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Abstract

The theory of numerical invariants for representations can be generalized to mea-
surable cocycles. This provides a natural notion of maximality for cocycles as-
sociated to complex hyperbolic lattices with values in groups of Hermitian type.
Among maximal cocycles, the class of Zariski dense ones turns out to have a rigid
behavior.

An alternative implementation of numerical invariants can be given by using
equivariant maps at the level of boundaries and by exploiting the Burger–Monod
approach to bounded cohomology. Through such boundary maps one can provide
a useful characterization of maximal cocycles that is a fundamental ingredient to
prove rigidity. Due to their crucial role in this theory, we prove existence results in
two different contexts. Precisely, we construct boundary maps for non-elementary
cocycles into the isometry group of CAT(0)-spaces of finite telescopic dimension
and for Zariski dense cocycles into simple Lie groups.

Then we approach numerical invariants. Our first goal is to study cocycles
from complex hyperbolic lattices Γ < PU(1, n) into the Hermitian group SU(p, q).
Following the theory recently developed by Moraschini and Savini, we define the
Toledo invariant by using the pullback along cocycles, also by involving boundary
maps. For cocycles Γ × X → SU(p, q) with 1 ≤ p ≤ q < +∞, we prove that
maximality and Zariski density imply superrigidity in the sense of Zimmer, namely
such cocycles come from representations PU(1, n)→ SU(p, q) of the ambient group.
As a consequence, there is no Zariski dense such cocycle when 1 < p < q.

Then we move to cocycles Γ ×X → PU(p,∞) where PU(p,∞) is the infinite
dimensional version of SU(p, q). Here we lose the algebraic structure of the target
group, hence the algebraic hull is no more defined. However, we show that maximal
cocycles are reducible, namely that, modulo cohomology, their image is contained
in a finite dimensional algebraic subgroup of PU(p,∞).

Finally, we classify Zariski dense measurable cocycles Γ×X → G from finitely
generated groups into Hermitian groups not of tube-type. Precisely, we show
that the pullback of the Kähler class, called parametrized Kähler class, completely
determines the cohomology class of such cocycles.
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Chapter 1

Introduction

1.1 Historical background

In the study of representations of lattices in semisimple Lie groups, the milestones
can be identified in the pioneering works by Mostow [Mos68], Prasad [Pra73] and
Margulis [Mar75]. Such phenomena are known as Mostow–Prasad rigidity and as
Margulis superrigidity, where the meaning of the word rigidity in this context can
be roughly explained as follows. A priori an isomorphism between two lattices in
a topological group can be more general than the conjugation by an element of
the ambient group. This is not the case for simple Lie groups not isomorphic to
SL(2,R). Indeed Mostow [Mos68, Mos74] and Prasad [Pra73] proved that the iso-
morphism class of lattice boils down to its conjugacy class, that is two isomorphic
lattices Γ1 and Γ2 must by conjugated.

For instance, if G = PO(n, 1) = Isom+(HnR) is the group of positive isometries
of the real hyperbolic space, any lattice Γ < PO(n, 1) is the fundamental group of
a complete hyperbolic n-manifold of finite volume. If n ≥ 3, Mostow rigidity can
be restated by saying that any π1-isomorphism between two complete hyperbolic
manifolds of finite volume is induced by an isometry. We observe that when n = 2
this is no more true. For instance, a lattice Γ < SO(2, 1) ∼= PSL(2,R) corresponds
to the fundamental group of a surface and such objects are never rigid, since the
deformation space of the inclusion Γ ↪→ SO(2, 1), known as Teichmüller space, has
dimension 6g − 6 where g is the genus of the surface.

Mostow–Prasad theorem aroused the interest of many mathematicians in the
last 50 years, and several efforts have been spent in the attempt of generalizing
such phenomena. For instance, since it characterizes embeddings of lattices in the
ambient group, one can go further by asking which representations from lattices
into Lie groups have a similar rigid behavior. This is completely answered, in the
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higher rank case, by the celebrated Margulis superrigidity theorem [Mar75]. Given
an irreducible lattices in a semisimple Lie group without compact factors of rank
at least 2, Margulis proved that a Zariski dense representations of such a lattice
into a simple algebraic group defined over a local field extends to a homomorphism
of the ambient group.

The approach adopted by Margulis to prove his theorem is based on the con-
struction of equivariant maps between Furstenberg–Poisson boundaries [Fur63].
Exploiting some peculiarities of higher rank Lie groups, he proved that any such
map coincides almost everywhere with a rational one and, using this, he extended
the starting homomorphism.

Since some of Margulis arguments rely on properties of higher rank groups,
they cannot be straightforwardly adapted to the rank-one context, for instance to
the case of lattices in PU(1, n) = Isom+(HnC). In fact, superrigidity does not hold
in general for such lattices, and explicit counterexamples have been exhibited,
for instance in case of lattices in PU(1, 2) [Mos80]. Motivated by this evidence
and guided by the work of Goldman and Millson [GM87], Burger and Iozzi [BI07]
studied systematically representations of lattices Γ < PU(1, n) into PU(1, q). They
exploited the Cartan angular invariant of the complex hyperbolic space HqC to
define the Kähler class, denoted by kq, which lies in the 2-bounded cohomology
group H2

cb(PU(1, q);R). By applying the pullback and then the transfer map,
they obtained a class in H2

cb(PU(1, n);R). Since the latter one is 1-dimensional,
namely it is isomorphic to R, such a class differs from the Kähler class kn of
PU(1, n) by a multiplicative constant, which in fact is a numerical invariant of
the representation, called Toledo invariant. Such an invariant provides a way to
select the class of representations with maximal Toledo invariant, called maximal
representations. The main result in [BI07], proved independently by Koziarz and
Maubon [KM08a] using techniques based on harmonic maps, is that maximal
representations are rigid, in the sense that they admits an equivariant totally
geodesic holomorphic embedding HnC → HqC. Here the main idea is to study the
behavior of equivariant maps ∂HnC → ∂HqC with respect to the incidence structure
on the visual boundaries.

A generalized version of the Toledo invariant can be given for any representa-
tion of a complex hyperbolic lattice into groups of Hermitian type, and such an
object has been thoroughly studied in the last years. For instance, homomorphisms
from a surface group into a Hermitian Lie groups have been studied by Burger, Iozzi
and Wienhard, who gave a complete characterization of such maximal represen-
tations [BIW10] and by Bradlow, Garćıa-Prada and Gothen [BGPG03, BGPG06]
through Higgs bundles. On the other hand, it is conjectured that maximal repre-
sentations Γ→ G, where Γ < PU(1, n) is a lattice and n > 1, are rigid.

Among the results about actions of lattices Γ < PU(1, n) with n ≥ 2, we
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mention the work by Koziarz and Maubon [KM08b, KM17], in which case the
target group is of rank 2, and the one by Pozzetti [Poz15]. In the latter paper,
the author proves the above conjecture for Zariski dense representations into the
group SU(p, q) for 1 < p ≤ q. Here a crucial result is that any Zariski dense
equivariant map ∂HnC → Sp,q, where Sp,q denotes the Shilov boundary of SU(p, q),
coincides almost everywhere with a rational one, and this is proved thanks to a
deep study of the behavior of such maps with respect to the incidence structures
of the boundaries.

A parallel but strictly related topic of research concerns the study of similar
rigidity behaviors of a more general class of objects called measurable cocycles. A
cocycle is a Borel measurable map Γ×X → H satisfying the condition

σ(γ1γ2, x) = σ(γ1, γ2x)σ(γ2, x) ,

where Γ and H are topological groups and (X,µX) is a standard Borel probability
Γ-space. The interest in the study of cocycles has several motivations. On the one
hand cocycles can be interpreted as a generalization of representations, since one
can naturally embed the set of representations in the one of cocycles. Moreover, the
comparison can be straightened by introducing the notion of cohomology between
cocycles, which generalizes the one of conjugacy. On the other hand, cocycles
play a role on their own in some fields of mathematics, for instance they describe
the action by automorphisms on a principal bundle that has been measurably
trivialized (see Example 2.4.3).

In the wider world of cocycles, Mostow rigidity can be restated by using cou-
plings and the notion of tautness. Given two locally compact second countable
groups G,H endowed with their Haar measurable structures, a coupling between
them is the datum of a Lebesgue measure G ×H-space Ω, of two finite measure
spaces X,Y and of G-equivariant (respectively H-equivariant) measurable isomor-
phism G × Y → Ω (H × X → Ω). For a coupling to be taut means that it can
be trivialized to the tautological one. Since to any (G,G)-coupling (X,µX) where
G is a locally compact second countable group one can associate a right measure
equivalence cocycle G × X → G, tautness can be expressed as follows. A cou-
pling is taut if its associated right measure equivalence cocycle is cohomologous
to the standard embedding. In this direction we mention the work by Monod and
Shalom [MS04] about superrigidity and tautness of some classes of groups, and the
one by Kida [Kid08, Kid10] about the tautness of certain mapping class groups.
Concerning rank-one groups, Bader, Furman and Sauer [BFS13] studied the group
PO(1, n) for n ≥ 3, proving that under an integrability assumption any lattice is
taut relatively to its standard embedding in PO(1, n).

The analogous of Margulis theorem in the context of cocycles is the famous
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Zimmer superrigidity theorem [Zim80], which deals with lattices in higher rank
groups. Roughly speaking, Zimmer showed that Zariski dense cocycles defined on
higher rank groups acting ergodically on the probability space (X,µX) come from
homomorphisms of the group [Zim80, Theorem 4.1]. Here Zariski dense means
that the algebraic hull of the cocycle, namely the smaller subgroup of the target
containing the image of a cohomologous cocycle, coincides with the ambient group
(refer to Section 2.4.1 for the precise definition). More recently, an extension
of Zimmer superrigidity has been proved by Fisher and Hitchman [FH06] using
harmonic maps techniques. We also mention the beautiful proof of Zimmer’s
conjecture recently given by Brown, Fisher and Hurtado [BFH20b, BFH20a], where
measurable cocycles are involved.

Coming back to the rank-one case, apart from the case of real hyperbolic
lattices studied by Bader, Furman and Sauer, few things were known. In fact, as
for representations, in this context Zimmer’s approach fails. Motivated by these
questions and inspired by the works by Bader, Furman and Sauer [BFS13] and by
Burger and Iozzi [BI02], Moraschini and Savini have recently developed the theory
of numerical invariants for cocycles [MS20, Sav20, Sav22, MS21]. An example
can be found in [SS21c] and will be described in Chapter 4 in the case of cocycles
Γ × X → H from a lattice Γ < PU(1, n) into a group H of Hermitian type,
where the authors define the Toledo invariant adapting the definition given for
representations. Here, by integrating along X the pullback of the Kähler class of
H and by composing with the transfer map, one gets a multiple of the Kähler
class of G. This defines a multiplicative constant called Toledo invariant of the
cocycle which is also bounded, and hence we can define maximal cocycles as those
with maximal Toledo invariant. Such machinery can be alternatively implemented
through boundary maps and this approach allows to study maximality by analyzing
some properties of boundary maps, as done for instance in case of representations
by Burger, Iozzi and Wienhard and by Pozzetti. Here we set the genesis of this
thesis. In fact, on the one hand boundary maps are crucial to implement the
pullback along cocycles, hence our first natural direction is to investigate their
existence. Then we focus on the study of numerical invariants for some families of
cocycles that are not covered by Zimmer’s theorem. In particular, inspired by the
results obtained for representations, we study cocycles from complex hyperbolic
lattices into groups of Hermitian type.
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1.2 Results of the thesis

As anticipated, our goal is to use numerical invariants to study rigidity behavior of
measurable cocycles from lattices in rank-one groups. To this end, we first study
boundary maps.

1.2.1 Boundary maps

In our context a boundary map for a cocycle σ : Γ×X → H is a measurable equiv-
ariant functions B ×X → Y where B is a Γ-boundary in the sense of Bader and
Furman [BF14b] and Y is a generic Lebesgue H-space. Such a notion of boundary
generalizes the one of strong boundary in the sense of Burger and Monod [BM02],
hence it can be used in general to compute bounded cohomology. Moreover, it
also extend the notion of Furstenberg–Poisson boundary for semisimple Lie groups
[Fur63]. In the particular case of a complex hyperbolic lattice in PU(1, n), it coin-
cides with the visual boundary ∂HnC ∼= S2n−1 and it can be used to implement the
Toledo invariant.

We first focus on cocycles Γ×X → H where Γ is a countable group, (X,µX) is
an ergodic standard Borel probability Γ-space and the target group is the isome-
tries of a CAT(0)-space of finite telescopic dimension. In the analogous context
of actions on CAT(κ)-spaces, several efforts have been spent to investigate the
existence of boundary maps. We mention the work by Burger–Mozes [BM96] and
by Monod–Shalom [MS04] for CAT(-1)-spaces and the one by Duchesne, who first
studied actions on the space X (p,∞) [Duc12], and then, together with Bader and
Lécureux [BDL16], on generic CAT(0)-spaces. In particular, for non-elementary
actions by isometries of a locally compact second countable group Γ on a CAT(0)-
space X of finite telescopic dimension, in [BDL16] the authors construct an equiv-
ariant map from a Γ-boundary into the visual boundary ∂X . Our generalization
of this result to cocycles is the following

Theorem 1 ([SS21a, Theorem 1]). Let Γ be a discrete countable group, (X,µX)
be an ergodic standard Borel probability Γ-space and B a Γ-boundary. For every
non-elementary cocycle σ : Γ×X → H into the isometry group of a CAT(0)-space
X of finite telescopic dimension there exists a boundary map φ : B ×X → ∂X .

The techniques involved to prove Theorem 1 are essentially based on some
geometric properties of CAT(0)-spaces and make use of measurable fields. In fact,
the main result that we exploit to construct the desired map is a measurable version
of the Adam–Ballmann theorem proved by Duchesne in [Duc12], and the proof of
Theorem 1 follows some arguments adopted in [BDL16].Thanks to the Euclidean
De Rham decomposition provided in [Duc12] and exploiting non-elementarity, first

11



we reduce to study the case in which σ is minimal, which means that it does not fix
a family of non-trivial convex subspaces of X , and in which X has trivial Euclidean
factor. Then the Adam–Ballmann dichotomy provides either a boundary map or a
σ-equivariant family {Eξ,x}(ξ,x)∈B×X of Euclidean subspaces of X . To rule out the
second case we follow [BDL16], where the authors exploit relative metric ergodicity
of the boundaries and the properties of convex closed subsets of CAT(0)-spaces
of finite telescopic dimension due to Caprace and Lytchak [CL09]. In particular
we use the fact that bounded subsets admits a circumcenter and the fact that
filtering families of closed convex subsets intersects at X ∪ ∂X . Those properties
lead to construct either a boundary map, which contradicts the Adam–Ballmann
dichotomy, or a family {Fx}x∈X of flats, that contradicts non-elementarity.

If Γ < PU(1, n) is a complex hyperbolic lattice and X = X (p, q) is the Her-
mitian symmetric space associated to the group PU(p, q) with 1 ≤ p ≤ q and
q ∈ N∪{∞}, Theorem 1 provides a boundary map ∂HnC×X → ∂X (p, q). Further-
more, ergodicity implies that the target is the set Ik(p, q) of isotropic k-subspace
of Cp,q with respect to the Hermitian form of signature (p, q) for some k ≤ p. In
general we do not know whether k = p or not. However, if q < ∞, the equality
holds under the hypothesis of Zariski density. This is a consequence of a more
general results on cocycles from locally compact groups into simple Lie groups of
non-compact type that is our second result about boundary maps.

Theorem 2 ([SS21c, Theorem 1]). Let Γ be a locally compact and second countable
group and let H be a simple Lie group of non-compact type. Let (X,µX) be an
ergodic standard Borel probability Γ-space and let σ : Γ×X → H be a Zariski dense
measurable cocycle. Then, for any Γ-boundary B there exists a σ-equivariant map
φ : B ×X → H/P where P < H is a minimal parabolic subgroup.

Here the arguments rely on the algebraic structure of the target group, and
follow the line of [BF14b]. In fact, for Zariski dense representations into simple Lie
groups of non-compact type Bader and Furman proved the existence of a bound-
ary map into the Furstenberg boundary [BF14b, Theorem 3.4], and this result
generalizes the one due to Burger and Iozzi [BI04] where the target is PU(p, q)
(or any group of Hermitian type). The crucial point in [BF14b] is the following
universal property. For any cocycle Γ × X → H and for any Lebesgue Γ-space
Y , there exists an algebraic subgroup L < H and a Γ-equivariant universal map
φ : Y → V such that any other Γ-equivariant map ψ : Y → V into an algebraic
H-space V factorizes through φ. Such a property, combined with relative metric
ergodicity, allows us to construct a boundary map into a specific homogeneous
H-space, identified with the Furstenberg boundary, which is the quotient H/Q by
a minimal parabolic subgroup.

By composing the map provided by Theorem 2 with the natural projection on
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the Shilov boundary, which can be identified with the quotient of H by a specific
maximal parabolic subgroup Q < H, we immediately get a boundary map that
can be exploited in the next sections.

1.2.2 Toledo invariant and superrigidity

In the second part we apply Theorem 2 to study cocycles Γ×X → SU(p, q) when
Γ < PU(1, n) is a complex hyperbolic lattice. In this setting, the machinery of nu-
merical invariants applies, precisely we define the Toledo invariant of a cocycle and
then maximal cocycles. Moreover, exploiting the algebraic structure of SU(p, q),
one can give a natural notion of algebraic hull and of Zariski density. Under these
two hypothesis, we are able to prove the following

Theorem 3 ([SS21c, Theorem 2]). Fix integers n ≥ 2 and 1 ≤ p ≤ q. Let
Γ < PU(1, n) be a torsion-free lattice and let (X,µX) be an ergodic standard Borel
probability Γ-space. If σ : Γ×X → SU(p, q) is a maximal Zariski dense measurable
cocycle, then it is cohomologous to the restriction of a cocycle associated to a
representation ρ : PU(1, n)→ SU(p, q).

The strategy of the proof is the following one. We first study the slices of the
boundary maps provided by Theorem 2, and we exploit the maximality of σ to
show that such maps preserves the chain geometry of the boundaries. This fact,
combined with Zariski density, allows to apply [Poz15, Theorem 4.1] to show that
the slices coincide almost everywhere with a rational map. Here we can follow
the line of [Zim80, Theorem 4.1], precisely by exploiting both Γ-ergodicity on X
and the smoothness of the joint action of PU(1, n) × SU(p, q) on the space of
rational functions from ∂HnC to the Shilov boundary Sp,q in order to twist σ into
a cocycle induced by a representation. Finally, we exploit again [Poz15] to extend
the representation to the ambient group.

As an immediate consequence of Theorem 3 we rule the existence of such
cocycle except when p = q, and this is the natural extension of [Poz15, Corollary
1.2].

Proposition 4 ([SS21c, Proposition 3]). Consider n ≥ 2. Let Γ < PU(1, n) be
a torsion-free lattice and let (X,µX) be an ergodic standard Borel probability Γ-
space. Assuming 1 < p < q, there is no maximal Zariski dense measurable cocycle
σ : Γ×X → SU(p, q).

Pushing over the comparison with representations, it seems natural to investi-
gate the behavior of maximal cocycles as in Theorem 3 that are not Zariski dense,
since by Proposition 4 they are the only ones that can exist when p 6= q. Precisely,
we focus on the structure of their algebraic hull, that is defined as the minimal
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algebraic subgroup of SU(p, q) containing the image of a cocycle cohomologous to
the starting one. The following result characterize the factors of the algebraic hull
of such a cocycle.

Proposition 5 ([SS21c, Proposition 4]). Fix positive integers n ≥ 2 and 1 < p < q.
Let Γ < PU(1, n) be a complex hyperbolic lattice, (X,µX) be an ergodic standard
Borel probability Γ-space and consider a maximal cocycle σ : Γ × X → PU(p, q).
Denoting by H the algebraic hull of σ and by H = H(R)◦, then H splits as the
product K×Lnt×Lt, where K is a compact subgroup of SU(p, q), Lt is a Hermitian
Lie group of tube-type and Lnt is a Hermitian Lie group not of tube-type that splits
again as a product of several copies of SU(1, q).

The proof is essentially based on the arguments used in [Poz15, Theorem 1.3]
and it indirectly exploits the notion of tight cocycle, introduced and studied by
Savini [Sav20]. In fact [Sav20, Theorem 1] asserts that the algebraic hull of a
maximal cocycle is reductive, and this is proved using the characterization of
tight subgroups given in [BIW09] and the fact that maximality implies tightness.
Now, since reductive groups split into a compact and a non-compact factor, by
considering the composition of σ with the projections on the simple factors of
the non-compact part, which are of the form SU(pi, qi), we obtain Zariski dense
cocycles satisfying the hypothesis of Proposition 5 and we can conclude.

1.2.3 Finite reducibility

Since the space X (p, q) is Hermitian also for q = ∞, the definition of Toledo
invariant can be adapted for cocycles Γ×X → PU(p,∞). However, a key difficulty
to overcome in the study of such objects is that PU(p,∞) is no more algebraic,
and this has remarkable consequences. In fact, since the notion of algebraic hull
is based on the Noetherian property of algebraic groups, it cannot be defined in
this context, hence we cannot to exploit Theorem 2 to get a boundary map in this
context. Even if a notion of Zariski density can be given by using standard algebraic
groups, as done for instance in [DLP21], under this assumptions we are not able to
prove the existence of a boundary map with the desired target. However, we define
finite dimensional algebraic subgroups of PU(p,∞), that correspond to algebraic
subgroups of the group of invertible linear operator of a finite dimensional Hilbert
space. Then, by defining finite reducible cocycles as those that can be twisted so
that the image is contained into a finite dimensional algebraic subgroup, we will
prove the following

Theorem 6 ([SS21a, Theorem 2]). Let Γ < PU(1, n) be a complex hyperbolic
lattice with n ≥ 1 and let (X,µ) be an ergodic standard Borel probability Γ-space.
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Consider a measurable cocycle σ : Γ×X → PU(p,∞) with p ≥ 1 and suppose there
exists a boundary map φ : ∂HnC ×X → Ip in the space of p-chains inside the visual
boundary ∂X (p,∞). If σ is maximal, then it is finitely reducible.

Although Theorem 6 is based on the analogous version for representations
[DLP21, Theorem 1.6], we need a slight refinement of the arguments used by
Duchesne, Lécureux and Pozzetti. Precisely, as in the finite dimensional case, the
slices of the boundary map preserve the chain geometry of the boundaries. In
this case we prove that there exists a family of minimal totally geodesic embedded
subspaces of X (p,∞) of the form X (p, qx) with p ≤ qx ≤ np. Since by ergodicity
the dimension of such spaces is essentially constant, we have a σ-equivariant family
of embedded copies of X (p, q) for some q and hence we can twist the cocycle in
such a way that the image is contained into a copy of PU(p, q). Finally, the fact
that such a group is finite dimensional algebraic implies that σ is reducible.

By combining Theorem 1 and Theorem 6 with results due to Moraschini and
Savini [MS21], we can immediately prove the following infinite dimensional version
of Mostow rigidity for cocycles.

Theorem 7 ([SS21a, Theorem 3]). Let Γ < PU(1, n) be a complex hyperbolic
lattice with n ≥ 1 and let (X,µX) be an ergodic standard Borel probability Γ-
space. Any maximal cocycle σ : Γ ×X → PU(1,∞) is cohomologous to a cocycle
preserving a copy of HnC ⊂ H∞C and acting on it via the standard lattice embedding.

1.2.4 The parametrized Kähler class

In the last part of the thesis we study Zariski dense cocycles Γ ×X → G from a
finitely generated group into a group G of Hermitian type whose symmetric spaces
is irreducible and not of tube-type. Hermitian symmetric spaces can be classified
in Hermitian spaces of tube-type, if they can biholomorphically realized as V + iΩ
where V is a real vector space and Ω ⊂ V is a proper convex cone, or not of
tube-type if not. As we will see, Burger Iozzi and Wienhard [BIW07] showed that
such characterization can be also detected through the Kähler class, and it turns
out that Zariski dense cocycles into the isometry group of Hermitian symmetric
spaces not of tube-type are rigid. The natural notion of pullback along cocycles
consists of a map H2

b(σ) : H2
cb(G;R)→ H2

b(Γ; L∞(X;R)), where the latter denotes
the bounded cohomology group of Γ with coefficients in the bounded measurable
functions on X. The image under the pullback along σ of the bounded Kähler
class kbH is called parametrized Kähler class of σ and it turns out to determine
Zariski dense cocycles up to cohomology.

Theorem 8 ([SS21b, Theorem 1]). Let Γ be a finitely generated group, let (X,µX)
be an ergodic standard Borel probability Γ-space and consider a Zariski dense
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measurable cocycle σ : Γ × X → G where G = Isom(X )◦ and X is an irre-
ducible Hermitian symmetric space not of tube-type. Then the class H2

b(σ)(kbG) in
H2

b(Γ; L∞(X;R)) is non-zero and it is a complete invariant of the cohomology class
of σ.

In the proof we adapt some arguments due to Burger, Iozzi and Wienhard in
[BIW07]. Besides the definition of Kähler class given using the Bergmann cocycle
that is already involved in our previous results, here we strongly use the metric
structure inherited by an Hermitian symmetric space thanks to its bounded domain
realization, that is a biholomorphism with a bounded domain DX ⊂ Cn. The
Bergman metric and its associated Bergman kernel allows to define the Hermitian
triple product, that is a function on triples of points in the Shilov boundary SX . The
latter, already mentioned in the specific case of the group SU(p, q), can be defined
in a purely analytic way as the set on which any holomorphic function on ∂DX
assumes its maximum. Thanks to the identification between the Shilov boundary
with the quotient of the group by a specific maximal parabolic subgroup, Burger,
Iozzi and Wienhard [BIW07] gave an extension of the Hermitian triple product,
called complex Hermitian triple product, which can be used to characterize domains
not of tube-types. With this tools, we deduce Theorem 8 as a consequence of
the following more general result (see Theorem 6.1.4). The idea of the proof
is to exploit such characterization to rule out a linear dependence between the
parametrized Kähler classes of a finite family of Zariski dense independent cocycles
{σi : Γ × X → Gi} into Hermitian groups not of tube-type. Here the notion of
independence generalizes the one of cohomology and it is given for cocycles with
different targets.

Since cocycles Γ×X → G can be interpreted as 1-cocycles in the cohomology
of the orbital equivalence relation RΓ ⊂ X × X given by the Γ-action on X
with values in G (see Feldmann–Moore [FM77] and Furman [Fur10]), we have a
cohomological interpretation of their equivalence classes as the first cohomology
group H1(Γ y X;G). From this point of view, if we denote by H1

ZD(Γ y X;G)
the subgroup of Zariski dense cocycles, Theorem 8 provides an injection

H1
ZD(Γ y X;G)→ H2

b(Γ,L∞(X;R)) , [σ] 7→ H2
b(σ)(kbG)

that can be combined with the injection RepZD(Γ;G) ↪→ H2
b(Γ;R) proved in

[BIW10] in order to get the following commutative diagram

RepZD(Γ;G) //

��

H2
b(Γ;R)

��
H1
ZD(Γ y X;G) // H2

b(Γ; L∞(X;R))

.
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Here the vertical arrows are induced respectively by the inclusion of the set of
representations into the one of cocycles and by the inclusion of constants R ↪→
L∞(X;R).

As a consequence of Theorem 8 we rule out the existence of Zariski dense
cocycles Γ × X → G if Γ is an irreducible lattice into a product of groups with
trivial second bounded cohomology.

Proposition 9 ([SS21b, Proposition 4.1]). Let n ≥ 2. Consider an irreducible

lattice Γ <
n∏
i=1

Hi into a product of locally compact second countable groups with

H2
cb(Hi;R) = 0 for i = 1, . . . , n. Let (X,µX) be an irreducible standard Borel

Γ-space and assume that the action is ergodic. Then there is no Zariski dense
cocycle σ : Γ ×X → G where G = Isom(X )◦ and X is any irreducible Hermitian
symmetric space not of tube-type.

Here we exploit a result by Burger–Monod [BM02] that relates the cohomology
of Γ with the cohomology of the factors Hi. Precisely, in the setting of Proposition
9, we have an isomorphism

H2
b(Γ;R) ∼=

n⊕
i=1

H2
cb(Hi;R)

and, thanks to the injection H1
ZD(Γ y X;G) → H2

b(Γ,L∞(X;R)) provided by
Theorem 8, we can conclude with a dimensional argument.

1.3 Structure of the thesis

The thesis is divided in five chapters. In Chapter 2 we recall the background
material that we need in the following ones. More precisely, in Section 2.1 we
give the definition of amenable, ergodic and smooth actions and of relative metric
ergodicity. Section 2.2 is devoted to bounded cohomology, while in Section 2.3
we introduce Hermitian symmetric spaces, the notion of Shilov boundary and
the Kähler class. Then we move to the main characters of this thesis, namely
measurable cocycles, boundary maps and the machinery of pullback along cocycles
(Section 2.4). Finally in Section 2.5, we give the basic notions about CAT(0)-spaces
and about measurable fields.

In Chapter 3 we investigate the existence of boundary maps, providing two
independent results: the first one if the target is the isometry group of a CAT(0)-
space (Section 3.1) and the second one in the case of cocycles into algebraic groups
(Section 3.2). We end with Section 3.3 by describing some useful properties of
boundary maps.
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In Chapter 4 we introduce the Toledo invariant and maximal cocycles (Section
4.1). Then we prove a superrigidity result for cocycles from complex hyperbolic
lattices in the group SU(p, q) (Section 4.2).

Chapter 5 is spent analyzing cocycles from complex hyperbolic lattices into
PU(p,∞). Due to the absence of algebraicity, we need to introduce standard alge-
braic subgroups (Section 5.1) and this allows us to prove a result about reducibility
(Section 5.2) and an infinite dimensional version of Mostow rigidity for cocycles
(Section 5.3).

Finally, in Chapter 6 we classify Zariski dense cocycles from finitely generated
groups into Hermitian groups not of tube-type via the pullback of the Kähler class.
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Chapter 2

Preliminaries

2.1 Actions

In this section we are going to recall the definitions of smooth, ergodic, relatively
metric ergodic and amenable actions, that will be ubiquitous throughout the dis-
sertation. We point out that, although those concepts could be introduced inde-
pendently, they are actually strongly related. For instance, one can characterize
ergodicity through the notion of smoothness, as we will state in Proposition 2.1.7.
Furthermore, in Section 2.4.2, we will introduce a notion of boundary for locally
compact second countable groups, and in this context amenability and ergodic-
ity will be involved. Our goal is to give the basic definitions and to suggest how
those notions are related. We also take advantage of this section to show some
examples that will appear in the next chapters. Since we do not want to give an
exhaustive description for such tools, we refer the reader to Zimmer’s book [Zim84]
and to Bader–Furman’s paper [BF14b] for more details, and we only discuss the
definitions and the results that we will use in this thesis.

In the sequel G will be a locally compact second countable group. We fix once
and for all the following basic concepts.

• A Borel probability G-space is a probability space (X,µX) equipped with a
G-action that preserves µX .

• A standard Borel probability G-space is a Borel probability G-space whose
Borel σ-algebra is the one of a separable and completely metrizable space.

• If a the measure µx on a standard Borel G-space (X,µX) is only quasi-
invariant, namely µX(A) = 0 if and only if µX(gA) = 0 for every g ∈ G, we
say that (X,µX) is a Lebesgue G-space.
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We are ready to give the definition of ergodic actions.

Definition 2.1.1. Let G be a locally compact second countable group and let
(X,µX) be a Lebesgue G-space. The action is ergodic if for every G-invariant
Borel set A, we have either µX(A) = 0 or µX(X \A) = 0.

The first trivial example of ergodicity are transitive actions. For instance, if
H < G is a closed subgroup, there exists a unique G-quasi-invariant probability
measure on G/H and hence, since G/H is a G-homogeneous space, the action is
ergodic.

A weaker notion of transitivity in the measurable framework is the one of
essential transitivity. A G-action on a Borel probability space is essentially transi-
tive if there exists a conull orbit. Essential transitivity implies ergodicity as well,
since all orbits of an essentially transitive action are either null or conull. We call
properly ergodic an ergodic action that is not essentially transitive, namely an ac-
tion where any orbit has null measure (notice that orbits are actually measurable
sets by [Zim84, Corollary 2.1.20]). We describe two examples of properly ergodic
action.

Example 2.1.2 ([Zim84, Example 2.1.4]). Consider the action of Z on the circle
S1 induced by the α-rotation

rα : S1 → S1 , rα(ξ) := eiαξ ,

where α
2π ∈ R\Q. Clearly, such an action preserves the Lebesgue measure and it is

not essentially transitive, since every orbit is a dense set of measure zero. However,
an invariant Borel set A ⊂ S1 must be either null or conull. In fact, taking the
Fourier expansion of the characteristic function χA and exploiting invariance, we
get ∑

n≥0

anξ
n = χA(ξ) = χA(eiαξ) =

∑
n≥0

ane
inαξn

and hence an = ane
inα for every n. Since α/2π is irrational we must have an = 0

if n 6= 0, hence χA is forced to be constant. This shows that the Z-action on the
circle by rotation by an irrational multiple of π is properly ergodic.

Example 2.1.3. Since rational numbers are dense in the real line, by [Zim84,
Lemma 2.2.13] the Q-action on R is ergodic. As in the previous example, such an
action is not essentially transitive, since Q has null Lebesgue measure. In general,
any action of a dense subgroup H < G on G is properly ergodic.
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Properly ergodic actions generate complicated behavior of the orbits since, for
example, any such continuous quasi-invariant G-action on a second countable space
which is positive on open sets must have dense but null orbits [Zim84, Proposition
2.1.7]. To rule out such complications, we introduce the notions of countably
separated Borel space and then of smooth actions. We show that, when smoothness
and ergodicity coexist, then the situation described above cannot happen. Finally
we provide an useful characterization of ergodicity in terms of Borel functions into
countably separated spaces.

Definition 2.1.4. A Borel space (X,B) is countably separated if there exists a
countable family of Borel sets {Bj ∈ B}j∈N that separate points.

A relevant example of countably separated space is the quotient space of an
algebraic variety defined over a local field of characteristic zero by an algebraic
action of an algebraic group. This is a consequence of [Zim84, Theorem 2.1.14]
together with [Zim84, Theorem 3.1.3].

Using the notion of countably separated space we are ready to define the con-
cept of smooth action.

Definition 2.1.5. Let (X,B) be a countably separated G-space. The action is
called smooth if the quotient Borel structure on X/G is countably separated.

The Q-action on R described in Example 2.1.3 is a first example of non-smooth
action. In fact, the quotient R/Q does not admit a countable family that separates
points, hence it is not countably separated.

Proposition 2.1.6 ([Zim84, Proposition 2.1.10]). Let G be a locally compact sec-
ond countable group acting smoothly on (X,µX). If the action preserves the class
of µX and is ergodic, then there exists a conull orbit.

The importance of smoothness to (proper) ergodicity relies also in the following
useful characterization.

Proposition 2.1.7 ([Zim84, Proposition 2.1.11]). Let (X,µ) be an ergodic Borel
probability G-space and let Y be a countably separated space. Then any G-invariant
Borel function f : X → Y is essentially constant.

Notice that the assumption on the space Y is actually necessary. Indeed, the
projection R→ R/Q is Q-invariant but clearly not constant, even if the Q-action
on R is ergodic (see Example 2.1.3).

As we will see in Chapter 4 and in the proof of Theorem 3, smooth actions are
also crucial in the study of boundary theory. Indeed one of the key points of the
proofs of both Margulis [Mar75] and Zimmer [Zim80] superrigidity results relies
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on the smoothness of the action of product groups on the set of rational functions
between boundaries (see Definition 2.4.11 and [Zim84, Proposition 3.3.2]). To be
more precise, we conclude this part by presenting an explicit example.

Example 2.1.8. Fix n ≥ 1 and 1 ≤ p ≤ q. Let G := Isom(HnC) and H :=
SU(p, q) = {h ∈ GL(p+ q,C) , hIp,qh

∗ = Ip,q}, where Ip,q is the diagonal matrix

Ip,q =

(
Idp

−Idq

)
and h∗ denotes the adjoint matrix. Recall that G can be seen as the real points
of its complexification G = PSL(n + 1,C) once we have suitably fixed a real
structure on it, that is an antilinear involution G→ G. A similar thing holds for
H and its complexification H = SL(p+ q,C). Recall that a parabolic subgroup of
a connected real algebraic group G is a closed subgroup P < G that contains a
maximal connected solvable subgroup [Bor91]. In particular, minimal parabolic
subgroups coincide with maximal solvable subgroups, and they play an important
role in the context of semisimple groups (see the work of Furstenberg about B-
subgroups and Poisson boundaries [Fur63] or Section 2.4.2).

We consider a minimal parabolic subgroup P < G and a maximal parabolic
subgroup Q < H for which ∂HnC = (G/P)(R) and (H/Q)(R) is identified with the
Shilov boundary Sp,q of SU(p, q) (see Definition 2.3.9). We say that a map between
∂HnC and Sp,q is rational if it is the restriction of a rational map between G/P and
H/Q. Here a rational map between two algebraic varieties U and V is a function
that is defined on charts by regular maps. More precisely, it is an equivalence class
of pairs (U, fU ) where U ⊂ U is a non-empty Zariski open set, fU : U → V is a
regular map and two such pairs (U, f) and (U ′, f ′) are identified if U ∩U ′ 6= ∅ and
f|U∩U ′ ≡ f ′|U∩U ′ . This enables us to speak about the set Q := Rat(∂HnC,Sp,q) of
rational maps between ∂HnC and Sp,q. It is possible to define a joint action of G
and H as follows

((g, h) · f))(ξ) := h · f(g−1ξ) ,

for each g ∈ G, h ∈ H and f ∈ Q. Following [Zim84, Proposition 3.3.2] the actions
of G, H and G×H on Q are all smooth.

We now move to a refinement of the notion of ergodicity, namely the one of
relative metric ergodicity. The latter will be a necessary tool in Section 2.4.2 to
introduce boundaries for locally compact second countable groups. Notice that this
stronger version of ergodicity represents for us a mere tool to define boundaries
and to give the results of Chapter 3 in whole generality. However, in the study of
numerical invariants, we work with the Poisson boundaries (see Remark 2.4.12).
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For this reason, we just list here the necessary definitions without comments or
examples and we refer the reader to [BF14b] for further details. We start with the
following

Definition 2.1.9. A Lebesgue G-space (X,µX) is metrically ergodic if for any
isometric action G → Isom(M,d) on a separable metric space (M,d), any G-
equivariant measurable map X →M is essentially constant.

We note that a metrically ergodic action is actually ergodic, taking as M the
space {0, 1} with the trivial G-action. For our goal, we need a further refinement of
metric ergodicity. Before doing that, we give the definition of fiber-wise isometric
action.

Definition 2.1.10. A metric on a Borel function p : M → T between standard
Borel probability spaces is a function d : M ×T M → [0,∞) whose restriction
d|p−1(t) on each p-fiber is a separable metric.

Given a metric on p : M → T , an action of G on M is fiber-wise isometric if
there exists a p-compatible G-action on T such that, for any t ∈ T, x, y ∈ p−1(t)
and g ∈ G we have

d|p−1(gt)(gx, gy) = d|p−1(t)(x, y).

The notion of fiberwise isometric action allows us to introduce the following

Definition 2.1.11. A map q : X → Y between Lebesgue G-spaces is relatively
metrically ergodic if for any fiber-wise isometric G-action on p : M → T and mea-
surable G-equivariant maps f : X →M and g : Y → T there exists a measurable
G-equivariant map ψ : Y →M such that the following diagram commutes

X M

Y T.

f

q p

g

ψ

It is worth noticing that relative metric ergodicity boils down to metric ergod-
icity if we consider the trivial projection q : X → {∗} on a point.

We devote the last part of this section to amenability. We notice that there
are plenty of equivalent definitions for such a class of actions. For instance, one
can rely upon through the notion of mean (see [SS21c, Definition 2.11]) or on a
the fixed point property. The last approach is the one adopted by Zimmer [Zim78,
Zim80, Zim84] and it turns out to be a better point of view for our purposes. We
refer the reader to the book of Zimmer [Zim84, Chapter 4] for a detailed description
of the theory.
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Let G be a locally compact second countable group acting continuously on
a compact metrizable space X. We denote by M1(X) ⊂ C(X)∗ the compact
convex set of probability measures on X. Here C(X)∗ is endowed with the weak-∗

topology, namely the topology whose basis is given by the sets

Uε,f1,...,fn(Ψ) := {Φ ∈ C(X)∗ | |Ψ(fi)− Φ(fi)| ≤ ε , ∀ 1, . . . , n}

where ε > 0, n ∈ N, fi ∈ C(X) and Ψ ∈ C(X)∗. Then G acts continuously on
C(X) as follows

(gf)(x) := f(g−1x)

for every g ∈ G and f ∈ C(X) and this induces a natural action onM1(X) defined
as

gµ(f) := µ(gf)

for every µ ∈M1(X), f ∈ C(X) and g ∈ G.
This is the setting to define amenable groups.

Definition 2.1.12. A locally compact second countable group G is amenable if for
every continuous action on a compact metrizable space X, the induced G-action
on M1(X) admits a fixed point.

Examples of amenable groups are

• abelian groups [Zim84, Proposition 4.1.2],

• compact groups [Zim84, Proposition 4.1.5],

• solvable groups [Zim84, Corollary 4.1.7],

• compact extensions of solvable subgroups [Fur63, Theorem 1.7] (e.g. mini-
mal parabolic subgroups).

Furthermore, in case of connected semisimple Lie groups one can shows that
amenability is actually equivalent to be a compact extension of a solvable group
[Fur63, Theorem 1.7].

An equivalent formulation of amenability of groups can be given in terms of
the following class of actions on more general convex sets.

Definition 2.1.13. An affine G-action on a space A is the datum of a compact
convex set A ⊂ E∗1 , where E∗1 is the unit ball in the dual of a separable Banach
space E endowed with the weak-∗ topology, together with a G-action induced by
the dual representation of some continuous isometric representation of G on E.

Such a class of actions gives rise to the following useful characterizations of
amenable groups.
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Proposition 2.1.14 ([Zim84, Proposition 4.1.4]). A locally compact second count-
able group G is amenable if and only if every affine G-action has a fixed point.

The previous characterization shows how actions of amenable groups inher-
its certain properties from the group. Conversely, one can find actions by non-
amenable groups that satisfy a fixed point property. Our next step is to formalize
this phenomena or, in other words, to generalize amenability of groups to actions.
We start by defining a class of spaces that extends the one introduced in Definition
2.1.13. Consider a locally compact second countable group G, a measure G-space
(S, µ) and a separable Banach space E. We suppose the existence of a measurable
function σ : G× S → Isom(E) such that

σ(gh, s) = σ(g, hs)σ(h, s) (2.1)

for every g, h ∈ G and for almost every s ∈ S. We point out that the condition
defined by Equation (2.1) actually corresponds to the cocycle condition defined
by Equation (2.13) of Section 2.4.1. Nevertheless, we prefer not to introduce here
the exact notion of measurable cocycle and to remind the reader to Section 2.4.1
where the theory is described more precisely.

The function σ induces a natural G-action on the space L1(S;E) of µ-integrable
measurable E-valued maps defined by

(gϕ)(s) := σ(g, s)ϕ(gs)

for every ϕ ∈ L1(S;E), every g ∈ G and almost every s ∈ S. The last action in
turn induces, by duality, a G-action on L∞(S;E∗) as follows

(gf)(s) := (σ(g, s)−1)∗f(gs) , (2.2)

where L∞(S;E∗) is endowed with the weak-∗ topology and (σ(g, s)−1)∗ denotes
the dual action of σ(g, s)−1. We assume the existence of a family {As}s∈S of Borel
subsets of the unit ball E∗1 in E∗ such that {(s,As)} ⊂ S×E∗1 is a Borel subset and
we assume that (σ(g, s)−1)∗As = Ag−1s for every g ∈ G and almost every s ∈ S
(such a family of Borel subsets is called a G-equivariant family). In this setting,
we define the set

C(S, {As}) := {f : S → E∗1 | f(s) ∈ As for almost every s ∈ S} ,

that is a compact closed convex subset of the unit ball of L∞(S;E∗1).

Definition 2.1.15. An affine G-space of the form C(S, {As}) endowed with the
action defined by Equation (2.2) is an affine G-space over S.
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Affine G-spaces over a measure space S are the generalizations of affine spaces
and allow us to give the following

Definition 2.1.16. A G-action on a measure space S is amenable if every affine
G-space over S has a fixed point.

As anticipated, if G is amenable then every G-action is amenable. Conversely,
the existence of an amenable G-action on some space X that preserves a finite
measure ensures the amenability of G [Zim84, Proposition 4.3.3]. In particular,
a group G is amenable if and only if the trivial G-action on a point is amenable.
Amenable actions do not need to involve amenable groups. As a first example, the
following results characterizes amenable actions of locally compact second count-
able groups on homogeneous spaces.

Proposition 2.1.17 ([Zim84, Proposition 4.3.2]). Let H < G be a closed subgroup
of the locally compact second countable group. Then the G-action on G/H is
amenable if and only if H is an amenable group.

The previous characterization is exactly the context in which we exploit amenabil-
ity. Precisely, if G is a connected semisimple Lie group of non-compact type, we
can consider a minimal parabolic subgroup P . Since P is a compact extension of
a solvable group, it is amenable. Hence the Furstenberg–Poisson boundary of G,
which can be identified with the quotient G/P (see Remark 2.4.12 and Example
2.4.14), is an amenable G-space.

It is worth mentioning the existence of a different notion of amenable action
that generalizes the characterization of amenable groups in terms of means. How-
ever, since we are not interested in this approach, we refer to [AEG94], where the
relation between such definitions is discussed.

We conclude by recalling a property of amenable actions. This represent the
crucial link between the theory of amenable actions and the one of boundary maps,
that we are going to introduce in Section 2.4.2. In particular, it will be the starting
point in the proof of Theorem 2.

Proposition 2.1.18 ([Zim84, Proposition 4.3.9]). Let (S, µ) an amenable G-space
and let Y be a compact metric G-space. Up to discarding a null measure subset
of S, there exists a G-equivariant measurable map S →M1(Y ) into the space of
probability measures on Y .
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2.2 Bounded cohomology

This section is devoted to (continuous) bounded cohomology of locally compact
second countable groups. In particular, after an introductory part about Banach
modules, we give the classical definition using the complex of (continuous) bounded
cochains. Then we provide a short but almost self-contained description of the
Burger–Monod functorial characterization of continuous bounded cohomology. As
a general reference for this section we refer the reader to Monod’s book [Mon01].

2.2.1 Banach modules

In the sequel G will be a locally compact second countable group. Since we are
going to describe a cohomology theory we start with the definition of a class of
modules that will be the coefficients of our cohomology groups.

Definition 2.2.1. A Banach G-module E is a Banach space endowed with an
isometric G-action π : G→ Isom(E). If the action is also continuous, E is called a
continuous Banach G-module. A G-morphism is a continuous G-equivariant linear
map α : E → F between Banach G-modules that commutes with the actions.

We immediately recall some examples of Banach G-modules that are going to
be ubiquitous along our dissertation.

Example 2.2.2. If E is a Banach G-module, the maximal continuous submodule
is

CE := {v ∈ E | g 7→ gv is continuous } ,
and it coincides with the maximal submodule of E on which the G-action is con-
tinuous. As proved in [Mon01, Lemma 1.2.6], any G-morphism E → F of Banach
space restricts to a G-morphism CE → CF .

Example 2.2.3. For any topological space X on which G acts by homeomor-
phisms and for any Banach G-modules E, we consider the Banach space of con-
tinuous bounded E-valued functions

Cb(X;E)

endowed with the supremum norm

||f ||∞ = sup
x∈X
||f(x)||E .

If π : G → Isom(E) is the isometric G-action on E, we turn Cb(G;E) into a
Banach G-module by defining the following G-action

(gf)(x) = π(g)f(g−1x) (2.3)

called left regular representation.
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Example 2.2.4. Another example of Banach G-module is the Banach space of
essentially bounded measurable E-valued functions on X

L∞(X;E)

endowed with the supremum norm, where (X,µX) is any measure space and E is a
Banach G-module. Here we identify measurable functions that coincide µX -almost
everywhere. The space L∞(X;E) is a Banach G-module if endowed with the left
regular representation defined by Equation (2.3).

We point out that the notion of continuous bounded cohomology for locally
compact second countable groups could be given here, since it only requires the
concept of Banach G-modules. Nevertheless, the powerful machinery developed
by Burger and Monod that we are going to describe in Section 2.2.3 needs some
additional definitions. We first consider a particular class of Banach G-modules.

Definition 2.2.5. A Banach G-module E is a coefficient module if it is the dual
of some separable continuous Banach G-module F and, denoting by π[ : G →
Isom(F ) the isometric G-action on F , the action π : G→ Isom(E) satisfies

π(g)(φ)(v) = φ(π[(g)−1(v)) (2.4)

for every g ∈ G, φ ∈ E and v ∈ F .

Since we are interested in the space of measurable bounded functions on some
measure space, we show how the Banach module introduced in Example 2.2.4
satisfies the conditions of Definition 2.2.5.

Example 2.2.6. Let G be a locally compact second countable group and let
(X,µX) be a measure G-space. We consider the Banach G-module

L∞(X) = L∞(X;R)

of bounded measurable functions on X and the Banach space

L1(X)

of µX -integrable functions endowed with the G-action defined as

π[ : G→ L1(X) , (π[(g)(f))(x) := f(gx) .

It is a classical fact the existence of an isometric isomorphism between L∞(X)∗ and
L1(X), and one can also check that the isometric G-actions satisfies the equality
in Equation (2.4). This implies that the space L∞(X) is a coefficient G-module
(see [Mon01] for more details).
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A second class of objects that we need are described below.

Definition 2.2.7. A regular G-space is a standard Borel space S endowed with
a measure class preserving G-action such that, if µ is a probability measure that
represents the invariant class, then

G→ Isom(L1(S)) , g 7→ λ[(g)ϕ

is continuous where λ[(g)ϕ := ϕ(g−1s)dg
−1µ
dµ (s).

Although the Definition 2.2.7 may appears quite mysterious, we recall two
well-known examples of regular Banach G-modules.

• Any locally compact second countable group G is a regular G-space itself if
endowed with the class of its Haar measure. More generally, for any closed
subgroup H < G, the homogeneous space G/H admits a G-quasi-invariant
measure; hence G preserves the class of this measure and this turns G/H into
a regular space. As a consequence, the Furstenberg–Poisson boundary of a
semisimple Lie group, that can be identified with the quotient of the group
by any minimal parabolic subgroup, is a regular space (see also Example
2.4.14).

• For any probability measure µ on a locally compact second countable group
G, there exist probability G-spaces called Poisson boundaries that are regu-
lar G-spaces for the class of corresponding stationary measure (see the work
of Furstenberg [Fur63, Fur67, Fur73] or Section 2.4.2). In case of semisimple
Lie groups the wide family of Poisson boundaries includes the Furstenberg–
Poisson ones.

Regular spaces give us the chance to present a class of Banach G-modules that
will be crucial in the functorial characterization.

Example 2.2.8. Let S be a regular G-space and let E be a coefficient G-module
with the isometric representation π : G→ Isom(E). We consider the space

B∞w∗(S;E)

of bounded weak-∗ measurable E-valued functions on S, which becomes a Banach
G-module if it is equipped with the supremum norm and with the left regular
representation defined by Equation (2.3).

As we will see, instead of bounded measurable functions, sometimes it is con-
venient to work with the space

L∞w∗(S;E)
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of essentially bounded weak-∗ measurable E-valued functions on S, namely the
quotient of B∞w∗(S;E) by the equivalence relation that identifies two measurable
functions that coincide almost everywhere. It is also a Banach G-module if con-
sidered with the essential supremum norm and with the same G-action as on
B∞w∗(S;E) and, as we will see, its role is crucial in the Burger–Monod theory.

Finally, the subspace of alternating functions on the product S•+1 is denoted
by

B∞w∗,alt(S
•+1;E) or L∞w∗,alt(S

•+1;E)

and consists of functions f ∈ B∞w∗(S•+1;E) (respectively L∞w∗(S
•+1;E)) such that

f(s0, . . . , s•) = sgn(σ)f(sσ(0), . . . , sσ(•))

for every s0, . . . , s• ∈ S•+1 and σ ∈ S•+1.

Remark 2.2.9. We notice that an element in L∞w∗(S;E) is an equivalence class of
functions that coincide almost everywhere. However, to simplify the exposition, we
slightly abuse the notation and we write f ∈ L∞w∗(S;E) to consider a representative
of some class.

We conclude by introducing an extension property for Banach G-modules,
that is the last technical ingredient for the Burger–Monod approach to bounded
cohomology.

Definition 2.2.10. A G-morphism η : A → B is said to be admissible if there
exists a morphism σ : B → A with ||σ||∞ ≤ 1 and such that ηση = η.

In particular, if η is injective, admissibility is equivalent to the existence of a
left inverse for η of norm one. Injective admissible morphisms are the object of
the next

Definition 2.2.11. A Banach G-module E is relatively injective if for any injective
admissible G-morphism between continuous G-modules i : A→ B and for any G-
morphism α : A → E there exists a G-morphism β : B → E with ||β||∞ ≤ 1 and
such that the following diagram commutes

A B

E.

i

α

β

The extension property that holds for a relatively injective G-module E is
strictly related to the G-module CE, as established by the following
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Lemma 2.2.12 ([Mon01, Lemma 4.1.5]). A Banach G-module E is relatively
injective if and only if CE is.

The relevance of relatively injective G-modules in bounded cohomology, which
will become completely clear in Section 2.2.3, is also explained by the next result.

Theorem 2.2.13 ([Mon01, Theorem 4.5.2]). Let G be a locally compact group and
let E be a Banach G-module. Then the space Cb(G;E) is relatively injective.

2.2.2 The standard definition of bounded cohomology

We now introduce the theory of continuous and continuous bounded cohomology
of locally compact second countable groups. We will not be exhaustive and we
recall only the basic definitions and tools that we need. Standard references are
Monod’s book [Mon01] and Burger–Monod [BM02]. We notice that most of the
notions that we are going to introduce below can be given in a more general
context. Nevertheless we prefer to restrict to the specific setting needed for our
purposes.

In the sequel G will be a locally compact second countable group and E will
be a Banach G-module. We denote the set of E-valued continuous functions on G
as

C•c(G;E) := {f : G•+1 → E | f is continuous }

and we define the standard homogeneous coboundary operator by

δ• : C•c(G;E)→ C•+1
c (G;E) ,

(δ•f)(g0, . . . , g•+1) :=
•+1∑
i=0

(−1)if(g0, . . . , ĝi, . . . , g•+1) ,

that clearly preserves continuity. Similarly, we consider the subset of E-valued
continuous bounded function on G

C•cb(G;E) := {f ∈ C•c(G;E) | ||f ||∞ < +∞}

where || · ||∞ denotes the norm

||f ||∞ := sup
g0,...,g•

||f(g0, . . . , g•)||E . (2.5)

The G-action on C•c(G;E) corresponds to the one introduced in Equation (2.3) by
taking the diagonal G-action on G•+1. The set of G-invariant E-valued continuous
(bounded) functions on G is

C•c(b)(G;E)G := {f ∈ C•c(b)(G;E) | gf = f , ∀g ∈ G} .
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Since the coboundary operator δ• preserves both boundedness and G-invariance,
the collection

(C•c(b)(G;E)G, δ•)

forms a cochain complex.

Definition 2.2.14. The continuous (bounded) cohomology of a locally compact
group G with coefficient into a Banach G-module E is the cohomology of the com-
plex (C•c(G;E)G, δ•) (respectively (C•cb(G;E)G, δ•)) and it is denoted by H•c(G;E)
(respectively H•cb(G;E)).

We notice that the supremum norm on each C•cb(G;E) defined by Equation
(2.5) induces a seminorm on H•cb(G;E) given by

||α|| := inf{||c||∞ | [c] = α} .

Two seminormed spaces are said to be isometric if there exists a linear isomorphism
between them that preserves the seminormed structures.

Before passing to the functorial approach, we recall two maps that play an
important role in the whole theory of bounded cohomology. First, the inclusion
C•cb(G;E) ↪→ C•c(G;E) induces a map at the cohomological level

comp• : H•cb(G;E)→ H•c(G;E) (2.6)

that is called comparison map.

Similarly, any G-morphism α : E → F between Banach G-modules naturally
induces a cochain map C•c(b)(G;E)→ C•c(b)(G;F ) and hence a map between coho-
mology groups

H•c(b)(G;E)→ H•c(b)(G;F ). (2.7)

Both the comparison map and the map induced by a G-morphism have aroused
the interest of many mathematicians so far. For instance, Dupont [Dup79] investi-
gated the surjectivity of the comparison map in degree two and Hartnick and Ott
[HO11] generalized the result in the Hermitian case. On the other hand, several
useful results involving change of coefficients are due to Burger and Monod [BM02].
In particular, we will exploit the boundedness of the Kähler class in the context
of semisimple Lie groups of Hermitian type, that follows from the surjectivity of
the comparison map in degree two [Dup79] (see Section 2.3), and the isomorphism
H2

cb(G;R) ∼= H2
cb(G; L∞(X)) induced by the inclusion G ↪→ L∞(X), if G is a prod-

uct acting irreducibly on a measure space (X,µX) (see [BM02, Corollary 15] and
Chapter 6).
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2.2.3 The functorial characterization

Despite its crystalline definition, continuous bounded cohomology turns out to be
almost inaccessible for direct computations. A powerful solution to this problem
has been provided by Burger and Monod [BM02], who obtained a nice functorial
characterization of continuous bounded cohomology. In the sequel we recall a list
of definitions and results that we will use for our purposes. For an exhaustive
description of the theory we refer to Monod’s book [Mon01] and to Burger–Iozzi
appendix [BI02] of [BM02].

A complex of Banach G-modules is a cochain complex (E•, d•) where d• are
G-morphisms. In this context, we can naturally define the n-th cohomology of a
G-complex (E•, d•) as the space

Hn(E•) := Ker(d•)/Im(d•−1)

endowed with the semi-norm induced by the norm of E•.
A G-morphism of complexes is a sequence of G-morphisms α• : E• → F •

intertwining the coboundary operators d•E and d•F . A G-morphism α• : E• → F •

naturally induces continuous linear maps at the cohomological level

Hn(α•) : Hn(E•)→ Hn(F •)

in any degree.
Given G-morphisms α•, β• : E• → F •, a G-homotopy from α• to β• is a family

of G-morphisms h• : E• → F •−1 such that

h•+1d•E − d•−1
F h• = α• − β• ,

namely such that the following diagram commutes

· · · E•−1 E• E•+1 · · ·

· · · F •−1 F • F •+1 · · ·

d•−1
E

α•−1

d•E

α•
h•

α•+1

h•+1

d•−1
F d•F

A contracting homotopy of a G-complex (E•, d•) is a homotopy h• between the
identity and the null map with ||hn|| ≤ 1 for every n ∈ Z.
The complexes we are interested in are called strong complexes. A G-complex
(E•, d•) is strong if the maximal continuous subcomplex (CE•, d•| ) admits a con-
tracting homotopy.
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A resolution of a Banach G-module E is an exact complex with E0 = E and
En = 0 for n ≤ −1. Finally, a resolution is strong if it is realized by a strong
complex.

Example 2.2.15. Given a locally compact second countable group and a Banach
G-module E, the complex

· · · 0 E C0
b(G;E) C1

b(G;E) · · ·ε δ0 δ1

where ε : E → C0
b(G;E) is the inclusion of coefficients, is a strong resolution of E

by relatively injective modules (see Definition 2.2.11).

Strong resolutions by relatively injective modules give a characterization of the
bounded cohomology of a group G with coefficients into a Banach G-module E in
terms of the G-invariants. More precisely, we have the following

Theorem 2.2.16 ([Mon01, Theorem 7.2.1]). Let G be a locally compact second
countable group and let E be a Banach G-module. Then for every strong resolution
(E•, d•) by relatively injective Banach G-modules, the cohomology Hn((E•)G) is
canonically isomorphic, as a topological vector space, to the continuous bounded
cohomology Hn

cb(G;E) of G for every n ≥ 0.

A priori, the isomorphism provided by Theorem 2.2.16 is not isometric. The
natural step that immediately follows Theorem 2.2.16 is the search for strong
resolutions by relatively injective modules that realize the isometry at the coho-
mological level. This is the content of the next result.

Theorem 2.2.17 ([Mon01, Theorem 7.5.3]). Let G be a locally compact second
countable group, let E be a coefficient G-module and consider an amenable regular
G-space S. If ε : E → L∞w∗(S;E) denotes the inclusion of coefficients, the complex

· · · 0 E L∞w∗(S;E) L∞w∗(S
2;E) · · ·ε δ0 δ1

is a strong resolution by relatively injective modules for E. Moreover, the isomor-
phism

Hk(L∞w∗((S)•+1;E)G) ∼= Hk
cb(G;E) (2.8)

is isometric for every k ≥ 0.

The same holds for the complex (L∞w∗,alt((S)•+1;E)), δ•) of alternating essen-
tially bounded measurable functions on S.
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Sometimes, instead of essentially bounded functions, it is convenient to consider
the complex of bounded weak-∗ measurable functions (B∞w∗((S)•+1;E), δ•)) on a
(not necessarily amenable) regular G-space, that actually is a strong resolution
for E [BI02, Proposition 2.1]. The drawback is the loss of relative injectivity and
hence the fact that the resolution

· · · 0 EG B∞w∗(S;E)G B∞w∗(S2;E)G · · ·ε δ1 δ2

does not compute the bounded cohomology of G. Nevertheless, thanks to the work
done by Burger–Iozzi [BI02] which is based on [BM02, Proposition 1.5.2], we know
the existence of canonical maps

cn : Hn(B∞w∗((S)•+1;E)G)→ Hn(L∞w∗((S)•+1;E)G) (2.9)

for every n ≥ 0. The same holds for the complex (B∞w∗,alt((S)•+1;E), δ•) of alter-
nating measurable bounded functions on S, as observed in [BI02, Remark 2.8].

2.3 Hermitian symmetric spaces

The goal of this section is to recall the basics about Hermitian symmetric spaces
and then to introduce some related notions. In particular, we will first introduce
the definition, recalling both the classification in tube-type and non-tube-type
spaces as well as their bounded domain realization. The latter will allow us to
present the Shilov boundary and its basic properties. Exploiting the natural Kähler
structure on Hermitian symmetric spaces we will define the Bergman cocycle. This
will correspond, under the canonical map of Equation (2.9), to an element in the
second bounded cohomology of the isometry group of the Hermitian symmetric
space called bounded Kähler class. Finally, we will introduce the Hermitian triple
product and we will show its relation with the Bergman cocycle.

We start with the definition of Hermitian symmetric space.

Definition 2.3.1. A symmetric space X withG = Isom(X )◦ is of Hermitian type if
it admits a G-invariant complex structure. Given a semisimple real algebraic group
G, we say that G = G(R) is of Hermitian type if its associated symmetric space
is. The rank of symmetric space of Hermitian type is the maximum dimension of
a totally geodesic embedded Euclidean space.

From now on, G will be a group of Hermitian type and X will be the associated
symmetric space. It is well-known that any Hermitian symmetric space X admits a
bounded domain realization [FKK+00, Theorem III. 2.6], that is a biholomorphism

35



between X and a bounded domain DX ⊂ Cn for some n, on which G acts via
biholomorphisms. Furthermore, one can distinguish Hermitian symmetric spaces
among tube-type and not tube-type. More precisely, we have the following

Definition 2.3.2. A Hermitian symmetric space is of tube-type if it is biholomor-
phic to a domain of the form

V + iΩ

where V is a real vector space and Ω ⊂ V is a proper open convex cone.

To clarify the meaning of the above classification, we describe three examples of
Hermitian symmetric spaces. We warn the reader that our last example is actually
the generalization of the second one, as well as the first one is a special case of the
second one. However, because of their different roles in our results, we prefer to
distinguish them. For a complete description of these examples refer to Pozzetti’s
thesis [Poz14] and to [DLP21, SS21a].

Example 2.3.3. On the complex space Cn+1 we consider the Hermitian form Q1,n

of signature (1, n) defined as

Q1,n(x) := x0x0 −
n∑
i=1

xixi

for every x = (x0, . . . , xn) ∈ Cn+1. Since the positivity of Q1,n is invariant under
scalar multiplication, it makes sense to consider the set of Q-positive lines, that
actually coincides with the complex hyperbolic space

HnC := {x = [x0, . . . , xn] ∈ P(Cn+1) |Q1,n(x) > 0} .

Since this is contained in the affine chart U0 = {[1, x1, . . . , xn] ∈ P(Cn+1)}, there
is a natural identification with the unit ball

DX :=

{
(z1, . . . , zn) ∈ Cn |

n∑
i=1

|zi|2 < 1

}
⊂ Cn .

Here the notation DX refers to the bounded domain realization of X . Notice that
HnC can be identified with the rank-one Hermitian symmetric space X associated
to the group SU(1, n) of matrices in SL(n+1,C) that preserve the Hermitian form
Q1,n, that is

SU(1, n) := {h ∈ SL(n+ 1,C) |Q1,n(hx, hy) = Q1,n(x, y) , ∀x, y ∈ Cn+1} .
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Moreover, there exists a biholomorphism between HnC and the Siegel domain
[Gol99, Section 4.1.1]

hn := {(z1, . . . , zn) ∈ Cn | 2Re(z1)−
n∑
i=2

zizi > 0}.

This shows that HnC is of tube-type if and only if n = 1, since in this case h1 =
{w ∈ C |Rew > 0} is the upper half-plane and it satisfies the condition of Definition
2.3.2.

For further details on the complex hyperbolic space we refer to Goldman’s
book [Gol99].

Example 2.3.4. In view of Example 2.3.3, we fix two positive integers p and q
and we define the Hermitian form of signature (p, q) as

Qp,q(x) :=

p∑
i=1

xixi −
q∑

i=p+1

xixi

for every x = (x1, . . . , xp+q) ∈ Cp+q. The set of matrices in SL(p+q,C) preserving
Qp,q, namely the subgroup

SU(p, q) := {h ∈ SL(p+ q,C) |Qp,q(hx, hy) = Qp,q(x, y) , ∀ x, y ∈ Cp+q} ,

is a group of Hermitian type. In particular, denoting by Grp(Cp+q) the Grassman-
nian of p-dimensional subspaces of Cp+q, one can identify the associated symmetric
space with the set

X (p, q) := {V ∈ Grp(Cp+q) |Q|V > 0}.

Indeed, the latter is a homogeneous SU(p, q)-space and the stabilizer of the point
V0 = 〈e0, . . . , ep〉 is the subgroup S(U(p)×U(q)). We notice that X (p, q) generalizes
the complex hyperbolic space introduced in Example 2.3.3, precisely X (1, n) = HnC.
Moreover, the analogous of the bounded realization of HnC is the space of matrix

Xp,q = {X ∈M(p× q,C) |X∗X − Id < 0} ⊂ Cpq ,

where X∗X−Id < 0 means that the Hermitian matrix Id−X∗X is positive definite
(see also [Poz14]). Finally, it is well known that the rank of X (p, q) is the minimum
between p and q, and X (p, q) is of tube-type if and only if p = q. This observations
are the coherent extension of those ones discussed in Example 2.3.3.
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Example 2.3.5. Pushing further Example 2.3.4, we fix p ∈ N and we consider
an infinite dimensional Hilbert space H over C together with an Hilbert basis
{ei}i∈N. We denote by L(H) the set of C-linear bounded operators with respect
to the operator norm and by GL(H) the group of bounded invertible C-linear
operators of H with bounded inverse.

Following the previous examples, we define the Hermitian form Qp,∞ of signa-
ture (p,∞) as follows

Qp,∞(x) =

p∑
i=1

xixi −
∑
i≥p+1

xixi

where x =
∑
i≥1

xiei for every x ∈ H. We denote by U(p,∞) the subgroup of GL(H)

of isometries with respect to Qp,∞, namely

U(p,∞) := {h ∈ GL(H) |Qp,∞(hx, hy) = Qp,∞(x, y) , ∀ x, y ∈ H}.

If we define the space

X (p,∞) :=
{
V < H | dimV = p , Q|V > 0

}
,

by Witt’s theorem the group U(p,∞) acts transitively on it (see for instance [Art11,
Theorem 3.9]). Moreover, the stabilizer of V0 = 〈e1, . . . , ep〉 is the product U(p)×
U(∞), where U(m) is the orthogonal group of the Hilbert space of dimension m,
for any m ∈ N ∪ {∞}. Hence we can identify X (p,∞) with the quotient

U(p,∞)/U(p)×U(∞)

and one can show that it has a structure of simply connected non-positively curved
Riemannian symmetric space (see [Duc12]). Finally, the rank of X (p,∞) is p.

Homotheties act trivially on X (p,∞), hence the quotient

PU(p,∞) := U(p,∞)/{λId , |λ| = 1}

acts by isometries on X (p,∞).
Beyond the structure of Riemannian symmetric space, in [DLP21] the authors

describe also a complex structure on X (p,∞) that makes it a Hermitian symmetric
space. Finally, the space X (p,∞) is not of tube-type [DLP21, Lemma 2.11].

As suggested by the notation, the space X (p,∞) is the natural extension of
X (p, q) to the infinite dimensional case. However, it loses all the algebraic prop-
erties inherited by X (p, q) thanks to its embedding into the Grasmannian. The
lack of algebraicity will be deeply discussed in Chapter 5, where we will consider
actions of complex hyperbolic lattices on the space X (p,∞).
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We conclude this part by formalizing the notion of embedding between the
symmetric spaces introduced in Examples 2.3.4 ans 2.3.5. Fix positive integers
1 ≤ p < q1 and a second integer q1 ≤ q2 ≤ ∞. We denote by {ei}p+q1i=1 and
by {fi}p+q2i=1 two basis respectively of Cp+q1 and of Cp+q2 , where eventually Cp+∞
denotes the infinite dimensional Hilbert space H of Example 2.3.5.

Definition 2.3.6. An embedding of X (p, q1) into X (p, q2) is an isometric linear
map ι : Cp+q1 → Cp+q2 that preserves the Hermitian forms Qp,q1 and Qp,q2 , namely
such that

Qp,q2(ι(x), ι(y)) = Qp,q1(x, y)

for every x, y ∈ Cp+q1 . Moreover, the group U(p, q1) of linear bounded transfor-
mations preserving Qp,q1 embeds in U(p, q2) in the following way: the action on
ι(Cp+q1) is that of U(p, q1) and is trivial on the orthogonal of ι(Cp+q1).

Among all embeddings of X (p, q1) in X (p, q2), we consider the standard embed-
ding defined by the map ι0 : Cp+q1 → Cp+q2 where ι0(ei) = fi for i = 1, . . . , p+ q1.
In this special case, the space X (p, q1) inside X (p, q2) can be identified with the
set

V0 = {V < 〈e1, . . . , ep+q1〉 | dimV = p , Qp,q2|V > 0}

and the group U(p, q1) is identified with elements g in U(p, q2) such that

g(ei) =

q2∑
j=1

aijej

where, for either i or j greater than p + q1, then aij = δij , and the matrix A =
(aij)

p+q1
i,j=1 represents an element in U(p, q1). In other words it satisfies

A∗
(

Idp 0
0 −Idq1

)
A =

(
Idp 0
0 −Idq1

)
.

The role of the standard embedding is clarified by the following

Proposition 2.3.7 ([SS21a, Proposition 2.3]). Any embedding X (p, q1) ↪→ X (p, q2)
can be obtained as the composition of an element g ∈ U(p, q2) with the standard
embedding.

Proof. Let ι : Cp+q1 → Cp+q2 be an isometric linear map. For each ei we set
ui := ι(ei) and

Uι := Span{u1, . . . , up+q1}.

There is a natural identification of X (p, q1) with the subspace of X (p, q2) defined
by

Vι = {V < Uι | dimV = p , Qp,q2|V > 0}.
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If we denote by U0 the subspace of Cp+q2 spanned by the first p + q1 vectors of
the basis {fi}, we can define an isometric linear map h : U0 → Uι on the basis as
follows

h(fi) = ui

and then extend it by linearity. Since h preserves the Hermitian form Qp,q2 , by
Witt’s theorem it extends to an isometry of Cp+q2 with respect to Qp,q2 , namely
to an element g ∈ U(p, q2). The assertion follows by noticing that the isometric
linear map g ◦ ι actually realizes the standard embedding.

Remark 2.3.8. As a subspace of the Grassmannian Gr(p+ q,H), the set of embed-
ding of X (p, q) inside X (p,∞) naturally inherits the topology induced by principal
angles, that in this case coincide with the Wisjman topology (see [DLP21]). Since
by Lemma 2.3.7 the group U(p,∞) acts transitively on the set of all such embed-
dings, we have an identification with the PU(p,∞)-orbit of the standard embedding
in Gr(p,H). Moreover, if V0 is the image of the standard embedding, such an orbit
can be identified with the quotient PU(p,∞)/StabPU(p,∞)V0.

We finally notice that any Hermitian symmetric space of the form X (p, q) with
p < q contains maximal tube-type subdomains: these have the same rank of the
ambient space and hence are embedded copies of X (p, p). Moreover, such tube-type
subdomains are all conjugated under the G-action. This property will be crucial
in the next section, where we will focus on the restriction of such embeddings to
the Shilov boundary.

2.3.1 Shilov boundary

We mentioned in the previous section the existence, for any Hermitian symmetric
space X , of a bounded domain realization, that is a biholomorphism between X
and a bounded domain DX ⊂ Cn for some n. Our next goal is to characterize a
subset of the topological boundary of DX , that is called Shilov boundary of G. As
we will see, such a set involves both the analytic, the geometric and the algebraic
structure of G and X and hence it has several equivalent characterizations. We
start with the analytic one, that we give for a generic bounded domain.

Definition 2.3.9. The Shilov boundary of a bounded domain D ⊂ Cn is the
unique closed subset SD of ∂D such that, for any continuous function f on D
which is holomorphic on D it holds

|f(z)| ≤ max
y∈S
|f(y)|

for every z ∈ D.
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Coming back to domain realizations of symmetric spaces, we also recalled in the
previous section that the group G = Isom(X )◦ acts on DX by biholomorphisms.
Such an action can be extended continuously on the topological boundary of DX .
The latter, if the rank of G is greater than one, is not a homogeneous G-space.
In any case, there exists a unique closed G-orbit that actually coincides with the
Shilov boundary of DX , that we denote by SG. More precisely, if X is irreducible
and G denotes the algebraic group associated to the complexified Lie algebra of
G, the stabilizer of any point in SG is a maximal parabolic subgroup, and it turns
out that SG can be identified with G/Q(R) where Q < G is one of such stabilizers
(see Burger, Iozzi and Wienhard for a description of this identification [BIW07,
Section 2.3.2]). If X = X1 × · · · × Xn is a product of irreducible factors Xi, then
SG = SG1 × · · · ×SGn where Gi = Isom(Xi)◦ and the previous argument works for
any irreducible factors.

We now consider again Examples 2.3.3 and 2.3.4 in order to describe explicitly
the Shilov boundaries in this cases.

Example 2.3.10. In view of Example 2.3.4, we fix two positive integers 1 ≤ p < q
and we consider the group SU(p, q) together with its symmetric space X (p, q). The
unique closed orbit of the SU(p, q)-action on the boundary of the domain realization
X(p, q) is the space

Sp,q = {X ∈M(p× q,C) |XX∗ − Id = 0} ,

that corresponds to the set of isotropic subspaces

Sp,q = {V ∈ Grp(Cp+q) |Qp,q|V = 0} ,

(see for instance [Poz14]). In particular, we have that

S1,n =

{
[x0, . . . , xn] ∈ P(Cn+1) | |x0|2 −

n∑
i=1

|xi|2 = 0

}
which corresponds, in the affine chart U0 of Example 2.3.3, to the set{

(x1, . . . , xn) ∈ Cn |
n∑
i=1

|xi|2 = 1

}
∼= S2n−1 .

Moreover, S1,n contains embedded copies of S1,1
∼= S1 that are boundaries of

embedded copies of X (1, 1) in X (1, n) (see Figure 2.1).

In view of the phenomena observed in the previous example, we give the fol-
lowing
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S1 D2n
S2n-1

D  = Χ(1,1)2_

Figure 2.1: An embedded copy of S1,1
∼= S1 (red) inside S1,n

∼= S2n−1.

Definition 2.3.11. Fix 1 ≤ p < q with q ∈ N ∪ {∞}. A p-chain is the boundary
of an embedded copy of X (p, p) inside X (p, q). The set of p-chains of X (p, q) is
denoted by Ip(p, q) or simply Ip.

We conclude this section by noticing that the diagonal action of G on pairs
of points (s1, s2) ∈ S2

G has a unique open orbits, which corresponds to pairs of
opposite parabolic subgroups. Two points belonging to this orbits are said opposite

and the set of opposite pairs is denoted by S(2)
G . We first notice that the set of points

that are opposite to a fixed point is a Zariski closed subset of SG. Furthermore,
whenever a pair of opposite points is fixed, there exists a unique maximal tube-
type subdomain Y ⊂ X such that the two points belong to its Shilov boundary. In
the case of X (p, q) with 1 ≤ p < q, this fact can be reformulated in a more familiar
way as follows: given two points in Sp,q that correspond to opposite Qp,q-isotropic
points V1 and V2 of the Grasmannian Grp(Cp+q), the direct sum V1 ⊕ V2 is an
Qp,p-isotropic point in Grp(C2p).

To understand the relevance of chains in our theory we need to introduce
cocycles and boundary maps. The first intuition of the potential of this notion is
due to Cartan [Car32] and then it was developed by Burger and Iozzi [BI02, BI04]
and by Pozzetti [Poz14, Poz15]. In particular, Pozzetti exploited the incidence
structure on the Shilov boundary defined by opposition to reach a characterization
of Zariski dense rational maps between S1,n and Sp,q in terms of their behavior on
chains [Poz15, Theorem 4.1]. We postpone to Chapter 4 a deeper discussion about
this result.
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2.3.2 Kähler structure and Bergman cocycle

Let X be a Hermitian symmetric space with G = Isom(X )◦. Denoting by J : X →
X the G-invariant complex structure on X and by 〈·, ·〉 the G-invariant Riemannian
metric of minimal holomorphic curvature −1, we can define a 2-differential form
as

ωX (X,Y ) := 〈X, JY 〉

where X,Y vary over all the vector fields on X . By definition ωX is G-invariant,
hence an element of Ω(X ;R)G. It was observed by Cartan that any such differential
form must be closed [Hel01, VII.4], so that ωX is a Kähler form and X is a Kähler
manifold. In this setting, if we define the function

β : X (3) → R , β(x0, x1, x2) :=
1

π

∫
∆(x0,x1,x2)

ω (2.10)

where ∆(x0, x1, x2) denotes any triangle with vertices x0, x1, x2 and geodesic sides,
we obtain a well-defined G-invariant bounded 2-cocycle. Clerc and Øersted [CØ03]
provided a measurable extension of β to triples of points on the Shilov boundary
SG which is bounded, that allows to give the following

Definition 2.3.12. The measurable extension

βG : S3
G → R

of β is the Bergman cocycle of G.

We immediately recall some properties of the Bergman cocycle that are the
content of [BIW07, Theorem 1] and [Poz15, Proposition 2.1].

Proposition 2.3.13. Let βG : S3
G → R the Bergman cocycle defined above. Then

it is a strict alternating G-invariant bounded cocycle taking values in the interval
[−rkX , rkX ]. Moreover, if |βG(s0, s1, s2)| = rkX , then the triple (s0, s1, s2) is
contained in the Shilov boundary of a tube-type subdomain. If X is also irreducible,
then the following are equivalent:

(i) X is not of tube-type;

(ii) the set of triples of distinct points on SG, denoted by S(3)
G , is connected;

(iii) the Bergman cocycle attains all values in [−rkX , rkX ].
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The three conditions of Proposition 2.3.13 will be completed in the next sec-
tion with another equivalent condition, that requires the notion Hermitian triple
product.

Thanks to Proposition 2.3.13 we can interpret the Bergman cocycle as an ele-
ment in B∞w∗,alt(S3

G;R). Hence it corresponds, under the canonical map of Equation

(2.9), to an element kbG ∈ H2
cb(G;R) that we call bounded Kähler class of G (here

we are using alternating bounded functions). Furthermore, kbG corresponds under
the comparison map

comp2 : H2
cb(G;R)→ H2

c(G;R)

to a class kG ∈ H2
c(G;R) that we call Kähler class of G.

Remark 2.3.14. When G = SU(1, n), the Kähler class kbSU(1,n) coincides with the

Cartan class, that is the element of H2
cb(SU(1, n),R) defined by the Cartan angular

invariant of the complex hyperbolic space HnC.

2.3.3 Hermitian triple product

We conclude with the definition of the Hermitian triple product and by showing
its link with the Bergman cocycle.

Before introducing such object we need to recall the Bergman kernel. The
latter is the reproducing kernel associated to the Bergman metric defined thanks
to the Harish-Chandra embedding, that is a bounded domain realization DX of a
Hermitian symmetric space of non-compact type X (see [BI04, BIW07] for more
details). Precisely, the Bergman kernel is a function

kDX : DX ×DX → C

that can be extended continuously to the set ∂DX
(2)

of pairs of distinct points on
the boundary and that is nowhere zero [Sat80].

In this setting, we consider the function

〈·, ·, ·〉 : DX
(3) → C∗ ,

〈x0, x1, x2〉 := kDX (x0, x1)kDX (x1, x2)kDX (x2, x0)

that is continuous and, by [BIW07, Theorem 3.7], it satisfies the relation

〈x0, x1, x2〉 ≡ eiβ(x0,x1,x2) mod R∗ (2.11)

for any (x0, x1, x2) ∈ DX
(3)

. Hence we have the following
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Definition 2.3.15. The Hermitian triple product is the map

〈〈·, ·, ·〉〉 : S(3)
G → R∗\C∗

obtained by restricting 〈·, ·, ·〉 to S(3)
G and by composing with the projection C∗ →

R∗\C∗, where we quotient C∗ by the R∗-action by dilations.

Starting from the identification between SG and the quotient G/Q(R) that we
mentioned in Section 2.3.1, Burger, Iozzi and Wienhard reached an extension of the
Hermitian triple product to a complex Hermitian triple product. More precisely,
denoting by A∗ the group C∗×C∗ endowed with the real structure (λ, µ) 7→ (µ, λ)
and by ∆∗ the image in C∗ ×C∗ of the diagonal embedding of C∗, they were able
to define a map

〈〈·, ·, ·〉〉C : (G/Q)3 → ∆∗\A∗

that makes commutative the following diagram

S(3)
G

〈〈·,·,·〉〉 //

(i)3

��

R∗\C∗

∆

��
(G/Q)3 〈〈·,·,·〉〉C // ∆∗\A∗.

(2.12)

Here i : SG → G/Q refers to the G-equivariant identification between SG and
G/Q(R), and ∆ stands for the map induced by the diagonal embedding.

We conclude with a result characterizing Hermitian symmetric spaces not of
tube-type via the complex Hermitian triple product that we will use in the proof
of Theorem 8. We first provide an equivalent condition to the ones of Proposition
2.3.13 that implies the above characterization.

Proposition 2.3.16 ([BIW07, Theorem 1]). Let X an irreducible Hermitian sym-
metric space. Then X is not of tube-type if and only if the Hermitian triple product
(equivalently the complex Hermitian triple product) is not constant.

For any pair of transverse points (s0, s1) ∈ S(2)
G we denote by Os0,s1 ⊂ G/Q(R)

the Zariski open subset such that the map

Ps0,s1 : Os0,s1 → ∆∗\A∗ , η 7→ 〈〈s0, s1, s〉〉C
is defined. Hence the following is a direct consequence of Proposition 2.3.16.

Lemma 2.3.17 ([BIW07, Lemma 5.1]). If X is not of tube-type, then for any
m ∈ Z the map

Os0,s1 → ∆∗\A∗ , s 7→ Ps0,s1(η)m

is not constant.
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2.4 Measurable cocycles and boundary maps

This section is the core of our preliminary chapter, since we are going to introduce
the main objects of the dissertation. After the definition, we will list several ex-
amples, with the purpose to make the reader more familiar with those objects. We
will make a parallel with the world of representations, for instance by introducing
an equivalence relation between cocycles which extend the one of conjugacy and
the notion of algebraic hull. Pushing further the comparison, we will introduce
boundaries of locally compact groups and then boundary maps for cocycles. Fi-
nally, we describe the pullback of cohomology classes along cocycles, that is the
fundamental ingredient in the theory of numerical invariants.

Regarding cocycles and boundary maps references are the classic work by
Furstenberg [Fur81], Zimmer’s book [Zim84] or the more recent project by Moras-
chini and Savini [MS20, Sav20, Sav22, MS21, SS21c]. For boundaries we remind
to Bader-Furman’s paper [BF14b].

2.4.1 Measurable cocycles

Throughout the section G and H will denote two locally compact second count-
able groups, both endowed with their Haar measurable structures. We also fix a
standard Borel probability G-space (X,µX) and we assume that µX is atom-free.
As noticed by Moraschini and Savini [MS21, Remark 1], every essentially-free ac-
tions on a measure space (X,µX) guarantees the absence of atoms for µX . Even if
essentially-free actions form a wide family of standard Borel spaces and sometimes
it is convenient to work with this assumption, we prefer to drop this condition and
to tacitly assume absence of atoms for µX .

Given two measure spaces (X,µX) and (Y, µY ) and a distance dY on Y which
is compatible with its measurable structure, the set of equivalence classes of mea-
surable functions from X to Y that coincides almost everywhere is denoted by
Meas(X,Y ) and it is a topological space if endowed with the topology induced by
convergence in measure. We recall that a base for this topology is given by the
sets

Uε,f := {g ∈ Meas(X,Y ) | d(f, g) < ε}

where ε > 0, f ∈ Meas(X,Y ) and the distance between two functions f and g is

d(f, g) := inf
δ>0

µX ({x ∈ X | dY (f(x), g(x)) > δ}) + δ.

We are now ready to introduce the main object of our dissertation
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Definition 2.4.1. A measurable cocycle is a measurable function σ : G×X → H
which satisfies the cocycle condition

σ(g1g2, x) = σ(g1, g2x)σ(g2, x) (2.13)

for almost every g1, g2 ∈ G and for almost every x ∈ X.

At a first sight, Equation (2.13) may appear quite mysterious. For this reason,
we are going to provide some examples of cocycles, with the aim of motivating for
the interest in the study of those objects.

Example 2.4.2. Our first example may appear trivial, but it justifies the inter-
pretation of measurable cocycles as a generalization of representations. Indeed,
given a continuous homomorphism ρ : G → H and a standard Borel probability
G-space (X,µX), we define the cocycle associated to ρ as

σρ : G×X → H , σρ(g, x) := ρ(g). (2.14)

Even if the cocycle σρ actually depends on the space X as a function, its value
does not change when the variable x varies, hence we drop X in the notation.

Beyond the large family of examples that it provides, the previous definition
also shows how the rich theory of representations sits inside the wider world of
cocycles.

Example 2.4.3. We now move to the framework of differentiable manifolds. Let
X be a compact n-manifold equipped with a measure µX and choose a locally
compact second countable subgroup G < Diffeo(X) of µX -preserving diffeomor-
phisms of X. In this setting, for any point x ∈ X and element g ∈ G and since the
tangent bundle is measurably trivial, the differential dxg lies in GL(n,R). Hence
we can define the tangent cocycle of X as

σtang : G×X → GL(n,R) , σtang(g, x) := dxg

for almost every x ∈ X and for every g ∈ G. The cochain rule of the differential
implies that

σtang(g ◦ h, x) = dx(g ◦ h)

= dh(x)g ◦ dhx
= σtang(g, h(x))σtang(h, x)

and hence the cocycle condition (2.13) is satisfied.
This example gives an interpretation of measurable cocycles as the analogous

of the differential in the measurable context.
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Example 2.4.4. Given a locally compact second countable group G and a closed
subgroup H < G, we consider a measurable section s : G/H → G of the natural
projection G→ G/H. Since for any x ∈ G/H and g ∈ G we have that

s(g · x)H = π(s(g · x)) = π(gs(x)) = g · s(x)H ,

then s(g · x)−1gs(x) lies in H and we can define a cocycle

σs : G×G/H → H , σs(g, x) := s(g · x)−1gs(x).

By definition we have

σs(gh, x) = s(gh · x)−1ghs(x)

= s(gh · x)−1gs(h · x)s(h · x)−1hs(x)

= σs(g, h · x)σs(h, x) ,

that is the cocycle condition (2.13).
To understand the concrete meaning of the cocycle σs defined above, we focus

on the specific case when G = S1 × S1 is the 2-dimensional torus with the group
product structure (here we consider the standard additive operation on S1). If also
H = S1 ∼= {0} × S1 < G, the geometrical interpretation of H is a meridian µ0.
Hence the projection π : G→ G/H collapses any other meridian {ξ} × S1 ⊂ G to
the point ξ ∈ S1 ∼= G/H.

Fix a point η0 ∈ S1 and let

sη0 : S1 → S1 × S1 , sη0(ξ) = (ξ, η0)

be the section that associates to any point ξ of the circle the corresponding point
(ξ, η0) on the longitude S1 × {η0}, as shown in Figure 2.2.A. Hence we claim
that the cocycle σsη0 coincides with the cocycle σπ2 induced by the projection
π2 : S1 × S1 → S1 on the second factor (see Example 2.4.2). In fact, for every
g = (ξ, η) ∈ S1 × S1 and every x ∈ S1, we have that

σsη0 (g, x) = g + sη0(x)− sη0(g + x)

= (ξ, η) + (x, η0)− (ξ + x, η0) = (0, η) = σπ2(g)

(see Figure 2.2.B), which can be rewritten as

g + sη0(x) = π2(g) + sη0(g + x) .
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Figure 2.2: The cocycle associated to the trivial section of the 2-torus

Example 2.4.5. Our next example describes a class of cocycles that has been
deeply studied so far. For instance, it is the object of Zimmer superrigidity theorem
mentioned in the introduction [Zim80]. Let G and H be locally compact second
countable groups and let (X,µX) and (Y, µY ) be measure spaces equipped with
a measure preserving G (respectively H)-measurable action. Assume also that
the H-action is free. An orbit equivalence between X and Y is a measurable
isomorphism π : X → Y such that

π(Gx) = Hπ(x)

for every x ∈ X. Given such an equivalence we can associate to every pair (g, x) ∈
G×X a unique element hg,x ∈ H such that

π(gx) = hg,xπ(x).

Hence we define a measurable map

σπ : G×X → H , σπ(g, x) := hg,x

which turns to be a cocycle. In fact, for almost every x ∈ X and for every g1, g2 ∈ G
we have

hg1g2,xπ(x) = π(g1g2x) = hg1,g2xπ(g2x) = hg1,g2xhg2,xπ(x)
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and, since H acts freely on Y , it must be hg1g2,x = hg1,g2xhg2,x.
When G and H are higher rank semisimple Lie groups with trivial center and

no compact factors and if both the actions are free, ergodic and irreducible, Zimmer
showed that the cocycle σπ defined above is cohomologuous to the cocycle induced
by an isomorphism ρ : G → H and hence the actions are conjugated [Zim80,
Theorem 4.3].

Sometimes, before studying a class of mathematical objects, it is natural to
consider an equivalence relation that allows to identify elements lying in the same
equivalence class. In addition, as suggested by Example 2.4.2, measurable cocycles
can be interpreted as a generalization of the notion of representation, and in that
context it is particularly interesting to consider homomorphisms modulo conjuga-
tion. For this reason, we are going to introduce an equivalence relation between
cocycles which is nothing that the natural generalization of conjugacy between
representations.

Definition 2.4.6. Let σ1, σ2 : G × X → H be two measurable cocycles, let
f : X → H be a measurable map and denote by σf1 the cocycle defined as

σf1 (g, x) := f(gx)−1σ1(g, x)f(x) (2.15)

for almost every g ∈ G and almost every x ∈ X. The cocycle σf1 is the f -twisted
cocycle associated to σ1. We say that σ1 is cohomologous to σ2 (writing σ1 ' σ2)

if there exists a measurable map f such that σ2 = σf1 .

Remark 2.4.7. If ρ1, ρ2 : G → H are two conjugated continuous representations
and (X,µX) is a standard Borel probability G-space, then there exists an element
h ∈ H such that

ρ2(h) = h−1ρ1(g)h

for every g ∈ G. Hence by taking the essentially constant function

fh : X → H , f(x) ≡ h ,

we get that
σρ2(g, x) = ρ2(g) = h−1ρ1(g)h = σfhρ1

that is σρ2 ' σρ1 . This confirms that cohomology between cocycles naturally
extends conjugation between representations.

We also notice that the converse does not hold in general, namely two repre-
sentations inducing cohomologous cocycles are not necessarily conjugated, since
the measurable map X → H which realizes the cohomology may depend on X.
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The equivalence relation introduced in Definition 2.4.6 hides a cohomological
interpretation of the classes of measurable cocycles, that we will briefly describe
(refer to Feldman and Moore [Moo76, FM77] and to Furman [Fur10] for a detailed
discussion).

Given a standard Borel space (X,µX), to any µX -invariant equivalence relation
R ⊂ X × X and Polish abelian group H one can associate a cochain complex
(C•(R;H), d•) as follows. We consider the space

R(•) := {(x0, . . . , x•) ∈ X•+1 | (xi, xi + 1) ∈ R , ∀i = 0, . . . , • − 1}

endowed with the measure µ
(•)
X defined as

µ
(•)
X (A) :=

∫
X

]{(x1, . . . , x•) | (x0, . . . , x•) ∈ A}dµX(x0) .

We notice that at degree 0 we simply have R(0) ≡ X, while at degree 1 one has
R(1) ≡ R.

We define the set

C•(R;H) := {f : R(•) → H , f measurable}/ ∼
µ

(•)
X

where f ∼
µ

(•)
X

g if they coincide µ
(•)
X -almost everywhere, and the operator

d• : C•(R;H)→ C•+1(R;H) ,

d•(f)(x0, . . . , x•+1) :=

•+1∏
i=0

f(x0, . . . , x̂i, . . . , x•+1)(−1)i .

where H is considered with a multiplicative structure.
It follows by the definition that d•+1 ◦ d• = 0, hence the pair (C•(R;H), d•)

forms a cochain complex whose cohomology

Hn(R;H) := Hn(C•(R;H), d•) = Ker(d•)/Im(d•−1)

is the cohomology of R with values in H. We notice that the assumption that H
is abelian is essential to define Hn(R;H) only for n > 1. In fact, we are interested
in the 1-dimensional cohomology of a specific class of equivalence relations, called
orbital equivalence relations, with values in generic topological groups. Precisely,
in the setting of Definition 2.4.1, one can define the equivalence relation RG where
(x, y) ∈ RG ⇔ y = gx for some g ∈ G. In this case we define the space Z1(RG;H)
as the set of functions c : RG → H satisfying the relation

c(x, z) = c(x, y)c(y, z) (2.16)
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for almost every x, y, z ∈ R(2)
G . Hence we have a natural identification between

measurable cocycles G×X → H and Z1(RG;H) realized by the following map

Θ : {σ : G×X → H , σ cocycle } Z1(RG;H)

σ fσ(x, gx) := σ(g, x) .

The 1-cohomology group of RG with values in H, denoted by H1(Gy X;H),
is defined as the quotient Z1(RG;H)/ ∼ where

f1 ∼ f2 ⇔ ∃h ∈ Meas(X,H) | f1(x, gx) = h(gx)−1f2(x, gx)h(x) , ∀̃ x ∈ X, g ∈ G

where the condition f1(x, gx) = h(gx)−1f2(x, gx)h(x) is exactly the one of Equa-
tion (2.15) applied to the cocycles Θ−1(f1) and Θ−1(f2). In other words, the map
Θ factors through the equivalence relation of cohomology between cocycles and
defines a bijection

{σ : G×X → H , σ cocycle }/' ↔ H1(Gy X;H) .

We conclude this part by introducing a weaker notion of equivalence between
cocycles, that we will exploit in Chapter 6.

Definition 2.4.8. If σ1 : G×X → H1 and σ2 : G×X → H2 are two measurable
cocycles, we say that σ1 and σ2 are equivalent (writing σ1 ∼ σ2) if there exists a
group isomorphism s : H1 → H2 such that s ◦ σ1 ' σ2.

Straightening the comparison between representations and cocycles, we now
focus on the image of a cocycle. It is well widely recognized the crucial role of
the image of a representation into a semi-simple algebraic groups, as one can find
in the works by Burger, Iozzi and Wienhard [BIW10] and in the one by Pozzetti
[Poz15]. For representations into algebraic groups the image is a subgroup in the
target and hence its Zariski closure is a group as well. Even if the image of a
cocycle has no algebraic properties, we can get an analogous definition using the
notion of algebraic hull. This technical step is necessary since a priori the image
of a cocycle is not a subgroup of the target group.

Definition 2.4.9. Let G be a semisimple real algebraic group and denote by H =
H(R) the real points of H, namely the real solutions of the polynomials defining
G. The algebraic hull of a measurable cocycle σ : G ×X → H is the (conjugacy
class of the) smallest algebraic subgroup L of H such that L(R)◦ contains the
image of a cocycle cohomologous to σ.

We say that σ is Zariski dense if its algebraic hull coincides with the whole
group H.
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We remind the reader to [Zim84, Proposition 9.2.1] for a proof of well-definition
of algebraic hull. The argument relies on the Noetherianity of the target group.

Since we are strongly interested into Zariski dense cocycles and because of the
invariance of such property with respect to cohomology, we denote by

H1
ZD(Gy X;H)

the subset of classes of Zariski dense cocycles in H1(Gy X;H).

To conclude this section, we describe an example of cocycle that is not Zariski
dense.

Example 2.4.10. Consider the real hyperbolic space H3
R and the group of orien-

tation preserving isometry Isom+(H3
R) ∼= PSL(2,C) endowed with its Haar mea-

surable structure. We consider a locally compact second countable group Γ and a
standard Borel probability Γ-space (X,µX). We claim that a measurable cocycle

σ : Γ×X → PSL(2,C)

that preserves an equivariant family {Yx}x∈X of totally geodesic copies of H2
R,

namely such that σ(γ, x)Yx = Yγx for almost every γ ∈ Γ and almost every x ∈ X,
cannot be Zariski dense. In fact, by Proposition 2.3.7, PSL(2,C) acts transitively
on totally geodesic copies of H2

R inside H3
R, so that the set of such embeddings is

identified with the quotient PSL(2,C)/StabPSL(2,C)ι0, where ι0 denotes the stan-
dard embedding. Hence, by composing the map x 7→ Yx with a measurable section
PSL(2,C)/StabPSL(2,C)ι0 → PSL(2,C) one can construct a measurable map

g : X → PSL(2,C) , x 7→ gx

such that gxYx = Yx0 for some fixed x0 ∈ X. In other words, the image of the
twisted cocycle σg (see Definition 2.4.6) is contained into StabPSL(2,C)(Yx0), that
is a proper subgroup of PSL(2,C), and hence σ is not Zariski dense.

2.4.2 Boundaries and boundary maps

The goal of this section is to introduce boundaries for locally compact second
countable groups and then the notion of boundary maps for cocycles. We will
finally describe the pullback along cocycles by showing the importance of boundary
maps in this theory. Since there exist several notions of boundaries in different
contexts, we spend a few lines to clarify our approach.

The notion of boundary for a group G that we use is due to Bader and Furmann
[BF14b] and it is based on the notion of relative metric ergodicity (see Definition
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2.1.11). Such spaces have two crucial properties: firstly they are amenable G-
spaces, and this make them a suitable choice for the Burger–Monod characteriza-
tion of bounded cohomology of G. Secondly, the double-ergodicity of the G-action
is a useful ingredient to prove rigidity phenomena, as we will see in Chapter 4.

After the general definition of boundaries we focus on the Furstenberg–Poisson
boundary [Fur63]. We give an explicit realization of those objects in the case of
semi-simple Lie groups (Example 2.4.14) and for finitely generated discrete groups
(Example 2.4.15).

Let G be a locally second countable group. In view of Definition 2.1.11, we
give the following

Definition 2.4.11. A G-boundary is an amenable Lebesgue G-space B such that
the projections pr1 : B × B → B and pr2 : B × B → B on the two factors are
relatively metrically ergodic.

Remark 2.4.12. As observed in [BF14b, Remarks 2.4], a G-boundary in the sense
of Definition 2.4.11 is a strong G-boundary in the sense of Burger and Monod
[BM02]. Here by strong boundary we mean an amenable G-space such that the
diagonal action on the product is ergodic. Thanks to Theorem 2.2.17 and Theorem
2.2.16, it can be exploited to compute the continuous bounded cohomology of G.

We now recall the following useful property of boundaries.

Proposition 2.4.13 ([MS04, Proposition 2.4]). Let B a strong boundary for Γ
and Ω be a standard Borel probability Γ-space. Then the diagonal action of Γ on
B ×X and B ×B ×X is ergodic.

As an example of G-boundary we consider the case of lattices into connected
semi-simple Lie groups, that will come in handy in Chapter 4, and the case of
finitely generated discrete groups which are the main objects of Chapter 6.

Example 2.4.14. For a lattice Γ < G into a connected semi-simple Lie group G,
the Furstenberg–Poisson boundary [Fur63] of Γ coincides with the quotient G/P
by any minimal parabolic subgroup endowed with induced measure class and, by
[BF14b, Theorem 2.5], it is a Γ-boundary in the sense of Definition 2.4.11.

For instance, in Chapters 4 and 5 we will deal with complex hyperbolic lattices,
that are torsion-free lattices in the group

PU(1, n) := SU(1, n)/± λId ,

where SU(1, n) is the isometry group of the complex hyperbolic HnC space recalled
in Example 2.3.3. In this case and in view of Example 2.3.10, as a minimal
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parabolic subgroup of PU(1, n) we can take P = StabPU(1,n)ξ, that is the stabilizer
in PU(1, n) of the north pole ξ = [1, 0, . . . , 0, 1] in the Shilov boundary S1,n

∼= S2n−1

(see for instance [Qui, Section 2.2.2] for an explicit description of the group P ).
Anyhow, since PU(1, n) acts transitively on S1,n, we deduce that the Furstenberg–
Poisson boundary of a torsion-free lattice Γ < PU(1, n) coincides with its Shilov
boundary, namely

PU(1, n)/P ∼= S2n−1.

We notice that, since rk(PU(1, n)) = 1, a minimal parabolic subgroup is also
maximal, and the previous identification immediately follows.

We conclude by pointing out that, in the higher rank case, there exists a
natural map from the Furstenberg–Poisson boundary to the Shilov boundary. In
fact, the first one coincides with the quotient G/P where P < G is minimal
parabolic and the second one can be identified with G/Q(R) for some maximal
parabolic subgroup Q < G (see Section 2.3.1), and the inclusion P < Q := Q(R)
induces a projection G/P → G/Q(R). This is the case of the group SU(p, q)
when 1 < p ≤ q recalled in Example 2.3.4, where minimal (respectively maximal)
parabolic subgroups are stabilizers of complete flags of Qp,q-isotropic subspaces
(respectively of maximal Qp,q-isotropic subspaces).

Example 2.4.15. When Γ is any finitely generated group endowed with the dis-
crete topology, we recall the realization of a Poisson boundary for Γ (see [BI04,
Theorem 7.1] for details). If S is a set of generators for Γ, we define a probability
measure on Γ as

µS =
1

2|S|
∑
s∈S

δs + δs−1 .

To realize a Poisson boundary for Γ related to the measure µS we start with the
realization of a Poisson boundary for the free group FS on the set S. Let TS(∞)
be the boundary of the Cayley graph TS of FS , namely the set of all reduced words
on S of infinite length. We endow such a boundary with the FS-quasi invariant
measure defined by

m(C(x)) =
1

2r(2r − 1)n−1

where x is any reduced word of length n, r = |S| and C(x) denotes the set of all
reduced words of infinite length starting with x. Hence the pair (TS(∞),m) is the
Poisson boundary of FS related to the measure

m =
1

2|S|
∑
s∈S

δs + δs−1 .

Coming back to Γ, if ρ : FS → Γ is the representation of Γ realizing it as a quotient,
we denote by N = ker ρ and we consider the set L∞(TS(∞),m)N of N -invariant
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essentially bounded functions on TS(∞). By Mackey realization Theorem [Mac62]
there exists a standard measure space (B, ν) equipped with a measurable map
p : TS(∞) → B such that p∗(m) = ν and the pull back via p identifies L∞(B, ν)
with L∞(TS(∞),m)N . The fact that (B, ν) actually is a Poisson boundary for Γ
follows from the fact that the pull back along ρ identifies µ-harmonic bounded
functions on Γ, namely functions f : Γ→ R such that f(γ̃) =

∫
Γ f(γγ̃)dµ(γ), with

essentially bounded function on (B, ν). Moreover, the ergodicity of the diagonal
action of FS on TS(∞) implies the ergodicity of the diagonal action of Γ on B×B.
Finally, it can be proved that the action of Γ on B is also amenable (see [BI04,
Proposition 7.1]).

As observed in Remark 2.4.12, the amenability of theG-action on aG-boundary
reveals the link between boundaries and continuous bounded cohomology. On the
other hand, the next definition relates boundaries and measurable cocycles.

Definition 2.4.16. Let G be a locally compact second countable group, let B be
a G-boundary and let H be a locally compact group. Consider a standard Borel
probability G-space (X,µX) and a Lebesgue H-space (Y, ν). A boundary map for
a measurable cocycle σ : G×X → H is a measurable map

φ : B ×X → Y ,

which is σ-equivariant, that is

φ(gξ, gx) = σ(g, x)φ(ξ, x) , (2.17)

for almost every g ∈ G and almost every b ∈ B, x ∈ X.

Remark 2.4.17. We push further the comparison between cocycles and represen-
tation by relating boundary maps to the notions introduced in Section 2.4.1.

(i) In the setting of Definition 2.4.16, if σ = σρ is the cocycle induced by a
representation ρ : G → H as in Example 2.4.2, then a ρ-equivariant map
ϕ : B → Y naturally defines a σρ-equivariant map φ : B ×X → Y as

φ(b, x) := φ(b)

for every b ∈ B and x ∈ X.

(ii) If φ : B × X → Y is a boundary map for a cocycle σ : G × X → H and
f : X → G is a measurable function, the map φf : B ×X → Y defined as

φf (b, x) := f(x)−1φ(b, x)

is a boundary map for the twisted cocycle σf introduced in Definition 2.4.6.
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As we will see in the next section, boundary maps allows to write down an
alternative implementation of the pullback along cocycles. On the other hand in
Section 2.3 we showed how to find a representative in the resolution of essentially
bounded measurable functions on the boundary for some preferred cohomology
class. This approach will be very fruitful to prove rigidity results in the context
of cocycles, as well it has been for representations [BI02, BI04, BIW07]. For this
reason, the investigation about the existence of boundary maps is a crucial point
in the theory of measurable cocycles that will be discussed in Chapter 3.

2.4.3 Pull back along measurable cocycles

In this section we exploit all the notions introduced in this chapter in order to define
the main tool that we need to investigate rigidity results for cocycles, namely the
pullback along cocycles. This construction is nothing that the generalization of the
pullback along representations in the more general setting of measurable cocycles.
Since for our purposes we consider cocycles Γ × X → H where Γ is endowed
with the discrete topology, we restrict to this specific setting. As we will see, by
extending faithfully the pull back for representations one get a map from the real
bounded cohomology of H into the bounded cohomology of Γ with coefficients into
L∞(X;R). In order to remove the dependence on X and hence to land into the
real bounded cohomology of Γ, we will need to integrate over X with respect to
the Γ-invariant measure µX .

We first describe the natural extension of the pullback for representations, that
was introduced by Burger and Iozzi [BI02], without using boundary maps.

The second part is devoted to describe an alternative version of the pullback
in case of existence of boundary maps. This is nothing that the work done by
Moraschini and Savini in [Sav22, MS20, MS21, Sav20] and it will be the right
approach to prove all our main results. For an almost self-contained description
of this theory we refer to the recent works by Moraschini, Savini and the author
[MS20, Sav20, SS21c, SS21b].

We first consider a measurable cocycle σ : Γ × X → H where Γ is endowed
with the discrete topology. We define the map

C•b(σ) : C•cb(H;R)→ C•b(Γ; L∞(X;R))

as follows

C•b(σ)(ψ)(γ0, . . . , γ•)(x) := ψ(σ(γ−1
0 , x)−1, . . . , σ(γ−1

• , x)−1). (2.18)

A slight modification of the argument in [Sav20, Lemma 2.7] shows that the
map C•b(σ) induces a map at a cohomological level.
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Lemma 2.4.18. The map C•b(σ) is a well-defined cochain map which restricts to
invariant cochains, namely

C•b(σ) : C•cb(H;R)H → C•b(Γ; L∞(X;R))Γ ,

and hence it induces a map between cohomology groups

H•b(σ) : H•cb(H;R)→ H•b(Γ; L∞(X;R)). (2.19)

Proof. The fact that C•b(σ) is a cochain map is an easy computation, and it actually
preserves boundedness. We prove that the image of an H-invariant cochain is Γ-
invariant. Let ψ ∈ C•cb(H;R)H and let γ, γ0, . . . , γ• elements of Γ. Hence we
have

(γ · C•b(σ)(ψ)(γ0, . . . , γ•)(x) = C•b(σ)(ψ)(γ−1γ0, . . . , γ
−1γ•)(γ

−1x)

= ψ(σ(γ−1
0 γ, γ−1x)−1, . . . , σ(γ−1

• γ, γ−1x)−1)

= ψ(σ(γ, γ−1x)−1σ(γ−1
0 , x)−1, . . . ,

ψ(σ(γ−1
0 , x)−1, . . . , σ(γ−1

• , x)−1)

= C•b(σ)(ψ))(γ0, . . . , γ•)(x) ,

where we moved from the first line to the second one using the definition, from the
second line to the third one using the cocycle condition of Equation (2.13) and we
concluded by exploiting the H-invariance of ψ.

Remarkably, the map induced in bounded cohomology depends only on the
cohomology class of σ.

Proposition 2.4.19 ([SS21b, Proposition 2.15]). Let Γ be a discrete group and
let (X,µX) be a standard Borel probability Γ-space. Given a measurable cocycle
σ : Γ×X → H and a measurable map f : X → H, it holds that

H•b(σf ) = H•b(σ) .

Proof. Following the line of either [Mon01, Lemma 8.7.2] or [Sav20, Lemma 2.9],
we are going to prove that the pullback induced by σf and σ are chain homotopic.
Consider a cochain ψ ∈ C•cb(H;R)H . For every (γ0, . . . , γ•) ∈ Γ•+1 and for almost
every x ∈ X, we have that

C•b(σf )(ψ)(γ0, . . . , γ•)(x) = ψ((σf (γ−1
0 , x))−1, . . . , (σf (γ−1

• , x))−1)

= ψ(f(x)−1σ(γ−1
0 , x)−1f(γ−1

0 x), . . .)

= ψ(σ(γ−1
0 , x)−1f(γ−1

0 x), . . .) ,
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where we moved from the first line to the second one using the definition of σf

and we exploited the H-invariance of ψ to move from the second line to the third
one. We want to prove that the right action by measurable maps is actually chain
homotopic to the identity. In this way the claim will follow.

For 0 ≤ i ≤ • − 1 we now define the following map

s•i (σ, f) : C•cb(H,R)→ C•−1
cb (Γ; L∞(X;R)) , s•i (σ, f)(ψ)(γ0, . . . , γ•−1)(x) :=

= ψ(σ(γ−1
0 , x)−1f(γ−1

0 x), . . . , σ(γ−1
i , x)−1f(γ−1

i x), σ(γ−1
i , x)−1, . . . , σ(γ−1

•−1, x)−1) ,

and we set s•(σ, f) :=
∑•−1

i=0 (−1)is•i (σ, f). If we define for −1 ≤ i ≤ • the map

ρ•i (σ, f) : C•cb(H;R)→ C•cb(Γ; L∞(X;R)) , ρ•i (σ, f)(ψ)(γ0, . . . , γ•)(x) :=

= ψ(σ(γ−1
0 , x)−1f(γ−1

0 x), . . . , σ(γ−1
i , x)−1f(γ−1

i x), σ(γ−1
i+1, x)−1, . . . , σ(γ−1

• , x)−1) ,

we can notice that ρ•−1(σ, f) = C•b(σ). As noticed in the proof of [Mon01, Lemma
8.7.2], one gets

s•+1
i δ•j =


δ•−1
j s•j−1 , j < i

ρ•i−1 , j = i

ρ•i , j = i+ 1

δ•−1
j−1s

•
j , j > i

(2.20)

where we have decomposed δ• : C•cb(H;R)→ C•+1
cb (H;R) as δ• =

n∑
j=0

(−1)jδ•j and

δ•j (ψ)(h0, . . . , h•+1) := ψ(h0, . . . , hj−1, hj+1, . . . , h•+1) (notice that, with a slight
abuse of notation, we are using δ• for both the coboundary operators on bounded
functions on H and on Γ). By Equation (2.20) we obtain

s•+1(σ, f)δ• = −δ•+1s•(σ, f) +

•∑
i=0

(ρ•i−1(σ, f)− ρ•i ) =

= −δ•+1s•(σ, f) + C•b(σ)− ρ••(σ, f) .

It is immediate to notice that on the subcomplex of the H-invariants cochains it
holds that

ρ••(σ, f) = C•b(σf ) ,

and hence on the invariant subcomplex we get that

s•+1(σ, f)δ• + δ•s•(σ, f) = Cb
•(σ)− C•b(σf ) .

This concludes the proof.
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As pointed out above, the pullback defined by Equation (2.18) get back a class
in H•b(Γ; L∞(X;R)), whereas the standard pullback along representations provides
a class in the real cohomology of Γ. To get an analogous map for cocycles, we
proceed with the following construction.

We define the integration map

I•X : C•b(Γ; L∞(X;R))Γ → C•b(Γ;R)Γ , (2.21)

ψ 7→ I•X(ψ)(γ0, . . . , γ•) :=

∫
X
ψ(γ−1

0 , . . . , γ−1
• )(x)dµX(x)

that is a well-defined cochain map [Sav20, Lemma 2.7] and hence, by compos-
ing with the function defined in Equation (2.18), we get the following map at a
cohomological level

H•b(σX) : H•cb(H;R)→ H•cb(Γ;R) , (2.22)

H•b(σX)([ψ]) := [I•X ◦ C•b(σ)(ψ)] .

We now move to the implementation of the pullback through boundary maps.
In particular we suppose the existence of a σ-equivariant measurable function
φ : B×X → Y for a cocycle σ : Γ×X → H, where B is a Γ-boundary in the sense
of Definition 2.4.11 and Y is a Lebesgue H-space. In this setting we can naturally
define a map at the level of cochains as

C•(Φ) : B∞(Y •+1;R)H → L∞w∗(B
•+1; L∞(X;R))Γ , (2.23)

C•(Φ)(ψ)(b0, . . . , b•)(x) := ψ(φ(b0, x), . . . , φ(b•, x))

for every ψ ∈ B∞(Y •+1;R)H and almost every (b0, . . . , b•) ∈ B•+1 and x ∈ X.
Since the above function is a well-defined chain map and it does not increase the
norm [MS20, Lemma 4.2], it induces maps at the level of cohomology groups

Hk(Φ) : Hk(B∞(Y •+1;R)H)→ Hk
b(Γ; L∞(X;R)) (2.24)

for every k ≥ 0. We notice that we are tacitly post-composing by the isomorphism
provided by Theorem 2.2.16.

An immediate application of [BM02, Proposition 1.5.2] implies the following

Lemma 2.4.20. The following diagram commutes

Hk(B∞(Y •+1;R)H)
ck //

Hk(Φ)
��

Hk
cb(H;R)

Hkb(σ)tt
Hk

b(Γ; L∞(X;R))

(2.25)

for every k ≥ 0.
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Proof. Consider the resolutions (B∞(Y •+1;R), δ•) and (C•cb(H;R), δ•) of Banach
H-modules R. The first one is strong by [Mon01, Lemma 7.5.5], while the second
one is a strong resolution by relatively injective modules by Theorem 2.2.16. Hence,
by [BM02, Proposition 1.5.2], there exists a cochain map

α• : B∞(Y •+1;R)→ C•cb(H,R)

that is unique up to homotopy. Similarly, the resolutions (L∞w∗(B
•+1; L∞(X;R)), δ•)

and (C•b(Γ,L∞(X;R)), δ•) are both strong resolutions by relatively injective mod-
ules, hence there exists a homotopy equivalence of complexes

β• : L∞w∗(B
•+1; L∞(X;R))→ C•b(Γ,L∞(X;R)).

Hence the maps

β• ◦ C•(Φ) , C•b(σ) ◦ α• : B∞(Y •+1;R)→ C•b(Γ; L∞(X;R)) ,

where we tacitly consider the restriction to the H-invariant cochain for α• and
to the Γ-invariant ones for β•, are cochain maps which extends the inclusion of
coefficients R → L∞(X;R). Again by [BM02, Proposition 1.5.2], they must be
homotopic, and in particular the induced maps in cohomology coincide, namely

Hk(Φ) = Hk
b(σ) ◦ ck

for every k ≥ 0 where, as usual, we omit the isomorphisms given by Theorem
2.2.17.

In other words we have obtained an extension of the work by Burger and Iozzi
in [BI02] in the context of measurable cocycles, writing down an explicit formula
for the pullback along cocycles through boundary maps.

We conclude with a boundary version also for the map defined by Equation
(2.22). When σ : Γ × X → H is a measurable cocycle, B is a Γ-boundary and
φ : B ×X → Y is a σ-equivariant measurable map, we define the following map
at a cohomological level

Hk(ΦX) : Hk(B∞(Y •+1;R)H)→ Hk
b(G;R) (2.26)

H•b(ΦX)([ψ]) := [I•X ◦ C•(Φ)(ψ)] .

Also for the integrated version of the pullback we lead to an analogous commutative
diagram

Hk(B∞(Y •+1;R)H)
ck //

Hk(ΦX)
��

Hk
cb(H;R)

Hkb(σX)tt
Hk

b(Γ;R)

(2.27)
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for every k ≥ 0.

Remark 2.4.21. Even if we have described two different versions of the pullback
that by Lemma 2.4.20 actually coincide up to compose with the canonical map
of Equation (2.9), we prefer not to distinguish them with two denominations.
When the notion of pullback will bring up, we will regard to rule out any possible
ambiguity. In particular, in Chapter 4 and in Chapter 5 we will use the integrated
version (Equation (2.22) and Equation (2.26)), while in Chapter 6 we will exploit
the one defined by Equation (2.19) and Equation (2.24).

2.5 CAT(0)-spaces and measurable fields

Since one of our main goal is to investigate the existence of boundary maps for
measurable cocycles, the final preliminary section is devoted to introduce some
tools that we will need in Chapter 3, in particular to prove Theorem 1. Precisely,
we first introduce the basics of CAT(0)-spaces, the notion of telescopic dimension
and the Euclidean De Rham decomposition. Then we define measurable fields and
some results as a measurable versions of the decomposition into Euclidean and
non-Euclidean factors and the measurable Adam–Ballmann theorem. For details
about the first part we refer to the book of Bridson and Haefliger [BH99, Part II]
or to the paper of Caprace and Lytchak [CL09], while for the second part we refer
to the work of Anderegg and Henry [AH14] and of Bader, Duchesne and Lecureux
[Duc12, BDL16].

2.5.1 CAT(0)-spaces

We first recall basic definitions and known facts about CAT(0)-space.

Definition 2.5.1. A metric space (X , d) is a CAT(0)-space if it is geodesic and for
every triple of distinct points x, y, z ∈ X , given a point m in the geodesic segment
between y and z, the following inequality holds

d(x,m)2 ≤ 1

2
(d(x, y)2 + d(x, z)2)− 1

4
d(y, z)2.

A complete CAT(0)-space is also called a Hadamard space.

Since embedded flats into CAT(0)-spaces play an important role in the study
of their geometry, we recall the following decomposition into Euclidean and non-
Euclidean factors. Precisely, the Euclidean De Rham decomposition of a CAT(0)-
space X is its canonical isometric splitting into an Hilbert space H and a factor Z
which cannot be further decomposed as a product of a non-trivial Euclidean factor
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[BH99, Theorem 6.15]. Moreover, for every point x ∈ X the spaces H (respectively
Z) identifies with a unique closed convex subspaces of X containing x.

Given a subset Y ⊂ X of a metric space, its diameter is defined as

diam(Y) := sup
x,y∈Y

d(x, y),

and Y is said to be bounded if it has finite diameter. A convex bounded set Y
has some preferred points called circumcenters, which are the centers of balls of
minimal radius containing Y. Notice that, without the assumption of convexity,
one can still give the notion of circumcenter but such points may not belong to Y.
An equivalent definition can be given in terms of actions of isometries. Precisely,
the circumcenters of a bounded subset Y ⊂ X of a generic metric space are the
points fixed by any isometry stabilizing Y. A peculiarity of CAT(0)-spaces is that
every bounded subset has a unique circumcenter, which we call center. This fact
follows from a more general property of CAT(κ)-spaces, see [BH99, Proposition
2.7] for details.

Before introducing the notion of telescopic dimension, we need the one of geo-
metric dimension. This concept was first introduced by Kleiner [Kle99] in terms of
the space of directions at each point, and then has been reformulated by Caprace
and Lytchack [CL09, Theorem 1.3] in the following way. If X is a CAT(0)-space,
then its geometric dimension is ≤ n if for each subset Y of finite diameter the
following inequality holds

rad(Y) ≤
√

n

2(n+ 1)
diam(Y) ,

where rad(Y) is the circumradius of Y, namely the infimum of all positive numbers
r such that Y is contained in some closed ball of radius r. The result by Caprace
and Lytchack leads to a characterization of telescopic dimension, originally given
by [Kle99], that we assume here as a definition (refer to [CL09] for more details).

Definition 2.5.2. A CAT(0)-space X has telescopic dimension ≤ n if for any
δ > 0 there exists some constant D > 0 such that for every bounded set of Y of
diameter > D, we have

rad(Y) ≤
(
δ +

√
n

2(n+ 1)

)
diam(Y).

Remark 2.5.3. The Hermitian symmetric spaces of the form X (p, q) with p ≤ q
introduced in Section 2.3, are CAT(0)-spaces of telescopic dimension p [Duc12,
Corollary 1.4]. In particular, this implies that the visual boundary ∂X (p, q) has
geometric dimension p− 1 [CL09, Proposition 2.1].
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For a complete CAT(0)-space X with finite telescopic dimension, Caprace and
Lytchak proved that every filtering family of closed convex subspaces of X either
intersects at X or at ∂X [CL09, Theorem 1.1]. Notice that this is equivalent to
quasi-compactness of the space X = X ∪ ∂X endowed with the topology defined
by Monod in [Mon06, Section 3.7]. The following technical result is an example of
application of [CL09, Theorem 1.1], and it turned out to be the useful in the proof
of [BDL16, Theorem 1.1] and [DLP21, Theorem 1.9]. It will be exploited to prove
Theorem 1.

Proposition 2.5.4 ([BDL16, Proposition 2.1]). Let E be an Euclidean space and
f : E → R be a convex function. If we denote by m = inf{f(x) |x ∈ E}, then we
have the following four possible cases:

(i) If m is not attained, then
⋂
ε>0

∂Eε 6= ∅ where Eε := f−1((m,m + ε)) is not

empty and has a center.

If m is attained, we denote by Em = f−1(m) and by Em = F × T its Euclidean
De Rham decomposition. Then one of the following holds

(ii) Em is bounded and thus it has a center;

(iii) T is bounded and ∂Em = ∂F is a sphere;

(iv) T is not bounded and ∂T ⊂ ∂E has radius less then π
2 .

Notice that, as mentioned in point (iii), boundaries of flats are Euclidean
spheres, that can be also interpreted as CAT(1)-spaces. In particular, boundaries
of maximal flats are subcomplexes called apartments of the building structure of
the visual boundary. Since we will not directly use such construction, we refer to
[AB08] for the general theory of such building. We only notice that the existence
of circumcenters for bounded subsets [BH99, Proposition 2.7] holds also in this
case. More precisely, every subset of radius at most π

2 in a sphere has a center,
and this property will be used in the proof of Theorem 1.

2.5.2 Measurable fields of CAT(0)-spaces and the Adam–
Ballmann dichotomy

In this section we introduce measurable fields of CAT(0)-spaces and some results
that we will exploit in the next section to prove the existence of boundary maps
for cocycles.
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Definition 2.5.5. Given a standard probability space (Ω, µΩ), a measurable field
of CAT(0)-spaces is a collection of CAT(0)-spaces X = {Xω}ω∈Ω together with a
countable family F ⊂

∏
ω∈Ω

Xω such that

• for all x, y ∈ F the map ω 7→ dω(xω, yω) is measurable;

• for almost every ω ∈ Ω, the set {fω | f ∈ F} is dense in Xω.

A section X is an element x ∈
∏
ω∈Ω

Xω such that, for every y ∈ F the map

ω 7→ dω(xω, yω) is measurable.
A subfield Y of X is a collection of non-empty closed convex subsets Yω ⊂ Xω

such that, for every section x of X the map ω 7→ dω(xω, Yω) is measurable.

If G is a locally compact group and Ω is a G-space, a G-action on X is the
datum of a collection {σ(g, ω)}g∈G,ω∈Ω where

• for every g ∈ G and almost every ω ∈ Ω, we have σ(g, ω) ∈ Isom(Xω, Xgω);

• for every g, h ∈ G and almost every ω ∈ Ω, the following equality holds

σ(gh, ω) = σ(g, hω)σ(h, ω); (2.28)

• for every x, y ∈ F , the map (g, ω) 7→ d(xω, σ(g, g−1ω)yg−1ω) is measurable.

Remark 2.5.6. The Equation (2.28) might remind the reader to the cocycle con-
dition of Definition 2.4.1. In fact, a cocycle σ : Γ ×X → X into a CAT(0)-space
X naturally defines a Γ-action for example on the constant field Y where Ω = X
and Yx = X for every x ∈ X.

A G-action {σ(g, ω)}g∈G,ω∈Ω on a measurable field X induces a natural G-
action on every subfield Y by gY = {σ(g, g−1ω)Yg−1ω}ω. Similarly, if ∂X denotes
the boundary field of X, namely the field consisting of the boundaries of each
Xω, a G-action on X induces an action on the set of sections of ∂X defined as
(gξ)ω = {σ(g, g−1ω)ξg−1ω}.

As proved by Caprace and Lytchak [CL09, Proposition 1.8], any isometric ac-
tion of a locally compact group on a complete CAT(0)-space of finite telescopic
dimension either has a fixed at infinity or admits an invariant non-empty closed
convex subset which is minimal, namely it does not contain a proper subset with
the same properties. This allows to reduce the investigation of existence of bound-
ary maps to minimal actions, since the boundary of a closed convex subset natu-
rally embeds into X (see [Duc12, Theorem 1.7] and [BDL16, Theorem 1.1]). The
following result can be see as the generalization of [CL09, Proposition 1.8] to mea-
surable fields and will be our starting point in the proof of Theorem 2.
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Proposition 2.5.7 ([Duc12, Proposition 8.11]). Suppose X is a measurable field
of CAT(0)-spaces of finite telescopic dimension, G acts on X and Ω is G-ergodic.
Then there exists a minimal invariant subfield of X or there exists an invariant
section of ∂X.

A second construction that we will use is the extension of the Euclidean De
Rham decomposition for measurable fields of CAT(0)-spaces.

Proposition 2.5.8 ([Duc12, Proposition 9.2]). Let x be a section of a measurable
field X. There exists n ∈ N and two subfields E and Y of X containing x such
that X = E ×Y and Eω ∼= Rn for almost every ω ∈ Ω. Moreover, E is maximal
for those properties.

If y is an other section of X and X = E’×Y’ is another such decomposition
associated to y then for almost every ω ∈ Ω, the projections πEω |E′ω

and πYω |Y ′ω
are

isometries.
In particular, the G-action {σ(g, ω)}g∈G,ω∈Ω on X splits as

σ(g, ω) = σE(g, ω)× σY(g, ω)

where {σE(g, ω)}g∈G,ω∈Ω and {σY(g, ω)}g∈G,ω∈Ω are respectively actions on E and
Y.

The following measurable version of the Adam–Ballmann dichotomy [AB98] is
a crucial result to construct boundary maps.

Theorem 2.5.9 ([Duc12, Theorem 1.8]). Let G be a locally compact second count-
able group and Ω an ergodic and amenable G-space. Let X be a measurable field
of complete CAT(0)-spaces of finite telescopic dimension. If G acts on X then
there is an invariant section of the boundary field ∂X or there exists an invariant
Euclidean subfield of X.

We conclude by showing how the previous result relates measurable fields and
boundaries (see Definition 2.4.11). Precisely, the way to organize the components
of a measurable field into a standard Borel space with a fiberwise isometric Γ-action
is explained by the following

Lemma 2.5.10 ([DLP21, Lemma 4.11]). Let Γ be a countable group and let X
be a measurable field over a Lebesgue Γ-space Ω.Then there exists a full-measure
subset Ω0 ⊂ Ω, a standard Borel structure on X :=

⊔
ω∈Ω0

Xω and a Borel map

p : X → Ω0 that admits a fiberwise isometric Γ-action. Moreover, p−1(ω) is Xω

with the metric dω.

In virtue of Lemma 2.5.10, an invariant section of the boundary field ∂X of a
measurable field X on the space B×X is a boundary map in the sense of Definition
2.4.16, and in fact this will be our fundamental tool in the proof of Theorem 1.
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Chapter 3

Boundary maps

It is clear from Section 2.4.3 the relevance of boundary maps in the theory of
numerical invariants, since they provide a useful implementation of the pullback
along cocycles. This chapter is devoted to prove the existence of a boundary map
for certain families of cocycles.

In the first part we prove Theorem 1, namely the existence of a boundary
map for non-elementary cocycles into CAT(0)-spaces of finite telescopic dimension.
To this end, we exploit the geometric properties of CAT(0)-spaces introduced in
Section 2.5.1 and the measurable fields defined in Section 2.5.2. For the original
version of this result refer to [SS21a].

In the second part we deal with cocycles into algebraic groups. Precisely we
consider Zariski dense cocycles into simple Lie groups of non-compact type and,
by adapting the argument used in [BF14a, Theorem 5.3], we prove Theorem 2.
This part is contained in [SS21c].

Finally we prove some properties of boundary maps. First we show that for
Zariski dense cocycles into PU(p, q) boundary maps must have Zariski dense slices.
Then we prove that, for cocycles into groups of Hermitian type, almost every pair
of points in the image of a boundary map into the Shilov boundary consist of
opposite points.

3.1 Boundary maps for cocycles into CAT(0)-

spaces

We consider cocycles σ : Γ × X → H where Γ is a countable group, (X,µX) is
an ergodic standard Borel probability Γ-space and H is the isometry group of a
CAT(0)-space of finite telescopic dimension. Moreover, we assume that the σ-

67



action on X does not preserve a family of flats, which is the natural extension of
non-elementarity for representations.

Definition 3.1.1. Let σ : Γ×X → H where H is the isometry group of a complete
CAT(0) space X . We say that σ is non-elementary if there exists no σ-equivariant
family of Euclidean subspaces of X and no σ-equivariant family of points in ∂X .

We are now ready to prove

Theorem 1. Let Γ be a locally compact second countable group, (X,µX) be an
ergodic standard Borel probability Γ-space and B a Γ-boundary. For every non-
elementary cocycle σ : Γ×X → H into the isometry group of a CAT(0)-space X
of finite telescopic dimension there exists a boundary map φ : B ×X → ∂X .

Proof. We consider the constant field X = {Xx}x∈X endowed with the Γ-action
defined by σ. We first notice that by Proposition 2.5.7 either we have a minimal
subfield Y ⊂ X or there exists a section of ∂X. Since the last one is ruled out by
non-elementary, we can assume the existence of a minimal subfield.

According to Proposition 2.5.8, we consider the Euclidean De Rham decompo-
sition Y = E×Z and we denote by σZ and σY the Γ-actions induced respectively
on Z and Y. By ergodicity we have that one of the following options is verified for
almost every x ∈ X: either diam(Zx) ≤ π

2 or not. In the first case we can denote
by zx the center of Zx, whose existence is ensured by [BL05, Proposition 1.4] and
by considering the σ-equivariant family {Ex × {zx}}x∈X we get a contradiction
to the hypothesis of non-elementarity. Hence we assume that almost all the Zx’s
have diameter greater than π

2 .
We claim that the Γ-action σZ on Z is minimal and non-elementary. Before

proving the claim, notice that this implies that it is sufficient to find an invariant
section of Z, since the boundaries ∂Zx’s are contained in the ∂Yx’s and hence in
∂X .

Assume that Z is not σZ-minimal. Hence by Proposition 2.5.7 there exists a
minimal invariant subfield W ⊂ Z whose product with E is a strict subfield of
E×Z = Y, contradicting the minimality of Y. Similarly, a σZ-equivariant family
of flats {Fx} would produce a σ-invariant family of flats in X , which is ruled out
by non-elementarity of σ.

Hence it remains to prove the existence of an invariant section of the boundary
field ∂Z, where Z has trivial Euclidean factor and it is endowed with a minimal
action {σZ(γ, x)}.

We consider the measurable field U = {Uξ,x}ξ,x∈B×X where Uξ,x = Zx for
every pair (ξ, x) ∈ B × X. Recall that by Proposition 2.4.13 the spaces B × X
and B × B × X are ergodic Γ-spaces. By [Zim84, Proposition 4.3.4] B × X is
also Γ-amenable. In this context we apply [Duc12, Theorem 2.5.9] and we have
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two possible cases: either there exists a section of ∂U or there exists an invariant
Euclidean subfield E ⊂ U. Since in the first case we are done, we need to rule out
the second one.

We consider the distance map

d : B ×B ×X → R , (ξ1, ξ2, x) 7→ d(Eξ1,x, Eξ2,x) := inf
y∈Eξ1,x

d(y,Eξ2,x)

where the Eξ,x’s are the sheets of the Euclidean subfield E = {Eξ,x}(ξ,x)∈B×X .
Following [BDL16], we have four possible cases, and by ergodicity one of them
must occur almost surely. Moreover, again by ergodicity, the distance map is
essentially equal to some value, say d0, for almost every x ∈ X and ξ1, ξ2 ∈ B.

Case (i): Suppose that d0 it is not attained for almost every x ∈ X and
ξ1, ξ2 ∈ B. Hence for almost every x ∈ X and ξ1 ∈ B we can define the subspaces

Enξ1,ξ2,x :=

{
y ∈ Eξ1,x | d(y,Eξ2,x) < d0 +

1

n

}
which are nested subspaces of Eξ1,x. By [Duc12, Proposition 8.10] we have a
σ-equivariant map

ψ : B ×B ×X →
⋃
∂Eξ,x ⊂ ∂E ,

where we are considering the measurable field {E′ξ1,ξ2,x}(ξ1,ξ2,x)∈B×B×X such that
E′ξ1,ξ2,x = Eξ1,x for every x ∈ X and ξ1, ξ2 ∈ B. It follows directly from Lemma
2.5.10 that the projection p of (a full-measure subset of)

⋃
∂E′ξ1,ξ2,x on B×X has

a Γ-fiberwise isometric action, so that we can apply relative metric ergodicity to
the following diagram

B ×B Meas(X, ∂E)

B Meas(X,B ×X).

Ψ

π1 pX

j

Here Ψ and j are induced respectively by ψ (namely Ψ(ξ1, ξ2)(x) := ψ(x, ξ1, ξ2))
and by the inclusion of constants (namely j(ξ)(x) := (ξ, x)), while π1 is the pro-
jection on the first factor and pX is defined as pX(f)(x) := p(f(x)). The Γ-action
on Meas(X, ∂E) is the one induced by σ, precisely

(γf)(·) := σ(γ, γ−1·)f(γ−1·) (3.1)

for any γ ∈ Γ and f ∈ Meas(X, ∂E). By applying the cocycle condition of Equation
(2.13) we have that for almost every γ1, γ2 ∈ Γ

(γ1γ2f)(·) = σ(γ1γ2, γ
−1
2 γ−1

1 ·)f(γ−1
2 γ−1

1 ·)
= σ(γ1, γ2γ

−1
2 γ−1

1 ·)σ(γ2, γ
−1
2 γ−1

1 ·)f(γ−1
2 γ−1

1 ·)
= σ(γ1, γ

−1
1 ·)σ(γ2, γ

−1
2 γ−1

1 ·)f(γ−1
2 γ−1

1 ·) = γ1(γ2f)(·) .
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Moreover, since ψ is σ-equivariant, we have that

Ψ(γξ1, ξ2)(·) = ψ(γξ1, γξ2, ·)
= ψ(γξ1, γξ2, γγ

−1·)
= σ(γ, γ−1·)ψ(ξ1, ξ2, γ

−1·)
= σ(γ, γ−1·)Ψ(ξ1, ξ2)(γ−1·)

and hence Ψ is Γ-equivariant.
Concerning the projection pX , we can equip it with a fiberwise isometric Γ-

action as follows. For any x ∈ X, we denote by dh(x) the metric on the leaf ∂Eh(x)

of the field ∂E and we define a metric on pX as

d(f, g) :=

∫
X

dh(x)(f(x), g(x))

1 + dh(x)(f(x), g(x))
dµX(x)

for every f, g ∈ p−1
X (h) ⊂ Meas(X, ∂E). Hence, for every γ ∈ Γ we have

d(γf, γg) =

∫
X

dγh(x)((γf)(x), (γg)(x))

1 + dγh((γf)(x), (γg)(x))
dµX(x)

=

∫
X

dγh(x)(σ(γ, γ−1x)f(γ−1x), σ(γ, γ−1x)g(γ−1x))

1 + dγh(σ(γ, γ−1x)f(γ−1x), σ(γ, γ−1x)g(γ−1x))
dµX(x)

=

∫
X

dh(f(γ−1x), g(γ−1x))

1 + dh(f(γ−1x), g(γ−1x))
dµX(x)

=

∫
X

dh(f(x), g(x))

1 + dh(f(x), g(x))
dµX(x) = d(f, g) ,

where we used definition of the metrics on the fibers and the Γ-invariance of the
metric d to move from the second line to the third one and we concluded exploiting
the Γ-invariance of µX .

By relative metric ergodicity we have a lifting B → Meas(X, ∂E), thus Ψ does
not depend on the second factor. Hence we have a σ-invariant map B × X →
∂E ⊂ ∂U, whose existence is ruled out by the dichotomy of Theorem 2.5.9.

We can suppose that the distance dξ1,ξ2,x is attained almost surely and we
define the non-empty subsets

Wξ1,ξ2,x := {w ∈ Eξ1,x | d(w,Eξ2,x) = d0} ⊂ Eξ1,x.

Case (ii): The Wξ1,ξ2,x’s are bounded. We can associate to any such subset its
circumcenter cξ1,ξ2,x. The map

ψ : B ×B ×X → E , ψ(ξ1, ξ2, x) := cξ1,ξ2,x

is σ-equivariant and relative metric ergodicity applied to the same diagram of case
(i)
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B ×B Meas(X,E)

B Meas(X,B ×X)

Ψ

π1 pX

j

implies that Ψ does not depend on the second factor. If we replace π1 in the
above diagram with the projection π2 : B×B → B on the second factor, the same
argument shows that Ψ is also independent on the second factor. In other words,
we obtain a map ψ : X → E such that

ψ(γx) = σ(γ, x)ψ(x).

Since points are 0-dimensional flats, this contradicts non-elementarity.
Thus the Wξ1,ξ2,x’s are not bounded, and we can consider their Euclidean De

Rham decomposition
Wξ1,ξ2,x = Fξ1,ξ2,x × Tξ1,ξ2,x,

where the Fξ1,ξ2,x’s are maximal Euclidean factors.
Case (iii): If the Tξ1,ξ2,x’s are not bounded, as in case (i) we realize a map

ψ : B ×B ×X → ∂T , ψ(ξ1, ξ2, x) := cξ1,ξ2,x

where cξ1,ξ2,x is the center of ∂Tξ1,ξ2,x and T denotes the measurable field given
by the Tξ1,ξ2,x’s. Notice that cξ1,ξ2,x can be defined thanks to [BDL16, Proposition
2.1]. Using the same arguments of case (i), we get a contradiction.

Case (iv): Finally, if the Tξ1,ξ2,x’s are bounded we consider a subfield E’ of E
whose sheets are defined by

E′ξ1,ξ2,x := Fξ1,ξ2,x × {tξ1,ξ2,x}

for every x ∈ X and ξ1, ξ2 ∈ B, where tξ1,ξ2,x is the circumcenter of Tξ1,ξ2,x. The
same argument used in [BDL16] shows that in fact Eξ1,ξ2,x = Eξ1,x for almost
every x ∈ X and ξ1, ξ2 ∈ B. Moreover, Eξ,x and Eξ′,x are parallel for almost every
x ∈ X and almost every ξ, ξ′ ∈ B, which means that d(Eξ,x, Eξ′,x) = 0 and is
denoted as

Eξ,x//Eξ′,x .

By Fubini’s theorem there exists an element ξ0 ∈ B and a full-measure subset
Ω ⊂ B ×X such that

Eξ,x//Eξ0,x

for almost every (ξ, x) ∈ Ω. Let ΩΓ :=
⋂
γ∈Γ

γΩ, which is still of full-measure since

Γ is countable. We consider the set

Cx := convex hull ({Eξ,x}(ξ,x)∈ΩΓ),
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which can be decomposed into Euclidean De Rham factors Ex × Tx such that

Ex//Eξ,x//Eξ0,x (3.2)

for every (ξ, x) ∈ ΩΓ.
Moreover, for almost every x ∈ X and γ ∈ Γ, we have

σZ(γ, x)Cx = convex hull (σZ(γ, x)Eξ,x)(ξ,x)∈ΩΓ

= convex hull (Eγξ,γx)(ξ,x)∈ΩΓ

= convex hull (Eξ,γx)(ξ,γx)∈ΩΓ = Cγx ,

where to pass from the first line to the second one we used the fact that E is a
subfield of U and to pass from the second line to the third one we exploited the
action on ΩΓ.

Now, by the minimality of Z we must have Cx = Zx for almost every x ∈ X
and since Zx has trivial Euclidean factor, by Equation (3.2) we have

dim(Eξ,x) = 0

for every (ξ, x) ∈ ΩΓ. Hence we have a section B × X → U and, by the same
argument used in case (ii), we have a contradiction.

3.2 Boundary maps for cocycles into algebraic

groups

In this section we consider a Zariski dense measurable cocycle σ : Γ × X → H,
where Γ is a locally compact second countable group, (X,µX) is a standard Borel
probability Γ-space and H is a simple Lie group of non-compact type. Moreover,
we denote by B a Γ-boundary in the sense of Definition 2.4.11.

It is worth noticing that we do not know how to adapt the approach adopted
by Burger and Iozzi to prove the existence of boundary maps for representations in
the analogous setting [BI04, Proposition 7.2]. The crucial, and for us inaccessible,
point is in the notion of mean proximality, which we are not able to adapt in
our context (see also [Zim80, Mar91, BI04] for details about this approach). We
chose instead the point of view introduced by Bader and Furman in [BF14b].
Here the authors exploited the notion of relative metric ergodicity to show the
existence of boundary maps for Zariski dense representations of locally compact
second countable groups into connected simple Lie groups [BF14b, Theorem 3.4].

We recall that in the above setting, by [BF14a, Theorem 5.3] there exists an
algebraic subgroup L < H and a Γ-equivariant universal map φ : X → H/L
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such that, for any algebraic H-space V and for any Γ-equivariant measurable map
ψ : X → V , there exists a Γ-equivariant measurable map π : L/H → V that makes
the following diagram commutative

X H/L

V.

φ

ψ

π

This universal property is the fundamental ingredient in the proof of

Theorem 2. Let Γ be a locally compact and second countable group and let H be
a simple Lie group of non-compact type. Let (X,µX) be an ergodic standard Borel
probability Γ-space and let σ : Γ×X → H be a Zariski dense measurable cocycle.
Then, for any Γ-boundary B there exists a σ-equivariant map φ : B ×X → H/P
where P < H is a minimal parabolic subgroup.

Proof. Since B is a strong boundary by Remark 2.4.12, by Proposition 2.4.13
both B × X and B × B × X are ergodic Γ-space. Thus we denote by L,L0 the
algebraic subgroups of H and by φ : B ×X → H/L, φ0 : B ×B ×X → H/L0 the
Γ-equivariant universal maps associated respectively to B×X and to B×B×X.

Since B×X is amenable by Proposition 2.1.18, then there exists a σ-equivariant
map ν : B ×X →M1(H/P ) where P < H is a minimal parabolic subgroup and
M1(H/P ) is the space of probability measures on H/P .

By ergodicity of Γ on B × X and by the smooth action of H on M1(H/P )
[Zim84, Corollary 3.2.23], it follows that the induced map

ν̄ : B ×X →M1(H/P )/H

is essentially constant. Equivalently, ν has image essentially contained in a single
H-orbit, namely we get a map B × X → H/StabH(µ0) where StabH(µ0) is the
stabilizer in H of some probability measure µ0 ∈M1(H/P ). By [Zim84, Corollary
3.2.23] we have that StabH(µ0) is algebraic and amenable. Hence we can exploit the
universal property of φ, in order to get a Γ-equivariant map H/L→ H/StabH(µ0).
Thus, up to conjugacy, L < StabH(µ0) and moreover, by amenability of StabH(µ0),
it follows that L is amenable.

Consider now the map φ ◦π2 where π2 : B×B×X → B×X is the projection
on the last two factors. By the universal property of φ0, we get a Γ-equivariant
map π : H/L0 → H/L such that the following diagram commutes

B ×B ×X H/L0

H/L.

φ0

φ◦π2

π
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Again, up to conjugation, we can assume that L0 < L and, denoting by

R := Radu(L)

the unipotent radical of L, we get the chain of inclusion L0 < L0R < L and the

induced chain of projections H/L0 H/L0R H/L.
p1 p2

Define now the maps

Φ : B → Meas(X,H/L), Φ(ξ)(·) := φ(ξ, ·)

and

Φ0 : B ×B → Meas(X,H/L0), Φ0(ξ1, ξ2)(·) := φ0(ξ1, ξ2, ·).

Hence, by the same arguments used in the proof of Theorem 1, we have that Φ is
Γ-equivariant (where the Γ on Meas(X,H/L) is the one defined in Equation (3.1).
Similarly, one can check the Γ-equivariance of Φ0.

Consider now the following commutative diagram

B ×B Meas(X,H/L0R)

B Meas(X,H/L)

Φ0

pr2 pX2

Φ

Ψ

where pX2 (f)(·) := p2(f(·)), and pr2 : B × B → B is the projection on the second
factor. We remark that the existence of the map Ψ follows from the fact that pX2
is fiberwise Γ-isometric and from the relative metric ergodicity of pr2. In fact,
a metric on Meas(X,H/L0R) compatible with the Γ-action defined in (3.1), can
be found as follows. Let e ∈ Meas(X,H/L) be the constant function e(x) :=
L. If we denote by d the L/R-invariant metric on L/L0R cited in the proof of
[BF14a, Theorem 3.4], we can set the metric d0 on the special fiber (pX2 )−1(e) ∼=
Meas(X,L/L0R) as

d0(f, g) :=

∫
X

d(f(x), g(x))

1 + d(f(x), g(x))
dµX(x)

for every f, g ∈ Meas(X,L/L0R). Since the group Meas(X,H) acts transitively
on Meas(X,H/L0R), we can move the metric d0 on the whole Meas(X,H/L0R).
To show the compatibility of the collection of metrics on the fibers, let h ∈
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Meas(X,H/L) and let f, g ∈ (pX2 )−1(h). Then

dγ.h(γf, γg) =

∫
X

dγ.h(σ(γ, γ−1x)f(γ−1x), σ(γ, γ−1x)g(γ−1x))

1 + dγ.h(σ(γ, γ−1x)f(γ−1x), σ(γ, γ−1x)g(γ−1x))
dµX(x) =

=

∫
X

dh(f(γ−1x), g(γ−1x))

1 + dh(f(γ−1x), g(γ−1x))
dµX(x) =

=

∫
X

dh(f(x), g(x))

1 + dh(f(x), g(x))
dµX(x) = dh(f, g) ,

where we used the transitivity of Meas(X,H) and the definition of the metrics on
the fibers to move from the first line to the second one and we concluded exploiting
the Γ-invariance of µX .

Define the Γ-equivariant map ψ : B ×X → H/L0R as ψ(ξ, x) := Ψ(ξ)(x) for
almost every ξ ∈ B and almost every x ∈ X. By the universal property of φ,
there exists q : H/L → H/L0R which is in fact a isomorphism, and hence, up to
conjugation, we can assume that L0R = L.

By defining

φ : B ×B ×X → H/L×H/L, (φ× φ)(ξ1, ξ2, x) := (φ(ξ1, x), φ(ξ2, x)) ,

we know by the universal property of φ0 that we have the following commutative
diagram

B ×B ×X H/L0

H/L×H/L.

φ0

φ×φ

Additionally, notice that given γ1, γ2 ∈ Γ we have

(φ× φ)(γ1ξ1, γ2ξ2, x) = (σ(γ1, γ
−1
1 x)φ(ξ1, γ

−1
1 x), σ(γ2, γ

−1
2 x)φ(ξ2, γ

−1
2 x)) ,

for almost every ξ1, ξ2 ∈ B, x ∈ X by the σ-equivariance of φ. As a consequence of
the Zariski density of σ, the essential image of φ×φ is Zariski dense in H/L×H/L.
Thus H/L0 is Zariski dense in H/L×H/L or, equivalently, RL0R is Zariski dense
in H. Thus, by [BF14a, Lemma 3.5] H is parabolic and, being amenable, is also
minimal. This concludes the proof.

We can now prove the existence of a boundary map in the setting of Theorem
3.
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Corollary 3.2.1. Let n ≥ 2 and let Γ < PU(1, n) a torsion-free lattice. Consider
an ergodic standard Borel probability Γ-space. If σ : Γ×X → SU(p, q) is a Zariski
dense measurable cocycle, then there exists a boundary map φ : ∂HnC ×X → Sp,q.

Proof. By [BF14a, Theorem 2.3] the Furstenberg boundary of Γ, which coincides
with the visual boundary ∂HpC, is actually a Γ-boundary. Hence, applying Theorem
2 we get a map into the Furstenberg boundary of SU(p, q) and we compose with
the projection on the Shilov boundary (induced by the inclusion of a minimal
parabolic subgroup into a maximal one).

Remark 3.2.2. In the setting of Corollary 3.2.1, since Zariski density implies non-
elementarity, Theorem 1 provides a boundary map ∂HnC ×X → ∂X (p, q). More-
over, by ergodicity we have that it takes values in the set of isotropic k-dimensional
subspace in the boundary ∂X (p, q) for some k ≤ p. To see this, for each pair
(ξ, x) ∈ ∂HnC × X one can take the smallest cell in the spherical building of
∂X (p, q) which contains φ(ξ, x), that corresponds to a totally isotropic flag of
Cp,q (see [Duc12]). By ergodicity the type of this flag must be the same for almost
every pair in ∂HnC ×X and by taking the maximal isotropic spaces of any flag we
get the desired map. If we assume that σ is Zariski dense, the same argument in
[DLP21, Theorem 1.7] show that k = p, which means that the target is the Shilov
boundary of X (p, q). This gives an alternative proof of Corollary 3.2.1 which relies
on the geometry of the symmetric space X (p, q).

3.3 Properties

Given a measurable map φ : B → SG from a Γ-boundary B into the Shilov
boundary of a semisimple Lie group of Hermitian type, its essential Zariski closure
is the minimal Zariski closed subset V of SG such that µ(φ−1(V )) = 1. Such a set
exists since the intersection of finitely many closed subset of full measure has full
measure and SG is an algebraic variety, in particular it is Noetherian. We say that
such a measurable boundary map is Zariski dense if its essential Zariski closure is
the whole SG.

Since the Zariski density of the slices of a boundary map will be needed in the
proof of the main theorem, we are going to prove the next

Proposition 3.3.1. Let Γ < PU(1, n) be a complex hyperbolic lattice with n ≥ 2
and consider a Zariski dense cocycle σ : Γ×X → SU(p, q) together with a boundary
map φ : ∂HnC ×X → Sp,q. Then for almost every x ∈ X the slice φx := φ(·, x) is
Zariski dense.

76



Proof. Before starting the proof, recall that the Shilov boundary Sp,q corresponds
to the real points Sp,q = (H/Q)(R) of the quotient of the complexification H of
SU(p, q) (which is SL(p+q,C)) modulo a maximal parabolic subgroup Q stabilizing
a maximal isotropic subspace of Cp+q. For almost every x ∈ X, we are going to
denote by Vx ⊂ H/Q the smallest Zariski closed set such that Vx := Vx(R) ⊂ Sp,q
and φ−1

x (Vx) has full measure in ∂HnC. As noticed in [Poz15] those sets exist by
the Noetherian property.

By embedding suitably H/Q in some complex projective space PN (C), we can
define a map,

v : X → Var(PN (C)) , v(x) := Vx .

Here Var(PN (C)) is the set of all the possible closed varieties inside PN (C) with
the measurable structure coming from the Hausdorff metric (Zariski closed sets are
closed in the Euclidean topology and this makes sense). The map v is measurable
since the slice φx varies measurably with respect to x ∈ X as a consequence
of [Mar91, Chapter VII, Lemma 1.3], by the measurability of φ. Moreover, for
almost every γ ∈ Γ and almost every x ∈ X, by exploiting the fact that σ acts by
isometries on Sp,q we have

φ(γx) = σ(γ, x)φ(x) ∈ σ(γ, x)Vx

and hence, by minimality of Vγx, it follows that σ(γ, x)Vx ⊂ Vγx. Similarly, ex-
ploiting minimality of Vx, one can prove that σ(γ, x)−1Vγx ⊂ Vx and this implies
the following equality

Vγx = σ(γ, x)Vx . (3.3)

In other words we proved that the map v is σ-equivariant, namely

v(γx) = σ(γ, x)v(x)

for almost every γ ∈ Γ and almost every x ∈ X.

On Var(PN (C)) the group GL(N + 1,C) acts naturally on the left. As noticed
in the proof of [Zim84, Proposition 3.3.2], the set Var(PN (C)) decomposes as a
countable union of varieties and the action of GL(N + 1,C) on those varieties is
algebraic and hence smooth. Seeing SU(p, q) as a subgroup of GL(N + 1,C), we
argue that the quotient Σ := Var((PN (C))/SU(p, q) is countably separated and v
induces a map

v : X → Σ , v(x) := SU(p, q) ·Vx ,

which is Γ-invariant, since v was σ-equivariant by Equation (3.3). By the ergodicity
of Γ on X, the above map must be essentially constant. Equivalently v must take
values into a unique orbit SU(p, q) · Vx0 , for some x0 ∈ X. Now, by composing
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the homeomorphism SU(p, q) ·Vx0
∼= SU(p, q)/StabSU(p,q)(Vx0) with a measurable

section
SU(p, q)/StabSU(p,q)(Vx0)→ SU(p, q)

(see [Zim84, Corollary A.8]), we get a measurable map g : X → SU(p, q) such that

Vx = g(x)Vx0 .

This implies that σ is cohomologous to a cocycle preserving Vx0 and the latter
must coincide with H/Q by the Zariski density assumption on σ. Hence for almost
every x ∈ X, we have Vx = H/Q and hence Vx = SU(p, q), which means that
almost every slice is essentially Zariski dense.

Our last result study the image of boundary maps of Zariski dense cocycles
and involves the notion of opposite points introduced in Section 2.3.1.

Proposition 3.3.2. Let G = G(R) where G is connected component of the isom-
etry group of an Hermitian symmetric space. Let σ : Γ×X → G be Zariski dense
and let φ : B × X → G/Q be a boundary map where Q = Q(R) < G(R) = G is
some maximal parabolic subgroup such that SG is identified with G/Q. Then for
almost every x ∈ X and b1, b2 ∈ B, φ(b1, x), φ(b2, x) are opposite in G/Q.

Proof. Following the proof of [BI04, Proposition 7.2], we consider the map

B ×B ×X → N, (b1, b2, x) 7→ dim(φ(b1, x) ∩ φ(b2, x)).

Such a map is Γ-invariant and, by the ergodicity of Γ on the product B×B×X (see
Proposition 2.4.13), it is essentially equal to a constant d. Assume by contradiction
that d is positive. Then, if we denote by Vx := EssIm(φx) the essential image of
φx, then one can adapt the argument in [BI04, Proposition 7.2] as follows: for
any b ∈ B and x ∈ X we consider the set nt(φ(b, x)) of points in G/Q that are
non-opposite to φ(b, x). Fix an x ∈ X with such that

dim(φ(b1, x) ∩ φ(b2, x)) = d ,

for almost every b1, b2 ∈ B. As a consequence, if we suitably fix b2 ∈ B, it holds

φ(b1, x) ∈ nt(φ(b2, x)) ,

for almost every b1 ∈ B. Since nt(φ(b2, x)) is a proper Zariski closed set of G/Q,

this implies that the Zariski closure of the essential image Vx
Z

must be a proper
Zariski closed set. By Proposition 3.3.1 almost every slice of a boundary map of a
Zariski dense cocycle has Zariski dense essential image, thus we get a contradiction
and the statement is proved.
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Now, combining Theorem 2 with Proposition 3.3.2, we obtain the following

Corollary 3.3.3. Let Γ be a finitely generated group, let (X,µX) be an ergodic
standard Borel probability Γ-space and consider a Zariski dense measurable cocycle
σ : Γ ×X → G into an Hermitian Lie group. Then there exists a boundary map
φ : B ×X → G/Q where Q < G is some maximal parabolic subgroup. Moreover,
for almost every x ∈ X and b1, b2 ∈ B, it holds (φ(b1, x), φ(b2, x)) ∈ (G/Q)(2).

79



Chapter 4

Toledo invariant and
superrigidity

In this chapter we apply the machinery of pullback along cocycles described in Sec-
tion 2.4.3 in the context of cocycles σ : Γ×X → SU(p, q) where Γ < PU(1, n) is a
torsion free lattice and Γ acts ergodically on X (for the definition of both PU(1, n)
and SU(p, q) see Examples 2.3.3 and 2.3.4). In particular we define the Toledo
invariant associated to a measurable cocycle, extending the notion of Toledo in-
variant for representations (see for instance Burger, Iozzi and Wienhard [BIW10]
and Pozzetti [Poz15]). Then we provide a useful formula involving this numerical
invariant by exploiting the version of the pullback through boundary maps. Such
a formula, that is the natural adaption of the one obtained by Burger and Iozzi
for representations [BI09], will lead to characterize a family of cocycles, called
maximal cocycles that are the main object of this part.

We define, once and for the whole chapter, the following

Setup 4.0.1. Fix integers n ≥ 2 and 1 ≤ p ≤ q and consider the following objects:

• Γ < PU(1, n) is a torsion-free lattice;

• (X,µX) is an ergodic standard Borel probability Γ-space;

• σ : Γ×X → SU(p, q) is a measurable cocycle;

• φ : ∂HnC ×X → Sp,q is a boundary map for σ.

We notice that, when σ is Zariski dense, the existence of the boundary map φ
is ensured by Corollary 3.2.1.
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4.1 The Toledo invariant of a measurable co-

cycle

In the setting of Setup 4.0.1, we notice how the target of the pullback defined by
Equation (2.22) is the second bounded cohomology of Γ. In order to obtain a map
into the second continuous bounded cohomology of PU(1, n), we need to define
the transfer map, that is the function

T•b : H•b(Γ;R)→ H•cb(PU(1, n);R) , (4.1)

induced in cohomology by

T̃•b : C•b(Γ;R)Γ → C•cb(PU(1, n);R)PU(1,n) ,

(T̃•bψ)(γ0, . . . , γ•) :=

∫
Γ\PU(1,n)

ψ(gγ0, . . . , gγ•)dµ(g) .

Here µ is the probability measure induced on the quotient by the Haar measure
on PU(1, n) (see [BBI13, MS20, MS21] for more details about the transfer map).

We recall that H2
cb(PU(1, n);R) ∼= R and that it is generated by the Cartan

class [cn] (see Remark 2.3.14). Hence the machinery developed in Section 2.4.3
leads to the following

Definition 4.1.1. In the situation of Setup 4.0.1, the Toledo invariant associated
to σ is the real number tb(σ) satisfying

T2
b(H

2
b(σX)(kbSU(p,q))) = tb(σ)[cn] , (4.2)

where kbSU(p,q) is the Kähler class of SU(p, q).

We recall that the transfer map is also induced by the map

T̂•b : L∞((∂HnC)•+1);R)Γ → L∞((∂HnC)•+1);R)PU(1,n)

(T̂•bψ)(ξ0, . . . , ξ•) :=

∫
Γ\PU(1,n)

ψ(gξ, . . . , gξ•)dµ(g)

defined at the level of resolutions on boundaries.
This, together with the implementation of the pullback defined through bound-

ary maps and to the Diagram (2.27), shows that the composition of the map defined
by Equation (2.26) with T2

b applied to the class [βSU(p,q)] (see Definition 2.3.12),

defines a class T2
b(H

2(ΦX)([βSU(p,q)])) which satisfies

T2
b(H

2(ΦX)([βSU(p,q)])) = tb(σ)[cn]
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(here, as usual, we are tacitly composing with the canonical map of Equation(2.9)).
Hence we obtain the following formula∫

Γ\PU(1,n)

∫
X

βSU(p,q)(φ(gξ0, x), φ(gξ1, x), φ(gξ2, x))dµX(x)dµ(g) = (4.3)

= tb(σ)cn(ξ0, ξ1, ξ2).

Moreover, as proved for instance in [BBI13, Poz15, BBI18], Equation (4.3) holds
for every triple (ξ0, ξ1, ξ2) of pairwise distinct points in ∂HnC.

Remark 4.1.2. It is worth noticing that Equation (4.3) is a suitable adaptation
of [MS21, Proposition 1.1] to this particular context. The absence of coboundary
terms is due to the doubly ergodic action of Γ on the boundary ∂HnC and to the fact
that all the considered cochains are alternating. Additionally, the Toledo invari-
ant tb(σ) is the multiplicative constant λβSU(p,q),cn(σ) associated to σ, βSU(p,q), cn,
namely

tb(σ) = λβSU(p,q),cn(σ) ,

according to [MS21, Definition 3.21].

We immediately show the basic properties of the numerical invariant just de-
fined, that are a almost direct consequence of Proposition 2.3.13. Before we need
the following definition, that characterizes boundary maps which preserves chains.
This particular class of equivariant maps plays an important role in the proof of
superrigidity results, both for representations (see Pozzetti [Poz15, Theorem 4.1])
and in our context (Theorem 3).

Definition 4.1.3. A measurable map ϕ : ∂HnC → Sp,q is chain-preserving if, for
almost every ξ1, ξ2 ∈ (∂HnC)(2) and for almost every η lying on the chain from ξ1

and ξ1, we have φ(η) ∈ 〈φ(ξ1), φ(ξ2)〉.

Hence we have the following

Proposition 4.1.4. In the situation of Setup 4.0.1, the Toledo invariant tb(σ)
satisfies:

(1) |tb(σ)| ≤ rk(X (p, q)) = min(p, q);

(2) |tb(σ)| = rk(X (p, q)) = min(p, q) if and only if the slice φx := φ( · , x) is
chain-preserving for almost every x ∈ X.

Proof. Ad 1. By Proposition 2.3.13 we know that ||cn||∞ ≤ 1 and also that
||βSU(p,q)||∞ ≤ rk(X (p, q)). Hence we obtain

|tb(σ)| = ‖tb(σ)cn‖∞ = ‖T̂2
b(C

2(ΦX)(βSU(p,q)))‖∞ ≤ rk(X (p, q)) ,
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since both the transfer map T̂2
b and the pullback map C2(ΦX) are norm non-

increasing.
Ad 2. Assume that the slice φx is chain preserving for almost every x ∈ X.

Fixed a point x ∈ X, if φx is chain preserving and the triple (ξ0, ξ1, ξ2) lies on a
chain, then the triple (φx(gξ0), φx(gξ1), φx(gξ2)) lies on a m-chain for almost every
g ∈ Γ\PU(1, n). Hence, if we fix a triple (ξ0, ξ1, ξ2) ∈ (∂HnC)(3) of positive points
on a chain, it holds cn(ξ0, ξ1, ξ2) = 1 and by hypothesis it follows

βSU(p,q)(φx(gξ0), φx(gξ1), φx(gξ2)) = rk(X (p, q))

for almost every g ∈ Γ\PU(1, n), x ∈ X. In this way we obtain

tb(σ) =

∫
Γ\PU(1,n)

(∫
X
β(φx(gξ0), φx(gξ1), φx(gξ2))dµX(x)

)
dµ(g) =

=

∫
Γ\PU(1,n)

(∫
X

rk(X (p, q))dµX(x)

)
dµ(g) = rk(X (p, q)) ,

as claimed.
For the converse assume tb(σ) = rk(X (p, q)). Fixing a positive triple (ξ0, ξ1, ξ2) ∈

(∂HnC)(3) on a chain, it follows by Equation (4.3) that,

β(φx(gξ0), φx(gξ1), φx(gξ2)) = rk(X (p, q))

for almost every g ∈ Γ \PU(1, n) and x ∈ X. By the σ-equivariance of φ we argue
that

β(φx(gξ0), φx(gξ1), φx(gξ2)) = rk(X (p, q)) ,

for almost every g ∈ PU(1, n) and x ∈ X. By the transitivity of the PU(1, n)-
action on chains, the map φx is chain preserving, as desired.

The same arguments can be used for the negative case.

By Proposition 4.1.4 it follows naturally the next

Definition 4.1.5. In the situation of Setup 4.0.1, a cocycle σ is maximal if tb(σ) =
rk(X (p, q)) = min(p, q).

It is worth mentioning that the notion of maximal measurable cocycles is a
substantial extension of that one of maximal representations. Indeed, given any
maximal ρ : Γ → SU(p, q) in the sense of Pozzetti [Poz15] and any measurable

function f : X → SU(p, q), it is easy to check that the twisted cocycle σfρ is
actually maximal. Moreover, if ρ is Zariski dense then it admits an essentially
Zariski dense boundary map ϕ : ∂HnC → Sp,q [Poz15, Proposition 2.9]. Hence the
induced boundary map φ : ∂HnC×X → Sp,q defined as in Remark 2.4.17 has in fact
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essentially Zariski dense slices. In particular it satisfies the hypothesis of Theorem
3, which can be seen as the converse of what noticed above.

We conclude this section with a characterization of boundary maps with Zariski
dense slices associated to maximal cocycles.

Lemma 4.1.6. In the situation of Setup 4.0.1, if σ is maximal and the slice φx
has essentially Zariski dense image for almost every x ∈ X, then φx is rational
for almost every x ∈ X.

Proof. It follows by [Poz15, Theorem 1.6] since φx is essentially Zariski dense for
almost x ∈ X and it is chain preserving by Proposition 4.1.4.

4.2 Superrigidity for maximal Zariski dense

cocycles

The aim of this section is to prove Theorem 3. As anticipated, the proof follows
the line of that in [Zim80, Theorem 4.1] and is based on both Lemma 4.1.6 and
on the following result about invariant measures on quotients of algebraic groups,
which is an immediate consequence of [BDL17, Theorem 3.9].

Lemma 4.2.1. Let G be a semisimple algebraic R-group and let G0 be a R-
subgroup. Denote by G = G(R) and G0 = G0(R) the associated real points,
respectively. Consider a lattice Γ in G. Then, any measure on G/G0 which is
invariant by left translations in Γ, it is also a G-invariant measure.

Proof. By [BDL17, Theorem 3.9] the stabilizer of a Γ-invariant measure is an
almost algebraic subgroup of G that must coincide with the whole group by Borel
Density Theorem [Zim84, Theorem 3.2.5].

We are now able to give the proof of

Theorem 3. Consider n ≥ 2 and 1 ≤ p ≤ q. Let Γ < PU(1, n) be a torsion-
free lattice and let (X,µX) be an ergodic standard Borel probability Γ-space. If
σ : Γ × X → SU(p, q) is a maximal Zariski dense measurable cocycle, then it
is cohomologous to the restriction of a cocycle associated to a representation ρ :
PU(1, n)→ SU(p, q).

Proof. Assuming the same algebraic structures on ∂HnC and Sp,q as those ones de-
scribed in Example 2.3.10, we denote the set of rational maps between boundaries
by

Q := Rat(∂HnC,Sp,q) .
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As described in Example 2.1.8, there exists a natural action of PU(1, n)×SU(p, q)
on it defined as follows: for each h ∈ PU(1, n), g ∈ SU(p, q), ξ ∈ ∂HnC and f ∈ Q,

((h, g) · f))(ξ) := g · f(h−1ξ) .

Since σ is Zariski dense, by Corollary 3.2.1 we know that there exists a bound-
ary map φ : ∂HnC × X → Sp,q. Being σ also maximal, by Lemma 4.1.6 we can
define the function

Φ : X → Q, x 7→ φx

and by composing it with the projection Q → Q/SU(p, q) we obtain

Φ̂ : X → Q̂ := Q/SU(p, q), x 7→ SU(p, q) · φx .

Since φ is a boundary map for σ, its equivariance implies

Φ(γx) = φγx( · ) = (4.4)

= φ(·, γx) =

= φ(γγ−1·, γx) =

= σ(γ, x)φ(γ−1·, x) =

= σ(γ, x)(γΦ(x)).

In the equation above, notice that γ ∈ Γ acts on the quotient Q̂ via

γ · (SU(p, q) · ψ) := SU(p, q) · (γ · ψ) ,

where γ ·ψ is the rational map (γ ·ψ)(ξ) = ψ(γ−1ξ), for ξ ∈ ∂HnC. As a consequence
of Equation (2.17) we get

Φ(γx) ∈ SU(p, q) · γ · Φ(x) ,

and hence it holds
Φ̂(γx) = γ · Φ̂(x) ,

from which we deduce that Φ̂ is a Γ-equivariant map on the quotient. It follows
that the induced map

̂̂
Φ : X → ̂̂Q := Q/PU(1, n)× SU(p, q), x 7→ PU(1, n)× SU(p, q) · φx.

is Γ-invariant and, since Γ acts ergodically on X, it is essentially constant or,
equivalently, Φ̂ takes values in a single PU(1, n)-orbit. Notice that to conclude

that
̂̂
Φ is essentially constant, we exploited the fact that

̂̂Q is countably separated
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because of the smoothness of the joint action of both PU(1, n) and SU(p, q) on Q
(see Example 2.1.8).

Let x0 ∈ X be a point such that Φ̂ takes value in the orbit PU(1, n) · Φ̂(x0) and
set G0 := StabPU(1,n)(Φ̂(x0)). The latter is an algebraic R-subgroup of PU(1, n)

by [Zim84, Proposition 3.3.2]. Since the orbit PU(1, n) · Φ̂(x0) may be identified
with PU(1, n)/G0 by the smoothness of the action [Zim84, Theorem 2.1.14], we
can compose the map

Φ̂ : X → PU(1, n) · Φ̂(x0) ∼= PU(1, n)/G0 ,

with a measurable section

s : PU(1, n)/G0 → PU(1, n) ,

which exists by [Zim84, Corollary A.8]. The previous composition gives us a map

g : X → PU(1, n)

which is measurable (being the composition of measurable maps) and such that

Φ̂(x) = g(x)Φ̂(x0)

for almost every x ∈ X. By definition, we have

Φ̂(γx) = g(γx)Φ̂(x0)

for every γ ∈ Γ and almost every x ∈ X. On the other hand, by equivariance we
get

Φ̂(γx) = γ(Φ̂(x))

and thus
(γg(x))−1g(γx) ∈ G0.

The induced map
ḡ : X → PU(1, n)/G0

is Γ-equivariant and this ensures the existence of a Γ-invariant finite measure
(by push-forward) on PU(1, n)/G0. By Lemma 4.2.1, such a measure is in fact
PU(1, n)-invariant and, since G0 is a closed subgroup, it coincides with PU(1, n)
again by the Borel Density Theorem [Zim84, Theorem 3.2.5]. Hence Φ̂ is essentially
constant or, equivalently, Φ takes values in a single SU(p, q)-orbit. Denote again
by φ0 an element in the orbit and choose a map

f : X → SU(p, q)
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satisfying

Φ(x) = f(x)φ0.

The measurability of f follows by the same argument we used to prove the mea-
surability of g. By rewriting Equation (4.4) using f we obtain

f(γx)φ0 = σ(γ, x)f(x)γφ0 (4.5)

and then

γ−1φ0 = f(γx)−1σ(γ, x)f(x)φ0. (4.6)

We define

β : Γ×X → SU(p, q), β(γ, x) := f(γx)−1σ(γ, x)f(x)

and, by Equation (4.6), we get

φ0(ξ) = β(γ, x1)−1β(γ, x2)φ0(ξ)

for all γ ∈ Γ and for almost all ξ ∈ ∂H,nC x1, x2 ∈ X. Hence β(γ, x1)−1β(γ, x2) lies
in the stabilizer of the image of φ0. Since the latter is essentially Zariski dense, the
product β(γ, x1)−1β(γ, x2) actually stabilizes Sp,q. Since the pointwise stabilizer
of S (that is the kernel of the action of SU(p, q) on Sp,q) is trivial, it follows that
β does not depend on X and hence it is the cocycle associated to a representation

ρ : Γ→ SU(p, q) .

Moreover, by Equation (4.6), the map φ0 is a boundary map for ρ, it is rational
and has essentially Zariski dense image in SU(p, q). It follows by [Poz15, Theorem
1.1] that ρ is the restriction of a representation

ρ̃ : PU(1, n)→ SU(p, q)

and, finally, σ is cohomologous to the restriction to Γ of the induced cocycle σρ̃,
as desired.

We can now prove that, except when either p = 1 or p = q, there are no
maximal Zariski dense cocycle as in the statement of Theorem 3. Precisely, we
have the following

Proposition 4. Consider n ≥ 2. Let Γ < PU(1, n) be a torsion-free lattice and
let (X,µX) be an ergodic standard Borel probability Γ-space. Assuming 1 < p < q,
there is no maximal Zariski dense measurable cocycle σ : Γ×X → SU(p, q).
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Proof. Following the proof of Theorem 3, given such a maximal cocycle, there
exists a maximal representation ρ : Γ → SU(p, q). By [Poz15, Corollary 1.2], if
p 6= q, such a representation cannot exist.

Since maximal measurable cocycles into SU(p, q) cannot be Zariski dense when
1 < p < q, it is quite natural to ask which could be their algebraic hull. The
following result provides an answer to this question and it can be seen as the
analogous to the characterization given in [Poz15, Theorem 1.3].

Proposition 5. Fix positive integers n ≥ 2 and 1 < p < q. Let Γ < PU(1, n) be a
complex hyperbolic lattice, (X,µX) be an ergodic standard Borel probability Γ-space
and consider a maximal cocycle σ : Γ×X → SU(p, q). Denoting by H the algebraic
hull of σ and by H = H(R)◦, then H splits as the product K×Lnt×Lt, where K is
a compact subgroup of SU(p, q), Lt is a Hermitian Lie group of tube-type and Lnt
is a Hermitian Lie group not of tube-type that splits again as a product of several
copies of SU(1, n).

Proof. Being maximal, σ is tight, that is the pull back along σ preserves the norm
of the Kähler class kbSU(p,q). By [Sav20] the group H is reductive and hence it
splits as the product of a compact factor Lc = K and a non compact factor Lnc.
By splitting Lnc in simple factors L1, . . . , Lk, we notice that the composition of σ
with any projection πi : L1× . . .×Lk → Li is a Zariski dense maximal measurable
cocycle from a complex hyperbolic lattice to Li. It follows by [MS21, Theorem
1.5] that none of the Li’s can be isomorphic to SU(1, 1). Hence the inclusion
Lnc → SU(p, q) satisfies the hypothesis of [Poz15, Proposition 2.5], which states
that each factor Li is either of tube-type or isomorphic to some SU(pi, qi) where
1 ≤ pi ≤ qi. We denote by Lt the tube-type part and we focus on the non-tube-
type factors. Again by [MS21, Theorem 1.5], if one of SU(pi, qi)’s is actually of
the form SU(1, s) (that is pi = 1), we must have that s is equal to q by Zariski
density. By Proposition 4 the Zariski density of an ergodic cocycle taking values
into SU(pi, qi) implies necessarily that pi = 1 and we are done.
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Chapter 5

Infinite dimension and
reducibility

In Chapter 4 we have studied cocycles from complex hyperbolic lattices into the
Hermitian group SU(p, q). In particular we focused on maximal and Zariski dense
cocycles, where the first properties refers to a multiplicative constant that we called
Toledo invariant (Definition 4.1.1), and the second one is related to the notion of
algebraic hull (Definition 2.4.9). In this chapter we study cocycles Γ × X →
PU(p,∞) where Γ is a complex hyperbolic lattice and the target is the isometry
group of the Hermitian symmetric space X (p,∞) introduced in Example 2.3.5. The
approach adopted is different from the one of Chapter 4, and this is motivated by
the fact that the absence of algebraicity does not allow to speak about algebraic
hull, and hence about Zariski density (see also Example 2.3.5). The idea, inspired
also by the work of Duchesne, Lecureux and Pozzetti in [DLP21], is to introduce a
notion of finite dimensional algebraic subgroup of PU(p,∞) and hence the one of
finitely reducible cocycles, that refers to cocycles admitting a representative in its
cohomology class with image contained into a finite dimensional algebraic subgroup
of PU(p,∞). This notion is strictly related to the embedding between Hermitian
symmetric spaces of the form X (p, q) introduced by Definition 2.3.6. In particular
the standard embedding and Proposition 2.3.7 will be an important ingredient to
prove that maximal cocycles are finitely reducible, that is the content of Theorem
6.

After a brief introduction about the Toledo invariant, that is a mere adaption of
Section 4.1, we will introduce finite dimensional algebraic subgroups of PU(p,∞)
and the definition of finite reducibility. Then we will pass to the proof of Theorem
6. Finally, as a consequence of Theorem 1 and of Theorem 6 we will prove Theorem
7, that is version of Mostow rigidity for infinite dimensional cocycles.
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For the original version of the results discussed in this chapter refer to [SS21a].

From now on we will consider a measurable cocycle σ : Γ×X → PU(p,∞) and a
boundary map φ : ∂HnC×X → Ip where Γ is a complex hyperbolic lattice, (X,µX)
is an ergodic standard Borel probability Γ-space and Ip = Ip(p,∞) denotes set of
p-chains in the visual boundary ∂X (p,∞), according to Definition 2.3.11. Since
Ip is a subset of the space of p-dimensional subspaces of an Hilbert space H, we
endow it with the measurable structure coming from the Grassmannian Grp(H).

A crucial difference between the finite case and the infinite one in the context of
symmetric spaces is that PU(p, q) is locally compact for q <∞ whereas PU(p,∞)
is not. To overcome this problem we will deal with the bounded cohomology
groups H•b(PU(p,∞);R), namely its continuous bounded cohomology if we endow
PU(p,∞) with the discrete topology.

We recall that, by Example 2.3.5, the space X (p,∞) is an Hermitian symmet-
ric space and hence we can exploit the material introduced in Section 2.3. Pre-
cisely, as in the finite dimensional setting, we have a cohomology class kbPU(p,∞) ∈
H2

b(PU(p,∞);R) called bounded Kähler class of PU(p,∞), that satisfies

||kbPU(p,∞)||∞ = rkX (p,∞) = p. (5.1)

Exploiting both the pullback defined by Equation (2.22) and the transfer map
defined by Equation (4.1) and since H2

cb(PU(1, n);R) ∼= R, we have that

T2
b ◦H2

b(σX)(kbPU(p,∞)) = tb(σ)[cn] (5.2)

for some real number tb(σ) that we call Toledo invariant associated to σ (see also
Definition 4.1.1). As in the finite dimensional case (Definition 4.1.5), since both
T2
b and H2

b(σX) are norm non-increasing, then |tb(σ)| ≤ p we can define maximal
cocycles as those with Toledo invariant equal to p.

The analogous of Equation 4.3 in this context can be obtained by rewriting
Equation (5.2) as follows

T2
b ◦H2(ΦX)([β]) = tb(σ)[cn]

and hence getting the analogous of Equation (4.3)

∫
Γ\PU(1,n)

∫
X

β(φ(ḡξ0, x), φ(ḡξ0, x), φ(ḡξ0, x))dµX(x)

 dµΓ\PU(1,n)(ḡ) = (5.3)

= tb(σ) · cn(ξ0, ξ1, ξ2)

that holds for every triple of distinct points (ξ0, ξ1, ξ2) in ∂HnC ([Poz15, SS21c]).
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5.1 Algebraic subgroups of GL(H).

In this section we describe a notion of algebraicity for subgroups of the group of
bounded linear operators of an infinite dimensional Hilbert space. This allows to
recover a notion of algebraic subgroups of PU(p,∞) which a priori is not defined.
We first introduce the notion of polynomial map.

Definition 5.1.1. A map f : L(H)→ R is a polynomial map if it is a finite sum
of maps f1, . . . , fk where for each i = 1, . . . , k there exists hi ∈ Lni(L(H),R) such
that fi(g) = hi(g, . . . , g) for every g ∈ L(H). The degree of f is the maximum of
the ni’s.

Now, in parallel to the finite dimensional case, we define an algebraic subgroup
as the set of the zero locus of some family of polynomial maps. More precisely,

Definition 5.1.2. A subgroup G of GL(H) is algebraic if there exists a positive
integer n and family P of polynomial maps of degrees at most n such that

G = {g ∈ GL(H) | P (g, g−1) = 0 , ∀P ∈ P}.

A strict algebraic subgroup is a proper algebraic subgroup of GL(H).

To define a linear algebraic subgroup of GL(n,R) we consider polynomial equa-
tions in matrix coefficients. The generalization to infinite dimension of this notion
is the content of the following definition (see [DLP21, Definition 3.4]).

Definition 5.1.3. Let H be an infinite dimensional Hilbert space and choose
an orthogonormal basis (en)n∈N. A homogeneous polynomial map P : L(H) ×
L(H) → R is standard of degree d if there exist two naturals `,m such that
` + m = d and a family of real coefficients (λi)i∈N2` and (µj)j∈N2m such that for
any (M,N) ∈ L(H) × L(H) we have that P can be expressed as the absolute
convergent series

P (M,N) =
∑

i∈N2`,j∈N2m

λiµjPi(M)Pj(N)

where Pi(M) =
`−1∏
k=0

< Mei2k , ei2k+1
> and Pj(N) =

m−1∏
k=0

< Mei2k , ei2k+1
>.

A standard polynomial map is a finite sum of standard homogeneous polynomial
maps.

An algebraic subgroup of L(H) is standard if it is defined by a family of stan-
dard polynomial maps.
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Hence we have the following interesting property, that shows how proper stan-
dard algebraic subgroups are closely related to finite dimensional subspace of H.

Lemma 5.1.4 ([DLP21, Lemma 3.6]). If H is a strict standard algebraic group,
then there exists a finite dimensional subspace E of H such that the the group
HE := {g ∈ H | g(E) = E , g|E⊥ = Id} is a strict algebraic subgroup of GL(E).

We call the subspace E support of the strict algebraic subgroup H and the
group HE the E-part of H. We are now ready to give the following

Definition 5.1.5. A finite dimensional algebraic subgroup is a standard algebraic
subgroup of GL(H) of the form HE .

Hence, it follows by Lemma 5.1.4 the following characterization of finite di-
mensional algebraic subgroups.

Lemma 5.1.6. If E is a finite dimensional subspace of H and H is a subgroup
of GL(H) contained in GL(E), then H is algebraic in GL(E) if and only if it is
finite dimensional algebraicin GL(H).

Proof. If H is finite dimensional algebraicin GL(H) then H = HE and by Lemma
5.1.4 it is algebraic in GL(E). Conversely, if H is algebraic in GL(E), it is also
an algebraic subgroup in GL(H). Moreover, any polynomial which defines H on
GL(E) can be turned into a polynomial on the entries of the matrices. Hence the
same polynomials, seen as standard polynomial maps in the sense of Definition
5.1.3, define a standard algebraic subgroup in GL(H). Since it fixes E⊥ then it
coincides with its E-part and we are done.

We come back to the groups U(p, q). It is well know that the group U(p,∞) is
algebraic subgroup of GL(H). Indeed, if V0 := Span{e0, . . . ep}, we have that

U(p,∞) = {g ∈ GL(H) | g∗Idp,∞g = Idp,∞}

where Idp,∞ is the linear map IdV0 ⊕−IdV ⊥0
. Since the map (A,B) 7→ A∗Idp,∞B−

Idp,∞ is bilinear on L(H)× L(H) then U(p,∞) is algebraic in GL(HR) and hence
in GL(H) (see [DLP21] for more details and for the proof that GL(H) is actually
standard). By Proposition 5.1.6 we can say immediately that the groups U(p, q)
with q < ∞, seen as subgroups of U(p,∞) inside GL(H), are actually finite di-
mensional algebraicsince they stabilize the embedding of X (p, q) inside X (p,∞).

Since we work with the quotients PU(p, q) instead of the groups U(p, q), we
call finite algebraic a subgroup of PU(p,∞) if its preimage under the projection
U(p,∞)→ PU(p,∞) is finite dimensional algebraicin GL(H) in the sense of Defi-
nition 5.1.5.
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5.2 Finite reducibility of a cocycle

The final aim of this section is to prove Theorem 6. Before passing to the proof,
we need to introduce the notion of reducibility of a cocycle. In fact, given cocycle
σ : Γ × X → PU(p,∞) one can asks when the image of σ is contained in some
suitable subgroup of PU(p,∞). More precisely, definitions and results given in
Section 5.1 allow us to define a class of cocycles for which some nice algebraic
properties of the image are recovered.

Definition 5.2.1. A cocycle σ : Γ×X → PU(1, n) is finitely reducible if it admits
a cohomologous cocycle with image contained in a finite dimensional algebraic
subgroup of PU(p,∞).

Before proving the main theorem, we recall by [DLP21] the following

Definition 5.2.2. A measurable map φ : ∂HnC → Ip almost surely maps chains to
chains if for almost every chain C ⊂ ∂HnC there is a p-chain T ⊂ Ip such that for
almost every point ξ ∈ C, φ(ξ) ∈ T .

An equivalent condition to the one above, which corresponds to the one given
in Definition 4.1.3 in the finite dimensional case, is to check that for almost every
pair (ξ0, ξ1) ∈ ∂HnC × ∂HnC the points φ(ξ0) and φ(ξ1) are opposite and, for almost
every η ∈ Cξ0,ξ1 , the subspace φ(η) is contained in 〈φ(ξ0), φ(ξ1)〉 [Poz15, Lemma
4.2].

Before passing to the proof of Theorem 6, we need the following result about
maps that almost surely maps chains to chains, which is a slight refinement of
[DLP21, Proposition 6.2]. Since there is a natural embedding ∂HnC ⊂ PnC, we can
say that a set of k ≤ n + 1 points in ∂HnC is generic if, for every 1 < h ≤ k, any
subset of h points does not span a (h− 2)-dimensional subspace.

Lemma 5.2.3. Let φ : ∂HnC → Ip be a measurable map that almost surely maps
chains to chains. Then there exists a unique minimal totally geodesic embedded
copy of X (p, q) ⊂ X (p,∞) that contains the image of almost every (n + 1)-tuple
of generic points in ∂HnC. Moreover, p ≤ q ≤ np.

Proof. We argue by induction on n. The case n = 1 is clear, since there is only one
chain C in ∂H1

C and for almost every η1, η2 ∈ C the subspace 〈φ(η1), ξ(η2)〉 ⊂ H
defines a copy of X (p, p) ⊂ X (p,∞). The fact that φ almost surely maps chains
to chains implies that for almost every ξ in ∂H1

C we have φ(ξ) < 〈φ(η1), ξ(η2)〉.
Assume that the statement holds for n − 1. Thanks to the construction in

[DLP21], we can define a full-measure subset G of the set of (n + 1)-tuple of
points in general position of ∂HnC such that for every (ξ0, . . . , ξn) ∈ G the following
conditions hold:

93



• φ|〈ξ0,...,ξn−1〉 almost surely maps chains to chains;

• for almost every η ∈ 〈ξ0, . . . , ξn−1〉 then 〈φ(η), φ(ξn−1)〉 is a 2p-dimensional
subspace on which the restriction of Q has signature (p, p);

• for almost every η ∈ 〈ξn−1, ξn〉 then 〈φ(η), φ(ξn−1)〉 is a 2p-dimensional sub-
space on which the restriction of Q has signature (p, p);

• for almost every η1 ∈ 〈ξn−1, ξn〉 and η2 ∈ 〈ξ0, . . . , ξn−1〉 the space 〈φ(η1), φ(η2)〉
has dimension 2p and the restriction of Q has signature (p, p).

As proved in [DLP21, Proposition 6.2], for almost every (ξ0, . . . , ξn) ∈ G the
space

Vξ0,...,ξn := 〈φ(ξ0), . . . , φ(ξn)〉

contains φ(η) for almost every η ∈ ∂HnC. Furthermore, the restriction of Q to
Vξ0,...,ξn is non-degenerate of signature (p, q) with p ≤ q ≤ np.

We now prove that almost every pair of tuple ((ξ0, . . . , ξn), (η0, . . . , ηn)) ∈ G2

give the same subspace. We first note that, since Vξ0,...,ξn contains the image
of almost every point in ∂HnC, it clearly contains φ(η0), . . . , φ(ηn), and hence
〈φ(η0), . . . , φ(ηn)〉, for almost every (η0, . . . , ηn) ∈ G. Hence there exists a full-
measure subset Q ⊂ G × G such that

Vξ0,...,ξn > Vη0,...,ηn

for almost every ((ξ0, . . . , ξn), (η0, . . . , ηn)) ∈ Q. By taking the measure-preserving
idempotent function of G×G which swap the tuple, one gets a second full-measure
subsets Q. Hence the intersection Q∩Q is a full-measure subset of G ×G of pairs
(ξ0, . . . , ξn), (η0, . . . , ηn) such that

Vξ0,...,ξn = Vη0,...,ηn ,

which implies the uniqueness.
A similar argument can be used to prove minimality, namely that every linear

subspace W < H containing the image of a full-measure subset of ∂HnC must
contain the spaces constructed above.

Remark 5.2.4. It seems natural to investigate the effective dimension of the copy
of ∂X (p, q) which contains the essential image of φ provided by Lemma 5.2.3. For
instance, given a chain preserving map ψ : ∂HnC → ∂HpC, Burger and Iozzi [BI07]
proved the following dichotomy: if the image of almost every triple (ξ0, ξ1, ξ2) of
generic points is generic as well, then ψ coincides almost everywhere with the map
induced on boundaries by an isometric holomorphic embedding HnC → HpC. If not,
then the image is essentially contained into a chain in ∂HpC.
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In our more general context, we do not know if such a dichotomy holds. How-
ever, in our setting, the two cases described above can be interpreted as the limit
cases as follows. In fact, if φ : ∂HnC → Ip as in Lemma 5.2.3 sends almost every
(n+ 1)-tuple of generic points of ∂HnC to (n+ 1) generic points of Ip, then we have
that the essential image of φ is contained in ∂X (p, np). On the other hand, by
the same argument used in [BI07, Proposition 2.2], if there is a positive measure
subset of triple in (∂HnC)3 not on a chain whose image lies on a chain, then the
image of φ is essentially contained into one copy of ∂X (p, p). We point out that
this two cases do not produce a dichotomy, but a characterization of the cases
when q = p and q = np in the notation of Lemma 5.2.3.

Now we are ready to give the proof of

Theorem 6. Let Γ < PU(1, n) be a complex hyperbolic lattice with n ≥ 1 and let
(X,µX) be an ergodic standard Borel probability Γ-space. Consider a measurable
cocycle σ : Γ×X → PU(p,∞) with p ≥ 1 and suppose there exists a boundary map
φ : ∂HnC ×X → Ip. If σ is maximal, then it is finitely reducible.

Proof. By Equation (5.3) and using [DLP21, Corollary 6.1], it follows that almost
every slice φx almost maps chains to chains. Hence, by Lemma 5.2.3, for almost
every x ∈ X there exists a unique minimal totally geodesic embedding Xx(p, qx) ⊂
X (p,∞) such that EssIm(φx) ⊂ ∂Xx(p, qx) for some p ≤ qx ≤ np. Moreover, the
equivariance of φ implies that

σ(γ, x)Xx(p, qx) = Xγx(p, qγx)

for almost every γ ∈ Γ and x ∈ X and, by ergodicity, we have that the dimension
of the Xx(p, qx)’s is essentially constant, namely qx = q for almost every x ∈ X.
The fact that the function x 7→ dim(Xx(p, qx)) is measurable follows from the
measurability of φ and from an application of Fubini’s theorem in the construction
of the Xx(p, qx)’s described in Lemma 5.2.3. In fact, one can find a (n + 1)-
tuple (ξ0, . . . , ξn) of points in ∂HnC such that, for almost every x ∈ X, the space
〈φx(ξ0), . . . , φx(ξn)〉 contains φx(η) for almost every η ∈ ∂HnC.

If we denote by ιx the isometric linear map that induces the embedding Xx(p, q) ⊂
X (p,∞), the uniqueness of Xx(p, q), together with the σ-equivariance of φ, implies
that the map

X → PU(p,∞)/StabPU(p,∞)(V0) , x 7→ Xx(p, q) (5.4)

is measurable (with respect to the measurable structure discussed in Remark 2.3.8)
and σ-equivariant. Here StabPU(p,∞)V0 is the subgroup of PU(p,∞) preserving the
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subspace V0. Now, thanks to the differentiable structure of the group PU(p,∞),
we can compose the function in Equation (5.4) with a measurable section

PU(p,∞)/StabPU(p,∞)(V0)→ PU(p,∞)

in order to obtain a measurable map

f : X → PU(p,∞), f(x) = g−1
x .

By construction, f(x) sends Xx(p, q) to the standard embedded copy X0(p, q) ⊂
X (p,∞).

According to the notation of the Definition 2.4.6, we consider the twisted co-
cycle σf : Γ×X → PU(p,∞) defined as

σf (γ, x) := f(γx)−1σ(γ, x)f(x)

and the associated twisted boundary map φf : ∂HnC ×X → Ip which is defined as
follows

φf (ξ, x) := f(x)−1φ(ξ, x)

for almost every ξ ∈ ∂HnC and x ∈ X. Now, by definition of f , for almost every
x ∈ X the image of almost every slice φx is contained in the boundary of a fixed
X (p, q).

For almost every x ∈ X, denote by Ex the full measure set of points ξ in ∂HnC
such that φfx(ξ) ∈ ∂X (p, q). Consider now the set E =

⋃
x∈X

Ex × {x} (that is of

full measure in ∂HnC×X, by Fubini’s theorem) and the diagonal action of Γ given
by

γ(ξ, x) = (γξ, γx).

Since Γ is countable, we find an invariant full measure subset E such that φf (E) ⊂
∂X (p, q). More precisely, we set

E =
⋂
γ∈Γ

γE ,

where γ acts diagonally. Being the intersection of full measure sets, it is clear
that E has full measure. Now, since the image of a full measure set under φf

is contained in the boundary of X0(p, q), it follows that the image of the twisted
cocycle σf is contained in StabPU(p,∞)V0, which is finite dimensional algebraic as
desired.

Remark 5.2.5. The descending chain condition that holds for Noetherian spaces
(as algebraic groups are), allows to define the algebraic hull for cocycles into al-
gebraic groups. This can not be adapted for PU(p,∞), namely there exits no
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well-defined minimal strict algebraic group containing the image of a twisted co-
cycle. Nevertheless, by Theorem 6, any maximal cocycles has a representative in
its cohomology class whose image is contained into the embedding of PU(p, q) in
PU(p,∞), which is algebraic. For such particular measurable cocycles, our result
recover a sense of algebraicity.

5.3 Consequences of finite reducibility

The aim of this last section is to relate Theorem 1 and Theorem 6.
We consider the setting of Theorem 6, namely Γ is a complex hyperbolic lattice,

(X,µX) is an ergodic standard Borel probability Γ-space and σ : Γ×X → PU(p,∞)
is a maximal cocycle. If we assume that σ is non-elementary, Theorem 1 provides
a boundary map φ : ∂HnC × X → ∂X (p,∞). Moreover, by Remark 3.2.2 such a
map takes values into Ik(p,∞) for some k ≤ p. Unfortunately, this is not sufficient
to prove reducibility as in Theorem 6, since such k might be strictly less then p.

However, for cocycles σ : Γ×X → PU(1,∞) one can exploit the geometry of
X (1,∞) = H∞C and of its boundary to prove

Theorem 7. Let Γ < PU(1, n) be a complex hyperbolic lattice with n ≥ 1 and
let (X,µX) be an ergodic standard Borel probability Γ-space. Any maximal cocycle
σ : Γ×X → PU(1,∞) is cohomologous to a cocycle preserving a copy of HnC ⊂ H∞C
and acting on it via the standard lattice embedding.

Proof. We first prove that maximal cocycles cannot be elementary. In fact, by
ergodicity, a σ-equivariant family of flats can be made of points or lines. In both
cases one can twist σ into a cocycle whose image is contained either in the stabilizer
of a point or a geodesic, which are both amenable. Since amenable groups have
trivial bounded cohomology, we have a contradiction to maximality.

Since σ is not elementary, Theorem 1 provides a boundary map ∂H×X → ∂H∞C
and then we can apply Theorem 6. Hence we have that σ is cohomologous to a
cocycle σ̃ whose image is in the stabilizer of an embedded copy of HnC in H∞C . The
stabilizer StabPU(p,∞)(HnC) is an almost direct product with one factor isomorphic
to PU(1, n). By composing with the projection on such factor we get a maximal
cocycle. Hence we can apply [MS21, Theorem 1.5] and we are done.

In view of Remark 3.2.2 and of Theorem 7, it is natural to ask whether Theorem
1 provides a boundary map in the general setting of Theorem 6. However, since
we do not have a complete answer, we postpone the discussion to Chapter 7 where
we summarize some questions that remain unsolved.
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Chapter 6

Parametrized Kähler class

The main objects of this chapter are Zariski dense measurable cocycles Γ×X →
G where Γ is a finitely generated group, (X,µX) is an ergodic standard Borel
probability Γ-space and G = Isom(X )◦ for an irreducible Hermitian Lie symmetric
space X not of tube-type. Our aim is to characterize such cocycles in terms of
the pullback of the bounded Kähler class of G defined by the Bergmann cocycle
(see Definition 2.3.12). As we pointed out in Section 2.4.1, equivalence classes of
measurable cocycles is nothing but the first cohomology group H1

ZD(Γ y X;G) of
the orbital equivalence relation given by the Γ-action on X with coefficient in G.
We will refer to such a group as the Zariski dense Eilenberg-MacLane cohomology
of Γ, since it can also be identified with the group H1(Γ; Meas(X,G)). With this
notation, our characterization (Theorem 8) defines an inclusion

H1
ZD(Γ y X;G)→ H2

b(Γ; L∞(X;R)) , [σ] 7→ H2
b(σ)(kbG). (6.1)

Theorem 8 is the natural generalization of [BIW10, Theorem 1] to measurable
cocycles. Since [BIW10, Theorem 1] follows from the more general [BIW10, Theo-
rem 2], the same thing will happen in our case, precisely we will deduce Theorem
8 from a more general result (see Theorem 6.1.4). In particular, we will exploit the
boundary map provided by Theorem 2 and the characterization of non-tube-type
domain given in terms of the complex Hermitian triple product in Section 2.3.3.

For the original version of the results contained in this chapter refer to [SS21b].

6.1 Zariski dense Eilenberg-MacLane coho-

mology

Before starting, we need to introduce some notions. First of all, we define the
parametrized Kähler class of a cocycle.
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Definition 6.1.1. In the setting of Theorem 8, the parametrized Kähler class
associated to σ is the class H2

b(σ)(kbG) ∈ H2
b(Γ; L∞(X;R)).

Remark 6.1.2. The name parametrized Kähler class recall the dependence of the
pull back of kbG along σ on a parameter space, namely X. Such a denomina-
tion should recall the work of Löh and Pagliantini [LP16], where the authors
describe the theory of parametrized simplicial volume and introduce the notion
parametrized fundamental class. We warn the reader that we are not claiming
that our theory is dual to the one due to Löh and Pagliantini in the context of
simplicial volume.

For our purposes we need to study more carefully the cohomology class in
degree two.

Lemma 6.1.3. Let Γ a finitely generated group and let (X,µX) be a standard
Borel probability space. If B is a Γ-boundary, then

H2
b(Γ; L∞(X;R)) ∼= ZL∞w∗,alt(B

3; L∞(X;R))Γ ,

where the letter Z denotes the set of cocycles.

Proof. For every k ∈ N we have the following

L∞w∗(B
k; L∞(X;R))Γ ∼= L∞(Bk ×X;R)Γ ,

where Γ acts on Bk × X diagonally [Mon01, Corollary 2.3.3]. Recalling that a
Γ-boundary is also a strong boundary in the sense of Burger and Monod [BF14b,
Remarks 2.4], every essentially bounded weak-∗ measurable function on B×B×X
which is Γ-invariant must be essentially constant [MS04, Proposition 2.4]. Since
an alternating function that is constant vanishes, we have that

L∞w∗,alt(B
2; L∞(X;R))Γ = 0 .

This shows that there are no coboundaries in dimension two and so we get the
result.

We are now ready to prove the following result, that is an adaption of the
arguments used in [BIW07, Theorem 4] and which implies Theorem 8.

Theorem 6.1.4. Let Γ be a finitely generated discrete group and let (X,µX) be
an ergodic standard Borel probability Γ-space. Let {σi : Γ×X → Gi}, i = 1, . . . , n
be a family of Zariski dense measurable cocycles into Lie groups Gi = Isom(Xi)◦
where the Xi’s are irreducible Hermitian symmetric spaces not of tube-type. If the
cocycles are pairwise inequivalent, then the subset

{H2
b(σi)(k

b
Gi), 1 ≤ i ≤ n} ⊂ H2

b(Γ; L∞(X;R))

is linearly independent over L∞(X;Z).
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Notice that we are using the notion of equivalence introduced by Definition
2.4.8.

Proof of Theorem 6.1.4. Suppose the existence of coefficients mi ∈ L∞(X;Z), i =
1, . . . , n such that

n∑
i=1

miH
2
b(σi)(k

b
Gi) = 0.

As a consequence of Corollary 3.3.3, we get a boundary map φi : B×X → SGi
from a Γ-boundary B into the Shilov boundary SGi of the group Gi. By the com-
mutativity of the Diagram (2.25), the cocycles C2(Φi)(βGi) represent canonically
the pullback along each σi. Additionally, being alternating, by Lemma 6.1.3 there
are no coboundary in degree two. Hence we get the following equation

n∑
i=1

mi(x)βGi(φi(b1, x), φi(b2, x), φi(b3, x)) = 0 (6.2)

that holds for almost every triple (b1, b2, b3) ∈ B3 and for almost every x ∈ X. As
a direct consequence of Equation (2.11) it follows that

n∏
i=1

〈〈φi(b1, x), φi(b2, x), φi(b3, x)〉〉mi(x)
C = 1 (6.3)

for almost every triple (b1, b2, b3) ∈ B3 and for almost every x ∈ X.
For any i, Corollary 3.3.3 allows to choose φi in such a way that the subset of

points (x, b1, b2) ∈ X × B × B with (φi(b1, x), φi(b2, x)) ∈ S(2)
Gi

is of full measure.
Hence, since a finite intersection of full measure sets is still of full measure, we can

fix a point x0 ∈ X and a pair (b1, b2) ∈ B2 such that (φi(b1, x0), φi(b2, x0)) ∈ S(2)
Gi

for every i = 1, . . . , n.

Exploiting the transitivity of Gi on pairs in S(2)
Gi

, we can identify S(2)
Gi

with
the quotient Gi/StabGi(φi(b1, x0), φi(b2, x0)) by the stabilizer in Gi of the pair

(φi(b1, x0), φi(b2, x0)) ∈ S(2)
Gi

. Furthermore, the map X → S(2)
Gi

that takes x into
the pair (φi(b1, x), φi(b2, x)) is measurable by the measurability of φ. Hence the
composition

X → S(2)
Gi
→ Gi/StabGi(φi(b1, x0), φi(b2, x0))

is measurable as well and, composing again with the measurable section

Gi/StabGi(φi(b1, x0), φi(b2, x0))→ Gi

given by [Zim84, Corollary A.8], we get a family of measurable functions

gi : X → Gi

such that, setting φgii (b, x) := gi(x)−1φi(b, x), we have
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• φgii (b1, x) = φi(b1, x0) for almost every x ∈ X;

• φgii (b2, x) = φi(b2, x0) for almost every x ∈ X.

Moreover, Equation (6.3) implies that

n∏
i=1

〈〈φgii (b1, x), φgii (b2, x), φgii (b3, x)〉〉mi(x)
C = 1 (6.4)

holds for almost every b3 ∈ B and for almost every x ∈ X. Rewriting (6.4) we get
that

n∏
i=1

〈〈φi(b1, x0), φi(b2, x0), φgii (b3, x)〉〉mi(x)
C = 1 (6.5)

holds for almost every b3 ∈ B and for almost every x ∈ X.
We define the cocycle

σ : Γ×X →
n∏
i=1

Gi, (γ, x) 7→ (σgii (γ, x))i

and its boundary map

φ : B ×X →
n∏
i=1

SGi , (b, x) 7→ (φgii (b, x))i.

and we denote by L the algebraic hull of σ.
Now, following Lemma 2.3.17, we denote by Oi := Oφi(b1,x0),φi(b2,x0) ⊂ SGi and

by Pi = Pφi(b1,x0),φi(b2,x0). Then we have

EssIm(φx)
Z ∩

n∏
i=1

Oi ⊂

{
(η1, . . . , ηn) ∈

n∏
i=1

Oi ,
n∏
i=1

P
mi(x)
i (ηi) = 1

}
,

where φx denotes the slice φ(·, x). Applying Lemma 2.3.17 to almost every x ∈ X,

it follows that EssIm(φx)
Z

is a proper Zariski closed subset of
n∏
i=1
Oi. Additionally

the family {Vx} is σ-equivariant. By a slight modification of the argument in
Proposition 3.3.1 this must implies that σ cannot be Zariski dense, otherwise the
slices φx would have been Zariski dense. Thus we conclude that L must be a

proper subgroup of
n∏
i=1

Gi.

Now, since every σi is Zariski dense, also every σgii is, and the projection πi of
L on Gi is onto for every i. Moreover the kernel of such projection is a normal
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subgroup of the product
∏
j 6=i

Gj and, since L �
n∏
j=1

Gj , then Ker(πi) is also a proper

subgroup of
∏
j 6=i

Gj . Following [BIW07], the fact that Gi’s are simple non Abelian

implies the existence of at least one isomorphism s : Gi → Gj for some i 6= j such
that s ◦ σi ' σj , which contradicts the pairwise inequivalence of the σi’s.

As anticipated, Theorem 6.1.4 implies

Theorem 8. Let Γ be a finitely generated group, let (X,µX) be an ergodic standard
Borel probability Γ-space and consider a Zariski dense measurable cocycle σ : Γ×
X → G where G = Isom(X )◦ and X is an irreducible Hermitian symmetric space
not of tube-type. Then the class H2

b(σ)(kbG) in H2
b(Γ; L∞(X;R)) is non-zero and it

is a complete invariant of the cohomology class of σ.

Proof. The non-vanishing of H2
b(σ)(kbG) is a direct consequence of Theorem 6.1.4.

It remains to prove that two cocycles σ1, σ2 : Γ × X → G = Isom(X )◦ have
the same parametrized Kähler class if and only if they are cohomologuous. One
direction follows immediately by Proposition 2.4.19. We now prove the other
implication. Assuming that H2

b(σ1)(kbG) = H2
b(σ2)(kbG), Theorem 6.1.4 provides an

automorphism s : G → G such that s ◦ σ1 ' σ2, that is s ◦ σ1 = σf2 for some
measurable function f : X → G. Computing the pull back of the bounded Kähler
class of G and exploiting the G-invariance, we obtain that

H2
b(σ2)(kbG) = H2

b(σf2 )(kbG)

= H2
b(s ◦ σ1)(kbG)

= ε(s)H2
b(σ1)(kbG)

= ε(s)H2
b(σ1)(kbG)

where the ε(s) is the sign of the isometry s, according to the fact that s is either
holomorphic or antiholomorphic. Since H2

b(σ2)(kbG) 6= 0, then ε(s) = 1 and s ∈
Isom(X )◦ = G and hence

sσ1s
−1 = σf2 .

The thesis follows by setting

f̃ : X → G , f̃(x) := f(x)s

and by the fact that

σ1 = σf̃2 ' σ2.
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Following [BIW07], in the setting of Theorem 8 we can denote by RepZD(Γ;G)
the set of Zariski dense representations of Γ in G modulo conjugation. By [BIW07,
Theorem 3] the map

K : RepZD(Γ;G)→ H2
b(Γ;R) , [ρ] 7→ H2

b(ρ)(kbG)

is injective. Moreover, the inclusion{
Zariski dense representations

Γ→ G

}
↪→
{

Zariski dense cocycles
Γ×X → G

}
,

ρ 7→ σρ.

induces a map
RepZD(Γ;G)→ H1

ZD(Γ y X;G).

Finally we denote by

KX : H1
ZD(Γ y X;G)→ H2

b(Γ; L∞(X;R)) , [σ] 7→ H2
b(σ)(kbG)

the map that associates to every cohomology class of a cocycle σ : Γ×X → G its
parametrized Kähler class. Putting together the above maps and the map induced
in cohomology by the inclusion of coefficients R→ L∞(X;R), we get the following

Corollary 6.1.5. In the setting of Theorem 8, we have a commutative diagram

RepZD(Γ;G)
K //

��

H2
b(Γ;R)

��
H1

ZD(Γ y X;G)
KX // H2

b(Γ; L∞(X;R)).

6.2 Consequences of the main theorem

The aim of this last section is to present some consequences of Theorem 8 when
Γ belongs to specific families of finitely generated groups. We notice that Savini
has recently studied the elementarity properties of cocycles with values into the
homeomorphisms of the circle when Γ is either a higher rank lattice [Sav21, Theo-
rem 4] or an irreducible subgroup of a product [Sav21, Theorem 3]. Here we want
to follow the same line.

We start with the higher rank case. Let Γ < H = H(R) be a lattice where
H is a connected, simply connected, almost simple R-group of rank at least two.
In this context Zimmer’s superrigidity [Zim80] applies, hence any Zariski dense
cocycle σ : Γ×X → G is induced by a representation ρ : Γ→ G, namely we have
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an isomorphism H1
ZD(Γ y X;G) ∼= RepZD(Γ, G). Hence by applying [BIW07,

Corollary 6] the image of K and KX coincide and∣∣H1
ZD(Γ y X;G)

∣∣ ≤ dim H2(Γ;R).

In this way we have a bound on the number of Zariski dense cohomology classes.
We move now to the case of products. In the setting of Theorem 8, suppose

that

Γ < H =
n∏
i=1

Hi ,

with n ≥ 2, where each factor Hi is a locally compact and second countable group
with H2

cb(Hi;R) = 0. We suppose that Γ is irreducible in the sense of Burger and
Monod, namely we ask that each projection of Γ in Hi is dense in Hi. Additionally,
we set

H ′i =
∏
j 6=i

Hi

for i = 1, . . . , n and we assume that each H ′i acts ergodically on X (that is H acts
on X irreducibly in the sense of [BM02]). By [BM02, Corollary 15], we get that
the map

H2
cb(Γ;R)→ H2

cb(Γ; L∞(X;R))

induced by the inclusion of coefficients R ↪→ L∞(X;R) defined in (2.7) is an
isomorphism. Combining with the inclusion in Equation (6.1), we get an inclusion

H1
ZD(Γ; Meas(X,G)) ↪→ H2

b(Γ;R).

Moreover, by [BM02, Theorem 16], we get a decomposition

H2
b(Γ;R) ∼=

n⊕
i=1

H2
cb(Hi;RH

′
i) ∼=

n⊕
i=1

H2
cb(Hi;R) (6.6)

where the equality on the right holds thanks the irreducibility of G on X. Hence
we get the following result that should be compared with [Sav21, Theorem 3].

Proposition 9. Let n ≥ 2. Consider an irreducible lattice Γ <
n∏
i=1

Hi into a

product of locally compact second countable groups with H2
cb(Hi;R) = 0 for i =

1, . . . , n. Let (X,µX) be an irreducible standard Borel H-space and assume that
the Γ-action is ergodic. Then there is no Zariski dense cocycle σ : Γ × X → G
where G = Isom(X )◦ and X is any Hermitian symmetric space not of tube-type.
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Chapter 7

Open questions and further
directions

We close our dissertation by summarizing some questions that remain unsolved
and by suggesting some possible approaches.

Boundary maps in the set of p-chains. In the general setting of Theorem
6, as pointed out in Remark 3.2.2, Theorem 6 provides a boundary map into some
Ik(p,∞). In [DLP21] the authors exploited Proposition 2.5.4 to rule out the case
k < p for Zariski dense representations. In the tentative to adapt such argument
in the context of cocycles, we stuck in the final part. Precisely, following the proof
of [DLP21, Theorem 1.7], one can construct a σ-equivariant family {Wx}x∈X of
non-trivial subspaces of ΛdH for some d. Since the stabilizer of such spaces are
standard algebraic subgroups, it would be enough to twist the cocycle in order to
get a cocycle with image contained in one of this stabilizers. However, the action of
PU(p,∞) on the subspaces (a priori of infinite dimension) of ΛdH seems to us quite
mysterious. Even before, one should clarifies the measurable structures involved.
To conclude as in the proof of Theorem 6 or [SS21c, Theorem 2] one should identify
the PU(p,∞)-orbit of some Wx with the quotient PU(p,∞)/StabPU(p,∞)Wx, for
instance by proving that the action is smooth, which is also not clear to us.

In conclusion, it is plausible that a natural notion of Zariski density for cocycles
in PU(p,∞) that extends the one given in [DLP21] exists, and maybe it can be
the suitable assumption in order to prove that a boundary map takes values in
the set of maximal chains. However, we do not know either how to formalize such
concept and how to approach this problem.
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Bounds for the number of Zariski dense cocycles. As a consequence
of the injection H1(Γ y X;H) ↪→ H2

b(Γ,L∞(X;H)) provided by Theorem 8, in
Section 5.3 we provided a bound for the number of Zariski dense cocycles Γ ×
X → H when H is not of tube-type (see Proposition 9). However, this is only
a partial generalization of the bounds given by Burger–Iozzi [BI04], since they
proved that, the number of Zariski dense representations from a finite generated
group Γ with H2

b(Γ;R) < +∞ into SU(p, q) with p 6= q is finite. The previous result
is based on [BI04, Proposition 9.1], which asserts that the image of a continuous
path in the space RepZD(Γ,SU(p, q)) with p 6= q contains an uncountable subset
which is independent over R. As observed by Burger Iozzi and Wienhard [BIW07],
this can be straightforwardly adapted to the case of Zariski dense representations
in a generic Hermitian group G not of tube-type, so that one can deduce the
analogous bound for the cardinality of RepZD(Γ, G). However, we do not know
how to adapt these arguments in the context of cocycles. A similar result to [BI04,
Proposition 9.1] for cocycles would imply a generalization of [BIW07, Corollary 5],
hence would provide an estimate for the maximal number of Zariski dense cocycles
into Hermitian groups not of tube-type.

Superrigidity of maximal cocycles. In the context of representations of
complex hyperbolic lattices Γ < PU(1, n) with n ≥ 2 into Hermitian Lie groups, it
is conjectured that maximality implies rigidity, namely that, moduloG-conjugation,
the only maximal representations are restrictions of representations of the ambi-
ent group. The parallelisms between representations and cocycles that we deeply
studied in this thesis would seem to suggests the following more general

Conjecture 7.0.1. Fix n ≥ 2, let Γ < PU(1, n) be a complex hyperbolic lattice,
let (X,µX) be an ergodic standard Borel probability Γ-space and consider a group
G of Hermitian type. Then any maximal cocycles Γ×X → G is cohomologous to
the cocycle induced by a representation PU(1, n)→ G.

The strategy that we adopted in this thesis (previously exploited in [BI07,
Poz15, MS20, SS21c]) is essentially based on boundary maps. Hence, the first
difficulty to overcome to prove (parts of) Conjecture 7.0.1 with the same approach
would be proving the existence of boundary map, that we gave in Theorem 2 and
Theorem 1 only for certain families of cocycles.

Furthermore, in absence of Zariski density one loses all the rigid geometric
properties of boundary maps (see for instance [BI07, Theorem 1] and [Poz15,
Theorem 1.6]) that allows to promote equivariant maps to rational maps. Hence
the arguments based on smooth actions on the variety of rational functions used
by Zimmer [Zim80] and in Chapter 4 are no more adaptable.
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