Vayssière Brandão, Pedro
  
(2022)
Linear and nonlinear thermal instability of Newtonian and non-Newtonian fluid saturated porous media, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. 
 Dottorato di ricerca in 
Meccanica e scienze avanzate dell'ingegneria, 34 Ciclo. DOI 10.48676/unibo/amsdottorato/10143.
  
 
  
  
        
        
        
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            | ![VayssiereBrandao_Pedro_PhD_Thesis.pdf [thumbnail of VayssiereBrandao_Pedro_PhD_Thesis.pdf]](https://amsdottorato.unibo.it/style/images/fileicons/application_pdf.png) | Documento PDF (English)
 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
 Download (11MB)
 | 
        
      
    
  
  
    
      Abstract
      The present work aims to investigate the influence of different aspects, such as non-standard steady solutions, complex fluid rheologies and non-standard porous-channel geometries, on the stability of a Darcy-Bénard system. In order to do so, both linear and nonlinear stability theories are considered. A linear analysis focuses on studying the dynamics of the single disturbance wave present in the system, while its nonlinear counterpart takes into consideration the interactions among the single modes. The scope of the stability analysis is to obtain information regarding the transition from an equilibrium solution to another one, and also information regarding the transition nature and the emergent solution after the transition. The disturbance governing equations are solved analytically, whenever possible, and numerical by considering different approaches. Among other important results, it is found that a cylinder cross-section does not affect the thermal instability threshold, but just the linear pattern selection for dilatant and pseudoplastic fluid saturated porous media. A new rheological model is proposed as a solution for singular issues involving the power-law model. Also, a generalised class of one parameter basic solutions is proposed as an alternative description of the isoflux Darcy--Bénard problem. Its stability is investigated.
     
    
      Abstract
      The present work aims to investigate the influence of different aspects, such as non-standard steady solutions, complex fluid rheologies and non-standard porous-channel geometries, on the stability of a Darcy-Bénard system. In order to do so, both linear and nonlinear stability theories are considered. A linear analysis focuses on studying the dynamics of the single disturbance wave present in the system, while its nonlinear counterpart takes into consideration the interactions among the single modes. The scope of the stability analysis is to obtain information regarding the transition from an equilibrium solution to another one, and also information regarding the transition nature and the emergent solution after the transition. The disturbance governing equations are solved analytically, whenever possible, and numerical by considering different approaches. Among other important results, it is found that a cylinder cross-section does not affect the thermal instability threshold, but just the linear pattern selection for dilatant and pseudoplastic fluid saturated porous media. A new rheological model is proposed as a solution for singular issues involving the power-law model. Also, a generalised class of one parameter basic solutions is proposed as an alternative description of the isoflux Darcy--Bénard problem. Its stability is investigated.
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Vayssière Brandão, Pedro
          
        
      
        
          Supervisore
          
          
        
      
        
          Co-supervisore
          
          
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          34
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          stability analysis; flow in porous media; non-newtonian convection
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.48676/unibo/amsdottorato/10143
          
        
      
        
          Data di discussione
          11 Aprile 2022
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Vayssière Brandão, Pedro
          
        
      
        
          Supervisore
          
          
        
      
        
          Co-supervisore
          
          
        
      
        
          Dottorato di ricerca
          
          
        
      
        
      
        
          Ciclo
          34
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          stability analysis; flow in porous media; non-newtonian convection
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.48676/unibo/amsdottorato/10143
          
        
      
        
          Data di discussione
          11 Aprile 2022
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        