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Abstract 

Besides increasing the share of electric and hybrid vehicles, in order to comply with more 

stringent environmental protection limitations, in the mid-term the auto industry must 

improve the efficiency of the internal combustion engine and the well to wheel efficiency of 

the employed fuel. To achieve this target, a deeper knowledge of the phenomena that 

influence the mixture formation and the chemical reactions involving new synthetic fuel 

components is mandatory, but complex and time intensive to perform purely by 

experimentation. Therefore, numerical simulations play an important role in this 

development process, but their use can be effective only if they can be considered accurate 

enough to capture these variations.  

The most relevant models necessary for the simulation of the reacting mixture formation and 

successive chemical reactions have been investigated in the present work, with a critical 

approach, in order to provide instruments to define the most suitable approaches also in the 

industrial context, which is limited by time constraints and budget evaluations. To overcome 

these limitations, new methodologies have been developed to conjugate detailed and 

simplified modelling techniques for the phenomena involving chemical reactions and mixture 

formation in non-traditional conditions (e.g. water injection, biofuels etc.). Thanks to the large 

use of machine learning and deep learning algorithms, several applications have been 

revised or implemented, with the target of reducing the computing time of some traditional 

tasks by orders of magnitude. Finally, a complete workflow leveraging these new models 

has been defined and used for evaluating the effects of different surrogate formulations of 

the same experimental fuel on a proof-of-concept GDI engine model.



 

2 
 

Nomenclature 

Considering the large number of    equations present in the following chapters, if a variable 

appears with a different meaning from the one defined here, it will be explicitly stated, while 

apices/pedices will always be introduced. 

 

 

Abbreviations 

AEOI: After End Of Injection 

AI: Artificial Intelligence 

AL-PIONA: Alcohol – n-Paraffins i-Paraffins Olefins Naphthenes Aromatics 

AMD: Average Mean Diameter 

ANN: Artificial Neural Network 

DNN: Deep Neural Network 

BDC: Bottom Dead Center 

BMEP: Brake Mean Effective Pressure 

C: Carbon Atom 

CAD: Crank Angle Degrees 

CFD: Computational Fluid Dynamics 

CO: carbon monoxide 

CO2: carbon dioxide 

EGR: Exhaust Gas Recirculation 

EOI: End Of Injection 

ETRF: Ethanol Toluene Reference Fuel 

GDI: Gasoline Direct Injection 

GP: Gaussian Process 

HC: unburned hydrocarbons 

HCCI: Homogeneous Charge Compression Ignition 

ICE: Internal Combustion Engine 

IDT: Ignition Delay Time 

IVC: Intake Valve Closing 

IVO: Intake Valve Opening 

LFS: Laminar Flame Speed 

LFT: Laminar Flame Thickness 

LGI: Liquid-Gas Interface 

MARE: Mean Absolute Relative Error 

MAPO: Max Absolute Pressure Oscillation 

MFB50: Angle of 50% of Mass Fuel Burnt 

MON: Motor Octane Number 

NBP: Normal Boiling Point 

NOx: nitrogen oxides 

ON: Octane Number 
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PDF: Probability Density Function 

PFI: Port Fuel Injection 

PISO: Pressure-Implicit with Splitting Operators 

PM: Particulate Matter 

PN: Particulate Number 

PRF: Primary Reference Fuel 

RANS: Reynolds Average Navier-Stokes 

RON: Research Octane Number 

RSME: Root Squared Mean Error 

RVP: Reid Vapor Pressure 

SA: Spark Advance 

SACI: Spark Assisted Compression Ignition 

SI: Spark Ignition 

SKR: Soave-Redlich-Kwong 

SOI: Start Of Injection 

aSOI: After Start of Injection 

TDC: Top Dead Center 

TKE: Turbulent Kinetic Energy 

TRF: Toluene Reference Fuel 

TRFE: Toluene Reference Fuel with Ethanol addition 

TX: Distillation temperature at X% volume evaporated 

UCB: Upper Confidence Bound 

VLE: Vapor-Liquid Equilibrium 

  



Motivation and Objectives 

4 
 

1 Introduction 

1.1 Motivation and Objectives 

Starting from 1992, the European car manufacturers have been required to satisfy more and 

more stringent regulations regarding the green-house gases and particulate matter 

emissions of their fleet in order to register new cars [1]. Considering that the internal 

combustion engine is arguably the most relevant source of these substances from the 

vehicle, such regulations have always pushed the development of new strategies and 

technologies for both SI and CI engines. The latest regulations, in particular, starting from 

Euro6a have introduced limitations to all major environmental pollutants: CO, HC, NOx, 

Particulate Matter mass and parcel number, as well as a CO2 target to be reached on 

predefined driving cycles. The expectations for the new regulations Euro7, are for a 

tightening of the limitations [1], as well as a testing procedure on more extreme testing 

conditions, for which electrification of the powertrain system is expected to play an essential 

role. On the other hand, several studies are currently being carried out by governments and 

private research facilities ([2] [3] [4] [5]) in order to assess the potential in efficiency and 

emission reduction of synthetic fuels, employed as dense energy carrier, or by introducing 

more relevant bio-derived fractions inside the final blend, to reduce the CO2 generated by 

the whole process. The main idea behind these studies is that in the mid-term, electrification 

solutions will not be available worldwide, and the most immediate response to climate 

change would come from a reduction of the emissions generated by the current technology. 

To enforce this perspective, the European average passenger cars fleet age is reported, 

underlying the fraction of vehicles older than 10 years [Acea 2021] in Figure 1-1. It clearly 

shows that it cannot be reasonably expected to reach a renewal of the entire fleet towards 

hybrid or full electric vehicles before the next 10 to 15 years in most countries, that could 

benefit, however, from upgrades in the fuel technology that they would operate on. 

 

 

Figure 1-1: Fraction of vehicles older than 10 years registered in Europe in 2020 
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The gasoline fuel that is typically found at the pump across Europe is required by law to 

respect a minimum set of properties [6] . In particular, limitations about its composition are 

provided, such as a maximum fraction of metals (Manganese, Lead), a maximum fraction of 

benzene, olefins and aromatics molecules (due to their higher tendency to produce harmful 

emissions) and a controlled fraction of alcohols (ethanol and methanol). Other properties 

that are required to satisfy precise limitations are the density at ambient conditions, the 

distillation residues at the final boiling point, the evaporated volume fraction at 100 °C and 

150 °C and the vapor pressure, in order to set the standard evaporative behaviour of the 

liquid fuel. Finally, the RON and MON of the gasoline fuel must be verified following the ISO 

5164 and ISO 5163 testing methods, through a variable compression ratio carburetted 

engine named CFR (Cooperative Fuel Research), for a minimum value of RON≥95 and 

MON≥85. Besides minimum law requirements, few information are usually available for the 

complete characterization of the pump gasoline, whereas many research activities have 

been carried out to obtain a more complete description of some specific fuel formulations. 

To support the development of new combustion engines with innovative strategies or the 

integration with renewable and synthetic molecules through computational methods, it is 

essential to perform CFD simulations sensitive to variations in fuel composition. Considering 

a standard CFD simulation of the internal combustion engine following the RANS approach, 

the model that are most sensitive to the fuel definitions are: 

1) Liquid spray model, which includes the definition of the liquid phase properties 

(surface tension, mass and energy transfer coefficients), atomization phase inside 

the injector holes, break-up phase due to instabilities and aerodynamics forces, spray 

wall interaction, for which the boiling and critical temperature of the fuel play a crucial 

role in the formation of liquid film. 

2) Ignition and combustion models, that rely on the chemical reactivity properties of the 

fuel for the prediction of the energy release rate of the mixture and flame front 

propagation. 

3) Knock model, which is used for evaluating the auto-ignition tendency of the mixture 

as a function of local thermodynamics conditions. 

4) Emission models, which are used to predict the main gaseous and solid pollutant 

formation in the burnt region, and based on the level of detail of the chosen model 

they may depend on the average composition of specific fractions of some 

components. 

The main objective of the present work is to provide a deeper understanding of the effects 

that new fuel properties might have on the performance of existing SI engine models from 

the point of view of chemical kinetics, by leveraging innovative techniques for the definition 

of fuel surrogates for computational analysis. At the same time, a general fuel surrogate 

formulation is provided as a reference for further numerical studies regarding the European 

market. 
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1.2 Structure of the thesis 

The works conducted through this thesis is organized as follows: 

- Chapter 2 describes the fundamentals of chemical kinetics and chemical kinetics 

mechanisms available for modelling in detail the processes of flame propagation and 

self-ignition of hydrocarbons and alcohols and their relevance in engine modelling. 

Particular focus will be given to the availability of reactions describing the chemical 

pathways of the most common molecules used for the definition of gasoline fuel 

surrogates. Then, a state of the art in artificial intelligence algorithms and workflows 

for regression problems is carried out, to lay out the theoretical ground for their 

application in the following chapters. 

- Chapter 3 analyses the auto-ignition phenomenon for its relevance in internal 

combustion engines modelling and how it is coupled with chemical kinetics 

simulations. A validation study on the chosen chemical kinetics mechanism is 

performed on the palette of molecules that are used for the fuel surrogate formulation 

and on a selection of reference mixtures. Then, a dataset of ignition delay time values 

is defined for the training and validation of machine learning techniques to be 

employed for the prediction of ignition delay times on newly defined surrogates, 

without the need to perform new simulations. 

 

- Chapter 4 introduces to the modelling of laminar flame speed, the numerical 

methodology employed for its computation and several factors affecting its 

computation complexity. Then, an introduction to automatic mechanism reduction 

methods is reported, as well as several computational strategies involving data-driven 

models to increase the speed of computation of the laminar flame speed for new 

mixtures. Thereafter, a focus is given on new strategies to reduce the computing time 

required to generate laminar flame speed and thickness look-up tables in case of the 

inclusion of water vapour as an independent variable in the simulations, together with 

pressure, temperature, equivalence ratio and EGR mass fraction that are usually 

employed.  

 

- Chapter 5 is dedicated to the definition of an optimization algorithm for the 

characterization of gasoline fuel surrogates and applied to 2 different targets. The 

theoretical ground and numerical strategies for the computation of each property of 

the target fuels are presented, as well as an in-depth analysis of the strength and 

limitations of any fuel surrogate definition. In particular, the availability of experimental 

properties is correlated with the unicity of the surrogate formulation with a custom 

merit function. Three families of surrogates are therefore formulated, depending on 

the level of information available and compared, to identify a minimum set of data 

that would be required for a robust surrogate formulation. 
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- Chapter 6 proposes an application of the defined workflows to the simulation of a 

proof of concept GDI engine, with particular focus on the knock prediction at peak 

power conditions. A general description of the models chosen for the CFD simulation 

is proposed, with particular focus on the impact that the fuel surrogate formulation 

plays in their predictive accuracy. Besides, the newly formulated temperature wall 

function is described and applied for a more accurate prediction of the knock risk 

related to the gas temperature in the peripherical regions. 
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2 Chemical kinetics and AI fundamentals 

The second chapter provides an introduction to the fundamental concepts of chemical 

kinetics and machine learning that will be adopted during the thesis applied to the simulation 

of fuel combustion simulations. It includes: 

1) An introduction to the chemical kinetics simulations of hydrocarbons and the selection 

of the numerical schemes used for the activities.  

2) An introduction to the fundamental regression algorithms and data processing 

strategies that have been applied to the following problems. 

 

2.1 Chemical kinetics fundamentals for CFD 

 

Chemical phenomena play a crucial role in the internal combustion engine functioning, from 

combustion, to knock, to pollutant formation, but their understanding and modelling 

constitutes a challenging problem. In fact, hydrocarbons oxidation presents peculiarities with 

respect to other processes, for example the cool flame and negative temperature coefficient 

during a two-stage ignition at intermediate temperature, as well as the requirement to predict 

correctly both low temperature decomposition intro intermediate species that consistently 

affect the high temperature reactions. These aspect make the number of intermediate 

species and reactions required for an accurate description of the phenomena occurring in 

an internal combustion engine extremely high. The fundamental reaction path diagram for 

an exemplary linear hydrocarbon oxidation can be represented as in Figure 2-1, where the 

main steps are highlighted: 

1) The main alkyl radicals thermally decompose, after reaching a sufficiently high 

temperature and H abstraction: 

a. Into smaller alkyl radicals and olefin species following a high temperature path 

which makes it undergo 𝛽 scission mainly due to the 𝐻̇ + 𝑂2 = 𝑂̇ + 𝑂𝐻̇ reaction 

b. Into ketohydroperoxide species due to the reaction with 𝑂2 at lower 

temperature. 

2) 𝑄𝑂𝑂𝐻̇  with temperature increase start to form cyclic ether species, conjugate olefins 

and 𝛽-decomposition products that compete with the formation of the 

ketohydroperoxide species. This phenomenon is particularly relevant, due to the 

overall reduction in the reactivity of the system at intermediate temperatures, which 

is commonly referred to as NTC behavior when analyzing the ignition delay time of 

hydrocarbons.  

3) At the same time, 𝑄𝑂𝑂𝐻̇ can react with molecular 𝑂2 leading to 𝑂2𝑄𝑂𝑂𝐻̇ species 

(peroxyalkylhydroperoxide) which can isomerize and form ketohydroperoxide and 

𝑂𝐻̇radicals, through an internal H abstraction.  
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Figure 2-1: simplified reaction path for generic linear N-Alkane [7] 

 

Considering the importance that the availability of 𝑂2 molecules play in the hydrocarbon 

decomposition, it is evident that the equivalence ratio plays a crucial role in the evolution of 

the reactions, as well as the mixture pressure due to the pressure dependency of the 

addition of molecular oxygen to alkyl radicals [8]. 

The detailed description of all the reaction pathways involved in the oxidation of large 

hydrocarbon molecules is still an open research topic, currently investigated by several 

major international research facilities [9]. The state of the art chemical kinetics mechanisms 

are constructed upon reference experimental values and molecular dynamics computations  

and can accurately describe the oxidation and mutual interactions of several large molecules 

used to represent gasoline fuels. 

Several chemical mechanisms are available in literature for hydrocarbons oxidation, but 

thanks to their extensive validation and precise nomenclature, three have been taken into 

consideration for this work: NUI2021 [10], LLNL2021 [11] and CRECK2019 [12] in their most 

complete forms. The number of species and reactions present in each scheme is collected 

in Table 1-1, together with the potential gasoline fuel components available.  

Table 2-1: Chemical kinetics schemes available for hydrocarbon combustion simulation 

 NUI2021 LLNL2021 CRECK2019 

#SPECIES 2746 1956 582 

#REACTIONS 11279 10371 21174 

ISO-OCTANE Y Y Y 

N-HEPTANE Y Y Y 

TOLUENE N Y Y 

ETHANOL Y Y Y 

METHYLCYCLOHEXANE Y Y Y 

CYCLOHEXANE Y Y Y 

CYCLOPENTANE Y Y N 

1-HEXENE Y Y Y 
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1-PENTENE Y Y Y 

ISO-PENTANE Y Y N 

124-

TRIMETHYLBENZENE 
N Y Y 

N-DECANE N Y Y 

 

Due to hardware limitations, acknowledged by the same authors of the mechanism, the only 

feasible calculation of laminar flame speed with the general mechanism has been performed 

with the CRECK2019 mechanism, which has also been chosen for the research activity. 

The choice of the molecular palette required has been defined after extensive literature 

review, to account with at least one molecule for all the main components that are identified 

in the pump gasoline, as well as for more research-oriented applications, as reported in 

Figure 2-2 where the typical composition of a European standard gasoline fuel was collected 

with gas-chromatography by [13]. The W and S letters in the molar fraction of cyclic paraffins 

indicate the winter and summer grades expected variations, with respect to the mean value. 

 

Figure 2-2: Generic composition of ULG95 European standard gasoline fuel [13] 

 

The chosen molecules, together with their most relevant properties for the chemical kinetics 

analysis are collected in Table 1-2, where LHV and HHV correspond to the Lower and Higher 

heating value of the stoichiometric combustion, AFS is the mass ratio between oxidizer and 

fuel for the complete combustion and RON and MON are anti-knock indices that will be 

defined in more detail in Chapter 3. 

Table 2-2: Main properties of the molecules constituting the reference palette 

Component Formula Class RON/MON LHV-HHV AFS 

Iso-octane iC8H18 I-Alkanes 100/100 44.611 - 48.079 15.028 

n-pentane nC5H12 N-Paraffins 62/62 45.338 - 48.998 15.227 

n-heptane nC7H16 N-Paraffins 0/0 44.531 – 47.668 14.686 

Ethanol C2H5OH Alcohols 109/90 27.728 – 30.594 8.934 

1-hexene 1-C6H12 Olefins 76/63.4 44.792 – 47.929 14.686 

cyclohexane C6H12 Naphthenes 82.5/77.2 43.818 – 46.955 14.686 

methylcyclohexane C7H14 Naphthenes 74.1/71 43.723 – 46.861 14.686 
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toluene C6H5CH3 Aromatics 118/103.5 40.93 – 42.84 13.414 

124-trimethylbenzene C6H5C6H5 Aromatics 107.4/97.9 41.315 – 43.387 13.582 

1-pentene 1-C5H10 Olefins 90/77.1 44.815 – 47.952 14.686 

n-decane nC10H22 N-Paraffins -15/0 45.338 – 48.998 15.227 

 

The use of detailed chemical kinetics mechanism for hydrocarbon oxidation has been 

traditionally addressed by means of simplified problems, in order to focus more on the 

effects of the chemical pathways and reaction constants rather than on the species transport 

and potential discretization errors of more complex domains . Therefore, as will be described 

in further details in the next chapters, the reference problems that employ the direct 

integration of the chemical reactions are the constant volume, adiabatic, perfectly stirred 

reactor for 0D computations and the 1D steady, adiabatic, planar flame tube. The software 

library used to simulate these simplified domains is the Python binding to the open source 

Cantera package [14], which is capable of easily represent these reference problems as well 

as to deal with a set of relevant reaction families: 

1) Elementary reactions, with pressure-independent rate coefficients, with a forward 

rate described by the classical Arrhenius form, where A is the pre-exponential factor, 

E_a the activation energy, b the temperature exponent and T and R the temperature 

and gas constant: 

𝐵 + 𝐶 ↔ 𝐷 + 𝐸 

𝑅𝑓 = [𝐵][𝐶] ∙ 𝐴𝑇
𝑏𝑒−

𝐸𝑎
𝑅𝑇 

 

2) Three-body reactions, in the form 𝐴 + 𝐵 +𝑀 ↔ 𝐴𝐵 +𝑀 where a generic molecule M 

acts as a stabilizer for the AB formation, or catalyst for the AB scission, with a given 

efficiency. 

3) Falloff reactions, usually displayed by polyatomic dissociation reactions, for example 

a three-body reaction, whose reaction rate is linear to the molecular concentration of 

a generic molecule [M] at low pressure, but reduces this proportionality as pressure 

increases. The same pressure dependency can be displayed by other reactions, 

where the collisional stabilization of the reaction intermediates increases with 

pressure, thus reducing the overall reactivity. 
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2.2  Machine learning general definitions 

Machine learning is a branch of artificial intelligence concerning a series of computer 

algorithms developed to leverage available information in order to perform tasks for which 

they were not explicitly programmed. The operations associated with machine learning are 

traditionally divided into two different tasks [15]: supervised and unsupervised learning. 

Supervised learning refers to the availability for the training of the model of examples for 

which the true output is available, while in the unsupervised problems, the output is not 

known a-priori. The tasks associated with supervised learning can be further divided into 2 

groups, represented graphically for a simplified problem on the left side of Figure 2-3: 

- Regression, when the target output is a continuous variable, for the example in figure 

with 1 input feature (x) and the known target output (y). 

- Classification, when the target output is a category (therefore with 2 or more possible 

outcomes), for example on the right side of Figure 2-3 with 2 features (x,y) describing 

the points and the known category they belong to. 

 

Figure 2-3: simplified regression and classification problem descriptions 

As far as unsupervised learning is concerned, 2 main tasks are usually concerned: 

- Clustering, when the objective is to perform an efficient and representative grouping 

of the available data, without the need to use a target variable or class known a-priori. 

- Dimensionality reduction, when the objective is to find a set of independent variables 

that best represent the system, reducing the number of necessary features. 

A third kind of machine learning task is called reinforcement learning, and it is concerned 

with the development of smart ‘agents’ that are trained to identify the best actions in a given 

environment by performing a trial and error training. As long as the system, or the 

environment, is defined in a way to provide feedback (positive or negative) to the agent, this 

group of algorithms are trained to become more and more efficient in choosing the best set 

of operations to perform a given task. 

Deep learning, on the other hand, can be defined as a sub-field of machine learning, with 

which it shares all the previous definitions, but the models are all in the form of artificial 

neural networks. This architecture is more versatile, and allows, with the appropriate 

transformations, to operate with inputs of different format, not only tabular data (continuous 

or categorical data), but also with n-D arrays as a whole. For example, a time series (1-D 

array) should be divided into N features (with N equals the length of the array) for a traditional 

machine learning algorithm, while it can be regarded as a single feature input to some kinds 
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of neural network (for example 1D convolutional neural network) that will extract the most 

relevant features from the signal during training.  

The task that is more closely associated with the engineering practice, and that will be more 

thoroughly employed in the present thesis is regression. The most relevant algorithms 

employed for a regression task will be briefly discussed in the following sections, while those 

employed for each experiments will be further outlined it their respective chapter. 

 

2.2.1 Regression algorithms 

As previously defined, a regression model is aimed at predicting a continuous target variable 

(y) from a set of continuous or categorical features X, for which examples are available. This 

task is performed by training the model at minimizing a given objective function (MAE, MSE, 

RMSE, MAPE, MSLE, PHLOSS) for which, given N the number of elements tested, 𝑦𝑖 the i-

th target variable and 𝑦̃𝑖 the i-th predicted variable, the definitions are as follows: 

Mean Absolute Error 
𝑀𝐴𝐸 =

1

𝑁
∑ |𝑦𝑖 − 𝑦̃𝑖|

𝑖=1,𝑁

 
 

Mean Squared Error 
𝑀𝑆𝐸 =

1

𝑁
∑ (𝑦𝑖 − 𝑦̃𝑖)

2

𝑖=1,𝑁

 
 

Root Mean Squared Error 
𝑅𝑀𝑆𝐸 = √

1

𝑁
∑ (𝑦𝑖 − 𝑦̃𝑖)

2

𝑖=1,𝑁

 
 

Mean Absolute Percentage Error 
𝑀𝐴𝑃𝐸 =

1

𝑁
∑ |

𝑦𝑖 − 𝑦̃𝑖
𝑦𝑖

| ∙ 100

𝑖=1,𝑁

 
 

Mean Squared Logarithmic Error 
𝑀𝑆𝐿𝐸 =

1

𝑁
∑ (log(1 + 𝑦𝑖) − log (1 + 𝑦̃𝑖))

2

𝑖=1,𝑁

 
 

Pseudo-Huber Loss 

𝑃𝐻𝐿𝑂𝑆𝑆 = 𝛿2 ∑ (√1+ (
𝑦𝑖 − 𝑦̃𝑖
𝛿

 )
2

− 1)

𝑖=1,𝑁

 

 

 

The specificity of the Pseudo-Huber Loss function [16] is that it can be regarded as a 

combination of MAE and MSE (also called L1 and L2 loss functions), blended with the term 

𝛿. Its advantages are that it is convex near the target, making it more stable at converging 

than L1 loss, but at the same time it is more robust to outliers than the L2 loss (depending 

on the chosen value of 𝛿). These differences can be seen in Figure 2-4 where the loss 

function are represented as a function of the normalized error committed. 
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Figure 2-4: Effect of different loss function definition on the sensitivity to higher errors 

 

2.2.2 Machine learning regression task anatomy 

Before going further into the details of each model, particular attention should be given to 

the steps that they all have in common in order to improve the efficiency of the algorithm. 

The workflow typically followed for a regression task that leverages machine learning 

algorithms can be summarized as follows: 

1) Data collection, backed by expert’s knowledge, this step is of paramount importance, 

in order to provide a set of relevant input features, usually indicated with matrix X and 

targets, usually identified with matrix y,  that can be useful for the solution of 

engineering (or any other kind of) problems. The number of entries in the dataset 

should be much greater than the number of features, in order to allow the models to 

perform a sufficient amount of optimization steps and identify all possible relations. 

2) Data pre-processing, which can be further divided into 5 steps: 

a. Missing data handling, in case some features or targets are unavailable for 

some entries, these must be identified and corrected, if possible, by experts, 

or removed from the dataset. Typical solutions to this problem, beside 

removing either the entry or the feature, are to assign to these missing data 

the mean value of the feature in the whole dataset or of a subset (eventually 

identified by clustering techniques). 

b. Multicollinearity identification, in order to make the prediction algorithm more 

robust, it is considered a good practice to reduce the number of features in 

case some of them are highly correlated, considering that only a minimal loss 

of information is expected to occur, and the system is expected to be more 

robust against random errors in the targets. The possibility of 2 target points 

being randomly different with the same input variable would, in fact, be 

considered twice in case there was a highly correlated feature, thus producing 

a higher deviation from the optimal solution. The correlation between features 

can be calculated by using different metrics, the most common being 

Spearman’s rank coefficient and Pearson’s calculated as  

𝑅𝑃 = 1 −
6∑ 𝑑𝑖

2
𝑖

𝑛(𝑛2−1)
 where x and y transformed into coupled ranks, for which 𝑑𝑖 is 
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their difference.  The Spearman’s coefficient is considered more general, since 

it is not based on the assumption of linear dependence between the 2 features 

considered, but it only requires the function to be monotonic.  

c. Feature engineering and outlier removal, in order to provide more useful 

features through transformations of single features or combinations based on 

automatic exploration or expert evaluation on the physical meaning of the 

variables and removing data points that lay outside confidence intervals due 

to possible collection errors. In addition, in case some input variables are of 

categorical type, a label encoding could be performed, in order to avoid the 

possibility that the regression model could infer fallacious ordinary properties 

of the labels. 

d. Dataset split between train and validation set, in order to verify the 

performance of the whole prediction pipeline (scaling and prediction) on a 

hold-out portion of the available data (usually between 10 and 20% depending 

on the number of samples available). 

e. Feature scaling, aimed at reduce the difference between the dimensionality if 

different features that would, otherwise, induce unjustified higher sensitivity to 

some inputs. Classical scaling strategies are the standard scaling, which 

generates a variable distribution with mean value at zero and unitary standard 

deviation, range scaling (for example minmax scaling), which generates a 

distribution limited between 0 and 1, logarithmic scaling, used for features with 

different orders of magnitude and robust scaling, which is similar to standard 

scaling, but more robust to outliers, since it employs the median value and the 

percentiles instead of mean and standard deviation. The scaler’s parameters 

must be defined on the train set, and only applied on new points to be 

evaluated. 

Standard 

Scaling 
𝒙𝒊̂ =

(𝒙𝒊 − 𝑥𝑖̅)

𝜎𝒙𝒊
 

MinMax Scaling 
𝒙𝒊̂ =

(𝒙𝒊 −𝑚𝑖𝑛(𝒙𝒊))

(𝑚𝑎𝑥(𝒙𝒊) − 𝑚𝑖𝑛(𝒙𝒊))
 

Log Scaling 𝒙𝒊̂ = 𝑙𝑜𝑔(1 + 𝒙𝒊) 

Robust Scaling 
𝒙𝒊̂ =

(𝒙𝒊 −𝑚𝑒𝑑𝑖𝑎𝑛(𝒙𝒊))

𝑝75(𝒙𝒊) − 𝑝25(𝒙𝒊)
 

 

3) Model definition and optimization which can be performed through heuristics or by 

leveraging optimization algorithms for deciding the best hyperparameters or 

architecture of the regression model. Depending on the number of features available 

and on the size of the dataset, it can be decided to remove from the training set a 

portion of the data to be considered as test set for evaluating the performance of the 

model during its optimization. Alternatively a k-fold cross validation can be employed, 

which requires the split of the available dataset into a number k of sub-groups, and 



Machine learning general definitions 

16 
 

retrain the model on k-1 sub-groups while using the left-out group as test set for k-1 

times. The final score of the model is the average of the performance of all 

evaluations, which makes the evaluation on the performance of the model less 

sensitive to the choice of the train test split, especially useful when the number of 

available points is small. The graphical example for a cross-validation with 5 folds is 

reported in Figure 2-5. 

 

 
Figure 2-5: Simplified k-fold cross validation scheme 

 

In order to optimize the prediction algorithms, several hyperparameters (i.e. 

characteristics of the machine learning model that are not optimized during training, 

but influence its behaviour) can be leveraged. Besides expert’s hypothesis, 

hyperparameters’ choice is often performed with 2 different approaches [17]: 

a) Grid search optimization, which performs training and evaluation of the 

performance of a model for all the combinations of parameters considered 

relevant. This approach can be extremely time-consuming, but it ensures 

that all possible configurations will be evaluated. 

b) Global optimization, which can be implemented with different algorithms 

(for example Bayesian optimization [18]) and it is aimed at minimizing an 

unknown function, in this case the performance of the regression model on 

the test set (or cross validation performance) given a set of 

hyperparameters. 

 

4) Pipeline validation on the hold-out portion of the dataset defined at step 2d. In order 

to assess as accurately as possible the ability of the defined models to perform 

predictions on unseen data, this process should be used only to once, and not 

repeated to optimize the model. In case the performance was not satisfactory, the 

entire workflow should be re-considered, and not only the model, otherwise it would 

risk to overfit the validation dataset instead of validating its robustness against new 

points. 
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A short introduction to the most relevant algorithms for regression problems will be 

presented, in order to provide the foundational knowledge to understand the specificities of 

each of them and the reasons behind the choice of one over the others that have been taken 

during the following work. 

 

2.2.3 Regression models 

Linear Regression 

Linear regression is possibly the most classical example of data-driven model, widespread 

due to the intrinsic simplicity in calculating its coefficients without the need of high computing 

power. The model calculates the output target as a linear combination of the input features, 

fitting weights and biases to minimize the L2 loss function, in the form: 

min
𝒘,𝒃

(𝑿 ∙ 𝒘 + 𝒃 − 𝒚)2 

Where the linear coefficients w and intercepts (or biases) b have the same number of 

elements as the number of features in matrix X. Particular care must be given in the use of 

linear regression models with multiple features, to avoid collinearity between the inputs, 

which would make it less robust to errors in the target variables.   

 

Elastic-Net regression 

Elastic-net regression is a particular kind of linear model trained not only at minimizing the 

distance between predicted and real values, but also a linear combination of L1 and L2 

regularization losses of the coefficients w [19]. The general form, with 𝛼 as regularization 

coefficient and 𝜌 as L1 to L2 ratio is: 

min
𝒘,𝒃

(
𝟏

𝟐𝑵
(𝑿 ∙ 𝒘 + 𝒃 − 𝒚)𝟐 + 𝛼𝜌∑|𝒘𝒊| +

𝛼(1 − 𝜌)

2
∑𝒘𝒊

𝟐)
 

 

The main advantages of Elastic-Net over traditional linear models is its ability to represent 

the solution with the least number of relevant weights, thus reducing the risk of overfitting 

and increasing the explainability of the model. 

 

Polynomial regression 

Polynomial regression is an extension of the linear models based on the assumption that, 

creating an improved set of features, containing also the exponentials of the original input, 

a linear model can be optimized for predicting also non-linear dependencies. For example, 

if the classical linear regression model can be described as: 

𝒚̃(𝒘, 𝒙) = 𝒘𝟐𝒙𝟐 +𝒘𝟏𝒙𝟏 +𝒘𝟎 

If we define a new set of variables from 𝒙𝟏 and 𝒙𝟐, as 𝒖 = [𝒙𝟏, 𝒙𝟐, 𝒙𝟏𝒙𝟐, 𝒙𝟏
𝟐, 𝒙𝟐

𝟐] the linear 

regression model can be described as: 

𝒚̃(𝒘,𝒖) = 𝒘𝟓𝒖𝟓 +𝒘𝟒𝒖𝟒 +𝒘𝟑𝒖𝟑 +𝒘𝟐𝒖𝟐 +𝒘𝟏𝒖𝟏 +𝒘𝟎 

Which can also be seen as: 

𝒚̃(𝒘, 𝒙) = 𝒘𝟓𝒙𝟐
𝟐 +𝒘𝟒𝒙𝟏

𝟐 +𝒘𝟑𝒙𝟐𝒙𝟏 +𝒘𝟐𝒙𝟐 +𝒘𝟏𝒙𝟏 +𝒘𝟎 

 

Support Vector Machine regression 

The support vector algorithm was initially developed for classification tasks, but it can also 

be employed in regression problems with some adaptation in the optimization steps. 
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Differently from linear regression, a support vector machine identifies a linear correlations 

between features and targets while, at the same time, identifying a margin within which the 

prediction can be considered acceptable [20] . 

The most relevant hyperparameter that the model relies on is the choice of a suitable kernel 

(linear, polynomial or radial basis function) to map the data into a higher dimensional space 

in which it is possible to perform a linear separation. 

 

Gaussian Process regression 

The Gaussian process regression algorithm is a specific model capable of predicting the 

target value but also the uncertainty in the prediction, by predicting the probability distribution 

over all the possible functions that fit the training data (linearly or based on a kernel). Thanks 

to the availability of the probability distribution, the mean value can be computed, to perform 

the prediction, and the standard deviation can be used to describe the confidence of the 

prediction [21].  

The regression model of the Gaussian Process is given by: 

𝑃(𝒇|𝑿) =  𝒩(𝒇|𝝁,𝑲) 

Where 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏] are the input features, 𝒇 = [𝑓(𝒙𝟏), 𝑓(𝒙𝟐), … , 𝑓(𝒙𝒏)] are the function 

outputs of the model,  𝝁 = [𝑚(𝒙𝟏),𝑚(𝒙𝟐),… ,𝑚(𝒙𝒏)] are the men values and 𝑲𝒊𝒋 = 𝒌(𝒙𝒊, 𝒙𝒋) 

where k represents a positive definite kernel function. 

A classical implementation of the GPR algorithm is as follows: 

𝐿 = 𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦(𝐾 + 𝜎𝑛
2𝐼) 

𝜶 = 𝐿𝑇\(𝐿\𝑦) 

𝒇∗̅̅̅ = 𝒌∗
𝑻𝜶 

𝑉 = 𝐿\𝒌∗  

𝑉𝑎𝑟(𝒇∗) = 𝑘(𝒙∗, 𝒙∗) − 𝒗
𝑻𝒗 

𝐿𝑜𝑔 𝑝(𝒚|𝑿)  =  −
1

2
𝑦𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝒚 −
1

2
𝑙𝑜𝑔 𝑑𝑒𝑡(𝐾 + 𝜎𝑛

2𝐼) −
𝑛

2
log(2𝜋) 

With X as inputs, y as targets, k the covariance function, 𝜎𝑛
2 the noise level, 𝒙∗ is the test 

input, whereas the outputs are: 𝒇∗̅̅̅ that represent the mean of the outputs, 𝑉𝑎𝑟(𝒇∗) its 

variance and 𝐿𝑜𝑔 𝑝(𝑦|𝑋) is the log marginal likelihood of the solution. In Figure 2-6, 3 

different predictions of the confidence interval are reported without noise in the data, 

representing the output of the pure prior distribution, and with 1 and 6 points, for which the 

kernel is capable of perfectly predict the target as long as the prediction point is within the 

training interval. In case of a noisy distribution of the targets, Figure 2-6 d, the GPR does 

not perfectly fit the sample points, because an additional term has been added to the kernel 

matrix, which can be identified as the variance of additional gaussian measurement noise.  
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Figure 2-6: Improvement of the predictive capability of GP regressor prior with additional training points 

 

Decision Tree regression 

A decision tree regression algorithm is a non-parametric model used to predict the target 

variable by using a piecewise constant approximation, whose conditions are learned by the 

training data [22]. The decision tree regressors’ hyperparameters are concerned with the 

definition of the splits and values of each leaf. 

The algorithm states that, for example, if we have 𝑁𝑚  samples at each node m, there is a 

candidate split couple 𝜃 = (𝑗, 𝑡𝑚) where j is a given feature and 𝑡𝑚 its threshold value, that 

can divide the data at the node in left and right subsets. The choice of the split based on the 

couple 𝜃 = (𝑗, 𝑡𝑚) at node m is defined by a loss function L (for example RMSE) that must 

be minimized and must satisfy the condition: 

𝐺(𝑄𝑚, 𝜃)  =  𝐹𝑟𝑎𝑐𝑙𝑒𝑓𝑡 ∙ 𝐿(𝑄𝑙𝑒𝑓𝑡(𝜃))  +  𝐹𝑟𝑎𝑐𝑟𝑖𝑔ℎ𝑡 ∙ 𝐿(𝑄𝑟𝑖𝑔ℎ𝑡(𝜃)) 

Where 𝑄𝑚 is the total set of points at node m, 𝑄𝑙𝑒𝑓𝑡 and 𝑄𝑟𝑖𝑔ℎ𝑡 its subsets based on split 

threshold 𝜃, that must be found as: 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 𝐺(𝑄𝑚, 𝜃) 

The hyperparameters that can further describe the regression tree algorithm are related to 

controls over the possibility to compute new nodes, by limiting the depth that a nested 

condition can reach, or by defining a minimum number of examples that must be found in a 

subset. 

 

Ensemble Methods 

Classical machine learning algorithms are best suited for specific kinds of problems, but 

might become less robust when the task is not perfectly defined, therefore a common 

strategy to improve generalizability of the predictions and reduce the variance that a single 

estimator might display is to combine the predictions of several models. The most 

straightforward approach, i.e. to perform an average of the predictions of the chosen set of 

algorithms (called base learners in the context of ensemble) is called ‘bagging’ [23]. A 

bagging strategy can be developed to combine different base algorithms, but also the same 
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algorithm trained on different portions of the dataset, in order to induce a variation in the 

optimized parameters. On the other hand, a different approach is called ‘boosting’, and it 

describes the sequential training of base estimators on modified versions of the dataset, 

aimed at compensating the errors of the previous models. Both techniques have been found 

to be extremely useful for several kinds of problems, therefore they some of the most 

frequent algorithms will be described more in detail. 

 

Random forest 

The random forest algorithm is a bagging method consisting of a combination of several 

regression trees trained on a subset of the whole training dataset and using, for each tree, 

all input features at each node [24]. These 2 choices are both sources of randomness in the 

training process, that are aimed at reducing the risk of overfitting that traditional regression 

trees usually display. The combination, by averaging the outputs, of all the base learners is 

expected to compensate the increased bias with a significantly reduced variance.  

 

Gradient boosting 

The gradient boosting method is a general name for a family of ensemble algorithms where 

the base learners are recursively trained on the residuals of the previous models, in order 

to ‘correct’ the predictions of the previous models [25]. The loss function that must be 

minimized by the regression algorithm is expected to be differentiable, in order to optimize 

the weights of the models by searching for the minimum of the overall error function of the 

ensemble model. The gradient descent algorithm followed is the following: 

Define the initial set of parameters 𝜃 = 𝜃0  

For every iteration it (until convergence or maximum number of steps allowed), calculate the 

gradient of the loss function as: 

∇ 𝐿𝜃(𝜃
𝑖𝑡)  =  [

𝜕𝐿(𝑦, 𝑓(𝑥, 𝜃))

𝜕𝜃
]
𝜃=𝜃𝑖𝑡

   

Update the weights with the gradient of the loss function multiplied by a learning rate value 

𝜌  (coefficient to stabilize the optimization updates: 

𝜃𝑖𝑡+1 = 𝜃𝑖𝑡 − 𝜌𝛻𝐿𝜃(𝜃
𝑖𝑡)  

The final model will, therefore use the final updated version of the weights 𝜃𝑁, and the same 

prediction algorithm and base learners used for the computation of the loss function. 

A particularly efficient implementation of the gradient boosted algorithm has gained 

particular attention recently, especially do to its capacity to handle larger datasets more 

efficiently than the standard gradient boosting implementations, named XGBoost [26]. 

 

Adaptive boosting 

The AdaBoost model is considered a very effective boosting technique that draws on any 

base learner [27], given the hypothesis that their prediction is expected to be, at least, slightly 

more accurate than random guessing. If the hypothesis holds true, then the following 

algorithm, represented graphically in Figure 2-7 also known as AdaBoost.R2 (considering 

that the original AdaBoost implementation was developed for classification tasks) will 

recursively increment the performance of the whole model: 
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Define an initial value for each sample’s weight, with N the number of sample points. 

𝑤𝑖 =
1

𝑁
,    𝑖 = 1,2, . . , 𝑁 

For a number of iterations (it) equals to the number (m) of base learners chosen (identified 

by f(x)), repeat: 

𝑙𝑖𝑡(𝑖) = |𝑓(𝑥𝑖) − 𝑦𝑖| 

𝐿𝑖𝑡̅̅ ̅ = ∑ 𝑙𝑖𝑡 ∙ 𝑤𝑖
𝑖=1,𝑁

 

𝛽𝑖𝑡 =
𝐿𝑖𝑡̅̅ ̅

1 − 𝐿𝑖𝑡̅̅ ̅ 
 

𝑤𝑖
𝑖𝑡+1 =

𝑤𝑖
𝑖𝑡 𝛽1−𝑙

𝑖𝑡(𝑖)

∑ 𝑤𝑖
𝑖𝑡 𝛽1−𝑙

𝑖𝑡(𝑖)
𝑖=1,𝑁

,    𝑖 = 1,2, . . , 𝑁 

After the algorithm has been repeated for the number of iterations chosen, the output value 

is calculated. 

𝑦 = 𝑖𝑛𝑓 [𝑦 ∈ 𝑌: ∑ 𝑙𝑜𝑔 (
1

𝛽𝑖𝑡
) ≥

1

2
∑ 𝑙𝑜𝑔 (

1

𝛽𝑖𝑡
)

𝑖𝑡=1,𝑚𝑖𝑡:𝑓𝑡(𝑥)≤𝑦

] 

In this case, the Loss function is considered to be a mean absolute error, but it could 

eventually be modified. As it results from the definition, 𝐿𝑖𝑡̅̅ ̅ is the average error committed 

by the weak learner at iteration it, following a distribution of weights which is initialized as 

uniform.   𝛽𝑖𝑡 is a term representing the confidence of the prediction at the iteration it and it 

is used to update the weights that will be used during the next model training step in order 

to provide exponentially more importance to the dataset points that were less captured by 

the current model. The lower the value of 𝛽𝑖𝑡, the higher the confidence of the current model, 

and therefore a smaller weight update will be performed. The output result is a weighted 

median calculation of the predictions of all the possible solutions provided by the weak 

learners, using the logarithm of the inverse of their average confidence as weight. 
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Figure 2-7: AdaBoost model training workflow 

 

Neural networks 

Neural networks are a set of algorithms inspired by the biological neurons as far as the 

terminology is considered, whose structure is reported in Figure 2-8.  

 
Figure 2-8: Generic representation of a 1-hidden layer neural network 

 

They consist of a set of neurons, single cells, defined by a set of inputs 𝑥𝑖 and one output 

variable 𝑦𝑖 calculated as: 

𝑦𝑖 = 𝑓 (∑𝑤𝑗𝑥𝑗 + 𝑏

𝑛

𝑗=1

) 

Where f is called activation function, and can take the form of a hyperbolic tangent, or linear, 

or sigmoid functions for example, whose input is a linear combination of the inputs received 

from the neuron, scaled by an array of weights and a bias term. For a regression task, the 

output layer consists of a number of neurons equal to the number of target variables to 

predict simultaneously, and the activation function is expected to be a linear function, in 

order to obtain a scaled real value. Considering that the number of neurons and layers can 

be arbitrarily large, neural networks are considered general approximators of a target 

distribution. The optimization of weight and biases for each neuron is performed using 

different implementations of the gradient descent algorithm, based on the problem definition 

in the form of a minimization problem for which the derivative is known. The capability to 

calculate the derivative of the loss function with respect to each weight is due to the back 

propagation algorithm [28], based on the chain rule of partial derivatives, which is particularly 

efficient to compute when the activation functions are convenient to differentiate, which is 

the main reason why the most popular choices are the ones represented in Figure 2-9 where 

also their derivatives are represented. Besides the linear function, which is mostly used for 

the output neuron in regression tasks, the other activation function are all non-linear and 

differentiable. 
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Figure 2-9: Typical activation functions for neural network neurons and their derivative 

 

Defining as E the error performed by the neural network with output y with respect to target 

t, and for each neuron j defining the output as 𝑜𝑗 calculated as: 𝑜𝑗 = 𝜙(∑ 𝑤𝑘𝑗𝑜𝑘𝑘=1,𝑛 + 𝑏𝑗) 

where 𝜙 is the activation function applied to the weighted sum of all the inputs of the neuron 

(outputs from the previous layer). The partial derivative of the error with respect to the 

weights can be computed following the chain rule as: 

𝜕𝐸

𝜕𝑤𝑖𝑗
=
𝜕𝐸

𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑤𝑖𝑗
=
𝜕𝐸

𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑖𝑗
 

Where 𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑘𝑗𝑜𝑘𝑘=1,𝑛 + 𝑏𝑗, which leads to the simplified partial derivative 
𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑖𝑗
= 𝑜𝑖 that 

corresponds to 𝑥𝑖 for the first layer. At the same time, a recursive formulation can be derived 

for the term 
𝜕𝐸

𝜕𝑜𝑗
= ∑ (

𝜕𝐸

𝜕𝑜𝑙

𝜕𝑜𝑙

𝜕𝑛𝑒𝑡𝑙
𝑤𝑗𝑙)𝑙∈𝐿  with L the set of all the neurons receiving input from 

neuron j. By following these observations, the partial derivative of the error with respect to 

each weight can be computed as: 

𝜕𝐸

𝜕𝑤𝑖𝑗
= 𝑜𝑖𝛿𝑗 

With 𝛿𝑗 =
𝜕𝐸

𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑛𝑒𝑡𝑗
=

𝜕𝜙(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
∙ ∑ (𝑤𝑗𝑙𝛿𝑙)𝑙∈𝐿  for all inner neurons, and 𝛿𝑗 =

𝜕𝐿(𝑜𝑗,𝑡)

𝜕𝑜𝑗

𝜕𝜙(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
 for the 

output neurons, where t is the target and  𝐿(𝑜𝑗 , 𝑡) is the loss function to be minimized. The 

gradient descent algorithm is then applied to identify the update on weights that will reduce 

the error E, proportionally to the error committed, with a proportionality factor named learning 

rate, which is one of the most relevant hyperparameters, connected with stability and 

performance of the final solution. 
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3 Knock modelling with chemical kinetics 

Knock in SI engines is a phenomenon limiting performance and efficiency especially at high 

load conditions [29], thus it is extremely important to prevent its occurrence. It is defined as 

the spontaneous ignition of the reacting mixture due to the thermodynamics conditions 

reached inside the combustion chamber during combustion, with consequent nearly 

instantaneous localized heat release. 

Historically, the auto-ignition tendency has been investigated by means of rapid 

compression machines, or shock tube experiments [30], where it is possible to control the 

thermodynamical and compositional properties of the analysed mixtures. More recently, the 

same experiments have been conceptually converted into simplified models geometries 

(single cell, homogeneous reactors) resolved by means of detailed chemical kinetics 

simulations successfully [31]. Despite the time to analyse the impact of different mixture 

formulations on the ignition delay times has been drastically reduced, it is still a limiting factor 

when used for near real-time applications, such as when coupled to a fluid dynamics solver 

, or to the acquisition function of a fuel surrogate optimizer. Considering that the latter is one 

of the potential applications that is going to be investigated in the current work, in the present 

chapter two main issues will be addressed: 

1) The generation of ignition delay time values for a generic mixture, and the definition 

of a dataset for the exploration of the effect of different compositions of the fuel 

surrogate using molecules from the palette introduced in the previous chapter. 

2) The definition of a workflow for the prediction of ignition delay time values for any 

combination of thermodynamics conditions and fuel surrogate composition and the 

optimization of the regression model. 

 

3.1 Constant volume reactor model 

Whereas the insurgence of mixture auto-ignition is usually a consequence of regions of the 

boundary walls not sufficiently cooled (so called hot-spots, especially near the exhaust 

valves) or carbon deposits, therefore at a localized level, the fuel octane number, intake air 

temperature and the spark timing have the highest influence in the possible knock 

occurrence from a design and control perspective. 

The simulation by means of quasi dimensional multi-zone or CFD3D models can be a 

valuable tool to address these dependencies and their correlation with other control and 

design parameters, such as the chamber shape, injection strategy or cooling circuit 

requirements. On the other hand, they can also be used to tailor specific minimum 

requirements a fuel must present to comply with specific safety levels during its usage. 

Obviously, this is not the classical task that engine manufacturers face, considering that they 

must provide robustness only against potential variations in the pump fuels, but the current 

research targets a broader audience of research and development engineers whose task 

could also be to co-optimize fuel and engine to gain the most profit.  

The chemical kinetics phenomenon that leads to engine knock is the mixture self-ignition 

that can be evaluated both experimentally and numerically in a very detailed way. Two kinds 
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of experimental procedures are usually employed [32] to identify the ignition delay time of a 

given mixture in a more controlled environment:  

1) High pressure shock tube, where the mixture is constrained inside a constant volume 

tube subjected to reflected shock waves that increase the gas pressure and 

temperature to the prescribed temperature and pressure. 

2) Rapid compression machine, which is a machine emulating the compression stroke 

of a single engine cycle in order to rapidly heat the gas to the desired temperature 

and pressure values, by keeping the heat losses to a minimum. This is the main 

reason why ignition delay times higher than 100 ms may present inconsistencies, due 

to the increased importance of heat losses through the walls. 

The use of reflected pressure waves in shock tubes, and of the varying volume of the rapid 

compression machine are limiting factors in comparing precisely with a simplified numerical 

model the conditions that the mixture is undertaking before ignition occurs. Therefore, a 

simplified approach is usually adopted [33] to validate reaction rates and the behavior of 

different fuels, by considering a constant volume perfectly stirred ideal gas reactor [34]. The 

mixture is initialized at the reference pressure temperature and composition of the test and 

numerically integrated until the temperature inside the reactor reaches a threshold value, 

often indicated as 400 K above the initial temperature, to avoid considering first stage 

ignitions. 

The equations that describe the 0D ideal gas constant volume reactors are the conservation 

of species and mass, and the energy conservation equation for a closed system: 

 

 𝑐𝑉
𝑑𝑇

𝑑𝑡
= −∑𝑢𝑘

𝑘

𝑑𝑌𝑘
𝑑𝑡

 
(3-1) 

 

It can be noticed that no heat transfer to the walls is considered, as well as mechanical work, 

highly simplifying the solution of the system of equations related to the temperature 

dependence of the heat release of the species. Considering that the system is closed, the 

species conservation can be simply written for each species as:  

 

𝑚
𝑑𝑌𝑘
𝑑𝑡

= 𝑚̇𝑘,𝑔𝑒𝑛 
(3-2) 

 

The simplified methodology for the computation of ignition delay times consists in the 

integration of the system of ODEs defined by the chemical kinetics reactions and the energy 

and species conservation equations, starting from the initial reference state.  

The identification of the ignition delay time depends on the definition of the main combustion 

event, which is relevant especially for molecules exhibiting a negative temperature 

coefficient (NTC) region, which may lead to first stage ignitions, particularly at higher 

pressure. This phenomenon is justified by the competing reactions of 𝑅𝑂2 isomerization, 

together with QOOH decomposition and 𝛽 scission reaction of the alkyl-radicals competing 

with the specific low temperature chemistry chain reactions. An example of NTC behaviour 

is reported in Figure 3-1 where the temperature, fuel and O2 profiles are reported normalized 



Validation results 

26 
 

for n-heptane at 100 bar and 800K (dashed lines), with initial temperature increase and 

successive reduction and 1000 K as can be seen from Figure 3-1. 

 
Figure 3-1: Dimensionless profile of selected variables evolution inside a constant volume ignition delay 

time calculation for starting temperature if 800K (dashed lines) and 1000 K (solid lines) and P=100 bar  

 

Therefore, following [33], it was chosen to define a simplified approach to the definition of 

the ignition delay time, as the time required to raise the mixture temperature at constant 

volume by more than 400 K, considering the lack of information regarding each experimental 

facility used for the validation data. The validation of the chemical kinetics scheme adopted, 

for each of the single molecules of the palette, where this methodology was applied, will be 

reported in the next section with sufficiently accurate results.  

 

3.2 Validation results 

A set of experimental data found from different sources in literature has been compared with 

the results of detailed chemical kinetics simulations performed with the CRECK-2019 

mechanism. Overall, the accuracy of the mechanism can be considered acceptable for the 

intended use for most basic molecules, for which a basic validation has been performed 

(Figure 3-2 to 3-13), considering the wide availability of validation studies for this 

mechanism. It can be noticed, however a general underestimation of the reaction speed at 

low temperature for the aromatics components toluene and 124-trimethylbenzene as well 

as for the low temperature chemistry of ethanol. The application on experimental fuel 

surrogates with varying ethanol fraction [35], in the formulation reported in Table 3-1 

however, demonstrates with a good agreement of the results, the predictivity of the scheme 

also for ethanol containing fuels up to E40 (Figure 3-13). 

 

Table 3-1: Definition of the fuel surrogates for the chemical kinetics scheme validation and their RON 

Gasoline surrogate 
Liquid volume fraction (%) 

RON 
Ethanol Iso-octane N-heptane Toluene 

Surrogate-A (E40) 40.0 37.8 10.2 12.0 98.75 

Surrogate-B (E20) 20.0 62.0 18.0 - 92.0 

Surrogate-C (E0) - 69 17.0 14.0 87.0 
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Figure 3-2: Validation data for the ignition delay time of iso-octane in air, Fieweger [36] 

 
Figure 3-3: Validation data for the ignition delay time of n-heptane in air, Fieweger [36], Hartmann [37] 

 
Figure 3-4: Validation data for the ignition delay time of toluene in air, Bjornbom [38], Hartmann [37], Khan 

[39] 
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Figure 3-5: Validation data for the ignition delay time of ethanol in air, Roy [40] 

 

 
Figure 3-6: Validation data for the ignition delay time of methylcyclohexane in air, Vasu [41] 

 
Figure 3-7: Validation data for the ignition delay time of cyclohexane in air, Andrae [42], Vranckx [43]  
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Figure 3-8: Validation data for the ignition delay time of 1-hexene in air, Dong [44] 

 

 
Figure 3-9: Validation data for the ignition delay time of 1-pentene in air, Dong [44] 

 
Figure 3-10: Validation data for the ignition delay time of n-pentane in air, Mathieu [45] 
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Figure 3-11: Validation data for the ignition delay time of 124-trimethylbenzene in air, Liu [46] 

 

 
Figure 3-12: Validation data for the ignition delay time of n-decane in air, Kumar [47], Ramussen [48] 

 

 
Figure 3-13: Multi-component surrogates [35] 
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3.3 Dataset generation 

The availability of well distributed data and of a sufficiently wide training domain is 

considered one of the key assets for the successful implementation of machine learning 

strategies, therefore the definition of the dataset of simulation results has been carried out 

carefully. In particular, the choice of the thermodynamics conditions has been performed by 

identifying any possible scenario that could occurred inside the cylinder, comprising hot 

spots on the walls even at low pressure and very lean or rich local regions, with a sufficiently 

detailed resolution, leading to the values of Table 3-2. 

 

Table 3-2: Operating conditions analyzed 

Variable # 

points 

Values 

Pressure (bar) 5 10,30,60,100,140 

Temperature (K) 9 700,750,800,850,900,950,1000,1050,1100,1150,1200 

Equivalence ratio (-) 7 0.4,0.8,1.0,1.2,1.5,2.0,3.0 

 

As far as the fuel composition is concerned, the dataset has been defined by following a 3 

step approach: 

1) For each molecule, a limit has been assigned, depending on its class and RON 

(from 0 to 60% for iso-paraffins, from 0 to 20% for n-paraffins, from 0 to 30% for 

ethanol, from 0 to 20% for olefins, from 0 to 40% for aromatics and from 0 to 20% 

for naphthene), following loosely the limitations imposed on transportation fuels in 

Europe. 

2) A random normal distribution has been defined for each molecule allowing the 

limitation to be enforced at least for 2 standard deviations, with the mean value 

set equal to the arithmetic mean of the boundaries. 

3) For each sample point, the sum of the fractions is normalized to unitary sum, and 

the values lower than 0.04 are removed, leading to a re-normalization step. 

The distribution of each single molecule inside the surrogates formulated in the dataset is 

collected in Figure 3-14 together with the pairwise relationship between each molecule, 

which underlines qualitatively the resolution of the dataset. 

In order to reduce the number of simulations required, for each surrogate, only 60% of the 

thermodynamics conditions, selected randomly, was actually simulated, leading to the 

definition of about 100’000 points for 520 combinations. 
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Figure 3-14: Pairwise relationship plot describing the distribution of the single molecules in the available 

dataset and their pair-wise relative distribution 

 

3.4 ML Experiments 

A series of Machine learning algorithms has been applied to the presented dataset, in order 

to predict the ignition delay time for any combination of thermodynamics properties and fuel 

surrogate composition. The nature of the problem is a regression task with tabular data, 

therefore classical ML algorithms have the potential to perform accurately, especially if 

combined through boosting or bagging. In addition an optimized deep neural network has 

been tested, as well as a novel algorithm based on a combination of deep neural networks. 

For all the models, the same workflow introduced in Chapter 1 has been applied, with 

preprocessing of the dataset, algorithm optimization via cross validation and Bayesian 
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optimization of the hyperparameters and a final validation against an hold-out validation set. 

All the steps will be outlined in the following sections. 

1) Preprocessing 

One of the advantages of tree based algorithms is the fact that they do not require a-

priori scaling of the input features, since they are not sensitive to variance between 

the data. However, to perform a more fair comparison among all the models, all the 

features have been scaled in order to have their minimum value set to 0 and their 

maximum value set to 1 [49]. Considering that the target value spans several orders 

of magnitude, an adequate scaling is required before training the model. In particular, 

it is straightforward to perform a logarithmic scaling on the ignition delay time, which 

leads to the distribution change of Figure 3-15 

 

 
Figure 3-15: Target ignition delay time distribution before and after the logarithmic transformation 

 

 

 

2) Algorithm optimization 

Before optimizing the hyperparameters of the algorithm, a portion equal to 25% of the 

entire dataset was kept as reference test set and removed from the training set. The 

portion was composed of different surrogates and not randomly distributed, in order 

to assess the predictivity of the models towards totally unseen data.  
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Figure 3-16: Distribution of the molecular fractions inside the training set and the hold-out validation set 

 

3.4.1 Optimization and Validation set results for XGBoost 

The first machine learning experiment performed was based on the gradient boosting tree 

method, considering the tabular nature of the problem, and the expected non-linearity of the 

features. In addition, the size of the dataset does not require the model to extrapolate, 

therefore a boosted tree algorithm is expected to work properly. In order to reduce the 

variance of the prediction, the model has been trained on 5 random fractions of the training 

set composed of 80% of the total dataset. The prediction of all the 5 models on the validation 

dataset is then averaged in order to obtain the final value, thus combining the boosting 

method with the bagging ensemble technique, as described in chapter 1. 

The optimized hyperparameters for the gradient boosting regressor, in its implementation in 

XGBoost are: 150 base estimators (which are regression tress with a maximum depth set 

to 20), trained successively with a learning rate of the boosting algorithm set to 0.05 and a 

subsample rate for the training of each new model set to 80% of the overall dataset, and the 

performance metrics for the transformed target on the validation set are reported inTable 3-

3. An additional metric, specifically defined for the ignition delay time prediction has been 

added, named ERR_G, and calculated as in Eq. 3-3 after the Livengood-Wu integral method 

[50]. 

 

𝐸𝑅𝑅𝐺 =
∑ (

1
𝑦𝑖
−
1
𝑦̃𝑖
)𝑖=1,𝑁

∑
1
𝑦𝑖𝑖=1,𝑁

 

(3-3) 
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Table 3-3: Performance metrics of the XGBoost algorithm 

MAE 0.034 

RMSE 0.045 

R2  0.998 

ERR_G 4.56 

 

3.4.2 Validation set results for other regression models 

Considering the general simplicity in the optimization of other classical machine learning 

algorithms, their description is left to the introduction chapter, while in the present section, 

only their performance on the hold-out validation set is reported. 

 

Table 3-4: Performance metrics of the classical machine learning algorithms 

Model MAE RMSE R2 ERR_G 

Linear regression 0.102 0.158 0.859 12.5 

Elastic net regression 0.084 0.088 0.924 9.8 

Polynomial regression with 2nd order 

features 

0.093 0.113 0.812 11.8 

Polynomial regression with 3rd order 

features 

0.075 0.103 0.835 10.9 

Support vector machine regression with 

RBF kernel 

0.072 0.094 0.877 10.6 

Gaussian process regressor with RBF 

kernel 

0.065 0.085 0.896 8.9 

Decision tree regressor 0.132 0.372 0.723 19.2 

Random forest regressor 0.046 0.055 0.991 6.1 

Adaboost regressor 0.041 0.049 0.993 5.7 

 

From the classic linear and polynomial regression performance, which improves with the 

addition of higher order terms, it is clear that non-linearities are required to be modelled in 

order to perform an adequate prediction. On the other hand, ensemble algorithms, such as 

random forest or adaboost, which are considered prone to overfitting, clearly outperform the 

simpler methods, also on the validation dataset, underlying the importance of the accurate 

dataset generation step in representing all possible combinations. 

 

3.4.3 Optimization and Validation set results for Deep Neural Network 

Considering the tabular nature of the regression task presented, the application of deep 

neural networks has been generally regarded as an over-complication of a problem that can 

be successfully addressed with tree-based algorithm [51]. However, this statement is correct 

for general machine learning problems, with dozens of features, and some of them are 

classes. For the present task, however, the continuous nature of the input, as well as the 

need for a continuous approximation of the target makes the use of deep neural networks 

advantageous. By following the standard approach introduced in the previous section, the 
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architecture has been optimized, up to the structure with 65’283 trainable weights presented 

in Figure 3-17.   

The final structure has been obtained by applying a Bayesian optimization algorithm on a 

simplified block-structure made of dense+normalization layers with size of integer multiples 

of the input size of 14. The use of batch normalization layer is usually applied as a method 

for improving training stability by normalizing (zero mean and unitary standard deviation) the 

output of the intermediate layers of the neural network, with the additional effect of 

increasing the accuracy and generalization of the neural network trained with larger learning 

rate [52]. The optimization of the weights of the neural network has been therefore 

performed with the Adam optimizer and a learning rate set to 0.01, thanks to the presence 

of batch normalization layers, for an infinite number of iterations, stopped after 30 steps 

without reduction in the MAE loss function of a random fraction of 10% of the dataset used 

for testing, technique called early stopping. The final performance, reported in Table 3-5.     

 

 
Figure 3-17: Architecture of the optimized neural network 
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Table 3-5: Performance metrics of the DNN 

MAE 0.046 

RMSE 0.057 

R2  0.989 

ERR_G 6.12 

 

 

 

 

 

 

 

 

 

 

3.4.4 Optimization and Validation set results for Meta-learner 

A significant drawback of the use of the neural network is its suffering from the distribution 

of the targets, which is skewed towards the value of -3, values around which the model is 

optimized. In fact, the simplicity of the MAE loss function makes the training of the regression 

model leaning towards the mean value (e.g. if the model is unable to find any correlation 

between the features and the output, the minimization of the MAE loss function produces a 

model that would always provide as outcome the mean value of the training dataset). In 

order to compensate this modelling issue, a meta-learning methodology has been 

developed, where multiple NNs are stacked in two consecutive levels. The workflow is based 

on the common approach of developing a prediction model for the ignition delay time by 

combining multiple correlations fitted with reference values from different temperatures 

intervals [53]. At the first level, during the training phase, the temperature range of the 

dataset (700-1200 K) is divided as follows:  

a) the low-temperature Arrhenius region (700-950 K);  

b) the expected NTC region (900-1100 K); 

c) the high-temperature Arrhenius region (1050-1200 K).  

 

These regions were created with a slight temperature overlap between each other, in a 

manner to account for a similar number of points per region. The points in each region are 

provided to train three different and independent NNs, whose predictions will result in three 

different IDT values.  

In the second level, a larger NN is trained on the full database, but the input layer receives 

three additional features, namely the IDT values predicted by the three independent NNs at 

the first level, independently from their temperature. The second level FFNN is defined to 

receive as input features the physical and mixture properties and the 3 outputs from level 1. 

For sake of illustration, Fig. 3-17 shows a schematic view of the meta-learning workflow and 

architecture.   



ML Experiments 

38 
 

 
Figure 3-17: General structure of the Meta-learner algorithm 

 

The performance of each single network significantly decreases significantly outside of its 

training region, however the second level network is trained at recognizing the validity of 

each input and therefore the overall performance of the 2-step model is almost as good as 

each specialist network, and reduces the percentage relative error with respect to a single 

network by 30% on average, and up to 50% at lower temperatures, without any correlation 

between the predictive error and the temperature of the mixture. 

 

Table 3-6: Performance metrics of the meta-learner algorithm 

MAE 0.016 

RMSE 0.021 

R2  0.999 

ERR_G 2.4 

 

 
Figure 3-18: Performance of the meta-learner algorithm compared to a single optimized DNN and the 

specialized subnetworks  
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4 Laminar flame propagation with chemical kinetics 

The flame propagation inside a turbulent flow field is a complex phenomenon highly 

influenced by both chemical reactions and flame turbulence interaction. The energy released 

by the fuel oxidation and the density variation between fresh and burnt mixture are, in fact, 

a source of induced turbulence that, conversely, increases the molecular diffusivity inside 

the flame front allowing for a faster burning rate [54]. Considering the chemical time (~O(1e-

8 s)) and length (~O(1e-7 m)) scales in play, it is unfeasible to directly resolve the entire 

flame structure during a combustion simulation with sufficient accuracy for industrial 

applications. Most frequently, the results of detailed chemical kinetics simulations in 

simplified domains, or experimental data under controlled environments are employed as 

the basic blocks for simplified models. The requirement to understand in-depth the flame 

structure, as well as the possibility to predict the flame front propagation speed without 

limitations in temperature and pressure values has made the use of detailed chemical 

kinetics simulation a common practice in recent years, accompanied by a higher level of 

detail reached by chemical kinetics schemes, as underlined in Figure 4-1 On the other hand, 

the increase in size of the chemical reactions and intermediate species considered, has 

made the solution of simplified 1D flame propagation models a resource intensive activity 

[55]. 

 

 
Figure 4-1: Evolution of the dimensions of chemical kinetics schemes for combustion simulation [56] 

 

To reduce the time requirements for the generation of laminar flame speed databases given 

new fuel surrogate formulations, in the present chapter a set of techniques is defined, 

implemented and tested starting from the standard flame definition with the following targets: 
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1) Introduce the calculation strategy for laminar flame speed and laminar flame 

thickness values from simplified 1D chemical kinetics simulations. 

2) Describe the traditional chemical kinetics reduction strategies that can be employed 

for the automatic derivation of simplified models. 

3) Define and validate a data-driven methodology for the generation of laminar flame 

speed and thickness look-up tables in the minimum possible time, while controlling 

the accepted error from the reference values [57]. 

 

In the second part of the chapter, attention will be given to the simulation of a flame front 

propagating into a mixture containing additional water vapour, essential for the CFD 

simulation of internal combustion engines employing a water injection knock mitigation 

strategy. The application of hybrid machine learning methods to the generation of a laminar 

flame speed database considering the additional water fraction variable will be shown to be 

an extremely valuable tool for the reduction of the overall computing time [58]. 

 

4.1 Laminar flame speed simulations 

Considering the central role that laminar flame speed plays in the combustion modelling, it 

is of paramount importance to make a precise computation of its value for all conditions that 

might be encountered during the engine combustion simulation, in order to provide in 

runtime, by means of correlations or look-up tables, an efficient way to retrieve an accurate 

estimate of its value.  

Historically, several authors have proposed correlations of laminar flame speed with 

temperature, pressure, and equivalence ratio for different fuels, with similar forms. 

𝑠𝐿 = 𝑠𝐿
0 ∙ (

𝑇

𝑇0
)
𝛼

∙ (
𝑃

𝑃0
)
𝛽

∙ (1 − 𝑘 ∙ 𝑋𝐸𝐺𝑅
𝛾) 

(4-1) 

𝑠𝐿
0 = 𝐵𝑚 − 𝐵𝑓 (𝜙 − 𝜙𝑚)

2 (4-2) 

𝛼 = 𝛼0 − 𝛼1(𝜙 − 1) (4-3) 

𝛽 = 𝛽0 + 𝛽1(𝜙 − 1) (4-4) 

 

Where 𝑇0 is the reference unburnt gas temperature and 𝑃0 the reference pressure, usually 

taken at ambient condition, subscript 1 indicates the unburnt (fresh) mixture, and 2 indicates 

the burnt phase, 𝑘 ∙ 𝑋𝐸𝐺𝑅
𝛾 is a correction factor introduced to account for the presence of 

EGR as inert (𝑘 has values found in literature between 1.7 and 2.3). The coefficients in the 

previous equations need to be modified as a function of the chosen correlation (the most 

used are those of Metghalchi and Keck [59], Heywood [60] or Gülder [61]), and are 

presented in literature for different surrogates and PRFs, obtained through experimental 

campaigns, while 𝜙𝑚 indicates the equivalence ratio at which maximum laminar flame speed 

is reached at reference conditions.  Despite their diffusion, these correlations, based on 

experimental data, lack the ability to accurately describe the effect of different fuel 

compositions, and their validity is confirmed only under thermodynamics conditions close to 



Laminar flame speed simulations 

41 
 

ambient, that are far from the higher pressure and temperature ranges reached during 

engine operation. Therefore, in recent years, it has become common practice to perform a-

priori simplified laminar flame speed calculations with detailed chemical kinetics solvers, in 

order to obtain an appropriate description of the sensitivity of the chemical reactions 

occurring inside the flame front to the conditions actually reached inside the combustion 

chamber. The results of these simulations, in terms of both laminar flame speed and 

thickness, then, can be employed in the form of look-up tables to be interpolated in run-time, 

or through new and more precise correlations. 

Starting from the definition of laminar premixed flames, these can be regarded in their 

simplest form as a one dimensional laminar and adiabatic propagation of the flame front into 

a homogeneous air-fuel mixture. The equations that describe the mass, species and energy 

conservation for this type of problem can be defined as follows [62]: 

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢

𝜕𝑥
= 0 

(4-5) 

𝜕𝜌𝑌𝑘
𝜕𝑡

+
𝜕

𝜕𝑥
(𝜌(𝑢 + 𝑉𝑘)𝑌𝑘) = 𝜔𝑘̇    ,    𝑓𝑜𝑟 𝑘 = 1,𝑁 − 1 

(4-6) 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
) = − ∑ ℎ𝑘𝜔̇𝑘 

𝑘=1,𝑁

= +
𝜕

𝜕𝑥
(𝜆
𝜕𝑇

𝜕𝑥
) − 𝜌

𝜕𝑇

𝜕𝑥
( ∑ 𝑐𝑝,𝑘𝑌𝑘𝑉𝑘
𝑘=1,𝑁

 ) 
(4-7) 

 

These equations describe a transient wave propagating from the burnt to the fresh zone of 

the 1D domain, where N is the number of molecules that appear in the mixture, 𝑌𝑘 their mass 

fraction, 𝑉𝑘 their diffusion velocity and 𝜔̇𝑘 their reaction rate.  

 
Figure 4-2: Non-dimensional profile of selected variables near the flame front section 

 

The second essential property of the laminar flames is the front thickness, which can be 

computed as the ratio between thermal diffusivity of the fresh gas and the laminar flame 

speed. A more useful definition of laminar flame thickness is given by [63] using the 

temperature profile, reported in Eq. 4-8, where subscript 1 indicates the unburnt (fresh) 

mixture, and 2 indicates the burnt phase: 
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𝛿𝐿
0 =

𝑇2 − 𝑇1

𝑚𝑎𝑥 (|
𝑑𝑇
𝑑𝑥
|)

 (4-8) 

 

The definition and the evaluation of the laminar front thickness is notable since it affects the 

wrinkling efficiency of turbulence eddies. The chosen definition of laminar flame thickness 

in Eq. 4-8 is described as thermal thickness, and it is reported as the most representative 

for laminar flames, but the application in the CFD simulations of ICEs is more complex, 

because of the several hypotheses made in the combustion and turbulence models. 

A correlation based on scaling laws was introduced to overcome the lack of experimental 

data regarding the LFT, as proposed in Eq. 4-9 calculated with the properties of the fresh 

mixture, where 𝜆 is the thermal conductivity of the gas, 𝜌 is its density, 𝐶𝑃 the specific heat 

at constant pressure and 𝑠𝐿 is the laminar flame speed in that condition. 

𝛿𝐿
0 =

𝜆

𝜌𝐶𝑃𝑠𝐿
 

 

(4-9) 

Blint [64] corrected the previous correlation by introducing a correction factor based on the 

burnt gas temperature, leading to Eq. 4-10, where subscript 1 indicates that the property 

refers to the fresh mixture, and subscript 2 is the condition of the burnt zone. 

𝛿𝐿
𝐵𝑙𝑖𝑛𝑡 = 𝛿𝐿

0 (𝜆/𝐶𝑃)2

(𝜆/𝐶𝑃)1
  (4-10) 

 

Since the value of the LFT in turbulent combustion modelling is extremely important, the 

accuracy of the Blint’s correlation has been evaluated under engine relevant conditions with 

respect to values obtained by means of detailed chemical simulations. It was chosen to 

focus only on the data available for a generic gasoline surrogate fuel and the results reported 

in Table 4-1 show an overall good agreement between the two values. 

Table 4-1: Performance metrics of the Blint correlation with respect to detailed chemical kinetics 

Slope 𝑅2 MAE (m) RMSE (m) 

0.626 9.91E-1 2.11E-5 5.07E-5 

 

In particular, the slope can be interpreted as a proportionality coefficient between the 

calculated thermal thickness and that obtained from the temperature profile, which can be 

used as a constant of proportionality for simpler CFD models. Besides the requirement for  
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scaling factor. After the application of such correction, the MAE and RMSE are reduced by 

over 40% and the final relative error distribution is presented in Figure 4-3. 

 

Figure 4-3: Relative error distribution of the laminar flame thickness prediction methods 

The solution procedure followed by the Cantera implementation is based on the finite 

difference solution of the equations on a adaptively refined grid, using a hybrid Newton / 

time stepping algorithm, where the flame is considered to be steady in the inner region of 

the domain, with the inlet velocity boundary that equals the consumption speed of the flame. 

After reaching the steady solution of the problem, the temperature profile along the 

centerline can be used to identify the position of the flame front and its width can be 

calculated [65]. Arguably the most significant drawback of this approach is the requirement 

to impose a fixed width of the domain from the first iteration. In particular, it has been directly 

observed that the solution of the problem might not reach the steady state for a too short 

domain, since the computational method is not capable of identifying a suitable flame front 

stabilization point, thus leading to the requirement to increase the domain width and run a 

new simulation. At the same time, the choice of a domain width too large allows for the 

development of cool flame phenomena before the flame front, up to the point of fresh mixture 

autoignition, which is identified by the solver as an extremely high laminar flame speed 

(since it is not expected to handle deflagration to detonation transitions). For sake of clarity, 

in Figure 4-4 the laminar flame speed of n-heptane, which is a molecule usually referred to 

for its NTC behaviour, is reported as a function of the chosen domain width for a sufficiently 

high initial pressure, and rich mixture, in order to increase the cool flame effect (in this case, 

the chosen operating point was P=120 bar, T=850K, equivalence ratio=1.2 and 0% EGR). 

Besides the possibility of an a-posteriori analysis of the flame temperature profile, which 

would allow to identify the insurgence of cool flames before the planar flame front [66], in 

order to reduce the computational time required, a precise domain width definition strategy 

has been defined: 

1) The first step is the identification of a reasonable laminar flame speed value for the 

operating point, obtained with the classical Heywood correlation for Isooctane. Even 

if the final laminar flame speed is not expected to correspond precisely to the value 

predicted by the correlation, this initial guess is necessary to perform further 

computations. 
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2) The first stage ignition delay time of the mixture in the desired conditions is easily 

computed by integrating a 0D constant volume domain under the same conditions as 

for autoignition simulations. To be more cautious, the identification of the insurgence 

of cool flame phenomena corresponds to the first instant with a positive temperature 

gradient. 

3) An equivalent distance is computed by multiplying the guessed laminar flame speed 

by the first stage ignition delay time, and its value is considered a upper-bound limit 

for the laminar flame front stabilization. 

4) The lower-bound limit is identified in order to reduce the computing time required and 

avoid the need to increase the domain width in order to allow the numerical method 

to converge to steady state. Its value is identified by scaling an initial value of 0.1 m 

by the laminar flame thickness of the mixture in the simulated conditions (obtained 

by applying the Blint equation to the guessed laminar flame speed). 

 

The domain width is then chosen as the average of the lower and upper -bound limits, as 

long as the correlation does not provide values that invert their order, in which case, the 

requirement to avoid cool-flame insurgence is enforced. 

 

 
Figure 4-4: Influence of domain width on the computing time and cool flame phenomenon insurgence 

 

The computing time of the problems, independently from the solution procedure adopted, is 

expected to scale linearly with the number of reactions, and quadratically with the number 

of species that the chemical kinetics mechanism accounts for. 

 

4.2 Brief introduction to DRGEP-SA 

 

Considering the high computing time required by the computation of a single laminar flame 

speed value, the generation of new look-up tables for evaluating sensitivity analysis to fuel 
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formulations, as well as optimizing fuel composition, might become unfeasible. A possible 

approach to reduce this requirement is based on the use of an optimized version of the 

chemical kinetics scheme [67], obtained by removing the less relevant reactions for the 

problem and conditions to be simulated. To this aim, several approaches have been 

proposed in literature, but the use of automatic reduction algorithms is generally considered 

an efficient approach. In particular, the DRGEP (Directed Relation Graph with Error 

Propagation) combined with a subsequent Sensitivity Analysis, proposed by Niemeyer [68] 

[69] [70] [71]  are usually referred as efficient ways to reduce the size of a chemical kinetics 

scheme while controlling the solution accuracy in 0D reactor simulations at reference 

conditions. The method is based on a three-step algorithm: 

1)  Direct interaction coefficients between each species pair A, B is computed as:  

𝑟𝐴𝐵 = |
∑ 𝜈𝐴,𝑖𝜔𝑖𝛿𝐵,𝑖𝑖=1,𝑁𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

max(𝑃𝐴, 𝐶𝐴)
| 

Where 𝑃𝐴 = ∑ max (0, 𝜈𝐴,𝑖𝜔𝑖)𝑖=1,𝑁𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠
  and 𝐶𝐴 = ∑ max (0, −𝜈𝐴,𝑖𝜔𝑖)𝑖=1,𝑁𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 and 

𝛿𝐵,𝑖 is a Kroenhecker delta equal to 1 if the ith reaction involves B. 

2) Differently from the DRG method, a modified Dijkstra’s algorithm [72] has been 

applied to calculate the overall interaction coefficient efficiently between each target 

T and all other species B as the maximum of the interaction coefficients along all 

paths: 

𝑅𝑇𝐵 = max(∏𝑟𝑆𝑗𝑆𝑗+1

𝑛−1

𝑗=1

) 

3) After the computation of each overall interaction coefficients, each species B is 

removed when 𝑅𝑇𝐵 < 𝜖, set to 1e-4 for this application. 

After the application of the reduction procedure, the idea of Niemeyer et al. was to apply a 

sensitivity analysis reduction step on a subset of the reactions defined by their interaction 

coefficients. The sensitivity analysis is, in fact a very computationally intensive technique, 

which is based on the repeated simulation at reference conditions of modified versions of 

the base mechanism. The change in the target results (for example ignition delay times) with 

respect to the change in the rate of each reaction is then compared with a threshold value 

and the reaction is eventually removed. 

Since real engine CFD simulations are concerned, and due to the availability of experimental 

data [73], the selected fuel surrogate is the TAE7000 (RON 98.1, composition: 13.7%v n-

heptane C7H16, 42.9%v iso-octane C8H18, 43.4%v toluene C7H8), which was found to provide 

accurate laminar flame speed predictions to that of a TOTAL commercial gasoline. 

From the chemical kinetics schemes presented in chapter 1, considering that toluene is not 

included in the NUI2021 mechanism, only the LLNL2021 and CRECK2019 are considered 

as reference mechanisms. Each of them has also been reduced with the DRGEP-SA 

approach, admitting a reduction error of up to 5% and up to 10% on ignition delay time 

simulations performed on a set of 10 operating points with the TAE7000 surrogate. The 

chosen conditions are reported in Table 4-2 
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Table 4-2: Operating points considered for the autoignition simulations employed by the mechanism 

reduction algorithm 

OP # P (bar) T (K) Equivalence ratio (-) 

1 10 900 1.0 

2 50 800 1.2 

3 100 1000 1.0 

4 150 1400 0.8 

5 10 950 1.0 

6 50 850 1.3 

7 100 1100 0.7 

8 150 1200 1.5 

9 100 1000 1.0 

10 100 1000 0.5 

 

For each chemical kinetics scheme (referred to as ‘complete’), two reductions are therefore 

available, and their size is reported in table, together with the average time required to 

perform a laminar flame speed computation with the same numerical setup on 5 operating 

points on a machine having the following hardware and software configuration: Intel Xeon 

Platinum 3.0 GHz, 36 cores,144 GB ram, Cantera version 2.3.0 on Python 3.7.2 [74, p. 3].  

 

Table 4-3: Number of species and reactions and computing time required for the solution of a laminar 

flame speed simulation for complete and reduced chemical kinetics mechanisms 

 LLNL2021 L_RED1 L_RED2 CRECK2019 C_RED1 C_RED2 

#SPECIES 1956 1004 891 582 279 226 

#REACTIONS 10371 7853 6543 21174 11980 8703 

Time/sim 

(CPUhr) 

N/A 14.1 10.3 6.8 2.5 1.9 

 

The simulations for the laminar flame speed with the LLNL2021 scheme could not be 

performed due to hardware limitation, given the large size of the mechanism and the 

memory requirements of the employed method. 

The differences between the complete and reduced schemes in term of species and 

reactions considered generate a great unbalancing in terms of the CPU time required for 
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simulating a complete database of reference points. Due to its time cost requirements, the 

remaining analysis has been performed only on the CRECK2019 model and its reductions. 

Besides a reduction in the computing time, a reduced accuracy of the result can be identified 

when comparing the laminar flame speed values of simple gasoline fuel surrogates with the 

detailed and reduced versions of the chemical kinetics mechanism, as presented in Figure 

4-5 for the TAE7000 gasoline fuel surrogate. Further analysis on the error induced by the 

reduced schemes on a wider range of conditions will be reported in the next sections. 

 

 
Figure 4-5: Laminar flame speed of TAE7000 with different methods for different values of Equivalence 

ratio, P=50 bar, T=750 K, EGR=5% 

 

 

4.3 Look-up table generation 

 

To compute a lookup table of laminar flame speed and thickness, to be substituted to the 

classical correlation approach, the detailed 1D chemical kinetics simulation must be 

performed for a range of potential thermodynamics and mixture conditions, capable of 

representing all possible engine operation scenarios. Considering the idea of populating a 

full grid of combinations of the independent variable that describe the problem after the 

selection of the fuel is performed, a total number of 4 independent variable is required, and 

their operating limits are reported in Table 4-4. 

Table 4-4: Lower and upper bounds for the intervals of the properties defining an operating condition 

Variable Min Vlaue Max Value 

Pressure (bar) 5.0 160.0 

Unburnt Temperature (K) 450.0 950.0 

Equivalence Ratio (-) 0.3 3.0 

EGR (%) 0.0 30.0 

 

In order to define the number of points for each variable, considering their influence on the 

overall grid of computations required, a sensitivity study has been performed assuming that 

the on-line interpolation of the look-up table during CFD simulation will be based on a multi-
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linear approach. An exemplary effect of the effect of the number of points for a simplified 

domain is reported in Figure 4-6, where the impact of choosing an increasing number of 

points for the discretization of the dependency of the laminar flame speed on the 

equivalence ratio is illustrated. 

 
Figure 4-6: Laminar flame speed of TAE7000 for different values of Equivalence ratio, P=1bar, T=358 K, 

EGR=0% with varying number of discretization points 

 

A deeper analysis has been performed on a set of available simulation data for a sufficiently 

refined grid (whose step size is at least double than the smallest step size considered for 

the analysis). The results reported in Figure 4-7, clearly show that after a threshold limit for 

each variable a sufficiently accurate result can be obtained, therefore the step sizes have 

been chosen accordingly (Equivalence ratio step size=0.1, Temperature step size = 50 K, 

Pressure step size=20 bar, EGR step size=5%).  

 

 
Figure 4-7: MAE committed during multi-linear interpolation function of variable step size 
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The total number of simulations to be performed is given by the full combinations of the 

reference data, i.e. 19’404 points. 

 

4.4 ML Experiments 

The possible approaches to integrate a machine learning model with detailed chemistry 

simulations to generate new tabulation points, previously unseen, can be classified with 

respect to the level of autonomy that is given to the model into two different approaches: 

• Employ a traditional regression model to infer the values of the entire map after 

training on a limited number of observations generated by simulating a section of the 

database. 

• Define a hybrid regression strategy based on the use of reduced chemical kinetics 

mechanisms and machine learning algorithms in order to leverage the increased 

computational speed of the reduced mechanism compensating its reduced accuracy 

with a machine learning model, following Eq. 4-11 where the term 𝜂𝑀𝐿 is a 

proportionality coefficient inferred by the trained model, (𝑠𝐿)1𝐷_𝑟𝑒𝑑 is the result of the 

reduced mechanism and 𝑠𝐿̃ the final output. 

𝑠𝐿̃ = (𝑠𝐿)1𝐷_𝑟𝑒𝑑 ⋅ (1 + 𝜂𝑀𝐿)  (4-11) 

 

The use of the correction term in the second method is expected to compensate most part 

of the error committed by the reduced scheme, but in a fraction of the time that a simulation 

with the complete scheme would require, leading to an optimal trade-off between 

computation time and accuracy. A further advantage of the second approach is the intrinsic 

robustness of the methodology, considering that the underlying solution is still based on 

chemical kinetics computations that are expected not to display unphysical results, even 

when using reduced models. 

In order to compute an estimate of the accuracy correction term (𝜂𝑀𝐿) for a given 

combination of input parameters, the ML model must be trained on the available dataset of 

both reduced and full chemical simulations at the reference points.  

Before addressing the proposed solution, the differences in the results obtained with the 

complete and the reduced schemes in terms of laminar flame speed and thickness must be 

analyzed. 

By comparing the values obtained on a subset of reference conditions of the full grid, 

computed for both CRECK2019 and C_RED2 mechanisms, the relative difference between 

the results of the simulations displays a non-linear behaviour with the physical and chemical 

properties of the simulated points. From a preliminary analysis on a dataset of about 1000 

points, the relative error committed by using the reduced mechanism (with respect to the 

solution provided by the reference complete mechanism using TAE7000 as representative 

fuel) shows different behaviours depending on the equivalence ratio, with an almost 

exponential profile for richer mixtures. On the opposite, such an error is parabolic with 

respect to mixture composition, as reported in Figure 4-9 and increases exponentially for 

lower pressure values, as reported in Figure 4-8 for different initial temperatures. Whereas 
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the main source of error between the complete and the reduced mechanisms is the reduced 

number of intermediate species leading to the more exothermic reaction pathways, which 

might lead to expect an overall laminar flame speed value reduction, the equilibrium between 

𝑄𝑂𝑂𝐻̇  decomposition into cyclic ether species, conjugate olefins and 𝛽-decomposition 

products and the formation of the ketohydroperoxide species is not expected to respond 

linearly with temperature pressure and mixture composition, especially for more complex 

thermodynamics conditions. 
 

 
Figure 4-8: Relative difference between laminar flame speed obtained with complete and reduced 

chemical kinetics scheme for different values of P and T, at 𝜙=0.6, EGR=0 %. 

 

 
Figure 4-9: Relative difference between laminar flame speed obtained with complete and reduced 

chemical kinetics scheme for different values of EGR and 𝜙, at P=105 bar, T=840 K. 
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4.4.1 Optimization and Validation set results for the first methodology 

Considering the recognized applicability of the Blint correlation for laminar flame thickness, 

particular focus has been given on the prediction of the laminar flame speed values with 

machine learning techniques. In order to perform a fair comparison between all the methods 

and algorithms, a validation dataset composed of 1000 normally distributed random points 

(approximately 5% of the overall dataset) has been removed from the dataset available for 

training and analysis of the regression algorithms. The first test is therefore based on the 

pure tabular regression of the laminar flame speed values, for which classic ensemble 

models are known to even outperform deep neural networks [51].  

Considering the requirement to avoid unphysical results when predicting values that must 

be used during a simulation, a new metric J has been introduced in order to perform a better 

comparison between the models, computed on the validation dataset. 

𝐽 =  0.9 ∙ 𝐸𝐿1 +  0.1 ⋅ 𝐸𝐿∞  (4-12) 

A further aspect to be considered is related to the dependency of the performance with 

respect to the training set size, therefore all the models have been compared on 4 normally 

distributed random subsets of decreasing size (80%, 50%, 20%, 10% of the entire training 

dataset) and a further set of approximately 5% of the full database, hand-picked and 

composed by the most engine-relevant conditions. 

The algorithm optimization workflow is the same applied in Chapter 3 and introduced in 

Chapter 2, with the Bayesian optimization of the main hyperparameters of the model over 

the k-fold cross validation performance. The XGBoost algorithm [26] has been chosen as 

initial testing model for the identification of the minimum acceptable dataset size. The 

results, reported in Figure 4-10 with respect to the error committed by the reduced 

mechanism C_RED2 clearly highlight the reduced accuracy of the predictions in unknown 

regions, which lead to maximum relative error of almost 30% even when 80% of the training 

dataset is employed. On the other hand, the average performance of the regression model 

is even closer to the target values with train set fractions of at least 20% of the overall dataset 

(approximately 3000 points).  

 
Figure 4-10: Relative difference (mean and max) for the C_RED2 mechanism and regression model  
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Considering the dependency of the error a function of the methodology rather than the single 

algorithm, the train set fraction of 20% is selected to compare the other regression 

algorithms, with optimized performance reported in Table 4-5. 

 

Table 4-5: Performance metrics on the classical machine learning regression models 

Model MAE (m/s) RMSE (m/s) R2 J (m/s) 

Elastic net regression 0.177 0.294 0.76 0.27 

Polynomial regression with 2nd order 

features 

0.116 0.198 0.87 0.21 

Polynomial regression with 3rd order 

features 

0.143 0.268 0.79 0.24 

Support vector machine regression with 

RBF kernel 

0.096 0.142 0.89 0.18 

Gaussian process regressor with RBF 

kernel 

0.083 0.128 0.91 0.15 

Decision tree regressor 0.115 0.194 0.88 0.19 

Random forest regressor 0.032 0.067 0.94 0.044 

Adaboost regressor 0.014 0.052 0.97 0.021 

 

The same conclusion that was derived in Chapter 3, regarding the non-linearity nature of 

the target, can be drawn by observing the increased accuracy of the polynomial regression 

by increasing the order of the features. Also in this case, the capability of ensemble methods 

to combine several simpler models and optimize different areas of the domain highlights 

their applicability to this type of problems. 

In order to capture all nonlinearities, a different approach, based on deep neural networks 

is applicable, thanks to the availability of a sufficiently large dataset. Also in this case, the 

optimization methodology is based on the workflow presented in Chapter 2, and the resulting 

neural network is re-trained on 20% of the entire training dataset. The final structure is 

composed of a simplified block-structure made of dense+normalization layers with size of 

integer multiples of the input size of 4, as reported in Figure 4-11. The optimization of the 

weights of the neural network has been therefore performed with the Adam optimizer [75] 

and a learning rate set to 0.05, thanks to the presence of batch normalization layers, for an 

infinite number of iterations, stopped by the early stopping techniques after 100 iteration 

without improvement on a random 5% validation sub-set.  
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Figure 4-11: Architecture of the optimized DNN model 

 

To visually understand the meaning of the employed metrics, the results of laminar flame 

speed for the 3 mechanisms and the values predicted by the XGBoost algorithm are shown 

as a function of the equivalence ratio for an unseen temperature and pressure condition. 

From the visual comparison, the predicted values present a reasonable profile, as well as 

values closer to the target with respect to the results obtained with the most reduced 

mechanism. However, the relative difference changes direction passing from lean to rich 

mixtures, which is an important aspect to be considered, since it might lead to erroneous 

interpretation of the combustion results. 
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Figure 4-12: Laminar flame speed of TAE7000 with different methods for different values of Equivalence 

ratio, P=25 bar, T=600 K, EGR=5% 

 

 

4.4.2 Optimization and Validation set results for the accuracy recovery 

methodology 

The workflow adopted for the definition of the machine learning regression problem with 

accuracy recovery is based on the assumption that the relative error between the laminar 

flame speed obtained with the complete mechanism and that obtained with a reduced 

version (in this case CRECK2019 and C_RED2) differ by a proportionality coefficient that 

behaves non linearly with the thermodynamics properties and thus needs to be inferred by 

non-linear regression models. The first step for the application of this approach is, therefore, 

the definition of the new target variable, defined as the relative difference between detailed 

and reduced results:  

𝜂𝑀𝐿 = 
(𝑠𝐿)1𝐷𝑑𝑒𝑡𝑎𝑖𝑙𝑒𝑑−

(𝑠𝐿)1𝐷𝑟𝑒𝑑
(𝑠𝐿)1𝐷𝑟𝑒𝑑

  
(4-13) 

From this equation, it is straightforward that the recovery of the approximate laminar flame 

speed solution will be derived from Eq. 4-11. 

The results of the same algorithms employed for the previous approach are directly applied 

on the final laminar flame speed value, and not to the intermediate target variable. Also in 

this case, an initial optimization of the required dataset size has been performed with the 

optimized XGBoost algorithm, leading to the identification of the minimum dataset-size 

required to outperform the reduced mechanism in terms of both mean and maximum relative 

error. The first conclusion that can be drawn is related to the overall better performance of 

the accuracy recovery method with respect to the standard regression, with a drop from 

about 7% to less than 2% average error with as little as 5% of the training set size. In order 

to control also the maximum error committed, however, the chosen training set size has 

been defined as 10% of the available dataset.  
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Figure 4-13: Relative difference (mean and max) for the C_RED2 mechanism and accuracy recovery 

 

The results of all the regression algorithms considered are reported in Table 4-6 together 

with the optimized neural network architecture, confirming the capability of the boosted tree 

model to outperform other regression techniques when dealing with tabular data. 

 

Table 4-6: Performance metrics on the classical machine learning regression models 

Model MAE (m/s) RMSE (m/s) R2 J (m/s) 

Elastic net regression 0.041 0.049 0.956 0.076 

Polynomial regression with 2nd order 

features 

0.038 0.042 0.974 0.064 

Polynomial regression with 3rd order 

features 

0.031 0.037 0.985 0.067 

Support vector machine regression with 

RBF kernel 

0.028 0.033 0.992 0.053 

Gaussian process regressor with RBF 

kernel 

0.026 0.031 0.995 0.049 

Decision tree regressor 0.032 0.043 0.985 0.061 

Random forest regressor 0.019 0.023 0.998 0.041 

Adaboost regressor 0.015 0.019 0.999 0.032 

XGBoost 0.011 0.014 0.999 0.027 

Optimized DNN 0.012 0.017 0.999 0.029 

 

The results in terms of visual comparison of the same operating condition reported for the 

simple regression problem are reported in Figure 4-14 for the accuracy recovery method, 

underlying a very accurate result with respect to the reference values. 
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Figure 4-14: Laminar flame speed of TAE7000 with different methods for different values of Equivalence 

ratio, P=25 bar, T=600 K, EGR=5% 

 

The relative error of the different methodologies is reported in Figure 4-15, where it can be 

noticed that the accuracy recovery approach displays a superior performance both in terms 

of mean error and error distribution, which is almost normally distributed around 0 and limited 

between -11% and 9%. 

 
Figure 4-15: Relative error distribution on the whole dataset for the different approaches proposed 

On the other hand, this approach carries a higher computational cost compared with the 

pure regression model, as reported in Table 4-7 which is only partly alleviated by the 

requirement for a smaller training dataset. The training and inference time of the machine 

learning algorithms overhead is not considered, given the difference by order of magnitudes 

with chemical kinetics simulation times. 
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Table 4-7: Computing time required for the generation of a complete look-up table of laminar flame speed 

values 

GENERATION of 

19000 points 

Simulation time with 

CRECK2019 (CPUhr) 

Simulation time with 

C_RED1 or 2 (CPUhr) 

TOTAL TIME 

(CPUhr) 

CRECK2019 129’200 - 129’200 

C_RED1 - 47’500 47’500 

C_RED2 - 36’100 36’100 

Regression 25’840 - 25’840 

Accuracy Recovery 12’920 36’100 49’020 

 

4.5 Water Injection in internal combustion engines 

The water injection strategy has become of increasing interest for the development of SI 

engines, even if application examples have been provided for several decades for increasing 

the thrust at low speed of jet engines, or mitigate the knock risk of gasoline engines before 

the introduction of the intercooler technology [76] [77]. In recent years, interest towards this 

technology has grown, since it is considered a viable alternative to reach the targets of 

reduction of CO2, NOx and fuel consumption that are required by the current regulations, in 

particular as enhancer for the lambda=1 strategy that is expected to be enforced by future 

regulations on the whole engine map [78] [79] [80]. 

 
Figure 4-16: Performance map enhancement at lambda=1 thanks to water injection strategy adoption 

Recently, a new correlation was proposed for keeping into account also the effect of water 

vapour as a diluent, based on detailed chemical simulations performed on relevant 

conditions that are reached during engine operation [81]. The results of the correlation, in 

terms of sensitivity to the diluent effect of water addition at relevant conditions, were 

adequately in agreement with the values of the detailed chemical simulations. On the other 

hand, it resulted that the use of a literature-standard power-law function for higher P and T 
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values led to the prediction of unphysical values of LFS for 𝜙 greater than stoichiometric. 

The effect of the addition of water and EGR in reducing the LFS was, however, captured 

well by using a linear correlation, in the form of Eq. 4-14: 

𝑠𝐿

𝑠𝐿0
= (1 − 𝑘𝐸𝐺𝑅 ∙ 𝑋𝐸𝐺𝑅) ∙ (1 − 𝑘𝑤𝑎𝑡 ∙ 𝑋𝐻2𝑂 )  (4-14) 

where 𝑠𝐿 is the actual LFS, 𝑠𝐿0 indicates LFS at the same P, Tu and 𝜙 but with 𝑋𝐸𝐺𝑅 = 0 

(EGR mass fraction) and 𝑋𝐻2𝑂 = 0 (water vapour mass fraction), and 𝑘𝐸𝐺𝑅 and 𝑘𝑤𝑎𝑡 are the 

correlation coefficients.  

In order to overcome these limitations, and following the ideal target of generating a laminar 

flame speed look-up table for online interpolation during the CFD analysis, the water vapour 

mass fraction value must be considered as an additional independent variable. The upper 

bound for the water mass fraction inside the mixture is fixed at 6%, considering that the 

evaporation times of the liquid droplets would not allow to practically employ fractions higher 

than 4%, which is assumed to locally reach values not higher than 6%. The analysis reported 

in this section refers to the simulations performed on the TAE7000 surrogate but can be 

qualitatively extended to the other fuels. It can be noticed that the effect of the addition of 

water vapour to the unburnt mixture definition leads to a decrease in terms of LFS. This 

effect, as reported for two combinations of P and 𝑇𝑢 in Figure 4-17 is higher for near 

stoichiometric reacting mixtures, underlying a nonlinear behaviour that a traditional 

correlation would have omitted.  

 

Figure 4-17: Laminar flame speed of the TAE7000 gasoline fuel surrogate as a function of Equivalence ratio 

and water vapour mass fraction at P=50 bar, T=600 K and EGR=1% 

From Eq. 4-14, the effective value of a linear correlation coefficient 𝑘𝑤𝑎𝑡 can be calculated 

from the simulated values of laminar flame speed, where 𝑠𝐿 represents the actual LFS with 
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a mass fraction of water vapour equal to 𝑋𝐻2𝑂 and 𝑠𝐿0 the LFS at the same conditions of P, 

Tu, 𝜙 and 𝑋𝐸𝐺𝑅 without water addition: 

𝑘𝑤𝑎𝑡 = (1 −
𝑠𝐿

𝑠𝐿0
) /𝑋𝐻2𝑂  

(4-15) 

The distribution of the relative error committed in calculating the LFS on a subset of a full-

grid database, using a single value of 𝑘𝑤𝑎𝑡 with respect to the output of the simulations is 

reported in Figure 4-18. It can be noticed that the peak of the distribution is near 0, which 

derived from the choice of the best fitting value of 𝑘𝑤𝑎𝑡, but in more than 50% of the 

simulated points the effect of water addition is overestimated. 

 

Figure 4-18: Relative error distribution between the optimized constant  𝑘𝑤𝑎𝑡 and its real value 

 

4.5.1 Machine learning strategy for laminar flame speed look-up tables 

accounting for water vapour 

Starting from the overall acceptable performance of a simple constant linear coefficient for 

the inclusion of water vapour into the definition of laminar flame speed, the hybrid machine 

learning methodology employed consists in the definition of non-linear, variable 

proportionality coefficient, whose value needs to be inferred by a machine learning 

algorithm, as reported in Eq. 4-16. 

𝑠𝐿̃ = 𝑠𝐿0 ⋅ (1 − 𝑘𝑀𝐿(𝑃, 𝑇𝑢, 𝜙, 𝑋𝐸𝐺𝑅 , 𝑋𝐻2𝑂) ∙ 𝑋𝐻2𝑂)   (4-16) 

The additional hypothesis of a linear correlation of LFS with 𝑋𝐻2𝑂, even if performed with a 

variable proportionality coefficient, enforces the equivalence of the predicted laminar flame 

speed with the reference value, which is a desirable property. It is however necessary to 

include the water vapour mass fraction inside the input variable for the regression algorithm, 

considering that it is expected to learn the mutual relations between the other variables and 
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the water mass fraction. Also for this application, the use of the minimum number of 

simulated point is a requirement for the applicability of the method, therefore an analysis on 

the performance on a hold-out validation dataset has been performed as a function of the 

size of the training set. The results are reported in Table 4-8 and highlight the fact that the 

application of the hybrid approach requires a limited training dataset in terms of new 

simulated points for extending a pre-defined laminar flame speed look-up table of reference 

size to include the effect of water vapour inside the domain. The comparison was carried 

out only with the optimized XGBoost algorithm, considering the optimal results obtained for 

previous similar tasks. 

Table 4-8: Performance metrics of XGBoost as a function of the size of the additional dataset 

Additional points MAE (m/s) RMSE (m/s) R2 (-) 

1% 0.008 0.008 0.98 

2% 0.005 0.003 0.99 

5% 0.003 0.002 0.99 

10% 0.003 0.001 0.99 

20% 0.002 0.001 0.99 
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5 Algorithm for fuel surrogate definition and analysis 

While the methods for simulating the behaviour of hydrocarbon fuels are essentially well 

established within the scientific community, a unique definition of the fuel composition is still 

an open issue. Focusing purely on gasoline fuel and bio-derived blends, which are currently 

the most widely adopted energy sources for light duty transport, the main reasons behind 

this issue can be divided into 2 groups: 

1) Variability in pump gasoline composition due to different origins, seasonality and 

experimental uncertainty. 

2) Lack of detailed molecular modelling for the potentially thousands of single molecules 

constituting the target blend. 

 

While the first concern can only be contained by providing information related to the 

experimental accuracy, but not entirely solved, the second point has been addressed by the 

research community through the development of simplified mixtures, defined to match some 

relevant properties of the real target. These simplified models are generally referred to as 

fuel surrogates and have been the subject of several studies over the years.  

In the present chapter, after a review of the evolution of gasoline fuel surrogate formulations, 

attention will be given to: 

1) the identification of potential target fuels, for which a wide experimental 

characterization  is available, 

2) the definition of mixing laws for the rapid identification of mixture properties after the 

fuel surrogate formulation, 

3) the development of a multi-objective optimization algorithm for the efficient 

identification of suitable surrogates. 

 

The methodology will then be applied to 2 target fuels, identifying a correlation between the 

type and number of experimental data available, and the expected unicity of the results.  

 

5.1 Classical gasoline fuel surrogate formulations 

Many approaches have been proposed in literature to define surrogates matching some 

known properties of the real fuel [82] [83] [84], from the common PRFs (mixtures of 

isooctane and n-heptane that can easily match RON values) [85] to TRF-E (PRF + toluene 

and ethanol, in order to better represent the composition of the pump gasoline and allow for 

different sensitivity values [86] [87] [88]) to more complex mixtures. For example, in the 

seminal work by Mehl e al. [89] the authors define a 4-components fuel surrogate mimicking 

RON/MON and information regarding the composition of the target fuel by leveraging their 

expertise and using validated correlations to define the properties of the mixture. 

Puduppakkam et al. [90] have described the process for formulating a complex 5-component 

fuel surrogate emulating the known properties of a target gasoline validated under HCCI 

conditions, underlying how the capability of a more complete surrogate could outperform the 

predictions of simpler mixtures. Despite the frequent availability of some information 

regarding both the liquid and vapor phases of the fuel, it is frequently found in literature a 
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differentiation between surrogates employed for the liquid phase (necessary for spray and 

mixing simulations) and for the gas phase (used for the simulation of the combustion 

process). In the present chapter the focus is on developing surrogates for the gas phase 

prevalently, however, physical properties of the liquid phase are considered as well, due to 

their larger availability, with the aim of providing the optimizer with more information that 

could correlate with reactivity data. Considering the fact that some values, like laminar flame 

speed or ignition delay times, are rarely identified during the characterization of target fuels 

due to the requirement of more expensive [91], longer or more complicated experimental 

tests, the aim of the next sections is to identify the minimum set of properties that are 

required to define a representative gasoline surrogate for combustion CFD simulations 

within a given confidence interval. 

 Furthermore, the possibility to quantify the predictive consistency of simulations performed 

with different surrogates of the same fuel, as a function of the number of optimized variables, 

is expected to quantify the attended level of uncertainty that the research community must 

consider from the definition of a gasoline fuel surrogate with a limited number of known 

properties. The definition of the minimum set of necessary properties and the attended 

confidence level is expected to increase the speed of development of fuel mixtures with new 

bio-derived components, using CFD simulations. 

 

5.2 Target fuels 

The developed approach will be validated against two well described fuels available in 

literature with properties in line with pump gasoline, and the conclusions regarding the 

representability of the final surrogates will be drawn from these two applications. Therefore, 

it is necessary to underline the fact that they can be considered relevant especially for the 

simulation of gasoline fuel combustion, which is the main problem addressed, but they may 

not hold true for different groups of combustibles.  

The first target is a fuel mixture developed by Shell Global Solutions defined ‘Shell-D’ and 

its properties (composition, density, molecular weight, rvp, distillation curve, ignition delay 

time and laminar flame speed) were experimentally characterized by Xu et al. [92]. It is 

considered representative of an E5 pump gasoline due to its main composition, octane 

number and LHV. The second target fuel is a pump RON96 E5 gasoline analyzed by 

Esposito et al. [93] for which the main properties are available but lack experimental data 

regarding laminar flame speed and ignition delay time. To complement these data, 

experimental values were taken as representative of the same fuel from where a RON96 E5 

gasoline was experimentally tested to identify the chemical kinetics behavior [94].   

The detailed properties of both targets are reported in Table 5-1 

 

Table 5-1: Properties collected for the target fuels 

Properties SHELL-D MARKET GASOLINE 

RON (-) 96.2 96.5 

MON (-) 82 86 

LHV (MJ/kg) 41 42 

H/C  (-) 1.9 1.8 
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O/C (-) 0.03 0.02 

AFS (-) 14.6 14.3 

AL-P-I-O-N-A  (%mass) 10-10-30-8-6-36 5-50-NA-12-NA-33 

IDT  (ms) Available Available 

LFS  (cm/s) Available  Available  

Liquid Density  (kg/m3) 742 729.9 

T10-T50-T90 (°C) 60-111-188 40-80-160 

Mw (g/mol) 97.4 95.5 

RVP (psi) 7 9 

 

Table 5-2: Properties chosen for the different surrogate levels 

Properties Level 1 Level 2 Level 3 

RON Yes Yes Yes 

MON Yes Yes Yes 

LHV Yes Yes Yes 

H/C Yes Yes Yes 

O/C Yes Yes Yes 

AFS Yes Yes Yes 

AL-P-I-O-N-A No Yes Yes 

IDT No No Yes 

LFS No No Yes 

Additional properties    

Mw Yes Yes Yes 

Liquid Density Yes Yes Yes 

T10-T50-T90 No-No-No No-No-No No-Yes-No 

RVP No No No 

 

The availability of experimental data regarding the properties of a given fuel usually requires 

a period in the order of several days and, depending on the availability of appropriate 

experimental instrumentation, a longer amount of time is expected to be required for the 

identification of the reactivity of the mixture. Considering the data available in literature from 

the extensive literature review on fuel surrogate formulations [95], an attempt has been 

made internally at identifying 3 sets of properties with increasing level of resources required 

for their identification, reported in Table 5-2. 

Level 1 surrogates are the most found in literature, matching properties that can be obtained 

from liquid phase characterizations and requirements in terms of RON MON and LHV. For 

reaching level 2 accuracy, it is required to include a detailed molecular analysis in the 

characterization of the fuel, which is reported for more detailed surrogates. Level 3, on the 

other hand, is often not reached in literature because the values of laminar flame speed or 

ignition delay times are rarely publicly available. The addition of the temperature at which 

50% of the distilled volume is recovered adds an additional information that could help 

identify a unique surrogate, whereas the T10 and T90 values have not been added as 
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optimization targets due to the expected difficulty in reaching reasonable values while 

targeting primarily the gas phase [96]. 

 

5.3 Optimization algorithm 

5.3.1 Bayesian Optimization 

 

The optimization of a non-linear function f(x) in a domain D, is a typical task addressed in 

scientific literature. Many approaches have been proposed, for example: 

Grid search, a classical parameter sweep where every combination of the discretized 

domain D is tested. This approach guarantees that the best result is achieved in case of 

problems with discrete inputs, but it relies on the spatial discretization of the domain in case 

of continuous inputs. Despite the straightforward parallelization of the algorithm, its main 

drawback is the time required to evaluate all the combinations, especially for higher 

dimensional problems, or for tasks where the acquisition function is computationally 

expensive.   

Random search is a derivation of the grid search algorithm, where the combinations are 

chosen following a probability distribution, in order to reduce the sampling time at cost of a 

decreased accuracy. 

Gradient based optimization is a family of algorithms that exploit the knowledge (where 

applicable) not only of the point value at the sampled inputs combination, but also of its 

derivatives, in order to better evaluate the next optimal evaluation points. The main 

drawbacks of this method are the requirement to calculate the derivative of the acquisition 

function, which is not always possible, and the reduced parallelization exploitability. 

Genetic algorithms are a family of global optimization algorithms that mimic some aspects 

of the biological evolutionary theory, in search of the best performing set of inputs as ranked 

by a fitness function. They are based on a repetition of a set of operations aimed at 

continuously increase the performance, while, at the same time explore new combinations 

of inputs. The basic process adopted by these algorithms is the following: 

- initialization of the population (definite number of initial points in domain D for which 

f(x) needs to be evaluated); 

- evaluation of each set of points concurrently evaluated in the current generation 

(based on the objective function to be maximized), step that can eventually be 

parallelized; 

- selection of the fittest candidate points in the generation, whose features are used 

(following appropriate strategies, eventually tuned) to perform crossovers 

(recombination of the parameters in the fittest elements) and mutations (changing 

some parameters in order to continue exploring a larger search domain), in order to 

define the following generation; 

- after a prescribed number of generations, or when reaching a satisfying result, the 

process can be stopped. 

Depending on the application fields, many variations have been proposed to this simple 

procedure, but they are mainly devoted to the identification of specialized strategies to 
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perform the crossover and mutation steps in more effective ways, leaving the underlying 

method unchanged. 

Despite its applicability to any kind of complex optimization problems, the use of evolutionary 

algorithms greatly relies on their implementation with respect to the problem and heuristics, 

to adapt the mutation and crossover strategies to the task. In addition, there is no formal 

indication that the genetic algorithm will converge to a global optimal solution in a prescribed 

number of iterations. 

A second kind of population based algorithms, named Bayesian Optimization, has gained 

much attention in the last decade, due to its ability to reach optimal results in a limited 

number of iterations, when compared to other methods. Its main drawback is the complexity 

of the method, which is 𝒪(𝑛3), where n is the number of evaluations available for fitting the 

surrogate model, which is, for most application, a gaussian process regressor. The high 

computational costs makes this method difficult to apply for more than a few hundred points, 

but, on the other hand, it has been empirically showed on standard optimization benchmark 

problems, that the reached performance would be similar to that reached by other algorithms 

in a larger number of evaluations. Therefore, the use of the Bayesian optimization algorithm 

is being widely adopted especially for the optimization of functions that require long 

evaluation times, in order to compensate the computational overhead induced by the 

algorithm [Time Efficiency in Optimization with a Bayesian-Evolutionary Algorithm], for 

example during the hyperparameter tuning of a machine learning algorithms. The Bayesian 

optimization algorithm follows a series of steps tat can be summarized as: 

- Define a gaussian process model (see ch. 1) with a prior describing the function f(x) 

and evaluate with the acquisition function a number of initial points according to a 

design of experiments methodology. 

- For a prescribed number of iterations: 

o update the posterior probability of the gaussian process model using all the 

available data sampled, 

o use an acquisition strategy, to define the next sampling point based on the 

outputs of the GP model on the entire domain (both mean values and 

variance).  

o Evaluate function f(x) at the point that maximizes the acquisition function and 

add the result to the available data for the update of the GP model. 

The Bayesian optimization algorithm greatly relies on the definition of the acquisition 

strategy for its efficiency, which is commonly defined as an Upper Confidence Bound 

method. This approach formalizes the so called ‘exploration vs exploitation tradeoff’ [97], 

since it consists in maximizing a combination of both mean value and variance. 

 

𝑈𝐶𝐵(𝒙, 𝛽)  = 𝜇(𝒙)  − 𝛽𝜎(𝒙)  (5-1) 

The constant coefficient 𝛽 is expected to have positive value, and it clearly represents the 

chosen exploration term of the function, whereas the maximization of the mean value of the 

predicted GP regressor represents the exploitation term. The acquisition function consists 

in the choice of the input variables 𝒙 that maximize the acquisition function. The most 
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commonly used acquisition function is called Expected Improvement and it leverages to a 

higher extent the posterior description provided by the GP model. In particular, the expected 

improvement function is set to 0 for previously acquired points, or points with null standard 

deviation from the GP regressor, otherwise it is defined as: 

𝐸𝐼(𝒙) = (𝜇(𝒙) − 𝑓(𝒙∗) − 𝜉)𝚽(𝑍) + 𝜎(𝒙)𝜙(𝑍)  (5-2) 

With 𝒙∗ defined as the best sample so far, 𝜉 defined as the parameter that quantifies the 

ratio between exploitation and exploration during the optimization approach, 𝜇(𝒙) and 𝜎(𝒙) 

the mean and standard deviation predicted by the GP posterior, while  𝚽(𝑍) and 𝜙(𝑍) are 

the CFD and PDF of variable Z defined as:  

𝑍 =
𝜇(𝒙)−𝑓(𝒙+)−𝜉

𝜎(𝒙)
  

 

(5-3) 

 

5.3.2 Multi-objective optimization problem definition 

 

Considering the non-linearity of several properties of the target fuel and the size of the 

palette, a multi-objective optimization algorithm should be defined. To perform a sufficiently 

refined grid search in the whole domain, the number of combinations would be prohibitive, 

therefore a more advanced algorithm should be employed. A Bayesian optimization 

algorithm was implemented with a custom acquisition function necessary considering the 

large number of target properties that describe the multi-objective optimization problem. 

Considering the strong importance that the research and industrial community has always 

attributed to the RON value for differentiating between fuels, it has been considered as a 

constraint, in order to reduce the number of evaluations that could not be considered 

acceptable. Considering the values of RON of the single molecules and the fact that the 

calculation method is expected to be accurate within a 3% error, the optimization algorithm 

is based on 10 variables, of which 9 are the mole fractions of the single molecules except 

for the aromatics, and the 10th variable is the ratio between toluene and 124TMB. The first 

step is the calculation of the RON value of the normalized surrogate without aromatics 

(RON_surr0), and of the mixture of the 2 aromatics molecules (RON_A), from which the 

fraction of aromatics in the final surrogate is calculated following Eq. 5-4. 

𝑋𝐴 =
𝑅𝑂𝑁𝑡𝑎𝑟𝑔𝑒𝑡−𝑅𝑂𝑁𝑠𝑢𝑟𝑟0

𝑅𝑂𝑁𝐴−𝑅𝑂𝑁𝑠𝑢𝑟𝑟0
  (5-4) 

 

After this initial step, all the other properties and errors are calculated with the methods 

described in the next sections and the final target function is computed to account for the 

multi-objective nature of the optimization problem. 

The error function J to be minimized is defined as in Eq. 5-5 as the normalized weighted 

Euclidean distance of the absolute relative errors for each target plus a penalty term 

introduced to reduce the complexity of the final surrogate. 
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𝐽 = (
1

∑ 𝑤𝑖
𝑁𝑡𝑎𝑟𝑔𝑒𝑡𝑠
𝑖=1

∙ ∑ 𝑤𝑖 ∙ 𝑎𝑏𝑠 (
𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑖−𝑡𝑎𝑟𝑔𝑒𝑡𝑖

𝑡𝑎𝑟𝑔𝑒𝑡𝑖
)
2𝑁𝑡𝑎𝑟𝑔𝑒𝑡𝑠

𝑖=1
)

0.5

+ 𝑤𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ∙

∑ 1 𝑖𝑓 𝑋𝑖>0 𝑒𝑙𝑠𝑒 0
𝑁𝑝𝑎𝑙𝑒𝑡𝑡𝑒
𝑖=1

#𝑝𝑎𝑙𝑒𝑡𝑡𝑒
  

(5-5) 

 

The weights used are the same for each level analyzed and have been obtained by 

heuristics, and their value is reported in Table 5-3. In particular, larger importance has been 

given to values such as AFS or LHV that would directly impact the simulation results, and 

the importance of the laminar flame speed and ignition delay time targets have been 

recomputed based on the number of available points, in order to make the system 

independent of the size of the target dataset. 

 

Table 5-3: Weights associated with each single property during the multi-objective optimization 

Properties weight 

RON 1 

MON 2 

LHV 3 

H/C 1 

O/C 1 

AFS 4 

AL-P-I-O-N-A 2-1-1-1-1-1 

IDT 5/#points 

LFS 5/#points 

Additional properties  

Liquid Density 1 

YSI 0 

T10-T50-T90 0-2-0 

RVP 0 

 

The Bayesian optimization algorithm employed has been thoroughly described in [96] which 

is based on a 2-step approach: 

- an initial number of evaluations is performed by randomly searching inside the 

exploration domain, in order to gain information regarding the distribution of the target 

function and provide an initial training set for the surrogate model. In this case, the 

regression algorithm chosen is the gaussian process regressor (with a radial basis 

function kernel and a value of gamma = 0.5), this regression algorithm was chosen 

since it allows to perfectly fit the training data (even if the value of gamma has been 

adequately tuned to avoid excessive overfitting) and to predict the accuracy of the 

estimate on unknown points.  

- for a prescribed number of optimization steps, a search algorithm (in this case the 

Upper Confidence Bound algorithm) is used to identify the next acquisition point to 

be evaluated with the aim of maximizing the target function and increase the accuracy 

of the posterior distribution approximated by the Gaussian Process algorithm. 
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After internal testing on the effect of the size of the initial training set, an empirical value of 

400 evaluations was identified as a threshold number for leading to a consistent result during 

the optimization step, independently from the number of optimization steps (at least 30). 

 

5.4 Computation of mixture properties 

5.4.1 Average molecular properties 

Several properties of a hydrocarbon mixture can be assumed as linear combination of the 

properties of the single molecules weighted with their molar fractions. This hypothesis is 

inherently true for HC ratio, OC ratio, stoichiometric Air Fuel ratio, density and ALPIONA 

composition, synthetized in Eq. 5-6 to 5-11.  

𝑀𝑤 =∑ 𝑥𝑖  𝑀𝑤𝑖

𝑁𝑃𝐼𝑂𝑁𝐴

𝑖=1
 

(5-6) 

𝐻/𝐶 =
∑ 𝑥𝑖  𝐻𝑖
𝑁𝑃𝐼𝑂𝑁𝐴
𝑖=1

∑ 𝑥𝑖 𝐶𝑖
𝑁𝑃𝐼𝑂𝑁𝐴
𝑖=1

 
(5-7) 

𝑂/𝐶 =
∑ 𝑥𝑖  𝑂𝑖
𝑁𝑃𝐼𝑂𝑁𝐴
𝑖=1

∑ 𝑥𝑖  𝐶𝑖
𝑁𝑃𝐼𝑂𝑁𝐴
𝑖=1

 
(5-8) 

𝐴𝐹𝑆 =∑ 𝑥𝑖  (𝐶𝑖 +
𝐻𝑖
4
−
𝑂𝑖
2
)

𝑁𝑃𝐼𝑂𝑁𝐴

𝑖=1
  

(5-9) 

𝐴𝐿 − 𝑃 − 𝐼 − 𝑂 − 𝑁 − 𝐴 = ∑ 𝑥𝑖  
𝑁𝑃𝐼𝑂𝑁𝐴
𝑖=1   (5-10) 

𝜌𝑙 = ∑ 𝑥𝑖  𝜌𝑙𝑖
𝑁𝑃𝐼𝑂𝑁𝐴
𝑖=1   (5-11) 

 

Since no experimental data are available regarding the sooting tendency of the target fuels, 

its value, calculated for each surrogate is employed only to measure the relative distance 

between two formulations. The sooting tendencies of the surrogates, identified by means of 

the Yield Soot Index, are predicted following [93] by a linear mixing rule based on the mole 

fraction of the components. The values for each molecule were experimentally evaluated in  

[98] except for 1-pentene, for which the YSI value was estimated based on its molecular 

structure. 

As far as the lower heating value is concerned, a simple weighted mean is often proposed 

[99], whereas, in order to improve the accuracy of the prediction, in the present work a 

different approach has been developed involving chemical kinetics equilibrium 

computations. After defining the surrogate, the Lower heating value is obtained by 

performing a stoichiometric reaction at ambient temperature and pressure and then 

computing the difference in enthalpy between products and reactants divided by the mass 

fraction of fuel in the reactants, without considering the condensation of water (which would 

lead to the HHV value instead). These values have been validated against the single 

molecules with respect to experimental data from [100] with a relative error below 1%. 
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5.4.2 RON and MON  

The octane number of a fuel mixture, both in terms of RON and MON is experimentally is 

classically computed with the mole weighted mean of the values of the single molecules 

numerically. It has been demonstrated [101] [102], however, that this holds accurate for 

simple TRF mixtures, while the addition of oxygenates to the blend, chosen as target in the 

present work, requires a non-linear treatment. The chosen model is the one presented by 

Anderson et al. [102] implemented as a two-step approach following Eq.  and Eq. . First the 

RON/MON value for the mixture without alcohol is computed as a weighted mean, to which 

a second term is added computed as the alcohol mole fraction with a quadratic dependence, 

multiplied by a coefficient 𝐾𝑔 with values 0.45 for RON and 0.94 for MON according to the 

guidelines provided by the authors. 

 

𝑂𝑁𝑔 =∑ 𝑥𝑖 𝑂𝑁𝑖
𝑁𝑃𝐼𝑂𝑁𝐴

𝑖=1
 

(5-12) 

𝑂𝑁 =∑ 𝑥𝑖  𝑂𝑁𝑖
𝑁

𝑖=1
+ 𝐾𝑔 𝑥𝐴𝐿 (1 − 𝑥𝐴𝐿)(𝑂𝑁𝐴𝐿 − 𝑂𝑁𝑔) 

(5-13) 

 

 

5.4.3 Ignition delay time 

For the ignition delay time prediction, the model developed in Chapter 3 has been directly 

applied to the newly defined surrogates at the same operating conditions available from the 

experimental characterizations. The attended accuracy is expected to be below 2% with 

respect to detailed chemical kinetics simulations, after the thorough validation that has been 

performed. 

 

5.4.4 Laminar flame speed 

The consumption speed of a reacting mixture, necessary for the flamelet combustion 

models, can be obtained by performing detailed chemical kinetics simulations of stationary 

freely propagating adiabatic flames, in which the displacement speed at steady state equals 

the rate of consumption on the flame front. In order to reduce the computational time, a one-

dimensional domain is usually employed (acceptable given the conditions that induce a 

planar flame front propagation), and the algorithm defined in chapter 4 was followed to 

perform a more robust and accurate prediction. Considering the time required to perform a 

single simulation with the reduced mechanism (approximately 2 hours on a single processor 

even with the reduced version of the chemical kinetics mechanism), it is unfeasible to 

perform complete simulations for each surrogate evaluated, therefore a mixing law has been 

implemented.  

A series of approaches has been tested to compensate this limitation: 

- the classical Le Chatelier’s mixing rule which assumes that the laminar flame speed 

of a fuel surrogate is equal to the molar weighted sum of its components [103], 

following Eq. 5-14 where Z_i indicates the molar fraction of the i-th component in the 

fuel surrogate definition 
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𝐿𝐹𝑆𝑚𝑖𝑥  =
1

∑
𝑍𝑖
𝐿𝐹𝑆𝑖

𝑖=1,𝑁

   (5-14) 

 

 

- A modified Le Chatelier’s rule based on the energy fraction of the single component, 

calculated as the product of the molar fraction of the component and its lower heating 

value LHV (Eq. 5-15) introduced by Sileghem [104]. 

 

𝐿𝐹𝑆𝑚𝑖𝑥  = ∑ 𝐿𝐹𝑆𝑖 ∙ (LHVi ∙
𝑋𝑖

𝐿𝐻𝑉𝑚𝑖𝑥
)𝑖=1,𝑁      (5-15) 

  

- The Hirasawa mixing rule [105], based on a logarithmic correlation with the adiabatic 

flame temperature of each component as the weighting term as in Eq. 5-16 where n 

represents the number of moles 

 

𝐿𝐹𝑆𝑚𝑖𝑥  = exp (∑ ln(𝐿𝐹𝑆𝑖) ∙ (
𝑍𝑖𝑛𝑇𝑎𝑑,𝑖

𝑛𝑚𝑖𝑥𝑇𝑎𝑑,𝑚𝑖𝑥
)𝑖=1,𝑁 )  

     

(5-16) 

In order to estimate the adiabatic flame temperature for all configurations, considering 

its relevance in the estimation of the laminar flame speed of the mixture, a numeric 

procedure can be applied. It is required to identify the composition and temperature 

of the exhaust gas (considering the variation in H/C and O/C ratio and the different 

equivalence ratio that must be accounted for) by reaching the equilibrium state in a 

constant enthalpy and constant pressure 0D reactor, which can be computed in a few 

milliseconds. 

 

- The Yumlu mixing rule [106] which is a simplification of the correlation proposed by 

Semenov [107] where the additivity of the laminar flame speed of the single 

components to the mixture is accounted for by the term 𝜔𝑖 which is calculated as the 

normalized mass fraction of fuel component I and the corresponding mass fraction of 

oxidant, leading to Eq. 5-17. 

 

𝐿𝐹𝑆𝑚𝑖𝑥
2  = ∑ 𝐿𝐹𝑆𝑖

2 ∙ 𝜔𝑖𝑖=1,𝑁    

     

(5-17) 

 

- a data driven approach, following the same workflow presented in the previous 

section, i.e. an optimized machine learning algorithm with normalized mole fractions 

and test conditions as input and the laminar flame speed value as output. The final 

model selected after repeated k-fold cross validation on the dataset is a neural 

network composed of the input layer with 15 units, 3 hidden layers (respectively of 

60,180,30 units and ReLu activation function) and 1 neuron in the output layer with 



Computation of mixture properties 

71 
 

linear activation function, due to its better generalization with respect to tree-based 

regression algorithms. 

 

 
Figure 5-2: Laminar flame speed at reference conditions (P=10 bar, T=373 K) for a generic gasoline fuel 

 

A dataset of laminar flame speed for generic mixtures of components from the defined 

palette has been generated through chemical kinetics simulations. Since the operating 

conditions for which experimental data are known, the dataset is limited to variations in fuel 

mixture and equivalence ratio, while pressure and temperature are kept constant. The 

values of the single components, as well as that of the whole dataset are reported in Figure 

5-2 compared to the experimental data for a generic gasoline fuel under the same 

thermodynamics conditions [108]. The same dataset of mixture fractions used for the ignition 

delay time computation was employed for the laminar flame speed calculation and the 

validation set of about 90 mixtures was used for validation and comparison with the other 

mixing rules in terms of R2 and RMSE. 

 

Table 5-4: Performance metrics of the selected methods for the laminar flame speed of a mixture 

 RMSE (m/s) R2 

Le Chatelier  0.04 0.981 

Modified Le Chatelier 0.03 0.992 

Hirasawa 0.018 0.998 

Yumlu 0.02 0.999 

DNN 0.015 0.999 

 

Considering the dependency of the data-driven approach to the training dataset, in the end 

the choice of using the Hirasawa mixing rule has been taken, which requires the computation 

of the laminar flame speed values for the single molecules before the optimization process 

starts, but only for the experimental reference conditions, which are expected to be limited. 

For the presented examples, only 6 to 8 operating conditions are available, making the a-

priori computation of the laminar flame speed for each single molecule feasible. 
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5.4.5 Liquid-Vapour equilibrium properties 

The properties of the liquid-vapor equilibrium have been computed by an in-house 

developed algorithm described in [96], that performs the iterative solution of the system of 

equations Eq. 5-18, which accounts for:  

i) the liquid-vapor equilibrium for non-ideal fluids (1st Eq. 5-18), which is an implicit 

in the temperature and non-linear equation;  

ii) the cubic Soave-Redlich-Kwong (SKR) equation of state (2nd-3rd Eq. 5-18);  

iii) the solution of the Rayleigh differential equation describing the liquid consumption 

law in the no-reflux simple batch distillation (4th Eq. 5-18); 

iv) conservation of the residual liquid mass (5th Eq. 5-18).  

Two SKR equations of state are solved for the liquid phase and the vapor phase, 

respectively. The Rayleigh’s solutions and the equilibrium equations are solved for each 

of the n pure compounds comprised in the mixture at the J distillation step. The system 

of equations is solved for a constant pressure set at the atmospheric value, the solution 

array is composed of the liquid and the vapor compressibility factors (Z), the composition 

of the distilled vapor (y) and of the residual liquid (x), the equilibrium temperature at 

ambient pressure measured in the liquid phase (TK). k is the equilibrium ratio, A, B are 

the parameters of the SKR equation, r is the ratio between the residual liquid at the J-th 

step and the residual at the previous step.  

 

{
 
 

 
 

𝑦𝑖 − 𝑘𝑖(𝑍, 𝑇, 𝑥𝑖 , 𝑦𝑖) ∙ 𝑥𝑖,𝐽 = 0 ∀𝑖 = 1,… , 𝑛

𝑍𝐿
3 − 𝑍𝐿

2 + (𝐴𝐿 − 𝐵𝐿 − 𝐵𝐿
2) ∙ 𝑍𝐿 − 𝐴𝐿 ∙ 𝐵𝐿 = 0

𝑍𝑉
3 − 𝑍𝑉

2 + (𝐴𝑉 − 𝐵𝑉 − 𝐵𝑉
2) ∙ 𝑍𝑉 − 𝐴𝑉 ∙ 𝐵𝑉 = 0

𝑥𝑖,𝐽 − 𝑥𝑖,0 ∙ ∏ 𝑟𝑗
𝑘𝑖−1 = 0𝐽

𝑗=1  ∀𝑖 = 1,… , 𝑛

∑ 𝑥𝑖,𝐽 − 1 = 0
𝑛
𝑖=1

     

(5-18) 

 

In computing the RVP of the mixture, the system of equations in Eq. 5-18 is solved once for 

the initial mixture composition. In computing the distillation curve of the mixture, Eq. 5-18 is 

solved for each distillation step J. Considering the iterative nature of the problem, in order 

to increase the accuracy of the initial solution attempt at each distillation step, the distillation 

range was divided in incremental steps of 1% evaporated volume, resulting in 100 

computations to cover the whole distillation range. As a consequence it is possible to 

assume that the equilibrium temperature of each distillation step is the one calculated for 

the previous step increased by 0.5 K. Eq. 5-18 was solved by means of a modified Powell’s 

method for the multivariate root-finding problem implemented in the SciPy-Optimize open 

library by setting custom values for tolerance (1x10-6) and number of iterations (5000) [109]. 

Once the equilibrium temperature in the liquid phase is returned by the afore-mentioned 

model, the equilibrium temperature at the top of the distillation apparatus is calculated by 

means of the energy balance (Eq. 5-19) between the distilled fuel vapor, the air and the solid 

wall. 

𝑇𝐻,𝐽 = [(𝑚𝑎𝑖𝑟𝑐𝑝,𝑎𝑖𝑟 +𝑚𝑤𝑎𝑙𝑙𝑐𝑝,𝑤𝑎𝑙𝑙) ∙ 𝑇𝐻,𝐽−1+𝑚𝑓𝑢𝑒𝑙(𝑉)𝑐𝑝,𝑓𝑢𝑒𝑙(𝑉)∙𝑇𝐾,𝐽
] /(𝑚𝑎𝑖𝑟𝑐𝑝,𝑎𝑖𝑟 +

𝑚𝑤𝑎𝑙𝑙𝑐𝑝,𝑤𝑎𝑙𝑙 +𝑚𝑓𝑢𝑒𝑙(𝑉)𝑐𝑝,𝑓𝑢𝑒𝑙(𝑉))  

(5-19) 
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Fig.5-3 shows the validation of the described model by means of the comparison between 

the experimental and the modelled distillation curve and the corresponding temperature 

difference (model – experimental) at each distilled volume for two mixtures i.e., a 50%-50% 

pentane-heptane mixture (light mix), representative of the lighter composition of commercial 

gasolines (C4-C7 n-paraffins); a 80%-20% dodecane-124TMB mixture (heavy mix), 

representative of the heavier composition of commercial gasolines (heavy n-paraffins and 

aromatics). From Fig.5-3 it is visible that the temperature difference around the end-tails of 

the curve is not significant regardless of the volatility of the components. It must be 

underlined that the bell-shaped temperature difference is characterized by the maximum 

value around half of the distilled volume likely due to the transition from 2-component mixture 

to almost pure component. Furthermore, it is observed that the temperature difference is 

higher for the light mixture with respect to the heavy mixture. 

Reid vapor pressure (RVP) i.e., the value of the absolute vapor pressure at 100°F (310 K), 

is a synthetic index representative of the volatility of fuel mixtures. Considering the typical 

injection temperature under early injection conditions in GDI engines (40-45°C), it is clear 

that RVP can describe the early evaporative behavior of real gasolines at the engine cold 

states, which are the most critical for the tailpipe emission under both WLTP and real driving 

conditions. As seen for the distillation temperatures, even RVP is not additive and needs a 

dedicated modelling. In this research project RVP is predicted by using the same pure 

thermodynamic model adopted for T0 adjusted to solve the classical bubble point pressure 

problem for non-ideal mixtures. Therefore, the same objective function shown in Eq. 5-18 

has been numerically minimized, however the temperature has been set to the constant 

value of 310 K (100°F) instead of being the equilibrium unknown, whilst the pressure has 

been set as the implicit solution instead of being the environmental pressure. The initial 

solution guess is the same as that of the first distillation temperature except for the 

equilibrium unknown which is initially set as the moles weighted average among the 

saturation pressure values at 310 K of the pure components. It is underlined that as seen 

for T0, the initial values of the equilibrium ratios (k) have been estimated by means of the 

Wilson correlation [110], which is still reliable due to the typical range of gasoline RVP values 
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Figure 5-3: Validation of the distillation curve computation methodology 

5.5 Results of the optimization process 

 

Figure 5-4: Distribution of the error function and identification of the acceptable solutions region 

 

The optimization algorithm has been applied 3 times, for each fuel, targeting the properties 

collected in Table 5-2 with the weights of the target function described in the previous 

sections. The second use of the dataset was to identify not only the best optimized 

surrogate, but a family of equally acceptable alternatives, in order to identify the differences 

among them. To this end, it was chosen to define acceptable all surrogates with a target 

function within 10% of the standard deviation from the optimal value. Within this domain, all 

the surrogates have been compared with the values obtained with the optimization process 

and the most distant surrogate has been identified by means of a Similarity parameter S 

defined in Eq. 5-20. 
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𝑆 = (
1

∑ 𝑤𝑖
𝑁𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠
𝑖=1

∙ ∑ 𝑤𝑖 ∙ 𝑎𝑏𝑠 (
𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑖−𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑃𝑇

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑂𝑃𝑇
)
2𝑁𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠

𝑖=1
)

0.5

     
(5-20) 

 

 

 

The properties used for the computation are all those reported in Table 5-2 and not 

considered during the optimization step, with unitary weight for mean properties, a value 

calculated for ignition delay times and laminar flame speed as the reciprocal of the number 

of points available in the dataset and a value of 0.3 for the mass fraction of the molecular 

groups. In the next sections, for each target fuel, 6 surrogates will be defined, in couples for 

each level of characterization. The surrogates defined with (*) in the images are the furthest 

acceptable solutions obtained by maximizing the similarity function of Eq. 5-20. 

 

 

5.5.1 Shell-D surrogates 

 

In the current section, the main differences between all the surrogates defined in the 

optimization and verification steps are compared in terms of elements that would impact the 

CFD combustion simulations. From the point of view of the composition, the levels of target 

for which the ALPIONA is available can satisfactorily represent the target, while the fraction 

of aromatics in the level 1 optimized surrogates is overestimated. In general, despite the 

availability of multiple molecules for each group, the complexity penalty has led most of the 

optimized solutions to be composed by at most 7 components, in line with the number of 

components usually found in literature for the most detailed fuel surrogates [91]. 

 
Figure 5-5: Shell-D surrogate compositions 
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The ignition delay time at reference condition of φ=0.9, p=40 bar is optimized only for level 

3 surrogates, whereas a very good results is also obtained for surrogates from other levels. 

On the other hand, the difference between two surrogates from the same level is significantly 

reduced by including more targets, up to an almost unique result for level 3 (where the values 

of ignition delay time are one of the targets) as presented in Figure 5-6. Regarding the 

laminar flame speed, there are variations between 1% and 3% for all surrogate levels, Figure 

5-7, indicating an overall insensitivity of the burning speed with respect to the fuel surrogate 

formulation within the Shell-D properties range. 

 

Figure 5-6: Shell-D surrogate ignition delay time at reference conditions 

 

 

Figure 5-7: Shell-D surrogates laminar flame speed at reference conditions 
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5.5.2 RON96E5 surrogates 

Differently from the optimization of Shell-D fuel, the optimization of the RON95E5 gasoline 

surrogate has not led to a significantly close definition of the composition. In particular, even 

for level 3, where the composition is known, the fraction of aromatics is overestimated, due 

to the enforcement of the other requirements. 

 

Figure 5-8: RON96-E5 surrogate compositions 

 

The surrogates obtained from level 1 targets display significant differences in terms of 

ignition delay time at low and high temperature, due to the overestimation of the ethanol 

content which increase the ignition delay time. As far as the laminar flame speed is 

concerned, differently from the surrogates of Shell-D gasoline, the first level of optimization 

produces differences up to 10%, while the dependence on the equivalence ratio is consistent 

for all surrogates with the experimental data, thanks to the close stoichiometric air fuel ratio 

as can be seen from Figure 5-9. Level 2 and 3 surrogates present similar compositions, 

however with higher values of the aromatics mass fraction with respect to the experimental 

data. Regarding ignition delay time, reported in Figure 5-10, from level 2 there are only minor 

differences, while the laminar flame speed is consistent only in the case that it is used as a 

target. 
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Figure 5-9: RON96-E5 surrogate laminar flame speed at reference conditions 

 

Figure 5-10: RON96-E5 surrogate ignition delay times at reference conditions 

 

All the evaluated combinations have been stored to perform an analysis of the properties of 

the search domain of all the combinations with RON within 95 and 98, corresponding to 

acceptable values of the pump gasoline. The Pearson’s correlation coefficient [111] is a 

measure of the ranks of each property with the others, where an absolute value of 1 

represents a monotonically perfect correlation (differently from Pearson’s correlation which 

requires linear dependence). The relationships with RON are not assessed in this report, 

because no significant variations in RON are collected. From the correlation matrix 

presented in Figure 5-11, several conclusions can be inferred: 

- the aromatics mass fraction of the fuel is strongly and directly correlated to the YSI, 

density and the temperature of the distillation profile, with greater impact on the first 

half of the curve, 
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- the paraffinic content of the fuel is directly correlated to LHV, AFS and inversely 

proportional to YSI and density with high absolute values of the correlation coefficient, 

- alkene, oxygenates and naphtene components are weakly correlated to several 

properties, which is attributed to the reduced fraction that these groups represent in 

the region of compatible combinations. 

 
Figure 5-11: Pairwise correlation coefficients between the different properties inside the search domain 

 

Another important conclusion that can be derived from the correlation matrix, is the inter-

correlation between targets. In particular, it can be noticed that the ignition delay time at low 

temperature (900 K) is strongly correlated with the values of the distillation curve, molecular 

weight, YSI and laminar flame speed at lean to stoichiometric conditions while LHV is 

strongly correlated with AFS.  

These correlations explain the reasons behind the similitudes of level 2 and 3 optimizations, 

that have the composition among the target properties. 
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6 CFD sensitivity analysis 

The objective of the last chapter before the conclusion of the thesis, is to collect and 

implement all the methods proposed and developed previously with two targets: 

1) Test the applicability of each methodology to a complete CFD simulation use case, 

starting from the fuel and engine specifications, to the fuel surrogate definition, to the 

accelerated generation of look-up tables for laminar flame speed and ignition delay 

time. 

2) Assess the potential variability in the results of CFD combustion simulations 

performed with different surrogates of the same fuels as a function of the properties 

available for its definition, beyond the theoretical evaluations performed in the 

previous chapter. 

To this aim, a specific engine test case has been designed and an accurate RANS set-up 

has been adopted for reducing potential sources of variability in the computation. Particular 

care has been given to the spray modelling, considering its relevance in the mixture 

distribution prediction, as well as to the gas-wall heat transfer, which is an important topic 

when modelling auto-ignition, considering its role in the calculation of the gas temperature 

near the walls. These models will be outlined in further detail in the following sections, 

together with the fundamental aspects of the combustion model that are affected by the fuel 

surrogate definition. Finally, the results of the compression phase will be reported to 

understand the potential areas of interest for the knock onset, which will be assessed 

through a sweep of spark timing for each of 4 fuel surrogates, obtained with different target 

properties imposed to the optimizer. 

 

6.1 Engine specifications and 0D/1D model 

The studied engine is a proof of concept digital model of a state of the art turbo charged 4 

cylinder GDI engine developed in the past years at the University of Bologna for the 

conceptualization of novel combustion and knock control techniques [112] [113] [114]. The 

specification of the full engine, as well as the single cylinder simulated by means of the 

STAR-CD CFD solver are reported in Table 6-1. The use of a commercial software in place 

of open source alternatives derives from the previous background of the research group that 

has developed several in-house models over the years.  

Table 6-1: Main properties of the GDI engine modelled 

Compression Ratio (-) 9.5 

Unit displacement (cm^3) 471.05 

Bore (mm) 84 

Stroke (mm) 85 

Conrod length (mm) 165.6 

Number of Valves (-) 4 

S/D (-) 1.01 

Intake D_v/D (-) 0.36 

Exhaust D_v/D (-) 0.33 
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Figure 6-1: Geometry of the GDI engine model 

 

The boundary conditions for the simulations were generated using a 0D/1D fluid dynamics 

model defined in OpenWAM [115] of the full engine (4 cylinders, detailed air paths and 

manifolds, as depicted in figure). OpenWAM is a 0D/1D Opensource code developed at 

CMT Motores implementing a TVD algorithm for the solution of the 1D Navier-Stokes 

equations to capture sharp profiles (accounting for example for shock waves inside 

intake/exhaust pipes). The numerical setup employed is quite standard, with application of 

the ideal gas hypothesis, courant number limited to 0.4 for stability, convergence reached 

after 20 steady cycles and heat release rate defined a-priority based on literature research. 

 

 
Figure 6-2: Architecture of the system simulation in OpenWAM 

 

The best practice of the CFD software indicates that, for stability reasons, the intake 

pressure should be defined as a total quantity, taken at node 5 in Figure 6-2, while the 

exhaust pressure is imposed static taken at point 12 in figure. The temperature of the walls 

was set as uniformly distributed, due to the non-availability of the full engine model for a 

complete conjugate heat transfer loop, differentiating each surface with the values reported 

in the following table. 

Table 6-2: Boundary conditions for the peak power operating condition 

BOUNDARY NAME BND # T (K) 

Dome 1 505 

Piston 2 555 
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Liner 3 455 

Spark Plug 4 550 

Intake Valve Plate 5 400 

Intake Valve Stem 6 383 

Intake Manifold 7 373 

Exhaust Valve Plate 8 855 

Exhaust Valve Stem 9 844 

Exhaust Manifold 10 423 

 

The valve strategy was designed in order to allow the introduction of the target mass without 

exceeding the limits of the compressor (maximum intake pressure set to 2.7 bar), while 

reducing to a minimum the scavenging to avoid superposition of the open periods, leading 

to the choice of an inlet vale opening period between 362 and 598 CAD aTDC and an 

exhaust valve opening period between 136 and 376 CAD aTDC. 

 

6.2 3-D CFD MODELLING 

6.2.3 Mesh and Numerical setup 

The meshing process was performed following a robust internal standard practice, backed 

by several previous validations. In particular a mesh base size of 0.8 was adopted for the 

mesh template definition, resulting in the template of Figure 6-3. The approach used by the 

software is extrude the base template along the cylinder axis, and perform adaptation steps 

on the boundary regions, where a cell size of 0.3 mm is imposed. To handle the mesh 

motion, the code is expected to stretch the cells up to a threshold value, after which the 

bottom layer of extruded cells will be removed. In order to better capture the flame kernel 

release, as well as to resolve in a more detailed way the fluid motion around the electrodes, 

a successive mesh refinement has been applied on the spark region, to reduce by 8 the 

volume of each computational cell, as detailed in Figure 6-3. In order to reduce the number 

of cells, given the symmetric nature of the combustion chamber designed, only half of the 

cylinder has been actually simulated, leaving to a symmetry plane the definition of the motion 

at the interface. 

 
Figure 6-3: Basic mesh template and detail of the refinement levels near the spark plug 
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The resulting mesh is composed of 1.2 million cells at TDC, and 1.8 million at BDC, requiring 

on average 0.3 CPUh to update the solution by 1 CAD on a standard workstation with Intel 

Xeon Platinum 8000 @3 GHz. 

Following the internal best practice, the turbulence model chosen was the k-epsilon RNG 

[116], while the chosen differencing scheme for mass, momentum and energy transport 

equations are all second order accurate. The transient solution is resolved with the standard 

PISO algorithm, adopting a convergence threshold of 1e-4 for all residual errors and using 

a constant time step set to 1e-6 seconds, in order to assure a limited Courant number. 

Considering the RANS nature of the simulation, several models have been adopted for the 

simulations of relevant phenomena, that will be described in further details in the next 

sections. 

6.2.4 Multi-scale models 

As outlined in the introductory chapter, the solution of the complex interconnected 

phenomena that occur inside the cylinder during a full engine cycle requires the coupling of 

the compressible flow solver with numerical models. In particular, multi-scale and multi-

phase phenomena must be addressed carefully. A brief review of the models employed for 

the simulation where the fuel surrogate definition plays a crucial role will be therefore 

reported, to underline the causes of potential variations in the results. Another aspect that 

is essential for the correct prediction of mixture auto-ignition in internal combustion engine 

simulations is the gas temperature, especially near the walls, which is mostly influenced by 

the temperature wall function employed, which will be described in more detail. 

 

6.2.5 The ECFM-3Z combustion model 

The ECFM-3Z [117] is a turbulent combustion model based on the flamelet approach, 

applied to both premixed and diffusive combustion simulations, as well as knock and 

emissions formation. A schematic of the cell subgrid model is represented in Figure 6-4 

where three zones are clearly visible: 

1) Unmixed fuel zone (both in the burnt and fresh states) 

2) Unmixed air zone composed of air and eventually diluents from previous cycles 

3) Mixed zone, where all three main components (fuel, air and EGR) are present, and 

where combustion phenomena actually take place (combustion, auto-ignition and 

pollutant formation). 
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Figure 6-4: Standard visualization of the ECFM-3Z subgrid model [117] 

 

When premixed combustion takes place, a progress variable relative to each cell indicates 

the fraction of mixture in the burnt and unburnt states and its evolution represents the flame 

front propagation. The model is completed with a set of transport equations that control the 

transition between the unmixed and mixed state of air and fuel as a function of turbulence, 

as well as their presence in the fresh or burnt phase. The standard ECFM model is sensitive 

to the fuel composition in 2 ways: 

1) The number of carbon, hydrogen and oxygen atoms of the fuel molecule is essential 

to the definition of the equilibrium products and therefore the composition inside the 

zones. 

2) The flame front propagation and interaction with turbulence are governed by chemical 

reactions that depend directly on the fuel composition. 

Of these 2 aspects, the former is not expected to be influenced by the fuel surrogate 

formulation, since its definition is expected not to affect the H/C and O/C ratio of the fuel. On 

the other hand, different surrogates of the same fuel, as shown in the previous chapter, can 

display different laminar flame speed and thickness, leading to different flame propagation 

predictions. The flame propagation speed can be simulated with a set of hypothesis that 

constitute the flamelet models, which assume that the turbulent flame front can be 

represented as an aggregate of infinitesimal laminar flamelets. Based on this assumption, 

several models have been proposed and successfully validated but two of them have been 

mostly investigated in literature, namely the G-equation model and the ECFM-3Z model. 

The G-equation model [118] describes the flame front propagation inside a turbulent flow 

field through the solution of the transport equation of the flame front tracking scalar ‘G’, with 

a turbulent displacement speed defined 𝑠𝑇 for which experimental as well as theoretical 

correlations have been proposed, all in the form of Eq. 6-1 

𝑠𝑇

𝑠𝐿
= 1 + 𝛼 (

𝑢′

𝑠𝐿
)
𝑛

  
(6-1) 
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Where 𝛼 and n are model constants, 𝑢′ is the turbulent velocity (RMS) and 𝑠𝐿 the laminar 

flame speed function of the local thermodynamics and mixture conditions. The transport of 

the scalar G is then modelled as: 

𝜌̅
𝜕𝐺

𝜕𝑡
+ 𝜌̅𝑢𝑖̃

𝜕𝐺

𝜕𝑥𝑖
= 𝜌0𝑠𝑇|∇𝐺|  

 

(6-2) 

Where 𝜌0 is the density of the fresh mixture associated to a given level of the flame front 

displacement. 

A second important and frequent model, valid under the flamelet assumption, is based on 

the description of the flame surface density (FSD [119]), that describes the available flame 

surface area per unit volume as a linear scaling factor for the fuel consumption rate, finally 

computed as in Eq. 6-3. 

𝜔𝑓̇ = 𝜌𝑢𝑠𝐿Σ  

 

(6-3) 

The quantity FSD allows for dividing the consumption rate from the displacement affected 

by the turbulence interaction but requires the solution of a transport equation that has been 

proposed in several forms. One of the simplest forms is reported as: 
𝜕Σ

𝜕𝑡
+
𝜕𝑢𝑖̃Σ

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
(
𝜈𝑡

𝜎Σ

𝜕Σ

𝜕𝑥𝑖
) + 𝜅𝑚Σ + 𝜅𝑡Σ − 𝐷  

 

(6-4) 

Where D is the flame surface consumption term and 𝜅𝑚and 𝜅𝑡 are the strain rate terms given 

by the mean flow (𝜅𝑚) and turbulence fluctuations (𝜅𝑡) for which several closure models 

have been proposed based on the interaction between turbulence and flame length scales. 

What these approaches have in common is that the chemical kinetics effects are not 

resolved, but are kept into account indirectly in two forms: 

1) The laminar flame speed is considered not only as the base displacement term, 

enhanced by turbulence interaction, but also as the reference consumption rate for 

the fuel oxidation. 

2) The laminar flame thickness is used as a factor of ‘stiffness’ of the flame elements to 

turbulence effects in most closure models. 

 

In order to consider the different fuel surrogate formulation in the engine CFD simulation, a 

look-up table of laminar flame speed and thickness value has been generated for any 

definition. The table is composed by 4 independent variables (Pressure, Unburnt 

temperature, equivalence ratio and EGR mass fraction) and 2 target variables (laminar flame 

speed and thickness), which requires, for a complete multi-linear interpolation, the retrieval 

of 16 nodal points and relative distance to the nodes and their weighted sum. 
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6.2.6 The knock model 

 

As presented in the previous chapters, mixture auto-ignition can be simulated efficiently by 

means of detailed chemical kinetics simulations in simplified 0D reactors. Similarly, the same 

computation could be performed to update the composition and eventually the enthalpy of 

each computational cell in the engine domain. However, a simplified approach in the 

framework of the flamelet combustion models can be implemented [120], to reduce the 

computing time with respect to the a full coupling of chemical and fluid solvers. The model 

is based on a 2-step procedure: 

- The first part is based on the Livengood-Wu integral approach, introduced in Chapter 

3, with the transported scalar 𝑌𝐼𝐺function defined as in Eq. 6-5: 
𝑑𝜌𝑌𝐼𝐺

𝑑𝑡
+ ∇ ∙ (𝜌𝑢⃗ 𝑌𝐼𝐺) = ∇ ∙ (Γ∇𝑌𝐼𝐺) +

𝜌

𝜏
  

 

(6-5) 

Where 
𝜌

𝜏
 represents the source term that increases the knock precursor variable 𝑌𝐼𝐺 

up to the point at which it reaches the threshold value chosen to start releasing the 

energy associated with the auto-ignition phenomenon. 𝜏 indicates the ignition delay 

time that can be obtained from chemical kinetics simulations, stored in efficient look-

up tables and interpolated in runtime during the simulation, highly reducing the 

computational time required for the computation.  

- The second part is related to the energy release rate to define after the threshold 

value is reached: in this case, a further tabulation is required, to store an indicator of 

the consumption speed of the reactions, which depend on both thermodynamics 

conditions and knock progress, as presented in Figure 6-5 for a generic gasoline fuel 

surrogate. The rate of reaction (indicated with AIrr) is then applied in Eq. 6-6 to 

compute the additional heat release rate of the standard ECFM-3Z model. 

 

𝜔̇ = 𝐿𝐻𝑉 ∙ 𝜌𝑢 ∙ 𝑌𝐹𝑢 ∙ 𝑠𝐿 ∙ Σ + 𝐿𝐻𝑉 ∙ 𝜌𝑢 ∙ 𝑌𝐹𝑢 ∙ 𝐴𝐼𝑟𝑟  (6-6) 

 

 
Figure 6-5: Dimensionless progress variable evolution with time and temperature rise rate profile as a 

function of the progress variable for 2 different temperature levels 
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The most relevant choices that concern this modelling approach lie in the definition of the 

progress variable and its threshold value for the heat release rate. While for the first definition 

is generally considered arbitrary between the oxygen consumption and temperature rise (in 

this case the temperature based progress variable was chosen), the second choice must be 

considered carefully, in order to avoid 2 possible drawbacks: 

1) The choice of a threshold value too low, for example 0, implies that the model is 

always active on the domain, which would undermine the standard flame propagation 

model, which is expected to work properly in standard conditions. In addition, many 

numerical aspects might affect the output of this kind of simulations, due to the 

simplified nature of the basic assumptions. 

2) The choice of a threshold value too high would reduce the impact of the heat release 

rate due to autoignition of the mixture, especially within the cool flame regime, where 

the temperature rise would promote faster reactions. 

 

By analyzing several profiles, the choice of a threshold value was set to 2%, in order to 

account also for the cool flame regime, while maintaining a good control over the general 

combustion model. Considering the sensitivity of the ignition delay time, as well as the heat 

release rate  to the fuel surrogate formulation, 2 look-up tables have been generated for 

each definition. The first look-up table stores the values of 𝜏 for each thermodynamics state 

of the mixture, and it is always interpolated in runtime, while the second table is composed 

of a 5th independent variable, which is the knock precursor progress variable, and stores the 

AIrr values (in this case computed as the temperature gradient during the ignition event), 

which are computed only after the threshold value is reached in a computational cell.  

 

6.2.7 Temperature wall function 

Considering the great importance that temperature distribution in the gas near the boundary 

regions play in the prediction of knock occurrence, particular focus has been given to the 

gas-wall heat exchange. In the framework of RANS simulations, the heat transfer between 

gas and walls is traditionally not directly resolved, which would require a refinement of the 

computational mesh to capture the high temperature gradients, but it is modelled by 

assuming a pre-defined profile (named wall function) of the temperature with respect to the 

non-dimensional distance from the wall, as presented in Figure 6-6.  
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Figure 6-6: Graphical description of the difference between a low-Reynolds approach and a wall function 

boundary layer treatment 

 

The black line corresponds to the assumed temperature profile with respect to the 

dimensionless normal distance from the wall, introduced to normalize the profile with respect 

to fluid dynamics conditions, as proposed by Angelberger and Poinsot et al. [63]: 

𝑦𝑤
+ =

𝑢𝜏

𝜈𝑤
𝑦  

 

(6-7) 

Where  uτ is the friction velocity, which can be computed from turbulence properties and 𝜈𝑤 

is the kinematic viscosity in the boundary region. The blue profile, on the other hand, would 

be obtained by a finer discretization of the boundary region, which should, however hold 

valid during all engine phases, in order to guarantee a sufficiently accurate result (values of 

𝑦𝑤
+ below 3, which would require a geometric distance of about 5micronfor the combustion 

phase, when values of 𝑢𝜏 > 300 are usually reached).  

 

The development of a wall function for engine in-cylinder applications usually relies on 

several simplified assumptions, coming from the boundary layer theory of turbulent flows: 

1. Derivatives parallel to the wall are neglected. The flow is mainly parallel to the wall  

2. Pressure gradients is assumed to be zero in the near-wall cell, i.e., p=p(t) only. In the 

absence of spontaneous combustion, this can be true 

3. The Mach number is low, so no energy associated with small-scale eddy motion is 

converted into thermal energy 

4. Fully turbulent boundary layer 

5. The flow in the boundary layer is non-reactive 

6. The gas inside the cylinder is ideal 

7. Radiation is neglected 

In accordance with the above assumptions, the one-dimensional energy equation inside the 

boundary layer can be written in the following form: 
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𝜕𝜌𝑇

𝜕𝑡
=

𝜕

𝜕𝑦
[(𝜎𝑒𝑓𝑓)

𝜕𝑇

𝜕𝑦
] +

𝜕𝑃

𝜕𝑡
− 𝑄𝑐𝑜𝑚𝑏   

(6-8) 

Even though the flow inside internal combustion engines is intrinsically unsteady, the 

dynamic of the heat transfer inside the boundary layer is described by the additional 

simplifying assumption of quasi-steady flow condition. As a result, both the unsteady and 

pressure terms are removed from the balance equation. Another assumption comes from 

the flame-wall interaction physics. The flame does not touch the walls since it quenches a 

few micrometres before because of the heat transfer. Thus, the heat source term due to 

combustion can be ignored, leading to the simplification of Eq. 6-8 into: 
𝜕

𝜕𝑦
[(𝜎𝑒𝑓𝑓)

𝜕𝑇

𝜕𝑦
] = 0  

  

(6-9) 

where the effective thermal diffusivity is the sum of a laminar and turbulent component: 

𝜎𝑒𝑓𝑓 = 𝜎𝑙 + 𝜎𝑡  

  

(6-10) 

where the eddy thermal diffusivity σt is introduced for including the effect of the additional 

fluctuating (turbulent) quantities. The integration of Eq. 6-8 from the wall (y=0) to the first 

node gives: 

(𝜆 + 𝜆𝑡)
𝜕𝑇

𝜕𝑦
= −𝑞𝑤  

  

(6-11) 

and through the definitions of laminar and turbulent Prandtl numbers along with the relation 

between dynamic and kinematic viscosity, the Eq. 6-11 becomes: 
𝑐𝑝

𝜌
(
𝜈

𝑃𝑟
+

𝜈𝑡

𝑃𝑟𝑡
)
𝜕𝑇

𝜕𝑦
= −𝑞𝑤  

  

(6-12) 

From Eq. 6-12 after some rearrangements, the following Eq. 6-13 can be derived, showing 

the relationship between temperature and the dimensionless distance parameter: 
1

1

𝑃𝑟
+
𝜈+

𝑃𝑟𝑡

𝑑𝑦+ = −
𝜌𝑐𝑝𝑢𝜏

𝑞𝑤
𝑑𝑇  

  

(6-13) 

Isolating the left side of Eq. 6-13 identified as the derivative of 𝑇+ between the boundary 

wall and the cell centre, and considering that the density inside the boundary layer is not 

constant and its profile is not known a priori, an assumption of a power law, consistent for 

several mixture in a wide temperature range (500 K to 1500 K), is introduced as: 

𝜌𝑤

𝜌𝑐
≃ (

𝑇𝑤

𝑇𝑐
)
𝑚

   (6-14) 

𝑚 =
𝑙𝑜𝑔(𝜌𝑤/𝜌𝑐)

𝑙𝑜𝑔(𝑇𝑤/𝑇𝑐)
  

  

(6-15) 

Because of the assumption of ideal gas and uniform pressure inside the control volume, the 

equivalence: 𝑃 = 𝜌𝑐𝑅𝑇𝑐 = 𝜌𝑤𝑅𝑇𝑤 brings to write m as follows: 

𝑚 =
𝑙𝑜𝑔(𝑇𝑐/𝑇𝑤)

𝑙𝑜𝑔(𝑇𝑤/𝑇𝑐)
= −1   (6-16) 
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Integrating the right-hand side of the Eq. from the wall to the first computational cell centroid 

yields: 

𝑇+ = −∫
𝜌𝑐𝑝𝑢𝜏

𝑞𝑤
𝑑𝑇

𝑇𝑐
𝑇𝑤

= −
𝜌𝑤𝑐𝑝𝑢𝜏𝑇𝑤

𝑞𝑤
ln (

𝑇𝑐

𝑇𝑤
)  

 

(6-17) 

where T+ is positive, because the sign convention is that, for a cold wall surrounded by hot 

gases, qw is negative.  

The integration of the left-hand side of Eq. 6-17 to identify the dimensionless temperature 

profile requires a relation for the variation of ν+/Prt with y+, which is the basic differentiating 

point for the different wall function formulations. In fact, the definition of 𝑇+(𝑦+) is essential 

for the computation of the heat transfer to the walls, but it cannot be defined analytically. 

Most correlations are therefore obtained by leveraging an experimental correlation obtained 

by Han and Reitz [121] through a set of incompressible measurements, which has led to 

one of the most widely adopted wall function for internal combustion engine modelling, the 

one proposed by Angelberger [63], defined as: 

𝑇+ = {
𝑃𝑟 ⋅ 𝑦+, 𝑦+ ≤ 13.2

2.075 𝑙𝑛(𝑦+) + 3.9, 𝑦+ > 13.2
  

 

(6-18) 

Other notable functions were proposed by Launder and Spalding [122], Kays and Crawford 

[123] and Han and Reitz [121], all based on the same assumption of a linear behaviour in 

the viscous sub-layer (the region closer to the wall) and a logarithmic profile in the so called 

‘logarithmic’ layer, after a threshold value of 𝑦+. 

An extensive review of the existing heat transfer models was performed by Rakopoulos et 

al. [124] who finally proposed a new wall heat transfer model, validated against several 

engine conditions, which led to a series of conclusions:  

1) the isothermal wall functions are not capable of describing both high and low load 

conditions, as well as all the phases of the engine cycle; 

2) the wall functions which included the pressure work term performed better in 

capturing the timing of the heat flux peak and the following reverse energy exchange 

in the expansion phase; 

3) the model proposed by Han and Reitz proved to be the most reasonable trade-off 

between simplicity and accuracy, despite the unsteady pressure term is not 

accounted for. 

Starting from the analysis of Rakoupolos, in order to deal with a more robust and accurate 

methodology for the assessment of the engine in-cylinder wall heat transfer, over the very 

large range of loads typical of both SI and CI engines currently under production, a more 

comprehensive fully non-isothermal wall function has been developed. In order to consider 

the effects of flow density variations in the near wall region, Keum et al. [125] proposed to 

modify the incompressible part of Han and Reitz formulation, by adding a non-dimensional 

temperature parameter, that includes the non-isothermal effects. A similar, more detailed 

approach has been used here, where no correction term is added to the general formulation, 

but the empirical relationship between dimensionless temperature and distance is directly 

addressed. In fact, the incompressible nature of the experimental measurements is in 
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contrast with the compressibility hypothesis of the boundary layer, leading to a misleading 

lack of sensitivity in the core model, leading to Eq. 6-19. 

𝜈+

𝑃𝑟𝑡
= {

𝛱 ⋅ (𝑎 + 𝑏𝑦+ + 𝑐(𝑦+)2), 𝑦+ ≤ 𝑦0
+

𝛱 ⋅ (𝑚𝑦+), 𝑦+ > 𝑦0
+  

 

(6-19) 

where a, b and c are model constants as reported in [121] and the term 𝛱 = (
𝑇𝑤

𝑇𝑐
)
𝛼

 is used 

as a correction coefficient which corresponds to 1 when the temperature value at the wall is 

the same of that in the bulk flow (i.e the hypothesis of incompressible boundary layer is 

verified, which might be considered sufficiently accurate for particularly high pressure 

values) and α is a coefficient that accounts for the boundary layer compressibility effect on 

the temperature profile, set to a constant value of -1.  

It is now possible to integrate the left-had side of Eq. 6-17 with a fully non-isothermal 

approach, evaluating the temperature wall function: 

𝑇+ = {
𝑃𝑟𝐴1, 𝑦

+ ≤ 𝑦0
+

𝑃𝑟𝐴2, 𝑦
+ > 𝑦0

+  

  

(6-20) 

where the model parameters A1 and A2, that summarize the integrals found in the definition 

of T+ are reported in Eq. 6-21 and 6-22. 

𝐴1 = (−2 𝑎𝑟𝑐𝑡𝑎𝑛 (
0.025√𝛱 𝑃𝑟

√0.048+0.004175𝛱 𝑃𝑟 
) + 2 𝑎𝑟𝑐𝑡𝑎𝑛 (

(0.025+0.024 𝑦+)√𝛱 𝑃𝑟

√0.048+0.004175𝛱 𝑃𝑟 
))  

(6-21) 

 

𝐴2 =
1

𝛱𝑃𝑟
[√{𝛱𝑃𝑟} (−2 𝑎𝑟𝑐𝑡𝑎𝑛 (

0.025√𝛱𝑃𝑟

√0.048+0.004175𝛱𝑃𝑟
) + 2 𝑎𝑟𝑐𝑡𝑎𝑛 (

0.9226√𝛱𝑃𝑟

√0.048+0.004175𝛱𝑃𝑟
)) ∙

1

√0.048+0.004175𝛱𝑃𝑟
−⋯  

−2.09776 𝑙𝑜𝑔(1 + 17.8286𝛱𝑃𝑟) + 2.09776 𝑙𝑜𝑔(1 + 0.4767𝛱𝑃𝑟 𝑦+)  

 

(6-22) 

 

Interestingly, as can be seen from Figure 6-7, the profile of the newly defined wall function 

is almost coincident with the standard Angelberger definition, as long as the 

incompressibility hypothesis is considered satisfied (
𝑇𝑤

𝑇𝑐
= 1). When the temperature ratio 

increases, thus indicating that the gradient between the boundary and gas temperature is 

steeper, the value of 𝑇+ increases faster with 𝑦+ than the classical formulation, reducing the 

predicted heat flux, while for the viscous sublayer only small variations are obtained.  
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Figure 6-7: Dimensionless temperature profile as a function of the dimensionless distance from the wall 

 

The in-cylinder heat flux across the wall can be finally calculated as: 

−𝑞𝑤 = {

𝑢𝜏𝑐𝑝𝜌𝑤𝑇𝑤 𝑙𝑛(
𝑇c
𝑇𝑤
)

𝑃𝑟⋅𝐴1
, 𝑦+ ≤ 𝑦0

+

𝑢𝜏𝑐𝑝𝜌𝑤𝑇𝑤 𝑙𝑛(
𝑇c
𝑇𝑤
)

𝑃𝑟⋅𝐴2
, 𝑦+ > 𝑦0

+

  

  

(6-23) 

Despite the lack of experimental data for the validation of the proposed wall function on high 

power density engine configurations, the trend to predict a reduced heat transfer with 

respect to the reference Angelberger formulation is in line with the most recent observations 

in academia and industry [126] which results in a higher confidence in the new method. 

Additionally, the dependency of the wall function formulation on the temperature ratio 

between cell and wall is expected to allow a higher robustness against different boundary 

mesh dimensions, which has as a direct consequence the variation in the average cell 

temperature calculation. To verify the second observation a simplified test case, usually 

referenced in literature has been implemented and tested: the GM pancake engine. It must 

be reminded that this case is of interest because of the availability of heat flux measurements 

on several thermocouples placed on the head of the engine, which are mandatory for the 

validation of the wall-functions. The main limitation, however, is that the operating condition 

of the engine is representative of a low load point for modern engines. The engine has been 

discretized with a hexahedral mesh with base size = 0.8 mm, but the boundary layer region 

on the head has been defined in order to generate 3 different configurations, reported in 

Table 6-3. 

Table 6-3: Mesh size on the boundary regions for the GM-Pancake test case 

 Base size 

(mm) 

Boundary dome 

(mm) 

Boundary piston 

(mm) 

Boundary liner 

(mm) 

Mesh 1 0.8 0.3 0.3 0.3 

Mesh 2 0.8 0.2 0.3 0.3 

Mesh 3 0.8 0.1 0.3 0.3 
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The simulations cover the range from 117 CA BTDC to 30 CA ATDC, and the general 

modelling setup can be found in [127], together with the initial and boundary conditions 

imposed. The combustion pressure trace is aligned with experimental data from the 

measurements available in Alkidas [128], as can be seen from Figure 6-8 for the reference 

case (Mesh 1 and Angelberger wall function). 

 
Figure 6-8: Experimental and numerical pressure trace for the reference GM-Pancake combustion phase 

 

The results, in term of comparison with the experimental data of the Angelberger wall 

function are in agreement with the experimental values, whereas there is a general shift of 

the peak in the heat flux recorded by the thermocouple closest to the spark plug, whose 

punctual value is reported in Figure 6-9. Additionally, the integral heat transfer values of the 

Angelberger wall function case depend on the mesh size leading to variations up to 15% 

changing from mesh 1 to mesh 3. The proposed wall function, on the other hand, displays 

no significant variation in the heat flux profile, and only up to 5% variation in the average 

heat flux prediction. 
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Figure 6-9: Heat flux on thermocouple 1 with different mesh sizes for 2 wall funcitons 

6.2.8 Spray modelling 

The solution of the coupling between liquid spray and the external gas is usually 

addressed by following a lagrangian approach in RANS simulations [129]. Specifically, the 

liquid spray injected into the computational domain (gaseous) is treated as an aggregate of 

droplets under the assumption that their volume is minimal with respect to the 

computational cell. The initial velocity and direction of each computational parcel is defined 

by randomly selecting an axial angle within the spray cone angle, which is an experimental 

property of the injector usually between 20 and 30 degrees. The velocity of the liquid spray 

needs to be defined a priori, considering that the flow inside the nozzle is not resolved 

directly. In particular, the fluid velocity can be computed with a classical Bernoulli equation, 

scaled by a velocity reduction constant 𝐶𝑣, which summarizes the friction losses inside the 

nozzle:  

𝑣0 = 𝐶𝑣√
2Δ𝑃

𝜌
  

  

(6-24) 

The velocity reduction coefficient for GDI injector simulations is usually considered in the 

range 0.8-0.95, and for the present application a value of 0.84 has been chosen, after 

detailed in-nozzle multiphase flow simulations performed within the research group. The 

second main property of the initialized droplets is the evolution of their diameter, within the 

injector nozzle, and immediately outside. For this application, a slightly modified version of 

the model proposed by Bianchi et al. has been employed, which assumes that the droplets 

are introduced inside the domain as a column of mono-dispersed droplets, whose 

diameter corresponds to the effective diameter of each hole and can be obtained by 

multiplying the nominal orifice diameter by a flow contraction coefficient 𝐶𝐶 which can be 

obtained from the overall discharge coefficient and the velocity reduction hypothesis: 
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𝐶𝑐 =
4𝑄𝑠𝑡𝑎𝑡𝑖𝑐

𝜋𝑑𝑛𝑜𝑚
2 𝐶𝑣√2Δ𝑃𝜌

  (6-25) 

 

Where 𝑄𝑠𝑡𝑎𝑡𝑖𝑐 is the experimental effective flow rate, and 𝑑𝑛𝑜𝑚 the nominal hole diameter. 

After the introduction of the droplets inside the domain (which in this phase are called 

blobs), their size is rapidly eroded to account for turbulent and cavitating phenomena not 

considered in the computation of the contraction coefficient, up to the effective atomization 

of each blob into new droplets which represent the effective spray atomization phase, 

guided by the blob relative velocity, and an assumed probability distribution of the 

diameters of the droplets. 

  

 
Figure 6-10: Classical representation of the liquid spray evolution inside the surrounding medium 

 

The interaction between aerodynamics forces and the fluid surface is usually modelled by 

means of break-up models for the droplets, instead of directly resolved, due to the 

characteristic length scale of the problem. One of the most renowned models, based on the 

non-dimensional Weber number, is the Pilch-Erdmann model used in the current work [130]. 

This method is based on the calculation of a characteristic break-up time obtained with an 

experimental campaign by the authors and a stable diameter the droplets tend to, all 

functions of the Weber number, defined as the ratio between aerodynamic drag force and 

surface cohesion forces.   
𝑑𝐷

𝑑𝑡
= −

(𝐷−𝐷𝑠𝑡𝑎𝑏𝑙𝑒)

𝜏
  

 

(6-26) 

The break-up model implemented is a customized version of the Pilch and Hermann model, 

which considers 5 different break-up regimes as a function of the droplet break-up number. 

The basic idea behind the algorithm is that, based on the Weber number, the droplet will 

behave differently, and its break-up will occur with different time scales, registered after a 

set of experimental validation studies. 
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Figure 6-11: Visualization of the different break-up regime identified as a function of the Weber number 

 

Based on the density ratio between fluid and gas, the characteristic time scale is computed 

from the dimensionless break-up time as: 

𝜏 = 𝑇
𝐷

𝑉(
𝜌

𝜌𝑑
)
0.5  

 

(6-27) 

Consequently, from the 𝑊𝑒𝑐information and definition to a reference value of 12, the stable 

diameter at which the droplet will tend is defined as: 

𝐷𝑠𝑡𝑎𝑏𝑙𝑒 = 𝐶 ∙ 𝑊𝑒𝑐
𝜎

𝑝𝑉2
  (6-28) 

 

From these 2 data (stable diameter and characteristic time scale, the STAR-CD solver will 

define the droplet diameter at the next time step. 

In order to validate the numerical setup for the spray modelling, it is frequent in literature to 

compare the numerical predictions with experimental data from a constant volume vessel 

test. To this aim, the choice of the injector for the proof of concept GDI engine was directed 
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towards a model with experimental characterization available in literature [131]. The injector 

is a prototype 5-hole with a stepped-hole design, and 125microndiameter holes. The spray 

pattern was not available, but it was retrieved from the available spray images for the 

validation study, and adapted heuristically in order to avoid phenomena of spark plug fouling 

while maximizing the spatial distribution of the spray for the engine simulation case. 

To perform an accurate validation of the spray model and setup, a simplified constant 

volume domain is selected, with size 50x100x100 mm and discretized with hexahedral cells 

of reference size=0.8 mm, in line with the average size of the engine computational grid, 

except for the most external region which is composed of 1.6 mm cells to reduce the size of 

the problem, from 700’000 to about 500’000 cells, as in Figure 6-12. 

 
Figure 6-12: Computational domain employed for the simulation of the reference injection test case 

 

The boundary conditions are set to adiabatic walls, which are expected to not influence the 

overall result in terms of spray modelling, and at the same time, provide sufficient computing 

stability. The time step for the transient solution is set to 1e-6 s, in line with the expected 

time step size employed during the engine simulation, and the solution algorithm is the 

classical PISO solver implemented in the commercial CFD software Star-CD, with pressure 

under relaxation term set to 0.1, and residual tolerances for the main turbulence, velocity, 

pressure and temperature fields set to 1e-5 and the discretization is second order accurate 

in line with the engine case setup. 

The results have been compared in terms of granulometry on a 30 mm distance plane and 

liquid tip penetration, as well as spray plumes morphology, reported in Figure 6-13. 
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Figure 6-13: Visual validation of the spray morphology with respect to the experimental data 

 

The liquid spray tip penetration is compared by considering the furthermost point from the 

injector tip reached by 99% of the total injected mass, while the granulometry is compared 

in terms of d10 and SMD, which are calculated as in Eq. 6-29 and 6-30 and their values are 

compared in Table 6-4: 

𝑑10 =
1

𝑁
∑ 𝑑𝑖=1,𝑁   

 

(6-29) 

𝑆𝑀𝐷 =
∑ 𝑑3𝑖=1,𝑁

∑ 𝑑2𝑖=1,𝑁
  

 

(6-30) 

 

Table 6-4: Comparison of experimental and numerical results of the spray simulation 

 EXP CFD 

D10 (mum) 7  6.8 

D32 (mum) 12  12.1 

z@0.2 ms aSOI (mm) 14 14.2 

z@0.4 ms aSOI (mm) 31 30.8 

z@0.6 ms aSOI (mm) 42 41.5 

z@0.8 ms aSOI (mm) 53 51.9 

 

  



Peak Power simulation results 

99 
 

6.3 Peak Power simulation results 

6.3.1 Cold Flow Analysis 

Considering that the comparison between the different fuel surrogates is based on the 

combustion phase of the engine cycle, only a short analysis of the cold flow phase will be 

reported, to understand the mixture properties before the spark ignition event. A single liquid 

phase gasoline fuel surrogate has been employed following a multi-component formulation 

in order to isolate the chemical kinetics related phenomena, choosing the surrogate 3 of the 

Shell-D gasoline as reference. 

 

Table 6-5: Molar composition of the different fuel surrogates for Shell-D gasoline 

SHELL-D SURROGATES (Mol%) 

 Level-1 Level-1* Level-2 Level-2* Level-3 Level-3* 

Iso-octane 1.8344e-01 2.7977e-1 2.5058e-01  2.6452e-01  3.1850e-01  2.4129e-01  

n-heptane 5.0414e-02 7.3584e-2 0.0000e+00  1.1121e-02  7.3414e-02  4.6099e-02  

n-pentane 9.4730e-02 1.0933e-2 4.4991e-02  6.0857e-02  0.0000e+00  9.8087e-02  

toluene 1.7762e-01 4.0259e-1 2.3716e-01  2.7552e-01  1.5411e-01  1.8391e-01  

124TMB 1.9982e-01 8.9177e-2 1.3174e-01  8.2400e-02  1.7658e-01  1.4904e-01  

1-hexene 0.0000e+00  2.2738e-2 0.0000e+00 9.1562e-02 1.0788e-01 0.0000e+00 

1-pentene 1.3025e-01 1.4989e-2 1.2076e-01  1.3684e-02  0.0000e+00  1.3487e-01  

cyclohexane 4.0385e-02 0.0000e+00  0.0000e+00  4.3356e-02  6.1644e-02  0.0000e+00  

MCH 4.0291e-02 6.4441e-2 6.2522e-02  3.2129e-02  0.0000e+00  4.8649e-02  

Ethanol  8.3046e-02 2.7305e-2 1.0265e-01  9.8840e-02  1.0788e-01  9.8052e-02  

n-decane 0.0000e+00  1.4478e-2 4.9609e-02  2.6012e-02  0.0000e+00  0.0000e+00  

 

The overall mixture distribution 10 degrees before top dead center, shows a sufficiently high 

homogenization, due to the high tumble (maximum tumble ratio = 0.95), with a leaner region 

on the squish plane on the exhaust side, which could indicate a potential hotter region (due 

to a reduced charge cooling).  

 
 

Figure 6-14: Mixture fraction distribution (𝜆) inside the cylinder @710 CAD 

 

The temperature distribution inside the cylinder, presented in Figure 6-15, due to different 

charge cooling effects, presents a temperature variation of up to 100 K, with minimum values 



Peak Power simulation results 

100 
 

near the richer region on the intake side, and a hotter region under the exhaust valves due 

to higher heat transfer from the valve faces and lower cooling for the liquid fuel evaporation. 

 

 
Figure 6-15: Mixture temeprature distribution inside the cylinder @710 CAD 

 

The turbulent kinetic energy inside the cylinder is extremely dependent on the piston bowl 

and head shapes, that lead to the formation of a non-symmetric higher turbulence region at 

TDC on the intake side, up to the spark plug. The flame front propagation is expected to be 

driven by the turbulence distribution, therefore leading to an increase in the time available 

for the knock precursor to develop on the exhaust side.  

 

 
Figure 6-16: Turbulent kinetic energy distribution inside the cylinder @710 CAD 

 

6.3.2 Sa sweep analysis 

As expected from the preliminary analysis, the combustion progress follows the turbulence 

distribution propagating towards the intake side before expanding towards the exhaust 

region. In Figure 6-17 the combustion progress variable is presented for the reference cycle, 

at 736 CAD, which corresponds to 50% of the total mass fraction burnt for the cases with 

SA=721 CAD.  
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Figure 6-17: Combustion progress variable for the reference cycle (not-knocking) @736 CAD 

 

In order to provide a pressure trace comparable with experimental results, leading to the 

possible definition of knock indicators, such as the MAPO index, calculated as in Eq. 6-31, 

the requirement to store punctual values is obtained by placing virtual sensors in several 

positions of the engine, near the boundaries, as reported in Figure 6-18. 

𝑀𝐴𝑃𝑂 = max (|𝑃|)  

 

(6-31) 

Where P is the filtered pressure trace, usually obtained with a high-pass filter limited at 

6KHz.The presented results were obtained from the same initial field at 700 CAD, changing 

only the laminar flame speed and ignition delay time look-up tables interpolated during the 

simulation. Considering the time requirements for the generation of entire databases, even 

applying the presented methodologies, it was chosen to verify the robustness of the 

surrogate definitions only with respect to the most detailed optimized surrogate (SURR-3). 

 
Figure 6-18: Distributions of the punctual virtual sensors placed on the engine 

 

The results of a variation in the spark timing, with consequent modification in the combustion 

phasing of the engine are reported in term of punctual pressure traces obtained at sensor 
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#2, which is, from the previous observations, the one which could be more subject to 

knocking phenomena.  

 
Figure 6-19: Pressure trace of the SA sweeps performed with the different surrogates and identification of 

the most relevant location for knock insurgence 

 

The effect of the fuel surrogate definition does not display any significant variation in KLSA 

identification when the full experimental validation data are employed (SURR_3 and SURR-

3*) but it clearly shows diminishing robustness when reducing the number of common 

properties up to the minimal set of information of SURR_1*, which underestimate the 

potential optimal MFB50 value by over 3 CAD, by considering the BOSCH limit MAPO rule 

(limit=RPM/1000) [132]. On the other hand, the results obtained with SURR-2* highlight the 

potential of the use of fuel surrogates even without the presence of experimental kinetics 

data, as long as a sufficient molecular characterization is available. 

 

 
Figure 6-20: Identification of the Knock-limited SA by means of the BOSCH limit method for the different 

gasoline fuel surrogates 
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Conclusions and improvements 

 

The automotive industry, in the last decades, has seen an ever-increasing level of 

complexity to meet customer demand as well as facing regulatory limitations mainly 

concerned with the internal combustion engine functioning. The use of numerical simulation 

tools, in particular fluid dynamics solvers have played a central role in the understanding 

and optimization of the latest generation of powertrains, from several points of view, from 

duct shape optimization to injection pattern definition, to combustion and knock prediction. 

Even with the increasing electrification share, the use of numerical methods is regarded as 

the fastest approach to the combined optimization of engines and fuels, which could help 

reaching the emission targets set by the international community. The use of synthetic fuels 

or the increased fraction of bio-derived components inside the more traditional pump 

gasoline can, indeed represent a viable alternative in the mid-term, when most light-duty 

transportation vehicles are still powered by a combustion engine. 

The level of detail that industry-standard simulation models reach needs, however, to be 

sensitive enough to potential variations in the fuel definitions, with an unprecedented level 

of accuracy and adaptability. In this context, the present work is intended to contribute to 

the development of new optimized fuels and engines by including fuel-dependent chemical 

kinetics properties in the simulation of industry-grade engine combustion simulations. To 

this aim, the use of machine learning techniques has played a crucial role, thanks to its 

excellent approximation properties. The role of artificial intelligence algorithm is, on the other 

hand, gaining more and more attention from the scientific community, highlighting the 

potentials of the introduction of data-driven algorithms into more traditional scientific 

domains. The main outcomes of the present work are:  

- An analysis on the potential methods to reduce the time required for the generation 

of laminar flame speed databases for new fuels. These include the reduction of the 

chemical kinetics scheme, as well as a set of data-driven methodologies to overcome 

the accuracy reduction induced by the reduced mechanism. 

- A proposed method for the rapid inclusion of water vapour into the laminar flame 

speed databases as an independent variable, by increasing the simulation 

requirements by less than 5% with a minimum error. 

- A method for the direct prediction of ignition delay time for any engine relevant 

thermodynamics condition and gasoline fuel surrogate definition from a palette of 11 

validated molecules. 

- An optimized workflow for the definition of gasoline surrogates tested against 2 target 

reference fuels demonstrating the potential of the technique, as well as its direct 

relation with the number of target properties experimentally available. This aspect is 

of particular interest for the applicability of the entire simulation workflow, providing 

confidence levels for the predicted performance metrics with new fuels, as a function 

of the quantity of experimental data available. 

- The same conclusions have been drawn from the simulation of a proof-of-concept 

GDI engine at peak power conditions, to which a set of advanced industry-standard 

modelling approaches, expected to be sensitive to the fuel surrogate formulation has 

been applied. The conclusions drawn from the combustion and knock analysis 
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employing different surrogates representing the same target fuel have confirmed that 

the availability of data regarding the fuel main molecular composition (AL-P-I-O-N-A) 

together with the more classical average properties (RON/MON, AFS, LHV) can 

substitute the need for more specialized experimental data about the reactivity of the 

fuel, which are expensive and time-consuming properties to be identified for new fuel 

formulations. 

 

A natural continuation of the current work is related to the inclusion in the analysis of the 

effect of the mixture definition in terms of pollutant formation emissions, and the validation 

of the results against a set of experimental engine data running with different fuels, for which 

the surrogate should be defined. Besides traditional SI engines, moreover, the effect of fuel 

surrogate definition on different combustion modes, such as HCCI should be investigated, 

considering the high relevance that fuel reactivity properties play in the performance 

prediction of such concepts. 
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