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Abstract

The simulation of ultrafast photoinduced processes is a fundamental step towards the
understanding of the underlying molecular mechanism and interpretation or predic-
tion of experimental data. Indeed, dynamics simulations is at present the only way to
visualise the motion of the system perturbed out of equilibrium by the absorption of
light. Performing a computer simulation of a complex photoinduced process is only
possible introducing some approximations (e.g. the classical treatment of the nuclei
and the stochastic non adiabatic events in mixed quantum/classical dynamics or the
reduction of the number of degrees of freedom and/or simplification of the energy
profiles to low order terms of a series expansion in quantum dynamics). In order to
obtain reliable results, the need to reduce the complexity must balance with the ac-
curacy of the model, which should include all the relevant degrees of freedom and a
quantitatively correct description of all the electronic states involved in the process.

This work presents new computational protocols and strategies for the param-
eterisation of accurate models for photochemical/photophysical processes based on
state-of-the-art multiconfigurational wavefunction-based methods. The required in-
gredients for a dynamics simulation include potential energy surfaces (PESs) as well
as interstate couplings between the electronic states, which must be mapped across
a wide range of geometries. Indeed, due to kinetic energy, the nuclear wavepacket/
trajectory may explore regions quite far from ground and excited states equilibrium
structures during the propagation. The developed procedures allow to obtain solid
and extended databases reducing as much as possible the computational cost, thanks
to, e.g., specific tuning of the level of theory for different PES regions and/or direct
calculation of only the needed components of vectorial quantities (like gradients or
non adiabatic couplings, NACs).

The presented approaches were applied to three case studies, all requiring an ac-
curate parameterisation but for different reasons, i.e. (a) the need to simulate transient
experiments based on wavepacket propagation (azobenzene), (b) the delicate interplay
of a large number of excited states of different nature (pyrene) and (c) the presence
of a complex environment (visual rhodopsin). The resulting models and simulations
allowed to elucidate the mechanism and time scale of the internal conversion, re-
producing or even predicting new transient experiments. The general applicability
of the developed protocols to systems with different peculiarities and the possibility
to parameterise different types of dynamics on an equal footing (classical vs purely
quantum) prove that the developed procedures are flexible enough to be tailored for
each specific system, and pave the way for exact quantum dynamics with multiple
degrees of freedom.






Chapter 1

Introduction

Light is the main source of energy for life on Earth. Sunlight photons reaching our
planet trigger a number of fundamental processes for life like plant photosynthesis or
stratospheric ozone production. This is made possible by the ability of some molecules
to absorb its energy and transform it into e.g. chemical or mechanical energy. The
study of such light-induced processes is the central topic of photochemistry and pho-
tophysics. A deep insight into the molecular mechanisms initiated by light absorption
is indeed fundamental not only to improve our knowledge on natural processes, but
also to suggest strategies to improve or exploit them to perform useful tasks.

An experimental study of a photoinduced physical or chemical process requires
the use of a light pulse of proper wavelength to excite the sample and some techniques
to retrieve information about the populated excited state(s). The simplest example is
probably given by linear absorption spectroscopy, in which the change in the incident
light intensity is measured as a function of frequency/wavelength to obtain informa-
tion about the energy of the absorbed light, i.e. the energy of the photoexcited state(s).
Many more sophisticated experimental techniques exist, relying on the use of mul-
tiple pulses interacting with the sample at precisely controlled time delays, which
allow to determine excited state properties and/or to keep track of their evolution in
time. The major hurdle in the experimental study of photoinduced processes is how-
ever given by their ultrafast timescales. Indeed, molecular motions triggered by light
absorption take place in the femto- to picosecond regime (101°-1071? s), while modi-
fications in the electron density surrounding the atoms nuclei are even faster (10712 s).
In particular, the ultrafast deactivation of excited states is typically driven by the so
called conical intersections[1, 2], i.e. points of degeneracy between the potential en-
ergy surfaces of different electronic states sharing the same spin multiplicity, where
population transfer between them is extremely rapid and efficient. Such points acts
as special transition states for photochemical reactions and are found with unsus-
pected frequency, eventually acting as population funnels driving the photoinduced
processes. Following the ultrafast nuclear dynamics in real time (e.g bond break-
ing and formation) requires sufficient time resolution to sample the signatures of the
atomic motions and, despite the tremendous progress in the generation of femto-
or even attosecond laser pulses[3-5], interpretation of experimental spectra as well
as a full understanding of the underlying mechanisms cannot yet prescind from a
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computational study. In addition, experiments do not directly observe the geomet-
rical/conformational changes of molecules, but rather record the temporal change of
observables which are functions of the molecular deformations. Their interpretation
would require knowledge of the electronic structure of the system as a function of
the dynamics, that can only be accessed through quantum mechanical calculations.
Computational quantum chemistry tools allow to obtain excited states energies and
other fundamental properties by solving the Schrédinger equation at some level of ap-
proximation, yielding valuable insights into the topology of the electronic potential
energy surfaces as a function of nuclear coordinates (e.g. conical intersections, bar-
rier heights, ground state products etc.). However, the characterisation of crossing
and stationary points is often not enough to predict or explain the outcome of a pho-
toprocess, as this is intrinsically a dynamic event due to the effect of kinetic energy
that, in a real experiment, can drive the molecular system away from such geome-
tries. In these cases, nuclear dynamics simulations can be performed at various level
of approximation to reproduce the time evolution of the system based on quantum
chemistry data. This is the ultimate and, in principle, most reliable description of a
photoinduced chemical process.

In my three-years research activity I have focused on the development of accurate
models for the simulation of photoactive molecules using state-of-the-art multirefer-
ence perturbative electronic structure methods such as complete or restricted active
space second order perturbation theory (CASPT2[6] or RASPT2[7]) in its different
flavours. The final aim was to develop new protocols and smart strategies to produce
all the necessary data for the simulation of photoinduced processes. The developed
strategies can be tailored for the parameterisation of different kinds of non adiabatic
dynamics (i.e. dynamics involving the passage through different electronic states via
their conical intersections): from classical molecular dynamics based on Newton’s
equations for the nuclear motion to purely quantum dynamics in which all particles
in the system obey the time-dependend Schrédinger equation. The calculation of po-
tential energy surfaces and all the needed interstate couplings over the wide range
of geometries that can be explored during a dynamics can be computationally very
demanding, and I have worked on the development of ad-hoc strategies to produce
highly accurate sets of data at a fair computational cost. This involves a careful se-
lection of the fundamental coordinates describing the molecular motion (as well as
their faithful representation in terms of atomic displacements) and the development
of computational tools to reduce as much as possible the cost associated with the accu-
rate multireference perturbative methods employed (e.g. through direct computation
of vectorial components along the pre-selected reactive coordinates).

This work is organised as follows: the basic theoretical concepts of the applied
methods are introduced in Chapter 2, while Chapter 3 explains the developed compu-
tational strategies for the parameterisation of model potential energy surfaces (PESs)
and couplings for photoactive systems. Following, the results of the application of
such strategies to three compounds are presented. Chapter 4 is dedicated to the study
of azobenzene, a simple chromophore undergoing cis-trans photoisomerization that
has extensively been studied for applications as a molecular photoswitch (i.e. a type
of molecule that can change its structural geometry and physical/chemical proper-
ties upon light irradiation). Our protocol allowed to run the quantum dynamics of
its photoinduced isomerization process and gain better insight into its longly debated
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isomerization mechanism as well as to simulate transient diffraction and spectroscopy
experiments with unprecedented accuracy. Moreover, we have also investigated the
effect of chemical substitution on azobenzene, and how it could alter the photochem-
ical outcome. In Chapter 5, a new parameterisation protocol for a linear vibronic cou-
pling (LVC) model for quantum dynamics based on multiconfigurational electronic
structure methods is presented and successfully applied to the pyrene molecule and its
complex photophysics. Eventually, Chapter 6 shows the application of our modelling
strategies to a more complicated and realistic case including environment effects: the
retinal chromophore inside rhodopsin, a light-sensitive protein of the retina whose
structural change upon irradiation is the first step in the process of vision. We mapped
potential energy surfaces and electronic state couplings of different types along re-
active coordinates taking into account the effect of the protein embedding through
hybrid quantum mechanics/molecular mechanics (QM/MM) scheme[8]. Such an ac-
curate and extended database has never been reported before, and paves the road to
to future dynamics simulations of this fascinating system.
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Chapter 2

Theoretical Background

External stimuli (such as light) perturb instantly (i.e. on the attosecond timescale,
10718 5) the electron density of a system bringing it out of equilibrium, in a process
known as excitation. As a consequence, the heavier (and thus slower) nuclei respond
to the perturbed electronic density in the femtosecond regime (1071° s), initiating vi-
brational dynamics. The aim of this thesis is to show how it is possible to model and
simulate photochemical and photophysical processes taking place in the femtosecond
timescale. These involve the interaction of light with the electrons of a molecular sys-
tem, therefore, quantum chemical methods are the necessary tool to get an accurate
description of the system. The basis of quantum mechanics is the time-dependent
Schrodinger equation (TDSE):

d N
ihE‘P(r, R,t) = HY(r,R,t) (2.1)

where ¥(r, R, t) is the wavefunction bearing all the information about the system, that
depends on the coordinates of the electrons r and nuclei R and on the time ¢. H is the

Hamiltonian operator
2

. h
H=-—V2+V (2.2)
2m

The potential V in equation (2.2) can in general depend on time, however, for a freely
evolving system, H is generally assumed to be time-independent, and consists of the
sum of kinetic and potential terms:

. h2 h2 7% ZyZpge e?
H=-) —V,->, —V-> £y Y= (23
% Mg “ T 2me ot a,i Ryi a.f R‘Xﬁ ij Tij
7A“N ’fe VeN VN Ve

where i, j label the electrons, a, f the nuclei, m,, m. are the masses of nucleus «
and of the electron, respectively, Z,, is the atomic number of nucleus « and e is the
electronic charge in Coulomb. The first two terms in equation (2.3) account for the
kinetic energy of nuclei (Tx) and electrons (T,), respectively, the third terms gives
the electron-nuclear attraction (V,y) and the last two terms give the nuclear (Vn)
and electron (V,) repulsion, respectively. Inserting the Hamiltonian of equation (2.3)
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into TDSE (2.1) yields a partial differential equation, which is generally solved by
separation of variables. Thus, we adopt a tentative wavefunction of the form

¥(r,R, £) = Y(r,R) 0(¢) (2.4)

Inserting this trial form into equation (2.1) and dividing both sides by (r,R)0(¢)
yields
ih 9 Hy(r,R

- 9( t) — M

o(t) ot Y(r,R)
The left-hand side of equation (2.5) is a function of time only, while the right-hand
side depends only on the spatial coordinates of the electrons and nuclei. The only
way for the two terms to be equal for any values of t, r and R is that they are both
equal to the same constant, that we set to E, i.e. the energy of the system. In this way,
two differential equations are obtained, one for the temporal part:

(2.5)

d
ih—0(t) = E 6(t 2.6
ih—0(t) = £.0(1) (26)
and one of the spatial part:
Hy(R) = Ey(r,R) (27)

The solution to equation (2.6) is

_ipy Et . (Et
0(t) = 60(0) e 7" = 6(0) |cos (? - isin & (2.8)
this tells us that the time-evolution of the system is purely oscillatory, since 6(t) never
changes in magnitude. Thus, the total wavefunction

W(r,R, 1) = ¥(r,R) 0(0) ¢ #E! (2.9)

differs from i(r, R) only by a phase factor of constant magnitude.

Equation (2.7) is not as straightforward to solve, and is called time-independent
Schrédinger equation (TISE). It is an eigenvalue equation whose solutions depend
on the form of the potential V. For bound potentials of molecules (equation (2.3)),
physically meaningful solutions exist only for discrete values of E, while for unbound
potentials solutions exist over a continuous range of E.

One important feature of the total wavefunction ¥(r, R, t) shown in equation (2.9)
is that the quantity |¥(r, R, t)|?, which defines the probability density function, is time
independent, as we can easily show:

|¥(r,R, )2 = ¥T(r,R, ) ¥(r,R, 1)
- Tt R) 01(0) e#E! y(r, R) 0(0) e #E! (2.10)
= yT(r, R) ¥(r,R) 67(0) 6(0)

In contrast to the system wavefunction (which is a mathematical construct), the den-
sity of equation (2.10) is an observable. Moreover, by the same reasoning, the ex-
pectation value J“PT(r, R, t)A‘P(r, R, t) for any time-independent operator A is also
time-independent.
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It is important to stress the fact that the solutions obtained with the trial wave-
function in equation (2.4) (i.e. by space and time variable separation) are only partic-
ular solutions of TDSE which, for the property of predicting the expectation values
of time-independent observables, are called stationary states. A general solution to
TDSE is a superposition of stationary states, e.g:

W(r,R, 1) = a Y(r, R) 05(0) € FEL + by (. R) O (0) € FE @.11)

Indeed, TDSE is a linear differential equation, and any linear combination of solutions
will be a solution itself. The linear combination of particular solutions, each with
its time-dependent phase factor, induces time dependence in the probability density,
which for the simple case of equation (2.11) gives:

(R, O =laf? [y£(r, R |60 + b [ (x, R 6 (0)]*+

.(E'-E)t

+ 2N {aTb lﬁ]j:(l', R) ¢ (r,R) 9;(0) 05 (0) i } (2.12)

The third term in equation (2.12) arises from interference between the two stationary
states and contains all the time dependence of the probability density and other ob-
servable quantities. Although the “separated-variable solutions” are stationary, par-
ticles in general are not. Systems in equilibrium relax to a stationary state and exhibit
no time evolution, while systems perturbed out of their equilibrium (e.g. by interac-
tion with an external stimuli such as light) exist in a superposition of stationary states
which gives rise to time evolution, i.e. dynamics.

For the study of the static electronic structure of molecules, time dependence is
typically neglected and the main goal is to obtain the stationary states which solve
TISE (or a good approximation to them). Such “time-independent methods” are in-
troduced in the next section 2.1, with particular interest in multiconfigurational wa-
vefunction-based methods. On the other hand, when the aim is to describe the time
evolution of a system which is not in a stationary state (e.g. dynamics of a molecule un-
dergoing a photoinduced process), time-dependent methods must be applied, which
are introduced in section 2.2.

2.1 Time-independent methods: electronic structure

For time-independent problems, such as the determination of the electronic structure
of a molecule, the phase factor introduced by the temporal part of ¥(r, R, t) is usually
neglected, and the starting point is TISE (equation (2.7)). The spatial wavefunction
¥(r,R) is a function of the electronic and nuclear coordinates, that is in general prac-
tically impossible to obtain analytically for molecular systems with more than three
degrees of freedom. To get an approximate solution to TISE, we can consider the
electronic Hamiltonian H,

fle = fe + VeN + Ve + VN (2.13)

and write the electronic TISE at a fixed nuclear configuration R:

H.¢(r;R) = E.(R) ¢(r; R) (2.14)
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The formal solutions to equation (2.14) form a complete orthonormal basis, that we
can conveniently use to express the full spatial wavefunction:

¥(r,R) = Y. o(r:R) 1 (R) (2.15)
k

where yi(R) play the role of expansion coefficients. In the last two equations (2.14)
and (2.15) the semicolon in ¢(r; R) indicates the parametric dependence on the nuclear
positions. Substituting equation (2.15) into the full TISE (2.7), multiplying both sides

by (p,T(r; R) and integrating over the electronic coordinates gives a set of k coupled
eigenvalue equations which represent the TISE for the nuclei:

Z(Ee,k(R) S+ ), -

k
h2
* Z:_Zm

a o

2

2
vN,a 5kl+

o

U dr (plT(r; R) VIZ\W or(r; R) +

scalar coupling

(2.16)

+2 J dr GDIT (;R) VN ¢ ¢k (15 R) VN,aDXk(R) =E ), x(R) &y
k

derivative coupling

Up to this point no approximation has been introduced, and equation (2.16) is formally
exact. H, is diagonal in the {¢(r;R)} basis, while Ty originates the k, [ scalar and
derivative coupling terms in the last two lines of equation (2.16), which together form
the so-called non adiabatic coupling (NAC):

hZ
NACy = Z o U dr ¢, (r R) VNa or(r;R) + 2 J dr q)lT(r; R) VN 0k (1;R)| (2.17)

o (o4

It describes the change of the electronic wavefunction with the nuclear displacement,
i.e. correlates nuclear and electronic motions. Focusing on the derivative coupling,
its matrix representation in the {¢(r; R)} basis is anti-hermitian, as it is easily demon-

strated by considering that [ dr (p?(r; R) ¢(r;R) = & for any nuclear configuration.
Therefore, the derivative of this overlap with respect to the nuclear coordinates must
be zero, and it follows that

x| aro R = [ drv] R R + [ drg] (R Vs R) = 0
[ ol R 0 = - [ gl R uriR0
(2.18)

and
J dr ¢} (5;R) Uy (5 R) = 0 (2.19)

i.e. the derivative coupling is anti-hermitian in the basis of the electronic wavefunc-
tions. Additionally, it can be shown that the k, I coupling is inversely proportional to
the k - [ energy gap. To prove this, we can differentiate the electronic Schrodinger
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equation (2.14) with respect to each nuclear coordinate « and subsequently multiply

both sides by q)lT(r; R) and integrate over the electronic coordinates obtaining

j dr ¢ (5;R) (Vo o) 0(r; R) = (Ee - Ee) j dr ] (r; R) Vo 013 R)

Jdl‘ qo;-(r; R) (VN,aI:Ie) (Pk(rZ R)
(Ee,k - Ee,l)

This tells us that the derivative coupling term has a local nature, and becomes large
when the two electronic states come close. Large couplings induce an efficient and

(2.20)

J dr ¢, (r;R) Vn 4 ok(;R) =

rapid population transfer between electronic states during the nuclear motion. This
is a non classical effect that originates as a consequence of the fact the system can ex-
ist in multiple (and coupled) electronic states simultaneously. Indeed, energetically-
accessible regions of degeneracy are responsible for nonradiative decay down the lad-
der of excited states, known as internal conversion. These special points of degeneracy
are known as Conical Intersections (Cls), and are frequently observed in photochem-
ical reactions. The NACs become singular at degeneracy points, and their spiky and
localised nature makes their numerical treatment quite difficult.

In the approach that we have followed, vibronic (i.e. nuclear and electronic) cou-
pling is through nuclear kinetic energy terms. When the coupling terms cannot be
neglected, a diabatic transformation is often applied (see section 2.2.4), in which the
kinetic term is diagonalised. However, the transformation creates coupling terms in
the potential as the off-diagonal elements of H,. The diabatic representation is easier
to deal with, because it results in smoother electronic potentials and vibronic cou-
plings, compared to the adiabatic states (and corresponding non adiabatic couplings).

2.1.1 Born-Oppenheimer approximation

The coupled equations 2.16 are formally exact and take into account the nuclear-
electronic coupling. The Ty terms (including the scalar and derivative couplings of
equation (2.17)) are inversely proportional to the nuclear mass, therefore, the NACs
will only produce small corrections in the energy levels as a consequence of the heav-
iness of the nuclei. Indeed, for the same displacement, the electronic wavefunctions
usually change much slower than the vibrational ones, making the NACs orders of
magnitude smaller than the other terms in equation (2.16). Therefore, they can be ne-
glected, and hence the whole matrix is effectively zero. The scalar coupling term can
approximately be written as the square of the derivative coupling and, accordingly, it
is significantly smaller in magnitude (and negligible in the same way). Only the di-
agonal kinetic energy term in equation (2.16) is retained in the case of well separated
states

hZ
Zk: (Ee,k(R) Ok + Za: —%Vﬁ,ﬁkl) Xx(R) = E Zk: Xk (R) 8¢ (2.21)
Such approximation is called the Born-Oppenheimer (BO) approximation or adiabatic
approximation, and it represents the fundamental assumption in quantum chemistry.
In this view, the nuclei are considered stationary with respect to the electrons, which
is justified by the high mass and velocity difference between the two types of particles.
Therefore, electrons can adapt almost instantaneously to a new nuclear arrangement.
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Under the BO approximation it is possible to solve the electronic problem in equa-
tion (2.14) for a large set of nuclear positions, obtaining adiabatic potential energy
surfaces (PESs) which can be used to solve the TISE for the nuclei (2.21) and eventu-
ally to propagate them, i.e. to simulate their time resolved dynamics with the TDSE.
Based on the BO approximations, many electronic structure methods have been de-
veloped to find approximate solutions to the electronic TISE (2.14). Indeed, analyt-
ical solutions are impossible to find for more than two particles (i.e. many-electron
systems), which require approximate methods. Among these, the main distinction
is between wavefunction-based and density-based methods. The former rely on the
computation of the multi-electronic wavefunction of the system (to a certain level
of approximation), an abstract quantity which satisfies some physically-meaningful
conditions. On the other hand, density-based methods rely on the electron density
p(r) which, in contrast to the wavefunction (whose complexity grows rapidly with the
number of electrons in the system, is a function of three spatial coordinates only). For
the ground state, this approach is justified by the celebrated Hohenberg-Kohn (HK)
theorems, which state that the exact ground state total energy of any many-electron
system is given by a functional of the electron density only[1]. In contrast, for the cal-
culation of excited states energies and properties, wavefunction-based methods are in
general more reliable, although the price to pay is a higher computational cost, which
limits their application to small-medium size systems.

Following, some wavefunction-based methods will be outlined, with particular
focus of Complete Active Space Self-Consistent Field (CASSCF) and Complete Active
Space Perturbation Theory (CASPT2) which were used for the works described in this
thesis.

2.1.2 The Hartree-Fock method

The idea behind the Hartree-Fock (HF) method is to obtain the best approximation
to the lowest-energy N-electron solution of TISE through variational minimisation
of its energy expectation value [ dr @' (r;R) H, ¢(r; R). In accordance with molecular
orbital (MO) theory, the N-electron wavefunction is approximated with a combina-
tion of one-electron solutions (orbitals). These are made up of a spatial part, named
spatial orbital ¢(x,y,z) and a spin function o(s) describing the spin component of
the electron. MOs are chosen to be orthogonal to each other, as they are solution of
the one-electron eigenvalue problem, and normalised, in order to satisfy the physical
requirement that the probability of finding the electron anywhere in space is unity.
Their final shape depends on the system and is determined variationally to minimise
the total energy. The spatial component of the one-electron MOs ¢(x, y, z) are ob-
tained as Linear Combinations of Atomic Orbitals ©(x, y, z) (LCAO)

$i(x,y,2) = Z ¢ij®i(x,y,2) (2.22)
J

The atomic orbitals (AOs) can be either of Slater type (STO) or Gaussian type (GTO):
the former are hydrogen-like and thus more accurate, the latter are represented by
gaussian functions, which make integral calculation considerably faster. GTOs are
the most common choice in quantum chemical calculations, as Slater type AOs be-
come quickly difficult to treat for increasing molecular sizes. Due to the inaccurate
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description at very short and large distances from the nuclei, each ©(x, y, z) is rep-
resented as a non-variable contraction of several primitive GTOs

0;(x,y,2) = Y, djxGi(x, y, 2) (2.23)
P

where the dj; coefficients (called contraction coefficients) are fixed constants within
a given basis set. Basis functions of this type are called contracted gaussians, the in-
dividual Gy being termed primitive gaussians. The quality of the basis set (that, in
general, improves with the number of primitive GTOs included in the contraction) is
of fundamental importance for the accuracy of the final results, and the use of finite
basis sets represents an error source that must not be underestimated.

In order to account for the electron indistinguishability, the wavefunction has to
be anti-symmetric with respect to the exchange of any pair of particles due to Pauli
exclusion principle applied to the electrons (fermions), i.e.

qo(xlaX2>“'5xn) = _QD(XZ,Xls"an) (224)

where x,, labels the coordinates of the n-th electron (spatial and spin). The molec-
ular spin-orbitals are therefore combined in a mathematical construct named Slater
determinant (SD) that satisfies such requirement:

P1(x1)  hi(x2) .. P (xN)
Oy, ) = [F20D) Ba0) e aaw)

In(x1)  ON(x2) .. ON(XN) (2.25)

1 N! A
" N 2P o)

where P represents a permutation operator of N objects (electrons, in our case), (-1)”
stands for the parity of the permutation and ®°P stands for the SD wavefunction. Such
wavefunction has the property of antisymmetry, because swapping two electrons cor-
respond to interchanging two rows of the determinant, which will have the effect of
changing its sign. Moreover, it is not possible for a spin-orbital to be occupied by two
electrons of the same spin, because the determinant would vanish if two columns are
identical. The only problem with SDs is that they are not necessarily eigenstates of
the §2 spin operator (in contrast with what the many-electron wavefunction is ex-
pected to be). To solve this, couples of SDs are linearly combined with + sign to form
configuration state functions (CSFs), which are pure spin states.

To show how the HF method works, it is convenient to express the electronic
Hamiltonian ﬁe in terms of one-electron and two-electron operators:

H, = Zfi + Zgij (2.26)
i ij
A h? Z,e?
v 2.27
fi= Ve Lo (2:27)
g ¢ (2.28)
8ij = R .
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The nuclear repulsion is a constant and has now been excluded from H,. In the
Hartree-Fock method, the variational method is applied to the expectation value of
the electronic Hamiltonian, with the constraint that the varied spin-orbitals should
remain orthogonal:
0 t : ;
o | RGO L TR OED Y ERACRTACR) Y
k
(2.29)

where € are the Lagrange multipliers to be determined. This yields a set of coupled
eigenvalue equations called the Hartree-Fock equations:

fl Pr(xq) + Z J 9{’;()(2)212 [¢k(xl) ¢j(X2) - 5okaj ¢j(X1)¢k(Xz)] dx; = € pr(xq)
J

(2.30)
The N-electron problem has therefore turned into N one-electron problems, in which
the electron is subject to an interaction with the mean field generated by the remain-
ing N -1 electrons (whose coordinates have been integrated out of the equation). The
solutions to the Hartree-Fock equations represent the MOs that, combined in a SD
wavefunction, minimise the energy of the system. The MOs are expressed as linear
combinations of AOs (equation (2.22)), therefore the solution of the HF problems re-
duces to finding the optimal set of expansion coefficients c;; that minimise the energy
expectation value.
The total energy can be found by adding all the MO energies €} (which correspond
to the Lagrange multipliers of the variational problem), removing the pair contribu-
tion form g1, to avoid double counting of the k, j and j, k interaction:

E=Y e-Y j 01 (e @] (02) 1z [ k1) B1(x2) = B, B5(%1) $r2) | dixy dixy
k ik
=D e~ 2, Uik~ Kir)
k ik
(2.31)

The two integrals Jjx and Kj; in equation (2.31) are called Coulomb and exchange
intergals, respectively. The Coulomb integral

Jig = [ 8000 8]0 50 6y 0 i (232)

gives the electrostatic repulsion between the two electrons occupying the ¢ and ¢;
spin-orbitals. It is independent of the electron spin and has a classical interpretation.
In contrast, the exchange integral K;; does not have a classical counterpart:

Kyj = J ¢Z(X1) ¢]T(X2) 812 P(x2) 9(x1) 85, 5, dxz dxy (233)

It looks like the repulsion between the two “mixed” charge distributions gbZ(xl)gb i(x1)
and ng]T (x3)Pr(x2), however, it originates from the use of an SD as wavefunction and
its nature is purely quantistic (i.e. it is due to the need to consider all possible permuta-
tions of electrons in the MOs). K is non-vanishing only for electrons with different
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spins, and accounts for the fact that they “repel more” (i.e. electrons with the same
spin cannot occupy the same spatial orbital, while electrons with different spin can
share the same region of space).

The main problem in solving the HF equations is that the energy of the i-th solu-
tion depends on the interaction with all the other electrons whose energy, in turn, de-
pends on the energy of the i-th electron itself. Therefore, the equations must be solved
iteratively, starting with some guess spin-orbitals which are varied until the self-
consistency is reached (within a determined threshold). For this reason, the Hartree-
Fock method is also called the self-consistent field (SCF) method.

Despite the underlying approximations, the Hartree-Fock SD is a good represen-
tation to the ground state wavefunction. The obtained MOs behave as if each particle
were subjected to the mean field created by all other electrons, therefore, the electron-
electron repulsion is accounted for only in an average fashion. In a sufficiently large
basis set, the HF wavefunction accounts for ~99% of the total energy. The remaining
1%, however, is often very important to describe chemical phenomena. The difference
between the exact and the HF energies is called the correlation energy, and is due to
to the correlation in the electronic motion (which is not accurately described by an
average repulsion). One way to retrieve the correlation energy is through the use
of a multideterminant (i.e. multiconfigurational) wavefunction, which provides the
necessary flexibility to describe the correlated motion of the electrons. This is of of
particular importance to describe electronically excited states, and electron correla-
tion methods typically use the Hartree-Fock SD as starting point for improvements.
The basis set of AOs determines the size of the MO basis for the determinant con-
struction, while the number of possible determinants (i.e. electronic configurations
within the MOs) determines the size of the multiconfigurational wavefunction, and
thus limits the description of the electron correlation.

G - S} — ¢ — dDSD — [} — 1)
primitive GTO AO MO SD CSF many elec. WF

2.1.3 Retrieving electron correlation: Configuration Interaction

The Hamiltonian in the Hartree-Fock method depends on all the occupied MOs. The
total number of MOs, however, is not limited by the number of electrons, but rather
it depends on the size of the basis set used to construct them. Thus, if a sufficiently
large basis set is used, the Hartree-Fock equations yield N occupied and K — N virtual
(i.e. unoccupied) spin-orbitals, where K is the total number of MOs determined by the
basis set size. In order to improve the HF results, it is possible to replace one or more
occupied spin-orbitals with virtual ones, obtaining the so-called excited determinants.
The virtual orbitals extend further away from the core, therefore their inclusion in the
wavefunction is equivalent to allowing electrons to explore more space and, thus, to
better avoid the other electrons. All the possible determinants or CSFs (i.e. electronic
configurations) that can be formed out of the K HF orbitals form a complete basis
(within the basis set used) in which the N-electron wavefunction can be expanded

> = ), i@ (2.34)

1

For convenience, Dirac notation will be used throughout the rest of this chapter, in
which the determinant/CSF ®; composed of the N spin orbitals {¢;, ¢5, -, $n} is in-
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dicated as |®;) = |p;1 ¢y -+ ¢n» and (@, is the complex conjugate of |D;).

Depending on the number of replacements with respect to the HF configuration,
excited determinants are classified into singly-excited or singles |®}>, doubly-excited
or doubles | @35, triply-excited or triples |<I>Z§fc> and so on, in which a, b, c label occu-
pied HF spin-orbitals while r, s, t label virtuals. The N-electron wavefunction then
becomes

0 = o |DEEY + Y. chl@iy + D el [@5y + > clSL@rsty + o (235)
a,r a<b a<b<c
r<s r<s<t

The configuration interaction (CI) method uses the variational method to find the
best set of coefficients that minimises the energy expectation value of the N-electron
wavefunction expanded in a basis of Slater determinants

(ol H |p) = Z cicj <@y H@j) = Z clE; + Z cicj <¢i|ﬁ|‘1’j> (2.36)
i f ij#i

with the constraint that the total CI wavefunction is normalised. This corresponds to
a diagonalisation of the molecular Hamiltonian in the basis of the CI wavefunctions:
lowest eigenvalue &, is an approximation to the ground state energy, with &, - E5IF
representing the correlation energy E.,,, (within the approximation imposed by the
basis set). Higher eigenstates (and eigenvalues) represent excited state wavefunctions
(and energies). The matrix representation of the Hamiltonian in the {®;} basis is called
the CI matrix.

In the limit of an infinite and complete determinant basis, CI provides an exact
solution to the N-electron problem. In practise, however, we can only handle a finite
set of trial functions, whose limit is imposed by the basis set size, and CI provides
upper bounds to the exact energies.

If all the possible configurations are included in the expansion the method is called
full-CI, and it yields the best possible results within the basis set approximation. Un-
fortunately, even for small molecules and moderate-size one-electron basis, the num-
ber of possible determinants is too big to make CI computationally affordable. Thus,
the CI expansion is usually truncated in some way, excluding some determinants (or
CSFs). To this aim, there are few useful observations about coefficients ¢; and CI
matrix element (®;| H |® ;> appering in the expectation value (equation (2.36)):

« in the CI expansion, a large number of coefficients vanish because there is no
mixing between states of different spin (e.g. triplet configurations do not con-
tribute to the expansion of singlet wavefunctions and vice versa);

« if the system is symmetric, additional coefficients vanish due to the fact that
only determinants with the same symmetry as the considered state can con-
tribute;

« all the CI matrix elements (CIDSIF\ H |®7> involving the HF determinant and any
singly-excited determinant are null, as they are equivalent to the off-diagonal
elements of the Fock matrix (i.e. the matrix representation of the one-electron
hamiltonian in the spin-orbital basis), which is diagonal in the converged HF
orbital basis. This is known as Brillouin’s theorem and implies that the con-
tribution of single excitations to the ground state correlation energy is small
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(although non zero, due to the indirect contribution through their interaction
with other contributing determinants e.g. double excitations);

« the Hamiltonian operator consists of a sum over one- and two-electron opera-
tors, thus, if two configurations differ by more than two spin orbitals, the cor-
responding CI element H;; = <@, H|® > vanishes because the integration will
always include the overlap between two different MOs, which is zero.

The most common truncated CI methods include single excitations (CIS[2]) or
singles and doubles (CISD[3]). Higher order expansions (CISDT, CISTQ etc.) approach
the full-CI limit, but they are computationally unaffordable for most systems, as the
size of the determinant basis grows rapidly for multiple excitations.

2.1.4 The CASSCF method

Empirical studies have shown the that CI wavefunction converges slowly, and re-
quires a large number of configurations that impact on the computational cost (sin-
gles are not enough, double and triples are required). The CI wavefunction is indeed
missing flexibility, due to the fixed MOs used. An improvement to the CI method is
the multiconfigurational self-consistent field (MCSCF) method, in which both the CI
coefficients and the MOs used for constructing the determinants are simultaneously
optimised. The MCSFC procedure is iterative (if the “multiconfiguration” includes
only one determinant, it reduces to the HF method) and achieves accurate results.
However, the additional effort emerging from the complexity of the simultaneous op-
timisation of CI and MO coefficients makes it necessary to restrict in some way the
number of excitations included.

Among the MCSCF methods, the most popular is probably the complete active
space self-consistent field (CASSCF) method[4] in which, instead of limiting the or-
der of the excitations, a full-CI is performed in a subspace of orbitals, referred to as
the active space. The active space size and composition is left to the chemical intuition
of the user, and depends on the problem at hand and on the computational expense.
Typically, the active space should include those orbitals that are involved in the chem-
ical transformation, or whose occupation number changes significantly when exciting
from the ground to the excited state(s) included in the model. The CASSCF MOs are
therefore divided in three subspaces: the inactive MOs are doubly-occupied in all the
configurations, the active MOs have a variable occupation number and are used to
generate the excited determinants, the secondary or virtual MOs are always empty
and do not contribute (see Figure 2.1, left).

The number of CSFs generated from a given active space is determined by Wey!’s

formula:
N _25+1 n+1 n+1 537
CAS_n+1 N/2-S)\N/2+S+1 (2:37)

where n is the number of active (spatial) MOs, N the number of active electrons, and
S is the total spin. The number of CSFs included in the expansion grows rapidly with
the active space size, and the CASSCF wavefunction and CI matrix become unman-
ageably large for more than 18 active orbitals/electrons. The restricted version of the
method (RASSCF[5]) represents a valid alternative for bigger systems. In RASSCF, the
active orbitals are further partitioned into three subspaces: RAS1, RAS2 and RAS3 (see
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orbitals
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Figure 2.1: CASSCF (left) and RASSCF (right) orbital partitioning and possible excitations.

Figure 2.1, right). The full-CI scheme is applied to RAS2, while RAS1/RAS3 have re-
strictions on the maximum number of holes/electrons (i.e. excitations) allowed. The
more general extensions GASSCF[6] (general active space SCF) and ORMASJ[7] (oc-
cupation restricted multiple active spaces) also exist, in which an arbitrary number of
subspaces can be defined.

One problem with the orbital optimisation in (C/R/G)ASSCF is that the final set
of MOs depends on the optimised state, which makes the various solutions non-
orthogonal. To deal with this problem, a state-averaged (SA) variant of the methods
was developed. Here the optimisation objective is not the energy of a single state, but
rather a weighted average of N states of interest:

z

E=) o with 0swojs1 and Y =1 (2.38)
i 1

this yields a unique and average set of MOs, which ensures that all desired states are
orthogonal and described on an equal footing. However, it must be remembered that
in this way the energy of one state becomes a function of the state-averaging parame-
ters (i.e. number of states and relative weights), and that the average description goes
at the expenses of the accuracy on each particular state, especially when the optimal
MOs for the different wavefunctions differ significantly.

Current CASSCF(RASSCF/GASSCF) sizes do not allow to fully describe electron
correlation and consequent errors can be of several eV. However, they provide a qual-
itatively correct description of multiconfigurational states, especially in degeneracy
regions, where two or more determinants become isoenergetic. The fraction of the
correlation energy retrieved by adding enough flexibility in the wavefunction to give a
qualitatively correct description of the system is often referred to as static or non-local
correlation. Indeed, excitations can promote an electron far away in e.g. in charge-
transfer (CT) transitions. This non-local effect is described at (C/R/G)ASSCF level. On
the other hand, the remaining part of the E_,,, is called dynamic or local correlation,
and is addressed to the response of the electrons to the changes of their immediate (lo-
cal) environment as a consequence of the excitation (e.g. positive and negative charges
created upon CT). Dynamic/local correlation contribution is different for each elec-
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tronic state, therefore CASSCF could even predict wrong state order or artificial state
mixing due to wrong near-degeneracies.

In the multi-determinant approach, static correlation is recovered by the inclu-
sion of a relatively small number of determinants bearing the highest contributing
coefficients in the description of a particular state. In contrast, retrieving dynamic
correlation requires the inclusion of many configurations with small contribution,
in particular those involving promotion to higher-lying virtual orbitals (which are
usually not included in the active space). Around the ground state equilibrium struc-
ture, the closed shell HF determinant is the dominant configuration, and all other
terms can be treated perturbatively (see MP2 method, section 2.1.6). The multicon-
figurational description is instead more important for excited states. However, even
along the ground state potential there are regions where the HF description fails, e.g.
bond breaking, torsion around double bonds. Correlation effects not described by the
CASSCF wavefunction are generally recovered by subsequent Multi-Reference-CI
(MRCI[8]) or Complete—Active—Space-Perturbation-Theory (CASPT2[9]) treatments
that use the CASSCF wavefunction as zeroth order approximation. Both methods
extend the expansion space by including higher order excitations from the CASSCF
wavefunction. The MRCl is a variational approach, similar to CIS and CISD, but using
a CASSCF reference function instead of a HF one. CASPT2 treats higher order excita-
tions as perturbation to the CASSCF wavefunction. Both techniques provide accurate
results, however, at the expense of huge computational effort.

To conclude, it must be mentioned that in recent years a number of new methods
have been developed to tackle the exponential scaling problem in the MCSCF proce-
dure: among them, the Stochastic-CASSCF[10] method (based on the FCI Quantum
Monte Carlo approach[11-15] as the CI eigensolver), the density matrix renormal-
ization group DMRG-SCF[16, 17] method and the variational-2RDM[18] method are
gaining popularity.

2.1.5 Rayleigh—-Schrodinger perturbation theory

In Perturbation Theory (PT) we consider the Hamiltonian H as the sum of a reference
Hamiltonian HO and a perturbation V, which is assumed to be much smaller than Ho

H) = Hy + AV (2.39)
The solutions of the reference Hamiltonian are known
Ayl = BV [0 (2.40)

and denoted as unperturbed reference energies (Ey )) and wavefunctions (|¢n )>)
The extent of the perturbation is represented by the parameter A, of which the full
Hamiltonian becomes a function, as well as its eigenvalues and eigenfiunctions:

H) [9n(D)) = En(D)[@n(1)> (2.41)
If we assume that the perturbation is small, we can express |¢,(1)) and E, (1) as a

Taylor series around |(pn )> and E( ) , respectively:
a0 = I + Al + 22 D) + . (242)
E,(A) = BV + 2BV + 22EP + .. (2.43)
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the terms |<pn )> and E( ) represent the k-th derivatives with respect to A4 of |¢,(1))
and E, (1), respectively.
Equation (2.41) then becomes:

(HO + AV) [|(p(0)> +A |go(l)> + A2 |go$,2)> + ] =
[ED + 2B + 2ED + ] = (108 + 1o + 210D + | (249)
For the left and right hand polynomials to be equal for every value of A, the only
possibility is that they are the very same polynomial. Therefore, we can write an

equation for each power order of A, setting equal its coefficients on the left and right
hand sides of equation (2.44):

« Order 0:
Hy lowy = B ol (2.45)

This is just the time-independent Schrédinger equation for the reference Hamil-
tonian, whose solutions are known.

« Order 1:
Hy o + V1ot = B iy + B ) (2.46)

« Order 2:
Ayloi?y+ V1ot = BV 1o + B 1oy + B Loy (247)
The terms |<pn )> lo (2)> E(l) E( ) , etc., represent the first-, second-, ..., n-th order

perturbative corrections of the wavefunction and energy, respectively.

To find E(l) and |q0(1)> we can project equation (2.46) onto the m-th solution of H,
obtaining

EDD 10y + (0217 1687 = B8, + EQ <0005 (2.48)

e ifm=n:
(1) =¢ (0)| V| (0)> (2.49)

so the first-order energy correction for state n only requires the zeroth-order
wavefunction to be calculated.

e ifm # n:
E(O) (0)|‘P(1)> + <‘P(O)| V|qo(0) E(O) (0)|<p(1)>

(0)| (1)> ~ <(Pm)| V|qo(0) (2.50)
(-4)

The left-hand side is nothing but the m-th coefficient of the first-order correc-

tion to the wavefunction (|go,(11)>) when it is expressed in the basis of the known
solutions of Hy, and it can be calculated from known quantities.
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Knowing all the coefficients, we would have a complete knowledge of |¢n )> Un-
fortunately, equation (2.50) was derived assuming m # n so the n-th coefficient is
missing. To fix this, it is convenient to work with a wavefunction subject to an inter-

mediate normalisation, i.e. <<p$10)|<pn(/1)> = 1 (the renormalisation of a vector is a step
that can always be done without changing the outcome of any experiment), obtaining

@10y = 54 (2.51)

which means that the missing ((p5,0)|(p£,1)> is null, so we already have a full description

of |(p£11)>, and we can write the first-order correction of the wavefunction in terms of
the known solutions of Hy:

JON O (0D ), CURATION
= D lom > om’lon > = ), om W
m#n m#n ( m )

In most of the cases, the first-order correction of the energy is not sufficient to

(2.52)

include dynamic correlation, therefore, the second order term E( )5 is needed. Again,

we start by projecting equation (2.47) onto |(pn

G + o1 V1o = B Py + B <ok + B 410>

@17 100 = B <o lon”y + B <oi 1oy
(2.53)

The E( ) term on the right vanishes using intermediate normalisation, therefore

Eng) _ <<p$10)| V|¢(1)>
OV 1o (°)>‘ (2.54)

[
) n;n (ES,O)—ES,?))

Equation (2.54) shows the expression for the second-oder energy correction of
state n. This equation can be used to correct the energies of all the eigenstates of the
reference Hamiltonian I:IO, except for the case of degenerate solutions. Indeed, when
two eigenstates of the unperturbed Hamiltonian come to be degenerate, the denomi-
nator of the left-hand side vanishes, and the corresponding term in the sum becomes
infinite. In such cases, the only possibility to get a physically meaningful result would

be to have {(pm)| 1 |(p(0>> ((p(0)| v |(p(0)> 0. It can be demonstrated that, given a set
of degenerate eigenstates, it is always possible to combine them linearly to obtain a
new set of states that satisfies such requirement. Moreover, any linear combination
of such degenerate states is still an eigenstate of H, sharing the same eigenvalue. In
the limit case of an Hamiltonian with all degenerate solutions, H, is a multiple of the
identity matrix I: this implies that Hy is invariant with respect to a change of basis
in which the new basis is a linear combination of the starting eigenfunctions. In this
new basis, both Hy and V are diagonal: H, is a multiple of I, while the diagonal ele-
ments of V can be different. The final hamiltonian H = H, + V will still be diagonal
but with diagonal terms which are not necessarily equal, therefore the perturbation
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has removed the degeneration between the eigenstates. In this case, the second-order
energy correction is null, because all off-diagonal terms of V appearing in equation
(2.54) vanish.

More frequently, only some subsets of eigenstates of Hy are degenerate, as repre-
sented in Figure 2.2 In such situations, it is possible to work on each block separately,

L]

Figure 2.2: Reference Hamiltonian with subsets of degenerate eigenstates.

treating it as a separate Hamiltonian with all degenerate solutions and getting the
energy correction for the subset of eigenstates. Moreover, the change of basis relative
to a single block is not influencing the energy correction of the others. This means
that it is possible to work only on the blocks including the states of interest without
affecting the remaining parts of Hj.

2.1.6 Mgller-Plesset perturbation theory

In Meller-Plesset perturbation theory (MPPT), the perturbational treatment is applied
to a single-determinant reference wavefunction. This method is often applied to the
HF results in order to get an accurate approximation of the ground state energy, trun-
cating the correction at the second order as higher-order corrections do not constitute
a significant enough improvement to compensate the additional complexity and com-
putational expense. The resulting method is called MP2 method.

The reference function is thus the HF determinant, composed of canonical orbitals
obtained diagonalising the Fock operator f (i.e. the energy of one spin-orbital). The
molecular Fock operator F is defined as

i) = Y. foi) (255)

We have explicitly indicated the F and f dependence on the reference density of |<p§%§>
to stress the fact that the electronic interaction (i.e. Coulomb and exchange terms) is
a function of the HF occupied spin orbitals. The expectation value of the molecular
Fock operator over the reference wavefunction is the sum of the energies of occupied
spin-orbitals

EO = (R B o = D e (2.56)
i

The perturbation is defined as the difference between the exact Hamiltonian and
the Fock operator, i.e. as the sum of Coulomb and exchange interactions defined in
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section 2.1.2 (here labelled 9;; with i, j being HF occupied orbitals).

H:ﬁ—A(Zai,j)zﬁmf/ (2.57)

ij
With this formulation, the MPPT energy corrected to first order (E© + ED)y js simply

the HF energy, as the expectation value (qog)2-| H \(pﬁ?} removes the double counting of
electron-electron interactions (i.e. Egp, see section 2.1.2). As a consequence, the first
improvement with respect to HF results comes with the second-order MP2 correction
E(z), which is obtained through

E® = (o0 71Dy (2.58)

In order to obtain the second-order energy correction, the missing ingredient is the
explicit resolution of the first-order correction to the HF wavefunction. In the general
formulation of equation (2.52), ¢!y is expanded in the basis of all the excited states
(i.e. I:IO solutions orthogonal to the reference state), therefore, the MP2 procedure can
be summarised as follows:

1. construct the excited states;
2. obtain their coefficients in the first-order corrected wavefunction;

3. compute the second-order correction of the energy.

Excited states for a particular Fock operator F are generated through replacements
of the occupied orbitals with the virtual (unoccupied) orbitals. This is a good approx-
imation to them, however, it must be remembered that such “excited states” do not
correspond to the true self-consistent excited states of the SCF procedure, because
that would require to iteratively redefine the electronic density of the Fock operator
to be self-consistent.

From equation (2.52) it follows that, out of the full expansion of |(p(1)>, only excited
states which interact with the reference state over the perturbation potential have
non-zero coefficients. We call this space the first-order interacting space, and it is much
smaller than the full Hilbert space: for the HF reference determinant, the first-order
interacting space contains determinants which at most correspond to doubly-excited
configurations, because the perturbation is a two-electron operator (see section 2.1.3).
Moreover, singly-excited determinants do not contribute, as a consequence of Bril-
louin’s theorem (section 2.1.3). Only double excitations contribute to |(p(1)>, and their
individual coefficients can be computed as

0 A
SV 0%

FORy (2.59)

Cijab =

The denominator trivially reduces to €; + €; - €, — €, as Eiajb = O - €~ €j + €q + €.
The numerator is computed as

GV oy = j b1 (x1) ¢ () 1o [%(xl)m(xg — Palx) (1) | dxy dx,

= ~(Gitsl9ate) - B8 1|P000>)
(2.60)
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Thus, the first-order correction to the wavefunction is expressed as

~(<$i9jldadp) — <bidjlPpba>
D=3 ( f“:_e —e; b )

a>b J
i>]

|ogy (2.61)

and the second-order energy correction is

G dude) Do)

€ +tE—€ €

E®) = (il V1o = 3 |

a>b
i>j

(2.62)

The procedure described above gets a bit more complicated if the excited config-
urations are generated taking care of the spin, to guarantee that the generated states
have the same eigenvalues of the spin operators as the reference functions. In such
case, the excited states are neither normalised nor strictly orthogonal, and an addi-
tional orthonormalisation step has to be included before calculating the coefficients,
in which excited determinants are linearly combined to form singlet and triplet CSFs.

2.1.7 CASPT2

Single-reference methods, such as Meller—Plesset perturbation theory, have been suc-
cessful in modelling molecular systems close to their equilibrium structure. However,
in cases of, e.g., bond breaking, excited states etc. a single-configuration reference
function is qualitatively incorrect, and perturbation theory will not be able to recover
a good approximation to the true state. Hence, a theory based on multiconfigurational
reference functions is needed. Several approaches exist, among which the most pop-
ular and affordable is probably the complete active space second-order perturbation
theory (CASPT?2), that uses a CASSCF reference function.

Before moving to the description of the CASPT2 procedure, a short introduction
to the second quantization formalism is needed, as this makes the CASPT2 equations
simpler.

2.1.8 Second quantization formalism

In first quantization (i.e. traditional formulation), the Hamiltonian is expressed in
terms of operators which are sums over particles (equations (2.27) and (2.28)). On
the other hand, in the second quantization formalism, the summations run over the
orbital space, and the Hamiltonian operator is expressed in terms of operators that
“probe” whether a particle (electron) is present in some orbital and if so, include the
contribution of that particular orbital.

The basics of second quantization are represented by creation (&j) and annihila-
tion operators (a;):

&7 165 B s SN = 65> s Bl oer BND (2.63)

i |Dis Pjs Pics s BN = D Pkes - PND (2.64)
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in which |}, ¢k, ..., pn) represents a SD composed of the {$}, #x, ..., #n} spin-orbitals.
As suggested by the above equations, &IT creates a particle in spin-orbital ¢;, while g;

annihilates it. The outcome of &j (a;) acting on a SD in which ¢; is already occupied
(empty) is zero:

& |, Pjs P B> = 0 (2.65)

di|¢j’ ¢k""5¢N> =0 (266)

As aresult, any SD in second quantization can be expressed as the result of successive
creation operators acting on the vacuum state:

), Prs v s PND = jaz Loay |y (2.67)

One- and two-electron operators in second quantization are expressed as summa-
tions over creation/annihilation operators:

f=X fyala; =Y ilhlppaa (2.68)
Lj ij
1 1
§=75 )y 8ijkl“ja;akal =3 D {idjlbedr a,Ta,Takal (2.69)
ijk,l i,jk,1

Thus, the electronic Hamiltonian in a second-quantized form is

A 1
H=) fijkij+ 2 > gijkiéijl (2.70)
i,j i,j,k,l

where E; j and é; i are the one- and two-electron spin-adapted excitation operators,
respectively:

p
Ey= ) alyaj (2.71)
o=
éijk1 = EijEr1 - Sk (2.72)

The expectation value of the electronic Hamiltonian operator (2.70) over a second-
quantized wavefunction can be expressed as follows:

A A 1 A
{p|H|p) = Z Z GrCs fij <Py Ejj|Ds> + 2 Z Z CrCs gijk1 <@y | €ijk1 |Ps)

rs ij s i,jk1l

1
= ZfijDij+ 2 >, gijTiju
l)j

i,j,k,l

(2.73)

where C,, Cs are the CI expansion coefficient and D;
one- and two-electron density matrices D and T

j» Tijk1 are matrix elements of the

Djj = ). CCo @, | Ejj |5 (2.74)
r,S

Tijki = ), CrCo®y| &ijr [0 (2.75)
r,s
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2.1.9 State-Specific (SS) CASPT2

In the SS-CASPT2 method each reference state is treated independently. In general
this will work very well if the original CASSCF states are good qualitative represen-
tatives of the final states. However, if the reference states are poor (e.g. artificial mix
of states in CASSCF wavefunctions due to lack of dynamic electron correlation) con-
vergence is slow, and the obtained results are quantitatively wrong. In such cases,
multi-state versions of CASPT2 must be applied (see below).

The SS-CASPT2 method is based on (i) a multi-configurational CASSCF refer-
ence wavefunction, and (ii) a partitioning of the Hamiltonian, such that it reduces
down to MP2 partitioning if the CASSCF wavefunction is reduced down to a single-
determinant wavefunction.

The reference Hamiltonian is defined to be the generalised molecular Fock oper-
ator

F(D) = ), fi{(D)E;; (2.76)
L,j

which, for a multideterminant CASSCF wavefunction, depends on the density matrix
of the reference state as

1
£1D) = hij+ 3 Dt Gl gy - - <idyldudi ] (2.77)
k.l

In the case of a closed-shell single-determinant wavefunction, the f;; elements are
identical to the HF case, and the reference Hamiltonian coincides with the MP2 one.

Concerning the generation of the excited states that define the first-order correc-
tion to the reference wavefunction, the configuration space (spanned by all possible
CSFs within the molecular orbitals) is divided into four subspaces:

+ Vp: including configurations that appear in |(p(0)>;

+ Vk: including all other configurations that are possible within the CASSCF ac-
tive space but that give a zero contribution to |(p(0)>;

« Vsp: single and double replacement CSFs generated from V;;
« Vrq..: higher order replacement CSFs generated from Vj.

Again, due to the one- and two-electron operators present in the Hamiltonian, only
states in Vgpy interact with the reference state through H and contribute to the first or-
der wavefunction. The CSFs in Vgp are generated by the spin-averaged excitation op-
erators acting on |qo(0)>, excluding the excited configurations within the active space,
which belong to Vk. The Vsp subspace can be further divided into eight subspaces:

The single excitations can be generated by linear combinations of the double exci-
tations, however, they do not contribute to the first-order correction due to Brillouin’s
theorem (see above).
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interal E:act-inact é‘act' -act” (a)
EAact-inactA Eqct-inact’ (b)
semi-internal  Eyjrp actEact’-act” (©)
EAvirt—inactFact—act’ Eqct-inactEvirt-act’ (d)
EAact-inactA Evirt-inact’ (e)
external EAvirt—actEvirt' -act’ (f)
EAvirt—inactLEvirt' -act (g)
Eirt-inactEvirt’-inact’ (h)

; H
e ]
e ]

(a) (b) semi-internal (c) external

Figure 2.3: Classification of excitations generating the Vg, subspaces based on the number of
virtual indices in (a) internal, 0 virtual indices; (b) semi-internal, 1 virtual index; (c) external, 2
virtual indices.

At this point, two issues have to be resolved, which are common to most versions
of multiconfigurational reference perturbation theory beyond MPPT:

1. the reference wavefunction is no more an eigenfunction of the reference Hamil-
tonian defined in equation (2.76);

2. we have only exact knowledge about the reference functions, and not about
the complementary functions that extend to the full Hilbert space (i.e. complete
infinite set of excited states).

The latter problem is addressed by construction of an artificial set of functions {¢;}
with properties
(pilopy =8 and (i) =0 (2.78)
In SS-CASPT2 the complementary functions are built using configurations in the Vgp
space.
The first problem is solved by using projection operators. A projection operator
PX is defined for each subspace Vy

Py = ) o <ol (2.79)

ieX
in terms of which the reference Hamiltonian is now expressed as
Hy = ByF(D)Py + PgF(D)Pg + Psp F(D)Pspy + Prg F(D)Prg . (2.80)

for which it is trivial to verify that both the reference and the complementary space
functions are eigenstates. However, in contrast with MP2, the reference Hamiltonian
(2.80) will not be diagonal, but rather block-diagonal as follows:
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space Vo Vk Vsp Vro.

Vo Hy©.0) 0 0 0

Vk 0 HyKK0 0 0

Vsp 0 0 H,(SD:sD) 0
Vro... 0 0 0 Hy(TQ.-TQ..)

The first order wavefunction is then expanded into a set of functions |¢;) from Vgp:

M
6Dy =Y Cilep  lop=1,...,Min Vsp (2.81)
j=1

If we now use this ansatz in equation (2.46) and project both sides onto {¢;| we obtain
an equation for the expansion coefficients:

M
Z Cioil Hy - E® o)y = —<pi| V FRN lpjy=1,....M (2.82)
=

or, in matrix form
(Hy - E’T)C = -V (2.83)

The |¢;» functions are neither normalised not necessarily orthogonal and may also
be linearly dependent, therefore their number M can also be grater than the dimension
of Vgp. Hence, orthonormalisation and elimination will have to be carried out to
generate a non-redundant set of orthonormalised excited states. The overlap matrix
Sij = {@il@;) is then diagonalised

s=UTsu (2.84)
and the output orthogonal vectors normalised:

U-Us: (2.85)
We now have a set of orthonormalised doubly excited states which are computed as

g = Z Ujilop (2.86)
J

All other matrices and vectors are transformed to the space of the orthonormalised
excited states
Hy=U'HyU and V=UTV (2.87)

The coefficients C in the expression for the first-order correction to the wavefunction
are then found by solving
(Hy - E')C = -V (2.88)
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Due to the non-diagonal form of the operator on the left-hand side and because of the
size of the problem, the solution has to be found iteratively starting from a trial vector
of coefficients.

Eventually, the second-order correction to the energy can be computed as

ED = (O V oWy = VT = -VT(H, - E°) 1V (2.89)

From equation (2.89) it follows that Vgp configurations with energies close to the
reference energy E() will lead to an overestimation or even singularities of the per-
turbation energy. This is know as the “intruder state” problem[19]. As perturbation
theory holds only for small perturbations, such configurations should be included
already in the preceding CASSCF calculation. If this is not practicable, a level shift
technique can be applied, adding a finite shift (normally 0.1 - 0.3 a.u.) to E© which
removes the effect of the intruder state. Caution is required that no new intruder
states arise by accidental degeneracy of the shifted reference energy with energies of
other configurations.

The SS-RASPT2[20] and SS-GASPT2 methods also exists, which use restricted and
general active space reference functions. They are equivalent to CASPT2, however, in
the generation of the Vsp subspace, an additional class of excitations has to be consid-
ered, in which all indices are active (this was not present in CASPT2 as all excitations
within the active orbitals was already included in V; or V). This small difference im-
plies significant computational challenges in defining the Vsp space, therefore, in the
current implementations of both RASPT2 and GASPT2, an approximation is employed
in removing the active—active excitations from the first-order interacting space. The
effect of this approximation is a degradation in the accuracy of the perturbative treat-
ment compared to CASPT2, however, it is expected that the possibility of using larger
active spaces for the reference RASSCF/GASSCF functions will compensate for it.

As mentioned at the beginning of this section, SS-CASPT?2 is not reliable in case
the reference CASSCF wavefunction is qualitatively wrong due to the lack of dynamic
correlation. If this is the case, a bigger active space would be a trivial but expensive
(or not even feasible) solution. In order to overcome this problem, a multi-state ver-
sion of perturbation theory was developed, that allows the reference states to mix
with each other as the perturbation is introduced order by order (something that was
not contemplated in SS-CASPT2). This is done through an “effective Hamiltonian”
that gives corrected energies acting on corrected model states, which are linear com-
binations of the original reference states. Multi-state CASPT2 methods are based on
quasi-degenerate perturbation theory (QDPT) and make use of Bloch equation, which
is introduced in the next section.

2.1.10 Quasi-degenerate perturbation theory: the Bloch equation.

Modern applications of the perturbation technique are often based on the effective
operator formalism introduced by Bloch in 1958[21]. In this formalism, we consider
a subset of the eigenstates of the system, called the model space. The basic idea is
that the effect of the true operator H operating in the entire Hilbert space can be
reproduced by an “effective” operator H.g operating only within the model space.
Out of the complete set of orthonormal solutions of the unperturbed Hamiltonian
Hy, some will be part of (and define) the model space P, while the remaining eigenfunc-
tions will be part of (and define) the so called orthogonal space Q. It is assumed that
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all eigenfunctions of H, sharing the same eigenvalue are part of the same subspace.
Each of the two subspaces has a projector operator:

P=Y 16 o) (2.90)
a€P
0=1-2=3 o)) (2.91)
rep
with the properties:
p=pt=pp PO=0P=0 [P, Hy] = [0, Fy] =0 (2.92)

P can be used to project the exact wavefunction of state a onto the the model space
: (0) (0)
Plogy = cajley > = loa > a=12..,d (2.93)
=

The projections |qol(xo)> are called the model states or model functions and are not solu-
tions of Hy. They are expressed by linear combinations of the reference states in the
model space.

If the model space includes d states, it can be shown that there is a one-to-one
correspondence between the d eigenfunctions of the full Hamiltonian |¢,) and their
projection onto the model space \¢&°)>. If the perturbation is gradually reduced until
it is switched off, the |, ) states must reduce to the reference states |¢,). If we turn on
the perturbation again, the model states change due to the mixing within the model
space, but they are still expected to be distinct. Therefore, there is a one-to-one cor-
respondence between them and the eigenfunctions of H. This correspondence allows
to write an operator (called the wave operator, Q) that transforms the model states
into the real eigenfunctions:

o> = Q|0 a=12..4d (2.94)
Q) is the same for all model states and has the following properties:
« it gives a null result if applied to the orthogonal space:
Q0=0 (2.95)

. Since P+ Q0 = 1,and Q 0 = 0, it follows directly that

=0 (2.96)

>

Q

« transforming the model functions into the |¢,) and then re-projecting them
onto the model space, leaves the model states unchanged, therefore

N

PO=P (2.97)
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Figure 2.4: Illustration of the projection and wave operators.

Even though P transforms the |@g> into the |(p((10)>, while Q performs exactly the op-
posite transformation, this does not mean that Q is the inverse of P in the ordinary
sense. Figure 2.4 illustrates the action of the two operators.

We can plug equation (2.94) in the Schrédinger equation for the full Hamiltonian
and operate with P to the left on both sides obtaining

PAO |0 = E, A0 = E, |0 a=12,..,d (2.98)

PHQ is the expression for the effective Hamiltonian operator H.¢ which generates d
exact eigenvalues when operating on the model space:

H.¢ = PHQ = PHQOP (2.99)

Its eigenfunctions are the projection of the real eigenstates onto the model space.
These projections are not necessarily orthogonal and, therefore, Heg is generally non
hermitian.

The exact energy is given by:

E, = 08| Hegr 0% (2.100)

To get get an expression of the wave operator that is independent of the unknown
energy E,, we can operate operate with Q to the left on Schrédinger’s equation and
make use of the properties listed above to obtain:

(Eq ~ QH P) [pg) = QV |9 (2.101)
This allows to eliminate E,, by subtracting the last result to Schrodinger’s equation:

(Eq =~ Ho) |90 ~ (Eq ~ QHYP) 00> = V |9 = QV |05
Ectow ~ Hol0e) = Ecctoy + QH P [0g) = V [0g) ~ QV |9
i 6 - Ao o = V010 - v 1
(@ - B o) = (V0 - QV Q) [o)
The last result is called the Bloch equation, which can be also written as

[Q,Hy] = VQ-QVQ (2.103)
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Moreover, since Q gives zero when operating on the orthogonal space, it follows that
the above relation holds in the entire space.

Usually, the wave operator is also expanded in powers of the perturbation with
O© = P, which leads to a series of equations (one for each power of the perturbation
parameter):

n-1
[, fy] = OVOr-D _ Z Q=R Hk-1) (2.104)
k=1

Using the expansion of Q, the effective Hamiltonian up to second order is

A = AR + B + B = pp + PAOWP (2.105)

with matrix elements
@O1EE 10 = B (2.106)
GOV HE 107 = @1 H 10} + 0 (2.107)

The effective Hamiltonian can eventually be diagonalised to derive the model states
of the model space.

2.1.11 Multi-State (MS) CASPT2

QDPT requires Hy and FIe[fzf] to be unique for all the reference states. The multi-state
CASPT2 method proposed in 1998 Finley and co-workers[22] is a hybrid approach
between QDPT and SS-CASPT2 which resolves cases where the reference CASSCF
wavefunctions do not meet the qualitative requirements for a fast convergence of
the perturbation expansion. It is an application of the above described perturb-then-
diagonalise technique (i.e. in which the final step is the diagonalisation of Hg) in
which the model space is defined by a group of CASSCF reference functions.

In the construction of the effective Hamiltonian (equations (2.106) and (2.107)) the
diagonal elements are the SS-CASPT2 energies

(0)| (2]

0
a . | <p( )> Ess CASPT2 (2.108)

However, the SS-CASPT2 energies are computed with a reference Hamiltonian which
is state-specific, and this raises a problem when calculating the off-diagonal elements
of the resulting He¢r, which is consequently not symmetric:

GOTHE 10 = o1 H 103 2 o1 B 16 = 0PI H 1) (2.109)

In the current implementation this problem is fixed with a simple symmetrisation
of the matrix with the limitation that results should be questioned if corresponding
off-diagonal elements are large and different. It has been demonstrated that the MS-
CASPT2 method resolves cases with accidental degeneracy at the CASSCF level if it
does not persist at the SS-CASPT2 level. On the other hand, the MS-CASPT2 can
provide erroneous behaviour around conical intersections and other cases of near-
degeneracy, due to the rapid changes in the wavefunction for small geometrical dis-
placements observed around CIs (which induces changes in the reference “SS-based”
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hamiltonian and, therefore, in the perturbation, resulting in discontinuities of the
PESs). The latter problem is known to be a consequence of the use of state-specific ef-
fective operators, and the extended multi-state version of the method (XMS-CASPT2)
was later suggested to overcome these problems.

2.1.12 Extended Multi-State (XMS) CASPT2

One of the qualitative criteria which a quasi-degenerate perturbation theory should
satisfy is that the eigenvalues of the effective Hamiltonian should be invariant to the
particular basis functions selected to span the model space, as long as they span the
same subspace. To fulfil such requirement, Granovsky[23] suggested that, in the cal-
culation of the diagonal elements for H.g, the H, operator of SS-CASPT2 should be
constructed including all the reference states in the Vj space, i.e. the ﬁé‘)’o) block
should be extended from

ﬁéo’o) = Z 00> <@l F o <o (2.110)
i
to
20,0 A
B - Y- lop <ol Elop <o)l (2.111)
L J

In this way, Hj is explicitly independent of the selection of the basis functions span-
ning a particular model space. The H, matrix is then diagonalised and the “traditional”
MS procedure is then continued in the basis of these new eigenfunctions[24].

The use of an average H,, operator common to all states resolves the problem of
discontinuity of the PES at the MS-CASPT2 level, however, at the expenses of the
accuracy of the results in regions where the reference states are well-separated in
energy. For this reason, SS- or MS-CASPT?2 are typically more reliable for the pre-
diction of vertical excitation energies far from crossing regions, while XMS-CASPT2
should be trusted close to CIs. Recently, a new method called extended dynamically
weighted CASPT2 (XDW-CASPT2) has been proposed[25], that performs similarly
to MS-CASPT2 where the electronic states are energetically well separated and is
equivalent to XMS-CASPT2 in case the underlying zeroth-order references are near-
degenerate. It basically interpolates between the two methods based on the coupling
(mixing) between the reference SS-CASPT?2 states, and it has proven to be a very
promising method.

2.2 Time-dependent methods: nuclear dynamics

The separation of time and space variables introduced at the beginning of this chapter
is a valid strategy to study the electronic structure at the key geometries determin-
ing a photochemical/photophysical event (e.g. energy minima, conical intersections,
transition states). The static studies alone, however, are often insufficient to get a
complete picture of the mechanism behind because, in a real experiment, the kinetic
energy will drive the molecules away from energy minima, visiting other regions of
the PESs. Therefore, dynamics simulations are necessary to get accurate predictions of
excited state lifetimes, photoreaction quantum yields and accessibility of the various
decay channels.
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The simulation of the nuclear and electronic dynamics can be done at several lev-
els of theory: one extreme is represented by classical molecular dynamics (MD) in
which the nuclei move classically subject to a force field (FF) which is parameterised
specifically for an electronic state based on QM calculations or experimental data.
Classical MD simulations are very powerful tools for ground state processes, while
they are more difficult to adapt to excited states and photochemical reactions. The
other extreme is represented by quantum dynamics (QD) in which both nuclei and
electrons are treated quantum mechanically. QD simulations are very accurate and
allow to predict quantum effects in the nuclear dynamics like coherence phenomena,
tunnelling processes, branching at conical intersections or the interaction with light,
but they are also very expensive and applicable only to small systems. Indeed, such
an accurate treatment of nuclei and electrons requires either to reduce significantly
the number of nuclear degrees of freedom, or to treat many nuclear coordinates but
in approximate way (e.g. harmonic approximation). The former approach is briefly
described in the next section 2.2.1, while the leading technique in multidimensional
QD (i.e. MCTDH) is introduced in section 2.2.2.

In between classical and quantum dynamics, a plethora of techniques exist. One
of the most popular is the trajectory surface-hopping (TSH) technique, in which the
nuclei are propagated classically on a QM electronic potential which is either pre-
computed or calculated on-the-fly, and the non adiabatic events are treated stochas-
tically. Such methods are introduced in section 2.2.3.

2.2.1 Exact quantum dynamics in a reduced-coordinate space

One technique to perform QD for molecular systems is grid-based quantum dynamics,
in which the molecular wavepacket (i.e. the continuous nuclear wavefunction y(R, t))
is represented in terms of a discrete set of time-evolving complex amplitudes at a set
of grid points. Comparing this method to the representation of the wavefunction in
terms of conventional basis of orthogonal functions (called the spectral basis, e.g. in
the basis of stationary vibrational eigenfunctions), the amplitudes at grid points can
be interpreted as the coefficients of localised basis functions derived from unitary
transformation of the spectral basis (the so called pseudospectral basis). This approach
is only feasible in few dimensions due to exponential computational cost: assuming
that each degree of freedom requires n grid points, an exact (i.e. full-dimensional)
wavepacket representation of a non-linear molecule with 3N - 6 nuclear degrees of
freedom requires n®N~° total grid points, which rapidly becomes unfeasible, even for
small molecules. This issue is known as “the curse of dimensionality”, and it is the
motivation behind the biggest approximation in grid-based quantum dynamics: the
number of coordinates included in the model must be significantly reduced. This ap-
proximation, however, is not so crude in the case of ultrafast (i.e. sub-ps) chemical
processes like photochemical reactions, as the system does not have time to redis-
tribute the energy in many modes (a process that typically requires several ps). As
a consequence, photoinduced processes are often well described by only few (1-3)
relevant coordinates. Figure 2.5 shows the necessary steps for a grid-based QD sim-
ulation. The preliminary steps to the propagation are needed to set up the complete
Hamiltonian in arbitrary reduced coordinates, i.e. computation of PESs and NACs as
well as a general transformation protocol for the kinetic energy operator from Carte-
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Selection of reactive coordinates

- Displace molecular geometry along coordinate vectors
- Obtain a spatial grid in reduced dimensionality

Use G-matrix formalism to
Solve TISE transform to arbitrary

coordinate space

Choose appropriately e.g. eigenfunctions
or Gaussian wavepackets

Solve TDSE using propagator

Figure 2.5: Overview of the necessary steps to set up a wavepacket simulation in reduced
coordinates on pre-calculated PESs. Adapted from reference[19].

sian to arbitrary coordinates.

The starting point for QD is the TDSE (2.1), whose solution yields the time evolu-
tion of the molecular system. Due to the complexity of quantum dynamical simula-
tions, analytical solutions are rarely possible and numerical propagation schemes are
needed. As shown at the beginning of this chapter, the time evolution of a molecular
system is due to the superposition of stationary states (i.e. a wavepacket), which cre-
ates an interference (third term in equation (2.12)) containing all the time dependence
of the probability density and other observable quantities. The Born-Oppenheimer
approximation leads to the separation of electronic and nuclear degrees of freedom,
allowing to calculate electronic energy in all the grid points, using the methods de-
scribed in the previous section. Subsequently, the nuclear wavefunction can be prop-
agated in time on the pre-calculated PES.

The time dependence in the nuclear TDSE

ih% YR D) =HyR 1) (2.112)

is determined by the action of a propagator U, tp) on the nuclear wavefunction:
XR.1) = 02, 10) YR 1) = 1070 y(R 1) (2.13)
In the grid method, the propagator can be implemented in several ways, originating

different propagation schemes (e.g. expansion of the exponential in Taylor series or
Chebychev polynomials, see reference[19]).
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The dynamics of ultrafast photochemical processes is started by the interaction
with light, typically with femto-second laser pulses. After the excitation, n electronic
states my be involved in the process, and the TDSE may be represented in matrix

9 a() 1R, 1) Hyp - Hpp\ [a1(D) (R 1)
ih— : o : (2.114)
"Nam®D) \Hy, -~ Hup/ \ay(Dxa® 1)

The nuclear wavefunction is then distributed over several PESs according to the time-
dependent expansion coefficients a,(t). The diagonal elements of the Hamiltonian
matrix describe the uncoupled dynamics on the individual PES

Hii = Tii + V”(R) (2115)

where V;;(R) is the pre-calculated PES of state i, and Tj; the kinetic energy, which is
equal for all states. Coupling between the different electronic states is described by
the off-diagonal elements. They may reflect the interaction with the laser light, an
intramolecular coupling like non-adiabatic and spin-orbit coupling, or all couplings
simultaneously.

When the aim is to perform dynamics in a reduced coordinate space, both diagonal
and off-diagonal Hamiltonian elements must be expressed in the reduced coordinates.
Chapter 3 is fully dedicated to the parameterisation protocol for the Hamiltonian,
starting from the selection of the reactive coordinates and following with PESs and
coupling calculation/projection onto the reduced coordinates. Concerning the kinetic
term T;;, the G-matrix formalism is a powerful technique to convert the cartesian

kinetic energy operator
h2 3N 1 92

Ty =-—— Z (2.116)

i=1 mi d

to any arbitrary set of coordinates. Given a set of 3N (N = number of atoms) cartesian
coordinates {x} which must be reduced to M reactive coordinates {q}, the G-matrix
(i.e. metric tensor) of the new set of coordinates can be written as

3N .
i dq, 0
G =y — 2r % (2.117)
m; axi 8x,~

i
where the summation is conducted over all three cartesian degrees of freedom of
each atom i with mass m;. Using the G-matrix elements (and with some simplifying
assumptions detailed in referece[19]), the kinetic operator can be written as

A MM 5 P
Ty = _?ZZ—[GH()—%] (2.118)

This is a very general formulation of the kinetic energy operator in arbitrary coordi-
nates g. In contrast to T, (equation (2.116)), T contains cross partial derivatives with
respect to g, and g, which represent a k1net1c coupling between two coordinates.
These cross terms originate from non-orthogonal connections of cartesian compo-
nents and mean that a motion along ¢, induces a motion along g, with a certain
amplitude corresponding to the degree of the kinetic coupling.
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The exact QD outlined here can only be performed in very few coordinates. If
it is not possible to reduce the dimensionality of the problem, alternative methods
like MCTDH are able to include more modes. The inclusion of many coordinates,
however, goes at the expense of the topographical information of the PES, and the
best QD method must be carefully chosen for each specific process.

2.2.2  Quantum dynamics in many coordinates: the MCTDH method

The Multi-Configuration Time-Dependent Hartree (MCTDH) method[26-28] keeps a
fully quantum mechanical picture while removing the scaling problem of standard QD
methods, that rely on time-independent nuclear basis sets. Its power lies in the fact
that it efficiently yields approximate solutions to TDSE using time dependent basis
functions, whose equations of motions are derived through application of a variational
principle. The time evolution of the basis functions ensures that the basis set remains
optimal and small, that is, the wavefunction representation is very compact, allowing
up to 50 or more degrees of freedom. The MCTDH method can be considered as the
time-dependent analogue of the CASSCF methods in electronic structure theory (in
which both the CI expansion coefficients and the MO basis function are optimised).

The first idea of a time-dependent basis was introduced by McLachlan in the
60s[29], who used a simple Hartree product as wavefunction, with one basis func-
tion for each degree of freedom of the system. The resulting method is known as the
time-dependent Hartree (TDH) method. For a system with two degrees of freedom (x
and y), the TDH wavefunction is

X(x, y, 1) = a(t)y1(x, xa(y, t) (2.119)

where a(t) is a time-dependent complex coefficient and y;(x, t), y2(y, t) are time-
dependent basis functions called single particle functions (SPFs), which can be e.g.
solutions of harmonic oscillator, Legendre rotator etc. This equation does not deter-
mine the single-particle functions uniquely, since it is always possible to multiply one
SPF by an arbitrary factor and divide another SPF by the same factor without chang-
ing the total wavefunction. Moreover, the introduction of the a(t) coefficient gives
the same amount of arbitrariness to all basis functions. To ensure unique equations
of motion, the constraint that the SPFs remain normalised at all times is introduced

0d 0d
— = — =0 2.120
<X1|at)(1> Xzl at)(2> ( )

Application of the Dirac-Frenkel variational principle
N 7]
GX|H - i—[X) =0 (2.121)

results in a set of coupled one-dimensional equations of motion for a(t), y;(x, t) and
x2(y, 1), i.e. the time evolution of the wavefunction.

Despite being conceptually simple, the performance of TDH is often very poor.
This seems surprising if we make a parallel with electronic structure calculations,
where the mono-configurational SCF method describes quite well the lower electronic
state of molecules. The difference is that the potentials in nuclear dynamics provide
strong coupling between the modes, which is completely missed by the TDH method.



36 Chapter 2. Theoretical Background

In order to recover the missing correlation, a multiconfigurational form of TDH was
formulated (MCTDH), in which the wavefunction is a linear combination of Hartree
products

X(ql’ ey qf, t) = X(Ql, ey QP, t)

moo Ty f (2.122)
SDIEDITNOY § PrR(
=1 jp=1 k=1

where A; ; are the MCTDH expansion coefficients. Equation (2.122) is a linear

combination of products over p sets of orthonormal time-dependent SPFs b((k)}. There
is one set of SPFs for each degree of freedom p, which is a composite coordinate of

one or more nuclear coordinates

Ok = (94 95 ---) (2.123)

Thus, the basis functions are d-dimensional, where d is the number of combined nu-
clear coordinates that are treated as one ‘particle’ (usually d = 1,2 or 3). If the number
of SPFs per mode is reduced to one, equation (2.122) reduces to the TDH wavefunc-
tion. On the other hand, as the SPFs number is increased, the propagation of the
wavefunction becomes more accurate, converging towards the numerically exact one
(but increasing also the computational cost). As all possible configurations from the
set of SPFs are used in the Hartree products, the method is unfortunately also plagued
by exponential scaling (~ n? where n is the dimension of the SPF basis and p the
number of ‘particles’). However, the base of the exponential is substantially smaller
compared with the standard QD (because the number of physically important SPFs is
usually small) and the number of particles p is often smaller than the total number of
nuclear degrees of freedom due to contraction (equation (2.123)), allowing MCTDH
to treat larger systems.

As in the case of the TDH approximation, the MCTDH wavefunction representa-
tion is not unique, as one may linearly transform the SPFs and the expansion coeffi-
cients while still representing the same wavefunction. A uniquely-defined propaga-
tion is obtained by imposing the constraint that the initially orthonormal SPFs remain
orthonormal for all times.

Using this multiconfigurational wavefunction ansatz, a variational solution to the
TDSE is provided by a coupled set of equations of motion for the expansion coeffi-

cients A jp(t) and for the SPFs )(J(-f)(Qk, t). A full mathematical derivation of the
MCTDH equations of motion is beyond the scope of this thesis, however, it is illumi-
nating to know that the time derivative of the SPFs is orthogonal to the space spanned
by the functions: thus, any change spans new basis functions. If the basis set were
complete, the orthogonal space would be null, and the SPFs would be time indepen-
dent (i.e. the equations of motion would be identical to the standard method). On the
other hand, if the SPFs do not provide a complete basis set, then they change in time
so as to provide the best possible basis for the description of the evolving wavepacket.

The possibility to contract the degrees of freedom in particle SPFs (equation (2.123))
is a strategy to substantially reduce the number of configurations, allowing to treat
larger systems. However, a balance needs to be found between the gain in the con-
figuration number and the cost of propagating combined-mode SPFs, which scales
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exponentially with d[28]. In MCTDH, the time-dependent contracted SPFs are repre-
sented by combinations of time-independent Hartree products with time-dependent
coefficients. Animproved and systematic strategy is then to represent each contracted
particle mode by an MCTDH-type ansatz. This leads to the multi-layer MCTDH (ML-
MCTDH) ansatz[30], where the hierarchy is started by expanding the overall wave-
[1](k1)

function X in first-layer SPFs X,

(1

NOEDY A}ﬂ X}:I](kl) (2.124)
J k=1
which are in turn expanded in second-layer SPFs
fiy
Xj[kll](kl) = ; AE‘?}(kl) kl_[l X,[fz](kl’kZ) (2.125)
-

and the procedure can be re-iterated for an M-layer representation. The SPFs of the
final layer are eventually represented in a primitive, time-independent basis. The
equations of motion for the multi-layer approach involve a hierarchy of differential
equations for the coefficients, which must be solved from the bottom layer. The mul-
tilayer construction of the wavefunction does not impose any additional limitations,
and any Hamiltonian that can be treated via the MCTDH approach can equally be
handled with the ML-MCTDH theory. The only additional complexity relies in its
implementation, which is however compensated by the advantages of treating larger
systems.

The main drawback of (ML-)MCTDH is that it is efficient only if the Hamiltonian
can be written as a sum of products of one-dimensional operators. The kinetic energy
operator usually satisfies product form, while the potential generally does not, but in
many cases it can be well approximated with functions of the correct form. In cases
where this is not possible, and the PESs show a more complex topology, the standard
method must be applied.

2.2.3 Trajectory based approaches:
mixed quantum /classical dynamics

In the simulation of many photoinduced processes, quantum effects like tunnelling or
interference are negligible, and the energetic spacing between the nuclear quantum
levels is sufficiently small compared to the kinetic energy to allow a classical propaga-
tion of the nuclei. This has the major advantage to remove the exponential complexity,
allowing to simulate the dynamics of large systems that could not be modelled with
QD. Moreover, all properties can computed locally at a single geometry, removing the
non-locality imposed by the form of the kinetic operator in QD. This approximation
is at the base of mixed quantum-classical methods[31], in which the nuclei are propa-
gated classically on a QM electronic potential. The force acting on the nuclei is given
by the PES gradient with respect to the nuclear coordinates. However, when more
than one electronic state comes to play a role in the process (which is always the case
of photoinduced processes), a question is posed about how to treat the nonadiabatic
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events. The surface hopping (SH) algorithm([32] is a popular approach to solve this
problem, and will be briefly described in the following.

The basic assumption of SH is that, during non-adiabatic dynamics, the nuclei
move under the influence of a single QM potential in a classical way, whereas the
electrons are subject to non-adiabatic effects. As a consequence, in the course of the
dynamics the population can distribute over several states (coherence) and can ac-
tually be completely transferred to a different electronic state. The classical nuclear
dynamics takes notion of this non classical event by an instantaneous switch (hop)
to the new electronic state (whose potential will following drive the dynamics). This
stratagem opposes SH to the Ehrenfest approach, in which the nuclei always follow
a trajectory under the influence of an averaged gradient, that is weighted by the pop-
ulation in each state and does not require a hopping mechanism. Figure 2.6 shows

Quantum Dynamics Trajectory Surface Hopping
> >
20 2
o o
S S
3| A
Nuclear coordinate Nuclear coordinate

Figure 2.6: Comparison between wavepacket QD (left) and SH trajectories (right). In QD, the
wavepacket splits in two parts at the crossing. In SH, some trajectories hop to the lower state
nearby the crossing, while some others do not and remain in the initial state.

a schematic comparison between the wavepacket propagation in QD and the trajec-
tory SH approach. In QD, the quantum treatment of the nuclei allows to reproduce
the splitting between electronic states within a single simulation: as the wavepacket
reaches the crossing region, population splits between the states, and the two parts of
the wavepacket continue to evolve on different states at the same time. On the other
hand, in a trajectory approach, the nuclei follow a well-defined path on a single PES,
which is stochastically allowed to hop to the lower state near the crossing. In order
to recover the quantum behaviour, many trajectories need to be simulated, and the
results averaged.

In trajectory surface hopping (TSH) the nuclei are propagated according to New-
ton’s equation of motion

oF Ry

2,0k
A" 12

2.126
R, (2.126)

where R, and my are the position and mass of nucleus A, while E is the electronic
energy. The electronic wavefunction ¥ (¢) is expressed as a linear combination of
electronic eigenstates

[¥ai()) = D () |pi(r: R() (2.127)
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with time-dependent coefficients. The basis states are also time-dependent, because
the electronic eigenstates parametrically depend on the nuclear coordinates, which
change in time. In turn, the evolution of the nuclear trajectory also depends on the
PES gradient, and thus on ¥ (2).

Among all the electronic eigenstates, only the gradient of the active state (i.e. the
PES on which the trajectory is localised) determines the gradient leading the nuclear
motion. The active state is stochastically determined at each time step through the SH
algorithm. In order to conserve the total energy, the kinetic energy is adjusted when-
ever a hop takes place by modifying the velocity vector in a way that compensates
for the potential energy gap. At the end of all simulations, the fraction of trajectories
with active state i at a specific time is equal to the electronic population of that state.
The simulation procedure is composed of the following steps:

1. Calculate the new positions of the nuclei;
2. Compute electronic quantities: energies, gradients, couplings;

3. Propagate the electronic wavefunction from point n — 1 to n to obtain the new
electronic coefficients ¢;(t);

4. Evaluate the hopping probability and stochastically decide whether to change
state or not;

5. Obtain forces for the (new) active state;
6. Restart from step 1.

The update of the electronic coefficients (step 3) requires the output quantities of the
nuclear and electronic calculations (steps 1 and 2) and determines the hopping prob-
ability (step 4). The time evolution of the electronic coefficients vector c is obtained
inserting the electronic wavefunction (2.127) into the TDSE

%c = —[%H+K]c (2.128)
with
H;j =il H pj (2.129)
and
d JR 0
Kij = <eil 2 lp;» = > Lo R lo;> = v - <pi| VR |@j> (2.130)

where v is the nuclear velocity and {¢;| Vg |¢;> the NAC between the ¢; and ¢; elec-
tronic states. Given the updated ¢ vector and an active state ¢;, the hopping proba-
bility for all other ¢; states can be computed in different ways[33], and the stochastic
hopping event is determined by comparison between the probabilities and a random
number r between 0 and 1. A schematic representation is given in Figure 2.7: each
@;j # ¢; state defines an interval of the [0, 1] range whose width is equal to the relative
hopping probability, and a hop to state ¢; takes place if r falls in the j-th interval.
One of the main problems that the TSH approach had to face is that, if no cor-
rections are introduced, the electronic populations are propagated with too much co-
herence. For example, the coherence created near a CI (i.e non-zero coefficients for
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pis1=015pis2=0.10 pis3=0.20 pi—sa=0.15 P nohop = 0.40
0.00 0.15 0.25 0.45 0.60 1.00

Figure 2.7: Graphic representation of the stochastic hopping algorithm for a five-state simu-
lation: each state is assigned an interval in the [0, 1] range whose width is equal to the relative
hopping probability. A random number between 0 and 1 is then generated, and hopping to
another state (or not) is decided by comparison with the probability intervals.

more than one state) would survive forever, even in regions far away from crossings
and where the coupling is small. This happens because all the electronic amplitudes
follow the gradient of the active state (while in an exact QD each wavepacket follows
its electronic state), and can lead to artefacts like excited-state amplitudes overcom-
ing huge barriers. To fix this, a decoherence correction algorithm can be applied, that
over time collapses or decreases the amplitudes of the non-active states so that, far
away from crossing regions, every trajectory eventually recovers a wavefunction on a
single electronic state. Several decoherence schemes exist: simple suppression of the
excited state amplitudes below a certain NAC threshold[34], exponential damping in
time[35, 36], or even more sophisticated schemes (see reference [33]).

The TSH technique is surely more approximated that the QD methods described
in previous sections as it neglects a number of quantum effects. Nevertheless, it has
shown to work for the simulation of many excited states processes, and is still one
of the most used simulation techniques. Its main advantage relies in the classical ap-
proximation for the nuclei, that allows to treat large systems with hundreds of atoms,
as long as the electronic Schrodinger equation can be approximately solved. Addi-
tionally, the independent trajectories make the surface hopping approach computa-
tionally efficient.

2.2.4 Adiabatic and diabatic representations

In section 2.1 we have shown that the eigenstates of the full molecular hamiltonian
(i.e. the adiabatic states) are coupled by the nuclear kinetic energy operator Ty (see
equation (2.16)). The resulting NAC coupling is usually small, and its neglect is the
justification for the famous Born-Oppenheimer approximation. However, in regions
of avoided crossings between the PESs, the adiabatic states may change their char-
acter dramatically, leading to high NAC values (i.e. BO approximation fails). When
running a non adiabatic dynamics, adiabatic PESs and NACs can be difficult to deal
with, due to the cusp shape of the potentials at crossings and the local, spiky nature
of the NACs. Therefore, other choices of basis may prove more convenient to obtain
smoother potentials and couplings.

In a diabatic basis, the nuclear kinetic energy operator is diagonal, and the molec-
ular states are coupled via the potential operator (i.e. the coupling turns to a scalar),
which is often easier do deal with. The comparison between adiabatic and diabatic
representations is schematised in Figure 2.8. The diabatic potentials are often easier
to approximate with low order Taylor polynomials, and the scalar diabatic couplings
are typically easier to determine and handle. At any time along a dynamics, the real
solutions of the Hamiltonian can be retrieved by applying the back-transformation
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Figure 2.8: Adiabatic and diabatic representations: the avoided crossing between adiabatic
states (grey curves) becomes a real crossing between the diabatic states (red and blue curves),
with diabatic coupling H,,, proportional to the splitting between the adiabatic states. Away
from the crossing, the coupling is small and the two representations coincide.

which gives the original adiabatic states.

The transformation which diagonalises the kinetic operator is not unique, and an
infinite number of possible diabatic representations exist. The choice of the most con-
venient diabatic states depends on the problem under consideration, so as to preserve
the states properties of interest (e.g. electronic state character, dipole moment etc.).
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Chapter 3

Parameterisation protocols

In this chapter, we present some computational protocols for the parameterisation of
the electronic Hamiltonian for subsequent dynamics simulations based on multicon-
figurational wavefunction-based methods. The procedures are fully portable and can
be applied to many systems whose photobehaviour requires a detailed and accurate
dynamical study. Once the degrees of freedom have been defined, the general steps
of the parameterisation protocol include:

1. Coordinate representation
2. Selection of level of theory
3. PESs and wavefunctions calculations

4. Non adiabatic couplings (NACs) and transition dipole moments (TDMs) calcu-
lations from wavefunctions

4.1 Transition densities (TRDs) calculations from wavefunctions (optional)
5. NACs and TDMs sign-correction according to wf overlaps

5.1 TRDs sign-correction according to WF overlaps (optional)

3.1 Coordinate representation

Depending on the photochemical problem, the coordinates to be included in the model
range from few to many tens of modes. Their number is mostly determined by the
complexity of the photophysical/photochemical deactivation path and by the level of
accuracy with which one intends to reproduce the real mechanism. These parame-
ters affect the choice of the type of simulation to be performed: classical molecular
dynamics with ad-hoc force fields allows to include all the internal coordinates, but
only some of them can be parameterised to describe motion away from equilibrium
geometries, while all remaining degrees of freedom will suffer from the use of har-
monic approximation (i.e. only regions of the PESs close to the equilibrium structure
will be correctly described). Semiclassical simulations with pre-computed PESs can
in principle handle all degrees of freedom, whose number is however limited by the
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computational effort required by the preliminary energy computations (making on-
the-fly semiclasscial dynamics more practical). Concerning the number of coordinates
in QD simulations, it is strongly dependent on the wavepacket propagation technique:
“traditional” QD (i.e. expanding the nuclear wavefunction in a time-independent ba-
sis) in a diabatic or adiabatic representation can only handle few coordinates, while
newer implementations relying on time-dependent basis functions like MCTDH][1]
and its multilayer extension (ML-MCTDH)[2] allow for the simulation of many de-
grees of freedom, provided that the PES can be approximated with simple analytical
functions.

The selection of the appropriate degrees of freedom depends on the photophysic-
s/photochemistry of the problem under investigation. Upon photoexcitation, the elec-
tronic density is perturbed instantaneously (with respect to the time scale of the nu-
clear vibrations). As a consequence, nuclear motion is then started by the necessity of
the nuclei to adapt to the perturbation. Since different electronic states have different
electronic structure, such nuclear motions are state-specific. In a one-dimensional
harmonic potential representation, this can be depicted by displaced harmonic poten-
tials (Figure 3.1). The adaptation of the nuclei to the electronic structure results in a

() (b)

CI @
ES min
|
s .
GS min, Nuclear GS min
! ! deformation/relaxation
Nuclear coordinate Nuclear coordinate

Figure 3.1: Schematic representation of the photophysical/photochemical processes following
photoexcitation in a one-dimensional displaced harmonic potentials model.

horizontal displacement. The PESs gradient points towards the respective minimum
(local or global). The system might get trapped there upon energy dissipation (Figure
3.1 (a)), in which case there is no ultrafast photochemistry. Under suitable conditions
PES can cross in a CI (Figure 3.1 (b)). As noted earlier, this promotes ultrafast non
adiabatic transfer between surfaces, that can occur on a sub-1 ps time scale, i.e. before
energy dissipation and equilibration in the ES can set in.

In the most general scenario, the deformations that lead from the Frank-Condon
(FC) point to the ES minimum are different from the ones that lead to the CI, thus
requiring energy redistribution (facilitated through coupling between kinetic terms in
the Hamiltonian). As a consequence, the FC point (the doorway into the ES) as well as
minima and CI (the doorways out of an ES) represent critical structures that need to
be considered when deriving reactive coordinates. These modes are known as tuning
modes as they affect the relative positions of the PES. Sometimes one has to explicitly
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consider also coupling modes which give rise to strong wavefunction couplings and
promote non adiabatic transfer.

After the selection of the coordinates for the parameterisation, it is important to
define their representation in terms of molecular displacements, that is answering to
the questions “which is(are) the reference geometry(geometries)?”, “how do we gen-
erate molecular displacements along each coordinate starting from our reference(s)?”.
The relevant structures that one wishes to describe are usually those of the reactant
(ground state minimum) and photoproduct, but also all those key geometries that
are found along the MEP describing the photoinduced process, such as excited state
minima, transition states and most accessible CIs between the states included in the
model. If the reactive coordinates are well identified, it is typically possible to take
one of these optimised geometries as a reference and reach all the others by displac-
ing along the chosen degrees of freedom. In this way, the reference geometry will
be fully-optimised, while all the other key structures will be approximated but still
well described. As reference geometry, it is advisable to choose the one which needs
more accuracy in the description due to its importance in the dynamics (e.g. the most
accessible conical intersection, while ground state minima are usually visited only at
the beginning and end of the propagation and suffer less from approximations) or the
one which best trades with all the others in terms of the non-scanned coordinates,
so that it will give a fair description of all of them. This “rigid scan” strategy was
successfully applied to the azobenzene and pyrene molecules (see Chapters 4 and 5).
For the generation of the grid structures, it is generally easier to work with internal
coordinates rather than cartesian ones, since the reaction path is often more easily ex-
pressed in terms of few of the former. In the cases where the photochemically relevant
degrees of freedom are described by simple internal coordinates (e.g. azobenzene), it
is possible to generate structures by editing the proper values in the Z-matrix of the
reference geometry. Instead, when using normal modes (e.g. pyrene) many tools are
available to displace the reference structure along normal coordinates (we used the
ones provided by the FCclasses code[3]).

However, there are systems for which the deactivation mechanism cannot be ap-
proximated with the rigid scan of few degrees of freedom, but rather it is a complex
mixture of coordinates which are often delocalised on the whole molecule. Such cases
need a more complex treatment, an example of which is the retinal chromophore in-
side the rhodopsin protein (whose photoisomerization triggers the process of vision)
that is extensively detailed in Chapter 6.

3.2 Selection of level of theory

The selection of the level of theory is the fundamental starting step to obtain accurate
data. Benchmark studies are required to properly select the best electronic structure
method to apply both at the equilibrium structure(s) and at very distorted geometries.
Indeed, the parameterisation procedure for dynamics simulations must include not
only structures nearby the FC region, CIs and/or MEP connecting them, but also very
distorted geometries far from equilibrium, in regions that might be explored by the
wavepacket/trajectory due to momentum conservation.

Among wavefunction-based multiconfigurational methods, we have chosen CAS-
SCF/CASPT?2 for our protocol, which allow to correctly describe on an equal footing
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electronic states with different nature (e.g. singly and doubly excited states). More-
over, with a grid mesh of the proper size, it is possible to keep track of the orbital
transformations along the scan and identify the desired states in all grid points. The
main parameters that need to be optimised in a CASSCF/CASPT2 calculation are the
number of states included, the active space size and composition and the type of per-
turbative correction (see Section 2.1.7), which must be chosen after a deep analysis of
their effect on the electronic structure in different regions of the PESs.

Concerning the states to include, their number is determined by studying the pho-
tochemistry of the system: upon interaction with light, only excited states showing
a non-vanishing TDM with the ground state {pgs|r |@gs> can be populated (among
those falling in the energy window of the excitation pulse). Such states are often
called bright states, and each of them is a potential doorway out of the GS, as it can
be populated by light in a realistic experiment. Thus, the number of relevant states
depends on the experimental excitation wavelength to simulate. The relevant bright
state(s) as well as all states below and around them can be involved in the photochem-
ical/photophysical processes that follow excitation (i.e. they might acquire population
from the bright state). Besides these, higher lying states that get stabilised along the
reactive coordinates might also be included, since they can interact or even cross with
the selected states in some regions, making it necessary to include more roots to keep
track of the original states. An additional point to take care of is the possible dis-
crepancy between CASSCF and CASPT?2 state order, that often makes it necessary
to include high-lying CASSCF states that are much stabilised by subsequent CASPT2
correction. For all these reasons, it is advisable to perform some preliminary tests
across the grid with a higher number of roots before choosing the number of CAS-
SCF/CASPT? states.

When possible, a uniform level of theory across the grid is preferred. However,
there are cases in which the best compromise between computational cost and accu-
racy forces to reduce the active space and/or change the type of perturbative correc-
tion in certain grid areas. As an example, in our study on the azobenzene molecule
(Chapter 4) the use of a big active space limited the possibility to apply MS-RASPT?2 in
all the points. In this case, we assessed the accuracy of SS- and MS-CASPT2 correction
along several scans of all reactive coordinates, and found out that the state energies
obtained with both methods were identical in the regions where the two states in-
cluded in the model were significantly far from each other. On the other hand, where
the two states approached, MS-RASPT2 was needed to obtain smooth and physically
meaningful PESs. As a consequence, the two methods were successfully combined
in the parameterisation. A more complicated example is represented by the Pyrene
molecule, whose complex electronic structure required the combination of different
perturbative correction as well as active space sizes (Chapter 5). In this case, the com-
putational effort is strongly determined by the need to include several excited states
in the description: indeed, the rigidity of the aromatic system does not allow for huge
deformations, but the lowest excited states are so close in energy that slight alterations
the active space composition, number of states in the SA or even a simple reduction
of the symmetry of the system leads to changes in the energy ordering of the states.
The high symmetry of pyrene in its ground state equilibrium structure reduces sig-
nificantly the computational cost and at the same time it also limits the interaction
between close-lying states belonging to different irreducible representations. Unfor-
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tunately, some of the modes that we have included in the model reduce the symmetry
of the system, allowing for new inter-state interactions and increasing the computa-
tional cost. Moreover, in such delicate situations the use of MS- or XMS-RASPT2 is
mandatory to have a good description of the electronic states, therefore we had to re-
duce the active space size along the symmetry-breaking coordinates, excluding some
virtual orbitals.

In any case, the level of theory must be accurately selected (and tuned, when the
computational cost is too high to afford expensive calculations across all the grid) in
order to deal between computational time and accuracy of the description. As a rule
of thumb, to reduce the cost of CASSCF calculations, it is possible to use its restricted
version (RASSCF) putting all the orbitals which are doubly-occupied in the ground
state configuration in RAS1 and all virtual orbitals in RAS3, leaving RAS2 empty and
allowing for maximum four holes/electrons in RAS1/RAS3, respectively. This strat-
egy was benchmarked by previous studies[4] and proved to give results as accurate as
“traditional” schemes after perturbative correction. Concerning the PT2 correction,
different flavours are implemented in MOLCAS[5]: SS-CASPT?2 is cheaper and typi-
cally performs well in cases where the reference CASSCF states are well separated in
energy and no not mix. On the other hand, regions of degeneracy or quasi-degeneracy
between electronic states are better described by multistate procedures, either MS-,
XMS- or the newer dynamically weighted DWMS-CASPT2[6]. Despite this general
trends, a preliminary investigation of the electronic structure changes along each se-
lected degree of freedom is always necessary to find the best compromise between
accuracy and computational cost.

3.3 Grid construction:
PESs and wavefunctions calculations

With the grid structures in hand, and once the level of theory has been defined, the
electronic state energies and wavefunctions can be calculated in all the points. This is
the most straightforward part of the parameterisation protocol, but still requires care
and attention to avoid errors and rough approximations that will bring about wrong
dynamics simulations. Indeed, it is important to asses the range and step for each of
the reactive coordinates before moving on. All state minima and the accessible CIs
along the path should be far from the grid edges, which must therefore be properly
enlarged to avoid that the wavepacket or trajectory goes out of the border. Moreover,
a smaller step is advisable close to crossing points, in order to better describe the NAC
spikes in regions where the PESs approach.

To obtain smoothly-varying orbitals across the scan, which avoid discontinuities
in the wavefunctions and energies, it is advisable to scan the PESs starting from a ref-
erence geometry, taking every time the starting orbitals from the output of the closest
point as initial guess. In the presence of more than one reference geometry (e.g. trans
and cis isomers of azobenzene, see Chapter 4), the region of the PESs in which grid
points derived from different references are joined can show discontinuities, which
need to be addresses by, e.g., fitting functions to obtain smooth surfaces.

The obtained PESs are also an important assessment of the selected coordinates: if
one of the photochemically relevant structures is not caught by the scan, it is possible
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that the reactive coordinates were not properly selected or represented and should be
revised.

3.4 Calculations of properties along the grid:
NACs and TDMs

Using the CASSCF/CASPT2 wavefunctions, it is possible to calculate several interstate
couplings such as transition dipole moments (TDMs) and NACs, which are needed to
simulate the state transitions during the dynamics. The TDM between two states is
expressed in cartesian coordinates and its calculation is quite simple, while the NAC
calculation can be more complicated since analytical CASPT2 NACs are not available,
and will be discussed in detail below.

3.4.1 Numerical NACs and gradients in internal coordinates

In the cases when analytical NACs are not available, their components can be com-
puted numerically by making small displacements along every degree of freedom
and computing the wavefunction overlap with the reference point using finite dif-
ferences[7]:

(R (R + dR)) - ¥ {(R¥,(R - dR)) + (¥, (R)¥,(R + dR)) - <¥;(R)|¥(R - dR)))
4dR

NAC, g = (3.1)
ij,R

where i and j label electronic states, and R is the nuclear coordinate of interest. Even
if the numerical calculation is highly parallelizable (since all displacements are gen-
erated independently), obtaining the cartesian NAC for medium/big systems is still
demanding, since the number of cores needed to speed up the calculation increases
quickly with the number of atoms. Indeed, the calculation of one cartesian NAC re-
quires 1 single-point calculation at the reference geometry plus the calculation of en-
ergies and wavefunctions for the displacement of each atom n along *x,,, +y,, and *z,,
resulting in 1 + 6Nyoms calculations. A first approximation to reduce the computa-
tional expense is the neglect of the NAC components fore some atoms (e.g. hydrogens)
that prove to be negligible after some benchmarking calculations. However, in many
cases, one is not interested in the NAC vector itself (expressed in 3N coordinates), but
rather in its projection along a coordinate of interest. It is the case of QD performed
in a reduced space, where the NAC components orthogonal to the chosen degrees of
freedom are discarded. In such cases, the direct calculation of the NAC in terms of
the desired coordinate(s), would significantly diminish the computational cost with-
out introducing any further approximation to the dynamics, reducing the calculation
to a single point for the reference geometry plus only two displacements (+ direction)
for each reactive coordinate. As an example, for the study of the azobenzene photoi-
somerization along the C—N=N—C dihedral and the two C—N=N/N=N-—C angles,
the cartesian NAC calculation would require 1 + 24 x 6 = 145 single point calcula-
tions; instead, for a direct NAC calculation along the reactive coordinates they are
only 1+ 3 x 2 = 7. In the case one needs to map the NAC for a significant number
of geometries, the computational time with the latter scheme would be dramatically
reduced. However, this this goes at the expenses of accuracy in reproducing the cou-
pling: if an important coupling mode internal is excluded from the model, the inter-
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state coupling will consequently be reduced. Therefore, the above simplification is
only effective in an appropriate coordinate model.

We have implemented the use of external displacements in the numerical CASS-
CF/CASPT2 NAC and gradient calculation in the software COBRAMM][7-9], devel-
oped by or group. This was done by defining a new calculation type called “nac”
which is equivalent to one step of a MD (with Tully’s surface hopping algorithm) in
which the energies, gradients and NACs are computed and printed out. In contrast
to a standard MD calculation, however, the numerical routines were edited to handle
an arbitrary number of coordinates, and to read the relative displacements from ex-
ternal files (provided by the user together with the input files). Below, the procedure
for calculating numerical NACs with MOLCAS[5] through COBRAMM is outlined,
assuming that the positive and negative cartesian displacements along the desired
coordinates are available. More details about the generation of correct cartesian dis-
placements are given in Appendix A.

Input files

The required input files for a COBRAMM calculation and the keywords are described
in the COBRAMM wiki page[9]. For a NAC calculation, the basic input files are the
same as for a molecular dynamics simulation without initial velocity:

+ cobram.command input file;
« molecular structure in AMBER crd format real . crd;

+ QM/MM layers definitioninreal_layers.xyz format[9] (if real. crd is miss-
ing, the molecular structure as well is read from real_layers.xyz).

In the case of a QM/MM calculation, additional files for the MM AMBER[10] calcula-
tion are needed. These are

« AMBER “topology file” real.top holding the MM parameters of the whole
system (QM+MM parts);

« AMBER “topology file” model-H. top holding the MM parameters for the high
layer only.

In addition to this standard COBRAMM files, the user should provide 2n more
input files, where n is the number of coordinates. They must be named dql.xyz,
dg2.xyz, ..., dqn.xyz and consecutive numbers should be used for displacements
relative to the same reactive coordinates (i.e. dql.xyz and dq2.xyz must refer to
coordinate one and so on). Below is reported the command section of the COBRAMM
input file for a numerical NAC calculation:

! command
1 nac

10 1

14
15
51
85
86 1000
210 3

?command

D o= O
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Table 3.1 contains the explanation for the keys/keywords

Table 3.1: COBRAMM keys/keywords and corresponding value and meaning for a numerical
NAC calculation with external displacements

Key Keyword Value  Meaning
1 type nac calculation type: numerical NAC with external displacements
10 distype 1 displace in + direction for numerical computations (default)
14 nacs 0 compute NACs numerically using WF overlap
15 savnum 1 save output of single points during numerics
51 qm-type 6 QM calculation type (6 = MOLCAS)
85 surhop 6 activate surface hopping using use Tully FSSH with Persico de-
coherence (required to activate NAC calculation)
86 ediff 1000  energy threshold (kcal/mol) to activate surface hopping (re-
quired high value to compute NAC independent of energy gap)
210  not defined yet 3 number of reactive coordinates for numerical calculations
Output

The gradients and NACs components along the user-defined coordinates are printed
out in the output file cobramm.log at the end of the parallel numerics section. The
example below shows a numerical NACs calculation involving three electronic states
along three reactive coordinates (six displacements). All the available NACs are print-
ed, while the gradient is reported only for the state of interest.

GRADIENT ALONG COMPUTED COORDINATES:

!'1! Parallel computation with external coordinates !!!!

If less then 3*n coordinates are used, the missing ones to fit
cartesian format will be set equal to 0.0 for printout
-0.013255889133 0.028076026103 0.005449466915

COMPUTED NACs:
NAC between states 1-2

0.098685464299 -0.272135201665 -0.039918747494
NAC between states 3-2

0.205292976033 0.119425242138 -0.014651858616
NAC between states 1-3

0.145999198727 0.068389275208 -0.011274120479

3.5 Sign correction

Even if the wavefunction coefficients vary smoothly between consecutive grid points,
its phase is arbitrarily changing, which reflects in random sign changes in NACs and
TDMs. In order to fix this, it is possible to calculate wavefunction overlaps between
consecutive points and propagate the sign correction starting from a reference geom-
etry, as schematised in Figure 3.2 The first step of the procedure is the path definition:
all grid points must be connected in a smart way, in order to minimise the number
of wavefunction overlaps required. We have made use of a simple script that, given
the grid points as input, connects them all according to nearest neighbour criterion,
without passing through each point more than once.
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Figure 3.2: Schematic representation of sign correction procedure: all TDM and NAC signs
are corrected with respect to a reference starting geometry from which the sign is propagated.

Once the paths have been defined, the wavefunction overlaps {¥;(r)|¥;(r + 1)) and
(¥;(r)|¥;(r + 1)) are calculated (e.g. through MOLCAS RASSI routine), where i and
Jj denote the two adiabatic states for which the coupling was calculated. Their signs
determine wether the coupling sign at point r + 1 is coherent with that at point r
or its sign is to be changed: if <¥;(r)|¥;(r + 1)) and ¥ ;(r)|¥;(r + 1)) are both positive
(negative), the wavefunctions of both states have kept (changed) their sign from point
r to point r + 1 and the NAC or TDM sign is already coherent. On the other hand, if
only one of the two states has changed its wavefunction sign with respect to point r,
the sign of the ij coupling (either NAC or TDM) has to be changed. Since the sign
has to be coherent on the whole grid, the decision to change the sign at a particular
point is also connected to the memory of the sign correction at the previous points,
for which the path connecting all points (defined above) is needed.

Figure 3.3 shows the effect of sign correction for the BLA component of the S;/S,
NAC and for the y component of the TDM along a C11=C12 torsional scan for rhod-
opsin (see chapter 6 for coordinate definitions): before the sign correction, the NAC
and TDM experience random sign changes which get fixed after the sign correction,
retaining only the expected sign inversion at the CL
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Figure 3.3: S,/S; NAC (BLA component, top panel) and TDM (y component, lower panel)
along a C11=C12 torsional scan for rhodopsin (see chapter 6) before and after sign correction.
In the central panel are represented the corresponding S; and S, PESs.
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Chapter 4

Azobenzene

4.1 Introduction

Azobenzene is an aryl azo compound made up of two phenyl rings connected by an
azo group. Due to the two possible configurations of the —N=N— double bond, both
cis- and trans-azobenzene isomers exist (Figure 4.1). The interconversion between the
two isomers is thermally allowed only in the cis — trans direction, due to the grater
thermodynamical stability of the trans isomer. On the other hand, a bidirectional
trans = cis interconversion is photochemically allowed, that was first observed by
Hartley in 1937[1]. The possibility to switch the molecular conformation between
trans and cis, together with other favourable properties such as the reversibility of
the photoisomerization process, the stability of both isomers and the photoactivity
even under unfavourable or constrained conditions[2], make azobenzene the perfect
candidate for application in light-powered nanomachines[3, 4], actuators[5, 6] and
in general in materials with photomodulable properties[7-13]. A deep mechanistic
understanding of the photochemistry of azobenzene opens further chemical design
opportunities to increase switching efficiencies (and thereby material functionality)
or to tailor azobenzene derivates for the specific surrounding they are incorporated
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Figure 4.1: Azobenzene trans = cis interconversion

The UV-Vis spectrum of trans-azobenzene (Figure 4.2) shows a weak band in the
visible region near 440 nm, which is associated with the symmetry-forbidden Sy—S;
transition (nsz* nature), while the strong UV band around 320 nm is associated with
the symmetry-allowed 77" transition populating the bright S, state. The same bands
are observed also in the spectrum of cis-azobenzene, even though with a different rel-
ative intensity (see Figure 4.2) due to the non-planar structure of the cis isomer, which
is mitigating the symmetry selection rules. The most challenging aspect of the photoi-
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somerization of azobenzene (both trans — cis and cis — trans) is the quantum yield
dependence on the excitation wavelength, which contradicts Kasha-Vavilov rule[14].
Indeed, in inert solvents such as n-hexane the experimental quantum yields are about
11% and 25% in the trans case and 27% and 56% in the cis case starting from S, or Sy,
respectively[15]. In other solvents, the quantum yields show a similar trend[16]. This
suggests that different reaction mechanism could take place starting from the nz* (Vis
irradiation) or s state (UV irradiation).
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Figure 4.2: Azobenzene UV-Vis absorption spectrum in ethanol. From reference[17].

Over the years, theoretical chemists and physicists have tried to give an expla-
nation of this behaviour and to unveil the reaction mechanism. Indeed, two reaction
coordinates can be identified for the trans = cis interconversion: pure torsion around
the N=N bond or pure in-plane inversion of one C—N=N angle (see Figure 4.3), and
the relevance of each of these pathways when exciting S; or S, has been debated for
over eighty years. Early theoretical studies by Bortolus et al.[15] reported an energeti-

N=N inversion N=N ;

Figure 4.3: Possible isomerization mechanisms in azobenzene: C—N=N inversion (top) and
C—N=N—C torsion (bottom).

cally favourable inversion path, while a high barrier was found along the C—N=N—C
torsion. This was supported by evidence from the Raman experiments by Fujino[18],
who found that the N=N retains a double bond nature also in the excited state, that
was not compatible with the expected 7-bond breaking along torsion. However, start-
ing around the year 2000, the application of accurate multiconfigurational methods to
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Figure 4.4: Sketch of the S, and S, PESs of azobenzene along the torsion and symmetric
bending coordinates. The crossing seam (red line) extends from planar, high-energy structures
to fully rotated structures, which represent the most accessible part of the CI seam.

the study of the PESs of azobenzene questioned the hypothesis of the inversion path-
way. CASSCF potential energy surfaces by Ishikawa et al.[19] turned out to be quite
flat along the torsion coordinate, along which a S1/Sy CI was found, that was identified
as the preferred deactivation channel. Further applications of CASPT2/CASSCF[20-
23], TD-DFT[24] and semiempirical methods[25] all supported the C—N=N—C tor-
sion as the preferred path, although with an important role of the oscillations in the
C—N=N/N=N-C bending angles to reach the crossing region. In addition, a more
favorable torsional gradient on the cis-side was able to explain the higher cis — trans
quantum yield. In the same years, a study by Taketsugu and coworkers[26] demon-
strated through CASPT2 frequencies that the N=N stretching frequency is insensi-
tive to the reaction mechanism, thus making the torsional path compatible with Fu-
jino’s experiments. The general consensus at present is represented by the so-called
“bending-assisted torsion”, in which the S; — S, decays does not take place through
a unique crossing point along torsion, but rather a wide crossing region is present,
spanning large portions of the torsion and bending coordinates[14, 21-25] (Figure
4.4). The latter, however, does not represent a productive deactivation channel, since
the C—N=N/N=N—C oscillations are found to be symmetric, while the inversion hy-
pothesis would require the inversion of only one of the two angles. If the bending
oscillations are wide enough, the crossing region is reached much before 90° torsion,
reducing the isomerization quantum yield. This is more likely to happen in the case
of trans-azobenzene, because on the cis side the torsional gradient is steeper. More-
over, the quantum yield reduction upon S, excitation (-50%) is also ascribed to the
wider and faster symmetric bending oscillations associated with promotion to this
higher-lying state.

The experimental trans — cis deactivation time constants obtained by transient
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absorption (TA)[27-31], time-resolved photoelectron spectroscopy (TRPES)[32] and
jet-cooled multiphoton ionization[33] are 0.34, 3.0, and 12 ps (after nz* excitation[29]),
with an additional faster component of about 170 fs when starting from the zz* state
[30, 32, 33]. For the cis — trans process, the experimental time constants are 0.1, 0.9
and 5.6 ps, independent of the excitation[29, 30]. Although they were at first assigned
to the inversion process[27, 28], these time constants are more congruent with a fast
movement out of the Frank-Condon region, followed by a large-amplitude motion
on the S; PES, ascribable to the slow torsional coordinate. The ultrafast component
recorded when trans-azobenzene is excited to S, is assigned to a S, — S; decay which
takes place in the femtosecond regime, after which the excited state processes are the
same as after nz* excitation, even though with a different relative amplitude due to
the different starting point on the S; PES (outside the Franck-Condon region)[30].

We have produced an extended mapping of PESs, TDM and NAC of Sy and S; (nz")
of azobenzene in the 3D space spanned by C—N=N—C torsion and the two C—N=N
bending angles at an unprecedented level of accuracy (SS- and MS-RASPT2/RASSCEF,
using a full /7" active space plus the two non-bonding n orbitals[34]) with the aim
of producing a wide and solid database that allows to simulate on the same basis
the excited state dynamics of azobenzene (on the isomerizing S; state) with several
methods, from classical MD with tailored force fields to purely quantum dynamics,
thus allowing for direct comparison between the results of the different approaches.
Indeed, excited state dynamic simulations are fundamental to understand what hap-
pens after the nz” or 7" states are populated, as well as to compare the calculated
quantum yields with the experimental ones to validate the model picture itself. The
obtained PESs show that the selected degrees of freedom are sufficient to accurately
locate the crossing points where the non adiabatic decay takes place. The accuracy
of the PESs was first validated with semi-classical dynamics in the reduced space of
the three torsional and bending coordinates[34], whose results are in good agreement
with past simulations([2, 25, 35]. Subsequently, in collaboration with the group of Pro-
fessor Shaul Mukamel of the University of California, Irvine, we have simulated the
photoisomerization (in both directions) by means of quantum dynamics (QD) simula-
tions on the adiabatic PESs[36, 37], enriching our database with state and transition
electron densities, that were used to simulate various kinds of time-resolved experi-
ments: X-ray diffraction patterns during the isomerization resolved in time[36], and
frequency[38] or coupled with resonant infrared field to enhance coherence signa-
tures[39], electron diffraction patterns along the photodynamics[40] and also the ef-
fect of using entangled two-photon absorption on the quantum yield[37]. We have
also started to investigate the effects of substitution on the azobenzene photoisomer-
ization mechanism, focusing on the push-pull derivatives, which are of interest for in
vivo applications. The results of our preliminary study alredy gave promising results,
that we published in reference[41].

The following section 4.2 gives an introduction to the simulation of time-depen-
dent diffraction signals, that we have applied to the QD of azobenzene. Section 4.3
includes the technical details of the calculations. The results concerning the PESs and
interstate couplings of azobenzene are presented in sections 4.4.1 and 4.4.2, while the
dynamics simulations and the simulated transient signals are discussed in sections
4.4.3 and 4.4.4. Eventually, section 4.5 is entirely dedicated to push-pull azobenzene
derivatives.
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4.2 Time-resolved x-ray and electron diffraction

X-ray diffraction (XRD) allows for the structural determination of compounds based
on diffraction patterns. It is a widely used technique for crystals, but the possibility
to perform transient experiments opens a doorway to monitor the molecular struc-
ture during the photochemistry, including signatures specific to conical intersections
during non adiabatic events. Diffraction signals reveal the momentum transfer ex-
perienced by an incident photon through interference with one or more scatterers.
They depend on the charge density o(q) of the sample, where q = k; - k, is the mo-
mentum difference between the incident k, and scattered kg wavevectors. Diffraction
signals can be recorded either with photon or electron beams. While photons scatter
off the electronic charge density of the sample, electrons scatter off the total (nuclear
+ electronic) charge density. Traditionally, stationary X-ray diffraction is used to de-
termine the structure of crystalline matter. A momentum-space image, provided by
the scattered photons, is recorded, allowing for the reconstruction of the real-space
crystal structure. The XRD signal, expressed in terms of the electron densities of in-
dividual molecules in a sample, is given by the sum of one-molecule (S;(q, t)) and
two-molecule (S,(q, t)) terms[42]:

5100 =N [ ailey(e- 1 6(-a.06(a 1) (41)
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Here, N is the number of active molecules, and T is the the central time of the X-ray
probe pulse envelope E,(t - T). F(q) is the structure factor which encodes the long-
range, intermolecular structure of the sample. In crystals, F(q) is sharply peaked at
the Bragg points which are directly related to reciprocal lattice vectors. At these Bragg
peaks, contributions from ordered multiple scatterers coherently add up in phase and
the S,(q, t) signal scales as N2. Away from the Bragg peaks, these terms have essen-
tially a random relative phase, and the signal is negligible. In contrast, S;(q, ¢) scales
linearly with the number of molecules in the sample N, and does not depend on the
structure factor. As a consequence, diffraction in crystals is usually dominated by the
2-molecule (or more generally 2-scatterer) coherent response that is responsible for
the formation of Bragg peaks. Instead, for single molecule diffraction or diffraction
in the absence of order, S;(q, t) dominates and a continuous pattern is observed in
momentum space.

The temporal resolution in X-ray diffraction, as obtained by formulas (4.1) and
(4.2), are only possible due to the advent of free-electron X-ray light sources[43, 44]
providing sub-femtosecond pulse durations, also available from tabletop setups (e.g.
through high harmonic generation[45] or laser-driven plasma sources[46]). Another
game-changing ingredient provided by such light sources is peak brilliancy: the high
number of photons in the beam allows for a significant reduction of the sample size,
while still achieving the necessary ratio of scattered photons per object to record
diffraction patterns. Structure determination of nanocrystals[47, 48], aligned gas-
phase molecular samples[49], and macromolecular structures[50, 51] were reported.
Attempts toward imaging single molecules at free-electron lasers were made[52], al-
though some challenges remain. Time-resolved X-ray (or electron) diffraction movies
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Figure 4.5: Ultrafast X-ray diffraction scheme: a pump pulse €, excites the molecules in the
sample, then, a time-delayed X-ray probe pulse with envelope E, images the molecular structure
in momentum space by elastic and inelastic photon scattering. q = k, - k, is the momentum
difference between the incident k, and scattered k, wavevectors. From reference[39].

can monitor the electronic (or nuclear + electronic) charge density evolution during a
chemical process[53-65]. A schematic representation of an ultrafast X-ray diffraction
experiment is given in Figure 4.5.

Diffraction from matter in non stationary states, such as molecules undergoing
a chemical transformation, involves physical processes that go beyond elastic scat-
tering from instantaneous snapshots of the electronic ground state density. This is
especially true for excited molecules, being in a time-evolving superposition of many-
body states: in such cases, inelastic scattering from different electronic states[42, 66,
67], as well as electronic and vibrational coherences[42, 68-70] contribute to the sig-
nal. The latter, which are created when the molecular system corresponds to a linear
superposition of different electronic and/or vibrational eigenstates, are non station-
ary and evolve in time as damped oscillations with a frequency corresponding to the
energy difference between the involved eigenstates. They are of particular interest
because their detection could allow for the direct imaging of conical intersections
(where they are created by the bifurcation of the wavepacket between two electronic
states). Unfortunately, coherences only persist for a short time before dephasing, and
are generally much weaker than other contributions to the signals, therefore, they are
hard to detect.

Recently, a lot of effort has been put on the simulation of transient diffraction
signals[42, 67, 71] as a powerful tool to disentangle the different contributions to
the total signal and get insight into the reaction mechanism (and, in particular, to
the non adiabatic events). After the creation of an excited state wavepacket by an
optical pump pulse and during the excited state dynamics, photons from an incident
X-ray probe pulse are scattered from the molecular electron density 6(q), which is the
Fourier transform of the real-space density &(r) (we denote the real space electronic
and nuclear coordinates r and R, respectively). The total time-dependent wavefunc-
tion ¥(r, R, t) is expanded in the adiabatic basis

¥(rR. 1) = 3 (DR, D@i(rR) (43)

where y;(R, t) is the normalised nuclear wave packet in the adiabatic electronic state
¢;(r;R) and ¢;(¢) is the electronic state amplitude. Equation (4.3) is an exact repre-
sentation which does not invoke the adiabatic approximation and can be similarly
formulated in, e.g. a diabatic basis. Although 6(q) is a single-body electron operator,
it depends on the nuclear configuration as well. Therefore, it remains an operator
in the nuclear space after taking its matrix elements in the electronic subspace, i.e.
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(pil 6(¢.R) ¢ = 6;;(q, R).

The one-molecule time-resolved X-ray diffraction (TXRD) signal of a sample with
N noninteracting molecules is defined as the integrated rate of photon number change
during the scattering process and is given by[42]

S(qT) x N J dt |Ep(t - :r)\2 Si(q. 1) (4.4)

where S;(q, ) is the time-dependent molecular response. For a two-electronic-state
model (with ground state g and excited state e) S;(q, t) reads
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where pg¢(t) and p,,(t) are the electronic state populations and pg(t) is the coherence
magnitude. Matrix elements ¢y, and 6, are the ordinary electronic charge densities
involving the electrons of the molecule. On the other hand, 6, and 6, represent
transition charge densities that only account for orbitals involved in a particular elec-
tronic transition. As such, they are more sensitive to charge migration between the
ground and valence excited states, that typically only involve one or few electrons.
An equivalent result is obtained for ultrafast electron diffraction (UED)[71], with ad-
ditional terms arising from nuclear and mixed electron-nuclear scattering.

The various contribution to the signal are conveniently represented by loop dia-
grams (Figure 4.6), that show the time evolution of the bra and ket of the molecular
many-body wavefunction and the perturbative interactions with the incoming X-ray
or electron beam. In a loop diagram, each field interaction is represented by an arrow,
which either points to the right (photon annihilation and excitation of the molecule)
or to the left (photon creation and de-excitation of the molecule). Free evolution pe-
riods on the left branch indicate forward propagation in real time, and on the right
branch to backward propagation, respectively. For complete loop diagram rules see
reference[72].

The first two terms in equation (4.5), corresponding to Figure 4.6 (i) and (ii), re-
spectively, are the elastic contributions from the ground and excited states, whereas
terms (iii) and (iv) represent inelastic Stokes (Figure 4.6 (iii)) and anti-Stokes (Figure
4.6 (iv)) processes. Finally, the last two terms (Figure 4.6 (v) and (vi)) represent mixed
elastic/inelastic processes, which scatter off vibronic coherences. They contain the
nuclear wave packet of the two different states in bra and ket, and their amplitude
is given by the coherence magnitude p,,(t). The mixed elastic/inelastic processes in-
volve an elastic scattering from 6g¢ or 6,, and an inelastic one from 6, or 6,,. The
two scattered photon amplitudes, therefore, have frequencies centred around wy and
wx * Weg , Where wy is the incoming X-ray frequency and w,, is the transition fre-
quency between states e and g. In order to generate a signal, a population must be
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Figure 4.6: Loop diagrams for one-molecule XRD and UED expanded in electronic eigenstates
for a two-state model. XRD is given by diagrams (i)—(vi), while all diagrams contribute to UED.
The total XRD signal is the sum of electronic elastic ((i) and (ii)), inelastic electronic Stokes and
anti-Stokes ((iii) and (iv)), and mixed electronic elastic/inelastic terms ((v) and (vi)). UED has
additional contributions from nuclear elastic ((vii) and (viii)), mixed nuclear/electronic elastic
((ix) and (x)), and mixed nuclear/electronic elastic/inelastic ((xi) and (xii)) scattering. From
reference[71].

created on the detector, which is possible only if these two amplitudes have a fre-
quency within the detector bandwidth. The vibronic coherences, therefore, can be
observed only by a broadband detector with a bandwidth larger than @, which is
usually the case for XRD detectors.

There are a few important points to note. First, as can be seen from equation (4.5),
scattering does not simply occur from charge densities but from expectation values
over products of charge density operators (o'oY (in the limit of impulsive diffraction,
where both interactions occur at the same time). This means that the real-space molec-
ular structure may not be simply reconstructed from the inverse Fourier transform of
the diffraction pattern, an issue that is related to the well-known “phase problem”
in diffraction. An extensive literature exists that solves this problem, e.g. by over-
sampling[73] or by anomalous diffraction[74]. However, phase retrieval for structure
reconstruction is still scarce in femtosecond X-ray diffraction studies, as this is a dif-
ficult task with many technical subtleties and pitfalls. The second point to note is that
equation (4.5) is exact and contains all contributions to the signal. Its use requires
to explicitly calculate 6(q,R) across the nuclear space, which can be a demanding
task. In most experimental circumstances, the majority of the molecular charge can be
definitively assigned to particular atoms, and only few electrons participate in chemi-
cal bonds. This inspires the commonly used independent atom approximation, where
the total density of the molecule « is constructed by assigning form factors f;, to each
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atom a and summing over them:

oo(@) = Y |ful@)] e9Re (4.6)

This approximation may be useful in describing elastic scattering or population dy-
namics but misses the coherence term, which is the most relevant one for tracking
non adiabatic events.

4.3 Computational details

An accurate simulation of TXRD signals requires electronic PESs, non adiabatic cou-
plings, transition dipoles and charge densities as well as a nuclear quantum dynamics
propagation scheme. All the simulations of the non adiabatic dynamics of azoben-
zene involved a preliminary study of PESs and other relevant quantities, followed by
dynamics simulations of the photoisomerization process. The mapping of the state
energies and couplings represents the core of the parameterisation protocol that we
aim to describe with this thesis, and will be described in detail below. On the other
hand, only the most significant details of the dynamics (that were performed in col-
laboration with other research groups) will be described. Further technical details of
the various propagation schemes can be found in the corresponding published works.

4.3.1 Ab initio calculations

The PESs of both ground and first excited states of azobenzene were mapped along
three internal coordinates: the C—N=N—C dihedral and the two C—N=N angles.
RASSCF was applied for all calculations, using a 16 orbitals/18 electrons active space
that includes all 7 and 7" orbitals as well as the two non-bonding n orbitals (Figures
4.7 and 4.8), employing the ANO-L-VDZP basis set[75]. The x and n orbitals were
put in RAS1, while the 7" orbitals in RAS3, allowing for a maximum of four holes in
RAS1 and four electrons in RAS3. The shorthand notation to describe this distribution
among active spaces is RASSCF(4,9/0,0|4,7), where the RAS subspaces are divided by
pipes, and for each subspace the couple of numbers n, m indicates the maximum num-
ber n of holes (for RAS1) or electrons (for RAS3) and the number of active orbitals m.

In all cases, the RASSCF calculation was followed by a RASPT?2 correction, either at
the Single State (SS) or at the Multi State (MS) level, using an imaginary shift of 0.2 a.u.
and setting the IPEA shift to zero. The quality of the results was assessed by check-
ing the reference wavefunction weight after the perturbation correction, which was
always around 60%. The two lowest singlet states (ground and nz” states) were in-
cluded in the state averaging (SA) procedure in all points of the grid (SA-2-RASSCF),
except for a small region close to the trans FC point, where the mz" state was also
mapped. Indeed, the latter is the third state (S,) close to the trans minimum, but it
exhibits pronounced energetic destabilisation for values of the C—N=N—C torsion
away from 180° or symmetric bending above 120°. As a consequence, a large number
of states would have to be included in the SA-RASSCF calculations to keep track of
this particular state along the scan, resulting in a high computational cost. Moreover,
recent results published by our group[14] show that, after 77" excitation, the molecule
retains a planar structure and exhibits wide and fast symmetric bending oscillations,
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Figure 4.7: Active space orbitals of trans-azobenzene (SA-2-RASSCF(4,9]0,0|4,7)/ANO-L-
VDZP).

that immediately lead towards a planar S,/S; CI found at C—=N=N=N=N—-C=105".
It is therefore reasonable to think that, for the study of the reaction mechanism start-
ing from the 7z state, it should be sufficient to map the surface of S, only close to
C—N=N-—C =180° and for small values of the two C—N=N angles (i.e. in a region that
goes from the FC point up to the S,/S; CI). All the energy computations have been
performed with the MOLCAS8[76] quantum chemistry program, applying Cholesky
decomposition.

The selected torsional and bending coordinates were scanned starting from the
MP2/ANO-L-VDZP ground-state-optimized structures of both trans and cis-azoben-
zene isolated isomers in gas phase (Figure 4.9). All remaining degrees of freedom were
kept frozen at their ground state minimum value. The results of the two rigid scans (i.e.
starting from trans or cis ground state equilibrium structure) were eventually merged
keeping the structure which gave the lowest S; energy for each point of the 3D grid.

Trans-azobenzene has a Cy, symmetry in its minimum, but the o}, plane is re-
moved by torsion around the C—N=N—C dihedral, reducing the symmetry to C,. On
the other hand, cis-azobenzene already belongs to the C, point group at its Sy min-
imum. For both isomers, the C, axis is preserved under symmetric bending, while
it is removed by asymmetric bending deformations, resulting in a Cy structure. As a
consequence, the structures of 3D scan characterised by identical C—N=N/N=N—C
bending angles have C, symmetry, while all other geometries have C; symmetry. For
consistency, all calculations were performed without symmetry.
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Figure 4.8: Active space orbitals of cis-azobenzene (SA-2-RASSCF(4,9]0,0/4,7)/ANO-L-VDZP).

We first made a 2D scan of C—N=N—C torsion and C—N=N/N=N—C symmetric
bending. The C—N=N—C dihedral was mapped between 0° and 180°, with a step of
10°, that was reduced to 4° in the twisted region where the PESs get closed (i.e. between
82° and 110°). Symmetric C—-N=N/N=N—C bending was mapped between 100° and
180° with a step of 2°. Then, for selected values of the CNNC dihedral (namely 1807,
150°, 120°, 106°, 102°, 98°, 94°, 90°, 86°, 82°, 60°, 30°, 10°) we additionally scanned the
two C—N=N bending angles independently, using the same range and step as before,
giving rise to roughly 22000 points in the global 3D surface.

Concerning the type of perturbative correction, benchmarking showed that the
SS- and MS-RASPT2 methods are equivalent when S, and S; are well separated in
energy (ie. C—N=N—C < 82° or C—N=N—C > 106°, see Figure 4.10 (a)), therefore,
the cheaper SS-RASPT2 correction was applied in such cases. On the other hand,
the state mixing when 82° < C—N=N—C < 106° causes the SS-RASPT2 PESs to show
double or triple crossings (see Figure 4.10 (b)), which disappear after MS-RASPT2
correction. The SS-RASPT2 crossings are not accompanied by a sudden change in the
state nature, as expected in a real crossing point, but rather the two wavefunctions
show a multiconfigurational nature. This is a consequence of the strong wavefunction
mixing at the RASSCF level in this region, that is not properly fixed by the SS-RASPT2
correction. In these cases, MS-RASPT2 was applied, which gives a more balanced
description and is able to resolve the CASSCF wavefunction mixing. The electronic
states densities as well as the Sy — S; TDM and transition densities were calculated
across all the grid through the MOLCAS &RASSI routine, making use of RASSCF or
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Figure 4.9: MP2/ANO-L-VDZP optimised structures of trans and cis-azobenzene.
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Figure 4.10: Comparison between SS- and MS-RASPT2 corrections far from the twisted re-
gion (a) and at 90° torsion (b). From reference[34].

MS-RASPT2 wavefunctions for the points in which SS- or MS-RASPT2 was applied,
respectively. The one-electron (transition) densities o;;(r,R) were rotated from the
molecular to the atomic orbital basis {¢,(r, R)} and Fourier transformed according to
the formula

0ii(q,R) = J dre” 3" PR (r, R)gs(r, R) (4.7)

The sign of TDMs and electronic densities were corrected according to the procedure
described in Section 3.5.

The same level of theory of the rigid scans (MS-2-RASPT2/SA-2-RASSCF(4,9]0,0|-
4,7)/ANO-L-VDZP) was used for a fully relaxed geometry optimisation of the first
excited state (nz*) and for a S;/Sy CI optimisation, both performed without imposing
any symmetry.

Besides the PESs and TDMs, we also mapped the S;/Sqy NAC at MS-RASPT2 level
for the points of our 3D grid where 82° < C—N=N—C < 106° and the energy gap
AEg, g, was lower than 0.3 eV. A computation of the full numerical cartesian NAC
would require 144 single-point calculations for each geometry in the case of azoben-
zene. However, from a preliminary analysis of the full NAC vector at some test ge-
ometries, we noticed that only the cartesian components that refer to the four cen-
tral C—N=N—C atoms adopt significant values (see the supporting information of
reference[34]). Given this result, we first approximated the NAC calculating only
its components in the subspace of the four central atoms (24 single-point calcula-
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tions per geometry). This data was used for the semiclassical dynamics published in
reference[34]. Following collaboration with the Mukamel’s group for the QD simu-
lations required either a wider and/or a denser NAC mapping in the bidimensional
subspaces of the QD dynamics. For the cis— trans simulation, that was run in the
subspace of C-N=N—C dihedral and one C—N=N angle (keeping the other fixed at
116°), we have mapped the NAC at C—N=N—C =82°, 86°, 90°, 91°, 92°, 93°, 94°, 95°,
96°, 97°, 98°, 102° and 106° between C—N=N = 126° and 156° (with a step of 1°). For the
trans — cis simulation, that was run in the subspace of C—N=N—C dihedral and sym-
metric C—N=N/N=N-—C bending, the NAC was mapped for 80° < C—N=N—C < 110°
(step 2° everywhere except between 96° and 102°, where a step of 1° was used), and
symmetric bending between 110° and 156° (step 1°). By the time of the trans — cis
simulation, we had developed the machinery for numerical NAC calculations in in-
ternal coordinates described in Section 3.4.1. For the case of three reactive coordi-
nates, this reduces the number of single point calculations required for each NAC up
to 6. Therefore, for the corresponding NACs we employed this protocol. All NACs
used for QD were sign-corrected according to the protocol described in Section 3.5.
Minima and CI optimisations with numerical RASPT2 gradients as well as numerical
NAC calculations were performed using the suite COBRAMM[77-79] interfaced with
MOLCAS([76] and with an integrated scheme for obtaining numerical gradients and
NACs.

4.3.2 Dynamics simulations

The propagation of trajectories or wavepackets for dynamics simulations requires
smooth potentials. For this reason, we fitted the obtained PESs with a combination
of the first 6 terms of the cosine Fourier series for the CNNC dihedral, and the first
6 terms of the power series expansion for the CNN and NNC angles, obtaining sat-
isfactory results. Details of the fitting procedure and functions can be found in the
Supporting Information of reference[34].

Semiclassical dynamics

A simple semiclassical dynamics in the subspace of the scanned coordinates was used
to asses the accuracy of the 3D PESs, in a collaboration with the group of Professor
Claudio Zannoni of our department (details in reference[34]). We propagated the
nuclei classically on the fitted PESs, while all the remaining degrees of freedom were
effectively frozen by setting the corresponding force field constant to artificially high
values. Electrostatic charges and Lennard-Jones coefficients were set to zero as well.
We ran 200 10 ps NVE simulations of a single trans-azobenzene molecule in vacuum at
300 K with a timestep of 0.1 fs. The simulations were started in n" state, sampling the
3D phase space from a Wigner distribution in the reduced coordinate space around the
ground state trans minimum at 300 K. Whenever the classical trajectory on the excited
state entered a region where the NAC was mapped, it was allowed to instantaneously
hop to the ground state according to Tully’s fewest switches probability[80]. After the
non adiabatic event, the force field felt by the molecule was changed from that of S;
to that of Sj until the end of the simulation, without allowing for back hopping. The
use of only three non-frozen degrees of freedom reduces significantly the modules of
the atomic velocities with respect to a fully unconstrained simulation. This implies
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a smaller decay probability, due to the presence of a dot product between NAC and
velocity in its formula. For this reason, we compared our average velocity of the four
central C, N, N, C atoms (vg) with that of a Wigner sampling in the full coordinate
space (¥), finding a ¥g/¥ ratio of 4.5 that was applied to our velocities as scaling
factor. All MD simulations were performed with an in-house-modified version of the
Molecular Dynamics software NAMD([81], interfaced with the COBRAMM code[77-
79] for the calculation of the hopping probability.

Quantum dynamics

The QD of both trans — cis and cis — trans processes in gas phase was simulated in a
series of collaborations with the group of Professor Shaul Mukamel of the University
of California, Irvine. The high level of accuracy, together with the additional compu-
tational cost for the simulation of transient signals along the propagation, required
the reduction of the number of coordinates to two. Therefore, we have simulated
the cis — trans dynamics in the subspace of C—-N=N—C torsion and one of the two
C—N=N angles, keeping the other fixed at 116°. This choice allows to accurately de-
scribe the lowest part of the S1/Sy crossing seam (driving the non adiabatic event),
while the regions of the PESs which are less involved in the decay (e.g. FC regions)
are still reasonably well described. Instead, for the trans — cis conversion, we used
as coordinates the C—N=N—C dihedral and the symmetric C—N=N/N=N—C bend-
ing, in order to correctly describe also the symmetric bending CIs which are more
accessible on the trans side (see section 4.4).

Exact QD simulations in the reduced-dimensional space of two reactive coordi-
nates were performed by solving the time-dependent Schrédinger equation (4.8):

9 - Ao,
ih—¥ = HY = [T, +V - je(t)] ¥ (4.8)

where the jie(t) is needed to simulate an explicit pump pulse. The nuclear wave
function y(R, t) was obtained by propagating the Sy ground state vibrational wave
function y(R, ty) with a Chebychev propagator[82] using a time step of 0.05 fs. The
kinetic energy operator fq in equation (4.8) is set up according to the G-Matrix for-
malism[83, 84] in 2 reactive coordinates. More technical details about the propagation
can be found in references[36, 38, 39] (cis — trans simulation) and [37] (trans — cis
simulation).

4.4 Results and discussion

4.4.1 Potential energy surfaces

Figure 4.11 shows selected cuts of the 3D PESs, while Table 4.1 collects details about
minima, saddle points and relevant Cls. In the two ground state minima, the vertical
excitation to S; is found to be 2.66 eV (466 nm) for the trans and 2.78 eV (445 nm)
for the cis isomer, while for S, only the trans excitation energy is available, which is
3.86 eV (321 nm). These values are in good agreement with the experimental ones[85],
with a small underestimation in the case of the nz* state, possibly due to the neglect
of solvation effects.
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Table 4.1: Structures and energies” of Sy, S; and S, at significant points (minima, saddle
points, relevant CIs) obtained with the rigid scan (in the space of C—N=N—C torsion and
C—N=N/N=N-—C bending) and with unconstrained optimisations (more structures in refer-
ence[34]; * a=SS-RASPT2, b=MS-RASPT2)

CNNC() CNN() NNC() Es (V) Es (V) Es, (eV)

S trans min 180 112-114  112-114  0.00% 2.66° 3.86¢
S cis min 0 120 120 0.37¢ 3.15¢ -
Sy TS 90 118 118 1.57¢ 2.14° -
S, min 180 108-110  108-110  0.11¢ 2.99¢ 3.84¢
S1/S Cl-bend1 180 150 150 3.04¢ 3.08¢ -
S,/S, Cl-bend2 0 156 156 3.22¢ 3.24¢ -
T102-S, min 102 116 116 1510 2.13% -
T102-S; min 102 120 122 1.55? 2.15° -
T94-S, min 94 116 116 154" 2.42b -
T94-S; min 94 116 132 1.74b 2.16° -
T82-S, min 82 116 116 1.45° 2.42° -
T82-S, min 82 116 134 1.70b 2.17° -
T98-S,/S, CI 98 116 146 2.12° 2.22° -
T94-S,/S, CI 94 114 146 2.16° 2.19% -
T90-S,/S, CI 90 114 146 2.13° 2.20° -
opt-S; min 96 115 145 1.98% 1.98" -
opt-S;/Sy CI 95 115 146 1.980 1.99% -

Figure 4.12 shows the gradients along C—N=N—C torsion and C—N=N symmet-
ric bending near the trans and cis FC points. The ground state is destabilised along
the torsion coordinate, and a barrier is separating the two minima (see Figure 4.11
(a) and (c)) with a saddle point (Sy TS in Table 4.1) standing 1.57 eV above the trans
minimum and 1.20 eV above the cis minimum. On the other hand, the nz* state PES
along torsion is extremely flat, with a small but favourable gradient pointing towards
twisted geometries (Figure 4.12 (a) and (c)). S; does not display any torsional barrier
within our grid points, neither starting from the trans nor starting from the cis iso-
mer. Although it is possible that we may overlook the presence of a torsional saddle
point due to the lack of full geometry relaxation, the topology of the nz* PES suggests
that (if it exists) the barrier should be extremely low, in agreement with past compu-
tational studies[14, 21, 86] and photoelectron spectroscopy[33]. Despite being quite
flat in all the grid points, the torsional S; gradient is a bit more negative at the cis
FC point, where the torsion is expected to be activated faster than in the trans case.
In contrast, torsion is not favoured after excitation to S,, whose minimum exhibits a
planar structure (S, min in Table 4.1).

The excited state gradients are much more pronounced along the symmetric bend-
ing coordinate, especially at the trans FC point (Figure 4.12 (b) and (d)). Here, both
S{ and S, minima (relative to symmetric bending) are displaced with respect to the
FC point, even though in opposite directions: the gradient on S; points towards an
opening of the two C—N=N angles, while on S, they tend to reduce. Moreover,
close to the S, minimum, the PESs of the nz* and nz" states approach and almost
cross at C—N=N=N=N—C = 100°. Due to the rigidity of our scan, we do not observe
a real degeneracy point, but still our results agree very well with those of a fully-
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Figure 4.11: Side views ((a), (b)) of the PESs in the space of C—N=N—C torsion and sym-
metric C—N=N bending; top views (c) of S, and S; PESs (isolines every 0.1 V) and energy
gap Eg, g, in the space of C—N=N and N=N—C bending angles for fixed torsional values of
180°, 120°, 102°, 94°, 82°, 60° and 10° (the diagonal connects symmetric structures). The yellow
dots label the CIs whose energy is lower than the FC point, the purple dots indicate S; minima.
For 102°, 94° and 82° torsion the NAC vector module (in atomic units) is also displayed, for the
points where Eg s < 0.3 eV. From reference[34].

relaxed S,/S; CI optimisation performed at a similar level of theory[14], that found
a planar crossing at C—N=N=N=N—C=105". Our results indicate that, after 7z
excitation, the main molecular deformations should be along symmetric bending, to
reach the planar S, minimum (S, min in Table 4.1). Symmetric bending oscillations
are likely to cause a very fast decay to S; through the close-lying S,/S; CI around
C—N=N=N=N—-C=100°, starting the dynamics on S; in a region with a steep sym-
metric bending gradient. This view is in perfect agreement with the most recent stud-
ies on the 77" state deactivation mechanism[14]. Symmetric bending is favoured on
S; also at the cis FC point, even though the wider C—N=N values of the cis isomer
reduce the excited state gradient with respect to the trans case (see Figure 4.12 (d)).

As introduced in section 4.3.1, the trans and cis Sq minima both show a symmet-
ric structure. On the ground state, desymmetrization of the two C—N=N angles is
never favoured, as testified by the diagonal position of the minima in the Sy PESs
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Figure 4.12: Initial gradients on the trans side ((a),(b)) and on the cis side* ((c),(d)) along
C—N=N—C torsion ((a),(c)) and symmetric C—N=N bending ((b),(d)). Coloured spots label
the ground state minima (red, FC points) and excited state minima relative to the represented
coordinate (blue: S;; green: S,). Excited state gradients pointing away from the FC point are
represented with coloured arrows. (* discontinuities in the PESs on the cis side are caused by
merging the two rigid scans and are smoothed by the fitting, see section 4.3.1)

of Figure 4.11 (c). In contrast, S; shows a different trend: far from twisted geome-
tries (i.e. for C=N=N—C > 106° or C—N=N—C < 82°), the desymmetrization of the
two C—N=N angles is not favoured even on the excited state. On the other hand,
for 82° <« C—N=N—C < 106° the nx" PES shows two off-diagonal minima (see Figure
4.11), even though the stabilisation brought by the asymmetric deformation is not
large (~0.2 eV lower than the closest symmetric structures). Indeed, the nz* surface
in our reduced space is extremely flat, and it is difficult to locate the absolute S; mini-
mum in the 3D grid, since for 30° < C—N=N—C < 150° all the local minima are almost
isoenergetic, or their energy difference falls below the RASPT2 error (see T102-S;
min, T94-S; min and T82-S; min structures reported in table 4.1). However, our re-
sults clearly indicate that the absolute S; minimum will have a twisted geometry, with
C—N=N-—C close to 90°, and asymmetric C—N=N angles.

Our scans allow to reconstruct the excited state MEP after nz”* excitation, which is
represented in Figure 4.13. On the trans side, starting from FC point (Eg, =2.66 eV), the
MEDP initially follows the symmetric bending gradient leading to an opening of both
C—N=N angles, then it deviates along C—N=N—C torsion. The initial gradient along
bending is due to the significant difference in the C—N=N/N=N—C values between
the FC point and the nz" minimum (see Table 4.1) and it is responsible for most of
the nz* stabilisation, while the points of the MEP that connect the planar structures
and the twisted S; minimum are almost isoenergetic. In contrast, on the cis side, the
difference in symmetric bending between the FC point and the S; minimum is small,
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Figure 4.13: Excited state MEP after nz" excitation of trans or cis-azobenzene (yellow line).
The MEP initially follows symmetric bending and torsion (left panel), then, once the twisted
region is reached, the two C—N=N angles desymmetrise (right panel). Black spots label local
and global state minima () or S,/S, CIs (®©)

and the MEP is mainly torsional and characterised by a steeper C—N=N—C gradient,
since the cis FC point (Es =3.15eV) is higher in energy compared to the trans one.

For both trans and cis, once the MEP reaches C—N=N—C = 90°, the nz* gradient leads
towards the almost isoenergetic asymmetric S; minima and S;/S; Cs.

The third row of Figure 4.11 (c) shows the S;-S energy gap. Far from 90° torsion,
the crossing seam (blue/violet region) includes only high in energy structures (~ 3 eV)
characterised by wide bending angles, with the shape of a straight line perpendicu-
lar to the diagonal (i.e. C—N=N+N=N—C constant around 300°). This is probably
because opening one of the two angles increases the repulsion with the respective
nitrogen lone pair, requiring a reduction of the other C—N=N to compensate and
preserve degeneracy. The two structures S;/Sy CI-bend1 and S;/S; CI-bend2 (Table
4.1) are sloped CIs (see Figure 4.12 (b) and (d)) and their presence had already been
reported[14, 21, 22]. S{/Sy CI-bend1 on the trans side is difficult to reach at room tem-
perature with direct nz* excitation, since it lies significantly higher in energy than the
trans FC point. Moreover, the excited state gradient points in the opposite direction.
According to reference [14], this crossing point becomes accessible via excitation to
the " state, and it is responsible for the violation of Kasha’s rule, as explained above.
In contrast, on the cis side the FC point and S;/Sy CI-bend2 are nearly isoenergetic,
but here the favourable S; gradient along C—N=N—C torsion is likely to drive most
of the molecules away from this region before S;/Sy CI-bend?2 is reached.

On the other hand, in the twisted region (82°< C—N=N—C < 102°) the crossing
seam is wider and includes only asymmetric structures, which is a common feature
of many conjugated compounds[87]. Indeed, the lowest-energy CIs of the grid are
found between 90° and 98° torsion: we find three isoenergetic crossing points around
2.2 eV, which are asymmetric and characterised by similar bending values (T98-, T94-
and T90-S1/Sy CI in Table 4.1). Although these results are coming from a rigid scan,
they perfectly match those of some fully-unconstrained CASPT2 optimisations[21,
22], both in terms of energy and geometry. It is important to stress the fact that the
surface of the nz* state in this region is so flat that the lowest points of the seam
are almost isoenergetic with the S; asymmetric minima (see Table 4.1), and the path
connecting them is practically barrierless.

To sum up, out PESs clearly indicate that the S;/S, states are crossing for an ex-
tended range of geometries, which together form a wide crossing seam. Far from
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twisted geometries (i.e. close to the trans and cis FC regions) it includes high-energy
and wide-bending geometries, which are not easily accessible after direct nz”* ex-
citation. Decay through such CIs is not likely to lead to isomerization, since the
C—N=N-—C value is always too close to that of the starting isomer, and the sym-
metric value of the two C—N=N angles prevents the inversion route as well. On the
other hand, as C—N=N—C torsion proceeds, the crossing seam lowers in energy and
shift towards asymmetric C—N=N/N=N-—C structures, which represent the most ac-
cessible and productive deactivation channels, lying more or less halfway between
trans and cis.

4.4.2 Unconstrained optimizations
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Figure 4.14: Cut through the PESs along one C—N=N angle for C—N=N—C fixed at 94° and
the other C—N=N fixed at 116°. This cut shows both T94-S; min and the lowest crossing point
T94-S,/S, CIL From reference[34]

Figure 4.14 shows a cross-section of the RASSCF, SS-RASPT2 and MS-RASPT2
potential energy surfaces at 94° torsion including the two structures T94-S; min and
T94-S1/Sy CI (see geometrical parameters and state energies in Table 4.1 and struc-
tures in Figure 4.15 (a) and (b)), which can be identified as the absolute S; minimum
and the lowest S;/Sy CI from our rigid scan, respectively. Both structures are local
minima on the excited state, separated just by a very small barrier. T94-S; min almost
corresponds to a degeneracy point at RASSCF level (AE_%/ESSECF =0.18eV) and at SS-

RASPT?2 level (AE??;E;*SPTZ =0.11 eV). However, after MS-RASPT2 correction, the two

states split (AE%??'SI;ASPTZ =0.42 eV). On the other hand, at T94-S,/S, CI, the RASSCF
states are well separated in energy, and the SS- and MS-RASPT2 results are similar,
resulting in a crossing point in both cases (AEEISLE?SPTZ = AEIS\E:%;ASPTZ =0.03eV). Itis
therefore probable that T94-S; min is an artefact of the RASPT2 correction, that suf-
fers from the heavy wavefunction mixing at RASSCF level. To assess our results, we
performed a geometry optimisation on the nz* state and a S;/S, conical intersection
optimisation, employing the same level of theory of the rigid scan for twisted ge-
ometries (MS-2-RASPT2/SA-2-RASSCF(4,9/0,0|4,7)/ ANO-L-VDZP), both without con-
straints and without symmetry. Figure 4.15 (c) and (d) show the resulting optimised
structures, while the relative energies are reported in the lower part of Table 4.1. The
two optimised structures are almost identical, showing that the fully relaxed excited
state minimum coincides with the lowest energy S;/Sy CI. Comparing this structure
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to the FC geometries, the most significant differences are found along the C—N=N—C
torsion and C—N=N/N=N—C bending values, confirming that these coordinates are
the most relevant ones both for the nz* relaxation and to reach the S;/S; crossing
seam. It is remarkable that the structure is asymmetric, and that the rigid scan pre-
dicts very well the values of the C—N=N—C dihedral and C—N=N angles. In addition,
the relative energy of the optimised CI is only 0.2 eV lower than that of the CIs from
the rigid scan, which means that other internal coordinates are only of secondary
importance.

In reference[34] we have compared our optimised CI with some literature re-
sults[21, 22] obtained at a similar level of theory (but with smaller active spaces),
whose energy was recomputed at our level of theory. Even though the scenario from
both references is in good agreement with our results, only one of the reported CIs
is a real crossing point also at our level of theory, demonstrating how strongly the
electronic structure calculations are affected by the composition of the active space.
The effect of the active space size is also visible in the absolute energy of the states
(reported in reference[34]), which are considerably different from the original values.

4.4.3 Semiclassical dynamics simulations

The accuracy of our PESs, was assessed with semiclassical dynamics simulation of
the trans — cis photoisomerization at 300 K in the subspace of the three mapped co-
ordinates. For the simulation of the non adiabatic event we computed the S;/Sy NAC
vector in the subspace of the central CNNC atoms between 82° and 102° torsion as
described in Section 4.3.1. The NAC modules for C—N=N—C = 82°, 94° and 102° are
reported in the lowest part of Figure 4.11. As expected, the largest magnitudes are
found at 94° torsion, where the two PESs are closer in energy. Moreover, the fact that
the highest NAC modules are found for asymmetric bending geometries (i.e. close to
the crossing seam) confirms the importance of desymmetrization for coupling the two
states. Figure 4.16 shows the average values of the C—N=N—C dihedral and C—N=N
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Figure 4.16: Average values of the C—N=N—C dihedral and C—N=N angles along the
bunch of trajectories (top) and S; and S, populations as a function of time (bottom). From
reference[34].

angles along the bunch of trajectories as well as the S; population as a function of
time. On average, the C—N=N—C dihedral takes about 0.4 ps to reach 90°. During
this time, we observe clear coherent oscillations (i.e. 2-3 periods) of C—N=N/N=N—-C
bending, with large amplitude. It is also worth noting that the combined effect of the
flatness of the S; PES along the C—N=N—C torsion coordinate and the initial inertia
of the system, lead the molecule to C—N=N—C values up to 40° already in this short
period of time. As soon as the trajectory approaches 90° torsion, the two C—N=N
angles desymmetrize, since the ns* PES in this region is characterised by asymmetric
minima. Furthermore, the oscillation amplitude of the C—N=N angles decreases, due
to an energy transfer from the bending to the torsional mode.

Table 4.2 shows the obtained excited state lifetime (z;,,-) and photoisomerization
quantum yield (@, _, ), compared with literature data. The obtained ®; _, . is 0.44,
which is in good agreement with the results of past simulations[2, 88]. On the other
hand, the resulting S; lifetime is almost three times larger than literature data[2, 88].
Indeed, even if the time required to reach twisted geometries is perfectly in line with
past simulations[25], the average decay time is longer, resulting a 7;,,- of 1.5 ps. This
is a consequence of two main approximations: first of all, the molecule is allowed to
decay only in the 82° < C—N=N—C < 102° window, where we have mapped the NAC.
Secondly, the PES of the excited state was calculated with a rigid scan starting from
the trans ground state minimum, thus the S;-S; energy gap is overestimated, with
the effect of reducing the hopping probability. In addition, even though the frozen
degrees of freedom are not fundamental for the description of the photoprocess, they
can act as a thermal bath, influencing the molecular motion and the atomic velocities
in a way that goes beyond the simple scaling factor that we have introduced in the
calculation of the decay probability (see Section 4.3.2).
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Table 4.2: Trans — cis photoisomerization quantum yield (®, _, .) and excited state lifetime
of the nz" state (z,,-) from our simulations and from literature data. (( = extrapolated from
ref[88]. FMS = Full Multiple Spawning; TSH = Tully Surface Hopping; MD = Molecular Dy-
namics).

<I)t —c Tnr (PS)

This work, 300 K 0.44 1.5
FMS[88], 298 K 0.46 0.4(@
TSH[88], 298 K 0.33 0.3@

MD[2], 300 K 0.52 0.4

4.4.4 Quantum dynamics: simulation of transient signals

After validation provided by comparison with fully optimised structures and semiclas-
sical dynamics[34], our model was employed for the simulation of transient diffrac-
tion and spectroscopic signals during QD (of both trans — cis and cis — trans pro-
cesses). Indeed, the produced PESs and state couplings constitute a rich and solid
database that can be employed for the simulation of several transient experiments
during the trans = cis photoswitching process, with particular interest in the non adi-
abatic event. The limited number of degrees of freedom can produce some artefacts in
the QD due to the lack of internal vibrational energy redistribution. Such effects can
be mitigated by wavepacket absorption at specific geometries (i.e. photoproduct S,
minima). This has negligible effects on the time required for the wavepacket to reach
the CI and primary photoproduct formation, as well as on the wavepacket distribution
around the CI (which determine the appearance of coherence signals). However, this
affects the population distribution in the long time range, thus impeding a one-to-one
comparison with quantum yields from other dynamics simulations.

cis— trans photoisomerization

A QD simulation of the cis — trans photoisomerization was performed in the sub-
space of the C—N=N—C dihedral and one of the two C—N=N bending angles, keep-
ing the other fixed at 116°. This choice is supported by the fact that, on the cis side,
the torsional gradient is much steeper than on the trans side, and quickly drives the
molecules away from the FC point, with much less pronounced symmetric bending
oscillations compared to trans-azobenzene photoexcitation. Indeed, the non reactive
part of the crossing seam (which is reached mainly through symmetric opening of the
two C—N=N angles) is less visited after the excitation of the cis isomer, and the final
cis — trans quantum yield is consequently higher. For this reason, a good description
of the deactivation mechanism can be achieved through the use of the C—N=N—C di-
hedral and one C—N=N angle only. The selected 2D cut of the PESs includes a good
approximation of both Sy minima, which are reproduced with slightly asymmetric
C—N=N/N=N—C angles of 116°/112° and 116°/118° (instead of symmetric 112° and
118° for trans and cis isomer, respectively). On the other hand, the lowest S;/S, CI
from the rigid scan is perfectly reproduced. The obtained 2D PESs are shown in Figure
4.17 (A). For the simulation of the non adiabatic event, the cartesian NACs calculated
in the subspace of the four central atoms were projected in the 2D subspace of the
dynamics and sign-corrected, as shown in Figure 4.18. Both NAC components show a
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Figure 4.18: NAC components along C—N=N—C torsion (left) and C—N=N bending (right)
for the 2D cut of the PESs in which one of the two angles is kept fixed at 116°

peak and a sign inversion at C—N=N—C =94°, C—-N=N=116°, N=N—C = 146°, which
corresponds to the S;/Sy CI. The same trend is also observed at C—N=N—C =94°,
C—N=N=116°, N=N—C = 132°, which is not a real crossing, but corresponds to the
S{ minimum from the rigid scan: here the two states approach due to the minimum
in the S; PES and the wavefunctions mix heavily due to the presence of a real cross-
ing at RASSCF level (see Section 4.4.2) which is not completely resolved by RASPT2,
therefore, high NAC values are expected as well.

Assuming impulsive excitation, the wave packet starts in S; at the cis geometry
(Figure 4.17A, left) and is initially localised in both nuclear degrees of freedom. Within
the first few femtoseconds, it evolves to higher C—N=N angles and starts to spread
along the C—N=N-—C torsion. Around 90 fs, it reaches the crossing region and starts
to relax to Sy(Figure 4.17 (A), middle). Around 170 fs, the first significant parts of the
wave packet have reached the trans geometry (Figure 4.17 (A), right). After reaching
the product minimum, the wave packet is artificially absorbed at C—N=N—C = + 180°,
completing the photochemical reaction. In reality, most of the nuclear wave packet
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will be trapped there by, e.g., vibrational relaxation to other modes not contained in
our Hamiltonian and that we can in this way mimic, at the price of neglecting back-
evolution to the CI. As can be seen in Figure 4.17 (B), the product yield represented
by the red line emerges slightly before 200 fs and accumulates thereafter. Some parts
of the wave packet exit the nuclear grid at C—N=N = 180° as a consequence of the
flatness of the C—N=N coordinate at rotated geometries, a process that is not further
captured by our Hamiltonian and thus acts as a loss channel (blue line in Figure 4.17
(B)).

This wavepacket dynamics, together with the electronic densities that we have
computed across the grid, were used to simulate the transient diffraction patterns
through equation (4.1), during the first 300 fs (i.e. the period of the primary CI dy-
namics) with particular interest in the coherence signal. A detailed analysis of the
results is given in reference[36]. Isolating the coherence term could provide a real
space image of Cls, and thus direct insight into the determining event of molecular
photochemistry. The simulations that we have presented in reference[36] refer to the
ideal case of an azobenzene molecule oriented as in Figure 4.19 (A) with the x axis
perpendicular to the molecular plane of the trans geometry, the y axis going through
both carbon rings (and the azo unit), and the z axis going only through one carbon
ring. For a randomly oriented molecular sample, rotational averaging of the pre-
sented data must be performed (as we subsequently did in reference[39]), that makes
the diffraction patterns look not as clean but still exhibiting the key features.

Figure 4.19 (B) shows the state and transition electron densities at a geometry that
is in the vicinity of the S;/Sy CI The state densities G,,(r) and 6.(r) look very sim-
ilar, with a total of 96 electrons contributing. The transition density G,4(r) is much
smaller, with only one electron contributing. It is mainly located around the nitrogen
atoms, reflecting the nz* character of the excitation. The difference in the number of
electrons gives one reason why elastic scattering usually dominates the inelastic con-
tributions. Furthermore, since the terms of the time dependent molecular response
(equation (4.5)) consist of products of 6(q, R) operators, this relative strength gets fur-
ther amplified. In smaller and/or lighter molecules, where fewer electrons contribute
to the elastic scattering, the relative strength of inelastic and mixed contributions will
be larger.

Figure 4.20 shows the two-dimensional diffraction patterns of the total signal in
the qy, qx;, and q,, planes, together with the diffraction patterns of pure cis and trans
geometries (i.e. without considering the nuclear wave packet) which serve as refer-
ences. The transformation from cis to trans is clearly visible going from 0 fs to 170 fs,
where significant parts of the wave packet have reached the trans product minimum.
This shows how TXRD can monitor the photoisomerization in real time.

The complete three-dimensional diffraction pattern at 170 fs is shown in in Figure
4.21, dissected into the different contributions to time-dependent molecular response
S1(q, t) (the two coherence terms presented in equation (4.5) are referred to as a unique
term (v) in Figure 4.21). The dominant term is elastic scattering from the excited state
(ii), since pe. is larger than pg, and p,, at 170 fs (see Figure 4.17 (B)). Ground state elas-
tic scattering (i) is weaker, although well visible. The relative magnitude of ground
and excited state elastic contributions in a real experiment would depend on the ex-
citation fraction (i.e. how much population is transferred from Sy to S;). The inelastic
scattering components (terms (iii) and (iv) in Figure 4.21) are around three orders
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Figure 4.19: (A) Isomerization scheme with trans (left) and cis (right) geometries. (B) Real-
space electronic densities at C—N=N—C = 92°, C—N=N/N=N—C = 116°/140°, with the ground
state (96 electrons; reft), the transition (1 electron; middle), and the excited state (96 electrons;
right) density. From reference[36].

of magnitude weaker than their elastic counterparts. This can be attributed to their
scattering from the product of two transition density operators, each being around
100 times smaller than the state densities (1 electron versus 96 electrons). Scattering
from the vibronic coherence (v) is 2000 times weaker than the total signal and equally
strong as the inelastic scattering terms. In contrast to all other terms, the coherence
scattering exhibits negative (blue) as well as positive (red) contributions and a pro-
nounced dynamic behaviour. Some two-dimensional snapshots of the coherence term
are depicted in Figure 4.22. The signal emerges at 90 fs, where a vibronic coherence
builds up due to state crossing. It is initially localised at the CI, visible through the
wave packet overlap in the two states (Figure 4.17A, middle), then it spreads along the
C—N=N angle as well. This coherence term is a unique signature of a non adiabatic
event. Ideally, one would like to isolate this feature from the total diffraction signal
to record a q-space movie of the CI dynamics. However, it is significantly weaker
and masked by the elastic scattering. The situation improves when going to higher
momentum transfer, since the transition densities 6., (involving few electrons) are
usually more confined in real space than the diagonal state densities (involving all
the electrons in the molecule, compare Figure 4.19), and thus have a wider spread in
q. However, going to these momentum transfer amplitudes requires pulse energies
between 30 and 40 keV. Currently, up to 25keV are possible using superconducting
accelerators at the European X-ray Free Electron Laser in Hamburg and the Stanford
Linear Coherent Light Source[43]. Another tool that may be used to retrieve the co-
herence term is frequency-resolved detection: by frequency-dispersing the scattered
photons, inelastic (Stokes and anti-Stokes) contributions can be measured separately
at different frequencies. On the other hand, the coherence term can only be recorded
by detecting both photons with a broadband detector, as discussed in section 4.2. Sep-
aration of the coherence term could be achieved by measuring the total signal with
a broadband detector and subsequently subtracting the purely elastic and purely in-
elastic events measured in a separate experiment with a frequency-resolved detection
(although frequency-resolved measurement to single out the coherence term can be
more easily performed in the two-molecule diffraction signal, which is not the case
of our simulations). Other possibilities entail stochastic covariance-based measure-
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Figure 4.20: Two-dimensional diffraction patterns of the total signal in the q,,, q,,, and q,,
planes, while integrating over the respective other direction. The molecular axes are defined
in Figure 4.19. (A) Scattering from the pure cis (top) and trans (bottom) geometry (as a refer-
ence). (B) Diffraction patterns at 0, 130, and 170 fs during the dynamics. The complete movie is
provided as electronic supplement to reference[36].

ments[89, 90] or using entangled photons[91]. In reference[38] the use of covariance
X-ray diffraction signals was simulated for powder diffraction off randomly oriented
nanocrystals of azobenzene employing data from this cis — trans simulation, and us-
ing covariance-based analysis to recover the joint spectral and temporal resolutions
needed for CI detection and hidden by the stochasticity of the pulses.

Our ultimate goal is to record movies of CI dynamics in real space. As mentioned
above, the inverse Fourier transform of the diffraction image does not yield the real-
space image. It yields the Patterson function[92], which shows correlations between
atomic positions or interatomic distances rather than the full real-space molecular
geometry. Additionally, for a correct inversion of the diffraction pattern, the phases of
the photons that are lost upon measurement need to be recovered[73]. Nevertheless,
we can perform a naive inverse Fourier transform of the coherence term and compare
it to the real-space image that we have access to through simulations (although not
experimentally observable and not given by the Patterson function). This is shown
in Figure 4.23 (b) together with the coherence term (a) and the real-space picture of
the transition density (c-f), which we have calculated by (y.(t)] G4¢(r, R) [y (2)), ie.
the expectation value of the real-space transition density across the nuclear space.
The temporal oscillation pattern is preserved after the Fourier transform. This is also
visible in the complete three-dimensional snapshots of {y.(t)| G4.(r,R) |xg(#)> on the
right of Figure 4.23. Thus, by imaging the diffraction pattern of the vibronic coherence,
fundamental information about the CI itself can be retrieved.

The direct imaging of the charge density at CI by isolating the coherence term in
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Figure 4.21: Contributions to the complete q-space X-ray diffraction pattern at 170fs. (i)
elastic scattering from S,; (ii) elastic scattering from S;; (iii) inelastic scattering from S, scaled
by a factor of 6000; (iv) inelastic scattering from S, scaled by a factor of 2000; (v) mixed elas-
tic/inelastic scattering from vibronic coherences, scaled by a factor of 2000. In contrast to the
other terms, positive (red) and negative (blue) contributions are present. Bottom right: total
signal. The complete movie is provided as electronic supplement to reference[36].

diffraction patterns is an intriguing possibility. Unfortunately, as showed above, this
contribution is difficult to obtain experimentally, and the coherence signal is typically
buried under stronger elastic contributions. In reference[39] we show that it would
be possible to significantly enhance the coherence signal when an infrared (IR) laser
field resonant with the electronic transition in the CI region is employed. By slightly
shifting around populations between the excited states the coherence is significantly
enhanced, while leaving the natural photochemistry virtually intact (i.e. noninvasive
amplification). The optimal pulse for coherence signal amplification was found em-
ploying optimal control theory (OCT)[93, 94], in which laser pulses are shaped to
prepare a targeted quantum state at a desired time.

A simulation of the cis — trans photoisomerization in the same two-dimensional
nuclear subspace was performed, initially placing the wavepacket in the cis minimum
of Sy. Upon electronic excitation by a pump optical pulse, the wavepacket is mostly
located in Sy, thanks to a nonvanishing transition dipole moment between the two
states. As in the previous case, X-ray diffraction signals were simulated along the
dynamics, this time employing an additional IR field at the same time delay as the
X-ray probe pulse. The IR pulse amplifies the signals differentially by introducing a
resonance at the small energy gap in the vicinity of the CI. Small amounts of popu-
lation in this region are shifted around between the two electronic states, enhancing
the wavepacket overlap and thus the coherence. In our simulations, the IR field is in-
cluded in the propagation of y(t), and thus the signal expression remains the same of
equation (4.5). In principles, there are three groups of signals that can potentially be
maximised at desired times by application of OCT. The first is related to the ground-
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Figure 4.22: Two-dimensional diffraction patterns of the coherence contribution in the q,,,
q,.» and q,, planes, while integrating over the respective other direction. The complete movie
is provided as electronic supplement to reference[36].

state population and is trivially enhanced by removing the optical pump ¢, leaving
azobenzene in the electronic ground state. The second group is associated with the
excited-state population. Amplification of this signal means shaping ¢, to achieve
maximum population transfer from Sy to Sy, potentially enabling direct excited-state
structure determination. The third group is the most interesting and involves the co-
herences. For the latter, the OCT optimisation algorithm converges to an additional
field directly centred around 105 fs with an almost Gaussian envelope and a frequency
range in the IR regime. The effect is shown in Figure 4.24: the almost vanishing co-
herence p,g at 105 fs without the IR field is greatly enhanced. Importantly, as can be
seen from the population dynamics (and especially the product yield) in 4.24 (B), the
photochemical reaction remains intact. This ensures that the photochemical process
is observed in its natural form, without modifying it during the observation. The re-
quired IR field is smooth, meaning that the proposed scheme is thus readily feasible
and does not require an elaborate pulse shaping. The effect of IR amplification on the
diffraction signal is quantitatively appreciable: being well below 107> in the absence
of the IR field, and thus much weaker than other contributions and probably not de-
tectable, the coherence term is amplified by at least 1 order of magnitude when the IR
field is employed, reaching 1% relative strength at high q and precisely at the time of
the CI passage.
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Figure 4.23: (a) Mixed elastic/inelastic scattering from the vibronic coherence along q; (b)
absolute value of the inverse Fourier transform of (a); (c) real-space picture of the transition
density {x,(t)| G,.(r,R) |x,(t)) along the y molecular axis, integrated over the nuclear space R;
(d-f) snapshots of the real space transition density at 155, 195, and 220 fs. The complete movie
is provided as electronic supplement to reference[36].
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trans— cis photoisomerization

For the QD simulation of the trans — cis photoisomerization, we have used a different
bidimensional cut of our PESs compared to the previous case. It spans the C—N=N—C
dihedral and symmetric C—N=N/N=N—C bending. Indeed, in contrast with the cis
case, the torsional gradient in the trans FC region is less steep, and our PESs, as well
as many semiclassical dynamics simulations[2, 14, 34, 35, 88], clearly indicate that
the molecule experiences wide symmetric bending oscillations, before momentum is
transferred to the torsional coordinate. These oscillations allow to reach the higher-
energy part of the S;/S crossing seam, which is characterised by wide symmetric
C—N=N/N=N-C angles and planar (or only slightly rotated) structures. Deactiva-
tion through this CIs (which was much less important starting the isomerization on
the cis side) is responsible for the lower quantum yield of the trans — cis process,
since the S; — S, decay takes place too early along the torsion coordinate, leading
back to the trans photoreactant. The bidimensional Sy and S; PESs are shown in the
left part of Figure 4.25, with the productive and unproductive paths drown as magenta
and black arrows, respectively. The selected 2D subspace includes the trans and cis Sy
minima, while it misses an accurate representation of the lowest energy CIs, which
are reached through desymmetrization of the C—N=N/N=N-—C angles, as shown in
sections 4.4.1 and 4.4.2. Still, the two states come very close around 100°-95° torsion, in
an avoided crossing region that exhibits high NAC values, allowing for S; — S decay,
even though less efficient than that through a real crossing. Therefore, this subspace
represents a good compromise between the necessity to reproduce both deactivation
pathways (productive torsional-driven and unproductive symmetric bending-driven)
while being able to reproduce transient X-ray signals, whose computational cost does
not allow to use more than two coordinates.

The S;/Sg NACs were mapped between C—N=N—C = 80° and 110° and symmetric
C—N=N bending from 126° to 156° directly in internal coordinates (as described in sec-
tion 3.4.1). Instead, for the higher part of the crossing seam (i.e. from C—N=N—-C = 180°
up to 110°), the calculated profile at C—N=N—C = 180° (Figure 4.26) was replicated un-
til C—-N=N—C =110°, shifting the NAC peak to match the CI at each torsional value.
This choice is justified by the fact that all these CIs do not show wavefunction mixing
close to them, but rather a clean swap of the state nature is observed between adjacent
points. As a consequence, the sharply peaked NAC profile shown in Figure 4.26 can
be applied in all cases, saving computational time. A complete map of the NACs is
shown in the right part of Figure 4.25.

We have simulated the trans — cis photoisomerization triggered by classical two-
photon absorption (CTPA) and entangled two-photon absorption (ETPA). CTPA is
a nonlinear process in which two photons are absorbed simultaneously by the same
molecule, and involves a “virtual state” with energy corresponding roughly to the half
of the energy of the final allowed state. The simultaneous nature of CTPA implies that
this process depends quadratically on the light intensity, and is related to the proba-
bility that two photons are localised in the same restricted space at the same time. In
practice, this phenomenon is only commonly observed at the very high photon flux
in the focus of a laser beam, allowing for high spatial resolution of the excitation[95].
The use of IR-NIR light makes TPA well suited for biological applications, as tissues are
relatively transparent at such wavelengths. Moreover, in centrosymmetric molecules
(like trans-azobenzene) one- and two-photon allowed transitions are mutually exclu-
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Figure 4.25: Left: S; (top) and S, (bottom) PESs in the two-dimensional nuclear space used
for the trans — cis QD simulation. The trans minimum is marked with a black cross. The
reactive pathway is marked in magenta: (1) breaking the molecular plane and wave packet
evolution to the reactive crossing region and (2) continuing the C—N=N—C torsional motion
after relaxation to S, thus completing the photochemical reaction. The nonreactive pathway
is marked in black: (1) keeping the planar symmetry and relaxing via the nonreactive CIs and
(2) evolving back to the trans minimum in S,. Right: S;/S; NAC components along the two
selected coordinates (g, = torsion; g, = symmetric bending). From reference[37].

sive, therefore the optically dark nz™ excitation is much more efficient through TPA,
as demonstrated repeatedly in experiments[96-98].

In ETPA, quantum light (i.e. with entangled photons, created by e.g. parametric
down conversion[99] or biexciton decay[100, 101]) is used as incident beam. A clear
signature of entanglement is that, at low photon fluxes, ETPA scales linearly rather
than quadratically with the pump intensity[102, 103], indicating that the two photons
effectively act as a single particle. Entanglement of the incident photons can lead to
quantum pathway selection: in resonant processes, the matter actively participates
and gets entangled with the photons, making it possible to control the pathway of
matter by varying the degree of entanglement, thereby improving the resolution of
nonlinear spectroscopic techniques[104].

ETPA excitation is schematised in Figure 4.27: a pump pulse creates an entangled
photon pair, known as signal and idler, through interaction with a second-order non-
linear crystal. The photon pair then brings the azobenzene molecule to the nz" state
by two-photon absorption, launching the photoisomerization process. The effects of
quantum light were studied varying the entanglement time T,, which defines the dif-
ference between the arrival times of the signal and idler photons. The entangled light
excitation process was simulated using the protocol detailed in reference[105]. The
initial quantum light excitation process is relatively short (tens of fs) compared with
the isomerization dynamics (1 ps) so that they can be separately considered.

For the CTPA simulation, two uncorrelated classical Gaussian laser pulses with
bandwidth resembling the signal and idler photons for a given joint spectral amplitude
were used. Such pulses exhibit a power spectrum resembling the quantum light and
allow for comparison with ETPA simulations and assessment of the entanglement
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absorption. The combined energy of the two photons matches the S, — S, transition at the
trans geometry. From reference[37].

signal

effects.

Figure 4.28 shows the nuclear wave packets on the S; surface excited by an en-
tangled photon pair with different entanglement times. The variation of the nuclear
wave packet shape over T, is periodic with period ~ 3 fs, and the wave packets excited
by entangled photons with T, =3 and 6 fs are more delocalised compared to T, =1 or
4fs. This is due to the fact that the expression for the transition amplitude between
vibronic states when using entangled photons strongly depends on T, (see details in
reference[37]), which then results in a dependence of the created nuclear wave packet
on the entanglement time. In contrast, no variation is observed in the wavepackets
created by CTPA, which all resemble the T, = 1fs snapshot in Figure 4.28 (see refer-
ence[37] for a complete comparison and discussion of all wavepackets).

Figure 4.29 shows the wavepacket evolution upon excitation with two non entan-
gled NIR photons. Within 20 fs, the wave packet starts to evolve to higher C—N=N
values while retaining the planar symmetry; at 68 fs, it has bounced back to the FC,
while small parts have relaxed to Sy through the non productive CI seam. During
the second symmetric bending oscillation, the planar symmetry starts to break, and
the wave packet spreads along C—N=N—C as well. This is already visible at 117 fs
and becomes more pronounced at 165 fs (Figure 4.29 top-right and bottom-left panels).
Already at 165 fs, considerable parts of the wave packet have reached the productive
part of the CI seam at rotated geometries, and start to relax to Sy. At later times,
the wave packet broadly spreads along C—N=N—C in S;. On the other hand, on S,
major parts of the wave packet have reached the cis minimum, thus completing the
photoisomerization. Once this minimum is reached, the nuclear wave packet was
absorbed with a Butterworth filter operation[106]. In reality, vibrational relaxation
to other modes will redistribute the kinetic energy, thus preventing major parts of
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Figure 4.28: Entangled two-photon excited nuclear wave packets in the S, surface at t =20fs
varying the entanglement time T, as indicated. From reference[37].

the wave packet from continuing along the dihedral bending and crossing the 2 eV
barrier in the ground state back to the trans minimum or even evolving back to S;
through the CIs. This vibrational relaxation is not captured by our two-dimensional
Hamiltonian, and absorbing the wave packet in the product minimum prevents these
artefacts. After 900fs, the product yield amounts to 44%, with 13% population still
remaining in S; and 7% in Sy. The rest of the wavepacket exits the numerical grid in
the symmetric bending direction, as a consequence of the lack of momentum trans-
fer to other modes, that would dampen this wide oscillations. The ETPA simulations
look similar to CTPA in terms of wavepacket motions in the 2D subspace, but with a
different relative weight of the quantum pathways, as expected because of the differ-
ence in the initial wavepackets varying T,. In contrast to their classical counterparts,
which do not show any significant T, dependance, the entanglement time does affect
the isomerization yield, varying from 47% for T, =3fs to 41% for T,=9fs. Photon
entanglement is thus able to add a control knob for photochemistry not available by
classical light sources.

The comparison of the state populations upon variation of T, gives insight into
the influence of the photon entanglement on the process kinetics. In order to inves-
tigate deeper the entanglement effect, we evaluated its influence on the transition
state of the photochemistry, i.e. the conical intersection. For this we have computed
the TRUECARS signal (transient redistribution of ultrafast electronic coherence in at-
tosecond Raman signals), which probes the vibronic coherences exactly around the
CI[107, 108]. It is a spectroscopic technique that gives information about the energies
of the states in the vibronic coherence associated with the CI. In TRUECARS, a broad-
band (500 as) and narrowband (3 fs) X-ray pulses induce an off-resonant stimulated
Raman process between two electronic states, and the signal is given by the time-
integrated rate of change of photon numbers in the broadband pulse field. TRUE-
CARS is a sensitive probe of CIs as its signal only exists if there is an electronic co-
herence. Figure 4.30 shows the TRUECARS signals and frequency-resolved optical
gating (FROG) spectrogram (which allows to retrieve the precise pulse intensity and
phase vs. time) obtained in CTPA and ETPA simulations with T, =1 and 3fs. In all
cases, the coherence signal is non vanishing already at 20 fs, as tails of the wave packet
have already reached the planar CIs through symmetric bending. It gets stronger dur-
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Figure 4.29: Snapshots of the nuclear wavepacket evolution on the S; (top of each panel) and
So (bottom of each panel) PESs after classical two-photon absorption (starting wave packet at
20fs is created by a classical pulse whose bandwidth mimics an entanglement time T, = 1fs).
From reference[37].

ing the dynamics, when the reactive CI is reached by other parts of the wave packet
and persists throughout the propagation. In the dynamics started by CTPA, neither
the kinetics or product yield, nor the coherence structure associated with the CI is
changing. In contrast, for wavepackets prepared by ETPA, the photon entanglement
effect is visible in both TRUECARS signal and spectrogram. This is illustrated in Fig-
ure 4.30, where the spectrograms for ETPA with T, = 1{s and T, = 3 fs are significantly
different. The vibronic coherence around the CI, and thus the transition state of the
isomerization, is thus strongly modulated by quantum light.
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Figure 4.30: Photoisomerization dynamics following CTPA (top panels) and ETPA (bottom
panels) for starting wave packets corresponding to T, =1 and 3fs. For each panel, top shows
population dynamics with the ground and exited state populations as well as product yield
and the cumulative amount of population that has been absorbed at the symmetric bending
grid borders; middle shows TRUECARS signal; bottom shows spectrogram of the TRUECARS
signal, revealing the vibronic coherence distribution. From reference[37].

4.5 Push-pull azobenzene derivatives

Among the fields of application azobenzene and its derivatives, photobiology and pho-
topharmacology have attracted much interest in recent years[97, 98, 109-113]. The
incorporation of photoswitchable compounds in the membrane proteins of cells or in
drugs allows for optical remote control of, e.g., cell receptors and channels[97, 114],
cancer chemotherapy[115, 116], neurology[117] and antibiotic treatments[118].
Already in the late 1960s, azobenzene was applied to the photocontrol of enzymes
and ion channels[119, 120]. Targeted protein modification with azobenzenes has now
led to many more in-vivo applications[97, 109]. The main advantages of this simple
photoswitch are the large change in geometry and dipole moment upon photoiso-
merization. Traditionally, trans — cis conversion is achieved with UV-light irradia-
tion, whereas the reverse cis — trans process can occur via either thermal relaxation
or visible-light irradiation. For applications in vivo, however, photoswitching in the
Vis-NIR window is desirable to enable effective tissue penetration without the need
for fiber optics. By contrast, UV light can damage cells, it is nonselectively absorbed
by many chromophores, and is quickly attenuated in tissues. Even though progresses
were made thanks to two-photon absorption[121, 122] and upconverting nanopar-
ticles[123], there are still practical and technological limitations for these strategies,
that make it desirable to find photoswitches that undergo single photon isomerization
with Vis-NIR light under physiological conditions (i.e. in aqueous solutions at neutral
pH). To this aim, a way to lower the gap and therefore red-shift the absorption peaks
of azobenzene is to introduce electron-donating and/or electron-withdrawing groups
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in ortho or para position with respect to the N=N, in order to tune the HOMO-LUMO
gap. One of the most important classes of azobenzene derivatives is represented by the
so-called push-pull azobenzenes (Figure 4.31), in which one ring is functionalised with
an electron-donating substituent, while the other one bears an electron-withdrawing
group. In such compounds, the simultaneous destabilisation of the last occupied 7 or-
bital (HOMO) by the electron-donor substituent, and stabilisation of the z* (LUMO)
by the electron-withdrawing substituent, results in a red-shift of the zz* absorption
in the 400-600 nm region[85, 124-130].

Figure 4.31: Schematic representation of a general push-pull azobenzene

The presence of the substituents polarises the molecule, causing solvatochromism,
and concomitantly destabilises the cis isomer, resulting in faster thermal relaxation
rates[130]. These two effects, which accompany the red-shift of the zz* band, be-
come more pronounced with the strength of the donor/acceptor substituents, there-
fore, Push-pull azobenzene derivatives belong to the class of T-type switches[110], for
which one isomer is thermally unstable and typically reverts to the thermodynami-
cally stable form within milliseconds to few minutes. Although this type of compound
is usually not addressable in both directions with light, the high rate of thermal back-
isomerization allows reversion of the switch by simply stopping the irradiation.

In a work published in reference[41], we have demonstrated how push-pull sub-
stitution can induce spectral tuning towards the visible range but also improve the
photoisomerization efficiency of azobenzene-based photoswitches. We have com-
pared the behaviour of parent azobenzene (from here on, AB) with two different push-
pull substituted systems with increasing electron-donating/withdrawing strength: 4-
methoxy-4’-cyanoazobenzene (NC-AB-OMe) and 4-(4-Nitrophenylazo)aniline (O,N-
AB-NH,, also known as Disperse Orange 3 or DO3), which are depicted in Figure
4.32. The comparison is made by means of time-dependent density functional theory
(TD-DFT) semiclassical dynamics simulations (RASPT2-validated at crossing points)
accounting for multireference dynamically correlated energies.

Although being only a preliminary study, our results already allow to identify the
control knobs of productive (i.e. photoisomerization) vs non-productive (i.e. aborted
photoisomerization) radiationless decays, thus paving the way to a rational design of
AB derivatives with tuneable spectral properties and increased photoisomerization
efficiency.

45.1 Computational details

For each of the three considered systems, we generated 40 trans and 40 cis initial con-
ditions sampling from a Wigner distribution at 300 K using gas-phase B3LYP/6-31G*
normal modes and frequencies (obtained at the corresponding trans and cis ground
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Figure 4.32: Selected AB-systems (bottom) considering an ensemble of 8 push-pull deriva-
tives: correlation between strength of push-pull substituents and the lowest nz*/zz" vertical
excitation energies (yellow/blue lines respectively). From reference[41].

state equilibrium structures) through an interface with a stand-alone script part of
the quantum MD program JADE[131]. High frequency modes (> 2000 cm™!, i.e. C—H
stretching) were excluded from the sampling. For each frame, we ran semiclassical
dynamics in vacuum starting from the lowest 7" bright state (usually S,) propagat-
ing the nuclei classically for 1500 fs on the TD-DFT/CAM-B3LYP/6-31G* PESs, using a
timestep of 1fs. Non adiabatic events were treated with a simplified hopping scheme
based on the energy gap, changing the electronic state anytime it was lower than
3 kcal/mol. Back hopping was always allowed between excites states (ESs), while it
was not permitted after decay to the ground state (GS). For the trans-AB parent sys-
tem, we run 40 additional dynamics simulations from the nx* state (S;), using the
same starting frames as for the 77" dynamics, in order to see the possible differences
in the photoisomerization mechanism.

As an assessment of the TD-DFT results, we performed CAM-B3LYP/6-31G*/TD-
DFT and SS-8-RASPT2/SA-8-RASSCF/ANO-L-VDZP single point calculations at each
GS minimum and at the S;/Sy decay points of the trans — cis 0 K TD-DFT dynamics
simulations (i.e. started at the GS minimum without initial velocity) initiated in the
i state. The RASPT2/RASSCF/ANO-L-VDZP protocol was already validated in our
previous work on azobenzene[34], and served here as reference. Different active space
dimensions were employed for the three systems: the (RAS1|RAS2|RAS3) structure
was (4,9|0,0/4,7) for trans- and cis-AB, (2,9]10,8|2,6) for trans-NC-AB-OMe, (2,6/10,9|2,4)
for cis-NC-AB-OMe, (2,910,6|2,5) for trans-O,N-AB-NH, and (2,9]10,7|2,4) for cis-O,N-
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Figure 4.33: Active space orbitals for trans-O,N-AB-NH,. Corresponding orbitals were used
for the cis isomer, changing the (RAS1/RAS2|RAS3) distribution as indicated in the text.

AB-NH, . The differences in the number of active space orbitals and/or orbital dis-
tribution between the corresponding trans and cis isomers are due to the high com-
putational cost of the RASPT2/RASSCF calculations for the push-pull systems, that
made sometimes necessary to exclude some low-contributing orbitals and/or change
the distribution between RAS subspaces. The RASSCF active space orbitals for the
parent system are those depicted in Figures 4.7 and 4.8, while those of the trans-push-
pull systems are shown in Figures 4.33 and 4.34. The quantitative accuracy of the
employed method is supported by the good agreement between the experimental and
computed vertical energies (reported in Tables 4.3 and 4.5). This also validates the
prediction for the absorption values (77" and ns*) which are not available in the lit-
erature, in particular for the push-pull cis-conformers, which are thermally unstable
and, therefore, difficult to isolate and characterise. Validation of the decay points was
necessary because TD-DFT fails to produce correctly-shaped PESs in the region sur-
rounding intersections between ESs and the GS. The good matching between the high
level multi reference RASPT2 method and the single reference TD-DFT (Table 4.3) en-
forces the reliability of the latter method. Nevertheless, we limited the analysis to the
ES dynamics until the S; — Sy decay, since the fate of the trajectory on the ground
state could not be reliably predicted.

All the dynamics simulations and the TD-DFT calculations were performed using
the suite COBRAMM][77-79] interfaced with the software GAUSSIAN([132] for the
energy calculations, while the RASSCF/RASPT2 calculations were performed using
the OpenMolcas[133] quantum chemistry program.
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Figure 4.34: Active space orbitals for trans-NC-AB-OMe. Corresponding orbitals were used
for the cis isomer, excluding those marked with an asterisk and changing the (RAS1|RAS2[RAS3)
distribution as indicated in the text.

452 Results and discussion

The NC-AB-OMe and O,N-AB-NH, derivatives were selected after a preliminary study
(at the CAM-B3LYP/6-31G" level) of eight systems with increasing push-pull strength:
Figure 4.32 shows how the substituents stabilise the 7" state, leaving roughly un-
changed the dark nz". Increasing the push-pull strength reduces the #z*-nz" gap,
until inversion of the energy order. Due to their small size, the selected systems are
good candidates to make accurate predictions about AB-push-pull derivatives. The
push-pull character is higher for O,N-AB-NH,, due to the stronger electron donat-
ing/withdrawing substituents, compared to NC-AB-OMe (see Figure 4.32).

Increasing the strength of the push-pull substituents also affects the charge distri-
bution on the two phenyl rings and, consequently, the molecular dipole moment. The
calculated ground state dipole moments are 0.074/0.071 D and 0.115/0.106 D trans/cis
NC-AB-OMe and O,N-AB-NH,, respectively. The charge separation is even more
pronounced on the 77" state, resulting in 0.162/0.247 D and 0.241/0.327 D dipole mo-
ments for trans/cis NC-AB-OMe and O,N-AB-NH,, respectively (the complete charge
distributions are reported in the supporting information of reference[41]). The larger
dipole moment of the cis conformers could be referred to the non-planar geometry
that hinders the orbital delocalisation, leading to a larger charge separation between
the two halves.

Our results show that the push-pull derivatives behave dynamically different, com-
pared to the parent system, when they are excited to the bright #z" state. Because
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Figure 4.35: Normalised distribution of the C—N=N—C torsional value and widest C—N=N
bending value over time for the trans- (top) and cis-AB (bottom) dynamics (40 trajectories for
each panel) on S, (left panels) and on S; (right panels) until decay to S,. The colour scale refers
to the normalised density of trajectories. Vertical dashed lines: excited state lifetimes averaged
over all trajectories (black) and over torsional (red) or bending paths (green). Horizontal dotted
lines: FC value of the relative coordinate. Push-pull systems show similar oscillations, although
with different timescales dictated by the different lifetimes (see reference[41]).

photoexcited trans and cis isomers lead to quite different paths, they are analysed
separately.

Trans-AB derivatives

Table 4.3 shows the vertical excitation energies for the trans-systems at the FC points
and at the S;/S, decay point of the 0 K TD-DFT nz* dynamics simulations, while the
data from the dynamics simulations are shown in Figure 4.35 and Table 4.4. In the
three trans-systems, during the initial dynamics leading to the S, — S; decay, the
C—N=N—C dihedral remains close to 180°, while both C—N=N bending angles close
and then oscillate around a value that is a bit smaller than in the FC geometry (see
Figure 4.35), in agreement with recent AB 77" dynamics[14]. The most significant
effect of push-pull substitution is a drastically shorter zz" lifetime with respect to
the parent compound, where S, is living two times longer than in the substituted
trans-systems (168 fs for AB against 70 and 86 fs for NC-AB-OMe and O,N-AB-NH,,
respectively, see Table 4.4).

On the other hand, in the subsequent dynamics on the nz* state, momentum is
transferred to the torsional motion, which is accompanied by wide bending oscilla-
tions, which are clearly visible in Figure 4.35. The resulting S; — S hopping geome-
tries includes planar to fully rotated C—N=N—C values. This is in agreement with
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Table 4.3: Trans-systems: gas-phase vertical excitation energies at the S, minimum (exper-
imental, TD-DFT and RASPT2/RASSCF) and at the S,/S, decay point of the 0K TD-DFT nx*
dynamics simulations. (a) in 2-methyltetrahydrofuran at 77 K.

Sy trans-min Sy/S; decay
Exp. value TD-DFT RASPT2 TD-DFT  RASPT2

(nm) (evV) (am) (eV) (am) (eV) (eV) (eV)

So - 0.00 - 0.00 - 0.00 3.17 3.74

AB Sy 440[134] 2.82 456 2.72 478 2.59 3.25 3.80
S, 301[134] 4.12 304 4.08 322 3.85 - -

So - 0.00 - 0.00 - 0.00 2.78 3.24

NC-AB-OMe Si 460(a)[135] 2.70 459 2.70 509 2.44 2.90 3.29
S, 380(9[135] 326 338 367 343  3.62 - -

Sy - 0.00 - 0.00 - 0.00 2.72 3.20

O,N-AB-NH, S, 442[136] 2.81 4.60 2.70 453 2.74 2.78 3.31

S,  353[136] 351 359 346 414 299 - -

the shape and extension of the S;/S crossing seam that we have documented in refer-
ence[34], covering both bending and torsional modes, where the fully (~ 90°) rotated
structures are the lowest in energy, but also higher-energy, less rotated structures
could be accessible through the bending mode, provided that enough kinetic energy
is available in the dynamics. Based on the characteristics of the S;/S; seam, we have
grouped the trajectories in two different sets, labelled “torsional” and “bending” paths,
based on the C—N=N—C torsional value at the S;/Sy hop: the former group includes
trajectories decaying on Sy at C—N=N—C < 135° (half between 180° and 90°), while
the latter includes trajectories which, to a great extent, preserve the planarity of AB
until decaying to Sy (C—N=N—C > 135°). Most trajectories for all the three trans-
systems follow the bending path (82.5/65/65% for AB/NC-AB-OMe/O,N-AB-NH, re-
spectively, see Table 4.4), but none of them reaches bending values ascribable to an
inversion-driven isomerization process. Moreover, the bending motions are mainly
symmetric, and even a hypothetical concerted bending mechanism would lead back to
the reagent. Consequently, on the basis of the large number of dynamics, we conclude
that the only productive process follows the torsion mechanism in all the considered
AB derivatives. However, since our analysis is limited to the excited state dynamics
until decay to the ground state, the number of torsional paths populated for each sys-
tem is only an upper bound estimate of the 77" quantum yields: we obtained 17.5%,
35% and 35% for trans-AB, NC-AB-OMe and O,N-AB-NH,, respectively, envisaging a
larger quantum yield in the push-pull systems than in the parent AB (see Table 4.4).
The correlation between the number of “torsional” trajectories and the quantum yield
is further supported by the results of our nz* trans-AB dynamics: for this state, previ-
ous semiclassical dynamics by Granucci and Persico[35] employing a semiempirical
Hamiltonian reported values for the quantum yields of 15% and 33% starting from the
" and nr* state, respectively, which is perfectly in line with the amount of tor-
sional trajectories obtained in each case from our simulations (17.5% and 32.4%, see
Table 4.4). Remarkably, the ratio between the torsional paths populated when initi-
ating the dynamics either in the 77" or in the nz* state (17.5/32.4 = 0.5) well matches
the experimental 7" and nx” yield ratio (11/25 = 0.44 in n-hexane[15]).
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Table 4.4: Trans-systems dynamics. Relative amount, average excited state lifetime 7 and
geometrical parameters of the decay geometries (torsional path: CNNC < 135°, bending path:
135° < CNNC < 180° at the S; — S, decay). The average values refer to the set of trajectories
belonging to the torsional or bending path.

Relative Ts, 75,48, S, — S; hop S; — Sy hop
amount (%) (fs) (fs) CNNC()  CNN-NNC()  CNNC()  CNN-NNC ()
AB tors. path 17.5 235 323 173 108-105 126 145-141
from nx* bend. path 82.5 153 211 175 108-104 157 149-142
all 168 231 175 108-105 140 151-142
AB tors. path 324 - 270 - - 119 139-134
from nz* bend path 67.6 - 62 - - 156 147-141
all - 130 - - 144 144-139
noapome VR 0 & am we o e
all 70 225 177 111-107 147 143-137
ONABN, o G0 s a0 A tons s st
all 86 227 173 113-110 145 142-136
Experiment[32] 170 420

Figure 4.36 shows the S5/S; (red) and the S;/S; (dark blue) hopping points distri-
bution, along the bending/torsional coordinates, for the mz* trajectories of the three
different systems. Interestingly, for the push-pull systems, the distribution obtained
starting from the bright 77" resembles that of trans-AB starting from the nz* state
(light blue points in Figure 4.36 panel (a)), for which a larger isomerization productiv-
ity is experimentally documented. This further suggests that the push-pull derivatives
excited to 777" behave exactly as the nz" of AB, envisaging a higher photoisomeriza-
tion efficiency. In contrast, the S;/Sy decay points for trans-AB when excited to S,
are mostly concentrated in the bending region, and the productive torsional path is
much less populated. It is thus apparent that, by calibrating the strength of push-pull
substituents, one could red-shift the absorption maximum of the bright 77" state and
concurrently increase the photoisomerization efficiency, two main achievements in
the design of photoactive AB-based systems.

Concerning the lifetimes, we see a nice agreement with the experiments: time-
resolved photoelectron spectroscopy[32] yields two decay time constants for trans-
AB: the shorter one (170 fs) is perfectly matching our trans-AB S;/S, average decay
time value of 168 fs; the longer one (420 fs) is close to the computed S, + S average de-
cay time of 323 fs of the slower torsional paths (see Table Table 4.4). Even though the
original work documented in reference[32] attributed the longer experimental life-
time to two higher-lying mn* states (S3-Sy), the low oscillator strength reported for
them in the literature[22, 32] suggests that population of S, is by far more probable,
and that the 420 fs time constant could instead be associated to the S, + S; deactiva-
tion following the C—N=N—C torsional motion towards the twisted S;/Sy Cls. This
hypothesis was already proposed by Granucci et al.[35], and it is also supported by
following theoretical[2, 88, 137] and experimental[30] works reporting a S; lifetime
of about 0.4 ps. The shorter zz* lifetime in push-pull systems is accompanied by a
longer nx”* lifetime after S, — S; decay, whose values (155fs, 141fs and 63 fs for
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Figure 4.36: Projection of all the decay geometries in the torsion/bending space for the trans
(left) and cis (right) dynamics. Red points = S,/S,, blue points = S, /S, hopping points distribution
populated along the zz" (S,) dynamics of the three systems. Light blue points in panel (a),
correspond to S,/S, hopping points populated by the 40 trajectories starting from the trans-AB
nr” (S,) state. The vertical line in each panel defines the torsional and the bending regions (i.e.
half way between 180° and 90° for the trans isomers and between 0° and 90° for the cis). From
reference[41].

NC-AB-OMe, O,N-AB-NH, and AB, respectively) are close to that of the nz" state of
the parent AB when it is directly excited (130 fs), once again showing the similarity
between the dynamics of the 77" state of the push-pull and the nz* state of AB. In
the parent compound, the S; average lifetime for the torsional paths is about three
times longer than in the bending paths, due to the longer time required by internal
vibrational energy redistribution from the bending to the torsional mode. This is in
line with the recently published AB 77" CASPT2 dynamics[14] indicating that the
productive C—N=N—C torsional mechanism is slower than the unproductive route
characterised by symmetric bending modes.

To explain the opposite trend in the S, and S; lifetimes observed in push-pull
ABs as compared to the parent compound, we proposed a simple model, which ratio-
nalises entirely the observed differences. Because the push-pull substituents stabilise
the bright state, while keeping the nz* energy unaffected, we imagine a simple shift
of the 7" PES, as shown in Figure 4.37. By lowering the mx* state, the crossing
with nz* becomes more accessible (i.e. lower activation energy), thus leading to the
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Figure 4.37: Push-pull substitution effect. From reference[41].

a shorter S, lifetime for the push-pull derivatives. Additionally, less energy becomes
available along the initially populated bending modes after S, — S; decay to access
the higher part of the S;/S, crossing region at planar structures (C—N=N—C ~ 180°).
Eventually, vibrational energy redistribution takes place, triggering population of the
nz* (torsional) minimum energy path and initiating the slower, but more productive,
torsional motion leading to rotated S;/S, CI structures.

Cis-AB derivatives

The effect of push-pull substitution on the linear absorption spectrum of cis-isomers is
again a red-shift of the z7* intense band according to the electron-donating/withdra-
wing strength of the substituents, while the nz* state energy is roughly unchanged
(see Table 4.5). The main difference with respect to the trans-conformers is that, except
for few outliers, more than 99% of the 120 cis-dynamics is attributed to the torsional
decay mechanism (C—N=N—C > 45°, see Table 4.6 and CI distribution in Figure 4.36).
This is in line with the larger experimental quantum yield observed in cis-AB (0.27 vs
0.11 of trans-AB[15]). Moreover, torsion is activated already on S, (reaching torsion
values up to 50°, see Figure 4.36), and becomes notably larger on Sy, due to the non-
planar FC starting structure. The earlier activation of the torsional motion, compared
to their trans analogues, disadvantages the early decay to the nz" state through the
bending funnel, resulting in a longer S, lifetime, in agreement with previous dynamics
simulations of AB from the 7" state[137]. The bending motions are more asymmetric
than in the trans-systems (see values at the decay points in Table 4.6) with larger
bendings in the fragment bearing the electron donor group (-OMe or -NH,). However,
none of the cis-dynamics reaches bending angles close to 180°, once again ruling out
the inversion path hypothesis. Like in the trans-systems, the S, lifetime is shortening
with the increasing push-pull strength. Instead, the nz" lifetime after S, — S; decay
in the cis-isomers is not affected by the push-pull substituents, because the steeper
gradient along the torsional coordinate drives the system straight to the rotated S;/S,
rotated CIs. These differences in the S; PES topology (compared to the flat trans-
nr* surface) correlate with a grater torsional momentum, inevitably leading to an
increased photoisomerization yield. That said, the S,/S; and S;/S, ClIs distribution in
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Table 4.5: Cis-systems. Gas-phase vertical excitation energies at the S, minimum (experi-
mental, TD-DFT and RASPT2/RASSCF).

Sy trans-min

Exp. value TD-DFT RASPT2
(nm) eV) (nm) (eV) (nm) (eV)
Sy - 0.00 - 0.00 - 0.00
AB S, 425[134] 292 464 267 450 275
S, 265[134] 4.68 265 4.68 302 4.11
So - 0.00 - 0.00 - 0.00
NC-AB-OMe Sy - - 472 2.62 474 2.62
S, - - 288 4.30 322 3.85
So - 0.00 - 0.00 - 0.00
O,N-AB-NH, S, - - 472 262 506 245
S, - - 313 3.96 348 3.56

Table 4.6: Cis-systems dynamics. Average excited state lifetime and geometrical parameters
of the decay geometries (>99% trajectories assignable to torsional path, defined as CNNC > 45°
at the S; — S, decay). (a) in ethanol at room temperature.

Ts, 75,45, S; — S; hop Sy — Sy hop
(fs) (fs) CNNC () CNN-NNC() CNNC() CNN-NNC ()
AB 242 278 12 127-113 79 132-111
NC-AB-OMe 181 221 14 131-112 74 138-115
O,N-AB-NH, 118 144 14 131-120 75 128-115
Experiment[30] 0.2E03(®

Figure 4.36, shows that the parent and the push-pull AB-derivatives behave similarly,
thus suggesting a smaller effect of push-pull substitution on the photoisomerization
yield, compared to the trans analogues.

46 Conclusions

In the previous sections, the potential energy surfaces and other relevant quanti-
ties for the modelling of the nz* photoisomerization of azobenzene were described
in detail. The reactive coordinates are identified with the C—N=N—C torsion and
C—N=N/N=N-C bending, that were mapped in an extended 3D subspace, producing
a database of unprecedented accuracy (RASPT2/RASSCF with a 18-electrons-in-16-
orbitals active space)[34]. Despite the rigid scan procedure, the selected coordinates
suffice to correctly describe all the relevant structures along the isomerization path,
especially the S;/Sy Cls, which are funnelling the nonradiative decay. We found a
wide S1/Sy crossing seam, that extends from planar to fully-rotated structures. The
former are found at higher energy and can be reached from trans or cis FC point only
with some extra kinetic energy which is available e.g. when the nz" state is popu-
lated by internal conversion from the higher-lying #z*. In particular, kinetic energy
along symmetric C—N=N/N=N-—C bending is required for this deactivation path.
On the other hand, the lower and most accessible part of the crossing seam is com-
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posed of rotated structures (110° > C—N=N—C > 80°) characterised by asymmetric
C—N=N/N=N-C angles, and is responsible for the photoisomerization.

Our data served as solid and accurate base for semiclassical[34] and quantum dy-
namics simulations[36, 37, 39], all confirming the torsional mechanism as productive
deactivation channel, while paths ascribable to the historically debated C—N=N in-
version mechanism were never detected. The semiclassical dynamics gave a photoiso-
merization quantum yield which is in line with results from previous, more accurate
dynamics simulations[2, 88], and served as an assessment of our PESs.

Following validation, the QD simulation of trans = cis photochemical conversion
in some selected 2D subspaces served as case study for the simulation of transient X-
ray diffraction signals during the ultrafast process, thanks to collaboration with the
group of professor Shaul Mukamel of the University of California, Irvine. These pio-
neering results predict that it would be possible, overcoming the experimental hurdles
which are still present, to track the isomerization dynamics with transient diffraction
experiments, and in particular to obtain a real-space movie of the molecule undergo-
ing the CI dynamics, which is a very intriguing possibility. Moreover, the promising
application of quantum light (i.e. with entangled photons) to trigger the photoiso-
merization of azobenzene was investigated, and our results show that the degree of
entanglement in two-photon absorption could serve as a parameter to control the
quantum pathways.

Besides all this fascinating simulations, we also investigated the potential of azo-
benzene for biological applications in photopharmacology and photobiology, requir-
ing a Vis-NIR absorption for in vivo applications. To this aim, we have shown that
azobenzene push-pull derivatives (which are known to show Vis-NIR 77" absorption)
are also likely to show a higher trans — cis quantum yield compared to pure azoben-
zene[41]. This result, that comes out from TD-DFT semiclassical dynamics simula-
tions, is attributed to the different effect of the push-pull substituents on the 77" and
nz* electronic states: the former is much stabilised by the presence of the electron do-
nating/withdrawing groups, while the latter is almost unaffected by the substituents.
As a result, the S,/S; Cl is lowered in energy and much more accessible compared to
the parent azobenzene, reflecting in a very short S, lifetime and in a grater activation
of the torsional mode (due to the lower kinetic energy available after 77" excitation).
Favouring the productive torsional motion is expected to increase the quantum yield.

All the presented result prove that this simple chromophore, despite being the
subject of a plethora of scientific studies since the beginning of the XX century[1], is
still able to provide us with new insight into its nonadiabatic dynamics and, more in
general, into the phenomenon of photoswitching. On one side, the wide knowledge on
azobenzene and the simplicity of the reactive coordinates make it a textbook example
which perfectly suits the simulation of new transient diffraction and spectroscopic
techniques. On the other hand, the possibility to functionalise azobenzene in several
different ways (and, therefore, to influence the photoisomerization mechanism) paves
the way to many different applications and makes this molecule a never ending source
of new possible studies.
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Chapter 5

Pyrene

5.1 Introduction

As discussed in section 2.2, the QD simulation of molecules allows to simulate ul-
trafast photoinduced processes with unparalleled accuracy, gaining insight into the
fundamental mechanisms and allowing to predict also quantum effects. When the
problem under investigation cannot be reduced to few fundamental coordinates, the
MCTDH method is by far the reference for multidimensional QD. It is extremely effec-
tive, especially if the coupled PESs have some simple functional form, like a low-order
Taylor expansion in normal coordinates. Hamiltonians that use these simplified PESs
are often referred to as model vibronic coupling Hamiltonians[1, 2]. They use a dia-
batic representation and quadratic expansions for the diagonal and off-diagonal PESs.
If no other approximation is invoked, the above definition describes what is known
as quadratic vibronic coupling (QVC) Hamiltonian. Further assumption that all di-
agonal PESs share the same normal modes and frequencies (usually taken all equal
to the ones of the ground state), and that off-diagonal terms are linear functions of
the coordinates, lead to the so-called linear vibronic coupling (LVC) model. LVC is
the simplest Hamiltonian that can describe CIs and intersection seams. Despite the
“model” attribute, these Hamiltonians can be adopted for accurate descriptions of re-
alistic problems, especially if the investigated molecules are rigid and/or the timescale
of interest is very short (~ 100fs). In the last decade they have been employed in the
study of fast intersystem crossings in metal-organic complexes[3-6], zz*/nz" decays
in nucleobases[7-11], to couple QD simulations with an explicit description of the en-
vironment[9, 12] and to clarify the main features of a non adiabatic dynamics around
a CI[1, 2]. It became increasingly evident that the QD results can be drastically depen-
dent on the parameters of the vibronic Hamiltonians, especially if the investigated sys-
tem is characterised by several coupled quasi-degenerate states[10, 11]. These findings
highlight the necessity to work out effective protocols to parametrise model Hamilto-
nians with electronic structure methods as accurate as possible. Recently, a method
based on a maximum-overlap diabatisation to parametrise LVC Hamiltonians with
time-dependent DFT (TD-DFT) calculations has been proposed[10], which is very ef-
fective also for several excited states (10-20) and molecules with many degrees of
freedom (100)[13]. However, dealing with excited states of different nature including
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charge-transfer and double-excited states, challenges TD-DFT, and for such problems
wavefunction-based multiconfigurational methods (CASSCF/CASPT2) have proven
to be more robust, provided that the active space is properly selected. Therefore, a pa-
rameterisation protocol for an LVC Hamiltonian based on the CASSCF/CASPT2 pro-
tocol would open the way for the study of systems presenting an intricate electronic
structure. In a collaboration with the group of Doctor Fabrizio Santoro of the ICCOM
institute of the National Research Council (CNR) of Pisa, we have developed the first
parameterisation protocol for an LVC Hamiltonian based on (X)MS-RASPT2/RASSCF
calculations, that we have presented in reference[14]. The ideal candidate to assess
our protocol is a small, rigid molecule, with a significant (but not too high) number of
degrees of freedom whose PESs can be well approximated with coupled harmonic po-
tentials, and that shows an interesting photophysics requiring RASSCF/RASPT?2 for
the description. The pyrene molecule, which is introduced below, perfectly satisfies
such requirements.

Pyrene is the smallest peri-fused polycyclic aromatic hydrocarbon, composed of
four fused benzene rings (Figure 5.1) forming a planar, highly symmetric structure
(Dyp, group). Despite having 16 7 electrons, and thus not following the Hiickel’s 4n+2
rule, it is aromatic[15]. Its name comes from the Greek word nvp - wupdg (fire),
because it is obtained during the combustion of organic compounds and pyrolytic
processes. Since its discover in 1837 in the residue of the distillation of coal tar, this
small molecule has been the subject of tremendous investigation.

o
o

Figure 5.1: Pyrene structure, lying in the xy plane. This orientation is considered for further
state symmetry assignments.

Pyrene was initially used in the synthetic dye industry. Later, in 1955, Forster
and Kasper reported the first observation of intermolecular excimers in a pyrene so-
lution[16], whose fluorescence bands were clearly distinguishable from those of the
monomer. In time, the possibility to form excimers exploiting concentration, and
the unique photophysical properties like long-lived excited states, high fluorescence
quantum yield[17] and sensitivity to environmental changes[18], made pyrene one of
the most popular molecular probes for the study of e.g. water-soluble polymers[19],
surfactant micelles[20] and structural properties of macromolecular systems like pro-
teins and peptides[21-23], but also DNA recognition[24-26] and investigation of lipid
membranes[27, 28]. In addition to the photophysical properties, the small and rigid
chemical structure of pyrene and its derivatives make these compounds the most com-
monly studied family of guest molecules to mimic host-guest interactions in catalytic
enzymes[29]. Recently, there has also been an increased interest in the use of pyrene
as organic semiconductor for application in materials science and organic electron-
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Figure 5.2: Pyrene absorption and fluorescence spectra in cyclohexane[31].

ics[30].

Figure 5.2 shows the UV-Vis absorption and fluorescence spectra of pyrene in cy-
clohexane[31]. The absorption spectrum displays an intense band peaking at 334 nm
(3.7 eV), with well-resolved vibronic replicas at 319 nm (3.9 eV) and 306 nm (4.1 eV),
followed by a second band peaking at 274nm (4.5 eV) with a well visible replica at
262 nm (4.7 eV). The lower absorption band is associated to the second excited state, of
B,, symmetry (S, or 1B,,), while the first excited state belongs to the B3, irreducible
representation and is optically dark (S; or 1B3,). The second bright state, originating
the second band, is the fifth excited state according to state-of-the-art RASPT2 calcu-
lations[14] and also belongs to the B3, group (S5 or 2Bs,). Several characteristics of
pyrene require the adoption of multiconfigurational methods, like the presence of a
state with a high contribution from a double excitation[14] and the difficulty of many
TD-DFT functionals in reproducing the relative order of the lowest-energy states[32-
34]. After excitation, the photoinduced dynamics of pyrene is characterised by ultra-
fast internal conversion (IC) to the lowest dark S; state. While the IC process from
the first bright excited state (Sy) has been studied in detail both experimentally[35-
38] and theoretically[39, 40] the IC process from the second excited state has been
addressed only recently with transient absorption, bidimensional and photoelectron
spectroscopy|[38, 41, 42]. Thanks to the unprecedented time-resolution (down to 6 fs),
transient spectroscopy has allowed to resolve quantum beatings due to the motion of
the vibrational wavepacket in the excited state. Still, the picture of the IC mechanism
from the second bright state (Ss) is incomplete. Picchiotti et al.[41] and Noble et al.
[42] have recognised the involvement of intermediate dark states but their role in the
IC is not well understood yet.

We have studied the decay dynamics of pyrene excited to either S, or S5, adopting
our new protocol to develop LVC Hamiltonians that fully accounts for the couplings
of the lowest seven excited states and include all the 49 active nuclear coordinates.
The reliability of LVC PES was assessed by recomputing energies at relevant points
of the dynamics, like minima and energy-accessible CIs. Moreover, we have investi-
gated in depth the dependence of the QD results on different parameterisations of the
Hamiltonian obtained with different active spaces, and different implementations of
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the perturbative corrections. A parameterisation of an LVC Hamiltonian is, actually,
a much more stringent test of the stability of the computational protocol than the
computation of the vertical excitations and/or of the numerical gradients, and based
on our results we can enunciate few recommendations for future studies.

5.2 The Linear Vibronic Coupling model

We consider a n dimensional diabatic basis of nuclear coordinates {d;}, and the fol-
lowing expression of the Hamiltonian

i = Y (K Vi) ldy <aif+ Y viR@(ldp <ajf + dp<dl) G
l. i

where q is the column vector of the ground state dimensionless normal coordinates.
According to the LVC model the kinetic (K) and potential (V) terms have the following
form:

N 1 T
K = 5P Qp (5.2)
. 1
Vit@ = B +Aiq+5q'0q (5.3)
vl = Alq. (5.4)

where Q is the diagonal matrix of the GS normal-modes frequencies, p is the vec-
tor of the conjugated momenta and T indicates the standard transpose operation for
matrices. Therefore, the diagonal terms of the potential energy Viiia(q) are described
in the harmonic approximation and they share the same frequencies as the GS. The
linear terms in the Hamiltonian represent the diabatic energy gradients A;; and the
inter-state diabatic couplings A;; (i # j).

The LVC Hamiltonian is parametrized by defining each diabatic state |d;) to be co-
incident with an adiabatic reference state |a;) at a reference geometry (Sp minimum in
our case). At displaced geometries, diabatic states are defined so to remain as similar
as possible to the reference states |a(0)). This idea was already proposed by Cimiraglia
et al.[43] for CI wavefunctions, and then extended to TD-DFT[10, 44]. More precisely,
we follow the derivation presented in ref.[10] and for each displaced geometry 0+ A,
(since now on A,), we compute the adiabatic states |a(A,)) and the matrix S(A,) of
their overlaps with |a(0))

Sij(Ag) = <ai(0)]a;(Ag ) (5.5)
The transformation matrix D that defines the diabatic states at A,
|d) = |a(Ay)> D(Ap), (5.6)

is then obtained as .
D =ST(ssT)z. (5.7)

where for brevity the dependence on A, is not explicitly reported. In Eq. 5.7 a Léwdin
orthogonalization is used to account for the fact that the set of the computed adiabatic
states at the displaced geometries is finite and therefore not complete.
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At each displaced geometry the computed adiabatic energies form a diagonal ma-
trix V24(A,,) and the diabatic potential terms are simply:

vidia(a,) = DT(A,)VA(A,)D(A,) (5.8)

Therefore, the gradients 1;; and couplings parameters 4;; can be obtained from nu-
merical differentiation with respect to each g,:

V@ Vi) - V(AL
0y 2,

hi(a) = (59)
In the following, the normal coordinates q and frequencies Q were obtained at the
MP2/ANO-L-VDZP level, whereas the energies E?d(Aa) of the adiabatic states at each
displaced geometry and their overlap S with the wave functions at the reference ge-
ometry were obtained at the RASSCF/RASPT2/ANO-L-VDZP level (see below).

The vibronic wavefuction is defined in terms of the diabatic basis as

[¥(q, 1)) = ) |dp) [¥i(q, 1)) (5.10)

and the time evolution is computed by solving the TDSE (2.1). In the following, we
will investigate the time evolution of the population of the diabatic states:

Pi(t) =<¥i(q, )|¥i(q, t)) (5.11)

5.3 Computational details

5.3.1 Parameterisation

Pyrene is a highly symmetric molecule (D,y, point group) with 26 atoms and 72 nor-
mal modes. For the parameterisation of the LVC Hamiltonian, we have identified our
diabatic states with the lowest seven excited adiabatic states at the Sy equilibrium ge-
ometry, belonging to four different irreducible representations: two A, states, two
Bs, states, one By, and three By, states. Then, we have displaced the atoms along
each normal coordinate (obtained at MP2/ANO-L-VDZP level) both in positive and in
negative direction and calculated two main quantities: excitation energies and wave-

function overlaps (Sir'31c|S;ilSp l} between all the eigenstates at the displaced and refer-
ence geometry (see Supplementary Material of reference[14]). These data were then
used to parametrise the LVC Hamiltonian according to equations 5.7-5.9. We note
that, while energy gradients are non vanishing only along symmetry conserving (Ag)
modes, interstate couplings exist also along modes belonging to By, By, and B, ir-
reducible representations, which decrease the symmetry of the system as indicated
in Table 5.1. The remaining 23 modes do not couple the electronic states of inter-
est and were excluded from the model. Previous studies employing parameterisation
of the LVC Hamiltonian from TD-DFT indicate that a shift A=0.1 in dimensionless
coordinates guarantees accurate and robust results[10, 45]. Since diabatic states are
built so to preserve their electronic character at all geometries, in the following they
will be labelled with the Dy}, symmetry labels of the corresponding adiabatic states
at the Sq minimum. In contrast, adiabatic states will be given the usual nomencla-
ture S, with x=1,2,...,7 in order of increasing energy. It is important to remark that
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Table 5.1: Coupling of the reference states along symmetry-breaking modes. Forbidden in-
teractions in D, symmetry are possible between states falling in the same irreducible repre-
sentation of the lower point groups.

Dy, irr. Point group at

repr. displaced Classification of Dy, states into new irreducible repr.
of modes geometries
Bs, Cyy Ay 1A, 1Bgy, 2Ag, 2Bs, By: 1Bgy, 1By, 2By, 3By,
By, Cyy Aq: 1A, 1By, 24, By: 1Bgy, 1By, 2Bsy, 2By, 3By,
Byg Con Agt 1A4, 2A,, 1By, 2By, 3By By: 1By, 1By, 2Bsy

different diabatisation techniques are actually possible[46]: a strategy based on a one-
shot computation of energy, gradients and nonadiabatic coupling vectors with mul-
tireference CIS and CISD methods has been recently presented and implemented in
SHARC code[5]; “energy-based” methods, which rely only on energies and not on
wavefunctions, are also very attractive, and their simplicity makes them well suited
for application also in combination with accurate and time-consuming electronic-
structure methods like CASSCF[47], extended multi-configuration quasi-degenerate
perturbation theory[48], and equation-of-motion coupled-cluster with singles and
doubles[49]. However, their implementation is very straightforward only when each
mode can only couple two states[48]. The method we have applied is computationally
demanding but fully general. Moreover, being based on wavefunction overlaps, it al-
lows a direct and detailed control of the electronic character of the diabatic PESs. Elec-
tronic structure calculations with D,y and with reduced symmetry were performed
at the RASPT2/RASSCF/ANO-L-VDZP level of theory. The calculations encompass
the lowest 8 roots of pyrene which, due to the use of symmetry, fall in different ir-
reducible representations. Three active spaces were used: a minimal one consisting
of the frontier 8 7 and 8 n* orbitals (full-r), with up to quadruple excitations i.e.
RAS(4,8|0,0[4,8), as well as two extended active spaces encompassing four and eight
extra-valence virtual orbitals of 7* character with a higher angular quantum number,
i.e. RAS(4,8|0,0/4,12) and RAS(4,8|0,0/4,16), respectively. The RASSCF scheme in which
all molecular orbitals are put in RAS1 and RAS3 (leaving RAS2 empty) has been bench-
marked previously[50] and has already shown to give accurate results for pyrene[41].
We note that the extra-valence orbitals, despite bearing some resemblance to Rydberg
orbitals, are not suitable for describing Rydberg states (not present among the states
below 5eV). Their only role is to capture more dynamic correlation at the RASSCF
level which has been shown to significantly improve the agreement with experimen-
tal data[51-53]. Figure 5.3 shows the active orbitals.

In all calculations, on top of the RASSCF results, we have applied a perturbative
corrections of either SS-, MS- or XMS-RASPT?2 type, always using an imaginary shift
of 0.2au and setting the IPEA shift to zero. For a more compact notation, each cal-
culation will be labelled SS(n:m), MS(n:m) or XMS(n:m) depending on the type of
perturbative correction, where n and m refer to the number of orbitals in RAS1 and
RAS3, respectively. For calculations with Doy, symmetry (at the reference geometry
and along A; modes), we rely on SS5(8:16) energies which are virtually identical to
MS results since the states are energetically separated, with the only exception of the
three close lying By, states, for which also MS(8:16) and XMS(8:16) energies were
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Figure 5.3: Active orbitals for pyrene in D,, symmetry, for each irreducible representation
(top label). Representations A,, By,, B,, and B,, have no active orbitals. Bottom row (dark grey):
7 orbitals (RAS1), middle row (light grey) 7" orbitals (RAS3), top row (white): virtual orbitals
with higher angular momentum (RAS3). The orbitals marked with « were excluded from the
MS(8:12) and XMS(8:12) calculations. From reference[14].

evaluated. The SS(8:16) energies at the reference geometry were used as a uniform
reference. For calculations with lower symmetry we rely on (X)MS-RASPT2 energies
and wavefunctons with reduced active space (i.e. (X)MS(8:12)) due to the interaction
of near-degenerate states (forbidden at Dy}, symmetry) and the increase of computa-
tional effort. To allow for consistency, the change of energy along symmetry-reducing
modes, evaluated at the (X)MS(8:12) level, was added to the reference SS(8:16) ener-
gies. The only exception are A; states at geometries with C,, symmetry obtained by
displacing along B3, modes, which were computed at the (X)MS(8:16) level as smaller
active spaces were found to give nonphysically large interstate couplings. Overlaps
were computed with the perturbatively modified wavefunctions, obtained either at
the (X)MS(8:12) or (X)MS(8:16) level. Further details on the calculations of the over-
laps are given the Supplementary Material of reference[14]. All the QM computations
were performed with OpenMolcas[54, 55] applying Cholesky decomposition.

5.3.2 Quantum dynamics simulations

ML-MCTDH wavepacket propagations were performed with the Quantics package|[56,
57]. The seven lowest energy excited states and the 49 (out of 72) normal coordinates
with the appropriate symmetry to have non-vanishing couplings were included for
all the LVC parametrised diabatic PESs. The dimension of the primitive basis set, the
number of single particle functions and the structure of the ML-MCTDH trees are
shown the Supplementary Material of reference[14] for each type of calculation, to-
gether with some convergence tests. A variable mean field scheme with a fifth-order
Runge-Kutta integrator of 1077 accuracy threshold was used, and the wavepackets
were propagated for a total time of 2 ps. All the QD simulations were performed by
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the group of Doctor Fabrizio Santoro.

5.4 Results and discussion

5.4.1 Energies and gradients

The lowest seven excited states of pyrene belong to four irreducible representations
of the Dy}, group (see Table 5.2). We identify two optically bright states (1B,, with
dominant configuration HOMO)—L(UMO) and 2B3, with dominant configurations
H-1—L + H—L+1) as well as several dark states. Importantly, the lowest excited
state S; is optically dark and, thus, responsible for the characteristic fluorescence of
pyrene of hundreds of nanoseconds[58, 59]. The presence of a doubly excited state of
A, symmetry in the vicinity of the second bright state evidences the need of multi-
configurational methods.

The vertical excitation energies at the reference geometry, obtained at different
levels of theory, are reported in Table 5.2. The full- (8:8) active space shows both
quantitative and qualitative differences with respect to the stronger correlated (8:12)
and (8:16) active spaces. Indeed, while the energies of states such as 2Ag, 1B1g and
1B3, are already converged with respect to the active space size, the remaining states
(in particular both bright states 1B,, and 2Bs,), exhibit strong dependence on the
active space size, being red-shifted by 0.2-0.3 eV at the SS(8:8) level with respect to
SS(8:16). As a consequence of the unbalanced description, the energy order of the
states changes as a function of the active space, with profound consequences for the
QD simulations. The trend in the (8:8)-(8:12)-(8:16) sequence evidences that energies
are not fully converged even with the largest active space but they show an asymptotic
behaviour. Accordingly, comparison with the experimental gas-phase data[60-62]
shows that the computed transition energies of the bright states are underestimated.
The SS(8:16) set provides closest agreement, thus implicitly supporting the predicted
state order.

Concerning the type of perturbative correction, SS-RASPT2 is the best choice with
D,y symmetry where states of the same irreducible representation are far apart in en-
ergy and do not mix. Only in the case of the B, states, (X)MS-RASPT2 energies
were considered due to the proximity of the electronic states. Indeed, the three meth-
ods predict energies which deviate by up to 0.16eV. XMS-RASPT2, whose use is
advocated for near-degenerate and strongly interacting electronic states[63], is found
to deviate only marginally from the SS-RASPT2 results. Eventually, considering the
computational cost and the small error, SS(8:16) was used to calculate the energies
along symmetry-conserving normal modes.

At the Sy equilibrium geometry, all the excited states show a gradient only along
the totally symmetric A, modes. With the numerical gradients at hand, within the dis-
placed harmonic oscillator approximation, we can predict the structures of the minima
of the adiabatic states and the reorganisation energies A (see Supplementary Material
of reference[14]), which are reported in Table 5.3. Interestingly, we obtain small reor-
ganisation energies (up to ~0.3 eV), which reflect the rigidity of the pyrene molecule
and justify the harmonic approximation underlying the LVC model. The predicted
structures and reorganisation energies are in a very good agreement with results from
explicit optimisations at the SS-RASPT2/RASSCF(4,8|0,0]4,8)/ANO-L-VDZP level[41]
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Table 5.2: Vertical excitation energies and TDM module at the reference geometry for the first
seven excited states of pyrene at different levels of theory. State labels refer to the irreducible
representations of the D, point group. In the third column are reported the most relevant con-
figuration state functions (CFSs) describing each state (see Figure 5.3 for the involved orbitals).
The last column reports the experimental adiabatic transition energies in gas phase[60, 61] for
bright states or of two-photon absorption experiments in apolar solvent[62] for dark states.
The (8:16) active space results are all reported relative to the SS(8:16) ground state value.

TDM Energy (eV)

State  Label  CSFs (Debye) ~SS(®)  SSE12)  SS@E16)  MSGEie)  Xvs@Eig  “Feo (V)

So 1A, GS - 0.00 0.00 0.00 - -

S, 1By, i_l’i*ﬁ 0.00 3.23 3.22 3.23 - - 3.36[61]

S, 1By, HoL 1.83 3.55 3.69 3.75 - - 3.84[60]

S, 1B,  H—oLs+2 0.00 411 413 416 4.00 4.10 4.12[62]

S, 2A,  (HoLY 0.00 430 435 432 - - 4.29[62]

Ss 2Bs, g_l’i*ﬁ 1.73 418 435 443 - - 4.66[60]
H-2—L

Se Big  opes 0.00 428 446 456 4.64 448 4.54[62]
H-3—L

S, B e 0.00 473 477 482 489 485 4.94[62]

(i.e. SS(8:8), Table 5.3) !. Taking into consideration the reorganisation energies re-
solves the apparent disagreement between experiment and theory regarding the the
energetic order of 2B3y, (S5) and 2B, (S): two-photon absorption experiments put the
2By, state (4.54 eV) below the second bright state 2B3, (4.66 €V) at the respective ex-
cited minimum, however, when the reorganisation energies are considered, the state
order is inverted in the Franck Condon point, in agreement with our calculations.

5.4.2 Interstate couplings: wavefunction overlaps

Vibronic coupling between the considered diabatic states is observed both along to-
tally symmetric A; modes, and along the symmetry-decreasing modes belonging to
the B3y, By, and By, irreducible representations. As noted earlier, in Dy, symmetry
electronic states of the same irreducible representation are energetically well sepa-
rated, which results in a weak interaction. On the other hand, displacement along
symmetry-lowering modes allows for interactions that were forbidden in Dy}, sym-
metry: this is particularly evident in the case of the first bright state S,, which is the
only B,, state in Dy}, symmetry and otherwise would never be depopulated. Chang-
ing the symmetry results in variable grouping of the states in irreducible representa-
tions of lower point groups. This requires a different state averaging along each of
the three symmetry-decreasing sets of normal modes, which affects both the RASSCF
and RASPT?2 results, in particular in the case of XMS-RASPT2 which relies on an av-
erage Fock operator. Moreover, the presence of close lying states requires the use of
the more expensive (X)MS-RASPT2 corrections. Because of this, the level of theory of

In the cases were the RASPT2 minimum was not reported in the literature or had been obtained with
a different state-averaging (i.e. for states Sz, S, and S¢), we have done the SS(8:8) optimisation.
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Table 5.3: Reorganisation energies for the adiabatic excited states of pyrene obtained through
SS-RASPT2/RASSCF(4,8|0,0|4,8)/ ANO-L-VDZP optimisation[41] (Aqpr) and with the LVC model
(ALve)- Details about the calculation of reorganisation energies can be found in the Supple-
mentary Material of reference[14]. The root mean square deviation (RMSD) between the two
cartesian structures for each state are reported in the last column.

State AOPT (CV) ALVC (CV) RMSD

S, 0.08 0.09 0.005
S, 0.10 0.10 0.005
S, 0.19 0.16 0.004
S, 0.26 0.18 0.012
Ss 0.05 0.06 0.005
S 0.22 0.24 0.010

the wavefunction overlap calculations must be accurately selected for each irreducible
representation of each point group, in order to balance between computational cost
and accuracy of the description.

To assess the reliability of the reduced symmetry calculations in reproducing the
electronic structure (with respect to Dy, calculations), the vertical excitation energies
at the reference geometry were computed with each of the lower symmetries. Figure
5.4 shows the deviation of the adiabatic energies at the (X)MS(8:12) and (X)MS(8:16)
levels from the reference D,p,-SS(8:16) values when the symmetry is reduced. The
agreement with the reference values is generally good, with XMS- being more accu-
rate than MS-RASPT2, which tends to overestimate the energy splitting and wave-
function mixing in case of strongly interacting states. Comparing the two active
spaces, it is evident how the energies are sensitive to the degree of electronic cor-
relation, with the (8:16) results being more faithful to the reference energies than the
(8:12) ones, both for MS- and XMS-RASPT2. Thus, it is obvious that the best choice
would be to calculate all the wavefunction overlaps necessary for the LVC parame-
terisation using the larger active space, however, this would be computationally very
demanding. To balance between computational cost and accuracy of the description,
we have computed the wavefunction overlaps at the (X)MS(8:12) level, except for crit-
ical situations (i.e. strongly interacting states) discussed in the following, for which
we have used (X)MS(8:16).

For each group of symmetry-reducing modes we identified a pair of close lying
states requiring particular attention in order to make sure that the various levels of
theory preserve the reference state order and energy gaps: S4/Ss along B3, modes

(AEIS)SZ?&M) = 0.11eV), S5/S¢ along By, modes (AESDSZE‘&M) = 0.13eV) and S3/S, along
Dap

B, modes (AESS(S:M) = 0.16 eV). Table 5.4 shows the average, maximum and min-
imum wavefunction overlap (absolute value) for each critical couple of states. For
Se-Ss (along By, modes) and S4-S3 (along By, modes), the (8:12) energy splitting is al-
ways overestimated with respect to the reference one, and the wavefunction overlaps
are consequently small. Even though, from the theoretical point of view, the overes-
timation of the energy gap is conceptually as wrong as its underestimation, from the
practical point of view a larger energy gap (which results in a smaller diabatic coupling
in the final Hamiltonian) is not as dramatic as a too small energy gap, since artificially
large diabatic couplings can make the QD calculations much more problematic. On
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Figure 5.4: Vertical excitation energies at the reference geometry calculated with the reduced
symmetries of the B;,, B,, and B;, modes. In the top left panel are reported the reference D,,-
SS(8:16) energies. Full circles = S, and bright states; empty circles = dark states. Vertical dotted
lines connect states of the same irreducible representation for each point group and level of
theory. The horizontal full lines set the reference D,;,-SS(8:16) energies. Positive and negative
deviations from reference larger than 0.10 eV in absolute value are reported in blue and red,
respectively, close to the corresponding state. Edited from reference[14].

the contrary, the case of S4-Ss states along B3, modes (i.e. A; representation, see Fig-
ure 5.4) is more critical: (X)MS(8:12) reduce the energy gap until near-degeneracy of
the two states, producing an unphysically high wavefunction overlap (and diabatic
coupling, see Supplementary Material of reference[14] for the correlation between
accuracy of the AE and wavefunction mixing). Table 5.4 shows that, at MS(8:12) level,
they are perfectly degenerate, resulting in an average wavefunction overlap of about
0.40. On the other hand, increasing the active space, the energy gap increases, get-
ting closer to the reference D,p,-SS(8:16) value, and the S5-S,4 mixing is significantly
reduced (0.012 at MS(8:16) and 0.006 at XMS(8:16) level).

In conclusion, the (X)MS(8:12) wavefunction overlaps represent a fair compromise
between computational time and accuracy, except for the states of A; representation
along B3, modes (which reduce the symmetry to C,,), for which the bigger active
space is needed to avoid artificially high S5/S, overlaps. For comparison of the re-
sulting QD, we have produced three sets of data for the LVC parameterisation: one in
which all the overlaps were computed at XMS(8:12) level, and two sets in which the
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Table 5.4: Energy gap and wavefunction overlaps along symmetry reducing modes (average,
minimum and maximum absolute values) between states S;-S, (top), S¢-Ss (middle) and S,-S;
(bottom) calculated with different symmetry and level of theory.

g fqdispl
Modes Symm. Level of AE (eV) Deviation from {Si¢ \SJ >
theory ref. AE (eV) average min max
MS(8:12) 0.00 -0.11 0.395 0.137 0.613
MS(8:16 0.09 -0.02 0.012 0.001 0.044
S5-S4 By, Cyr(1) (8:16)
XMS(8:12) 0.01 -0.10 0.080 0.001 0.262
XMS(8:16) 0.09 -0.02 0.006 8e-05 0.020
MS(8:12) 0.27 0.14 0.025 3e-04 0.070
S¢-S B Coy(2
65 2“ () XMS(8:12) 0.13 0.00 0.029 0.001 0.112
S8 B c MS(8:12) 0.41 0.25 0.030 0.005 0.090
4 g 2h XMS(8:12) 0.25 0.09 0.010 0.001 0.033

Bs,-A; states were computed with the bigger active space (i.e. MS(8:16) or XMS(8:16)).

5.4.3 Accuracy of the LVC model

The three different parameterisations of the LVC Hamiltonian will be named from
now on LVCys(16), LVCxpMs(12) and LVCxys(16) depending on the highest level of the-
ory employed for the computation of the wavefunction overlaps (MS(8:16), XMS(8:12)
or XMS(8:16), respectively). Figure 5.5 shows the LVCy5(14) diabatic PESs along A,
collective coordinates leading from the Sq minimum to each LVC diabatic state min-
imum, as well as the energies of the corresponding adiabatic states (recomputed at
D,p,-SS(8:16) level). The comparison shows that LVC PESs are remarkably accurate,
especially for the lower energy states. Some inaccuracies arise for 3B;, and 2B3, along
the coordinate connecting the Sy and the 1B}, minima (Figure 5.5, middle left panel).
This is connected with the degeneracy, at distorted geometries, with a higher lying
“intruder” state at RASSCF level, that is influencing the CASPT2 correction. We em-
phasise that, upon (X)MS-CASPT2 correction, the “intruder” states blue-shift above
5eV, which evidences that their involvement at the RASSCF level is merely an arte-
fact of the unbalanced description of the electronic states when dynamic correlation
is not considered.

The performance of our LVC parameterisation was further assessed by recalculat-
ing the S5(8:16) energies of the LVCyg(;6) diabatic states minima (see Supplementary
Material of reference[14]). LVC and RASPT2 energies are extremely similar, with the
largest differences for a state in its own minimum being only 0.04 eV, and also the
energies of the other (out-of-minimum) states are in very good agreement.

With the LVC model it is also possible to analytically locate the lowest energy
crossing of pairs of diabatic states in Dy, symmetry. Notice that, since off-diagonal
couplings among states of the same irreducible representation are possible, diabatic
and adiabatic LVC states do not coincide and, therefore ,these crossings do not cor-
respond, rigorously speaking, to CIs between adiabatic states. However, we already
showed that mixings between states of the same symmetry are minimal when the D,y
point group is applied (due to large energy separation between states falling into the
same irreducible representation). Table 5.5 reports the LVCys(14) and SS(8:16) ener-
gies of all states at crossings with energies lower than 4.5 eV (i.e. accessible from Ss,
whose vertical excitation energy is 4.43 eV). For the considered crossings, the agree-
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Figure 5.5: Scans of the LVCy5;5) diabatic potential energy surfaces (dashed lines) along
collective A, coordinates connecting the 1A, equilibrium geometry with the minima of the
LVC diabatic states. The corresponding adiabatic energies recomputed at the SS(8:16) level are
shown as circles. Although the SS(8:16) states are adiabatic, they are distinguished by sym-
metry, which explains the observed crossings and justifies the similarity, for each symmetry,
between diabatic and adiabatic energies. From reference[14].

ment is remarkably good: RASPT2 confirms that these structures correspond to points
of quasi-degeneracy, and in most of the cases also the LVC absolute energy is correct
up to few hundredths of eV. In particular, LVC correctly predicts that the 1B;,/2B3,
crossing (i.e. S3/Ss) actually corresponds to a quasi-triple CI involving also the 2A,
state (Sy), and reproduces the absolute energies up to 0.02eV. A further quasi-triple
Clinvolving the 1By, 1By, and 1By, states (i.e. S1/S/S3, proposed previously based
on orbital analysis and CI search[41]) is also confirmed. In this case, however, LVC
overestimates the energy by ~0.1-0.15 eV. For diabatic crossings at higher energy (see
Supplementary Material of reference[14]), LVC predictions are still rather reliable but,
as expected, differences with respect to RASPT2 energies increase. Interestingly, LVC
correctly predicts that at 1B3,,/2A, crossing, four states are found in <0.17 eV (i.e. also
1B;, and 1B, see Supplementary material of reference[14]) suggesting that a quasi-
fourfold CI might exist in the proximity of that structure.

5.4.4 Dynamics simulations

Figure 5.6 shows the time evolution of the electronic populations up to 2 ps after the
initial photo-excitation to either the first (1B,,) or the second (2B3,) bright state ac-
cording to the LVCys(16) and LVCxyis(16) parameterisations. LVCxyis(12) yields a
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Table 5.5: Diabatic (LVCy ;) and adiabatic (RASPT2, SS(8:16)) energies (eV) of pyrene at a
number of crossing points between LVC diabatic states. Bold characters highlight states that
are quasi-degenerate.

States
Crossing Method S, S, S3 Sy S5 Se S;
(1Bsy)  (1Byw)  (1Byg)  (2Ag)  (2Bsy)  (2Byg)  (3Byy)

1Byy/1By, LVC 4.20 4.20 4.42 4.53 5.37 4.76 5.64
RASPT2 4.16 4.16 4.37 4.37 5.72 5.07 5.07
1By,/1B, LVC 4.43 4.46 4.43 4.81 5.57 4.84 5.73
& RASPT2 4.27 4.29 4.33 4.60 5.71 4.81 5.41
1B,,/1B, LvVC 4.04 4.25 4.25 4.68 5.18 4.68 5.37
g RASPT2 3.88 4.12 4.18 4.56 5.57 4.63 5.14
1B,,/2B LVC 3.20 3.89 4.45 4.50 4.45 4.80 491
gl RASPT2 3.21 3.89 4.47 4.49 4.46 4.88 4.96
2A /2B LVC 3.17 3.80 4.27 4.40 4.40 4.64 4.83
gl % RASPT2 3.17 3.80 4.27 4.39 4.40 4.65 4.82
2B,,/2B, LVC 3.19 3.67 4.06 4.20 4.40 4.40 4.79
g RASPT2 3.19 3.68 4.06 4.20 4.41 4.42 4.75

very different dynamics from both excited states due to wrong couplings ascribable
to the smaller active space, and will not be further discussed here (see Supplemen-
tary Material of reference [14] for more details). On the other hand, LVCys(16) and
LVCxis(16) Hamiltonians deliver similar predictions: 1By, (S;) decays essentially on
the lowest state 1B5,, (S;) while, after an initial excitation to 2B, (S5) we observe a fast
(< 20fs) rise of a transient population of some intermediate states, followed by a only
slightly slower population of the first bright state 1B,, which reaches its maximum
population (~ 0.5) in 100 fs and then slowly decays toward 1Bs3,. The intermediate
population of 1B,, is consistent with the two-step interpretation of Borrego-Varillas
et al. who reported transient signatures of 1B,;, when pumping the second bright
state[38]. Moreover, the delayed decay to the lowest excited state (on a 0.5 ps time
scale) observed after excitation to 2Bs, agrees with experimental time constants re-
ported in the literature[38, 41, 42].

A closer analysis highlights some differences between the two Hamiltonians: after
excitation to 2B3,(S5), the initial decay (~10 fs) according to LVCys(1¢) is towards 2B,
(S¢) and 2A, (S4), while using LVCxys(16) it decays towards 2B (Sg), 1By, (S3) and
directly to 1B, (S,). These differences can be attributed to the corresponding coupling
patterns reported in Table 5.6. Indeed, the couplings of the 2B, state with 1B;, and
1By, are remarkably larger according to LVCxys(16)- On the contrary, the coupling
of 2B3, with 2A; is larger according to LVCyg(1). The latter also predicts a much
larger coupling of the higher-energy state 2B, with 2A; which explains why, despite
its energy, 2B}, gains some transient population which reaches slightly larger values
compared to LVCxps(16)-

After excitation to 1By (S;) the decay to 1Bs, (S;) is faster according to LVCys(1¢)
than according to LVCxys(16)- Thereby, the LVCyg(16) dynamics agrees better with
experiments, uniformly assigning a sub-100fs time constant to the S, — S; IC. This
difference is partially ascribable to the larger 1B,,/1B3, coupling in LVCyg(16) (norm:
0.042 eV) than in LVCxps(16) (norm: 0.030 eV, see Table 5.6), but further motivations
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Figure 5.6: Dynamics of the populations of the diabatic electronic states obtained exciting the
wavepacket on 1B,,(left) or 2B, (right) states for the LVCyg46) ((a), (b)) and LVCyys56) ((c), (d))
parameterisations. The insets highlight the dynamics in the first 100 fs. From reference[14].

can be found in the population distribution. The populations in Figure 5.6 suggests
that, after photoexcitation to 1B,,, the dynamics is quite simple, being essentially
characterised by a progressive (approximatively mono-exponential) flow of popula-
tion to the lowest-energy 1Bs, dark state. This is not surprising if we consider that,
at the FC point, the third state (1B;g) is ~ 0.5eV above 1By,. However, Table 5.6
shows that 1By is strongly coupled to both 1By, and 1Bs, states, with coupling val-
ues much larger than the direct 1B;,/1By, coupling. A small transient population on
1By is actually seen in Figure 5.6 for LVCys(16) (Which shows larger couplings than
LVCxms(16))- In order to investigate in greater detail the impact of the 1B, state on
the S; — S; population transfer, we have run some dynamics with reduced mod-
els (i.e. excluding some electronic states) using the LVCy5(14) Hamiltonian: a 2-state
model “1By, +1B3,”, a 3-state model “1By,+1B3,+1By,”, and a 6-state model obtained
including all states except 1B,. Figure 5.7 shows the comparison of the reduced mod-
els with the full 7-states model in terms of population dynamics. Differences are strik-
ing: according to the 2-state model, the population transfer is much slower, smaller in
amplitude and shows large oscillations. Including also 1By, the population transfer
becomes much faster (even more than in the 7-states model) and irreversible, without
any significant quantum beating. Despite the significant impact of the 1By, state, also
higher-lying states play a role. This is shown considering the 6-state model in which
1Byg is removed: here, the predicted population flow from 1By, to 1Bs, is similar
to that of the complete 7-state model. Actually, in the long-time limit, 1B3, reaches
even a higher population, although the transfer is slower in the first 500 fs. To sum
up, the existence of 1B, has a dramatic impact on the 1B, — 1Bj, transfer, much
larger than what one could predict looking at the small transient population it ac-
quires. Its main role is to provide an alternative (and very effective) coupling channel
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Table 5.6: Norm of the diabatic coupling vectors for MS(8:16) and XMS(8:16) parameteri-
sations. Differences between the two parameterisations having a remarkable impact on the
population dynamics are highlighted.

MS(8:16) |

Stat.
€ 1B, 1B, 1B, 2A, 2B, 2B, 3By

1Bs,  0.159

1B,, 0.043 0.184

1By, 0199 019  0.257

2A, 0108 0116 0.049  0.257

2B;,  0.108 0124 0.027 0.054 0.126

2B,  0.087 0096 0037 0235 0152 0266

3By, 0175 0238 0042 0089 0077 0073 0.143

XMS(8:16)

1By, 1By, 1By,  2A, 2By, 2By, 3By

g

1Bs,  0.159

1B,,  0.030  0.184

1By, 0111 0.9  0.257

2A, 0105 0043 0058  0.256

2By,  0.072 0176 0.09 0.028  0.126

2By, 0056 0126 0.059 0109 0146  0.267

3By, 0105 0028 0.089  0.093 0046 0037 0.142

between the two lowest states. On the short-time scale, the effect of 1By, is partially
contrasted by the higher-energy states which slow down the rise of the population of
1B3y. On the long-time scale, however, according to the 7-state model 1B, maintains
a weak population (~ 3 %). If such state is not included in the calculation, this small
population flows to 1B3, making the yield of this state even larger (6-state model).
The effect of the 1B}, and higher-energy states is expected to be similar also with the
XMS(8:16) parameterisation, even though less pronounced due to the smaller cou-
plings. Therefore, the faster 1By, — 1B3, decay predicted by LVCys(;6) With respect
to LVCxs(16), is not only due to the larger direct coupling (as discussed above) but
also to the larger couplings of both states with 1Byg.

Figure 5.8 plots the diabatic LVC PES at the average position of the wavepacket
as a function of time according to the LVCys(;6) Hamiltonian (adiabatic energies as
well as results for LVCx)s(16) are very similar and can be found in the Supplemen-
tary Material of reference[14]). S; and S, are well separated in energy at all times,
and rather distant from two pairs of close-lying states, namely S3-Sy, and S5-Sg. In-
terestingly, these data indicate that the average position of the wavepacket does not
encounter conical intersections. This finding, together with the smooth changes of the
electronic populations, suggest the dynamics is not best described by a ballistic move-
ment of the wavepacket toward a CL. On the contrary, we observe a gradual transfer,
because vibrational states of the upper electronic states are embedded in (and coupled
to) a dense manifold of vibrational states of the lower-energy electronic states. Actu-
ally, the possible occurrence of fast population transfer in QD even in cases where Cls
are inaccessible has been recently discussed in literature[64]. While this mechanism
could be anticipated for the excitation to 1B, since the initial potential energy of the
wavepacket is 3.75 eV (see Table 5.2) and the lowest 1B;,/1By, crossing is at ~4.2eV
(see Table 5.5), it is noteworthy that the same picture applies also for an initial ex-
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Figure 5.7: Dynamics of the populations of the diabatic electronic states after an excitation
on 1B,,. Comparison of the results obtained with the complete 7-states model and with some of
reduced-dimensionality models in which some electronic states are removed from the LVCygy)
Hamiltonian. From reference[14].

citation to 2B, although in this case several crossings between diabatic states are
accessible, including the (quasi) triple-crossings 1B3,/1B3,/1B1g and 1By4/2A,/2By,.

Concerning the nuclear dynamics, both starting from 1B, and from 2B;, (and
with both Hamiltonians) the dynamics is dominated by the oscillations of four modes
(Figure 5.9): two CC stretchings with frequencies 1456 cm™! (mode 52) and 1669 cm™*
(mode 62) and two lower frequency modes corresponding to a breathing mode with
frequency 593 cm™! (mode 17) and to an in-plane elongation along the long molecular
axis with frequency of 406 cm™! (mode 8). These modes agree with Raman signatures
of 1By, and 2B5,states[65, 66] and their involvement is consistent with the analysis of
excited state vibrational coherences resolved recently in transient absorption spectra
with a 6 fs time-resolution[41].
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Figure 5.8: Diabatic LVC potential energies at the average position of the wavepacket ob-
tained for an initial photoexcitation to 1B,,(left) or 2B,,(right) with the LVCy5(;5) Hamiltonian.
From reference[14].
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Figure 5.9: Normal modes showing the widest oscillations in the QD of pyrene.

5.5 Simulation of transient absorption spectra

The parameterisation based on RASPT2/RASSCF makes also our LVC Hamiltonian
suitable for the simulation of transient absorption spectra based on the MCTDH pop-
ulation dynamics. Indeed, states reached by the absorption of the probe have an in-
creased probability to show a significant double-excited character[67], for which our
electronic structure methods are best suited.

Among the possible experimental techniques for the study of ultrafast electronic
dynamics, pump-probe spectroscopy is probably the simplest and most used. In a
pump-probe experiment, an intense laser pulse (pump) is used to excite the sample,
generating a non-equilibrium state. Then, a second (and less intense) beam called
“probe” is used to monitor the evolution of the system induced by the change in
electronic state after a certain time. Measuring the changes in the optical constants
(e.g. absorbance/transmittance) as a function of the time delay between the arrival of
pump and probe pulses yields information about the relaxation of electronic states in
the sample. The probe pulse may induce a transition between the time-evolving elec-
tronic states populated by the pump and a higher lying states, in which case the signal
is called an excited state absorption (ESA), or it could stimulate the population back to
the ground state, in which case the signal is a stimulated emission (SE). Moreover, if
the ground state absorption spectrum is in the same spectral range as the probe wave-
lengths, the depletion of the ground state population induced by the pump causes a
transparency of the sample, resulting in a positive signal which is called ground state
bleach (GSB).

For the simulation of the transient spectra upon excitation of either S, (or Ss), we
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Figure 5.10: Experimental ((b),(c) from reference[38]) and simulated ((a),(b) using LVCys6
population dynamics) pyrene transient absorption maps after S, excitation (i.e. pump pulse
centred at 340 nm), and probing in the UV ((a), (c)) and visible ((b), (d)) range.

have calculated all the possible transitions (energies and dipole moments) from S; and
S, (or all the S;-Sg states) towards final states lying in the 250-650 nm probe window
(5.0-1.9eV). This choice allows to compare our results with the recent pump-probe
experiments by Borrego-Varrillas et. al[38]. All calculations were performed at the
same reference geometry used for the MCTDH parameterisation, at the SS(8:16) level
of theory and applying the Do}, symmetry. The produced QM data were processed via
the iSPECTRON code[69], and the pump-probe spectra simulated with SPECTRON
[68], with in-house modifications to allow the use of external population dynamics
(i.e. ML-MCTDH populations) instead of using a predefined rate-equation model. The
transient spectra obtained by focusing the pump pulse onto the S5 — S, absorption
were simulated including only S; and S, in the first-excitation manifold (i.e. the man-
ifold of states that can be populated after the interaction with the pump pulse), since
only these two states have a significant population in the MCTDH dynamics (see Fig-
ure 5.6, left). On the other hand, for the simulation of the transient spectrum upon
Ss excitation, such manifold of low-lying relevant states was extended, including all
states below Sg (included).

Figure 5.10 shows the simulated ((a),(b), using LVCys(1) population dynamics)
and experimental ((b),(c)) pump-probe maps obtained pumping S, and probing in two
different energy windows. Focusing on the UV-probe experimental spectrum (Figure
5.10 (c)), the strong, short-lived signal around time zero in the experimental UV-probe
spectrum is assigned to the solvent response and is due to two-photon-absorption of
overlapping pump and probe pulses[38]. The strong positive peak at 334 nm, with
well-resolved vibronic replicas at 320 and 306 nm, corresponds to GSB of the S5 — S,
transition. At longer wavelengths (360-370 nm), and at later times, the experimental
spectrum shows a strong ESA band, assigned to a transition from the S; state. In-
deed, S; is not formed instantaneously, but rather grows on the 200 fs timescale. The
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Figure 5.11: Experimental ((a), from reference[38]) and simulated ((b), using LVCys(,¢) popu-
lation dynamics) pyrene transient absorption maps after S5 excitation (i.e. pump pulse centred
at 270 nm), and probing in the visible range.

simulated transient absorption map in the UV range (Figure 5.10 (a)) reproduces well
the experimental ground state bleaching and S; ESA signal at 360 nm. At early times,
however, the Sy — S, photobleach is partially covered by a negative signal peaking
around 325 nm, which is not experimentally recorded. This ESA signal arises from an
excitation from S, towards a higher state of A; symmetry lying 3.81 eV above S,. This
transition energy, considered together with the Sy — S, excitation (3.75 eV), reaches
the ionisation limit of pyrene which is experimentally determined at 7.42 eV[70]. This
could explain the absence of this signal in the experimental spectrum: states lying
close to the dissociation limit live very shortly, and the corresponding ESA signal is
consequently broadened in the energy domain. Therefore, in a real experiment this
signal could be broad enough for the peak to be covered by the ground state bleaching
signal. In our simulation, a selective lifetime broadening for the signals above dissoci-
ation limit is missing, and the corresponding ESA can show intense and sharper peaks.
Improvements of the SPECTRON/iSPECTRON codes to allow this type of broadening
are currently under development.

In the visible range (Figure 5.10 (b)) the simulations predict two ESA bands: a
weaker one at 525nm and a stronger one peaking around 570 nm. The experimental
map (Figure 5.10 (d)), instead, shows a single, very broad S, ESA signal (i.e. with in-
stantaneous rise and 200 fs decay) at 580 nm, which probably includes both simulated
peaks. The experimental long-lived ESA bands peaking at 515 and 470 nm, are instead
assigned to transitions from S; and are present also in the simulated map, with the
former being partially overlapped with the S, ESA at early times.

Figure 5.11 shows the simulated ((b), using LVCys(16) population dynamics) and
experimental (a) pump-probe maps obtained pumping S5 and probing in the visible
range. The early (and very short living) negative ESA signals observed in the experi-
mental map at 350 and 550 nm are well reproduced by our simulations, although the
latter is blue-shifted by ca. 50 nm (which corresponds to a 0.2 eV error). This signal
can therefore be assigned to an ESA from the rapidly decaying S5 state. After S5 de-
population, the experimental spectrum shows the S, ESA signal at 580 nm discussed
previously, together with another weaker S, signal at 400 nm, that was out of the ex-
perimental window used for the 340 nm excitation (see Figure 5.10). The simulated
S, ESA live much longer, due to the slower decay predicted by our LVC model (see
the population plateau in Figure 5.6, right) and are therefore difficult to distinguish
from the S; signals. Taking advantage of the possibility, in simulations, to selectively
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Figure 5.12: Simulated pyrene transient absorption maps (using LVCys() population dy-
namics) after Sy excitation with selectively-suppressed dipole moments to isolate ESA signals
from S; (a), S5 (b), S, (c) or S; (d).

suppress signals by setting the corresponding dipole moment to zero, we have iso-
lated signals for each state of the first excitation manifold. The results are shown in
Figure 5.12 (S¢ and S4 do not show detectable ESA in the selected window and are
not plotted). The long-living signals are then assigned to S, S, and S3. The former
gives rise to the characteristic peaks at 370, 470 and 515 nm, already observed when
pumping S,. Also for Sy, we found the same peaks described before, even though
they live longer. Eventually, S3, which gains a small but non negligible population in
the MCTDH dynamics, originates a weak, long-living signal around 430 nm. This is
not distinguishable in the experimental spectrum where it is probably too short-living
and too weak to be detected and/or buried under the S; stronger signals.

5.6 Conclusions

We have successfully developed a protocol that combines highly accurate, multicon-
figurational electronic structure methods such as RASPT2/RASSCF, with a maximum-
overlap diabatisation technique to parameterise a LVC Hamiltonian for QD. We have
identified the ideal candidate to assess our protocol with the pyrene molecule, whose
rigidity justifies the LVC approximation for the PESs and which shows an interesting
photophysics after excitation to either the first or the second bright states. To the best
of our knowledge, this is the first reported example of LVC parameterisation based
on energies and wavefunctions overlaps computed with RASPT2/RASSCF electronic
structure calculations. While, in principle, the RASTP2/RASSCF protocol is able to
describe states with different nature on an equal footing, the electronic structure can
show a significant dependence on the QM parameters (e.g. active space size, state av-
eraging, use of symmetry, type of perturbative correction), especially in the presence
of a manifold of close-lying interacting excited states. Therefore, benchmarking is
essential for assuring the convergence of the excited state energies with respect to
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the active space size[71], and our protocol is not a “black-box” procedure. An accu-
rate description of the wavefunctions is particularly important to obtain reliable dia-
batic couplings, which require (X)MS-RASPT2 corrections and an active space wide
enough in case of state-mixing at lower level. This is best testified by the results of the
LVCxms(12) Hamiltonian, that leads to erroneous results due to a bad description of
the close-lying Ss/S, states. Benchmarking against RASPT2 calculations has proven
that the LVC Hamiltonian can be highly accurate, and our LVCys(16) and LVCxs(16)
models are also able to predict the structure and energy of both excited state minima
and crossings between the states included in the model.

The QD simulations are in good agreements with the experiments[36, 38], espe-
cially for the deactivation of S,, for which we obtained a perfect agreement with the
reported time constant of 85 fs[38] for the flow of population to the long-living S;.
Despite the apparent simplicity of the case, we were able to reveal the important role
of the S; state which, even if it lyes higher in energy, is strongly coupled to both S,
and S, and effectively acts as a fast population bridge between them. This finding
highlights that, in order to obtain robust QD results, it is necessary to adopt LVC
models including a sufficiently large number of diabatic states. Direct excitation of
the second bright state 2B3, (Ss) leads to a more complicated mechanism, involving
a smooth flow of population to a number of intermediate states which progressively
decay to Sy. The ultrafast but smooth decay of the upper states is better explained by
coupling between vibrational levels, rather than ballistic motion towards a CIL. In the
light of this finding the question arises whether semi-classical trajectory-based ap-
proaches, which treat nuclei classically, are capable of capturing the ultrafast nature
of the internal conversion.

The results of our MCTDH dynamics were also used to simulate transient absorp-
tion signals originated from the excited states populated during the dynamics. The
obtained spectra show a qualitative match with the experimental transient absorp-
tion maps[38], except for a high-energy S, ESA signal which is not experimentally
detected and for which a specific lifetime broadening is probably needed to reduce
the peak intensity. Also the transient spectra obtained pumping S5 show a remark-
able accuracy of the ESA signals position, even though the S, simulated signals are
too long living. Improvements to the spectroscopic simulations based on MCTDH
dynamics are currently in progress.

Finally, it is noteworthy that the protocol for the parameterisation of LVC Hamil-
tonians from RASPT2/RASSCEF is fully general and ready to be applied to other inter-
esting problems, like the ultrafast internal conversion in photoexcited nucleobases[10].
Furthermore, the protocol is straight-forwardly extendable to incorporate spin-orbit
couplings to describe inter-system crossing[72].
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Chapter 6

Rhodopsin

6.1 Introduction

Rhodopsin (also known as visual purple) is a light-sensitive receptor protein involved
in visual phototransduction. It is a biological pigment found in the rods of the retina
and belongs to the family of light-activatable G-protein-coupled receptors (GPCRs),
also called opsins. Rhodopsin is extremely sensitive to light, and thus enables vision
in low-light conditions. When rhodopsin is exposed to light, it immediately photo-
bleaches. In humans, it is regenerated fully in about 30 minutes, after which rods are
more sensitive. Thousands of rhodopsin molecules are found in each outer segment
disc of the host rod cell.

Figure 6.1: Structures of the rhodopsin protein (left) with a zoom on the retinal chromophore
showing a scheme of the photoisomerization leading from the 11-cis to the all-trans configura-
tion. The isomerizing C11=C12 bond is highlighted in red.

Rhodopsin consists of two components, a protein molecule called scotopsin and
a covalently-bound cofactor called retinal, which is produced in the retina from vita-
min A, obtained from dietary beta-carotene. Scotopsin is the GPCR that is embedded
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in the lipid bilayer of cell membranes using seven protein transmembrane domains
(Figure 6.1). These domains form a pocket where the photoreactive chromophore,
the retinal, lies horizontally to the cell membrane. The aldehyde group of retinal is
covalently linked to the amino group of a lysine residue of the protein forming a pro-
tonated Schiff base (—-NH*=CH—, see Figure 6.1). When rhodopsin absorbs light,
its retinal cofactor isomerizes from the 11-cis to the all-trans configuration, and the
protein subsequently undergoes a series of conformational changes to accommodate
the altered shape of the isomerized cofactor, which eventually lead to stimulation of
the optic nerve. Indeed, the protein structure modification triggers the closure of
some membrane ion channels, with a consequent reduction of cation influx and a de-
crease or cessation of neurotransmitter release at the synaptic terminal, which is the
message that is relayed to the retinal neurones. Immediately after the photoisomer-
ization, the Schiff base link is hydrolyzed by the enzyme rhodopsin kinease, yielding
the photobleached rhodopsin. The rhodopsin pigment must therefore be regenerated
for further phototransduction to occur.

Rhodopsin of the rods most strongly absorbs green-blue light and, therefore, ap-
pears reddish-purple, which is why it is also called “visual purple”. It is responsible
for monochromatic vision in the dark. Color vision in humans is instead achieved by
three opsin proteins which tune the electronic energy levels of the chromophore to
different wavelength sensitivities. Figure 6.2 shows the absorption spectra of visual
rhodopsin before and after photobleach, reported in 1958[1]. The protein absorption
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Figure 6.2: Absorption spectra of human rhodopsin before and after bleaching in aqueous
digitonin solution[1]. Upon irradiation, the & (493 nm) and f (340 nm) bands of rhodopsin are
replaced by the absorption band of the photobleach prduct (380 nm). The y or opsin band at
278 nm remains unchanged.

spectrum is significantly blue-shifted with respect to that of the protonated Schiff
base in vacuo, which is experimentally measured to peak at 610 nm[2]. This shift
highlights the first important role of the protein for the process of vision: the optimal
tuning of the chromophore absorption. In particular, the high sensitivity of the reti-
nal excitation energy to the electrostatic potential of the surrounding environment is
associated with the charge-transfer (CT) character of the first optically bright excited
state. Upon absorption of a photon, the electron density shifts from the f-ionone ring
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to the nitrogen atom of the protonated Schiff base. In visual rhodopsins, the positively
charged nitrogen atom interacts with a negatively charged counterion, leading to the
stabilisation of the ground electronic state of the chromophore with respect to the gas
phase and, consequently, to a blue shift of the absorption maximum[3].

Besides the influence on the spectral properties, the protein environment also
plays a crucial role on the speed and final outcome of the photoisomerization dy-
namics. In rhodopsin, the retinal 11-cis — all-trans conversion is ultrafast and highly
specific, and occurs with 65% quantum yield[4]. Femtosecond transient absorption
experiments performed in the 1990’s revealed that the photoreaction is completed
within 200 fs[5] and that it proceeds in a vibrationally coherent manner[6]. More re-
cent transient grating experiments revealed an even faster photoproduct formation,
whose signals were observed only ~30 fs after photoexcitation[7]. In contrast, photoi-
somerization in solution leads to a mixture of isomers due to loss of selectivity, with
a quantum yield of only a few percent for each subproduct and at a much slower rate
(2-10 ps)[8]. The protein embedding is therefore a mandatory ingredient for accurate
modelling of the rhodopsin isomerization, and the advent of QM/MM methods was
game-changing for the computational studies on this interesting process. Indeed, the
entire protein is too big for a whole quantum chemical treatment, and the first ab ini-
tio studies employed a minimal retinal model in the gas phase[9, 10]. QM/MM meth-
ods (which are introduced in section 6.2) allow to treat only the retinal chromophore
(which constitutes a small part of the system) at QM level, while the remaining pro-
tein embedding can be treated at a lower level of theory (classical MM). Application
of QM/MM schemes to the study of rhodopsin has revealed important aspects of the
photoisomerization processes, allowing to account for the steric and electrostatic in-
teraction with the protein and to get more accurate models.

Concerning the reaction mechanism, it was shown that a barrierless coordinate
connects the FC region to the S;/Sy CI located at the bottom of the excited-state
PES[11-13]. Over time, several mechanisms were proposed for the retinal photoiso-
merization inside rhodopsin, that has been the subject of a plethora of experimental
an theoretical studies (both in vacuo and inside the protein, see reference[14] for a
comprehensive review of all proposed mechanisms). Nowadays, it is widely accepted
that the process is best described by a two-states, three-modes model, that is anal-
ysed in the following. The first and most intuitive model coordinate is represented by
torsion of the C11=C12 bond, which however is too space demanding to happen in
a pure “one-bond-flip” way inside the protein embedding . Inside rhodopsin, instead,
C11=C12 rotation is accompanied by torsion around other double bonds along the
polyene chain and, in particular, partial torsion of the C9=C10 bond (which results
in the famous “bicycle-pedal” mechanism[14]). The second coordinate is represented
by the bond length alternation (BLA), i.e. a concerted stretching mode of the carbon-
carbon bonds along the chain, resulting in the inversion of the bond order in the
excited molecule, with respect to the ground state pattern. BLA can be quantified
through the difference between the “average single-bond” and the “average double-
bond” lengths:

_ C6C7 + C8C9 + C10C11 + C12C13 + C14C15  C5C6 + C7C8 + C9C10 + C11C12 + C13C14 + C15N

BLA = - 6.1
S 5 (6.1)

The BLA value is positive at the ground state cis and trans isomers, with a value
around 0.1 A[15]. As the stretching proceeds, its value decreases towards zero or
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Figure 6.3: Rationalisation of the role of the HOOP velocity in determining the isomerization
product: at the CI (~90° tors) and when the HOOP is zero (middle), the overlap between the
carbon p orbitals is at its minimum. A negative HOOP velocity is reflected in a rotation of the
orbitals which favours the overlap of the ab’-a’b lobes (top), leading to the cis isomer (right). In
contrast, a positive HOOP velocity favours the overlap of the aa’-bb’ lobes (bottom), leading to
the trans isomer (left).

even negative values when the inversion is complete. The BLA mode is the first to
be activated after photoexcitation, while the torsion only starts after the stretchings
have relaxed[16]. Only in more recent years the relevance of a third coordinate was
suggested, which is the C11—H11 and C12—H12 hydrogens out-of-plane wagging
(HOOP). Participation of the HOOP mode was first supposed by Mathies et al. based
on the analysis of Raman spectra[17], and its relevance was further confirmed by sev-
eral experimental[18, 19] and theoretical studies[18, 20-22]. The HOOP coordinate
acts as an efficient coupling mode between the electronic states, as demonstrated by
the slower photoisomerization rates obtained when it is excluded from the model[23].
Moreover, and maybe more importantly, the coherence between the HOOP and tor-
sional motion at the moment of the non adiabatic event was found to play a crucial
role in determining the fate of the isomerization. The proposed explanation for this
observation is that the HOOP value provides a measure of the pyramidalization of the
C11 and C12 centres (determining the sp> character of the p-orbitals) and its velocity
(i.e. magnitude and direction of the motion) is directly reflected in the evolution of the
p orbitals overlap on the ground state, leading to either the cis or trans isomer (see
Figure 6.3). Deuteration experiments on the H11—C11=C12—H12 double-bond[19]
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have brought evidence of the HOOP participation in the dynamics: the presence of
heavier hydrogen isotopes significantly and unexpectedly alters the photoisomeriza-
tion yield, while inducing smaller changes in the ultrafast isomerization dynamics
assignable to known isotope effects (i.e. delayed appearance of the photoproduct for
deuterated isotopomers). More importantly, the yield effect is different in the case
of symmetric or asymmetric deuteration: the former produces a higher isomeriza-
tion quantum yield (69%) compared to the original compound, whereas asymmetric
isotopic substitution results in a significantly lower yield (45% and 48% for 11D and
12D, respectively), indicating that a successful isomerization requires a cooperative
effect of both vibrations in a well-defined manner. The observed HOOP phase depen-
dence of the outcome of the non adiabatic event endorses the development of accurate
quantum models for the simulation of the photosiomerization.

Regarding the number of states included in the model, the involvement of a third
state (S,) in the reaction dynamics was proposed in the 90s[24-26], however, evi-
dence for the two-state model was reported in subsequent works[16, 27, 28] and is
now widely accepted. Recent works suggest that including a third electronic state
is necessary to simulate absorptive features in two-dimensional electronic spectra of
rhodopsin[29, 30]. Nevertheless, in this case, the third electronic state does not in-
fluence the photoisomerization dynamics but acts as a higher excited state used as a
probe, and is thus only needed for the simulation of transient spectroscopic signals.

Based on the model described above (and its historical evolutions), a plethora of
dynamics simulations of rhodopsin photoisomerization are reported in the literature,
mainly based on the mixed quantum/classical trajectory approach[15, 19, 21, 22, 31].
Such studies have provided impressive information about the time evolution of the
system, however, purely quantum effects (that the HOOP experiments suggest may
play a role in the dynamics), are neglected. Reported quantum dynamics studies are
less frequent, and based on approximated models. Most QD studies rely on the model
proposed by Hahn and Stock[32] (and its variants), in which two diabatic states are
coupled along two main modes: a reaction coordinate ¢, which reflects the large am-
plitude torsional motion of the molecule during the isomerization, and a vibronically
active coupling mode g, that can mainly be identified with the BLA stretching. This
original two-states, two-modes model was later augmented with a larger group of
low frequency modes (usually 23) that is treated at a lower level and acts as a bath,
accounting in a generic fashion for the effect of the protein environment. The dia-
batic and simple potential, together with the high number of bath modes, make this
model particularly suitable for (ML-)MCTDH dynamics (that is, indeed, the most em-
ployed method[29, 33, 34]), but other propagation schemes have also been used[35,
36]. It is worth stressing that the 2D Hahn-Stock model is not an analytical model
for rhodopsin but rather for “the photoinduced 11-cis — all-trans isomerization of
retinal in rhodopsin”. Indeed, its parameters have been empirically tuned to repro-
duce the experimental lifetime and quantum yield, and they have also been revised
several times according to the new experimental findings. Thus, the used coordinates
are to be considered as “effective modes” and do not correspond exactly to the tor-
sion and BLA coordinates of the three-dimensional model. The Hahn-Stock model,
besides being widely employed, is very approximated, and its robustness has recently
been argued[34]. The two-state model ignores the effect of the HOOP mode and,
in particular, its correlation with the reactive torsional motion. The impact of the
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HOOP coordinate has been recently demonstrated by a pioneering work of Agostini
and coworkers[23], who performed exact quantum dynamics on a minimal retinal
model in the gas phase, based on recently published ab initio multiconfigurational
PESs[37] spanning the torsion, BLA and HOOP coordinates. Despite the minimal
model, the obtained results significantly improve the two-state model ones, in partic-
ular concerning the early photoproduct formation experimentally observed[7]. These
promising results encourage the development of more accurate models for the QD
simulation of the retinal chromophore inside rhodopsin, which are still missing. For
this reason, and given the long experience in the study of rhodopsin developed in our
group, we have decided to apply our parameterisation protocol to such fascinating
system, with the final goal to simulate with accurate QD methods its photoisomer-
ization inside the protein environment. The work presented here is preliminary, and
the QD simulations are still missing but, even prior to dynamics results, the QM/MM
parameterisation inside the protein embedding is a non trivial task which is worth a
detailed analysis.

6.2 The QM/MM scheme

In the quantum mechanics/molecular mechanics (QM/MM) method a small part of the
system (which is typically the most involved in the electronic dynamics) is treated at
a high QM level, while the surrounding environment is explicitly accounted for but at
a lower level (molecular mechanics, MM). Sometimes, a boundary region connecting
the “high layer” (QM part) and “low layer” (MM part) exists, called “medium layer”,
whose atoms are treated either at “low-QM level” (i.e. QM with a lower level of theory),
or at “high-MM level” (e.g. MM with a more accurate optimisation algorithm). A
general QM/MM partitioning is shown in Figure 6.4. The method was first introduced
by Warshel and Levitt in 1976[38], and its introduction paved the way for the accurate
and efficient simulation of complex systems.

> Low (MM)
Environment

(solvent, protein embedding
DNA etc.)

> Medium
boundary region

> High (QM)

QM part:

- chromophore

- solute

- enzyme active site + substrate

Figure 6.4: Graphical representation of the QM/MM partitioning scheme.

The overall accuracy of the QM/MM model depends on
« the type of embedding;

« the energy scheme;

« the partitioning scheme;

« the quality of the QM method used to describe the active site of the system.
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The embedding refers to the description of the interaction between the QM and the
MM parts. Three main schemes are available[39]: mechanical, electrostatic, and po-
larisable embedding. In a mechanical embedding, the QM subsystem is represented
by point charges at MM level, thus only an MM electrostatic interaction is consid-
ered. This is the simplest type of embedding and is the least accurate among the three
schemes. The most popular scheme is now the electrostatic embedding, in which the
electrostatic interaction is also accounted for at QM level, and the electronic structure
of the QM region changes due to the point charges of the MM part (and gets polarised
by it). The polarisable embedding scheme can instead be employed in order to make
the polarisation between the two regions reciprocal and requires the use of polarisable
force fields.

The energy scheme refers to the combination of QM and MM results for the cal-
culation of the total energy of the system. This can be done either by an additive or
a subtractive scheme. The additive scheme comprises two calculations: a QM calcu-
lation for the QM part and one single MM calculation which accounts for the MM
energy and the QM-MM interface energy[40]. In this case, it is up to the developer
to ensure that no interactions are omitted or double-counted, therefore, an additive
scheme requires special MM softwares that allow to selectively include/exclude MM
terms. In the subtractive scheme, instead, three separate calculations are performed:
one QM calculation for the QM part (yielding Egy(QM)) and two MM calculations,
one for the entire system (yielding Epp (MM +QM)) and one for the QM region (yield-
ing Erpi(QM)). The final QM/MM energy is obtained as

Eommm = Egm(QM) + Expvi(MM + QM) — Eppy(QM) (6.2)

The main advantage of the subtractive scheme is its simplicity: it automatically en-
sures that no interactions are double-counted and it can be set up to interface any QM
and MM softwares (provided that they can write out energies and forces). Moreover,
it can be easily extended to more than two computational methods and regions.

The choice of the partitioning scheme and the QM level of theory is the user-
defined part of the calculation, and it is crucial to obtain reliable results. A wrong
partitioning could mean a too small QM part, which excludes some photochemical-
ly/photophysically relevant atoms that would require a QM description. At the same
time, an appropriate basis set and level of theory are fundamental in order to get phys-
ically meaningful results and must be carefully selected for each specific problem.

6.3 Selection of the reference geometries
and reactive coordinates

The electronic PESs serve as basis for subsequent dynamics simulation (either quan-
tum or mixed quantum/classical). Therefore, they should include all most relevant
geometries for the process description. In the case of rhodopsin, we have identified
four key geometries for the model:

« Sg 11-cis minimum (FC point);

« S; “planar” minimum;
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« lowest S;/S, CI;
« S all-trans photoproduct.

The two ground state minima represent the starting and final points of the dynamics,
while the S1/Sq Cl is the most relevant structure determining the non adiabatic event.
Besides these three geometries, the “BLA-relaxed” structure on the excited state (i.e. S
minimum along BLA starting from the cis FC point) is also important, as it represents
an intermediate structure before the activation of torsion and HOOP. It is referred
to as S; “planar” minimum (i.e. prior to torsion activation), and it had already been
reported in the literature[41]. Such structures are all connected by the three model
coordinates detailed in the previous section, namely

+ a complex C10—C11=C12—C13 torsional motion involving partial rotation of
several others dihedrals along the carbon chain;

« BLA stretching, defined as in equation (6.1);

« HOOP wagging.

6.4 Computational details

All the electronic structure calculations were performed using the electrostatic em-
bedding, subtractive scheme QM/MM framework provided by the COBRAMM code
[42-44]. Our QM/MM model for rhodopsin is based on an “high-medium-low” scheme,
in which the QM/MM boundary is placed on the Lys C§-Ce bond (see Figure 6.5),
employing the link-atom approach to model the frontier. The whole protonated

High layer
.

Figure 6.5: Partitioning between high and medium layer atoms for the QM/MM calculations
on rhodopsin. The low layer includes the rest of the protein not shown in the figure.

Schiff base chromophore is treated quantum mechanically (54 atoms including the
link atom) keeping the protein environment fixed at the crystal structure atomic po-
sitions, except for the closest nine atoms of the lysine side-chain connected to the
retinal residue that were free to move during optimisations (M layer, see Figure 6.5).
A modified AMBER[45] force field was used for the MM calculations. Such scheme
has already been used and assessed for rhodopsin, providing good results[15, 46, 47].

The four reference structures listed above were all optimised at the CASSCF(12,-
12)/6-31G*/AMBER level, and the energy of the optimised structure was eventually
corrected at CASPT2 level. Indeed, the CASSCF method has proven to produce quali-
tatively accurate PESs for rhodopsin, correctly describing the relevant geometries[12,
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Figure 6.6: Active space orbitals for 11-cis retinal inside Rhodopsin (SA1-CASSCF(12,12)/6-
31G*/AMBER). Orbitals most involved in the electronic transition describing the first excited

state are highlighted by the dotted boxes. Corresponding orbitals were used for all other ge-
ometries.

15]. On the other hand, for the calculation of state energies, wavefunctions and TDM-
s/NACs, we rely on the dynamically-correlated CASPT2 method, using an imaginary
shift of 0.2 a.u. and setting the IPEA shift to zero. This combined CASPT2/CASSCF
approach has proved to return experimentally accurate energies[15, 48]. Figure 6.6
shows the CASSCF active orbitals.

The two ground state minima were optimised putting only one root in the CASSCF
state averaging (i.e. SA1-CASSCF(12,12)/6-31G*/AMBER), as this showed to give a
better convergence and cleaner orbitals. For comparison, the 11-cis structure was also
optimised at the MP2/6-31G*/AMBER level. For S; and CI optimisations, instead, the
ground state and the first excited state were considered (i.e. SA2-CASSCF(12,12)/6-
31G*/AMBER). The structure of the S; “planar” minimum was obtained through a
constrained optimisation in which all the dihedrals of the polyene chain were kept
frozen at their 11-cis minimum value. A fully unconstrained geometry optimisation
on S; was also performed at the same level of theory, that however terminated at the
optimised S;/Sy CI structure. Two SA2-CASSCF(12,12)/6-31G*/ AMBER minimum
energy path (MEP) calculations were also performed on the excited state, starting
from either the 11-cis or the all-trans geometries.
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For the subsequent parameterisation (i.e. for all single-point calculations of the
final grid) the CASSCF space was extended to S, as well, as it was found to get close
to Sy at distorted geometries. Concerning the perturbative correction, the afford-
able computational cost allowed to perform the full parameterisation at both MS- and
XMS-CASPT?2 level, in order to appreciate final differences in the PESs and dynamics
and assess the two methods. The final level of theory of the grid is therefore (X)MS-3-
CASPT2/SA-3-CASSCF(12,12)/6-31G*/AMBER (referred to as MS-CASPT2 and XMS-
CASPT?2 in the text). NACs and TDMs across the final grid were calculated and sign-
corrected using the CASPT2 energies and wavefunctions according to the procedures
described in section 3.4. All calculations were performed using the COBRAMM[42-
44] software, interfaced with OpenMolcas[49, 50] for the QM calculations.

6.4.1 Generation of the grid structures

For the generation of the 3D grid spanning the torsion, BLA and HOOP coordinates,
we took advantage of the fact that the two excited state MEP define a continuous path
connecting all the reference structures. Indeed, both S; MEPs (i.e. starting from 11-
cis or all-trans FC point) terminate at the same S;/S, CI structure (which matches the
optimised CI structure, see below), and their union constitutes an optimised path con-
necting photoreactant and photoproduct via the most accessible funnel. Moreover (as
will be discussed later), the initial displacement of the MEP starting from the cis iso-
mer is along BLA only, until the S; “planar” minimum is reached. Therefore, the path
defined by the union of the two S; MEPs includes all the four reference geometries.

The unified MEP was then sampled to have a ~5° step of the isomerizing C10-
—C11=C12—C13 dihedral, and the selected structures used as anchor points to scan
the BLA and HOOP, so as to obtain a three-dimensional grid along complex torsion,
BLA and HOOP. The MEP will explore all the three coordinates, but at each point, the
BLA and HOOP scan will produce a uniform grid, in which it will be possible to move
independently along the three coordinates (as illustrated in Figure 6.7). The merging
of the two S; MEPs produces a smooth S; profile, with no geometrical discontinuities
as both MEPs merge at the same S;/S; CI geometry.

BLA

trans

complex torsion

Figure 6.7: Scheme of the BLA-complex torsion grid anchored on the MEP points. The ex-
ample MEP (red path) spans both coordinates, but the BLA scan produces a uniform grid, in
which it is possible to move independently along the two coordinates.

The generation of the grid starting from the S; MEPs has, however, one important
drawback: the two FC points (trans and cis) are at the edges of the grid, which is
not desirable for the wavepacket dynamics. The torsion coordinate must therefore be
extended beyond the cis and trans values. To this aim, we have applied the following
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Figure 6.8: Schematic representation of the grid generation for the BLA coordinate.

procedure:

1. for each dihedral in the molecule we have made a linear interpolation of its value
at the Sy minimum and at the first optimised MEP point, using as abscissa value
the norm of the cartesian difference (in Angstrom) between the two structures;

2. the “inverse-MEP” structures were extrapolated using C10—C11=C12—-C13
steps of about 5° in absolute value;

3. for each geometry, we have performed an SA2-CASSCF(12,12)/6-31G*/ AMBER
constrained optimisation, freezing the C10—C11=C12—C13 dihedral and using
a small optimisation step (3 Bohr).

The optimised geometries were then employed as new “MEP points” for the genera-
tion of BLA and HOOP grids. It is reasonable to expected that such additional grid
points will not play an important role in the dynamics, being far from the non adi-
abatic region (S;/Sy CI). Their role is rather to prevent the wavepacket to escape the
grid beyond the cis and trans minima.

The BLA coordinate is described as a concerted stretching along the retinal carbon
chain, and its numerical value is defined by equation (6.1). The relative grid points
were generated by linear interpolation of all the bond lengths of the QM part be-
tween their value at the Sy 11-cis and S; “planar” minimum structures. To allow the
description of wider BLA oscillations during the dynamics, the grid was extended
by extrapolation in both positive and negative BLA directions (see Figure 6.8 for a
schematisation of the BLA grid range). The final grid points include the BLA values
[0.23,0.17,0.12, 0.05, -0.03, -0.08, -0.14, -0.20 ] A, but the scan was made denser close
to §1/Sy crossing points.

The HOOP coordinate is defined as the out-of-plane movement of the two hydro-
gen atoms liked to C11 and C12. More precisely, the HOOP is defined as the difference
between the C10—C11=C12—C13 and H11—C11=C12—H12 dihedrals, since the latter
(considered alone) changes a lot during the photoisomerization even without HOOP
displacement, as a consequence of the C11=C12 torsional movement.

HOOP = C10C11C12C13 - H11C11C12H12 (6.3)
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H12
C12
C13

Figure 6.9: H11—C11=C12--C10 (blue) and H12—C12=C11--C13 (yellow) dihedrals defin-
ing the HOOP.

The definition of the dihedral angles for the HOOP scan is not unique. Indeed, the
same HOOP displacement can be obtained e.g. editing the two H11-C11=C12—C13
and H12—C12=C11—C10 dihedrals together, or directly the H11-C11=C12—H12
value. However, varying these dihedrals could be tricky, since the atoms are all in-
volved in the definition of nearby dihedrals and angles, which change consequently.
Instead, a variation of the two H11—C11=C12--C10 and H12—C12=C11--C13 dihe-
drals (see Figure 6.9) perfectly describes the out-of-plane hydrogen movement. When
both such dihedrals are equal to 180°, the two hydrogens lie in the same plane as the
three carbon atoms (C10—C11=C12 or C11=C12—C13, respectively) and the HOOP
value is 0. Instead, if they are coherently moved of +x°, the final HOOP value is equal
to +2x°. The HOOP was scanned for each BLA-MEP grid point from -80° to +80° with
step 20°. For each BLA-torsion coordinate, 10 HOOP structures will therefore be avail-
able: the 9 scan values plus the “natural” HOOP value at the MEP anchor point.

The calculation of NACs in internal coordinates using the COBRAMM protocol
described in section 3.4.1 requires cartesian displacements along the three reactive
coordinates. For each grid point, we have defined three orthonormal vectors pointing
in the complex torsion, BLA and HOOP directions and created the relative displace-
ments by a shift of £0.005 A of magnitude. More details about the generation of the
orthonormal cartesian vectors can be found in Appendix A.

6.5 Results and discussion

6.5.1 Reference geometries

The CASSCF(12,12)/6-31G*/AMBER optimised structures of the four reference geome-
tries are shown in Figure 6.10, with the most relevant geometrical parameters col-
lected in Table 6.1. Table 6.2 shows the CASSCF and CASPT2 energies of the lowest
three electronic states at each geometry.

The differences between the bond lengths in the ground and excited state opti-
mised structures indicates a clear displacement along the BLA coordinate, that chan-
ges from 0.12 A of the 11-cis and all-trans minima to slightly negative values at the
S1/Sg Cl and S; “planar” minimum (see Table 6.1). The latter is in fact reached from
the 11-cis minimum by a relaxation of C-C stretchings (i.e. BLA), and differs from it
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(a) 11-cis Sy min

(c) S; “planar” min (d) S;/Sy CIL

Figure 6.10: CASSCF(12,12)/6-31G*/AMBER optimised structures of the four reference ge-
ometries for the parameterisation of the retinal chromophore inside Rhodopsin.

mainly in the bond lengths. The BLA relaxation actually stabilises both excited states,
as demonstrated by the S; and S, energies at the S; “planar” minimum (see Table 6.2).

The optimised S;/S, crossing point shows a twisted geometry (C10—C11=C12-
—C13 = -89.06°), with a partial rotation around the adjacent double bonds (C9=C10
in particular, see Table 6.1), addressed to the bicycle pedal mechanism discussed pre-
viously. The all-trans minimum optimised inside rhodopsin, instead, is not perfectly
planar, but rather shows carbon chain dihedrals between -140° and -150°. Indeed, the
the most stable structure in the protein is a partially rotated conformer called batho-
rhodopsin, that was experimentally found to show dihedral values around 150° along
the carbon chain[51, 52], and our results also agree with some optimised structures
reported in the literature at a very similar level of theory[22].

Concerning the HOOP coordinate, it does not change significantly on passing
from the Sy 11-cis geometry to the CI, and it shows small values in both these struc-
tures. In the all-trans minimum, instead, the “CCCC” and “HCCH” dihedrals differ
significantly, resulting in a HOOP value of ~ 33° (see Table 6.1), as a consequence of
the spatial constraints imposed by the protein embedding.

The last geometrical parameter reported in Table 6.1 is the planarization of the -
ionone ring (i.e. C5=C6—C7=C8 dihedral), which stabilise S;: indeed, the C6-C7 link
becomes a double bond after BLA relaxation on the excited state, therefore aiming to
planarise the C5=C6—C7=C8 dihedral (as testified by the values in Table 6.1).

Although a full CASPT2 optimisation would be very expensive (due to the lack of
analytical gradients), the CASSCF structures can be compared with the CASPT2 min-
ima/CIs from the 3D grid. The geometrical parameters of the resulting SS, MS and
XMS-CASPT2 S, cis, trans and S; “planar” minima are reported in Table 6.1, while
a detailed analysis of the (X)MS-CASPT2 crossing seam is given later (see Table 6.3
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Table 6.1: Geometrical parameters of the four CASSCF-optimised reference structures for the
parameterisation of the retinal chromophore inside Rhodopsin and their SS-, MS- and XMS-
CASPT?2 analogues from the grid. The MP2-cis optimised structure is also reported for compar-
ison.

Torsion (°) HOOP BLA  Ringpl ()

C10C11C12C13 C8C9C10C11 C12C13C14C15 ©) A) C5C6C7C8
MP2 MP2-cis min -9.90 175.60 -179.30 -7.20 0.07 -49.40
[, Sy 11-cis min -5.65 174.29 -178.81 -5.14 0.12 -55.14
% S; pl. min -5.65 174.29 -178.81 -5.14 -0.03 -51.95
5 S1/S, CI -89.06 -153.87 -167.10 -3.09 -0.01 -39.86
S, all-trans min -140.98 -150.94 -154.90 32.92 0.12 -46.57
SS-cis-min -5.65 174.29 -178.81 -5.14 0.12 -55.14
A SS-S; pl. min -5.65 174.29 -178.81 -5.14 0.05 -55.14
SS-trans -140.98 -150.94 -154.90 32.92 0.12 —-46.57
- MS-cis-min -10.47 174.30 -176.81 0.82 0.05 -53.76
= MS-S; pl. min -10.47 174.30 -176.81 0.82 -0.03 -53.76
MS-trans -135.88 -152.27 -155.42 20.00 0.05 -45.37
N XMS-cis-min -5.65 174.29 -178.81 -5.14 0.12 -55.14
E XMS-S; pl. min -5.65 174.29 -178.81 -5.14 0.05 -55.14
XMS-trans -140.98 -150.94 -154.90 32.92 0.12 -46.57

and relative discussion). Concerning the Sy minima, the SS and XMS structures per-
fectly match the CASSCF ones, while MS-CASPT2 minima are a bit more rotated,
with C10—C11=C12—C13 torsional values around -10° and -135° for cis and trans,
respectively. Also, their BLA value is smaller compared to the CASSCF ground state
minima, while the HOOP shows a better agreement, considering the discretised HOOP
grid does not allow for a perfect match. The MP2-cis minimum is similar to the MS-
CASPT2 one, with a torsional value of ~-10° and a less pronounced difference in the
single and double bond lengths, resulting in a smaller BLA value (i.e. 0.07 A)

The CASPT2 vertical transition energies at the optimised 11-cis minimum can be
compared to the experimental Sy — S; and Sy — S, values (A, = 493 and 340 nm, re-
spectively[1]). SS-CASPT2 shows the best agreement, with energy gaps correspond-
ing to 482 nm (S;) and 332 nm (S,), while MS- and XMS-CASPT?2 slightly overestimate
the energy of both excited states (S; Apax: 466/446 nm for MS/XMS, respectively; S,
Amax:310 nm for both MS and XMS). The MS-CASPT2 match, however, is improved if
the corresponding MS-cis minimum is considered (see Table 6.2): here, the Sy — S;
energy (2.56 eV = 484 nm) is close to the experimental value, while the Sy — S, exci-
tation is now underestimated (396 nm). It is worth to notice that the difference in the
MS ground state energy between the two cis structures is very small (< 0.1eV, i.e. the
two structures are virtually isoenergetic on Sy), and the improved S;-S; gap energy
is mostly due to S; stabilisation for more rotated structures. The MS-CASPT2 pre-
dictions improve even more at the MP2-optimised cis minimum (whose structure is
indeed very similar to the MS one, se Table 6.1), with Sy — S; and S) — S, expected at
502 and 347 nm, respectively. The similarity between the MS-CASPT2 (from the grid)
and the MP2 (optimised) structures and the good agreement with the experimental
value suggests that the MS-CASPT2 minimum might be well captured by our grid,
and that it should not be too different from the MP2 equilibrium geometry.

The same trends are observed at the trans geometry, with the SS-CASPT2 en-
ergy gap reproducing better the experimental bathorhodopsin A,y of 535 nm[53]
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at the CASSCF structure (calculated A, = 508, 484 and 494 nm for SS-, MS- and
XMS-CASPT?2, respectively). Again, the MS-CASPT2 agreement improves at the cor-
responding minimum (from the 3D grid) due to S; stabilisation (while the S, energy
is close to the CASSCF-optimised structure), with a calculated A,,,x of 563 nm. Ex-
perimentally, an intermediate species (called photorhodopsin) with a red-shifted ab-
sorption (i.e. 590 nm[53]) is observed prior to the formation of all-trans photproduct.
Photorhodopsin was found to be even more distorted in the dihedral values[17], and
it rapidly converts to the more stable bathorhodopsin.

The CASSCF-optimised structure of the S; “planar” minimum (reported in Tables
6.1 and 6.2) is not perfectly reproduced in the 3D grid (due to the fact that the MEP
used for the grid construction reaches a similar, although not identical structure),
which does not allow for a one-to-one comparison as in the case of the Sy minima.
However, the MS-S; “planar” minimum shows state energies which are very similar to
those at the CASSCF-optimised structure. On the other hand, the stabilisation along
BLA is smaller according to SS- and XMS-CASPT2, whose S; “planar” minimum is
only ~0.15 eV below the cis FC point.

The better performance of the single state correction in cases where the reference
states are well separated in energy is a known feature of CASPT2 (see section 2.1.12).
However, in case of (quasi)degenerate CASSCF states, SS-CASPT2 has shown to be
unreliable due to the neglect of state mixing of the reference states. For this reason,
considering that our PESs span distorted geometries including wide avoided crossing
regions, the parameterisation was eventually carried out at MS- and XMS-CASPT2
level (some cuts of the SS-CASPT2 PESs are shown in Appendix B, together with a
comparison of the crossing seam at the different CASPT2 levels). Concerning the
choice of the level of theory (detailed in section 6.4), more explanation is needed for
the S;/Sy Cl case. The S;/S, CI geometry was optimised at the SA-2-CASSCF(12,12)/6-
31G*/AMBER level of theory, yielding a perfect degeneracy of the two CASSCF states
at 2.49 eV above the 11-cis minimum. Subsequent (X)MS-2-CASPT2 corrections on the
two states resulted in a small splitting of the states (~ 0.2 eV). Only later we decided to
include S, in the parameterisation, as a consequence of its approach to S; at CASSCF
level for distorted geometries (especially along BLA). The recalculation of the same
CI structure at the new level of theory removed the degeneracy at CASSCF level (see
Table 6.2), however, the states are still degenerate or very close at CASPT2 level (with
a maximum gap of 0.3 eV observed in the case of XMS-CASPT2, while at SS- and MS-
CASPT2 level they are perfectly degenerate). For this reason, we decided to retain the
SA-2 optimised CI structure for the scan.

Upon S; excitation, the positive charge is partially transferred from the Schiff base
unit to the f-ionone ring, therefore the first excited state has a charge transfer (CT)
character. Figure 6.11 shows the charge distribution in Sy and S; at the four reference
structures. A quick parameter to compare the charge distribution is the total charge
on the C1-C11 terminus and on the C12-NH-Lys terminus[15], shown in Figure 6.11 as
orange circles around the two moieties. In the ground state, the +1 charge is almost
completely localised on the C12-NH-Lys terminus, while on S; at least 50% of the
charge is localised on the C1-C11 terminus at all four geometries. This is particularly
evident at the twisted S;/Sy CI, where the charges are almost 0, +1 (Sy) and +1, 0 (S;)
on the C1-C11 and C12-NH-Lys terminus, respectively (see Figure 6.11).
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Table 6.2: Vertical excitation QM/MM energies (eV) of the retinal chromophore inside
rhodopsin at the CASSCF and MP2 optimised structures and and their CASPT2 analogues from
the grid (SS and XMS cis and trans minima correspond to the CASSCF ones). All energies are
given relative to the S, 11-cis minimum at the corresponding level of theory.

Geometr CASSCF SS-CASPT2 MS-CASPT2 XMS-CASPT2
y So S, S, S S, S, S S, S, S S, S,

So 11-cis min 000 386 464 000 257 374 000 266 400 000 278  4.00
S, “planar’min 114 316 405 062 223 298 032 240 344 068 238 340
51/50 CI 2.27 2.92 4.94 1.81 1.83 4.17 191 1.95 4.29 1.63 1.95 4.39
Soall-transmin 118 502 578 109 353 478 105 3.61 506 107 358  4.90
MS-cis min 037 354 364 013 239 284 -008 248 305 016 253 3.8
MS-S, pl. min 113 331 410 066 241 303 039 251 353 072 255 346
MS-trans min 158 423 460 119 321 343 091 311 414 121 326 3.99

SS/XMS-S; pl. min 0.35 3.68 3.77 0.16 2.40 3.02 0.06 2.46 3.40 0.18 2.64 3.33

MP2-cis min 0.00 3.50 3.91 0.00 2.34 3.19 0.00 2.47 3.57 0.00 2.57 3.46

6.5.2 Minimum energy paths

Two MEP calculations were performed at CASSCF level on the first excited state (S;),
starting at the 11-cis or all-trans geometry, respectively. The (X)MS-3-CASPT2/SA3-
CASSCF(12,12)/6-31G*/AMBER energies were calculated every five MEP steps. Figure
6.12 shows the energy profiles along the union of the two MEPs as a function of
the isomerizing dihedral. The CASSCF profiles are qualitatively preserved at (X)MS-
CASPT?2 level, with a stabilisation of S; towards ~-90° torsion, where it become almost
degenerate to Sy. On the other hand, the ground state is highly destabilised along
the MEP. The main difference between the two perturbative corrections is observed
between -85° and -110° torsion: the S;-Sy degeneracy is preserved by MS-CASPT2,
while at XMS-CASPT?2 level the two states split, and are separated by a ~0.3 eV gap.
The second excited state S, lies higher in energy in all points at (X)MS-CASPT?2 level,
except close to the trans structure where it approaches S;.

The two MEPs end at very similar structures, which are also very similar to the
optimised S;/Sy CL

Starting from the corresponding Sy minimum, the main geometrical deformations
are along the BLA and torsion coordinates, whose profiles are shown in Figure 6.13
(a) and (b) as a function of the C10—C11=C12—C13 dihedral along the two MEPs.
Both MEPs show an initial decrease of the BLA value, while the C10—C11=C12—C13
remains almost unchanged (see Figure 6.13 (a)). The BLA decreases from the initial
value of 0.12 A (of both trans and cis isomers) to the negative value at the S; “planar”
minimum (-0.03 A), which is reached after the first MEP steps on the cis side. In both
MEPs, the BLA value increases a bit as torsion proceeds towards the S;/S, CI at -89°,
to ebentually reach the —0.01 A value of the crossing point.

After BLA relaxation, the C10—C11=C12—C13 torsion is started. As discussed
previously, rotation of the adjacent double bonds accompanies the isomerization in-
side the protein embedding (as testified by the C8—C9=C10—C11 and C12—C13-
=C14—C15 dihedral variation shown in Figure 6.13 (b)), in which the simple “one-
bond flip” mechanism would be too space demanding. However, torsion of the corre-
sponding dihedrals is only partial, with a maximum displacement form the FC values
of ~20°-30°.
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Figure 6.11: CASSCF(12,12)/6-31G*/AMBER charge distribution (Mulliken) at the four refer-
ence geometries. The size and colour of the atom spheres is proportional to the corresponding
charge (blue = negative, red = positive), while the total charges of the C1-C11 terminus and
C12-N-Lys terminus are represented by the orange circles, with colour opacity proportional to
the charge value.

Figure 6.13 (c) shows the HOOP and H11—C11=C12—H12 dihedral profiles along
the path defined by the union of the two MEPs. On the “cis-side” of the path, the HOOP
is always close to zero (i.e. the two H11—C11=C12—H12 and C10—C11=C12—C13
dihedrals are similar, with only small out-of-plane oscillations of the two hydrogens).
In the path connecting the S;/Sy CI to the trans isomer (or vice versa), instead, the
HOOP varies significantly, reaching a value of approximately -30° at —120° torsion
and 30° at the all-trans isomer.

The union of the two MEPs creates a smooth path connecting all the four refer-
ence geometries, that can conveniently be used to build the BLA and HOOP grid for
our model. The MEP spans all three reactive coordinates (BLA, HOOP, complex tor-
sion), however, the construction of the grid will allow to move independently along
each of them (see Figure 6.7), leaving in the “complex torsion” all the geometrical
deformations not included in bond stretchings and hydrogen oscillations.

Figure 6.14 shows the (X)MS-CASPT2 MEP, built using the grid points. Both
CASPT2 MEPs are in good agreement with the CASSCF path (smooth black line),
with the only difference in the wider HOOP oscillations observed for MS-CASPT2.
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Figure 6.12: CASSCF and CASPT2 energies (QM/MM) along the S; MEPs starting from the
11-cis minimum (left branch) or all-trans minimum (right branch) both ending at the S,/S, CI
(C10—C11=C12—C13 ~ -90°).

Such wide fluctuations are due to the large HOOP step (20°) that was used to reduce
the computational cost, since this coordinate exhibits a smooth and almost quadratic
profile. Therefore, a MEP based on the grid points will necessarily suffer from pos-
sible large HOOP variation between consecutive steps. Despite not being optimised,
the agreement of the CASPT2 paths with the CASSCF one is remarkable, and all the
three MEPs first follow BLA starting from either cis or trans FC points, then deviate
along torsion (and HOOP) to reach the S;/S, crossing.

6.5.3 Potential energy surfaces

BLA scan from MEP points

For construction of the BLA grid, the MEP geometries were sampled to get a step of
approximately -5° of the central C10—C11=C12—C13 dihedral, and for each geometry
we performed a BLA scan. The HOOP coordinate was left untouched at this stage and,
for each BLA scan, it retains the value of each MEP “anchor” point. Figure 6.15 shows
the 2D PESs of Sy, S and S, at CASSCF and (X)MS-CASPT?2 level, while Figures 6.16
and 6.17 show some cuts along the torsion and BLA coordinates.

As expected, the torsion is not favoured on S; whenever BLA > 0.05 A (as demon-
strated by the torsion profiles in Figure 6.16), while it shows a favourable S; gradient
after the bond-order inversion is complete (i.e. BLA <0.05A). The steep torsional
gradient observed on all states for BLA <-0.03 A and BLA >0.12 A at the 11-cis and
all-trans torsional values (see orange circles in Figure 6.16) is due to the high desta-
bilisation, inside the protein embedding, of highly-distorted BLA geometries close
to FC points. Indeed, rotation around the double bonds of the carbon chain is able
to accommodate/compensate the highly distorted bond lengths, which are instead
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Figure 6.13: Variation of the BLA (a), C8-C9-C10-C11/C12-C13-C14-C15 dihedrals (b) and
HOOP (c) along the MEPs starting from the 11-cis minimum or all-trans minimum and ending
at the S,/S, CI. For the HOOP coordinate both the HOOP value (panel (c), top) and the H11-C11-
C12-H12 values are plotted (panel (c), bottom), together with the HOOP = 0 reference (black
dashed line). In all panels, the joining point of the two MEPs (S,/S, CI) is represented by the
vertical orange line.

strongly unfavored at the cis and trans conformations. However, such discontinuities
can be smoothed by appropriate PESs fitting prior to dynamics, retaining only the
steep gradient that will hinder any wavepacket/trajectory to populate such distorted
geometries for a long time.

The BLA coordinate shows a quadratic profile for all torsional values and for all
three states (Figure 6.17). At cis and trans minima, the BLA minimum on the ground
state is found at positive values, while it shifts towards 0 A for twisted geometries.
Instead, both S; and S, minima are always found at small (or negative) BLA values,
originating the initial gradient at the FC point.

Besides the position of stationary points, a fundamental characteristic of the pa-
rameterised PESs is represented by the reactive S-Sy crossing seam. No S;/S, Cls are
observed at CASSCF level in this scan. Indeed, even if the MEP was calculated at SA2-
CASSCEF level and clearly leads towards the SA2-CASSCF S;/S, crossing, the inclusion
of the third root (SA3-CASSCF) removes the degeneracy at this level of theory. How-
ever, the Cl is still captured by CASPT2 (as discussed previously). The right panels of
Figure 6.16 show some close-up of the CASPT?2 profiles for torsion [-70°:-120°]. While
MS- and XMS-CASPT?2 both predict the lowest S; energies around —90° torsion, they
somehow disagree on the BLA values: the lowest energy gaps AEg, g, are found at
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Figure 6.14: Comparison between the optimised CASSCF MEP on S, (black dashed line) and
the (X)MS-CASPT2 MEP extrapolated from the 3D grid. The S; PES along torsion and BLA is
shown on the bottom plane (at MS-CASPT2 level), together with the projection of the three
MEPs on the same 2D space.

Table 6.3: Energies (eV) of lowest (X)MS-CASPT?2 crossing points (i.e. AEg, _g, <0.15eV) from
the 3D torsion-BLA-HOOP grid.

MS-CASPT2 XMS-CASPT2

Torsion ()  BLA(A)  HOOP (°) S, s, s, S, s, s,

CI-MS-1 -87.0 -0.03 0.0 1.95 2.03 4.25 1.68 1.99 4.37
CI-MS-2 -85.8 -0.03 0.0 1.93 2.06 4.27 1.69 1.99 4.38
CI-MS-3 -90.8 -0.03 -6.6 1.98 2.08 4.32 171 2.04 4.43
CI-MS-4 -89.1 -0.03 -3.1 2.05 2.10 4.34 1.75 2.09 4.46
CI-XMS-1 -85.8 0.05 -0.8 1.89 2.15 4.12 1.81 1.96 4.24
CI-XMS-2 -85.8 0.05 0.0 1.90 2.15 4.13 1.83 1.97 4.24
CI-XMS-3 -90.8 0.05 6.6 1.93 2.17 4.16 1.84 1.98 4.28
CI-XMS-4 -75.9 0.05 20.0 1.96 2.26 4.21 1.93 2.02 4.32

slightly negative BLA values for MS-CASPT2, while the XMS-CASPT2 crossing seam
is found at slightly positive BLA. Table 6.3 shows the geometrical parameters and en-
ergies of the four lowest energy S;/Sy CIs of the 3D grid for MS- and XMS-CASPT2
(where we have considered as Cls all those points in which AEg g  <0.15eV). The ge-
ometries labelled CI-MS-3, CI-MS-4, CI-XMS-1 and CI-XMS-3 belong to this first BLA
scan (while the other four structures are found after HOOP scan and are discussed
later). All the identified CIs show similar structures, with the major differences ob-
served in the BLA values between MS- and XMS-CASPT?2 as discussed before. It is
worth to notice that these crossing regions are accessible from cis FC point, whose
energy is 2.66/2.78 eV at MS/XMS-CASPT2, respectively.

Concerning S, it is generally destabilised by torsion at all levels of theory, with
the nice result that it is not interfering with S; and S in the crossing region. How-
ever, especially for positive BLA values, it sometimes approaches S; (see Figure 6.17),
especially at CASSCF level (degeneracy is then resolved by CASPT2 correction).
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Torsion-BLA-HOOP grid

Figure 6.18 shows the Sy, S; and S, PESs along the torsion and HOOP coordinates
for the BLA values at which Sy and S; come closer in energy (i.e. BLA=0.05 and
-0.03 A for MS-CASPT2 and BLA =0.12 and 0.05 A for XMS-CASPT2). The crossing
between S; and S, at twisted geometries is clearly visible, while S, is always higher in
energy and not interacting. For a better visualisation of the crossing seam, Figure 6.19
(left) shows the S;-Sj energy in the BLA-HOOP space for several torsional values. The
crossing region spreads from C10—C11=C12—C13 ~ -60° to —120°, with all the lowest-
energy crossings found between -75° and —-91° (see Table 6.3). As discussed previously,
the XMS Cls are fund for higher (more positive) BLA values compared to MS-CASPT2.
Concerning the HOOP, it emerges that the MS-CASPT?2 crossing region is more spread
along BLA but more “peaked” along the HOOP (blue-violet region in the left panels
of Figure 6.19) compared to XMS-CASPT2, which shows less real-degeneracy points,
but with a broader avoided-crossing region along the HOOP. Moving from the cis
to the trans side, the crossing region shifts from positive to negative HOOP values
for both CASPT?2 corrections, passing through HOOP = 0° around -90° torsion. This
trend is testified by the geometries of the lowest crossing points in Table 6.3: CI-XMS-
4 located on the “cis side” (-75.9° torsion) and is characterised by a significant positive
HOOP value (20°), while all other structures are closer to —90° torsion and show small
HOOFP values.
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Figure 6.18: Potential energy surfaces of Sy, S; and S, of the retinal chromophore inside
rhodopsin along the complex torsion and HOOP coordinates (a) MS-CASPT2 PESs for fixed
BLA = -0.03 A; (b) MS-CASPT2 PESs for fixed BLA = 0.05 A; (c) XMS-CASPT2 PESs for fixed
BLA = 0.12 A; (d) XMS-CASPT2 PESs for fixed BLA = 0.05 A.
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Figure 6.19: S,-S; energy gap (left panels) and NAC module (right panels) along BLA-HOOP

for selected torsional values.
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6.5.4 Non adiabatic couplings

The (X)MS-CASPT2 NACs were calculated for all three couples of states between —10°
and -135° torsion for all BLA and HOOP values. The S,/S; and S,/Sy NACs are always
small, while the S;/Sy NAC gains magnitude in the region where the two states get
close in energy. The S;/S; NAC module for selected torsional values is shown in the
right panels of Figure 6.19. In agreement with the topology of the crossing seam
described above, the MS-CASPT2 NAC is largest at slightly negative BLA, while the
peak along the HOOP shifts from positive to negative values as the torsion proceeds
from cis to trans. The same HOOP trend is observed for XMS-CASPT NACs, which
however show highest values for slightly positive values of BLA (Figure 6.19).

To assess our protocol for NAC calculation, and to make sure that our three coor-
dinates capture a sufficient portion of the full NAC (which also gives an estimate of
the accuracy of the selected coordinates), the full cartesian S;/Sy; MS-CASPT2 NAC
was calculated for one of the torsional scans. The results are shown in Figure 6.20.
Our three coordinates are able to reproduce a large part of the full NAC, especially at
the crossing region, where BLA, HOOP and complex torsion account for about 70% of
the total NAC vector. Away from the crossing region, the fraction of NAC reproduced
is still relevant (~30%) although smaller. However, the absolute value of the coupling
is small here, and it is therefore expected that the missing portion of the NAC will not
affect the dynamics in a significant way.
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Figure 6.20: Fraction of the full cartesian S,/S, MS-CASPT2 NAC vector reproduced by its
components along BLA (red) HOOP (blue) and complex TORSION (green) directly computed
as described in section 3.4.1 (BLA fixed at 0.12 A, from the initial MEP-BLA scan). The black
line represents fraction of total NAC reproduced by all three components.

Figure 6.20 is also representative of the general trend in the relevance of the three
reactive coordinate in reproducing the S;/Sy NAC: across all the grid, the BLA compo-
nent of the NAC vector is the highest close to the 11-cis and all-trans torsional values,
while moving towards the twisted (crossing) region, the HOOP component always
dominates. This further testifies the importance of the HOOP coordinate as coupling
mode for the rhodopsin model, in agreement with previous findings[21-23, 37].
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6.6 Conclusions

We have parameterised a three-states, three-modes model for the retinal chromophore
inside rhodopsin based on accurate QM/MM calculations (i.e. (X)MS-3-CASPT2/SA3-
CASSCF(12,12)/6-31G*/AMBER) that could serve as solid basis for the simulation of
the photoisomerization process inside the protein by means of quantum or mixed
quantum/classical dynamics. Our data could allow to perform dynamics simulations
of high accuracy, especially in the case of QD for which (to the best of our knowledge)
previous simulations reported in the literature are based on either accurate descrip-
tion of the relevant coordinates but for minimal models in the gas phase[23], or they
account for the protein embedding but at the expenses of the accuracy in the coordi-
nate description (Hahn-Stock model and its variants[29, 32-36]).

The model coordinates include the bond-length-alternation (BLA), H11 and H12
hydrogens out-of-plane wagging (HOOP) and a complex torsional motion of many
dihedrals along the chain, describing the bicycle pedal mechanism previously re-
ported[14]. For the 3D grid construction, we took advantage of the fact that the union
of the two S; MEPs (starting from either cis or trans FC points) forms a continuous op-
timised path connecting all relevant structures for the isomerization (i.e. cis and trans
S minima, lowest S;/Sy CI and S; “planar” minimum visited through BLA relaxation
after the photoexcitation) following exactly the three model coordinates. Such MEP
path was sampled to obtain almost uniform steps of 5° for the isomerizing dihedral,
and each sampled geometry was then used as starting point for the generation of the
BLA-HOOP grid. The energies, TDMs and NACs of the three lowest electronic states
were calculated across the grid, both using MS- and XMS-CASPT?2 correction in order
to appreciate any difference between the two methods.

The resulting PESs show a qualitative agreement between CASSCF and CASPT2
topologies, both in terms of position of the reference structures and (more impor-
tantly) in terms of MEP connecting them, thus justifying the use of the CASSCF MEP
for the grid construction. The S;/S, crossing seam spreads around the optimised CI
in all three coordinates and includes twisted geometries between -60° and —-120° of
torsion. The two CASPT2 methods predict similar PESs topology, with the only dif-
ference in the BLA position of the crossing seam which, according to MS-CASPT?2 is
found mainly at slightly negative BLA values, while the bond-order inversion is less
pronounced at XMS-CASPT?2 level, whose CI seam is found at slightly positive BLA
values. The HOOP coordinate is found to play a crucial role as coupling mode between
S and S states, especially in the crossing region, where it accounts alone for more
than 70% of the total NAC value. The S, state was also included in the model, due
to its (almost)crossing with S, at CASSCF level for BLA-distorted geometries, which
however is resolved by both CASPT?2 correction, with a consequent small magnitude
of the corresponding NAC in all gridpoints.

The selection of the three reactive coordinates for the description of the photoi-
somerization was further assessed by comparison of the full MS-CASPT2 numerical
S1/Sg NAC with the reduced NAC made up of its three components along the model
coordinates. The high fraction of the total NAC reproduced (~ 75 % around the cross-
ing seam) proves their accuracy.

A complete assessment of our model can be reached only through its employment
in dynamics simulations, and we are currently planning to perform QD as well as
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trajectory surface hopping dynamics based on the presented PESs and couplings. Ac-

curate QD simulations of this fascinating process inside the protein embedding are
still missing, and could give more insight on quantum effects related to the nonadia-
batic event.
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Chapter 7

Concluding remarks

During my three-years PhD research activity I have extensively used accurate wave-
function-based quantum chemistry electronic structure methods such as CASPT2/
CASSCEF (and their restricted version RASPT2/RASSCF) to parameterise different mod-
els for the simulation of non adiabatic events in photoactive systems. This implies both
the development of general computational tools for the parameterisation of quantities
like energies and non adiabatic couplings (NACs), but also a specific tailoring of the
approach for each case (e.g. choice of level of theory for the electronic structure, type
of dynamics simulation, selection of reduced coordinates).

The produced data allowed to simulate with high levels of accuracy the excited-
state quantum dynamics of relevant photoactive systems like azobenzene, pyrene and
the retinal chromophore inside rhodopsin. For each system, the first crucial step was
the selection of the photochemically (or photophysically) active coordinates, repre-
sented by either few key internal coordinates (e.g. azobenzene), a subset of normal
modes (e.g. pyrene) or even by complex mixtures of many degrees of freedom (e.g.
rhodopsin). The second important point for the construction of accurate models is
the selection of the level of theory. Indeed, it is fundamental to select the best active
space and flavour of perturbative correction (e.g. single state, multistate, extended
multistate, etc.) for each specific case, especially when mapping energies and wave-
functions over a wide range of geometries, which can be quite deformed and signifi-
cantly different from the ground state minimum. The optimal level of theory should
represent the best compromise between accuracy and computational time.

In order to obtain accurate and wide sets of data with a fair computational cost,
some computational tools were developed and implemented in the computational
chemistry software COBRAMM][1-3] for the direct calculation of the components of
vectorial quantities (like gradients and NACs) along reactive coordinates, significantly
reducing the computational cost.

Our model for the azobenzene molecule consists of two states and three internal
coordinates (the central C—N=N—C dihedral and the two C—N=N bending angles)
which are able to describe both proposed mechanisms for the cis/trans photoisomer-
ization (i.e. dihedral torsion or inversion of one of the two bending angles). We have
produced an extended map of the Sy and S; energies and couplings that allowed to get
a clear and comprehensive picture of the intersection seam between the two states.
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Mixed quantum-classical dynamics using our reduced model showed that it correctly
reproduces the nz* trans — cis quantum yield, and confirmed the torsion as driv-
ing coordinate for the isomerization, but with a crucial role of the CNN bendings to
desymmetrize the molecule and couple the two states. A similar deactivation mech-
anism to that of the nz” state of azobenzene was also observed in mixed quantum-
classycal (TD-DFT) dynamics simulations of push-pull azobenzene derivatives excited
to the higher 7" state, foreseeing an increase in the bright state quantum yield com-
pared to the parent compound. This interesting behaviour is addresses tho the effect
of the electron donating-withdrawing substituents, endorsing the use of push-pull
derivatives for more efficient, visible-light activated switches. In the case of pure
azobenzene, our extended database was employed in a collaboration with the group
of Shaul Mukamel for the simulation of transient X-ray diffraction and X-ray Raman
spectroscopy experiments during the non adiabatic event, making predictions about
specific signatures of the conical intersection passage.

The simulation of the deactivation mechanism of pyrene, in contrast, involves
many of its normal modes but with only small deformations due to the rigidity of
this aromatic system. In this case, we have developed a parameterisation protocol
for a linear vibronic coupling hamiltonian for quantum dynamics based on accurate
wavefunction-based multiconfigurational methods. Our results evidence the depen-
dance of the resulting model on the active space size and composition, which must
be carefully tuned. Despite not being a “black-box” procedure, our protocol is fully
portable and has proved to yield accurate dynamics.

An important assessment of our parameterisation strategies is represented by
their application to a photoinduced process taking place in a complex environment.
We were able to produce a wide and accurate data set for the photoisomerization of the
11-cis retinal chromophore inside rhodopsin, producing the first extended mapping
of electronic energies and couplings inside the protein embedding (which was treated
using the QM/MM approach). In this case, most recent literature results agree on the
need of a two-states, three-modes model including two reactive coordinates (torsion
of dihedrals along the carbon chain and bond length alternation) and a coupling mode
(out-of-plane wagging of the two hydrogens linked to the isomerizing bond). A model
for quantum dynamics simulation of rhodopsin, that accurately accounts for all three
degrees of freedom and for the protein embedding at the same time, is still missing,
and we hope that future simulations based on our data could add new insight into the
dynamics of this fascinating system.

To summarise, we have shown useful computational protocols to produce accurate
and extended databases for the simulation of photochemical reactions at a fair com-
putational cost, and tested the resulting models through different types of dynamics
simulations (ranging from semiclassical to fully quantum). The developed protocols
and strategies can be applied to many small/medium size photoactive systems (both in
gas phase and in complex environments) allowing for accurate simulations of ultra-
fast processes (including complex multi-pulse non-linear spectroscopies) which are
still difficult to study experimentally.
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Appendix A

Cartesian displacements along
reactive coordinates

The use of arbitrary coordinates in numerical calculations is a powerful strategy to
reduce the computational cost. However, a robust procedure to correctly generate dis-
placements along arbitrary coordinates is needed, in order to obtain structures which
are consistent with the desired geometrical deformation, that are orthogonal to all
other reactive coordinates and that do not contain pure rotations and translations.

In the case of the retinal chromophore inside rhodopsin described in chapter 6,
the main hurdle is represented by the non-linear torsional coordinate. Indeed, the
BLA stretching and HOOP wagging are well described by linear variation of single or
multiple bonds/dihedrals, that allows to obtain the unit vector pointing in their direc-
tion quite easily at any grid point. In contrast, the torsional coordinate was defined
through the union of two optimised MEPs connecting each GS minimum geometry
(cis and trans) to the same S1/Sy CI on the excited state, and sampling geometries to
have a ~5° step of the isomerizing C10—C11=C12—C13 dihedral. As a result, the vari-
ation of all other dihedrals in the chromophore is non-uniform along the path, and
the definition of the vector pointing in the direction of the torsion coordinate is not
straightforward.

In the following, we describe the procedure for the generation of orthonormal
unit vectors along the complex torsion, BLA and HOOP coordinates for the rhodopsin
case study of chapter 6, but adaptation to other cases of similar or lower complexity
should be easy. The procedure was designed to be integrated with the COBRAMM
package[1-3] for the calculation of numerical NACs and produces cartesian displace-
ments removing rigid translations or rotations to satisfy Eckart conditions[4]. The
latter requirement is fundamental, otherwise e.g. the wavefunction overlaps between
reference and displaced geometries would necessarily be affected by these displace-
ments as well.

The three unit vectors are eventually made orthogonal by application of Gram-
Shmidt algorithm, and corresponding orthogonal displacements for numerical NAC
calculation at each grid geometry can be obtained.
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A.1 Removing translations and rotations

Determining the Eckart molecule fixed-frame for an arbitrary molecule with respect
to a reference geometry is a common problem in chemistry. This implies removing
pure translations and rotations from the cartesian coordinates of the displaced struc-
ture, to retain only internal vibrations (i.e. geometrical deformations). Removing pure
translations from displaced geometries is accomplished by subtracting the reference
centre of mass coordinates, while pure rotations are more complicated to deal with.

We have applied an algorithm presented by Krasnoshchekov et al.[5], which makes
use of quaternion algebra. A quaternion is a 4D vector (g, ¢1, ¢2, q3), Whose compo-
nents represent a scalar value (go) and the three components of a 3D vector (g1, g2, g3)-
A quaternions is usually represented as [qo, ], and it can also be considered as a ro-
tation of the three-dimensional space about the axis specified by the vector of the
quaternion g, by the angle specified by its scalar part qy. The applied algorithm
makes use of quaternions to find the rotational matrix that minimises the sum of
mass-weighted squared deviations (MWSD) between the reference and displaced ge-
ometry. The authors of reference[5] prove that such minimisation ensures satisfying
the rotational Eckart conditions.

A.2 Stretching: bond length alternation

The BLA coordinate is described by a concerted stretching of all carbon-carbon bonds
along the chain (see section 6.4.1). However, the range of the C—C oscillation is non
uniform, with the central bonds showing the larger differences in the initial and final
values. In order to get the most accurate BLA oscillation, we have performed a linear
interpolation of each bond length in the retinal chromophore between the two limit
structures of BLA, i.e. the 11-cis minimum and the S; “planar” minimum, that show
an inversion of the bond order with respect to each other.
To obtain the BLA unit vector at a generic grid point (reference structure):

1. convert the reference structure to “chemically meaningful” Z-matrix format (i.e.
making sure that all distances between chemically bonded atoms are defined);

2. for each bond, find the corresponding maximum BLA variation as the difference
between its values at the two extremes;

3. create two copies of the reference Z-matrix (Z-mat, and Z-mat_) and edit each
bond length adding + the corresponding BLA variation;

4. transform back to cartesian coordinates removing translations and rotations
with respect to the reference geometry obtaining xyz, and xyz_;

5. find the BLA unit vector as the normalised cartesian difference between xyz,
and xyz_.

A.3 Simple torsion: hydrogen out-of-plane wagging

As discussed in section 6.4.1, the HOOP coordinate is numerically evaluated as the dif-
ference between the C10—C11=C12—C13 and H11—C11=C12—H12 dihedrals of the
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retinal chromophore, but a deformation along such coordinate is better achieved by
a simultaneous variation of the two H11—C11=C12--C10 and H12—C12=C11--C13
dihedrals (see Figure 6.9).

Deformation along the HOOP for a generic reference geometry is therefore de-
fined by the simple variation of the two dihedrals in the Z-matrix:

« convert the reference structure to Z-matrix format making sure that the two
H11—C11=C12--C10 and H12—C12=C11--C13 dihedrals are included;

- create two copies of the reference Z-matrix (Z-mat, and Z-mat_) and edit the
corresponding H11—C11=C12--C10 and H12—C12=C11--C13 values by +0.001
radians;

« transform back to cartesian coordinates removing translations and rotations
with respect to the reference geometry obtaining xyz, and xyz_;

« find the HOOP unit vector as the normalised cartesian difference between xyz,
and xyz_.

The same procedure can be applied for any coordinate that can be described by a
linear displacement of one or multiple angles/dihedrals.

A.4  Complex torsion

The last and more complicated case is that of the so called “bicycle pedal” motion, that
involves the simultaneous rotation around the C11=C12 and C9=C10 bonds, which is
actually accompanied by torsion of several other dihedrals in the retinal chromophore.
Since in our model we have defined this coordinate through the optimised MEPs con-
necting the GS minima to the S{/Sy CI, however, this coordinate is rather curved.
Therefore, one needs to define a specific unit vector for each grid geometry. This is
achieved through a quadratic interpolation of each dihedral value at each grid point
along the torsional coordinate, excluding the first and last torsional values, for which
a three-points interpolation was not possible.
To obtain the torsion unit vector at a generic grid point (reference structure):

1. convert the reference structure, together with the previous and following tor-
sional grid points to “chemically meaningful” Z-matrix format (i.e. making sure
that all dihedrals involving chemically bonded atoms are defined);

2. for each dihedral defined in the Z-matrix, read its value at the current, previous
and following torsional grid point and find the equation of the parabola passing
through these three values. In this step, the abscissa value of the current ge-
ometry is set to zero, while for the previous and following torsional points, the
absolute value of the cartesian difference with the reference geometry is used
(in Angstrom, with + and - sign for next and previous torsional structures, re-
spectively);

3. create two copies of the reference Z-matrix (Z-mat, and Z-mat_) and replace
each dihedral value with f(+0.0001) where f(x) is the corresponding quadratic
function;
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transform back to cartesian coordinates removing translations and rotations
with respect to the reference geometry obtaining xyz, and xyz_;

find the torsional unit vector as the normalised cartesian difference between
xyz, and xyz_.
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Appendix B

Rhhodopsin PESs

Figure B.1 shows the S1-S; energy gap for selected torsional values of the 3D grid at all
levels of theory (CASSCEF, SS-, MS- and XMS-CASPT2). The SS-CASPT?2 clearly suffers
from the neglect of state mixing, resulting in a very wide crossing region. Most of
such artificial crossing points are resolved by MS- or XMS-CASPT2 corrections, which
are best suited for strongly interacting states in avoided crossing regions. Figure B.2
shows the torsional profiles at SS-, MS- and XMS-CASPT?2 for fixed BLA values of the
initial BLA scan starting from the MEP points.
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Figure B.1: S,-S, energy gap along BLA-HOOP for selected torsional values and at different
levels of theory.
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