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Abstract 

Biology is now a member of the so-called “Big Data Sciences” thanks to technological advancements 

that allow to fully characterize the macromolecular content of a cell or a collection of cells, generating 

a huge amount of data with time and costs constantly decreasing. This opens interesting perspectives, 

but only a small portion of this data may be experimentally characterized. From this derives the 

demand of accurate and efficient computational tools for automatic annotation of biological 

molecules. This is even more true when dealing with membrane proteins, on which my research 

project is focused leading to the development of two machine learning-based methods (both made 

available through web server): BetAware-Deep and SVMyr. 

BetAware-Deep is a tool for the detection and topology prediction of transmembrane beta-barrel 

proteins found in the outer membrane of Gram-negative bacteria. These proteins are of particular 

interest, being involved in many biological processes and primary candidates as drug targets. 

BetAware-Deep exploits the combination of a deep learning framework (bidirectional long short-

term memory) and a probabilistic graphical model (grammatical-restrained hidden conditional 

random field). Moreover, it introduced a modified formulation of the hydrophobic moment, designed 

to include the evolutionary information. BetAware-Deep outperformed all the available methods in 

topology prediction and reported high scores in the detection task. 

Glycine myristoylation in Eukaryotes is the binding of a myristic acid on an N-terminal glycine. 

SVMyr is a fast method based on support vector machines designed to predict this modification co- 

and post-translationally in dataset of proteomic scale. It uses as input octapeptides and exploits 

computational scores derived from experimental examples and mean physicochemical features. 

SVMyr outperformed all the available methods for co-translational myristoylation prediction. In 

addition, it allows (as a unique feature) the prediction of post-translational myristoylation. 



 
 

Both the tools here described are designed having in mind best practices for the development of 

machine learning-based tools outlined by the bioinformatics community. Moreover, they are made 

available via user-friendly web servers. All this make them valuable tools for filling the gap between 

sequential and annotated data. 
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1. Introduction 

The last few decades have been characterized by an ever-growing interest in the so-called “Omics 

sciences”. This word refers to the branches of biochemistry and molecular biology aiming to 

collectively characterize biological systems by detecting and quantifying a variety of molecules, such 

as genes (genomics), proteins (proteomics), messenger RNA (transcriptomics) or metabolites 

(metabolomics). Omics sciences are also devised to the understanding of the interactions among the 

different molecules present in the cell (protein-protein/protein-nucleic acids/protein-small molecule 

interactomics), to provide a thorough description of the mechanisms at the basis of complex biological 

processes. This knowledge paves the way to an enormous number of applications in different fields, 

such as precision medicine, novel drug discovery, drug repurposing, genetic selection in agri-food 

productive systems.  

Technological advancements in high-throughput techniques adopted in omics sciences allow the 

production of a huge amount of data with constantly reducing cost and time. This has brought in 

biology the concept of Big Data, which may be defined as the availability of large, complex, diverse 

and multi-dimensional, structured or unstructured datasets [1]. 

The advent of Big Data in biology opens new opportunities, as well as new challenges. In fact, our 

ability of producing data in biology is now exceeding our ability of storing, analyzing, and integrating 

them [1], and this gap is expected to increase in the next years [2]. Moreover, issues raised by Big 

Data in biology are not only relative to data size, but also to their growing complexity [3]. On the 

other hand, the access to such data in a cost- and time-efficient manner paves the way to precision 

medicine, namely the customization of medical treatment for individual patients, and other 

applications, as mentioned. All these considerations make clear that we need to put efforts in 

developing efficient tools able to deal with the data deluge we are facing.  
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One of the main issues concerning Omics Big Data concerns molecules still uncharacterized, which 

need to be annotated i.e., endowed with structural and functional information. Out of 225,578,953 

proteins collected in version 2021_04 (Sep 2021) of UniProtKB (565,928 manually annotated in 

SwissProt and 225,013,025 automatically annotated in TrEMBL), only 54,943 (30,970 from 

SwissProt, 23,973 from TrEMBL) are endowed with an experimental structure, at least partial, in the 

Protein Data Bank (PDB). Therefore, experimental structural information is available for only 0.02% 

of proteins (5.5% in the SwissProt set). When looking at functional annotations, 1,214,501 

UniProtKB entries report Gene Ontology (GO) terms, endowed with a “manual assertion” evidence 

code. The rate of curated functional annotation is therefore 0.5%. When analyzing the SwissProt 

curated section, the rate increases to 25.5% (144,482 proteins). The gold-standard approaches for 

functional/structural annotation of biological molecules consist in wet-lab experiments. However, 

these are often costly and time-consuming, and hence not suitable of keeping up with high-throughput 

techniques producing tons of data every day. The picture here described makes clear the need for 

computational methods for fast and reliable structural and functional annotation of large datasets of 

biomolecules.  

My PhD project focused on “Innovative Methods for the Analysis of ‘Omics’ Big Data” and fits in 

this context. This project was funded by a scholarship provided by the region Emilia-Romagna under 

the theme “Human Resources for a Digital Economy: Big Data”. The main goal of the project was 

the improvement of computational tools for structural and functional annotation of biological 

macromolecules. Such tools, once developed and benchmarked, are made available via user-friendly 

and accessible web server, also designed thanks to the software engineering skills I have acquired 

during my internship at BioDec company (http://www.biodec.com/it).   

My research work focused on the annotation of Membrane Proteins (MPs), which are proteins of 

great interest, having many important functions and being primary candidates as drug targets. From 

http://www.biodec.com/it
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this derives the interest toward proper characterization of MPs in silico, also given the methodological 

limitations that hamper a large-scale experimental characterization of such proteins.  

In the next sections, I present the biological background (Section 1) on biological membranes and 

their constituents (proteins and lipids), briefly describing the cell membrane, the bacterial outer 

membrane, and the membrane-bound organelles localized inside the cell. In Section 2, I highlight the 

motivation of interest on MPs annotation, as a central problem in computational biology. Finally, I 

describe the two novel methods that constitute the main subjects of my research project. The first one 

regards prokaryotic Transmembrane Beta-Barrel (TMBB) proteins (Section 3), for which we 

developed a deep learning-based tool, named BetAware-Deep [4], designed for their detection in 

proteomes and the prediction of their topology. The second one addresses the problem of glycine 

myristoylation in proteins (Section 4), a type of lipidation occurring in Eukaryotes, whose annotation 

has been tackled with our SVMyr [5], a method based on Support Vector Machines (SVMs) submitted 

for publication. 

 

1.1. Biological Background 

1.1.1. Membrane Lipids 

A biological membrane is a fundamental structure that encloses cells and cell compartments, and 

defines volumes with peculiar compositions and mediated interactions with the environment [6,7]. It 

is constituted by a lipid bilayer, namely two layers of lipid molecules. The main lipidic component 

of all membranes are phospholipids. Each of these molecules have a polar or hydrophilic “head”, 

namely a phosphate group, and two apolar or hydrophobic “tails”, two fatty acids. Given this feature, 

known as amphipathicity, phospholipids in an aqueous solvent spontaneously form the lipid bilayer, 

which is a favorable conformation exposing polar heads to the solvent, while burying apolar tails in 

the inner part of the bilayer [7]. In addition to phospholipids, in cell membrane contains glycolipids 
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and sterols. The former class of lipids is characterized by a carbohydrate bonded in the polar portion 

and its roles are linked to protein stability and cellular recognition. The latter class consists of a group 

of steroids with a distinctive shape formed by four rings and a hydroxy group, with the function of 

strengthening the membrane, reduce its permeability, and modulate its flexibility [6]. 

1.1.2. Membrane Proteins 

So far, we have described the structure and function of membranes neglecting MPs, which deserve a 

separate discussion. Indeed, MPs account for about the 50% of the volume in most membranes and 

are responsible for most of their functions, acting as receptors, transporters, anchors, and enzymes 

[8]. Receptors are proteins able of binding a ligand (a small molecule or another proteins), mediating 

a cellular response upon it. Transporters mediate the movement of molecules and ions through the 

membrane, in an active or passive way, using the energy derived from biochemical reactions or the 

electrochemical gradient. Anchorage proteins mediate the joining among different cells and the 

adhesion to tissues. Finally, enzymes are proteins which catalyze reactions. 

The central role of MPs is also confirmed by their abundance in the proteome of most organisms, 

accounting for 20-30% of all protein types expressed in the genome [9]. MPs are crucial for defining 

the specific functions of different membranes in the cell. 

MPs may be classified in two major groups [8]: peripheral and integral. Peripheral MPs have transient 

interactions with membranes, while integral MPs permanently interact with them. Integral MPs are 

further divided in transmembrane and lipid-anchored MPs. In the former instance, the protein spans 

the membrane once (single-pass MP) or multiple times (multi-pass MPs), by means of protein 

segments folded in α-helical or β-strand conformations [10]. In the latter instance, the MP is 

covalently bound to a lipid that, integrated into the lipid bilayer, serves as an anchor. According to 

their lipid group, three types of lipid-anchored proteins exist: glycosylphosphatidylinositol (GPI)-
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linked, prenylated, and fatty acylated proteins [11]. In figure 1, classification of MPs is graphically 

summarized. 

 

Figure 1. Examples of membrane proteins. From left to right: single-pass membrane protein; multi-pass membrane 

protein; lipidated protein; peripheral membrane protein (in orange). 

1.1.3. Biological Membranes 

One of the main characteristics shared by all living cells is the presence of a cell membrane, also 

called plasma membrane [7]. The main function performed by cell membranes is to create an internal 

environment having a different composition with respect to the external environment. This is realized 

by acting as a selective barrier, which controls the access and the expulsion of small molecules and 

ions. Nevertheless, cell membranes have a wider range of functions. In fact, they are involved in the 

process of cell adhesions, cell signaling, and they act as attachment surface for cell wall and 

cytoskeleton [6,7]. 

In Gram-negative bacteria, a second membrane is present, known as outer membrane, separated from 

the inner membrane by a space called periplasm. This lipid bilayer surrounds a thin peptidoglycans 

layer, and together they form the Gram-negative cell wall [12]. On the opposite, Gram-positive 

bacteria have a cell wall composed exclusively by peptidoglycans forming a thick layer.  
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The bacterial outer membrane has peculiar features that make it distinct from the cell membrane. One 

of the key features of outer membranes is the presence of the Outer Membrane Proteins (OMPs), 

transmembrane proteins which cross the membrane with beta-strand segments forming a closed 

structural motif resembling a barrel (transmembrane beta-barrel proteins, TMBB).   

In Eukaryotes, TMBBs are also present in the outer membranes of mitochondria and plastids (in 

plants) [13]. Notably, these organelles are enclosed into two membrane systems (inner and outer 

membranes) and, following the endosymbiotic hypothesis, they have evolved from bacteria that 

ended up inside of other cells (host cells). Mitochondria are organelles principally involved in the 

production of energy for the cell, in the form of adenosine triphosphate (ATP). Plastids are organelles 

found in plants, with functions including photosynthesis (chloroplasts), synthesis and storage of 

pigments (chromoplasts), and storage of amylum (leucoplasts).  

 

1.2. Relevance of Membrane Proteins Annotation 

MPs are a class of protein of particular interest. First of all, they perform a wide range of functions 

and are part of many biological processes [8]. This makes them crucial for the survival of the cell. 

For example, transporters are fundamental for the maintenance of a different composition in the cell 

with respect to the surrounding environment, but also for the intake of essential molecules and the 

expulsion of toxic metabolites from the cell. As a further example, receptors control the cell (or tissue) 

response to external stimuli mediated by molecules, such as hormones and neurotransmitters. All 

these without even mention enzymes associated to membrane, which include a wide range of classes, 

such as (but not limited to): oxidoreductases, hydrolases, lyases, isomerases, transferases, and ligases. 

Given the variety of molecular functions and biological processes associated to MPs, they are linked 

to many diseases as well, and fundamental in human health, as reviewed also in [6]. For example, 

cystic fibrosis arises from a mutation in the CFTR gene, which results in the misfolding of a Cl- anion 
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channel. Moreover, MPs may be recognized by viruses, which allows them to target specific cell 

tissues. As a further example, TMBBs localized in the outer membrane of Gram-negative bacteria are 

promising target for developing antibiotics, and at the same time they are involved in mechanisms of 

antibiotics resistance. 

MPs are targeted by some 60% of the approved drugs [14]. This is not surprising, given the wide 

range of functions performed by MPs and the fact that they are implied in diverse diseases. Moreover, 

being localized on the membrane, they are reached more easily by drugs. In fact, delivering drugs 

inside the cell is generally a hard issue to overcome.  

Despite their relevance and the medical interest, MPs are still underrepresented in the Protein Data 

Bank (PDB) [15], the database collecting experimentally determined structures of macromolecules. 

This is principally due to technical issues encountered in the process of structural characterization. 

First of all, most MPs are found naturally in small quantities in membranes, and it is difficult to purify 

them. At the same time, it is difficult to overexpress MPs in host organisms, due to toxicity [16]. The 

second problem is given by the hydrophobic nature of MPs, which prevents them from being 

solubilized and then concentrated to crystals [17]. Detergents are required for their solubilization, but 

they can disrupt their structure. Moreover, the process is costly, and it is not always easy to select the 

right detergent for the problem at hand [17]. As reviewed in [17], much effort is spent in trying to 

overcome all these issues. This is done, for example, trying to make the protein soluble by substituting 

hydrophobic residues with hydrophilic ones [18], using stealthy artificial membranes [19,20], or 

combining high-resolution solid-state NMR spectroscopy with electron cryotomography [21]. The 

application and the further refinement of these techniques will probably give access to a larger number 

of structural data for MPs, but for the time being our knowledge in this field is quite limited.  

Given all these considerations, the availability of accurate computational methods for MPs annotation 

is crucial to expand our understanding, endowing with functional and/or structural information 

protein sequences coming from high-throughput Omics studies.  
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1.3. Machine-Learning for Bioinformatics 

Today, our ability of producing data using high-throughput sequencing technique is exceeding our 

capability of experimentally characterize them. For this reason, it is crucial to put effort in developing 

automated computational tools for the annotation and analysis of biological macromolecules. This 

task is principally addressed via the application of supervised machine-learning algorithms. These 

are defined as algorithms to build a model of association between an input and an output starting from 

data through a process called training. During this process, examples (i.e., data associated with desired 

outputs) are provided to the method and the training algorithm adjusts the value of a (large) number 

of internal parameters to optimally reproduce the associations present in the provided examples. The 

agreement between the desired outputs and the outputs computed from the algorithm is measured 

with a cost (or loss) function. The result of the training procedure is a set of parameters that encode 

the model that best fits data in the training set. If the training set is accurate and large enough, the 

model generalizes the rules of association and can be applied to new independent inputs, making 

predictions on them.  

Given the above definition and description, the difference between machine-learning algorithms and 

classical algorithms should be evident. In fact, in the former case we define a set of data and desired 

answers, from which the machine derives a set of rules. In the latter case, we input data and rules, 

obtaining answers based on them. Thus, machine learning overcome the intrinsic limitations of 

classical programming which needs to be programmed by hand, a condition incompatible with a large 

category of complex problems for which a clear mapping between inputs and desired outputs is 

unknown.  

1.3.1. Supervised Classification  

In bioinformatics, machine-learning methods are widely applied in different fields, including (but not 

limited to): genomics, proteomics, systems biology, the study of evolution, text mining, management 



9 
 

of complex experimental data (e.g., microarray assays), primer design [22]. Different machine-

learning frameworks have been defined so far, each well-suited for tackling different types of 

predictive tasks [22]. In the context of this thesis project, I mainly adopted algorithms for supervised 

classification and probabilistic graphical models for the annotation of biological sequences.  

A classification problem is characterized by a collection of instances associated with classes, which 

are assigned given their features and a set of classification rules. Supervised classification methods 

are applied to automatically derive these rules starting from a collection of labelled examples in the 

training phase.  

There are several methods belonging to this class of machine-learning algorithms: Bayesian 

classifiers [23], logistic regression [24], classification trees [25], nearest-neighbor classifiers [26], 

artificial neural networks [27], SVMs [28]. The last two methods are of particular interest for this 

work.  

Artificial neural networks are based on a simple computing unit called neuron (Figure 2) [27]. Each 

neuron receives several inputs and integrates them computing an activation as a weighted sum with 

a threshold bias. The activation is transformed with a nonlinear transfer function. Thresholds of each 

neuron and weights connecting neurons are the trainable parameters of the network. 

 

Figure 2. Schematization of the McCulloch-Pitts neuron. Inputs (x), each one with a given weight (w), are summed 

computing an activation (a). This is transformed by the transfer function (g) to give the output (z). 
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In multilayer perceptrons, neurons are organized in layers forward-linked to each other through 

weighted directed connections. Thus, the signal flows from the input layer to intermediate hidden 

layers, to finally reach the output layer.  

Artificial neural networks may be used to build very complex and multi-layered architectures, which 

fall in the field of deep learning [29]. This family of machine-learning methods has gained great 

popularity in the last years, and it is currently used in a wide range of applications. For example, 

convolutional neural networks are an essential deep learning tool, that is broadly used in image and 

video processing. Another important class of methods in the deep learning field is constituted by 

recurrent neural networks, in which feedback loops are introduced. This makes them suitable for the 

analysis of sequential data. The most famous and used examples of it are Long Short-Term Memory 

(LSTM) models [30] and gated recurrent units [31].  

 

Figure 3. Schematization of the training procedure adopted for the training of neural networks. The output of the network 

is compared with desired outputs (green neurons), then the connection weights (w), on which the output depends are 

adjusted. This procedure is iterated to have outputs as close as possible to the desired ones. 

Neural networks are trained with a procedure called gradient descent. This is an iterative optimization 

algorithm used to find the local minimum of the loss function, by moving in each step in the opposite 

direction of the gradient. Due to the complexity of the loss function, the algorithm cannot ensure to 
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find the optimal solution and usually requires a high number of iterations. Gradient descent is used 

in combination with a backpropagation algorithm [32], which is used to efficiently compute the 

gradient itself with respect to a loss function exploiting the connected architecture of the network 

(Figure 3). 

An alternative popular approach of machine learning is Support Vector Machines (SVMs) that adopt 

a geometric approach (Figure 4). Indeed, SVMs define a separating hyperplane given a set of 

examples mapped in the feature space. The optimal hyperplane is obtained as the one that maximizes 

the margin i.e., the highest distance among the separating hyperplane and the closest examples, called 

support vectors. Once the separating hyperplane is defined, new examples can be classified given the 

side (thus, the class) in which they fall. 

 

Figure 4. Schematization of an SVM. Blu circles are examples belonging to the class 1, orange circles belonging to the 

class 2. Red line represents the separating hyperplane, while blue lines indicate the margin. Circles from both classes 

lying on the margin lines are the support vectors. 

SVMs can perform also nonlinear separation by means of the kernel techniques (Figure 5). Briefly, 

general functions are used to remap input data into a higher-dimensional space (feature space) where 

a better separation can be obtained. Thanks to the mathematical formulation of the SVM score 

function (dual Lagrangian), only the scalar product in the feature space must be known (kernel), 
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avoiding the explicit transformation of points in the feature space.  Differently from neural networks, 

the training of SVMs is not iterative and ensures to reach the optimal solution. 

 

Figure 5. Kernel trick: examples non-linearly separable in the input space are mapped through the function Φ in a higher-

dimensional, the so-called feature space, where they are linearly separable. 

1.3.2. Probabilistic Graphical Models 

Probabilistic graphical models are machine-learning methods for which conditional dependence 

between variables may be represented by means of a graph (Figure 6). These methods are further 

classified as generative or discriminative models. Generative models, such as hidden Markov models 

[33], estimate a joint probability distribution over inputs and outputs. Instead, discriminative models 

(e.g., hidden conditional random fields [34]), directly model a conditional distribution, avoiding the 

computation of a marginal probability. 

Hidden Markov models are Markov chains for which the observable is not the sequence of states 

(hidden path) but the probabilistic emission of characters. A Markov chain respects the so-called 

Markov rule i.e., transition probabilities from a state to another depends only on the current state. 

Each state generates events (which are observable, contrary to states) with a given set of emission 

probabilities, specific for each state. The training of a hidden Markov model, for setting both 

transition and emission probabilities, is usually realized using the Baum-Welch algorithm. Once 

trained on a set of known data, for example proteins sharing the same family, HMM can recognize 
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other sequences belonging to the same family and can align them to the model states, allowing to 

relabel each position of the sequence with the state that most probably generate it given the trained 

parameters (Viterbi path). 

 

Figure 6. Example of a probabilistic graphical model designed for membrane proteins, in which states are represented as 

circles or squares, and arrows represent transitions between two states. 

Hidden conditional random fields are similar to hidden Markov models, sharing the same basic 

architecture. Anyway, they do not compute a joint probability, which requires strict independence 

assumptions to be calculated, thus hampering the modeling of long-range interactions and/or multiple 

interacting features. At the contrary, hidden conditional random fields allow to make the computation 

of the transition probability depending also on previous states, rather than only on the current state 

(as stated by the Markov rule). Thus, they overcome one of the main limitations imposed by 

generative models and allow to model non-independent observations, that may overlap in space and 

time, which is the case in many applications, including bioinformatics ones.  
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1.3.3. Implementation and Validation of Machine-Learning Methods 

The increasing computational power allowed made possible by advancement in computer technology 

allow to implement machine-learning models of ever-increasing complexity, opening new frontiers 

in the field of bioinformatics, as the advent of AlphaFold proves [35].  

However, it must be considered that the success of a predictive method strongly depends on the 

careful choice of data for training and testing the method and on the rigorous application of validation 

procedures that prevent overfitting, in particular when the machine-learning method is complex in 

terms of training procedure and high number of trainable parameters.  

The curation of the set of examples is crucial in the training phase [36]. A big effort must be placed 

on collecting a dataset that: i) contains only highly accurate data, possibly coming from experiments; 

ii) avoids biases towards clusters of similar data, that could unbalance the training procedure; iii) 

provides a large representation of the available examples. In a classification problem, examples of 

the positive and the negative class must be selected with the same criteria. A second aspect that 

deserves attention is the choice of the most informative representation of the input examples, the 

choice of the most relevant features for the problem at hand and of the most convenient feature 

encoding, ensuring not to introduce spurious correlations while preserving compactness.  

Another aspect of the implementation of machine-learning methods that deserves the highest attention 

is the validation procedure to assess the generalization ability of the trained model [36]. To avoid 

overestimating the method performance, it is necessary to test it on a dataset of known examples as 

dissimilar as possible from the data used during the training phase. Besides the trainable parameters 

(e.g., weights in neural networks, transition and emission probabilities in hidden Markov models), 

machine-learning models are usually defined by a set of hyperparameters (e.g., network architecture, 

loss function, kernel, optimization procedure, learning rates and many others). The value of 

hyperparameters is not optimized by the training algorithm itself and the search of suitable 
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parametrization usually requires performing different training runs for exploring the hyperparameter 

space e.g., via a grid-search procedure. Again, to avoid overfitting, data used to search for optimal 

hyperparameters must be not used to evaluate the method. 

Therefore, in general three sets of well annotated data are needed to train and test a machine-learning 

method: a training set for optimizing the trainable parameters by means of the training algorithm, a 

validation set to perform the choice of the best hyperparameters and a testing set, exclusively used to 

report the method performance. 

A common strategy to adopt the three-set schema (training/validation/testing) while using all the 

available data for reporting performances is cross-validation. In cross validation, a dataset is split in 

n subsets. For each run, one subset is selected for validation, one for testing, and the remaining subsets 

(n-2) are used for training. The procedure is repeated n times rotating the choice of the subsets to use 

in each role (Figure 7).  

 

Figure 7. Cross-validation procedure: the training set is split in n subsets (in this case five). The procedure is repeated n 

times, so that each subset take turn being testing and validation set. The remaining subsets serve as training sets. 
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Another key issue is to evaluate the performance of methods by adopting convenient scores [36]. In 

particular, in classification problems is important to consider and balance errors in both positive and 

negative classes. The examples predicted in the positive class (P) can be correct (True Positive, TP) 

and wrong (False Positive, FP). Analogously examples predicted in the negative class (N) are either 

true negative (TN) or false negatives (FN). These numbers form the so-called confusion matrix and 

must be analyzed in their complexity. Pairs of complementary indexes such as Sensitivity 

(TP/(TP+FN), i.e., the ability to recognize examples in the positive class, and Precision (TP/(TP+FP), 

i.e., the probability of correct prediction, must be reported. If the classification depends on a variable 

threshold, the complementary index dependences can be plotter in a Receiver Operating Curve 

(ROC). Alongside these scores, measures that integrate all the information, such as the Matthews’ 

correlation coefficient (MCC) or the F1 score, must also be computed and reported. The analysis of 

only partial aspects of the prediction might possibly lead to misinterpretation of the prediction 

performance.  

Sequence labelling methods (such as those for annotating transmembrane segments on a sequence) 

require the evaluation of supplementary indexes that assess the prediction along the sequence, besides 

the efficiency in predicting single points. One of these indexes is the segment overlap score (SOV) 

that measures the superimposition between predicted and real segments. 

1.3.4.  Bioinformatics Methods for the Community 

Predictive methods developed by bioinformaticians are routinely released so they can be used from 

researchers in life science to address practical problems. Several solutions are adopted: the release of 

the source code (routinely in public repositories stored on hosting and versioning services like GitHub 

or GitLab), the release of a containerized version of the package (a virtualization of the application 

and its dependencies that facilitate the deployment on different systems) developed by means of 

technologies like Docker (https://www.docker.com) or Singularity (https://apptainer.org), and/or the 

implementation of publicly accessible web servers. The last solution facilitates the access to the 

https://www.docker.com/
https://apptainer.org/
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resources to researcher lacking technical skills or computational resources required for installing the 

application. The systems developed in this thesis have been released through publicly available web 

servers whose implementation required the application of guidelines ensuring their security, 

maintainability, reproducibility, and usability.  

Moreover, particular attention has been dedicated to ensuring their interoperability of applications, 

following the guidelines of ELIXIR, the European infrastructure for bioinformatics. To this aim, 

wherever possible we adopted standard ontologies, identifier resolvers (identifiers.org) [37], and 

schemas (Bioschemas) [38]. This allows to integrate the developed tools in an ecosystem of 

computational resources sharing standards, formats and ontologies greatly improving the usability 

and the FAIRness of tools (FAIR: Findable, Accessible, Interoperable, Reusable) [39]. Finally, to 

ensure accessibility and findability, the tools were inserted into Bio.tools (https://bio.tools), the 

official ELIXIR comprehensive repository for bioinformatics software and databases. 

 

1.4. Prokaryotic Transmembrane Beta-Barrel Proteins Annotation 

1.4.1. Biological Background and Motivations 

TMBB proteins, or OMPs, are integral MPs localized in the outer membrane of Gram-negative 

bacteria, mitochondria, and chloroplasts. All TMBB proteins are formed by beta-strands spanning the 

membrane phase and share the same structural motif recalling a barrel [40]. Prokaryotic and 

eukaryotic ones differ on some peculiar structural characteristics. My research focused on prokaryotic 

TMBB proteins embedded in the outer membrane of Gram-negative bacteria. This exclude pore-

forming toxins, which are secreted to be inserted in the host membrane and have peculiar structural 

characteristics, different from OMPs. An example of TMBB protein is reported in Figure 8. 

All known prokaryotic TMBB proteins [41] have an even number of transmembrane segments per 

chain, ranging from 4 to 36. When the number of transmembrane segments is at least equal to 8, the 

https://bio.tools/
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protein chain assumes a closed beta-sheet shape; when the number is 4, more chains interact to form 

a homomultimeric structure. In all cases, the N- and the C-terminal are localized on the inner (or 

periplasmatic) side of the outer membrane. All beta-strands along the chain interact in an antiparallel 

way with their closest neighbor strands, with the obvious exception of the first and last beta-strands, 

which are in mutual contact in the closed single-chain beta-sheet shape. Transmembrane segments 

are connected on the periplasmic side mainly by short turns, while longer loops are routinely observed 

on the extracellular side. Finally, transmembrane segments are characterized by the so-called dyad 

repeat pattern: alternating hydrophobic and hydrophilic residues, with the first ones facing the 

membrane and the others facing the interior of the barrel [42]. 

 

Figure 8. Transmembrane beta-barrel from Escherichia coli (OPM database, PDB ID: 1tly). Beta-strands correspond to 

yellow arrows, in green, loops and turns. Dotted line represent the periplasmic (blue) and extracellular (red) sides of the 

bacterial outer membrane.  

A broad range of functions has been reported for TMBB proteins (see [42] for a review). Probably 

their most well-known functions are the general and specific diffusion of molecule and ions, carried 

out by a class of TMBB proteins known as porins. Anyway, their functions are far away from being 

limited to these. TMBB proteins act as membrane anchor and cell adhesion proteins, have peptidase 
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or lipase activity, are involved in signal transduction processes, act as efflux pumps and 

autotransporters.  

TMBB proteins are an important part of the genome, being encoded by some 2-3% of all the genes 

in Gram-negative bacteria [42]. Nevertheless, TMBB proteins share the same fate as other MPs: even 

though they represent a large part of the proteome, perform various important functions and attract a 

great medical interest for the development of new drugs (e.g., antibiotics and vaccines), they still lack 

an adequate number of resolved structures in PDB [15]. 

Given the above considerations, it is evident that the annotation of TMBB proteins via dedicated 

computational methods is a crucial theme. Approaching this problem, one may recognize two main 

computational tasks: first, the detection (or discrimination) of putative TMBB proteins in large 

datasets of protein sequences coming from high-throughput Omics studies (e.g., newly sequenced 

prokaryotic genomes); then, once a TMBB protein is recognized, perform the topology prediction 

i.e., the identification of the number, the orientation, and the boundaries of transmembrane segments.  

1.4.2. State of the Art  

During the last twenty years, many computational methods for TMBB proteins annotation have been 

developed [43-50]. These methods may be divided in two main groups, according to the task they 

tackle: the first group collects methods devoted to TMBB proteins detection only, while the second 

one collects methods dealing with both the detection and topology prediction tasks.  

In the first group, we list the statistical approach proposed in [43] and the homology-based tool named 

HHomp [44]. The former method assigns a score to the input protein given amino acid abundances 

observed in known TMBB structures and taking advantage of the dyad repeat pattern [43]. The latter 

tool is available via a web server. It recognizes OMPs by building a profile HMM for the input protein, 

then comparing it to a database of precomputed profile HMMs for families of TMBB proteins. When 

a hit is found, the protein is assigned to that family [44]. 
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The second group comprises PROFtmb [45], PRED-TMBB [46], BOCTOPUS [47], BetAware [48], 

PRED-TMBB2 [49] and BOCTOPUS2 [50]. Most methods are based on Hidden Markov Models 

(HMMs), with the exception of BetAware, which is based on a combination of a neural network for 

TMBB proteins detection and Grammatical-Restrained Hidden Conditional Random Fields 

(GRHCRFs) [51] for topology prediction.  

PRED-TMBB2 [49] and BOCTOPUS2 [50] are the two most recent methods among those cited 

above. The first one adopts an HMM divided in three sub-models representing the extracellular, 

periplasmic, and transmembrane regions. It implements several structural characteristics of 

prokaryotic TMBB proteins. BOCTOPUS2 is based on two steps. An SVM model discriminates 

among four per-residue classes: periplasmic, extracellular and, for the transmembrane region, pore-

facing and lipid-facing. This per-residue profile is then used in the second step to predict the topology 

applying an HMM model. Methods developed so far, possibly owing to the reduced availability of 

training examples, show limited performance, in particular in topology annotation. In this work I 

apply for the first time in this field deep-learning procedures, testing their ability to extract valuable 

information even from small training sets. 

1.4.3. BetAware-Deep 

In the context of my research project, I have developed BetAware-Deep [4], a method designed to 

tackle both TMBB protein discrimination and topology prediction. BetAware-Deep is a two-step 

method combining a deep-learning method and a GRHCRF models, already adopted in the previous 

version of the method, and here extended. The whole methos has been trained on an updated training 

set counting 58 TMBB proteins with known structure. Moreover, the method introduces a novel 

formulation of the hydrophobic moment [52], used to model the dyad repeat pattern, which includes 

the evolutionary information extracted from a sequence profile.  
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BetAware-Deep was compared, on a novel independent testing set of 15 TMBB proteins, with other 

recent state-of-the-art methods approaching TMBB protein topology prediction and reported the 

highest results. In a second benchmark, assessing the performance of the methods in TMBB protein 

discrimination, BetAware-Deep reported results as high as others available methods. For this test, a 

large dataset already used to benchmark PRED-TMBB2 was used. 

BetAware-Deep is available for the scientific community via an accessible web server with a user-

friendly interface at https://busca.biocomp.unibo.it/betaware2.   

 

1.5. Glycine Myristoylation Annotation in Proteins 

1.5.1. Biological Background and Motivations 

Myristoylation is a type of protein lipidation in which a myristoyl group is covalently attached to a 

protein residue. Myristoylation in eukaryotes is mostly associated to N-terminal glycines. The 

reaction is catalyzed by the enzymes N-myristoyltransferases (NMTs), which have been extensively 

characterized in eukaryotes [53]. Mammals have two NMTs (namely, NMT1 and NMT2) [54], while 

in lower eukaryotes and plants only one NMT is found. NMT1 and NMT2 have a sequence identity 

of about 76% [53] but show the same selectivity towards substrates in vitro [55]. 

Glycine myristoylation is mostly a co-translational protein modification, involving the N-terminal 

glycine exposed upon methionine excision. During this process, the protein chain is still in complex 

with the ribosome [53]. In fact, NMT presents a basic lysine cluster in its N-terminal region which 

has been proven to be crucial for the interaction with the ribosome [56]. Anyway, it has been proven 

that in metazoan glycine myristoylation also occurs post-translationally. In this case, the N-terminal 

glycine is exposed upon caspase cleavage, mainly during apoptosis [53], but also in other processes 

involving caspases, i.e.: cell differentiation, tumor suppression, neural development, and cell 

proliferation. Moreover, also NMTs are cleaved by caspases, determining a change in their 

https://busca.biocomp.unibo.it/betaware2
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subcellular localization [56]. In fact, NMT1, which is mostly associated to membranes, is cleaved by 

caspase-3 or caspase-8 at Asp72 inducing a relocalization to the cytosol. At the same time, cytosolic 

NMT2 is cleaved at Asp25 by caspase-3, which relocalize to membranes [56]. 

Recent studies reported that N-terminal lysine residues may be myristoylated, as suggested by the 

crystallographic study in [57]. Moreover, myristoylation has been reported on N-terminal cysteine 

residues in some bacterial proteins, both localized in the inner or outer membrane [58]. Anyway, 

these studies are still preliminary and this type of myristoylations have very few examples to date.  

According to crystallographic studies of NMTs in complex with their substrates [55, 59-62], the 

enzymes interact with the protein via the first eight residues, the so-called octapeptide (Figure 9). 

Only the first five residues enter the enzyme pocket, while the last three interact with its surface. 

Octapeptides are sufficient to have a myristoylation in vitro [55]. In a study in which the octapeptide 

was truncated to six and five residues, it was reported a decrease in the NMT activity and a complete 

loss, respectively [63].  

 

Figure 9. Octapeptide Myr-GNCFSKRR (yellow) in the pocket of the N-myristoyltransferase 1 from H. sapiens (green). 

PDB ID: 6qrm. 
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Myristoylated (MYR) proteins represent about the 2% of the genome in eukaryotic organisms [64]. 

They are principally associated to the plasma membrane and the organelles membrane and are 

involved mainly in signal transduction, apoptosis and pathological processes mediated by viruses and 

fungi [53]. Myristoylation of viral proteins is mostly catalyzed by host NMTs, but an open reading 

frame codifying for NMT was individuated in some viruses, even though not yet functionally 

characterized [58].  

Myristoylation, besides the obvious relevance in organisms, have interesting application in drug 

design, since it is an effective mean to deliver peptides inside the cell [65]. Moreover, myristoylation 

may promote binding to albumin, then it is used to improve the stability and bioavailability of 

polypeptide drug [66]. 

Myristoylation may be detected thanks to various laboratory techniques. The classical approach relies 

on radioactive labeling [53]. More recently, bioorthogonal approaches, which allow to induce 

chemical reactions in vivo without interfering with biological processes occurring in the cell, where 

developed. Such experimental designs use azido or alkyne analogs of the myristic acid., allowing to 

metabolically incorporate them and to exploit their affinity to fluorophores, biotin, and other probes 

[67]. Besides these in vivo approaches, a high-throughput in vitro technique relying on macro-arrays 

was proposed. In this approach the myristoylation catalyzed by the NMT in presence of octapeptides 

is coupled to the formation of NADH, monitored by fluorescence [68]. 

1.5.2. State of the Art 

Several computational approaches have been developed to tackle the problem of MYR protein 

detection. In PROSITE  (https://prosite.expasy.org/) [69] it is reported a regular expression describing 

myristoylation sites (entry: PS00008): G[^DEFHKPRWY]XX[ACGNST][^P] (where X denotes any 

residues and ̂  indicates the exclusion of the listed residues in square brackets). Thanks to information 

derived from crystallography studies in which the NMT is co-crystallized with its substrate, this 

https://prosite.expasy.org/
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regular expression was refined to G[^DEFRWY]X[^DEKR][ACGST][KR] [56]. Further methods for 

MYR proteins prediction include NMT predictor [70], Myristoylator [71], and TermiNator3 [72]. 

NMT predictor is based on a scoring function summarizing the information derived from crystal 

structures and biochemical analysis of the first 17 residues of MYR proteins. Myristoylator is based 

on an ensemble of neural networks trained on the NMT predictor training set with the inclusion of a 

negative training set. Also in this case, the first 17 residues are considered. Conversely, TermiNator3 

predicts the myristoylation status of a protein based on pattern scanning.  

All the methods developed so far have very poor performance. Moreover, they are designed only for 

co-translational myristoylation prediction and no method for post-translational myristoylation 

prediction is available. 

1.5.3. SVMyr 

SVMyr [5] is an SVM-based method designed for co- and post-translational myristoylation prediction 

(the latter only in metazoan where it has been experimentally studied). It uses the information 

contained in octapeptides, which are sufficient for the NMT recognition and catalysis. The 

octapeptide is codified as a 12-positions array: the first seven positions are compositional per-residue 

scores (the starting glycine is fixed, then ignored at this point) derived from a Position Specific 

Scoring Matrix computed starting from octapeptides in the training set and a background distribution; 

the last five positions include mean physicochemical features for the octapeptide (hydrophobicity, 

charge, size, secondary structure propensities).  

SVMyr searches for internal myristoylation sites (post-translational) via a pattern scanning for 

caspase cleavage sites exposing a glycine. Once a match is found, the resulting octapeptide is 

provided to the SVMs. 

SVMyr was trained on 232 non-identical co-translationally MYR octapeptides experimentally 

annotated, as reported in SwissProt, the manually curated part of UniProtKB [73], and 232 non-
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identical octapeptides for which it was proven that they do not undergo myristoylation in vitro [56]. 

In a benchmark performed over an independent testing set, having 88 myristoylated and 528 non-

myristoylated proteins, SVMyr outperforms other methods. Moreover, it predicts correctly 11 out of 

15 post-translational myristoylation sites experimentally validated reported in SwissProt and in vivo 

study [74]. 

SVMyr is made available via an accessible and usable web server with a user-friendly interface, which 

may be visited at https://busca.biocomp.unibo.it/lipipred/.

https://busca.biocomp.unibo.it/lipipred/
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2. BetAware-Deep 

2.1. Materials and Methods 

BetAware-Deep [4] is a profile-based method for TMBB proteins detection and topology prediction 

(i.e., given a protein sequence, identify the correct number and orientation of transmembrane 

segments). It consists of two cascading steps: a deep learning architecture (Bidirectional Long Short-

Term Memory, BLSTM) [75] and a probabilistic method for sequence labelling, GRHCRFs [51]. 

BetAware-Deep also introduces a novel feature, a non-canonical formulation of the hydrophobic 

moment [49] designed to include evolutionary information in the computation of this measure and to 

effectively model the dyad repeat pattern observed in transmembrane segments. The main 

implementation characteristics of BetAware-Deep are summarized in the DOME (Data-

Optimization-Model-Evaluation) checklist reported in Appendix 9. A full description of the adopted 

data and methods follows. 

2.1.1. Datasets 

The reference annotation of the topology of membrane proteins derives from structural data collected 

in PDB. Different secondary databases are available, colleting, and cataloguing membrane proteins 

of different classes. Among them structural data for TMBB are available in MPstruct 

(https://blanco.biomol.uci.edu/mpstruc/) and OPM [76].  

Three datasets were used to train and benchmark BetAware-Deep in the topology prediction task, as 

summarized in Table 1: a Positive Training Set (PTS), a Negative Training Set (NTS) and a Blind 

Testing Set (BTS).  

PTS and BTS were built starting from the 162 TMBB proteins reported and classified in MPstruc 

(https://blanco.biomol.uci.edu/mpstruc/), a database collecting MPs for which three-dimensional 

structures have been determined. From the initial dataset we removed pore-forming toxins since they 

https://blanco.biomol.uci.edu/mpstruc/
https://blanco.biomol.uci.edu/mpstruc/
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have a non-canonical topology, and they are not embedded in the bacterial outer membrane. We 

reduced redundancy in this initial dataset by clustering sequences with more than 25% of sequence 

identity at 90% of coverage using the blastclust tool and choosing as representative the longest 

sequence for each cluster. This procedure resulted in a dataset having 71 TMBB proteins. The dataset 

was split in PTS, a non-redundant training set counting 58 TMBB proteins, and BTS, a non-redundant 

blind test set having 13 TMBB proteins. Sequences included in BTS have been selected such that 

they have, at most, 25% of sequence identity at 50% of coverage among them and with respect to all 

proteins included in our training set and in those of other methods considered here for the comparative 

benchmark (BetAware [48], PRED-TMBB2 [49], and BOCTOPUS2 [50]). Other two proteins not 

reported in MPstruc but present in the OPM (Orientations of Proteins in Membrane) database [76] 

were added to BTS, since they fulfill redundancy criteria reported above. Finally, BTS counted 15 

TMBB proteins.  

The choice of the negative dataset for training (NTS) is an issue, due to the abundance of non TMBB 

proteins known at the structural level and the concomitant need to operate a selection to reduce the 

example to a number commensurable to the positive dataset. For this reason, we choose a dataset of 

proteins that possibly are the most difficult to be discriminated from the positive set: prokaryotic 

globular (non-membrane) proteins, annotated in the all-beta class in SCOPe [77]. This dataset 

comprises 69 proteins, and it was obtained selecting all the prokaryotic proteins included in this class, 

then reducing internal redundancy at 25% sequence identity threshold and 50% of coverage, and 

redundancy against PTS with the same criteria. The introduction of NTS is crucial to allow BetAware-

Deep to discriminate between transmembrane and non-transmembrane beta-strands, which may be 

present in non-barrel regions present before and/or after the barrel itself.  

Full length sequences from UniProtKB [73] were retrieved and used for all proteins in the datasets.  

By this, we consider the real-world case in which the transmembrane barrel region only represents a 

limited portion of the full sequence. 
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PTS and NTS were split in 10 cross-validation subsets. Proteins in PTS having 25% sequence identity 

at 50% of coverage among them were required to be in the same subset, in order to reduce redundancy 

among subsets. 

To test the ability of BetAware-Deep in discriminating TMBB proteins from other protein families 

in large datasets, and to compare its performances with other methods designed for the same task, we 

used two datasets: the Positive Discrimination Testing Set (PDTS) and the Negative Discrimination 

Testing Set (NDTS). These two datasets were already used to test PRED-TMBB2. PDTS contains 

1009 TMBB proteins, while NDTS, 7571 non-TMBB proteins (globular and alpha-helical inner 

MPs). 

For details on proteins contained in PTS, NTS and BTS see Appendix 1-3. 

Table 1. Datasets for BetAware-Deep training and benchmark.  

Dataset # Proteins Source 

PTS 58 MPstruc 

NTS 69 SCOPe 

BTS 15 MPstruc and OPM 

NDTS 7571 [49] 

PDTS 1009 [49] 

PTS: positive training set. NTS: negative training set. BTS: blind testing set. NDTS: negative discrimination testing set. 

PDTS: positive discrimination testing set. The number of proteins contained, and the source database are reported for 

each dataset. 

2.1.2. Topology annotation 

The topology of a TMBB protein refers to its organization in the bacterial outer membrane. We can 

distinguish three distinct compartments: periplasmic, extracellular, and transmembrane region. The 

topology of prokaryotic TMBB proteins is characterized by: (i) even number of transmembrane 

segments per chain; (ii) N- and C-terminus in the periplasmic region; (iii) short turns connecting 

consecutive transmembrane segments on the periplasmic side and long loops on the extracellular side. 
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The collection of all the segments described above constitutes the barrel region. Before and/or after 

this region, a non-barrel region may be present, which may contain both alpha-helices or beta-strands. 

One major issue is to establish clear rules for localizing transmembrane segments and annotating the 

localization of the loops with respect to the membrane plan and different approaches have been 

adopted so far. Basically, the problem arises from the fact that protein structures are obtained in a 

environment different from the membrane. Although it is routinely easy to recognize the membrane 

spanning segments of defined secondary structure, it is difficult to infer which are the residues that 

are in contact with the membrane. To this aim some computational method, like OPM, attempts to 

model the membrane as a plane strip of a determines thickness where experimental membrane 

proteins are localized by recognizing highly hydrophobic regions with length compatible with the 

membrane width. This procedure neglects all variability and dynamicity in the protein-membrane 

interaction and, although useful to capture the transmembrane segments, it can give very approximate 

knowledge on the residues interacting with the membrane, in particular in the borders.   

Table 2. Labels adopted for BetAware-Deep topology annotation. 

Label Meaning In Figure 10 

n non-transmembrane region yellow 

i inner or periplasmic region red 

o outer or extracellular region red 

T residues in transmembrane beta-strand and embedded in membrane light green 

E residues in transmembrane beta-strand and exposed to the solvent dark green 

 

Topology annotation is obtained merging annotations reported in OPM [76] and the secondary 

structure computed with DSSP [80] from the PDB file. OPM provides the exact localization of 

membrane-spanning segment, which is not directly derivable from the structure file deposited in PDB, 

by simulating the insertion of the protein in a membrane of variable thickness and optimizing the 



30 
 

protein transfer energy from water to the lipid bilayer. The transmembrane segment computed 

following this procedure often does not cover the entire beta-strand but, as said, boundaries of the 

membrane-contacting segment may be inaccurate. For these reasons in our approach the annotation 

was extended to the whole beta-strand, given the DSSP-derived secondary structure. 

 

Figure 10. Graphical representation of a TMBB protein topology. Straight lines represent membrane boundaries: in blue, 

the periplasmic side, and in red, extracellular side. Beta-strands are represented by arrows. In yellow, non-barrel region. 

In dark red, extracellular loops and in light blue,  periplasmic turns. Transmembrane beta-strands are light green if 

embedded in membrane and dark green in the exposed portion. 

Given the information described above, the resulting per-residue annotation along the sequence has 

five possible labels, graphically depicted in Figure 10, and summarized in Table 2. To indicate the 

non-barrel region, we used the label n. Labels i and o indicates inner (periplasmic) and outer 

(extracellular) regions, respectively. Membrane spanning beta-strand, instead, have two possible 

labels: T for residues embedded in membrane and E for residues (still in extended conformation)  

exposed to the solvent. 

2.1.3. Sequence Profile 

BetAware-Deep exploits the evolutionary information in the form of a sequence profile. 

Firstly, a Multiple Sequence Alignment is computed aligning the query protein against UniRef90 [70] 
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(release 2018_03) using PSI-BLAST [79]. The program was run for two iterations with E-value 

threshold set to 10-3. From the PSI-BLAST output, an MSA was derived stacking all the reported 

pairwise alignment and eliminating columns having a gap in the query sequence.  

Given the MSA, a sequence profile was computed. It reports for each aligned position in the MSA 

the frequency in which each one of the twenty residues is observed. Then, it is represented by a matrix 

of L x 20 dimensions, where L is the length of the query protein sequence. 

2.1.4. Profile-Weighted Hydrophobic Moment 

BetAware-Deep introduces, as a novel feature, the computation of a non-canonical formulation of the 

hydrophobic moment used to model the dyad repeat patterns observed in transmembrane segments. 

The residues spanning the membrane in as extended conformation, expose their side chain towards 

the external and the internal sides of the barrel with an alternate pattern. External side chains take 

contacts with the lipid phase (or with other transmembrane protein units), while the others face the 

internal part of the pore that is routinely in contact with the polar solvent. 

The alternation of hydrophilic pore-facing residues with hydrophobic lipid-facing residues can be 

captured by the hydrophobic moment, which measures the amphiphilicity of a short protein segment, 

being higher when there is a separation between hydrophobic and hydrophilic residues given a 

specific angle separating sidechains along the backbone. The canonical formula adopted to compute 

this measure is: 

𝜇(𝛿) = {[∑ H[𝑅𝑛] sin(𝛿𝑛)𝑁
𝑛=1 ]2 +  [∑ H[𝑅𝑛] cos(𝛿𝑛)𝑁

𝑛=1 ]2}
1

2     (1) 

were δ is the angle separating two consecutive sidechains and reflects the periodicity to be detected, 

being δ=100° for alpha-helices and δ=160° or δ=180° for beta-strands; N is the length of the window 

in which the hydrophobic moment is computed; H[Rn] is the hydrophobicity of the residue R in 

position n.  



32 
 

We applied a simplified formula in which the window length was fixed to 5 and the angle δ to 180°. 

This resulted in: 

𝛾 = |∑ H[𝑅𝑛](−1)𝑛5
𝑛=1 |         (2) 

In this case the adopted hydrophobicity scale was the White&Wimley scale for the transfer of 

unfolded peptide chains into octanol [81]. The scale provides an experimental evaluation of the ∆∆G 

of transfer to an apolar phase of a residue, within a polypeptidic environment. It therefore estimates 

bilayer partitioning with bulk partitioning.   

The hydrophobic moment described above is measured on the protein single sequence. Exploiting the 

information derived from the comparison of a protein with other members of its family, we introduced 

a new formulation, named Profile-Weighted Hydrophobic Moment (PWHM). A weighting scheme 

is applied based on the sequence profile derived from the MSA of the query protein, according to the 

formula: 

𝛾 = |∑ ∑ 𝑃[𝑅𝑛] H[𝑅𝑛](−1)𝑛
𝑅∈{𝐴,𝐶,𝐷,...,𝑌}

5
𝑛=1 |        (3) 

where the inner summation takes into consideration all the twenty residues R and P[Rn] is the 

frequency reported in the sequence profile for the residue R in position n. 

Finally, the assigned PWHM for each position is the maximum value reported in the 3-residue 

window centered on that position. This is done because it is reasonable to think that the hydrophobic 

moment centered on residues near to the middle of transmembrane segments may be higher with 

respect to that computed for residues in the edges. This happens because all residues in the window 

are embedded in membrane and they tend to have hydrophobic residues on the same side (facing the 

membrane), that is a favorable condition. This possibly results in a higher hydrophobic moment. In 

the edges, instead, residues exposed to the solvent (which can escape the dyad repeat pattern, since 

they are not constrained by the membrane) are included in the window. Given that, reporting the 
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maximum hydrophobic moment in the 3-residue window may amplify the signal provided by this 

measure. 

2.1.5. Workflow 

BetAware-Deep combines two predictive steps. The first one is a BLSTM model which takes as input 

the profile joined with the PWHM. Each position along the sequence is then represented by a 21-

dimensional array. BLSTM outputs Per-Residue Probabilities (PRPs), the probability for each residue 

of being localized in each one of the five compartments defined in the topology annotation phase 

(Table 2). PRPs are joined to the profile, resulting in a 25-dimensional array. This constitutes the 

input for the GRHCRF model representing the second step, which provides the topology prediction.  

TMBB proteins discrimination is based on the topology prediction: if at least 4 transmembrane 

segments are predicted, the protein is classified as TMBB protein. This decision has biological basis 

since all the prokaryotic TMBB proteins observed so far have at least 4 membrane-spanning segments 

per chain. 

2.1.5.1. First step: BLSTM 

As a first step in its workflow BetAware-Deep adopts a BLSTM model. It represents an advancement 

over Long Short-Term Memory (LSTM) [30] models, which allows higher performances when 

applicable [75].  

LSTM are a deep learning method belonging to the class of Recurrent Neural Networks (RNNs), 

which are devised for the processing of sequential data. In fact, RNNs introduces the concept of 

memory, which allows to store information contained in previous inputs to generate the next output 

of the sequence. This is realized and governed by means of a feedback loop. Among all possible RNN 

schema, the most powerful are gated RNNs, in which connections have weights that may change at 

each time step. This is done to handle the vanishing gradient issue, the major problem encountered 

trying to learn long-term dependencies [82,83].  
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LSTM models are a type of gated RNNs. They introduce for the first time an internal recurrence, that 

is added to the outer recurrence of RNNs and have a variable weight. In fact, a LSTM cell (Figure 

11) have a state cell, that is a regular artificial neuron with a self-loop representing the internal 

recurrence, and three gating units controlling: the accumulation of the input in the state cell itself 

(input gate); the self-loop weight (forget gate); the output, which can be eventually shut off (output 

gate). Thanks to the peculiar gating schema here described, LSTM models can store information over 

an arbitrary time, delete it once it is already used, and neglect non-relevant positions.  

 

Figure 11. Schematic representation of a LSTM cell. Weights are represented by white circles. Grey circles represent the 

gate units controlling the weights. The state cell is the grey circle with the self-loop. 

A BLSTM model, belonging to the class of bidirectional RNNs [84], consists of two LSTM layers of 

which one is provided with the sequence and the second one with its reverse copy. The output of the 

two layers is then merged to obtain the final prediction. This architecture allows the method to include 

past and future information in the context of each time step.  

The BLSTM architecture used by BetAware-Deep is represented in Figure 12. It consists of two 

recursive LSTM layers whose output is combined. Each one of the two LSTM layers includes 128 
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cells. A masking layer is applied upstream to reduce the effect of zero-padding, used to have 

sequences all of the same length in the training set, equal to the maximal length observed. In fact, the 

application of the masking layer allows to ignore position undergoing padding. The output of the 

BLSTM is passed to a dropout layer with rate fixed to 0.3, which is used to prevents overfitting. Then, 

a dense fully connected layer is applied to obtain PRPs from the output provided by the recursive 

layer. 

 

Figure 12. BLSTM architecture adopted by BetAware-Deep. At first, a masking layer to ignore zero-padded positions is 

applied. Then, the input is passed to the BLSTM (red square), having to LSTM layers scanning the sequence left-to-right 

and right to left respectively. The two outputs are combined and passed to the dense layer, which produces PRPs. 

The training procedure was carried out via gradient descent on the categorical cross-entropy loss 

function and applying the Adam optimization algorithm [85]. The early stopping technique was used 

to obtain the best BLSTM model monitoring the validation loss and terminating the training after 20 

epochs without any decrease, then the best model was restored. The model has been implemented 

using the Keras Python library [86].  

2.1.5.2. Second step: GRHCRF 

The second step adopted by BetAware-Deep is a GRHCRF model, implemented for the first time in 

the first version of the method, BetAware [49]. 
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Conditional Random Fields (CRFs) [87] are discriminative probabilistic models widely adopted in 

sequence labeling. In contrast with generative probabilistic models (such as HMMs), which estimates 

a joint probability, they work modeling a conditional distribution. The definition of a joint probability 

requires the enumeration of all possible observation sequences. This requirement hampers the 

modeling of multiple interacting features and long-term dependencies. Moreover, strong 

independence assumptions are needed to allow these computations. At the contrary, the conditional 

probability incorporates non-independent attributes of the observations, representing single features 

or collection of features. Then, the transition probabilities do not depend only on the current 

observation but also on neighboring observations.  

CRFs offers several advantages over generative probabilistic models. Anyway, they lack hidden-

states variables, which results in the inability to capture intermediate structures. This limitation is 

overcome by the introduction of Hidden CRFs (HCRFs) [34], which uses intermediate hidden-state 

variables.  

GRHCRFs add to HCRF a regular grammar defined over a set of constraints known for the problem 

at hand. The introduction of this grammar ensures that BetAware-Deep outputs only biologically 

consistent results. In the prediction phase, in fact, GRHCRFs identify the most probable path given 

the model and the input sequence using a Posterior-Viterbi dynamic-programming algorithm.  

GRHCRFs may be represented as a finite-state automaton (Figure 13). The model adopted by 

BetAware-Deep is based on the 40-states model used by the first version of the method. This model 

may be divided in three principal sub-models: periplasmic, transmembrane, and extracellular regions. 

The start and end state are localized in the periplasmic region. To the original GRHCRF model, we 

added two states with a self-loop (in the periplasmic and in the extracellular side) to model the non-

transmembrane region, which may be localized before and/or after the barrel region. Furthermore, we 

added a label for non-embedded residues in transmembrane beta-strands, which is associated to self-

looped states at the two edges of transmembrane segments. 
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As done for the BLSTM model, the training procedure was carried out using a validation set to find 

the number of iterations giving the best GRHCRF model.  

 

Figure 13. Architecture of the GRHCRF model adopted by BetAware-Deep. Yellow circles model the non-

transmembrane region. Red circles model the periplasmic (i) and extracellular (o) region. Transmembrane region is 

modeled by green squares: in light green, residues embedded in membrane (T), in dark green, non-embedded residues 

(E). 

2.1.6. Evaluation 

BetAware-Deep was benchmarked in both the TMBB proteins topology prediction and 

discrimination tasks.  

For topology prediction, the output of BetAware-Deep is reduced to a three-state schema: the five 

labels are reduced to three by: (i) considering n, which indicates non-transmembrane regions, as i 

(periplasmic); (ii) replacing T and E, the two possible labels for transmembrane segments with T, 

regardless of the actual insertion in the membrane. Following the same logic, the output of 

BOCTOPUS2, which uses two labels for transmembrane residues, differentiating between pore-
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facing (p) and lipid-facing (L) residues, is reduced considering these two labels as T. For PRED-

TMBB2 and BetAware, no replacements were needed. 

The scoring indexes adopted to evaluate the methods performances include the three-state accuracy 

(Q3), Segment Overlap (SOV) [88], Protein Overlap (POV) and the portion of proteins with correct 

number of predicted transmembrane segment (NTM).  

Q3 is computed as: 

𝑄3  =  
𝛴𝑖 𝑝𝑖

𝑁
             (4) 

where pi is the number of correct positive per-residue predictions for the class i and N represents the 

total number of residues. 

SOV is computed for the class T and defined as: 

𝑆𝑂𝑉(𝑇)  =  
1

𝑁(𝑇)
∑ [

𝑚𝑖𝑛𝑜𝑣(𝑆1,𝑆2)+𝛿(𝑆1,𝑆2)

𝑚𝑎𝑥𝑜𝑣(𝑆1,𝑆2)
× 𝑙𝑒𝑛(𝑆1)]𝑆(𝑇)      (5) 

where the normalization value N(T) is the total length of the observed transmembrane segments; S1 

and S2 as observed and predicted transmembrane segments, respectively; minov(S1,S2) is the length 

of the intersection of the segment pair for the class T; maxov(S1,S2) is the length of the union of the 

segment pair for the class T; len(S1) is the length of the observed segment. 

δ(S1,S2) in the above definition of SOV is computed as: 

𝛿(𝑆1,𝑆2)  =  𝑚𝑖𝑛 { 𝑚𝑎𝑥𝑜𝑣(𝑆1,𝑆2) − 𝑚𝑖𝑛𝑜𝑣(𝑆1,𝑆2);  𝑚𝑖𝑛𝑜𝑣(𝑆1,𝑆2); 𝑖𝑛𝑡 (
𝑙𝑒𝑛(𝑆1)

2
) ;  𝑖𝑛𝑡 (

𝑙𝑒𝑛(𝑆2)

2
)}  (6) 

POV is defined as: 

𝑃𝑂𝑉(𝑠) = {1 𝑖𝑓 (𝑁𝑃
𝑆 = 𝑁𝑂

𝑆     𝑎𝑛𝑑 𝑃𝑖 ∩ 𝑂𝑖 ≥ 𝜃 ∀𝑖 ∈ [1, 𝑁𝑂
𝑆] )

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (7) 
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where NP
S and NO

S are the number of predicted and observed transmembrane segments, respectively; 

Pi and Oi are the i-th predicted and observed segments, respectively; θ is equal to the average between 

the half-lengths of segments Pi and Oi.  

The scoring indexes adopted for the evaluation of TMBB proteins detection are sensitivity, 

specificity, and Matthews Correlation Coefficient (MCC). 

Sensitivity is defined as:  

𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (8) 

Specificity is defined as: 

𝑆𝑝𝑒 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
             (9) 

MCC is defined as: 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
        (10) 

where TP (True Positive) and TN (True Negative) are the numbers of correctly predicted positive and 

negative proteins, respectively, and FP (False Positive) and FN (False Negative) are the numbers of 

incorrect positive and negative predictions, respectively. 

 

2.2. Results and Discussion 

BetAware-Deep [4] is a web server designed for TMBB proteins detection and topology prediction. 

The method behind combines a deep learning (BLSTM) and a probabilistic (GRHCRF) method. 

Moreover, it introduces the computation of a non-canonical formulation of the hydrophobic moment, 

indicated as PWHM.  
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BetAware-Deep has been trained on a dataset including 58 TMBB proteins and 69 non-TMBB 

proteins. To test the method in cross-validation, the training set was split in 10 non-redundant subsets. 

For each run, eight subsets were used for training, one for validation and one for testing.  

For the topology prediction task, the method was benchmarked on a blind test set including 15 TMBB 

proteins. For the detection task, we took advantage of a large dataset already used to test Pred-

TMBB2, which includes 1009 TMBB and 7571 non-TMBB proteins [49].  

2.2.1. Hydrophobic Moments 

The hydrophobic moment is a measure of the alternance of hydrophobic and hydrophilic residues 

along a short protein segment. Canonically, it is computed given a single protein sequence. From now 

on, this version of the hydrophobic moment will be referenced as Unweighted Hydrophobic Moment 

(UHM). 

In BetAware-Deep, the hydrophobic moment is used to model the dyad-repeat pattern observed in 

the transmembrane segments of TMBB proteins. Instead of the UHM, the formulation adopted by 

BetAware-Deep includes profile weights in the computation. This allows the inclusion of the 

evolutionary information. Therefore, this measure is called PWHM. 

We tested the ability of the hydrophobic moment only in discriminating transmembrane beta-strands 

(T or E) from loops and other domains (n, i, and o). We therefore compared the the discriminative 

power of UHM and PWHM with a ROC curve (Figure 14). By changing the threshold on the 

computed hydrophobic moment, the ROC curve plots the rate of true positives as a function of the 

rate of false positives. The area under the curve (AUC) estimates the overall discriminative power, 

being 0.5 the AUC obtained by a random classifier. 

UHM and PWHM report AUC values equal to 0.6 and 0.74, respectively. These results show that our 

formulation enhances the discriminative power and better captures the signal given by the dyad-repeat 
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pattern, resulting in a more accurate detection of transmembrane residues. Thus, the inclusion of 

evolutionary information, in the form of a sequence profile, is beneficial for this task.  

 

Figure 14. ROC curve describing the ability of unweighted (UHM, orange line) and profile-weighted (PWHM, blue line) 

hydrophobic moments in discriminating between transmembrane and non-transmembrane residues. 

2.2.2. Topology Prediction: Cross-Validation 

BetAware-Deep was tested in a 10-fold cross-validation to compare different input encodings for the 

BLSTM model and assess the best one. In particular, we considered three possible models: (i) a 

baseline model, which includes only the sequence profile; (ii) a model combining the sequence profile 

with the UHM; (iii) the combination of the sequence profile and the PWHM. Results are reported in 

Table 3. 

In the cross-validation procedure, both models incorporating the hydrophobic moment outperform 

the baseline method. Specifically, the model adopting just the profile reported 35 out of 58 correct 

topologies (POV) and 39 out of 58 proteins with correct number of predicted transmembrane residues 

(NTM). The inclusion of UHM led to an increase of this metrics to 37 and 40, respectively. Anyway, 

the highest results were reported by the last method, which have a POV equal to 40 and a NTM equal 

to 46. Moreover, it reported the highest accuracy (88%) and the highest SOV (95%).  
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Table 3. Comparison of different BLSTM input encodings obtained with a cross-validation procedure over the positive 

training set (58 TMBB proteins). 

BLSTM input encoding Q3 SOV POV NTM 

PROFILE 83% 91% 35 39 

PROFILE + UHM 81% 92% 37 40 

PROFILE + PWHM 88% 95% 40 46 

All inputs encodings are profile-based. The second and third ones also include a hydrophobic moment. UHM: unweighted 

hydrophobic moment. PWHM: profile-weighted hydrophobic moment. Q3: three-class accuracy. SOV: segment overlap. 

POV: number of correctly predicted topologies. NTM: proteins with correct number of predicted transmembrane segments. 

These results confirm the benefit given by the inclusion of the hydrophobic moment and the 

predominance of our PWHM over the UHM, as already suggested by the ROC curve in Figure 5. 

Given these observations, the input encoding combining the profile and the PWHM was selected to 

be implemented in BetAware-Deep.  

2.2.3. Topology Prediction: Blind Test 

BetAware-Deep was benchmarked on an independent testing set counting 15 TMBB proteins for the 

topology prediction task. Indeed, this dataset was designed to allow an unbiased comparison among 

BetAware-Deep and other state-of-the-art methods for topology prediction, namely: BetAware (first 

version) [48], Pred-TMBB2 [49], and BOCTOPUS2 [50].  

Table 4 reports the results obtained in this comparative analysis. According to these observations, the 

improvement with respect to the previous version of the method is substantial: BetAware-Deep 

reports 10 out of 15 correct topologies (POV) and proteins with correct number of predicted 

transmembrane segments, while BetAware scores 4 and 5 out of 15, respectively. Moreover, between 

the two, the new version reported the highest accuracy (80% vs. 60%) and the highest SOV (94% vs. 

55%).  
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Table 4. Comparison among methods for TMBB proteins topology prediction performed over a blind test set (15 TMBB 

proteins). 

Method Q3 SOV POV NTM 

BetAware-Deep 80% 94% 10 10 

BOCTOPUS2  65% 68% 8 8 

Pred-TMBB2 71% 80% 6 11 

BetAware 60% 55% 4 5 

Q3: three-class accuracy. SOV: segment overlap. POV: number of correctly predicted topologies. NTM: proteins with 

correct number of predicted transmembrane segments. 

Compared with the two recent methods, Pred-TMBB2 and BOCTOPUS2, our method results as the 

top-performing one for TMBB proteins topology prediction. Indeed, even though Pred-TMBB2 

reported a NTM of 11, it has a POV of 6, that is way lower than the one reported by BetAware-Deep. 

At the same time, it outperforms also BOCTUPUS2, which has both POV and NTM equal to 8. 

Moreover, BetAware-Deep has the highest accuracy and the highest SOV among all methods. In fact, 

Pred-TMBB2 reported 71% and 80%, respectively, and BOCTOPUS2 reported 65% and 68%, 

respectively. 

Even though the reduced number of available examples for benchmark analysis limits the comparison 

among methods, the results we reported highlight that BetAware-Deep at least well-compares with 

other recent tools for TMBB proteins topology prediction.  

2.2.4. Detection of TMBB proteins  

Besides TMBB proteins topology prediction, BetAware-Deep is designed also for the detection (or 

discrimination) of such protein families in large datasets. The same task is also performed by 

BetAware, Pred-TMBB2, and BOCTOPUS2. All these methods were considered in our comparative 

analysis. Moreover, HHomp, a method devoted just to the discrimination task, was included. This 
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benchmark (Table 5) was performed over the 1009 TMBB and the 7571 non-TMBB proteins already 

used to test Pred-TMBB2 and other available methods in [49].  

Table 5. Comparison among methods for TMBB proteins detection performed over a dataset counting 8580 proteins 

(1009 of which are TMBB proteins) derived from [48]. 

Method Sen Spec MCC 

BetAware-Deep 98.12% 97.53% 0.91 

BOCTOPUS2 98.12% 98.81% 0.93 

Pred-TMBB2 91.87% 99.14% 0.92 

BetAware 67.29% 99.87% 0.8 

HHomp 97.73% 99.95% 0.98 

Sen: sensitivity, portion of correctly predicted positive examples. Spec: specificity, portion of correctly predicted negative 

examples; MCC: Matthew’s Correlation Coefficient. Results of BetAware-Deep are obtained in this work, while those of 

the other methods were taken from [49]. 

In the discriminative benchmark, BetAware-Deep reports high performances, having an MCC of 

0.91, sensitivity of 98.12% and specificity of 97.53%. These results are at the level of other state-of-

the-art tools. The top-performing method is HHomp. Anyway, it should be noticed that it adopts an 

approach based on a database of precomputed profile HMMs of putative TMBB proteins. Hence, for 

an input sequence, this method builds a profile HMM to be compared with those included in the 

database. This approach is completely different from the machine learning-based approach adopted 

by the other methods, and it presents a limitation, since it is able to detect only TMBB proteins 

belonging to previously discovered protein families. 

2.2.5. Web Server 

BetAware-Deep is made available through an accessible web server provided with a user-friendly 

interface (https://busca.biocomp.unibo.it/betaware2). In the home page, the user is invited to either 

paste a sequence in FASTA format or upload an external FASTA file. In both cases, the server accepts 

in input only a sequence per job. 

https://busca.biocomp.unibo.it/betaware2
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Once the sequence is submitted, the user is redirected to the page where the results will appear. In 

Figure 15 the BetAware-Deep results page is shown. These results are obtained with the input protein 

Adhesin YadA from Yersinia enterocolitica (UniProt: A1JUB7).  

 

Figure 15. BetAware-Deep results page. (a) Summary of submitted job, including information about the input and 

prediction results, i.e.: predicted localization, overall TMBB probability, number and mean length of transmembrane 

segments. (b) information about transmembrane segments: begin and end position, length, and average of predicted 

probability scores. (c) interactive feature viewer reporting detailed topology annotations.  

In the output page, BetAware-Deep reports information organized in three sections. In the first section 

(panel in the top left, (a) in Figure 15), it reports general information about the submitted job, i.e.: the 

unique job ID, which is internally assigned by BetAware-Deep, the submission time, protein ID 

and protein length, as extracted from the input FASTA sequence. Moreover, this section reports the 

predicted localization, that is Outer Membrane TMBB if BetAware-Deep predicted at least 4 

transmembrane segments or Other: non-TMBB, otherwise. Other information present are the 

overall TMBB probability (computed as the average probability assigned to predicted membrane-

spanning residues by the GRHCRF model), the number of TM segments and the mean TM strand 

length. 
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In the second section (panel on the top right, (b) in Figure 15), it is shown the list of transmembrane 

segments, each one endowed with the begin and end position, its length, and the mean score relative 

to the label T (transmembrane).  

In the last section (panel on the bottom, (c) in Figure 15) there is an interactive feature viewer allowing 

the user to analyze the whole sequence. In particular, it reports the primary sequence along with two 

annotation tracks. The first one is the topology prediction track, which show the alternance of 

periplasmic, transmembrane, and extracellular segments. The second one is the TM probability 

track, representing graphically the per-residue transmembrane probabilities. The feature viewer 

allows to zoom in a particular area of interest. It is also possible to automatically zoom on a specific 

predicted transmembrane segment by selecting it in the summary table.  

Results may be downloaded in a JSON file, storing the complete job results, or in a CSV file, reporting 

residue level annotation of topology, with associated per-residue probabilities.  

The web server has been implemented using the Python Django we framework 

(https://www.djangoproject.com). For the backend database (storing information about submitted 

jobs and results) we adopted the PostgreSQL (https://www.postgresql.org) database management 

system. The web interface has been developed using HTML5, JavaScript and JQuery. In particular, 

for the web page layout we used the Bootstrap4 toolkit (https://getbootstrap.com/). Tabular data were 

rendered using the DataTables JQuery plugin (https://datatables.net). For visualizing protein 

sequences and annotated feature tracks we used the FeatureViewer JavaScript library [89].

https://www.djangoproject.com/
https://www.postgresql.org/
https://getbootstrap.com/
https://datatables.net/
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3. SVMyr 

3.1. Materials and Methods  

SVMyr [5] is an SVM-based method designed for the discrimination of co- and post-translationally 

myristoylated proteins in proteomes. It makes predictions based on octapeptides having a glycine (on 

which the myristic acid is attached) in the starting position. As a unique feature, SVMyr searches for 

internal myristoylation sites exposed upon caspase cleavage, implementing a pattern scanning along 

the protein full sequence. Octapeptides are encoded by means of per-residue scores computed for the 

seven variable positions and mean physicochemical features (hydrophobicity, charge, size, secondary 

structure propensities). The main implementation characteristics of SVMyr are summarized in the 

DOME (Data-Optimization-Model-Evaluation) checklist reported in Appendix 10. A full description 

of the adopted data and methods follows. 

3.1.1. Datasets 

A major challenge in this domain is the collection of reliable positive and negative datasets. For the 

positive class, only 272 proteins are annotated as myristoylated in SwissProt with experimental 

evidence and can be considered highly reliable. Besides that, different proteome-wide experiments 

conducted in vivo with techniques based on fluorescence or metabolic labelling provided the 

myristoylomes of some parasites: Trypanosoma brucei [90], Trypanosoma cruzi [91], Leishmania 

donovani [92] and Plasmodium falciparum [93]. More recently, a study based on protein macroarray 

assay tested 2048 N-terminal, Gly-starting octapeptides extracted from human and Arabidopsis 

thaliana proteomes, as translated from the corresponding genome sequences, identifying 834 

putatively myristoylated proteins. The last experiment also provides a dataset of 1214 octapeptides 

(1126 of which were mapped to UniProt) that putatively does not undergo myristoylation. 

Unfortunately, the collection of a reliable negative dataset is quite challenging. To this aim we added 

to the negative dataset [54], a set of proteins experimentally proven to undergo modifications on the 
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starting glycine that are incompatible with myristoylation. In particular we collected 64 proteins for 

which an annotation for the acetylation of the N-terminal glycine s present in SwissProt.  

To train and benchmark SVMyr in the co-translational myristoylation prediction task four dataset 

were used (Table 6): a Positive Training Set (PTS), a Negative Training Set (NTS), a Positive Blind 

Testing Set (PBTS) and a Negative Blind Testing Set (NBTS).  

PTS was built starting from the 272 co-translationally myristoylated proteins with experimental 

annotation reported in SwissProt [73]. From this initial dataset, we extracted the N-terminal 

octapeptides and clustered the identical ones, retaining one representative for each cluster. This 

procedure resulted in a collection of 232 non-identical octapeptides from 37 organisms. The majority 

of the proteins came from human (133 proteins, 57%), then Arabidopsis (31, 13%) and viruses, which 

account for 21 species and 25 proteins (11%). Other species include yeasts (12 proteins, 5%), mouse 

(7, 3%), rat (6, 3%), bovine (4, 2%), and 9 other species (15, 6%). 

NTS includes 232 octapeptides for which it was demonstrated that they do not undergo myristoylation 

in vitro in presence of the enzymes NMTs [56], even though they have a glycine in starting position. 

This study, in fact, provided 1126 non-myristoylated octapeptides, from which we randomly selected 

our 232 octapeptides, to obtain a balanced training set having positive and negative examples in equal 

number.  

PTS and NTS were split in 10 cross-validation subsets. In both cases, similar octapeptides were 

required to be in the same subset, adopting Hamming Distance (HD) as measure of similarity. HD is 

defined as the number of different positions in two strings with the same length. Given that the starting 

glycine is fixed, the maximal HD is equal to seven. Then, we required octapeptides having HD lower 

than four to be in the same cross-validation subset, in order to reduce redundancy among them. 

PBTS was built starting from the 834 positive examples reported in this work. These examples were 

from Arabidopsis thaliana (483 octapeptides) and Homo sapiens (351 octapeptides). Only high and 



49 
 

medium confidence hits (classified as such based on the catalytic efficiency reported in the study) 

were retained. To these examples, we added the myristoylated proteins identified in proteome-wide 

experiments conducted on parasites. From this initial dataset, we reduced internal redundancy by 

clustering octapeptides with HD lower than four and choosing a representative for each cluster. Then, 

with the same threshold, we reduced redundancy towards the training set of SVMyr and the other 

methods considered for benchmark, i.e.: NMT predictor [70], Myristoylator [71], and TermiNator3 

[72]. This resulted in a dataset counting 88 myristoylated proteins. 

NBTS was derived from the remaining part of negative in vitro examples after the selection of NTS, 

which includes 232 octapeptides, and the 64 acetylated proteins reported in SwissProt. After having 

reduced internal redundancy, and redundancy towards the negative training sets of considered 

methods adopting one, NBTS included 528 non-myristoylated octapeptides, of which 25 were 

acetylated proteins. 

Table 6. Datasets for SVMyr training and benchmark. 

Dataset # Proteins Source 

PTS 232 Swiss-Prot 

NTS 232 [55] 

PBTS 88 [55,90-93] 

NBTS 528 [55], SwissProt 

PTBTS 
4 

11 

SwissProt 

[74] 

PTS: positive training set. NTS: negative training set. PBTS: positive blind testing set. NBTS: negative blind testing set. 

PTBTS: post-translational blind testing set. The number of proteins and the source database are reported for each dataset. 

To test SVMyr performances in the post-translational myristoylation detection task, we constructed 

a further testing set, Post-Translational Blind Testing Set (PTBTS). This dataset included four 

proteins with a post-translational myristoylation site experimentally annotated in SwissProt and 11 

proteins reported in a in vivo study in which apoptosis was induced and the internal myristoylation 
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site was identified [74] and not yet included in UniProt [73]. Then, PTBTS counts 15 examples in 

total.  

For details on protein included in all these datasets, see Appendices 4-8. 

 

Figure 16. Octapeptides logos. In clockwise order: training octapeptides (232 examples from 37 organisms); Human 

octapeptides (351, from [55]); octapeptides from parasites (124, from 4 species [90-93]); Arabidopsis octapeptides (483, 

from [55]).  Logos are generated using WebLogo 3.7.4. 

A suitable way to graphically represent sequence profiles is the adoption of sequence logos that 

estimate, position by position, the information conveyed by each residue. Figure 16 shows logos built 

aligning the octapeptides in PTS (top left corner). It appears that some conserved positions emerge: 

i) in position 2, asparagine, alanine, serine, and cysteine are the most represented residues; ii) in 

position 5, serine is highly conserved, followed by threonine, glycine, and alanine; iii) position 6 

shows a preference towards positively charged residues (lysine, arginine). These characteristics, 

which are confirmed in literature (as reviewed also in [54]), may be observed also in octapeptides 

from human (top right corner) and Arabidopsis (bottom left corner) reported in vitro [55]. Notably, a 
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preference towards cysteines in position 2 and 3 emerges in Arabidopsis . This suggests the presence 

of dual-lipidations since cysteine is known to be palmitoylated [53]. In the octapeptides from the 4 

unicellular parasites for which a proteome-wide study was available [90-93], positions 5 and 6 share 

the same characteristics observed in the other datasets, while, in position 2, glutamine is the most 

observed residue (rather than asparagine). As for Arabidopsis, this position shows a high presence of 

cysteines.  

Moreover, since SVMyr is designed also for large-scale analysis, we selected eight complete 

reference proteomes, downloaded from UniProt. These included: Arabidopsis thaliana, Homo 

sapiens, Mus musculus, Saccharomyces cerevisiae, Trypanosoma brucei, Trypanosoma cruzi, 

Leishmania donovani, and Plasmodium falciparum. 

3.1.2. Workflow 

SVMyr [5] is the first method addressing both co- and post-translational myristoylation.  

Firstly, SVMyr extracts the N-terminal octapeptide, where co-translational myristoylation may take 

place. Then, it searches for putative caspase cleavage sites exposing a glycine along the sequence, via 

pattern scanning. Once such sites are found, the downstream octapeptides are extracted, since they 

may undergo post-translational myristoylation.  

SVMyr encodes the input octapeptide through a scoring function computed from a novel Position 

Specific Scoring Matrix (PSSM) and its physicochemical characteristics. PSSM is used to derive 

seven scores, one for each position of the octapeptide but the glycine in starting position. 

Physicochemical features (including hydrophobicity, charge, size, and propensity towards alpha-

helices or beta-strands formation) are computed as the mean over the octapeptide, providing five 

additional scores. Then, the input encoding results in a 12-dimensional vector.  

The prediction step is implemented by means of an ensemble of ten SVM models, each one trained 

on a different cross-validation subset. The myristoylation probability is computed as the average 
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among the probabilities produced by all the SVM models. An input octapeptide is predicted as 

myristoylated if such probability is at least 50%. 

3.1.2.1. PSSM 

The PSSM compiled for SVMyr implementation reports in each position a log-odd ratio computed 

starting from two frequency distributions. The first one is computed stacking all the octapeptides in 

the training set without gaps, then computing a profile. Therefore, this procedure ends up with a 

matrix reporting the frequency of the 20 residues in each position of the alignment. The second one 

is a background distribution computed collecting from SwissProt all the N-terminal octapeptides of 

eukaryotic proteins with a glycine in starting position, after methionine excision. This resulted in 

14,304 non-identical octapeptides, piled-up stating from the glycine residue. As for the first 

distribution, a profile is computed. 

For each position, but the starting glycine, the PSSM value is computed as: 

𝑃𝑆𝑆𝑀𝑅,𝑖 =  − log
𝑓𝑅,𝑖

𝑏𝑅,𝑖
          (11) 

where fR,i is the frequency observed in myristoylated proteins for the residue R in position i and bR,i is 

the same frequency observed in the background distribution. 

A PSSM was computed for each cross-validation training set, considering only its positive part. 

3.1.2.2. Physicochemical features 

Together with the scores provided by the PSSM, SVMyr adopts in its input encoding also mean 

physicochemical features. These include: hydrophobicity, as reported in the Kyte-Doolittle scale [94]; 

charge, considering its value equal to +1 in presence of arginine or lysine, and -1 for aspartate or 

glutamate; size, as reported in AAindex [95] (https://www.genome.jp/aaindex); propensity towards 

secondary structure, both alpha-helix and beta-strand [96]. 

 

https://www.genome.jp/aaindex
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3.1.2.3. SVM 

Due to the paucity of the training set and to the relatively simple feature encoding, we did not apply 

in this problem deep learning procedures that usually require more data and/or complex encoding to 

extract generalizable information. Therefore, SVMyr adopts a prediction step based on an ensemble 

of linear SVMs.  

The hyperparameters of the SVM models were optimized adopting a 10-fold cross-validation and a 

grid search. For each run of cross-validation we used eight subsets for training, one for validation 

(used to determine the optimal regularization parameter C) and one for testing.   

To implement SVMyr, we used the Python package scikit-learn (https://scikit-learn.org). 

3.1.2.4. Post-translational Myristoylation Prediction 

SVMyr address the post-translational myristoylation task by scanning the protein sequence to find 

caspase cleavage site motifs localized upstream a glycine. In fact, the caspase proteolytic cleavage is 

necessary to expose the internal myristoylation sites, given the experimental evidence collected so 

far. Then, this modification takes place during apoptosis and other caspase-mediated processes in 

metazoan, where caspases are found.  

Motifs used for pattern scanning are derived from the Eukaryotic Linear Motifs (ELM) database [97] 

and summarized in Table 7. In this database four apoptotic caspase cleavage motifs are reported, 

namely: one validated motif for caspase 3/7 (ELME000321) and three candidate motifs for caspase 

2, 6 and 9.  

Once a caspase cleavage site is found by this procedure, downstream octapeptides with a glycine in 

starting position are predicted for myristoylation with the ensemble SVM procedure. 

 

https://scikit-learn.org/
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Table 7. Apoptotic caspase cleavage site motifs adopted by SVMyr for the prediction of post-translational myristoylation 

sites. 

Caspase Motif status Pattern 

Caspase 2 In validation in ELM [DEIL]X[DEFY]D 

Caspase 3-7 Fully-annotated in ELM (ELME000321) [DSTE][^P][^DEWHFYC]D 

Caspase 6 In validation in ELM [VLIT][EDQ][^DENQRKAPGS]D 

Caspase 9 In validation in ELM [^RK][EDQ]HD 

In pattern, ^ indicates the exclusion of residues in square brackets and X indicates any residue. 

3.1.3. Evaluation 

Metrics used to benchmark SVMyr include sensitivity (8), precision, MCC (10) and F1-score.  

Precision is defined as: 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (12) 

F1-score is defined as:  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2×𝑃𝑟𝑒×𝑆𝑒𝑛

𝑃𝑟𝑒+𝑆𝑒𝑛
         (13) 

         

where TP (True Positive) and TN (True Negative) are the numbers of correctly predicted positive and 

negative proteins, respectively, and FP (False Positive) and FN (False Negative) are the numbers of 

incorrect positive and negative predictions, respectively. 

Moreover, we computed Receiver Operating Characteristic (ROC) curve and the relative Area Under 

the Curve (AUC), when applicable. 
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3.2. Results and Discussion 

SVMyr [5] is a web server designed for co- and post-translational myristoylation prediction in 

proteins. The method behind is based on an ensemble of SVM taking as input octapeptides with a 

glycine in starting position. They are encoded via compositional scores (computed using a PSSM 

derived in this work) and physicochemical features. Moreover, it scans the sequence searching for 

putative caspase cleavage sites localized upstream a glycine. This allows the detection of post-

translational myristoylation sites, a unique feature of our tool.  

SVMyr has been trained on a dataset having 232 co-translationally myristoylated octapeptides with 

experimental validation in SwissProt and 232 non-myristoylated octapeptides tested in vitro [55]. The 

training set was divided in 10 non-redundant subsets for cross-validation. Moreover, SVMyr was 

benchmarked on a testing set having 88 high/medium confidence myristoylated octapeptides and 528 

non-myristoylated octapeptides.  

To test SVMyr in the post-translational myristoylation task, we used a dataset with 4 examples 

experimentally annotated in SwissProt and 11 examples derived from an in vivo study [74]. 

Finally, SVMyr was used in a proteome-wide analysis involving Arabidopsis thaliana, Homo 

sapiens, Mus musculus, Saccharomyces cerevisiae, Trypanosoma brucei, Trypanosoma cruzi, 

Leishmania donovani, and Plasmodium falciparum. 

3.2.1. Co-translational Myristoylation 

SVMyr was tested with a 10-fold cross-validation over the training set (Table 8). In this testing 

procedure, it reported a sensitivity of 65%, precision of 87%, MCC of 0.61 and F1-score of 75%.  

In addition, SVMyr was benchmarked adopting the blind test set with other available methods, 

namely: NMT predictor [70], Myristoylator [71], and TermiNator3 [72]. Moreover, the regular 

expression proposed in [55] (Regular Motif A) and the PROSITE pattern (Regular Motif B) [69] were 
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tested. Results are reported in Table 8. In this benchmark, SVMyr reported the highest results among 

the methods in terms of precision (62%), MCC (0.58) and F1-score (64%). Only TermiNator3 

reported a higher sensitivity (81% vs. 67%), but this is compensated by a much lower precision (24%), 

with a MCC and F1-score of 0.27 and 37%, respectively. Similar considerations may be done for 

Regular Motif B, which have a sensitivity of 72%, but low precision (36%). At the contrary, Regular 

Motif A had the highest precision (69%), but poor sensitivity (20%). Overall, these results 

demonstrated that SVMyr outperforms the other method in the co-translational myristoylation 

prediction task.  

Table 8. SVMyr results obtained in cross-validation over the training set and results obtained by all methods over the 

blind test set. 

Method Dataset Sen (%) Pre (%) MCC F1 (%) 

SVMyr Cross-validation 65 87 0.61 75 

SVMyr Blind test set 67 62 0.58 64 

NMT  Blind test set 44 60 0.46 52 

Myristoylator Blind test set 48 40 0.33 43 

TermiNator3 Blind test set 81 24 0.27 37 

Regular Motif A Blind test set 20 69 0.33 32 

Regular Motif B Blind test set 72 36 0.39 48 

Regular Motif A: regular expression proposed in [55]. Regular Motif B: regular expression reported in PROSITE [69]. 

Sen: sensitivity. Pre: precision. MCC: Matthews Correlation Coefficient. F1: F1-score. 

These two methods are the only ones providing a score both for positive and negative predictions, 

allowing the computation of true and false positive rates at different thresholds. NMT provides a 

score only for the positive class, the other methods perform a binary classification. Thus, their 

performances are represented as single points in the graph (Figure 17).  SVMyr reported the biggest 

AUC (0.91), while Myristoylator had an AUC of 0.79. Moreover, also the scores reported by the 

other methods and regular expressions are clearly lower than the one reported by SVMyr. 
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Figure 17. ROC curves computed for SVMyr and Myristoylator. For the other methods it was not possible to compute 

TPR and FPR at different score thresholds, then they are represented by points. 

3.2.2. Post-translational Myristoylation 

Among the available methods, SVMyr is the only one addressing the problem of post-translational 

myristoylation detection. Thus, we tested it on a dataset designed for this task. SVMyr correctly 

predicted all the four proteins annotated as post-translationally myristoylated in SwissProt, and 7 out 

of 11 proteins from an in vivo study (not included in SwissProt). Overall, 11 out of 15 proteins were 

correctly classified, showing that SVMyr well performs also in this task. 

3.2.3. Proteome Analysis 

SVMyr is a fast method designed for large-scale analysis. Therefore, we used it to filter the complete 

reference proteomes of eight organisms: Arabidopsis thaliana, Homo sapiens, Mus musculus, 

Saccharomyces cerevisiae, Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, and 

Plasmodium falciparum. Results of this analysis are reported in Table 9 (for  metazoan, i.e., H. 

sapiens and M. musculus) and Table 10 (for non-metazoan organisms).  
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Table 9. Proteome-wide analysis performed with SVMyr on two selected metazoan organisms. 

Proteins H.sapiens  

(#) 

M.musculus  

(#) 

in the Proteome  79038 55341 

in the Glyome* 5243 3788 

Annotated 

experimentally ^ 

not in training # 

automatically ° 

401  

373 

240 

28 

177  

16 

9 

161 

predicted CT, annotated 

experimentally ^ 

not in training # 

automatically ° 

254  

238 

130 

16 

152  

14 

9 

138 

predicted CT  902  719 

predicted CT, new targets § 

octapeptides 

183  

158 

272  

223 

predicted PT 

sites 

1422  

1487 

1147 

1231  

CT: co-translational. PT: post-translational. *For each proteome, the Glyome size indicates the number of proteins starting 

with Gly (or MetGly). ^: the number of experimental annotations in UniProt with ECO:0000269 and/or in the reference 

papers, when present, as quoted among square brackets in the header line. #: the number of proteins not included in the 

training set of SVMyr.°: the number of proteins with non-experimental annotation for myristoylation in UniProt. §: the 

number of predicted new MYR protein substrates. We excluded protein isoforms of genes endowed with an isoform 

previously annotated as myristoylated, either experimentally or computationally.  

For co-translational myristoylation, SVMyr predicted 902 proteins in H. sapiens, 615 in A. thaliana, 

719 in M. musculus, 39 in S. cerevisiae, 119 in T. brucei, 194 in T. cruzi, 119 in L. donovani, and 61 

in P. falciparum. For all these organisms the portion of  co-translational myristoylated proteins over 

the entire proteome ranges from 1 to 2%, as already observed [61]. In S. cerevisiae, SVMyr predicted 

39 co-translationally myristoylated proteins, about 0.66% of the proteome, which is lower than 2% 

as reported in previous analysis [61]. For all these proteomes, SVMyr correctly identifies most (or 

even all) the experimentally annotated co-translationally myristoylated proteins. In fact, the overall 

sensitivity is 74% (902 predicted proteins over 1227 annotated ones). Considering only experimental 

annotations the overall sensitivity is 72% (732 over 1014).  
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Table 10. Proteome-wide analysis performed with SVMyr on six selected organisms. 

Proteins A.thaliana 

(#) 

S.cerevisiae 

(#) 

T.brucei 

(#) 

T.cruzi  

(#) 

L.donovani 

+(#) 

P.falciparum 

(#) 

in the Proteome  39334 6050 8587 19242 7960 5384 

in the Glyome* 3457 288 463 981 412 232 

annotated 

experimentally ^ 

not in training # 

automatically ° 

506  

488 

457  

18 

18  

12  

1  

6 

62  

62 

62 

0 

16  

16 

16 

0 

30  

30 

30 

0 

17  

17 

17 

0 

predicted CT, 

annotated 

experimentally ^ 

not in training # 

automatically ° 

376 

 

365 

334 

11 

18  

 

12 

1 

6 

54  

 

54 

54 

0 

13  

 

13 

13 

0 

20  

 

20 

20 

0 

15  

 

15 

15 

0 

predicted CT  615 39 119 194 119 61 

predicted CT, new 

targets § 

octapeptides 

68 

 

63 

21  

 

21 

63  

 

63 

181  

 

123 

99  

 

97 

44 

 

44 

CT: co-translational. PT: post-translational. *For each proteome, the Glyome size indicates the number of proteins starting 

with Gly (or MetGly). ^: the number of experimental annotations in UniProt with ECO:0000269 and/or in the reference 

papers, when present, as quoted among square brackets in the header line. #: the number of proteins not included in the 

training set of SVMyr.°: the number of proteins with non-experimental annotation for myristoylation in UniProt. §: the 

number of predicted new MYR protein substrates. We excluded protein isoforms of genes endowed with an isoform 

previously annotated as myristoylated, either experimentally or computationally.  

The percentage of correct predictions in human is 64% (238 out of 373 proteins), in Arabidopsis is 

75% (365 out of 488), in mouse is 87% (14 out of 16), and 100% in yeast (12 out of 12). For T. brucei, 

T. cruzi, L. donovani, and P. falciparum proteome-wide studies identified a pool of myristoylated 

proteins [90-93]. These experimental annotations could be used to validate our findings. In T. brucei, 

SVMyr correctly classified 54 out of 62 (87%) experimental examples [90]. In T. cruzi, it found 13 

out of 16 proteins (81%) [91]. In L. donovani, 20 out of 30 proteins (67%) [92]. Finally, in P. 

falciparum, SVMyr identified 15 out of 17 proteins (88%) [93]. 

These values are slightly lower when considering proteins not included in the training set, with an 

overall sensitivity of 69% (576 over 832), varying from the 54% (130 out of 240) observed in H. 

sapiens to the 100% observed in mouse and yeast (9 and 1 examples, respectively).  
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For post-translational myristoylation, due to lack of available experimental data, it was not possible 

to validate the predictions of SVMyr, which identifies several putative proteins and sites of this type 

in organism in which this process takes place (metazoan). 

It should be noticed that SVMyr is a fast method, which can process the entire human proteome in 

about ten minutes (nearly a protein in 0.1 seconds on average).  

Co-translational myristoylated proteins predicted by SVMyr in the selected proteomes are covered 

mostly by PFAM domains observed in the training set, including Pkinase, Arf, EF-hand_7, 

PK_Tyr_Ser-Thr and G-alpha. Figure 18 reports the number of PFAM domains per proteins in the 

training set and in the new substrates identified by SVMyr in the proteome analysis. In the 

monodomain proteins included in the training set, the most represented PFAM domains are: Arf 

(PF00025, 12 proteins), G-alpha (PF00503, 11 proteins), Pkinase (PF00069, 10 proteins), EF-

hand_7 (PF13499, 7 proteins), PK_Tyr_Ser-Thr (PF07714, 7 proteins). Remarkably, almost the 

same domains are found in the new substrates: Pkinase (27 proteins), EF-hand_7 (17 proteins), Arf 

(14 proteins) , PK_Tyr_Ser-Thr (10 proteins). These protein domains are reported also in literature 

as domains commonly found in myristoylated proteins [98]. 

 

Figure 18. Number of Pfam domains per protein in the positive training set (blue) and the set of MYR substrates 

predicted in the 8 different proteomes. 
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3.2.4. Web Server 

SVMyr is made available for the scientific community via a web server designed having in mind 

usability and accessibility (https://busca.biocomp.unibo.it/lipipred).  

In the server home page, the user is invited to either paste sequences in FASTA format or upload a 

FASTA file. SVMyr accepts multiple submissions up to 1,000 proteins per job. For each protein, 

SVMyr performs both co- and post-translational myristoylation prediction. Upon submission, the user 

is redirected to a waiting page, then to the output page, in which results are organized in three tables 

(Figure 18).  

The first table reports information about the job, including: job ID, submission time, and the number 

of submitted sequences. 

The second table reports the co-translational myristoylation prediction of the input proteins. For 

each protein it details the protein accession/ID, the prediction (that is equal to N-myristoyl glycine 

or not myristoylated), the position in which myristoylation takes place, the octapeptide used in the 

prediction phase, the probabilistic score, and the associated classification, i.e.:  highly probable 

(score ≥ 0.8), probable (0.5 ≤ score ≤ 0.8) or improbable (score ≤ 0.5). The third table lists the post-

translational myristoylation sites predicted in the input proteins. This table have one additional 

column with respect to the second table, reporting the caspase type for which a match is found in the 

pattern scanning procedure. Moreover, the column reporting the octapeptide is modified to include 

also the sequence containing the caspase cleavage site. 

For each entry having a positive prediction in the third table, it is available a detail result page 

accessible by clicking on the protein accession/ID. In this page, via an interactive feature viewer, the 

caspase cleavage and the myristoylation site are shown along the primary sequence. Three 

supplementary tables report detailed information about: (i) the caspase cleavage sites found along 

the sequence, together with the caspase type involved, the matching caspase motif, begin and end 

https://busca.biocomp.unibo.it/lipipred
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positions, the cleavage site in the sequence; (ii) the probable/highly probable myristoylation sites; 

(iii) the improbable myristoylation sites. 

 

Figure 19. The main SVMyr results page. Proteins ID with blue color are embedded with a link to a detailed result page.

Summary of submitted job

Co-translational myristoylation prediction

Post-translational myristoylation prediction
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4. Conclusions 

Biology is now a well-established member of the so-called Big Data Sciences, thanks to the 

technological advancements in the field of “Omics” sciences, which allow to produce large amounts 

of data in a constantly reducing time [1,2]. This opens exciting perspectives, as well as new 

challenges. In fact, big data needs to be effectively stored and analyzed. The latter is one of the main 

goals in bioinformatics, which is addressed via the development of computational tools for sequence 

annotation. This is done mainly using machine-learning algorithms, which can derive from training 

examples rules that can be used to make predictions on new data.  

In this context, my PhD research focalized on developing machine leaning-based tools for membrane 

proteins annotation. This class of proteins is of particular relevance performing a wide range of 

functions and being a target for about the 60% of the approved drugs [14]. Moreover, they are 

underrepresented in PDB [15], lacking an adequate number of resolved structures, mainly because of 

technical issues encountered in the crystallization process [16,17]. In particular, I developed two 

methods, which are made available through web server: BetAware-Deep [4] and SVMyr [5]. 

BetAware-Deep is designed for prokaryotic TMBB proteins detection and topology prediction. It 

combines two predictive steps: a BLSTM model, a deep-learning method designed to effectively 

handle sequential data, and GRHCRFs model, a probabilistic graphical model introducing a regular 

grammar ensuring biologically relevant predictions. Moreover, BetAware-Deep adopts the PWHM 

to model the dyad repeat pattern observed in transmembrane segments. The PWHM uses the 

evolutionary information contained on an MSA and proved to be more effective than the canonical 

formulation of the hydrophobic moment.  

BetAware-Deep outperforms other available state-of-the-art methods for topology prediction in an 

independent benchmark designed in our study. In addition, it reported results at the level of other 

predictors in the detection task performed over a large dataset.  
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BetAware-Deep is made available via a web server at https://busca.biocomp.unibo.it/betaware2, 

where the user can analyze a protein sequence thanks to a user-friendly interface reporting tabular 

results and a graphical feature viewer showing predictions along the sequence. 

SVMyr is a method designed for co- and post-translational myristoylation prediction in eukaryotic 

proteins. It is based on SVM and uses as inputs Gly-starting octapeptides, encoded via a per-residue 

compositional score and mean physicochemical features. The post-translational myristoylation 

prediction is a unique feature of this method and it is performed via a pattern search for caspase 

cleavage motifs exposing a glycine.  

SVMyr outperforms, in an independent benchmark, other method and patterns available for 

performing the co-translational myristoylation prediction task. Moreover, it reports good sensitivity 

in the post-translational myristoylation task.  

SVMyr is a fast method designed to analyze large-scale proteomic datasets. Tested on diverse 

reference proteomes derived from UniProt, it confirms many (if not all) the experimentally annotated 

myristoylation sites reported by SwissProt in each organism. This analysis may be performed rapidly 

by SVMyr: the whole human proteome was processed in just 10 minutes. 

The method is accessible at https://busca.biocomp.unibo.it/lipipred/. This web server is free, easy to 

use, and accepts large submission (up to 1000 sequences in FASTA format). It reports prediction in 

tabular form and allows the user to visualize them with a graphical feature viewer.  

The methods here described represent valuable tools that can be used to annotate membrane proteins 

of great interest: TMBB proteins and myristoylated proteins. They are made available to the entire 

scientific community and free to use, developed having in mind good practices for the development 

of machine learning-based tools. Given that, I think that they provide an important contribution in the 

field, helping researchers to fill the gap between protein sequences and structural/functional data 

available. 

https://busca.biocomp.unibo.it/betaware2
https://busca.biocomp.unibo.it/lipipred/
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Appendix 1 – Positive Training Set of BetAware-Deep (58 proteins) 

UniProt ID Organism PDB ID Chain Experimental Method Resolution (Å) 

P22340 Salmonella typhimurium 1a0s P X-RAY DIFFRACTION 2.4 

P05825 Escherichia coli 1fep A X-RAY DIFFRACTION 2.4 

P0A921 Escherichia coli 1fw2 A X-RAY DIFFRACTION 2.6 

P39767 Rhodobacter blasticus 1h6s 1 X-RAY DIFFRACTION 3 

Q51227 Neisseria meningitidis 1k24 A X-RAY DIFFRACTION 2.03 

P13036 Escherichia coli 1kmo A X-RAY DIFFRACTION 2 

P37001 Escherichia coli 1mm4 A SOLUTION NMR 
 

P26466 Salmonella typhimurium 1mpr A X-RAY DIFFRACTION 2.8 

Q9RP17 Neisseria meningitidis 1p4t A X-RAY DIFFRACTION 2.55 

P10384 Escherichia coli 1t16 A X-RAY DIFFRACTION 2.6 

P0A927 Escherichia coli 1tlw A X-RAY DIFFRACTION 3.1 

P02930 Escherichia coli 1tqq A X-RAY DIFFRACTION 2.75 

Q8GKS5 Neisseria meningitidis 1uyn X X-RAY DIFFRACTION 2.6 

Q51487 Pseudomonas aeruginosa 1wp1 A X-RAY DIFFRACTION 2.56 

P42512 Pseudomonas aeruginosa 1xkw A X-RAY DIFFRACTION 2 

Q9HVD1 Pseudomonas aeruginosa 2erv A X-RAY DIFFRACTION 2 

P76045 Escherichia coli 2f1c X X-RAY DIFFRACTION 2.3 

P0A910 Escherichia coli 2ge4 A SOLUTION NMR 
 

P17315 Escherichia coli 2hdi A X-RAY DIFFRACTION 2.5 

P48632 Pseudomonas aeruginosa 2iah A X-RAY DIFFRACTION 2.73 

P06996 Escherichia coli 2j1n C X-RAY DIFFRACTION 2 

P24017 Klebsiella pneumoniae 2k0l A SOLUTION NMR 
 

Q51486 Pseudomonas aeruginosa 2lhf A SOLUTION NMR 
 

P05695 Pseudomonas aeruginosa 2o4v A X-RAY DIFFRACTION 1.94 

P69856 Escherichia coli  2wjq A X-RAY DIFFRACTION 2 

Q9HWW1 Pseudomonas aeruginosa 2x27 X X-RAY DIFFRACTION 2.4 

P17811 Yersinia pestis 2x4m A X-RAY DIFFRACTION 2.55 

Q8GNN6 Escherichia coli 2ynk A X-RAY DIFFRACTION 2.64 

P06129 Escherichia coli 2ysu A X-RAY DIFFRACTION 3.5 

Q9RBW8 Ralstonia pickettii 3bry A X-RAY DIFFRACTION 3.2 

Q79AD2 Serratia marcescens 3csl A X-RAY DIFFRACTION 2.7 

Q9HVJ6 Pseudomonas aeruginosa 3dwo X X-RAY DIFFRACTION 2.2 

Q72JD8 Thermus thermophilus 3dzm A X-RAY DIFFRACTION 2.801 

Q48152 Haemophilus influenzae 3emo A X-RAY DIFFRACTION 3 

P72412 Shigella dysenteriae 3fhh A X-RAY DIFFRACTION 2.6 

Q8ZPT3 Salmonella typhimurium 3fid A X-RAY DIFFRACTION 1.9 

P02931 Escherichia coli 3hw9 A X-RAY DIFFRACTION 2.61 

O33407 Pseudomonas aeruginosa 3kvn X X-RAY DIFFRACTION 2.499 

P35077 Bordetella pertussis 3njt A X-RAY DIFFRACTION 3.5 

C5I2D9 Pseudomonas fluorescens 3qlb A X-RAY DIFFRACTION 3.26 

Q45340 Bordetella pertussis 3qq2 A X-RAY DIFFRACTION 3 

Q8D0Z7 Yersinia pestis 3qra A X-RAY DIFFRACTION 1.801 

P18895 Pseudomonas aeruginosa 3rbh A X-RAY DIFFRACTION 2.301 

P30130 Escherichia coli 3rfz B X-RAY DIFFRACTION 2.8 

Q7BSW5 Escherichia coli 3slj A X-RAY DIFFRACTION 2.481 



 

Q9HVS0 Pseudomonas aeruginosa 3syb A X-RAY DIFFRACTION 2.7 

Q9K0U9 Neisseria meningitidis 3v89 A X-RAY DIFFRACTION 3.1 

Q5RT80 Neisseria meningitidis 3vzt X X-RAY DIFFRACTION 2.3 

P0ADE4 Escherichia coli 4c00 A X-RAY DIFFRACTION 2.25 

P11922 Yersinia pseudotuberculosis 4e1t A X-RAY DIFFRACTION 2.263 

P46359 Yersinia pestis 4epa A X-RAY DIFFRACTION 3.2 

A5VZA8 Pseudomonas putida 4gey A X-RAY DIFFRACTION 2.7 

Q934G3 Dickeya dadantii 4pr7 A X-RAY DIFFRACTION 2.1 

Q83SQ0 Shigella flexneri 4q35 A X-RAY DIFFRACTION 2.393 

A6XB80 Acinetobacter baumannii 4rl9 A X-RAY DIFFRACTION 2.7 

Q9I5U2 Pseudomonas aeruginosa 5iva A X-RAY DIFFRACTION 2.988 

P0C6Q6 Vibrio cholerae 5onu A X-RAY DIFFRACTION 2.22 

P0A942 Escherichia coli 6fsu A X-RAY DIFFRACTION 2.6 



 

Appendix 2 – Negative Training Set of BetAware-Deep (69 proteins) 

UniProt ID Organism PDB ID Chain Experimental Method Resolution (Å) 

P0ABD8 Escherichia coli  1a6x A SOLUTION NMR 
 

P07103 Dickeya dadantii  1aiw A SOLUTION NMR 
 

Q53654 Staphylococcus aureus 1amx A X-RAY DIFFRACTION 2 

P00778 Lysobacter enzymogenes 1boq A X-RAY DIFFRACTION 2.1 

P01092 Streptomyces tendae 1bvn T X-RAY DIFFRACTION 2.5 

P04766 Geobacillus stearothermophilus  1d1n A SOLUTION NMR 
 

Q46079 Pedobacter heparinus 1dbg A X-RAY DIFFRACTION 1.7 

P00646 Escherichia coli 1e44 B X-RAY DIFFRACTION 2.4 

P56930 Thermus thermophilus 1feu A X-RAY DIFFRACTION 2.3 

P0CL66 Borrelia burgdorferi 1fj1 E X-RAY DIFFRACTION 2.68 

Q9RCK8 Streptomyces tendae 1g6e A SOLUTION NMR 
 

Q05128 Zaire ebolavirus 1h2d A X-RAY DIFFRACTION 2.6 

Q820S6 Nitrosomonas europaea 1iby A X-RAY DIFFRACTION 1.65 

Q2FV99 Staphylococcus aureus 1ija A SOLUTION NMR 
 

P0A7C2 Escherichia coli 1jhc A X-RAY DIFFRACTION 2 

Q9RP27 Haemophilus influenzae 1jov A X-RAY DIFFRACTION 1.57 

P39805 Bacillus subtilis 1l1c A SOLUTION NMR 
 

P14930 Neisseria gonorrhoeae 1l1d A X-RAY DIFFRACTION 1.85 

P12293 Paracoccus denitrificans 1lrw A X-RAY DIFFRACTION 2.5 

Q55418 Synechocystis sp.  1mi8 A X-RAY DIFFRACTION 2 

P9WNF5 Mycobacterium tuberculosis 1nyo A SOLUTION NMR 
 

O85094 Pseudomonas savastanoi  1o9y A X-RAY DIFFRACTION 2.29 

O32079 Bacillus subtilis 1oru A X-RAY DIFFRACTION 1.8 

P45206 Haemophilus influenzae 1ou9 A X-RAY DIFFRACTION 1.8 

O66640 Aquifex aeolicus 1p6v A X-RAY DIFFRACTION 3.2 

Q57221 Yersinia pseudotuberculosis 1pm4 A X-RAY DIFFRACTION 1.755 

P0A790 Escherichia coli 1ppy A X-RAY DIFFRACTION 1.95 

P0A6Y8 Escherichia coli 1q5l A SOLUTION NMR 
 

Q7A189 Staphylococcus aureus 1qwx A X-RAY DIFFRACTION 1.5 

P76344 Escherichia coli 1s7d A X-RAY DIFFRACTION 2.17 

Q92RG6 Rhizobium meliloti 1so9 A SOLUTION NMR 
 

O06522 Haemophilus ducreyi 1sr4 A X-RAY DIFFRACTION 2 

P9WHW3 Mycobacterium tuberculosis 1w74 A X-RAY DIFFRACTION 2.6 

P04450 Geobacillus stearothermophilus 1whi A X-RAY DIFFRACTION 1.5 

Q5SM30 Thermus thermophilus 1wk2 A X-RAY DIFFRACTION 2.5 

P96142 Thermus thermophilus 1wka A X-RAY DIFFRACTION 1.7 

P0A1J1 Salmonella typhimurium 1wlg A X-RAY DIFFRACTION 1.8 

P28248 Escherichia coli 1xs1 A X-RAY DIFFRACTION 1.8 

P08874 Bacillus subtilis 1yfb A SOLUTION NMR 
 

P74334 Synechocystis sp. 2biw A X-RAY DIFFRACTION 2.39 

P77667 Escherichia coli 2d2a A X-RAY DIFFRACTION 2.7 

Q8YSC3 Nostoc sp. 2ii7 A X-RAY DIFFRACTION 2.8 

Q7X4S4 Bacillus licheniformis 2jem A X-RAY DIFFRACTION 1.78 

Q84B82 Aliivibrio fischeri 2kmt A SOLUTION NMR 
 

Q892G2 Clostridium tetani 2qyz A X-RAY DIFFRACTION 2.04 



 

B4EH87 Burkholderia cenocepacia 2vnv A X-RAY DIFFRACTION 1.7 

Q9I0M4 Pseudomonas aeruginosa 2w7q A X-RAY DIFFRACTION 1.88 

O80297 Escherichia phage If1 2x9a A X-RAY DIFFRACTION 2.47 

B1JSA0 Yersinia pseudotuberculosis 2y6t A X-RAY DIFFRACTION 2.74 

Q2MDE2 Microcystis aeruginosa 2yhh A SOLUTION NMR 
 

O84671 Chlamydia trachomatis 3gqs A X-RAY DIFFRACTION 2.2 

P18429 Bacillus subtilis 3hd8 B X-RAY DIFFRACTION 2.39 

A1S3D0 Shewanella amazonensis  3hsa A X-RAY DIFFRACTION 1.99 

Q7WTN6 Rhodothermus marinus 3jxs A X-RAY DIFFRACTION 1.6 

E5Q9D7 Mycolicibacterium 
thermoresistibile 

3nfw A X-RAY DIFFRACTION 1.6 

P19478 Treponema pallidum 3pjl A X-RAY DIFFRACTION 1.7 

Q6VAL9 Pseudorhizobium banfieldiae 4aay B X-RAY DIFFRACTION 2.7 

E8T502 Thermovibrio ammonificans 4c3t A X-RAY DIFFRACTION 1.69 

Q8XXK6 Ralstonia solanacearum 4csd A X-RAY DIFFRACTION 1.35 

Q2SWY6 Burkholderia thailandensis 4eqy A X-RAY DIFFRACTION 1.8 

Q8DKB4 Thermosynechococcus elongatus 4n8f A X-RAY DIFFRACTION 2 

Q2YMM2 Brucella abortus 4q14 A X-RAY DIFFRACTION 1.7 

P44602 Haemophilus influenzae 4rt6 A X-RAY DIFFRACTION 2.8 

P02976 Staphylococcus aureus 4y4y A X-RAY DIFFRACTION 3 

E6UBR9 Ruminococcus albus 5ayd A X-RAY DIFFRACTION 2.3 

A6TD90 Klebsiella pneumoniae 5cai A X-RAY DIFFRACTION 2.3 

A4ISU9 Geobacillus thermodenitrificans 5dmb D X-RAY DIFFRACTION 2.301 

O34714 Bacillus subtilis 5hi0 A X-RAY DIFFRACTION 2.602 

Q9PBB0 Xylella fastidiosa 5j7n A X-RAY DIFFRACTION 2.9 



 

Appendix 3 – Blind Test Set of BetAware-Deep (15 proteins) 

UniProt ID Organism PDB ID Chain Experimental Method Resolution (Å) 

A1JUB7 Yersinia enterocolitica 2lme A SOLID-STATE NMR 
 

A0A0F6C2F5 Escherichia coli 4q79 A X-RAY DIFFRACTION 3.1 

A5W3Z9 Pseudomonas putida 4rl8 A  X-RAY DIFFRACTION 2.3 

Q48391 Klebsiella oxytoca 4v3g A X-RAY DIFFRACTION 2.513 

Q6D8U4 Pectobacterium atrosepticum 4zgv A X-RAY DIFFRACTION 3.2 

Q8A5H5 Bacteroides thetaiotaomicron 5fq6 D X-RAY DIFFRACTION 2.8 

Q659I5 Campylobacter jejuni 5ldv A X-RAY DIFFRACTION 2.1 

O86021 Vibrio cholerae 5oyk A X-RAY DIFFRACTION 3.2 

P45758 Escherichia coli  5wq7 A ELECTRON 
MICROSCOPY 

3.04 

A0A062F4L9 Acinetobacter baumannii 6gie A X-RAY DIFFRACTION 2.1 

Q5I6C7 Flavobacterium johnsoniae 6h3i A ELECTRON 
MICROSCOPY 

3.5 

A5FJM7 Flavobacterium johnsoniae 6h3i F ELECTRON 
MICROSCOPY 

3.5 

Q76HJ9 Acinetobacter baumannii 6hcp A X-RAY DIFFRACTION 1.83 

Q00595 Pseudomonas oleovorans 6qam A SOLUTION NMR 
 

P37650 Escherichia coli 6tzk A X-RAY DIFFRACTION 1.852 



 

Appendix 4 – Positive Training Set of SVMyr (232 proteins) 

UniProt ID Organism Octapeptide Annotation 
Source 

Q99828 Homo sapiens GGSGSRLS SwissProt 

P42325 Drosophila melanogaster GKQNSKLK SwissProt 

Q06389 Saccharomyces cerevisiae GAKTSKLS SwissProt 

Q9NUM4 Homo sapiens GKSLSHLP SwissProt 

Q9FIL1 Arabidopsis thaliana GPRCSKLS SwissProt 

O81223 Arabidopsis thaliana  GCSVSKKK SwissProt 

Q8IZE3 Homo sapiens GSENSALK SwissProt 

P34164 Saccharomyces cerevisiae  GTTTSHPA SwissProt 

Q8W4L3 Arabidopsis thaliana  GGQCSSLS SwissProt 

Q9D6Y7-2 Mus musculus  GDSASKVI SwissProt 

Q05175 Rattus norvegicus  GSKLSKKK SwissProt 

P53701 Homo sapiens  GLSPSAPA SwissProt 

Q8MMZ7 Toxoplasma gondii GACISKNS SwissProt 

Q8WU20 Homo sapiens  GSCCSCPD SwissProt 

Q9M324 Arabidopsis thaliana  GARCSKFS SwissProt 

Q9FHD7 Arabidopsis thaliana  GCEVSKLS SwissProt 

Q22663 Caenorhabditis elegans GSSTSTPA SwissProt 

P11076 Saccharomyces cerevisiae  GLFASKLF SwissProt 

Q99653 Homo sapiens  GSRASTLL SwissProt 

P18085 Homo sapiens  GLTISSLF SwissProt 

P0CM16 Cryptococcus neoformans GLSVSKLL SwissProt 

P12931 Homo sapiens  GSNKSKPK SwissProt 

P62166 Homo sapiens  GKSNSKLK SwissProt 

Q99618 Homo sapiens  GSAKSVPV SwissProt 

P39968 Saccharomyces cerevisiae  GSCCSCLK SwissProt 

Q65200 African swine fever virus  GGSTSKNS SwissProt 

Q9H4G4 Homo sapiens  GKSASKQF SwissProt 

Q09711 Schizosaccharomyces pombe  GKSQSKLS SwissProt 

Q9VLL3 Drosophila melanogaster  GKAQSKRS SwissProt 

P34727 Ajellomyces capsulatus  GMAFSKLF SwissProt 

P62330 Homo sapiens  GKVLSKIF SwissProt 

P25020 Rous sarcoma virus  GSSKSKPK SwissProt 

P80723 Homo sapiens  GGKLSKKK SwissProt 

P37235 Homo sapiens  GKQNSKLR SwissProt 

P05961 Human immunodeficiency virus type 1  GARASVLS SwissProt 

Q5T2Q4 Homo sapiens  GNILTCCV SwissProt 

Q9Y478 Homo sapiens  GNTSSERA SwissProt 

Q8N7R7 Homo sapiens  GNTLTCCV SwissProt 

P07612 Vaccinia virus  GAAASIQT SwissProt 

O43741 Homo sapiens  GNTTSDRV SwissProt 

Q13286 Homo sapiens  GGCAGSRR SwissProt 

Q9EPI6 Rattus norvegicus  GAAASRRR SwissProt 

Q8ND76 Homo sapiens  GNTTSCCV SwissProt 

P68446 Vaccinia virus  GTAATIQT SwissProt 



 

Q9ULE6 Homo sapiens  GTTASTAQ SwissProt 

Q9CRB9 Mus musculus  GGTASTRR SwissProt 

Q9NX63 Homo sapiens  GGTTSTRR SwissProt 

P00387 Homo sapiens  GAQLSTLG SwissProt 

P16710 Vaccinia virus  GAAVTLNR SwissProt 

P22219 Saccharomyces cerevisiae  GAQLSLVV SwissProt 

Q66282 Coxsackievirus B3  GAQVSTQK SwissProt 

P03093 Simian virus 40  GAALTLLG SwissProt 

P03096 Murine polyomavirus  GAALTILV SwissProt 

P03300 Poliovirus type 1  GAQVSSQK SwissProt 

P10823 Saccharomyces cerevisiae  GLCASSEK SwissProt 

P49006 Homo sapiens  GSQSSKAP SwissProt 

P07947 Homo sapiens  GCIKSKEN SwissProt 

F4I7Y4 Arabidopsis thaliana  GCCQSSFL SwissProt 

O75896 Homo sapiens  GASGSKAR SwissProt 

P29966 Homo sapiens  GAQFSKTA SwissProt 

P16051 Dictyostelium discoideum  GICASSME SwissProt 

Q9LS26 Arabidopsis thaliana  GCLHSKTA SwissProt 

Q944A7 Arabidopsis thaliana  GCCQSLFS SwissProt 

Q0D715 Oryza sativa subsp. japonica  GLCSSSSA SwissProt 

O81445 Arabidopsis thaliana  GCFHSKAA SwissProt 

Q9UPV7 Homo sapiens  GVLMSKRQ SwissProt 

Q9NS86 Homo sapiens  GETMSKRL SwissProt 

P11283 Mouse mammary tumor virus  GVSGSKGQ SwissProt 

Q5VT66 Homo sapiens  GAAGSSAL SwissProt 

P53139 Saccharomyces cerevisiae  GLCGSKTQ SwissProt 

Q84ME1 Arabidopsis thaliana  GISLSKRR SwissProt 

Q9LTB8 Arabidopsis thaliana  GCFHSTAA SwissProt 

Q7XJT7 Arabidopsis thaliana  GCCYSLSS SwissProt 

Q6IAA8 Homo sapiens  GCCYSSEN SwissProt 

Q9LYB4 Arabidopsis thaliana  GASSSSSV SwissProt 

O95843 Homo sapiens  GNGKSIAG SwissProt 

P21457 Bos taurus  GNSKSGAL SwissProt 

P04289 Human herpesvirus 1  GLSFSGAR SwissProt 

Q9BVX2 Homo sapiens  GSQHSAAA SwissProt 

Q7XJR9 Arabidopsis thaliana  GLCFSSAA SwissProt 

Q86XR7 Homo sapiens  GIGKSKIN SwissProt 

O75695 Homo sapiens  GCFFSKRR SwissProt 

Q969Z3 Homo sapiens  GASSSSAL SwissProt 

Q8R4L0 Mus musculus  GSLSSRGK SwissProt 

Q96BS2 Homo sapiens  GAAHSASE SwissProt 

Q717R9 Homo sapiens  GSGSSRSS SwissProt 

P08754 Homo sapiens  GCTLSAED SwissProt 

A8MTJ3 Homo sapiens  GSGISSES SwissProt 

P08631 Homo sapiens  GGRSSCED SwissProt 

Q8R4T1 Mus musculus  GSGSSRSG SwissProt 

Q9H6Q3 Homo sapiens  GSLPSRRK SwissProt 



 

Q8CFC9 Rattus norvegicus  GSVSSLIS SwissProt 

P19087 Homo sapiens  GSGASAED SwissProt 

Q9CB01 Arabidopsis thaliana  GCASSLPD SwissProt 

Q9H8Y8 Homo sapiens  GSSQSVEI SwissProt 

P0C6Y6 Porcine reproductive and respiratory syndrome virus  GSLWSKIS SwissProt 

Q7Z494 Homo sapiens  GTASSLVS SwissProt 

P11488 Homo sapiens  GAGASAEE SwissProt 

Q969J3 Homo sapiens  GSEQSSEA SwissProt 

P11078 Reovirus type 3  GNASSIVQ SwissProt 

Q9MB58 Arabidopsis thaliana  GSGASKNT SwissProt 

Q9NRX5 Homo sapiens  GSVLGLCS SwissProt 

Q96TA1 Homo sapiens  GDVLSTHL SwissProt 

P04899 Homo sapiens  GCTVSAED SwissProt 

P09471 Homo sapiens  GCTLSAEE SwissProt 

Q96EQ8 Homo sapiens  GSVLSTDS SwissProt 

Q96SL1 Homo sapiens  GSRWSSEE SwissProt 

Q7RTS9 Homo sapiens  GSNSSRIG SwissProt 

A4GNA8 Arabidopsis thaliana  GNGNSTET SwissProt 

P18541 Lymphocytic choriomeningitis virus  GQGKSREE SwissProt 

O60291 Homo sapiens  GSILSRRI SwissProt 

P07611 Vaccinia virus  GGGVSVEL SwissProt 

Q02952 Homo sapiens  GAGSSTEQ SwissProt 

Q91DM1 Equine arteritis virus  GLVWSLIS SwissProt 

Q96MG8 Homo sapiens  GGAVSAGE SwissProt 

Q9BRQ8 Homo sapiens  GSQVSVES SwissProt 

O15121 Homo sapiens  GSRVSRED SwissProt 

Q08358 African swine fever virus  GNRGSSTS SwissProt 

O43149 Homo sapiens  GNAPSHSS SwissProt 

P21137-8 Caenorhabditis elegans GNAASGGS SwissProt 

Q96PY5 Homo sapiens  GNAGSMDS SwissProt 

P84077 Homo sapiens  GNIFANLF SwissProt 

P61204 Homo sapiens  GNIFGNLL SwissProt 

Q923S6 Mus musculus  GNNFSSVS SwissProt 

P38116 Saccharomyces cerevisiae  GNIFSSMF SwissProt 

Q96KC2 Homo sapiens  GLIFAKLW SwissProt 

Q9S752 Arabidopsis thaliana  GNISSSGG SwissProt 

Q60898 Mus musculus  GNSMKSTS SwissProt 

P40616 Homo sapiens  GGFFSSIF SwissProt 

G5EBX9 Caenorhabditis elegans GCGPSSGR SwissProt 

P40327 Saccharomyces cerevisiae  GQGVSSGQ SwissProt 

P06239 Homo sapiens  GCGCSSHP SwissProt 

Q96LZ3 Homo sapiens  GNEASYPA SwissProt 

O88778 Rattus norvegicus  GNEASLEG SwissProt 

P63098 Homo sapiens  GNEASYPL SwissProt 

Q8IVF7 Homo sapiens  GNLESAEG SwissProt 

Q13237 Homo sapiens  GNGSVKPK SwissProt 

Q8W4I7 Arabidopsis thaliana  GNCCRSPA SwissProt 



 

Q9Y3C5 Homo sapiens  GNCLKSPT SwissProt 

Q9NPB3 Homo sapiens  GNCAKRPW SwissProt 

Q9NUQ9 Homo sapiens  GNLLKVLT SwissProt 

P17568 Homo sapiens  GAHLVRRY SwissProt 

Q02368 Bos taurus  GAHLARRY SwissProt 

P18064 Arabidopsis thaliana  GLLCSRSR SwissProt 

Q9C0E8 Homo sapiens  GGLFSRWR SwissProt 

Q8IV36 Homo sapiens  GSTDSKLN SwissProt 

O15355 Homo sapiens  GAYLSQPN SwissProt 

P63252 Homo sapiens  GSVRTNRY SwissProt 

Q06850 Arabidopsis thaliana  GNTCVGPS SwissProt 

Q38870 Arabidopsis thaliana  GNACVGPN SwissProt 

Q8IWE4 Homo sapiens  GQCVTKCK SwissProt 

P26313 Junin mammarenavirus  GQFISFMQ SwissProt 

Q9LU05 Arabidopsis thaliana  GYWKSKVV SwissProt 

Q96262 Arabidopsis thaliana  GYWNSKVV SwissProt 

Q04272 Saccharomyces cerevisiae  GQKSSKVH SwissProt 

P13200 Human cytomegalovirus  GAELCKRI SwissProt 

P27216 Homo sapiens  GNRHAKAS SwissProt 

Q8N9N7 Homo sapiens  GNSALRAH SwissProt 

O73557 Lassa virus  GNKQAKAP SwissProt 

P42526 Dictyostelium discoideum  GNRAFKAH SwissProt 

P13231 Dictyostelium discoideum  GNRAFKSH SwissProt 

Q564G3 Rattus norvegicus  GNSAARSD SwissProt 

P62241 Homo sapiens  GISRDNWH SwissProt 

Q14254 Homo sapiens  GNCHTVGP SwissProt 

P03355 Moloney murine leukemia virus  GQTVTTPL SwissProt 

Q9SG12 Arabidopsis thaliana  GHCYSRNI SwissProt 

Q6P9B6 Homo sapiens  GNSRSRVG SwissProt 

P38405 Homo sapiens  GCLGGNSK SwissProt 

Q38868 Arabidopsis thaliana  GNCFAKNH SwissProt 

P06241 Homo sapiens  GCVQCKDK SwissProt 

O75410-5 Homo sapiens  GGSHSQTP SwissProt 

Q14699 Homo sapiens  GCGLNKLE SwissProt 

P63092 Homo sapiens  GCLGNSKT SwissProt 

Q8NHG7 Homo sapiens  GLCFPCPG SwissProt 

O43687 Homo sapiens  GQLCCFPF SwissProt 

P68181 Mus musculus  GNTAIAKK SwissProt 

P17612 Homo sapiens  GNAAAAKK SwissProt 

P22694 Homo sapiens  GNAATAKK SwissProt 

P79880 Gallus gallus  GNMDGKAV SwissProt 

Q86XD5-2 Homo sapiens  GCIGSRTV SwissProt 

Q920K5 Rattus norvegicus  GCGGSRAD SwissProt 

P62191 Homo sapiens  GQSQSGGH SwissProt 

P46065 Bos taurus  GNIMDGKS SwissProt 

P09108 Tetronarce californica  GQDQTKQQ SwissProt 

Q8NHG8 Homo sapiens  GAKQSGPA SwissProt 



 

Q38872 Arabidopsis thaliana  GNSCRGSF SwissProt 

Q99570 Homo sapiens  GNQLAGIA SwissProt 

P25296 Saccharomyces cerevisiae  GAAPSKIV SwissProt 

O00408 Homo sapiens  GQACGHSI SwissProt 

Q9UJ68-5 Homo sapiens  GNSASNIV SwissProt 

P29728 Homo sapiens  GNGESQLS SwissProt 

Q8WU08 Homo sapiens  GANTSRKP SwissProt 

Q9P203 Homo sapiens  GANASNYP SwissProt 

Q96PX1 Homo sapiens  GALTSRQH SwissProt 

P11801 Homo sapiens  GCGTSKVL SwissProt 

Q7FZF1 Arabidopsis thaliana  GCVCSKQL SwissProt 

Q9H1R2-3 Homo sapiens  GNGMTKVL SwissProt 

Q9NRW4 Homo sapiens  GNGMNKIL SwissProt 

Q494U1 Homo sapiens  GNSHCVPQ SwissProt 

Q9P206-3 Homo sapiens  GNSHHKRK SwissProt 

Q8TB92 Homo sapiens  GNVPSAVK SwissProt 

Q5M775-3 Homo sapiens  GNHSGRPE SwissProt 

P00519-2 Homo sapiens  GQQPGKVL SwissProt 

P03145 Duck hepatitis B virus  GQHPAKSM SwissProt 

P08473 Homo sapiens  GKSESQMD SwissProt 

Q9SCY5 Arabidopsis thaliana  GNVNAREE SwissProt 

P16452 Homo sapiens  GQALGIKS SwissProt 

O75688 Homo sapiens  GAFLDKPK SwissProt 

P29473 Bos taurus  GNLKSVGQ SwissProt 

O00461 Homo sapiens  GNGMCSRK SwissProt 

O60936 Homo sapiens  GNAQERPS SwissProt 

Q8WVD5 Homo sapiens  GQQISDQT SwissProt 

Q7LDG7-2 Homo sapiens  GTQRLCGR SwissProt 

P03362 Human T-cell leukemia virus 1  GQIFSRSA SwissProt 

Q9NZU7 Homo sapiens  GGGDGAAF SwissProt 

O75716 Homo sapiens  GHALCVCS SwissProt 

Q5JWF2 Homo sapiens  GVRNCLYG SwissProt 

Q9P2G1 Homo sapiens  GNTTTKFR SwissProt 

Q9NR22 Homo sapiens  GMKHSSRC SwissProt 

O95466 Homo sapiens  GNAAGSAE SwissProt 

Q84VQ1 Arabidopsis thaliana  GNANGKDE SwissProt 

Q7L9B9 Homo sapiens  GSTLGCHR SwissProt 

P61313 Homo sapiens  GAYKYIQE SwissProt 

Q9Y689 Homo sapiens  GILFTRIW SwissProt 

Q9LYW5 Arabidopsis thaliana  GNLISLIF SwissProt 

Q91J24 Beet curly top virus  GNLISTSC SwissProt 

Q13319 Homo sapiens  GTVLSLSP SwissProt 

Q9P032 Homo sapiens  GALVIRGI SwissProt 

Q155Q3-2 Homo sapiens  GGTQVKCL SwissProt 

Q7L014 Homo sapiens  GRESRHYR SwissProt 

Q96FZ7 Homo sapiens  GNLFGRKK SwissProt 

O75167 Homo sapiens  GQTSVSTL SwissProt 



 

Appendix 5 – Negative Training Set of SVMyr (232 proteins) 

UniProt ID Organism Octapeptide Annotation Source 

F4JG06 Arabidopsis thaliana  GGEDDKDK [55] 

Q9M073 Arabidopsis thaliana  GTETVSFK [55] 

Q9ZW76 Arabidopsis thaliana  GTETVVHD [55] 

Q9FI46 Arabidopsis thaliana  GTESGSDP [55] 

Q8N4P3 Homo sapiens  GSEAAQLL [55] 

O22960 Arabidopsis thaliana  GFKLNSLF [55] 

Q9HCP6 Homo sapiens  GIKTALPA [55] 

Q9FS16 Arabidopsis thaliana  GSPMASLV [55] 

Q8L725 Arabidopsis thaliana  GIIRFQIL [55] 

Q8L608 Arabidopsis thaliana  GFNVVVFL [55] 

P22607 Homo sapiens  GAPACALA [55] 

Q38864 Arabidopsis thaliana  GVLVISLL [55] 

Q8VY22 Arabidopsis thaliana  GFKLISLL [55] 

P15289 Homo sapiens  GAPRSLLL [55] 

C0LGI2 Arabidopsis thaliana  GLCLAQLA [55] 

O64810 Arabidopsis thaliana  GSTLKHLL [55] 

Q02817 Homo sapiens  GLPLARLA [55] 

Q9FJA2 Arabidopsis thaliana  GKRATTSV [55] 

Q9LFQ7 Arabidopsis thaliana  GLHPVSEA [55] 

Q9Y606 Homo sapiens  GLQLRALL [55] 

P30181 Arabidopsis thaliana  GTETVSKP [55] 

Q9H944 Homo sapiens  GVTCVSQM [55] 

Q9SB68 Arabidopsis thaliana  GSAARQPL [55] 

B3H455 Arabidopsis thaliana  GKNNVRLQ [55] 

Q5SRH9 Homo sapiens  GQKGHKDS [55] 

Q8L8Y3 Arabidopsis thaliana  GMSNRSVS [55] 

O64632 Arabidopsis thaliana  GGKGKKRR [55] 

Q6NLH7 Arabidopsis thaliana  GKKNKRSQ [55] 

Q9LZ65 Arabidopsis thaliana  GAKAKKAL [55] 

Q96DA0 Homo sapiens  GAQGAQES [55] 

Q8TCT0 Homo sapiens  GATGAAEP [55] 

Q8VYF0 Arabidopsis thaliana  GKREKKPN [55] 

Q945N1 Arabidopsis thaliana  GKKTKKPG [55] 

P83916 Homo sapiens  GKKQNKKK [55] 

Q9FIQ3 Arabidopsis thaliana  GGSNKNLI [55] 

Q9NPI1 Homo sapiens  GKKHKKHK [55] 

O22768 Arabidopsis thaliana  GGLGGSGP [55] 

O23512 Arabidopsis thaliana  GGEGGAEP [55] 

Q9LVY1 Arabidopsis thaliana  GENGAKRW [55] 

Q9LIL5 Arabidopsis thaliana  GGKNKIEI [55] 

Q9LVS6 Arabidopsis thaliana  GEKGLKRS [55] 

Q9MAC6 Arabidopsis thaliana  GSKNKKQR [55] 

P45973 Homo sapiens  GKKTKRTA [55] 

Q1G3M8 Arabidopsis thaliana  GGKNRSHS [55] 

Q9BYN0 Homo sapiens  GLRAGGTL [55] 



 

O48679 Arabidopsis thaliana  GLLPCSCP [55] 

Q9LXD0 Arabidopsis thaliana  GDTALSLK [55] 

Q9NWV4 Homo sapiens  GKIALQLK [55] 

P82251 Homo sapiens  GDTGLRKR [55] 

F4HZI6 Arabidopsis thaliana  GDTALEKT [55] 

Q93VR4 Arabidopsis thaliana  GLSGVLHV [55] 

Q96EG1 Homo sapiens  GWLFLKVL [55] 

Q9LIS1 Arabidopsis thaliana  GLVQEEGS [55] 

Q9SD62 Arabidopsis thaliana  GVPCIVMR [55] 

A0A1P8B9R9 Arabidopsis thaliana  GLFDCRVY [55] 

Q8N468 Homo sapiens  GCDGRVSG [55] 

F4JBR5 Arabidopsis thaliana  GILDKGKQ [55] 

F4HZZ0 Arabidopsis thaliana  GFEDGPRC [55] 

B3H6U7 Arabidopsis thaliana  GSLAAREG [55] 

Q9FK13 Arabidopsis thaliana  GEMEIEEI [55] 

O48707 Arabidopsis thaliana  GEAAKDQT [55] 

F4KEM2 Arabidopsis thaliana  GCIGSSQA [55] 

Q9C501 Arabidopsis thaliana  GTRVTQFS [55] 

P46777 Homo sapiens  GFVKVVKN [55] 

Q9Y5F8 Homo sapiens  GGSCAQRR [55] 

Q8RWZ3 Arabidopsis thaliana  GSSTGDLV [55] 

Q86VD7 Homo sapiens  GNGVKEGP [55] 

Q9ASW3 Arabidopsis thaliana  GKKGSGGW [55] 

A7REE8 Arabidopsis thaliana  GIQTCSVL [55] 

Q6NQI8 Arabidopsis thaliana  GLLESVKS [55] 

Q9LDF2 Arabidopsis thaliana  GLFESVKS [55] 

P25874 Homo sapiens  GGLTASDV [55] 

Q9UFC0 Homo sapiens  GPLSARLL [55] 

Q9SRT1 Arabidopsis thaliana  GFSRAKRV [55] 

Q9SX77 Arabidopsis thaliana  GTLGRAIH [55] 

Q9C8X2 Arabidopsis thaliana  GALEAERA [55] 

O82253 Arabidopsis thaliana  GVVTVPES [55] 

P36404 Homo sapiens  GLLTILKK [55] 

Q9SN94 Arabidopsis thaliana  GDNSGRSR [55] 

Q9SIF3 Arabidopsis thaliana  GLPSSLES [55] 

Q9FNC2 Arabidopsis thaliana  GCLLGCFG [55] 

Q8L4A7 Arabidopsis thaliana  GDSQYSFS [55] 

Q96L21 Homo sapiens  GRRPARCY [55] 

Q9LSW5 Arabidopsis thaliana  GFFSFLGR [55] 

Q8W108 Arabidopsis thaliana  GEVVKDGR [55] 

O00255 Homo sapiens  GLKAAQKT [55] 

B3H6G6 Arabidopsis thaliana  GLHKHKRA [55] 

Q9SA65 Arabidopsis thaliana  GSSKFKRA [55] 

P08588 Homo sapiens  GAGVLVLG [55] 

Q96LL3 Homo sapiens  GAGVGVAG [55] 

Q66GS4 Arabidopsis thaliana  GTLVGHIL [55] 

Q9ZV87 Arabidopsis thaliana  GKIMEWAA [55] 



 

Q9C9Z0 Arabidopsis thaliana  GSDSTLSL [55] 

Q67XL4 Arabidopsis thaliana  GFLTAAIR [55] 

Q7RTY7 Homo sapiens  GLLASAGL [55] 

Q96P11 Homo sapiens  GLYAAAAG [55] 

Q9SAH5 Arabidopsis thaliana  GLLAAIGV [55] 

Q8IXM3 Homo sapiens  GVLAAAAR [55] 

Q8IWF2 Homo sapiens  GLSAAAPL [55] 

P59120 Arabidopsis thaliana  GLSKTIPL [55] 

Q13686 Homo sapiens  GKMAAAVG [55] 

Q9SX83 Arabidopsis thaliana  GKDKTLPL [55] 

Q6ZRI0 Homo sapiens  GVLASALC [55] 

Q8NEB5 Homo sapiens  GKAAAAVA [55] 

Q84JF8 Arabidopsis thaliana  GLFKFIFL [55] 

Q9C9F0 Arabidopsis thaliana  GFDFSTSK [55] 

C0LGG8 Arabidopsis thaliana  GFIFSTEK [55] 

Q93V51 Arabidopsis thaliana  GLLSNRID [55] 

Q9T065 Arabidopsis thaliana  GLLSKKAS [55] 

Q9M872 Arabidopsis thaliana  GFLSNKIS [55] 

F4I526 Arabidopsis thaliana  GLDSKEAD [55] 

Q84MB1 Arabidopsis thaliana  GVLSMKGG [55] 

Q9SMZ9 Arabidopsis thaliana  GLLKKKDS [55] 

Q9SV05 Arabidopsis thaliana  GYLSCKAG [55] 

Q9FFE7 Arabidopsis thaliana  GLFSHKIS [55] 

Q9LVW3 Arabidopsis thaliana  GVFGSNES [55] 

Q2V4J5 Arabidopsis thaliana  GITKTSVT [55] 

Q96BD6 Homo sapiens  GQKVTGGI [55] 

O15260 Homo sapiens  GQNDLMGT [55] 

A8MZ25 Homo sapiens  GQKKTMGT [55] 

Q1PEX3 Arabidopsis thaliana  GTYKAEDD [55] 

Q9LVC9 Arabidopsis thaliana  GVFSFVCK [55] 

Q8LDM2 Arabidopsis thaliana  GSIDAAVL [55] 

Q9C0A0 Homo sapiens  GSVTGAVL [55] 

P69891 Homo sapiens  GHFTEEDK [55] 

Q96KT6 Homo sapiens  GQSLQEGR [55] 

Q9LYP2 Arabidopsis thaliana  GFFGRLFG [55] 

B3H6B2 Arabidopsis thaliana  GFKGRLNV [55] 

Q8W4A6 Arabidopsis thaliana  GSRSRNDN [55] 

Q94A02 Arabidopsis thaliana  GQIPRFLS [55] 

Q38909 Arabidopsis thaliana  GFITRFLV [55] 

Q9LIE8 Arabidopsis thaliana  GFRTRNLS [55] 

Q9LIE9 Arabidopsis thaliana  GSRSQNLS [55] 

Q9CAJ8 Arabidopsis thaliana  GFPVGYSE [55] 

F4HW79 Arabidopsis thaliana  GSSQGSTL [55] 

Q9MA50 Arabidopsis thaliana  GLLPVVGI [55] 

Q8N8D7 Homo sapiens  GCCTGRCS [55] 

Q9BYP8 Homo sapiens  GCCPGDCF [55] 

Q9LZ61 Arabidopsis thaliana  GGVKRKIS [55] 



 

Q9M1G8 Arabidopsis thaliana  GSMAQKSV [55] 

Q7X9I0 Arabidopsis thaliana  GRVKLKIK [55] 

Q9C633 Arabidopsis thaliana  GGVKRKIA [55] 

Q9XIF2 Arabidopsis thaliana  GSVKRKSV [55] 

Q9S7Q7 Arabidopsis thaliana  GRKKLEIK [55] 

Q38837 Arabidopsis thaliana  GRGKVEVK [55] 

P29384 Arabidopsis thaliana  GRGRVELK [55] 

Q9LK30 Arabidopsis thaliana  GSVSLKIG [55] 

F4JM75 Arabidopsis thaliana  GEEKRRIS [55] 

Q9FG70 Arabidopsis thaliana  GLVDSLLG [55] 

Q8VY57 Arabidopsis thaliana  GLLEAFLN [55] 

O14773 Homo sapiens  GLQACLLG [55] 

Q93Y31 Arabidopsis thaliana  GLWDALLN [55] 

Q9SJY5 Arabidopsis thaliana  GLKGFAEG [55] 

Q9C998 Arabidopsis thaliana  GSAFDPLV [55] 

Q8LGG8 Arabidopsis thaliana  GSEPTKVM [55] 

Q2QAV0 Arabidopsis thaliana  GVEDYHVI [55] 

Q9CAB6 Arabidopsis thaliana  GSEEEKVV [55] 

P57764 Homo sapiens  GSAFERVV [55] 

Q9C8M3 Arabidopsis thaliana  GKENSKVV [55] 

Q9M2W3 Arabidopsis thaliana  GEEDTATV [55] 

F4K4Y5 Arabidopsis thaliana  GEEDTKVI [55] 

Q9FVQ1 Arabidopsis thaliana  GKSKSATK [55] 

P11717 Homo sapiens  GAAAGRSP [55] 

Q9NYF8 Homo sapiens  GRSNSRSH [55] 

Q6QPM2 Arabidopsis thaliana  GFSMFFSP [55] 

Q9NYS0 Homo sapiens  GKGCKVVV [55] 

Q9SRT7 Arabidopsis thaliana  GFFLCSSS [55] 

Q9ZV75 Arabidopsis thaliana  GAAIMRNG [55] 

Q9M1U3 Arabidopsis thaliana  GINSKHVV [55] 

Q9SPG6 Arabidopsis thaliana  GKSSSSEE [55] 

Q9LVX6 Arabidopsis thaliana  GISKKSQV [55] 

Q9SW40 Arabidopsis thaliana  GFGTSSSS [55] 

Q9FLF7 Arabidopsis thaliana  GSSADTET [55] 

Q1PF14 Arabidopsis thaliana  GSIEGQET [55] 

Q3EC50 Arabidopsis thaliana  GFVGSLIR [55] 

Q8LFX7 Arabidopsis thaliana  GFSRSLNR [55] 

Q9FX59 Arabidopsis thaliana  GEGKASTL [55] 

Q9SLF1 Arabidopsis thaliana  GFQRSISS [55] 

Q13239 Homo sapiens  GNSMKSTP [55] 

Q7XA06 Arabidopsis thaliana  GFFTSVLG [55] 

P17927 Homo sapiens  GASSPRSP [55] 

O82637 Arabidopsis thaliana  GFCFCLSS [55] 

Q9C9U3 Arabidopsis thaliana  GFSPSSSW [55] 

Q1G3Y4 Arabidopsis thaliana  GFSGKTYH [55] 

F4IAF5 Arabidopsis thaliana  GVMSRRVL [55] 

Q9C9A3 Arabidopsis thaliana  GALDSLSE [55] 



 

Q3E6T0 Arabidopsis thaliana  GKGGSLSE [55] 

Q9SKJ7 Arabidopsis thaliana  GKGRALSD [55] 

Q6R0A6 Arabidopsis thaliana  GKGRAPCC [55] 

Q8LPS4 Arabidopsis thaliana  GAPEKSQS [55] 

P04839 Homo sapiens  GNWAVNEG [55] 

Q94K91 Arabidopsis thaliana  GVKQALRS [55] 

Q9Y5S8 Homo sapiens  GNWVVNHW [55] 

P62942 Homo sapiens  GVQVETIS [55] 

Q9Y6V0 Homo sapiens  GNEASLEG [55] 

O82388 Arabidopsis thaliana  GVKVASSS [55] 

Q9LNM6 Arabidopsis thaliana  GNEAALRS [55] 

Q9ZNX9 Arabidopsis thaliana  GVVSISSS [55] 

Q8L731 Arabidopsis thaliana  GDAESTKD [55] 

F4K495 Arabidopsis thaliana  GGFLVLNS [55] 

Q3E8H4 Arabidopsis thaliana  GMSGSSGL [55] 

Q94AW9 Arabidopsis thaliana  GTEVSTSP [55] 

F4JCR2 Arabidopsis thaliana  GQKKKTSA [55] 

Q9SV13 Arabidopsis thaliana  GTEDYTFP [55] 

P21917 Homo sapiens  GNRSTADA [55] 

Q9FYR2 Arabidopsis thaliana  GSETMTNL [55] 

O95359 Homo sapiens  GNENSTSD [55] 

P93048 Arabidopsis thaliana  GNETKTNG [55] 

O64818 Arabidopsis thaliana  GGGNAQKS [55] 

A0A1P8BDG3 Arabidopsis thaliana  GGGEKRKS [55] 

Q9SF37 Arabidopsis thaliana  GFYGGGSM [55] 

Q9LW85 Arabidopsis thaliana  GFLIGGSC [55] 

Q9LSD2 Arabidopsis thaliana  GNHQADKK [55] 

Q8W4F0 Arabidopsis thaliana  GWLTKILK [55] 

O64586 Arabidopsis thaliana  GLVTKALK [55] 

Q9SJB4 Arabidopsis thaliana  GHLKSLFT [55] 

F4ITP1 Arabidopsis thaliana  GALRRRNV [55] 

Q9LQK0 Arabidopsis thaliana  GIIERIKE [55] 

Q9CAI1 Arabidopsis thaliana  GIVERIKE [55] 

A0A1P8BG44 Arabidopsis thaliana  GLPHTASN [55] 

Q9FKG5 Arabidopsis thaliana  GDGALIVA [55] 

Q0WNP8 Arabidopsis thaliana  GSGNLIKA [55] 

F4I699 Arabidopsis thaliana  GIFPGLIN [55] 

Q93YU5 Arabidopsis thaliana  GIFNGLPV [55] 

Q9LDR9 Arabidopsis thaliana  GHLGFLVM [55] 

Q93WK6 Arabidopsis thaliana  GSLMSGWD [55] 

Q9LHE8 Arabidopsis thaliana  GSLSGIIQ [55] 

Q39202 Arabidopsis thaliana  GSLSCSII [55] 

O65567 Arabidopsis thaliana  GSLRFSIP [55] 

Q7X6T3 Arabidopsis thaliana  GSLKLSTV [55] 

Q9ZQC6 Arabidopsis thaliana  GSLERSKK [55] 

F4JHZ4 Arabidopsis thaliana  GSLESGIP [55] 



 

Appendix 6 – Positive Blind Test Set of SVMyr (88 proteins) 

UniProt ID Organism Octapeptide Annotation Source 

E9BEM4 Leishmania donovani  GAVPSREC [92] 

Q9LZW2 Arabidopsis thaliana  GNNYRFKL [55] 

Q4DPJ1 Trypanosoma cruzi  GAWISQLK [91] 

E9B870 Leishmania donovani  GAAVARVV [92] 

E9BT99 Leishmania donovani  GQVGGTAT [92] 

Q9LTV4 Arabidopsis thaliana  GNRRAPCC [55] 

Q38AS5 Trypanosoma brucei  GSTSSACR [90] 

F4HXI5 Arabidopsis thaliana  GTTLGKPF [55] 

Q38BC4 Trypanosoma brucei  GSCQAVCG [90] 

Q8IJW0 Plasmodium falciparum  GNTPGGMN [93] 

Q57ZG4 Trypanosoma brucei  GHCCATQT [90] 

Q96A22 Homo sapiens  GNRVCCGG [55] 

Q8GXV2 Arabidopsis thaliana  GNHCTRIP [55] 

Q8N7L0 Homo sapiens  GQNWKRQQ [55] 

Q940H2 Arabidopsis thaliana  GLVGCVGK [55] 

Q8GYJ4 Arabidopsis thaliana  GQAQSDEN [55] 

Q84JS7 Arabidopsis thaliana  GGVFVLRK [55] 

Q9FMA5 Arabidopsis thaliana  GAMMVMMG [55] 

Q9SW55 Arabidopsis thaliana  GLMRSMLP [55] 

Q585N1 Trypanosoma brucei  GVMLPKPV [90] 

A8MQ27 Homo sapiens  GNTVHRTL [55] 

E9B7A4 Leishmania donovani  GAALRKEA [92] 

E9BEM8 Leishmania donovani  GQSAPTPT [92] 

P49703 Homo sapiens  GNHLTEMA [55] 

Q9FLZ5 Arabidopsis thaliana  GLKLSRGP [55] 

Q581X5 Trypanosoma brucei  GCGGSAPA [90] 

E9BCZ7 Leishmania donovani  GQAKTKLN [92] 

O49715 Arabidopsis thaliana  GNCICVTE [55] 

Q9Y512 Homo sapiens  GTVHARSL [55] 

C0H4R4 Plasmodium falciparum  GNVLNRII [93] 

Q38EI8 Trypanosoma brucei  GNVLSWFE [90] 

O65688 Arabidopsis thaliana  GSLSTILR [55] 

Q8L7K7 Arabidopsis thaliana  GSVCCVAV [55] 

Q9FVS0 Arabidopsis thaliana  GCWLKQPQ [55] 

Q582H5 Trypanosoma brucei  GCNLSSST [90] 

Q8IY42 Homo sapiens  GCRCCKII [55] 

Q9S810 Arabidopsis thaliana  GAYRAEDD [55] 

Q4DXG4 Trypanosoma cruzi  GQSNGAKH [91] 

Q582S6 Trypanosoma brucei  GGAVVKNY [90] 

Q57U43 Trypanosoma brucei  GCFCCCCC [90] 

Q9H6R6-2 Homo sapiens  GTFCSVIK [55] 

Q9FHM7 Arabidopsis thaliana  GNTYCILG [55] 

Q8GXG1 Arabidopsis thaliana  GGWAIAVH [55] 

Q8IKM6 Plasmodium falciparum  GNLCCSNN [93] 

Q9ZWJ3 Arabidopsis thaliana  GSHVAQKQ [55] 



 

O75838-2 Homo sapiens  GNKQTIFT [55] 

Q9XIQ4 Arabidopsis thaliana  GQKIHAFM [55] 

C6S3C8 Plasmodium falciparum  GAGQTKEI [93] 

Q9SF49 Arabidopsis thaliana  GNLHGIHR [55] 

E9BAI0 Leishmania donovani  GLLNTKPC [92] 

Q99487 Homo sapiens  GVNQSVGF [55] 

Q9UJT9 Homo sapiens  GANNGKQY [55] 

Q8GWT2 Arabidopsis thaliana  GGVQCYHL [55] 

Q38BS1 Trypanosoma brucei  GGCVASLI [90] 

Q9STT7 Arabidopsis thaliana  GNHVPAGF [55] 

F4JLT3 Arabidopsis thaliana  GNCIHTLL [55] 

Q38BV2 Trypanosoma brucei  GNCLCCRD [90] 

Q386D8 Trypanosoma brucei  GQAGGKEQ [90] 

Q8IVV8 Homo sapiens  GSCSGRCA [55] 

Q9LIF6 Arabidopsis thaliana  GQQLRRAV [55] 

F4KH94 Arabidopsis thaliana  GNVQDIMK [55] 

Q9ZV66 Arabidopsis thaliana  GAFCKLID [55] 

Q9S7U2 Arabidopsis thaliana  GIVTTKTK [55] 

E9BG73 Leishmania donovani  GQPNTKDS [92] 

Q9SJ61 Arabidopsis thaliana  GNVCVHMV [55] 

Q38D65 Trypanosoma brucei  GQWLASAF [90] 

F4JS23 Arabidopsis thaliana  GSSMGFLG [55] 

Q4CZT4 Trypanosoma cruzi  GCTNTKEK [91] 

Q38EE5 Trypanosoma brucei  GSDLSIVL [90] 

Q9C9I9 Arabidopsis thaliana  GCICATAR [55] 

Q4D708 Trypanosoma cruzi  GQLLSFNA [91] 

O04331 Arabidopsis thaliana  GSQQAAVS [55] 

C0H4A5 Plasmodium falciparum  GNNCCAGR [93] 

Q9NS25 Homo sapiens  GQQSSVRR [55] 

Q4DZM9 Trypanosoma cruzi  GNLVARLR [91] 

Q4GY77 Trypanosoma brucei  GGVVGKIP [90] 

Q38DK7 Trypanosoma brucei  GASEAKGE [90] 

Q38EM1 Trypanosoma brucei  GQLISGLW [90] 

E9BAH9 Leishmania donovani  GSNASHTE [92] 

Q94C32 Arabidopsis thaliana  GSSSKEET [55] 

Q384A3 Trypanosoma brucei  GCQQSGVR [90] 

E9BIF0 Leishmania donovani  GAGGVSPQ [92] 

Q3ECI5 Arabidopsis thaliana  GNCMERWM [55] 

A0PJX0 Homo sapiens  GQCLRYQM [55] 

P0CG00 Homo sapiens  GQCRNWKW [55] 

Q9FKK9 Arabidopsis thaliana  GSINSVAE [55] 

E9BBH3 Leishmania donovani  GQNMPKPP [92] 

P0C7M6 Homo sapiens  GSKCCKGG [55] 



 

Appendix 7 – Negative Blind Testing Set of SVMyr (528 proteins) 

UniProt ID Organism Octapeptide Annotation Source 

A0A0G2JMR5 Homo sapiens  GLSLPKEK [55] 

A0A1I9LT31 Arabidopsis thaliana  GEHESWAA [55] 

A0A1P8APA8 Arabidopsis thaliana  GAEEFPSV [55] 

A0A1P8ATH4 Arabidopsis thaliana  GIVQIGHC [55] 

A0A1P8AYW1 Arabidopsis thaliana  GSERASNN [55] 

A0A1P8B4T0 Arabidopsis thaliana  GGDTFKDD [55] 

A0A1P8B7F8 Arabidopsis thaliana  GDVILFID [55] 

A0A1P8BHQ5 Arabidopsis thaliana  GEMTARSS [55] 

A0A3Q5AD24 Homo sapiens  GEAFYTVK [55] 

A0JJX5 Arabidopsis thaliana  GFLFGLFI [55] 

A4D2G3 Homo sapiens  GGNQTSIT [55] 

A6NMZ2 Homo sapiens  GGCMHSTQ [55] 

A8MR40 Arabidopsis thaliana  GVDYYKVL [55] 

A8MRI5 Arabidopsis thaliana  GDSFIRPH [55] 

A8MSF6 Arabidopsis thaliana  GVKRAPNM [55] 

A8MU10 Homo sapiens  GSIPSKPC [55] 

B3H4C4 Arabidopsis thaliana  GGGSVPPP [55] 

B3H4F0 Arabidopsis thaliana  GVFRGLMG [55] 

B3H4H8 Arabidopsis thaliana  GGMCMSAC [55] 

B3H5J9 Arabidopsis thaliana  GFDLCPQR [55] 

B3H6A6 Arabidopsis thaliana  GKNHHPLG [55] 

B9DGF6 Arabidopsis thaliana  GSSCLACF [55] 

C0SUT9 Arabidopsis thaliana  GTELMRIC [55] 

F4HQM5 Arabidopsis thaliana  GLLQLKSY [55] 

F4HS31 Arabidopsis thaliana  GSVNVPAG [55] 

F4HUM4 Arabidopsis thaliana  GRGKNQPT [55] 

F4HVS0 Arabidopsis thaliana  GGGNLHSL [55] 

F4HW02 Arabidopsis thaliana  GGEERSGD [55] 

F4I2G0 Arabidopsis thaliana  GFTFTKIY [55] 

F4I2J8 Arabidopsis thaliana  GSHGKGKR [55] 

F4I421 Arabidopsis thaliana  GRKEPSSR [55] 

F4I679 Arabidopsis thaliana  GVFPGFGS [55] 

F4IDB2 Arabidopsis thaliana  GVSFKISK [55] 

F4IEY4 Arabidopsis thaliana  GNQKLKWT [55] 

F4IFM9 Arabidopsis thaliana  GMINPYVQ [55] 

F4IHS9 Arabidopsis thaliana  GEMKSMQM [55] 

F4II36 Arabidopsis thaliana  GRRKQSKP [55] 

F4II93 Arabidopsis thaliana  GVDGKLKS [55] 

F4IIZ5 Arabidopsis thaliana  GINEFSSF [55] 

F4IK44 Arabidopsis thaliana  GSEERMMI [55] 

F4IMS7 Arabidopsis thaliana  GNGSLYLW [55] 

F4INY4 Arabidopsis thaliana  GNKRFRSD [55] 

F4IPY7 Arabidopsis thaliana  GPFGMETT [55] 

F4IRU6 Arabidopsis thaliana  GSEVVNPT [55] 

F4ITQ2 Arabidopsis thaliana  GALQLMEN [55] 



 

F4IUT0 Arabidopsis thaliana  GIADESKC [55] 

F4IUU9 Arabidopsis thaliana  GACNASQI [55] 

F4IVV8 Arabidopsis thaliana  GTIDFRAA [55] 

F4IXX4 Arabidopsis thaliana  GIIEEGTI [55] 

F4IZP3 Arabidopsis thaliana  GTQNGLSD [55] 

F4J027 Arabidopsis thaliana  GSCLACFD [55] 

F4J061 Arabidopsis thaliana  GASGRWIK [55] 

F4J394 Arabidopsis thaliana  GIGEDQMQ [55] 

F4J420 Arabidopsis thaliana  GTLWFGDF [55] 

F4J7Y0 Arabidopsis thaliana  GFYSKSIR [55] 

F4JBG1 Arabidopsis thaliana  GNYRFKDP [55] 

F4JBM4 Arabidopsis thaliana  GGLDVKKV [55] 

F4JDF8 Arabidopsis thaliana  GSRGNRVG [55] 

F4JG55 Arabidopsis thaliana  GGTRHCYG [55] 

F4JGJ7 Arabidopsis thaliana  GVNVSGAV [55] 

F4JL85 Arabidopsis thaliana  GLVMRFDL [55] 

F4JTL3 Arabidopsis thaliana  GLALFSSD [55] 

F4JWE4 Arabidopsis thaliana  GDTHDFTD [55] 

F4JZA9 Arabidopsis thaliana  GKSMVRFA [55] 

F4K2E9 Arabidopsis thaliana  GVDPFKTT [55] 

F4K5T1 Arabidopsis thaliana  GAARGYKV [55] 

F4K753 Arabidopsis thaliana  GGNCRGPS [55] 

F4K8P3 Arabidopsis thaliana  GANRSIWN [55] 

F4KCH7 Arabidopsis thaliana  GTKQPRNY [55] 

F4KD38 Arabidopsis thaliana  GLDQEDLD [55] 

F4KG57 Arabidopsis thaliana  GVAQAMEA [55] 

F4KHB6 Arabidopsis thaliana  GEYCNEDL [55] 

F4KJ98 Arabidopsis thaliana  GKHLFRSS [55] 

O04087 Arabidopsis thaliana  GTPRSPAT [55] 

O04551 Arabidopsis thaliana  GSLDLPYA [55] 

O14668 Homo sapiens  GRVFLTGE [55] 

O14949 Homo sapiens  GREFGNLT [55] 

O14972 Homo sapiens  GTALDIKI [55] 

O15427 Homo sapiens  GGAVVDEG [55] 

O23010 Arabidopsis thaliana  GTKARRPN [55] 

O23203 Arabidopsis thaliana  GHARTRTG [55] 

O23487 Arabidopsis thaliana  GQKFWENQ [55] 

O23515 Arabidopsis thaliana  GAYKYVSE [55] 

O23550 Arabidopsis thaliana  GFAPVTPA [55] 

O23661 Arabidopsis thaliana  GGLIDLNV [55] 

O49389 Arabidopsis thaliana  GVAVLNPQ [55] 

O60423 Homo sapiens  GTGPAQTP [55] 

O60674 Homo sapiens  GMACLTMT [55] 

O64760 Arabidopsis thaliana  GAQKKGGA [55] 

O65251 Arabidopsis thaliana  GIKGLTKL [55] 

O65555 Arabidopsis thaliana  GLSNDRIK [55] 

O65583 Arabidopsis thaliana  GSKSVVDM [55] 



 

O65607 Arabidopsis thaliana  GKQKQQTI [55] 

O65657 Arabidopsis thaliana  GVGGTLEY [55] 

O75593 Homo sapiens  GPCSGSRL [55] 

O75844 Homo sapiens  GMWASLDA [55] 

O80437 Arabidopsis thaliana  GAQEKRRR [55] 

O80738 Arabidopsis thaliana  GSKSFGNL [55] 

O80774 Arabidopsis thaliana  GGGFRVLH [55] 

O80845 Arabidopsis thaliana  GTTLDVSR [55] 

O80924 Arabidopsis thaliana  GIYGVMTG [55] 

O81024 Arabidopsis thaliana  GAAKNIWA [55] 

O81270 Arabidopsis thaliana  GSKTEMME SwissProt (acetyl-Gly) 

O82286 Arabidopsis thaliana  GLDSSFVN [55] 

O82393 Arabidopsis thaliana  GKFDAKDV [55] 

O82785 Arabidopsis thaliana  GSDQCFSR [55] 

O95136 Homo sapiens  GSLYSEYL [55] 

O95159 Homo sapiens  GLCKCPKR [55] 

O95810 Homo sapiens  GEDAAQAE SwissProt (acetyl-Gly) 

P00017 Aptenodytes patagonicus  GDIEKGKK SwissProt (acetyl-Gly) 

P02643 Oryctolagus cuniculus  GDEEKRNR SwissProt (acetyl-Gly) 

P04175 Sus scrofa  GDSNVDTG SwissProt (acetyl-Gly) 

P05023 Homo sapiens  GKGVGRDK [55] 

P05161 Homo sapiens  GWDLTVKM [55] 

P06485 Human herpesvirus 1  GVVVVNVM SwissProt (acetyl-Gly) 

P08708 Homo sapiens  GRVRTKTV [55] 

P0C227 Nerita albicilla  GDVDVLKS SwissProt (acetyl-Gly) 

P0C883 Arabidopsis thaliana  GSYSAGFP [55] 

P11574 Arabidopsis thaliana  GTNDLDIE [55] 

P12235 Homo sapiens  GDHAWSFL SwissProt (acetyl-Gly) 

P25405 Saara hardwickii  GTAGKVIK SwissProt (acetyl-Gly) 

P26583 Homo sapiens  GKGDPNKP [55] 

P27701 Homo sapiens  GSACIKVT [55] 

P28329 Homo sapiens  GLRTAKKR [55] 

P30825 Homo sapiens  GCKVLLNI [55] 

P31006 Sus scrofa  GSPRPVVL SwissProt (acetyl-Gly) 

P35658 Homo sapiens  GDEMDAMI [55] 

P38405 Homo sapiens  GCLGGNSK [55] 

P42776 Arabidopsis thaliana  GNSSEEPK [55] 

P42791 Arabidopsis thaliana  GIDLIAGG [55] 

P43116 Homo sapiens  GNASNDSQ [55] 

P46059 Homo sapiens  GMSKSHSF [55] 

P46093 Homo sapiens  GNHTWEGC [55] 

P46313 Arabidopsis thaliana  GAGGRMPV [55] 

P46604 Arabidopsis thaliana  GLDDSCNT [55] 

P48523 Arabidopsis thaliana  GSVEAGEK [55] 

P49689 Arabidopsis thaliana  GKVHGSLA [55] 

P50570 Homo sapiens  GNRGMEEL [55] 

P50651 Arabidopsis thaliana  GSLKEGQG [55] 



 

P50993 Homo sapiens  GRGAGREY [55] 

P54577 Homo sapiens  GDAPSPEE SwissProt (acetyl-Gly) 

P56749 Homo sapiens  GCRDVHAA [55] 

P56774 Arabidopsis thaliana  GVTKKPDL [55] 

P56798 Arabidopsis thaliana  GQKINPLG [55] 

P56801 Arabidopsis thaliana  GKDTIADI [55] 

P59223 Arabidopsis thaliana  GRMHSRGK [55] 

P59817 Homo sapiens  GDIFLCKK [55] 

P61353 Homo sapiens  GKFMKPGK [55] 

P62266 Homo sapiens  GKCRGLRT [55] 

P62491 Homo sapiens  GTRDDEYD SwissProt (acetyl-Gly) 

P63092 Homo sapiens  GCLGNSKT [55] 

P69891 Homo sapiens  GHFTEEDK SwissProt (acetyl-Gly) 

P80017 Molpadia arenicola  GATQSFQS SwissProt (acetyl-Gly) 

P80018 Molpadia arenicola  GGTLAIQA SwissProt (acetyl-Gly) 

P81536 Byssochlamys spectabilis  GTTPNSEG SwissProt (acetyl-Gly) 

P92518 Arabidopsis thaliana  GLSTHCQL [55] 

P93834 Arabidopsis thaliana  GKVAVATT [55] 

Q02972 Arabidopsis thaliana  GKVLQKEA [55] 

Q04917 Homo sapiens  GDREQLLQ SwissProt (acetyl-Gly) 

Q058K9 Arabidopsis thaliana  GMEEGIKD [55] 

Q08211 Homo sapiens  GDVKNFLY [55] 

Q0WL56 Arabidopsis thaliana  GKEKFHIN [55] 

Q0WML0 Arabidopsis thaliana  GNKKLLTG [55] 

Q0WPZ7 Arabidopsis thaliana  GIVLEPPC [55] 

Q0WQY3 Arabidopsis thaliana  GFTLVFTG [55] 

Q0WRB2 Arabidopsis thaliana  GHFSSMFN [55] 

Q13427 Homo sapiens  GIKVQRPR [55] 

Q14108 Homo sapiens  GRCCFYTA [55] 

Q14439 Homo sapiens  GHNGSWIS [55] 

Q14683 Homo sapiens  GFLKLIEI [55] 

Q15743 Homo sapiens  GNITADNS [55] 

Q15907 Homo sapiens  GTRDDEYD SwissProt (acetyl-Gly) 

Q15910 Homo sapiens  GQTGKKSE [55] 

Q16678 Homo sapiens  GTSLSPND [55] 

Q16881 Homo sapiens  GCAEGKAV [55] 

Q1HDT3 Arabidopsis thaliana  GTLVNGTI [55] 

Q1PFN9 Arabidopsis thaliana  GFGGFNGD [55] 

Q2HIW3 Arabidopsis thaliana  GPMMMRAE [55] 

Q2TAA8 Homo sapiens  GGHLSPWP [55] 

Q2V323 Arabidopsis thaliana  GWFIKERR [55] 

Q2V3B2 Arabidopsis thaliana  GEPKDSLA [55] 

Q38967 Arabidopsis thaliana  GETAAANN [55] 

Q39216 Arabidopsis thaliana  GTNEVTRI [55] 

Q39232 Arabidopsis thaliana  GAYETEKP [55] 

Q3B7T1 Homo sapiens  GDAKEAGA [55] 

Q3E7U8 Arabidopsis thaliana  GARRSSHH [55] 



 

Q3E8U4 Arabidopsis thaliana  GKDGQDWA [55] 

Q3E8X7 Arabidopsis thaliana  GRVHAECD [55] 

Q3ECR5 Arabidopsis thaliana  GVANLRVM [55] 

Q3ED65 Arabidopsis thaliana  GLDFSSEQ [55] 

Q43383 Arabidopsis thaliana  GHDSFCYL [55] 

Q4PSL7 Arabidopsis thaliana  GRVIRAQR [55] 

Q4V3E2 Arabidopsis thaliana  GSPNAAAE [55] 

Q501D5 Arabidopsis thaliana  GGPAYDCL [55] 

Q52LD8 Homo sapiens  GCGLRKLE [55] 

Q56W59 Arabidopsis thaliana  GSRDFISS [55] 

Q56XX3 Arabidopsis thaliana  GARVQVQH [55] 

Q56YU8 Arabidopsis thaliana  GEQSPSQP [55] 

Q58FY9 Arabidopsis thaliana  GDDLPDWR [55] 

Q5BJF2 Homo sapiens  GAPATRRC [55] 

Q5BPZ5 Arabidopsis thaliana  GVTETSTY [55] 

Q5EAI9 Arabidopsis thaliana  GQRNRNVD [55] 

Q5JWF2 Homo sapiens  GVRNCLYG [55] 

Q5PNY6 Arabidopsis thaliana  GFLWRTRS [55] 

Q5PP38 Arabidopsis thaliana  GKQGPCYH [55] 

Q5XF36 Arabidopsis thaliana  GSAGVASS [55] 

Q5XKR9 Homo sapiens  GGCPVRKR [55] 

Q5XV54 Arabidopsis thaliana  GHSILEKM [55] 

Q5XVI1 Arabidopsis thaliana  GLNLNPIL [55] 

Q66GK1 Arabidopsis thaliana  GSSFNAQI [55] 

Q67XC4 Arabidopsis thaliana  GLCFQLNL [55] 

Q67XT3 Arabidopsis thaliana  GNASENFD [55] 

Q67Z75 Arabidopsis thaliana  GSYTVWSC [55] 

Q67ZB6 Arabidopsis thaliana  GIQIIGQI [55] 

Q67ZW1 Arabidopsis thaliana  GFRDICYR [55] 

Q67ZZ1 Arabidopsis thaliana  GEELQYQQ [55] 

Q680P8 Arabidopsis thaliana  GHSNVWNS [55] 

Q682H0 Arabidopsis thaliana  GFIIAIAK [55] 

Q6DCA0 Homo sapiens  GKRRCVPP [55] 

Q6DR24 Arabidopsis thaliana  GFSFTATM [55] 

Q6GKW1 Arabidopsis thaliana  GTRQVYEE [55] 

Q6I9Y2 Homo sapiens  GAVTDDEV SwissProt (acetyl-Gly) 

Q6NMR8 Arabidopsis thaliana  GTVVYQQG [55] 

Q6NQN5 Arabidopsis thaliana  GDKLRLSI [55] 

Q6NVV3 Homo sapiens  GAQVRLPP [55] 

Q6WQI6 Homo sapiens  GNWGLGIA [55] 

Q6XR72 Homo sapiens  GRYSGKTC [55] 

Q6ZMN7 Homo sapiens  GFALERFA [55] 

Q6ZRP0 Homo sapiens  GSRPCSPS [55] 

Q76G19 Homo sapiens  GCNMCVVQ [55] 

Q7RTT9 Homo sapiens  GSVGSQRL [55] 

Q7X9H2 Arabidopsis thaliana  GMKKVKLS [55] 

Q7XJJ7 Arabidopsis thaliana  GKYQVMKR [55] 



 

Q7Y227 Arabidopsis thaliana  GEIQERLS [55] 

Q7Y229 Arabidopsis thaliana  GGDLKSQL [55] 

Q7Z7L8 Homo sapiens  GNKQPQKV [55] 

Q84M24 Arabidopsis thaliana  GSSKRQFK [55] 

Q84RJ7 Arabidopsis thaliana  GGVEGNQW [55] 

Q84VV1 Arabidopsis thaliana  GKRGPKKL [55] 

Q84WW3 Arabidopsis thaliana  GVEEGAGV [55] 

Q86UQ4 Homo sapiens  GHAGCQFK [55] 

Q86VF5 Homo sapiens  GVATTLQP [55] 

Q86YM7 Homo sapiens  GEQPIFST SwissProt (acetyl-Gly) 

Q8GUQ8 Arabidopsis thaliana  GSLKKDGE [55] 

Q8GWT5 Arabidopsis thaliana  GEVWTWII [55] 

Q8GWV0 Arabidopsis thaliana  GCLISPVM [55] 

Q8GX45 Arabidopsis thaliana  GSEGRSIA [55] 

Q8GXG9 Arabidopsis thaliana  GFTKDQLL [55] 

Q8GXI1 Arabidopsis thaliana  GSFHRRTF [55] 

Q8GXX0 Arabidopsis thaliana  GEKPWQPL [55] 

Q8GYJ3 Arabidopsis thaliana  GKYIRKSK [55] 

Q8GYP8 Arabidopsis thaliana  GFALVLIF [55] 

Q8IY57 Homo sapiens  GDKKSPTR [55] 

Q8L706 Arabidopsis thaliana  GFIVGVVI [55] 

Q8L765 Arabidopsis thaliana  GTTRVCSE [55] 

Q8L783 Arabidopsis thaliana  GCCKVPAL [55] 

Q8L7H2 Arabidopsis thaliana  GQNFPNGL [55] 

Q8L8M9 Arabidopsis thaliana  GVTGGLVR [55] 

Q8L9Y4 Arabidopsis thaliana  GSRGIIND [55] 

Q8LBH2 Arabidopsis thaliana  GTLQSWRK [55] 

Q8LBW2 Arabidopsis thaliana  GYEPDPDA [55] 

Q8LBW3 Arabidopsis thaliana  GGPGSSPC [55] 

Q8LDQ4 Arabidopsis thaliana  GGLAMEEM [55] 

Q8LDZ6 Arabidopsis thaliana  GISTNHTT [55] 

Q8LFH7 Arabidopsis thaliana  GKGTGSFG [55] 

Q8LFU8 Arabidopsis thaliana  GAIEKEGY [55] 

Q8LFZ9 Arabidopsis thaliana  GSGRDRDD [55] 

Q8LGG0 Arabidopsis thaliana  GVEKQVIR [55] 

Q8LGJ5 Arabidopsis thaliana  GTDTVMSG [55] 

Q8LPT3 Arabidopsis thaliana  GSAAELTE [55] 

Q8N7H1 Homo sapiens  GGKSAVRH [55] 

Q8N813 Homo sapiens  GTGASEKQ [55] 

Q8NB46 Homo sapiens  GILSITDQ [55] 

Q8NGB4 Homo sapiens  GAKNNVTE [55] 

Q8NGC5 Homo sapiens  GNWTAAVT [55] 

Q8NGV0 Homo sapiens  GSFNTSFE [55] 

Q8NGY1 Homo sapiens  GQTNVTSW [55] 

Q8NH50 Homo sapiens  GQHNLTVL [55] 

Q8RW97 Arabidopsis thaliana  GSEPRFEP [55] 

Q8RWY1 Arabidopsis thaliana  GWPWADHW [55] 



 

Q8RX22 Arabidopsis thaliana  GCTVREKH [55] 

Q8RY74 Arabidopsis thaliana  GISQVHYC [55] 

Q8S8Q9 Arabidopsis thaliana  GEEEENPN [55] 

Q8VY23 Arabidopsis thaliana  GVSLLKQQ [55] 

Q8VZ42 Arabidopsis thaliana  GTPEFPDL [55] 

Q8VZE9 Arabidopsis thaliana  GTPVEVSK [55] 

Q8VZM1 Arabidopsis thaliana  GASLPPKE [55] 

Q8VZT9 Arabidopsis thaliana  GGGDHGHG [55] 

Q8VZW3 Arabidopsis thaliana  GTEMVMVH [55] 

Q8W1D5 Arabidopsis thaliana  GSKLKLYP [55] 

Q8W4Q5 Arabidopsis thaliana  GITYLHIS [55] 

Q8WTV0 Homo sapiens  GCSAKARW [55] 

Q8WTW4 Homo sapiens  GSGCRIEC [55] 

Q8WUN7 Homo sapiens  GGCVGAQH [55] 

Q8WXX5 Homo sapiens  GLLDLCEE [55] 

Q8WY22 Homo sapiens  GARASGGP [55] 

Q92620 Homo sapiens  GDTSEDAS SwissProt (acetyl-Gly) 

Q92625 Homo sapiens  GKEQELLE SwissProt (acetyl-Gly) 

Q92989 Homo sapiens  GEEANDDK [55] 

Q93V61 Arabidopsis thaliana  GWIPCPCW [55] 

Q93V70 Arabidopsis thaliana  GPMIRTEE [55] 

Q93VR3 Arabidopsis thaliana  GTTNGTDY [55] 

Q93YN1 Arabidopsis thaliana  GCSWLSCH [55] 

Q93ZR2 Arabidopsis thaliana  GTMHRSGA [55] 

Q940B8 Arabidopsis thaliana  GGQMQQNN [55] 

Q941D7 Arabidopsis thaliana  GSETFLEI [55] 

Q945M9 Arabidopsis thaliana  GIEDMHSK [55] 

Q94AC1 Arabidopsis thaliana  GTSSCGDH [55] 

Q94AK0 Arabidopsis thaliana  GIKRAKAS [55] 

Q94AX9 Arabidopsis thaliana  GTVVGTVE [55] 

Q94BY4 Arabidopsis thaliana  GHHHDGGD [55] 

Q94CG0 Arabidopsis thaliana  GLFGTKKI [55] 

Q94CK9 Arabidopsis thaliana  GMVGLRDV [55] 

Q94F30 Arabidopsis thaliana  GAVAINRK [55] 

Q94F37 Arabidopsis thaliana  GIFSRSSI [55] 

Q94KL5 Arabidopsis thaliana  GLATTTSS [55] 

Q96AA3 Homo sapiens  GSQEVLGH [55] 

Q96AX9 Homo sapiens  GWKPSEAR [55] 

Q96BI3 Homo sapiens  GAAVFFGC [55] 

Q96CE8 Homo sapiens  GSRKCGGC [55] 

Q96EH8 Homo sapiens  GAQLCFEA [55] 

Q96LK8 Homo sapiens  GVTGAHGF [55] 

Q96MF4 Homo sapiens  GDECSNPD [55] 

Q96P15 Homo sapiens  GSLSTANV [55] 

Q9BQY9 Homo sapiens  GAGNFLTA [55] 

Q9BRQ6 Homo sapiens  GSTESSEG [55] 

Q9BSY9 Homo sapiens  GANQLVVL [55] 



 

Q9BTY7 Homo sapiens  GEAGAGAG SwissProt (acetyl-Gly) 

Q9BY42 Homo sapiens  GCDGGTIP [55] 

Q9C0I3 Homo sapiens  GDSGSRRS [55] 

Q9C4Z8 Arabidopsis thaliana  GKDDHHEQ [55] 

Q9C566 Arabidopsis thaliana  GRSKCFMD [55] 

Q9C590 Arabidopsis thaliana  GGLRCWLQ [55] 

Q9C5G6 Arabidopsis thaliana  GSEGPKAI [55] 

Q9C5Q2 Arabidopsis thaliana  GSIRGNIE [55] 

Q9C5T3 Arabidopsis thaliana  GSFDRQRA [55] 

Q9C760 Arabidopsis thaliana  GSDIVADG [55] 

Q9C7G0 Arabidopsis thaliana  GSLQTPIE [55] 

Q9C829 Arabidopsis thaliana  GDSENVQQ [55] 

Q9C8H1 Arabidopsis thaliana  GFEALNWY [55] 

Q9C969 Arabidopsis thaliana  GSFGMLSR [55] 

Q9C9N8 Arabidopsis thaliana  GNPSVNDL [55] 

Q9C9P3 Arabidopsis thaliana  GSSMEEKV [55] 

Q9C9Z7 Arabidopsis thaliana  GIISDNAQ [55] 

Q9CA75 Arabidopsis thaliana  GQDGSPAH [55] 

Q9CAL6 Arabidopsis thaliana  GNPGSDTE [55] 

Q9CAL7 Arabidopsis thaliana  GDQPQEFQ [55] 

Q9CAS6 Arabidopsis thaliana  GLMNRSKN [55] 

Q9FE29 Arabidopsis thaliana  GYETKSTL [55] 

Q9FE70 Arabidopsis thaliana  GSFLEVLC [55] 

Q9FFY4 Arabidopsis thaliana  GEMMYKLF [55] 

Q9FG59 Arabidopsis thaliana  GIEVCVKA [55] 

Q9FGB0 Arabidopsis thaliana  GQDRGFGF [55] 

Q9FGC6 Arabidopsis thaliana  GSLHLNSN [55] 

Q9FGF4 Arabidopsis thaliana  GSKKRSND [55] 

Q9FGJ3 Arabidopsis thaliana  GDSDRDSG [55] 

Q9FGJ9 Arabidopsis thaliana  GILGCDAH [55] 

Q9FIB6 Arabidopsis thaliana  GDSGKLEA [55] 

Q9FIF3 Arabidopsis thaliana  GISRDSIH [55] 

Q9FIK6 Arabidopsis thaliana  GIVSEEAI [55] 

Q9FIK8 Arabidopsis thaliana  GEPLGLLQ [55] 

Q9FIV0 Arabidopsis thaliana  GGGRAMAT [55] 

Q9FIZ7 Arabidopsis thaliana  GTVIEGKL [55] 

Q9FK15 Arabidopsis thaliana  GSSKDSAS [55] 

Q9FKM2 Arabidopsis thaliana  GSSPAPFA [55] 

Q9FKR9 Arabidopsis thaliana  GHQSSWMK [55] 

Q9FLE4 Arabidopsis thaliana  GSMYRASK [55] 

Q9FLH8 Arabidopsis thaliana  GEDAISGN [55] 

Q9FLM0 Arabidopsis thaliana  GPTYRALP [55] 

Q9FLN5 Arabidopsis thaliana  GFLITTLI [55] 

Q9FLT9 Arabidopsis thaliana  GKDGEGDK [55] 

Q9FN26 Arabidopsis thaliana  GSKFHAFM [55] 

Q9FNG0 Arabidopsis thaliana  GRGSLRKL [55] 

Q9FNK2 Arabidopsis thaliana  GPYLGPMR [55] 



 

Q9FNN9 Arabidopsis thaliana  GPLRQFVQ [55] 

Q9FPD5 Arabidopsis thaliana  GDKNKDDS [55] 

Q9FPS2 Arabidopsis thaliana  GFKLQMSW [55] 

Q9FQ04 Arabidopsis thaliana  GVPAFYRW [55] 

Q9FT92 Arabidopsis thaliana  GDITWVEE [55] 

Q9FUG4 Arabidopsis thaliana  GNDERKRP [55] 

Q9FXB0 Arabidopsis thaliana  GLVTDEVR [55] 

Q9FY94 Arabidopsis thaliana  GVMINHHF [55] 

Q9FYM0 Arabidopsis thaliana  GLEITVTS [55] 

Q9FZ45 Arabidopsis thaliana  GSRYPSHQ [55] 

Q9FZ93 Arabidopsis thaliana  GHDNITKL [55] 

Q9GZU0 Homo sapiens  GDPNSRKK [55] 

Q9H295 Homo sapiens  GIWTSGTD [55] 

Q9H340 Homo sapiens  GLNKSAST [55] 

Q9HCS5 Homo sapiens  GCFCAVPE [55] 

Q9LDD4 Arabidopsis thaliana  GSFNDTSC [55] 

Q9LDQ1 Arabidopsis thaliana  GMDIADKE [55] 

Q9LE63 Arabidopsis thaliana  GRSPCCDK [55] 

Q9LF22 Arabidopsis thaliana  GKARGVNS [55] 

Q9LF59 Arabidopsis thaliana  GNDQHNHS [55] 

Q9LFA2 Arabidopsis thaliana  GSFAGACE [55] 

Q9LFL3 Arabidopsis thaliana  GDNLMDKV [55] 

Q9LFM5 Arabidopsis thaliana  GTCRESEP [55] 

Q9LFP7 Arabidopsis thaliana  GLDAVKAK [55] 

Q9LFR9 Arabidopsis thaliana  GSYVEQAR [55] 

Q9LJ47 Arabidopsis thaliana  GRWVRPEV [55] 

Q9LJZ5 Arabidopsis thaliana  GLMMGADP [55] 

Q9LK23 Arabidopsis thaliana  GSGQWHME [55] 

Q9LMF1 Arabidopsis thaliana  GSRFVSNE [55] 

Q9LMG9 Arabidopsis thaliana  GFKRTFDA [55] 

Q9LMM2 Arabidopsis thaliana  GVGEMNKE [55] 

Q9LMZ9 Arabidopsis thaliana  GSTDEPGS [55] 

Q9LND0 Arabidopsis thaliana  GGGGMFEE [55] 

Q9LNJ7 Arabidopsis thaliana  GAAEARAL [55] 

Q9LPC2 Arabidopsis thaliana  GSLVKAYY [55] 

Q9LPC4 Arabidopsis thaliana  GIYSCSAV [55] 

Q9LPH1 Arabidopsis thaliana  GKEKDKNR [55] 

Q9LPV9 Arabidopsis thaliana  GTSSDPIQ [55] 

Q9LS45 Arabidopsis thaliana  GRPVGQTN [55] 

Q9LSL8 Arabidopsis thaliana  GRYELHYG [55] 

Q9LT23 Arabidopsis thaliana  GIRENGIM [55] 

Q9LTA6 Arabidopsis thaliana  GTGWRRAF [55] 

Q9LTX1 Arabidopsis thaliana  GSADLVDD [55] 

Q9LU40 Arabidopsis thaliana  GVDLRQVV [55] 

Q9LUA9 Arabidopsis thaliana  GYMCDFCG [55] 

Q9LUD4 Arabidopsis thaliana  GGFRFHQY [55] 

Q9LUK5 Arabidopsis thaliana  GFFRAATH [55] 



 

Q9LUM0 Arabidopsis thaliana  GTRDSNNR [55] 

Q9LUT0 Arabidopsis thaliana  GCFGCCGG [55] 

Q9LUY6 Arabidopsis thaliana  GSENGSLM [55] 

Q9LV59 Arabidopsis thaliana  GDSEDETG [55] 

Q9LV76 Arabidopsis thaliana  GVMEKKLR [55] 

Q9LVD5 Arabidopsis thaliana  GDSTFLDR [55] 

Q9LW86 Arabidopsis thaliana  GHGTNRVE [55] 

Q9LW88 Arabidopsis thaliana  GDSDNAIP [55] 

Q9LYG3 Arabidopsis thaliana  GSTPTDLP [55] 

Q9LYW6 Arabidopsis thaliana  GIKILKLN [55] 

Q9LZA4 Arabidopsis thaliana  GGGYVLFG [55] 

Q9LZF1 Arabidopsis thaliana  GEKKEETA [55] 

Q9M129 Arabidopsis thaliana  GFIDGKWA [55] 

Q9M1B5 Arabidopsis thaliana  GRPLFYDI [55] 

Q9M1H3 Arabidopsis thaliana  GKKKSDES [55] 

Q9M1Z4 Arabidopsis thaliana  GKNQAYKA [55] 

Q9M2I0 Arabidopsis thaliana  GKQLAKKI [55] 

Q9M2J0 Arabidopsis thaliana  GKQINNTF [55] 

Q9M2J5 Arabidopsis thaliana  GNLVDNKF [55] 

Q9M2S7 Arabidopsis thaliana  GDAIDLSG [55] 

Q9M2U3 Arabidopsis thaliana  GPIKTIKK [55] 

Q9M308 Arabidopsis thaliana  GQYATVWD [55] 

Q9M7Q2 Arabidopsis thaliana  GTHINFNN [55] 

Q9M8S6 Arabidopsis thaliana  GGSSGGGV [55] 

Q9M9G0 Arabidopsis thaliana  GHVQLLTP [55] 

Q9M9K1 Arabidopsis thaliana  GSSGDVNW [55] 

Q9MAS5 Arabidopsis thaliana  GQQSLIYS [55] 

Q9NQ55 Homo sapiens  GQSGRSRH [55] 

Q9NQA5 Homo sapiens  GGFLPKAE [55] 

Q9NRD0 Homo sapiens  GQGLWRVV [55] 

Q9NVL8 Homo sapiens  GLSHSKTH [55] 

Q9NWC5 Homo sapiens  GNFRGHAL [55] 

Q9NZD8 Homo sapiens  GEIKVSPD [55] 

Q9NZP6 Homo sapiens  GNLLSKFR [55] 

Q9S721 Arabidopsis thaliana  GLDWGPVL [55] 

Q9S757 Arabidopsis thaliana  GISLAFMA [55] 

Q9S7L7 Arabidopsis thaliana  GGADWGPV [55] 

Q9S7V4 Arabidopsis thaliana  GSGAGNFL [55] 

Q9S7X6 Arabidopsis thaliana  GEAVEVMF [55] 

Q9SCW5 Arabidopsis thaliana  GTVCESVA [55] 

Q9SCX5 Arabidopsis thaliana  GIEKRKKM [55] 

Q9SD44 Arabidopsis thaliana  GFGAIRSI [55] 

Q9SF13 Arabidopsis thaliana  GTVDIFNG [55] 

Q9SFC4 Arabidopsis thaliana  GTWKNKNS [55] 

Q9SFU0 Arabidopsis thaliana  GTENQGYP [55] 

Q9SFW6 Arabidopsis thaliana  GGSDENRH [55] 

Q9SG63 Arabidopsis thaliana  GRTTWFDV [55] 



 

Q9SHG0 Arabidopsis thaliana  GYDNVCGE [55] 

Q9SHM1 Arabidopsis thaliana  GPFHQQSR [55] 

Q9SIB6 Arabidopsis thaliana  GCFGRTPK [55] 

Q9SIE8 Arabidopsis thaliana  GHYLVPIH [55] 

Q9SII8 Arabidopsis thaliana  GGEGDSSQ [55] 

Q9SIM4 Arabidopsis thaliana  GFKRFVEI [55] 

Q9SIN2 Arabidopsis thaliana  GFTSRGNP [55] 

Q9SJW5 Arabidopsis thaliana  GGLGSPCG [55] 

Q9SK71 Arabidopsis thaliana  GSGNHVDI [55] 

Q9SKA6 Arabidopsis thaliana  GRDQEGSP [55] 

Q9SKD4 Arabidopsis thaliana  GWTRPPHG [55] 

Q9SKH6 Arabidopsis thaliana  GRRRRSQQ [55] 

Q9SL28 Arabidopsis thaliana  GSGKTNRP [55] 

Q9SLF3 Arabidopsis thaliana  GDGTEFVV [55] 

Q9SLI0 Arabidopsis thaliana  GDQQKIHP [55] 

Q9SP35 Arabidopsis thaliana  GTPETSRE [55] 

Q9SQR5 Arabidopsis thaliana  GRNLGSAF [55] 

Q9SRB0 Arabidopsis thaliana  GHHSCCNQ [55] 

Q9SRE5 Arabidopsis thaliana  GSEQDQRK [55] 

Q9SRH7 Arabidopsis thaliana  GFDSVKVM [55] 

Q9SRN1 Arabidopsis thaliana  GSKQPYLN [55] 

Q9SRT8 Arabidopsis thaliana  GSRQGPPK [55] 

Q9SSK1 Arabidopsis thaliana  GDEIVPPA [55] 

Q9SSM4 Arabidopsis thaliana  GNTDKLMN [55] 

Q9STM8 Arabidopsis thaliana  GVIRTSRT [55] 

Q9SUQ7 Arabidopsis thaliana  GTNGTTCP [55] 

Q9SUS4 Arabidopsis thaliana  GLPEDFIT [55] 

Q9SV91 Arabidopsis thaliana  GCIGVVNV [55] 

Q9SVC9 Arabidopsis thaliana  GLTPTATL [55] 

Q9SVL6 Arabidopsis thaliana  GRMDYLAM [55] 

Q9SX25 Arabidopsis thaliana  GGTKLTHV [55] 

Q9SX28 Arabidopsis thaliana  GSLLQGFT [55] 

Q9T081 Arabidopsis thaliana  GGLKFHVL [55] 

Q9T095 Arabidopsis thaliana  GEIATEFT [55] 

Q9UBF8 Homo sapiens  GDTVVEPA SwissProt (acetyl-Gly) 

Q9UET6 Homo sapiens  GRTSKDKR [55] 

Q9UL36 Homo sapiens  GLCGLLER [55] 

Q9UMX6 Homo sapiens  GQEFSWEE [55] 

Q9UNX4 Homo sapiens  GLTKQYLR [55] 

Q9UNX9 Homo sapiens  GLARALRR [55] 

Q9UP83 Homo sapiens  GWVGGRRR [55] 

Q9UQR0 Homo sapiens  GQTVNEDS [55] 

Q9XI22 Arabidopsis thaliana  GAPLVCHG [55] 

Q9XIB3 Arabidopsis thaliana  GTFLGHFV [55] 

Q9XIF8 Arabidopsis thaliana  GEKEEVKL [55] 

Q9Y580 Homo sapiens  GAAAAEAD SwissProt (acetyl-Gly) 

Q9Y6F6 Homo sapiens  GMDLTCPF [55] 



 

Q9Y6Z5 Homo sapiens  GAAGSDGR [55] 

Q9ZPH4 Arabidopsis thaliana  GKGGREKI [55] 

Q9ZPS0 Arabidopsis thaliana  GMTTDSMK [55] 

Q9ZPU0 Arabidopsis thaliana  GWCITVVH [55] 

Q9ZPY1 Arabidopsis thaliana  GTHVAPWK [55] 

Q9ZS51 Arabidopsis thaliana  GSSPPKKT [55] 

Q9ZU00 Arabidopsis thaliana  GLINQWFP [55] 

Q9ZUE1 Arabidopsis thaliana  GDQGVQQM [55] 

Q9ZUI4 Arabidopsis thaliana  GIPDAAQD [55] 

Q9ZUI8 Arabidopsis thaliana  GLMDTRWE [55] 

Q9ZUW8 Arabidopsis thaliana  GKPTTQNN [55] 

Q9ZV27 Arabidopsis thaliana  GFSDAGIY [55] 

Q9ZVT0 Arabidopsis thaliana  GFGSVYRS [55] 



 

Appendix 8 – Post-translational Blind Testing Set (15 proteins) 

Uniprot ID Organism Myristoylation 
Site 

Caspase Site/Octapeptide Annotation 
Source 

P42858 Homo sapiens  551 DLND/GTQASSPI SwissProt 

Q06002 Bos taurus  433 DVPD/GGKISKAF SwissProt 

Q13177 Homo sapiens  213 SHVD/GAAKSLDK SwissProt 

Q12934 Homo sapiens  434 DVPD/GGQISKGF SwissProt 

O60503 Homo sapiens  596 EVID/GSQVSSGP [74] 

Q8IVF2 Homo sapiens  2847 VEAD/GSFPSMQG [74] 

Q9BVC5 Homo sapiens  106 IVFD/GSSTSTSI [74] 

O75122 Homo sapiens  17 ESVD/GNRPSSAA [74] 

Q13620 Homo sapiens  44 SATD/GNTSTTPP [74] 

P06396 Homo sapiens  404 DQTD/GLGLSYLS [74] 

Q12906 Homo sapiens  440 VEVD/GNSFEASG [74] 

O60664 Homo sapiens  10 AEAD/GSTQVTVE [74] 

Q96T37 Homo sapiens  751 DRSD/GSAPSTST [74] 

O94875 Homo sapiens  46 QSLD/GTTSSSIP [74] 

Q96FJ0 Homo sapiens  208 EQID/GSALSCFS [74] 



 

Appendix 9 – BetAware-Deep DOME card 

DOME Version 1.0 

Data Provenance Training set and blind set for topology prediction:  

142 proteins from the Protein Data Bank (PDB). (Minimum 

resolution: 1.5 Å) 

Blind set for discrimination:  

8580 proteins from PRED-TMBB2 [49] 

  

 Dataset splits Training set: 58 TMBB and 69 non-TMBB proteins. Balancing: 

46% positive and 54% negative. 

TM residues: 11,579; non-TM residues: 39,022. 

10-fold cross-validation split 

Blind test set (topology): 15 positive examples 

Blind test set (discrimination):  

1009 positive examples, 7571 negative examples  

 Redundancy 

between data splits  

Maximum sequence identity 25% at 50% coverage between 

training and blind test sets, and among cross-validation splits. 

 Availability of data Yes.  

URL: https://busca.biocomp.unibo.it/betaware2/datasets/  

Optimization Algorithm Long Short Time Memory Network + 

Grammatical-restrained hidden conditional random fields 

 Meta-predictions No 

 Data encoding Sequence profiles, Profile-weighted hydrophobic moment 

 Parameters 418,053 parameters for BLSTM; 7,472 parameters for 

GRHCRFs 

 Features 21 features per residue for BLSTM; 25 features per residue for 

GRHCRF 

 Fitting  For BLSTM, parameters are about 10 times the number of 

training examples. Overfitting is limited with regularization 

(dropout). For GRHCRF, the number of training examples is 

about 6 times the parameters, suggesting neither over- nor 

under-fitting. 

 Regularization Dropout used in all BLSTM layers with high rate (50%). 

Gaussian regularization adopted in GRHRCRFs. 

 Availability of 

configuration 

No 

Model Interpretability Black box, as correlation between input and output is masked. 

No 

attempt was made to make the model transparent. 

 Output Classification at the protein level (TMBB or not TMBB). 

Labelling of the sequence 

 Execution time about 12 seconds per protein 

 Availability of 

software 

Web server.  

URL: https://busca.biocomp.unibo.it/betaware2/ 

Evaluation Evaluation method Independent dataset 

 Performance 

Measures 

For protein classification: Sensitivity, Specificity, Matthews 

Correlation Coefficient. 

Labelling: Accuracy, Segment Overlap Value, Number of 

correct topologies 

 Comparison BetAware, BOCTOPUS2, PRED-TMBB2, HHomp 

 Confidence Non estimated 

 Availability of 

evaluation 

No 

https://busca.biocomp.unibo.it/betaware2/datasets/
https://busca.biocomp.unibo.it/betaware2/


 

Appendix 10 – SVMyr DOME card 

DOME Version 1.0 

Data Provenance Datasets for co-translational myristoylation: 

257 octapeptides from SwissProt; 552 from [55]; 18 from 

[90]; 5 from [91]; 11 from [92]; 5 from [93]. 

Dataset for post-translational myristoylation: 

4 proteins from SwissProt and 11 from [74] 

 Dataset splits Training set: 232 positive octapeptides and 232 negative 

octapeptides. Balancing 50%-50%. 

10-fold cross-validation split 

Testing set: 88 positive octapeptides and 528 negative 

octapeptides. Balancing: 14% - 86%. 

 Redundancy between 

data splits  

Maximum Hamming Distance equal to 4 between training 

and testing sets and among cross-validation subsets 

 Availability of data Yes.  

URL: https://busca.biocomp.unibo.it/lipipred/datasets/  

Optimization Algorithm Ensemble of Support Vector Machines 

 Meta-predictions No 

 Data encoding Position Specific Scoring Matrix, Physicochemical 

features (hydrophobicity, size, charge, secondary structure 

propensities) 

 Parameters 121 support vectors (average over SVMs) 

 Features 12 features per octapeptide 

 Fitting  The number of examples is about 5 times parameters, 

suggesting neither over- nor under-fitting. 

 Regularization L2 regularization  

 Availability of 

configuration 

No 

Model Interpretability Black box, as correlation between input and output is 

masked. No 

attempt was made to make the model transparent. 

 Output Classification of the protein as co-translationally 

myristoylated or not. Annotation of putative post-

translational myristoylation sites. 

 Execution time 0.1 seconds per protein 

 Availability of software Web server.  

URL: https://busca.biocomp.unibo.it/lipipred/datasets/  

Evaluation Evaluation method Independent dataset  

 Performance Measures Sensitivity; Precision; Matthews Correlation Coefficient 

(MCC); F1-score; Receiver Operating Characteristic curve 

and relative Area Under the Curve. 

 Comparison NMT predictor; Myristoylator; TermiNator3; available 

patterns: PROSITE and [53]. 

 Confidence Non estimated 

 Availability of 

evaluation 

No 

https://busca.biocomp.unibo.it/lipipred/datasets/
https://busca.biocomp.unibo.it/lipipred/datasets/


 

 


