, An-
drea Pagni, and G. I. A. N. G. U. I. D. O. Rizzotto. Hardware
solutions for fuzzy control. Proceedings of the IEEE, 83(3):422–
434, 1995.

[CDM20] Andrew Cropper, Sebastijan Dumancic, and Stephen H. Muggle-
ton. Turning 30: New ideas in inductive logic programming. In
Christian Bessiere, editor, Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2020,
pages 4833–4839. ijcai.org, 2020.

306 BIBLIOGRAPHY

BIBLIOGRAPHY

[CDMO18] Roberta Calegari, Enrico Denti, Stefano Mariani, and Andrea
Omicini. Logic programming as a service. Theory and Practice
of Logic Programming, 18(5-6):846–873, September 2018. Special
Issue “Past and Present (and Future) of Parallel and Distributed
Computation in (Constraint) Logic Programming”.

[CDMSL+20] Giovanni Ciatto, Giovanna Di Marzo Serugendo, Maxime Louvel,
Stefano Mariani, Andrea Omicini, and Franco Zambonelli. Twenty
years of coordination technologies: COORDINATION contribu-
tion to the state of art. Journal of Logical and Algebraic Methods
in Programming, 113:1–25, June 2020.

[CFPP96] V. Catania, G. Ficili, S. Palazzo, and D. Panno. Using fuzzy logic
in atm source traffic control: Lessons and perspectives. IEEE
Communications Magazine, 34(11):70–74, 1996.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, 2001.

[CH94] William W. Cohen and Haym Hirsh. Learning the classic descrip-
tion logic: Theoretical and experimental results. In Principles of
Knowledge Representation and Reasoning, pages 121–133. Else-
vier, 1994.

[Chu17] Kenneth Ward Church. Word2vec. Natural Language Engineering,
23(1):155–162, 2017.

[Cia94] Paolo Ciancarini. Distributed programming with Logic Tuple
Spaces. New Generation Computing, 12(3):251–283, 1994.

[Cia96] Paolo Ciancarini. Coordination models and languages as software
integrators. ACM Computing Surveys, 28(2):300–302, June 1996.

[Cia21] Giovanni Ciatto. Travelling salesman problem (TSP) in 2p-kt.
https://github.com/tuProlog/ortools-tsp-example, 2021.

[Cim06] Philipp Cimiano. Ontology Learning and Population from Text.
Springer US, 2006.

[Cla77] Keith L. Clark. Negation as failure. In Hervé Gallaire and Jack
Minker, editors, Logic and Data Bases, Symposium on Logic and
Data Bases, Centre d’études et de recherches de Toulouse, France,
1977, Advances in Data Base Theory, pages 293–322, New York,
1977. Plemum Press.

BIBLIOGRAPHY 307

https://github.com/tuProlog/ortools-tsp-example

BIBLIOGRAPHY

[CLW69] James W. Cooley, Peter A. W. Lewis, and Peter D. Welch. The
fast fourier transform and its applications. IEEE Transactions on
Education, 12(1):27–34, 1969.

[CM12] Mats Carlsson and Per Mildner. Sicstus prolog - the first 25 years.
Theory Pract. Log. Program., 12(1–2):35–66, 2012.

[CM15] Marc Claesen and Bart De Moor. Hyperparameter search in ma-
chine learning. CoRR, abs/1502.02127, 2015.

[CM20] Bhavna Chilwal and P. K. Mishra. A survey of fuzzy logic inference
system and other computing techniques for agricultural diseases.
In Geetam Singh Tomar, Narendra S. Chaudhari, Jorge Luis V.
Barbosa, and Mahesh Kumar Aghwariya, editors, International
Conference on Intelligent Computing and Smart Communication
2019, pages 1–6, Singapore, 2020. Springer.

[CMO+18] Giovanni Ciatto, Stefano Mariani, Andrea Omicini, Franco Zam-
bonelli, and Maxime Louvel. Twenty years of coordination
technologies: State-of-the-art and perspectives. In Giovanna
Di Marzo Serugendo and Michele Loreti, editors, Coordination
Models and Languages, volume 10852 of Lecture Notes in Com-
puter Science, pages 51–80. Springer, 2018. 20th IFIP WG 6.1 In-
ternational Conference, COORDINATION 2018, Held as Part of
the 13th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2018, Madrid, Spain, June 18-21,
2018. Proceedings.

[CMOZ20] Giovanni Ciatto, Stefano Mariani, Andrea Omicini, and Franco
Zambonelli. From agents to blockchain: Stairway to integration.
Applied Sciences, 10(21):7460:1–7460:22, 2020. Special Issue “Ad-
vances in Blockchain Technology and Applications 2020”.

[CMR+19] Angelo Croatti, Sara Montagna, Alessandro Ricci, Emiliano Gam-
berini, Vittorio Albarello, and Vanni Agnoletti. BDI personal med-
ical assistant agents: The case of trauma tracking and alerting.
Artificial Intelligence in Medicine, 96:187–197, 2019.

[CNVC16] Alberto Cano, Dat T. Nguyen, Sebastián Ventura, and
Krzysztof J. Cios. ur-caim: improved CAIM discretization for un-
balanced and balanced data. Soft Comput., 20(1):173–188, 2016.

308 BIBLIOGRAPHY

BIBLIOGRAPHY

[Col86] Alain Colmerauer. Theoretical model of prolog ii. In M. van
Canegham and D.-H.D. Warren, editors, Logic Programming and
its applications, pages 3–31. Ablex Publishing Corporation, 1986.

[COS21] Roberta Calegari, Andrea Omicini, and Giovanni Sartor. Explain-
able and ethical AI: A perspective on argumentation and logic
programming. In Matteo Baldoni and Stefania Bandini, editors,
AIxIA 2020 – Advances in Artificial Intelligence, volume 12414 of
Lecture Notes in Computer Science, pages 19–36. Springer Nature,
2021.

[CR93] Alain Colmerauer and Philippe Roussel. The birth of prolog. In
John A. N. Lee and Jean E. Sammet, editors, History of Program-
ming Languages Conference (HOPL-II), pages 37–52. ACM, April
1993.

[Cra16] Kate Crawford. Artificial intelligence’s white guy problem. The
New York Times, 25, 2016.

[CRD12] Vı́tor Santos Costa, Ricardo Rocha, and Lúıs Damas. The YAP
prolog system. Theory Pract. Log. Program., 12(1-2):5–34, 2012.

[CROM19] Giovanni Ciatto, Lorenzo Rizzato, Andrea Omicini, and Stefano
Mariani. TuSoW: Tuple spaces for edge computing. In The 28th
International Conference on Computer Communications and Net-
works (ICCCN 2019), Valencia, Spain, 29 July–1 August 2019.
IEEE.

[CS94] Mark W. Craven and Jude W. Shavlik. Using sampling and queries
to extract rules from trained neural networks. In William W. Co-
hen and Haym Hirsh, editors, Machine Learning, Proceedings of
the Eleventh International Conference, Rutgers University, New
Brunswick, NJ, USA, July 10-13, 1994, pages 37–45. Morgan
Kaufmann, 1994.

[CS95] Mark W. Craven and Jude W. Shavlik. Extracting tree-structured
representations of trained networks. In David S. Touretzky,
Michael Mozer, and Michael E. Hasselmo, editors, Advances in
Neural Information Processing Systems 8, NIPS, Denver, CO,
USA, November 27-30, 1995, NIPS’95, pages 24–30, Cambridge,
MA, USA, 1995. MIT Press.

[CSOC20] Giovanni Ciatto, Michael I. Schumacher, Andrea Omicini, and
Davide Calvaresi. Agent-based explanations in ai: Towards an

BIBLIOGRAPHY 309

BIBLIOGRAPHY

abstract framework. In Davide Calvaresi, Amro Najjar, Michael
Winikoff, and Kary Främling, editors, Explainable, Transparent
Autonomous Agents and Multi-Agent Systems, volume 12175 of
Lecture Notes in Computer Science, pages 3–20. Springer, Cham,
2020. Second International Workshop, EXTRAAMAS 2020, Auck-
land, New Zealand, May 9–13, 2020, Revised Selected Papers.

[CV98] Brian Center and Brahm P. Verma. Fuzzy logic for biological
and agricultural systems. In Artificial Intelligence for Biology and
Agriculture, volume 12, pages 213–225. Springer, 1998.

[CV13] Konstantina Chrysafiadi and Maria Virvou. Persiva: An empirical
evaluation method of a student model of an intelligent e-learning
environment for computer programming. Computers & Education,
68:322–333, 2013.

[CW96] Weidong Chen and David Scott Warren. Tabled evaluation with
delaying for general logic programs. J. ACM, 43(1):20–74, 1996.

[Cyb89] G. Cybenko. Approximation by superpositions of a sigmoidal func-
tion. Mathematics of Control, Signals and Systems, 2(4):303–314,
Dec 1989.

[CYLT05] Kuo-Ming Chao, Muhammad Younas, Chi-Chun Lo, and Tao-Hsin
Tan. Fuzzy matchmaking for web services. In 19th International
Conference on Advanced Information Networking and Applications
(AINA’05) Volume 1 (AINA papers), volume 2, pages 721–726.
IEEE, 2005.

[DCC21] Jason Dellaluce, Roberta Calegari, and Giovanni Ciatto. Proba-
bilistic logic programming in 2p-kt. In Viviana Mascardi, Matteo
Palmonari, and Giuseppe Vizzari, editors, AIxIA 2021 Discussion
Papers, volume 3078 of CEUR Workshop Proceedings, pages 19–32.
Sun SITE Central Europe, RWTH Aachen University, dec 2021.

[Del21] Jason Dellaluce. Enhancing symbolic AI ecosystems with prob-
abilistic logic programming: a kotlin multi-platform case study.
Master’s thesis, Second Cycle Degree in Computer Engineering,
Alma Mater Studiorum—Univerisità di Bologna, 2021.

[dFM15] Enric Junque de Fortuny and David Martens. Active learning-
based pedagogical rule extraction. IEEE Transactions on Neu-
ral Networks and Learning Systems, 26(11):2664–2677, November
2015.

310 BIBLIOGRAPHY

BIBLIOGRAPHY

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107–113, 2008.

[dGBG01] Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Sym-
bolic knowledge extraction from trained neural networks: A sound
approach. Artif. Intell., 125(1-2):155–207, 2001.

[DGS17] Michelangelo Diligenti, Marco Gori, and Claudio Saccà. Semantic-
based regularization for learning and inference. Artif. Intell.,
244:143–165, 2017.

[dGZ99] Artur S. d’Avila Garcez and Gerson Zaverucha. The connectionist
inductive learning and logic programming system. Appl. Intell.,
11(1):59–77, 1999.

[dK15] Luc de Raedt and Angelika Kimmig. Probabilistic (logic) pro-
gramming concepts. Machine Learning, 100(1):5–47, 2015.

[dKL98] Mark d’Inverno, D. Kinney, and Michael Luck. Interaction proto-
cols in agentis. In Proceedings International Conference on Multi
Agent Systems (Cat. No. 98EX160), pages 112–119. IEEE, 1998.

[DKS95] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised
and unsupervised discretization of continuous features. In Ar-
mand Prieditis and Stuart J. Russell, editors, Machine Learning,
Proceedings of the Twelfth International Conference on Machine
Learning, Tahoe City, California, USA, July 9-12, 1995, pages
194–202. Morgan Kaufmann, 1995.

[DKT09] Phan Minh Dung, Robert A. Kowalski, and Francesca Toni.
Assumption-based argumentation. In Argumentation in artificial
intelligence, pages 199–218. Springer, 2009.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likeli-
hood from incomplete data via the em algorithm. JOURNAL OF
THE ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38,
1977.

[DM02] Adnan Darwiche and Pierre Marquis. A knowledge compilation
map. Journal of Artificial Intelligence Research, 17:229–264, 2002.

[DMGM+13] Dario Della Monica, Valentin Goranko, Angelo Montanari, Guido
Sciavicco, et al. Interval temporal logics: a journey. Bulletin of
EATCS, 3(105), 2013.

BIBLIOGRAPHY 311

BIBLIOGRAPHY

[DMRT06] Francesco M. Donini, Marina Mongiello, Michele Ruta, and
Rodolfo Totaro. A model checking-based method for verifying
web application design. Electronic Notes in Theoretical Computer
Science, 151(2):19–32, 2006.

[DOC13] Enrico Denti, Andrea Omicini, and Roberta Calegari. tuProlog:
Making Prolog ubiquitous. ALP Newsletter, October 2013.

[DOR01] Enrico Denti, Andrea Omicini, and Alessandro Ricci. tuProlog:
A light-weight Prolog for Internet applications and infrastruc-
tures. In I.V. Ramakrishnan, editor, Practical Aspects of Declar-
ative Languages, volume 1990 of Lecture Notes in Computer Sci-
ence, pages 184–198. Springer Berlin Heidelberg, 2001. 3rd In-
ternational Symposium (PADL 2001), Las Vegas, NV, USA, 11–
12 March 2001. Proceedings.

[DOR05] Enrico Denti, Andrea Omicini, and Alessandro Ricci. Multi-
paradigm Java-Prolog integration in tuprolog. Science of Com-
puter Programming, 57(2):217–250, August 2005.

[DR08a] Luc De Raedt. Logical and relational learning. Springer Science &
Business Media, 2008.

[DR+08b] Xu Dong, Bondugula Rajkumar, et al. Applications of fuzzy logic
in bioinformatics, volume 9. World Scientific, 2008.

[DRG17] Michelangelo Diligenti, Soumali Roychowdhury, and Marco Gori.
Integrating prior knowledge into deep learning. In Xuewen Chen,
Bo Luo, Feng Luo, Vasile Palade, and M. Arif Wani, editors, 16th
IEEE International Conference on Machine Learning and Appli-
cations, ICMLA 2017, Cancun, Mexico, December 18-21, 2017,
pages 920–923. IEEE, 2017.

[DRK10] Luc De Raedt and Kristian Kersting. Statistical Relational Learn-
ing, pages 916–924. Springer US, Boston, MA, 2010.

[DRKT07] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog:
A probabilistic prolog and its application in link discovery. In
Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyder-
abad, India, January 6-12, pages 2462–2467, 2007.

[DRW96] Steven Dawson, C. R. Ramakrishnan, and David S. Warren. Prac-
tical program analysis using general purpose logic programming

312 BIBLIOGRAPHY

BIBLIOGRAPHY

systems—a case study. In Proceedings of the ACM SIGPLAN
1996 Conference on Programming Language Design and Imple-
mentation, PLDI ’96, pages 117—126, New York, NY, USA, 1996.
Association for Computing Machinery.

[Dun95] Phan Minh Dung. On the acceptability of arguments and its fun-
damental role in nonmonotonic reasoning, logic programming and
n-person games. Artificial Intelligence, 77(2):321–357, September
1995.

[DVK17] Finale Doshi-Velez and Been Kim. Towards a rigorous science of
interpretable machine learning. CoRR, abs/1702.08608, 2017.

[EEM21] Hanan Elhilbawi, Seif Eldawlatly, and Hani Mahdi. The impor-
tance of discretization methods in machine learning applications:
A case study of predicting ICU mortality. In Aboul Ella Hassanien,
Kuo-Chi Chang, and Mincong Tang, editors, Advanced Machine
Learning Technologies and Applications - Proceedings of AMLTA
2021, Cairo, Egypt, March 22-24, 2021, volume 1339 of Advances
in Intelligent Systems and Computing, pages 214–224. Springer,
2021.

[EFTW04] Thomas Eiter, Michael Fink, Hans Tompits, and Stefan Woltran.
Simplifying logic programs under uniform and strong equivalence.
In Vladimir Lifschitz and Ilkka Niemelä, editors, Logic Program-
ming and Nonmonotonic Reasoning, 7th International Conference,
LPNMR 2004, Fort Lauderdale, FL, USA, January 6-8, 2004,
Proceedings, volume 2923 of Lecture Notes in Computer Science,
pages 87–99. Springer, 2004.

[EG18] Richard Evans and Edward Grefenstette. Learning explanatory
rules from noisy data. Journal of Artificial Intelligence Research,
61:1–64, January 2018.

[EIST05] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and
Hans Tompits. A uniform integration of higher-order reason-
ing and external evaluations in answer-set programming. In
Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI-05,
Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August
5, 2005, pages 90–96. Professional Book Center, 2005.

BIBLIOGRAPHY 313

BIBLIOGRAPHY

[Ell19] Anthony Elliott. The Culture of AI: Everyday Life and the Digital
Revolution. Routledge, 2019.

[FdBR+15] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Sht.
Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and
Luc De Raedt. Inference and learning in probabilistic logic pro-
grams using weighted boolean formulas. Theory and Practice of
Logic Programming, 15(3):358–401, 2015.

[FDH01] Ray J. Frank, Neil Davey, and Stephen P. Hunt. Time series predic-
tion and neural networks. J. Intell. Robotic Syst., 31(1-3):91–103,
2001.

[FGKGP09] Georgios E. Fainekos, Antoine Girard, Hadas Kress-Gazit, and
George J. Pappas. Temporal logic motion planning for dynamic
robots. Automatica, 45(2):343–352, 2009.

[FH17] Marion Fourcade and Kieran Healy. Categories all the way down.
Historical Social Research/Historische Sozialforschung, pages 286–
296, 2017.

[FIP02] Foundation for Intelligent Physical Agents (FIPA). Agent Com-
munication Language Specifications, 2002.

[FJKG10] Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. Ltl-
mop: Experimenting with language, temporal logic and robot con-
trol. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1988–1993. IEEE, 2010.

[FK97] Tze Ho Fung and Robert Kowalski. The IFF proof procedure for
abductive logic programming. The Journal of Logic Programming,
33(2):151–165, 1997.

[FL08] Alexander Ferrein and Gerhard Lakemeyer. Logic-based robot con-
trol in highly dynamic domains. Robotics and Autonomous Sys-
tems, 56(11):980–991, 2008.

[FMDS14] Stan Franklin, T. Madl, S. D’Mello, and J. Snaider. Lida: A
systems-level architecture for cognition, emotion, and learning.
IEEE Transactions on Autonomous Mental Development, 6(1):19–
41, March 2014.

314 BIBLIOGRAPHY

BIBLIOGRAPHY

[FML+19] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang
Tang, and Dawei Yin. Graph neural networks for social recommen-
dation. In Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio
Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia,
editors, The World Wide Web Conference, WWW 2019, San Fran-
cisco, CA, USA, May 13-17, 2019, pages 417–426. ACM, 2019.

[Fre14] Alex A. Freitas. Comprehensible classification models: a position
paper. ACM SIGKDD Explorations Newsletter, 15(1):1–10, June
2014.

[Frü98] Thom W. Frühwirth. Theory and practice of constraint handling
rules. Journal of Logic Programming, 37(1-3):95–138, 1998.

[FSM+07] Leonardo Franco, José Luis Subirats, Ignacio Molina, Emilio Alba,
and José M. Jerez. Early breast cancer prognosis prediction and
rule extraction using a new constructive neural network algorithm.
In International Work-Conference on Artificial Neural Networks,
pages 1004–1011. Springer, 2007.

[Fu94] LiMin Fu. Rule generation from neural networks. IEEE Transac-
tions on Systems, Man, and Cybernetics, 24(8):1114–1124, 1994.

[FW99] Jacques Ferber and Gerhard Weiss. Multi-agent systems: an in-
troduction to distributed artificial intelligence, volume 1. Addison-
Wesley Reading, 1999.

[FZdG14] Manoel V. M. França, Gerson Zaverucha, and Artur S. d’Avila
Garcez. Fast relational learning using bottom clause proposi-
tionalization with artificial neural networks. Machine Learning,
94(1):81–104, 2014.

[Gal85] Jean H. Gallier. Logic for computer science: foundations of au-
tomatic theorem proving. Harper & Row Publishers, Inc., USA,
1985.

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep
Learning. Adaptive computation and machine learning. MIT
Press, 2016.

[GC06] Tao Gong and Zixing Cai. An immune agent for web-based ai
course. International Journal on E-Learning, 5(4):493–506, 2006.

BIBLIOGRAPHY 315

BIBLIOGRAPHY

[GCS13] Sergio Alejandro Gómez, Carlos Iván Chesñevar, and
Guillermo Ricardo Simari. Ontoarg: A decision support
framework for ontology integration based on argumentation.
Expert Systems with Applications, 40(5):1858–1870, 2013.

[GDF19] Travis R. Goodwin and Dina Demner-Fushman. Bridging the
knowledge gap: Enhancing question answering with world and
domain knowledge. arXiv preprint arXiv:1910.07429, 2019.

[Gel85] David Gelernter. Generative communication in Linda. ACM
Transactions on Programming Languages and Systems, 7(1):80–
112, January 1985.

[GF17] Bryce Goodman and Seth Flaxman. European Union regulations
on algorithmic decision-making and a “right to explanation”. AI
Magazine, 38(3):50–57, 2017.

[GFHS04] Cui Guangzuo, Chen Fei, Chen Hu, and Li Shufang. Ontoedu: a
case study of ontology-based education grid system for e-learning.
In GCCCE2004 International conference, pages 1–9, Hong Kong,
February 2004.

[GG12] Sanjeev Goyal and Sandeep Grover. Applying fuzzy grey relational
analysis for ranking the advanced manufacturing systems. Grey
Systems: Theory and Application, 2(2):284–298, 2012.

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional Computing Se-
ries. Addison-Wesley, Reading, MA, 1995.

[Gio21] Andrea Giordano. Extending the 2p-kt ecosystem with concur-
rent logic programming support. Master’s thesis, Second Cycle De-
gree in Computer Science and Engineering, Alma Mater Stu-
diorum—Univerisità di Bologna, 2021.

[GL05] Anna Maria Gil-Lafuente. Fuzzy logic in financial analysis.
Springer, 2005.

[GLMW18] Sara A. Gaggl, Thomas Linsbichler, Marco Maratea, and Stefan
Woltran. Summary report of the second international competi-
tion on computational models of argumentation. AI Magazine,
39(4):77–79, December 2018.

316 BIBLIOGRAPHY

BIBLIOGRAPHY

[GMR+19] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco
Turini, Fosca Giannotti, and Dino Pedreschi. A survey of methods
for explaining black box models. ACM Comput. Surv., 51(5):93:1–
93:42, 2019.

[GMS04] Valentin Goranko, Angelo Montanari, and Guido Sciavicco. A road
map of interval temporal logics and duration calculi. Journal of
Applied Non-Classical Logics, 14(1–2):9–54, 2004.

[GN00] Emden R. Gansner and Stephen C. North. An open graph vi-
sualization system and its applications to software engineering.
SoftwareE - Practice and Experience, 30(11):1203–1233, 2000.

[GO93] C. Lee Giles and Christian W. Omlin. Rule refinement with recur-
rent neural networks. In IEEE International Conference on Neural
Networks, pages 801–806. IEEE, 1993.

[Goz12] Kerim Goztepe. Designing fuzzy rule based expert system for cyber
security. International Journal of Information Security Science,
1(1):13–19, 2012.

[GPM+14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, and
Yoshua Bengio. Generative adversarial nets. In Zoubin Ghahra-
mani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kil-
ian Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 2672–2680, 2014.

[GR68] C. Cordell Green and Bertram Raphael. The use of theorem-
proving techniques in question-answering systems. In 1968 23rd
ACM National Conference, pages 169–181, 1968.

[GR10] Marco Gavanelli and Francesca Rossi. Constraint logic program-
ming. In Agostino Dovier and Enrico Pontelli, editors, A 25-Year
Perspective on Logic Programming: Achievements of the Italian
Association for Logic Programming, GULP, volume 6125 of LNCS,
pages 64–86. Springer, 2010.

[GRSC98] Sumit Ghosh, Qutaiba Razouqi, H. Jerry Schumacher, and Aivars
Celmins. A survey of recent advances in fuzzy logic in telecom-
munications networks and new challenges. IEEE Transactions on
Fuzzy Systems, 6(3):443–447, 1998.

BIBLIOGRAPHY 317

BIBLIOGRAPHY

[GS04] Alejandro J. Garcia and Guillermo R. Simari. Defeasible logic
programming: An argumentative approach. Theory and practice
of logic programming, 4(1–2):95–138, 2004.

[GSS15] Yogesh Gupta, Ashish Saini, and A. K. Saxena. A new fuzzy logic
based ranking function for efficient information retrieval system.
Expert Systems with Applications, 42(3):1223–1234, 2015.

[Gun16] David Gunning. Explainable artificial intelligence (XAI). Funding
Program DARPA-BAA-16-53, DARPA, 2016.

[GWW+16] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo.
Jointly embedding knowledge graphs and logical rules. In Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 192–202, 2016.

[H2O16] H2O.ai. H2O, october 2016.

[Han06] David J Hand. Data mining. Encyclopedia of Environmetrics, 2,
2006.

[HBV06] Johan Huysmans, Bart Baesens, and Jan Vanthienen. ITER: An
algorithm for predictive regression rule extraction. In Data Ware-
housing and Knowledge Discovery (DaWaK 2006), pages 270–279.
Springer, 2006.

[HCCL05] Yih-Jen Horng, Shyi-Ming Chen, Yu-Chuan Chang, and Chia-
Hoang Lee. A new method for fuzzy information retrieval based on
fuzzy hierarchical clustering and fuzzy inference techniques. IEEE
Transactions on Fuzzy Systems, 13(2):216–228, 2005.

[HDM+11] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Van-
thienen, and Bart Baesens. An empirical evaluation of the compre-
hensibility of decision table, tree and rule based predictive models.
Decision Support Systems, 51(1):141–154, 2011.

[Hel19] Dirk Helbing. Societal, economic, ethical and legal challenges of
the digital revolution: From big data to deep learning, artificial
intelligence, and manipulative technologies. In Towards Digital
Enlightenment, pages 47–72. Springer, 2019.

[Hen01] James Hendler. Agents and the semantic web. IEEE Intelligent
Systems, 16(2):30–37, March 2001.

318 BIBLIOGRAPHY

BIBLIOGRAPHY

[Hen08] J. Hendler. Avoiding another ai winter. IEEE Intelligent Systems,
23(2):2–4, March 2008.

[HHH07] Barbara Hammer, Barbara Hammer, and Pascal Hitzler. Perspec-
tives of Neural-Symbolic Integration, volume 77. Springer Publish-
ing Company, Incorporated, 1st edition, 2007.

[HHK00] James Hollan, Edwin Hutchins, and David Kirsh. Distributed
cognition: Toward a new foundation for human-computer interac-
tion research. ACM Transactions on Computer-Human Interaction
(TOCHI), 7:174–196, 2000.

[HLW08] Steffen Hölldobler, Carsten Lutz, and Heinrich Wansing. Logics in
Artificial Intelligence, volume 5293. Springer, 2008.

[HML+16] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric
Xing. Harnessing deep neural networks with logic rules. In Pro-
ceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 2410–2420,
2016.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions
on Software Engineering, 23(5):279–295, 1997.

[Hor51] Alfred Horn. On sentences which are true of direct unions of alge-
bras. Journal of Symbolic Logic, 16(1):14–21, 1951.

[Hor05] Ian Horrocks. OWL: A description logic based ontology language.
In Peter Van Beek, editor, Principles and Practice of Constraint
Programming (CP 2005), pages 5–8. Springer, 2005. Extended
Abstract.

[Hor16] Paul Horwich. Probability and evidence. Cambridge University
Press, 2016.

[HQR17] Robert Hoehndorf and Núria Queralt-Rosinach. Data science and
symbolic ai: Synergies, challenges and opportunities. Data Sci-
ence, 2017.

[HRHL01] Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew
Lucas. Intelligent agents-summary of an agent infrastructure. In
Proceedings of the 5th International conference on autonomous
agents, 2001.

BIBLIOGRAPHY 319

BIBLIOGRAPHY

[HS97] K. M. Ho and Paul D. Scott. Zeta: A global method for dis-
cretization of continuous variables. In David Heckerman, Heikki
Mannila, and Daryl Pregibon, editors, Proceedings of the Third In-
ternational Conference on Knowledge Discovery and Data Mining
(KDD-97), Newport Beach, California, USA, August 14-17, 1997,
pages 191–194. AAAI Press, 1997.

[HSS03] Alexander Hofmann, Carsten Schmitz, and Bernhard Sick. Rule
extraction from neural networks for intrusion detection in com-
puter networks. In SMC’03 Conference Proceedings. 2003 IEEE
International Conference on Systems, Man and Cybernetics.
Conference Theme-System Security and Assurance (Cat. No.
03CH37483), volume 2, pages 1259–1265. IEEE, 2003.

[HSY00] Yoichi Hayashi, Rudy Setiono, and Katsumi Yoshida. A compar-
ison between two neural network rule extraction techniques for
the diagnosis of hepatobiliary disorders. Artificial intelligence in
Medicine, 20(3):205–216, 2000.

[Hub99] Marcus J. Huber. Jam: A bdi-theoretic mobile agent architec-
ture. In Proceedings of the third annual conference on Autonomous
Agents, pages 236–243, 1999.

[HZC21] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of
the state-of-the-art. Knowl. Based Syst., 212:106622, 2021.

[ISO00] ISO/IEC JTC 1/SC 22 Technical Committee. ISO/IEC 13211-
2:2000: Information technology — programming languages — Pro-
log — part 2: Modules. International Standard ISO/IEC 13211-2,
ISO/IEC, 2000.

[JDV14] Andreas Schmidt Jensen, Virginia Dignum, and Jorgen Villadsen.
The AORTA architecture: Integrating organizational reasoning in
jason. In Fabiano Dalpiaz, Jürgen Dix, and M. Birna van Riems-
dijk, editors, Engineering Multi-Agent Systems, volume 8758 of
Lecture Notes in Computer Science, pages 127–145. Springer In-
ternational Publishing, Cham, 2014.

[JL87] Joxan Jaffar and J.-L. Lassez. Constraint logic programming.
In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 111–119, October
1987.

320 BIBLIOGRAPHY

BIBLIOGRAPHY

[JM94] Joxan Jaffar and Michael J. Maher. Constraint logic programming:
A survey. Journal of Logic Programming, 19/20:503–581, 1994.

[JS13] Dana A Jacobsen and Inanc Senocak. Multi-level parallelism for
incompressible flow computations on gpu clusters. Parallel Com-
puting, 39(1):1–20, 2013.

[JSD+14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross B. Girshick, Sergio Guadarrama, and Trevor
Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. In Kien A. Hua, Yong Rui, Ralf Steinmetz, Alan Hanjalic,
Apostol Natsev, and Wenwu Zhu, editors, Proceedings of the ACM
International Conference on Multimedia, MM ’14, Orlando, FL,
USA, November 03 - 07, 2014, pages 675–678. ACM, 2014.

[JWHY15] Jianmin Ji, Hai Wan, Ziwei Huo, and Zhenfeng Yuan. Simpli-
fying A logic program using its consequences. In Qiang Yang
and Michael J. Wooldridge, editors, 24th International Joint Con-
ference on Artificial Intelligence (IJCAI 2015), pages 3069–3075,
Buenos Aires, Argentina, 25–31 July 2015. AAAI Press.

[KB07] Marius Kloetzer and Calin Belta. Temporal logic planning and
control of robotic swarms by hierarchical abstractions. IEEE
Transactions on Robotics, 23(2):320–330, March 2007.

[KBB+21] Philipp Körner, Michael Beuschel, João Barbosa, Vı́tor Santos
Costa, Verónica Dahl, Manuel V. Hermenegildo, Jose F. Morales,
Jan Wielemaker, Daniel Diaz, Salvador Abreu, and Giovanni
Ciatto. 50 years of prolog and beyond. Theory and Practice of
Logic Programming, 2021. (Currently under review).

[KC04] Lukasz A. Kurgan and Krzysztof J. Cios. CAIM discretization
algorithm. IEEE Trans. Knowl. Data Eng., 16(2):145–153, 2004.

[KDDR+11] Angelika Kimmig, Bart Demoen, Luc De Raedt, Vitor Santos
Costa, and Ricardo Rocha. On the implementation of the proba-
bilistic logic programming language problog. Theory and Practice
of Logic Programming, 11(2–3):235–262, 2011.

[Ker92] Randy Kerber. Chimerge: Discretization of numeric attributes.
In William R. Swartout, editor, Proceedings of the 10th National
Conference on Artificial Intelligence, San Jose, CA, USA, July
12-16, 1992, pages 123–128. AAAI Press / The MIT Press, 1992.

BIBLIOGRAPHY 321

BIBLIOGRAPHY

[KFQK21] Eoin M. Kenny, Courtney Ford, Molly Quinn, and Mark T. Keane.
Explaining black-box classifiers using post-hoc explanations-by-
example: The effect of explanations and error-rates in xai user
studies. Artificial Intelligence, 294:103459, 2021.

[KHC18] Tanel Kerikmae, Thomas Hoffmann, and Archil Chochia. Legal
technology for law firms: determining roadmaps for innovation.
Croatian International Relations Review, 24(81):91–112, 2018.

[KJN08] Rikard Konig, Ulf Johansson, and Lars Niklasson. G-REX: A
versatile framework for evolutionary data mining. In 2008 IEEE
International Conference on Data Mining Workshops (ICDM 2008
Workshops), pages 971–974, 2008.

[KNP02] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
PRISM: probabilistic symbolic model checker. In Tony Field, Pe-
ter G. Harrison, Jeremy T. Bradley, and Uli Harder, editors, Com-
puter Performance Evaluation, Modelling Techniques and Tools
12th International Conference, TOOLS 2002, London, UK, April
14-17, 2002, Proceedings, volume 2324 of Lecture Notes in Com-
puter Science, pages 200–204. Springer, 2002.

[Kot07] Sotiris Kotsiantis. Supervised machine learning: A review of clas-
sification techniques. In Emerging Artificial Intelligence Applica-
tions in Computer Engineering, volume 160 of Frontiers in Artifi-
cial Intelligence and Applications, pages 3–24. IOS Press, October
2007.

[Kow74] Robert A. Kowalski. Predicate logic as programming language.
In Jack L. Rosenfeld, editor, Information Processing, Proceedings
of the 6th IFIP Congress, pages 569–574. North-Holland, August
1974.

[Kow79] Robert Kowalski. Algorithm = logic + control. Commun. ACM,
22(7):424–436, jul 1979.

[KSB99] R. Krishnan, G. Sivakumar, and P. Bhattacharya. Extracting de-
cision trees from trained neural networks. Pattern Recognition,
32(12):1999–2009, 1999.

[KYA+16] Alexander Kohan, Mitsuharu Yamamoto, Cyrille Artho, Yoriyuki
Yamagata, Lei Ma, Masami Hagiya, and Yoshinori Tanabe. Java
pathfinder on android devices. ACM SIGSOFT Software Engi-
neering Notes, 41(6):1–5, 2016.

322 BIBLIOGRAPHY

BIBLIOGRAPHY

[KYZ00] Janusz Kacprzyk, Ronald R. Yager, and S. Zadrożny. A fuzzy logic
based approach to linguistic summaries of databases. International
Journal of Applied Mathematics and Computer Science, 10(4):813–
834, 2000.

[KZZ89] Janusz Kacprzyk, S lawomir Zadrożny, and Andrzej Zio lkowski.
Fquery iii+: a “human-consistent” database querying system
based on fuzzy logic with linguistic quantifiers. Information Sys-
tems, 14(6):443–453, 1989.

[Lac10] Nicolas Lachiche. Propositionalization, pages 812–817. Springer
US, Boston, MA, 2010.

[LB87] Hector J. Levesque and Ronald J. Brachman. Expressiveness and
tractability in knowledge representation and reasoning. Comput.
Intell., 3:78–93, 1987.

[LD94] Jaeho Lee and Edmund H. Durfee. Structured circuit semantics
for reactive plan execution systems. In Barbara Hayes-Roth and
Richard E. Korf, editors, Proceedings of the 12th National Confer-
ence on Artificial Intelligence, volume 2, pages 1232–1237, Seattle,
WA, USA, 31 July—4 August 1994. AAAI Press / The MIT Press.

[Len95] Douglas B. Lenat. Cyc: A large-scale investment in knowledge
infrastructure. Communications of the ACM, 38(11):33–38, 1995.

[Lev84] Hector J. Levesque. A logic of implicit and explicit belief. In 4th
AAAI Conference on Artificial Intelligence (AAAI ’84), number 5
in AAAI’84, pages 198–202, Austin, Texas, 1984. AAAI Press.

[Lip18] Zachary C. Lipton. The mythos of model interpretability. Com-
mun. ACM, 61(10):36–43, 2018.

[LKR+16] Paulo Leitão, Stamatis Karnouskos, Luis Ribeiro, Jay Lee,
Thomas I. Strasser, and Armando W. Colombo. Smart agents
in industrial cyber-physical systems. Proceedings of the IEEE,
104(5):1086–1101, 2016.

[LL05] Jiang-Long Lin and C. L. Lin. The use of grey-fuzzy logic for the
optimization of the manufacturing process. Journal of Materials
Processing Technology, 160(1):9–14, 2005.

[LL09] Kevin F. R. Liu and Jia-Hong Lai. Decision-support for environ-
mental impact assessment: A hybrid approach using fuzzy logic

BIBLIOGRAPHY 323

BIBLIOGRAPHY

and fuzzy analytic network process. Expert Systems with Applica-
tions, 36(3):5119–5136, 2009.

[Llo90] John W Lloyd. Computational logic. Springer, 1990.

[LLS02] Hugo Liu, Henry Lieberman, and Ted Selker. Goose: a goal-
oriented search engine with commonsense. In Conejo R. De Bra P.,
Brusilovsky P., editor, International Conference on Adaptive Hy-
permedia and Adaptive Web-Based Systems, volume 2347 of Lec-
ture Notes in Computer Science, pages 253–263. Springer, 2002.

[LLSB04] Henry Lieberman, Hugo Liu, Push Singh, and Barbara Barry.
Beating common sense into interactive applications. AI Magazine,
25(4):63–63, 2004.

[LMS14] Alberto Lovato, Damiano Macedonio, and Fausto Spoto. A
thread-safe library for binary decision diagrams. In Dimitra Gi-
annakopoulou and Gwen Salaün, editors, Software Engineering
and Formal Methods - 12th International Conference, SEFM 2014,
Grenoble, France, September 1-5, volume 8702 of Lecture Notes in
Computer Science, pages 35–49. Springer, 2014.

[LMVW11] Ondrej Linda, Milos Manic, Todd Vollmer, and Jason Wright.
Fuzzy logic based anomaly detection for embedded network se-
curity cyber sensor. In 2011 IEEE Symposium on Computational
Intelligence in Cyber Security (CICS), pages 202–209. IEEE, 2011.

[LR07] James R Larus and Ravi Rajwar. Transactional memory. Synthesis
Lectures on Computer Architecture, 1(1):1–226, 2007.

[LS04] Hugo Liu and Push Singh. Conceptnet–a practical commonsense
reasoning tool-kit. BT technology journal, 22(4):211–226, 2004.

[Lyt08] Miltiadis D. Lytras. Knowledge Management Strategies: A Hand-
book of Applied Technologies: A Handbook of Applied Technologies,
volume 5. IGI Global, 2008.

[Mak87] J. A. Makowsky. Why horn formulas matter in computer science:
Initial structures and generic examples. Journal of Computer and
System Sciences, 34(2):266–292, 1987.

[MB88] Stephen Muggleton and Wray L. Buntine. Machine invention of
first order predicates by inverting resolution. In John E. Laird,
editor, Machine Learning, Proceedings of the Fifth International

324 BIBLIOGRAPHY

BIBLIOGRAPHY

Conference on Machine Learning, Ann Arbor, Michigan, USA,
June 12-14, 1988, pages 339–352. Morgan Kaufmann, 1988.

[MBVGV07] David Martens, Bart Baesens, Tony Van Gestel, and Jan Van-
thienen. Comprehensible credit scoring models using rule extrac-
tion from support vector machines. European Journal of Opera-
tional Research, 183(3):1466–1476, 2007.

[MC94] Thomas W. Malone and Kevin Crowston. The interdisciplinary
study of coordination. ACM Comput. Surv., 26(1):87–119, 1994.

[McC89] John McCarthy. Artificial intelligence, logic and formalizing com-
mon sense. Philosophical logic and artificial intelligence, pages
161–190, 1989.

[McN77] George F. McNulty. Fragments of first order logic, i: Universal
Horn logic. Journal of Symbolic Logic, 42(2):221–237, 1977.

[MCO22] Matteo Magnini, Giovanni Ciatto, and Andrea Omicini. Injecting
first order logic formulæ into neural networks: Experiments report.
In 31st International Joint Conference on Artificial Intelligence
(IJCAI 2022), Vienna, Austria, 23–29 July 2022. AAAI Press.

[Md94] Stephen Muggleton and Luc de Raedt. Inductive logic program-
ming: Theory and methods. The Journal of Logic Programming,
19-20:629–679, 1994. Special Issue: Ten Years of Logic Program-
ming.

[MDK+18] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig,
Thomas Demeester, and Luc De Raedt. Deepproblog: Neu-
ral probabilistic logic programming. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31,
pages 3749–3759. Curran Associates, Inc., 2018.

[MF92] Stephen Muggleton and Cao Feng. Efficient induction of logic
programs. In Stephen Muggleton, editor, Inductive Logic Pro-
gramming, pages 281–298. Academic Press, 1992.

[MGDG19] Giuseppe Marra, Francesco Giannini, Michelangelo Diligenti, and
Marco Gori. LYRICS: a general interface layer to integrate AI and
deep learning. arXiv preprint arXiv:1903.07534, abs/1903.07534,
2019.

BIBLIOGRAPHY 325

BIBLIOGRAPHY

[MH03] Ralf Moller and Volker Haarslev. Description logic systems, pages
282–305. Cambridge University Press, 2003.

[Mil56] George Abram Miller. The magical number seven, plus or mi-
nus two: Some limits on our capacity for processing information.
Psychological Review, 63(2):81–97, March 1956.

[Min75] Marvin Minsky. A framework for representing knowledge repre-
sentation. In The Psychology of Computer Vision. Mc Graw-Hill,
New-York (NY, US), 1975.

[Min91] Marvin Minsky. Logical vs. Analogical or Symbolic vs. Connec-
tionist or Neat vs. Scruffy, page 218–243. MIT Press, Cambridge,
MA, USA, 1991.

[Mit97] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New
York, NY, USA, 1 edition, 1997.

[MLPT14] Stephen H. Muggleton, Dianhuan Lin, Niels Pahlavi, and Alireza
Tamaddoni-Nezhad. Meta-interpretive learning: application to
grammatical inference. Mach. Learn., 94(1):25–49, 2014.

[MLT15] Stephen H. Muggleton, Dianhuan Lin, and Alireza Tamaddoni-
Nezhad. Meta-interpretive learning of higher-order dyadic datalog:
predicate invention revisited. Mach. Learn., 100(1):49–73, 2015.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification al-
gorithm. ACM Trans. Program. Lang. Syst., 4(2):258–282, April
1982.

[MMN18] Fabio Martinelli, Francesco Mercaldo, and Vittoria Nardone. Iden-
tifying insecure features in android applications using model check-
ing. In Paolo Mori, Steven Furnell, and Olivier Camp, editors,
4th International Conference on Information Systems Security and
Privacy (ICISSP 2018), Funchal, Madeira - Portugal, January 22-
24, 2018, pages 589–596. SciTePress, 2018.

[MMS92] Clayton McMillan, Michael C. Mozer, and Paul Smolensky. Rule
induction through integrated symbolic and subsymbolic process-
ing. In Advances in neural information processing systems, pages
969–976, 1992.

[MN96] George Metakides and Anil Nerode. Principles of Logic and Logic
Programming, volume 13 of Studies in Computer Science and Ar-
tificial Intelligence. Elsevier, USA, 1996.

326 BIBLIOGRAPHY

BIBLIOGRAPHY

[MOC17] Stefano Mariani, Andrea Omicini, and Giovanni Ciatto. Novel op-
portunities for tuple-based coordination: XPath, the Blockchain,
and stream processing. In Pasquale De Meo, Maria Nadia Pos-
torino, Domenico Rosaci, and Giuseppe M.L. Sarné, editors, WOA
2017 – 18th Workshop “From Objects to Agents”, volume 1867 of
CEUR Workshop Proceedings, pages 61–64. Sun SITE Central Eu-
rope, RWTH Aachen University, June 2017.

[MOCO06] Conor Muldoon, Gregory M. P. O’Hare, Rem Collier, and
Michael J. O’Grady. Agent factory micro edition: A framework
for ambient applications. In Vassil N. Alexandrov, Geert Dick
van Albada, Peter M. A. Sloot, and Jack Dongarra, editors, Com-
putational Science – ICCS 2006, volume 3993 of Lecture Notes
in Computer Science, pages 727–734. Springer Berlin Heidelberg,
2006.

[MP88] Marvin L. Minsky and Seymour A. Papert. Perceptrons: Expanded
Edition. MIT Press, Cambridge, MA, USA, 1988.

[MP91] Patrick M. Murphy and Michael J. Pazzani. Id2-of-3: Constructive
induction of m-of-n concepts for discriminators in decision trees.
In Machine Learning Proceedings 1991, pages 183–187. Elsevier,
1991.

[MP14] Sanjay Modgil and Henry Prakken. The aspic+ framework for
structured argumentation: a tutorial. Argument & Computation,
5(1):31–62, 2014.

[MS58] John McCarthy and Claude Shannon. Automata studies. Journal
of Symbolic Logic, 23(1):59–60, 1958.

[MTC+10] Marco Montali, Paolo Torroni, Federico Chesani, Paola Mello,
Marco Alberti, and Evelina Lamma. Abductive logic programming
as an effective technology for the static verification of declarative
business processes. Fundamenta Informaticae, 102(3–4):325–361,
2010.

[MTCB17] John Mbuli, Damien Trentesaux, Joffrey Clarhaut, and Guillaume
Branger. Decision support in condition-based maintenance of a
fleet of cyber-physical systems: a fuzzy logic approach. In 2017
Intelligent Systems Conference (IntelliSys), pages 82–89. IEEE,
2017.

BIBLIOGRAPHY 327

BIBLIOGRAPHY

[Mug91] Stephen Muggleton. Inductive logic programming. New Gener.
Comput., 8(4):295–318, 1991.

[Mug95] Stephen Muggleton. Inverse entailment and progol. New Gener.
Comput., 13(3&4):245–286, 1995.

[NAC08] Haydemar Núñez, Cecilio Angulo, and Andreu Català. Rule ex-
traction based on support and prototype vectors. In Joachim
Diederich, editor, Rule Extraction from Support Vector Machines,
volume 80 of Studies in Computational Intelligence, pages 109–134.
Springer, 2008.

[Nil01] Nils J. Nilsson. Teleo-reactive programs and the triple-tower
architecture. Electronic Transactions on Artificial Intelligence,
5(B):99–110, 2001.

[NOV11] Elena Nardini, Andrea Omicini, and Mirko Viroli. Description
spaces with fuzziness. In Mathew J. Palakal, Chih-Cheng Hung,
William Chu, and W. Eric Wong, editors, 26th Annual ACM Sym-
posium on Applied Computing (SAC 2011), volume II: Artificial
Intelligence & Agents, Information Systems, and Software Devel-
opment, pages 869–876, Tunghai University, TaiChung, Taiwan,
21–25 March 2011. ACM.

[NS92] Raymond Ng and Venkatramanan Siva Subrahmanian. Probabilis-
tic logic programming. Information and computation, 101(2):150–
201, 1992.

[NVP10] Elena Nardini, Mirko Viroli, and Emanuele Panzavolta. Coordina-
tion in open and dynamic environments with tucson semantic tuple
centres. In Sung Y. Shin, Sascha Ossowski, Michael Schumacher,
Mathew J. Palakal, and Chih-Cheng Hung, editors, Proceedings of
the 2010 ACM Symposium on Applied Computing (SAC), pages
2037–2044, Sierre, Switzerland, March 22-26, 2010, February 2010.
ACM.

[NZRS12] Feng Niu, Ce Zhang, Christopher Ré, and Jude Shavlik. Elemen-
tary: Large-scale knowledge-base construction via machine learn-
ing and statistical inference. International Journal on Semantic
Web and Information Systems (IJSWIS), 8(3):42–73, 2012.

[OC19] Andrea Omicini and Roberta Calegari. Injecting (mi-
cro)intelligence in the IoT: Logic-based approaches for (M)MAS.

328 BIBLIOGRAPHY

BIBLIOGRAPHY

In Donghui Lin, Toru Ishida, Franco Zambonelli, and Itsuki Noda,
editors, Massively Multi-Agent Systems II, volume 11422 of Lecture
Notes in Computer Science, chapter 2, pages 21–35. Springer, May
2019. International Workshop, MMAS 2018, Stockholm, Sweden,
July 14, 2018, Revised Selected Papers.

[OD01] Andrea Omicini and Enrico Denti. From tuple spaces to tuple cen-
tres. Science of Computer Programming, 41(3):277–294, November
2001.

[ODN95] Andrea Omicini, Enrico Denti, and Antonio Natali. Agent coordi-
nation and control through logic theories. In Marco Gori and Gio-
vanni Soda, editors, Topics in Artificial Intelligence, volume 992 of
LNAI, pages 439–450. Springer-Verlag, 1995. 4th Congress of the
Italian Association for Artificial Intelligence (AI*IA’95), Florence,
Italy, 11–13 October 1995, Proceedings.

[OFM+21] Alfonso Ortega, Julian Fierrez, Aythami Morales, Zilong Wang,
and Tony Ribeiro. Symbolic ai for xai: Evaluating lfit inductive
programming for fair and explainable automatic recruitment. In
IEEE/CVF Winter Conference on Applications of Computer Vi-
sion (WACV), pages 78–87. IEEE, 2021.

[Omi99] Andrea Omicini. On the semantics of tuple-based coordina-
tion models. In 1999 ACM Symposium on Applied Computing
(SAC’99), pages 175–182, New York, NY, USA, 28 February – 2
March 1999. ACM.

[Omi01] Andrea Omicini. SODA: Societies and infrastructures in the anal-
ysis and design of agent-based systems. In Paolo Ciancarini
and Michael J. Wooldridge, editors, Agent-Oriented Software En-
gineering, volume 1957 of Lecture Notes in Computer Science,
pages 185–193. Springer-Verlag, 2001. 1st International Workshop
(AOSE 2000), Limerick, Ireland, 10 June 2000. Revised Papers.

[OMO10] Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type
classes as objects and implicits. In Proceedings of the ACM In-
ternational Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’10, pages 341–360, New
York, NY, USA, 2010. Association for Computing Machinery.

[OP11] Mohammad Oliya and Hung Keng Pung. Towards incremental
reasoning for context aware systems. In Advances in Computing

BIBLIOGRAPHY 329

BIBLIOGRAPHY

and Communications, volume 190 of Communications in Com-
puter and Information Science, pages 232–241. Springer, 2011.

[Oss12] Sascha Ossowski. Agreement technologies, volume 8 of Law, Gov-
ernance and Technology Series. Springer Netherlands, 2012.

[OSS15] Ming Erh Ooi, Mohd Sayuti, and Ahmed A. D. Sarhan. Fuzzy
logic-based approach to investigate the novel uses of nano sus-
pended lubrication in precise machining of aerospace al tempered
grade 6061. Journal of Cleaner Production, 89:286–295, 2015.

[OZ99] Andrea Omicini and Franco Zambonelli. Coordination for Inter-
net application development. Autonomous Agents and Multi-Agent
Systems, 2(3):251–269, September 1999. Special Issue: Coordina-
tion Mechanisms for Web Agents.

[Par13] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic
Bookshelf, 2nd edition, 2013.

[Pau18] Lawrence C. Paulson. Computational logic: its origins and applica-
tions. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 474(2210):20170872, 2018.

[PBOR08] Giulio Piancastelli, Alex Benini, Andrea Omicini, and Alessandro
Ricci. The architecture and design of a malleable object-oriented
Prolog engine. In Roger L. Wainwright, Hisham M. Haddad,
Ronaldo Menezes, and Mirko Viroli, editors, 23rd ACM Sympo-
sium on Applied Computing (SAC 2008), volume 1, pages 191–
197, Fortaleza, Ceará, Brazil, 16–20 March 2008. ACM. Special
Track on Programming Languages.

[PCOS20] Giuseppe Pisano, Roberta Calegari, Andrea Omicini, and Gio-
vanni Sartor. Arg-tuProlog: A tuProlog-based argumentation
framework. In Francesco Calimeri, Simona Perri, and Ester
Zumpano, editors, CILC 2020 – Italian Conference on Computa-
tional Logic. Proceedings of the 35th Italian Conference on Com-
putational Logic, volume 2719 of CEUR Workshop Proceedings,
pages 51–66, Aachen, Germany, 13-15 October 2020. Sun SITE
Central Europe, RWTH Aachen University, CEUR-WS.

[PF19] Laurent Perron and Vincent Furnon. OR-tools. https://develo

pers.google.com/optimization/, 2019.

330 BIBLIOGRAPHY

https://developers.google.com/optimization/
https://developers.google.com/optimization/

BIBLIOGRAPHY

[PKD+12] Prakashgoud Patil, Umakant Kulkarni, B. L. Desai, V. I. Benagi,
and V. B. Naragund. Fuzzy logic based irrigation control sys-
tem using wireless sensor network for precision agriculture. Agro-
Informatics and Precision Agriculture (AIPA), 2012.

[Pla21] 2P-Kt Playground. Web interface. https://pika-lab.gitlab.

io/tuprolog/2p-kt-web, 2021. Last access: April 17, 2022.

[Plo71] G. D. Plotkin. A further note on inductive generalization. In
Machine Intelligence 6, pages 101–124. American Elsevier, 1971.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Sym-
posium on Foundations of Computer Science, Providence, Rhode
Island, USA, 31 October - 1 November 1977, pages 46–57. IEEE
Computer Society, 1977.

[Pol87] John L. Pollock. Defeasible reasoning. Cognitive science,
11(4):481–518, 1987.

[Pra13] Henry Prakken. Logical tools for modelling legal argument: a study
of defeasible reasoning in law, volume 32. Springer Science & Busi-
ness Media, 2013.

[Pro21a] Ciao! Prolog. Home page. https://ciao-lang.org, 2021. Last
access: April 17, 2022.

[Pro21b] ECLiPSe Prolog. Home page. https://eclipseclp.org, 2021.
Last access: April 17, 2022.

[Pro21c] SWI Prolog. Home page. https://www.swi-prolog.org, 2021.
Last access: April 17, 2022.

[Pro21d] Tau Prolog. Home page. http://tau-prolog.org, 2021. Last
access: April 17, 2022.

[Pro21e] XSB Prolog. Home page. http://xsb.sourceforge.net, 2021.
Last access: April 17, 2022.

[PS15] Henry Prakken and Giovanni Sartor. Law and logic: A review from
an argumentation perspective. Artificial Intelligence, 227:214–245,
2015.

[PSRV19] Francesc Pedro, Miguel Subosa, Axel Rivas, and Paula Valverde.
Artificial intelligence in education: challenges and opportunities
for sustainable development. Technical report, Paris, 2019.

BIBLIOGRAPHY 331

https://pika-lab.gitlab.io/tuprolog/2p-kt-web
https://pika-lab.gitlab.io/tuprolog/2p-kt-web
https://ciao-lang.org
https://eclipseclp.org
https://www.swi-prolog.org
http://tau-prolog.org
http://xsb.sourceforge.net

BIBLIOGRAPHY

[PVB+13] Corina S. Pasareanu, Willem Visser, David H. Bushnell, Jaco
Geldenhuys, Peter C. Mehlitz, and Neha Rungta. Symbolic
pathfinder: integrating symbolic execution with model checking
for java bytecode analysis. Autom. Softw. Eng., 20(3):391–425,
2013.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vander-
Plas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research
(JMLR), 12:2825–2830, 2011.

[PW78] David Premack and Guy Woodruff. Does the chimpanzee have
a theory of mind? Behavioral and brain sciences, 1(4):515–526,
December 1978.

[QNO06] Mohammed A. Quddus, Robert B. Noland, and Washington Y.
Ochieng. A high accuracy fuzzy logic based map matching algo-
rithm for road transport. Journal of Intelligent Transportation
Systems, 10(3):103–115, 2006.

[Qui87] J. Ross Quinlan. Simplifying decision trees. International Journal
of Man-Machine Studies, 27(3):221–234, 1987.

[Qui93] J. Ross Quinlan. C4.5: Programming for machine learning. Mor-
gan Kauffmann, 1993.

[Rao96] Anand S. Rao. Agentspeak(l): BDI agents speak out in a logi-
cal computable language. In Walter Van de Velde and John W.
Perram, editors, Agents Breaking Away, 7th European Workshop
on Modelling Autonomous Agents in a Multi-Agent World, Eind-
hoven, The Netherlands, January 22-25, 1996, Proceedings, vol-
ume 1038 of Lecture Notes in Computer Science, pages 42–55.
Springer, Berlin, Heidelberg, 1996.

[RAS15] Aakanksha Rastogi, Ritika Arora, and Shanu Sharma. Leaf disease
detection and grading using computer vision technology & fuzzy
logic. In Proccedings of the 2nd international conference on signal
processing and integrated networks (SPIN), pages 500–505. IEEE,
2015.

332 BIBLIOGRAPHY

BIBLIOGRAPHY

[Red16] Christoph Redl. The DLVHEX system for knowledge representa-
tion: recent advances (system description). Theory and Practice
of Logic Programming, 16(5-6):866–883, 2016.

[Rei80] Raymond Reiter. A logic for default reasoning. Artificial intelli-
gence, 13(1–2):81–132, 1980.

[RHW86] D. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learn-
ing representations by back-propagating errors. Nature, 323:533–
536, 1986.

[Rig07] Fabrizio Riguzzi. A top down interpreter for LPAD and cp-
logic. In Roberto Basili and Maria Teresa Pazienza, editors,
AI*IA 2007: Artificial Intelligence and Human-Oriented Com-
puting, 10th Congress of the Italian Association for Artificial In-
telligence, Rome, Italy, September 10-13, 2007, Proceedings, vol-
ume 4733 of Lecture Notes in Computer Science, pages 109–120.
Springer, 2007.

[Rig18] Fabrizio Riguzzi. Foundations of Probabilistic Logic Programming.
River Publishers, Gistrup, Denmark, 2018.

[Riz18] Lorenzo Rizzato. Coordination as a web service: una moderna
implementazione del modello Linda, 2018. First Cycle Degree in
Computer Science and Engineering, Alma Mater Studiorum—
Univerisità di Bologna.

[RN16] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern
approach. Malaysia; Pearson Education Limited,, 2016.

[Rob65] John Alan Robinson. A machine-oriented logic based on the reso-
lution principle. Journal of the ACM, 12(1):23–41, 1965.

[Ros57] Frank Rosenblatt. The perceptron, a perceiving and recognizing
automaton Project Para. Cornell Aeronautical Laboratory, 1957.

[Ros00] Francesca Rossi. Constraint (logic) programming: A survey on
research and applications. In Krzysztof R. Apt, Eric Monfroy,
Antonis C. Kakas, and Francesca Rossi, editors, New Trends in
Constraints, pages 40–74. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2000.

BIBLIOGRAPHY 333

BIBLIOGRAPHY

[RPM12] Anderson Rocha, Joao Paulo Papa, and Luis A. A. Meira. How
far do we get using machine learning black-boxes? Interna-
tional Journal of Pattern Recognition and Artificial Intelligence,
26(02):1261001–(1–23), 2012.

[RR17] Tim Rocktaschel and Sebastian Riedel. End-to-end differentiable
proving. In Advances in Neural Information Processing Systems,
pages 3788–3800, 2017.

[RR19] Avi Rosenfeld and Ariella Richardson. Explainability in human-
agent systems. Autonomous Agents and Multi-Agent Systems,
33(6):673–705, November 2019.

[RS11] Fabrizio Riguzzi and Terrance Swift. The PITA system for logical-
probabilistic inference. In Stephen H. Muggleton and Hiroaki
Watanabe, editors, Latest Advances in Inductive Logic Program-
ming, ILP 2011, Late Breaking Papers, Windsor Great Park, UK,
July 31 - August 3, pages 79–86. Imperial College Press / World
Scientific, 2011.

[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why
should I trust you?”: Explaining the predictions of any classi-
fier. In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola,
Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi, editors, Pro-
ceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016, pages 1135–1144. ACM, 2016.

[RSR15] Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting
logical background knowledge into embeddings for relation extrac-
tion. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 1119–1129, 2015.

[Rud19] Cynthia Rudin. Stop explaining black box machine learning mod-
els for high stakes decisions and use interpretable models instead.
Nature Machine Intelligence, 1(5):206–215, 2019.

[RVBW08] Francesca Rossi, Peter Van Beek, and Toby Walsh. Constraint
programming. Foundations of Artificial Intelligence, 3:181–211,
2008.

[SA11] Semih Sezer and Ali Erdem Atalay. Dynamic modeling and
fuzzy logic control of vibrations of a railway vehicle for different

334 BIBLIOGRAPHY

BIBLIOGRAPHY

track irregularities. Simulation Modelling Practice and Theory,
19(9):1873–1894, 2011.

[SAG99] Gregor P. J. Schmitz, Chris Aldrich, and François S. Gouws.
ANN-DT: an algorithm for extraction of decision trees from ar-
tificial neural networks. IEEE Transactions on Neural Networks,
10(6):1392–1401, 1999.

[Sat95] Taisuke Sato. A statistical learning method for logic programs
with distribution semantics. In Leon Sterling, editor, Logic Pro-
gramming, Proceedings of the Twelfth International Conference on
Logic Programming, Tokyo, Japan, June 13-16, pages 715–729.
MIT Press, 1995.

[SAZ+18] Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezný, Steven
Schockaert, and Ondrej Kuzelka. Lifted relational neural networks:
Efficient learning of latent relational structures. Journal of Artifi-
cial Intelligence Research, 62:69–100, 2018.

[SBM11] Rudy Setiono, Bart Baesens, and Christophe Mues. Rule extrac-
tion from minimal neural networks for credit card screening. In-
ternational Journal of Neural Systems, 21(04):265–276, 2011.

[SCCO21] Federico Sabbatini, Giovanni Ciatto, Roberta Calegari, and An-
drea Omicini. On the design of PSyKE: A platform for symbolic
knowledge extraction. In Roberta Calegari, Giovanni Ciatto, En-
rico Denti, Andrea Omicini, and Giovanni Sartor, editors, WOA
2021 – 22nd Workshop “From Objects to Agents”, volume 2963 of
CEUR Workshop Proceedings, pages 29–48, Bologna, Italy, Octo-
ber 2021. Sun SITE Central Europe, RWTH Aachen University.
22nd Workshop “From Objects to Agents” (WOA 2021), Bologna,
Italy, 1–3 September 2021. Proceedings.

[SCK00] Helmut Simonis, Philippe Charlier, and Philip Kay. Constraint
handling in an integrated transportation problem. IEEE Intelli-
gent Systems and their applications, 15(1):26–32, 2000.

[SCMN13] Richard Socher, Danqi Chen, Christopher D. Manning, and An-
drew Ng. Reasoning with neural tensor networks for knowledge
base completion. In Advances in neural information processing
systems, pages 926–934, 2013.

[SCO21] Federico Sabbatini, Giovanni Ciatto, and Andrea Omicini.
GridEx: An algorithm for knowledge extraction from black-box

BIBLIOGRAPHY 335

BIBLIOGRAPHY

regressors. In Davide Calvaresi, Amro Najjar, Michael Winikoff,
and Kary Främling, editors, Explainable and Transparent AI and
Multi-Agent Systems. Third International Workshop, EXTRAA-
MAS 2021, Virtual Event, May 3–7, 2021, Revised Selected Pa-
pers, volume 12688 of Lecture Notes in Computer Science, pages
18–38. Springer Nature, Basel, Switzerland, 2021.

[SdG16] Luciano Serafini and Artur S. d’Avila Garcez. Logic tensor net-
works: Deep learning and logical reasoning from data and knowl-
edge. In Tarek R. Besold, Lúıs C. Lamb, Luciano Serafini, and
Whitney Tabor, editors, Proceedings of the 11th International
Workshop on Neural-Symbolic Learning and Reasoning (NeSy’16)
co-located with the Joint Multi-Conference on Human-Level Arti-
ficial Intelligence (HLAI 2016), New York City, NY, USA, July
16-17, 2016, volume 1768 of CEUR Workshop Proceedings. CEUR-
WS.org, 2016.

[SDG17] Luciano Serafini, Ivan Donadello, and Artur d’Avila Garcez.
Learning and reasoning in logic tensor networks: Theory and ap-
plication to semantic image interpretation. In Proceedings of the
Symposium on Applied Computing, SAC ’17, pages 125–130, New
York, NY, USA, 2017. ACM.

[Sea80] John R. Searle. Minds, brains, and programs. Behavioral and
Brain Sciences, 3(3):417–424, 1980.

[Set97] Rudy Setiono. Extracting rules from neural networks by prun-
ing and hidden-unit splitting. Neural Computation, 9(1):205–225,
1997.

[SFP+07] Vitaly Schetinin, Jonathan E. Fieldsend, Derek Partridge, Tim-
othy J. Coats, Wojtek J. Krzanowski, Richard M. Everson,
Trevor C. Bailey, and Adolfo Hernandez. Confident interpreta-
tion of bayesian decision tree ensembles for clinical applications.
IEEE Transactions on Information Technology in Biomedicine,
11(3):312–319, 2007.

[SG16] Luciano Serafini and Artur S. d’Avila Garcez. Learning and rea-
soning with logic tensor networks. In Conference of the Italian As-
sociation for Artificial Intelligence, pages 334–348. Springer, 2016.

[Sha00] Stuart C. Shapiro. SNePS: A logic for natural language under-
standing and commonsense reasoning, pages 175—195. MIT Press,
Cambridge, MA, USA, 2000.

336 BIBLIOGRAPHY

BIBLIOGRAPHY

[Sib19] Enrico Siboni. 2P-Kt: A kotlin-based, multi-platform frame-
work for symbolic AI. Master’s thesis, Second Cycle Degree in
Computer Science and Engineering, Alma Mater Studiorum—
Univerisità di Bologna, 2019.

[Sim96] Helmut Simonis. Application development with the chip system.
In Wallace M. Kuper G., editor, Constraint Databases and Appli-
cations, volume 1034 of Lecture Notes in Computer Science, pages
1–21. Springer, Berlin, Heidelberg, 1996.

[Sim01] Helmut Simonis. Building industrial applications with constraint
programming. In Gerhard Goos, Juris Hartmanis, Jan van
Leeuwen, Hubert Comon, Claude Marché, and Ralf Treinen,
editors, Constraints in Computational Logics, pages 271–309.
Springer, 2001. Theory and Applications International Summer
School (CCL ’99). Gif-sur-Yvette, France, September 5–8, 1999.
Revised Lecture.

[SIS15] L. Suganthi, S. Iniyan, and Anand A. Samuel. Applications of
fuzzy logic in renewable energy systems–a review. Renewable and
sustainable energy reviews, 48:585–607, 2015.

[SK97] Taisuke Sato and Yoshitaka Kameya. PRISM: A language for
symbolic-statistical modeling. In Proceedings of the Fifteenth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 97,
Nagoya, Japan, August 23-29, 2 Volumes, pages 1330–1339. Mor-
gan Kaufmann, 1997.

[SK20] Zeren Shui and George Karypis. Heterogeneous molecular graph
neural networks for predicting molecule properties. In Claudia
Plant, Haixun Wang, Alfredo Cuzzocrea, Carlo Zaniolo, and Xin-
dong Wu, editors, 20th IEEE International Conference on Data
Mining, ICDM 2020, Sorrento, Italy, November 17-20, 2020, pages
492–500. IEEE, 2020.

[SKT04] Dimitris Skarlatos, Kleomenis Karakasis, and Athanassios
Trochidis. Railway wheel fault diagnosis using a fuzzy-logic
method. Applied Acoustics, 65(10):951–966, 2004.

[SLZ02] Rudy Setiono, Wee Kheng Leow, and Jacek M. Zurada. Extraction
of rules from artificial neural networks for nonlinear regression.
IEEE Transactions on Neural Networks, 13(3):564–577, 2002.

BIBLIOGRAPHY 337

BIBLIOGRAPHY

[SMFM05] Pilar Sancho, Iván Mart́ınez, and Baltasar Fernández-Manjón. Se-
mantic web technologies applied to e-learning personalization in¡
e-aula¿. Journal of Universal Computer Science, 11(9):1470–1481,
September 2005.

[Smi21] Smile. Statistical machine intelligence and learning engine. https:
//haifengl.github.io, 2021. [Online; last accessed 11 Oct 2021].

[Smo87] P. Smolensky. Connectionist ai, symbolic ai, and the brain. Arti-
ficial Intelligence Review, 1(2):95–109, Jun 1987.

[Smo90] Paul Smolensky. Tensor product variable binding and the represen-
tation of symbolic structures in connectionist systems. Artificial
Intelligence, 46(1):159–216, 1990.

[Smu68] Raymond M. Smullyan. First-Order Logic. New York
[Etc.]Springer-Verlag, 1968.

[SN88] Kazumi Saito and Ryohei Nakano. Medical diagnostic expert sys-
tem based on PDP model. In IEEE 1988 International Conference
on Neural Networks (ICNN 1988), volume 1, pages 255–262, 1988.

[SN02] Kazumi Saito and Ryohei Nakano. Extracting regression rules
from neural networks. Neural Networks, 15(10):1279–1288, 2002.

[SNB+08] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian
Gallagher, and Tina Eliassi-Rad. Collective classification in net-
work data. AI Magazine, 29(3):93–106, 2008.

[SNS+06] Maria Teresinha Arns Steiner, Pedro José Steiner Neto, Nei Yoshi-
hiro Soma, Tamio Shimizu, and J. C. Nievola. Using neural net-
work rule extraction for credit-risk evaluation. International Jour-
nal of Computer Science and Network Security, 6(5):6–16, 2006.

[Sow91] John F Sowa, editor. Principles of semantic networks: Explo-
rations in the representation of knowledge. Morgan Kaufmann
Series in Representation and Reasoning. Morgan Kaufmann Pub,
May 1991.

[SP21] SICStus Prolog. Home page. https://sicstus.sics.se, 2021.
Last access: April 17, 2022.

338 BIBLIOGRAPHY

https://haifengl.github.io
https://haifengl.github.io
https://sicstus.sics.se

BIBLIOGRAPHY

[Spe21] Giovanni Maria Speciale. Il ragionamento logico come forma di
apprendimento: Sviluppo di un framework per ILP. Master’s the-
sis, Second Cycle Degree in Computer Science and Engineering,
Alma Mater Studiorum—Univerisità di Bologna, 2021.

[SS04] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vec-
tor regression. Statistics and Computing, 14(3):199–222, August
2004.

[SSS12] Amrita Sarkar, G. Sahoo, and U. C. Sahoo. Application of fuzzy
logic in transport planning. International Journal on Soft Com-
puting, 3(2):1, 2012.

[STCG+21] Zoran Sevarac, Jon Tait, Laura Carter-Greaves, Aidan Morgan,
and Valentin Steinhauer. Neuroph. http://neuroph.sourcefo

rge.net/index.html, 2021.

[Sun01] R. Sun. Artificial intelligence: Connectionist and symbolic ap-
proaches. In Neil J. Smelser and Paul B. Baltes, editors, Inter-
national Encyclopedia of the Social & Behavioral Sciences, page
783–789. Pergamon, Oxford, 2001.

[Sun05] Ron Sun, editor. The CLARION Cognitive Architecture: Extend-
ing Cognitive Modeling to Social Simulation, pages 79–100. Cam-
bridge University Press, 2005.

[SVJNM16] Maria Claudia Solarte-Vasquez, Natalia Järv, and Katrin Nyman-
Metcalf. Usability factors in transactional design and smart con-
tracting. In Tanel Kerikmäe and Addi Rull, editors, The Future
of Law and eTechnologies, pages 149–176. Springer International
Publishing, Cham, 2016.

[SW12] Terrance Swift and David Scott Warren. XSB: Extending prolog
with tabled logic programming. Theory Practice of Logic Program-
ming, 12(1-2):157–187, 2012.

[SY96] Leon Sterling and Ümit Yalçinalp. Logic programming and soft-
ware engineering—implications for software design. The Knowl-
edge Engineering Review, 11(4):333–345, 1996.

[TDD78] André Thayse, Marc Davio, and Jean-Pierre Deschamps. Opti-
mization of multivalued decision algorithms. In Proceedings of
the eighth international symposium on Multiple-valued logic, MVL

BIBLIOGRAPHY 339

http://neuroph.sourceforge.net/index.html
http://neuroph.sourceforge.net/index.html

BIBLIOGRAPHY

1978, Rosemont, Illinois, USA, 1978, pages 171–178. IEEE Com-
puter Society Press, 1978.

[Tea] Eclipse Deeplearning4j Development Team. Deeplearning4j:
Open-source distributed deep learning for the jvm, apache software
foundation license 2.0. https://deeplearning4j.konduit.ai/,
year=2021.

[TH12] Pejman Tahmasebi and Ardeshir Hezarkhani. A hybrid neural
networks-fuzzy logic-genetic algorithm for grade estimation. Com-
puters & Geosciences, 42:18–27, 2012.

[THA92] Volker Tresp, Jürgen Hollatz, and Subutai Ahmad. Network struc-
turing and training using rule-based knowledge. In Stephen Jose
Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances
in Neural Information Processing Systems 5, [NIPS Conference,
Denver, Colorado, USA, November 30 - December 3, 1992], pages
871–878. Morgan Kaufmann, 1992.

[Thr95] Sebastian Thrun. Extracting rules from artificial neural networks
with distributed representations. In Advances in neural informa-
tion processing systems, pages 505–512, 1995.

[TL18] Trieu H. Trinh and Quoc V. Le. A simple method for commonsense
reasoning. CoRR, abs/1806.02847, 2018.

[TN06] Angela Torres and Juan J. Nieto. Fuzzy logic in medicine and
bioinformatics. BioMed Research International, 2006, 2006.

[TS92] Geoffrey Towell and Jude W. Shavlik. Interpretation of artificial
neural networks: Mapping knowledge-based neural networks into
rules. In Advances in neural information processing systems, pages
977–984, 1992.

[TS93] Geoffrey G. Towell and Jude W. Shavlik. Extracting refined
rules from knowledge-based neural networks. Machine Learning,
13(1):71–101, 1993.

[TSN90] Geoffrey G. Towell, Jude W. Shavlik, and Michiel O. Noordeweir.
Refinement of approximate domain theories by knowledge-based
neural networks. In Proceedings of the Eighth National Conference
on Artificial Intelligence, pages 861–866, 1990.

340 BIBLIOGRAPHY

https://deeplearning4j.konduit.ai/

BIBLIOGRAPHY

[TT08] Vuong Xuan Tran and Hidekazu Tsuji. Qos based ranking for web
services: Fuzzy approaches. In 2008 4th International Conference
on Next Generation Web Services Practices, pages 77–82. IEEE,
2008.

[Tuo18] Ilkka Tuomi. The impact of artificial intelligence on learning,
teaching, and education. Technical report, November 2018. JRC
Working Papers.

[tuP21] tuProlog. Home page. http://tuprolog.unibo.it, 2021. Last
access: April 17, 2022.

[Tur50] Alan M. Turing. Computing machinery and intelligence. Mind,
59(October):433–60, 1950.

[Twa10] Bhekisipho Twala. Multiple classifier application to credit risk
assessment. Expert Systems with Applications, 37(4):3326–3336,
2010.

[TWS19] Paul Tarau, Jan Wielemaker, and Tom Schrijvers. Lazy stream
programming in Prolog. Electronic Proceedings in Theoretical
Computer Science, 306:224–237, September 2019.

[Val05] Andre Valente. Types and roles of legal ontologies. In
V. Richard Benjamins, Pompeu Casanovas, Joost Breuker, and
Aldo Gangemi, editors, Law and the semantic web, pages 65–76.
Springer, 2005.

[VBD01] Johan Van Benthem and Kees Doets. Higher-Order Logic, pages
189–243. Springer Netherlands, Dordrecht, 2001.

[VDB09] Joost Vennekens, Marc Denecker, and Maurice Bruynooghe. Cp-
logic: A language of causal probabilistic events and its relation to
logic programming. Theory Pract. Log. Program., 9(3):245–308,
2009.

[VEBB+08] Tom Van Engers, Alexander Boer, Joost Breuker, André Valente,
and Radboud Winkels. Ontologies in the legal domain. In Digital
Government, pages 233–261. Springer, 2008.

[vEK76] M. H. van Emden and R. A. Kowalski. The semantics of predicate
logic as a programming language. J. ACM, 23(4):733–742, October
1976.

BIBLIOGRAPHY 341

http://tuprolog.unibo.it

BIBLIOGRAPHY

[vG90] Tim van Gelder. Why distributed representation is inherently non-
symbolic. In Georg Dorffner, editor, Konnektionismus in Artificial
Intelligence und Kognitionsforschung. Proceedings 6. Österreichis-
che Artificial Intelligence-Tagung (KONNAI), Salzburg, Öster-
reich, 18. bis 21. September 1990, volume 252 of Informatik-
Fachberichte, pages 58–66. Springer, 1990.

[Vit06] Andrew J. Viterbi. A personal history of the viterbi algorithm.
IEEE Signal Process. Mag., 23(4):120–142, 2006.

[VO06] Mirko Viroli and Andrea Omicini. Coordination as a service. Fun-
damenta Informaticae, 73(4):507–534, 2006.

[vRMG+19] Laura von Rüden, Sebastian Mayer, Jochen Garcke, Christian
Bauckhage, and Jannis Schücker. Informed machine learning -
towards a taxonomy of explicit integration of knowledge into ma-
chine learning. CoRR, abs/1903.12394, 2019.

[VRVdBDR14] Jonas Vlasselaer, Joris Renkens, Guy Van den Broeck, and Luc
De Raedt. Compiling probabilistic logic programs into sentential
decision diagrams. In Proceedings Workshop on Probabilistic Logic
Programming (PLP), pages 1–10, 2014.

[VVB04] Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. Logic
programs with annotated disjunctions. In James P. Delgrande and
Torsten Schaub, editors, 10th International Workshop on Non-
Monotonic Reasoning (NMR 2004), Whistler, Canada, June 6-8,
2004, Proceedings, pages 409–415, 2004.

[VvdB17] Paul Voigt and Axel von dem Bussche. The EU General Data
Protection Regulation (GDPR). A Practical Guide. Springer, 2017.

[VVL19] F. Van Veen and S. Leijnen. The neural network zoo. https:

//www.asimovinstitute.org/neural-network-zoo, 2019.
[Online; accessed 17-September-2021].

[Wal96] Mark Wallace. Practical applications of constraint programming.
Constraints, 1(1–2):139–168, 1996.

[War83] David H. D. Warren. An abstract prolog instruction set. Technical
Report 309, AI Center, SRI International, 333 Ravenswood Ave.,
Menlo Park, CA 94025, Oct 1983.

342 BIBLIOGRAPHY

https://www.asimovinstitute.org/neural-network-zoo
https://www.asimovinstitute.org/neural-network-zoo

BIBLIOGRAPHY

[WFH11] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data mining: prac-
tical machine learning tools and techniques, 3rd Edition. Morgan
Kaufmann, Elsevier, 2011.

[Wik21a] Wikipedia contributors. Activation function — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title

=Activation_function, 2021. [Online; accessed 23-August-2021].

[Wik21b] Wikipedia contributors. Decision tree learning — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php

?title=Decision_tree_learning, 2021. [Online; accessed 17-
September-2021].

[Wik21c] Wikipedia contributors. Stochastic gradient descent — Wikipedia,
the free encyclopedia. https://en.wikipedia.org/w/index.php
?title=Stochastic_gradient_descent, 2021. [Online; accessed
23-August-2021].

[Win] Michael Winikoff. Jack™ intelligent agents: An industrial strength
platform. chapter 7, pages 175–193.

[Win05] Michael Winikoff. Jacktm intelligent agents: An industrial strength
platform. In Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and
Amal El Fallah-Seghrouchni, editors, Multi-Agent Programming:
Languages, Platforms and Applications, volume 15 of Multiagent
Systems, Artificial Societies, and Simulated Organizations, pages
175–193. Springer, 2005.

[WL20] Hongwei Wang and Jure Leskovec. Unifying graph convolutional
neural networks and label propagation. CoRR, abs/2002.06755,
2020.

[WM97] David H. Wolpert and William G. Macready. No free lunch the-
orems for optimization. IEEE Trans. Evol. Comput., 1(1):67–82,
1997.

[WMWG17] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge
graph embedding: A survey of approaches and applications. IEEE
Trans. Knowl. Data Eng., 29(12):2724–2743, 2017.

[WPC+21] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu. A comprehensive survey on graph neu-
ral networks. IEEE Transactions on Neural Networks Learning
Systems, 32(1):4–24, 2021.

BIBLIOGRAPHY 343

https://en.wikipedia.org/w/index.php?title=Activation_function
https://en.wikipedia.org/w/index.php?title=Activation_function
https://en.wikipedia.org/w/index.php?title=Decision_tree_learning
https://en.wikipedia.org/w/index.php?title=Decision_tree_learning
https://en.wikipedia.org/w/index.php?title=Stochastic_gradient_descent
https://en.wikipedia.org/w/index.php?title=Stochastic_gradient_descent

BIBLIOGRAPHY

[WSTL12] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn
Lager. Swi-prolog. Theory Pract. Log. Program., 12(1-2):67–96,
2012.

[Wu17] Hao Wu. Industrial Applications of Probabilistic Model Checking-
A Model-based Approach for Embedded Networked Systems and
Concurrent Data Structures -. PhD thesis, RWTH Aachen Uni-
versity, Germany, 2017.

[WWG15] Quan Wang, Bin Wang, and Li Guo. Knowledge base completion
using embeddings and rules. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

[WZL+15] Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya Sun, and
Guanhua Tian. Large-scale knowledge base completion: Infer-
ring via grounding network sampling over selected instances. In
Proceedings of the 24th ACM International on Conference on In-
formation and Knowledge Management, pages 1331–1340. ACM,
2015.

[XZF+18] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy
Broeck. A semantic loss function for deep learning with sym-
bolic knowledge. In Jennifer Dy and Andreas Krause, editors,
35th Conference on Machine Learning (ICML 2018), volume 80
of Proceedings of Machine Learning Research, pages 5502–5511.
PMLR, 2018.

[Yac05] Kalina Yacef. The logic-ita in the classroom: a medium scale
experiment. International Journal of Artificial Intelligence in Ed-
ucation, 15(1):41–62, 2005.

[YH12] Bingchuan Yuan and John Herbert. Fuzzy cara - a fuzzy-based
context reasoning system for pervasive healthcare. Procedia Com-
puter Science, 10:357–365, 2012.

[YKZ03] Guizhen Yang, Michael Kifer, and Chang Zhao. Flora-2: A rule-
based knowledge representation and inference infrastructure for
the semantic web. In Schmidt D.C. Meersman R., Tari Z., edi-
tor, OTM Confederated International Conferences On the Move
to Meaningful Internet Systems, volume 2888 of Lecture Notes
in Computer Science, pages 671–688. Springer Berlin Heidelberg,
2003.

344 BIBLIOGRAPHY

BIBLIOGRAPHY

[YL99] John Yen and Reza Langari. Fuzzy logic: intelligence, control, and
information, volume 1. Prentice Hall Press, Upper Saddle River,
NJ, 1999.

[YWC+18] Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai,
Hu Yi-Qi, Li Yu-Feng, Tu Wei-Wei, Yang Qiang, and Yu Yang.
Taking human out of learning applications: A survey on auto-
mated machine learning. pages 1–26, 2018.

[YWW10] Ying Yang, Geoffrey I. Webb, and Xindong Wu. Discretization
methods. In Oded Maimon and Lior Rokach, editors, Data Min-
ing and Knowledge Discovery Handbook, 2nd ed, pages 101–116.
Springer, 2010.

[Zha94] Kang Zhang. A review of exploitation of and-parallelism and com-
bined and/or-parallelism in logic programs. ACM SIGPLAN No-
tices, 29(2):25–32, 1994.

[Zha19] Dengsheng Zhang. Wavelet Transform, pages 35–44. Springer
International Publishing, Cham, 2019.

[ZTX93] Yuhua Zheng, Honglei Tu, and Li Xie. And/or parallel execution
of logic programs: Exploiting dependent and-parallelism. ACM
SIGPLAN Notices, 28(5):19–28, 1993.

[ZY04] Anmin Zhu and Simon X. Yang. A fuzzy logic approach to reactive
navigation of behavior-based mobile robots. In IEEE International
Conference on Robotics and Automation (ICRA’04), volume 5,
pages 5045–5050. IEEE, 2004.

[ZYH+18] Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao, Jingfang
Xu, and Xiaoyan Zhu. Commonsense knowledge aware conver-
sation generation with graph attention. In Jérôme Lang, editor,
Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden, pages 4623–4629. ijcai.org, 2018.

BIBLIOGRAPHY 345

	Abstract
	Acknowledgements
	Introduction
	I What
	Historical Perspective on AI
	Computational Logic
	Data Science

	Representing Data and Knowledge
	Symbolic Knowledge Representation
	First Order Logic (FOL)
	Representation Engineering
	Relevant Subsets of FOL

	Sub-symbolic Data Representation
	Comparison: Symbolic vs. Sub-Symbolic KR

	Learning Knowledge from Data
	Sub-Symbolic Supervised Machine Learning
	Overview on learning algorithms

	Symbolic Supervised Learning
	Overview on learning algorithms

	Symbolic vs. Sub-Symbolic Learning

	Reasoning over Knowledge
	Symbolic Reasoning
	Symbolic Inference
	Logic Programming

	Sub-symbolic Reasoning
	Model Integration
	Symbolic Knowledge Embedding
	Hybrid Systems: Final Remarks

	Explaining AI via Symbolic Knowledge
	eXplainable Artificial Intelligence
	Related works

	Explanation vs. Interpretation
	A conceptual framework for XAI
	Discussion
	Practical remarks
	Assessment of the Framework

	Symbolic Knowledge Extraction
	State of the art
	A practical framework for MAS

	II How
	The Role of Logic Based Technologies
	Logic-based AI: Application Areas
	AI Foundations
	AI for Society
	AI for Business: Automation & Robotics

	Discussion

	Technological State of the Art
	Method
	Detailed Technological Analysis
	Main Outcomes

	The 2P-Kt Ecosystem for Logic-Based AI
	The Need for an Ecosystem
	Overall Design
	Overview of Functionalities

	Illustrative Examples
	Impact

	Bridging LP and Stream Processing
	Logic Solvers as Streams Prosumers
	Logic solvers as stream producers
	Logic solvers as stream consumers
	Solvers vs. the World
	Example: TSP in Prolog

	Solvers as Streams Prosumers via State Machine
	Formal Description

	Predicates as Streams in 2P-Kt
	2P-Kt Solvers and Primitives API
	Travelling Salesman Problem in 2P-Kt

	Recap and Research Perspectives

	Bridging LP and Mainstream Programming Paradigms
	Background
	LP integration with other languages
	Kotlin Domain-Specific Languages (DSL)

	A domain-specific language for LP
	Design Rationale
	The Kotlin DSL for Prolog
	Architecture, Design, Implementation

	Case study: N-Queens
	Recap and Research Perspectives

	Bridging LP and Machine Learning
	Logic API for ML: Requirements, Analysis, and Modelling
	Goals
	Domain Description
	Analysis and Modelling

	Realising the API: ML-Lib Design
	Schemas
	Datasets
	Transformations
	Predictors

	Technology-related aspects
	2P-Kt as the underlying logic ecosystem
	Selecting the underlying OO library

	ML-Lib Examples
	Recap and Research Perspectives

	Bridging LP and XAI
	State of the Art
	Knowledge Extraction
	OOP Frameworks for ML

	PSyKE
	General API
	Discretisation
	Output rules

	Case Study
	Classification: the Iris data set
	Regression: the CCPP dataset
	Discussion

	Recap and Research Perspectives

	Enriching the Ecosystem with PLP
	State-of-the-art technologies for PLP
	Logic Ecosystems and 2P-Kt

	Design of Probabilistic Solver Module
	Design Rationale

	Multi-platform Support Demonstration
	Recap and Research Perspectives

	Enriching the Ecosystem: the Future
	Concurrent Logic Programming
	Brief overview of the field
	Why is it interesting
	Relation w.r.t. the ecosystem

	Graph Neural Networks for Computational Logic
	Brief overview of the field
	Why is it interesting
	Relation w.r.t. the ecosystem

	Symbolic Knowledge Injection
	Brief overview of the field
	Why is it interesting
	Relation w.r.t. the ecosystem

	Tuple-based Coordination
	Brief overview of the field
	Why is it interesting
	Relation w.r.t. the ecosystem

	Inductive Logic Programming

	Epilogue
	Conclusions
	Bibliography

